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Abstract 

Areas of Eucalyptus nitens plantations in Tasmania are increasing and are expected to 

enhance Australia's production of wood products. Standard silvicultural practises 

involve N fertilisation of E. nitens plantations at planting and later ages, however not 

all plantations respond to N fertiliser applied either at planting or at a later age. A 

method to predict N fertiliser responses is required to prevent wastage and obtain 

maximum productivity of Tasmanian E. nitens plantations. In this study nitrogen 

budgeting and soil analysis methods were examined as predictors of the timing ofN 

fertiliser responses. 

-
Fourteen established research localities within Tasmania were used for the study, 

covering a wide range of sites planted to E. nitens. Of the 14 sites, 11 were on basalt, 

with single representatives on siltstone, granite, and alluvium. Rainfall ranged from 

1039-1913 mm per annum and elevation ranged from 170 m to 650 m. Sites were 

variously fertilised, some at planting, others at growth stages up to ten years. 

Net nitrogen mineralisation (NNM) was estimated in situ at five sites encompassing a 

wide range in N fertility. NNM in these sites ranged from 13 to 188 kg N ha-1 year·1
. 

Soil analyses for total N, total P, total C, hot KCl extractable N, soil solution and cold 

KCl extractable N were examined as indices ofNNM. Total N, total P, total C, and 

hot KCl extractable N did not show large temporal variation and the values attributed 

to these indicators separated the five sites into two groups, being sites with NNM 

greater or less than 40 kg N ha-1 year-1
• Sites of NNM >40 kg N ha-1 year-1 had total N 

greater than 0.4%, total P greater than 0.2%, total C greater than 8% and hot KCl 

extractable N greater than 100 µg N g soii-1
. sites with lower NNM had concomitantly 

lower values of these soil analyses. 

The biomass of tree components was estimated from pre-determined regressions with 

tree size. Measurements or estimates ofN concentrations led to estimates ofN content 

in tree components at 14 sites. Nitrogen content oflitterfall was estimated at two sites 

with high soil N analysis values, one of known high in situ NNM rates. Maximum 



estimated N uptake in the combined above-ground biomass, the below-ground 

biomass and the litterfall was 162 kg N ha-1 year-1
• 

v 

Fertiliser responses were deemed to be significant (P<0.05) when increments in stem 

diameter at breast height (1.3 m) over bark of fertilised trees was significantly greater 

than diameter increments of unfertilised trees. For sites fertilised at planting the initial 

year of significant response was recorded, while for sites fertilised at a later age (age 

3-10 years) relative responses (diameter increment of fertilised trees I diameter 

increment of unfertilised trees) were recorded. Of sites fertilised at planting, two had 

responded by age two years, one by age three years and three had not responded by 

age three years. Relative responses of sites fertilised at a later age ranged from 99% to 

171%. 

The formation of a simpler partial budget, where N supply was only in situ NNM (0-

10 cm depth; 5 sites) and N demand was only the N increment into the above-ground 

biomass, was always able to predict a significant response to fertiliser. However, 

when NNM was estimated with soil analyses, fertiliser responses were accurately 

predicted in only five of 14 sites. 

The six sites fertilised from planting could be separated, on the basis of total soil N, 

into those that responded [significant (P<0.05) increase in stem diameter at breast 

height in N fertilised trees compared to unfertilised trees] before age three years (n=2), 

at age three years (n=l) and after age three years (n=3) with total N of <0.28%, 0.28-

0.51 % and >0.51 % respectively. All sites that responded to N fertiliser had soil 

solution and cold KCl extractable nitrate below 0.1 mM and 1 µg N g-1 soil 

respectively. The combination of total N and soil-solution or cold KCI-extractable 

nitrate allowed prediction ofN fertiliser responses at all of the 14 study sites. 

Both soil analysis and one budgeting method were successful in predicting N fertiliser 

responses of E. nitens plantations. The budgeting method was most successful when 

NNM was estimated in situ, wI?.ich together with the tree measurements required, is 

labour- and time-intensive. Unless estimation ofNNM and N uptake can be 

simplified, the budgeting technique is unlikely to become part of standard silvicultural 



practices. A soil analysis method using total N and soil solution or cold KCl 

extractable N is simpler and more likely to be used by forest managers. 

vi 



vu 

Acknowledgments 

This research was financially supported by the Federal Government, North Eucalypt 

Technologies, School of Agricultural Science, University of Tasmania, and the 

Cooperative Research Centre (CRC) for Sustainable Production Forestry. I would like 

to thank North Eucalypt Technologies, Fletcher Challenge, and Boral Timber for 

access to the field experiments required for this research. 

I would like to thank my supervisors, Philip Smethurst, Greg Holz, and Martin Line 

who initiated this project and provided expert guidance, wisdom and assistance 

throughout this project. 

I would also like to thank Robin Cromer, Chris Beadle, and Rabi Misra for assistance 

in forming my research proposal, Robin Cromer, Chris Beadle, Charles Turnbull, and 

Ann LaSala for access to, and help with analysis of, unpublished data and regression 

equations for growth and N concentrations of Eucalyptus nitens. I would like to thank 

North Eucalypt Technologies for providing tree measurements for estimation of the 

biomass and N content of Eucalyptus nitens plantations, and to Greg Holz for help 

with the analysis of growth responses of North Eucalypt Technology plantations. 

I would like to thank others who have provided assistance to me during this project, 

including Linda Ballard and Ann Wilkinson in the laboratory, Phillip Coles and Daryl 

MUllllllary with computing, Rick Hand, Wendy Wang and Philip Smethurst in the 

field, Judy Sprent in the library and Noel Davies for expertise and advice with mass 

spectroscopy at the central science laboratories. 

I would like to thank the many colleagues and friends at the CRC for Sustainable 

Production Forestry and CSIRO Forestry and Forest Products. To those with whom I 

shared an office, Daryl Brown, Yuan Zi Qing, Jason Lawson, Kylie Shanahan, Craig 

Baillie and Grant Westphalen. To those that organised social functions, Friday 

evening beer, and football tipping. 

L 



Vlll 

I would like to thank my family and friends who have been of great support and have 

provided me with life outside the PhD. I would specifically like to thank Eric and 

Carmen Crum for access to their house and computer allowing me to respond to the 

examiner's comments. 

I would especially like to thank my wife, Bonny, for her love, laughter, support, help 

and for being there when needed. 



IX 

TABLE OF CONTENTS Page 

Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nI 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . ................................. .. . . . . .. . . IV 

Acknowledgements ...................................................................... vn 

Table of contents . . . . . . . . .. . .. . ... .......... .. .. . . ... . . . . . . .. . . .. . .. . . . . . .. . . . . . . . . .. . . . . . . IX 

1. INTRODUCTION .............................................................................. 1 

2. SURFACE SOIL N FLUXES IN FIVE TASMANIAN E. NITENS 

PLANTATIONS ......................................................................... 5 

2.1 Introduction . . . . . . . . . . . . . .. . . . . . .. ................................................... .. . 5 

2.2 Materials and Methods ........................................................... 10 

2.1.1 Site Description ........ .. .. . . . . . . . . . . . .. . . .. . . .. . . . . . .. . . . . . . . . . . . . .. . 10 

2.2.2 Calculation of N fluxes ....................................... .. . . 10 

2.2.3 Soil sampling .......................................................... 13 

2.2.4 KCl extraction forNH/ and N03- assay ................ 14 

2.2.5 Estimation of nominal field capacity ..................... 14 

2.2.6 Statistical analysis .................................................. 14 

2.3 Results .................................................................................... 14 

2.3.1 Soil water ................................................................ 14 

2.3.2 Net nitrogen mineralisation ..................................... 15 

2.3.3 Net nitrification ....................................................... 17 

2.3.4 Leaching .................................................................. 20 

2.3.5 Mineral N ................................................................ 20 

2.3.6 N uptake . . .. . .. . .. . .. . .. . .. . . . . .. . .. . .. . .. . . . . .. . . . . .. . ... 21 

2.4 Discussion . .. . . . . . . . . . . .. . . .. . ... . . .. . . . . . . . ....................................... .. . . . 23 

3. INDICIES OF NITROGEN MINERALISATION ......................... 27 

3.1 Introduction ............................................................................ 27 

3.2 Materials and Methods ........................................................... 31 

3 .2.1 Site description and sampling . .. . . . . . . ... . . . . . . . . . . . . . .. .. . . . . 31 

3.2.2 Analytical methods .................................................. 31 

3 .2.3 Sampling of subsoils ............ ... .............. .................. 35 

3.2.4 Statistical Analysis .................................................. 37 

3.3 Results .................................................................................... 37 

Page 



3. 3 .1 N mineralisation indices in surface soils .. .. .. .. .. .. .. .. 3 7 

3 .3 .2 N mineralisation indices in subsoils .. .. .. .. .. . 46 

3.4 Discussion .............................................................................. 50 

4. ATMOSPHERIC INTERCHANGE OF N ...................................... 59 

4.1 Introduction ............................................................................ 59 

4.2 Materials and Methods .. .. .... .... .................................... .... .. .. .. . 63 

4.2.1 Denitrification, unamended soil .. .. .. .... .. .. .. .. .. .. .. .. .. .. 63 

4.2.2 Potential denitrification, amended soil .. .. .... .... .. .. .. . 63 

4.2.3 Analysis ...................................................... ............. 63 

4.2.4 Statistical analysis .... .. ............................................. 64 

4.3 Results .................................................... :............................... 65 

4.3.1 Denitrification, unamended soil .............................. 65 

4.3 .2 Potential denitrification, amended soil .. .. .. .. .. .. .. .. .. . 65 

4.4 Discussion .............................................................................. 68 

5. UPTAKE OF NITROGEN BY FAST GROWING E. NITENS 

PLANTATIONS IN TASMANIA ............................................ 70 

5.1 Introduction ............................................................................ 70 

5.2 Materials and Methods ........................................................... 73 

5.2.1 Site description ........................................................ 73 

5.2.2 Tissue sampling for N content ................................ 73 

5.2.3 Biomass N ............................................................... 75 

5.2.4 Litter ........................................................................ 76 

5.2.5 N analysis ................................................................. 77 

5.2.6 Statistical analysis ................................................... 78 

5.3 Results .................................................................................... 79 

5 .3 .1 Nitrogen concentrations of sampled tissues ............ 79 

5.3.2 Annual N uptake ...................................................... 80 

5.3.3 Litter ........................................................................ 87 

5.4 Discussion .............................................................................. 92 

x 



Page 

6. COMPARISON OF NITROGEN BUDGET AND SOIL ANALYSIS 

METHODS FOR PREDICTING N DEFICIENCY ............... 96 

6.1 Introduction .. . . . . . .. ... . ... . .. . . . . ........... .......... ... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

6.2 Materials and Methods ........................................................... 99 

6.2.1 Fertiliser responses .................................................. 99 

6.2.2 Net N mineralisation in surface soils ...................... 99 

6.2.3 Weed growth ............................................. 99 

6.2.4 Budget approach ..................................................... 100 

6.2.5 Soil analysis approach ............................................ 100 

6.2.6 Statistical analysis .. .. . . . ........ .. .. . . . . . .. . . . . . . . . . . . .. . .. . . . . . . . .. 101 

6.3 Results .................................................................................... 101 

6.3.1 Fertiliser responses .................................................. 101 

6.3.2 Net N mineralisation indices in surface soils .......... 101 

6.3.3 Budget approach ...................................................... 110 

6.3.4 Soil analysis approach ............................................. 110 

6.4 Discussion .............................................................................. 118 

7. CONCLUSIONS ................................................................................. 123 

7 .1 Budgeting method ........................................... ....... ................ 123 

7 .2 Soil analysis method ....................................... ....... ......... ...... .. 123 

8. FUTURE RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

8.1 Nitrogen mineralisation 

8 .2 Partial budget approach 

125 

125 

8.3 Soil analysis approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

BIBLIOGRAPHY .................................................................................. 128 

APPENDIX ............................................................................................. 154 

Xl 



1 

1. INTRODUCTION 

Australia had a deficit in wood and paper products in 1997-98 to the value of 

Aust$~ .6 billion or 0.35% of Gross National Product (Australian Bureau of Statistics 

1988a and 1988b). Expansion of Australia's plantation estate is being promoted by the 

federal government and the forest industry as an essential part of measures needed to 

address this problem (Australia, Forest Taskforce 1995; Plantations for Australia: the 

2020 vision 1997). This policy framework is matched by commercial and 

environmental incentives for investing in plantations. Australia has approximately 

1.04 million ha of plantations, of which 0.16 million ha (15%) are planted with 

hardwood species (mostly Eucalyptus spp.). About 40% of these hardwood 

plantations have been planted in Tasmania, predominantly as Eucalyptus globulus and 

Eucalyptus nitens, grown essentially for pulp and paper production. Eucalyptus has 

replaced Pinus as the main genus planted both nationally and in Tasmania. For 

example, during 1990-94 eucalypts represented over 80% of the new-planted area 

(National Forest Inventory 1997). 

In the north-west of Tasmania, North Forest Products (NFP) currently manage 43 OOO 

ha planted to E. nitens (90%) and E. globulus (10%). Projected planting rates for the 

next few years are 6 500 ha year-1 of E. nitens (pers. corn. David DeLittle). 

Approximately similar areas of E. nitens or E. globulus are expected to be planted on 

other soil types throughout the state by NFP and other growers. These plantations are 

expected to significantly improve Australia's balance of payments in wood products 

during the next two decades. 

Conversion of native forest to plantation increases pulp yield, resulting in industry 

preference for plantation wood chips. For example, in Tasmania, North Forest 

Products receive a 10% premium on plantation chips over native forest chips. The 

greatest economic benefits for plantations grown for pulp come, in decreasing order, 

from increases in growth rate, wood density and pulp yield. Plantation E. nitens tends 

to have lower density than those in native forest, however this is offset by increases in 

volume. The lower density of plantation trees usually results in better fibre collapse, 

better inter-fibre bonding and therefore improved fibre strength. (Downes et al. 2000, 



and 1997; Greaves et al. 1997). Hence, it is generally desirable to attain maximum 

growth rates from plantations, leading to selection of more fertile sites and fertiliser 

addition. 

The majority of these E. nitens plantations have been planted between 300 m and 

700 m elevation on basalt-derived soils (Holz pers. comm.) i.e. Ferrosols (Isbell 
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1996). The growth of many Eucalypt plantations on these and a variety of other soils 

in Tasmania and Victoria is probably limited by the low availability of nitrogen (N) 

(Bennett et al. 1997; Cromer et al. 1993; Holz pers. comm.). For example application 

of N to three E. globulus plantations in Victoria during ages 2-26 months increased 

under-bark volume by 29-55% by age six years (Bennett et al. 1997). Also in 

Tasmania, many plantations have responded to N added soon after planting and at 

later ages. For example five E. nitens plantations in northern Tasmania responded to N 

added at ages 3-6 years (Holz pers. comm.). 

Most soil N is in an organic form that cannot be taken up by plants unless it is 

mineralised to form NH/ or subsequently nitrified to form N03-, both of which are 

available for uptake from the soil solution (Engels and Marschner 1995). Ammonium 

and N03-mineralised from soil organic matter (SOM) form the bulk ofN available for 

plant growth in unamended soils (Raison and Stottlemyer 1991; Sierra 1992; 

Campbell et al. 1994; Pastor et al. 1984) with E. nitens preferentially assimilating 

NH/ (Garnett 1996). A portion of the gross N mineralised is immobilised by the soil 

microflora leaving a net amount available for uptake (Singer and Donald 1996; 

Tisdale et al. 1993). When net N mineralisation (NNM) is insufficient to meet the 

demand for N by a plantation, a growth response to added N is expected. An ability to 

estimate when this will occur would allow forest managers to apply N as it is required 

for growth, thereby increasing the efficiency ofN-fertiliser usage and reducing the 

potential for leaching ofN into groundwater and streams. 

Soil disturbance, such as those involved with site preparation and planting, is expected 

to temporarily raise rates ofNNM. Hence, it is expected that rates of NNM will 

decline with time after planting, as has been observed in other studies. For example, in 

South Australian P. radiata plantations rates of NNM more than halved from the first 



to the third year after planting (Smethurst and Nambiar 1990a). Thus decreasing rates 

of soil N supply may require increasing N application to maintain stand productivity. 
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In-situ rates of NNM measured in two Tasmanian plantation soils have been ranked in 

the same order as the concentration of total N or mineralisable N extracted during 

anaerobic incubation and hot KCl extraction (Wang et al. 1996a). These analyses have 

been related to N availability, growth and yield of other crops (Keeney 1982; Binkley 

and Hart 1989). For example Shumway and Atkinson (1978) demonstrated significant 

relationships between N released during anaerobic incubation and the growth response 

of douglas fir to applications ofN fertiliser. Hence, two hypotheses can be tested; that 

soil analyses, those of Wang et al. (1998) in particular, will correlate with in situ 

NNM, i.e. N supply, or directly to the response of E. nitens plantations to N fertiliser 

application. 

Most studies of N uptake and tissue N cycles in eucalypts are in native forest. Of the 

studies in plantations, few are in E. nitens and none have been published for 

plantations in Tasmania. Measurement of N fluxes to and from the biomass of 

Tasmanian E. nitens will increase our understanding of N requirements, may help 

predict rates of NNM and may be used to predict N deficiency by way of an N budget. 

Estimates of annual N uptake into the above-ground tissues of the sub-genus 

Symphomyrtus (E. globulus and E. nitens) reported in the literature are as high as 

120 kg for a 3-year-old E. globulus plantation in Portugal (Pereira et al. 1996). The 

supply of mineral N from NNM in Tasmanian soils supporting E. nitens plantations 

was estimated by Wang et al. (1998) to range from 18 to 91 kg N ha-1 year-1 (0-10 cm 

depth). Sites represented by the lower part of this range are unlikely to provide 

adequately for N-uptake of fast-growing plantations. Given information on NNM and 

subsequent N losses from soil, it is evident that estimates of annual N uptake within E. 

nitens plantations should provide an estimate of when NNM is sufficient or otherwise 

to meet the N requirements of tree growth at particular sites. 
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Hence, the principal research objective ofthis thesis was to evaluate soil analyses and 

budgeting methods as indicators of N fertiliser requirements to maximise growth of 

Tasmanian E. nitens plantations. 

To achieve this objective, 14 sites planted to E. nitens, of ages 1-10 years, each 

containing an N fertiliser experiment with a history of different N fertiliser 

applications were selected for study. For the development of a partial N budget, NNM 

was compared to N demand (N uptake from the soil). Soil in situ NNM (0-10 cm) was 

estimated for two years at five of these sites. Soil analyses were correlated to these in 

situ rates of NNM and subsequently used to estimate NNM at the remaining nine sites. 

Nitrogen uptake was estimated for 12 of these sites from pre-determined biomass 

regression equations based on diameter and height and for the remaining two sites 

from destructive sampling conducted by Cromer et al. (unpublished). Nitrogen in leaf, 

branch, and bark litter was measured at two of these sites (ages three and ten years). 

Within each experimental site, where stem diameters or increments in stem diameter 

at breast height of fertilised trees were deemed significantly greater (P < 0.05) than 

those ofunfertilised trees, a growth response was recorded. For trees fertilised within 

one year of planting, the age when a significant response in diameter growth to added 

N was recorded. For trees fertilised at a later age, relative responses were recorded. 

Relative responses are diameter (1.3 m) increment of fertilised trees/diameter (1.3 m) 

increment of unfertilised trees. 



2. SURFACE SOIL N FLUXES IN FIVE TASMANIAN E. nitens 

PLANTATIONS 

2.1 INTRODUCTION 

Rates ofNNM limit the growth of many of the world's forests. For example, Pastor 

et al. (1984) and Nadelhoffer et al. (1985) have shown that rates ofN mineralisation 

were correlated with above-ground productivity of several temperate native North 

American forests. Raison et al. (1992) found annual N uptake of a ten-year-old pine 

plantation in the Australian Capital Territory was limited to the sites NNM rates. In 

Tasmania's native forests of E. obliqua and E. amygdalina, Adams et al. (1989b) 

found rates of NNM were positively correlated with productivity measured as the 

product of tree height and basal area. Tasmanian Eucalypt plantations are known to 

respond in diameter and height to added N (G Holz pers. comm), indicating NNM is 

unable to satisfy N demands for fast growth. Of relevance, NNM in podzolised sands 

(0-15 cm) of South Australia was sufficient to meet N uptake estimates of fast 

growing P. radiata for the first two years. Thereafter, estimates of potential uptake 

exceeded NNM and it was suggested that applications of fertiliser would be effective 

at that stage of the crop growth (Smethurst and Nambiar 1990a and 1990b). The 

suggestion that applications of fertiliser would be effective at that stage of crop 

growth was later confirmed (Fife et al. 1995). 

5 

Rates ofNNM are affected by a number of soil and environmental factors. For 

example, soil temperature and water strongly affect rates of NNM (Stanford et al. 

1973; Vigil and Kissel 1995; Jensen et al. 1997; Gonclaves and Carlyle 1994; 

Campbell et al. 1981). Generally, microbial activity follows a Q10 of2.0 between 5 °C 

and 35 °C (Rice and Havlin 1994; Stanford et al. 1973; Vigil and Kissell 1995). At a 

given temperature, rates ofNNM increase with increasing water content, as long as 

aerobic conditions are maintained (Quemada and Cabrera 1997; MacDonald et al. 

1995; Schepers and Messinger 1994). If soil water content becomes too high, soil 

anoxia develops, rates ofNNM and nitrification decrease, and those of denitrification 

increase (Carter and Rennie 1982). 
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Both the quantity and quality of organic N affect rates ofNNM (Boone 1992; Jensen 

et al. 1997; Gonclaves and Carlyle 1994; Van Praag and Weissen 1973). Readily 

degraded fractions of organic N often form a small portion (1-3%) of the total N pool 

(Bremner 1965), but they are the source of most N mineralised (Christenson and Butt 

1997; Jarvis et al. 1996; Cabrera et al. 1994; Semyonov 1996). Organic matter may be 

physically protected from mineralisation, being enclosed by or part of large tissues 

(Rice and Havlin 1994; Jarvis et al. 1996), it may be adsorbed to negatively charged 

clay surfaces that effectively coat it (Oades 1988), or be located within small pores of 

micro-aggregates physically isolating it from the biosphere (Tiessen and Stewart 

1983; Christensen and Sorensen 1985). Soil disturbance, such as cultivation during 

plantation establishment, exposes new OM surfaces and breaks some physical 

protection leaving fresh organic matter surfaces accessible for mineralisation by soil 

microbiota, temporarily increasing rates ofNNM (Clay et al. 1995; Connell et al. 

1995; Jarvis et al. 1996; Binkley and Hart 1989; Raison et al. 1987). Hence, rates of 

NNM commonly decrease during the first few years after plantation establishment. 

For example, in South Australia, Smethurst and Nambiar (1990a) found a decrease in 

NNM rates from 50-70 kg ha-1 during the first year to 20-30 kg ha-1 during the third 

year after planting of P. radiata. Raison et al. (1992) found a decrease in NNM rates 

from 38 kg N ha-1 year-1 to 7 kg N ha-1 year-1 over a four year period in a P. radiata 

plantation. Such patterns are also likely to occur in Eucalypt plantations. Hence, 

within the study sites in situ rates ofNNM are expected to decrease with time. 

Mineralisation of OM produces the NH4 + cation, which is nitrified producing the N03 -

anion. Soils generally have a large cation exchange, where negative soil surfaces 

attract a balancing cation, holding it against leaching, while maintaining its 

availability to plants. Negative surfaces can be associated with inorganic compounds 

(sand, silt and clay), OM and roots (Tisdale et al. 1993). Within clay, comprised 

largely from layered silica and aluminum compounds, the major source of negative 

charge arises from replacement of Si4
+ or Al3

+ with cations of lower charge 

(isomorphic substitution). Variable charge surfaces occur in OM, and in clay where 

Al-OH and Si-OH groups occur on the broken edges of 1: 1 layered minerals such as 

kaolinite and where oxy hydrous Fe and Al occur in the clay fraction, common in 

kaolinitic clays. Deprotonation of these groups contributes to cation exchange 
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capacity of soils. Within ferrosols the primary clay is kaolinite, which has far less 

isomorphic substitution and hence a much lower cation exchange than other clays, for 

example less than 1 % of montmorillonite. As a result the cation exchange capacity of 

kaolinite is often predominantly associated with OM surfaces. Protonation of the 

relatively large amount of variable charge groups associated with kaolinite contributes 

to an appreciable anion exchange capacity of ferrosols. However, of greatest 

significance to ferrosols anion exchange is the protonation of carboxyl groups 

associated with OM (Moody 1994; Tisdale et al. 1993). Anion exchange is generally 

low in surface soils, increasing in the subsoil (Black and Waring 1976, Gillman and 

Abel 1987), hence anion exchange is likely to have little effect on N03- movement in 

the 0-10 cm study depth, but may hold significant amounts of N03- at depth. 

Estimates of field rates ofNNM require in situ assessment because the environmental 

effects on the process can not be easily accounted for in the laboratory. Sequential in 

situ soil core methods also avoid the effects of soil disturbance required by some 

laboratory incubation methods. Early field incubations used steel cans with perforated 

walls that were capped at the top and bottom (Lemee 1967). Because perforated sides 

may result in the loss ofNH/ and N03- by mass flow and diffusion (Hart et al. 1994), 

unperforated walls have been used in many subsequent studies. Variations of these 

methods include the use of buried disturbed soil (e.g. Westermann and Crothers 1980; 

Vitousek and Matson 1985) or undisturbed soil (e.g. Nadelhoffer et al. 1984, 1985; 

Matson and Boone 1984) in plastic bags, of ion exchange resins in open soil cores 

(e.g. Binkley and Matson 1983; Hart and Binkley 1985), or the use of capped metal 

cans (e.g. Rapp et al. 1979) or PVC tubes pushed into the soil surface to isolate a soil 

column (e.g. Adams and Attiwill 1986a). Raison et al. (1987) preferred in situ 

sequential coring because it minimised soil disturbance and was easier than buried bag 

techniques or the use of ion exchange resins. Raison et al. (1987), Kolberg et al. 

(1997) and Adams et al. (1989a) validated the in situ soil coring technique as 

satisfactory for quantifying fluxes of mineral N in the field. Recommended durations 

of incubations range from 30 days to 90 days (Goncalves and Carlyle 1994; Carlyle 

1995a; Smethurst and Nambiar 1989; Carlyle et al. 1998; Kolberg et al. 1997). The 

duration of incubation in situ should be sufficient to measure a significant change in 

the concentration of inorganic N, but also be short enough to minimise time-



dependent differences in water, temperature, and microbial processes that develop 

between soil inside and soil outside the cores (Smethurst and Nambiar 1989a; Raison 

et al. 1987; Edmonds and McColl 1989; Adams et al. 1989a). Potential errors 

involved with application of this technique come from severing of fine roots during 

insertion of the tubes, providing additional substrate for mineralisation, and 

subsequent temperature and moisture differencel that may be generated between soil 

inside and outside the tube, possibly altering NNM rates (Raison et al. 1987). 
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Tree root distribution is greatest near the surface, decreasing with depth. For example, 

root intercepts per 200 cm2 (vertical plane) of soil in Tasmanian E. nitens dropped 

from 21-0 counts from the 0-10 cm depth to the 80-90 cm depth in droughted trees 

and from 20-0 counts from the 0-10 cm depth to the 50-60 cm depth in irrigated trees 

(Moroni et al. 1999). Similarly, for a 34 month old Tasmanian E. nitens plantation 

Misra et al. (1998a) report decreases in fine root(< 1 mm diameter) density from 0.3 

kg m·3 in the 0-10 cm depth to less than 0.1 kg m·3 within the 30-45 cm depth and 

decreases in medium root density (1-3 mm diameter) from 0.2 kg m·3 in the 0-10 cm 

depth to less than 0.01 kg m·3 below 45 cm depths. Rates ofNNM are also greatest in 

surface soils. For example, an average of32% of the N mineralised in the top 20 cm 

of soil under a wheat crop originated in the 0-2 cm layer (Purnomo et al. 2000) and in 

soil from cereal crops of South Australia, mineralisable N in the '0-10 cm depth 

accounted for 90% of total mineralisable Nin the 0-20 cm soil depth (Xu et al. 1996). 

