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ABSTRACT

Object-oriented methodologies focus on the design of object classes as the building blocks of systems. The class interface 

provides a way to encapsulate focus to a single object/class at a time. However, general system-wide issues are important

and need attention in the design endeavour also. The paper reports on our efforts to use a model verifier to enact

interactions of multiple objects and classes to perform a system-wide analysis.
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1. INTRODUCTION

Object oriented analysis, design and programming (Booch 1998; Rumbaugh 1999) is the method of choice

for developing software today. Objects are designed to model real and perceived entities. Entities are 

modelled through their states and their behaviour. The state is defined by a set of instance and class variables

(attributes). The behaviour is mapped onto methods. Objects with shared behaviour are grouped as a class;

methods are defined for the whole class. Each object, however, has its individual and independent state.

A methodology exclusively focused on the object and class interfaces may not address the following 

questions: How do we know that all object classes have been defined? How do we know that all methods of

interest have been found? How do we know that all behavioural details of interest have been captured in the

specifications? Inconsistency in the specifications is another global property that escapes the confine of a

single class interface.

In this paper we report on use of a model verification tool to address these questions. We used Labelled

Transition System (LTS) (Magee and Kramer 1999) as the verification tool. The tool models a concurrent

system of objects using Finite State Process (FSP). The associated analyser, LTSA (Labelled Transition

System Analyser) is designed for analysis of concurrent systems but, as it turns out, is suitable for analysing

object-oriented designs too.

In Section 2, we briefly describe the software development process as we view it. In section 3, an

example from a case study is presented. Section 4 concludes the paper with suggestions about the benefits

that the use of model verifiers may provide to object-oriented design.
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2. SOFTWARE DEVELOPMENT METHODOLOGY 

Validation led software development process (Lakos and Malhotra 2002) begins with a text description of the

system. The objects and object classes are initially discerned from the text as are some of the attributes (data

members) of the classes. It is usually possible to arrange classes into inheritance hierarchy and other inter-

class relationships using standard object-oriented modelling practices and tools. To move the design to a

consistent and complete specification the methodology advocates the use of object lifecycles.

For each significant object class, the text description provides the lifecycle description. It is possible to 

identify some of the main states, and transitions between them, from the text description. However, text

descriptions are notorious for being ambiguous, incomplete, and inconsistent (Sommerville 1995). One does

not expect the lifecycles of the object classes to be the ready-to-use specifications. Validation led process

iteratively analyses and develops the object lifecycles. 

In each iterative cycle of the validation led specification, the lifecycles are matched against each other to

identify inconsistencies and incompleteness. Each identified mismatch requires the lifecycles to be revised to

address the identified concern. The reported methodology, however, relies on a manual analysis of the

lifecycles. A tool to do this analysis is essential to make the methodology reliable and effective.

We used a model verifier to identify the mismatches in the object lifecycle specifications. Each object is 

modelled by representing its lifecycle as a concurrent LTS component. The invariant properties of the object-

oriented model can be expressed as the safety properties over the LTS description. A deadlock or a liveness

concern in the LTS model has interpretation in the object-oriented domain underscoring an issue that has

remained unaddressed. The LTS specifications being formal, the approach also has potential to automate the

task of program generation. However, this goal was not pursued in this work. 

2.1 Labelled Transition System (LTS) and LTS Analyser

Labelled Transition System (Magee and Kramer 1999) uses Finite State Process (FSP) descriptions of the

entities. A Finite State Process consists of a sequence of actions terminating in a special (pre-defined) process

STOP. It is often helpful to define a finite process in terms of other finite processes. For example, a process

modelling a passenger joining a lift (elevator) system can read as follows: 

const UP = 0, DOWN = 1 

PASSENGER = {

  call_at_ground_level -> WAITING_FOR_LIFT[1] 

| call_at_top_floor -> WAITING_FOR_LIFT[MAX_FLR] 

| call_at_floor[f:2..MAX_FLR-1][d:UP..DOWN] -> WAITING_FOR_LIFT[f] 

}

In the above example modelling a lift passenger, uppercase identifiers denote processes and lowercase

identifiers denote actions. Thus, a process PASSENGER can follow one of the three alternative sequences of 

actions. In each alternative, the action of calling the lift is followed by a wait process. Parameters in the

processes and actions are useful mechanism for passing values between states.

In addition to defining a process in terms of the other processes it is possible to run multiple processes in 

parallel (concurrently). Actions in two finite state processes with the matching names are synchronised and

must happen on all concurrent processes containing the action name simultaneously.

The analyser can verify a given model for two kinds of errors. A progress violation occurs when the

system gets into a state other than process STOP from which it can not perform any further action.

There is another special process called ERROR. The process ERROR can be reached explicitly by

specifying actions leading to it. Alternately, one can specify safety properties. A safety property is a sequence

of, not necessarily consecutive, actions that represent an acceptable behaviour. A violation of the safety 

property denotes an error prompting process ERROR to manifest.

