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Abstract. Experts’ reasoning selects the final diagnosis from many can-
didates by using hierarchical differential diagnosis. In other words, can-
didates gives a sophisticated hiearchical taxonomy, usually described as
a tree. In this paper, the characteristics of experts’ rules are closely ex-
amined from the viewpoint of hierarchical decision steps and and a new
approach to rule mining with extraction of diagnostic taxonomy from
medical datasets is introduced. The key elements of this approach are
calculation of the characterization set of each decision attribute (a given
class) and one of the similarities between characterization sets. From the
relations between similarities, tree-based taxonomy is obtained, which
includes enough information for hierarchical diagnosis. The proposed
method was evaluated on three medical datasets, the experimental re-
sults of which show that induced rules correctly represent experts’ deci-
sion processes.
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1 Introduction

Rule mining has been applied to many domains. However, empirical results show
that the interpretation of extracted rules requires deep understanding for applied
domains. One of its reasons is that conventional rule induction methods such as
C4.5[6] cannot reflect the type of experts’ reasoning. For example, rule induc-
tion methods such as AQ15[4], PRIMEROSE[9] induce the following common
rule for muscle contraction headache from databases on differential diagnosis of
headache:

[location = whole] ∧[Jolt Headache = no] ∧[Tenderness of M1 = yes]
→ muscle contraction headache.

This rule is shorter than the following rule given by medical experts.

[Jolt Headache = no]
∧([Tenderness of M0 = yes] ∨[Tenderness of M1 = yes] ∨[Tenderness of M2 = yes])
∧[Tenderness of B1 = no] ∧[Tenderness of B2 = no] ∧[Tenderness of B3 = no]
∧[Tenderness of C1 = no] ∧[Tenderness of C2 = no] ∧[Tenderness of C3 = no]
∧[Tenderness of C4 = no]

→ muscle contraction headache



where [Tenderness of B1 = no] and [Tenderness of C1 = no] are added. It is
notable that these observation can be found in several medical domains[9].

One of the main reasons why the rules obtained from the dataset are shorter
is that these patterns are generated only by a simple criteria, such as high
accuracy or high information gain. The comparative studies[9–11] suggest that
experts should acquire rules not only by a single criteria but by the usage of
several measures.

Those characteristics of medical experts’ rules are fully examined not by
comparing between those rules for the same class, but by comparing experts’
rules with those for another class[9].

For example, the classification rule for muscle contraction headache given in
Section 1 is very similar to the following classification rule for disease of cervical
spine:

[Jolt Headache = no]
∧([Tenderness of M0 = yes] ∨[Tenderness of M1 = yes] ∨[Tenderness of M2 = yes])
∧([Tenderness of B1 = yes] ∨[Tenderness of B2 = yes] ∨[Tenderness of B3 = yes]
∨[Tenderness of C1 = yes] ∨[Tenderness of C2 = yes] ∨[Tenderness of C3 = yes]
∨[Tenderness of C4 = yes])
→ disease of cervical spine

The differences between these two rules are attribute-value pairs, from tenderness
of B1 to C4. Thus, these two rules are composed of the following three blocks:

A1 ∧A2 ∧ ¬A3 → muscle contraction headache
A1 ∧A2 ∧A3 → disease of cervical spine,

where A1, A2 and A3 are given as the following formulae:
A1 = [Jolt Headache = no], A2 = [Tenderness of M0 = yes] ∨ [Tenderness of
M1 = yes] ∨ [Tenderness of M2 = yes], and A3 = [Tenderness of C1 = no] ∧
[Tenderness of C2 = no] ∧ [Tenderness of C3 = no] ∧ [Tenderness of C4 = no].
The first two blocks ( A1 and A2 ) and the third one ( A3 ) represent the
different types of differential diagnosis. The first one A1 shows the discrimination
between muscular type and vascular type of headache. Then, the second part
shows the differential diagnosis between headaches caused by neck muscles and
ones by head muscles. Finally, the third formula A3 is used to make a differential
diagnosis between muscle contraction headache and disease of cervical spine.
Thus, medical experts first select several diagnostic candidates, which are very
similar to each other, from many diseases and then make a final diagnosis from
those candidates.

