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Abstract
     

We provide an implementation of a Haskell [1] subset 

embedded within the Java programming language. The 

subset provides type inference, polymorphism, first-class 

functions, currying, and mixing of Haskell calls within 

Java expressions. These calls are evaluated lazily before 

returning to standard imperative evaluation.  

The implementation is via the language Genesis [2]: a 

Java extension that allows for meta-programming and 

syntax creation. Genesis even allows for the subset to be 

used independently, so that source files containing purely 

Haskell subset code are translated into Java classes. 
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1 Introduction 
There are many approaches to providing imperative 

forms within a pure functional language. Whilst much 

progress has been made in precisely this area, current 

solutions still provide significant initial barriers to use 

[3].  

A somewhat unexplored technique is to provide an 

embedded functional language within a mainstream 

imperative language. Although, Haskell itself has been 

embedded in XML [4] and Elegant [5] supports many 

evaluation strategies. Of primary interest would be the 

ability to switch between imperative evaluation and lazy 

evaluation at the user’s behest.  

To this end, we provide an implementation of a subset of 

the popular functional programming language Haskell 

within a recent Java extension, Genesis.  

Genesis is an extension to Java that supports compile-

time meta-programming by allowing users to create their 

own arbitrary syntax. This is achieved through macros 

that operate on a mix of both concrete and abstract 

syntax, and produce abstract syntax. Genesis provides a 

minimal design whilst maintaining, and extending, the 

expressive power of other similar macro systems (such as 

MS
2
 [6], JSE [7], and Maya [8]). The core Genesis 
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language definition lacks many of the desirable features 

found in these systems, such as quasi-quote, hygiene, and 

static expression-type dispatch, but is expressive enough 

to define these as syntax extensions.  

Other imperative languages that offer powerful meta-

programming are unable to match Genesis’ powerful 

syntax creation facilities. As we shall show, Genesis is 

expressive enough to allow both the embedding of our 

Haskell subset within Java and to allow the translation to 

Java of source files containing only Haskell code. 

1.1 Overview 

The remainder of this paper is presented as follows. In 

section 2, we provide a brief explanation of the language 

Haskell. In section 3, we specify the Haskell subset. In 

section 4, we present an implementation using Genesis. 

In section 5, we describe some extensions to the subset. 

In section 6, we provide an analysis of this work with a 

brief mention of further work. 

2 Background 
Haskell is a non-strict purely functional language that has 

obtained much popularity both from programmers and 

researchers. It has many similarities to ML [9] and 

Miranda [10]. Haskell has been used successfully to 

implement a variety of applications such as a Perl6 

implementation, a LaTeX pre-processor, and even a few 

graphical games. 

Its evaluation proceeds in a lazy fashion whereby 

calculations are deferred until they are determined to be 

guaranteed to be necessary. Apart from possible 

improved performance, this feature allows for the use of 

conceptually infinite datastructures. However, lazy 

evaluation complicates input/output and, as a result, 

much work has been done to provide sequential forms. 

The most successful approach found so far is via monads 

and Haskell specifies a special syntactic sugar, do-

notation, to simplify their use. Nonetheless, monads are a 

somewhat awkward solution and the approach taken by 

this work may be in interesting alternative. 

Haskell has been praised for its clean syntax but this can 

also act as a deterrent for those unfamiliar with it. This 

clean syntax combined with the Haskell standard library  

(the prelude) results in very concise programs when 

compared to other languages [11]. 



subset = (definition)+ 
definition ::= identifier = expr 
 

expr ::=  if bExpr then expr else expr  
           |  \ identifier -> expr // lambda function 
           |  let identifier = expr in expr  
           |  expr operator expr // arithmetic 
operation  
           |  ( expr )  
           |  expr expr // function 
application 
           |  identifier  
           |  literal // integer literals 
           |  [] 
           |  expr : expr 
           | head expr 
           | tail expr 
 

literal ::= digits+ 
 

operator ::= + | - | * | / // no precedences 
 

bExpr ::= expr cOp expr | bExpr lOp bExpr 
cOp ::= > | < | == | /= 
lOp ::= && | ||       

Figure 1: Haskell Subset Grammar 

map = \f -> \xs -> if xs==[]  
                            then []  
                            else f (head xs) : map f (tail xs) 

Figure 2: Declaration Example 

3 Haskell Subset 
The major goal of this work is to assess the viability of 

embedding within Java a lazily evaluated Haskell subset 

with clean syntax. As a result, a heavily restricted subset 

is all that is required for experimentation. The Haskell 

subset provides: 

• integer literals and lambda functions (see section 

3.1); 

• lists: with the construction via cons, termination via 

the empty list (see section 3.1), and built-in functions 

for finding the head or tail of a list (see section 3.2); 

• simple expressions: variable identifiers, let 

expressions, if-then-else expressions, infix 

expressions, and function application (see section 

3.2); and 

• infix operators for arithmetic and logical calculation. 

