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ABSTRACT
We introduce a new system of trust analysis for concurrent
and distributed systems using the π-calculus[13, 14, 15] as
a modelling tool. A Type system using boolean annotations
guarantees that no run-time errors due to untrusted data
being used in a trusted context are possible. We improve
on other similar systems[18] by introducing a safe environ-
ment in which trust-coercion can be performed based on the
results of run-time checks. An algorithm for deducing the
most general types for the type system is presented.

Keywords
π-calculus, trust analysis, runtime coercion, type annota-
tions

1. INTRODUCTION
Distributed computing is looming as one of the most im-

portant and influential computing paradigms of the near fu-
ture. Among the benefits it offers are cheaper supercomput-
ers through clustering (e.g. [1]) off-the-shelf personal com-
puters, and perhaps more interestingly the ability to harness
the spare CPU cycles and memory of other machines on the
local intranet or even on the global internet itself (for exam-
ple, [2, 3, 4]).

With this increase in the use of the internet, particularly
the use of the internet for sharing computational resources,
comes a corresponding increase in the number of threats to
security using the very same pathways into your machine
that your collaborators use to pursue more noble goals. To
counteract these threats, there is a growing discipline of se-
curity analyses focusing on mobile agents and network ori-
ented computation (e.g. [5, 23, 21, 26, 16, 11, 19]). Many
of these[23, 8, 19] utilise a concept of flow analysis; the idea
of somehow tracking the flow of data (or other properties

or combination thereof) through a program in order to as-
certain if any security violations are possible. Most such
analyses are concerned with the possibility of security levels
being compromised; for example data “leaking” from a high
security level to a lower level.

We take another approach; we concern ourselves in this
work with the possibility of your data being compromised by
intruders rather than our data being viewed by those same
intruders. Note that in some networks data integrity simply
cannot be guaranteed; for instance a government keen to
censor publicly available information may monitor its coun-
try’s internet gateways, a malicious system administrator
might alter peoples’ sensitive data, or even a noisy channel
could possibly render the integrity of information received
along it suspect at best.

In Trust in the lambda-calculus [18], Ørbæk and Palsberg
introduced a system of Trust Analysis involving type anno-
tations and coercion operators that was able to demonstrate
compile-time safety with respect to trust. Any possibility of
data marked as untrusted being used in a computation that
relied on data being trusted for its result would result in a
type checking error. We feel this is very important work;
however we have some reservations about the methodology
through which the results are achieved. The cornerstones
of their system are type annotations (tr, trusted; and dis,
distrusted) and three additional operators to the language:
trust, distrust, and check. The first two are explicit coercion
operators; “trust x” means x is now trusted, no matter what
its previous annotation, and similarly “distrust x” has the
opposite effect. The third, check, is a safety operator: “check
x” only type checks if x is trusted, and fails otherwise. The
intention is the programmer places instances of “check” at
judicious points in his program, then relevant data which is
untrusted is coerced to trusted only after careful checking
(of whatever nature) reveals that it can in fact be trusted.
An advantage of this work is that it is completely decidable
at compile time; if an annotated program successfully type
checks then the bare program (with no trusts, distrusts, or
checks) is also safe with respect to trust.

Ørbæk and Palsberg offer the following example of their
system in action:

fun getRequest client =

let (req, signature) = readFromNetwork(client) in

if verifySignature(signature) then

handleEvent(trust req)



else

handleWrongSignature(req, signature)

where the handler code resembles:

fun handleEvent req =

let trustedReq = check req

in ...

It is our belief however that this approach places too much
responsibility on the programmer to correctly apply the ap-
propriate casts and checks. Consider what happens if the
“verifySignature” branches get mixed up; ie:

...

if verifySignature(signature) then

handleWrongSignature(req, signature)

else

handleEvent(trust req)

In this case the request has been established to be untrust-
worthy, however due to the explicit trust cast the program
will still type-check and possibly use that untrusted data in
a trusted context.

In our work presented here, we seek to follow a similar
approach, with the following improvements:

• extend the approach into a distributed model (Ørbæk
and Palsberg presented systems of a functional[18] and
imperative[17] nature);

• provide a safe system of coercion by removing the onus
of correct use of coercion operators from the program-
mer.

1.1 Motivation
Consider the simple case of a process wishing to send a

message to a second process. Assume that the two processes
are separated to some degree so that they must use an exter-
nal communication medium, such as a network connection.
Now suppose that that channel of communication has pos-
sibly been compromised, and an attacker may be altering
all or some data passing through it. Further assume that
our processes are called P and Q, that the channel they
share for communication is called x, and that P wishes to
transmit a message y which Q will bind to a variable z. In
the π-calculus (see section 2, and also [13]) this scenario,
represented pictorially in figure 1, is described by

x.[y]P|x.(λz)Q

It is most likely that Q will not wish to trust the data
(y) received along x without first performing some sort of
integrity check, as it may well have been compromised in
transit. In this case the danger is immediately apparent;
however it is not difficult to imagine much more complicated
examples in which the flow of data is a lot harder to follow
without some kind of formal analysis. Our type system and
syntactic additions to the π-calculus address this issue.

1.2 Layout
The remainder of this paper is presented as follows: in

section 2 we briefly outline the π-calculus, the network cal-
culus we will be using as our model. A typing system is also
covered. In section 3 we present our system: first a set of
boolean annotations (based on those presented in [24, 25])
to the base type system is described, which can be used to

demonstrate type safety with the additional property of no
instances of untrusted data being used in a trusted context
being possible. Following this our safe model of coercion
is introduced; a simple extension to the syntax of the π-
calculus that removes the responsibility of placing checks in
appropriate places from the programmer. The safety of the
new system is demonstrated in section 4 as subject reduction
is shown to hold. In section 5 an algorithm for determining
the most general type for a program in our system is pre-
sented. The soundness and completeness of this algorithm
is proven in section 6. Finally, in section 7 we conclude.

