P22 New

. Phytologist

Research

Flowering phenology in a species-rich temperate grassland
is sensitive to warming but not elevated CO,
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Summary

¢ Flowering is a critical stage in plant life cycles, and changes might alter processes
at the species, community and ecosystem levels. Therefore, likely flowering-time
responses to global change drivers are needed for predictions of global change
impacts on natural and managed ecosystems.

* Here, the impact of elevated atmospheric CO, concentration ([CO,]) (550 pmol
mol~") and warming (+2°C) is reported on flowering times in a native, species-rich,
temperate grassland in Tasmania, Australia in both 2004 and 2005.

e Elevated [CO,] did not affect average time of first flowering in either year, only
affecting three out of 23 species. Warming reduced time to first flowering by an
average of 19.1 d in 2004, acting on most species, but did not significantly alter
flowering time in 2005, which might be related to the timing of rainfall. Elevated
[CO,] and warming treatments did not interact on flowering time.

* These results show elevated [CO,] did not alter average flowering time or duration
in this grassland; neither did it alter the response to warming. Therefore, flowering
phenology appears insensitive to increasing [CO,] in this ecosystem, although
the response to warming varies between years but can be strong.
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Introduction

There is now sufficient evidence to be certain that the timing
of recurring, or phenological, biological events is shifting in
response to global changes (Penuelas & Filella, 2001; Sparks
& Menzel, 2002; Beaubien & Hall-Beyer, 2003; Menzel,
2003; Badeck et al., 2004; Penuelas ez al., 2004; Primack et al.,
2004; Walther, 2004; Menzel et al., 2006). This evidence
comes from both experimental climate-manipulation studies
(Price & Whaser, 1998; Saavedra et /., 2003; Cleland ez 4l.,
2006; Sherry et al., 2007) and long-term observations
(Myneni et al., 1997; Ahas et al., 2002; Fitter & Fitter, 2002;
Penuelas ez al., 2002; Walther et al., 2002; Beaubien &
Hall-Beyer, 2003; Scheifinger ez al., 2003; Stefanescu ez al.,
2003; Badeck ez al., 2004; Primack et al., 2004), as well as
from sophisticated, combined observational-modeling studies
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(Osborne et al., 2000; Badeck et al., 2004; Dose & Menzel,
2006; Estrella et al., 2006; Schleip ez al., 2006). It is clear
from the results of these studies that rising temperatures
have already accelerated many spring phenomena including
bud-break of deciduous trees (Badeck ez 4/., 2004), ecosystem
primary productivity increase (Keeling ¢# a/., 1996; Randerson
et al., 1999; Zhou et al., 2001) and flowering of alpine and
arctic plants (Price & Waser, 1998; Arft ez al., 1999; Suzuki &
Kudo, 2000; De Valpine & Harte, 2001; Dunne et 4/., 2003)
and crops (Estrella ez al., 2007). However, current global
changes involve more than just an increasing mean surface
temperature. Especially important in this regard, particularly
when considering plant phenological patterns, is the increasing
atmospheric concentration of CO, ([CO,]) which has the
potential to alter the strength and timing of plant biomass
allocation patterns, including flower production (Badeck



et al., 2004). Because temperature and [CO,] are linked in
nature, it is difficult to disentangle their relative effects on
plant phenology, especially as other factors such as rainfall can
also affect phenology (Guak ez al., 1998; Norby ez al., 2003;
Penuelas ez al., 2004). Therefore, experimental manipulations
are particularly valuable in determining the causative factors
of shifting phenological events (Badeck ez al., 2004; Cleland
et al., 20006). Despite the strength of a multifactor experimental
approach, relatively few reports exist of phenological responses
to more than one global change factor (Guak ez al., 1998;
Norby et al., 2003; Cleland et al., 2006). There are also few
reports, either observational or experimental, of phenological
patterns from the southern hemisphere. This is of concern
since temperate latitudes in the southern hemisphere are
different from similar latitudes in the northern hemisphere,
mostly as a result of the lack of large landmasses at temperate
latitudes in the southern hemisphere. Thus, southern temperate
ecosystems tend to have milder winters and, apart from
coastal areas, are generally drier than similar latitudes in the
northern hemisphere (Reid ez /., 1999).

