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Abstract 

A method is proposed for the representation of 
ised features using disjoint sub-images taken 
several datasets of retinal images for use within 

n incremental learning system. A tile-based 
calised adaptive threshold selection method was 
en for vessel segmentation based on separate 
our components. Arteriole-venous differentiation 

as done using the composite of these components 
lity fundal images. Vessel segmentation 
was evaluated on the DRIVE and 

asets achieving average speciJicity qf 
.93 79 and sensitivity of 0.5924. 

. Introduction 

Feature extraction and image classification 
ques are hot topics in current image research, 
ularly with the wealth of higher quality digital 

ages that are now becoming more accessible with 
e increased availability of digital camera 
chnologies. However, Artificial Intelligence (A.I.) 
ased image analysis techniques are in their infancy, 

and as with most A.I. methods it is necessary to take 
steps towards the ultimate goal of automatic 

e extraction and classification from images. 
Within retinal images are many features from 

which an expert is trained to perform diagnostic tests; 
a major feature is the vascular system of the retina. In 
this feature, cardiovascular disease, retinopathy of 
prematurity (ROP) and diabetes are some diseases 
that may manifest in abnormal retinal topology and 
microvasculature. 

Until recently, medical imaging has been focused 
on methods for the annotation of images. Their 
Purpose was to encompass both diagnosis and feature 
extraction into one complete system. A flaw in this 

method of knowledge representation for medical 
imaging is that the distinction between a clinical 
diagnosis and the feature extraction steps are not 
clear. They often convey the same information but it 
may not always be the case. 

This study is to investigate whether it is possible 
to delineate the process of feature extraction and 
clinical diagnosis clearly and use an incremental 
learning method for maintaining the knowledge 
required for feature extraction in image processing. 

2. Previous Literature 

To identify features such as arterioles and veins, 
the optic disc, pathological features or other retinal 
landmarks, requires the differentiation of these object 
regions from background regions. The process of 
image segmentation provides this ability and allows 
for feature identification. 

The vascular network is perhaps one of the most 
significant features in the retina. There are two types 
of vessels, veins and arterioles, which carry blood to 
and from the heart. Oxygenation of blood in these 
vessels has an effect on their visual appearance, with 
veins having a relatively darker bluish tint relative to 
the brighter red arterioles. 

One main issue that must be overcome is the 
problem of varying intensity from images taken with 
the fundus camera. This property is due to the 
curvature of the retina, the medium through which 
light needs to travel through and optical properties of 
the cornea. An approach to counter the intensity 
variation problem is to use the second derivative of 
the intensity. This can give topological information 
with a two stage region growing process El]. 

Most techniques apply rules found a priori to 
produce their annotations. Another approach would 
be with supervised methods. This process required 
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classified images as exemplar cases for the purposes 
of training a system that has the ability to learn 
patterns within this data. 

After a review of current techniques in retinal 
imaging, it was apparent that the classification and 
segmentation from these techniques have been done 
as a single process leading to a diagnosis which one 
could consider as expert knowledge. Focusing on 
retinal vasculature, some produced binary classifiers 
for vessel segmentation [2, 31 while others produced 
quantitative information in the form of bifurcation 
angles [4]. 

If it were possible to approach the feature 
extraction process incrementally on a case-by-case 
basis, a more flexible mechanism would be available; 
one where the context in which an intervention was 
required could have corrections applied in an 
incremental fashion. It has been shown that 
organization of computer vision processes can be 
done with knowledge-based systems [5, 61. In the 
field of retinal images in particular, diagnoses are 
often related to the context of where other features 
are located not whether a feature exists. Thus it was 
proposed that this problem domain would be a 
suitable candidate for the application of the Multiple 
Classification Ripple Down Rules (MCRDR) method 
for the maintenance and acquisition of knowledge 

3. Methodology 

For incremental learning, a symbolic 
representation of image information is required for 
manipulation by machine and human. This symbolic 
representation exists as case information relating to 
the image containing information such as image 
features. A method for extracting case information 
was required such that an incremental method could 
be used as a basis for further improvements in the 
system. 

To test the feasibility of using automatic 
annotation as a form of symbolic information, 
experiments were conducted using retinal images 
provided by Finian MacCana, an Optometrist, and 
further evaluation used images from the DRIVE 
database and STARE database (described below) for 
determining segmentation performance. 

3.1. Illumination 

Due to the nature of retinal fundus, illumination 
across these images is often irregular. To overcome 
this, the process used by Hoover & Goldbaum [8] 
was applied to each pixel. In this process, the 

quantity Ie,(i, j), which is the equalised intensity 
pixel (i, j), is given by the equation: 

Lq (i5 J )  = I(i, j )  + P ~ ~ . ~ , , . ~ ~  - Wp (i7 j )  
Where W(i, j )  is a sub-image of NXN di 
centred on the pixel (i, j). I(i, j )  is the 
intensity of a pixel located at (i, j), pdesired t 
mean intensity and Wp(i, j) the actual mean inten 
for the window centred on pixel (i, j). In this ca 
N=49 and ,ud,,,,,,j-128 where N must be an 
number. 

