
FUZZY MODELLING AND ROBUST
CONTROL WITH APPLICATIONS

TO ROBOTIC MANIPULATORS

FEI ME!

B. Sc:, Nanjing University, P. R. China
M. Sc., Nanjing University, P. R. China

A thesis submitted for the degree of Doctor of Philosophy
at The University of Tasmania

School of Engineering
Faculty of Science and Engineering

The University of Tasmania
Hobart, Tasmania 7001

Australia

December, 1999

Authority of Access

This thesis may be made available for loan. Copying of any part of this thesis is

prohibited for two years from the date this statement was signed; after that time

limited copying is permitted in accordance with the Copyright Act 1968.

Statement of Originality

The work contained in this PhD thesis is original, to the best of my knowledge and

belief, except as acknowledged in the text. This thesis contains no material which has

been accepted for the award of any other degree or diploma in any tertiary institution.

Fei Mei

Ii

Acknowledgements

I wish to thank the many people who have helped me complete this thesis. For

encouragement and support, I would especially like to thank my supervisor and friend,

Dr. Man Zhihong. His enthusiasm and motivation has helped me greatly. I am

particularly grateful to Prof. Thong Nguyen, my co-supervisor, for his valuable advice

and consistent encouragement during my work. My grateful thanks also go to all the

members and postgraduates in the School of Engineering for their kind reception and

cooperation that I found during my PhD candidature at The University of Tasmania.

For financial support, I am grateful to The University of Tasmania for providing me

with Tasmania International Scholarships. Finally, I would like to thank my wife Bing

Xu, my daughter, Lisa Jun Mei, my parents and my friends for their love,

understanding and support during this period.

Abstract

In this thesis, fuzzy modelling of a class of nonlinear systems has been investigated

based on fuzzy logic and linear feedback control theory, and a few robust variable

structure control schemes for nonlinear systems have been developed. A number of

robustness and convergence results with dramatically reduced control chattering are

presented for variable structure control systems with applications to robotic

manipulators in the presence of parameter variations and external disturbances. The

major outcomes of the work described in this thesis are summarised as follows.

A robust tracking control scheme is proposed for a class of nonlinear systems with

fuzzy model. It is shown that a nominal system model for a nonlinear system is

established by fuzzy synthesis of a set of linearised local subsystems, where the

conventional linear feedback control technique is used to design a feedback controller

for the fuzzy nominal system. A variable structure compensator is then designed to

eliminate the effects of the approximation error and system uncertainties. Strong

robustness with respect to large system uncertainties and asymptotic convergence of

the output tracking error are obtained.

A sliding mode control scheme using fuzzy logic and Lyapunov stability theory has

been proposed. It is shown that a sliding mode is first designed to describe the desired

system dynamics for the controlled system. A set of fuzzy rules are then used to adjust

the controller's parameters based on the Lyapunov function and its time derivative.

The desired system dynamics are then obtained in the sliding mode. The sliding mode

controllers with fuzzy tuning algorithm show the advantage of reducing the chattering

of the control signals, compared with the conventional sliding mode controllers.

A robust continuous sliding mode control scheme for linear systems with uncertainties

has been presented. The controller consists of three components: equivalent control,

continuous reaching mode control and robust control. It retains the positive properties

of sliding mode control but without the disadvantage of control chattering. The

iv

proposed control scheme has been applied to the tracking control of a one-link robotic

manipulator with fuzzy modelling of the nonlinear system.

A robust adaptive sliding mode control scheme with fuzzy tuning has been presented.

It is shown that an adaptive sliding mode control is first designed to learn the system

parameters with bounded system uncertainties and external disturbances. A set of

fuzzy rules are then used to adjust the controller's uncertainty bound based on the

Lyapunov function and its time derivative. The robust adaptive sliding mode

controller with fuzzy tuning algorithm show the advantage of reducing the chattering

and the amplitude of the control signals, compared with the adaptive sliding mode

controller without fuzzy tuning. Experimental example for a five-bar robot arm is

given in support of the proposed control scheme.

Finally, a new adaptive sliding mode controller has been developed for trajectory

tracking in robotic manipulators. This controller is able to estimate the constant part

of the system parameters as well as adaptively learn the uncertain part of the system

parameters by the Gaussian neural network. It is shown that under a mild assumption,

the proposed control law does not require measurement of acceleration signals. This

new control law exhibits the good aspects of Slotine and Li's (1987) and keeps the

chattering to a minimum level. An experiment of a five bar robotic system was done

and the results have confirmed the effectiveness of the approach.

List of Publications

1. Fei Mei, Man Zhihong, Yu Xinghuo, Thong Nguyen, "A Robust Tracking

Control Scheme for a Class of Nonlinear Systems with Fuzzy Nominal

Model", International Journal of Applied Mathematics and Computer Science,
vol.8, No.1, pp.145-158, 1998.

2. Fei Mei, Man Zhihong, Thong Nguyen, "Fuzzy Modelling and Tracking

Control of Robotic Manipulators", to appear in Mathematical and Computer

Modelling, 1999.

3. Fei Mei, Man Zhihong, Xinghuo Yu, "Robust adaptive sliding mode control of

robots", submitted to IEEE Transactions on Industrial Electronics, 1999.

4. Xinghuo Yu, Man Zhihong, S S Cong, Fei Mei, "Robust adaptive sliding mode

control of robotic manipulators", International Journal of Robotics and

Automation, vol.14, no.2, pp. 54-60, 1999.

5. Fei Mei, Man Zhihong, "A Sliding Mode Control System with Fuzzy Logic

Controller", International Conference on Computational Intelligence and

Multimedia Applications, 9-11 February, 1998, Monash University, Australia.

6. Fei Mei, Man Zhihong, "Fuzzy Modelling and Tracking Control of Nonlinear

Systems", International Congress on Modelling and Simulation Proceedings,

pp. 902-906, 7-12 December, 1997, Hobart, Australia.

7. Fei Mei, Man Zhihong, Thong Nguyen, "Continuous sliding mode control with

limited control input", Proceedings of the Australian Universities Power

Engineering Conference (AUPEC'98), Hobart, Australia, vol.1, pp212-216,

September, 1998.

8. Fei Mei, Man Zhihong, Thong Nguyen, "The terminal controller design with

application to robotic manipulators", Proceedings of the Australian

Universities Power Engineering Conference (AUPEC'98), Hobart, Australia,

vol.2, pp532-536, September, 1998.

9. Fei Mei, Michael Negnevitsky, "A robust continuous sliding mode control

scheme", Proceedings of 6" International Conference on Fuzzy Theory and
Technology, Durham, USA, vol.', pp292-294, October 23-28, 1998.

vi

10. Fei Mei, "Sliding mode control signal analysis by discrete wavelet transform",

Proceedings of the .14 th World Congress of International Federation of

Automatic Control (IFAC'99), Beijing, China, vol. H, pp. 349-353, July 5-9,

1999.

11. Man Zhihong, Fei Mei, "A sliding mode control for nonlinear SISO

systems with a new fuzzy model", Proceedings of the 14" World Congress

of International Federation of Automatic Control (IFAC99), Beijing, China,

vol. Q, pp. 359-362, July 5-9, 1999.

12. Fei Mei, Man Zhihong, Xinghuo Yu, Wei Lai, "RBF network based sliding

mode control of robots", Proceedings of the IEEE Hong Kong Symposium on

Robotics and Control, Hong Kong, vol. 1, pp.27-32, July 2-3, 1999.

vii

TABLE OF CONTENTS 	 viii

Contents

Statement of Originality 	 ii

Acknowledgements 	 iii

Abstract 	 iv

List of Publications 	 vi

1 	Introduction 	 1

1.1 MOTIVATION 	 1

1.2 SCOPE 	 4

1.3 THESIS OUTLINE 	 5

2 	A survey of variable structure control theory 	 .9

2.1 INTRODUCTION 	 9

2.2 BASIC VARIABLE STRUCTURE CONTROL THEORY 	 11

2.2.1 SYSTEM MODEL AND SLIDING MODE 	 11

2.2.2 EQUIVALENT CONTROL 	 13

2.2.3 ROBUSTNESS PROPERTY 	 16

2.2.4 Two METHODS OF SLIDING MODE DESIGN 	 17

2.2.5 CONTROLLER DESIGNS 	 21

2.3 VARIABLE STRUCTURE CONTROL OF NONLINEAR SYSTEM 	 22

2.3.1 SYSTEM MODEL 	 22

2.3.2 SLIDING MODE AND EQUIVALENT CONTROL 	 23

2.3.3 CONTROLLER DESIGN 	 24

2.3.3.1 Diagonalisation method 	 24

TABLE OF CONTENTS 	 ix

2.3.3.2 Reaching law method 	 25

2.3.4 ROBUST CONTROL OF NONLINEAR SYSTEMS 	 27

2.4 APPLICATION TO ROBOT MANIPULATORS 	 29

2.4.1 DYNAMICS OF ROBOTIC MANIPULATORS 	 29

2.4.2 A ROBUST VSC CONTROLLER DESIGN 	 31

2.5 CONCLUDING REMARKS 	 33

3 	Fuzzy logic and fuzzy logic controller 	 35

3.1 INTRODUCTION 	 35

3.2 FUZZY SET THEORY 	 37

3.2.1 FUZZY SETS 	 38

3.2.2 SET THEORETICAL OPERATORS 	 40

3.2.3 THE EXTENSION PRINCIPLE 	 42

3.2.4 FUZZY RELATIONS AND THEIR COMPOSITIONS 	 43

3.2.5 LINGUISTIC REPRESENTATION 	 45

3.3 FUZZY LOGIC AND FUZZY REASONING 	 48

3.4 FUZZY LOGIC CONTROL 	 54

3.5 CONCLUDING REMARKS 	 68

4 	Fuzzy modelling and robust tracking control of nonlinear systems 	70

4.1 INTRODUCTION 	 70

4.2 LINEARISATION OF NONLINEAR SYSTEMS 	 72

4.3 FUZZY MODELLING AND TRACKING CONTROL OF NONLINEAR
SYSTEMS 	 74

4.3.1 FUZZY MODELLING AND TRACKING CONTROLLER DESIGN 	 74

4.3.2 A SIMULATION EXAMPLE 	 76

4.4 ROBUST TRACKING CONTROL WITH FUZZY NOMINAL MODEL 	86

4.4.1 A ROBUST TRACKING CONTROL SCHEME 	 86

TABLE OF CONTENTS 	 x

4.4.2 A SIMULATION EXAMPLE 	 90

4.5 CONCLUDING REMARKS 	 93

5 	Fuzzy sliding mode control 	 .98

5.1 INTRODUCTION 	 98

5.2 SLIDING MODE CONTROL OF NONLINEAR SYSTEMS 	 99

5.3 FUZZY TUNING OF THE SLIDING MODE CONTROLLER 	 101

5.4 AN ILLUSTRATIVE EXAMPLE 	 106

5.5 CONCLUDING REMARKS 	 111

6 	Robust continuous sliding mode control 	 .112

6.1 INTRODUCTION 	 112

6.2 A ROBUST CONTINUOUS SLIDING MODE CONTROL 	 114

6.3 A SIMULATION EXAMPLE 	 117

6.4 CONCLUDING REMARKS 	 120

7 	Fuzzy adaptive sliding mode control . 132

7.1 INTRODUCTION 	 132

7.2 ROBUST ADAPTIVE SMC WITH FUZZY TUNING 	 134

7.3 AN ILLUSTRATIVE EXAMPLE 	 142

7.4 CONCLUDING REMARKS 	 145

8 	Robust adaptive sliding mode control of robots 	 .153

8.1 INTRODUCTION 	 153

8.2 THE ROBUST ADAPTIVE SMC DESIGN 	 155

8.3 EXPERIMENTAL RESULTS 	 163

8.4 CONCLUDING REMARKS 	 167

TABLE OF CONTENTS 	 xi

9 	Conclusions 	 172

9.1 SUMMARY 	 172

9.2 SUGGESTIONS FOR FUTHER WORK 	 175

References 	 .177

Appendix 	 194

A HARDWARE SETUP FOR A FIVE-BAR ROBOT ARM 	 194

B C++ PROGRAMS FOR A FUZZY SLIDING MODE CONTROLLER 	198
,

FSMC.CPP 	 198

FSMC DATA . TXT 	 208

FSMC DATA.H 	 209

COMPLEX.CPP 	 212

CONTAINER.CPP 	 218

LEAST SQUARES.CPP 	 222

MISC.CPP 	 230

MY_MATH.CPP 	 231

MY_PROCESS.CPP 	 244

PATH.CPP 	 248

PC30 GwEIO.CPP 	 250

PCL833.CPP 	 254

RUNGA KUTTA 4 111 ORDER.CPP 	 258

VECTOR.CPP 	 260

CHAPTER I INTRODUCTION 	 1

Chapter 1

Introduction

1.1 Motivation

The basis for control system design and stability analysis is a dynamic mathematical

model that captures prominent features of the system under consideration. However,

in practical situations, such a requirement is not feasible because the controlled

systems have high nonlinearities and uncertain dynamics, and simple linear or

nonlinear differential equations cannot sufficiently represent the corresponding

practical systems, and therefore, the designed controller based on such a model cannot

guarantee the good performance such as stability and robustness.

During the last few years, fuzzy logic control has been suggested as an alternative to

conventional control techniques for complex nonlinear systems due to the fact that

fuzzy logic combines human heuristic reasoning and expert experience to approximate

a certain desired behaviour function (Takagi and Sugeno, 1985; Cao et al., 1996;

Wang et al., 1996). However, the asymptotic error convergence and stability of the

closed-loop system may not be obtained due to the approximation error and

uncertainties of the fuzzy model.

CHAPTER 1 INTRODUCTION 	 2

Many kinds of fuzzy models for control processes have been developed since

Mamdani's (1974) paper was published. They can be classified into three kinds of

models, Composition Rule of Inference (Zaheh, 1973), Approximate Reasoning

Model (Nakanishi et al., 1993), Sugeno's Models such as Position type Model and

Position-Gradient type Model (Sugeno and Yasukawa, 1993). Most of these models

are expressed by a set of fuzzy linguistic propositions which are derived from the

experience of skilled operators or by fuzzy implication which locally represent linear

input-output relations of the system.

Most proposed conventional fuzzy models only consider the external behaviour of the

system, and can be considered as a function approximation. It is very difficult to

obtain a controller using those models. Even if the controller can be obtained by using

some trial-and-error procedures the behaviour of the closed-loop system, for example,

the stability of the system is still difficult to analyse. Also the number of rules increase

very quickly when the system becomes complex because every local rule is only

described by a constant. Therefore, the identification of these fuzzy models is still a

difficult problem because there are too many parameters in the membership functions.

From a control point of view, system uncertainties can be classified as either

structured or unstructured. Structured uncertainties are those dynamics that have a

known functional form but unknown parameters, while unstructured uncertainties are

simply those that are not structured. For example, system parameters and payload for a

robotic system can be viewed as structured uncertainties; unstructured uncertainties

include friction, disturbances, and unmodelled dynamics.

CHAPTER 1 INTRODUCTION 	 3

Two major conventional control methodologies have been developed for dealing with

system uncertainties: adaptive control and robust control. Adaptive control is a

control scheme in which so-called adaptation laws are constructed to learn explicitly

unknown constant parameters of the system under control. For this reason, adaptive

control is limited to those systems whose uncertainties are structured, although it is

applicable to a wider range of uncertainties after employing robustness enhancement

techniques. Robust control is a control of fixed structure that guarantees stability and

performance for uncertain systems. Its design only requires some knowledge about

bounding functions on the greatest possible value of the uncertainties. This implies

that robust control is capable of compensating for both structured and unstructured

uncertainties.

Variable structure control with sliding mode is a robust control technique with respect

to system variations and external disturbances. Variable structure control was

pioneered in the former Soviet Union in the 1960s by Emelyanov (1962, 1966) and

then developed by many researchers (Uticin, 1971, 1977, 1978, 1983; Itks, 1976;

Young, 1978, 1988; Slotine and Sastry, 1983; Gao and Hung , 1993). However, the

control technique has not been widely accepted in the practical control engineering

community, due mainly to the worry of chattering which is inherent in the variable

structure control system.

This introduces the possibility of using conventional variable structure control method,

and fuzzy logic technique to develop better control schemes for complex systems. In

other words, "can fuzzy logic (with its powerful capabilities for modelling and control

CHAPTER 1 INTRODUCTION 	 4

of complex systems) and conventional linear or nonlinear control theory be combined

to improve the system performance and control quality?". The aim of this thesis is to

show that by considering both these areas, superior system performance and control

quality can be achieved.

1.2 Scope

The aim of this thesis is to present new robust control schemes by incorporating

artificial intelligent techniques such as fuzzy logic and neural networks with

conventional variable structure control system. In line with this, a review of basic

variable structure control theory and discussion of recent research results on the robust

variable structure control for a class of nonlinear systems with uncertain dynamics is

given.

Fuzzy logic and fuzzy logic control are also reviewed to present a background to the

methodology to be employed. Fuzzy sets, fuzzy reasoning, and fuzzy controller design

are described.

The body of the thesis is devoted to fuzzy modelling of a class of nonlinear systems

and developing robust variable structure control schemes by employing fuzzy logic,

neural networks and adaptive control techniques. The rationale is explained more fully

at the end of Chapter 2 and 3, followed by the robust control scheme development in

the succeeding chapters. A review of the contents of the thesis is given in Section 1.3.

CHAPTER 1 INTRODUCTION 	 5

1.3 Thesis outline

The thesis is organised as follows.

In Chapter 1, the major thrust of the thesis, the motivation, scope and thesis outline are

introduced.

In Chapter 2, the basic theory of variable structure control systems is briefly surveyed.

Because the variable structure theory has many good features, it can be easily used to

design controllers for linear or nonlinear systems. Although the robustness can be

achieved without the exact knowledge of the control system, the system performance

and control quality depend very much on the choosing of sliding mode parameters and

the estimating of bounding functions of the system's unknown parts. In practice,

excessive control input and severe control chattering which may excite unmodelled

high-frequency dynamics are highly undesirable. In the following chapters of this

thesis, several new and improved robust variable structure control schemes of

nonlinear systems will be proposed by combining conventional methods and recently

developed techniques, namely fuzzy logic and neural networks, and it will be shown to

improve the system performance and enhance the control quality.

Chapter 3 provides a background of fuzzy logic and fuzzy logic control techniques to

be applied in the later chapters. Fuzzy sets, fuzzy set operations, and fuzzy linguistic

representation such as linguistic variables and linguistic modifiers (hedged) will be

briefly outlined. Fuzzy reasoning or approximate reasoning is considered from the

engineering viewpoint with IF-THEN fuzzy implications using Mamdani's minimum

inference and Larsen's product inference. A fuzzy logic controller, mapping an input

data vector into a scalar control output, normally comprises a rule base, fuzzifier and

CHAPTER 1 INTRODUCTION 	 6

defuzzifier. Commonly-used kinds of membership functions are described, focusing

on control applications. The prominent advantage of the fuzzy logic controller is that

it can effectively control complex ill-defined systems having nonlinearities, parameter

variations and disturbances. However, there also exist some impediments in the

design of the fuzzy logic controller. In general, fuzzy rules are obtained on the basis

of intuition and experience, and membership functions are selected by trial and error

procedure. Moreover, it is not easy to mathematically prove the system stability and

robustness due to linguistic expression of the fuzzy rules. Therefore, a systematic

design method of the fuzzy logic controller from which the stability and robustness

can be clearly seen is to be explored (Lee, 1990). The succeeding chapters will employ

fuzzy logic to establish system model of a class of nonlinear systems and enhance

robustness and control quality of variable structure control systems.

In Chapter 4, a robust tracking control scheme is proposed for a class of nonlinear

systems. The main contribution of this scheme is that a nominal system model for a

nonlinear system is established by fuzzy synthesis of a set of linearised local

subsystems, where the conventional linear feedback control technique is used to

design a feedback controller for the fuzzy nominal system. A variable structure

compensator is then designed to eliminate the effects of the approximation error and

system uncertainties. Strong robustness with respect to large system uncertainties and

asymptotic convergence of the output tracking error are obtained. A simulation

example is given to support the proposed control scheme.

In Chapter 5, Lyapunov stability theory and fuzzy logic technique are combined

together to design sliding mode control systems. It is shown that a sliding mode is

CHAPTER I INTRODUCTION 	 7

first designed to describe the desired system dynamics for the controlled system. A set

of fuzzy rules are then used to adjust the controller's parameters based on the

Lyapunov function and its time derivative. The desired system dynamics are then

obtained in the sliding mode. The sliding mode controllers with fuzzy tuning

algorithm show the advantage of reducing the chattering of the control signals,

compared with the conventional sliding mode controllers. The fuzzy tuning algorithm

is also applied to the adaptive sliding mode control. Simulation and experimental

examples are given in support of the proposed control scheme.

In Chapter 6, a robust continuous sliding mode control scheme for linear systems with

uncertainties is developed. The controller consists of three components: equivalent

control, continuous reaching mode control and robust control. It retains the positive

properties of sliding mode control but reduces the disadvantage of control chattering.

The proposed control scheme is applied to the tracking control of a one-link robotic

manipulator by fuzzy modelling of the nonlinear system.

In Chapter 7, Lyapunov stability theory and fuzzy logic technique are combined

together to design fuzzy adaptive sliding mode control systems. It is shown that an

adaptive sliding mode control is first designed to learn the system parameters with

bounded system uncertainties and external disturbances. A set of fuzzy rules are then

used to adjust the controller's uncertainty bound based on the Lyapunov function and

its time derivative. The robust adaptive sliding mode controllers with fuzzy tuning

algorithm show the advantage of reducing the chattering and the amplitude of the

control signals, compared with the adaptive sliding mode controller without fuzzy

CHAPTER 1 INTRODUCTION 	 8

tuning. Experimental example for a five-bar robot arm is given in support of the

proposed control scheme.

In Chapter 8, a new adaptive sliding mode controller is developed for trajectory

tracking of robotic manipulators. This controller is able to estimate the constant part

of the system parameters as well as adaptively learn the uncertain part of the system

parameters by the Gaussian neural network. It is shown that under a mild assumption,

the proposed control law does not require measurement of acceleration signals. This

new control law exhibits the good properties as shown in Slotine and Li (1987) and

keeps the chattering to a minimum level. An experiment for a five bar robotic system

is carried out to confirm the effectiveness of the approach.

Chapter 9 summarises the results and draws conclusions. A brief review of each

chapter is given, noting the important results. Topics and aspects for future work are

suggested.

Appendix

The detailed hardware setup and C++ real time control programs for a five bar robotic

manipulator are presented.

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 9 '

Chapter 2

A Survey of The Variable Structure
Control Theory

2.1 Introduction

We have mentioned in chapter one that the variable structure control theory is a robust

control with respect to system uncertainties and external disturbances. Generally

speaking, variable structure control can be considered to be an extension of

conventional feedback control in the sense that the structure of a state feedback

regulator is allowed to change as its states cross discontinuity surfaces, which results

in discontinuous feedback control input on one or more manifolds in the state space.

From the point of the conventional feedback control theory, a variable structure

control system can be treated as a combination of subsystems. Each subsystem has a

fixed structure and operates in a specified region of the state space. The combination

of these subsystems according to some prescribed rules results in a new system which

is different from the individual subsystems and has the desired system response.

The main feature of a variable structure control system is the sliding motion. For the

design of a variable structure controller, the first thing is to define a set of switching

plane variables which are a function of the system states. The intersection of these

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 10

switching planes forms a sliding mode. The purpose of the variable structure

controller is to drive the system states into the sliding mode on which the sliding

motion occurs and the motion of the system is thus formally equivalent to a system of

low order, called as equivalent system. Actually, the sliding motion on the sliding

mode is the convergence motion of the system states from arbitrary initial values to

the origin. The convergence rate depends on the design of sliding mode parameters.

It is due to this feature that the variable structure control is also called sliding mode

control.

Another feature of a variable structure system is that the transient response can be

divided into two parts. First, the motion in which the variable structure controller

drives the switching plane variables to reach the sliding mode. Second, the sliding

motion in which the system states constrained on the sliding mode asymptotically

converge to the origin. Usually, the sliding motion is determined only by the sliding

mode parameters. However, the convergence of the switching plane variables are

affected by the sliding mode parameters because the sliding mode parameters are

involved in the controller gain matrices.

In this chapter, we will first review the basic variable structure control theory that has

been useful in establishing robust variable structure control algorithms. In view of the

focus of the thesis, we will then restrict our discussion to recent research results on the

robust variable structure control for a class of nonlinear systems with uncertain

dynamics.

In section 2.2 of this chapter, the basic variable structure control theory is briefly

reviewed. The basic ideas and definitions, such as system model, the sliding mode,

the condition for existence of sliding mode, robustness property, and an overview of

four variable structure controllers, are discussed. In section 2.3, we deviate to address

more complicated variable structure control for a class of nonlinear systems. In section

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 11

2.4, a robust variable structure controller design using reaching law method has been

presented for robot manipulators.

2.2 Basic variable structure control theory

2.2.1 System model and sliding mode

Consider the following linear time invariant system

X(t) = A X(t) + B u(t) 	 (2.1)

where X E Rn and u E Rm represent the state and control vectors, A e R nxn and B E

Rnxm are constant system matrices. It is assumed that n > m, B is of full rank m, and

the pair (A, B) is completely controllable.

Define a set of switching plane variables s i (i = 1 m) passing through the state space

origin

s. = C. X 	i = 1 	m 	 (2.2-a)

or 	S = C X 	 (2.2-b)

Rwhere • e n is a constant vector and

C = [C I ... CTm 	 (2.2-c)

is an nxm constant matrix.

System (2.1) is said to attain a sliding mode when the state vector X reaches and

remains on the intersection (S = 0) of the m switching plane variables

=S0 = 	s = 	X: C. X 	0, i = 1 ... m
1 = 1

(2.3)

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 12

The control input vector u(t) in the variable structure control system usually has the

following form (Utkin, 1977)

u(t) = K X + w X 	 (2.4)

where the first term in expression (2.4) is a linear feedback and the second term is a
switching component. w = [wij 1 and

11/ 	—
ía

M./
s i x j < 0
s i x j > 0

(2.5)

The task of the control input u(t) in expression (2.4) is to drive the switching plane

variables to reach the sliding mode (2.3) by the suitable design of the controller gain

matrices K and w. Thereafter, the system performance will be determined by the

sliding motion on the sliding mode. Generally, the sliding mode is designed such that

the system response restricted on the sliding mode has a desired behaviour such as

asymptotic stability and prescribed transient response. Usually, the switching plane

variables are designed as a linear functions of the system states. Many researches

have shown that it is convenient for the linear sliding mode to be used in the design

and analysis for a variable structure control system.

The next important problem is how to design controller parameters to guarantee the

switching plane variables to reach the sliding mode, and then remain on the sliding

mode. The work in Utkin (1977, 1978) and Young (1982) have shown that if the

control input u(t) is designed such that the tangent vector or time derivative of the

switching plane variables always point toward the sliding mode surfaces, then the
switching plane variables s i (i = 1, 	m) asymptotically converge to zero, and the

system states can remain on the sliding mode.

In fact, the condition for the switching plane variables to reach the sliding mode

surfaces is a convergence problem. Therefore, the second Lyapunov method can be

used to provide a natural setting for the analysis. Generally, the following Lyapunov

function is often used in the variable structure controller design

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 13

1 V = —2 ST S (2.6)

In this case, the sufficient condition for the switching plane variables to reach the

sliding mode surfaces can be expressed as follows

 • STS < 0 (2.7-a)

or

S. S. < 0 I (i = 1, 	m) 	 (2.7-b)

It has been noted that most of the variable structure control algorithms are designed

based on the sufficient condition in expression (2.7-a) or expression (2.7-b) (Utkin,

1978 and DeCarlo, 1988).

2.2.2 Equivalent control

On the sliding mode, s = 0 and = 0 (i = 1, ...m). Then, using expressions (2.1) and

(2.2), we have

= CAX + CBueq = 0
	

(2.8)

where ueq is called as equivalent control.

If IC 1131# 0, the equivalent control u eq can be written as

ueq = -(CB) 1 CAX

=-KX 	 (2.9-a)

where 	K = (C B) 1 C A (2.9-b)

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 14

The system response on the sliding mode can then be described by the following

differential equation

X(t) = A X(t) - B(C B) 	AX(t)

= [I - B(CB) -1 C A X(t) 	 (2.10)

System (2.10) is called equivalent system. The characteristics of the equivalent

system (2.10) can be summarised as:

(1) The dynamical behaviour of the equivalent system is independent of the control

input and depends only on the choice of the matrix C in expression (2.2-c). Therefore,

the control input is just used to drive the system states into the sliding mode and

thereafter to maintain it on the sliding mode. The determination of the matrix C may

thus be completed with no prior knowledge of the form of the control input.

The reason for the equivalent system to have an independent motion from the control

input is due to the fact that the matrix CB is nonsingular. In fact, the condition ICBI#0

means that the null space of C and the range space B are complementary subspaces.

Thus, when the sliding motion occurs on the sliding mode or within N(C), the

behaviour of the equivalent system is unaffected by the control input. If 'CBI.° as

shown in Utkin (1977), the equivalent control is either not unique or does not exist.

Therefore, sliding mode can not be reached.

(2) Equivalent system (2.10) is an (n-m)th order system. The work in Darling and

Zinober (1986) has shown that for the matrix B with full rank m, there exists an

orthogonal nxn transformation matrix T such that

T B = 	 (2.11)

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 15

where B 2 is an mxm nonsingular matrix.

Define a transformed state variable vector Y = T X, state equation (2.1) becomes

ir = TATT Y + TBu 	 (2.12)

If Y is partitioned as

	

yT = i vT 	yT 1

	

L '1 	'2 i

and matrices T A TT and CTT are partitioned as

TAT T =[A "
A 21 A

Al2

22

1
C TT = [c 1 c2]

then, the system (2.12) can be written in the following form

Y = AYI + A 1 2 Y2 1

Y2 = AY1 + A2 2 Y2 -I- B 2 U

On the sliding mode, we have

C l Y 1 + C2 Y2 = 0

Or

Y2 = - F Y1

where

F = C
-1
 C 2 	1

(2.13-a)

(2.13-b)

(2.13-c)

(2.14-a)

(2.14-b)

(2.15-a)

(2.15-b)

(2.15-c)

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 16

The equivalent system can then be written in the following form

= (A i - A l2 F) Y 1 	 (2.16)

Therefore, we can see from expression (2.16) that the equivalent system is (n-m)th

order system, i.e., the system dynamics is simplified on the sliding mode.

2.2.3 Robustness property

Robustness property is an important feature of a variable structure control system.

Suppose that system (2.1) has uncertainty in matrix A and external disturbance, then

the system state equation can be written in the following form

X(t) = (A0 + AA) X(t) + Bu + Df 	 (2.17)

where A0 is the nominal system matrix, AA is the uncertainty, f E R L is a bounded

external disturbance vector, and matrix D is compatibly dimensioned. Without loss of

generality, it can be assumed that matrices B and D are full rank and the uncertainty

presented in the input distribution matrix B is incorporated in the system disturbance

term. During the sliding motion, the state vector of the system satisfies the following

equations

C X = 0
	

(2.18-a)

C(A + AA)X + CBueq + CDf = 0
	

(2.18-b)

From expression (2.18-b), the equivalent control can be achieved as

ueq = - (CB) -1 C (AX + AAX + Df)
	

(2.19)

and the equivalent system equation is then given by

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 17

= [I - B(CB) -I C AX + AAX + Df) (2.20-a)

CX = 0 	 (2.20-b)

Spurgeon (1991) has shown that the sliding mode system (2.20) is insensitive to

parameter variations and the external disturbance if and only if the system uncertainty

AA, matrices B and D satisfy the following rank relation

rank [B : DI = rank [B : AAT] = rank [B] (2.21)

where T is the matrix of the basis vectors of the reduced-order sliding subspace

defined by expression (2.20).

Expression (2.21) is also called as the invariance condition. In addition, the

robustness property for variable structure systems have been investigated by other

researchers. For example, Gutman (1979) and Bormish and Leitmann (1983) have

shown that if system uncertainties and disturbance satisfy the "matching condition",

then the system is completely insensitive on the sliding mode, and the effect of

disturbance and parameter variations can be minimised by minimising the time

required to attain the sliding mode.

2.2.4 Two methods of sliding mode design

Equivalent system equation (2.10) shows that the system behaviour on the sliding

mode depends only on the choice of the sliding mode parameter matrix C, and

asymptotic stability and desired transient response can be obtained by the suitable

design of matrix C. Usually, there are two methods for the sliding mode designs.

They are (a) the quadratic minimisation method and (b) the eigenstructure assignment

method.

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 18

The quadratic minimisation method for the sliding mode design was proposed by

Utkin and Young (1978). In this method, the following cost function is defined

J(u) = 	X(OTQX(t)dt (2.22)

where Q is a symmetric positive-definite matrix, and t s denotes the time at which the

sliding mode starts.

Partitioning the following matrix compatibly with Y (see subsection 2.2.2)

TTQT =[QH

where matrix T is defined

the cost function (2.22)

1
J(v) = —

2
t s

where

Q* = Q 1 1

A* = A11

v(t) = Y2

Y 1 = A* Y

Q21

Q12

Q22

in

can then

00

f YT
I Q*

- Q 12 22%1

-0 iz 	--212

+ Q-1 Q21 22

1 + A12

expression (2.11),

be expressed in the following form

Y I + vTQ22V }dt

0 —21

Y 1

V(t)

(2.23)

(2.24)

(2.25-a)

(2.25-b)

(2.25-c)

(2.25-d)

Expression (2.24) is the form of standard linear quadratic optimal regulator problem.

By minimising expression (2.24), the optimal control v(t) is given by

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 19

v(t) = - Q-212ATI2PYI

Using expression (2.25-e) in expression (2.25-c), we have

(.1_1 r n 	A T 0, i v
Y2 = - '22 1- '21 + '121 J i l = - FYI

where the matrix P satisfies the following Riccati equation

-1 	n PQ* + A*P - PA l2
(1 AT

22 1-'12
10,
 ± `: 	

n
= '

and matrix

-I r 	T 	1
F = (222 1- Q2I + Al2 P -I

(2.25-e)

(2.26)

(2.27-a)

(2.27-b)

can then be determined as required.

The eigenstructure assignment method is also very popular in the sliding mode designs

and it was first used by Utkin and Young in 1978.

Suppose that the sliding mode has commenced on N(C). Then the equivalent system

can be written as

X(t) = (A - BK)X(t)

where matrix K is given in expression (2.9-b).

During the sliding motion, the state variables must remain in N(C) so that

C[A - BK] = 0 <=> R(A - BK) c N(C)

(2.28)

(2.29)

Let X i (i = 1, ... n) be the eigenvalues of A - BK with corresponding eigenvectors vi,

then, from expression (2.29), we have

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 20

C[A - BK lv i = X.Cv. = 0 (2.30)

Expression (2.30) shows that either X i is zero or v i E N(C). Since A - BK = A eg has m

zero-valued eigenvalues, we can set { X i : i = 1, 	n-m } be the nonzero eigenvalues

and therefore, specifying the corresponding eigenvalues { v i : i = 1, 	n-m } fix the

null space of C (dim[N(C)] = n - m).

It is noted that C is not uniquely determined because the equation

CV = 0, V = [v 1 	vn _ m
(2.31)

has m2 degree of freedom, which may be easily seen if we define

W = [1= Tv 	 (2.32)
W2

where the partitioning of W is compatible with that of Y, then expression (2.31)

becomes

0 = CTT. Tv = [C I C2] [
W 2

1= C2 (F 	
—

[W1 1
 W2

Therefore, F can be determined from the following equation

FW 1 = - W2

(2.33)

(2.34)

The work of Dorling and Zinober (1986) has shown that this approach has the

drawback that the eigenvectors of matrix A-BK are not freely assignable, and at most

m elements of an eigenvector may be assigned arbitrarily, after which the remaining

n-m elements are fully determined by the assigned elements. Thus one approach to

eigenvector assignment is to select m elements according to some scheme and accept

the remaining elements as determined. This may allow a degree of adjustment to be

carried out by inspection.

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 21

Some other eigenvector assignment methods have also been proposed, and the details

can be found in Moore (1976), Klein and Moore (1977) and Sinswat and Fallside

(1977).

2.2.5 Controller designs

In most of the variable structure control schemes, the control law usually consists of a
NL linear component uL and a nonlinear component u 	which are assumed to form

control input u. The linear part is merely a state feedback

= KX (2.35)

While the nonlinear signal incorporates the discontinuous elements of the control.

Some examples of possible types of nonlinearity are as given below.

(a) A nonlinear component with constant gains

NL u i = Mi sgn(C i X), 	M1 > 0

(b) A nonlinear component with state-dependent gains

NL
MU. = i (X) sgn(C X) 	m i (.) > 0

(2.36)

(2.37)

(c) A linear feedback with switching gains

uNL
= TX

(2.38-a)

where 	111 = [tvii] and

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 22

(d)

j
=

A unit

NEL

•s l 	< 0

s i x > 0

vector nonlinearity with scale factor

NX

(2.38-b)

(2.39)
Ilmx11

where the null spaces of N, M and C are coincident.

