
Neural Transplant Surgery: An Approach to Pre-training Recurrent Networks

Peter Vamplew and Anthony Adams
Artificial Neural Network Research Group
Computer Science, University of Tasmania

P.Vamplew@cs.utas.edu.au, A.Adams@cs.utas.edu.au

Abstract
Partially-recurrent networks have advantages over
strictly feed-forward networks for certain
spatiotemporal pattern classification or prediction
tasks. However networks involving recurrent links
are generally more difficult to train than their non-
recurrent counterparts. In this paper we demonstrate
that the costs of training a recurrent network can be
greatly reduced by initialising the network prior to
training with weights 'transplanted' from a non-
recurrent architecture.

Introduction
The approaches taken to adapting feed-forward
networks to temporal processing can be divided into
two main categories: non-recurrent and recurrent.
Both of these approaches make use of fixed time-
delays on the connections within the network to
provide a means of storing temporal information.
However in non-recurrent networks all such
connections feed into higher layers within the
network, whereas nodes in a recurrent network can
also have time-delayed links to their own or lower
levels. Non-recurrent architectures are generally
faster to train than recurrent networks, but have the
disadvantages of only storing a finite amount of
context, and of having a potentially larger number
of free parameters which can adversely affect their
generalisability.

Non-recurrent networks
Non-recurrent temporal networks use time-delayed
connections to higher levels to store information
about previous inputs to the network. The simplest
implementation of this concept (which we will
label an input windowed network) has such time
delays only on the connections between its input
and hidden layer nodes (see Figure 1) Each input
node is connected to each hidden node by several
connections, each with an independent weight and a
different time delay (see Figure 1). Usually these
time delays will vary by only a single time-step.
For example, each input may be connected to each
hidden node by three links with time delays of 0, 1
and 2 steps. At each time step the network is
evaluated exactly as a normal static network would
be. The effect is to provide the network at each
stage with the current input, plus a series of
previous inputs thereby giving it the temporal
information required for the task.

 xt=0

 xt=–1

 xt=–2

Figure 1. Input windowed network with three time
frames, two hidden nodes and two outputs. The

inputs at each time frame are vectors.

This style of network can be trained using
standard backpropagation and because it essentially
ignores the temporal aspects of the data by
expanding them into spatial aspects, can generally
be trained relatively quickly. However this non-
recurrent approach has two weaknesses.

First the temporal context processed by the
network is strictly limited to the size of the input
window, and hence unable to deal with patterns
longer than this window (and in particular with
potentially infinite sequences). Second the complete
interconnection between the input and hidden layers
means the network will have a large number of free
parameters when trained on long temporal
sequences, which may have a negative effect on
both the training time and the generalisation
capabilities of the network. One approach to
remedying the latter problem is the Time Delay
Neural Network [2]. This takes advantage of the fact
that often the same features are present at several
different times in the input sequence, and therefore
the same feature detectors can be applied at different
time delays. In a TDNN some of the links between
the input and hidden layers share weights, and hence
the number of free parameters is reduced (see Figure
2).

 xt=0

 xt=–1

 xt=–2

 w1

 w1

 w2

 w2

Figure 2. Time Delay Neural Network. In this
example each hidden node only sees two time

frames and weights are shared.

Recurrent networks
In a recurrent network nodes can have time-delayed
links to any other node within the network. For
this paper we will consider a limited class of
networks where such recurrent links are restricted to
a single hidden layer, with each node in that layer
recurrently linked to every other node (including
itself). Such a network can be trained using a
modified version of backpropagation called
backpropagation-through-time (BPTT). Note that
other training algorithms such as real-time recurrent
learning can also be used [3],[5].

The basis of the BPTT algorithm is the
'unrolling' of the recurrent network through several
time frames to form a non-recurrent network whose
behavious is identical over that finite period of
time. The error can then be back-propagated through
this non-recurrent architecture, with each weight
being updated with the sum of the change calculated
for it at each time step. For a more formal
definition of the algorithm see [4].

The major problem with this training method
is that outputs and relevant inputs may be
presented to the network many time-frames apart.
This means that the error from the output will
effectively be passed through many layers prior to
reaching the relevant activations of the input layer,
and hence will be much dissipated by the noise
inherent in this process. This makes the learning of
local spatial features by a recurrent network
extremely difficult, and sometimes impossible
(particularly when dealing with long temporal
sequences).

Neural transplants
Training a recurrent network can be likened to a
"chicken-and-egg' problem. It is difficult for the
network to learn the temporal aspects of a sequence
unless the correct spatial features are being
extracted. However at the same time it is difficult
for the network to learn what spatial features are
important until the temporal aspects have been at
least partially learnt. In comparison, an input
windowed network finds the task of forming spatial

feature detectors much easier as inputs are always
presented at the same time as the output they are
relevant to (assuming the window is of sufficient
size).

The basis of our proposed training scheme is
to develop suitable feature detectors within an input
windowed network, and then to 'transplant' these
detectors into a recurrent network which can then be
trained using BPTT. Providing the recurrent net
with some knowledge of the spatial features in this
manner should aid in the subsequent training to
learn the temporal aspects.

The major issue which has to be addressed is
how to disconnect the extra inputs used for input
windowing without losing the local feature
extraction capabilities of the network. The solution
we have used is a specialised case of a TDNN
architecture in which each hidden unit is connected
to only a single time-frame of input information.
Due to this limited connection these 'temporally
focused' units are forced to learn to extract the
important spatial features for each time-frame (see
Figure 3).

 xt=0

 xt=–1

 w1

 w2

 w1

 w2

Figure 3. Temporally focused input windowed
network. Each pair of hidden nodes has the same

input weights but different output weights.

