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Abstract- Recent research in the field of Multiobjective  the likelihood of finding complex fronts.

Optimisation (MOO) has been focused on achieving the Consequently, this paper introduces a new approach to
Pareto optimal front by explicitty analysing the  multiobjective optimisation that forgoes the need to
dominance level of individual solutions. While such calculate solution dominance and capitalises on the basic
approaches have produced good results for a variety of principles of artificial life (ALife).  Although the
problems, they are computationally expensive due to the combination of ALife and MOO is not unique (Socha and
complexities of deriving the dominance level for each Kisiel-Dorohinicki, 2002; Laumannst al, 1998), the
solution against the entire population. TB_MOO approach adopted by TB_MOO is a significant departure
(Threshold Based Multiobjective Optimisation) isanew from pre-existing agent-based evolutionary approaches.
artificial life approach to MOO problems that does not ~ Moreover, the technique is designed with the explicit
analyse dominance, nor perform any agent-agent purpose of minimising computational overhead.
comparisons. This reduction in complexity results in a

significant decrease in processing overhead. Results 2 Definitions

show that TB_MOO performs comparably, and often

better, than its more complicated counter-parts with 2.1 Multiobjective Optimisation

respect to distance from the Pareto optimal front, butis  The explicit goal of all MOOs, as intimated in the
slightly weaker in terms of distribution and extent. introduction, is developing the Pareto optimal front for a
problem which has multiple objectives. A single solution is
. said to be Pareto optimal if it is not dominated by any other
1 Introduction possible solution, while the Pareto optimal front is formed
Most real-world problems inherently contain multiple, by the set of all non-dominated solutions. In a misétior!
frequently conflicting, objectives (Coello, 1999). While problem withn objectives, solutiora dominatesb if and
conventional genetic algorithms endeavour to solve thignly if:

problem through aa priori technique, this is constrained by Vief{l,...,nt:fi(@) < fi(b) A

the need for pre-existing expert knowledge about the dje{l,...,n}:fi(a) <fib) @)
problem being examined. The approach adopted byhere fis an objective function that maps a multi-variate
multiobjective optimisers (MOOs) is to assume nothingsolution to a single value (as per the definition provided by
about the problem and generate a list of viable alternative&tzler et al, 1999).

that represent the best available trade-offs between the The definition of a non-dominated soluti@for a
conflicting objectives (commonly referred to as the Paret@opulation of solution® can thus be given as:

optimal front). Thus, multiobjective optimisers represent a VpeP:(adominatep) V (p=a) (2)
excellent tool for the design phase of real-world projects, V (pis not comparable with) 3)
enabling the expert to examine trends in the Pareto optimalhere (2) is typically referred to as weak dominanckas
front, test possible solutions or develop an understanding &t comparable with if it is better thara in one objective

the relationship between objectives. but worse in another (for a dual-objective problem).

The practical applicability of MOOs has seen the field Itis important to note that, for most real-world problems,
garner increasing attention in recent years. Given thithe set produced by a multiobjective optimiser will likely be
increased research focus, the variety of approaches approximation of the Pareto optimal front (Zitzeal,
suggested is vast (see Coello, 2001; Coello, 1999; Vad002b). Indeed, for continuous functions, a complete set
Veldhuizen and Lamont, 1998). However, the mostwould effectively require an infinite number of solutions.
successful evolutionary techniques (such as SPEAII [ZitzleAs such, the quality of a produced set is typically measured
et al, 2002a] and NSGAII [Delet al, 2000]) feature the by analysing performance metrics that are designed teegaug
notion of solution dominance to guide progress towards theow well a set represents the true Pareto optimal front.
Pareto optimal front. While this has proven to be effective,
it comes with a significant computational burden that

enforces a practical limit on population size andstreduces 1 Note that the chou;e qf minimisation is arbitrary and results in
no loss of generalitiZitzler et al, 1999).




2.2 Atrtificial Life Systems is not without flaws — particularly with respect to
The definition of artificial life is open to conjecture, computational complexity. Since Pareto ranking is a
primarily due to the difficulties of defining life in general. comparative measurement, systems making explicit use of
This paper adopts a minimalist approach, in which an ALifesuch a methodology must perform a large number of
system is any environment where resources are consumeshlution comparisons to derive fitness. Even considering a
stored and expended, and fitness is assessed endogenousiiyple form of fitness mapping, where the rank of a solution
Solutions in ALife systems are encapsulated as agents, wlgprecisely the number of solutions it is currently dwated
interact within the environment. Thus, the term aitifilife by (as proposed by Fonesca and Flemming, 1998), there are,
is invoked, in this case, to highlight the novelties of anin the worst case,N¢ — N) comparisons required per
approach that is divergent from the per-turn, artificialgeneration for a population of six(Van Veldhuizen and
evolution evident in techniques such as genetic algorithméamont, 2000a). While in practice this figure can be
In ALife systems, a turn represents an opportunity to gatheeduced, in most real world systems the reduction in cost is
resources — the success of which is not just dependent on tménimal.  Furthermore, the generated rank is typically
adaptiveness of the agent, but also the peculiarities of thteansformed into a fithess measurement by applying
environment. An agent breeds only when it is fit enough taliversity-preservation techniques, such as nichingifila