The nonlinear control component is discontinuous on the individual hyperplane in

cases (a) - (c). This may result in wasted control effort as the system state pierces one

hyperplane, and is forced into another surface. In case (d), the individual controls are

continuous, except on the intersection of the switching plane variables where all the

nonlinear control elements become discontinuous together. The details of cases (a) -

(d) are shown in Uticin (1978), Ryan (1983), Young (1977) and Dorling and Zinober

(1983). Some special properties and behaviours of a system with control type (d) has

been discussed in Surgeon (1991).

2.3 Variable structure control of nonlinear system

2.3.1 System model

In section (2.2) we have briefly reviewed the basic variable structure control theory of

linear systems. Most of these ideas can be extended to the variable structure control of

nonlinear systems. However, the complexity of the analysis and the controller designs

may be increased due to the nonlineatity in the nonlinear system model. From the

engineering point of view, the following nonlinear system is often considered

(DeCarlo, et al., 1988).

X(t) = f(t, X) + B(t, X)u(t) 	 (2.40)

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 23

where the state vector X(t)E Rn , the control input vector u(t) E R m , f(t, X) E Rn and

B(t, X) E Rnxm. Further, each entry in f(t, X) and B(t, X) is assumed to be

continuous with continuous bounded derivative with respect to X.

Each entry u(t) of the control input vector has the following form

(t, X)
u ; (t, X) = 	'

u (t, X)
with cr i (X) > 0
with a ; (X) <0

(2.41)

whereis the ith switching ,surface associated with the (n-m) dimensional a t (x)

switching surfaces

a(X) = [a l (X), 	, szYm(X)

2.3.2 Sliding mode and equivalent control

Following the sliding mode design for linear systems in section 2.2.4, the method of

equivalent control is a way to determine the system motion restricted tO the sliding

mode a(X) = 0. Suppose that there exists a time t o > 0, and the state of the system

reaches the sliding mode after t to . On the sliding mode, the following two

equations are satisfied

cr(X(t)) = 0 	t 	to

a(X(t)) =0 	t t o

Using system equation (2.40), expression (2.43-b) can be expressed as follows

(2.43-a)

(2.43-b)

acy(x),
f(t, X) + B(t, X)ueq = o ax (2.44)

(2.42)

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 24

where ueq is the so called equivalent control which can be obtained from expression

(2.44) as follows

-1 au(X) 	aa(x)
U = - - ti(t, X) - f(t, X)

eq 	
r

OX , 	 ax (2.45)

Using expression (2.45) in system model (2.40), the dynamics of the closed loop

system on the sliding mode is given by

-1 acs(X) [- B(t, X)(a(X)B(X)) 	f(t, X) ax ax
(2.46)

Therefore, the problem of the sliding mode design is to choose the parameters in

a(X) = 0 such that the equivalent system (2.46) is stable. In most of variable structure

control schemes for nonlinear systems, the linear sliding modes are often used.

Therefore, some methods of sliding mode design in sections 2.2.4 can also be used.

2.3.3 Controller design

2.3.3.1 Diagonalisation method

In general, for nonlinear system equation (2.40), the control input is an m dimensional

vector and each entry has the structure of the form

u!," (t, X) u = _
u (t, X)

for a, (X) > 0
for a- , (X) < 0

(2.47)

To determine the switched feedback gains in control law (2.47), the following

diagonalisation method is often used (DeCarlo et al., 1988).

First, a new control vector is considered in terms of a nonsingular transformation

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 25

	

1 	r aci 	,

	

u*(t) = Q 	
.(x)

.` (t, X) I_ - 113(t, X)u(t)
ax

(2.48)

where Q-1 (t, X)(aa/aX)B(t, X) is a nonsingular transformation, and Q(t, X) is an
arbitrary mxm diagonal matrix with elements q i(t, X) (i = 1, 	m) such that

inflqi (t, X)I > 0.

Using expression (2.48) in expression (2.40), the system dynamics becomes

= f(t, X) + B(t, X)1_
r aa(X)

B(t, X)
-1

Q(t, X)u * (t)
ax

If u* is selected such that

q i (t, X) u *: < - V o(X) f(t, X) 	ai (X) > 0

qi (t, X) u*i > - Vai (X) f(t, X) 	ai (X) < 0

(2.49)

(2.50-a)

(2.50-b)

then,

T (X)ã(X) <0
	

(2.51)

Expression (2.51) is the reaching condition for the system states to reach the sliding

mode surfaces a(X) = 0. On the sliding mode, the desired system dynamics can be

obtained. Also, the control input u(t) can be obtained from equation (2.48).

2.3.3.2 Reaching law method

In addition to the above diagonalisation method, the reaching law method (Gao and

Cheng, 1989; Gao and Hung, 1993) has been developed and proved to be efficient in

controller design. The reaching law is a differential equation which specifies the

dynamics of a switching function a(X). The differential equation of an asymptotically

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 26

stable a(X) is itself a reaching condition, i.e. a T (X)d(X) <0. In addition, by choice

of the parameters in the differential equation, the dynamic quality of VSC system in

the reaching mode can be controlled. A practical general form of the reaching law is

= —Q sgn(a) — Kh(a) 	 (2.52)

where

Q = diag[q,,• • •,q], q, > 0

sgn(a) = [sgn(a,),• • •,sgn(a m
K = diag[lc,,• • •, k], k, > 0

h(a) = [h i (a 1),•••,h m (a.)Ir
1 h 1 (1)> O, 	h 1 (0)=

Three practical special cases of (2.52) are given below.

1) Constant rate reaching

= Q sgn(a) 	 (2.53)

This law forces the switching variable a(X) to reach the sliding mode surfaces

a(X)=0 at a constant rate 	= —q 1 . The merit of this reaching law is its simplicity.

But, if q . 	too small, the reaching time will be too long. On the other hand, a q, too

large will cause severe chattering. In the following chapters of this thesis, a fuzzy

tuning algorithm for q, will be introduced to optimise the system performance.

2) Constant plus proportional rate reaching

= —Q sgn(a) — Ka 	 (2.54)

Clearly, by adding the proportional rate term —Ka, the system state is forced to

approach the sliding mode surfaces a(X)=0 faster when a is large. It can be shown

that the reaching time for X to move from an initial state X 0 to the sliding surfaces is

finite, and is given by

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 27

1 	kla. 1+q,
T = ln "° 	.

k 1 	q 1

3) Power rate reaching

6 = —1c 1 lada sgn(6 1), 	0< a <1,i =1,...,m 	(2.55)

This power rate reaching law increases the reaching speed when the state is far away

from the sliding mode surfaces a(X)=0, but reduces the rate when the state is near the

surfaces. The result is a fast reaching and low chattering reaching mode. Integrating

(2.55) from a, = c a, = 0 yields

1 T, = 	la I 1
- Wki 	(a), i = 1, m (2.56)

showing that the reaching time is finite.

The control law can be determined by the time derivative of a and the reaching law

(2.52), i.e.,

u =acY
aX

 B(t X)1 -1 r a' f(t, X) + Q sgn(a) + Kh(a)1
j Lax

-1
where the matrix [-a-CY 	is nonsingular. Lax

(2.57)

2.3.4 Robust control of nonlinear systems

In practical situations, the system dynamics of a nonlinear system is different from its

nominal system model due to parameter uncertainties. To represent parameter

uncertainties in the plant, the following state equation is considered (DeCarlo, 1988).

= [f(t, X) + Af(t, X, r(t)) I + [B(t, X) + B(t, X, r(t)) 11(0 (2.58-a)

where r(t) is a vector function of uncertain parameters.

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 28

In most of researches (Corless and Leitmann, 1981; Gutman and Palmor, 1982;

Peterson, 1985), the plant uncertainties Af and AB are assumed to lie in the image of

B(t, X) for all variables t and X (this is called "matching condition'). Then dynamic

equation (2.58-a) can be expressed as follows

= f(t, X) + B(t, X)u + B(t, X)e(t, X, r, u) 	 (2.58-b)

where e(t, X, r, u) represents system uncertainties.

DeCarlo et al. (1988) shows that if e(t, X, r, u) is bounded by a positive function p(t)

II e(t, X, r, u)11 2 	p(t) 	 (2.59)

and control input has the following form

where

U = Ueq +u n

u
eq = _ [B(t, X) 1

-1 a
[

cy
at
(X) ± a

a (x
))f(t, x) ax

BT(t, X) Vx V(t, X) 	A
Un — - 	 T 	 2

p(t x)
II B . (t, X) V,V(t, X) I I

(2.60-a)

(2.60-b)

(2.60-c)

A

p(t, X) = a + p(t, X)

(2.60-d)

[a6(t, X)]T
V xV(t, X) = 	 a(t, x)

ax (2.60-e)

then system state can reach the sliding mode surfaces cr(X) = 0, and the desired system

dynamics can be obtained by the suitable choice of the sliding mode parameters.

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 29

The results discussed in this section forms the foundation of the variable structure

control theory for nonlinear systems. Although there are many classes of nonlinear

systems, robustness and convergence of variable structure control systems may be

established based on the results in this section (Utkin, 1978; Young, 1978 and

DeCarlo et al., 1988).

2.4 Application to robot manipulators

A robotic manipulator is a typical nonlinear system. The investigations for the control

of robotic manipulators have not only improved the robotic system performance, but

also developed many new control techniques which have enhanced the modern control

theory. Many control schemes such as feedback control and adaptive control have

been developed for robotic manipulators. However, the variable structure control

technique is one of the most powerful techniques due to the fact that the variable

structure control can deal with systems with large uncertainties, bounded disturbances

and nonlinearities. In recent years, the designs of robust variable structure control

laws for rigid robotic manipulators that ensure robustness and asymptotic trajectory

tracking have been investigated by many researchers. Many robustness and

convergence results have been obtained by Young (1978, 1988), Morgan and Ozguner

(1985), Slotine and Sastry (1983), Yeung (1988) and Leung et al (1991). In this

section, the dynamics of the robotic manipulator and a robust variable structure

controller design using the reaching law method (Gao and Hung, 1993) will be

presented to highlight the main issues of the control scheme.

2.4.1 Dynamics of robotic manipulators

In the absence of friction and other disturbances, the joint space dynamics of an n-link

robotic manipulator can be written via the so-called Eular-Langrange equations as

(Spong and Vidyasagar, 1988):

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 30

dkj (q) 	+ 	fijk (q) 	+ 	(q) = T ic 	k = 1, 	n 	(2.61)

where dk . are the coefficients of the inertia matrix D(q), k(q) are the gravitational

forces and T ic are the input torques. The coefficients f of the coriolis and centrifugal

terms are defined as

ad ki ad,„ ad ii }
aq; 	aq; aq k

1
fijk = (2.62)

and f are known as Christoffel symbols.

It is common to write expression (2.62) in matrix form as

D(q) + F(q, 4 + G(q) '= 	 (2.63)

where the k,jth element of the matrix F is defined as

n 	AA 	 ad.. 	. f = I 	_adki _)(11
kJ 	2k. -_,

i=1 	oqi 	aqi 	aqk
(2.64)

and the component of G(q) is Ok .

Although the equation of motion (2.63) is complex and nonlinear for all but simple

robotic manipulators, it has several fundamental properties which can be exploited to

facilitate control system design (Ortega and Spong, 1989).

Property 1: The inertia matrix D(q) is symmetric, positive-definite, and both D(q)

and D(q)4 are uniformly bounded as a function of q.

Property 2: There is an independent control input for each degree of freedom.

Property 3: The Euler-Lagrange equation for the robotic manipulator is linear in the

unknown parameters. All the unknown parameters are constant (e.g. link masses, link

lengths, moments of inertia, etc.) and appear as coefficients of known functions of the

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 31

generalised coordinates. By defining each coefficient or a linear combination of them

as a separate parameter, a linear relationship results so that we may write equation

(2.63) as

D(q) 4 + F(q, q) 4 + G(q) = Y(q, q, 4)o = 	 (2.65)

where Y is an nxr matrix of known functions, known as the regressor, and q is a n

dimensional vector of unknown parameters as shown in Spong and Vidyasagar (1989).

It can be seen later that the manipulator system (2.63) can also be expressed into the

generalised form in expression (2.40). Therefore, the basic variable structure theory

can be used to design robust controllers and the structural properties mentioned in the

above can then be used to simplify controller designs.

2.4.2 A robust VSC controller design

Consider an n-link manipulator system with perturbations and disturbances described

by

D(q)4 + F(q, q)q + G(q) = 	w(q, q, p, t) 	 (2.66)

where p is an uncertain parameter vector, w(q,q, p, t) is the collection of all system

perturbations and external disturbances. The state variable is defined as

X = {q T T (2.67)

Then (2.66) can be put into the form

X = f(t, X) + B(t, X)u + v(X, p, t) 	 (2.68)

where

U = T,
0

v(X, p, t) = [
D -1 (q)w(X, p,

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 32

f(t, X) = 	
(q)(F(q, q)q + G(q))

1
' 	

B (t X) = [
(q)].

The arm is to track a desired motion Cl d (t). The output tracking error is defined as

= d 	e = [ET •11T (2.69)

The sliding mode surfaces are chosen as

a(e) = Ce = [A 11[]= Ac 	 (2.70)

Adopt the reaching law

= 	sgn(a) Ka

Taking the time derivative of (2.70) gives

(2.71)

eT=At+

=Ae+qd +D-I (Fq+G—w—u)
	 (2.72)

• Equating (2.71) and (2.72) and solving for the control u yields

u = D{Qsgn(a)+ Ka + Ae + q d } + Fq +G — w 	 (2.73)

All quantities on the right-hand side of (2.73) are known except the disturbance w,

which is unknown. To cope with this problem, define

w 1 =1:30 -1 w

and assume that w 1 is bounded by

(2.74)

(2.75)

Then replace w in (2.73) by —DW sgn(a) give following control law

u = D{Q sgn(a) + Ka + Ae + q d } + Fq + G + DT/ sgn(a)

Substituting (2.76) into (2.72) give

(2.76)

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 33

6 = —Q sgn(a) — Ka — w 1 — sgn(a) 	 (2.77)

Thus, the reaching condition a T6 < 0 is guaranteed.

This robust controller design is based on the bounding function estimation of the

system perturbations and external disturbances, and the exact system knowledge is not

required. However, the system performance and control quality depend very much on

the choice of sliding mode parameter Q and the estimation of bounding function of the

unknown parts. Excessive control torques and severe control chattering may be easily

caused by over estimation of control parameters.

In order to overcome these shortcomings, in chapter 5 of this thesis, fuzzy logic

technology will be used to dynamically adjust the sliding mode parameter Q, and

control chattering will be reduced dramatically. In chapter 8, a robust adaptive control

scheme for robots is established where neural network has been constructed to

adaptively learn the bounding function of the unknown parts of the robot system.

2.5 Concluding remarks

The basic theory of variable structure control systems has been briefly surveyed in this

chapter. Because the variable structure theory has many good features, it can be

easily used to control linear or nonlinear systems. Although the robustness can be

achieved without the exact knowledge of the control system, the system performance

and control quality depend very much on the choice of sliding mode parameters and

the estimation of bounding functions of the unknown parts. In practice, excessive

control input and severe control chattering which may excite unmodelled high-

frequency dynamics are highly undesirable. In the following chapters of this thesis,

several new and improved robust variable structure control schemes of nonlinear

systems will be proposed by combining conventional methods and recently developed

CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 34

techniques, namely fuzzy logic and neural networks, to improve the system

performance and enhance the control quality.

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 35

Chapter 3

Fuzzy Logic and Fuzzy Logic Control

3.1 Introduction

Zadeh (1965) published his first paper on a novel way of characterising

nonprobabilistic uncertainties, which he called "fuzzy sets". Fuzzy logic and fuzzy set

theory has now evolved into a fruitful area containing various disciplines, such as

calculus of fuzzy if-then rules, fuzzy graphs, fuzzy interpolation, fuzzy topology,

fuzzy reasoning, fuzzy inference systems, and fuzzy modelling. The applications,

which are multi-disciplinary in nature, include automatic control, consumer

electronics, signal processing, time-series prediction, information retrieval, database

management, computer vision, data classification, decision-making, and so on.

Within the diverse areas of fuzzy logic applications, control is the area to which fuzzy

systems are most widely applied today. The genesis of fuzzy logic control was a paper

by Chang and Zadeh (1972) outlining the basic approach. An important landmark in

this development was the introduction of linguistic 'variables whose values are

linguistic terms rather than numbers (Zadeh, 1973). Fuzzy technology, Zadeh

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 36

explained, is a means of computing with words for which the role model is the human

ability to reason and make decisions without the use of numbers (Zaheh, 1996). The

first implementation of these ideas was described in a paper by Mamdani (1974). The

key principle underlying fuzzy logic control is based on a logical model which

represents the thinking process that an operator might go through to control the system

manually. The viability of fuzzy logic control has been demonstrated through wide-

spread applications (Schwartz et al, 1994). Fuzzy logic control can be considered as

one of the intelligent control techniques wherein engineering knowledge is reflected in

the controller. It has been found that such controllers have definite advantage over the

traditional HD controllers in that they are more robust with respect to structured or

unstructured uncertainties. The linguistic characteristics of fuzzy control provide a

very good approach to account for the sensor noise, unmodelled dynamics, parameter

variations, disturbances and nonlinearities (Lee, 1990).

It is known that the classical P1D controllers do not work very well for the case of

nonlinear control and, even for linear control they typically have to be redesigned

according to a new set of basic system parameters. Adaptive controllers have been

proposed for these systems. By means of some tuning scheme, the controller

parameters can be continuously adjusted to improve robustness against any changing

environment. Auto-tuning (Astrom et al ,1992) or auto-calibration (Voda and Landau,

1995) of controllers for plants with uncertainties is useful although some knowledge

of the process is needed. Tuning the controller parameters to achieve better

performance can be accomplished by means of fuzzy logic (Tseng & Hwang, 1993).

A smooth control signal can be achieved by fuzzy tuning of the discontinuous control

component in the sliding mode control (Mei & Man et al, 1998), where control

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 37

chattering is an undesirable disadvantage inherent to conventional sliding mode

control.

In recent years, fuzzy modelling of controlled systems has received much attention. A

number of researchers (Feng and Cao et al, 1997; Tanaka et al, 1996) proposed fuzzy

global systems with stability analysis based on Takagi-Sugeno fuzzy inference model.

Mei & Man et al (1998) presented a fuzzy modelling and robust tracking control

scheme for a class of nonlinear systems by fuzzifying over a number of operating

points within the interested range.

Despite a large number of technical publications focusing on fuzzy systems, there

exist some doubtful opinions on fuzzy controllers mainly due to some

misunderstanding about fuzzy control. Attempts have been made to clear up this

misunderstanding, e.g. Jager (1995). It is, therefore, of interest to start the notable part

of this thesis, with a short primer on fuzzy set theory, fuzzy reasoning, and fuzzy logic

control, using fuzzy tool in combination with other techniques.

The arrangement of this chapter is as follows. Section 3.2 gives the definitions of

fuzzy sets, fuzzy set operations, fuzzy relation and compositions, and linguistic

representations. Section 3.3 describes fuzzy logic and fuzzy reasoning. Section 3.4

introduces fuzzy logic control.

3.2 Fuzzy set theory

Due to the rapid growth of fuzzy logic literature, it is difficult to present a

comprehensive survey of its wide applications. A lot of them are too theoretical to be

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 38

applied to engineering problems. The purpose of this section is to briefly summarise

the basic concepts that are necessary in understanding fuzzy logic and fuzzy inference

from a practical viewpoint.

3.2.1 Fuzzy sets

A universe of discourse (or domain of definition) U is the set of allowable values for a

variable, denoted generically by {x} which could be discrete or continuous, where x

represents the generic element of U.

A crisp set A in a universe of discourse U can be defined as A = {xi (x)} where

/A A (x) is, in general, a condition by which x e A. If we introduce a zero-one

characteristic function such that A = 02 A (x) = 1 if x e A and // A (x)= 0 if x 0 A) then

/L A (X) is called a membership function for A.

A fuzzy set F in a universe of discourse U is characterised by a membership function

kt F (x) which takes on values in the interval [0, 1]. A fuzzy set may be viewed as a

generalisation of the concept of an ordinary (i.e. crisp) set whose membership function

only takes two values {0, 1}. A membership function for a fuzzy set F provides

a measure of the degree of similarity of an element in U to F. A fuzzy set F in U may

be represented as a set of ordered pairs of a generic element x and its grade of

membership function: F = ((x„ u F (x))1x ctn. When U is continuous, F can be

written concisely as F = fu ,uF(x) Ix, where the integral sign denotes the collection of

all points x E U with associated membership function I, F (x). When U is discrete, F is

represented as F= E ttF (xxx„ where the summation sign stands for the union of
XiEU

(x, I F (x)) pairs. Similarly, the slash "I" in these expressions is only a marker and

70 90 	100 	weight(kg) 40 	50

Degree of membership

LIGHT HEAVY

0.5
crossover pclint

0

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 39

does not imply division. Note that in fuzzy sets, an element can reside in more than

one set to different degrees of similarity. This cannot occur in a crisp set theory.

The support of a fuzzy set F is the crisp set of all points x E U such that /.2 F (x)> 0.

The element x E U at which ki F (x) = 0.5 is called the crossover point. For example,

the formal domain for normal weight might be 40 to 100 kg. However, the fuzzy sets

HEAVY and LIGHT can have non-zero membership grade at 50 to 90 kg with a

crossover point at 70 kg, as shown in Fig. 3.1. A fuzzy set whose support is a single

point x in U with /./ F (x) =1 is referred to as fuzzy singleton. In a singleton output

space, fuzzy set membership functions are represented as single vertical points.

Figure 3.2 illustrates how a variable SPEED can be composed on individual single

points.

support

universe of discourse

Fig. 3.1 Fuzzy variable "weight"

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 40

A 11(x)

1

0 	■
40 	60 	80 speed(km1 h)

Fig. 3.2 Singleton representation.

3.2.2 Set theoretical operators (Lee, 1990)

Let fuzzy sets A and B in U be described by their membership functions ,u A (x) and

14, B (x). The set theoretic operations of union, intersection and complement for fuzzy

sets are defined as following.

Union (disjunction): The membership function R AL, B of the union A u B (A OR B) is

pointwise defined for all x E U by

AuB(x) =max(R A (x), 1u 8 (x)} 	 (3.1) P

Intersection (conjunction): The membership function ,L1An/3 of the intersection A n B

(A AND B) is pointwise defined for all x E U by

ktiar,B(x)= min{,u A (x), ,u 8 (x)} 	 (3.2)

Complement (negation): The membership function R A of the complement of a fuzzy

set A, -A (NOT A), is pointwise defined for all X E U by

,u-A (x) = 1 - RA (x) 	 (3.3)

10

0.8

0.6

0.4

0.2

0
o 5

(a)

0.8

0.6 -

0.4 -

0.2 -

0
o

1

0.8

0.6

0.4

0.2

0
o

5
(b)

5
(d)

10

10

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 41

Fig. 3.3 illustrates these three basic operations: a) illustrates two fuzzy sets A and B,

b) is the complement of A, c) is the union of A and B, and d) is the intersection of A

and B.

Fig. 3.3 Operations on fuzzy sets: (a) two fuzzy sets A and B; (b) A;
(c) AuB;(d) AnB.

Note that other consistent definitions for fuzzy AND and OR have been proposed in

the literature under the names "T-norm" and "T-conorm" operators (Mendel, 1995),

respectively.

T-norm: a t-norm, denoted by *, is a two-place function from [0, 1] x [0, 1] to [0, 1],

which includes fuzzy intersection, algebraic product, bounded product, and drastic

product, defined as

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 42

mil-0,A,

xY,
max(0, x + y — 1},
x if y = 1
yif x=1 ,

0 if x, y <1

fuzzy intersection
algebraic product
bounded product

drastic product

x* y =

where x, y E [0,1] .

T-cononn: A t-conorm, denoted by ®, is a two-place function from [0, 1] x [0, 1] to

[0, 1], which includes fuzzy union, algebraic sum, bounded sum, and drastic sum,

defined as

x@y=

- max{x, y}, 	 fuzzy union
x + y— xy, 	 algebraic sum
minfl, x + yl , 	bounded sum
x if y = 0
y if x = 0 	 drastic sum

‘. lifx,y>0

where x, y e [0,1].

3.2.3 The extension principle

The extension principle is a tool for generalising crisp mathematical concepts to fuzzy

sets. It has been extensively used in the fuzzy literature.

The extension principle: Let U and V be two universe of discourse and f be a mapping

from U to V. For a fuzzy set A in U, the extension principle defines a fuzzy set B in V

by

11 B (Y) = suPxEr t (y) [UA (x)]
	

(3.4)

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 43

That is, ,u B (y) is the superium of At A (x) for all x E U such that f(x)=y, where

y E Vand we assume that f -1 (y) is not empty. If f -1 (y) is empty for some y E V,

define /4 8 (y)=0.

3.2.4 Fuzzy relations and their compositions

Cartesian product: If 	An are fuzzy sets in 	, respectively, the Cartesian

product of A1 ,..., An is a fuzzy set in the product space u, x...xu with the membership

function

YA I x...xA„ 	= mintgA, 	(xn)1
	

(3.5a)

Or

(x i ,. ..,x) = 	(x,)...,uAn(xn)
	

(3.5b)

Fuzzy relations: Fuzzy relations represent a degree of presence or absence of

association, or interconnection between the elements of two or more fuzzy sets. An n-

ary fuzzy relation is a fuzzy set in u,x...xu„ and is expressed as

x..xu = ((x 1 ,...,), /4 R ((x 1 ,...,x) E U 1 x...xUn 1. 	(3.6)

Compositions: Because fuzzy relations are fuzzy sets in the product space, set

theoretic and algebraic operations can be defined using operators for fuzzy union,

intersection and complement. Let R and S be fuzzy relations in U x V. The

intersection and union of R and S, which are compositions of the two relations, are
defined as

Rns (x, =

and

ktRus (x, Y) =

(3.7a)

(3.7b)

respectively, where * is any t-norm, and CI is any t-conorm.

y E V 	 Z E W X E U

	p.
(x, • Ps(y,

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 44

Next, consider the composition of fuzzy relations from different product space that

share a common set. If R and S are two fuzzy relations in U x V and V x W,

respectively, the sup-star composition of R(U x V) and S(V x W) is a fuzzy relation

denoted by R o S(U x V) and is defined by

Ro S = {(x,y), SUpLu R (x,Y)* ius(Y,z)l, x EU, y E V, Z E 	 (3.8)
yEV

where* could be any operator in the class of t-norm (the sup-product is most

commonly used). When U, V and W are discrete universe of discourse, the sup

operation is the maximum. Fig. 3.4 depicts a block diagram for the sup-star

composition.

Fig. 3.4. Block diagram interpretation for the sup-star composition.

Suppose fuzzy relation R is just a fuzzy set, then it R (X , y) becomes it R (X) and V=U,

consequently, sup[kt R (X, y)* s (y,z)]= 	R (X)* s (y,z)]. Thus, when R is just a
yEV 	 XEU

fuzzy set, the membership function for R o S is

■11 Ros (Z) = SUPU R (X)* S (Y Z)]
	

(3.9)
XEU

Fig. 3.5 represents the block diagram interpretation for the sup-star composition when

the first relation is just a fuzzy set.

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 45

V = U 	 Z E W

(x) 	 ,us(y,z)

J1-1 Ros(x , z)

Fig. 3.5. Sup-star composition when V = U.

3.2.5 Linguistic representation

A. Linguistic variables

The use of fuzzy sets provides a basis for a systematic way for the management of

vague and imprecise concepts. According to Zadeh (1975), in retreating from

precision in the face of overpowering complexity, it is natural to explore the use of

what might be called Linguistic variable, i.e., variables whose values are not numbers

but words or sentences in a natural or artificial language. Fuzzy sets can be employed

to represent linguistic variable. Consider a real line as a continuous universe of

discourse U. A fuzzy number F in U is a fuzzy sets which is normal and convex, i.e.,

max kt F (X) = 1
x€11

(3.10a)

F (Axi + 	A)x2) ?_ 	(x i), P F (x 2)), x, , X2 E u, E [OM. 	(3.10b)

A linguistic variable can be regarded as a variable whose value is a fuzzy number or

whose values are defined in linguistic terms or labels. A linguistic variable is

characterised by its name u; the term set of u, i.e., the set of terms T(u) of linguistic

values of u with each value being a fuzzy number defined on U; a syntactic rule for

generating the names of values of u; and a semantic rule for associating with each

value its meaning. For example, let SPEED (u) of a car be linguistic variable. It can be

decomposed into the following set of terms T(u)={ slow, medium, fast}, where each

term is characterised by a fuzzy set in the universe of discourse U 40 km/h, 100

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 46

km/h]. "Slow" speed might be interpreted as "a speed below about 40 km/h",

"medium" as "a speed close to 60 km/h", and "fast" as "a speed above 80 km/h".

These terms can be characterised as fuzzy sets whose membership functions are

shown in Fig.3.6. A vertical line from any measured value of speed intersects at most

two membership functions. So, for example, a speed of 45 km/h resides in the fuzzy

sets slow and medium to a similarity degree of 0.75 and 0.25, respectively.

Pt speed

1.0

0
40 	60 	80 	Speed (km/h)

Fig. 3.6 Membership functions of three fuzzy sets, namely, "slow",
"medium", "fast" for the speed of a car.

B. Hedges: Linguistic modifiers

A Linguistic hedge or modifier is an operation that modifies the meaning of a fuzzy set

or a term. Hedges can be viewed as operators that act upon a fuzzy's set membership

function to modify it. Hedges play the same role in fuzzy modelling system as adverbs

and adjectives do in a nature language. Accordingly, the number and order of hedges

are significant, e.g. not very large and very not large relates to two different

interpretations. A representative collection of commonly-used hedges with their

effects is contained in Table 3.1 (Cox, 1994).

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 47

Hedge Meaning

about, around, near, roughly Approximate a scaler
above, more than Restrict a fuzzy region

almost, definitely, positively Contrast intensification

below, less than Restrict a fuzzy region

vicinity of Approximate broadly

generally, usually, normally Contrast diffusion

neighbouring, close to Approximate narrowly

not, not-so, not really Negation or complement

quite, 	rather, 	somewhat, Dilute a fuzzy region

more-or-less

very, extremely Intensify a fuzzy region

Table 3.1 Fuzzy linguistic hedge and their approximate meanings.

Power hedges (Zimmermann, 1985): The power hedges operate on grades of

membership and represented by the general operator:

,upow (u) (x) Diu (x)1P , (3.11)

where p is a parameter specific to a certain linguistic modifier. The exponent p used in

the hedge membership function is quite arbitrary, it can be changed depending on our

interpretation of the hedge. If p=1, fuzzy set is not modified. Two cases are

distinguished:

1)Concentration: p >1, fuzzy set is concentrated. Because membership functions are

assumed to be normalised, the operation of concentration leads to a membership

function that lies within the membership function of original fuzzy set; both have the

same support, and the same membership values where the value of the original

membership function equals unity or zero.

The modifier very corresponds to p=2. For example, if slow speed is fuzzy set with
membership function /I s (x) , then very slow speed and very very slow speed are fuzzy

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 48

sets with membership function La s (x)] 2 , [It s (x)] 4 , respectively. An artificial hedge

providing milder degree of concentration is the plus, whose membership function is

2) Dilation: p<1, fuzzy set is dilated. The operation of dilation leads to a membership

function that lies outside of the membership function of the original fuzzy set; both

have the same support, and the same membership values where the value of the

original membership function equals unity or zero.

The modifier more or less corresponds to p=1/2. For example, more or less slow speed

is a fuzzy set with membership function [u 5 (x)] "2 . Another hedge quite useful is the

minus, whose membership function is p,„„nus(u) (x)

3.3 Fuzzy logic and fuzzy reasoning

Fuzzy logic is a logical system that is much closer in spirit to human thinking and

natural language than traditional logic systems. As a calculus of compatibility, fuzzy

logic is quite different from probability which is based on frequency distributions in a

random population. Fuzzy logic describes the characteristic properties of continuously

varying values by associating partitions of these values with a semantic label (Cox,

1994). Fuzziness is different from probability. The laws of contradiction and excluded

middle are broken in fuzzy logic but are not broken in probability. Conditional

probability, which must be defined in probability theory, can be derived from first

principles using fuzzy logic (Kosko, 1992). Much of the description power of fuzzy

logic comes from the fact that these semantic partitions can overlap (see Fig. 3.6)

corresponding to the transition from one term to the next.

Fuzzy set serves as the basis for fuzzy logic. Fuzzy set theory starts with some basic

concepts coming from crisp set theory, fuzzy logic also begins by borrowing some

crisp logic notions. In crisp logic, a proposition is an ordinary statement involving

terms already defined, and must be meaningful to call it "true" or "false". A tautology

is a proposition formed by combining other propositions p, q, r,... .

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 49

Let us start with the basic primitives of fuzzy logic: fuzzy propositions. A fuzzy

proposition represents a statement like "speed (u) is SLOW", where SLOW is a

linguistic label, defined by a fuzzy set on the universe of discourse of speed. Fuzzy

propositions connect variables with linguistic labels defined for those variables. As in

classical logic, fuzzy propositions can be combined by using logical connectives and

and or, which are implemented by t-norms and t- conorms, respectively.

Fuzzy logic provides a means of modelling human decision making within the

conceptual framework of fuzzy logic and approximate reasoning (or fuzzy reasoning).

In fact, reasoning with fuzzy logic is based on fuzzy rules which are expressed as

logical implications, i.e. in the forms of IF-THEN statements. In fuzzy logic, the

definition of a fuzzy implication may be expressed as a fuzzy implication function.

Various implication functions can be classified into three main categories: fuzzy

conjunction, fuzzy disjunction, and fuzzy implication. A fuzzy rule "IF u is A, THEN v

is B", is represented by a fuzzy implication and is denoted by A --> B, where A and B

are fuzzy sets in the universes U and V with membership functions /I A and u 8 ,

respectively. Membership function of the fuzzy implication, denoted by ,u 8(X0))1

measures the degree of truth of the implication between x E U and y E V.

Fuzzy conjunction: The fuzzy conjunction is defined for all x E U and y E V by

A —> B=A*B , 	 (3.12)

where * is an operator representing a t-norm.

Fuzzy disjunction: The fuzzy disjunction is defined for all x E U and y E V by

A —> B=A0B 	 (3.13)

where CI is an operator representing a t-conorm.

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 50

Fuzzy implication: An extension is made by determining the fuzzy versions of some

tautologies of p—>q in crisp logic, e.g. -pvq,-pv pq, and (- pA -q)vq. Thus,

the fuzzy implication is associated with the corresponding families of fuzzy

implication functions:

(1) Material implication:

A —> B =not A (-) B 	 (3.14)

(2) Propositional calculus:

A —> B =not ACI (A* B) 	 (3.15)
--,

(3) Extended propositional calculus:

A— B=(not A* not B) ,0 B 	 (3.16)

In traditional propositional logic there are two very important inference rules, Modus

Ponens (MP) and Modus Tollens (MT). Modus ponens is associated with the

implication [A —> B]:

Consequence Premises

Premise 1: x is A
Premise 2: If x is A THEN y is B

y is B

In terms of propositions p and q, modus ponens is expressed as (p A (p —> q))—> q.

Modus tollens is associated with the implication [(not A --> not B)

Consequence Premises

Premise 1: y is B
Premise 2: If x is A THEN y is B

x is not A

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 51

In terms of proposition p and q, modus tollens is expressed as (— q A (p —> 	p.

In fuzzy logic, modus ponens is extended to Generalised Modus Ponens (GMP):

Consequence Premises

Premise 1: x is A*
Premise 2: If x is A THEN y is B

y is B*

and modus tollens to Generalised Modus Tonens (GMT):

Consequence Premises

Premise 1: y is B*
Premise 2: If x is A THEN y is B

x is A*

where A, A*, B, B* are fuzzy sets introduced via linguistic variables x, y (Dubois and

Prade, 1984). Two more families of fuzzy implication function obtained from GMP

and GMT are:

(4) Generalisation of modus ponens:

A —> B=supfc E [0,1], Mc B1 	 (3.17)

(5) Generalisation of modus tollens:

A —> B=inflt E [0,1], Bt AI 	 (3.18)

Based on the definition (3.12-3.18), many membership functions for fuzzy implication

may be generated by employing appropriate triangular norms and conorms. For

example, kt A-o B (X v) can be found from (3.14) as

=

A,B (x, y) = 1- 	A (x),1– kiB(Y)1,

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 52

Or

PA,B(x, y) = 1- IL A (x)(I - ilB(Y)) 	 (3.19c)

with appropriate operators for the t-norm * and t-conorm CI . From the fuzzy

conjunction (3.12), membership function for minimum implication, proposed by

Mamdani (1974):

P A-4 8 (X ' Y) min[11 A (x),/-1 B (Y)]

and product implication, introduced by Larsen (1980):

il A,B (x, Y) =- ItA (x),/-tB (Y)

(3.20)

(3.21)

can be obtained using minimum and algebraic product, respectively. It can be shown

that membership functions (3.19a-c) agree with the accepted propositional logic

definition of implication, demonstrated in Table 3.2 while neither Mamdani

membership function (3.20) nor Larsen one (3.21) does. As shown in Table 3.2,

minimum and product inferences preserve cause and effect, i.e. these implications are

fired only when the antecedent and the consequent are both true.

kip (x) 11 , (x) lip,, (x, Y) min[PLA (x),11 8 (Y)] 1-1 ,1 (x),u B (Y)

.
-
.
1

 I
-
I
 C

) v
-

I

1 1

...-

CD
 0 0

0 0
0 0

Table 4.2 Implication with propositional logic, and min and product inference.