Hence, soil sampling was limited to the 0-10 cm depth of the Wang et al. (1998) 

study. However, greater depths have been sampled during other studies (for example 

0-20 cm with in situ studies Raison et al. 1987; O'Connell and Rance 1999 and with 

soil analyses such as aerobic incubation Aggangan et al. 1998 and 0-30 cm in situ 

studies Smethurst and Nambiar 1989b). Roots penetrate the soil to much greater 

depths, e.g. Tasmanian E. nitens to 80 cm at 34 months (Misra et al. 1998a). Hence 

NNM below 10 cm may contribute significantly to N supply. Contributions of the 

subsoil to NNM are examined in chapter 3. 

The study sites were strip cultivated producing a mound approximately 30 cm in 

height, into which the seedlings were planted. This had the effect of preparing the soil 

for planting and raising the seedlings from the coldest winter air at ground level, 



reducing frost damage. The cultivation producing the mounds inverted, rotated and 

mixed soil and soil horizons. The mounded soil was thus more heterogeneous than 

uncultivated soil. Hence errors of measurement in cultivated soil were expected to be 

greater than in uncultivated soil, therefore measurements were concentrated in 

uncultivated soil. The effect of cultivation is expected to further increase rates of 

NNM in the cultivated strips. 

Rates ofNNM were estimated at four sites (3 ex-native forest, 1 ex-pine) supporting 

E. nitens in Tasmania by Wang et al. (1998). Rates ofNNM were measured for a 

further two years at these sites to examine the hypothesis that rates of NNM would 

decrease with time at these sites. An ex-pasture site was also included in the study. 

Many pasture and cropped lands are fertilised and include N-fixing legumes that add 

organic N. Dead plant materials and animal excreta can also contribute to soil N and 

mineralisable N (Whitehead 1995). Wang et al. (1996a) found higher concentrations 

of anaerobically mineralisable and hot KCl extractable Nin soil from ex-pasture sites 

when compared to ex-native forest and ex-pine sites. Hence the ex-pasture site was 

expected to have high NNM rates. In part because of their high fertility, ex-pasture 

sites are highly sought after for establishing forest plantations. 
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In surface soils of five E. nitens plantations several hypotheses were tested: (1) In situ 

rates ofNNM and nitrification would be higher at an ex-pasture site than at ex-native 

forest and P. radiata site_s. (2) Ranking of these fluxes would re(main consistant across 

several years. (3) Rates ofNNM, nitrification, leaching and concentration of mineral 

N would decrease during the first few years of plantation establishment. (4) Rates of 

NNM would be higher in cultivated strips than between these strips. 

2.2 MATERIALS AND METHODS 

2.2.1 Site description 

Wang et al. (1998) reported N fluxes at one ex-pine (Boulder) and three ex-native 

forest sites (Basils, Nunamara, and Tim Shea) between ages 1-2 years, noting that 

these sites had lower concentrations of mineralisable N than an ex-pasture site 

(Potters) (Wang et al. 1996a). The same five sites were chosen for the current study, 

their characteristics being summarised in Table 2.1. Measurements of in situ NNM 
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followed on immediately from the Wang et al. (1998) study at the Boulder, Basils, 

Nunamara and Tim Shea sites. The sites had been cleared of trees and shrubs then 

strip cultivated (about 2.5 m ploughed and 1.5 m unploughed) prior to planting with 

E. nitens. These sites typify a broad range of sites in Tasmania where E. nitens 

plantations are being established. For measurement of in situ NNM, soil (0-10 cm) 

was collected from cultivated and uncultivated regions within randomly distributed 

control plots (250 m2 approximate area) that had not received fertiliser during the 

establishment phase of a N fertiliser experiment covering approximately three ha at 

each site. All sites had three unfertilised plots, except the Potters site, which had five 

unfertilised plots. Herbicides were applied to the total area of all plots to control 

weeds. A few woody perennial weeds grew at the Basils, Boulder, and Nunamara 

sites, but were not considered to be a significant sink for mineral N uptake. Broad leaf 

weeds and grasses that required spraying with herbicide grew at the Potters and Tim 

Shea sites. The control plots at the Tim Shea site were sprayed with 'Roundup' 

(isopropylamine salt ofN-[phosphono-methyl] glycine) in June 1996 and January 

1997, the Potters site was sprayed with 'Atrazine' (2-chloro-4-ethyl-6-

isopropylamino-s-triazine) in January 1997 and the control plots of the Potters site 

were sprayed with 'Round up' in April 1997. 

2.2.2 Calculation of N fluxes 

The same in situ soil-core technique used by Wang et al. (1998) was used to measure 

NNM and nitrification in uncultivated soil at all sites for two years. For the same 

period, net nitrification and leaching were measured within the uncultivated region of 

all sites except the Potters site. For the first year only, NNM and nitrification were 

also measured in the cultivated soil at the Tim Shea and Nunamara sites. Rates of 
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Table 2.1. Site characteristics. Sites are in order of increasing elevation. 

Characteristic. Boulder Nunamara Tim Shea Potters Basils 

Previous vegetation P radiata E. viminalis E. regnans pasture Euc.- myrtle 

Planting date June 1993 Oct. 1993 Oct. 1993 Oct. 1995 July 1993 

Latitude 41°12' 41°21' 42°40' 41°9' 41°19' 

Longitude 145°50' 147°15' 146°29' 145°45' 145°39' 

Elevation (m) 390 400 420 510 550 

RainfallA (mm/year) 1400 1000 1500 1570 1800 

Daily soil temperature8 

Janmm-Janmax (°C) 15-19 15-19 12-15 13-15 13-15 

Julmm-Julmax (oC) 3-7 4-7 3-6 2-6 2-6 

Soil typec Ferrosol Ferrosol Kurosol Ferrosol Ferrosol 

Parent Material Basalt Basalt Siltstone Basalt Basalt 

Surface texture Clay loam Clay loam Clay loam Clay loam Clay loam 

Bulk density0 (g/cm3
) 0.77 0.99 0.76 0.60 0.51 

aE 0 3 0 0 6 

pHF 5.1 5.8 4.6 4.3 5.0 

Total N (%)* 0.27 0.22 0.33 0.65 0.74 

Total C {%}* 6.7 3.4 6.1 9.1 13.3 

A Approximate long-term mean, 8 Approximate average of the daily maximums and minimums (10 cm), 

c Isbell (1996), ° Fraction <5 mm, Ea rock fraction(%), F 1: 5 soil:water *from chapter 3 
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NNM and nitrification were calculated as the difference in mineral N between soil 

collected at the beginning of the incubation (initial soil) and in situ incubated covered 

soil samples. Leaching was calculated as the difference in concentration of mineral N 

between in situ incubated covered soil and in situ incubated uncovered soil. 

The N fluxes were calculated using the equation: 

oN (kg/ha/period)= oN (µg N/g soil/period) x BD (g soil/cm3 soil) x (1-a) x 10-9 kg 

N/µg N x 108 cm2 soil/ha x 10 cm depth of soil. 

Where a is the proportion ofrocks (0-6%) estimated visually for each plot using the 

method described by McDonald et al. (1990), and BD is bulk density measured on 

four cores ( 420 cm3
) from each plot (0-10 cm depth). Soils from each set of bulk 

density cores were bulked within plots, then separated into coarse and fine fractions 

using a 5 mm sieve. The soil fractions were dried at 105° C for 24 h and their weights 

recorded. Only the fraction <5 mm was used to calculate BD, which was 83-98% of 

the total soil weight. The soil fraction >5 mm was assumed to have negligible 

contribution to N fluxes (Raison et al. 1987; Wang et al. 1998). Where N fluxes were 

indicated as kg N ha-1 day-1
, they were calculated as the total change in N during the 

incubation period divided by the number of days. Measurements of annual fluxes of 

NNM and leaching in each plot were calculated by summing the N fluxes in 

individual periods over the whole year. 

Measurements ofN fluxes for this study began on 1 st November 1995 at the Basils 

and Boulder sites, 7t1i November 1995 at the Nunamara site, 14th November 1995 at 

the Tim Shea site and 16th January 1996 at the Potters site. There were 16 collection 

periods at the Potters site, 17 at the Basils and Boulder sites and 18 at the Tim Shea 

and Nunamara sites. Data were missing from the Nunamara site (two collections) and 

the Boulder site (one collection suspected of contamination) representing 12% and 6% 

of collection dates at these two sites, respectively. Missing values, calculated using 

the average rate of the remaining incubation periods, were very similar and not 

significantly different from rates measured for the year after or before the missing 

values. 



significantly different from rates measured for the year after or before the missing 

values. 

2.2.3 Soil sampling 

13 

Initial soil samples comprised eight cores taken from each plot (0-10 cm depth) using a 

50 mm internal diameter stainless steel tube. At the same time, eight PVC tubes 

(50 mm internal diameter) were pushed into the soil to 10 cm depth in each plot and 

covered with a PVC cap to prevent leaching during field incubations. In plots where 

leaching was measured, eight additional PVC tubes per plot were pushed into the soil 

to 10 cm depth and left uncovered. After 5-8 weeks, incubated soils were collected 

along with another set of initial samples and the procedure repeated. Plate 2. 1 shows 

covered and uncovered soil cores in uncultivated soil at the Basils site. Collected soil 

was transported with minimal disturbance to a cool room ( 4 ° C) within four hours of 

collection and processed within three days. Each group of eight like cores (initial, 

covered or uncovered) were mixed, sieved through a 5 mm mesh and sub-sampled for 

extraction with 2M KCI. 

Plate 2.1 Covered and uncovered soil cores incubating in uncultivated soil at the 

Basils site. 
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2.2.4 KCl extraction for NH4
+ and N03

- assay 

Subsamples (20 g fresh soil) were placed into a 110 ml screw-cap container with 100 

mL 2M KCl, placed on a rotary shaker for one hour, allowed to settle and filtered 

through Whatman No. 42 filter paper. Extractants were stored frozen (-10° C) and 

thawed prior to analysis. Ammonium (NH4 +) was analysed by a modified Berthelot 

indophenol reaction (Lachat Quikchem method 12-107-06-1-A). Nitrate (N03-) was 

measured by the cadmium reduction method (Lachat Quikchem method 12-107-04-1-

F). Concentrations of NH/ and N03- were reported on an oven dry basis. 

2.2.5 Estimation of nominal field capacity (-25 kPa) 

Five rubber rings, 10 mm in height and 52 mm in diameter, were placed onto a 

ceramic disc in a pressure plate chamber. The rubber rings were filled with sieved 

(< 2 mm), air dried soil. The soil and ceramic disc were soaked in water over night 

before the pressure plate was sealed and placed under -25 k:Pa of pressure. After 24 

hours the equilibrated soil was removed and oven dry water content determined 

(weight of water loss after 24 hat 105 °C/weight of dry soil). 

2.2.6 Statistical analysis 

Means were compared using the least significant difference (LSD) analysis where an 

analysis of variance (ANOV A) showed a 'significant difference between means 

(P::::; 0.05). A 2-way ANOV A based on replicates and groups was used for analysis to 

determine the significance of changes of water contents, mineral N contents, and N 

fluxes over time within sites. Groups comprised replicate observations of individual 

means to be compared [e.g. date x N form (NH/-N orN03--N) combinations]. Fluxes 

for individual periods within sites were compared on the common basis of daily rates. 

Annual rates ofNNM or leaching were compared for sites by 1-way ANOV A. 

Correlations and regressions were determined by standard statistical methods. 

2.3 RESULTS 

2.3.1 Soil water 

Soil water contents were lowest during December - March and highest during July -

November at all sites (Figure 2.1). There were similar trends in the soil water contents 
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of initial and covered samples at all five sites, however differences between the initial 

and covered soils were inconsistent. At the Basils and the Potters sites, soil water 

contents were similar to, or greater than, nominal field capacity (-25 kPa) for the 2-

year study period. At the Boulder and Nunamara sites, water contents dropped below 

-25 kPa during December to March each year, and the same occurred at the Tim Shea 

site during January to March each year. During the remaining months of higher 

rainfall (Appendix) soil water contents within sites were roughly constant at what is 

likely to be actual field capacity. ~east significant differences in water content of soil 

between sampling dates within sites were significant and small (3.7-8.3%), and hence 

are not shown in Figure 2.1. 

2.3.2 Net N mineralisation 

Rates of NNM were highly variable, hence no significant differences between years in 

annual rates of NNM were measured at any site and annual rates were not 

significantly different to those measured by Wang et al. (1998) for the Basils, 

Boulder, Tim Shea, and Nunamara sites in the year prior to this study (Table 2.2). 

There were no significant differences in annual rates of NNM between cultivated and 

uncultivated soils at the Tim Shea and Nunamara sites during the first year of this 

study (Table 2.3). Therefore measurements were made in uncultivated zones only 

during the following year. 

Average rates ofNNM for individual sampling periods ranged from -0.3 kg N ha-1 

day-1 at the Potters site during July-October 1996 to 1.8 kg N ha-1 day-1 at the same site 

during January-March 1996 (Figure 2.2), resulting in annual rates that covered a ten­

fold range: from 13-188 kg N ha-1 year-1 (Table 2.2). Significant differences between 

sampling dates for NNM occurred at the Basils and Potters sites (Figure 2.2). At the 

Potters site, rates ofNNM were highest during summer (December-March) and lowest 

during the winter (June-September). In contrast, at the Basils site, differences in NNM 

were not consistent with a seasonal pattern. 
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Figure 2.1. Gravimetric water content at the Boulder, Nunamara, Tim Shea, Potters, 

and Basils sites from December 1995 to January 1998. Horizontal lines represent 

water content at -25 kPa. 

-~ Q -
... 
c: 
Cl) ... 
c: 
0 

CJ 

... 
(I) ... 
CU ::: 

100 Boulder --+-initial SOii 

80 -o- incubated soil 

60 

40 

20 

0 
DJ FMAMJJASONDJ FMAMJ JASONDJ 

100 Nunamara 
80 

60 

40 

20 

0 
DJ FMAMJJASONDJ FMAMJJASONDJ 

100 Tim Shea 
80 

60 

40 

20 

0 
DJ FMAMJJASONDJ FMAMJ JASONDJ 

100 Potters 
80 

60 

40 

20 

0 
D J F M A M J J A S 0 N D J F M A M J J A S 0 N D J 

100 

80 

60 

40 

Basils ~ 

~~ 
20 

0 
D J F M A M J J A S 0 N D J F M A M J J A S 0 N D J 

1995 1996 1997 
Month and Year 

1998 



17 

Table 2.2. Annual N fluxes and pools of mineral N (kg ha-1
) in uncultivated surface 

soils (0-10 cm) of five Tasmanian E. nitens plantations. For mineralisation and mineral N data, 
transformations were inadequate to satisfy homogeneity of variance constraints for an ANO VA. Therefore, as 
indicated by pair-wise comparisons for untransformed data using t-tests for means of unequal variance, 
homogeneous groups of years within sites (P < 0 05) are accompanied by the same upper-case letter, and 
homogeneous groups of sites within years are accompanied by the same lower-case letter Because there were no 
significant differences between years for mineralisatwn at any site, sites meaned across years were also 
compared For other datasets, homogeneous groups of means across sites and years are accompanied by the same 
letter as indicated by a Duncans multiple range test using log-transformed (nitrification) or untransformed 
(leaching and uptake) data Parenthesis contain standard deviations 

Mineralisation 

94/951 

95/96 

Ac 

96/97 

Ab Mean 

182 c 

Nitrification 

94/95 1 

95/96 

a 

96/97 

ab 

Leaching 

94/951 

95/96 

96/97 

Uptake 

95/96 

96/97 

Mineral N 

October 941 

October 951 

October 96 

October 97 
1 From Wang et al (1998) 

n.d. indicates not determined. 

Site 

Boulder Nunamara Tim Shea 

18(37)Aa 23(47)Aa 54(43)Aa 

24 (7) A a 23 (7) A ab 12 ( 14) A a 

13 (1)Aa 

18 a 

20 (9)Aa 

22 a 

23 (6) Aa 

30 a 

22(16)ef 

18 (3) ef 

39 (33) cde 51 (30) cd 

20 (9) def 2 (1) g 

4 (0) g 12 (6) f 

36 (3) ab n.d. 

22 (12) be n.d. 

-5 (7) c n.d. 

13 ( 14) b n.d. 

20 (8) ab n.d. 

1 7 ( 13) AB a 16 ( 8) AB a 

10 (7) A a 6 (1) A a 

2 (1) Ba 

4 (1) Bab 

4 (1) AB ab 

3 (1) Ba 

2 (1) g 

n.d. 

n.d 

n.d. 

n.d 

n.d. 

13 (0) A a 

6 (3) AB a 

4 (1) Ba 

2 (2) Ba 

Basils Potters 

91(47)Aa 

70 (22)Ab 

n.d. 

188 (91) 

77(33)Aab 175(84) 

79 b 

72 (30) be 

52 (20) b 

61 (22) b 

61 (21) a 

50 (22) ab 

46 (25) ab 

16 (7) b 

36 (7) a 

n.d. 

191 (75) 

165 (70) 

n.d. 

n.d. 

n d. 

n.d. 

n.d. 

11 ( 1 ) A a n.d. 

5 (1) B a n.d. 

6 (1) B be 8 (2) Ac 

6 (5) AB ac 6 (3) A be 
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Table 2.3. Annual net N mineralisation and nitrification (kg ha-1
) in cultivated and 

uncultivated soil at the Tim Shea and Nunamara sites for the period November 

1995 - November 1996. Difference in N fluxes between cultivated and 

uncultivated soil were not significantly different (P < 0. 05). 

N mineralisation 

Cultivated 

Uncultivated 

Nitrification 

Cultivated 

Uncultivated 

Nunamara 

27 (11) 

23 (7) 

22 (6) 

20 (9) 

Parenthesis denote standard deviation (n=3) 

2.3.3 Net nitrification 

Site 

Tim Shea 

13 (14) 

t2(1t/-) 

-3 (0.8) 

2 (0.7) 

Average estimated rates of net nitrification for individual sampling periods ranged 

from an apparent -0.26 kg N ha-1 day-1 at the Potters site during July-October 1996 to 

1.8 kg N ha-1 day-1 at the same site during January-March 1996, resulting in annual 

rates of 2-191 kg N ha-1 year-1 (Table 2.2). Significant differences in net nitrification 

rates occurred at all sites between sampling dates except at the Nunamara site, but 

these differences were not consistent with a seasonal pattern. At all sites rates of 

nitrification were highly variable and not significantly different to rates of NNM. 

Further evidence of variability in nitrification data was provided at the Basils and 

Potters sites there was a period of significant (P < 0.05) apparent negative 

nitrification. 



Figure 2.2. Net N Mineralisation (kg N ha-1 day1 in situ; 0-10 cm depth) from 

November 1995 to January 1998 at the Boulder, Nunamara, Tim Shea, 

Potters, and Basils sites. 
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2.3.4 Leaching 

At the Boulder site, considerable leaching ofN from the top 10 cm was observed 

during the Wang et al. (1998) study and during the first year of this study, which 

included both NH/ and N03- (Figure 2.3). However, during the last year, leaching of 

both forms of mineral N was minimal. At the Basils site considerable leaching was 

recorded in all three years, and it was dominated by N03-. Average rates ofleaching 

for individual periods were -0.30 to 0.16 kg N ha-1 day-1 and 0.00 to 0.44 kg N ha-1 

day-1 for the Boulder and Basils sites respectively (Figure 2.3). There were no 

significant differences in rates of N leaching between sample periods. 

The Basils site showed higher average rates ofleaching than the Boulder site in all 

years of measurement but differences were significant only in the last year of 

measurement (Table 2.2). Lowest rates of leaching at the Basils site occurred during 

summer (December-February) (Figure 2.3). Rates ofN leaching and NNM were not 

significantly different (P<0.05, n=3 for all sites except for the Potters site where n=5). 

Hence, leaching (within the errors of measurement), could have accounted for all N 

mineralised to 10 cm depth during the two years of measurement. 

2.3.5 Mineral N 

Amounts of mineral N (NH4+ + N03-) extracted from soil for individual sampling 

dates ranged from 0. 7 kg N ha-1 at the Tim Shea site in September 1997 to 93 

kg N ha-1 at the Potters site in March 1997 (Figure 2.4). Amounts of mineral N 

extracted from soil in October 1996 and October 1997 ranged from 3 kg N ha-1 at the 

Nunamara site in 1997 to 8 kg N ha-1 at the Potters site in 1996 (Table 2.2). 

Significant differences between mineral N extracted on individual sampling periods 

occurred at all sites, but these differences were consistent with a seasonal pattern only 

at the Potters sites (Figure 2.4). 

During the study period, N03- formed 0-64%, 13-42%, 4-49%, 31-96%, 23-80% the 

mineral N present at the Boulder, Nunamara, Tim Shea, Potters, and Basils sites, 

respectively. A significant trend of decreasing amounts of mineral N with time was 

observed at the Boulder, Nunamara, and Basils sites (Figure 2.4). 
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Figure 2.3. Leaching (kg N ha-1 day1 in situ; 0-10 cm depth) from December 1995 to 

December 1997 at the Boulder and Basils sites. 
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Differences between sample periods were not significant. 

2.3.6 N uptake 

Observed rates ofN uptake ranged from -0.12 to 0.22 kg N ha-1 day-1 (data not 

presented) which resulted in N uptake estimates of 13 to 36 kg N ha-1 year-1
• 

Differences in estimated rates of N uptake between sites and between years within 

sites were not significant. However rates of N uptake at the Basils site ranked above 

the Boulder site for both years of measurement (Table 2.2). Rates of NNM ranked 

above N uptake at both sites for both years of measurement and were significantly 

greater at the Basils site in the second year. 
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Figure 2.4. Mineral N content (kg N hd1
; 0-10 cm) from November 1995 to January 

1998 at the Boulder, Nunamara, Tim Shea, Basils, and Potters sites. For total 

(NH/ + NOJ), bars are LSD (P = 0.05), regression lines and r2 values are 

shown where significant (P < 0. 05) trends in decreasing mineral N occurred. 
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2.4 DISCUSSION 

Rates of NNM (0-10 cm) covered a wide range (13-188 kg N ha-1 year-1
), which 

despite the generally shallower sampling depth in the present study matched the whole 

of the range found in studies of other Australian plantation forest soils. For example, 

from 16 kg N ha-1 year-1 (0-15 cm) in P. radiata from South Australia (Carlyle et al. 

1998) to 113 kg N ha-1 year-1 (0-20 cm) in E. globulus plantations of south-western 

Australia (O'Connell and Rance 1999). There was no significant decrease in rates of 

NNM for surface soils of plantations during ages 1-4 years which was in contrast to 

several other studies. For example, in South Australia, Smethurst and Nambiar 

(1990a) found a decrease in rates ofNNM from 50-70 kg ha-1 during the first year to 

20-30 kg ha-1 during the third year after planting of P. radiata. Raison 

et al. (1992) found a decrease in rates ofNNM from 38 to 7 kg N ha-1 year-1 during a 

four-year period in a P. radiata plantation. Although there was some evidence of 

decreasing rates of NNM during the measurement period (Table 2.2) and higher rates 

due to cultivation (Table 2.3) effects were insignificant and indicative of high 

variability. 

Annual rates of NNM at the Potters ex-pasture site were significantly higher than at 

the other sites, which were ex-mixed forest and ex-pine. Other authors have observed 

high rates ofN mineralisation in pasture soils. For example, rates of gross N 

mineralisation were increased from -0.01to2.5 kg N ha-1 day-1 by converting from 

wheat to pasture (Murphey et al. 1998) and NNM was shown to increase in soil with 

the age of the pasture (Speir et al. 1982). High rates ofNNM at the Potters ex-pasture 

site may be due to a higher quality or quantity of organic matter resulting from 

previous pasture at this site (Wang et al. 1996). The beneficial effects of pasture on 

OM quality may subside with time from conversion to eucalypt plantations. For 

example Aggangan et al. (1998) show low rates ofNNM during aerobic incubation in 

native forest soil, high rates in pasture soil and intermediate rates in Eucalypt 

plantation soil of ex-pasture and ex-native forest. The Potters ex-pasture site had 

greater than double the rates ofNNM (0-10 cm depth) than the Basils ex-native forest 

site. This was not reflected in values of total N and total C which were higher at the 

Basils site, indicating that the Potters ex-pasture site had a better quality of OM. 

Organic matter quality is examined further in chapter three. Annual rates ofNNM at 
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the Tim Shea and Nunamara ex-mixed forest sites were not always ranked 

intermediate between the Potters ex-pasture and the Boulder ex-pine sites, as was 

anticipated by Wang et al. (1996) (Table 2.2), suggesting any possible deleterious 

effects of P. radiata on organic matter quality are not as great as the positive effects of 

pasture on organic matter. 

Because soil water content at all sites was likely to have been at or close to field 

capacity for most of the year, it is unlikely that low water content was a significant 

limitation to1rates ofNNM. It is also unlikely that high water contents inhibited NNM 

because all soils are well c;lrained and probably had high partial pressures of oxygen as 

a result of low temperatures. Soil (0-10 cm) temperature differences between sites 

were small <5 °C (Table 2.1, Appendix) and the two coldest and wettest sites (Basils 

and Potters) also had the highest rates ofNNM. Therefore, differences in soil 

temperature and moisture content could not account for differences in NNM rates 

across the sites. Wang et al. (1988) came to the same conclusion for four of these 

study sites for the period October 1994 to October 1995, where differences in rates of 

NNM could be attributed to differences in mineralisable substrate as indicated by 

anaerobically mineralisable N and total N. Only at the Potters site was there a strong 

seasonal pattern of NNM with summer highs and winter lows. From January to March 

temperatures were high and soil water content was low. Generally within the 

experienced temperature and water contents, we expect NNM to decrease as soil water 

content decreases and NNM to increase as temperature increases. Hence, seasonal 

rates of NNM at the Potters site are probably temperature-driven. At the other four 

sites, seasonal changes in temperature or water content were not associated with a 

seasonal pattern in NNM; this may be attributed to the high variability in NNM 

measurements. 

