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ABSTRACT 

The quality of power supply has become an important issue for electricity utilities 

and their customers. In recent years there has been a rising incidence of damage 

attributed to the power quality supplied to the customers of electric utilities. 

Meanwhile, there has been a rapid increase in the already widespread use of 

electronic equipment and modem power electronic devices. These trends have both 

decreased the quality of power on the electric grid and increased the equipment's 

sensitivity to power quality disturbances. 

In order to improve the quality of the power supply, identifying the type and source 

of troublesome disturbances is an essential task. Existing automatic disturbance 

classification methods have replaced the traditional visual inspection of the 

disturbance waveforms. However, they are not reliable because those methods rely 

on the classification capability of large neural networks operating on inputs derived 

by simply pre-processing the disturbance signals with discrete wavelet transforms 

[134,135,136,137,138]. Long and redundant feature vectors both take a long time to 

train the network and result in a reduced classification rate. In this thesis, we aim to 

develop an efficiency method that automatically classifies power quality disturbances 

by using wavelet transform techniques to generate short and nonredundant feature 

vector. 

Because of the wide range of power quality disturbances and their characteristic 

waveforms, ranging from very simple stationary and deterministic harmonics to 
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vi Abstract 

highly transient and stochastic waveforms, different and appropriate analysis 

techmques are needed to achieve the overall classification objective. It is well 

known that the traditional Fourier analysis is ideal for analysing steady state signal. 

Although it is very powerful, Fourier analysis does not have the temporal resolution 

needed to cope with sharp changes and discontinuities in signals. 

Recent years have witnessed a proliferation in the applications of wavelet transforms 

to signal analysis in a wide variety of fields, from geo-physics to telecommunications 

to bio-medical engineering. This has occurred because wavelet analysis provides 

dual localisations in both the time and the frequency domains. Moreover, wavelet 

analysis allows the flexibility of choosing a wavelet that suits a particular 

application. Especially by using the simple and flexible lifting scheme, we can 

construct a time-variant or space-variant wavelet - known as second-generation 

wavelet. The second-generation wavelet analysis makes optimal use of the 

correlation between neighbouring signal samples and between neighbouring 

frequency components to construct 'local' wavelets, which adapt to the local 

characteristics of the signal. 

Common types of wavelet schemes are the orthonormal or biorthonormal wavelet 

transforms that are typically used in compression and coding applications. This is 

due to the fact that those schemes can be implemented with fast algorithms and they 

are non-redundant representations of a signal. Unfortunately, they suffer the 

limitation of not being translation invariant; a totally different set of transformed 

coefficients is obtained when the same signal is shifted. This is the major concern in 

pattern recognition applications. 

There exist a number of wavelet schemes that have the shift invariance property in 

their multiresolution representations. In this thesis, the local maxima and the 

matching pursuit techniques are presented as the two most appropriate techniques for 

power quality solutions. This is because the two techniques can efficiently 

decompose a signal and have the ability to precisely measure power quality 
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disturbance characteristics so that they represent the disturbances by a compact, 

time-invariance feature vector. 

The final task of classification is the selection of an appropriate classifier for use 

with the feature vector. There are two main approaches of pattern recognition: one is 

parametric and the other is non-parametric [129]. Parametric approaches can be 

either deterministic or statistical. The statistical parametric approach requires a good 

assumption about the statistical distribution of the data. On the other hand, the non­

parametric approach, known as the neural network approach, does not require any 

statistical assumption about the data. In our statistical approach, we use a two-layer 

network structure with locally tuned nodes in the hidden layer, known as Radial 

Basis Function (RBF) network [106,120,121]. The network has only a local learning 

capability and a limited learning inference from the training data, but trains quickly 

as the training of the two layers is decoupled. 

In an RBF network, the crucial concern is the selection of cluster centres and their 

widths. However, current techniques give suboptimum positions of cluster centres 

and their widths, thus limiting the classification rate. To improve the p~rformance of 

an RBF network, we propose to modify the structure of the RBF network by 
"' 

introducing the weight matrix to the input layer (in contrast to the direct connection 

of the input to the hidden layer of a conventional RBF) so that the training space in 

the RBF network is adaptively separated by the resultant decision boundaries and 

class regions. During training iterations, cluster centres, their widths and the input 

layer weights are optimally determined together and concurrently adjusted to 

maximise the discriminant between classes, thus minimising the classification error. 

In this way the network has the ability to deal with complicated problems, which 

have a high degree of interference in the training data, and achieves a higher 

classification rate over the current classifiers using RBF. 

For the classification of different types of disturbances that may be present on a 

power supply, in this thesis we show that our automatic classification techniques 

achieve superior recognition rates over current techniques. This improvement is 
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done in two steps. The first improvement is the extraction of disturbance features 

using appropriate signal processing tools from which we obtain an efficiency and 

translation invariant feature vector. The second improvement is the designing of an 

appropriate classifier which maximises the inter-class discriminant function. 
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PREFACE 

Traditional Fourier transform has been used as a powerful tool for signal analysis and 

decomposition. Unfortunately, due to the lack of time localisation, Fourier analysis 

cannot deal with transient or non-stationary signals. 

Unlike Fourier transform, wavelet transform has the advantage of optimal trade-off 

between time resolution and frequency resolution. It can thus provide both time and 

frequency localisation. Wavelet analysis is therefore well suited to the analysis of 

non-stationary signals. 

Wavelet transform has been recognised as a suitable tool to use in power ,quality 

monitoring and disturbance recognition or classification since its first publication in 

1996 [130]. fu 1999, at the time this thesis was initiated, there are some research 

works found in literature in this field. These works however simply re-process the 

disturbance signal using wavelet transform, while retaining a large, redundant and 

translation variant feature vectors. This requires large neural network classifiers, 

making these methods inefficient and requiring a long training time. 

The scope of this research is to find an efficient wavelet based technique for 

analysing and extracting the features of power quality disturbances, which can be 

used for a stability classification for power quality disturbances. 

xi 
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Thesis Organisation 

This thesis is organised into nine chapters: 

Chapter 1 provides an overview and introduction to power quality problems. It gives 

a short background on power system quality and discusses the need for automatic 

disturbance classification in power quality monitoring and analysis. 

Chapter 2 presents the definitions, the causes and the effects of different types of 

power quality disturbances in the power supply. A method for generating the 

transient disturbances is introduced. 

Chapter 3 covers two important types of local time-frequency decomposition, which 

are the short-time Fourier transform, and the wavelet transform. Various wavelet 

analysis schemes and their properties are also discussed in this chapter. 

Chapter 4 presents the translation invariant wavelet transform modulus maxima 

representation. It studies the Lipschitz exponents of a signal that provide a 

measurement on the local regularities of the signal. For oscillation singularities, the 

general modulus maximum of each modulus maxima chain gives an estimation of the 

local frequencies of the signal. The Lipschitz exponents and the general modulus 

maxima are used to characterise the transient disturbances. This chapter presents 

some numerical demonstrations for transient disturbances using wavelet transform 

modulus maxima. 

Chapter 5 presents a popular translation invariant representation called matching 

pursuit. It discusses fast implementation of the matching pursuit and introduces the 

orthogonal matching pursuit. Numerical demonstrations for the transient 

disturbances using matching pursuit are also presented. 

Chapter 6 covers different pattern recognition approaches. It examines in detail the 

two commonly used approaches, parametric and non-parametric. A suitable pattern 

recognition approach for our problem is also discussed in this chapter. 



Preface xiii 

Chapter 7 provides a modification of the radial basis function network by adding the 

feature weights or the input layer weight into the network. Two new training 

techniques, which are the knowledge base technique and the generalised technique, 

are proposed to train this network. Comparisons are made between the conventional 

radial basis function network, the backpropagation network and the modified radial 

basis function network trained by one of the two training techniques. 

Chapter 8 presents an automatic classification method for classifying 10 power 

quality disturbance types. Comparisons for the four transient disturbance types are 

made between the classification method developed by the authors and other current 

classification techniques. 

Chapter 9 gives a summary of the thesis contribution, major results obtained and 

suggestions for further research. 
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Chapter 1 

AN OVERVIEW & 

INTRODUCTION TO POWER 

QUALITY PROBLEMS 

1.1 WHAT IS POWER QUALITY? 

The term 'power quality' applies to a wide variety of electromagnetic phenomena on 

power systems. Although it is difficult to define precisely, power quality (PQ) 

fundamentally describes the consistency of the voltage and current waveforms on a 

power system or within an electrical power customer facility. It is perhaps more 

relevant to discuss the commonly used term a 'PQ problem'. A PQ problem can be 

categorised as a disturbance caused by a piece of equipment, a combination of pieces 

of equipment, or a network configuration that impacts on the voltage and/or current 

waveforms in such a way that adversely affects the operation of other equipment on 

the system. Optimally, the voltage waveform at all points on a power system should 

be a perfect sinusoid at nominal voltage and frequency. This is impossible to achieve 

1 

'\ 
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m practice due to inconsistent loads and the dynamic nature of power system 

operation, so limits are defined for acceptable deviations away from the optimum. 

Different electrical equipment or systems have different abilities to cope with the 

deviations of the power supply. Nowadays much electronic equipment is very 

sensitive to changes on the power supply and can easily mis-operate if the voltage 

exceeds these limits. 

PQ problems have been evident for many years, but it is only in the last decade that 

they have become a major concern to electric power utilities and customers. This is 

mainly due to the increasing use of microprocessor-based electronics, power 

electronic devices and power factor correction capacitor banks. The increasing use 

of electronic and power electronic devices presents a two-fold problem with regard 

to PQ. These devices are typically more sensitive to PQ disturbances and also 

produce more PQ problems than the electromechanical power system devices used in 

the past. Capacitor banks reduce reactive power flow, decreasing losses, but can also 

trigger sensitivities to a range of PQ disturbances, especially harmonics. They can 

also produce transient disturbances when switching of capacitor banks is 

implemented. 

PQ problems represent a huge cost to business in lost productivity and equipment 

damage. It is not uncommon for a momentary utility breaker operation to result in a 

loss of $10,000 to an average sized industry by shutting down its production line, 

which will require many hours to restart. Large-scale industries can lose millions of 

dollars per hour in lost production if one machine or process in a production line fails 

due to a PQ problem. Utilities and customers are spending increasing amounts of 

money monitoring, studying and improving PQ in order to minimise the economic 

impact of these problems. Customers are becoming more aware of PQ issues and the 

problems poor PQ can cause. Of major concern in the study of PQ, is locating the 

source of PQ disturbance on a power system. Generally, the source must be located 

before a solution can be formulated. 
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1.2 CLASSIFICATION OF POWER QUALITY 

DISTURBANCES 

3 

The current practice is to perform manual studies into possible causes of the problem 

[1,130], which is at best, a highly inefficient and costly task. In many cases it is a 

relatively simple task for a human to categorise a disturbance based on a visual 

inspection of a recorded waveform. However, as is the case with many visual tasks 

that humans find simple, automatic computer classification has proved to be much 

more difficult. Although the need for automatic determination of disturbance source 

location has been apparent for some time, there are only a small number of solutions 

towards this goal that can be found in the literature. It is obvious that because each 

power system is different, the system response to a PQ disturbance will be different, 

making it a very complex task to develop a generalised PQ source locator.· Also 
~ 

power system parameters change constantly with the load and generation schemes. 

At the University of Tasmania in Australia, a collaborative effort between its School 

of Engineering and the local energy industry has been pursued to develop an accurate 

and robust PQ monitoring and disturbance recognition system. Our technique, in this 

collaborative project, uses wavelet analysis for the detection and feature extraction of 

power quality disturbances, and neural pattern classification for the identification of 

their origin. 

There are a number of methods for detecting particular types of power system 

disturbances, in particular for fault detection [2,3,4] and transformer inrush [5], but 

these are limited in their application. Using an individual artificial neural network, 

the authors of [6] attempt to automatically classify PQ disturbances in the time 

domain. This work has been further refined by pre-processing the signals using the 

discrete wavelet transform (DWT) in a time-scale domain [134,135,137]. However 

these techniques use the entire set of DWT coefficients, which is very large and is 

lack of time shift-invariance. Therefore, it takes a long time to train and' does not 

guarantee a convergence of the neural network. Moreover, the methods cannot 

produce a good classification rate, as the DWT coefficient at any point in the time-
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scale domain is completely unpredictable and results in a substantial overlap in range 

between different types of disturbance. Various wavelet kernels have been 

investigated in [7, 132]. 

This thesis proposes a number of new wavelet-based techniques for automatically 

identifying the type and source of PQ disturbances, and shows that the wavelet-based 

techniques that we propose produce compact and time-invariant feature vectors. 

These two characteristics render efficiency and stability to the training and 

convergence of classifiers of PQ disturbances. 

1.3 THESIS CONTRIBUTIONS 

A general block diagram for PQ disturbance classification is shown in Figure 1. The 

first step in classification is to understand the sources and characteristics of the signal 

that we are dealing with. So in Chapter 2, we take a close look at all technical 

aspects of power quality and disturbances. In that chapter, the definition of each type 

of disturbance and its characteristics are presented. Depending on the natural 

characteristics and the phenomena of disturbances, they are classified into two main 

groups: transient and steady states. Since different disturbance types may have 

different specific characteristics, we intend to use different signal processing tools to 

analyse different types. 

Feature 
Extraction 

Pattern 
Classification output 

Figure 1.1: A general block diagram for PQ disturbance classification. 

For the next step of classification, different signal processing techniques are used to 

extract signal features for further processing. The signal is analysed in the time and 

frequency domains, so that it can be reduced to a number of components, the so­

called time-frequency atoms, that are localised either in time, in frequency or in both. 
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The number of atoms and the efficiency of the method are greatly dependent on the 

correlation between the signal and the analysis kernel. In this thesis, the author 

proposes some new feature extracting techniques that use appropriate signal 

processing tools such as Fourier transform (FT), wavelet transform modulus maxima 

(WTMM) and the matching pursuit for power quality disturbances classification. 

In Chapter 3 an introductory analysis of several time-frequency techniques is 

presented. The properties of signals are revealed by transforms that decompose 

signals into elementary functions that are well concentrated in time and frequency. 

We present two important types of local time-frequency decomposition, which are 

the short-time Fourier transform (STFT) and wavelet transform (WT). The localised 

nature of time-frequency decomposition is important. However it is limited by the 

Heisenberg uncertainty principle. 

The issue of translation invariance is significant in pattern classification. A DWT or 

wavelet frame is not adequate to deal with this issue. Chapter 4 presents the WTMM 

technique that maintains the translation invariance by only sampling the scale 

parameter and leaving the time parameter in a continuous manner. Moreover, 

singularities and irregular structures often carry essential information in a signal, and 

they can be detected by following the WTMM coefficients at fine scales. So at the 

end, the signal features that we obtain from the WTMM are much more compact than 

the entire set of WT coefficients and they are also time-invariant. 

In STFTs, the window of the time-frequency atoms has a constant size. Therefore, 

STFTs are not well adapted to signal structures that are much smaller or much larger 

in window size. On the other hand, a wavelet transform is built by relating the 

frequency to the scale (window size). The resulting family of waveforms are dilated 

and translated versions of a single mother wavelet. This has a limitation on the 

estimation of frequencies that are well localized in the Fourier transform domain, 

especially at high frequencies. In general, adaptive signal decomposition involves 

the expansion of a signal over a set of waveforms, which are selected appropriately 

from a large and redundant dictionary. Chapter 5 presents a general algorithm called 

matching pursuit that performs such an adaptive decomposition. 
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The most important step in a classification task is the selection of feature vector and 

the designing of a correspondent distance metric for pattern matching. Chapter 6 

discusses the two main approaches of pattern recognition: one is parametric and the 

other is non-parametric [129]. Parametric approaches can be either deterministic or 

statistical. The statistical parametric approach requires a good assumption of the 

underlying distribution of the data. On the other hand, the non-parametric approach, 

known as the neural network approach, does not require any statistical assumption of 

the data. In PQ classification problems, most researchers [134,135,137] simply pre­

process the signal but still retain a large and redundant amount of data, then rely on 

the capacity of a neural network for the classification. These methods are therefore 

inefficient and may not produce a high classification rate. In this thesis, we propose 

methods that extensively study the signal characteristics via a number of signal 

processing tools. Then a small number of signal features that have clear statistical 

distribution between different types of disturbance are selected. With this small 

number of selected signal features, a small classifier network is required by either 

using the parametric or non-parametric approach. 

There are a variety of Artificial Neural Networks (ANNs) with different structures. 

Each network has its own advantages and disadvantages. Multilayer perceptrons 

(MLPs) including the backpropagation neural networks, are typical of globally 

generalising networks which have the capability of robust learning inference and 

generalisation from the training data. These networks, however, are very slow in 

learning and suffer from the possibility of being trapped in local maxima of the 

chosen optimisation cost function. Existence of optimisation techniques such as 

genetic algorithm [8], learning automata [9], and proper initialisation of connection 

weights [10] are capable to achieve a global minimum, they require extensive 

computation and also in many applications there is inadequate prior knowledge about 

the training examples to allow a good estimate for the initialised setting. In our 

statistical approach, we use a two-layer network structure with locally tuned nodes in 

the hidden layer, known as Radial Basis Function (RBF) network [120]. The 

network, therefore, has only a local learning capability and a limited learning 

inference from the training data, but is much faster for training because the training 
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of the two layers is decoupled. When using an MLP network the training is 

iteratively coupled together. Furthermore, the locally tuned or self-organised ability 

of the hidden layer in an RBF network is equivalent to a very efficient initialisation 

of the connections, thus giving the network the ability to avoid local minima. 

In the classification of power quality disturbances, the prior knowledge of the classes 

does in fact allow us to effectively initialise the RBF network. Disturbance types 

have their attributes widely spread over well-known time and frequency ranges. 

Although these ranges overlap, their cluster centres are well separated. This type of 

training data should favour the use of networks with self-organising capability in the 

first hidden layer since they are being free from local maxima and are much faster to 

train. This is our motivation for the use of an RBF for classification of transient 

power quality disturbances. 

In Chapter 7, we propose two new techniques to improve the performance of an RBF 

network. In many applications, some features of a data pattern are more important or 

more discriminating than other features, e.g. the formant frequencies of a voiced 

sound, the dominant components in a principal component analysis. The pattern 

matching gives more weight to these components in the feature vector. ~herefore, to 
' 

increase the discriminant between classes, a feature weight vector is introduced to the 

distance measurement. We then carry out a comprehensive knowledge-base training 

algorithm for the RBF classifier so that at its convergence the network gives both the 

optimal feature weight vector as well as the cluster centres and their scaling width. 

Moreover, in most cases the importance level of a given feature is different in 

different classes and the general form of the feature weight should be a matrix. Also 

in some cases it is difficult to construct a knowledge base precisely. Therefore, we 

take a further step to modify the structure of the RBF network by introducing a 

weight matrix to the input layer in contrast to the direct connection of the input to the 

hidden layer of a conventional RBF. We then train this weight matrix as a single 

layer perceptron together with the clustering training. This still retains the speed 

advantage of an RBF network over an MLP, while archiving a higher classification 

rate. 
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Chapter 8 presents the proposed techniques for the classification of power quality 

disturbances, and the classification results of these techniques. Depending on the 

signal characteristics, appropriate signal processing tools are proposed to extract 

different discriminating features from the disturbance signal, hence enhancing the 

classification results. We also present some comparative results between our 

techniques and current techniques. 

The last chapter, Chapter 9, provides a conclusion to the work contributed by this 

thesis, as well as suggestions for future studies. 



Chapter 2 

POWER QUALITY 

DISTURBANCES 

2.1 INTRODUCTION 

In recent years, power quality has become an important concern for utility, facility 

and consulting engineers [10,65,135,134]. End user equipment is more sensitive to 

disturbances that arise both on the supplying power system and within customer 

facilities. Also, this equipment is more interconnected in the network and industrial 

process, therefore the causes of disturbances on the system are much more severe. A 

recent E SOURCE survey claimed more than 50% of larger users are significantly 

affected by power quality on their company's overall performance. In high-tech 

industry, a single power outage can easily cause the company losses of US$1 million 

or more, while the average outage that facilities experience is 3.5 outages per year. 

It is important to understand the phenomena of power quality variation that causes 

problems with sensitive loads. Categories of these variations must be developed with 

a consistent set of definitions so that measuring equipment and analysis tools can be 

9 
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designed to handle different types of disturbance. Also the first and the most 

important step in identifying the source of a disturbance is to correlate the 

disturbance waveform with the possible cause, i.e. recognising the category of the 

disturbance (e.g. load switching, capacitor switching, lightning, remote fault 

condition, ect.). This requires a full understanding of the characteristics of each 

disturbance category. Once the category for the cause has been determined, the 

identification becomes much more straightforward. 

This chapter describes the characteristics of different types of PQ disturbances and 

presents a method for generating PQ disturbances. 

2.2 GENERAL CLASSES OF PQ PROBLEMS 

Power quality disturbances usually result in voltage or current waveform being 

deviated from the normal level. However it is essential to maintain the voltage 

waveform within a certain limit so that it can retain the quality of power supply. 

Moreover, the power supply system can only control the quality of the voltage. It 

has no control over the currents that particular loads may draw. Therefore, the limits 

defining normal operations in power systems are generally given in terms of voltage 

[11,13]. 

Several international standards have been proposed for PQ problems, such as the 

Institute of Electrical and Electronic Engineers Standards Coordinating Committee 

22 (IEEE SC22) or the International Electrotechnical Commission (IEC) standard or 

the American National Standards Institute (ANSI). 

Basically, PQ disturbance can be divided into seven main categories in terms of their 

deviation of the voltage waveform. They are: 

1. Transients 

2. RMS voltage variation 

3. Voltage imbalance 
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4. Waveform distortion 

5. Voltage fluctuation 

6. Power frequency variation 

As in [11], based on the source, duration and severity of disturbances on the power 

system, disturbances in these main categories can be further sub-grouped as shown in 

Table 2.1. In this table, the three most important disturbance attributes, which are 

spectral content, duration, and voltage magnitude, are presented for each type. 

2.3 SOURCES AND DEFINITIONS 

2.3.1 Transients 

According to the IEC standard, a transient is defined as: pertaining to or designating 

a phenomenon or a quantity which varies between two consecutive steady states 

during a short time compared with the time-scale of interest. 

The term transients has long been used in the analysis of power system variations to 

denote an event that is undesirable but momentary in nature. In power systems, 

when we encounter the word transient we probably think of a damped oscillatory 

transient due to a RLC network. A transient can also result from a lightning strike 

for which a surge arrester is used for protection. Transients can be classified into 

two categories, impulsive and oscillatory. These terms reflect the waveshape of a 

current or voltage transient. 

Impulsive transient: 

An impulse transient is a sudden non-power frequency change in the steady state 

condition of voltage or current that is unidirectional in polarity. To characterise 

impulsive transients, three parameters are normally used, that is their amplitude and 
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the rise and decay times. We can also reveal impulse transients by their spectral 

content. Lightning is the most common cause of impulse transients. Figure 2.1 

shows an example of an impulsive transient caused by lightning. 

1. 

2. 

3. 

4. 

5. 

6. 

Typical spectral 
Typical 

Categories Typical duration voltage 
content 

magnitude 

Transients 

1.1 Impulsive 5ns - O. lms rise 50ns - lOms 

1.2 Oscillatory 400Hz- 5MHz 5µs - 50ms 0- 8pu 

RMS voltage variation 

2.1 Interruption 0.5cycles - lmin < O.lpu 

2.2 Sag (dip) 0.5cycles - lmin 0.1 - 0.9pu 

2.3 Swell 0.5cycles - lmin 1.1 - l.2pu 

2.4 Interruption, sustained > lmin 0.0 u 

2.5 Under-voltages > lmin 0.8 - 0.9pu 

2.6 Over-voltages > lmin 1.1 - l.2pu 

Voltage unbalance Steady state 0.5 -2% 

Waveform distortion 

4.1 de offset Steady state 0 - 0.1 % 

4.2 Harmonics 0 - lOOth Steady state 0-20% 

harmonics 

4.3 Interharmonics 0- 6kHz Steady state 0-2% 

4.4 Notching Steady state 

4.5 Noise Broadband Steady state 0-1% 

Voltage fluctuation <25Hz Intermittent 0.1 - 7% 

Power frequency variations < 10s 

Table 2.1: Categories and Characteristics of Power System Electromagnetic 

Phenomena 
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Due to the sudden change of impulse transient, it can be responded to by many 

circuit components, and produce oscillation transients which have significantly 

different characteristics when viewed from different parts of the power system [ 11]. 

Time [µs] 

0 25 50 75 100 125 150 175 

-50 

~ 
<l.) -100 

~ 
~ -150 

-200 

-250 

Figure 2.1: An impulsive transient caused by lightning 

A common problem caused by impulse transients is divides damage. Oft~n the over­

voltage in impulse transients can be high enough to damage inadequat~ly protected 

equipment. Impulses can cause electronic equipment to malfunction or be temporary 

offline. 

Oscillatory transient: 

An oscillatory transient is a sudden, non-power frequency change in the steady state 

condition of voltage or current that includes both positive or negative polarity value. 

An oscillatory transient normally takes the form of a damped sinusoid. It is 

described by its spectral content (predominate frequency), duration and magnitude. 

This category of disturbance is frequently come across in utility subtransmission and 

distribution systems. Capacitor switching mainly causes oscillatory transient 

. , 

'·· ' 
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[12,13]. Also many other types of events can cause this type of disturbance, namely 

transformer switching operation, ferro-resonant, as well as the response of circuits on 

the power system to an impulsive transient. An example of low frequency capacitor 

switching is shown in Figure 2.2. 

Voltage [V] 

200 

100 

0 

-100 

-200 

0 20 40 60 80 
Time [ms] 

Figure 2.2: Oscillatory transient caused by a capacitor switching 

Major causes of oscillation transients are variable-speed drive trip-outs and 

electronic equipment malfunctions. Large magnitude oscillation transients can also 

cause damage to unprotected equipment and as its large potential energy is 

contained, arrestors require a high quality to survive. 

2.3.2 RMS Voltage Variations 

A RMS voltage variation is a variation of the RMS value of the voltage from 

nominal voltage for a time greater than one-half a cycle of the power frequency. It 

can be a reason of fault conditions, irregular loose connections in power wiring, or 

switching of large loads that require high starting current, as well as variation in load 

on the system. 
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Depending on the system condition and the location of the fault, it can cause a short 

duration (less than one minute) of either voltage drop (sag), or voltage rise (swell), or 

a complete loss of voltage (interruption). Long duration variations (greater than one 

minute) such as over-voltages or under-voltages are generally not due to system 

faults, but are caused by system switching operations and load variations [ 10, 11]. 

Sags: 

The term voltage sag has been used for many years in the power quality community. 

It describes a short duration voltage decrease whose RMS value varies between 0.1 

and 0.9 pu for durations from 0.5 cycles to one minute. 

Sags are commonly associated with system faults. However heavy loads switching 

can also cause voltage sags. They are described by their RMS' value and duration. 

The voltage drop in sags can cause sensitive electronic equipment to drop out or to 

malfunction. An example of voltage sag that is associated with a single-line-to­

ground (SLG) fault is shown in Figure 2.3. 

Voltage [V] 
•I, 

200 
,,, 

A n 100 I 0 J l 
-100 

-200 J 

0 20 40 60 80 100 120 140 
Time [ms] 

Figure 2.3: A voltage sag caused by a SLG fault (from [11]). 

,,·~ 
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Swells: 

A voltage swell is a temporary increase in the RMS value of the voltage of between 

1.1 to 1.8 pu (typical between 1.1 to 1.2 pu), at the power frequency, for durations 

from 0.5 cycles to one minute. 

As in sags, the main causes of swells are system faults, but they not as common as 

sags. During a SLG fault, the voltage on the un-faulted phases can temporary rise 

and create swell. The over-voltage in swells can damage electronic equipment if 

severe enough, or cause sensitive equipment to drop out or malfunction. 

Interruption: 

Interruptions are a type of short duration variation, where there is a complete loss of 

voltage ( < 0.1 pu) on one or more phase conductors for a time period from 0.5 cycles 

to one minute. 

Voltage [V] 

200 n 
100 

, 

/ 0 

v -100 

-200 

0 20 40 60 80 
Time [ms] 

100 120 140 

Figure 2.4: A momentary interruption caused by a fault and subsequent recloser 

operations (from [11]). 

An interruption can be the result of power system faults or equipment failures. It is 

characterised by only the duration since it is associated with a total lost of voltage. 

The duration of an interruption is normally determined by the time taken from the 
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instant protective equipment recloses to the time that the fault is cleared. Long 

interruptions are likely to cause most electronic devices to shut down [11]. Figure 

2.4 shows an interruption caused by fault, followed by several protective reclosers 

operating until the fault is finally cleared. 

Under-voltage: 

Under-voltage is used to describe a specific type of long duration variation, which 

has a voltage value of between 0.1 and 0.9 pu (typical between 0.8 to 0.9 pu) and 

lasts for more than one minute. It is typical a result of loads switching on, or a 

capacitors switching off. Overloaded circuits, or incorrect tap settings on 

transformers, can also cause under-voltage. 