Timing of flowering is a crucial aspect of a plant’s life cycle.
Pollination success, particularly in animal-pollinated species,
depends upon the timing of flower opening. Changes in
flowering commencement are also likely to lead to changes in
fruit ripening and seed dispersal, with impacts not only on a
plant and its competitors, but on many other trophic levels.
Thus, changes in flowering times are likely to have major
ramifications for ecosystem function (Arft ez 4/., 1999; Walther
et al., 2002; Badeck ez al., 2004; Cleland ez al., 2007).

Here, we investigate the effects of experimental warm-
ing and elevated CO,, both singly and interactively, on
flowering phenology of a range of native and exotic species
of various growth forms in an Australian temperate grassland
over 2 yr.

Materials and Methods

Study site and experimental design

Flowering was monitored throughout the year from March
(autumn) 2004 until March 2007 in the TasFACE climate
change impacts experiment at Pontville in southeastern
Tasmania, Australia (42°42’S 147°16’E, 40 m above sea-level
(asl)). This experiment exposed a species-rich temperate
grassland to both pure-CO, free-air CO, enrichment (FACE)
and infrared warming. Treatment commenced in February
2002. Elevated CO, (550 pmol mol™) and warming (+2°C)
were applied in 1.5-m diameter circular plots with three
replicate plots of each CO, X warming combination, giving
12 experimental plots in total. The [CO,] in the elevated CO,
plots was controlled by pure-CO, fumigation free-air CO,
enrichment (FACE, Miglietta ef al., 2001), operating from
sunrise to sunset. The system uses proportional control of
[CO,] in the centre of each plot by manipulating CO,
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supply with electropneumatic flow control valves (CKD
USA, Rolling Meadows, IL, USA). Valves are controlled via a
microprocessor-based control system running a proportional
integration device algorithm (Hendrey ez a/., 1993, 1999).
The control of CO, is excellent, with the central [CO,] in all
plots being within 10% of the set-point over 85% of the time.
Full details of the experimental design and system perfor-
mance were provided in Hovenden ez 4/. (2006).

Warming of 2.0°C was achieved by using overhead ceramic
infrared heat lamps (Salamanda ESE250 240 V 250 W
Emerson Solid Ceramic Infrared Emitter; Delta-T, Melbourne,
Australia) that operated continuously, supplying 140 W m™
of infrared radiation. The lamps produced no visible radiation
and on average during the growing season (Mar—Dec) elevated
canopy temperature by 1.98 = 0.05°C and soil temperature
at 5 mm by 0.82 + 0.04°C. Night-time warming was more
pronounced than daytime warming because of the influence
of direct solar radiation. Thus, canopy temperature was elevated
by an average of 1.54 % 0.20°C during the day and
2.61 £0.14°C during the night. Similarly, soil warming at
5 mm depth was 1.79 £ 0.10°C during the night but only
0.14 £ 0.013°C during the day. Warming and elevated CO,
treatments interacted to affect soil moisture content with the
mean soil water potential for the period March 2004 until
March 2007 being —113 =19 kPa in unwarmed control
plots, =112 & 18 kPa in warmed control plots, =91 & 13 kPa
in unwarmed elevated CO, plots and =126 + 12 kPa in
warmed elevated CO, plots. Differences in soil moisture
were most pronounced during periods of intermediate water
availability and disappeared under wet or dry conditions.

