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Abstract 

In this thesis, fuzzy modelling of a class of nonlinear systems has been investigated 

based on fuzzy logic and linear feedback control theory, and a few robust variable 

structure control schemes for nonlinear systems have been developed. A number of 

robustness and convergence results with dramatically reduced control chattering are 

presented for variable structure control systems with applications to robotic 

manipulators in the presence of parameter variations and external disturbances. The 

major outcomes of the work described in this thesis are summarised as follows. 

A robust tracking control scheme is proposed for a class of nonlinear systems with 

fuzzy model. It is shown that a nominal system model for a nonlinear system is 

established by fuzzy synthesis of a set of linearised local subsystems, where the 

conventional linear feedback control technique is used to design a feedback controller 

for the fuzzy nominal system. A variable structure compensator is then designed to 

eliminate the effects of the approximation error and system uncertainties. Strong 

robustness with respect to large system uncertainties and asymptotic convergence of 

the output tracking error are obtained. 

A sliding mode control scheme using fuzzy logic and Lyapunov stability theory has 

been proposed. It is shown that a sliding mode is first designed to describe the desired 

system dynamics for the controlled system. A set of fuzzy rules are then used to adjust 

the controller's parameters based on the Lyapunov function and its time derivative. 

The desired system dynamics are then obtained in the sliding mode. The sliding mode 

controllers with fuzzy tuning algorithm show the advantage of reducing the chattering 

of the control signals, compared with the conventional sliding mode controllers. 

A robust continuous sliding mode control scheme for linear systems with uncertainties 

has been presented. The controller consists of three components: equivalent control, 

continuous reaching mode control and robust control. It retains the positive properties 

of sliding mode control but without the disadvantage of control chattering. The 
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proposed control scheme has been applied to the tracking control of a one-link robotic 

manipulator with fuzzy modelling of the nonlinear system. 

A robust adaptive sliding mode control scheme with fuzzy tuning has been presented. 

It is shown that an adaptive sliding mode control is first designed to learn the system 

parameters with bounded system uncertainties and external disturbances. A set of 

fuzzy rules are then used to adjust the controller's uncertainty bound based on the 

Lyapunov function and its time derivative. The robust adaptive sliding mode 

controller with fuzzy tuning algorithm show the advantage of reducing the chattering 

and the amplitude of the control signals, compared with the adaptive sliding mode 

controller without fuzzy tuning. Experimental example for a five-bar robot arm is 

given in support of the proposed control scheme. 

Finally, a new adaptive sliding mode controller has been developed for trajectory 

tracking in robotic manipulators. This controller is able to estimate the constant part 

of the system parameters as well as adaptively learn the uncertain part of the system 

parameters by the Gaussian neural network. It is shown that under a mild assumption, 

the proposed control law does not require measurement of acceleration signals. This 

new control law exhibits the good aspects of Slotine and Li's (1987) and keeps the 

chattering to a minimum level. An experiment of a five bar robotic system was done 

and the results have confirmed the effectiveness of the approach. 
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CHAPTER I INTRODUCTION 	 1 

Chapter 1 

Introduction 

1.1 Motivation 

The basis for control system design and stability analysis is a dynamic mathematical 

model that captures prominent features of the system under consideration. However, 

in practical situations, such a requirement is not feasible because the controlled 

systems have high nonlinearities and uncertain dynamics, and simple linear or 

nonlinear differential equations cannot sufficiently represent the corresponding 

practical systems, and therefore, the designed controller based on such a model cannot 

guarantee the good performance such as stability and robustness. 

During the last few years, fuzzy logic control has been suggested as an alternative to 

conventional control techniques for complex nonlinear systems due to the fact that 

fuzzy logic combines human heuristic reasoning and expert experience to approximate 

a certain desired behaviour function (Takagi and Sugeno, 1985; Cao et al., 1996; 

Wang et al., 1996). However, the asymptotic error convergence and stability of the 

closed-loop system may not be obtained due to the approximation error and 

uncertainties of the fuzzy model. 
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Many kinds of fuzzy models for control processes have been developed since 

Mamdani's (1974) paper was published. They can be classified into three kinds of 

models, Composition Rule of Inference (Zaheh, 1973), Approximate Reasoning 

Model (Nakanishi et al., 1993), Sugeno's Models such as Position type Model and 

Position-Gradient type Model (Sugeno and Yasukawa, 1993). Most of these models 

are expressed by a set of fuzzy linguistic propositions which are derived from the 

experience of skilled operators or by fuzzy implication which locally represent linear 

input-output relations of the system. 

Most proposed conventional fuzzy models only consider the external behaviour of the 

system, and can be considered as a function approximation. It is very difficult to 

obtain a controller using those models. Even if the controller can be obtained by using 

some trial-and-error procedures the behaviour of the closed-loop system, for example, 

the stability of the system is still difficult to analyse. Also the number of rules increase 

very quickly when the system becomes complex because every local rule is only 

described by a constant. Therefore, the identification of these fuzzy models is still a 

difficult problem because there are too many parameters in the membership functions. 

From a control point of view, system uncertainties can be classified as either 

structured or unstructured. Structured uncertainties are those dynamics that have a 

known functional form but unknown parameters, while unstructured uncertainties are 

simply those that are not structured. For example, system parameters and payload for a 

robotic system can be viewed as structured uncertainties; unstructured uncertainties 

include friction, disturbances, and unmodelled dynamics. 
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Two major conventional control methodologies have been developed for dealing with 

system uncertainties: adaptive control and robust control. Adaptive control is a 

control scheme in which so-called adaptation laws are constructed to learn explicitly 

unknown constant parameters of the system under control. For this reason, adaptive 

control is limited to those systems whose uncertainties are structured, although it is 

applicable to a wider range of uncertainties after employing robustness enhancement 

techniques. Robust control is a control of fixed structure that guarantees stability and 

performance for uncertain systems. Its design only requires some knowledge about 

bounding functions on the greatest possible value of the uncertainties. This implies 

that robust control is capable of compensating for both structured and unstructured 

uncertainties. 

Variable structure control with sliding mode is a robust control technique with respect 

to system variations and external disturbances. Variable structure control was 

pioneered in the former Soviet Union in the 1960s by Emelyanov (1962, 1966) and 

then developed by many researchers (Uticin, 1971, 1977, 1978, 1983; Itks, 1976; 

Young, 1978, 1988; Slotine and Sastry, 1983; Gao and Hung , 1993). However, the 

control technique has not been widely accepted in the practical control engineering 

community, due mainly to the worry of chattering which is inherent in the variable 

structure control system. 

This introduces the possibility of using conventional variable structure control method, 

and fuzzy logic technique to develop better control schemes for complex systems. In 

other words, "can fuzzy logic (with its powerful capabilities for modelling and control 
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of complex systems) and conventional linear or nonlinear control theory be combined 

to improve the system performance and control quality?". The aim of this thesis is to 

show that by considering both these areas, superior system performance and control 

quality can be achieved. 

1.2 Scope 

The aim of this thesis is to present new robust control schemes by incorporating 

artificial intelligent techniques such as fuzzy logic and neural networks with 

conventional variable structure control system. In line with this, a review of basic 

variable structure control theory and discussion of recent research results on the robust 

variable structure control for a class of nonlinear systems with uncertain dynamics is 

given. 

Fuzzy logic and fuzzy logic control are also reviewed to present a background to the 

methodology to be employed. Fuzzy sets, fuzzy reasoning, and fuzzy controller design 

are described. 

The body of the thesis is devoted to fuzzy modelling of a class of nonlinear systems 

and developing robust variable structure control schemes by employing fuzzy logic, 

neural networks and adaptive control techniques. The rationale is explained more fully 

at the end of Chapter 2 and 3, followed by the robust control scheme development in 

the succeeding chapters. A review of the contents of the thesis is given in Section 1.3. 
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1.3 Thesis outline 

The thesis is organised as follows. 

In Chapter 1, the major thrust of the thesis, the motivation, scope and thesis outline are 

introduced. 

In Chapter 2, the basic theory of variable structure control systems is briefly surveyed. 

Because the variable structure theory has many good features, it can be easily used to 

design controllers for linear or nonlinear systems. Although the robustness can be 

achieved without the exact knowledge of the control system, the system performance 

and control quality depend very much on the choosing of sliding mode parameters and 

the estimating of bounding functions of the system's unknown parts. In practice, 

excessive control input and severe control chattering which may excite unmodelled 

high-frequency dynamics are highly undesirable. In the following chapters of this 

thesis, several new and improved robust variable structure control schemes of 

nonlinear systems will be proposed by combining conventional methods and recently 

developed techniques, namely fuzzy logic and neural networks, and it will be shown to 

improve the system performance and enhance the control quality. 

Chapter 3 provides a background of fuzzy logic and fuzzy logic control techniques to 

be applied in the later chapters. Fuzzy sets, fuzzy set operations, and fuzzy linguistic 

representation such as linguistic variables and linguistic modifiers (hedged) will be 

briefly outlined. Fuzzy reasoning or approximate reasoning is considered from the 

engineering viewpoint with IF-THEN fuzzy implications using Mamdani's minimum 

inference and Larsen's product inference. A fuzzy logic controller, mapping an input 

data vector into a scalar control output, normally comprises a rule base, fuzzifier and 
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defuzzifier. Commonly-used kinds of membership functions are described, focusing 

on control applications. The prominent advantage of the fuzzy logic controller is that 

it can effectively control complex ill-defined systems having nonlinearities, parameter 

variations and disturbances. However, there also exist some impediments in the 

design of the fuzzy logic controller. In general, fuzzy rules are obtained on the basis 

of intuition and experience, and membership functions are selected by trial and error 

procedure. Moreover, it is not easy to mathematically prove the system stability and 

robustness due to linguistic expression of the fuzzy rules. Therefore, a systematic 

design method of the fuzzy logic controller from which the stability and robustness 

can be clearly seen is to be explored (Lee, 1990). The succeeding chapters will employ 

fuzzy logic to establish system model of a class of nonlinear systems and enhance 

robustness and control quality of variable structure control systems. 

In Chapter 4, a robust tracking control scheme is proposed for a class of nonlinear 

systems. The main contribution of this scheme is that a nominal system model for a 

nonlinear system is established by fuzzy synthesis of a set of linearised local 

subsystems, where the conventional linear feedback control technique is used to 

design a feedback controller for the fuzzy nominal system. A variable structure 

compensator is then designed to eliminate the effects of the approximation error and 

system uncertainties. Strong robustness with respect to large system uncertainties and 

asymptotic convergence of the output tracking error are obtained. A simulation 

example is given to support the proposed control scheme. 

In Chapter 5, Lyapunov stability theory and fuzzy logic technique are combined 

together to design sliding mode control systems. It is shown that a sliding mode is 
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first designed to describe the desired system dynamics for the controlled system. A set 

of fuzzy rules are then used to adjust the controller's parameters based on the 

Lyapunov function and its time derivative. The desired system dynamics are then 

obtained in the sliding mode. The sliding mode controllers with fuzzy tuning 

algorithm show the advantage of reducing the chattering of the control signals, 

compared with the conventional sliding mode controllers. The fuzzy tuning algorithm 

is also applied to the adaptive sliding mode control. Simulation and experimental 

examples are given in support of the proposed control scheme. 

In Chapter 6, a robust continuous sliding mode control scheme for linear systems with 

uncertainties is developed. The controller consists of three components: equivalent 

control, continuous reaching mode control and robust control. It retains the positive 

properties of sliding mode control but reduces the disadvantage of control chattering. 

The proposed control scheme is applied to the tracking control of a one-link robotic 

manipulator by fuzzy modelling of the nonlinear system. 

In Chapter 7, Lyapunov stability theory and fuzzy logic technique are combined 

together to design fuzzy adaptive sliding mode control systems. It is shown that an 

adaptive sliding mode control is first designed to learn the system parameters with 

bounded system uncertainties and external disturbances. A set of fuzzy rules are then 

used to adjust the controller's uncertainty bound based on the Lyapunov function and 

its time derivative. The robust adaptive sliding mode controllers with fuzzy tuning 

algorithm show the advantage of reducing the chattering and the amplitude of the 

control signals, compared with the adaptive sliding mode controller without fuzzy 
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tuning. Experimental example for a five-bar robot arm is given in support of the 

proposed control scheme. 

In Chapter 8, a new adaptive sliding mode controller is developed for trajectory 

tracking of robotic manipulators. This controller is able to estimate the constant part 

of the system parameters as well as adaptively learn the uncertain part of the system 

parameters by the Gaussian neural network. It is shown that under a mild assumption, 

the proposed control law does not require measurement of acceleration signals. This 

new control law exhibits the good properties as shown in Slotine and Li (1987) and 

keeps the chattering to a minimum level. An experiment for a five bar robotic system 

is carried out to confirm the effectiveness of the approach. 

Chapter 9 summarises the results and draws conclusions. A brief review of each 

chapter is given, noting the important results. Topics and aspects for future work are 

suggested. 

Appendix 

The detailed hardware setup and C++ real time control programs for a five bar robotic 

manipulator are presented. 
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Chapter 2 

A Survey of The Variable Structure 
Control Theory 

2.1 Introduction 

We have mentioned in chapter one that the variable structure control theory is a robust 

control with respect to system uncertainties and external disturbances. Generally 

speaking, variable structure control can be considered to be an extension of 

conventional feedback control in the sense that the structure of a state feedback 

regulator is allowed to change as its states cross discontinuity surfaces, which results 

in discontinuous feedback control input on one or more manifolds in the state space. 

From the point of the conventional feedback control theory, a variable structure 

control system can be treated as a combination of subsystems. Each subsystem has a 

fixed structure and operates in a specified region of the state space. The combination 

of these subsystems according to some prescribed rules results in a new system which 

is different from the individual subsystems and has the desired system response. 

The main feature of a variable structure control system is the sliding motion. For the 

design of a variable structure controller, the first thing is to define a set of switching 

plane variables which are a function of the system states. The intersection of these 
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switching planes forms a sliding mode. The purpose of the variable structure 

controller is to drive the system states into the sliding mode on which the sliding 

motion occurs and the motion of the system is thus formally equivalent to a system of 

low order, called as equivalent system. Actually, the sliding motion on the sliding 

mode is the convergence motion of the system states from arbitrary initial values to 

the origin. The convergence rate depends on the design of sliding mode parameters. 

It is due to this feature that the variable structure control is also called sliding mode 

control. 

Another feature of a variable structure system is that the transient response can be 

divided into two parts. First, the motion in which the variable structure controller 

drives the switching plane variables to reach the sliding mode. Second, the sliding 

motion in which the system states constrained on the sliding mode asymptotically 

converge to the origin. Usually, the sliding motion is determined only by the sliding 

mode parameters. However, the convergence of the switching plane variables are 

affected by the sliding mode parameters because the sliding mode parameters are 

involved in the controller gain matrices. 

In this chapter, we will first review the basic variable structure control theory that has 

been useful in establishing robust variable structure control algorithms. In view of the 

focus of the thesis, we will then restrict our discussion to recent research results on the 

robust variable structure control for a class of nonlinear systems with uncertain 

dynamics. 

In section 2.2 of this chapter, the basic variable structure control theory is briefly 

reviewed. The basic ideas and definitions, such as system model, the sliding mode, 

the condition for existence of sliding mode, robustness property, and an overview of 

four variable structure controllers, are discussed. In section 2.3, we deviate to address 

more complicated variable structure control for a class of nonlinear systems. In section 
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2.4, a robust variable structure controller design using reaching law method has been 

presented for robot manipulators. 

2.2 Basic variable structure control theory 

2.2.1 System model and sliding mode 

Consider the following linear time invariant system 

X(t) = A X(t) + B u(t) 	 (2.1) 

where X E Rn  and u E Rm  represent the state and control vectors, A e R nxn  and B E 

Rnxm are constant system matrices. It is assumed that n > m, B is of full rank m, and 

the pair (A, B) is completely controllable. 

Define a set of switching plane variables s i  (i = 1 m) passing through the state space 

origin 

s. = C. X 	i = 1 	m 	 (2.2-a) 

or 	S = C X 	 (2.2-b) 

Rwhere • e n is a constant vector and 

C = [ C I  ... CTm 	 (2.2-c) 

is an nxm constant matrix. 

System (2.1) is said to attain a sliding mode when the state vector X reaches and 

remains on the intersection (S = 0) of the m switching plane variables 

=S0  = 	s = 	X: C. X 	0, i = 1 ... m 
1 = 1 

(2.3) 
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The control input vector u(t) in the variable structure control system usually has the 

following form (Utkin, 1977) 

u(t) = K X + w X 	 (2.4) 

where the first term in expression (2.4) is a linear feedback and the second term is a 
switching component. w = [ wij 1 and 

11/ 	— 
ía 

M./ 
s i x j  < 0 
s i x j > 0 

(2.5) 

The task of the control input u(t) in expression (2.4) is to drive the switching plane 

variables to reach the sliding mode (2.3) by the suitable design of the controller gain 

matrices K and w. Thereafter, the system performance will be determined by the 

sliding motion on the sliding mode. Generally, the sliding mode is designed such that 

the system response restricted on the sliding mode has a desired behaviour such as 

asymptotic stability and prescribed transient response. Usually, the switching plane 

variables are designed as a linear functions of the system states. Many researches 

have shown that it is convenient for the linear sliding mode to be used in the design 

and analysis for a variable structure control system. 

The next important problem is how to design controller parameters to guarantee the 

switching plane variables to reach the sliding mode, and then remain on the sliding 

mode. The work in Utkin (1977, 1978) and Young (1982) have shown that if the 

control input u(t) is designed such that the tangent vector or time derivative of the 

switching plane variables always point toward the sliding mode surfaces, then the 
switching plane variables s i  (i = 1, 	m) asymptotically converge to zero, and the 

system states can remain on the sliding mode. 

In fact, the condition for the switching plane variables to reach the sliding mode 

surfaces is a convergence problem. Therefore, the second Lyapunov method can be 

used to provide a natural setting for the analysis. Generally, the following Lyapunov 

function is often used in the variable structure controller design 
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1  V = —2 ST  S (2.6) 

In this case, the sufficient condition for the switching plane variables to reach the 

sliding mode surfaces can be expressed as follows 

 • STS  < 0 (2.7-a) 

or 

S. S. < 0 I (i = 1, 	m) 	 (2.7-b) 

It has been noted that most of the variable structure control algorithms are designed 

based on the sufficient condition in expression (2.7-a) or expression (2.7-b) (Utkin, 

1978 and DeCarlo, 1988). 

2.2.2 Equivalent control 

On the sliding mode, s = 0 and = 0 (i = 1, ...m). Then, using expressions (2.1) and 

(2.2), we have 

= CAX + CBueq = 0 
	

(2.8) 

where ueq is called as equivalent control. 

If IC 1131# 0, the equivalent control u eq can be written as 

ueq  = -(CB) 1 CAX 

=-KX 	 (2.9-a) 

where 	K = (C B) 1 C A (2.9-b) 



CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 14 

The system response on the sliding mode can then be described by the following 

differential equation 

X(t) = A X(t) - B(C B) 	AX(t) 

= [ I - B(CB) -1 C A X(t) 	 (2.10) 

System (2.10) is called equivalent system. The characteristics of the equivalent 

system (2.10) can be summarised as: 

(1) The dynamical behaviour of the equivalent system is independent of the control 

input and depends only on the choice of the matrix C in expression (2.2-c). Therefore, 

the control input is just used to drive the system states into the sliding mode and 

thereafter to maintain it on the sliding mode. The determination of the matrix C may 

thus be completed with no prior knowledge of the form of the control input. 

The reason for the equivalent system to have an independent motion from the control 

input is due to the fact that the matrix CB is nonsingular. In fact, the condition ICBI#0 

means that the null space of C and the range space B are complementary subspaces. 

Thus, when the sliding motion occurs on the sliding mode or within N(C), the 

behaviour of the equivalent system is unaffected by the control input. If 'CBI.° as 

shown in Utkin (1977), the equivalent control is either not unique or does not exist. 

Therefore, sliding mode can not be reached. 

(2) Equivalent system (2.10) is an (n-m)th order system. The work in Darling and 

Zinober (1986) has shown that for the matrix B with full rank m, there exists an 

orthogonal nxn transformation matrix T such that 

T B = 	 (2.11) 
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where B 2  is an mxm nonsingular matrix. 

Define a transformed state variable vector Y = T X, state equation (2.1) becomes 

ir = TATT Y + TBu 	 (2.12) 

If Y is partitioned as 

	

yT = i vT 	yT 1 

	

L '1 	'2 i 

and matrices T A TT and CTT are partitioned as 

TAT  T  =[A " 
A 21  A 

Al2

22

1 
C TT  = [c 1  c2 ] 

then, the system (2.12) can be written in the following form 

Y = AYI + A 1 2 Y2 1 

Y2  = AY1  + A2 2  Y2  -I- B 2  U 

On the sliding mode, we have 

C l Y 1 + C2 Y2 = 0 

Or 

Y2 = - F Y1  

where 

F = C
-1 
 C 2 	1 

(2.13-a) 

(2.13-b) 

(2.13-c) 

(2.14-a) 

(2.14-b) 

(2.15-a) 

(2.15-b) 

(2.15-c) 
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The equivalent system can then be written in the following form 

= (A i  - A l2  F) Y 1 	 (2.16) 

Therefore, we can see from expression (2.16) that the equivalent system is (n-m)th 

order system, i.e., the system dynamics is simplified on the sliding mode. 

2.2.3 Robustness property 

Robustness property is an important feature of a variable structure control system. 

Suppose that system (2.1) has uncertainty in matrix A and external disturbance, then 

the system state equation can be written in the following form 

X(t) = (A0  + AA) X(t) + Bu + Df 	 (2.17) 

where A0  is the nominal system matrix, AA is the uncertainty, f E R L  is a bounded 

external disturbance vector, and matrix D is compatibly dimensioned. Without loss of 

generality, it can be assumed that matrices B and D are full rank and the uncertainty 

presented in the input distribution matrix B is incorporated in the system disturbance 

term. During the sliding motion, the state vector of the system satisfies the following 

equations 

C X = 0 
	

(2.18-a) 

C(A + AA)X + CBueq  + CDf = 0 
	

(2.18-b) 

From expression (2.18-b), the equivalent control can be achieved as 

ueq = - ( CB ) -1  C ( AX + AAX + Df ) 
	

(2.19) 

and the equivalent system equation is then given by 
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= [ I - B( CB ) -I C AX + AAX + Df ) (2.20-a) 

CX = 0 	 (2.20-b) 

Spurgeon (1991) has shown that the sliding mode system (2.20) is insensitive to 

parameter variations and the external disturbance if and only if the system uncertainty 

AA, matrices B and D satisfy the following rank relation 

rank [ B : DI = rank [ B : AAT] = rank [B] (2.21) 

where T is the matrix of the basis vectors of the reduced-order sliding subspace 

defined by expression (2.20). 

Expression (2.21) is also called as the invariance condition. In addition, the 

robustness property for variable structure systems have been investigated by other 

researchers. For example, Gutman (1979) and Bormish and Leitmann (1983) have 

shown that if system uncertainties and disturbance satisfy the "matching condition", 

then the system is completely insensitive on the sliding mode, and the effect of 

disturbance and parameter variations can be minimised by minimising the time 

required to attain the sliding mode. 

2.2.4 Two methods of sliding mode design 

Equivalent system equation (2.10) shows that the system behaviour on the sliding 

mode depends only on the choice of the sliding mode parameter matrix C, and 

asymptotic stability and desired transient response can be obtained by the suitable 

design of matrix C. Usually, there are two methods for the sliding mode designs. 

They are (a) the quadratic minimisation method and (b) the eigenstructure assignment 

method. 
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The quadratic minimisation method for the sliding mode design was proposed by 

Utkin and Young (1978). In this method, the following cost function is defined 

J(u) = 	X(OTQX(t)dt (2.22) 

where Q is a symmetric positive-definite matrix, and t s  denotes the time at which the 

sliding mode starts. 

Partitioning the following matrix compatibly with Y (see subsection 2.2.2) 

TTQT =[QH  

where matrix T is defined 

the cost function (2.22) 

1 
J(v) = —

2 
t s  

where 

Q*  = Q 1 1 

A*  = A11  

v(t) = Y2  

Y 1 = A* Y 

Q21 

Q12 

Q22 

in 

can then 

00 

f YT
I Q*  

- Q 12 22%1 

-0 iz 	--212 

+ Q-1 Q21 22 

1 + A12 

expression (2.11), 

be expressed in the following form 

Y I + vTQ22V }dt 

0 —21 

Y  1 

V(t) 

(2.23) 

(2.24) 

(2.25-a) 

(2.25-b) 

(2.25-c) 

(2.25-d) 

Expression (2.24) is the form of standard linear quadratic optimal regulator problem. 

By minimising expression (2.24), the optimal control v(t) is given by 



CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 19 

v(t) = - Q-212ATI2PYI 

Using expression (2.25-e) in expression (2.25-c), we have 

(.1_1 r n 	A T 0, i v  
Y2 = - '22 1- '21 + '121  J i l = - FYI 

where the matrix P satisfies the following Riccati equation 

-1 	n  PQ*  + A*P - PA l2
(1 AT

22 1-'12
10, 
 ± `: 	

n 
= ' 

and matrix 

-I r 	T 	1 
F = (222 1- Q2I + Al2 P  -I 

(2.25-e) 

(2.26) 

(2.27-a) 

(2.27-b) 

can then be determined as required. 

The eigenstructure assignment method is also very popular in the sliding mode designs 

and it was first used by Utkin and Young in 1978. 

Suppose that the sliding mode has commenced on N(C). Then the equivalent system 

can be written as 

X(t) = (A - BK)X(t) 

where matrix K is given in expression (2.9-b). 

During the sliding motion, the state variables must remain in N(C) so that 

C[ A - BK ] = 0 <=> R(A - BK) c N(C) 

(2.28) 

(2.29) 

Let X i  (i = 1, ... n) be the eigenvalues of A - BK with corresponding eigenvectors vi, 

then, from expression (2.29), we have 
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C[ A - BK lv i  = X.Cv. = 0 (2.30) 

Expression (2.30) shows that either X i  is zero or v i  E N(C). Since A - BK = A eg  has m 

zero-valued eigenvalues, we can set { X i : i = 1, 	n-m } be the nonzero eigenvalues 

and therefore, specifying the corresponding eigenvalues { v i : i = 1, 	n-m } fix the 

null space of C (dim[N(C)] = n - m). 

It is noted that C is not uniquely determined because the equation 

CV = 0, V = [v 1 	vn _ m  
(2.31) 

has m2 degree of freedom, which may be easily seen if we define 

W = [ 1= Tv 	 (2.32) 
W2 

where the partitioning of W is compatible with that of Y, then expression (2.31) 

becomes 

0 = CTT. Tv = [C I  C2 ] [ 
W 2

1= C2 ( F 	
—

[ W1 1 
 W2 

Therefore, F can be determined from the following equation 

FW 1 = - W2 

(2.33) 

(2.34) 

The work of Dorling and Zinober (1986) has shown that this approach has the 

drawback that the eigenvectors of matrix A-BK are not freely assignable, and at most 

m elements of an eigenvector may be assigned arbitrarily, after which the remaining 

n-m elements are fully determined by the assigned elements. Thus one approach to 

eigenvector assignment is to select m elements according to some scheme and accept 

the remaining elements as determined. This may allow a degree of adjustment to be 

carried out by inspection. 
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Some other eigenvector assignment methods have also been proposed, and the details 

can be found in Moore (1976), Klein and Moore (1977) and Sinswat and Fallside 

(1977). 

2.2.5 Controller designs 

In most of the variable structure control schemes, the control law usually consists of a 
NL linear component uL and a nonlinear component u 	which are assumed to form 

control input u. The linear part is merely a state feedback 

= KX (2.35) 

While the nonlinear signal incorporates the discontinuous elements of the control. 

Some examples of possible types of nonlinearity are as given below. 

(a) A nonlinear component with constant gains 

NL u i  = Mi sgn( C i X), 	M1  > 0 

(b) A nonlinear component with state-dependent gains 

NL 
MU. = i (X) sgn( C X ) 	m i (.) > 0 

(2.36) 

(2.37) 

(c) A linear feedback with switching gains 

uNL 
= TX 

(2.38-a) 

where 	111  = [ tvii  ] and 
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(d) 

j 
= 

A unit 

NEL 

•s l 	< 0 

s i x > 0 

vector nonlinearity with scale factor 

NX 

(2.38-b) 

(2.39) 
Ilmx11 

where the null spaces of N, M and C are coincident. 

The nonlinear control component is discontinuous on the individual hyperplane in 

cases (a) - (c). This may result in wasted control effort as the system state pierces one 

hyperplane, and is forced into another surface. In case (d), the individual controls are 

continuous, except on the intersection of the switching plane variables where all the 

nonlinear control elements become discontinuous together. The details of cases (a) - 

(d) are shown in Uticin (1978), Ryan (1983), Young (1977) and Dorling and Zinober 

(1983). Some special properties and behaviours of a system with control type (d) has 

been discussed in Surgeon (1991). 

2.3 Variable structure control of nonlinear system 

2.3.1 System model 

In section (2.2) we have briefly reviewed the basic variable structure control theory of 

linear systems. Most of these ideas can be extended to the variable structure control of 

nonlinear systems. However, the complexity of the analysis and the controller designs 

may be increased due to the nonlineatity in the nonlinear system model. From the 

engineering point of view, the following nonlinear system is often considered 

(DeCarlo, et al., 1988). 

X(t) = f(t, X) + B(t, X)u(t) 	 (2.40) 
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where the state vector X(t)E Rn , the control input vector u(t) E R m , f(t, X) E Rn and 

B(t, X) E Rnxm. Further, each entry in f(t, X) and B(t, X) is assumed to be 

continuous with continuous bounded derivative with respect to X. 

Each entry u(t) of the control input vector has the following form 

(t, X) 
u ;  (t, X) = 	' 

u (t, X) 
with cr i  (X) > 0 
with a ;  (X) <0 

(2.41) 

whereis the ith switching ,surface associated with the (n-m) dimensional a t (x)  

switching surfaces 

a(X) = [a l  (X), 	, szYm(X) 

2.3.2 Sliding mode and equivalent control 

Following the sliding mode design for linear systems in section 2.2.4, the method of 

equivalent control is a way to determine the system motion restricted tO the sliding 

mode a(X) = 0. Suppose that there exists a time t o  > 0, and the state of the system 

reaches the sliding mode after t to . On the sliding mode, the following two 

equations are satisfied 

cr(X(t)) = 0 	t 	to  

a(X(t)) =0 	t t o  

Using system equation (2.40), expression (2.43-b) can be expressed as follows 

(2.43-a) 

(2.43-b) 

acy(x), 
f(t, X) + B(t, X)ueq  = o ax (2.44) 

(2.42) 



CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 24 

where ueq is the so called equivalent control which can be obtained from expression 

(2.44) as follows 

-1 au(X) 	aa(x) 
U = - - ti(t, X) - f(t, X) 

eq 	
r 

OX  , 	 ax (2.45) 

Using expression (2.45) in system model (2.40), the dynamics of the closed loop 

system on the sliding mode is given by 

-1 acs(X) [ - B(t, X)( a(X)B(  X)) 	f(t, X) ax ax 
(2.46) 

Therefore, the problem of the sliding mode design is to choose the parameters in 

a(X) = 0 such that the equivalent system (2.46) is stable. In most of variable structure 

control schemes for nonlinear systems, the linear sliding modes are often used. 

