
An Embedded Haskell Subset Implementation

Ian Lewis

ij_lewis@utas.edu.au

School of Computing, University of Tasmania, GPO Box 252-100, Hobart, Tasmania, Australia, 7001

Phone: +61 3 6226 2952, Fax: +61 3 6226 1824

Abstract

We provide an implementation of a Haskell [1] subset

embedded within the Java programming language. The

subset provides type inference, polymorphism, first-class

functions, currying, and mixing of Haskell calls within

Java expressions. These calls are evaluated lazily before

returning to standard imperative evaluation.

The implementation is via the language Genesis [2]: a

Java extension that allows for meta-programming and

syntax creation. Genesis even allows for the subset to be

used independently, so that source files containing purely

Haskell subset code are translated into Java classes.

Keywords

Meta-programming, extensibility, and Haskell.

1 Introduction
There are many approaches to providing imperative

forms within a pure functional language. Whilst much

progress has been made in precisely this area, current

solutions still provide significant initial barriers to use

[3].

A somewhat unexplored technique is to provide an

embedded functional language within a mainstream

imperative language. Although, Haskell itself has been

embedded in XML [4] and Elegant [5] supports many

evaluation strategies. Of primary interest would be the

ability to switch between imperative evaluation and lazy

evaluation at the user’s behest.

To this end, we provide an implementation of a subset of

the popular functional programming language Haskell

within a recent Java extension, Genesis.

Genesis is an extension to Java that supports compile-

time meta-programming by allowing users to create their

own arbitrary syntax. This is achieved through macros

that operate on a mix of both concrete and abstract

syntax, and produce abstract syntax. Genesis provides a

minimal design whilst maintaining, and extending, the

expressive power of other similar macro systems (such as

MS
2
 [6], JSE [7], and Maya [8]). The core Genesis

PLC’06, June 26–29, 2006, Las Vegas, Nevada.

language definition lacks many of the desirable features

found in these systems, such as quasi-quote, hygiene, and

static expression-type dispatch, but is expressive enough

to define these as syntax extensions.

Other imperative languages that offer powerful meta-

programming are unable to match Genesis’ powerful

syntax creation facilities. As we shall show, Genesis is

expressive enough to allow both the embedding of our

Haskell subset within Java and to allow the translation to

Java of source files containing only Haskell code.

1.1 Overview

The remainder of this paper is presented as follows. In

section 2, we provide a brief explanation of the language

Haskell. In section 3, we specify the Haskell subset. In

section 4, we present an implementation using Genesis.

In section 5, we describe some extensions to the subset.

In section 6, we provide an analysis of this work with a

brief mention of further work.

2 Background
Haskell is a non-strict purely functional language that has

obtained much popularity both from programmers and

researchers. It has many similarities to ML [9] and

Miranda [10]. Haskell has been used successfully to

implement a variety of applications such as a Perl6

implementation, a LaTeX pre-processor, and even a few

graphical games.

Its evaluation proceeds in a lazy fashion whereby

calculations are deferred until they are determined to be

guaranteed to be necessary. Apart from possible

improved performance, this feature allows for the use of

conceptually infinite datastructures. However, lazy

evaluation complicates input/output and, as a result,

much work has been done to provide sequential forms.

The most successful approach found so far is via monads

and Haskell specifies a special syntactic sugar, do-

notation, to simplify their use. Nonetheless, monads are a

somewhat awkward solution and the approach taken by

this work may be in interesting alternative.

Haskell has been praised for its clean syntax but this can

also act as a deterrent for those unfamiliar with it. This

clean syntax combined with the Haskell standard library

(the prelude) results in very concise programs when

compared to other languages [11].

subset = (definition)+
definition ::= identifier = expr

expr ::= if bExpr then expr else expr
 | \ identifier -> expr // lambda function
 | let identifier = expr in expr
 | expr operator expr // arithmetic
operation
 | (expr)
 | expr expr // function
application
 | identifier
 | literal // integer literals
 | []
 | expr : expr
 | head expr
 | tail expr

literal ::= digits+

operator ::= + | - | * | / // no precedences

bExpr ::= expr cOp expr | bExpr lOp bExpr
cOp ::= > | < | == | /=
lOp ::= && | ||