do so and only if it is fortunate enough and resourcefulvhich invariably comes at a further cost to complexity.
enough to survive that long. In essence, artificial life Moreover, many contemporary approaches, such as
systems are inherently noisy — but that noise should result NSGAII (Deb et al, 2000), SPEA (Zitzler and Thiele,

a wide diversity of agents, without a significant cost t01998), SPEAII (Zitzleret al, 2002a) and PAES (Knowles

elitism. and Corne, 1999), make use of an archived set of dominant
solutions. The aim of this procedure is two-fold: it ensures
3 Existing Evolutionary Approaches that good solutions are not lost and it increases elitism by

requiring that solutions compete against both their current
The range of evolutionary approaches designed to Optimisgianeration and members of the archived set. While results
multiobjective problems is vast and it is certainlythetaim  have linked such elitism to front-quality (Zitzlet al,
of this paper to analyse the field as a whole. Instead, thgg9), it comes at a notable cost to computationaieficy.
most prevalent general categories of recent research will bgydeed, in the worst case, SPEA requirés{(No)? - N -
briefly presented, with examples and critiques jufedt. For  N) comparisons per generation for an archived population
a more extensive review, the reader is again directegf sizeN,(Van Veldhuizen and Lamont, 2000a). Moreover,
towards the excellent summary pieces by Coello (1999 ange inclusion of the archived set in the ranking process
2001) and Veldhuizen and Lamont (1998). means that the “method’s complexity may be significantly
3.1  Explicit Use of Dominance higher than the others discussed” (Van Veldhuizen and

While the notion of solution dominance as a fitness measufe2Mont, 2000a).  While recent research has been focussed
has been part of multiobjective literature since the concefit? "éducing the archive size (such as Ziteteal, 2002a),
was first suggested by Goldberg (Goldberg, 1989;Goldber§’”5 can only hope to onv_er, not eliminate, the cost incurred
and Richardson, 1987), it is still the focus of considerabldOr Using such highly elitist methods. _
research and such an approach seems “to be the mostConsequently, for Pareto ranking approaches, éhésts
popular in the field” (Zitzleret al, 1999). The general a practical Ilmltat|9n on the size of the population used. .The
principle of explicit dominance use (or Pareto ranking, as itarger the population, the greater the number of comparison
is also known) is straightforward — in an evolutionaryreq“'r‘?d per iteration and the slower the overa_lll system
system, fitness is assigned according to the level 0@xecutl_on. _For real—yvo_rld sy:'ste_ms, where execut|on_t|me is
dominance achieved for a given solution. If the solution i€ 9énuine issue, this is a significant concern, particularly
non-dominated, then it receives a high score and is thJén€n population size is a key factor in achieving complex
more likely to breed. If the solution is dominated by larggTonts. Indeed, Zitzlegt al. (1999) claim that “the choice of
numbers of the population, then it receives a low rankingoPulation size strongly influences the EA’s capability to
and is less likely to propagate. converge towards the Pargto-ophmal fror_1t... [and] small
The specific mapping from dominance to fitness variesPoPulations ~do not provide enough diversity among
but the general hypothesis remains the same: th&pdividuals” to achieve accurate approximations.
maintain_ing and evolving a set of _highly dominant solutic_)n83_2 ALife and Agent Based Approaches
can achieve a good approximation of the Pareto optimalnlike Pareto ranking, which has dominated multiobjective
front. Experimental results have shown this hypasitede  optimisation since its inception, artificial life techniques
largely true. For instance, a comparative study by Ziétler have received little attention in the field. Moreover, the few
al. (1999) showed that a range of dominance basegiudies conducted on the applicability of artificial life in a
approaches, such as SPEA (Zitzler and Thiele, 1998) angitiobjective environment have been notably sparse —
NSGA (Srinivas and Deb, 1994), performed well on &acking thorough testing on a range of functions, while
variety of test .pro.ble_ms designed to reflect the differentajjing to investigate the computational costs.
classes of multiobjective problems. Of the work that does exist, the most interesting research
While the quality of approximations produced by Paretthas been conducted by Socha and Kisiel-Dorohinicki
ranking methods is generally impressive, the approach itselp002), regarding an Evolutionary Multi-agent System for



