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Abstract 

ABSTRACT 

Geographic Variation and Adaptation in the Tasmanian Metallic Skink 

(Niveascincus metallicus) 

Species occupying broad geographic ranges tend to display reproductive and physiological 

traits that compensate for environmental constraints. This thesis examines these traits in 

the metallic skink, Niveoscincus metallicus. The metallic skink is the most widespread of 

all Tasmanian reptiles. It is a small (2-5 g) skink, found throughout Tasmania, and on most 

of its offshore islands, occurring from sea level to alpine elevations, in a range of habitat 

types. It also has a limited mainland distribution, in southern Victoria. This thesis provides 

a detailed examination of thermal biology and life history adaptation within this species. 

The thesis is presented in three main sections, each dealing with an important aspect of 

adaptation on a geographic scale. In the first section (Chapter 3) I examine the 

phylogenetic history of N. metallicus across its entire distributional range, using restriction 

fragment length polymorphism analysis (12s-16s rRNA gene) and nucleotide sequence 

divergence information (16s rRNA sequence). These analyses revealed five 

phylogenetically distinct subtypes of N metallicus, four of which are found within 

Tasmania. I selected four field sites from within the distributional range of one of these 

subgroups for a detailed study of inter-population variation. These sites covered the 

altitudinal range of the species (two high altitude and two low altitude sites). Within each 

altitude group, sites were chosen to represent open (little tree cover) and closed (complex 

tree cover) habitats. 

The second section of work (Chapters 4 and 5) investigates thermoregulatory adaptation in 

N metallicus. As part of this work I examined microhabitat occupation for lizards at all 

four sites. I found that animals at high altitude bask overtly on rock surfaces while those at 

low altitude are more covert and bask on logs. These differences represent behavioural 

adaptations to variation in the thermal environment evident between high and low altitude 

sites. 
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The importance of acclimatization and genetic adaptation to the thermal physiology and 

performance of N. metallicus was examined in a series of field and laboratory 

experiments. Preferred body temperatures did not differ between sites. Nevertheless, 

thermal adaptation does occur in this species. Animals from high altitude tolerate 

significantly lower environmental temperatures, and can sprint significantly faster at 

extreme body temperatures. These differences appear to represent genetic adaptation, and 

thus data from this study support the "labile" view of thermal adaptation. 

The third section to this thesis (Chapters 6 and 7) presents an examination of life history 

adaptation across my four field sites. Life history was found to vary with altitude; 

however, habitat effects were also evident. High altitude females live significantly longer 

than do low altitude lizards and mature one year later; however, no variation in adult body 

size or size at maturity was detected. Relative clutch mass is highest at low altitude; 

however, trade-offs between offspring size and litter size are evident between low altitude 

populations. This trade-off appears to result from predatory induced effects. High altitude 

young are born with significantly larger abdominal fat reserves, a characteristic of some 

advantage to young which must hibernate within two months of birth. Evidence from this 

and previous studies on N. metallicus, and from research on the sister species N. ocellatus, 

indicates that life history traits are phenotypically plastic, and do not represent evolved 

adaptations to environmental constraints. An ability to utilize phenotypic life history 

responses may be of adaptive significance to species, such as N metallicus, occupying 

wide geographic and/or climatic ranges, as it allows these animals to exploit fluctuating 

environments and adapt life history traits to suit present environmental conditions. 
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Chapter 1: General Introduction 

CHAPTER ONE 

General Introduction 

1.1 Introduction 

Ectotherms living over broad geographical or altitudinal ranges are presented with 

significant challenges arising from variation in a number of factors including thermal 

environment, habitat, food availability, intra and inter specific competition and predation 

(Smith, 1996, 1998; Schneider et al., 1999). Therefore, reptiles living over such broad 

areas often display reproductive, physiological and behavioural traits that compensate for 

environmental constraints (Steams, 1976; Dunham et al., 1988; Smith et al., 1993; 

Niewiarowski, 1994). 

One factor often examined in studies of geographic adaptation is thermal environment. 

The interaction between reptiles and their thermal environment has long interested 

ecologists (e.g. Cowles and Bogert 1944; Bogert, 1949). In particular, the responses of 

ectotherms to the thermal problems imposed by high altitude have received considerable 

attention for many years (e.g. Swan, 1952; Burns, 1970). Both altitude and latitude have 

been shown to significantly influence thermal ecology and life history adaptation in a 

number of reptile species from several families (Van Damrne et al., 1989; Smith et al., 

1993; Forsman and Shine, 1995; Rohr, 1997; Schwarzkopf, 1998; Qualls and Shine, 1998; 

Abell, 1999). Nevertheless, knowledge about causal mechanisms responsible for inter and 

intra specific variation in these characteristics is poor, and data for many groups, including 

skinks, are rare (Dunham et al., 1988; Vitt and Pianka, 1994). Our knowledge of the 

ecological and evolutionary significance of life history diversity and thermal variability in 

lizards is based primarily on studies from North American and European species (e.g. 

Crowley, 1985; Sinervo and Adolph, 1989; Sinervo, 1990a, 1990b; Gillis, 1991; Adolph 

and Porter, 1993; 1996; Smith et al., 1993). The Scincidae are particularly poorly known 

(Dunham et al., 1988, Vitt and Pianka, 1994), considering their status as the world's 

largest and most diverse lizard family (Greer, 1989; Hutchinson, 1993). The high degree 

of phylogenetic conservatism in reptiles (Stearns, 1984; Dunham etal., 1988) means that 

independent data sets are required for species from other taxa, to fully understand 
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adaptation to environmental variability (Forsman and Shine, 1995). Few Australian skinks 

have provided any data on geographic variability in reproductive life history (Hutchinson, 

1993). 

A basic premise underlying most hypotheses dealing with the evolution of life histories is 

that variation is constrained by trade-offs between life history traits (Smith, 1991; Roff, 

1992; Niewiarowski and Dunham, 1994). This is believed to occur because natural 

selection is unable to maximise all life history traits simultaneously (Partridge and Sibly, 

1991). Two particular types of trade-offs are recognized: physiological and evolutionary 

(Smith, 1991, Stearns, 1992). The first arises because a limitation in resource availability 

means that increasing allocation to one function (i.e. growth, reproduction or storage) can 

only occur at the expense of another (Cody, 1966; Smith, 1991; Streams, 1992). 

Evolutionary trade-offs occur when an increase in the fitness of one life-history trait 

results in a decrease in the fitness of another. Thus evolutionary trade-offs deal with the 

genetic basis of traits and how these respond to selection (Pamula, 1997) and can therefore 

include a component of plasticity in the expression of the phenotype. Stearns (1989; 1992) 

has identified at least forty five major life history trade offs. Of these, the most studied are 

those between current reproduction and future reproduction, current reproduction and 

survival, reproduction and growth, reproduction and condition, and number and quality of 

offspring. 

Geographic variation in life history phenotypes between populations of a widely 

distributed species is often assumed to reflect genetic divergence caused by natural 

selection. However, the relative importances of genetic and environmental sources of 

phenotypic variation are rarely determined. Proximate sources are those that cause 

variation in phenotype arising from the same genotype, while evolutionary sources imply 

that genetic differences are responsible for phenotypic variation (Niewiarowski, 1994). 

Distinguishing between phenotypic plasticity in life history induced by environmental 

variability and that induced by genetic divergence is fundamental to interpreting the 

ecological and evolutionary significance of geographic variation (Niewiarowski and 

Roosenberg, 1993). This is because intra-specific variability may be a result of 

physiological or developmental responses to environmental conditions (Stearns and Sage, 

1980) rather than adaptation to local selective pressures (Stearns, 1980). 

2 
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One of the most obvious proximate factors with the potential to influence life history in 

reptiles is temperature. Body temperatures experienced by an organism directly affect 

individual growth (Huey, 1982), defensive behaviour (Hertz et al., 1982; Losos, 1988) and 

reproduction (Andrews et al., 1997). The physiological effects of body temperature can 

also affect energy intake (Avery et al., 1982) and assimilation (Beaupre et al., 1993). 

Similarly the thermal dependence of sprinting and stamina may influence an animal's 

ability to avoid predators (Bennett, 1980; Christian and Tracy, 1981; Hertz et al., 1988; 

Mautz et al., 1992). Nevertheless the effects of environmental temperature variation are 

complicated by the fact that many lizard species thermoregulate to maintain a relatively 

constant body temperature, over a wide range of environmental temperatures (Adolph and 

Porter, 1993). Recently attention has also focussed on the effect of temperature on activity 

period (Grant and Dunham, 1988; Adolph and Porter, 1993, 1996). Thermoregulatory 

behaviour is generally considered to be adaptive; however, there are a number of 

associated costs for an animal in terms of time, energy (increased metabolism associated 

with increased body temperature), potential competition for microhabitats, or increased 

predation (Huey and Slatkin, 1976; Avery et al., 1982; Huey, 1982; Grant, 1990). Lizards 

may therefore also be faced with potential thermoregulatory trade-offs affecting energy 

assimilation and survival, all of which can significantly impact on several life history 

traits, including growth and reproductive output (Pamula, 1997). Thus thermal ecology 

and life history are interrelated and thermal adaptation to environmental variability can 

represent a key determinant of energy assimilation and ultimately total reproductive effort. 

While temperature represents one of the most important proximate factors influencing life 

history, other factors also affect reptile growth and reproduction. Resource availability, for 

example, has been shown to significantly influence many life history traits (Andrews, 

1982; Ballinger, 1983), including growth rate (Dunham, 1978; Guyer, 1988; Smith and 

Ballinger, 1994a, 19941); Wapstra; 1998), survivorship (Ballinger, 1984; Smith and 

Ballinger, 1994c), clutch size and mass (Ballinger, 1977; Seigel and Ford, 1991; Swain 

and Jones, 2000b), and age at first reproduction (Ford and Seigel, 1994). Precipitation has 

also been shown to influence life history traits on a temporal basis (Stamps and Tanaka, 

1981; Seigel and Fitch, 1985; Smith etal., 1995). However, this decrease in water 

availability has generally been correlated with a reduction in prey availability. Tail loss 

and social status have also been shown to represent significant proximate life history 

forces (Bauwens, 1981; Andrews, 1982; Arnold, 1988; Chapple, 2000). 

3 
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While proximate factors represent significant sources of variation in reptile growth and 

life history (Hudson, 1997), a large body of evidence also indicates that evolutionary 

sources are also significant. Controlled common garden experiments have revealed 

variation among species and populations in growth rate and many reproductive traits 

(Ferguson and Brockman, 1980; Sinervo and Adolph, 1989; Ferguson and Talent, 1993; 

Smith et al., 1994). Transplant experiments have also indicated that in some species 

genetic sources may in part explain variation in growth rate among populations (Ballinger, 

1979; Niewiarowski and Roosenburg, 1993; Niewiarowski, 1995). This type of work has, 

however, been largely restricted to a single group, the sceloporine lizards, and other, 

phylogenetically distinct, taxa are likely to display somewhat different patterns of life 

history adaptation. 

Thus, while it may be agreed that both proximate and genetic sources of life history 

variation are of significant importance in squamates, the relative importance of these two 

sources, in a broad range of taxa, is unclear (Nievviarowski, 1994; Hudson, 1997). Even 

when differences in life history traits are identified and can be related to current selection 

pressures, absence of population-level phylogenetic information can confound 

interpretation of the historical role of natural selection in producing these differences 

(Niewiarowski, 1994). Reptiles and specifically lizards have proven to be ideal subjects 

for studies of intra-specific adaptation of life history, and for examinations of the relative 

importance of genetic and environmental sources of variability. This partly reflects the 

relative ease with which many of their life history traits can be quantified (Ballinger, 1983; 

Schwarzkopf, 1994). This study examines variation in thermal adaptations and life history 

between populations of the Tasmanian metallic skink Niveoscincus metallicus. Data are 

collected from one phylogenetic sub-group, to remove the influence of historical isolation 

from the actions of diversifying selection across environmental gradients. 

4 
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1.2 Study species 

1.2.1 Tasmanian reptiles 

The Tasmanian terrestrial reptile fauna has been described as relatively impoverished 

(Heatwole, 1976; Hutchinson et al., 1988). There is a total of twenty species from three 

families: the Scincidae (16 species), the Agamidae (1 species) and the Elapidae (3 

species). Due to its southern location the majority of the Tasmanian reptile fauna consists 

of viviparous species. There are only three egg laying species: the agamid, 

Tympanocryptus diemensis, and the skinks Bassiana duperryii and Lampropholis delicata. 

These species depend on warm microclimates for successful incubation of eggs. Thus their 

distribution tends to be limited to the warmest parts of the state, although Lampropholis 

delicata is successful as far south as Hobart (Wapstra and Wapstra, 1986; Brereton et al., 

1996, personal observation). Interestingly, a fourth species, Lerista bougainvillii, is 

viviparous in Tasmania and oviparous in some mainland populations (Greer, 1989; Qualls 

and Shine, 1995). 

1.2.2 The genus Niveoscincus ('snow skinks') 

Members of the genus Niveoscincus are small to medium sized lygosome lizards, 

characterized by the possession of a well developed prefrontal shield, paired or fused 

frontoparietals, and a moveable lower eyelid with a moderate to large transparent palebral 

disc (Hutchinson et al,. 1989). All members of the genus also possess well-developed 

pentadactyl limbs and a viviparous mode of reproduction (Hutchinson et al., 1989, 1990). 

Most species of Niveoscincus are entirely restricted to the island state of Tasmania and its 

adjacent offshore islands. The only exceptions are the species N coventryi, found only on 

the mainland, and N. metallicus, whose range extends from Tasmania into southern and 

eastern Victoria. Of the six endemic species, five have restricted and/or isolated habitat 

requirements (Rawlinson, 1975; Hutchinson et al., 1989, 1990; Melville and Swain, 

1999b): these are N. greeni,N microlepidotus,N orocryptus,N pretiosus and N. 

palfreymani. The two remaining Tasmanian species, N. metallicus and N. ocellatus have 

widespread distributions. They are a closely related monophyletic group (Hutchinson et 

al., 1990; Hutchinson and Schwaner, 1991; Melville and Swain, 2000b) that until recently 

5 
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were included in the genus Leiolopisma (Hutchinson et al., 1990). The entire genus is 

viviparous, a characteristic that is shared only by Pseudemoia among Australian 

eugongylus lizards. Viviparity is generally regarded as an adaptive characteristic in 

species inhabiting cool climates (Shine and Bull, 1979; Qualls, 1997). 

Three phylogenetically distinct ecomorphs have been identified in this genus: ground-

dwelling; semi-arboreal; and saxicolous (Melville, 1998; Melville and Swain, 1999b, 

2000a, 2000b). Ground dwelling species (N metallicus and N coventryi) are characterized 

by relatively short limbs and long inter-limb lengths. The fact that both non-endemic 

species are ground dwelling suggests an evolutionary scenario starting with colonisation of 

Tasmania by a "metallicus-like" species. The ability to climb appears to have evolved in 

the semi-arboreal species (i.e. N. pretiosus) and has involved a decrease in body size and 

an increase in relative leg length. The saxicolous species have evolved the ability to jump, 

with an increase in relative leg length. Saxicolous species can be further divided into 

heath/rock-dwelling (N orocryptus, N microlepidotus) and saxicolous specialists (N 

green!) (Melville, 1998; Melville and Swain, 2000a, 2000b). 

All species of Niveoscincus are diurnal shuttling heliotherms, maintaining active body 

temperatures often well above ambient temperature by alternating between basking and 

moving to shaded areas (Rawlinson, 1974, 1975; Hutchinson et al., 1989). They all 

display a bimodal daily activity pattern on sunny days, with basking in the morning and 

afternoon, and foraging /shuttling in the middle of the day (Wapstra, 1993; Melville and 

Swain, 1997a). During cooler periods basking may be extended and activity patterns may 

become unimodal. One species, N microlepidotus, has also been shown to display 

thigmothermic behaviour, as a method of extending activity during cooler periods in the 

alpine zone (Melville and Swain, 1997a). 

Eleven classes of reproductive cycles have been identified in Australian reptiles, with 

three being known to occur in temperate Australian skinks (Taylor, 1985; Heatwole and 

Taylor, 1987). Most Niveoscincus species for which reproductive cycles are known exhibit 

a type II cycle, which is characterized by autumn spermatogenesis and mating, and spring 

ovulation (Pengilley, 1972; Rawlinson, 1974; 1975; Hutchinson and Donnellan, 1988, 

1992; Hutchinson et al., 1988, 1989); however, in these species a second mating also 

occurs in spring. Interestingly high altitude N. microlepidotus display a unique biannual 

6 
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reproductive cycle with birth occurring in spring (Olsson and Shine, 1999). Niveascincus 

have played an important role in our understanding of squamate reproduction, and 

specifically placentation and matemal-foetal nutrient transfer. Weekes (1935) recognised 

three morphotypes of chorioallantoic placenta in viviparous squarmates, and a fourth was 

recently described by Blackburn (1993) in New World Mabuya skinks. The majority of 

skinks display Type 1 placentation (Yaron, 1985; Blackburn, 1993). However, a more 

complex placental morphology, Type II, was described by Weekes (1930, 1935) from 

mid-gestational embryos of N. ocellatus. Type H placentation has also been described in 

other Niveoscincus species, including N. metallicus (Stewart and Thompson (1994); 

however, the authors noted some structural differences between this species and the 

placental arrangements described by Weekes (1930) in N. ocellatus. Recently the placental 

structure of N. ocellatus was reexamined and found to be of a type III structure (M. 

Thompson, pers corn). However, type H placentation appears most common in this genus, 

with significant interspecific variation in complexity present. Type III placentation has 

been described mainly in Pseudemoia species; however the possibility exists that it is also 

evident in N. coventryi (Hudson, 1997) as well as N. ocellatus. 

Until quite recently the only major work on the snow skinks was provided by Rawlinson 

(1974). However, during the past decade a significant amount of research on phylogenetic 

relationships (Hutchinson et al., 1988, 1990; Hutchinson and Schwaner, 1991; Melville 

and Swain, 1998; Melville and Swain, 2000a), distribution, ecology, behaviour (Green and 

Rainbird, 1993; Wapstra and Swain, 1996; Melville and Swain 1997a,b, 1999a,b, 2000b; 

Olsson et al., 2000), physiology, life history and reproductive ecology (Swain and Jones, 

1994, 1997, 2000a, 2000b; Jones and Swain, 1996, 2000; Hudson, 1997; Jones et al., 

1997, 1998; Olsson and Shine, 1998a,b, 1999; Wapstra etal., 1999; Thompson et al., 

1999a; Olsson et al., 2000; Wapstra, 2000; Wapstra and Swain, in press a,b) has been 

conducted. 

1.2.3 Niveoscincus metallicus 

The metallic skink is the most widely distributed and ubiquitous member of the genus with 

its distribution extending across the majority of Tasmania and its coastal islands, Bass 

Strait islands and into south-eastern Victoria. The species is predominantly ground 

dwelling, inhabiting a diverse range of natural habitats including dry sclerophyll 

7 
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woodlands, grasslands, sub-alpine woodland and heathland (Melville and Swain, 1999b). 

It has also been reported from intertidal areas on the south west coast of Tasmania (Schulz 

and Kristensen, 1994); however, these authors may have misidentified N. pretiosus. The 

species is also well adapted to disturbed habitats and is commonly found in large 

abundance in suburban gardens and in roadside vegetation. Niveoscincus metallicus is a 

relatively cryptic species that primarily occupies habitats characterized by significant 

shade, dense vegetation and litter, fallen logs or rocks. It is an active forager that eats 

predominantly arthropod prey and some vegetative structures. While the species appears 

to occur primarily in areas with extensive arboreal vegetation (Rawlinson, 1974), it 

remains largely confined to the ground, only climbing rocks or logs to bask (Melville and 

Swain, 1997a, 1999b, 2000b). As with other members of the genus, it is a shuttling 

heliotherm with an active diurnal activity pattern. 

Niveoscincus metallicus is one of the smaller members of the genus with an adult snout-

vent length (SVL) ranging from 45 mm to 65 mm. Animals weigh between 2 g and 5 g, 

and have a long tail that can extend to 140% of the SVL (Chapple, 2000). Its color 

markings are highly variable, ranging from brown to bark black on its dorsal surface, with 

vertebral strips or flecks and a mid-lateral streak. Sexual variation is also present in 

relation to morphology and coloration. Males tend to attain similar SVLs but have a 

relatively smaller inter-limb length (Melville, 1994). They also have a more pronounced 

head, and more intensive ventral coloration. The significance of this variation in color is 

unknown (Swain and Jones, 1994). 

The species in an annual breeder with clutch sizes ranging from 1 to 8 but generally 

between 2 and 5. (Mean: 3 to 4 depending on population) (Jones and Swain, 1996; my 

unpublished data). Young are born fully developed and totally independent with a SVL 

ranging between 15 mm and 25 mm. Parental care is absent (Bennett, 1997). Niveoscincus 

metallicus exhibits both lecithotrophy and placentotrophy (Jones et al., 1998; Thompson et 

al., 1999), and the presence of facultative placentotrophy has also been demonstrated 

(Swain and Jones, 2000a,b). 

All Niveoscincus species exhibit an asynchronous type II reproductive cycle (Swain and 

Jones, 1994; Jones and Swain, 1996; Hudson, 1997). Vitellogenesis begins in late summer 

(February to March), first mating occurs in April with females storing sperm over winter 
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until ovulation and fertilisation occurs in spring (September to November) following 

emergence (Swain and Jones, 1994; Jones and Swain, 1996; personal observations). A 

second mating often occurs in early spring (Swain and Jones, 1994). In all cases 

reproductive events are delayed in high altitude populations and overwintering begins 

earlier at high altitude (Figure 1.1). Gestation is completed by late December to late 

February depending on environmental conditions. 

JJ A SONDJF M A MJ 
Hobart 

Z474.6..k,Z 	 Eigioninag111111  
Egiumgo 

Central Plateau 
JJ A SONDJF M A MJ 

• Overwintering 	[Ti  Emergence (2nd  Mating) and final vitellogenesis 

n Ovulation 	ri  Gestation 	 1 	 Parturition 

El Follicular recruitment and vitellogenesis 	D Primary Mating 

Figure 1.1 Asynchronous timing of female reproductive events for N. metallicus populations at Hobart and 

the Central Plateau (Jones and Swain 1996, personal observations). 

Due to its ubiquitous occurrence throughout Tasmania, N. metallicus co-exists with almost 

all other members of the genus, including most species with limited distributions. 

However, it is distinguished from other species by the presence of large mid body scales 

(22-29 rows) and possession of a long slender body with relatively small limbs. This 

second characteristic allows it to co-exist with other members of the genus, which are 

largely saxicolous or arboreal in nature (Melville and Swain, 2000b). The fact that several 

aspects of the biology and ecology of N. metallicus have been extensively studied 

(Melville, 1994, 1998; Swain and Jones, 1994, 1997, 2000a, 2000b; Jones and Swain, 

1996; Melville and Swain, 1997a,b, 1999b, 2000b; Jones et al., 1998; Chapple, 2000), 

along with its extensive geographic range makes it an ideal model species to examine 

geographic adaptation to environmental variability. 
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1.3 Overview of this thesis and major research objectives 

This thesis examines adaptation in Niveoscincus metallicus across a range of locations. 

The experimental component of the thesis can be broadly divided into three main sections. 

The first of these is an examination of genetic divergence between populations across the 

entire range of the species (Chapter 3). From this work a number of sites were selected, 

based on minimum divergence, to examine adaptation to environmental extremes. The 

second section of this thesis (Chapters 4 and 5) examines adaptation in thermal ecology in 

N. metallicus. Chapter 4 studies variation in habitat selection as a method of adaptation 

across a number of habitats. Following this Chapter 5 examines the thermal ecology of N 

metallicus, specifically to determine if this species uses physiological or genetic 

adaptation to enable it to successfully exploit habitats with vastly differing thermal 

characteristics. The final experimental section of this thesis examines life history in N. 

metallicus. Chapter 6 describes variability in offspring phenotype and clutch 

characteristics from a number of sites, while Chapter 7 specifically focusses on age-size 

relationships across the altitudinal range of the species. The final chapter of the thesis 

(Chapter 8) provides an overview of inter-population variation and adaptation in this 

species and evaluates future research opportunities. 

The primary aim of this thesis is to investigate adaptation in a ubiquitous species of skink 

found throughout Tasmania and in a large area of mainland Victoria from sea level to sub-

alpine elevations. The research was conducted to evaluate the effects of both altitude and 

habitat type on the thermal biology and reproductive life history of, arguably, the most 

successful member of the genus Niveoscincus. The objectives of my study were to: 

1. examine variation in genotype between populations of N metallicus and to 

determine the possible series of events which may have lead to the present day 

distribution of genetically distinct sub-groups of the species (Chapter 3). 

2. quantify microhabitat occupation in N metallicus and to examine its importance in 

the adaptation of this species to environmental variability (Chapter 4). The possible 

role of factors such as competition and predation, that may influence microhabitat 

selection, are also discussed. 
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3. examine variation in thermoregulatory behaviour between populations exposed to 

differing habitat features and climatic conditions (Chapter 5). 

4. evaluate the importance of physiological acclimation and genetic adaptation, to the 

thermal biology of N metallicus in populations covering the altitudinal range of 

the species (Chapter 5). 

5. measure variation in offspring and clutch characteristics on an annual and 

geographic basis in N metallicus and to evaluate the influence of environmental 

variability and genetic adaptation on these components of life history (Chapter 6). 

6. examine age-size relations in N metallicus in order to determine if age at maturity, 

longevity and growth are affected by location, and to examine whether variation in 

thermal opportunity alone can account for any observed differences between 

populations. 

1 1 
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CHAPTER TWO 

General Materials and Methods 

2.1 Introduction 

Tasmania, the most southerly and only island state of Australia, is isolated some 200 km 

south of mainland Victoria by Bass Strait. Situated at 40 to 43•5 0  south and 140 to 1500  

east, the State experiences a cool to cold temperate climate characterized by unpredictable 

weather patterns. 

Figure 2.1 Location of Tasmanian field sites used in Chapters 4 to 7. The range of N. metallicus is 
continuous throughout the island. Sites on the right are low altitude (below 150 m) and sites on the left are 

high altitude (approximately 1000 m). 
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This investigation has three main sub-components. The first, a genetic examination of 

variation across the range of N metallicus, utilized a number of field sites, not all of which 

were in Tasmania. These sites are considered in Chapter 3. The remaining two 
components of the thesis examine in more detail thermal ecology and life history 

adaptation in this species, and, only four field sites, covering the attitudinal limits of N. 

metallicus were used. Al! these sites are from within the Type I populations identified 

through an analysis of population genetics and all are located in Tasmania itself (Chapter 

3). Two sites, Mt Wellington and Clarence Lagoon, are found at high altitude 

(approximately 1000 meters a.s.1). The first is an open sub alpine habitat, while the second 
is an extensively forested and closed environment. The remaining sites, Hobart and 

Orford, are low altitude sites (below 150 meters a.s.1). Again one, Orford, while forested, 

is an open, exposed habitat, while the second, Hobart, represents a forested and closed 

environment. The location of study sites is shown in Figure 2.1. The sites are described 

more fully below. 

2.2 Description of study sites 

2.2.1 Clarence Lagoon 

Clarence Lagoon (146° 19' E, 42°04' S) is situated on the southern margin of the Central 

Plateau World Heritage Area. The site is dominated by a small glacial lake at 

approximately 1000 m a.s.1., formed as a result of a glacial moraine. The site is 

approximately 10 km from Lake St Clair (closest weather station situated at 735 m a.s.1.,). 

The southern shore of the Lagoon is surrounded by a narrow band of boulders, formed as a 

result of glacial movement. The land around the Lagoon is characterized by poor thin soil 

with boulders breaking through the surface. At the Lagoon the site is exposed; however, as 

the land drops away steeply to the south, conditions are more sheltered. All areas support 

forest, but further away from the Lagoon, the habitat is more complex with rain forest 

elements. 

Vegetation at the Lagoon edge is tall sub-alpine forest (Figure 2.2). The canopy is of 

medium height (10 meters) and allows significant amounts of sunlight to enter. The 

understorey is patchy in most areas, but can be substantial. Two forest type are evident 
further away from the Lagoon. The first is sclerophyll forest and is similar in structure to 
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forest at the Lagoon edge. The second forest type is mixed forest. This habitat is complex, 

in both understorey and canopy. Throughout all habitat types, rocks emerge from the thin 

soil layer. A number of plant species are common at the site. Those dominant in sub alpine 

and sclerophyll areas include Richea sprengelioides, Telopea truncata,Boronia citiodora, 

Banksia marginata and a number of eucalyptus species. 

Figure 2.2 Tall dry sclerophyll forest located at the banks of Clarence Lagoon (1000 m a.s.1.). Also evident 

are exposed boulders around the southern edge of the lagoon. Niveoscincus metallicus  is  most common 

within the forested habitat but also emerges onto the boulders during early morning and late afternoon. 

Niveoscincus metallicus is continues and common throughout all of the above habitat 

types. A second species N. pretiosus is also common at the site, but  is  restricted to areas of 

mixed forest with fallen trees. Niveoscincus ocellatus is also found  in  rockier areas, most 

commonly against the Lagoon shore. Diysdalia coronoides (white-lipped snake) and 

Notechis ater (tiger snake) are also found at the site in large numbers. 
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The only other common Niveoscincus species present is N. microlepidotus; however, N. 

There is a high  abundance of  reptiles at this site, along with  a number of  different species. 
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Lagoon. Two eucalyptus species, E. amygdaline and  E. viminalis form a sparse tree cover 
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Chapter 2: General Materials and Methods 

pretiosus and N ocellatus are also present. Three other reptile species have been observed 

at the site. These are Notechis ater (tiger snake), Dfysdalia coronoides (white-lipped 

snake) and Cyclodomorphus casuarinae (she-oak skink) 

2.2.3 Hobart 

The Hobart field site (147° 20'E, 42 °  55'S) is situated in the Cascade Reserve area near the 

base of McRobies Gully and extends north to the lower slopes of Knocklofty Reserve 

(total area approximately 1 km by 500 m). The area is disturbed by recreational use, 

encroachment by non-native species, and greater than normal fire frequencies. Soils at the 

site are a dolerite based duplex typical of eastern and southern Tasmania (Figure 2.4). 

Figure 2.4 Tall dry forest located at the Hobart field site (150 m a.s.1.). Two main habitat types, dry 

sclerophyll forest and grassland, characterize the site. Niveoscincus metallicus is found throughout both 

habitat types. 

The study site has two vegetation types: dry sclerophyll forest; and grassland. The forest is 

typical of the Hobart area with a reasonably open canopy and variable understorey. The 
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canopy consists of species such as Eucalyptus obliqua, E. amygdalina, E. viminalis and E. 

ovata. The ground is quite rocky with areas of thick bark and fallen leaves around the base 

of trees. Grassland areas are dominated by exotic species. 