Figure 1: Haskell Subset Grammar

map = \f -> \xs -> if xs==[]
 then []
 else f (head xs) : map f (tail xs)

Figure 2: Declaration Example

3 Haskell Subset
The major goal of this work is to assess the viability of

embedding within Java a lazily evaluated Haskell subset

with clean syntax. As a result, a heavily restricted subset

is all that is required for experimentation. The Haskell

subset provides:

• integer literals and lambda functions (see section

3.1);

• lists: with the construction via cons, termination via

the empty list (see section 3.1), and built-in functions

for finding the head or tail of a list (see section 3.2);

• simple expressions: variable identifiers, let

expressions, if-then-else expressions, infix

expressions, and function application (see section

3.2); and

• infix operators for arithmetic and logical calculation.

It does not provide type signatures, currying, pattern-

matching, list constructions, list comprehensions, tuples,

where-clauses or any of a range of other sophisticated

features such as type classes or the monadic do-notation.

These features are possible to support, but are not

required in this proof-of-concept implementation —

much of Haskell can be expressed in more primitive

Haskell constructs regardless [12].

No standard functions are part of the subset definition; it

is part of the proof-by-implementation to define functions

such as map, take, foldr, etc. in these specified

primitives.

The evaluation of the subset is described in section 3.4,

and its simplified type-system in section 3.5. Section 3.6

describes the embedding of this subset in Java.

The full grammar for the Haskell subset is shown in

Figure 1, and further described in the following

subsections.

3.1 Atoms

The subset provides four atomic elements (i.e. elements

that cannot be further evaluated):

• integer literals;

• lambda functions of the form \i->e;

• the empty list ([]); and

• list construction via cons (:).

3.2 Expressions

The subset provides five general expressions:

• simple identifiers (e.g. list);

• arithmetic infix operators for addition, subtraction,

multiplication, and division (e.g. 4+7*2);

• let expressions; (e.g. let x=4 in x*x)

• if-then-else expressions (e.g. if x>4 then x

else 7); and

• function application (e.g. f (4*x) list).

If-then-else expressions require a Boolean expression for

their condition. This is provided via explicit grammar

(see the final three lines of Figure 1) that provides basic

comparison operators (greater-than, less-than, equals,

not-equals) and Boolean operators for and and or. There

is no general Boolean type (see section 3.5).

The subset provides head and tail for the

deconstruction of list atoms that respectively return the

first element of a list and its remainder. These functions

are the only provided facilities for deconstruction of lists.

3.3 Declarations

Declarations bind a functional definition to an identifier.

Multiple declarations can appear consecutively and do

not require any special layout or separation. Effectively,

a single equals-sign acts as a reference-point for

determining the beginning of declarations. Figure 2

shows an example declaration.

3.4 Evaluation

The evaluation rules for the seven expression types are

illustrated in Figure 3 where square brackets indicate

evaluation and σ is the current environment (i.e. a list of

variable bindings). These rules are generally straight-

forward, but some cases benefit from a little explanation:

• both head and tail evaluations evaluate their

argument to see if it results in a list atom: if so,

evaluation proceeds with the appropriate component

of this atom and if not, a run-time error occurs (this

is the only run-time error produced by the subset);

[]
[] [] []
[] [] [] []
[] [] [][]

[] () [] [] [][]

[] () [] []
[] () [] []σσσσ

σσσσ

σσσσ

σσ

σσσσ

σσσ

σ

σ

σ

λ

σ

′′

′′

′=′

=

=⇒

=⇒

′=′→⇒

⇒=

⇒

⇒

⇒

xsexsxe

xexsxe

eeeiee

eevi

eebeeb

eeee

ii

ei

vi

inlettail

inlethead

inlet

inlet

elsethenifelsethenif

opop

:

