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ABSTRACT 
Object classes are the building blocks for object-oriented 
software. Design methodologies have focused on 
methods, tools and representations to build classes taking 
advantages of inheritance and encapsulation properties. 
The guiding principle being that if all classes are correctly 
constructed a system consisting of objects in these classes 
will be correct. Efforts to include object constraints in 
object-oriented programs have not attained the role 
commensurate with the role invariants play in traditional 
imperative programs in understanding the programs and 
in establishing correctness properties. The paper describes 
use of a model checker to establish the correctness of an 
object-oriented design.  
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1.  Introduction 

 
The program execution fundamentals of object-oriented 
systems are rooted in the imperative programming 
paradigm. Thus, the need for invariants and execution 
stages [1], [2] remains important in understanding the 
correctness and other properties of object-oriented 
programs and systems. The dominant developments in 
object-oriented methodologies have focused on class 
construction; correctness of interactions among objects 
has received a smaller role in these methodologies.  
 
A design is not ready just because each class has been 
designed inheriting behaviour and code from appropriate 
super-classes. We need to also be sure that the class 
objects will interact with each other correctly. A 
methodology exclusively focused on object and class 
interfaces does not address some basic but important 
design needs:  
 
• How do we know that all object classes have been 

defined?  
 
• How do we know that all methods of interest have 

been found?  

• How do we know that all behavioural details of 
interest have been captured in the specifications?  

 
• Inconsistency in the specifications is another global 

property that escapes the confines of a single class 
interface. 

 
We need a methodology that can consider properties of 
individual classes as well as properties of groups of 
classes and their objects. 
 
Imperative languages, for example C [3], use the 
procedural abstraction as the central design methodology 
for understanding and comprehending software and its 
development processes. Invariants and predicates [2], [4] 
relate points in the static text of a program with the 
(expected) state that would exist when the correct 
program reaches those points during the execution. More 
recently Java has incorporated the traditional imperative 
language style assertions in the language.  Thus, through 
pre-conditions and post-conditions programmers are able 
to express some, but not all, aspects of the contracts that 
server object methods have to the client objects invoking 
the methods. However, emphasis away from functional 
and procedural abstraction makes it difficult to associate a 
location in the static text of the object-oriented program 
with the states during execution. It is not convenient to 
write invariants expressing the system properties defining 
the system states during the program execution. The 
Object Constraint Language OCL [1] has somewhat 
limited success in expressing constraints on the values 
(states) in the programs. 
 
Functional programming [5] alleviates invariants and the 
execution stages. The composition rules are defined to 
determine the properties of the composed functions from 
the properties of the composing functions. Functional 
programming has been a source of many insights and 
innovations in the way we program today. However, the 
focus of this paper being object-oriented paradigm we 
shall not be following an approach based on functional 
programs further in this paper. 
 
In this paper, we suggest the use of model checking [6] 
tools as a way to express and verify properties that 
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encompass multiple objects and their classes. Specifically, 
we use Labelled Transition System (LTS) by Magee and 
Kramer [7] as the verification tool. The tool models a 
concurrent system of objects as a composition of finite 
state processes (FSP). LTSA (Labelled Transition System 
Analyser) being an analyser for a concurrent system 
focuses on establishing the safety and liveness properties 
of the modelled systems.  
 
A model is an abstract specification of a system. Each 
object in the model is represented as a concurrent 
component. The invariant properties of the object-oriented 
model can be expressed as the safety properties over the 
LTS description. A deadlock or a liveness concern in the 
LTS model has interpretation in the object-oriented 
domain underscoring an issue that has remained 
unaddressed. 
 
In Section 2, we briefly describe the software 
development process as we view it. The section also 
provides some basics of the LTS specification language 
and its processing. In section 3, using a few examples 
from a case study we give a flavour of the kinds of 
outputs one receives from the tool. Section 4 summarises 
the results from the effort and makes some concluding 
remarks listing the advantages the approach delivers to the 
object-oriented software development methodologies. 
 