In this paper, the characteristics of experts’ rules are closely examined from
the viewpoint of hierarchical decision steps. Then, extraction of diagnostic tax-
onomy from medical datasets is introduced, which consists of the following three
procedures. First, the characterization set of each attribute-value pair for a de-
cision attribute(a given class) is extracted from databases. Then, similarities
between the characterization sets are calculated. Finally, the concept hierarchy
for given classes is calculated from the similarity values.



The paper is organized as follows. Section 2 and 3 introduces rough sets and
a characterization set. Section 4 gives an algorithm for extraction of diagnostic
taxonomy. Section 5 shows an illustrative example. Section 6 gives how rules are
induced after grouping. Finally, Section 7 concludes this paper. The proposed
method was evaluated on medical databases, the experimental results of which
show that induced rules correctly represent experts’ decision processes.

2 Rough Set Theory: Preliminaries

In the following sections, we use the following notations introduced by Grzymala-
Busse and Skowron[8], which are based on rough set theory[5].

Let U denote a nonempty, finite set called the universe and A denote a
nonempty, finite set of conditional attributes, i.e., a : U → Va for a ∈ A, where
Va is called the domain of a, respectively. For A, VA denotes a set of the domain
of attributes. Then, a decision table is defined as an information system, A =
(U,A ∪ {d}), where {d} denotes a decision attribute (a set of given classes).

The atomic formulae over B ⊆ A ∪ {d} and VB are expressions of the form
[a = v], called descriptors over B, where a ∈ B and v ∈ Va. The set F (B, VB) of
formulas over B is the least set containing all atomic formulas over B and closed
with respect to disjunction, conjunction and negation. For each f ∈ F (B, VB),
fA denote the meaning of f in A, i.e., the set of all objects in U with property
f , defined inductively as follows: (1) If f is of the form [a = v] then, fA = {s ∈
U |a(s) = v} (2) (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

By the use of the framework above, classification accuracy and coverage are
defined as follows.

Definition 1.
Let R denote a formula in F (B, VB) and D a set of objects which belong to a
decision attribute d. Classification accuracy and coverage(true positive rate) for
R → d is defined as:

αR(D) =
|RA ∩D|
|RA| (= P (D|R)), and κR(D) =

|RA ∩D|
|D| (= P (R|D)),

where |S|, αR(D), κR(D) and P(S) denote the cardinality of a set S, a classi-
fication accuracy and coverage of R as to classification of D, and probability of
S, respectively.

It is notable that αR(D) measures the degree of the sufficiency of a proposi-
tion, R → D, and that κR(D) measures the degree of its necessity.

Also, we define partial order of equivalence as follows:

Definition 2. Let Ri and Rj be the formulae in F (B, VB) and let A(Ri) denote
a set whose elements are the attribute-value pairs of the form [a, v] included in
Ri. If A(Ri) ⊆ A(Rj), then we represent this relation as: Ri ¹ Rj .

Finally, according to the above definitions, probabilistic rules with high ac-
curacy and coverage are defined as:



R
α,κ→ d s.t. R = ∧i[ai = vk], αR(D) ≥ δα and κR(D) ≥ δκ,

where δα and δκ denote given thresholds for accuracy and coverage, respectively.

3 Characterization Sets

3.1 Characterization Sets

In order to model medical reasoning, a statistical measure, coverage plays an
important role in modeling. Let us define a characterization set of D, denoted
by Lδκ(D) as a set, each element of which is an elementary attribute-value pair
R with coverage being larger than a given threshold, δκ. That is,

Definition 3. Let R denote a formula in F (B, VB). Characterization sets of a
decision attribute (D) is defined as:

Lδκ
(D) = {R|Ri = ∧i(∨j [ai = vj ]) and κR(D) ≥ δκ},

Then, three types of relations between characterization sets can be defined as
follows: (1) Independent type: Lδκ(Di) ∩ Lδκ(Dj) = φ, (2) Overlapped type:
Lδκ(Di) ∩ Lδκ(Dj) 6= φ, and (3) Subcategory type: Lδκ(Di) ⊆ Lδκ(Dj). All
three definitions correspond to the negative region, boundary region, and positive
region, respectively, if a set of the whole elementary attribute-value pairs will be
taken as the universe of discourse.

