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Abstract: As we advance into the new century, 

computers of the future will require techniques for 

arithmetic operations that take advantage of the modern 

technology and yield accurate results. Floating-point 

arithmetic has been in use for nearly forty years but is 

plagued with inaccuracies and limitations which 

necessitates introduction of a new concept in computer 

arithmetic called composite arithmetic. This paper 

describes composite arithmetic and design of an 

arithmetic unit based on this concept. 
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1. Introduction 

 

Fixed-point arithmetic was first used after 

World War Two to perform calculations on integer 

values and to represent them exactly. A programmer had 

several lengths of representation to cope with expected 

range of numbers. In integer arithmetic, calculation of 

fractions was done using scaling and this could produce 

inexact results [1,2]. Scaling required problems to be pre-

processed by the user and then they could be 

accommodated by fixed point-representation. However, 

with increasing speed of computers, more complex 

operations had to be performed and the pre-processing 

became a lengthy process [3]. Also large numbers 

introduced a new concept in computer arithmetic called 

overflow. To overcome this problem, floating-point 

arithmetic was introduced. 

 

Floating-point arithmetic can cope with large 

range of number but it does so only by approximating. 

The numbers are represented in semi-logarithmic form 

and they have two components, significand and 

exponent. The significand expresses the precision of the 

number while the exponent expresses the range of the 

values that can be represented. This floating-point 

representation became a standard and is used in all older 

and modern computers. However, this notation has many 

problems, which have been accepted (or ignored) over 

the years. 

 

Results of floating-point arithmetic can vary. 

They can be satisfactory, inaccurate, or completely 

wrong. However there is no way of telling which one of 

them has occurred. Although much larger range of values 

can be stored, comparing to fixed-point form, there is still 

problem of overflow. Additional to the overflow, 

floating-point introduces underflow, where the number is 

too small to be represented accurately. Different lengths 

of representation mean that a compromise between 

precision and the storage space has to be made. This can 

then affect accuracy of the arithmetic. Accuracy is also 

affected by truncating and rounding errors, and by 

conversion of values to and from the display form. 

Another problem with floating-point arithmetic is that it 

doesn’t consider special values. These are zero, infinity, 

and indeterminacy. These are still results and can be very 

important in scientific calculations.  Kulisch [4] describes 

five equations, all of them containing the same numbers 

with the same signs, but arranged differently. 

Conventional computer with floating-point standard 

returns different values for each equation, while they 

should all be the same. Several other examples are 

provided which prove that even simple mathematical 

equations can be miscalculated when using floating-point 

form. 

 

Another type of problem is concerned with 

programming issues. The programmer has to determine 

beforehand if fixed-point or floating-point notation 

should be used and what kind of precision is desired 

(single or double). Then there is a problem of handling 

exceptions, and problem of converting between different 

forms and how this affects accuracy of the result. 

Another concern is the accuracy of the display and how 

exceptions and special values will be displayed. All this 

has to be considered by the programmer and wrong 

decision can cause erroneous results. 

 

Floating-point representation is an improvement 

over fixed-point form. However, today’s computers have 

become faster and have to perform more accurate and 

larger calculations. Current technology and requirements 

make the floating-point form “obsolete” and a new type 

of computer arithmetic is needed. One of the examples of 

advanced computer arithmetic is scalar product concept 

presented by Kulisch [4]. 

 

This paper introduces composite arithmetic and 

presents design of a Composite Arithmetic Unit used for 



operations on exact forms. Section 2 introduces concepts 

of composite arithmetic and section 3 describes design of 

the Composite Arithmetic Unit.  Finally, conclusion is 

presented in Section 4 followed by a list of references. 

 

2. Composite Arithmetic 

 

Composite Arithmetic [1] is based on advanced 

computer arithmetic concept and combines several 

different formats. These are stored in a single binary form 

and the formats are distinguished using tags. The storage 

form is specified by multiples of 16 and four lengths are 

recommended: short (32 bits), normal (64 bits), long (128 

bits) and extended (256 bits). For most commercial 

calculations on exact numbers and scientific 

computations on inexact numbers, 32- and 64-bit sizes 

would be sufficient. The long and extended formats (128- 

and 256-bit) can be used for financial and number theory 

calculations where very long exact results can occur. 

Also some intermittent technical computations where 

very precise results are needed would use one of these 

two formats. Composite arithmetic merges both exact 

and inexact formats using a tag bit. The bit is set to 0, if 

the number is exact and it is set to 1, if it is inexact. 

 

For exact values there are two forms (Figure 1). 