Rates ofNNM were not significantly different to rates of nitrification, resulting in 

high proportions of mineral N as N03- observed at all sites. While some studies show 

Australian forest soils do not have high proportions ofN03- (Adams and Attiwill 1986 

and 1991; Polglase et al. 1992; Raison et al. 1987; Smethurst and Nambiar 1990a), 

others do. For example, Ellis et al. (1982) found N03- was 0.2-84% of mineral N 

produced during aerobic incubation of a forest soil from southern Tasmania. Ellis and 
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Graley (1983) and Ellis and Pennington (1989) found N03- formed 0-21%and0-60% 

of mineral Nin several Tasmanian soils respectively. High nitrification rates at the 

Tim Shea, Nunamara, Boulder, and Basils sites during this study (November 1995 to 

November 1990), were similar to those of Wang et al. (1988) during October 1994 to 

October 1995 (Table 2.2). These results indicate that conditions at all the study sites 

were favorable for nitrification. Nitrate made up on average 1_3, 19, 21, 49, and 82% 

of mineral N extracted at the Tim Shea, Nunamara, Boulder, Basils, and Potters sites, 

respectively. Nitrate was present in all initial samples except at the Boulder site in 

September 1997, with high proportions ofN03- at all times of the year at the Potters 

(31-96%) and Basils (23-80%) sites. At no site was there a significant net change in 

mineral N content between October 1996 and October 1997, however there were 

differences for other sampling dates and the mineral N content at the Boulder, 

Nunamara, and Basils sites generally decreased with time (Figure 2.4). This decrease 

in soil mineral N was not associated with significantly lower NNM rates, and, 

therefore, it was more likely to be due to increasing rates of N uptake by the 

plantations. 

Leaching at the Basils site during November 1994 to November 1995 (Wang et al. 

1998), and in this study during November 1995 to November 1997, accounted for all 

N mineralised (0-10 cm depth), within the errors of measurement, and leaching was 

dominated by N03- (Table 2.2; Figure 2.). Hence large annual rates ofleaching at the 

Basils site reflect the high rates of mineralisation, nitrification, and rainfall at this site. 

Leaching at the Boulder site during the second year was significantly lower than at the 

Basils site, reflecting lower rates ofNNM, nitrification, and rainfall at the Boulder 

site. Leaching at the Boulder site included periods with apparent negative rates and 

high amounts and proportions of NH/ on two occasions. Apparent negative rates of 

leaching and nitrification may be artifacts of the method resulting from sampling 

errors and differences in soil water, temperature, and N fluxes that can occur between 

uncovered and covered soil and in cored and un-cored soil (Raison et al. 1987). These 

effects may have resulted in differences in rates of denitrification and immobilisation 

between these soils, further contributing to apparent negative rates of leaching. 

Apparent negative rates of leaching were very common during 1996/97, when 

concentrations of mineral N were very low and these differences more likely to result 
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in apparent negative rates. Results reported in chapter three show the Boulder site to 

have a C:N ratio of 25. When the C:N ratio of soil is 20 or greater, immobilisation of 

soil N is likely to occur, which can cause decreases in soil NH/ and N03- levels 

(Tisdale et al. 1993; Leeper 1982), potentially explaining the apparent negative rates 

of leaching. 

Although large amounts ofN03- are leached beyond the 0-10 cm depth, much of this 

N03- may be intercepted by deep penetrating roots ( eg, Tasmanian E. nitens root 

system to 80 cm depth at 34 months Misra et al. 1998a) as it moves down the profile 

or held on the subsoil anion exchange, common to ferrosols (Black and Waring 1976). 

Hence, although large leaching N losses occur in the 0-10 cm depth, losses from the 

soil profile explored by the root system may be small. 

In summary this study has confirmed several trends previously established by 

Wang et al. (1996a, 1996b, 1998): 

•High in situ rates of nitrification and leaching occur within the study sites. 

•Few seasonal patterns are seen in NNM and nitrification. 

•The ex-pasture Potters site has much higher in situ rates ofNNM than the 

other sites examined. 

There are also several important new findings: 

• Rates of in situ NNM in cultivated and uncultivated soil were not 

significantly different. 

• No significant decrease in rates of in situ NNM were observed between 

plantation ages 1-4 years. 

•In situ NNM at the Potters ex-pasture site was very high and approximately double 

the rates of in situ NNM previously measured in Tasmania. 
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3. INDICIES OF NITROGEN MINERALISATION 

3.1 INTRODUCTION 

The in situ soil-core technique is favoured for measuring field rates ofNNM, but this 

method is labour- and time-intensive and not suited to broad-scale management 

practices. A simpler soil analysis correlated to rates of NNM in the field would aid in 

selection and judicious fertilisation of plantation sites. 

Of total soil N only a small portion is mineralised (Bremner 1965). It is this portion of 

labile soil N that soil analyses attempt to extract or correlate to, whether the procedure 

is via physical separation, chemical extraction, which is usually via acids, bases or 

salts, or by microbial incubation, which utilize the native microbiota responsible for 

mineralisation and are either aerobic or anaerobic (Bremner 1965, Keeney 1982). 

Generally OM compounds increase in recalcitrance from very labile soluble 

monomolecular substances (sugars, organic acids, amino acids, lipids, nucleotides) to 

soluble cell components (organic acids, lipids, nucleotides, sugars) to peptides and 

proteins to nucleic acids to polysaccharides, cellulose and lignin (Singer and Donald 

1996). 

Extensive literature reviews covering the various indicies ofN availability and their 

usefulness have been published by Bremner (1965), Dahnke and Vasey (1977), 

Keeney (1982), Binkley and Hart (1989), and Rice and Havlin (1994). Indicies 

examined in this chapter fall into two categories: biological mineralisation 

(incubation) and chemical extraction. 

Aerobic incubation methods measure the increase ofNH/ and N03- in soil, usually at 

a constant temperature and water content. Pre-treatment disturbance can affect rates of 

NNM (Bremner 1965; Binkley and Hart 1989), resulting in an initial flush ofN and 

measured rates that are dependent on the length of incubation (Binkley and Hart 

1989). There are a variety of incubation conditions in use, but commonly temperatures 

are in the range 20-25 °C and the duration is 10-30 days. However, periods in the 

vicinity of 60 days are not uncommon, for example 56 days (Carlyle 
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et al. 1990) and 68 days (Connell et al. 1995). Warmer temperatures also have been 

used, for example 30 °C (Oien and Selmer 1980; Keeney and Bremner 1966a; 

Gianello and Bremner 1986b), and 35 °C (Stanford and Smith 1972). Anaerobic 

methods involve measuring the increase in NH/ only during incubation of flooded 

soil in a sealed container (e.g. Wang et al. 1998). Water content, aeration, and N03- do 

not require monitoring because nitrification does not occur and therefore 

denitrification rates are of no concern. Keeney and Bremner (1966a) and Powers 

(1980) found that during the more common anaerobic incubation conditions of 40 °C 

for seven days (e.g. Thicke et al. 1993; Hart and Binkley 1985; Myrold 1987; 

Stanford and Smith 1972; Gianello and Bremner 1986b; Hart et al. 1986) similar 

amounts of nitrogen were mineralised to those found after for 14 day incubations at 

30°C (e.g. Waring and Bremner 1964; Adams and Attiwill 1986b). Anaerobic 

procedures generally mineralise more N than aerobic procedures and have a shorter 

incubation period (Thicke et al. 1993; Adams and Attiwill 1986b; Hart and Binkley 

1985; Binkley et al. 1992). Nitrogen mineralised during anaerobic incubation has 

been well correlated with microbial biomass, suggesting that N mineralised during 

anaerobic incubations comes mainly from the soil microbial biomass killed during the 

incubation (Myrold 1987; Azam et al. 1988; Adams and Attiwill 1986b). Powers 

(1980) found anaerobically mineralisable N decreased exponentially with soil depth 

paralleling the usual distribution of organic N. 

Anaerobically mineralisable N has indicated N sufficiency in field crops. For 

example, anaerobically mineralisable N correlated with maize yield, leaf %N, and N 

uptake (Robinson 1967; Cornforth and Walmsley 1971), with sorghum yield, and N 

uptake (Ryan et al. 1971), with rye grass yield, N uptake, and response to N fertiliser 

(Gasser and Kalembasa 1976; Osborne and Storrier 1976). Within forest soils, 

anaerobically mineralisable N correlated with response of douglas fir to added N 

(Shumway and Atkinson (1977, 1978). Hence, anaerobically mineralisable N may 

correlate with NNM in eucalypt for~st soils of Tasmania. The anaerobic procedures 

used in this assay are shorter and simpler than aerobic procedures, making them more 

suitable for routine use. 
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Non-incubation methods that involve chemical extraction are attractive because they 

are more rapid, convenient, and precise than biological methods and less affected by 

preliminary soil sampling, handling, and storage (Gianello and Bremner 1986b; 

Selmer-Olsen et al. 1981; Oien and Selmer-Olsen 1980; Hart and Binkley 1985). 

Among chemical methods, hot KCl extractable N has potential for providing an 

estimate of mineralisable N (Campbell et al. 1994) because it is correlated with 

anaerobically mineralisable N (r2 = 0.95 Gianello and Bremner 1986b; r2 = 0.81 

Aiman 1992; r2 = 0.98 Selmer-Olsen et al. 1981), aerobically mineralisable N 

(r2 = 0.93 Gianello and Bremner 1986b; r2 = 0.92 Oien and Selmer-Olsen 1980), as 

well as crop growth and N uptake (Whitehead 1981; Mc Taggart and Smith 1993; 

Selmer-Olsen et al. 1981; Aiman 1992). The hot KCl method measures the increase in 

NH/ during heating of soil in KCl for periods of 1-24 hours at 80-105 °C. However, 

it is noted that extraction period (McTaggart and Smith 1993; Oien and Selmer-Olsen 

1980) and temperature (Oien and Selmer-Olsen 1980) are positively correlated with 

the total N extracted. 

Nitrogen uptake and growth of plants in greenhouse experiments and biological and 

chemical analyses of N availability have been positively correlated with 

concentrations of soil total N and total C (Keeney 1982; Dahnke and Vasey 1977) but 

there are many irregularities (Danke and Vasey 1977). Although total N, total C, and 

C:N ratios are not universal indicators ofN mineralisation (Richards et al. 1985), N 

mineralisation has been positively correlated with total N in several Australian forest 

soils when soils were grouped into primary profile form (r = 0.82) (Connell et al. 

1995) or into strongly (r2 = 0.59) and weakly (r2 = 0.65) nitrifying soils (Carlyle et al. 

1990). Positive correlations with total N and anaerobically mineralisable N have been 

reported, for example by Gianello and Bremner (1986a) (r2 = 0.79), and Fox and 

Piedielek (1984) (r2 = 0.79). Usually small :fractions (<5%) of the total soil N and total 

soil C are mineralised, hence total N and total C are expected to be temporally stable. 

Wang et al. (1998) ranked two of the present study soils (Basils and Boulder) in order 

of in situ NNM using total N, anaerobically mineralisable N, and hot KCl extractable 

N. Hence these soil analyses are likely indices of NNM for Tasmanian forest soils. 
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Pinus radiata stands have been reported to accumulate additional N on the addition of 

P fertiliser (Waring 1969; Nielson et al. 1984; Turner and Lambert 1986), show 

increased growth and foliar N concentrations (Crane 1981; Farrell 1990), and show a 

positive growth interaction with N fertilisation (Cromer et al. 1975; Waring 1981). 

Positive growth responses to N fertiliser were more common with high soil 

extractable P (Radwan and Shumway 1983). Application of superphosphate increased 

NNM in a dry sclerophyll Eucalypt forest from 20.7 kg N ha-1 year-1 to 28.3 kg N ha-1 

year-1 (0-20 cm) (Falkiner et al. 1993). Phosphorous may have a positive effect on soil 

microbiota, increasing their activity (Falkiner et al. 1993). Hence Tasmanian forest 

sites of high total P may have higher rates ofNNM. Large amounts of P can be found 

as organic P (Kelly et al. 1983) and as Pin association with soil minerals (P sorption) 

(Mendham 1998), hence total P is expected to be temporally stable. 

The process of NNM releases NH/ from soil organic nitrogen, which is readily 

converted to N03- via nitrification. It is possible that soils of high NNM will also have 

high concentrations ofNH/ and N03-. For example, in soil after burning of a north 

American pine-hardwood forest, soil solution concentrations ofNH/ and N03-

increasea with increases in NNM rates, proportions ofN03- increased with increases 

in in situ nitrification rates, and aerobically mineralisable N (Knoepp and Swank 

1995). NNM, uptake, and soil solution N were higher in soil from a maple forest than 

a less productive pine forest (Hill and Shackleton 1989). Soil solution N 

concentrations were also higher under black locust forests than under pine-mixed 

hardwoods oflower NNM rates (Montagnini et al. 1986). Hingston and Jones (1985) 

found an increase in soil solution N after N fertilisation of E. marginata forest in 

Western Australia. 

Of concern however, is the possibility of seasonal fluctuations in concentrations of 

mineralisable N (Bremner 1965). For example, Adams and Attiwill (1986) and 

Powers (1980) found higher concentrations of anaerobically mineralisable N when 

soil was collected during summer. This may be explained by changes in microbial 

biomass (Bonde et al. 1988) as affected by environmental factors such as soil 

moisture (Cabrera et al. 1994). Hence, there may be preferred periods of sampling if a 

soil index has considerable temporal variation. 
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Another concern is that contributions ofNNM from the soil profile below the sampled 

depth (0-10 cm) may represent a significant proportion of the total-profile NNM. 

Misra et al. (1998a) show that fine(< 1 mm) and medium (1-3 mm) roots of a 

Tasmanian E. nitens plantation grew below 80 cm at age 34 months. Hence N 

availability below 10 cm may form a significant source of mineral N for E. nitens 

plantations. Measurement of in situ rates of NNM in subsoils is labour- and time­

demanding, hence, was not measured in this study. Soil analyses have the potential to 

estimate the contribution of subsoil NNM. 

Objectives of the research reported in this chapter were: (1) To determine the temporal 

stability of cold KCl extractable N, soil solution N, anaerobically mineralisable N, hot 

KCl extractable N, total N, total C, and total P and compare these values with in situ 

rates of NNM. (2) To provide an estimate of subsoil NNM using soil analyses. 

3.2 MATERIALS AND METHODS 

3.2.1 Site description and sampling 

The same five sites described in chapter 2 were sampled in this study. Soil was 

sampled in the uncultivated regions of the Boulder, Nunamara, Tim Shea, Potters, and 

Basils sites as for initial soil described in 2.2.3. For all sites n=3, except for the Potters 

site where n=5. 

3.2.2 Analytical methods 

Analytical procedures conducted fresh sieved soil were initiated within seven days 

from sieving. Procedures were conducted in order of cold KCl extraction, 

anaerobically mineralisable N and soil solution N. For procedures requiring air-dried 

soil, this soil was sub-sampled within three days of sieving. 

Cold KC! extractable N 

Cold KCl extractable N is that mineral N (NH/ and N03-) extracted from fresh sieved 

initial soils using 2M KCl, as described in 2.2.4. 



Soil solution N 

Soil solution NH/ and N03- were determined for fresh sieved initial (see section 

2.2.2) soil in a similar way to Smethurst et al. (1997). A sub-sample of 240 g moist 

soil was made into a paste with the addition of water (50-100 mL, depending on the 

water content of the initial soil) and mixed for one minute with a spatula until a 

uniform paste. The mixture was allowed to equilibrate for one hour before being 

transferred to centrifuge tubes for centrifuging at 2500 rpm for 40 minutes. The 
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· supernatant was filtered through cellulose acetate 0.45 µm membrane. Solutions were 

frozen (-10 °C) until analysis using Lachat Quikchem method 12-107-06-1-A for 

NH4 + and method 12-107-04-1-F for N 0 3 -, except water was used as the carrier instead 

ofKCl. Ammonium concentrations in the undiluted soil solution were estimated using 

the paste method described in Smethurst et al. (1997). Table 3.1 shows fitted 

parameters A and B and Kd values used for calculations of initial soil NH4 + 

concentrations from paste N concentrations. 

Anaerobic incubation 

Anaerobically mineralisable N was determined for fresh sieved initial (see section 

2.2.2) soils using the same method as Wang et al. (1998), based on Keeney (1982). A 

20 g subsample of fresh initial soil was incubated at 40 °C for seven days in an air 

tight 100 mL jar with 50 mL water. At the end of the incubation 50 mL of 4 M KCl 

was added to each jar which was then shaken for one hour. Extracts were filtered 

through Whatman No. 42 filter papers, stored frozen at -10 °C, then thawed and 

analysed colorimetrically with a flow injection analyser using Lachat Quikchem 

Method 12-107-06-1-A for NH/, and Method 12-107-04-1-F for N03-. 



Table 3.1. Fitted parameters A and B, and Kd values used for calculations of initial 

soil NH4 + concentrations using the paste method (Smethurst et al. 1997). 

Fitted parameters 

Site A B Kd values 

Boulder 0.009 3.3396 4.2-400 

Nunamara 0.0191 z 3.93138 z 2.7-145 

Tim Shea 0.01871 z 8.12458 z 1.4-43 

Potters 0.009 3.3396 4.9-43 

Basils 0.009 3.3396 1.4-43 

Rabbits 0.009 3.3396 12.1-12.7 

Old Park 0.009 3.3396 9.0-12.1 

Blue Gum 0.001 x 1.779 x 3.1-3.4 

Tabot 0.009 3.3396 13.7-15.0 

Wattle 0.009 3.3396 9.9-13.7 

Chromeys 0.009 3.3396 4.1-5.3 

Wages 0.009 3.3396 14.3-19.9 

Basalt 0.009 3.3396 4.9-9.8 

z Data from Smethurst et al. in press. 

x Data for a sand from Umea, Sweden, from Smethurst et al. (1999). 

Remaining fitted parameters were supplied by the Cooperative Research Centre for 

Sustainable Production Forestry, Hobart, Australia. 

Hot KC! extractable N 
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Hot KCl extractable N was determined for air dried sieved initial (see section 2.2.2) 

soils. A 3 g subsample of air dried initial soil was heated to 95°C with 20 mL 2 M 

KCl in 75 mL digestion tubes in an aluminium block digester for 17 hours. After 

cooling to room temperature, samples were diluted to 100 mL with 2 M KCl. The 

mixtures were shaken for 15 seconds and the extract filtered through Whatman No. 42 

papers. The extracts were frozen (-10 °C) until analysis for ammonia using Lachat 

Quikchem Method 12-107-06-1-A. 
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TotalN 

Total N was determined on air dried sieved initial (see section 2.2.2) soils from soil 

collections six months apart. An acid digestion technique similar to that described by 

Rayment and Higginson (1992) method 7.A2 was used. A subsample (0.2-0.5 g) of 

finely ground(< 0.5 mm) air-dry soil was placed into a 75 mL digestion tube. Water 

was added drop-wise to the soil until damp and left for one hour when 8 mL of 

sulphuric-salicylic acid (33.3 g salicylic acid in 1 L concentrated sulphuric acid) was 

added to each tube and mixed before covering and allowing to stand overnight. 

Sodium thiosulphate (0.5 g) was added to the tubes, which were then heated to 110 °C 

for ten minutes or until :frothing ceased, after which they were allowed to cool. Once 

cool, 2.2 g catalyst (10:1 w:w anhydrous sodium sulphate: anhydrous copper sulphate) 

was added before reheating to 360 °C for two hours after the solution cleared and the 

soil particles appeared white. After cooling for 15 minutes the solutions were made up 

to 50 mL with water and analysed colorimetrically with a flow injection analyser 

using a modified Lachat Method 10-107-06-2E. The following modifications were 

made to this method: 

1. The carrier/dilution acid concentrations were based on 96% acid recovery 

after digestion. 

2. Anhydrous dichloroisocyanuric acid-sodium salt (Domestos) replaced 

5.25% NaCl 

3. 80g/L NaCl was used to remove mercury interference in the alkaline 

chemistry. 

4. Acid/K.2S04 solution was used as carrier. 

5. Sample volume was able to be varied without change to pH cell effluent. 

6. The heater coil was lengthened from 650 cm to 825 cm. 

7. Tartate/phosphate/caustic buffer was used, avoiding the problem of 

crystallisation that occurred using EDTA/NaOH buffer. 

Reference soils of known total N were included with each run to provide an estimate 

ofN recovery. 
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Total P 

Total P was calculated using the same method and soil samples as total N, except 

during the heating to 360 °C for two hours, glass tear drop stoppers were placed on 

each digestion tube to prevent losses of P. Solutions were analysed colorimetrically 

with a flow injection analyser using Lachat Method 10-115-01-lD with the following 

modifications: 

1. The carrier/dilution acid concentrations were based on 96% acid recovery 

after digestion. 

2. The carrier was the same as described for total N, enabling analysis of total 

N and total P together. 

3. Chemistry manifold changes: 

a,. Reagent pump tubes were increased in volume and molybdate 

concentrations were adjusted to achieve an optimum (H+)/(molybdate) 

ratio of 70 and cell effluent pH 0.6 - 0.9 providing good precision. 

b. The heater coil was lengthened from 650 cm to 825 cm. 

These modifications allowed sample volume to be varied without change to pH cell 

effluent. Reference soils of known total P were included with each run to provide an 

estimate of P recovery. 

Total Carbon 

Total carbon was calculated from loss-on-ignition data, for fresh sieved initial (see 

section 2.2.2) soils, using regression relationships determined by Wang et al. (1996b) 

for Tasmanian soils. Loss on ignition was determined by measuring weight loss of 

105 °C oven-dried soil samples following heating at 375 °C for 17 hours. 

3.2.3 Sampling of Subsoils 

Samples were taken from soil pits, one within each of three control plots, at the 

Potters, Basils, and Boulder sites. Four 50 mm internal diameter PVC cores were used 

to sample soil from 0-10 cm depths and horizontally into the vertical wall of each soil 

pit at depths 20, 45, 75, and 105 cm. Plate 3.1 shows a soil profile to 105 cm at the 

Basils site. 



Plate 3.1 Soil profile (ferrosol) at the Basils site. Note the abundance of roots at 

depth. The tape measure is in inches. 
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3.2.4 Statistical analysis 

Means were compared using an LSD where an ANOV A indicated a significant 

difference between means (P~ 0.05). To determine the significance of changes in 

parameters over time within sites (e.g., for anaerobically mineralisable N and hot KCl 

extractable N) a 2-way ANOV A was used based on replicates and groups, where each 

individual mean to be compared was a separate group (eg. date-by-N extracted 

combinations). Comparing sites for average soil analysis values were by 1-way 

ANOV A using the SAS version 8 Proc Mixed program, data was '1x transformed to 

stabilise the variance. Correlations and regressions were determined by standard 

statistical methods. 

3.3 RESULTS 

3.3.1 N mineralisation indices in surface soils 

Soil solution and cold KCl extractable concentrations ofNH/ and N03- ranged from 

<0.01-14.6 mM and <0.01-105.2 µg N per g soil, respectively, due to site and 

sampling date effects (Figure 3.1). These concentrations also had considerable short­

term variation within sites. For example, at the Potters site between April 1997 and 

June 1997, soil solution N03- dropped from 10.2 to 1.5 mM, and cold KCl extractable 

N03 - from 83 to 15 µg N g-1 soil. Average concentrations of cold KCl extractable and 

soil solution N and concentrations in January, April, July, or October were well 

correlated with annual NNM when the Potters site was included in the analysis. The 

Potters ex-pasture site, which had very high rates ofNNM also had the highest 

concentrations of mineral N in cold KCl extracts and in soil solution except during 

spring each year (September-November). Values ofr for these correlations generally 

decreased when the Potters site was excluded (Tables 3.2 and 3.3). Soil solution N 

generally had higher correlations with annual NNM, with greater separation of sites, 

especially during the summer months (December to March) (Figure 3 .1 ), than cold 

KCl extractable N. Extractable N03- and extractable NQ3- + NH/ had higher r2 values 

than extractable NH/ when correlated with annual rates ofNNM. Correlations (r) 

between log-log values of cold KCl extractable and soil solution NH/ or N03- were 

0.30 or 0.43 for individual samples respectively (Figure 3.2). Ratios of soil solution 
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KCI extractable N03- were close to 1 : 1, except for the Boulder site, but were lower 

for~+ . 

Figure 3. 1. Cold KC! extractable (NH4 + + NO 3) and soil solution (NH4 + + NO 3) 

from 1995 to 1998 at the Boulder, Nunamara, Tim Shea, Potters, and Basils 
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Anaerobically mineralisable N ranged from 30.9 µg N g-1 soil at the Nunamara site to 

225 ug N g-1 soil at the Basils site, and significant differences between sampling dates 

occurred for all sites (Figure 3.3). Hot KCI extractable N ranged from 1.9 µg N g-1 soil 

at the Nunamara site to 199 µg N g-1 soil at the Basils site. Significant differences in 

sampling dates occurred at the Tim Shea site, but these were not consistent with 
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Table 3.2. Coefficient's of determination (r) for linear relationships between average 

annual NNM rates and average values of soil analysis collected at the 

Boulder, Nunamara, Tim Shea, Basils and Potters sites. 

+Potters -Potters ex-forest sites 

Total N 0.56 0.96 0.96 

Total C 0.25 0.91* 0.93 

Total P 0.85* 0.97* 1.00* 

Hot KCI \ 0.58 0.90* 0.92 

AMN 0.27 0.75 0.74 

C:N 0.33 0.02 0.26 

Cold KCI 0.85* 0.17 0.17 

Soil solution 0.97** 0.94* 0.94 

With the Potters site n=5, without the Potters site n=4, ex-forest sites n=3 

AMN Anaerobically Mineralisable N 

Ex-forest sites exclude the Potters and Boulder sites 

* p < 0.05 ** p < 0.01 

seasonal patterns (Figure 3.4). Total N ranged from 0.22% at the Nunamara site to 

0.74% at the Basils sites. Total P ranged from 0.05% at the Boulder site to 0.41 % at 

the Potters site (Table 3.4). Total N, total P and hot KCl extractable N did not alter 

significantly with time within sites, except for hot KCl extractable N at the Tim Shea 

site. When comparing the average of values of anaerobically mineralisable N, hot KCl 

extractable N, total N and total P there were significant differences between sites in 

both years (Table 3.4). 

Loss On Ignition (LOI) ranged from 9.4% at the Nunamara site to 31.3% at the Basils 

site. These data indicated total carbon to range from 3.6% at the Nunamara site to 

13.7% at the Basils site. There were significant differences in total C with time at the 

Boulder, Nunamara, Tim Shea, and Potters sites, but these differences were not 

consistent with seasonal patterns. Only at the Boulder and Tim Shea sites were there a 

significant (P < 0.05) trends in total C with time, both sites demonstrating a slow 

decrease from the first estimates in October 1994 by Wang et al. (1996b) to 
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Table 3.3. Coefficient's of determination (r) for linear relationships between average annual NNM and average soil analyses collected 
within 21 days of January, April, July and October of both years of measurement at the Boulder, Nunamara, Tim Shea, and Basils 
sites. 

