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Abstract 
 

As we advance into the new century, computers of the future will require new 

techniques for arithmetic operations, which take advantage of the modern technology 

and yield accurate results. Floating-point arithmetic has been in use for nearly forty 

years, but is plagued with inaccuracies and limitations which necessitate introduction 

of a new concept in computer arithmetic, called Composite Arithmetic. Composite 

Arithmetic combines fixed-point and floating-point arithmetic into one integrated 

concept where numbers are automatically assigned the right form. This negates the 

need for differentiating between integer and real numbers in programming languages 

and allows for better accuracy in calculations. The concept has two main forms: 

exact and inexact. The exact form deals with integers and rational numbers, while 

inexact form deals with numbers that cannot be represented exactly. To develop and 

implement such concept in hardware, tools are needed that will allow for easy design 

and re-design process, at a low cost. A device that meets these requirements is a 

Field Programmable Gate Array. This electronic device provides quick and easy way 

of designing the system and then implementing it by downloading data to the device. 

It can then be tested and reprogrammed as desired, without the need for a new 

device. This thesis is an attempt to design and implement Simple Composite 

Arithmetic Machine (SCAM), which will be capable of performing operations on 

exact numbers (rational and integer numbers). The core of the research is Composite 

Arithmetic Unit, which contains operations like Multiply, Divide, Add and Subtract. 

It also can find Greatest Common Divisor and cast out common factors of two 

numbers. The CAU is controlled using Control Unit and Feedback Unit, and results 

are stored in the Register Unit. The SCAM is therefore a basic microarchitecture that 

will form a basis for further research in this field. 
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Chapter 1:Introduction 

1.1 Computer Arithmetic 

1.1.1 Computer Arithmetic History 

Fixed-point arithmetic was first used after World War Two to perform calculations 

on integer values and to represent them exactly. A programmer had several lengths 

of representation to cope with expected range of numbers. In integer arithmetic, 

calculation of fractions was done using scaling and this could produce inexact 

results (Neville 1997a and b). The scaling required for problems to be pre-

processed by the user and then they could be accommodated by fixed point-

representation. However with increasing speed of computers, more complex 

operations had to be performed and the pre-processing became a lengthy task 

(Kulisch, 1999). Also large numbers introduced a new concept into computer 

arithmetic, called overflow. To overcome the overflow problem, floating-point 

arithmetic was introduced. 

 

Floating-point arithmetic can cope with large range of numbers, but it does so only 

by approximating. The numbers are represented in semi-logarithmic form and they 

have two components, significand and exponent. The significand expresses the 

precision of the number while the exponent expresses the range of the values that 

can be represented. This floating-point representation became a standard and is 

used in all older and modern computers. However, this notation has many 

problems, which have been accepted (or ignored) over the years. 

 

Results of floating-point arithmetic can vary. They can be satisfactory, inaccurate 

or completely wrong. However there is no way of telling which one of them has 

occurred. Although much larger range of values can be stored, comparing to fixed-

point form, there is still problem of overflow. Additional to the overflow, floating-

point introduces underflow, where the number is too small to be represented 

accurately. Different lengths of representation mean that a compromise between 

precision and the storage space has to be made. This can then affect accuracy of the 

arithmetic. Accuracy is also affected by truncating and rounding errors, and by 

conversion of values to and from the display form. Another problem with floating-

point arithmetic is that it doesn’t consider special values. These are zero, infinity, 

and indeterminacy. These are still results and can be very important in scientific 
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calculations.  (Kulisch 1999) describes five equations, all of them containing the 

same numbers with the same signs but arranged differently. Conventional computer 

with floating-point standard returns different values for each equation, while they 

all should be the same. Several other examples are provided which prove that even 

simple mathematical equations can be miscalculated when using floating-point 

form. 

 

Another type of problem is concerned with programming issues. The programmer 

has to determine beforehand if fixed-point or floating-point notation should be used 

and what precision should be used (single or double). Then there is a problem of 

handling exceptions, and problem of converting between different forms and how 

this affects accuracy of result. Another concern is the accuracy of the display and 

how exceptions and special values will be displayed. All this has to be considered 

by the programmer and wrong decision can cause erroneous results. 

 

Floating-point representation is an improvement over fixed-point form. However, 

today’s computers have become faster and have to perform more accurate and 

larger calculations. Current technology and requirements make the floating-point 

form “obsolete” and a new type of computer arithmetic is needed. One of the 

examples of advanced computer arithmetic is scalar product concept presented by 

(Kulisch 1999). 

 

1.1.2 Advanced Computer Arithmetic 

Scalar product is the fastest way to use the computer (Kulisch 1999). There are no 

intermediate results that need storing and no intermediate rounding. There are also 

no overflows or underflows and results are always correct. If desired, final rounding 

can occur at the end of the calculation. The concept of scalar product is based on 

two principal solutions. One solution involves long adder and long shift. If a 

register is built as an accumulator with an adder, then all summands can be added 

without loss of information. The register would have additional number bit to 

accommodate possible overflows. This allows adding a sum or scalar product 

without loss of information. The other solution involves short adder instead of the 

long adder with additional local memory as part of the arithmetic unit. 
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Advanced arithmetic expands the arithmetic and mathematical capability of the 

digital computer. It allows for twelve fundamental data types or mathematical 

spaces and highest degree of accuracy. The four basic ones are real, complex, 

interval and complex interval data types. It also allows for matrix and vector 

operations. Number of complex computations is increasing and more accuracy is 

needed. Advanced Computer Arithmetic offers improvement of floating-point 

arithmetic and gives more accurate results. Current research is aimed at 

incorporating these advanced concepts into the new microprocessors to avoid the 

bottleneck of Input/Output interface. 

 

1.1.3 Composite Arithmetic 

Composite Arithmetic (Neville, 1997a) is based on advanced computer arithmetic 

concept and combines several different formats. These are stored as a single binary 

form and formats are distinguished using tags. The storage form is specified by 

multiples of 16 and four lengths are recommended: short (32 bits), normal (64 bits), 

long (128 bits) and extended (256 bits). For most commercial calculations on exact 

numbers and scientific computations on inexact numbers, 32- and 64-bit sizes 

would be sufficient. The long and extended formats (128- and 256-bit) can be used 

for financial and number theory calculations, where very long exact results can 

occur. Also some intermittent technical computations where very precise results are 

needed would use one of these two formats. Composite arithmetic merges both 

exact and inexact formats using a tag bit. The bit is set to 0, if the number is exact 

and it is set to 1, if it is inexact. 

 

For exact values there are two forms. The primary one is an integer form and 

secondary is rational form. To distinguish between them another bit is added to the 

tag field. In the integer form all bits, except the tag, can be used to store the value. 

Negative numbers are stored using 2s complement of the magnitude. This ensures 

that zero is stored exactly and prevents negative Zero. Rational numbers are 

typically result of integer division. They can be stored exactly as integers if proper 

representation is adopted. The secondary exact form allows storing very large 

numbers, or very small numbers, depending on the size of numerator and 

denominator. To allow this, the form must provide for sharing of the value bits 
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between numerator and denominator. The solution to that is called a floating slash 

and it is several bits, depending on word length that separate the numerator from 

denominator. For example, for a 32-bit number, five bits are needed to be stored to 

accommodate the floating slash. If the numerator is 1 then all bits are available for 

the denominator. If the denominator is 1 then the number will be stored in an 

integer format; therefore the smallest denominator is 2. There are other issues, 

which have to be addressed when using this form. First, the denominator can be 0, 

which means that the number is infinity. Infinity needs storing because it can result 

from division by zero. Also indeterminate result needs storing. 