The vegetation at the site is dominated by the C, perennial
grass Themeda triandra, which is the only C, species found
at the site. The C; perennial grasses Austrodanthonia spp. and
Austrostipa spp. are also abundant (nomenclature follows
Buchanan, 1999). Exotic annual grasses include Vudpia myuros,
Briza minor and Aira praecox. Abundant herbaceous dicots
include the native species Calocephalus citreus, Leptorhynchos
squamatus and Solenogyne dominii and the exotic species
Hypochaeris glabra, Hypochaeris radicata and Leontodon
taraxacoides. Nitrogen-fixing forbs, which include Trifolium
subterranewm and Trifolium striatum, are rare and form an
extremely small fraction of the biomass (< 0.05%). The
grassland community also contains the woody species Hibbertia
hirsuta and Bossiaea prostrata, which is a nitrogen-fixing
species but again forms a small proportion of the biomass
(< 1%). There is evidence that species dominance at the site
is changing as a result of the experimental manipulations
(Williams et /., 2007). The soil at the site is a black vertisol
formed of basaltic clay, pH ¢. 6.5, with low total nitrogen
(N) (approx. 0.2%) and extractable phosphorus (P) (approx.
20 mg kg™!). The site has a mean annual temperature of
11.6°C, a mean annual rainfall of 560 mm and experi-
ences substantial summer drought between December and

March/April.

www.newphytologist.org  © The Authors (2008). Journal compilation © New Phytologist (2008)



New

Phytologist

S Unwarmed| 2004 —

= T

S Wamed) . e S
— 1

§ Unwarmed

o Warmed —

S Unwarmed| 2005 [ I

= T

8 Wamed) . T

w [ I

o Unwarmed

X warmed -

250 300 350 400

Day of year

Fig. 1 Average flowering times in unwarmed (open bars) and
warmed (closed bars) plots in 2004 and 2005 in the Tasmanian
free-air CO, enrichment experiment (TasFACE) experiment exposed
to both free-air CO, enrichment (FACE) and control atmospheric CO,
concentration ([CO,]). Bars indicate flowering duration from mean
flowering commencement to mean flowering conclusion, error bars
indicate + SE.

Table 1 Results of anova showing effects of elevated CO,, warming,
year and all interactions on flowering commencement and conclusion
times and flowering duration in the Tasmanian free-air CO,
enrichment experiment (TasFACE) during 2004 and 2005

Variable
Effect First flowering Last flowering Duration
co, 0.42 0.80 0.66
Warming (W) <0.0001 <0.0001 0.87
CO, xW 0.40 0.19 0.63
Year (Y) 0.0002 0.03 <0.0001
CO,xY 0.55 0.51 0.92
WxY <0.0001 0.007 0.18
CxWxY 0.78 0.87 0.94

Values shown are probabilities associated with the F ratio; significant
effects (P < 0.05) are shown in bold type.

Climate measurements

All climate measurements were made using a Campbell
Scientific automatic weather station with hourly measurements
logged to a CRX-10 data logger (Campbell Scientific Australia,
Townsville, Australia). Degree-days were calculated using
hourly air temperature data and were summed from 01:00 h
on 1 July in each year.

Flowering measurements

Flowering of all species in each plot was recorded from March
2004 until March 2006 and thus data cover two complete
flowering seasons. During this period, the number of flowering
individuals and the number of inflorescences produced was
recorded each week during periods of low flower production
and two to three times per week during peak flowering

periods (Sept—Dec). Flowering was defined as the presence of
open flowers or exposed stamens and/or styles for grasses.
From these observations, the time to first flowering and the
time of last flowering were calculated separately for each
species in each plot as the number of days after 1 January in
each year. As flowering times of some species extend into the
subsequent calendar year, the day for last flowering for these
species was calculated as the number of days from 1 January
of the previous year. The duration of flowering was calculated
as the difference between last flowering and first flowering for
each species in each plot.

Data analyses

Data were analysed by mixed model repeated measures analysis
of variance (aNova) using general linear model procedures
(PROC GLM) in the SAS statistical software package, version
9.1 (SAS Institute Inc., 2003). The model used had CO,
and warming as fixed, orthogonal factors with repeated years.
Warming and CO, effects were also analysed by repeated
measures ANOVA separately for each species.

