
DESIGN OF A COMPOSITE ARITHMETIC UNIT FOR RATIONAL NUMBERS

Tomasz Pinkiewicz, Neville Holmes, and Tariq Jamil

School of Computing

University of Tasmania

Launceston, Tasmania 7250

AUSTRALIA

Abstract: As we advance into the new century,

computers of the future will require techniques for

arithmetic operations that take advantage of the modern

technology and yield accurate results. Floating-point

arithmetic has been in use for nearly forty years but is

plagued with inaccuracies and limitations which

necessitates introduction of a new concept in computer

arithmetic called composite arithmetic. This paper

describes composite arithmetic and design of an

arithmetic unit based on this concept.

Keywords: computer arithmetic, floating-point

arithmetic, composite arithmetic, arithmetic unit, rational

numbers.

1. Introduction

Fixed-point arithmetic was first used after

World War Two to perform calculations on integer

values and to represent them exactly. A programmer had

several lengths of representation to cope with expected

range of numbers. In integer arithmetic, calculation of

fractions was done using scaling and this could produce

inexact results [1,2]. Scaling required problems to be pre-

processed by the user and then they could be

accommodated by fixed point-representation. However,

with increasing speed of computers, more complex

operations had to be performed and the pre-processing

became a lengthy process [3]. Also large numbers

introduced a new concept in computer arithmetic called

overflow. To overcome this problem, floating-point

arithmetic was introduced.

Floating-point arithmetic can cope with large

range of number but it does so only by approximating.

The numbers are represented in semi-logarithmic form

and they have two components, significand and

exponent. The significand expresses the precision of the

number while the exponent expresses the range of the

values that can be represented. This floating-point

representation became a standard and is used in all older

and modern computers. However, this notation has many

problems, which have been accepted (or ignored) over

the years.

Results of floating-point arithmetic can vary.

They can be satisfactory, inaccurate, or completely

wrong. However there is no way of telling which one of

them has occurred. Although much larger range of values

can be stored, comparing to fixed-point form, there is still

problem of overflow. Additional to the overflow,

floating-point introduces underflow, where the number is

too small to be represented accurately. Different lengths

of representation mean that a compromise between

precision and the storage space has to be made. This can

then affect accuracy of the arithmetic. Accuracy is also

affected by truncating and rounding errors, and by

conversion of values to and from the display form.

Another problem with floating-point arithmetic is that it

doesn’t consider special values. These are zero, infinity,

and indeterminacy. These are still results and can be very

important in scientific calculations. Kulisch [4] describes

five equations, all of them containing the same numbers

with the same signs, but arranged differently.

Conventional computer with floating-point standard

returns different values for each equation, while they

should all be the same. Several other examples are

provided which prove that even simple mathematical

equations can be miscalculated when using floating-point

form.

Another type of problem is concerned with

programming issues. The programmer has to determine

beforehand if fixed-point or floating-point notation

should be used and what kind of precision is desired

(single or double). Then there is a problem of handling

exceptions, and problem of converting between different

forms and how this affects accuracy of the result.

Another concern is the accuracy of the display and how

exceptions and special values will be displayed. All this

has to be considered by the programmer and wrong

decision can cause erroneous results.

Floating-point representation is an improvement

over fixed-point form. However, today’s computers have

become faster and have to perform more accurate and

larger calculations. Current technology and requirements

make the floating-point form “obsolete” and a new type

of computer arithmetic is needed. One of the examples of

advanced computer arithmetic is scalar product concept

presented by Kulisch [4].

This paper introduces composite arithmetic and

presents design of a Composite Arithmetic Unit used for

operations on exact forms. Section 2 introduces concepts

of composite arithmetic and section 3 describes design of

the Composite Arithmetic Unit. Finally, conclusion is

presented in Section 4 followed by a list of references.

2. Composite Arithmetic

Composite Arithmetic [1] is based on advanced

computer arithmetic concept and combines several

different formats. These are stored in a single binary form

and the formats are distinguished using tags. The storage

form is specified by multiples of 16 and four lengths are

recommended: short (32 bits), normal (64 bits), long (128

bits) and extended (256 bits). For most commercial

calculations on exact numbers and scientific

computations on inexact numbers, 32- and 64-bit sizes

would be sufficient. The long and extended formats (128-

and 256-bit) can be used for financial and number theory

calculations where very long exact results can occur.

Also some intermittent technical computations where

very precise results are needed would use one of these

two formats. Composite arithmetic merges both exact

and inexact formats using a tag bit. The bit is set to 0, if

the number is exact and it is set to 1, if it is inexact.