 

Figure 1. Proposed exact storage forms include (a) primary exact form (integer) and (b) 
secondary exact form (rational).  In the bit numbering as shown, n stands for the number of 

bits in the form and can be 32, 64, 128, or 256, while m numbers the different form. 

 

If the value cannot be stored exactly then the composite arithmetic will store it in an 

inexact form. Numbers can be represented in different ways. The first one is called 

double-number form. An example of it is the floating-point representation. The 

second one is called single-number form and an example of it is relatively new, 

signed logarithmic form. This form is subdivided into primary inexact and 

secondary inexact forms. Primary form uses signed pure logarithmic representation 

and secondary form uses antitetrational representation. The second form has been 

adopted by the Composite Arithmetic. 

 

While the above forms are satisfiable for storage purposes, they are not suitable for 

display. This is because to display, numbers are represented as characters; their 

values have to be converted to and from an appropriate storage form. Deficiency of 

the ASCII character set puts several restrictions on available choices. A form for 
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exact values uses decimal point and a fraction point. This would allow a number 

456 ¾ to be represented as 456.3.4, where first dot is a decimal point and second 

dot is a fraction point. A number ½ would be stored as 0.1.2. This approach would 

also allow displaying infinity as 0.1.0 and indeterminacy 0.0.0. Representation of 

inexact numbers would be similar to the e-notation, where the exponent uses 

scaling base of 10. The display form would use the scaling base of 1000 and this 

would be called k-notation. This would be supported by m-notation (milli notation) 

to avoid squeezing a negative sign into the exponent. A second k or m could display 

secondary inexactness. 

 

The proposal also mentions register form. This would be a fixed-point long 

accumulator, which would be 512 bytes (4096 bits) long. It would be large enough 

to store extended primary inexact storage form and some additional data like tags 

and signs. 

 

Composite arithmetic is more complex than floating-point but many aspects of it 

have already been implemented in hardware and software. Replacing floating-point 

arithmetic would benefit electronic calculator arithmetic and would improve 

capabilities of software packages such as spreadsheets. Another advantage lies in 

programming using the composite arithmetic. The programmer wouldn’t have to 

make choices between fixed and floating point and all conversions would be done 

in the register form. Also the accuracy of results, especially for technical 

computation, would be much greater. 

 

1.2 Field Programmable Gate Arrays 

Computer designers struggle to find balance between speed and generality.  They 

can build chips, which are versatile but perform different function relatively slowly, 

or they can build devices to carry out specific tasks but do them more quickly. 

Microprocessors such as Intel Pentium or Motorola PowerPC are general-purpose 

designs. This means that they can carry out basically any logical or mathematical 

operation that can be programmed using instructions encoded in binary format. On 

the other hand, custom made hardware devices, known as Application-Specific 

Integrated Circuits (ASICs), are designed for a specific task. This allows producing 

chips which are smaller, faster and consume less energy than a general-purpose 
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processor. The problem, which arises here for computer designers, is cost. If an 

ASIC is designed for a specified task and the task is slightly modified after the 

design is finished, then the ASIC will probably be incapable of solving the 

modified problem. If a modified ASIC can be developed to solve the new problem, 

the original hardware may be too highly customised to be reused in the new design. 

This will significantly increase the cost of the design and therefore cost of the final 

product. 

 

New advances in electronics allow for a third solution. This is a use of large, fast, 

Field Programmable Gate Arrays (FPGAs). These circuits can be modified at 

almost any point during not only development but during the use.  FPGAs consist 

of arrays of Configurable Logic Blocks (CLBs).  They are like switches with 

multiple inputs and single output and they are used to perform operations such as 

AND, NAND, OR, NOR, XOR, etc. While in most hardware device logical 

functions of gates cannot be modified, in FPGAs, however, sending signals to the 

chip can change logic functions and the connections between the CLBs. This means 

that FPGAs can be re-programmed continuously and perform wide range of tasks 

with high speed and lower cost. 

 

The structure of FPGA consists of a number of Configurable Logic Blocks and a 

programmable grid of connections that can link CLBs in any way depending on the 

design. The coarse-grained FPGAs have a small number of powerful CLBs; the 

fine-grained structure has many simple blocks. This means that a single element in 

a coarse-grained FPGA may be capable of adding or comparing two numbers, 

while one block in a fine-grained FPGA might be capable of comparing only two 

binary digits. 

 

Field Programmable Gate Arrays allow for easy programming of the chip. The re-

configuration times vary, with slower being able to reset within several seconds and 

the faster devices can be reset within one millisecond. The fast speed of re-

configuration creates potential for use in video communication systems and in the 

image recognition field. 
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Other fields, where configurable computing can be successful, are pattern matching 

and encryption systems. Pattern matching is used in tasks such as handwriting 

recognition, face identification, database retrieval, and automatic target recognition. 

In case of target recognition, which is a military application, the greatest issue is the 

rapid comparison of an input image to thousands of templates. Another application 

mentioned above is encryption systems. There are ASICs, which are designed for 

only one kind of encryption algorithm. Configurable Computing would allow 

changing keys and algorithms and it would therefore make the encryption more 

secure and more convenient. The DES algorithm implemented on FPGAs is using 

13,000-gate FPGA instead of 25,000-gate device previously required (Villasenor 

and Mangione-Smith 1997). These two examples show enormous flexibility of 

FPGAs. This, combined with increasing capacity and speed of FPGAs, can be used 

in digital communications, design automation and digital filtering for radar, while 

decreasing the cost of design. 

 

Configurable Computing is still under development. Current FPGAs can have up to 

100,000 logic elements and this will increase with further advances in technology. 

It is expected that by the end of the decade, FPGAs with a million logic elements 

will be developed. These will be used in highly complex communications and 

signal processing applications. Another possible application of FPGAs is Dynamic 

Instruction Set Computer (DISC). This would allow storing large number of circuit 

configurations, which could be activated by a programmer using a function call. 

Thanks to their flexibility, speed and overall cost, Field Programmable Gate Arrays 

provide lots of opportunity in many areas of computer science. 

 

1.3 Objectives and Outline of Research 

The aim of the composite arithmetic research is to implement the proposed standard 

and produce an Arithmetic Unit that could become a part of future CPUs. This 

thesis is the first research project on this topic. During the feasibility studies it was 

decided that the thesis should concentrate on the exact forms of the composite 

arithmetic. This would include integers and rational numbers. To further simplify 

the concept, integers would become a special case of rational numbers where the 

denominator is 1. The integer and rational separation would occur in further 

research.  
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The main emphasis of the thesis is to produce arithmetic circuits that will carry out 

operations on rational numbers. These can be then used in further research and 

serve as building blocks for the final Arithmetic Unit. To test the circuit designs, 

control unit needed to be developed. This was to be a simple, control circuit with 

limited number of operations that would be driven by a software driver. To store 

results internally, registers were required. These would store intermediate results of 

the calculations and the final outcomes that would be transferred to the PC. The 

transfer would be accomplished using an interface unit that would have circuitry to 

communicate with parallel port on the computer. Finally a small application 

program would be developed to produce results of arithmetic operations. 
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2.1 Composite Arithmetic Unit 

The Composite Arithmetic Unit is the main objective of the thesis. The arithmetic 

operations presented here will form a basis for future versions of the CAU and 

allow carrying out arithmetic operations on rational numbers. Sections 2.1.1 and 

2.1.2 describe Greatest Common Divisor and Casting Circuits respectively. Section 

2.1.3 contains Swap Circuit. Multiply and Divide operations are in Section 2.1.4 

and 2.1.5. Sections 2.1.6 and 2.1.7 describe Add and Multiply Circuits. The last two 

sections 2.1.8 and 2.1.9 describe Copy and Move Circuits. 

