
VALIDATING INTER-OBJECT INTERACTION
IN OBJECT-ORIENTED DESIGNS

Vishv Malhotra and Simon C Stanton
School of Computing, Private Box 100,

University of Tasmania, Hobart 7001 Australia
{vishv.malhotra, sstanton}@utas.edu.au

ABSTRACT
Object classes are the building blocks for object-oriented
software. Design methodologies have focused on
methods, tools and representations to build classes taking
advantages of inheritance and encapsulation properties.
The guiding principle being that if all classes are correctly
constructed a system consisting of objects in these classes
will be correct. Efforts to include object constraints in
object-oriented programs have not attained the role
commensurate with the role invariants play in traditional
imperative programs in understanding the programs and
in establishing correctness properties. The paper describes
use of a model checker to establish the correctness of an
object-oriented design.

KEY WORDS
Finite state process, Object-oriented design, Invariants,
Object constraints, Model-checking.

1. Introduction

The program execution fundamentals of object-oriented
systems are rooted in the imperative programming
paradigm. Thus, the need for invariants and execution
stages [1], [2] remains important in understanding the
correctness and other properties of object-oriented
programs and systems. The dominant developments in
object-oriented methodologies have focused on class
construction; correctness of interactions among objects
has received a smaller role in these methodologies.

A design is not ready just because each class has been
designed inheriting behaviour and code from appropriate
super-classes. We need to also be sure that the class
objects will interact with each other correctly. A
methodology exclusively focused on object and class
interfaces does not address some basic but important
design needs:

• How do we know that all object classes have been

defined?

• How do we know that all methods of interest have

been found?

• How do we know that all behavioural details of
interest have been captured in the specifications?

• Inconsistency in the specifications is another global

property that escapes the confines of a single class
interface.

We need a methodology that can consider properties of
individual classes as well as properties of groups of
classes and their objects.

Imperative languages, for example C [3], use the
procedural abstraction as the central design methodology
for understanding and comprehending software and its
development processes. Invariants and predicates [2], [4]
relate points in the static text of a program with the
(expected) state that would exist when the correct
program reaches those points during the execution. More
recently Java has incorporated the traditional imperative
language style assertions in the language. Thus, through
pre-conditions and post-conditions programmers are able
to express some, but not all, aspects of the contracts that
server object methods have to the client objects invoking
the methods. However, emphasis away from functional
and procedural abstraction makes it difficult to associate a
location in the static text of the object-oriented program
with the states during execution. It is not convenient to
write invariants expressing the system properties defining
the system states during the program execution. The
Object Constraint Language OCL [1] has somewhat
limited success in expressing constraints on the values
(states) in the programs.

Functional programming [5] alleviates invariants and the
execution stages. The composition rules are defined to
determine the properties of the composed functions from
the properties of the composing functions. Functional
programming has been a source of many insights and
innovations in the way we program today. However, the
focus of this paper being object-oriented paradigm we
shall not be following an approach based on functional
programs further in this paper.

In this paper, we suggest the use of model checking [6]
tools as a way to express and verify properties that

429-101 241

melissa

encompass multiple objects and their classes. Specifically,
we use Labelled Transition System (LTS) by Magee and
Kramer [7] as the verification tool. The tool models a
concurrent system of objects as a composition of finite
state processes (FSP). LTSA (Labelled Transition System
Analyser) being an analyser for a concurrent system
focuses on establishing the safety and liveness properties
of the modelled systems.

A model is an abstract specification of a system. Each
object in the model is represented as a concurrent
component. The invariant properties of the object-oriented
model can be expressed as the safety properties over the
LTS description. A deadlock or a liveness concern in the
LTS model has interpretation in the object-oriented
domain underscoring an issue that has remained
unaddressed.

In Section 2, we briefly describe the software
development process as we view it. The section also
provides some basics of the LTS specification language
and its processing. In section 3, using a few examples
from a case study we give a flavour of the kinds of
outputs one receives from the tool. Section 4 summarises
the results from the effort and makes some concluding
remarks listing the advantages the approach delivers to the
object-oriented software development methodologies.