A number of reptile species occur at this site. The most common species, besides N. 

metallicus are N. pretiosus and Bassiana dupertyi (Three Lined Skink). Also present are 

Pseudemoia entrecasteauxii (Southern Grass Skink), Lampropholis delicata (Delicate 

Skink), Tiliqua nigrolutea (Bluetongue Lizard) and Tympanoctyptus diemensis (Mountain 

Dragon). Notechis ater and Drysdalia coronoides ,  (elapid snakes) were also both observed 

at the site. 

2.2.4 Orford 

This site is located approximately 2 km inland from the small township of Orford on the 

East Coast of Tasmania (147°  51' E, 42°  34' S). The site has a very high fire frequency, 

being most recently burned during 1995. The area is warm and relatively dry, with high 

temperatures during the summer months. Low hills of weathered dolerite, with a shallow 

soil and extensive areas of scree dominate the site. 

The vegetation at the site is dry sclerophyll with a very open canopy and a very sparse 

understorey. However, in damper gullies the forest changes to a wet sclerophyll with a 

denser understorey. Rock outcrops are common throughout. The field site covered all 

habitat types, but the majority of the area was dry sclerophyll, and this habitat tended to be 

favored by N. metallicus. Vegetation makeup was very complex, reflecting the high fire 

frequency and invasion by exotic species. Eucalyptus pulchella, E. viminalis and E. 

amygdalina were the dominant tree species. 

The study site had a high diversity of reptile species. The most common species were N. 

metallicus,N ocellatus, N pretiosus and Egernia whitii (White's Skink). Also present 

were Psuedemoia entrecasteauxii, Cyclodomorphus casuarinae (Sheoak Lizard), 

Tympanoctyptis diemensis (Eastern Mountain Dragon), Tiliqua nigrolutea and Bassiana 

dupertyi. Both Notechis ater and Thysdalia coronoides were also captured at the site. 
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Figure 2.5 Open dry forest located at the Orford field site (50 m a.s.1.). Two main habitat types, dry 

sclerophyll forest and boulder scree, characterize the site. However, wetter and more complex forest is found 

in river gullies. Niveoscincus metallicus is found throughout most of the available habitat types but is 

uncommon on scree. 

2.3 Comparison of climatic conditions between study sites 

All study sites differ substantially in terms of thermal conditions and general weather 

features. The Orford and Hobart study sites are low altitude sites and are classified as cool 

temperate. Conversely the Mt Wellington and Clarence Lagoon sites are high altitude and 

can be described as cold temperate (Rawlinson, 1974). Climatic data for each site was 

obtained from the Bureau of Meteorology web site (www.bom.gov.au ). Table 2.1 

identifies the location and elevation of the weather station nearest to each field site. 
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Table 2.1 Details of the closest weather stations to sites used in this investigation. All stations are at a similar 

altitude and aspect to sites of data collection. Also shown is the direct distance between the weather station 

and the field site it was used to describe. 

Study Site Station 

Distance 

between site 

and station 

Bureau site 

number 
Latitude 	Longitude Elevation 

Dates of 

data 

collection 

Clarence Lake St 
11 km 096015 42°  10' S 	146°  22' E 735.0 m 1937-1989 

Lagoon Clair 

Mt 
Mt 

Wellington 2 km 094087 42°  90' S 	147°  24' E 1260.5 m 1961-1996 
Wellington 

(Summit) 

Hobart 

Hobart (Ellerslie 3 km 094029 42°  89' 	147°  33' E 50.5m 1882-1996 

Road) 

Orford 

Orford (Town Post 2 lcm 092027 42°  55'S 	147° 88' E 15.0 m 1951-1996 

Office) 

2.3.1 Temperature variation between sites 

All sites display distinct thermal characteristics. Low altitude sites are warmer than high 
altitude sites throughout the year, both for maximum and minimum temperatures (Figures 
2.6 and 2.7). Hobart appears generally to have lower maximum temperatures for both 
summer and winter than Orford; the reverse is true for minimum winter temperatures. 
Despite these differences the two sites are very similar. The Lake St Clair station 
experiences warmer temperatures than the Mt Wellington station. While Mt Wellington 
would be expected to be slightly colder than Clarence Lagoon, the differences shown in 
Figures 2.6 and 2.7 also reflect the fact that the Lake St Clair station in situated at a lower 

altitude than the Clarence Lagoon site (approximately 200 m) and the Mt Wellington 
station is above the Mt Wellington field site (also 200 m). Thus, these two sites are in fact 
thermally more similar than the figures suggest. Maximum air temperatures differ most 
between sites during winter months, most notably between Clarence Lagoon and the two 
low altitude sites. However, minimum temperatures remain lower at high altitude by a 

relatively constant amount throughout the year. 
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Figure 2.6 Mean monthly maximum air temperatures ( °C) for periods indicated in Table 2.1 for the Clarence 

Lagoon, Mt Wellington, Hobart and Orford areas. 

Z 	.0 
cc$ 	6)td 	t,... 	c?:  o 	0 	-5 	So 

Month 
O 8 
Z 

Figure 2.6 Mean monthly minimum air temperatures (°C) for periods indicated in Table 2.1 for the Clarence 

Lagoon, Mt Wellington, Hobart and Orford areas. 
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2.3.2 Precipitation, cloud cover and available sun light 

Substantial differences exist between sites in terms of precipitation and sunlight 

availability. Both high altitude sites receive more rain than the low altitude sites; however, 

Clarence Lagoon receives substantially more rain than any of the other sites (Figure 2.7). 

This is especially noticeable during late autumn, winter and spring. During summer, this 

difference is very much reduced. Mean number of rain days also reflects the poorer 

environmental conditions experienced by animals living at high altitude (Figure 2.8). Rain 

days appear to remain high at high altitude throughout the entire year, although less rain 

falls during summer at all sites. During June there is a decrease in rainfall at both high 

altitude sites; however, this lasts only for that single month. 

Figure 2.7 Mean monthly rainfall (mm) for the periods indicated in Table 2.1 for the Clarence Lagoon, Mt 

Wellington, Hobart and Orford areas. 
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Month 

Figure 2.8 Mean number of raindays for the periods indicated in Table 2.1 for the Clarence Lagoon, Mt 

Wellington, Hobart and Orford areas. 

Mean number of clear days was highest at Clarence Lagoon during summer and lowest at 

Hobart and Mt Wellington. Each area displays a distinctive pattern of clear days (Figure 

2.9). Clear days decrease dramatically at Clarence Lagoon during winter, increase during 

autumn and winter at Orford, and generally decrease as the year progresses at both Hobart 

and Mt Wellington (due to the close geographical proximity of the two sites). Conversely, 

the number of cloudy days (Figure 2.10) is very similar between sites occurring at similar 

altitudes. Generally cloudy days are more frequent at high altitude and much more 

frequent at these sites during winter. At low altitude cloudy days tend to be equally 

frequent throughout the year, although at Orford, cloud cover increased slightly during 

summer months. 

Cloud cover, however, has less effect on lizard activity at low altitude. Due to higher 

ambient air temperatures at lower altitude sites, lizards are often active under quite high 

cloud cover. At high altitude, substantial cloud often decreases air temperature enough to 

force lizards to seek refuge. Thus, while cloud is quite consistent between sites in summer, 

animals at low altitude are likely to be able to maintain greater levels of activity. 
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Figure 2.9 Mean number of clear days for the periods indicated in Table 2.1 for the Clarence Lagoon, Mt 

Wellington, Hobart and Orford areas. 
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Figure 2.10 Mean number of cloudy days for the periods indicated in Table 2.1 for the Clarence Lagoon, Mt 

Wellington, Hobart and Orford areas. 
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Figure 2.11 Mean daily sunshine (h) for the periods indicated in Table 2.1 for the Clarence Lagoon, Hobart 
and the East Coast (Bicheno). No data were available on daily sunshine for Orford or Mt Wellington. 

Bicheno (41° 52' S, 148° 18' E) represents the closest weather station to Orford at a similar longitude, 

elevation and aspect. 

Mean daily sunshine (h) during summer is also quite consistent between sites (Figure 

2.11). No data were available from the Mt Wellington and Orford stations; however, the 

proximity of Mt Wellington to Hobart must result in both sites having similar day lengths. 

The Orford site is also likely to be similar to the Bicheno station, which is also situated on 

the East Coast of Tasmania, at a similar longitude to the Orford site. Clearly data show 

that, during summer, daily sunshine is quite similar between all sites. During autumn and 

spring, it is somewhat decreased at the high altitude Clarence Lagoon site. 

2.4 Lizard capture and housing 

Lizards were captured at all sites by noose gun. This technique proved to be remarkably 

effective for capturing N. metallicus at high altitude; however, at lower altitude sites, 

significantly more effort was required due to the cryptic nature of animals from these 

populations (Chapter 4). At these sites noosing was supplemented with hand capture and 

fishing with a mealworm attached to cotton thread. Inactive lizards were also captured at 
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low altitude sites by turning rocks; however, this technique was very ineffective during 

summer when animals tended to retreat into clumps of grass and vegetation. 

Following capture, animals were transported to the University of Tasmania reptile 

laboratory in cotton bags. Once in the laboratory, they were held under standard conditions 

(14L: 10D light cycle) with 10 hours of access to basking lamps. Overhead light was 

supplied by ultraviolet and normal fluorescent tubes (Grow-Lux) and three large 

phosphorus globes (2000 W each). Background temperatures were set at 12 °C using an air 

conditioning unit. Animals were held in containers measuring 20 x 30 x 10 cm with 

netting placed over the top of the container to prevent escape. Light globes inside tin cans 

suspended over each box served as a basking source and provided a temperature gradient 

of 12 to 35°C. Each container was provided with a basking surface (terracotta pots) and 

ground cover (paper cat litter pellets). Water and food containers were also provided. 

Adult animals were fed three times a week with mealworms, cat food and mashed banana 

(one meal of each per week). Water (with added multivitamins) was provided ad libitum. 

Animals from which life history data were required were killed by placed them in a freezer 

at —20°C (Cogger, 1992). Further details of handling procedures are provided in 

subsequent chapters. 

2.5 Permits 

The research described was conducted under Ethics Permit 97046 issued by the University 

of Tasmania Animal Ethics Committee. Limited collection of reptiles in Tasmania 

occurred in National parks (permit number FA 97050). All collection of mainland animals 

was conducted under a permit issued by the Victorian Department of Conservation and 

Natural Resources. Importation of N. metallicus from Victoria was conducted under 

permit number 2855 issued by the Department of Environment and Land Management. 

Collection of animals from the Hobart area and Mt Wellington was conducted under 

express permission from relevant landowners and Hobart City Council. 
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CHAPTER THREE 

Genetic Divergence between populations of Niveoscincus metallicus 

3.1 Introduction 

The allocation of specific or subspecific status to allopatric populations presumed to be 
closely related is one of the more perplexing problems facing systematists (Rose and 
Selcer, 1989; Desmore, Rose and Kain, 1992). Despite the prevalence of the biological 

species concept, which requires reproductive incompatibility, the majority of reptile 
species have been classified by morphological distinctiveness alone. Using this criterion 
the degree of differentiation required between allopatric populations is generally larger 
than that observed between sympatric species (Conant, 1963). The task of allocating 

specific or subspecific status between visually similar populations, which are 
geographically close, is therefore rarely attempted. 

3.1.1 Genetic variability in Niveoscincus metallicus 

There is considerable evidence that Niveoscincus metallicus displays some level of 
genetic variability across its range. The species is widespread in southeast Australia and 
Tasmania, ranging from sea level to alpine elevations (e.g. summit of Mt. Barrow at 1413 
meters). It is also found in a variety of habitat types. Morphologically the species is quite 
variable; however, this variation can be observed both within and between populations on 

almost the same scale. The main exception to this generalisation is provided by the 
strongly striped and keeled specimens from southwest Tasmania, whose degree of 
differentiation and internal consistency, when compared to other populations, suggests 
some level of genetic distinction (M. Hutchinson, unpublished). Melville and Swain 
(1998) also indicated that there was a high level of intraspecific diversity in cytochrome b 

sequences between N. metallicus populations from central Tasmania and northeast 

Tasmania (Ben Lomond). This diversity was in the order of 12.2%. 

26 



Chapter 3: Genetic divergence between populations of N. metallicus 

3.1.2 Previous research on the genus Niveoscincus 

There have been four previous studies examining phylogenetic relationships within 

Niveoscincus, the most recent of which probably provides the most reliable insight into 

the history of the group. In the earliest analysis Hutchinson et al. (1990) estimated that the 

group diverged recently, within the last 5 million years. They based this conclusion on the 

observation that fewer than 10 albumin ID units separated the Tasmanian endemic 

species. Hutchinson and Schwaner (1991), using allozyme electrophoresis, suggested that 

a single species probably gave rise to four modern lineages during the Pleistocene 

glaciations. Allozyme electrophoresis is a powerful method of examining gene flow 

between populations (Richardson etal., 1986); however, use of electrophoretic distance 

data in phylogenetic studies is more controversial (Hutchinson and Schwaner, 1991). 

Hutchinson and Schwaner (1991) concluded that the inability of allozyme electrophoresis 

to resolve the phylogenetic relationships of Niveoscincus was a result of genetic 

divergence between the major lineages allowing homoplasy of allele mobility to affect 

data reliability. 

Following these studies Melville and Swain (1998) examined the mitochondrial DNA 

cytochrome b region in an attempt to clarify the phylogeny of the group. They showed that 

the group was monophyletic with four distinct lineages. However, their phylogeny 

differed significantly from that of Hutchinson and Schwaner (1991). They tentatively 

proposed that the modern lineages of the group radiated from a heath dweller in the late 

Tertiary (2-7 million years ago). Subsequently Melville and Swain (2000b) examined the 

cytochrome oxida  se  (subunit I) region of the mitochondrial DNA fragment. Their findings 

again supported a late Tertiary evolution within the group; however, the topology created 

differed from that of their earlier study, and the phylogeny constructed better supported 

earlier theories of divergence patterns in Niveoscincus (Figure 3.1). They concluded that a 

ground dwelling species similar to N. metallicus probably gave rise to the group. 

This thesis represents the only attempt to date to expand on current knowledge by 

examining genetic diversity within any of the presently accepted species. It examines 

evidence for possible vicariant biogeographic speciation within N. metallicus, including 

the role of past glacial events in shaping the present day distribution of the groups. To do 

this I use mitochondrial DNA (mtDNA) restriction analysis of the 12s-16s fragment 
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(2000bp's) along with sequencing procedures (16s, 583bp's) to test the null hypothesis 

that a single non-variable species is present. The results reported in this chapter of the 

thesis influenced field site selection in subsequent sections of the investigation. This was 

done to control for genetic differentiation between populations in later examinations of 

life-history and thermal biology. 

87 

N. microlepidotus (Mt Wellington) 

3 N. microlepidotus (Mt Hartz) 
98 

91 7 
5 N. orocryptus (Mt Hartz) 

N. orocryptus (Mt Eliza) 

69 
2 N. ocellatus (Orford) 

100 

14 
N. ocellatus (Cent. Plateau) 

88 
6 

N. greeni (Mt Pelion East) 
68 100 
2 13 

N. greeni (Ben Lomond) 

N. pretiosus (Pirates Bay) 

71 
100 

2 
N. pretiosus (Clarence Lagoon) 

14 

N. parreyrnani 

N. metallicus (Clarence Lagoon) 
78 

N. metallicus (Orford) 

N. covennyi 

	 P. entrecasurcruxii 

Figure 3.1 Parsimony bootstrap tree for Niveoscincus and the outgroup Pseudemoia from cytochrome 

oxidase (subunit 1) sequences. Bootstrap values (1000 replicates) for an unweighted analysis are provided 

above the lines. Decay indices are in bold type below the line. From Melville and Swain (1998). 
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3.1.3 Mitochondrial genes 

The value of mitochondrial DNA as a tool for evolutionary investigations has been well 

established (Moritz et al., 1987; Densmore, Rose and Kain, 1992). However, recently 
doubts have been raised about its reliability for predicting phylogenies (Hoelzer, 1997). 
Moore (1995) provided a clear discussion of the differences between gene trees and 
species trees. Species tree topology based on DNA-sequencing can be incorrectly inferred 
even though the gene tree has been correctly resolved (Wu, 1991; Doyle, 1992). This 
phenomenon may occur in situations where an ancestral species is polymorphic for the 
gene under examination and sorting of lineages is derived from the alternate haplotype 
(Moore, 1995; Hoelzer, 1997). The reliability of mt DNA is limited by lineage sorting, 
because the mitochondrial genes are inherited as a single linkage group, and therefore 
does not provide independent estimates of the species tree. Despite these objections, 
Moore (1995) concluded that a mitochondrial gene tree is more likely to reflect the 
species tree than its nuclear counterpart. 

A further point which supports the above conclusion is that gene trees are more likely to 
track species trees if the ancestral species population size is small (Moore, 1995). The 
population genetics of the mitochondria' genome are determined by an effective 
population size that is one fourth the size of the nuclear genome. This occurs because mt 
DNA is haploid and only inherited maternally. However, Hoelzer (1997) suggested two 
scenarios that may result in the mitochondrial gene tree being a less reliable indicator of 
the species tree than nuclear DNA information. The two situations he examined, polygyny 
and female philopatry, both reduce the effective population size of nuclear genes relative 
to mitochondrial haplotypes. Moore (1997) agreed that both of these phenomena may 
result in the nuclear tree being the superior choice for phylogenetic investigations. 
However, he answered Hoelzer's rhetorical question "Is mtDNA a useful source of data 
for the estimation of species trees" by stating that there were" Very few circumstances 
where the mt-haplotype tree would not be the best bet as the true species tree". Moore 
(1995) provided a theoretical basis for preferring mt-DNA trees over nuclear-gene trees 
when examining phylogenies. His argument is based on a number of assumptions, 
including neutral nucleotide substitution, panmictic (randomly interbreeding) species 
populations and equal reproductive success for both males and females (Moore, 1997). 
The biology of N. metallicus meets these assumptions very well. 
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Sampling multiple unlinked genes would increase the probability of correctly inferring a 

species tree. However, as mt DNA genetic material is inherited as a single linkage group it 

provides only one independent estimate of a species tree. Despite this, it appears that a 

large number of nuclear-gene trees are required to improve upon the confidence based on 
the mitochomdrial tree alone (Moore, 1995). 

The mitochondrial genes encoding the 12s and to a less extent the 16s ribosomal RNA 

have been used in a number of phylogenetic investigations within reptiles and amphibians 

to examine a wide range of divergence times (Hedges etal. 1991; Thorpe etal. 1993; 

Thorpe et al. 1994; Heise et al. 1995; Caccone etal. 1997; Chippindale etal. 1998; Harris 

et al. 1998; Keogh, 1998; Keogh etal. 1998; Caccone, 1999; Georges etal., 1999; Harris 
and Arnold, 1999; Honda et al. 1999; Parkinson, 1999). Mitochondrial ribosomal RNA 

coding genes generally evolve more slowly than their protein coding counterparts. 

Chippindale etal. (1998), in an examination of the phylogeny of Abronia (Anguidae: 

Gerrhonotinae), found that cytocrome b was roughly twice as variable as 12s sequences. 

Caccone et al. (1997) also found that cytochrome b genes evolve at nearly twice the rate 
of ribosomal genes in European newts (Genus Euprocus). However, they also indicated 

that cytocrome b rates were 3-7 times lower in salamanders than in other ectotherms. 

Generally, published evolutionary rates for mtDNA ribosomal genes in endotherms and 
ectotherms are 0.5 to 1% / million years for transitions plus transversions and 0.14% / 

million years for transversions only (Meyer and Wilson, 1990; Mindell and Honeycutt, 
1990; Hillis and Dixon, 1991; Kraus and Miyamoto, 1991; Allard etal. 1992; Meyer, 

1993; Ritchie etal. 1996). Despite the slower rate of change within mt DNA coding for 

ribosomal RNA, these segments still provide powerful tools for examining more recent 

divergences. 
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3.2 Materials and Methods 

3.2.1 Sampling and site selection 

I collected 140 specimens of N. metallicus from 13 localities, 11 from Tasmania and 2 

from Victoria (Fig. 3.2). These sites broadly cover the geographic range of the species 

from south central Victoria to southern Tasmania, and also encompass the altitudinal 

extremes of the animal. Animals were transported to the University alive, where tail 

sections were removed and stored for subsequent DNA extraction at -80 °C. I extracted 
DNA using Chelex techniques outlined in Walsh etal., (1991). 

Figure 3.2 Collection sites for Niveoscincus metallicus from Tasmania (11 sites) and Victoria (2 sites). 
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3.2.2 Polymerase Chain Reaction (PCR) 

Precautions were taken during the preparation of PCR reactions to minimise the risk of 

contamination from foreign DNA and consequent false positive amplifications. All PCR 

reactions were conducted in a room specifically dedicated to this purpose. Every set of 

PCR reactions was conducted with positive (both N. metallicus and Orange Roughy 
(Hoplostethus atlanticus)) and negative (no DNA) controls. The presence of any 

amplification in the negative control indicated the introduction of foreign DNA. Any 

amplification series in which this occurred was abandoned. 

Synthetic oligonucleotide primers were used to amplify an approximately 2000-bp portion 

of the 12s to 16s fragment of the mitochondrial genome. Primers used were 16sbrH (5' 

CCG GTC TGA ACT CAG ATC ACG T 3') and 12SA-L (5' AAA CTG GGA TTA GAT 
ACC CCA CTA T 3') (Meyer etal., 1990). Reactions contained 1.5 mM MgC1 2 . DNA 

template was added to reactions in volumes ranging from 3 1.1.1 to 6 pl depending upon the 

extraction procedure employed. Thermal cycling was performed in a Corbett FTS-320 

thermal cycler. All cycling methods began with a hot start at 94 °C for 4 minutes. Double-

stranded amplification involved 35 cycles of denaturation at 94 °C (30 seconds), annealing 
at 55°C (30 seconds) and extension at 72 °C (1 minutes). Cycling finished with a final 

extension time of 5 minutes at 72 °C followed by a rapid ramp to a 4 °C hold. This 

procedure was also tried on a MJ Research PTC-200 Peltier thermal cycler; however, 

slower ramp speeds in the Corbett cycler resulted in superior amplification of the large 

(2000-bp) DNA fragment. The effectiveness of PCR reactions was measured by gel 

electrophoresis and ethidium bromide staining. Fragments were visualised under 

ultraviolet light (302 nm). 

3.2.3 Mitochondrial DNA Restriction fragment length polymorphism analyses 

(RFLP) 

Six potentially useful restriction enzymes were used to digest the amplified PCR products 

of all animals collected from each site: Bsl 1(5' CCNNNNNANNGG 3'); BstU 1(5' 

CGACG 3'); Hae ifi (5' GGACC 3'); HinP1 1(5' GACGC 3'); Rsa 1(5' GTAAC 3'); and 

Spe 1(5' AACTAGT 3'). 
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All digestions of PCR products were performed in either 1.5 ml microcentrifuge tubes at 

37°C in a water bath, or in 250 p.1 tubes at 55°C in the MJ Research PTC-200 Peltier 

thermal cycler, for 8 to 12 hours. Digestion reactions contained 10 p.1 DNA and specific 

amounts of enzyme, buffer and BSA as indicated through the place of perchase (New 

England Biolabs, NEB). Reactions were made up to 20 p.1 with distilled H20. 

Digested PCR products were visualised by gel electrophoresis and ethidium bromide 

staining. A volume of restriction digest (10 p.1) was loaded with 2 p.1 of Bresatec 2x 

loading buffer prior to electrophoresis on a 3% agarose gel in TBE buffer. After 

electrophoresis, gels were rinsed with water, and DNA fragments were visualized under 

ultraviolet light (302 nm). Profiles were recorded on photographs. Approximately 3 p.1 of 

Brestec DMW-100L 100-bp ladder was run concurrently with each group of restriction 

digests to determine mtDNA fragment size and to enable comparison of restriction 

profiles between gels. 

A contingency x2  test on pooled restriction data was used to determine whether composite 

haplotype frequencies were heterogeneous across samples. Since all analyses were based 

on relatively small populations (n<17), the Monte Carlo randomisation approach of Roff 

and Bentzen (1989) was used as this eliminates the need to pool rare haplotypes. One 

thousand randomisations were used and the number of times each randomised replicate 

was greater than or equal to the observed value divided by 1000 provided an estimate of 

the probability of obtaining the result by chance alone. No further analyses to examine 

relationships between samples were conducted. This was because dendrograms examining 

relationships between groups were produced by sequencing the 16s region (see later) and 

relationships between groups were stark with no shared haplotypes between regions, and 

little or no variation within regions. 

3.2.4 Nucleotide sequence divergence between site 

A 584-bp region of the 16s rRNA mtDNA gene was sequenced for animals from each of 

the zones identified using restriction techniques. A total of 17 animals were sequenced for 

the 16s rRNA segments from the same 12s-16s rRNA section amplified in the previous 

section. Sites used for this section were Orford, Clarence lagoon, South Cape, Koo Wee 
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Rup, Ben Lomond, Falmouth, Mt Bishoff and one Pseudemoia entrecasteauxii specimen 

from SouthernTasmania selected as an outgroup specimen. Conditions and descriptions of 

PCR amplification are described in Section 3.2.2. PCR product was purified prior to 

nucleotide sequence determination using the Qiagen QIAquick PCR purification kit (50). 

Purified DNA was stored at 4 °C. 

The nucleotide sequence of PCR products was determined using automated sequencing 

procedures based on the dideoxy chain termination technique (Sanger et al., 1977). All 

nucleotide sequences were resolved on an ABI PRISM-377 DNA Sequencer (Perkin 

Elmer). 

Sequences were aligned using the Sequence Navigator application (Perkin Elmer) using 

the CLUSTAL option. Alignments were unambiguous despite the presence of a small 

insertion/deletion observed between the outgroup and the N. metallicus populations. 

Percent divergences were calculated and phylogenetic analyses performed using PAUP 

version 4.0. Two types of parsimony analysis were used to compare nucleotide sequences. 

These differed in the relative weighting given to the two types of nucleotide substitutions, 

transitions (TIs) and transversions (TVs). Weightings were varied because the probability 

of a base being replaced by another base varies with the base chemistry. There are four 

nucleotide bases represented in DNA: the purines, adenine and guanine; and the 

pyrimidines, thymine and cytosine. Brown etal. (1982) reported that the like replacement 

(TI) is more likely to occur than is a TV which requires a major change in chemical 

structure. Because TVs occur less frequently than TIs, they are less likely to be affected 

by the presence of homoplasious characters; i.e. those characters that are shared between 

species, but are not derived from a common ancestor. The STEPMATRIX option of 

PAUP was used to weight base substitutions as either unweighted or TRs as 3 and TIs as 

1. This was based on the observed frequencies of these substitutions. 

The HEURISTIC search-option within PAUP was used to perform weighted and 

unweighted parsimony. Both analyses were performed with the STEPWISE-ADDITION 

option in effect. When more than one most-parsimonious tree was obtained, the strict 

consensus tree (Rohlf, 1982) was constructed. This tree maintains only those discrete 

groupings that are present in all of the most-parsimonious trees obtained. 
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Confidence in the weighted strict consensus tree topology was assessed with the 

bootstrapping option (Felsenstein, 1985). This was done using similar heuristic search 

options on 1000 replicate data sets. Bootstrapping is now a common method for assessing 

phylogenetic analyses (Hillis and Bull, 1993). Under conditions of equal rates of change, 

symmetric phylogenies, and intemodal changes of 20% of characters, bootstrap 

proportions of 70% usually correspond to a probability of 95% that the corresponding 

clade is real (Hillis and Bull, 1993). Consequently, in this study bootstrap values 70% 

were considered to indicate a high degree of confidence in the branching. 

The neighbour-joining tree construction algorithm (Saitou and Nei, 1987) was used to 

analyse similarity estimates calculated from pair-wise comparisons of DNA sequences. 

The Kimura 2-parameter model of sequence evolution (Kimura, 1980) was used to correct 

calculations of pair-wise distance values from DNA sequences for multiple substitutions 

at nucleotide positions which could underestimate these distances. Analysis was 

conducted using PAUP (version 4.0). The neighbour-joining tree was constructed for 

unweighted character state changes only. Again bootstrap values were applied to assess 

confidence in groupings observed in consensus trees produced from the independent 

analysis of 1000 replicate data sets. 

3.3 Results 

3.3.1 Mitochondria! DNA Restriction fragment length polymorphism analyses 

(RFLP) 

The composite haplotypes obtained for N. metallicus populations from Tasmania and 

Victoria are displayed in Table 3.1. Numbers of haplotypes observed at each site are also 

shown. Of the six restriction enzymes used in the analysis, four showed some level of 

variation. Therefore, haplotypes displayed in Table 3.1 show composite profiles for all 

four variable enzymes. 

A visual distribution of these composite haplotypes is presented in Figure 3.3. Each 

individual restriction profile is displayed in Table 3.2. The 13 sites can be divided into 5 

geographic regions. This differentiation is supported by the Monte Carlo test which 

produced a probability of obtaining the above haplotype distributions by chance alone of 

35 



Chapter 3: Genetic divergence between populations of N. metallicus 

less than 0.001. Thus I rejected the null hypothesis that there was no genetic variation 

across the geographic range of the animal. 

Table 3.1 Distribution of composite mtDNA haplotypes of Niveoscincus metallicus (restriction profiles), 

representing the four restriction enzymes, Rsa I, Spe I, Bsl I and Hae III respectively, across all populations 

examined (n = number sampled). 

Site AAAA AAAB ABAA BABA AACA CCDA AAEA 
Clarence Lagoon 15 1 
Orford 13 2 1 
Mt. Wellington 17 
Hobart 16 
Sentinel Range 2 
Ben Lomond 1 1 
Falmouth 4 
Blue Tier 4 
Mt. Bishoff 16 
York Town 3 
Koo Wee Rup 16 
Mt. Baw Baw 14 
South Cape 16 
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Fig 3.3 The distribution of composite haplotypes in Niveoscincus metallicus from  Tasmania  and Victoria. 

Haplotypes are designated by a four letters code representing the restriction profiles produced from the 

enzymes Rsa I, Spe I, Bsl l and Hae III respectively. 

Animals from the Clarence Lagoon, Hobart, Mt. Wellington, Orford and Sentinel Range 

sites all form one group with the majority of animals displaying the composite haplotype 

AAAA. One animal from Ben Lomond also showed this pattern. The Orford and Clarence 

lagoon sites showed some internal diversity. Both of these sites showed the AAAB 
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haplotype and the Orford site also had one animal with a third ABAA haplotype. These 

patterns were not observed outside this group. All animals from Victoria displayed the 

CCDA haplotype, while within Tasmania, northeastern (AAEA), northwestern (AACA) 

and southern (BABA) composite haplotypes were also evident. 

