
VALIDATION LED DEVELOPMENT OF

OBJECT-ORIENTED

SOFTWARE USING A MODEL VERIFIER

Simon Stanton
School of Computing, University of Tasmania

Private Box 100, Hobart 7001 Australia

sstanton@postoffice.utas.edu.au

Vishv Malhotra
School of Computing, University of Tasmania

Private Box 100, Hobart 7001 Australia

vishv.malhotra@utas.edu.au

ABSTRACT

Object-oriented methodologies focus on the design of object classes as the building blocks of systems. The class interface

provides a way to encapsulate focus to a single object/class at a time. However, general system-wide issues are important

and need attention in the design endeavour also. The paper reports on our efforts to use a model verifier to enact

interactions of multiple objects and classes to perform a system-wide analysis.

KEYWORDS

Object-oriented design, Invariants, Finite-State process.

1. INTRODUCTION

Object oriented analysis, design and programming (Booch 1998; Rumbaugh 1999) is the method of choice

for developing software today. Objects are designed to model real and perceived entities. Entities are

modelled through their states and their behaviour. The state is defined by a set of instance and class variables

(attributes). The behaviour is mapped onto methods. Objects with shared behaviour are grouped as a class;

methods are defined for the whole class. Each object, however, has its individual and independent state.

A methodology exclusively focused on the object and class interfaces may not address the following

questions: How do we know that all object classes have been defined? How do we know that all methods of

interest have been found? How do we know that all behavioural details of interest have been captured in the

specifications? Inconsistency in the specifications is another global property that escapes the confine of a

single class interface.

In this paper we report on use of a model verification tool to address these questions. We used Labelled

Transition System (LTS) (Magee and Kramer 1999) as the verification tool. The tool models a concurrent

system of objects using Finite State Process (FSP). The associated analyser, LTSA (Labelled Transition

System Analyser) is designed for analysis of concurrent systems but, as it turns out, is suitable for analysing

object-oriented designs too.

In Section 2, we briefly describe the software development process as we view it. In section 3, an

example from a case study is presented. Section 4 concludes the paper with suggestions about the benefits

that the use of model verifiers may provide to object-oriented design.

II - 7

IADIS International Conference Applied Computing 2004

2. SOFTWARE DEVELOPMENT METHODOLOGY

Validation led software development process (Lakos and Malhotra 2002) begins with a text description of the

system. The objects and object classes are initially discerned from the text as are some of the attributes (data

members) of the classes. It is usually possible to arrange classes into inheritance hierarchy and other inter-

class relationships using standard object-oriented modelling practices and tools. To move the design to a

consistent and complete specification the methodology advocates the use of object lifecycles.

For each significant object class, the text description provides the lifecycle description. It is possible to

identify some of the main states, and transitions between them, from the text description. However, text

descriptions are notorious for being ambiguous, incomplete, and inconsistent (Sommerville 1995). One does

not expect the lifecycles of the object classes to be the ready-to-use specifications. Validation led process

iteratively analyses and develops the object lifecycles.

In each iterative cycle of the validation led specification, the lifecycles are matched against each other to

identify inconsistencies and incompleteness. Each identified mismatch requires the lifecycles to be revised to

address the identified concern. The reported methodology, however, relies on a manual analysis of the

lifecycles. A tool to do this analysis is essential to make the methodology reliable and effective.

We used a model verifier to identify the mismatches in the object lifecycle specifications. Each object is

modelled by representing its lifecycle as a concurrent LTS component. The invariant properties of the object-

oriented model can be expressed as the safety properties over the LTS description. A deadlock or a liveness

concern in the LTS model has interpretation in the object-oriented domain underscoring an issue that has

remained unaddressed. The LTS specifications being formal, the approach also has potential to automate the

task of program generation. However, this goal was not pursued in this work.

2.1 Labelled Transition System (LTS) and LTS Analyser

Labelled Transition System (Magee and Kramer 1999) uses Finite State Process (FSP) descriptions of the

entities. A Finite State Process consists of a sequence of actions terminating in a special (pre-defined) process

STOP. It is often helpful to define a finite process in terms of other finite processes. For example, a process

modelling a passenger joining a lift (elevator) system can read as follows:

const UP = 0, DOWN = 1

PASSENGER = {

 call_at_ground_level -> WAITING_FOR_LIFT[1]

| call_at_top_floor -> WAITING_FOR_LIFT[MAX_FLR]

| call_at_floor[f:2..MAX_FLR-1][d:UP..DOWN] -> WAITING_FOR_LIFT[f]

}

In the above example modelling a lift passenger, uppercase identifiers denote processes and lowercase

identifiers denote actions. Thus, a process PASSENGER can follow one of the three alternative sequences of

actions. In each alternative, the action of calling the lift is followed by a wait process. Parameters in the

processes and actions are useful mechanism for passing values between states.