:
2121

2121

2121

Figure 3: Evaluation Rules

intintint ⇒⇔

⇔→⇔⇒→⇔→

⇔⇒⇔

⇔⇒⇔

=∴⇒⇔

)()()()(

][][

)(

wuvtwvut

utut

tAAt

tAttA

Figure 4: Unification Rules

))(()()(

))(()()(

)()()(

)()()(

)(][)(

)(][)(

)()]([)(

][)(

)()()(

)()()(

)(

)()(

2121

2121

2121

2121

AeeAAee

vieevi

Aieei

AieAeλi

eAAe

eAe

eeee

A

eeeeb

eeeope

n

ii

→⇔⇒⇒

=⇒=

=⇒=

=→⇒→

⇔⇒

⇔⇒

⇔⇒

⇒

⇔⇒

⇔⇔⇒

⇒

⇒

typetypetype

typeaddtypeinlettype

addtypetype

addtypetype

typeheadtype

typetailtype

typetype:type

[]type

typetypeelsetheniftype

typetypeinttype

inttype

findtype

Figure 5: Type-Inference Rules

• a let-expression evaluation adds a new binding in the

environment for its variable and its value is

evaluated with the original environment; and

• function application must resolve its left-hand

argument into a lambda function and then create a

new binding in the environment from the lambda's

variable and its second argument. This new binding

must be composed with the environment created by

evaluation of the left-hand argument and is used to

evaluate the lambda function's expression.

By definition, the atomic elements cannot be further

reduced by evaluation and return unchanged.

The evaluation proceeds in a lazy fashion only at those

points in which a new binding is added to the

environment (i.e. let-expressions and function

application). When a new binding is created, the

calculation of its value is delayed until it is known to be

required.

3.5 Type System

The subset provides only four types:

• integers: int;

• functions: A→B where A and B can be any type;

• lists: [A] where A can be any type; and

• arbitrary types.

Whilst this is significantly restricted from full Haskell, it

is more expressive than it appears at first glance. The

composition of function and list types and the use of

arbitrary types provides for quite a complicated set of

types.

Perhaps the most seemingly restrictive of the missing

features is the lack of a Boolean type. Use of the

conditional if expression functions as normal, but use of

Boolean expressions is restricted to this situation alone.

The subset provides no way to provide type signatures or

to work with types directly — all declarations have their

types automatically inferred.

Type Inference

The type inference algorithm utilizes a common state that

maintains the most specific type for all variables in

scope. Operations that affect this common state are:

• add(identifier): introduce a new variable into

the state with its type initialized to be the arbitrary

type;

• find(identifier): search the state for the

specified identifier and return its type; and

• (type t) � (type u): unify the two supplied types

(the rules for unification are shown in Figure 4).

The rules for type-inference for the seven expressions

and four atoms are shown in Figure 5. The final five rules

contain extra actions that may affect the common state,

but do not reflect the resultant type. Lambda functions,

let-expressions, and declarations introduce new

identifiers via the add function. As they are straight-

forward, the rules for inference of Boolean expressions

are omitted.

Figure 6 contains a type-inference example for the map

declaration from Figure 2.

3.6 Embedding

The Java embedding for the Haskell subset is shown in

Figure 7. A declaration is enclosed in braces prefixed by

the single keyword fun and may appear anywhere a

class-body declaration can. A functional call is

surrounded by parentheses preceded by fun and can

appear at the expression level. Figure 8 contains an

example of embedded Haskell subset declarations and

their use within standard Java code.

map = … add map = A
 \f -> … add f = B
 \xs -> … add xs = C
 if …
 xs==[]
 xs => C
 [] => [D]
 => [D] C � D => C = [D]
 [] => [E]
 f (head xs) : map f (tail xs)
 f (head xs)
 f => B
 head xs
 xs => [D]
 => D [F] � [D] => F = D
 => G B � (D->G) => B = (D->G)
 (map f) (tail xs)
 map f
 map => A
 f => D->G
 => H A � (D->G)->H
 => A = (D->G)->H
 tail xs
 xs => [D]
 => [D] [I] � [D] => I = D
 => J H � [D]->J => H = [D]->J
 => [G] [G] � J => J = [G]
 => [E] [E] � [G] => G = E
 => [D]->[E]
 => (D->E)->[D]->[E]
 => (D->E)->[D]->[E]

Figure 6: Type-Inference Example

expression ::= ... | fun (fun_expr)
class_body_declaration ::= ... | fun { subset }