This is why minimum and product inferences are the most widely used inferences in

engineering applications of fuzzy logic, and referred to as engineering implications

(Mendel, 1995).

A comprehensive comparison between the available fuzzy implication rules is given in

Lee (1990), based on some intuitive criteria for choosing a fuzzy implication that is as

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 53

close as possible to the input truth value function value. Although the minimum

operation rule (3.20) and the product operation rule (3.21) of fuzzy implication do not

have a well-defined logic structure, it is shown (Lee, 1990) that they are well suited

for approximate reasoning, especially for the generalised modus ponens. The GMP,

reducing to modus ponens when A* =A, B* =B, is closely related to the forward data-

driven inference, particularly used in control system. The GMT, reducing to modus

tollens when A* =not A, B* =not B, is closely related to the backward goal-driven

inference, commonly used in expert systems.

Fig. 3.7 illustratively interprets that GMP is a fuzzy composition where the first fuzzy

relation is merely a fuzzy set, A* (see Figure 3.5). Consequently, kt (y)can be

obtained from the sup-star composition (3.9):

= sup [14 ,1.(x)*YA-,B(x,Y)] 	 (3.22)
xeA*

where max-min or max-product formula can be stated for modus ponens. Note that in

crisp logic, a rule is fired only if the first premise is exactly the same as the antecedent

of the rule, and the result of such rule-firing is the rule's actual consequent. On the

other hand, a fuzzy rule is fired so long as there is a non zero degree of similarity

between the first premise and the antecedent of the rule, and, the result of such rule-

firing is a consequent that has a non zero degree of similarity to the rule's consequent.

u is A*

IF x is A THENy is B

Fig. 3.7 Sup-star composition when V = U

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 54

3.4 Fuzzy logic control

Fuzzy logic control emerged in the 1970s following the work of E.H. Mamdani and

colleagues in England, who developed the first fuzzy rule-based control system

implemented on a laboratory-scale steam engine. The paradigmatic solution developed

by Mamdani (1974) led to many successful applications in a broad range of areas,

ranging from consumer products to industrial process control to automotive

engineering. Using fuzzy logic as an effective means of capturing approximate,

inexact nature of the real world, a fuzzy logic controller provides an algorithm which

can convert the linguistic control strategy based on expert knowledge into an

automatic control strategy. In particular, the methodology of fuzzy logic control has

been proven through recent successful applications (Schwartz et al., 1994) to be

superior to conventional control when the processes are too complex, or when the

available sources of information are interpreted imprecisely, or uncertainly. In this

sense, fuzzy logic control may be viewed as a rapprochement between conventional

control and human-like decision making techniques for improving robustness of

control systems. This section gives a brief summary of the prolific literature on fuzzy

logic control.

Fuzzy inference is the actual process of mapping from a given input to an output using

fuzzy logic. A fuzzy logic controller (FLC) is a fuzzy inference system which maps an

input data vector into a scalar control output. Fig. 3.8 depicts a fuzzy control system,

where the elements of the fuzzy logic controller are rules, fuzzifier, inference engine,

and defuzzifier.

V
Plant

FLC

Fuzzifier

Rule Base

Defuzzifier

Inference Engine

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 55

Once the fuzzy rules have been chosen, an FLC can be considered as a nonlinear

mapping from inputs (error e, change of error Ae) to outputs (control signal u). This

mapping can be expressed quantitatively as u=f(e, Ae). The design of an FLC is how

to obtain explicitly this relation so that the control requirements are satisfied.

Rules may be provided by experts or can be extracted from numerical data. In either

cases, engineering heuristic rules are expressed as a collection of IF-THEN statements.

Each rule consists of linguistic variables, linguistic terms, logic connections, and

implications. Each linguistic term is fuzzy set associated with its fuzzy membership

function.

Fig. 3.8 3.8 Block diagram of a fuzzy logic control system.

The fuzzifier maps crisp number into fuzzy sets of a linguistic variable. The inference

engine of an FLC maps fuzzy sets into fuzzy sets in the way fuzzy rules are combined.

There are many different fuzzy logic inference procedures but only a few of them are

Input Membership Functions Fuzzification

Fuzzy Inputs

Rules Rule Evaluation

Fuzzy Outputs

Defuzzification Output Membership Functions

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 56

commonly used in engineering applications of fuzzy logic. The defuzzifier maps

output sets into crisp numbers corresponding to the control action u.

Crisp inputs

Crisp Output

Fig. 3.9 Fuzzy inference process

A fuzzy logic controller can be viewed as a system employing a fuzzy inference

process to produce crisp control output from fuzzy rules for given input values. The

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 57

inference process is the internal mechanism involving three steps: fuzzification, rule

evaluation, and defuzzification, as shown in Fig. 3.9.

A. Fuzzification

In general, fuzzification is the process of translating real world values of an input

variable (input values) to the grades of its input label (input grades). Fuzzification

involves measuring the values of input variables, performing a scale mapping to

transfer the range of values of input variables into corresponding universes of

discourse, and converting input data into suitable linguistic values by means of labels

(terms of a linguistic variable) of fuzzy sets. The input variables of an FLC, which can

be a voltage, current, speed, or position in motion control systems, are usually the

control error, e, or its change, Ae . Symbolically, the process of transforming crisp

data into fuzzy sets can be represented by

x = fuzzifier(xo) 	 (3.23)

where the xo is a crisp input value (e or 1\e), x is a fuzzy set, and fuzzifier is a

fuzzification operator. In order to develop useful rules, appropriate membership

functions associated with each label should be well chosen. Therefore, it is necessary

to have a good intuitive fell for the nature of the variables. The defining membership

functions for all variables would be based on designer's intuitive assumptions, just as

the rules themselves are. The fuzzification process also provides necessary conditions

for defining linguistic control rules and fuzzy data manipulation in an FLC, including

the discretisation/normalisation of the universe of discourse, fuzzy partition of the

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 58

input and output space, and choice of the appropriate membership function of a

primary fuzzy set.

Discretisation of a universe of discourse is the process of quantising it into a certain

number of segments (quantisation levels) with corresponding labels and thus, forming

a discrete universe. A fuzzy set is then defined by assigning grade of membership

values to each label. A scale mapping is needed to transform measured variables into

values in the discretised universe. The choice of quantisation levels determines how

fine a control can be obtained. Normalisation of a universe requires discretising it into

a finite number of segments. Each segment is mapped into a suitable segment of the

normalised universe which normally is the closed interval [0, 1] or [-1, 1].

In general, a linguistic variable is associated with a term set. Each term in the term set

is defined on the same universe of discourse. A fuzzy partition, the, determines the

number of terms in a term set. This number affects the granularity of the fuzzy control.

Fig. 3.10 shows a fuzzy partition in the normalised universe [-I, 1] with seven terms:

NB, NM, NS, ZE, PS, PM, AND PB, which means negative big, negative medium,

negative small, zero, positive small, positive medium, and positive big, respectively.

A membership function (MF), which defines how each point in the input space of a

label is mapped to a degree of membership between 0 and 1, can principally take any

nonlinear or piece-wise linear form. The latter is either a triangular or trapezoidal

functions as shown, for example, in Fig. 3.6 and 3.10. They are the simplest and most

commonly-used in engineering applications. The vertex of a triangular fuzzy label

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-1 -0.8 	-0.6 	-0.4 	-0.2

	
0.2
	

0.4
	

0.6
	

0.8

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 59

usually corresponds to the mean value of a data set, while the base is twice the

standard deviation of the data set.

-1 0 1

Fig. 3.10 A fuzzy partition representation

Fig. 3.11 Gaussian MFs: (a) a = 0.15, c = 0.5;

(b) c =0.15, c 1 = 0.5 , a, =0.15, c 1 =0.5

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 60

Crisp value can be converted into a fuzzy singleton (see Fig. 3.2) within a certain

universe of discourse. This kind of membership function is widely used in fuzzy

control applications because it is natural and easy to implement. The other commonly-

used functions, with universe of discourse scaled to [-1, 1], are described below. The

Gaussian MF, determined by

(X - C)2
) ki(x, o- ,c) = exp(

2c 2
(3.24)

where a and c are two parameters, has the forms of Fig. 3.11(a). A combination of two

Gaussian membership functions gives the two-sided form of Fig.3.11 (b).

The generalised bell-shape MF with the form of Fig.3.12 is described by

y(x,a,b,c)=
1

(3.25) 2/, '

1+ X - C

a

where a > 0, b > 0, and c > 0. Both Gaussian and bell-shape membership functions

have the advantage of being smooth and nonzero at all points, however they cannot

specify asymmetry.

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 61

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

O
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig.3.12 Bell MF: a=0.2, b=2, c=0.6

The sigmoid can be used to specify asymmetric membership functions, which are

important in certain applications. Fig. 3.13 (a) plots the form of an open right

sigmoidal ME defined by

1
1+ exp(-a(x-c))
	 (3.26)

where a > 0 and c > 0. An asymmetric and closed (i.e. not open to the left or right) M

can be synthetised by the difference of two sigmoidal functions as represented in Fig.

3.13(b).

For fuzzy control applications, triangular and trapezoidal functions seem to perform as

well in practice as those based on some other forms of membership functions, and, in

many case, are simpler to implement. It would be an interesting psychological

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 62

problem to investigate whether or not triangular membership functions are as accurate

as some other forms in expressing intuitive concepts of fuzzy numbers (Schwartz et

al., 1994).

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Fig.3.13 Sigmoidal MFs: (a) a=20, c=0.4; (b)al=a2=25, c1=0.4, c2=0.7

B. Rule evaluation

Rule evaluation is the process of obtaining the grades of output labels (output grades)

from input grades. The rule evaluation process is mainly important in the design of an

FLC. It involves a fuzzy rule base and an inference unit. The rule base characterises

the control goals and control strategy of the domain experts by means of a set of

linguistic control rules. As the kernel of an FLC, the inference unit is capable of

simulating human decision making based on fuzzy concepts and of inferring fuzzy

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 63

control actions employing fuzzy implication and rules of inference in fuzzy logic.

Based on expert knowledge and fuzzy reasoning, the rule base of an FLC can be

formatted in fuzzy conditional statements as follows:

R, : IF (set of conditions) THEN (set of consequences), (i=1,2, .,n) 	(3.27)

where the antecedents and the consequents of these rules are associated with linguistic

values (labels). A Fuzzy control rule is a fuzzy conditional statement in which the

antecedent is a condition determined in an application domain and the consequent is a

control action for the plant. A rule base is normally formed by a set of fuzzy control

rules combined by using the sentence connectives and and also. In most FLCs, the

sentence connective and is usually implemented as a fuzzy conjunction in a Cartesian

product space, in which the underlying variables take values in different universes of

discourse. When the ordering of the fuzzy rules are immaterial, the sentence

connective also is used with the associated properties of commutativity and

associativity. From a practical point of view, the union operator is normally used for

the connective also for constructing fuzzy models (Lee, 1990). The overall system

behaviour can then be characterised by a single fuzzy relation R which is the

combination of the fuzzy relations R1 . Symbolically,

R = 	 (3.28)

where also represents a sentence connective.

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 64

In general, there are four modes of deriving fuzzy control rules: from expert

experience and control engineering knowledge, from human operator's control

actions, from the fuzzy model of a process, and from learning. A fuzzy control rule

normally has the form of a fuzzy conditional statement relating the state variables in

the antecedent and the control action in the consequent. Most of FLCs employ

engineering knowledge and experience which are expressed in the language of fuzzy

IF-THEN rules based on an introspective verbalisation of human expertise or an

interrogation of experienced experts or operators. Many industrial control systems can

be empirically controlled by skilled human operators without any quantitative models

in mind. As pointed out by Sugeno (1985), in order to automate such processes, it is

expedient to express the operator's control rules as fuzzy IF-THEN rules using

linguistic variables. Fuzzy control rules can also be generated based on the linguistic

description of the dynamic charateristics of the plant known as fuzzy model. Although

this approach is somewhat more complicated, it yields better performance and

reliability, and provides a more attractable structure for dealing theoretically with the

FLC (see, e.g., Cao et al., 1994). Focusing on the ability to create fuzzy control rules

and to modify them based on experience (learning), Procyk & Mamdani (1979)

described the first self-organising controller with a hierarchical structure of two rule

bases: the general rule base and the "meta-rules". The latter exhibit human-like

learning ability to create and modify the general rule base according to the desired

overall performance of the system. Self-organising control (Shao, 1988) or fuzzy

learning systems with model reference (Kwong et al., 1995) and neuro-fuzzy approach

(Jang & Sun, 1995) have become increasingly interesting subjects for fuzzy control

studies.

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 65

C. Defuzzification

The defuzzification process is the final stage in a fuzzy reasoning system involving the

selection of a representative element based on the output fuzzy subset. Defuzzification

is a mapping from a space of fuzzy control actions defined over an output universe of

discourse into a space of real world (crisp) control actions. A defuzzification strategy

is aimed at producing a non-fuzzy control action. Many strategies have been proposed

in the literature; however their scientific bases are so inadequate that defuzzification is

considered as an art rather than a science (Mendel, 1995).

The most frequently used defuzzification strategy is the Centroid of Area, which is

defined as

f B(Y)dY y* 	s

fs ,u B(Y)dY
(3.29a)

where u 8 (y) is the aggregated output membership function, and S denotes the

support of ,u B (y) . This formula is reminiscent of the calculation of expected values

in probability distributions. For a discretised universe, summations replace

integrations in (3.29a):

13(YdY
Y* = j=1 	

EyBcy
J=1

(3.29b)

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 66

where n is the number of quantisation levels of the output. Other defuzzification

strategy arise for specific applications, which includes bisector of area, mean of

maximum, largest of maximum, and smallest of maximum, and so on.

The method using singletons(single vertical points) instead of fuzzy set membership

functions to describe output labels is referred to as Takagi-Sugeno fuzzy model while

the inference method discussed thus far using fuzzy sets to describe the output labels

is called Mamdani fuzzy model. In Takagi-Sugeno model, the aggregation step is no

longer necessary and the centroid of area defuzzification method is slightly simplified.

The centroid is calculated without a numerical integration of the entire fuzzy set

surface as in (3.29a). Instead, the domain value at each singleton is multiplied by the

height (truth membership value) of the singleton. This technique, in general, provides

a centroid equivalent to the centroid found by taking the area across an entire fuzzy

set. Because it is more compact and computationally efficient in representation than

the Mamdani model, the Tagagi-Sugeno fuzzy model has widely been applied to fuzzy

modelling and control of engineering systems (Feng et al., 1997; Mei and Man et al.,

1998).

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 67

X

2

0
0.45 0.38 0.527

Fig. 3.14 The Mamdani fuzzy inference system using min and max for fuzzy AND

and OR operators, respectively.

X

2

0

0

0
0.45 0.38 0.496

Fig. 3.15 The Mamdani fuzzy inference system using product and max for fuzzy AND

and OR operators, respectively.

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 68

Fig. 3.14 and 3.15 show the Mamdani fuzzy inference process with centroid of area

defuzzification method.

3.5 Concluding remarks

Fuzzy thinking has originated from a philosophical basis on indeterminism (McNeil

and Freiberger, 1993). An inherent uncertainty and unpredictability, spontaneity and

freedom, integrity and openness characterise the stunning complexity of our world and

life. That is why the way fuzzy thinking has emerged in order to grasp real world

complexity. As an introduction, this chapter provides an overview of fuzzy logic and

fuzzy logic control. Fuzzy sets, fuzzy set operations, and fuzzy linguistic

representation such as linguistic variables and linguistic modifiers (hedged) have been

briefly outlined. Fuzzy reasoning or approximate reasoning is considered from the

engineering viewpoint with IF-THEN fuzzy implications using Mamdani's minimum

inference and Larsen's product inference. A fuzzy logic controller, mapping an input

data vector into a scalar control output, normally comprises a rule base, fuzzifier and

defuzzifier. Commonly-used kinds of membership functions are described, focusing

on control applications. The prominent advantage of the fuzzy logic controller is that it

can effectively control complex ill-defined systems having nonlinearities, parameter

variations and disturbances. However, there also exist some impediments in the design

of the fuzzy logic controller. In general, fuzzy rules are obtained on the basis of

intuition and experience, and membership functions are selected by trial and error

procedure. Moreover, it is not easy to mathematically prove the system stability and

robustness due to linguistic expression of the fuzzy rules. Therefore, a systematic

design method of the fuzzy logic controller from which the stability and robustness

CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 69

can be clearly seen is to be explored (Lee, 1990). The following chapters will employ

fuzzy logic to establish a mathematical model for a class of nonlinear systems and also

enhance robustness and control quality of variable structure control systems.

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	70

Chapter 4

Fuzzy Modelling and Robust Tracking
Control

4.1 Introduction

In the design of modern and classical control systems, the first step is to establish a

suitable mathematical model to describe the behaviour of the controlled plant.

However, in practical situations, such a requirement is not feasible because the

controlled systems have high nonlinearities and uncertain dynamics, and simple linear

or nonlinear differential equations cannot sufficiently represent the corresponding

practical systems, and therefore, the designed controller based on such a model cannot

guarantee the good performance such as stability and robustness. During the last few

years, fuzzy logic control has been suggested as an alternative way to conventional

control techniques for complex nonlinear systems due to the fact that fuzzy logic

combines human heuristic reasoning and expert experience to approximate a certain

desired behaviour function (see e.g. Takagi and Sugeno, 1985; Cao et al., 1996; Wang

et al., 1996). However, the asymptotic error convergence and stability of the closed-

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	71

loop system may not be obtained due to the approximation error and uncertainties of

the fuzzy model.

Many kinds of fuzzy models for control processes have been developed since

Mamdani's (1974) paper was published. They can be classified into three kinds of

models, Composition Rule of Inference (Zaheh, 1973), Approximate Reasoning

Model (Nakanishi et al., 1993), Sugeno's Models such as Position type Model and

Position-Gradient type Model (Sugeno and Yasukawa, 1993). Most of these models

are expressed by a set of fuzzy linguistic propositions which are derived from the

experience of skilled operators or by fuzzy implication which locally represent linear

input-output relations of the system.

Most proposed conventional fuzzy models only consider the external behaviour of the

system, and can be considered as a function approximation. It is very difficult to

obtain a controller using those models. Even if the controller can be obtained by using

some trial and error procedures the behaviour of the closed-loop system, for example,

the stability of the system is still difficult to analyse. Also the number of rules increase

very quickly when the system becomes complex because every local rule is only

described by a constant. Therefore, the identification of these fuzzy models is still a

difficult problem because there are too many parameters in the membership functions.

In order to overcome the disadvantages of conventional fuzzy models, we developed a

fuzzy tracking dynamic model for nonlinear systems by linearising the system over a

number of operating points and aggregating the linearised subsystems by fuzzy rules.

It is shown that by choosing membership functions appropriately, the number of fuzzy

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	72

sets can be small but without loss of good tracking performance. The proposed fuzzy

modelling and tracking control methodology for complex nonlinear systems is unique

by combining the merits of fuzzy logic and conventional linear control theory. Here,

fuzzy logic is used to formulate a system model by aggregating a set of linearised local

subsystems which identify the nonlinear system approximately, and a fuzzy feedback

controller is designed by use of conventional linear feedback theory and fuzzy

reasoning.

The organisation of this chapter is as follows. In Section 4.2, a linearisation method

for a class of nonlinear systems by Taylor's expansion is given. In Section 4.3, fuzzy

modelling and tracking controller design for nonlinear systems are presented. A fuzzy

system model is obtained by aggregating the linearised subsystems with fuzzy rules. In

Section 4.4, a robust tracking control scheme is presented by using variable structure

control theory based on the fuzzy nominal model. A simulation example using one-

link rigid robotic manipulator is given in support of the proposed control scheme.

Section 4.5 gives concluding remarks.

4.2 Linearisation of nonlinear systems

Consider the following nonlinear dynamic system

= f(x,u) 	 (4.1a)

where x = 	,x2 ,...,x]T is the state vector, f (x,u) is a vector whose elements are

nonlinear function, and u = [u 1 ,u2 ,...,u„jr is the control input vector. The control

objective is to force the plant state vector x to follow a specified desired trajectory,

x d . Assuming f (x,u) is differentiable with respect to x and u respectively, then

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	73

equation (4.1a) can be linearised at some point (x i ,u i) by Taylor's expansion as

follows

• 	. 	af x -= x 1. + —ax x
du (4.2)

k i = f(x i ,u i)

where

= x – x i , = u – u i

and u i can be obtained from the following equilibrium condition (Palm and

Rehfusess, 1997)

k i =0

From expression (4.2), the following local linearised error dynamic equation can be

obtained

5.Z = A i R 	 (4.3)

where

af
E R"'", B i =

au
E Rnxm (4.4a)

Remark 4.1 If the controlled system is a single-input and single-output system, i.e.„

x (") (t) = f (x) + b(x)u 	 (4.1b)

where

T x = [x I x2 • • . , A, n 	=

0 -

B.=

0
b(x)

(4.4b)

ab
+ ak

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	74

then we have the following linearised system matrices,

0 1 	0
00 	0

A, =

	

000 		1
a0 a 1 	• • 	a

	

_ fa 	ab 	af
a o -+ u — , a l =

	

ax 	ax 	ax x,

which is in a controllable form.

Remark 4.2: If equation (4.3) is in a controllable form, the feedback control law

	

= 	 (4.5)

can be designed by using conventional linear system theory (Ogata, 1990) so that the

eigenvalues of (A i - B iK i) are the specified ones. The feedback gain K i can be

designed by using the Ackerman's formula in the case of single-input system as

follows (Ogata, 1990)

	

K i = 	 (4.6)

where

a(s) = sn + ans' l +...a 2s+

is a desired stable polynomial, and

Q i = [B i AB, /03 i A7 -1 B i]

4.3 Fuzzy modelling and tracking control of nonlinear
systems

4.3.1 Fuzzy modelling and tracking controller design

Many Physical systems are very complex in practice so that it is very difficult to

obtain their rigorous mathematical models. In recent years, fuzzy logic has been

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	75

applied to the field of system modelling and control engineering (Takagi and Sugeno,

1985; Wang and Mendel, 1992; Feng et al., 1997) by means of combining human

heuristic reasoning and expert experience. In this section, the fuzzy model is

established by the following fuzzy inference rules which include local linearised

subsystems and feedback controllers.

R': 	IF 	x i is 	AND ... xn is Fril

THEN

5.Z = 	+

	

u - u i 	 (4.7)

= 1,2,...,/

where R i denotes the i-th fuzzy inference rule, 1 the number of inference rules,

FJ (j = 1,2,...,n) are fuzzy sets, = x — x d is the tracking error of the system with

desired trajectory x d .

Let it(x) be the normalized membership function of the inferred fuzzy set F i where

n
F'= flFJ

and

(x) = 1
i=1

By using a standard fuzzy inference method, that is, using a singleton fuzzifier,

product fuzzy inference and centre-average defuzzifier, the following global tracking

error fuzzy model for the controlled nonlinear system can be obtained,

(4.8)

(4.9)

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	76

where

= Ao R +

= u - u d = —KR

A o =E[t i A i 	B o =D.t i B i
i=1 	 i=1

u d =Ei.t j u i

(4.10)

(4.11)

(4.12)

Remark 4.3: Here, we assume the fuzzy model is globally controllable, that is,

(A0 ,13 0) is a controllable pair.

4.3.2 A example of fuzzy modelling and control

Consider the following one-link robotic manipulator

m/ 26 + + mglcos(0) = u 	 (4.13)

with

m = lkg - payload,
1 = lm - length of the link,

g = 9.81m1s 2 - gravitational constant,

d = lkgm 2 /s - damping factor,

u - control variable (kgm 2 /s 2).

Assuming we are interested in the dynamics of the system in the range of [-90 0 ,90 0],

then the fuzzy model can be obtained by linearising the nonlinear equation (4.13) over

a number of points, such as 0 0 , ± 30 ° , ± 60 ° , ± 90°. The following fuzzy model is

considered

R 1 : IF x l is about - 90° , THEN R= A I R+ B i ll, = u - u l =

R 2 : 	x i is about - 60 ° , THEN R = A2R. + B 2 11, = U -112 = - K2R

A 5 =

A 6 = [0 	ii
8.5 —1]

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	77

R 3 : IF x i is about - 30°, THEN = A 3 R + B 3 iI, ii = u - u 3 = —K 3 R

R4: IF x 1 is about 0 ° , THEN FC = A 4 R + B411, ii = U - 1.1 4 = -K 4 5-C

R5: IF x 1 is about 30°, THEN5..t" = A 5 it + B 5 1I, II = u - u 5 = —K 5 ,7

R6: IF x 1 is about 60°, THEN R = A 6 R + B 6 i1, il = u - u 6 = —K 6 R

R 7 : IF x i is about 90°, THEN R = A 7 3Z + B 7 11, ii = u - u 7 = —K 7 3Z

where

x, = e, x 2 =0 R = [71 , -72] 7.

u l =0,

11 2 = 4.9,

B3 _

B4
_

B 5

6 	B =I

[0]
li

,

[
i,

01
l
0 [,
11
01 ,
li

U 3 = 8.5,

U 4 = 9.81,

U 5 = 8.5,

U 6 = 4.9,

[0 	ii
 — [0 1 A7 =

	

9.81 —11 	 ' 	1
U 7 =0.

The fuzzy sets for x 1 are chosen as in Fig.4.1.

The desired closed loop poles for each local model are chosen as [-4, -3]. Thus the

feedback control gains are found by using of pole placement method as follows

6],

I
	0 	1 i 	 [0] B

	

AI — L— 9.81 —11 	
i 	

11

I- 0 	11 [01

	

A2 =[- 8.5 -11 	B2 _ li,

r o 	1 i
A 3 - [- 4.9 - lt

K 1 =[2.2 6], K2 = [3.5 	6], K 3 = [7.1 6], K 4 = [12

K5 = [16.9 6], K6 = [20.5 6], 	K 7 = [21.8 6].

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	78

Therefore, the fuzzy control input can be written as

7 	7
1.1 = —E[tiKiR +Dotilai 	 (4.14)

i=1 	i=1

The control objective in this simulation is to force the one-link robotic manipulator to

follow a desired trajectory which is generated by the following reference model

[id] = [0 	1 Ixd 1 + [0111
(4.15)

Id 	25 — 10 	1 s

where u s is chosen as in Fig.4.2.

In this example, the initial values of x and x d are selected as

[x 1 (0), 	(0)] = [17.2°, 0], 	[xd (0), .kd (0)] = [0, 0] .

Fig. 4.3 shows the output tracking using the fuzzy feedback controller. It can be seen

that good tracking performance has been achieved by the proposed fuzzy model. Fig.

4.4 shows the control input.

In order to examine the robustness of the fuzzy model, we use five fuzzy inference

rules instead of seven. If we choose the fuzzy sets as in Fig. 4.5 and the following

fuzzy rules,

R I : IF x i is about - 90 ° , THEN = A I R + B i ii, = u - u 1 =

R 2 : IF

R3: IF x i is about 0°, THEN 5Z = A 3 R + B 3 ii, = U - U 3 = — K 3 R

R4: IF x i is about 45 ° , THEN = A 4 5Z + B 4 11, = u - 	= —K 4 5Z

R5: IF x i is about 90° , THEN = A 5 5Z + B 5 ii, = u - u 5 = —K 5 R

with

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	79

0 	1 1 A, =
[— 9.81 — lt
r 0 	'1

A2 — L- 6.94 — It
[0 	1 1

A3 = L o 0 — lt
0 	11

A4 = L694 [6.94 — lt

0 	'1 A 5 = [9. 81 — lt

0
B 1 411, 	 u, =0,

rol
u 2 =6.94,

1

u 3 =9.81, 1

B 4 =[0], 	u 4 =6.94,
1

0 B 5 =11, 	U 5 =O.

then the output tracking and fuzzy control input are shown in Fig.4.6 and Fig.4.7,

respectively. It can be seen that the output tracking error is increased in the vicinity of

60 0 in comparison with Fig.4.3. However, if we choose the fuzzy sets as in Fig. 4.8

and the following fuzzy rules,

R1: IF x1 is about - 90 ° , THEN R = A i R + 	u - u i =—K 1 3

R2: IF x i is about - 60 ° , THEN R = A2 + B 2 , = u - u 2 = —K 2 R

R3: IF xi is about 0 0 , THEN R A 3 R + B 3 1:1, = u - u 3 = —K 3 x

R4: IF x i is about 60 0 , THEN R = A4R + B 4 5, tI = u - u 4 = -- K43C

R5: IF xi is about 90 ° , THEN R = A5R + 	= u - u 5 =—K 5 R

with

A 1 =
0 	1

[-9.81 — 1i'

0 	1
A2 = [

— 8.5 —1t

[0 	1
A 3 = 0

B i =

B 3 =[]'

-11,

0
[1],

0

0 1 1

U 1 =0,

U2 = 4 . 9,

U 3 = 9.81,

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	80

[0 	1
A4 =I

8.5 —1I

[0 	1
A5 = I

9.81 —11

11 4 = 4 . 9,

U7 =0.

then the output tracking and fuzzy control input are shown in Fig.4.9 and Fig.4.10,

respectively. It is clearly shown that the output tracking error is diminished in the

vicinity of 60 0 by comparing with Fig.4.6. Hence, it can be concluded that if the fuzzy

rules are selected appropriately, good tracking performance can then be achieved even

with less fuzzy rules.

Fig. 4.1 Fuzzy sets of xl

40

35

• _
(2 10

5

0
0 	2 	4 	6 	8 	10 	12

Time(s)
14 16 18 20

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 —60
0

—80 —20 —40 40 20 80 60

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	81

Fig.4.2 The control input of the reference model

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	82

Reference vs Actual position of the link

Th
e

ou
tp

ut
 tr

ac
ki

ng
 (p

os
iti

on
 in

 d
eg

.)

70 	

60 -

50 -

40 -

30 -

1

1
I

\

-

-

-

-10 	
0

._
2 	4 	6 	8 	10 	12 	14 	16 	18 	20

Time(s)

Fig.4.3 The output tracking of the link, where the solid line
represents the desired trajectory.

20

15 -

E 10

0

-5
0

-

2 	4 	6 	8 	10 	12 	14 	16 	18 	20
Time(s)

Fig 4.4 Fuzzy tracking control input

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	83

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

-80 -60 -40 -20 0 20 40 60 80

Fig.4.5 Fuzzy sets of x i

Reference vs Actual position of the link

Th
e

ou
tp

ut
 tr

ac
ki

ng
 (p

os
iti

on
 in

 d
eg

.)

20 -

70

60

50

40

30

I
10-'

t

_

-

_

-

1
1

1
i

1

1

1
1

-10
0

i 	 i 	 i

14 	16 	18

2 	4 	6 	8 	10 	12
Time(s)

20

Fig.4.6 The output tracking of the link, where the solid line
represents the desired trajectory.

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	84

20

15

z 1

o_

o5

2 	4 	6 	8 	10 	12 	14 	16 	18 	20
Time(s)

Fig.4.7 Fuzzy tracking control input

0.9

0.8

0.7

0.6

0.5

0.4

• 0.3

0.2

0.1

-80 	-60 	-40 	-20 	0 	20 	40
	

60
	

80

Fig.4.8 Fuzzy sets of x 1

Th
e

ou
tp

ut
 tr

ac
ki

ng
 (p

os
iti

on
 in

 d
eg

.)

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	85

Reference vs Actual position of the link
70

-10
0

i 	 i 	 i 	 i 	 i

2 	4 	6 	8 	10 	12 	14 	16 	18
Time(s)

Fig.4.9 The output tracking of the link, where the solid line
represents the desired trajectory.

20

20

15

z 1 0

0_
•_

o5

0

-5
0 2 	4 	6 	8 	10 	12 	14 	16 	18 	20

Time(s)

Fig.4.10 Fuzzy tracking control input

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	86

4.4 Robust tracking control with fuzzy nominal model

4.4.1 A robust tracking control scheme

The nonlinear system (4.1) can be expressed by the following error dynamic equation

=(A + AA)R + (B o + AB)ii + Af (4.16)

where AA, AB represent the approximation error and system uncertainties and Af

denotes all the residual errors and disturbances which cannot be covered by AA, AB.

For further analysis, the following assumption is used in what follows (Man and

Palaniswami, 1995)

Assumption 4.1: There exist matrix HE R' and scalar E such that

AA = B o H
AB = B O E

° < 0 1-1 1i < Ho
0< j E I <E 0

< 11 61 11 < fo

(4.17)

Remark 4.4: The above assumption is called uncertain matching conditions and have

been used by several researchers (Man and Palaniswami, 1995; Shoureshi et al., 1990;

Tarn et al., 1984). The upper bounds of the system uncertainties, namely

H 0 , Eo and f0 , may be obtained by experiments.

The objective of this section is to develop a robust tracking control scheme which

ensures that the output tracking error 5i asymptotically converges to zero.

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	87

The controller design of the nonlinear system in this section is divided into two parts.

First, a nominal feedback controller, as shown in (4.11), is designed based on fuzzy

nominal system model, which guarantees that the tracking error ic of the nominal

system asymptotically converges to zero. Second, a variable structure compensator is

designed based on an uncertain bound to eliminate the effects of the approximation

error and uncertain dynamics so that the tracking error of the closed loop system

with uncertain dynamics asymptotically converges to zero.

The nominal feedback controller for the fuzzy nominal model is derived directly from

(4.11), that is

u 0 =—KR-Fu d 	 (4.18)

where

1 	.
Ud = E giui (4.19)

Next, we consider the variable structure compensator design for the uncertain system

(4.16). Let the control input in system (4.1) have the following form

u=u 0 +u l 	 (4.20)

where u 0 is the nominal feedback control given in expression (4.18), and u l is a

compensator to deal with the effects of system uncertainties.

Using expression (4.17) and (4.20) in (4.16), the error dynamics of the closed loop

system with uncertainties is written as

= (A 0 —B 0 K)3Z +B 0 (H—EK)R+B 0 (1+E)u 1 +Af 	(4.21)

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	88

In order to use the variable structure theory to design the compensator u i , we define a

switching hyperplane variable as follows

S = CR 	 (4.22)

where C = [c i ,c 2 ,... , c n] is chosen such that zeros of the polynomial CR =0 are in

the left half of the complex plane, and matrix CI3 0 is non-singular (Man and

Palaniswami, 1995).

For the design of the compensator u 1 and the stability analysis of tracking error

dynamics (4.21), we give the following theorem.

Theorem 4.1: If the nominal feedback control u 0 is given by expression (4.18) and

the compensator u l is designed such that

u l = I O SCB 0 II
(SCB 0)

2 [SC(A 0 —B 0 K)R +p] S # 0

where

o 	 S = 0
(4.23)

1 P =
1
	 [IISC (A 0 —B oK) R II HIS CB 011(11 011'11 + E011 1(31) — 11 SIIII CIlfo 1 — E 0

(4.24)

then, the tracking error R asymptotically converges to zero as time tends to infinity.

Proof: Defining a Lyapunov function

V = —1 s 2
2

(4.25)

and differentiating v with respect to time, we get

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	89

= SS
=SCR/6i 0 -B o K)R +B o (H-EK)R + B 0 (1+ E)u i +Af]
= -ESC(A 0 -13 0 1()R + SCB 0 (H - EK)R + SCAf + (1- E)p

o K)Rii VEI 	B DISC(Ao - 	IISCB 011(1141114 + 1111 1(R 11) + Js OCIII1Af
1- E

± 	[IISC(A 0 -B 0 1())11 - 0SCB 011 (11 0 	E 011 101) HISMCK0]

- (1- 11EINSC(A0 -B o K)R 11 - 11SHC11 0. 0 - 11 Af 11)
-0SCB 0 0[(H o -111-111)114+(E 0 -11E11)11KR11]

<0, 	forS#0

(4.26)

Expression (4.26) is the sufficient condition for the switching hyperplane variable s to

reach the sliding mode

S = 	= 0 	 (4.27)

In the sliding mode, the tracking error Tc asymptotically converges to zero.

Remark 4.5: The robustness property of the proposed control scheme in this section is

obvious. First, the effects of the approximation error and uncertain dynamics can be

eliminated by using the variable structure compensator. Second, the closed loop

system is completely insensitive to uncertainties after the system error dynamics reach

the sliding mode.

Remark 4.6: To eliminate the chattering in the control input, the following boundary

layer compensator (Man and Palaniswami, 1995) can be used in place of expression

(4.23).

I 	(111 = 11=12
[SC(A 0 - B c,K)R +13 1 IISCB oll< 8 i

8 12

(SCB 0)
[SC(A 0 -B 0 K)5Z+ p] IISC13 0 11?_

(4.28)

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	90

where 8,> 0.

The above boundary layer compensator can force switching plane variable to move

towards the sliding mode surface and then the control signal can be smoothed inside a

boundary layer. This will achieve optimal trade-off between control bandwidth and

tracking precision. Therefore, the chattering and sensitivity of the controller to system

uncertainties can be eliminated (Man and Palaniswami, 1995).

4.4.2 A simulation example

To illustrate the proposed robust tracking control scheme in this section, a simulation

example is carried out for a one-link robotic manipulator. The dynamic equation of the

one-link robotic manipulator is given by

mI 2 0 + d6 + mgl cos(0) = u 	 (4.29)

with

m = lkg - payload,
1= lm - length of the link,

g = 9.81m1s 2 - gravitational constant,

d = lkgm 2 /s - damping factor,

u - control variable (kgm 2 S 2).