2. Object-Oriented Software Development

We follow validation led software development process
[8]. In brief, the object-oriented software development
begins with a text description of the system. The objects
and object classes can usually be discerned from the text.
For each class, some data members may also become
obvious at this stage. Class hierarchies and other inter-
class relationships are organised to take advantage of
standard object-oriented modelling practices, for example
UML [9] [10]. To obtain a complete and consistent
specification, the methodology suggests the use of object
lifecycle models.

For each significant object class, the text description
usually provides an initial description of the object’s

lifecycle. For example, verbs provide clues to the
existence of various states. Nature of these verbs may
suggest various forms of transitions between the states of
the system.

However, text descriptions are notorious for their
ambiguity and inconsistency [11]. At the same time, much
of the description is generally left unexpressed. One does
not expect the initial lifecycle models of the object classes
drawn from the text to be perfect models. An extensive
example is provided in [8] to describe a validation led
process that can be used to iteratively develop the
lifecycles to their final refined levels.

In each iterative cycle of the validation led development,
the lifecycles are matched against each other to identify
inconsistencies and incompleteness. Each identified
lacuna requires the lifecycles to be revised to correct the
concern. The reported example, however, relied on a
manual analysis of the lifecycles to identify the lacunae. A
tool to perform this analysis is a necessary step to improve
the reliability and effectiveness of the methodology.

We address this need by using a model checker to identify
the mismatches in the object lifecycle specifications. The
emerging specification being formal delivers another
potential benefit in the form of automating the task of
program generation. This paper, however, does not pursue
this goal.

We shall use the text description of a lift in a building as it
appears in [8] (and, reproduced in [12]) without
reproducing it here. The lift (elevator) system in a
building is generally well-known and does not need re-
stating here. We do not expect the readers to have any
difficulty in understanding the example used in this paper.
Figure 1 shows the lifecycle of a lift passenger from a text
description of a lift system. As the analysis progressed,
the specifications were refined, and it became evident that
a passenger arriving at the ground floor or the top floor
had a lifecycle somewhat different from the lifecycles of
those on the other floors of the building.

A passenger calls at a
floor

The passenger waits
for a lift

The passenger waits for list to
reach destination

The passenger enters the
lift

A passenger leaves The passenger leaves
the lift

Figure 1: Initial finite state process for a lift passenger as it emerges from a text description.

242

2.1 Labelled Transition System

Using Labelled Transition System (LTS) [7] we can
model the lifecycles of the entities as finite state processes
(FSP). The system analyser (LTSA) can analyse the
processes for progress and safety violations. In this
section, we give a brief flavour of an FSP description. A
finite state process, or simply a process, consists of a
sequence of actions. As an action occurs the system
changes its state over a finite set. It is often helpful to
define a finite process in terms of other finite processes.

Figure 2 shows a process modelling a lift passenger as
process PASSENGER. In an LTS description, uppercase
identifiers denote processes and lowercase identifiers
denote actions. Thus, the process PASSENGER, can follow
one of the three alternative sequences of actions. In each
alternative, an action of calling the lift is followed by a
wait process. The actions and processes may use
parameters for better expressive power – for example, the
arriving passengers wait for the lift on the floor from
which they called the lift. Multiple instances of a process
can be distinguished by adding a prefixing label – all
actions of the process will carry the label. A WHEN guard
can be added to the alternatives to control the choice of
the alternative. Without a guard one alternative is chosen
non-deterministically. In addition to defining a process in
terms of the other processes it is possible to run multiple
processes in parallel (concurrently).

The LTS Analyser can verify a given model for two kinds
of errors. A progress violation occurs when the system
reaches a state from which it can not guarantee an
occurrence of an action from a set of actions. For
example, a progress violation would have occurred if the
modelled system can not assert that, at all instances of
time, the lift will visit the ground floor again at some time
in the future.

const UP = 0
const DOWN = 1
Range UPF: 2..MAX_FLR-1
Range DIR: UP..DOWN

PASSENGER = {call_at_ground_level
 -> WAITING_FOR_LIFT[1]
 | call_at_top_floor ->
 WAITING_FOR_LIFT[MAX_FLR]
 | call_at_floor[f: UPF][d: DIR]
 -> WAITING_FOR_LIFT[f]
}

Figure 2: Finite State Process PASSENGER defined using

actions and other FSPs.

