

NETWORK OF BROWSERS – A MULTI-PROCESSOR COMPUTER

Luke Fletcher and Vishv Malhotra
School of Computing, Private Box 100

University of Tasmania, Hobart Tas 7001 Australia
{luke.fletcher, vishv.malhotra} @utas.edu.au

Abstract

The paper describes an experimental system in which we
linked together a number of computers over the Internet to
form a multi-processor computer system. The
arrangeme

nt uses Java-enabled web-browsers as the tool
for adding available computers in the multi-processor
system. The number of processors in this system can grow
and shrink dynamically as the computers join or leave the
system.

Key Words

Multi-processor computer, Internet, Java, Web server,
HTTP.

1 Introduction

As computational power becomes cheaper and more
pervasive, we continue to seek even more computational
power at even lower costs for a variety of new and
innovative applications ranging from important
economical, scientific and life-saving medical
experiments to recreational computation [1].
Notwithstanding the unfulfilled demand for computation,
at any point in time we have hundreds of thousands of
computers around the world that are under-utilised. A
typical computer is used for only a small fraction of the
time duration over which it could be used.

The under-utilisation of the available computational
power results from many reasons. Foremost of these
reasons is our inability to locate free computers. Security
concerns are also significant deterrence in this regard.
Owners of the computers are reluctant to hand controls of
their computers over to strangers who need these
computational resources. At the same time clients/users of
these facilities, if they can lease them, need to feel secure
before they transfer their sensitive data and programs to a
computer environment that an anonymous benefactor may
have made available.

The paper describes a network of browsers (NoB) that
combines the available free computers into a huge multi-
processor computer system. In deed, it allows the

individual computers to join the multi-processor computer
system when they are available. At the same time when
the owners of these computers want to use their
computers for their own work, they withdraw their
computers from the arrangement. Thus, the multi-
processor computer system continues to grow and shrink
as free computers join in to become its processing units
and the busy computers leave and cease to be its
processing units. The owners of the participating
computers decide if, when and for how long they donate
time on their computers to the multi-processor system.

The network of browsers (NoB) uses the ubiquitous
internet technology – the humble web browser – to match
the demand for computation power against the available
computational resources. Further, the existing and future
security measures in the Internet domain provide and will
continue to improve and enhance the trust environment
for those who make available their computational
resources to the others. At the same time, those who make
use of these resources will be assured about the protection
of their data and software.

An experimental prototype of a network of browsers
(NoB) was developed in the School of Computing,
University of Tasmania. The paper describes the system
and presents initial experiences and analysis from this
experiment in running a simple concurrent program to
solve a crossword problem.

In section 2, we briefly summarise the aspects of Internet
technology that have bearing on the network of browsers
(NoB) developed in this university. Section 3 describes
the system. Section 4 provides a brief description of the
crossword problem that we used to test the system.
Experimental performance results are also presented in
section 4. We conclude the paper in section 5 by making
some concluding remarks and listing the directions we
wish to work on to make the system more usable.

2 Background: Web Browsers, Web

Servers and Java

The Internet is comprised of three kinds of components:
browsers, servers and the network.

420-038 416

melissa

The network provides the communication media that
allows any browser to interact with any server. The
predominant protocol for interaction between a browser
and server is through Hypertext Transfer Protocol (http)
[10]. The protocol is memory-less and comprises of two
steps. A browser sends a request for an html document to
a specific server. The server responds to the request by
sending the requested document. The response concludes
the interaction and the browser and the server are free for
their next intersection with the other players on the
World-wide Web (WWW).

The browsers are usually enhanced, with a Java plug-in,
to run Java byte-codes called applets [2, 3, 4]. The plug-
in executes Java applets received from the servers. At the
same time, modern servers too can be extended by means
of Java servlets and other server-side extensions, for
example, CGI. A servlet is Java byte-code running
alongside a server. The server passes certain http requests
to a designated servlet when it receives them from a
browser. Thus, these requests are handled by a specially
tailored program (servlet). The servlet-browser interaction
may use a protocol that maintains state over a sequence of
request-response interactions (transaction) between them.

