
COALESCING IDLE WORKSTATIONS AS A MULTIPROCESSOR SYSTEM
USING JAVASPACES AND JAVA WEB START

Alistair Atkinson and Vishv Malhotra
School of Computing, University of Tasmania

Private Bag 100, Hobart, Tasmania 7001
{alatkins, vishv.malhotra}@utas.edu.au

ABSTRACT
This paper describes a distributed system which
aggregates the unused and usually wasted processing
capacity of idle workstations. The aggregation is achieved
through the use of now ubiquitous internet infrastructure
and web technology. And, it delivers a powerful yet
inexpensive execution environment for computationally
intensive applications. The prototype system described
here makes use of Sun Microsystems Jini technology,
particularly JavaSpaces, along with Java Web Start, to
produce a dynamic, flexible and reliable system. Two
example applications used to evaluate the system are
described: (a) the n-Queens problem and (b) a parallel
sorting (shearsort) application. The results of the
evaluation clearly show that, for certain classes of
applications, the system is capable of delivering
significant performance.

KEY WORDS
Parallel and Distributed Processing, Java-based web
applications, Jini, JavaSpaces.

1. Introduction

A large proportion of an average organization’s
workstations spend the majority of their time either
unused or relatively idle. If the wasted processing
capacity of these workstations could be aggregated, it
could be used to provide processing for computationally
intensive applications. Such a system could potentially
provide an inexpensive alternative to costly custom built
parallel computers or clusters. Many Networks of
Workstations (NoW) systems have been designed and
reported in the past to take advantage of available
resources over the periods of low computer demand – for
example, during off-peak night periods – in the
organizations. Arguably the most well known example of
such a system is SETI@Home [1].

Many of these organizations have a large number of
workstations, which are often under-utilized even during
the ‘active’ periods. These workstations, even when in
use, may only require a small fraction of the total
processing power of the machine. If all of this wasted
processing capability could be aggregated, the resultant
computing power could potentially be substantial and
available at the times when the organization is active.

Computational resources can not be quickly moved from a
physical location to another. Nor is it possible to easily
shift demand for computational resources in an
organization from a time period to another period without
significant cost implications. Typically, organizations
respond to these pressures by installing computational
resources in each work center, to match the peak demand
for the location. Needless to say, that this leads to gross
over-installation of the computers in many organizations.
Ubiquitous internet infrastructure that inter-connects
virtually every computer today provides an opportunity to
quickly and dynamically match organizational centers
experiencing higher demands with those with
computational capacities to spare. Furthermore, the cost
of doing so would be vastly less than the traditional
approaches, as the needed infrastructure is already in
place, and all that is required is appropriate software to
put it to use.

The prototype system presented in this paper attempts to
achieve this goal. There are two important aspects of the
system: a distributed environment to which users can
submit jobs for execution, and a framework which can be
used to build distributed applications suitable for
deployment on the system. The distributed environment is
based on the master/worker distributed system
architecture. This allows large, computationally-intensive
tasks to be divided up into smaller subtasks and
distributed out to worker computers, in this case idle
workstations, for processing. The development framework
enables the development of applications for the system,
and also provides generic coordination mechanisms which
are capable of controlling the execution of reasonably
complex applications.

A key characteristic of the system is that its processing
capacity is not fixed; computers can be dynamically added
and removed from the system at any time, thereby
dynamically changing the overall processing capability.
This is in contrast to custom-built machines or clusters,
which often require costly upgrades in order to gain a
significant increase in its processing capacity. These
upgrades may also require a complete system shutdown,
during which time no processing could be performed.

The system is evaluated using two sample applications:
the n-Queens problem, and a parallel sorting (shearsort)
application.

427-108 233

debbie

In Section 2, we briefly introduce the background
technologies the proposed system uses. The section also
contains references to some related works. The system is
then introduced and described in Section 3. In Section 4,
we describe the two example applications used for testing
the effectiveness of the system. These applications have
relatively contrasting characteristics, which highlight
several important properties of the system. The
performance results are given the following section,
Section 5. The paper concludes in Section 6 with some
comments and suggestions for further work.

