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Guessing Answers to Pass a 5-item True False Test: 
Solving a Binomial Problem Three Different Ways  

A binomial problem is examined through the use of three methods: a classical approach 
using the binomial formula, Pascal’s Triangle, and a frequentist approach using a Fathom™ 
simulation. Using both physical and virtual coins students explored the distinction between 
a coin-sequence and a coin-combination (where the order is not important) as a foundation 
for a 5-item True False test task. Pedagogy was based on general principles identified by 
probability education research as best practice and by Ma, who emphasised deep 
understanding of concepts through the use of multiple approaches to problem solving. 

The Binomial Theorem is a well established topic in the senior secondary curriculum. 
Normally taught using the binomial formula and Pascal’s Triangle, a computer simulation 
has the potential to offer an additional perspective and method of problem-solving.  

The study examined students’ responses to a binomial problem using the three methods 
of the binomial formula, Pascal’s Triangle, and a Fathom™ simulation, and whether the 
use of a multiple-method approach that included electronic simulation may assist student 
learning. Three student tasks from a two-week study are presented. The physical and virtual 
“Coin-sequence” and “Coin-combination” tasks provided an opportunity for students to 
explore the distinction between an ordered coin-sequence and a coin-combination, where 
only the total number of heads and tails is recorded. The third task, where students 
calculated the probability of “Guessing correctly four or more answers on a 5-item True 
False test”, first established students’ existing knowledge and then traced their 
development of understanding of the binomial.   

Theoretical Background 
Probability is a mathematics topic where students are likely to bring their own beliefs 

and misconceptions to the classroom, and this may confound the study of probability. The 
counterintuitive results that exist at the elementary level, argued Batanero and Sanchez 
(2005), may explain the existence of learning difficulties at high school.  

The concept of probability literacy is less developed in the research literature than the 
closely related statistical literacy. Gal (2005), developed a definition of probability literacy 
that identified five knowledge elements and three dispositional elements from which Jones 
et al. (2007) were able to infer the pedagogical approach of using contextual problems and 
a multiple approach to problem solving.  

Pratt (2005) developed four guidelines for probability instruction: (a) purpose and 
utility, (b) testing personal conjectures where students’ existing conceptions are connected 
to new knowledge, (c) large scale simulations, and (d) systematic variation of the context. 
As Pratt noted testing personal conjectures and conducting large scale experiments are 
impracticable without electronic simulations. The use of electronic simulation to teach 
probability is well-established in the literature (e.g., Garfield & Gal, 1999)  

Ma (1999) developed Profound Understanding of Elementary Mathematics to describe  
a depth of subject knowledge that she argued was the essential distinction between Chinese 
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and American elementary mathematics teaching. Four principles were identified: (a) 
connectedness, to avoid fragmenting students’ learning; (b) multiple perspectives to solve 
problems; (c) basic ideas, explicitly taught and reinforced; and (d) longitudinal coherence, 
where critical concepts taught earlier are linked to what students will learn in subsequent 
years. These four principles could be applied at all levels, and all streams, of school 
mathematics. Larsen (2006) provided guidelines for teaching statistics and advocated an 
approach similar to Ma where tasks are investigated at depth, but he differed from current 
research by not explicitly mentioning the use of simulation. 

Students’ understanding of a multiple coin toss as a coin-sequence task is reported 
extensively in the research literature (e.g., Rubel, 2006). The current study extended the 
coin-sequence task to explore the distinction between the probability of a specific ordered 
coin-sequence and the probability of a coin-combination, where only the total number of 
Heads and Tails that occurred was important. Equiprobability bias – an tendency to see 
events as equally likely, when they are not – was explored by Garfield and Gal (1998) in a 
system of two dice rolled simultaneously.  This task is recast in the current study as a 
multiple coin toss, and presented as a companion task to a coin-sequence. The approach 
provides a two-fold function: (a) a more thorough investigation of the coin system and (b) a 
foundation for the exploration of the binomial theorem.  