In addition to defining a process in terms of the other processes it is possible to run multiple processes in

parallel (concurrently). Actions in two finite state processes with the matching names are synchronised and

must happen on all concurrent processes containing the action name simultaneously.

The analyser can verify a given model for two kinds of errors. A progress violation occurs when the

system gets into a state other than process STOP from which it can not perform any further action.

There is another special process called ERROR. The process ERROR can be reached explicitly by

specifying actions leading to it. Alternately, one can specify safety properties. A safety property is a sequence

of, not necessarily consecutive, actions that represent an acceptable behaviour. A violation of the safety

property denotes an error prompting process ERROR to manifest.

The analyser, LTSA, takes an LTS description and generates an animation. The animation can be used to

pace through the defining entities lifecycles. The animator is a useful tool for visualisation but has only a

II - 8

VALIDATION LED DEVELOPMENT OF OBJECT-ORIENTED SOFTWARE USING A MODEL VERIFIER

limited application in debugging the specifications. We rely on the model verification functionality of LTSA

for this purpose

A safety check involves exercising all possible sequences of the actions that may cause process ERROR to

be entered. For example, for a lift system we would wish to ensure that the lift door is closed before the lift

moves. Likewise, one may specify the safety property that requires the (simulated) lift to be empty before it

enters its idle state.

The other check that LTSA performs is exposing progress violations. Again, the analyser checks all

possible sequences of actions to find a sequence for which there is no further action possible. A sequence of

actions ending in STOP, however, is not a bad sequence in this respect.

There is considerable leeway in modelling certain requirements. For example, a safety requirement can be

programmatically specified as a guard, and therefore manifests as progress violation rather than as a safety

violation.

Each safety or progress violation detected by the tool is accompanied by an action sequence that reports

how the system ends in a blind alley (deadlock) or an error state. We found this to be very useful information

for correcting errors and subsequent remodelling of lifecycles of involved entities and processes.

Table 1. Summary of some errors reported by the analyser during validation led development of a FSP model for a lift

system in a building with 4 floors.

Error

No.

Description of Progress Violation or Deadlock

reported by the analyser

Comments and Solution used to correct the reported

condition

2

Passenger arrived at floor 3 and called lift. Lift

arrived at floor 3 and passenger stepped in. Pressed

for floor 1. The door closed, and lift invoked

WALK algorithm. The algorithm proceeds to check

on-floor down button and then idle the lift.

Problem arose from a process in WALK – specifically

the first guard of LOOK_DOWN_INTERNAL process

required a range check to match the lowest floor number

to let the recursive calls reach the in lift button at the first

floor.

5

Passenger arrived at top floor, and called lift. The

lift travelled up to the top floor. The door opened

and the passenger stepped in and pressed the button

for the same floor. The door closed and the lift

invoked WALK and then entered the idle state. The

passenger is still in the lift.

The invoked WALK algorithm was unsuccessful because

the instruction assumed that the conditions at that point

meant the entire WALK check has been performed when

there is no further passenger to drop or pick at a floor

further up in the current direction of travel of the lift. The

entry to the idle state is replaced by an instruction to go to

IDLE after an instruction to continue the WALK in the

opposite direction to allow the lift to look for calls from

floors on the other side of the travel.

23

A passenger called at the second floor and the lift

arrived at the second floor. One more passenger

called at the second floor, before the lift opened its

doors. The first passenger entered the lift and

pressed the in-lift button for the third floor; the

second passenger entered the lift and pressed the

in-lift button for the first floor. The lift door closed.

One more passenger arrived and called the lift to

the third floor. Lift travelled to the third floor and

opened the door and the first passenger left. The

door closed and a passenger called at second floor.

Trace halted. Passenger three is left at third floor,

the forth passenger at the second floor, and the

second passenger (going to first floor) is in the lift.

Provision of a correct re-entrant behaviour to the WALK

algorithm corrected this behaviour.

This was the last error reported in our study.