Table 3.2 Fragment sizes of each restriction profile produced from Niveoscincus metallicus by the four 

restriction enzymes, Rsa L  Spe I, Bsl I and Hae III. Values are given for fragments, which were resolved on 

3% agarose gels. 
Restriction 	Profile 

Enzyme 	 A 

Hae III 	1000 

800 

495 	 495 

380 	 380 

200 

100 	 100 

Rsa I 	 940 

570 	 570 

7 

470 	 470 

370 

520 

390 

270 

260 	 260 

190 	 190 	 190 

100 

Spe I 	 1260 

800 

740 740 740 

680 

580 

430 

170 

120 

38 



Chapter 3: Genetic divergence between populations of N. metallicus 

Bs1 I 	820 820 820 

690 690 

680 

610 

490 490 

480 

410 410 410 410 410 

210 

200 200 200 

170 

Table 3.2 Cont 

3.3.2 Nucleotide sequence divergence between sites 

Sequence variation within a 584 bp portion of the 16s rRNA gene was observed at a total 

of only 33 nucleotide positions (Figure 3.4). Variation was informative at only 23 of these. 

The variation at the remaining 10 sites was observed in a single individual alone, and 

therefore was not interpreted as a shared derived character. 

Phylogenetic analyses of protein coding genes, such as the cytochrome b gene of mtDNA, 

must consider the codon position at which nucleotide variation occurs. This is a result of 

changes in amino acid sequences caused by nucleotide substitutions at either the first or 

second codon position. The position of nucleotide substitutions is not considered in this 

analysis as the 16s rRNA gene is not a protein-coding region and therefore nucleotide 

changes in this gene do not influence amino acid production. 

In all but one case sequences were obtained from more than one individual per site, and in 

all cases multiple animals were sequenced per region (identified from RFLP analysis). 

Levels of variation (measured as Kimora 2-parameter estimates, Table 3.3) within sites 

were in most cases low. Animals from the Mt Bichoff site showed no intrasite variation at 

all, while animals from Victoria showed less than 0.18% variation. South Cape animals 

also showed high levels of internal consistency with a maximum percentage variation of 

0.35%. Levels of differentiation were higher within the northeastern region, with animals 

from Falmouth showing 0.53% variation and the Ben Lomond individual displaying a 

maximum of 1.3% divergence from Falmouth lizards. 
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Orford 1 	AGCTGTTGCA CCGTTTGGGG GTCCTGATCC AACATCGAGG TCGTAAACCT TCTTGTCGAT 

Orford 2 

Orford 3 

Clarence Lag 1 	A 	  

Clarence Lag 2 

Southcape 1 

Southcape 2 

Southcape 3 

Koo Wee Rup 1   	N- 

Koo Wee Rup 2 	 

Koo Wee Rup 3   	N- 

Mt Bichoff 1 

Mt Bichoff 2 

Ben Lomond 1 

Falmouth 1 G T   A- 

Falmouth 2 	G 	T-- 

Orford 1 	AGGGACTCIT GAAGAAGATA GCGCTGTTAT CCCTGGGGTA ACTTGGTTCG TTGTTCAGTA 

Orford 2 

Orford 3 	 T  	A-- 

Clarence Lag 1 

Clarence Lag 2 

Southcape 1 

Southcape 2 

Southcape 3 
Koo Wee Rup 1   	A 

Koo Wee Rup 2   	A 

Koo Wee Rup 3   	A 

Mt Bichoff 1 	-T 	 

Mt Bichoff 2 	-T 	 

Ben Lomond 1 	-T  	A 

Falmouth 1 	A 

Falmouth 2 	 A  

Figure 3.4 Partial 16S rRNA nucleotide base sequence obtained from 16 Niveoscincus metallicus from 7 sites 

around Tasmania and Victoria. The sequences are represented in a 5' to 3' direction. Dashes indicate 

sequence identity with reference to initial sequence. Asterisks' represent insertions or deletions. 
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Orford 1 	AGACTGGGTC GGw*TITATT cArrrGAcrr GTTGGTCPGG TTGAGAGGGG TrGGUrCTGT 

Orford 2 

Orford 3 

Clarence Lag 1 

Clarence Lag 2 

Southcape 1 	A -   

Southcape 2 	A -   

Southcape 3 	A- 

Koo Wee Rup 1   	A- A   

Koo Wee Rup 2 	 C  A A   

Koo Wee Rup 3 	 A A   

Mt Bichoff 1 	AA  T  -A   

Mt Bichoff 2 	 -C   AA  T  -A   

Ben Lomond 1 	A- A   

Falmouth 1 	A- A   

Falmouth 2 	 A A   

Orford 1 	GCTCGGAAGT TTTGCTTTGT TCCGAAGTCG CCCCAACTTA AAACTTGTGC TATTTCGTGG 

Orford 2 

Orford 3 

Clarence Lag 1 -T  

Clarence Lag 2 

Southcape 1 	A- 

Southcape 2 	 A 	 

Southcape 3 	 A 	 

Koo Wee Rup 1 	 

Koo Wee Rup 2 	 

Koo Wee Rup 3 	 

Mt Bichoff 1 

Mt Bichoff 2 

Ben Lomond 1 

Falmouth 1 

Falmouth 2 

Figure 3.4 Continued. 
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Orford 1 	TGATA*TAGT GTTAGIIIiA AGCFCCACAG GGTCrrCrCG TCITATGTGT TTATTCAAGC 

Orford 2 

Orford 3 

Clarence Lag 1 

Clarence Lag 2 

Southcape I 

Southcape 2 

Southcape 3 
Koo Wee Rup 1 	-G   

Koo Wee Rup 2 
Koo Wee Rup 3 	-G   

Mt Bichoff 1 

Mt Bichoff 2 

Ben Lomond 1 

Falmouth 1 

Falmouth 2 

Orford 1 	1111GTACTT GAAGATCAGT TTTACTGGTT GATTATAAGA GACAGGTCCG TTCTCATITA 

Orford 2 

Orford 3 

Clarence Lag I 

Clarence Lag 2 

Southcape 1 	AG   

Southcape 2 	AG   

Southcape 3 	AG   

Koo Wee Rup 1 	 

Koo Wee Rup 2 	 

Koo Wee Rup 3 	 

Mt Bichoff 1 

Mt Bichoff 2 

Ben Lomond 1 

Falmouth 1 

Falmouth 2 

Figure 3.4 Continued. 

42 



Chapter 3: Genetic divergence between populations of N. metallicus 

Orford 1 	GCCTITCATA CAAGTL. 1 1 A TITAAAAGAC AAGTGATTAC GCTACCTITG CACGG1TAGG 

Orford 2 

Orford 3 

Clarence Lag 1 

Clarence Lag 2 

Southcape 1 

Southcape 2 

Southcape 3 
Koo Wee Rup 1 	 

Koo Wee Rup 2 	 

Koo Wee Rup 3 	 

Mt Bichoff 1 

Mt Bichoff 2 

Ben Lomond 1 
Falmouth 1 

Falmouth 2 

Orford 1 	ATACCGCGGC CGTITAAAAT GCTTCACTGG GCAGGCAGCA CCITTAATAC TTGTITGGCT 

Orford 2 

Orford 3 

Clarence Lag 1 

Clarence Lag 2 

Southcape 1 

Southcape 2 

Southcape 3 
Koo Wee Rup 1 	 

Koo Wee Rup 2 	 

Koo Wee Rup 3 	 

Mt Bichoff 1   -T 	 

Mt Bichoff 2   -T 	 

Ben Lomond 1 	 A  

Falmouth 1 	 -A  	A - 

Falmouth 2 

Figure 3.4 Continued. 
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Orford 1 	AAAGGCTGTG TTFITGGTAA ACAGTTGGGA CGG**GT1TG CTGAGITCCT TATATAAM 

Orford 2 	A- 

Orford 3 	 A  	 

Clarence Lag 1 	A- 

Clarence Lag 2 	 A  	 

Southcape 1 	 A  	 

Southcape 2 	 A  	 

Southcape 3 	A- 

Koo Wee Rup 1   	A- 

Koo Wee Rup 2   	A- 

Koo Wee Rup 3   	A- 

Mt Bichoff 1 	A- 

Mt Bichoff 2 	A- 

Ben Lomond 1 	AA 	  

Falmouth 1 	 A  

Falmouth 2 	 A  	 

Orford 1 	TAAACCTTCT rrGTGGCACT CCAGTGTCGG TTGACAGTTT AATG 

Orford 2 

Orford 3 

Clarence Lag 1 

Clarence Lag 2 

Southcape 1 	 -A 	 

Southcape 2 	 -A 	 

Southcape 3 	 -A 	 

Koo Wee Rup 1 	 

Koo Wee Rup 2 	 

Koo Wee Rup 3 	 

Mt Bichoff 1 

Mt Bichoff 2 

Ben Lomond 1 
Falmouth 1 -G- 

Falmouth 2 

Figure 3.4 Continued 
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Table 3.3 Sequence divergences, Kimura 2-parameter (below diagonal) and observed number of substitutions (above diagonal) for each pair-wise 
comparison of animals. Values in red are within site comparisons. 

Taxon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1. Orford 1 - I 3 3 2 8 8 8 6 6 6 9 9 9 11 8 61 

2. Orford 2 0.17 - 2 2 1 7 7 7 5 5 5 8 8 8 10 7 62 
3. Orford 3 0.52 0.35 - 4 3 9 9 9 7 7 7 10 10 10 11 9 64 

4. Clarence Lagoon 1 0.52 0.35 0.70 - 1 9 9 9 ' 7 7 7 10 10 10 12 9 61 

5. Clarence Lagoon 2 0.34 0.17 0.52 0.17 - 7 7 7 6 6 6 9 9 9 11 8 61 

6. Southcape 1 1.40 1.22 1.58 1.58 1.22 - 2 0 8 8 8 11 11 13 15 12 68 

7. Southcape 2 1.40 1.22 1.58 1.58 1.22 0.35 - 2 8 8 8 11 11 13 15 12 68 
8. Southcape 3 1.40 1.22 1.58 1.58 1.22 0.00 0.35 - 8 8 8 11 11 13 15 12 66 

9. Koo Wee Rup 1 1.05 0.87 1.22 1.22 1.04 1.40 1.40 1.40 - 0 1 9 9 7 8 6 63 

10. Koo Wee Rup 2 1.04 0.87 1.22 1.22 1.04 1.40 1.40 1.40 0.00 - I 9 9 7 9 6 63 

11. Kuu Wee Rup 3 1.05 0.87 1.22 1.22 1.05 1.40 1.39 1.40 0.17 0.17 - 9 9 7 8 6 64 
12. Mt Bichoff 1 1.57 1.39 1.75 1.75 1.57 1.93 1.93 1.93 1.58 1.58 1.57 - 0 12 16 13 64 
13. Mt Bichoff 2 1.57 1.40 1.75 1.75 1.58 1.93 1.93 1.93 1.58 1.58 1.58 0.00 - 12 16 13 64 

14. Ben Lomond 1.57 1.39 1.75 1.75 1.57 2.28 2.28 2.28 1.22 1.22 1.22 2.11 2.11 - 8 5 68 
15. Falmouth 1 1.93 1.75 1.94 2.11 1.93 2.65 2.65 2.65 1.41 1.58 1.40 2.83 2.83 1.40 - 3 68 

16. Falmouth 2 1.40 1.22 1.57 1.57 1.40 2.10 2.10 2.10 1.05 1.05 1.05 2.28 2.29 0.87 0.52 - 65 
17. P.  entrecasteauxii 11.5 11.7 12.1 11.5 11.5 12.5 12.9 12.5 11.9 11.9 12.1 12.1 12.1 12.9 13.0 12.3 - 
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Animals from central Tasmania (Clarence Lagoon and Orford) showed intra-regional 

variation levels ranging from 0.18% to 0.7%. 

Inter-regional variation within the species was somewhat more pronounced with sequence 

divergences ranging from 0.87% to 2.83%. Animals from central Tasmania and Victoria 

showed slightly more than 1% divergence as did those from northeastern Tasmanian and 

Victoria. Animals from northwestern Tasmania were the most distinct genetically, and 

displayed their greatest differentiation from northeastern Tasmanian animals. 

Unweighted parsimony analysis produced 15 equally parsimonious trees. A strict 

consensus of these 15 trees showed three distinct groupings, these being South Cape 

animals, Victorian and northeastern Tasmanian animals, and northwestern Tasmanian 

animals (Figure 3.5). The analysis was, however, unable to group central Tasmanian 

animals and shed no light on the relationships between groups due to the unresolved 

relationship between terminal groups. 

Weighting (3:1) resulted in a reduction to only 3 equally parsimonious trees. A strict 

consensus of these trees is shown in Figure 3.6. The tree produced the same groups as the 

unweighted analysis; however, it was also able to place the central Tasmanian animals 

into a single clade. The topology produced from this analysis also separates the 

northwestern Tasmanian (Mt. Bichoff) group from other populations. Bootstrapping of the 

weighted consensus tree showed strong support for the northwestern Tasmanian (99), 

northeastern Tasmanian and Victorian (71), and southern Tasmanian (98) clades (Figure 

3.7). Despite this, there was little support for the central Tasmanian clade (56). There was 

also little support for the topology of the tree towards its base, with bootstrap values less 

than 70. The analysis indicates that northwestern Tasmanian animals form a sister group 

to other populations. Following this split there is a secondary splitting of northeastern 

Tasmanian / Victorian and central Tasmanian / southern Tasmanian animals. There is, 

however, little support for this splitting (47) or for the subsequent separation of South 

Cape and central Tasmanian animals (13). 

The topology of the neighbour-joining tree (Figure 3.8) is very similar to that of the 

weighted parsimony tree. The main change is the switching of South Cape animals from 

the central Tasmanian clade to the northeastern/Victorian clade; however, the 
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Figure 3.5 Unweighted strict consensus of fifteen equally parsimonious trees based on 584 bp of 16S rRNA sequence. The 
analysis was rooted with the outgroup Pseudemoia entrecasteauxii. 
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Figure 3.6 Weighted strict consensus of three equally parsimonious trees based on 584 bp of 16S rRNA 

sequence. Transversions:transitions weighted 3:1. The analysis was rooted with the outgroup Pseudemoia 

entrecasteauxii. 
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Figure 3.7 Parsimony bootstrap tree based on 584 bp of 16S rRNA sequence. The analysis includes the 

outgroup Pseudemoia entrecasteauxii. TV:TI weight of 3:1. Values at branch points indicate bootstrap 

values (1000 replicates) with estimates less than 70% shown by dashed lines. 
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Figure 3.8 Neighbour-joining tree on 584 bp of 16s rRNA sequence. The analysis was rooted with the 

outgroup Pseudemoia entrecasteauxii. Pair-wise distances were calculated with the Kimura 2-parameter 

model of sequence evolution (Kimura 1980). Branch lengths are proportional to sequence divergence. The 

analysis was rooted using the outgroup Pseuckmoia entrecasteauxii. 
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differentiation between groups in this section of the cladogram is very small, as is 

indicated by the short branch lengths. This makes resolution between these groups 

difficult. Bootstrapping the neighbour-joining tree resulted in an obvious change in its 

topology (Figure 3.9). This can happen when distances between groups are small, as is the 

case in this analysis. The main difference between this tree and Figure 3.8 is the 

movement of the Mt. Bichoff clade to within the main species group. However, bootstrap 

values across the entire base of this tree are less than 70 and so are unreliable. There is 

indeed very little support for any higher level groupings in this tree. Again, however, there 

is strong support for the existence of individual subgroups. The northeastern Tasmanian 

clade is supported by a bootstrap value of 86%, the Victorian clade is supported by a 

value of 73%, the Mt Bichoff clade is supported by a value of 100%, and the South Cape 

clade is supported by a bootstrap value of 99%. The central Tasmanian clade is again, 

however, poorly supported (35%). 

3.4 Discussion 

Both the restriction analysis and the 16S rRNA sequence evidence presented clearly reject 
the notion that N metallicus is a single non-variable biological entity. Niveoscincus 

metallicus to date has been considered as one species, occupying a broad geographic and 

altitudinal range. The data presented here show clearly that there are in fact a minimum of 

four, and probably five, distinct groups occurring across the range examined. The mtDNA 

sequences of N metallicus exhibited clear geographic structuring. Addressing this type of 

apparent divergence may shed light on events that can lead to speciation (Lawson et al., 

1991). 

The main groups of sites, from this analysis, fall into the central Tasmanian (Type 1) 

cluster. The existence of this cluster is not well supported in any of the cladistic analyses; 

however, the RFLP analysis indicated that while some variation is evident within this 

grouping, all haplotypes observed were unique. A second well-supported grouping (Type 

2) was observed in animals from only one site, this being South Cape. A northwest 

Tasmanian cluster (Type 3) was also well supported in all analyses. RFLP analysis 

showed clearly that two other groupings were evident, these being Northeast Tasmanian 

(Type 4) and Victorian (Type 5) clusters. However, all sequencing analyses indicated 

strong support for the grouping of these two clusters into one monophyletic clade, since a 
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high number of informative nucleotide base sequences were shared between them. The 

RFLP analysis also indicated that both Type 1 and Type 4 animals were present at the Ben 

Lomond site, suggesting that this site may represent a region of genetic exchange or flow 

between the two types following range expansion. 
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Figure 3.9 Neighbour-joining phenogram based on pair-wise distances calculated using the Kimura 2- 

parameter model of sequence evolution (Kimura, 1980). Values at each node represent bootstrap percentages 

derived from 1000 replicates. The analysis is rooted using the outgroup Pseuckmoia entrecasteauxii. 
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The bootstrap values on the most parsimonious phylogeny of N metallicus indicated a 

high level of support for three of the four clades, However, the bootstrap values towards 

the base of the tree were well below the 70% required to indicate significant support for a 

divergence. This lack of support is also evident in the neighbour-joining analysis which 

displays short internal branches and low bootstrap values throughout its entire base 

structure. This uncertainty may have arisen for a number of reasons. Molecular evidence 

for phylogeny can be attenuated by multiple substitutions at single nucleotide sites, with 

transitions being likely to become saturated before transversions (Hillis etal., 1996, 

Harris et al., 1998). However, the low level of differentiation between samples in this 

situation would indicate that saturation has not taken place. The most probable reason for 

lack of resolution is that the sequence investigated is to some extent inappropriate for 

examining closely related groups, having too few informative sites to provide a 

statistically useful estimation of intraspecific relationships (Harris et al., 1998). Melville 

and Swain (1998) examined cytochrome b variation within all Niveoscincus species and 

found sequence differences in the range of 6.8 to 23.1%. Indeed within N. metallicus from 

Type 1 populations, they observed variation in the order of 9.8 to 12.1%. These values are 

significantly higher than those observed for 16S rRNA in my study. Sequence divergence 

within groups for this gene ranged from 0.0 to 1.4% while between group variation levels 

were between 0.87 and 2.83%. However, despite this apparent low sequence divergence, 

there was still strong support by bootstrapping for some nodes, indicating that enough 

variation is apparent to resolve some relationships. 

One factor which may provide some hindrance to the resolution of the neighbour-joining 

tree is the vast difference between the outgroup, P. entrecasteauxii, and the ingroups . The 

smallest value for differentiation between the outgroup and the most similar ingroup is 

11.5% in comparison to the most distinct ingroups which were only 2.83% different. 

Swofford et al. (1996) indicated that systematic error is expected to be worse in distance 

analysis when large branches are present in the analysis. However, they state that to 

reduce this problem the use of outgroup sequences should be kept to a minimum when 
using pairwise distance methods. While the selection of a sister species as an outgroup 

may have influenced the topology of the tree produced, the general agreement between 

the distance and parsimony analyses suggests that this is unlikely. 
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If the above possibilities are excluded, it becomes more probable that the lack of strong 

support in the topology of the base of both analyses results from a period of rapid 

speciation occurring in the recent past, probably during the climatic extremes of the 

Pleistocene. This has been suggested in other studies (Freisen et al., 1996; Lara et al., 

1996), including one where sequence data from the 12S rRNA gene failed to resolve 

relationships in the scincid lizards of the genus Leilopisma (Hickson etal., 1992). Harris 

etal. (1998) also provided the example of the South African sand lizards (Meroles spp). 

This group was morphologically variable but showed little DNA variation, and this was 

attributed to rapid speciation in a harsh environment. 

16S rRNA proved to be somewhat less variable than has previously been shown for the 

protein coding gene cytochrome b within this species (Melville and Swain, 1998) Melville 

and Swain (2000b) re-examined the species of Niveoscincus using cytochrome oxidase 

and found substantially less variation (4.0 to 12.6% between species). They also observed 

an intraspecific level of variation within N. metallicus of 0.7% for animals from Orford 

and Clarence lagoon (Type 1 sites). This value is identical to the largest within group 

variation observed between Type 1 animals in my study (Table 3.3) indicating that 16S 

rRNA is perhaps only slightly less variable than cytochrome oxidase. The majority of 

studies on phylogeny in reptiles focus on the protein coding gene cytochrome b or the 

rRNA genes 12S and 16S (Caccone et al., 1997). Slower rates of evolution in rRNA genes 

have been well documented (Caccone etal., 1997); however, Hedges etal. (1991) 

observed little variation in rates between cytochrome b and 12s rRNA in an examination 

of xantusiid lizard biogeography. 

Many authors assume a 2% divergence rate per million years (Brown etal., 1982; Wilson 

etal., 1985; Thorpe etal., 1994; Melville and Swain, 1998, 2000b) for mt DNA (averaged 

across sequence and RFLP data). Molecular dating, such as this, has always proven 

appealing because it may be used when no other information, such as stratigraphy and 

paleontology, are available for time estimates (Caccone et al., 1997). However, the use of 

molecules as time indicators relies on assessing whether molecular divergence is linear 

over time. This issue has been controversial since its introduction by Zucherkandl and 

Pauling (1965) as the molecular clock or rate-constancy hypothesis (Caccone et al., 1997). 

A number of studies have challenged this hypothesis, showing that nucleotide substitution 

rates vary dramatically within gene regions and among divergent taxonomic groups, in 
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both the nucDNA and mtDNA genome (Wu and Li, 1985; Powell et al., 1986; Bulmer et 

al., 1991; Martin et al., 1992; Caccone et a/.,1997; Keogh et al., 1998). However, the 

concept has been generally accepted for comparisons among closely related species or 

subspecies; because they share a recent common evolutionary history, such groups are 

unlikely to differ in aspects of their biology which may influence nucleotide divergence 

(Hillis et al., 1996). 

Published evolutionary rates for mt DNA ribosomal genes in both endotherms and 

ectotherms are 0.5 to 1% / million years for transitions and transversions (Meyer and 

Wilson, 1990; Minden and Honeycutt, 1990; Hillis and Dixon, 1991; Meyer, 1993; 

Caccone et al., 1997). Despite this, the substitution rate of 1 to 2% per million years, 

based on primate mtDNA (Brown etal., 1979, 1982), continues to be used for vertebrates 

and has recently been used in other studies on molecular biology of lizards (e.g. Thorpe et 

al., 1994; Melville and Swain, 1998). This estimate was also used successfully by 

Melville and Swain (2000b) in their study of cytochrome oxidase, which has been shown 

to have evolved perhaps only slightly faster than 16S rRNA (see above). Thus, it is likely 

that sequence divergences in N. metallicus for 16S rRNA is somewhere around the 1 to 

2% / million year level. 

The current biogeographical patterns in N metallicus may be explained by the vicariance 

hypothesis, which requires some restriction of gene flow between populations. Vicariant 

biogeographic analyses focus on congruent patterns among monophyletic assemblages of 

species or subspecies, addressing the role of past geological events in shaping present day 

distributions (Lamb etal., 1992). This type of phenomenon is obvious in Tasmania where 

the flora has been affected by the Pleistocene glaciations (Greenwood, 1994). Melville 

and Swain (1998, 2000b) have suggested that ancestral populations of Niveoscincus were 

subject to expansions and contractions during the Pleistocene glaciations in association 

with the habitats in which they occurred. 

A rate of divergence of 1 to 2 % suggests that the differentiation observed within N. 

metallicus also occurred at some stage during the past 1 million years, probably starting 

during the early Pleistocene. Towards the end of the Pliocene the seasonal pattern in 

Tasmania changed from summer to winter precipitation. This change, coupled with the 

beginning of the glacial-interglacial oscillations of the climate in the early Pleistocene, 
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would have created massive changes in the structure of plant communities (Jackson, 

1999), a situation promoting divergence in many species. Four glacial episodes have now 

been identified during the Pleistocene, the last or Margaret Glaciation (30-13 ka), the 

Henty Glaciation (>140 ka), the Moore Glaciation (>200 ka) and the Linda Glaciation 

(>730 ka). This nomenclature was used by Fitzsimons and Colhoun (1991) and Jackson 

(1999). The earlier glaciations were more extensive than the more recent ones. For 

example, during the Linda Glaciation, which occurred in the Early Pleistocene or Late 

Pliocene, an ice sheet of about 6000 km' occupied the central-western highlands, 
extending from the Great Lake to the valley of the Huskisson (Kiernan 1990). Large valley 

glaciers also extended to near sea level in the Forth and Mersey Valleys (Jackson, 1999; 

Colhoun et al., 1996; Kiernan, 1996). This level of glaciation may have formed a 

boundary separating the northwest corner of Tasmania from the remainder of the island 

and may have represented an almost impenetrable biogeographic barrier. Even during the 

most recent glacial period, eucalyptus forest would have been restricted to the northwest 

and northeast coasts (Kirkpatrick and Fowler, 1998), with extensive areas of true alpine 

habitat covering much of central and western Tasmania. The topology of both the 

parsimony and distance matrix trees indicates that northwestern N. metallicus were the 

first group to diverge from the ancestral type. Indeed Type 3 animals are the most distinct 
group formed, being most similar to Type 1 animals (about 1.5% divergence). It therefore 

appears probable that this group diverged first during the start of the glacial fluctuations 

characteristic of the Early Pleistocene. 

The next major split between groups differs somewhat between the parsimony analysis 

and the distance matrix tree. The split is, however, only weakly supported in both tests. 

The difference between the two trees is that Type 2 (South Cape) animals occupy 
different positions. In the parsimony bootstrap tree (Figure 3.7) South Cape animals are 

grouped with Type 1 lizards. Geographically this would be expected. Conversely, the 

neighbour-joining tree (Figure 3.8) groups South Cape animals with Type 4 and 5 lizards 

from northeast Tasmania and Victoria. This pattern of evolution seems unlikely, due to 

the large distance between these populations. In addition the tree displays very short 

internal branches in this section of its topology, indicating potential difficulties in 

resolving their relationships. Consequently, I believe it more appropriate to discuss 

possible vicariance events leading to divergence in terms of the more realistic parsimony 

analysis. 
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Large level glaciations were not evident in the northeast of Tasmania during the 

Pleistocene, although a small glacier would have been present on Ben Lomond (Jackson, 

1999). However, Kirkpatrick and Fowler (1998), in a study attempting to predict refugial 

sites for flora in Tasmania during the Late Pleistocene, demonstrated that eucalypt forest 

may have been restricted to the northeast and northwest of Tasmania during the height of 

the last glaciation. It could be expected that this may have also occurred during earlier 

glaciations. Large regions surrounding this northeastern corner would have been true 

alpine habitat, with areas of grassland in the far north. This may have provided a boundary 

to gene flow between Type 4 and Type 1 populations. As the preferred habitat of this 

species was restricted to refugia, the animal may have been restricted to habitats in the 

northeast, and pockets of habitat in the southeastern corner of Tasmania. Mesibov (1996) 

identified the northeastern corner of Tasmania, and specifically Plomley's Island 

(Mesibov, 1994), as perhaps the most obvious bioregion in Tasmania, in terms of 

invertebrate fauna. 

Mesibov (1996) also reported that a number of characteristic species of invertebrate are 

found only in the far northeast and on Flinders Island and Victoria. This observation 

supports the high degree of relatedness evident between Type 4 and Victorian Type 5 
animals in both the parsimony and neighbour-joining trees. The last glaciation lowered 

the sea level by about 120 m, indicating that bridging of Bass Strait would probably have 

occurred during all of the glacials (Jackson, 1999). During the period 24-16 ka the sea 

level would have been lower than —70 m providing two land bridges to Victoria, one 

through Flinders-Deal Islands to Wilsons Promontory and one through Hunter-King 

Islands to the Momington Peninsula (Jackson, 1999). A large shallow lake would have 

occupied most of central Bass Strait (Blom, 1988). Assuming that central Tasmanian 

glaciers separated northwestern and northeastern populations of N. metallicus, then both 

populations would still have had access to Victoria through these land bridges. However, 

the tree line on the western side of Tasmania during this period would have dropped out at 

the present day sea level (Jackson, 1999) and conditions may have been unfavorable on 

the Hunter-King Island land Bridge. This may have prevented northwestern populations 

from interacting with Victorian animals. Kirkpatrick and Fowler (1998) demonstrated that 

eucalypt forest would have been present over almost all of what is today Flinders Island, 

and this land bridge would possibly have been much more hospitable than the western 
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one. Horwitz (1988) also provided an example of a hypothetical rise and fall in sea level 

associated with climatic fluctuations evident in the early Pleistocene. During this period, 

based on present day depth contours of Bass Strait the sea would have entered the Strait 

between King Island and Cape Otway, gradually splitting northwestern and Victorian 

populations. With a slow rise in the sea level (of no more than 1 m per 70 years (De 

Deckker, 1986), the northeastern Tasmanian population would have remained in contact 

with Victorian populations for extensive periods while a barrier of water and ice enclosed 

the northwestern populations. Thus, it is probable that Type 4 and Type 5 populations 

were subject to gene flow at many stages during the Pleistocene, while Type 3 animals 

were isolated. 

The final divergence that requires some level of explanation is the segregation of Type 1 

and Type 2 animals in the far south of Tasmania. Evidence for glaciations in this area of 

the state is scant and somewhat unreliable. However, it is known that the summits of the 

Ironbound Range, Mt La Perouse, Pinders Peak, Mt Victoria, Mt Bisdee and Adamsons 

Peak were all subject to glacial activity (Derbyshire et al., 1965). The intensity of 

glaciation in this area is unknown; but it is possible that it may have been sufficient to 

isolate populations of N metallicus during the Pleistocene. Kirkpatrick and Fowler (1998) 

indicated that, at the height of the last glaciation, much of this area may have been alpine 

habitat. However, patches of eucalypt forest may have remained to act as refugia. 

The final question that must be addressed in a situation involving the disclosure of a 

number of subtypes within a recognized species is the taxonomic status of these 

populations. I do not propose any formal change to the taxonomy of N metallicus in this 

thesis for a number of reasons. Firstly, although the RFLP analysis and the sequencing 

analysis both revealed species sub-structuring, with little intra-group variation, divergence 

levels were not large. Also, my work is based solely on the 12S rRNA and 16SrRNA 

regions. Due to the conservative nature of these regions, further sequencing work is 

required, specifically examining the cytochrome b region of the mtDNA fragment. 