Under-voltage is normally associated with cause other than system fault; and can be 

controlled by voltage regulation equipment. 

Over-voltage: 

Over-voltage is used to describe a specific type of long duration variation, which ·has 

a voltage value of greater than 1.1 pu and lasts for more than one minute. It is 

mainly caused by load reductions, capacitor switching on, or incorrect tap setting on 

transformers. 

Under and over-voltage may cause equipment to drop out, malfunction or be 

damaged. As with all equipment, the abnormal voltage levels produce excess 

heating, shortening their lifespan and reducing their efficiency. 

Sustained interruptions: 

Sustained interruptions are a type of long duration variation, which has a complete 

loss of voltage on one or more phase conductors for a time greater than one minute. 
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The distinction between an interruption and sustained interruption is that the latter 

are longer than one minute and are often permanent. They normally cause 

mechanical devices to shut down, in some cases with costly consequences. This type 

of PQ problem requires human intervention to repair before power is restored. 

2.3.3 Voltage Imbalance 

Voltage imbalance (unbalance) is defined as the difference in the voltages amplitude 

of three phases in a three-phase system. It can be measured using symmetrical 

components. The ratio of either the negative or zero-sequence component to the 

positive sequence component can be used to specify the percent unbalance [11]. 

Single-phase loads on a three-phase circuit can cause the voltage to unbalance by less 

than two percent. Server voltage imbalance can be caused by single-phasing 

conditions. 

2.3.4 Waveform Distortion 

Waveform distortion is a steady state deviation from the perfect sine wave of power 

frequency. Basically, the characteristics of distortion can be reviewed from the 

spectral content. Waveform distortion contains five primary categories: DC offset, 

harmonics, inter-harmonics, notching and noise. 

DC offset: 

DC offset is defined by the presence of a DC component in voltage or a current in an 

AC power system. DC current is normally due to the effect of half-wave 

rectification. It causes biasing in transformer cores which results in excessive 

heating and loss of transformer life. 
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Harmonics: 

Harmonic distortions are the presence of sinusoidal voltages or currents whose 

frequencies are integer multiples of the fundamental power frequency (power system 

operates at fundamental frequency, i.e. 50 or 60Hz) in the power signal. It is caused 

by non-linear loads on the power system. Figure 2.5 shows a harmonic distortion of 

a voltage waveform. 

To specify the harmonic distortion levels, the complete harmonic spectrum is 

reviewed with magnitudes and phase angles of each harmonic component. The total 

harmonic distortion is also commonly used to determine the effective value of the 

harmonics distortion level. 

Voltage [V] 
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Figure 2.5: A harmonic voltage waveform 

The harmonic currents can cause excess heating in supply transformers and capacitor 

banks, interference with nearby telecommunication lines, and harmonic voltage 

distortions [12]. Harmonic voltage distortions cause electronic equipment to 

overheat, malfunction or drop out. The equipment lifespan is shortened due to the 

additional heating and the sub-optimal efficiency condition. 



20 Chapter Two 

Inter-harmonics: 

Inter-harmonics are periodic waveform distortions of voltage or current whose 

frequency components are not at integer multiples of the fundamental power signal. 

They can appear as a discrete frequency or as a wide band spectrum. 

The main sources of inter-harmonics are induction motors, static frequency 

converter, cycloconverter and arcing devices as well as DC transmission links across 

separate power systems. 

Notching: 

Notching is a periodic voltage distortion caused by commutation between different 

phases in power electronic devices. An example of notching that caused is by a 

three-phase converter is shown in Figure 2.6. During the commutation between two 

phases, the voltage is pulled as close as zero depending on the system impedances. 

Voltage [VJ 
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Figure 2.6: Notching caused by a three-phase converter 

Notching can be characterised by harmonic spectrum as it occurred in a periodic 

manner. However, notching can produce very high frequency components that may 

not be measured by most harmonic measurement devices [11]. 
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The notches can sometime produce the voltage waveform sufficiently close to zero 

and cause errors in instruments and systems that rely on zero crossing. 

Noise: 

Noise is defined as a broadband distortion signal with spectral content less than 200 

kHz. Basically, any unwanted distortion of the power signal that is not classified as 

harmonics or transients distortion is referred as noise. 

Many power electronic devices are sources of noises. They are control circuits, 

arcing equipment, load with solid-state rectifiers and switching power supplies. 

Electronics devices such as microprocessors and programmable controllers are most 

affected by noise. 

2.3.5 Voltage Fluctuation 

Voltage fluctuations are distortion of voltage envelopes in a continuous manner. The 

variations of voltage envelope are in the range of 0.9 to 1.1 pu and produce the 

phenomenon known as flicker. Flickers are the effects of the voltage variations on 

lamps as perceived by the human eye (i.e. fluctuation frequencies < 25 Hz). Figure 

2.7 shows an example of voltage flicker. 

As the terms voltage fluctuation and voltage flicker are interchangable in most 

standards, we will use the two terms with no distinction. One of the most common 

causes of voltage fluctuation on power system is arc furnace. 

'• 
' }-
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Figure 2.7: Voltage flicker caused by arc furnace operation 

2.3.6 Power Frequency Variations 

Chapter Two 

Power frequency variations are a deviation of the power system fundamental 

frequency from its nominal value (e.g. 50 or 60Hz). Since it is directly related to the 

rotation speed of the generator supplying the system, there are very small variations 

in frequency if a change exists in the dynamic balance between load and generation. 

The change of frequency in power system is limited by the large net inertia of the 

system generators and generation control systems. However, significant frequency 

changes can be found if there are faults on the bulk power transmission system, or a 

large group of load is disconnected, or a large source of generation goes offline [ 11]. 

2.4 POWER QUALITY STUDY 

Studies show that up to 80 percent of most small business' PQ problems are caused 

by disturbances created inside a facility or business (see Figure 2.8). For example, in 

a large power using building, fans, air conditioning equipment and other large 

applications cycle on and off. They can cause power dips, surges and transients that 
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affect other equipment m the building. Lightning is another major source of 

disturbance that accounts for around 15 percent of power disturbances . 

Neighbor 

20% 

Utility _ ____, 
5% 

Lightning 

15% 

Onice 
Equipment 

60% 

Figure 2.8: Source of power quality disturbances (Florida power study 1993). 

To improve system stability and reliability, we need an efficient and prompt 

detection, classification and characterisation of PQ disturbance events and their 

sources, so that further identification of the location of these events can be made for 

maintenance and control of the system. Another aspect of PQ study in the 

recognition and characterisation of disturbance events is to coordinate these events 

with equipment pe1iormance. It is desired that the response of the sensitive 

equipment during the each event be explained and correlated to specific features of 

the event, so that the equipment operating characteristics can be turned for improved 

ride-though ability or immunity of the equipment to specific events [14]. 

To alleviate some of the problems that power line disturbances create, and to 

improve the performance of sensitive equipment, there are a number of protective 

devices available. Each of these devices has a different problem-solving function 

and is listed as below (1100-1992 IEEE Standard) . 
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(i) Transient Voltage Surge Suppressors: 

This is an electronic device that attenuates noise or high-speed voltage transients 

caused from equipment switching, lightning strikes or faults. They are installed 

between the power source and sensitive equipment and are most effective if installed 

within close proximity to the piece of equipment being protected. Transient Voltage 

Surge Suppressors cut noise and voltage transients only and do not regulate voltage 

to limit surges and sags. 

The two major types of transient voltage surge suppressors are filters and transient 

diverters. Filters serve as a block to high frequency current which is often noise, 

while letting the low frequency power current to pass through unaffected. Transient 

diverters offer a very low impedance path to ground whenever the voltage across the 

device exceeds a certain value, and thus reduces the voltage that could otherwise be 

presented to the sensitive equipment. 

(ii) Shielded Isolation Transformers: 

This is a transformer where the primary winding is isolated from the secondary 

winding by an electrostatic shield. The shield reduces the passage of common-mode 

(line-to-ground) noise or transients, but is limited in rejecting normal-mode (line-to­

line) noise, and does not regulate voltage nor protect against sags and surges. Those 

transformers with multiple shields are most effective and provide good protection. 

(iii) Voltage Regulators: 

This device is designed to control the incoming voltage in order to sustain a constant 

output voltage. This is performed to protect sensitive equipment against over­

voltage or under-voltage. Voltage regulators can give steady long-term voltage 

levels for varying inputs but do not protect against spikes nor attenuate noise. 
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(iv) Power Line Filters: 

This device is used to reduce voltage waveform distortion affecting sensitive 

equipment. In most cases, filters are used to screen out high-frequency noise, i.e. 

harmonic filters including line reactors, tuning reactors and capacitors. 

(v) Power Line Conditioners: 

This piece of equipment combines the functions of a voltage transient suppressor, 

isolation transformer and a voltage regulator into one operational unit. A Power Line 

Conditioner will provide protection from all except the most severe or lengthy 

disturbance. These devices offer characteristics of two or more protection devices. 

(vi) Standby Power Source: 

Under normal operation, the Standby Power Source provides for transient voltage 

and a degree of noise suppression. In the event of a brownout or blackout, the 

Standby Power Source rapidly transfers to an inverter to supply power to the load. 

(vii) Motor Generator Sets: 

Motor Generator Sets consist of an AC motor coupled to a generator. 'I:he utility line 

energizes the motor that drives the generator. Since Motor Generators isolate the 

incoming power source from the load, they provide protection against noise and 

transients on the incoming power supply. Motor Generators protect against 

transients, but not against blackouts. However, if the generator is equipped with a 

hea_vy flywheel, it may ride through some momentary outages. This ride-through 

time is determined by the load and actual design of the unit. The Motor Generator is 

a relatively expensive device. 
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(viii) Uninterruptible Power Supply: 

For small equipment, this device provides full protection from all power 

disturbances. The Uninterruptible Power Supply provides an alternate power source 

in the event of utility power interruptions or failure and supplies power from a few 

minutes to several hours. The Uninterruptible Power Supply comes in two different 

modes: on-line and standby. A standard on-line or true Uninterruptible Power 

Supply consists of a rectifier or charger, battery and inverter. The rectifier or charger 

converts the incoming AC power to DC. The DC power charges the battery, which 

then runs the inverter section. The inverter then reshapes the DC power to AC, and 

sends it to the critical load. When the utility AC power is interrupted or fails, the 

batteries will supply DC voltage to the DC buss without a switching interruption 

which is then converted to AC voltage through the inverter to the load. The standby 

Uninterruptible Power Supply has a transfer switch that is programmed to select 

either the normal utility supply or transfer to battery/inverter should there be a power 

interruption that falls outside the operating limits. 

2.5 MODELLING FOR POWER QUALITY 

There are many different methods for analysing and simulating PQ disturbances, and 

the type and complexity of the model depends on the class of disturbance being 

analysed. Due to the fact that disturbance on the power system encompasses a wide 

range of variation and characteristics of disturbances on the power system, two main 

analysing techniques are normally used for different disturbance types. The first one 

is the time domain analysis, which is commonly used to analyse transient 

disturbances (e.g. transients and notches). The second one is the steady state analysis 

that is used for most other disturbance which are much less complex. 

In this thesis, we emphasise using the wavelet-based technique to classify transient 

disturbances. For steady state disturbance types, we introduce a simple steady state 
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analysing technique that uses Fourier transform for the classification. This technique 

is demonstrated later in Chapter 8. 

The four common transient disturbance types that we include in our classification are 

impulsive transient (IT), high frequency capacitive switching transient (HF), low 

frequency capacitive switching transient (LF), and aperiodic notch (NT). The 

attributes of these types of disturbances are well documented in [11] and are 

presented above. However, in real-world applications, the limitation of recording 

equipment such as insufficient sampling frequency and limited storage space, 

prevents complete information about disturbances to be recorded or even misses out 

the disturbances altogether. Therefore, for the four classes of transient we select, 

only the three most important attributes are considered in our work - amplitude 

range, frequency range including dominant frequencies, and duration. · .\ 

Since measured data of power quality disturbances is notoriously scarce because of 

its commercial implication, in this thesis data is obtained from a limited number of 

measured disturbances and simulation results based on the characteristics of 

disturbances (see Table 2.1). These disturbances are used for training and testing the 

performance of our recognition techniques throughout this thesis. 

A disturbance can travel to the monitoring point through different paths in the 

network and may be the subject to different frequency drifts. We then simulate an 

oscillatory transient that is due to impulse or due to capacitive switching as a sum of 

P uncorrelated dominant frequencies plus noise [91,140], i.e. 

p 

d(t) = L~ sin(m/ +</J,).e-r,t + TJ(t) (2.1) 
1=1 

in which the variable m1 = N( m0, a ro 
2 

), i.e. normally distributed with mean m0 and 

standard deviation aco, while m0, Ai, and </J1 are uniformly distributed over their 

respective ranges (Table 2.2). The values of the damping factors y; are chosen so that 

they produce the desired overall length of the simulated oscillatory transient 

disturbance. 
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A transitory notch is simulated differently from the other three types by adjusting its 

rise and decay times and the additive oscillatory and noise components. Transient 

disturbances caused by narrow notches and impulses often appear very similar in 

their waveforms, providing a real challenge to our classification problem. 

At a sampling frequency of 12.8kHz, the simulation parameters we have used to 

generate the disturbance d(t) in (2.1) are given in Table 2.2 below. It is important to 

note that the ranges of the actual frequency m1 of the three classes of oscillatory 

transient do overlap due to its assumed normal distribution. 

Class of Frequency Frequency Range for Typical Typical 

oscillatory range for ma deviation O"ro factor Yi Magnitude Duration 

transient [Hz] [Hz] [pu] [ms] 

IT 3000-6000 300 0.35-0.65 0.1-5 <1 

HF 1200-3000 150 0.025-0.05 0.1-2 2-5 

LF 500-1200 100 0.01-0.025 0.1-2 5-20 

NT 3000-6000 300 0.2-0.4 0.1-0.5 0.4-2.5 

Table 2.2: Simulation parameters for the generation of disturbance 

2.6 CONCLUSION 

Power quality has become an important concern for customers since more and more 

sensitive equipment is connected to the power supply nowadays. As the power 

travels through transmission lines and energises electric equipment, the various 

pieces of equipment it energises can change the quality of the power, making it less 

suitable for other equipment or applications. These changes in power quality are 

especially common in large industrial and commercial complexes, which include 

increases and decreases in voltage, momentary power outages, and noise on the 
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electrical system. If the power quality is too poor, is can even cause equipment to 

malfunction or to breakdown. 

Time and steady state models are used to analyse transient disturbances and steady 

state disturbances. In particular, wavelet analysis is suitable for analysing transient 

disturbances. In the next three chapters, we present different wavelet-based 

techniques to analyse and extract the transient disturbances features, which are 

further used for the classification of these transient disturbance types. 



Chapter 3 

TIME-FREQUENCY ANALYSIS 

TECHNIQUES 

3.1 INTRODUCTION 

Traditional Fourier techniques such as Fourier Series and Fourier Transform have 

been used as powerful tools for signal analysis and decomposition. However, due to 

the lack of time localisation of Fourier techniques, they are not really suited to the 

analysis of non-stationary signals. To overcome this weakness, in 1946 Dennis 

Gabor formulated a fundamental approach for signal decomposition in terms of 

elementary signals [ 16]. His approach has since become a paradigm for the spectral 

analysis techniques associated with time-frequency or time-scale methods such as 

Short-time Fourier transforms (STFT), Wigner transforms and Wavelet transforms 

(WT). 

Wavelet theory was developed as a unifying framework in the 1980s, although 

similar ideals and construction took place as early as the beginning of the century 

[17,18]. The idea of decomposing the signal into various time-scale resolutions has 

31 
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in fact recently emerged independently in many different fields of mathematics, 

quantum physics, engineering, economic analysis and seismic geology. In the mid-

1980s, a group of geophysicists, theoretical physicists and mathematicians, namely 

Morlet, Grossmann, Meyer and Lemarie built a strong mathematical foundation 

around the subject and named their work 'Wavelet'. A couple of years later, 

Daubechies, Cohen and Mallat added their contribution to the theory of wavelets 

which established connections to discrete signal processing results [19,20]. The 

wavelet transform is defined as "a tool that cups up data or functions or operators 

into different frequency components, and then studies each component with a 

resolution matched to its scale" [21]. It has advantages over the Fourier techniques 

in analysing non-stationary signals which contain discontinuities and sharp 

transitions. 

This chapter introduces some most popular time-frequency analysis techniques, 

among which we will concentrate on the wavelet transform techniques as signal 

processing tools used throughout this thesis. The next section presents the 

relationship between time and frequency resolutions that states the localised nature of 

time-frequency decomposition. The third section is concerned with the STFT 

technique, which has been very popular in the last few decades in dealing with non­

stationary signals. Its main weakness is the fixed window length (i.e. time 

resolution). Wavelet transforms are presented in the fourth and fifth sections. They 

cover the continuous wavelet transform (CWT), the discrete wavelet transform 

(DWT), its two particular bases, which are the orthogonal basis and biorthogonal 

basis, and finally the second-generation WT. 

3.2 TIME AND FREQUENCY RESOLUTIONS 

For many applications in signal processing and harmonic analysis, signals are 

decomposed into a family of functions that are well localized both in time and 

frequency. Such functions are called time-frequency atoms. The decomposition 

properties depend on the choice of time-frequency atoms. To extract information 
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from complex signals, it is often necessary to adapt the time-frequency 

decomposition to particular signal structures. 

In L 2(R), consider a general family of time-frequency atoms of norm 1 { </Jr} J£r, where 

r may be a multi-indexed parameter. The corresponding linear time-frequency 

transform of a signal fin L2(R) is defined by the inner product off and <Pr 

J
+oo 

Tf(y) =< f ,</Jr >= _
00 

f(t)</J;(t)dt (3.1) 

where ~ denotes complex conjugate. The inner product in (3.1) shows how much 

correlation there is between the signalf and the atoms <Pr· 

In the time-frequency plane (t,m), the slice of information provided by < f '.<Pr > is 

represented by a region whose location and width depend on the time-frequency 

spread of <Pr· In the time domain, <Pr centres at tc and spreads around tc with a 

variance a:(r) that 

(3.2) 

. : (3.3) 

According to Parseval and Planchevel formulars, inner producs and norms in L 2(R) 

are conserved by the Fourier transform up to a factor of 2n. 

[

00 

* 1 [ * Tf(y) = 
00 

f(t)</Jr(t)dt = ln -~ F(m)<Dr(m)dm (3.4) 

Hence, <Dr is centred on frequency me and spreads around me with a variance a0/("/) 

where 

(3.5) 
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(3.6) 

If </J/ t) approaches zero when t is outside a neighbourhood of tc and <l>y ( m) is very 

small for m far from me, then the 'Heisenberg box' provided by < f, <Pr > is localised 

and centred at Cte, me) in the time-frequency plane. Figure 3.1 illustrates the 

Heisenberg box whose width along the time axis is ar( 1.J and along the frequency axis 

is O"oi1.J. 

By choosing O"r(1.J and O"w('0 appropriately, the entire time-frequency plane can be 

covered completely. However, the resolutions in time and frequency cannot be 

arbitrarily small according to the well-known Heisenberg uncertainty principle [27]. 

It states that the Time-Bandwidth product of a signal cannot be less than a certain 

minimum value and that the time-frequency resolution of <Pr (area of the Heisenberg 

box) is at least 1/2, i.e. 

(3.7) 

The uncertainty principle states the trade-off involved in achieving good time 

resolution or good frequency resolution. It limits the joint resolution of <Pr in time 

and in frequency. Gaussian functions are therefore often used since they meet the 

bound with equality [22,23]. 

Frequency 

0 Time 

Figure 3 .1: Heisenberg box representing the resolution of an atom <Pr in the time­

frequency plane. 
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3.3 SHORT-TIME FOURIER TRANSFORMS (STFT) 

In 1946, Gabor [16] introduced windowed Fourier transforms or short-time Fourier 

transforms. These transforms are modified versions of the traditional Fourier 

transform. The idea is to introduce a 'local frequency' parameter so that the 'local' 

Fourier transform looks at the signal through a window over which the signal can be 

approximately stationary. Using a real and symmetric window, a short-time Fourier 

atom is constructed by translating this window with a time rand modulating it with a 

frequency m. 

(3.8) 

The window is normalised so that llg 00,~I = 1 for any (r,m) E R2
• Mathematical 

expression of the STFT can be represented as an inner product of the analysed signal 

f(t) and the shifted-modulated version of the window g(t) [23,24]. 

STFTf(m,r) = <f(t), g00,J..t)> = r: f(t)g *ct-r)e-jwtdt (3.9) 

The window's translation in time by r corresponds to a shift of the tile in the time­

frequency plane by rin time axis, while modulating it with e-1wt correspo~ds to a shift 

of the tile by m in the frequency axis. The STFT maps the signal into a two­

dimensional function on the time-frequency plane. 

However, the time-frequency resolution of the existence windows is limited by the 

uncertainty principle. There is a trade-off between time resolution and frequency 

resolution of a certain type of window. Short windows certainly enhance the time 

resolution but at the expense of frequency resolution, while long windows have poor 

time resolution but improve the frequency resolution. 

In STFT, since the time-frequency atoms are constructed by translating and 

modulating the same window, their time-frequency resolution remains the same 

across the time-frequency plane that is illustrated as in Figure 3.2. Also since the 

window is real and symmetric, an atom g00,/t) = g(t - r)e-Jwt is centred at (r,mc) in the 
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time-frequency plane. The spreads of time and frequency around this centre are 

independent of rand roe, and are given by 

(3.10) 

(3.11) 

Frequency 

er, 
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Figure 3.2: Heisenberg box of two STFT atoms gr',w{t) and gr",w"(t) 

There is no admissibility constraint on the window used in STFT since it is sufficient 

for the window to have finite energy. The signalf(t) can be recovered from its STFT 

by a double integral as 

f(t) = 2~ r:r STFTJ (m, r)g w,r (t)drodr 

Formula (3.12) can also be written as 

f(t) =-
1 [[< f,gw;r > gw,r(t)drodr 

21T: -oo -oo 

(3.12) 

(3.13) 

The decomposition in STFT first looks like that in an orthonormal space in L2(R). 

However it does not, as the space of { g w,r} w,re R1 is not orthonormal but is very 

redundant. It is possible to reduce the redundancy of the transform space by 
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discretising the STFT on a rectangular grid (nr0,mmo)m,neN· The choice of m0 is 

limited by the bandwidth (BW) of the lowpass window function g(t), and r0 is chosen 

to be smaller than 2rr/BW, in order to have adequate sampling [25]. Such 

discretisation guarantees an adequate covering of the entire time-frequency plane, 

and also guarantees the recovery of the complete signalf(t) from its STFT. 

In STFT, once a window has been chosen, the time and frequency resolution given 

by (3.10) and (3.11) is fixed over the entire time-frequency plane. Hence, if a signal 

contains short bursts as well as long quasi-stationary components, then we cannot 

analyse the signal both with good time resolution for the bursts and good frequency 

resolution for the quasi-stationary components. This is the main weakness of the 

STFT. 

3.4 WAVELET TRANSFORM 

To overcome the resolution limitation in the STFT, recent years have witnessed a 

proliferation of applications of wavelet transforms to signal analysis in a wide variety 

of fields from geo-physics to telecommunications to bio-medical engineering. The 

wavelet transform has the advantage of an optimal trade-off between time resolution 

and frequency resolution in the time-frequency plane, thus providing an effective 

multi-resolution analysis. 

To analyse a non-stationary signal, we wish to achieve good time resolutions for high 

frequency bursts, and good frequency resolutions for low frequency components. As 

the joint of time and frequency resolution of analysis filters is limited by the 

uncertainty principle, good time resolutions for high frequency bursts can only be 

achieved with short windows requiring the filters to have large bandwidth. While 

good frequency resolutions for low frequency components requires small bandwidth 

filters that have long windows, it is natural to impose that the frequency resolution 

J),,m of a filter is proportional to the centre frequency of that filter ro, or 
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b..OJ 
-=c 

OJ 
(3.14) 

where c is a constant. The analysis is viewed as a filter bank, in which the 

decomposing bandpass filters have a constant relative bandwidth, called 'constant-Q' 

analysis [23,25,26]. The frequency responses of the constant-Q analysis are spread 

in a logarithmic scale, which is in contrast to the regularly spaced over the frequency 

axis of the STFT. Figure 3.3 shows the tiling of the time-frequency planes for the 

STFT and for the WT, which has the constant-Q frequency responses analysis. 

Figure 3.4 shows three basis functions and their corresponding time-frequency 

resolution windows of the STFT and the WT. 

3.4.1 Continuous Wavelet Transform (CWT) 

Continuous Wavelet Transforms follows exactly the same ideas of a filter bank while 

adding a simplification that all impulse responses of the filters in the filter bank are 

scaled (i.e. stretched or compressed) versions of the same prototype ljl(t), i.e. 

lfls(t) = ~lf/(!__J, s E R\{O} 
vis/ s 

(3.15) 

where sis a scale factor, and 1/ Jsr is used for energy normalisation so that lllf/s(t)ll2 

= llljl(t)ll2. For convenience, the norm lllf/(t)ll2 is normalised to one. The CWT of a 

signal f(t), with respect to a mother wavelet ljl(t), at a scale s and location r is then 

defined as [21,25] 

1 1+00 (t-r} CWTf (s, r) = 
/11 

f (t)lfl * - t, 
vlsl -oo s (3.16) 

SE R\{O}, 'rE R 

Expression in (3 .16) can be rewritten as an inner product 

CWTJ(s,r) =< f(t),lfls-r:(t) > (3.17) 
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Figure 3.3: The tiling of the time-frequency plane for the (a) STFT and the (b) WT. 
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Figure 3.4: Three basis functions and their corresponding time-frequency resolution 

windows of the (a) STFT and (b) WT. 
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where l/fs,/J) is the scaled (or dilated) and shifted (or translated) version of the 

mother wavelet l/f(t), that is 

1 (t-r] 
lfls,-r (t) = M lfl -s-) (3.18) 

In order for the family {lfls,-r (t) LER+,-rER to cover the entire time-frequency plane and 

the transform to be a constant-Q frequency response analysis, the mother wavelet 

l/f(t) has to be a bandpass function. Therefore, the scaling operation on the wavelet 

will only shift and spread its spectrum in a logarithmic scale along the frequency 

axis. This implies the wavelet l/f(t) in L 2(R) has a zero mean, 

[!(t)dt=O (3.19) 

In fact, the condition in (3.19) is the only requirement for the transform in (3.16) to 

be invertible [25]. However this condition is not sufficient for the transform to be 

complete and to maintain an energy conservation. An additional condition is 

required - that the Fourier transform 'P(m) of the wavelet is 

differentiable [27]. In particular, the wavelet l/f(t) must satisfy the 

condition' defined by [21,26,27] 

[

00 I 'P(m) 12 

C = dm < = 
"' oo I w I 

(3.20) implies 'P(O) = 0, i.e. l/f(t) is a bandpass function. 

continuously 

'admissibility 

(3.20) 

Then the functionf(t) can be recovered from its CWT via the 'Resolution of Identity' 

equation defined by [21,24,26], for any functionf(t) and g(t) in L 2(R), as 

f
+oof+oo * dsdr 
-= -= CWTJ (s,r)CWTg (s,r)~ = C"' < f,g > (3.21) 

The reconstruction formula ofj(t) is obtained from (3.21) as 

' 1 J+oof +oo dsd r f(t) =- CWTJ (s,T)lfls,-r(t)-
2
-

C"' -= -= s 
(3.22) 
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The transform maintains an energy conservation so that 

(3.23) 

Like the STFT, CWT is a redundant representation as the scaling and translating 

parameters vary in a continuous manner. The redundancy is characterised by a 

reproducing kernel equation such that a CWTJ(s', -r') can be written as a continuous 

linear combination of the set of weighted { CWTf(s, -r)} 

1 f +00f +00 

d 't'ds CWTJ (s',-r') =- K(s',-r',s,-r)CWTJ(s,-r)-
2
-

C -oo -oo s 
V' 

(3.24) 

where 

(3.25) 

is the reproducing kernel, which measures the correlation of two wavelets l/fs,,/._t) and 

l/fs'.-r{t). So any function in time-frequency plane is the CWT of a signalf(t) in L 2(R) 

if and only if it satisfies the reproducing kernel equation (3.24) [20,21]. 

The time-frequency resolution of a CWT depends on the time-frequency spread of 

the wavelet atoms l/fs,lt). For simplicity, the centre of lfl(t) is assumed to be ~t zero, 

which implies that l/fs,lt) will be centred at t = -r. The spread in time of l/fs,,/._t) is 

j
2 

00 1 t 't' 
[ (t--r)

2 

/11 l/f(-=-- dt = s 2a/ 
00 vlsl s 

(3.26) 

where a/ = r: t 2 ll/f(t)l
2 

dt is the spread in time of lfl(t). 