There is a special process called ERROR. The process
ERROR can be reached explicitly by specifying actions
leading to it. Alternately, one can specify one or more
safety properties. A safety property is a sequence of, not
necessarily consecutive, actions that represent an

acceptable behaviour. Any violation denotes an error
prompting process ERROR to manifest. A safety
requirement may insist that each door open action is
followed by a door close action before the lift moves.

Each safety or progress violation detected by the tool is
reported by the analyser by an action sequence leading to
the deadlock or error state. This we found to be very
useful information in correcting the errors and
remodelling the lifecycles of the involved entities and
processes.

3. Experience with the model checker

In this section, we report about our experiences in the use
of the model checker for validation led development of
object-oriented software. The full study can be accessed
in [12].

To keep the report focused we consider the movements of
one lift in a multi-floor building. At various points in its
lifecycle, the lift invokes algorithm WALK to determine the
next action that the lift should execute. The points on the
lift lifecycle at which the algorithm is invoked are when
the lift door closes; when the lift approaches the next floor
level; and by an idle lift when a floor button is pressed to
call the lift.

Initially a rather rudimentary WALK algorithm was coded
in the FSP model. The LTS analyser was then used to
report incompleteness and inconsistency errors in the
model. Figure 3 depicts a LTSA report for a model of the
lift system. The annotations have been added to the
analysis report to provide easy interpretation. The reader
will notice that the description does not (yet) fit with the
typical configuration of a real lift system. The differences
represent the still-evolving state of the FSP model used in
the illustration. The example model is not the final model.

As errors were reported by the analyser, alterations were
made to improve the model. Table 1 summarises a sample
of the reported errors and the actions taken to correct the
reported errors. The full final version of the lift
specification spans some 19 pages.

3.1 Software Testing versus Model Checking

Table 2 provides an indication of the efforts required to
verify the finite state process (FSP) model of the lift for
various sizes of the model. These provide some
interesting insights into the traditional software design
and develop methodologies. A naïve black-box testing
[13] would tend to show growth in the required number of
test cases in proportion to the potential state-space size.
As is obvious from the numbers appearing in Table 2, any
practical testing exercise based on the black-box approach
can only test a microscopic fraction of the potential test
cases.

243

White-box testing [13] takes advantage of
implementation-related information. Thus, it will follow
the growth trend shown as reachable state space and/or as
the number of transitions. Again, the practical testing
efforts can cover only a small fraction of the test cases
needed for a perfect result.

The model checking, notwithstanding its tedium, emerges
as a powerful tool if we wish to deliver high quality
software that is substantially free from errors and
mistakes. Model checkers, such as LTSA, contribute to
this process in many ways:

• The formal FSP descriptions that LTSA requires are

directly associated with the objects in the system
specifications.

• The FSP description of the objects is formal and is

capable of interpretative execution. It can be run in

steps through an animator – an integrated part of
LTSA – for better understanding of the nature of a
problem and the circumstances leading to it.

• The verification process employed by a model checker

is like a simultaneous execution of all animations –
analysis provides an effective and efficient mean for
identifying all potential violations of progress and
safety properties in the specifications.

• Each identified violation is reported as a shortest

sequence of actions that leads to the identified
violation. This makes it easy to comprehend the
problem and supports the efforts to correct it.

• The formal specifications can be easily transformed

into programs in Java and other object-oriented
languages through automated and semi-automated
processes.