Therefore, some methods of sliding mode design in sections 2.2.4 can also be used. 

2.3.3 Controller design 

2.3.3.1 Diagonalisation method 

In general, for nonlinear system equation (2.40), the control input is an m dimensional 

vector and each entry has the structure of the form 

u!," (t, X) u = _ 
u (t, X) 

for a, (X) > 0 
for a- , (X) < 0 

(2.47) 

To determine the switched feedback gains in control law (2.47), the following 

diagonalisation method is often used (DeCarlo et al., 1988). 

First, a new control vector is considered in terms of a nonsingular transformation 
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1 	r aci 	, 

	

u*(t) = Q 	
.(x) 

.` (t, X) I_ - 113(t, X)u(t) 
ax 

(2.48) 

where Q-1 (t, X)(aa/aX)B(t, X) is a nonsingular transformation, and Q(t, X) is an 
arbitrary mxm diagonal matrix with elements q i(t, X) (i = 1, 	m) such that 

inflqi (t, X)I > 0. 

Using expression (2.48) in expression (2.40), the system dynamics becomes 

= f(t, X) + B(t, X)1_ 
r aa(X)

B(t, X)
-1

Q(t, X)u * (t) 
ax 

If u*  is selected such that 

q i (t, X) u *: < - V o(X) f(t, X) 	ai (X) > 0 

qi (t, X) u*i  > - Vai (X) f(t, X) 	ai (X) < 0 

(2.49) 

(2.50-a) 

(2.50-b) 

then, 

T (X)ã(X) <0 
	

(2.51) 

Expression (2.51) is the reaching condition for the system states to reach the sliding 

mode surfaces a(X) = 0. On the sliding mode, the desired system dynamics can be 

obtained. Also, the control input u(t) can be obtained from equation (2.48). 

2.3.3.2 Reaching law method 

In addition to the above diagonalisation method, the reaching law method (Gao and 

Cheng, 1989; Gao and Hung, 1993) has been developed and proved to be efficient in 

controller design. The reaching law is a differential equation which specifies the 

dynamics of a switching function a(X). The differential equation of an asymptotically 



CHAPTER 2 A SURVEY OF VARIABLE STRUCTURE CONTROL 	 26 

stable a(X) is itself a reaching condition, i.e. a T (X)d(X) <0. In addition, by choice 

of the parameters in the differential equation, the dynamic quality of VSC system in 

the reaching mode can be controlled. A practical general form of the reaching law is 

= —Q sgn(a) — Kh(a) 	 (2.52) 

where 

Q = diag[q,,• • •,q], q, > 0 

sgn(a) = [sgn(a,),• • •,sgn(a m  
K = diag[lc,,• • •, k], k, > 0 

h(a) = [h i (a 1 ),•••,h m (a.)Ir  
1 h 1 ( 1 )> O, 	h 1 (0)= 

Three practical special cases of (2.52) are given below. 

1) Constant rate reaching 

= Q sgn(a) 	 (2.53) 

This law forces the switching variable a(X) to reach the sliding mode surfaces 

a(X)=0 at a constant rate 	= —q 1 . The merit of this reaching law is its simplicity. 

But, if q . 	too small, the reaching time will be too long. On the other hand, a q, too 

large will cause severe chattering. In the following chapters of this thesis, a fuzzy 

tuning algorithm for q, will be introduced to optimise the system performance. 

2) Constant plus proportional rate reaching 

= —Q sgn(a) — Ka 	 (2.54) 

Clearly, by adding the proportional rate term —Ka, the system state is forced to 

approach the sliding mode surfaces a(X)=0 faster when a is large. It can be shown 

that the reaching time for X to move from an initial state X 0  to the sliding surfaces is 

finite, and is given by 
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1 	kla. 1+q, 
T = ln "° 	. 

k 1 	q 1  

3) Power rate reaching 

6 = —1c 1 lada  sgn(6 1 ), 	0< a <1,i =1,...,m 	(2.55) 

This power rate reaching law increases the reaching speed when the state is far away 

from the sliding mode surfaces a(X)=0, but reduces the rate when the state is near the 

surfaces. The result is a fast reaching and low chattering reaching mode. Integrating 

(2.55) from a, = c a, = 0 yields 

1 T, = 	la  I 1  
- Wki 	( a), i = 1, m  (2.56) 

showing that the reaching time is finite. 

The control law can be determined by the time derivative of a and the reaching law 

(2.52), i.e., 

u =acY 
aX 

 B(t X)1 -1  r a' f(t, X) + Q sgn(a) + Kh(a)1 
j Lax 

-1 
where the matrix [-a-CY 	is nonsingular. Lax 

(2.57) 

2.3.4 Robust control of nonlinear systems 

In practical situations, the system dynamics of a nonlinear system is different from its 

nominal system model due to parameter uncertainties. To represent parameter 

uncertainties in the plant, the following state equation is considered (DeCarlo, 1988). 

= [ f(t, X) + Af(t, X, r(t)) I  + [ B(t, X) + B(t, X, r(t)) 11(0 (2.58-a) 

where r(t) is a vector function of uncertain parameters. 
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In most of researches (Corless and Leitmann, 1981; Gutman and Palmor, 1982; 

Peterson, 1985), the plant uncertainties Af and AB are assumed to lie in the image of 

B(t, X) for all variables t and X (this is called "matching condition'). Then dynamic 

equation (2.58-a) can be expressed as follows 

= f(t, X) + B(t, X)u + B(t, X)e(t, X, r, u) 	 (2.58-b) 

where e(t, X, r, u) represents system uncertainties. 

DeCarlo et al. (1988) shows that if e(t, X, r, u) is bounded by a positive function p(t) 

II e(t, X, r, u)11 2 	p(t) 	 (2.59) 

and control input has the following form 

where 

U = Ueq +u n 

u
eq = _ [ 	B(t, X) 1

-1 a 
[ 

cy 
at
(X) ± a

a (x
))f(t, x) ax 

BT(t, X) Vx V(t, X) 	A 
Un — - 	 T 	  2 

p(t x) 
II B . (t, X) V,V(t, X) I I 

(2.60-a) 

(2.60-b) 

(2.60-c) 

A 

p( t, X) = a + p(t, X) 

(2.60-d) 

[ a6(t, X)  ]T 
V xV(t, X) = 	 a(t, x) 

ax (2.60-e) 

then system state can reach the sliding mode surfaces cr(X) = 0, and the desired system 

dynamics can be obtained by the suitable choice of the sliding mode parameters. 
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The results discussed in this section forms the foundation of the variable structure 

control theory for nonlinear systems. Although there are many classes of nonlinear 

systems, robustness and convergence of variable structure control systems may be 

established based on the results in this section (Utkin, 1978; Young, 1978 and 

DeCarlo et al., 1988). 

2.4 Application to robot manipulators 

A robotic manipulator is a typical nonlinear system. The investigations for the control 

of robotic manipulators have not only improved the robotic system performance, but 

also developed many new control techniques which have enhanced the modern control 

theory. Many control schemes such as feedback control and adaptive control have 

been developed for robotic manipulators. However, the variable structure control 

technique is one of the most powerful techniques due to the fact that the variable 

structure control can deal with systems with large uncertainties, bounded disturbances 

and nonlinearities. In recent years, the designs of robust variable structure control 

laws for rigid robotic manipulators that ensure robustness and asymptotic trajectory 

tracking have been investigated by many researchers. Many robustness and 

convergence results have been obtained by Young (1978, 1988), Morgan and Ozguner 

(1985), Slotine and Sastry (1983), Yeung (1988) and Leung et al (1991). In this 

section, the dynamics of the robotic manipulator and a robust variable structure 

controller design using the reaching law method (Gao and Hung, 1993) will be 

presented to highlight the main issues of the control scheme. 

2.4.1 Dynamics of robotic manipulators 

In the absence of friction and other disturbances, the joint space dynamics of an n-link 

robotic manipulator can be written via the so-called Eular-Langrange equations as 

(Spong and Vidyasagar, 1988): 
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dkj (q) 	+ 	fijk (q) 	+ 	(q) = T ic 	k = 1, 	n 	(2.61) 

where dk . are the coefficients of the inertia matrix D(q), k(q) are the gravitational 

forces and T ic  are the input torques. The coefficients f of the coriolis and centrifugal 

terms are defined as 

 

ad ki  ad,„ ad ii } 
aq; 	aq;  aq  k  

 

1 
fijk = (2.62) 

  

and f are known as Christoffel symbols. 

It is common to write expression (2.62) in matrix form as 

D(q) + F(q, 4 + G(q) '= 	 (2.63) 

where the k,jth element of the matrix F is defined as 

n 	AA 	 ad.. 	. f  = I 	_adki _ 	)(11  
kJ 	2k. -_, 

i=1 	oqi 	aqi 	aqk 
(2.64) 

and the component of G(q) is Ok . 

Although the equation of motion (2.63) is complex and nonlinear for all but simple 

robotic manipulators, it has several fundamental properties which can be exploited to 

facilitate control system design (Ortega and Spong, 1989). 

Property 1: The inertia matrix D(q) is symmetric, positive-definite, and both D(q) 

and D(q)4 are uniformly bounded as a function of q. 

Property 2: There is an independent control input for each degree of freedom. 

Property 3: The Euler-Lagrange equation for the robotic manipulator is linear in the 

unknown parameters. All the unknown parameters are constant (e.g. link masses, link 

lengths, moments of inertia, etc.) and appear as coefficients of known functions of the 
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generalised coordinates. By defining each coefficient or a linear combination of them 

as a separate parameter, a linear relationship results so that we may write equation 

(2.63) as 

D(q) 4 + F(q, q) 4 + G(q) = Y(q, q, 4)o = 	 (2.65) 

where Y is an nxr matrix of known functions, known as the regressor, and q is a n 

dimensional vector of unknown parameters as shown in Spong and Vidyasagar (1989). 

It can be seen later that the manipulator system (2.63) can also be expressed into the 

generalised form in expression (2.40). Therefore, the basic variable structure theory 

can be used to design robust controllers and the structural properties mentioned in the 

above can then be used to simplify controller designs. 

2.4.2 A robust VSC controller design 

Consider an n-link manipulator system with perturbations and disturbances described 

by 

D(q)4 + F(q, q)q + G(q) = 	w(q, q, p, t) 	 (2.66) 

where p is an uncertain parameter vector, w(q,q, p, t) is the collection of all system 

perturbations and external disturbances. The state variable is defined as 

X = {q T  T (2.67) 

Then (2.66) can be put into the form 

X = f(t, X) + B(t, X)u + v(X, p, t) 	 (2.68) 

where 

U = T, 
0 

v(X, p, t) = [ 
D -1 (q)w(X, p, 
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f(t, X) = 	
(q)(F(q, q)q + G(q))

1
' 	

B (t X) = [ 
(q)]. 

The arm is to track a desired motion Cl d  (t). The output tracking error is defined as 

= d 	e  = [ET •11T (2.69) 

The sliding mode surfaces are chosen as 

a(e) = Ce = [A 11[]= Ac 	 (2.70) 

Adopt the reaching law 

= 	sgn(a) Ka 

Taking the time derivative of (2.70) gives 

(2.71) 

eT=At+ 

=Ae+qd +D-I (Fq+G—w—u) 
	 (2.72) 

• Equating (2.71) and (2.72) and solving for the control u yields 

u = D{Qsgn(a)+ Ka + Ae + q d } + Fq +G — w 	 (2.73) 

All quantities on the right-hand side of (2.73) are known except the disturbance w, 

which is unknown. To cope with this problem, define 

w 1  =1:30 -1 w 

and assume that w 1  is bounded by 

(2.74) 

(2.75) 

Then replace w in (2.73) by —DW sgn(a) give following control law 

u = D{Q sgn(a) + Ka + Ae + q d  } + Fq + G + DT/ sgn(a) 

Substituting (2.76) into (2.72) give 

(2.76) 
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6 = —Q sgn(a) — Ka — w 1  — sgn(a) 	 (2.77) 

Thus, the reaching condition a T6 < 0 is guaranteed. 

This robust controller design is based on the bounding function estimation of the 

system perturbations and external disturbances, and the exact system knowledge is not 

required. However, the system performance and control quality depend very much on 

the choice of sliding mode parameter Q and the estimation of bounding function of the 

unknown parts. Excessive control torques and severe control chattering may be easily 

caused by over estimation of control parameters. 

In order to overcome these shortcomings, in chapter 5 of this thesis, fuzzy logic 

technology will be used to dynamically adjust the sliding mode parameter Q, and 

control chattering will be reduced dramatically. In chapter 8, a robust adaptive control 

scheme for robots is established where neural network has been constructed to 

adaptively learn the bounding function of the unknown parts of the robot system. 

2.5 Concluding remarks 

The basic theory of variable structure control systems has been briefly surveyed in this 

chapter. Because the variable structure theory has many good features, it can be 

easily used to control linear or nonlinear systems. Although the robustness can be 

achieved without the exact knowledge of the control system, the system performance 

and control quality depend very much on the choice of sliding mode parameters and 

the estimation of bounding functions of the unknown parts. In practice, excessive 

control input and severe control chattering which may excite unmodelled high-

frequency dynamics are highly undesirable. In the following chapters of this thesis, 

several new and improved robust variable structure control schemes of nonlinear 

systems will be proposed by combining conventional methods and recently developed 
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techniques, namely fuzzy logic and neural networks, to improve the system 

performance and enhance the control quality. 
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Chapter 3 

Fuzzy Logic and Fuzzy Logic Control 

3.1 Introduction 

Zadeh (1965) published his first paper on a novel way of characterising 

nonprobabilistic uncertainties, which he called "fuzzy sets". Fuzzy logic and fuzzy set 

theory has now evolved into a fruitful area containing various disciplines, such as 

calculus of fuzzy if-then rules, fuzzy graphs, fuzzy interpolation, fuzzy topology, 

fuzzy reasoning, fuzzy inference systems, and fuzzy modelling. The applications, 

which are multi-disciplinary in nature, include automatic control, consumer 

electronics, signal processing, time-series prediction, information retrieval, database 

management, computer vision, data classification, decision-making, and so on. 

Within the diverse areas of fuzzy logic applications, control is the area to which fuzzy 

systems are most widely applied today. The genesis of fuzzy logic control was a paper 

by Chang and Zadeh (1972) outlining the basic approach. An important landmark in 

this development was the introduction of linguistic 'variables whose values are 

linguistic terms rather than numbers (Zadeh, 1973). Fuzzy technology, Zadeh 
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explained, is a means of computing with words for which the role model is the human 

ability to reason and make decisions without the use of numbers (Zaheh, 1996). The 

first implementation of these ideas was described in a paper by Mamdani (1974). The 

key principle underlying fuzzy logic control is based on a logical model which 

represents the thinking process that an operator might go through to control the system 

manually. The viability of fuzzy logic control has been demonstrated through wide-

spread applications (Schwartz et al, 1994). Fuzzy logic control can be considered as 

one of the intelligent control techniques wherein engineering knowledge is reflected in 

the controller. It has been found that such controllers have definite advantage over the 

traditional HD controllers in that they are more robust with respect to structured or 

unstructured uncertainties. The linguistic characteristics of fuzzy control provide a 

very good approach to account for the sensor noise, unmodelled dynamics, parameter 

variations, disturbances and nonlinearities (Lee, 1990). 

It is known that the classical P1D controllers do not work very well for the case of 

nonlinear control and, even for linear control they typically have to be redesigned 

according to a new set of basic system parameters. Adaptive controllers have been 

proposed for these systems. By means of some tuning scheme, the controller 

parameters can be continuously adjusted to improve robustness against any changing 

environment. Auto-tuning (Astrom et al ,1992) or auto-calibration (Voda and Landau, 

1995) of controllers for plants with uncertainties is useful although some knowledge 

of the process is needed. Tuning the controller parameters to achieve better 

performance can be accomplished by means of fuzzy logic (Tseng & Hwang, 1993). 

A smooth control signal can be achieved by fuzzy tuning of the discontinuous control 

component in the sliding mode control (Mei & Man et al, 1998), where control 
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chattering is an undesirable disadvantage inherent to conventional sliding mode 

control. 

In recent years, fuzzy modelling of controlled systems has received much attention. A 

number of researchers (Feng and Cao et al, 1997; Tanaka et al, 1996) proposed fuzzy 

global systems with stability analysis based on Takagi-Sugeno fuzzy inference model. 

Mei & Man et al (1998) presented a fuzzy modelling and robust tracking control 

scheme for a class of nonlinear systems by fuzzifying over a number of operating 

points within the interested range. 

Despite a large number of technical publications focusing on fuzzy systems, there 

exist some doubtful opinions on fuzzy controllers mainly due to some 

misunderstanding about fuzzy control. Attempts have been made to clear up this 

misunderstanding, e.g. Jager (1995). It is, therefore, of interest to start the notable part 

of this thesis, with a short primer on fuzzy set theory, fuzzy reasoning, and fuzzy logic 

control, using fuzzy tool in combination with other techniques. 

The arrangement of this chapter is as follows. Section 3.2 gives the definitions of 

fuzzy sets, fuzzy set operations, fuzzy relation and compositions, and linguistic 

representations. Section 3.3 describes fuzzy logic and fuzzy reasoning. Section 3.4 

introduces fuzzy logic control. 

3.2 Fuzzy set theory 

Due to the rapid growth of fuzzy logic literature, it is difficult to present a 

comprehensive survey of its wide applications. A lot of them are too theoretical to be 



CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 38 

applied to engineering problems. The purpose of this section is to briefly summarise 

the basic concepts that are necessary in understanding fuzzy logic and fuzzy inference 

from a practical viewpoint. 

3.2.1 Fuzzy sets 

A universe of discourse (or domain of definition) U is the set of allowable values for a 

variable, denoted generically by {x} which could be discrete or continuous, where x 

represents the generic element of U. 

A crisp set A in a universe of discourse U can be defined as A = {xi (x)} where 

/A A  (x) is, in general, a condition by which x e A. If we introduce a zero-one 

characteristic function such that A = 02 A  (x) = 1 if x e A and // A  (x)= 0 if x 0 A) then 

/L A (X) is called a membership function for A. 

A fuzzy set F in a universe of discourse U is characterised by a membership function 

kt F (x) which takes on values in the interval [0, 1]. A fuzzy set may be viewed as a 

generalisation of the concept of an ordinary (i.e. crisp) set whose membership function 

only takes two values {0, 1}. A membership function for a fuzzy set F provides 

a measure of the degree of similarity of an element in U to F. A fuzzy set F in U may 

be represented as a set of ordered pairs of a generic element x and its grade of 

membership function: F = ((x„ u F (x))1x ctn. When U is continuous, F can be 

written concisely as F = fu ,uF(x ) Ix, where the integral sign denotes the collection of 

all points x E U with associated membership function I, F (x). When U is discrete, F is 

represented as F= E ttF (xxx„ where the summation sign stands for the union of 
XiEU 

(x, I F (x)) pairs. Similarly, the slash "I" in these expressions is only a marker and 
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does not imply division. Note that in fuzzy sets, an element can reside in more than 

one set to different degrees of similarity. This cannot occur in a crisp set theory. 

The support of a fuzzy set F is the crisp set of all points x E U such that /.2 F (x)> 0. 

The element x E U at which ki F (x) = 0.5 is called the crossover point. For example, 

the formal domain for normal weight might be 40 to 100 kg. However, the fuzzy sets 

HEAVY and LIGHT can have non-zero membership grade at 50 to 90 kg with a 

crossover point at 70 kg, as shown in Fig. 3.1. A fuzzy set whose support is a single 

point x in U with /./ F (x) =1 is referred to as fuzzy singleton. In a singleton output 

space, fuzzy set membership functions are represented as single vertical points. 

Figure 3.2 illustrates how a variable SPEED can be composed on individual single 

points. 

support 

universe of discourse 

Fig. 3.1 Fuzzy variable "weight" 
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A 11(x) 

1 

0 	■ 
40 	60 	80 speed(km1 h) 

Fig. 3.2 Singleton representation. 

3.2.2 Set theoretical operators (Lee, 1990) 

Let fuzzy sets A and B in U be described by their membership functions ,u A (x) and 

14, B (x). The set theoretic operations of union, intersection and complement for fuzzy 

sets are defined as following. 

Union (disjunction): The membership function R AL, B of the union A u B (A OR B) is 

pointwise defined for all x E U by 

AuB(x) =max(R A (x), 1u 8 (x)} 	 (3.1) P  

Intersection (conjunction): The membership function ,L1An/3 of the intersection A n B 

(A AND B) is pointwise defined for all x E U by 

ktiar,B(x)= min{,u A  (x), ,u 8 (x)} 	 (3.2) 

Complement (negation): The membership function R A  of the complement of a fuzzy 

set A, -A (NOT A), is pointwise defined for all X E U by 

,u-A (x) = 1 - RA  (x) 	 (3.3) 
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Fig. 3.3 illustrates these three basic operations: a) illustrates two fuzzy sets A and B, 

b) is the complement of A, c) is the union of A and B, and d) is the intersection of A 

and B. 

Fig. 3.3 Operations on fuzzy sets: (a) two fuzzy sets A and B; (b) A; 
(c) AuB;(d) AnB. 

Note that other consistent definitions for fuzzy AND and OR have been proposed in 

the literature under the names "T-norm" and "T-conorm" operators (Mendel, 1995), 

respectively. 

T-norm: a t-norm, denoted by *, is a two-place function from [0, 1] x [0, 1] to [0, 1], 

which includes fuzzy intersection, algebraic product, bounded product, and drastic 

product, defined as 
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mil-0,A, 

xY, 
max(0, x + y — 1}, 
x if y = 1 
yif x=1 , 

0 if x, y <1  

fuzzy intersection 
algebraic product 
bounded product 

drastic product 

x* y = 

where x, y E [0,1] . 

T-cononn: A t-conorm, denoted by ®, is a two-place function from [0, 1] x [0, 1] to 

[0, 1], which includes fuzzy union, algebraic sum, bounded sum, and drastic sum, 

defined as 

x@y= 

- max{x, y}, 	 fuzzy union 
x + y— xy, 	 algebraic sum 
minfl, x + yl , 	bounded sum 
x if y = 0 
y if x = 0 	 drastic sum 

‘. lifx,y>0 

where x, y e [0,1]. 

3.2.3 The extension principle 

The extension principle is a tool for generalising crisp mathematical concepts to fuzzy 

sets. It has been extensively used in the fuzzy literature. 

The extension principle: Let U and V be two universe of discourse and f be a mapping 

from U to V. For a fuzzy set A in U, the extension principle defines a fuzzy set B in V 

by 

11 B (Y) = suPxEr t (y) [UA (x)] 
	

(3.4) 
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That is, ,u B (y) is the superium of At A (x) for all x E U such that f(x)=y, where 

y E Vand we assume that f -1 (y) is not empty. If f -1 (y) is empty for some y E V, 

define /4 8 (y)=0. 

3.2.4 Fuzzy relations and their compositions 

Cartesian product: If 	An  are fuzzy sets in 	, respectively, the Cartesian 

product of A1 ,..., An  is a fuzzy set in the product space u, x...xu with the membership 

function 

YA I  x...xA„ 	= mintgA, 	(xn  )1 
	

(3.5a) 

Or 

(x i ,. ..,x) = 	(x, )...,uAn(xn) 
	

(3.5b) 

Fuzzy relations: Fuzzy relations represent a degree of presence or absence of 

association, or interconnection between the elements of two or more fuzzy sets. An n-

ary fuzzy relation is a fuzzy set in u,x...xu„ and is expressed as 

x..xu = ((x 1 ,..., 	), /4 R  ((x 1 ,...,x 	 ) E U 1  x...xUn  1. 	(3.6) 

Compositions: Because fuzzy relations are fuzzy sets in the product space, set 

theoretic and algebraic operations can be defined using operators for fuzzy union, 

intersection and complement. Let R and S be fuzzy relations in U x V. The 

intersection and union of R and S, which are compositions of the two relations, are 
defined as 

Rns (x, = 

and 

ktRus (x, Y) =  

(3.7a) 

(3.7b) 

respectively, where * is any t-norm, and CI is any t-conorm. 
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Next, consider the composition of fuzzy relations from different product space that 

share a common set. If R and S are two fuzzy relations in U x V and V x W, 

respectively, the sup-star composition of R(U x V) and S(V x W) is a fuzzy relation 

denoted by R o  S(U x V) and is defined by 

Ro S = {(x,y), SUpLu R (x,Y)* ius(Y,z)l, x EU, y E V, Z E 	 (3.8) 
yEV 

where* could be any operator in the class of t-norm (the sup-product is most 

commonly used). When U, V and W are discrete universe of discourse, the sup 

operation is the maximum. Fig. 3.4 depicts a block diagram for the sup-star 

composition. 

Fig. 3.4. Block diagram interpretation for the sup-star composition. 

Suppose fuzzy relation R is just a fuzzy set, then it R  (X , y) becomes it R  (X) and V=U, 

consequently, sup[kt R  (X, y)* s  (y,z)]= 	R  (X)* s  (y,z)]. Thus, when R is just a 
yEV 	 XEU 

fuzzy set, the membership function for R o  S is 

■11  Ros (Z) = SUPU R (X)*  S (Y Z)] 
	

(3.9) 
XEU 

Fig. 3.5 represents the block diagram interpretation for the sup-star composition when 

the first relation is just a fuzzy set. 
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V = U 	 Z E W 

(x) 	 ,us(y,z) 

J1-1  Ros(x , z) 

Fig. 3.5. Sup-star composition when V = U. 

3.2.5 Linguistic representation 

A. Linguistic variables 

The use of fuzzy sets provides a basis for a systematic way for the management of 

vague and imprecise concepts. According to Zadeh (1975), in retreating from 

precision in the face of overpowering complexity, it is natural to explore the use of 

what might be called Linguistic variable, i.e., variables whose values are not numbers 

but words or sentences in a natural or artificial language. Fuzzy sets can be employed 

to represent linguistic variable. Consider a real line as a continuous universe of 

discourse U. A fuzzy number F in U is a fuzzy sets which is normal and convex, i.e., 

max kt F  (X) = 1 
x€11 

(3.10a) 

F (Axi + 	A)x2 ) ?_ 	(x i ), P F  (x 2 )), x, , X2 E u, E [OM. 	(3.10b) 

A linguistic variable can be regarded as a variable whose value is a fuzzy number or 

whose values are defined in linguistic terms or labels. A linguistic variable is 

characterised by its name u; the term set of u, i.e., the set of terms T(u) of linguistic 

values of u with each value being a fuzzy number defined on U; a syntactic rule for 

generating the names of values of u; and a semantic rule for associating with each 

value its meaning. For example, let SPEED (u) of a car be linguistic variable. It can be 

decomposed into the following set of terms T(u)={ slow, medium, fast}, where each 

term is characterised by a fuzzy set in the universe of discourse U 40 km/h, 100 
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km/h]. "Slow" speed might be interpreted as "a speed below about 40 km/h", 

"medium" as "a speed close to 60 km/h", and "fast" as "a speed above 80 km/h". 

These terms can be characterised as fuzzy sets whose membership functions are 

shown in Fig.3.6. A vertical line from any measured value of speed intersects at most 

two membership functions. So, for example, a speed of 45 km/h resides in the fuzzy 

sets slow and medium to a similarity degree of 0.75 and 0.25, respectively. 

Pt speed 

1.0 

0 
40 	60 	80 	Speed (km/h) 

Fig. 3.6 Membership functions of three fuzzy sets, namely, "slow", 
"medium", "fast" for the speed of a car. 

B. Hedges: Linguistic modifiers 

A Linguistic hedge or modifier is an operation that modifies the meaning of a fuzzy set 

or a term. Hedges can be viewed as operators that act upon a fuzzy's set membership 

function to modify it. Hedges play the same role in fuzzy modelling system as adverbs 

and adjectives do in a nature language. Accordingly, the number and order of hedges 

are significant, e.g. not very large and very not large relates to two different 

interpretations. A representative collection of commonly-used hedges with their 

effects is contained in Table 3.1 (Cox, 1994). 
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Hedge Meaning 

about, around, near, roughly Approximate a scaler 
above, more than Restrict a fuzzy region 

almost, definitely, positively Contrast intensification 

below, less than Restrict a fuzzy region 

vicinity of Approximate broadly 

generally, usually, normally Contrast diffusion 

neighbouring, close to Approximate narrowly 

not, not-so, not really Negation or complement 

quite, 	rather, 	somewhat, Dilute a fuzzy region 

more-or-less 

very, extremely Intensify a fuzzy region 

Table 3.1 Fuzzy linguistic hedge and their approximate meanings. 

Power hedges (Zimmermann, 1985): The power hedges operate on grades of 

membership and represented by the general operator: 

,upow ( u ) (x) Diu (x )1P , (3.11) 

where p is a parameter specific to a certain linguistic modifier. The exponent p used in 

the hedge membership function is quite arbitrary, it can be changed depending on our 

interpretation of the hedge. If p=1, fuzzy set is not modified. Two cases are 

distinguished: 

1)Concentration: p >1, fuzzy set is concentrated. Because membership functions are 

assumed to be normalised, the operation of concentration leads to a membership 

function that lies within the membership function of original fuzzy set; both have the 

same support, and the same membership values where the value of the original 

membership function equals unity or zero. 

The modifier very corresponds to p=2. For example, if slow speed is fuzzy set with 
membership function /I s  (x) , then very slow speed and very very slow speed are fuzzy 
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sets with membership function La s  (x)] 2  , [It s  (x)] 4  , respectively. An artificial hedge 

providing milder degree of concentration is the plus, whose membership function is 

2) Dilation: p<1, fuzzy set is dilated. The operation of dilation leads to a membership 

function that lies outside of the membership function of the original fuzzy set; both 

have the same support, and the same membership values where the value of the 

original membership function equals unity or zero. 

The modifier more or less corresponds to p=1/2. For example, more or less slow speed 

is a fuzzy set with membership function [u 5 (x)] "2 .  Another hedge quite useful is the 

minus, whose membership function is p,„„nus(u) (x)  

3.3 Fuzzy logic and fuzzy reasoning 

Fuzzy logic is a logical system that is much closer in spirit to human thinking and 

natural language than traditional logic systems. As a calculus of compatibility, fuzzy 

logic is quite different from probability which is based on frequency distributions in a 

random population. Fuzzy logic describes the characteristic properties of continuously 

varying values by associating partitions of these values with a semantic label (Cox, 

1994). Fuzziness is different from probability. The laws of contradiction and excluded 

middle are broken in fuzzy logic but are not broken in probability. Conditional 

probability, which must be defined in probability theory, can be derived from first 

principles using fuzzy logic (Kosko, 1992). Much of the description power of fuzzy 

logic comes from the fact that these semantic partitions can overlap (see Fig. 3.6) 

corresponding to the transition from one term to the next. 

Fuzzy set serves as the basis for fuzzy logic. Fuzzy set theory starts with some basic 

concepts coming from crisp set theory, fuzzy logic also begins by borrowing some 

crisp logic notions. In crisp logic, a proposition is an ordinary statement involving 

terms already defined, and must be meaningful to call it "true" or "false". A tautology 

is a proposition formed by combining other propositions p, q, r,... . 
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Let us start with the basic primitives of fuzzy logic: fuzzy propositions. A fuzzy 

proposition represents a statement like "speed (u) is SLOW", where SLOW is a 

linguistic label, defined by a fuzzy set on the universe of discourse of speed. Fuzzy 

propositions connect variables with linguistic labels defined for those variables. As in 

classical logic, fuzzy propositions can be combined by using logical connectives and 

and or, which are implemented by t-norms and t- conorms, respectively. 