2. Object-Oriented Software Development  
 
We follow validation led software development process 
[8]. In brief, the object-oriented software development 
begins with a text description of the system. The objects 
and object classes can usually be discerned from the text. 
For each class, some data members may also become 
obvious at this stage. Class hierarchies and other inter-
class relationships are organised to take advantage of 
standard object-oriented modelling practices, for example 
UML [9] [10].  To obtain a complete and consistent 
specification, the methodology suggests the use of object 
lifecycle models.  
 
For each significant object class, the text description 
usually provides an initial description of the object’s 

lifecycle. For example, verbs provide clues to the 
existence of various states. Nature of these verbs may 
suggest various forms of transitions between the states of 
the system.  
 
However, text descriptions are notorious for their 
ambiguity and inconsistency [11]. At the same time, much 
of the description is generally left unexpressed. One does 
not expect the initial lifecycle models of the object classes 
drawn from the text to be perfect models. An extensive 
example is provided in [8] to describe a validation led 
process that can be used to iteratively develop the 
lifecycles to their final refined levels.  
 
In each iterative cycle of the validation led development, 
the lifecycles are matched against each other to identify 
inconsistencies and incompleteness. Each identified 
lacuna requires the lifecycles to be revised to correct the 
concern. The reported example, however, relied on a 
manual analysis of the lifecycles to identify the lacunae. A 
tool to perform this analysis is a necessary step to improve 
the reliability and effectiveness of the methodology.  
 
We address this need by using a model checker to identify 
the mismatches in the object lifecycle specifications. The 
emerging specification being formal delivers another 
potential benefit in the form of automating the task of 
program generation. This paper, however, does not pursue 
this goal. 
 
We shall use the text description of a lift in a building as it 
appears in [8] (and, reproduced in [12]) without 
reproducing it here. The lift (elevator) system in a 
building is generally well-known and does not need re-
stating here. We do not expect the readers to have any 
difficulty in understanding the example used in this paper. 
Figure 1 shows the lifecycle of a lift passenger from a text 
description of a lift system. As the analysis progressed, 
the specifications were refined, and it became evident that 
a passenger arriving at the ground floor or the top floor 
had a lifecycle somewhat different from the lifecycles of 
those on the other floors of the building. 
 

A passenger calls at a 
floor 

The passenger waits 
for a lift 

The passenger waits for list to 
reach destination 

The passenger enters the 
lift 

A passenger leaves The passenger leaves 
the lift 

Figure 1: Initial finite state process for a lift passenger as it emerges from a text description. 
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2.1 Labelled Transition System 
 
Using Labelled Transition System (LTS) [7] we can 
model the lifecycles of the entities as finite state processes 
(FSP). The system analyser (LTSA) can analyse the 
processes for progress and safety violations. In this 
section, we give a brief flavour of an FSP description.  A 
finite state process, or simply a process, consists of a 
sequence of actions. As an action occurs the system 
changes its state over a finite set. It is often helpful to 
define a finite process in terms of other finite processes.  
 
Figure 2 shows a process modelling a lift passenger as 
process PASSENGER. In an LTS description, uppercase 
identifiers denote processes and lowercase identifiers 
denote actions. Thus, the process PASSENGER, can follow 
one of the three alternative sequences of actions. In each 
alternative, an action of calling the lift is followed by a 
wait process. The actions and processes may use 
parameters for better expressive power – for example, the 
arriving passengers wait for the lift on the floor from 
which they called the lift. Multiple instances of a process 
can be distinguished by adding a prefixing label – all 
actions of the process will carry the label. A WHEN guard 
can be added to the alternatives to control the choice of 
the alternative. Without a guard one alternative is chosen 
non-deterministically. In addition to defining a process in 
terms of the other processes it is possible to run multiple 
processes in parallel (concurrently).  
 