To analyse a real signal, it is necessary to use an 'analytic wavelet' whose spectrum 

has no negative frequencies [21,27], then CWTJ(s,-r) = 0 if s < 0. The centre 

frequency me of 'P(m) is 

(3.27) 
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And the spectrum of lffs.Jt) is a dilation of \J'(m) by l/s 

(3.28) 

The centre frequency of \J's,..Cm) is therefore OJcls. The frequency spread around this 

centre is 

where a ro 
2 = -1

- r°" (m-mJ2 1\J'Cm)l
2 
dm is the spread in frequency of \J'(m) 

2n Jo 

(3.29) 

Hence the energy spread of the wavelet atoms l/fs,Jt) corresponds to a Heisenberg 

box which is centred at (-r,mcls) and has the size of s0"1 along the time axis and aJs 

along the frequency axis. When the wavelet is scaled and translated, its time­

frequency resolution will change depending on s, but the Time-Bandwidth product 

remains unchanged and equal to 0"10"ro. Figure 3.5 shows the time-frequency 

resolution of two wavelet atoms in the time-frequency plane. 

Frequency 

s'<Ji 

0 Time 

Figure 3.5: Heisenberg box of two wavelet atoms. 
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3.4.2 Discrete Wavelet Transform (DWT) and Frame 

In the CWT, consider the family of wavelet { 1/fs,£.t)} that is given in (3.18) 

where s E R \ { 0}, r E R 

Over positive frequencies, the wavelet's spectrum 'P(m) has an effective support that 

is proportional to l/s. Therefore, to obtain full coverage of the time-frequency plane, 

the discretisation of the scale parameter s is chosen to be an exponential sequence 

{sdhez with a sufficiently small dilation step s0 > 1. For j i= 0, the wavelet basis 

function is rescaled and the translation step size at scale j cannot be chosen 

independently of j. Since the effective support in time of the wavelet at scale j is 

proportional to sd, the translation step size at this scale is chosen to be, equal to sd 
times the step size r0 at scale j = 0. Therefore, the discretisation of the wavelet 

family is [27] 

et) ___ 1_ [t -nr0s0
1 l 

1fl 1fl j,nE Z, s0 >1, r 0 > 0 
],II /, j 

vso1 so 
(3.30) 

So in the discretisation scheme, at small scales the wavelets have narr~w support 

width (i.e. wide frequency bandwidths) and are translated by a small step size, while 

at larger scales the wavelets will have wider support width (i.e. narrower frequency 

bandwidths) and are translated by a larger step size. The dilation s0 and translation r0 

steps are chosen so that the entire time-frequency plane is covered (Figure 3.3 b). In 

particular, when so= 2 and ro = 1, we have the Dyadic DWT. 

The discrete wavelet transform of a functionf(t) in L2(R) is defined as 

Wf(j,n) = ~[= f(t)lfl*[t-nr?so1 }t 
vso1 -= sol (3.31) 

=< f ,lf/1,11 > 

Two important questions now can be asked about the completeness and the stability 

oftheDWT: 

\' 
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1. Do the discrete wavelet coefficients < f,lff J,n > completely characterise the 

functionf(t) ? 

2. Can we reconstruct f(t) m a numerically stable way from its discrete 

coefficients < f, l/f > ? 
'I' ;,n 

In the case of the CWT, the Resolution of Identity equation (3.21) can give an 

immediate answer to both questions. In the DWT case, there is no analogy of the 

resolution of identity but the theory of frames provides the answers to these 

questions. 

In 1952, Duffin and Schaeffer [28] introduced the theory of frames in the context of 

the non-harmonic Fourier series. In 1985, Grossmann [29] pointed out the 

connection between frames and numerically stable reconstruction from DWT. If the 

discrete wavelet family { lf/j,n(t)} constitutes a frame in L 2(R), then any functionf(t) in 

L 2(R) can be characterised from its inner products { < f, l/f ;,n > } . 

The set of wavelets { lf/j,n(t)} is a frame of L 2(R) if there exist two constants A > 0 and 

B > 0 such that for any f EL 2(R) [20,21,26] 

Allfll
2 ~III< f,l/f;,n >1 2 

~ Bllfll
2 

(3.32) 
j n 

A frame defines a complete and stable signal representation. In addition, it specifies 

a continuity condition in DWT. The continuity condition implies that if the distance 

between any two functionsf1 andf2 in L2(R), llf1 - f 2 ll, is small then their distance in 

the transform domain \\< f 1, l/f ;,n > - < f 2 , l/f 1,11 >\\ is also small. 

Under the stability condition (3.32), the DWT operator W =< f, l/f ;,n > is the linear 

operator that maps a function f in L 2(R) onto z2(Z2
) which contains sets of any 

sequence c = { c 1,11 } ;,nEZ that 

(3.33) 
J ll 
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It follows from the stability condition (3.32) that llW!ll 2 ~ Bll!ll 2
, which implies that 

W is a one-to-one bounded linear operator. The ad joint operator w"' of W is defined 

by 

w* c = IIc1,nlfl1,n 
j n 

Since, we have 

<WJ,WJ >=III< f,lf/j,n >1 2 

1 n 

=II<< f ,lf/1,n > lfl1,n,J > 
1 n 

= < w* (Wf),f > 

The lower bound of the stability condition becomes 

<W\WJ),f > ~ AllJll 2 

(3.34) 

(3.35) 

(3.36) 

where Id is the identity operator. In terms of W, the stability conditiof\ (3.32) can 

therefore be rewritten as 

(3.37) 

This implies that w*w is invertible and its inverse (W*wr1 is bounded by 

(3.38) 

Hence, any functionf(t) in L 2(R) can be reconstructed from its DWT values in (3.31) 

by using the formula 

J(t) = cw*w)-1 cw~w)f 

= 2:2:< f,lf/1,n > cw*w)-
1

1f11,n 
(3.39) 

j n 

By setting 

(3.40) 
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the reconstruction formula (3.39) can be written as 

< f' g >= L L < f' lfl J ,n >< 1fJ j,n' g > 
j n 

(3.41) 

j n 1 n 

for any function f(t) and g(t) in L 2(R). The family { (jJ J,n (t)} is called the dual frame 

of { 1f11,
11 

(t)}. Therefore, given a wavelet frame { 1f1 J,n (t) hnEZ, we only need to 

compute lfiJ.n = (W*w)-11f11,n in order to reconstruct a function in L2(R) from its 

DWT values. 

If the bounds A and B are close to each other, then (3.38) shows that (W*wr1 is close 

to A~ BI d so that 1jJ J,n (t) is close to A~ B 1f1 J,n (t). In fact 

2 
f(t) =--2:2:< f,lfl1,n > lfl1.n +Rf 

A+B 1 n 

where R =Id - A~ B W*W defines a residue operation. Formula (3.37) gives 

_B-A 1 ~R~B-A 1 
B+A d B+A d 

and the norm of R is given by 

(3.42) 

(3.43) 

(3.44) 

So if A is close to B, llRll becomes small. Then the term Rf in (3.42) can be dropped 

out and we obtain an accurate reconstruction of the function f(t). The closer A is to 

B, the more accurate the reconstruction is. When the frame bounds are equal, that is 

A = B then the frame is called a tight frame. In this case, the wavelets behave the 

same as an orthonormal basis, although they may not even be linearly independent 

[19]. 
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When the wavelets { lf/j,n(t) }j,nez are linearly independent and span L 2(R), this family 

of wavelets is said to be a Riesz basis in L2(R) [21,26,27], which is characterised by 

J(t) = LLdj,nl/11,n(t) (3.45) 
j n 

with 

(3.46) 
1 n 

Since { lf/j,n(t) h,nez are linearly independent, one can derive from the reconstruction 

formula (3.41) that the dual basis functions {VJ1,n (t)} 1,nez are also linearly 

independent in L 2(R). By replacingf(t) = lf/j',n·(t) in (3.41), we obtain 

1/1 j',n' (t) = L L < 1/1j',n'•VJ1.n >tf! 1.n (3.47) 
1 n 

and the linear independence implies that 

< 1/1 j',n' 'VJ j,n >= 8 j'-j,n'-n (3.48) 

where the delta function 8J'-
1 

,n'-n = 1 if j' = j and n' = n, otherwise this function is 

zero. The WT representation is therefore non-redundant if the wavelets form a Riesz 

basis in L2(R). 

3.4.3 Orthogonal Wavelet Bases 

In a tight frame and the frame bounds are equal to one (i.e. A = B = 1), the set of 

wavelets { lf/j,n(t)} forms an orthonormal basis of L 2(R). The operation (W*-i-vr1 in 

(3.38) becomes the identity operator h and the analysis wavelets are 

(3.49) 

which implies that the analysis wavelets and synthesis wavelet are the same in an 

orthonomal basis, andf(t) can be reconstructed by 

f(t)= LL<f,1/f1,n >1/11,n(t) (3.50) 
1 n 
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As a frame is complete in L 2(R), therefore { ljlj,n(t)} span L 2(R). The orthonormality 

of { ljlj,n(t)} means that 

< lfl j',n' 'lfl j,n >= 8 j'-J,n'-n (3.51) 

Hence, orthonormal WT has a non-redundant kernel that can represent the signal 

efficiently in the time-frequency plane. It has been used widely in image coding and 

compression fields since a large number of the transform coefficients can be 

discarded without affecting the reconstruction quality [30]. 

In the discrete time case, two methods were developed for coding purposes that 

require critical sampling of a minimum number of samples. Those methods are 

namely multiresolution analysis [31] and filter banks [32,36]. 

Multiresolution Analysis 

Mallat [20,33] showed that the decomposition of f(t) using an orthonormal wavelet 

basis { ljlj,n(t) }J,nez can indeed be interpreted as the difference between two successive 

resolutions. The ideal of multiresolution analysis is to compute the approximation of 

signals in L 2(R) at various resolutions with orthogonal projections on different 

lowpass subspaces~ c L 2(R). Authors of [33,34] showed that a sequence {\'J}jez of 

closed subspaces of L 2(R) is a multiresolution analysis if the following properties are 

satisfied: 

1. 

2. 

3. 

4. 

5. 

Vj E Z, vj+I cVJ 

lim VJ =Closure[ LJ Vj J= L
2

(R) 
J---'>-oo 

J=-oo 

+oo 

.lim VJ = n VJ = {O} 
J---'>+oo 

J=-oo 

VjE Z, f(t)E vj <=> f(2jt)E Vo 

Vj,nE Z 2
, f(t)E vj <=> f(t-2Jn)E VJ 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

6. There exists </J(t) E Vo such that { </J(t - n) }nez is an orthonormal basis of Vo 
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A multiresolution analysis is entirely characterised by a scaling function </J(t) that 

generates an orthogonal basis of the spaces "1· The multiresolution properties 1 and 

4 imply that 2-112</J(t/2) E Vic V0, while the property 6 states that {</J(t- n)}nEZ is an 

orthonormal basis of V0, then the former basis can be decomposed in terms of the 

latter basis as 

where 

}i~( ~ )= ~h(n)~(t-n) 

h(n) =(}i~( ~ }~(t-n)) 

(3.57) 

This is the well known 'dilation by 2' equation in multi-resolution analysis. As the 

norm 11</J(t)ll is normalised to 1, I,1h(n)1 2 = 1. By taking the Fourier transform of 
n 

(3.57), we have 

1 
<I>(2ro) = .fi H(ro)<I>(ro) 

where H(ro) = Lh(n)e-Jwn 
n 

From (3.58), for any j;.::: 0 we have 

Therefore, <I>(ro) can be expressed directly as a product of dilation of H(ro) 

<I>(ro) =IT H(2-j ro) <I>(2-1 ro) 
j=l .fi 

(3.58) 

(3.59) 

(3.60) 

If <I>(ro) is continuous at m = 0, then lim <I>(2-1 ro) = <I>(O) and (3.60) can be 
j-7+oo 

rewritten 

(3.61) 
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To guarantee the existence of an orthonormal basis { </J(t - n)} nez for Vo and an 

outcome of the dyadic scale multiresolution analysis (3.61), [33,34] showed that the 

infinite product H(m) must satisfy 

(3.62) 

and 

jH(O)j = -J2 (3.63) 

Since the subspace V; is included in V;-1, the orthogonal bandpass complement of V; 

in V;-1 is denoted by Wj that 

(3.64) 

It follows that { W; };ez are orthogonal spaces which sum to L 2(R) 

(3.65) 

and all W; are scaled versions of Wo 

(3.66) 

Because of the multiresolution properties 1 to 4, one can show that there also exists 

lfl(_t) such that { lfl(_t - n) }nez constitutes an orthonormal basis for W0 [20,34]. Since 

2-112 lfl(t/2) E W1 c V0, it can thus be decomposed in { </J(t - n) }nez 

Jzl/{ ~ )= ~g(n)~(t-n) (3.67) 

where g(n) = (Jz lf/( ~ }~(t-n)) and ~I g(n) 1
2 

=I 

Taking the Fourier transform of (3.67) yields 

1 
'P(2m) = ,J2 G(m)<D(m) (3.68) 

where G(m) = L,.g(n)e-;mn 
n 



Time Frequency Analysis Techniques 51 

Since { lfl(t - n) }nez constitutes an orthonormal basis for W0, then (3.66) implies that 

the family { ljlj,n}nez is an orthonormal basis of fl,j, where the function lf/;,n(t) is 

defined by 

(3.69) 

To guarantee that the family { ljlj,n}nez is an orthonormal basis of W; and fl,j be the 

orthogonal bandpass complement of V; in V;-1, the Fourier transform G(m) of the 

bandpass lfl(t) must satisfy [33,34] 

(3.70) 

and 

G(m)H* (m) + G(w + n)H\m + n) = 0 (3.71) 

Let us choose 

G(m) = p(m)H*(m+n) (3.72) 

p(m) is a 2nperiodic function and since H*(m) H*(m + n:) cannot equal to zero for all 

m, (3. 71) reduces to 

p(m) + p(m + n) = 0 (3.J3) 

One can note that, p(m) is not uniquely established by the multiresolution analysis. 

A function that satisfies (3.73) is p(m) = e-1w and 

(3.74) 

By taking the inverse Fourier transform of (3.74) yields 

g(n) = (-1)1
-n h(l-n) (3.75) 

Given that { tt-j }1ez are orthogonal spaces which sum to L 2(R), therefore any f(t) in 

L 2(R) can be decomposed as 

f(t) = LLd1,nlfl1,n(t) (3.76) 
J n 
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where the coefficients dj,n = <f(t), lf/j,n(t)>. Since the family { lf/j,n(t) }j,nez are bandpass 

functions, d1,n are therefore referred to the detail signals. The transform retains the 

energy conservation such that 

lifll2 ~ ( ~ ~d J,,IJI j,• (t),f) 

= I.I.d1,n
2 

J n 

Mallat's Pyramid Algorithms and Filter Banks 

(3.77) 

To compute the orthogonal wavelet coefficients of a signal measured at a finite 

resolution, Mallat [35,20] developed a fast algorithm called the pyramid algorithm, 

which decomposes successively each approximation of a function f(t) in V; into a 

coarser approximation of f(t) in Y;+1 plus a detail signal of f(t) (the wavelet 

coefficients) in W;+l· Although derived from the multiresolution analysis, the 

pyramid algorithms tum out to be equivalent to conjugate mirror filters used in 

discrete multirate filter banks [36,37,32]. 

As elements of V; = "}+1 EB Vlj+1, the orthogonal projection of f(t) on V; can therefore 

be decomposed as the sum of orthogonal projections on Y;+1 and W;+1: 

Pj(t) = P1+if(t) + Q1+if(t) (3.78) 

P j(t) and Qjf(t) denote the orthogonal projection of function f(t) onto subspaces V; 

and Vlj respectively and are given by 

(3.79) 
n 

(3.80) 
n 

where a
1

(n) =< f,</J
1

,n >and d 1 (n) =< f,lffJ,n >. The sequences a1 and d1 are 

respectively called the smoothed version and the detailed version of f(t) at the scale j. 
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Using (3.57), any </JJ+I,mU) E 1')+1 c "} can be decomposed in the orthonormal basis 

{ </J;,n(t) }neZ Of~ as 

</J ;+I,m (t) = L < </> ;+I,m '</J ;,n > </> ;,n (t) 
n 

(3.81) 
n 

Also by using (3.67), any lf/;+1,m(t) E 1')+1 c ~can be decomposed in this basis as 

n 

(3.82) 
n 

Taking the inner product with f(t) on both sides of (3.81) and (3.82) gives the 

decomposition of the lowpass coefficient a1+1 (m) and detail coefficient d1+1 (m) 

n 
(3.83) 

d 1+1(m) = 2,.g(n-2m)a1 (n) 
n 

Let h(n) = h(-n) and g(n) = g(-n) be the mirror image of h(n) and g(n) 

respectively, then a1+1 and d1+1 are computed by taking every second sample of the 

convolution of a1 with h and g respectively 

(3.84) 

The pyramid algorithm is illustrated by Figure 3.6. The lowpass filter h removes 

the higher frequencies of the sequence a1 to produce the courser approximation a1+1, 

while the highpass filter g collects the remaining highest frequencies to produce the 

detail signal d1+i · 

In practice, we will start from a fine enough subspace VL so that f(t) can be 

approximated by its orthogonal projection onto VL, and the pyramid will stop after a 

finite number of levels, level J. This means that the information 
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aL = { < f, <h n >} nEZ can be rewritten as the wavelet coefficients dL+I, dL+z, dL+3, .•• , 

d1 and a final coarse approximation a1. 

h(n) 

h(n) g(n) 

h(n) 

Figure 3.6: Orthogonal WT using the pyramid algorithm 

The initialisation of the pyramid algorithm is to approximate f(t) at a subspace VL 

such that aL ={<f(t),2-L12 <jJ(2-Lt-n)>}nEZ' If VL is fine enough to present the 

resolution of the signalf(t), then samplingf(t) will be sufficient. This is because </J(t) 

is a lowpass function, whose integral equals to 1. If L is sufficiently small (towards 

minus infinitive) then </JL,n(t) will be sufficiently short lived such that 

(3.85) 

Hence, if f(t) is regular, then there will be a resolution at which it can be closely 

approximated by its inner product with the lowpass </JL.n(t). From this we obtain the 

initial approximation for the pyramid algorithm. 

In the reconstruction direction, a signal can be reconstructed from its wavelet 

coefficients dL+r, dL+z, dL+3, ... , d1 and a final coarse approximation a1. At a scale j (L 

<j::::; J), since tt)+r is the orthogonal complement of "V,+1 in -V,, the union of the two 

bases { lf/j+r,n(t) }nEZ and { </J1+1,n(t) }nEZ is therefore an orthonormal basis of -V,. Then 

any function </J1,m(t) in "V, can be decomposed in this basis as 
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n n 

= Lh(m- 2n')</J 1+1,n (t) + L g(m-2n)l/f j+I,n (t) (3.86) 
n n 

Taking the inner product withf(t) on both sides of (3.86) gives 

(3.87) 
n n 

Therefore, the reconstruction is an interpolation that inserts a zero between each 

sample of the sequences a1+1 and d1+1 (i.e. upsampling by 2), then they are convolved 

with the filters h(n) and g(t) respectively. The two convolved outputs are added to 

give the finer approximation a1. Starting from the coarsest resolutionj = J (i.e. d1 and 

a1), the iterative pyramid reconstruction algorithm reconstructs the original 

approximation aL as shown in Figure 3.7. 

g(n) ----@ 

h(n) 

Figure 3.7: Inverse orthonormal WT using the pyramid algorithm 

By substituting aJ+l and d1+1 from (3.83) into (3.87), we then have the following 

relationship between g(n) and h(n) 

L[h(m-2n)h(l-2n) + g(m-2n)g(l-2n)]= Bm-l (3.88) 
n 

Taking the Fourier transform on both sides of (3.88) with respect to (m - l), we then 

have 
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Equation (3.89) can only hold for all l if 

H (m )H*(m + n:) + G(m)G*(m + n:) = o 
(3.90) 

In fact, the pyramid analysis is equivalent to the filter bank algorithm (subband 

coding scheme) [33,38,39]. The classical multirate filter banks were first developed 

in 1975 for speech coding purposes [36]. A two-channel multirate filter bank 

analyses an input sequence a0(n) by convolving it with a lowpass filter h and a 

highpass filter g (h(n) = h(-n) and g(n) = g(-n)) then by subsampling by 2 so 

that the outputs are 

a1 (n) = a0 * h(2n) 

d1 (n) = a0 * g(2n) 
(3.91) 

At the reconstruction, a reconstructed signal a0 (n) is obtained by first upsampling 

by 2 (by inserting a zero between consecutive samples) the lowpass sequence a1(n) 

and highpass sequence d1(n). These sequences are then filtered with a dual lowpass 

filter h and a dual highpass filter g respectively and finally are summed up to give 

a0 (n) as shown in Figure 3.8 

(3.92) 
n n 

h(n) h(n) 

g(n) g(n) 

Figure 3.8: A two-channel multirate filter bank 

As we can see from above, the decomposition and reconstruction processes of a two­

channel multirate filter bank are equivalent to that of a pyramid algorithm. In the 



Time Frequency Analysis Techniques 57 

following, we study the necessary and sufficient condition on the filter h, g, 

h and g to guarantee a perfect reconstruction in a filter bank. 

From (3.91), we have the relationship between the Fourier transforms of two 

subsampled sequences a1 and d1 and the Fourier transform of a0 as 

1 [ * * ] A1 (2m) =--=-Ao (m)H (m) + A0 (m +n)H (m + n) 
2 

. 1[ * * ] D1 (2m) = - A0 (m)G (m) + A0 (m + n)G (m + n) 
2 

And the reconstruction formula (3.92) gives 

Hence 

- - -
A0 (m) = A1 (2w)H (m) + D1 (2m)G(w) 

fi0 Cm)=_!_ (s* (m)ii Cw)+ c* cm )G(m) ]A0 Cm)+ 
2 

_!_ [s* (w + n)ii (m) + c* (w + n)G(m) ]A0 (m + n) 
2 

(3.93) 

(3.94) 
-, 

(3.95) 

To guarantee a0 = a0 for all a0, the aliasing term Ao( m + n) must be cancelled out 
~ 

and A0(m) remains a unit gain, which provides the necessary and sufficient 

conditions of the four filters to guarantee a perfect reconstruction [ 40,41]. 

* - .Jc ,.._ 

H (m+n)H(w)+G (m+n)G(m)=O 
(3.96) 

* - * -H (m)H(m) + G (w)G(m) = 2 

In an orthogonal basis, the reconstruction filters are the same as the decomposition 

filters (i.e. h =hand g = g ), then the conditions in (3.96) become the pyramid's 

condition in (3.90). This implies that the pyramid analysis is a special case of the 

filter bank algorithms. 

Depending on the application, the design of wavelets may require some wavelet 

characteristics. Some of these characteristics are spatial compactness, regularity or 

smoothness, symmetry or anti-symmetry. However, some characteristics are 
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mutually exclusive in the design of orthogonal wavelets [21,42]. For example, 

orthogonal wavelets cannot be symmetric or anti-symmetric (with the exception of 

the Haar wavelet) or these wavelets cannot have both compactness and smoothness. 

Also the transition from passband to stopband of orthogonal wavelets is not sharp, so 

the design problem is still open [ 42]. In the next section we describe the 

biorthogonal wavelet bases, which have more flexibility in the design of wavelets, 

but still guarantee a perfect reconstruction. This is because the biorthogonal wavelet 

bases only require the family of wavelets to form a Riesz basis in L 2(R). 

3.4.4 Biorthogonal Wavelet Bases 

Biorthogonal wavelet bases are related to multiresolution analysis. In this thesis, for 

decomposition, a primal scaling function </J(t) and a primal wavelet function l/f(t) are 

used, while a dual scaling function {j (t) and a dual wavelet function VJ(t) are 

involved for reconstruction. The requirement that the family { </J(t - n) }nez forms an 

orthonormal basis for Vo in the orthogonal wavelet case is now reduced to the 

requirement that this family forms a Riesz basis of the space V0 . This means the 

family {</J(t - n)}nez or the family { l/f(t - n)}nez forms a tight frame in L 2(R). From 

(3.48), biorthogonal wavelet bases mean that 

< lfl ;',n' 'VJ J ,n >= (j ;'-J ,n '-n (3.97) 

and any f(t) in L 2(R) has two possible decompositions 

f(t) = LL < f ,lf/1,n > VJJ,n 

1 n 

= LL < f ,VJJ,n > l/lj,n (3.98) 
1 n 

Since the family { </J(t - n) }nez forms a Riesz basis of the space V0 , the dual scaling 

function {{j (t- n)} nez also forms a Riesz basis in its space V0 . Let ij and V1 be the 

subspaces defined by 
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f(t) E VJ <=> f (2J t) E V0 

f(t)E V1 <=> f(21t)E V0 

59 

(3.99) 

For any j E Z, one can verify that {c/>1,nCt}nEZ and {c/>1,n(t)}nEZ are Riesz bases of 

V1 and VJ . And we have 

,/, A: S: \-I( •1 • I ) z4 
<'l'j',n'''l'J,n >=uJ'-J,n'-n v] ,],n,n E (3.100) 

Their respective bandpass complementary spaces W1 and WJ are 

(3.101) 

- -In biorthogonal, 11j is not orthogonal to V; but is to VJ whereas WJ is not orthogonal 

to V
1 

but is to V;. Hence these two multiresolution hierarchies in biorthogonal w?rk 
'<, 

like two 'zipped' spaces that allow perfect reconstruction. 

The construction of the basis functions cp(t) and ljl(t) and their dual basis functions 

(f (t) and liJ(t) involve the construction of the filters (h(n), g(n)) and (h(n),g(n)), 

whose Fourier transforms satisfy 

1 
<I>(2m) = .J2 H(m)ct>(m) and 

1 
'¥(2m) = .J2 G(m)'P(m) 

(3.102) 
- 1 - -
<I>(2m) = .J2 H(m)ct>(m) and 

- 1 - -
'¥(2m) = .J2 G(m)'P(m) 

In the time domain, these two-scale difference equations become 

cp(t) =.J2°Lh(n)cp(2t-n) and ljl(t) =.J2°Lh(n)ljl(2t-n) 
n n 

(3.103) 

n n 

Note that the wavelets { lf/j,n(t)} are not orthogonal to one another. A similar 

statement is made for wavelets in the dual space {liJ J,n (t)}. But rather, wavelets in 

the same space are related by the two-scale difference equations given in (3.103). 

The filter h(n) and h (n) also satisfy the biorthogonal condition as (3.100) implies 
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Lh(m-2n)h(m) =On (3.104) 
m 

and their Fourier transforms satisfy 

* - * -H (m)H(m)+H (m+n)H(m+n)=2 (3.105) 

Similar to the filter bank case, for a perfect reconstruction in the biorthogonal basis 

the four filters h(n), h(n), g(n) and g(n) must satisfy 

* - * -H (m+n)H(m)+G (m+n)G(m)=O 
(3.106) 

* - * -H (m)H(m) + G (m)G(m) = 2 

From (3.105) and (3.106), one can obtain a relationship between H(m), H(m), G(m) 

and G( m) as 

-* G(m)=Pi(m)H (m+n) 

(3.107) 
* Pi (m)P2(m)=l 

P2 ( m) + P2 ( m + n) = 0 

For P1(m) = P2(m) = e-1(1), the conditions in (3.107) give a set of four filters h(n), 

h(n), g(n) and g(n) that are related by 

g(n) = (-l)n+l h(l-n) 

g(n) = (-lt+l h(l-n) 

3.5 SECOND GENERATION WAVELETS 

(3.108) 

Existing first-generation wavelets are all translates and dilates of one or more 

constant basic shapes called mother wavelets. Translation and dilation in the time 

domain are linear algebraic operations in the Fourier domain. Polynomial 

factorisation in the frequency domain is required in the construction of wavelets [43]. 

The Fourier transform, therefore, plays a crucial role in the design of these basically 
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linear time-invariant (LTI) wavelets. These wavelets remain invariant over the entire 

signal or image to be analysed or at least over the time or spatial duration of the 

analysis frame. First-generation wavelets are therefore not suitable for applications 

in bounded domains such as finite-length signals and isolated objects in images (e.g. 

texts and subtitles) as they introduce ringing artifacts at the boundaries. They are 

also not appropriate in non-Euclidean spaces such as curves and curved surfaces (e.g. 

for face recognition), and irregular sampling grids, in which LTI Fourier-based 

(frequency domain) techniques are not available. 

Current research on second-generation wavelets is concentrated on the two original 

motivations for the lifting scheme [44,45]: to design adaptive (time-varying) perfect 

reconstruction filter banks or second-generation wavelets [ 44], and to factorise 

existing first-generation wavelets for faster transforms [45]. The lifting scheme in 

Figure 3.9 provides a simple and flexible alternative technique for the construction of 

time-variant or space-variant wavelets, entirely in the time or spatial domain and 

adapted to the local characteristics at every sample of the signal. In other words, a 

second-generation 'wavelet' changes its shape from sample to sample in the signal. 

Lifting is also an effective technique to factorise existing wavelets into simple basic 

building blocks for faster computation of the corresponding wavelet transform [ 45]. 

The basic concept of the lifting scheme is to start with a very simple or trivial 

wavelet and design a single operator S to 'lift' the simple wavelet to a more 

sophisticated wavelet, satisfying certain required properties such as smoothness and 

vanishing moments. 