solving multiobjective problems (EMAS), and Laumaahs 3.3  Aggregation Approaches
al. (1998). As is typical of ALife MOOs, both systems Of the remaining evolutionary approaches, aggregation is
adopt a predator-prey style model, where the success of &oth the oldest (Coello, 1999) and amongst the most
agent is both directly and indirectly connected to the defegiopular. The term aggregation refers to the combination of
of its adversaries. In the EMAS approach the primarythe objectives into a single scalar function through the
resource is life energy, which is appropriated from preyapplication of some operator. The most common method of
agents by dominant, or phenotypically similar, predator&ombination is through the application of a weighted sum,
during spatial interactions. EMAS uses a spatially explicitvhereby each objective is multiplied by a pre-determined
artificial world, consisting of a series of interconnectedweight and the result for a given solution is simply the sum
nodes that each have the capacity to hold agents. Thosgall weighted functions. From an evolutionary standpoint,
agents sharing a node will randomly interact or migrate téhe aim is to produce the solutions that minimise the
another node, with the role of predator and prey beingggregated function.
arbitrarily assigned. = Mating occurs only when the While simple and cost-effective, the drawbacks to the
aggregation of predator and prey life energy is above sonmapproach are manifold. In particular, setting the weights for
pre-defined threshold. An agent will die if it must provide each objective is difficult without extensive priarowledge
more resources than it has available to it during amf both the individual functions and their relationships. This
interaction. leads to the need to consistently vary the weights to ensure

Laumannset al (1998) offer a divergent approach to accurate results. Moreover, in the case of simple linear
multiobjective optimisation that does not explicitly map aggregation (as is the case in weighted sum), it is incapable
resources. Instead, they propose a spatial predator-prey generating “proper Pareto optimal solutions in the
approach, where the world is defined as a rigid graph thatresence of non-convex search spaces” (Coello, 1999) since
hosts a prey on every vertex and at leagtredators on the population typically diverges into species which are
random vertices (whemis the number of objectives to be strong in one objective, but less effective in others (Fonesca
optimised). Each predator has a preferred objective arehd Fleming, 1995). This inhibits the applicability of
consumes the least effective agent with respect to thateighted-sum techniques in real-world optimisatigvisere
objective in the current predator neighbourhood. To ensurie nature of the search space is often unclear).
that neighbourhoods do not become specialists in particular While less popular, the weighted min-max approach (as
objectives, the predators engage in random walks across thsed by Coello [1996] and Coelid al.[1997]) presents an
graph. Those agents consumed by predators are replacedioteresting approach to aggregation. The aim here is to
the graph by the recombination or mutation of one or moreninimise the maximum difference between weighted
of the surrounding neighbours. objectives and pre-specified goals. In conventiotiamax

As these papers only present preliminary investigationsgpproaches, each objective goal is generally the minimal
it is difficult to determine the effectiveness of eachvalue of that objective. Theoretically, this should result in
approach. Though the performance on the provided tesblutions that do not strongly bias one objective (as occurs
problems appear satisfactory, they fail to analyse moran weighted sum), but should guide solutions towards more
difficult problem areas, such as multi-modality. However,balanced distributions. While this is often the case,
the EMAS approach does address the primary drawback specifying the weights is again difficult. Moreover,
Pareto-ranking — that is: the computational complexitydetermining the goal value for each objective either requires
incurred through excessive solution comparisons. For angcal approximations, initial optimisation of individual
node of size greater than one, the system requires alleasbbjectives or explicit knowledge of objective behaviour.
agent comparisons (when the agent dominates the With respect to computational complexity, the
comparator) and at mo3tN comparisons (accounting for performance of aggregate methods rely on the typ;ets
when an agent must compare dominance, similarity andssignment used. Directly mapping the aggregate to a
reproduction) per turn. So long as the average number sklection probability for breeding requires no solution
turns per generation is less tHdnthis is an improvement comparisons and is thus extremely efficient, though such
on the simple Pareto fitness mapping. It should be noteefficiency is dependent on locating an appropriagight set
though, that this summation is slightly misleading, as Paretquickly. Other approaches (such as Coello, 1996) make use
approaches do not suffer the computational overhead causefitournament selection and the principles of dominance,
by modelling a spatially realised virtual world. which come at a cost to computational efficiency, but vary

