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Abstract

Casuarinaceae are a Gondwanic family with a unique combination of morphological characters not comparable to any other

family. Until recently, the 96 species in the family were classified in a single genus, Casuarina s.l. A recent morphological revision of

the family resulted in the splitting of Casuarina s.l. into four genera—Allocasuarina, Casuarina s.s., Ceuthostoma, and Gymnostoma.

This study uses matK sequence data from 76 species of Casuarinaceae and eight outgroup taxa to examine the phylogenetic structure

within the Casuarinaceae. The study demonstrates the monophyly of the four genera and examines the relationships within the

family; it tests the validity of the infra-generic subdivision of Allocasuarina; it discovers geography-based infra-generic subdivisions

within Gymnostoma and Casuarina; and, finally, provides a molecular framework on which to trace the evolution of xeromorphy in

the Casuarinaceae.

Crown Copyright � 2003 Published by Elsevier Science (USA). All rights reserved.

1. Introduction

The family Casuarinaceae originally contained a

single genus, Casuarina L. However, over the last two

decades a morphological revision of Casuarinaceae

resulted in the splitting of Casuarina into four genera

(Johnson and Wilson, 1989): Gymnostoma L. Johnson
(18 species; one in northeastern Queensland, the rest in

Malesia, the Solomons, Fiji and New Caledonia), Ceu-

thostoma L. Johnson (two species in Malesia, from

Palawan and Borneo to New Guinea), Casuarina L. (17

species; six in Australia, the rest extending from the Bay

of Bengal to Polynesia) and Allocasuarina L. Johnson

(endemic to Australia; 58 species, divided among 14

sections). All of these genera grow in tropical climates,
but Casuarina extends into warm temperate regions of

Australia and Allocasuarina is concentrated mainly in

warm to cool temperate regions (southern Australia).

The splitting of Casuarina into four genera and the

naming of numerous new species of Allocasuarina has

received some criticism; see for example, exchanges be-

tween Hwang (1990, 1991a,b, 1992), Crisp (1991) and

Johnson (1991).

Casuarinaceae are a Gondwanic family. Pollen at-

tributed to Casuarinaceae has been found in Paleocene

through to Miocene deposits in South Africa (Coetzee

and Muller, 1984; Coetzee and Praglowski, 1984), Ar-

gentina (Archangelsky, 1973), New Zealand (Milden-
hall, 1980) and Australia (Johnson and Wilson, 1989;

Macphail et al., 1994). As well as being the second most

widely distributed genus of Casuarinaceae today, Gym-

nostoma is the oldest and most broadly distributed genus

in the fossil record. Megafosssils of Gymnostoma are

recorded from Paleocene sediments in New South Wales

(Scriven and Hill, 1995), Eocene in South Australia,

Victoria and Queensland (Christophel, 1980, 1989), Ol-
igocene in Tasmania (Hill and MacPhail, 1983) as well

as the Miocene of New Zealand (Campbell and Holden,

1984) and South America (Frenguelli, 1943). There are

only a couple of records of Casuarina from the Miocene

and Pliocene (Campbell and Holden, 1984; Christophel,

1989) and there is no certain fossil record of Allocasu-

arina until the early Pleistocene (Jordan, 1997), although

some fossils currently reported as Casuarina may belong
to this genus (Dilcher et al., 1990). Casuarinaceae no
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longer occur in New Zealand, South America or
southern Africa.

Phylogenetic relationships among the genera of Ca-

suarinaceae are unclear. Johnson and Wilson (1989)

suggested that Gymnostoma and Ceuthostoma represent

the more primitive members of the family, while Allo-

casuarina represents the most derived genus. The extreme

morphological reduction seen in this family, as well as

the unique combination of morphological traits (e.g.,
drooping equisetoid twigs, reduced scale-like leaves in

whorls forming toothed sheaths at each node, inflores-

cences with alternating whorls of tooth-like bracts and

reduced flowers, wind-pollination, woody �cone�-like in-
fructescences, winged samaras as fruits), make compar-

ative studies of morphology difficult. Evidence from the

fossil record is inconclusive. The oldest megafossils, from

Late Paleocene sediments, have been assigned to an ex-
tinct species of Gymnostoma (see Scriven and Hill, 1995),

with non-xeromorphic characters such as stomata in

open grooves and few or no trichomes. These plants

probably grew in moist environments, ideal for preser-

vation in the fossil record. Fossils of xeromorphic plants

are generally rare because the dry environmental condi-

tions in which they exist are not conducive to the pres-

ervation of the plants in the fossil record. Xeromorphic
Casuarinaceae began to appear in the megafossil record

20–30 million years ago, corresponding with the desic-

cation of the Australian continent. This change may

represent either the adaptation of non-xeromorphic

plants to the increasing aridity, or the geographic and

taxonomic radiation and increase in population sizes of

xeromorphic taxa that were already in existence in small

patches of dry habitat, but which expanded their ranges
rapidly with the onset of arid conditions.

Morphological character distributions among the

genera are complex and preliminary cladistic analyses

(Johnson and Wilson, unpub.) have suggested that

phylogenetic and biogeographic relationships among

genera may not be decipherable from morphology alone.

Within Casuarinaceae xeromorphic plants were grouped

together (by Poisson, 1874) as �Cryptostomae� (species of
the current genera Casuarina and Allocasuarina), as dis-

tinct from �Gymnostomae� (Gymnostoma). As the name
suggests, the stomata of the Cryptostomae (including

Ceuthostoma) are concealed in deep furrows. Those of

Gymnostomae are exposed in shallow furrows and are

therefore more prone to water loss. While Ceuthostoma

shares this xeromorphic feature with Casuarina and Al-
locasuarina, its general morphology resembles that of

Gymnostoma (Johnson and Wilson, 1989). For this rea-

son, the phylogenetic position of Ceuthostoma relative to

the other three genera remains unresolved.