Another ingredient of interest in the construction of the
networks of the browsers (NoB) is the Java programming
language and associated Java virtual machine. Java
programs are translated into Java byte-code that can be
run on interpreters called Java Virtual Machines (JVM).
This enables the java programs to run independent of the
underlying hardware and virtually on any computer. Java
plug-in for a browser is a JVM capable of running with
the browser. Thus a Java enabled browser can run an
applet when it receives it from a server in response to a
request. Traditionally, these applets are intended to
provide sophisticated and powerful application-specific
interactive interfaces to the browser users.

In addition to the three components that provide obvious
functionality to our system, we are also interested in the
Java2 security model [5]. It provides fine-grained security
guarantees for distributed applications in an environment
where objects and code migrate over the network. Though
the model is well integrated into the Standard Java
Development Kit (SDK), we are not yet aware of a plug-
in that implements the fine-grained security model of
Java2. For the present we can only rely on traditional
sand-pit security model and its extension to signed
applets. In this model the imported code (applets) run in
the browser host with a small set of rights considered safe.
Browsers such as Internet Explorer and Netscape allow
for the users to vary some rights of the external code to
suit their needs. As opposed to this scheme, also known as
Java 1.0 security model, Java 1.1 uses a model in which

appropriately signed applets are fully trusted. We are
confident that future developments in Java will implement
Java2 security model. Java2 security model allows for
rights of the classes to be defined independent of other
classes. A fine grained security policy will be useful to
individually set the rights of the applets and also of the
other objects on the applets. Thus, enabling the network
of browsers (NoB) to be more secure and providing
greater confidence and security assurances to those
loaning their computers as processing units of the multi-
processor computer system and to those using it to run
their applications.

3 Network of Browsers (NoB)

A prototype network of browsers (NoB) was built as an
honours project [6] and preliminary performance results
were obtained using a simple crossword problem. As
shown in Figure 1, the three main actors in the prototype
system are:

i. Client: A client is a user (or a computer) who is
interested in execution of a suitably devised
program on the prototypical network of browsers
(NoB) computer.

ii. Server: The server is a well advertised site that acts

as a broker between the clients and the donors of
computer times.

iii. Donors: The donors are owners of computers on

the internet who volunteer to make their computers
available for executing clients’ programs. In what
follows we often use the word donor to mean the
donor’s computer.

A client contacts a broking server to load their program
components, called tasks, on the server system. The client
also provides data and establishes execution dependencies
between the tasks. A sever receives the tasks from a client
and then waits for donor computers to contact it to
volunteer to execute the tasks.

A donor volunteers to execute tasks by starting a Java-
enabled web-browser and accessing a specified web page
on the server. The server returns an html page with
suitably coded applet to the browser. All further
interaction with the server for executing the tasks on the
browser’s Java plug-in is a responsibility of this applet.

A donor will be able to reclaim the computer by simply
closing the browser. The same effect is achieved if the
browser is moved to a different web page as it stops the
controlling applet.

417

As is clear from Figure 1, the computation intensive tasks
are passed on to the donors’ computers where they are
executed as applet objects in the Java-enabled browsers.
However, the task coordination and execution
dependencies are handled by the server. The prototype
server interacts with other components of the system
exclusively through http methods GET and PUT. The
primary responsibilities of the server are:

i. To receive tasks and inter-task dependency
information from the clients wishing to use the
system for their computations: Each task is
assigned a unique identifier (TID) to track it. In our
prototype system, we have not yet implemented an
interface for this purpose. In our current
implementation the tasks and their dependencies
are loaded manually.

ii. To receive computer time donations from the
volunteering donors: A donated computer runs a
web-browser and loads a pre-specified html page
carrying coordination applet to joint the multi-
processor system. The server adds the IP address of
the donated computer to its database of the current
donors. The information will be used to track the
completion of tasks sent to the donor for execution.

iii. To distribute tasks to the donors for execution:
When a donor computer requests a task for
execution (GET), a task is located in the available
task database and sent to the browser for execution.
The server tracks the assigned task, by storing the
IP address of the computer executing the task and
the task unique identifier in its allocated tasks
database.

iv. On completion of a task, the result is sent (PUT)
back to the server. The result returned, to the
server, by a completed task is recorded against the
task number. The allocated tasks database is also
updated.

v. An important task that the server needs to perform
is to track tasks lost during execution. The tasks
may be lost due to errors in transmission and
machine failures. A donor withdrawing their
computer while executing a task also causes the
task to be lost during execution. The recovery
procedure used is described in section 3.1
Recovering the Lost Tasks.