2. Background: Distributed Processing,

JavaSpaces, Web Start

Distributed systems are a valid and inexpensive
alternative to supercomputers or dedicated clusters for
meeting the processing demands of computationally
intensive applications. This is achieved by taking the large
task that is to be completed, and dividing it into smaller
sub-tasks. These sub-tasks can then be distributed out to
individual computers for processing in parallel. Many
distributed computing technologies have been developed,
the most relevant in terms of the system being presented
being the Linda Coordination Language [2] and Sun
Microsystems' Jini [3], in particular JavaSpaces [4].

A distributed system runs by placing its subsystems (or
components) on different computers for execution. Beside
the speed advantage, distribution may benefit its users by
providing better response, security and reliability. On the
other hand, such an approach requires mechanisms to
communicate data between the components, their
synchronization and scheduling. Shared memory and
message passing are two common approaches to model
the communication and synchronization needs of the
concurrent systems. Linda uses a different approach to
these goals.

The Linda Coordination Language was developed by
David Gelernter at Yale University in 1985. The approach
is distinguished from other distributed system
technologies by its use of a space-based communication
medium rather than the traditional shared-memory or
message-passing medium. Processes in the system
communicate indirectly by reading and writing tuples to
and from a shared tuple space accessible to all
components of the distributed system. Three fundamental
operations supported by a tuple space are: get a tuple
matching the specified attribute, put a tuple into the tuple
space, and remove a tuple. This concept forms the basis of
the JavaSpaces distributed system technology from Sun
Microsystems. JavaSpace stores objects rather than the
tuples, as in Linda.

JavaSpaces is a distributed computing technology that
provides a persistent shared object store and simple yet
powerful object exchange mechanisms. The design of
JavaSpaces was heavily influenced by the Linda
Coordination Language. The JavaSpaces shared store is

provided by a service called a space. A space is used to
hold entries (Java objects). A space has some useful
properties, namely persistence, and the ability to be
associatively searched. Entries stored in a space remain
there until they are explicitly removed or their lease
expires, even if the process that placed the object there
ceases to exist. Furthermore, it is possible to locate
objects stored within a space by performing a search
based on an object’s type and values of its attributes.

Java Web Start [5] is a technology that allows standalone
Java applications to be deployed over the World Wide
Web (WWW). A Web Start application can be launched
simply by clicking on a hyperlink embedded in a web
page, and spares the user from having to install and
configure the software manually. Web Start applications
offer many advantages over Java Applets, as they are not
tied to the browser after being launched, and don't have be
repeatedly downloaded the code each time the user runs
the program.

In the following section we describe how these
technologies are used to develop a system for the
distributed execution of programs.

3. Distributed Execution Environment:

Coalescing Idle Workstations

There are three main components of the proposed
Distributed Execution Environment (DEE) constructed by
coalescing idle workstations: (1) Identifying the available
computer; (2) Constructing a distributed system by using
the available computers; and (3) Programming
environment for developing the application programs.

Identification of available computer systems is based on a
simple voluntary step. An owner of a computer system
could donate the computer for use as a node in the
distributed system by simply clicking on a hyperlink on a
web page which would launch the worker Web Start
application. This step is entirely voluntary and a donated
computer similarly can be removed from the distributed
system by exiting the worker application. The distributed
environment enables a user to donate their computer to
the system, effectively adding their computer's processing
capability to a pool of other worker computers. These
workers are used to collectively process large,
computationally intensive applications.

The design of the distributed system follows the
master/worker, or agenda parallelism design suggested by
Carriero & Gelernter [6]. In such a system, a master
process will divide a large task into multiple smaller sub-
tasks. These sub-tasks are distributed out to however
many worker processes are available. The worker
processes will execute the sub-task, and return the results
of the computation back to the master. Once all of the
sub-tasks have been executed and the results returned, the
master will merge the results into a meaningful result of
the original large task. An arrangement such as this is
shown in Figure 1.