Not only are the phylogenetic relationships within

Casuarinaceae unclear, but the sister group of the family

also remains enigmatic, given the isolated position of the

family in terms of morphological and molecular data.
As stated earlier, the combination of morphological

traits (see above) that characterise this family is unique,

making comparative studies of morphology difficult.

Manos and Steele (1997) in their molecular study of the

�higher� Hamamelids placed Casuarinaceae in a clade
with Betulaceae, Myricaceae, and Ticodendraceae.

Their combined analysis of rbcL and matK sequence

data indicated that, of the taxa included in their study,
Betulaceae was the most likely sister taxon. These data

were verified in an rbcL analysis of the Hamamelidae

and their allies by Qiu et al. (1998).

Although Casuarinaceae have been thoroughly re-

vised and described, phylogenetic information about the

group is limited. Sogo et al. (2001) carried out a study of

rbcL and matK sequences in the family; their results

support the recognition of four genera, but their study
was based on a limited number of species. In this study

we looked at 76 species of the 96 recognised in the

family. We amplified approximately 1500 bp of sequence

from the 30 end of the matK gene (and trnK intron; see
Fig. 1) from the chloroplast genome (Hilu and Liang,

1997; Neuhaus and Link, 1987; Olmstead and Palmer,

1994), and used the data to reconstruct a more detailed

phylogeny of the Casuarinaceae. This phylogenetic
framework was used to to examine the evolution of

xeromorphy in Casuarinaceae: did it arise just once

before the divergence of Ceuthostoma, Allocasuarina,

and Casuarina, or did it arise more than once, with

Ceuthostoma acquiring xeromorphic characters in par-

allel with Casuarina and Allocasuarina?

2. Materials and methods

Ninety-one samples of Casuarinaceae (representing

53 species of Allocasuarina, 11 species of Casuarina, 1

species of Ceuthostoma and 11 species of Gymnostoma)

and three samples of two outgroup taxa (Betula and

Fig. 1. Location of matK gene within the trnK cistron. Solid boxes represent the 50 and 30 trnK exons; the matK gene, represented by the open box, is
part of the trnK intron. Approximate locations of the primers used in this study are indicated.
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Table 1

Casuarinaceae taxa used in the analysis of matK sequence data

Taxon Sectiona Collection No. GenBank Source; localityb

Allocasuarina

A. acutivalvis subsp. acutivalvis 5. Ceropitys P Jobson 7048 AY191668 Wild; Moorine Rock, WA

A. acutivalvis subsp. prinsepiana 5. Ceropitys P Jobson 7123 AY191669 Wild; E of Buntine, WA

A. brachystachya 11. Cylindropitys KLW 3191 AY191647 RBG Sydney; SE of Tingha, NSW

A. campestris 5. Ceropitys KP3 AY191666 Kings Park, WA; source unknown

A. corniculata 11. Cylindropitys NSW 481136 AY191672 RBG Annan; ex Kings Park

A. crassa 11. Cylindropitys DAS 99001 AY191644 RTBG; Cape Pillar, Tas

A. decaisneana 1. Dolichopitys KP1 AY191677 Kings Park, WA; source unknown

A. decussata 6. Allocasuarina CBG 13301 AY191660 CBG; Channybeerup, WA

A. dielsiana 5. Ceropitys KLW 9750 AY191664 RBG Annan; Murchison R, WA

A. diminuta subsp. annectens 11. Cylindropitys KLW 9835 AY191637 Wild; SW of Corang River, NSW

A. diminuta subsp. diminuta 11. Cylindropitys KLW 9759 AY191643 RBG Annan; Crokers Range, NSW

A. distyla 11. Cylindropitys KLW 9761 AY191638 RBG Annan; Glowworm Tunnel

road, NSW

A. duncanii 11. Cylindropitys RTBG 970397 AY191625 RTBG; Snug Tiers, Tas

A. emuina 11. Cylindropitys KLW 9767 AY191634 RBG Sydney; Mt Emu, Qld

A. eriochlamys subsp. eriochlamys 5. Ceropitys KP5 AY191663 Kings Park, WA; source unknown

A. fibrosa 2. Oxypitys KP6 AY191675 Kings Park, WA; source unknown

A. fraseriana 7. Amorphopitys NSW 481139 AY191658 RBG Annan; Kings Park, WA

A. glareicola 11. Cylindropitys KLW 9764 AY191641 RBG Annan; Castlereagh area,

NSW

A. globosa 5. Ceropitys KP4 AY191661 Kings Park, WA; source unknown

A. grampiana 11. Cylindropitys PG Abell 451 AY191626 RBG Annan; Mt William, Vic.

A. grevilleoides 2. Oxypitys P Jobson 7237 AY191676 Wild; N of Mogumber, WA

A. gymnanthera 11. Cylindropitys KLW 9785 AY191635 Wild; NW of Denman, NSW

A. helmsii 5. Ceropitys P Jobson 6948 AY191667 Wild; Kimba, SA

A. huegeliana 8. Oopitys KLW 9763 AY191655 RBG Annan ex Gordon Inlet Road,

WA

A. humilis 13. Trachypitys KP2 AY191619 Kings Park, WA; source unknown

A. inophloia 10. Inopitys D Blaxell 88/199 AY191653 RBG Sydney; Stannary Hills, Qld

A. inophloia 10. Inopitys DAS 99034 AY191652 Wild; Mt Garnett, N. Qld

A. lehmanniana subsp. ecarinata 11. Cylindropitys KLW 9757 AY191640 RBG Annan; NE of Hopetoun, WA

A. littoralis 11. Cylindropitys DAS 99002 AY191627 RTBG; source unknown

A. littoralis 11. Cylindropitys KP7 AY191651 Kings Park, WA; source unknown

A. luehmannii 3. Platypitys KLW 9782 AY191673 Wild; NE of Singleton, NSW

A. mackliniana subsp. hirtilinea 11. Cylindropitys KLW 9883 AY191633 Wild; Wonwondah-Dadswells

Bridge Road, Vic.