Secondly, although sampling was extensive, further collections from both Tasmania and 

Victoria would be helpful in explaining observed geographical patterns. Finally DNA 

analysis alone is not sufficient to segregate populations into subspecies in the absence of 

any morphological support. This does not imply that no variation is present across the 

range examined, but simply that it has not been examined. Nevertheless the question of 
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taxonomic status in this species is not trivial. Populations are clearly allopatric but 

geographically proximate, perhaps overlapping in some areas (e.g. Ben Lomond). To 

determine whether separation of these groups satisfies currently accepted species concepts 

(Rose and Selcer, 1989; Frost and Hillis, 1990; Zamudio et al., 1997) is therefore of 

importance. 

The results from my work suggest that a single parental N. metallicus type gave rise to 

five modem subtypes during the extensive climatic fluctuations experienced in the 

Pleistocene. The timing of these events is in accord with previous work conducted by 

Melville and Swain (1998, 2000b), who have proposed that the genus Niveoscincus first 

appeared in the Tertiary and subsequently diverged in the Early Pleistocene. In future 

research I intend to examine cytochrome b sequences and morphological evidence for 

segregation of populations in this species. I also hope to investigate population genetics 

across the boundaries of the regions identified, and to study island populations of N. 

metallicus throughout Bass Strait to shed further light on possible mechanisms of 

speciation in this group. 
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CHAPTER FOUR 

Microhabitat occupation and basking site selection in Niveoscincus 

metallicus 

4.1 Introduction 

Habitat and microhabitat use have received a great deal of attention from reptile ecologists 

(Adolph, 1990), usually in the context of resource partitioning and interspecific 

competition (Schoener, 1977; Toft, 1985). A variety of factors influence how animals use 

their habitats and microhabitats. Among reptiles, the most important of these are 

temperature, food distribution, intra- and inter specific interactions and predation (Smith, 

1996), all of which vary spatially. In particular, interactions between ectotherms and their 

thermal environment can restrict activity and habitat use (Christian et al., 1983; Huey et 

al., 1989; Adolph, 1990; Vallejo etal., 1995; Blazquez, 1996; Melville and Swain, 1997a, 

1997b; Christian, 1998) and may conflict with other factors including food acquisition and 

predator avoidance (Huey, 1982; Downes and Shine, 1998). 

Because thermal microclimates vary spatially lizards may use specific habitats or 

microhabitats at different times of the day, or at different locations (e.g. elevations), to 

maintain preferred body temperatures (Carrascal and Diaz, 1989; Aldoph, 1990; Castilla 

and Bauwens, 1991; Smith, 1996). Lizards compensate for environmental extremes 

primarily through behavioral shifts, including the selection of specific microhabitats 

(Hertz and Huey, 1981; Marquet et al, 1989; Adolph, 1990; Carracal et al, 1992; Melville 

and Swain, 1997a, 1997b). Thus, at high altitude a lizard may be restricted to only the 

warmest microclimates and suitable microhabitats may have increased value because of 

their reduced availability (Hertz and Huey, 1981). However, while a lizard must contend 

with extremes in its physical environment, that same environment can also be exploited in 

order to optimise the animal's physiological state (Huey and Stevenson, 1979). For 

example, such behaviour may result in more efficient avoidance of predators (Christian 

and Tracy, 1981). In addition, patterns of habitat use can influence life history and 

demographic traits both within (Smith, 1995), and between populations (Grant and 

Dunham, 1990) by affecting the abiotic and biotic environment. Consequently, it is 
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important to consider how individuals use their environment if the potential for 

interindividual differences in habitat occupation to result in life history variation is to be 

understood (Smith, 1996). This is especially true for species that occur over large 

geographic and/or altitudinal ranges, since these are likely to show the greatest variation in 

such relationships. 

Many lizard species have relatively narrow ranges of active body temperatures that 

correspond to various physiological optima (Bennet, 1980; Huey, 1982, Adolph, 1990). In 

temperate climates a strategy of precise thermoregulation requires flexible use of the 

habitat if a species is to cope with temporal or geographic variation in the thermal 

environment (Adolph, 1990). If this does not occur, opportunities for activity may be 

severely curtailed. It is therefore of interest to examine habitat use among populations of 

widespread species, to determine the extent of behavioural plasticity. 

An intrinsic problem encountered when quantifying the microhabitat characteristics 

preferred by shuttling heliotherms such as Niveoscincus metallicus is that the animals are 

generally only visible when basking (Melville, 1994). This is common among cryptic 

species (Barbault and Maury, 1981). The basking site selected by a lizard is, therefore, 

often the only consistent indicator of microhabitat use and, consequently, is commonly 

used by investigators (Moermond, 1979). This approach is based upon the premise that the 

thermoregulation of lizards in temperate climates is reliant upon the availability of suitable 

basking sites. 

Microhabitat use by N metallicus was previously investigated at a sub-alpine site on Mt 

Wellington (Melville and Swain, 1997); however, this research was conducted as part of a 

study looking at spatial separation between this and a related species, N. microlepidotus. 

Other than this, existing descriptions of habitat use for this and other Tasmanian species 

are mostly qualitative, and generalised (Rawlinson, 1974; Hutchinson et al. 1989) 

although Melville and Swain, (1999) used a quantitative approach in their review of 

habitat associations and biogeography of snow skinks. The aim of my investigation is to 

expand on current knowledge of habitat occupation in N metallicus, by examining inter-

populational variation on two separate spatial scales. Morris (1987), Wiens (1989) and 

Rubio and Carrascal (1994) have all stressed the importance of spatial scale in the analysis 

of habitat preference. However, this has received little attention in studies involving 
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reptiles. Habitat preference was examined at the local scale (3 m radius around animal-

overall habitat elements) and at the focal scale (basking site characteristics) in N. 

metallicus using multivariate techniques. These two scales allowed separate examination 

of differential habitat use between sites (both scales) and habitat selection within sites 

(local scale only). The study examines if (1) animals actively select specific cryptic 

elements within a habitat or occupy sites in a random fashion; (2) lizards show any 

geographic pattern to their habitat occupation associated with altitude and latitude; and (3) 

whether factors other than thermal environment (e.g. predation) may explain observed 

results. 

4.2 Materials and Methods 

4.2.1 Field Methods 

Observations were made at the four previously described field sites (Chapter 2) during the 

summers of 1998 and 1999. Data were recorded by starting from a randomly determined 

location and moving slowly back and forth across the site to ensure coverage of the entire 

range of microhabitats available. When an undisturbed adult lizard was sighted basking 

the position and sex were recorded immediately. Wherever possible lizards were captured 

by noose and the following information was recorded. 

Focal scale (at basking site): 

1. level of shade on lizard (% cover) (SH); 

2. basking surface ((1) large rock, (2) rock and vegetation, (3) thin vegetation and 

dirt, (4) vegetation and sticks, (5) branches, (6) logs)(BS); 

3. distance to nearest shelter (cm)(DS); 

4. distance to nearest vegetation (cm)(DV); 

5. major substrate component ((1) scree, (2) small rocks/vegetation, (3) 

litter/vegetation, (4) branches/vegetation, (5) logs)(ST); 

6. vegetation cover over lizard ((1) = none to (5) = full, complex)(VC); 

7. height of vegetation (cm)(VH); 

8. type of vegetation (Structure (1) = simple grasses to (5) solid logs and 

branches)(VT); 

9. basking height (cm)(BH). 
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Once the above information was determined, an area of 3 m in diameter was estimated 

around the lizard's basking site. From this area the following information was obtained. 

Local scale (3 m diameter - all values recorded as presence by percentage): 

1. gravel; 

2. grass; 

3. fallen leaves; 

4. rocks (only used in NP-Manova); 

5. soil; 

6. tree trunks; 

7. tree branches; 

8. vegetation less than 25 cm height; 

9. vegetation between 25 and 50 cm; 

10. vegetation between 50 and 100 cm; 

11. vegetation between 1 and 2 m; 

12. vegetation above 2 m height; •  

13. rocks less than 25 cm in diameter; 

14. rocks between 25 and 50 cm diameter; 

15. rocks between 50 and 100cm diameter; 

16. rocks above 1 m diameter; 

17. slopes less than 20 degrees. 

I also estimated the availability of microhabitats at each study site by measuring the above 

variables in an area with a center that was randomly determined by stopping every 15 

minutes during lizard collections. This provided a means of examining selection of 

microhabitats at each site. 

4.2.2 Statistical Analysis 

4.2.2.1 Focal scale 

A principal components analysis (PCA) was used to reduce the nine focal scale variables 

to a smaller number of uncorrelated components that describe the underlying dimensions 
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in the basking sites occupied (FACTOR procedure of SYSTAT, Wilkinson et al., 1992). 

The principal components were extracted from the correlation matrix of the raw data. This 

matrix has the advantage of being independent of the scale of variables measured 

(Tabachnick and Fidell, 1989). Data were not transformed prior to the analysis as some of 

the values for the distance to vegetation and shelter were very small and I wished to 

reduce the influence of less common habitat components in the analysis. Thus it is 

possible that the assumption of linearity was violated (James and McCulloch, 1990). 

However, departures from linearity are not usually great enough to invalidate a PCA 

(Pimentel, 1979). The number of principal components (PCs) utilized in the analysis was 

determined by using the scree test of eigenvalues plotted against factors, maximizing the 

adequacy of extraction. PC axes were named by the correlation of the original variables to 

the PC; correlations with absolute values of >0.5 were considered significant (Tabachnick 

and Fidell, 1989). Interpretation of PCs was straightforward, so there was no requirement 

for rotation of the data. 

Subsequent to PCA I performed a univariate ANOVA analysis on the separate PC axes 

using the MGLH procedure of SYSTAT (Wilkinson et al., 1992), in order to determine if 

there was any significant separation of populations along the axes. Even though sample 

sizes between populations were uneven, there was no violation of statistical assumptions 

(Tabachnick and Fidell, 1989), and sample sizes were large enough to ensure multivariate 

normality. Using the discriminant function analysis, PC scores (means and standard errors) 

for populations were determined. 

4.2.2.2 Local Scale 

A Bray Curtis similarity matrix was generated using data from all four populations. Site 

similarity was tested using an analysis of similarity (ASIM module; 1000 randomizations) 

based on the Bray Curtis matrix. The similarity matrix was ordinated in three dimensions 

using 30 random starts in the SSH (semi-strong hybrid multidimensional scaling) module. 

Attributes of each habitat were correlated with the three ordination axes using the PPC 

module. Correlations were tested for significance using 100 Monte-Carlo randomizations 

(MCAO module). All analyses were conducted using PATN (Belbin, 1995). 
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I used a two-way crossed (orthogonal) non-parametric MANOVA to again test for site 

similarity (Anderson, 1999). This analysis uses a non-parametric method for testing 

ecological multivariate hypotheses. It allows correct calculation of statistics for crossed 

factors, which are fixed or random in design. Factors tested in this design were site 

(random effect) and treatment (i.e. two fixed levels — randomly chosen area or site 

containing basking lizard). 

The analysis provides a partitioning of multivariate variability in the data according to 

particular factors in any two-way ANOVA design on the basis of any of several different 

distance measures. In this case I used a Bray-Curtis dissimilarity measure. Data were not 

transformed prior to the analysis. This method also allows further analyses of particular 

terms by providing multivariate pair-wise a posteriori tests. However, this test is not 

corrected for experimental-wise error rate. This means that if one selects a significance 

level of 0.05 for the tests, then a significant result should be expected in 1 out of 20 tests 

by chance alone. Thus the onus is on the user to interpret results in a conservative way. 

4.3 Results 

4.3.1 Focal scale 

The principal component analysis (PCA) was first performed separately on both sexes of 

animals from each site; however, since no significant differences were found between 

sexes the data were pooled. 

The PCA that incorporated two factors accounted for 56.4% of the variance of the raw 

data (Table 4.1). The number of factors used in the analysis was determined using a scree 

test, where a change in slope indicates the final factor which should be employed. The first 

PC axis accounted for 39.9% of the variation in the raw data. It yielded a strong positive 

correlation with basking surface, substrate type, vegetation cover, vegetation height and 

vegetation type. A strong negative correlation with distance to shelter and distance to 

vegetation was also evident (Table 4.1). Thus, the PC1 axis describes a basking site type 

in which high PC scores indicate a preference to bask on wood rather than rock, to bask on 

more complex substrates, to shelter under vegetation, and to use more complex vegetation 

associations. Animals displaying high PC1 scores also bask closer to shelter and to ground 
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39.855 	 16.573 Percent of Variance 

Site Score 	 Site Score 

(Mean ± SD) 	 (Mean ± SD) 

Mt. Wellington 67 -0.72 ± 0.72 0.10 ± 0.87 

Clarence Lagoon 57 -0.61± 0.92 0.32 ± 0.97 

Orford 74 0.30 ± 0.87 0.01 ± 0.96 

Hobart 103 0.59 ± 0.80 -0.25± 1.07 

Of the original 301 lizards recorded, 4 appeared to represent outliers from the data set; 

however, due to the natural variation in this type of information, there was no reason for 

removing these animals from the analysis. Assumptions of linearity and were not violated 

for the remaining 297 lizards. 

A discriminant function analysis revealed intraspecific variation in the PC scores on both 

PC1 and PC2 (Table 4.1). The highest scores on PC1 were yielded by animals from 

Hobart and Orford and the lowest scores occur for the Mt. Wellington and Clarence 

Lagoon populations. There were significant differences between sites on the PC1 axis 
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BS 0.657 	DS —0.535 

	

ST 0.754 	DV -0.633 

VC 0.818 

VH 0.671 

VT 0.763 

DS 0.503 

VH 0.618 

BH 0.749 Correlations with PCs 
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level vegetation. Negative PC scores denote more open, rocky areas, with little or no cover 

and greater distances to shelter. 

The second PC axis accounted for 16.573% of the variation in raw data. It displayed a 

positive correlation with distance to shelter, vegetation height and basking height. Thus 

high PC scores on this axis indicate animals basking further from shelter, under high 

vegetation and basking higher above the ground. 

Table 4.1 Correlations between original environmental variables with the first two PC scores for N. 

metallicus populations from all field sites. 
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(F„7= 48.617, P<0.001). On PC2 the highest score is evident for animals from the Mt. 

Wellington and Clarence lagoon sites. Again significant differences were evident on this 

axis (F3297= 4.534, P=0.004). 

A Tukey HSD multiple comparison indicated that there is grouping of populations based 

on basking site utilization (Figure 4.1). High altitude sites (Mt. Wellington and Clarence 

Lagoon) were not significantly different from each other on PC axis 1. The same was true 

for low altitude sites (P>0.05). However, all low/high altitude combinations displayed 

significant variation on this axis (P<0.001). Only the Clarence Lagoon and Hobart sites 

were significantly different on PC axis 2 (P=0.002). Thus basking site occupation appears 

to be most reliably predicted in this analysis using the PC1 scores, with high altitude 

animals basking more often on rock and in more exposed microclimates. 
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Figure 4.1: First two principal components (PCs) of the analysis of basking site  selection  by N metallicus 

individuals from four populations around Tasmania. 

4.3.2 Local scale 

Initially, I examined local scale data using PCA, however, this technique was unable to 

discern differences between sites; however, professional advise (Barmuta,  pers corn) 

indicated that semi-strong hybrid multidimensional scaling was a more appropriate 

technique to examine data. Therefore the analysis continued using this procedure. The 
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level of variation observed between sites was significantly larger than that occurring 

within sites (ASIM statistic < 0.001). Thus in the local scale analysis at least one site was 

dissimilar to others in terms of the habitat adopted by lizards. Ordination of the data 

revealed that variation across sites was continuous with no site occurring in isolation 

(Figs. 4.2 and 4.4). Despite this, trends in habitat occupation between sites are evident. All 

habitat components displayed significant correlation with ordination axes at the 0.01 level 

(MCAO module). 

The trend evident across ordination axes 1 and 2 is weak. Animals from Mt. Wellington 

tend to occupy the top, central and right positions on the graph. These correspond to areas 

with significant rock cover, and mid level vegetation. Clarence Lagoon animals display 

little in the way of any obvious trends on these axes, with animals occupying most of the 

graph surface. Some clustering in the lower central portion indicates an association with 

high level vegetation and branches. Hobart lizards occupy a central position on the graph, 

indicating an association with low level vegetation and grass. Orford animals follow a 

pattern similar to that observed for Mt. Wellington individuals, occurring in the central 

right of the graph. These animals are primarily associated with low to mid level 

vegetation. 

Figure 4.4, displaying the plot of ordination axes 1 and 3, more clearly differentiates 

between sites. Animals from high altitude sites tend to occupy the lower right area of the 

graph. These sites are associated with rocks, dead branches, mid level vegetation and 

gravel. Hobart animals cluster in the top left of this graph. They occupy a habitat 

characterized by trees and low vegetation (including grass). Orford animals are found 

again across the entire surface of the graph; however, they cluster in the top of the graph, 

indicating an affinity for areas with low vegetation. Despite this, some animals are found 

in areas dominated by exposed rock. These trends are best examined in combination with 

vector plots (Figs. 4.3 and 4.5), that reveal the importance of specific habitat components 

on ordination axes. 

The non-parametric two way MANOVA indicated that there was a strong interaction 

effect between site and treatment (lizard present or randomly determined site) (F„„= 

6.3312, P = 0.001). Pair-wise a posteriori comparisons were determined for all possible 

combinations of this interaction. Tests among groups in treatment for all levels of site 
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indicated that at the Mt. Wellington site animals displayed strong differences between 

random and selected habitats (P = 0.0002). At Clarence Lagoon,  selection  was supported, 

but not strongly (P = 0.057). At both low altitude sites, no selection was evident (P -- 
0.9992 and 0.9588 for Hobart and Orford respectively). 
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Figure 4.2: Plot of ordination axes 1 and 2 showing continuous variation between sites in terms of habitat 

selected by N. metallicus individuals from four populations around Tasmania. 

2 - 

1.5 

1 

0.5 

-0.5 

ea 	. bra 	v3 

	

-1 	 tru  WI 

	

-1.5 	 
-1.5 	-1 	-0.5 	0 	0.5 	1 	1.5 

Ordination axis 1 

Figure 4.3: Plot of the vectors on ordination axes 1 and 2 produced from a principal axis correlation 

following semi-strong hybrid multidimensional scaling of all four sites. Arrow length is proportional to the 

correlation coefficient for that habitat attribute. 

O
rd

in
at

io
n  

a
xi

s  
2 

69 



Chapter 4: Microhabitat occupation and basking site selection 

.cn 
X co 
a 
o 

0 

1.5 - 

	

1 	- 

0.5 - 

0 - 

	

-1 	_ 

	

-1.5 	_ 

	

-2  	

• 

• 
A 

• • 	• 	• 	•  • , • •  A  • • AA   

A A  
• A •  •  • 	ai r14  ael:. 

i*  • 	eip 	 • • flit 	• 
• • —  •  al  • • •  A%  • •  •06  •• 1  %  Ail  •omb  ••  4.11  . • • . 	• 40-  • • • 	 •  * • 41  •  •  •  aloe . 	*•• 11: 

• 444 •  • 
M a  •  a .  •  i : 14.. e •°I.

* 
 '
• 
•

• 
t  t  •  •  • • • s  bp.-  -  EL 	• •• • • mit • •  , 	••• 	• 

• •• 	
• •; •• 

 t  •  • 
• • 	• 	• • • 

• • •_ 	• 	• 
II 	• 

• 

• Mt. Wellington 

• Clarence Lagoor 

• Hobart 

•Orford 

-1.5 	-1 	-0.5 	0 	0.5 	1 	1.5 

Ordination axis 1 

Figure 4.4: Plot of ordination axes 1 and 3 showing continuous variation between sites in terms of habitat 

selected by N metallicus individuals from four populations around Tasmania. 
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Tests among populations at the lizard present level of treatment indicated that all sites 

were significantly different from the Orford population in terms of habitat selected (P < 

0.05). All other combinations of sites did not differ significantly. Finally, an examination 

of site differences for randomly selected areas indicates that only two groups of sites are 

not significantly variable. Clarence Lagoon and Hobart appear structurally to be similar (P 

= 0.7332) while Mt Wellington and Orford also appear similar (P = 0.264). Thus, 

structurally, sites group into open rocky (Mt Wellington and Orford) and forested 

(Clarence Lagoon and Hobart) habitats. All other combinations of sites were significantly 

different (P < 0.001). 

4.4 Discussion 

All species exhibit a non-random selection of microhabitats and a preference for a 

particular set of environmental and structural factors. The selection of microhabitat 

characteristics by lizard communities has been reported in many studies (see Paulissen, 

1988 for early examples). In the current study, habitat utilization was investigated at two 

levels, to determine to what extent N. metallicus utilizes long term behavioural responses 

(microhabitat selection) to compensate for variation associated with altitude. Attempts to 

provide qualitative descriptions of microhabitat occupation in small shuttling heliotherms 

are often complicated by the fact that animals are only visible when basking (Melville and 

Swain, 1997a). I chose to define microhabitat utilization in N. metallicus in this 

investigation through the use of basking sites. This was because these sites are a dominant 

characteristic of an animal's home range, and because, in this species, thermoregulation 

occupies a large portion of the activity window in all seasons (Melville and Swain, 

1997b). Numerous other investigations have also used basking site as an indicator of 

microhabitat use (Moermond, 1979, Hertz and Huey, 1981, Hertz etal., 1994, Vallejo et 

al., 1995, Melville and Swain, 1997a). 

My study indicates that basking site selection (focal scale) is strongly related to 

vegetation, substrate and cover. Site differences were detected along both PC axes 1 and 2 

(Figure 4.1). Generally sites separated into high and low altitude clusters with animals 

from high altitude sites displaying a preference for rock basking surfaces with little or no 

vegetation cover. These animals also basked further from shelter. Low altitude animals 
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basked generally on wood, with complex vegetative cover and closer to refugia. There was 

also a weak tendency for high altitude animals to bask higher above ground level, 

generally related to their preference for rock basking surfaces. Other studies of lizard 

communities have found very similar factors to be involved in the selection of 

microhabitat, even in very different habitat types. For example, Shenbrot etal. (1991) 

indicated that substrate and vegetative characteristics were the most significant factors in 

determining the selection of microhabitat by some small desert lizards. Martin and 

Salvador (1995) also indicated that substrate type, specifically rock, was a major 

determinant of population density in an Iberian rock lizard, Lacerta monticola. Numerous 

studies have also reported that structural characteristics such as vegetation and substrate 

type are of primary importance to temperate climate lizard species (Dent and Spellerberg, 

1987; Paulissen, 1988; Patterson, 1992; Brown and Nelson, 1993). Likewise, studies of 

habitat use across altitudinal gradients have reported that microhabitat selection can be of 

major importance in adapting to high altitude environments (Marquet etal., 1989; Adolph, 

1990; Spencer and Grimmond, 1994), a trend observed in N. metallicus. 

Investigation of microhabitat selection at a local scale modified the conclusions obtained 

from examination of focal scale results. Multidimensional scaling indicated that there is 

little separation of sites along axes 1 or 2 (Fig. 4.2). However, much stronger 

differentiation was apparent on axis 3 (Fig. 4.4). Again, the indication was that animals 

from low altitude tend to occur in areas of complex vegetation cover while high altitude 

animals are more prevalent in regions denoted by rock, gravel and more open structural 

elements. The non-parametric MANOVA provided more information on the separation of 

sites at this scale. Initially this analysis revealed that selection of microhabitat was 

occurring only at the two high altitude sites. Animals at Hobart and Orford appeared to 

show no selection of habitat beyond that associated with the selection of suitable basking 

sites. Clarence Lagoon and Mt Wellington individuals, however, showed evidence for 

selection of specific elements of habitat. Selection is obvious from direct observation at 

the Mt Wellington site with animals occurring in open forest areas and never on boulder 

scree (see Melville and Swain, 1997a). However, at Clarence Lagoon support for this 

conclusion was not quite significant (p=0.057). Animals here appear to select more open 

areas than those randomly available. Lizards were never observed in the more structured 

forest zones, but tended to occur in areas with little or no tree cover. At both sites, animals 

select areas of partial tree cover and mixed level ground cover. 
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The comparison of randomly selected areas between sites revealed that microhabitats 

separate according to complexity of tree cover and vegetation rather than location (i.e. 

altitude). Thus at this scale a different relationship between sites becomes evident. If 

examination is restricted to those areas with lizards present, it is apparent that the Orford 

site was significantly different to all other sites. This is predictable when comparing 

Orford to the more forested sites; however, the difference evident between Orford and Mt. 

Wellington supports the argument that selection of microhabitat by animals is occurring at 

the Mt. Wellington site. Animals from Mt. Wellington and Clarence Lagoon appeared to 

select similar habitats at the scale chosen (3 m diameter), despite the sites differing in 

microhabitat availability. Thus, although these sites provide quite distinct microhabitats, 

altitude appears to impose some restriction on finer scale habitat selection. Animals from 

Hobart and Orford used habitat differently, but this was predictable since the sites were 

distinct in the random analysis and no selection of microhabitat was evident in either 

population. The only result difficult to explain is the finding that Mt. Wellington and 

Hobart sites were not significantly different (MANOVA) in terms of areas with lizards, 

but did appeared to be distinct in the random site analysis. This may indicate that factors 

other than altitude and habitat complexity (e.g. food availability, social interactions, or 

predation) are important at this scale, or it may represent a type 2 error in the analysis. All 

other relationships between field sites at this scale support the findings of the focal scale 

investigation, or can be explained in terms of microhabitat complexity and broad scale 

selection at each site. 

Thermal biology and habitat usage are interrelated because thermal microclimates vary 

spatially (Adolph, 1990). Habitat use by a lizard species reflects integration between the 

microhabitats that are thermally acceptable and those that are suited to its morphology and 

behaviour (Adolph, 1990). The body temperature that a lizard is able to maintain has an 

important influence on many physiological processes and life history traits (Adolph and 

Porter, 1993). Niveoscincus metallicus appears to be able to meet its thermal requirements 

by adopting a strategy of flexible microhabitat use across its range. At high altitude it 

tends to utilize relatively open rocky habitat. This preference has a number of advantages. 

By occupying more open, rocky microhabitats, N. metallicus may be able to maximise its 

use of available sunlight and the heat storage properties of the substrate. However, N. 

metallicus does not utilize rock scree, the most open habitat available at high altitude. At 
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both high altitude sites, other morphologically more specialized species occupy these 

habitats (Melville and Swain, 2000a; personal observations). Instead N metallicus 

occupies the most open habitats that its physiology and morphology permit. Niveoscincus 

metallicus is a ground dwelling cryptic species, found in a wide range of habitats 

(Rawlinson, 1974; Hutchinson and Schwaner, 1991; Melville and Swain, 1999b). This 

investigation reveals that, at its altitudinal extremes, this species is still associated with 

protective microhabitats, but utilizes the most exposed sections of these habitats. 

Size, and subsequent high surface area to volume ratio, may also limit the distribution of 

N. metallicus to closed habitats at high altitude. Occupation of densely vegetated areas 

would reduce exposure to the cold winds that blow much of the time (Melville and Swain, 

1997a). Marquet etal., (1989) found that smaller species of Liolaemus occupied protected 

microhabitats at high altitude, whereas larger animals were able to utilize more exposed 

sites. However, Hertz and Huey (1981) found that smaller anolids occurred at higher 

altitude. Such results suggest that other factors, besides thermoregulation, may influence 

habitat selection at high altitude. 

In contrast, N. metallicus from low altitude sites, while still occurring in structured 

habitats, occupied much more cryptic microhabitats. Low altitude animals were associated 

with wood basking surfaces, and tended to bask under complex vegetation in shade and 

lower to the ground. They also tended to occur very close to some form of retreat. This 

finding is in contrast to those from other studies of microhabitat selection by lizards in 

lowland areas, in which it has been reported that larger species are typically associated 

with more shaded areas. Conversely smaller species generally occupy warmer, more open 

microhabitats (Dent and Spellerberg, 1987; Scheibe, 1987; Paulissen, 1988). Nevertheless, 

at low altitudes N. metallicus probably occupies shaded microhabitats to reduce its risk of 

overheating. Bashey and Dunham (1997), who examined thermal constraints on the 

microhabitat preference of Cophosaurus texanus, reached a similar conclusion. At a low 

altitude warm site they found that only 20% of operative environmental temperatures were 

thermally acceptable during the mid day period. This compared to 70% for their high 

altitude colder site. They also reported similar habitat occupation to that observed for N. 

metallicus, with animals at low altitude generally occurring in areas of high cover and 

shade. Adolph (1990) also found preference for shade and cover in low altitude 

Sceloporus species, in comparison to high altitude populations. 
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Two other factors that may be responsible for observed patterns of basking site selection 

in N. metallicus are diet and predator avoidance. Diet is often one of the most important 

resources influencing an animal's distribution and community structure (Toft, 1985). 

However, Niveoscincus species are generally considered to be opportunistic active 

predators, eating predominantly insects and small amounts of plant material (Brown, 1991; 

Wapstra and Swain, 1996). Thus, as all animals occur in the more structured areas of 

available habitat and at each site insects were observed in great numbers, it appears 

unlikely that food quality or availability are in any way responsible for observed 

microhabitat occupation patterns. 

Predator avoidance on the other hand may play a significant role in microhabitat 

occupation in this species. Niveoscincus metallicus is subject to both aerial predation from 

birds and ground predation, generally from snakes, especially Drysdalia coronoides, but 

also native and feral cats (Dasyurus maculatus, Dasyurus viverrinus, Fells cat us). 

Predation pressure at both low altitude sites is probably stronger than at the Mt. 

Wellington site and may also exceed that at Clarence Lagoon. At low altitude sites large 

numbers of bird predators and small snakes are present; feral cats are also common at the 

Hobart site. Conversely at the Mt. Wellington site bird predators are rarely seen, although 

they are common at higher altitudes in Tasmania. Also the only ground predators observed 

here are snakes. Clarence Lagoon does have bird predators, but not in the numbers seen at 

the low altitude sites; snakes are also present here in large numbers. 

Some lizards alter their anti-predator behaviour by selection of different distances to 

refugia (Rand, 1964; Bennet, 1980; Hertz et al., 1982; Losos, 1988; Carrascal etal., 

1992). Niveoscincus metallicus displayed a tendency to select basking sites closer to 

refugia at lower altitude. This, combined with a tendency to bask under vegetation at 

lower altitude, would afford these animals substantial protection from visually based 

predators. Distance to refugia may therefore represent a measure of predation risk in this 

species. Carrascal et al. (1992) found that a high altitude lacertid, Lacerta monticola, 

displayed such behaviours, and concluded that distance to refugia was a measure of the 

trade-off between predator escape and thermal requirements. Variation in escape tactics 

resulting from changes in ecological pressures and/or physiological condition has been 

recorded in many studies (Hertz et al., 1982; Crowley and Pietruszka, 1983; Snell et al., 
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1988; Diaz, 1997). Indeed predator avoidance has been reported to represent a higher 

priority than thermoregulation in the nocturnal gecko Oedura lesueurii (Downes and 

Shine, 1998). 

