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ABSTRACT 
This paper describes a distributed system which 
aggregates the unused and usually wasted processing 
capacity of idle workstations. The aggregation is achieved 
through the use of now ubiquitous internet infrastructure 
and web technology. And, it delivers a powerful yet 
inexpensive execution environment for computationally 
intensive applications. The prototype system described 
here makes use of Sun Microsystems Jini technology, 
particularly JavaSpaces, along with Java Web Start, to 
produce a dynamic, flexible and reliable system. Two 
example applications used to evaluate the system are 
described: (a) the n-Queens problem and (b) a parallel 
sorting (shearsort) application. The results of the 
evaluation clearly show that, for certain classes of 
applications, the system is capable of delivering 
significant performance.  
 
KEY WORDS 
Parallel and Distributed Processing, Java-based web 
applications, Jini, JavaSpaces.  
 
1.   Introduction 
 
A large proportion of an average organization’s 
workstations spend the majority of their time either 
unused or relatively idle. If the wasted processing 
capacity of these workstations could be aggregated, it 
could be used to provide processing for computationally 
intensive applications. Such a system could potentially 
provide an inexpensive alternative to costly custom built 
parallel computers or clusters. Many Networks of 
Workstations (NoW) systems have been designed and 
reported in the past to take advantage of available 
resources over the periods of low computer demand – for 
example, during off-peak night periods – in the 
organizations. Arguably the most well known example of 
such a system is SETI@Home [1]. 
 
Many of these organizations have a large number of 
workstations, which are often under-utilized even during 
the ‘active’ periods. These workstations, even when in 
use, may only require a small fraction of the total 
processing power of the machine.  If all of this wasted 
processing capability could be aggregated, the resultant 
computing power could potentially be substantial and 
available at the times when the organization is active.  
 

Computational resources can not be quickly moved from a 
physical location to another. Nor is it possible to easily 
shift demand for computational resources in an 
organization from a time period to another period without 
significant cost implications. Typically, organizations 
respond to these pressures by installing computational 
resources in each work center, to match the peak demand 
for the location. Needless to say, that this leads to gross 
over-installation of the computers in many organizations.  
Ubiquitous internet infrastructure that inter-connects 
virtually every computer today provides an opportunity to 
quickly and dynamically match organizational centers 
experiencing higher demands with those with 
computational capacities to spare. Furthermore, the cost 
of doing so would be vastly less than the traditional 
approaches, as the needed infrastructure is already in 
place, and all that is required is appropriate software to 
put it to use.  
 
The prototype system presented in this paper attempts to 
achieve this goal. There are two important aspects of the 
system: a distributed environment to which users can 
submit jobs for execution, and a framework which can be 
used to build distributed applications suitable for 
deployment on the system. The distributed environment is 
based on the master/worker distributed system 
architecture. This allows large, computationally-intensive 
tasks to be divided up into smaller subtasks and 
distributed out to worker computers, in this case idle 
workstations, for processing. The development framework 
enables the development of applications for the system, 
and also provides generic coordination mechanisms which 
are capable of controlling the execution of reasonably 
complex applications.  
 
A key characteristic of the system is that its processing 
capacity is not fixed; computers can be dynamically added 
and removed from the system at any time, thereby 
dynamically changing the overall processing capability. 
This is in contrast to custom-built machines or clusters, 
which often require costly upgrades in order to gain a 
significant increase in its processing capacity. These 
upgrades may also require a complete system shutdown, 
during which time no processing could be performed.  
 
The system is evaluated using two sample applications: 
the n-Queens problem, and a parallel sorting (shearsort) 
application.  
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In Section 2, we briefly introduce the background 
technologies the proposed system uses. The section also 
contains references to some related works. The system is 
then introduced and described in Section 3. In Section 4, 
we describe the two example applications used for testing 
the effectiveness of the system. These applications have 
relatively contrasting characteristics, which highlight 
several important properties of the system. The 
performance results are given the following section, 
Section 5. The paper concludes in Section 6 with some 
comments and suggestions for further work. 
 