II - 9

IADIS International Conference Applied Computing 2004

3. AN EXAMPLE

To test the use of model verifiers in object oriented design we simulated an object based model of a lift

system (Stanton 2002). Some further results to relate model verification effort with the program testing

strategies are presented in (Stanton and Malhotra 2004). The study was focused on issues related to the

movements of a lift in a multi-floor building. Instead of focusing on the full functionality of the simulator, we

restricted ourselves to the lift controller that determines the next action of the lift. The controlling algorithm

was termed WALK. At various points in its lifecycle – for example, when the lift door closes – the lift

invokes algorithm WALK to determine the next action that it should execute.

The algorithm evolved in stages as the specifications were refined. Initially, only a rudimentary WALK

algorithm could be discerned from the text description of the lift problem. This simplistic algorithm was

coded in the FSP models. As the errors – incompleteness and inconsistency – were reported by the analyser

during the specification development process, alterations were made to correct the algorithm. Each error

detected by the LTS analyser required changes in the lifecycle model of one or more objects. The Lift

Problem being well known meant that required changes were clear once the need was detected. Real world

applications would normally require reference to domain experts for advice to correct mistakes. We had a

total of 23 iterations of the refinement step. A sample of there errors and the actions taken to correct them is

shown in Table 1.

4. CONCLUSION

It is well understood that quality cannot be added to software after it has been developed (Sommerville

1995). Software engineers are well aware of the rapid escalations in the cost of bug removal (and fixing) in

the later software development phases. Therefore, software development methodologies and tools

continuously strive to find errors in the earliest software development phase possible.

Model verifiers fill this goal very effectively for object-oriented system development. This has been

illustrated by the example described in this paper.

Model verifiers such as LTSA (Magee and Kramer 1999) contribute to this process in many ways. Firstly,

the formal FSP descriptions that LTSA requires is directly associated to the objects in the system

specifications. The formal FSP supports interpretative execution and can be run in steps through an animator

– an integrated part of LTSA. Thirdly, the verification process is like a simultaneous execution of all

animations – analysis provides an effective and efficient mean for identifying all potential violations of

progress and safety properties in the specifications. Fourthly, the formal specifications can be easily

transformed into programs in Java and other object-oriented languages through automated and semi-

automated processes.

REFERENCES

Booch, G. et al, 1999. , The Unified Modeling Language User Guide, Addison-Wesley Object Technology Series,

Addison Wesley Longman Inc., Reading, Ma.

Lakos, C. and Malhotra, V., 2002. Validation Led Development of Software Specifications, International Journal of

Modelling and Simulation, Vol. 22 No. 1, pp. 57-74.

Magee J. and Kramer, J., 1999. Concurrency: State Models & Java Programs, Worldwide Series in Computer Science,

John Wiley & Sons, Chichester, England..

Rumbaugh, J., 1999. The Unified Modeling language Reference Manual, Addison-Wesley Object Technology Series,

Addison Wesley Longman Inc., Reading, Ma.

Sommerville, I., 1995. Software Engineering, International Computer Science Series, Addison Wesley Publishing

Company, Wokingham, England.

Stanton, S. C., 2002. Validation and Verification of Software Design Using Finite State Process (Honours thesis), School

of Computing, University of Tasmania, Hobart, Australia.

Stanton, S. C. and Malhotra, V., 2004. Model Checking an Object-Oriented Design, Sixth International Conf. on

Enterprise Information Systems, Porto, Portugal (to appear).

II - 10

Z Published + in limbo papers

Printed for Vishv Malhotra <vishv.malhotra@utas.edu.au> 1

To: "Vishv Malhotra" <vishv.malhotra@utas.edu.au>
Subject: Applied Computing 2004: submission results

Dear Author

I am pleased to inform you that your submission to the IADIS International
Conference Applied Computing 2004 has been accepted as a "SHORT PAPER".

Please,
1 - make the suggested corrections to your paper (see details below), use
the correct format available at
http://www.iadis.org/ac2004/submissions.asp (very important: if this
format is not followed we cannot accept your contribution and it won't be
published in the proceedings). Make sure that your submission has the
number of pages allowed for this category which is 4 pages (additional
pages up to 2 will be charged as specified in the registration form). Also
note that your final submission must be a WORD file since proceedings are
produced in WORD,
2 - submit the final version at
http://www.iadis.org/confman_ac2004/final_papers.asp (please submit from
this link only), and
3 - register for the conference (deadline for this procedure is 9 February
2004 - if not registered the paper won't be published in the proceedings.
Also, to take advantage of the early registration rate you must register
for the conference until 9 February 2004). Registration is available at
http://www.iadis.org/ac2004/registration.asp

Hope to see you in Lisbon, in March.