 

Figure 2. Simple Composite Arithmetic Machine (SCAM). The thick rectangle shows circuits of 
the CAU. 
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2.1.1 Greatest Common Divisor Circuit 

The function of the circuit is to calculate the Greatest Common Divisor (GCD) of 

numerator and denominator of a rational number. The outcome of this operation is 

a number, which can be used with the rational number to cast out the common 

factors and reduce the size of the number. 

 

The algorithm for finding GCD is based on the Euclid’ s Algorithm. There are 

several variations of the Euclid’ s Algorithm (including binary algorithm used in 

computing) but the following algorithm is a simple recursive function and can be 

easily implemented using hardware components. 

int gcd(int m, int n)  // m is numerator, n is denominator 

{ 

if (m < n)   // when numerator is greater than denominator 

        { 

        m = gcd (m, n - m); // make a recursive call with adjusted denominator 

        return m; 

        } 

else    if (m > n)   // when numerator is less than denominator 

                { 

                m = gcd (m - n, n); // make a recursive call with adjusted numerator 

                return m; 

                } 

        else 

                return m;   // When numerator equals denominator,  

// Stop and return the numerator (m), 

// Which holds the GCD of (m,n) 

} 
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Figure 3. GCD Circuit follows Euclid's Algorithm to find Greatest Common Divisor. 
 

Two input data buses are A [15:0] (denominator) and B [15:0] (numerator). The 

EN line enables the outputs and is used to generate the END signal. The output 

data buses are M [15:0] (denominator) and N [15:0] (numerator). The END line 

signals the end of operation and the result is contained in M bus. COMPARE unit 

checks if the two input buses are equal or A bus is less than B bus, or A bus is 

greater than B bus. If A bus equals B bus then EQ line goes high. It is then ended 

with EN line to set the line END to high. If A bus is less than B bus (LT line is 

high) then AND gates for the upper SUBTRACT unit are enabled. If A bus is 

greater than B bus (GT line is high) then AND gates for the lower SUBTRACT 

unit are enabled. Both outputs from the AND gates are put through OR gates and 

the final output is M and N buses, regulated using TRISTATE BUFFERS. 

2.1.2 Casting Circuit 

Casting Circuit is used to cast out the common factors. The GCD input is 

calculated using the circuit in Section 2.1.1. This value is stored in a register and 

then fetched into the casting circuit. Casting out common factors allows 

decreasing the size of the numerator and denominator and still maintaining the 

precision. It simplifies calculation just like in normal paper-and-pencil rational 

arithmetic. 
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The algorithm for casting out common factors uses simple subtraction of GCD 

from numerator and denominator until they reach 0. The count of subtractions for 

each number produces the new numerator and denominator. This is equivalent to 

dividing the rational number by the GCD. 

void cast(int& m, int& n, int gcd) // m is the numerator, n is the denominator 

{ 

int count1=0;   // counts subtractions of the numerator 

int count2=0;   // counts subtraction of the denominator 

while (m > 0)   // while loop for the numerator 

{ 

        count1 = count1 + 1; // add one to the counter 

        m = m - gcd;  // subtract the GCD from the numerator 

} 

while (n > 0)   // while loop for the denominator 

{ 

        count2 = count2 + 1; // add one to the counter 

        n = n - gcd;  // subtract the GCD from the denominator 

} 

m = count1;   // The new numerator is set to the count of subtractions 

n = count2;   // The new denominator is set to the count of subtractions 

} 
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Figure 4. Cast Circuit casts out common factors of two 16-bit numbers. 
Three data inputs are A [15:0] (denominator), B [15:0] (numerator) and GCD 

[15:0] (GCD of A and B calculated earlier). The input lines are EN (enable), CLK 

(clock), and LOAD (load counter). The data outputs are M [15:0] (denominator) 

and N [15:0] (numerator). The output line is END, which signifies the end of 

operation. The description given is for A bus only as B bus is identical. A bus is 

put through the COMPARE units with GCD bus. While the output of the 

COMPARE is low (meaning GCD is less than A bus) the 16-BIT COUNTER is 

enabled. Otherwise it is disabled. The COMPARE output line also provides 

feedback to the END line and it manipulates the MUX selector. SUBTRACT 

units subtract GCD bus from A bus. The output of the SUBTRACT and 16-BIT 

COUNTER are put through the MUX selector. If the COMPARE output line is 

low the SUBTRACT output goes through, and if it is high the 16-BIT COUNTER 

output goes through. The final output M [15:0] is put through the TRISTATE 
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BUFFER. The B bus operates on the same principle and the output goes to N 

[15:0]. DEFAULT COUNTER SETTING lines are set of GND and VCC 

connections to set up the initial counter (using LOAD line). 

2.1.3 Swap Circuit 

This simple circuit swaps numerator and denominator to produce the reciprocal of 

the original number. The result of this operation is applied in Division. 

 

 

Figure 5. Swap Circuit is used in conjunction with Division operation. 
The input data buses are A [15:0](denominator) and B [15:0](numerator). These 

are put through tristate buffers using EN line to activate the buffers. Then A bus is 

tied to N [15:0] (numerator) and B bus is tied to the M [15:0] (denominator). The 

final output line is END, which has been inverted twice to strengthen the signal. 
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2.1.4 Multiply Circuit 

The multiply circuit allows multiplication of two rational numbers by multiplying 

the numerators and denominators separately. 

 

 

 

Figure 6. Multiply is the most important circuit because it is used with Division, Addition and 
Subtraction operations. 

The design for this circuit is based on Hwang’ s algorithm (Hwang 1979). The two 

input buses are A [15:0] (multiplicand) and B [15:0] (multiplier). The input lines 

are LOAD (loads the counter), EN (enable line), CLK (clock line). The output 

buses are LOW [15:0] (lower 16-bits of the result) and HIGH [15:0] (higher 16-

bit of the result). There are three registers involved in the circuit. The first two are 

internal. These are MR (Multiplier Register) and PR (Partial product Register). 

The third register is a register from the Register Unit containing the Multiplicand 

(A bus). Also 16-BIT ADDER is required and 8-BIT COUNTER. The result of 

the multiplication is a 32-bit number, which is stored in LOW and HIGH buses, 

corresponding to 16 lower bits and 16 higher bits respectively. 8-BIT COUNTER 
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is used to keep track of the number of additions and to signal the completion of 

operation by setting the END line to high. Each clock cycle there is number of 

operations, which occur. First Multiplicand A is ANDed with LSB of MR. This 

result is added to the PR (initially zero). The 15 higher bits of the sum are put into 

15 lower bits of the PR. The LSB of the sum is right shifted into MR and becomes 

the MSB of the MR and Cout from the ADDER is put into the MSB of the PR. 

The 8-BIT COUNTER controls the number of right shifts of the MR, so at the end 

the MR contains 16 lower bit of the result. The Multiplier B that was originally in 

the MR is pushed towards its right end. 

2.1.5 Divide Circuit 

The divide circuit is in fact a logical operation carried out by the software driver. 

It is used to multiply a number with a reciprocal of another to give a result of 

rational division. More detailed explanation is contained in Chapter 3, where the 

division operation is simulated. 

2.1.6 Add Circuit 

This circuit performs addition of numerators of two rational numbers. The 

denominators must be the same in order to produce the correct results. This is 

achieved using the multiply circuit. 