The LTS Analyser can verify a given model for two kinds 
of errors. A progress violation occurs when the system 
reaches a state from which it can not guarantee an 
occurrence of an action from a set of actions. For 
example, a progress violation would have occurred if the 
modelled system can not assert that, at all instances of 
time, the lift will visit the ground floor again at some time 
in the future. 
 
const UP = 0 
const DOWN = 1 
Range UPF: 2..MAX_FLR-1 
Range DIR: UP..DOWN 
 
PASSENGER = {call_at_ground_level  
   -> WAITING_FOR_LIFT[1] 
 |  call_at_top_floor ->   
   WAITING_FOR_LIFT[MAX_FLR] 
 |  call_at_floor[f: UPF][d: DIR]  
   -> WAITING_FOR_LIFT[f] 
} 
 
Figure 2: Finite State Process PASSENGER defined using 

actions and other FSPs. 
 
There is a special process called ERROR. The process 
ERROR can be reached explicitly by specifying actions 
leading to it. Alternately, one can specify one or more 
safety properties. A safety property is a sequence of, not 
necessarily consecutive, actions that represent an 

acceptable behaviour. Any violation denotes an error 
prompting process ERROR to manifest. A safety 
requirement may insist that each door open action is 
followed by a door close action before the lift moves.  
 
Each safety or progress violation detected by the tool is 
reported by the analyser by an action sequence leading to 
the deadlock or error state. This we found to be very 
useful information in correcting the errors and 
remodelling the lifecycles of the involved entities and 
processes. 
 
3. Experience with the model checker 

 
In this section, we report about our experiences in the use 
of the model checker for validation led development of 
object-oriented software. The full study can be accessed 
in [12].  
 
To keep the report focused we consider the movements of 
one lift in a multi-floor building. At various points in its 
lifecycle, the lift invokes algorithm WALK to determine the 
next action that the lift should execute.  The points on the 
lift lifecycle at which the algorithm is invoked are when 
the lift door closes; when the lift approaches the next floor 
level; and by an idle lift when a floor button is pressed to 
call the lift.  
 
Initially a rather rudimentary WALK algorithm was coded 
in the FSP model. The LTS analyser was then used to 
report incompleteness and inconsistency errors in the 
model. Figure 3 depicts a LTSA report for a model of the 
lift system. The annotations have been added to the 
analysis report to provide easy interpretation. The reader 
will notice that the description does not (yet) fit with the 
typical configuration of a real lift system. The differences 
represent the still-evolving state of the FSP model used in 
the illustration. The example model is not the final model.  
 
As errors were reported by the analyser, alterations were 
made to improve the model. Table 1 summarises a sample 
of the reported errors and the actions taken to correct the 
reported errors. The full final version of the lift 
specification spans some 19 pages. 
 
3.1 Software Testing versus Model Checking  
 
Table 2 provides an indication of the efforts required to 
verify the finite state process (FSP) model of the lift for 
various sizes of the model. These provide some 
interesting insights into the traditional software design 
and develop methodologies. A naïve black-box testing 
[13] would tend to show growth in the required number of 
test cases in proportion to the potential state-space size. 
As is obvious from the numbers appearing in Table 2, any 
practical testing exercise based on the black-box approach 
can only test a microscopic fraction of the potential test 
cases. 
 

243



White-box testing [13] takes advantage of 
implementation-related information. Thus, it will follow 
the growth trend shown as reachable state space and/or as 
the number of transitions. Again, the practical testing 
efforts can cover only a small fraction of the test cases 
needed for a perfect result. 
 
The model checking, notwithstanding its tedium, emerges 
as a powerful tool if we wish to deliver high quality 
software that is substantially free from errors and 
mistakes. Model checkers, such as LTSA, contribute to 
this process in many ways:  
 
• The formal FSP descriptions that LTSA requires are 

directly associated with the objects in the system 
specifications.  

 
• The FSP description of the objects is formal and is 

capable of interpretative execution. It can be run in 

steps through an animator – an integrated part of 
LTSA – for better understanding of the nature of a 
problem and the circumstances leading to it.  