2. THE PI-CALCULUS

2.1 Syntax
The fundamental tenet of the π-Calculus is communica-

tion between processes, which makes it an ideal basis for
our study. The main building blocks are channels, and all
processes are constructed from channels. Channels carry
data between processes, and in its purest form all data is
also comprised of channels. There are two main forms of
processes; those that can receive data and that can trans-
mit data. As an example of a transmitting process, x.[y]P
transmits, to a process capable of receiving along channel
x, the data y then continues as P . The reciprocal case of
a process receiving data is represented as x.(λz)Q; the pro-
cess receives a message from channel x and binds it to the
variable z then continues as Q (with every instance of z be-
ing replaced with x). Note that a channel being used in an
output context is presented with a vertical bar over it.

In this paper we consider a commonly used version of the
π-Calculus as described in [13], with polyadic channels. We
let P, Q, R range over processes, M, N range over normal
processes (all processes can be expressed in this form ([13])),
F represent abstractions and C concretions, A range over
agents, x, y, z range over names and finally ω represent either
x or x as appropriate for some name x. The complete syntax
is shown in definition 1:

Definition 1.

N ::= ω.A | 0 | M + N

P ::= N | P|Q | !P | (νx)P

F ::= P | (λx)F | (νx)F

C ::= P | [x]C | (νx)C

A ::= F|C

An abstraction F is a process prepared to receive a name
along an unspecified channel, and bind it to the variable ab-
stracted (represented by λx where x is the bound variable)
on F . A concretion is the equivalent output case; a process
prepared to output a name along an unspecified channel. An
agent is either an abstraction or a concretion. Restriction
((νx)A), which creates a unique name x in P is also a bind-
ing operator. In the π-calculus we consider, both input and
output are blocking operations. The restriction operator
(νx)P creates a unique name x in P , while the replication
operator !P can be defined inductively as !P = P |!P .

The existence of binding operators enables us to (induc-
tively) define the concept of free and bound names or vari-
ables (defn 2):



Figure 1: Basic Scenario

Definition 2.

FV (x.A) = FV (x.A) = {x} ∪ FV (A)

FV ([x]C) = {x} ∪ FV (C)

FV ((λx)F) = FV ((νx)F) = FV (F)− {x}
2.1.1 Reduction

There is only one reduction axiom in the basic π-Calculus;
a communication step:

(. . . + x.[~y]P)|(. . . + x.(λ~z)Q) −→ P|Q{y/z} (comm.)

In the communication reduction shown above, process P
sends a name y along channel x, then continues as P . Pro-
cess Q receives the name y along x and binds it to the
name z, then continues as Q. There are also three infer-
ence rules, summarised briefly as: reduction can occur in
parallel (Par.); reduction can occur under a restriction (but
not under abstraction or input/output) (Res.), and struc-
tural congruence is preserved under reduction (Struct.):

P −→ P′ Q −→ Q′

P|Q −→ P′|Q′ (Par.)
P −→ P′

(νx)P −→ (νx)P′
(Res.)

Q ≡ P P −→ P′ P′ ≡ Q′

Q −→ Q′
(Struct.)

2.2 Typing
The base typing system we use is also that of [13]. The

usual goal of type systems is to prevent certain run-time er-
rors from occurring; since the π-calculus is concerned with
communication a likely cause of run-time errors is a process
receiving a tuple of data from a channel that is of a different
size to that which it is expecting. To this end our typing
discipline will require each channel to be used in only a cer-
tain way; both in the lengths of data tuples it carries, and
by extension since all data is itself comprised of channels the
types of channels it can carry.

We begin by associating all names with a sort. Since all
names are channels, then to each sort we associate a list of
sorts that channels of that sort communicate: the object of
that sort, denoted ob(δ) for sort δ.

Definition 3. Judgements

Γ, ob ` P : κ

states that process P is well formed and has type κ, under
the assumption sets Γ and ob (where Γ is a mapping of

names to sorts, and ob is a mapping of sorts to objects of
those sorts).

See definition 7 for a complete type syntax (with annota-
tions; introduced in section 3.3); the reader is referred to
[13] for a more detailed description of the base type system
itself.

3. A SAFE SYSTEM OF COERCION

3.1 A safe coercion operator
We now start to consider the desirable properties of our

system of coercion. We would like the programmer to be
able to consider, and within a restricted environment to
be able to use coercion, but as have stated previously we
would like to do away with the need for explicit, program-
mer driven casts. As an alternative we envisage a system
in which coercion is based not on programmer judgements
(and hence potentially errors) but on run-time verification.
We deliberately leave the method of verification unstated
in keeping with the broad abstract framework provided by
the π-calculus, however some examples could include sig-
nature verification, or in fact any form of security analy-
sis/verification described by others (eg [16]) that would pro-
vide the necessary assurance. In this way we see our method
as being an overall analysis framework that can utilise and
encompass the work of others; we do not see security as being
provided by any one method ([6]), but rather a constantly
shifting approach.

Our addition to the existing π-calculus syntax (defn. 1)
will coerce (to either trusted or untrusted) its argument
based on the results of runtime certification (using an un-
specified method). We would further like to alter the execu-
tion path of the program based on the certification results;
to this end we provide two additional arguments (both π-
calculus processes) to our operator: one to be executed if
the data can be correctly verified, and the other if it cannot.