Assuming we are interested in the dynamics of the system in the range of [-90° ,90 0],

then the fuzzy nominal model can be obtained by linearising the nonlinear equation

(4.29) over a number of points, such as 0° ,±45° ,±90°. The following fuzzy nominal

model has been obtained.

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	91

R' : IF 	x, is about 0°
THEN5.".c =A 1 +B 1 ii

R2: IF 	x, is about - 45°

THEN 5.'(' = A 2 R +

R3: IF 	x i is about + 45°
THEN 5..t' = A 3 5Z +B 3 ii

R4: IF 	x, is about -90°
THEN 3.Z = A 4 R + B 4 1.1

R5: IF 	x, is about +90°

THEN3-C = A 5 R + B 5 ii

where

x l =0,x 2 = 6, 5-(' =[R,,X* 2] T ,u ; = mglcos(0 ;)
-0 	1 I

B, — [Cid
A ' LO —11'

Lr 0 	1] 	[01 1
-6 .94 —11 	

B2 _

I. 0 	1 	 [Oi l

	

A3 - L6.94 —11' 	
B3

[0 	1 1 	_ [Oi

]
A 4 = 	 B 4

—9.81 —1S
[0 	1 1 	 _ [Oi

]
A 5 = 	 B 5

9.81 —1T

The fuzzy sets for x, are chosen as in Fig.4.11.

The desired closed loop poles for each local model are chosen as [-4, -3]. Thus the

feedback control gains are found by using of pole placement method as follows

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	92

=[12 6],
K 2 = [5.1 6],
K 3 = [18.9 6],
K 4 = [2.2 6],
K 5 =[21.8 6].

The control objective in this simulation is to force the one-link robotic manipulator to

follow a desired trajectory which is generated by the following reference model

[i d [0
— 25

1 	1[X d
10 	i d

[Olu
1 	s

(4.30)

where u s is chosen as in Fig. 4.12.

In this example, the initial values of x and x d are selected as

[x 1 (0), x (0)] = [17.2° ,0], [x d (0), d (0)] = [0,0] .

Sliding mode is prescribed as

S = [10,1][_ 1 1.
X 2

Uncertain bounds are selected as

E 0 = 0.1, H o = 2, fo = 1.

Fig. 4.13 shows the output tracking using only a fuzzy nominal feedback controller. It

can be seen that due to large system uncertainties, the output cannot track the desired

trajectory closely. Fig. 4.14 shows the output tracking and control input using a fuzzy

nominal feedback controller with a variable structure compensator. Obviously, the

effects of the system uncertainties are eliminated and a good tracking performance is

achieved. But there exists chattering in the control input. Fig. 4.15 shows good

performance of the closed loop system in which a fuzzy nominal feedback controller

with a boundary layer compensator is used to eliminate control chattering.

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	93

4.5 Concluding remarks

A robust tracking control scheme has been proposed in this chapter for a class of

nonlinear systems. The main contribution of this scheme is that a nominal system

model for a nonlinear system is established by fuzzy synthesis of a set of linearised

local subsystems, where the conventional linear feedback control technique is used to

design a feedback controller for the fuzzy nominal system. A variable structure

compensator is then designed to eliminate the effects of the approximation error and

system uncertainties. Strong robustness with respect to large system uncertainties and

asymptotic convergence of the output tracking error are obtained. A simulation

example has been given to support the proposed control scheme.

40 60 80 100

1

0.9

0.8

0.7

0

g 0.4

0.3

0.2

0.1

0
-100 -80 -60 	-40 	-20 	0 	20

Position (deg)

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	94

Fig.4.11 Fuzzy sets of state x 1

100

90

80

70

ED_
) 60

a) _c
20

10

oo

2 	3 	4 	5 	6
	

7
	

8
	

9
	

10
Time(s)

Fig. 4.12 The input signal u s of the reference model

— I

-

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	95

N
om

in
a l

 c
on

tro
l i

np
ut

Reference vs Actual position of the link

-5
0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10

Time(s)

Fig.4.13-a The output tracking of the link using a fuzzy nominal
feedback controller. Solid line represents the desired trajectory

25 	

20 -

15 -

10 -

45

40

_35

Q)

-° 30

0
ti 25
0 0_
220
cy;

15
o_
0 10 a) _c

5

0

-10
0 1 	2 	3 	4 	5 	6 	7 	8 	9 	10

Time(s)

Fig. 4.13-b Nominal feedback control input

0
co

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	96

45

40

35
o) a)

7.3 30 •S
0
E 25
0
0_

F20

5 - 1

Reference vs Actual position of the link

1 	2 	3 	4 	5 	6
Time(s)

7 	8 	9 	10

Fig. 4.14-a The output tracking with variable structure compensator

50

40

30 -

8 i o -

—10

—20
0

■ 	■
5 	6 	7

Time(s)
1 	2 	3 	4 9 	10

Fig. 4.14-b Control input with compensator

CHAPTER 4 FUZZY MODELLING AND ROBUST TRACKING CONTROL 	97

45

40 -

35 -

.1 25-
0

E.20 -

co
15 4

0_
5
0 10

5

Reference vs Actual position of the link

1 	2 	3 	4 	5 	6
Time(s)

7 	8 	9 	10

Fig. 4.15-a The output tracking using boundary layer compensator (6, = 0.04).

40

30

20

5 0_

• 	10

0

- 10

II -20 	
0 1 	2 	3 	4 	5 	6

Time(s)
7 	a 	9 	10

Fig. 4.15-b Control input with boundary layer compensator (6, = 0.04).

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 98

Chapter 5

Fuzzy Sliding Mode Control

5.1 Introduction

Fuzzy logic technique based on approximate reasoning has been widely used for the

design of control systems (Mamdani and Assilian, 1974; Tagalci and Sugeno, 1985;

Cao et al., 1996). The early fuzzy control algorithms proposed by Mamdani et al. have

the following characteristics (Yager and Filev, 1994): (i) The detailed mathematical

description of the controlled system is not required, (ii) the human experience and

understanding about the system are used to design a fuzzy controller which allows us

to implement heuristic strategies, which are defined by linguistically described

statements, to formulate the control algorithm.

In order to improve the performance of fuzzy control systems, the fuzzy control

algorithms with the Mamdani model have been further investigated and developed in

recent years. It is shown that (Yager and Filev, 1994), if the structure of the fuzzy

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 99

control networks can be identified and the membership functions of the fuzzy sets can

be estimated by the use of some optimisation techniques, a satisfactory tracking

performance of the closed loop fuzzy systems can be obtained.

In this chapter, Lyapunov stability theory and fuzzy logic technique are combined

together to design sliding mode controller. It is shown that a sliding mode is first

designed to describe the desired system dynamics for the controlled system. A set of

fuzzy rules are then used to adjust the parameters of the controller based on the

Lyapunov function and its derivative. The sliding mode controllers with fuzzy tuning

algorithm show the advantage of reducing the chattering of the control signals, which

makes the fuzzy sliding mode control more practical. A simulation example is given in

support of the proposed control scheme.

The chapter is organised as follows. In section 5.2, a class of nonlinear systems to be

considered, Lyapunov function and the sliding mode controllers are formulated. In

section 5.3, the fuzzy rules used to adjust the parameters of the controller are

described in detail. In section 5.4, a simulation for a one-link rigid robotic manipulator

is performed in support of the proposed control scheme. Section 5.5 gives concluding

remarks.

5.2 Sliding mode control of nonlinear systems

In this paper, we focus on the design of sliding mode controllers for a class of

nonlinear systems whose dynamic equations can be expressed in the following form

(Gao and Hung, 1993):

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 100

= A(x)+ B(x)u 	 (5.1)

where dim-x = n, dim-u = m, n > m, and A(x) and B(x) are of appropriate

dimensions. The switching surface is defined by

s(x)=c T x =0 	 (5.2)

where c T = [c 1 c 2 • • • c n] is chosen such that the zeros of the polynomial c T X =0

are in the left half-plane and c T B(x) O. Eqn. (5.2) represents a desired system

dynamics with a lower order than the given plant. The sliding mode controller u is

designed such that any state x outside the switching surface is driven to reach the

surface. On the switching surface, the sliding mode takes place, following the desired

system dynamics.

Theorem 5.1: If the control law is designed as follows

U = 	T B(X)}-1 	A(x) + Qsgn(s) + Kh(s)] 	 (5.3)

where

Q = diag[q , • • • , q], q > 0

sgn(s) = [sgn(s), • • • , sgn(s)] T

K = diag[k i ,• • • , k m], k, > 0

h(s)= [h i (s i),•••, h. (s.)] T

Si h i (s) > 0, 	h (0) = 0

then the system state x reaches origin as time tends to infinity.

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 101

Proof. Consider the following Lyapunov function

1 T V =
2

(5.4)

The derivative of V is

= sT§

T T•
=S C X

=S T C T [A(x)+ B(x)u]

= s T C T [A(x)— B(x){c T Br' [c T A(x) + Qsgn(s) + Kh(s)]]

= —s T [Qsgn(s) + Kh(s)]
<0 	 s # 0 QED.

(5.5)

From (5.5), we have the following reaching law,

S = —Qsgn(s) — Kh(s) 	 (5.6)

It is clearly known that, if Q is too small, the reaching time will be too long. On the

other hand, a large Q will cause severe chattering. In next section, a fuzzy tuning

algorithm for Q is introduced to achieve a better trade-off between the settling time

and chattering phenomena.

5.3 Fuzzy tuning of the sliding mode controller

The Mamdani's fuzzy inference model (Mamdani and Assilian, 1974) is used to adjust

the controller's parameter matrix Q. The Lyapunov function defined in (5.4) can be

considered as the distance between the desired and actual states. The control objective

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 102

is that the distance should be decreased as soon as possible. We divide the Lyapunov

2 function -s (V) into three fuzzy subsets, such as 'big', 'medium' and 'small'. The
2 	I

convergent rate or the derivative of Lyapunov function s i S (V) is divided as the

fuzzy subsets 'positive', 'zero' and 'negative'. The fuzzy control system consists of

two linguistic input variables V and V and one linguistic output variable Q. The two

fuzzy input variables are defined as follows

V={B, M, S} 	 (5.7)

V={P, Z, NI 	 (5.8)

where B = big, M = medium, S = small, P = positive, Z = zero, N = negtive. Fuzzy

output variable Q is defined as follows

Q={B, MB, M, MS, S} 	 (5.9)

where MB = medium big, MS = medium small. The input-output relation of the fuzzy

controller with fuzzy variables (5.7), (5.8) and (5.9) is written by

V, V —> Q 	 (5.10)

The fuzzy tuning algorithm for Q is described in fuzzy rules as follows and also

represented in "look-up" Table 5.1.

1. If (V is B) and (V is P) then (Q is B)

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 103

2. If (V is B) and (V is Z) then (Q is MB)

3. If (V is B) and (V is N) then (Q is M)

4. If (V is M) and (V is P) then (Q is MB)

5. If (V is M) and (V is Z) then (Q is M)

6. If (V is M) and (V is N) then (Q is MS)

7. If (V is S) and (is P) then (Q is M)

8. If (V is S) and (V is Z) then (Q is MS)

9. If (V is S) and (V is N) then (Q is S)

Remark 5.1: The above fuzzy rules carry the control principle: when V is 'big' and

V is 'positive' (i.e., V is increasing), then chose 'big' control input Q to force the

system state to converge to the desired state faster; when V is 'small' and V is•

'negative' (i.e., V is decreasing), then chose 'small' control input Q to decrease

control chattering.

Q

V

P z N

V

aci 	
cn

B

MB

M

MB

M

MS

M

MS

s

Table 5.1. Fuzzy inference rules table

$
i

0.8

0.2

o

Isn

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 104

The membership functions for fuzzy variables V, V, and Q with normalised universe

of discourses are chosen as in Fig. 5.1 (a)-(c). The fuzzy inference surface is shown in

Fig. 5.1 (d).

0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6
	

0.7
	

0.8
	

0.9
	

i
Lyapunov Junction

Fig. 5.1 (a) Fuzzy subsets of V

0.8 -0.8 	-0.6 	-0.4 	-0.2 	0 	0.2 	0.4
	

0.6
Change_rate_of_Lyapunovf unction

Fig. 5.1 (b) Fuzzy subsets of

MB

1 0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6
	

0.7
	

0.8
	

0.9
Control_parameter_Q

1

0.8

0.2

0

1

0.8

0.2

0

1

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 105

Fig. 5.1 (c) Fuzzy subsets of Q

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 106

V_dot V

Fig. 5.1 (d) Surface of Q (V, V)

5.4 An illustrative example

To illustrate the proposed fuzzy tuning sliding mode control scheme in this chapter, a

simulation example is carried out for a one-link rigid robotic manipulator. The

dynamic equation of motion of the manipulator is given by

m1 26 + do + mglcos(0) = u + u d 	 (5.11)

with m = lkg,1= lm , g = 9.81m/s 2 , d = lkgm 2 /s , 	and Li d = 0.3sin(10t) is the

external disturbance.

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 107

Eqn. (5.11) can be rewritten in matrix form as follows

	

[X 	X2 	1 +u
[01

	

5(2 	— x 2 —9.81cos(x 1)+0.3sin(10t) 	1
(5.12)

where x i represents the angle position 0. The control objective in

force the one-link robotic manipulator to follow a desired

generated by the following reference model

this simulation is to

trajectory which is

r kdi j 0 	1 irx di±r0iu
L 3, di L-25 _mikdi [

j

us (5.13)

where u s is chosen as in Fig. 5.2.

Define an error vector

e ie 1 1 . [x —x d]

—kd
(5.14)

Sliding mode is prescribed as

e i s = c T e = [A, If 1= Ae i + é 1
e 2

(5.15)

Adopt the reaching law

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 108

§ = —Q sgn(s) (5.16)

Taking the time derivative of (5.14) gives

.i• = Ae l — k d — x 2 — 9.81cos(x 1)+ 0.3sin(10t) + u 	 (5.17)

Equating (5.16) and (5.17) and solving for the control u yields

u = —Q sgn(s) — Ae, + k d + X 2 ± 9.81cos(x 1) - 0.3sin(10t) 	 (5.18)

Fig. 5.3 shows the output tracking using the conventional sliding mode controller

(5.18) with Q=5 and A=6, which is shown in Fig. 5.4. Fig. 5.5 shows the output

tracking using a sliding mode controller (5.18) with fuzzy tuning for Q, the control

input is shown in Fig. 5.6. The scaling factor for fuzzy variables s 2 ,s and Q are

chosen as 1, 6 and 5, respectively. It can be seen that the control chattering is greatly

reduced with fuzzy tuning.

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 109

30

25

0

a)
0 20
EL)

2
a)

15

cr)

.5 10 c).
• _

5

0
0 	5 	10 	15 	20 	25

Time(s)

Fig. 5.2 The input signal of the reference model

Reference vs Actual position of the link
50

40

Th
e

ou
tp

u t
 tr

ac
ki

ng
 (p

os
iti

on
 in

 d
eg

.)

30

20

lo

	

-1 0 	
5 	10 	15 	20 	25 	30 	35

	
40

Time(s)

30 35 40

Fig. 5.3 The output tracking with conventional sliding mode controller

CHAPTER 5 FUZZY SLIDING MODE CONTROL

40

30 -

110

■
5 	10 	15 	20 	25

Time(s)
30 40 35

Fig.5. 4 The sliding mode control input without fuzzy tuning

Reference vs Actual position of the link
50

40

30

20

1 0 T

0

I 	 i 	 ■
5 	10 	15 	20 	25 	30 	35

Time(s)

Fig.5. 5 The output tracking with fuzzy tuning

T
h
e
 o

u
tp

ut
 t

ra
c k

in
g

(p
os

iti
on

 in
 d

eg
.)

40

CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 111

30

25

20

15

cl 10 •_ \+0++0+0404444S+4+00

0

-10 -

-15
0 	5 	10 	15

■
20 	25 	30 	35 	40

Time(s)

4,4-14+++4++i+ ■44++4++++++o++++

44+0+44444044044044+44

Fig. 5.6 The control input with fuzzy tuning sliding mode controller

5.5 Concluding remarks

In this chapter, Lyapunov stability theory and fuzzy logic technique are combined

together to design sliding mode control systems. It is shown that a sliding mode is

first designed to describe the desired system dynamics for the controlled system. A set

of fuzzy rules are then used to adjust the parameters of the controller based on the

Lyapunov function and its derivative. The sliding mode controllers with fuzzy tuning

algorithm show the advantage of reducing the chattering of the control signals,

compared with the conventional sliding mode controllers. A simulation example using

fuzzy sliding mode control for a one link robotic manipulator is given in support of the

proposed control scheme.

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 112

Chapter 6

Robust Continuous Sliding Mode
Control

6.1 Introduction

Sliding mode control (SMC), based on the theory of variable structure systems, first

proposed by Emelyanov in 1967, has attracted a lot of research on control systems for

the last two decades. Sliding mode control is a robust control technique that has been

successfully used for the control of linear and nonlinear systems. In order to design

sliding mode control systems, a switching surface or a sliding mode is defined first,

then a sliding mode controller is designed to drive the system state variables to the

switching surface. If the system state is above or below the switching surface, then the .

controller will drive the system state back to the surface. Once the system state reaches

the switching surface, the system state will slide along the switching surface, and the

dynamics of the controlled system is pre-determined by the sliding mode parameters

and remains insensitive to variations of system parameters and external disturbances.

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 113

The main drawback of sliding mode control is the associated undesirable chattering

problem. It not only increases wear of the final control element but also excites high

frequency unmodelled plant dynamics (Slotine and Sastry, 1983). To reduce this

unwanted control chattering, Slotine and Sastry (1983) proposed a 'boundary layer'

approach which approximates the ideal relay characteristics used by sliding mode

control by linear saturated amplifier characteristics. This boundary layer sliding mode

control only guarantees that the state will converge to a band (boundary layer)

centered on the sliding mode. It provides no guarantee that the state will converge

exactly to the sliding mode, although the state can be brought arbitrarily close to the

sliding mode by narrowing the boundary layer at the cost of higher control authority.

As an alternative, Zhou and Fisher (1992) proposed a continuous approach using the

concept of boundary layer equivalence. The main disadvantage of this technique is

that it tends to produce conservative designs. Because their control law is equivalent to

a cubic feedback control, therefore, the control input may be very large and exceeds

control element's physical limits.

Recently, Ha and Negnevitsky (1996) introduced a fuzzy tuning sliding mode control,

it is shown that the control performance can be improved by fuzzy tuning.

In this chapter, we present a robust continuous sliding mode control scheme based on

Lyapunov stability theory. The proposed controller consists of three components:

equivalent control, continuous reaching mode control and robust control. It retains the

positive properties of sliding mode control but without the disadvantage of control

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 114

chattering. As an example, the proposed control scheme is applied to the design of a

robust tracking controller for a one-link robotic manipulator.

6.2 A robust continuous sliding mode control

Consider a linearised dynamic system described by

= (A + AA)x + (B + AB)u 	 (6.1)

where x E R" is the state vector, u E R is the control signal, AE IV" and BE R

are the nominal system matrices and in controllable form, AA and AB represent

uncertainties. The following matching condition is used for further discussion (Man

and Palaniswami, 1995):

AA = BH
AB = BE
	 (6.2)

with

0 <114 1 <H0
O<IEI<E0 <1

Remark 6.1: Because (A, B) is in controllable form, therefore E is a scalar.

Sliding variable is defined by,

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 115

s = cTx (6.3)

where C T 4c, c 2 . • • c 11] is chosen such that the zeros of the polynomial

C T X = 0 are in the left half-plane and C T B # 0.

A equivalent control is given by S =0 or:

C T X =C T (Ax + Bu e0= 0 	 (6.4)

that is

u eg = —K eq x = —(C T B) -1 C T Ax 	 (6.5)

A continuous reaching mode controller can be designed by following reaching law:

= —Qerf() 	 (6.6)

where Q is a positive reaching law parameter, 5 is a positive number, and erf(x) is a

standard error function. The continuous sliding mode controller can be easily derived

as

u, = —(C T By' Qerq-) 	 (6.7)

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 116

In order to deal with system uncertainties, a robust controller is designed as folllows:

SC T B 	1 	(1-1 0 114 + E 0 1lK eq 4)

Hence, the robust continuous sliding mode controller is represented by

	

u = u eq + u c + u r 	 (6.9)

Theorem 6.1: If the controller is given by (6.9), then the system state x reaches origin

as time tends to infinity.

Proof: Define a Lyapunov function

Then

1 V = —S 2
2

V = SS

= SCT k

= SCT [(A + AA)x + (B + AB)u]

= SCT [Ax + BHx + B(1+ E)u]

= SC T Ax + SC T BHx

(6.10)

+ (1+ E)[—SC T Ax — SQerf(T5S) —1SCTBI
1 —

1
 Eo (14 011 x 11 + EollKeci 4)1

< —ESC T Ax + SCTBHx —SCTI311 1 1E1 (Ho Oxli + E0K eq 11 	x 11) D 1— E — o

1EE 1 (H 0 114 ± E 0 11K eq x11) = —ESC T BK eq x + SC T BHx — ISCT BO 11--

<0 	if S#0

U r = II SC T B ll 1 - E 0 (6.8)

QED

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 117

6.3 A simulation example

To illustrate the proposed robust continuous sliding mode control scheme in this

chapter, a simulation example is carried out for a one-link robotic manipulator. The

dynamic equation of the one-link robotic manipulator is given by

m1 2 6 + dO + mgl cos(0) = u 	 (6.11)

with

m = lkg - payload,
1= lm - length of the link,

g = 9.81m1s 2 - gravitational constant,

d = lkgm 2 /s - damping factor,
u - control variable (kgm 2 / s 2).

In Chapter 4, a fuzzy modelling of a nonlinear system is obtained by linearising

procedures and the following fuzzy inference rules,

R': 	IF 	x is F: AND ... x is F i;

THEN

= 	+ B i ll

ii=u-u i 	 (6.12)

i = 1,2,...,/

where R i denotes the i-th fuzzy inference rule, / the number of inference rules,

(j = 1,2,...,n) are fuzzy sets, 	= x — x d is the tracking error of the system with

ro _ 	_ desired trajectory x d , and x — [x
x 2

 1—
 0

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 118

Let [t i (x) be the normalized membership function of the inferred fuzzy set F i where

and

n

F'=flFj
i=1

= 1

(6.13)

(6.14)

By using a standard fuzzy inference method, that is, using a singleton fuzzifier,

product fuzzy inference and centre-average defuzzifier, the following global tracking

error fuzzy model for the controlled nonlinear system can be obtained,

3:C = (A + AA)R + (B + AB)i:i (6.15)

(6.16)

where

A =Ept i A ; B =Ett i B i u, =E gi u ;

AA and AB represent system uncertaities.

Assuming we are interested in the dynamics of the system in the range of [-90 0 ,90 0 ,

then the fuzzy model can be obtained by linearising the nonlinear equation (6.11) over

a number of points, such as 0° , ± 60°, ± 900. The following fuzzy model has been

obtained.

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 119

R : IF x is about -90°,

THEN X. = 	 = u-u,

R 2 : IF x, is about -60°,

THEN 5Z = A 2 R + 	= u - u 2

R 3 : IF x, is about 00 ,

THEN R. = A 3 R+B 3 11, i1=u-u 3

R 4 : IF x, is about 60 0 ,

THEN R=A 4 R+B 4 i.i, i= u-u,

R 5 : IF x, is about 90°,

THEN 3Z = A 5 R+B 5 11, ii=u-u 5

with

 0 	1
A=I ,

—9.81 — 11'

0 	1 A2 = [
—8.5 — 11 '

]
1 1 A 3 = [0 0 - il

131
=[j'

B 2 =

B 3 =

1

1
r

1 	,
ri

'

'

u
'

u 2

U 3

= 0,

=4.9,

= 9.81 1
[
8.5 —
0 	ii 	r0i A 4 = 	134 =

[] ,
	u, =4.9,

[0
9.81 —1'

1 A 5 = 	B 5 = [1, 	U 5 = 	 0.

	

1 	1

Fig. 6.1 shows the membership functions. Choosing Q =10,8 = 0.3, H o = 2, the

simulation results are shown in Fig. 6.2 —6.8. Fig. 6.2 shows the output tracking.

Fig.6.3 shows the control signal, it is observed that no chattering occurred with the

proposed robust control scheme. Fig. 6.4 shows the tracking error. Fig. 6.5-6.7 show

the three control components: equivalent control, continuous reaching mode control,

and robust control, respectively. Fig. 6.8 shows the phase portrait.

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 120

Choosing Q = 10, 8 = 1, H o = 2, the simulation results are shown in Fig. 6.9 —6.15.

Fig. 6.9 shows the output tracking. Fig.6.10 shows the control signal, it is observed

that no chattering occurred with the proposed robust control scheme. Fig. 6.11 shows

the tracking error. Fig. 6.12-6.14 show the three control components: equivalent

control, continuous reaching mode control, and robust control, respectively. Fig. 6.15

shows the phase portrait.

Choosing Q = 10, H o = 2, and using discontinuous control u d = —Qsgn(S) instead of

u c , then the simulation results are shown in Fig. 6.16 —6.22. Fig. 6.16 shows the

output tracking. Fig.6.17 shows the control signal, it is observed that severe chattering

occurred with the discontinuous control scheme. Fig. 6.18 shows the tracking error.

Fig. 6.19-6.21 show the three control components: equivalent control, discontinuous

control, and robust control, respectively. Fig. 6.22 shows the phase portrait.

6.4 Concluding remarks

In this chapter we developed a robust continuous sliding mode control scheme for

linear systems with uncertainties. The controller consists of three components:

equivalent control, continuous reaching mode control and robust control. It retains the

positive properties of sliding mode control but without the disadvantage of control

chattering. The proposed control scheme has been applied to the tracking control of a

one-link robotic manipulator by fuzzy modelling of the nonlinear system.

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 121

T h
e

ou
tp

ut
 tr

ac
ki

ng
 (

de
g.

)

1

0.9

0.8

0.7
c o
"ti 0.6 C m
a
1E 0.5
12

23

2

0.3

0.2

0.1

0
-80

60

50 -

40

3

20

10

0

-10
0

-60 	-40 	-20 	0 	20
	

40
Position (deg)

Fig.6.1 Membership functions for positions

60
	

80

_

_

-

-

_

2 	4 	6 	8 	10 	12
	

14
	

16
	

18
	

20
Time(s)

Reference vs Actual position of the link

Fig.6.2 Output tracking performance (8 = 0.3)

122 CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL

25 	

20 -

15

C
on

tro
l i

np
ut

 (
N

m
)

10

	

-10 	

	

0
	

2 	4 	6 	8 	10 	12 	14 	16 	18 	20
Time(s)

Fig.6.3 Control input (8 = 0.3)

20 	

15

0

2 	4 	6 	8 	10 	12 	14 	16 	18 	20
Time(s)

Fig.6.4 Tracking error (8 = 0.3)

-5
0

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 123

20 	

8

16

14-

12 2

-.....

a) z
8 -

-

-

-

_

-

-

-

_

_

,
2 	4 	6 	8 	10 	12 	14 	16 	18 	20

Time(s)

Fig. 6.5 Control component u e (8 = 0.3)

10

-E.' z
C.) =

- -

- -

- _

- -

-10 	
0 2 	4 	6 	8 	10 	12 	14 	16 	18

Time(s)

Fig. 6.6 Control component u c (8 = 0.3)

20

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 124

2.5

1.5 -

0.5

-0.5 -

- 1.5

- 2.5
0

, 	 , 	 , 	 ,

2 	4 	6 	8 	10 	12 	14 	16
Time(s)

Fig. 6.7 Control component u,. (8 = 0.3)

18 	20

50

0

o) C
*•a a -50

"5
a)

'fa=
• -100 a)
-a

- 150

- 200

-5
	

5 	 10
	

15
	

20
Tracking error

Fig. 6.8 Phase portrait (8 = 0.3)

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	125

Reference vs Actual position of the link
70

60

50

Th
e

ou
tp

ut
 tr

ac
ki

ng
 (

de
g.

)

40

30

20

10

0 0

2 	4 	6 	8 	10 	12 	14 	16
Time(s)

Fig. 6.9 Output tracking (8 =1)

18 	20

_

25

20

15

-

C
on

tro
l i

np
ut

 (
N

m
) 10- 0-

L

-

-10 -

-15
0

■I

2 	4 	6 	8 	10 	12 	14 	16 	18 	20
Time(s)

Fig. 6.10 Control input (8 = 1)

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 126

20 	

15

-5
0 2 	4 	6 	8 	10 	12 	14 	16 	18 	20

Time(s)

Fig. 6.11 Tracking error (8 = 1)

20

15

1 0

a)

5

2 	4 	6 	8 	10 	12 	14 	16 	18
Time(s)

Fig. 6.12 Control component u e (8 = 1)

20

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 127

10

-

- _

-

_

-E -
z
0

- -

-

-

_

- 10 	
0 2 	4 	6 	8 	10 	12

Time(s)

_

-

-

-

14 	16 	18 	20

Fig. 6.13 Control component u c (8 = 1)

1.5

-

0.5 -

"E'
'5

_

-1.5

-

-

-

- 2.5
0

2 	4 	6 	8 	10 	12
Time(s)

14 	16 	18 	20

Fig. 6.14 Control component U r (8 = 1

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 128

50

0

15 20 0
	

5 	 10
Tracking error

.Fig. 6.15 Phase portrait (5 = 1)

Reference vs Actual position of the link
70

60

50

-

- ■I

Th
e

ou
tp

ut
 tr

ac
ki

ng
 (

de
g.

)

40

30

-

-

20 -

1
0 ! i

1
‘

0 _,. 	

—10 	
0 2 	4 	6 	8 	10 	12

Time(s)
14 	16 	18 	20

Fig. 6.16 Output tracking (sgn(s))

11111111111111
CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 129

35

30

25

20

15

10

5

0

-5

- 10

- 15
0 	2 	4 	6 	8 	10 	12

	
14
	

16
	

18
	

20
Time(s)

Fig. 6.17 Control input (sgn(s))

20

15

0

- 5
0

2 	4 	6 	8 	10 	12 	14 	16 	18 	20
Time(s)

Fig. 6.18 Tracking error (sgn(s))

C
on

tro
l i

np
ut

 (
N

m
)

14

12

'...-
-10

G)
7

8

--E -
z
-0 m

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	 130

20

18

16

■ 	,

2 	4 	6 	8 	10 	12 	14 	16 	18
Time(s)

Fig. 6.19 Control component u e (sgn(s))

-

-

-

-

20

2 	4 	6 	8 	10 	12
	

14
Time(s)

Fig. 6.20 Control component u d (sgn(s))

16
	

18
	

20

-200
15 5 	 10

Tracking error
20 -5

50

-150

CHAPTER 6 ROBUST CONTINUOUS SLIDING MODE CONTROL 	131

2.5

1.5

- 1.5

- 2.5 , 	■

2 	4 	6 	8 	10 	12
Time(s)

14 	16 	18 	20

Fig. 6.21 Control component Ur (sgn(s))

Fig. 6.22 Phase portrait (sgn(s))

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 132

Chapter 7

Fuzzy Adaptive Sliding Mode Control

7.1 Introduction

Adaptive control of mechanical manipulators has been studied extensively by many

researchers using various methodologies (Craig and Sastry, 1986; Slotine and Sastry,

1984; Balestrino et al., 1979; Young, 1978), such as hyperstability theory, Lyapunov

stability method, self-tuning regulator control and sliding mode control (SMC).

Among the various methodologies, the SMC demonstrates its good robustness and low

computational cost. SMC is a discontinuous feedback control that switches the system

control structure during the evolution of the system state so that the system states

remain in a prescribed subspace. A SMC controller for robot manipulators suggests

that each manipulator link matches a first order sliding motion such that when the

system state reaches the sliding mode, it chatters along the sliding mode and exhibits

sensitivity to the system parameter variations and external disturbances (Slotine and

Li, 1987).

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 133

One of the well known results in SMC design for trajectory tracking of robotic

manipulators was obtained by Slotine and Li (1987, 1991). Their adaptive SMC is

based on the linear parametrization approach for the robotic systems which do not

involve any uncertainties and disturbances. The validity of the control algorithm is

based on the assumption that the system parameters must be constant and the desired

trajectory should be sufficiently "rich" to guarantee parameter convergence. To

overcome the robustness problem of Slotine and Li's controller, Su and Leung (Su and

Leung, 1993) have proposed a modification that employs the bound estimation

algorithms in the controller to give rise to a robust adaptive SMC controller without a

priori knowledge of upper bounds of the system parameters. This controller is able to

handle large and time varying variations in the parameters. However, the problem is

that their control torques designed incur very large chattering which is not desirable in

practice, especially in mechanical systems.

In chapter 5, a fuzzy tuning algorithm was employed for conventional sliding mode

control to diminish undesired control chattering. In this chapter, a fuzzy tuning

adaptive sliding mode control is proposed for trajectory tracking of rigid robotic

manipulators with uncertainties to achieve robustness as well as desired qualities such

as minimal chattering and small control torques.

This chapter is organised as follows: In Section 7.2, a fuzzy tuning adaptive sliding

mode controller is presented. Section 7.3 describes the experimental results for

confirmation of the theoretical results. Section 7.4 gives concluding remarks.

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 134

7.2 Robust adaptive SMC with fuzzy tuning

Consider the dynamics of the n-joint robotic manipulators represented by the

following second order nonlinear vector differential equation

H(q)4+ C(q,q)q+ g(q) = r(t)+E(t) 	 (7.1)

where q(t) is the nxl vector of joint angular positions, H(q) is the nxn symmetric

positive definite inertia matrix, C(q,q)q is the nxl vector containing Coriolis,

centrifugal forces, g(q) represents the derivation of the manipulators potential energy,

r(t) is the nxl vector of applied joint torques which are actually control inputs, and

E(t) is the nxl bounded input disturbances vector.

We assume that the robotic manipulators have uncertainties, i.e.

H = Ho + All (7.2)

C= Co + AC (7.3)

g = go + Ag (7.4)

where H0 ,CO3 go are the nominal part and AH, AC, Ag are the uncertain part. The

uncertain components represent bounded small possible time varying, unmodelled

dynamics or load changes. Substituting the expressions (7.2)-(7.4) into the dynamics

(7.1) gives rise to

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 135

H0(q) .4+ co (q,4)4+ go(q)= t(t)+P(t)
	

(7.5)

with

p(t)=E(t)— 	AC(q,q)q— Ag(q) 	 (7.6)

representing all the uncertain terms. When p(t)=0, we call the dynamics as the

”nominal dynamics" of the robotic manipulators.

Let the parameters to be estimated be represented by,

a= a0 + Aa 	 (7.7)

The sliding function is

s= 4 + 	= 	 (7.8)

where 4,. = 4„ — A, and qd is the desired trajectory while A is a positive constant

matrix. We have the following result:

Theorem 5.1: The control torques and the adaptive learning laws given below, ensure

convergence of the sliding function s to zero:

(7.9-a)

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 136

r, = ya— Ks, 	 (7.9-b)

T 2 = —Qsgn(s) 	 (7.9-c)

= —FY T s, 	 (7.10)

where Y is the regressor matrix satisfying

Ho4 r + C0q + go = Ya o

K is a positive definite constant matrix, a the estimated parameter, 	= a — a0 , Q the

upper bound matrix for p(t), and r a constant positive definite matrix.

Proof: To analyse the convergence and stability, we consider the Lyapunov function

v(t)=—(sT H o s+ c-i- Tr - ia)
2

(7.11)

The derivative of V(t) is

•:-T —- IY(t)= S T Hcri.-F
1 —2 sT flos+a r I a (7.12)

Substituting = q - 4,. and Ho = H — All yields

1Y(t)= 5 T (H4 —AH4 —H04,)+-21 s T ilo s+ 	 (7.13)

Since H.4 + C4 + g = + E. therefore

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 137

1/4 = T E — (Co + AC)4 — (g o + Ag) 	 (7.14)

So, we have

— Co 4 — g o) + —21 s r fl o s+a T r -t a- (7.15)

1 	 - Now, using s = 4-4, and —s T (H0 —2C0)s = 0 (Slotine and Sastry, 1987, 1991) we
2

have

sT (_coo + _21 s T fios = Ths T cos + _21 sT 	sT co4r _ sT co4r,

Substituting r = T 1 + T 2 we get

IY(t) = s r ('r, — H ø 4 r — 	— g o) + s r (T 2 + p) + 	 (7.16)

Since HA, + C0q + go = Yao and (7.9)-(7.10), therefore

1(t) = s r (Ya — Ks —Ya o)+ EL T r -i a + sT (T 2 + p). 	 (7.17)

But sr sgn(s) = 	Choosing a T _ (_ryT T) 	_S T }T, we have

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 138

T 	 A a r a =—s Yl 1 (a — a0) . (7.18)

Therefore

V(t)=—s T Ks— sr p+ ST t ,

= —s T Ks— s T p— s T Qsgn(s)
< 0

(7.19)

Tracking convergence is then proved, i.e. s --> . 	 QED.

Remark 7.1: From (7-9) one can see that the control torque contains two parts: 1 1 is

identical to the control law of Slotine and Li (1987; 1991) which is used to estimate

the constant part of the system parameters; the other part r 2 is the switching control

characterised by upper bound matrix Q for system uncertainties and external

disturbances.