Initially, the black outer edge was masked with t 
mean of pixel intensities above a threshold of 3 
any band. After this, a mean image was obtai 
using a two pass filtering approach. Fina 
subtracting the mean image from the edge-mask 
image using an offset of 128 produced 
illumination-equalised image. 

From the illumination-equalised image, it w 
possible to perform localised operations without 
gradual intensity gradation affecting results w 
retaining local contrast of vessel segments. This wa 
made possible by replacement of the original 
intensities with a constant value ,fddeclred. 
produces an image that retains the localised intensi 
variation for each pixel (i, j) and the surrounding s 
image W(i, j )  with N dimensions but removes 
variation for any sub-image with a size greater t 
these dimensions. 

Segmentation using an adaptive thresh 
selection process was performed on each band u 
their respective intensity level distributions. 
selected threshold obtained from these histogra 
was applied to the centre tile within t 
neighbourhood. In the case of tiles at the edge of 
image, missing tiles were omitted. 

The process for computing a localised histogra 
was performed on a tile-by-tile basis; partitioning t 
image into sub-images of 48x48 pixels each. Ea 
histogram for unsupervised threshold selection wa 
formed using a neighbourhood of 3x3 ti1 
overlapping by 8/9th. 

By averaging the intensity distributions, it wa 
possible to prevent any over-fitting to an inten 
profile of any single tile while preserving 
continuity of vessel regions from tile to tile. 

Consider each histogram of the intensity levels 
where i = LO, 1, 2, ... , L-l] and L is number 
discrete intensity levels. The number of pixels 
intensity level i is n, and the total number of pixels 
= no + nl + . . . + n~- , .  Each normalised histogram can 
be represented as a discrete probability density 
function with the probability distribution p, written 
as: 



3.2. Threshold Selection Algorithm 

The first approach for obtaining a threshold that 
was tested was Otsu's method [9]. However, it was 
found this method was outclassed by the k-means 
method described below. 

The second method tested was described by 
Gonzalez, Woods and Eddins [lo]. In this 
segmentation process only two classifications were 
required; background and foreground pixels (non- 
vessel and vessel). Clustering of the histogram into 
these two classifications gives the boundary for 
automatic threshold selection. The following steps 
were used to find the threshold value for each colour 
component: 
1. An initial threshold T was selected at the mean of 
the distribution weighted by ni given by: 

2. This threshold was used to divide the histogram 
into two classifications, Co = [O, ... , T - I ]  and CI = 

[r ... , L - I ]  to produce two distributions Go and GI 
each with No and NI pixels respectively. Within these 
distributions the weighted means po and pI  were 
calculated by: 

3. Using these two means, a new T was calculated as 
follows: 

4. If the new threshold T was not the same as the ' 
previously calculated threshold, steps 2 to 4 were 
repeated until there was no change in T between 
steps. 
Results of this segmentation process using k-means 
clustering are shown in Figure 1. 

Figure 1 shows a tile-level adaptive threshold 

using 1 D k-means clustering with 
illumination equalisation. 

From the two segmentation methods with 
illumination equalisation, one-dimensional k-means 
clustering produced fewer tile-based artefacts and 
was superior to other methods tested. This 
segmentation method was chosen as the basis for 
building case information generated through 
connected components analysis of these binary 
images. 

3.3. Connected Components Analysis 

After segmentation of the original image, an 
analysis of pixel connectivity was performed to 
identify objects within these segments. This produced 
regions each with attributes that were human- 
machine manageable. This was the intermediary 
representation containing information both would 
recognise and provided a link from which both could 
work. 

The resultant binary images from each colour 
component were partitioned into 48 X48 pixel tiles. 
Segment analysis to label individual regions was 
performed on a tile-by-tile basis to create localised 
feature space information. These labelled regions 
within each tile would allow for the creation of rules 
based on localised feature space information, which 
would contain knowledge specific to this locale. 

4. Evaluation 

Tests were performed using a range of retinal 
images, from high-resolution images using current 
retinal imaging technology to standard datasets used 
for comparative assessment of classifiers. 

4.1. Assessment of Segmentation 

For the assessment of the vessel segmentation 
algorithm, datasets from two publicly available 
retinal image databases were used. This provided a 
set of results that were comparable with the 
performance of other vessel segmentation algorithms. 
Both sets included manual annotations by separate 
observers to provide ground truth and an assessment 
of the observers' annotation accuracy. 