A. mackliniana subsp. xerophila 11. Cylindropitys KLW 9884 AY191629 Wild; N of Gymbowen, Vic.

A. media 11. Cylindropitys KLW 9745 AY191623 RBG Annan; Wilsons Promontory,

Vic.

A. microstachya 7216 13. Trachypitys P Jobson 7216 AY191621 Wild; Green Head to Coorow Road,

WA

A. microstachya 7238 13. Trachypitys P. Jobson 7238 AY191620 Wild; N of Mogumber, WA

A. misera 11. Cylindropitys KLW 9882 AY191630 Wild; Stawell, Vic.

A. monilifera 11. Cylindropitys DAS 99005 AY191624 RTBG; Safety Cove, Tas

A. muelleriana subsp. muelleriana 11. Cylindropitys KLW 9754 AY191648 RBG Annan; Lobethal, SA

A. nana 12. Nanopitys KLW 9762 AY191622 RBG Annan; Newnes State Forest,

NSW

A. ophiolitica 11. Cylindropitys KLW 9774 AY191639 Wild; NW of Curricabark, NSW

A. paludosa 11. Cylindropitys DAS 99007 AY191649 RTBG; Gladstone, Tas

A. paradoxa 11. Cylindropitys KLW 9752 AY191632 RBG Annan; Cranbourne, Vic.

A. pinaster 2. Oxypitys KP8 AY191674 Kings Park, WA; source unknown

A. portuensis 11. Cylindropitys KLW 9744 AY191645 RBG Sydney; Neilsen Park, NSW

A. pusilla 11. Cylindropitys KLW 9760 AY191631 RBG Annan; Murrayville, Vic.

A. rigida subsp. rigida 11. Cylindropitys KLW 9758 AY191650 RBG Annan; Barren Mtn, NSW

A. rupicola 11. Cylindropitys KLW 9766 AY191646 RBG Annan; Mt Norman, Qld

A. scleroclada 5. Ceropitys MD Crisp 4842A AY191665 CBG; Mt Ragged Range, WA

A. simulans 11. Cylindropitys KLW 9770 AY191636 Wild; near Nabiac, NSW

A. spinosissima 4. Echinopitys MD Crisp 5566 AY191671 CBG; E of Southern Cross, WA

A. tessellata 5. Ceropitys KLW 9769 AY191670 RBG Annan; Mt Singleton, WA

A. thalassoscopica 11. Cylindropitys P. Sharpe C2 AY191642 Wild; Mt Coolum Qld

A. thuyoides 14. Acanthopitys KLW 9787 AY191618 RBG Annan; Stirling Range, WA

A. tortiramula 5. Ceropitys KP9 AY191662 Kings Park, WA; source unknown
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Table 1 (continued)