In order to truly understand habitat selection in any species of lizard, it is necessary to 

examine selection on a number of scales relevant to the animals studied (Smith, 1996; 

Rubio and Carrascal, 1994). Considering the proper scale is essential if results are to be 

generated that are important at the level of the organism, and not the investigator (Wiens, 

• 1989; Levin, 1992; Smith, 1996). My investigation supports the conclusion that, across its 

altitudinal range, N metallicus modifies the way it utilizes habitat, in ways that are 

consistent with the maintenance of some level of thermoregulatory precision (see Chapter 

5). Thus this species is able to maintain a large distribution range by differential 

exploitation of appropriate microhabitats. However, a number of other factors, such as 

predator avoidance, are likely to be superimposed upon this behaviour. 
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CHAPTER FIVE 

Thermal biology of Niveoscincus metallicus 

5.1 Introduction 

The maintenance of high and relatively constant body temperature through 

thermoregulatory mechanisms is a conspicuous aspect of lizard biology (Avery, 1982; 

Huey, 1982; Castilla and Bauwens, 1991; Bauwens etal., 1996). Indeed, many species of 

lizard thermoregulate to maintain their body temperature between lower and upper 

threshold temperatures (e.g. Patterson and Davies, 1978; van Berkum et al., 1986). 

Selection and regulation of body temperature is thought to be controlled by hypothalamic 

temperature receptors that are directly responsible for determining the thermal setpoints of 

an animal (Tosini and Avery, 1993). Setpoints represent the temperatures at which basking 

is initiated (lower setpoint) and ceases (upper setpoint) (Tosini and Avery, 1993). The 

resultant body temperatures experienced by an organism directly affect individual growth 

(Huey, 1982), defensive behaviour (Hertz et al, 1982; Losos, 1988) and reproduction 

(Andrews et al., 1997). The physiological effects of body temperature can also affect 

energy intake (Avery et al., 1982) and assimilation (Beaupre et al., 1993). Similarly the 

thermal dependence of sprinting and stamina may influence an animal's ability to avoid 

predators (Bennett, 1980; Christian and Tracy, 1981; Hertz et al., 1988; Mautz et al., 

1992). Existing data suggest that lizards are active at body temperatures that maximise 

performance. However, some studies have identified species or populations that exhibit 

serious locomotion impairment at field temperatures experienced in nature (Crowley, 

1985; Huey and Bennett, 1987; Van Damme et al., 1990). Consequently, populations 

living at the extremes of a species' range (e.g. high altitude) may be forced to undertake 

activities at suboptimal temperatures. 

Lizards can respond in several ways to long term (e.g. seasonal, altitudinal) changes in 

thermal environment (Van Damme et al., 1989; Spencer and Grimmond, 1994). 

Behavioural adjustments are generally thought to be the main compensatory mechanism 

controlling small scale spatial and temporal variation in a thermal environment (Hertz and 
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Huey, 1981; Avery, 1982; Van Damme etal., 1987) and have been observed in N. 

metallicus (Chapter 4). However, behavioural adaptations may be inadequate to 

compensate for differing thermal loads, or they may be too costly in terms of time and 

energy expenditure (Huey and Slaticin, 1976). Under such conditions a lizard may display 

some level of physiological acclimatization to varying environmental conditions (Van 

Damme et al., 1989). Consequently, physiological acclimatization, acting more slowly 

than behavioural adjustments, may extend the range of suitable thermal environments, 

both seasonally and geographically (Veron and Heatwole, 1970; Crowley, 1985). 

The extent to which lizard populations or congeneric species are able to utilize genetic 

adaptations of thermal physiology is not fully resolved. If short-term behavioural 

adjustments or acclimatization results in the maintenance of body temperatures that are 

conducive to reduced physiological performance, natural selection should favor a shift in 

the physiological optimum temperatures and/or the tolerance zone in order to restore 

maximum performance (Hertz et al., 1983; Van Damme et al., 1989). Although some 

workers suggest that thermal physiology is responsive to directional selection and thus 

reflects genetic adaptation, others feel that because thermoregulatory adjustments 

effectively minimize geographic variability in body temperature, thermal physiology is 

evolutionarily conservative (Gillis, 1991). These theories are generally referred to as the 

"labile" view and the "static" view (see Hertz et al., 1983). Data presented in support of 

either view are generally indirect measures of the thermal sensitivity of performance. Such 

measures include critical thermal limits and body temperatures selected in the laboratory 

and field (van Berlcum, 1986). Direct measures of physiological performance (e.g. sprint 

speed) tend to support the static view (Hertz et al., 1983), but see van Berkum (1986) for 

an exception. 

Ectotherms inhabiting large altitudinal ranges provide an excellent opportunity to study 

various aspects of thermal adaptation. Populations at the edge of a species' climatic or 

distributional range, such as N. metallicus at the high altitude sites in this study, are often 

forced to maintain activity under temperature conditions that are suboptimal. Kik (1998) 

and Kabat (1999) have both shown that Niveoscincus microlepidotus, a sister species of N. 

metallicus, lowers its thermal setpoints and preferred body temperature during pregnancy. 

The possibility therefore exists that N. metallicus is able to alter aspects of its thermal 

biology in response to not just pregnancy, but also geography. Niveoscincus metallicus is 
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able to utilize behavioural modifications to adapt to thermal variations between high and 

low altitude sites (Chapter 4). This chapter examines the importance of acclimation and 

genetic adaptation in allowing N. metallicus to maintain the large attitudinal range it 

displays. The study integrates field and laboratory data on thermal physiology and 

performance. This allows examination of the degree of coincidence between the body 

temperatures of active lizards in their natural environment and the physiological responses 

exhibited in the laboratory. Five specific questions were examined in this study. 

1) Does N. metallicus maintain the same preferred body temperature (Tb) across its 

altitudinal range and is there any relationship between Tb maintained in the field, and 

ground temperature (T s) or air temperature (T s)? 
2) Is N. metallicus able to maintain eccritic temperatures selected in the laboratory, at 

each field site, and is there evidence that aspects of thermal behaviour in the laboratory 

differ between populations? 

3) Are population differences in thermal performance or thermal limits evident in N. 

metallicus? 

4) To what extent does physiological acclimation allow N. metallicus to adapt to its 

thermal environment? 

5) Is there evidence that genetic adaptation of thermal performance and/or thermal limits 

has occurred in populations of N. metallicus? 

5. 2 Materials and Methods 

5.2.1 Field temperatures 

Observations were made at the four previously described field sites (Chapter 2) during the 

summers of 1998 and 1999. Animals were captured only on clear days with a maximum 

air temperature of not less than 19°C and not more than 25°C. Data were recorded by 

starting from a randomly determined location and moving slowly back and forth across the 

site to ensure coverage of the entire range of microhabitats available. Collections 

commenced at 7.00am and continued until animals submerged. As many lizards as 

possible were captured; however, only pregnant females were examined at each site to 

minimize variation induced by differences in the timing of reproductive events (Chapter 

1). For each lizard caught I recorded the time of day, sex, air temperature (shaded air temp 
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15 cm above substrate = Ta  ), shaded substrate temperature (T s), and cloacal temperature 

(Tb). A small thermister probe was used to measure temperatures to within ±0.1 °C. 

Cloacal temperatures were recorded within 15 seconds of capture to avoid any effects 

caused by handling of lizards for extended periods (Marquet etal., 1989). 

5.2.2 Eccritic temperatures, basking setpoints and thermal behaviour in the 

laboratory 

A large open topped terrarium (120 cm x 120 cm x 30 cm) was used as a test area. It was 

subdivided into 8 separate sections (55 cm x 30 cm) by wooden partitions. Each section 

was given a number (1 to 8). A 2 to 3 cm layer of sand was provided as a substrate to 

animals and each section was provided with a terracotta bowl, upturned to act as a basking 

surface. A heat source (25 watt light bulb) was fixed approximately 6 cm above the 

basking surface on specially designed racks. This apparatus provided a temperature 

gradient of below 15 °C to above 35°C in each section. Animals were not fed for 24 hour 

prior to a trial or during the trial; however, water was provided ad libitum. 

Body temperatures were recorded at 2 minute intervals over the course of the day (9am-

6pm. Small temperature probes (0.5 mm diameter) were inserted into the cloaca and 

securely held in place with a narrow strip of adhesive electrician's tape. Animals prepared 

in this fashion were distributed between the eight test chambers. Each probe was 

connected to a data logger by a 1.5 m lead. This lead allowed free movement of an animal. 

around its experimental enclosure and did not appear to interfere with shuttling 

heliothermy (Figure 5.1). Probes were connected to a data logger, which in. turn 

downloaded results directly to a Macintosh' computer. Animals were familiarized with 

the test area, with a cloacal probe in place, approximately half an hour before the 

commencement of each trial. Randomly selected adult animals were tested from each of 

the field sites. Both females and males were examined, and animals were studied during 

both spring and autumn. Approximately eight animals were used in each treatment group. 

Prior to each trial lizards were marked with a non-toxic white marker for identification. 

Animals were measured (SVL) and weighed (± 0.1 mg) and reproductive condition of 

females determined by palpation. They were then transferred to test compartments. For 
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each animal the overall mean temperature (average body temperature over the entire 

activity period: Taw), mean upper and lower basking setpoints (average body temperature 

where basking initiated and terminated), maximum and minimum temperatures (highest 

and lowest body temperature recorded), time spent at high temperatures (>30 °C, >35°C) 

and time at low temperatures (<20°C) were recorded. Body temperatures were recorded 

over a nine hour period (Figure 5.1). 
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Figure 5.1 Representative body temperature profile recorded for a male N metallicus from Orford during 

autumn. Lines identify the setpoints calculated for this animal (upper and lower) as well  as  the T.,. The 

arrows identify the maximum and minimum body temperatures recorded for the animal 

5.2.3 Critical thermal limits 

The upper and lower temperatures at which a lizard loses it ability to right itself are 

commonly used as an indicator for the loss of muscle co-ordination and the ability to 

move. This measure is considered to be ecologically relevant, because if a lizard's body 

temperature goes beyond this point death will occur (Bennett and John-Alder, 1986). Non-

lethal loss of righting response was measured according to the procedures described by 

Bennett and John-Alder (1986). 

Measurements of critical thermal maximum (CTmax) were obtained by placing lizards in 

a Qualtex thermostat controlled oven at 30 °C for 30 minutes. Following equilibration a 

small thermister probe was placed in the animal's cloaca to record subsequent measures of 

Tb. The temperature was then raised at a rate of 1 °C / 2 min until the lizard appeared 

uncoordinated. At this point the animal was placed on its back to determine whether 

righting ability was lost. As soon as this occurred Tb was recorded. The lizard was then 
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transferred to a container immersed in cold water; all animals recovered successfully from 

this procedure. 

Critical thermal minimum (CTmin) was determined in comparable fashion, except that 

animals were first equilibrated to 15 °C and were then cooled on a sheet of aluminum foil 

laid on crushed ice. Tb decreased at a rate of about 1 °C / min. As soon as righting ability 

was lost Tb was recorded and the animal was transferred to a container immersed in a 

warm water bath. Again all animals recovered successfully. No animal was used more 

than once for any measure of CTmax or CTmin. 

Critical thermal limits were obtained for adults of both sexes from all field sites in the late 

spring of 1998 and autumn of 1999. All estimates of CTmax and CTmin were determined 

within 3 days of arrival at the laboratory. A third group of animals was also captured in 

spring and held in the laboratory for 3 months to examine laboratory acclimation. Critical 

thermal limits of newborn young were also determined to investigate potential genetic 

adaptation. For this study females from all sites were held in the laboratory in standard 

conditions from early pregnancy (embryonic stage 35) until they gave birth. Following 

birth young were weighed and measured. They were not sexed as this can be damaging to 

very small li7ards and is unreliable in N. metallicus. Young were divided into groups of 

six (SVL >20 mm and <22 mm). One of these young was killed (frozen at —20 °C) and 

allowed to thaw to room temperature with the remaining young. A small thermister probe 

was inserted into its abdomen and all animals in the group (including the dead control 

subject) were placed into equilibration conditions as described above. After 30 minutes 

young were transferred to test conditions and CTmax and CTmin determined. This was 

recorded as the temperature of the dead control subject, held under identical conditions to 

test subjects, when the test animals lost righting ability. 

5.2.4 Thermal sensitivity of sprint speed and willingness to run 

There is a significant relationship between sprint speed and temperature in reptiles (Huey 

and Stevenson, 1979; Huey, 1982; Van Damme et al., 1989). Sprinting is maximized as 

temperature approaches an optimum, after which point performance begins to decline. 

Melville (1998) has reported that N. metallicus primarily uses sprinting as an escape 

method in natural habitats. Lizards were collected in autumn, following parturition, from 
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the four study sites. Ten adults of each sex were used from each site and sprint curves 

were constructed over a range of temperatures (17, 20, 23, 26, 29, and 32°C). Animals 

were run at these temperatures in randomised order. A heated racetrack and a lizard-

heating device were designed for a previous study at the university, and were available for 

this work. The track was 2.5 m long with a metal bottom, lined with sandpaper to allow 

traction. It sat on a box containing 3 x 120-watt spotlights. A temperature probe linked to a 

control box switched these lights off and on and allowed the track to be rapidly heated and 

maintained to within 1 °C of a required temperature. In all experiments the track 

temperature was set to 1 °C above the test temperature. Three light beams at 50 cm 

intervals, linked to a Macintosh 	allowed sprint time over 50 cm to be 

determined. Consequently, each trial gave a maximum of 2 estimates of sprint speed. For 

each run, I also recorded the number of times the individual attempted to stop running 

over the 1 m of track. This was used as an indication of an individual's willingness to use 

sprinting as an escape tactic at the temperature tested. 

Animals were warmed in the lizard heating device (box immersed in a water bath) for 30 

minutes prior to each sprint trial. The water temperature was controlled by a heater, 

thermostat (±1 °C) and small propeller. This method of heating is an improvement on 

methods where heating is achieved from one surface, as temperature is less variable 

(Melville, 1998). Following this, lizards were chased down the track with a small brush. 

Care was taken never to break a light beam before the lizard. Each animal was raced three 

times down the track; however, only the fastest time over 50 cm was recorded as the 

maximum sprint speed and only the run where the animal stopped the fewest times was 

recorded as the stopping frequency. Only one temperature was tested each day. 

5.2.5 Data analysis 

All data were analysed using SAS System for Windowev6.12. Mean Tb, Ts  and Ta  were 

examined using two-way ANOVA with site and sex as factors. Homoscedacity of 

variances was investigated by visual inspection of plots of group standard deviations 

versus group means. Normality of the data was evaluated through the inspection of a 

normal probability plot. Significant interactions were further examined using Tukey's 

studentized range tests. The relationships between Tb and T„ and Tb and Ta  were assessed 
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using factorial Analysis of Covariance, with Ta  and Tb acting at the co-variates and site 

and sex acting as factors. The assumption that each treatment had identical group 

regression slopes was tested by assessing the significance of the treatment*co-variate 

interactions. If the treatment*co-variate interactions proved to be significant, I used 

regression analysis followed by multiple comparisons of slopes ANOVA (post-hoc test) to 

determine which of the regression equations displayed slope variation. Assumptions of 

regression analyses were examined using plots of residuals against predicted values, 

normal probability plots and plots of Cook's D estimate against leverage. Assuming the 

ANCOVA assumption of equal slopes was meet, the analysis continued. Linearity of the 

relationship between the dependent variable and the co-variate was evaluated by 

examining a plot of the residuals versus the co-variate and assessing the normality of 

residuals. Finally, the independence of residual variances and response variables was 

assessed by examining a plot of residuals against predicted values and comparing the 

variance of residuals among groups. I also examined the relative contributions of T. and Ts 

on the dependent variable Tb, using simple multiple regression. This analysis was 

conducted individually on males and females from each site. 

Eccritic temperatures, basking setpoints and thermal behaviour in the laboratory were 

examined using two-way ANOVAs. Factors examined were time of collection (spring or 

autumn) and site of collection. Sexes were analysed separately to prevent confusion in 

data interpretation. Homoscedacity of variances and normality of the data were evaluated 

as described above. Post-hoc tests were employed where appropriate. 

Two-way ANOVAs were used to determine whether CTmax and CTmin differed between 

sites and collection periods. Analyses were performed separately for both sexes. 

Homoscedacity of variances and normality of data were assessed in the manner described 

above. Significant interactions were further examined using Tukey's studentized range 

tests. Differences between CTmax and CTmin for newborn young from each site was 

assessed using one-way ANOVAs. Homoscedacity of variances and normality of data 

were assessed in the manner described above. Again significant interactions were further 

examined using Tukey's studentized range tests. 

Thermal sensitivity of sprint speed was analysed initially using a factorial repeated 

measures ANCOVA design, with SVL and weight as the co-variates and study animal as 
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the repeated factor. The importance of the co-variate was assessed; however, in each case 

it was not significant. I therefore continued the analysis using factorial repeated measures 

ANOVAs for both the sprint speed and stopping data. The factors examined were study 

site (normal factor) and individual animal (repeated measure factor). Sexes were again 

analysed individually to aid in interpretation of results. The assumptions of group 

variances and normality were assessed by visual inspection of plots of group standard 

deviations versus group means and estimated versus predicted residual values, 

respectively. The traditional method of analysis of sprint speed curves (analysis of optimal 

temperatures and indices of performance) was not used here as it failed to effectively 

describe differences between populations. 

5. 3 Results 

5.3.1 Field temperatures 

Mean body temperature (Tb), substrate temperatures (T s) and air temperatures (T a) for 

adult males and females from all study sites are presented in Table 5.1. In all cases, two-

way ANOVAs revealed that site alone varied between groups ((Tb)F3,318= 4.10, = 

0.0071; (Ts) F3,318= 8.20, ? = 0.0001; (Ta) F3,318 = 7.73, P = 0.0001). In no case was a 

significant sex or interaction effect recorded. Post-hoc examinations revealed that for Tb, 

Clarence lagoon animals had significantly higher values than animals from either Hobart 

or Orford (P < 0.05). No other Tb comparisons were significant. The T s  results revealed 

that Mt Wellington values were lower than for either low altitude site, while those from 

Clarence Lagoon were lower than those obtained from animals at Orford (P < 0.05). The 

result for Ta  produced a pattern that was different again, with Orford values being higher 

than those recorded from animals at Mt. Wellington and Hobart. Clarence Lagoon values 

were also significantly higher than those recorded at Mt. Wellington. 
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Table 5.1 Mean body temp (Tb), substrate temperatures (Ts) and air temperatures (Ts) for adult male and 

female N metallicus from all field sites sampled. Values are means ± s.e. 

Site Sex Th ± S.C. T. ± S.C. T,, ± s.e. 

Clarence Lagoon Female 30.6 ± 0.40 26.6 ± 0.65 20.8 ± 0.57 

Male 30.8 ± 0.41 26.1 ± 0.68 20.0 ± 0.60 

Mt. Wellington Female 29.7 ± 0.38 25.8 ± 0.56 18.8 ± 0.46 

Male 29.8 ±0.40 25.6 ±0.51 18.1 ± 0.57 

Orford Female 29.3 ± 0.45 29.2 ± 0.64 21.0 ± 0.46 

Male 29.8 ± 0.35 28.1 ± 0.57 20.8 ± 0.38 

Hobart Female 29.2 ± 0.31 27.7 ± 0.55 19.6 ± 0.49 

Male 30.0 ± 0.38 26.9 ±0.63 19.1 ± 0.77 

The results of the factorial ANCOVA examining Tb after adjusting for the continuous 

independent variable Ts  indicated that the sum of the interaction effects of the co-variate 

with the treatment effect was not significant (Fcalc(7,311)=  0.389, P > 0.75). Thus, it can be 

concluded that there is homogeneity of slopes among all groups (common slope = 0.298). 

The ANCOVA proper indicated significant effects of site (F = 10.57, P < 0.0001), sex (F 

= 6.51, P = 0.0112) and of course the co-variate T s  (F = 90.81, P < 0.0001); however, no 

interaction effect between site and sex was observed (F = 0.53, P = 0.66). Two general 

trends are evident from these data (Figure 5.2). The first is that, irrespective of site, 

females display significantly lower least squares (adjusted for T s) means than males. Thus, 

for any given T, the corresponding Tb of a female will be slightly lower. This trend is 

especially strong at the low altitude sites. The second trend is that animals from the two 

high altitude sites (Clarence Lagoon and Mt Wellington) appear to have higher least 

squares mean temperatures (and therefore y-intercepts) than do low altitude animals 

(Hobart and Orford). Thus at any T s  an animal from a high altitude site will have a 

corresponding higher Tb than an animal from a low altitude site. This is most evident for 

female animals. 
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Figure5.2 Mean body temperatures of male and female N. metallicus from the high altitude (Clarence 

Lagoon and Mt. Wellington) and low altitude (Hobart and Orford) study sites. All values represent least 

squares means adjusted for Ts  (± s.e.). 

The second factorial ANCOVA, examining Tb after adjusting for the continuous 

independent variable Ta , indicated that the sum of the interaction effects of the co-variate 

with the treatment effect was significant (Fcalc(7,311)=  2.735, 0.01 > P > 0.005) indicating 

that there was not homogeneity of slopes among all groups. Consequently an ANCOVA 

could not be conducted. Thus, I continued the analysis using least square linear regression. 

Significant relationships between Tb and Ta  were evident for each site/sex combination 

except for Clarence Lagoon males and Hobart males (Table 5.2). 

Table 5.2 Regression equations (y = a + bx) relating body temperature (Tb) to air temperature (Ta) in males 

and females from all four study sites. 

Site Sex Slope 

(b) 

Intercept 

(a) 

R2  ANOVA 

Df 

Clarence Lagoon F 0.265 25.08 0.144 1,49 8.24 0.006 

M 0.146 28.03 0.047 1,36 1.79 0.19 

Mt. Wellington F 0.553 19.26 0.454 1,42 34.91 0.0001 

M 0.281 24.73 0.167 1,37 7.42 0.0098 

Hobart F 0.305 23.82 0.230 1,50 14.94 0.0003 

M 0.116 27.82 0.054 1,30 1.72 0.19 

Orford F 0.635 15.93 0.410 1,30 20.77 0.0001 

M 0.494 19.52 0.293 1,37 15.34 0.0004 
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A multiple comparison of slopes ANOVA (post-hoc test) demonstrated that there were 

significant differences between the slopes of site/sex groups  (F12,315=  7.62,  P < 0.0001). 

What becomes apparent in this case is that the slope of the relationship in females is 

steeper and the y-intercept lower than in males, irrespective of site. Thus males appear to 

show greater independence of Tb from T.. However, superimposed on this are site 

variations. Unlike the Tb/ T, analysis, which grouped sites according to altitude, this 

analysis groups sites according to the complexity of the habitat occupied. Clarence Lagoon 

and Hobart N. metallicus (complex sites (Chapter 4)) display lower slopes and higher y-

intercepts than animals from open habitat sites (Orford and Mt. Wellington) (Figure 5.3). 

Air Temperature ( °C) 

Figure 5.3 Regression slopes for the relationship between body and air  temperatures  in  adult  males and 

females from all four study sites. Note that the y-intercept values are not  shown and  that lines intersect prior 

to the y-intercept. See Table 5.2 for regression equations. 

The results of the simple multiple regression examining the relative contribution of the 

independent variables T. and T, to the dependent variable Tb are shown in Table 5.3. In all 

cases the global null hypothesis of the models, that all slopes equal zero, was rejected (P < 

0.05, results listed below). In all regressions from the sites with complex habitat structure 

(Clarence Lagoon and Hobart) correlations between T. and Tb were lower than those 

between T, and Tb. The opposite was generally true of open sites (Orford and Mt 

Wellington); however, Mt Wellington males showed a pattern similar to that observed at 
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closed sites. In only one case was the correlation between independent variables greater 

than 0.7 (Clarence Lagoon females). 

Table 5.3 Results of simple multiple regressions examining the relative contributions of T a  and T, in 

explaining variation in Tb at each of the four study sites. Male and female animals were analyzed separately. 

Data presented are overall model results, significance test of independent variables, the semi-partial 

correlation indicating the unique contribution of an independent variable to the dependent variable, and the 

total R-squared value of the model. 

Site Sex Variable DF of 

Model 

F of Model- P of Model P of 

Variable 

Squared 

semi- 

partial 

correlation 

R-squared 

value of 

Model 

Hobart M T, 2,29 3.50 0.044 0.033 0.140 0.194 
Hobart M Ta  0.710 0.004 
Hobart F Is  2,49 16.45 0.001 0.001 0.172 0.402 
Hobart F Ta  0.009 0.092 

Orford M T, 2,36 9.12 0.001 0.135 0.043 0.336 
Orford M Ta  0.002 0.203 
Orford F T, 2,29 10.95 0.001 0.307 0.021 0.430 
Orford F Ta  0.001 0.246 

Clarence M Ts  2,35 3.32 0.048 0.038 0.112 0.160 
Clarence M Ta  0.629 0.006 
Clarence F Ts  2,48 7.54 0.001 0.018 0.095 0.239 
Clarence F Ta  0.940 0.001 
Wellington M T, 2,36 7.47 0.002 0.016 0.126 0.293 
Wellington M Ta  0.190 0.035 

Wellington F T, 2,41 25.14 0.001 0.005 0.097 0.551 
Wellington F Ta  0.001 0.253 

5.3.2 Eccritic temperatures, basking setpoints and thermal behaviour in the 

laboratory 

Eccritic temperatures, basking setpoints and thermal behaviour in the laboratory were 

examined using two-way ANOVAs. The results of these analyses are shown in Tables 5.4, 

5.5, 5.6 and 5.7. 
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Table 5.4 Mean upper and lower set points CC ± s.e.) for animals collected in spring and autumn from the four study sites. The results of the factorial ANOVA of 

these data are also presented. 

Variable Group 

cex/cencnn 

Orford Hobart Clarence Wellington Season Site Interaction 

F(df) P F(df) P F(df) P 
Upper 

setnoints M/spring 32.6 ± 0.49 32.9 ± 0.56 32.9 ± 0.38 32.9 ± 0.63 0.12 (1,45) 0.734 0.22 (3,45) 0.884 0.15 (3,45) 0.927 

M/autumn 32.8 ± 0.49 33.1 ±0.59 32.6 ±0.56 33.3 ±0.39 

F/spring 32.6 t 0.34 31.5 ± 1.08 32.6 ± 0.47 31.5 ± 0.75 4.96 (1,49) 0.031 2.29 (3,49) 0.090 0.04 (3,49) 0.991 

Vautumn 33.9 ± 0.90 32.6 ± 0.49 33.8 ± 0.21 32.3 ± 0.41 

Lower 

setpo ints M/spring 21.3 ± 0.67 19.8 ± 0.19 22.8 t 0.46 22.2 ± 0.40 0.57 (1,45) 0.455 3.70 (3,45) 0.018 3.91 (3,45) 0.014 

M/autumn 21.3 ±0.36 21.2 ±0.72 21.1 ±0.28 21.4± 0.51 

F/spring 22.2 ±0.49 24.2 ± 1.25 22.7 ±0.32 22.4 ± 0.57 14.79 (1,49) 0.0003 0.57 (3,49) 0.639 1.14 (3,49) 0.341 

F/autumn 20.7 ± 0.37 20.6 ± 0.22 21.2 ± 0.65 21.0 ± 0.16 
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Table 5.5 Mean and maximum body temperatures CC ± s.e.) for animals collected in spring and autumn from the four study sites. The results of the factorial 

ANOVA of these data are also presented. 

Variable Group 

CPT /CPACOn 

Orford Hobart Clarence Wellington Season Site Interaction 

F(dt) P F(df) P F(df) P 

Tave  (°C) 
M/spring 25.3 ± 0.30 24.8 ± 0.32 26.2 ± 0.52 25.9 ± 0.48 1.11 (1,45) 0.298 0.39 (3,45) 0.761 0.71 (3,45) 0.553 

M/autumn 25.2 ± 0.57 25.1 ± 0.72 24.8 ± 0.49 25.3 ± 1.00 

F/spring 27.0 ± 0.46 26.8 ± 0.42 25.9 ± 0.29 25.0 ± 0.46 3.13 (1,49) 0.083 1.39 (3,49) 0.256 0.87 (3,49) 0.464 

F/autumn 25.8 ± 1.00 25.3 ±0.89 25.3 ±0.58 25.3 ±0.58 

Max temp 

(°C) 
M/spring 34.7 ± 0.59 35.2 ± 0.58 35.6 ± 0.16 35.0 ± 0.92 3.06 (1,45) 0.087 1.14 (3,45) 0.342 0.59 (3,45) 0.627 

M/autumn 35.1 ±0.50 35.6 ± 0.62 35.9 ± 0.50 36.6 ± 0.31 

F/spring 35.5 ±0.75 34.1 ±0.42 34.7 ±0.51 34.3 ± 1.31 6.07 (1,49) 0.017 1.29 (3,49) 0.287 0.42(3,49) 0.740 

F/autumn 36.2 ± 0.88 35.8 ± 0.43 36.6 ± 0.29 35.0 ± 0.71 
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Table 5.6 Minimum body temperatures CC ± se.) and proportion of time spent under 20 °C (%) for animals collected in spring and autumn from the four study 

sites. The results of the factorial ANOVA of these data are also presented. 

Variable Group 

cpx/ceacon 

Orford Hobart Clarence Wellington Season Site Interaction 

F(df) P F(df) P F(df) P 
MM temp 

(°C) M/spring 17.7 ± 0.28 17.4 ± 0.09 18.9 ± 0.39 18.5 ± 0.54 11.74 (1,45) 0.001 1.73 (3,45) 0.174 4.40 (3,45) 0.008 

M/autumn 17.7 ± 0.18 17.4 ± 0.42 17.2± 0.10 17.3 ± 0.18 

F/spring 18.8 ± 0.45 19.3 ± 0.45 18.6 ± 0.24 18.1 ± 0.16 13.97 (1,49) 0.0005 1.05 (3,49) 0.378 0.48 (3,49) 0.699 

F/autumn 16.9 ± 0.88 17.7 ±0.33 17.6 ± 0.70 17.3 ± 0.30 

Under 

20°C M/spring 14.9 ± 1.71 25.1 ± 2.45 9.4 ± 2.61 9.6 ± 3.94 7.84 (1,45) 0.008 1.36 (3,45) 0.268 2.11 (3,49) 0.113 

M/autumn 23.5 ± 4.33 21.3 ± 4.46 20.9 ± 1.92 26.9 ± 7.02 

F/spring 6.3 ± 2.10 5.8 ±2.76 11.1 ±2.16 15.1 ± 1.82 13.93 (1,49) 0.0005 0.91 (3,49) 0.443 1.23 (3,49) 0.308 

F/autumn 17.2 ±6.80 20.6 ±4.74 23.2 ±5.55 16.1 ± 1.47 
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Table 5.7 Proportion of time spent (%) above 35 °C and 30 °C (± s.e.) for animals collected in spring and autumn from the four study sites. The results of the 

factorial ANOVA of these data are also presented. 