Our new operator then looks like this:

certify x (λz)P (λz)Q

where x is the data to be certified (note that in our current,
first order system we do not allow processes themselves to
be verified; this will be rectified in later work dealing with
a higher-order system), P is the process to be executed if
x can be guaranteed trusted, and Q to be executed in the
event that x is untrusted. It will be seen later (Figure 3)
that z is the variable x is bound to in the reduction.



We deal with typing and reduction details later; for the
moment our complete syntax becomes (defn 4):

Definition 4.

N ::= ω.A | 0 | M + N | certify x (λz)P (λz)Q

P ::= N | P|Q | !P | (νx)P

F ::= P | (λx)F | (νx)F

C ::= P | [x]C | (νx)C

A ::= F|C
3.2 Example

As an example of our system in use, we present a contrast
with the approach put forward in [18]. Consider again the
example described in the introduction; in our system, the
same scenario would be written as:

λx.certify x (λz.handleEvent) (λz.handleWrongSignature)

(Note that in this example, the abstraction on x is taken to
represent the readFromNetwork function, and the
verifySignature functionality is incorporated in the certify
operator). It can be observed that in our system the coercion
is now implicit, and further it will be shown that the danger
of the execution paths being placed in the wrong order is
detected by the type system.

3.3 An Annotated Type System
To the existing type system, we add a system of boolean

annotations, based on [25]. We consider two concrete values,
T denoting a trusted channel sort (corresponding to truth
in a boolean algebra) and U, denoting an untrusted channel
sort (likewise corresponding to falsehood). In summary the
following relations are admitted (defn 5):

Definition 5.

T · b = b U · b = U
T + b = T U + b = b

T̂ = U Û = T

It should be noted that although in the interests of complete-
ness we permit the operations of + and negation, they are
not used in the system we present here. Preliminary work
is underway however on an extended system for a higher
order π-calculus which requires all the operations presented
above.

Now we present the complete type syntax. We first define
the symbols used in our type system:

Definition 6. For all elements of our type system we have
three sets of symbols we use to range over those elements:
concrete elements, variables, and ambiguous elements (ta-
ble 1).

Concrete Variable Either
Annotations T, U i, j, k b,c,d

Sorts S α δ
Object Sorts r ρ κ

Table 1: Notation

Our complete type syntax then becomes:

Definition 7.

b ::= T|U|i|b1 · b2|b1 + b2|b̂
δ ::= S|α
κ ::= ()|

ş
δb

n
δb

o∗ť
|ρ

Γ ::=
n

x : δb
o

ob ::=
n

δb 7→ κ
o

We also introduce here a few miscellaneous definitions used
in the type rules:

Definition 8. Write (Γ, ob) ∪ {x : δb 7→ κ} to mean

Γ ∪ {x : δb}, ob ∪ {δb 7→ κ}
Similarly, write (Γ, ob)x ∪ {x : δb 7→ κ} as shorthand for

Γx ∪ {x : δb}, ob ∪ {δb 7→ κ}
Definition 9. Define the ’∧’ operation on object sorts as

(S)∧(S1 . . . S2) = (SS1 . . . S2)

We consider in this system two possible causes of un-
trustworthiness: one is data which for some reason or an-
other is known to be untrusted, and the other is data that
cannot be trusted because it has passed through an un-
trustworthy channel. These assumptions, in particular the
latter, imply a relation between sorts and their objects:
given a sort δb1 that we plan to receive data along then
we would desire that for all δb2

k in ob(δb1), b2 ≤ b1 where ≤
is the least reflexive, transitive relation inductively defined
by the following (definition 10):

Definition 10.

U ≤ i ≤ T

Rather than have a separate set of constraints generated,
we choose to express this relationship between sorts and
their objects slightly differently in our type rules by inte-
grating them into the types themselves. The same effect
can be achieved by requiring that for any δb then for all
δc

k in ob(δb) that c = b · c′ for some c′. Before introducing
the complete type rules, first define multiplication as the
operation inductively defined (definition 11) as

Definition 11.

b · () = ()

b · ρ = ρ

b · ą
(δc)∧κ

ć
=

ş
δbc

ť∧
(b · κ)

We can now introduce the type rules: (see Figure 2)
Of these rules, three in particular are worth attention: (inp.)
and (out.), and (cert.). The (inp.) rule requires that the
types of the name(s) received along the channel x first of all
form the same type as the object of the type of the channel
x (which is required by the base type system), but also that
that object sort κ′ is equal to b ·κ for some κ, thus enforcing
the view that all data received along an untrusted channel
is untrusted (by the definition of multiplication, defn. 11).

By contrast, we would expect that trusted data can by
sent along an untrusted channel, but that it would be un-
trusted at the receiving end. To this end our (out.) rule is



Γ, ob ` 0 : ()
(zero)

Γx ∪ {x : δb}, ob ` x : δb
(var.)

Γx ∪ {x : δb}, ob ` A:κ

Γ, ob ` (νx)A:κ
(res.)

Γ, ob ` P:()

Γ, ob ` !P:()
(repl.)

Γ, ob ` M:() Γ, ob ` N:()

Γ, ob ` M + N:()
(sum.)

Γ, ob ` P:() Γ, ob ` Q:()

Γ, ob ` P|Q:()
(comp.)

Γx ∪ {x : δb}, ob ` F:κ

Γ, ob ` (λx) F: (δb)∧ κ
(abs.)

Γx ∪ {x : δb}, ob ` C:κ

Γx ∪ {x : δb}, ob ` [x] C: (δb)∧ κ
(conc.)