234

The programming environment relies on suitably
constructed Java class. A generic task executor is started
on the donated machine. It contacts the JavaSpace store to
find next problem specific task to execute. The problem
task is loaded. This task in turn will obtain the necessary
input data from JavaSpace. On completion, the results of
the task are stored into the JavaSpace for access by
follow-up tasks. Clearly, one needs to coordination the
activities of these tasks to ensure that the tasks can find
their relevant input data and store their outputs for the
follow-on tasks. There is little benefit in attempting to run
a task which has some of its input data unavailable. The
coordination is achieved by using a dependency graph.

Figure 1: System overview.

The activities of each worker process in the system are
coordination by a shared dependency graph. The
dependency graph is a JavaSpace entry that stores the
current state of an application's execution, and is used by
workers to determine which task should be executed next.
The graph itself is a directed acyclic graph, with vertices
representing an application's tasks, and the edges denoting
the data dependencies between them.

So, before a worker obtains a task for execution, it first
takes the dependency graph from the space to see which
task it should execute. The worker then takes this task
from the space, and marks the corresponding node in the
dependency graph as being in-progress. Also, a worker
will use the graph to determine if the task depends on the
results of any previously executed task, and, if so, will
obtain these results before executing the current task.
When a worker has completed the execution of a task, it
will obtain the dependency graph and mark the node as
complete, before returning the results of the task's
execution to the space. Workers continue this process
until all nodes in the graph are marked as complete, at
which time the master process takes all of the results from
the space and assembles them into some meaningful
whole, depending on the particular application.

The system will continue to function correctly and
maintain a consistent state in the event of partial failure,
due to the use of the Jini Transaction Manager. All objects
taken from or written to the JavaSpace are done so under
a transaction. All transactions are leased from the
transaction manager for a given period of time; this lease
time is specific when the transaction is created. If a
transaction's lease expires, the transaction is automatically
aborted, thus canceling all operations performed under it.
The use of transactions becomes especially important in
cases where a worker process fails for some reason after
having acquired some object from the JavaSpace. Instead
of these objects being lost indefinitely, they are instead
only rendered unavailable until the expiry of the
transaction under which they were taken from the
JavaSpace, at which time they will be made available
once more to other worker processes. The use of
transactions also gives the system the added advantage of
preventing potential deadlocks from occurring, as objects
are only acquired for a finite amount of time.

4. Example Applications

Two example applications were used to evaluate the
system: the n-Queens problem and a shearsort application.
These applications have some widely contrasting
characteristics which are useful in assessing various
aspects of the system.

4.1 n-Queens Problem

The n-queens problem [7] is a generalization of the well
known eight-queens problem. The basic premise of the
problem is this: find the number of ways that n-queens
can be arranged on an n x n chess board so that no two
queens can attack each other, according to the rules of the
game.

This particular implementation of this combinatorial
problem uses a simple backtracking algorithm. This
algorithm has an exponential execution time, which
makes it one of the least efficient methods of solving the
problem. However it is also one of the most
straightforward algorithms to parallelize.

The problem is parallelized by dividing the entire space
that needs to be searched, in this case all possible
combinations of queens placings on the chess board, into
smaller sub-tasks that will each search a subset of the
space. This is achieved by placing a queen in each of the
first two columns of the board, in positions where they
cannot attack each other. This produces (n-1) × (n-2)
sub-tasks of approximately equal size, given a board of
size n, with each sub-task involving a search of n

n-2

possible combinations. The execution of the sub-task will
result in every possible combination of queens placings
being searched for the remaining columns, and testing if
each combination is a valid solution to the problem, given
the position of the queens in the first two columns.