Remark 7.2: In order to achieve the good quality of the above adaptive sliding mode

control, we apply the same fuzzy tuning mechanism as described in Section 5.3 to

adjust switching control parameter Q according to Lyapunov function and its time

derivative.

The fuzzy inference system consists of two linguistic input variables V and V and one

linguistic output variable Q. The two fuzzy input variables are defined as follows

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 139

V={B, M, S} 	 (7.20)

V=113 , Z, 	 (7.21)

where B = big, M = medium, S = small, P = positive, Z = zero, N = negtive. Fuzzy

output variable Q is defined as follows

Q={B, MB, M, MS, S} 	 (7.22)

where MB = medium big, MS = medium small. The input-output relation of the fuzzy

controller with fuzzy variables (7.20), (7.21) and (7.22) is written by

V, —>Q 	 (7.23)

The fuzzy tuning algorithm for Q is described in following fuzzy rules,

1'. If (V is B) and (V is P) then (Q is B)

2. If (V is B) and (V is Z) then (Q is MB)

3. If (V is B) and (V is N) then (Q is M)

4. If (V is M) and (V is P) then (Q is MB)

5. If (V is M) and (V is Z) then (Q is M)

6. If (V is M) and (V is N) then (Q is MS)

7. If (V is S) and (V is P) then (Q is M)

8. If (V is S) and (V is Z) then (Q is MS)

9. If (V is S) and (V is N) then (Q is S)

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 140

The membership functions for fuzzy variables V, V, and Q with normalised universe

of discourses are chosen as in Fig. 7.1 (a)-(c). The fuzzy inference surface is shown in

Fig. 7.1 (d).

0.8

Isn

0.2

0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6
	

0.7
	

0.8
	

0.9
Lyapunov_function

Fig. 7.1 (a) Fuzzy subsets of V

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 141

0.6 1 0.8 -0.8 	-0.6 	-0.4 	-0.2 	0 	0.2 	0.4
Change_rate_of_Lyapunovf unction

Fig. 7.1 (b) Fuzzy subsets of V

MB

0.8 0.9 1 0.7 0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6
Control_parameter_Q

1

0

Fig. 7.1 (c) Fuzzy subsets of Q

0.8

0.2

1

0.8

0.2

0

S M

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 142

V_dot V

Fig. 7.1 (d) Surface of Q (V, V)

7.3 An illustrative example

A real-time implementation of the control strategy was developed for a five-bar

robotic manipulator, as shown in Fig 7.2.

Fig.7.2 A five bar robotic manipulator

Computer
Pentium Pro

PC-30D

PCL-833

DC-Tacho/Encoder

Servo amplifier

DC-Tacho/Encoder

Motor 2
Motor 1 Robot

arm

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 143

The dynamics of the resultant two degree of freedom system, operating in the

horizontal plane, can be approximately described by

[H 11
[H 2 ,

H 12 1[41 	[0 	4 2 4 1 . T i

H22 42 	/141 	0 42 	Lt 2
(7.24)

where H il = a 1 , H 12 = H 21 = —a 3 cos(q 2 —) H 22 = a 2 , h = a 3 sin(q 2 — q l) •

The hardware details are shown in Fig. 7.3. Two interface cards are installed in the

computer with a Pentium Pro/200MHz CPU. The PC-30D by Eagle Tech consists of

two 12-bit D/A converters with full scale output range from 0 to +10V, the output

signals are fed to robot motors through a Servo amplifier by Baldor (TSD-050-05-02-

1, operated in torque mode). The PCL-833 by Advantech is a 3-axis quadrature

encoder and counter add-on card, and receives qradrature signals from DC-

Tacho/Encoders (with 500 counts/rev) mounted on the motor shafts for joint angle

measurements. DC motors by Maxon (RE035-071-39, gear ratio 86:1) provide the

joint actuation.

Fig. 7.3 Schematic diagram of the five -bar robot

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 144

The following second order dynamic model was chosen to generate the desired

trajectory:

X m = A„,x„, +B„,r

where x. = [qd , qd2 qd1 qd2 f , with initial values x„,(0) = [2.0 1.5 0 0] T

0 	0 	1 	0
0 	0 	0 	1

—6.25 	0 	—5 0
0 	—6.25 0 —5

and r(t) is the set point.

The initial state of the robot was chosen as

[q1 q2 41 42f =[- 0 0 of

The initial estimates of the system parameters were chosen as

[a l a2 a3]T = [0.02 0.04 0.0015]T

The following parameters were also chosen

A m = B„, =

00
00
10
01

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 145

K = 21, A =10/,

0.01 	0 	o
1= o 	0.01 	o

o 	o 	0.001

In this experiment, the sampling interval is lms.

Fig. 7.4- 7.10 show the experimental results with T 2 = —Q sgn(s) and Q=0.5 without

fuzzy tuning. It is observed that there exists chattering in the control signal.

Fig. 7.11- 7.17 show the experimental results with T 2 = —Q sgn(s) and Q„..0.5 with

fuzzy tuning. It is observed that the control chattering is diminished.

7.4 Concluding remarks

In this chapter, Lyapunov stability theory and fuzzy logic technique are combined

together to design fuzzy adaptive sliding mode control systems. It is shown that an

adaptive sliding mode control is first designed to learn the system parameters with

bounded system uncertainties and external disturbances. A set of fuzzy rules are then

used to adjust the controller's uncertainty bound based on the Lyapunov function and

its time derivative. The robust adaptive sliding mode controllers with fuzzy tuning

algorithm show the advantage of reducing the chattering and the amplitude of the

control signals, compared with the adaptive sliding mode controller without fuzzy

tuning. Experimental example for a five-bar robot arm is given in support of the

proposed control scheme.

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 146

3.2

—2.8
-o
Et_
2 2.6

"5

	 set point
— model reference
- - system response

0
2 1.8

1.6

1.4

0 	2 	4 	6 	8 	10 	12 	14 	16 	18 	20
time (s)

Fig. 7.4 Output tracking of joint 1(without fuzzy tuning)

Th
e

ou
tp

ut
 tr

ac
ki

ng
 o

f j
oi

nt
 tw

o
(r

a d
)

-0.2

0.6

0.4

0.2

0.8

1.2

1.6

1.4

1

	 set point
— model reference

- system response

0
	

2
	

4 	6 	8 	10 	12
	

14 	16 	18 	20
time (s)

Fig. 7.5 Output tracking of joint 2(without fuzzy tuning)

16 18 20 14 2 	4 	6 	8 	10 	12
time (s)

0.02

0.015

Ca
0.01

.5

•

0.005

5 C.
5
a) -0.01
.c

- 0.015

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 147

0.02

0.015

Ca

a) 0.01

•6 0.005
"6

- 0.015

-0.02
0

, 	 1

2 	4 	6 	8 	10 	12
time (s)

14 	16 	18 	20

Fig. 7.6 Tracking error of joint 1 (without fuzzy tuning)

Fig. 7.7 Tracking error of joint 2 (without fuzzy tuning)

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 148

1.5 -

1111111110111L1 11 	11 11111 1 1

-1.5 -

-2
0

2 	4 	6 	8 	10 	12 	14 	16 	18
	

20
time (s)

Fig. 7.8 Control input of joint 1 (without fuzzy tuning)

1.5

2 0.5

.0

0.
II 11111111.11M11111111111111111 111111111111

•-

-0.5

ci

_

-1.5

■ 	■ 	 ,

2 	4 	6 	8 	10 	12 	14 	16 . 	18
time (s)

Fig. 7.9 Control input of joint 2 (without fuzzy tuning)

20

3.2

3

—2.8
-o

2.6

1.6

1.4

	 set point
— model reference

- system response

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 149

Parameter estimations
0.06

0.05

al
— a2
- - a3

0.02

0.01
r-

O
o 	2 	4 	6 	8 	10 	12

time (s)

Fig. 7.10 Parameter estimations (without fuzzy tuning)

2 	4 	6 	8 	10 	12 	14 	16 	18 	20
time (s)

0.04

0.03

14 16 18 20

Fig. 7.11 Output tracking of joint 1 (with fuzzy tuning)

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 150

Th
e

ou
tp

ut
 tr

ac
ki

ng
 o

f j
oi

nt
 tw

o
(ra

d)

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

-0.2

0 	2 	4 	6 	8 	10 	12 	14 	16 	18 	20
time (s)

Fig. 7.12 Output tracking of joint 2 (with fuzzy tuning)

	

0.02 	

0.015 -

13
Ca

0.01 -
a)

:5 0.005 -
"5

‘6:
if)
0)

Ez, -0.005 -
5
5 ° -0.01 - a) _c

-0.015 -

	

-0.02 	
0

2 	4 	6 	8 	10 	12 	14 	16 	18
time (s)

20

Fig. 7.13 Tracking error of joint 1 (with fuzzy tuning)

	 set point

— model reference

- system response

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 151

0.02

0.015

=-6
Ca

0.01

.5

▪

0.005

;(2

C.)

-0.005
5 a.

a) -0.01
.c

- 0.015 -

-0.02 	
0 20 2 	4 	6 	8 	10 	12 	14 	16 	18

time (s)

Fig. 7.14 Tracking error of joint 2 (with fuzzy tuning)

1.5

- 1.5

■ 	, 	 , 	 ,

2 	4 	6 	8 	10 	12 	14 	16 	18
time (s)

20

Fig. 7. 15 Control input of joint 1 (with fuzzy tuning)

al
— a2
- - a3

•

CHAPTER 7 FUZZY ADAPTIVE SLIDING MODE CONTROL 	 152

1.5

0.5

.0
"5

• -0.5

-1.5

-2
0 20 2 	4 	6 	8 	10 	12 	14 	16 	18

time (s)

Fig. 7.16 Control input of joint 2 (with fuzzy tuning)

Parameter estimations

0.01

0.03

0.02

0.06

0.05

0.04

0
0 	2 	4 	6 	8 	10 	12

time (s)
14 16 18 20

Fig. 7.17 Parameter estimations (with fuzzy tuning)

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 153

Chapter 8

Robust Adaptive Sliding Mode Control
of Robots

8.1 Introduction

Adaptive control of mechanical manipulators has been studied extensively by many

researchers using various methodologies (Craig et al., 1986; Slotine and Sastry, 1984;

Balestrino et al., 1979; Young, 1978), such as hyperstability theory, Lyapunov

stability method, self-tuning regulator control and sliding mode control (SMC).

Among the various methodologies, the SMC demonstrates its good robustness and low

computational cost. SMC is a discontinuous feedback control that switches the system

control structure during the evolution of the system state so that the system states

remain in a prescribed subspace. A SMC controller for robot manipulators suggests

that each manipulator link matches a first order sliding motion such that when the

system state reaches the sliding mode, it chatters along the sliding mode and exhibits

insensitivity to the system parameter variations and external disturbances (Slotine &

Li, 1987).

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 154

One of the well known results in SMC design for trajectory tracking of robotic

manipulators was obtained by Slotine and Li (1987, 1991). Their adaptive SMC is

based on the linear parametrisation approach for the robotic systems which do not

involve any uncertainties and disturbances. The validity of the control algorithm is

based on the assumption that the system parameters must be constant and the desired

trajectory should be sufficiently "rich" to guarantee parameter convergence. To

overcome the robustness problem of Slotine and Li's controller, Su and Leung (1993)

have proposed a modification that employs the bound estimation algorithms in the

controller to give rise to a robust adaptive SMC controller without a priori knowledge

of upper bounds of the system parameters. This controller is able to handle large and

time varying variations in the parameters. However, the problem is that their control

torques designed incur very large chattering which is not desirable in practice,

especially in mechanical systems.

In this chapter, a new adaptive SMC law is proposed for trajectory tracking of rigid

robotic manipulators with uncertainties to achieve robustness as well as desired

qualities such as speedy tracking, minimal chattering and small control torques. We

first show that, under a mild assumption, and if the control input does not contain the

acceleration signal, then the system uncertainty is bounded by a positive function of

the position and velocity measurements. This result forms the foundation of the

derivation of the proposed adaptive SMC law which does not require measurement of

acceleration signals. We then propose an adaptive SMC strategy that integrates the

Slotine and Li's controller for estimation of the constant part of the system parameters

with a switching controller that takes care of the uncertain part of the system

parameters with its switching amplitude adaptively learned by a Gaussian RBF neural

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 155

network. The advantage of the proposed adaptive SMC strategy is that the switching

control part only controls the "real" uncertain part of the system parameters, and the

minimum control effort is achieved by adaptive learning of the uncertainty bound.

When the magnitude of the uncertainties is small, the chattering caused by the

switching is small.

This chapter is organised as follows: In Section 8.2, the robust adaptive SMC design is

presented. Section 8.3 describes the experimental results for confirmation of the

theoretical results. Section 8.4 gives conclusions.

8.2 The Robust Adaptive SMC Design

Consider the dynamics of the n-joint robotic manipulators represented by the

following second order nonlinear vector differential equation

H (q)ij + C(q,4)4 + g(q) = r(t)+ e(t) 	 (8.1)

where q(t) is the nxl vector of joint angular positions, H(q) is the nxn symmetric

positive definite inertia matrix, C(q,4)4 is the nxl vector containing Coriolis,

centrifugal forces, g(q) represents the derivation of the manipulators potential energy,

r(t) is the nxl vector of applied joint torques which are actually control inputs, and

e(t) is the nxl bounded input disturbances vector.

We assume that the robotic manipulators have uncertainties, i.e.

H (q) = H 0 (q) + AH (q)
	

(8.2)

C(q,4)= Co (q,4)+ AC(q, 4)
	

(8.3)

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 156

g(q) = g o (q)+ Ag(q) 	 (8.4)

where H 0 (q),C0 (q,4), g o (q) are the nominal parts and AH (q), AC(q,q), Ag(q) are

the uncertain parts. The uncertain components represent bounded small possible time

varying, unmodelled dynamics or load changes. Substituting the expressions (8.2)-

(8.4) into the dynamics (8.1) gives rise to

Ho (0.4 ± Co (q, 4)4 + go (q) = t(t) + P(t) 	 (8.5)

with

p(t)= e(t)— AI-14— AC(q,q)q — Ag(q) 	 (8.6)

representing all the uncertain terms. When p(t)=0, we call the dynamics as the

"nominal dynamics" of the robotic manipulators.

Some mild assumptions are made prior to further discussion. These assumptions are

usually satisfied in practice.

Assumption 8.1: The matrix H(q) is bounded and invertible, i.e. for some unknown

constant y h ,

(8.7)

and 11 - ' (q) exists for all q.

Assumption 8.2: The vectors C(q,q) and g(q) satisfy

IIC(q 	Y c20q11 + Y c3I1411 2

lig(q)11<yf +yllq11
where yh of , yC2 , yC3, y f 9 - gg y are positive constants but do not have to be known.

(8.8)

(8.9)

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 157

According to the characteristics of industrial robots, These assumptions are not

stringent and have been used by many researchers (Abdallah et al., 1991). With these

mild assumptions, the following theorem is derived which will be very useful for later

derivation of the robust adaptive SMC controller for robotic manipulators.

Theorem 8.1: With Assumption 8.1-2, if the control input vector t(t)does not contain

the acceleration signal 4, then the system uncertainty term p(t) is bounded by a

positive function of the position and velocity measurements:

1113(0 11 ‹ Ed (q ,4)
	

(8.10)

where Fd (q,(4) is a positive function to be expressed in the following.

Proof: Expression (8.5) can be written in the following form

4= H0 (q) -1 (T(t)+ p(t))- Ho (q) -I ho (q,q) 	 (8.11)

with hc, = Co (q,q)q + g o (q) . Using expression (8.11) in expression (8.6), we have

p(t)= -AH(q)q - Ah(q,q)+ E(t) = -AH(q)11 0 (q) -1-4t)

-AH(q)H0 (q) -1 p(t)- AH(q)110 (q) -1 110 (q,4)- Ah(q,q)+ E(t) 	(8.12)

which gives

p(t)= -(1 + AH(q)H0 (q) -1) -1 AH(q)H0 (q) - ` 'r(t)
+(l + AH(q)110 (q) -1) -1 (-Ah(q,4)+ E(t))

-(I + AH(q)H0 (q) -1) -1 AH(q)Ho (q) -1) -1 AH(q)H0 (q) -1 110 (q,q) 	(8.13)

Then

10(01 11(I + AI-1(q)H0(q)-'11A11(q)110(q)-'11111011
+V(I + AH(q)H0 (q) - ')111Ah(q ,q)II II ± A 11(q)110(q)-') -1 1010)11

+ 0 (1 AH(q)110(q)-1)-1 0A11(q)110(q)-1 1111 110(q ')11
	

(8.14)

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 158

Considering the assumptions 8.1-2 and the fact that the input disturbance vector is

upper bounded, we have the following inequalities:

11(/ + AH(q)H0 (q) -1) -1 11< a 1 	 (8.15-a)

11 AH(q)110(q)-1 11 < a2 	 (8.15-b)

Ils(t)11‹ Et 	 (8.15-c)

Ilho(q , 4)11 < a3 +a411.711+414112 	 (8.15-d)

IlAh(q , 4)11 < a 7 + 414 a904112 	 (8.15-e)

where a 1 ,...,a 9 and E I are unknown positive constants. Using inequalities (8.15-a)-

(8.15-e) in expression (8.14), we have

11 13(t) Il <a l alr(t) 11
(a1a7 atE1 a1a2a3

+(aia8 a1a2a4)11q11

+(a1a9 a1a2a5)4 11 2

Now because the control input does not contain acceleration signal, i.e.,

t(t) = F(q,4)

and there exists a positive function Fp (q,4) such that

11'0011=11F (q , 4)1I < F p (q , 4)
Using expression (8.18) in expression (8.16), we have

a 1 a 2 F p , 4)

± (a l a 7 ± a iE ala2a3
+ (alas aia2a4)114

+ (a1a9 ot1a2a5

Fd(q 7 0

(8.16)

(8.17)

(8.18)

(8.19)

QED.

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 159

Remark 8.1: It has been seen from above discussion that the upper bound of the

system uncertainty p(t) is input-related because of the high nonlinearities in robot

systems.

Remark 8.2: As a special case of theorem 8.1, if the control system uses the following

polynomial-type of controller,

11'0011 < x 0 + x111q 1I+ x211411 2 = F, (q, 4)
	

(8.20)

where A 0 , X I and A 2 are positive numbers, then by expression (8.19), we have

111)(011 < b1 + NM+ b311411 2
	

(8.21)

where

bl = a 1 a 2X 0 +a,a, +a,c, +a,a 2a 3 ,

b2 = a 1 a 2X 1 +a 1 a 8 +a,a 2 a 4 ,

b3 =a,a 2X 2 +a,a 9 +a,a 2 a 5 .

Bounded property in expression (8.21) has been used by some researchers (Abdallah

et al., 1991, Man & Palaniswami, 1994).

In order to track a desired trajectory using robotic manipulators whose parameters are

composed of large, fixed parts and small, bounded uncertain parts, we propose a

controller structure that consists of two components: one is switching controller with

amplitude adaptively learned by using Gaussian RBF neural networks which controls

only the uncertain parts; the other is similar to Slotine and Li's controller that takes

care of the certain parts.

Suppose p c, (q,4) is the optimal bounding function for p(t) , i.e.,

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 160

IIP(t)11 	Po (.7, 4)
	

(8.22)

In this paper, we choose the Gaussian RBF neural network to adaptively learn the

bounding function p o (q, 4) . It has been shown (Poggio & Girosi, 1990) that a linear

superposition of Gaussian RBFs results in an optimal mean square approximation to

an unknown function which is infinitely differentiable and whose values are specified

at a finite set of points. Further, it has been proven (Poggio & Girosi, 1990) that any

continuous functions, not necessarily infinitely smooth, can be uniformly

approximated by a linear combination of Gaussian RBFs.

The Gaussian RBF neural network is a particular network architecture (Poggio &

Girosi, 1990) that consists of three layers: the input layer, the hidden layer that

contains the Gaussian RBF and the output layer. At the input layer, the input space

x E R" is divided into grids with a Gaussian function at each node defining a receptive

field in R" with c i as its centre and cs 2 as its variance. The value of variance essentially

defines the extent of localisation of the effect of the input. The approximation of the

bounding function can be written as,

pow = 0 T 4(x)

.ye,(0,(x) 	 (8.23)

where x = [q T • T q 	, 0 is the weight vector, and

11 X 	C i 11 2
11) i (X) = exp(2)

a
(8.24)

Assume that there exists a constant weight vector 0* so that 0* T O(x) achieves the

minimum control effort of the sliding mode control and

0* T 0(x) — p o (x) A 	 (8.25)

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 161

where A is a small positive number.

Let the parameters to be estimated be represented

a = a + Aa (8.26)

The sliding function is
s = Fir + 	= — 4 r 	 (8.27)

where 4, = 4 d — A, and qd is the desired trajectory while A is a positive constant

matrix. We have the following result:

Theorem 8.2: The control torques and the adaptive learning laws given below, ensure

convergence of the sliding function s to zero:

1= + 	 (8.28-a)

T i = Y - Ks, 	 (8.28-b)

T 2 = —6 7- (130(X)sgn(s)
	

(8.28-c)

a = — ryTs, 	 (8.29)

6 = 0.0(.11s11
	

(8.30)

where Y is the regressor matrix satisfying

Ho e'fir + C04, + go = Yao

K is a positive definite constant matrix, a the estimated parameter, a = a - ao , 0 the

weight vector for bounding function, Q a positive definite diagonal matrix and r a

constant positive definite matrix.

Proof: To analyse the convergence and stability, we consider the Lyapunov function

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 162

-1 V (t) = r 11 0 S + arr - a + 0 E2 0- 1
2

The derivative of V(t) is

1(t) = s T H 0 ,i• + —21 s r H o s + tirr -ta - 6Tg2 -1 6

Substituting = 4 - 4„ and Ho = H — AH yields

V(t) = S T (114 6.114 — 11 0 4,)+ —21 S T 1 .1 0 S + a rr -t a - 6 7- 52 -1 6

Since 114 + C4 + g = . therefore

(8.31)

(8.32)

(8.33)

H4 = T - (C0 + AC)4 - (g0 + 	 (8.34)

So, we have

1(t)= S T — AH4 — AC4 — Ag — Ho ii r — Co4 —g o) + —21 S T fl o S± a T r --' - -OTS-116

(8.35)

1
Now, using s = 4 - 4 and —s T (H0 —2C0)s = 0 (Slotine & Li, 1987; 1991) we have

r 	2

s T 	c r 	c r S T (—004)+ —21 S T 1110 S = — S T Co S + —21 /los _ sT o4 = _ sr o4 ,

Substituting r = r 1 + T 2 we get

(8.36)

Since HA + C04,. + g o = Yao and (8.28)-(8.30), therefore

1(t) = sr (Ya— Ks —Ya0)+ arr -ia - -OTE-21

+sr(1- 2 - 	- Ac4 - Ag).

But ST sgn(s) = IsO, Choosing aT =,
)T
	sT Yr, we have

(8.37)

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 163

• — a i a = —sT yrr - '(â--- a0) .

Therefore

1Y = -S T Ks — s T (6.114 	Ag)— s T o T (I)(q,q)sgn(s) — ii T S2 -1 6

= —s T Ks — sTp(t)— 61'4014 - (CI* - T 4)(14
5_ — s T Ks — [0 *T (1(x) P 0(X)1114
< 0

(8.38)

(8.39)

Tracking convergence is then proved, i.e. s --> 0. 	 QED.

Remark 8.3: From (8.28) one can see that the control torque contains two parts: one

is identical to the control law of Slotine and Li (1987;1991) which is used to estimate

the constant part of the system parameters; the other part is an adaptively learned

switching control by using the Gaussian RBF network. The validity of the

combination of these two control structures lies in theorem 1 which ensures that the

uncertainty can be represented in terms of q and 4. The advantage of the proposed

controller is that the minimum control effort can be achieved by adaptively learning

of the bounding function, thus, when the magnitude of uncertainties is small, the

magnitude of chattering is small.

8.3 Experimental Results

To demonstrate the validity of the proposed robust algorithm (8.28)-(8.30), a real-time

implementation of the control strategy was developed for a five bar robotic

manipulator similar in design to that used by a number of researchers (Mills and

Lockhorst,1993; Gourdeau and Schwartz, 1991). As shown in Figure 8.1, the links of

/1421411 , [Ill
0 4 2 	T 2

[HII HI21[411+

[H21 H22 42 	h41

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 164

the robot form a parallelogram enabling the position of the end effector to be uniquely

specified by the rotations of links one and two.

Fig.8.1 A five bar robotic manipulator

The dynamics of the resultant tWo degree of freedom system, operating in the

horizontal plane, can be approximately described by (Mills and Lockhorst, 1993)

where H i =a, H12 = H2I = —a 3 cos(q 2 —) 7 H22 = a 2 , h = a 3 sin(q 2 — q,) .

The following second order dynamic model was chosen to generate the desired

trajectory:

= A mx. +B m r

where x„, = [qdi qd2 (*h i qd2 f , with initial values x„, (0) = [2.0 1.5 0 Of

Computer
Pentium Pro

PC-30D

PCL-833

DC-Tacho/Encoder

Servo amplifier

DC-Tacho/Encoder

Motor 1
Motor 2

Robot
arm

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 165

=

0
0

—6.25
0

0
0
0

—6.25

1
0

—5
0

0
1
0

—5

B =

00
00
10
01

and r(t) is the set point.

The hardware details of the control system are shown in Figure 8.2. Two interface

cards are installed in the computer with a Pentium Pro/200MHz CPU. The PC-30D by

Eagle Tech consists of two 12-bit D/A converters with full scale output range from 0

to +10V, the output signals are fed to robot motors through a Servo amplifier by

Baldor (TSD-050-05-02-1, operated in torque mode). The PCL-833 by Advantech is a

3-axis quadrature encoder and counter add-on card, and receives qradrature signals

from DC-Tacho/Encoders (with 500 counts/rev) mounted on the motor shafts for joint

angle measurements. DC motors by Maxon (RE035-071-39, gear ratio 86:1) provide

the joint actuation.

Fig.8.2 Schematic diagram of robot control system

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 166

The initial state of the robot was chosen as

[ql q2 41 421 = [i 00 of

The initial estimates of the system parameters were chosen as

[a l a 2 a 3 f = [0.015 0.04 0.0015r

The centres of the Gaussian RBFs were chosen as follows: 1.4 and 3.4 for q,, 0 and

2.0 for q 2 , -1 and 1 for 4 1 and 4 2 . Therefore, totally 2x2x2x2 =16 Gaussian RBFs

were used in the experiment.

The following parameters were also chosen

K = 21, A =10/, S2 = 21, a 2 = 2.0

0.01 	0 	0
F= 0 0.01 	0

0 	0 	0.001 _

In this experiment, the sampling interval is lms. Figure 8.3(a)-(c) show the graphs of

the output tracking, tracking errors and control torques. Figure 8.4 shows the

parameter estimations. Figure 8.5 illustrates the bounding function estimations.

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 167

8.4 Concluding remarks

A new adaptive sliding mode controller has been developed in this chapter for

trajectory tracking in robotic manipulators. This controller is able to estimate the

constant part of the system parameters as well as adaptively learn the uncertain part of

the system parameters by the Gaussian neural network. We have shown that under a

mild assumption, the proposed control law does not require measurement of

acceleration signals. This new control law exhibits the good aspects of Slotine and

Li's and keeps the chattering to a minimum level. An experiment with a five bar

robotic system was done and the results have confirmed the effectiveness of the

approach.

set point
• model reference

system response

2 	4 	6 	8 	10
time (s)

12 	14 	16 	18 	20

Fig. 8.3(a) The output tracking of joint one and two.

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 168

3.2

2.8

CRT
2.6

'5 2.4

Ye 2.2
Co

o. 2

set point
model reference
system response

1.6

1.4

2 	4 	6 	8 	10
time (s)

12 	14 	16 	18 	20

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 169

0.02

0.015 -

0.01

0.005

F
Ca

-0.005
0.
0

-0.01

- 0.015

- 0.02 	

	

0
	

2 	4 	6 	8 	10
	

12 	14 	16 	18 	20
time (s)

0.02

0.015

▪ 0 01

0.005

I-- -0.01

- 0.015 -

■ 	, 	 . 	 , 	 .

2 	4 	6 	8 	10 	12 	14 	16 	18
time (s)

- 0.02
0

Fig. 8.3(b) The tracking errors of joint one and two.

20

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 170

1.5 -

c 0 5

rEVL- •E

-g, -0.5 -
C.,

-1.5-

2 	4 	6 	8 	10 	12 	14 	16 	18 	20
time (s)

1.5-

3 0.5

5 	frimui tam 1r--4-"---1

72

a)

-1.5 -

2 	4 	6 	8 	10 	12 	14 	16 	18
t 	 1 	 1 	 I 	 i 	 1

20
time (s)

Fig. 8.3(c) The control inputs of joint one and two.

0.06

0.05

0.04

-

_

_
al
a2
a3

0.03

0.02 -

0.01 -
,

2 	4 	6 	8 	10 	12
time (s)

oo 14 16 18 20

CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 171

Parameters estimation

Fig. 8.4 The system parameters estimations

Bounding function estimation

%./^%,.......

2 	4 	6 	8 	10 	12 	14 	16 	18 	20
time (s)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Fig. 8.5 Bounding function estimation

CHAPTER 9 CONCLUSIONS 	 172

Chapter 9

Conclusions

9.1 Summary

Variable structure control technique is a powerful approach for the control of

nonlinear systems. It is advocated to solve complex control problems that are not in

the scope of simple linear feedback controllers and adaptive controllers. However, the

over estimation of system uncertainties and the inherent control chattering will still be

the main issue of the variable structure controller design. Therefore, this thesis has

been mainly concerned with the study and improvements of robust control schemes by

employing artificial intelligent technologies.

Chapter two of this thesis has provided a brief survey of variable structure control

theory. Robust variable structure controller design for robotic manipulators has been

presented by using reaching law method. The limitations of these results have also

been highlighted.

Chapter three has provided a background for fuzzy logic and fuzzy logic control

techniques being applied in the thesis. Fuzzy sets, fuzzy set operations, and fuzzy

CHAPTER 9 CONCLUSIONS 	 173

linguistic representation such as linguistic variables and linguistic modifiers (hedged)

have been briefly outlined. The advantages and disadvantages of fuzzy logic controller

have been discussed.

In chapter four, a robust tracking control scheme is proposed for a class of nonlinear

systems. A nominal fuzzy system model for a nonlinear system is established by fuzzy

synthesis of a set of linearised local subsystems, where the conventional linear

feedback control technique is used to design a feedback controller for the fuzzy

nominal system. A variable structure compensator is then designed to eliminate the

effects of the approximation error and system uncertainties. Strong robustness with

respect to large system uncertainties and asymptotic convergence of the output

tracking error are obtained.

In chapter five, Lyapunov stability theory and fuzzy logic technique are combined

together to design sliding mode control systems. It is shown that a sliding mode is

first designed to describe the desired system dynamics for the controlled system. A set

of fuzzy rules are then used to adjust the controller's parameters based on the

Lyapunov function and its time derivative. The desired system dynamics are then

obtained in the sliding mode. The sliding mode controllers with fuzzy tuning

algorithm show the advantage of reducing the chattering of the control signals,

compared with the conventional sliding mode controllers. The fuzzy tuning algorithm

has also been applied to the adaptive sliding mode control.

In chapter six, a robust continuous sliding mode control scheme for linear systems

with uncertainties has been developed. The controller consists of three components:

CHAPTER 9 CONCLUSIONS 	 174

equivalent control, continuous reaching mode control and robust control. It retains the

positive properties of sliding mode control but without the disadvantage of control

chattering. The proposed control scheme has been applied to the tracking control of a

one-link robotic manipulator by fuzzy modelling of the nonlinear system.

In chapter seven, Lyapunov stability theory and fuzzy logic technique are combined

together to design fuzzy adaptive sliding mode control systems. It is shown that an

adaptive sliding mode control is first designed to learn the system parameters with

bounded system uncertainties and external disturbances. A set of fuzzy rules are then

used to adjust the controller's uncertainty bound based on the Lyapunov function and

its time derivative. The robust adaptive sliding mode controllers with fuzzy tuning

algorithm show the advantage of reducing the chattering and the amplitude of the

control signals, compared with the adaptive sliding mode controller without fuzzy

tuning. Experimental example for a five-bar robot arm is given in support of the

proposed control scheme.

In chapter eight, a new adaptive sliding mode controller has been developed in this

chapter for trajectory tracking in robotic manipulators. This controller is able to

estimate the constant part of the system parameters as well as adaptively learn the

uncertain part of the system parameters by the Gaussian neural network. It is shown

that under a mild assumption, the proposed control law does not require measurement

of acceleration signals. This new control law exhibits the good aspects of Slotine and

Li's (1987) and keeps the chattering to a minimum level. An experiment of a five bar

robotic system was done and the results have confirmed the effectiveness of the

approach.

CHAPTER 9 CONCLUSIONS 	 175

In summary, the thesis has provided several new and improved robust variable

structure control schemes by employing fuzzy logic and neural networks technologies

aimed at achieving robustness and convergence with optimised control input in the

presence of system uncertainties and external disturbances. These results have been

applied to robotic manipulators and have been proved both in simulation and

experiment.

9.2 Suggestions for further work

Some areas for further research related to the thesis are:

(1) The sliding mode control technique may be used for the design of adaptive filters.

For example, a Lyapunov function of the tracking error between desired signal and

output of the filter can be defined first. Then the adaptation law of the filter

parameters can be obtained based on the sliding mode control theory, so that the

tracking error can asymptotically converge to zero. The potential advantages of the

sliding mode technique based adaptive filters over the existing LMS and RLS

algorithms would be the simplicity and robustness.

(2) The sliding mode control method may be used for the real time training of neural

networks parameters to improve the convergence and robustness properties. A

Lyapunov function of the error between the desired and actual outputs of the

neural networks can be defined first. Then the error is backward-propagated based

on Lyapunov stability theory so that the weights of the inner layers of the neural

networks can be adjusted adaptively. The distinct advantage over the standard BP

or modified BP would be that the system will not get stuck in a local minimum.

CHAPTER 9 CONCLUSIONS 	 176

(3) The approach of the terminal sliding mode (Man et al., 1994, Yu et al., 1996) may

be used for BP training of weights of neural networks. As in terminal sliding mode

design, we can replace the inertial term by following form (LiMin Fu, 1991,

PP- 83),

Wii (t + 1) = W ji (t)+ 775 J O, + a[W ii (t) —147 ji (t —1)] ql p

The convergence and robustness performance could be expected to be improved.

(4) Last, but not least, fuzzy set theory may be used in the design of fuzzified linear

sliding mode control and terminal sliding mode control. When the system is far

from the desired sliding mode, linear sliding mode control scheme can be used to

achieve fast convergence, while the system is getting closer to the desired sliding

mode, the terminal sliding mode control scheme can be used to guarantee finite

time convergence property. Therefore, optimal system performance can be

achieved by fuzzified control strategy.

REFERENCES 	 177

References

Abbass, A. F., and Ozguner, U. (1985). Decentralised model reference adaptive

system using a variable structure control. Proc. 24th Conf. Decision & Control,

pp. 1473-1478.

Abdallah, C., and Jordan, R. (1990). A positive-real design for robotic manipulators.

Proc. IEEE Amer. Contr. Conf. pp. 991-992.

Abdallah, C., Dawson, D., Daorato, P., and Jamshidi, M. (1991). Survey of robust

control for rigid robotics. WEE Control Systems, vol. AC - 11, pp. 24-30.

Ambrosino, G., Celentano, G., and Garofalo, F. (1984). Variable structure model

reference adaptive control systems. Int. J. Control, vol. 39, pp. 1339 - 1349.

Amestegui, M. R., Ortega, R., and Ibarra, J. M. (1987). Adaptive linearizing-

decoupling robotic control: a comparative study of different parametrizations.

Proc. 5th Yale Workshop on Applications of adaptive systems theory, New

haven, Connecticut.

Anderson, B. D. 0.et al. (1989). Stability of Adaptive Systems: passivity and

Averaging Techniques. Englewood Cliffs, NJ: Prence - Hall.

Astrom K. J., Hang C. C., Persson P., and Ho W. K. (1992). Toward intelligent HD

control. Automatica, Vol. 28, No. 1, pp. 41-53.

Bahnasawi, A. A., Eid, S. Z., and Mahmoud, M. S. (1991) Adaptive model-

following control based on variable structure systems. Int. J. Systems Sci., vol.

22, pp. 333 - 349.

REFERENCES 	 178

Baily, E., and Arapostathis, A. (1987). Simple sliding mode control scheme applied to

robot manipulators. Int. J. Contr., vol. 45, pp. 1197-1209.

Balestrino, A., DeMaria, G. and Seiavicco, L. (1979). An adaptive model following

control for robot manipulators. J. Dynamic Systems, Measurement and

Control, Vol.15, pp143-152.

Barmish, B. R., Petersen, I. R., and Fever, A. (1983). Linear ultimate boundedness

control of uncertain dynamical systems. Automatica, vol. 19, pp. 523-532.

Bartolini, G., and Zolezzi, T. (1985). Variable structure nonlinear in the control law.

IEEE Trans. Automat. Contr. vol. AC-30, pp. 681-684.