N forms Soil _Cold KCI 
Extracted Solution extractable 
and Month N N 

A B A B 
January 
NH/ 0.67* 0.03 0.91** 0.22 
NQ3- 0.91***0.76 0.90** 0.06 
Total 0.91***0.70 0.91** 0.17 
April 
NH + 

4 0.05 0.37 0.52 0.90** 
NQ

3
- 0.98***0.99*** 0.92** 1.00# 

Total 0.98***0.99*** 0.90** 0.53 
July 
NH/ 0.06 0.07 0.27 0.23 
NQ

3
- 0.88** 0.87* 0.97***0.97** 

Total 0.88** 0.86* 0.86** 0.04 
October 
NH + 

4 0.07 0.64 0.00 0.08 
NQ

3
- 0.98# 0.87* 0.97***0.94** 

Total 0.98# 0.87* 0.94***0.80 
n = 3 for all sites exceplthe Potters site where n = 5 
Total = (NH4 + + N03) 

A including the Potters site B excluding the Potters site. 
# P < 0.001, ***P < .01 ** P < 0.05, * P < 0.1 

Anaerobically 
Mineralisable 
N 
A B 

0.28 0.78 

0.45 0.63 

0.32 0.81* 

0.23 0.72 

Hot KCI 
Extractable 
N 
A B 

0.57 0.92** 

0.63 0.86* 

0.50 0.91** 

0.59 0.87* 

No result was obtained for January 1996 at the Boulder site, henc{'! only 1997 data were used for January at this site. 



41 

Figure 3.2. Relationship between soil solution NH4 + and N03- and Cold KC! 

extractable NH4 + and N03- at the Boulder, Nunamara, Tim Shea, Potters, and 

Basils sites on individual sample basis. Line represents 1 : 1 soil solution N : 

cold KC! extractable N 
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November 1997, the end of this study (Figure 3.5). Ratios ofC:N correlated poorly 

with NNM with or without the Potters site in the analysis (Table 3.2 and 3.3). The 

Potters ex-pasture site had the lowest C:N ratio of 14 and the Boulder ex-pine site had 

the highest C:N ratio of26 (Table 3.4). 
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Figure 3.3. Anaerobically mineralisable N ( µg Ng soi[1 week1
) at the Boulder, Nunamara, Tim Shea, Potters, and Basils sites during the study 

period 
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Figure 3.4. Hot KC/ extractable N ( µg Ng soi!1
) at the Boulder, Nunamara, Tim Shea, Potters and Basils sites during the study period. 
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Average values for anaerobically mineralisable N and hot KCl extractable N collected 

annually or in January, April, July or October did not correlate well with annual 

NNM. Total P, total C and total N also did not correlate well with annual NNM, 

however correlations (r2) improved in all cases when the Potters site was removed 

from the regression (Tables 3.2 and 3.3). Correlations (r2) of total C, total P and hot 

KCl extractable N with rates ofNNM improved further when the ex-native forest sites 

were grouped. The correlation with total N remained constant and a drop of 0.01 was 

observed for the correlation with anaerobically mineralisable N (Table 3.2). 

The Potters ex-pasture site had very high rates of NNM, but it was not distinguishable 

from the Basils site of lower rates of NNM by anaerobically mineralisable N, hot KCI 

extractable N, total Nor total C. The Potters ex-pasture site was consistently ranked 

highest with total P, which ranked sites similar to NNM, ie Potters > Basils > Tim 

Shea~ Nunamara ~Boulder (Table 3.4). 

Coefficients of determination for linear relationships between a range of soil analyses 

is presented in Table 3.5. Significant relationships exist between soil analyses total N, 

total C, hot KCl extractable N, total P and anaerobiaclly mineralisable N. These 

relationships are generally stronger when the Potters site is excluded from the 

regression. 

The five study sites could be separated into two groups based on either hot KCl 

extractable N, total N, total P, or total C: those having NNM greater or less than 40 kg 

N ha-1 year-1
• Those of higher NNM had hot KCl extractable N > 100 µg N g-1 soil, 

total N > 0.4%, total P > 0.2%, and total C > 8% (Figure 3.6). 
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Table 3.4. Average values for soil analyses for five E. nitens plantation soils, except 

where specified due to significant differences in sample periods. (P S'0.05). 

Site 

Soil Analysis Boulder Nunamara Tim Shea Potters Basils 

NNMX 24 e 23 b,e 13 e 188 a 70 b 

NNMY 13 e 20 e 23 e 175 a 76 a, b 

A.M.N.x 57 ed 44 d 91 be 119 ab 137 a 

A.M.N.v 66 e 51 e 110 b 108 b 172 a 

A.M.N2 62 e 43 e 101 b 113 b 154 a 

Hot KCI 11x de 10 e 52x b 164 a 185 a 

Hot KCI 11y b 65y a 

Total N 0.27 b 0.22 b 0.33 b 0.65 a 0.74 a 

Total P 0.05 b 0.08 b 0.08 b 0.41 a 0.32 a 

Total C 7.0 e 3.6 d 6.1 e 9.4 b 13.7 a 

C:N 26 a 16 be 18 be 14 e 19 b 

n=3 at all sites except the Potters site where n=5 

letters denote significant differences within years and soil analysis 

NNM values from chapter 2 

A.M.N. Anaerobically Mineralisable Nitrogen. 

x values for 199511996 Y values for 199611997 

2 average values for January 95196 and 96197 

Units: NNM (kg N ha·1 year-1
) A.MN (µg N g·1 soil week-1

) 

Hot KCL (µg N g·1 soil) total N, total P, total C (%) 



47 

Table 3.5. Coefficient's of determination (r) for linear relationships between average 

values of soil analysis collected at the Boulder, Nunamara, Tim Shea, Basils 

and Potters sites. 

a) including the Potters site 

1 2 3 4 5 6 7 

1. Total N 

2. Total C 0.86** 

3. C:N 0.16 0.004 

4. A.M.N. 0.56 0.84** 0.10 

5. Hot KCI 0.98# 0.80** 0.24 0.88** 

6. Cold KCI 0.19 0.03 0.23 0.03 0.20 

7. Soil solution 0.39 0.13 0.35 0.14 0.42 0.94# 

8. Total P 0.87** 0.55 0.36 0.56 0.88** 0.49 0.73* 

b) excluding the Potters site 

1 2 3 4 5 6 7 

1. Total N 

2. Total C 0.94** 

3. C:N 0.03 0.004 

4. A.M.N. 0.89* 0.83* 0.05 

5. Hot KCI 0.98** 0.88* 0.08 0.95** 

6. Cold KCI 0.27 0.11 0.65 0.46 0.40 

7. Soil solution 0.83* 0.73 0.06 0.54 0.76 0.12 

8. Total P 0.95** 0.83* 0.10 0.78 0.93** 0.30 0.93** 

n=3 for all sites but the Potters site where n=5 

A.MN Anaerobically Mineralisable N 

# p < 0.001, ** p < 0.05, * p < 0.1 
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Figure 3. 6. Separation of the Boulder, Nunamara, Tim Shea, Potters, and Basils sites 

into high and low annual NNM using total N, total C and total P, hot KC! 

extractable N values. n=3 for all sites except the Potters site where n=5. 
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3.3.2 N mineralisation indices in subsoils 

Concentrations of anaerobically mineralisable N, hot KCl extractable N, total N, and 

total C decreased exponentially with increasing soil depth at the Potters, Basils and 

Boulder sites with the exception of a slight increase in all soil analyses at the Boulder 

site from 45 to 75 cm depth. With depth, total P increased slightly at the Basils site, 

decreased slightly at the Boulder site and decreased exponentially (after an initial 

slight increase) at the Potters site (Figure 3.7). Compared to values for the 0-10 cm 

depth, contributions of anaerobically mineralisable N, Hot KCl extractable N, total N, 

total C and total P below 10 cm were large. Soil analyses values from 10 to 120 cm at 

the Potters and Basils sites and 0 to 90 cm the Boulder site were compared to those of 

the 0-10 cm depths, assuming samples at the 20, 45, 75, and 105 cm depths were 

representative of depth intervals 10 to 30, 30 to 60, 60 to 90, and 90 to 120 cm, 

respectively, and that bulk density of the soil profile did not decrease with depth. The 

contributions of subsoil to these analyses were, for the Potters, Basils and Boulder 

sites, respectively, at least 2.2 to 6.5, 2.1 to 9.8, 1.9 to 5.5 times that of the top 10 cm 

(Table 3.6). These estimates are likely to be slight underestimates due to the missing 

data from shallow soil pits and bulk density is likely to increase with depth. Total P 

and total C resulted in the largest estimates of subsoil NNM, however, soil analyses 

extracting N, total N, hot KCl extractable N and anaerobically mineralisable N 

indicated subsoil NNM was 1.9 to 2.9 times that of the top 10 cm. 

At the Basils and Boulder sites cold KCl extractable and soil solution N decreased 

with depth (Figure 3.8), but at the Potters site there were large amounts of mineral N, 

found at 75-105 cm depths (289.3 µg N g-1 soil cold KCl extractable; 2.8 mM Nin 

soil solution). The proportions of mineral N extracted as N03- in soil solution were 98 

to 99% at the Potters site, 93% decreasing to 45% with increasing depth at the Basils 

site, and 35 % over 0-45 cm depths, decreasing to 17% at the 75 cm depth at the 

Boulder site. 
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Figure 3. 7. Anaerobically mineralisable N, hot KC! extractable N, total N, and total 

Pat 0-10, 20, 45, 75 and 105 cm depths. Bars denote standard deviations. 
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Table 3.6. Soil analyses values from surface soils and subsoils at the Potters, 

Basils and Boulder sites. Standard deviations are shown in parenthesis. n=3 

Site and Soil analyses 

Depth (cm) Total N Total P AMN Hot KCI Total C 

Potters 

A0-10 0.7 (0.1) 0.5 (0.0) 120 (37) 108 (16) 10 (1) 
8 10-120 2.0 (0.6) 2.9 (0.5) 262 (66) 273 (101) 47 (12) 
B/A 2.9 6.5 2.2 2.5 4.6 

Basils 

A 0-10 0.7 (0.3) 0.3 (0.0) 155 (50) 137 (90) 16 (3) 

B 10-120 2.3(1.1) 2.9 (1.3) 319 (246) 288 (233) 65 (22) 
B/A 3.3 9.8 2.1 2.1 4.2 

Boulder 

A 0-10 0.3(0.1) 0.1 (0.01) 50 (18) 39 (13) 8 (3) 

B 10-90 0.8 (0.3) 0.3 (0.1) 128 (63) 75 (39) 21 (3) 
B/A 2.6 5.5 2.6 1.9 2.8 

AMN =Anaerobically Mineralisable Nitrogen 
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Figure 3.8. Soil solution (NH4 + + N03) and cold KC/ extractable (NH4 + + NQ3) Nat 

the Boulder, Basils, and Potters sites in September 1997 at 0-10, 20, 45, 75, 

and 105 cm depths. Bars denote standard deviations. 
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3.4 DISCUSSION 

Values of potential indices ofN supply and in situ rates ofNNM in this study covered 

a very wide range and were therefore a good basis for evaluating indicators ofN 

supply. 

Compared to the high rates of NNM at the Potters site, concentrations of anaerobically 

mineralisable N, hot KCl extractable N, total N, total P, and total C were 

disproportionately low (Table 3.4). Hence, the inclusion of the Potters site strongly 

affected relationships ofNNM with total N and especially total C. All sites had similar 

temperature environments where long term average monthly temperatures did not vary 

more than 5 °C. All sites also received moderate to high rainfall (1000-1913 mm year-

1), and therefore did not experience significant periods of water stress (chapter 2). 

Hence, differences in in situ rates of NNM were unlikely to be due to environmental 

differences between sites, but largely due to differences in the quality and quantity of 

organic matter. Annual NNM rates corresponded to 3.4-3.6, 1.4-1.6, 0.7-1.0, 0.7-1.0 

and 0.5-0.9% of total N (0-10 cm) at the Potters, Basils, Boulder, Nunamara, and Tim 

Shea sites, respectively, and are indicative of proportions oflabile organic N. These 

data indicate that relationships between in situ rates of NNM and simpler chemical 

analyses will be specific to classes of previous vegetation and management. By 

inference then, the chemical analyses tested did not adequately indicate the differences 

in organic matter quality that resulted in the high rates ofNNM on the ex-pasture site. 

Other authors also have suggested that differences in organic matter quality due to 

previous vegetation may not be accounted for by these soil analyses (Bremner 1965; 

Gonzales-Prieto et al. 1994; Juma and Paul 1984). 

These data are the first to quantify the rate ofNNM on an ex-pasture site in Tasmania. 

Although the Potters ex-pasture site had the highest proportions of total N 

mineralised, highest concentrations of total P, and the lowest C:N ratio, it also had the 

highest rates of NNM despite lower concentrations of total N and total C than the 

Basils site (ex-native forest). The contrasts between these two sites, therefore, are 

indicative of changes in soil following conversion of native forests to pasture that are 

well recognised (Skinner and Attiwill 1981 ), ie. phosphate fertilisers are added and N 



supply is increased by a combination of decreased C:N ratios and an increase in 

concentrations of labile N due to N inputs through biological N fixation by legumes. 

54 

Although there were significant differences in ranking and poor linear correlations of 

NNM and soil analysis it was possible to separate the five sites described in chapter 2 

into those having NNM greater or less than 40 kg N ha-1 year-1 using hot KCl 

extractable N, total N, total P, and total C, where sites with NNM > 40 kg N ha-1 

year-1 had hot KCl extractable N greater than 100 µg N g-1 soil, total N greater than 

0.4%, total P greater than 0.2%, and total C greater than 8%. For all soil analyses, the 

Potters site (ex-pasture site) ranked in the group of greater NNM and the Boulder site 

(ex-pine) ranked in the group oflower NNM, as suggested by Wang et al. (1996a). 

Wang et. al (1996a) found ex-forest sites ranked between ex-pasture and ex-pine sites 

for concentrations of total N, anaerobically mineralisable N, and hot KCl extractable 

N, but this was not always the case for the Basils, Tim Shea, and Nunamara ex-forest 

sites (Table 3.4). 

Removing the ex-pasture site improved correlations of anaerobically mineralisable N, 

total P, total N, total C and hot KCl extractable N with rates ofNNM. Further 

improvements in all except anaerobically mineralisable N occurred when the ex-native 

forest sites were grouped. Hence grouping sites by previous vegetation may improve 

correlations of these soil analyses with rates ofNNM, in a similar way to grouping 

sites by primary profile form (Connell et al. 1995) or into strongly and weakly 

nitrifying soils (Carlyle et al. 1990) improved correlation's of total N with rates of 

NNM. Alternatively these soil analyses may be used as parameters in a model to 

predict rates ofNNM similar to the way to O'Connell and Rance (1999) used 

anaerobically mineralisable N to predict rates of NNM in Western Australian forest 

soils. 

Relationships between total N, hot KCl extractable N and total C with and without the 

Potters site, show strong relationships (r = 0.80 - 0.98), suggesting that amounts of 

total N and hot KCl extractable N were dependent upon the quantity of organic matter 

present. Strong correaltions (r = 0.78 - 0.95) existed between these soil analyses, total 

P and anaerobially mineralisable N only when the Potters site was excluded. Other 
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studies have also shown good correlations between these soil analyses, for example, 

between hot KCl extractable N and anaerobically mineralisable N (Gianello and 

Bremner 1986a, Aiman, 1992, Selmer-Olsen 1981), and between total N and 

anaerobically mineralisable N (Gianello and Bremner 1986b, Fox and Piedielek 

1984). Stockdale and Rees (1994) found 15N extracted anaerobically and with hot KCl 

were not well correlated. Hence, it is unlikely that hot KCl extractable N and 

anaerobically mineralisable N are from exactly the same pool of organic N. 

The five sites could not be separated into groups based on anaerobically mineralisable 

N, irrespective of whether values were from samples collected in January, April, July, 

or October or were average values of each years sample periods. Anaerobically 

mineralisable N varied by more than a factor of two at all sites with sampling date, 

probably due to varying environmental conditions. This finding is in contrast to 

Polglase et al. (1992) who found little seasonal or annual variation in anaerobically 

mineralisable N but is in agreement with Adams and Attiwill (1986) and Powers 

(1980) who reported higher concentrations of anaerobically mineralisable Nin the 

summer months. Anaerobically mineralised N is thought to come from microbial 

biomass N, which has been shown to fluctuate with season (Boone 1992) and soil 

temperature (Adams and Attiwill 1986; Powers 1980). Fluctuations in soil 

environment as well as variations in organic matter quality may have contributed to 

the poor separation of sites by annual NNM rates using anaerobically mineralisable N 

results. 

Examination of cold KCl extractable N and soil solution N alone was not sufficient to 

group sites by NNM, these parameters varying considerably with sampling date. 

Ammonium can be nitrified, and N03- is readily leached and denitrified. Both NH/ 

and N03- are subject to uptake by plants and immobilisation by soil micro biota. 

Hence, levels of mineral N are unlikely to accurately reflect NNM rates in all 

conditions, making them unreliable as predictors of NNM. Keeney and Bremner 

(1967) came to similar conclusions, and Rice and Havlin (1994) suggest that 

measurements of soil inorganic N are unlikely to provide predictions of NNM, but 

they may provide an estimate of soil N sufficiency at the time of sampling. However 

the Potters ex-pasture site had very high rates ofNNM and the highest concentrations 



of mineral N (except soil solution N in October 1997), hence soil solution and cold 

KCl extractable N may be useful for indicating sites of very high rates ofNNM. 
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When soil solution N and cold KCl extractable N from individual sampling periods at 

the Boulder, Nunamara, Tim Shea, Potters, and Basils sites were plotted against each 

other, with results for both in µg N g-1 soil, high correlations for extracted N03 - were 

expected with a slope close to one, as negligable interaction ofN03- with the soil is 

expected in surface soils (Black and Waring 1976). Correlations with NH/ were not 

expected to be as high due to interactions ofNH4+ with cation exchange surfaces. 

Displacement of NH/ by K+ from KCl, should result in more NH/ being detected by 

KCl extracts. The ratio ofN03- extracted in KCl and soil solution was approximately 

1: 1 and more NH4 +was extracted using KCl extraction than in soil solution as 

expected. However, correlations of both NH/ (r = 0.30) and N03- (r = 0.43) 

extracted by cold KCl and soil solution extracts were lower and particularly poor at 

low concentrations (Figure 2). Cold KCl extraction was the first procedure conducted 

on the sieved soil; the commencement of the soil solution N assay was delayed for up 

to one week after cold KCl extraction. Potential effects ofremoval of the soil from the 

cool room ( 4 °C) to room temperatures and disturbance encountered during sampling 

for earlier procedures may have diminished reliability of soil solution N relative to 

cold KCl extractable N. 

Net N Mineralisation and soil analyses are expected to decrease exponentially with 

depth (Persson and Wiren 1995; within the study soils Wang et al. 1988). Hot KCl 

extractable N, anaerobically mineralisable N, and total N values from 20-105 cm 

depths do decrease exponentially. However these subsoil soil analyses values indicate 

the N extracted from 10-120 cm depth represent up to three times the N extracted in 

the 0-10 cm depth. Of these soil analyses the microbially mediated anaerobically 

mineralisable N is the most likely to account for effects of depth on the mineralising 

biota. Using this soil analysis, the contribution of extractable Nin the 20-120 cm 

depths was twice that of the top 10 cm. 

Soil analyses from soil in the top 10 cm of the soil pits differed from those obtained 

during regular sampling of surface soils for the same depth. This is likely due to 
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reduced sampling of surface soils for the depth analysis. Sampling was reduced from 

eight sampling positions per plot during regular surface soil sampling to one sampling 

position per plot (from the top of the soil pit) for the depth analysis. 

Concentrations of mineral N (comprising 98% N03-) were very high at 75 cm depth at 

the Potters site (cold KCl extractable N was equivalent to 521 kg N ha-1 for 60-90 cm 

depth, assuming constant BD with depth and soil at 75 cm is representative of the 60-

90 cm depth zone). This is probably the result ofN03- leaching, as indices suggest low 

rates of NNM at depth. High rates ofleaching probably resulted from cessation of N 

uptake by the pasture in combination with high rates of NNM, nitrification and 

rainfall (chapter 2). Large amounts of mineral N have also been recorded at depth in 

agricultural ferrosols of the Tasmanian north west coast. For these soils 100-300 kg N 

ha-1 has been found at depths 40-100 cm, in some cases representing higher amounts 

ofN than those found in surface soils (Sparrow pers. comm.). Within the ferrosols 

N03- leached from the top 10 cm may be held on anion exchange at depth (Black and 

Waring 1976; Gillman and Abel 1987) reducing leaching losses. As the plantation's 

root system develops and N demand increases, less N is likely to be leached from 

surface soils, however, it is unknown to what extent mineral N accumulated at depth is 

later taken up by plantations. 

In summary this study has confirmed several trends previously established by Wang et 

al. (1996a, 1998): 

•The ex-pasture site (Potters) had high values of anaerobically mineralisable 

N, hot KCl extractable N, and total N. In contrast the ex-pine site (Boulder) 

had low values for all these parameters. 

• Contributions of subsoil hot KCl extractable N, anaerobically mineralisable 

N, and total N were large compared to values in the top 10 cm. 

There are also several important new findings for these soils. 

• Hot KCl extractable N, total N, total C and total P were able to separate five 

sites into those having NNM greater or less than 40 kg N ha-1 year-1
• 



•The ex-pasture site (Potters) had high values and the ex-pine site (Boulder) 

had low values for total C and total P. 
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• Anaerobically mineralisable N, soil solution N and Cold KCl extractable N 

varied considerably with time. 

•Hot KCl extractable N, total N, total P, and total C were temporally stable 

during the November 1995-January 1998 study period. 



4. ATMOSPHERIC INTERCHANGE OF NITROGEN 

4.1 INTRODUCTION 

Exchange ofN with the atmosphere occurs through inputs in rain (from aerosols), 

which may be N enriched through the interaction with the above-ground biomass in 

throughfall and stemflow, N fixation, and losses from denitrification. These fluxes 

may need consideration when forming a N budget. 
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Inputs of aerosol nitrogen via rainfall can be as high as 20 kg ha-1 year-1 in Europe and 

North America (Attiwill and Leeper 1987). However, for southern Australia, inputs 

range from 0.3 to 8.2 kg ha-1 year-1 (Attiwill and Leeper 1987; Attiwill and Adams 

1993; Baker 1982; Baker and Attiwill 1981, 1985; O'Connell 1985, Adams and 

Attiwill 1986; Flinn et al. 1979; Probert 1976; Weteslar and Hutton 1963; Bell and 

Barry 1980) and within Tasmania 3.7 to 8.2 kg ha-1 year-1 (Adams and Attiwill 1991). 

For Tasmania, Adams and Attiwill (1991) found N input from rain tended to increase 

with distance from the coast, hence the study sites, which are all greater than 15 km 

from the coast, ar~ likely to receive closer to the maximum N input of 8.2 kg ha-1 

year-1
• 

Throughfall and stemflow represent indirect atmospheric inputs of N to the soil via 

precipitation. Throughfall N is the N enrichment of rain as it passes through the 

canopy, stemflow is the N enrichment of rain as in runs down the stem. Bormann et 

al. (1977) estimated throughfall and stemflow in English northern hardwood forests to 

be 9 .3 kg N ha-1 year-1
• Eucalypt forests of south-eastern Australia transferred 3 .3-7.2 

kg N ha-1 year-1 in throughfall (Adams and Attiwill 1986) and E. Obliqua forest of SE 

Australia transferred 0.4-0.6 kg N ha-1 year-1 in stemflow and throughfall (Baker 1982; 

Baker and Attiwill 1985); in north-east Tasmanian forests, throughfall ranged from 

3.8-9.7 kg N ha-1 year-1 (Adams and Attiwill 1991). Inputs ofN to the soil from 

stemflow are usually less than a third and more commonly 10-20% of that in 

throughfall (Baker 1982; Parker 1983). Nitrogen fertilisation increases fluxes ofN in 

throughfall (Parker 1983), hence throughfall at the study sites is likely to be toward 

the upper range found in Eucalyptus forests. At the study sites, throughfall and stem 

flow were not expected to exceed 10 kg N ha-1 year-1 input to the soil from the 

standing biomass via precipitation. 
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Nitrogen fixation rates in improved pasture have been reported to be as high as 670 kg 

N ha-1 year-1 (Sears et al. 1965), however, estimates have markedly reduced since 15N 

methods were refined. For unimproved pasture, rates are more often less than 100 kg 

N ha·1 year·1 (Whitehead 1995). For example, Trifolium repens fixed 11 to 18 kg N 

ha-1 year-1 in grazed pastures of south-western Victoria (Riffkin et al. 1999). 

Symbiotic N fixation under forests is often much less, for example, legumes fixed 12 

kg N ha·1 year·1 under deciduous forests of south-eastern United States (Todd et al. 

1978), and an average of20 kg N ha-1 year·1 under tropical forests of Latin America 

(Bentley et al. 1982). For AustraliaDaviesia mimosoides fixed 4.5 to 7.0 kg N ha·1 

year·1 under a mixed Eucalypt forest (McColl and Edmonds 1983); Acacia dealbata 

fixed 12-32 kg N ha-1 year·1 under a two-year-old E. regnans plantation (Adams and 

Attiwill 1984); shrub legumes fixed 1.6 kg N ha·1 year·1 under 6-year-old E. marginata 

regrowth forest (Hansen et al. 1987); and Bossiaea laidawianna fixed 

1-14 kg N ha·1 year·1 under E. diversicolor forest (Grove and Malajczuk 1992). There 

were no legumes observed at the present study sites, hence symbiotic N fixation is 

expected to be minimal. Rates of asymbiotic N fixation are markedly lower than rates 

of symbiotic N fixation. For example, 0.39-1.08 kg N ha-1 year·1 has been reported for 

the litter layer from American Pacific NW forests (Heath et al. 1988); 0.3 kg N ha·1 

year·1 in forests from British Colombia (Cushon and Feller 1989); 0.3 to 3.8 kg N ha-1 

year·1 from Swedish coniferous forests (Granhall and Lindberg 1978 and Granhall et 

al. 1980); 0.64 to 1.08 kg N ha·1 year·1 for Australian pine and Eucalypt forests (Baker 

and Attiwill 1984); and 0.38-2.57 kg N ha·1 year·1 from Western Australianjarrah and 

karri forests (O'Connell and Grove 1987). Hence, rates of asymbiotic N fixation were 

likely to be less than 4 kg N ha-1 year·1 at the present study sites. 

Estimated contributions of <10 kg N ha·1 year·1 for rain, throughfall and stemflow, and 

N fixation are low when compared to fluxes of annual NNM of up to 188 kg N 

ha-1 year-1 (Chapter 2) and annual uptake into the above ground biomass of up to 68.9 

kg N ha·1 year-1 (Chapter 5). Hence, at the study sites, contributions of Nin throughfall 

and stemflow, rainfall, and N fixation were assumed to be 10, 9, and 4 kg N ha·1 year·1 

respectively. 

Denitrification results in the loss of nitrogen from forest ecosystems (Davidson 1990) 

due to production of gaseous nitrogen by microbial reduction of nitrogenous oxides 

(Tiedje 1982). Substrate is nitrate (N03-), which is reduced to the principal products 
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nitrous oxide (N20) and di-nitrogen (N2). Denitrification is a specific metabolic 

process present in a limited number of genera, where nitrogenous oxides serve as 

respiratory electron acceptors, allowing them to grow anaerobically. The pathway of 

denitrification is: N03- ~ No2-~NO~ N20 ~ N2, (Stouthamer 1992; Mosier 

and Klemedtsson 1994). A recently reported Anaerobic Ammonium Oxidation 

(ANAMMOX) pathway bypasses N03- where NH/ NH2 OH ~ N2, but has only been 

described in sewage treatment processes (de Graaf 1995). 