235

4.2 Shearsort

Shearsort [8] is a parallel sorting algorithm that we have
adapted for a distributed environment. The shear sort
algorithm takes a list of n numbers that are to be sorted,
and arranges them into a two dimensional mesh of size
n1/2×n1/2 Once this has been done, exactly n1/2 phases of
execution will be completed. If an odd-numbered phase of
execution is being completed, each odd- and even-
numbered row will be sorted in ascending and descending
order respectively. If an even-numbered phase is being
completed, then all columns are sorted in ascending order.
After all phases have been completed, the mesh will be
sorted. Pseudo-code for the shear sort algorithm is shown
below.

for step = 1 to ceiling(sqrt(N)) do
 if odd(step)
 if odd(row)
 sort_left_to_right(row);
 else
 sort_right_to_left(row);
 else
 sort_top_to_bottom(col);

The shear sort algorithm has an average execution time of
n1/2 when executed on n1/2 processors. It can be
parallelized by sorting each row or column in parallel,
depending on the phase of execution.

5. Performance Evaluation

The two example applications discussed in Section 4 were
used to assess the system to see whether it met its goal of
utilizing the wasted processor cycles of idle workstations.

All testing was conducted using the computer labs in the
School of Computing, Launceston. All required Jini
services were set to run on an 800 MHz Pentium 3
machine with 256 MB of RAM, and running Slackware
GNU/Linux 9.0. Also running on this machine was the
master process of an application, along with the Apache
web server, which was used to service requests for the
client Web Start application.

The rest of the system consisted of the client (worker)
software running on numerous independent computers.
Unless otherwise stated, these worker machines were 400
MHz G4 Apple Mac machines with 512 MB of RAM, and
running Mac OS X. All computers used for testing were
connected via a 100 Mb switched fast Ethernet network.
Also, all computers were using the Java Runtime
Environment 1.4.2.

5.1 Performance Measurement

The usual measures of the performance of a parallel
system, suggested by Carriero & Gelernter [2], are
speedup and efficiency. Following their definitions,
speedup is "the ratio of sequential run-time to parallel run
time", and efficiency is "the ratio of speedup to number of

processors". Efficiency can also be viewed as the average
utilization of the system's total processing capacity. Both
of these measures give a good indication of the
effectiveness of a parallel system in using available
processors to their maximum capacity. In particular, the
efficiency of a system is an excellent indicator of a
system's scalability. Parallel applications should therefore
strive to maximize efficiency in order to achieve the
highest possible speedup.

We will define the sequential run time of an application as
the time it takes to execute when there is a single worker
computer present in the system. This definition
establishes a valid basis representing the full (100%)
utilization of the workstation time. The speedup and
efficiency for all other number of workers will be
calculated based on this value.

Unlike the multi-workstation environment, a single
workstation environment does not incur contention for
resources (JavaSpace and the dependency graph being the
primary resources). Further, a single workstation
environment schedules the sub-tasks in a way that
provides for full utilization of the donated workstation. In
a multi-workstation environment some workstations may
have to wait for their next sub-tasks as the sub-tasks wait
for the enabling inputs. These waiting will impact the
processor utilization (efficiency) of the system. A problem
well suited to the environment will continue to provide
high efficiency (workstation utilization) in the multi-
workstation environment. Low workstation utilization as
the number of workstations increase indicates a problem
ill-suited for the system.

5.2 n-Queens Problem

Testing was carried out for the n-queens problem, with a
value of n equal to sixteen (ie. we wish to place sixteen
queens onto a chess board of dimension sixteen). This is a
non-trivial problem, which requires the search of 1616
possible states. The process of dividing this job into sub-
tasks will yield two-hundred and ten sub-tasks, each of
which will search 1614 possible board states.

The performance results of the n-Queens problem, where
n equals 16, are show in Table 1. This data clearly shows
that the n-queens application achieves excellent speedup,
made possible by its high level of efficiency on up to
sixteen machines. The problem took almost two hours to
compute using a single computer; however on sixteen
machines the time was reduced to around seven minutes.
These results are especially pleasing, as they indicate that
doubling the amount of computers working on the
problem will go very close to halving the execution time.

These positive results are mostly due to the problem being
relatively coarse-grained, in that each sub-task requires
the worker to do a significantly large amount of work.
Also, the subtasks can be executed in parallel due to the
absence of any data dependencies.