Fuzzy logic provides a means of modelling human decision making within the 

conceptual framework of fuzzy logic and approximate reasoning (or fuzzy reasoning). 

In fact, reasoning with fuzzy logic is based on fuzzy rules which are expressed as 

logical implications, i.e. in the forms of IF-THEN statements. In fuzzy logic, the 

definition of a fuzzy implication may be expressed as a fuzzy implication function. 

Various implication functions can be classified into three main categories: fuzzy 

conjunction, fuzzy disjunction, and fuzzy implication. A fuzzy rule "IF u is A, THEN v 

is B", is represented by a fuzzy implication and is denoted by A --> B, where A and B 

are fuzzy sets in the universes U and V with membership functions /I A  and u 8 , 

respectively. Membership function of the fuzzy implication, denoted by ,u 8(X0))1 

measures the degree of truth of the implication between x E U and y E V. 

Fuzzy conjunction: The fuzzy conjunction is defined for all x E U and y E V by 

A —> B=A*B , 	 (3.12) 

where * is an operator representing a t-norm. 

Fuzzy disjunction: The fuzzy disjunction is defined for all x E U and y E V by 

A —> B=A0B 	 (3.13) 

where CI is an operator representing a t-conorm. 
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Fuzzy implication: An extension is made by determining the fuzzy versions of some 

tautologies of p—>q in crisp logic, e.g. -pvq,-pv pq, and (- pA -q)vq. Thus, 

the fuzzy implication is associated with the corresponding families of fuzzy 

implication functions: 

(1) Material implication: 

A —> B =not A (-) B 	 (3.14) 

(2) Propositional calculus: 

A —> B =not ACI (A* B) 	 (3.15) 
--, 

(3) Extended propositional calculus: 

A— B=( not A* not B) ,0 B 	 (3.16) 

In traditional propositional logic there are two very important inference rules, Modus 

Ponens (MP) and Modus Tollens (MT). Modus ponens is associated with the 

implication [ A —> B]: 

Consequence Premises 

Premise 1: x is A 
Premise 2: If x is A THEN y is B 

y is B 

In terms of propositions p and q, modus ponens is expressed as (p A (p —> q))—> q. 

Modus tollens is associated with the implication [( not A --> not B) 

Consequence Premises 

Premise 1: y is B 
Premise 2: If x is A THEN y is B 

x is not A 
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In terms of proposition p and q, modus tollens is expressed as (— q A (p —> 	p. 

In fuzzy logic, modus ponens is extended to Generalised Modus Ponens (GMP): 

Consequence Premises 

Premise 1: x is A* 
Premise 2: If x is A THEN y is B  

y is B* 

and modus tollens to Generalised Modus Tonens (GMT): 

Consequence Premises 

Premise 1: y is B* 
Premise 2: If x is A THEN y is B 

x is A* 

where A, A*, B, B* are fuzzy sets introduced via linguistic variables x, y (Dubois and 

Prade, 1984). Two more families of fuzzy implication function obtained from GMP 

and GMT are: 

(4) Generalisation of modus ponens: 

A —> B=supfc E [0,1], Mc B1 	 (3.17) 

(5) Generalisation of modus tollens: 

A —> B=inflt E [0,1], Bt AI 	 (3.18) 

Based on the definition (3.12-3.18), many membership functions for fuzzy implication 

may be generated by employing appropriate triangular norms and conorms. For 

example, kt A-o B (X v) can be found from (3.14) as 

= 

A,B (x, y) = 1- 	A (x),1–  kiB(Y)1, 
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Or 

PA,B(x, y) = 1- IL A  (x)(I - ilB(Y)) 	 (3.19c) 

with appropriate operators for the t-norm * and t-conorm CI . From the fuzzy 

conjunction (3.12), membership function for minimum implication, proposed by 

Mamdani (1974): 

P A-4 8 (X  ' Y) min[11 A (x),/-1 B  (Y)] 

and product implication, introduced by Larsen (1980): 

il A,B (x,  Y) =- ItA (x),/-tB (Y) 

(3.20) 

(3.21) 

can be obtained using minimum and algebraic product, respectively. It can be shown 

that membership functions (3.19a-c) agree with the accepted propositional logic 

definition of implication, demonstrated in Table 3.2 while neither Mamdani 

membership function (3.20) nor Larsen one (3.21) does. As shown in Table 3.2, 

minimum and product inferences preserve cause and effect, i.e. these implications are 

fired only when the antecedent and the consequent are both true. 

kip (x) 11 , (x) lip,, (x, Y) min[PLA (x),11 8 (Y)] 1-1 ,1  (x),u B (Y) 

.
-
.
1

 I
-
I
 C

) v
-

I  

1 1 

...-
 

CD
 0 0 

0 0 
0 0 

Table 4.2 Implication with propositional logic, and min and product inference. 

This is why minimum and product inferences are the most widely used inferences in 

engineering applications of fuzzy logic, and referred to as engineering implications 

(Mendel, 1995). 

A comprehensive comparison between the available fuzzy implication rules is given in 

Lee (1990), based on some intuitive criteria for choosing a fuzzy implication that is as 
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close as possible to the input truth value function value. Although the minimum 

operation rule (3.20) and the product operation rule (3.21) of fuzzy implication do not 

have a well-defined logic structure, it is shown (Lee, 1990) that they are well suited 

for approximate reasoning, especially for the generalised modus ponens. The GMP, 

reducing to modus ponens when A* =A, B* =B, is closely related to the forward data-

driven inference, particularly used in control system. The GMT, reducing to modus 

tollens when A* =not A, B* =not B, is closely related to the backward goal-driven 

inference, commonly used in expert systems. 

Fig. 3.7 illustratively interprets that GMP is a fuzzy composition where the first fuzzy 

relation is merely a fuzzy set, A* (see Figure 3.5). Consequently, kt (y)can be 

obtained from the sup-star composition (3.9): 

= sup [14 ,1.(x)*YA-,B(x,Y)] 	 (3.22) 
xeA* 

where max-min or max-product formula can be stated for modus ponens. Note that in 

crisp logic, a rule is fired only if the first premise is exactly the same as the antecedent 

of the rule, and the result of such rule-firing is the rule's actual consequent. On the 

other hand, a fuzzy rule is fired so long as there is a non zero degree of similarity 

between the first premise and the antecedent of the rule, and, the result of such rule-

firing is a consequent that has a non zero degree of similarity to the rule's consequent. 

u is A* 

IF x is A THENy is B 

Fig. 3.7 Sup-star composition when V = U 
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3.4 Fuzzy logic control 

Fuzzy logic control emerged in the 1970s following the work of E.H. Mamdani and 

colleagues in England, who developed the first fuzzy rule-based control system 

implemented on a laboratory-scale steam engine. The paradigmatic solution developed 

by Mamdani (1974) led to many successful applications in a broad range of areas, 

ranging from consumer products to industrial process control to automotive 

engineering. Using fuzzy logic as an effective means of capturing approximate, 

inexact nature of the real world, a fuzzy logic controller provides an algorithm which 

can convert the linguistic control strategy based on expert knowledge into an 

automatic control strategy. In particular, the methodology of fuzzy logic control has 

been proven through recent successful applications (Schwartz et al., 1994) to be 

superior to conventional control when the processes are too complex, or when the 

available sources of information are interpreted imprecisely, or uncertainly. In this 

sense, fuzzy logic control may be viewed as a rapprochement between conventional 

control and human-like decision making techniques for improving robustness of 

control systems. This section gives a brief summary of the prolific literature on fuzzy 

logic control. 

Fuzzy inference is the actual process of mapping from a given input to an output using 

fuzzy logic. A fuzzy logic controller (FLC) is a fuzzy inference system which maps an 

input data vector into a scalar control output. Fig. 3.8 depicts a fuzzy control system, 

where the elements of the fuzzy logic controller are rules, fuzzifier, inference engine, 

and defuzzifier. 



V  
Plant 

FLC 

Fuzzifier 

Rule Base 

Defuzzifier 

Inference Engine 
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Once the fuzzy rules have been chosen, an FLC can be considered as a nonlinear 

mapping from inputs (error e, change of error Ae ) to outputs (control signal u). This 

mapping can be expressed quantitatively as u=f(e, Ae). The design of an FLC is how 

to obtain explicitly this relation so that the control requirements are satisfied. 

Rules may be provided by experts or can be extracted from numerical data. In either 

cases, engineering heuristic rules are expressed as a collection of IF-THEN statements. 

Each rule consists of linguistic variables, linguistic terms, logic connections, and 

implications. Each linguistic term is fuzzy set associated with its fuzzy membership 

function. 

Fig. 3.8 3.8 Block diagram of a fuzzy logic control system. 

The fuzzifier maps crisp number into fuzzy sets of a linguistic variable. The inference 

engine of an FLC maps fuzzy sets into fuzzy sets in the way fuzzy rules are combined. 

There are many different fuzzy logic inference procedures but only a few of them are 



Input Membership Functions Fuzzification 

Fuzzy Inputs 

Rules Rule Evaluation 

Fuzzy Outputs 

Defuzzification Output Membership Functions 
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commonly used in engineering applications of fuzzy logic. The defuzzifier maps 

output sets into crisp numbers corresponding to the control action u. 

Crisp inputs 

Crisp Output 

Fig. 3.9 Fuzzy inference process 

A fuzzy logic controller can be viewed as a system employing a fuzzy inference 

process to produce crisp control output from fuzzy rules for given input values. The 
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inference process is the internal mechanism involving three steps: fuzzification, rule 

evaluation, and defuzzification, as shown in Fig. 3.9. 

A. Fuzzification 

In general, fuzzification is the process of translating real world values of an input 

variable ( input values ) to the grades of its input label ( input grades). Fuzzification 

involves measuring the values of input variables, performing a scale mapping to 

transfer the range of values of input variables into corresponding universes of 

discourse, and converting input data into suitable linguistic values by means of labels 

(terms of a linguistic variable) of fuzzy sets. The input variables of an FLC, which can 

be a voltage, current, speed, or position in motion control systems, are usually the 

control error, e, or its change, Ae . Symbolically, the process of transforming crisp 

data into fuzzy sets can be represented by 

x = fuzzifier(xo  ) 	 (3.23) 

where the xo is a crisp input value (e or 1\e), x is a fuzzy set, and fuzzifier is a 

fuzzification operator. In order to develop useful rules, appropriate membership 

functions associated with each label should be well chosen. Therefore, it is necessary 

to have a good intuitive fell for the nature of the variables. The defining membership 

functions for all variables would be based on designer's intuitive assumptions, just as 

the rules themselves are. The fuzzification process also provides necessary conditions 

for defining linguistic control rules and fuzzy data manipulation in an FLC, including 

the discretisation/normalisation of the universe of discourse, fuzzy partition of the 
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input and output space, and choice of the appropriate membership function of a 

primary fuzzy set. 

Discretisation of a universe of discourse is the process of quantising it into a certain 

number of segments (quantisation levels) with corresponding labels and thus, forming 

a discrete universe. A fuzzy set is then defined by assigning grade of membership 

values to each label. A scale mapping is needed to transform measured variables into 

values in the discretised universe. The choice of quantisation levels determines how 

fine a control can be obtained. Normalisation of a universe requires discretising it into 

a finite number of segments. Each segment is mapped into a suitable segment of the 

normalised universe which normally is the closed interval [0, 1] or [-1, 1]. 

In general, a linguistic variable is associated with a term set. Each term in the term set 

is defined on the same universe of discourse. A fuzzy partition, the, determines the 

number of terms in a term set. This number affects the granularity of the fuzzy control. 

Fig. 3.10 shows a fuzzy partition in the normalised universe [-I, 1] with seven terms: 

NB, NM, NS, ZE, PS, PM, AND PB, which means negative big, negative medium, 

negative small, zero, positive small, positive medium, and positive big, respectively. 

A membership function (MF), which defines how each point in the input space of a 

label is mapped to a degree of membership between 0 and 1, can principally take any 

nonlinear or piece-wise linear form. The latter is either a triangular or trapezoidal 

functions as shown, for example, in Fig. 3.6 and 3.10. They are the simplest and most 

commonly-used in engineering applications. The vertex of a triangular fuzzy label 
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usually corresponds to the mean value of a data set, while the base is twice the 

standard deviation of the data set. 

-1 0 1 

Fig. 3.10 A fuzzy partition representation 

Fig. 3.11 Gaussian MFs: (a) a = 0.15, c = 0.5; 

(b) c =0.15, c 1 = 0.5 , a, =0.15, c 1  =0.5 
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Crisp value can be converted into a fuzzy singleton (see Fig. 3.2) within a certain 

universe of discourse. This kind of membership function is widely used in fuzzy 

control applications because it is natural and easy to implement. The other commonly-

used functions, with universe of discourse scaled to [-1, 1], are described below. The 

Gaussian MF, determined by 

(X - C)2 
) ki(x, o- ,c) = exp( 	 

2c 2  
(3.24) 

where a and c are two parameters, has the forms of Fig. 3.11(a). A combination of two 

Gaussian membership functions gives the two-sided form of Fig.3.11 (b). 

The generalised bell-shape MF with the form of Fig.3.12 is described by 

y(x,a,b,c)= 
1 

(3.25) 2/, ' 

1+ X - C 

a 

where a > 0, b > 0, and c > 0. Both Gaussian and bell-shape membership functions 

have the advantage of being smooth and nonzero at all points, however they cannot 

specify asymmetry. 
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Fig.3.12 Bell MF: a=0.2, b=2, c=0.6 

The sigmoid can be used to specify asymmetric membership functions, which are 

important in certain applications. Fig. 3.13 (a) plots the form of an open right 

sigmoidal ME defined by 

1 
1+ exp(-a(x-c)) 
	 (3.26) 

where a > 0 and c > 0. An asymmetric and closed (i.e. not open to the left or right) M 

can be synthetised by the difference of two sigmoidal functions as represented in Fig. 

3.13(b). 

For fuzzy control applications, triangular and trapezoidal functions seem to perform as 

well in practice as those based on some other forms of membership functions, and, in 

many case, are simpler to implement. It would be an interesting psychological 
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problem to investigate whether or not triangular membership functions are as accurate 

as some other forms in expressing intuitive concepts of fuzzy numbers (Schwartz et 

al., 1994). 
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Fig.3.13 Sigmoidal MFs: (a) a=20, c=0.4; (b)al=a2=25, c1=0.4, c2=0.7 

B. Rule evaluation 

Rule evaluation is the process of obtaining the grades of output labels (output grades) 

from input grades. The rule evaluation process is mainly important in the design of an 

FLC. It involves a fuzzy rule base and an inference unit. The rule base characterises 

the control goals and control strategy of the domain experts by means of a set of 

linguistic control rules. As the kernel of an FLC, the inference unit is capable of 

simulating human decision making based on fuzzy concepts and of inferring fuzzy 
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control actions employing fuzzy implication and rules of inference in fuzzy logic. 

Based on expert knowledge and fuzzy reasoning, the rule base of an FLC can be 

formatted in fuzzy conditional statements as follows: 

R, : IF ( set of conditions) THEN (set of consequences), (i=1,2, .,n) 	(3.27) 

where the antecedents and the consequents of these rules are associated with linguistic 

values (labels). A Fuzzy control rule is a fuzzy conditional statement in which the 

antecedent is a condition determined in an application domain and the consequent is a 

control action for the plant. A rule base is normally formed by a set of fuzzy control 

rules combined by using the sentence connectives and and also. In most FLCs, the 

sentence connective and is usually implemented as a fuzzy conjunction in a Cartesian 

product space, in which the underlying variables take values in different universes of 

discourse. When the ordering of the fuzzy rules are immaterial, the sentence 

connective also is used with the associated properties of commutativity and 

associativity. From a practical point of view, the union operator is normally used for 

the connective also for constructing fuzzy models (Lee, 1990). The overall system 

behaviour can then be characterised by a single fuzzy relation R which is the 

combination of the fuzzy relations R1 . Symbolically, 

R = 	 (3.28) 

where also represents a sentence connective. 
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In general, there are four modes of deriving fuzzy control rules: from expert 

experience and control engineering knowledge, from human operator's control 

actions, from the fuzzy model of a process, and from learning. A fuzzy control rule 

normally has the form of a fuzzy conditional statement relating the state variables in 

the antecedent and the control action in the consequent. Most of FLCs employ 

engineering knowledge and experience which are expressed in the language of fuzzy 

IF-THEN rules based on an introspective verbalisation of human expertise or an 

interrogation of experienced experts or operators. Many industrial control systems can 

be empirically controlled by skilled human operators without any quantitative models 

in mind. As pointed out by Sugeno (1985), in order to automate such processes, it is 

expedient to express the operator's control rules as fuzzy IF-THEN rules using 

linguistic variables. Fuzzy control rules can also be generated based on the linguistic 

description of the dynamic charateristics of the plant known as fuzzy model. Although 

this approach is somewhat more complicated, it yields better performance and 

reliability, and provides a more attractable structure for dealing theoretically with the 

FLC (see, e.g., Cao et al., 1994). Focusing on the ability to create fuzzy control rules 

and to modify them based on experience (learning), Procyk & Mamdani (1979) 

described the first self-organising controller with a hierarchical structure of two rule 

bases: the general rule base and the "meta-rules". The latter exhibit human-like 

learning ability to create and modify the general rule base according to the desired 

overall performance of the system. Self-organising control (Shao, 1988) or fuzzy 

learning systems with model reference (Kwong et al., 1995) and neuro-fuzzy approach 

(Jang & Sun, 1995) have become increasingly interesting subjects for fuzzy control 

studies. 
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C. Defuzzification 

The defuzzification process is the final stage in a fuzzy reasoning system involving the 

selection of a representative element based on the output fuzzy subset. Defuzzification 

is a mapping from a space of fuzzy control actions defined over an output universe of 

discourse into a space of real world (crisp) control actions. A defuzzification strategy 

is aimed at producing a non-fuzzy control action. Many strategies have been proposed 

in the literature; however their scientific bases are so inadequate that defuzzification is 

considered as an art rather than a science (Mendel, 1995). 

The most frequently used defuzzification strategy is the Centroid of Area, which is 

defined as 

f B(Y)dY y* 	s  

fs ,u B(Y)dY 
(3.29a) 

where u 8 (y) is the aggregated output membership function, and S denotes the 

support of ,u B  (y) . This formula is reminiscent of the calculation of expected values 

in probability distributions. For a discretised universe, summations replace 

integrations in (3.29a): 

13(YdY 
Y*  = j=1 	 

EyBcy 
J=1 

(3.29b) 
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where n is the number of quantisation levels of the output. Other defuzzification 

strategy arise for specific applications, which includes bisector of area, mean of 

maximum, largest of maximum, and smallest of maximum, and so on. 

The method using singletons(single vertical points) instead of fuzzy set membership 

functions to describe output labels is referred to as Takagi-Sugeno fuzzy model while 

the inference method discussed thus far using fuzzy sets to describe the output labels 

is called Mamdani fuzzy model. In Takagi-Sugeno model, the aggregation step is no 

longer necessary and the centroid of area defuzzification method is slightly simplified. 

The centroid is calculated without a numerical integration of the entire fuzzy set 

surface as in (3.29a). Instead, the domain value at each singleton is multiplied by the 

height (truth membership value) of the singleton. This technique, in general, provides 

a centroid equivalent to the centroid found by taking the area across an entire fuzzy 

set. Because it is more compact and computationally efficient in representation than 

the Mamdani model, the Tagagi-Sugeno fuzzy model has widely been applied to fuzzy 

modelling and control of engineering systems (Feng et al., 1997; Mei and Man et al., 

1998). 
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Fig. 3.14 The Mamdani fuzzy inference system using min and max for fuzzy AND 

and OR operators, respectively. 
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Fig. 3.15 The Mamdani fuzzy inference system using product and max for fuzzy AND 

and OR operators, respectively. 
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Fig. 3.14 and 3.15 show the Mamdani fuzzy inference process with centroid of area 

defuzzification method. 

3.5 Concluding remarks 

Fuzzy thinking has originated from a philosophical basis on indeterminism (McNeil 

and Freiberger, 1993). An inherent uncertainty and unpredictability, spontaneity and 

freedom, integrity and openness characterise the stunning complexity of our world and 

life. That is why the way fuzzy thinking has emerged in order to grasp real world 

complexity. As an introduction, this chapter provides an overview of fuzzy logic and 

fuzzy logic control. Fuzzy sets, fuzzy set operations, and fuzzy linguistic 

representation such as linguistic variables and linguistic modifiers (hedged) have been 

briefly outlined. Fuzzy reasoning or approximate reasoning is considered from the 

engineering viewpoint with IF-THEN fuzzy implications using Mamdani's minimum 

inference and Larsen's product inference. A fuzzy logic controller, mapping an input 

data vector into a scalar control output, normally comprises a rule base, fuzzifier and 

defuzzifier. Commonly-used kinds of membership functions are described, focusing 

on control applications. The prominent advantage of the fuzzy logic controller is that it 

can effectively control complex ill-defined systems having nonlinearities, parameter 

variations and disturbances. However, there also exist some impediments in the design 

of the fuzzy logic controller. In general, fuzzy rules are obtained on the basis of 

intuition and experience, and membership functions are selected by trial and error 

procedure. Moreover, it is not easy to mathematically prove the system stability and 

robustness due to linguistic expression of the fuzzy rules. Therefore, a systematic 

design method of the fuzzy logic controller from which the stability and robustness 



CHAPTER 3 FUZZY LOGIC AND FUZZY LOGIC CONTROL 	 69 

can be clearly seen is to be explored (Lee, 1990). The following chapters will employ 

fuzzy logic to establish a mathematical model for a class of nonlinear systems and also 

enhance robustness and control quality of variable structure control systems. 
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Chapter 4 

Fuzzy Modelling and Robust Tracking 
Control 

4.1 Introduction 

In the design of modern and classical control systems, the first step is to establish a 

suitable mathematical model to describe the behaviour of the controlled plant. 

However, in practical situations, such a requirement is not feasible because the 

controlled systems have high nonlinearities and uncertain dynamics, and simple linear 

or nonlinear differential equations cannot sufficiently represent the corresponding 

practical systems, and therefore, the designed controller based on such a model cannot 

guarantee the good performance such as stability and robustness. During the last few 

years, fuzzy logic control has been suggested as an alternative way to conventional 

control techniques for complex nonlinear systems due to the fact that fuzzy logic 

combines human heuristic reasoning and expert experience to approximate a certain 

desired behaviour function (see e.g. Takagi and Sugeno, 1985; Cao et al., 1996; Wang 

et al., 1996). However, the asymptotic error convergence and stability of the closed- 
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loop system may not be obtained due to the approximation error and uncertainties of 

the fuzzy model. 

Many kinds of fuzzy models for control processes have been developed since 

Mamdani's (1974) paper was published. They can be classified into three kinds of 

models, Composition Rule of Inference (Zaheh, 1973), Approximate Reasoning 

Model (Nakanishi et al., 1993), Sugeno's Models such as Position type Model and 

Position-Gradient type Model (Sugeno and Yasukawa, 1993). Most of these models 

are expressed by a set of fuzzy linguistic propositions which are derived from the 

experience of skilled operators or by fuzzy implication which locally represent linear 

input-output relations of the system. 

Most proposed conventional fuzzy models only consider the external behaviour of the 

system, and can be considered as a function approximation. It is very difficult to 

obtain a controller using those models. Even if the controller can be obtained by using 

some trial and error procedures the behaviour of the closed-loop system, for example, 

the stability of the system is still difficult to analyse. Also the number of rules increase 

very quickly when the system becomes complex because every local rule is only 

described by a constant. Therefore, the identification of these fuzzy models is still a 

difficult problem because there are too many parameters in the membership functions. 

In order to overcome the disadvantages of conventional fuzzy models, we developed a 

fuzzy tracking dynamic model for nonlinear systems by linearising the system over a 

number of operating points and aggregating the linearised subsystems by fuzzy rules. 

It is shown that by choosing membership functions appropriately, the number of fuzzy 
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sets can be small but without loss of good tracking performance. The proposed fuzzy 

modelling and tracking control methodology for complex nonlinear systems is unique 

by combining the merits of fuzzy logic and conventional linear control theory. Here, 

fuzzy logic is used to formulate a system model by aggregating a set of linearised local 

subsystems which identify the nonlinear system approximately, and a fuzzy feedback 

controller is designed by use of conventional linear feedback theory and fuzzy 

reasoning. 

The organisation of this chapter is as follows. In Section 4.2, a linearisation method 

for a class of nonlinear systems by Taylor's expansion is given. In Section 4.3, fuzzy 

modelling and tracking controller design for nonlinear systems are presented. A fuzzy 

system model is obtained by aggregating the linearised subsystems with fuzzy rules. In 

Section 4.4, a robust tracking control scheme is presented by using variable structure 

control theory based on the fuzzy nominal model. A simulation example using one-

link rigid robotic manipulator is given in support of the proposed control scheme. 

Section 4.5 gives concluding remarks. 

4.2 Linearisation of nonlinear systems 

Consider the following nonlinear dynamic system 

= f(x,u) 	 (4.1a) 

where x = 	,x2 ,...,x]T  is the state vector, f (x,u) is a vector whose elements are 

nonlinear function, and u = [u 1 ,u2 ,...,u„jr  is the control input vector. The control 

objective is to force the plant state vector x to follow a specified desired trajectory, 

x d  . Assuming f (x,u) is differentiable with respect to x and u respectively, then 
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equation (4.1a) can be linearised at some point (x i ,u i ) by Taylor's expansion as 

follows 

• 	. 	af x -= x 1. + —ax x 
du (4.2) 

k i  = f(x i ,u i ) 

where 

= x – x i , = u – u i  

and u i  can be obtained from the following equilibrium condition (Palm and 

Rehfusess, 1997) 

k i  =0 

From expression (4.2), the following local linearised error dynamic equation can be 

obtained 

5.Z = A i R 	 (4.3) 

where 

af 
E R"'", B i  = 

au 
E Rnxm (4.4a) 

Remark 4.1 If the controlled system is a single-input and single-output system, i.e.„ 

x ( " )  (t) = f (x) + b(x)u 	 (4.1b) 

where 

T x = [x I x2 • • . , A, n 	=  



0 - 

B.= 

  

 

0 
b(x ) 

(4.4b) 

ab 
+ ak 
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then we have the following linearised system matrices, 

0 1 	0 
00 	0 

A, = 

	

000 		1 
a0 a 1 	• • 	a  

	

_ fa 	ab 	af 
a o  -+ u — , a l  = 

	

ax 	ax 	ax x, 

which is in a controllable form. 

Remark 4.2: If equation (4.3) is in a controllable form, the feedback control law 

	

= 	 (4.5) 

can be designed by using conventional linear system theory (Ogata, 1990) so that the 

eigenvalues of (A i  - B iK i ) are the specified ones. The feedback gain K i  can be 

designed by using the Ackerman's formula in the case of single-input system as 

follows (Ogata, 1990) 

	

K i  = 	 (4.6) 

where 

a(s) = sn + ans' l  +...a 2s+ 

is a desired stable polynomial, and 

Q i  = [B i  AB, /03 i  A7 -1 B i ] 

4.3 Fuzzy modelling and tracking control of nonlinear 
systems 

4.3.1 Fuzzy modelling and tracking controller design 

Many Physical systems are very complex in practice so that it is very difficult to 

obtain their rigorous mathematical models. In recent years, fuzzy logic has been 
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applied to the field of system modelling and control engineering (Takagi and Sugeno, 

1985; Wang and Mendel, 1992; Feng et al., 1997) by means of combining human 

heuristic reasoning and expert experience. In this section, the fuzzy model is 

established by the following fuzzy inference rules which include local linearised 

subsystems and feedback controllers. 

R': 	IF 	x i  is 	AND ... xn  is Fril  

THEN 

5.Z = 	+ 

	

u - u i 	 (4.7) 

= 1,2,...,/ 

where R i  denotes the i-th fuzzy inference rule, 1 the number of inference rules, 

FJ (j = 1,2,...,n) are fuzzy sets, = x — x d  is the tracking error of the system with 

desired trajectory x d  . 

Let it(x) be the normalized membership function of the inferred fuzzy set F i  where 

n 
F'= flFJ  

and 

(x) = 1 
i=1 

By using a standard fuzzy inference method, that is, using a singleton fuzzifier, 

product fuzzy inference and centre-average defuzzifier, the following global tracking 

error fuzzy model for the controlled nonlinear system can be obtained, 

(4.8) 

(4.9) 
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where 

= Ao R + 

= u - u d  = —KR 

A o  =E[t i A i 	B o  =D.t i B i  
i=1 	 i=1 

u d  =Ei.t j u i  

(4.10) 

(4.11) 

(4.12) 

Remark 4.3: Here, we assume the fuzzy model is globally controllable, that is, 

(A0 ,13 0 ) is a controllable pair. 

4.3.2 A example of fuzzy modelling and control 

Consider the following one-link robotic manipulator 

m/ 26 + + mglcos(0) = u 	 (4.13) 

with 

m = lkg - payload, 
1 = lm - length of the link, 

g = 9.81m1s 2  - gravitational constant, 

d = lkgm 2 /s - damping factor, 

u - control variable (kgm 2 /s 2 ). 

Assuming we are interested in the dynamics of the system in the range of [-90 0 ,90 0 ], 

then the fuzzy model can be obtained by linearising the nonlinear equation (4.13) over 

a number of points, such as 0 0 , ± 30 ° , ± 60 ° , ± 90°. The following fuzzy model is 

considered 

R 1  : IF x l  is about - 90° , THEN R= A I R+ B i ll, = u - u l  = 

R 2  : 	x i  is about - 60 ° , THEN R = A2R. + B 2 11, = U -112 = - K2R 



A 5  = 

A 6  = [ 0 	ii 
8.5 —1] 
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R 3  : IF x i  is about - 30°, THEN = A 3 R + B 3 iI, ii = u - u 3  = —K 3 R 

R4: IF x 1  is about 0 ° , THEN FC = A 4 R + B411, ii = U - 1.1 4  = -K 4 5-C 

R5: IF x 1  is about 30°, THEN5..t" = A 5 it + B 5 1I, II = u - u 5  = —K 5 ,7 

R6: IF x 1  is about 60°, THEN R = A 6 R + B 6 i1, il = u - u 6  = —K 6 R 

R 7  : IF x i  is about 90°, THEN R = A 7 3Z + B 7 11, ii = u - u 7  = —K 7 3Z 

where 

x, = e, x 2  =0 R = [71 , -72] 7.  

u l  =0, 

11 2  = 4.9, 

B3 _ 

B4 
_ 

B 5  

6 	B =I 

[0] 
li

, 
 

[
i,

01  
l 
0 [ 	, 
11 
01 ,  
li 

U 3  = 8.5, 

U 4  = 9.81, 

U 5  = 8.5, 

U 6  = 4.9, 

[ 0 	ii 
 — [ 0 1 A7  = 

	

9.81 —11 	 ' 	1 
U 7  =0. 

The fuzzy sets for x 1  are chosen as in Fig.4.1. 