Let H(OJ) be the lowpass filter for the scaling function </J(t), and G(m) be the bandpass 
- -filter for the mother wavelet lfl(t). H (OJ) and G (m) are dual filters of H(m) and G(m) 

respectively. The scheme starts with a simple analysis filter pair (H(m),G(m)) and 
- -the corresponding simple synthesis pair (H(OJ),G(m)), then uses an operator S to 

design a more sophisticated set of filters (Hnew (m), anew (m), jjnew (OJ), anew (m)). 

For perfect reconstruction without aliasing [ 4] of the FIR filters, we must have 
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~ - * -H ((J)+n)H((J))+a ((J)+n)a((J))=O 
(3.109) 

a 

x 

a~ d 

Figure 3.9: Diagram of a lifting scheme 

The essence of the lifting scheme is in the lifting theorem [ 44] which states that if we 

take an initial set of biorthogonal filters {H(ro), G((J)), ii ((J)), G((J))), then a new set of 

biorthogonal filters (Hnew ((J)), anew ((J)), ii new (ro), (].new ((J))) can be found as 

anew ((J)) = a((J))- S.H ((J)) 

ii new (ro) = H ((J)) + s* .G((J)) 
(3.110) 

where S is an operator to be designed. We can see from the set of equations in 

(3.110), that there are a number of advantages of the lifting scheme. Second­

generation wavelets can be designed directly in the time or spatial domain without 

having to deal with complex Fourier analyses using a single operator S. 

Furthermore, once S is fixed, the lifting scheme assures that the new filters are 

biorthogonal. We can also observe that any required properties or conditions (e.g. to 

give a particular waveshape and smoothness) on the new wavelet l/f(t) through its 

generating filter a ((J)), can directly translate into required properties or conditions 

ons. 
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In [44], a 'Lazy wavelet' is introduced as a simple initial candidate, even simpler 

than the Haar wavelet, to start the lifting scheme. The Lazy wavelet does nothing 

except subsampling the data into two groups (or phases), a group of even-indexed 

samples going to the upper branch of Figure 3.10 and a group of odd-indexed 

samples to the lower branch. In this figure, the Lazy wavelet acts as a two-band 

polyphase transform splitting the input data into two phases. Odd samples x 0 are 

lifted with the help of even samples Xe using an S operator which, in this case, 

consists of two steps: a predictor P and an update filter U. 

a t2~ even 
x, 

x 

t2~x 
d 

Figure 3.10: Lifting scheme starting with the Lazy wavelet 

The first lifting step makes optimal use of the correlation between neighbouring 

signal samples to predict odd samples from the even samples. The prediction result 

is subtracted from the odd samples yielding the bandpass or detail signal d, i.e. 

d =x0 -P(xe) (3.111) 

The sub-sampling action resulting from the polyphase splitting usually cannot 

guarantee adequate spectral separation and may produce aliasing in the two­

polyphase sets Xe and x0 • The second step in a lifting scheme is to update Xe by 

replacing it with an aliasing-free smoother set a, ready for the next lower resolution 

lifting stage. In the original lifting scheme [44], the update operator U(.) is a linear 

combination of the detail signal d, i.e. 

a =Xe + U(d) (3.112) 
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If P(.) is an accurate predictor, then d will be a very sparse set. The lifting scheme 

replaces x0 by d, thus achieving data compression. The essence of the lifting scheme 

is that all the steps involved are invertible regardless of the choice and the nature of 

P(.) and U(.), eg. linear or non-linear, time invariant or variant. This is because both 

U(.) and P(.) operations are always invertible. The lifting can be expressed using 

invertible matrices as follows: 

(3.113) 

If we cascade the lifting stage in Figure 3 .10 J times, each stage using the smoothed 

signal a from the previous stage as input, we have a I-resolution decomposition for 

the signal x, i.e. 

(3.114) 

Polyphase representation is a convenient tool to express the special structure of the 

modulation matrix. In half-band filtering, the decimation of 2 creates even and odd 

phases and it is convenient to express all filters in polyphase, e.g. 

where 

Therefore 

H(m) = Lh(2n)e-;mZn + Lh(2n+l)e-;m(Zn+l) 
n n 

=He (2m) + e-;m H 
0 

(2m) 

n 

He(2m) = Yz[H(m) + H(m + n)] 

H
0
(2m) = Yze 1m[H(m)-H(m+n)] 

ll 

(3.115) 

(3.116) 

(3.117) 
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and similarly for Ge(2m) and G0 (2m). We define the polyphase matrix of the half­

band filtering as: 

H 0 (2m)l 

G
0 

(2m) 
(3.118) 

For designing two operators P(.) and U(.), we recall that every wavelet or filter bank 

designed via the lifting scheme automatically guarantees perfect reconstruction and 

biorthogonality conditions. The prediction and update combination to give lowpass 

and bandpass outputs can also be expressed as the polyphase matrix [44] 

=[1-UP Ul 
-P 1 

(3.119) 

The design of P(.) and U(.) is beyond the scope of this thesis, and can be found 

elsewhere [44,45]. 

3.6 CONCLUSION 

It is obvious that the main advantage of wavelet transform is the freedom to choose 

the shape of the mother wavelet lfl(t) and to vary the scale s to suit the local 

characteristics of the signal at t = r. The shape of the analysis wavelet is chosen to 

be as similar as possible to the local shape of the signal so as to maximise their inner 

product. In first-generation wavelets, the effectiveness of using wavelet transform 

mainly depends on the appropriateness of the chosen wavelet, while, in second­

generation wavelets, the wavelets adapt themselves to maximise their correlation 

with the local signal structures. 

In an infinite dimensional space, a signal can be perfectly reconstructed from its 

orthogonal projections on a family of orthogonal wavelet bases. However, if we 
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loosen the orthogonality requirement, we must still entail a partial energy 

equivalence in the transform to guarantee the stability of the basis and the wavelet 

base is linearly independent. This implies that the basis is biorthogonal or the Riesz 

basis. The advantage of biorthogonal wavelet bases over orthogonal wavelet bases is 

that they provide more flexibility in the design of wavelets (e.g. allowing symmetry, 

smoothing), but still guarantee a perfect reconstruction. 

The wavelet decompositions using orthogonal or biorthogonal bases are efficient 

techniques to decompose discrete signals. They are, however, not suitable for 

patterns recognition since they suffer from the lack of translation invariance. In 

Chapter 4 and Chapter 5, we present some translation-invariant techniques that are 

appropriate for extracting the features of PQ disturbances so that we produce 

efficient and shift-invariant feature vectors for further use in the classification 

process. 



Chapter 4 

WAVELET TRANSFORM 

MODULUS MAXIMA 

TECHNIQUES 

4.1 INTRODUCTION 

In the previous chapter, we have seen that the discrete wavelet transforms using 

orthogonal or biorthogonal bases are very efficient for the decomposition of discrete 

signals. The existence of the fast decomposition technique and the efficiency make it 

suitable for computer implementations. However, the discrete wavelet transforms 

suffer from the lack of translation invariance. When a function is translated, due to 

the critical down sampling, the transform coefficients associated with a mother 

wavelet for this function are not translated but are completely modified. This is the 

major inconvenience of the discrete wavelet transform in pattern recognition 

applications. 

67 
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Several methods have been proposed so that they retain the shift-invariance property 

in their multiresolution representations. Some methods such as auto-correlation shell 

in [ 46] or methods that are used in [ 47,48] obtain the translation invariance by 

entailing high oversampling rates, in which no down sampling with the changing 

scales is allowed. The authors in [49,50] propose to modify the wavelet transform 

and wavelet packet decompositions leading to orthonormal best-basis 

representations, which characterise signals with lower costs and translation 

invariance. Approximation methods such as zero crossing [51,52,53] or local 

maxima [54,55] that critically sample signals at their inflection points, and the local 

structures of the analysed signal are revised by the evolution across scales of these 

wavelet transform coefficients at the inflection points. These methods, in particular 

the local maxima method, can approximate the signal with a very small number of 

coefficients. Some other methods such as the basis pursuit [56] or the matching 

pursuit [57,75] are computationally expensive. 

In this chapter, we present the WT local maxima technique and show that the 

technique can efficiently represent a signal with its shift-invariant coefficients. Also, 

the technique has the ability to precisely measure transient power quality disturbance 

characteristics. 

4.2 THE ISSUE OF TRANSLATION INVARIANCE 

Although they provide a non-redundant multiresolution representation of a signal, 

and can be computed very efficiently using the pyramid algorithm, the orthogonal 

and the biorthogonal WT suffer the major problem of not being translation invariant 

[58,59,60]. 

To demonstrate this point, let us consider an example of four-level orthogonal WT 

decomposition using a Dauberchy-4 (D4) wavelet. Figure 4.1 shows the input signal 

that is chosen to be one of the wavelet basis functions in the third subband. Then its 

WT, which is plotted in 
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Figure 4.2, has a single impulse in the third subband, while other wavelet coefficients 

in the transform are zero. Now if the signal is shifted by one sample to the right, we 

obtain a completely different set of wavelet coefficients in the transform. They 

spread broadly across the subband shown in Figure 4.3. This behaviour is clearly not 

suitable for pattern recognition applications. 

0.6 

0.4 

0.2 

Of------~ 

-0.2 

-0.4 

0 20 40 60 80 100 120 

Figure 4.1: A D4 wavelet basis functions in the third subband. 

Consider the orthogonal or biorthogonal WT schemes shown in Figure 3.6. The 

signal is first filtered by a lowpass filter h(n) and a highpass filter g(n), thus 

dividing the signal spectrum into two parts. The lowpass signal and the highpass 

signal are down sampled by 2. It is well known that sharp cutoff filters require very 

high order and are highly sensitive to quantisation and often cause instability 

problems in IIR filters. Therefore, in order to cover completely the signal frequency 

band, the responses of h(n) and g(n) should not be bandlimited but overlapped. 

This is the reason why the orthogonal and biorthogonal WT are not translation 

invariant [61]. 



70 Chapter Four 
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Figure 4.2: The four-level wavelet coefficients of the signal in Figure 4.1. 
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Figure 4.3: The four-level wavelet coefficients of the signal in Figure 4.1 shifted by 

one sample. 
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To demonstrate this point, let us consider the lowpass filter h(n) that is not 

bandlimited to [-n:/2, rc/2] and the highpass filter g(n) that is not bandlimited to [rc/2, 

3rc/2]. The subsampling by 2 on the lowpass and highpass signals corresponds to a 

stretching by 2 of their digital spectrums (i.e. wTradians): H(e;w/ 2 ) and G(e;w/ 2 ). 

In fact, the sub-sampling by 2 produces two terms. The first term is H (eJw/ 2
) or 

G(e 1w12
), and the second term is its frequency shifted version by 2n, i.e. 

H(-e 1w12
) or G(-e 1w

12
). Since the two filters are not properly bandlimited, those 

two terms of each filter introduce aliasing and prevent the signal from being 

reconstructed exactly from them. This is shown in Figure 4.4 below. Note that 

perfect reconstruction of orthogonal or biorthogonal WT can only be obtained by 

choosing the appropriate reconstruction filters so that the aliasing is cancelled out 

during reconstruction. 

H(e!j 

-2n: -n: 0 

H(e'j 

-2n: 

2n: 

2n: 

Region of overlap, 
prevents recovery of H(e!j. 
Similar for the recovery of G(e!j 

Figure 4.4: The subsampling by 2 cause aliasing and prevents recovery of the 

original signals 



Wavelet Transform Modulus Maxima Technique 73 

One can see that the DWT schemes above can only achieve the translation invariance 

by keeping all coefficients without down sampling the signals and obtaining an 

overcomplete representation. In this way, the transforms retain all the shift versions 

of the signal. This representation is, however, not efficient and very redundant. 

4.3 CHARACTERISATION OF LOCAL REGULARITY 

WITH WAVELET TRANSFORM 

Singular structures in a signal such as edges and discontinuities contain a lot of 

information, which are usually used to characterise the signal. In order to 

characterise singular structures, it is necessary to specifically measure the local 

regularity of the signal. Following in this section, we study the Lipschitz exponents 

of the signal that provide uniform regularity and measurements over time intervals, 

and also at any point of the signal. A remarkable property of the wavelet transform 

is its ability to characterise the local regularity so that the local Lipschitz exponents 

can be measured from the decay of the wavelet transform magnitude at fine scales 

[54,62]. 

4.3.1 Lipschitz Definition 

Let n be a positive integer and n ::;:; a::;:; n + 1. A function f(t) is said to be pointwise 

Lipschitz a at r, if there exists a constant K > 0 and a polynomial P-r of degree n such 

that [54,55] 

I f(t)- p .. (t) 1::;; K I t-r la , VtE R (4.1) 

- A function f(t) is uniformly Lipschitz a over a time interval [a,b] if it satisfies 

(4.1) for all re [a,b], with a constant Kthat is independent of r. 

- The Lipschitz regularity of f(t) at r E [a,b] is the superior bound of all values a 

such thatf(t) is Lipschitz a. 
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From (4.1), one can clarify that the polynomial p,.(t) is uniquely defined at each point 

r. In fact, if f(t) is n times continuously differentiable over [a,b], p,.(t) can be shown 

to be the first n + 1 terms of the Taylor Series expansion of f(t) at r, i.e. 

n J (k) (1:) 
p"(t) =I u-r)k 

k=O k! 
(4.2) 

At a point r, the larger the a the more regular the signal is at that point. A classical 

tool for measuring the Lipschitz regularity of a function f(t) is to look at the 

asymptotic decay of its Fourier transform F(m) [54]. A bounded function f(t) is 

uniformly Lipschitz a over R if it satisfies 

(1 F(m) I (1+ Im la)da < = (4.3) 

The FT gives a global regularity condition over the whole real line but we cannot 

determine whether the function is locally more regular at a particular point r. This is 

because the FT basis functions do not provide any localisation in the time domain. 

In contrast, the wavelet transforms are well localised in time, and that they provide a 

measurement of the Lipschitz regularity over any interval and at any point in the 

signal. 

4.3.2 Characterisation of Local Regularity with WT 

To measure the local regularity of a signal, the wavelet vanishing moments are 

crucial. If the wavelet has n vanishing moments then the wavelet transform can be 

interpreted as a multiscale differential operator of order n [27]. 

The approximation error of the Taylor series p,.(t) in (4.2) to the signal in a 

neighbourhood of r, £" (t) = f (t) - p" (t) , satisfies the Lipschitz property ( 4.1) that 

(4.4) 
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The purpose is to estimate the Lipschitz exponent a using wavelet transform while 

ignoring the polynomial p,.(t). The wavelet must have n > a vanishing moments, so 

that it is orthogonal to polynomials of degree less than n [27]. 

[tklfl(t)dt = 0 for 0 < k < n (4.5) 

As a< n, the polynomial p,.(t) has a degree at most (n - 1). This implies that its WT 

with the change of variable t' = (t - u )Is is 

(4.6) 

Then the WT of f(t) in the neighbour of r becomes the WT of the approximation 

error, that is 

Wf(s,u) = Wc~(s,u) (4.7) 

If the wavelet has a compact support, the wavelet transform Wf(s, r) depends upon the 

value of f(t) in the neighbourhood of r, of size proportional to the scales. When s is 

small, it provides a localised characteristic of f(t). Suppose the wavelet lfl(t) has n 
,_ 

vanishing moments and it is therefore n times continuously differentiable. Then 

from (4.4) and (4.7), it is shown in [54,55] that if f(t) is uniform Lipschitz a< n over 

[a,b ], then there exists a constant A> 0 such that 

IWJ(s,r)I::;; As1x+112 (4.8) 

Conversely, if f(t) is bounded and IWf(s,r)I satisfy (4.8) for an a< n, then f(t) is 

uniformly Lipschitz a on [a+c,b-c], for any c > 0. 

Equation (4.8) provides a condition on the asymptotic decay of IWf(s,r)I when s goes 

to zero. It also shows that IWJ(s, r)I decays like sa+l/2 over intervals where f(t) is 

uniformly Lipschitz a. If f(t) is uniformly Lipschitz a> n, the decay of IWf(s, r)I at 

fine scales gives no information about the Lipschitz regularity a since this decay can 

only be a maximum of sn+l/2. 
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In practice, measuring the decay of the absolute value of the CWT in a whole time­

scale plane (s,-r) is not necessary. In fact, this decay can be controlled from its local 

maxima values [54]. The following section represents the WTMM technique. 

4.4 WT MODULUS MAXIMA 

Often in transient signals or images, points of sharp variations are among the most 

important features for analysing their properties. The concept of multiscale edge 

detection has been used to detect the contours of small structures as well as a larger 

object in image [54,55,63,64]. Most multiscale edge detectors smooth the signal at 

various scales and detect sharp variation points from their first derivatives. The 

extrema from the first derivative correspond to the inflection points of the smoothed 

signal. 

The WT at a point (s0,t0) is a modulus maximum if IWJ(so,t)I is a strict local maximum 

at t0, i.e. 

at t = t0 (4.9) 

Clearly, a translation in a signal results in the same translation of its WTMM 

representation. 

4.4.1 Detection of Singularities 

Consider a wavelet that is the nth order derivative of a smoothing function. When n = 

1, i.e. the wavelet is the first order derivative of a smoothing function, the local 

extrema of the CWT characterise sharp variations or edges in a signal. Equivalently, 

when n = 2 the wavelet is the second derivative of a smoothing function, and the 

zero-crossings of the CWT express the same information [54,55]. 
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We call a smoothing function any real function 8(t) such that 8(t) = 0(1/(1 +r)) and 

whose integral is equal to 1. Gaussian function is an important smoothing function 

and is often used in many applications. Suppose that 8(t) is twice differentiable and 

its first and second order derivatives are, respectively, 

(4.10) 

Such function vP)(t) and t/2)(t) can be considered as wavelets since they satisfy the 

admissibility condition in (3.20). The WT of f(t) with respect to each of these 

wavelets can be written as convolutions and are defined by 

W(I) f(s,t) = f *lfls (1) (t) 

W(2
) f(s,t) = f *lf/./2)(t) 

(4.11) 

Let the scale version of the smoothing function be O,(t) = }.e( ~} (4.11) can be 

rewritten as 

and 

wmf(s,t)=t•(sd!, }t) 
d 

= S dt (f *8s)(t) 

W(2) f(s,t) = f * s 2
--s t) 

( 
d

2
8 ) 

dt 2 

(4.12) 

(4.13) 

The WT W1J(s,t) and W2J(s,t) are therefore, respectively, the first and second 

derivative of the signal f(t) smoothed by 8s(t). Hence the local extrema of W1f(s,t) 

correspond to the zero-crossing of W2J(s,t) and to the inflection points of f*8sCt). 

For small scales s, the smoothing of f(t) by 8s(t) is negligible and the edge detection 

provides the locations of all locally sharp variations of f(t). While at large scales s, 

the convolution of f(t) with 8s(t) removes small fluctuations and only detects larger 

amplitude variations ofj(t). 
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In the WT extrema representation, the magnitude of extrema and their corresponding 

locations are recorded. For an exact equivalence, the WT zero-crossings 

representation requires the positions of the zero-crossings as well as the integral 

values of the function between two zero-crossings. In fact, these integral values are 

needed in order to stabilise the zero-crossings representation [51]. As pointed out in 

[55], the WT extrema approach has several important advantages over the WT zero­

crossing approach. The local maxima of the absolute value of ttPJ(s,t) are sharp 

variation points of f*8s(t), whereas the zero-crossing of W2J(s,t) are either sharp 

variation points or low variation points of f*8s(t), which can be shown as in Figure 

4.5. As we are only interested in sharp variations in the signal, we thus only retain 

the values of the local extrema of W1J(s,t) and their corresponding locations. We 

call this representation the WTMM representation. 

f(t) 

8,*f(t) 

d 
-(8 * f(t)) 
dt s 

d2 
-(8 * f(t)) 
dt2 s 

: : 

I\ 

Figure 4.5: WT modulus maxima W1J(s,t) and WT zero-crossings W2J(s,t) of a two­

steps signalf(t). 
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If the wavelet used is the first derivative of a smoothing function, it has only one 

vanishing moment. A wavelet with more vanishing moments has the advantage of 

being able to measure the Lipschitz regularity up to a higher order, but it also 

increases the number of maxima lines. The number of maxima at a given scale often 

increases linearly with the number of moments of the wavelet. In order to minimize 

the amount of computation, we want to have the minimum number of maxima 

necessary to detect the interesting irregular behaviour of the signal. This means that 

we must choose a wavelet with as few vanishing moments as possible, but with 

enough moments to detect the Lipschitz exponents of highest order that we are 

interested in [54]. In power signals, transients and high frequency disturbances have 

negative or small positive values for their Lipschitz exponents [65,66]. Therefore, to 

minimize the amount of computation, we use a wavelet with only one vanishing 

moment. A very popular and efficient wavelet in this category is a Quadratic Spline, 

which is the first derivative of a Cubic Spline function, which is shown in Figure 4.6. 

Then the local maxima of the wavelet transform IWf(s,t)I give the locations of the 

sharp variation points in the signalf(t). 
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Figure 4.6: Graph of the smoothing cubic spline function 8(t) and the corresponding 

quadratic spline wavelet lfl(t). 
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4.4.2 Completeness of the WTMM 

WTMM technique is a 'loose' representation of signals. We might wonder how 

much information is carried by the position of the local maxima of IWJ(s,t)I and the 

value of Wf(s, t) at the corresponding location. Different methods for reconstruction 

of a signal from its WTMM have been proposed in [55,67,68]. To obtain an efficient 

numerical implementation, modulus maxima are detected only along a dyadic 

sequence of scales (i.e. s = '2!, jE Z). Reconstruction methods recover an 

approximation of the original signal with a signal to noise ratio of the order of 40dB 

[55,70]. This indicates that the WTMM provide a 'nearly complete' characterisation 

of signals, and that small errors, which mostly concentrate at high frequency, remain 

to be identified mathematically [55]. Following in this section, some properties of a 

dyadic WT, as well as an iterative reconstruction method from the WTMM, are 

presented. 

The dyadic WT of a functionf(t) with respect to lfl(t) at scale '2! is defined as 

Wf(2 1 ,t) = f *l/f 1 (t) (4.14) 

or in the Fourier domain as 

WF(2 1 ,m) = .fiJ F(m)'¥(21 m) (4.15) 

To ensure that the signalf(t) can be reconstructed from its wavelet transform, and the 

reconstruction is stable, there must exist two positive constants A and B such that 

[21,55] 

A:::;L\'¥(21mf :::;B (4.16) 
1 

From (4.16), we can obtain a semi-discrete version of the frame equation of (3.32), in 

which the constants A and B are interpreted as the lower and upper frame bounds 

respectively. 

AllJll 2 
:::; l:\wf c21 ,tf :::; Bllill 2 (4.17) 

j 
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The reconstruction wavelet is a dual wavelet iji(t) whose Fourier transform satisfies 

L '¥(2 1 m)\¥(21ro)=1 (4.18) 
1 

Since the frame ( 4.17) is redundant, this dual wavelet is not uniquely specified. An 

example of dual wavelet that satisfies (4.18) is given in [26] 

\P(m)= 'P'(m) 

:L.1 'f'c21 ro)12 

] 

The functionf(t) is recovered from its dyadic WT with 

f(t) = L Wf(2 1 ,·) *o/1 (t) 
1 

(4.19) 

(4.20) 

Similar to the CWT, the dyadic WT (Wf('.i,t))1ez is over complete. This means that 

any sequence of functions (g1(t))JeZ is not a priori the dyadic WT of a functionf(t) E 

L2(R). The space V of all dyadic WT of functions in L2(R) is in fact be a closed 

subspace of z2(L2(R)). Any sequence (g/t))JeZ that is the dyadic WT of a function in 

L2(R) must satisfy the semi-discrete reproducing kernel equation 

g 
1 

(t) = Lg 1 * K 1,1 (t) , Vj E Z 
l 

(4.21) 

where the semi-discrete reproducing kernel K 1,/t) = lflz * 1f11 (t). (4.21) can be 

rewritten in term of the dyadic WT operator W and the inverse dyadic WT operator 

W 1 as 

(4.22) 

In practice the input signal is measured at a finite resolution. The WT is therefore 

cannot be computed at an arbitrary fine scale. By introducing a smoothing function 

</J(t) whose Fourier transform is an aggregation of the wavelets at scales '2! larger than 

1, 

00 

I <I>(m) 1
2 = _LI '¥(21 ro)1 2 (4.23) 

1=l 
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The smoothing operator at scale '2! is defined by 

Sf(2 1 ,t) = f * </J1 (t) (4.24) 

The function Sf(21,t) at any given scale i can be reconstructed from the dyadic WT 

of f(t) at scales larger than i, (Wf('2!,t))t<.1<+=· Conversely, the information of the 

dyadic WT at scales larger than i can be computed from Sf(21,t) [55]. The wavelet 

decomposition is also limited to a finite larger scale 21
. Then the decomposition of 

the signal f(t) by the dyadic WT between scale 1 and 21 is the set of functions 

{CWJ(2 1 ,t)) 1~1~1 ,Sf(21 ,t)J. The signal can then be reconstructed perfectly from its 

dyadic WT [55,69]. 

Since we can obtain an exact reconstruction of a signal f(t) from its dyadic WT, the 

reconstruction of the signalf(t) from its WTMM is equivalent to the reconstruction of 

(Wf('2!,t)) 1~jg from the positions of the local maxima of (IWJ(2',t)l)1~1~1 and the value 

of Wf('2!,t) at these locations. At a scale 2', there is an infinite number of functions 

git) which have the same local maxima as Wf(i,t). However, any such sequence of 

functions (git))1ez is not necessarily a dyadic WT of a function in L 2(R). In fact the 

dyadic WT must satisfy the semi-discrete reproducing kernel equations (4.21). 

A common method for reconstructing the signal from WTMM is the projection­

based method [55,70]. Let I' be the set of all sequence of functions (git))jeZ that 

have the same local modulus maxima of (Wf('2!,t))1ez at all scale '2!. Then (Wf('2!,t))jeZ 

E I', and the local maxima representation is complete only when the intersection of I' 

and the space V of all dyadic WT sequences of functions in L 2(R) reduces to one 

element, i.e. 

I' (l V = {CWJ(2 1 ,t)) jEZ} (4.25) 

There is no mathematical proof of this statement. However, by performing 

numerical simulations on a large number of signals, Mallat [54,55] showed that it is 

always possible to reconstruct a signal from its WTMM. 
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As V is the dyadic wavelet space, the projection operator Pv onto V is the 

reproducing kernel equation 

Pv =WW-I (4.26) 

The projection operator Pv projects orthogonally an element not on V onto an 

element in V closest to it. Defining a projection operator Pr that transforms any 

sequence (g/t) )JEZ not on I' into a sequence (h/t) )JEZ E I' closest to it with respect to 

the Sobolev norm [55], so that the norm 

(4.27) 

where (t: J (t)) JEZ = (hJ (t)- g J (t)) JEZ is the difference. Beside the minimisatio:q- of 

the Sobolev norm in (4.27), the authors in [67,70] propose some 11ew convex 

constraints and improve the constraints used in [55], to be imposed onto the 

reconstruction so as to obtain a better estimate of the true solution. The purpose of 

using those constrains is to prevent the oscillations that they may have from the 

minimisation of the Sobolev norm in ( 4.27), thus avoiding spurious local ~axima. 

The composite operator P is defined by 

P=PrPv (4.28) 

Then any element at the intersection of I' and Vis a fixed point of P. By iterating the 

operator P, we can compute such a fixed point. The space I' is not convex but is 

close to being convex [54,55], and since I' is an affined space and Vis a Hilbert 

space, it is also shown in [55] that the alternate projections onto the set I' and the 

space V converge strongly to the solution. The alternate projections algorithm is 

illustrated in Figure 4.7. 
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initial point 

solut10n 
v 

Figure 4.7: The reconstruction of the dyadic WT by alternately projecting operators 

PrandPv. 

4.5 SINGULARITIES MEASUREMENT USING THE 

WTMM 

This section explains how to measure Lipschitz exponents by using the WTMM. In 

general, if we want to estimate the Lipschitz exponents up to an order n, then we use 

a compactly supported wavelet that has n vanishing moments and is n times 

continuous differentiable. 

We can show that for any interval, if the WT has no modulus maxima at fine scales, 

then the signal is not singular within that interval. We define a modulus maxima 

chain of Wf(s,t) originated from t = t0, being the path followed by the evolution 

across scales of the modulus maximum of Wf(s,t) due to an inflection point at t0. 

However, not all singularities of a signal f(t) can be characterised by following the 

maxima chains to fine scales. This is the case when the signal f(t) has fast 

oscillations. Then singularity at a point on f(t) can be influenced by these fast 

oscillations within its neighbourhood [54]. In the following, we study the 

characterisation of singularities when locally the signal has no oscillations, and when 

it contains fast oscillations. 
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4.5.1 Non-Oscillating Singularities 

From the mathematical roots in the characterisation of Sobolev spaces in 1930s, the 

study of the pointwise Lipschitz exponential has been a delicate topic for wavelet 

transform. Assume that the wavelet l.Jl(t) has a compact support equal to [-C,C]. 