The server has been implemented using a set of four
cooperating servlets. All requests for new tasks to execute
are received by servlet CrossClientServlet. This
servlet is also responsible for sending the tasks to the
browsers for execution. A number of tasks requests may
be made concurrently from different donors. To achieve
good response the servlet passes the requests to
background servlets for processing. All inter-servlet
communication is performed using http methods GET and
PUT.

The task database is maintained by servlet
CrossTaskDBServlet. The servlet maintains the
status of each task as unallocated, allocated, and as
completed. When requested by the servlet
CrossClientServlet, it finds and returns the next
task to be executed.

Servlet CrossClientDBServlet maintains the status
of donor computers currently participating in the Network
of Browsers (NoB).

Finally, servlet CrossResultsServlet records the
completion of the tasks by recording their results.

3.1 Recovering the Lost Tasks

A program is executed when all its tasks have executed.
As the processing units (donors’ computers) of the
Network of the Browsers (NoB) can join and leave the
system asynchronously, there shall be allocated tasks that
are lost as the computers running them are withdrawn. To

Client

Server

Another donor Tasks

Figure 1: The web server acts as a broker to distribute computation tasks to Java enabled web-
browsers.

Another donor
A donor donates
computer time
through a browser

Task

TaskResult

Result

418

counter this problem, servlet CrossTaskDBServlet
uses a simple strategy to find the next task for execution.
First it tries to locate an unallocated but not completed
task for execution on the requesting browser. If it does not
have an unallocated task, it sends a task already allocated
to a browser for execution on the least recently allocated
basis. The motivation for this policy is to use the available
processing time to run a task that has either been lost or
allocated to a slow computer.

As the tasks may be re-allocated without verifying that
they have actually been lost, certain tasks may send in
multiple successful completions. The servlet
CrossResultsServlet silently ignores additional
result(s) after it has recorded the first result against a task
identifier (TID).

If neither an unallocated task nor an allocated task
remains in the task database a wait request is sent back to
the browser applet. The applet will try again after 30
seconds.

4 Feasibility and Performance

A prototype was built as described in the previous section.
To test the system’s effectiveness and performance, we
defined a version of crossword puzzle solver. This test
program was chosen as it is easily split into parallelisable
tasks – each clue can be passes as a parallel task. Thus,
the lowest level task is the following problem: given an
array of characters, with some characters in the array
already known, match the array against the words in a
dictionary. The task returns a collection of words that can
complete the array. By choosing the suitable length of the
array, known characters in the array and number of words
in the dictionary one can tailor the computational
demands of a task to suit the availability of resources
during the experimental runs of the Network of Browsers
(NoB).

To obtain performance results for the system, we used
two test platforms of donor computers. These donor
computers consisted firstly of a number of Apple 700
MHz PowerPC G4 based iMacs running MacOS X 10.1,
and secondly PC based DELL Pentium 3 866 MHz
computers running Microsoft Windows 2000. The
browser used on these test systems was Microsoft Internet
Explorer 5.2 on the iMac based systems and Netscape 6.2
on the PC based systems. All donor systems were using
the Java2 1.3.1 runtime environment used for running the
distributed client applet, and had 256MB of RAM
installed. The test components used were simply a small
collection of arrays of words from a dictionary of
approximately 81,000 different English words. These
arrays were repeated several times to obtain measurable
time durations for the system.

The server side of the system was based on an Apache
Tomcat [8] server implemented on a Sun SPARCstation 5
with 128MB RAM and running the Sun Solaris 9
operating system which includes the Java2 1.4 SDK. The
server and the client computers were connected by a
switched 100 Mbps local area network (LAN) within the
School of Computing.