The computational cost of Laumamt al’'s (1998) depending on the specifics of the scheme.
approach is more difficult to quantify, since it is dependent
on the number of predators, the size of the neighbourhoad TB_ MOO: A New Approach
and the average number of turns per generation. The - o L
number of agent comparisons required per turn is equal tbhreshold Based Multiobjective Optimisation (TB_MOO)
h*o*r*a (wherehis the neighbourhood sizeis the number ~fepresents a new approach that bgllds on the concepts of
of predators per objective anda is the average number of contemporary evolutionary techniques while reducing
turns per generation). Consequently, this approaclomijli ~ computational complexity by avoiding direct agent-agent

<n spatially realised world inhabited by predatory agevhose

interactions are defined by dominance, TB_MOO presents a



simplified model with no spatial representation and no4.3  Metabolism

dominance-based interactions. The implicit goal of everfach turn, an agent must pay a type of living expense,
agent within the TB_MOO system is to maximise thecommonly referred to as a metabolic tax. In TB_MOO the

consumption of resources provided by the environment. Atax is applied to each reservoir, such that the contents are
such, the model is more representative of a plant systemeduced by a fraction of the resources plus some small
than the pre-existing predator-prey techniques. positive number (to ensure that reservoirs can be emptied).

41  The Model 4.4  Breeding
The TB_MOO model consists of two distinct componentsAn agent asexually breeds when all of the resource
agents and the environment. The agents, representing theservoirs contain more than the environment-specified
current approximation of the Pareto front, contain solutionsthreshold level. This requirement ensures that solutions
consume resources, breed and eventually die. Thmust be well balanced across all objectives, since
environment is responsible for distributing resourcesjnefficiency in one objective will reduce the likelihood of
inflicting random catastrophes and maintaining systentreeding. Importantly, this avoids the primary drawback
levels. In essence, the environment represents thessociated with weighted-sum style methods — namely, it
components of life that are beyond the control of theliscourages objective speciation.
individual. A typical complaint levelled against ALife systeimshat
While most ALife approaches to multiobjective the number of parameters that must be set is genkbigttlgr
optimisation utilise a single resource type that is consumedhan in other evolutionary techniques. Since each parameter
expended and analysed, TB_MOO defines a uniquanaso generally requires some empirical knowledge about system
type for each objective. This impacts both the distributiorand problem behaviour, each additional parameter comes at
of resources from the environment and the consumption aradsignificant cost to the usability of the system in real-world
storage of resources for an agent. For instance, rather thanvironments. Subsequently, TB_MOO utilises an adaptive
having a single store for all resources collected, thé¢hreshold scheme that adjusts the breeding legetding to
TB_MOO agent has a resource reservoir for each uniqueurrent population behaviour. By doing so, the parameter
resource type collected. The advantages of utilising severaked not be set by the user, but can instead by initialised as a
distinct resources will be addressed in Section 4.4. small random number. Moreover, such an approach allows

42  Resource Distribution and Consumption thresholds to move in-tune with overall systemgenfance.

The interactions occurring between the environment and the The adaptive scheme considers both population growth
9 and distance from the desired (goal) population level. If the

e e Bopaion i grawin, e yeshold s ncessed o recce
that drives the evolt?tionér roc'ess b rovidin he birth rate. If the population is in decline, the threshold is
y P y P Ydecreased at a rate determined by both the population size

opportunity gnd applying sele_ct|on pressure. and the growth rate. More formally, the adaptive scheme
In any given turn the primary responsibility of the can be defined through the following algorithm:

environment is the distribution of resources to the agents.
Note that both the type and amount of resources is random, phangec growthRate
though the amount will never exceed a pre-defined level if |P| >goal \ changes< O then
The agents respond by consuming some fraction of the change= change- (change* (|P| - goal) / goa))

. . Where changeis the factor by which the thresholds are
resources according to their performance on the

. S : . adjustedgrowthRateis the populations growth rate over a
i(:sogri\elzﬂogylng objective. Inthis case, the fraction corsiu given measurement period: argbal is the desired

opulation level.

consumed (result—worsy) / (best—worst 4 P . . . -
whereconsumeds th(e fraction of at)IIO((:ated resou?cmssjl'z Thus_, the aim of the adaptive schem_e Is to stabilise _the
is the value obtained after processing the objective with th%?pgls?;'onre%ﬁﬁtigngafheag Ogvgﬁ?usﬁgonotrjggzh varglrlr?
agent’'s solutionpestis the best result obtained for that posing P Pop

obiective over a aiven measurement period-eotis the growing too far beyond the desired level. As will be seen
) 9 P T later, however, this goal is subverted by the use of
worst result over the same measurement period.