For exact values there are two forms (Figure 1).

The primary one is an integer form and secondary is

rational form. To distinguish between them another bit is

added to the tag field. In the integer form all bits, except

the tag, can be used to store the value. Negative numbers

are stored using 2s complement of the magnitude. This

ensures that zero is stored exactly and prevents negative

zero. Rational numbers are typically result of integer

division. They can be stored exactly as integers if proper

representation is adopted. The secondary exact form

allows storing very large numbers, or very small

numbers, depending on the size of numerator and

denominator. To allow this, the form must provide for

sharing of the value bits between numerator and

denominator. The solution to that is called a floating

slash and it is several bits, depending on word length that

separate the numerator from the denominator. For

example, for a 32-bit number, five bits are needed to be

stored to accommodate the floating slash. If the

numerator is 1 then all bits are available for the

denominator. If the denominator is 1 then the number

will be stored in an integer format; therefore the smallest

denominator is 2. There are other issues, which have to

be addressed when using this form. First, the

denominator can be 0, which means that the number is

infinity. Infinity needs storing because it can result from

division by zero. Moreover indeterminate result needs

storing as well.

If the value cannot be stored exactly then the

composite arithmetic will store it in an inexact form.

Numbers can be represented in different ways. The first

one is called double-number form. An example of it is

the floating-point representation. The second one is

called single-number form and an example of it is

relatively new, signed logarithmic form. This form is

subdivided into primary inexact and secondary inexact

forms. Primary form uses signed pure logarithmic

representation and secondary form uses antitetrational

representation. This second form has been adopted by the

Composite Arithmetic.

While the above forms are satisfiable for storage

purposes, they are not suitable for display. This is

because to display, numbers are represented as characters

and their values have to be converted to and from an

appropriate storage form. Deficiency of the ASCII

character set puts several restrictions on available

choices. A form for exact values uses decimal point and a

fraction point. This would allow a number 456 ¾ to be

represented as 456.3.4, where first dot is a decimal point

and second dot is a fraction point. A number ½ would be

stored as 0.1.2. This approach would also allow

displaying infinity as 0.1.0 and indeterminacy as 0.0.0.

Representation of inexact numbers would be similar to

the e-notation, where the exponent uses scaling base of

10. The display form would use the scaling base of 1000

and this would be called k-notation. This will be

supported by m-notation (milli notation) to avoid

squeezing a negative sign into the exponent. A second k

or m could display secondary inexactness.

The Composite Arithmetic proposal also

mentions register form. This would be a fixed-point long

accumulator, which is be 512 bytes (4096 bits) long. It

would be large enough to store extended primary inexact

storage form and some additional data like tags and

signs.

Composite arithmetic is more complex than

floating-point but many aspects of it have already been

implemented in hardware and software. Replacing

floating-point arithmetic would benefit electronic

calculator arithmetic and would improve capabilities of

software packages such as spreadsheets. Another

advantage lies in programming using the composite

arithmetic. The programmer wouldn’t have to make

choices between fixed and floating point and all

conversions would be done in the register form. Also the

accuracy of results, especially for technical computation,

would be much greater.

3. Design of the Composite Arithmetic Unit

Our current research is concentrated on the

exact forms of the composite arithmetic (integers have

been treated as a special case of rational numbers).

Figure 1. Proposed exact storage forms include (a) primary exact form (integer), and (b) secondary exact form (rational). In

the bit numbering as shown, n stands for the number of bits in the form and can be 32, 64, 128, or 256, while m stands for

the number of different forms in increasing size of 0,1,2, or 3.

Figure 2. Composite Arithmetic Unit (enclosed in rectangle) as part of a larger design.

The design involves a Composite Arithmetic Unit

(CAU), a set of registers and control unit to allow

interfacing with the PC. The CAU consists of six basic

blocks (Figure 2): greatest common divisor (GCD),

casting (CAST), multiplication (MUL1 for numerator

and MUL2 for denominator), swapping (SWAP),

addition (ADD), and subtraction (SUB). The function of

the COPY block is to duplicate contents of a register

while the MOVE block transfers contents from one

register to the other.

3.1 GCD block

The function of this circuit is to calculate the

greatest common divisor of numerator and denominator

of a rational number. The outcome of this operation is a

number, which can be used with the rational number to

cast out the common factors and reduce the size of the

number.