Becker, N., and Grimm, W. M. (1988). On L2 and L. stability •approaches for the

robotic manipulators. IEEE Automat. Contr., vol. AC-33, pp. 118-122.

Bengiamin, N. N., Kauffmann, B. Variable structure position control. Contr. Syst.

Mag., pp. 3 - 8.

Bondi, P., Casalino, G., and Gambardella, L. (1988) On the iterative learning

control theory for robotic manipulators. IEEE J. Robotics and Automation.

vol. 4, pp. 14 - 22.

Bremer, H. (1985). Parameter-insensitive swivel control of an industrial robot.

Automatisierungstechnik, vol. 33, pp. 74 - 81, (written in German).

Canudas De Wit, C., and Slotine, J-J. E. (1991). Sliding observers for robotic

manipulators. Automatica, vol. 27, pp. 859 - 864.

Canudas de Wit, C., and Fixot, N. (1991). Robot control via robust estimated state

feedback. IEEE Trans. Automat. Contr., vol. AC-36, pp. 1497 - 1501.

Cao S. G., Ree N. W. and Feng G. (1994). Stability analysis of fuzzy control systems.

Proceedings of the IEEE 2nd Australian and New Zealand Conference on

Intelligent Information Systems (ANZIIS-94), Brisbane, Australia, pp. 219-

223.

REFERENCES 	 179

Cao, S. G., Rees, N. W., Feng, G. (1996). Stability analysis and design for a class of

continuous-time fuzzy control systems. Int. J. Control, vol. 64, pp. 1069-1087,

1996.

Chang, L. W. (1991). A MIMO sliding control with a first-order plus integral sliding

condition. Automatica, vol. 27, pp. 853 - 858.

Chang, S. S. L., and Zadeh, L. A. (1972). Fuzzy mapping and control. IEEE Trans.

Syst., Man, Cybern., Vol. SCM-2, No. 1, pp.30-34.

Corless, M. J. (1989). Tracking control for uncertain systems: application to a manutec

r3 robot'. ASME J. Dynamic System, Measurement, and Control, vol. 111,

pp. 609 - 617.

Corless, M. J., and Leitmann, G. (1981). Continuous state feedback guaranteeing

uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans.

Automat. Contr., vol. AC-26, pp. 437 - 443.

Cox E. (1994). The fuzzy systems handbook. Cambridge, MA: AP Professional.

Crag, J. J., Hsu, P., and Sastry, S. S. (1986). Adaptive control of mechanical

manipulators. IEEE Int. Conf. on Robotics and Automation, pp. 190-195.

Crag, J. J., Hsu, P., and Sastry, S. S. (1987). Adaptive control of mechanical

manipulators. Int. J. Robotics Research, vol. 6, pp. 16-28.

Craig, J-J. (1986). Introduction to robotics: machine and control. Addison-Wesley

Company Inc.

Craig, J. J. (1988). Adaptive control mechanical manipulators. Addison-Westey,

Reading, Massachusetts.

Craig, J. J., Hsu, P. and Sastry S. S. (1986). Adaptive control of mechanical

manipulators. Int. J. Control, Vol.44, No.4, pp1185-1191.

Cvetkovic, V., and Vukobratovic, M. (1982). One robust dynamic control algorithm

for manipulator systems. Int. J. Robotics Res., vol. 1, pp. 15 - 28.

REFERENCES 	 180

Davari, A., and Zhang, Z. (1991). Application of the three-segments variable structure

systems. American Control Conference, pp. 62 - 63.

DeCarlo, R. A., Zak, S. H. and Matthews, G. P. (1988). Variable structure control of

nonlinear multivariable systems: A tutorial. Proc. of the IEEE, vol. 76,

pp. 212 - 232.

Desa, S., and Roth, B. (1985). Synthesis of control systems for manipulators using

multivariable robust servo mechanism theory. Int. J. Robotic Res., vol. 4,

pp. 18-34.

Desoer, C., and Vidyasagar, M. (1975). Feedback Systems: Input - output Properties.

New York: Academic.

Dorling, C. M., and Zinober, A. S. I. (1986). Two approaches to hyperplane design in

multivariable variable structure control systems. Int. J. Control, vol. 44,

pp. 65 - 82.

Drazenovic, B. (1969). The invariance conditions in variable structure system.

Automatica, vol. 5, pp. 287 - 295.

Dubois D. and Prade H., (1984). Fuzzy logic and the generalised modus ponens

revisited. Cybern. Syst., Vol. 15, No. 1, pp. 3-4.

Emelyanov, S. V., and Fedotova, A. I. (1962). Design of astatic tracking systems with

variable structure. Automat. Remote Contr., pp. 1223 - 1235.

Emelyanov, S. V., Bermant, M. A., and Kostyleva, N. E. (1966). Design principles for

variable structure control systems. In Proc. 3rd IFAC Congr., vol. 1, book 3,

pp. 40c.1 - 40c.6.

Emelyanov S.Y. (1967). Variable structure control systems. Moscow:Nauka, (in

Russian).

Fadali, M. S., Zohdy, M., and Adamczyk, B. (1989). Robust pole assignment for

computed torque robotic manipulators control. in Proc. IEEE Amer. Contr.

Conf., pp.37 - 41.

REFERENCES 	 181

Feng G., Cao S. G., Rees N. W., and Chak C. K. (1997). Design of fuzzy control

systems with guaranteed stability. Fuzzy Sets and Systems, vol.85, pp.1-10.

Freund, E. (1982). Fast nonlinear control with arbitrary pole-placement for industry

robots and manipulators. Int. J. Rob. Res., vol. 1, pp. 65-78.

Fu, L. C., and Liao, T. L. (1990). Globally stable robust tracking of nonlinear systems

using variable structure control and with an application to a robotic

manipulator. IEEE Trans. Automat. Contr., vol. 35, pp. 1345 - 1350.

Fu, LiMin. (1991). Neural Networks in Computer Intelligence. McGraw-Hill, Inc.

Furuta, K. (1990). Sliding mode control of a discrete system. System & Control

Letters, vol. 14, pp. 145 - 152.

Gao W. B., and Cheng M. (1989). Quality of variable structure control systems. Cont.

Decision, Vol.4, no.4, pp. 1-7. (in Chinese)

Gao W. B., and Hung, J. C. (1993). Variable structure control of nonlinear systems:A

new approach. IEEE Trans. Ind. Electron., Vol. 40, no.1, pp.45-55.

Gavel, D. T., and Hsia, T. C. (1987). Decentralised adaptive control of robotic

manipulators. proc. IEEE Int. Conf. on Robotics and Automations,

pp. 1230 - 1235.

Gilbert, E. G., and Ha, I. J. (1984). An approach to nonlinear feedback control with

applications to robotics. IEEE Trans. Sys., Man, and Cyber., vol. 14, pp. 879 -

884.

Gourdeau R., and Schwartz H. M. (1991). Adaptive control of robotic manipulators:

experimental results. Proc. IEEE Intl. Conf. Robotics and Auto., pp.8-15.

Grimm, W. M. (1990). Robot non-linearity bounds evaluation techniques for robust

control. Int. J. Adaptive Control and Signal Processing, vol. 4, pp. 501 - 522.

Grimm, W. M. (1990). Robustness analysis and synthesis of model-based robot

control. VDI-Fortschrittberichte, Reihe 8, No. 202, VDI Duessedorf.

REFERENCES 	 182

Grimm, W. M., Becker, N., and Frank, P. M. (1988). Robust stability design

framework for robot manipulator control. IEEE Int. Conf. on Robotics and

Automation, pp. 1042 - 1047.

Gutman, S. (1979). Uncertain dynamic system - A Lyapunov min-max approach.

IEEE Trans. Automat. Contr., vol. AC-24, pp. 434 - 443.

Gutman, S., and Polmor, Z. (1982). properties of min-max controllers in uncertain

dynamical systems. SIAM. J. Contr. Optimization. vol. 20, pp. 850-861.

Ha Q. P. (1996). PI controllers with fuzzy tuning. IEE Electronics Letters, Vol. 32,

No. 11, pp. 1043-1044.

Ha Q. P. Negnevitsky M., and Man Z. (1996). Sliding mode control with fuzzy tuning.

Proceedings of the 4th IEEE Australian and New-Zealand Conference on

Intelligent Information Systems, Adelaide, Australia, pp. 216-219.

Hellendoorn H. and thomas C. (1993). Defuzzification in Fuzzy controllers. J. Intell.

Syst., Vol. 1, pp. 109-123.

Horn, B. K. P., and Raibert, M. H. (1978). Manipulator control using the configuration

space method. The industrial Robot, vol. 5, pp. 69 - 73.

Hsu, L., and Costa, R. R. (1989). Variable structure model reference adaptive control

using only input and output measurements. Int. J. Control, vol. 49, pp. 399 -

416.

Hua 0. W., Tanaka K., and Griffin M. F. (1996). An approach to fuzzy control of

nonlinear systems: stability and design issues. IEEE Transactions on Fuzzy

Systems, vol. 4, pp. 14-23.

Hung, J. Y., Gao, W. B., and Hung, J. C. (1993). Variable structure control: A survey.

IEEE Trans. Ind. Electron., vol.40, no.1, pp.2-22.

Ioannou, P. A. (1986). Decentralised adaptive control of interconnected systems. IEEE

Trans. Automat. Contr., vol. AC-31, pp. 291 - 298.

Itkis, U. (1976). Control systems of variable structure. John Wiley, New York.

REFERENCES 	 183

Jabbari, F., and Schmitedorf, W. E. (1990). A noninterative method for the design of

linear robust controllers. IEEE Trans. Automat. Contr., vol. AC-35, pp. 954 -

957.

Jager R. (1995). Fuzzy logic in control. PhD thesis, TechnischeUniversiteit Delft.

Jang J.-S. R. and Gulley N. (1995). Fuzzy logic toolbox for use with MATLAB,

Natick, MA: The Mathworks, Inc..

Jang J.-S. R. and Sun C. T. (1995). Neuro-fuzzy modelling and control. Proceedings

of the IEEE, Vol. 83, No. 3, pp.378-406.

Khurana, H., Ahson, S. I., and Lamba, S. S. (1986). On the stabilization of large-scale

control systems using variable structure system theory. IEEE Trans . Automat.

Contr. vol. AC - 31, pp. 176 - 178.

Klein, G., and Moore, B. C., (1977). Eigenvalue-generalised eigenvector assignment

with state fedback. IEEE Trans. Automat. Contr. vol.AC- 22, pp. 140-141.

Kosko B. (1992). Neural networks and fuzzy systems: a dynamical systems approach

to machine intelligence. Englewood Cliffs, NJ: Prentice-Hall.

Kreutz, K. (1989). On manipulator control by exact linearization. IEEE Trans.

Automat. Contr. vol. AC-34, pp. 763 - 767.

Kuo, C. Y., and Wang, S. P. T. (1989). Nonlinear robust industrial robot control.

Trans. ASME J. Dyn. Syst. Means. Control, vol. 111, pp. 24 - 30.

Kwong W. A., Passion K. M., Laukonen E. G. and Yurkovich S. (1995). Expert

supervision of fuzzy learning systems for fault tolerant aircraft control.

Proceedings of the IEEE, Vol. 83, No. 3, pp. 466-482.

Larkin L. I. (1985). A fuzzy logic controller for aircraft flight control. in Industrial

Applications of Fuzzy Control, Sugeno M. (Ed.), Amsterdam: North Holland,

pp.87-104.

REFERENCES 	 184

Larsen P. M. (1980). Industrial applications of fuzzy logic control. Int. J. Man, Mach.

Studies, Vol. 12, No. 1, pp. 3-10.

Lee C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller-Part I & Part

II. IEEE Trans. Syst., Man, Cybem., Vol. SCM-20, No 1, pp. 404-435.

Leitmann, G. (1981). On the efficacy of nonlinear control in uncertain linear systems.

Trans. ASME J. Dyn. Syst. Means. Control, vol. 102, pp. 95-102.

Leung, T. P., Zhou, Q. J., and Su, C. Y. (1991). An adaptive variable structure model

following control design for robotic manipulators. IEEE Trans. Automat.

Contr. vol. AC-36, pp. 347-352.

Lin, S. C., and Kung, C. C. (1992). A linguistic fuzzy-sliding mode controller.

Submitted to 1992 ACC.

Lu, Y. S., and Chen, J. S. (1994). A self-organising fuzzy sliding mode controller

design for a class of nonlinear servo systems. IEEE Trans. Ind. Electron., Vol.

41, No.5, pp.492-502.

Luh, J. Y. S. (1983). Conventional controller design for industrial robots: a tutorial.

IEEE Trans. Sys., Man, & Cyber., vol. 13, pp. 298 - 316.

Mamdani E. H. (1974). Application of fuzzy algotithms for control of a simple

dynamic plant. Proc. of the IEE, Vol.121, No. 12, pp. 1585-1588.

Mamdani E. H. and Assilian S. (1975). An experiment in linguistic synthesis with a

fuzzy logic controller. Int. J. Man Machine Studies, Vol 7, No. 1, pp. 1-13.

Man Z. H., and Palaniswami M. (1993). An improved variable structure model

following control for robotic manipulators. Int. J. of Adaptive Control and

Signal Processing, vol. 7, pp.539 - 562, December, 1993.

Man Z. H., and Palaniswami M. (1994). Robust tracking control for rigid robotic

manipulators. IEEE Trans. Automatic Control, vol. 39, pp. 154 - 159.

REFERENCES 	 185

Man Z. H., Paplinski A. P. and Wu H. R. (1994). A robust MIMO terminal sliding

mode control scheme for rigid robotic manipulators. IEEE Trans. Automatic

Control, vol. 39, pp. 2464 - 2469.

Man, Z. H. (1995). A robust adaptive tracking controller using neural networks for a

class of nonlinear systems. J. of Neural Computing & Applications, vol. 3, pp.

157 - 163.

Man Z. H., and Palaniswami M. (1995). A robust adaptive tracking control scheme for

robotic manipulators with uncertain dynamics. Int. J. of Computer and

Electrical Engineering, vol. 21, no. 3, pp. 211 -220.

Man Z. H. (1995). Parameter estimation of continuous linear time invariant systems

using functional approximation. Int. J. of Computer & Electrical Engineering.

vol. 21, no. 3, pp. 183 - 187.

Man Z. H., and Palaniswami M. (1995). A decentralised three-segment nonlinear

sliding mode control for rigid robotic manipulators. Int. J. of Adaptive control

and Signal Processing,vol. 9, pp. 443 - 457.

Man Z. H., and Yu X. H. (1997). Terminal sliding mode control of MIMO linear

systems. IEEE Trans. Circuits and Systems-I, Vol. 44, No. 11. pp. 1065-1070.

Man Z. H., and Habibi D. (1997). A robust adaptive sliding mode control for rigid

robotic manipulators with arbitrary bounded input disturbances. J. of

Intelligent & Robotics Systems, vol. 17, pp. 371-386.

Man Z. H., and Yu X. H. (1997). Adaptive terminal sliding mode tracking control for

rigid robotic manipulators with uncertain dynamics. JSME Int. J. of

Mechanical Systems, Machine Elements and Manufacturing, Vol. 40, no. 3,

pp.493-502.

McNeil D., and Freiberger P. (1993). Fuzzy logic, NY: Simon & Schuster.

REFERENCES 	 186

Mei F., Man Z.H., Yu X.H. (1998). A robust tracking control scheme for a class of

nonlinear systems with fuzzy nominal model. International Journal of Applied

Mathematics and Computer Science, vol.8, no.1, pp.145-158.

Mendel J. M. (1995). Fuzzy logic systems for engineering: a tutorial. Proceedings of

the IEEE, Vol. 83, No. 3, pp. 345-377.

Middleton R. H. and Goodwin, G. C. (1988). Adaptive computed torque control for

rigid link manipulators. Syst. Control Lett., vol. 10, pp.9 - 16.

Mills J. K., and Lockhorst D. M. (1993). Stability and control of robotic manipulators

during contact / non-contact transition. IEEE Transactions on Robotics and

Automation, Vol.9, No.3, pp.335-345.

Miyasato, Y., and Oshima, Y. (1989). Non-linear adaptive control for robotic

manipulators with continuous control input. Int. J. Control, vol. 49, pp. 545 -

559.

Morgan, R. G., and Ozguner, U. (1985). A decentralised variable structure control

algorithm for robotic manipulators. IEEE J. Robotics Automat., vol. RA - 1,

pp. 57 - 65.

Morre, B. C. (1976). On the flexibility offered by state feedback in multivariable

systems beyound closed loop eigenvalue assignment. IEEE Trans. Automat.

Contr. vol. AC-21, pp. 689-692.

Nguyen, H. T., and Nguyen, D. K. (1995). Continuous sliding mode control. Preprints

of the Control 95. Melbourne, Australia, Vol.1, pp.57-60, October.

Nicosia, S., and Tomei, P. (1984). Model reference adaptive control algorithms for

industrial robots. Automatica, pp. 635-644.

Ogata K. (1990). Modern Control Engineering, Prentice-Hall International Inc.,

Englewood Cliffs, New Jersey.

Ortega, R., and Spong, M. W. (1989). Adaptive motion control of rigid robots: a

tutorial," Proc. IEEE Conf. Dec. & Contr., pp. 1575-1584.

REFERENCES 	 187

Ozguner, U., Yurkovich, S., and Abbass, A. F. (1987). Decentralised variable structure

control of a two-arm robotic system. Proc. IEEE Conf. Robotic &

Automation, pp. 1248-1254.

Palm R. and Rehfuess U. (1997). Fuzzy controllers as gain scheduling approximators.

Fuzzy Sets and Systems, vol. 85, pp. 233-246.

Perry T. S. (1995). Lotfi A. Zadeh. IEEE Spectrum, June, pp.32-35.

Petersen, I. R., (1985). Structural stabilization of uncertain linear control systems.

SIAM J. Contr. Optimization, vol. 23, no. 2, pp. 286-296.

Procyk T. and Mamdani E. H. (1979). A linguistic self-organising process controller.

Automatica, Vol. 15, No. 1, pp. 15-30.

Rehg, J. A. (1985). Introduction to robotics: a system approach. Prentice-Hall, INC.,

Englewood Cliffs, New Jersey.

Rhee, F. V. D. et al. (1990). Knowledge based Fuzzy control of systems. IEEE Trans.

Automat. contro. vol. 35, pp. 148 - 155.

Richter, S., Lefebvre, S., AND Decarlo, R. (1982). Control of a class of nonlinear

systems by decentralised control. IEEE Trans. Automat. Contr. vol. AC-27,

pp. 492 - 494.

Rohrs, C., Athans, M., and Valavani, L. (1985). Robustness of continuous time

adaptive control algorithms in the presence of unmodelled dynamics. IEEE

Trans. Automat. Contr., vol. AC-30, pp. 881 - 889.

Ryan, E. P. (1983). A variable structure approach to feedback regulation of uncertain

dynamical systems. Int. J. Control, vol. 38, pp. 1121 - 1134.

Samson, C. (1983). Robust nonlinear control of robotic manipulators. in Proc. 22nd

IEEE Conf. Dec.Contr., pp. 1211 - 1216.

Schmitedorf, W. E., and Barmash, B. R. (1986). Robust asymptotic tracking for linear

system with unknown parameters. Automatica, vol. 22, pp. 353 - 360.

REFERENCES 	 188

Schwartz D. G., Klir K. J., Lewis 3 H. W., and Ezawa Y. (1994).Application of fuzzy

sets and approximate reasoning. Proceedings of the IEEE, Vol. 82, No. 4,

pp.482-498.

Seraji, H. (1989). Decentralised adaptive control of manipulators: theory, simulation,

and experimentation. IEEE Trans. Robotics Automat. vol. 5, pp. 183-201.

Shao S. (1988). Fuzzy self-organising controller and its application for dynamic

processes. Fuzzy Sets & Syst., Vol. 26, pp. 151-164.

Shoureshi, R., Momot, M. E., and Roesler, M. D. (1990). Robust control for

manipulators with uncertain dynamics. Automatica, vol. 26, pp. 353 - 359.

Shoureshi, R., Momot, M. E., and Roesler, M. D. (1990). Robust control for

manipulators with uncertainties. Automatica, vol. 26, pp. 353-359.

Silva, C. M. de. (1984). A motion control scheme for robotic manipulators in proc.

Canadian CAD/CAM and Robotics Conf. vol. 13, pp. 131 - 137.

Silva, C. W. de, and MacFarlane, A. G. J. (1989). Knowledge-based control with

application to robots, Springer - Verlay.

Singh, S. N. (1985). Adaptive model following control of nonlinear robotic systems.

IEEE Trans. Automat. Contr., vol. AC-30, pp. 1099 - 1100.

Sinswat, V., and Fallside, F. (1977). Eigenvalue/eigenvector assignment by state-

feedback. Int. J. Contr. vol. 26, pp. 389-403.

Slotine, J-J. E. (1984). Sliding controller design for nonlinear systems. Int. J. Control,

vol. 40, pp. 421 - 434.

Slotine, J-J. E. (1985). The robust control of robotic manipulators. Int. J. Rob. Res.,

vol. 4, pp. 49 - 64.

Slotine, J-J. E., and Sastry, S. S.11983). Tracking control of nonlinear system using

sliding surface with application to robotic manipulators. Int. J. Contr., vol. 38,

no.2, pp. 465 - 492.

REFERENCES 	 189

Slotine, J. J. E., and Li, W. (1987). On the adaptive control of robotic manipulators

Int. J. Robotics Research, vol. 6, pp. 49-59.

Slotine, J. J. E., and Li, W. (1991). Applied nonlinear control. Prentice Hall:

Englewood Cliffs, NJ.

Song, Y. D., and Gao, W. B. (1991). Path tracking control of robot manipulators via

the vss approach. Int. J. Systems Sci., vol. 22, pp.151 - 163.

Spong, M. W., and Ortega, R. (1990). On adaptive inverse dynamics control of rigid

robots. IEEE Trans. Automat. Contr. vol. AC-35, pp. 92-95.

Spong, M. W., and Vidyasagar, M. (1987). Robust linear compensator design for

nonlinear robotic control. IEEE J. Rob. Automat., vol. 3, pp. 345-351.

Spong, M. W., and Vidyasagar, M. (1989). Robot Dynamics and Control. Wiley,

New York.

Spong, M. W., Thorp, J. S., and Kleinwaks, J. M. (1987). Robust microprocessor

control of robotic manipulators. Automatica, 23, pp. 373 - 379.

Spurgeon, S. K. (1991). Choice of discontinuous control component for robust sliding

mode performance. Int. J. Control, vol. 53, pp. 163 - 179.

Spurgeon, S. K., and Patton, R. J. (1990). Robust variable structure control of model

reference systems. IEE Proceedings, vol. 137, pp. 341 - 348.

Su, C. Y., and Leung, T. P. (1993). A Sliding Mode Controller with Bound

Estimation for Robot Manipulators. IEEE Transactions on Robotics and

Automation, Vol 9, No. 2, pp 208-214.

Sugeno M. and Nashida M. (1985). Fuzzy control of a model car. Fuzzy Sets &

Syst., Vol. 16, pp. 103-113.

Sundareshan, M. K., and Koeing, M. A. (1985). Decentralised model reference

adaptive control of robotic manipulators. Proc. American Control Conf., pp. 44

-49.

REFERENCES 	 190

Takagi, T., and Sugeno, M. (1985). Fuzzy identification of systems and its application

to modelling and control. IEEE Transactions on Systems, Man and

Cybernetics, vol. 15, pp. 116-132.

Tarn, T. J., and Bejczy, A. K., Isidori, A. and Chen, Y. (1984). Nonlinear feedback in

robotic arm control. in Proc. IEEE Conf. Dec. and Contr, pp. 1569-1573.

Truong T. T. and Hofmann W. (1995). A new speed controller with fuzzy tuning.

Proceedings of the IEEE 21st International Conference on Industrial

Electronics, Control, and Instrumentation (1ECON'95), Orlando, USA, Vol. 2,

pp. 1484-1489.

Tseng H. C. and Hwang V. H. (1993). Servocontroller tuning with fuzzy logic. IEEE

Trans. Contr. Syst. Technology, Vol. 1, No. 4, pp, 262-269.

Utkin, V. I. (1971). Equations of the sliding regime in the discontinuous systems.

Automat. Remote Contr., vol, 32, pp. 1987 - 1907.

Utkin, V. I. (1977). Variable structure systems with sliding mode. IEEE Trans.

Automat. Contr., vol. AC-22, pp. 212 - 221.

Utkin, V. I. (1983). Variable structure systems - present and future. Automat. remote

Contr., vol. 44, pp. 1105- 1120.

Uticin, V. I., and Young, K-K. D. (1978). Methods for constructing discontinuous

planes in multidimentional variable structure systems. Automation and Remote

Control, vol. 31, pp. 1466 - 1470.

Van Brussel, K., and Vastmans, L. (1984). A compensation methos for the dynamic

control of robots. Proc. Conf. Robotics Research.

Wang L. X., Mendel J. M. (1992). Fuzzy Basis Function, Universal Approximation,

and Orthogonal Least-Squares Learning. IEEE Transactions on Neural

Networks, vol. 3, pp.807-814.

REFERENCES 	 191

Warwick, K., and Pugh, A. (1988). Robust control: theory and applications. Peter

Peregrinus Ltd., London, U. K.

White, B. A., and Silson, P. M. (1984). Reachability in variable structure control

systems. LEE Proc. vol. 131, pt, D., pp. 85-91.

Whitehead, M., and Kamen, E. W. (1985). Control of serial manipulators with

unknown variable loading. in Proc. IEEE Conf. Dec. &Contr., pp.

Xu, X. H., Wu, Y. H., and Huang, W. H. (1990). Variable-structure control approach

of decentralised model reference adaptive systems. IEE Proc. pt. D, vol. 137,

pp. 302-306.

Yager R. R. and Filev D. P. (1994). Essentials of fuzzy modelling and control. NY:

John Wiley & Sons, Inc..

Yeung, K. S., and Chen, Y, P. (1988). A new controller design for manipulators using

the theory of variable structure systems. IEEE Trans. Automat. Contr., vol. AC

- 33, pp. 200-206.

Ying, H., Siler, W., and Buckley, J. J. (1990). Fuzzy control theory: a nonlinear case.

Automatica, vol. 26, pp. 513 - 520.

Young, K-K. D. (1978). Controller design for a manipulator using theory of variable

structure systems. IEEE Trans. on Systems, Man, and Cybernetics, vol. 8, pp.

101 - 109.

Young, K-K. D. (1978). Design of variable structure model following control system.

IEEE Trans. Automat. Contr. vol. AC - 23, pp. 1079 - 1085.

Young, K-K. D. (1988). A variable structure model following control design for

robotics applications," WEE Trans. Automat. Contr. vol. 4, pp. 556-561.

Young, K-K. D., and Kwatny H. G. (1982) Variable structure servomechanism

design and applications to overspeed protection control. Automatica, vol. 18,

pp. 385 - 400.

REFERENCES 	 192

Young, K. K. D. (1988). A variable structure model following control design for

robotics applications. IEEE Trans. Automat. Contr. vol. AC -4, pp. 556-561.

Yu X. H., and Man Z. H. (1996). Model reference adaptive control systems with

terminal sliding modes. Int. J. Control, vol. 64, no. 6, pp. 1165-1176.

Yu X. H., and Man Z. H. (1998). Adaptive sliding mode approach for learning in a

feedforward neural network. to appear in J. of Neural Computing &

Applications.

Yu X. H., and Man Z. H. (1998). Adaptive terminal sliding mode control of SISO

linear systems. to appear in Automatica.

Yu X. H., and Man Z. H. (1998). Fuzzy sliding mode control for linear systems. to

appear in Fuzzy Set and Systems.

Zadeh, L. A., (1965). Fuzzy sets. Inform. Control, Vol.8, pp.338-353.

Zadeh L. A. (1972). The rationale for fuzzy control. J. Dynamic Syst. Meas. Contr.,

pp. 3-4.

Zadeh L.A. (1973). Outline of a new approach to the analysis of complex systems and

decision processes. IEEE Trans. Syst., Man, Cybern., Vol. SCM-3, No. 1,

pp.28-44.

Zadeh L. A. (1975). The concept of a linguistic variable and its application to

approximate reasoning. Inf. Science, Vol. 8, pp. 199-249.

Zadeh L. A. (1985). Industrial applications of fuzzy control. Sugeno M., Ed.

Amstterdam: North Holland.

Zadeh L. A. (1996). Computing with words - a paradigm shift. Proceedings of the 1st

International Discourse on Fuzzy Logic and the Management of Complexity

(1-LAMOC'96), Sydney, Australia, Vol. 1, pp. 3-10.

REFERENCES 	 193

Zhou F., Fisher D. G. (1992). Continuous sliding mode control. Int. J. Control, vol. 55,

no.2, pp.313-327.

Zimmermann H. J. (1985). Fuzzy set theory and its applications. Norwell, MA:

Kluwer Academic Publishers.

APPENDIX A 	 194

Appendix A

Hardware setup for a five-bar robot
arm

A photograph of the laboratory setup for a five bar robot manipulator is displayed in

Fig. A.1. The illustrative and schematic diagrams are shown in Fig. A.2 and A.3. The

physical parameters are measured as follows,

m t =0.11kg
m 2 =0.1kg
m 3 = 0.1kg
m4 =0.055kg
/ 1 = 0.275m

1 2 =0.165m
1 3 =0.275m
/ 4 =0.32m
4. 1 =0.12m

la = 0.07m
/ c3 =0.135m
/ c4 = 0.07m

(

r
Amplifier

■ 	_., T

•

 op motor ■ _.)

(pc))

APPENDIX A
	 195

(I:5V DC Supply

Encoder)

(-- 	1
Bottom motor

■ _./

✓ -1
Encoder ■_ 	_.)

(- 	--■
Robot arms ■._

Fig.A.I A photograph of the laboratory setup for a five-bar robot manipulator

Fig.A.2 Illustrative diagram of a five-bar robot arm

APPENDIX A 	 196

Two interface cards are installed in the computer with a Pentium Pro/200MHz CPU.

The PC-30D by Eagle Tech consists of two 12-bit D/A converters with full scale

output range from 0 to +10V, the output signals are fed to robot motors through a

Servo amplifier by Baldor (TSD-050-05-02-I, operated in torque mode). The PCL-833

by Advantech is a 3-axis quadrature encoder and counter add-on card, and receives

qradrature signals from DC-Tacho/Encoders (with 500 counts/rev) mounted on the

motor shafts for joint angle measurements. DC motors by Maxon (RE035-071-39,

gear ratio 86:1) provide the joint actuation. Fig. A.4 —5 show the interface wiring.

Computer
Pentium Pro --1 DC-Tacho/Encoder

Motor 1
Motor 2 Servo amplifier Robot

arm
PC-30D

PCL-833 DC-Tacho/Encoder

Fig. A.3. Schematic diagram of the five-bar robot arm

TSD-050-05-24 (Amplifier)
1 ------..„,

34 0 180
0

0 0 DACO —0 DIFF+
0 0 DIFF-

0 0
•

—0 COMMON
0 0 ENABLE

00
0 0 COMMON

0
o

0 0 RESET AXIS1
0

o
0 0 COMMON

0 0 0 MOTOR-
() Top

0 0 -0 MOTOR+ o 49 Analog GND
0 0

0 DAC 1 0 —0 DIFF+
0 0 0 DIFF-

0 JO —0 COMMON
0

o
0 0 ENABLE

0 0 0 COMMON o 0 RESET AXIS2
00

0 0 COMMON
00

0 0 MOTOR-
0 0 PC-30D Card Bottom

0 0 MOTOR+
00

0
17 0330 50

Fig. A.4 Interface wiring of PC30-D with servo amplifier

Top

, 	

Bottom

14

25

a 1

	•

APPENDIX A 	 197

Encoder

1-GND
2-NC
3-CHB+
4-Vcc
5-CHA+

PCL833

Fig. A.5 Interface wiring of PCL-833 card

APPENDIX B 	 198

Appendix B

C++ programs for a fuzzy sliding
mode controller

FSMC.cpp

1*

A fuzzy sliding mode controller for a five bar robot
manipulator

*/

//#include <iomanip.h>
#include <iostream.h>

#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include <fstream.h>

#include "container.h"
#include "defines.h"
#include "my_math.h"
#include "PC30 GiveIO.h"
#include "pc1833.h"
#include "My_Process.h"
#include "FSMC Data.h"
#include "Misc.h"
#include "Path.h"
#include "float.h"
#include "Least Squares.h"
#include "Vector.h"

const char* dumpFile = "c:\\Temp\\Dumpl ";
char* 	definesFile = "FSMC Data.txt";
const 	numDefines = 23;

!{{T'S66'0'S86'0'L6'0'96'0'S8'0'S08'0'508'0'S08'0'8'0
'8'0'8'0'S08'0'S08'0'S08'0'L'O'S6S'0'S6S'0'S6S'0'9'0'9'0)
'{S86'0'S86'0'S86'0'L6'0'96'0'S8'0'S08'0'S08'0'508'0'8'0

'8'0'8'0'S08'0'508'0'508'0'L'O'S6S'O'S6S'O'S6S'O'9'0'9'0)
'{L6'0'L6'0'L6'0'L6'0'96•0'S8'0'S08'0

'8'0'8'0'8'0'8'0'8'0'8'0'8'0'S08'0'L'0'S6S'0'9'0'9'0'9'0'9'0}
'(SS6'0'SS6'0'SS6'0'SS6'0'SS6'0'S8'0

'8'0'8'0'8'0'8'0'8'0'8'0'8'0'8'0'8'0'L'0'9'0'9'0'9'0'9'0'9'0)
'(8'0'8'0'8'0'8'0'S08'0'L'0'S6S'0

'03'0'8'0'8'0'S08'0'S08'0'L'0'S6S'0'S6S'0

0'S08'0'508'0'S08'0'L'0'S6S'O'S6S'0'S6S'0'9'0
'9'0'9'0'S6S'0'S6S'0'S6S'0'S'0't'0't'0'SOV0'S017 0'17'0)

'(8'0'8'0'S08'0'S080'S08'0'L'0'S6S'O'S6S'0'S6S*0'9'0
'9'0'9'0'S6S'0'S6S'0'S6S'O'S'0'7'O'VO'S017'0'SOV'O'fr'0)

'(8'0'8'0'8'0'S08'0'508'0'L'0'S6S'0'S6S*0

'{8'0'8'0'8'0'8'0'508'0'L'0'S6S*0

'{S6L'O'S6L'0'S6L'0'S6L'O'S6L'0'C0

'(9'0'9'0'9'0'9'0'S6S'0'S*0

'(9'0'9'0'9'0'S6S'0'S6S'0'S - 0

'{9'0'9'0'S6S'0'S6S'0'S6S'0'S'0'V'0'V0'SWO
'SW0'V'0'S017'0'5017'0'V'0'V0'U0'Z'0'Z'O'SOZ'O'S0'O'Z'O)

'(9'0'9'0'S6S'0'S6S'0'S6S'0'S'0'V'0'V'0'SW0
'SOV'O'fi'O'SOD . '0'SOT7'0'VO'V'O'UO'Z'O'Z'O'SOZ'O'SOZ'O'Z'O)

'(9'0'9'0'9'0'S6S'0'S6S'0
'S

'{9'0'9'0'9'0'9'0'565'0
'S

O'Z'O'Z'O'Z'O'Z'O'Z'O'Z'O'ST'O'ST7VO'ST7VO'SPO'O'SVIYO'SPO'n

'Z

'S0Z'0'Z'0'Z'0'Z'0'S0Z'0'Z'0'Z'0'5T'0'N0 0'E00'Z0 '0'510 0'510*0)
'{f7'0'SOVO'S017'0'P'0'V0'U0'Z'0'Z'O'SOZ'O'S0UO'Z'0

'S0Z'0'S0U0'Z'0'Z'0'ST'0'170 . 0'ECCO'ZO'0'10'0'0'0))=[TZ1[1]00b
aTqnop ;suoo

!O'OT= zzo aTqnop ;suoo
(31'01=11 aTqnop qsuoo

141111(30; !°. ?I=17.1)-1-q @o c-2-117a
!xpw—q0C —TA aTqnop

!xpin—m aTqnop
!xpW —TA aTqnop

!0'0=PTO —ZS aTqnop
r0'0=PTO —TS aTqnop

poTiad aidures // 	 !sy aTignop
aignop

!aToADJadsaidures 	luT

661 	 El XICIALVddli

APPENDIX B 	 200

int k = 0; 	//sample no.
int cycleNum = 0;

const int dataChannels =14;// 20;//20;//22;
const int dataSize = 1000; 	//500

const double minSafe 	= 0.4;
const double maxSafe 	= 2.75;
const double speedLimit = 0.1;
const double brakeTorque= 5.0;

//0.4
//2.75

Vector torque;

array2D_double telemetry, ref, path;

//
//
I- DEFINES - loaded from txt file
II

double 	Tcycle,numCycles, AmP1, AmQ1, Q10, Q20, Q1DotO, Q2DotO,
Q1r0, Q2r0,

Q1rDotO, Q2rDotO,modelGain, maxTorque, B1, Q1Step,
Q2Step,forgetFactor;
int 	StepsPerSample,sampleRate, sampleDelay, numLSQterms;
// circular path parameters

double revs; // cycles per second of desired circular path

u = h + phi*[-Q_FSMC*sign(s) - Ks*s - C1*(q'-qr') + qr"]
er = -Q_FSMC*sign(s) - Ks*s - C1*(q'-oir')
temp = er + qr"