There are large populations of denitrifying organisms in arable soils and the potential 

for denitrification is immense in most field soils (Tisdale et al. 1993). Denitrifying 

populations are ubiquitous, responsible for denitrification in flooded, desert, 

temperate, and tropical soils (Wollum and Davey 1975). Denitrification will only 

occur, however, in the presence of denitrifying population, sufficient concentration of 

N03- (or other N oxides), adequate supply of organic C (Drury et al. 1991 ), or another 

electron donor, and environmental conditions such as anoxia and suitable pH and 

temperature (Davidson 1990). Denitrification requires temperatures greater than 

5-10 °C (Stanford et al. 1975; George and Antoine 1982; Singh et al. 1989), and is 

strongly inhibited by 0 2, because 0 2 inhibits synthesis and activity of denitrification 

enzymes (Tiedje 1982). Water filled soil pores are required for denitrification to reach 

maximum rates (Ambus and Christensen 1993; Pell et al. 1996). 

The only measurable property known that is specific for denitrifiers is the process 

itself, ie. the consumption of N03- or No2- or the production of N20 or N2• 

Measurements of N03- and No2- consumption are insensitive and non-specific due to 

other fates of nitrogenous oxides, such as microbial immobilization and plant 

assimilation ofN03-. The production ofN2 is complicated by large concentrations of 

N2 in the atmosphere. Hence, the production of N20 provides the best indicator, being 

more commonly measured by using acetylene to prevent its conversion to N2 (Tiedje 

1982). Measurement ofN20 production is carried out by either covering soil in situ 

with an airtight container (e.g. Hilton et al. 1994) or by transferring soil to the 

laboratory (e.g. Dutch and Ineson 1990). In both cases, N20 accumulation is measured 

in the head space of an incubation chamber using a gas chromatograph (Smith and 

Tiedje 1979) or by mass spectroscopy (Arah et al. 1993). 
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A common way to characterise denitrification in soil has been to determine potential 

denitrifying activity. This is done by providing soil samples with N03-, a carbon 

source, anaerobic conditions, and a 20 °C temperature, making the concentration of 

denitrifying enzymes the rate-limiting factor. Pell et al. (1996) used a solution 

containing 1 mM KN03 and 1 mM glucose (electron donor), which is typical of the 

concentrations of nitrogen and glucose used by others. Anaerobic conditions can be 

created by flushing the jars with N2 and problems associated with substrate diffusion 

can be overcome by use of a soil slurry (Pell et al. 1996; Myrold and Tiedje 1985; 

Ambus and Christensen 1993). 

Denitrification rates from temperate forest soils tabulated by Davidson et al. (1990) 

fall in a range of <0.01 to 50 kg ha-1 year-1 and Dutch and Ineson (1990) estimated up 

to 40 kg ha-1 year-1 N was denitrified during the first two years after clear-felling an 

English spruce forest. 

Data described in chapter 2, show NNM (0-10 cm depths) rates at the Basils site 

ranked 18 kg N ha-1 year-1 and 15 kg N ha-1 year-1 more than leaching for the 

November 1995-November 1996 and November 1996-November 1997 years 

respectively, without an increase in the mineral N content of soil collected in October 

1996 to October 1997. There were high rates of nitrification at the Boulder, 

Nunamara, Tim Shea, Potters, and Basils sites resulting in high proportions of mineral 

N as nitrate, especially at the Potters and Basils sites (chapter 2), where soil water 

content was likely to be approximately field capacity from March to November for 

both years of measurement (chapter 2). Hence denitrification could potentially result 

in a significant N-loss at the study sites. 

The experimental objective of work reported in this chapter was to estimate the 

significance of denitrification, for the budget approach, at two study sites known to 

have high rates of nitrification. 
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4.2 MATERIALS AND METHODS 

4.2.1 Denitrification, unamended soil 

Four soil cores (3 cm dia. and 10 cm deep) from the Basils site and three soil cores 

from the Potters site from the inter-row of each of three control plots were sampled in 

April 1998 and returned to the laboratory. The soil was removed from the cores with 

as little disturbance as possible and placed into individual 750 mL 'Le Parfeit' glass 

jars with 5 mL acetylene and sealed. Samples (0.1 mL) of head space gas were taken 

periodically for analysis as described below. The concentrations of NH/ and N03- in 

soil from each soil core were estimated by cold KCI extraction (as described in 2.2.4) 

immediately after the incubation period. 

4.2.2 Potential denitrification, amended soil 

Eight cores (5 cm dia. and 10 cm deep) from the inter-row of each of three plots at the 

Basils site were sampled in March 1997 and returned to the laboratory. Soil collected 

from each plot was mixed and 100 g (moist) sub-samples (59 g oven dry) were taken 

and placed into individual 750 mL 'Le Parfeit' glass jars and mixed with the 

following treatments: 

1. 40 mL 1 mM N03-

2. 40 mL 1 mM glucose 

3. 40 mL 1 mM N03- and 1 mM glucose 

4. 40 mL water 

Each treatment was repeated in triplicate. The jars were purged with N2, injected with 

30 mL acetylene, and sealed. Head space gas (0.1 mL) was sampled periodically for 

analysis as described below. 

4.2.3 Analysis 

Samples were analysed with a Hewlett Packard 5890 gas chromatograph connected to 

a Hewlett Packard 5970B mass spectrometer. Samples were injected in split mode and 

passed through 25 m, 32 mm internal diameter, Chrompak methyl silicone liquid 

phase (5 µm thick) column with a head pressure of 10 pounds per square inch. 

Column temperature was 25 °C with an injection temperature of 50 °C and split flow 
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of 85 mL per minute with 0.1 mL sample injected. A standard curve was constructed 

using changes in 29N2 : 
3°N20 ratios. The 29N2 isotope ofN2 occurs in abundances low 

enough for comparison with other gasses at the ppm scale. To produce the standard 

curve, known concentrations ofN20 in N2 (all isotopes) were injected into the mass 
' 

spectrometer. The peak areas of the 29N2 isotope ofN2 and the 3°N20 isotope ofN20 

formed the ratios used in the standard curve from which concentrations ofN20 

evolved from the soil were measured. 

For estimates of denitrification rates, soil cores of surface area 0.0010752 m2 were 

used. Hence, estimates of denitrification rates per ha can be obtained by multiplying 

rates within the jars by 9300595 (10000/0.0010752). For estimates of potential 

denitrification the weight of oven dry soil (0-10 cm depth) used was 59 .125 g. With 

soil bulk density at the Basils site of 0.65 (Table 2.1), one hectare to 10 cm depth 

contains 65 0000 kg of soil, hence estimates of denitrification rates per ha can be 

obtained by multiplying rates within jars by 10993658 (650000/0.059125). 

Concentrations (ppm) of the N20 within the jars is 29N2 : 
3°N20 x 145.87 (from the 

standard curve, Appendix). Potential rates of denitrification N loss (kg N ha-1 year-1
) at 

the detection limit of 5 ppm N20 at 6.75 h (1/129.7778 years) with the head space of 

the jars of 0.66L (0.75L-0.09L added soil and soil water) can be estimated as follows; 

0.66/1000000 x 5 = 3.3E-6 L N20 

:. 3.3R6 I 22.7 = 1.47 R 7 moles N20 

:.1.47 R7 x 14 I 1000 = 4.13 R 9 kg N 

:.4.13 R 9 x 9300595.238 = 0.03865 kg N ha-1 

:. 0.03865 x 129.778 = 4.98 kg N ha-1 year-1 

4.2.4 Statistical analysis 

Means were compared using LSD where an ANOV A showed a significant difference 

between means (Ps 0.05). Correlations and regressions were determined by standard 

statistical methods. 
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4.3 RESULTS 

4.3.1 Denitrification, unamended soil 

Evolution ofN20 from unamended soil after one day was below detection for the 

apparatus(< 5 ppm), hence, rates of denitrification were less than 5 kg N ha-1 year-1 in 

unamended soils. Nitrate was present in incubated soil at cold KCl extractable 

concentrations of 14.4 µg N g-1 soil and 1.1 µg N g-1 soil at the Potters and Basils sites 

respectively, equivalent to 0.5 kg N ha-1 at the Basils site and 7.4 kg N ha-1 at the 

Potters site. Soil water content was 77% in the Basils soil and 56% in the Potters soil, 

which was above field capacity (-25 kPa), for both sites (Figure 2.1 ). Analysis for the 

acetylene inhibitor showed that acetylene was present throughout the incubation. An 

example trace for acetylene, nitrous oxide, and carbon dioxide are shown in Figure 

4.la and 4.lb, in which C02 concentrations in the head-space increased indicating 

microbial activity. Increasing C02 concentrations were indicated by increases in the 
44C02 : Ar ratio (Figure 4.2), Ar concentrations remained constant during the 

incubation. A N20 peak was observed following injection of N20 gas into the head 

space of jars at the end of the incubation. 

4.3.2 Potential denitrification, amended soil 

Rates ofN20 production after 6.75 hours were 4.7-9.2 x 10-5g N per 59.125 g soil, 

which, when projected, is equivalent to annual rates of 676-1308 kg N ha-1 (Table 

4.1). Note, potential denitrification is projected to annual rates for comparative 

purposes only and is not intended to signify actual field rates. Unamended soil had 

nitrate concentrations of 5.5 µg N g-1 dry soil and soil solution nitrate concentrations 

of 1.06 mM. The added 40 mL of 1 mM nitrate contained 6.5 µg N g-1 incubated soil. 



Figure 4.1 a.. Example of a gas chromatograph-mass spectrometer trace for relative 

abundance of acetylene, carbon dioxide, and nitrous oxide. 

Abundance 

20 

18 

16 

14 

12 

10 

8 

6 

Acetylene 

Carbon Dioxide 

Nitrous Oxide 

66 

4-t-~~~~~~~~~~~~~~~~-./\.__ ~ ~--~~~~~~~ 

'~~~~~~~~ 
2+-~~~~~~~~~~~~~~~~~~---~~~~~~~~ 
0 

Time 

Time and abundance are in arbitrary units 

Figure 4.1 b. The above trace with normalised peak areas for acetylene, carbon 

dioxide, and nitrous oxide showing each trace set to an individual abundance 

scale. 
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Figure 4.2. 44C02 : Ar ratio with time during potential denitrification 

incubation. Soils 1-12 are from the Potters site, soils 13-18 are from the 

Basils site. 
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Table 4.1 Potential denitrification rates at the Basils site for soil collected in March 

1997 

Treatment. N (10-5 g) per jar Projected annual rate. 

at 6.75 hours (kg N ha-1
) 

1. 40 mL 1 mMN03. 9.2 1308 

2. 40 mL 1 mM glucose 4.7 676 

3. 40 mL 1 mM N03• and glucose 8.5 1212 

4. 40 mL water 5.0 710 

Significant d~fferences (P< 0. 05) 1 and 3 > 2 and 4. 
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4.4 DISCUSSION 

From results reported in chapter 2, the Potters and Basils sites were seen to have the 

highest rates of annual NNM (175 to 188 kgNha-1 and 70 to 76 kgNha-1 

respectively), nitrification (52 to 61 kg N ha-1 and 165 to 199 kg N ha-1 respectively) 

and soil mineral N contents (up to 93 kg N ha-1 at the Potters site). Hence they would 

also have the greatest potential for denitrification. Although soil disturbance and 

incubation 20 °C are conducive to enhanced denitrification, unamended soil collected 

from the Potters and Basils sites in April 1998 did not produce detectable amounts of 

N20 during laboratory incubation. This corresponded to less than 5 kg N ha-1 year-1 

being denitrified (extrapolation of minimum detectable rate at 6.75 hours). 

Denitrification will be limited in winter by low temperatures (Table 2.1) and in 

summer by aeration and lower water contents (Figure 2.1 ). Hence denitrification rates 

are likely to be highest in autumn (March-April) when warmer temperatures occur in 

conjunction with high soil water content. However, at this time the Potters soil 

contained more nitrate than was added for estimation of denitrification potential and 

both the Basils and Potters sites had high soil water contents, yet neither produced 

detectable N20. Hence, rates of denitrification are likely to be low in the study sites. 

Large potential denitrification rates were indicated for the Basils site (Table 4.1 ). Soil 

incubated anaerobically as a slurry in the absence of added N03
- produced N20 at 

rates equivalent to 710 kg N ha-1 year-1 for the 0-10 cm depth. The addition of 1 mM 

glucose did not significantly alter rates, but the addition of 1 mM nitrate significantly 

increased denitrification potential by 84%. Under anaerobic/waterlogged conditions 

the potential for denitrification is large but well within potential rates found by other 

authors. For example 13 140 kg N ha-1 year-1 by Binstock (1984) in forest soil and 35 

OOO kg N ha-1 year-1 by Pell et al. (1996) in agricultural soils. Potential rates of 

denitrification were not restricted by carbon source but rather by nitrate, similar to 

Weir et al. (1993) but in contrast to Blew and Parkinson (1993), even though at the 

Basils site nitrate was present at 5.5 µg Ng soil-1
• Though the surface soils (0-10 crn) 

at the Potters and Basils sites had undetectable rates of denitrification, these results 

indicate that under waterlogged conditions the potential for denitrification at the study 

sites is high. Waterlogged conditions were not observed at either site during the study 

period, but may occur after heavy rain or at depth. Due to variable temperature and 

moisture regimes encountered in the field (chapter 2) and their strong effects on rates 



of denitrification, conclusive measurements of denitrification rates require an in situ 

method, such as Hilton et al. (1994) that were beyond the scope of this study. 

In summary this study has shown the following important new findings: 

• Denitrification rates were not detectable for soil collected in April 1998 at 

the Po,tters and Basils sites. 
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• Under waterlogged conditions, (which were not observed at either site during 

the study period), denitrification potential was high at the Basils site, and this 

potential was not restricted by carbon, but was restricted by nitrate. 
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5. UPTAKE OF NITROGEN BY FAST-GROWING E. NITENS 

PLANTATIONS IN TASMANIA 

5.1 INTRODUCTION 

Within Tasmanian E. nitens plantations, fast growing E. nitens, having the greatest 

increment in biomass, are expected to have the greatest demands for N. Acquired 

nitrogen is either stored in above- and below-ground biomass, or lost from the 

biomass through processes such as litterfall, stemflow, and throughfall. Estimates ofN 

demand of different aged plantations may improve our understanding of plantation N 

requirements. 

Measurement of tree biomass is labour- and time-intensive, hence biomass is often 

estimated from predetermined regression equations based on tree diameter and height. 

Estimates ofN concentrations in plant components can be multiplied by their 

respective biomasses to estimate plantation N content. For example, for uptake ofN 

into the above-ground biomass George (1985) estimated that an unfertilised 5-year­

old eucalyptus hybrid plantatiqn in India contained 229 kg N ha-1
; Bennett et al. 

(1997) estimated that a fertilised 6-year-old E. globulus plantation in Gippsland, 

Victoria, contained 230 kg N ha-1
; Cromer and Williams (1982) found that N 

accumulated in a fertilised E. globulus plantation in Victoria was 53.1, 92.1, 125.3, 

and 153.2 kg N ha-1 for ages 2, 4, 6, and 9.5 years, respectively; Birk and Turner 

(1992) estimated that a fertilised 9-year-old E. grandis plantation in New South Wales 

contained 246 kg N ha-1 and Misra et al. (1998b) found that N accumulated in two 

fertilised Tasmanian E. nitens plantations were 10, 130 and 290 kg N ha-1 for ages 10, 

26 and 34 months respectively. These estimates of standing N content represent 

uptake rates into the above-ground biomass of 8-102 kg N ha-1 year-1
• 

Misra et al. (1998b) report the below-ground N content of Tasmanian E. nitens 

plantations of ages 10-34 months to be 0.39 of above-ground N. This ratio is similar 

to that reported for a 5-year-old Eucalyptus hybrid grown in India where below­

ground N was 0.31 of above-ground N (George 1985). Assuming below-ground N 

content of 0.39 applies to the above above-ground N uptake rates, N uptake rates into 

above- and below-ground biomass range from 11-142 kg N ha-1 year-1
• These rates of 
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uptake represent large proportions of annual NNM measured at the less N fertile study 

sites (the range ofNNM rates encountered was 13-188 kg N ha-1 year-1 [0-10 cm], 

chapter 2 with potentially 39-364 kg N ha-1 year-1 [0-120 cm] chapter 3). If these N 

uptake rates are required to maximise growth at the study sites, those in the lower end 

of the NNM range {Tim Shea, Boulder and Nunamara) are likely to require N 

applications to achieve and maintain them. 

Unpublished regression equations derived for 1- to 5-year-old E. nitens of diameters 

0.2-15.4 cm at breast height (1.3 mover bark) and heights 142-1304 cm grown in SE 

Tasmania, were available to estimate the biomass of leaf, branch, and stem tissues (R 

Cromer pers. comm.). However, some trees within the study sites required an 

extended means of biomass estimation because they were larger than those covered by 

the Cromer equations. Eucalyptus globulus and E. nitens belong to the same sub­

genus, Symphomyrtus. Hence, E. globulus is likely to have similar growth patterns to 

E. nitens. The Hingston and Galbraith (1998) biomass regression equations for SW 

Australian E. globulus plantation trees aged two to ten years, of diameters 3 to 30 cm 

at breast height and 3.6 to 29.4 m in height, encompassed the larger trees within the 

study sites. Hence, these equations were used to estimate biomass of stem wood, stem 

bark, branch, and leaf tissues of the larger trees at the study sites. 

Tissue N concentrations in Eucalyptus spp. tend to be highest in leaves with 

intermediate values for bark and branches and lowest values for wood (Judd et al. 

1996). Nitrogen concentrations in all tissues tend to be highest in young plantations 

and drop with age (Pereira et al. 1984; Beadle and White 1968; Attiwill 1980; Cromer 

and Williams 1982). For example, unpublished data for E. nitens plantations in 

Tasmania show decreases in average N-concentrations of 1- to 4-year-old plantations 

of 2.18% to 1.28% in leaves, from 1.03% to 0.41 % in branches, from 1.07% to 0.56% 

in bark, and from 0.56% to 0.24% in stem tissues (R Cromer pers. comm). 

Sampling of all plant tissues is time-consuming and not suitable for routine use in 

plantations. Nitrogen concentrations in leaves tend to decrease as plantations age and 

can vary with season (Pereria et al. 1994). It is possible that a point in the canopy 

exists which has the same N concentration as, or is highly correlated with, that in the 
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whole tree or individual components. Data presented by Leunig et al. (1991) suggest 

that for 6- and 16-month-old E. grandis such a point exists at 70% of canopy height 

where leaves have N concentrations representative of the whole canopy. A 

representative sampling position would greatly reduce effort required to estimate the 

average concentration ofN in leaves, and other components. 

For young plantations that have not closed canopy, and therefore, do not drop large 

amounts of litter, increases in the N content of above-ground and below-ground 

components provide an estimate of minimum N demand. However, as plantations age 

and their canopies begin to close, shaded leaves die and litter begins to accumulate. 

The uptake demand for N, lost from the standing biomass, in litter may be important 

when estimating total uptake demand ofN in E. nitens plantations. The amount ofN 

in litterfall for Australian forests covers a wide range. For example, stands of E. 

regnans in Victoria of ages 5-250 years returned 3.8-8.4 kg N ha-1 year-1 in litter 

(Polglase and Attiwill 1992); E. pauciflora, E. diversicolour and E. delegatensis in 

Western Australian forests returned 16.7, 18.8, and 29.3 kg N ha-1 year-1 in litter 

respectively (Woods et al. 1980); E. diversicolor regrowth forests of Western 

Australia returned 25.3-51.2 kg N ha-1 year-1 in litter, where N fertilisation increased 

the amount ofN falling in litter and the proportions ofleaves in litter (O'Connell and_ 

Grove 1993). Attiwill and Leeper 1987 report a range of 9.8-130 kg N ha-1 year-1 

falling in litter for Eucalypt forests from various states. Litterfall in plantations is 

likely to be higher than native forests due to N fertilisation. 

Of concern however, is the possibility of uneven distribution of litterfall between row 

and interow regions, especially for younger plantations that have denser canopy above 

the row. Hence, it may be necessary to sample both row and inter-row regions of E. 

nitens plantations to estimate rates of litterfall. 

The objectives of work reported in this chapter were to estimate the N content of 

above- and below-ground components, N falling in litter, and subsequently N demand 

of fertilised and unfertilised trees at 14 E. nitens plantations. Although no hypothesis 

was tested, data gathered were essential for the budget approach reported in chapter 6. 
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5.2 MATERIALS AND METHODS 

5.2.1 Site description 

The five sites reported in chapter 2 were sampled along with an additional nine sites. 

Characteristics of these nine sites are given in Table 5.1. Rates ofN application in the 

fertilised treatments at the sites reported in chapter 2 are supplied in the appendix. 

5.2.2 Tissue sampling for N content 

Sampling was undertaken from median trees of 5 D2H (where D is diameter at breast 

height and His height) size classes. All live trees in each treatments were ranked in 

order ofD2H and divided into five size classes of equal numbers of trees from which 

the median tree was sampled. 

Nitrogen concentrations in whole-canopy leaf, representative leaf, bark, branch and 

wood at the Basils ~nd Boulder sites were estimated at age three years from treatments 

one and five at the Basils site and one and eleven at the Boulder site, in September 

1996 (Treatment five had the largest average D2H at the Basils site and treatment 

eleven had the largest average D2H at the Boulder site, N application rates for these 

treatments are shown in Table 5.2. 

Table 5.2. Fertiliser treatments at the Basils and Boulder sites. 

Treatment. 

1 
5 
11 

N kg ha-1 

(at planting) 

0 
25 
25 

N kg ha-1 

Year1 

0 
50 
200 

N kg ha-1 

Year2 

0 
100 
200 

Note, all treatments received 50 kg P ha-1 at establishment. 

Estimates of whole-canopy N concentration were conducted on a sub-sample ofleaves 

taken from every third leaf pair on every tenth branch of the sample trees. 

Representative leaf samples were taken from the north-facing portion of the canopy at 

70% and 85% canopy height. At 70% canopy height innermost and outermost leaves 

were sampled. At 85% canopy height, outermost leaves only were sampled. Branches 
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Table 5.1. Site characteristics of nine additional sites, characteristics the five other sites sampled are shown in Table 2.1 

Site Elevation Rainfall Soil Parent Year Age fertilised Fertiliser application 

(m) (mm) Type* Material planted (years) rate (kg NH/ ha-1
) 

AHurds 170 1039 Rudosol Alluvium 1990 3 200 
8Blue Gum 350 1255 Rudosol Granite 1990 3 200 

cBasalt 580 1570 Ferrosol Basalt 1986 10 200 

°Chromeys 300 1640 Ferrosol Basalt 1987 9 200 

EWattle 600 1913 Ferrosol Basalt 1988 5 200 

EWages 620 1913 Ferrosol Basalt 1991 2 200 

ERabbit 630 1913 Ferrosol Basalt 1993 0,1,2 25,200,200 

EOld Park 640 1913 Ferrosol Basalt 1990 3 200 

ET al bot 650 1913 Ferrosol Basalt 1989 7 200 

*Isbell (1996) 

Weather stations below were the closest to the study sites. Rainfall rates represent long term averages. 

A 1039 mm rainfall from Weetah weather station, Bureau of Meteorology Hobart 
81255 mm rainfall from West Ridgley weather station, Bureau of Meteorology Hobart 

c 1570 mm rainfall from Hampshire weather station, Bureau of Meteorology Hobart 
0 1640 mm rainfall from Takone weather station, Bureau of Meteorology Hobart 

E 1913 mm rainfall from Guilford Junction weather station, Bureau of Meteorology Hobart 
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containing sample leaves were removed and the first ten fully expanded leaves from 

the outermost end of the removed branch were sampled at both heights and at 70% 

canopy height the first ten leaves from the innermost end of the branch were also 

sampled. Branches from which leaves were sampled for estimation of average canopy 

N concentration were cut into 3-6 cm lengths, mixed and sub-sampled for analysis for 

branch N concentration. At 1.3 m stem height a wood core, taken through the stem in 

a north-south direction, and a bark sample, from the north facing side of the stem was 

sampled for estimates of stem wood and stem bark N concentration. Similar wood 

cores and bark samples were also taken in September 1996 at the Basalt, Blue Gum, 

Chromeys, Hurds, Old Park, Talbot, Wages, and Wattle sites from unfertilised and N 

fertilised treatments, varying in age from three to 10 years. Fertilised treatments 

received 200 kg N ha-1 (Table 5.1). Sampled tissues were dried at 60°C for 24 hours, 

ground (<0.05 mm), acid digested, and analysed as below (5.2.5). 

5.2.3 Biomass N 

Data for the Tim Shea and Nunamara sites, for the biomass of stem wood, stem bark, 

branch, and leaf, and their N concentrations were obtained from destructive sampling 

as part of an unpublished study conducted by Cromer RN, Turnbull ST, and LaSala 

AV, from which standing N mass was estimated to three years of age. Three 

additional sites are included in the Cromer et al. study, Westfield, Middlesex, and 

Nabowla, from which the above tissue concentrations are available. These biomass 

and N concentrations were used to estimate N mass of components at the Tim Shea 

and Nunamara sites. Where biomass was not estimated from destructive sampling it 

was estimated using regression equations based on diameter and height. 

The unpublished Cromer biomass regression equations are of the form: 

Component biomass (kg)= a +b(x) + c(x2
) + d(y) 

where x is the diameter of the trunk at 1.3 mover bark (cm); y is the height (cm) and 

a, b, c, and d are coefficients. 

These equations were used to estimate biomass of leaf, branch, and stem tissues for 

trees at the Basils, Boulder, Potters, Wattle, Wages, Old Park, Blue Gum, Rabbits, and 
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Hurds sites from 1994-1996, and for the Talbot, Chromeys, and Basalt sites for 1996. 

North Forest Products measured diameters and height of trees within these sites. To 

enable estimates of stem wood and stem bark biomass, stemwood was assumed to 

consistently be 0.81 of total stem mass. Biomass of trees smaller than 1.30 m in height 

are not possible using the regression equations, as they have no diameter at breast 

height. For trees smaller than 1.35 m in height biomass was estimated by assuming a 

linear increase in biomass with height to average values of 30 trees of 1.35 m in 

height from the Basils, Boulder, and Rabbits sites. The Hingston and Galbraith (1998) 

equations were used to estimate biomass of stem-wood, stem-bark, branches, and 

leaves at the Wattle site for 1995 and for the Wattle, Hurds, Basalt, and Chromeys 

sites for 1996. The Hingston and Galbraith (1998) equations were of the form; 

In(W) = a+ b.ln(D) + c.ln(H) 

where W is the dry weight of the component (kg); Dis the diameter at 1.3 mover 

bark (cm); His the height (m) and a, b, and care coefficients. 

Biomasses generated from the regression equations and measured tissue N 

concentrations were used to estimate N mass of tissues. Where tissue N 

concentrations were not available from destructive sampling they were estimated 

using a regression of tissue N concentration and age. The regression was formed from 

E. nitens tissue N contents from this study, the unpublished Cromer study and those 

published in the literature. Because very few data are available for tissue N 

concentrations of E. nitens, data from the literature for E. globulus grown in south­

east Australia were also included in this regression. 