Tsumoto focuses on the subcategory type in [10] because Di and Dj cannot be
differentiated by using the characterization set of Dj , which suggests that Di is
a generalized disease of Dj . Then, Tsumoto generalizes the above rule induction
method into the overlapped type, considering rough inclusion[11]. However, both
studies assumes two-level diagnostic steps: focusing mechanism and differential
diagnosis, where the former selects diagnostic candidates from the whole classes
and the latter makes a differential diagnosis between the focused classes.

The proposed method below extends these methods into multi-level steps. In
this paper, we consider the special case of characterization sets in which each
formulae is given as a conjunctive normal formula and the thresholds of coverage
is equal to 1.0: L1.0(D) = {Ri|Ri = ∧i(∨j [ai = vj ]), κRi(D) = 1.0} It is notable
that this set has several interesting characteristics.

Theorem 1. Let Ri and Rj two conjunctive formulae in L1.0(D) such that
Ri ¹ Rj. Then, αRi ≤ αRj .

Theorem 2. Let R be a formula in L1.0(D) such that R = ∨j [ai = vj ]. Then,
R and ¬R gives the coarsest partition for ai, whose R includes D.

Theorem 3. Let A consist of {a1, a2, · · · , an} and Ri be a formula in L1.0(D)
such that Ri = ∨j [ai = vj ]. Then, a sequence of a conjunctive formula F (k) =
∧k

i=1Ri gives a sequence which increases the accuracy.



4 Rule Induction with Diagnostic Taxonomy

4.1 Intuitive Ideas

As discussed in Section 2, when the coverage of R for a target concept D is equal
to 1.0, R is a necessity condition of D. That is, a proposition D → R holds and
its contrapositive ¬R → ¬D holds. It means that if R is not observed, D cannot
be a candidate of a decision class. If two decision classes have a common formula
R whose coverage is equal to 1.0, then ¬R supports the negation of two classes,
which means these two concepts belong to the same group. Furthermore, if two
target concepts have similar formulae Ri, Rj ∈ L1.0(D), they are very close to
each other with respect to the negation of two classes. In this case, the attribute-
value pairs in the intersection of L1.0(Di) and L1.0(Dj) give a characterization
set of the generalized decision class that unifies Di and Dj , DDk. Then, com-
pared with DDk and other target concepts, classification rules for DDk can be
obtained. When we have a sequence of grouping, classification rules for a given
decision classes are defined as a sequence of subrules. From these ideas, a rule
induction algorithm with grouping target concepts can be described as a combi-
nation of grouping (Figure 1) and rule induction (Figure 2). First, this algorithm
first calculates L1.0(Di) for {D1, D2, · · · , Dk}. Second, from the list of charac-
terization sets, it calculates the intersection between L1.0(Di) and L1.0(Dj) and
stores it into Lid. Third, the procedure calculates the similarity (matching num-
ber)of the intersections and sorts Lid with respect of the similarities. Fourth, the
algorithm chooses one intersection (Di ∩Dj) with maximum similarity (highest
matching number) and group Di and Dj into a concept DDi. These procedures
will be continued until all the grouping is considered. The first to fourth steps
are described as Figure 1. Finally, rules for each decision class, including grouped
ones, are induced. For given decision classes, rules are composed of rules for the
upper-level and rules specific to the corresponding given class shown in Figure 2.