Method 
Sample. The convenience sample was a Year 10 class in a government all boys high 

school in Tasmania. The group of nineteen students was an advanced mathematics class, 
but the students were self-selected and presented with a range of abilities. The classroom 
component of the research study was taught by the first author as a naturalistic teaching 
program, while the third author acted in the role of colleague teacher. Principles identified 
in education research including active learning, whole class discussion, multiple 
perspectives in developing a solution, connectedness of the concepts, and appropriate 
technology were particularly influential in the design of the study. The software Fathom, a 
product of Key Curriculum Press (Finzer, 2005), was used to support the teaching program, 
and many of the students had limited exposure to Fathom from a short study conducted the 
previous year. The study was developed as a pilot program within a broader study 
examining the use of Fathom to support learning in middle to late high school.  

Procedure, tasks and data collection. The principal objective of the study was an 
examination of the binomial theorem using three approaches: (a) a classical approach using 
the binomial formula, (b) Pascal’s Triangle, and (c) a frequentist approach using Fathom. 
Emphasis was placed on students integrating and comparing the relative merit of the three 
approaches. The task central to the unit – students guessing correctly four or more answers 
to pass a 5-item True  False test – was chosen to be elegant and contextually familiar. This 
approach is consistent with Ma (1999), where one simple task is examined intensively from 
multiple perspectives, and with the contextual approach advocated by Jones (2007), but 
with the context carefully chosen so as not to obscure the underlying mathematical 
concepts. The task, as shown by students’ responses to the pre-test, lay just beyond the 
students’ existing knowledge. Data were collected through pre- and post-testing conducted 
under traditional examination conditions. The pre-test established students’ existing 
understanding of key concepts, and their competency in the basic procedures considered 
essential for the study. Items common to both the pre- and post-tests allowed an assessment 
of students’ development of understanding of the concepts. 
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Task 1: Coin-sequence  

The coin-sequence task is a the classic task used throughout the research literature. The 
principal objective was to determine students’ preconceptions of independent events. 

Which of the following sequences is more likely to result from flipping a fair coin 5 times:  (a) 
HHHTT; (b) HTTHT; (c) THTTT; (d) HTHTH; (e) all four sequences are equally likely? Explain 
your answer. 

The correct response is (e), and an example of the preferred explanation might be: 
“…the outcome of the toss of a fair coin is equally either heads or tails…” 

Task 2: Coin-combination 

The coin-combination task extended the coin-sequence task to examine the most likely 
outcome of flipping a coin five times, but with only total number of Heads or Tails, not the 
sequence in which they occurred; e.g. a sequence of HTHHT is recorded as 3H&2T.  

A fair coin is flipped five times and only the total number of Heads and Tails is recorded, not the 
sequence in which it occurred. Which result is more likely: (a) 3H&2T; (b) 5H; (c) H&4T; (d) all 
three (a),(b) and (c) are equally likely; (e) it is impossible to give and answer. Explain your answer. 

The correct response is (a), and the preferred response might be “…all sequences are 
equally likely, but the 3H&2T combinations is more likely because it can occur in the most 
number of different sequences…” 

Task 3: Guessing four or more correct answers on a 5-item True False test 

This task is taken from a scenario designed to be familiar to students: A student is 
given a 5 question True-False test, but because he had not studied for the test, he decided to 
guess the answers. Student responses are scaffolded by first asking the probability of 
choosing, purely by chance, five correct answers, and then, in a more complex question: 

The teacher, suspecting students are guessing the answers said students must get four or more 
correct answers to pass. What is the probability of guessing four or more answers correctly? 

To complete the latter task students must perform three calculations: (a) find the 
probability of guessing five correct answers; (b) find the probability of guessing correctly 
four answers; and (c) add the two probabilities to give the final answer of 6/32.  

In the post-test the students were instructed to demonstrate competency in all three 
methods introduced in the study: the classical approach using the binomial formula, 
Pascal’s Triangle, and Fathom software. Students were also asked to identify which of the 
three methods they would use to solve a hypothetical 40-item binomial task (Pascal’s 
Triangle is impracticable in this situation), and to demonstrate a thorough understanding of 
the concepts through their post-test responses to Task 2, the coin-combination task. 