Variable Group 

cer/cPacnn 

Orford Hobart Clarence Wellington Season Site Interaction 

F(df) P F(df) P F(dt) P 

Above 

35°C M/spring 0.9 ± 0.56 0.5 ± 0.28 1.4 ± 0.47 1.3 ±0.78 5.22 (1,45) 0.027 0.92 (3,45) 0.438 0.38 (3,45) 0.768 

M/autumn 1.2 ±0.39 2.3 ±0.84 2.5 ± 1.01 2.9 ±0.92 

F/spring 0.5 ± 0.20 0.5 ± 0.37 0.7 ± 0.39 1.3 ± 0.93 9.88 (1,49) 0.003 1.91 (3,49) 0.141 2.43 (3,49) 0.077 

F/autumn 6.6 ± 4.34 1.6 ±0.40 2.4 ±0.39 2.1 ± 1.18 

Above 

30°C M/Spfing 15.2 ± 1.99 13.6± 1.84 25.0 ± 3.92 20.6 ± 5.15 0.79 (1,45) 0.378 0.99 (3,45) 0.406 0.80 (3,45) 0.503 

M/autumn 21.0 ± 4.52 19.5 ±4.04 19.8 ± 3.96 25.6 ± 6.21 

F/spring 25.1 ± 4.73 20.7 ± 3.50 21.1 ± 2.88 21.0 ± 2.30 0.13 (1,49) 0.720 0.09 (3,49) 0.964 0.23 (3,49) 0.875  

F/autumn . 22.2 ± 10.10 25.7 ± 8.12 24.7 ± 2.40 20.7 ± 5.73 
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Chapter 5: Thermal biology of N. metallicus 

The most obvious result from the above analyses is that T a, was not influenced by either 

collection date or site. Collection site alone did not appear to significantly affect any 

aspect of thermal behaviour in the laboratory. Animals of both sexes from high and low 

altitude populations displayed similar upper setpoints, Ta,, maximum body temperatures, 

minimum body temperatures, time spent below 20 °C, time spent above 30 °C and time 

spent above 35°C. Females also showed no site effect for lower setpoints, but males did 

display a site effect for this factor. However, the effect was influenced by date of capture. 

A significant difference was observed between Hobart and Clarence Lagoon males 

collected during spring. This may reflect a general difference between high and low 

altitude sites in relation to this variable, as both high altitude populations appear to have 

slightly higher lower setpoints (Tbask) at this time of year. 

In contrast to site of collection, date of collection appears to significantly influence aspects 

of therm oregulation, other than T a,, in the laboratory. This was especially evident for 

female animals. Upper and lower setpoints, maximum and minimum body temperatures, 

time spent above 35 °C and time spent below 20°C were all significantly influenced by date 

of capture. All data supported the conclusion that females were controlling their body 

temperature more precisely during spring, when all of them were pregnant. Male animals 

also showed a significant effect in relation to date of collection for the time they spent 

with Tb below 20°C and time spent above 35°C. Males appeared to follow a similar 

pattern to females, spending less time at extreme temperatures in spring. They also showed 

a significant interaction effect between collection date and site for minimum body 

temperature. A similar pattern to that described for the interaction effect for lower 

setpoints was evident. Male N. metallicus from Clarence Lagoon, collected in spring, 

displayed significantly higher minimum body temperatures than animals from all autumn 

collections and from Hobart animals in spring (P < 0.05). Values approached, but did not 

reach, significance in the comparison with animals collected at Orford in spring. 

5.3.3 Critical thermal limits 

The upper and lower critical thermal limits of adult N. metallicus, from all four locations 

and for all experimental periods, are presented in Figures 5.4, 5.5, 5.6 and 5.7. 
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Season 

Figure 5.4 Upper critical thermal limits (CTmax) of male N. metallicus, from the four collection sites, 
captured and tested in spring and autumn, and captures in spring then held in the laboratory for 4 months. 

Data are means ± s.e. 
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Figure 5.5 Upper critical thermal limits (CTmax) of female N metallicus, from the four collection sites, 

captured and tested in spring and autumn, and captures in spring then held in the laboratory for 4 months 

(i.e. throughout gestation). Data are means ± s.e. 
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Figure 5.6 Lower critical thermal limits (CTinin) of male N. metallicus, from the four collection sites, 

captured and tested in spring and autumn, and captures in spring then held in the laboratory for 4 months. 

Data are means ± s.e. 
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Figure 5.7 Lower critical thermal limits (CTmin) of female N. metallicus, from the four collection sites, 

captured and tested in spring and autumn, and captures in spring then held in the laboratory for 4 months 

(i.e. throughout gestation). Data are means ± s.e. 

Each of the above graphs was interpreted using a two-way ANOVA with site and 
collection period as factors. Results for CTmax for males (Figure 5.3) indicate that 

collection period and site of capture interact significantly (F6,102=  3.14,  P  = 0.0072). Post-

hoc tests of interest indicate that animals from Mt Wellington and Clarence Lagoon (high 

altitude sites) had significantly lower CTmax values for animals captured in spring and 
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held for 4 months than were evident in animals captured and examined in spring (P < 

0.05). High altitude animals captured and studied in autumn were not significantly 

different from either of the other collection groups. No site effects were evident within any 

collection period. 

The comparable results for CTmax for females (Figure 5.4) also indicate that collection 

period and site of capture interact significantly (F6,100=  2.20, P = 0.0486). Again no site 

effects were evident within any collection period. Of interest are the significant differences 

observed between animals from Hobart, Mt Wellington and Clarence Lagoon, for 

collections captured and studied during spring and autumn (P < 0.05). Thus for these three 

sites, CTmax values dropped over this period. However, while CTmax values appeared 

lower for a female captured in spring and held until autumn, they were not significantly 

different from either the spring or autumn data. 

A significant interaction effect was also observed in males for CTmin data (Figure 5.5) 

(F6,102= 7.14, P = 0.0001). A general trend observed across all collection periods was the 

lower CTmin of high altitude animals (P < 0.05), and in all cases low altitude and high 

altitude groupings were formed (P> 0.05). Also of interest in this case is the greater 

number of between collection differences observed within a site. Orford animals displayed 

a significant difference between spring and autumn collections. Hobart animals collected 

in spring displayed significantly greater CTmin values than either those collected in 

autumn or those held from spring in the laboratory. The latter two collections were not 

significantly different. No differences were evident for high altitude sites between 

collection periods. 

Finally, CTmin values for females from all populations were examined (Figure 5.6). In 

this case collection period (F2,99= 10.87, P = 0.0001) and collection site (F3,99= 82.52, P = 

0.0001) were found to affect CTmin However, there was no interaction effect (F6,99= 

1.43, P = 0.21). What is apparent from a post-hoc examination of these data is that animals 

collected in autumn and those collected in spring and held until autumn did not differ. 

Spring collected animals, however, tend to display high CTmin values (P < 0.05). A 

comparison of differences between sites indicated that all sites were different at the 0.05 

level. However, the greatest differences were again observed between high and low 

altitude groupings. 
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The final examination of CTmax and CTmin values was made for newborn animals born 

in the laboratory to mothers held from early gestation. The results for these animals are 

displayed in Table 5.8. 

Table 5.8 CTmax and CTmin values for newborn N. metallicus born in the laboratory from mothers 

collected early in gestation (before embryonic stage 35) from the four field sites. Values displayed are means 

(±s.e..). 

Site Ctmax ± s.e. 

(N) 

CTmin ± s.e. 

(1•) 
Orford 41.2 ± 0.13 9.9 ± 0.43 

(19) (19) 

Hobart 41.8 ± 0.19 9.3 ± 0.41 

(20) (20) 

Clarence Lagoon 40.4 ± 0.06 3.7 ± 0.22 

(18) (18) 

Mt Wellington 40.4 ± 0.08 4.2 ± 0.21 

(20) (19) 

One way ANOVAs revealed that both CTmax (F3 ,73 = 28.63, P = 0.0001) and CTmin 

(F3,72= 94.10, P = 0.0001) differed between field sites. CTmax values failed to differ 

significantly between only the two high altitude sites (P > 0.05); they were higher for both 

low altitude populations. CTmin values also grouped into high altitude (Clarence Lagoon 

and Mt Wellington) and low altitude (Orford and Hobart) sites. All other combinations 

were significantly different (P <0.05). Therefore high and low altitude populations give 

birth to young that are pre-adapted to their thermal environment, even when these young 

are gestated under identical thermal conditions. 

5.3.4 Thermal sensitivity of sprint speed and willingness to run 

Sprint speed was initially analysed using a factorial repeated measure ANCOVA design, 

with SVL and weight individually as the co-variates and study animal as the repeated 

factor. The importance of the co-variate was assessed; however, in each case it was not 

significant (P > 0.2). I therefore continued the analysis using factorial repeated measures 

98 



1 .0 - 

17 	20 	23 	26 	29 	32 

Sp
rin

t  S
pe

ed
 (m

/s)
  

0.9 - 

0.8 - 

0.7 - 

0.6 - 

0.5 - 

0.4 

1.0 

0.9 

Sp
rin

t  S
pe

ed
  (

m
/s

)  

0.8 

17 	20 	23 
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ANOVAs for both the sprint speed and willingness data. Sprint speed data for male and 

female animals from all study sites are displayed in Figures 5.8 and 5.9. 

Temperature (°C)  

• Orford 

• Hobart 
III  Mt  Wellington 
• Clarence  Lagoon 

Figure5.8 Mean sprint speed of male N. metallicus from the high altitude (Clarence  Lagoon  and Mt. 

Wellington) and low altitude (Hobart and Orford) study sites at specified temperatures.  All  values represent 

means (± s. e. ). 

thu 
26 	29 	32  
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• Clarence  Lagoon 

Temperature ( °C) 

Figure5.9 Mean sprint speed of early vitellogenic non-pregnant female N. metalhcus from  the high altitude 

(Clarence Lagoon and Mt. Wellington) and low altitude (Hobart and Orford) study  sites at  specified 

temperatures. All values represent means (± s.e.). 

Both male and female animals displayed significant site versus temperature interaction 

effects (male F15,200= 3.07, P = 0.0003, female F15,165 = 5.20, P = 0.0001). The main post-

hoc examinations of interest are the comparisons between sites at any given temperature. 
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These comparisons were performed using a GLM procedure. Significant variation between 

sites (P < 0.05) was evident only at 17 °C and 32°C in males. In both cases, male animals 

from high altitude sites ran faster at extreme temperatures. Females displayed a similar 

trend; however, high altitude animals at 17°C were faster (P < 0.05) than low altitude 

females and animals from Hobart ran slower than animals from other sites at 20 °C. 

Females at higher temperatures displayed no significant difference in running speed (P> 

0.05). This may, however, reflect the large variance associated with these temperature. 

Willingness to run (measured as stopping frequency) in male and female animals at the 

temperatures used for sprinting is shown in Figures 5.10 and 5.11. In both cases a 

significant site versus temperature interaction was again evident (male F15,200= 3.22, P = 

0.0005, female F15,165 = 4.17, P = 0.0001). 
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Figure5.10 Willingness to run in male N. metallicus from the high altitude (Clarence Lagoon and Mt. 

Wellington) and low altitude (Hobart and Orford) study sites at specified temperatures. All values represent 

means (± se.). 
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Figure5.11 Willingness to run in early vitellogenic non-pregnant female N. metallicus from  the high altitude 

(Clarence Lagoon and Mt. Wellington) and low altitude (Hobart and Orford) study  sites at  specified 

temperatures. All values represent means  (±  s.e.). 

The main post-hoc examinations of interest are again the comparisons between sites at any 

given temperature. These comparisons were also performed using a GLM procedure. The 

results of these analyses for both male and female N. metallicus are presented in Table 5.9. 

Table 5.9 Results of post-hoc analysis (GLM procedure) examining variation in  the willingness  to run in 

animals from the four study sites at each of the indicated temperatures. Significant  variation  is indicated by 

bold type in the probability column. Significance is accepted at the 0.05 level. 

Temperature Sex F(dl) Probability 

17°C Male 12.08(3,40) 0.0001 

Female 15.73(3,33) 0.0001 

20°C Male 15.19(3,40) 0.0001 

Female 8.26(3,33) 0.0003 

23°C Male 12.15(3,40) 0.0001 

Female 2.32(3,33) 0.093 

26°C Male 1.6(3,40) 0.204 

Female 0.84(3,33) 0.480 

29°C Male 3.16(3,40) 0.035 

Female 1.34(3,33) 0.279 

32°C Male 3.65(3,40) 0.020 

Female 2.24(3,33) 0.102 
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It is apparent from Figures 5.10 and 5.11 that high altitude animals generally stop less 

frequently than low altitude animals while sprinting. This is most obvious at low 

temperature and is found in both males and females. At higher temperatures, high altitude 

males, especially Mt Wellington specimens, also appear to stop less frequently than low 

altitude animals; however, no significant difference is evident in females. Also of interest 

from Figures 5.10 and 5.11 are the differences in temperatures at which animals stop least 

while sprinting. Regardless of sex, animals from Orford stop least at 26 °C, animals from 

Hobart stop least at 23°C and high altitude animals (Clarence Lagoon and Mt Wellington) 

stop least at 20°C. Thus temperature and site of collection both appear to influence an 

animal's willingness to maintain a sprint burst. 

5.4 Discussion 

Individual N. metallicus from all sites maintained a Tb between 29°C and 31 °C. It appears, 

therefore, that Tb is evolutionarily conservative in this species. This is not unexpected, 

despite the obvious differences in thermal characteristics between field sites (Chapter 2). 

Animals from all sites displayed considerable precision in their regulation of Tb. This 

observation, combined with the fact that animals from high altitude sites are able to reach 

high Tbs even under quite adverse conditions, indicates that no strong selection pressures 

are acting on this aspect of thermal biology. Christian (1998) showed that the short-horned 

lizard Plnynosoma douglassi was able to maintain Tbs around 30°C even in air 

temperatures of 1.5 °C. In contrast, several other studies have found that intraspecific field 

Tbs do vary with altitude (Crowley, 1985; Van Damme et al., 1989, 1990; Grant and 

Dunham, 1990; Smith et al., 1993; Smith and Ballinger, 1994d, Spencer and Grimmond, 

1994). However, other species or groups show a pattern similar to N. metallicus (Burns, 

1970; Aldoph, 1990; Smith and Ballinger, 1995; Brown, 1996). It appears than N. 

metallicus is able to exploit microhabitats and use flexible basking strategies (Chapter 4) 

to minimise variation in Tb between thermally distinct habitats. 

The most pronounced change in thermal environment associated with altitude at temperate 

latitudes is a decrease in air temperature. This is also true of sites used in this study 

(Chapter 2). However, mean Ta  estimates for basking lizards in this study do not follow 

this trend. This reflects the selection of days with maximum temperatures between 19 °C 

and 25°C. While Ta  values for Mt. Wellington are lower than those for the low altitude 
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sites, those for Clarence Lagoon are not. This probably reflects the fact that Clarence 

Lagoon is sheltered from wind exposure, while on Mt. Wellington wind speeds are high as 

the site sits near the exposed summit These winds would act to decrease the T. readings 

associated with any given Tb value. Higher mean Ls at Orford also reflect the fact that 

this site has relatively little tree cover, allowing air temperatures to rise above those at 

shaded sites (Hobart). The pattern observed between sites for T s  is expected. Values are 

generally higher at low altitude. Again relative lack of tree cover may result in higher Ts  
values at Orford than at other sites. 

The relationships evident between Tb and T., and Tb and Ts  are useful for examining 

thermoregulation at each site; however, see Hertz et al, (1993). The Tb and Ts  relationship 

produced equal slopes; however, examination of least square means indicated that high 

altitude animals maintain their Tb at lower Ts  values. This, together with the low slope of 

the relationship (common slope = 0.298), indicates that at all sites N. metallicus 

thermoregulates effectively to maintain a stable Tb, and that this is especially true at high 

altitude. A more complex relationship is evident between Tb and Ta . Here the slopes of 

regression lines are shallower for complex forested sites, indicating that animals exposed 

to these habitats are better able to control Tb, than animals from habitats with little tree 

cover. Examinations of y-intercept values also support this conclusion. Similarly the 

results of the multiple regression study showed that habitat complexity significantly 

influenced the relative importance of independent variables (Ta  and TO on the dependant 

variable Tb. In animals from complex sites (Hobart and Clarence Lagoon) Tb was 

influenced more strongly by T s, while in animals from open sites T. was generally more 

important. 

Superimposed on this trend is a gender effect. Females appear less able to maintain Tb 

over the range of Tas encountered in the field (high value of slope of regressions). 

However, R-squared estimates from each site, which are higher in females, indicate that 

this sex displays a high degree of precision in control of Tb over a range of T as. Similarly 

the results of the multiple regression showed that females had higher R-squared values and 

thus controlled Tb more tightly around the resulting models. These results indicate that 

thermal control is a complex phenomenon in N. metallicus populations, involving aspects 

of altitude, habit complexity and sex. 
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A more effective means of studying thermal biology in the field in N. metallicus would be 

to examine operative temperatures (through measuring the temperature attained by 

hollow-bodied copper replicas of lizards) at basking sites and at random locations in each 

of the four study sites (Hertz etal., 1993). Hertz eta!, (1993) identified a number of 

weaknesses in studying thermal biology using the methods described in this chapter, 

specifically in using regression slopes and variability of to Tb to evaluate 

thermoregulation. Nevertheless, the results described above represent an introductory 

investigation of thermal biology and geographic adaptation in this species. A more 

detailed examination of temperature regulation, using the methods described above, was 

not possible within the time constraints of this project; however, this may be attempted in 

the future. 

Thermal behaviour as a mechanism of adaptation in N. metallicus was further investigated 

in the laboratory. Unlike field temperature studies, which included only pregnant females, 

the laboratory investigation examined thermal behaviour in males and females during both 

spring and autumn. Thus females were compared when pregnant (spring) and not pregnant 

(autumn). The results indicate that animals maintain a similar -cave  irrespective of site, sex 

or reproductive status. This value was around 25 °C to 26°C, and this represents a 4 °C drop 

from the temperatures recorded for animals in the field. While this seems difficult to 

explain, it must be remembered that T., recorded in the laboratory represents a measure 

of mean temperature of all activities, while field values are only indicative of basking 

periods. Thus, it is possible that over the course of the day, N. metallicus does allow its 

body temperature to average out at values less than those recorded in the field. K_ik (1998), 

in a study of a sister species, N. microlepidotus, found that T., estimates in the laboratory 

varied between 22.4°C and 24°C, while field Tbs were significantly higher, most notably in 

males, in a study by Kabat (1999). While T., showed no variation between groups, other 

aspects of thermal behaviour did differ. These differences were recorded between sites 

only for minimum body temperatures and lower setpoints in males (interacting factors). In 

both cases high altitude animals appeared to limit their time at lower temperatures in late 

spring. The differences, however, were very small. Conversely, season of collection was 

more important in regards to time spent at extreme temperatures. Males spent less time 

with body temperatures above 35 °C and below 20°C in spring than in autumn, possibly 

indicating a willingness to search for females in autumn when mating is initiated. Females 

displayed a more complex pattern in relation to collection dates. They spent less time at 
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extreme temperatures, and maintained a higher minimum temperature in spring than in 

autumn. They also allowed their maximum temperature to increase significantly in autumn 

and adjusted both upper and lower set point temperatures in spring to avoid thermal 

extremes. Thus, while there was no obvious change in T a, in females between 

reproductive phases, other thermal variables changed significantly. 

Differences displayed by females, in field thermal ecology and laboratory thermal 

behaviour, require further discussion. Numerous studies have shown that males and 

females may maintain different Tbs in the field at different sites (Pentecost, 1974; 

Patterson and Davies, 1978; Stevens, 1982; Sievert and Hutchison, 1989; Gillis, 1991). In 

viviparous species these differences are usually interpreted in terms of reproductive 

requirements of developing young (Gillis, 1991; Andrews etal., 1997). Temperature 

significantly affects the rate of development of reptilian embryos (Muth, 1980; Ellner and 

Beuchat, 1984). However, temperatures above a critical value can damage offspring 

(Mathies and Andrews, 1997). The body temperature of female reptiles during pregnancy 

has been studied in a number of species of lizard and snake. However, changes in Tb 

associated with gestation are not consistent (Stewart, 1984; Hailay et al., 1987; Van 

Damme etal., 1987; Heulin, 1987; Schwarzkopf and Shine, 1991; Daut and Andrews, 

1993). There appears to be no obvious phylogenetic or ecological correlation with a 

change in body temperature during pregnancy. Kik (1998) found that N microlepidotus 

females decreased their Tave  by about 1.6°C when pregnant. This species also showed a 

decrease in time spent at extremely high temperatures. However, it appeared to spend 

longer periods at cooler temperatures during gestation and lowered both its thermal 

setpoint temperatures. Thus, N. microlepidotus displays dramatically different thermal 

behaviour during gestation than does N. metallicus, which shows no drop in 'rave  and 

avoids both high and low temperatures by uncoupling upper and lower set point 

temperatures. This may be explained in terms of the reproductive biology of both species. 

Niveoscincus microlepidotus is a biennial breeder and retains developed young over 

winter. At the same site (Mt Wellington) the annual reproducing N. metallicus must give 

birth to young well in advance of winter. Maintaining a relatively high temperature in this 

species presumably maximises the rate of embryonic development and minimises any 

compromise between the conflicting pressures of maternal and embryonic metabolism 

(Tosini and Avery, 1996, Beuchat and Ellner, 1987). 
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Field and laboratory data on the precision of thermal control in female N. metallicus 
appear slightly contradictory. Field regression slopes indicate that pregnant female N 
metallicus are less able to maintain high Tbs during cooler periods than are males, 
although they appear to regulate Tb more precisely (higher R-squared values of both linear 

and multiple regressions). However, laboratory data indicate that they maintain thermal 

control more effectively than non-pregnant or male animals (based on avoidance of 

thermal extremes). If animals in the field are seeking to maintain their body temperatures 

near maximal levels, a plausible hypothesis considering that females appear to bask more 

often and for longer periods when pregnant (personal observation), then any regression 

slope against air temperature Will be high as maximal operative temperatures are linearly 

dependent on air temperature (Van Damme et al., 1987). Thus, regression slopes alone 
cannot discriminate between this strategy and thermoconformity, which also results in 

higher regression slope values. Laboratory data therefore appear to be a more instructive 

method of examining thermal control, at least in N. metallicus, however operative 
temperature (To) evaluation in the field would represent a more powerful method of 
examining thermal control in female animals (Hertz et al., 1993). 

Data clearly indicate that N. metallicus actively regulates its Ti, over a wide range of 

altitudes and that this species also accepts a wide range of temperatures during activity. In 

many species, behavioural shifts are the primary mechanism that compensate for 

geographic changes in thermal environment (Hertz and Huey, 1981; Hertz and Nevo, 

1981; Huey, 1982; Van Damme et al., 1989). Behavioural mechanisms have indeed been 
identified in N. metallicus as a primary means of maintaining constant preferred body 

temperatures between sites (Chapter 4). While behavioural mechanisms help resist 

microevolutionary adaptation of body temperature over attitudinal ranges, other thermal 

characteristics may be less resistant to selection. For example, studies examining thermal 

preferenda and tolerances of geographically widespread populations of the same species 

often find the two factors to be evolutionarily uncoupled. Animals from colder sites often 

have lower CTmin values (Spellerberg; 1972; Wilson and Echternavcht, 1987). CTmax 

has also been shown to increase in some populations exposed to high temperatures (Miller 

and Packard, 1977; Hertz, 1979; Hertz and Huey, 1981; Huey and Bennett, 1987; 

Schwarzkopf, 1998). However, animals exposed to sites with differing thermal regimes 

may compensate behaviourally to maintain a Tb, even while natural selection acts to 

increase CTmax or decrease CTmin (Hertz and Huey, 1981; Schwarzkopf, 1998). 
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The two remaining methods of physiological adaptation available to reptiles, 

acclimatization and genetic adaptation, were investigated in N. metallicus through 

examination of direct and indirect thermal performance measures (critical thermal limits 

and running behaviour). CTmax values were not different between sites within  any 

collection period. Thus only season appeared to influence CTmax values and only to a 

very small extent. CTmin, however, was more informative. Animals from high altitude 

sites had significantly lower CTmin values than low altitude animals. There was also a 

seasonal effect apparent in males from low altitude. No evidence for acclimatory 

adaptation to altitude, as described by Garland and Aldoph (1991) was evident in N. 

metallicus. Differences in CTmin and CTmax values were either maintained over the four 

months that animals were held in the laboratory, or matched changes in animals collected 

and tested in autumn. 

The fact that CTmin displays adaptation to altitude, while CTmax does not, indicates that 

these thermal characteristics are independent of each other at the genetic/physiological 

level. A tendency for populations from cooler environments to have lower CTmin values 

has already been described. Wilson and Echternacht (1987) reported that Anolis 

carolinensis displayed CTmin differences of 3.2 ± 0.45 °C in populations from different 

latitudes and altitudes. Brown (1996) also reported a difference of 3.9 ± 0.47 between 

populations of the gecko Tarentola boettgeri. In addition Spellerberg (1972) reported that 

members of a Sphenomorphus species group had different tolerances to low temperature 

that correlated with elevational zonation. Niveoscincus metallicus shows similar variation 

in CTmin to these species, indicating that this characteristic is evolutionarily plastic and 

represents an important aspect of the thermal biology of the species. 

Sprint speed and stopping frequency (performance measures) were also recorded for male 

and female animals during autumn only. Thus no pregnancy correlations were studied in 

relation to either of these variables. Irrespective of site both males and females sprint 

fastest at around 26 °C. Significant differences were recorded for animals at low 

temperatures (17°C) and high temperatures (32 °C) in males. Generally high altitude 

animals ran faster at extreme temperatures. Willingness to run produced even clearer 

results. The greatest willingness to sprint occurred at 20°C for high altitude animals, at 
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23 °C for animals from Hobart and at 26°C for Orford animals, irrespective of sex. Animals 

from high altitude sites also refused to run significantly less frequently than low altitude 

animals at colder temperatures, while males also stopped less often at higher temperatures. 

Previous studies have reported that performance breadth correlates with the variability in 

field Tbs among species of anoles (van Berkum, 1986) but not among populations within a 

species (Stellio stellio: Hertz et al., 1983; Sceloporus undulatus: Crowley, 1985; 

Sceloporus occidentalis: van Berkum, 1988; Podarcis tiliguerta: Van Damme et al., 

1989). In contrast, N. metallicus displays a rather different response. Tbs recorded in the 

field are effectively controlled by behavioural mechanisms between 29 °C and 31 °C, 

irrespective of altitude (see above). However, animals anywhere in Tasmania can expect 

periodical exposure to very cold conditions. High altitude populations appear to have 

adapted to this problem by expanding the thermal breadth of their sprint performance, thus 

allowing them to maintain relatively high speeds at lower temperatures. This, combined 

with a greater willingness to keep running under cool conditions at high altitude, 

represents a significant adaptation to high altitude environments. 

As N. metallicus accepts such a wide range of temperatures when active and is able to 

perform well over much of this range, it may be possible that selection pressures for 

adjustment of thermal performance are weak. Nevertheless, the differences observed 

between populations in regard to tolerance of low temperatures and sprint performance are 

unlikely to represent acclimatization to thermal conditions. This is because acclimation of 

thermal limits was not evident in animals held in the laboratory for 4 months. 

Furthermore, juvenile animals born in the laboratory to mothers housed together during 

gestation still displayed differences in thermal limits consistent with their origins. Several 

species have been found to shift their CT limits after exposure to low temperatures 

(Raglund et al., 1981; Tsuji 1986 in van Berkum, 1988). However, the magnitude of these 

shifts (usually 1 °C — 2°C) is smaller than that observed in N. metallicus (this study) and in 

other species where acclimation has been discounted (van Berk-um, 1988). Thermal history 

has been shown to affect susceptibility of ectotherms to high temperatures in laboratory 

acclimation studies. For example Eulamprus quoyii acclimated to 30°C had higher lethal 

temperatures than those acclimated to 20 °C (Veron and Heatwole, 1970). However, 

CTmin did not differ between high and low altitude laboratory acclimated populations of 

the African skink Mabuya striata (Patterson, 1991). In addition the limited data available 

imply that sprint speed is insensitive to previous acclimation history (van Berkum, 1988). 
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Although Bennett (1980) reported significantly lower absolute sprint speeds in winter 

collected Sceloporus occidentalis than in summer collected animals, these collections did 

not differ in relative speed. Anolis humilis also showed no change in sprint speed when 

held under differing thermal regimes (van Berkum, 1986). Thus it seems improbable that 

differences in sprint performance are the result of acclimatization in the field to high 

altitude. 

A second type of adaptive response also merits consideration. The possibility exists that 

developmental conditions, during gestation and early post-natal growth, may fix thermal 

tolerance values and performance characteristics. Thermal environment during gestation is 

known to affect sex at birth (Harlow and Shine, 1999), as well as many aspects of juvenile 

phenotype (Downes and Shine, 1999; Shine and Dowries, 1999; Brana and Ji, 2000; Swain 

and Jones, 2000b). Qualls and Shine (1998) also indicated that environment during 

embryo development and during early life can affect aspects of an animal's phenotype. 

Modification of physiological systems in response to different thermal environments 

during development to adult size has not been examined in reptiles. However, juvenile CT 

limits reported here, for mothers held under common conditions throughout gestation, 

indicate that young are born already in possession of many of their thermal characteristics 

(i.e. thermal tolerances) and therefore these characters may have a significant genetic 

basis. While mothers were held under constant conditions, the possibility exists that 

gestation environment, influenced by variation in thermal behaviour, did vary between 

population groups. However, laboratory thermal characteristics (section 5.3.2) indicate 

that pregnant females display no site induced variation in thermal behaviour in the 

laboratory. Thus, differences in CT limits in laboratory gestated juveniles are unlikely to 

reflect variation in gestation environment. 

Two conflicting opinions have been identified by Hertz et al. (1983) concerning the 

genetic basis of reptilian thermal adaptation. The 'labile' view states that when 

environmental conditions induce a shift in active body temperatures, parallel changes in 

thermal optima should evolve readily. Partial co-adaptation between active Tbs and 

thermal optima has indeed been documented in inter-specific studies of anoline (van 

Berkum, 1986) and scincid lizards (Huey and Bennett, 1987). The alternative 'static' view 

of thermal adaptation claims that thermal physiology is evolutionary inert and resistant to 

directional selection. Support for this view is provided by studies of the thermal sensitivity 
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of sprint speed among conspecific lizard populations inhabiting thermally distinct habitats 

(Hertz et al., 1983; Crowley, 1985; Van Damme et al., 1989). In contrast to these studies, 

my research supports the 'labile' position for both thermal sensitivity of sprinting and 

willingness to sprint in N. metallicus, and more obviously for thermal tolerance. 