Results

Flowering commencement

Flowering commencement date averaged across all species was
not affected by CO, concentration (Fig. 1; Table 1); neither
was there any significant interaction between CO, and any of
the other factors (Table 1). This lack of any CO, effect was
consistent across years, as demonstrated by the nonsignificant
CO, x year interaction (Table 1). In 2004, mean first flowering
day averaged across all species was 308.9 * 3.8 (mean = SE
throughout) (Fig. 1). Flowering was slightly earlier in 2005
(P < 0.0002; Fig. 1), with first flowers appearing, on average,
on day 297.5 £ 2.0.

In close agreement with the average response, there were
few significant effects at the species level, with first flowering
date being significantly affected by elevated CO, in only two
species in 2004 and three in 2005 (see the Supplementary
Material, Table S1). Furthermore, the responses of these few
species to elevated CO, were inconsistent across years (Fig. 2).
Indeed, time to first flowering was significantly affected by
elevated CO, in both years in both L. squamatus and V. myuros,
but the direction of the effect differed between years. In
V. myuros, elevated CO, accelerated flowering in 2004
(P < 0.05) but delayed flowering in 2005 (P < 0.04; Fig. 2),
whereas the situation was reversed for L. squamatus (P < 0.02
both years; Fig. 2). Flowering of H. hirsuta was accelerated in
2005 by 24.5 d (P < 0.01, Fig. 2), but was unaffected by CO,
concentration in 2004 (P < 0.21; Fig. 2).

In agreement with many previous reports, the time to first
flowering was substantially affected by both warming (Fig. 1;
Table 1) and a warming X year interaction (Fig. 1; Table 1).
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Fig. 2 Flowering times of Hibbertia hirsuta, Leptorhynchos
squamatus and Vulpia myuros at control (open bars) and elevated
CO, (free-air CO, enrichment (FACE); stippled bars) during 2004
and 2005 in the Tasmanian free-air CO, enrichment experiment
(TasFACE). Bars indicate flowering duration from mean flowering
commencement to mean flowering conclusion, error bars

indicate + SE.

In 2004, mean day of first flowering was 316.0 £5.2 in
unwarmed plots and 296.9 * 3.7 in warmed plots, whereas in
2005, first flowering occurred on day 299.6 + 1.8 in unwarmed
plotsand 296.6 £ 2.2 in warmed plots (Fig. 1). Thus, flowering
was substantially earlier in warmed plots than in unwarmed
plots in 2004 but not in 2005 (Fig. 1). Not surprisingly, the
species-level results reflect the overall trends, with warming
accelerating the commencement of flowering to a greater
degree in 2004 than in 2005 (Table S1). Thus, warming
significantly accelerated flowering in 11 out of 19 species in
2004 but only in one out of 21 species in 2005 (Table S1).
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Flowering conclusion and flowering duration

Treatment impacts on flowering conclusion were very similar
to those on flowering commencement, with a significant
warming X year interaction and no effect of elevated CO,
(Fig. 1; Table 1). Thus, in 2004, flowering concluded on day
352.5%5.9 in unwarmed plots, on day 327.8+4.3 in
warmed plots compared with the situation in 2005, in which
flowering concluded on day 343.9 £ 2.4 in unwarmed plots
and on day 338.8 + 2.7 in warmed plots (Fig. 1). Given the
similar effect of warming on flowering commencement and
cessation, there was no overall effect of warming on flowering
duration (Fig. 1; Table 1) or any warming X year interaction
(Fig. 1; Table 1). There was, however, a significant effect of
year, with plants flowering for an average of 33.9 £2.7 d in
2004 and 44.2+1.8d in 2005 (Fig. 1; Table 1). As with
flowering commencement, CO, concentration did not affect
the overall timing of flowering completion or the overall
flowering duration (Fig. 1; Table 1).