5.2.4 Litter 

Litter sampling based on the method of Wilm (1946) using 'fixed' and 'roving' traps 

has been used in recent times (eg. Attiwill et al. 1978). However, Turnbull and 

Madden (1986) and Turnbull (1982) found no significant quantitative difference 

between litter collected from fixed and roving traps, or from litter traps placed 

randomly between trees on rows and in the inter-rows. The canopy at the Basils site 

was almost at ground level in 1996 and would have interfered with bins or tall litter 

traps, which would also under-sample that part of the canopy below their rim, 
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Turnbull and Madden (1986) found no significant difference in litter catches in 

Tasmanian forests, from bins or ground traps short enough to be placed under the 

canopy at the Basils site. Hence, for the present study litter was be collected from 

randomly placed ground traps. Litter traps were placed randomly within the row and 

inter-row areas of the Basils site at age three years to determine iflitter falls evenly on 

row and inter-row regions. 

The ground-traps were 0.10 m high, 0.181 m2 in area, and constructed from a 0.10 m 

wide sheet of galvanized iron riveted to form a ring which held fibreglass mesh 7 cm 

above the ground (Plate 5.1). Litter was collected every 5-8 weeks from the Basils and 

Basalt sites. At the Basalt site at age 10 years, 12 litter traps were placed randomly 

within three unfertilised weed controlled plots (four per plot). At the Basils site, 12 

litter traps were placed within treatments one and five, four in each of three plots, two 

placed randomly in the row region and two placed randomly in the region between the 

rows. Litter from each plot, and from the Basils site, on and between the rows within 

each plot, was placed into brown paper bags and dried at 60 °C for two days. Tissues 

were then separated into leaves, bark, and branches and weighed. Sub-samples were 

taken, ground to a fine powder, dried at 70 °C for 24 h and cooled in a desiccator for 

N analysis. 

5.2.5 N analysis 

N was analysed using an acid digestion method based on Lowther (1980). A sub­

sample of finely ground(< 0.5 mm) tissue 0.1-0.3 g was placed into 75 mL digestion 

tubes. Two milliliters of water was used to wash the sample down before the addition 

of 4 milliliters concentrated H2S04 and mixing. One milliliter H202 was then added 

and mixed before the addition of a second milliliter of H20 2 and mixing. The 

oxidising agent H20 2 converts all forms of mineral N present to~+. Samples were 

placed into a preheated 100 °C block for 10-15 minutes before increasing the 

temperature to 150 °C for 10 minutes and further increasing the temperature to 
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Plate 5.1 Litter trap at the Basalt site. 

200 °C. Prior to increasing the temperature to 360 °C a tear drop stopper was placed 

onto the tubes. Samples were maintained at this temperature for 30 minutes before 

cooling to 150 °C and the addition ofH20 2 drop-wise until the solution turned pale 

yellow, after which a further six more drops were added. Samples were then reheated 

to 360 °C and digested for one hour, removed from the block, and cooled, before 

being made up to 50 mL with water, and mixing on a vortex mixer. Samples were 

then placed into storage bottles to be analysed for N with Lachat Quickchem 8000 

flow injection analyser using Lachat method LACHAT 10-107-06-2£ with the same 

modifications as for total N for soil digests described in chapter 3. 

5.2.6 Statistical analysis 

Means were compared using LSD where an analysis of variance indicated a 

significant difference between means (P~ 0.05). Correlations and regressions were 

determined by standard statistical methods. 
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5.3 RESULTS 

5.3.1 N-concentrations sampled tissues 

For stem wood, stem bark, branch, and leaf tissues at the Basils and Boulder sites at 

age three years, there were no significant differences in mean N concentrations 

between the fertilised and unfertilised treatments (Table 5.3). At the Basils site, the 

concentrations ofN in leaves, wood, and bark were significantly (P<0.05) higher than 

those at the Boulder site in fertilised and unfertilised treatments. Highest N 

concentrations were found in leaf tissue (1.42-1.69%), intermediate concentrations for 

stem bark (0.50-0.75%) and branch tissue (0.38-0.63%), and lowest concentrations for 

stem wood (0.18-0.26%). Average canopy N concentration ranged from 1.12 to 

1.89%. For spot samples, canopy N concentrations ranged from 1.53% to 2.56% at 

85% canopy height, 1.21%to2.63% for inner leaves at 70% canopy height and 1.48% 

to 2.29% for outer leaves at 70% canopy height. No sample position tested was 

representative of the canopy. Only representative sampling at 70% inside produced a 

significant correlation (P < 0.001) with average canopy N contents, however the r2 for 

this correlation was low (0.37) (Figure 5.1). Hence, estimates of canopy N 
I 

concentrations require sub-sampling from the entire canopy. This is labour- and time-

intensive and hence was not repeated. 

Table 5.3. Tissue N concentrations (%)for leaf, branch, stem bark, and stem wood at 

the Basils and Boulder sites collected at age three years. Standard deviations 

are shown in parenthesis (n=3). 

Tissue. Boulder Basils 

Unfertilised Fertilised Unfertilised Fertilised 

Leaf 1.42 (0.21) 1.53 (0.22) 1.67 (0.19) 1.69 (0.11) 

Bark 0.50 (0.05) 0.51 (0.08) 0.72 (0.08) 0.75 (0.08) 

Branch 0.38 (0.10) 0.55 (0.22) 0.57 (0.11) 0.63 (0.10) 

Wood 0.21 (0.05) 0.18 (0.02) 0.26 (0.06) 0.25 (0.03) 
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Figure 5.1. Nitrogen concentrations (%N) of representative leaves from sample 

positions at 85% and 70% canopy height, compared with average canopy %N 

At 70% canopy height leaves were taken from the innermost and outermost 

part of the canopy. At 85% canopy height, outermost leaves only were 

sampled. Solid line represents I: I ratio of average canopy %N: 
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5.3.2 Annual N uptake 

Leaf, branch, stem wood, and stem bark N concentrations at sites where there was no 

destructive sampling of tissues were estimated from regression equations. These 

equations were constructed by combining N concentration estimates of leaf, branch, 

stem wood, and stem bark measured by Cromer RN, Turnbull ST, and LaSala AV at 

five Tasmanian E. nitens plantations of ages 1-3 years, from the Basils and Boulder 

sites destructive sampling of 1996 at age three years, stem wood and stem bark 

concentrations from destructive sampling at the Basalt, Chromeys, Wattle, Talbot, 

Blue Gum, and Hurds sights during 1996 when the plantations were of ages 3-10 

years, and data from the literature for E. nitens and E. globulus (Figure 5. 2) of ages 4-

9 years. Data used to generate Figure 5.2 are shown in the appendix. Equations for 

leaf, branch, stem bark, and stem wood N concentrations (% ), estimated from Figure 
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5.2 are presented below. Herein, N concentrations predicted using these equations will 

be referred to as predicted N concentrations. 

Figure 5.2. E . nitens and E. globulus leaf, bark, branch, and wood N concentrations 

with age. 
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Data used to construct Figure 5. 2 are presented in the appendix 

leaves = 1.9234.x-0·2727 r2= 0 62 n = 20 . ' 
stem bark = 1.0485.x-0.6695 r2= 0 79 n = 26 . ' 

branches = 0.9978 .x-0·7773 r2= 0 80 n = 20 . ' 
stem wood = 0.53 .x-1.1 435 r2= 0 75 n = 24 . ' 

where x is the plantation age in years. 

• leaf 

• bark 

• branch 

ewood 

• 

10 

Trees less than 1. 3 5 m in height were too small for the biomass equations. Thirty trees 

from the Basils, Boulder, and Rabbits sites of minimum diameter and height for the 

Cromer equations had stem, branch, and leaf biomasses of 1.05, 0.61 and 0.59 kg, 



respectively. Biomass components of smaller trees were assumed to increase in 

weight linearly with tree height to these values. 
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Annual above-ground N uptake of fertilised and unfertilised plantations aged 1-3 

years at the Tim Shea and Nunamara sites, calculated from destructive sampling for 

tissue biomass and N concentration (Cromer RN, Turnbull ST, and LaSala AV pers. 

comm) ranged from 1-2 kg N ha-I year-I, 22-39 kg N ha-I year-I, and 26-69 kg N ha-I 

yea(1 for plantation ages one, two, and three years respectively. These estimates ofN 

uptake were 82-120% of uptake estimated when predicted N concentrations replace 

those from destructive sampling (Table 5.4). 

Standing N mass of fertilised and unfertilised three-year-old E. nitens plantations at 

the Basils and Boulder sites, calculated using the Cromer equations for biomass and 

destructive sampling for N content ranged from 67-108 kg N ha-I. Differences in N 

uptake between unfertilised and fertilised treatments within sites were not significant 

(P< 0.05). These estimates of standing N mass were 106-128% of estimates where 

predicted tissue N contents replace those of destructive sampling (Table 5.4). 

Above-ground N content of fertilised and unfertilised plantations aged 1-10 years 

calculated by multiplying tissue biomasses estimated using the Hingston and 

Galbraith (1998) and Cromer equations with predicted tissue N concentration ranged 

from 6-372 kg N ha-1 (Table 5.5). These values were used to generate annual N uptake 

rates for plantations aged 1-8 years, ranging from 5-48 kg N ha-1 year-I unfertilised 

and 5-62 kg N ha-1 year-1 fertilised. At six of the nine sites, fertilsed trees had 

significantly greater rates ofN uptake than unfertilsed trees (Table 5.6). Average rates 

ofN uptake, estimated from the slope of the regression line in Figure 5.3, for 

plantations of ages 1-10 years were 20 and 19 kg N ha-I year-1 for fertilised and 

unfertilised plantations respectively. Fertilised treatments remained unfertilised for up 

to 10 years and all but two of these sites were found to be N sufficient, hence average 

N uptake rate of fertilised trees is likely to be lower than their potential uptake rate. 
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Table 5.4. Above-ground N increment (kg ha-1
) ofE. nitens estimated from destructive 

sampling for N content at all sites compared with N increment using predicted 

N contents. Biomass was estimated from destructive sampling at the Tim Shea 

, and Nunamara sites (Cromer et al. pers. comm) and predicted using the 

Cromer equations at the Basils and Boulder sites. Data for "%predicted" is 

uptake estimated using predicted N concentrations I Uptake estimated using N 

Age 

0-1 

1-2 

2-3 

0-3 

0-3 

content from destructive sampling x 100. 

Unfertilised 

Site Uptake % predicted 

Tim Shea 1 91 

Nunamara 2 84 

Tim Shea 22 102 

Nunamara 28 115 

Tim Shea 36 114 

Nunamara 26 82 

Basils 121 127 

Boulder 71 106 

Fertilised 

Uptake % predicted 

2 96 

2 101 

39 111 

34 . 101 

69 120 

48 119 

138 128 

93 107 

Actual tissue concentrations used in Figure 5.2 were 64-131 %, 60-160%, 65-149%, 

and 15-190% of predicted concentrations for leaf, branch, stem-bark, and stem-wood 

tissues, respectively. Leaf and stem-bark tissue N concentrations varied by not more 

than 50% of predicted values. Branch and stem-wood tissue N concentrations varied 

by not more than 90% of predicted values. Varying predicted tissue N concentrations 

by maximum encountered deviations of ±50% or ±90% could possibly affect 

estimates of whole tree N uptake by 50-63% (Table 5.7). These are maximum 

variations of measured tissue N on predicted N biomass; variations likely to be 

encountered are expected to generally be well within these values. 
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Table 5.5. Estimated above-ground N contents (kg ha-1
) ofE. nitens at all sites, except 

the Tim Shea and Nunamara sites. Biomass was calculated using the Cromer 

and Hingston and Galbraith (1998) equations where applicable. Predicted N 

concentrations were used. Standard deviations are in P.,arenthesis. 

Age Cromer Hingston and Galbraith 

Site (Years) Unfertilised Fertilised Unfertilised Fertilised 

Potters 1 6 (1) 6 (1) 
2 11 (1) 11 (1) 

Basils 1 20 (1) 21 (1) 
2 47 (2) 53 (4) 
3 95. (4) 108 (10) 

Boulder 1 14 (2) 15 (1) 
2 33 (1) 38 (6) 
3 67 (2) 87 (16) 

Rabbits 1 11 (0) 11 (1) 
2 22 (1) 25 (1) 
3 40 (3) 44 (2) 

Wages 3 50 (3) 50 (7) 
4 72 (8) 92 (10) 
5 91 {16) 123 (13) 

Blue Gum 4 48 (5) 50 (20) 
5 55 (5) 78 (28) 
6 69 (9) 113 (31) 

Old Park 4 41 (4) 38 (2) 
5 54 (4) 62 (3) 
6 75 (9) 89 (6) 

Hurds 4 63 (12) 68 (7) 
5 80 (18) 100 (7) 
6 94 (22) 129 (7) 127 (38) 185 (11) 

Wattle 6 108 (6) 115 (16) 162 (6) 169 (31) 
7 113 (6) 128 (14) 177 (31) 196 (31) 
8 125 (6) 159 (13) 186 (12) 254 (25) 

Talbot 7 120 (14) 
Chromeys 9 181 (35) 309 (51) 
Basalt 10 215 (20) 372 (36) 

* tissue concentrations from destructive sampling in 1996 used. 



Table 5.6. Estimated annual above-ground N uptake (kg ha-1 year-1
) ofE. nitensfor 

all sites, except the Tim Shea and Nunamara sites. Biomass was calculated 

from the Cromer and the Hingston and Galbraith (1998) equations where 

a-2pJicable. Predicted N concentrations were used. 

Age Period Cromer equations Hingston equations 

Site (Years) U nfertilised Fertilised Unfertilised Fertilised 

Potters 0-1 6 6 

1-2 5 5 

Basils 0-1 20 21 

1-2 27 a 31 b 

2-3 48 56 

Boulder 0-1 14 15 

1-2 19 23 

2-3 34 49 

Rabbits 0-1 11 11 

1-2 11 12 

2-3 8 11 

Wages 3-4 22 a 41 b 

4-5 18 32 

Blue Gum 4-5 6a 28 b 

5-6 15 a 35 b 

Old Park 4-5 13 a 23 b 

5-6 20 28 

Hurds 4-5 16 a 32 b 

5-6 14 a 29 b 30 a 55 b 

Wattle 6-7 5a 13 b 15 a 23 b 

7-8 12 a 31 b 9a 62 b 

Letters denote significant differences between unfertilised and fertilised treatments 

within sites and years ( P < 0.05). 

85 
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Table 5.10. Estimates of the total amount of N taken up (kg N ha-1 year-1
) into tissues and lost from standing tissues at all sites. 

Throughfall and stemflow of 10 kg N ha-1 year-1 are added to all sites (chapter 4). 

Site Age Above ground Below ground Litterfall Total N 
Years N uptake N uptake N uptake 

Boulder 2-3 49 19 n.d. 78+1itter 
Nunamara 2-3 48 19 n.d. ??+litter 
Tim Shea 2-3 69 27 n.d. 106+1itter 
Potters 0-1 6 2 n.d. 18+1itter 
Basils 2-3 56 22 56 144 
ABasalt 0-10 22-37 8-15 47 87-109 
Wages 3-4 41 16 n.d. 67+1itter 
Rabbits 1-2 12 5 n.d. 27+1itter 
Old Park 5-6 28 11 n.d. 49+1itter 
Wattle 7-8 31 12 n.d. 53+1itter 
Achromeys 0-9 20-34 8-13 n.d. 38-57+1itter 
AT al bot 0-7 17 7 n.d. 34+1itter 
Hurds 5-6 29 11 n.d. 50+1itter 
Blue gum 5-6 35 14 n.d. 59+1itter 
--

n.d. not determined 

A Average annual rates of above-and below-ground N uptake are presented for the given age range. 



6. NITROGEN BUDGETS AND SOIL ANALYSES AS 

INDICATORS OF NITROGEN DEFICIENCY 

6.1 INTRODUCTION 
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Soil analyses or the determination of an N budget were proposed in earlier chapters as 

possible indicators of N deficiency in E. nitens plantations. Nitrigen fluxes estimated 

in earlier chapters provide valuable information, helping to contextualise the 

significance of individual N fluxes, potential N application rates and the timing of 

these. Efficient measurement of the more significant of these N fluxes or the use of a 

simpler soil analysis has the potential to predict N deficiency in E. nitens plantations. 

The formation of an entire N budget is rarely done, due to the many fluxes and 

difficult measurements involved. Large errors combine to make a budget difficult to 

close (Bockheim and Leide 1990; Tiedje 1982). For example Binkley et al. (1992) 

found the effects of summing inaccurate estimates of N fluxes in a conifer-alder stand 

rendered a N budget unclosable. To close an N budget Bormann et al. (1977) assumed 

an N input from fixation, although no symbiotic or asymbiotic N fixers were detected 

in a cut-stand of the Hubbard Brook experiment. Hence, Bormann et al. (1977) 

concludes, "Measurement ofN cycle is no small task. It requires sophisticated 

techniques, a well designed model for identifying gaps, and years of careful 

measurement". However, it remains to be tested whether or not a partial N budget 

based on the most significant and more easily measurable N fluxes will be sufficient 

to identify N limited forest plantations. 

Soil supplies the bulk ofN required for tree growth, hence rates ofNNM should be 

included in a partial budget as N supply. Rates ofNNM in the 0-10 cm depth ranged 

from 13 to 188 kg N ha-1 year-1 from five Tasmanian E. nitens plantation soils 

(Chapter 2). Soil analyses discriminated these sites into two groups, those having 

NNM greater or less than 40 kg N ha-1 year-1
, and suggest the subsoil mineralises at 

least twice the N of the top 10 cm (Chapter 3). 

Gross N uptake rates required for maximum growth would be ideal for N demand in 

an N budget. However, maximum growth rates are difficult to ascertain, as this rate is 
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likely to be site- and management-dependant, involving accumulation of N into 

tissues as well as subsequent losses. Estimated rates ofN uptake into the above­

ground biomass ranged from 1-69 kg N ha-1 year-1
, with below-ground N uptake likely 

to be 0.39 of the above-ground (up to 26 kg N ha-1 year-1
) and N falling in litter of 47-

56 kg N ha-1 year-1 (Chapter 5). 

Other N fluxes are small in comparison to NNM and N uptake. For example, in rain 

(< 8 kg N ha-1 year-1
), N fixation(< 4 kg N ha-1 year-1

), denitrification (not detected in 

April 1998) and in throughfall and stemflow (< 10 kg N ha-1 year-1
) (Chapter 4). 

Potentially large N fluxes may occur in leaching. In situ leaching (0-10 ct.n) was 

estimated at the Basils and Boulder sites as 46 to 50 kg N ha-1 year-1 and -5 to 23 kg N 
- I 

ha-1 year-1 respectively (Chapter 2). In situ leaching (0-10 cm) within the errors of 

measurement accounted for NNM in the 0-10 cm depth (70 to 7 6 kg N ha-1 year-1 and 

17 to 23 kg N ha-1 year-1 for the Basils and Boulder sites respectively), representing a 

large loss of mineral N from surface soil. However, although leaching is significant in 

surface soils within the study sites, with deep penetrating roots and an anion exchange 

capacity at depth, leaching beyond the rooting zone, and hence leaching losses from 

the studied system may be small (chapter 2). 

Estimating leaching in the structured clay-loam soils of the study sites using 

techniques such as the porous ceramic cups is not recommended (Addiscott 1996). 

Lysimeters provide a better but more labour intensive approach to estimate N 

leaching. However, potential errors are encountered with the creation of an air-water 

interface between the soil and the collector. The most suitable method to measure 

leaching is likely to be via a model, such as APSIM (McCrown et al. 1996) or 

LEACHN (Ramos and Carbonell 1991). However, considerable effort is required to 

collect data for the model parameters. 

Weeds can compete strongly for water (Clinton and Mead 1994a; Eissenstat and 

Mitchell 1983) and N (Clinton and Mead 1994b; Smethurst and Nambiar 1989b; 

Neary et al. 1990; Nambiar 1990; Eastham and Rose 1990) due to high root length 

densities (Nambiar 1990, Eastham and Rose 1990). Weed N uptake can be large, for 

example weeds growing in a P. taeda plantation immobilised up to 55 kg N ha-1 year-1 
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(Neary et al. 1990), and in aP. radiata plantation 69-171 kg N ha-1 year-1 (Woods et 

al. 1992). Hence, weeds can reduce soil mineral N concentrations, tree N uptake, and 

growth (Smethurst and Nambiar 1989a; Smethurst and Turvey 1986; Neary et al. 

1990), and therefore herbicide was applied to control weeds at the study sites. 

Estimates of in situ NNM (0-10 cm depth) had standard deviations of up to 200% 

(Table 2.2) and were not significantly different to estimates of in situ nitrification, 

leaching (0-10 cm depth) (Chapter 2), and uptake into above- and below-ground 

biomass (this chapter). Soil analyses could be used to divide sites only into those 

having NNM greater or less than 40 kg N ha-1 year-1
, for 0-10 cm depths. Estimates of 

N uptake into the standing biomass are based on assumptions of validity of biomass 

regression equations and assumed tissue concentrations for the study sites. 

Considering the large errors and potential errors involved with measurement of NNM 

and uptake the smaller N fluxes mentioned above were considered to be insignificant 

and not considered in the budgeting approach, and the effort required to estimate N 

leaching was, for this study, not justified. 

Rates ofNNM have been correlated to forest productivity in the literature (Chapter 2). 

Hence, soil analyses correlated with NNM may also be correlated with growth 

responses to N fertilisation of E. nitens plantations. The soil analyses anaerobically 

mineralisable N, hot KCl extractable N, total N, total C, and total P were able to 

divide the five sites described in chapter 2 as described above and may correlate to 

growth responses of E. nitens to N fertilisation. Estimates of concentrations of soil 

mineral N concentrations may indicate N sufficiency at the time of sampling (Chapter 

3). Hence, estimates of concentrations of ammonium and nitrate in soil solution and 

cold KCl extract may, for forest soils, provide an estimate ofN sufficiency of soil at 

the time of sampling, as suggested by Rice and Havlin (1994). As soil solution N and 

cold KCl extractable N concentrations fall, responses to N fertiliser may develop. 

The objective of work reported in this chapter was to evaluate budget and soil analysis 

methods as predictors of when N fertiliser was required to maximise growth of E. 

nitens plantations. Soil analyses were used to estimate NNM at the nine sites 

mentioned in chapter 5. 
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6.2 MATERIALS AND METHODS 

6.2.1 Fertiliser responses 

Growth responses were calculated from measurements of diameter at breast height 

(1.3 m stem height) at the Basils, Boulder, Potters, Rabbits, Wattle, Wages, Old Park, 

Blue Gum, and Hurds sites from 1994-1998 and for the Talbot, Chromeys, and Basalt 

sites for 1996-1998 by G Holz, North Forest Products. R Cromer calculated responses 

from diameters at breast height at the Tim Shea and Nunamara sites for years 1993-

1996. 

6.2.2 Net N mineralisation in surface soils 

Nine sites described in chapter 5 (Table 5 .1) were sampled, as for initial soil as 

described in 2.2.3, for soil analysis in September 1997. These sites had similar 

cultivation and planting regimes as the five sites from chapter 2, except they all 

received 21.6 kg N and 24.0 kg P per ha-1 at planting. Soil analyses, hot KCl 

extractable N, anaerobically mineralisable N, total N, total P, and total C were used to 

separate these sites into those having NNM greater or less than 40 kg N ha-1 year-1
• 

6.2.3 Weed growth 

Weed biomass and N uptake were not estimated at any site. Weeds did not require 

controlling at the Basils, Boulder, and Nunamara sites where bare soil was visually 

estimated to be 90% or greater. At the Potters site, pasture grass and weed growth was 

considered to be a problem in October 1996 and March 1997 with rapid growth 

resulting in up to 100% ground cover. As a result the entire site was sprayed with 

herbicide in January 1997 and the unfertilised treatments were also sprayed in March 

1997. At the Tim Shea site, herbaceous weed growth was considered a problem in 

February and December 1996 with rapid weed growth resulting in up to 80% ground 

cover. Herbicide was applied to the control plots in April and June of 1996 and in 

January 1997. In March 1997 weeds in sprayed and unsprayed regions had died 

resulting in weed coverage falling below 20%. 

Smethurst and Nambiar (1989b) found weed cover of20% in aP. radiata plantation 

reduced soil mineral N levels, reducing the supply of mineral N to trees. Hence, weed 

competition may have reduced soil mineral N levels and slowed tree growth at the 
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Tim Shea and Potters sites. The effect of weeds on Eucalypt growth decreases after 

age four years (Holz pers. comm.). There was no significant difference in diameter 

increment at breast height between sites with and without weed control over a two 

year period at the Basalt site and over a three year period at the Old Park, Blue Gum, 

and Hurds sites when weed control was initiated at ages 3-10 years (Holz pers. 

comm.). Hence the effects of weeds on growth of trees older than three years is 

expected to be small. 

6.2.4 Budget approach 

Partial budgets were constructed with N input as NNM and output as uptake into 

biomass. For partial budget 'a', NNM at 0-10 cm depth was tripled to allow for 

subsoil NNM (Chapter 3). Nitrogen uptake was presumed to be into above-ground 

and below-ground biomass and into litter. For partial budget 'b', NNM was for 0-10 

cm depth only and uptake was presumed to be into above-ground biomass only. A 

response was predicted when NNM was less than or equal to N uptake of fertilised 

trees. 

6.2.5 Soil analysis approach 

Soil analyses for correlation with growth response of E. nitens plantations to N 

fertiliser additions were the same soil analyses as those for correlation with annual 

NNM described in chapter 2. Soil analyses were conducted on sieved initial soils as 

described in 2.2.3 from the nine sites listed in Table 5.1, and sampled as described in 

chapters 2 and 3. Estimates of total Care not possible on granitic soils using Wang 

et al. (1996b) regression equations. Hence, the granitic soil at the Blue Gum site does 

not have an estimate of total C or C:N ratio. 

6.2.6 Statistical analysis 

Means were compared using LSD, where an ANOV A showed a significant difference 

between means (P::; 0.05). Correlations and regressions were determined by standard 

statistical methods. 
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6.3 RESULTS 

6.3.1 Fertiliser responses 

Table 6.1 shows when responses were recorded within the study sites. The first year 

that fertilised trees had significantly greater diameters at breast height than unfertilised 

trees at the Boulder, Nunamara, Tim Shea, and Rabbits sites, was year one, two, three, 

and four respectively. No response was observed for the Potters site up to age three 

years or for the Basils site up to age four years. Significant (P<0.05) relative responses 

in diameter increment at breast height (diameter increment of fertilised trees I 

diameter increment ofunfertilised trees) for two years growth after application ofN 

fertiliser were 171, 142, 132, 127and121 % at the Blue Gum, Wattle, Wages, Hurds, 

and Old Park sites respectively. For the Chromeys, Basalt, and Talbot sites, non­

significant (P<0.05) relative responses in diameter increment at breast height for two 

years growth after application ofN fertiliser were 102, 99, and 116% respectively 

(Table 6.2). However, in 1999, three years after fertiliser application there was a 

significant response in diameter growth at breast height at the Talbot site. (Holz pers. 

comm.). Images of the responding four-year-old Tim Shea site, the seven-year-old 

Old Park site, the not yet significant response at the eight-year-old Talbot site (a 

significant response occurred two years after the time of the photo), and the non 

significant response at the 2.5 year-old Basils site and the nine-year-old Chromeys site 

are shown on Plates 6.1, 6.2, 6.3, 6.4, and 6.5, respectively. 

