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Abstract. Multiple Classification Ripple Down Rules (MCRDR) is a 
knowledge acquisition technique that produces representations, or knowledge 
maps, of a human expert’s knowledge of a particular domain. However, work 
on gaining an understanding of the knowledge acquired at a deeper meta-level 
or using the knowledge to derive new information is still in its infancy. This 
paper will introduce a technique called Weighted MCRDR (WM), which looks 
at deriving and learning information about the relationships between multiple 
classifications within MCRDR by calculating a meaningful rating for the task at 
hand. This is not intended to reduce the knowledge acquisition effort for the 
expert. Rather, it is attempting to use the knowledge received in the MCRDR 
knowledge map to derive additional information that can allow improvements 
in functionality of MCRDR in many problem domains. Preliminary testing 
shows that there exists a strong potential for WM to quickly and effectively 
learn meaningful weightings. 

1. Introduction 

Multiple Classification Ripple Down Rules (MCRDR) [1, 2] is an incremental 
Knowledge Acquisition (KA) methodology which allows the expert to perform both 
the KA process and the maintenance of a Knowledge Based System (KBS) over time 
[3]. MCRDR allows for multiple independent classifications and is an extension of its 
predecessor Ripple Down Rules (RDR), which only allowed for single classifications 
of each case presented. The underlying concept behind these approaches is to use the 
expert’s knowledge within the context it is provided [4]. Thus, if the expert disagrees 
with a particular conclusion made by the system, knowledge can be added to improve 
future results.  

While MCRDR works very effectively in a number of domains, there is implicit 
information contained within the structure itself that is not being extracted or used in 
its existing form. For example, when multiple classifications for a case occur, it 

                                                           
1 Collaborative research project between both institutions 



 

would be useful to know the relationship between those classes and how that 
 relationship changes the meaning or importance of the case as a whole when 
compared to cases with differing class configurations. Potentially, such information 
could reveal important details that may not have been consciously realised by the user 
or that could have taken significant rule creation for the user to have been able to 
capture within the standard MCRDR structure.  

This paper is going to present one means for addressing this issue through an 
extension to MCRDR, referred to as Weighted MCRDR (WM). WM provides the 
ability to extract and learn information about the interrelationships between the 
various classifications found in MCRDR, as well as derive a meaningful value for a 
given case through either direct or indirect means. This extension could provide the 
standard MCRDR algorithm with the ability to provide more functionality and 
usability to existing domains, as well as opening up additional application 
possibilities. Preliminary testing shows that there exists a strong potential for WM to 
quickly and effectively learn meaningful weightings. 

2. Multiple Classification Ripple Down Rules (MCRDR) 

MCRDR uses a collection of rules in an n-ary tree and evaluates each case by first 
evaluating the root and then moving down level by level. This continues until either a 
leaf node is reached or until none of the child rules evaluate to true. Due to the fact 
that any, or all, of a node’s children have the potential to fire, the possibility exists for 
a number of conclusions or classifications to be reached by the system for each case 
presented [5]. The system then lists the collection of classifications found and the 
paths they followed. The path is given as the justification for the conclusion. 

KA is achieved in the system through the expert inserting new rules when a 
misclassification has occurred. The new rule must allow for the incorrectly classified 
case to be distinguished from the existing stored cases that could reach the new rule 
[6]. This is accomplished by the user identifying key differences between the current 
case and one of the earlier cornerstone cases already stored. This is continued for all 
past cases that could reach the new rule in the tree structure, until there is a composite 
rule created that uniquely identifies the current case from all of the previous cases. 
The idea here is that the user will select differences that are representative of the new 
class they are trying to create. Stopper rules, which cancel a particular evaluation 
path, are added in the same way [6]. 

Previously, simulation studies using RDR illustrated, despite the random nature of 
rule creation and insertion, that the knowledge bases created are as compact and 
accurate as those produced by induction [7, 8]. Furthermore, Kang [1] showed that 
MCRDR produces somewhat better knowledge bases, even when used in single 
classification domains. It is also arguable that a multiple classification system, such as 
MCRDR, provides an approach to dealing with a number of problem types, such as 
configuration and scheduling [5, 9]. RDR and MCRDR, as well as variations to these 
methodologies, have been used in a number of application areas, such as the PEIRS 
pathology system [10], resource allocation [11] and document management [12]. 