Visualization of the comparative pixel classifier 
performances was achieved by platting receiver 
operator characteristic (ROC) curves for each 
segmentation method [ l l ] .  In this scenario, each 
pixel is an instance with a predicted class and an 
actual class. These pixels can be either positive or 
negative for being vessel or non-vessel respectively 
for both actual and predicted. Given an instance, each 



pixel classification has one of four possible 
outcomes; true positive, false positive, true negative 
or false negative, 

For the comparison of classifiers producing soft- 
classifications (i.e. classifiers that provide a score or 
probability instead of a binary value), calculation of 
the AZ (area under the receiver operator 
characteristics curve) was performed. The AZ 
provides another indication of the classifier 
performance with a purely random classifier 
producing an AZ of 0.5 when there are two classes. 

4.2. The DRIVE Dataset 

The DRIVE (Digital Retinal Images for Vessel 
Extraction) database is a collection of 40 retinal 
images, 7 of which contain pathological indicators, 
obtained fiom a screening program at the University 
Medical Centre Utrecht, Netherlands [I 2, 131. 

The test set in this database (20 images) contains 
vessels manually segmented by three observers: a 
computer science student, a clinical expert and an 
image-processing expert. The clinical expert, an 
ophthalmologist, trained the observers to mark pixel- 
by-pixel as vessels when they were 70% certain that a 
vessel was present. The 40 hand-segmented vessel 
images were divided into two sets that will be 
referred to as 'Set A' and 'Set B'. Set A contains 14 
images annotated by the student and 7 by the 
ophthalmologist. Set B contains 20 images annotated 
by the image-processing expert. 

4.3. The STARE Dataset 

The STARE (Structured Analysis of the Retina) 
database consists of 20 images containing ten 
pathological and ten normal retinas 12, 141. 

In this set, Adam Hoover (AH) and Valentina 
Kouznetsova (VK) performed manual vessel 
labelling for all twenty images. Textual annotations 
by an expert indicating the disease state for each 
image were also provided. Using these annotations, it 
was possible to compare the segmentation 
performance on images with pathology and those that 
were normal. 

The STARE dataset also provided the pixel 
classifications using matched filter response (MFR) 
for each image to allow for comparative assessment 
of segmentation performance for MFR hard 
classifications. 

5. Results 

Experiments of the proposed method for vessel 
segmentation were conducted on the MacCana 

dataset using a tile size of N=48 while the DRI 
and STARE datasets had a tile size of N=l6. 

The initial performance of the segment 
algorithm provided a baseline. This assess 
provided an objective method for identifying 
quality of features extracted as representations 
vessel segments when compared with hum 
annotations. The DRIVE and the STARE datas 
were used in this process. These datasets cont 
twenty test images, each with two sets of man 
annotations done by separate observers to provi 
ground truth and assessment of subjectivity. 
Table 1 shows the accuracies between ea 

colour component with the first human 

False 
Segmentauon Mean Accuracy True positive 
method (Std. dev.) rate (TPR) fa:?;& 
Set B 0.9473 (0.0048) 0.7760 0.0275 

Composite 0.8936 (0.0149) 0.5924 0.0621 

Red 0.8871 (0.0150) 0.4015 0.0416 

Green 0.9108 (0.0107) 0.5266 0.0328 

Blue 0.8817 (0.0120) 0.2587 0.0273 

5.1. DRIVE dataset 

Figure 2 shows the mean accuracy, specificity and 
sensitivity for composite and colour component 
vessel segmentation using images from the DRIVE 
dataset. Set B was included in the comparison with 
Set A as a measure of human accuracy in manual 
annotations. The results of set B confirmed the 
findings by Staal et al [I21 that there is some 
disagreement between the two sets of manual 
segmentations. This provided a reference point from 
which a statistical comparison could be made. 

DRIVE ROC curve (normal) 

- - - Blue 
0 1 Composite 

- Set 8 

0 0 
00 0.1 0.2 0.3 0 4  0 5  0 6  0.7 0 8  0 9  10 

False positive rate 

Figure 2 ROC curve formed by merging 
the twenty samples in the DRIVE dataset. 



It was apparent that the green component 
produced the highest number of true positives 
followed by red then blue. To find if this difference 
between the mean accuracies was statistically 
,ignificant a non-parametric test was done in a pair- 
wise manner. The results from a Wilcoxon rank sum 
test comparing mean accuracy rates of each 
component and the composite showed that the there 
was a statistical difference with a significance level 
of a = 0.05 with two exceptions: the overall accuracy 
of the blue component when tested against the red, 
which had a p-value of 0.1895, and the overall 
accuracy of the red component tested against the 

which had a p-value of 0.1075. 
Table 2 shows the performance of the 

composite segmentation method when 
compared with previous vessel segmentation 
techniques with set 6 as a point of reference. 