 
• The verification process employed by a model checker 

is like a simultaneous execution of all animations – 
analysis provides an effective and efficient mean for 
identifying all potential violations of progress and 
safety properties in the specifications.  

 
• Each identified violation is reported as a shortest 

sequence of actions that leads to the identified 
violation. This makes it easy to comprehend the 
problem and supports the efforts to correct it.  

 
• The formal specifications can be easily transformed 

into programs in Java and other object-oriented 
languages through automated and semi-automated 
processes. 

 
 

Composition: 
LP = p.1: PASSENGER || LIFT (btnUp, btnDown, dptCount) || btnUp.1:BUTTON || 
btnUp.2:BUTTON || btnDown.2:BUTTON || btnDown.3:BUTTON || dptCount.1:BUTTON || 
dptCount.2:BUTTON || dptCount.3:BUTTON 
State Space: 
 22 * 882 * 3 * 3 * 3 * 3 * 3 * 3 * 3 = 2 ** 29 
Analysing... 
Depth 25 -- States: 217 Transitions: 445 Memory used: 4482K 
Trace to DEADLOCK: 
 p.1.arrival.1 // p.1 arrives at level 1 of the building 
 p.1.passenger.1 // wants to ride the lift from level 1   
 p.1.call.1.1 // calls the lift 
 delay.1 // waits – this lift is right there! 
 door_is_open_i.1.1 // Lift door opens 
 dptCount.1.seek_button.0 // Lift checks: the departure count at floor 1 is 0 –  
 btnUp.1.seek_button.1 // Lift checks: the up button at floor 1 shows 1 person waiting 
 btnUp.1.off // Lift turns the first floor up button off 
 p.1.enter_lift // Passenger p.1 may board the lift 
 p.1.entered_lift.1 // p.1 enters lift 
 p.1.press_dest.1 // p.1 wants to go to floor 1 – same floor 
 pause 
 door_is_closed.1.1 // Lift door closes p.1 is inside 
 dptCount.1.seek_button.1 // Lift determines that it needs to go to floor 1 
 door_is_open_i.1.1 // Lift opens the door 
 dptCount.1.seek_button.1 // Anyone getting down here? 
 p.1.destination_reached.1 // p.1 is to be let off here 
 p.1.left_lift.1 // p.1 leaves 
 p.1.arrival.1 // p.1 is back on the level 1 
 p.1.passenger.1 // wants to ride the lift from level 1. Again! 
 dptCount.1.seek_button.0 // Lift checks: the departure count at floor 1 is 0 
 btnUp.1.seek_button.0 // Lift checks: the up button at floor 1 shows 0 persons waiting 
 btnDown.1.seek_button.1 // Lift checks: down button at floor 1 shows 1 person waiting 

                                                // btnDown.1 is defined by LIFT(btnUp,btnDown,dptCount)  
 btnDown.1.off // Lift turns the first floor down button off 
Analysed in: 180ms 

 
Figure 3: LTSA analysis report indicating a sequence of actions leading to a deadlock in a FSP model for a lift 

system. The comments have been added to provide interpretation for the readers of this paper. 
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Table 1: Summary of some errors reported by the analyser during validation led development of a FSP model for a 
lift system in a building with 3 floors. 

 

ERR
OR  DESCRIPTION OF THE ERROR COMMENTS/SOLUTION 

2 Passenger arrives at floor 3 and calls lift. Lift 
arrives at floor 3 and passenger gets in. Presses 
for floor 1. The door closes, and lift invokes 
WALK algorithm. The algorithm proceeds to 
on-floor down button and then goes into idling.

Problem arises from a support process in WALK, 
specifically the first guard of LOOK_DOWN_INTERNAL 
required range check to be equal to lowest floor number to 
allow the recursive call to reach the in-lift button at the first 
floor.  

7 Passenger arrives at the ground floor and 
presses the call button. The door opens and the 
passenger enters the lift and indicates to travel 
to the current floor. The door closes and then 
opens and the passenger leaves the lift. A 
passenger then arrives at the ground floor but 
does not press call yet. The lift invokes WALK 
but halts. 
 