This network is trained using backpropagation
until it achieves its maximum level of
classification. At this point we convert the network
into a recurrent architecture. The hidden units from
the TDNN (which we will refer to as spatial units)
can be incorporated directly into our new hidden
layer. We freeze the input weights of these units,
and do not add any recurrent inputs. Instead we add
several recurrent units to the hidden layer, which are
fully connected to the input layer, and have
recurrent links from all other recurrent and spatial
units. For the examples given in this paper we have
found it beneficial to initialise the weights on all
inputs to recurrent units to zero, with the exception
of the recurrent links from the spatial units which
were randomly initialised. We have also chosen the

number of recurrent units so that we can directly
transplant the hidden-layer to output weights from
the TDNN, as this was found to have extremely
positive effects on training times (see Figure 4).

 xt=0
 w1

 w2

Figure 4. The recurrent network with transplanted
weights (solid lines represent non-recurrent links,

dashed lines are recurrent links).

Once the network has been initialised with
these transplanted weights it is trained using BPTT,
modified only to the extent that the spatial units'
input weights are not changed during training.
Freezing these weights ensured that they didn't
'wander off' whilst the network was adapting the
recurrent weights to learn the temporal aspects of
the problem. It also had the side benefit of allowing
the caching of the spatial units outputs for each
training example, thereby reducing the amount of
computation involved during the forward pass of
training.

Data sets and results
This transplant method has so far been tested on
two simplified motion-detection problems, both of
which were outlined in [3]. In both the network is
presented with eight input values per time-frame,
one of which is turned on whilst the others are off.
The location of this active cell is moved a single
step randomly to the right or left at each time-
frame, and the task of the network is to identify the
direction of this motion. For the first problem the
task is made easier by not allowing wraparound
from one end of the eight cells to the other, so that
upon reaching the first or eighth cell the direction
of movement will always be reversed. For the
second problem such wraparound is allowed.

In order to compare the different architectures
and training methods we have adopted two
conventions proposed in [1]. A straight comparison
of the number of epochs or pattern presentations
between training methods would be misleading, as
the computational costs of each presentation vary
between methods. Instead we measure the number
of connection crossings, where a connection
crossing is recorded every time a weight is crossed
on either the forward or backward pass of the
training method. It was also found that on
occasions the network trained using standard BPTT
would settle into a location in weight-space where
the error would either cease to fall or even rise. To
counter such situations we set a time-out limit of
50,000 pattern presentations. Any network reaching
this time-out would be reinitialised with new
random weights and training recommenced. The
time spent in reaching the time-out was included in
the total time required to train that network.

Method Input windowed BPTT Transplant
Total TDNN phase BPTT phase

Learning rate 0.6 0.4 0.4 0.4
Pattern
presentations

530 2410 2270 1200 1070

CCs per
presentation

152 172 52 94 + 1800 for
caching

Total CCs 80560 414520 164780 62400 102380

Table 1: Average training time over ten runs for each training method, in terms of pattern presentations and
connection crossings (CCs), for the motion detection without wraparound

Method Input windowed BPTT Transplant
Total TDNN phase BPTT phase

Learning rate 0.6 0.2 0.15 0.2
Pattern
presentations

600 19440 10420 3240 6980

CCs per
presentation

152 172 52 94 + 1800 for
caching

Total CCs 91200 3343680 835760 177840 657920

Table 2: Average training time over ten runs for each training method, in terms of pattern presentations and
connection crossings (CCs), for the motion detection with wraparound

The averaged results over ten separate training
runs of the input windowed, BPTT and transplant
method (the latter broken down into the two phases
of its training) are recorded in Tables 1 and 2. These
results are the best obtained for each method after
experimentation to find the appropriate learning
rate. As can be seen the input windowed network
trains much faster than either of the recurrent
networks for both problems. However whilst the
transplanted network's training time is much longer
than the non-recurrent network, it is significantly
faster that that of the BPTT network, particularly
on the more complex wraparound detection
problem.

Conclusion
The results obtained on the two motion detection
tasks show that the training time of a recurrent
network can be greatly reduced by initialising the
network with weights from a non-recurrent
network. It is expected that the method of
transplanting the input weights should scale well to
more difficult tasks. However the current method of
initialising the recurrent and output weights is
dependent on the user's knowledge of the problem
task. In order to extend the transplant method to
real-world problems it will be neccesary to develop
a more generalised and automated method of
initialising these portions of the network.

References
[1] Fahlman, SE. (1988) Faster-Learning

Variations on Backpropagation: An Empirical
Study, in Proceedings of the 1988
Connectionist Models Summer School,
Morgan Kaufmann.

[2] Lang, K, Waibel, A & Hinton, G (1990)
A Time-Delay Neural Network Architecture
for Isolated Word Recognition in Neural
Networks, 3, 23–43.

[3] Robinson, A. (1989) Dynamic Error
Propagation Networks, PhD Thesis,
Engineering Department, Cambridge
University.

[4] Werbos, P. (1990) Backpropagation Through
Time: What It Is and How to Do It" in
Proceedings of the IEEE, 78(10), October
1990, 1550–1560

[5] Williams, R & Zipser, D. (1989) A Learning
Algorithm for Continually Running Fully
Recurrent Neural Networks" in Neura l
Computation, 1, 270–280