It does not provide type signatures, currying, pattern- 

matching, list constructions, list comprehensions, tuples, 

where-clauses or any of a range of other sophisticated 

features such as type classes or the monadic do-notation. 

These features are possible to support, but are not 

required in this proof-of-concept implementation — 

much of Haskell can be expressed in more primitive 

Haskell constructs regardless [12]. 

No standard functions are part of the subset definition; it 

is part of the proof-by-implementation to define functions 

such as map, take, foldr, etc. in these specified 

primitives. 

The evaluation of the subset is described in section 3.4, 

and its simplified type-system in section 3.5. Section 3.6 

describes the embedding of this subset in Java. 

The full grammar for the Haskell subset is shown in 

Figure 1, and further described in the following 

subsections.  

3.1 Atoms 

The subset provides four atomic elements (i.e. elements 

that cannot be further evaluated): 

• integer literals; 

• lambda functions of the form \i->e; 

• the empty list ([]); and 

• list construction via cons (:).  

3.2 Expressions 

The subset provides five general expressions: 

• simple identifiers (e.g. list); 

• arithmetic infix operators for addition, subtraction, 

multiplication, and division (e.g. 4+7*2); 

• let expressions; (e.g. let x=4 in x*x)  

• if-then-else expressions (e.g. if x>4 then x 

else 7); and 

• function application (e.g. f (4*x) list).  

If-then-else expressions require a Boolean expression for 

their condition. This is provided via explicit grammar 

(see the final three lines of Figure 1) that provides basic 

comparison operators (greater-than, less-than, equals, 

not-equals) and Boolean operators for and and or. There 

is no general Boolean type (see section 3.5). 

The subset provides head and tail for the 

deconstruction of list atoms that respectively return the 

first element of a list and its remainder. These functions 

are the only provided facilities for deconstruction of lists. 

3.3 Declarations 

Declarations bind a functional definition to an identifier. 

Multiple declarations can appear consecutively and do 

not require any special layout or separation. Effectively, 

a single equals-sign acts as a reference-point for 

determining the beginning of declarations. Figure 2 

shows an example declaration. 

3.4 Evaluation 

The evaluation rules for the seven expression types are 

illustrated in Figure 3 where square brackets indicate 

evaluation and σ is the current environment (i.e. a list of 

variable bindings). These rules are generally straight-

forward, but some cases benefit from a little explanation: 

• both head and tail evaluations evaluate their 

argument to see if it results in a list atom: if so, 

evaluation proceeds with the appropriate component 

of this atom and if not, a run-time error occurs (this 

is the only run-time error produced by the subset);  
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Figure 3: Evaluation Rules 
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Figure 4: Unification Rules 
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Figure 5: Type-Inference Rules 

• a let-expression evaluation adds a new binding in the 

environment for its variable and its value is 

evaluated with the original environment; and 

• function application must resolve its left-hand 

argument into a lambda function and then create a 

new binding in the environment from the lambda's 

variable and its second argument. This new binding 

must be composed with the environment created by 

evaluation of the left-hand argument and is used to 

evaluate the lambda function's expression. 

By definition, the atomic elements cannot be further 

reduced by evaluation and return unchanged. 

The evaluation proceeds in a lazy fashion only at those 

points in which a new binding is added to the 

environment (i.e. let-expressions and function 

application). When a new binding is created, the 

calculation of its value is delayed until it is known to be 

required. 

3.5 Type System 

The subset provides only four types: 

• integers: int; 

• functions: A→B where A and B can be any type;  

• lists: [A] where A can be any type; and 

• arbitrary types. 

Whilst this is significantly restricted from full Haskell, it 

is more expressive than it appears at first glance. The 

composition of function and list types and the use of 

arbitrary types provides for quite a complicated set of 

types. 

Perhaps the most seemingly restrictive of the missing 

features is the lack of a Boolean type. Use of the 

conditional if expression functions as normal, but use of 

Boolean expressions is restricted to this situation alone. 

The subset provides no way to provide type signatures or 

to work with types directly — all declarations have their 

types automatically inferred. 