4.2 Similarity

To measure the similarity between two characterization sets, we can apply several
indices of two-way contigency tables. Table 1 gives a contingency table for two
rules, L1.0(Di) and L1.0(Dj). The first cell a (the intersection of the first row
and column) shows the number of matched attribute-value pairs. From this table,
several kinds of similarity measures can be defined. The best similarity measures
in the statistical literature are four measures shown in Table 2[3, 2].

In this paper, we focus on the two similarity measures: one is Simpson’s
measure: a

min{(a+b),(a+c)} and the other is Braun’s measure: a
max{(a+b),(a+c)} .

As discussed in Subsection 4.2, a single-valued similarity becomes low when
L1.0(Di) ⊂ L1.0(Dj) and |L1.0(Di)| << |L1.0(Dj)|. For example, let us consider
when |L1.0(Di)| = 1. Then, match number is equal to 1.0, which is the lowest
value of this similarity. In the case of Jaccard’s coefficient, the value is 1/1 + b
or 1/1 + c: the similarity is very small when 1 << b or 1 << c. Thus, these



procedure Grouping ;
var inputs

Lc : List; ¿ /* A list of Characterization Sets */
Lid : List; ¿ /* A list of Intersection */
Ls : List; ¿ /* A list of Similarity */

var outputs
Lgr : List; /* A list of Grouping */

var
k : integer; Lg : List;

begin
Lg := {} ; Lgr := {};
k := n /* n: A number of Target Concepts*/
Sort Ls with respect to similarities;

Take a set of (Di, Dj), Lmax with maximum similarity values;
k:= k+1;
forall (Di, Dj) ∈ Lmax do

begin
Lg := {};
Group Di and Dj into DDk;

Lc := Lc − {(Di, L1.0(Di)};
Lc := Lc − {(Dj , L1.0(Dj)};
Lc := Lc + {(Dk, L1.0(Dk)};
Update Lid for DDk;
Update Ls;

Lg := (Outputs from Grouping for Lc, Lid, and Ls) ;
Lgr := Lgr + {{(DDk, Di, Dj), Lg}};

end
return Lgr;

end {Grouping}

Fig. 1. An Algorithm for Grouping

similarities do not reflect the subcategory type. Thus, we should check the dif-
ference between a + b and a + c to consider the subcategory type. One solution
is to take an interval of maximum and minimum as a similarity, which we call
an interval-valued similarity.

For this purpose, we combine Simpson and Braun similarities and define
an interval-valued similarity:

[
a

max{(a+b),(a+c)} ,
a

min{(a+b),(a+c)}
]

If the difference
between two values is large, it would be better not to consider this similarity
for grouping in the lower generalization level. For example, when a + c = 1(a =
1, c = 0), the above value will be:

[
1

1+b , 1
]

If b >> 1, then this similarity should
be kept as the final candidate for the grouping.

The disadvantage is that it is difficult to compare these interval values. In
this paper, the maximum value of a given interval is taken as the representative
of this similarity when the difference between min and max are not so large.



procedure RuleInduction ;
var inputs

Lc : List;
/* A list of Characterization Sets */
Lid : List; /* A list of Intersection */
Lg : List; /* A list of grouping*/
/* {{(Dn+1,Di,Dj),{(DDn+2,.)...}}} */
/* n: A number of Target Concepts */

var
Q, Lr : List;

begin
Q := Lg; Lr := {};
if (Q = ∅) then return Lr = {};
if (Q 6= ∅) then do

begin
Q := Q− first(Q);
Lr := Rule Induction (Lc, Lid, Q);

end
(DDk, Di, Dj) := first(Q);
if (Di ∈ Lc and Dj ∈ Lc) then do

begin
Induce a Rule r which discriminate
between Di and Dj ;
r = {Ri → Di, Rj → Dj};

end
else do

begin
Search for L1.0(Di) from Lc;
Search for L1.0(Dj) from Lc;
if (i < j) then do
begin

r(Di) := ∨Rl∈L1.0(Dj)¬Rl → ¬Dj ;

r(Dj) := ∧Rl∈L1.0(Dj)Rl → Dj ;

end
r := {r(Di), r(Dj)};

end
return Lr := {r, Lr} ;

end {Rule Induction}

Fig. 2. An Algorithm for Rule Induction

If the maximum values are equal to the other, then the minimum value will
be compared. If the minimum value is larger than the other, the larger one is
selected.