Figure 7: Java Embedding Grammar

import genesis.Haskell.*;

class FunExample {
 fun {
 map = \f -> \xs -> if xs==[]
 then []
 else f (head xs) : map f (tail xs)
 take = \n -> \xs ->
 if (n==0) then xs else take (n-1) (tail xs)
 fib2 = \x -> \y -> x:fib2 y (x+y)
 fib = fib2 1 1
 square = \x -> x * x
 }

 public static void main(String[] args) {
 int x = fun(square 42));
 int y = 10;
 FunList result = fun(take y (map square fib));

 for (Iterator i = result.iterator(); i.hasNext();) {
 System.out.println(i.next());
 }
 }
}

Figure 8: Embedded Haskell Usage

Figure 9: Haskell Subset Class Hierarchy

abstract class FunObject extends AbstractSyntax
 implements Cloneable {
 protected FunDefinition environment;

 public abstract Creation createSelf();
 public abstract FunObject eval();
 protected abstract FunType funType(TreeMap variables)
 throws TypeMismatch;
}

Figure 10: Base Class Definition

4 Implementation
The implementation is provided via a number of Java

classes shown in a hierarchy in Figure 9 (with abstract

classes shown in italics). Each of these classes is used for

a variety of purposes:

• to drive the parse at compile-time and provide syntax

checking;

• for compile-time type-checking;

• at run-time to represent the structure of the

functional program; and

• for run-time lazy evaluation.

4.1 Base Class

The base class is FunObject (see Figure 10) which

provides three abstract methods for translation, functional

type-checking, and evaluation: createSelf,

funType, and eval. These methods have the following

characteristics:

• Calling the createSelf method on a functional

object will produce a Java creation expression (i.e. a

sequence of new expressions) that when executed

will reproduce the datastructure fully. This is used at

compile-time to create run-time code that will store

the functional objects.

• The funType method implements the type-

inference algorithm specified in section 3.5. It uses a

TreeMap datastructure to maintain the shared state.

• The eval method implements lazy-evaluation as

described in section 3.4.

FunObject

FunDefinition FunElement

FunAtom FunExpr

FunList

FunEmpty

FunCons

FunIdent

FunInfix

FunIf

FunLet

FunHead

FunTail

FunApply

FunLiteral FunLamda

The FunObject class contains one instance variable

that is the functional object’s current environment — this

is used at run-time during the evaluation process. The

class also contains an overloaded eval method that

updates the environment before evaluation occurs, and an

overloaded funType method that initialises a TreeMap

before typing.

4.2 Definitions

The class FunDefinition associates an identifier

with its value (a FunObject). Apart from being used

for actual definitions, this class is used to encapsulate the

environment associated with each functional object. The

environment of a definition is used for chaining. These

chains may (and often do) contain circular references.

The value contained within a definition typically contains

its own unique environment that is used for its lazy

evaluation. Once it has been determined that the

identifier within a definition is required for evaluation to

proceed, the expression contained within its value must

be evaluated (and the value is duly updated to reflect the

result of this evaluation).

4.3 Elements

The FunElement class merely acts as a superclass for

atoms and expressions in order to clearly differentiate

them from definitions; it does not provide any further

functionality than the FunObject class.

4.4 Atoms

The class FunAtom defines the abstract method eval

as returning the current object. As all atomic objects

share this behaviour the eval method is also specified

as final.

4.5 Lists

The FunList class acts as superclass to the list

construction classes. It also provides an iterator

method and a custom iterator class for traversal of any

function list that is returned after evaluation. Such lists

are not fully evaluated upon return and require an iterator

to evaluate each element on demand. Thus, lists are lazily

evaluated even within Java code.

4.6 Expressions

The FunExpr class merely acts as a superclass for the

seven expression classes for: identifiers; if-expressions;

let-expressions; infix expressions; head; tail; and function

application.

4.7 Syntax

The macros defining the Haskell subset syntax (from

Figure 1) are shown in Figure 11 (with macros for

Boolean expressions, operators, and for lists of

definitions omitted). All simply create objects from our

class hierarchy to guide the parse. The function

application syntax macro examines its left-hand

argument in order to catch applications of head or

tail. The final macro allows parentheses to be used for

explicit precedence.