236

5.3 Shearsort

The shearsort application was firstly tested on a list of
randomly-generated long integers. The results obtained
from executions of the application are shown in Table 2.

Table 1: Performance results of n-Queens problem where

n equals 16

Workers Average Run

Time (secs)
Optimal Run
Time (secs)

Speedup Workstation
Utilization

1 6392.6 6392.6 1 100.00%

2 3190.8 3196.3 2 100.00%

3 2133.9 2130.9 2.99 99.67%

4 1620.4 1598.2 3.95 98.75%

6 1083.7 1065.4 5.9 98.33%

8 810.8 799.1 7.88 98.50%

12 552.5 532.7 11.97 96.42%

16 427.5 399.5 14.95 93.44%

Table 2: Performance results of shearsort.

Worker
s

Average Run
Time (secs)

Optimal Run
Time (secs)

Speedup Workstation
Utilization

1 2673.9 2673.9 1 100.00%

2 1334.2 1336.9 2 100.00%

4 1305.4 668.5 2.05 51.25%

8 1229.3 334.2 2.18 27.25%

12 1184.4 222.8 2.26 18.83%

16 1090.0 167.1 2.45 15.31%

These results show good speedup on two machines,
followed by a dramatic leveling off on any additional
machines. This coincides with a steep fall in the efficiency
of the system. The efficiency of this application indicates
that is does a very poor job of utilizing the workstations in
the system.

The main contributing factor to this poor scalability is the
very fine-grained parallelism of the application. A
relatively large amount of JavaSpace operations must be
carried out for each task; however for all of these
communications, only a relatively small amount of actual
work is performed by a task.

The CPU usage of the server machine during these tests
was observed to be consistently between 80%-85% when
there are two worker machines and 95%-100% when there
are four or more workers in the system. This would
suggest that the server is not able to service the large
amount of JavaSpace operation in a timely manner, thus
explaining the sudden leveling off of performance.

5.4 Shearsort with introduced delay

To determine whether the fine-grained nature of shearsort

is indeed the cause of its poor performance, each task was
programmed to sleep for five seconds during execution.
This modified approach was then tested on a list of
randomly-generated long integers. This had the overall
effect of producing tasks that will take a greater amount of
time to execute, effectively making the application more
coarse-grained, and thereby decrease the communications
and server CPU load. Note that this test was conducted
using 700 MHz G4 Apple iMacs, with 384 MB of RAM
and running Mac OS X. The performance results of this
modified shearsort are shown in Table 3.

These results show a marked improvement on those
previously presented in Table 2, suggesting that the fine-
grained tasks of the shearsort application are indeed the
cause of the poor speedup. It is clear that this coarser-
grained approach is much more efficient than when a
delay is not used.

Table 3: Performance results for shearsort with introduced

delay.

Workers Average

RunTime (secs)
Optimal Run
Time (secs)

Speedup Workstation
Utilization

1 670.2 670.2 1 100.00%

2 337.0 335.1 1.99 99.50%

4 240.9 167.6 2.78 69.50%

6 176.4 111.7 3.8 63.33%

8 151.4 83.8 4.43 55.38%

5.5 Discussion

The performance results presented in this section
highlight how the contrasting characteristics of each
application impact on the actual level of performance
gained. The most influential factors are task granularity
and sequential execution.

The most obvious contributing factor to the difference in
scalability lies in the granularity of the sub-tasks that
make up an application. In this case, the granularity
should be thought of as the amount of work done
compared to the amount of communication overheads (ie.
JavaSpace operations) incurred during the execution of
each task.

The shearsort application performs many more JavaSpace
operations than the n-queens application, as it must read
each cell of each row or column of the data mesh
individually and also the step counter entry, in addition to
the standard dependency graph and task entry. For all of
this overhead, only a relatively small amount of work is
actually performed.