 

3. Weighted MCRDR (WM) 

However, MCRDR has a lack of cohesion between the individual classifications 
generated by a single case, due to each classification being uniquely derived with no 
consideration for what other classification paths may have also been followed. 
Therefore, in certain problem domains, a particular case’s multiple classifications 
may all be individually correct but still not capture its essence or accurately represent 
the level of importance the case has to the expert.  

For example, in an email classification system that sorts emails into various 
categories of varying importance to the user, such as that developed by Deards [13], 
there exists a class for work related email and one for advertising spam. The spam 
category catches advertising emails that are of little use to the user, while the work 
category holds material that requires the expert’s immediate attention, before all the 
other emails received. However, if the system receives an email selling something 
directly relevant to the user’s work then it should classify it as being both spam and 
work related. The problem with this classification is that neither category individually 
describes the case adequately, yet both are correct: while it is spam the user may wish 
to read it; and, then again, it is not as high a priority as the usual work material and 
should not be brought to the users’ attention immediately.  

To handle this in traditional MCRDR, the expert would need to create a new set of 
rules so that such mails could be categorised separately. This, however, can become a 
tedious and never ending task for emails that only appear infrequently. It also requires 
the user to be aware of the required classification, which can be difficult as the user 
generally has little or no knowledge of the MCRDR structure. Finally, it makes little 
sense for the user to create a new category when the existing classifications are 
already correct from the user’s point of view. The intention of WM is to try to capture 
these relationships between various classifications that may exist, either consciously 
or otherwise. If we can identify a set of relative values for the various relationships, 
this information could be used to improve the functionality available to the user. For 
instance, in the above email example we could list the emails from each classification 
in their order of importance, using the relationship’s value as a gauge.  

3.1 WM Implementation 

The most straight forward approach to calculating a rating based on the relationships 
in an MCRDR classification set is to include a weight at each rule node and simply 
find the weighted-sum of all the terminal rules found, thereby, giving a value for the 
case. However, the method used for acquiring each rule’s value must take into 
consideration all the other concluding rules. In addition, the method would need to be 
able to change the value to cater for other possible relationships that are not evident 
when a new rule or class is initially created. Finally, it would be useful if such a 
system was able to provide a number of varying results in applications where 
dissimilar tasks may need to be rated differently. 



 

Using the notion of finding a weighted-sum leads directly to the use of a single 
layer perceptron neural network, which is fundamentally a weighted-sum that has 
been thresholded, using the sigmoid function (equation 1) to lie between a lower and 
upper bound. Thus, each rule in the MCRDR tree would be given an associated input 
node in the neural network. Using such a network also has the added advantage of 
providing a means for each terminating rule to learn the optimal weight across all of 
the various relationships, by using the generalized-∆-rule [14]. In addition, any 
number of outputs can be used (where each output is effectively a new perceptron 
network) for each different task that such values may be needed. 
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Thus, the full WM algorithm, given in pseudo code in Figure 1 and shown 
diagrammatically in Figure 2, consists of two primary components. Firstly, a 
document or case is pre-processed to identify all of the usable data elements, such as 
stemmed words or a patient’s pulse. The data components are then presented to the 
standard MCRDR engine, which classifies them according to the rules previously 
provided by the user. Secondly, for each rule identified an associated input neuron in 
the neural network will fire. The network finally produces a number of outputs, v , 
for the case presented. The system, therefore, essentially provides two separate 
outputs; the case’s classifications and the associated set of values generated from 
those classifications. 

1. Pre-process Case 
Initialise Case c 
c ← Identify all useful data elements. 

2. Classification 
Initialize list l to store classifications 
Loop 

If child’s rule evaluates Case c to true 
l ← goto step 2 (generate all classifications in child’s branch). 

Until no more children 
If no children evaluated to true then 
 l ← Add this nodes classification. 
Return l. 

3. Rate Case 
i  ← Generate input vector from l. 
NN ← i  
v ← NN output value. 

4. Return RM evaluation 
Return list l of classifications for case c and 
Value v of case c. 

 
Fig. 1. Algorithm for WM. 



 

For example, in figure 2, the document {a b b a c f i} has been pre-processed to a 
set of unique tokens {a, b, c, f, i}. It is then presented to the MCRDR component of 
the WM system, which ripples the case down the rule tree finding three classifications 
Z, Y, and U from the terminating rules 1, 5, and 8. In this example, which is using the 
RA method (discussed below), the terminating rules then cause the three associated 
neurons to fire and feed forward through the neural network producing a single value 
of 0.126 to be outputted. Thus, this document has been allocated a set of 
classifications that can be used to store the document appropriately, plus a single 
rating measuring its overall level of importance to the user. 