Vector u(Vector& x, double t)

Vector U;
double er1,er2,_q1,_q2,_ql_Dot,_q2_Dot,phi11,phi22,phil2,

templ,temp2,q1SMC,q2SMC,V1,V2,Vl_Dot,V2_Dot,
hl,h2,S1,S2,Sl_Dot,S2_Dot;

ql 	= (x.(Q1) - ref._(k,Q1r)); 	// -ql = q1-qlr
q2 	= (x.(Q2) - ref._(k,Q2r));
_q1_Dot = (x._(Ql_Dot) - ref._(k,Q1rDot));
_q2_Dot 	= (x._(Q2_Dot) - ref._(k,Q2rDot));

if(_ql > PI) _q1 = _q1 - 2*PI;
if(_ql < -PI) _q1 = _q1 + 2*PI;

if(_q2 > PI) _q2 = _q2 - 2*2I;
if(_q2 < -PI) _q2 = _q2 + 2*PI;

APPENDIX B 	 201

Si = c11*_q1+_ql_Dot; // S= 	[S1
S2 = c22*_q2+_q2_Dot; // S2]

Sl_Dot=(Sl-S1_01d)/Ts;
52_Dot=(52-52_01d)/Ts;

Sl_Old=S1;
S2_01d=S2;

V1=0.5*S1*S1/V1max;
V2=0.5*S2*S2/V2_max;
if (V1>1.0) V1=1.0;
if (V2>1.0) V2=1.0;

//normalised Lyapunov function

V1_Dot=S1*Sl_Dot/Vl_Dot_max; 	//normalised time derivative
V2_Dot=S2*S2_Dot/V2_Dot_max;
if (fabs(Vl_Dot)>1.0) V1_Dot=SIGN(1.0,Vl_Dot);
if (fabs(V2_Dot)>1.0) V2_Dot=SIGN(1.0,V2_Dot);

int il,i2,j1,j2;
il=(int)(V1*20)+1;
i2=(int)(V2*20)+1;
j1=(int)(Vl_Dot*10+10)+1;
j2=(int)(V2_Dot*10+10)+1;

q1SMC=30.0*q00[il][j1];
q2SMC=30.0*q00[12][j2];

erl—q1SMC*SIGN(1.0,S1)-c11*_ql_Dot-Ks*S1;
er2=-q2SMC*SIGN(1.0,S2)-c22*_q2_Dot-Ks*S2;

int index;
index = k;//2 * (int) (ROUND(t/Ts));
tempi = en l + AmP1*ref._(k,Q1r) + AmQ1*ref._(k,Q1rDot)

B1*path._(index,Q1r);
temp2 = er2 + AmP1*ref._(k,Q2r) + AmQ1*ref._(k,Q2rDot)

Bl*path._(index,Q2r);

phill=0.0324;
phil2=-0.00222*cos(x._(Q2)-x._(Q1));
phi22=0.0677;//0.00677;
hl= 0.00222*sin(x._(Q2)-x._(Q1))*x._(Q2_Dot)*x._(Q2_Dot);
h2=-0.00222*sin(x._(Q2)-x._(Q1))*x._(Ql_Dot)*x._(Q1_Dot);

U.set(Q1, ABSLIMIT(hl+phill*templ+phil2*temp2,maxTorque));
U.set(Q2, ABSLIMIT(h2+phil2*templ+phi22*temp2,maxTorque));

int numToSkip = samplesPerCycle / dataSize;

if (k % numToSkip ==0)
//if (k < dataSize)
{

int kk = (k/numToSkip) + (cycleNum * dataSize);
//it kk = k;

telemetry.set(kk,0,ref._(k,Q1r));
telemetry.set(kk,l,ref._(k,Q2r));
telemetry.set(kk,2,U._(Q1));
telemetry.set(kk,3,U._(Q2));
telemetry.set(kk,4,x._(Q1));

APPENDIX B 	 202

telemetry.set(kk,5,x._(Q2));
telemetry.set(kk,6,t+cycleNum*Tcycle);
telemetry.set(kk,7,ref._(k,Q1rDot));
telemetry.set(kk,8,ref._(k,Q2rDot));
telemetry.set(kk,9,x._(Ql_Dot));
telemetry.set(kk,10,x._(Q2_Dot));
telemetry.set(kk,11,path._(k,Q1r));
telemetry.set(kk,12,path._(k,Q2r));
telemetry.set(kk,13,sampleDelay);

// 	k++;

return U;

// 	

void startController (pc30 &adCard)

// Set out voltages to 0.0
adCard.daOut(LWRmot,0.0);
adCard.daOut(UPPmot,0.0);

// initialise PC30
adCard.setDefaultClk();

//

void stopController (pc30 &adCard)

adCard.daOut(LWRmot,0.0);
adCard.daOut(UPPmot,0.0);

//

void getRobotVel (pc1833 &quadCard, Vector &robotState)

static UD_factor lsq_Ql(numLSQterms,Ts,forgetFactor,0.0);
static UD_factor lsq_Q2(numLSQterms,Ts,forgetFactor,0.0);

if (k==0)
{

lsq_Ql.setThetaN(0,robotState._(Q1));
lsq_Ql.setThetaN(1,0);
lsq_Q2.setThetaN(0,robotState._(Q2));
lsq_Q2.setThetaN(1,0);

lsq_Ql.LS(k,robotState._(Q1));
lsq_Q2.LS(k,robotState._(Q2));

robotState.set(Ql_Dot,lsq_Ql.YpDot());
robotState.set(Q2_Dot,lsq_Q2.YpDot());

APPENDIX B 	 203

/1

void getRobotPos (pc1833 &quadCard, Vector &robotState)

double 	lwrPos,uppPos;

quadCard.readCounters();

// Note initial zero position is lower motor zero deg, upp
motor 90deg.

lwrPos = angle(quadCard.counterl() + quartRev);
uppPos = angle(quadCard.counter0());

//cout « "lwrPos= " « lwrPos « " 	uppPos= " « uppPos

if (lwrPos > oneRevolution) lwrPos = lwrPos - oneRevolution;
if (uppPos > oneRevolution) uppPos = uppPos - oneRevolution;

robotState.set(Q1,1wrPos);
robotState.set(Q2,uppPos);

} ;

void 	emmergencyStop(pc30 	&adCard, 	pc1833 	&quadCard, 	Vector
&robotState)

int notSafe = TRUE;
while (notSafe AND (NOT kbhit()))

if (fabs(robotState._(Ql_Dot)) > speedLimit)
adCard.daOut(LWRmot,-

SIGN(brakeTorque,robotState._(Ql_Dot)));

if (fabs(robotState._(Q2_Dot)) > speedLimit)
adCard.daOut(UPPmot,-

SIGN(brakeTorque,robotState._(Q2_Dot)));

if ((fabs(robotState._(Ql_Dot)) <= speedLimit) AND
(fabs(robotState._(Q2_Dot)) <= speedLimit)) notSafe

= FALSE;

adCard.waitForUsrClk();

getRobotPos(quadCard, robotState);
getRobotVel(quadCard, robotState);

stopController(adCard);

//

int crashed(pc30 &adCard, pc1833 &quadCard, Vector &robotState)

double cliff = robotState._(Q1) - robotState._(Q2);
if (diff < 0.0) diff = diff + oneRevolution;
if (diff < minSafe OR diff > maxSafe)

APPENDIX B 	 204

emmergencyStop(adCard,quadCard,robotState);
stopController (adCard);
cout « "EMERGENCY STOP - POSSIBLE CRASH CONDITION : ange

diff =
cout « diff « "rad\n";
return YES;

}

return NO;
}

II

void setZeroPosition(pc1833 &quadCard)
{

char instr =
Vector robotState;

cout « "Please place arms in zero position then enter
'r'.\n\n";

cout « "Repeat until ok then enter
cm n » instr;

quadCard.startCounters();

while (instr != 'q')
{

getRobotPos(quadCard,robotState);
cout « robotState._(Q1) « " " « robotState._(Q2) « "

cout 	« 	robotState._(Ql_Dot) 	«
robotState._(Q2_Dot)« "\n";

cout.flush();

cm n » instr;
if (instr == 'r') quadCard.resetCounters();

}

Q10 = robotState._(Q1);
Q20 = robotState._(Q2);

}

//

void doExperiment()
(

Vector torque,robotState;
double t;
int stopNow = FALSE;

// ks=KS;

pc30 	adCard 	= pc30();
pc1833 	quadCard = pc1833();

startController(adCard);
setZeroPosition(quadCard);

setMaxPriority();

APPENDIX B 	 205

adCard.waitForUsrClk();

while ((cycleNum < numCycles) AND (NOT stopNow))
{

adCard.waitForUsrClk();

getRobotPos (quadCard,robotState);
getRobotVel (quadCard,robotState);

t = k * Ts;

if(crashed(adCard,quadCard,robotState))
else

stopNow = YES;

torque = u(robotState,t);
adCard.daOut(LWRmot,torque._(Q1));
adCard.daOut(UPPmot,torque._(Q2));
sampleDelay = adCard.divider();

k++;

if (k >= samplesPerCycle)

k=0;
cycleNum++;

stopController(adCard);
restoreStdPriority();

//

void modelServiceRoutine (Vector x, double t)

static int j=0;

ref.set(j,Q1r,x._(Q1));
ref.set(j,Q2r,x._(Q2));
ref.set(j,Q1rDot,x._(Ql_Dot));
ref.set(j,Q2rDot,x._(Q2_Dot));

j++;

II

Vector modelRKfct(Vector x, double t) // fct(x,t)=xDot=Ax+b
{

Vector xDot, U;
double ul,u2,q1r_2Dot,q2r_2Dot;

int index;

index = (int) (t/Ts);//(int) ROUND((2.0*t/Ts));
ul= path._(index,Q1r);

APPENDIX B 	 206

u2= path._(index,Q2r);

qlr_2Dot = Bl*ul+AmP1*x._(Q1)+AmQ1*x._(Q1_Dot);
q2r_2Dot = Bl*u2+AmPl*x._(Q2)+AmQ1*x._(Q2_Dot);

xDot.set(Q1,x._(Ql_Dot));
xDot.set(Q2,x._(Q2_Dot));
xDot.set(Ql_Dot,q1r_2Dot);
xDot.set(Q2_Dot,q2r_2Dot);

return xDot;
}

//

void getReferenceModelResponce()
{

Vector 	modelState;
int numPathSamples = samplesPerCycle;

path.setSize(numPathSamples,3);
ref.setSize(samplesPerCycle,4);

getSquarePath
(path,numPathSamples,Tcycle,revs*2,Q1r0,Q1Step,Q2r0,Q2Step);

//getCircularPath(path,numPathSamples,Ts/2,revs,L1,L4,X_centre,
Y_centre,radius);

modelState.set(Q1,Q1r0);
modelState.set(Q2,Q2r0);
modelState.set(Ql_Dot,Q1rDot0);
modelState.set(Q2_Dot,Q2rDot0);

rungaKutta(modelState, 	0.0, 	Tcycle, 	Ts, 	modelRKfct,
modelServiceRoutine);

}

II

void dumpTelemetry()
(

ofstream dump(dumpFile);
if (NOT dump) (cout « "Cannot open dump file \n"; 	exit (-

1); 	}

dump « telemetry;

dump.close();
}

I I

void loadDefines()
{

array_double defines(numDefines);

loadDefines(definesFile,defines);

APPENDIX B 	 207

numCycles 	= defines._(0);
Tcycle 	= defines._(1);
sampleRate = (int)defines._(2);
AmPl 	= defines._(3);
AmQ1 	= defines._(4);
Q10 	= defines._(5);
Q20 	= defines._(6);
Q1DotO 	= defines._(7);
Q2DotO 	= defines._(8);
Q1r0 	= defines._(9);
Q2r0 	= defines._(10);
Q1rDotO 	= defines._(11);
Q2rDotO 	= defines._(12);
maxTorque 	= defines ._(13);
Q1Step 	= defines._(14);
Q2Step 	= defines. (15);
StepsPerSample = (int)defines._(16);
numLSQterms 	= (int)defines._(17);
forgetFactor 	= defines._(18);
Vl_max 	= defines._(19);
V2_max 	= defines._(20);
Vl_Dot_max 	= defines._(21);
Vl_Dot_max 	= defines._(22);

samplesPerCycle = (int)(Tcycle*sampleRate);

Ts 	= 1.0/samp1eRa'te; 	// samplePeriod

revs = 1.0/Tcycle;

// minVelocity = resolution /((1engthVe1Fi1ter-2)*Ts);

B1=-AmPl;

I I

int main ()
{

loadDefines();

telemetry.setSize((int)(dataSize*numCycles),dataChannels);

getReferenceModelResponce();

doExperiment();

dumpTelemetry();

cout « "\nFinished\n\n" « (char) 7;
cout.flush();
while (!kbhit()) (}; // wait for key press

return 0;

//%%%

APPENDIX B 	 208

FSMC Data.txt

NumCycles = 2
Tcycle 	= 10.0 	//10.0
sampleRate = 1000 	// 5000in Hz
AmPl 	= -6.25 	//-6.25 //1.21 	// -16 	400
AmQ1 	= -5 //-5.0 	//2.2 	// -8 	40

It
Q10 	= 1.5708 	// robot initial conditions X[0]= (-- 	0 	0

2
0]
Q20 	= 0.0 /10.0
Q1DotO 	= 0.0
Q2DotO 	= 0.0
Q1r0 	= 2.0 // 0 deg
Q2r0 	= 1.5 // 90 deg
Q1rDotO 	= 0.0
Q2rDotO 	= 0.0
maxTorque = 10 	//.5 	//2.0 	//5.0
Q1Step = 3.0
Q2Step = 0.5
StepsPerSample = 1000 	// 10 rk steps per sample
numLSQterms =
polynomial
forgetFactor

2

=

// 	num 	coefficents 	in 	least 	squares

0.7 	// recursive lsq forget factor
Vl_max=0.009 //0.008;//0.01;//1.0;//10.0;
V2_max=0.015 //0.015;//2.0;//100.0; 	// 	120.0;
Vl_Dot_max=2.0 //1.5;//1.0;//5.0;//10.0;//200.0;
V2_Dot_max=2.6 1/2.5;//1.0;//20.0;//500.0;//2000.0;

APPENDIXB 	 209

FEMCDatah

// 2 degree of freedom robot - Made by Steve Avery, EEE Utas

#if !defined(FSMC_DATA_H)
#define FSMC_DATA_H

#include "my_math.h"
#include "defines.h"
#include "pc1833.h"

/* Dynamic Equations

PHI(q)q2Dot + H(qDot,q) + G(q) = u

	

PHI(q)= [phill 	phil2

	

phi21 	phi22]

H(qDot,q) = [hl(qDot,q)
h2(qDot,q)

G(q) = [gl(q)
g2(q)

q= Transpose([ql q2])
u= Transpose([ul u2])

*1

// Pc3OD digital ports
#define POSITION 0
#define STATUS 	2
#define CONTROL 	1

// Control port - Motor control signal lines
#define MOTORenable 5 	// 	Connect 	to 	both 	axes 	of
Conroller/Amp
#define MOTORreset 	4

// Control port - Position decoder control signal lines
#define READ 	0
#define MOTORselect 3 // selct LSB or MSB of 16bit position
#define BYTEselect 	2
#define COUNTERreset 1

// Status signal lines
#define NOTlatchedMotl 0
#define NOTlatchedMot2 1
#define LATCHlselected 	2
#define LATCH2selected 	3
#define LATCH3selected 	4
#define LATCH4selected 	5

// control constants
#define LWRmot 1

APPENDIX B 	 210

#define UPPmot 0

#define LEASTsigBYTE 0
#define MOSTsigBYTE 1

#define HOLD 	1
#define RELEASE 0

#define HELD
	

0
#define RELEASED 1

#define ENABLE 1
#define DISABLE 0

// encoder constants
#define MULTIPLIER 4
#define GEARratio 	MULTIPLIER*2225.0/26.0
#define PULSESperREV 500.0

const int 	oneRev 	= (int) (GEARratio * PULSESperREV);
const int 	quartRev 	= (int) (GEARratio * PULSESperREV / 4);
const double resolution = 2 * PI / (GEARratio * PULSESperREV);

const double oneRevolution = 2*PI;
const double halfRevolution = PI;

#define LWRmotTachoGain 	2.051838876782
#define UPPmotTachoGain 	2.145587766782

double angle(int count) (return resolution * (count - STARTcount);
};// count is encoder pulses

#define ADCchannelMask 3

#define LWRpot 1 // Q1
#define UPPpot 2 // Q2

#define TIME 0
#define Ql 1 // Lower motor
#define Q2 2 // Upper motor
#define Ql_Dot 3
#define Q2_Dot 4
#define Q1_2Dot 5
#define Q2_2Dot 6

#define Qlr 0
#define Q2r 1
#define Q1rDot 2
#define Q2rDot 3

#define Ll 0.275 	// length link 1
#define L4 0.320 	// length link 4

// Reference model
/*

xDot = Am x + bm r

APPENDIX B
	

211

	

x = [ql 	Am = [0 0 1 0 	bm = [0 0 	r = r(t) =[

	

q2 	0001 	0 0
R1

R2)
ql'
	

P1 0 Q10 	10
q2']
	

0 	P1 0 	Q1]
	0 1 1

(constants in this case)

*1

#endif

APPENDIX B 	 212

Complex. cpp

// Complex.cpp - implementation of Class Complex
#include "complex.h"
#include "my_math.h"
#include <float.h>
#include <stdlib.h>

II

// Class Complex

//Constuctor
Complex::Complex(double r, double i)

realPart = r;
imagPart = i;

;

// Destructor
Complex::-Complex()

// nothing

II
// Access data members of Complex

double Complex: :real()

if (isFinite())
return realPart;

else
return (0.0);

double Complex::imag()

if (isFinite())
return imagPart;

else
return imagPart;

) ;

I I
// Return polar form of data

double Complex::mag()

double m;

m=sqrt(SQR(real())+SQR(imag()));

if (_finite(m))
return m;

else

APPENDIX B 	 213

cout «(char)7«"Warning - Complex::mag() infinite result
returned as zero!\n";

exit(-1);
return 0.0;

} ;

double Complex::arg()

if (isZero())
return 0.0;

double a;

a=atan2(imag(),real());

if (_finite(a))
return a;

else

cout «(char)7«"Warning - Complex::arg() infinite result
returned as zero!\n";

return 0.0;

return a;
} ;

//

boolean Complex::isZero()

if ((fabs(real()) < TINY) AND (fabs(imag()) < TINY))
return TRUE;

else
return FALSE;

II

boolean Complex::isFinite()

if (_finite(realPart) AND _finite(imagPart))
return TRUE;

else
cout << (char) 7 « "Warning - Complex::isFinite()

returned FALSE !!!\n";
return FALSE;

//

Complex Complex::Exp ()

double 	realExp;
Complex 	temp = Complex();

• realExp = exp (real());
temp.realPart = realExp * cos(imag());
temp.imagPart = realExp * sin(imag());

APPENDIX B 	 214

if (temp.isFinite())
return temp;

else
f

cout « (char)7 « "Warning - Complex::Exp() infinite
result returned as zero!!\n";

return Complex(0.0,0.0);
)

} ;

//

Complex Complex::Sqrt ()
f

//Yet to be completed

cout « "Warning -- Complex::sqrt called has not been
completed! \n";

return Complex(0.0,0.0);
}

//
// Addition

Complex
{

Complex: :operator + (double s)

Complex temp = Complex();

temp.realPart = real()+s;
temp.imagPart = imag();

return temp;
} ;

Complex
{

Complex: :operator + (Complex c)

Complex temp = Complex();

temp.realPart = real()+c.real();
temp.imagPart = imag()+c.imag();

return temp;
} ;

// 	
// Negate

Complex Complex: :operator - ()
{

Complex temp = Complex();

temp.realPart =
temp.imagPart =

- real();
- imag();

} ;

return temp;

//

APPENDIX B 	 215

// Subtraction

Complex Complex: :operator - (double s)
{

Complex temp = Complex();

temp.realPart = real() - s;
temp.imagPart = imag();

return temp;
1 ;

Complex Complex: :operator - (Complex c)
{

Complex temp = Complex();

temp.realPart = real()-c.real();
temp.imagPart = imag()-c.imag();

return temp;
} ;

//
// Multiplication

Complex Complex: :operator * (double s)
{

Complex temp = Complex();

temp.realPart = real() * s;
temp.imagPart = imag() * s;

return temp;
} ;

Complex Complex: :operator * (Complex c)
{

Complex temp = Complex();

double m,a;

m=mag()*c.mag();
a=arg()+c.arg();

temp.realPart = m*cos(a);
temp.imagPart = m*sin(a);

if(temp.isFinite())
return temp;

else
(

cout « (char)7« "Warning - Complex::* infinite result
returned as zero!\n";

return Complex(0.0,0.0);
}

} ;

II
// Division

APPENDIX B 	 216

!*Complex Complex: :operator / (double s)

Complex temp = Complex();

double m,a;

m=mag()/s;

temp.realPart = m*cos(imagPart);
temp.imagPart = m*sin(imagPart);

return temp;
}; */

Complex Complex: :operator / (Complex c)

Complex temp = Complex();

double m,a;

m=mag()/c.mag();
a=arg()-c.arg();

temp.realPart = m*cos(a);
temp.imagPart = m*sin(a);

if(temp.isFinite())
return temp;

else

cout « (char)7« "Warning - Complex::/ infinite result
returned as zero!\n";

return Complex(0.0,0.0);

// 	
// Assignment

Complex 	Complex: :operator= (double s)

realPart = s;
imagPart = 0.0;

return *this;
} ;

Complex 	Complex: :operator (Complex c)

realPart = c.real();
imagPart = c.imag();

return *this;
} ;

Complex 	Complex::operator-= (Complex c)

realPart -= c.real();
imagPart -= c.imag();

APPENDIX B 	 217

return *this;
} ;

// 	
// stream operators

ostream &operator«(ostream &stream, Complex c)
i

stream « "(" « c.real() « ", " « c.imag() « ")";

return stream;
} ;

//
// Misc fcts

Complex exp (Complex c)
(

double 	realExp;
Complex 	temp = Complex();

realExp = exp (c.real());
temp.realPart = realExp * cos(c.imag());
temp.imagPart = realExp * sin(c.imag());

if(temp.isFinite())
return temp;

else
{

cout « (char)7« "Warning - exp(complex) infinite result
returned as zero!\n";

return Complex(0.0,0.0);
}

} ;

// 	
// END Class Complex

APPENDIX B 	 218

Container. cpp

/*

Container classes ie. array, set etc.

*///+++
+++++
#include <stdlib.h>
#include <math.h>
#include <process.h> 	// exit()
#include <iostream.h> 	// cout «
#include <iomanip.h>

#include "defines.h" 	// pascal like types etc. eg . int, AND ...
#include "my_math.h"
#include "Container.h"

I I

// class array_double
// 	

array_double::array_double (int length, double initarray_double) //
constructor

size = length;
array = new double [size];
if (NOT array)
{

cout « "ERROR- array_double constructor - failure in
'new' operator\n";

exit(-1);
}
for (int i=0; i<size; i++) 	array[i] =

initarray_double;

// end array_double 	(constructor)
// 	

array_double::-array_double()

delete [] array;

II

void array_double;:setSize (int length)
successfull

delete [] array;
array = new double [length];

size = length;

// end array_double;:setSize

// returns TRUE if

APPENDIX B 	 219

//

int array_double::setSample (int k, double sample)
{

if (k < size) 	array[k] = sample;
else
(cout « "ERR (array_double::setSample) index (";

cout « k « ") exceeds (>=) size (" « size « ")\n";
int temp;
cm n » temp;
exit(-1);
return FALSE;

}
return TRUE;

} 	// end array_double::setSample
// 	

double array_double::sample (int k)
{

if (k < size) 	return array[k];
else
(cout « "ERR (array_double::sample) index (";

cout « k « ") exceeds (>=) size (" « size « ")\n";
int temp;
cm n » temp;
exit(-1);
return (-1);

}
} 	//end array_double::sample
// 	

void array_double::append (array_double &d)
{

int oldSize = size;
setSize (size+d.length());

for (int i=0; i < d.length(); i++) array[i+oldSize]=d._(i);
)

//

array_double
{

&array_double::operator= (array_double &a)

setSize(a.length());

for (int i = 0; i<size; i++)
array[i] = a._(i);

return *this;
} ;

I I

ostream &operator«(ostream &stream, array_double &a)
{

int i;

for (i=0;i<a.length();i++)
//stream « setiosflags(ios::fixed) « setw(9) «

setprecision(5)« a._(i);

APPENDIX B 	 220

stream « a._(i) « n

stream « n\nn ;

return stream;

//

/*class array2D_double

array2D_double::array2D_double (int r, int c, double initData) //
constructor

numRows = r;
numColumns = c;

array = new arrayPtr [r];
for(int 1=0; i<r; i++)

array[i] = new array_double(c,initData);

// end array2D_double 	(constructor)

array2D_double::-array2D_double()

for (int 1=0; i<numRows; i++) delete array[i];
delete []array;

//

void array2D_double::setSize (int r, int c)
successfull

int i;

// returns TRUE if

for (1=0; i<numRows; i++) delete array[i];
delete array;

array = new arrayPtr [r];
for(1=0; i<r; i++)

array[i] = new array_double(c,0.0);

numRows = r;
numColumns = c;

// end array2D_double::setSize

APPENDIX B 	 221

//

int array2D_double::setSample (int r, int c, double sample)

if (r < numRows) 	array[r]->set(c,sample);
else

cout « "ERR (array2D_double::setSample) row (";
cout « r « ") exceeds (>=) numRows (" « numRows < <

") \n";
int temp;
cm n » temp;

exit(-1);
return FALSE;

return TRUE;

//

double array2D_double::sample (int r,int c)

if (r <= numRows) 	return array[r]->_(c);
else

cout « "ERR (array2D_double::sample) row (";
cout « r « ") exceeds (>=) numRows (" « numRows < <

int temp;
cm n » temp;
exit(-1);
return (-1);

}

//end array2D_double::sample
//

array2D_double 	&array2D_double::operator= (array2D_double &a)

setSize(a.rows(),a.columns());

for (int i = 0; i<numRows; i++)
*array[i] = *a.array[i];

return *this;
} ;

//

ostream &operator«(ostream &stream, array2D_double &a)

int i;

for (i=0;i<a.rows();i++) stream « *a.row(i);

return stream;

// 	end CONTAINER.CPP

APPENDIX B 	 222

Least Squares.cpp

#########
/*

Lest Squares Estimator

Contains objects which implement:

- Least squares estimation of the process

y = a0.x^() + al.x^1 + 	. + a(n-l).x^(n-1)

(1D case eg. given a series of noisy position readings
(y)

at times (x) - find a0,a1,...etc)

using Bierman's U-D factorisation.

(Sec 13.5 p429 Astrom & Wittenmark
"Comuter Controlled Systems 2nd ed"
Prentice-Hall 1990)

// Include modules (provided they have not been included before).

#include "Least Squares.h"
#include <iostream.h> 	// for cerr «
#include <process.h> 	// for exit()

II

// Member functions for UD_factor class.

// Constructor: sets size of coeficient and co-variance structures
// 	 and initilises same.
UD_factor::UD_factor (byte numC, double stepSize,

double forgetFactor,
double initTheta,
double initDiag,
double initOffDiag)

byte i,j;

if (numC <= maxCoef) numCoef = numC;
else

cerr « "ERR (UD_factor constructor): number of
coeficents too large";

exit (-1);

h = stepSize;
lambda = forgetFactor;

APPENDIX B 	 223

for (1=0; i<numCoef; i++)
{

theta[i]
diag[i]

= initTheta;
= initDiag;

)
for (j=0; j<SIZEOffDiag(numCoef); j++) offDiag[j] =

initOffDiag;

} 	// end UD_factor constructor

I I
// Lambda functions

int UD_factor::setLambda (double forgetFactor)
forgetFac tor
{

// lambda =

lambda = forgetFactor;
return 1;

)

//

double UD_factor::Lambda ()
returns lambda
{

/ /

return lambda;

)

II

// Plant coeficient functions

// sets one coeficient in theta equal to t
int UD_factor::setThetaN (byte n, double t)
{

if (n < numCoef)
{

theta[n] = t;

return 0;
}
else
{ 	cerr « "ERR (setThetaN): array subscript too large";

exit (-1);
return (-1);

)

)

// 	
// sets all coeficients in theta equal to t
int UD_factor::setAllTheta (double t)
{

byte i;

for (i=0; i<numCoef; i++)
theta[i] = t;

return 0;
) 	// end setAllTheta

// 	
// replaces coeficient vector theta with newTheta
int UD_factor::setTheta (coefVector newTheta)
{

byte i;

APPENDIX B 	 224

for (i=0; i<numCoef; i++)
theta[i] = newTheta[i];

return 0;
} 	// end setThetat

I -
II copies coeficient vector, theta, to oldTheta
int UD_factor::getTheta (coefVector& oldTheta)
{

byte i;

for (1=0; i<numCoef; i++)
oldTheta[i] = theta[i];

return 0;
} 	// end getTheta

// 	
// Returns nth plant coeficient
double UD_factor::thetaN (byte n)
{

if (n < numCoef)
return theta[n];

else
{ 	cerr « "ERR (thetaN): array subscript too large";

exit (-1);
return (-1);

}
} 	// end thetaN

II
// previous input/output functions

// sets one input/putput value to f
int UD_factor::setfiN (byte n, double f)
{

if (n < numCoef)
{ 	fi[n] = f;

return 0;
)
else
{
	

cerr « "ERR (setfiN): array subscript too large";
exit (-1);
return (-1);

}
} 	// end setfiN

// 	
// sets all previous input/output values equal to f
int UD_factor::setAllfi (double f)
{

byte i;

for (i=0; i<numCoef; i++)
fi[i] = f;

return 0;
) 	// end setAllfi

// 	
// replaces input/output vector, fi, with newfi
int UD_factor::setfi (coefVector newfi)

APPENDIX B 	 225

(

byte i;

for (1=0; i<numCoef; i++)
fi[i] = newfi[i];

return 0;
// end setfi

II
// copies input/output vector, fi, to oldfi
int UD_factor::getfi (coefVector& oldfi)
(

byte i;

for (1=0; i<numCoef; i++)
oldfi[i] = fi[i];

return 0;
} 	// end getfi

/ /
// Returns nth element of input/output vector
double UD_factor::fiN (byte n)
(

if (n < numCoef)
return fi[n];

else
(cerr « "ERR (fiN): array subscript too large";

exit (-1);
return (-1);

}
} 	// end fiN
// 	
// Co-variance (diagonal) functions

// sets one co-variance diagonal value to d
int UD_factor::setDiagN (byte n, double d)
{

if (n < numCoef)
(diag[n] = d;

return 0;
}
else
{ 	cerr « "ERR (setDiagN): array subscript too large";

exit (-1);
return (-1);

}
1 	// end setDiagN

// 	
// sets all co-variance diagonal values equal to d
int UD_factor::setAllDiag (double d)
(

byte i;

for (i=0; i<numCoef; i++)
diag[i] = d;

return 0;
) 	// end setAllDiag

// 	
// replaces co-variance diagonal, diag, with newDiag

APPENDIX B 	 226

int UD_factor::setDiag (coefVector newDiag)
{

byte i;

for (i=0; i<numCoef; i++)
diag[i] = newDiag[i];

return 0;
// end setDiag

// 	
// copies co-variance diagonal, diag, to oldDiag
int UD_factor::getDiag (coefVector& oldDiag)

byte i;

for (i=0; i<numCoef; i++)
oldDiag[i] = diag[i];

return 0;
// getDiag

// 	
// Returns nth element of co-variance diagonal
double UD_factor::diagN (byte n)

if (n < numCoef)
return diag[n];

else
cerr « "ERR (diagN): array subscript too large";
exit (-1);
return (-1);

// end diagN

//
// Co-variance Off-diagonal functions

// sets one co-variance off-diagonal value to o
int UD_factor::setOffDiagN (byte n, double o)

if (n < SIZEOffDiag(numCoef))
{ 	offDiag[n] = o;

return 0;

else
cerr « "ERR (setOffDiagN): array subscript too large";
exit (-1);
return (-1);

// end setOffDiagN

// 	
// sets all co-variance offDiagonal values equal, to o
int UD_factor::setAllOffDiag (double o)

byte i;

for (i=0; i< SIZEOffDiag(numCoef); i++)
offDiag[i] = o;

return 0;
// end setAllOffDiag

APPENDIX B 	 227

// 	
// replaces co-variance offDiagonal, offDiag, with newOffDiag
int UD_factor::setOffDiag (coefVector newOffDiag)

byte i;

for (i=0; i<SIZEOffDiag(numCoef); i++)
offDiag[i] = newOffDiag[i];

return 0;
} 	// end setOffDiag

// 	
// copies co-variance offDiagonal, offDiag, to oldOffDiag
int UD_factor::getOffDiag (coefVector& oldOffDiag)

byte i;

for (i=0; i<SIZEOffDiag(numCoef); i++)
oldOffDiag[i] = offDiag[i];

return 0;
// end getOffDiag

// 	
// Returns nth element of co-variance offDiagonal
double UD_factor::offDiagN (byte n)

if (n < SIZEOffDiag(numCoef))
return offDiag[n];

else
cerr « "ERR (offDiagN): array subscript too large";
exit (-1);
return (-1);

// end offDiagN

// 	
// Calculate least squares approximation for plant
// coeficients (theta) using (recursive) U-D factorisation

int UD_factor::LS (int k, double y)
{

int 	kf, ku, i, j, n;
double 	perr, fj, vi, alphaj, ajlast, pj, w;
coefVector kVect;

n = numCoef;
perr = y;
i=0;
for (i=0; i<n; i++)
perr = perr - theta[i] * fi[i];

// Calculate gain and covariance using U-D method
fj 	= fi[0];
kVect[0] 	= vj = diag[0]*fj;
alphaj = 1.0 + vj*fj;
diag[0] = diag[0]/alphaj/lambda;
if (n>1)

kf = ku = -1;
for (j=1; j<n; j++)

fi = fi[j];
for (i=0; i<j; i++) 	// f = fi*U

APPENDIX B 	 228

kf++;
fj += fl[i]*offDiag[kf]

} 	// end for i
vj = fj*diag[j]; 	// v=D*f
kVect[j] =vj;
ajlast = alphaj;
alphaj = ajlast + vj*fj;
diag[j] = diag[j] * ajlast/alphaj/lambda;
pj = -fj/ajlast;
for (i=0; i<j; i++) 	// kj+1 = kj+vj*uj,

uj=uj+pj*kj
ku++;
w = offDiag[ku] + kVect[i]*pj;
kVect[i] += offDiag[ku]*vj;
offDiag[ku] = w;
//end for i

// end for j
// end if n>1

// update coeficient estimates
for (i=0; i<n; i++) 	theta[i] += perr*kVect[i]/alphaj;
updateFi (k);

return 0;
// end LS

// 	
// calculate prediction for next output.
double UD_factor::Yp ()

byte i;
double y = 0.0;

for (i=0; i<numCoef; i++)
return y;

} 	// end Yp
// 	
// calculate derivative
double UD_factor::YpDot ()

byte i;
double y = 0.0;

for (i=1; i<numCoef; i++)
return y;
// end Yp

y += theta[i]*fi[i];

y += i*theta[i]*fi[i-1];

// 	
// Update previous input/output vector, fi, by one sample period
// value of fcts evaluated for x=xk
// ie. { 1, x, x^2, 	,x^n-1 } for x=xk
int UD_factor::updateFi (int k)

byte i;

double x = k * h;

fi[0] = 1.0;
for (i=1; i<numCoef; i++)

fi[i] = fi[i-1] * x;

return 0;

APPENDIX B 	 229

} 	// end updateFI

// 	
...
// Update previous input/output vector and return next preditcion for
Y
double UD_factor::nextYp (int k)
(

updateFi (k);
return Yp();

} 	// end nextYp

II

// end member functions for class UD_factor
// 	

// end ADAPTIVE.CPP

#########

APPENDIX B 	 230

Misc.cpp

#include "Misc.h"
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

// load defines from definesFile into array0fDouble
// each line must be in form
//
//identifier = value 	// with or without inline comments
//
void loadDefines (char *definesFile, array_double &defines)

ifstream file(definesFile);
if (NOT file) { cout « "Cannot open defines file \n"; 	exit

(-1); 	}

double defValue;

for (int i=0; i<defines.length() ; i++)
{

file 7 ignore(60,'='); // ignore identifier
file '>> defValue;//defValue; 	// read value
file.ignore(80,'\n'); // ignore to end of line

defines.set(i,defValue);

file.close();

APPENDIX B 	 231

My math.cpp

#include "my_math.h"
#include "defines.h"

