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Abstract. Underwater video is increasingly being pursued as a low 
impact alternative to traditional techniques (such as trawls and dredges) 
for determining abundance and size frequency of target species. Our 
research focuses on automatically annotating survey scallop video 
footage using artificial intelligence techniques. We use a multi-layered 
approach which implements an attention selection process followed by 
sub-image segmentation and classification. Initial attention selection is 
performed using the University of Southern California's (USCs) iLab 
Neuromorphic Visual Toolkit (iNVT). Once the iNVT has determined 
regions of potential interest we use image segmentation and feature 
extraction techniques to produce data suitable for analysis within the 
Weka machine learning workbench environment. 
 
Keywords: Scallop Survey Video Transects, Automated Video 
Annotation. 

1 Introduction 

The Tasmanian Aquaculture and Fisheries Institute (TAFI) have been collecting 
underwater video of commercial and recreational scallop beds for over five years. The 
footage has been collected with the intention of developing minimally intrusive 
techniques for the quantitative assessment of scallop abundance and the impact of the 
habitat. TAFI currently use scallop dredging as their main methods of assessment of 
the commercial fishery but this technique can have a have a destructive impact on the 
marine environment and its inhabitants [1][2]. Dredge surveys also require the use of 
a commercial scallop vessel, whereas video surveys can be conducted on one of 
TAFI’s own research vessels. Recently, the Tasmanian scallop industry have begun 
collecting their own underwater video in order to find new beds and determine the 
health of known beds, as they can do this all year round, including periods when by 
law they are not allowed to have their dredge on board the vessel. The drawback of 
the video approach is that footage can be collected (particularly by Industry) much 



 

faster than it can be manually annotated and as a result TAFI’s accumulating video 
footage has remained relatively untouched for a number of years. 
 
Our research implements a multilayered approach to automatically annotating the 
scallop bed video footage captured by TAFI using Artificial Intelligence (AI) 
techniques. At this stage of our research the task being tackled is the identification 
and counting of commercial scallops from video footage of commercial scallop beds. 
We discuss the steps taken in video frame selection, analysis of conspicuous regions, 
segmentation, feature extraction and classification using the Weka Machine Learning 
Toolkit [3]. 

2 Video Footage Characteristics 

The video footage used in this study varies in many aspects including environment, 
background colour and camera movement. TAFI’s current underwater video system 
relies on a video camera being tethered to a vessel (drop camera) and is therefore 
affected by the speed the vessel is travelling at and the overall smoothness of the 
surface. The sea is seldom perfectly calm or flat, so the footage is subject to a 
constant up-and-down and rolling motion that is not perfectly uniform making it 
difficult to compensate for its effects. 
 
TAFI have recently purchased a Remotely Operated Vehicle (ROV) and as a result it 
will be possible in the future to avoid the current undulation problem. However, for 
archived footage and footage collected by Industry vessels it is necessary to select 
sections of footage where the camera is deemed to be at an appropriate distance from 
the sea bed as footage from the AUV should be. When the camera is too high the 
scallops become ill-defined due to water clarity. When the camera is too low, 
individual scallops take over the entire frame. It is estimated that the preferred 
distance from the sea bed is approximately one third from the top of the camera’s 
range of vertical movement in the current camera footage. 
 

 
Fig. 1. A cropped sample of commercial scallop bed footage provided by TAFI. 

Our primary focus in this study is on commercial scallop beds. Fortunately this 
footage involves comparatively sandy sea beds as opposed to some recreational 
scallop beds, for which some footage is also available, but there is less of a 
management need to examine this footage. Unfortunately, live scallops within the 
commercial scallop bed footage are usually partially buried under the sand, making it 
difficult to differentiate between sea bed and scallops. Thus annotation, whether 
manual or automatic, relies upon the somewhat darker shadow cast by the protruding 
perimeter of buried scallops which in many cases is crescent shaped (see Fig. 1). 