(Γ, ob)x ∪ {x : δb 7→ b · κ} ` F:b · κ
(Γ, ob)x ∪ {x : δb 7→ b · κ} ` x.F:()

(inp.)

(Γ, ob)x ∪ {x : δb 7→ κ} ` C:κ

(Γ, ob)x ∪ {x : δb 7→ b · κ} ` x.C:()
(out.)

Γ, ob ` x : δb

Γ, ob ` (λz)P : (δT)
Γ, ob ` (λz)Q : (δU)
x /∈ FV (P, Q)
Γ, ob ` certify x (λz)P (λz)Q : ()

(cert.)

Figure 2: Type Rules



slightly different: the base requirement that the sorts carried
by x match those to be transmitted by C is still met, but
now in the antecedent we are unconcerned about the anno-
tation on the channel, thus a variable may be trusted in C
and still be exported along an untrusted channel. The con-
sequent of the rule matches that of the (inp) case; all sorts
must be multiplied by the annotation of the channel. This
allows trusted data to be sent along an untrusted channel
and be considered untrusted by the receiving process.

The (cert.) rule forms the cornerstone of our system; it
provides a safe environment in which coercion can be per-
formed, removing the responsibility from the programmer.
The first argument to certify is the name to be certified; the
second argument is a process P upon which a single name
has been abstracted. This name must have the same base
type as the name being certified (x), and be trusted. Simi-
larly, the third argument also has a single name abstracted
upon it with the same base type as x, and is untrusted.
As we shall see when we examine the reduction rules for
certify, in the event that x is certified (usually at runtime)
as trusted then the type of x (δb) is coerced to trusted and
every instance of z in P replaced with x. Conversely, if x
cannot be certified then it is coerced to untrusted and every
instance of z in Q replaced by x. Since the abstracted name
z is trusted and untrusted in P and Q respectively, this
ensures the safety of the system by subject reduction (see
Section 4). Note that although subject reduction is present
in [18] it is modulo the explicit trust casts: any program
can be made “correct” by inserting enough casts. Finally,
we also require that x not be in the set of free names of P
or Q: this makes the system more elegant than if x were
allowed free in P or Q as it removes the need to introduce
explicit trust casting into the language.

3.4 Reduction Rules

Definition 12. Write Γ, ob `certify x : δT if x is certified
as trusted; similarly if x is certified as untrusted.

The reduction rules remain the same as for the basic π-
calculus, with the addition of extra rules to cater for certify;
see Figure 3. These rules guarantee that if x is trusted then
it will only be used within a trusted context by substituting
it for a trusted name in P ; conversely if it is untrusted then it
will only be used within an untrusted context by substituting
it for an untrusted name in Q. Note that all coercion is
global in effect.

4. SAFETY OF THE SYSTEM
Now that we have a type system and syntax established,

we can begin formulating a proof of subject reduction, which
as we shall see is by necessity slightly different from the
normal subject reduction statement.

First, some preliminary definitions (defn. 13):

Definition 13. Substitutions

• A substitution is a pair
(ST : Type → Type,RB : boolexp → boolexp).

• Usually written just as S; sometimes write R to denote
(Id,RB).

• Write Id for (Id, Id).

• Write S1; S2 for S2 ◦ S1

• Application: if S = (ST ,RB) then

– S(Si) = ST ;RB(Si)

– S((Si)∧r) = (S(Si))∧S(r)
– S({Si 7→ r} ∪ ob) = {S(Si) 7→ S(r)} ∪ S(ob)

• For S = (ST ,RB), write
S[αi := Sj ] for (ST [αi := Sj ],RB) and S[i := j] for
(ST ,RB [i := j]). Similarly, write S;R for (ST ,RB ;R).

4.1 Substitution Lemma
First we must establish that the substitution lemma holds:

Lemma 4.1. Substitution Lemma: Let ξ be either δ or κ,
then:

Γx ∪
ľ
x : δb

ł
, ob ` A :ξ Γ, ob ` y : δb

Γ, ob ` A {y/x} :ξ

Proof:
By induction on the structure of A and the type of x & y.

4.2 Subject Reduction
Having established that substitution is sound, we can now

consider the case of subject reduction. The fact that we
must also consider run-time coercion complicates matters
however: the basic subject reduction property states that
the type of a given expression remains immutable as the
expression is reduced. This is obviously not the case in the
presence of run-time coercion; if the reduction involves any
coercion then the type and its enclosing environment may
be altered. Given this, we must find some way of including
this in the statement without relaxing the subject reduction
property itself.

To this end we present a boolean substitution inductively
defined by the reduction path: (Figure 4)

Now we can formulate our new subject reduction state-
ment; similar to the classical case, but the environment af-
ter the reduction step must have the substitution defined by
the reduction and the relation given in figure 4 applied to
it.

Theorem 4.1. Subject Reduction:

Γ, ob ` P : () P → P′ P → P′ °Γ,ob
certify R

R(Γ),R(ob) ` P′ : ()

Proof:
By induction on the structure of the derivation of P → P′,
and by cases on the structure of P. In the interests of space,
we present only two illustrative cases:

• Suppose the last rule used in the derivation of P→P′

was

Q → Q′ R → R′

P = Q|R → Q′|R′ = P′

By the statement Γ, ob ` Q|R : (), so from the (comp.)
type rule we must have Γ, ob ` Q : () and
Γ, ob ` R : (). By the induction hypothesis, we have
R1(Γ),R1(ob) ` Q′ : () and R2(Γ),R2(ob) ` R′ : () so
R(Γ),R(ob) ` Q′|R′ : () as required, where R = R1;R2

by the definition of °Γ,ob
certify.