Taxon Sectiona Collection No. GenBank Source; localityb

A. torulosa 6. Allocasuarina DAS 99036 AY191659 Wild; Lake Tinaroo, Qld

A. trichodon 9. Trachypitys MD Crisp 5109 AY191654 CBG; NW of Cape Riche, WA

A. verticillata 8. Oopitys KLW 9753 AY191657 RBG Annan; Orford, Tas

A. verticillata 8. Oopitys KLW 9873 AY191656 Wild; Wombeyan Caves road, NSW

A. zephyrea 11. Cylindropitys RTBG 97.0398 AY191628 RTBG; W. Coast Tas

Casuarina

C. collina KLW 7722 AY191697 Cult. Balmain; Riviere des Pirogues,

New Caledonia

C. cristata DAS 99004 AY191698 RTBG; source unknown

C. cristata KLW 9748 AY191699 RBG Annan; Mongarilby, Qld

C. cunninghamiana subsp. unninghamiana KLW 9826 AY191714 Wild; Jackadgery, NSW

C. cunninghamiana DAS 99006 AY191707 RTBG; source unknown

C. equisetifolia subsp. equisetifolia DAS 99010 AY191702 Wild; Sarawak, Borneo

C. equisetifolia subsp. equisetifolia Phil. Sp. 5 AY191703 Wild, Philippines

C. equisetifolia subsp. equisetifolia DAS 99037 AY191701 Wild; Port Douglas Beach, Qld

C. equisetifolia subsp. incana KLW 9765 AY191700 RBG Annan; Peregian Beach, QLD

C. glauca KLW 9739 AY191705 Wild; RBG Sydney

C. glauca KLW 9755 AY191704 Wild; RBG Annan

C. obesa KLW 9743 AY191709 RBG Sydney; source unknown

C. obesa KLW 9751 AY191708 RBG Annan; Leeman, WA

C. oligodon subsp. oligodon KLW 9799 AY191706 RBG Sydney; source unknown

C. ‘parapotamia’ ms Phil. Sp. 6 AY191712 Wild; Mt. Victoria, Palawan,

Philippines

C. pauper NA Leist 82 AY191711 Wild; Nymagee—Cobar road, NSW

C. ‘riparia’ ms Phil. Sp. 14 AY191713 Wild; Luzon, Philippines

C. ‘timorensis’ ms KLW 9808 AY191710 Crossmaglen, NSW; Timor

Ceuthostoma

C. palawanense Phil. Sp. 7 AY191696 Wild; Mt Bloomfield, Palawan,

Philippines

C. terminale AY 033838 Sogo et al. (2001)

Gymnostoma

G. australianum DAS 99024 AY191678 Wild; Cape York, Qld

G. australianum KLW 9742 AY191679 RBG Sydney; Roaring Meg Creek,

Qld

G. chamaecyparis KLW 9961 AY191692 Wild; Paagoumene, New Caledonia

G. deplancheanum KLW 7704 AY191681 RBG Sydney; Riviere des Lacs, New

Caledonia

G. deplancheanum KLW 9741 AY191682 RBG Sydney; Riviere Bleue, New

Caledonia

G. glaucescens DAS 99025 AY191684 Wild; Mt. Des Sources, New

Caledonia

G. leucodon KLW 9936 AY191683 Wild; Riviere des Pirogues, New

Caledonia

G. ‘mesostrobilum’ ms Phil. Sp 1 AY191685 Wild; Mt Victoria, Palawan,

Philippines

G. ‘mesostrobilum’ ms T Livshultz 0064 AY191686 Wild; Tenom, Sabah

G. nobile DAS 99008 AY191687 Wild; Sarawak

G. nobile FRI 43903 AY191688 Cult; Peninsular Malaysia

G. nodiflorum KLW 9917 AY191691 Wild; Kone-Tiwaka road, New

Caledonia

G. papuanum KLW 9740 AY191695 Moluccas, New Guinea

G. poissonianum DAS 00013 AY191689 Wild; Mt Dzumac, New Caledonia

G. poissonianum DAS 00014 AY191690 UTAS; New Caledonia

G. sumatranum FRI 43901 AY191693 Cult; Peninsular Malaysia

G. sumatranum K Hill NSW

442215

AY191694 Cult; Bogor BG. Java

G. webbianum KLW 7724 AY191680 RBG Sydney; Riviere des Pirogues,

New Caledonia

Betula papyrifera DAS 00015 AY191716 RTBG; source unknown

Betula papyrifera U92853 Manos and Steele (1997)

Betula utilis RTBG 92.0414 AY191717 RTBG; source unknown

Myrica cerifera U92857 Manos and Steele (1997)
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Myrica) were collected from the wild or from cultivated

specimens in botanic gardens (Table 1). Tissue was

frozen in liquid nitrogen and stored at )70 �C, dried
using silica gel (Chase and Hills, 1991) or preserved in a

CTAB/salt solution (Thomson, 2002).

DNA was extracted using a modified CTAB protocol

(Doyle and Doyle, 1990). Approximately 0.1 g of green

tissue (�needles�) was ground under liquid nitrogen and
was transferred to a 1.5ml eppendorf tube. Five hun-

dred ll of hot (65 �C) CTAB buffer (0.02M EDTA,

1.4M NaCl, 0.1 M Tris pH 8.0, 2% CTAB, 0.7% v/v

DTT, 2% soluble PVP) was added. The slurry was in-

cubated at 65 �C for 30min with occasional shaking,

followed by extraction with an equal volume of chlo-

roform:isoamyl alcohol (24:1). Phases were separated by

centrifugation for 10min at 20,000g. The aqueous phase
was removed and re-extracted with chloroform:isoamyl

alcohol. Two volumes of cold 95% ethanol were added

to the aqueous phase, mixed gently, and incubated on

ice for 10min. The DNA was pelleted at 20,000g for

5min. The pellet was washed briefly in 76% ethanol/

0.01M sodium acetate and was re-centrifuged for 5min.

The supernatant was removed, the pellet was air-dried

and resuspended in 100 ll TE (10mM Tris, pH 8.0, 1
mM EDTA). When necessary, DNA was cleaned using

a Prep-A-Gene DNA purification kit (Bio-Rad, USA)

according to manufacturer�s instructions.
A 1500 bp fragment from the 30 end of the matK gene

was amplified using primers 1062f and trnK 2r (Fig. 1,

Table 2) in the PCRs. Each PCR had a final volume of

50 ll and contained 10–20 ng genomic DNA, 160 lM
each dATP, dCTP, dTTP, and dGTP, 4mM MgCl2,
0.5 lM forward (1062f) and reverse (trnK 2r) primers,

1.25U Taq DNA polymerase (Qiagen, Germany) and

1� Qiagen Taq DNA polymerase buffer. Cycling con-

ditions were: initial melting at 94 �C for 5min; 30 cycles
of 94 �C for 1min, 45 �C for 1min, 72 �C for 2min; final
extension at 72 �C for 15min. More recalcitrant samples
(e.g. those prepared from silica-dried tissues) were am-

plified using Advantage 2 DNA polymerase (Clontech,
USA). The 25 ll reactions were prepared following the
recommendations of the manufacturer: 0.4 lM of each

primer (1062f and trnK 2r), 400 lM each dNTP, 1�

Advantage 2 Polymerase mix and 1� Advantage 2

polymerase buffer. Cycling conditions were as follows:

95 �C for 1min; 35 cycles of 95 �C for 30 s, 54 �C for 30 s,
68 �C for 3min; final extension at 68 �C for 3min. PCR
products were cleaned using a QIAquick DNA Cleanup

System (Qiagen, Germany).

PCR products were sequenced in both directions us-

ing a suite of 3–5 primers (Fig. 1, Table 2), including

three that were custom-designed for this study (1062f,

1571f, 1908r) and two more conserved primers (matK9r

and trnK2r; Manos and Steele, 1997; Steele and Vilga-

lys, 1994). PCR products were sequenced using an ABI
Prism BigDye Terminator Cycle Sequencing Ready

Reaction Kit (PE Biosystems, USA) following the rec-

ommendations of the manufacturer. Sequencing prod-

ucts were fractionated on a Perkin–Elmer 373 DNA

sequencer. The matK partial sequences for each sample

were aligned and checked using Sequence Navigator

version 1.0.1 (Applied Biosystems, USA). All sequences

are lodged in GenBank (Accession Nos. AY191618–
AY191717). The data set is lodged in TreeBASE (study

Accession No. S838; matrix Accession No. M1354).