2. Background: Distributed Processing, 

JavaSpaces, Web Start 
 
Distributed systems are a valid and inexpensive 
alternative to supercomputers or dedicated clusters for 
meeting the processing demands of computationally 
intensive applications. This is achieved by taking the large 
task that is to be completed, and dividing it into smaller 
sub-tasks. These sub-tasks can then be distributed out to 
individual computers for processing in parallel. Many 
distributed computing technologies have been developed, 
the most relevant in terms of the system being presented 
being the Linda Coordination Language [2] and Sun 
Microsystems' Jini [3], in particular JavaSpaces [4].  
 
A distributed system runs by placing its subsystems (or 
components) on different computers for execution. Beside 
the speed advantage, distribution may benefit its users by 
providing better response, security and reliability. On the 
other hand, such an approach requires mechanisms to 
communicate data between the components, their 
synchronization and scheduling. Shared memory and 
message passing are two common approaches to model 
the communication and synchronization needs of the 
concurrent systems. Linda uses a different approach to 
these goals. 
 
The Linda Coordination Language was developed by 
David Gelernter at Yale University in 1985. The approach 
is distinguished from other distributed system 
technologies by its use of a space-based communication 
medium rather than the traditional shared-memory or 
message-passing medium. Processes in the system 
communicate indirectly by reading and writing tuples to 
and from a shared tuple space accessible to all 
components of the distributed system. Three fundamental 
operations supported by a tuple space are: get a tuple 
matching the specified attribute, put a tuple into the tuple 
space, and remove a tuple. This concept forms the basis of 
the JavaSpaces distributed system technology from Sun 
Microsystems. JavaSpace stores objects rather than the 
tuples, as in Linda.  
 
JavaSpaces is a distributed computing technology that 
provides a persistent shared object store and simple yet 
powerful object exchange mechanisms. The design of 
JavaSpaces was heavily influenced by the Linda 
Coordination Language. The JavaSpaces shared store is 

provided by a service called a space. A space is used to 
hold entries (Java objects). A space has some useful 
properties, namely persistence, and the ability to be 
associatively searched. Entries stored in a space remain 
there until they are explicitly removed or their lease 
expires, even if the process that placed the object there 
ceases to exist. Furthermore, it is possible to locate 
objects stored within a space by performing a search 
based on an object’s type and values of its attributes. 
 
Java Web Start [5] is a technology that allows standalone 
Java applications to be deployed over the World Wide 
Web (WWW). A Web Start application can be launched 
simply by clicking on a hyperlink embedded in a web 
page, and spares the user from having to install and 
configure the software manually. Web Start applications 
offer many advantages over Java Applets, as they are not 
tied to the browser after being launched, and don't have be 
repeatedly downloaded the code each time the user runs 
the program.  
 
In the following section we describe how these 
technologies are used to develop a system for the 
distributed execution of programs.  
 
3. Distributed Execution Environment: 

Coalescing Idle Workstations  
 
There are three main components of the proposed 
Distributed Execution Environment (DEE) constructed by 
coalescing idle workstations: (1) Identifying the available 
computer; (2) Constructing a distributed system by using 
the available computers; and (3) Programming 
environment for developing the application programs.  
 
Identification of available computer systems is based on a 
simple voluntary step. An owner of a computer system 
could donate the computer for use as a node in the 
distributed system by simply clicking on a hyperlink on a 
web page which would launch the worker Web Start 
application. This step is entirely voluntary and a donated 
computer similarly can be removed from the distributed 
system by exiting the worker application. The distributed 
environment enables a user to donate their computer to 
the system, effectively adding their computer's processing 
capability to a pool of other worker computers. These 
workers are used to collectively process large, 
computationally intensive applications.  
 