 

 

Figure 7. Add Circuit. 
The three data inputs are A [15:0], B [15:0] and LOW [15:0]. A and B buses are 

numerators of the added numbers, while LOW bus is the common denominator. 
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The input line EN enables the whole circuit. The circuit works by adding A and B 

and sending the result to N [15:0] via TRISTATE buffer. The LOW bus goes 

straight to the M [15:0] output bus and is enabled using TRISTATE buffer. The 

output line END has been inverted twice to strengthen the signal. 

2.1.7 Subtract Circuit 

The subtraction circuit performs a function similar to the addition circuit by 

subtracting the numerators. 

 

 

Figure 8. Subtract Circuit. 
The three data inputs are A [15:0], B [15:0] and LOW [15:0]. A and B buses are 

numerators of the subtracted numbers, while LOW bus is the common 

denominator. The input line EN enables the whole circuit. The circuit works by 

subtracting B from A and sending the result to N [15:0] via TRISTATE buffer. 

The LOW bus goes straight to the M [15:0] output bus and is enabled using 

TRISTATE buffer. The output line END has been inverted twice to strengthen the 

signal. 

 

 

 

 

 

 



Chapter 2: Simple Composite Arithmetic Machine Design 

2.1.8 Copy Circuit 

This circuit allows copying a rational number from one register into another 

register. 

 

 

Figure 9. Copy Circuit. 
The inputs are A [15:0] (denominator), B [15:0] numerator and EN line (enable). 

The two input buses are put through a pair of TRISTATE buffers and are fed to 

the two output buses: M [15:0] and N [15:0]. The TRISTATE buffers are enabled 

by the EN line and the output line END is inverted twice to strengthen the signal. 
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2.1.9 Move Circuit 

This circuit copies denominator of a rational number and puts it into a new 

register as numerator and denominator (value of 1). It is then used with addition. 

 

 

Figure 10. Move Circuit. 
The inputs are A [15:0] (denominator) and EN line (enable). The input bus is put 

through a pair of TRISTATE buffers and is fed to the two output buses: M [15:0] 

(denominator) and N [15:0] (numerator). The TRISTATE buffers are enabled by 

the EN line and the output line END is inverted twice to strengthen the signal.
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2.2 Register Unit 

The Register Unit is based on logical design of Tanenbaum (Tanenbaum 1990). 

The unit contains 9, 32-bit general-purpose registers (non-shifting). There is two 

input buses (CL [15:0] and CH [15:0]) and four output buses (AL [15:0], AH 

[15:0], BL [15:0] and BH [15:0]). The output buses are buffered from the main bus 

using tristate buffers. The unit can be upgraded to accommodate up to 16 registers. 

Section 2.2.1 describes the 32-bit register in detail and Section 2.2.2 explains 

Register Address Decoding. 

 

Figure 11. Register Unit. 
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2.2.1 32-bit Register Circuit 

The 32-bit Register is used to store a rational number. Lower 16 bits are allocated 

for the denominator and higher 16 bits are allocated for the numerator. 

 

 

Figure 12. 32-bit Register consists of two 16-bit Registers. 
 

The register has two data inputs. The first one is DA bus and represents the 

denominator (lower 16 bits). The second data input is DB bus and it represents 

the numerator (higher 16 bits).  Input line CLR clears the register, CE line enables 

the clock and C line is a clock, which is edge activated. The outputs consist of two 

data buses. The first one is QA (denominator) and the second one QB 

(numerator). 
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2.2.2 Register Address Decoding Circuit 

The Address Decoding Circuit is used to enable and disable I/O operations within 

the Register Unit according to the data from the Control Unit. These operations 

allow for the data to be stored in registers or data can be retrieved from registers 

and put on the main bus. Figure 11 show the decoding circuits as integral part of 

the Register Unit. 

The Address-Decoding Unit is a set of three identical 4-to-16 DECODERS. The 

three lines that enable each Decoder are ASELECT, BSELECT and CSELECT. 

These are sent from the Control Unit (Section 2.3.2). The three input buses are 

ABUS [3:0], BBUS [3:0] and CBUS [3:0]. These buses contain a number of the 

register to be used. CBUS is used for input purposes. The output of the CBUS 

Decoder enables the registers and data is stored during the clock cycle. The ABUS 

and BBUS are used for controlling output from the registers to their respective 

buses. They enable (or disable) the TRISTATE BUFFERS depending on the value 

of ABUS and BBUS. 
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2.3 Control Unit 

Control Circuit is composed of two units: Control Unit and Feedback Unit. 

Feedback Unit is described in detail in Section 2.3.3. The Control Unit is 

responsible for interpreting the Control Word and enabling specific parts of the 

system. It can enable arithmetic operations, input to the Register Unit and output 

from the Register Unit. If the Control Unit is idle the data from the Parallel Port 

Interface can be accepted. There is one input data bus and it is BUS [31:0]. It 

contains Control Word. The following Figure shows the breakdown of the Control 

Word.  

 

Figure 13. SCAM's Control Word. 
The single lines are CNTL (from the I/O Interface Unit), E (enables DECODER) 

and FEEDBACK line (from the Feedback Unit). The three output buses are ABUS 

[3:0], BBUS [3:0] and CBUS [3:0]. These carry the register number (4-bits) that 

will be used during an arithmetic operation. The output lines are divided into 

Operation Lines and Register Selection Lines. Operation Lines consist of NOP, 

MOVE, GCD, CAST, SWAP, MUL, DIV, ADD, SUB, COPY, LOAD and 

STORE. These correspond to the operations carried out by the SCAM. The 

Register lines are ASELECT, BSELECT and CSELECT. They indicate which data 

bus will be enabled for a particular operation. The Section 2.3.1 describes how the 

Operation Decoding works and Section 2.3.2 describes Register Selection Circuit. 

Section 2.3.3 explains the Feedback Unit as mentioned above. 
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Figure 14. Control Unit. 
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2.3.1 Operations Decoding Circuit 

The Operation Decoding Circuit is used to enable the Operation Lines based on 

the Control Word. Bits 18 to 21 of the Control Word are reserved for the opcode 

and are used here. 

The BUS [21:18] carries the opcode. It is fed into 4-to-16 DECODER to produce 

a maximum number of 16 operations. At the moment 11 operation slots are used 

with 5 spares. The DECODER produced outputs are then ANDed with the 

FEEDBACK line to produce the right timing. Only NOP operation is not ANDed 

with FEEDBACK. The DECODER is enabled by E line, which is always high. 

The E line also provides the RESET line with an inverted signal (always low). 

This line is made for future extensions where E line will be connected to some 

feedback unit allowing resetting the registers. 

 

2.3.2 Register Selection Circuit 

Register Selection Circuit allows for the appropriate registers to be selected based 

on the Control Word. The selection of which register to be used is done using 

ABUS [3:0], BBUS [3:0] and CBUS [3:0]. These correspond to the BUS [3:0], 

BUS [7:4] and BUS [11:8], which are parts of the Control Word bus. This output 

is filtered using BUFFERS. To select which data bus will be used ASELECT, 

BSELECT and CSELECT lines are used. The enable the right data paths in the 

Register Unit (Section 2.2.2). ASELECT is created by ORing all operations that 

use A bus and ANDing the output with FEEDBACK line. CSELECT is done in 

the same fashion. BSELECT line contains only one line (Multiply) and it is 

ANDed with FEEDBACK. (Note: CAST operation requires B bus and the new 

line has been added to the BSELECT in the later version of the circuit. The new 

version has MUL and CAST lines ORed and the result is ANDed with 

FEEDBACK line.) 
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2.3.3 Feedback Unit 

Feedback circuit is used to gain information from executing operations (Add, Sub, 

Mul, Div, etc.) about the state of completion (executing or finished). These inputs 

are combined and a single feedback line is sent to the Control Unit (Section 2.3.1 

and 2.3.2). 