Complete sequences from all samples were aligned by

eye. Some of the sequences were identical or differed

only by autapomorphies. To simplify the data set and

accelerate analyses, taxa with identical sequences (ig-

noring autapomorphies) were pooled into single termi-

nal units (Gymnostoma 1, Allocasuarina Group 1,
Allocasuarina Group 2, Allocasuarina Group 3; see leg-

end to Fig. 2). Additional matK sequences for Ceu-

thostoma terminale (Sogo et al., 2001) and outgroup taxa

Table 1 (continued)

Taxon Sectiona Collection No. GenBank Source; localityb

Myrica gale KLW 9788 AY191715 RBG Tomah; source unknown

Nothofagus cunninghamii U92859 Manos and Steele (1997)

Ticodendron U92855 Manos and Steele (1997)

Trigonobalanus U92866 Manos and Steele (1997)

a Section refers to Allocasuarina only.
b Bogor BG—Bogor Botanic Gardens, Java; CBG—Australian National Botanic Gardens, Canberra; DAS—D.A. Steane; FRI—Forestry Re-

search Institute Malaysia (FRIM), Kuala Lumpur, Malaysia; KP—Kings Park and Botanic Garden, Perth; E—east; N—north; NE—northeast;

NSW—New South Wales; Qld—Queensland; R—River; RBG Annan—Royal Botanic Gardens Sydney (Mt Annan site); RBG Sydney—Royal Bo-

tanic Gardens Sydney (Sydney site); RBG Tomah—Royal Botanic Gardens Sydney (Mt Tomah site); RTBG—Royal Tasmanian Botanical Gardens,

Hobart; SA—South Australia; SE—southeast; SW—southwest; Tas—Tasmania; UTAS—School of Plant Sciences, University of Tasmania; WA—

Western Australia.

Table 2

Primer sequence and location

Primer Sequence Startc

1062f 50 GTGGAAATTCCGTTTTCTCTACG 30 1062

1571f 50 GGATCCTTTCATTCATT 30 1571

1908r 50 ACTAAYGGGATGGCCTRATGC 30 1908

matK 9ra 50 CAATCATTCGTGATTGGCCAG 30 2282

trnK 2rb 50 AACTAGTCGGATGGAGTAG 30 2573

a Primer designed by Manos and Steele (1997).
b Primer designed by Steele and Vilgalys (1994).
c The base position at which the primer begins is relative to the

Nicotiana sequence (Sugita et al., 1985).
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[Betula, Myrica, Nothofagus, Ticodendron, and Trigo-

nobalanus; (Manos and Steele, 1997)] were obtained

from GenBank (Table 1) and added to the data set.

Fifteen indels (insertion/deletion events), of which seven

were autapomorphic, were coded as binary characters.

The sequence characters for these indels were excluded

from the analysis, such that each indel received equal

weighting regardless of the number of nucleotides in-

volved. Phylogenetic analyses were carried out using

PAUP* 4.0 b3 (Swofford, 1999).

Percentage pairwise base differences were calculated

using the PAIRWISE BASE FREQUENCIES option in

the DATA menu of PAUP* 4.0 b3. These values are

corrected for gaps and ambiguities.

Maximum parsimony analyses involved heuristic

search strategies as described by Catal�aan et al. (1997);

Fig. 2. Bayesian consensus of 8701 trees, and strict consensus cladogram of 93137 most parsimonious trees (length excluding autapomorphies¼ 464;
length including autapomorphies¼ 700; CI, excluding autapomorphies¼ 0.679) derived from analyses of matK sequence data from 98 samples of

Casuarinaceae, and eight outgroup representatives. Bayesian posterior probability values greater than 50% are shown above branches; bootstrap

values greater than 50% for the cladistic analysis are shown below branches. Dotted lines indicate branches that were supported by the Bayesian

analysis but collapsed in the cladistic strict consensus. An asterisk indicates a clade that was found in the strict consensus of the cladistic analysis, but

was not found by Bayesian analysis. (A) Lower portion of the consensus tree, showing outgroup taxa, Gymnostoma and Casuarina. �Gymnostoma 1�
includes four samples of Gymnostoma that have identical sequences: G. deplancheanum KLW 7704, G. deplancheanum KLW 9741, G. leucodon KLW

9936 and G. webbianum KLW 7724. See text for discussion of clades Gl, G2, C1, and C2. (B) Upper portion of the consensus tree, showing Al-

locasuarina. The number in front of each species name indicates the section of Allocasuarina to which the species belongs (see Table 1). �Allocasuarina
Group 1,� �Allocasuarina Group 2,� and �Allocasuarina Group 3� comprise six, four, and four samples, respectively, of section Cylindropitys (Section
11) that have identical sequences. �AllocasuarinaGroup 1�: A. duncanii, A. grampiana, A. littoralis DAS 99002, A. media (contains an autapomorphy),
A. monilifera and A. zephyrea. �Allocasuarina Group 2�: A. simulans, A. diminuta subsp. annectens, A. distyla, A. ophiolitica. �Allocasuarina Group 3�:
A. misera, A. mackliniana 9883 (contains an autapomorphy), A. mackliniana 9884, A. pusilla and A. paradoxa. See text for discussion of clades A1,

A2, and A3.
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(see also Steane et al., 2002). The data set was boot-

strapped using 10,000 replicates of the �fast, stepwise�
option of PAUP* 4.0b3 (see Mort et al., 2000).

Bayesian phylogenetic analyses were conducted with

MrBayes 2.01 (Huelsenbeck and Ronquist, 2001). The

equal rates model (Kimura, 1981) with unequal base

frequencies (BAEFREQ¼EMPIRICAL) was selected
as the best fit model of nucleotide substitution (Mod-
eltest v. 3.06; Posada and Crandall, 1998). Bayesian

analysis was started from a random tree and run for

106 generations. We used four incrementally heated

Markov chains, employing the default heating values.

The Markov chains were sampled at intervals of 100

generations, resulting in a final set of 10,001 sample

points. Stationarity was reached after 130,000 genera-

tions; 1300 sample points were discarded as burn-in.
The remaining sample points were used to generate a

50% majority rule consensus. The percentage of sample

points recovering any particular clade represents that

clade�s posterior probability (Huelsenbeck and Ron-
quist, 2001).

3. Results

A total of 106 sequences (98 Casuarinaceae and eight

outgroup sequences) were included in the data set.

Pooling of identical sequences resulted in 86 operational

taxonomic units (OTUs) and 1502 aligned bases. Actual

sequence lengths were generally much shorter than

1502 bp because of the large number of gaps introduced

by highly divergent taxa. Most sequences were 1400 bp.

There were 244 potentially phylogenetically informative
characters included in the analysis.

