
COMPUTER 100

THE PROFESSION

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE

The Future of the
Computing Profession:
Readers’ E-mails

I
n an essay written for this
column’s tenth anniversary
in July (“The Future of the
Computing Profession,” pp.

88, 86-87), I focused on an issue
I felt was of supreme importance, one
that many of my earlier essays had
also touched on, directly and indi-
rectly. For quite a while it seemed
I was wasting my time as I only pro-
voked one short e-mail reaction.
But when I was well into writing the
essay I had originally intended for
this month, two others arrived in
quick succession.

In the hope of provoking more
readers to think about where we are
going as a profession, with the send-
ers’ agreement I decided to publish
those messages here.

E-MAIL 1
I have just read your timely and

accurate article in Computer’s July
issue. While working in informa-
tion security as an analyst, I’ve been
struggling to understand the place
or role of a computing professional.
I program and do security-related
tasks, as more of a technician on
these matters.

As of August, I have taken on a new
role in a research environment. The
!ner points in your article are exactly

what the manager hired me to deal
with. He has no one to do the imple-
mentation that can keep current in
terms of the technology and tools of
the trade. He has the big thinkers, but
not what you describe. It seems like
a better !t for me. So I totally agree
with your sentiment.
Paul O’Neill
paul@codelogic.net

E-MAIL 2
In your July essay, you argue that

the computing profession must !rst
separate its professionals from its
technicians, just as other professions
do. For example, architects have
builders, lawyers have clerks, and
so on. In the computing profession,
programmers would be the techni-
cians. However, I must disagree. The
computing profession is not like other
professions in a fundamental way.

The computing profession is dif-
ferent because the product being
produced is different. The result of an
architect’s efforts is a speci!cation,
not the building itself, so it is nec-
essary to have a builder come in to
execute the architect’s speci!cation,
if the planned result is a building. In
computing, the speci!cation—what
we call the program—is the end
result. Once the program has been

produced, the effort is done. There is
no next step to be carried out.

Now, it’s possible to argue that the
result of the computing professional’s
effort is not the program, but what
is it then? It certainly must not be
a speci!cation written in English. I
have seen that and done that, and the
design document written for the con-
sumption of other humans is never
suf!cient for the implementation to
succeed. Too many questions remain
unanswered, too many subtle design
decisions turn out to have major ram-
i!cations for the implementation, and
perhaps most important, it is simply
never precise enough.

No, the result of the computing
professional’s effort cannot be a
design document. The architect does
not draw some sketches about what
the building looks like and then ask
the builder to build it. The architect
produces a detailed set of plans for
the builder, and the builder follows
them.

In my experience, by the time we
get to the level of detail suf!ciently
precise for the implementation to
actually correspond to the design, we
might as well have written the pro-
gram. What is a program anyway?
It’s nothing more than a specifica-

 Neville Holmes, University of Tasmania

Where are we going as a profession?

Continued on page 98

COMPUTER 98

!"#$%&'(#))*'+

tion written in a formal language
with unambiguous semantics. How
else do we specify what the system
is supposed to do than with some
such specification? We may not be
satis!ed with the languages we have
today to specify what a system should
do—they may be too low-level, they
may be too closely bound to a par-
ticular hardware platform—but the
fault then is with the languages, not
the process.

Uniquely, with computing as
opposed to other professions, the
computing professional need only
do something once. For example, the
architect may have draftsmen who
add the electrical wiring details to the
plans after the basic structure is done,

and this needs to be done for every
job. But the computing professional
has the power of abstraction built into
his tools.

I do not need programmers to
implement a sort routine that I specify
each time I need one. It need only be
implemented once. The same is true
for a more complex artifact—say, a
database or webserver. If the abstrac-
tion is well understood, it can be used
repeatedly. If it’s not well understood,
the computing professional must spec-
ify it to the level of detail that makes
it well understood. And the formal
language we use to specify it to the
appropriate level of detail is and must
be the program. There is nothing else.

That tools and techniques for pro-
gramming are continually changing
is a re"ection both of improvement
in the abstractions we understand
and in the underlying hardware. For
example, I use different languages
now than I did 10 or 20 years ago.
These newer languages let me build
systems that do things that simply
wouldn’t have been possible then. I

couldn’t have managed the complex-
ity required by the system.

This isn’t an issue to be dealt with
only by the programmer, though.
This is an issue for the designer. Is the
availability of multiple cores a techni-
cal detail, or does it fundamentally
change the design? If new materials
become available in construction, is
this not of critical importance to the
architect? Doesn’t steel allow differ-
ent construction possibilities than
wood? If the building codes change,
this is of importance to more than
just the builder. It may alter what
it’s even possible to build. The same
analysis is true for other professions
you listed. Pathologists perform tests
ordered by doctors because the tests

have been standardized, but the work
of carrying out the test still must be
done.

But when a computing professional
comes to understand the solution to a
problem well, that understanding is in
the program itself. The program may
be analyzed and documented, but the
program is its own end. If the desired
result is the process speci!ed by the
program, we don’t need a technician
to carry it out. We need only execute
the program on a computer. The com-
puter is the technician.