Data analysis. Student responses to Task 1 and 2 were evaluated on the basis of 
selecting the correct response and providing a valid mathematical explanation. Given the 
complexity of Task 3 students’ responses were evaluated using a process informed by the 
SOLO taxonomy (Biggs & Collis, 1982). The SOLO taxonomy is used extensively in the 
statistics and probability education literature (Watson, 2006). In this study a simplified 
four-tiered structure – unistructural, multistructural, relational and extended abstract – was 
used to code student responses. A unistructural response employs only one element in the 
task and does not resolve any contradictions; a multistructural response uses two or more 
elements and identifies but does not resolve any contradictions; a relational response 
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integrates effectively many elements and reconciles any contradiction; and an extended 
abstract response incorporates aspects beyond the immediate task. 

Results 

Task 1: Coin-sequence 

Students’ performance on the task in the pre-test (95%) was very high, with students 
providing an explanation that each outcome, heads or tails, was equally likely. This was a 
higher level of correct responses than that found by Konold et al. (1993) in a study of first 
year pre-service teachers (78.7% correct), and it is consistent with Konold’s conclusion that 
by early teens the majority of people believe in the independence of trials of coin flipping.  

Only one student (5%) gave the incorrect response, and he re-worded the item as a 
coin-combination identifying the sequence HTTHT “…closest to even […] 1/2T, 1/2H…” 

Task 2: Coin-combination 

Table 1 
Task 2: Students’ pre- and post- responses to the most likely coin-combination 

  Pre Pre Post Post  
Student 
response 

Description of student 
response 

Number 
of 
students 

% Number 
of 
students 

% Exemplar or 
explanation  

1A (a) correct response 
3H2T with correct 
explanation 

2  10% 9 47% Most number 
of sequences  
 

1B (a) correct response, 
incorrect explanation 

5 26% 2 10%  Closest to 
50/50 or no 
explanation 

1C (b) or (c) either 5H or 
H&4T 

- - - -  

1D (d) all combinations 
equally likely 

11 58% 6 32% Each flip has 
a 50:50 
chance 

1E (e) impossible to give 
an answer 

1 5% 2 10% Can get all 
three results 

 Total  19 100% 19 100%  

In the pre-test only two students (10%) gave the correct response (1A) of 3H & 2T, and 
provided a correct explanation “…each sequence is equally likely, and this combination 
can be generated by the most number of sequences…” A further five students (26%) 
selected the correct response but provided the less robust explanation that the combination 
was “…closest to the expected 50/50 split…”.  

Eleven (58%) of students choose the incorrect response (1D) all three combinations 
3H&2T, 5H, & H&4T as equally likely, and provided the explanation that “…the outcome 
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of each flip is equally likely…” This suggests these students had either incorrectly focussed 
on the notion of independent events, or had viewed the task entirely from the perspective of 
a coin-sequence. Conversely, the student who provided an incorrect response in the pre-test 
to Task 1 provided a correct response to Task 2, suggesting that this particular student 
viewed the task entirely from the perspective of a coin-combination. 

Students’ performance on the pre-test (a total of 36% correct responses) was below  
that reported by Green (1984) (77%) in a similar task of students of the same age; on the 
post-test although students results had improved (57%), they were still below those of 
Green. The number of correct student responses was lower on Task 2 than on Task 1. 

Task 3: Guessing four or more correct answers on a 5-item True False test 

The results for this task are presented in two ways: (a) firstly, in Table 2, students’ pre-
test responses warrant separate analysis as they highlight the range of strategies used; and 
(b) secondly, in Table 3, SOLO taxonomy is used to trace students’ development of 
understanding because of the complexity of the task and the richness of their responses.  