The desired closed loop poles for each local model are chosen as [-4, -3]. Thus the 

feedback control gains are found by using of pole placement method as follows 

6], 

I 
	0 	1 i 	 [0 ]  B  

	

AI  — L— 9.81 —11 	
i 	

11 

I-  0 	11 [01 

	

A2  =[- 8.5 -11 	B2 _ li, 
 

r o 	1 i 
A 3 - [- 4.9 - lt 

K 1  =[2.2 6], K2 = [3.5 	6], K 3  = [7.1 6], K 4  = [12 

K5 = [16.9 6], K6 = [20.5 6], 	K 7  = [21.8 6]. 
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Therefore, the fuzzy control input can be written as 

7 	7 
1.1 = —E[tiKiR +Dotilai 	 (4.14) 

i=1 	i=1 

The control objective in this simulation is to force the one-link robotic manipulator to 

follow a desired trajectory which is generated by the following reference model 

[id ] = [ 0 	1 Ixd  1 +  [0111  
(4.15) 

Id 	25 — 10 	1 s  

where u s  is chosen as in Fig.4.2. 

In this example, the initial values of x and x d  are selected as 

[x 1 (0), 	(0)] = [17.2°, 0], 	[xd  (0), .kd  (0)] = [0, 0] . 

Fig. 4.3 shows the output tracking using the fuzzy feedback controller. It can be seen 

that good tracking performance has been achieved by the proposed fuzzy model. Fig. 

4.4 shows the control input. 

In order to examine the robustness of the fuzzy model, we use five fuzzy inference 

rules instead of seven. If we choose the fuzzy sets as in Fig. 4.5 and the following 

fuzzy rules, 

R I  : IF x i  is about - 90 ° , THEN = A I R + B i ii, = u - u 1  = 

R 2  : IF  

R3: IF x i  is about 0°, THEN 5Z = A 3 R + B 3 ii, = U - U 3  = — K 3 R 

R4: IF x i  is about 45 ° , THEN = A 4 5Z + B 4 11, = u - 	= —K 4 5Z 

R5: IF x i  is about 90° , THEN = A 5 5Z + B 5 ii, = u - u 5  = —K 5 R 

with 
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0 	1 1 A, = 
[— 9.81 — lt 
r 0 	'1 

A2  — L- 6.94 — It 
[0 	1 1 

A3  = L o 0 — lt 
0 	11 

A4  = L694 [6.94 — lt 

0 	'1 A 5 = [9. 81 — lt 

0 
B 1 411, 	 u, =0, 

rol 
u 2  =6.94, 

1 

u 3  =9.81, 1 

B 4  =[0 ], 	u 4 =6.94, 
1 

0 B 5  =11, 	U 5  =O. 

then the output tracking and fuzzy control input are shown in Fig.4.6 and Fig.4.7, 

respectively. It can be seen that the output tracking error is increased in the vicinity of 

60 0  in comparison with Fig.4.3. However, if we choose the fuzzy sets as in Fig. 4.8 

and the following fuzzy rules, 

R1: IF x1  is about - 90 ° , THEN R = A i R + 	u - u i  =—K 1 3 

R2: IF x i  is about - 60 ° , THEN R = A2 + B 2  , = u - u 2  = —K 2 R 

R3: IF xi  is about 0 0 , THEN R A 3 R + B 3 1:1, = u - u 3  = —K 3 x 

R4: IF x i  is about 60 0 , THEN R = A4R + B 4 5, tI = u - u 4  = -- K43C 

R5: IF xi  is about 90 ° , THEN R = A5R + 	= u - u 5  =—K 5 R 

with 

A 1  = 
0 	1 

[-9.81 — 1i' 

0 	1 
A2 = [ 

— 8.5 —1t 

[0 	1 
A 3  = 0 

B i  = 

B 3 =[]' 

-11, 

0 
[ 1 ], 

0 

0 1 1 

U 1  =0, 

U2 = 4 . 9,  

U 3  = 9.81, 
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[ 0 	1 
A4 =I  

8.5 —1I 

[ 0 	1 
A5 = I  

9.81 —11 

11 4 = 4 . 9,  

U7 =0. 

then the output tracking and fuzzy control input are shown in Fig.4.9 and Fig.4.10, 

respectively. It is clearly shown that the output tracking error is diminished in the 

vicinity of 60 0  by comparing with Fig.4.6. Hence, it can be concluded that if the fuzzy 

rules are selected appropriately, good tracking performance can then be achieved even 

with less fuzzy rules. 
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Fig.4.2 The control input of the reference model 
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Fig.4.3 The output tracking of the link, where the solid line 
represents the desired trajectory. 
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Fig.4.6 The output tracking of the link, where the solid line 
represents the desired trajectory. 
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Fig.4.9 The output tracking of the link, where the solid line 
represents the desired trajectory. 
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4.4 Robust tracking control with fuzzy nominal model 

4.4.1 A robust tracking control scheme 

The nonlinear system (4.1) can be expressed by the following error dynamic equation 

=(A + AA)R + (B o  + AB)ii + Af (4.16) 

where AA, AB represent the approximation error and system uncertainties and Af 

denotes all the residual errors and disturbances which cannot be covered by AA, AB. 

For further analysis, the following assumption is used in what follows (Man and 

Palaniswami, 1995) 

Assumption 4.1: There exist matrix HE R' and scalar E such that 

AA = B o H 
AB = B O E 

° < 0 1-1 1i <  Ho 
0< j E I <E 0 

< 11 61 11 <  fo 

(4.17) 

Remark 4.4: The above assumption is called uncertain matching conditions and have 

been used by several researchers (Man and Palaniswami, 1995; Shoureshi et al., 1990; 

Tarn et al., 1984). The upper bounds of the system uncertainties, namely 

H 0 , Eo  and f0 , may be obtained by experiments. 

The objective of this section is to develop a robust tracking control scheme which 

ensures that the output tracking error 5i asymptotically converges to zero. 
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The controller design of the nonlinear system in this section is divided into two parts. 

First, a nominal feedback controller, as shown in (4.11), is designed based on fuzzy 

nominal system model, which guarantees that the tracking error ic of the nominal 

system asymptotically converges to zero. Second, a variable structure compensator is 

designed based on an uncertain bound to eliminate the effects of the approximation 

error and uncertain dynamics so that the tracking error of the closed loop system 

with uncertain dynamics asymptotically converges to zero. 

The nominal feedback controller for the fuzzy nominal model is derived directly from 

(4.11), that is 

u 0  =—KR-Fu d 	 (4.18) 

where 

1 	. 
Ud = E giui (4.19) 

Next, we consider the variable structure compensator design for the uncertain system 

(4.16). Let the control input in system (4.1) have the following form 

u=u 0  +u l 	 (4.20) 

where u 0  is the nominal feedback control given in expression (4.18), and u l  is a 

compensator to deal with the effects of system uncertainties. 

Using expression (4.17) and (4.20) in (4.16), the error dynamics of the closed loop 

system with uncertainties is written as 

= (A 0  —B 0 K)3Z +B 0 (H—EK)R+B 0 (1+E)u 1  +Af 	(4.21) 
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In order to use the variable structure theory to design the compensator u i , we define a 

switching hyperplane variable as follows 

S = CR 	 (4.22) 

where C = [c i ,c 2 ,... , c n  ] is chosen such that zeros of the polynomial CR =0 are in 

the left half of the complex plane, and matrix CI3 0  is non-singular (Man and 

Palaniswami, 1995). 

For the design of the compensator u 1  and the stability analysis of tracking error 

dynamics (4.21), we give the following theorem. 

Theorem 4.1: If the nominal feedback control u 0  is given by expression (4.18) and 

the compensator u l  is designed such that 

u l = I O SCB 0  II 
(SCB 0  ) 

2  [ SC(A 0  —B 0 K)R +p] S # 0 

where 

o 	 S = 0 
(4.23) 

1 P = 
1 
	 [ IISC ( A 0  —B oK) R II HIS CB 011(11  011'11 +  E011 1(31) — 11 SIIII CIlfo 1 — E 0  

(4.24) 

then, the tracking error R asymptotically converges to zero as time tends to infinity. 

Proof: Defining a Lyapunov function 

V = —1 s 2 
2 

(4.25) 

and differentiating v with respect to time, we get 
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= SS 
=SCR/6i 0  -B o K)R +B o (H-EK)R + B 0 (1+ E)u i  +Af] 
= -ESC(A 0  -13 0 1()R + SCB 0 (H - EK)R + SCAf + (1- E)p 

o K)Rii  VEI 	B DISC(Ao - 	IISCB 011(1141114 + 1111 1(R 11 )  + Js OCIII1Af  
1-  E 

± 	[ IISC(A 0 -B 0 1())11 - 0SCB 011 (11 0 	E 011 101) HISMCK0 ]  

- (1- 11EINSC(A0 -B o K)R 11 - 11SHC11 0. 0 - 11 Af 11 )  
-0SCB 0 0[(H o  -111-111)114+(E 0  -11E11)11KR11] 

<0, 	forS#0 

(4.26) 

Expression (4.26) is the sufficient condition for the switching hyperplane variable s to 

reach the sliding mode 

S = 	= 0 	 (4.27) 

In the sliding mode, the tracking error Tc asymptotically converges to zero. 

Remark 4.5: The robustness property of the proposed control scheme in this section is 

obvious. First, the effects of the approximation error and uncertain dynamics can be 

eliminated by using the variable structure compensator. Second, the closed loop 

system is completely insensitive to uncertainties after the system error dynamics reach 

the sliding mode. 

Remark 4.6: To eliminate the chattering in the control input, the following boundary 

layer compensator (Man and Palaniswami, 1995) can be used in place of expression 

(4.23). 

I 	( 111  = 11=12  
[ SC(A 0  - B c,K)R +13 1 IISCB  oll< 8  i 

8 12  

(SCB 0 ) 
[ SC(A 0  -B 0 K)5Z+ p] IISC13 0 11?_ 

(4.28) 
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where 8,> 0. 

The above boundary layer compensator can force switching plane variable to move 

towards the sliding mode surface and then the control signal can be smoothed inside a 

boundary layer. This will achieve optimal trade-off between control bandwidth and 

tracking precision. Therefore, the chattering and sensitivity of the controller to system 

uncertainties can be eliminated (Man and Palaniswami, 1995). 

4.4.2 A simulation example 

To illustrate the proposed robust tracking control scheme in this section, a simulation 

example is carried out for a one-link robotic manipulator. The dynamic equation of the 

one-link robotic manipulator is given by 

mI 2 0 + d6 + mgl cos(0) = u 	 (4.29) 

with 

m = lkg - payload, 
1= lm - length of the link, 

g = 9.81m1s 2  - gravitational constant, 

d = lkgm 2 /s - damping factor, 

u - control variable (kgm 2  S 2  ). 

Assuming we are interested in the dynamics of the system in the range of [-90° ,90 0  ], 

then the fuzzy nominal model can be obtained by linearising the nonlinear equation 

(4.29) over a number of points, such as 0° ,±45° ,±90°. The following fuzzy nominal 

model has been obtained. 
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R' : IF 	x, is about 0° 
THEN5.".c =A 1 +B 1 ii  

R2: IF 	x, is about - 45° 

THEN 5.'(' = A 2 R + 

R3: IF 	x i  is about + 45° 
THEN 5..t' = A 3 5Z +B 3 ii 

R4: IF 	x, is about -90° 
THEN 3.Z = A 4 R + B 4 1.1 

R5: IF 	x, is about +90° 

THEN3-C = A 5 R + B 5 ii 

where 

x l  =0,x 2  = 6, 5-(' =[R,,X* 2 ] T ,u ;  = mglcos(0 ; ) 
-0 	1 I 

B, — [Cid 
A ' LO —11' 

Lr  0 	1 ] 	[01 1 
-6 .94  —11 	

B2 _ 
 

I.  0 	1 	 [Oi l 

	

A3  - L6.94 —11' 	
B3 

[ 0 	1 1 	_ [Oi

] 
A 4  = 	 B 4  

—9.81 —1S 
[ 0 	1 1 	 _ [Oi

] 
A 5  = 	 B 5  

9.81 —1T 

The fuzzy sets for x, are chosen as in Fig.4.11. 

The desired closed loop poles for each local model are chosen as [-4, -3]. Thus the 

feedback control gains are found by using of pole placement method as follows 
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=[12 6], 
K 2  = [5.1 6], 
K 3  = [18.9 6], 
K 4  = [2.2 6], 
K 5  =[21.8 6]. 

The control objective in this simulation is to force the one-link robotic manipulator to 

follow a desired trajectory which is generated by the following reference model 

[i d  [ 0 
— 25 

1 	1[X d  
10 	i d  

[Olu  
1 	s  

(4.30) 

where u s  is chosen as in Fig. 4.12. 

In this example, the initial values of x and x d  are selected as 

[x 1 (0), x (0)] = [17.2° ,0], [x d  (0), d  (0)] = [0,0] . 

Sliding mode is prescribed as 

S = [10,1][_ 1 1. 
X 2  

Uncertain bounds are selected as 

E 0  = 0.1, H o  = 2, fo  = 1. 

Fig. 4.13 shows the output tracking using only a fuzzy nominal feedback controller. It 

can be seen that due to large system uncertainties, the output cannot track the desired 

trajectory closely. Fig. 4.14 shows the output tracking and control input using a fuzzy 

nominal feedback controller with a variable structure compensator. Obviously, the 

effects of the system uncertainties are eliminated and a good tracking performance is 

achieved. But there exists chattering in the control input. Fig. 4.15 shows good 

performance of the closed loop system in which a fuzzy nominal feedback controller 

with a boundary layer compensator is used to eliminate control chattering. 
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4.5 Concluding remarks 

A robust tracking control scheme has been proposed in this chapter for a class of 

nonlinear systems. The main contribution of this scheme is that a nominal system 

model for a nonlinear system is established by fuzzy synthesis of a set of linearised 

local subsystems, where the conventional linear feedback control technique is used to 

design a feedback controller for the fuzzy nominal system. A variable structure 

compensator is then designed to eliminate the effects of the approximation error and 

system uncertainties. Strong robustness with respect to large system uncertainties and 

asymptotic convergence of the output tracking error are obtained. A simulation 

example has been given to support the proposed control scheme. 
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Fig.4.11 Fuzzy sets of state x 1  
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Fig. 4.12 The input signal u s  of the reference model 
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Chapter 5 

Fuzzy Sliding Mode Control 

5.1 Introduction 

Fuzzy logic technique based on approximate reasoning has been widely used for the 

design of control systems (Mamdani and Assilian, 1974; Tagalci and Sugeno, 1985; 

Cao et al., 1996). The early fuzzy control algorithms proposed by Mamdani et al. have 

the following characteristics (Yager and Filev, 1994): (i) The detailed mathematical 

description of the controlled system is not required, (ii) the human experience and 

understanding about the system are used to design a fuzzy controller which allows us 

to implement heuristic strategies, which are defined by linguistically described 

statements, to formulate the control algorithm. 

In order to improve the performance of fuzzy control systems, the fuzzy control 

algorithms with the Mamdani model have been further investigated and developed in 

recent years. It is shown that (Yager and Filev, 1994), if the structure of the fuzzy 



CHAPTER 5 FUZZY SLIDING MODE CONTROL 	 99 

control networks can be identified and the membership functions of the fuzzy sets can 

be estimated by the use of some optimisation techniques, a satisfactory tracking 

performance of the closed loop fuzzy systems can be obtained. 

In this chapter, Lyapunov stability theory and fuzzy logic technique are combined 

together to design sliding mode controller. It is shown that a sliding mode is first 

designed to describe the desired system dynamics for the controlled system. A set of 

fuzzy rules are then used to adjust the parameters of the controller based on the 

Lyapunov function and its derivative. The sliding mode controllers with fuzzy tuning 

algorithm show the advantage of reducing the chattering of the control signals, which 

makes the fuzzy sliding mode control more practical. A simulation example is given in 

support of the proposed control scheme. 

The chapter is organised as follows. In section 5.2, a class of nonlinear systems to be 

considered, Lyapunov function and the sliding mode controllers are formulated. In 

section 5.3, the fuzzy rules used to adjust the parameters of the controller are 

described in detail. In section 5.4, a simulation for a one-link rigid robotic manipulator 

is performed in support of the proposed control scheme. Section 5.5 gives concluding 

remarks. 

5.2 Sliding mode control of nonlinear systems 

In this paper, we focus on the design of sliding mode controllers for a class of 

nonlinear systems whose dynamic equations can be expressed in the following form 

(Gao and Hung, 1993): 
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= A(x)+ B(x)u 	 (5.1) 

where dim-x = n, dim-u = m, n > m, and A(x) and B(x) are of appropriate 

dimensions. The switching surface is defined by 

s(x)=c T x =0 	 (5.2) 

where c T = [c 1  c 2  • • • c n  ] is chosen such that the zeros of the polynomial c T X =0 

are in the left half-plane and c T  B(x) O. Eqn. (5.2) represents a desired system 

dynamics with a lower order than the given plant. The sliding mode controller u is 

designed such that any state x outside the switching surface is driven to reach the 

surface. On the switching surface, the sliding mode takes place, following the desired 

system dynamics. 

Theorem 5.1: If the control law is designed as follows 

U = 	T  B(X)}-1 	A(x) + Qsgn(s) + Kh(s)] 	 (5.3) 

where 

Q = diag[q , • • • , q ], q > 0 

sgn(s) = [sgn(s ), • • • , sgn(s )] T  

K = diag[k i ,• • • , k m ], k, > 0 

h(s)= [h i  (s i ),•••, h. (s. )] T  

Si h i  (s ) > 0, 	h (0) = 0 

then the system state x reaches origin as time tends to infinity. 
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Proof. Consider the following Lyapunov function 

1 T V = 
2 

(5.4) 

The derivative of V is 

= sT§ 

T T• 
=S C X 

=S T C T [A(x)+ B(x)u] 

= s T C T  [A(x)— B(x){c T  Br' [c T  A(x) + Qsgn(s) + Kh(s)]] 

= —s T  [Qsgn(s) + Kh(s)] 
<0 	 s # 0 QED. 

(5.5) 

From (5.5), we have the following reaching law, 

S = —Qsgn(s) — Kh(s) 	 (5.6) 

It is clearly known that, if Q is too small, the reaching time will be too long. On the 

other hand, a large Q will cause severe chattering. In next section, a fuzzy tuning 

algorithm for Q is introduced to achieve a better trade-off between the settling time 

and chattering phenomena. 

5.3 Fuzzy tuning of the sliding mode controller 

The Mamdani's fuzzy inference model (Mamdani and Assilian, 1974) is used to adjust 

the controller's parameter matrix Q. The Lyapunov function defined in (5.4) can be 

considered as the distance between the desired and actual states. The control objective 
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is that the distance should be decreased as soon as possible. We divide the Lyapunov 

2 function -s (V) into three fuzzy subsets, such as 'big', 'medium' and 'small'. The 
2 	I  

convergent rate or the derivative of Lyapunov function s i S (V) is divided as the 

fuzzy subsets 'positive', 'zero' and 'negative'. The fuzzy control system consists of 

two linguistic input variables V and V and one linguistic output variable Q. The two 

fuzzy input variables are defined as follows 

V={B, M, S} 	 (5.7) 

V={P, Z, NI 	 (5.8) 

where B = big, M = medium, S = small, P = positive, Z = zero, N = negtive. Fuzzy 

output variable Q is defined as follows 

Q={B, MB, M, MS, S} 	 (5.9) 

where MB = medium big, MS = medium small. The input-output relation of the fuzzy 

controller with fuzzy variables (5.7), (5.8) and (5.9) is written by 

V, V —> Q 	 (5.10) 

The fuzzy tuning algorithm for Q is described in fuzzy rules as follows and also 

represented in "look-up" Table 5.1. 

1. If (V is B) and ( V is P) then (Q is B) 
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2. If (V is B) and ( V is Z) then (Q is MB) 

3. If (V is B) and ( V is N) then (Q is M) 

4. If (V is M) and ( V is P) then (Q is MB) 

5. If (V is M) and ( V is Z) then (Q is M) 

6. If (V is M) and ( V is N) then (Q is MS) 

7. If (V is S) and ( is P) then (Q is M) 

8. If (V is S) and ( V is Z) then (Q is MS) 

9. If (V is S) and ( V is N) then (Q is S) 

Remark 5.1: The above fuzzy rules carry the control principle: when V is 'big' and 

V is 'positive' (i.e., V is increasing), then chose 'big' control input Q to force the 

system state to converge to the desired state faster; when V is 'small' and V is•

'negative' (i.e., V is decreasing), then chose 'small' control input Q to decrease 

control chattering. 

Q 

V 

P z N 

V 

aci 	
cn

 

B 

MB 

M 

MB 

M 

MS 

M 

MS 

s 

Table 5.1. Fuzzy inference rules table 
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The membership functions for fuzzy variables V, V, and Q with normalised universe 

of discourses are chosen as in Fig. 5.1 (a)-(c). The fuzzy inference surface is shown in 

Fig. 5.1 (d). 
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Fig. 5.1 (c) Fuzzy subsets of Q 
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V_dot V 

Fig. 5.1 (d) Surface of Q (V, V) 

5.4 An illustrative example 

To illustrate the proposed fuzzy tuning sliding mode control scheme in this chapter, a 

simulation example is carried out for a one-link rigid robotic manipulator. The 

dynamic equation of motion of the manipulator is given by 

m1 26 + do + mglcos(0) = u + u d 	 (5.11) 

with m = lkg,1= lm , g = 9.81m/s 2 , d = lkgm 2 /s , 	and Li d  = 0.3sin(10t) is the 

external disturbance. 
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Eqn. (5.11) can be rewritten in matrix form as follows 

	

[X 	X2 	1 +u 
[01 

	

5( 2 	— x 2  —9.81cos(x 1 )+0.3sin(10t) 	1  
(5.12) 

where x i  represents the angle position 0. The control objective in 

force the one-link robotic manipulator to follow a desired 

generated by the following reference model 

this simulation is to 

trajectory which is 

r kdi j  0 	1 irx di±r0iu  
L 3, di  L-25 _mikdi  [

j 
 
us (5.13) 

where u s  is chosen as in Fig. 5.2. 

Define an error vector 

e  ie 1 1 .  [x —x d ] 

—kd 
(5.14) 

Sliding mode is prescribed as 

e i  s = c T e = [A, If 1= Ae i  + é 1  
e 2  

(5.15) 

Adopt the reaching law 
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§ = —Q sgn(s) (5.16) 

Taking the time derivative of (5.14) gives 

.i• = Ae l  — k d  — x 2  — 9.81cos(x 1 )+ 0.3sin(10t) + u 	 (5.17) 

Equating (5.16) and (5.17) and solving for the control u yields 

u = —Q sgn(s) — Ae, + k d  + X 2  ± 9.81cos(x 1  ) - 0.3sin(10t) 	 (5.18) 

Fig. 5.3 shows the output tracking using the conventional sliding mode controller 

(5.18) with Q=5 and A=6, which is shown in Fig. 5.4. Fig. 5.5 shows the output 

tracking using a sliding mode controller (5.18) with fuzzy tuning for Q, the control 

input is shown in Fig. 5.6. The scaling factor for fuzzy variables s 2  ,s and Q are 

chosen as 1, 6 and 5, respectively. It can be seen that the control chattering is greatly 

reduced with fuzzy tuning. 
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5.5 Concluding remarks 

In this chapter, Lyapunov stability theory and fuzzy logic technique are combined 

together to design sliding mode control systems. It is shown that a sliding mode is 

first designed to describe the desired system dynamics for the controlled system. A set 

of fuzzy rules are then used to adjust the parameters of the controller based on the 

Lyapunov function and its derivative. The sliding mode controllers with fuzzy tuning 

algorithm show the advantage of reducing the chattering of the control signals, 

compared with the conventional sliding mode controllers. A simulation example using 

fuzzy sliding mode control for a one link robotic manipulator is given in support of the 

proposed control scheme. 
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Chapter 6 

Robust Continuous Sliding Mode 
Control 

6.1 Introduction 

Sliding mode control (SMC), based on the theory of variable structure systems, first 

proposed by Emelyanov in 1967, has attracted a lot of research on control systems for 

the last two decades. Sliding mode control is a robust control technique that has been 

successfully used for the control of linear and nonlinear systems. In order to design 

sliding mode control systems, a switching surface or a sliding mode is defined first, 

then a sliding mode controller is designed to drive the system state variables to the 

switching surface. If the system state is above or below the switching surface, then the . 

controller will drive the system state back to the surface. Once the system state reaches 

the switching surface, the system state will slide along the switching surface, and the 

dynamics of the controlled system is pre-determined by the sliding mode parameters 

and remains insensitive to variations of system parameters and external disturbances. 
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The main drawback of sliding mode control is the associated undesirable chattering 

problem. It not only increases wear of the final control element but also excites high 

frequency unmodelled plant dynamics (Slotine and Sastry, 1983). To reduce this 

unwanted control chattering, Slotine and Sastry (1983) proposed a 'boundary layer' 

approach which approximates the ideal relay characteristics used by sliding mode 

control by linear saturated amplifier characteristics. This boundary layer sliding mode 

control only guarantees that the state will converge to a band (boundary layer) 

centered on the sliding mode. It provides no guarantee that the state will converge 

exactly to the sliding mode, although the state can be brought arbitrarily close to the 

sliding mode by narrowing the boundary layer at the cost of higher control authority. 

As an alternative, Zhou and Fisher (1992) proposed a continuous approach using the 

concept of boundary layer equivalence. The main disadvantage of this technique is 

that it tends to produce conservative designs. Because their control law is equivalent to 

a cubic feedback control, therefore, the control input may be very large and exceeds 

control element's physical limits. 

Recently, Ha and Negnevitsky (1996) introduced a fuzzy tuning sliding mode control, 

it is shown that the control performance can be improved by fuzzy tuning. 

In this chapter, we present a robust continuous sliding mode control scheme based on 

Lyapunov stability theory. The proposed controller consists of three components: 

equivalent control, continuous reaching mode control and robust control. It retains the 

positive properties of sliding mode control but without the disadvantage of control 
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chattering. As an example, the proposed control scheme is applied to the design of a 

robust tracking controller for a one-link robotic manipulator. 

6.2 A robust continuous sliding mode control 

Consider a linearised dynamic system described by 

= (A + AA)x + (B + AB)u 	 (6.1) 

where x E R" is the state vector, u E R is the control signal, AE IV" and BE R 

are the nominal system matrices and in controllable form, AA and AB represent 

uncertainties. The following matching condition is used for further discussion (Man 

and Palaniswami, 1995): 

AA = BH 
AB = BE 
	 (6.2) 

with 

0 <114 1 <H0 
O<IEI<E0 <1 

Remark 6.1: Because (A, B) is in controllable form, therefore E is a scalar. 

Sliding variable is defined by, 
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s = cTx (6.3) 

where C T  4c, c 2  . • • c 11 ] is chosen such that the zeros of the polynomial 

C T  X = 0 are in the left half-plane and C T B # 0. 

A equivalent control is given by S =0 or: 

C T X =C T (Ax + Bu e0= 0 	 (6.4) 

that is 

u eg  = —K eq x = —(C T B) -1 C T Ax 	 (6.5) 

A continuous reaching mode controller can be designed by following reaching law: 

= —Qerf() 	 (6.6) 

where Q is a positive reaching law parameter, 5 is a positive number, and erf(x) is a 

standard error function. The continuous sliding mode controller can be easily derived 

as 

u, = —(C T  By' Qerq-) 	 (6.7) 
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In order to deal with system uncertainties, a robust controller is designed as folllows: 

SC T B 	1 	(1-1 0 114 + E 0  1lK eq 4)  

Hence, the robust continuous sliding mode controller is represented by 

	

u = u eq  + u c  + u r 	 (6.9) 

Theorem 6.1: If the controller is given by (6.9), then the system state x reaches origin 

as time tends to infinity. 

Proof: Define a Lyapunov function 

Then 

1  V = —S 2  
2 

V = SS 

= SCT k 

= SCT  [(A + AA)x + (B + AB)u] 

= SCT  [Ax + BHx + B(1+ E)u] 

= SC T  Ax + SC T BHx 

(6.10) 

+ (1+ E)[—SC T Ax — SQerf(T5S  ) —1SCTBI 
1 —

1 
 Eo (14 011 x 11 +  EollKeci 4)1 

< —ESC T Ax + SCTBHx —SCTI311 1 1E1  (Ho Oxli + E0K eq 11 	x 11 )  D 1— E — o   

1EE 1  (H 0 114 ± E 0 11K eq x11) = —ESC T BK eq x + SC T BHx — ISCT BO 11--  

<0 	if S#0 

U r  = II SC T B ll 1  - E 0  (6.8) 

QED 
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6.3 A simulation example 

To illustrate the proposed robust continuous sliding mode control scheme in this 

chapter, a simulation example is carried out for a one-link robotic manipulator. The 

dynamic equation of the one-link robotic manipulator is given by 

m1 2 6 + dO + mgl cos(0) = u 	 (6.11) 

with 

m = lkg - payload, 
1= lm - length of the link, 

g = 9.81m1s 2  - gravitational constant, 

d = lkgm 2 /s - damping factor, 
u - control variable (kgm 2 / s 2 ). 

In Chapter 4, a fuzzy modelling of a nonlinear system is obtained by linearising 

procedures and the following fuzzy inference rules, 

R': 	IF 	x is F: AND ... x is F i; 

THEN 

= 	+ B i ll 

ii=u-u i 	 (6.12) 

i = 1,2,...,/ 

where R i  denotes the i-th fuzzy inference rule, / the number of inference rules, 

(j = 1,2,...,n) are fuzzy sets, 	= x — x d  is the tracking error of the system with 

ro _ 	_ desired trajectory x d  , and x — [ x
x 2 

 1— 
 0 
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Let [t i (x) be the normalized membership function of the inferred fuzzy set F i  where 

and 

n 

F'=flFj  
i=1 

= 1 

(6.13) 

(6.14) 

By using a standard fuzzy inference method, that is, using a singleton fuzzifier, 

product fuzzy inference and centre-average defuzzifier, the following global tracking 

error fuzzy model for the controlled nonlinear system can be obtained, 

3:C = (A + AA)R + (B + AB)i:i (6.15) 

(6.16) 

where 

A =Ept i A ;  B =Ett i B i  u, =E gi u ;  

AA and AB represent system uncertaities. 

Assuming we are interested in the dynamics of the system in the range of [-90 0  ,90 0  , 

then the fuzzy model can be obtained by linearising the nonlinear equation (6.11) over 

a number of points, such as 0° , ± 60°, ± 900. The following fuzzy model has been 

obtained. 
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R : IF x is about -90°, 

THEN X. = 	 = u-u, 

R 2  : IF x, is about -60°, 

THEN 5Z = A 2 R + 	= u - u 2  

R 3  : IF x, is about 00 , 

THEN R. = A 3 R+B 3 11, i1=u-u 3  

R 4  : IF x, is about 60 0 , 

THEN R=A 4 R+B 4 i.i, i= u-u, 

R 5  : IF x, is about 90°, 

THEN 3Z = A 5 R+B 5 11, ii=u-u 5  

with 

 0 	1 
A=I , 

—9.81 — 11' 

0 	1 A2 = [ 
—8.5 — 11 ' 

] 
1 1 A 3  = [0 0 - il 

131 
=[j' 

 

B 2  = 

B 3  = 

1 

1 
r 

1 	, 
ri 

' 

' 

u 
' 

u 2  

U 3 

= 0, 
 

=4.9, 

= 9.81 1 
[ 
8.5 —
0 	ii 	r0i  A 4  = 	134 =

[] , 
	u, =4.9, 

[ 0 
9.81 —1' 

1 A 5  = 	B 5  = [1, 	U 5  = 	 0. 

	

1 	1 

Fig. 6.1 shows the membership functions. Choosing Q =10,8 = 0.3, H o  = 2, the 

simulation results are shown in Fig. 6.2 —6.8. Fig. 6.2 shows the output tracking. 