Table 1. Contingency Table for Similarity

L1.0(Dj)
Observed Not Observed Total

Observed a b a + b
L1.0(Di)

Not observed c d c + d

Total a + c b + d a + b + c + d

Table 2. A List of Similarity Measures

(1) Matching Number a
(2) Jaccard’s coefficient a/(a + b + c)
(3) χ2-statistic N(ad− bc)2/M

(4) point correlation coefficient (ad− bc)/
√

M
(5) Kulczynski 1

2
( a

a+b
+ a

a+c
)

(6) Ochiai a√
(a+b)(a+c)

(7) Simpson a
min{(a+b),(a+c)}

(8) Braun a
max{(a+b),(a+c)}

N = a + b + c + d, M = (a + b)(b + c)(c + d)(d + a)

5 Example

Let us consider Table 3 as an example for rule induction. For a similarity func-
tion, we use the interval similarity defined in Section 4.2. Since Table 3 has five
classes in the decision attribute, an index for grouped concepts, k is set to 6. For
extraction of taxonomy, the interval-valued similarity is applied.

5.1 Grouping

From this table, the characterization set for each concept is obtained as shown
in Fig 3. Then, the intersection between two target concepts are calculated. In
the first level, the similarity matrix is generated as shown in Fig. 4.

Since common and classic have the maximum similarity, these two classes are
grouped into one category, D6. Then, the characterization of D6 is obtained as
: D6 = {[loc = lateral], [nat = thr], [jolt = 1], [nau = 1], [M1 = 0], [M2 = 0]}.
In the second iteration, the intersection of D6 and others is considered and the
similarity matrix is obtained: as shown in Fig 5. From this matrix, we have to
compare three candidates: [2/8,2/4], [3/7,3/6] and [2/7,2/4]. From the minimum
values, the middle one: D6 and i.m.l. is selected as the second grouping. Thus,
D7 = {[jolt = 1], [M1 = 0], [M2 = 0]}. In the third iteration, the intersection
matrix is calculated as Fig 6 and m.c.h. and psycho are grouped into D8: D8 =
{ [nat=per], [prod=0] }. Finally, the dendrogram is given as Fig. 7.



Table 3. A small example of a database

No. loc nat his prod jolt nau M1 M2 class
1 occular per per 0 0 0 1 1 m.c.h.
2 whole per per 0 0 0 1 1 m.c.h.
3 lateral thr par 0 1 1 0 0 common.
4 lateral thr par 1 1 1 0 0 classic.
5 occular per per 0 0 0 1 1 psycho.
6 occular per subacute 0 1 1 0 0 i.m.l.
7 occular per acute 0 1 1 0 0 psycho.
8 whole per chronic 0 0 0 0 0 i.m.l.
9 lateral thr per 0 1 1 0 0 common.
10 whole per per 0 0 0 1 1 m.c.h.
Definition. loc: location, nat: nature, his:history,
Definition. prod: prodrome, nau: nausea, jolt: Jolt headache,
M1, M2: tenderness of M1 and M2, 1: Yes, 0: No, per: persistent,
thr: throbbing, par: paroxysmal, m.c.h.: muscle contraction headache,
psycho.: psychogenic pain, i.m.l.: intracranial mass lesion, common.:
common migraine, and classic.: classical migraine.