The design of the distributed system follows the 
master/worker, or agenda parallelism design suggested by 
Carriero & Gelernter [6]. In such a system, a master 
process will divide a large task into multiple smaller sub-
tasks. These sub-tasks are distributed out to however 
many worker processes are available. The worker 
processes will execute the sub-task, and return the results 
of the computation back to the master. Once all of the 
sub-tasks have been executed and the results returned, the 
master will merge the results into a meaningful result of 
the original large task. An arrangement such as this is 
shown in Figure 1.  
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The programming environment relies on suitably 
constructed Java class. A generic task executor is started 
on the donated machine. It contacts the JavaSpace store to 
find next problem specific task to execute. The problem 
task is loaded. This task in turn will obtain the necessary 
input data from JavaSpace. On completion, the results of 
the task are stored into the JavaSpace for access by 
follow-up tasks. Clearly, one needs to coordination the 
activities of these tasks to ensure that the tasks can find 
their relevant input data and store their outputs for the 
follow-on tasks. There is little benefit in attempting to run 
a task which has some of its input data unavailable. The 
coordination is achieved by using a dependency graph.  
 
 

 
Figure 1: System overview. 

 
 
The activities of each worker process in the system are 
coordination by a shared dependency graph. The 
dependency graph is a JavaSpace entry that stores the 
current state of an application's execution, and is used by 
workers to determine which task should be executed next. 
The graph itself is a directed acyclic graph, with vertices 
representing an application's tasks, and the edges denoting 
the data dependencies between them.  
 
So, before a worker obtains a task for execution, it first 
takes the dependency graph from the space to see which 
task it should execute. The worker then takes this task 
from the space, and marks the corresponding node in the 
dependency graph as being in-progress. Also, a worker 
will use the graph to determine if the task depends on the 
results of any previously executed task, and, if so, will 
obtain these results before executing the current task. 
When a worker has completed the execution of a task, it 
will obtain the dependency graph and mark the node as 
complete, before returning the results of the task's 
execution to the space. Workers continue this process 
until all nodes in the graph are marked as complete, at 
which time the master process takes all of the results from 
the space and assembles them into some meaningful 
whole, depending on the particular application.  
 

The system will continue to function correctly and 
maintain a consistent state in the event of partial failure, 
due to the use of the Jini Transaction Manager. All objects 
taken from or written to the JavaSpace are done so under 
a transaction. All transactions are leased from the 
transaction manager for a given period of time; this lease 
time is specific when the transaction is created. If a 
transaction's lease expires, the transaction is automatically 
aborted, thus canceling all operations performed under it. 
The use of transactions becomes especially important in 
cases where a worker process fails for some reason after 
having acquired some object from the JavaSpace. Instead 
of these objects being lost indefinitely, they are instead 
only rendered unavailable until the expiry of the 
transaction under which they were taken from the 
JavaSpace, at which time they will be made available 
once more to other worker processes. The use of 
transactions also gives the system the added advantage of 
preventing potential deadlocks from occurring, as objects 
are only acquired for a finite amount of time.  
 
4. Example Applications 
 
Two example applications were used to evaluate the 
system: the n-Queens problem and a shearsort application. 
These applications have some widely contrasting 
characteristics which are useful in assessing various 
aspects of the system.  
 
4.1   n-Queens Problem 

 
The n-queens problem [7] is a generalization of the well 
known eight-queens problem. The basic premise of the 
problem is this: find the number of ways that n-queens 
can be arranged on an n x n  chess board so that no two 
queens can attack each other, according to the rules of the 
game. 
 
This particular implementation of this combinatorial 
problem uses a simple backtracking algorithm. This 
algorithm has an exponential execution time, which 
makes it one of the least efficient methods of solving the 
problem. However it is also one of the most 
straightforward algorithms to parallelize.  
 