//++
// class Vector
// 	

Vector::Vector (word 1,double initValue)
[

word i;
size = 1;

for (i=0;i< maxElements;i++) 	vector[i] = initValue;
}

Vector::-Vector(){}

int Vector::sizeOf () 	{ return size; }
void Vector::setSize(int 1) { size = 1; }

int Vector::setVector(array0fDouble &v)
(

for (byte i = 0; i< size; i++)
vector [i] = v[i];

return 1;
}

void 	Vector::setElement (word i, double s) { vector[i] = s; }
double Vector::getElement (word i) {return vector[i];}

double Vector: :norm()
[

double result=0.0;

for(byte i = 0; i<size; i++)
result += SQR(vector[i]);

return sqrt(result);
}

Vector Vector::operator+ (double s)
{

Vector temp=Vector(size);

for (byte i =0; i < size; i++)
temp.vector[i] = vector[i] + s;

return temp;
}

Vector Vector::operator+ (Vector v)
[

APPENDIX B 	 232

Vector temp = Vector(size);

for (byte i =0; i < size; i++)
temp.vector[i] = vector[i] + v.vector[i];

return temp;

Vector Vector: :operator- (Vector v)

Vector temp = Vector(size);

for (byte i =0; i < size; i++)
temp.vector[i] = vector[i] - v.vector[i];

return temp;

Vector Vector: : operator* (double s)

Vector temp = Vector(size);

for (byte i = 0; i< size; i++)
temp.vector[i] = vector[i] * s;

return temp;

Vector 	Vector: :operator * (Vector v)

Vector temp = Vector(size);

for (byte i = 0; i< size; i++)
temp.vector[i] = vector[i] * v.vector[i];

return temp;

Vector 	Vector: :operator/ (double s)

Vector temp = Vector(size);

for (byte i = 0; i< size; i++)
temp.vector[i] = vector[i] / s;

return temp;

Vector Vector: :operator / (Vector v)

Vector temp = Vector(size);

for (byte i = 0; i< size; i++)
temp.vector[i] = vector[i] / v.vector[i];

return temp;

APPENDIX B 	 233

} ;

double
{

Vector: :operator & (Vector v)

double temp = 0.0;

for (byte i = 0; i< size; i++)
temp = temp + vector[i] * v.vector[i];

return temp;

1 ;

Vector Vector: :operator (double s)
{

for (byte i = 0; i< size; i++)
vector[i] = s;

return *this;
};

Vector 	Vector: :operator= (Vector v)
{

size = v.size;

for (byte i = 0; i< size; i++)
vector[i] = v.vector[i];

return *this;
} ;

ostream &operator«(ostream &stream, Vector v)
{

word i;

stream « "(";

for (i=0;i<v.size-1;i++)
stream « v.getElement(i) « "

stream « v.getElement(v.size-1) «

return stream;
}

// end class Vector 	

//++
// class complexVector
// 	

complexVector::complexVector (word 1)
(

word i;

size = 1;

APPENDIX B 	 234

for (i=0;i< maxElements;i++) 	vector[i] = Complex(0.0,0.0);

complexVector::-complexVector()

int complexVector::sizeOf()

return size;

void complexVector::setSize(int 1)

size = 1;

int complexVector::setVector(array0fComplex &v)

for (byte i = 0; i< size; i++)
vector [i] = v[i];

return 1;

void complexVector::setElement (word i, double s)

vector[i] = Complex(s,0.0);

void complexVector::setElement (word i, Complex z)

vector[i] = z;

Complex complexVector::getElement (word i)

return vector[i];

double complexVector::norm()
{

double result=0.0;

for(byte i = 0; i<size; i++)
result += SQR(vector[i].mag());

return sqrt(result);

complexVector complexVector::real()

complexVector temp;

for (byte i = 0; i< size; i++)
temp.vector [i] = vector[i].real();

return temp;

APPENDIX B
	 235

complexVector complexVector::operator+ (double s)

complexVector temp=complexVector(size);

for (byte i =0; i < size; i++)
temp.vector[i] = vector[i] + s;

return temp;

complexVector complexVector::operator+ (Complex z)

complexVector temp = complexVector(size);

for (byte i =0; i < size; i++)
temp.vector[i] = vector[i] + z;

return temp;

complexVector complexVector::operator+ (complexVector v)

complexVector temp = complexVector(size);

for (byte i =0; i < size; i++)
temp.vector[i] = vector[i] + v.vector[i];

return temp;

complexVector complexVector::operator- (complexVector v)

complexVector temp = complexVector(size);

for (byte i =0; i < size; i++)
temp.vector[i] = vector[i] - v.vector[i];

return temp;

complexVector 	complexVector::operator* (double s)

complexVector temp = complexVector(size);

for (byte i = 0; i< size; i++)
temp.vector[i] = vector[i] * s;

return temp;

complexVector 	complexVector::operator* (Complex z)

complexVector temp = complexVector(size);

APPENDIX B 	 236

for (byte i = 0; i< size; i++)
temp.vector[i] = vector[i] * z;

return temp;

} ;

complexVector 	complexVector::operator * (complexVector v)

complexVector temp = complexVector(size);

for (byte i = 0; i< size; i++)
temp.vector[i] = vector[i] * v.vector[i];

return temp;

complexVector 	complexVector::operator/ (double s)

complexVector temp = complexVector(size);

for (byte i = 0; i< size; i++)
temp.vector[i] = vector[i] / s;

return temp;

} ;

complexVector 	complexVector::operator/ (Complex z)

complexVector temp = complexVector(size);

for (byte i = 0; i< size; i++)
temp.vector[i] = vector[i] / z;

return temp;

} ;

complexVector 	complexVector::operator / (complexVector v)

complexVector temp = complexVector(size);

for (byte i = 0; i< size; i++)
temp.vector[i] = vector[i] / v.vector[i];

return temp;

} ;

Complex 	complexVector::operator & (complexVector v)

Complex temp = (0.0,0.0);

for (byte i = 0; i< size; i++)
temp = temp + vector[i] * v.vector[i];

return temp;

APPENDIX B 	 237

} ;

complexVector complexVector::operator= (double s)
{

for (byte i = 0; i< size; i++)
vector[i] = s;

return *this;
} ;

complexVector 	complexVector::operator= (complexVector v)

{
size = v.size;

for (byte i = 0; i< size; i++)
vector[i] = v.vector[i];

return *this;
} ;

ostream &operator«(ostream &stream, complexVector v)
{

word i;

stream « "{ ";

for (i=0;i<v.size-1;i++)
stream « v.getElement(i) « "

stream « v.getElement(v.size-1) «

return stream;
}

// end class complexVector 	

//++
//class complexMatrix
// 	

complexMatrix::complexMatrix (word 1)
{

word i;

size = 1;

for (i=0;i< size;i++)
matrix[i] = complexVector(1);

}

complexMatrix::-complexMatrix()
{

}

void complexMatrix::makeSize(word 1)
{

for (byte i=0; i<size; i++)
matrix[i].size = 1;

APPENDIX B 	 238

size = 1;

int complexMatrix::setMatrix(matrix0fComplex &m)

for (byte i = 0; i< size; i++)
matrix [i] =

return 1;

void complexMatrix::setElement (word i, word j, Complex z)

matrix[i].setElement(j,z);

Complex complexMatrix::getElement (word i, word j)

return matrix[i].getElement(j);

complexVector complexMatrix::getVector (word i)

return matrix[i];

complexMatrix complexMatrix::operator+ (double s)

complexMatrix temp=complexMatrix(size);

for (byte i =0; i < size; i++)
temp.matrix[i] = matrix[i] + s;

return temp;

complexMatrix complexMatrix::operator+ (Complex z)

complexMatrix temp = complexMatrix(size);

for (byte i =0; i < size; i++)
temp.matrix[i] = matrix[i] + z;

return temp;

complexMatrix complexMatrix::operator+ (complexMatrix m)

complexMatrix temp = complexMatrix(size);

for (byte i =0; i < size; i++)
temp.matrix[i] = matrix[i] + m.matrix[i];

return temp;

APPENDIX B 	 239

complexMatrix 	complexMatrix::operator* (double s)

complexMatrix temp = complexMatrix(size);

for (byte i = 0; i< size; i++)
temp.matrix[i] = matrix[i] * s;

return temp;

} ;

complexMatrix 	complexMatrix::operator* (Complex z)

complexMatrix temp = complexMattix(size);

for (byte i = 0; i< size; i++)
temp.matrix[i] = matrix[i] * z;

return temp;

complexMatrix 	complexMatrix::operator * (complexMatrix m)
{ //{{al*bl, a2*b2}, {a3*b3, a4*b4}}

complexMatrix temp = complexMatrix(size);

for (byte i = 0; i< size; i++)
temp.matrix[i] = matrix[i] * m.matrix[i];

return temp;

} ;

complexMatrix 	complexMatrix::operator/ (double s)

complexMatrix temp = complexMatrix(size);

for (byte i = 0; i< size; i++)
temp.matrix[i] = matrix[i] / s;

return temp;

} ;

complexMatrix 	complexMatrix::operator/ (Complex z)

complexMatrix temp = complexMatrix(size);

for (byte i = 0; i< size; i++)
temp.matrix[i] = matrix[i] / z;

return temp;

complexMatrix 	complexMatrix::operator / (complexMatrix v)

complexMatrix temp = complexMatrix(size);

APPENDIX B 	 240

for (byte i = 0; i< size; i++)
temp.matrix[i] = matrix[i] / v.matrix[i];

return temp;

complexVector 	complexMatrix::operator & (complexVector v)

complexVector temp = complexVector(size);

for (byte i = 0; i< size; i++)
temp.vector[i] = matrix[i] & v;

return temp;

complexMatrix complexMatrix::operator= (double s)

for (byte i = 0; i< size; i++)
matrix[i] = s;

return *this;
) ;

complexMatrix 	complexMatrix::operator= (complexMatrix v)

size = v.size;

for (byte i = 0; i< size; - i++)
matrix[i] = v.matrix[i];

return *this;
} ;

ostream &operator«(ostream &stream, complexMatrix m)

word i;

stream « "(u ;

for (i=0;i<m.size-1;i++)
stream « m.getVector(i) « ",\n";

stream « m.getVector(m.size-1) « "}\n";

return stream;

...special functions ...

// end class complexMatrix 	

//+++
//class 	identityMatrix

APPENDIX B 	 241

II

identityMatrix::identityMatrix (word 1) : complexMatrix(1)

word i;
Complex one = Complex(1.0,0.0);

size = 1;

for (i=0;i< size;i++)
matrix[i] = 0.0;
matrix[i].setElement(i,one);

identityMatrix::-identityMatrix()

//identityMatrixs--;
//cout « "num vectors = " « identityMatrixs « "\n";

} ;

// end class identityMatrix 	

//+++
//class 	linearSolve
// 	

//
	complexMatrix LUdecomposition;

//
	

int *rowPermutations [maxElements];
//
	

float rowInterchanges;

linearSolve::linearSolve (word 1) : complexMatrix (1)

byte i;

LU.size=1;
for (i=0;i<LU.size;i++)

LU.matrix[i]=complexVector(LU.size);

linearSolve::-linearSolve()(}

linearSolve linearSolve::operator= (complexMatrix m)

size = m.size;

for (byte i = 0; i< 	(int)size; i++)
matrix[i] = m.matrix[i];

return *this;
} ;

linearSolve linearSolve::operator= (linearSolve 1)

LU=1.LU;
size = 1.size;
for (int j = 0; j< 	(int)size; j++)

matrix[j] = 1.matrix[j];
for (int i=0; i<(int)LU.size; i++)

APPENDIX B 	 242

rowPermutations[i]=1.rowPermutations[i];
rowInterchanges = 1.rowInterchanges;

return *this;
};
void linearSolve::doLUdecomposition()

//void ludcmp(float **a, int n, int *indx, float *d)

int i,imax,j,k;
Complex vv[maxElements];
Complex temp,big,sum,dum;

LU.setMatrix(matrix);
rowInterchanges=1.0; //*d
for (i=0;i<(int)size;i++) {

big=Complex(0.0,0.0);
for (j=0;j<(int)size;j++)

if ((temp=LU.getElement(i,j)) > big) big=temp;
if (big == Complex(0.0,0.0))

//nrerror("Singular matrix in routine ludcmp");
cout « "Singular Matrix in routine

doLUdecomposition\n";
vv[i]=Complex(1.0,0.0)/big;

for (j=0;j<(int)size;j++) {
for (i=0;i<j;i++) {

sum=LU.getElement(i,j);
for (k=0;k<i;k++) sum -

=LU.getElement(i,k)*LU.getElement(k,j);
LU.setElement(i,j,sum);

big=Complex(0.0,0.0);
for (i=j;i<(int)size;i++) (

sum=LU.getElement(i,j);
for (k=0;k<j;k++)

sum -= LU.getElement(i,k)*LU.getElement(k,j);
LU.setElement(i,j,sum);
if ((dum=vv[i]*sum.mag()) >= big) {

big=dum;
imax=i;

if (j != imax) {
for (k=0;k<(int)size;k++) {

dum=LU.getElement(imax,k);
LU.setElement(imax,k,LU.getElement(j,k));
LU.setElement(j,k,dum);

rowInterchanges= -rowInterchanges; //*d = -(*d);
vv[imax]=vv[j];

rowPermutations[j]=imax;
if (LU.getElement(j,j) == Complex(0.0,0.0))

LU.setElement(j,j,TINY);
if (j != (int)size-1) {

dum=Complex(1.0,0.0)/(LU.getElement(j,j));
for (i=j+1;i<(int)size;i++)

LU.setElement(i,j,LU.getElement(i,j)*dum);

APPENDIX B
	

243

complexVector linearSolve::solve(complexVector b)

int i,ii=-1,ip,j;
Complex sum = Complex(0.0,0.0);

for (i=0;i<(int)size;i++)
ip=rowPermutations[i];
sum=b.getElement(ip);
b.setElement(ip,b.getElement(i));
if (ii>-1)

for(j=ii;j<=i-1;j++)
sum -= LU.getElement(i,j)*b.getElement(j);

else if (sum!=Complex(0.0,0.0)) ii=i;
b.setElement(i,sum);

for (i=(int)size-1;i>=0;i--)
sum=b.getElement(i);
for (j=i+1;j<(int)size;j++)

sum -= LU.getElement(i,j)*b.getElement(j);
b.setElement(i,sum/LU.getElement(i,i));

return b;

// end class linearSolve 	

APPENDIX B 	 244

My Process.cpp

/*

class thread

protected:

DWORD threadID;
HANDLE threadHandle;

'-

public:

thread (LPTHREAD_START_ROUTINE threadFctPtr, 	//
pointer to thread function

LPVOID 	 argumentsPtr =
NULL, // argument for new thread

LPSECURITY_ATTRIBUTES attributesPtr = NULL, 	//
pointer to thread security attributes

DWORD 	 initialStackSize = 0,
// initial thread stack size, in bytes

DWORD 	 creationFlags = 0);
// creation flags

DWORD id 	() (return threadID;};
HANDLE handle () (return threadHandle;};

DWORD waitFor (DWORD mSec = INFINITE);

} ;

//

#endif
//###

#include "My_Process.h"
#include "defines.h"
#include <windows.h>
//#include <process.h>
#include <iostream.h>
#include <time.h>

//###

thread::thread (LPTHREAD_START_ROUTINE threadFunction, 	//
pointer to thread function

DWORD 	 priorityClass,
DWORD 	 priorityLevel,
LPVOID

argumentsPtr, 	// argument for new thread

APPENDIX B 	 245

LPSECURITY_ATTRIBUTES attributesPtr,
// pointer to thread security attributes

DWORD
initialStackSize, // initial thread stack size, in bytes

DWORD 	 creationFlags)
// creation flags

{

threadHandle = CreateThread(attributesPtr,
initialStackSize,
threadFunction,
argumentsPtr,
creationFlags,
&threadID);

if (NOT threadHandle)
{

cout « "ERROR in CLASS thread - 'CreateThread()
returned with "

« GetLastError() « "\n";
exit(-1);

}

setPriorityClass(priorityClass);
setPriorityLevel(priorityLevel);

}

//

void thread::setPriorityClass(DWORD priorityClass)
{

BOOL result;

HANDLE processHandle = GetCurrentProcess();
result = SetPriorityClass(processHandle, priorityClass);

if (NOT result)
{

cout « "ERROR in CLASS thread - 'setPriorityClass()
returned with "

« GetLastError() « "\n";
exit(-1);

}

//

void thread::setPriorityLevel(DWORD priorityLevel)
{

BOOL result;

result = SetThreadPriority(threadHandle, priorityLevel);

if (NOT result)
{

cout « "ERROR in CLASS thread - 'setPriorityLevel()'
returned with "

« GetLastError() « "\n";
exit(-1);

}

}

)

APPENDIX B

/ 	

DWORD thread::waitFor (DWORD mSec)

DWORD result;

result = WaitForSingleObject(threadHandle,mSec);

if (result == WAIT_FAILED)

cout « "ERROR in CLASS thread - 'waitFor() returned
with "

« GetLastError() «
exit(-1);

return result;

I I

void setMaxPriority()

int result = SetPriorityClass(GetCurrentProcess(),
REALTIME_PRIORITY_CLASS);

if (NOT result)

cout « "ERROR in setMaxPriority - 'setPriorityClass()'
returned with "

« GetLastError() « "\n";
exit(-1);

result = SetThreadPriority(GetCurrentThread(),
THREAD_PRIORITY_TIME_CRITICAL);

if (NOT result)

cout « "ERROR in setMaxPriority - 'setPriorityLevel()'
returned with "

« GetLastError() «
exit(-1);

void restoreStdPriority()
{

int result = SetPriorityClass(GetCurrentProcess(), 32);
if (NOT result)

cout « "ERROR in restoreStdPriority -
'setPriorityClass()' returned with "

« GetLastError() « "\n";
exit -(-1);

result = SetThreadPriority(GetCurrentThread(), 0);
if (NOT result)

246

APPENDIX B 	 247

{

cout « "ERROR in restoreStdPriority -
'setPriorityLevel() returned with "

« GetLastError() « "\n";
exit(-1);

}

}

I I

void holdProcessFor (int seconds) // stops process for seconds
{

time_t 	start, finish;

time(&start);
finish = start;

while (difftime(finish,start) < seconds)
time(&finish);

}

//###
################
// end MY_Process.cpp
//###
###################

APPENDIX B 	 248

Path. cpp

#include "Path.h"
#include "Container. h'
#include <math.h>

void getCircularPath (array2D_double &path,
int 	numSamples, 	// path

samples may need 4x sim samples for RK
double 	Ts, 	 //

sample period
double 	revs, 	//

revolutions per second
double 	11, 	 //

length link 1
double 	14, 	 //

" 	4
double 	x0, 	 //

centre coords
double 	yO,
double 	r) 	 //

radius

double C2 = -2*11;
double Cl = (14*14-11*11)/C2;
double w = 2 * PI * revs;

double t,a,b,L,3,alpha,thetal,theta2;

for (int i=0; i<numSamples; i++)
{

// angular velocity

//t = (2 * PI * i / numSamples)/w;
t=i*Ts;
a=x0+r*cos(w*t);
b=y0+r*sin(w*t);
L=sqrt(a*a+b*b);
B=atan(b/a);

alpha = acos(C1/L-L/C2);
thetal = alpha + B;
theta2 = asin(L*sin(alpha)/14)+thetal;

path.set(1,0,thetal);
path.set(i,1,theta2);

II

void getSquarePath (array2D_double &path,
int 	numSamples,
double 	time,
double 	cps,
double 	minl,
double 	maxl,
double 	min2,
double 	max2)

APPENDIX B 	 249

,-

int samplesPerStep = (int)((double)numSamples / time / cps);

double setPointl,setPoint2;

for (int i=0; i<numSamples; i++)
{

if(ODD(i/samplesPerStep))
{

setPointl = minl;
setPoint2 = min2;

}else
{ 	setPointl = maxi;

setPoint2 = max2;
}

path.set(i 3 O,setPointl);
path.set(i,l,setPoint2);

}

{

}

APPENDIX B 	 250

PC30 Give10.cpp

///
I-
II IoCard.cpp
I-
II DriverX Version 3
I-
II Copyright (C) 1995-1997, Tetradyne Software Inc.
// All rights reserved.

//#include <stdafx.h>
#include <time.h>
#include <iostream.h>

#include "defines.h"
#include Windows .h'
#include "PC30 GiveIO.h"

// my defines

//#define TRAP_ERRORS
// 	

pc30::pc30()

HANDLE h;

h = CreateFile("\\\\.\\giveio ", GENERIC_READ, 0, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,

NULL);

#if defined (TRAP_ERRORS)
if(h == INVALID_HANDLE_VALUE) (
cout«"Couldn't access giveio device\n";
exit(-1);

}
#endif

CloseHandle(h);

diocntrl = Ox00;
digPortA = 0;
digPortB = 0;
digPortC = 0;

// initialise pc30 - pc3OD User Manual p68, #6.2
Initialisation

- outPort(ADMDE, 	0x92);
outPort(TMRCTR, 0x34);
outPort(TMRCTR, 0x74); 	/174
outPort(TMRCTR, 0x36);
outPort(ADCCR, 	0x02);
outPort(DIOCNTRL,Ox00);

clock_t start = clock();
while (start == clock()); 	// wait for lmSec

Word temp;
temp = inPort(ADDSR);

APPENDIX B 	 251

temp = inPort(ADDSR);

daOut(0,0.0);
daOut(1,0.0);

configureDigPort(DIGportA,INport);
configureDigPort(DIGportB 4 OUTport);
configureDigPort(DIGportC,INport);

II

pc30::-pc30()
{

I I
// Digital I/O functions

void pc30::configureDigPort (Word port, Word direction)
{

if (direction == INport)

if (port == DIGportA) diocntrl = diocntrl BITor
DIGportAIn;

else
if (port == DIGportB) diocntrl = diocntrl BITor

DIGportBIn;
else
if (port == DIGportC) diocntrl = diocntrl BITor

DIGportCIn;

else // direction == OUTport

if (port == DIGportA) diocntrl = diocntrl BITand
DIGportA0ut;

else
if (port == DIGportB) diocntrl = diocntrl BITand

DIGportBOut;
else
if (port == DIGportC) diocntrl = diocntrl BITand

DIGportCOut;

outPort(DIOCNTRL,diocntr1);

// 	
// note 0->+10V, 4095->-10V

void pc30::daOut(Word port, double value)

#if defined(TRAP_ERRORS)
// trap illegal port

if (port < 0 OR port > 1)

APPENDIX B 	 252

cout « "pc30::adcOut(" « port «"," « value <‹ ") -
port not [0..1]\n";

exit(-1);
}

// Limit value to +-10V
if 	(value < -10.0) value = -10.0;
else if (value > 10.0) value = 10.0;

#endif

// max binary equivalent value
const Word binMax= 4095;

// convert value to 8 or 12 bit unsigned
Word num;
num = (Word)(((10.0-value)/20.0)*binMax);

// shift left 4bits and split into high low bytes
Word lwByte, hiByte;
num = num « 4;
lwByte = num & OxFF; 	// bitwise and with 8bit mask
hiByte = (num » 8) & OxFF;

if (port == 0)
(

outPort(DADATHO,hiByte);
outPort(DADATL0,1wByte);

}
else // port == 1
(

outPort(DADATH1,hiByte);
outPort(DADATL1,1wByte);

}

//

void pc30::setDefaultClk()
(

setPrescaler();
setDivider();
setUserclk();

}

//

void pc30::setCounter(Word clk, Word count)
{

Word lwByte,hiByte;

lwByte = count & OxFF;
hiByte = (count » 8) & OxFF;

outPort(clk,lwByte);
outPort(clk,hiByte);

)

}

//

APPENDIX B 	 253

Word pc30::getCount(Word clk)

Word lwByte,hiByte;

lwByte = inPort(c1k);
hiByte = inPort(c1k);

return lwByte + (hiByte « 8);

//

Word pc30::wait(Word nTicks, Word &i,Word start)

Word stop,count;

count = prescaler();
i=0;
if(start == NOW) start = count;

if (nTicks < start)
stop = start - nTicks;

else
stop = MAXcount - (nTicks - (start+1));

if (stop > start)
while (count < start) {count = prescaler(); i++;}

while (count > stop) {count = prescaler();i++;}

return count;

II

Word pc30::waitForUsrClk()

static Word oldClk=0;

static Word clk=0;

while (oldClk == clk) clk = userclk();

oldClk = clk;
#if defined(TRAP_ERRORS)

return divider();
#else

return divider();
#endif

APPENDIX B 	 254

PCL833.cpp

*include "PCL833.h"
#include "defines.h"
#include <iostream.h>
#include <stdlib.h>
#include <conio.h>

II

// pc1833 Constructor
// 	

pc1833::pc1833()
{

LRESULT errCode;
char errMsg[80]; // 32bit pointer to char[]

//

// Open device
// 	

if((errCode = DRV_DeviceOpen((ULONG)PCL833_Device_Num,(LONG far
*)&driverHandle)) != 0)

(
DRV_GetErrorMessage(errCode,(LPSTR)errMsg);
cout « "ERROR : pc1833 constructor -DeviceOpen : \n";
cout «*errMsg « "\n";

}

I-
II Configure counters
// 	

config_0.counter 	= 0;
config_O.LatchSrc 	= SWLATCH;

config_O.LatchOverflow = YES;
overflow

config_O.ResetOnLatch = NO;
after latch

config_O.ResetValue
7FFFFFh

// Latch when read
// allow counters to

// don't reset on

= RESET_HALF; // start counters at

if((errCode = DRV_QCounterConfig(driverHandle,
(LPT_QCounterConfig)&config_0)) != 0)

{

DRV_GetErrorMessage(errCode,(LPSTR)errMsg);
cout « "ERROR : pc1833 constructor - config counter 0 :

cout « errMsg « "\n";
}

\n";

config_l.counter 	= 1 ;
config_l.LatchSrc 	= SWLATCH;

config_l.LatchOverflow = YES;
overflow

config_l.ResetOnLatch = NO;
after latch

// Latch when read
// allow counters to

// don't reset on

APPENDIX B 	 255

config_1.ResetValue 	= RESET_HALF; // start counters at
7FFFFFh

if((errCode = DRV_QCounterConfig(driverHandle,
(LPT_QCounterConfig)&config_1)) != 0)

(

DRV_GetErrorMessage(errCode, (LPSTR)errMsg);
cout « "ERROR : pc1833 constructor - config counter 1 :

\n";
cout « errMsg « "\n";

}

// 	
// Set start structures to default values
// 	

start_O.counter 	= 0;
start_O.InputMode = ABPHASEX4;

start_l.counter 	= 1;
start_l.InputMode = ABPHASEX4;

}

II

// pc1833 Destructor
//

pc1833::-pc1833()
[

stopCounters();
DRV_DeviceClose(&driverHandle);

}

//

// Start counters 0&1
// 	

int pc1833::startCounters()
(

LRESULT errCode;
char 	errMsg[80]; 	// 32bit pointer to char[]

if((errCode = DRV_QCounterStart(driverHandle,
(LPT_QCounterStart)&start_0)) != 0)

(

DRV_GetErrorMessage(errCode, (LPSTR)errMsg);
cout « "ERROR : pc1833 start counter 0 ' : \n";
cout « errMsg « "\n";

return ERROR;
}

counting_O = YES;

APPENDIX B 	 256

if((errCode = DRV_QCounterStart(driverHandle,
(LPT_QCounterStart)&start_1)) != 0)

DRV_GetErrorMessage(errCode,(LPSTR)errMsg);
cout << "ERROR : pc1833 start counter 1 ' : \n";
cout << errMsg « "\n";

return ERROR;

counting_l = YES;

return OK;

II

// Stop counters
// 	

int pc1833::stopCounters()

LRESULT errCode;
char 	errMsg[80]; 	// 32bit pointer to char[]

if (counting_0)
if((errCode = DRV_CounterReset(driverHandle,0)) != 0)

DRV_GetErrorMessage(errCode,(LPSTR)errMsg);
cout « "ERROR : pc1833 stop counter 0 : \n";
cout << errMsg «

return ERROR;
}

if (counting_0)
if((errCode = DRV_CounterReset(driverHandle,1)) != 0)

DRV_GetErrorMessage(errCode,(LPSTR)errMsg);
cout « "ERROR : pc1833 stop counter 1 : \n";
cout << errMsg « "\n";

return ERROR;

return OK;

II

// Reset counters
// 	

int 	pc1833::resetCounters()
{

if(stopCounters() == ERROR) return ERROR;
if(startCounters() == ERROR) return ERROR;

APPENDIX B 	 257

return OK;

II

// Read counters
// 	

void pc1833::readCounters()

count_O = (_inp(CH_O_hiByte) « 16)+(_inp(CH_O_midByte) «
8)+_inp(CH_O_lowByte);

count_1 = (_inp(CH_l_hiByte) « 16)+(_inp(CH_1_midByte) «
• 8)+_inp(CH_l_lowByte);

count_O = (_inp(CH_O_hiByte) « 16)+(_inp(CH_O_midByte) «
8)+_inp(CH_O_lowByte);

count_l = (_inp(CH_l_hiByte) « 16)+(_inp(CH_l_midByte) «
8)+_inp(CH_l_lowByte);

APPENDIX B 	 258

Runga Kutta 4 th order.cpp

#include "my_math.h"

// NOTE: x equates in most cases to a time variable.

void euler (Vector& y,
double x0,

initial x value

// state
//

final 	x value

step size

bu=f(y,x)

double xl,

double h,

Vector (*f)(Vector, double),

II

II

// yDot=A.y +

void 	(serviceRoutine)(Vector, double))

double x = x0;

while (x + h <= xl)

y = y + f(y,x) * h;

x = x + h;

if (serviceRoutine) serviceRoutine(y,x);

// NOTE: x equates in most cases to a time variable.
//rungaKutta(modelState, 0.0, Tstop, Ts, modelRKfct,
modelServiceRoutine);

void rungaKutta(Vector& y, 	 //
state

double x0,
// initial x value

double xl,
// final 	x value

double h,
// step size

yDot=A.y + bu=f(y,x)
Vector (*f)(Vector, double), 	//

void 	(serviceRoutine)(Vector, double))

Vector k0 = Vector(y.sizeOf());
Vector kl = Vector(y.sizeOf());
Vector k2 = Vector(y.sizeOf());
Vector k3 = Vector(y.sizeOf());

double x = x0;

while (x + h <= xl)

k0 = f(y,x) * h;

APPENDIX B 	 259

kl = f(y+kO*0.5,x+h*0.5) * h;
k2 = f(y+k1*0.5,x+h*0.5) * h;
k3 = f(y+k2,x+h) * h;

y = y + (k0+k1*2.0+k2*2.0+k3)/6.0;

x = x + h;

if (serviceRoutine) serviceRoutine(y,x);

}

}

APPENDIX B 	 260

Vector. cpp

#include "vector.h"
#include <iostream.h>
#include <stdlib.h>
#include <math.h>

• //% %%%%%%%% %%% %%%%%%%% %%% %%%%%%%% %%% %%%%%%%% %%% %%%%%%%% %%% %%%%%%%%% %%
%%%%%%

vector: :vector ()

if(DEBUG_VECTOR) cout « "Constructing Vector \n";

//+++

+++++

vector: :vector (int size, double init)

if(DEBUG_VECTOR) cout « "Constructing Vector \n";

array = new double [size];

if (array == NULL)
{ cout « "MEMORY ALLOCATION ERROR - vector constructor -

vector(";
cout « size « ", " « init « ") \n\n";
exit(-1);

length = size;
for (int i = 0; i < length; i++)

array[i] = init; •

//+++

+++++

vector: :-vector()

if(DEBUG_VECTOR) cout « "Destructing Vector'\n";

if(array) delete 	array;

//+++

+++++

vector: :vector (vector &v)

if(DEBUG_VECTOR) cout « "Vector: :Copy Constructor Called \n";

array = new double [v.size()];

if (array == NULL)
cout « "MEMORY ALLOCATION ERROR - vector copy constructor";

exit(-1);

APPENDIX B 	 261

length = v.size();
for (int i = 0; i < length; i++)

array[i] = v[i];

//+++

+++++

void vector::initialise (int size, double init)

if(DEBUG_VECTOR) cout « "Vector::Initialise Called \n";

array = new double [size];

if (array == NULL)
cout « "MEMORY ALLOCATION ERROR - vector constructor -

vector(";
cout « size « ", " « init << ") \n\n";
exit(-1);

length = size;
for (int i = 0; i < length; i++)

array[i] = init;

//+++

+++++

int vector::sameLength(vector &v, char *where)

if (length != v.size())
{ 	coutm« "ERROR - vector incompatible length\n";

cout « " 	- vector::" « where;
return 0;

return 1;

//+++

+4+++

int vector::sameLength(double *a, char *where)

if (length != a[0])
cout « "ERROR - array incompatible length\n";
cout « " 	- vector::" « where;
return 0;

return 1;

//+++

+++++

vector & vector: :operator (vector &v)

if (!sameLength(v,"operator= (vector&v)")) exit(-1);

for (int i = 0; i < length; i++) array[i] = v[4];

APPENDIX B 	 262

return *this;

//+++
+++++
// copy double[] to vector: assumes size in a[0]

vector & vector: :operator (double *a)

if (!sameLength(a,"operator= (double *a)")) exit(-1);

for (int i = 0; i < length; i++) array[i] = a[i+1];
return *this;

//+++

+++++

vector & vector: :operator (double d)

for (int i = 0; i < length; i++) array[i] = d;
return *this;

//+++

+++++

double & vector: :operator[] (int i)

if (i > length -1)
cout « "ERROR - vector::operator[] - index [";
cout « i « "1 out of range\n\n";
exit(-1);

return array[i];

//+++

vector vector::operator+ (vector &v)

if (!sameLength(v,"operator+ (vector&v)")) exit(-1);

vector temp(length);

for (int 	= 0; i < length; i++) temp[i] = array[i] + v[i];

return temp;

//+++

+++++

vector vector::operator+ (double *a)

if (!sameLength(a,"operator+ (double *a)")) exit(-1);

vector temp(length);

APPENDIX B 	 263

for (int i = 0; i < length; i++) temp[i] = array[i] + a[i+1];

return temp;

//+++

vector vector::operator+ (double d)

vector temp(length);

for (int i = 0; i < length; i++) temp[i] = array[i] + d;

return temp;

//+++
+++++

vector vector: :operator- (vector &v)

if (!sameLength(v,"operator- (vector&v)")) exit(-1);

vector temp(length);

for (int i = 0; i < length; i++) temp[i] = array[i] - v[i];

return temp;

//+++

+++++

vector vector: :operator- (double *a)

If (!sameLength(a,"operator- (double *a)")) exit(-1);

vector temp(length);

for (int i = 0; 1 < length; i++) temp[i] = array[i] - a[i+1];

return temp;

//+++
-I-

vector vector: :operator- (double d)

vector temp(length);

for (int i = 0; i < length; i++) temp[i] = array[i] - d;

return temp;

//+++
+++++

APPENDIX B 	 264

vector vector: :operator* (double d)

vector temp(length);

for (int i = 0; i < length; i++) temp[i] = array[i] * d;

return temp;

//+++

vector vector: :operator/ (double d)
[

vector temp(length);

for (int i = 0; i < length; i++) . temp[i] = array[i] / d;

return temp;

//+++

+ ++ ++

vector & vector::operator+= (vector &v)

if (!sameLength(v,"operator+= (vector&v)")) exit(-1);

for (int i = 0; i < length; i++) array[i] = array[i]+v[i];
return *this;

//+++

vector & vector::operator+= (double *a)

if (!sameLength(a,"operator+= (double *a)")) exit(-1);

for (int i = 0; i < length; i++) array[i] = array[i]+a[i+1];
return *this;

//+++

vector & vector::operator+= (double d)

for (int i = 0; i < length; i++) array[i] = array[i]+d;
return *this;

//+++
+++++
vector & vector: :operator- (vector &v)
{

if (!sameLength(v,"operator-= (vector&v)")) exit(-1);

for (int i = 0; i < length; i++) array[i] = array[i]-v[i];

APPENDIX B 	 265

return *this;

//+++
+++++

vector & vector::operator-= (double *a)

if (!sameLength(a,"operator-= (double *a)")) exit(-1);

for (int i = 0; i < length; i++) array[i] = array[i]-a[i+1];
return *this;

//+++
+++++

vector & vector: :operator- (double d)

for (int i = 0; i < length; i++) array[i] = array[i]-d;
return *this;

//+++
+++++

vector & vector: :operator* (double d)

for (int i = 0; i < length; i++) array[i] = array[i]*d;
return *this;

//+++
+++++

vector & vector: :operator/ (double d)

for (int i = 0; i < length; i++) array[i] = array[il/d;
return *this;

//+++
+++++

vector vector::operator+ ()

return *this;

//+++
+++++

vector vector: :operator- ()

vector temp(length);
for (int i = 0; i < length; i++) temp[i] = -array[i];
return temp;

APPENDIX B 	 266

//+++
+++++

double vector: :magnitude()

double sumSquares = 0.0;

for (int i = 0; i < length; i++)
sumSquares += array[i]*array[i];

return sqrt(sumSquares);

//+++
+ + + ++

double vector: :distance (vector &v)

double sumSquaresOfDiff = 0.0;

for (int i = 0; i < length; i++)
sumSquaresOfDiff += (array[i]-v[i])*(array[i]-v[i]);

return sqrt(sumSquaresOfDiff);

//+++
+++ + +

ostream & operator«(ostream & stream, vector &v)
{

if (!v.valid())
cout « "ERROR - operator«(vector) - invalid

vector\n\n";
exit(-1);

stream « "f ";
for (int i = 0; i < v.size() -1; i++) cout « v[i] <<"

	
II ;

stream « v[v.size()-1]«

return stream;

//+++
+++++