Fig.6.3 shows the control signal, it is observed that no chattering occurred with the 

proposed robust control scheme. Fig. 6.4 shows the tracking error. Fig. 6.5-6.7 show 

the three control components: equivalent control, continuous reaching mode control, 

and robust control, respectively. Fig. 6.8 shows the phase portrait. 
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Choosing Q = 10, 8 = 1, H o  = 2, the simulation results are shown in Fig. 6.9 —6.15. 

Fig. 6.9 shows the output tracking. Fig.6.10 shows the control signal, it is observed 

that no chattering occurred with the proposed robust control scheme. Fig. 6.11 shows 

the tracking error. Fig. 6.12-6.14 show the three control components: equivalent 

control, continuous reaching mode control, and robust control, respectively. Fig. 6.15 

shows the phase portrait. 

Choosing Q = 10, H o  = 2, and using discontinuous control u d  = —Qsgn(S) instead of 

u c  , then the simulation results are shown in Fig. 6.16 —6.22. Fig. 6.16 shows the 

output tracking. Fig.6.17 shows the control signal, it is observed that severe chattering 

occurred with the discontinuous control scheme. Fig. 6.18 shows the tracking error. 

Fig. 6.19-6.21 show the three control components: equivalent control, discontinuous 

control, and robust control, respectively. Fig. 6.22 shows the phase portrait. 

6.4 Concluding remarks 

In this chapter we developed a robust continuous sliding mode control scheme for 

linear systems with uncertainties. The controller consists of three components: 

equivalent control, continuous reaching mode control and robust control. It retains the 

positive properties of sliding mode control but without the disadvantage of control 

chattering. The proposed control scheme has been applied to the tracking control of a 

one-link robotic manipulator by fuzzy modelling of the nonlinear system. 
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Chapter 7 

Fuzzy Adaptive Sliding Mode Control 

7.1 Introduction 

Adaptive control of mechanical manipulators has been studied extensively by many 

researchers using various methodologies (Craig and Sastry, 1986; Slotine and Sastry, 

1984; Balestrino et al., 1979; Young, 1978), such as hyperstability theory, Lyapunov 

stability method, self-tuning regulator control and sliding mode control (SMC). 

Among the various methodologies, the SMC demonstrates its good robustness and low 

computational cost. SMC is a discontinuous feedback control that switches the system 

control structure during the evolution of the system state so that the system states 

remain in a prescribed subspace. A SMC controller for robot manipulators suggests 

that each manipulator link matches a first order sliding motion such that when the 

system state reaches the sliding mode, it chatters along the sliding mode and exhibits 

sensitivity to the system parameter variations and external disturbances (Slotine and 

Li, 1987). 
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One of the well known results in SMC design for trajectory tracking of robotic 

manipulators was obtained by Slotine and Li (1987, 1991). Their adaptive SMC is 

based on the linear parametrization approach for the robotic systems which do not 

involve any uncertainties and disturbances. The validity of the control algorithm is 

based on the assumption that the system parameters must be constant and the desired 

trajectory should be sufficiently "rich" to guarantee parameter convergence. To 

overcome the robustness problem of Slotine and Li's controller, Su and Leung (Su and 

Leung, 1993) have proposed a modification that employs the bound estimation 

algorithms in the controller to give rise to a robust adaptive SMC controller without a 

priori knowledge of upper bounds of the system parameters. This controller is able to 

handle large and time varying variations in the parameters. However, the problem is 

that their control torques designed incur very large chattering which is not desirable in 

practice, especially in mechanical systems. 

In chapter 5, a fuzzy tuning algorithm was employed for conventional sliding mode 

control to diminish undesired control chattering. In this chapter, a fuzzy tuning 

adaptive sliding mode control is proposed for trajectory tracking of rigid robotic 

manipulators with uncertainties to achieve robustness as well as desired qualities such 

as minimal chattering and small control torques. 

This chapter is organised as follows: In Section 7.2, a fuzzy tuning adaptive sliding 

mode controller is presented. Section 7.3 describes the experimental results for 

confirmation of the theoretical results. Section 7.4 gives concluding remarks. 
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7.2 Robust adaptive SMC with fuzzy tuning 

Consider the dynamics of the n-joint robotic manipulators represented by the 

following second order nonlinear vector differential equation 

H(q)4+ C(q,q)q+ g(q) = r(t)+E(t) 	 (7.1) 

where q(t) is the nxl vector of joint angular positions, H(q) is the nxn symmetric 

positive definite inertia matrix, C(q,q)q is the nxl vector containing Coriolis, 

centrifugal forces, g(q) represents the derivation of the manipulators potential energy, 

r(t) is the nxl vector of applied joint torques which are actually control inputs, and 

E(t) is the nxl bounded input disturbances vector. 

We assume that the robotic manipulators have uncertainties, i.e. 

H = Ho + All (7.2) 

C= Co  + AC (7.3) 

g = go  + Ag (7.4) 

where H0 ,CO3  go  are the nominal part and AH, AC, Ag are the uncertain part. The 

uncertain components represent bounded small possible time varying, unmodelled 

dynamics or load changes. Substituting the expressions (7.2)-(7.4) into the dynamics 

(7.1) gives rise to 
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H0(q ) .4+ co (q,4)4+ go(q)= t(t)+P(t) 
	

(7.5) 

with 

p(t)=E(t)— 	AC(q,q)q— Ag(q) 	 (7.6) 

representing all the uncertain terms. When p(t)=0, we call the dynamics as the 

”nominal dynamics" of the robotic manipulators. 

Let the parameters to be estimated be represented by, 

a= a0 + Aa 	 (7.7) 

The sliding function is 

s= 4 + 	= 	 (7.8) 

where 4,. = 4„ — A, and qd  is the desired trajectory while A is a positive constant 

matrix. We have the following result: 

Theorem 5.1: The control torques and the adaptive learning laws given below, ensure 

convergence of the sliding function s to zero: 

(7.9-a) 
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r, = ya— Ks, 	 (7.9-b) 

T 2  = —Qsgn(s) 	 (7.9-c) 

= —FY T s, 	 (7.10) 

where Y is the regressor matrix satisfying 

Ho4 r  + C0q + go  = Ya o  

K is a positive definite constant matrix, a the estimated parameter, 	= a — a0 , Q the 

upper bound matrix for p(t), and r a constant positive definite matrix. 

Proof: To analyse the convergence and stability, we consider the Lyapunov function 

v(t)=—(sT H o s+ c-i- Tr - ia) 
2 

(7.11) 

The derivative of V(t) is 

•:-T —- IY(t)= S T  Hcri.-F 
1  —2 sT  flos+a r I  a (7.12) 

Substituting = q - 4,. and Ho  = H — All yields 

1Y(t)= 5 T (H4 —AH4 —H04,)+-21  s T ilo s+ 	 (7.13) 

Since H.4 + C4 + g = + E. therefore 
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1/4 = T E — (Co  + AC)4 — (g o  + Ag) 	 (7.14) 

So, we have 

— Co 4 — g o ) + —21  s r fl o s+a T r -t a-  (7.15) 

1 	 - Now, using s = 4-4, and —s T  (H0  —2C0 )s = 0 (Slotine and Sastry, 1987, 1991) we 
2 

have 

sT (_coo +  _21  s T fios  = Ths T cos  + _21  sT 	sT co4r  _ sT co4r,  

Substituting r = T 1 + T 2  we get 

IY(t) = s r  ('r, — H ø 4 r — 	— g o  ) + s r  (T 2  + p) + 	 (7.16) 

Since HA, + C0q + go  = Yao  and (7.9)-(7.10), therefore 

1(t) = s r  (Ya — Ks —Ya o )+ EL T  r -i a + sT (T 2  + p). 	 (7.17) 

But sr  sgn(s) = 	Choosing a T _ (_ryT T ) 	_S T  }T, we have 
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T 	 A a r a =—s Yl 1 (a — a0 ) . (7.18) 

Therefore 

V(t)=—s T  Ks— sr p+ ST t , 

= —s T  Ks— s T  p— s T Qsgn(s) 
< 0 

(7.19) 

Tracking convergence is then proved, i.e. s --> . 	 QED. 

Remark 7.1: From (7-9) one can see that the control torque contains two parts: 1 1  is 

identical to the control law of Slotine and Li (1987; 1991) which is used to estimate 

the constant part of the system parameters; the other part r 2  is the switching control 

characterised by upper bound matrix Q for system uncertainties and external 

disturbances. 

Remark 7.2: In order to achieve the good quality of the above adaptive sliding mode 

control, we apply the same fuzzy tuning mechanism as described in Section 5.3 to 

adjust switching control parameter Q according to Lyapunov function and its time 

derivative. 

The fuzzy inference system consists of two linguistic input variables V and V and one 

linguistic output variable Q. The two fuzzy input variables are defined as follows 
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V={B, M, S} 	 (7.20) 

V=113 , Z, 	 (7.21) 

where B = big, M = medium, S = small, P = positive, Z = zero, N = negtive. Fuzzy 

output variable Q is defined as follows 

Q={B, MB, M, MS, S} 	 (7.22) 

where MB = medium big, MS = medium small. The input-output relation of the fuzzy 

controller with fuzzy variables (7.20), (7.21) and (7.22) is written by 

V, —>Q 	 (7.23) 

The fuzzy tuning algorithm for Q is described in following fuzzy rules, 

1'. If (V is B) and ( V is P) then (Q is B) 

2. If (V is B) and ( V is Z) then (Q is MB) 

3. If (V is B) and ( V is N) then (Q is M) 

4. If (V is M) and ( V is P) then (Q is MB) 

5. If (V is M) and ( V is Z) then (Q is M) 

6. If (V is M) and ( V is N) then (Q is MS) 

7. If (V is S) and ( V is P) then (Q is M) 

8. If (V is S) and ( V is Z) then (Q is MS) 

9. If (V is S) and ( V is N) then (Q is S) 
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The membership functions for fuzzy variables V, V, and Q with normalised universe 

of discourses are chosen as in Fig. 7.1 (a)-(c). The fuzzy inference surface is shown in 

Fig. 7.1 (d). 
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V_dot V 

Fig. 7.1 (d) Surface of Q (V, V) 

7.3 An illustrative example 

A real-time implementation of the control strategy was developed for a five-bar 

robotic manipulator, as shown in Fig 7.2. 

Fig.7.2 A five bar robotic manipulator 
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The dynamics of the resultant two degree of freedom system, operating in the 

horizontal plane, can be approximately described by 

[H 11  
[H 2 , 

H 12 1[ 41 	[ 0 	4 2  4 1  . T i  

H22 42 	/141 	0  42 	Lt 2 
(7.24) 

 

where H il  = a 1 , H 12  = H 21  = —a 3 cos(q 2  — ) H 22  = a 2 , h = a 3  sin(q 2  — q l ) • 

The hardware details are shown in Fig. 7.3. Two interface cards are installed in the 

computer with a Pentium Pro/200MHz CPU. The PC-30D by Eagle Tech consists of 

two 12-bit D/A converters with full scale output range from 0 to +10V, the output 

signals are fed to robot motors through a Servo amplifier by Baldor (TSD-050-05-02- 

1, operated in torque mode). The PCL-833 by Advantech is a 3-axis quadrature 

encoder and counter add-on card, and receives qradrature signals from DC-

Tacho/Encoders (with 500 counts/rev) mounted on the motor shafts for joint angle 

measurements. DC motors by Maxon (RE035-071-39, gear ratio 86:1) provide the 

joint actuation. 

Fig. 7.3 Schematic diagram of the five -bar robot 
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The following second order dynamic model was chosen to generate the desired 

trajectory: 

X m  = A„,x„, +B„,r 

where x. = [qd , qd2  qd1  qd2 f , with initial values x„,(0) = [2.0 1.5 0 0] T  

0 	0 	1 	0 
0 	0 	0 	1 

—6.25 	0 	—5 0 
0 	—6.25 0 —5 

and r(t) is the set point. 

The initial state of the robot was chosen as 

[q1 q2 41 42f =[- 0 0  of 

The initial estimates of the system parameters were chosen as 

[a l  a2 a3 ]T = [0.02 0.04 0.0015]T  

The following parameters were also chosen 

A m = B„, = 

00 
00 
10 
01 
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K = 21, A =10/, 

0.01 	0 	o 
1= o 	0.01 	o 

o 	o 	0.001 

In this experiment, the sampling interval is lms. 

Fig. 7.4- 7.10 show the experimental results with T 2  = —Q sgn(s) and Q=0.5 without 

fuzzy tuning. It is observed that there exists chattering in the control signal. 

Fig. 7.11- 7.17 show the experimental results with T 2  = —Q sgn(s) and Q„..0.5 with 

fuzzy tuning. It is observed that the control chattering is diminished. 

7.4 Concluding remarks 

In this chapter, Lyapunov stability theory and fuzzy logic technique are combined 

together to design fuzzy adaptive sliding mode control systems. It is shown that an 

adaptive sliding mode control is first designed to learn the system parameters with 

bounded system uncertainties and external disturbances. A set of fuzzy rules are then 

used to adjust the controller's uncertainty bound based on the Lyapunov function and 

its time derivative. The robust adaptive sliding mode controllers with fuzzy tuning 

algorithm show the advantage of reducing the chattering and the amplitude of the 

control signals, compared with the adaptive sliding mode controller without fuzzy 

tuning. Experimental example for a five-bar robot arm is given in support of the 

proposed control scheme. 
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Fig. 7.7 Tracking error of joint 2 (without fuzzy tuning) 
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Chapter 8 

Robust Adaptive Sliding Mode Control 
of Robots 

8.1 Introduction 

Adaptive control of mechanical manipulators has been studied extensively by many 

researchers using various methodologies (Craig et al., 1986; Slotine and Sastry, 1984; 

Balestrino et al., 1979; Young, 1978), such as hyperstability theory, Lyapunov 

stability method, self-tuning regulator control and sliding mode control (SMC). 

Among the various methodologies, the SMC demonstrates its good robustness and low 

computational cost. SMC is a discontinuous feedback control that switches the system 

control structure during the evolution of the system state so that the system states 

remain in a prescribed subspace. A SMC controller for robot manipulators suggests 

that each manipulator link matches a first order sliding motion such that when the 

system state reaches the sliding mode, it chatters along the sliding mode and exhibits 

insensitivity to the system parameter variations and external disturbances (Slotine & 

Li, 1987). 
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One of the well known results in SMC design for trajectory tracking of robotic 

manipulators was obtained by Slotine and Li (1987, 1991). Their adaptive SMC is 

based on the linear parametrisation approach for the robotic systems which do not 

involve any uncertainties and disturbances. The validity of the control algorithm is 

based on the assumption that the system parameters must be constant and the desired 

trajectory should be sufficiently "rich" to guarantee parameter convergence. To 

overcome the robustness problem of Slotine and Li's controller, Su and Leung (1993) 

have proposed a modification that employs the bound estimation algorithms in the 

controller to give rise to a robust adaptive SMC controller without a priori knowledge 

of upper bounds of the system parameters. This controller is able to handle large and 

time varying variations in the parameters. However, the problem is that their control 

torques designed incur very large chattering which is not desirable in practice, 

especially in mechanical systems. 

In this chapter, a new adaptive SMC law is proposed for trajectory tracking of rigid 

robotic manipulators with uncertainties to achieve robustness as well as desired 

qualities such as speedy tracking, minimal chattering and small control torques. We 

first show that, under a mild assumption, and if the control input does not contain the 

acceleration signal, then the system uncertainty is bounded by a positive function of 

the position and velocity measurements. This result forms the foundation of the 

derivation of the proposed adaptive SMC law which does not require measurement of 

acceleration signals. We then propose an adaptive SMC strategy that integrates the 

Slotine and Li's controller for estimation of the constant part of the system parameters 

with a switching controller that takes care of the uncertain part of the system 

parameters with its switching amplitude adaptively learned by a Gaussian RBF neural 
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network. The advantage of the proposed adaptive SMC strategy is that the switching 

control part only controls the "real" uncertain part of the system parameters, and the 

minimum control effort is achieved by adaptive learning of the uncertainty bound. 

When the magnitude of the uncertainties is small, the chattering caused by the 

switching is small. 

This chapter is organised as follows: In Section 8.2, the robust adaptive SMC design is 

presented. Section 8.3 describes the experimental results for confirmation of the 

theoretical results. Section 8.4 gives conclusions. 

8.2 The Robust Adaptive SMC Design 

Consider the dynamics of the n-joint robotic manipulators represented by the 

following second order nonlinear vector differential equation 

H (q)ij + C(q,4)4 + g(q) = r(t)+ e(t) 	 (8.1) 

where q(t) is the nxl vector of joint angular positions, H(q) is the nxn symmetric 

positive definite inertia matrix, C(q,4)4 is the nxl vector containing Coriolis, 

centrifugal forces, g(q) represents the derivation of the manipulators potential energy, 

r(t) is the nxl vector of applied joint torques which are actually control inputs, and 

e(t) is the nxl bounded input disturbances vector. 

We assume that the robotic manipulators have uncertainties, i.e. 

H (q) = H 0  (q) + AH (q) 
	

(8.2) 

C(q,4)= Co  (q,4)+ AC(q, 4) 
	

(8.3) 
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g(q) = g o (q)+ Ag(q) 	 (8.4) 

where H 0 (q),C0 (q,4), g o (q) are the nominal parts and AH (q), AC(q,q), Ag(q) are 

the uncertain parts. The uncertain components represent bounded small possible time 

varying, unmodelled dynamics or load changes. Substituting the expressions (8.2)- 

(8.4) into the dynamics (8.1) gives rise to 

Ho (0.4 ± Co (q, 4)4 + go (q) = t(t) + P(t) 	 (8.5) 

with 

p(t)= e(t)— AI-14— AC(q,q)q — Ag(q) 	 (8.6) 

representing all the uncertain terms. When p(t)=0, we call the dynamics as the 

"nominal dynamics" of the robotic manipulators. 

Some mild assumptions are made prior to further discussion. These assumptions are 

usually satisfied in practice. 

Assumption 8.1: The matrix H(q) is bounded and invertible, i.e. for some unknown 

constant y h  , 

(8.7) 

and 11 - ' (q) exists for all q. 

Assumption 8.2: The vectors C(q,q) and g(q) satisfy 

IIC(q 	Y c20q11 +  Y c3I1411 2  

lig(q)11<yf +yllq11 
where yh of , yC2 , yC3, y f 9 - gg  y are positive constants but do not have to be known. 

(8.8) 

(8.9) 
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According to the characteristics of industrial robots, These assumptions are not 

stringent and have been used by many researchers (Abdallah et al., 1991). With these 

mild assumptions, the following theorem is derived which will be very useful for later 

derivation of the robust adaptive SMC controller for robotic manipulators. 

Theorem 8.1: With Assumption 8.1-2, if the control input vector t(t)does not contain 

the acceleration signal 4, then the system uncertainty term p(t) is bounded by a 

positive function of the position and velocity measurements: 

1113(0 11 ‹  Ed (q ,4) 
	

(8.10) 

where Fd (q,(4) is a positive function to be expressed in the following. 

Proof: Expression (8.5) can be written in the following form 

4= H0 (q) -1 (T(t)+ p(t))- Ho (q) -I  ho (q,q) 	 (8.11) 

with hc, = Co  (q,q)q + g o (q) . Using expression (8.11) in expression (8.6), we have 

p(t)= -AH(q)q - Ah(q,q)+ E(t) = -AH(q)11 0 (q) -1-4t) 

-AH(q)H0 (q) -1  p(t)- AH(q)110 (q) -1 110 (q,4)- Ah(q,q)+ E(t) 	(8.12) 

which gives 

p(t)= -(1 + AH(q)H0 (q) -1 ) -1  AH(q)H0 (q) - ` 'r(t) 
+(l + AH(q)110 (q) -1 ) -1  (-Ah(q,4)+ E(t)) 

-(I + AH(q)H0 (q) -1 ) -1  AH(q)Ho (q) -1 ) -1  AH(q)H0 (q) -1 110 (q,q) 	(8.13) 

Then 

10(01 11(I + AI-1(q)H0(q)-'11A11(q)110(q)-'11111011 
+V(I + AH(q)H0 (q) - ' )111Ah(q ,q)II II ± A 11(q )110(q )-'  ) -1 1010 )11 

+ 0 (1 AH(q)110(q )-1)-1 0A11(q )110(q )-1 1111 110( q ')11 
	

(8.14) 
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Considering the assumptions 8.1-2 and the fact that the input disturbance vector is 

upper bounded, we have the following inequalities: 

11(/ + AH(q)H0 (q) -1 ) -1 11< a 1 	 (8.15-a) 

11 AH(q )110(q )-1 11 <  a2 	 (8.15-b) 

Ils(t)11‹ Et 	 (8.15-c) 

Ilho(q , 4)11 <  a3 +a411.711+414112 	 (8.15-d) 

IlAh(q , 4)11 <  a  7 + 414 a904112 	 (8.15-e) 

where a 1 ,...,a 9  and E I  are unknown positive constants. Using inequalities (8.15-a)- 

(8.15-e) in expression (8.14), we have 

11 13(t) Il <a l alr(t) 11 
(a1a7 atE1 a1a2a3 

+(aia8 a1a2a4)11q11 

+(a1a9 a1a2a5 )4 11 2  

Now because the control input does not contain acceleration signal, i.e., 

t(t) = F(q,4) 

and there exists a positive function Fp  (q,4) such that 

11'0011=11F (q , 4)1I < F p (q ,  4) 
Using expression (8.18) in expression (8.16), we have 

a 1 a 2  F p  , 4) 

± (a  l a  7 ± a iE ala2a3 
+ (alas aia2a4 )114 

+ (a1a9 ot1a2a5 

Fd(q 7 0 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

QED. 
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Remark 8.1: It has been seen from above discussion that the upper bound of the 

system uncertainty p(t) is input-related because of the high nonlinearities in robot 

systems. 

Remark 8.2: As a special case of theorem 8.1, if the control system uses the following 

polynomial-type of controller, 

11'0011 < x 0 + x111q 1I+ x211411 2  = F, (q, 4) 
	

(8.20) 

where A 0  , X I  and A 2  are positive numbers, then by expression (8.19), we have 

111)(011 < b1 + NM+ b311411 2 
	

(8.21) 

where 

bl  = a 1 a 2X 0  +a,a, +a,c, +a,a 2a 3 , 

b2  = a 1 a 2X 1  +a 1 a 8  +a,a 2 a 4 , 

b3  =a,a 2X 2  +a,a 9  +a,a 2 a 5 . 

Bounded property in expression (8.21) has been used by some researchers (Abdallah 

et al., 1991, Man & Palaniswami, 1994). 

In order to track a desired trajectory using robotic manipulators whose parameters are 

composed of large, fixed parts and small, bounded uncertain parts, we propose a 

controller structure that consists of two components: one is switching controller with 

amplitude adaptively learned by using Gaussian RBF neural networks which controls 

only the uncertain parts; the other is similar to Slotine and Li's controller that takes 

care of the certain parts. 

Suppose p c, (q,4) is the optimal bounding function for p(t) , i.e., 
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IIP(t)11 	Po (.7, 4) 
	

(8.22) 

In this paper, we choose the Gaussian RBF neural network to adaptively learn the 

bounding function p o  (q, 4) . It has been shown (Poggio & Girosi, 1990) that a linear 

superposition of Gaussian RBFs results in an optimal mean square approximation to 

an unknown function which is infinitely differentiable and whose values are specified 

at a finite set of points. Further, it has been proven (Poggio & Girosi, 1990) that any 

continuous functions, not necessarily infinitely smooth, can be uniformly 

approximated by a linear combination of Gaussian RBFs. 

The Gaussian RBF neural network is a particular network architecture (Poggio & 

Girosi, 1990) that consists of three layers: the input layer, the hidden layer that 

contains the Gaussian RBF and the output layer. At the input layer, the input space 

x E R" is divided into grids with a Gaussian function at each node defining a receptive 

field in R" with c i  as its centre and cs 2 as its variance. The value of variance essentially 

defines the extent of localisation of the effect of the input. The approximation of the 

bounding function can be written as, 

pow = 0 T 4(x)  

.ye,(0,(x) 	 (8.23) 

where x = [q T  • T q 	, 0 is the weight vector, and 

11 X 	C i 11 2 
11) i  (X) = exp( 	2 	) 

a 
(8.24) 

Assume that there exists a constant weight vector 0* so that 0* T O(x) achieves the 

minimum control effort of the sliding mode control and 

0* T 0(x) — p o  (x) A 	 (8.25) 



CHAPTER 8 ROBUST ADAPTIVE SLIDING MODE CONTROL OF ROBOTS 161 

where A is a small positive number. 

Let the parameters to be estimated be represented 

a = a + Aa (8.26) 

The sliding function is 
s = Fir + 	= — 4 r 	 (8.27) 

where 4, = 4 d  — A, and qd  is the desired trajectory while A is a positive constant 

matrix. We have the following result: 

Theorem 8.2: The control torques and the adaptive learning laws given below, ensure 

convergence of the sliding function s to zero: 

1=  + 	 (8.28-a) 

T i  = Y - Ks, 	 (8.28-b) 

T 2  = —6 7- (130(X)sgn(s) 
	

(8.28-c) 

a = — ryTs, 	 (8.29) 

6  = 0.0(.11s11 
	

(8.30) 

where Y is the regressor matrix satisfying 

Ho e'fir  + C04, + go  = Yao  

K is a positive definite constant matrix, a the estimated parameter, a = a - ao , 0 the 

weight vector for bounding function, Q a positive definite diagonal matrix and r a 

constant positive definite matrix. 

Proof: To analyse the convergence and stability, we consider the Lyapunov function 
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-1 V (t) = r 11 0 S + arr -  a + 0 E2 0- 1 
2 

The derivative of V(t) is 

1(t) = s T H 0 ,i• + —21  s r H o s + tirr -ta - 6Tg2 -1 6 

Substituting = 4 - 4„ and Ho  = H — AH yields 

V(t) = S T  (114 6.114 — 11 0 4,)+ —21  S T  1 .1 0 S + a rr -t a - 6 7- 52 -1 6 

Since 114 + C4 + g = . therefore 

(8.31) 

(8.32) 

(8.33) 

H4 = T - ( C0  + AC)4 - (g0  + 	 (8.34) 

So, we have 

1(t)= S T  — AH4 — AC4 — Ag — Ho ii r  — Co4 —g o ) + —21  S T  fl o S± a T  r --' - -OTS-116 

(8.35) 

1  
Now, using s = 4 - 4 and —s T  (H0  —2C0 )s = 0 (Slotine & Li, 1987; 1991) we have 

r 	2 

s T 	c r 	c r  S T  ( —004)+ —21  S T  1110 S = — S T  Co S + —21 /los _ sT o4 = _ sr o4 ,  

Substituting r = r 1 + T 2  we get 

(8.36) 

Since HA + C04,. + g o  = Yao  and (8.28)-(8.30), therefore 

1(t) = sr  (Ya— Ks —Ya0 )+ arr -ia - -OTE-21 

+sr(1- 2  - 	- Ac4 - Ag). 

But ST  sgn(s) = IsO, Choosing aT =, 
)T 
	sT Yr, we have 

(8.37) 
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• — a i a = —sT yrr - '(â--- a0 ) . 

Therefore 

1Y = -S T  Ks — s T  (6.114 	Ag)— s T  o T  (I)(q,q)sgn(s) — ii T S2 -1 6 

= —s T  Ks — sTp(t)— 61'4014 - (CI*  - T 4)(14 
5_ — s T  Ks — [0 *T  (1(x) P 0(X)1114 
< 0 

(8.38) 

(8.39) 

Tracking convergence is then proved, i.e. s --> 0. 	 QED. 

Remark 8.3: From (8.28) one can see that the control torque contains two parts: one 

is identical to the control law of Slotine and Li (1987;1991) which is used to estimate 

the constant part of the system parameters; the other part is an adaptively learned 

switching control by using the Gaussian RBF network. The validity of the 

combination of these two control structures lies in theorem 1 which ensures that the 

uncertainty can be represented in terms of q and 4. The advantage of the proposed 

controller is that the minimum control effort can be achieved by adaptively learning 

of the bounding function, thus, when the magnitude of uncertainties is small, the 

magnitude of chattering is small. 

8.3 Experimental Results 

To demonstrate the validity of the proposed robust algorithm (8.28)-(8.30), a real-time 

implementation of the control strategy was developed for a five bar robotic 

manipulator similar in design to that used by a number of researchers (Mills and 

Lockhorst,1993; Gourdeau and Schwartz, 1991). As shown in Figure 8.1, the links of 



/1421411 ,  [ Ill 
0 4 2 	T 2  
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the robot form a parallelogram enabling the position of the end effector to be uniquely 

specified by the rotations of links one and two. 

Fig.8.1 A five bar robotic manipulator 

The dynamics of the resultant tWo degree of freedom system, operating in the 

horizontal plane, can be approximately described by (Mills and Lockhorst, 1993) 

where H i  =a, H12  = H2I = —a 3 cos(q 2  — ) 7  H22  = a 2 , h = a 3 sin(q 2  — q, ) . 

The following second order dynamic model was chosen to generate the desired 

trajectory: 

= A mx. +B m r 

where x„, = [qdi  qd2  (*h i  qd2 f , with initial values x„, (0) = [2.0 1.5 0 Of 
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and r(t) is the set point. 

The hardware details of the control system are shown in Figure 8.2. Two interface 

cards are installed in the computer with a Pentium Pro/200MHz CPU. The PC-30D by 

Eagle Tech consists of two 12-bit D/A converters with full scale output range from 0 

to +10V, the output signals are fed to robot motors through a Servo amplifier by 

Baldor (TSD-050-05-02-1, operated in torque mode). The PCL-833 by Advantech is a 

3-axis quadrature encoder and counter add-on card, and receives qradrature signals 

from DC-Tacho/Encoders (with 500 counts/rev) mounted on the motor shafts for joint 

angle measurements. DC motors by Maxon (RE035-071-39, gear ratio 86:1) provide 

the joint actuation. 

Fig.8.2 Schematic diagram of robot control system 
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The initial state of the robot was chosen as 

[ql q2 41 421 = [i 00  of 

The initial estimates of the system parameters were chosen as 

[a l  a 2  a 3 f = [0.015 0.04 0.0015r 

The centres of the Gaussian RBFs were chosen as follows: 1.4 and 3.4 for q,, 0 and 

2.0 for q 2 , -1 and 1 for 4 1  and 4 2 . Therefore, totally 2x2x2x2 =16 Gaussian RBFs 

were used in the experiment. 

The following parameters were also chosen 

K = 21, A =10/, S2 = 21, a 2  = 2.0 

0.01 	0 	0 
F= 0 0.01 	0 

0 	0 	0.001 _ 

In this experiment, the sampling interval is lms. Figure 8.3(a)-(c) show the graphs of 

the output tracking, tracking errors and control torques. Figure 8.4 shows the 

parameter estimations. Figure 8.5 illustrates the bounding function estimations. 
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8.4 Concluding remarks 

A new adaptive sliding mode controller has been developed in this chapter for 

trajectory tracking in robotic manipulators. This controller is able to estimate the 

constant part of the system parameters as well as adaptively learn the uncertain part of 

the system parameters by the Gaussian neural network. We have shown that under a 

mild assumption, the proposed control law does not require measurement of 

acceleration signals. This new control law exhibits the good aspects of Slotine and 

Li's and keeps the chattering to a minimum level. An experiment with a five bar 

robotic system was done and the results have confirmed the effectiveness of the 

approach. 
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Parameters estimation 

Fig. 8.4 The system parameters estimations 

Bounding function estimation 
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Fig. 8.5 Bounding function estimation 



CHAPTER 9 CONCLUSIONS 	 172 

Chapter 9 

Conclusions 

9.1 Summary 

Variable structure control technique is a powerful approach for the control of 

nonlinear systems. It is advocated to solve complex control problems that are not in 

the scope of simple linear feedback controllers and adaptive controllers. However, the 

over estimation of system uncertainties and the inherent control chattering will still be 

the main issue of the variable structure controller design. Therefore, this thesis has 

been mainly concerned with the study and improvements of robust control schemes by 

employing artificial intelligent technologies. 