The problem is parallelized by dividing the entire space 
that needs to be searched, in this case all possible 
combinations of queens placings on the chess board, into 
smaller sub-tasks that will each search a subset of the 
space. This is achieved by placing a queen in each of the 
first two columns of the board, in positions where they 
cannot attack each other. This produces  (n-1) × (n-2)  
sub-tasks of approximately equal size, given a board of 
size n, with each sub-task involving a search of  n

n-2
  

possible combinations. The execution of the sub-task will 
result in every possible combination of queens placings 
being searched for the remaining columns, and testing if 
each combination is a valid solution to the problem, given 
the position of the queens in the first two columns.  
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4.2   Shearsort 
 
Shearsort [8] is a parallel sorting algorithm that we have 
adapted for a distributed environment. The shear sort 
algorithm takes a list of  n  numbers that are to be sorted, 
and arranges them into a two dimensional mesh of size 
n1/2×n1/2 Once this has been done, exactly n1/2 phases of 
execution will be completed. If an odd-numbered phase of 
execution is being completed, each odd- and even-
numbered row will be sorted in ascending and descending 
order respectively. If an even-numbered phase is being 
completed, then all columns are sorted in ascending order. 
After all phases have been completed, the mesh will be 
sorted. Pseudo-code for the shear sort algorithm is shown 
below. 
 
for step = 1 to ceiling(sqrt(N)) do 
   if odd(step) 
  if odd(row) 
  sort_left_to_right(row); 
  else 
  sort_right_to_left(row); 
    else 
   sort_top_to_bottom(col); 
 
The shear sort algorithm has an average execution time of 
n1/2 when executed on n1/2 processors. It can be 
parallelized by sorting each row or column in parallel, 
depending on the phase of execution. 
 
5.   Performance Evaluation 
 
The two example applications discussed in Section 4 were 
used to assess the system to see whether it met its goal of 
utilizing the wasted processor cycles of idle workstations.  
 
All testing was conducted using the computer labs in the 
School of Computing, Launceston. All required Jini 
services were set to run on an 800 MHz Pentium 3 
machine with 256 MB of RAM, and running Slackware 
GNU/Linux 9.0. Also running on this machine was the 
master process of an application, along with the Apache 
web server, which was used to service requests for the 
client Web Start application. 
 
The rest of the system consisted of the client (worker) 
software running on numerous independent computers. 
Unless otherwise stated, these worker machines were 400 
MHz G4 Apple Mac machines with 512 MB of RAM, and 
running Mac OS X. All computers used for testing were 
connected via a 100 Mb switched fast Ethernet network. 
Also, all computers were using the Java Runtime 
Environment 1.4.2. 
 
5.1    Performance Measurement 

 
The usual measures of the performance of a parallel 
system, suggested by Carriero & Gelernter [2], are 
speedup and efficiency. Following their definitions, 
speedup is "the ratio of sequential run-time to parallel run 
time", and efficiency is "the ratio of speedup to number of 

processors". Efficiency can also be viewed as the average 
utilization of the system's total processing capacity. Both 
of these measures give a good indication of the 
effectiveness of a parallel system in using available 
processors to their maximum capacity. In particular, the 
efficiency of a system is an excellent indicator of a 
system's scalability. Parallel applications should therefore 
strive to maximize efficiency in order to achieve the 
highest possible speedup.  
 
We will define the sequential run time of an application as 
the time it takes to execute when there is a single worker 
computer present in the system.  This definition 
establishes a valid basis representing the full (100%) 
utilization of the workstation time. The speedup and 
efficiency for all other number of workers will be 
calculated based on this value. 
 
Unlike the multi-workstation environment, a single 
workstation environment does not incur contention for 
resources (JavaSpace and the dependency graph being the 
primary resources). Further, a single workstation 
environment schedules the sub-tasks in a way that 
provides for full utilization of the donated workstation. In 
a multi-workstation environment some workstations may 
have to wait for their next sub-tasks as the sub-tasks wait 
for the enabling inputs. These waiting will impact the 
processor utilization (efficiency) of the system. A problem 
well suited to the environment will continue to provide 
high efficiency (workstation utilization) in the multi-
workstation environment. Low workstation utilization as 
the number of workstations increase indicates a problem 
ill-suited for the system.  
 