Type Inference 

The type inference algorithm utilizes a common state that 

maintains the most specific type for all variables in 

scope. Operations that affect this common state are: 

• add(identifier): introduce a new variable into 

the state with its type initialized to be the arbitrary 

type; 

• find(identifier): search the state for the 

specified identifier and return its type; and 

• (type t) � (type u): unify the two supplied types 

(the rules for unification are shown in Figure 4). 

The rules for type-inference for the seven expressions 

and four atoms are shown in Figure 5. The final five rules 

contain extra actions that may affect the common state, 

but do not reflect the resultant type. Lambda functions, 

let-expressions, and declarations introduce new 

identifiers via the add function. As they are straight-

forward, the rules for inference of Boolean expressions 

are omitted. 

Figure 6 contains a type-inference example for the map 

declaration from Figure 2. 

3.6 Embedding 

The Java embedding for the Haskell subset is shown in 

Figure 7. A declaration is enclosed in braces prefixed by 

the single keyword fun and may appear anywhere a 

class-body declaration can. A functional call is 

surrounded by parentheses preceded by fun and can 

appear at the expression level. Figure 8 contains an 

example of embedded Haskell subset declarations and 

their use within standard Java code. 



map = …  add map = A 
   \f -> … add f = B 
      \xs -> … add xs = C 
         if … 
            xs==[]  
               xs => C 
               [] => [D] 
               => [D] C � D => C = [D] 
            [] => [E] 
            f (head xs) : map f (tail xs)  
               f (head xs)  
                  f => B 
                  head xs 
                     xs => [D] 
                    => D [F] � [D] => F = D 
                  => G B � (D->G) => B = (D->G)  
               (map f) (tail xs) 
                  map f 
                     map => A 
                     f => D->G 
                     => H A � (D->G)->H 
                                                           => A = (D->G)->H 
                  tail xs 
                     xs => [D] 
                     => [D] [I] � [D] => I = D 
                  => J H � [D]->J => H = [D]->J 
               => [G] [G] � J => J = [G] 
            => [E] [E] � [G] => G = E 
         => [D]->[E] 
      => (D->E)->[D]->[E] 
   => (D->E)->[D]->[E] 

Figure 6: Type-Inference Example 

expression ::= ... | fun ( fun_expr ) 
class_body_declaration ::= ... | fun { subset } 

Figure 7: Java Embedding Grammar 

import genesis.Haskell.*; 
 

class FunExample { 
   fun { 
      map = \f -> \xs -> if xs==[]  
         then []  
         else f (head xs) : map f (tail xs) 
      take = \n -> \xs ->  
         if (n==0) then xs else take (n-1) (tail xs) 
      fib2 = \x -> \y -> x:fib2 y (x+y) 
      fib = fib2 1 1 
      square = \x -> x * x 
   } 
  

   public static void main(String[] args) { 
      int x = fun(square 42)); 
      int y = 10; 
      FunList result = fun(take y (map square fib)); 
   
      for (Iterator i = result.iterator(); i.hasNext(); ) { 
         System.out.println(i.next()); 
      } 
   } 
} 

Figure 8: Embedded Haskell Usage 

 

Figure 9: Haskell Subset Class Hierarchy 

abstract class FunObject extends AbstractSyntax  
                                       implements Cloneable { 
   protected FunDefinition environment; 
 

   public abstract Creation createSelf(); 
   public abstract FunObject eval(); 
   protected abstract FunType funType(TreeMap variables) 
      throws TypeMismatch; 
} 

Figure 10: Base Class Definition 

4 Implementation 
The implementation is provided via a number of Java 

classes shown in a hierarchy in Figure 9 (with abstract 

classes shown in italics). Each of these classes is used for 

a variety of purposes: 

• to drive the parse at compile-time and provide syntax 

checking; 

• for compile-time type-checking; 

• at run-time to represent the structure of the 

functional program; and 

• for run-time lazy evaluation. 

4.1 Base Class 

The base class is FunObject (see Figure 10) which 

provides three abstract methods for translation, functional 

type-checking, and evaluation: createSelf, 

funType, and eval. These methods have the following 

characteristics: 

• Calling the createSelf method on a functional 

object will produce a Java creation expression (i.e. a 

sequence of new expressions) that when executed 

will reproduce the datastructure fully. This is used at 

compile-time to create run-time code that will store 

the functional objects.  

• The funType method implements the type-

inference algorithm specified in section 3.5. It uses a 

TreeMap datastructure to maintain the shared state. 