Then the cone of influence of a point r in the scale-space plane is the set of points 

(s,t) that is included in the support of lf/s.-r= s-1121.J!((t-r)/s), i.e. 

I t-r I~ Cs (4.29) 

Suppose that the wavelet has n vanishing moments and is n times continuous 

differentiable. If the signalf(t) has an isolated singularity at point to with a Lipschitz 

exponent a < n, then the WTMM of that singularity for all scales s less than some 

scale s0 > 0 belong to the cone of influence of to satisfying ( 4.8), i.e. 

I Wf (s,t) lmax ~Asa+I/ 2 (4.30) 

where A is a positive constant. Equation ( 4.30) is equivalent to 

log(I Wf (s,t) lmax) ~log(A) +(a+ 112) log(s) (4.31) 

Hence when the WTMM belongs to the cone of influence of the isolated singularity 

at t0 , (4.31) proves that the Lipschitz exponent a at to can be measured from ·the 

maximum slope of straight lines remaining above log(IWJ(s,t)lmax). 

4.5.2 Oscillating Singularities 

If the signal f(t) is oscillating quickly in the neighbourhood of an inflection point t0, 

the whole singularity behaviour at to is dominated by these oscillations. In this case, 

we cannot characterise correctly the Lipschitz regularity of the signal f(t) at point to 

from its wavelet transform within a cone which is strictly smaller then the cone of 

influence of t0• fu fact, below the cone of influence (i.e. at scales larger than s0), the 

singularity behaviour and size of the oscillations of the signal f(t) can be estimated 

[54]. 
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Along each modulus maxima chain, there is a general modulus maximum 

corresponding to the scale at which the analysis wavelet and the signal are in 

'resonance'. Thus the general modulus point is the strongest maxima point in the 

chain. It provides information on the extent of oscillation and the local frequency of 

the signal f(t). Since all modulus maxima chains of all inflection points have their 

roots at the finest scale, the detection of modulus maxima chains starts from the 

modulus maxima of the first scale. At different scales, modulus maxima of Wf(s, t) of 

the same inflection point ta lie within the cone of influence of ta. However, as the 

signal has fast oscillation, cones of influence of different inflection points can 

overlap. In practice when the signal is in discrete form, the WT decomposition starts 

from the first scale s = 1 and the scale step !is cannot be set to an arbitrarily small 

value. Then in order to detect or to follow correctly a modulus maxima chain that 

originate from an inflection point, the modulus maxima that belong to this chain 

must satisfy the following conditions [71] 

- Starting from the first scale, a chain has to be continuous across scales. This 

means for any two adjacent scales, positions of the modulus maxima belonging 

to this chain are not different by more than 1 sample. 

- Wf(s, t) has the same sign across scales. 

- Since the quadratic spline wavelet is the first derivative of a smoothing function, 

it can only measure the Lipschitz exponent a within a range [-1,1]. Therefore, 

from ( 4.31) the modulus maxima value of Wf(s, t) at a scale s+!is (I Wfs+ils I ) and 

that at its previous scale s (I Wfs I ) are related as 

or 

- l + 1/ 2 ~ log I Wfs+&- I - log I Wfs I ~ l + 1/ 2 
log(s + !is)-log s 

s <I Wfs+&- I< 3(s +!is) 
2(s+!is) - IWfs I - 2s 

(4.32) 

The general modulus maxima (GMM) of Wf(s,t) at a point (smax..fmax) is a strict local 

maximum of IWf(s,t)I within the two-dimensional neighbourhood in the scale-space 



Wavelet Transform Modulus Maxima Technique 87 

plane (s, t). If a wavelet is equal to a derivative of a Gaussian, there will be only one 

GMM of Wf(s,t) along each modulus maxima chain [54,55]. This general modulus 

maximum represents the best match between the wavelet at the scale smax and 

translation tmax• and part of the signal in the neighbourhood of t0• Then the scale Smax 

is related to the local frequency of the signal by 

(J)m 
Smax =­

OJo 
(4.33) 

where OJm is the frequency that ['I'(m)[ reaches its maximum i.e. the spectral peak of 

'I'(m), and OJo is the estimated signal frequency in the neighbourhood of t0 . We can 

thus estimate the frequency mo from the value Smax at which the general modulus 

maximum occurs. 

" 
For the quadratic spline wavelet, its FT and the FT of its corresponcll,ng lowpass 

function are given by [55] 

'I'(m) = im(sin(co/ 4) J4 and <I>(co) = (sin(m/2) \
3 

mf 4 ) m/2 ) 
(4.34) 

which are shown in Figure 4.8. From (4.34), we obtain the maximum of the wavelet 

frequency spectrum in terms of the sampling frequency ms as 

3.370JS 
(J) =---

m 2n 
(4.35) 

The GMM position (smax,tmax) gives a local frequency approximation of the signalf(t) 

in the neighbourhood of t0 . Instead of only keeping general points that give the 

estimation of local frequencies at t0, instantaneous frequencies at any location r in 

the time axis can be estimated by finding some scales Smax such that IWJ(smax. r)I are 

maximum across the scale axis. The technique of finding these instantaneous 

frequencies is known as the 'wavelet ridges' technique [72,73]. However, since a 

signal is completely characterised by its WTMM, we are only interested in the 

information that is given from the GMM positions. In this way, the technique 
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provides a very compact time-invariant set of features that allows us to analyse the 

transient characteristics of signals. 

Frequency response 

3.-----..-------.----..--------~ 

- - -<l>(ru) 

2.5 
\J'(ru) 

2 

05 

0 '-. - - - - '=-----~-=--=--=:::! 

0 5 10 15 20 

Q = ruT [radians] 

Figure 4.8: Frequency spectrums of the quadratic spline wavelet and its 

corresponding lowpass function. 

4.6 NUMERICAL DEMONSTRATIONS 

As mentioned in Chapter 2, transient power quality disturbances such as impulse 

transient, high frequency capacitor switching, and low frequency capacitor switching 

contain fast oscillations. Hence, their singularities and the information on their 

oscillation frequencies can be measured from their WTMM as well as from their 

GMM [66,71,139]. 

Noise in power systems has a typical voltage magnitude of less than 1 % of the power 

signal. In the following examples, we use the maximum noise level of 1 % voltage 

magnitude. Then, if a disturbance has a voltage magnitude of 0.1 pu, the noise 

presents in the disturbance with a relative voltage magnitude of 10%. Using the 

quadratic spline wavelet for. the calculation of the WT, in Figure 4.9 we show the 
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WTMM and the GMM representation of an impulse transient disturbance. Figure 

4.10 is for a low frequency capacitor switching disturbance, Figure 4.11 is for a high 

frequency capacitor switching disturbance, and Figure 4.12 is for a single notch 

disturbance. Shown in figure (a), each disturbance signal has a duration of 20ms 

sampled at 12.8KHz (i.e. 256 samples). The wavelet transforms Wf(s,n) are 

calculated for 30 scales s = sd, where s0 = 1.1 and j = 0 to 29. 

The location of sharp transients in the signals can be seen clearly at the small scales 

of the wavelet transform Wf(s,n) in each figure (b). The position of modulus maxima 

of Wf(s,n) are located with a threshold of 1 % of the maximum modulus maxima on 

each scale. Modulus maxima chains are then detected and shown in each figure (c). 

Finally the position of GMM on each chain is located and shown in each figure (d). 

The modulus maxima at small scales of a noisy low frequency disturbance are 

predominantly due to noise. This is because the wavelet coefficients at small scales 

are less sensitive to low frequency components while more sensitive to fast changing 

components. But as the scale increases, modulus maxima that are due to those low 

frequency components of the disturbance get larger and those due to noise get 

smaller and fewer. Therefore, at scale Smax a small threshold would eliminate 

completely the modulus maxima due to noise. 

On the other hand, for disturbances containing very high frequencies (e.g. impulse 

transients), their modulus maxima have the highest values at small scales and are 

reduced at higher scales. This is due to their negative Lipschitz exponential (which 

is similar to noise). However, in the time domain the magnitude of noise is much 

smaller than the disturbances. Hence the GMM of noise are also much smaller than 

those produced by high frequency disturbances. Therefore, we remove small GMM 

as they are produced either by noise or by disturbance components with small 

amplitudes. 
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Figure 4.9: (a) 256 samples of a impulse transient disturbancef(n). (b) The wavelet 

transforms Wf(s,n), s = sd, s0 = 1.1,j = 0:29. (c) Modulus maxima chains. (d) 

General modulus maxima representation ofj(n). 
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Figure 4.10: (a) 256 samples of a low frequency capacitor switching disturbance j(n). 

(b) The wavelet transforms Wf(s,n), s = sd, s0 = 1.1,j = 0:29. (c) Modulus maxima 

chains. (d) General modulus maxima representation of f(n). 
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Figure 4.11: (a) 256 samples of a high frequency capacitor switching disturbance 

f(n ). (b) The wavelet transforms Wf(s,n) , s = sd, s0 = 1.1 , j = 0:29. (c) Modulus 

maxima chains. (d) General modulus maxima representation of f(n). 
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Figure 4.12: (a) 256 samples of a single notch disturbancef(n). (b) The wavelet 

transform Wf(s,n), s = sd , s0 = l.1,j = 0:29. (c) Modulus maxima chains. (d) 

General modulus maxima representation of f(n). 
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If the sampling frequency is limited, impulse transient disturbances, including single 

impulses that contain very fast oscillations, are usually characterised by negative 

Lipschitz exponents at small scales. As a result, their GMM appear at small scales. 

On the other hand, capacitor switching disturbances have slower oscillations which 

are characterised by positive Lipschitz exponents at small scales. Hence, their GMM 

appear at larger scales. When we come to notch disturbances, the characteristics of 

this disturbance type are not fast oscillations but are discontinuous, in which the 

discontinuities at the starting and ending of notches are normally characterised by 

small values of Lipschitz exponents (a :::::: 0). This makes their GMM positions 

unstable and sensitive to noise. Their classification rate is thus not generally high 

compared to the other disturbance types when using a conventional RBF classifier. 

This will be illustrated later in Chapter 8 of this thesis. 
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MATCHING PURSUIT 

TECHNIQUE 

5.1 INTRODUCTION 

Linear expansion in a single basis, whether it is a Fourier, wavelet, or any other 

basics is not flexible enough. A Fourier basis provides a poor representation of 

functions well localized in time, while a wavelet basis is not well adapted to 

represent functions whose Fourier transform has a narrow high frequency support. It 

is important to have a flexible decomposition for representing signal components 

whose localizations in time and frequency vary widely. The signal is decomposed 

into waveforms whose time-frequency properties are adapted to its local structures. 

In this chapter, we present a popular translation invariant algorithm called matching 

pursuit [74,75,76,77,84] that provides an adaptive decomposition. In fact the method 

obtains the translation invariant property by decomposing any signal into a linear 

expansion of waveforms that belong to a redundant and shift-invariant dictionary of 

functions. These waveforms are selected in order to best match the signal structure 

95 
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at each iteration. Depending on applications, the matching pursuit technique allows 

a flexible choice of functions and the size of the dictionary. For example, specific 

dictionaries are constructed for inverse electro-magnetic problems [78], face 

recognition [79], data compression [80], analyzing of sleep electroencephalogram 

(EEG) [81,82] and recognition of power quality disturbances [83]. 

Unlike an orthogonal expansion, original matching pursuit [75] is non-linear. To 

improve the matching pursuit technique so that the projection converges with a finite 

number of iterations, an orthogonal matching pursuit technique that uses a Gram­

Schmidt algorithm is proposed in [77,84]. The orthogonal matching pursuit, 

however, requires a significant computation cost for the Gram-Schmidt 

orthogonalization. 

5.2 TIME-FREQUENCY ATOMIC DECOMPOSITION 

In many applications in signal processing and harmonic analysis, signals are 

decomposed over a family of functions that are well localized both in time and 

frequency. Such functions are called time-frequency atoms. The decomposition 

properties depend upon the choice of time-frequency atoms. To extract information 

from complex signals, it is often necessary to adapt the time-frequency 

decomposition to particular signal structures. 

Our signal space is L2(R), a general family of time-frequency atoms can be generated 

by scaling, translating and modulating a single window function g(t) E L 2(R). 

Suppose that g(t) is real and centered at 0. For convenience, the norm of g(t) is set to 

1. For any scale s > 0, frequency modulation ~ and translation r, we denote y = 

(s, r,~) and define 

( ) - 1 (t-r}1st g t --g --
y J; s 

(5.1) 

where the factor 1/ J; normalizes the norm of g.j._t) to 1. The index yis an element 

of the set I'= R+xR2
• The function g.f_t) is centered at location rand its energy is 
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concentrated in the neighborhood of r, whose size is proportional to s. Equation 

( 5 .1) yields the Fourier transform of g(t), 

(5.2) 

Since I g ( m )I is even, I gr ( m )I is centered at the frequency m = g. Its energy is 

concentrated in the neighborhood of g, whose size is proportional to l/s. The 

dictionary of time-frequency atoms, D = (g/J)) /Er is a very redundant set of 

functions in L2(R) that includes windowed Fourier frames and wavelet frames [21]. 

To decompose efficiently a signalf(t) over D, the time-frequency atoms (grm (t))mEN 

with Ym = (sm, Tm, gm) in D are chosen such that they are best adapted to expand the 

functionf(t). Then the signalf(t) can be written 

+oo 

J(t)= Lamgrm (t) (5.3) 
m=-oo 

where am are expansion coefficients, which show how much correlation between the 

functionf(t) and the time-frequency atoms g Ym (t) . 

In a windowed Fourier transform, the time-frequency atoms grm (t) have a constant 

scale Sm = s0 for all atoms g Ym (t) and thus they are mainly localized over an inte~val 

whose size is proportional to s0. Therefore, a windowed Fourier transform is not 

well adapted to signal structures that are much smaller or much larger than s0 . On 

the other hand, a wavelet transform is built by relating the frequency gm to the scale 

Sm with gm= g0 Ism, where g0 is a constant. The resulting family of waveforms are 

dilated and translated of a single mother wavelet with complex phases. This has a 

limitation on the estimation of frequencies that are contained in the signal whose 

Fourier transform is well localized, especially at high frequencies. 

In general, adaptive signal decomposition involves the expansion of a function over a 

set of waveforms, which are selected appropriately among a large and redundant 

dictionary. The next section describes a general algorithm called matching pursuit 

that performs such adaptive decomposition. 
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5.3 MATCHING PURSUITS 

A dictionary is defined as a family D = (gJt))yer of vectors in a Hilbert space H, such 

that llgJt)ll = 1. Let Vbe the closed linear span of the dictionary, so the dictionary is 

completed if and only if V =H. 

A signal f(t) in H is computed as a linear expansion over a set of vectors selected 

from D which best matches the inner structures off A matching pursuit is a greedy 

algorithm which successively approximates f(t) with projection onto elements of D. 

Let gy
0 

(t) E D, the signalf(t) can be decomposed into [75] 

f(t)=<f,gy
0 

>gy
0
(t)+Rf(t) (5.4) 

where Rf(t) is the residual vector after approximating f(t) in the direction of g Yo (t) . 

Since Rf(t) is orthogonal to g Yo (t) , we have 

(5.5) 

To minimize the residue llRJll , g Yo (t) E D must be chosen so that J< f, g Yo >J is 

maximum. In some cases, it is computationally more efficient to find a 

vector g Yo (t) that is almost optimal 

J< f, g Yo >J ~ a supJ< f, g y >J 
yer 

(5.6) 

where a E (0,1] is an optimality factor. The pursuit iterates this procedure by 

subdecomposing the residue. At step m ~ 0, the m1
h order residue R'1 is computed by 

projecting it onto a vector g Ym (t) E D that matches Rmf almost at best, as it was done 

for f(t) in the first step, i.e. 

and 

I< Rm f, gYm >I~ asupl< Rm f' gy >I 
yer 

(5.7) 

(5.8) 

which defined the m+l 1
h order residue Rm+tf The orthogonality of the residue Rm+lf 

and gy
111 

(t) implies 
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(5.9) 

By summing (5.7) from 0 to M, the decomposition off over D up to (M+l)1
h order 

residue is: 

(5.10) 
m=O 

Similarly, by summing (5.9) from 0 to M, we obtain 

(5.11) 

Therefore, the signal f(t) is decomposed into a set of dictionary elements 

{ g rm (t) }o::;m::;M that are chosen to best match its residues. The matching pursuit 

decomposition in (5.10) is non-linear. However it maintains an energy conservation 

as though it were a linear, orthogonal decomposition [75]. When m tends to infinity, 

[27,75] proves that the residue llR')ll converges exponentially to 0, and that there 

exists A, > 0 such that for all m ~ 0 

(5.12) 

As a consequence,f(t) can be decomposed into 

+oo 

f - """'< Rmf > - £..J 'grm grm (5.13) 
m=O 

and 
+oo 2 

\\J\\ 2 =II< Rmf,grm >I (5.14) 
m=O 

The double sequence (< Rm f' g rm >, r m )mE N is called a structure book. It specifies 

the expansion coefficients and the index of each chosen vector within the dictionary 

that are used to characterize the signal f(t). In most cases, a signal of size N can 

obtain a sufficiently precise approximation with far fewer than N number of 

iterations [75]. 
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5.3.1 Fast Implementations of Matching Pursuits 

In an N dimensional space, suppose the dictionary D may have an infinite number of 

elements and it is complete (i.e V = H). When the dictionary is very redundant, we 

can project the signal f(n) into a sub-dictionary Da c D, which could have many 

fewer elements (gr )yEf'a than in D. Suppose that I'a is a finite index set included in r 
such that for any f(n) E H 

supj< f,gr >I~ asupj< f,gr >I 
yef'a ye! 

(5.15) 

Depending on the value of a and the redundancy of the dictionary D, the set I'a can 

be much smaller than I'. 

Instead of projecting the residue to all the dictionary elements at each iteration, a fast 

implementation of matching pursuit is to compute them+ 11
/z order residue from the 

previous m1
h order residue with a simple updating formula derived from (5.7) as: 

(5.16) 

The algorithm is initialized by computing the inner products (< R 0 f, gr > )rera . The 

updating formula in (5.16) allows us to find the inner products for the next stage by 

computing only <gr .. , gr >. To reduce the computational load, it is necessary to 

construct dictionaries with vectors having a sparse interaction. This means that each 

gr (t) E D has non-zero inner products with only a small fraction of all other 

dictionary vectors. 

At stage m of the pursuit, we suppose that the inner products (< Rm f, gr > )rera for 

m;;::: 0 have already been computed. We search in Da for an element grm such that 

I< Rmf,gr .. >I= suplRm f,grl 
yef'a 

(5.17) 

Since the search is in the sub-space I'm then in I' we are able to find in the 

neighborhood of Ym an index Ym so that its dictionary element gr .. matches f even 

better than g Ym . The search is performed with a local search to find Ym in the 

neighborhood of r m where I< Rm f' gr >I reaches a local maximum. This can be 
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done in the time-frequency dictionaries where a sub-dictionary can sufficiently 

indicate a time-frequency region where almost best match is located. 

~ suplRm f,grl 
yEra 

(5.18) 

The number of iterations of f(n) over D depends upon the desired precision t:. We 

decompose f(n) over D up to a stage M such that 

M 

llRM+IJll= f-'L<Rmf,grm >grm ~t:llJll (5.19) 
m=O 

From (5.11), it proves that (5.19) is equivalent to 

M 

llJll 2
- 'Ll<Rmf,grm >1

2 

~t:llJll 2 (5.20) 
m=O 

Note that we can obtain the translation invariance in matching pursuits by using 

translation invariance dictionaries. A dictionary D is translation invariant if for any 

element g/n) belongs to D, then its shifted versions g/n-p), - n ~ p < N - n, also 

belong to D. Then the matching pursuit decomposition of a signalf(n) over D 

M 

f(n)= L<Rmf,grm >grm(n)+RM+If(n) (5.21) 
m=O 

and the decomposition of the shifted signalfp(n) = f(n-p) selects a translation by p of 

the same vectors grm with the same decomposition coefficients [85], i.e. 

M 

fp(n)= L<Rmf,grm >grm(n-p)+RM+Ifp(n) (5.22) 
m=O 

Hence, the signal patterns can be characterized as being invariant with a translation 

in the signal. However, translation invariant dictionaries are necessarily large and 

redundant, which often requires expensive computations. 
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5.3.2 Dictionaries of Time-Frequency Atoms 

For dictionaries of time-frequency atoms that are derived from (5.1), a matching 

pursuit yields an adaptive time-frequency transform. Since dictionaries of time­

frequency atoms are complete in L 2(R), in the space of transform, any signal f(t) E 

L 2(R) is completely decomposed into a sum of complex time-frequency atoms { g Ym } 

that best match its residues. 

+oo 

f(t) = L <Rm f' gym > grm (t) (5.23) 
m=O 

(5.24) 

From the atomic decomposition of a function f(t) in (5.23), the time-frequency 

energy distribution of f(t) can be derived by adding the Wigner-Ville distribution of 

all selected atoms [75,87]. The Wigner-Ville distribution of f(t), Pf (t,m), is the 

cross Wigner-Ville distribution of f(t) and itself, P[J,f](t,m) and is defined by 

[26,86] 

P[J,f](t,m) =- f t+- t-- -l(J)-cdr 1 (
00 

( r f *( r} . 
2'!r -oo 2 2 

From (5.23), the Wigner-Ville distribution ofj(t) is derived as 

+oo 2 

Pf(t,m) =I.I< Rm f,grm >I Wgrm (t,m) 
m=O 

+oo +oo 

+ L,.L,.<Rmf,grm > <R1f,gri >* p[gYm'grJt,lO) 
m=Ol=O 

l*m 

(5.25) 

(5.26) 

Since the double sum is the cross term of the Wigner-Ville distribution, which 

contains the terms that one usually tries to remove in order to obtain a clear picture 

of the energy distribution, we then only keep the first sum and define 
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-too 2 

Ef(t,m) =:LI< Rm f,grm >I Pgrm (t,m) (5.27) 
m=O 

or 

(5.28) 

Since the energy of a signal remains the same through Wigner-Ville distribution 

[~J:Pg(t,m)dtdm = llg(t)ll2
=1 (5.29) 

then the energy conversion equation (5.14) implies 

( ( Ef (t,m)dt dm =II! (t)ll 2 
(5.30) 

Therefore, we can interpret Ef(t, m) as an energy density of f(t) in the time-frequency 

plane. It does not contain the cross terms as in Wigner and Cohen distributions. In 

the case g(t) is a Gaussian window of unity norm 

g(t) = 2114 exp(-m 2
), (5.31) 

then its Wigner-Ville distribution is 

Pg(t,m) =-exp -2m --1 ( 2 m
2 

) 
n 2n 

(5.32) 

So the time-frequency energy distribution Ef(t,m) in (5.28) becomes 

(5.33) 

Through this expression, Ef(t, m) remains positive in the case of Gaussian windows. 

In the time-frequency plane, the time-frequency energy distribution Ef(t, m) is 

presented as a sum of two dimensional Gaussian blobs centred at ( 'l'm,~m). 
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5.3.3 Discrete Matching Pursuit with Gabor Dictionaries 

Since Gaussian windows have optimal time-frequency energy distribution as regard 

to the uncertainty principle, by scaling, translating and modulating a Gaussian 

window, a Garbor dictionary that is translation invariant with time and frequency is 

constructed in [75,87]. Using the Gaussian window in (5.31), a discrete window of 

period Nat each scale 2! is designed by sampling and periodizing, giving 

(5.34) 

where the constant~ is used to normalize the norm llg/n)ll. At this scale 2!, the 

discrete window g/n) is then modulated and translated in time to obtain a discrete 

Gabor atom g/n), r= (2!,p,k), that is 

(5.35) 

By letting I'be the discrete set of index r= (2!,p,k) for j E [O,logzN] and (p,k) E [O,N-

1]2. The resulting discrete Gabor dictionary D = {gy}y er is time and frequency 

translation invariant modulo N [27 ,85]. For real signals, the matching pursuit 

decomposes a signal in this dictionary by projecting Rmf on the plane generated by 

(gy+ ,gy_), with r = (2!,p;±k). Since the residue Rmf of a real signal is real, we can 

verify that the projection is equivalent to projecting Rmf on a real vector 

(5.36) 

where the constant Kcy,</J) sets the norm I lg(r,</J)ll to 1, and the phase <jJ E [O, 2n) that was 

hidden in the complex numbers, now appears in the real atoms so as to maximize the 

inner product with R'Y In fact real atoms are related to complex atoms by 

( ) Ker,</!) r i</J ( ) -1</J ( )] g(y,</J) n = -
2
-Le gr+ n + e gr- n (5.37) 

From (5.37), we can derive the normalization constant 
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K - ..fi 
er,</>) - ~ .2</> 

1 + Re( e 1 < g y+, gr- >) 
(5.38) 

For any real residue R'Y, we have 

(5.39) 

To maximize the inner product with Rmf, the phase </>of 8Cr,</>) is chosen to be equal to 

the complex phase of < Rm f, gr > so that 

(5.40) 

The matching pursuit decomposes any real signalf(n) into 

+oo 

f(n) = L <Rm f' 8Crm,</>m) > 8crm,</>m) (n) (5·.41) 
m=O 

The indexes (ym,</>m) in (5.41) are chosen to best match the residue of f(n). The time­

frequency energy distribution of the signal Ef(n,k) is presented via the matching 

decomposition (5.41) by summing the Wigner-Ville distribution Pgrm (n,k) of the 

complex atoms grm as in (5.33) [75,87], 

1 +oo 2 

Ef(n,k) = n I.I< Rm f,g(Ym,</>m) >I Pgrm (n,k) 
m=O 

(5.42) 

where 

(5.43) 

The fast implementation of matching pursuit in a Gabor dictionary is performed with 

a sub-dictionary Da = {ga laera. At each scale '2!, the time-frequency plane is 

subsampled at time p(a'2!) and at frequency k(Na2-j), where p E [O,Na-12-j), k E [O,a-

12'), and the sampling factor a ~ 1 is small enough to detect the high energy regions 

of the signal. At each iteration, once the best match atom gr m is found in D m then in 

D the matching is improved by searching in the neighborhood of g:ym to find an atom 

g rm that locally maximizes the correlation with the signal residue Rf. 
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Since the selection of vector g Ym by the matching pursuit algorithm is not a priori for 

orthogonalizing to all previously selected vectors {gyp }o:0;p<m, then when subtracting 

the projection of R'Y over g Ym , this introduces new components that are in the 

directions of {gyp }o:0;p<m. Therefore, the algorithm can require an infinite number of 

iterations to converge. One can avoid this by projecting the residues onto an 

orthogonal basis. 

5.4 ORTHOGONAL MATCHING PURSUIT 

To improve the convergence rate of the projection for matching pursuit and hence 

guarantee the projection to converge within a finite number of iterations, an 

orthogonal matching pursuit technique is proposed in [84,77]. The technique uses a 

Gram-Schmidt algorithm that computes an orthogonal family {up }o:0;p<m from the 

previously selected vectors {gyp }o:0;p<m. 

Initializing with u0 = gy
0

, at step m;;:::: 0, an orthogonal matching pursuit first selects 

the vector gYm that satisfies (5.8). The technique then orthogonalizes gYm with 

respect to {gyp }o:0;p<m by using the Gram-Schmidt algorithm to give 

(5.44) 

The family {up }o:0;p:0;m is an orthogonal basis of Vm+l· The orthogonal matching 

pursuit projects the residue Rmf over Um instead of g Ym that defines the residue Rm+1J 

(5.45) 

One can show that R'Y is orthogonal to the vectors {gyp }o:0;p<m, and that equation 

(5.44) implies 

(5.46) 

Hence, (5.45) can be rewritten as a residue updating equation 
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(5.47) 

This residue updating equation is similar to that of a matching pursuit in (5.7), but 

instead of subtracting the projection of R'Y over g Ym in the direction of g Ym , we 

subtract it in a direction orthogonal to all previously selected vectors {gyp }o:>p<m. As 

Rm+lfis orthogonal to Um, we have 

(5.48) 

In an N dimensional space, the orthogonal matching pursuit converges with a finite 

number M ~ N of iterations so that RMJ = 0. Summing (5.47) for 0 ~ m < M yields 

(5.49) 

and an energy conservation 

(5.50) 

The objective is to expand f over the original dictionary vectors {gym }o:>m<M, and 

this requires a change of basis. From the Gram-Schmidt relations (5.44), we can 

decompose Um over the family {grP }o:>p<M 

m 

Um= Lhp,mgyP 
p=O 

(5.51) 

The coefficients bp,m can be calculated one by one through the iterations of the 

orthogonal matching pursuit. By inserting expression (5.51) into (5.49), we obtain 

an expansion ofjin {gyp }os;p<M 

(5.52) 
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Rearranging the terms of this double summation to give 

where 

M-l 

f = :L,.aPgYp 
p=O 

Chapter Five 

(5.53) 

For the first few iterations, the matching pursuit often selects vectors that are almost 

orthogonal. Then orthogonal and non-orthogonal pursuits select nearly the same set 

of vectors, so the Gram-Schmidt orthogonalization is not needed. When the number 

of iterations increases and gets close to N, the residue's norms of the orthogonal 

matching pursuit decrease faster than that of the non-orthogonal matching pursuit. 