Fig. 2. (continued)

D.A. Steane et al. / Molecular Phylogenetics and Evolution 28 (2003) 47–59 53



Pairwise sequence differences, corrected for gaps and

ambiguities, are shown in Table 3. Within Casuarina-

ceae these values ranged from 0% between species within

a genus to 4% between genera. Among the outgroup

genera, Betula was the most similar to Casuarinaceae

(5–7% base differences), as was also found by Manos

and Steele (1997) and other workers; Nothofagus was the
least similar, with 14–15% pairwise differences. Despite

the low percentage difference among Casuarinaceae

taxa, there were sufficient phylogenetically informative

characters to produce well-resolved consensus clado-

grams with good statistical support for many clades

(Fig. 2).

Maximum parsimony (MP) and Bayesian inference

yielded consensus cladograms with highly congruent
topologies, the latter being slightly more resolved. The

strict consensus from the MP analysis and the majority

rule consensus from the Bayesian analysis are shown in

Fig. 2. Bayesian analysis resulted in a mean lnL value of

)6509.36, variance of 88.94 and a 95% credibility in-

terval of )6528.90 to )6491.99. Two other Bayesian
analyses, one using equal rates and equal base fre-

quencies, the other using a gamma distribution of rate
variation, yielded respectively identical and almost

identical topologies to that shown in Fig. 2, but lower

lnL values (results not shown). The heuristic MP anal-

ysis yielded 93137 most parsimonious trees of length 464

(excluding autapomorphies; 700 including autapomor-

phies), consistency index excluding autapomorphies,

CI¼ 0.679 and retention index, RI¼ 0.919.
Within the ingroup, the four genera are supported as

monophyletic, with moderate (73% in Casuarina, 75% in

Gymnostoma) to strong (95% in Allocasuarina, 99% in

Ceuthostoma) bootstrap support and strong (100%)

posterior probability values (Fig. 2). Allocasuarina and

Casuarina form a clade (100% bootstrap support, 100%

posterior probability, Fig. 2; branch support¼ 12 steps,
Fig. 3A). Ceuthostoma is sister to Allocasuarina+Ca-

suarina (this clade has 99% bootstrap support, 100%
posterior probability, Fig. 2A; branch support¼ 42
steps, Fig. 3A), and Gymnostoma is sister to Ceuthos-

toma+Casuarina+Allocasuarina (this clade has 100%

bootstrap support, 100% posterior probability, Fig. 2A;

branch support¼ 21 steps, Fig. 3A). Within each of the
large clades (i.e., Gymnostoma, Casuarina, and Alloca-

suarina) there is distinct phylogenetic structure. Gym-

nostoma comprises two major clades, G1 and G2, both

of which have good bootstrap (Fig. 2A) and branch
(Fig. 3A) support and 100% posterior probability (Fig.

2A). Clade G1 comprises Malesian species (G. nobile, G.

sumatranum, and G. ‘mesostrobilum’) as well as G. aus-
tralianum from Northern Australia. The other clade,

G2, is purely New Caledonian (G. chamaecyparis, G.

deplancheanum, G. glaucescens, G. leucodon, G. nodiflo-

rum, G. poissonianum, and G. webbianum).

Similarly, geographic partitioning of taxa also occurs
in Casuarina. Clade C1 comprises only Australian spe-

cies of Casuarina. Clade C2 is more cosmopolitan, with

species from Timor, the Philippines and New Caledonia,

as well as the widespread Casuarina equisetifolia (four

representatives from Australia, Philippines and Sarawak

(Borneo)). The relationships within these two main

clades remain unresolved, as does the phylogenetic po-

sition of the New Guinean species, Casuarina oligodon
(in a hard polytomy, i.e. there are insufficient data to

resolve the node; there is no conflict between charac-

ters).

Within Allocasuarina several small clades have high

bootstrap values but most clades have bootstrap pro-

portions less than 70% (Fig. 2B) and there are frequent

hard polytomies. Posterior probability values for many

of these clades, however, is high (>95%). Clades that
were found by Bayesian analysis that were not found by

cladistic analysis usually had a relatively low posterior

probability (Fig. 2B, branches with dotted lines). Simi-

larly, the clade that was found by cladistic analysis that

was not found by Bayesian analysis had a bootstrap

value <50% (Fig. 2B, branch marked with asterisk). The
taxonomic sections delimited by Wilson and Johnson

(1989) exhibit some phylogenetic integrity. The largest
section, Cylindropitys (section 11; 27 out of 30 species

represented) appears to be monophyletic; the monotypic

Table 3

Corrected percentage pairwise differences within and between genera

1 2 3 4 5 6 7 8

1. Allocasuarina 0–1a

1–2b

2. Casuarina 2–3 0–1

3. Ceuthostoma 4 3 0

4. Gymnostoma 4 3–4 3 0–1

5. Betula 7 7 5–6 5–6 0

6. Trigonobalanus 7–8 7 6 6 4 —

7. Myrica 9 8 7–8 7 5 7 1

8. Ticodendron 13 13 12 11 10 10 11 —

9. Nothofagus 15 15 14 14 12 13 12 16

aWithin sections.
b Between sections.
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section Nanopitys (section 12) appears to be sister to

Cylindropitys (11). The small section Trachypitys (sec-

tion 13; two of three species represented) appears to be

polyphyletic: Allocasuarina microstachya and A. humilis

appear in a clade (A3; Fig. 2B) with the monotypic

sections Acanthopitys (section 14) and Amorphopitys

(section 7), as well as representatives of sections Oxy-

pitys (section 2) and Allocasuarina (section 6). Of the
remaining sections, Ceropitys (section 5) is the largest

with nine species, and appears to be polyphyletic (Figs. 2

and 3). Species from section Ceropitys arise from four

nodes on the cladogram. Within Ceropitys there is a

well-supported monophyletic group (A1; bootstrap

support¼ 96%, posterior probability¼ 100%, Fig. 2B;
branch support¼ 5, Fig. 3B) comprising A. eriochlamys,
A. campestris, A. tessellata, and two subspecies of A.