Table 2  
Task 3: Students’ pre-test responses to guessing four or more questions correctly  

Student 
response 

Description of student response Number of 
students 

% 

2A Correct response 1 5 
2B Misapplied product rule for independent events, but 

correctly applied the addition rule 
3 16 

2C Misapplied product rule for independent events 10 53 
2D Misapplied statistical technique 3 16 
2E Method unclear or no calculation shown 2 10 
 Total 19 100 

Only one student gave the correct response (student response 2A) calculating the 
probability of guessing four and five correct answers and then adding the two probabilities. 
The student used the binomial formula and the correct notation. The student had completed 
another extended mathematics course and was familiar with the binomial formula. 

Pr (�4) = 5C3(1/2)4(1/2)1 + 5C4(1/2)5(1/2) = 5 * 1/32 + 1 * 1/32 = 6/32 = 3/16 

Three students (16%) misapplied the product rule (student response 2B) for 
independent events, but correctly applied the addition rule. Statistically the response is 
nonsensical, but it represents a more sophisticated response because it recognises that 
probabilities of the two outcomes must be added. 

1/16 + 1/32 = 3/32 

In the most common response 10 students (53%) misapplied the product rule (student 
response 2C) for independent events: ½ * ½ * ½ * ½ = 1/16. The students had, in error, 
calculated only the probability of guessing 4 successes in a 4-trial binomial.  

Three students (16%) used a mixture of statistical techniques (response 2D), such as 
applying the product rule for independent event in combination with a tree diagram; and a 
further two students (10%) recorded (response 2E)a numerical answer only  e.g. 0.7.  
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In the second part of the analysis, students’ responses on both the pre- and post-test 
were assessed using the SOLO taxonomy as this allowed more thorough analysis of their 
development of understanding. On the pre-test students were asked to calculate the 
probability only, and the pre-test responses only allowed, as delineated by a dashed line in 
Table 3,  an opportunity to provide evidence up to a multistructural level. In the post-test 
students were instructed to demonstrate an understanding of the three methods examined, 
to provide a sound justification for the method they would use in a large 40-trial binomial 
problem, and to complete the Task 2 coin-combination task. Students were able to 
demonstrate a relational or extended abstract response by comparing and reconciling the 
three methods, and by conveying an sense of an integrated task. The results of the SOLO 
evaluation are presented below in Table 3, and the examples of student work are selected 
entirely from the responses to the post-test as it provides examples for all SOLO levels. 

Table 3 
SOLO evaluation Guessing four or more correct answers and Task 2 coin-combination  

SOLO 
level 

Pre-test Post-test Criteria 

 No. of 
students 

% No. of 
students 

%  

EA - - 5 26 % Explicitly compares all techniques by 
converting results to decimal or simple 
fraction; provides sound justification 
for selecting technique to 40-trial 
binomial task; provides sound 
explanation to Task 2 post-test coin-
combination 

R - - 7 37 % Correctly uses all three techniques; 
implicitly compares results of two of 
the three techniques; adds probabilities 

M 1 5 % 4 21 % Computationally proficient in one 
technique, largely successful in the use 
of all three techniques 

U 18 95 % 3 16 % Calculation incorrect; misapplied 
statistical technique 

Total 19 100 % 19 100 %  

 Five students (26%) provided an extended abstract (EA) response. One student 
recalculated the decimal fraction obtained in the simulation as a – somewhat inelegant – 
mixed simple/decimal fraction “…21/128 which is equal to 5.25/32…” to compare the 
results of the three methods explicitly; and he selected the classical method on the basis 
that “…forty items is too big for Pascal’s…[and]…Fathom can only be used on the 
computer – it can’t be used everywhere...”; and gave a correct response and explanation to 
the coin-combination item “…there are more sequences that add up to 3H and 2T …” 

Seven students (37%) gave a relational (R) response confidently using all three 
methods, but only compared explicitly the results of the classical and Pascal’s method 
(both expressed as a simple fraction), not the decimal produced by the simulation. The 
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students correctly selected either the classical method or the Fathom simulation in the 40-
trial binomial task in clear preference to Pascal’s Triangle.  