For large M, the orthogonal matching pursuit has the convergent advantage at the 

cost of requiring significant computations for the Gram-Schmidt orthogonalization. 

The non-orthogonal matching pursuit is thus more often used for large signals [27]. 

5.5 NUMERICAL DEMONSTRATIONS 

Since our primary purpose is to study the characteristics of power quality disturbance 

signals via signal transformations, we should not consider all selected atoms from the 

matching pursuit, but examine only the first few selected atoms that contain the 

majority signal energy. Moreover, since the first few iterations of the matching 

pursuit often select atoms that are almost orthogonal, the Gram-Schmidt 

orthogonalization is not needed. This provides a minimal number of calculations, 

and speeds up the classification process. 

We perform the matching pursuit of the Gabor dictionary in Section 5.3.3, which 

decomposes a disturbance waveformf(n) into a sum of Gabor atoms that are selected 

to best match its residues. Figure 5.1 shows the matching pursuit decomposition for 

an impulse transient disturbance waveform. While Figure 5.2 is for a low frequency 

capacitor switching signal, Figure 5.3 is for a high frequency capacitor switching 
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signal, and Figure 5.4 is for a single notch signal. In each figure, figure (a) is the 

disturbance signal f(n) that has a duration of 20ms and is sampled at 12.8KHz (i.e. 

256 samples). The time-frequency energy distribution of the disturbance signal 

Ef(n,k) obtained from the matching pursuit decomposition is shown in (b). Figure (c) 

presents the energy conversion 11Rmjli2/l!fll2 versus the number of iterations m of the 

matching pursuit. 

05 -

0 ~ 
I I I " 
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ro [Hz] 
(a) 
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llR"'tll
2 0 50 100 150 200 250 
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0. 

0. 

5 10 15 20 
(c) Iterations m 

Figure 5.1: (a) 256 samples of an impulse transient disturbancef(n); (b) Time­

frequency energy distribution of the disturbance signal Ef(n,k) obtained from the 

matching pursuit with Gabor dictionary; (c) Energy conversion 11Rmjli211!fll2 versus the 

number of iterations m of the matching pursuit. 
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Figure 5.2: (a) 256 samples of a low frequency capacitor switching disturbance f(n); 

(b) Time-frequency energy distribution of the disturbance signal Ef(n ,k) obtained 

from the matching pursuit with Gabor dictionary; (c) The energy conversion 

llR')112/l!fli2 versus the number of iterations m of the matching pursuit. 
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Figure 5.3: (a) 256 samples of a high frequency capacitor switching disturbance f(n); 

(b) Time-frequency energy distribution of the disturbance signal Ef(n,k) obtained 

from the matching pursuit with Gabor dictionary; ( c) The energy conversion 

llR"'.fll2/l!fll2 versus the number of iterations m of the matching pursuit. 
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Figure 5.4: (a) 256 samples of a sipgle notch disturbancef(n); (b) Time-frequency 

energy distribution of the disturbance signal Ef(n,k) obtained from the matching 

pursuit with Gabor dictionary; (c) The energy conversion 11Rm.fll2/l!fll2 versus the 

number of iterations m of the matching pursuit. 

These examples show clearly that the convergence rate of the matching pursuit 

decays toward zero very quickly, and that we obtain a sufficiently precise signal 

approximation by a very small number of iterations. The convergence rate can be 

different depending on the structure and length of the signal. However in the above 

examples, disturbance signals are approximated to more than 95% of their energy 

after only five iterations. The technique thus provides a very efficient 

decomposition, and also is a translation-invariant representation. 
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Since the matching pursuit is a greedy algorithm, the extraction of features (e.g. 

modulation frequencies, window sizes, ... ) from the selected vectors must be done 

carefully. There are a limited number of selected vectors from the matching 

decomposition that closely match the local structures of the signal at different 

locations, while many other vectors are selected as they best match the signal 

residues, whose structures can be completely different from signal. This is because 

the subtraction between the signal and the selected vectors can create new 

components that do not have in the signal. This is the case when the signal has been 

subtracted many times. Figure 5.3 shows clearly the appearance of such new 

components. They appear at the position where the disturbance signal changes from 

a sharp transition to regular oscillations. 

From the discussion above we should only use vectors that match closely to the 

signal structure. This agrees with our objective stated at the beginning of this 

section. We thus examine only the first five selected vectors that contain most of the 

signal energy [83]. The discarded energy is considered as insignificant and is 

produced from small signal components and noise. 
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PATTERN RECOGNITION 

APPROACHES 

6.1 INTRODUCTION TO PATTERN RECOGNITION 

Automatic recognition, description and classification of a variety of objects and 

patterns are important problems in engineering and scientific disciplines such as 

computer vision, marketing, biology, psychology, medicine, artificial intelligence 
v 

and remote sensing. The demand for automatic pattern recognition systems is 

rapidly growing due to the performance requirements of speed, accuracy and cost on 

huge databases. Pattern recognition systems have been designed using the following 

approaches: (i) template matching, (ii) statistical methods, (iii) syntactic methods and 

(iv) neural networks. 

Among the various frameworks of pattern recognition that have been formulated and 

developed in the past fifty years, the statistical approach is the most intensively 

studied and used in practice [88]. Recently, neural network techniques and methods 

using statistical learning theory have gained increasing attention as they have the 

115 
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capability of robust learning inference and generalisation from the training data. The 

main difference between neural networks and other approaches is that neural 

networks can learn the relationships of a complex non-linear input-output, and use 

sequential training procedures. In spite of what seem to be differences, neural 

network models are similar or have a close relationship to statistical pattern 

recognition [89,90]. 

The concepts of statistical decision theory are to determine the decision boundaries 

between classes. Depending on the information available about the class condition 

densities, different techniques can be used to design a classifier. If all information of 

the class distribution is specified, then a clear deterministic Bayes decision rule can 

be "drawn" out for the designing of the classifier. However, in practice the 

information of the class distribution is normally not known and must be learned from 

the available training set. In the case that the class condition densities are known 

(e.g. Gaussian distribution), but some information on the densities (e.g. the mean, 

covariance matrix) are unknown, we then have a parametric decision problem. The 

Bayesian approach in this situation is used to estimate the unknown parameters in the 

density functions. In the case that we do not know the class condition densities, we 

then have a nonparametric problem in which the class distribution must be estimated 

or the decision boundaries are directly constructed from the training data. The 

multilayer perceptron is in fact viewed as the nonparametric method that constructs 

the decision boundaries from the training data. Radial basis function network is a 

special class of the neural network that contains the radial basis function - a form of 

statistical parametric approach. Unlike the multilayer perceptron, the radial basis 

network is required to estimate the class distribution (i.e. the mean, covariance 

matrix) from the training data. 

In this chapter, we present two important categories of pattern recognition. The first 

one is a classical and well-known statistical approach called Bayesian. The second is 

the artificial neural network approach. In particular, radial basis function network 

that is imported from statistical leaning theory, is popular due to its fast training, and 
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we will show that this type of classifier is suitable in classifying power quality 

disturbances [91, 92]. 

6.2 BAYESIAN PARAMETER ESTIMATION 

APPROACH 

6.2.1 General Consideration 

In an N-dimensional space, let x(k) = (x1(k),x2(k), ... xN(k))T, k E [1,K] be the kth 

pattern and the available classes that x(k) might be a member are eh, h = 1,2, ... , H. 

The statistics of the overall phenomenon can be described in terms of the follo~ing 

probabilities: 

P(ch) =the a priori probability that a pattern belongs to class c1i, 

p(x(k)) =the probability that a pattern is x(k), 

p(x(k)lch) =the class conditional probability that a pattern is x(k), given that it 

belongs to class eh, 

P(chlx(k)) =the a posteriori conditional probability that the pattern's class 

membership is eh, given that the pattern is x(k), 

P(ch,x(k)) =the joint probability that the pattern is x(k) and that its class 

membership is eh 

The normalisation conditions of the patterns and the classes are 

K 

LP(x(k)) = 1, and 
k=l 

The joint probability can be expressed by two different ways, 

P(ch,x(k)) = p(x(k) I ch)P(ch) 

= P(ch I x(k))p(x(k)) 

(6.1) 

(6.2) 
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Then the a priori estimate of the probability of a certain class can be converted to the 

a posteriori probability 

P(c 
1 
x(k)) = p(x(k) I ch)P(ch) 

h p(x(k)) 
(6.3) 

This expression is known as the Bayes' relation, which is used to estimate values of 

the a posteriori, or measurement condition, probability P(chlx(k)) if those statistics 

are not known directly, but the class conditional probabilities and a priori 

probabilities are known. In principle and in practice, a decision rule can be make 

based on the values of the a posteriori probability such that a pattern x(k) is decided 

to belong to class c =cc if and only if [93,94] 

P(cc I x(k)) > P(ch I x(k)), V h "# c (6.4) 

This means that the probability of the pattern x(k) belonging to the class Cc is highest. 

6.2.2 Discriminant Functions 

Gaussian models are popular because of their mathematical tractability and because 

the Gaussian distribution is the natural result of a combination of a large number of 

samples in the practical world (Central-Limit theorem). Consider a multidimensional 

Gaussian probability density distribution function of a N-dimension random variable 

x with meanµ [94,101], 

1 [ 1 T -1 ] p(x) = N/
2 112 exp --(x-µ) L: (x-µ) 

(2n) (det.L:) 2 
(6.5) 

where L: is the covariance matrix of x and ( det.L:) is the determinant of L: . Then each 

class of Gaussian variable is specified by its mean (i.e. the centre) and its covariance 

(i.e. the spread or receptive field). 

Define a discriminant function for the hth class ch, as the probability of finding that 

class given a feature vector x(k), i.e. 
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(6.6) 

Since any monotonically increasing function of dh(k) can also be used as a 

discriminant function and the log-likelihood function is one such convenient 

variation, we then redefine the discriminant function as 

(6.7) 

In the case of Gaussian distribution, the class conditional probability p(x(k)lch) is 

given in (6.5). From the Bayes' relation in (6.3), the discriminant function becomes 

f {p }2] det ·Lh -LNlog(2n-)+log (x(k)) -log 
2 P(ch) 

(6.8) 

Note that the second term in (6.8) is the same for all classes, i.e. playing no role in 

the discriminant function, and therefore can be dropped. The last term represents a 

class bias. Hence, finding the largest dh(k) in (6.6) is the same as finding the largest 

class conditional probability p(x(k)lch), that is, the first term in (6.8) is maximum. 

If all classes have equal a priori probabilities P( eh) (i.e. the same sample population 

for each class) and if we assume further, for simplicity, that all classes have the same 

covariance matrix, i.e. Lh = L, then the negative of the first term in (6.8) is the 

normalised distance from the feature vector x(k) to the mean vector µh of the h1
h 

class. Thus x(k) is assigned to the h1
h class if its distance to the class mean vector µh 

is minimum 

Dh (k)
2 

= \\x(k)- µ1i\\:-1 

=(x(k)-µhll.,- 1 (x(k)-µh) (6.9) 

The distance as defined in (6.9) is known as the Mahalanobis distance [95]. If all the 

feature components in the feature vector are uncorrelated, that is, they are 

independent of one another, but with different variances, then 
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(6.10) 

Thus if feature component x1 has a smaller spread than component Xj, i.e. 

1Ieri2 > 1Ier
1 

2 
, we put more emphasis on x1 than x1. If furthermore, all feature 

components are uncorrelated and have the same variance, then L = er 2 I and Dh(k)2 

becomes a simple Euclidean distance 

(6.11) 

We note that the discriminant requires the measurement of distance, and patterns are 

classified in accordance with the class membership of nearest neighbours or with the 

nearest class centre. In some cases, discriminants are hypersurfaces defined in the 

input space, and patterns are classified based on class decision boundaries. 

6.3 ARTIFICIAL NEURAL NETWORK APPROACH 

Although artificial neural networks (ANN) have a rich history of approximately 60 

years since their first publication by McCulloch and Pitts [96] in 1943, they did not 

become popular until about 20 years ago. Basically, there are three entities to 

characterise an ANN [94]. They are: 

1. Network topology, or interconnection of neural "units", 

2. Characteristics of individual units or artificial neurons, and 

3. Strategy for pattern learning or training. 
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The operation of ANNs is based on some organisation principles such as learning, 

generalisation, adaptivity, and distributed representation and computation in the 

network weights. ANNs are typical of globally generalising networks which have 

the capability of robust learning inference and generalisation from the training data. 

The most commonly used family of ANNs for pattern classification applications are 

the feedforward networks (also known as multilayer perceptrons). These networks 

are organised into layers and have unidirectional connection between layers. 

Another popular network used for data clustering and feature mapping is the Self­

Organising Map (SOM) [97,105]. 

6.3.1 Multilayer, Feedforward Network Structure 

The feedforward network is composed of a hierarchy of processing units that are 

organised into a series of two or more mutually exclusive sets of neurons or layers. 

The first layer is the input layer that is used for applying input values to the network. 

The last layer is the output layer where the final state of the network is read. 

Between these two layers, there is zero or more layers of hidden units .. Weighted 

links connect each unit in one layer to those in the next-higher layer. Figure .6.1 
<' 

shows the architecture of a two-layers (of processing units) feedforward network. 

The network has N units for the input layer, H processing units at the hidden layer, 

and M processing units at the output layer. 

A commonly used function for the activation functions of the feedforward network 

are the sigmoid function: 

(6.12) 

where eh is a threshold or bias, whose effect is to shift the activation function along 

the horizontal axis by a value of eh, and 80 is the scaled parameter that modifies the 

shape of the sigmoid. Other functions are also used by some researchers, namely, the 

tangential function, 
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f(u,b,c) =btanh(cu) (6.13) 

where band care two constants, and the linear activation function (i.e.f(u) = bu, bis 

a constant). 

Output Layer 

Hidden Layer 

Input Layer 

X3(k) """ X1(k) 

x(k) input vector 

Figure 6.1: A schematic depiction of a two-layer feedforward network 

The output of a neuron is calculated by first summing the weighted inputs to produce 

an internal activation, net, then by applying the activation function. A neuron is 

normally connected to a bias that is included as a weight connected to a fixed input 

of a value of -1. If we denote the index of this fixed bias is i = 0, then for an k1
h 

input sample, the activation output of the h1
h node in the hidden layer is 

N 

neth (k) =I, w111 x 1 (k) (6.14) 
1=0 

and 

(6.15) 
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For a two-layer feedforward network, the activation output of the mth node in the 

output layer that takes the activation outputs of the hidden layer { ah(k)} as its input, 

is 

H 

netm(k)= LWmhah(k), and Ym(k)=fm(netm(k)) 
h=O 

(6.16) 

Considering the complexity requirement of the multilayer feedforward network, it is 

natural to ask how many layers and how many units should be in the hidden layer(s). 

A simple argument is provided in [93,98], in which a network of three-layers can 

form any arbitrarily complex decision region, and for a network of N input features, 

(2N+l) processing units in the (single) hidden layer are capable of modelling the 

problem. It is however, difficult to choose the best network in any practical problem. 

6.3.2 Training the Feedforward Network 

There are a number of methods for training feedforward networks such as 

backpropagation training [99], recursive least-squares (Kalman) based training [100], 

conjugate-gradient training [101], Newton's method [102] and its modifications .C~.g. 

Marquadt-Levenberg algorithm [103]). Each method has its own advantages and 

disadvantages. In fact, the backpropagation learning algorithm is perhaps the most 

popular training method for feedforward networks, and is presented here. 

Backpropagation learning is a gradient descent method based on the Least Mean 

Square (LMS) algorithm. There are two computational passes that are made in the 

learning phase of network training. At first, a sample is presented to the network and 

a forward pass calculates the activation output of each neuron. Then the error of the 

actual output of the network compared to the desired response is propagated through 

the network in a backward pass for adjusting the connection weights. 

For an input pattern x(k), the square of error of the network output is defined by 
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1 M 
E(k) = Z L,[tm(k)- Ym(k)]

2 

m=l 

(6.17) 

where tm(k) is the target or desired response of the network at the mth output node for 

the kth training sample, and the factor Vi is inserted for latter mathematical 

convenience. We then have the average square error of Ktraining steps, {x(k)h=i K 

(6.18) 

or in vector 

1 K 
E =-L,[t(k)- y(k)]2 

2K k=l 

(6.19) 

Similar to the LMS algorithm, the aim of backpropagation training is to minimise the 

cost function given by the average square error in (6.18). This can be done by 

applying the weight corrections 11wmh(k) that are proportional to the error gradient 

-{JE(k)l<Jwmh, i.e. 

l1 (k) = _ dE(k) 
wmh TJ ""\ 

awmh 
(6.20) 

where 1J is the learning rate. Formula (6.20) is known as the delta rule [99]. The 

partial derivative dE(k)l<Jwmh can be evaluated using the chain rule 

dE(k) dE(k) dnetm (k) 
= (6.21) 

Using (6.16) we have 

(6.22) 

Now if we define 8m (k) = -oE(k) I onetm (k), then (6.20) can be rewritten as 

(6.23) 
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To compute Dm(k), again we use the chain rule expressed in term of output Ym(k) as 

(6.24) 

From (6.18) and (6.16), the two factors are obtained as follows: 

CJE(k) - -(t (k) - (k)) 
dYm (k) - m Ym 

(6.25) 

and 

(6.26) 

Hence, for any output-layer node m, the change in weight is 

Llwmh (k) = 7JDm (k)ah (k) 

=7J(tm (k)-ym (k))f ~ (netm (k))ah (k) (6.27) 

For units that are not output units, there is no available desired output. We then need 

a method for estimating the factor dE(k)/dwhc that is used to update the connection 

weights. In this case, we still have: 

CJE(k) CJneth (k) 
=-11~~~ ~~~ 

CJneth (k) CJwh1 

(6.28) 

where 
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(6.29) 

However, the partial dE(k)/dah(k) cannot be evaluated directly, and needs to be 

evaluated in terms of quantities in the output layer 

_ aE(k) =-f aE(k) anetrn(k) 

dah (k) rn=O dnetrn (k) dah (k) 

= f (- aE(k) } h 
rn=O anetrn (k) rn 

M 

=Lorn (k)wrnh (6.30) 
rn=O 

The result obtained in (6.30) is incorporated into (6.29) to yield 

M 

oh (k) = 1~ cneth (k)) Lorn (k)wrnh (6.31) 
rn=O 

Hence, in general the delta terms at an internal node can be evaluated in terms of the 

delta terms at an upper layer. Starting at the highest layer, i.e. the output layer, 

expression (6.27) yields the value of Orn(k), and then we can propagate the "errors" 

backward to the lower layers for updating the connection weights. 

For epoch training, we form an overall correction to the weights after each scan of all 

pattern pairs in the training set, that is 

K 

~whi = L~W1zi(k) (6.32) 
k=I 

The derivatives of the activation functions can be calculated once given the transfer 

function. In particular, for a sigmoid transfer function at the hidden layer, we have 

(6.33) 
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then 

dah(k) · [ ] ---= fh (neth (k)) =ah (k) 1-ah (k) 
dneth (k) 

(6.34) 

and a linear transform function at the output layer gives 

(6.35) 

then 

(6.36) 

The backpropagation algorithm is a slow method for training feedforward networks. 

The rate of correction is controlled by the learning rate 77, which when set too large 

may cause the system to oscillate and prevent the network's convergence. Often in 

gradient approaches, the learning rate is adjusted as a function of the iteration (e.g. 

77Cn) = 1J CO) In), so that it allows large initial connections, yet avoids weight 

oscillations around the minimum when near the solution. 

There are several methods for speeding up the training processes of the 

backpropagation algorithm. One of the most commonly used methods is the 

momentum method that adds a momentum of weight update in the last iteration (nth) 

to the correction weight. in the current iteration (n+ 1)8t [99], i.e. 

L'.1(n+l)w(k) =-11(dE(k) l+a.l'.1(n)w(k) 
· dw ) 

(6.37) 

where a is the momentum constant and is restricted to the range 0 ::;; a< 1, and is 

usually chosen to be between 0.9 and 0.99 for a high degree of mom.entum. In 

( 6.37), the second term with a positive a, guides the correction weight at step (n+ 1 )st 

to the same direction as at step nth. This momentum term may prevent oscillations in 

the system and may help it to escape local minima of the error function in the 

training process. 
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6.3.3 Self-Organising Mapping (SOM) Algorithm 

In [104,105], an alternative neural learning structure is proposed to perform a 

dimensionality reduction, in which the feature space is converted to yield 

topologically ordered similarity maps or clustering diagrams. In addition, the 

network uses a lateral unit interaction function to implement a form of local 

competitive learning. The mapping is achieved autonomously by the system, i.e. 

unsupervised training. 

A one-dimensional (1-D) configuration of units that form feature dimensionality 

reducing maps is shown in Figure 6.2. Each unit receives the input pattern x = (x1, 

x2, ... XN)T in parallel. The mappings can be generalised to higher dimensions; for 

example, a 2-D topology yields a planar map indexed by a 2-D coordinate system. 

Input pattern: x --(5--.---u
1 

-C5.....--u

2

--'\J..-----.

6 

"• 

i Y1 i Y2 i YM 

Figure 6.2: A one-dimensional topology mapping configurations 

Since each unit Um in the network receives the input pattern, x = (x1,x2, .. . xNl, in 

parallel, they have the same number of weights, Wm = (wmi,Wmz, ... WmN)T, as the 

dimension of the input vector. Given a large, unlabeled training set, the self-organise 

network adapts its neural clusters to reflect input pattern similarity. Then the overall 

structure may be viewed as "an array of matched filters, which competitively adjust 

unit input weights on the basis of the current weights and goodness of match" [94]. 

Each. unit in the network competes with other units and tries to become a matched 

filter. 

At a training iteration, an input pattern x(k) is presented to the network. A distance 

measure Dm(k) between the pattern x(k) and Wm, m E [1,M] is computed. The 
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distance measure can be an inner product measure (i.e. correlation), Euclidean 

distance or another suitable measure that reflects the similarity of the input pattern. 

The Euclidean distant is normally used, and a matching phase is used to define a 

"winner" unit Uc, with its corresponding weight w c so that 

llx(k)-w c (k)ll = min~lx(k)- w m (k)ll} 
m 

(6.38) 

Hence, at iteration k, c is the index of the best matching unit for the input pattern 

x(k). By defining a topological neighbourhood Nc(k) of the winning unit u0 units 

that are in Nc(k) are considered active to the input pattern x(k). Other units that are 

not in Nc(k) are considered inactive to this input. Then units in the currently defined 

cell Nc(k) are affected through the global network updating phase as [97] 

(6.39) 

where T](k) is the learning rate at the iteration k. The update moves the weight 

vectors of the winning unit and of units in its neighbourhood towards the input vector 

x(k). 

The result of the accuracy of the mapping is dependent on the choices of the 

topological neighbourhood Nc(k), learning rate T](k), and the number of iterations 

[97,105]. The learning rate T](k) should start with a value close to 1, and gradually 

decrease as the number of iterations increases. Similarly, the neighbourhood Nc(k), 

starts with a large size, and then reduces the size for large k to allow fine-adjustment 

phase. As this is an unsupervised training, it usually requires a large training set as 

well as the number of iterations. 

6.4 RADIAL BASIS FUNCTION APPROACH 

In [106,107] a network structure, known as Radial Basis Function (RBF) network, of 

locally tuned nodes in the hidden layer is proposed. The network has only a local 

learning capability and is suitable for those patterns that have clear statistical 
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distributions. Since it has many fewer connecting weights to be updated compared to 

the multilayer perceptrons, it is much faster for training. In fact, in an RBF network, 

the training of the two layers is decoupled while in an MLP network the training is 

iteratively coupled together. 

6.4.1 The RBF Network Structure 

Figure 6.3 shows a typical RBF neural network which has H processing nodes in the 

hidden layer and M summing nodes in the output layer. The N-dimensional feature 

vector serves as an input sample. The network has only one hidden layer and the fact 

that the hidden nodes receive input directly from the input layer, that is without 

having to calculate the weighted sums, makes it much faster to train than a 

backpropagation network of comparable size. 

x(k) input vector 

Output Layer 

Hidden Layer 
ofRBFs 

Input Layer 

Figure 6.3: General structure of a Radial Basis Function Neural Network. 

The non-linear activation function of the hidden nodes in an RBF neural network is 

non-monotonic in contrast to the monotonic sigmoid activation function of multilayer 
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perceptrons. This function, also called the receptive field of the node, is usually a 

multi-dimensional symmetric Gaussian function centred on each node. The receptive 

fields of neighbouring nodes overlap. The dimension of the Gaussian activation 

function is equal to the dimension of the input data vector. For an input pattern x(k), 

the activation output from the h1
h, hidden node centred at µhis given by [106,107], 

(6.40) 

where ah is the distance scaling parameter which determines over what radial 

distance in the input space the node will have a significant influence. ah is also 

known as the width or the spread of the node. Note that ah has the similar function 

as the standard deviation in a normal probability distribution. Furthermore, Dh(~) = 

lx(k)- µhi is the Euclidean distance from the k1
h data point to the cent~e of the hth 

node given in (6.11), and (Dh(k)lah) is the scaled distance measured in terms of 

the width of the node. 

The output layer of the RBF network consists simply of linear summation units with 

linear activation. The network output from the mth node due to the data input vector 

x(k) is therefore 

H 

Ym(k) = L Wmhah (6.41) 
h=l 

where Wmh is the coefficient or the weight from the hth hidden node to the m1
\ 1 :'.S: m 

:'.S: M, output node. When the activation of the hidden nodes is Gaussian as in (6.40), 

the network output is 

-x(k)-µh 
H ( II 11

2 

J Ym(k)= ~Wmhexp a/ (6.42) 

The output formula in (6.42) is exactly the same as the decision function of a 

Bayesian detector in a communication receiver, in which µ1z and x(k) is the desired 

received signal and the actual received signal respectively and the variance of 
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channel noise is d2 = a~ I 2 . A Gaussian RBF neural network can therefore be used 

to realise a Bayesian detector [108,109]. 

However, in most practical applications, the distributions of features are normally 

different in different dimensions of the N-dimensional input space. Therefore, the 

Euclidean distance that incorporates with the scaling width for each node as in (6.40) 

is not flexible enough. We then generalise the activation to a non-symmetrical 

Gaussian receptive field by using the square of Mahalanobis distance in the Gaussian 

function as in (6.9). The activation output of the hth hidden node due to input 

sample x(k) in (6.40) becomes [91,92] 

(6.43) 

Lh is the distance scaling matrix of the node's receptive field that provides the width 

or the spread of influence of the node and is simply the covariance matrix of the 

training samples assigned to, or captured by, the hth node cluster. 

To guarantee the influence of the classification when moving across decision 

boundaries and to provide a relative meaning of confidence level for the 

classification, a constant is multiplied to all standard deviations { ahl} so that the 

maximum activation output at decision boundaries has a value of less than 0.5. We 

can then reject a sample if it is classified to a class but with small confidence level. 

This is also an advantage of RBF networks over the networks of sigmoid transfer 

function for dealing with outliers. 

In general, the choice of a non-linear activation function in an RBF network is not 

crucial for its performance. However, the performance of an RBF network critically 

depends upon the chosen centres [106]. Too few centres cause the network to be not 

capable of generating a good approximation for the model, while too many centres 

cause it to fit misleading variations due to ill-defined or noisy data. To generate the 

centres, an unsupervised clustering technique on the training set is used in [ 107], as 

there is no requirement of the class output. The technique provides no control over 

the model complexity. A direct approach to the model complexity issue is to select a 

subset of centres from a larger set which can be the entire training set. This approach 
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is adopted in [110, 111] by starting with an empty network and then adding centres 

one at a time until the model has accounted for a sufficient fraction of the variance of 

the data. An indirect approach [112,113] to controlling the model complexity is to 

use all the training set data as centres, then to use weight decay or ridge regression to 

reduce the effective number of free parameters, thus reducing overfit. The authors in 

[121,122,126] propose a technique that is based on regression trees [114,115,116] to 

generate RBF centres and their widths. The input space is divided into 

hyperrectangles organised into a binary tree that minimises the residual error 

between model and data. 

In the following we present two typical methods for training the node centres and 

their width in an RBF network. One method uses unsupervised training known as k-
,' 

means clustering technique [107], and the other uses a regression tree, whose 

advantage, besides its speed, is the possibility of interpreting decision rules in terms 

of individual features. 

6.4.2 Unsupervised Training for RBF Networks 

In applications where there is no prior knowledge about the desired states of .the 

system, or no teacher is available, unsupervised training is the only choice. The 

training leaves the hidden nodes to compete with one another. The node, which 

responds strongest to the input training sample, wins the competition and obtains the 

training for its parameters. The parameters for an RBF neural network are 

determined in three steps. First, the centres {µh} of the hidden nodes can be 

determined by a k-means clustering technique. Second, the distance scaling matrix 

Lh of each node's receptive field is the covariance matrix of the training samples 

captured by the hth node cluster. Then finally, the connection weights of the output 

layer are determined by a multiple linear regression. 
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k-Means Clustering of node centres 

The k-means clustering algorithm finds a set of cluster centres and associated 

partition boundaries to best separate the training data into subsets or clusters. Each 

cluster centre becomes the centre of a node in the hidden layer of the RBF network. 