cataclysms to broaden search-space exploration.

ivgr??usrenqi:enr:)tilg, t_hﬁ igrggugrt] dognrf sgt%rgiihceonzgf?rfndalnnc 2 Once the agent has successfully bred, both the parent and
9 y P P Shild agent have their resources set to initial levels. This

of the agent on t_he current objective and the numt_)er Cnsures that successful agents do not continuously

resources the environment has randomly granted. This type
. . R fopagate.

of noise emulates the non-uniform distribution of resource8

in real-world environments and allows for the exploratibn04.5  Death

low-yield, but potentially high-gain, portions of the searchA TB_MOO agent can die in one of two ways:

space. Also note that the best and worst solutions are bageababilistically or through starvation. An agent starves to

only on specified observation durations, rather than theeath when it has no resources remaining in any of the

entire run. This approach allows the goals of the system t@servoirs. Probabilistic death is evaluated each turn, where

move according to current performance, in much the santhe agent dies if a random number falls beneath some pre-

way that localised approximations work for min-maxdefined level. Thus, agents do not have a rigid life span.

functions. Instead, aging represents an ever-increasing likelihood of



death (through the principles of probability) — just as it does
in real-world ecologies.

Cataclysms infrequently and randomly occur in the
system, where each agent has a 40% increased likelihood of
death. The result of such an event is a sudden decrease in
population, which in turn lowers the breeding threshole (du
to the adaptation scheme) and promotes an increased birth
rate. This allows for a broadening of the exploration around
the current search space, by permitting less-fit agents to
breed.

4.6  The Algorithm

Figure 1 represents a typical turn in the TB_MOO system.
In the case of the first turn, a small number (less than the
goal level) of agents, with randomly generated solutianes,

Adaptively Update Thresholds

Cataclysm
is Occuring

Assess Agent Performance

added to the environment and the threshold is initialised on Objective and Allocate

a Random Number of Resources

with a small arbitrary number.

The system will continue to iterate through turns uinéil t
user chooses to stop the system or until some specified goal
is achieved.

5 Results ‘All Objective

Reservoirs

Breed e

Performance analysis in multiobjective optimisation has reed Thresholg
been the focus of much debate within the artificial
intelligence community (Zitzleet al, 2002b; Jaszkiewicz,
2000; Van Veldhuizen and Lamont, 2000b; and Grunert da Reduce A0l Objective
Fonescaet al, 2001). Since such debate is yet to yield a Al Reservors e empy
consensus approach, this paper takes a combinatory path:

incorporating complexity analysis, graphical comparssto

illustrate obvious qualitative differences and further metrics pron. Gosth
to differentiate between systems with a less apparent visual
hierarchy. In particular, the average distance to the Pareto Kil Agent

optimal front and the distribution and extent of generated
points in the objective space will be used to delineate key
aspects of performance, while a coverage metriawillyse

system dominance. For detailed descriptions of thesgchnique with the explicit aim of decreasing computational
metrics, the reader is directed to Zitz¢ml, 1999. overhead. Thus, an analysis of these approaches, in
5.1 Test Functions conjunction with TB_MOO, will reflect the impact of

The choice of test functions in any system evaluation is ofomputational complexity on front quality.
pivotal importance, since it must represent the broad classgss  gystem Parameters

of problem that the technique will encounter in real-worldrhe parameters used for all tests are specified in Talile 1.

use. Zitzleret al. (1999) propose six test functions jsimportant to note that no effort has been made to produce
(T1,...,T6) that ‘“reflect the essential aspects Ofine pest parameter settings for any of the systems. For
multiobjective optimisation” (Zitzleet al.1999, p.177) and  NSGA and NSGAII, the parameters are taken from system-

are therefore appropriate for testing the capabilities of anypecified defaults or otherwise from Detsal. (2000).
given multiobjective optimiser.