 

Figure 15. Feedback Unit. 
There are 12 input lines in the Feedback Unit. These are MOVE, NOP, GCD, CAST, 

MUL1, MUL2, SWAP, ADD, SUB, COPY, LOAD and STORE. Most of these lines 

come directly from the corresponding arithmetic circuits. Line NOP comes from the 

Control Unit and is used for I/O control. The MUL1 and MUL2 lines come from the 

two multiply circuits, one for numerator, the other for denominator. They are ANDed 

together to give only one line. All other inputs are ORed together and the resulting 

line FEEDBACK is sent to the Control Unit.
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2.4 Input/Output Interface Unit 
 

2.4.1 Parallel Port Interface 

The Parallel Port Interface allows SCAM to communicate with a PC. It allows for 

the Control Word to be received, followed by a Data Word. The I/O Unit 

transforms series of eight 8-bit inputs into a single 32-bit input and two 16-bit 

inputs. Currently there are some timing problems when integrated with the rest of 

the system and the design of the output part is postponed, until these problems can 

be resolved. 

 

Figure 16. Input/Output Interface Unit. 
The data input is PARALLELIN [8:0]. It contains data from the parallel port. 

Lines EN (enable), C1 and C2 (clocks) are used to control the different part of the 

circuit. The outputs are CNTLWORD [31:0] (Control Word), LOW [15:0] 

(denominator), HIGH [15:0] (numerator) and CNTL lines, which goes back to the 

Control Unit. 
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2.4.2 Load Circuit 

Load Circuit accepts data from the Parallel Port Interface and sends it onto the 

main bus to be stored in a register. 

 

Figure 17. Load Circuit 
Three inputs are A [15:0] (denominator), B [15:0] (numerator) and EN (enable 

line). The outputs are M [15:0](denominator), N [15:0] (numerator) and END line. 

The input from the Parallel Port Interface is fed through A and B and is put 

through the TRISTATE buffers. These are enabled using the EN line and the 

outputs M and N are put onto the main bus. The output line END is inverted twice 

to strengthen the signal. 
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2.4.3 Store Circuit 

Store Circuit accepts data from the Register Unit and sends it to the Parallel Port 

Interface. 

 

Figure 18. Store Circuit. 
Three inputs are A [15:0] (denominator), B [15:0] (numerator) and EN (enable 

line). The outputs are M [15:0](denominator), N [15:0] (numerator) and END line. 

The input from the Register Unit is fed through A and B and is put through the 

TRISTATE buffers. These are enabled using the EN line and the outputs M and N 

are sent to the Parallel Port Interface. The output line END is inverted twice to 

strengthen the signal. 
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3.1 Composite Arithmetic Unit 

 

3.1.1 Greatest Common Divisor Circuit 

The simulation of the GCD Circuit is part of the Simulation 1 (Appendix B.3). 

The GCD Circuit takes contents of a register, processes them and returns data to 

the same register. 

 

Figure 19. GCD Simulation. 
The first two cycles are for the LOAD and COPY commands. The GCD Circuit 

starts at 200ns. The inputs are H2.QA15 and H2.QB15 and they are 0Ch and 03h 

respectively. The GCD continues to decrement the larger number (0Ch to 09h, to 

06h, to 03h) until it equals with the other number. Then the feedback line goes 

high and execution is finished. The result is contained in H2.QA15. The whole 

operation is done in four clock cycles. The number of clock cycles for GCD 

depends on the size of the numbers and the difference between the two numbers. 
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3.1.2 Casting Circuit 

The Casting Circuit simulation is part of the Simulation 1 (Appendix B.3). The 

Casting Circuit takes contents of two registers, processes them and returns data to 

the first of the registers. 

 

Figure 20. Casting Simulation. 
The casting operation starts at 600ns (after GCD). The three inputs are H1.QA15, 

H1.QB15 AND H2.QA15 (GCD). The Casting Circuit subtracts GCD from both 

numbers until they reach zero. Once both numbers reach zero, the circuit returns 

the count of the subtractions for the respective numbers. These are stored back 

into H1.QA15 and H1.QB15. The operation is done in five cycles but the number 

of cycles depends on the size of the numbers and the value of the GCD. 
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3.1.3 Swap Circuit 

This is a very simple circuit and is part of Simulation 3 (Appendix B.5). It is used 

for Division in conjunction with Multiply Circuit. The two inputs are simply 

swapped and put in the same register. 

 

Figure 21. Swap Simulation. 
The initial numbers are loaded into H2.QA15 and H2.QB15. In the third cycle (at 

200ns) the SWAP command is carried out. The numbers are swapped and put 

back into H2.QA15 and H2.QB15. The SWAP command is carried out during one 

clock cycle. 
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3.1.4 Multiply Circuit 

The Multiply Circuit is part of Simulation 2 (Appendix B.4). It multiplies two 

registers and puts the output in the third register. Only the lower 16-bits are used 

within this CAU, which means that multiplication will work for 8-bit numbers 

only. For example, 8-bit numerator and 8-bit denominator multiplied by 8-bit 

numerator and 8-bit denominator will produce 16-bit numerator and 16-bit 

denominator. The circuit design (Section 2.1.4) incorporates the 32-bit extension 

but it is not used within the SCAM design. 

 

Figure 22. Multiply Simulation. 
The MUL operation starts at 200ns. The four inputs are H1.QA15, H1.QB15, 

H2.QA15 and H2.QB15. The outputs H3.QA15 and H3QB15 contain partial sums 

during the calculation and they contain the final result at the end of the operation. 

The multiply operation is controlled by a counter. For a 16-bit multiplication the 

counter counts over 17 clock cycles. The first clock cycle is used to set the 

internal registers within the Multiply Circuit, while the other 16 are used for 

calculation of partial sums and for internal shift of registers. 
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3.1.5 Divide Circuit 

The Divide Circuit is very similar to the Multiply Circuit but has SWAP operation 

carried out before it. More details can be found in the Appendix B.5 (Simulation 

3). 

 

Figure 23. Divide Simulation. 
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3.1.6 Add Circuit 

The Add Circuit is part of the Simulation 4 (Appendix B.6). It adds numbers from 

two registers and puts the result in another register. This circuit requires prior use 

of the Multiply Circuit to make the denominators the same for both numbers. 

 

Figure 24. Add Simulation. 
Before ADD operation can be carried out, MUL operations are carried out. The 

first one starts at 400ns and finishes at 2.1us. Then there is a NOP operation 

carried out to allow resetting of the multiplication counter. The second MUL 

operation starts at2.2us and finishes at 3.9us. Then the ADD operation is carried 

out over a period of one cycle. The input buses are H6.QB15, H13.QB15 

(numerators) and H13.QA15 (denominator). The output is directed to H1.QA15 

and H1.QB15. The whole addition operation (including the two multiplications) 

takes 36 clock cycles. 
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3.1.7 Subtract Circuit 

The Subtract Circuit is part of the Simulation 5 (Appendix B.7). It is very similar 

to the Add Circuit, except subtraction is done not addition. This circuit also 

requires prior use of the Multiply Circuit to make the denominators the same for 

both numbers. 