This conclusion requires some explanation. Active Tbs in N. metallicus appear to be under 

stabilizing selection; however, animals occupying extreme environments will inevitably be 

exposed to near lethal temperatures on occasion. The gradual exposure to colder 

conditions, assuming evolution of this species from a low altitude form (Melville and 

Swain, 2000b), would have required increasingly greater tolerance of low temperatures, 

and thus permanent adaptation of CTmin. This is common in many species. However, 

adaptation of thermal performance is apparently uncommon. Niveoscincus metallicus 

appears to display a direct connection between performance and overall fitness. Thus, 

locomotory handicaps must have been sufficient for animals to have evolved the ability to 

maintain relatively fast sprint speeds at lower temperatures. This capacity would be 

especially important in spring and autumn, when high altitude environments offer poor 

thermal opportunities (Chapter 2). Consequently, adaptation of thermal performance may 

have evolved in this species because the short season open to high altitude animals may 

reduce opportunities for vital activities such as foraging. However, if animals are able to 

remain active at reduced temperatures then ecological performance would be little 

decreased. Assuming that ecological performance (feeding and predator avoidance) and 

physiological performance (sprint speed) scale directly (Huey and Stevenson, 1979; 

Christian and Tracy, 1981), pressure to increase speed at low temperatures would be great. 

Also many studies have identified compensatory increases or decreases in behaviour (such 

as alertness) that may reduce the costs of decreased speed to predator escape (Brodie and 

Russell, 1999). However, N. metallicus at high altitude appear less wary than low altitude 

conspecifics (personal observation), and thus the fact that they allow predators to approach 

closer at high altitude may again increase the need to run faster at low temperatures. 

Therefore, this species may have adapted thermal performance, while other species living 

at high altitude, subject to lower predation or food collection pressures, may have had no 

need to evolve increase speed or willingness to sprint at lower Tbs (Crowley, 1985; Van 

Damme et al., 1989). 
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Hertz et al. ( 1983) suggested that an ability to run quickly over a broad range of 

temperatures may contribute more to an ectotherm's fitness than an ability to be very 

quick over a narrow range of temperatures. Niveoscincus metallicus appears to have 

adopted this strategy at high altitude, but not at low altitude. Despite the fact that Tb, and 

many other thermoregulatory characteristics, appear to be under stabilising influences in 

this species, thermal adaptation has occurred across the range of altitudes occupied. Thus, 

critical thermal limits and activity at extreme temperatures appear to have evolved 

independently of preferred temperature in N. metallicus. 

111 



Chapter 6: Geographic and annual life history variation in N. metallicus 

CHAPTER SIX 

Geographic and annual life history variation in Niveoscincus metallicus 

6.1 Introduction 

Steams (1976) defined life history tactics as a "series of co-adapted traits designed, by 

natural selection, to solve particular ecological problems". Species with broad geographic 

ranges often display extensive variation in life history traits. This variation occurs 

primarily at two levels: variation on a geographic scale, between populations of a single 

species (Dunhamet al., 1988; Grant and Porter, 1992; Taylor etal., 1992; Ferguson and 

Talent, 1993; Niewiarowski and Roosenburg, 1993; Niewiarowski, 1994; Forsman and 

Shine, 1995; Sorci and Clobert, 1999; Wapstra and Swain (in press); and variation on an 

annual or seasonal basis within a single population (Dunham, 1978; Ballinger and 

Congdon, 1980; Schwarzkopf, 1992; Smith etal., 1995; Olsson and Shine, 1997; Abell, 

1999; Wapstra and Swain (in press). An understanding of the life history of an organism, 

and specifically of variation at each of the above levels, is of paramount importance to any 

investigation of adaptation to environmental extremes. 

All animals must make a number of "decisions" about aspects of life history. For any 

given reproductive event a female faces two major allocation "decisions". Firstly, she 

must determine how much energy to invest in the reproductive'event (reproductive effort), 

and secondly she must decide how much energy to invest in each offspring (parental 

investment) (Winkler and Wallin, 1987). Life history models suggest that at any point in 

an individual's life there is an optimum proportion of available energy that should be 

diverted to reproduction (Williams, 1966; Forsman and Shine, 1995). This amount of 

energy is thought to reflect trade-offs, particularly between current and future reproduction 

(Shine and Schwarzkopf, 1992; Forsman and Shine, 1995), and between clutch size and 

parental investment (offspring size) (Lessells, 1991; Madsen and Shine, 1992; Roff, 1992; 

Stearns, 1992; Olsson and Shine, 1997; Abell, 1999). Life-history traits such as 

reproductive effort should therefore evolve so as to maximise the total lifetime fecundity 

of an individual (Shine and Schwarzkopf, 1992). 
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Variation in allocation "decisions", however, result from two main sources: (i) genetic, 

including phylogenetic influences, adaptation to local conditions and environments, and 

individual variation in genotype; and (ii) proximate, including variation generated by 

factors external to the individual itself (Smith, 1998). Thus environment can act to 

constrain reproductive effort through both phenotypic expression of the genotype during 

ontogeny, and, ultimately as a source of selection on the life history genotype itself 

(Niewiarowski and Roosenburg, 1993). It is widely appreciated that to fully understand 

evolution of life history and geographic variation in life history, one must attempt to 

disentangle genetic and environmental variation in natural populations (Stearns, 1980; 

Ballinger, 1983; Jones and Ballinger, 1987; Schwarzkopf, 1992; Adolph and Porter, 1993; 

Niewiarowski and Roosenburg, 1993; Sorci et al., 1996; Qualls and Shine, 1998). 

Phenotypic plasticity is the differential phenotypic expression of a given genotype across 

differing environments or time periods, and represents one of the most acknowledged 

sources of variation in life history phenotypes (Roff, 1992; Stearns, 1992; Sorci et al., 

1996). Among reptiles, temperature, food availability and habitat occupation have all been 

shown to affect phenotypic expression of a genotype (Ballinger, 1977; Dunham, 1978; 

Jones et al., 1987; Sinervo and Adolph, 1989, 1994; Niewiarowski and Roosenburg, 1993; 

Sorci et al., 1996; Olsson and Shine, 1997; Smith, 1998; Qualls and Shine, 1998; Abell, 

1999; Swain and Jones; 2000b; Wapstra, 2000; Wapstra and Swain; in press). Adolph and 

Porter (1993, 1996) have produced models examining the effect of temperature on various 

aspects of life history. Their results demonstrate that patterns of life history variation can 

be described without invoking genetic differentiation. This clearly shows the potential of 

proximate factors to influence reptilian life-history phenotypes. 

The high degree of phylogenetic conservatism in reptilian life histories (Stearns, 1984; 

Dunham et al., 1988; Bauwens and Diaz-Uriate, 1997) means that, while a large body of 

literature does exist pertaining to life history evolution (Ballinger, 1973; Ferguson et al, 

1980; Jones and Ballinger, 1987; Jones et al., 1987; Sinervo and Adolph, 1989; Sinervo 

1990; Ferguson and Talent, 1993; Niewiarowski band RoosenBurg, 1993; Sorci et al., 

1996; Bauwens and Diaz-Uriarte, 1997; Smith, 1998; Abell, 1999), independent data sets 

are still required for species from other phylogenetically distinct taxa, in order to fully 

appreciate relationships between life history characteristics and environmental variables 
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(Dunham et al,. 1988; Forsman and Shine, 1995; Wapstra and Swain, in press). Since 

geographic variation in life-history phenotypes between populations of a single species 

may reflect both genetic divergence and phenotypic plasticity induced by environmental 

variation, simple examinations of variation between sites alone provides little information 

on causation of observed differences. In addition, variation can also occur over time within 

a single population (Schwarzkopf, 1992; Olsson and Sine, 1997; Pamula, 1997; Wapstra 

and Swain, in press). This annual variation in life-history characteristics is thought to 

reflect primarily proximate variation from environmental fluctuations (Schwarzkopf, 

1992). Thus examination of annual variation helps shed light on some of the constraints 

influencing life history tactics at the microevolutionary level (Schwarzkopf, 1992; Olsson 

and Shine, 1997). 

The aim of this section of work was to describe variation in some aspects of life history 

(adult body size, reproductive effort, clutch size and parental investment) in N. metallicus 

between my four field sites. These sites cover the altitudinal range of the species and may 

also provide information on the influence of habitat on life history. Because animals living 

in differing habitats are exposed to differing proximate constraints (i.e. abundance and 

availability of food (Brown et al., 1994), foraging efficiency (Diehl, 1993), temperature 

(Huey, 1991; Chapter 2) and predation risk (Christian and Tracy, 1981; Chapter 4), life 

history variation between sites may be affected by many factors other than altitude. The 

study also examines variation over a three-year period (1997-1999) so as to provide 

information on annual variation in selected life-history characteristics within populations. 

Six specific life history questions were identified. 

1) Does adult body size vary between populations, and how does any such variation 

correlate with environmental variables? 

2) Do litter sizes, mass or relative clutch mass vary between populations? 

3) Do offspring size and condition vary between populations? 

4) Is there evidence of variation in sex ratios of offspring between populations? 

5) If so, is there any evidence for differential allocation of resources to sexes? 
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6) 	Does inter-annual variation exist in any of the above life history characteristics 

within populations? 

6.2 Materials and Methods 

6.2.1 Field collections 

Animals were captured as part of a general study of life history adaptation from the four 

field sites identified in Chapter 2. They were brought into the laboratory where the 

following parameters were measured: snout-vent length (SVL)(± 0.1 mm); mass (±0.1 

mg); total length (± 0.1 mm); and if present, position of tail break (± 0.1 mm) Amimals 

were sexed by eversion of hemipenes (if present). If animals were not required for any 

other aspect of work they were subsequently released at the site of capture. Other animals 

were killed by placing them in a freezer at —20°C (Cogger, 1992). 

6.2.2 Data collection 

Litter size was determined using two methods: autopsy and live birth. Despite the low 

levels of atresia of vitellogenic follicles in N. metallicus and the general lack of variation 

between counts of corpora lutea and embryos in pregnant animals (Jones and Swain, 

1996), data from animals with early follicular development were not included in any 

autopsy data. Only animals near ovulation or carrying embryos were included in the data 

set. 

Litter size was also calculated from live births in the laboratory. Collections of near-term 

gravid females were made late in the reproductive season at all four sites during 1998 and 

1999. During 1997 animals were collected from all sites except Orford. Females were held 

under standard laboratory conditions (Chapter 2) in groups of two animals until parturition 

occurred. Cages were checked twice daily for newborns. Farr and Gregory (1991) 

suggested that holding reptiles (snakes) in captivity can influence juvenile phenotype and 

recommended holding mothers for as short a period as possible before birth in the 

laboratory. Therefore litter and neonate data were recorded only for animals held in the 
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laboratory for less than 2 weeks. To meet this criterion low altitude animals were collected 

from late December to early January, while high altitude mothers were collected in early 

February. Females were removed from cages following birth and killed at —20 °C. 

Newborns were either killed, or, if required for another aspect of research, SVL (± 0.1 

mm), total length (± 0.1 mm), and mass (± 0.01 mg) were measured. Following this they 

were released at the site of capture of mothers. All mothers were weighed, and abdominal 

fat body mass was recorded. Abdominal fat body mass and sex were also recorded for 

newborns that were killed. Sex could only be determined reliably from dissection in N. 

metallicus offspring. For all young, body condition (mass/SVL) and relative tail length 

(shape = total length/SVL) were also calculated. Litter mass was defined as the total mass 

of all offspring in a litter, and relative clutch mass (RCM) was defined as: 

RCM = litter mass / mass of postpartum female. 

Relative clutch mass (RCM) can be calculated as the ratio of litter mass to either maternal 

gravid mass, or postpartum mass. The former method, while commonly employed (Vitt 

and cogdon, 1978; Vitt and Price, 1982), may introduce statistical artifacts because clutch 

mass is included in both numerator and denominator (Shine, 1980; Sinervo et al., 1991; 

Forsman and Shine, 1995; Wapstra and Swain, in prep). Thus it was not used in this 

investigation. 

6.2.3 Data analysis 

All data were analysed using SAS System for Windows ©v6.12 and Systat version 7.0. 

Variation in adult body size (SVL) for each sex was examined using one-way ANOVA 

with annual variation examined within each site, and between site variation examined on 

total data. Male SVL was recorded only for the 1997-98 and 1998-99 seasons. Female 

SVL was recorded in the 1996-97, 1997-98 and 1998-99 seasons. Homoscedacity of 

variances was investigated by visual inspection of plots of group standard deviations 

versus group means. Normality of the data was evaluated through the inspection of a plot 

of residuals against predicted residual values. Significant interactions were further 

examined using Tukey's studentized range tests. Variation in SVL between sexes at each 

site was examined using two-sample T-tests. 
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Litter characteristics (Litter size, mass and RCM) were examined using Analysis of 

Covariance (ANCOVA), again comparing between years within each site, and secondly 

comparing between sites. In all cases maternal SVL acted as the covariate. The assumption 

that each treatment had identical group regression slopes was tested by assessing the 

significance of the treatment*covariate interaction. In all cases this interaction was not 

significant. Linearity of the relationship between the dependent variable and the covariate 

was evaluated by examining a plot of the residuals versus the covariate and assessing the 

normality of the residuals. Finally, the independence of residual variances and response 

variables was assessed by examining a plot of residuals against predicted values and 

comparing the variance of residuals among groups. Post-hoc LSD tests were employed to 

examine variation between groups. 

Offspring variation between sites was initially investigated using ANCOVA, with 

offspring mass and SVL acting as factors and maternal mass, SVL, inter-limb length and 

abdominal reserves (fat bodies) acting as the covariate. Assumptions of ANCOVA were 

examined as described above. All offspring characteristics were also examined using one-

way ANOVA, both on an inter-annual and geographic scale. Significant interactions were 

further examined using Tukey's studentized range tests. Assumptions of normality and 

homoscedacity of variances were examined as described above. No data transformation 

was required. Sex ratios of neonates from each site were examined using Pearson Chi-

squared tests. Variations between sexes within each site for all offspring characteristics 

were examined using two-sample T tests. 
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6.3 Results 

6.3.1 Adult body size 

Mean adult male and female snout-vent lengths for 1996-97, 1997-98 and 1998-99 seasons 

for animals from all four field sites are presented in Table 6.1. Females were judged to be 

mature when carrying enlarged follicles or embryos during the reproductive season, or 

having given birth in the laboratory. Males were judged to be mature based on 

comparisons with sizes of mature animals determined from autopsy, or from direct 

autopsy. 

Table 6.1 Mean adult male (M) and female (F) snout-vent lengths for animals from Orford, Hobart, Mt 

Wellington and Clarence Lagoon during the 1996-97, 1997-98 and 1998-99 field seasons. Values are means 

± s.e. Sample sizes are shown in parentheses. 

Site 1996-97 1997-98 1998-99 All years 

Hobart (M) NA 54.7± 0.71 (35) 54.1 ±0.69 (30) 54.4 ± 0.49 (65) 

Hobart (F) 50.8 ± 0.65 (47) 53.8 ± 0.48 (65) 52.7 ± 0.53 (55) 52.6 ± 0.33(167) 

Orford (M) NA 53.3 ± 0.56 (40) 54.8 ± 0.73 (20) 53.8 ± 0.45 (60) 

Orford (F) 53.2 ± 1.22 (11) 55.1 ± 0.52 (57) 54.7 ±0.63 (41) 54.8 ± 0.38(109) 

Mt. Well (M) NA 55.4 ± 0.44 (34) 55.6 ± 0.53 (27) 55.5 ± 0.34 (61) 

Mt. Well (F) 54.4 ± 0.77 (41) 54.8 ± 0.76 (40) 55.7 ± 0.54 (57) 55.1 ± 0.39(138) 

Clar Lag (M) NA 55.5 ± 0.43 (35) 56.6 ± 0.46 (29) 56.0 ± 0.32 (64) 

Clar Lag (F) 53.8 ± 0.53 (34) 55.3 ± 0.48 (53) 55.9 ± 0.33 (88) 55.3 ± 0.25(175) 

Male and female size variation was initially examined within sites between years. No 

variation was detected between years for any of the male populations (Mt Wellington: 

F1 ,59 = 0.08, P = 0.79; Clarence Lagoon: F1,59 = 2.76, P = 0.1; Hobart: F1,59 = 0.28, P = 

0.6; Orford: F1 ,  59 = 2.48, P = 0.12). In contrast two of the female populations did show 

some degree of variation on an annual level (Clarence Lagoon: F1,59 = 5.2, P = 0.006; 

Hobart: F1, 59= 7.25, P = 0.001). During the 1996-97 season animals captured at Clarence 

lagoon were significantly smaller than those captured during the 1998-99 season, but not 

the 1997-98 season. At Hobart, animals captured during the 1996-97 season were smaller 

than those caught in 1997-98, but not those from 1998-99. No other variation at these sites 

was detected. These differences were, however, quite small and probably reflect collection 
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bias. Female animals captured at Mt Wellington (F 1 , 59 = 1.04, P = 0.36) and Orford (F1,59 

= 1.12, P = 0.33) showed no variation in SVL between years. Due to the fact that female 

variation was small and most probably reflected collection error, between site variation for 

both males and females was examined using data pooled from all years. The distribution 

of SVLs for mature females and males is shown in Figures 6.1 (a-d) and 6.2 (a-d) 

respectively. 

Female N. metallicus showed differences in mean SVL between populations (F3,585= 

16.23, P < 0.001) (mean values, mm: Mt Wellington, 55.1; Hobart, 52.6; Clarence 

Lagoon, 55.3; Orford, 54.8). Animals from the Hobart site were significantly smaller than 

those from all other sites (P < 0.05). Other populations were not significantly different. 

Variation was also evident between male populations (F3,246= 5.81, P < 0.001) (mean 

values mm: Mt Wellington, 55.5; Hobart, 54.4; Clarence Lagoon, 56.0; Orford, 53.8). In 

this case animals from Clarence Lagoon were larger than males from Hobart and Orford 

(P < 0.05), while animals from Mt Wellington were also larger than animals from Orford 

(P < 0.05). Again other combinations were not significantly different. In life history 

theory, the age at maturity for females is defined as the age at first birth, and not when 

other events (such as vitellogenesis, ovulation or mating) first occur (Stearns, 1992). In N 

metallicus this is a significant distinction, as first mating and most vitellogenesis occur 

approximately 8 months before birth. Figure 6.1 presents SVLs of females which were 

often captured either prior to parturition or prior to ovulation. Thus size at maturity in this 

figure appears to be quite small, especially for low altitude sites. However, the smallest 

mature (at time of birth) females observed at Clarence Lagoon and Mt Wellington were 

47.7 mm and 47.9 mm respectively. Corresponding values for Orford and Hobart animals 

were 48.1 mm and 47.2 mm respectively. Thus females may ovulate at a smaller size at 

low altitude, but first birth clearly occurs at a relatively constant size at all sites. 
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Figure 6.1. Size frequency distribution in snout-vent length for reproductive adult female Niveoscincus 

metallicus from: (a) Mt Wellington; (b) Clarence Lagoon; (c) Hobart; and (d) Orford. Data represent 

amalgamation of animals collected during the 1996-97, 1997-98 and 1998-99 field seasons. 
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Figure 6.2. Size frequency distribution in snout-vent length for adult male Niveoscincus metallicus from: (a) 

Mt Wellington; (b) Clarence Lagoon; (c) Hobart; and (d) Orford. Data represent amalgamation of animals 

collected during the 1997-98 and 1998-99 field seasons. 
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Male and female N. metallicus showed significant differences in SVL at only one of the 

sites. Females from the Hobart site were significantly smaller than their corresponding 

males (P = 0.002) (Table 6.1). Adults could not be divided into age classes based on SVL 

measurements (Figures 6.1 and 6.2). Age-size relationships are examined in greater detail 

in Chapter 7 using skeletochronology. 

6.3.2 Litter characteristics 

In most cases litter characteristics were influences by maternal SVL. At all sites the 

relationship between maternal SVL and clutch size (slope of the linear regression) was 

consistent on an annual basis (Mt Wellington, F2,78 = 0.12, P = 0.89; Hobart, F2,100 = 0.98, 

P = 0.38; Clarence Lagoon, F294= 0.35, P = 0.70; Orford, F2 ,48= 0.08, ? = 0.93). At all 

sites the slope of the relationship was significantly different from zero (Mt Wellington, 

Flo = 148.1, P < 0.001; Hobart, F1,102= 175.3, P < 0.001; Clarence Lagoon, F1,96 = 55.9, P 

< 0.001; Orford, F1,50 = 69.2, P < 0.001). Regression lines (determined from ANCOVA) 

are presented for each year at each site in Figures 6.3 to 6.6. No interannual variation in 

litter size was evident at three of the four sites (Mt Wellington, F2,80 = 1.11, P < 0.33; 

Clarence Lagoon, F296= 3.04, P < 0.052; Orford, F2,50=' 1.04, p < 0.36). However, 

differences were recorded at the Hobart site (F1,102=  3.17, P = 0.046). During the 1996-97 

period, litter sizes were slightly larger than in either the 1997-98 or 1998-99 seasons. Least 

square means of clutch size (adjusted for maternal SVL) from the above ANCOVAs are 

presented in Table 6.2. 

Table 6.2 Least-square means of litter size for animals from Mt Wellington, Hobart, Clarence Lagoon and 

Orford during the 1996-97, 1997-98 and 1998-99 field seasons calculated from ANCOVAs (see text). 

Values are LS means ± s.e. Sample sizes are included in parentheses. 

Year Mt Wellington Hobart Clarence Lagoon Orford 

1996-97 3.58 ± 0.103 3.74 ± 0.114 3.36 ± 0.110 3.60 ± 0.270 

(41) (43) (33) (6) 

1997-98 3.43 ± 0.178 3.34 ± 0.142 3.42 ± 0.133 3.87 ± 0.133 

(14) (28) (22) (26) 

1998-99 3.74 ± 0.123 3.39 ± 0.125 3.08 ± 0.092 3.59 ± 0.144 

(29) (35) (45) (22) 
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Figure 6.3 Relationship between maternal SVL (mm) and litter size in female N metallicus from the Mt. 

Wellington field site. Regression lines are calculated from ANCOVA. 
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Figure 6.4 Relationship between maternal SVL (mm) and litter size in female N. metallicus from the 

Clarence Lagoon field site. Regression lines are calculated from ANCOVA. 
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Figure 6.5 Relationship between maternal SVL (mm) and litter size in female N. metallicus from the Hobart 

field site. Regression lines are calculated from ANCOVA. 
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Figure 6.6 Relationship between maternal SVL (mm) and litter size in female N. metallicus from the Orford 

field site. Regression lines are calculated from ANCOVA. 
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The absence of annual differences in litter size for all sites except Hobart, where 

differences barely reached significance, allowed all within site data to be pooled for an 

inter-site comparison. The assumption of homogeneity of slopes was not violated (F3,336 = 
2.40, P = 0.068). Again the effect of maternal SVL on clutch size was significant (F3,339 -- 

461.9, P < 0.001) (slope = 0.197), as was the effect of site of capture (F3,339 = 27.11, P < 

0.001). Least-Square mean clutch sizes from this analysis for each site are presented in 

Table 6.3. 

Table 6.3 Least-square means of litter size for animals from Mt Wellington, Hobart, Clarence Lagoon and 

Orford covering all field seasons calculated from the above ANCOVA. Values are LS means ± se. Sample 

sizes are also provided. 

Site LS mean ±SE LS mean Number 

Mt Wellington 3.5 0.08 84 

Hobart 3.9 0.07 106 

Clarence Lagoon 3.0 0.07 100 

Orford 3.7 0.09 54 

Animals from Hobart had significantly larger litters than mothers from all other sites. 

Litters from Mt Wellington were larger than those from Clarence Lagoon, but did not 

differ significantly from those of Orford mothers. Orford mothers also produced 

significantly larger litters than females from Clarence Lagoon. In all cases significance 

was accepted at the 0.05 level. 

Total litter mass was also examined over a three year period within sites to evaluate 

environmentally induced plasticity in this characteristic. Again, at each site the 

requirement of homogeneity of slopes was not violated (ANCOVA: Mt Wellington, F2,43 = 

0.28, P = 0.76; Hobart, F236= 0.17, P = 0.85; Clarence Lagoon, F2,42 = 1.09, P = 0.35; 

Orford, F2,21 =  0.11, P = 0.75). Similarly, maternal SVL significantly influenced clutch 

mass at all sites (Mt Wellington, F2,45= 112.5, P < 0.001; Hobart, F2,38 =  44.3, P < 0.001; 

Clarence Lagoon, F2,44= 20.9, P < 0.001; Orford, F2,22= 26.75, P < 0.001) (Common 

slopes = Mt Wellington =57.09; Hobart = 49.95; Clarence Lagoon= 33.31; Orford= 

54.55). Season did not significantly affect litter mass at Hobart (F2,38 = 2.08, P = 0.14), 

Orford (F2,22 = 1.35, P = 0.26), or Clarence Lagoon (F2,44= 0.35, P = 0.71). However, 

seasonal variation was detected at the Mt Wellington site (F2,45 = 8.76, ? < 0.001). This 

125 



Chapter 6: Geographic and annual life history variation in N metallicus 

arose from an increased clutch mass during the 1998-99 season. Least square means of 

clutch mass calculations (adjusted for maternal SVL) from the above ANCOVAs are 

presented in Table 6.4. 

Table 6.4 Least-square means of litter mass (mg) for animals from Mt Wellington, Hobart, Clarence Lagoon 

and Orford during the 1996-97, 1997-98 and 1998-99 field seasons calculated from the relevant ANCOVAs. 

Values are LS means ± s.e.. Sample sizes are provided in parentheses. 

Year Mt Wellington Hobart Clarence Lagoon Orford 

1996-97 672.6 ± 37.77 839.8 ± 42.42 685.6 ± 39.67 NA 

(13) (14) (10) 

1997-98 680.0 ± 45.27 835.8 ± 46.39 718.7 ± 32.76 968.0 ± 51.24 

(9) (12) (15) (12) 

1998-99 841.7 ±25.99 730.3 ±40.79 685.3 ±26.34 879.2 ±48.92 

(27) (16) (23) (13) 

All data were pooled within sites to examine geographic variation for this characteristic. 

The assumption of ANCOVA of homogeneity of slopes was not violated (F3,156= 2.00, P 

= 0.12). Again the effect of maternal SVL on clutch mass was significant (F3 , 159 = 215.1, P 

< 0.001) (common slope = 52.79). Clutch mass differed between sites (F3 , 159  = 12.48, P < 

0.001)(Table 6.5). 

Table 6.5 Least-square means of litter mass (mg) for animals from Mt Wellington, Hobart, Clarence Lagoon 

and Orford derived from ANCOVA using maternal SVL as the covariate. Values are LSmeans ± se. Sample 

sizes are also provided. 

Site LS mean ±SE LS mean Sample size 

Mt Wellington 754.1 21.69 49 

Hobart 856.4 23.76 42 

Clarence Lagoon 657.8 22.05 48 

Orford 920.6 30.35 25 

The only LS mean clutch mass estimates that are not significantly different are those from 

Orford and Hobart (P = 0.098). All other combinations differ significantly (P < 0.01). 
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Finally, in relation to clutch characteristics, relative clutch mass (RCM) was examined. 

Again, at each site the requirement of homogeneity of slopes was not violated (Mt 

Wellington, F2,44 = 1.87, P = 0.17; Hobart, F2,36 = 0.27, P = 0.76; Clarence Lagoon, F2,40 -  

0.69, P = 0.51; Orford, F2,21 = 0.35, P = 0.56). However, RCM was influenced by maternal 

SVL at only the Mt Wellington site (F 1 ,46 = 13.55, P < 0.001) (common slope = 0.007). At 

all other sites the slope of the regression was not significantly different from zero (Hobart, 

F1,38 = 3.75, P = 0.06; Clarence Lagoon, F1,42 = 2.32, P = 0.13; Orford, F1,22 = 0.17, P = 

0.69). Also variation in RCM was detected at only the Mt Wellington site over the three 

years the site was studied (F1,46= 10.05, P < 0.001). At all other sites no annual variation 

was detected (Hobart, F1,38 = 2.24, P = 0.12; Clarence Lagoon, F1,42 = 1.70 P = 0.19; 

Orford, F1,22 = 1.64, P = 0.21). Again RCM is significantly greater during the 1998-99 

season than during the other two seasons of collection (P < 0.05). Least square means of 

RCM (adjusted for maternal SVL) from the above ANCOVAs are presented in Table 6.6. 

Table 6.6 Least-square means of RCM for animals from Mt Wellington, Hobart, Clarence Lagoon and 

Orford during the 1996-97, 1997-98 and 1998-99 field seasons calculated from the above ANCOVAs. 

Values are LS means ± s.e. Sample sizes are provided in parentheses. 

Year Mt Wellington Hobart Clarence Lagoon Orford 

1996-97 0.22 ± 0.014 0.33 ± 0.017 0.24 ± 0.013 NA 

(13) (14) (10) 

1997-98 0.25 ± 0.017 0.32 ±0.019 0.26 ±0.011 0.32 ±0.016 

(9) (12) (15) (12) 

1998-99 0.29 ± 0.009 0.28 ± 0.017 0.24 ± 0.009 0.29 ± 0.015 

(28) (16) (21) (13) 

Again, all RCM data were pooled within sites to examine variation on a geographic scale. 

The assumption of ANCOVA of homogeneity of slopes was not violated (F3,155 = 0.43, P 

= 0.73) and there was a significant relationship between maternal SVL and RCM (F3,158 -- 

20.47, P < 0.001); however, the slope of the relationship was very low (common slope -- 

0.006). RCM differed between sites (F3,158 = 14.42, P < 0.001) with all combinations of 

sites being significantly different at the 0.05 level except that involving the Hobart and 

Orford populations (P = 0.37). Least-Square mean clutch sizes from this analysis for each 

site are presented in Table 6.7. 
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Table 6.7 Least-square means of RCM for animals from Mt Wellington, Hobart, Clarence Lagoon and 

Orford derived from ANCOVA using maternal SVL as the covariate. Values are LS means ± s.e. Sample 

sizes are also provided. 

Site LS mean SE LS mean Number 

Mt Wellington 0.27 0.008 50 

Hobart 0.31 0.009 42 

Clarence Lagoon 0.24 0.008 46 

Orford 0.30 0.011 25 

6.3.3 Offspring characteristics 

6.3.3.1 Sex characteristics 

Young were sexed during all years of the study. Data were accumulated within sites. At 

each site the observed sex ratio did not differ significantly from an expected ratio of 1:1 

(Clarence Lagoon, P = 0.864(N= 136); Hobart, P = 0.252(N= 129); Mt Wellington, P = 
0.458(N= 147); Orford, P = 0.819(N= 76)). All offspring characteristics were compared 

between sexes at each site using two-sample t-tests. Due to the fact that a large number of 

tests were used, the a value denoting significance was set at 0.01. This ensured that 

significant differences did not result from chance alone. No sexual variation was detected 

within sites for any of the characteristics examined. Consequently all subsequent analysis 

of offspring characteristics was performed on pooled sex data. 

