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Abstract: Missing or incomplete data, a
common reality, causes problems for
artificial neural networks. In  this paper
we investigate several methods for
dealing with missing values in
feedforward networks. Reduced networks,
substitution, estimation and expanded
networks are applied to three data sets.
We find that data sets vary in their
sensitivity to missing values, and that
reduced networks and estimation are the
most effective ways of dealing with
them.

Introduction

Artificial neural networks trained using
backpropagation have been used for a
wide variety of classification problems.
In many real world problems, however,
some of the data may be missing or
incomplete. This causes particular
problems for artificial neural networks as
the distributed nature of the processing
makes it very difficult to isolate effects
due to one variable. The aim of this
study is to compare different techniques
for dealing with missing data. We assume
a complete set of training data is
available and a single hidden layer back-
propagation network. This work builds
on and extends earlier work of Vamplew
and Adams1.

Terminology

In this paper we will adopt the following
terminology: V = number of variables; N,
H, M = number of input, hidden, output
nodes; and µ σ,  = mean, standard
deviation (of the training data)

Description of the data

We have applied the techniques to three
data sets, the Iris, the Weedseed and the
Handshape data set. All data are
normalised to the range ±1.

The Iris data set2 has been used widely as
a testbed for statistical analysis
techniques. The sepal length, sepal
width, petal length, and petal width were
measured on 50 iris specimens from each
of 3 species, Iris setosa, Iris versicolor,
and Iris virginica. There are thus 150
pieces of data, of which 100 are used for
training and 50 for testing. The
proportion of data which is correctly
classified is high.

In the Weedseed data set3, weed seeds are
classified into one of ten types, based on
seven measurements of dimensions of
the seeds. The seed data consists of
measurements of 398 different seeds,
giving 40 examples of each seed type,
apart from two types which have only
39 examples. A test set consisting of ten
examples of each seed type is extracted
from these data, and the remaining 298
examples are used as the training set.
The proportion of data which is
correctly classified is only moderate.

The Handshape data set4 was developed
by measuring the values returned by 16
sensors on various hand and finger joints
when the hand was positioned in 20
different hand shapes used in the Auslan
sign language. A training set of 2000
examples and a test set of 200 examples
were created by adding noise to the 20
original examples. This data set contains
many redundant inputs and a high
proportion of the data can be classified
correctly even with high levels of added
noise. Thus for the purposes of this
study, we used only 7 variables for each
data point.

Experimental details

The networks are trained using the
standard pattern presentation
backpropagation algorithm which
updates the weights after each



(randomly-chosen) presentation of the
data. We use a fixed number of
presentations and a fixed number of
hidden nodes for each data set. In each
trial, there are 10 runs, each with
different starting weights. For all training
the training rate was 0.1 and the
momentum 0.



Data set Presentatio
ns

Architecture
(N H M)

# training
points

# testing
points

Iris 50,000 4 3 3 100 50

Weedseed 100,000 7 8 10 298 100

Handshape 100,000 7 9 20 2000 200

Methods

We investigated four general approaches
for dealing with missing values: Reduced
network - A separate network is trained
for each missing value, each having V-1
nodes in the input layer; Substitution -
Another value is substituted for the
missing value; Estimation - A value for
the missing value is estimated from the
remaining data. This is substituted for
the missing value; Expanded network -
The standard network architecture is
modified by the addition of extra input
nodes in such a manner as to allow the
network to distinguish between missing
and complete data.

Reduced networks

V networks are trained, each with one
variable absent (N = V-1). As each
network is trained on all of the data
available, and is of the right size for the
data, it is expected to perform as well as
possible. It should give an upper bound
on what is possible and provide a baseline
for judging other methods. A major
disadvantage of this approach is that it
requires N+1 networks to cater for all
possible cases of one missing value. If it
is to be applied to data points with two
missing values, it will require an
additional N 2 2/  networks.

Substitution

Here a constant value for substitution is
found for each variable that might be
missing. This is then substituted in the
complete network (ie. the network
trained on complete data). We report on
substituting the mean, median and zero
(the mid-range). Other substitutions
including the minimum, the maximum,
“committeeing” the results from a series

of values, and a random value were tried,
but all gave poorer results and are not
further reported.