This may be why the computing
profession is, as you point out, so dis-
tinctively tethered to the computer.
Sometime in the future, other !elds
may replace their technicians with
computers as well. It may only be
a matter of time. But they will only
be able to do it with the help of com-
puting professionals, those who are
expert in making such systems pos-
sible. So I don’t think we are headed
toward irrelevancy just yet.
Jeffrey Olkin
jeffrey@olkin.net

E-MAIL 3
I had a few thoughts to share

regarding the July The Profession
column.

First, I don’t think that OS makers
will go back to the command-line
interface, because—based on their
view of their customers—that would
be regressing. So I think the ques-
tion to pose is how to incorporate the
scripting elements of the command-
line interface into a GUI-based system.

One thing I’ve always liked about
Unix was the ability to string together
relatively simple commands with
pipes to perform complex opera-
tions, as you allude to in the column.
If something similar could be done
graphically, with connections (pipes)
drawn between components (soft-
ware libraries) to tie together a
data"ow to accomplish a particular
objective, we would be on the way
there. I believe that such things exist
for software development; the issue
would be convincing the developers
to build their OSs and GUIs to support
it. So, rather than look back to the old
paradigm, look forward to a new (old)
one.

Second, you sketch out a picture
of the computing technician but don’t
really describe what the professional
level looks like. Perhaps that’s in the
2007 article you cite. I didn’t go back
and check (I’m at home and the Web
library access is at work).

Third, another article in Computer’s
July issue (A. Gowan and H. Reich-
gelt, “Emergence of the Information
Technology Discipline,” IT Systems
Perspectives, pp. 79-81) discusses
the emergence of IT as a distinct dis-
cipline, as opposed to CS and IS. The
authors’ view is that IS drives the
requirements (map this process into a
computer system), while IT builds the
required systems and networks, and
CS acts as a bridge between the two
(writing most of the software to get the
job done). Is this a tri-level version of
what you’re proposing, or would you
say that each discipline should have
technicians and professionals within

When a computing professional comes to understand

the solution to a problem well, that understanding is

in the program itself.

Continued from page 100

99OCTOBER 2010

it? If the latter, what would those posi-
tions look like?

Fourth, one risk of what you pro-
pose is a rigid strati!cation. I think
of the medical system here in the
US, where there is a de!nite hierar-
chy of doctors, nurses, techs, and
others, with many specializations
fitting between the others, such as
nurse practitioners, which are a step
up from nurses but a step down from
physicians’ assistants, who are them-
selves a step down from doctors.

While there is specialization
within the computing profession
now, we can move around and, more
particularly, up the chain, given
the limitations of our own abilities,
opportunities, and so on. Currently,
this is often based on a mixture of
experience and education, so that
going back to get more advanced
degrees is advantageous, but not
always required. With greater pro-
fessionalization, I would think that
there would be more emphasis on
formal schooling, and perhaps less
on experience—which I’m not sure is
an entirely good thing.
Jonathan Entner
jonathan.entner@cavtel.net

DIFFERING VIEWS
Jeffrey Olkin’s view of the profes-

sion’s structure is not mine, nor is
his expectation of architects. Roger
Fay, head of the School of Architec-
ture and Design at the University of
Tasmania, confirms my view. “The
responsibility of the architect starts
and ends with the client. With that in
mind, the architect should be involved
from the !rst tentative chats with the
clients through to the completion of
construction.” This is not all. “Since
buildings are complex objects, clients
often need to be instructed on how
to get the most out of them, so this is
another postconstruction role for an
architect.”

Fay’s depiction of the architect’s
role is very close to my view of what
the computing professional’s role
should be. It is also very close to

the UK view of the engineering pro-
fessional summarized in Table 1 of
Computer’s very interesting August
2010 Education column (S.T. Frezza,
“Computer Science: Is It Really the
Scientific Foundation for Software
Engineering?” pp.98-101), which is
very much like the view I was given
when studying engineering some 60
years ago.

So I was somewhat dismayed by
the redoubtable Peter Denning’s essay
in a recent American Scientist (tinyurl.
com/2dtzcdv), in particular because
of its illustration and its ignoring of
the international standard de!nitions
of data and information. The illustra-
tion puts engineering at home among
the sciences and depicts computing
as about to join them, a viewpoint
contradicted by the Education essay.
Using those standard definitions
would have made Denning’s discus-
sion much simpler and the problems
much clearer.

As for the Computer article Jona-
than Entner mentioned, I only wish I
had known of it at the time. It makes
plain that CS and IT courses focus on
the technology and are thus produc-
ing technicians or technologists, while
IS courses focus on the client and thus
produce what I deem proper comput-

ing professionals akin to engineers
and architects. The only problem is
that IS only considers clients in the
business world and ignores many
kinds of clients and partners (The
Profession, Jan. 2007, pp. 114-116).

M
uch more could be said
in response to these mes-
sages, but Paul O’Neill’s

e-mail encourages me to believe that
some readers share my point of view.
The issues are important, as can be
seen by reading through the position
statements of the CS election candi-
dates in Computer’s August issue. As
column editor, I would be delighted
if readers continued this debate,
either by sending e-mails like the
ones included here, or by submitting
essays of around 2,000 words for
publication in this column.

Neville Holmes is an honorary
research associate at the University of
Tasmania’s School of Computing and
Information Systems. Contact him at
neville.holmes@utas.edu.au.

 Selected CS articles and columns
 are available for free at http://
ComputingNow.computer.org.