4.8 Translation

Translation of Haskell subset code requires two macros,

one for the group of declarations, and the other for

functional calls. These macros are illustrated in Figure

12.

To translate declarations, we perform the required type-

inference checking and, if successful, replace the

embedded Haskell with a static-initialiser block

containing a call to a run-time class (defined in Figure

13) with a re-creation of the compile-time datastructure

representing the declarations. The run-time class

remembers this datastructure as the common

environment and ensures that it is correctly self-

referential.

For functional calls the type of the functional expression

is evaluated, and translated into a call to a specialised

evaluation function (contained in the run-time class) for

either integers or lists as appropriate. Functional calls

resulting in a lambda function are considered to be

erroneous.

The createSelf method is responsible for detecting

unbound variables within functional calls (assumed to be

Java identifiers) and their subsequent translation to a call

to the run-time function toFun. The run-time class

provides overloaded toFun methods for conversion

from integers, collections, and arrays.

Figure 14 demonstrates the resultant translation of the

embedded Haskell example from Figure 8.

5 Extensions

The Haskell implementation contains a few extra forms

that are not specified in the subset. These demonstrate the

ease of extending and the power available within the

Genesis implementation. Genesis allows use of quasi-

quotation for user-defined abstract syntax and this is used

extensively throughout this section.

5.1 Function Declarations

Haskell provides a syntactic sugar for function

declarations that does not require the use of lambda

functions. For example, instead of f=\x->\y->x+y we

could write f x y=x+y. Using quasi-quotation, we can

provide this extension to our Haskell subset by using a

mixture of Haskell and Genesis forms as shown in Figure

15. It simply constructs lambda functions from the

identifiers in the argument list (in reverse). Trivial

Genesis code for creating the list of functional identifiers

is omitted.

macro FunDefinition (FunIdent i, =, FunExpr e) {
 return new FunDefinition(i, e);
}
macro FunLambda (\, FunIdent i, ->, FunExpr e) {
 return new FunLambda(i,e);
}
macro FunLiteral (LiteralInt x) {
 return new FunLiteral(x);
}
macro FunCons (FunExpr e, :, FunExpr f) {
 return new FunCons(e, f);
}
macro FunEmpty ([]) {
 return new FunEmpty();
}
macro FunIdent (Identifier i) {
 return new FunIdent(i.toString());
}
macro FunInfix (FunExpr e, FunOperator op, FunExpr f) {
 return new FunInfix(e, op, f);
}
macro FunIf (if, FunBExpr b, then, FunExpr e, else, FunExpr f)
{
 return new FunIf(b, e, f);
}
macro FunLet (let, FunIdent i, =, FunExpr e, in, FunExpr f) {
 return new FunLet(i, e, f);
}
macro FunExpr (FunExpr e, FunExpr f) {
 if (e instanceof FunIdent) {
 FunIdent i = (FunIdent) e;

 if (i.equals("head")) return new FunHead(f);
 if (i.equals("tail")) return new FunTail(f);
 }
 return new FunApply(e, f);
}
macro FunExpr ("(", FunExpr e, ")") {
 return e;
}
macro FunDefinition (FunDefinition d, FunDefinition e) {
 d.environment = e;
 return d;
}

Figure 11: Haskell Subset Macro Definitions

macro ClassDeclaration (fun, "{", FunDefinition d, "}") {
 // loop thru all declarations & check types...

 return {{
 { FunRuntime.setEnv(`(d.createSelf())); }
 }};
}

macro MethodCall (fun, "(", FunExpr e, ")") throws
TypeMismatch
{
 FunType type = e.funType();
 if (type instanceof FunTypeInt) {
 return {{ FunRuntime.evalInt(`(e.createSelf())) }};
 } else if (type instanceof FunTypeList) {
 return {{ FunRuntime.evalList(`(e.createSelf())) }};
 }

 throw new TypeMismatch("function call of type: " + type);
}

Figure 12: Haskell Embedding Macro Definitions

class FunRuntime {
 private static FunDefinition environment;

 public static void setEnv(FunDefinition e) {
 environment = e;
 // force the environment to be self-referential (for
recursion)
 }

 public static FunList evalList(FunObject obj) {
 return (FunList) obj.eval(environment);
 }

 public static int evalInt(FunObject obj) {
 return ((FunLiteral) obj.eval(environment)).value;
 }

 public static FunAtom toFun(int x) { ... }
 public static FunAtom toFun(Collection list) { ... }
 public static FunAtom toFun(Iterator i) { ... }
 public static FunAtom toFun(int[] array) { ... }
}