At the species level, elevated CO, did not significantly alter
flowering conclusion date in any species in either year but it
did significantly affect flowering duration of two species. In
2005, the only year in which the species flowered, elevated
CO, significantly increased flowering duration of E. scaber
from 8.6 £2.7 dt036.8 £ 5.7 d (P < 0.003). Similarly, elevated
CO, increased flowering duration of H. hirsuta in 2004 from
38.7+10.2d t053.0£9.0d (?<0.17; Fig. 2) and in 2005
from 17.5+£7.3 d t0 56.0 £ 0.0 d (? < 0.01; Fig. 2).

Interannual variation in climate

There was significantly greater rainfall during winter in 2004
than there was in 2005 at the study site (Fig. 3). By contrast,
2005 was substantially warmer in winter than was 2004,
particularly during July and August (Fig. 3). Since spring
flowering date is often strongly correlated with a thermal sum,
such as degree-days, we calculated the number of degree-days
from 1 July undil the average commencement of flowering
in both warmed and unwarmed plots for 2004 and 2005.
In 2004, average first flowering occurred at a thermal sum
of 1143 degree-days in unwarmed plots compared with
1142 degree-days in warmed plots. By contrast, in 2005 first
flowering occurred at a thermal sum of 1153 degree-days in
unwarmed plots and at 1326 degree-days in warmed plots.
Thus, the warming influence on flowering time in 2004 was
very tightly linked with treatment-induced effects on the
thermal sum, but this was not the case in 2005, in which
flowering occurred at a substandally higher thermal sum in
warmed than in unwarmed plots.

Discussion

In a recent review, Springer & Ward (2007) assessed the
impacts of elevated CO, on flowering times of both wild and
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Fig. 3 Monthly rainfall (a) and 5-d running average temperature (b)
at the Tasmanian free-air CO, enrichment experiment (TasFACE) site
during 2004 (open squares, solid lines) and 2005 (closed squares,
dashed lines). Letters at the top of each graph indicate month.

crop species, showing that while elevated CO, tended to
accelerate flowering of crop species, the responses of wild
species were remarkably evenly distributed, with similar
proportions of species responding positively, negatively or not
atall to elevated CO,. As well as this variation among species,
substantial variation within species in the responsiveness of
flowering time to elevated CO, has been demonstrated, both
among and within individual studies (Springer & Ward,
2007). One problem with comparing responses of different
species to experimental manipulation is variation among
experiments in growth conditions such as nutrient and water
availability, light levels, etc., thereby limiting the utility of
meta-analyses and similar comparisons of multiple experi-
ments (Korner, 2006). Therefore, experiments such as the
TasFACE experiment and other similar experiments (Cleland
et al., 2006; Sherry et al., 2007) are extremely useful in that a
large number of species are exposed to simulated future
conditions at the same time in the same place. Thus, experi-
ments such as this allow valid analyses of the impacts of
environmental manipulation on various species.

© The Authors (2008). Journal compilation © New Phytologist (2008)