L1.0(m.c.h.) = {([loc = occular] ∨ [loc = whole]), [nat = per], [his = per],
[prod = 0], [jolt = 0], [nau = 0], [M1 = 1], [M2 = 1]}

L1.0(common) = {[loc = lateral], [nat = thr], ([his = per] ∨ [his = par]), [prod = 0],
[jolt = 1], [nau = 1], [M1 = 0], [M2 = 0]}

L1.0(classic) = {[loc = lateral], [nat = thr], [his = par], [prod = 1],
[jolt = 1], [nau = 1], [M1 = 0], [M2 = 0]}

L1.0(i.m.l.) = {([loc = occular] ∨ [loc = whole]), [nat = per],
([his = subacute] ∨ [his = chronic]), [prod = 0],
[jolt = 1], [M1 = 0], [M2 = 0]}

L1.0(psycho) = {[loc = occular], [nat = per], ([his = per] ∨ [his = acute]),
[prod = 0]}

Fig. 3. Characterization Sets for Table 3

m.c.h. common classic i.m.l. psycho

m.c.h. − [1/8,1/8] [0,0] [3/8,3/7] [2/8,2/4]
common − − [6/8,6/8] [4/8, 4/7] [1/7,1/4]
classic − − − [3/8, 3/7] 0
i.m.l. − − − − [2/7, 2/4]

Fig. 4. Interval-valued Similarity of Two Characterization Sets (Step 2)

5.2 Rule Induction

The grouping obtained from the dataset shows the candidate of the differential
diagnosis taxonomy with the given interval-valued similarity. For differential di-
agnosis, First, this model discriminate between D7(common, classic and i.m.l.)



m.c.h. D6 i.m.l. psycho

m.c.h. − 0 [3/8, 3/7] [2/8,2/4]
D6 − − [3/7,3/6] 0

i.m.l. − − − [2/7,2/4]

Fig. 5. Interval-valued Similarity of Two Characterization Sets after the first Grouping
(Step 3)

m.c.h. D7 psycho

m.c.h. − [0, 0] [2/8,2/4]
D7 − [0, 0] [0,0]

Fig. 6. Interval-valued Similarity of Two Characterization Sets after the second Group-
ing (Step 4)

and D8 (m.c.h. and psycho). Then, D6 and i.m.l. within D7 are differentiated.
Finally, common and classic within D7 are checked. Thus, a classification rule
for common is composed of two subrules: (discrimination between D7 and D8),
(discrimination between D6 and i.m.l.), and (discrimination within D6).

The first part can be obtained by the intersection for Figure 6. That is,

D8 → [nat = per] ∧ [prod = 0]

¬[nat = per] ∨ ¬[prod = 0] → ¬D8.

Then, the second part can be obtained by the intersection for Figure 5. That is,

¬([loc = occular] ∨ [loc = whole]) ∨ ¬[nat = per]
∨ ¬([his = subacute] ∨ [his = chronic])

∨ ¬[prod = 0] → ¬i.m.l.

Fig. 7. Grouping by Characterization Sets



Finally, the third part of the rule can be obtained by the difference set between
L1.0(common) and L1.0(classic) = {[prod = 1]}.

[prod = 0] → common.

Combining these three parts, the classification rule for common is

(¬[nat = per] ∨ ¬[prod = 0])
∧ (¬([loc = occular] ∨ [loc = whole]) ∨ ¬[nat = per]
∨ ¬([his = subacute] ∨ [his = chronic]) ∨ ¬[prod = 0])

∧ [prod = 0] → common.

After its simplification, the rule is transformed into:

[nat = thr] ∧ ([loc = lateral] ∨ ¬([his = subacute] ∨ [his = chronic]))
∧ [prod = 0] → common.

whose accuracy is equal to 2/3.

6 Experimental Results

The above rule induction algorithm was implemented in PRIMEROSE5.0 (Prob-
abilistic Rule Induction Method based on Rough Sets Ver 5.0), and was applied
to databases on differential diagnosis of headache, meningitis and cerebrovascular
diseases (CVD), whose precise information is given in Table 4. In these experi-
ments, δα and δκ were set to 0.75 and 0.5, respectively. Also, the threshold for
grouping is set to 0.8.1 This system was compared with PRIMEROSE4.5[11],
PRIMEROSE[9] C4.5[6], CN2[1], AQ15[4] with respect to the following points:
length of rules, similarities between induced rules and expert’s rules and perfor-
mance of rules.