Consequently, TB_MOO is tested on all real-valued®-4  Complexity
problems presented by Zitzlet al (1999) — namely, While the quality of Pareto approximations has been at the
T1,...,T4andT6. Performance on binary problems, such agentre of most multiobjective research “optimiser

T5and 0/1 knapsacks, will be explored in future work. ~ performance can ultimately be understood in terms of the
trade-off between the quality of solutions produced and the

5.2 Comparative Systems _ computational effort required to produce those solutions”
The performance and complexity of TB_MOO will be (Grunert da Fonescet al, 2001). As such, a preliminary

compared against two systems —the Non-dominated Sortingha)ysis requires an investigation into the complexity of the
Genetic Algorithm (NSGA) (Srinivas and Deb, 1994ids  gystem as a whole.

sequel, NSGAII (Detet al, 2000). The choices here are ~ For the purpose of this analysis, the concept of
non-arbitrary: NSGA represents a popular and well-studied,mplexity will be based on the number of times a solution
approach (Zitzleet al, 1999) that has demonstrated high st pe referenced per generation. That is to say that the
performance levels; while NSGAIl is a contemporary aqgitional complexities introduced by such processes as

Figure 1 — A Typical Turn in the TB_MOO System



TB_MOO Population Size
Mutation Rate v System 50 100 250 400 550
Initial/Post-Breeding Resources 2 NSGA 58+3 | 100+ 9 | 229+ 14 | - -
Death Probability per Turn 0.0378 NSGAII - 62+ 18 | 170+ 26 | 360:72| -
Avg. Resources Allocated per Turn 3 TB_MOQ | - - 34:1 34:1 | 34:1
Min-Max Update Occurrence Every 10 turns
Cataclysm Probability per Turn 0.005 Table 2 — Solution References per Agent per Generation
Initial Threshold Level 5 Note that population sizes represersired levels for threshc
Metabolic Cost 15% + 0.25 adaptation -experiments have found that a desired popul
NSGA size of 250 leads to a practical average of+209 400 -
- 507+21; 550= 712+ 50.
Sharing Parameter
; T
Sigma Share 0'5*O'i agent-agent interaction.
Cross.over 0.9 (uniform) More specifically, the per-agent complexity of TBOO
Mutation 0 can be defined & (B+U) (whereB is the average number
Crossover Distribution Index 30 of turns required for an agent to breed; Brid the number
Mutation Distribution Index S0 of times a solution must be referenced for min-max updates
NSGAII per breeding cycle)U is a system specified constant that
Crossover 0.9 has a practical maximum @B (where both the minimum
Mutation w and maximum values are updated every turn), which results
Crossover Distribution Index 20 in a worst case complexity @(3B) = O(B). Given that
Mutation Distribution Index 20 adaptive thresholding results in the average breeding cycle
length remaining approximately constant (as evidenced by
Table 1 - System Parameters the consistent empirical values found in Table 2), the
v =number of variables average per-agent complexity of TB_MOO @G(1).

Consequently, the average per-generation complexity of the

crowding assignment, sharing and threshold adaptation willB_MOO system is defined &N (1)) = O(N) (whereN’
be ignored. This is reasonable as adapting thresholds isithe average population size).
TB_MOO is a constant-time operation that is not agent- By explicitly reducing the complexity of optimisation,
centric, while the overall complexity of NSGA and NSGAIl TB_MOO increases the pre-existing practical limits on
is governed by the sorting procedure ([2¢lal, 2000). population size, which in-turn facilitates a more thorough

Theoretically, the worst case per-generation cerifgs  exploration of the search space. The effect of such a
of NSGA and NSGAIl have been defined by Detbal.  reduction in computational complexity on front quality will
(2000) aD(MN®) andO(MNP) respectively (wherM isthe  be investigated in the following section.
number of objectives andN is the population size). 5 Front Qualit
However, the value of such a measure is debatable — it;Eh y

unlikely that such computational overhead would occur in onvention_al qu_ality compa_lri_son_s are achieved by "m‘“f_‘g
single turn (whereN unique fronts must be formed), let e population sizes of participating systems and recording

. o i i eneration. However,
alone across an entire run. Consequently, it is useful tt(pe results achieved up to a particular g

rform an empirical analvsis of complexity on genuin Providingadirectquglitycomparison between Pareto based
pertorm an empirical analysis of complexity on genuine tes proaches and ALife techniques is fundamentally more

functions. In particular, Table 2 displays the averag@.p. . . .
number of comparisons per generation for each solution ((ﬂjﬁ'cu't’ since they have notionally different concepts of

agent), as derived from two complete runs on each tegtopulat'ior.] size and rgproduction. As a consequence, this
functio,n paper limits the duration of tests based on the number of

While both NSGA and NSGAII are significantly lower solution references made across the length of a run. The

than their corresponding worst cases, neither obtains ﬂ%enefit of such a methodology is that population sizes can

computational efficiency of TB_MOO. Indeed, whereas the/ary without unfairly biasing a particular system, while an

per-agent complexities of NSGA and NSGAI arearbitrary generational measurement need not be made.