Γ, ob `certify x : δT

certify x (λz)P (λz)Q → P{x/z}

Γ, ob `certify x : δU

certify x (λz)P (λz)Q → Q{x/z}

Figure 3: certify Reduction Rules

P → P °Γ,ob
certify Id

(reflex)

x.[~y]C
x.[~y]−−−→ C °Γ,ob

certify Id
(out.)

x.(λ~y)F
x.(λ~z)−−−−→ F °Γ,ob

certify Id
(inp.)

M → M′ °Γ,ob
certify R

M + N → M′ °Γ,ob
certify R

(sum.)

P → P′ °Γ,ob
certify R1 Q → Q′ °Γ,ob

certify R2

P|Q → P′|Q′ °Γ,ob
certify R1;R1

(comp.)

P → P′ °Γ,ob
certify R1 P′ → P′′ °Γ,ob

certify R2

P → P′′ °Γ,ob
certify R1;R2

(trans.)

Γ, ob ` x : δi Γ, ob `certify x : δT

certify x P Q → P · x °Γ,ob
certify Id[i := T]

(certify − T)

Γ, ob ` x : δi Γ, ob `certify x : δU

certify x P Q → Q · x °Γ,ob
certify Id[i := U]

(certify −U)

Figure 4: Reduction Substitution Relation



• Suppose the last rule used in the derivation of P→P′

was

Γ, ob `certify x : δT

P = certify x (λz)R (λz)Q → R{x/z} = P′

From the statement, Γ, ob ` certify x (λz)R (λz)Q:(),
where Γ, ob ` (λz)R : (δT), Γ, ob ` (λz)Q : (δU), and
Γ, ob ` x : δb by the (cert.) type rule. Given
Γ, ob `certify x : δT, then
(certify x (λz)R (λz)Q) → R{x/z} by the semantics
of certify, and by subject reduction

Γ, ob ` (λz)R : (δT) Γ, ob `certify x : δT

R(Γ),R(ob) ` R{x/z} : ()

where the original annotation b on x has been coerced
to T by certify; so R = Id[b := T] and P → P′ °Γ,ob

certify

R as required.

5. IMPLEMENTATION
In figure 5 we present an algorithm for determining the

most general type of a given expression. Most of the algo-
rithm is recursive and fairly trivial, with the base case of the
rule for a name which searches in its existing environment
for an entry for that name; if it finds one it returns the type
entry, otherwise it creates a new type variable and returns
that, updating the entry in the environments.

Those that deserve closer inspection include the input and
output cases which must use M (definition 17) to perform
the multiplication required by the type rules, and the rule
for certify which ensures that the certify variable (x) does
not appear free in either continuation (see section 3.3). The
input rule ensures the object of the sort of x is multiplied
by the annotation on the sort before deducing a type for F ;
in case the object of x is a variable (in which case multipli-
cation has no effect; defn 17) it again multiplies the object
after it has been unified with the type of F . The output
rule performs the multiplication after unification, as is con-
sistent with the type rules. Note that the rule for certify uses
unification to ensure the abstracted variable in the contin-
uations are trusted and untrusted respectively, as required
by the type rules.

5.1 Auxiliary Algorithms
The following macro (definition 14) is used for conciseness

in the algorithm:

Definition 14.

SORT (Γ, x) , {x : Γ(x)}

Unification algorithms for both single sorts and lists of sorts
(object sorts) are also required by the algorithm, and these
are presented here. Note that the algorithms for unifying
types are mutually recursive; Uπ (which unifies single pairs
of sorts) attempts to equate the two sorts, then calls Uπl

to unify their object sorts. Uπl simply walks down the two
lists, calling Uπ to unify matching pairs of sorts. A third al-
gorithm, M, is used to perform the multiplication. BUNIFY
is the boolean unification algorithm returning a substitution
which is the most general unifier of its two arguments ([12]).

Definition 15.

Uπ

ş
ob, αb, Sc

ť
= let S = Id[αb := Sc]; BUNIFY (b, c) in

S; Uπl

ş
S(ob), S(ob(αb)), S(ob(Sc))

ť

Uπ

ş
ob, Sc, αb

ť
= Uπ

ş
ob, αb, Sc

ť

Uπ

ş
ob, Sb

1, S
c
2

ť
= if S1 6= S2 then ⊥

else if Sb
1 =π Sc

2 then

Id

else let R = BUNIFY (b, c) in

R; Uπl

ş
R(ob),R(ob(Sb

1)),R(ob(Sc
2))

ť

Uπ

ş
ob, αb

1, α
c
2

ť
= if αb

1 =π αc
2 then

Id

else let S = Id[αb
1 := αc

2]; BUNIFY (b, c)

in

S; Uπl

ş
S(ob), S(ob(αb

1)), S(ob(αc
2))

ť

Definition 16.

Uπl (ob, ρ, t) = if ρ ∈ t ∧ ρ 6= t then ⊥
else Id[ρ := t]

Uπl (ob, t, ρ) = Uπl (ob, ρ, t)

Uπl

ş
ob, (Si

1)
∧r, (Sc

2)
∧t

ť
= let S = Uπ

ş
ob, Sb

1, S
c
2

ť
in

S; Uπl (S(ob), S(r), S(t))
Uπl (ob, ρ1, ρ2) = Id[ρ1 := ρ2]

Uπl (ob, (), ()) = Id

Uπl

ş
ob, (Sb

1)
∧r, ()

ť
= Uπl

ş
ob, (), (Sb

1)
∧r

ť
= ⊥

Definition 17.