In this experiment, the length was measured by the number of attribute-
value pairs used in an induced rule and Jaccard’s coefficient was adopted as
a similarity measure for comparison[3]. Concerning the performance of rules,
ten-fold cross-validation was applied to estimate classification accuracy.

Table 5 shows the experimental results, which suggest that PRIMEROSE5
outperforms PRIMEROSE4.5 (two-level) and the other four rule induction meth-
ods and induces rules very similar to medical experts’ ones.

7 Discussion

7.1 Focusing Mechanism

The readers may wonder why lengthy rules perform better than short rules since
lengthy rules suffer from overfitting to a given data. One reason is that a decision
1 These values are given by medical experts as good thresholds for rules in these three

domains.



Table 4. Information about Databases

Domain Samples Classes Attributes

Headache 52119 45 147
CVD 7620 22 285
Meningitis 141 4 41

Table 5. Experimental Results

Method Length Similarity Accuracy

Headache

PRIMEROSE5.0 8.8± 0.27 0.95± 0.08 95.2± 2.7%
PRIMEROSE4.5 7.3± 0.35 0.74± 0.05 88.3± 3.6%
Experts 9.1± 0.33 1.00± 0.00 98.0± 1.9%

PRIMEROSE 5.3± 0.35 0.54± 0.05 88.3± 3.6%
C4.5 4.9± 0.39 0.53± 0.10 85.8± 1.9%
CN2 4.8± 0.34 0.51± 0.08 87.0± 3.1%
AQ15 4.7± 0.35 0.51± 0.09 86.2± 2.9%

Meningitis

PRIMEROSE5.0 2.6± 0.19 0.91± 0.08 82.0± 3.7%
PRIMEROSE4.5 2.8± 0.45 0.72± 0.25 81.1± 2.5%
Experts 3.1± 0.32 1.00± 0.00 85.0± 1.9%

PRIMEROSE 1.8± 0.45 0.64± 0.25 72.1± 2.5%
C4.5 1.9± 0.47 0.63± 0.20 73.8± 2.3%
CN2 1.8± 0.54 0.62± 0.36 75.0± 3.5%
AQ15 1.7± 0.44 0.65± 0.19 74.7± 3.3%

CVD

PRIMEROSE5.0 7.6± 0.37 0.89± 0.05 74.3± 3.2%
PRIMEROSE4.5 5.9± 0.35 0.71± 0.05 72.3± 3.1%
Experts 8.5± 0.43 1.00± 0.00 82.9± 2.8%

PRIMEROSE 4.3± 0.35 0.69± 0.05 74.3± 3.1%
C4.5 4.0± 0.49 0.65± 0.09 69.7± 2.9%
CN2 4.1± 0.44 0.64± 0.10 68.7± 3.4%
AQ15 4.2± 0.47 0.68± 0.08 68.9± 2.3%

attribute gives a partition of datasets: since the number of given classes are 4 to
45, some classes have very low support due to the prevalence of the corresponding
diseases. Thus, the disease with the low frequency may not have short-length
rules by using the conventional methods. However, since our method is not based
on accuracy, but on coverage, we can support the disease with low frequency.
Another reason is that this method reflects the reasoning style of domain experts.
One of the most important features of medical reasoning is that medical experts
finally select one or two diagnostic candidates from many diseases, called focusing
mechanism. For example, in differential diagnosis of headache, experts choose one



from about 60 diseases. The proposed method models induction of rules which
incorporates this mechanism, whose experimental evaluation show that induced
rules correctly represent medical experts’ rules.

This focusing mechanism is not only specific to medical domain. In a domain
in which a few diagnostic conclusions should be selected from many candidates,
this mechanism can be applied. For example, fault diagnosis of complicated elec-
tronic devices should focus on which components will cause a functional problem:
the more complicated devices are, the more sophisticated focusing mechanism
is required. In such domain, proposed rule induction method will be useful to
induce correct rules from datasets.