intrinsically tied to the population level, TB_MOO is Moreover, by explicitly limiting run-times on the number of

divorced from this correspondence and provides a constaﬁ?lunon references made, the impact of complexity on front
guallty can be analysed.

complexity for each agent regardless of the overal
population size. The reason for this computational
advantage is straightforward: TB_MOO requires no direct



Figures 2 - 6, display the on-line results for a variety of
population levels on each of the test functions. Each graph

BTB_MOO (250)
©TB_MOO (400)
NSGAII (250)

represents the amalgamation of five runs — all of which are

XNSGAII (400)
-NSGA (50)
ONSGA (100)

limited to five million solution references. For the sake of °
clarity, only dominant solutions are illustrated, where two:s
solutions are considered comparable so long as their
difference in at least one objective is less than 0.025.

+NSGA (250)

The results show that TB_MOO is consistently better*
than NSGA, which fails to locate the Pareto optimal frontin .

any of the test functions. Such low quality is the directos
result of the inherent complexity of NSGA, which severely X

inhibits the number of generations that can be produced in
given test run. In general, the problems afflicting NSGA are

two fold: large populations require too much complexity to -
generate acceptable solutions within five million .,
comparisons, while small populations lack the diversity

o
o

© )
required to develop the Pareto optimal front. w76 00 (5075 w00 )
. . . ANSGAII (250) X NSGAII (400)
More importantly, in every test TB_MOO is shown to * JlseaEn | oNsoAM) |
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Figures 5 and 6 — Front Quality of Systems for Varying
Population Goal Levels with Five Million Comparisons (T4

and T6 Respectively)

produce a good approximation of the true Pareto optimal
front. That is to say that none of the tested problem features
prohibit TB_MOO from achieving accurate and well-
distributed front& However, it is difficult to determine the
marginal differences between TB_MOO and the similarly
performing NSGAII graphically. Consequently, Tables 3

P and 4 display the results of applying Zitzétral's (1999)

four quality metrics to dominant solutions from the

s amalgamated test runs with a finer comparison difference of
only 0.001 and a neighbourhood size of 0.05.

The results illustrate that TB_MOO achieves accuracy

os levels that are comparable, and often better (particularly in
. T6), than those produced by NSGAII, but is typically less

" effective in terms of distribution and extent. Itis likely that

+ + BT8_MOO (250)
o & TB_MOO (400)
+ |ANSGAIl (250)

such deficits are influenced by lower front membership in

TB_MOO (250) |TB_MOO (400)

o + o i X NSGAI (400)

°o s ’ ooon (o0 NSGAII (250) |84/84/41/85/1 84/85/42/84/1

2 4+ +NSGA (250) |

Tt s - o 6 NSGAII (400) (54/1/37/41/0 60/2/37/4/0

NSGAII (250) NSGAII (400)

e L LT w8 . [TB_MOO (250)|46/72/37/63/9%9/89/48/65/9

w

EE VL TB_MOO (400)|51 /76 /35/67 /984 /87 /45/84/9

o

Figures 2, 3 and 4 — Front Quality of Systems for Varying

Table 3 - The Relative Coverage Percentages for
Systems with Five Million Comparisons on each Test
Function (T1/T2/T3/T4/T6)

Population Goal Levels with Five Million Comparisons (T1, 2
T2 and T3 Respectively). Reference Line = Optimal Front.

Local attractors may affect TB_MOO (Figure 4), though such
claims are difficult to validate in an on-line test.