Figure 13: Run-time Class Definition

import genesis.Haskell.*;

class FunExample {
 { FunRuntime.setEnv(/* output from createSelf method */
); }

 public static void main(String[] args) {
 int x = FunRuntime.evalInt(new FunApply(
 new FunIdent("square"), new FunLiteral(42)
));
 int y = 10;
 FunList result = FunRuntime.evalList(new FunApply(
 new FunApply(new
FunIdent("take"),FunRuntime.toFun(y)),
 new FunApply(
 new FunApply(
 new FunIdent("map"), new FunIdent("square")
),
 new FunIdent("fib")
)
));

 for (Iterator i = result.iterator(); i.hasNext();) {
 System.out.println(i.next());
 }
 }
}

Figure 14: Embedded Haskell Translation

5.2 Operator Currying

Haskell allows binary operator application to omit either

parameter to provide a partial application. For example

the expression (1+) returns a function that adds one to

its argument. Figure 16 shows the simplicity of adding

this to Haskell subset.

5.3 List Constructions

List constructions allow lists of a fixed length to be

created without the use of cons and the empty list. For

example, instead of 1:x+y:[] we could write [1,

x+y]. Figure 17 demonstrates the definition of list

macro FunDefinition
(FunIdentifier ident, FunIdents args, =, FunElement expr) {
 FunExpr lambdas = expr;

 forall (FunArgument arg) in args.reverse() {
 lambdas = {{ \`arg -> `lambdas) }};
 }

 return {{ `ident = `lambdas }};
}

Figure 15: Function Declaration Macro Definition

macro FunLambda (”(”, FunOperator op, FunExpr e, ”)”) {
 return {{ \x -> x `op `e }};
}

macro FunLambda (”(”, FunExpr e, FunOperator op, ”)”) {
 return {{ \x -> `e `op x }};
}

Figure 16: Operator Currying Macro Definitions

macro FunList ([, FunExprs es,]) {
 FunList ret = new FunEmpty();

 forall (FunExpr e) in es.reverse() {
 ret = new FunCons(e, ret);
 }

 return ret;
}

Figure 17: List Construction Macro Definition

macro FunApply ([,FunExpr e, |, FunIdent i, <-, FunExpr f,]) {
 return {{ map (\`i -> `e) `f }}
}

Figure 18: Simple List Comprehension Macro Defn

module HaskellTest where

range a b = if (a <= b) then (a : range (a+1) b) else []

main x = [a * a | a <- range 1 x]

Figure 19: Standalone Haskell Module

public class HaskellTest {
 { FunRuntime.setEnv(/* output from createSelf */); }

 public static void main(String[] args) {
 if (args.length != 1) return;

 System.out.println(FunRuntime.evalList(new FunApply(
 new FunExpr("main"), FunRuntime.toFun(args[0])
));
 }
}

Figure 20: Standalone Haskell Translation

constructions with the omission of the trivial Genesis

code for creating a comma separated list of expressions.

5.4 Simple List Comprehensions

Simple single-source list comprehensions can be

provided by translation into use of the map function. This

translation is so simple it can be provided in a single line

as shown in Figure 18.

5.5 Standalone Usage

Genesis is capable of translating Haskell subset files that

contain no Java constructs whatsoever. This standalone

usage requires the specification of a module name within

the source file — this is used to name the resultant Java

translation class. An example of this syntax is shown in

Figure 19. Note that this example uses some of the other

extended forms defined in the preceding subsections.

Each standalone Haskell file must declare the function

main. The definition of this function is permitted to

contain any number of integer or integer list arguments

that can be specified from the command line.

The translation of standalone Haskell follows much the

same process as described in section 4.8. However, the

surrounding class is created by the translator. Also

created is a Java main method that accepts arguments

from the console, performs a functional calculation, and

outputs results to the console as demonstrated in Figure

20.