5.2   n-Queens Problem 
 
Testing was carried out for the n-queens problem, with a 
value of n equal to sixteen (ie. we wish to place sixteen 
queens onto a chess board of dimension sixteen). This is a 
non-trivial problem, which requires the search of 1616 
possible states. The process of dividing this job into sub-
tasks will yield two-hundred and ten sub-tasks, each of 
which will search 1614 possible board states.  
 
The performance results of the n-Queens problem, where 
n equals 16, are show in Table 1. This data clearly shows 
that the n-queens application achieves excellent speedup, 
made possible by its high level of efficiency on up to 
sixteen machines. The problem took almost two hours to 
compute using a single computer; however on sixteen 
machines the time was reduced to around seven minutes. 
These results are especially pleasing, as they indicate that 
doubling the amount of computers working on the 
problem will go very close to halving the execution time.  
 
These positive results are mostly due to the problem being 
relatively coarse-grained, in that each sub-task requires 
the worker to do a significantly large amount of work. 
Also, the subtasks can be executed in parallel due to the 
absence of any data dependencies.  
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5.3  Shearsort 
 
The shearsort application was firstly tested on a list of 
randomly-generated long integers. The results obtained 
from executions of the application are shown in Table 2.  
 
Table 1: Performance results of n-Queens problem where 

n equals 16 
 
Workers Average  Run 

Time (secs) 
Optimal Run 
Time (secs) 

Speedup Workstation 
Utilization 

1 6392.6 6392.6 1 100.00%

2 3190.8 3196.3 2 100.00%

3 2133.9 2130.9 2.99 99.67%

4 1620.4 1598.2 3.95 98.75%

6 1083.7 1065.4 5.9 98.33%

8 810.8 799.1 7.88 98.50%

12 552.5 532.7 11.97 96.42%

16 427.5 399.5 14.95 93.44%

 
 

Table 2: Performance results of shearsort. 
 

Worker
s 

Average Run 
Time (secs) 

Optimal Run 
Time (secs) 

Speedup Workstation 
Utilization 

1 2673.9 2673.9 1 100.00%

2 1334.2 1336.9 2 100.00%

4 1305.4 668.5 2.05 51.25%

8 1229.3 334.2 2.18 27.25%

12 1184.4 222.8 2.26 18.83%

16 1090.0 167.1 2.45 15.31%

 
These results show good speedup on two machines, 
followed by a dramatic leveling off on any additional 
machines. This coincides with a steep fall in the efficiency 
of the system. The efficiency of this application indicates 
that is does a very poor job of utilizing the workstations in 
the system. 
 
The main contributing factor to this poor scalability is the 
very fine-grained parallelism of the application. A 
relatively large amount of JavaSpace operations must be 
carried out for each task; however for all of these 
communications, only a relatively small amount of actual 
work is performed by a task. 
 
The CPU usage of the server machine during these tests 
was observed to be consistently between 80%-85% when 
there are two worker machines and 95%-100% when there 
are four or more workers in the system. This would 
suggest that the server is not able to service the large 
amount of JavaSpace operation in a timely manner, thus 
explaining the sudden leveling off of performance. 
 
5.4   Shearsort with introduced delay 

 
To determine whether the fine-grained nature of shearsort 

is indeed the cause of its poor performance, each task was 
programmed to sleep for five seconds during execution. 
This modified approach was then tested on a list of 
randomly-generated long integers. This had the overall 
effect of producing tasks that will take a greater amount of 
time to execute, effectively making the application more 
coarse-grained, and thereby decrease the communications 
and server CPU load. Note that this test was conducted 
using 700 MHz G4 Apple iMacs, with 384 MB of RAM 
and running Mac OS X. The performance results of this 
modified shearsort are shown in Table 3.  
 
These results show a marked improvement on those 
previously presented in Table 2, suggesting that the fine-
grained tasks of the shearsort application are indeed the 
cause of the poor speedup. It is clear that this coarser-
grained approach is much more efficient than when a 
delay is not used. 
 
Table 3: Performance results for shearsort with introduced 

delay. 
 