 

Figure 25. Subtract Simulation. 
This operation works on the same basis as the ADD operation and uses the same 

set of registers. The whole operation (including two multiplications) takes 36 

clock cycles. 
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3.1.8 Copy Circuit 

The Copy circuit is part of the Simulation 1 (Appendix B.3). It copies contents of 

one register into another. 

 

Figure 26. Copy Simulation. 
The first clock cycle is taken by the LOAD operation. The second cycle is the 

COPY operation. The inputs are H1.QA15 and H1.QB15. These are simply 

copied into another register H2. This operation takes one clock cycle. It is usually 

used in combination with GCD and CAST operations. 
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3.1.9 Move Circuit 

The Move Circuit is part of Simulations 4 and 5 (Appendix B.6 and B.7). It moves 

the denominator from one register and puts it into the numerator and denominator 

of another register. This is then used in conjunction with Add Circuit to make the 

denominators the same for both numbers. 

 

Figure 27. Move Simulation 
After two LOAD operations are carried out the two MOVE operation take place. 

Contents of H1.QA15 are transferred to H3.QA15 and H3.QB15. In the second 

MOVE operation contents of H2.QA15 are transferred to H4.QA15 and 

H4.QB15. Each MOVE operation takes one clock cycle. The MOVE operation is 

used in combination with Add and Sub operations. 
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3.2  Register Unit 
 

3.2.1 32-bit Register Circuit 

The 32-bit Registers store data from the CAU. The registers are enabled using 

Control Unit (Section 3.3) and the third clock sub-cycle. All operations of the 

CAU use registers, plus LOAD and STORE operations. 

 

Figure 28. 32-bit Register Simulation. 
This simulation represents GCD operation. The third cycle starts at 200ns. Data 

from the GCD Circuit is fetched to H1.DA15 and H1.DB15. The clock for the 

register is connected to the third sub-cycle clock and is enabled at 250ns. During 

that time line $I1.D1 from the Register Decoder for the C bus is enabled to accept 

any input. As the clock changes from low to high (edge trigger), the input data is 

stored in the register. The result of that can be seen on H1.QA15 and H1.QB15 

buses. This principle applies to all other registers. 



Chapter 3: Simple Composite Arithmetic Machine Simulation 

3.2.2 Register Address Decoding Circuit 

Register Address Decoding Circuit allows selecting right registers for input and 

output. For A and B Bus the decoding enables or disables Tristate Buffers and for 

C bus the decoding enables or disables registers. 

 

Figure 29. Register Address Decoding Simulation. 
This simulation is during GCD operation. Register numbers are selected using 

U10.ABUS3, U10.BBUS3 and U10.CBUS3 signals. In this case ABUS and 

CBUS are set to 1, which means GCD will receive data from Register R1 and will 

store results into R1. $I17.D1 is High indicating that Tristate Buffer for A bus 

Register R1 is to be enabled. For contrast $I17.D2 denoting R2 on A bus is set to 

Low. $I18.D1 and $I18.D2 are Low because B bus is not used in this operation. 

$I1.D1 is set to High meaning that the data will be stored into R1 on C bus. 

$I1.D2 is set to Low to disable R2 for input from C bus. 
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3.3  Control Unit 
 

3.3.1 Operations Decoding Circuit 

Operations Decoding Circuit allows the Control Unit to interpret the Control 

Word and enable a specific operation. 

 

Figure 30. Operations Decoding Simulation. 
This simulation is of GCD operation. The GCD operation starts at 100ns. The 

Control Word is 00040101. The byte 04h specifies the operation 00[0001]00, 

where the middle 4 bits correspond to the actual operation. When the 4 bits 0001 

are put through the Operations Decoder, GCD line is enabled. Because the 

feedback line is Low, its inverse is ANDed with GCD line to provide the final 

output enabling the GCD Circuit. At that time LOAD line goes Low. 

 

 



Chapter 3: Simple Composite Arithmetic Machine Simulation 

3.3.2 Register Selection Circuit 

Register Selection Circuit interprets the Control Word and enables the right set of 

registers for the given operation. 

 

Figure 31. Register Selection Simulation. 
This is a simulation of GCD operation. The cycle starts at 100ns. The Control 

Word is 00040101. This means that opcode is 0001, the output register is R1 and 

input register is also R1. To set the right register number U10.ABUS and 

U10.CBUS are set to 1. CBUS is for register input and ABUS is for register 

output. U10.ASELECT and U10.CSELECT are affected by the opcode 0001. For 

the GCD operation they are set to High (see Section 2.3.2). The U10.BSELECT 

line is set to Low. These lines and buses are set to these values until the 

U10.FEEDBACK line goes High. Then they are reset for a new operation. 
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3.3.3 Feedback Unit 

The Feedback Unit informs the Control Unit about completion of a specific 

operation. The END line from all circuits goes to the Feedback Unit, where they 

are processed and a single line is sent back to the Control Unit. 

 

Figure 32. Feedback Simulation. 
This is a simulation of LOAD operation. During the first clock cycle (0-100ns) the 

Load Circuit sets its END line to High. This signal goes to H22.LOAD line. Other 

lines that input the Feedback Unit are set to Low but the H22.LOAD sets the 

Feedback line to high. The U10.FEEDBACK line, which goes into the Control 

Unit is a result of ANDing the Feedback line from the Feedback Unit and 4th 

clock sub-cycle. 
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3.4  Input/Output Interface Unit 
 

3.4.1 Parallel Port Interface 

No simulations have been performed for this unit. When it became apparent that 

the FPGA device will not be obtained on time, main effort was put on fine tuning 

the arithmetic circuits. While this circuit works when tested independently, it has 

several timing problems when integrated with the rest of the device. Also the 

design of output to the parallel port wasn’ t accomplished. However this circuit 

can give some idea to future researchers on how to do the interfacing with PC. 

Help on this topic was very hard to obtain and this circuit may be of help. 

3.4.2 Load Circuit 

The Load Circuit is part of all Simulations in Appendix B but the most detail is 

provided in Simulation 1 (Appendix B.3). The circuit allows receiving data from 

the parallel port and putting it in one of the registers. 

 

Figure 33. Load Simulation. 
The two inputs for this operation are H17.A15 and H17.B15.  Contents of the H17 

inputs are put into the register H1 (H1.QA15 and H1.QB15). This operation takes 

one clock cycle. 
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3.4.3 Store Circuit 

The Store Circuit is part of all Simulations in Appendix B but the most detail is 

provided in Simulation 1 (Appendix B.3). The circuit allows receiving data from a 

register and sending it to the parallel port. 

 

Figure 34. Store Simulation. 
The two inputs for this operation are H1.QA15 and H1.QB15.  Contents of the H1 

bus are stored in a local register used by the Store Circuit and put on the H26 bus  

(H26.M15 and H26.N15). Data then becomes available to the parallel port. This 

operation takes one clock cycle. 
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4.1 Results 

The results obtained suggest that the design of the arithmetic circuits is correct. The 

most important thing however is controlling the end of operation, especially for 

circuits like MUL, GCD and CAST. Biggest difficulties were with combining the 

Control Unit with the Interface Unit and handling of feedback loops. Also timing 

for the whole circuit had to be changed frequently to achieve the best sequence for 

the events. The difficulty with obtaining the FPGA device forced to delay the 

implementation significantly and in the end it could not be carried out. It also 

delayed the design of the Interface Unit, which works independently, but it has 

several timing faults that prevented it from final integration with the rest of the 

device. The implementation of the device could be part of another project or results 

of this thesis could be incorporated in a further study on exact forms. 