3 Methodology 

Our research breaks down the problem of counting commercial scallops into five 
main tasks. Frames from the video are first analysed by the iLab Neuromorphic 
Visual Toolkit (iNVT) to determine areas of potential interest which are then 
extracted as greyscale sub-images. Segmentation is performed on the sub-images to 
create a secondary binary sub-image. Feature extraction is then performed on both 
sub-images and this information is used to generate data in a suitable format for 
performing classification via the Weka Machine Learning Toolkit. 

3.1 iLab Neuromorphic Visual Toolkit (iNVT) 

To reduce the required search space within an image [4] we use the iNVT to 
identifying areas of potential interest prior to performing more complex segmentation 
and feature extraction techniques. iNVT is a software application developed by the 
University of Southern California (USC) and is designed to identify salient 
(conspicuous) regions within an image. Saliency is determined in a number of ways 
including intensity, orientation and colour. 
 
iNVT generates a saliency map of the image and then uses a winner-takes-all neural 
network approach to determine the most salient region within an image [5]. It is 
possible to keep iNVT running for a specified number of attention shifts whereby 
salient regions are ignored once they have been found. iNVT outputs an ordered series 
of x and y coordinates specifying the centroid of each salient region found in the main 
image. Each set of coordinates is then fed into MATLAB and a 100 x 100 sub-image 
is extracted for further processing including segmentation and feature extraction. 

3.2 Segmentation 

Some of the feature extraction techniques used for classification allow us to use 
greyscale sub-images without the need to perform segmentation. We also create a 
dataset based on a binary version of each sub-image. Segmentation is a four stage 
process including blurring, contrast stretching, thresholding and clean-up.  
 
The sub-image first has a Gaussian blur applied to it to help smooth the details of the 
sub-image and reduce the likelihood of visible interlacing lines caused from the 
extraction of still frames from compressed video. Blurring also helps to avoid regions 
with narrow channels or sections being split into two regions during thresholding. 
 
The sub-image has its contrast stretched to help accentuate the typically darker region 
of shadow created by the edge of the scallop. Thresholding is then performed around 
the mean of the newly generated sub-image. The cleanup process is outlined in Fig. 2. 
We reduce the thresholded sub-image to either zero or one regions of potential 
interest based on the following rules: 
 



 

1.  All regions touching the sub-image boundary are removed as it is likely that a 
region located around the edge of the sub-image is not the area of interest that iNVT 
found. 
2.  Regions with too small an area (less than 60 pixels) are removed. Visual 
inspections of the binary sub-images has indicated that areas smaller than 60 pixels 
are generally featureless. 
3.   If more than one region still remains in the sub-image after the first two stages are 
performed the centroid for each region is calculated and the region with its centroid 
closest to the centre of the sub-image is chosen as the final region of interest. (The 
sub-image is generated around the point at which the iNVT determined a region of 
potential interest therefore the most central region should be most relevant). 
 
It is important to note that it is possible that regions disposed of in the first and third 
steps of the cleanup process may still be picked up in another sub-image as it is 
possible for the iNVT to find two areas of interest within close proximity of each 
other. Further, when processing a sequence of frames, items not identified in one may 
be identified in others. 
 

 
 

Fig. 2. a) Original sub-image. b) Gaussian blur and contrast stretch. c) Binary sub-image 
generated using thresholding around the mean.  d) Regions touching the border of the sub-
image are removed.  e) Regions with an area < 60 pixels are removed.  f) PCA may be applied 
to rotate and centre the remaining region around its major axis. 

Erosion and dilation were also trialled on the sub-image’s regions in an attempt to 
reduce the breaking up of regions prior to the cleanup process. However it was found 
that this process resulted in a loss of definition within the regions and provided little 
help rejoining regions that had been separated by the thresholding process. Ellipse 
fitting, whereby an ellipse is fitted to the lower margin of a region in an effort to 
define the that the scallop occupies, was also unsuccessfully tried as a potential final 
step in the segmentation process whereby an ellipse could be fitted to the underside of 
a region in an effort to find the potential space a scallop may occupy. 

   a.                            b.                         c.

   d.                           e.                           f.



3.3 Feature Extraction 

Various features have been extracted from both the greyscale and segmented binary 
sub-images. These include: seven invariant moments [6], the order in which an area of 
interest was initially selected by iNVT, the location and distance of the centroid of a 
region from the centre of the sub-image and the division of a region into segments 
(Fig. 3). When dividing a region into segments Principal Components Analysis is 
used to rotate the region so that its major axis is aligned with the x axis of the sub-
image. 
 