The primary one is an integer form and secondary is 

rational form. To distinguish between them another bit is 

added to the tag field. In the integer form all bits, except 

the tag, can be used to store the value. Negative numbers 

are stored using 2s complement of the magnitude. This 

ensures that zero is stored exactly and prevents negative 

zero. Rational numbers are typically result of integer 

division. They can be stored exactly as integers if proper 

representation is adopted. The secondary exact form 

allows storing very large numbers, or very small 

numbers, depending on the size of numerator and 

denominator. To allow this, the form must provide for 

sharing of the value bits between numerator and 

denominator. The solution to that is called a floating 

slash and it is several bits, depending on word length that 

separate the numerator from the denominator. For 

example, for a 32-bit number, five bits are needed to be 

stored to accommodate the floating slash. If the 

numerator is 1 then all bits are available for the 

denominator. If the denominator is 1 then the number 

will be stored in an integer format; therefore the smallest 

denominator is 2. There are other issues, which have to 

be addressed when using this form. First, the 

denominator can be 0, which means that the number is 

infinity. Infinity needs storing because it can result from 

division by zero. Moreover indeterminate result needs 

storing as well. 

If the value cannot be stored exactly then the 

composite arithmetic will store it in an inexact form. 

Numbers can be represented in different ways. The first 

one is called double-number form. An example of it is 

the floating-point representation. The second one is 

called single-number form and an example of it is 

relatively new, signed logarithmic form. This form is 

subdivided into primary inexact and secondary inexact 

forms. Primary form uses signed pure logarithmic 

representation and secondary form uses antitetrational 

representation. This second form has been adopted by the 

Composite Arithmetic. 

 

While the above forms are satisfiable for storage 

purposes, they are not suitable for display. This is 

because to display, numbers are represented as characters 

and their values have to be converted to and from an 

appropriate storage form. Deficiency of the ASCII 

character set puts several restrictions on available 

choices. A form for exact values uses decimal point and a 

fraction point. This would allow a number 456 ¾ to be 

represented as 456.3.4, where first dot is a decimal point 

and second dot is a fraction point. A number ½ would be 

stored as 0.1.2. This approach would also allow 

displaying infinity as 0.1.0 and indeterminacy as 0.0.0. 

Representation of inexact numbers would be similar to 

the e-notation, where the exponent uses scaling base of 

10. The display form would use the scaling base of 1000 

and this would be called k-notation. This will be 

supported by m-notation (milli notation) to avoid 

squeezing a negative sign into the exponent. A second k 

or m could display secondary inexactness. 

 

The Composite Arithmetic proposal also 

mentions register form. This would be a fixed-point long 

accumulator, which is be 512 bytes (4096 bits) long. It 

would be large enough to store extended primary inexact 

storage form and some additional data like tags and 

signs. 

 

Composite arithmetic is more complex than 

floating-point but many aspects of it have already been 

implemented in hardware and software. Replacing 

floating-point arithmetic would benefit electronic 

calculator arithmetic and would improve capabilities of 

software packages such as spreadsheets. Another 

advantage lies in programming using the composite 

arithmetic. The programmer wouldn’t have to make 

choices between fixed and floating point and all 

conversions would be done in the register form. Also the 

accuracy of results, especially for technical computation, 

would be much greater. 

 

3. Design of the Composite Arithmetic Unit 

 

Our current research is concentrated on the 

exact forms of the composite arithmetic (integers have 

been treated as a special case of rational numbers).  



 

Figure 1. Proposed exact storage forms include (a) primary exact form (integer), and (b) secondary exact form (rational).  In 

the bit numbering as shown, n stands for the number of bits in the form and can be 32, 64, 128, or 256, while m stands for 

the number of different forms in increasing size of 0,1,2, or 3. 

 

Figure 2. Composite Arithmetic Unit (enclosed in rectangle) as part of a larger design.  

 

The design involves a Composite Arithmetic Unit 

(CAU), a set of registers and control unit to allow 

interfacing with the PC. The CAU consists of six basic 

blocks (Figure 2): greatest common divisor (GCD), 

casting (CAST), multiplication (MUL1 for numerator 

and MUL2 for denominator), swapping (SWAP), 

addition (ADD), and subtraction (SUB). The function of 

the COPY block is to duplicate contents of a register 

while the MOVE block transfers contents from one 

register to the other. 



3.1 GCD block 

 

The function of this circuit is to calculate the 

greatest common divisor of numerator and denominator 

of a rational number. The outcome of this operation is a 

number, which can be used with the rational number to 

cast out the common factors and reduce the size of the 

number. 