The mean is calculated for each variable
over all examples in the training set. It is
fixed for all data points, that is the mean
of the variable in the training set is used
whenever that variable is missing. It is a
very simple approach, easy to
understand and requires no extra
networks or training. The median and
mid-ranges are treated similarly.

Estimation

The best estimate is derived by using a
separate network to estimate the missing
value from the values that are present.
Thus there is only one classification
network, supported by V estimating
networks (each with N = V-1). Unlike
the classifier networks, the supporting
networks have a single analogue output.
This approach relies on the input values
being correlated, which is true for most
real data sets.

Expanded networks

The aim here is to try to let the network
know whether data is complete or has
missing values. This is achieved by using
two input nodes for each input variable.
Three types of expanded networks are
investigated, flagged, high/low and
shadow weight networks.

In flagged networks, each data value is
associated with a “value” node and a
“flag” node. If the value is known, it is
input to the value node and 0 is input to
the flag node. If the value is missing,
that attribute’s mean is input to the
value node and 1 is input to the flag
node.



In high/low networks, each data value is
associated with a “high” node and a
“low” node. If the value is known, it is
input to both the low and high nodes. If
the value is missing, predetermined
constants are input to the low and high
nodes. Thus this technique essentially
treats missing data as “fuzzy”. Three sets
of constants are tried: low = minimum
value, high = maximum value; low =
µ σ− , high = µ σ+ ; and low =µ σ−2 ,

high =µ σ+2 .

In the shadow weight networks, each
data value is associated with a “standard”
node and a “shadow” node. If the value is
known, it is input to the standard node
and 0 is input to the shadow node. If the
value is missing, 0 is input to the
standard node, and 1 is input to the
shadow node. The main difference
between the shadowed network and other
expanded networks is in the training.
This occurs in two phases. Firstly, a
complete network (with no weights from
shadow nodes to hidden layer nodes) is
trained using complete data. Then the
weights of the links between the shadow
nodes and nodes in the hidden layer are
trained. The aim is to create a network
in which the performance of complete
data is not degraded. The performance
improves when several ‘shadow’ hidden
nodes are added to the hidden layer.
These nodes are completely connected
to the input layer, but are only trained
during the second phase of training and
only used when the input data has
missing values.

All of the expanded networks require
extra training data. The training data is
augmented with data where there have

been substitutions for (single) values
(that is, one value per data point). This
means that there will be (V+1) times as
much training data.

Figure 1: A shadow weights network.
The bold lines indicate standard weights,
the dashed lines and shaded circle
represent shadow weights and node (in
this case, the lowest input value is
unknown)

Results

Results are set out in the tables below,
shaded cells indicating a significant
reduction in performance (using the
reduced networks as a baseline). They
show that only reduced networks and
estimation are effective on all data sets.

The results also show a significant
difference between data sets. For the
Iris data, all techniques work well. For
the Weedseed data, only reduced
networks and estimation work well.
For the Handshape data, all techniques
worked well except substitution. A
tentative conclusion here is that data
which is hard to classify is more
susceptible to missing values and needs
more work if data points with missing
values are to be useful.

Iris data

Variable missing none 1 2 3 4

Reduced network 94.0 93.6 92.8 88.2 83.6

Substitute mean 94.0 93.8 95.8 73.4 85.2

Substitute median 94.0 93.8 94.0 72.0 88.0

Substitute zero 94.0 94.0 96.0 76.4 88.0

Estimation 94.0 94.0 96.0 94.0 93.6



Flagged 93.2 94.0 89.0 93.6 82.6

High / low (min max) 92.6 94.0 88.6 92.6 85.6

High / low (µ σ± ) 91.2 94.0 89.2 92.0 84.4

High / low (µ σ±2 ) 90.0 93.2 88.2 93.8 82.0

Shadow weights 93.2 93.0 92.8 93.2 84.8

Weedseed data

Variable missing none 1 2 3 4 5 6 7

Reduced network 65.6 63.5 62.0 59.8 59.7 66.9 64.0 64.4

Substitute (mean) 65.6 51.4 44.9 49.0 38.9 48.0 41.5 56.9

Substitute
(median)