 
 
Fig. 3.  a) The Distance to Center is measured from the centre of the sub-image to the centroid 
of the region. X and Y coordinate information can also be extracted as a feature using the 
location of the region’s centroid. b) The region is rotated and centered on its major axis using 
PCA. In this example the region has been divided using a 4x2 grid. The region’s percentage of 
coverage in each division is then recorded to form a dataset. 

Invariant moments were also extracted from the greyscale sub-image using a mask 
derived from the binary region. The mask was used at its original size and was also 
grown by varying amounts in order to encapsulate the surrounding areas of the region 
within the greyscale image. Results for all experiments are discussed in detail 
throughout section 4. 

3.4 Instance Classification 

We have consistently used 10 fold cross-validation with the same six classifiers from 
the Weka Machine Learning Toolkit to generate our results. We consider these 
classifiers will give us a reasonable representation of the overall performance of the 
system based on initial trials with other Weka classifiers. The classifiers are as 
follows: 

 
• Multilayer Perceptron (MLP) - (a Neural Network) 
• Naïve Bayes (NB) 
• IB1 (Single Nearest Neighbour) 
• Multiboost AB (MB-AB) 
• NBTree (NBT – Naïve Bayes Tree) 
• Decision Table (Dec T) 

a.                             b.



 

4 Experiments and Results 

It is necessary to manually label each sub-image as either a scallop or non-scallop for 
system evaluation. This process is an arduous task and we have as yet not had the 
opportunity to ground truth the data. Subsequently, the dataset undoubtedly includes 
some misclassified instances; however, we are confident that enough instances have 
been classified correctly to give a clear indication of the system’s overall 
performance. Table 1 and 2 outline how the dataset is affected by the segmentation 
and feature extraction processes. It also highlights the affects of various sub-image 
sizes ranging from 30x30 to 100x100. The exceeds perimeter row denotes the number 
of instances that exceed one or more of the original image’s perimeters. These 
instances cannot be extracted as a complete sub-image and are therefore discarded. 
 
100x100 was chosen as the most appropriate size for a sub-image without further tests 
being performed on larger sub-images. As shown in Table 1, by increasing the size of 
the sub-image beyond 100x100 we will at most avoid excluding a maximum of four 
extra scallop regions. At the same time we will reduce the number of useable 
instances by about 30 if we consider the average increase in the loss of useable 
instances across the exceeds perimeter row. We consider scallop instances that have 
been lost in the cleanup process after extraction of the sub-image to be misclassified 
as they will be excluded from any quantitative assessments we make of commercial 
scallops within the video footage. 

Table 1. The effect the sub-image size and cleanup process have on the total number of scallop 
instances available for training and testing. 

 
 30x30 40x40 50x50 60x60 70x70 80x80 90x90 100x100 

Exceeds perimeter 76 119 136 172 205 232 262 295 
Region on border 624 431 233 105 46 22 13 4 
Area < 60 113 194 234 202 134 93 51 47 
Training/Testing 14 83 224 348 442 480 501 481 

Table 2. The effect the sub-image size and cleanup process have on the total number of non-
scallop instances available for training and testing. 

 
 30x30 40x40 50x50 60x60 70x70 80x80 90x90 100x100 

Exceeds perimeter 293 414 525 619 730 815 900 1005 
Region on border 622 428 227 121 61 33 18 8 
Area < 60 1752 1691 1594 1384 1092 881 678 519 
Training/Testing 32 166 353 575 816 970 1103 1167 

 



The results presented below represent the findings we have made whilst testing 
various stages of our multilayered system. All results are presented as the percentage 
of correctly classified instances in Weka with the Standard Deviation given in 
parentheses. We have at all times worked with as many instances from the original 
dataset as possible. A total of 1648 instances (481 scallops and 1167 non-scallops) 
remain after the cleanup process is complete. Some of the cleanup process 
experiments resulted in greater losses of instances. In these cases the number of 
scallop and non-scallop instances classified by Weka has been written next to the 
input column description. When considering the fact that non-scallop instances 
account for approximately 70% of the total instances, this sets a minimum baseline 
level of performance that a classifier must exceed to be at all useful. 
 