M
ą
b, (Sc)∧r

ć
= let S = M (b, Sc) in S;M (S(b), S(r))

M (b, Sc) = BUNIFY (c, b · d) d new

M
ş
b, ST

ť
= BUNIFY (b, T)

M
ş
b, SU

ť
= Id

M (b, β) = Id

6. SOUNDNESS AND COMPLETENESS OF
THE ALGORITHMS

In this section we prove that the type inference algorithm
presented in section 5 is sound and complete. In order to
preserve space (and the reader’s attention!) we restrict the
proofs - all by induction - to a few suitable cases.

6.1 Soundness of Typeπ

Theorem 6.1. If 〈Γ, ob, κ〉 = Typeπ (Γ′, ob′, P) is de-
fined then Γ, ob ` P : κ.

Proof:
By induction on the structure of P. For example:



Typeπ (Γ, ob, 0) = 〈Γ, ob, ()〉
Typeπ (Γ, ob, x) = If x ∈ dom (Γ)

then 〈Γ, ob, Γ(x)〉
else

D
Γ ∪ {x : αi}, ob ∪ {αi 7→ β}, αi

E

Typeπ (Γ, ob, !P) = Typeπ (Γ, ob, P)

Typeπ (Γ, ob, (νx)A) = let 〈Γ1, ob1, κ〉 = Typeπ (Γx, ob, A) in

〈(Γ1)x ∪ SORT (Γ, x) , ob1, κ〉
Typeπ (Γ, ob, P|Q) = Let 〈Γ1, ob1, ()〉 = Typeπ (Γ, ob, P) in

let 〈Γ2, ob2, ()〉 = Typeπ (Γ1, ob1, Q) in

〈Γ2, ob2, ()〉
Typeπ (Γ, ob, M + N) = Let 〈Γ1, ob1, ()〉 = Typeπ (Γ, ob, M) in

let 〈Γ2, ob2, ()〉 = Typeπ (Γ1, ob1, N) in

〈Γ2, ob2, ()〉
Typeπ (Γ, ob, (λx)F) = let

D
Γ1, ob1, δ

b
E

= Typeπ (Γx, ob, x) in

let 〈Γ2, ob2, κ〉 = Typeπ (Γ1, ob1, F) inD
(Γ2)x ∪ SORT (Γ, x) , ob2,

ş
δb

ť∧
κ

E

Typeπ (Γ, ob, [x]C) = let
D
Γ1, ob1, δ

b
E

= Typeπ (Γ, ob, x) in

let 〈Γ2, ob2, κ〉 = Typeπ (Γ1, ob1, C) inD
Γ2, ob2,

ş
δb

ť∧
κ

E

Typeπ (Γ, ob, x.F) = let
D
Γ1, ob1, δ

b
E

= Typeπ (Γ, ob, x) in

let S1 = M
ş
b, ob(δb)

ť
in

let 〈Γ2, ob2, κ〉 = Typeπ (S1(Γ1), S1(ob1), F) in

let S2 = S1; Uπl

ş
ob2, κ, ob2(δ

b)
ť

in

let S3 = S2;M (S2(b), S2(κ)) in

〈S3(Γ2), S3(ob2), ()〉
Typeπ (Γ, ob, x.C) = let

D
Γ1, ob1, δ

b
E

= Typeπ (Γ, ob, x) in

let 〈Γ2, ob2, κ〉 = Typeπ (Γ1, ob1, C) in

let S1 = Uπl

ş
ob2, κ, ob(δb)

ť
in

let S2 = S1;M (S1(b), S1(κ)) in

〈S2(Γ2), S2(ob2), ()〉
Typeπ (Γ, ob, certify x (λz)P (λz)Q) = let

D
Γ1, ob1, δ

b
1

E
= Typeπ (Γ, ob, x) in

let 〈Γ2, ob2, (δ
c
2)〉 = Typeπ ((Γx)1, ob1, (λz)P) in

if x ∈ dom(Γ2) then ⊥ else

let
D
Γ3, ob3, (δ

d
3)

E
= Typeπ (Γ2, ob2, (λz)Q) in

if x ∈ dom(Γ3) then ⊥ else

let S1 = Uπ

ş
ob3, δ

T
1 , δc

2

ť
in

let S2 = S1; Uπ

ş
S1(ob3), S1(δ

U
1 ), S1(δ

d
3)

ť
in

〈S2(Γ3 ∪ SORT (Γ1, x)), S2(ob3), ()〉

Figure 5: Sort Inference Algorithm



• P≡ x.F: By the induction hypothesis
ŋ
Γ1, ob1, δ

b
ő

=

Typeπ (Γ′, ob′, x), so Γ1, ob1 ` x : δb. From the state-
ment, S1 = M

ą
b, ob1(δ

b)
ć

must be defined and hence
by the soundness of M,
∀δc

k ∈ ob1(δ
b).∃d.S1(δ

c
k) = S1(b · δd

k); i.e.
S1(ob1(δ

b)) = b·κ′ for some κ′. Again by the induction
hypothesis, 〈Γ2, ob2, κ〉 = Typeπ (S1(Γ1), S1(ob1), F),
and therefore ⇒ Γ2, ob2 ` F : κ By the soundness of
Uπl, S2 = S1; Uπl

ą
ob2, κ, ob2(δ

b)
ć

is sound and hence
S2(Γ2, ob2) ` x.F; () as required, where
〈S2(Γ2), S2(ob2), ()〉 = Typeπ (Γ′, ob′, x.F)

