
A. Sattar and B.H. Kang (Eds.): AI 2006, LNAI 4304, pp. 1059 – 1063, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

DynamicWEB: Profile Correlation Using COBWEB 

Joel Scanlan, Jacky Hartnett, and Ray Williams 

School of Computing, University of Tasmania 
Hobart, Australia 

{jdscanla, j.hartnett, r.williams}@utas.edu.au 

Abstract. Establishing relationships within a dataset is one of the core 
objectives of data mining. In this paper a method of correlating behaviour 
profiles in a continuous dataset is presented. The profiling problem which 
motivated the research is intrusion detection. The profiles are dynamic in 
nature, changing frequently, and are made up of many attributes. The paper 
describes a modified version of the COBWEB hierarchical conceptual 
clustering algorithm called DynamicWEB. DynamicWEB operates at runtime, 
keeping the profiles up to date, and in the correct location within the clustering 
tree. Further, as there are a number of attributes within the domain of interest, 
the tree also extends multi-dimensionally. This allows for multiple correlations 
to occur simultaneously, focusing on different attributes within the one profile. 

Keywords:  Data Mining, Clustering Algorithms, Intrusion Detection. 

1   Introduction 

Fundamentally, data mining is the identification of patterns and relationships within 
large datasets. It has been implemented in a wide variety of domains, including 
biomedical research, economics, and security. The security domain, including systems 
such as those designed for intrusion detection, is the focus of the current research 
discussed in this paper. 

Data mining algorithms and techniques are central to the computational power of 
many security systems. Automated intrusion detection systems have implemented a 
long list of data mining techniques with great success. The vast bulk of these systems 
have focused on the detection of malicious activity through matching a user’s activity 
to a signature, or through detecting a pattern of activity that is inconsistent with a 
normal behaviour profile. Some of the data mining methods include: Instance-Based 
Learning, Neural Networks, Bayesian, Genetic Algorithms and Clustering. 

The work that is outlined in this paper aims to employ clustering to generate 
profiles of malicious activity upon a network. This is not solely for the detection of 
unknown malicious users: it also functions to link existing profiles that may represent 
the same user operating under different IP addresses. This analysis is carried out using 
a substantially modified version of the COBWEB hierarchical incremental clustering 
algorithm [1] named DynamicWEB. The modifications allow for the clustering to 
occur using a dataset that is continuous in nature, with ever changing profiles, 
requiring the hierarchical structure to be dynamic at runtime. 



1060 J. Scanlan, J. Hartnett, and R. Williams 

The paper will explain the initial target dataset, before describing the Cobweb 
algorithm, and the modification being made to transform the program into 
DynamicWEB, will be examined. 

1.1   The Data 

The system is designed to operate on continuous data, with incoming events being 
used to update developing profiles. Thus, as the attributes that define each profile 
change with each update, there is a high likelihood of profiles being assigned and 
reassigned to different clusters. The mechanism for this updating process will be 
discussed later in the paper; however it is worth noting that the process occurs at the 
time the data is reviewed. 

The most obvious attributes that is examined in the clustering, and one which is 
also the most readily available, is the time at which events occur. Indeed, similarities 
in the timing of network events have acted as a catalyst for this work. There are 
several aspects of time stamps to examine, such as session length, time between 
events or sessions, and time of session. 

Other attributes that contribute to the profile are less variable, and relate to what 
the event recorded was about. These include things such as source and destination 
ports (representing the applications), source and destination IP address, and other alert 
information such as the kind of attack as labelled by the network device (such as an 
intrusion detection system). 

2   Clustering with DynamicWEB 

Clustering algorithms aim to divide data into its natural groups. Often these groups 
are not known beforehand: their discovery is the objective of the algorithm. There are 
several kinds of clustering algorithms. Some kinds allow an instance to be in only a 
single group, while others allow a given instance to be in multiple groups [2]. The 
clustering technique discussed in this paper is known as Incremental Clustering. It 
uses a hierarchical tree to sort the instances in a much easier way to visualise and 
understand. As each instance is added the knowledge of the tree grows which then 
allow information about the data set to be applied. The research being conducted by 
the authors uses a modified version of the COBWEB [1] which is an Incremental 
Clustering algorithm. COBWEB was originally designed to function using nominal 
attributes but was extended to use numerical in CLASSIT [3]. The method in which 
the clustering occurs within the tree itself was not modified. 