acutivalvis. The other species of section Ceropitys asso-

ciate with species of sections Oxypitys (section 2),

Platypitys (sect. 3) and Echinopitys (sect. 4). Three other

members of section 5, Ceropitys (A. globosa, A. tortira-

mula, and A. scleroclada) appear in a well-supported

clade (A2; bootstrap percentage¼ 98%, posterior prob-
ability¼ 100%, Fig. 2B; branch support¼ 4, Fig. 3B)
with Allocasuarina luehmannii (the sole member of sec-
tion 3, Platypitys, from eastern Australia) plus both

species from section 4, Echinopitys (A. corniculata and

A. spinosissima). The position of A. helmsii (section

Ceropitys) is unresolved, while A. dielsiana grouped with

A. pinaster (section 2, Oxypitys; but bootstrap support is

only 50%). Another apparently polyphyletic section is

Oxypitys (section 2), with one of its species, Allocasua-

rina fibrosa, apparently sister to all Allocasuarina except

Fig. 3. Phylogram (including autapomorphies) of one of the 57120 trees (see legend to Fig. 2) obtained by cladistic analysis of matK data from 97

samples of Casuarinaceae and eight outgroup representatives. Branch lengths are shown above branches. Branches without digits above them are 1

step long. (A) Lower portion of phylogram, showing outgroup taxa, Gymnostoma and Casuarina. �C. equis.�¼C. equisetifolia subsp. equisetifolia. See
legend to Fig. 2 for further details of annotations. (B) Upper portion of the phylogram showing Allocasuarina. See legend to Fig. 2 for explanation of

annotations.
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A. decaisneana (section 1, Dolichopitys). One species of

section Oxypitys, Allocasuarina grevilleoides, is sister to

A. microstachya (section 13, Trachypitys) (bootstrap

support¼ 92%, posterior probability¼ 100%, Fig. 2B;
branch support¼ 5 steps, Fig. 3B). This clade falls
within a partly unresolved clade (A3), comprising spe-

cies from sections Allocasuarina (section 6—one of two

species), Amorphopitys (section 7—monospecific), Trac-

hypitys (section 13—two out of three species were sam-

pled), and Acanthopitys (section 14—monospecific).

Clade A3 has poor bootstrap support (51%) but high

posterior probability (99%; Fig. 2B). The scattered
placing of species of section Oxypitys suggests the need

for re-evalution of this section, notably whether the
morphological similarities such as unusual branchlet

arrangement are convergent.

4. Discussion

Bayesian inference is a relatively recent addition to

the analytical toolbox for phylogenetics. Like maximum
likelihood analysis, Bayesian estimation is based on the

likelihood function. However, whereas a maximum

likelihood value represents the probability of the data

given a hypothesis (i.e., a tree), Bayesian inference

provides the probability of a hypothesis (i.e., a tree)

given the data (Lewis, 2001). One very attractive ad-

vantage of Bayesian analysis over maximum likelihood

is that it requires fewer computational resources, so that
large data sets can be analysed more readily. Also, be-

cause the estimation of branch support accompanies tree

estimation, additional bootstrap analyses are not re-

quired. Likelihood-based phylogenetic analyses provide

alternatives to parsimony analysis that tend to be less

sensitive to artifacts like long branch attraction. In this

study a maximum likelihood analysis was not possible

because of the large size of the data set. Bayesian
inference provided a practical alternative, with the

resulting phylogeny providing additional support for

the major clades identified by maximum parsimony

analysis.

The phylogeny of the Casuarinaceae presented here

offers strong support for the four genera defined by

Johnson and Wilson (1989). Gymnostoma is sister to the

other three genera, and this supports the hypothesis that
the encryption of stomata in the other three genera has a

single origin. This transition can probably be dated to

the Late Oligocene at least, based on the recent dis-

covery of Casuarinaceae branchlets with encrypted sto-

mata in sediments of this age from Riversleigh in

northeastern Australia (Guerin, 2001). The fossil record

of Gymnostoma significantly precedes this date (Late

Paleocene; Scriven and Hill, 1995), but it still cannot be
determined from the fossil record whether encryption of

stomata is the ancestral or derived condition in the

family. Within the clade containing Ceuthostoma+Al-

locasuarina+Casuarina, Ceuthostoma is sister to the

other two genera, suggesting that four leaves (repre-

sented by the longitudinal phyllichina; Johnson and

Wilson, 1989) per whorl is the ancestral condition, since

this also occurs in Gymnostoma. This suggests that more
than four leaves per whorl is the derived condition. In-

creasing the number of leaves per whorl allows for more

developed encryption of stomata. In plants with four

leaves per whorl, the stems tend to be square and al-

though shallow furrows may develop (e.g., in some

Gymnostoma species), the stomata do not tend to be

inside the furrows. Increasing the number of articles

Fig. 3. (continued )
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allows for a rounder, more sclerenchymatous stem (see
Johnson and Wilson, 1989) and reduces the amount of

space between the leaves. Furrows in such a stem take

up a greater proportion of the room between phyllich-

nia, increasing the likelihood that stomata will occur

inside the furrows. This encryption of stomata, and in-

creased amounts of sclerenchyma, would have had a

selective advantage in a dry climate, eventually leading

to very closed furrows with highly protected stomata.
Within Gymnostoma, two clades can be identified, one

in New Caledonia and one in Australia/Malesia. Re-

cently, Swenson et al. (2001) hypothesised that Nothof-

agus had reached New Caledonia via long distance

dispersal from New Zealand, and that the closely related

group of extant species there have probably evolved

from a single colonist species. A similar scenario may

well be true for Gymnostoma—as well as New Caledo-
nian species of Araucaria, Agathis (Setoguchi et al.,

1998) andMetrosideros (Wright et al., 2000, 2001)—and

would explain the well defined clade of extant species in

New Caledonia. This hypothesis requires further testing

to distinguish it from the possiblity that the New Cale-

donian species are descendents from a single Gondwa-

nan ancestor. It is significant that while the

Casuarinaceae have a fossil record in New Zealand that
dates back to the Paleocene (ca 55–65mya; Macphail

et al., 1994), it does not extend back to the time when

New Zealand is believed to have separated from

Gondwana, ca. 85–90mya. This suggests a requirement

for dispersal (from Australia to New Zealand; see

Winkworth et al., 2002) in the family at an early stage

(or a poorly known fossil record, e.g., see Crisp (1991)).