List of classifications.
l = Z, Y, U 

Tokens: 
a, b, c, f, i 

Document: 
a b b a c f i 

Value of case. 
v = 0.126 

Rule 5: 
If f then class Y

Rule 6: 
If e then class W 

Rule 4: 
If c,!h then class V

Rule 8: 
If a then class U

Rule 7: 
If c,g then class Y 

Rule 3: 
If !b then class X 

Rule 1: 
If a then class Z

Rule 2: 
If d then class Y 

Rule 0: 
If true then … 

MCRDR Neural Network 

Pre-Process 

Case / Document 

WM - case 
evaluation

 
Fig. 2. WM illustrated diagrammatically. 

3.2 Neuron Association Methods 

There are three possible methods for the association of neurons to the MCRDR 
structure: the Class Association method (CA), the Rule Association method (RA) and 
the Rule Path Association method (RPA). The different methods arise from the poss-
ibility of many paths through the tree that result in the same class as the conclusion. 
The class association method, where each unique class has an associated neuron, can 
reduce the number of neurons in the network and potentially produce faster, but 
possibly less general, learning. The rule association method, where each rule has an 
associated neuron and only the terminating rule’s neuron fires, allows for different 
results to be found for the same class depending on which path was used to generate 
that class as the conclusion. Therefore, it is more capable of finding variations in 
meaning and importance within a class than expected by the user that created the 
rules.  The rule path association method, where all the rules in the path followed, in-
cluding the terminating rule, cause their associated neuron to fire, would be expected 
to behave similarly but may find some more subtle results learnt through the paths 
rules, as well as being able to learn meaning hidden within the paths themselves.  



 

3.3 Adding New Input Neurons 

However, a perceptron network does not provide a standard way for calculating the 
initial weight for a rule node when it is first added to the MCRDR tree. This can be 
resolved, though by first adding new input nodes to the network each time a rule is 
added and secondly, calculating the initial weight for the new network node for each 
of the allocated outputs. The simplest approach is to give the new input connections 
created a random start up weight in the same fashion used when initialising the 
network. However, we already have the system’s correct rating for the case that is 
causing the new rule to be created, which WM should use to foster faster learning. For 
this purpose the system’s correct rating is assumed to have been determined for the 
case either through directly querying the user or through indirectly deriving it from 
observed user behaviour.  

The approach taken in this implementation of WM captures this important 
information by directly calculating the required weight that provides us with the 
correctly weighted-sum for the given case without the need for a training period. This 
provides the system with an immediate understanding of the new case’s general value. 
It can also then be used as the foundation for the new node’s relationships with other 
terminating rules to be learnt. 

3.4 The Single-Shot ∆-Rule in WM 

In order to calculate the weight needed for the new input connection, wno, the system 
must first calculate the error in the weighted-sum, δws, and divide this by the input at 
the newly created input node, xn, which is always 1 in this implementation, where 
there are n>0 input nodes and o>0 output nodes.  

n

ws
no x
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δws is calculated by first deriving the required weighted-sum, Rws, from the known 
error, δ, and subtracting the actual weighted-sum, denoted by net.  

netRwsws −=δ  (3) 

The value for net for each output node, o, was previously calculated by the network 
during the feed forward operation, and is shown in Equation 4, where there are n>1 
input nodes, where the nth input node is our new input. 
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Rws, can be found for each output node, by reversing the thresholding process that 
took place at the output node when initially feeding forward. This is calculated by 
finding the inverse of the sigmoid function, Equation 1, and is shown in Equation 5, 
where f(net) is the original thresholded value that was outputted from that neuron.  
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Thus, the full single-shot ∆-rule, used for each of the new input’s connections to all 
of the output nodes is given in equation 6. Due to the use of the sigmoid function, it is 
clear that at no time can the system try and set the value of the output to be outside the 
range 0 > (f(net) + δ) > 1 as this will cause an error. 
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4. Testing with a Simulated Expert 

The problem with testing a system, such as WM, is the use of expert knowledge that 
cannot be easily gathered without the system first being applied in a real world 
application. This is a similar problem that has been encountered with the testing of 
any of the RDR methodologies [2, 8, 15]. Thus, these systems built their KB 
incrementally through the use of a simulated expert. The simulated expert essentially 
provided a rule trace for each case run through another KBS with a higher level of 
expertise in the domain than the RDR system being trained [2, 5]. WM, however, has 
the additional problem of needing to learn from results returned by the system, 
derived either directly or indirectly from the expert.  