4.2 Relevance of the Thesis 

The thesis is the first type of research in this field. While the proposal for 

Composite Arithmetic has been published (Holmes, 1997a), work is required to 

implement and test the concept. The project dealt with exact forms of the 

Composite Arithmetic. Integer numbers are special case of rational number with 

denominator 1. This was done to fit integers into the scope of the project. The thesis 

will form a base for investigating the exact forms. The circuits completed can be 

easily incorporated into other designs and control process will serve as an example 

of how to control the CAU. A paper has also been submitted to IEEE conference 

(2000 IEEE SoutheastCon) in Nashville, Tennessee, USA, in hope of introducing 

the concept to other researchers, and getting some feedback and help on this topic. 

Successful submission could result in creating new projects in the field of computer 

arithmetic and could benefit to the University of Tasmania. 

4.3 Further Research 

Further Research in this field will involve exact forms, as mentioned above. This 

will involve separating integers from the rational numbers by addition of tags. Also 

development of the Long Accumulator will be necessary, as it is an important part 

of the overall concept. The next step would be development of the inexact forms. 

These require different circuits from the exact forms and different notation. Once 

both forms are done they have to be integrated into the CAU. Significant changes 

may need to be made to both forms to put them together. Also a device to 

automatically select the right form will be needed and this will be getting feedback 
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from the exact part of the CAU. Once the CAU is designed memory storage and 

display issues will need to be solved. This will require memory management device 

and software driver that will transform the data from register form into appropriate 

display form. Only then the system will be fully capable of performing Composite 

Arithmetic operations.
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Figure 35. SCAM Diagram showing main components. 

 
Main Components: 
Composite Arithmetic Unit 
Control Unit 
Register Unit 
Feedback Unit 
Interface Unit 
Other Components: 
Bus Latches 
System Clocks 
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Appendix B: Simulations 
1. CONTROL WORD 
Control Word provides 32-bit data to the SCAM device about the next instruction to be executed. The 
higher 16 bits represent the opcode of the operation to be carried out. In fact higher 8 bits are always 0 
and only lower 8 bits are used. The lower 16 bits of the control word tell which register is to be used. 
Starting from the highest nibble down, the first nibble is always zero, the second nibble denotes the C 
Bus, then third and fourth is for B Bus and A Bus respectively. 
 
Operation OPCODE Registers Comment 
NOP  0000  0000 
GCD  0004  0X0X  Get contents of X and put it back into X 
CAST  0008  0XYX  Get contents of X and Y and put it back into X 
SWAP  000C  0X0X  Get contents of X and put it back into X 
MUL  0010  0XYZ  Multiply Z by Y and put result into X 
DIV      Done using SWAP and MUL operations 
ADD  0018  0XYZ  Add Z to Y and put result into X  
SUB  001C  0XYZ  Subtract Z from Y and put result into X 
MOVE                 0030  0X0Y  Get contents of Y and put it back into X 
COPY  0034  0X0Y  Get contents of Y and put it back into X 
LOAD  0038  0X00  Put data into X 
STORE               003C  000X  Get contents of X 
 
 
2. CLOCK SIMULATION 

SEQUENCE: Nil 
INPUTS: Nil 
OUTPUTS: 
$I28.IPAD – Clock 1 
$I25.IPAD – Clock 2 
$I26.IPAD – Clock 3 
$I27.IPAD – Clock 4 
TEST DATA IN: Nil 
TEST DATA OUT: Nil 

 

Figure 36. Clock Simulation. 

Clock Timings: 
Clock 1 – 25ns High, 75ns Low 
Clock 2 – 25ns Low, 25ns High, 50ns Low 
Clock 3 – 50ns Low, 25ns High, 25ns Low 
Clock 4 – 75ns Low, 25ns High 
Clock Functions: 
Clock 1 – Operates the latches that latch outputs from the Register Unit. 
Clock 2 – Provides clock cycle for the Composite Arithmetic Unit. 
Clock 3 – Provides clock cycle for the Register Unit. 
Clock 4 – Operates the Feedback Unit. 
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3. SIMULATION ONE – GCD AND CAST 

SEQUENCE: Load R1, Copy R1 to R2, GCD R2, Cast R1 and R2 to R1, Store R1 
INPUTS: 
U10.CNTL – Control Signal from I/O Interface 
U10.FEEDBACK – Feedback signal from the Feedback Unit 
U10.BUS31 – Control Word 
H17.A15 – Denominator of the input number 
H17.B15 – Numerator if the input number 
OUTPUTS: 
$I28.IPAD – Clock 1 
$I25.IPAD – Clock 2 
$I26.IPAD – Clock 3 
$I27.IPAD – Clock 4 
U10.LOAD – Line enabling Load operation 
U10.COPY – Line enabling Copy operation 
U10.GCD – Line enabling GCD operation 
U10.CAST – Line enabling Cast operation 
U10.STORE – Line enabling Store operation 
U10.ABUS3 – Register number on A bus 
U10.BBUS3 – Register number on B bus 
U10.CBUS3 – Register number on C bus 
U10.ASELECT – Select line for A bus 
U10.BESLECT – Select line for B bus 
U10.CSELECT – Select line for C bus 
H26.M15 – Denominator of the output number 
H26.N15 – Numerator of the output number 
H1.QA15 – Denominator output of the Register R1 
H1.QB15 –Numerator output of the Register R1 
H2.QA15 – Denominator output of the Register R2 
H2.QB15 – Numerator output of the Register R2 
TEST DATA IN: 
Rational Number 3/12 
TEST DATA OUT: 
Rational Number: 1/4 

 

Figure 37. Simulation One. 
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4. SIMULATION TWO – MUL 
SEQUENCE: Load R1, Load R2, Mul R1 and R2 to R3, Store R3 
INPUTS: 
U10.CNTL – Control Signal from I/O Interface 
U10.FEEDBACK – Feedback signal from the Feedback Unit 
U10.BUS31 – Control Word 
H17.A15 – Denominator of the input number 
H17.B15 – Numerator if the input number 
OUTPUTS: 
$I28.IPAD – Clock 1 
$I25.IPAD – Clock 2 
$I26.IPAD – Clock 3 
$I27.IPAD – Clock 4 
U10.LOAD – Line enabling Load operation 
U10.MUL – Line enabling Multiply operation 
U10.STORE – Line enabling Store operation 
H26.M15 – Denominator of the output number 
H26.N15 – Numerator of the output number 
H1.QA15 – Denominator output of the Register R1 
H1.QB15 –Numerator output of the Register R1 
H2.QA15 – Denominator output of the Register R2 
H2.QB15 – Numerator output of the Register R2 
H3.QA15 – Denominator output of the Register R3 
H3.QB15 – Numerator output of the Register R3 
TEST DATA IN: 
Rational Number: 3/2 
Rational Number: 7/5 
TEST DATA OUT: 
Rational Number: 21/10 (15/0A in Hex) 

 

Figure 38. Simulation Two. 
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5. SIMULATION THREE – DIV 