6.3.2 Net N mineralisation indices in surface soils 

Anaerobically mineralisable N ranged from 18 µg Ng soil-1 at the Blue Gum site to 

130 µg N g soil-1 at the Basalt site. Hot KCl extractable varied from 9 µg N g soii-1 at 

the Blue Gum site to 110 µg N g soii-1 at the Basalt site. Total N varied from 0.10% at 

the Blue Gum site to 0.57% at the Basalt site. Total P varied from 0.00% at the Blue 

Gum site to 0.18% at the Rabbits site. LOI varied from 2.4% at the Blue Gum site, to 
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Table 6.1. Planting year, age fertilised and fertiliser responses at all 14 sites (P<O. 05). 
Planted Age fert1l1sed Response, year after 
(year) (Years) initial fertiliser application 

Chapter 2 sites 1 2 3 4 5 

Boulder 93 0, 1,2 R 
Basils 93 0, 1,2 n.s. n.s. n.s. n.s. n.s 
Nunamara 93 1, 2, 3 n.s. R 
Tim Shea 93 1, 2, 3 n.s. n.s. R 
Potters 95 0 n.s. n.s. n.s. n.s. n.d. 

Chapter 5 sites 
Rabbits 93 0, 1,-2 n.s. n.s. n.s. R 

Wages 91 3 R 
Blue Gum 90 4 R 
Hurds 90 4 R 
Old Park 90 4 R 
Talbot 89 7 n.s. n.s. R 
Wattle 88 6 R 
Chromeys 87 9 n.s. n.s. n.s. n.d. 
Basalt 86 10 n.s. n.s. n.s. n.d. 

R =Significant response (P<0.05) 

n.s. indicates not significant 

n.d. indicates not determined 
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Table 6.2. Soil analysis values and year of response or % responses in growth of E. nitens to N fertiliser for all sites. % Responses are diameter 

at breast height increment of N fertilised trees over control trees for two years growth after N application. Where there were significant 

differences in soil analysis values with sample period parenthesis enclose average values observed in September 1996 and within 8 days 

of September 199 7 respectively. 

Site Total Total Total A.M.N hot KCI Year Age Age Response 
N p c µg Ng son-1 µg Ng son-1 Planted Fertilised Responded 

(%) (%) (%) week-1 (Years) (Year) 
Chapter 2 sites Year of response 
Basils 0.74 0.32 13.3 155 (129-224) 185 (179-188) 1993 0,1,2 n.s N.R. to age 4 
Potters 0.65 0.41 9.1 113 ( 141-132) 164 (168-173) 1993 0 n.s N.R. to age 3 
Tim Shea 0.33 0.08 6.1 101 (72-149) 62 (56-108) 1993 1,2,3 3 3 
Nunamara 0.22 0.08 3.4 48 (27-54) 10 (7-11) 1993 1,2,3 2 2 
Boulder 0.27 0.05 6.7 62 (72-60) 12(9-16) 1995 0,1,2 1 1 
Chapter 5 sites 
Rabbits 0.51 0.18 8.8 100 66 1993 0,1,2 4 4 

% response 
Basalt 0.57 0.14 10.8 130 110 1986 10 n.s 99 
Chromeys 0.49 0.17 8.5 127 97 1987 9 n.s 102 
Talbot 0.38 0.15 7.1 68 64 1989 7 10 116 
Old Park 0.50 0.15 10.0 80 71 1990 3 4 121 
Wages 0.51 0.17 8.8 91 97 1991 2 3 127 
Hurds 0.18 0.03 3.9 33 26 1990 3 4 132 
Wattle 0.50 0.18 8.5 99 85 1988 5 6 142 
Blue Gum 0.10 0.00 18 9 1990 3 4 171 

n.s. indicates not significant A.M.N =Anaerobically Mineralisable N NR. indicates no response 
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Plate 6.1 The Tim Shea site in January 1997, age 4 years. The blue box is on the 

boundary of fertilised and unfertilised treatments with larger fertilised trees 

behind the box. 
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Plate 6.2 The Old Park site in December 1997, at age 7 years. The blue box is on the 

boundary of fertilised and unfertilised treatments with larger fertilised trees 

behind the box. Note the low coverage of weeds. 
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Plate 6.3 The Talbot site in November 1997, at age 8 years. Trees in the foreground 

are unfertilised. Trees with larger canopies (4 stems in) are fertilised. 
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Plate 6.5 The Chromeys site December 1997, at age 9 years. Note low coverage of 

weeds present and litter coverage comprising mostly leaves. 
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Plate 6.4 The Basils site in January 1996, at age 2.5 years, prior to the onset of litterfall. Note the low coverage o,fweeds. 
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11.2% at the Basalt site. Not including the Blue Gum site total C ranged from 3.9% at 

the Hurds site, to 11.2% at the Basalt site. C:N varied from 14.9 at the Hurds site to 

20.8 at the Old Park site (Table 6.2). Correlations between total N, total C, total P, 

anaerobically mineralisable N, and hot KCl extractable Nat the nine sites from 

chapter 5, are shown in Table 6.3 and with all 14 sites in Table 6.4. 

Table 6.3. Coefficient's of determination (r) for linear relationships between N 

mineralisation and soil tests at the nine sites described in chapter 5. (n=3 per 

site) (For all relationships P<<0.001). 

1 2 3 4 
1. Total N 
2. Total C 0.93 
3. A.M.N. 0.75 0.68 
4. Hot KCI 0.80 0.72 0.74 
5. Total P 0.82 0.71 0.60 0.69 

A. M. N = Anaerobically Mineralisable Nitrogen 

Table 6.4. Coefficient's of determination (r) for linear relationships between soil 
tests at the 14 sites (jive sites described in chapter 2 and nine described in 
chapter 5) (For all relationships P<<0.001). 

1 2 3 4 
1. Total N 
2. Total C 0.85 
3. A.M.N 0.73 0.70 
4. Hot KCI 0.86 0.67 0.68 
5. Total P 0.73 0.46 0.45 0.82 

n = 3 for all sites but for Potters site where n = 5 

A.M.N =Anaerobically Mineralisable Nitrogen 

Sites examined in chapter 2 were divided into those having rates ofNNM greater or 

less than 40 kg N ha-1 year-1
, where sites with NNM > 40 kg N ha-1 year-1 had total C > 

8%, total N > 0.4%, total P > 0.2% and hot KCl extractable N > 100 µg N g-1 soil and 

those with NNM < 40 kg N ha-1 year-1 with lower equivalent soil analyses values. 

Using hot KCl extractable N as an indicator ofNNM, the Basalt and Wages sites were 
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identified as having NNM > 40 kg N ha·1 year·1
• When total N and total C were used as 

indicators ofNNM the Rabbits, Old Park, Wattle, and Chromeys sites were also 

assessed as having NNM > 40 kg N ha·1 year·1
, and the Talbot site was included when 

total P was used 

6.3.3 Budget approach 

A response was predicted when uptake was greater or equal to NNM ofunfertilised 

trees. Of the five sites where NNM was measured in situ, the more complex partial 

budget 'a', which included estimates of subsoil NNM (below 10 cm), uptake into 

above- and below-ground biomass and N demand oflitter losses, predicted responses 

at the Boulder, Tim Shea and Nunamara sites. However, the year of predicted 

response was one year after the actual response at the Nunamara site and two years 

after the actual response at the Boulder site (Table 6.5). The simpler partial budget 'b', 

which included only NNM of the top 10 cm and uptake into above-ground biomass 

only accurately predicted observed responses to N in all years where data was 

available (Table 6.6). When soil analyses were used to predict rates of NNM, the 

observed response was predicted at only one of the five sites. Dividing rates ofNNM 

into greater or less than 40 kg N ha·1 year·1 was insufficient to predict responses at the 

remaining four sites. Of the 14 study sites, partial budget 'b' using soil analyses to 

predict NNM, accurately predicted observed responses at 3-5 sites, inaccurately 

predicted observed responses at 3-5 sites and was insufficient to predict a response at 

5-10 study sites, depending on the soil analysis used (Table 6.7). 

6.3.4 Soil analysis approach 

Soil analyses and year of response at the Boulder, Nunamara, Tim Shea, Basils, 

Potters, and Rabbits sites and% response of the Wages, Blue Gum, Old Park, Hurds, 

and Wattle sites are shown in Table 6.2. Total P, total C, and hot KCl extractable N 

were used to form two groups of sites, those that responded to added N by age three 

years and those that did not respond to added N by age three years. Responding sites 

had total Pless than 0.18%, total C less than 8.8%, total N less than 0.4% and hot KCl 

extractable N less than 56 µg Ng soil-1
• Anaerobically mineralisable N results were 

used to separate sites into those that did or did not respond to added N by age three 
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Table 6.5. Partial N budget 'a' for the five sites described in chapter 2. NNM is in situ 

(0-10 cm)(Chapter 2), trebled to account for the subsoil (Chapter 3). Uptake 

estimate included N taken up into above-ground biomass, below-ground 

biomass and in litter (assumed to be 56 kg N ha-I year-I for plantation ages 2-3 

years and older). Ages of initial response are shaded. 

Site 

Potters 

Basils 

Age 
(Years) 

Unfertilised 
Uptake 

A 

NNM 
(0-10 cm x3) 

A 

0-1 8 n.d. 
1-2 7 564 
0-1 28 n.d. 
1-2 38 273 
2-3 123 210 

Balance 

557 

235 
87 

l@_ouJcf~L -·, ·Q.:£~. . :~·.1~~----~-- ~~}~----'~-- ~: 
1~ 26 54 
2-3 103 72 

Tim Shea 0-1 9 n.d. 

28 
-31 

1-2 31 162 131 
' -~-- .. __ : ~~-3 r .-.-- }{f6 . ~-- -~-~~L:~·-:,, .. ~ ___ :i.~t- . 
Nunamara 0-1 3 n.d. 

Observed 
Responses 
Predicted 
n.d. 
Yes 
n.d. 
Yes 
Yes 

_j1,:d:~~. - ! 

No 
Yes 
n.d. 
Yes 
Yes 
n.d. 

__ ,_J~2=~:~~--- -- -_ ~~~~3~2-~~:··-. _j[~~-~ ~.§.0 ::.·~:_:i, :: .. : ~!'J~----
2-3 92 69 -23 Yes 

A(kg N ha-1 year-1
) 

n.d. indicates not determined 

years. Responding sites had anaerobically mineralisable N ofless than 100 µg g soil-1 

week-1 in September. Total N values were used to separate sites into those that 

responded to added N by age three years (total N < 0.27%), those that responded at 

age three years (total N 0.28%-0.51 %) and those that did not respond by age three 

years (total N > 0.51 %) (Table 6.1). Soil analysis, total C, total P, Total N, hot KCl 

extractable N and anaerobically mineralisable N, correlated with % response at the 

Basalt, Blue Gum, Chromeys, Old Park, Hurds, Talbot, Wages, and Wattle sites with 

r2 of0.12 (P = 0.31), 0.41 (P =.09), 0.52 (P= 0.04), 0.58 (P = 0.03) and 0.61 (P = 

0.02) respectively. Anaerobically mineralisable N was able to separate sites fertilised 

at ages 3-10 years into those that did and did not respond within three years after 

fertiliser application, where responding sites had anaerobically mineralisable N less 

than 127 µg N g-1 soil week1 and non responding sites had equivalent or greater 

values. Figure 6.1 shows the correlation of total N (the soil analyses of greatest utility 

in separating sites by initial year of fertiliser response) and anaerobically 
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mineralisable N (the soil analysis able to separate sites fertilised at ages 3-10 years 

into those that did and did not respond three years after fertiliser application) with 

relative responses of sites fertilised at ages 3-10 years. 

Table 6. 6. Partial N budget 'b 'for the five sites from chapter 2. NNM is in situ (0-10 

cm) (Chapter 2). Uptake is into the above-ground only. Ages of initial 

response are shaded. 

Site 

Potters 

Basils 

Age 
(Years) 

0-1 
1-2 
0-1 
1-2 
2-3 

lsould?r_~ ... ~ ... ~ o:(~ 

Tim Shea 

1-2 
2-3 
0-1 
1-2 

[:"· .· .· . 2:~r~-
~ h h :::_,_~;;,Jk.w-'.w~~~~ = 

Nunamara 0-1 . 

Unfertilised 
Uptake 

A 

6 
5 

20 
27 
48 

'~~-54· :~ 
19 
34 

1 
22 
'36"'~ ., 

2 
•. . ··:. ·".Y .. ~1~~:.~.·. ~.: ': :~.§'' 

2-3 26 

A (kg N ha-1 year-1
) 

n.d. indicates not determined 

NNM 
(0-10 cm) 

Balance Observed 
Responses 

Predicted A 

n.d. 
188 
n.d. 
91 
70 

: ~~D~cl... ~·-· ·~· . 
18 
24 
n.d. 
54 -· ·:f3· ··~~·~ 
n.d. 

' .~~<:<:49.::.'.~·-
23 

183 

64 
22 

n.d. 
Yes 
n.d. 
Yes 
Yes 

,· · < n d 
~~ ~·~: ~,• 

-1 Yes 
-10 Yes 

n.d. 
32 Yes 
.:23"~~,-; Yes·~·~1 

n.d. 
Yes~ .. 
Yes 

Soil solution and cold KCl extractable ammonium and nitrate concentrations for the 

five sites described in chapter 2 are shown in Figure 6.2 and 6.3 respectively. Soil 

solution and cold KCl extractable ammonium and nitrate for the nine sites described 

in chapter 5, sampled in September 1997, are shown in Figure 6.4. Soil solution 

extracts from the Hurds site were mishandled. The Boulder, Blue Gum, Hurds, 

Nunamara, Old Park, Talbot, Tim Shea, Wages and Wattle sites responded to N 

fertiliser and all had soil solution and cold KCl nitrate values below 0.1 mM and 1 µg 

N g-1 soil respectively. The Basalt, Basils, Chromeys and Potters sites did not respond 
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Table 6. 7. Partial N budget 'b 'for all 14 sites. NNM was estimated from soil analyses 

(Chapter 3). Uptake is into the above-ground only. Age of initial response are 

shaded 

Site Age Age Unertilised 
(Years) Fertilised Uptake 

Potters 0-1 0 6 
1-2 5 

Basils 0-1 0,1,2 20 
1-2 27 
2-3 48 

NNM 
(0-10 cm) 

>40 a,b,c 

>40 a,b,c 

Observed 
Responses 
Predicted 
a b c 
Yes Yes Yes 

? ? ? 

10· .: ·itl~ ·;~~:· ·ii' f ~· .···o f2 1~f " .,7: 4o·;···:h~~ ., ···o:";--· ? · ?:~7:,' _ .:.·1~:-,.: 
t::..flu: ~r.~.~ .:;:.- .. ··~: ... :.J: .. :~ ~:·---~·~-5· ,_,,[, __ ,c:;~-'" ··~.'. ,_ ~-· ..... 

1-2 19 
2-3 34 

Tim Shea 0-1 1,2,3 1 <40 a,b,c ? ? ? 
1-2 22 

- , ~:~~~~''' .-·" ~- ,,, ~-~ '' .~ -~~- ,, .. '.' 
Nunamara 0-1 1,2,3 2 C::40 a,_~L~ .. ---·. 
r~:-:: ··:=~1~i-. ··-~::. :.7·---2~~ ~:-,. ;« . :.~- .. : ...... . 

? ? ? 

2-3 26 
Rabbits 0-1 0,1,2,3 11 <40 a, >40 b,c ? Yes Yes 

1-2 11 
' 2-3 8 

:Wag~§·? · ~:·3;4:~ : ... 3. gG.. ·. · 9~b;_a,_~,c·\ .. ' .::. ~g~~- J~~Q-~ J~ro~·, 
4-5 18 

ff3iu~~QlJIB:~.4~~ ----~L~ ~;13_.:;··'._· ::·-~·~4tra:,1'.>t9~- __ .: .<.: :.,~?..: .. ·:·? ~-· .?."j 
5-6 15 

(b)d_pa~~ ·1..§ __ ,_?~4'_~- ". ]:J:{::::·~· .. "- =·~o~~·.-~1Q_O::f: ... ~-~-~"···J~~~(( _No·· 
5-6 20 

!tf~s, · ~ · '4~~-,i~~f.;·_ · ~1 ~~~---·.· »<fo.~:b;c:\ 
5-6 14 

Mlatf1e·-::-~· " 6:·r:2~~13: · .. " ·5.~~ ........ ~--<4o:a;>40~t5 c , .. 1' ·~:-· · i\fci '.~ :Ncs·,, 
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Figure 6.1. Correlation and 95% prediction intervals of total N (r=0.52) and 

Anaerobically Mineralisable N (AMN) (r=0.61), with relative response of 
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sites fertilised at ages 3-10 years. 
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Figure 6.2. Soil solution extractable N with time at the Boulder, Nunamara, Tim 

Shea, Basils, and Potters sites. 
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to N fertiliser and had some soil solution values above and 0.1 mM and cold KCl 

extractable values and had some soil solution values above and 0.1 mM and cold KCl 

extractable values above 1 µg N g-1
. For the Boulder, Nunamara and Tim Shea sites 

the onset of fertiliser responses did not coincide with the fall in mineral nitrate below 

soil 0.1 mM or 1 µg N g-1 soil. However, concentrations ofN03- remained below these 

critical levels for significant periods beyond age 30 months at these sites. Soil solution 

and cold KCl extractable ammonium concentrations were not able to separate sites by 

fertiliser response. The responding Boulder, Nunamara and Tim Shea sites had similar 

ammonium concentrations to the non responding Basils and Potters sites (Figures 6.2 
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and 6.3). Similarly for the nine sites from chapter 5, non responding Basalt and 

Chromeys sites had similar ammonium concentrations to the responding sites (Figure 

6.4). 

Figure 6.3. Cold KC/ extractable N with time at the Boulder, Nunamara, Tim Shea, 

Basils, and Potters sites. 
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Data for the Boulder, Nunamara, Tim Shea, and Basils sites before months 24, 24, 

25, and 26 respectively are from Wang et al. {1998). 



117 

Figure 6.4. Soil solution N and Cold KCl extractable Nin unfertilised soil at the sites 

fertilised at ages 3-10 years. Bars show standard deviations. 
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6.4 DISCUSSION 

For the five sites with measures of in situ NNM the simpler partial budget, accounting 

only for NNM in the top 10 cm and N uptake into the above-ground biomass, 

accurately predicted fertiliser responses at all five sites. The more complex budget, 

accounting for surface and subsoil NNM, uptake demand of above-ground biomass, 

below- ground biomass and losses to litter identified sites that responded by age three 

years, however two of these sites responded earlier (1-2 years) than this model 

predicted. When soil analyses were used to predict NNM the ability to predict 

fertiliser responses reduced. Fertiliser responses were accurately predicted at a 

maximum of five of the 14 study sites, including only one of the five sites with 

measures of in situ NNM. The ability of soil analyses to divide sites only into those of 

greater or less than 40 kg N ha-1 year-1 was too inaccurate to predict responses at 5-10 

of the 14 study sites (depending on the soil analysis used). Hence, to construct a 

usefully predictive partial budget, in situ NNM or a soil analysis well correlated to the 

encountered range ofNNM is required. 

In an unfertilised ecosystem N budget, the N taken up by vegetation should not 

exceed the amount supplied by NNM in the soil. Uptake of N into above- and below­

ground tissues described in chapter 5 was not significantly greater (P < 0.05) than 

annual NNM (0-10 cm) described in chapter 2 for 1995/96 at the Basils, Nunamara 

and Potters sites, but was significantly greater at the Boulder and Tim Shea sites. 

From results reported in chapter 3, all indices ofNNM indicated that the subsoil 

mineralised at least twice the amount of the top 10 cm. If annual NNM rates from 0-

10 cm depths are only doubled to account for NNM potential below 10 cm, then at no 

site was annual uptake significantly greater than annual NNM. 

Sites fertilised at planting were separated by year of initial fertiliser response with 

greatest utility by values of total N, which separated sites into those that respond 

before age three years (n=2), at age three years (n=l) and those that did not respond 

by age three years (n=3). For the five sites described in chapter 2 there were no 

significant differences in total N for soil sampled at six month intervals over a two 

year period, and annual NNM was only 0.5-3.4% of total N (chapter 3). Hence values 

of total N are temporally stable and samples can be taken at any time of year. 
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Soil analyses total C, total P, total N, hot KCl extractable N and anaerobically 

mineralisable N correlated with % response in diameter growth at the Wages, Blue 

Gum, Old Park, Hurds, Wattle, Basalt, Chromeys, and Talbot sites with r2of0.12, 

0.41, 0.52, 0.58 and 0.61 respectively. Only values of anaerobically mineralisable N 

were able to separate the study sites into those that responded and those that did not 
, 

respond to added N three years after N application, where responding sites had 

anaerobically mineralisable N less than 127 µg N g-1 soil week1
• This finding is 

similar to that of Powers (1980) where P. ponderosa grown on volcanic, metavolcanic 

and metasedimentary soils was likely to respond with anaerobically mineralisable N 

below 12 ppm. The large temporal variations encountered with this soil analysis 

(chapter 3) require explaining before anaerobically mineralisable N can confidently be 

used to predict fertiliser responses. There was a significant (P < 0.05) response 

(relative response) to N fertiliser applied to the Blue Gum, Hurds, Old Park, Wages, 

and Wattle sites of 121-171 %. The Basalt and Chromeys sites did not have significant 

(P < 0.05) responses to added N yet values of total Pat the Basalt site and values of 

total N, total P and total Cat the Chromeys site were lower than values for 3-4 of the 

six responding sites. However the responding Blue Gum and Hurds sites had the 

lowest soil analysis values for all soil analyses. Hence sites of total N ~ 0.18%, total P 

~ 0.03% and total C ~ 3.9% may identify only very poor sites that will respond to 

added N when fertilised at ages 3-10 years. Values of hot KCl extractable N were the 

same at the non-responding Chromeys site and the responding Wages site. Hence, if 

responsive sites were identified as having hot KCl extractable N values of less than 97 

µg N g-1 soil it would accurately identify five of the six (83%) responsive sites. The 

simplicity and temporal stability of this soil analysis is attractive, possibly inviting its 

use to identify the majority ofresponsive sites. 

Ammonium concentrations with either cold KCl extractable N or soil solution N were 

not able to indicate the onset ofN deficiency. The non-responding Potters and Basils 

sites had similar NH4 + concentrations as the responding Boulder, Nunamara, and Tim 

Shea sites (Figures 6.1 and 6.2). Concentrations of soil solution and cold KCl 

extractable N03- at the Boulder, Nunamara, and Tim Shea sites did drop below 

concentrations at the Potters and Basils sites, but this did not coincide with the onset 
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of fertiliser responses. The Tim Shea, Nunamara and Boulder sites responded at age 

three years, two years and one year respectively. Soil solution N03- values dropped 

below 1 mM after 33, 35, and 35 months for the Tim Shea, Nunamara, and Boulder 

sites respectively. Cold KCl extractable N03- values dropped below 1 µg N g·1 soil 

after 28, 29, and 30 months for the Tim Shea, Nunamara, and Boulder sites 

respectively. As concentrations ofN03- in soil solution drop, concentration at the root 

surface is expected to drop, where a critical level required to maintain fast growth may 

be reached. For example, 50 µMN was required at the root surface of birch (Betula 

verrucosa) seedlings to maximise growth (Sands and Smethurst 1995). Ammonium is 

the preferred source of mineral N for E. nitens, however, assimilation ofN03- has 

been shown (Garnett 1997, Shedley et al. 1993). Hence, N03- concentrations have the 

potential to indicate N sufficiency. 

The Blue Gum, Old Park, Wattle, Wages, Hurds, and Talbot sites that responded to 

fertiliser had, within unfertilised soils, cold KCl extractable N03-below lµg N g·1 soil 

and soil solution nitrate below 0.1 mM (except for the Hurds site for which results 

were lost). The Basalt and Chromeys sites that did not respond had, within unfertilised 

soils, cold KCl extractable N03- above 1 µg Ng soii-1 and soil solution N03- above 

0.10 mM which may indicate N sufficiency at these sites. Hence for plantations older 

than three years of age fertiliser should be applied at the beginning of the growing 

season (i.e. September - October) if values of soil solution N03- are below 0.10 mM 

and cold KCl extractable N03 - are below 1 µg N g soi1"1
• It is possible that N 

application at the Basalt and Chromeys sites during March to April was too late in the 

growing season to result in a significant growth response. Applied N may also have 

leached during the winter, before the next growing season, hence the late fertilisation 

date is a possible explanation for the lack of significant response at the Basalt and 

Chromeys sites. 

The poor relationship between soil solution and cold KCl extractable N03- (Figure 

3.2) casts some doubt on the accuracy of soil solution results. However, both soil 

analyses were able to separate sites in the same way and it is possible that if the soil 

solution procedure was repeated, soil solution NH/ and/or N03- may detect more 

accurately the onset of N deficiency of sites fertilised from planting. The Boulder, 
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Nunamara, and Tim Shea sites were all responding to N when cold KCl extractable 

N03- was below 1 µg N g-1 soil and soil solution N03- was below 0.1 mM (Figure 6.3). 

From results reported in chapter 3, coefficient's of determination (r) were high for 

linear relationships amongst anaerobically mineralisable N, hot KCl extractable N, 

total, N, total C, and total P. The inclusion of soil analysis results from the September 

1997 sampling of a further nine sites maintained these relationships (Table 6.2 and 

6.3) for all but total P. These results further suggest that amounts of total N, hot KCl 

extractable N, and anaerobically mineralisable N reflected the amount of organic 

matter present at the study sites, but cast some doubt on this relationship with total P. 

Application of the budget approach at the field level demands a simple, easily 

measurable partial budget. With a simpler index of the range ofNNM encountered 

and the use of robust equations for biomass N, a partial budget that measures only 

NNM supply and uptake demand of N, has the potential for predicting the onset of N 

deficiency. However more work is required to find such an index and existing 

equations for biomass N require testing and development with new environments or 

locations and plantation ages. 

Soil analytical methods are simpler and more likely to be adopted as part of standard 

management practices. Values of total N were used to separate the five sites described 

in chapter 2, and the Rabbits site, into those that respond before age three years, at age 

three years and those that had not responded by age three years. Soil solution N and 

cold KCl extractable N results were used to explain the responses of the remaining 

eight plantations fertilised after age three year. Hence values of total Nin combination 

with those of cold KCl extractable or soil solution N could retrospectively have been 

used to guide fertiliser requirements as follows for all of the 14 study sites: 

total N 0-0.27% Fertilise at planting or age one year 

total N 0.28-0.51 % Fertilise at age two years 

total N >0.51 % Fertilise after age three years, examine soil solution or cold KCl 

extractable N03- at the beginning of the growing season, 

(September-October) and apply N fertiliser when N03-



concentrations drop below 1 mM or 1 µg N g-1 soil, 

respectively. 
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Values of anaerobically mineralisable N may be able to separate responsive and non­

responsive sites of three years of age and older if the large temporal variations 

encountered with this soil analysis in chapter 3 can be explained and predicted. 

In summary this study has shown. 