Thus, in order to perform preliminary testing of the rating component of the 
system, while still being able to create a KB in the MCRDR tree, a simulated expert 
was also developed for WM, with the ability to both classify cases, as well as form an 
opinion as to a case’s overall importance. Basically, the simulated expert randomly 
generates weights, representing the level that each possible attribute in the 
environment contributes to each possible class, which is used to define rules for the 
MCRDR tree. Likewise, an additional weight is generated for each possible attribute, 
indicating what level of importance the case has overall to the simulated expert, 
allowing the simulated expert to form preferences for particular cases.  

The environment then created many sets of documents consisting of randomly 
generated collections of attributes and passed each set to the WM system for 
classification and rating. The order allocated by the WM system for each set was then 
compared against the simulated expert’s expected ordering. In testing the system, 
assumptions were made that the expert’s interest in a case could be accurately 
measured and that the behaviour was constant, without noise or concept drift. 



 

5. Results and Discussion 

One useful application for a system such as WM is the rating of documents so they 
can be appropriately ordered according to the user’s preference. The ability of WM to 
accomplish this is illustrated in the example cross sections shown in Figure 3. The 
first graph shows the order in which WM places the documents prior to any learning. 
The second graph, after only 10 document sets, clearly illustrates that it has been able 
to correctly order many of the documents. 
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WM Performance on Tenth Document Set
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Fig. 3. Ability of WM to order cases according to user preference. a) Shows WM’s 
performance prior to any training. b) Shows WM’s performance after 10 document sets. Both 
graphs have the highest rated cases on the left and the lowest on the right according to RM. 

To show how the system performs over time the difference was calculated between 
each documents’ place in the WM ordering minus the place it should have been 
placed according to the simulated expert. These differences were then averaged over 
all the documents presented in that group and subtracted from the total number of 
documents in the set. Figure 4, shows how the system performed over the first 50 
document sets. It can be seen in this example that the assignment of immediate 
weights to a position and the ongoing trainability of the network allows the system to 
immediately start to provide a reasonably accurate solution.  
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Fig. 4. Proximity of WM to simulated users ordering. The average proximity is the absolute 
difference between the place allocated by WM and the place given by the simulated expert, 
averaged over all the cases in each set and subtracted from the total number of documents in the 
set. Each document set contains 50 cases. 

 



 

While these results are only preliminary, they do show that WM is capable of learning 
ratings that allow us to order documents into the users preferred order quickly. 
Additionally, due to the network learning appropriate ratings it shows that it has been 
able to identify patterns in the structure of the MCRDR tree and the way a case has 
been classified within that structure. Finally, it can be seen that a system that uses 
MCRDR to organise data items for long term storage and later retrieval, could easily 
include extra functionality by extracting this meta-knowledge from MCRDR. 

6. Conclusion and Future Work 

The system described in this paper was developed to provide extra functionality to the 
MCRDR system by finding values for representing the relationships between 
classifications generated by the knowledge base. It is designed to learn simple linear 
relationships quickly, so that the system can respond to new information without the 
need for a number of training examples. To facilitate this system the single-step-∆-
rule was developed for the input connection’s initial weight, which provides the 
ability of the system to step immediately to the indicated value required by the 
system.  

The system has undergone preliminary testing with a simulated expert using a 
randomly generated data set. These tests were done primarily to show that the system 
was able to learn quickly and to be used for parameter tuning purposes. Clearly a 
more rigorous testing regime needs to be used in order to fully justify the algorithm’s 
ability to learn. 

This paper was an introduction to one area where MCRDR can be used as a basis 
for deriving further information about a user’s knowledge and understanding of a 
domain. It still holds the possibility of being refined further such as: 
• Providing a means to learn non-linear relationships. 
• Through the addition of a per-neuron reducing gain to allow the system to better 

cope with noise when creating new input nodes. 
• Building in a windowing technique to allow the system to deal effectively with 

concept drift. 
• Incorporating Temporal Difference Learning through the addition of an eligibility 

trace [16]. This would allow the system to predict the likelihood of future 
documents, linked to by the one being analyzed, being of importance. 

• There exists the possibility of using the error information that is propagated back 
through the network to identify which rules in MCRDR are likely to be incorrect 
and only asking the user about those particular cases, thereby, reducing the 
workload of knowledge acquisition for the user. 
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