The algorithm for finding GCD is based on the

Euclid’s Algorithm. There are several variations of the

Euclid’s Algorithm (including binary algorithm used in

computing) but the following algorithm is a simple

recursive function and can be easily implemented using

hardware components.

int gcd(int m, int n) // m is numerator,

// n is denominator

{

if (m < n) // when numerator is

// greater than denominator

 {

 m = gcd (m, n - m); // make a recursive call

// with adjusted denominator

 return m;

 }

else if (m > n) // when numerator is less

//than denominator

 {

 m = gcd (m - n, n); // make a recursive

 // call with adjusted

 // numerator

 return m;

 }

 else

 return m; // When numerator equals

// denominator

// Stop and return the numerator (m),

// Which holds the GCD of (m,n)

}

The GCD circuit (Figure 3) consists of two input

data buses: A [15:0] (denominator) and B [15:0]

(numerator). The EN line enables the outputs and is used

to generate the END signal. The output data buses are M

[15:0] (denominator) and N [15:0] (numerator). The END

line signals the end of operation and the result is

contained in M bus. COMPARE unit checks if the two

input buses are equal, A bus is less than B bus, or A bus

is greater than B bus. If A bus equals B bus then EQ line

goes high. It is then ended with EN line to set the line

END to high. If A bus is less than B bus (LT line is high)

then AND gates for the upper SUBTRACT unit are

enabled. If A bus is greater than B bus (GT line is high)

then AND gates for the lower SUBTRACT unit are

enabled. Both outputs from the AND gates are put

through OR gates and the final output is M and N buses,

regulated using TRISTATE BUFFERS.

3.2 CAST block

Casting circuit is used to eliminate the common

factors of two numbers. The GCD value previously

stored in a register is fetched into the casting circuit.

Casting out common factors allows decreasing the size of

the numerator and denominator while still maintaining

the precision.

The algorithm for casting out common factor uses

simple subtraction of GCD from numerator and

denominator until they reach 0. The number of

subtractions for each number produces the new

numerator and denominator. This is equivalent to

dividing the rational number by the GCD.

void cast(int& m, int& n, int gcd) // m is the numerator,

 //n is the denominator

{

int count1=0; // counts subtractions of the numerator

int count2=0; // counts subtraction of the

// denominator

while (m > 0) // while loop for the numerator

{

 count1 = count1 + 1; // add one to the counter

 m = m - gcd; // subtract the GCD from the

// numerator

}

while (n > 0) // while loop for the denominator

{

 count2 = count2 + 1; // add one to the counter

 n = n - gcd; // subtract the GCD from the

// denominator

}

m = count1; // The new numerator is set to

// the count of subtractions

n = count2; // The new denominator is set to

// the count of subtractions

}

The CAST circuit (Figure 4) consists of three

data inputs: A [15:0] (denominator), B [15:0]

(numerator) and GCD [15:0] (GCD of A and B

calculated earlier). The input lines are EN (enable), CLK

(clock), and LOAD (load counter). The data outputs are

M [15:0] (denominator) and N [15:0] (numerator). The

output line is END, which signifies the end of operation.

The description given is for A bus only as B bus is

identical. The A bus and the GCD bus are put through the

COMPARE unit to check if they are the same. While the

output of the COMPARE is low (meaning GCD is less

than A bus), the 16-BIT COUNTER is enabled.

Otherwise it is disabled. The COMPARE output line also

Figure 3. GCD circuit.

Figure 4. CAST circuit.

provides feedback to the END line and it manipulates the

MUX selector. SUBTRACT units subtract GCD bus

from the A bus. The output of the SUBTRACT and the

16-BIT COUNTER are put through the MUX selector. If

the COMPARE output line is low, then the SUBTRACT

output goes through, and if it is high, then the 16-BIT

COUNTER output goes through. The final output M

[15:0] is put through the TRISTATE BUFFER. The B

bus operates on the same principle and its output goes to

N [15:0]. DEFAULT COUNTER SETTING lines are set

to GND and VCC connections in order to initialise the

counter (using LOAD line).

3.3 MUL1 and MUL2 blocks

These circuits, similar to one another, are used

to multiply the numerators (MUL1) and denominators

(MUL2) of the two rational numbers.

The design for these circuits is based on

Hwang’s algorithm [3]. The MUL circuit (Figure 5)

consists of two input buses: A [15:0] (multiplicand) and

B [15:0] (multiplier). The input lines are LOAD (loads

the counter), EN (enable line) and CLK (clock line). The

output buses are LOW [15:0] (lower 16-bits of the result)

and HIGH [15:0] (higher 16-bit of the result). There are

three registers involved in the circuit. The first two are

internal. These are MR (Multiplier Register) and PR

(Partial product Register). The third register contains the

Multiplicand (A bus) and it belongs to the Register Unit.