(This case is the one reported in Figure 1) 

The actions that return the number of calls in any queue are 
called at the top of the DROPPING_PASSENGERS 
process without excluding illogical combinations of floor 
and button direction. For example, the bottom floor in this 
scenario has a down button. The lift reads this error state as 
an instruction to travel down, but cannot, so halts. To 
rectify this situation the initial seeks in 
DROPPING_PASSENGERS are wrapped up in local 
processes so that the correct behaviour is applied to each of 
the three separate cases. This creates the processes 
DP_ANY_FLOOR, DP_TOP_FLOOR and 
DP_BOTTOM_FLOOR. 

14 The passenger arrives at the second floor and 
calls the lift. The lift then travels up to the 
second floor and opens the door. The 
passenger enters the lift and indicates to travel 
up to the top floor. The door is closed and the 
WALK algorithm completes and the lift enters 
the idle state. The passenger is still in the lift! 

The passenger had initially indicated to travel down, 
however when the passenger was in the lift the passenger 
indicated to travel up. The lift though is expecting to go 
down and so performs the WALK in the downward 
direction. When the WALK reaches the bottom it believes 
that it has looked everywhere and so goes to idle. The fix 
for this involved adding in two new local processes at the 
composite level and using them as Boolean masks against 
having checked up or down, so that the lift would look up 
if still needed and vice versa. These new local processes 
are termed LOOKED. 

22 P calls to go up from 2nd floor, lift goes to 
second floor, 2nd passenger calls lift from 
third floor, to go down. The 1st P gets in and 
indicates to go down! The lift does it scan, is 
still in a mood to go up, and sees the third floor 
call. The lift goes to the third floor, and should 
open the door, instead, hits T17 which fulfils 
current conditions against guards, and so 
travels on to the fourth floor without stopping 
at the third. 

This problem would not arise if the Ps did what they said 
what they were going to, ie travel in the direction they 
indicated. In the absence of a property to enforce this 
behaviour, which is not realistic anyhow, another solution 
is needed. What should happen? The lift should pick up the 
2nd passenger at the third floor, and then move on from 
there. 

 
 
4. Conclusions 

 
Notwithstanding a successful application of a model 
checker in verifying the object-oriented design of a lift 
system, the methodology needs further developments to 
be universally applicable. The model checkers available 
inexpensively often have limitation in regard to the size 
of the systems they are able to analyse successfully. 
State explosion problem is the Achilles' heel for the 
model checkers. 

 
At the same time, the benefits that model checkers 
provide in verifying the design is important [14, 15]. It 
has long been understood that quality cannot be added 
to software after it has been developed. Software 
engineers are well aware of the rapid escalations in cost 
at later software development phases. Software 
development practices, methodologies and tools 
continuously strive to make it possible to find errors 
earlier in the development process. 
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Table 2: Growth in the state space size for the modelled lift system with the number of floors in the building and the 
number of simultaneous lift users 

 
Number of floors in the modelled building Number of  simultaneous 

passengers in the 
modelled system 3 5 7 10 

Reachable states 1267 5067 12987 35952 

Potential state space ~1024 ~1033 ~1040 ~1050 

 
1 

Number of transitions 1327 5267 13407 36852 

Reachable states 8236 57899 209454 

Potential state space ~1036 ~1052 ~1067 

 
2 

Number of transitions 9146 812408 224180 

Reachable states 56664 697580 3580800 

Potential state space ~1041 ~1058 ~1073 

 
3 

Number of transitions 68388 812408 4060332 

Reachable states 405172 

Potential state space ~1053 

 
4 

Number of transitions 537502 

 

 

 
 
The paper has illustrated that model checkers support the 
software engineering goals well. They not only provide a 
comprehensive route for testing the software design 
earlier than the traditional testing based methodologies, 
but also promise to help automate the following stages of 
the software development. 
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