The wide distribution of C. equisetifolia today is a
modern example of the ability of species within the

family to achieve dispersal. The two subspecies of C.

equisetifolia, subsp. equisetifolia and subsp. incana, in

this study, collected from Queensland, Australia, group

with other Casuarina species from the Indomalesian

region. Casuarina equisetifolia is dispersed by wind and

sea (and possibly also by humans) and is found on

tropical and subtropical coastlines of northern and
northeastern Australia, Burma to Vietnam, Malesia,

Melanesia and Polynesia; records from India, the Ma-

scarenes and other tropical areas are regarded as the

result of relatively recent introductions, either deliberate

or accidental (Johnson and Wilson, 1989). The grouping

of C. equisetifolia with Indomalesian species (Clade C2;

Fig. 2A) rather than the endemic Australian species

(Clade C1; Fig. 2A) suggests that C. equisetifolia is ei-
ther a relatively new species that came to Australia from

Indomalesia, or evolved in Australia (from an ancestor

that was also common to the other Indomalesian taxa)

and then dispersed to other regions.

The matK results of Sogo et al. (2001) do not support

the division of Casuarina into clades C1 and C2. This

appears to be because their data set (1014 bp) did not

include a highly informative region of ca. 300 bp at the
30 end of the matK gene. Inclusion of the Sogo et al.

(2001) Casuarina sequences in our data set resulted in

conspecific samples grouping together in clades C1 and

C2 (data not shown).

On morphological grounds, C. cunninghamiana and

C. oligodon might be expected to group with clade C2

and C. collina with clade C1. Our molecular data,

however, suggest that phylogenetic groupings coincide
more closely with the species� biogeography than with
morphological traits, suggesting morphological conver-

gence between species. Similar phenomena have been

reported for other taxa [e.g., Banksia (Mast and Giv-

nish, 2002); Clerodendrum (Steane et al., 1999); Costa-

ceae (Specht et al., 2001)]. Our results call for a re-

examination of morphological characters in Casuarina

and study of additional genes to verify the results re-
ported here.

Casuarina and Allocasuarina are sister taxa, quite

similar both in morphology and in matK sequence data.

Since the divergence of Ceuthostoma and Casua-

rina+Allocasuarina there has been a major radiation of

species, especially in Allocasuarina. The xeromorphic

characters developed in the �cryptostomes� allowed Ca-
suarina and especially Allocasuarina to diversify and
exploit the increasing variety of niches that arose with

the gradual desiccation of Australia over the past 30

million years. The dark, shiny samaras in Allocasuarina,

for example, are unique in the family. The inflated cells

of their mesocarp layer have walls that are spirally

thickened; these thickenings expand through the weak

exocarp and hold water around the fruit when moist-

ened (Ladd, 1989). The spirals are also present in Ca-
suarina and water is held by them, but these species have

a stronger exocarp so that the spirals do not break

through the exocarp and trap less water than in Allo-

casuarina. The composition of the spirals is suggested to

be cellulosic by Ladd (1989) rather than hygroscopic

polysaccharides as thought by Torrey (1983). The end

result is a moist, mucilaginous-looking samara; as sug-

gested by Turnbull and Martensz (1983) and Torrey
(1983), this could be considered an adaptation for rapid

germination and establishment in habitats with erratic

water supply, as found in so many parts of Australia.

Johnson and Wilson (1989) recognised 14 sections in

Allocasuarina. Although the matK data do not provide

enough information to resolve fully the relationships

among the sections, they do indicate that section 11,

Cylindropitys, is monophyletic, while the two other large
sections (Ceropitys and Oxypitys) appear to be poly-

phyletic. The species in Clade A3, while sufficiently

morphologically different to be placed by Johnson and

Wilson (1989) into separate sections, have overlapping

distributions in Western Australia. This raises the pos-

sibility that, as for Gymnostoma and Casuarina, the

species phylogeny within Allocasuarina is more closely
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aligned with biogeography than with morphology.
However, while the geographic partitioning within

Gymnostoma and Casuarina is most likely due to ancient

biogeography (e.g., vicariant evolution, long distance

dispersal), the events leading to the biogeographic pat-

terns seen in Allocasuarina are possibly more recent and

may not reflect species phylogeny per se. It is possible

that within Allocasuarina, reproductive isolation be-

tween some species is incomplete, and interspecific hy-
bridisation may occur among some sympatric species

from different sections (e.g., the Western Australian

species in clade A3), a phenomenon that could result in

the sharing of chloroplast genomes among morpholog-

ically distinct taxa. Extensive sharing of chloroplast

haplotypes—attributed to some form of horizontal

transfer, such as hybridisation—between species has

been observed among Tasmanian species of Eucalyptus
(Steane et al., 1998; McKinnon et al., 2001), as well as

northern hemisphere Armeria (Guti�eerrez Larena et al.,
2002), Quercus (Belahbib et al., 2001) and Pinus (Matos

and Schaal, 2000). Some Western Australian eucalypts

also demonstrate extensive sharing of chloroplast hapl-

otypes, but in this case lineage sorting, rather than hy-

bridisation, has been proposed as the most likely

mechanism [Dean Nicolle, (Flinders University, South
Australia), pers. comm.]. We are undertaking further

work using more variable DNA sequences [e.g., the

psbA–trnH spacer region of the chloroplast DNA and

the nuclear ribosomal internal transcribed spacer (ITS)

regions] that may help to clarify the intersectional rela-

tionships within Allocasuarina.
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