 

The algorithm for finding GCD is based on the 

Euclid’s Algorithm. There are several variations of the 

Euclid’s Algorithm (including binary algorithm used in 

computing) but the following algorithm is a simple 

recursive function and can be easily implemented using 

hardware components. 

 

int gcd(int m, int n)  // m is numerator,  

// n is denominator 

{ 

if (m < n)  // when numerator is 

// greater than denominator 

        { 

        m = gcd (m, n - m); // make a recursive call 

// with adjusted denominator 

        return m; 

        } 

else    if (m > n)  // when numerator is less  

//than denominator 

                {  

                m = gcd (m - n, n); // make a recursive  

    // call with adjusted  

    // numerator 

                return m; 

                } 

        else 

                return m;  // When numerator equals  

// denominator  

// Stop and return the numerator (m), 

// Which holds the GCD of (m,n) 

} 

 

The GCD circuit (Figure 3) consists of two input 

data buses: A [15:0] (denominator) and B [15:0] 

(numerator). The EN line enables the outputs and is used 

to generate the END signal. The output data buses are M 

[15:0] (denominator) and N [15:0] (numerator). The END 

line signals the end of operation and the result is 

contained in M bus. COMPARE unit checks if the two 

input buses are equal, A bus is less than B bus, or A bus 

is greater than B bus. If A bus equals B bus then EQ line 

goes high. It is then ended with EN line to set the line 

END to high. If A bus is less than B bus (LT line is high) 

then AND gates for the upper SUBTRACT unit are 

enabled. If A bus is greater than B bus (GT line is high) 

then AND gates for the lower SUBTRACT unit are 

enabled. Both outputs from the AND gates are put 

through OR gates and the final output is M and N buses, 

regulated using TRISTATE BUFFERS. 

 

3.2 CAST block 

 

Casting circuit is used to eliminate the common 

factors of two numbers. The GCD value previously 

stored in a register is fetched into the casting circuit. 

Casting out common factors allows decreasing the size of 

the numerator and denominator while still maintaining 

the precision.  

 

The algorithm for casting out common factor uses 

simple subtraction of GCD from numerator and 

denominator until they reach 0. The number of 

subtractions for each number produces the new 

numerator and denominator. This is equivalent to 

dividing the rational number by the GCD. 

 

void cast(int& m, int& n, int gcd) // m is the numerator,  

           //n is the denominator 

{ 

int count1=0; // counts subtractions of the numerator 

int count2=0; // counts subtraction of the  

// denominator 

while (m > 0) // while loop for the numerator 

{ 

        count1 = count1 + 1; // add one to the counter 

        m = m - gcd;  // subtract the GCD from the  

// numerator 

} 

while (n > 0) // while loop for the denominator 

{ 

        count2 = count2 + 1; // add one to the counter 

        n = n - gcd;  // subtract the GCD from the  

// denominator 

} 

m = count1; // The new numerator is set to  

// the count of subtractions 

n = count2; // The new denominator is set to 

// the count of subtractions 

} 

 

The CAST circuit (Figure 4) consists of three 

data inputs: A [15:0] (denominator), B [15:0] 

(numerator) and GCD [15:0] (GCD of A and B 

calculated earlier). The input lines are EN (enable), CLK 

(clock), and LOAD (load counter). The data outputs are 

M [15:0] (denominator) and N [15:0] (numerator). The 

output line is END, which signifies the end of operation. 

The description given is for A bus only as B bus is 

identical. The A bus and the GCD bus are put through the 

COMPARE unit to check if they are the same. While the 

output of the COMPARE is low (meaning GCD is less 

than A bus), the 16-BIT COUNTER is enabled. 

Otherwise it is disabled. The COMPARE output line also 



 

Figure 3. GCD circuit. 

 

 

Figure 4. CAST circuit. 

 

 

 

 

 



 

provides feedback to the END line and it manipulates the 

MUX selector. SUBTRACT units subtract GCD bus 

from the A bus. The output of the SUBTRACT and the 

16-BIT COUNTER are put through the MUX selector. If 

the COMPARE output line is low, then the SUBTRACT 

output goes through, and if it is high, then the 16-BIT 

COUNTER output goes through. The final output M 

[15:0] is put through the TRISTATE BUFFER. The B 

bus operates on the same principle and its output goes to 

N [15:0]. DEFAULT COUNTER SETTING lines are set 

to GND and VCC connections in order to initialise the 

counter (using LOAD line). 

 

3.3 MUL1 and MUL2 blocks 

 

These circuits, similar to one another, are used 

to multiply the numerators (MUL1) and denominators 

(MUL2) of the two rational numbers. 