7.2 Sensitivity to Similarity

The problem with this approach is that several taxonomy trees are obtained
when a single-valued similarity is adopted. If Simpson similarity is selected for
grouping, two other models are acquired from the small dataset (Fig. 8,9). Al-
though the model shown in Fig. 8 is topologically identical to Fig. 7, the grouping
order is different. Thus, when the above rule induction method is applied, rules
induced by this model may be different from the above rules. The other model
is totally different from those two models, so the obtained rule will be different
from the rule in Section 5.

Moreover, if the matching number is selected for grouping, the other model
is acquired (Fig. 10).

The selection of the interval-valued similarity is a solution to this problem.
However, since this choice may not prevent the multiple model generation in
general, it will be our future work to introduce a preference criteria for model
selection.

Fig. 8. The Second Grouping by Simpson Similarity



Fig. 9. The Third Grouping by Simpson Similarity

Fig. 10. The Second Grouping by Matching Number

8 Conclusion

In this paper, the characteristics of experts’ rules are closely examined, whose
empirical results suggest that grouping of diseases is very important to realize
automated acquisition of medical knowledge from clinical databases. Thus, we
focus on the role of coverage in focusing mechanisms and propose an algorithm
for grouping of diseases by using this measure, which consists of the following
three procedures. First, the characterization set of each attribute-value pair for
a decision class(a given class) is extracted from databases. Then, similarities
between the characterization sets are calculated. Finally, the concept hierarchy
for given classes is calculated from the similarity values. The proposed method
was evaluated on three medical datasets, the experimental results of which show
that induced rules correctly represent experts’ decision processes.

Although the proposed method gives a good performance with diagnostic
taxonomy, it is possible that the method outputs multiple models. This observa-



tion is dependent on the selection of the similarity measure. It will be our future
work to solve this problem.

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research (13131208)
on Priority Areas (No.759) “Implementation of Active Mining in the Era of In-
formation Flood” by the Ministry of Education, Science, Culture, Sports, Science
and Technology of Japan.

References

1. Clark, P. and Niblett, T., The CN2 Induction Algorithm. Machine Learning, 3,
261-283, 1989.

2. Cox, T. F. and Cox, M. A. A. Multidimensional Scaling (Second Edition), Chapman
& Hall/CRC, Boca Raton, 2000.

3. Everitt, B. S., Cluster Analysis, 3rd Edition, John Wiley & Son, London, 1996.
4. Michalski, R. S., Mozetic, I., Hong, J., and Lavrac, N., The Multi-Purpose Incremen-

tal Learning System AQ15 and its Testing Application to Three Medical Domains,
in Proceedings of the fifth National Conference on Artificial Intelligence, 1041-1045,
AAAI Press, Menlo Park, 1986.

5. Pawlak, Z., Rough Sets. Kluwer Academic Publishers, Dordrecht, 1991.
6. Quinlan, J.R., C4.5 - Programs for Machine Learning, Morgan Kaufmann, Palo

Alto, 1993.
7. Readings in Machine Learning, (Shavlik, J. W. and Dietterich, T.G., eds.) Morgan

Kaufmann, Palo Alto, 1990.
8. Skowron, A. and Grzymala-Busse, J. From rough set theory to evidence theory. In:

Yager, R., Fedrizzi, M. and Kacprzyk, J.(eds.) Advances in the Dempster-Shafer
Theory of Evidence, pp.193-236, John Wiley & Sons, New York, 1994.

9. Tsumoto, S., Automated Induction of Medical Expert System Rules from Clinical
Databases based on Rough Set Theory. Information Sciences 112, 67-84, 1998.

10. Tsumoto, S., Extraction of Experts’ Decision Rules from Clinical Databases using
Rough Set Model Intelligent Data Analysis, 2(3), 1998.

11. Tsumoto,S. Mining diagnostic rules from clinical databases using rough sets and
medical diagnostic model. Inforamtion Sciences 162, 65-80, 2004.