Chapter two of this thesis has provided a brief survey of variable structure control 

theory. Robust variable structure controller design for robotic manipulators has been 

presented by using reaching law method. The limitations of these results have also 

been highlighted. 

Chapter three has provided a background for fuzzy logic and fuzzy logic control 

techniques being applied in the thesis. Fuzzy sets, fuzzy set operations, and fuzzy 
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linguistic representation such as linguistic variables and linguistic modifiers (hedged) 

have been briefly outlined. The advantages and disadvantages of fuzzy logic controller 

have been discussed. 

In chapter four, a robust tracking control scheme is proposed for a class of nonlinear 

systems. A nominal fuzzy system model for a nonlinear system is established by fuzzy 

synthesis of a set of linearised local subsystems, where the conventional linear 

feedback control technique is used to design a feedback controller for the fuzzy 

nominal system. A variable structure compensator is then designed to eliminate the 

effects of the approximation error and system uncertainties. Strong robustness with 

respect to large system uncertainties and asymptotic convergence of the output 

tracking error are obtained. 

In chapter five, Lyapunov stability theory and fuzzy logic technique are combined 

together to design sliding mode control systems. It is shown that a sliding mode is 

first designed to describe the desired system dynamics for the controlled system. A set 

of fuzzy rules are then used to adjust the controller's parameters based on the 

Lyapunov function and its time derivative. The desired system dynamics are then 

obtained in the sliding mode. The sliding mode controllers with fuzzy tuning 

algorithm show the advantage of reducing the chattering of the control signals, 

compared with the conventional sliding mode controllers. The fuzzy tuning algorithm 

has also been applied to the adaptive sliding mode control. 

In chapter six, a robust continuous sliding mode control scheme for linear systems 

with uncertainties has been developed. The controller consists of three components: 
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equivalent control, continuous reaching mode control and robust control. It retains the 

positive properties of sliding mode control but without the disadvantage of control 

chattering. The proposed control scheme has been applied to the tracking control of a 

one-link robotic manipulator by fuzzy modelling of the nonlinear system. 

In chapter seven, Lyapunov stability theory and fuzzy logic technique are combined 

together to design fuzzy adaptive sliding mode control systems. It is shown that an 

adaptive sliding mode control is first designed to learn the system parameters with 

bounded system uncertainties and external disturbances. A set of fuzzy rules are then 

used to adjust the controller's uncertainty bound based on the Lyapunov function and 

its time derivative. The robust adaptive sliding mode controllers with fuzzy tuning 

algorithm show the advantage of reducing the chattering and the amplitude of the 

control signals, compared with the adaptive sliding mode controller without fuzzy 

tuning. Experimental example for a five-bar robot arm is given in support of the 

proposed control scheme. 

In chapter eight, a new adaptive sliding mode controller has been developed in this 

chapter for trajectory tracking in robotic manipulators. This controller is able to 

estimate the constant part of the system parameters as well as adaptively learn the 

uncertain part of the system parameters by the Gaussian neural network. It is shown 

that under a mild assumption, the proposed control law does not require measurement 

of acceleration signals. This new control law exhibits the good aspects of Slotine and 

Li's (1987) and keeps the chattering to a minimum level. An experiment of a five bar 

robotic system was done and the results have confirmed the effectiveness of the 

approach. 
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In summary, the thesis has provided several new and improved robust variable 

structure control schemes by employing fuzzy logic and neural networks technologies 

aimed at achieving robustness and convergence with optimised control input in the 

presence of system uncertainties and external disturbances. These results have been 

applied to robotic manipulators and have been proved both in simulation and 

experiment. 

9.2 Suggestions for further work 

Some areas for further research related to the thesis are: 

(1) The sliding mode control technique may be used for the design of adaptive filters. 

For example, a Lyapunov function of the tracking error between desired signal and 

output of the filter can be defined first. Then the adaptation law of the filter 

parameters can be obtained based on the sliding mode control theory, so that the 

tracking error can asymptotically converge to zero. The potential advantages of the 

sliding mode technique based adaptive filters over the existing LMS and RLS 

algorithms would be the simplicity and robustness. 

(2) The sliding mode control method may be used for the real time training of neural 

networks parameters to improve the convergence and robustness properties. A 

Lyapunov function of the error between the desired and actual outputs of the 

neural networks can be defined first. Then the error is backward-propagated based 

on Lyapunov stability theory so that the weights of the inner layers of the neural 

networks can be adjusted adaptively. The distinct advantage over the standard BP 

or modified BP would be that the system will not get stuck in a local minimum. 
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(3) The approach of the terminal sliding mode (Man et al., 1994, Yu et al., 1996) may 

be used for BP training of weights of neural networks. As in terminal sliding mode 

design, we can replace the inertial term by following form (LiMin Fu, 1991, 

PP- 83 ), 

Wii  (t + 1) = W ji (t)+ 775 J O, + a[W ii (t) —147  ji (t —1)] ql p 

The convergence and robustness performance could be expected to be improved. 

(4) Last, but not least, fuzzy set theory may be used in the design of fuzzified linear 

sliding mode control and terminal sliding mode control. When the system is far 

from the desired sliding mode, linear sliding mode control scheme can be used to 

achieve fast convergence, while the system is getting closer to the desired sliding 

mode, the terminal sliding mode control scheme can be used to guarantee finite 

time convergence property. Therefore, optimal system performance can be 

achieved by fuzzified control strategy. 
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Appendix A 

Hardware setup for a five-bar robot 
arm 

A photograph of the laboratory setup for a five bar robot manipulator is displayed in 

Fig. A.1. The illustrative and schematic diagrams are shown in Fig. A.2 and A.3. The 

physical parameters are measured as follows, 

m t  =0.11kg 
m 2  =0.1kg 
m 3  = 0.1kg 
m4  =0.055kg 
/ 1  = 0.275m 

1 2  =0.165m 
1 3  =0.275m 
/ 4  =0.32m 
4. 1  =0.12m 

la  = 0.07m 
/ c3  =0.135m 
/ c4  = 0.07m 
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(I:5V DC Supply 

Encoder) 

(-- 	1 
Bottom motor 

■ _./ 

✓ -1 
Encoder ■_ 	_.) 

(- 	--■ 
Robot arms ■._  

Fig.A.I A photograph  of the  laboratory setup for a five-bar robot manipulator 

Fig.A.2  Illustrative  diagram of a five-bar robot arm 
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Two interface cards are installed in the computer with a Pentium Pro/200MHz CPU. 

The PC-30D by Eagle Tech consists of two 12-bit D/A converters with full scale 

output range from 0 to +10V, the output signals are fed to robot motors through a 

Servo amplifier by Baldor (TSD-050-05-02-I, operated in torque mode). The PCL-833 

by Advantech is a 3-axis quadrature encoder and counter add-on card, and receives 

qradrature signals from DC-Tacho/Encoders (with 500 counts/rev) mounted on the 

motor shafts for joint angle measurements. DC motors by Maxon (RE035-071-39, 

gear ratio 86:1) provide the joint actuation. Fig. A.4 —5 show the interface wiring. 

Computer 
Pentium Pro --1 DC-Tacho/Encoder 

Motor 1 
Motor 2 Servo amplifier Robot 

arm 
PC-30D 

PCL-833  DC-Tacho/Encoder 

Fig. A.3. Schematic diagram of the five-bar robot arm 

TSD-050-05-24 (Amplifier) 
1 ------..„, 

34 0 180 
0 

0 0 DACO —0 DIFF+ 
0 0 DIFF- 

0 0 
• 

—0 COMMON 
0 0 ENABLE 

00 
0 0 COMMON 

0 
o 

0 0 RESET AXIS1 
0 

o 
0 0 COMMON 

0 0 0 MOTOR- 
() Top 

0 0 -0 MOTOR+ o 49 Analog GND 
0 0 

0 DAC 1 0 —0 DIFF+ 
0 0 0 DIFF- 

0 JO —0 COMMON 
0 

o 
0 0 ENABLE 

0 0 0 COMMON o 0 RESET AXIS2 
00 

0 0 COMMON 
00 

0 0 MOTOR- 
0 0 PC-30D Card Bottom 

0 0 MOTOR+ 
00 

0 
17 0330 50 

-------- 
Fig. A.4 Interface wiring of PC30-D with servo amplifier 
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Encoder 

1-GND 
2-NC 
3-CHB+ 
4-Vcc 
5-CHA+ 

PCL833 

Fig. A.5 Interface wiring of PCL-833 card 
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Appendix B 

C++ programs for a fuzzy sliding 
mode controller 

FSMC.cpp 

1* 

A fuzzy sliding mode controller for a five bar robot 
manipulator 

*/ 

//#include <iomanip.h> 
#include <iostream.h> 

#include <conio.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <fstream.h> 

#include "container.h" 
#include "defines.h" 
#include "my_math.h" 
#include "PC30 GiveIO.h" 
#include "pc1833.h" 
#include "My_Process.h" 
#include "FSMC Data.h" 
#include "Misc.h" 
#include "Path.h" 
#include "float.h" 
#include "Least Squares.h" 
#include "Vector.h" 

const char* dumpFile = "c:\\Temp\\Dumpl "; 
char* 	definesFile = "FSMC Data.txt"; 
const 	numDefines = 23; 



!{{T'S66'0'S86'0'L6'0'96'0'S8'0'S08'0'508'0'S08'0'8'0 
'8'0'8'0'S08'0'S08'0'S08'0'L'O'S6S'0'S6S'0'S6S'0'9'0'9'0) 
'{S86'0'S86'0'S86'0'L6'0'96'0'S8'0'S08'0'S08'0'508'0'8'0 

'8'0'8'0'S08'0'508'0'508'0'L'O'S6S'O'S6S'O'S6S'O'9'0'9'0) 
'{L6'0'L6'0'L6'0'L6'0'96•0'S8'0'S08'0 

'8'0'8'0'8'0'8'0'8'0'8'0'8'0'S08'0'L'0'S6S'0'9'0'9'0'9'0'9'0} 
'(SS6'0'SS6'0'SS6'0'SS6'0'SS6'0'S8'0 

'8'0'8'0'8'0'8'0'8'0'8'0'8'0'8'0'8'0'L'0'9'0'9'0'9'0'9'0'9'0) 
'(8'0'8'0'8'0'8'0'S08'0'L'0'S6S'0 

'03'0'8'0'8'0'S08'0'S08'0'L'0'S6S'0'S6S'0 

0'S08'0'508'0'S08'0'L'0'S6S'O'S6S'0'S6S'0'9'0 
'9'0'9'0'S6S'0'S6S'0'S6S'0'S'0't'0't'0'SOV0'S017 0'17'0) 

'(8'0'8'0'S08'0'S080'S08'0'L'0'S6S'O'S6S'0'S6S*0'9'0 
'9'0'9'0'S6S'0'S6S'0'S6S'O'S'0'7'O'VO'S017'0'SOV'O'fr'0) 

'(8'0'8'0'8'0'S08'0'508'0'L'0'S6S'0'S6S*0 

'{8'0'8'0'8'0'8'0'508'0'L'0'S6S*0 

'{S6L'O'S6L'0'S6L'0'S6L'O'S6L'0'C0 

'(9'0'9'0'9'0'9'0'S6S'0'S*0 

'(9'0'9'0'9'0'S6S'0'S6S'0'S - 0 

'{9'0'9'0'S6S'0'S6S'0'S6S'0'S'0'V'0'V0'SWO 
'SW0'V'0'S017'0'5017'0'V'0'V0'U0'Z'0'Z'O'SOZ'O'S0'O'Z'O) 

'(9'0'9'0'S6S'0'S6S'0'S6S'0'S'0'V'0'V'0'SW0 
'SOV'O'fi'O'SOD . '0'SOT7'0'VO'V'O'UO'Z'O'Z'O'SOZ'O'SOZ'O'Z'O) 

'(9'0'9'0'9'0'S6S'0'S6S'0 
'S 

'{9'0'9'0'9'0'9'0'565'0 
'S 

O'Z'O'Z'O'Z'O'Z'O'Z'O'Z'O'ST'O'ST7VO'ST7VO'SPO'O'SVIYO'SPO'n 

'Z 

'S0Z'0'Z'0'Z'0'Z'0'S0Z'0'Z'0'Z'0'5T'0'N0 0'E00'Z0 '0'510 0'510*0) 
'{f7'0'SOVO'S017'0'P'0'V0'U0'Z'0'Z'O'SOZ'O'S0UO'Z'0 

'S0Z'0'S0U0'Z'0'Z'0'ST'0'170 . 0'ECCO'ZO'0'10'0'0'0))=[TZ1[1]00b 
aTqnop ;suoo 

!O'OT= zzo aTqnop ;suoo 
(31'01=11 aTqnop qsuoo 

141111(30; !°. ?I=17.1 )-1-q @o c-2-117a 
!xpw—q0C —TA aTqnop 

!xpin—m aTqnop 
!xpW —TA aTqnop 

!0'0=PTO —ZS aTqnop 
r0'0=PTO —TS aTqnop 

poTiad aidures // 	 !sy aTignop 
aignop 

!aToADJadsaidures 	luT 

661 	 El XICIALVddli 
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int k = 0; 	//sample no. 
int cycleNum = 0; 

const int dataChannels =14;// 20;//20;//22; 
const int dataSize = 1000; 	//500 

const double minSafe 	= 0.4; 
const double maxSafe 	= 2.75; 
const double speedLimit = 0.1; 
const double brakeTorque= 5.0; 

//0.4 
//2.75 

Vector torque; 

array2D_double telemetry, ref, path; 

// 
// 
I-  DEFINES - loaded from txt file 
II 

double 	Tcycle,numCycles, AmP1, AmQ1, Q10, Q20, Q1DotO, Q2DotO, 
Q1r0, Q2r0, 

Q1rDotO, Q2rDotO,modelGain, maxTorque, B1, Q1Step, 
Q2Step,forgetFactor; 
int 	StepsPerSample,sampleRate, sampleDelay, numLSQterms; 
// circular path parameters 

double revs; // cycles per second of desired circular path 

u = h + phi*[-Q_FSMC*sign(s) - Ks*s - C1*(q'-qr') + qr"] 
er = -Q_FSMC*sign(s) - Ks*s - C1*(q'-oir') 
temp = er + qr" 

Vector u(Vector& x, double t) 

Vector U; 
double er1,er2,_q1,_q2,_ql_Dot,_q2_Dot,phi11,phi22,phil2, 

templ,temp2,q1SMC,q2SMC,V1,V2,Vl_Dot,V2_Dot, 
hl,h2,S1,S2,Sl_Dot,S2_Dot; 

_ql 	= (x._(Q1) - ref._(k,Q1r)); 	// -ql = q1-qlr 
_q2 	= (x._(Q2) - ref._(k,Q2r)); 
_q1_Dot = (x._(Ql_Dot) - ref._(k,Q1rDot)); 
_q2_Dot 	= (x._(Q2_Dot) - ref._(k,Q2rDot)); 

if(_ql > PI) _q1 = _q1 - 2*PI; 
if(_ql < -PI) _q1 = _q1 + 2*PI; 

if(_q2 > PI) _q2 = _q2 - 2*2I; 
if(_q2 < -PI) _q2 = _q2 + 2*PI; 
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Si = c11*_q1+_ql_Dot; // S= 	[S1 
S2 = c22*_q2+_q2_Dot; // S2] 

Sl_Dot=(Sl-S1_01d)/Ts; 
52_Dot=(52-52_01d)/Ts; 

Sl_Old=S1; 
S2_01d=S2; 

V1=0.5*S1*S1/V1max; 
V2=0.5*S2*S2/V2_max; 
if (V1>1.0) V1=1.0; 
if (V2>1.0) V2=1.0; 

//normalised Lyapunov function 

V1_Dot=S1*Sl_Dot/Vl_Dot_max; 	//normalised time derivative 
V2_Dot=S2*S2_Dot/V2_Dot_max; 
if (fabs(Vl_Dot)>1.0) V1_Dot=SIGN(1.0,Vl_Dot); 
if (fabs(V2_Dot)>1.0) V2_Dot=SIGN(1.0,V2_Dot); 

int il,i2,j1,j2; 
il=(int)(V1*20)+1; 
i2=(int)(V2*20)+1; 
j1=(int)(Vl_Dot*10+10)+1; 
j2=(int)(V2_Dot*10+10)+1; 

q1SMC=30.0*q00[il][j1]; 
q2SMC=30.0*q00[12][j2]; 

erl—q1SMC*SIGN(1.0,S1)-c11*_ql_Dot-Ks*S1; 
er2=-q2SMC*SIGN(1.0,S2)-c22*_q2_Dot-Ks*S2; 

int index; 
index = k;//2 * (int) (ROUND(t/Ts)); 
tempi = en l + AmP1*ref._(k,Q1r) + AmQ1*ref._(k,Q1rDot) 

B1*path._(index,Q1r); 
temp2 = er2 + AmP1*ref._(k,Q2r) + AmQ1*ref._(k,Q2rDot) 

Bl*path._(index,Q2r); 

phill=0.0324; 
phil2=-0.00222*cos(x._(Q2)-x._(Q1)); 
phi22=0.0677;//0.00677; 
hl= 0.00222*sin(x._(Q2)-x._(Q1))*x._(Q2_Dot)*x._(Q2_Dot); 
h2=-0.00222*sin(x._(Q2)-x._(Q1))*x._(Ql_Dot)*x._(Q1_Dot); 

U.set(Q1, ABSLIMIT(hl+phill*templ+phil2*temp2,maxTorque)); 
U.set(Q2, ABSLIMIT(h2+phil2*templ+phi22*temp2,maxTorque)); 

int numToSkip = samplesPerCycle / dataSize; 

if (k % numToSkip ==0) 
//if (k < dataSize) 
{ 

int kk = (k/numToSkip) + (cycleNum * dataSize); 
//it kk = k; 

telemetry.set(kk,0,ref._(k,Q1r)); 
telemetry.set(kk,l,ref._(k,Q2r)); 
telemetry.set(kk,2,U._(Q1)); 
telemetry.set(kk,3,U._(Q2)); 
telemetry.set(kk,4,x._(Q1)); 
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telemetry.set(kk,5,x._(Q2)); 
telemetry.set(kk,6,t+cycleNum*Tcycle); 
telemetry.set(kk,7,ref._(k,Q1rDot)); 
telemetry.set(kk,8,ref._(k,Q2rDot)); 
telemetry.set(kk,9,x._(Ql_Dot)); 
telemetry.set(kk,10,x._(Q2_Dot)); 
telemetry.set(kk,11,path._(k,Q1r)); 
telemetry.set(kk,12,path._(k,Q2r)); 
telemetry.set(kk,13,sampleDelay); 

// 	k++; 

return U; 

// 	 

void startController (pc30 &adCard) 

// Set out voltages to 0.0 
adCard.daOut(LWRmot,0.0); 
adCard.daOut(UPPmot,0.0); 

// initialise PC30 
adCard.setDefaultClk(); 

// 

void stopController (pc30 &adCard) 

adCard.daOut(LWRmot,0.0); 
adCard.daOut(UPPmot,0.0); 

// 

void getRobotVel (pc1833 &quadCard, Vector &robotState) 

static UD_factor lsq_Ql(numLSQterms,Ts,forgetFactor,0.0); 
static UD_factor lsq_Q2(numLSQterms,Ts,forgetFactor,0.0); 

if (k==0) 
{ 

lsq_Ql.setThetaN(0,robotState._(Q1)); 
lsq_Ql.setThetaN(1,0); 
lsq_Q2.setThetaN(0,robotState._(Q2)); 
lsq_Q2.setThetaN(1,0); 

lsq_Ql.LS(k,robotState._(Q1)); 
lsq_Q2.LS(k,robotState._(Q2)); 

robotState.set(Ql_Dot,lsq_Ql.YpDot()); 
robotState.set(Q2_Dot,lsq_Q2.YpDot()); 
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/1 

void getRobotPos (pc1833 &quadCard, Vector &robotState) 

double 	lwrPos,uppPos; 

quadCard.readCounters(); 

// Note initial zero position is lower motor zero deg, upp 
motor 90deg. 

lwrPos = angle(quadCard.counterl() + quartRev); 
uppPos = angle(quadCard.counter0()); 

//cout « "lwrPos= " « lwrPos « " 	uppPos= " « uppPos 

if (lwrPos > oneRevolution) lwrPos = lwrPos - oneRevolution; 
if (uppPos > oneRevolution) uppPos = uppPos - oneRevolution; 

robotState.set(Q1,1wrPos); 
robotState.set(Q2,uppPos); 

} ; 

void 	emmergencyStop(pc30 	&adCard, 	pc1833 	&quadCard, 	Vector 
&robotState) 

int notSafe = TRUE; 
while (notSafe AND (NOT kbhit())) 

if (fabs(robotState._(Ql_Dot)) > speedLimit) 
adCard.daOut(LWRmot,- 

SIGN(brakeTorque,robotState._(Ql_Dot))); 

if (fabs(robotState._(Q2_Dot)) > speedLimit) 
adCard.daOut(UPPmot,- 

SIGN(brakeTorque,robotState._(Q2_Dot))); 

if ((fabs(robotState._(Ql_Dot)) <= speedLimit) AND 
(fabs(robotState._(Q2_Dot)) <= speedLimit)) notSafe 

= FALSE; 

adCard.waitForUsrClk(); 

getRobotPos(quadCard, robotState); 
getRobotVel(quadCard, robotState); 

stopController(adCard); 

// 

int crashed(pc30 &adCard, pc1833 &quadCard, Vector &robotState) 

double cliff = robotState._(Q1) - robotState._(Q2); 
if (diff < 0.0) diff = diff + oneRevolution; 
if (diff < minSafe OR diff > maxSafe) 
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emmergencyStop(adCard,quadCard,robotState); 
stopController (adCard); 
cout « "EMERGENCY STOP - POSSIBLE CRASH CONDITION : ange 

diff = 
cout « diff « "rad\n"; 
return YES; 

} 

return NO; 
} 

II 

void setZeroPosition(pc1833 &quadCard) 
{ 

char instr = 
Vector robotState; 

cout « "Please place arms in zero position then enter 
'r'.\n\n"; 

cout « "Repeat until ok then enter 
cm n » instr; 

quadCard.startCounters(); 

while (instr != 'q') 
{ 

getRobotPos(quadCard,robotState); 
cout « robotState._(Q1) « " " « robotState._(Q2) « " 

cout 	« 	robotState._(Ql_Dot) 	«  
robotState._(Q2_Dot)« "\n"; 

cout.flush(); 

cm n » instr; 
if (instr == 'r') quadCard.resetCounters(); 

} 

Q10 = robotState._(Q1); 
Q20 = robotState._(Q2); 

} 

// 

void doExperiment() 
( 

Vector torque,robotState; 
double t; 
int stopNow = FALSE; 

// ks=KS; 

pc30 	adCard 	= pc30(); 
pc1833 	quadCard = pc1833(); 

startController(adCard); 
setZeroPosition(quadCard); 

setMaxPriority(); 
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adCard.waitForUsrClk(); 

while ((cycleNum < numCycles) AND (NOT stopNow)) 
{ 

adCard.waitForUsrClk(); 

getRobotPos (quadCard,robotState); 
getRobotVel (quadCard,robotState); 

t = k * Ts; 

if(crashed(adCard,quadCard,robotState)) 
else 

stopNow = YES; 

torque = u(robotState,t); 
adCard.daOut(LWRmot,torque._(Q1)); 
adCard.daOut(UPPmot,torque._(Q2)); 
sampleDelay = adCard.divider(); 

k++; 

if (k >= samplesPerCycle) 

k=0; 
cycleNum++; 

stopController(adCard); 
restoreStdPriority(); 

// 

void modelServiceRoutine (Vector x, double t) 

static int j=0; 

ref.set(j,Q1r,x._(Q1)); 
ref.set(j,Q2r,x._(Q2)); 
ref.set(j,Q1rDot,x._(Ql_Dot)); 
ref.set(j,Q2rDot,x._(Q2_Dot)); 

j++; 

II 

Vector modelRKfct(Vector x, double t) // fct(x,t)=xDot=Ax+b 
{ 

Vector xDot, U; 
double ul,u2,q1r_2Dot,q2r_2Dot; 

int index; 

index = (int) (t/Ts);//(int) ROUND((2.0*t/Ts)); 
ul= path._(index,Q1r); 
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u2= path._(index,Q2r); 

qlr_2Dot = Bl*ul+AmP1*x._(Q1)+AmQ1*x._(Q1_Dot); 
q2r_2Dot = Bl*u2+AmPl*x._(Q2)+AmQ1*x._(Q2_Dot); 

xDot.set(Q1,x._(Ql_Dot)); 
xDot.set(Q2,x._(Q2_Dot)); 
xDot.set(Ql_Dot,q1r_2Dot); 
xDot.set(Q2_Dot,q2r_2Dot); 

return xDot; 
} 

// 

void getReferenceModelResponce() 
{ 

Vector 	modelState; 
int numPathSamples = samplesPerCycle; 

path.setSize(numPathSamples,3); 
ref.setSize(samplesPerCycle,4); 

getSquarePath 
(path,numPathSamples,Tcycle,revs*2,Q1r0,Q1Step,Q2r0,Q2Step); 

//getCircularPath(path,numPathSamples,Ts/2,revs,L1,L4,X_centre, 
Y_centre,radius); 

modelState.set(Q1,Q1r0); 
modelState.set(Q2,Q2r0); 
modelState.set(Ql_Dot,Q1rDot0); 
modelState.set(Q2_Dot,Q2rDot0); 

rungaKutta(modelState, 	0.0, 	Tcycle, 	Ts, 	modelRKfct, 
modelServiceRoutine); 

} 

II 

void dumpTelemetry() 
( 

ofstream dump(dumpFile); 
if (NOT dump) ( cout « "Cannot open dump file \n"; 	exit (- 

1); 	} 

dump « telemetry; 

dump.close(); 
} 

I I 

void loadDefines() 
{ 

array_double defines(numDefines); 

loadDefines(definesFile,defines); 



APPENDIX B 	 207 

numCycles 	= defines._(0); 
Tcycle 	= defines._(1); 
sampleRate = (int)defines._(2); 
AmPl 	= defines._(3); 
AmQ1 	= defines._(4); 
Q10 	= defines._(5); 
Q20 	= defines._(6); 
Q1DotO 	= defines._(7); 
Q2DotO 	= defines._(8); 
Q1r0 	= defines._(9); 
Q2r0 	= defines._(10); 
Q1rDotO 	= defines._(11); 
Q2rDotO 	= defines._(12); 
maxTorque 	= defines ._(13); 
Q1Step 	= defines._(14); 
Q2Step 	= defines. (15); 
StepsPerSample = (int)defines._(16); 
numLSQterms 	= (int)defines._(17); 
forgetFactor 	= defines._(18); 
Vl_max 	= defines._(19); 
V2_max 	= defines._(20); 
Vl_Dot_max 	= defines._(21); 
Vl_Dot_max 	= defines._(22); 

samplesPerCycle = (int)(Tcycle*sampleRate); 

Ts 	= 1.0/samp1eRa'te; 	// samplePeriod 

revs = 1.0/Tcycle; 

// minVelocity = resolution /((1engthVe1Fi1ter-2)*Ts); 

B1=-AmPl; 

I I 

int main () 
{ 

loadDefines(); 

telemetry.setSize((int)(dataSize*numCycles),dataChannels); 

getReferenceModelResponce(); 

doExperiment(); 

dumpTelemetry(); 

cout « "\nFinished\n\n" « (char) 7; 
cout.flush(); 
while (!kbhit()) (}; // wait for key press 

return 0; 

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



APPENDIX B 	 208 

FSMC Data.txt 

NumCycles = 2 
Tcycle 	= 10.0 	//10.0 
sampleRate = 1000 	// 5000in Hz 
AmPl 	= -6.25 	//-6.25 //1.21 	// -16 	400 
AmQ1 	= -5 //-5.0 	//2.2 	// -8 	40 

It 
Q10 	= 1.5708 	// robot initial conditions X[0]= (-- 	0 	0 

2 
0] 
Q20 	= 0.0 /10.0 
Q1DotO 	= 0.0 
Q2DotO 	= 0.0 
Q1r0 	= 2.0 // 0 deg 
Q2r0 	= 1.5 // 90 deg 
Q1rDotO 	= 0.0 
Q2rDotO 	= 0.0 
maxTorque = 10 	//.5 	//2.0 	//5.0 
Q1Step = 3.0 
Q2Step = 0.5 
StepsPerSample = 1000 	// 10 rk steps per sample 
numLSQterms = 
polynomial 
forgetFactor 

2 

= 

// 	num 	coefficents 	in 	least 	squares 

0.7 	// recursive lsq forget factor 
Vl_max=0.009 //0.008;//0.01;//1.0;//10.0; 
V2_max=0.015 //0.015;//2.0;//100.0; 	// 	120.0; 
Vl_Dot_max=2.0 //1.5;//1.0;//5.0;//10.0;//200.0; 
V2_Dot_max=2.6 1/2.5;//1.0;//20.0;//500.0;//2000.0; 
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FEMCDatah 

// 2 degree of freedom robot - Made by Steve Avery, EEE Utas 

#if !defined( FSMC_DATA_H) 
#define FSMC_DATA_H 

#include "my_math.h" 
#include "defines.h" 
#include "pc1833.h" 

/* Dynamic Equations 

PHI(q)q2Dot + H(qDot,q) + G(q) = u 

	

PHI(q)= [ phill 	phil2 

	

phi21 	phi22 ] 

H(qDot,q) = [ hl(qDot,q) 
h2(qDot,q) 

G(q) = [ gl(q) 
g2(q) 

q= Transpose([ ql q2 ]) 
u= Transpose([ ul u2 ]) 

*1 

// Pc3OD digital ports 
#define POSITION 0 
#define STATUS 	2 
#define CONTROL 	1 

// Control port - Motor control signal lines 
#define MOTORenable 5 	// 	Connect 	to 	both 	axes 	of 
Conroller/Amp 
#define MOTORreset 	4 

// Control port - Position decoder control signal lines 
#define READ 	0 
#define MOTORselect 3 // selct LSB or MSB of 16bit position 
#define BYTEselect 	2 
#define COUNTERreset 1 

// Status signal lines 
#define NOTlatchedMotl 0 
#define NOTlatchedMot2 1 
#define LATCHlselected 	2 
#define LATCH2selected 	3 
#define LATCH3selected 	4 
#define LATCH4selected 	5 