The algorithm finds a local minimum in the total squared Euclidean distances, Ek­

mean, between the training data points x(k), k = 1,2 .. . K, and the cluster centres µ1z, h = 

1,2, .. . H, that they are assigned to, i.e. 

K 

Ek-mean= Im~n llx(k)- µhll
2 

k=l 

(6.44) 

The algorithm achieves the above least squared (LS) minimisation iteratively using 

the following steps: 

Step I: Choose H points randomly among the given batch of K training data 

points (multidimensional samples) x(k), k = 1,2 .. . K, and assign these to 

initial centres of H clusters µi, µ1, . µH. 

Step 2: Assign each training sample to the cluster with centre nearest to it. This 

results in H clusters. 

Step 3: Calculate the average position (centroid) of the training points for each of 

H clusters. 

Step 4: Update {µh} to these new cluster centres (i.e. the centroids). 

Step 5: Calculate Ek-mean from (6.44) above. 

Repeat steps 2 - 5 until Ek-mean converges to an acceptable small level. 

Note that techniques are available to speed up the convergence by a better 

initialisation of the hidden node centres in Step 1. If there is some prior knowledge 

about the clustering distribution of the training set, then the node centres may be 

strategically placed, making use of the prior knowledge. 
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Determination of connection weights of the output layer 

Since the M output nodes are simple linear summation units (linear activation 

function) taking inputs from the H hidden nodes, the training can be done by the 

classical linear least squares regression technique. If all K training samples are 

available, the MxH weight matrix w can be simply computed so that the norm-2 of 

the output error is minimised, i.e. 

K 

E = L,,(T(k)-wa(k))2 minimised (6.45) 
k=I 

where T is the desired (target) MxK output matrix as the result of applying K training 

samples to the network, and a is the HxK activation matrix (output) from the hidden 

layer. This requires 

t[~(T(k)-wa(k)f (T(k)-wa(k))l = O 
k=I dw J 

(6.46) 

Or in matrix form, 

(6.47) 

However, if real-time training is required or if the nodes in the output layer have a 

non-linear activation function, then iterative training using conventional gradient­

search methods such as the LMS algorithm or Recursive-Least-Square (RLS) 

algorithms, may be used. 

6.4.3 Supervised Training for RBF Networks 

Since the training of the two layers in an RBF network is decoupled, a regression tree 

can be used to train the centres of the nodes in the hidden layer [121,122]. The 

connection weights of the output layer are determined by the multiple linear 

regression that is described above in the unsupervised section. Most techniques for 

implementation of decision trees decompose the training space into pairwise disjoint 

regions. Ideally each region contains samples of a single class. 
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Generating the Regression Tree 

Using a regression tree, a binary tree divides the training space recursively into two 

and approximates the function in each half by the average output value of the data it 

contains [114]. A binary tree is shown in Figure 6.4, in which the root nodes of the 

tree {T4,T6,T7,T9,T10,T11 } are the smallest hyperrectangles that include all of the 

training data, Tr = {x(k)h=IK· 

Figure 6.4: Training space is divided into hyperrectangles organised into a binary 

tree 

At a bifurcation, a training set T = {x(k) h=I·P is divided into left and right subsets, 

TL and TR, on either side of a boundary bin one of the dimensions i such that 

TL = {x(k): xi(k) < b}, 

TR ={x(k):xi(k)~b} 

The mean output value of each side of the bifurcation is 

(6.48) 



Pattern Recognition Approaches 137 

(6.49) 

where PL and PR are respectively the number of samples in the left and right subset. 

Then the residue square error between the model and data after the bifurcation is 

(6.50) 

The subsets (children) TL and TR of the root node T are created by finding the 

dimension i and a boundary b such that E(i,b) is minimised. This can be done by a 

simple discrete search over N dimensions and P cases. Similarly, the children of the 

root node are split recursively. We terminate the process at a node if there is a 

sufficient degree of class purity within the node (i.e. the square error of data within 

the node smaller than an Emm), or if the bifurcation of the node creates children that 

contain fewer than Pmm samples. The training space is thus divided into 

hyperrectangles organised into a binary tree that minimises the residual error 

between model and data. 

The regression tree technique is less sensitive to irrelevant attributes as they do not 

usually appear in the bifurcation of the regression tree. Then the network needs only 

to connect to relevant attributes, which reduces the links in the network. 

Transforming Tree Nodes into RBFs 

Suppose the input space is bounded, and the boundaries are given by the maximum 

values of the attributes in the training set. In [121], there are three options for the 

transforming of the partitioning regions (hyperrectangles) produced from the 

regression tree to the node centres {µh} of the RBF's hidden node: 

1. If one and only one side of the region lies on the border of the input space, then 

µh is placed at the centre of this side. 
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2. If two adjacent sides of the region lie on the borders of the input space, then µh 

is placed into the corner defined by these sides. 

3. If the region borders all sides with other regions, then µh is placed in the 

geometric centre of the region. 

The sizes of the Gaussian function { ah1 } are calculated based on the sizes of the 

corresponding hyperrectangles so that the activation outputs {ah} of the hidden layer 

at the hyperrectangles' borders are always the same. If rhl is the distance from the 

centre of the hth node to its border in the ith dimension, a new parameter a can be 

introduced so that 

(6.51) 

The parameter a is the same for all nodes and for all dimensions. This holds the 

ratio between rh1 and ah1 constant, thus keeping the same response {ah} at the borders 

of the hyperrectangles. 

6.5 CONCLUSION 

Depending on the available data and the properties of the feature vector, different 

suitable classifiers can be designed. In practice, the selection of a classifier is a 

difficult problem and is usually based on the choice of those which happened to be 

available, or best known to the user. 

In [88], three different approaches used to design a classifier are identified. The 

simplest and most intuitive approach to classifier design is based on the concept of 

similarity, in which patterns can be classified by template matching or minimum 

distance measure using a few prototypes per class. Self-organise mapping or some 

other advanced techniques for computing prototypes such as vector quantisation 

[117,118], or learning vector quantisation (LVQ) [97], are based on this concept. 

Some techniques used in [134,135] employ LVQ as a classifier for classifying the 
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PQ disturbances, in which the DWT coefficients of the PQ disturbances are used as 

the input feature vector. 

The second category of classifiers is based on probabilistic concept. It requires priori 

knowledge on class conditional densities, or at least an estimation of the densities so 

that an optimal decision rule for the classification can be produced. It is therefore 

suitable for patterns that have clear distributions between their classes and are 

obvious invariants of some kind of transformation of the signal (e.g. shift invariant). 

The third approach used for designing pattern classifiers is to construct decision 

boundaries directly by optimising the error criterion. Feedforward networks or 

MLPs are examples of this type where the training procedures aim to minimise the 

mean squared error between the classifier outputs and the predetermined target 

values. These networks, however, are slow in learning and suffer from the 

possibility of being trapped in local minima of the chosen optimisation cost function. 

Moreover, the monotonic nature of the hidden layer's activation in MLPs gives rise 

to hyperplane decision boundaries. This, together with global learning ability, makes 

these networks more prone to extrapolation error (i.e. when a test ~ample falls 

outside the range of the training set). Whereas in an RBF, the non-monotonic nature 

of the radial basis function allows the network to produce robust hypersphere 

decision surfaces, classification error in the RBF networks is usually due to decision 

error alone (i.e. due to stochastic overlap of the classes), while error in MLP 

networks is due to both decision and extrapolation sources. An interesting 

comparative study of the performance of RBF networks compared to MLP networks 

is reported in [119]. 

In practice, since the collections of power quality disturbances from transmission 

lines are costly and time consuming, limited data is available for training. In order to 

generalise the problem from the small set of training data, a construction of pattern 

recognition techniques that are invariant to specified transformations of the input 

data is required. The techniques lead to the use of a statistical approach rather than a 

"black box" neural network. This is also a reason why we use the radial basis 

function network to utilise the most information from the statistics distribution of the 
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shift-invariant features that we designed for the PQ disturbance classification 

problem. 

Despite the advantages of the RBF network as a classifier for the classification of 

power quality disturbances, it has the weakness of having only a local learning 

capability and a limited learning inference from the training data. In fact, hidden 

units in an RBF network receive input directly from the input layer, and are simply 

"weighting" the input features by the node's scaling parameters { ah1 }. This has been 

proved as not being sufficient to enhance the discriminant of relevant or dominant 

features or to eliminate the effect of irrelevant features for each particular class 

[123,124,125]. In the next chapter, we propose some algorithms to improve the 

classification process of an RBF network, and optimise the decision boundary in the 

training of the network. 



Chapter 7 

OPTIMAL LEARNING FOR 

PATTERN CLASSIFICATION IN 

RBF NETWORKS 

7.1 INTRODUCTION 

In an RBF network, the crucial concern is the selection of cluster centres µh = {µh1 } 

and their widths { crhi} so that the model can fit closely to the training space. 

However, current techniques give suboptimum positions of cluster centres and their 

widths. For example, for the k-means (unsupervised) clustering technique in [120], 

since it does not require the knowledge of the output (targets) the technique cannot 

give the optimum cluster centre positions if the training space is highly overlapped 

between their classes. In the regression tree technique used in [121,122], the centres 

are simply placed at the middles of the hyperrectangles. 

141 
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Also, in many applications, some features of a pattern are more important or more 

discriminating than other features, e.g. the formant frequencies of a voiced sound, the 

dominant components in a principal component analysis etc. The pattern matching 

gives more weight to these components in the feature vector. In a typical RBF 

network, the node's widths { ah1 } also play the role of weights for the input features. 

They are however, not sufficient to enhance the discriminant of relevant or dominant 

features or to eliminate the effect of irrelevant features for each particular class 

[123,124,125]. 

In this chapter, we propose to modify the structure of the RBF network by 

introducing weighting for the input features (in contrast to the direct connection of 

the input to the hidden layer of a conventional RBF) so that the training space in the 

RBF network is adaptively separated by the resultant decision boundaries and class 

regions. The estimation of the input weights can be carried out by one of the two 

techniques: the knowledge-based technique [123,124] and the training technique that 

trains the network as for a single layer perceptron together with the clustering 

process [125]. In this way the network has the ability to deal with complicated 

problems that have a high degree of interference in the training data, and achieves a 

higher classification rate over the current classifiers using a conventional RBF. 

7.2 THE PROPOSED RBF NETWORK 

7.2.1 The Network Structure 

Figure 7 .1 shows the proposed RBF network with the additional weight matrix in the 

input layer which is in contrast to the direct connection of the input to the hidden 

layer of a conventional RBF. The network has H processing nodes in the hidden 

layer and M summing nodes in the output layer. The input sample is an N­

dimensional vector. 
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Similar to a conventional RBF network, the non-linear activation function of the 

hidden nodes is non-monotonic and normally is a multi-dimensional Gaussian 

function centred on the node. The dimension of the Gaussian activation function is 

equal to the dimension of the input data vector. The output of the hth hidden node 

due to input sample x(k) is therefore given as 

(7.1) 

where D~(k) is the squared distance from the input x(k) to the hth node centreµ h (l::;; 

h:::;; H). 

x(k) input vector 

Output Layer 

Hidden Layer 
ofRBFs 

Input Layer 

Figure 7 .1: The proposed RBF network with the input layer weights 

We define a distance function, which includes the feature weights, from an input 

vector x(k) to the h1
h class, centred at µh as 

N 2 
D/(k)= L W1ii lxJk~-µh1 I 

1=1 ahi 

(7.2) 
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It is obvious from (7.2) that the input layer connection weights are equivalent to the 

feature weights of the input vector (or equal to the square of the latter, to be precise). 

Note that, for a given problem the samples x(k) are known, the cluster centres µhand 

their widths { ah1 } can be determined by one of the current techniques (e.g. we used 

the regression tree [121,122] in this paper). As a result, the set of weights { wh1 } in 

(7.2) is the only parameter that can be trained in the RBF network so that the training 

space is adaptively separated by the resultant decision boundaries and class regions. 

We can verify that by incorporating the weights { wh1 } into the scaling widths { ah1 }, 

then obtaining a new "effective" width 

(J' hi 
(O'hz )new= C:-

"IJWhi 

(7.3) 

Since { wh1 } are feature weights, their values are restricted to positive numbers. The 

output layer of the RBF network consists simply of linear summation units with 

linear activation. The network output from the mth node due to the data input vector 

x(k) is given by (6.41) as 

H 

Ym(k) = L W1imah (k) (7.4) 
/J=l 

7 .2.2 Initialisation of the RBF Network 

Initialisation of the RBF network involves the determination of the network structure 

(i.e. the number of nodes on each layer) and the estimation of each cluster centre and 

width in each hidden node. The number of nodes of the input layer and output layer 

are simply the size of the input vector and the number of the output respectively. 

The crucial concern pointed out in [106] is the choice of centres (i.e. the number of 

centres or the number of hidden nodes and their positions). As used in 

[121,122,126], the simplest and quickest way is based on the regression tree 

technique to initialise the RBF centres and their widths. As shown in Section 6.4.3, 

the technique divides the input space into hyperrectangles organised into a binary 

tree that minimises the residual error between model and data. From the tree nodes, 



Optimal Learning for Patterns Classification in RBF Networks 145 

we then perform a transformation into hidden nodes of the RBF network. We use the 

algorithm as in [122] (but different to the algorithm used in [121]) to initialise our 

network by placing the node centres at the centres of the hyperrectangles specified by 

the tree nodes. The originality of our training technique is that all three parameters -

µ h, { <rhil and { wh1 } are optimally determined together and concurrently adjusted 

during training iterations to maximise the discriminant between classes, thus 

minimising the classification error [123,124,125]. 

7.3 KNOWLEDGE-BASED TECHNIQUE FOR 

TRAINING FEATURE WEIGHTS 

The fundamental idea of the knowledge-based technique is to make use'' of 

experiences obtained from earlier problem solving situations in a similar context 

[127,128]. Applying to our problem, we propose to use the knowledge from training 

data to train the feature weights { w1 } i=I ·N· This means that in terms of the 

discriminant function, each feature contributes an equivalent effect to all classes, i.e. 

wh1 = w1, \lh E [l,H]. The distance in (7.2) is thus reduced to 

(7.5) 

and the feature weights in (7 .5) are normalised so that L w, =I . 

7.3.1 Construction of the Knowledge-Base 

We start with the construction of a knowledge-base by examining the interclass 

relative distribution of the feature components {x1}i=1 N of x and ranking these 

components in the order of their interclass discriminating power for every pair of 

classes. Like the decision tree method, this can be done by first finding a decision 

threshold bpq(i) in a dimension i for any pair of classes p and q so that the error, Epq(i) 

of the model on each side of the decision threshold is minimised. Then the order of 
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the features ' interclass discriminant power {i} between classes p and q is simply the 

inverse order of the minimum error Epq(i )min· 

In the following example, we construct a knowledge-base to classify four types of 

PQ disturbances: impulse transient (IT), high frequency capacitor switching (HF), 

low frequency capacitor switching (LF) and aperiodic notch (NT). We select a 

feature vector of five components x = (s, CJ ,. ,a , CJ a, L ) (their definitions are 

presented later in Chapter 8) , whose distributions in the training set are respectively 

shown in Figure 7.2 to 7.6. Figure 7.2 shows the average scale s, Figure 7.3 for the 

standard deviation of the scale CJs, Figure 7.4 for the average Lipschitz exponent a , 

Figure 7.5 for the standard deviation of the Lipschitz exponent CJa and Figure 7.6 for 

the di sturbance duration L. The training set contains 134 samples, in which the first 

29 samples are IT disturbances, the next 35 samples are HF disturbances, then comes 

to 35 LF disturbances and the last 35 samples are NT disturbances. 

LF 
10 

HF 

8 

NT 
6 IT 

40 60 80 100 120 

Figure 7.2: Distribution of the average scale s in the training set 
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4 

LF 
3 

2 
IT HF 

80 100 120 

Figure 7.3: Distribution of the standard deviation of the scale 0"5 in the training set 

0 .5 

-0 .5 

-1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0 20 40 60 80 100 120 

Figure 7.4 Distribution of the average Lipschitz exponent a in the training set 

Figure 7.5: Distribution of the standard deviation of the Lipschitz exponent <Ja in the 

training set 
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Figure 7.6: Distribution of the di sturbance duration Lin the training set 

By examining the interclass relative di stribution of the five feature components 

(s, CJ ".,a, a a, L ) in the training samples presented in the above figures , we can rank 

these components in the order of their interclass di scriminating power for every pair 

of di sturbances as shown in Table 7.1 below. 

Pair of disturbance types Interclass discriminating power of features 

(decreasing from left to right) 

IT {:::> HF L, a, s, (J a, (J .1· 

IT {:::> LF L, s , a, (J s , (J a 

IT {:::> NT CJ .P L, s, a, (J a 

HF {:::> LF s , L, (J ,. , a, (J a 

HF {:::> NT L, (J s , a, s, (J a 

LF {:::> NT L, a , s, (J s , (J a 

Table 7.1: Ranking of feature components in the order of their interclass 

di scriminating power. 

The idea of training feature weights from this knowledge-base is that features are 

competiti ve in gaining thei r weights based on their interclass di scriminating power 

for every pair of disturbances. Depending on the number of mis-assigned samples 

between clusters of each pair of classes, we make an increment on the feature 
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weights for those having high interclass discriminating power and make a decrement 

on the feature weights for those having low interclass discriminant power. 

7 .3.2 Training the Feature Weights 

In order to calculate the amount of weight update after each updating of the cluster 

centres and their widths in Step 4 below, we determine the total number of mis­

assigned samples between clusters of each pair of classes. At step j of the iteration, 

let epq(J) be the percentage of mis-assigned samples between class p and class q, and 

Wpq(J) be the feature weight vector, whose feature elements are arranged in the order 

of interclass discriminating features between class p and class q (Table 7.1). Then 

the update value of feature weights Wpq(J+I) at step (j+ 1) is [124] 

w U+l) = w U) + f3e (j) A 
pq pq pq (7.6) 

where f3 is the learning rate, A is a vector that defines the amount of weights 

adjustment in Wpq, and that its elements are in a decreasing order which is based on 

the order of discriminating features of each pair of classes, e.g. A= [1; 0.5; O; -0.5; -

1] for a space of five input features. In (7.6), the term epq allows a faster training.fate 

at the beginning when there is a large error, and reduces the training rate when the 

clustering error is smaller. During the training, we ensure that all feature weights 

{ w1 } are positive and their sum is normalized to 1. 

As mentioned above, the training is an iterative algorithm, which produces 

simultaneously the RBF cluster centres µh, their scaling widths { crh!} and the feature 

weights { w1 } by the following steps. 

Step 1- Initialisation: Using the regression tree technique, we initialise the node 

centres and their widths corresponding to the centres of the tree nodes and 

the size of the Gaussian { crh1} as in (6.51). The initial feature weights 

{ wd are the same for all features, i.e. w1= l/N. 
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Step 2: Assign each training sample to the cluster with the centre nearest to it 

according to the distance in (7.5). This results in H clusters. 

Step 3: Calculate the average position (centroid) and the variance (width) CJh? for 

each of the H clusters. 

Step 4: Updateµ h to these new cluster centres and width CJh? to its new values. 

Step 5: Calculate the clustering error for all pairs of disturbance types. 

Step 6: Adjust feature weights {w1} according to the look-up Table 7.1 and 

equation (7.6). 

Repeat Steps 2 to 6 until the iteration converges to a minimum clustering error. 

After the training, we obtain an optimal weighting level for each feature, as well as 

the node centres and their widths. There are some limitations on this training 

technique - these are the requirement for the knowledge of the training data, and the 

assumption that the feature weights are the same for all classes. In most practical 

problems, the relative importance of features is different for different classes, hence, 

the generalised form of the feature weight is a matrix, i.e. { whi}. In the next section, 

we present a training technique that performs such the generalisation. 

7.4 GENERALISED TECHNIQUE FOR TRAINING 

THE INPUT LA YER WEIGHTS 

We propose to train the input weights { wh1} as in a single-layer perceptron, which 

only involves the input layer and hidden layer of the RBF in the training [125]. It 

turns out that we need to define a concept label of each training input x(k) for the 

output of the hidden layer since the concept label of x(k) is for outputs of the output 

layer but is not available at the hidden layer. 

In an RBF network, the hidden layer is the most important layer providing most of 

the clustering power of the classification process. The output layer of the RBF 

network consists simply of linear summation units with linear activation. This layer 
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provides only a minimal contribution of the classification. Consequently, for an input 

sample x(k) that belongs to cluster cth, its classification output is correct with a high 

confidence rate only if its distance to the centre of a class h1
h, D1?(k), is smallest for h 

= c and larger for h ,,=c. This means that the activation output ah(k) will respond the 

most at the node h = c and respond less at the other nodes h ,,= c (the smaller the 

response of these nodes will result in higher discrimination). For this reason, for the 

k1
h training sample we normalise the activation { ah(k)} of all nodes to their highest 

value (ah(k))max and produce a new variable oh(k) whose values vary in a range of 

[0,1] 

(7.7) 

Now we can have a concept label of the k1
h input sample for the hidden layer, that is 

the target th(k) of the normalised activation output oh(k). For the correct hidden node 

c1
h, the desired target tc(k) is 'l ', and th(k) is 'O' at other hidden nodes h1

h (h ,,= c). 

Note that, if there is overlapping between classes in the training space, we cannot 

guarantee the purity of samples within a cluster. However its majority samples 

belong to the class that it is assigned to (depending on the distribution, a class can be 

represented by more than one cluster in the training space). Then in the training 

process, the output target of the hidden node that associates with that cluster is '1' for 

the majority of samples plus the samples of that class within a neighbourhood. For 

other samples this target is 'O'. 

The output error of the hth hidden node in response to the k1
h training sample is 

(7.8) 

and the squared error of the network in response to the k1
h pattern is 

(7.9) 

Using a gradient descent approach, we minimise the squared error by iteratively 

adjusting the weights according to [99,129] 
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(7.10) 

where TJ is a positive constant, referred to as the learning rate, which determines the 

portion of weight change that will be used for the correction. Depending on the 

characteristics of the error surface, different values of learning rates can be used. 

The derivative aE(k)lawh1 can be evaluated using the chain rule 

aE(k) aE(k) aoh (k) aah (k) a(Dh (k)) 2 

=------
awhl aoh (k) aah (k) a(Dh (k)) 2 awhi 

(7.11) 

Each partial in (7 .11) can be evaluated as following. From (7 .9), 

(7.12) 

Since all the activation outputs { ah(k)} are normalised in (7 .7) to their highest value 

(ah(k))max.' we can consider the value (ah(k))max as a constant of each k1
h training 

sample rather than a variable of { ah(k)}. So that the partial 

ao1i(k) 1 
=----

aah (k) (ah (k ))max 

From (7.1) and (7.2) 

and 

Finally (7 .11) becomes 

2 
<Yiu 

Then the updating weight formula in (7 .10) can be written as 

(7.13) 

(7.14) 

(7.15) 

(7.16) 
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(7.17) 

For epoch training, we form an overall correction to the weights after each scan of all 

pattern pairs in the training set, that is 

K 

~wh1 = L..~whi(k) 
k=I 

(7.18) 

Like the back-propagation algorithm presented in the previous chapter, the learning 

rate is adjusted as a function of the iteration (e.g. T](n) = T](O) In), so that it allows 

large initial connections, yet avoids weight oscillations around the minimum when 

near the solution. In order to speed up the training process, at (n+ 1 )5t iteration, a 

momentum of weight update in the last iteration (nth) is added to the correction 

weight as in (6.37), i.e. 

(7.19) 

This momentum term may prevent oscillations in the system and may help it to 

escape local minima of the error function in the training process. 

After an epoch training of the weights, each training sample is assigned to the centre 

nearest to it according to the distance in (7 .2). From this new set of clusters, each 

cluster centre µh and its width { crh1 } are updated, respectively, to the mean and the 

variance of the samples in its new cluster. The training is repeated until it converges. 

Determination of the connection weights at the output layer in the network is similar 

to that of a conventional RBF network, where the classical linear least square 

regression technique is used to give 

(7.20) 
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7.5 NUMERICAL DEMONSTRATION & 

CONCLUSION 

With the effective initialisation by the regression tree and the efficient clustering of 

the shift-invariant data, we have found that a training sample population of about 25-

35 per hidden node is adequate for the RBF network for the knowledge-based 

training technique to converge after 6-8 iterations, and the network with the 

generalised training technique to converge after 3-5 iterations without being trapped 

into local minima. The classification results by different RBF networks are shown in 

the three tables below. Table 7.2 shows the classification results for a conventional 

RBF network (no feature weights), whose network parameters are initialised by the 

regression tree. Table 7 .3 shows the classification results of the network with the 

knowledge-based training for the feature weights { w1 }, and Table 7.4 is for the 

network with the generalised training for the input layer weights { wh1 }. Due to the 

overlapping in distribution of the features between different disturbance types, the 

conventional RBF network has a high overall classification error rate of 7.7% (i.e. 15 

out of 196 testing samples). In comparison, the network trained by the knowledge­

based technique has a significant improvement in the classification error rate, which 

is only 3.6% (i.e. 7 out of 196 testing samples). Finally, as expected we have the 

lowest classification error rate (of 3.1 %) with the network that is trained to obtain 

optimal features weights for each individual hidden node, together with the 

optimisation of the node centres and their widths. To compare the performance with 

a feedforward network, the same training and testing data sets are used for a 

backpropagation network of the same network size. The classification results of the 

back-propagation network are shown in Table 7.5, which has an overall classification 

rate of 4.6%. 
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~ Total tested Error rate 
IT HF LF NT 

samples [%] p 

IT 42 1 0 3 46 8.7 

HF 0 47 3 0 50 6.0 

LF 0 1 49 0 50 2.0 

NT 1 4 2 43 50 14.0 

Table 7 .2: Classification results for a conventional RBF initialised by a regression 

tree 

~ Total tested Error ra,te 
IT HF LF NT 

samples [%] p 

IT 43 0 0 3 46 6.5 

HF 0 49 1 0 50 2.0 

LF 0 0 50 0 50 0.0 

NT 0 1 2 47 50 6.0 

Table 7.3: Classification results for the RBF network with the knowledge-based 

training technique 

~ Total tested Error rate 
IT HF LF NT 

samples [%] p 

IT 43 1 0 2 46 6.5 

HF 0 50 0 0 50 0.0 

LF 0 2 48 0 50 4.0 

NT 0 0 1 49 50 2.0 

Table 7.4: Classification results for the RBF network with the generalised training 

technique 

d 

' 

., 
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~ Total tested Error rate 
IT HF LF NT 

p samples [%] 

IT 44 0 0 2 46 4.3 

HF 0 50 0 0 50 0.0 

LF 0 4 46 0 50 8.0 

NT 2 0 1 47 50 6.0 

Table 7 .5: Classification results for the backpropagation network 

We have successfully demonstrated that there is a significant improvement in the 

classification results when appropriate feature weights, node centres and their widths 

are found for the RBF network. This increases the discriminant level between 

classes and obtains optimal decision boundaries in the training space in terms of 

minimising the mean squared error. As the result, the classification of the RBF 

network with the generalised training technique achieves the best overall 

classification error rate by only 40% of that for the conventional RBF network 

trained with regression tree and 67% of that for the backpropagation network. 

The regression tree technique is less sensitive to irrelevant attributes as they usually 

do not appear in the bifurcation of the regression tree. Thus reduces the number of 

links in the network by only connecting to relevant features. This is however reduces 

the classification rates of the network since less relevant features, when incorporated 

with appropriate feature weights to different classes, do in fact increase the 

discriminant level between classes. 

If the training of the input weights is involved, it takes longer to train the RBF 

network. However, the time taken to train the proposed RBF network is still much 

faster than that of a backpropagation network of the same network size. This is 

because the training of the input and output layer in the proposed RBF network is de­

coupled, and the initialisation of the network by the regression tree technique allows 

the network to train with a minimal number of training epochs without being trapped 

into local minima. 
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APPROPRIATE SIGNAL 

PROCESSING TOOLS FOR THE 

CLASSIFICATION OF POWER 

QUALITY DISTURBANCES 

8.1 APPROPRIATE SIGNAL PROCESSING TOOLS 

In order to classify different types of disturbances that may present on a power 

supply, we aim to employ appropriate signal processing tools, which have the 

capability of measuring or at least closely extracting information on the three most 

important PQ disturbance attributes. They are spectral content, duration and 

magnitude whichever is appropriate for each category of power quality disturbances 

as shown in Chapter 2. In particular, the spectral content and the magnitude 

attributes are used for classifying steady state PQ disturbances, while the spectral 
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content, the duration and some particular structures of the disturbance are used for 

classifying transient PQ disturbances. 

Since disturbances in power supply range from the sustained long-duration, low and 

steady frequency type such as voltage sag, voltage swell, de offset and voltage 

fluctuation, to the very short-duration and very high frequency type such as impulses, 

notches, and oscillatory switching transients, any linear expansion in a single basis is 

not flexible enough to characterise different types of disturbances. Then different 

appropriate signal processing techniques must be used in order to precisely measure 

the disturbance characteristics of different types [65,66]. 