Distance | Distribution | Extent ‘ b X x o7 oo o
NSGAIl (T1) |0 392.195 1.179 T = o con
250/400 0.008 414.374 1.635 ’
TB_MOO (T1 | 0.004 232.378 1.189 sl BRE X s
250/400 0.008 262.574 1.223 . & x
NSGAII (T2) | 0.013 426.670 2.067 . .
250/400 0.059 362.264 1.992 T
TB_MOO (T2 | 0.005 359.295 1.337 g gt Y. s e
250/400 0.005 358.223 1.28 os Sl =
NSGAII (T\3) | 0.071 285.116 2.051 i u"""-*-g.
250/400 0.086 255.015 2.016 ’ o o ” ” i ° ” * " '
TB_MOO (T3 | 0.195 333.905 1.526 ) o .
250/400 0.196 353.137 1.496 Figure 7 — An Example of F_ront Quality with One Million
NSGAIl (T4) | 0.015 | 471.002 1.237 Comparisons (T4)
250/400 43.358 | 100.255 14.218 : -
TB_MOO (T4 | 0.548 367.091 4.202 Distance | Distribution | Extent
250/400 0.47 411.391 5.178 NSGAII (T1) | 0.128 255.790 1.955
NSGAII (T6) | 0.105 405.011 2.519 250/400 0.833 114.316 1.791
250/400 1.101 208.295 2.670 TB_MOO (T1 | 0.009 72.634 1.189
TB_MOO (T6 | 0.044 383.019 2.466 250/400 0.499 161.394 1.791
250/400 0.032 369.536 2.463 NSGAII (T2) | 0.983 63.469 2.056
250/400 1.946 37.622 1.708
Table 4 - Front Quality of Systems for Varying TB_MOO (T2 | 0.012 82.787 1.188
Population Goal Levels with Five MillionComparisons 250/400 0.086 394 1.266
NSGAII (T3) | 0.262 194.5 2.181
TB_MOO and is the direct result of the explicit inclusion of| 2507400 0.746 128.946 2.137
diversity preservation and elitism mechanisms in NSGAIl|"T8"M0OO0 (T3 | 0.212 ) 1.331
The incorporation of such concepts will be the focus of 250,400 "1 0.139 118.281 1.514
future work. _ , NSGAII (T4) | 139.921 | 46 14.647
To investigate the speed at which Pareto optimal fronts 250/400 161.036 | 42 12.58
are located, NSGAIl and TB_MOO were tested again with &1~ v00 (T4 | 1.194 178.19 4617
maximum of one million solution references (Figure 7;| 5507400 | 2582 38.947 2827
Tables 5 — 6). TB_MOO achieves more accuratg NSGAII (T6) | 3.507 89663 2 386
approximations on all tests for equivalent goal populatior] 250/400 5.117 40.75 1.854
sizes and is significantly better on T2, T4 and T6 in terms of TB_MOO (T6, | 0.217 302911 2 646
distribution, coverage and accuracy. That is to say that the255/400 ‘ 0:407 111:529 2:465

reduction of computational complexity in TB_MOO
provides for a genuine performance advantage over NSGAI
— allowing for more rapid convergence to the Pareto optimal
front.

6 Future Work should be increased, while also improving off-line

] o . performance (which has not been investigated here).
While the results presented are promising, there still exist&dditional work may also include performance enleanent
considerable scope for the extension of TB_MOO. Inhrough parallelism, the inclusion of preferencethieshold
part|Cu|ar, future work will examine the notions of elitism Speciﬁcations and adaptive mutation procedures_
and diversity through the introduction of a simplified spatial Beyond system improvements, further testing and
model with competitive resource consumption.  Byanalysis is required — particularly on constraint-based and
including such mechanisms, front distribution and extengjiscrete problems. It will also be necessary to examine the

performance of TB_MOO on problems containing mbaat

TB_MOO (250) | TB_MOO (400) two objectives, since these are a better representation of
NSGAII (250) [7/0/25/0/1 49/5/51/0/3 real-world performance.

NSGAII (400) |0/0/0/0/0 | 17/0/1/0/0 _
NSGAII (250)  |NSGAII (400) 7 Conclusions

TB_MOO (250)[19/28/1/22/781/5/2/21/76] This paper has presented a new approach to evolutionary
TB_MOO (400)|10/8/11/7/38 30/8/38/2/22 multiobjective optimisation that is explicitly focussed on
maximising computational efficiency through the laggtion
Table 5 - Front Quality of Systems for Varying of a simplified ALife model that forgoes the need for
Population Goal Levels with One Million Comparisons dominance comparisons. The results illustrate that

Table 6 - Front Quality of Systems for Varying
Population Goal Levels with One Million Comparisons




TB_MOO is not only highly efficient — both with respect to (2001) 'Inferential Performance Assessment of Stochastic
generational complexity and front arrival — but also formsOptimisers and the Attainment Function' Evolutionary
good Pareto approximations for a range of difficultMulti-Criterion Optimisation, First Internationab@ference,
problems. When tested against two prominent pre-existingol. 1993 (Eds, Zitzler, E., Deb, K., Thiele, L., Coello, C.
systems (NSGA and NSGAII), TB_MOO consistently A. C. and Corne, D.), pp. 213-225.

outperforms NSGA and produces fronts that are Comparab!Jeaszkiewicz A. (2000) 'On the Computational Effastivss
to NSGAII (though with typically lower performance on f Multiple Objective Metaheuristics' Fourth International

distribution and extent). Thus, preliminary results sugges onference on Multi-Objective and Goal Programming

D o sy, MOPGP) (Eds, Traskall . and Wik 3) Spinger
" Verlag, Berlin, Heidelberg, pp. 86-100.
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