The results presented here show that while flowering time
was very sensitive to experimental warming in at least 1 yr, it
was remarkably unaffected by [CO,] in this southern temperate
grassland. Importantly, we found no evidence for any inter-
action between warming and elevated CO, on flowering time.
Since elevated CO, can cause substantial changes in plant
productivity (Navas e al., 1995), water use (Jackson ez al., 1994)
and biomass allocation (Cipollini ez 2/., 1993; Dippery et al.,
1995; Cotrufo & Gorissen, 1997), it seems reasonable to
expect some influence on reproductive output. Meta-analyses
have indicated that elevated CO, tends to increase total flower
and seed production, although the response is strongly
dependent upon species (Jablonski ez 4l., 2002). It is possible,
therefore, that stimulation of carbon assimilation by elevated
CO, leads to an alteration of flowering time (Springer &
Ward, 2007). However, a survey of published work indicates
that there is no general or average response of flowering
phenology to elevated CO, (Springer & Ward, 2007). As
discussed by Springer & Ward (2007), the mechanisms
whereby [CO,] affects flowering phenology are poorly under-
stood and seem to vary substantially both among and within
species. The lack of response of flowering time to elevated
CO, seen here, and the lack of any CO, X warming interaction,
indicates that elevated CO, is unlikely to substantially alter
flowering times in southern temperate grasslands in the near
future. The TasFACE site is nutrient-poor and flower and
seed production of these species are largely unresponsive to
[CO,] (Hovenden ez al., 2007). Therefore, it is possible that
nutrient limitations restrict the species’ ability to take advantage
of the elevated CO,, thus preventing any elevated CO,-induced
alterations of flowering phenology or reproductive output
(Kérner, 2003; Korner, 2006). The few species that were
responsive to elevated CO, treatment did not show a consistent
response across the 2 yr, indicating that either the responses
were related to other factors or that the impact of elevated
CO, on phenology in these species varies from year to year. It
is interesting that the two species in which elevated CO,
affected flowering phenology in both years, namely L. squamatus
and V. myuros, are very early- and late-flowering species, respec-
tively. Indeed, L. squamatus is the earliest flowering of all the
forbs in the experiment. Whether flowering time has an
influence on the sensitivity of flowering phenology to
CO, concentration, as appears to be the case with warming
in some communities (Sherry ez al., 2007), is currently
unknown. As elevated CO, reduces stomatal conductance,
FACE treatment can increase leaf temperature (Long
et al., 2004) and this might explain why V. myuros plants
flowered earlier in elevated CO, plots in 2004, the wetter,
cooler year, but this does not explain the retardation of
flowering in the co-occurring L. squamatus; neither does it
explain why warming did not alter the flowering time of
either species in either year. Clearly, more work is needed
to elucidate the mechanisms whereby [CO,] influences
flowering time.

www.newphytologist.org



The large difference observed here in average flowering
response to warming between years might have been due to
differences in rainfall and hence water availability between the
2 yr (Fig. 3). In 2004, the mechanism responsible for the
warming-induced acceleration of flowering was likely to be an
increase in developmental rates that were limited by sub-optimal
ambient temperatures. This is supported by the very close
agreement of the thermal sum at mean flowering time in both
warmed and unwarmed plots. In 2005, however, warming did
not have a similar effect, such that mean flowering occurred
at almost exactly the same time in warmed and unwarmed
plots, despite differences in their thermal sum. Since there was
substantially less winter rainfall in 2005 than in 2004, it
would appear that accelerating reproductive developmental
rates did not lead to earlier flowering since flowering was
probably constrained by water availability, as has been demon-
strated previously (Brando ez al., 2006; Breatley et al., 2007).
Close analysis of the mean flowering times over the 2 yr,
however, suggests an alternative hypothesis. Mean first flowering
in warmed plots occurred on precisely the same day in both
years (day 296.9 £ 3.7 in 2004 and on day 296.6+2.2 in
2005) but in unwarmed plots mean day of first flowering was
substantially earlier in 2005 than it was in 2004 (day
316.0%£5.2 in 2004 and day 299.6 £ 1.8 in 2005). This
might be related to the warmer ambient temperatures in 2005
(Fig. 3), as flowering of unwarmed plants occurred at a similar
thermal sum in both years (1143 degree-days in 2004,
1153 degree-days in 2005). It is possible that beyond a certain
point, additional warming cannot accelerate developmental
rates, either because optimal developmental temperature has
already been reached or because flower production is limited
by other factors, such as day length (Rivera & Borchert, 2001;
Keller & Kérner, 2003; Crepinsek ez al., 2006). This indicates
that warming will cause a finite acceleration in flowering time,
to a point where flower induction is limited by factors other
than temperature, particularly in areas prone to strongly
seasonal rainfall. If this is true, then it is likely that the rate of
change of phenological events will reduce as the globe warms.