DRIVE database: Segmentation accuracy against Set A 

Mean Tme False 
Stpnentation Method Accurag positive positive 

(Std. dezt) rate rate 

Set B 
0.9473 

(0.0048) 0.7760 0.0275 

Composite 
0.8936 

(o~o149~ 0.5924 0.0621 

Mendon~a - Green [3] 0'9452 0.7344 0.0236 
(0.0062) 

Mendonqa - Lumlnos~ty [3] 0'9463 0.7315 0.0219 
(0.0065) 

Staal et al: - PBM 11 23 0.9442 0.6780 0.0170 

Martinez-Perez et ai! - MS [I 51 0.9344 0.7246 0.0345 

Since the pixel classifier is discrete in nature, 
producing only a class label of either vessel or non- 
vessel, its performance exists in ROC space as a 
single point at location (FPR, TPR) corresponding to 
the values in Table 2. These locations are visible on 
the merged ROC curve plotted from experimental 
results shown in Figure 2 for their respective 
segmentation methods. The performance from the 
segmentation of the blue component was relatively 
poor given that a pure random classifier would 
produce an AZ of 0.5 but it must be noted that it 
contributes to the true positive rate when considering 
the composite of all components. 

The composite segmentation results were 
compared with previous vessel segmentation 
techniques that were tested against the DRIVE 
dataset. Comparison of the mean true positive rates 
showed that the initial results were worse than these 
techniques, as can be seen in Table 2. 

and a comparison to images without. These results 
are not shown due to space restrictions, but can be 
found in full in an earlier publication [16]. 

Comparing the results from images without 
pathology, the composite image yielded a greater 
sensitivity but lower specificity in comparison with 
results from MFR hard classification. This difference 
was shown to be statistically significant with a p- 
value less than 0.0002 using a Wilcoxon rank-sum 
test. It must be noted that use of multiple thresholds 
in MFR produces a soft classifications so using AZ 
would produce a fairer comparison. 

In the segmentation results from images with 
pathology, each component fell in accuracy, 
specificity and sensitivity. To test the statistical 
significance of this difference, a Wilcoxon rank-sum 
test was performed comparing the mean accuracy, 
TPR and FPR from these two subsets. The results of 
this test are shown in Table 3. 

Table 3 comparison between results from 
abnormal and normal subset of the STARE 

images. 
p-values from Wilcoxon Rank-Sum test on the means: 

normal vs. Abnormal 
Composite Red Green Blue 

Acczlray 0.1 859 0.0017 0.0017 0.0046 

Tmepositive rate 0.0140 0.0173 0.0140 0.1405 

False bosithe rate 0.7913 0.0091 0.00058 0.21 71 - 
Comparing the variance in accuracies between 

colour components obtained from the STARE dataset 
has shown that the false positives increase with each 
additional colour component. This suggests that 
images in the STARE dataset had inherently more 
chromatic noise in comparison with segmentation 
results from the DRIVE dataset, where luminosity 
contributed a greater proportion of the noise, This 
disparity in relative component accuracies between 
datasets may be due to artefacts introduced into the 
STARE images as a by-product of digitisation. 

Given that the DRIVE dataset was without textual 
annotations, showing which images contained 
pathology, it was not known if the skewed nature of 
these results were due to the presence of pathology or 
if they were due to an insufficient sample size. 
However, it could be seen from the STARE results 
that the overall accuracies in composite segmentation 
were adversely affected by the lowered specificity of 
red and blue components when compared to the 
results from the DRIVE dataset. This suggests that 
the pathology within an image has an adverse affect 
upon the proposed vessel segmentation method. 

5.2. STARE dataset 

Tests with the STARE dataset provided 
segmentation performance on images with pathology 



6. Conclusions 

In this paper, a method for locally representing 
vessel features was identified for the purpose of 
incremental learning in retinal image feature 
extraction. The proposed technique for feature 
extraction used a localised adaptive threshold 
selection method, which was then applied to a range 
of retinal images. Using this approach for vessel 
segmentation, it was also possible to perform 
arteriole-venous differentiation with high-quality 
retinal images based on the composite output. 

It should be noted that individual colour 
components have not been tested in the literature for 
the purposes of vessel segmentation and the 
experiments have shown that they contribute to the 
accuracy of the pixel classifier. 

7. Further Work 

With the focus of this paper on segmentation and 
feature extraction for the purpose of improving 
feature set accuracy, the inclusion of medical 
knowledge was a path left unexplored. It would be 
possible to use the same feature set to derive clinical 
information, such as the differentiation of vessel 
types which was done qualitatively but by defining a 
rule set for their classification, this process could be 
automated. 

The logical next step of this work would be to 
apply an incremental learning algorithm, such as 
MCRDR allowing the expert to select the 
automatically extracted features as conditions for 
rules to produce a knowledge base capable of 
diagnosing from the image. 
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