The Genesis compiler can be executed with only the

Haskell subset syntax and without loading the default

Java syntax using a command-line switch. In this form,

the compiler acts as only a Haskell subset compiler.

6 Analysis and Conclusion
This work successfully embeds a Haskell subset within

Java with clean syntax and lazy evaluation. The

advantages of type-inference, polymorphic types, first-

class functions, currying, and lazy evaluation are all

supported.

Java code can contain calls to Haskell subset functions

enabling the programmer to switch between imperative

and lazy evaluation at will.

The Haskell subset is also a clear demonstration of the

power and flexibility of macro definitions in Genesis.

Not only is the Haskell syntax matched exactly (ignoring

true Haskell layout rules), the implementation itself is

relatively straightforward due to Genesis allowing

multiple uses of its user-definable abstract syntax classes.

One might consider implementing a Haskell subset in a

similar language to Genesis. Neither MS
2
 nor Maya have

the ability to express the required syntax in any form.

MS
2
 requires each macro to begin with a name and Maya

is not capable of supporting the Haskell syntax due to its

outside-in evaluation strategy. Even if it were, it is

unlikely that Maya’s LALR parser could handle the

conflicts between functional expressions and standard

Java expressions. While it might be possible to represent

the syntax in JSE, this would be by pushing a sequence

of unstructured tokens to a hand-coded parser.

Using Genesis' quasi-quotation facility many simple

extensions to the subset are possible such as arithmetic

operator currying, function declarations, and syntactic

sugar for list constructions.

6.1 Planned Future Work

Planned and possible future work includes:

• the implementation of pattern-matching;

• extensions to the type-system, culminating in the

support of type classes;

• addition of user-defined operators;

• allowing Haskell code to contain calls to Java

methods; and

• ultimately, the implementation of the entire Haskell

language specification.

References

[1] Simon Peyton Jones (editor): Haskell 98 language

and libraries: the Revised Report, Cambridge University

Press, January 1999; revised December 2002.

[2] Ian Lewis: Genesis: An Extensible Java, PhD Thesis,

University of Tasmania, December 2005.

[3] Simon Peyton Jones: Tackling the Awkward Squad:

monadic input/output, concurrency, exceptions, and

foreign-language calls in Haskell, In, Engineering

theories of software construction, IOS Press, Manfred

Broy, Ralf Steinbruggen, pp. 47–96 , July 2002.

[4] Erik Meijer and Danny von Velzen: Haskell Server

Pages: Functional Programming and the Battle for the

Middle Tier. In, Electronic Notes in Theoretical

Computer Science, Volume 41, Number 1, Elsevier

Science, 2001.

[5] Lex Augusteijn: Defintion of the Programming

Language Elegant, Release 7.2. Philips Research

Laboratories, Eindhoven, the Netherlands, 1999.

[6] Daniel Weise and Roger Crew: Programmable Syntax

Macros. In, Proceedings of the SIGPLAN ’93 Conference

on Programming Language Design and Implementation

(PLDI ’93), pp. 156–165, Albuquerque, New Mexico,

June 1993.

[7] Jonathan Bachrach and Keith Playford: The Java

Syntactic Extender (JSE). In, Proceedings of the 16th

ACM SIGPLAN Conference on Object Oriented

Programming Systems, Languages, a\nd Applications,

pp. 31–42, Tampa Bay, Florida, 2001.

[8] Jason Baker: Macros that Play: Migrating from Java

to Maya, Master’s Thesis, University of Utah, December

2001.

[9] Robin Milner, Mads Tofte, and Robert Harper: The

Definition of Standard ML, MIT Press, 1991.

[10] David A. Turner: Miranda: a non-strict functional

language with polymorphic types. In, Functional

Programming Languages and Computer Architecture,

Springer-Verlag, 1985

[11] Paul Hudak and Mark P. Jones: Haskell vs. Ada vs.

C++ vs. Awk vs. ... An Experiment in Software

Prototyping Productivity, July 1994.

[12] Simon L. Peyton Jones: The Implementation of

Functional Programming Languages, Prentice-Hall,

1987.

.

.