Composition:
LP = p.1: PASSENGER || LIFT (btnUp, btnDown, dptCount) || btnUp.1:BUTTON ||
btnUp.2:BUTTON || btnDown.2:BUTTON || btnDown.3:BUTTON || dptCount.1:BUTTON ||
dptCount.2:BUTTON || dptCount.3:BUTTON
State Space:
 22 * 882 * 3 * 3 * 3 * 3 * 3 * 3 * 3 = 2 ** 29
Analysing...
Depth 25 -- States: 217 Transitions: 445 Memory used: 4482K
Trace to DEADLOCK:
 p.1.arrival.1 // p.1 arrives at level 1 of the building
 p.1.passenger.1 // wants to ride the lift from level 1
 p.1.call.1.1 // calls the lift
 delay.1 // waits – this lift is right there!
 door_is_open_i.1.1 // Lift door opens
 dptCount.1.seek_button.0 // Lift checks: the departure count at floor 1 is 0 –
 btnUp.1.seek_button.1 // Lift checks: the up button at floor 1 shows 1 person waiting
 btnUp.1.off // Lift turns the first floor up button off
 p.1.enter_lift // Passenger p.1 may board the lift
 p.1.entered_lift.1 // p.1 enters lift
 p.1.press_dest.1 // p.1 wants to go to floor 1 – same floor
 pause
 door_is_closed.1.1 // Lift door closes p.1 is inside
 dptCount.1.seek_button.1 // Lift determines that it needs to go to floor 1
 door_is_open_i.1.1 // Lift opens the door
 dptCount.1.seek_button.1 // Anyone getting down here?
 p.1.destination_reached.1 // p.1 is to be let off here
 p.1.left_lift.1 // p.1 leaves
 p.1.arrival.1 // p.1 is back on the level 1
 p.1.passenger.1 // wants to ride the lift from level 1. Again!
 dptCount.1.seek_button.0 // Lift checks: the departure count at floor 1 is 0
 btnUp.1.seek_button.0 // Lift checks: the up button at floor 1 shows 0 persons waiting
 btnDown.1.seek_button.1 // Lift checks: down button at floor 1 shows 1 person waiting

 // btnDown.1 is defined by LIFT(btnUp,btnDown,dptCount)
 btnDown.1.off // Lift turns the first floor down button off
Analysed in: 180ms

Figure 3: LTSA analysis report indicating a sequence of actions leading to a deadlock in a FSP model for a lift

system. The comments have been added to provide interpretation for the readers of this paper.

244

Table 1: Summary of some errors reported by the analyser during validation led development of a FSP model for a
lift system in a building with 3 floors.

ERR
OR DESCRIPTION OF THE ERROR COMMENTS/SOLUTION

2 Passenger arrives at floor 3 and calls lift. Lift
arrives at floor 3 and passenger gets in. Presses
for floor 1. The door closes, and lift invokes
WALK algorithm. The algorithm proceeds to
on-floor down button and then goes into idling.

Problem arises from a support process in WALK,
specifically the first guard of LOOK_DOWN_INTERNAL
required range check to be equal to lowest floor number to
allow the recursive call to reach the in-lift button at the first
floor.

7 Passenger arrives at the ground floor and
presses the call button. The door opens and the
passenger enters the lift and indicates to travel
to the current floor. The door closes and then
opens and the passenger leaves the lift. A
passenger then arrives at the ground floor but
does not press call yet. The lift invokes WALK
but halts.

(This case is the one reported in Figure 1)

The actions that return the number of calls in any queue are
called at the top of the DROPPING_PASSENGERS
process without excluding illogical combinations of floor
and button direction. For example, the bottom floor in this
scenario has a down button. The lift reads this error state as
an instruction to travel down, but cannot, so halts. To
rectify this situation the initial seeks in
DROPPING_PASSENGERS are wrapped up in local
processes so that the correct behaviour is applied to each of
the three separate cases. This creates the processes
DP_ANY_FLOOR, DP_TOP_FLOOR and
DP_BOTTOM_FLOOR.

14 The passenger arrives at the second floor and
calls the lift. The lift then travels up to the
second floor and opens the door. The
passenger enters the lift and indicates to travel
up to the top floor. The door is closed and the
WALK algorithm completes and the lift enters
the idle state. The passenger is still in the lift!

The passenger had initially indicated to travel down,
however when the passenger was in the lift the passenger
indicated to travel up. The lift though is expecting to go
down and so performs the WALK in the downward
direction. When the WALK reaches the bottom it believes
that it has looked everywhere and so goes to idle. The fix
for this involved adding in two new local processes at the
composite level and using them as Boolean masks against
having checked up or down, so that the lift would look up
if still needed and vice versa. These new local processes
are termed LOOKED.

22 P calls to go up from 2nd floor, lift goes to
second floor, 2nd passenger calls lift from
third floor, to go down. The 1st P gets in and
indicates to go down! The lift does it scan, is
still in a mood to go up, and sees the third floor
call. The lift goes to the third floor, and should
open the door, instead, hits T17 which fulfils
current conditions against guards, and so
travels on to the fourth floor without stopping
at the third.