2.1   DynamicWEB  

The problem being addressed is one that involves the comparison and possible 
matching of activity profiles. The profiles, however, are not of a static nature as is the 
case, for example, when an instance is added to the COBWEB tree. Instead, they are 
dynamic, and require multiple updates at runtime. COBWEB is not designed to be 
searched efficiently for a previously clustered instance. The COBWEB tree sorts its 
contents based from the category utility. This in turn is calculated from the attribute 



 DynamicWEB: Profile Correlation Using COBWEB 1061 

values within an instance, not from an identifier relating to the instance. Therefore, 
any search of the COBWEB tree would result in a search length of n. 

As the COBWEB tree is not designed to be searched for a particular instance or 
cluster, it also lacks a correct procedure to modify or delete an instance. In the 
original COBWEB, even if one could have searched the tree, the concept of 
modifying an instance in its current location is counter-productive. To modify an 
instance in its current location would in effect change the category utility of the 
cluster it resides in. This, without correction, would reduce the accuracy of any future 
category utility calculations, thus degrading the knowledge stored in the tree. Our 
extensions to COBWEB are designed to overcome these limitations. 

The first extension made to COBWEB in its transformation into DynamicWEB 
was to create an indexing feature to the tree. Several methods were tested with an 
AVL tree was the most efficient and was adopted (with a hash table as second). The 
AVL tree is sorted using an identifier assigned to each profile, with a pointer to its 
location in the COBWEB tree being stored with it; effectively overlaying the 
COBWEB structure with a second data structure acting as an index. 

Now that an instance can be quickly located within the tree, it can then be updated 
with new information. Updating an instance in its current location without checking 
for the resulting change in category utility damages the knowledge currently in the 
tree. While the change may not be dramatic, the variation may be sufficient for the  

 
COBWEB 

 
node 0 [Instances 14] 
|   node 1 
|   |   node 2 
|   |   |   leaf 3          5 
|   |   |   leaf 4         10 
|   |   leaf 5              4 
|   node 6 
|   |   leaf 7              7 
|   |   leaf 8             12 
|   |   node 9 
|   |   |   leaf 10 [1]     3 
|   |   |   leaf 11 [1]    13 
|   |   leaf 12 [1]         9 
|   node 13 
|   |   node 14 
|   |   |   leaf 15         1 
|   |   |   leaf 16         8 
|   |   leaf 17            11 
|   |   node 18 
|   |   |   leaf 19 [1]     6 
|   |   |   leaf 20 [1]     2 
|   |   |   leaf 21 [1]    14 
 
Number of merges: 6 
Number of splits: 5 
 

DynamicWEB 
 
node 0 [Instances 14] 
|   node 1 
|   |   node 2 
|   |   |   leaf 3             1 
|   |   |   leaf 4             8 
|   |   node 5 
|   |   |   node 6 
|   |   |   |   leaf 7        14 
|   |   |   |   leaf 8         4 
|   |   node 10 
|   |   |   leaf 11            2 
|   |   |   leaf 12           11 
|   |   |   leaf 13            7 
|   node 14 
|   |   node 15 
|   |   |   node 16 
|   |   |   |   leaf 17        5 
|   |   |   |   leaf 18       10 
|   |   |   leaf 19            6 
|   |   node 20 
|   |   |   leaf 22           12 
|   |   |   node 23 
|   |   |   |   leaf 24        3 
|   |   |   |   leaf 25       13 
|   |   |   leaf 26            9 
 
Number of merges: 9 
Number of splits: 6 

Fig. 1. The two trees above demonstrate how COBWEB and DynamicWEB have clustered the 
Weather [4] dataset. To illustrate the change 3 items (2, 6, and 7) were updated within the 
DynamicWEB tree. 