 

The design for these circuits is based on 

Hwang’s algorithm [3]. The MUL circuit (Figure 5) 

consists of two input buses: A [15:0] (multiplicand) and 

B [15:0] (multiplier). The input lines are LOAD (loads 

the counter), EN (enable line) and CLK (clock line). The 

output buses are LOW [15:0] (lower 16-bits of the result) 

and HIGH [15:0] (higher 16-bit of the result). There are 

three registers involved in the circuit. The first two are 

internal. These are MR (Multiplier Register) and PR 

(Partial product Register). The third register contains the 

Multiplicand (A bus) and it belongs to the Register Unit. 

Also 16-BIT ADDER is required to produce the partial 

product. The result of the multiplication is a 32-bit 

number, which is stored in LOW and HIGH buses, 

corresponding to 16 lower bits and 16 higher bits 

respectively. An 8-BIT COUNTER is used to keep track 

of the number of additions and to signal the completion 

of operation by setting the END line to high. For each 

clock cycle there are a number of operations that are 

carried out. First Multiplicand A is ANDed with LSB of 

MR. This result is added to the PR (initially zero). The 15 

higher bits of the sum are put into 15 lower bits of the 

PR. The LSB of the sum is then right shifted into MR and 

becomes the MSB of the MR. The Cout from the 

ADDER is put into the MSB of the PR. The 8-BIT 

COUNTER controls the number of right shifts of the 

MR, so at the end of the multiply operation the MR 

contains 16 lower bit of the result. The Multiplier B that 

was originally in the MR is pushed towards the right end 

of the MR. 

 

3.4 SWAP block 

 

The swap circuit is used for swapping numerator 

and denominator to produce the reciprocal of the original 

number. Multiplication (MUL blocks) of a given number 

with the reciprocal of the second number (output from 

SWAP block) yields the result of dividing the first 

number with the second number. 

 

The SWAP circuit (Figure 6) consists of two 

input data buses: A [15:0](denominator) and B 

[15:0](numerator). These are put through tristate buffers 

using EN line to activate the buffers. Then A bus is tied 

to N [15:0] (numerator) and B bus is tied to the M [15:0] 

(denominator). The final output line is END, which has 

been inverted twice to strengthen the signal. 

 

3.5 ADD block 

 

This circuit performs addition of numerators of 

two rational numbers. The denominators must be the 

same in order to produce the correct result. 

 

The ADD circuit (Figure 7) consists of three 

data inputs: A [15:0], B [15:0] and LOW [15:0]. A and B 

buses are numerators of the numbers to be added, while 

LOW bus is the common denominator. The input line EN 

enables the whole circuit. The circuit works by adding A 

and B and sending the result to N [15:0] via TRISTATE 

buffer. The LOW bus goes through to the M [15:0] 

output bus and is enabled using TRISTATE buffer. The 

output line END has been inverted twice to strengthen 

the signal. 

 

3.6 SUB block 

 

The subtraction circuit performs subtraction of 

the numerators (denominators must be the same). 

 

The SUB circuit (Figure 8) consists of three data inputs: 

A [15:0], B [15:0] and LOW [15:0]. A and B buses are 

numerators of the numbers to be subtracted, while LOW 

bus is the common denominator. The input line EN 

enables the whole circuit. The circuit works by 

subtracting B from A and then sending the result to N 

[15:0] via TRISTATE buffer. The LOW bus goes 

through to the M [15:0] output bus and is enabled using 

TRISTATE buffer. The output line END has been 

inverted twice to strengthen the signal. 

 



 

Figure 5. MUL circuit. 

 

Figure 6. SWAP circuit. 



 

Figure 7. ADD circuit. 

 

Figure 8. SUB circuit. 

4. Conclusion 

 

Composite Arithmetic offers great advantages 

over the current fixed-point and floating-point arithmetic. 

It is accurate and can deal with infinity and 

indeterminacy. The aim of this research has been to 

design a Composite Arithmetic Unit which will deal with 

all aspects of arithmetic (exact and inexact) automatically 

and without any user input. Future research will 

concentrate on developing inexact forms and then the 

integration of the two forms (exact and inexact) will 

follow. Once this is achieved, the final specification for 

the standard can be formulated. Then it will also be 

possible to design more complex operations dealing with 

wider range of calculations. Today’s technology and 

needs require a new type of arithmetic, and composite 

arithmetic may be the answer for the future central 

processing units, providing automatic conversion 

between exact and inexact forms and freeing user from 

making hard decisions at programming level. 
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