Four students (21%) provided a multistructural (M) response. The addition rule was not 
applied consistently and the students did not reconcile the clearly different results obtained. 
The students inappropriately selected Pascal’s to solve the 40-trial binomial task, providing 
the justification “…because it is the easiest…” when Pascal’s is entirely impracticable in 
that task. 

Three student (16%) provided a unistructural (U) response. As an exemplar one student 
used only the Fathom simulation correctly, and only in this one method was the addition 
rule applied. The student did not recall the classical formula, and he did not display a 
strong sense of the shape of the distribution. Pascal’s was inappropriately selected for the 
hypothetical 40-trial binomial and the justification provided for the selection was weak. 

Discussion 
Probability education research recommends activities designed to confront 

misconceptions: Task 1 and 2 are such activities. Students’ understanding of the five coin-
sequence on the pre-test was robust, but students’ performance on Task 2 coin-combination 
remained below that on Task 1 coin-sequence throughout the study. A coin-combination 
task is arguably more intuitive than a coin-sequence task, and it is intriguing that students’ 
performance was lower on this “simpler” task. This may reflect students’ prior experiences 
at school, which may have emphasised the concept of independent events, but had not 
considered coin-combinations. The reasons for students’ incorrect responses to coin-
sequence or coin-combination tasks might lie with students re-interpreting a coin-sequence 
as a coin-combination, or vice-versa – this distinction is rarely made in casual 
conversation, and this may be confounding students. It is intriguing that the Task 2 coin-
combination does not appear to be used in education research as a companion task to the 
coin-sequence in Task 1. 

In the pre-test when attempting to solve Task 3, half the student group misapplied the 
product rule for independent events. Rather than a misconception this response could be 
described by Pratt’s (2005) framework: “…old pieces of knowledge  coexist with newer 
pieces of knowledge, either in a connected or perhaps isolated way…” (p. 183). 
Misapplication of a familiar technique may only be evident with students who have 
acquired a basic repertoire of formal statistical techniques. Students were clearly not 
confident of the response they gave, but from the students’ perspective the pre-test was a 
test, and they may have felt under pressure to give a response. 

The post-test showed that 16 (84%) of the students were procedurally correct in at least 
one method for solving Task 3, and 12 (63%) were competent in all three methods. 
However, many students could demonstrate a procedural competence in Task 3, but  were 
unable to solve the original coin-combination task correctly. This highlighted students’ 
incomplete understanding of both the coin-system and the binomial theorem, but the 
explanation may be quite simple: students’ focus had shifted to procedures, and simple 
revision of the Fathom coin simulation may have addressed this misconception.  

Anecdotal evidence from the students suggested Fathom principally provided a 
supporting role and a third perspective on the task. Fathom seemed more valued by the less 
able students than by the strongly procedurally competent, an observation that may be 
highly significant for schools. 
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Conclusion 
Students’ understanding of the coin-combination task was persistently less well-

developed than their understanding of the companion task of coin-sequences, and many 
students continued to confound the two. Schools may emphasise the concept of 
independent events at the expense of consideration of coin-combinations, and failure to 
make the distinction between coin-sequence and coin-combination clear may be 
contributing to students’ difficulties. 

Building from a familiar physical activity and explicitly developing confidence in the 
electronic simulation may be a key first step in facilitating students’ transition to electronic 
simulation at more senior school levels. Using three methods to examine one task in-depth 
was acknowledged by the students and the colleague teacher, and shown by the post-test 
responses, as an effective teaching strategy. This approach may appeal to multiple 
intelligences, and it provides an opportunity for students to evaluate the methods used.  

Implications for teaching and research.  A clear distinction should be made between a 
coin-sequence and a coin-combination, and a study of the two should be considered 
companion tasks. Coin-sequences tasks allow exploration of independent events and, the 
more intuitive, coin-combination tasks provide a basis for a study of the binomial theorem. 
A strategy using multiple approach examining one conceptually simple task at depth may 
be effective in developing students’ profound understanding of a concept.  
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