Workers Average 

RunTime (secs) 
Optimal Run 
Time (secs) 

Speedup Workstation 
Utilization 

1 670.2 670.2 1 100.00%

2 337.0 335.1 1.99 99.50%

4 240.9 167.6 2.78 69.50%

6 176.4 111.7 3.8 63.33%

8 151.4 83.8 4.43 55.38%

 
 
5.5   Discussion 

 
The performance results presented in this section 
highlight how the contrasting characteristics of each 
application impact on the actual level of performance 
gained. The most influential factors are task granularity 
and sequential execution.  
 
The most obvious contributing factor to the difference in 
scalability lies in the granularity of the sub-tasks that 
make up an application. In this case, the granularity 
should be thought of as the amount of work done 
compared to the amount of communication overheads (ie. 
JavaSpace operations) incurred during the execution of 
each task.  
 
The shearsort application performs many more JavaSpace 
operations than the n-queens application, as it must read 
each cell of each row or column of the data mesh 
individually and also the step counter entry, in addition to 
the standard dependency graph and task entry. For all of 
this overhead, only a relatively small amount of work is 
actually performed.  
 
The n-queens application is vastly different to shearsort, 
in that each sub-task does not need to fetch any data 
objects in order to execute. All data is encapsulated in the 
task entry itself, and the task execution involves heavy 
computation, which takes a reasonably significant period 
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to complete. This coarse grained parallelism results in 
excellent speedup and scalability. 
 
The level of performance gain is inevitably associated 
with the level of inherent concurrency of an application; it 
is unlikely that a purely sequential program will achieve 
any speedup at all, most likely the opposite would prove 
to be true. 
 
The n-queens application can be fully parallelized; every 
task entry can be executed in parallel if there are enough 
workers available. However the shearsort application 
must execute sequentially in part, due to its different 
sorting phases which alternate between sorting rows and 
columns. This means that every row or column must be 
finished being sorted before all other workers can 
continue on in the subsequent phase of execution. This 
problem would not be pronounced in a system where the 
workers each have approximately equal processing 
capability. However, in a scenario where there is one 
worker that is particularly slow, the performance could be 
seriously degraded as all of the faster workers would be 
continually waiting on this slow worker. 
 
6.   Conclusions & Further Work 
 
This paper has presented a dynamic distributed system 
which aims to make use of the wasted processing capacity 
of idle workstations for the execution of computationally 
intensive tasks. Such a system could allow an 
organization much greater flexibility of its computing 
resources, and reduce costs by removing the need to have 
redundant resources at each work center simply to meet 
short periods of high demand.  
 
The system is capable of operating in a heterogeneous 
computing environment, and allows workstations to 
dynamically join and leave the system at any time, even 
during the execution of an application. The use of 
transactions adds robustness to the system, and keeps it in 
a consistent state in the event of partial failure. 
 
The system caters to dynamic arrivals and departures of 
the donated workstations well. A workstation that is 
removed while executing a sub-task only affects that 
particular sub-task. The transaction system would, in due 
course, reschedule the sub-task for execution on another 
workstation. 
 
Among the future directions, we plan to expand the role 
of dependency graph to create support dynamic creation 
of new sub-tasks by the running sub-tasks. This could 
lead to a more efficient and flexible system.  
 
Yet another area of interest is the addition of support for 
the use of multiple JavaSpaces to alleviate performance 
bottlenecks. The efficient and transparent use of multiple 
spaces is a topic of ongoing research interest [9, 10].  
 
Finally, another possible area of further work involves 
reducing the level of intrusiveness of the worker software 

on a donor's computer. The software which is downloaded 
onto a donor computer will use all of the available CPU 
cycles. This may lead to noticeable performance 
degradation for a user which is using their machine whilst 
taking part in the system; this could also potentially 
discourage users from donating their computer to the 
system. This obviously undesirable situation could be 
avoided by monitoring the resource requirements of a 
user, and suspending processing during those times when 
they require all of the processing capacity of their 
machine.  
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