• The eval method implements lazy-evaluation as 

described in section 3.4. 

FunObject 

FunDefinition FunElement 

FunAtom FunExpr 

FunList 

FunEmpty 

FunCons 

FunIdent 

FunInfix 

FunIf 

FunLet 

FunHead 

FunTail 

FunApply 

FunLiteral FunLamda 



The FunObject class contains one instance variable 

that is the functional object’s current environment — this 

is used at run-time during the evaluation process. The 

class also contains an overloaded eval method that 

updates the environment before evaluation occurs, and an 

overloaded funType method that initialises a TreeMap 

before typing. 

4.2 Definitions 

The class FunDefinition associates an identifier 

with its value (a FunObject). Apart from being used 

for actual definitions, this class is used to encapsulate the 

environment associated with each functional object. The 

environment of a definition is used for chaining. These 

chains may (and often do) contain circular references.  

The value contained within a definition typically contains 

its own unique environment that is used for its lazy 

evaluation. Once it has been determined that the 

identifier within a definition is required for evaluation to 

proceed, the expression contained within its value must 

be evaluated (and the value is duly updated to reflect the 

result of this evaluation). 

4.3 Elements 

The FunElement class merely acts as a superclass for 

atoms and expressions in order to clearly differentiate 

them from definitions; it does not provide any further 

functionality than the FunObject class. 

4.4 Atoms 

The class FunAtom defines the abstract method eval 

as returning the current object. As all atomic objects 

share this behaviour the eval method is also specified 

as final. 

4.5 Lists 

The FunList class acts as superclass to the list 

construction classes. It also provides an iterator 

method and a custom iterator class for traversal of any 

function list that is returned after evaluation. Such lists 

are not fully evaluated upon return and require an iterator 

to evaluate each element on demand. Thus, lists are lazily 

evaluated even within Java code. 

4.6 Expressions 

The FunExpr class merely acts as a superclass for the 

seven expression classes for: identifiers; if-expressions; 

let-expressions; infix expressions; head; tail; and function 

application.  

4.7 Syntax 

The macros defining the Haskell subset syntax (from 

Figure 1) are shown in Figure 11 (with macros for 

Boolean expressions, operators, and for lists of 

definitions omitted). All simply create objects from our 

class hierarchy to guide the parse. The function 

application syntax macro examines its left-hand 

argument in order to catch applications of head or 

tail. The final macro allows parentheses to be used for 

explicit precedence. 

4.8 Translation 

Translation of Haskell subset code requires two macros, 

one for the group of declarations, and the other for 

functional calls. These macros are illustrated in Figure 

12. 

To translate declarations, we perform the required type-

inference checking and, if successful, replace the 

embedded Haskell with a static-initialiser block 

containing a call to a run-time class (defined in Figure 

13) with a re-creation of the compile-time datastructure 

representing the declarations. The run-time class 

remembers this datastructure as the common 

environment and ensures that it is correctly self-

referential. 

For functional calls the type of the functional expression 

is evaluated, and translated into a call to a specialised 

evaluation function (contained in the run-time class) for 

either integers or lists as appropriate. Functional calls 

resulting in a lambda function are considered to be 

erroneous. 

The createSelf method is responsible for detecting 

unbound variables within functional calls (assumed to be 

Java identifiers) and their subsequent translation to a call 

to the run-time function toFun. The run-time class 

provides overloaded toFun methods for conversion 

from integers, collections, and arrays. 

Figure 14 demonstrates the resultant translation of the 

embedded Haskell example from Figure 8. 

5 Extensions 

The Haskell implementation contains a few extra forms 

that are not specified in the subset. These demonstrate the 

ease of extending and the power available within the 

Genesis implementation. Genesis allows use of quasi-

quotation for user-defined abstract syntax and this is used 

extensively throughout this section. 

5.1 Function Declarations 

Haskell provides a syntactic sugar for function 

declarations that does not require the use of lambda 

functions. For example, instead of f=\x->\y->x+y we 

could write f x y=x+y. Using quasi-quotation, we can 

provide this extension to our Haskell subset by using a 

mixture of Haskell and Genesis forms as shown in Figure 

15. It simply constructs lambda functions from the 

identifiers in the argument list (in reverse). Trivial 

Genesis code for creating the list of functional identifiers 

is omitted. 
 