Direct observations of trends in plant phenology have shown
that, on average, ‘spring’ has been advancing by between 2.3
(Parmesan & Yohe, 2003) and 5.1 (Root ez 4l., 2003) days per
decade during the twentieth century. Similarly, flowering of
385 British plants was 4.5 d earlier in the 1990s than in the
previous four decades (Fitter & Fitter, 2002), representing a
shift in spring flowering corresponding to 4.3-6.0 d advance-
ment per degree of warming. Similar figures have been
produced from various observational studies (Menzel, 2003;
Menzel et al., 2006; Estrella ez al., 2007). Most previous
experimental work has shown an acceleration of flowering
that is somewhat less than these direct observations. For
example, experimental warming of 4.2°C in an American
tallgrass prairie accelerated mean flowering by 7.6 d, cor-
responding to 1.8 d advancement per degree, which is similar
to the 1.3-3.3 d per degree reported for a Californian annual
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grassland (Cleland ez a/., 2006). Chambered warming treat-
ments in a range of arctic sites produced a mean acceleration
of flowering of 1.7-5.0 d per degree, depending upon year
(Arft et al., 1999). Our results show a mean acceleration of
flowering of 11.0 d per degree of warming (overall mean using
all species in both years), which is a larger response than most
previous reports. Unfortunately, there is very little published
flowering phenology data available for Australian species and
none from Australian grasslands. In a 23 yr study of four
co-occurring Eucalyptus trees from southeastern Australia, it
was found that flowering times had not changed measurably
in two species, flowering of one species had advanced by
33.0 d per degree of warming and flowering of one species
had been delayed by 21.1 d per degree of warming (Keatley
et al., 2002). It is unclear why the acceleration of flowering
was greater in the TasFACE experiment than in similar warming
experiments using infrared heaters, but it is possible that timing
of productivity plays some role. The experimental site is prone
to severe and prolonged summer drought and thus has highest
productivity during the cool months when warming might be
expected to play a greater role. The winter months are also
reasonably mild such that plants may be metabolically active
in all winter months, particularly when warmed. It is possible
therefore that global warming will have a pronounced effect
on spring flowering in this community.

Our results indicate that while mean date of first flowering
is very sensitive to experimental warming in some years, the
duration of flowering is not. We found no significant treatment
effects on mean flowering duration indicating that warming
merely shifted flowering in 2004, rather than extending it.
This differs with results from subalpine meadows in which
earlier flowering led to longer flowering duration (Dunne
et al., 2003). It is likely that flowering responses to warming
will differ between different climatic regions. In the American
tallgrass prairie, experimental warming significantly reduced
flowering duration in some species but increased it in others
(Sherry ez al., 2007), indicating that the response of flowering
duration to warming is species-specific.

Since flowering is such an important event in the lifecycle
of most flowering plant species, alterations of flowering time
by global changes are likely to have important implications for
ecological interactions such as pollination, competition for
pollinators and seed dispersal times. Changes in these inter-
actions are likely to produce strong selective pressures that act
on both the plant species themselves and on other organisms
that rely on these plants (Sherry ez a/., 2007). Ultimately,
such changes may affect ecosystem productivity and carbon
sequestration ability (Springer & Ward, 2007). Springer &
Ward (2007) stressed the need for work examining the devel-
opmental responses of plants to environmental manipulation
in natural settings, particularly to multiple experimental factors.
Here we have presented results from a comparatively large
number of co-occurring species, all growing in a natural setting
with natural climatic variation and limiting resources such as
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nutrients. Our results indicate that in this ecosystem flowering
time is sensitive to both warming and interannual variation in
climate but is insensitive to elevated CO,. Therefore, the lack
of response to manipulation of [CO,] does not arise from the
flowering times of these species being unresponsive in general,
rather being unresponsive to [CO,] specifically. Thus, in this
ecosystem, at least, the rising atmospheric concentration of
CO, appears unlikely to either ameliorate or accentuate the
impacts of global warming on flowering phenology. Just why
elevated CO, fails to elicit any response in flowering time of
the vast majority of species in this ecosystem is an area requiring
further investigation.
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