The analyser, LTSA, takes an LTS description and generates an animation. The animation can be used to

pace through the defining entities lifecycles. The animator is a useful tool for visualisation but has only a 
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limited application in debugging the specifications. We rely on the model verification functionality of LTSA

for this purpose

A safety check involves exercising all possible sequences of the actions that may cause process ERROR to

be entered. For example, for a lift system we would wish to ensure that the lift door is closed before the lift 

moves. Likewise, one may specify the safety property that requires the (simulated) lift to be empty before it

enters its idle state.

The other check that LTSA performs is exposing progress violations. Again, the analyser checks all 

possible sequences of actions to find a sequence for which there is no further action possible. A sequence of

actions ending in STOP, however, is not a bad sequence in this respect.

There is considerable leeway in modelling certain requirements. For example, a safety requirement can be

programmatically specified as a guard, and therefore manifests as progress violation rather than as a safety

violation.

Each safety or progress violation detected by the tool is accompanied by an action sequence that reports

how the system ends in a blind alley (deadlock) or an error state. We found this to be very useful information

for correcting errors and subsequent remodelling of lifecycles of involved entities and processes.

Table 1. Summary of some errors reported by the analyser during validation led development of a FSP model for a lift 

system in a building with 4 floors.

Error

No.

Description of Progress Violation or Deadlock

reported by the analyser 

Comments and Solution used to correct the reported

condition

2

Passenger arrived at floor 3 and called lift. Lift

arrived at floor 3 and passenger stepped in. Pressed

for floor 1. The door closed, and lift invoked

WALK algorithm. The algorithm proceeds to check

on-floor down button and then idle the lift.

Problem arose from a process in WALK – specifically

the first guard of LOOK_DOWN_INTERNAL process

required a range check to match the lowest floor number 

to let the recursive calls reach the in lift button at the first

floor.

5

Passenger arrived at top floor, and called lift. The

lift travelled up to the top floor. The door opened 

and the passenger stepped in and pressed the button

for the same floor. The door closed and the lift

invoked WALK and then entered the idle state. The 

passenger is still in the lift.

The invoked WALK algorithm was unsuccessful because

the instruction assumed that the conditions at that point 

meant the entire WALK check has been performed when 

there is no further passenger to drop or pick at a floor

further up in the current direction of travel of the lift. The

entry to the idle state is replaced by an instruction to go to

IDLE after an instruction to continue the WALK in the

opposite direction to allow the lift to look for calls from 

floors on the other side of the travel. 

23

A passenger called at the second floor and the lift

arrived at the second floor. One more passenger

called at the second floor, before the lift opened its 

doors. The first passenger entered the lift and 

pressed the in-lift button for the third floor; the

second passenger entered the lift and pressed the 

in-lift button for the first floor. The lift door closed.

One more passenger arrived and called the lift to 

the third floor. Lift travelled to the third floor and

opened the door and the first passenger left. The 

door closed and a passenger called at second floor.

Trace halted. Passenger three is left at third floor,

the forth passenger at the second floor, and the

second passenger (going to first floor) is in the lift.

Provision of a correct re-entrant behaviour to the WALK 

algorithm corrected this behaviour.

This was the last error reported in our study.
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3. AN EXAMPLE

To test the use of model verifiers in object oriented design we simulated an object based model of a lift

system (Stanton 2002).  Some further results to relate model verification effort with the program testing

strategies are presented in (Stanton and Malhotra 2004). The study was focused on issues related to the 

movements of a lift in a multi-floor building. Instead of focusing on the full functionality of the simulator, we 

restricted ourselves to the lift controller that determines the next action of the lift. The controlling algorithm

was termed WALK. At various points in its lifecycle – for example, when the lift door closes – the lift 

invokes algorithm WALK to determine the next action that it should execute.

The algorithm evolved in stages as the specifications were refined. Initially, only a rudimentary WALK

algorithm could be discerned from the text description of the lift problem. This simplistic algorithm was 

coded in the FSP models. As the errors – incompleteness and inconsistency – were reported by the analyser

during the specification development process, alterations were made to correct the algorithm. Each error 

detected by the LTS analyser required changes in the lifecycle model of one or more objects. The Lift

Problem being well known meant that required changes were clear once the need was detected. Real world 

applications would normally require reference to domain experts for advice to correct mistakes. We had a

total of 23 iterations of the refinement step.  A  sample of there errors and the actions taken to correct them is 

shown in Table 1.

4. CONCLUSION

It is well understood that quality cannot be added to software after it has been developed (Sommerville

1995). Software engineers are well aware of the rapid escalations in the cost of bug removal (and fixing) in

the later software development phases. Therefore, software development methodologies and tools

continuously strive to find errors in the earliest software development phase possible.

Model verifiers fill this goal very effectively for object-oriented system development. This has been

illustrated by the example described in this paper.

Model verifiers such as LTSA (Magee and Kramer 1999) contribute to this process in many ways. Firstly,

the formal FSP descriptions that LTSA requires is directly associated to the objects in the system

specifications. The formal FSP supports interpretative execution and can be run in steps through an animator

– an integrated part of LTSA. Thirdly, the verification process is like a simultaneous execution of all 

animations – analysis provides an effective and efficient mean for identifying all potential violations of

progress and safety properties in the specifications. Fourthly, the formal specifications can be easily

transformed into programs in Java and other object-oriented languages through automated and semi-

automated processes. 
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