Number of Clients vs. Average Dataset Time
Client: Apple 700 MHz PowerPC G4 based iMac

362

221
261

296
251

232

200

250

300

350

400

0 5 10 15 20 25

Number of Clients

A
ve

ra
ge

 T
im

e
(s

ec
on

ds
)

(a) iMac based donors

Number of Clients vs. Average Dataset Time
Client: DELL Pentium 3 866 MHz based PC

319

226

280284
257 241

200

250

300

350

0 5 10 15 20 25

Number of Clients

A
ve

ra
ge

 T
im

e
(s

ec
on

ds
)

(b) PC based donors

Figure 2: Graphs show the average execution time for a
task set over 1 to 20 donor computers.

For this problem comprising of a collection of similar
sized parallel tasks, Figure 2 shows the average execution
time for a task set. The system showed nearly linear speed
up to 3 computers – from average time for the iMac based
donors of 362 seconds to complete the tasks using one
donor to 261 seconds with 3 donors, and from 319 to 280
for the PC based donors. Thereafter there was only a
marginal improvement to about 221 seconds (iMac) and
226 seconds (PC) with 20 donors. The server side
network traffic also showed corresponding saturation of
number of packets per second.

To test the system, in an environment free from server
side saturation, we artificially varied the perceived task

419

size by artificially modifying the execution speed of these
parallel tasks. We were able to extend the linearity region
to a larger number of computers in the network of
browsers (NoB). Figure 3 presents a graph for one such
case.

Number of Clients vs. Average Dataset Time
(with client delay)

2407

1221

510
631

829

0

1000

2000

3000

0 1 2 3 4 5 6

Number of Clients

A
ve

ra
ge

 T
im

e
(s

ec
on

ds
)

Figure 3: Graph showing average execution time for a
task set executing over 1 to 5 iMac based donors
after artificially modifying the execution speed

One of the first, albeit an obvious, lessons learned from
the prototype is that the server side processing can easily
become a bottleneck as demonstrated by the server CPU
utilisation shown in Figure 4. If each task presents a
significant computational load, the demand on the server
from frequent requests will be alleviated. An environment
in which each task is a significant computational load
with diverse time requirements is more common. The
network of browsers (NoB) would be expected to return
even better performance improvements for such mix of
tasks.

To formalise these ideas, consider an idealised problem
which can be cast into k equal sized sub-tasks. We further
assume a pool of homogeneous donor computers. Let,

C Computation time needed on a donor computer to

run the problem

s Server time needed to send a task to a donor and to
record the result when returned.

c Set up and wind up time on the donor computer to
run a task

d Number of participating donor computers

k Number of sub-tasks created for the computation
problem

a Ambient load on the server as fraction of CPU time.

CPU Utilisation (1 Client) - Average:
43.47%

0

20

40

60

80

100

00
:0

0

00
:5

0

01
:4

0

02
:3

0

03
:2

0

04
:1

0

05
:0

0

05
:5

0

06
:4

0

07
:3

0

08
:2

0

09
:1

0

10
:0

0

Time (mm:ss)

C
PU

 U
til

is
at

io
n

(%
)

CPU Utilisation (2 Clients) - Average:
54.70%

0
20

40
60

80
100

00
:0

0

00
: 5

0

01
:4

0

02
:3

0

03
: 2

0

04
:1

0

05
:0

0

05
: 5

0

06
:4

0

07
:3

0

Time (mm:ss)

C
PU

 U
til

is
at

io
n

(%
)

CPU Utilisation (10 Clients) - Average:
80.30%

0
20
40
60
80

100

00
:0

0

00
:5

0

01
:4

0

02
:3

0

03
:2

0

04
:1

0

05
:0

0

Time (mm:ss)

C
PU

 U
til

is
at

io
n

(%
)

CPU Utilisation (20 Clients) - Average: 91.75%

0

20

40

60

80

100

00
:0

0

00
:5

0

01
:4

0

02
:3

0

03
:2

0

04
:1

0

05
:0

0

Time (mm:ss)

C
PU

 U
til

is
at

io
n

(%
)

Figure 4: Server CPU Utilisation for the server with
1 (top), 2, 10 and 20 (bottom) donors connected to
it. Server load is comprised of load due to
computational problem and the ambient server load.