SEQUENCE: Load R1, Load R2, Swap R2, Mul R1 and R2 to R3, Store R3 
INPUTS: 
U10.CNTL – Control Signal from I/O Interface 
U10.FEEDBACK – Feedback signal from the Feedback Unit 
U10.BUS31 – Control Word 
H17.A15 – Denominator of the input number 
H17.B15 – Numerator if the input number 
OUTPUTS: 
$I28.IPAD – Clock 1 
$I25.IPAD – Clock 2 
$I26.IPAD – Clock 3 
$I27.IPAD – Clock 4 
U10.SWAP – Line enabling Swap operation 
U10.MUL – Line enabling Multiply operation 
H26.M15 – Denominator of the output number 
H26.N15 – Numerator of the output number 
H1.QA15 – Denominator output of the Register R1 
H1.QB15 –Numerator output of the Register R1 
H2.QA15 – Denominator output of the Register R2 
H2.QB15 – Numerator output of the Register R2 
H3.QA15 – Denominator output of the Register R3 
H3.QB15 – Numerator output of the Register R3 
TEST DATA IN: 
Rational Number: 3/2 
Rational Number: 7/5 
TEST DATA OUT: 
Rational Number: 15/14 (0F/0E in Hex) 

 

Figure 39. Simulation Three. 
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6. SIMULATION FOUR – ADD 

SEQUENCE: Load R1, Load R2, Move R1 to R3, Move R2 to R4, Mul R1 and R4 to R12, Mul R2 
and R3 to R13, Add R12 and R13 to R1, Store R1 
INPUTS: 
U10.CNTL – Control Signal from I/O Interface 
U10.FEEDBACK – Feedback signal from the Feedback Unit 
U10.BUS31 – Control Word 
H17.A15 – Denominator of the input number 
H17.B15 – Numerator if the input number 
OUTPUTS: 
$I28.IPAD – Clock 1 
$I25.IPAD – Clock 2 
$I26.IPAD – Clock 3 
$I27.IPAD – Clock 4 
U10.LOAD – Line enabling Load operation 
U10.MOVE – Line enabling Move operation 
U10.MUL – Line enabling Multiply operation 
U10.ADD – Line enabling Add operation 
U10.STORE – Line enabling Store operation 
H26.M15 – Denominator of the output number 
H26.N15 – Numerator of the output number 
H1.QA15 – Denominator output of the Register R1 
H1.QB15 –Numerator output of the Register R1 
H2.QA15 – Denominator output of the Register R2 
H2.QB15 – Numerator output of the Register R2 
H3.QA15 – Denominator output of the Register R3 
H3.QB15 – Numerator output of the Register R3 
H4.QA15 – Denominator output of the Register R4 
H4.QB15 – Numerator output of the Register R4 
H6.QA15 – Denominator output of the Register R12 
H6.QB15 – Numerator output of the Register R12 
H13.QA15 – Denominator output of the Register R13 
H13.QB15 – Numerator output of the Register R13 
TEST DATA IN: 
Rational Number: 2/3 
Rational Number: 5/7 
TEST DATA OUT: 
Rational Number: 29/21 (1D/15 in Hex) 
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Figure 40. Simulation Four. 
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7. SIMULATION FIVE – SUB 
SEQUENCE: Load R1, Load R2, Move R1 to R3, Move R2 to R4, Mul R1 and R4 to R12, Mul R2 
and R3 to R13, Sub R13 from R12 to R1, Store R1 
INPUTS: 
U10.CNTL – Control Signal from I/O Interface 
U10.FEEDBACK – Feedback signal from the Feedback Unit 
U10.BUS31 – Control Word 
H17.A15 – Denominator of the input number 
H17.B15 – Numerator if the input number 
OUTPUTS: 
$I28.IPAD – Clock 1 
$I25.IPAD – Clock 2 
$I26.IPAD – Clock 3 
$I27.IPAD – Clock 4 
U10.LOAD – Line enabling Load operation 
U10.MOVE – Line enabling Move operation 
U10.MUL – Line enabling Multiply operation 
U10.SUB – Line enabling Sub operation 
U10.STORE – Line enabling Store operation 
H26.M15 – Denominator of the output number 
H26.N15 – Numerator of the output number 
H1.QA15 – Denominator output of the Register R1 
H1.QB15 –Numerator output of the Register R1 
H2.QA15 – Denominator output of the Register R2 
H2.QB15 – Numerator output of the Register R2 
H3.QA15 – Denominator output of the Register R3 
H3.QB15 – Numerator output of the Register R3 
H4.QA15 – Denominator output of the Register R4 
H4.QB15 – Numerator output of the Register R4 
H6.QA15 – Denominator output of the Register R12 
H6.QB15 – Numerator output of the Register R12 
H13.QA15 – Denominator output of the Register R13 
H13.QB15 – Numerator output of the Register R13 
TEST DATA IN: 
Rational Number: 7/5 
Rational Number: 3/2 
TEST DATA OUT: 
Rational Number: 1/21 (1/15 in Hex) 
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Figure 41. Simulation Five. 
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Appendix C: LogiBLOX Modules 
1. AN8 

Function: Provides Logical AND operation of 8-bit input. 
Type: Simple Gates (Type 1) 
Gate Type: AND 
Bus width: 8 bits 

 

Figure 42. AN8 LogiBLOX Module. 
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2. AN16 

Function: Provides Logical AND operation between 16-bit input and 1-bit input. 
Type: Simple Gates (Type 2) 
Gate Type: AND 
Bus width: 16 bits 

 

Figure 43. AN16 LogiBLOX Module. 
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3. AN32 

Function: Provides Logical AND operation between 32-bit input and 1-bit input. 
Type: Simple Gates (Type 2) 
Gate Type: AND 
Bus width: 32 bits 

 

Figure 44. AN32 LogiBLOX Module. 
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4. BUF2 

Function: Provides buffering for 2-bit input. 
Type: Inputs/Outputs 
IO Type = Output 
Output operation = Buffer Only 
Bus width: 2 bits 

 

Figure 45. BUF2 LogiBLOX Module. 
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5. BUF4 

Function: Provides buffering for 4-bit input. 
Type: Inputs/Outputs 
IO Type = Output 
Output operation = Buffer Only 
Bus width: 4 bits 

 

Figure 46. BUF4 LogiBLOX Module. 
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6. BUFFER16 

Function: Provides tristate buffering for 16-bit input. 
Type: Tristate Buffers 
Bus width: 16 bits 

 

Figure 47. BUFFER16 LogiBLOX Module. 

7. COMPARE16 
Function: Compares two 16-bit inputs A and B and returns three lines: A equals B, A is less than B 
and A is greater than B. These are set according to the result of comparison to High or Low. 
Type: Comparators 
Operations: A = B, A < B, A > B 
Bus width: 16 bits 

 

Figure 48. COMPARE16 LogiBLOX Module. 
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8. EQUAL16 

Function: Compares two 16-bit inputs A and B and returns one line: A equals B. It is set according 
to the result of comparison to High or Low. 
Type: Comparators 
Operations: A = B 
Bus width: 16 bits 

 

Figure 49. EQUAL16 LogiBLOX Module. 
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9. O16 

Function: Provides Logical OR operation of two 16-bit inputs. 
Type: Simple Gates (Type 3) 
Gate Type: OR 
Bus width: 16 bits 

 

Figure 50. O16 LogiBLOX Module. 
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10. SELECTOR16 

Function: Multiplexes two 16-bit inputs depending on the value of the control line. 
Type: Multiplexers (Type 2) 
Input Buses: 2 
Bus width: 16 bits 

 

Figure 51. SELECTOR16 LogiBLOX Module. 
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11. SHIFTREG16 

Function: Provides a Logical 16-bit Right Shift Register, with MSB Input and MSB, LSB output 
Type: Shift Registers 
Shift Operation: Right 
Shift Type: Logical 
Inputs: MSB Serial 
Outputs MSB Serial, LSB Serial 
Control: Asynchronous with Clock Enable 
Bus width: 16 bits 

 

Figure 52. SHIFTREG16 LogiBLOX Module. 
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