Best regards,
Pedro Isaias
Applied Computing 2004 Conference Co-Chair

Please consider the following data for your final submission (using the
link above):

Your Login is: vishv.malhotra@utas.edu.au

Your password is: 51008

Paper Title: VALIDATION LED DEVELOPMENT OF OBJECT-ORIENTED SOFTWARE USING
A MODEL VERIFIER

Submission code: 259

Evaluation Results:

vmm
Malhotra" <vishv.malhotra@utas.edu.au>

vmm
Z Published + in limbo papers

vmm
vishv.malhotra@utas.edu.au

vmm
51008

vmm
<vishv.malhotra@utas.edu.au>

Z Published + in limbo papers

Printed for Vishv Malhotra <vishv.malhotra@utas.edu.au> 2

 Originality: 5 - Average
 Significance: 6 - Good
 Technical: 6 - Good
 Relevance: 7 - Excellent
 Classification: 6 - Good
 Comments: I like your use of an LTS analyser to verify liveness and
safety properties. I find it acceptable. However, I am concerned about the
limited level of originality reported in this work (in section 3) since it
is based on only one case study and have not seen generalized
conclusions/lessons, future developments, etc...

 Originality: 4 - Neutral
 Significance: 4 - Neutral
 Technical: 4 - Neutral
 Relevance: 4 - Neutral
 Classification: 3 - Not Very Good
 Comments: The paper presents the application of a model verifier to
identify the mismatches in the object lifecycle specifications.
However it is not clear the real contribution of this paper. LTSA is a
well know verification tool which can be used for different purposes. Do
the author want to put the emphasis on the use of LTSA for developing and
refining specification? In this case they should describe better the
section 3, presenting the procedural steps performed and use of LTSA.
Moreover the paper is not well structured and presented. It is hardly to
read and concepts are written in a confused manner. Moreover many times
the sentences are very short or even not related each other
In detail:

Section 2.1 in a section with title “Label transition system” there should
be the description of the LTS. What does it means “ overwhelming the
reader with strange notations and interpretation”. The LTS are formal and
well described and not ”strange notations”. It would be better to report
the exact definition of LTS. In the paper it is only described an example
of a text based description.
In any case it could be better a restructuring of the section, which is
described in muddled way. Probably a table, in which for each construct is
associated the right meaning, can clarify the presentation.

Section 2.2 It could be interesting knowing how the properties are
specified and used by the LTSA.

Section 3. Developing a consistent specification is not a trivial problem.
Rarely in the real word industries and software developers provide with a
complete LTS description of the system.
Moreover the number of transitions, even if for a trivial example like the
lift elevator system, can be so high to prevent any application of the
methodology proposed. These are the main limitations of the approach
presented in this paper and should be considered and put in the right
light.
Even if the proposed approach could be more complete with respect to

vmm
<vishv.malhotra@utas.edu.au>

vmm
Z Published + in limbo papers

Z Published + in limbo papers

Printed for Vishv Malhotra <vishv.malhotra@utas.edu.au> 3

techniques like white box and black-box testing, sometimes they are the
only techniques applicable using the information and the specifications
provided in the real word.
More criticisms could be given to the description of this experience.

 Positive Points: The paper describes and interesting application of the
LTSA but the presentation must be improved including more details of the
use of the verifier tool.

 Negative Points: The paper should be restructured describing clearly its
focus of the paper, its contribution and case study analysed

 Originality: 3 - Not Very Good
 Significance: 6 - Good
 Technical: 2 - Weak
 Relevance: 6 - Good
 Classification: 2 - Weak
 Comments: This paper describes the use of a model verification tool.

This reviewer failed to see the added value of this paper. The paper is
not about the model verifier, it simply uses it in one relatively simple
scenario. The connection to OO development -- one of the major claims of
the paper -- is also not clear at all. The paper does address the
questions raised in the 4th paragraph of the introduction. The example
could perfectly be modelled, designed and implemented without OO.

Maybe there is something interesting and different in this paper; if so,
the authors need to make the message more clear.

Typo:
- in deed -> indeed

vmm
<vishv.malhotra@utas.edu.au>

vmm
Z Published + in limbo papers