The results in Table 3 were generated to test the performance of the system using 
invariant moments as the only feature extraction technique. By feeding the invariant 
moments from both sub-images into Weka the average overall performance of the 
system is improved by approximately 5%.  

Table 3.  Invariant moment feature extraction using the greyscale and binary images and a 
combination of both. All sub-images are 100x100. 

 
Sub-image MLP NB IB1 MB-AB NBT Dec T AVG 

Grey & Binary 76 (3.7) 71 (3.1) 71 (5.1) 71 (1.7) 77 (3.8) 76 (3.3) 74 

Binary 73 (1.9) 61 (3.3) 67 (3.8) 71 (1.0) 73 (1.7) 70 (2.2) 69 

Grey 71 (2.4) 62 (3.1) 67 (2.3) 71 (0.1) 71 (3.7) 74 (3.4) 69 

 
Table 4 outlines the impact of not discarding instances when the segmented region 
has an area less than 60 pixels. The addition of these instances increases the 
occurrence of non-scallops to approximately 75% and ultimately reduces the overall 
performance of the system compared to the best average result of 74% in table 4. This 
confirms the findings from our visual inspections that scallop instances with an area 
less than 60 are likely to lack features suitable for classification against non-scallop 
instances. 

Table 4. Performance of grey and binary sub-image when no area rule is applied to the cleanup 
process resulting in a greater number of instances for classification. 

 
Sub-image - No Area Rule MLP NB IB1 MB-AB NBT Dec T AVG 
No Area, Grey & Binary 
(523/1247) 78 (2.3) 69 (4.2) 74 (3.2) 76 (1.8) 77 (1.6) 77 (1.8) 75 

 
Table 5 demonstrates that by including a distance to centre (DTC) measurement from 
the centroid of the segmented region to the centre of the sub-image and the X and Y 
coordinate of this centroid we can marginally improve the performance of the system 
compared to the results in Table 4. 



 

Table 5.  Invariant moments from greyscale and binary sub-images with the inclusion of a 
distant to centre (DTC) measurement and the X and Y coordinate of the segmented regions 
centroid. 

 
Sub-image MLP NB IB1 MB-AB NBT Dec T AVG 

DTC 78 (2.7) 72 (3.0) 73 (5.0) 71 (0.4) 78 (4.1) 79 (3.9) 75 

DTC, X&Y 78 (3.4) 74 (2.8) 73 (4.2) 71 (0.4) 77 (4.9) 79 (3.1) 75 

 
Applying a mask to the greyscale image (using the segmented binary region) does 
little to improve the overall performance of the system. The mask is grown by a 
specific amount (outlined in Table 6) and is used as a means of encapsulating features 
in close proximity to the segmented region in the binary sub-image. The system 
performs at its best when the mask is grown by 10 to 15 pixels and a slight advantage 
can be gained on by including the distance to centre measurement and the coordinates 
of the region’s centroid. However this advantage is marginal and when we compare 
the results of the individual classifier learning methods in Tables 5 and 6 we see that 
the best performing classifiers in Table 5 have their performance reduced in table 6 
suggesting that although the average performance is similar the addition of a mask 
into our system offers no real advantage. 

Table 6. Invariant moments using the segmented image as a mask over the greyscale image. 

 
Sub-image mask MLP NB IB1 MB-AB NBT Dec T AVG 

5x5 76 (2.3) 70 (3.5) 73 (4.9) 74 (4.7) 74 (5.1) 74 (4.2) 74 

10x10 77 (2.9) 72 (4.2) 74 (3.4) 75 (3.2) 76 (3.1) 76 (2.8) 75 

15x15 79 (1.7) 73 (2.9) 72 (3.5) 76 (2.9) 77 (3.3) 76 (3.0) 76 

20x20 77 (2.7) 71 (2.3) 74 (3.5) 74 (3.0) 77 (2.6) 76 (1.8) 75 
 
        

15x15, DTC, X & Y 78 (3.4) 73 (2.7) 75 (3.7) 75 (3.2) 78 (3.8) 78 (4.4) 76 

 
The results presented in Table 7 outline the system’s performance on the 
classification of the segmented binary sub-image when its region is divided in n x m 
sections. This approach outperforms all other results presented in this paper when the 
region is divided into 4 x 2 sections, suggesting that feature extraction methods that 
help to define the shape of the segmented region may help to improve the overall 
performance of the system. The results in the last row of Table 7 demonstrate the 
negative impact combining invariant moments and distance to centre features has on 
the overall classification performance. 