Also 16-BIT ADDER is required to produce the partial

product. The result of the multiplication is a 32-bit

number, which is stored in LOW and HIGH buses,

corresponding to 16 lower bits and 16 higher bits

respectively. An 8-BIT COUNTER is used to keep track

of the number of additions and to signal the completion

of operation by setting the END line to high. For each

clock cycle there are a number of operations that are

carried out. First Multiplicand A is ANDed with LSB of

MR. This result is added to the PR (initially zero). The 15

higher bits of the sum are put into 15 lower bits of the

PR. The LSB of the sum is then right shifted into MR and

becomes the MSB of the MR. The Cout from the

ADDER is put into the MSB of the PR. The 8-BIT

COUNTER controls the number of right shifts of the

MR, so at the end of the multiply operation the MR

contains 16 lower bit of the result. The Multiplier B that

was originally in the MR is pushed towards the right end

of the MR.

3.4 SWAP block

The swap circuit is used for swapping numerator

and denominator to produce the reciprocal of the original

number. Multiplication (MUL blocks) of a given number

with the reciprocal of the second number (output from

SWAP block) yields the result of dividing the first

number with the second number.

The SWAP circuit (Figure 6) consists of two

input data buses: A [15:0](denominator) and B

[15:0](numerator). These are put through tristate buffers

using EN line to activate the buffers. Then A bus is tied

to N [15:0] (numerator) and B bus is tied to the M [15:0]

(denominator). The final output line is END, which has

been inverted twice to strengthen the signal.

3.5 ADD block

This circuit performs addition of numerators of

two rational numbers. The denominators must be the

same in order to produce the correct result.

The ADD circuit (Figure 7) consists of three

data inputs: A [15:0], B [15:0] and LOW [15:0]. A and B

buses are numerators of the numbers to be added, while

LOW bus is the common denominator. The input line EN

enables the whole circuit. The circuit works by adding A

and B and sending the result to N [15:0] via TRISTATE

buffer. The LOW bus goes through to the M [15:0]

output bus and is enabled using TRISTATE buffer. The

output line END has been inverted twice to strengthen

the signal.

3.6 SUB block

The subtraction circuit performs subtraction of

the numerators (denominators must be the same).

The SUB circuit (Figure 8) consists of three data inputs:

A [15:0], B [15:0] and LOW [15:0]. A and B buses are

numerators of the numbers to be subtracted, while LOW

bus is the common denominator. The input line EN

enables the whole circuit. The circuit works by

subtracting B from A and then sending the result to N

[15:0] via TRISTATE buffer. The LOW bus goes

through to the M [15:0] output bus and is enabled using

TRISTATE buffer. The output line END has been

inverted twice to strengthen the signal.

Figure 5. MUL circuit.

Figure 6. SWAP circuit.

Figure 7. ADD circuit.

Figure 8. SUB circuit.

4. Conclusion

Composite Arithmetic offers great advantages

over the current fixed-point and floating-point arithmetic.

It is accurate and can deal with infinity and

indeterminacy. The aim of this research has been to

design a Composite Arithmetic Unit which will deal with

all aspects of arithmetic (exact and inexact) automatically

and without any user input. Future research will

concentrate on developing inexact forms and then the

integration of the two forms (exact and inexact) will

follow. Once this is achieved, the final specification for

the standard can be formulated. Then it will also be

possible to design more complex operations dealing with

wider range of calculations. Today’s technology and

needs require a new type of arithmetic, and composite

arithmetic may be the answer for the future central

processing units, providing automatic conversion

between exact and inexact forms and freeing user from

making hard decisions at programming level.

References

[1] N. Holmes, “Composite Arithmetic: Proposal for a

New Standard”, IEEE Computer, Vol. 30, No. 3, pp. 65-

73, March 1997.

[2] N. Holmes, “Floating Point and Composite

Arithmetics”, published in Proceedings of 8
th

 Biennial

Computational Techniques and Applications Conference,

Adelaide, South Australia, 1997.

[3] K. Hwang, Computer Arithmetic – Principles,

Architecture, and Design, John Wiley & Sons, 1979.

[4] U.W. Kulisch, “Advanced Arithmetic for the Digital

Computer – Design of Arithmetic Units”, Version 2,

1999.

(http://www.unikarlsruhe.de/~iam/html/personen/kulisch.

html)