// control constants 
#define LWRmot 1 



APPENDIX B 	 210 

#define UPPmot 0 

#define LEASTsigBYTE 0 
#define MOSTsigBYTE 1 

#define HOLD 	1 
#define RELEASE 0 

#define HELD 
	

0 
#define RELEASED 1 

#define ENABLE 1 
#define DISABLE 0 

// encoder constants 
#define MULTIPLIER 4 
#define GEARratio 	MULTIPLIER*2225.0/26.0 
#define PULSESperREV 500.0 

const int 	oneRev 	= (int) (GEARratio * PULSESperREV); 
const int 	quartRev 	= (int) (GEARratio * PULSESperREV / 4); 
const double resolution = 2 * PI / (GEARratio * PULSESperREV); 

const double oneRevolution = 2*PI; 
const double halfRevolution = PI; 

#define LWRmotTachoGain 	2.051838876782 
#define UPPmotTachoGain 	2.145587766782 

double angle(int count) ( return resolution * (count - STARTcount); 
};// count is encoder pulses 

#define ADCchannelMask 3 

#define LWRpot 1 // Q1 
#define UPPpot 2 // Q2 

#define TIME 0 
#define Ql 1 // Lower motor 
#define Q2 2 // Upper motor 
#define Ql_Dot 3 
#define Q2_Dot 4 
#define Q1_2Dot 5 
#define Q2_2Dot 6 

#define Qlr 0 
#define Q2r 1 
#define Q1rDot 2 
#define Q2rDot 3 

#define Ll 0.275 	// length link 1 
#define L4 0.320 	// length link 4 

// Reference model 
/* 

xDot = Am x + bm r 
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x = [ ql 	Am = [ 0 0 1 0 	bm = [0 0 	r = r(t) =[ 

	

q2 	0001 	0 0 
R1 

R2) 
ql' 
	

P1 0 Q10 	10 
q2'] 
	

0 	P1 0 	Q1 ] 
	0 1 1 

(constants in this case) 

*1 

#endif 
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Complex. cpp 

// Complex.cpp - implementation of Class Complex 
#include "complex.h" 
#include "my_math.h" 
#include <float.h> 
#include <stdlib.h> 

II 

// Class Complex 

//Constuctor 
Complex::Complex(double r, double i) 

realPart = r; 
imagPart = i; 

; 

// Destructor 
Complex::-Complex() 

// nothing 

II 
// Access data members of Complex 

double Complex: :real() 

if (isFinite()) 
return realPart; 

else 
return (0.0); 

double Complex::imag() 

if (isFinite()) 
return imagPart; 

else 
return imagPart; 

) ; 

I I 
// Return polar form of data 

double Complex::mag() 

double m; 

m=sqrt(SQR(real())+SQR(imag())); 

if (_finite(m)) 
return m; 

else 
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cout «(char)7«"Warning - Complex::mag() infinite result 
returned as zero!\n"; 

exit(-1); 
return 0.0; 

} ; 

double Complex::arg() 

if (isZero()) 
return 0.0; 

double a; 

a=atan2(imag(),real()); 

if (_finite(a)) 
return a; 

else 

cout «(char)7«"Warning - Complex::arg() infinite result 
returned as zero!\n"; 

return 0.0; 

return a; 
} ; 

// 

boolean Complex::isZero() 

if ((fabs(real()) < TINY) AND (fabs(imag()) < TINY)) 
return TRUE; 

else 
return FALSE; 

II 

boolean Complex::isFinite() 

if (_finite(realPart) AND _finite(imagPart)) 
return TRUE; 

else 
cout << (char) 7 « "Warning - Complex::isFinite() 

returned FALSE !!!\n"; 
return FALSE; 

// 

Complex Complex::Exp () 

double 	realExp; 
Complex 	temp = Complex(); 

• realExp = exp (real()); 
temp.realPart = realExp * cos(imag()); 
temp.imagPart = realExp * sin(imag()); 
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if (temp.isFinite()) 
return temp; 

else 
f 

cout « (char)7 « "Warning - Complex::Exp() infinite 
result returned as zero!!\n"; 

return Complex(0.0,0.0); 
) 

} ; 

// 

Complex Complex::Sqrt () 
f 

//Yet to be completed 

cout « "Warning -- Complex::sqrt called has not been 
completed! \n"; 

return Complex(0.0,0.0); 
} 

// 
// Addition 

Complex 
{ 

Complex: :operator + (double s) 

Complex temp = Complex(); 

temp.realPart = real()+s; 
temp.imagPart = imag(); 

return temp; 
} ; 

Complex 
{ 

Complex: :operator + (Complex c) 

Complex temp = Complex(); 

temp.realPart = real()+c.real(); 
temp.imagPart = imag()+c.imag(); 

return temp; 
} ; 

// 	 
// Negate 

Complex Complex: :operator - () 
{ 

Complex temp = Complex(); 

 

temp.realPart = 
temp.imagPart = 

- real(); 
- imag(); 

} ; 

return temp; 

 

// 
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// Subtraction 

Complex Complex: :operator - (double s) 
{ 

Complex temp = Complex(); 

temp.realPart = real() - s; 
temp.imagPart = imag(); 

return temp; 
1 ; 

Complex Complex: :operator - (Complex c) 
{ 

Complex temp = Complex(); 

temp.realPart = real()-c.real(); 
temp.imagPart = imag()-c.imag(); 

return temp; 
} ; 

// 
// Multiplication 

Complex Complex: :operator * (double s) 
{ 

Complex temp = Complex(); 

temp.realPart = real() * s; 
temp.imagPart = imag() * s; 

return temp; 
} ; 

Complex Complex: :operator * (Complex c) 
{ 

Complex temp = Complex(); 

double m,a; 

m=mag()*c.mag(); 
a=arg()+c.arg(); 

temp.realPart = m*cos(a); 
temp.imagPart = m*sin(a); 

if(temp.isFinite()) 
return temp; 

else 
( 

cout « (char)7« "Warning - Complex::* infinite result 
returned as zero!\n"; 

return Complex(0.0,0.0); 
} 

} ; 

II 
// Division 
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!*Complex Complex: :operator / (double s) 

Complex temp = Complex(); 

double m,a; 

m=mag()/s; 

temp.realPart = m*cos(imagPart); 
temp.imagPart = m*sin(imagPart); 

return temp; 
}; */ 

Complex Complex: :operator / (Complex c) 

Complex temp = Complex(); 

double m,a; 

m=mag()/c.mag(); 
a=arg()-c.arg(); 

temp.realPart = m*cos(a); 
temp.imagPart = m*sin(a); 

if(temp.isFinite()) 
return temp; 

else 

cout « (char)7« "Warning - Complex::/ infinite result 
returned as zero!\n"; 

return Complex(0.0,0.0); 

// 	  
// Assignment 

Complex 	Complex: :operator= (double s) 

realPart = s; 
imagPart = 0.0; 

return *this; 
} ; 

Complex 	Complex: :operator (Complex c) 

realPart = c.real(); 
imagPart = c.imag(); 

return *this; 
} ; 

Complex 	Complex::operator-= (Complex c) 

realPart -= c.real(); 
imagPart -= c.imag(); 
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return *this; 
} ; 

// 	  
// stream operators 

ostream &operator«(ostream &stream, Complex c) 
i 

stream « "( " « c.real() « ", " « c.imag() « ")"; 

return stream; 
} ; 

// 
// Misc fcts 

Complex exp (Complex c) 
( 

double 	realExp; 
Complex 	temp = Complex(); 

realExp = exp (c.real()); 
temp.realPart = realExp * cos(c.imag()); 
temp.imagPart = realExp * sin(c.imag()); 

if(temp.isFinite()) 
return temp; 

else 
{ 

cout « (char)7« "Warning - exp(complex) infinite result 
returned as zero!\n"; 

return Complex(0.0,0.0); 
} 

} ; 

// 	  
// END Class Complex 
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Container. cpp 

###### 
/* 

Container classes ie. array, set etc. 

*///+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 
#include <stdlib.h> 
#include <math.h> 
#include <process.h> 	// exit() 
#include <iostream.h> 	// cout « 
#include <iomanip.h> 

#include "defines.h" 	// pascal like types etc. eg . int, AND ... 
#include "my_math.h" 
#include "Container.h" 

I I 

// class array_double 
// 	  

array_double::array_double (int length, double initarray_double) // 
constructor 

size = length; 
array = new double [size]; 
if (NOT array) 
{ 

cout « "ERROR- array_double constructor - failure in 
'new' operator\n"; 

exit(-1); 
} 
for (int i=0; i<size; i++) 	array[i] = 

initarray_double; 

// end array_double 	( constructor ) 
// 	  

array_double::-array_double() 

delete [] array; 

II 

void array_double;:setSize (int length) 
successfull 

delete [] array; 
array = new double [length]; 

size = length; 

// end array_double;:setSize 

// returns TRUE if 
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// 

int array_double::setSample (int k, double sample) 
{ 

if (k < size) 	array[k] = sample; 
else 
( 	cout « "ERR (array_double::setSample) index ("; 

cout « k « ") exceeds (>=) size (" « size « ")\n"; 
int temp; 
cm n » temp; 
exit(-1); 
return FALSE; 

} 
return TRUE; 

} 	// end array_double::setSample 
// 	  

double array_double::sample (int k) 
{ 

if (k < size) 	return array[k]; 
else 
( 	cout « "ERR (array_double::sample) index ("; 

cout « k « ") exceeds (>=) size (" « size « ")\n"; 
int temp; 
cm n » temp; 
exit(-1); 
return (-1); 

} 
} 	//end array_double::sample 
// 	  

void array_double::append (array_double &d) 
{ 

int oldSize = size; 
setSize (size+d.length()); 

for (int i=0; i < d.length(); i++) array[i+oldSize]=d._(i); 
) 

// 

  

  

array_double 
{ 

&array_double::operator= (array_double &a) 

setSize(a.length()); 

for (int i = 0; i<size; i++) 
array[i] = a._(i); 

return *this; 
} ; 

I I 

ostream &operator«(ostream &stream, array_double &a) 
{ 

int i; 

for (i=0;i<a.length();i++) 
//stream « setiosflags( ios::fixed ) « setw(9) « 

setprecision(5)« a._(i); 
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stream « a._(i) « n 

stream « n\nn ;  

return stream; 

// 

    

    

    

     

     

/*class array2D_double 

array2D_double::array2D_double (int r, int c, double initData) // 
constructor 

numRows = r; 
numColumns = c; 

array = new arrayPtr [r]; 
for(int 1=0; i<r; i++) 

array[i] = new array_double(c,initData); 

// end array2D_double 	( constructor ) 

array2D_double::-array2D_double() 

for (int 1=0; i<numRows; i++) delete array[i]; 
delete []array; 

// 

void array2D_double::setSize (int r, int c) 
successfull 

int i; 

// returns TRUE if 

for ( 1=0; i<numRows; i++) delete array[i]; 
delete array; 

array = new arrayPtr [r]; 
for( 1=0; i<r; i++) 

array[i] = new array_double(c,0.0); 

numRows = r; 
numColumns = c; 

// end array2D_double::setSize 
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// 

int array2D_double::setSample (int r, int c, double sample) 

if (r < numRows) 	array[r]->set(c,sample); 
else 

cout « "ERR (array2D_double::setSample) row ("; 
cout « r « ") exceeds (>=) numRows (" « numRows < < 

") \n"; 
int temp; 
cm n » temp; 

exit(-1); 
return FALSE; 

return TRUE; 

// 

double array2D_double::sample (int r,int c) 

if (r <= numRows) 	return array[r]->_(c); 
else 

cout « "ERR (array2D_double::sample) row ("; 
cout « r « ") exceeds (>=) numRows (" « numRows < < 

int temp; 
cm n » temp; 
exit(-1); 
return (-1); 

} 

//end array2D_double::sample 
// 

array2D_double 	&array2D_double::operator= (array2D_double &a) 

setSize(a.rows(),a.columns()); 

for (int i = 0; i<numRows; i++) 
*array[i] = *a.array[i]; 

return *this; 
} ; 

// 

ostream &operator«(ostream &stream, array2D_double &a) 

int i; 

for (i=0;i<a.rows();i++) stream « *a.row(i); 

return stream; 

// 	end CONTAINER.CPP 
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Least Squares.cpp 

######### 
/* 

Lest Squares Estimator 

Contains objects which implement: 

- Least squares estimation of the process 

y = a0.x^() + al.x^1 + 	. + a(n-l).x^(n-1) 

(1D case eg. given a series of noisy position readings 
(y) 

at times (x) - find a0,a1,...etc) 

using Bierman's U-D factorisation. 

(Sec 13.5 p429 Astrom & Wittenmark 
"Comuter Controlled Systems 2nd ed" 
Prentice-Hall 1990) 

// Include modules (provided they have not been included before). 

#include "Least Squares.h" 
#include <iostream.h> 	// for cerr « 
#include <process.h> 	// for exit() 

II 

// Member functions for UD_factor class. 

// Constructor: sets size of coeficient and co-variance structures 
// 	 and initilises same. 
UD_factor::UD_factor (byte numC, double stepSize, 

double forgetFactor, 
double initTheta, 
double initDiag, 
double initOffDiag) 

byte i,j; 

if (numC <= maxCoef) numCoef = numC; 
else 

cerr « "ERR (UD_factor constructor): number of 
coeficents too large"; 

exit (-1); 

h = stepSize; 
lambda = forgetFactor; 
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for (1=0; i<numCoef; i++) 
{ 

theta[i] 
diag[i] 

= initTheta; 
= initDiag; 

) 
for (j=0; j<SIZEOffDiag(numCoef); j++) offDiag[j] = 

initOffDiag; 

} 	// end UD_factor constructor 

I I 
// Lambda functions 

int UD_factor::setLambda (double forgetFactor) 
forgetFac tor 
{ 

// lambda = 

 

  

lambda = forgetFactor; 
return 1; 

    

) 

// 

      

      

double UD_factor::Lambda () 
returns lambda 
{ 

   

/ / 

  

return lambda; 

    

) 

II 

      

      

// Plant coeficient functions 

// sets one coeficient in theta equal to t 
int UD_factor::setThetaN (byte n, double t) 
{ 

    

if (n < numCoef) 
{ 

 
theta[n] = t; 

return 0; 
} 
else 
{ 	cerr « "ERR (setThetaN): array subscript too large"; 

exit (-1); 
return (-1); 

) 

) 

// 	  
// sets all coeficients in theta equal to t 
int UD_factor::setAllTheta (double t) 
{ 

byte i; 

for (i=0; i<numCoef; i++) 
theta[i] = t; 

return 0; 
) 	// end setAllTheta 

// 	  
// replaces coeficient vector theta with newTheta 
int UD_factor::setTheta (coefVector newTheta) 
{ 

byte i; 
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for (i=0; i<numCoef; i++) 
theta[i] = newTheta[i]; 

return 0; 
} 	// end setThetat 

I - 
II copies coeficient vector, theta, to oldTheta 
int UD_factor::getTheta (coefVector& oldTheta) 
{ 

byte i; 

for (1=0; i<numCoef; i++) 
oldTheta[i] = theta[i]; 

return 0; 
} 	// end getTheta 

// 	  
// Returns nth plant coeficient 
double UD_factor::thetaN (byte n) 
{ 

if (n < numCoef) 
return theta[n]; 

else 
{ 	cerr « "ERR (thetaN): array subscript too large"; 

exit (-1); 
return (-1); 

} 
} 	// end thetaN 

II 
// previous input/output functions 

// sets one input/putput value to f 
int UD_factor::setfiN (byte n, double f) 
{ 

if (n < numCoef) 
{ 	fi[n] = f; 

return 0; 
) 
else 
{ 
	

cerr « "ERR (setfiN): array subscript too large"; 
exit (-1); 
return (-1); 

} 
} 	// end setfiN 

// 	  
// sets all previous input/output values equal to f 
int UD_factor::setAllfi (double f) 
{ 

byte i; 

for (i=0; i<numCoef; i++) 
fi[i] = f; 

return 0; 
) 	// end setAllfi 

// 	  
// replaces input/output vector, fi, with newfi 
int UD_factor::setfi (coefVector newfi) 
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( 

byte i; 

for (1=0; i<numCoef; i++) 
fi[i] = newfi[i]; 

return 0; 
// end setfi 

II 
// copies input/output vector, fi, to oldfi 
int UD_factor::getfi (coefVector& oldfi) 
( 

byte i; 

for (1=0; i<numCoef; i++) 
oldfi[i] = fi[i]; 

return 0; 
} 	// end getfi 

/ / 
// Returns nth element of input/output vector 
double UD_factor::fiN (byte n) 
( 

if (n < numCoef) 
return fi[n]; 

else 
( 	cerr « "ERR (fiN): array subscript too large"; 

exit (-1); 
return (-1); 

} 
} 	// end fiN 
// 	  
// Co-variance (diagonal) functions 

// sets one co-variance diagonal value to d 
int UD_factor::setDiagN (byte n, double d) 
{ 

if (n < numCoef) 
( 	diag[n] = d; 

return 0; 
} 
else 
{ 	cerr « "ERR (setDiagN): array subscript too large"; 

exit (-1); 
return (-1); 

} 
1 	// end setDiagN 

// 	  
// sets all co-variance diagonal values equal to d 
int UD_factor::setAllDiag (double d) 
( 

byte i; 

for (i=0; i<numCoef; i++) 
diag[i] = d; 

return 0; 
) 	// end setAllDiag 

// 	  
// replaces co-variance diagonal, diag, with newDiag 
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int UD_factor::setDiag (coefVector newDiag) 
{ 

byte i; 

for (i=0; i<numCoef; i++) 
diag[i] = newDiag[i]; 

return 0; 
// end setDiag 

// 	  
// copies co-variance diagonal, diag, to oldDiag 
int UD_factor::getDiag (coefVector& oldDiag) 

byte i; 

for (i=0; i<numCoef; i++) 
oldDiag[i] = diag[i]; 

return 0; 
// getDiag 

// 	  
// Returns nth element of co-variance diagonal 
double UD_factor::diagN (byte n) 

if (n < numCoef) 
return diag[n]; 

else 
cerr « "ERR (diagN): array subscript too large"; 
exit (-1); 
return (-1); 

// end diagN 

// 
// Co-variance Off-diagonal functions 

// sets one co-variance off-diagonal value to o 
int UD_factor::setOffDiagN (byte n, double o) 

if (n < SIZEOffDiag(numCoef)) 
{ 	offDiag[n] = o; 

return 0; 

else 
cerr « "ERR (setOffDiagN): array subscript too large"; 
exit (-1); 
return (-1); 

// end setOffDiagN 

// 	  
// sets all co-variance offDiagonal values equal, to o 
int UD_factor::setAllOffDiag (double o) 

byte i; 

for (i=0; i< SIZEOffDiag(numCoef); i++) 
offDiag[i] = o; 

return 0; 
// end setAllOffDiag 
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// 	  
// replaces co-variance offDiagonal, offDiag, with newOffDiag 
int UD_factor::setOffDiag (coefVector newOffDiag) 

byte i; 

for (i=0; i<SIZEOffDiag(numCoef); i++) 
offDiag[i] = newOffDiag[i]; 

return 0; 
} 	// end setOffDiag 

// 	  
// copies co-variance offDiagonal, offDiag, to oldOffDiag 
int UD_factor::getOffDiag (coefVector& oldOffDiag) 

byte i; 

for (i=0; i<SIZEOffDiag(numCoef); i++) 
oldOffDiag[i] = offDiag[i]; 

return 0; 
// end getOffDiag 

// 	  
// Returns nth element of co-variance offDiagonal 
double UD_factor::offDiagN (byte n) 

if (n < SIZEOffDiag(numCoef)) 
return offDiag[n]; 

else 
cerr « "ERR (offDiagN): array subscript too large"; 
exit (-1); 
return (-1); 

// end offDiagN 

// 	  
// Calculate least squares approximation for plant 
// coeficients (theta) using (recursive) U-D factorisation 

int UD_factor::LS (int k, double y) 
{ 

int 	kf, ku, i, j, n; 
double 	perr, fj, vi,  alphaj, ajlast, pj, w; 
coefVector kVect; 

n = numCoef; 
perr = y; 
i=0; 
for (i=0; i<n; i++) 
perr = perr - theta[i] * fi[i]; 

// Calculate gain and covariance using U-D method 
fj 	= fi[0]; 
kVect[0] 	= vj = diag[0]*fj; 
alphaj = 1.0 + vj*fj; 
diag[0] = diag[0]/alphaj/lambda; 
if (n>1) 

kf = ku = -1; 
for (j=1; j<n; j++) 

fi = fi[j]; 
for (i=0; i<j; i++) 	// f = fi*U 
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kf++; 
fj += fl[i]*offDiag[kf] 

} 	// end for i 
vj = fj*diag[j]; 	// v=D*f 
kVect[j] =vj; 
ajlast = alphaj; 
alphaj = ajlast + vj*fj; 
diag[j] = diag[j] * ajlast/alphaj/lambda; 
pj = -fj/ajlast; 
for (i=0; i<j; i++) 	// kj+1 = kj+vj*uj, 

uj=uj+pj*kj 
ku++; 
w = offDiag[ku] + kVect[i]*pj; 
kVect[i] += offDiag[ku]*vj; 
offDiag[ku] = w; 
//end for i 

// end for j 
// end if n>1 

// update coeficient estimates 
for (i=0; i<n; i++) 	theta[i] += perr*kVect[i]/alphaj; 
updateFi (k); 

return 0; 
// end LS 

// 	  
// calculate prediction for next output. 
double UD_factor::Yp () 

byte i; 
double y = 0.0; 

for (i=0; i<numCoef; i++) 
return y; 

} 	// end Yp 
// 	  
// calculate derivative 
double UD_factor::YpDot () 

byte i; 
double y = 0.0; 

for (i=1; i<numCoef; i++) 
return y; 
// end Yp 

y += theta[i]*fi[i]; 

y += i*theta[i]*fi[i-1]; 

// 	  
// Update previous input/output vector, fi, by one sample period 
// value of fcts evaluated for x=xk 
// ie. { 1, x, x^2, 	,x^n-1 } for x=xk 
int UD_factor::updateFi (int k) 

byte i; 

double x = k * h; 

fi[0] = 1.0; 
for (i=1; i<numCoef; i++) 

fi[i] = fi[i-1] * x; 

return 0; 
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} 	// end updateFI 

// 	  
... 
// Update previous input/output vector and return next preditcion for 
Y 
double UD_factor::nextYp (int k) 
( 

updateFi (k); 
return Yp(); 

} 	// end nextYp 

II 

// end member functions for class UD_factor 
// 	  

// end ADAPTIVE.CPP 

######### 
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Misc.cpp 

#include "Misc.h" 
#include <iostream.h> 
#include <fstream.h> 
#include <stdlib.h> 

// load defines from definesFile into array0fDouble 
// each line must be in form 
// 
//identifier = value 	// with or without inline comments 
// 
void loadDefines (char *definesFile, array_double &defines) 

ifstream file(definesFile); 
if (NOT file) { cout « "Cannot open defines file \n"; 	exit 

(-1); 	} 

double defValue; 

for (int i=0; i<defines.length() ; i++) 
{ 

file 7 ignore(60,'='); // ignore identifier 
file '>> defValue;//defValue; 	// read value 
file.ignore(80,'\n'); // ignore to end of line 

defines.set(i,defValue); 

file.close(); 
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My math.cpp 

#include "my_math.h" 
#include "defines.h" 

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
// class Vector 
// 	  

Vector::Vector (word 1,double initValue) 
[ 

word i; 
size = 1; 

for (i=0;i< maxElements;i++) 	vector[i] = initValue; 
} 

Vector::-Vector(){} 

int Vector::sizeOf () 	{ return size; } 
void Vector::setSize(int 1) { size = 1; } 

int Vector::setVector(array0fDouble &v) 
( 

for (byte i = 0; i< size; i++) 
vector [i] = v[i]; 

return 1; 
} 

void 	Vector::setElement (word i, double s) { vector[i] = s; } 
double Vector::getElement (word i) {return vector[i];} 

double Vector: :norm() 
[ 

double result=0.0; 

for(byte i = 0; i<size; i++) 
result += SQR(vector[i]); 

return sqrt(result); 
} 

Vector Vector::operator+ (double s) 
{ 

Vector temp=Vector(size); 

for (byte i =0; i < size; i++) 
temp.vector[i] = vector[i] + s; 

return temp; 
} 

Vector Vector::operator+ (Vector v) 
[ 
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Vector temp = Vector(size); 

for (byte i =0; i < size; i++) 
temp.vector[i] = vector[i] + v.vector[i]; 

return temp; 

Vector Vector: :operator- (Vector v) 

Vector temp = Vector(size); 

for (byte i =0; i < size; i++) 
temp.vector[i] = vector[i] - v.vector[i]; 

return temp; 

Vector Vector: : operator* (double s) 

Vector temp = Vector(size); 

for (byte i = 0; i< size; i++) 
temp.vector[i] = vector[i] * s; 

return temp; 

Vector 	Vector: :operator * (Vector v) 

Vector temp = Vector(size); 

for (byte i = 0; i< size; i++) 
temp.vector[i] = vector[i] * v.vector[i]; 

return temp; 

Vector 	Vector: :operator/ (double s) 

Vector temp = Vector(size); 

for (byte i = 0; i< size; i++) 
temp.vector[i] = vector[i] / s; 

return temp; 

Vector Vector: :operator / (Vector v) 

Vector temp = Vector(size); 

for (byte i = 0; i< size; i++) 
temp.vector[i] = vector[i] / v.vector[i]; 

return temp; 
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} ; 

double 
{ 

Vector: :operator & (Vector v) 

double temp = 0.0; 

for (byte i = 0; i< size; i++) 
temp = temp + vector[i] * v.vector[i]; 

return temp; 

1 ; 

Vector Vector: :operator (double s) 
{ 

for (byte i = 0; i< size; i++) 
vector[i] = s; 

return *this; 
}; 

Vector 	Vector: :operator= (Vector v) 
{ 

size = v.size; 

for (byte i = 0; i< size; i++) 
vector[i] = v.vector[i]; 

return *this; 
} ; 

ostream &operator«(ostream &stream, Vector v) 
{ 

word i; 

stream « "( "; 

for (i=0;i<v.size-1;i++) 
stream « v.getElement(i) « " 

stream « v.getElement(v.size-1) « 

return stream; 
} 

// end class Vector 	 

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
// class complexVector 
// 	  

complexVector::complexVector (word 1) 
( 

word i; 

size = 1; 



APPENDIX B 	 234 

for (i=0;i< maxElements;i++) 	vector[i] = Complex(0.0,0.0); 

complexVector::-complexVector() 

int complexVector::sizeOf() 

return size; 

void complexVector::setSize(int 1) 

size = 1; 

int complexVector::setVector(array0fComplex &v) 

for (byte i = 0; i< size; i++) 
vector [i] = v[i]; 

return 1; 

void complexVector::setElement (word i, double s) 

vector[i] = Complex(s,0.0); 

void complexVector::setElement (word i, Complex z) 

vector[i] = z; 

Complex complexVector::getElement (word i) 

return vector[i]; 

double complexVector::norm() 
{ 

double result=0.0; 

for(byte i = 0; i<size; i++) 
result += SQR(vector[i].mag()); 

return sqrt(result); 

complexVector complexVector::real() 

complexVector temp; 

for (byte i = 0; i< size; i++) 
temp.vector [i] = vector[i].real(); 

return temp; 
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complexVector complexVector::operator+ (double s) 

complexVector temp=complexVector(size); 

for (byte i =0; i < size; i++) 
temp.vector[i] = vector[i] + s; 

return temp; 

complexVector complexVector::operator+ (Complex z) 

complexVector temp = complexVector(size); 

for (byte i =0; i < size; i++) 
temp.vector[i] = vector[i] + z; 

return temp; 

complexVector complexVector::operator+ (complexVector v) 

complexVector temp = complexVector(size); 

for (byte i =0; i < size; i++) 
temp.vector[i] = vector[i] + v.vector[i]; 

return temp; 

complexVector complexVector::operator- (complexVector v) 

complexVector temp = complexVector(size); 

for (byte i =0; i < size; i++) 
temp.vector[i] = vector[i] - v.vector[i]; 

return temp; 

complexVector 	complexVector::operator* (double s) 

complexVector temp = complexVector(size); 

for (byte i = 0; i< size; i++) 
temp.vector[i] = vector[i] * s; 

return temp; 

complexVector 	complexVector::operator* (Complex z) 

complexVector temp = complexVector(size); 
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for (byte i = 0; i< size; i++) 
temp.vector[i] = vector[i] * z; 

return temp; 

} ; 

complexVector 	complexVector::operator * (complexVector v) 

complexVector temp = complexVector(size); 

for (byte i = 0; i< size; i++) 
temp.vector[i] = vector[i] * v.vector[i]; 

return temp; 

complexVector 	complexVector::operator/ (double s) 

complexVector temp = complexVector(size); 

for (byte i = 0; i< size; i++) 
temp.vector[i] = vector[i] / s; 

return temp; 

} ; 

complexVector 	complexVector::operator/ (Complex z) 

complexVector temp = complexVector(size); 

for (byte i = 0; i< size; i++) 
temp.vector[i] = vector[i] / z; 

return temp; 

} ; 

complexVector 	complexVector::operator / (complexVector v) 

complexVector temp = complexVector(size); 

for (byte i = 0; i< size; i++) 
temp.vector[i] = vector[i] / v.vector[i]; 

return temp; 

} ; 

Complex 	complexVector::operator & (complexVector v) 

Complex temp = (0.0,0.0); 

for (byte i = 0; i< size; i++) 
temp = temp + vector[i] * v.vector[i]; 

return temp; 



APPENDIX B 	 237 

} ; 

complexVector complexVector::operator= (double s) 
{ 

for (byte i = 0; i< size; i++) 
vector[i] = s; 

return *this; 
} ; 

complexVector 	complexVector::operator= (complexVector v) 

{ 
size = v.size; 

for (byte i = 0; i< size; i++) 
vector[i] = v.vector[i]; 

return *this; 
} ; 

ostream &operator«(ostream &stream, complexVector v) 
{ 

word i; 

stream « "{ "; 

for (i=0;i<v.size-1;i++) 
stream « v.getElement(i) « " 

stream « v.getElement(v.size-1) « 

return stream; 
} 

// end class complexVector 	 

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
//class complexMatrix 
// 	  

complexMatrix::complexMatrix (word 1) 
{ 

word i; 

size = 1; 

for (i=0;i< size;i++) 
matrix[i] = complexVector(1); 

} 

complexMatrix::-complexMatrix() 
{ 

} 

void complexMatrix::makeSize(word 1) 
{ 

for (byte i=0; i<size; i++) 
matrix[i].size = 1; 
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size = 1; 

int complexMatrix::setMatrix(matrix0fComplex &m) 

for (byte i = 0; i< size; i++) 
matrix [i] = 

return 1; 

void complexMatrix::setElement (word i, word j, Complex z) 

matrix[i].setElement(j,z); 

Complex complexMatrix::getElement (word i, word j) 

return matrix[i].getElement(j); 

complexVector complexMatrix::getVector (word i) 

return matrix[i]; 

complexMatrix complexMatrix::operator+ (double s) 

complexMatrix temp=complexMatrix(size); 

for (byte i =0; i < size; i++) 
temp.matrix[i] = matrix[i] + s; 

return temp; 

complexMatrix complexMatrix::operator+ (Complex z) 

complexMatrix temp = complexMatrix(size); 

for (byte i =0; i < size; i++) 
temp.matrix[i] = matrix[i] + z; 

return temp; 

complexMatrix complexMatrix::operator+ (complexMatrix m) 

complexMatrix temp = complexMatrix(size); 

for (byte i =0; i < size; i++) 
temp.matrix[i] = matrix[i] + m.matrix[i]; 

return temp; 
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complexMatrix 	complexMatrix::operator* (double s) 

complexMatrix temp = complexMatrix(size); 

for (byte i = 0; i< size; i++) 
temp.matrix[i] = matrix[i] * s; 

return temp; 

} ; 

complexMatrix 	complexMatrix::operator* (Complex z) 

complexMatrix temp = complexMattix(size); 

for (byte i = 0; i< size; i++) 
temp.matrix[i] = matrix[i] * z; 

return temp; 

complexMatrix 	complexMatrix::operator * (complexMatrix m) 
{ //{{al*bl, a2*b2}, {a3*b3, a4*b4}} 

complexMatrix temp = complexMatrix(size); 

for (byte i = 0; i< size; i++) 
temp.matrix[i] = matrix[i] * m.matrix[i]; 

return temp; 

} ; 

complexMatrix 	complexMatrix::operator/ (double s) 

complexMatrix temp = complexMatrix(size); 

for (byte i = 0; i< size; i++) 
temp.matrix[i] = matrix[i] / s; 

return temp; 

} ; 

complexMatrix 	complexMatrix::operator/ (Complex z) 

complexMatrix temp = complexMatrix(size); 

for (byte i = 0; i< size; i++) 
temp.matrix[i] = matrix[i] / z; 

return temp; 

complexMatrix 	complexMatrix::operator / (complexMatrix v) 

complexMatrix temp = complexMatrix(size); 
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for (byte i = 0; i< size; i++) 
temp.matrix[i] = matrix[i] / v.matrix[i]; 

return temp; 

complexVector 	complexMatrix::operator & (complexVector v) 

complexVector temp = complexVector(size); 

for (byte i = 0; i< size; i++) 
temp.vector[i] = matrix[i] & v; 

return temp; 

complexMatrix complexMatrix::operator= (double s) 

for (byte i = 0; i< size; i++) 
matrix[i] = s; 

return *this; 
) ; 

complexMatrix 	complexMatrix::operator= (complexMatrix v) 

size = v.size; 

for (byte i = 0; i< size; - i++) 
matrix[i] = v.matrix[i]; 

return *this; 
} ; 

ostream &operator«(ostream &stream, complexMatrix m) 

word i; 

stream « "(u ;  

for (i=0;i<m.size-1;i++) 
stream « m.getVector(i) « ",\n"; 

stream « m.getVector(m.size-1) « "}\n"; 

return stream; 

...special functions ... 