 



macro FunDefinition (FunIdent i, =, FunExpr e) { 
   return new FunDefinition(i, e); 
} 
macro FunLambda (\, FunIdent i, ->, FunExpr e) {  
   return new FunLambda(i,e);  
} 
macro FunLiteral (LiteralInt x) {  
   return new FunLiteral(x);  
} 
macro FunCons (FunExpr e, :, FunExpr f) {  
   return new FunCons(e, f);  
} 
macro FunEmpty ([]) {  
   return new FunEmpty();  
} 
macro FunIdent (Identifier i) { 
   return new FunIdent(i.toString());  
} 
macro FunInfix (FunExpr e, FunOperator op, FunExpr f) {  
   return new FunInfix(e, op, f);  
} 
macro FunIf (if, FunBExpr b, then, FunExpr e, else, FunExpr f) 
{ 
   return new FunIf(b, e, f);  
} 
macro FunLet (let, FunIdent i, =, FunExpr e, in, FunExpr f) { 
   return new FunLet(i, e, f);  
} 
macro FunExpr (FunExpr e, FunExpr f) { 
   if (e instanceof FunIdent) { 
      FunIdent i = (FunIdent) e; 
   

      if (i.equals("head")) return new FunHead(f); 
      if (i.equals("tail")) return new FunTail(f); 
   } 
   return new FunApply(e, f);  
} 
macro FunExpr ("(", FunExpr e, ")") { 
   return e; 
} 
macro FunDefinition (FunDefinition d, FunDefinition e) { 
   d.environment = e; 
   return d; 
} 

Figure 11: Haskell Subset Macro Definitions 

macro ClassDeclaration (fun, "{", FunDefinition d, "}") { 
   // loop thru all declarations & check types...  
 

   return {{ 
      { FunRuntime.setEnv(`(d.createSelf())); } 
   }}; 
} 
 

macro MethodCall (fun, "(", FunExpr e, ")") throws 
TypeMismatch  
{ 
   FunType type = e.funType(); 
   if (type instanceof FunTypeInt) { 
      return {{ FunRuntime.evalInt(`(e.createSelf())) }}; 
   } else if (type instanceof FunTypeList) { 
      return {{ FunRuntime.evalList(`(e.createSelf())) }}; 
   } 
 

   throw new TypeMismatch("function call of type: " + type); 
} 

Figure 12: Haskell Embedding Macro Definitions 

class FunRuntime { 
   private static FunDefinition environment; 
 

   public static void setEnv(FunDefinition e) {  
      environment = e;  
      // force the environment to be self-referential (for 
recursion) 
   } 
 

   public static FunList evalList(FunObject obj) { 
      return (FunList) obj.eval(environment); 
   } 
 

   public static int evalInt(FunObject obj) { 
      return ((FunLiteral) obj.eval(environment)).value; 
   } 
 

   public static FunAtom toFun(int x) { ... } 
   public static FunAtom toFun(Collection list) { ... } 
   public static FunAtom toFun(Iterator i) { ... } 
   public static FunAtom toFun(int[] array) { ... } 
} 

Figure 13: Run-time Class Definition 

import genesis.Haskell.*; 
 

class FunExample { 
   { FunRuntime.setEnv( /* output from createSelf method */ 
); }  
 

   public static void main(String[] args) { 
      int x = FunRuntime.evalInt(new FunApply( 
         new FunIdent("square"), new FunLiteral(42) 
      )); 
      int y = 10; 
      FunList result = FunRuntime.evalList(new FunApply( 
         new FunApply(new 
FunIdent("take"),FunRuntime.toFun(y)),  
         new FunApply( 
            new FunApply( 
               new FunIdent("map"), new FunIdent("square") 
            ),  
            new FunIdent("fib") 
         ) 
      )); 
 

      for (Iterator i = result.iterator(); i.hasNext(); ) { 
         System.out.println(i.next()); 
      } 
   } 
} 

Figure 14: Embedded Haskell Translation 

5.2 Operator Currying 

Haskell allows binary operator application to omit either 

parameter to provide a partial application. For example 

the expression (1+) returns a function that adds one to 

its argument. Figure 16 shows the simplicity of adding 

this to Haskell subset. 