• P≡certify x (λz)P′ (λz)Q: By the induction hypothe-
sis, given

ŋ
Γ1, ob1, δ

b
1

ő
= Typeπ (Γ, ob, x) then Γ1, ob1 `

x : δb
1. Similarly

〈Γ2, ob2, (δ
c
2)〉 = Typeπ ((Γ1)x, ob1, (λz)Q)

⇒ Γ2, ob2 ` (λz)Q : (δc
2)

andŋ
Γ3, ob3, (δ

d
3)

ő
= Typeπ ((Γ2, ob2, (λz)R)

⇒ Γ3, ob3 ` (λz)R : (δd
3)

Note that if x ∈ fn(Q, R) then Typeπ fails; however
according to the statement it is defined hence both
these steps are.
Now by the soundness of Uπ we have S1(δ1T) = S1(δ

c
2)

and S2(δ
U
1 ) = S2(δ

d
3) where S1 = Uπ (Id, δ1T, δc

2) and
S2 = Uπ

ą
S1, δ

U
1 , δd

3

ć

Then by lemma Sub1 S2(Γ3, ob3) ` (λz)Q : (δT) where
S2(δ

c
2) = S2(δ

T
1 ) = δT

Similarly S2(Γ3, ob3) ` (λz)R : (δU) Then by the (cert.)
type rule
S2(Γ3∪SORT (Γ, x) , ob3) ` certify x (λz)Q (λz)R : ()
as required.

6.2 Completeness of Typeπ

Theorem 6.2. If for some Γ′, ob′, κ′ there is a valid de-
duction Γ′, ob′ ` P : κ′ for P, then Typeπ (∅, ∅, P) is defined,
and if 〈Γ, ob, κ〉 = Typeπ (∅, ∅, P) then
〈Γ, ob, κ〉 ≤ 〈Γ′, ob′, κ′〉.

Proof:
By induction on the structure of P. For example:

• P≡ (λx)F: The deduction

Γ′, ob′ ` (λx)F : (δ′b
′
)∧κ′ must end in a use of the

(abs.) rule with antecedent Γ′ ∪ {x : δ′b
′}, ob′ ` F :

κ′ Given
ŋ
Γ1 ∪ {x : δb}, ob1, δ

b
ő

= Typeπ (∅, ∅, x) we

have
ŋ
Γ1 ∪ {x : δb}, ob1, δ

b
ő ≤

D
Γ′ ∪ {x : δ′b

′}, ob′, δ′b
′E

Then by the induction hypothesis
ŋ
Γ ∪ {x : δb}, ob, κ

ő
=

Typeπ

ą
Γ1 ∪ {x : δb}, ob1, F

ć
is defined, andŋ

Γ ∪ {x : δb}, ob, κ
ő ≤

D
Γ′ ∪ {x : δ′b

′}, ob′, κ′
E

Then

by the type rules, Typeπ (∅, ∅, (λx)F) is defined andŋ
Γ, ob, (δb)∧κ

ő ≤
D
Γ′, ob′, (δ′b

′
)∧κ′

E

• P≡ certify x (λz)Q (λz)R: The deduction
Γ′, ob′ ` certify x (λz)Q (λz)R must end in a use of

the (cert.) rule, with antecedents Γ′, ob′ ` x : δ′b
′
,

Γ′, ob′ ` (λz)Q : (δ′T), and Γ′, ob′ ` (λz)R : (δ′U)
Given

ŋ
Γ1, ob1, δ

b
ő

= Typeπ (∅, ∅, x), then

ŋ
Γ1, ob1, δ

b
ő ≤

D
Γ′, ob′, δ′b

′E
By the induction hypoth-

esis, the following are defined:
〈Γ2, ob2, (δ

c
2)〉 = Typeπ ((Γ1)x, ob1, (λz)Q) andŋ

Γ3, ob3, (δ
d
3)

ő
= Typeπ (Γ2, ob2, (λz)R). Note that if

x ∈ fn(Q, R) then Typeπ fails; however according to
the statement a valid deduction exists so this is not
the case. Then by completeness and soundness of Uπ,
the following statements hold: S1 = Uπ

ą
Id, δT, δc

2

ć ⇒
S1(δ

T) =π S1(δ
c
2) and S2 = Uπ

ą
S1, δ

U, δd
3

ć ⇒ S2(δ
U) =π

S1(δ
d
3). Hence

〈S2(Γ3 ∪ SORT (Γ1, x) , ob3), ()〉 ≤ 〈Γ′, ob′, ()〉 as re-
quired.

The proofs of soundness and completeness of Typeπ de-
pend on the corresponding proofs of the auxiliary algorithms,
primarily the unification algorithms used. These results are
stated here, but again to preserve space the proofs them-
selves are not presented, as they are fairly standard.

6.3 Soundness and Completeness of Unifica-
tion

Theorem 6.3. If S = Uπ

ą
ob, Si

1, S
j
2

ć
is defined, then

S(Si
1) = S(Sj

2).

Proof:

By induction on Si
1, Sj

2 and the definition of Uπ.

One must be careful proving completeness of Uπ; because
the sorts in ob in effect form a graph, we must consider not
only the sorts being unified but the entire network. To this
end, we introduce the following definition (figure 6):

Theorem 6.4. If S(Si
1) = S(Sj

2) and

consistent
ą∅, ob, ob(Si

1), ob(Sj
2)

ć
then Uπ

ą
ob, Si

1, S
j
2

ć
is de-

fined.

Proof:

By induction on Si
1, Sj

2 and the definition of Uπ.

Theorem 6.5. If S = Uπl (ob, b, κ1) κ2 is defined, then
S(κ1) = S(κ2).