1062 J. Scanlan, J. Hartnett, and R. Williams 

instance to become better suited to another cluster. As such, when an instance is 
updated, it is removed from the tree and then re-added, thus covering the cases where 
an instance will be clustered to a different class. However, as this changes the content 
of the cluster. It has also changed the category utility describing the instances that are 
stored within the cluster. Several options that allow for the preservation of knowledge 
within the tree when this happens are now considered, with the best result being 
adopted. These options include removing the cluster (if it was the only profile in the 
cluster), merging it with a nearby cluster, or splitting the result into multiple clusters. 
Further operations are then carried out to confirm that no clusters were left parentless, 
out of place, or empty. In these cases again merging and splitting is considered, or 
elevating the profiles within the tree to better fitting clusters. The integrity of the tree, 
and the knowledge that it retains through these stages is the highest priority. 

Figure 1 illustrates the change within a tree when 3 items are updated, being 
removed from the tree and re-clustered. The left-hand tree is the normal tree that is 
created using COBWEB. When items 2, 6 and 7 are updated using DynamicWEB the 
right hand tree results. The updating process did not reduce the clustering accuracy, 
improving it slightly by 7%. This is a result of the additional 3 merges and split that 
occurred during the 3 updates that resulted in the slight restructuring of the tree. 

3   Multi-dimensional DynamicWEB 

The profiles to be correlated within this research contain many attributes, some of 
which are in subgroups. These subgroups contain attributes that relate to one another, 
but aren’t dependant on other attributes within a different subgroup. For example the 
various attributes relating to time (time, gap between events, session length) are not 
frequently related to source and destination port or IP address. These differing 
attribute groups will in effect act as artificial noise within the tree, causing 
relationships between profiles not to be recognised.  As such the problem space 
appears to contain several dimensions of attributes which are open to correlation. This 
problem is likely to be present in other knowledge domains. 

The most recent addition to the DynamicWEB is to extend the correlation engine 
to contain multiple trees, each sorted from different attributes of each instance. The 
AVL tree index contains a reference for each identity to its location in each of the 
different trees (Figure 3). This allows for correlation of the different subgroups to 
occur more efficiently, with the least interference from the other attributes. If one tree 
then clusters two profiles as being related, the corresponding information for them 
from the other trees can then be examined. This should highlight further links 
between the two profiles and allow for an accurate classification. 

We envisage that the DynamicWEB approach to profile correlation could well be 
suited to other multiple attribute continuous datasets. The authors intend to trial the 
method in domains beyond that of intrusion detection which motivated the research. 

4   Conclusion 

In this paper a problem space has been outlined containing profiles that change over 
time. The research goal is to correlate these multi-attribute profiles, to the end of 
identifying any relationships present between them. 



 DynamicWEB: Profile Correlation Using COBWEB 1063 

A clustering approach is explored, with the intention of grouping similar profiles 
together. The method described in this paper is called DynamicWEB, and is built 
upon the COBWEB incremental clustering algorithm described by Fisher [1]. 
DynamicWEB allows for instances within the tree to be changed, and re-clustered at 
runtime allowing it work with live data within the context of intrusion detection. 

As the problem space contains a broad range of attributes, DynamicWEB also has 
the facility to allow for multiple clustering trees to function simultaneously upon the 
same profile, each focusing on different attributes within the profile. 

The method described is not context specific and could be used in other domains 
requiring similar correlation to occur. It is this that the authors are currently exploring, 
to enable them to benchmark the system in a comparative qualitative manner. 

References 

1. Fisher, D.H., Knowledge Acquisition Via Incremental Conceptual Clustering Mach. Learn. , 
1987 2 (2 ): p. 139-172  

2. Witten, I. and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques 
with Java implementations`. 2000, San Francisco: Morgan Kaufmann Publishers. 371. 

3. Gennari, J.H., P. Langley, and D. Fisher, Models of incremental concept formation Artif. 
Intell. , 1989 40 (1-3 ): p. 11-61  

4. Newman, D.J., et al., {UCI} Repository of machine learning databases. 1998, University of 
California, Irvine, Dept. of Information and Computer Sciences. 


	Introduction
	The Data

	Clustering with DynamicWEB
	DynamicWEB

	Multi-dimensional DynamicWEB
	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