This problem would not arise if the Ps did what they said
what they were going to, ie travel in the direction they
indicated. In the absence of a property to enforce this
behaviour, which is not realistic anyhow, another solution
is needed. What should happen? The lift should pick up the
2nd passenger at the third floor, and then move on from
there.

4. Conclusions

Notwithstanding a successful application of a model
checker in verifying the object-oriented design of a lift
system, the methodology needs further developments to
be universally applicable. The model checkers available
inexpensively often have limitation in regard to the size
of the systems they are able to analyse successfully.
State explosion problem is the Achilles' heel for the
model checkers.

At the same time, the benefits that model checkers
provide in verifying the design is important [14, 15]. It
has long been understood that quality cannot be added
to software after it has been developed. Software
engineers are well aware of the rapid escalations in cost
at later software development phases. Software
development practices, methodologies and tools
continuously strive to make it possible to find errors
earlier in the development process.

245

Table 2: Growth in the state space size for the modelled lift system with the number of floors in the building and the
number of simultaneous lift users

Number of floors in the modelled building Number of simultaneous

passengers in the
modelled system 3 5 7 10

Reachable states 1267 5067 12987 35952

Potential state space ~1024 ~1033 ~1040 ~1050

1

Number of transitions 1327 5267 13407 36852

Reachable states 8236 57899 209454

Potential state space ~1036 ~1052 ~1067

2

Number of transitions 9146 812408 224180

Reachable states 56664 697580 3580800

Potential state space ~1041 ~1058 ~1073

3

Number of transitions 68388 812408 4060332

Reachable states 405172

Potential state space ~1053

4

Number of transitions 537502

The paper has illustrated that model checkers support the
software engineering goals well. They not only provide a
comprehensive route for testing the software design
earlier than the traditional testing based methodologies,
but also promise to help automate the following stages of
the software development.

REFERENCES

[1] J. Warmer & A. Kleppe, The object constraint
language – precise modeling with UML (Reading:Ma:
Addison Wesley Longman, 1999).
[2] E.W. Dijkstra, A Discipline of programming,
(Englewood Cliffs, NJ: Prentice-Hall 1976).
[3] B. Kernighan & D. Ritchie, The C programming
Language, (Englewood Cliff, NJ: Prentice Hall, 1988).
[4] R. Sethi, Programming languages: concepts and
constructs, (Cambridge, Ma: Addison-Wesley, 1996)
[5] J. Backus, Can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs, Communications of ACM, 21(8), 1978, 613-
641.
[6] B. Berard, , M. Bidoit, A. Finkel, F. Laroussinie et al,
Systems and software verification: Model-checking
techniques and tools, (Berlin: Springer-Verlag. 2001).
[7] J. Magee, J. & J. Kramer, Concurrency: State models
and java programs, (Chichester, England: John Wiley &
Sons, 1999)

[8] C.A. Lakos & V.M. Malhotra, Validation led
development of software specifications, International
Journal of Modelling and Simulation, 22(1), 2002, 57-74.
[9] G. Booch, J. Rumbaugh & I. Jacobson, The Unified
modeling language user guide (Reading, Ma: Addison
Wesley Longman Inc. 1999)
[10] T. Quatrani, Visual modelling with rational rose and
UML, (Reading, Ma: Addison Wesley Longman Inc.
1998)
[11] I. Sommerville, Software engineering, (Wokingham,
England: Addison Wesley Publ. Co., 1995)
[12] S.C. Stanton, Validation and verification of software
design using finite state process (Honours thesis),
(Hobart, Australia: School of Computing, University of
Tasmania, 2002).
[13] W. Perry, Effective methods for software testing,
(NY: John Wiley & Sons, 1995)
[14] S.C. Stanton & V Malhotra,, Model checking an
object-oriented design, Proc. 6th Intl. Conf. on Enterprise
Information systems, Porto, Portugal, Vol 3, 2004, 605-
608.
[15] S.C. Stanton & V. Malhotra, Validation led
development of object-oriented software using a model
verifier, Proc. Of the IADIS International Conf. Applied
Computing, Lisbon, Portugal, 2004, pp. II 7-10.

246