Proof:
By cases on κ1 and κ2, and by induction on the definition
of Uπl.

Theorem 6.6. If S(r) = S(t) and consistent (∅, ob, r, t) is
true, then Uπl (ob, b, r) t is defined.

Proof:
By induction on r, and t, and on the definition of Uπl.

Theorem 6.7. • If S = M (b, δc) is defined then
∃d.S(δc) = S(b · δd)

• If S = M (b, κ) is defined then
∀δc ∈ κ.∃d.S(δc) = S(b · δd)

Proof:
By induction on the structure of δc or κ as appropriate.

Theorem 6.8. • If ∃b, c, S.S(δc) = S(b · δd) then
M (b, δc) is defined.

• If ∃b, c, S.S(δc) = S(b · δd) then M (b, κ) is defined
∀δc ∈ κ.



consistent
ş
Σ, ob, δb

1, δ
c
2

ť
= if {δb

1, δ
c
2} ∈ Σ then true else

Ãţ
isVar(δb

1) ∨ isVar(δc
2) ∨

ş
isCon(δb

1) ∧ isCon(δc
2) ∧ (δb

1 =π δc
2)

ť ű

∧isDefined(BUNIFY (b, c))

∧consistent
ş
Σ ∪ {{δb

1, δ
c
2}}, ob, ob(δb

1), ob(δc
2)

ť !

consistent
ş
Σ, ob, δb

1, δ
b
1

ť
= true

consistent (Σ, ob, β, κ) = consistent (Σ, ob, κ, β) = true

consistent
ş
Σ, ob, (δb

1)
∧κ1, (δ

c
2)
∧κ2

ť
= consistent

ş
Σ, ob, δb

1, δ
c
2

ť
∧

consistent (Σ, ob, κ1, κ2)

consistent (Σ, ob, (), ()) = true

consistent
ş
Σ, ob, (δb

1)
∧κ, ()

ť
= consistent

ş
Σ, ob, (), (δb

1)
∧κ

ť
= false

Figure 6: Consistency Definition

Proof:
By induction on δc or κ as appropriate.

6.4 Termination of Unification Algorithms
Given that the type unification algorithms are mutually

recursive, it is desirable to prove that they will eventually
terminate. A proof of this exists; however due to space
reasons we have ommited it. As a summary, it works by
proving that each recursive call operates on a smaller ob
than its parent, and thus must eventually terminate.

7. CONCLUSIONS
We have presented a system of trust analysis for networks

using the π-calculus. Boolean expressions as annotations to
the base type system are used for this purpose. A safe envi-
ronment for performing coercion of trustedness information
based on the results of runtime verification was introduced.
An algorithm for determining the most general type of an
expression in our system was also presented.

7.1 Related Work
The work presented here bares many similarities to the

discipline of flow analysis; for example that presented in [7,
23, 9]. Such work usually deals with a concept of security
levels; typically the idea that data should not be able to flow
(eg by assignment) from a high security level to a low one.
More generally, this is extended to use multi-point lattices
which may include notions of trust. We believe that our
approach differs from this area in several key points: our
system naturally handles non-determinism, whereas tradi-
tional methods have difficulty in this regard ([23]); our sys-
tem requires no extra run-time type tag information; and
we provide a safe and natural method for performing run-
time coercion of these trust levels. We also believe our ap-
proach can be extended to higher order systems fairly sim-

ply, and importantly without much more complexity being
introduced into the analysis; current work appears to verify
this.

Sewell and Vitek[21] present a system in which “off the
shelf” software can run in a constrained environment pro-
vided by software wrappers. Their analysis uses the box-π
calculus, and they investigate the flow of information across
the boundaries of these wrappers. No avenue for allocating
trustedness is provided however.

Igarishi and Kobayashi[10] study linear type systems for
the π-calculus, using a similar system of type annotations
(derived indepedently of [25, 24]).

7.2 Future Directions
Future work primarily involves study of a higher-order

π-calculus (and corresponding type system). It has been
demonstrated[20] that in the regular π-calculus system higher-
order terms can be encoded as first-order with no loss of
expressiveness. We do not believe this to be the case for
our system (whether this view proves correct remains to be
seen!); we view a higher-order calculus as encoding mobile
code and thus potentially a situation involving not just un-
trusted data but also arbitrary code executing on your sys-
tem. One consequence of a higher-order system is it seems
unreasonable to trust data coming from an untrusted pro-
cess, even along a trusted channel. This implies that pro-
cesses themselves must be annotated as well; for example

Γ, ob ` P : ()b Γ, ob ` Q : ()c

Γ, ob ` P|Q : ()b·c



and perhaps more interestingly,

Γ, ob ` x : δb

Γ, ob ` (λz)P : (δT)c

Γ, ob ` (λz)Q : (δU)c

x /∈ FV (P, Q)

Γ, ob ` certify x P Q : ()b·c+b̂·d

Note that this last example provides a primitive kind of de-
pendent type; if x can be trusted then the statement reduces
as P and the expression b·c+b̂·d reduces to c; the annotation
on P above the line. Similarly if x proves to untrusted.

The authors also intend to investigate a type system (as
opposed to the current system of sorts) as is currently in
vogue; with this sort of arrangement instead of a mapping
between sorts and their objects, all information about what
is carried by the channels is contained in the types. (Note
that to get the same power as sorts it is then necessary
to admit recursive types). While this scheme does appear
to lose name-equivalence among types, it is hoped that the
corresponding inference algorithms can be simplified (both
in time and readability); in [22] a type inference algorithm
that is linear on the size of the input process is presented
(for an un-annotated type system).
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