// end class complexMatrix 	 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
//class 	identityMatrix 
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II 

identityMatrix::identityMatrix (word 1) : complexMatrix(1) 

word i; 
Complex one = Complex(1.0,0.0); 

size = 1; 

for (i=0;i< size;i++) 
matrix[i] = 0.0; 
matrix[i].setElement(i,one); 

identityMatrix::-identityMatrix() 

//identityMatrixs--; 
//cout « "num vectors = " « identityMatrixs « "\n"; 

} ; 

// end class identityMatrix 	 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
//class 	linearSolve 
// 	  

// 
	complexMatrix LUdecomposition; 

// 
	

int *rowPermutations [maxElements]; 
// 
	

float rowInterchanges; 

linearSolve::linearSolve (word 1) : complexMatrix (1) 

byte i; 

LU.size=1; 
for (i=0;i<LU.size;i++) 

LU.matrix[i]=complexVector(LU.size); 

linearSolve::-linearSolve()(} 

linearSolve linearSolve::operator= (complexMatrix m) 

size = m.size; 

for (byte i = 0; i< 	(int)size; i++) 
matrix[i] = m.matrix[i]; 

return *this; 
} ; 

linearSolve linearSolve::operator= (linearSolve 1) 

LU=1.LU; 
size = 1.size; 
for (int j = 0; j< 	(int)size; j++) 

matrix[j] = 1.matrix[j]; 
for (int i=0; i<(int)LU.size; i++) 
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rowPermutations[i]=1.rowPermutations[i]; 
rowInterchanges = 1.rowInterchanges; 

return *this; 
}; 
void linearSolve::doLUdecomposition() 

//void ludcmp(float **a, int n, int *indx, float *d) 

int i,imax,j,k; 
Complex vv[maxElements]; 
Complex temp,big,sum,dum; 

LU.setMatrix(matrix); 
rowInterchanges=1.0; //*d 
for (i=0;i<(int)size;i++) { 

big=Complex(0.0,0.0); 
for (j=0;j<(int)size;j++) 

if ((temp=LU.getElement(i,j)) > big) big=temp; 
if (big == Complex(0.0,0.0)) 

//nrerror("Singular matrix in routine ludcmp"); 
cout « "Singular Matrix in routine 

doLUdecomposition\n"; 
vv[i]=Complex(1.0,0.0)/big; 

for (j=0;j<(int)size;j++) { 
for (i=0;i<j;i++) { 

sum=LU.getElement(i,j); 
for (k=0;k<i;k++) sum - 

=LU.getElement(i,k)*LU.getElement(k,j); 
LU.setElement(i,j,sum); 

big=Complex(0.0,0.0); 
for (i=j;i<(int)size;i++) ( 

sum=LU.getElement(i,j); 
for (k=0;k<j;k++) 

sum -= LU.getElement(i,k)*LU.getElement(k,j); 
LU.setElement(i,j,sum); 
if ( (dum=vv[i]*sum.mag()) >= big) { 

big=dum; 
imax=i; 

if (j != imax) { 
for (k=0;k<(int)size;k++) { 

dum=LU.getElement(imax,k); 
LU.setElement(imax,k,LU.getElement(j,k)); 
LU.setElement(j,k,dum); 

rowInterchanges= -rowInterchanges; //*d = -(*d); 
vv[imax]=vv[j]; 

rowPermutations[j]=imax; 
if (LU.getElement(j,j) == Complex(0.0,0.0)) 

LU.setElement(j,j,TINY); 
if (j != (int)size-1) { 

dum=Complex(1.0,0.0)/(LU.getElement(j,j)); 
for (i=j+1;i<(int)size;i++) 

LU.setElement(i,j,LU.getElement(i,j)*dum); 
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complexVector linearSolve::solve(complexVector b) 

int i,ii=-1,ip,j; 
Complex sum = Complex(0.0,0.0); 

for (i=0;i<(int)size;i++) 
ip=rowPermutations[i]; 
sum=b.getElement(ip); 
b.setElement(ip,b.getElement(i)); 
if (ii>-1) 

for(j=ii;j<=i-1;j++) 
sum -= LU.getElement(i,j)*b.getElement(j); 

else if (sum!=Complex(0.0,0.0)) ii=i; 
b.setElement(i,sum); 

for (i=(int)size-1;i>=0;i--) 
sum=b.getElement(i); 
for (j=i+1;j<(int)size;j++) 

sum -= LU.getElement(i,j)*b.getElement(j); 
b.setElement(i,sum/LU.getElement(i,i)); 

return b; 

// end class linearSolve 	 
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My Process.cpp 

/* 

class thread 

protected: 

DWORD threadID; 
HANDLE threadHandle; 

'-

public: 

thread (LPTHREAD_START_ROUTINE threadFctPtr, 	// 
pointer to thread function 

LPVOID 	 argumentsPtr = 
NULL, // argument for new thread 

LPSECURITY_ATTRIBUTES attributesPtr = NULL, 	// 
pointer to thread security attributes 

DWORD 	 initialStackSize = 0, 
// initial thread stack size, in bytes 

DWORD 	 creationFlags = 0); 
// creation flags 

DWORD id 	() ( return threadID;}; 
HANDLE handle () ( return threadHandle;}; 

DWORD waitFor (DWORD mSec = INFINITE); 

} ; 

// 

#endif 
//################################################################### 
###### 

#include "My_Process.h" 
#include "defines.h" 
#include <windows.h> 
//#include <process.h> 
#include <iostream.h> 
#include <time.h> 

//################################################################### 

thread::thread (LPTHREAD_START_ROUTINE threadFunction, 	// 
pointer to thread function 

DWORD 	 priorityClass, 
DWORD 	 priorityLevel, 
LPVOID 

argumentsPtr, 	// argument for new thread 
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LPSECURITY_ATTRIBUTES attributesPtr, 
// pointer to thread security attributes 

DWORD 
initialStackSize, // initial thread stack size, in bytes 

DWORD 	 creationFlags) 
// creation flags 

{ 

threadHandle = CreateThread(attributesPtr, 
initialStackSize, 
threadFunction, 
argumentsPtr, 
creationFlags, 
&threadID); 

if (NOT threadHandle) 
{ 

cout « "ERROR in CLASS thread - 'CreateThread() 
returned with " 

« GetLastError() « "\n"; 
exit(-1); 

} 

setPriorityClass(priorityClass); 
setPriorityLevel(priorityLevel); 

} 

// 

void thread::setPriorityClass(DWORD priorityClass) 
{ 

BOOL result; 

HANDLE processHandle = GetCurrentProcess(); 
result = SetPriorityClass(processHandle, priorityClass); 

if (NOT result) 
{ 

cout « "ERROR in CLASS thread - 'setPriorityClass() 
returned with " 

« GetLastError() « "\n"; 
exit(-1); 

} 

// 

void thread::setPriorityLevel(DWORD priorityLevel) 
{ 

BOOL result; 

result = SetThreadPriority(threadHandle, priorityLevel); 

if (NOT result) 
{ 

cout « "ERROR in CLASS thread - 'setPriorityLevel()' 
returned with " 

« GetLastError() « "\n"; 
exit(-1); 

} 

} 

) 
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/ 	  

DWORD thread::waitFor (DWORD mSec) 

DWORD result; 

result = WaitForSingleObject(threadHandle,mSec); 

if (result == WAIT_FAILED) 

cout « "ERROR in CLASS thread - 'waitFor() returned 
with " 

« GetLastError() « 
exit(-1); 

return result; 

I I 

void setMaxPriority() 

int result = SetPriorityClass(GetCurrentProcess(), 
REALTIME_PRIORITY_CLASS); 

if (NOT result) 

cout « "ERROR in setMaxPriority - 'setPriorityClass()' 
returned with " 

« GetLastError() « "\n"; 
exit(-1); 

result = SetThreadPriority(GetCurrentThread(), 
THREAD_PRIORITY_TIME_CRITICAL); 

if (NOT result) 

cout « "ERROR in setMaxPriority - 'setPriorityLevel()' 
returned with " 

« GetLastError() « 
exit(-1); 

void restoreStdPriority() 
{ 

int result = SetPriorityClass(GetCurrentProcess(), 32); 
if (NOT result) 

cout « "ERROR in restoreStdPriority - 
'setPriorityClass()' returned with " 

« GetLastError() « "\n"; 
exit -(-1); 

result = SetThreadPriority(GetCurrentThread(), 0); 
if (NOT result) 

246 
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{ 

cout « "ERROR in restoreStdPriority - 
'setPriorityLevel() returned with " 

« GetLastError() « "\n"; 
exit(-1); 

} 

} 

I I 

void holdProcessFor (int seconds) // stops process for seconds 
{ 

time_t 	start, finish; 

time( &start ); 
finish = start; 

while ( difftime(finish,start) < seconds) 
time( &finish ); 

} 

//################################################################### 
################ 
// end MY_Process.cpp 
//################################################################### 
################### 
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Path. cpp 

#include "Path.h" 
#include "Container. h' 
#include <math.h> 

void getCircularPath (array2D_double &path, 
int 	numSamples, 	// path 

samples may need 4x sim samples for RK 
double 	Ts, 	 // 

sample period 
double 	revs, 	// 

revolutions per second 
double 	11, 	 // 

length link 1 
double 	14, 	 // 

" 	4 
double 	x0, 	 // 

centre coords 
double 	yO, 
double 	r) 	 // 

radius 

double C2 = -2*11; 
double Cl = (14*14-11*11)/C2; 
double w = 2 * PI * revs; 

double t,a,b,L,3,alpha,thetal,theta2; 

for (int i=0; i<numSamples; i++) 
{ 

// angular velocity 

//t = (2 * PI * i / numSamples)/w; 
t=i*Ts; 
a=x0+r*cos(w*t); 
b=y0+r*sin(w*t); 
L=sqrt(a*a+b*b); 
B=atan(b/a); 

alpha = acos(C1/L-L/C2); 
thetal = alpha + B; 
theta2 = asin(L*sin(alpha)/14)+thetal; 

path.set(1,0,thetal); 
path.set(i,1,theta2); 

II 

void getSquarePath (array2D_double &path, 
int 	numSamples, 
double 	time, 
double 	cps, 
double 	minl, 
double 	maxl, 
double 	min2, 
double 	max2) 
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,- 

int samplesPerStep = (int)((double)numSamples / time / cps); 

double setPointl,setPoint2; 

for (int i=0; i<numSamples; i++) 
{ 

if(ODD(i/samplesPerStep)) 
{ 

setPointl = minl; 
setPoint2 = min2; 

}else 
{ 	setPointl = maxi; 

setPoint2 = max2; 
} 

path.set(i 3 O,setPointl); 
path.set(i,l,setPoint2); 

} 

{ 

} 
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PC30 Give10.cpp 

///////////////////////////////////////////////////////////////////// 
I- 
II IoCard.cpp 
I- 
II DriverX Version 3 
I- 
II Copyright (C) 1995-1997, Tetradyne Software Inc. 
// All rights reserved. 

//#include <stdafx.h> 
#include <time.h> 
#include <iostream.h> 

#include "defines.h" 
#include Windows .h' 
#include "PC30 GiveIO.h" 

// my defines 

//#define TRAP_ERRORS 
// 	 

pc30::pc30() 

  

  

HANDLE h; 

h = CreateFile("\\\\.\\giveio ", GENERIC_READ, 0, NULL, 
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 

NULL); 

#if defined (TRAP_ERRORS) 
if(h == INVALID_HANDLE_VALUE) ( 
cout«"Couldn't access giveio device\n"; 
exit(-1); 

} 
#endif 

CloseHandle(h); 

diocntrl = Ox00; 
digPortA = 0; 
digPortB = 0; 
digPortC = 0; 

// initialise pc30 - pc3OD User Manual p68, #6.2 
Initialisation 

- outPort(ADMDE, 	0x92); 
outPort(TMRCTR, 0x34); 
outPort(TMRCTR, 0x74); 	/174 
outPort(TMRCTR, 0x36); 
outPort(ADCCR, 	0x02); 
outPort(DIOCNTRL,Ox00); 

clock_t start = clock(); 
while (start == clock()); 	// wait for lmSec 

Word temp; 
temp = inPort(ADDSR); 
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temp = inPort(ADDSR); 

daOut(0,0.0); 
daOut(1,0.0); 

configureDigPort(DIGportA,INport); 
configureDigPort(DIGportB 4 OUTport); 
configureDigPort(DIGportC,INport); 

II 

pc30::-pc30() 
{ 

I I 
// Digital I/O functions 

void pc30::configureDigPort (Word port, Word direction) 
{ 

if (direction == INport) 

if (port == DIGportA) diocntrl = diocntrl BITor 
DIGportAIn; 

else 
if (port == DIGportB) diocntrl = diocntrl BITor 

DIGportBIn; 
else 
if (port == DIGportC) diocntrl = diocntrl BITor 

DIGportCIn; 

else // direction == OUTport 

if (port == DIGportA) diocntrl = diocntrl BITand 
DIGportA0ut; 

else 
if (port == DIGportB) diocntrl = diocntrl BITand 

DIGportBOut; 
else 
if (port == DIGportC) diocntrl = diocntrl BITand 

DIGportCOut; 

outPort(DIOCNTRL,diocntr1); 

// 	  
// note 0->+10V, 4095->-10V 

void pc30::daOut(Word port, double value) 

#if defined(TRAP_ERRORS) 
// trap illegal port 

if (port < 0 OR port > 1) 
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cout « "pc30::adcOut(" « port «"," « value <‹ ") - 
port not [0..1]\n"; 

exit(-1); 
} 

// Limit value to +-10V 
if 	(value < -10.0) value = -10.0; 
else if (value > 10.0) value = 10.0; 

#endif 

// max binary equivalent value 
const Word binMax= 4095; 

// convert value to 8 or 12 bit unsigned 
Word num; 
num = (Word)(((10.0-value)/20.0)*binMax); 

// shift left 4bits and split into high low bytes 
Word lwByte, hiByte; 
num = num « 4; 
lwByte = num & OxFF; 	// bitwise and with 8bit mask 
hiByte = (num » 8) & OxFF; 

if (port == 0) 
( 

outPort(DADATHO,hiByte); 
outPort(DADATL0,1wByte); 

} 
else // port == 1 
( 

outPort(DADATH1,hiByte); 
outPort(DADATL1,1wByte); 

} 

// 

void pc30::setDefaultClk() 
( 

setPrescaler(); 
setDivider(); 
setUserclk(); 

} 

// 

void pc30::setCounter(Word clk, Word count) 
{ 

Word lwByte,hiByte; 

lwByte = count & OxFF; 
hiByte = (count » 8) & OxFF; 

outPort(clk,lwByte); 
outPort(clk,hiByte); 

) 

} 

// 
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Word pc30::getCount(Word clk) 

Word lwByte,hiByte; 

lwByte = inPort(c1k); 
hiByte = inPort(c1k); 

return lwByte + (hiByte « 8); 

// 

Word pc30::wait(Word nTicks, Word &i,Word start) 

Word stop,count; 

count = prescaler(); 
i=0; 
if(start == NOW) start = count; 

if (nTicks < start) 
stop = start - nTicks; 

else 
stop = MAXcount - (nTicks - (start+1)); 

if (stop > start) 
while (count < start) {count = prescaler(); i++;} 

while (count > stop) {count = prescaler();i++;} 

return count; 

II 

Word pc30::waitForUsrClk() 

static Word oldClk=0; 

static Word clk=0; 

while (oldClk == clk) clk = userclk(); 

oldClk = clk; 
#if defined(TRAP_ERRORS) 

return divider(); 
#else 

return divider(); 
#endif 
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PCL833.cpp 

*include "PCL833.h" 
#include "defines.h" 
#include <iostream.h> 
#include <stdlib.h> 
#include <conio.h> 

   

 

II 

      

       

 

// pc1833 Constructor 
// 	 

   

    

pc1833::pc1833() 
{ 

   

  

LRESULT errCode; 
char errMsg[80]; // 32bit pointer to char[] 

  

// 

    

      

// Open device 
// 	  

if((errCode = DRV_DeviceOpen((ULONG)PCL833_Device_Num,(LONG far 
*)&driverHandle)) != 0) 

( 
DRV_GetErrorMessage(errCode,(LPSTR)errMsg); 
cout « "ERROR : pc1833 constructor -DeviceOpen : \n"; 
cout «*errMsg « "\n"; 

} 

I- 
II Configure counters 
// 	  

config_0.counter 	= 0; 
config_O.LatchSrc 	= SWLATCH; 

config_O.LatchOverflow = YES; 
overflow 

config_O.ResetOnLatch = NO; 
after latch 

config_O.ResetValue 
7FFFFFh 

// Latch when read 
// allow counters to 

// don't reset on 

= RESET_HALF; // start counters at 

if((errCode = DRV_QCounterConfig(driverHandle, 
(LPT_QCounterConfig)&config_0)) != 0) 

{ 

DRV_GetErrorMessage(errCode,(LPSTR)errMsg); 
cout « "ERROR : pc1833 constructor - config counter 0 : 

cout « errMsg « "\n"; 
} 

\n"; 

config_l.counter 	= 1 ;  
config_l.LatchSrc 	= SWLATCH; 

config_l.LatchOverflow = YES; 
overflow 

config_l.ResetOnLatch = NO; 
after latch 

// Latch when read 
// allow counters to 

// don't reset on 
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config_1.ResetValue 	= RESET_HALF; // start counters at 
7FFFFFh 

if((errCode = DRV_QCounterConfig(driverHandle, 
(LPT_QCounterConfig)&config_1)) != 0) 

( 

DRV_GetErrorMessage(errCode, (LPSTR)errMsg); 
cout « "ERROR : pc1833 constructor - config counter 1 : 

\n"; 
cout « errMsg « "\n"; 

} 

// 	  
// Set start structures to default values 
// 	  

start_O.counter 	= 0; 
start_O.InputMode = ABPHASEX4; 

start_l.counter 	= 1; 
start_l.InputMode = ABPHASEX4; 

} 

II 

// pc1833 Destructor 
//  

pc1833::-pc1833() 
[ 

stopCounters(); 
DRV_DeviceClose(&driverHandle); 

} 

// 

// Start counters 0&1 
// 	 

int pc1833::startCounters() 
( 

LRESULT errCode; 
char 	errMsg[80]; 	// 32bit pointer to char[] 

if((errCode = DRV_QCounterStart(driverHandle, 
(LPT_QCounterStart)&start_0)) != 0) 

( 

DRV_GetErrorMessage(errCode, (LPSTR)errMsg); 
cout « "ERROR : pc1833 start counter 0 ' : \n"; 
cout « errMsg « "\n"; 

return ERROR; 
} 

counting_O = YES; 
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if((errCode = DRV_QCounterStart(driverHandle, 
(LPT_QCounterStart)&start_1)) != 0) 

DRV_GetErrorMessage(errCode,(LPSTR)errMsg); 
cout << "ERROR : pc1833 start counter 1 ' : \n"; 
cout << errMsg « "\n"; 

return ERROR; 

counting_l = YES; 

return OK; 

II 

// Stop counters 
// 	 

int pc1833::stopCounters() 

LRESULT errCode; 
char 	errMsg[80]; 	// 32bit pointer to char[] 

if (counting_0) 
if((errCode = DRV_CounterReset(driverHandle,0)) != 0) 

DRV_GetErrorMessage(errCode,(LPSTR)errMsg); 
cout « "ERROR : pc1833 stop counter 0 : \n"; 
cout << errMsg « 

return ERROR; 
} 

if (counting_0) 
if((errCode = DRV_CounterReset(driverHandle,1)) != 0) 

DRV_GetErrorMessage(errCode,(LPSTR)errMsg); 
cout « "ERROR : pc1833 stop counter 1 : \n"; 
cout << errMsg « "\n"; 

return ERROR; 

return OK; 

II 

// Reset counters 
// 	 

int 	pc1833::resetCounters() 
{ 

if(stopCounters() == ERROR) return ERROR; 
if(startCounters() == ERROR) return ERROR; 
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return OK; 

II 

// Read counters 
// 	 

void pc1833::readCounters() 

count_O = (_inp(CH_O_hiByte) « 16)+(_inp(CH_O_midByte) « 
8)+_inp(CH_O_lowByte); 

count_1 = (_inp(CH_l_hiByte) « 16)+(_inp(CH_1_midByte) « 
• 8)+_inp(CH_l_lowByte); 

count_O = (_inp(CH_O_hiByte) « 16)+(_inp(CH_O_midByte) « 
8)+_inp(CH_O_lowByte); 

count_l = (_inp(CH_l_hiByte) « 16)+(_inp(CH_l_midByte) « 
8)+_inp(CH_l_lowByte); 
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Runga Kutta 4 th  order.cpp 

#include "my_math.h" 

// NOTE: x equates in most cases to a time variable. 

void euler (Vector& y, 
double x0, 

initial x value 

// state 
// 

final 	x value 

step size 

bu=f(y,x) 

double xl, 

double h, 

Vector (*f)(Vector, double), 

II 

II 

// yDot=A.y + 

void 	(serviceRoutine)(Vector, double)) 

double x = x0; 

while (x + h <= xl) 

y = y + f(y,x) * h; 

x = x + h; 

if (serviceRoutine) serviceRoutine(y,x); 

// NOTE: x equates in most cases to a time variable. 
//rungaKutta(modelState, 0.0, Tstop, Ts, modelRKfct, 
modelServiceRoutine); 

void rungaKutta(Vector& y, 	 // 
state 

double x0, 
// initial x value 

double xl, 
// final 	x value 

double h, 
// step size 

yDot=A.y + bu=f(y,x) 
Vector (*f)(Vector, double), 	// 

void 	(serviceRoutine)(Vector, double)) 

Vector k0 = Vector(y.sizeOf()); 
Vector kl = Vector(y.sizeOf()); 
Vector k2 = Vector(y.sizeOf()); 
Vector k3 = Vector(y.sizeOf()); 

double x = x0; 

while (x + h <= xl) 

k0 = f(y,x) * h; 
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kl = f(y+kO*0.5,x+h*0.5) * h; 
k2 = f(y+k1*0.5,x+h*0.5) * h; 
k3 = f(y+k2,x+h) * h; 

y = y + (k0+k1*2.0+k2*2.0+k3)/6.0; 

x = x + h; 

if (serviceRoutine) serviceRoutine(y,x); 

} 

} 
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Vector. cpp 

#include "vector.h" 
#include <iostream.h> 
#include <stdlib.h> 
#include <math.h> 

• //% %%%%%%%% %%% %%%%%%%% %%% %%%%%%%% %%% %%%%%%%% %%% %%%%%%%% %%% %%%%%%%%% %% 
%%%%%% 

vector: :vector () 

if(DEBUG_VECTOR) cout « "Constructing Vector \n"; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+++++ 

vector: :vector (int size, double init) 

if(DEBUG_VECTOR) cout « "Constructing Vector \n"; 

array = new double [size]; 

if (array == NULL) 
{ cout « "MEMORY ALLOCATION ERROR - vector constructor - 

vector("; 
cout « size « ", " « init « ") \n\n"; 
exit(-1); 

length = size; 
for (int i = 0; i < length; i++) 

array[i] = init; • 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+++++ 

vector: :-vector() 

if(DEBUG_VECTOR) cout « "Destructing Vector'\n"; 

if(array) delete 	array; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+++++ 

vector: :vector (vector &v) 

if(DEBUG_VECTOR) cout « "Vector: :Copy Constructor Called \n"; 

array = new double [v.size()]; 

if (array == NULL) 
cout « "MEMORY ALLOCATION ERROR - vector copy constructor"; 

exit(-1); 
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length = v.size(); 
for (int i = 0; i < length; i++) 

array[i] = v[i]; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+++++ 

void vector::initialise (int size, double init) 

if(DEBUG_VECTOR) cout « "Vector::Initialise Called \n"; 

array = new double [size]; 

if (array == NULL) 
cout « "MEMORY ALLOCATION ERROR - vector constructor - 

vector("; 
cout « size « ", " « init << ") \n\n"; 
exit(-1); 

length = size; 
for (int i = 0; i < length; i++) 

array[i] = init; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+++++ 

int vector::sameLength(vector &v, char *where) 

if (length != v.size()) 
{ 	coutm« "ERROR - vector incompatible length\n"; 

cout « " 	- vector::" « where; 
return 0; 

return 1; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+4+++ 

int vector::sameLength(double *a, char *where) 

if (length != a[0]) 
cout « "ERROR - array incompatible length\n"; 
cout « " 	- vector::" « where; 
return 0; 

return 1; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+++++ 

vector & vector: :operator (vector &v) 

if (!sameLength(v,"operator= (vector&v)")) exit(-1); 

for (int i = 0; i < length; i++) array[i] = v[4]; 
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return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 
// copy double[] to vector: assumes size in a[0] 

vector & vector: :operator (double *a) 

if (!sameLength(a,"operator= (double *a)")) exit(-1); 

for (int i = 0; i < length; i++) array[i] = a[i+1]; 
return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+++++ 

vector & vector: :operator (double d) 

for (int i = 0; i < length; i++) array[i] = d; 
return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+++++ 

double & vector: :operator[] (int i) 

if (i > length -1) 
cout « "ERROR - vector::operator[] - index ["; 
cout « i « "1 out of range\n\n"; 
exit(-1); 

return array[i]; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

vector vector::operator+ (vector &v) 

if (!sameLength(v,"operator+ (vector&v)")) exit(-1); 

vector temp(length); 

for (int 	= 0; i < length; i++) temp[i] = array[i] + v[i]; 

return temp; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+++++ 

vector vector::operator+ (double *a) 

if (!sameLength(a,"operator+ (double *a)")) exit(-1); 

vector temp(length); 
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for (int i = 0; i < length; i++) temp[i] = array[i] + a[i+1]; 

return temp; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

vector vector::operator+ (double d) 

vector temp(length); 

for (int i = 0; i < length; i++) temp[i] = array[i] + d; 

return temp; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 

vector vector: :operator- (vector &v) 

if (!sameLength(v,"operator- (vector&v)")) exit(-1); 

vector temp(length); 

for (int i = 0; i < length; i++) temp[i] = array[i] - v[i]; 

return temp; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+++++ 

vector vector: :operator- (double *a) 

If (!sameLength(a,"operator- (double *a)")) exit(-1); 

vector temp(length); 

for (int i = 0; 1 < length; i++) temp[i] = array[i] - a[i+1]; 

return temp; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
-I- 

vector vector: :operator- (double d) 

vector temp(length); 

for (int i = 0; i < length; i++) temp[i] = array[i] - d; 

return temp; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 
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vector vector: :operator*  (double d) 

vector temp(length); 

for (int i = 0; i < length; i++) temp[i] = array[i] * d; 

return temp; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

vector vector: :operator/ (double d) 
[ 

vector temp(length); 

for (int i = 0; i < length; i++) . temp[i] = array[i] / d; 

return temp; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+ ++ ++ 

vector & vector::operator+= (vector &v) 

if (!sameLength(v,"operator+= (vector&v)")) exit(-1); 

for (int i = 0; i < length; i++) array[i] = array[i]+v[i]; 
return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

vector & vector::operator+= (double *a) 

if (!sameLength(a,"operator+= (double *a)")) exit(-1); 

for (int i = 0; i < length; i++) array[i] = array[i]+a[i+1]; 
return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

vector & vector::operator+= (double d) 

for (int i = 0; i < length; i++) array[i] = array[i]+d; 
return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 
vector & vector: :operator- (vector &v) 
{ 

if (!sameLength(v,"operator-= (vector&v)")) exit(-1); 

for (int i = 0; i < length; i++) array[i] = array[i]-v[i]; 
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return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 

vector & vector::operator-= (double *a) 

if (!sameLength(a,"operator-= (double *a)")) exit(-1); 

for (int i = 0; i < length; i++) array[i] = array[i]-a[i+1]; 
return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 

vector & vector: :operator- (double d) 

for (int i = 0; i < length; i++) array[i] = array[i]-d; 
return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 

vector & vector: :operator*  (double d) 

for (int i = 0; i < length; i++) array[i] = array[i]*d; 
return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 

vector & vector: :operator/ (double d) 

for (int i = 0; i < length; i++) array[i] = array[il/d; 
return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 

vector vector::operator+ () 

return *this; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 

vector vector: :operator- () 

vector temp(length); 
for (int i = 0; i < length; i++) temp[i] = -array[i]; 
return temp; 
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//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 

double vector: :magnitude() 

double sumSquares = 0.0; 

for (int i = 0; i < length; i++) 
sumSquares += array[i]*array[i]; 

return sqrt(sumSquares); 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+ + + ++ 

double vector: :distance (vector &v) 

double sumSquaresOfDiff = 0.0; 

for (int i = 0; i < length; i++) 
sumSquaresOfDiff += (array[i]-v[i])*(array[i]-v[i]); 

return sqrt(sumSquaresOfDiff); 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++ + + 

ostream & operator«(ostream & stream, vector &v) 
{ 

if (!v.valid()) 
cout « "ERROR - operator«(vector) - invalid 

vector\n\n"; 
exit(-1); 

stream « "f "; 
for (int i = 0; i < v.size() -1; i++) cout « v[i] <<" 

	
II ;  

stream « v[v.size()-1]« 

return stream; 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++++ 