• A simpler partial budget with above ground N uptake demand and NNM (0-

10 cm) was able to predict fertiliser responses at all of five sites when NNM 

was estimated in situ, but partial budgets predicted fertiliser responses at a 

maximum of five of 14 sites when NNM was estimated with soil analysis. 

• Soil analysis total N had the greatest utility in differentiating age of fertiliser 

response, being able to separate sites into those that responded before age two 

years, those that responded at age three years and those that had not responded 

at age three years. When combined with soil solution or cold KCl extractable 

N03-, fertiliser responses at all of the 14 study were retrospectively predicted. 



118 

6.4 DISCUSSION 

For the five sites with measures of in situ NNM the simpler partial budget, accounting 

only for NNM in the top 10 cm and N uptake into the above-ground biomass, 

accurately predicted fertiliser responses at all five sites. The more complex budget, 

accounting for surface and subsoil NNM, uptake demand of above-ground biomass, 

below- ground biomass and losses to litter identified sites that responded by age three 

years, however two of these sites responded earlier (1-2 years) than this model 

predicted. When soil analyses were used to predict NNM the ability to predict 

fertiliser responses reduced. Fertiliser responses were accurately predicted at a 

maximum of five of the 14 study sites, including only one of the five sites with 

measures of in situ NNM. The ability of soil analyses to divide sites only into those of 

greater or less than 40 kg N ha-1 year-1 was too inaccurate to predict responses at 5-10 

of the 14 study sites (depending on the soil analysis used). Hence, to construct a 

usefully predictive partial budget, in situ NNM or a soil analysis well correlated to the 

encountered range of NNM is required. 

In an unfertilised ecosystem N budget, the N taken up by vegetation should not 

exceed the amount supplied by NNM in the soil. Uptake of N into above- and below­

ground tissues described in chapter 5 was not significantly greater (P < 0.05) than 

annual NNM (0-10 cm) described in chapter 2 for 1995/96 at the Basils, Nunamara 

and Potters sites, but was significantly greater at the Boulder and Tim Shea sites. 

From results report~d in chapter 3, all indices ofNNM indicated that the subsoil 

mineralised at least twice the amount of the top 10 cm. If annual NNM rates from 0-

10 cm depths are only doubled to account for NNM potential below 10 cm, then at no 

site was annual uptake significantly greater than annual NNM. 

Sites fertilised at planting were separated by year of initial fertiliser response with 

greatest utility by values of total N, which separated sites into those that respond 

before age three years (n=2), at age three years (n=l) and those that did not respond 

by age three years (n=3). For the five sites described in chapter 2 there were no 

significant differences in total N for soil sampled at six month intervals over a two 

year period, and annual NNM was only 0.5-3.4% of total N (chapter 3). Hence values 

of total N are temporally stable and samples can be taken at any time of year. 
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Soil analyses total C, total P, total N, hot KCl extractable N and anaerobically 

mineralisable N correlated with % response in diameter growth at the Wages, Blue 

Gum, Old Park, Hurds, Wattle, Basalt, Chromeys, and Talbot sites with r2 of 0.12, 

0.41, 0.52, 0.58 and 0.61 respectively. Only values of anaerobically mineralisable N 

were able to separate the study sites into those that responded and those that did not 

respond to added N three years after N application, where responding sites had 

anaerobically mineralisable N less than 127 µg N g·1 soil week1
• This finding is 

similar to that of Powers (1980) where P. ponderosa grown on volcanic, metavolcanic 

and metasedimentary soils was likely to respond with anaerobically mineralisable N 

below 12 ppm. The large temporal variations encountered with this soil analysis 
' 

(chapter 3) require explaining before anaerobically mineralisable N can confidently be 

used to predict fertiliser responses. There was a significant (P < 0.05) response 

(relative response) to N fertiliser applied to the Blue Gum, Hurds, Old Park, Wages, 

and Wattle sites of 121-171 %. The Basalt and Chromeys sites did not have significant 

(P < 0.05) responses to added N yet values of total P at the Basalt site and values of 

total N, total P and total Cat the Chromeys site were lower than values for 3-4 of the 

six responding sites. However the responding Blue Gum and Hurds sites had the 

lowest soil analysis values for all soil analyses. Hence sites of total N ~ 0.18%, total P 

~ 0.03% and total C ~ 3.9% may identify only very poor sites that will respond to 

added N when fertilised at ages 3-10 years. Values of hot KCl extractable N were the 

same at the non-responding Chromeys site and the responding Wages site. Hence, if 

responsive sites were identified as having hot KCl extractable N values of less than 97 

µg N g·1 soil it would accurately identify five of the six (83%) responsive sites. The 

simplicity and temporal stability of this soil analysis is attractive, possibly inviting its 

use to identify the majority ofresponsive sites. 

Ammonium concentrations with either cold KCl extractable N or soil solution N were 

not able to indicate the onset ofN deficiency. The non-responding Potters and Basils 

sites had similar NH/ concentrations as the responding Boulder, Nunamara, and Tim 

Shea sites (Figures 6.1 and 6.2). Concentrations of soil solution and cold KCl 

extractable N03- at the Boulder, Nunamara, and Tim Shea sites did drop below 

concentrations at the Potters and Basils sites, but this did not coincide with the onset 
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of fertiliser responses. The Tim Shea, Nunamara and Boulder sites responded at age 

three years, two years and one year respectively. Soil solution N03 - values dropped 

below 1mMafter33, 35, and 35 months for the Tim Shea, Nunamara, and Boulder 

sites respectively. Cold KCl extractable N03- values dropped below 1 µg N g-1 soil 

after 28, 29, and 30 months for the Tim Shea, Nunamara, and Boulder sites 

respectively. As concentrations ofN03- in soil solution drop, concentration at the root 

surface is expected to drop, where a critical level required to maintain fast growth may 

be reached. For example, 50 µMN was required at the root surface of birch (Betula 

verrucosa) seedlings to maximise growth (Sands and Smethurst 1995). Ammonium is 

the preferred source of mineral N for E. nitens, however, assimilation ofN03- has 

been shown (Garnett 1997, Shedley et al. 1993). Hence, N03- concentrations have the 

potential to indicate N sufficiency. 

The Blue Gum, Old Park, Wattle, Wages, Hurds, and Talbot sit~s that responded to, 

fertiliser had, within unfertilised soils, cold KCl extractable N03- below lµg N g-1 soil 

and soil solution nitrate below 0.1 mM (except for the Hurds site for which results 

were lost). The Basalt and Chromeys sites that did not respond had, within unfertilised 

soils, cold KCl extractable N03- above 1 µg Ng soil-1 and soil solution N03- above 

0.10 mM which may indicate N sufficiency at these sites. Hence for plantations older 

than three years of age fertiliser should be applied at the beginning of the growing 

season (i.e. September - October) if values of soil solution N03- are below 0.10 mM 

and cold KCl extractable N03- are below 1 µg Ng soii-1
• It is possible that N 

application at the Basalt and Chromeys sites during March to April was too late in the 

growing season to result in a significant growth response. Applied N may also have 

leached during the winter, before the next growing season, hence the late fertilisation 

date is a possible explanation for the lack of significant response at the Basalt and 

Chromeys sites. 

The poor relationship between soil solution and cold KCl extractable N03- (Figure 

3.2) casts some doubt on the accuracy of soil solution results. However, both soil 

analyses were able to separate sites in the same way and it is possible that ifthe soil 

solution procedure was repeated, soil solution NH/ and/or N03- may detect more 

accurately the onset of N deficiency of sites fertilised from planting. The Boulder, 
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Nunamara, and Tim Shea sites were all responding to N when cold KCl extractable 

N03-was below 1 µg N g-1 soil and soil solution N03- was below 0.1mM(Figure6.3). 

From results reported in chapter 3, coefficient's of determination (r) were high for 

linear relationships amongst anaerobically mineralisable N, hot KCl extractable N, 

total, N, total C, and total P. The inclusion of soil analysis results from the September 

1997 sampling of a further nine sites maintained these relationships (Table 6.2 and 

6.3) for all but total P. These results further suggest that amounts of total N, hot KCl 

extractable N, and anaerobically mineralisable N reflected the amount of organic 

matter present at the study sites, but cast some doubt on this relationship with total P. 

Application of the budget approach at the field level demands a simple, easily 

measurable partial budget. With a simpler index of the range ofNNM encountered 

and the use of robust equations for biomass N, a partial budget that measures only 

NNM supply and uptake demand of N, has the potential for predicting the onset of N 

deficiency. However more work is required to find such an index and existing 

equations for biomass N require testing and development with new environments or 

locations and plantation ages. 

Soil analytical methods are simpler and more likely to be adopted as part of standard 

management practices. Values of total N were used to separate the five sites described 

in chapter 2, and the Rabbits-site, into those that respond before age three years, at age 

three years and those that had not responded by age three years. Soil solution N and 

cold KCl extractable N results were used to explain the responses of the remaining 

eight plantations fertilised after age three year. Hence values of total Nin combination 

with those of cold KCl extractable or soil solution N could retrospectively have been 

used to guide fertiliser requirements as follows for all of the 14 study sites: 

total N 0-0.27% Fertilise at planting or age one year 

total N 0.28-0.51 % Fertilise at age two years 

total N >0.51 % Fertilise after age three years, examine soil solution or cold KCl 

extractable N03- at the beginning of the growing season, 

(September-October) and apply N fertiliser when N03-



concentrations drop below 1 mM or 1 µg N g-1 soil, 

respectively. 
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Values of anaerobically mineralisable N may be able to separate responsive and non­

responsive sites of three years of age and older if the large temporal variations 

encountered with this soil analysis in chapter 3 can be explained and predicted. 

In summary this study has shown. 

• A simpler partial budget with above ground N uptake demand and NNM (0-

10 cm) was able to predict fertiliser responses at all of five sites when NNM 

was estimated in situ, but partial budgets predicted fertiliser responses at a 

maximum of five of 14 sites when NNM was estimated with soil analysis. 

• Soil analysis total N had the greatest utility in differentiating age of fertiliser 

response, being able to separate sites into those that responded before age two 

years, those that responded at age three years and those that had not responded 

at age three years. When combined with soil solution or cold KCl extractable 

N03 -, fertiliser responses at all of the 14 study were retrospectively predicted. 
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7. CONCLUSIONS 

Soil analysis and budgeting methods were used in an attempt to predict N deficiency 

of 14 E. nitens plantations in Tasmania. As part of the budget approach, in situ NNM 

was estimated at five sites and uptake of N into above- and below-ground biomass 

was estimated using pre-determined biomass regression equations and estimates ofN 

concentration. N falling in litter was estim~ted at two moderately productive sites. 

Results for in situ NNM ranged from 13 to 188 kg N ha-1 year-1
. Soil analyses, total N, 

total P, total C, and hot KCl extractable N results were used to divide five sites into 

those that had annual in situ NNM greater or less than 40 kg N ha-1 year-1
• Estimated 

uptake into the above- and below-ground biomass ranged from 2 to 67 kg N ha-1 year-1 

in unfertilised sites and 3 to 96 kg N ha·1 year·1 in fertilised sites. Nitrogen falling in 

litter ranged from 47 to 56 kg N ha·1 year·1
. The estimated maximum amount ofN 

taken up into the above- and below-ground biomass and lost from the standing 

biomass was 162 kg N ha-1 year·1 at the Tim Shea site. 

7.1 Budgeting method 

Formation of partial budgets where only NNM and N uptake were measured, was able 

to predict observed growth responses in stem diameter to added N at all of five sites 

examined when NNM was estimated in situ. When soil analysis were used to estimate 

NNM, observed growth responses in stem diameter were predicted at a maximum of 

five (36%) of 14 sites. Hence, for a usefully predictive budget NNM may require in 

situ estimation. The labour- and time-intensive measurement of in situ NNM, tree 

measurements and tissue N concentrations need to be reduced if the formation of a 

partial budget is to be used in broad scale management practises. 

7.2 Soil Analysis method 

Total N results had greatest utility of total N, total P, total C, anaerobically 

mineralisable N, hot KCl extractable N, soil solution N, and cold KCl extractable N 

results for differentiating the age ofN deficiency. 

Site responses were grouped on the basis of total N determination into those occurring 

before 3 years (n = 3), those at 3 years (n = 1) and those which were absent within this 
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time frame (n = 3). Total N levels within these three groups were <0.28%, 0.28-0.51 % 

and >0.51 % respectively. Total N values were temporally stable and could therefore 

be sampled at any time of year. For sites fertilised at a later age, soil solution or cold 

KCl extractable N03- values accurately separated sites by fertiliser response to N 

fertiliser at all nine sites examined, where sites having significantly greater stem 

diameter growth had soil solution N03- concentrations below 1 mM and cold KCl 

extractable nitrate concentrations below 1 µg N g·1 soil. There were large temporal 

variations in soil solution cold KCl extractable N03-, hence sampling is recommended 

for the beginning of the growing period. When total N values and soil solution or cold 

KCl extractable N03-values were used in combination, N fertiliser requirement was 

accurately (but retrospectively) predicted at all 14 sites. Nitrogen deficiency of sites 

growing on basalt (n=l 1), granite (n=l), siltstone (n=l) and alluvium (n=l) were 

accurately predicted. These soil analysis are simpler than measurements required for 

the budget approach, and would be suitable for broad scale management practises. 
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8. FUTURE RESEARCH 

8.1 Nitrogen mineralisation 

Potential increases in rates ofNNM as a result soil disturbance during site preparation 

and planting may have subsided before measurements began at the study sites. Also, rates 

of NNM before soil disturbance were unknown. Hence a study where in situ 

measurements commence before and continue immediately after site preparation and 

planting is suggested. Due to the high variability encountered an increase in the number 

of replicates is required. 

The two to three years of in situ measurements provide a valuable data set. These data 

may be used in the construction or testing of a model that predicts rates of NNM. For 

example, O'Connell and Rance (1999) model, using anaerobic incubation and weather 

data may be modified to predict NNM in Tasmania, potentially incorporating an 

alternative soil analysis without large temporal variations. Where anaerobically 

mineralisable N is being used to predict NNM, such as incorporation in the model of 

O'Connell and Rance (1999), preliminary examination of the temporal stability of this 

index will be required to assess its suitability and evaluate sampling times. 

Application of the buried bag technique or a more usefully predictive index ofNNM is 

required to more accurately describe the contribution of the subsoil to NNM. 

Little is known of the source or the chemical form ofN extracted in various soil analyses. 

Chemical examination of the various extractants may provide useful information 

regarding their suitability for use, which may be aided with similar analyses of SOM. 

8.2 Partial budget approach 

The simpler partial budget utilising NNM (0-10 cm) N supply and above-ground N 

uptake N demand requires a continued search for a usefully predictive index of NNM to 

make the partial budget approach a suitable alternative to predict N deficiency in the 

field. This search may lie in an alternative soil analysis (possible alternatives are 
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described in Keeney 1982 and Binkley and Hart 1989). Greater success of examined and 

alternative soil analyses may occur if sites are divided into groups based on soil type, site 

history and climate. Also, biomass regression and tissue N content regression equations 

require inclusion of, or testing with data from sites around Tasmania to validate or adapt 

the equations for general use. The l~rge resource required to measure individual tree 

diameter and height needs to be reduced ifthe budget approach is to be applied at the 

field level, hence a suitable level of sub-sampling of tree dimensions needs to be 

determined. 

Nitrification was undetected in April 1998, at a time when denitrification rates were 

expected to be high. The procedure involved a single sampling date, hence potential 

temporal variations in denitrification rates remained unknown. Definitive conclusions 

regarding rates of denitrification require in situ measurements. Hence a procedure such as 

that of Hilton et al. (1994) or Bijay-Singah et al. (1989) is recommended for future 

application. The period when denitrification is most likely to be detected using these 

methods is March-April, when warmer temperatures occur in conjunction with high soil 

water content, or during the summer months (November-February) after a large rain 

event. 

Large amounts of N were lost from the top 10 cm, however the significance oflosses 

from the root zone remains unknown. Application of a model such as APSIM (McCrown 

et al. 1996) or LEACHN (Ramos and Carbonell 1991) is required to determine the 

importance of N losses from the root zone. 

8.3 Soil analysis approach 

Conclusions for the soil analysis method were limited to observations from 14 sites. 

Conclusions for sites fertilised within 1 year of planting were limited to six sites and 

conclusions for sites fertilised at ages 3-10 years limited to nine sites. Due to the limited 

number of sites examined these conclusions would be strengthened by the inclusion of 

additional sites. Strengthening the recommendations across climate and fertility gradients 

across different soil types is required. Hence additional sites representing the range of 
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encountered plantation ages with representatives from sites allowing evaluation of these 

variables is required. 

This thesis has not dealt with methods of N application (i.e. broacast, spot or band 

applications) or predicting the amount of additional N required to overcome plantation N 

deficiency. Research determining the required quantity and best method ofN application 

is required. 
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APPENDIX 

CHAPTER2 

The following weather data are long-term averages from Bureau of Meteorology 

(Hobart) and Cooperative Research Center for Temperate Hardwood Forestry (CRC) 

weather stations close to the study sites. Note, the study sites examined in chapter 2 

range in altitude from 390 to 550 meters. Sites 3-6 and a-b encompassing 130-612 m 

in elevation vary in long-term average monthly maximum or minimum temperatures 

by not more than 5 °C. 

Average Monthly Maximum TemJ!erature (°C} 

Site* Jan Feb Mar Apr May Jun Jui Aug Sep Oct Nov 

1 24.1 24.3 22.3 18.7 15.8 12.9 12.4 13.7 15.5 18.1 20.1 

2 20.9 21.0 19.9 17.6 15.2 13.3 12.6 13.0 14.2 15.9 17.5 

3 20.4 20.9 19.3 16.5 13.9 11.8 11.1 11.7 13.1 15.1 16.7 

4 21.4 21.6 19.4 15.9 12.5 9.9 9.6 11.1 13.2 15.4 17.4 

5 22.2 22.9 19.1 15.5 12.9 10.6 10.5 11.8 13.4 15.6 16.8 

6 17.6 18.0 15.7 12.4 9.9 7.9 7.2 7.9 9.7 11.9 13.9 

a 20.6 22.2 18.5 14.9 12.5 10.0 9.9 10.0 11.4 15.2 16.4 

b 21.0 21.2 18.1 13.6 11.9 9.1 9.0 10.0 12.3 14.6 15.2 

A verai:e Monthly Minimum Tem_uerature (°C) 

Site* Jan Feb Mar Apr May Jun Jui Aug Sep Oct Nov 

1 12.1 11.8 10.0 7.3 5.2 2.6 2.0 3.6 5.1 6.9 8.5 

2 12.5 13.1 11.8 9.8 8.3 6.5 5.7 5.9 6.6 7.8 9.4 

3 10.9 11.7 10.7 8.7 7.1 5.2 4.4 4.7 5.4 6.5 8.0 

4 8.2 8.4 7.1 5.6 3.6 1.8 1.2 1.5 2.9 4.1 6.0 

5 8.7 9.3 6.5 5.2 4.2 1.8 2.3 2.3 3.1 4.7 5.5 

6 6.3 6.9 5.9 4.2 2.8 1.4 0.8 0.9 1.7 2.7 3.8 

a 8.6 9.5 6.1 4.1 2.1 1.0 0.9 0.5 0.9 3.1 4.4 

b 7.5 8.2 5.4 3.7 3.1 0.2 0.7 1.7 1.9 4.0 4.2 

Dec 

22.4 

19.4 

18.5 

19.4 

19.7 ' 

16.0 

19.9 

19.2 

Dec 

10.6 

10.9 

9.4 

7.5 

7.1 

5.2 

6.5 

6.1 

Weather Stations, 1-6 =Bureau of Meteorology (Hobart), a-b =Cooperative Research Center 
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Average Monthly Rainfall (mm) 

Site* Jan Feb Mar Apr May Jun Jui Aug Sep Oct Nov Dec 

1 47.4 30.6 35.1 53.5 70.1 61.5 80.2 81.2 62.5 

98.2 105.3 130.4 110.4 86.8 

52.6 

88.1 

50.6 48.6 

71.9 65.8 2 43.4 49.3 50.5 78.6 

3 

4 

5 

6 

7 

8 

49.1 57.7 

67.9 59.7 

63.6 82.6 

110.1 95.9 

49.8 79.1 

69.2 71.0 

57.6 92.8 122.0 133.0 160.l 149.5 117.6 107.0 79.6 76.1 

74.2 98.5 114.8 106.0 122.2 127.9 121.4 121.3 105.0 95.7 

81.0 101.0 104.3 81.8 106.4 136.4 113.4 119.5 114.6 76.3 

123 174.5 215 228.7 250.9 250.7 225.3 203.8 168.6 14U 

50.1 64.8 164.4 121.5 191.1 157.7 158.8 118.9 100.8 57.0 

74.9 121.0 150.5 165.1 212.7 194.7 146.5 133.4 106.7 102.( 

9 81.7 66.6 40.4 146.1 270.1 171.7 336.2 410.9 136.3 194.8 153.3 133.J 

10 54.5 58.9 61.8 95.4 125.2 140.2 171.1 156.8 121.6 110.1 84.1 78.1 

11 61.8 67.5 73.7 112.7 145.6 158.9 195.1 179.0 142.6 129.4 100.3 91.8 

12 81.7 64.5 91.4 123.2 146.6 131.0 148.7 143.1 144.0 138.8 122.7 123.: 

13 155.7 116.9 167.5 184.5 248.3 197.5 315.2 267.4 234.9 344.1 206.3 159.~ 

14 66.6 43.7 53.l 91.9 123.7 109.2 137.8 138.6 99.8 81.l 76.7 94.3 

15 45.4 51.3 30.1 58.8 60.l 84.2 41.3 58.8 107.7 63.8 52.8 47.2 

16 54.5 58.9 61.8 95.4 125.2 140.2 171.1 156.8 121.6 110.1 84.1 78.1 

17 

a 

b 

68.5 71.9 

137.7 71.3 

87.4 91.1 

76.6 117.4 163.2 169.7 222.8 194.1 151.7 136.3 100.1 91.7 

34.2 74.8 221.4 122.0 116.0 128.3 97.0 83.8 77.9 72.6 

86.8 147.2 124.1 71.2 129.5 155.5 132.5 133.2 163.3 94.3 

*Weather Stations 1-17 =Bureau of Meteorology (Hobart) 

a-c =Cooperative Research Center 
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Weather Station (Site) Details 

Site Name Elevation (m) Latitude Longitude Years Active 

1 Launceston 5 41° 25" 15' 147° 07" 22' 1980-present 

2 Burnie 8 41° 04" 51' 145° 56" 32' 1944-present 

3 Elliott 130 41°05"03' 145° 46" 28' 1914-present 

4 Maydena 270 42° 45" 49' 146° 35" 50' 1952-1992 

5 Maydena 275 42° 45" 30' 146° 37" 21' 1992-present 

6 Waratah 612 41° 27" 04' 145° 31" 52' 1882-present 

7 Tewkesbury 411 41° 13" 12' 145° 42" 48' 1996-present 

8 Tewkesbury 410 41° 13" 53' 145° 42" 22' 1934-1995 

9 Parrawe 41° 18" 00' 145° 36" 00' 1954-1956 

10 Ridgley 277 41° 08" 59' 145° 50" 02' 1909-2000 

11 Yolla 343 41° 08" 39' 145° 42" 17' 1905-present 

12 Tim Shea 490 42° 42" 18' 146° 28" 09' 1954-1990 

13 Mt Field 1230 42° 40" 54' 146° 34" 57' 1987-present 

14 Nunamara 425 41° 23" 05' 147° 19" 13' 1948-1994 

15 Nunamara 360 41° 23" 51' 147° 17" 57' 1992-present 

16 Ridgley 277 41° 08" 59' 145° 50" 02' 1909-2000 

17 Hampshire 460 41° 14" 55' 145° 46" 21' 1835-present 

a Nunamara 400 41° 21" 147° 15" Aug 1993-present 

b Florentine 440 41° 9" 145° 45" Sept 1993-April 1997 

1-17 =Bureau of Meteorology weather stations 

a-b =Cooperative Research Center for Sustainable Production Forestry weather 
stations 
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CHAPTER4 , 

Standard curve for estimation of denitrification rates. 
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CHAPTERS 

Age N fertilised and amount of N applied (maximum rate) at the five sites mentioned 

in chapter 2. 

Site 

Boulder# 

Basils# 

Nunamara* 

Tim Shea* 

Potters 

Age fertilised 

(years) 

0, 1,2 

0, 1,2 

1, 2, 3 

1, 2, 3 

0 

Amount of N applied 

(kg N ha-1
) 

Age (years) 

0 1 2 3 

25 200 200 0 

25 200 200 0 

0 100 200 100 

0 100 200 100 

200 0 0 0 

#Fertilised and unfertilised treatments received 50 kg P ha-1 at planting 

*Fertilised and unfertilised treatments received 25 kg N ha-1 and 43 kg P ha-1 at 

planting 
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Data used to generate Figure 5. 2 

Tissue 

Age Leaf Bark Branch Wood Source 

1 2.28 1.02 0.90 0.51 Middlesex (Cromer pers. comm) 

1 2.16 0.93 0.89 0.40 Nabowla (Cromer pers. comm) 

1 1.82 0.99 0.84 0.47 Nunamara (Cromer pers. comm) 

1 1.77 0.93 0.99 0.51 Tim Shea (Cromer pers. comm) 

2 1.39 0.63 0.52 0.24 Westfield (Cromer pers comm) 

2 1.84 0.98 0.93 0.36 Middlesex (Cromer pers. comm) 

2 1.02 0.43 0.35 0.13 Nabowla (Cromer pers. comm) 

2 1.52 0.78 0.57 0.27 Nunamara (Cromer pers. comm) 

2 1.72 0.82 0.62 0.30 Tim Shea (Cromer pers. comm) 

3 1.26 0.55 0.40 * Nunamara (Cromer pers. comm) 

3 1.3 0.64 0.55 * Tim Shea (Cromer pers. comm) 

3 1.48 0.51 0.47 0.20 Boulder site sampled September 1996 

3 1.68 0.74 0.60 0.26 Basils site sampled September 1996 

4 1.2 0.30 0.35 0.10 E. globulus (Cromer and Williams 1982) 

6 * 0.29 * 0.01 Hurds 1.3 m samples September 1996 

6 * 0.27 * 0.06 Blue Gum 1.3 m samples September 1996 

6 1.22 0.22 0.16 0.06 E. globulus (Bennett et al. 1997) 

6 1.13 0.23 0.17 0.08 E. globulus (Bennett et al. 1997) 

6 1.10 0.21 0.16 0.07 E. globulus (Bennett et al. 1997) 

6 1.15 0.25 0.35 0.10 E. g/obulus (Cromer and Williams 1982) 

7 * 0.35 * 0.07 Talbot 1.3 m samples September 1996 

7 1.49 0.19 0.32 0.07 Herbert et al. (1991) 

8 * 0.30 * 0.02 Wattle 1.3 m samples September 1996 

9 1.10 0.35 0.20 0.05 E. globulus (Cromer and Williams 1982) 

9 * 0.34 * 0.08 Chromeys 1 .3 m samples September 1996 

10 * 0.31 * 0.07 Basalt 1 ~3 m samples September 1996 

* Data unavailable 

For Cromer pers.comm, Bennett et al. 1997, and Cromer and Williams 1982 sources, 

tissue concentrations were determined from average values of sub-samples taken from 

representative whole trees. Other sources are mentioned in the text. 