 

Table 7. Classification of the percentage of area of a region divided into n x m sections. 

 
Region division X x Y MLP NB IB1 MB-AB NBT Dec T AVG 

2x1 71 (0.2) 70 (0.1) 61 (3.0) 71 (0.1) 71 (0.1) 71 (0.1) 69 

2x2 70 (1.4) 71 (0.1) 63 (3.5) 71 (0.1) 71 (0.1) 71 (0.1) 70 

3x2 76 (3.7) 76 (3.0) 68 (3.3) 72 (2.3) 77 (2.6) 76 (2.3) 74 

3x3 76 (3.2) 76 (2.2) 69 (4.0) 73 (2.3) 75 (2.5) 74 (2.7) 74 

4x2 83 (2.3) 81 (2.0) 81 (2.1) 77 (1.8) 82 (2.1) 80 (2.5) 81 

4x3 75 (1.7) 75 (3.3) 71 (3.7) 72 (1.8) 74 (3.1) 76 (3.4) 73 

4x4 74 (3.4) 74 (2.0) 71 (3.1) 72 (2.1) 76 (1.9) 76 (2.9) 74 

        

4x2, DTC, Inv-M 78 (2.5) 73 (2.8) 74 (2.7) 74 (3.2) 77 (3.9) 80 (3.2) 76 

 
Table 8 outlines the accuracy of the six classifiers on the 4x2 segmentation results in 
Table 7. After examining the classification rates for all the results presented in this 
paper (not included due to space restrictions) we have discovered that in more than 
95% of cases the IB1 classifier produces a balanced error rate of no more than 2% 
difference between false positives and false negatives. From a purely quantitative 
assessment perspective this information, if proved sufficiently consistent, could 
provide us with a greater level of accuracy when assessing scallop abundance. 
However from an Artificial Intelligence perspective if is far more desirable to work 
towards reducing the error rate to a more acceptable level. 

Table 8. Breakdown of the classification results for 4x2 segmentation in Table 7. 

 
Segmentation 4x2 TP TN FP FN 

MLP 341 1022 145 140 

NB 344 990 177 137 

IB1 327 1009 158 154 

Multi-AB 417 847 320 64 

NB-Tree 314 1043 124 167 

Dec-Table 313 1002 165 168 

5 Conclusions and Further Work 

A substantial amount of the research we have undertaken so far has been in 
developing a suitable multilayered system capable of automatically annotating 



 

commercial scallop bed video footage. Our results so far show promise but also leave 
room for improvement. 
 
The experimentation using only invariant moments demonstrate that this approach 
produces at best mediocre results. The results produced by dividing the segmented 
region into sections and measuring the area occupied by the region in each section 
indicate that the emphasis of further work should be on finding feature extraction 
techniques that better describe the overall shape of the segmented region. This work 
will include tests using sampling techniques and pattern classification using an n-tuple 
classifier system [7]. 
 
The research and results covered within this paper are based on still images extracted 
from the video footage. iNVT is also capable of working with multiple frames or 
video sequences as needed for integrating video footage into the process to provide an 
automated system. It will be necessary to develop a tracking system for found 
instances across consecutive frames to avoid counting scallops more than once. 
 
We are currently working on a new dataset which will include a minimum of 500 
scallop instances. This dataset will be thoroughly scrutinised for accuracy and will be 
used primarily for testing classifier learning performance. We are also looking at 
broadening the scope of the system to incorporate other underwater domains with 
similar characteristics. We have recently obtained video footage of seahorse activity 
and intend to test our system on this footage in the near future. 
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