The n-queens application is vastly different to shearsort,
in that each sub-task does not need to fetch any data
objects in order to execute. All data is encapsulated in the
task entry itself, and the task execution involves heavy
computation, which takes a reasonably significant period

237

to complete. This coarse grained parallelism results in
excellent speedup and scalability.

The level of performance gain is inevitably associated
with the level of inherent concurrency of an application; it
is unlikely that a purely sequential program will achieve
any speedup at all, most likely the opposite would prove
to be true.

The n-queens application can be fully parallelized; every
task entry can be executed in parallel if there are enough
workers available. However the shearsort application
must execute sequentially in part, due to its different
sorting phases which alternate between sorting rows and
columns. This means that every row or column must be
finished being sorted before all other workers can
continue on in the subsequent phase of execution. This
problem would not be pronounced in a system where the
workers each have approximately equal processing
capability. However, in a scenario where there is one
worker that is particularly slow, the performance could be
seriously degraded as all of the faster workers would be
continually waiting on this slow worker.

6. Conclusions & Further Work

This paper has presented a dynamic distributed system
which aims to make use of the wasted processing capacity
of idle workstations for the execution of computationally
intensive tasks. Such a system could allow an
organization much greater flexibility of its computing
resources, and reduce costs by removing the need to have
redundant resources at each work center simply to meet
short periods of high demand.

The system is capable of operating in a heterogeneous
computing environment, and allows workstations to
dynamically join and leave the system at any time, even
during the execution of an application. The use of
transactions adds robustness to the system, and keeps it in
a consistent state in the event of partial failure.

The system caters to dynamic arrivals and departures of
the donated workstations well. A workstation that is
removed while executing a sub-task only affects that
particular sub-task. The transaction system would, in due
course, reschedule the sub-task for execution on another
workstation.

Among the future directions, we plan to expand the role
of dependency graph to create support dynamic creation
of new sub-tasks by the running sub-tasks. This could
lead to a more efficient and flexible system.

Yet another area of interest is the addition of support for
the use of multiple JavaSpaces to alleviate performance
bottlenecks. The efficient and transparent use of multiple
spaces is a topic of ongoing research interest [9, 10].

Finally, another possible area of further work involves
reducing the level of intrusiveness of the worker software

on a donor's computer. The software which is downloaded
onto a donor computer will use all of the available CPU
cycles. This may lead to noticeable performance
degradation for a user which is using their machine whilst
taking part in the system; this could also potentially
discourage users from donating their computer to the
system. This obviously undesirable situation could be
avoided by monitoring the resource requirements of a
user, and suspending processing during those times when
they require all of the processing capacity of their
machine.

References

[1] Search for Extraterrestrial Intelligence: SETI@Home,
http://setiathome.ssl.berkeley.edu/ (accessed on 30th
March 2004)

[2] D. Gelernter, Generative communication in Linda,
ACM Transactions on Programming Languages and
Systems, 7(1), 1985, 80-112.

[3] Jini Network Technology,
http://java.sun.com/developer/products/jini/ (accessed 30th
March 2004)

[4] E. Freeman et al, JavaSpaces Principles,
Patterns and Practice (Massachusetts: Addison-Wesley,
1999).

[5] Java Web Start Technolgy,
http://java.sun.com/products/javawebstart/ (accessed 30th
March 2004)

[6] N. Carriero & D. Gelernter, How to write
parallel programs (London: MIT Press, 1990).

[7] The N Queens Problem,
http://www.math.utah.edu/~alfeld/queens/queens.html
(accessed 30th Match 2004)

[8] Shearsort,
http://www.cs.mu.oz.au/498/notes/node35.html (accessed
30th March 2004)

[9] R. Menezes and R. Tolksdorf, A new approach to
scalable Linda systems based on swarms, Proceedings of
the 2003 ACM symposium on Applied computing, New
York, NY, USA, 2003, 375-379.

[10] I. Merrick & A. Wood, Coordination with scopes,
Proceedings of the 2000 ACM symposium on Applied
computing, Como, Italy, 2000, 210-217.

238