It is well known that Fourier transform is best for the analysis of stationary signals, 

e.g. the 50 Hz main supply and its harmonics. However, it does not have the 

temporal characteristic to cope with sharp changes and discontinuities in signals, and 

suffers from the lack of time localisation. Therefore, it is not really suited to the 

analysis of non-stationary signals. On the other hand, wavelet-based techniques are 

sensitive to sudden changes in amplitude and are used to extract local characteristics 

such as edges, discontinuities and instantaneous frequencies in transient disturbances. 

Using wavelet transform, a signal can be analysed locally in both the time and 

frequency domains. 

This Chapter presents a method that employs a combination of Fourier-based and 

wavelet-based transforms in the detection and classification of PQ disturbances so 

that the method has the ability to classify a wide range of power disturbances 

[66,71]. Moreover, for achieving a stable and efficient classification process, we aim 

to use appropriate signal processing tools that allow us to precisely measure the 

disturbances characteristics and present them in a compact and translation-invariant 

feature vector. In our work, we consider 10 types of disturbances. 

1. Impulse transient 

2. Low frequency capacitor switching 

3. High frequency capacitor switching 
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4. Aperiodic notch 

5. Interruption 

6. Sag (dip) 

7. Swell 

8. Harmonics 

9. Voltage fluctuation 

10. Power frequency variation 

We propose to use wavelet-based analysis and the RBF classifier to classify the first 

four types of disturbances as they have fast variations (high frequencies and non­

stationeries) and most of them have short duration. The remaining six types, which 

contain low and steady frequency components, are classified using Fourier transform 

and rule-based expert systems. 

8.2 ·FOURIER TRANSFORM FOR STEADY STATE 

DISTURBANCES 

The Discrete Fourier Transform (DFT) of a discrete-time signalf(n) is defined as: 

1 N-1 
F(k) =- L,J(n)W~k 

N n=O 
n,k =0,1, ... , N -1 (8.1) 

where WN = e-2wN and W~ is known as the twiddle factors of the DFT. The twiddle 

factors are periodic and define N equally spaced points around the unit circle at 

frequency increments of m/N, where ms is the sampling rate of the input signal 

sequence. Therefore, the set of frequency samples, which defines the spectrum F(k), 

is given on a frequency axis whose discrete frequency locations are given by 

k =0,1, ... ,N-1 (8.2) 
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Therefore, using a sampling rate lOs of 12.8kHz and capturing a 1024 samples length, 

this gives a frequency resolution of 12.5Hz in the transform domain. The sampling 

theory gives llF(k)ll = llF(N-k)ll, 0 :::; k:::; N/2, which are both the responses of the 

frequency component lOk· 

Two properties of DFT, linearity and circular shift provide the ability to analyse 

each particular component in the signal and the periodic components. The linearity 

property is a key property that allows us to compute the DFTs of several different 

signals and determine the combined DFT via the summation of the individual DFTs. 

Hence, the system output frequency response can be easily evaluated for specific 

frequency components. For a signal of M components, this property is given by 

(8.3) 

where F
1 
(k) = DFT[J

1 
(n)] and a

1 
are arbitrary constants. The circular shift is a shift 

in a finite-length sequence viewed as a periodic extension of the finite sequence. If 

{F(k)} is the DFT of {f(n)}, then the DFT of {f(n+m)} is given by 

DFT{t(n + m)}= ~,Vkm F(k)} (8.4) 

This implies that the DFT of {f(n+m)} has the same amplitude but a different phase 

to the DFT of f(n). Consequently, all periodic components whose frequency is a 

multiple of 12.5Hz (this includes 50Hz power frequency and its harmonics), have 

their DFT magnitudes unchanged but with a simple phase shift. These DFT 

magnitudes are also proportional to their corresponding signal amplitudes in the time 

domain. 

We now explain in detail the classification of Type 5 to Type 10 disturbances. We 

take the Fourier transform of 1024 samples of power signal, which is sampled at 12.8 

kHz. This gives a frequency resolution of 12.5 Hz in the Fourier transform domain. 

We define F(k) to be the Fourier transform coefficient at the frequency component of 

12.Sk Hz, k = 0,1,2, ... N/2. Using the DFT coefficients of disturbances, we establish 
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the following six rules (one for each type of disturbance) to classify the disturbances 

of Type 5 to Type 10. 

Rule I: If llF( 4 )II ~ 0.1 pu, and zero elsewhere ==> this is a Type 5 disturbance 

(voltage interruption). 

Rule 2: If llF(4)11 E (0.1 pu, 0.9 pu), and zero elsewhere ==> this is a Type 6 

disturbance (voltage sag). 

Rule 3: If llF(4)11 > 1.1 pu, and zero elsewhere ==> this is a Type 7 disturbance 

(voltage swell). 

Rule 4: If llF(4)11 E [0.9 pu, 1.1 pu], and there is F(k) >a threshold (e.g. 0.05 pu) 

for k = 4q (q = 2, 3, 4, ... ) and zero elsewhere ==> this is a Type 8 

disturbance (harmonics) and is shown in Figure 8.1 (a). 

Rule 5: If llF(4)11 E [0.9 pu, 1.1 pu], and there is F(k) >a threshold fork< 4 and 

zero elsewhere==> this is a Type 9 disturbance (voltage fluctuation) and is 

shown in Figure 8.1 (b). 

Rule 6: If llF(3)11 and llF(5)11 >a threshold==> this is a Type 10 disturbance (power 

frequency variation) and is shown in Figure 8.1 (c). 

If a signal component has its frequency equalled to a multiple of the frequency 

resolution (12.5 Hz), then there is a direct relationship between its amplitude and its 

corresponding DFT coefficient and it does not produce any other DFT coefficient at 

the other frequency. This is the case for PQ disturbance belonging to any of the four 

types - voltage sag, voltage swell, interruption or harmonics. Hence, the 

interpretation of the first four rules, Rule I to Rule 4 are straightforward, in which 

the signal amplitude has a linear relationship with the magnitude of its corresponding 

DFT coefficient. When the signal component has a frequency different from a 

multiple of the frequency resolution, it produces a number of DFT coefficients in a 

neighbour of its frequency. This is the case in voltage fluctuation and power 

frequency variation disturbances. The voltage fluctuation disturbance, whose 

frequency is lower than 25 Hz, is normally producing DFT coefficients at 

frequencies corresponding to k = 1, 2 and 3 (i.e. Rule 5), while the power frequency 
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variation disturbance, whose frequency deviates from the 50 Hz, produces DFT 

coefficients in a neighbourhood of the 50 Hz, (i.e. at least for the two nearest 

neighbours F(3) and F(5)). 
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Figure 8.1: (a) DFT coefficients of a harmonic disturbance; 

(b) DFT coefficients of a voltage fluctuation disturbance; 

( c) DFT coefficients of a voltage frequency variation disturbance. 
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If the disturbance does not belong to these types (Type 5 to Type 10), in the FT 

domain, the 50 Hz fundamental power component can be removed completely to 

leave the disturbance for further processing. Thus removes the effects of this large 

fundamental component on the extraction of features from the non or small power 

PQ disturbances of Type 1 to Type 4. 

8.3 FEATURES EXTRACTION USING WTMM 

After removing the 50 Hz fundamental power component, the voltage magnitude and 

the duration of the disturbance signal d(n) can be measured correctly in the time 

domain. A WTMM analysis is carried out for the transient disturbance signal, 

through which we aim to measure the frequency spectrum and any particular signal 

structure that may contain in each disturbance type. In the time-scale domain, chains 

or contours of WTMM are traced from fine to coarse scales for the detection of 

singularities and irregular structures in the disturbance signal. By following each 

chain the GMM for each inflection point in the disturbance signal d(n) is detected. 

Since most short chains and chains that have weak GMMs are due to noise, we 

discard them and_ extract the following two parameters from each remaining chain: 

the scale smax in (4.33), at which the GMM occurs, and the Lipschitz exponent a of 

the disturbance signal at the originating location of the chain. The latter can be 

approximated from the slope of logs0 C!Wdlmax) versus j (s1 = sd) at the low-scales 

end of the chain, i.e. 

log so (I Wd(s, t) lmax) ~logso (A)+ (a+ 112)j (8.5) 

We found that the scale step so of 1.25 is sufficiently fine to measure closely the 

feature of the PQ disturbance of Type 1 to Type 4. The WTMM analysis is then 

carried out for 13 scales j=O to 12, that at the sampling frequency of 12.8 kHz 

provide a measurement to a frequency range of 440 Hz to 6.4 kHz. Finally, for each 

disturbance we calculate its four characteristic features from its WTMM: 

The average of the scales at which the GMM occur, {smax(p) }p=l'P• is 
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p 

S = ~ LIWdmaiJP)l
2 

Smax (p) 
p=I 

(8.6) 

p 

where Wdmax(p) is the WT coefficient of the pth GMM, and B = #IWdmax (p)l
2 

is 

the normalised factor. This gives a measurement on the disturbance average 

frequency. The variance of the GMM scales can then be given by 

(8.7) 

The average value of the Lipschitz exponents, { a(p)}, 

(8.8) 

And the variance of the Lipschitz exponents 

p 

aa 
2 

= ~ L(a(p)-a )
2 

p=l 

(8.9) 

By adding the disturbance duration L, the complete feature vector characterising 

each disturbance is defined by [92] 

(8.10) 

In Chapter 7, Figure 7.2 to Figure 7.6 show the distributions of the five WTMM 

feature components (s, as, a, a a, L) for the four transient disturbance types (IT, HF, 

LF and NT). These features are extracted from the training set of 134 samples. 

Beside the two 'clear' overall distributing features s and L, the standard deviation of 

the scale as gives a higher discriminant level for the two classes IT and NT, and the 

average Lipschitz exponent a gives a clear indication on whether a disturbance 

belongs to two classes IT and NT or it belongs to the other two class HF and LF. 

Hence different features provide different discriminating levels to different 

disturbance types. This agrees with our proposal of adding the input feature weights 
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to a RBF classifier so that the network optimises the contribution of each feature to 

each individual class in terms of the discriminant function. 

8.4 FEATURES EXTRACTION USING MATCHING 

PURSUIT 

Another method that we use in this thesis for processing the four types of transient 

PQ disturbances is a so-called adaptive signal representation tool called matching 

pursuit [75]. Given a redundant dictionary of waveforms, we decompose a signal 

into a linear expansion of these waveforms, which are selected in order to best match 

the signal structure. In particular, using the dictionary of Gabor functions gy, r= ('2!, 

p, k), for j E [O,log2N] and (p,k) E [O,N-1]2
, presented in Section 5.3.3, we 

decompose any given disturbance into dominant atoms in the frequency-time 

distribution which are used to characterise the type of power quality disturbance. As 

shown in Chapter 5, matching pursuit decomposition with the Gabor dictionary can 

approximate more than 95% of the disturbance energy after only five iterations. We 

then extract from the five most dominant Gabor atoms (i.e. the first five iterations) of 

each disturbance to get its four following characteristic features: 

The average value of the five window sizes, which provides information on the size 

of the fluency or the regular behaviour in the signal structure 

(8.11) 

where am is the mth matching pursuit coefficient, and Bis also the normalised factor, 
4 

and is given by B = Lam2
• The variance of the five window sizes, 

m=O 

(j / = ~ ±. (2 lm - s r 
m=O 

(8.12) 

The average value of the modulating frequency, 
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4 - 1"" 2 ~ = B L...am ~m 
m=O 

(8.13) 

where the mth modulating frequency is given by ~m = w sk m , and Ws = 
2N 

12.8 kHz. 

Finally, the variance of the modulating frequency is 

(8.14) 

For each disturbance, we add the disturbance duration L to its feature vector to make 

a feature vector of five components as in [83] 

(8.15) 

The following figures, Figure 8.2 to Figure 8.6 show the distribution of each 

corresponding feature value for the four transient disturbance types in the same 

training set of 134 samples. 
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Figure 8.2: Distribution of the average window size s in the training set 
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Figure 8.3: Distribution of the standard deviation of the window size a:f in the 

training set 
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Figure 8.4: Distribution of the average modulating frequency c;- in the training set 

Figure 8.5: Distribution of the standard deviation of the modulating frequency CY~ in 

the training set 
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Figure 8.6: Distribution of the disturbance duration Lin the training set 

We include the modulating frequency in the feature vector since it provides some 

information on the local disturbance frequencies. However, is does not give a correct 

measurement on these frequencies, and it can be seen from Figure 8.4 and Figure 8.5 

that there are a lot of variances in its value which makes its distribution highly 

overlapped between different disturbance types. In fact , this is the result of the 

windowed effect on the modulating frequency, which can approximate well the 

disturbance frequency with a long window, but with a narrow window, the 

modulating frequency itself gives little indication on the true disturbance frequency. 

This is regarded to the time-frequency resolution in a Heisenberg box. 

In order to improve our previous work in [83], here we replace the features on the 

modulating frequency ci; and (J' ~ ) by other appropriate features that give a better 

estimation of the frequencies contained in the disturbance. These new features take 

both the effects of the modulating frequency ~m and the window size s111 to form a 

measurement of the average value and the variance on the frequency energy 

distribution (E and a E 
2

) , which can be obtained from the time-frequency energy in 

(5.33) as in the following 

4 
- 1 ""' 2-E = - L..J am W 111 

B m=O 

(8.16) 

where the average frequency value w
111 

of the m th atom is obtained by discretising the 

frequency win Q steps such that 
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n l 2( J2J _ 1 2s
111 

(J) s (J) 
OJ=- :Lwexp --- ---~111 

C W=O (J)s 2Q 
(8.17) 

in which C is the normalise factor and is given by 

C = f exp(_ 2sm2 ((J)s(J) -~m J2 J 
W=O l (J) s 2Q 

(8.18) 

Finally, the variance of the frequency energy distribution is 

4 
2 1 "'""' (- -)2 

(J E = S L..J \Wm - E 
m=O 

(8.19) 

The distributions of the two new features E and a E m the same training set are 

shown respectively in Figure 8.7 and Figure 8.8. 

As we see from Figure 8.4 and Figure 8.7, the average frequency energy distribution 

E is more appropriate then the modulation frequency alone in measuring the 

disturbance frequency, and it provides a clearer distribution and has higher 

discriminant between different types of disturbances. 

Figure 8.7: Distribution of the average frequency energy distribution E in the 

training set 
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Figure 8.8: Distribution of the standard deviation of the frequency energy 

distribution CJE in the training set 

8.5 AUTOMATIC CLASSIFICATION OF PQ 

DISTURBANCES 

The block diagram shown in Figure 8.9 explains the proposed process for the 

automatic recognition of PQ disturbances. We first take the DFf of 1024 samples of 

a 50Hz power signal that has been sampled at 12.8KHz (i.e. 4 cycles). In the Fourier 

domain , we use Condition A (explained below) to test for the presence of 

disturbances of Type 5 to Type I 0. If there is a disturbance of these types, the 

detection process based on the Fourier coefficients in different frequency bands will 

classify the type of disturbance present in the power signal as described in Section 

8.2. If Condition A is not satisfied, that is, there are no disturbances of Type 5 to 

I 0, the 50Hz fundamental power component can be removed completely leaving the 

disturbance component for subsequent analysis. This is done by first setting the 

50Hz Fourier coefficient to zero, and then by taking the IDFf to recover the 

disturbance component d(n) in the time domain. A small voltage threshold is used to 

detect the 'clean' power signal situation if d(n) is found insignificant. Otherwise we 

proceed to extract the features of the disturbance signal d(n) using either the WTMM 

or the matching pursuit technique as described in Section 8.3 and 8.4. For 
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classifying the four transient disturbance types from the extracted feature vector, we 

use an RBF classifier with the generalised training for the feature weights (Chapter 

7). 

Decision Makmg Scheme 
for type 5 to 10 

~------, 

Type of Disturbance 
and its Features 

Set 
F(50Hz) =0 

IDFf of F(kJ 
~ d(n) 

Signal decomposition 
(WTMM or MP) of d(n) 

Feature extraction Ill time­

frequency domain 

RBF Network Classifier 
for types 1 to 4 · 

Type of Disturbance 
and its Features 

Clean 
Signal 

Figure 8.9: Block diagram of the proposed method for the automatic classification of 

the 10 types of disturbances under consideration 

Condition A: In Fourier transform domain, we use three conditions to test for the 

presence of disturbance Type 5 to 10. If the disturbance belongs to any of these 

types then there is at least one of the three following conditions is true. This 

indicates the satisfaction of Condition A. 

Condition 1: llF(4)11 ~ [0.9 pu, 1.1 pu]. 

Condition 2: Fork< 4, there is llF(k)ll;:::: a threshold (e.g. 0.05 pu). 
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Condition 3: Fork= 4q, there is llF(k)ll ~ a threshold and for all k ~ 8, k-:/:- 4q (q = 

2, 3, 4, ... ), llF(k)ll are insignificant. 

In fact, Condition 1 implies a variation of amplitude of the power signal or a 

frequency drift from its 50 Hz. Condition 2 implies a frequency drift from the 50 Hz 

power frequency or a voltage fluctuation. And Condition 3 indicates the presence of 

harmonics in the signal. 

8.6 RESULTS, COMPARISON & CONCLUSION 

In this section we present the classification results of the four transient disturbance 

types (IT, HF, LF and NT) using the two feature extraction techniques (WTMM and 

the matching pursuit) and using different classifiers. We also show that our 

classification techniques achieve a superior recognition rate over the current 

automatic disturbance classification techniques. This is because of the two step 

improvement in our classification method. The first improvement is the extraction of 

disturbance features by appropriate signal processing tools from which we obtain an 

efficiency and translation invariant feature vector. The second improvement is the 

designing of an appropriate classifier which maximises the discriminant function 

between different disturbance types. 

8.6.1 Classification Results 

Performing the WTMM decomposition on transient PQ disturbances, we then extract 

the disturbance feature vector of five components, x = (s,C5
8
,a,aa,L). Using this 

feature vector, the classification results by different classifiers are shown in Table 7.2 

to Table 7.5 in Chapter 7. The technique obtains the smallest classification error rate 

of 3.1 % with the RBF network of generalised training. 

For classification results using the matching pursuit technique, we extract the 

disturbance feature vector, x = (s, as, i;, a~, L), from its five most dominant 
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matching pursuit atoms [83]. The classification results by different classifiers are 

shown in the three tables below. Table 8.1 shows the classification results for a 

conventional RBF network, whose network parameters are initialised by the 

regression tree. Table 8.2 shows the classification results for a backpropagation 

network of the same network size (5 input nodes, 4 hidden nodes and 4 output 

nodes), and Table 8.3 is for the RBF network with the generalised training for the 

input layer weights { wh1}. With this classifier, the technique also achieves the 

smallest classification error rate of 3.1 %. 

~ Total tested Error rate 
IT HF LF NT 

samples [%] p 

IT 44 0 0 2 46 4.3 . 
HF 2 45 3 0 50 10.0 

LF 0 4 46 0 50 8.0 

NT 0 3 0 47 50 6.0 

Table 8.1: Classification results with the matching pursuit feature vector 

(s, as ,~,a~, L) by a conventional RBF network. 

~ Total tested Error rate 
IT HF LF NT 

samples [%] p 

IT 45 0 0 1 46 97.8 

HF 0 50 0 0 50 100 

LF 0 6 44 0 50 88 

NT 1 1 0 48 50 96 

Table 8.2: Classification results with the matching pursuit feature vector 

(s,a s ,f,a~ ,L) by the backpropagation network. 



174 Chapter Eight 

~ Total tested Error rate 
IT HF LF NT 

samples [%] p 

IT 44 0 0 2 46 4.3 

HF 0 50 0 0 50 0.0 

LF 0 4 46 0 50 8.0 

NT 0 0 0 50 50 0.0 

Table 8.3: Classification results with the matching pursuit feature vector 

(s,<rs,;,a~ ,L) by the RBF network of generalised training technique 

Now we replace the two features ; and a~ in the feature vector by the two features 

of the frequency energy distribution E and a E which gives a better estimation of the 

frequencies contained in the disturbance. The classification results with this new 

feature vector x = (s,as,E,aE,L) by the RBF network of generalised training 

technique are shown in Table 8.4. As expected, this new feature vector does improve 

the classification rate, as the error rate is down to nearly 2.0% (i.e. 4 out off 196 

testing samples). 

~ Total tested Error rate 
IT HF LF NT 

samples [%] t 

IT 45 1 0 0 46 2.2 

HF 0 50 0 0 50 0.0 

LF 0 2 48 0 50 4.0 

NT 1 0 0 49 50 2.0 

Table 8.4: Classification results with the new matching pursuit feature vector 

(s, as, E, a E, L) by the RBF network of generalised training technique. 
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8.6.2 Other Automatic PQ Disturbance Recognition Techniques 

Wavelet analysis is recently proposed in the literature as a new tool for monitoring 

PQ problems. However, much of the work done in the power quality area deal with 

these problems either from the detection and localisation point of view or from a data 

compression framework [130,131,132,133], and a limited number of them deal with 

real classification methodologies that can be used to classify different PQ 

disturbances as in [134,135,136,137,138,141]. 

In [137], PQ disturbance signals sampled at 16.4 kHz are decomposed into 12 levels 

DWT. Then using the total energy in each of the 12 DWT levels, the authors 

propose to detect and classify different types of disturbance. The method thus only 

provides a very coarse approximation of the disturbance frequency range, while 

leaving out many detailed and important characteristics of the disturbance. 

Authors of [134,135,136,138] propose almost the same methodology for the 

classification of PQ disturbances, even though there are some variations in the 

designing of classifiers and the selecting of disturbance types to be classified. These 

classification methods also use DWT to pre-process the disturbance signal, and the 

remaining classification tasks rely on the classification ability of large ne1;lral 

networks, which normally involve a Leaming Vector Quantisation (LVQ) network 

architecture for the calculation of similarity. Since the DWT coefficients, which are 

very large and lack translation-invariant, are used for the feature vector, the network 

requires a long training time and cannot achieve a high classification rate unless a 

large and comprehensive training set is made. This is the reason for the use of large 

training populations (in the order of hundreds of training samples for each 

disturbance type involved in the classification) in these methods [134,138]. 

Using the same training set and the same testing set as in our classification approach, 

the classification results for the four transient disturbance types by the method used 

in [135,136] are shown in Table 8.5. Due to a small training set (29 to 35 samples 

per class) and the feature vector of the DWT being redundant and lacking translation-
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invariant, the method produces a low classification rate, which has an overall error 

rate of 11.2% (i.e. 22 out of 196 testing samples). 

~ Total tested Error rate 
IT HF LF NT 

samples [%] p 

IT 45 0 0 1 46 2.2 

HF 3 45 2 2 50 14.0 

LF 0 7 41 2 50 18.0 

NT 5 0 0 47 50 10.0 

Table 8.5: Classification results for the method used in [135,136]. 

There is a significant improvement in our classification technique, in which the 

overall classification error rate for our method is only 18% (more than 5 times 

smaller) of that for the method used in [135,136]. We have demonstrated that signal 

decomposition and features extraction are essential and necessary for studying and 

classifying different PQ disturbances. Depending on the application and the types of 

signal characteristics, particular features are extracted so that they can review the 

discriminant between different types. Poor feature extraction techniques result in 

large and redundant feature vectors, thus taking a longer time for the system to learn 

and reduce the classification rate. 
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CONCLUSIONS & 

SUGGESTIONS FOR FURTHER 

RESEARCH 

9.1 CONCLUSIONS 

Automatic power quality disturbance classification is discussed in this thesis. There 

has been an increasing incidence of misadventure on the PQ supplied to the electric 

utilities and their customers as more and more equipment is used that is sensitive to 

variations in power supply. 

The current practice of recognising and studying the possible cause of the PQ 

problem is performed manually, which is highly inefficient and costly. This makes 

imperative the need for automatic disturbance classification methods to replace the 

current visual inspection. 

177 
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PQ disturbances can vary in a wide range from sustained long-duration, low and 

steady frequency to very short-duration, sudden and high frequency, which normally 

involves different analysing methods for transient disturbances and for steady state 

disturbances. The analysing of the transient disturbances is often more difficult and 

more challenging than analysing the steady state disturbances and need to be done in 

time domain. These transient types can be efficiently analysed by the WT as the WT 

has the ability to analyse a signal locally in both time and frequency domain. 

Unfortunately, the conventional orthogonal or biorthogonal WT is not a translation 

invariant representation, which is its major weakness for pattern recognition 

applications. 

There are several wavelet techniques that provide translation invariant properties in 

their representations. However, many of these techniques obtain this property by 

entailing high oversampling rates which make them inefficient. The WTMM 

technique and the matching pursuit technique presented in Chapter 4 and Chapter 5 

respectively are two most suitable analysis techniques for transient disturbances. 

Most digital filters are not bandlimited. The analysing of the transient disturbances 

is then affected by the large fundamental power component even though their 

frequencies are far apart. In order to have a clear spectrum of disturbance, in our 

technique the disturbance is isolated first before making any further signal 

decomposition. This can be done in the Fourier transform domain. 

By keeping only the modulus maxima of a continuous WT, the WTMM obtains a 

multiscale translation invariant representation that is described in Chapter 4. The 

position of GMMs and the values of the Lipschitz exponent provide an estimation 

about the local signal frequencies and the local signal characteristics, which can be 

used as a compact, shift-invariant feature vector for the classification of transient 

disturbances. 

The other efficient decomposition technique presented in Chapter 5 is the matching 

pursuit, which can closely approximate the disturbance by only the first few 

iterations. The parameters of the selected atoms (i.e. the window sizes and the 
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modulation frequencies) provide a meaningful description of the local signal 

structures and provide a measurement of the local signal frequencies. Unfortunately, 

due to the windowed effect, the modulation frequency itself does not give a correct 

measurement of the local frequency. A more appropriate feature that includes both 

the modulation frequency and the window size is found to give a measurement on the 

frequency energy distribution and is described in Chapter 8. 

One the decomposition techniques can represent the disturbance by an efficient and 

compact feature vector that has a clear distribution between different disturbance 

types, a statistical pattern recognition approach is more suitable for the classification 

of these types. We then employ an RBF network for this task. The training of this 

network is much faster than that of a backpropagation network as the training for the 

parameters in its two layer are decoupled. However, there is a weakness ·in a 

conventional RBF network in that it has only a local learning capability-and a limited 

learning inference from the training data. Therefore, for a problem where the 

distribution in the feature vector is highly overlapped between different classes, this 

network produces a lower classification rate than that of backpropagation network of 

the same network size. By modifying the RBF network structure, in which we add 

the input layer weights to the network, and propose two new training procedures by 

either the knowledge base technique or by the generalised training techniques'., the 

classification results by this network are significant improved. The overall 

classification error rate for this network is less than half of that for the conventional 

RBF network and is one third smaller than that for the backpropagation network 

shown in Chapter 7. 

Finally, in Chapter 8 we make a comparison between our classification techniques 

with other current automatic disturbance classification techniques. Our classification 

techniques achieve a superior recognition rate over the current automatic disturbance 

classification techniques, in which we achieve the overall classification error rate of 

more than five times lower than that for the method used in [135,136]. This is 

because of the two steps improvement in our classification method. The first 

improvement is the extraction of disturbance features by appropriate signal 
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processing tools from which we obtain an efficiency and translation invariant feature 

vector. The second improvement is the designing of an appropriate classifier which 

maximises the discriminant function between different disturbance types. 

9.2 SUGGESTIONS FOR FURTHER RESEARCH 

Although our classification methodology presented in Chapter 8 significantly 

improves the classification results of transient PQ disturbances, the implementation 

of either the WTMM or the matching pursuit is relatively slow. This makes the 

method unable to monitor a,nd analyse the PQ online. At the current time this is not a 

problem since most of the classification tasks are done offline, but it will be in the 

near future when the monitoring task and classifying task are coupled together and 

require to be done online for a faster procedure. Hence, a faster signal 

decomposition technique is needed for the classification of PQ disturbances. 

For steady state PQ disturbances, in Chapter 8 we present a method to study their 

steady state characteristics based on their Fourier transform coefficients. However, 

these disturbances do not always have 'valid' steady state behaviours during the 

recording data, and this makes the Fourier analysis inaccurate. For example, some 

steady state disturbances may only exist for as short as half of the power frequency 

cycle, or some may not start right at the beginning of the recorded data, but 

somewhere within the recorded data, or even contain transient before the voltage 

dropping off in a voltage sag. Hence, extra signal processing tasks are required for 

achieving a more stabile classification of these steady state disturbances. The 

disturbance interval needs to be determined first before applying the DFT, or some 

other detection techniques can be used such as peak detection or RMS calculation, in 

which the latter is often used in power system monitoring [ 10, 11]. 

Although the main concern of this thesis is the classification of PQ disturbances, in 

particular the classification of the four transient disturbance types studied in this 

thesis, the technique can apply further for other applications in other fields as well. 
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For example, this technique can be used for recognition of human speech, in which 

formant frequencies of a voiced sound can be either reviewed from the GMM of the 

WTMM or estimated from the selected atoms of the matching pursuit. 
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