5.3 List Constructions 

List constructions allow lists of a fixed length to be 

created without the use of cons and the empty list. For 

example, instead of 1:x+y:[] we could write [1, 

x+y]. Figure 17 demonstrates the definition of list 



macro FunDefinition  
(FunIdentifier ident, FunIdents args, =, FunElement expr) { 
   FunExpr lambdas = expr; 
 

   forall (FunArgument arg) in args.reverse() {  
      lambdas = {{ \`arg -> `lambdas) }}; 
   } 
 

   return {{ `ident = `lambdas }}; 
} 

Figure 15: Function Declaration Macro Definition 

macro FunLambda (”(”, FunOperator op, FunExpr e, ”)”) {  
    return {{ \x -> x `op `e }}; 
} 
 

macro FunLambda (”(”, FunExpr e, FunOperator op, ”)”) {  
    return {{ \x -> `e `op x }}; 
} 

Figure 16: Operator Currying Macro Definitions 

macro FunList ([, FunExprs es, ]) { 
   FunList ret = new FunEmpty(); 
 

   forall (FunExpr e) in es.reverse() {  
      ret = new FunCons(e, ret);  
   } 
 

   return ret; 
} 

Figure 17: List Construction Macro Definition 

macro FunApply ([,FunExpr e, |, FunIdent i, <-, FunExpr f,]) { 
    return {{ map (\`i -> `e) `f }} 
} 

Figure 18: Simple List Comprehension Macro Defn 

module HaskellTest where 
 

range a b = if (a <= b) then (a : range (a+1) b) else [] 
 

main x = [ a * a | a <- range 1 x ] 

Figure 19: Standalone Haskell Module 

public class HaskellTest { 
   { FunRuntime.setEnv( /* output from createSelf */ ); }  
 

   public static void main(String[] args) { 
      if (args.length != 1) return; 
 

      System.out.println(FunRuntime.evalList(new FunApply( 
         new FunExpr("main"), FunRuntime.toFun(args[0]) 
      )); 
   } 
} 

Figure 20: Standalone Haskell Translation 

constructions with the omission of the trivial Genesis 

code for creating a comma separated list of expressions.   

5.4 Simple List Comprehensions 

Simple single-source list comprehensions can be 

provided by translation into use of the map function. This 

translation is so simple it can be provided in a single line 

as shown in Figure 18.  

5.5 Standalone Usage 

Genesis is capable of translating Haskell subset files that 

contain no Java constructs whatsoever. This standalone 

usage requires the specification of a module name within 

the source file — this is used to name the resultant Java 

translation class. An example of this syntax is shown in 

Figure 19. Note that this example uses some of the other 

extended forms defined in the preceding subsections. 

Each standalone Haskell file must declare the function 

main. The definition of this function is permitted to 

contain any number of integer or integer list arguments 

that can be specified from the command line. 

The translation of standalone Haskell follows much the 

same process as described in section 4.8. However, the 

surrounding class is created by the translator. Also 

created is a Java main method that accepts arguments 

from the console, performs a functional calculation, and 

outputs results to the console as demonstrated in Figure 

20. 

The Genesis compiler can be executed with only the 

Haskell subset syntax and without loading the default 

Java syntax using a command-line switch. In this form, 

the compiler acts as only a Haskell subset compiler. 

6 Analysis and Conclusion  
This work successfully embeds a Haskell subset within 

Java with clean syntax and lazy evaluation. The 

advantages of type-inference, polymorphic types, first-

class functions, currying, and lazy evaluation are all 

supported. 

Java code can contain calls to Haskell subset functions 

enabling the programmer to switch between imperative 

and lazy evaluation at will. 

The Haskell subset is also a clear demonstration of the 

power and flexibility of macro definitions in Genesis. 

Not only is the Haskell syntax matched exactly (ignoring 

true Haskell layout rules), the implementation itself is 

relatively straightforward due to Genesis allowing 

multiple uses of its user-definable abstract syntax classes. 

One might consider implementing a Haskell subset in a 

similar language to Genesis. Neither MS
2
 nor Maya have 

the ability to express the required syntax in any form. 

MS
2
 requires each macro to begin with a name and Maya 

is not capable of supporting the Haskell syntax due to its 

outside-in evaluation strategy. Even if it were, it is 

unlikely that Maya’s LALR parser could handle the 

conflicts between functional expressions and standard 

Java expressions. While it might be possible to represent 

the syntax in JSE, this would be by pushing a sequence 

of unstructured tokens to a hand-coded parser. 

Using Genesis' quasi-quotation facility many simple 

extensions to the subset are possible such as arithmetic 



operator currying, function declarations, and syntactic 

sugar for list constructions. 

6.1 Planned Future Work 

Planned and possible future work includes: 

• the implementation of pattern-matching; 

• extensions to the type-system, culminating in the 

support of type classes; 

• addition of user-defined operators;  

• allowing Haskell code to contain calls to Java 

methods; and 

• ultimately, the implementation of the entire Haskell 

language specification. 
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