420

The speed up, σ, shall be constrained by the following
limit:

















−
++



++

−

≤

a
sc

k
C

d
kc

k
C

a
ks

C

1
,

1
max

σ

The first term in the argument of function max caters for
the case where the server is loaded heavily and is the
limiting resource. The second term caters for the case
where the computation is donor bound.

We have not yet tried configuring the server to ease the
server-side processing bottleneck that occurs when a
barrage of browser requests is received over a short
period. However, it is expected that this could be done
using standard techniques such as by having a pool of
higher capacity servers available to receive requests from
the donor computers.

5 Conclusions and Further Work

The prototype has shown that it is indeed possible to
harness the capability of unused computers on a network
through fairly simple development on the Internet.
Superior performances should be possible with well-
known strategies for handling server-side saturations.
However, building a robust system that is able to keep a
number of computers on the network of browsers (NoB)
active simultaneously is an important task that we hope to
explore soon.

The servlets can run multi-threaded computation.
However, at this stage we have implemented the
prototype using uni-threaded servlets. The approach
avoids many synchronisation issues. Multiple threads of
executions in each servlet will significantly improve the
response of the servlet but would require more elaborate
strategies to synchronise the use of shared resources.

Though we have implemented a rudimentary recover
strategy for handling problems that occur as the
computers are withdrawn from the network of browsers
(NoB) by their owner or network problems, yet other
causes of failures need further consideration.

A suitable interface for submitting programs for execution
is also an important item that needs early attention.
Without such an interface it is not easy to submit tasks for
execution on this supercomputer.

It is worth noting that a number of similar efforts are
accessible on the web [1, 11, 12]. However, these efforts
are designed to solve high impact, albeit, computation

intensive problems through sever side design tailored to
the problem. Typically, the donors need to download code
that runs on their computers. Philanthropy motivates the
donors to overcome their concerns for computer security
to let the downloaded software run on their machines. We
seek a system capable of receiving programs from
“ordinary clients” for execution; and, seek to overcome
security concerns of the computer donors by restricting
the downloaded code to the donor trusted browsers.

References

[1] Search for Extraterrestrial Intelligence SETI@home,
http://setiathome.ssl.berkeley.edu/ (accessed on 27
November 2003)

[2] J. Gosling, B. Joy, G. Steele and G. Bracha, The
Java™ Language Specification, Addison-Wesley, Boston,
2000.

[3] M. Campione, K. Walrath, The Java™ Tutorial
Second Edition: Object-Oriented Programming for the
Internet, Addison-Wesley, Reading, MA 1998.

[4] M. Campione, K. Walrath, A. Huml and the Tutorial
Team, The Java Tutorial Continued: The rest of JDK™,
Addison-Wesley, Reading, Ma 1998

[5] Li. Gong, G. Ellison and M Dagwforde, Inside JAVA
2 Platform Security: Architecture, API Design and
Implementation, Second Edition, Addison-Wesley, 2003

[6] L. Fletcher, A Dynamic Networked Browser
Environment for Distributed Computing, Honours thesis,
School of Computing, University of Tasmania, 2002.

[7] D. Lea, Concurrent Programming in Java™: Design
Principles and Patterns, second edition, Addison-Wesley,
Boston, 2000.

[8] The Apache Jakarta Project, (accessed on 27
November 2003) http://jakarta.apache.org/tomcat/

[9] The Berkeley NOW Project, (accessed on 27
November 2003) http://now.cs.berkeley.edu/

[10] HTTP: Hypertext Transfer Protocol, (accessed on 27
November 2003) http://www.w3.org/Protocols/

[11] Grid.org (accessed on 27 November 2003)
http://www.grid.org

[12] Fight AIDS @ home project (accessed on 27
Novemeber 2003), http://fightaidsathome.scripps.edu

421