65.6 53.4 46.8 48.9 39.5 45.5 42.4 62.0

Substitute (zero) 65.6 40.1 41.2 29.4 35.2 38.3 42.1 43.2

Estimation 65.6 63.1 63.4 59.5 59.0 63.4 62.5 66.2

Flagged 64.9 47 43 42.9 38.1 44.3 36.4 55.6

High / low
(min max)

67.3 36.5 36.4 32.9 31.1 33.2 32.4 43.4

High / low
( µ σ± )

67.3 45.8 39.7 44.1 34.1 48.5 35.4 61.3

High / low
( µ σ±2 )

67.3 44.9 38.0 41.3 33.4 42.7 34.6 57.7

Shadowed weights 65.9 54.8 60.8 47.7 52.4 51.7 53.8 62.5

Handshape data

Variable missing none 1 2 3 4 5 6 7

Reduced network 99.6 94.5 79.8 79.9 94.3 89.5 89.8 94.3

Substitute (mean) 99.6 79.9 78.7 70.5 86.4 81.2 88.1 82.4

Substitute
(median)

99.6 80.2 76.9 70.4 83.1 76.6 87.6 76.0

Substitute (zero) 99.6 78.1 73.7 68.3 85.3 79.1 81.7 82.5

Estimation 99.6 94.9 79.7 78.2 95.0 89.3 89.1 93.6

Flagged 99.5 93.8 79.6 79.5 93.9 86.9 88.7 90.6



High / low
(min max)

98.8 94.0 78.9 79.7 93.5 88.7 89.4 92.3

High / low
( µ σ± )

99.0 93.8 79.3 78.9 93.5 88.7 89.4 92.3

High / low
( µ σ±2 )

98.7 93.7 78.7 79.9 93.2 88.8 89.5 92.3

Shadowed weights 99.7 94.9 79.8 78.0 94.5 88.7 90.8 93.4

Equivalence of networks

Several of the networks described above
are topographically equivalent, a simple
transformation turning a network into
another of different type which will give
exactly the same output for equivalent
data. There exist 1-1 mappings between
all expanded networks, except for the
shadow network with additional hidden
layer nodes. Moreover, there is a
mapping (not 1-1) from the complete
network to each expanded network.
Thus all expanded networks should
perform equivalently, and they should all
perform at least as well as substitution.
The results are in broad agreement with
this analysis.

Multiple Missing Values

The different missing values techniques
vary in terms of the ease with which
they can be scaled to handle examples
with multiple missing inputs. Substitution
and expanded networks cope readily with
this situation as all that is required is to
input the appropriate value(s) for each
missing input value.

The main issue is whether these
networks can generalise from the
examples with single missing values seen
during training, or whether it is necessary
to also train the networks on examples
with multiple missing values.

Estimation and reduced networks do not
scale well to multiple missing values as
they suffer from a combinatorial
expansion in the number of networks to
be trained. It is possible to adapt
estimation to the case of multiple
missing values however, by combining it
with the substitution techniques. The

estimate networks are trained and used to
produce an estimate of each missing
input as before, with the exception that
substitution is performed for any missing
values which are required as inputs to
these estimate networks. The estimates
produced in this way can then be used as
inputs for the main classification
network.

Vamplew5 has shown that expanded
networks and substitution generalise
poorly with multiple missing values if
trained using single missing values. He
has also shown that the combines
substitution/estimation technique is
effective even when training is
performed on single missing values.

Conclusions

1. All techniques perform well on
complete data. Thus techniques such
as shadow networks which are
designed specifically to ensure that
the performance  on complete data
does not degrade are not necessary.

2. Techniques involving fixed valued
substitution for missing values do not
perform as well as ones which
estimate the missing values from the
non-missing values for that data
point.

3. Data sets vary in their sensitivity to
missing values. If the data set is
insensitive to missing values, all
techniques are effective, but if it is
sensitive to missing values, the
choice of technique is important.
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