6.3.3.2 Annual variation in offspring phenotype 

Table 6.8 displays data on offspring morphology and condition for each year of the study 

and from each study location. Annual variation in each character at each site was 

examined using ANOVA and the results are presented in Table 6.9. 
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Table 6.8 Offspring characteristics of Niveoscincus metallicus from Mt Wellington, Clarence Lagoon, Hobart and Orford during the 1996-97, 1 99 7-98 and 1 99 8- 
99 field seasons. All values are means ± s.e. Sample sizes are indicated in parentheses. Condition of offspring is mass divided by SVL; shape provides a measure 
of relative tail length and is calculated as total length divided by SVL. Fat body mass represents the combined mass of both abdominal fat bodies. 

SVL (mm) Total length (mm) Mass (mg) 

Season Mt Well Clarence Hobart Orford 	Mt Well Clarence Hobart Orford 	Mt Well Clarence Hobart Orford 

1996-97 22.0±0.11 22.1±0.16 21.9±0.12 na 47.8±0.31 47.4±0.47 47.4±0.37 na 219.3±4.1 213.9±3.9 212.5±3.6 na 

(43) (32) (51) (43) (31) (51) (43) (32) (51) 

1997-98 22.3±0.11 22.4±0.11 22.4±0.10 23.1±0.10 47.8±0.29 47.9±0.35 49.5±0.27 53.1±0.26 209.1±3.4 210.7±3.1 218.4±3.3 243.9±3.1 
5 4 

(27) (52) (54) (51) (27) (51) (54) (49) (27) (52) (54) (51) 

1998-99 22.1±0.13 22.5 ±0.12 22.1±0.12 22.9±0.15 48.9±0.29 47.9±0.33 48.2±0.33 52.2±0.52 220.7±3.0 216.4±3.4 211.9±4.2 244.9±5.5 
5 6 

(101) (71) (49) (46) (102) (71) (49) (46) (102) (71) (49) (46) 

Condition (mg/mm) Shape (Total/SVL) Fat Bodies (mg) 

Season Mt Well Clarence Hobart Orford 	Mt Well Clarence Hobart Orford 	Mt Well Clarence Hobart Orford 

1996-97 10.0±0.16 9.7±0.14 9.7±0.12 na 2.17±0.01 2.15±0.01 2.16±0.01 na 2.3±0.15 2.1±0.14 1.0±0.08 na 

(43) (32) (51) (43) (31) (51) (43) (32) (51) 

1997 -98 9.4±0.14 9.4±0.11 9.7±0.12 10.6±0.10 2.14±0.01 2.14±0.01 2.21±0.01 2.30±0.01 2.5±0.16 2.4±0.15 1.0±0.07 1.4±0.09 

(27) (52) (54) (49) (27) (51) (54) (49) (27) (52) (54) (51) 

1998-99 10.0±0.12 9.6±0.11 9.6±0.16 10.7±0.20 2.21±0.01 2.13±0.01 2.18±0.01 2.28±0.01 2.5±0.10 2.7±0.11 1.4±0.16 2.4±0.25 

(101) (71) (49) (46) (101) (71) (49) (46) (79) (53) (25) (26) 
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Table 6.9 Summary results of statistical tests examining annual variation in offspring characteristics for N. 

metallicus from Mt Wellington, Hobart, Clarence Lagoon and Orford. 

Trait Mt Wellington Clarence Lagoon Hobart Orford 

SVL F2168 = 0.67 P= 0.51 F2,152 = 2.15 P = 0.12 F2,151 = 4.18 P = 0.02 F2,95= 1.49 P = 0.22 

Mass F2,169 = 1.82 P = 0.16 F2,152 = 0.76 P = 0.47 F2,151 = 0.95 P = 0.39 Fz95 = 0.03 P = 0.87 

Length F2 169  = 3.87 P = 0.02 F2,150 = 0.42 P = 0.66 F2,151 =  10.9 P < 0.01 F2,93= 2.39 P = 0.13 

Condition F2, [68= 3.53 P = 0.03 F2,152 = 1.17 P = 0.31 F2,151 = 0.50 P = 0.60 F3= 0.04 P = 0.85 

Shape F2168 = 12.9 P<0.01 F2,150= 1.45 P = 0.24 F2,151 = 9.24 P<0.01 F2,93= 1.31 P = 0.25 

Fat Body F2,I46 =  1.05 P = 0.35 F2,134 = 3.46 P = 0.03 Fzi27 =  3.18 P = 0.05 F225 =  18.2 P < 0.01 

Annual variation was generally not common in any of the characteristics examined. No 

significant differences were detected in either SVL or mass within any population. At the 

Hobart site, total length was greater in animals born during the 1997-98 season than in 

those born during either the 1996-97 or 1998-99 seasons. Subsequently body shape (total 

length/SVL) also differed significantly at the Hobart site in an identical fashion to the 

pattern observed for total length. Body shape differed significantly at the Mt Wellington 

population with offspring born during the 1998-99 season having a greater relative body 

shape (i.e. longer total length for any given SVL) than did those born during both previous 

season. The only other interannual variation observed was at Orford, where offspring born 

during the 1998-99 season had significantly greater fat deposits than those born during the 

1997-98 season. 

6.3.3.3 Geographic variation in offspring phenotype 

Due to the fact that inter-annual variation in the measured phenotypic characteristics was 

low and because mothers were held under identical laboratory conditions during each 

season, data were pooled to examine inter-site variation. Initially mass and SVL at birth 

were analysed using ANCOVA with maternal SVL (mm), mass (mg), inter-limb length 

(mm) and fat reserves (mg) acting independently as covariates. No effect of any maternal 

characteristic on offspring SLV or mass was observed (Table 6.10). Consequently, 

subsequent tests on offspring characteristics were conducted using ANOVA. All six 

offspring characteristics varied significantly on a geographic scale (SVL, F3,573 = 21.0, P < 

0.01; total length, F3,570= 79.7, P <0.01; mass, F3,574= 30.0, P <0.01; condition, F3,571 - 

27.2, P < 0.01; body shape, F3 ,569= 102.9, P < 0.01; fat bodies, F3,489= 70.0, P < 0.01) 

(Table 6.11). 
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Table 6.10 Effect of maternal characteristics (covariate) on offspring size and mass in N. metallicus. Data 
summarise ANCOVA results examining geographic variation in offspring phenotype. In all cases the 
requirement of homogeneity of slopes was not violated. 
Maternal effect Offspring mass (mg) Offspring SVL (mm) 

F P F P 

S'VL (mm) F1 , 155 =  1.35 0.25 F1 , 155= 1.85 0.18 

Mass (mg) F1 , 155 = 3.54 0.06 F1,155 =  2.66 0.11 

Inter-limb length F1 , 155 =  1.52 0.20 F1 , 155 = 1.85 0.18 

Fat reserves F1 , 155 = 0.01 0.92 F1 , 155 = 0.01 0.92 

Table 6.11 Offspring characteristics of Niveoscincus metallicus from Mt Wellington, Clarence Lagoon, 
Hobart and Orford. All values are means ± se. Sample sizes are indicated in parentheses. Condition of 
offspring is mass divided by SVL and shape provides a measure of relative tail length, calculated as total 
length divided by SVL. Fat body mass represents the combined mass of both abdominal fat bodies. 

Site SVL (mm) Total length 
(mm) 

Mass (mg) Condition 
(mg/mm) 

Body shape 

(Total/SVL) 

Fat bodies 

(mg) 

Mt Wellington 22.4±0.07 47.8±0.21 214.0±2.04 9.5±0.07 2.1±0.005 2.4±0.08 

(155) (153) (155) (155) (153) (137) 
Clarence 22.1±0.08 48.4±0.20 218.5±2.17 9.9±0.08 2.2±0.005 2.4±0.07 

(171) (172) (172) (171) (171) (149) 
Hobart 22.2±0.07 48.4±0.20 214.4±2.16 9.6±0.08 2.2±0.005 1.1±0.06 

(154) (154) (154) (154) (154) (130) 
Orford 23.0±0.09 52.7±0.29 244.4±3.08 10.6±0.11 2.3±0.00/8 1.7±0.11 

(97) (95) (97) (95) (95) (77) 

The clear trend in the data is that animals from the Orford site are both longer (SVL and 

total) and heavier, and have a greater relative body length and condition than neonates 

from all other sites. Offspring from Mt Wellington also had a greater SVL than those from 

Clarence Lagoon; however, this difference was not as large as that observed between 

Orford and any other site. Animals from Mt Wellington also had a lower level of condition 

(mg/SVL) than did animals from Clarence Lagoon. However, again this difference is less 

than that evident between Orford animals and all other populations. Body shape (total 

length/SVL) also varied between other sites. Clarence Lagoon and Hobart offspring had a 

greater relative shape than those from Mt Wellington. Again, however, these differences 

were somewhat smaller than those between Orford and any other site. Fat body mass was 

the only characteristic to vary in a unique manner. The only sites not to differ were the two 

high altitude sites. Both low altitude sites had somewhat smaller fat reserves in the 
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abdomen of offspring; however, animals from Orford carried more reserves than those 

from Hobart. 

6.4 Discussion 

6.4.1 Adult body size 

There was little variation in adult body size in N metallicus. No inter-annual variation 

within populations was evident for males, although such variation was observed for 

females at the Clarence Lagoon and Hobart sites. This variation was, however, quite small 

and probably reflected collection bias. Similarly differences between males and females at 

the Hobart site may reflect a bias towards the collections of larger males; smaller very 

cryptic males were difficult to see at this structurally complex site, while pregnant females 

of all sizes basked more overtly. In contrast between-site variation in mean SVL was 

evident in both males and females. Generally, animals from the low altitude sites (Hobart 

and Orford) were slightly smaller than lizards from the high altitude sites (Mt Wellington 

and Clarence Lagoon). For females this difference was significant only at Hobart, while in 

males the difference was most noticeable in Orford animals. When SVL distributions are 

examined, it becomes apparent that animals from high altitude sites are strongly 

represented by larger animals while low altitude sites are composed of animals covering a 

much broader size range. 

These differences in adult body size are, however, quite small in comparison to that 

observed in other closely related species which occur over large geographic ranges. 

Wapstra and Swain (in press) showed that Niveoscincus ocellatus populations displayed 

substantial differences in adult body size over a similar altitudinal range to that 

investigated for N. metallicus. Low altitude N. ocellatus (from Orford) had a mean SVL of 

62.7 mm while the value for high altitude populations (Central Plateau) was 72.5 mm. 

Likewise variation in mean SVL in populations of Niveoscincus pretiosus, another widely 

distributed snow skink, can be similar to that reported in N. ocellatus (personal 

observation). Thus maximum differences in mean SVL of 2 to 3 mm between populations 

of N. metallicus, while significant, most probably simply reflect variation in growth 

histories resulting from proximate environmental effects rather than any variation in 

population genotype. Indeed the fact that all populations appear to give birth at a similar 
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minimum SVL (47 to 48 mm) and reach a similar maximum size (approximately 64 to 65 

mm) supports this conclusion. No distinct size classes were evident from SVL 

distributions for any of the sites examined. Thus animals cannot be assigned to age cohorts 

based on SVL alone. Chapter 7 examines age-size relationships in female N. metallicus in 

further detail using the technique of skeletochronology. Consequently the remainder of 

this discussion on adult body size will focus on the effects of maternal SVL on various 

reproductive characteristics. 

6.4.2 Clutch and offspring variation 

Variation in clutch and offspring characteristics was examined on both an annual and 

geographic basis. Inter-annual variation within a population can only result from 

phenotypic plasticity in the face of some form of environmental variability. Thus the 

quality of an environment that a female experiences can affect fecundity and offspring 

quality (Bernado, 1991; Niewiarowski and Roosenburg, 1993; Shine and Harlow, 1993; 

Sorci et al., 1996; Smith, 1998; Schneider et al., 1999). In contrast, geographic variation in 

life history can reflect both proximate environmental influences and evolved variation in 

genotype, or a combination of these two factors (Smith et al., 1995). To minimise the 

effects of phylogenetic history, all sites employed in this study were chosen on the basis of 

minimum divergence between populations (Chapter 3). However, any geographic 

variation in life history may still have a substantial genetic component. 

6.4.2.1 Maternal affects 

All litter characteristics examined in N. metallicus (litter size, mass and RCM) were 

correlated with maternal SVL. In contrast, offspring mass was independent of maternal 

size. Maternal effects have been reported in a number of lizard and snake species for a 

variety of reproductive variables, including the initial decision to reproduce, clutch size, 

clutch mass, RCM and offspring size (mass) (Dunham and Miles, 1985; Seigel and Ford, 

1987; Dunham et al., 1988; Schwarzkopf, 1992; Taylor et al., 1992; Forsman and Shine, 

1995; Madsen and Shine, 1996; Bauwens and Diaz-Uriarte, 1997; Olsson and Shine, 1997; 

Rohr, 1997; Smith, 1998; Abell, 1999; Swain and Jones; 2000b; Wapstra and Swain, in 

press). However, some studies have indicated that maternal SVL does not influence 

reproductive characteristics, especially clutch size and RCM, in some species (Goldberg, 
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1974; Stewart, 1979; Guillette and Casas-Andreu, 1987; Dunham et al., 1988; James, 

1991; Howland, 1992; Schwarzkopf, 1992; Pamula, 1997). The size of a female can 

obviously influence the amount of space available for young (Forsman and Shine, 1995; 

Olsson and Shine, 1997). Thus, bigger females may be able to produce more offspring and 

an overall heavier clutch. Female size also influences the amount of fat that can be stored 

for reproduction (Whittier and Crews, 1990; Pamula, 1997). A positive relationship 

between clutch mass and size and maternal SVL has also been reported in the sister 

species N. ocellatus (Wapstra and Swain, in press) and has also previously been reported 

in this species (Jones and Swain, 1996). 

6.4.2.2 Inter-annual variation 

Annual variation in clutch size was evident at only one of the study sites. In the 1996-97 

season, females from Hobart produced larger litters for any given SVL than in subsequent 

years. Females from Clarence Lagoon also showed a degree of annual variation with 

smaller litters during the 1998-99 season, that approached significance. Although the 

evidence is not strong, it does appear that N. metallicus is able to adjust this life-history 

characteristic in response to proximate environmental variations. Of interest to this 

discussion is the fact that, during the 1996-97 season, Hobart offspring were significantly 

shorter (total length) and tended towards a smaller SVL than in subsequent seasons, but no 

variation in mass occurred. No annual variation in any of these birth traits was detected in 

Clarence Lagoon offspring or newborns from Orford or Mt Wellington. 

Most theoretical treatments of offspring size versus number suggest that litter size should 

be more variable than offspring size (specifically mass) on an annual basis (Smith and 

Fretwell, 1974; LaLonde, 1991; Forsman and Shine, 1995). However, in species where 

litter size is low this prediction does not always hold. A number of previous studies of 

viviparous reptiles have demonstrated annual variation in either litter size (Parker and 

Pianlca, 1975; Reznick and Sexton, 1986; Seigel and Fitch, 1985; Smith et al., 1995) or 

offspring size (Andren and Nilson, 1983; Bauwens and Verheyen, 1987; Scwarzkopf, 

1992; Wapstra and Swain, in press). For example Schwarzkopf (1992) found no 

significant annual variation in litter size in Eulamprus tympanum, but significant variation 

in offspring size was detected. Forsman and Shine (1995) reported that both litter size and 

offspring size were equally variable in Lampropholis delicata across a large geographic 
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range, while Wapstra and Swain (in press) found annual differences in offspring size in N. 

ocellatus, but no concomitant variation in litter size. Clearly, N metallicus shows different 

responses to its sister species, N. ocellatus. Annual variation in litter size in N. metallicus 

was apparent at one site and strongly indicated at another, while birth mass did not vary at 

any of the study sites and there was only small variation in length within the Hobart 

population. Thus N metallicus appears to conform to theoretical predictions. Swain and 

Jones (2000b) examined the effects of maternal environment (thermal opportunity and 

nutrition) during gestation in N. metallicus and found that poor nutrition and restricted 

access to heat during gestation had no effect on litter size, but did influence offspring 

mass. Thus my observations suggest that any variation in litter size must be a result of 

proximate variation prior to ovulation resulting in differential recruitment of follicles. 

Lack of annual variation in offspring mass in natural populations may thus indicate that 

females at all sites can collect enough resources to maintain this characteristic. 

Consequently, offspring mass is perhaps more strongly influenced by proximate effects 

during gestation itself, when maternal food resources are generally available in large 

quantities, than during earlier collection of resources, when food levels and/or resources 

may be less. Thus, the combined results of my study and that by Swain and Jones (2000b) 

suggest that proximate environmental effects influence both clutch size and offspring 

mass, but at different times. Similarly Doughty and Shine (1998) demonstrated that 

energetic reserves during vitellogenesis were the primary determinate of clutch size in the 

skink Eulamprus tympanum. In the related species N. ocellatus, Wapstra (2000) also found 

that offspring were significantly affected by thermal opportunity during gestation, while 

clutch size was not. 

The slope (0.197) of the common regression relating maternal SVL and litter size 

indicated that an increase of approximately 5 mm in SVL is required for mothers to 

produce one additional offspring. This value is greater than that reported for N. ocellatus 

at low altitude (0.109 Orford site) (Wapstra and Swain, in press) and is also larger than 

that previously described for N. metallicus (0.124) (Jones and Swain, 1996). The relatively 

steep slope that I observed may also help to explain the occurrence of some annual clutch 

size variation in this species and its absence in N. ocellatus (Wapstra and Swain, in press) 

and a number of other recently studied species. In N. ocellatus a female must undergo a 

substantial increase in SVL in order to produce one extra young. Interestingly high altitude 

N ocellatus require an increase of about 5 mm for each additional young and display more 
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variation in litter size than females from a low altitude population (Wapstra and Swain, in 

press). These observations suggest that in species/populations where large growth 

increments are required to achieve an increase in litter size, relatively small differences in 

the energy reserves available for reproduction are most likely to be reflected as variation 

in offspring size rather than number. In contrast, when an increase in offspring number is 

associated with a relatively small increase in maternal SVL, it may be simplest to reduce 

clutch size in poor years and maintain offspring size at a fairly constant value. 

Annual variation was also detected in clutch mass and RCM, but at one site only (Mt 

Wellington) and only in one season (1998-99). Nevertheless, this result clearly shows that 

proximate factors can influence reproductive output in N. metallicus. ANCOVA also 

indicated that there was a relationship between maternal SVL and clutch mass at each site: 

larger females have heavier litters (more young of a similar size). This would suggest that 

larger females have more energy to channel into clutch production (extra young). RCM 

did not vary with maternal SVL at three of the four study sites, and was only slightly 

affected by maternal SVL at the Mt Wellington site (slope = 0.007). Thus very much large 

females produce clutches with a similar RCM to smaller females. Variation on an annual 

basis in both of these reproductive characteristics is common in many squamates (Shine, 

1980; Schwarzkopf, 1992; Olsson and Shine, 1997; Wapstra and Swain, in press). 

Schwarzkopf (1992) found that RCM did not vary with year, age or size of mothers in 

Eulamprus tympanum over a two year period. Similarly Wapstra and Swain (in press) 

found only minimal annual variation in RCM in N. ocellatus. The observation that relative 

clutch mass varies much less than clutch size may indicate that proximate effects act at 

different times on these reproductive characteristics. Swain and Jones (2000b) reported 

that RCM in N. metallicus was dramatically reduced when animals were held under poor 

conditions in the laboratory during gestation. Thus, as with offspring mass, and indeed 

perhaps due to offspring mass variation, RCM may be more significantly influenced by 

conditions during gestation than those experienced before ovulation. 

Previously, Swain and Jones (2000a) have demonstrated the presence of facultative 

placentotrophy in N. metallicus. Facultative placentotrphy can be simply defined. It is the 

supplemental transfer of nutrients in excess of the minimum requirements for successful 

development of young (Stewart, 1989). It has been demonstrated in a number of species 

by comparing the chemical composition of eggs and neonates (Thompson et al, 
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1999a,b,c). To date the most convincing evidence of facultative placentotrophy is the 

demonstration that larger females give birth to larger offspring, but do not ovulate larger 

eggs (Stewart, 1989; Thompson et al., 1999a,b,c; Swain and Jones, 2000a). This has been 

previously demonstrated in N. metallicus (Swain and Jones, 2000a). In this study large 

females were not observed to give birth to significantly larger young, although there was a 

trend (Table 6.10) for heavier females to give birth to heavier young. The lack of annual 

variation in offspring mass at any site may indicate that N. metallicus is able to use 

facultative placentotrophy to maintain offspring mass at a constant size from year to year. 

Consequently, the fact that offspring mass and size vary significantly on an annual basis in 

the sister species N. ocellatus (Wapstra and Swain, in press) may indicate that in this 

species facultative placentotrophy is less important or absent and that reserves collected 

during vitollegenesis, when food availability may be more variable, has a greater impact 

on offspring mass. 

6.4.2.3 Geographic variation 

Significant variation in clutch size, mass and RCM was observed on a geographic scale. 

While in all cases these variables were influences by maternal SVL, there was never any 

variation in the slope of the relationship, indicating that at all sites maternal effects were 

similar. Clutch size and mass varied significantly between sites with high altitude mothers 

tending to have smaller or lighter clutches. High altitude females also had lower RCMs 

than their low altitude con-specifics. Maximum clutch size also varied in a similar manner. 

Maximum clutch size is generally 6 young at Orford and Mt Wellington; however, 

clutches of up to 8 offspring have been recorded at the Hobart site and clutch sizes never 

exceeded 5 at Clarence Lagoon in my samples. In contrast to these findings, offspring 

mass varied in a very different way. Young from Orford were significantly larger (mass, 

SVL, total length, condition and shape) than were young from all other sites. Young from 

all other sites were generally quite similar in body characteristics. These results are in 

contrast to results found for a number of other species occupying wide geographic ranges. 

Sinervo (1990b) found that high elevation oviparous populations of Sceloporus undulatus 

produced more young, which were smaller than those from low altitude. Wapstra and 

Swain (in press) found that high elevation N. ocellatus (viviparous) populations produced 

more young, which were larger than their low altitude con-specifics, even with maternal 

SVL factored out. Interestingly, they also found that high altitude females had a similar 
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RCM to low altitude populations, a pattern that is quite different to that observed in N. 

metallicus. Forsman and Shine (1995) also found that geographically widespread 

oviparous populations of Lampropholis delicata displayed significantly larger levels of 

fecundity in southern populations (colder sites). Again this trend was not a simple 

consequence of variation in maternal body size. Taylor etal. (1992) also indicated that 

clutch size differed between high and low altitude oviparous sub-species of 

Cnemidophorus tigris, independent of maternal SVL variation, with high altitude 

populations having larger clutches. 

In contrast to these results Rohr (1997) found that high altitude populations of the 

viviparous water skink Eulamprus tympanum had lower size specific reproductive output 

(RCM) than did low altitude animals. Rohr concluded that this result was a consequence 

of greater resource limitation at high altitude. His findings are similar to those observed in 

N. metallicus in which high altitude populations have lower RCMs and litter masses and a 

tendency towards smaller litter sizes. Variation in reproductive output, independent of 

maternal size effects, has been attributed to variation in resource availability (Vitt and 

Congdon, 1978; Dunham, 1982; Vitt and Price, 1982; Shine, 1992; Rohr, 1997), but a 

heritable component has been identified (Mateo and Castanet, 1994). Swain and Jones 

(2000b) found that RCM was affected by low food availability during gestation and was 

not influenced by decreased thermal opportunity, although the decrease in RCM was a 

direct result of reduced offspring mass, a factor that failed to vary between natural 

populations in my investigation. Similarly Wapstra (2000) found no decrease in RCM in 

N. ocellatus exposed to low thermal opportunity. Food is abundant at high altitude in 

Tasmania during summer months (personal observation) and low food availability is 

unlikely to represent a major problem in most years (although females do have less time to 

collect food). The possibility exists therefore that variation in reproductive output (RCM) 

may in part represent some evolved adaptation to high altitude. High altitude females live 

significantly longer than their low altitude con-specifics (Chapter 7) and reduced annual 

output may be correlated with increased future reproductive potential. In contrast low 

altitude animals have a low life expectancy, and an increase in current reproductive effort 

may represent a significant adaptation to increased predation and competition pressures 

(Adolph and Porter, 1996). Indeed Chapple (2000) has shown that tail loss in N. metallicus 

is more common at low altitude than at high altitude and tail breaks are more likely to be 
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near the base of the tail at low altitude suggesting either that predation risk is greater at 

low altitude or that survival of high risk encounters is greater. 

Niveoscincus metallicus may therefore display some level of evolutionary adaptation in 

RCM to high altitude, associated with slower growth, decreased predation and increased 

life span. However, N. metallicus occurs sympatrically with the alpine restricted N. 

microlepidotus and N. greeni at the upper extent of its range. At these sites the alpine 

species display biennial reproductive cycles, while N. metallicus retains an annual cycle in 

which 100% of females normally reproduce each year. Thus, despite the fact that this 

species does decrease reproductive investment at high  altitude, it has been unable to take 

an additional step to a biennial cycle. Melville and Swain (2000b) identified high altitude 

Niveoscincus species as a separate group in the evolutionary history of the genus. This 

clade consisted of N. microlepidotus, N. orociyptus,N. greeni and N. ocellatus. Of these 

animals, the three high altitude restricted species appear to be biennial breeders (Greer, 

1982; Hutchinson et al, 1989). Thus this mode of reproduction appears to have evolved in 

a different group to that containing N. metallicus and this species may be excluded from 

extreme altitudes by an inability to collect sufficient resources to permit annual breeding. 

Data collected to date for N. metallicus (Swain and Jones, 1994; Jones and Swain, 1996; 

this study) and N. ocellatus (Wapstra and Swain, in press) clearly demonstrate that many 

life-history characteristics differ between the two species, despite their obvious close 

relationship. Recent phylogenetic studies by Melville and Swain (1998; 2000b) describe 

the evolutionary history of the entire Niveoscincus group. These authors have concluded 

that N. metallicus evolved from a low altitude species and split from other members of the 

genus very early in their evolutionary history (Melville and Swain, 2000b) and 

subsequently colonized high altitude environments. In contrast N. ocellatus appears to 

have evolved from a high altitude species (Figure 3.1) and to have subsequently colonized 

low altitude habitats. This very different history may explain the variation in life history 

patterns exhibited by the two species, most notably the differences in adaptation of growth 

patterns, adult size, parental investment and offspring characteristics. 
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6.4.2.4 Offspring characteristics 

While both RCM and litter mass are relatively high at the low altitude sites (Hobart and 

Orford) the partitioning of input between offspring is very different. At Hobart more small 

offspring are produced, while at Orford fewer large young are the norm. Although the 

evolution of offspring size and offspring size/litter size trade offs has been examined 

(Smith and Fretwell, 1974; Roff, 1992; Schwarzkopf, 1992; Steams, 1992; Olsson and 

Shine, 1997; Abell, 1999), factors that affect offspring size, and its variation, in reptiles 

are not fully understood (Wapstra and Swain, in press). However, variation in offspring 

size on a geographic scale is generally interpreted as adaptive, since fitness is highest in 

animals that produce the most offspring that survive to reproduction (Shine and 

Schwarzkopf, 1992; Sinervo and Doughty, 1996). Thus, selection for neonate size (Vitt 

and Price, 1982) coupled with the amount of energy available for reproduction (Sinervo 

and Doughty, 1996) must be key determinates of litter size. The evolution of offspring size 

and number is therefore controlled by the trade-off between fecundity advantages arising 

from production of many small young and the enhanced survival potential associated with 

the production of larger young (Lloyd, 1987; Forsman and Shine, 1995). 

In species occurring over wide geographic ranges, larger offspring are often associated 

with colder climates and high altitudes (Ferguson et al., 1980; Forsman and Shine, 1995; 

Rohr, 1997 Wapstra and Swain, in press). However, this is not always true (Sinervo, 

1990b). Larger size at birth is believed to occur when potential for growth is low or when 

there is strong selection on offspring survival (Brockelman, 1975; Rowe, 1994; Forsman 

and Shine, 1995; Wapstra and Swain, in press). In N. metallicus high altitude populations 

produced young that were the same size as those from Hobart and much smaller than those 

from Orford. Thus, reduced potential for growth, which is evident at high altitude, does 

not appear to be acting as a major selection force on offspring size, as it appears to do in 

ocellatus. In contrast, selection for offspring survival may be a reason for increased 

offspring mass and size at the Orford site. In many studies offspring size increases when 

food or water availability is high (Ballinger, 1977; Olsson and Shine, 1997; Swain and 

Jones, 2000b). However, Abell (1999) showed that offspring of Sceloporus virgatus 

increased in size during drought periods. This increase in size was also accompanied by a 

decrease in litter size. Abell (1999) argued that this response could result from advantages 

received from increased offspring size during periods of intense among-hatchling 
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competition for resources (Ferguson et al., 1982) or may represent a by-product of a bet-

hedging strategy to produce smaller clutches at times when the probability of clutch failure 

is high (Nussbaum, 1981). However, if this argument has validity for N. metallicus quite 

different reasoning must apply in the sister species N. ocellatus in which young born at the 

Orford site are significantly smaller than those born at high altitude (Wapstra and Swain, 

in press). 

Another selective force exists, however, which may also account for the observed increase 

in offspring mass at the Orford site. Numerous invertebrate predators are present at Orford 

that are either rare or absent at other sites. These include a number of spider species that 

are able to capture and kill small lizards (less than 250 mg). Thus if mothers can shorten 

the time young spend at risk to this type of predation, they may significantly enhance their 

overall reproductive success. Thus, differences in predation pressures may be influencing 

life history in this species. Schneider etal. (1999) showed that habitat type, acting through 

avian predation pressure in a tropical rainforest, exerted a much greater influence on life. 

history in Carlia rubrigularis, a widespread leaf-litter skink, than did genetic divergence 

between populations that were geographically isolated. This pressure could also explain 

the smaller size of offspring of N. ocellatus at this site relative to high altitude offspring. 

While these young may be small based on intra-specific comparisons, they are still 

somewhat larger than N. metallicus young. Thus these animals may already be too large at 

birth for many invertebrate hunters to predate them. 

While altitude appeared to have no effect on offspring mass and general morphology, it 

did influence energy reserves available to neonates at birth. Abdominal fat bodies were 

significantly larger in high altitude young than in young from either of the low altitude 

sites. This correlates well with the reduced potential for growth and much shorter period 

available for food collection prior to hibernation in N. metallicus at high altitude. Fat body 

size was also greater in the Orford population than in the Hobart population suggesting 

that factors such as predation pressure may also be influencing this offspring 

characteristic. Mothers may provide young with increased fat reserves at this site to enable 

growth to occur quickly following birth, thus limiting time that young must spend at a 

potentially vulnerable size. Nevertheless the fact that high altitude young still possess fat 

bodies that are significantly larger than those in Orford animals suggests that in this case 

reduced potential for growth and food collection prior to winter are significantly affecting 
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offspring survival. Fat reserves in offspring collected over large geographic ranges has not 

previously been assessed in lizards, so it is difficult to fully interpret the significance of 

these results, beyond concluding that offspring morphology and resource availability at 

birth can act independently to assist adaptation to environmental variability. 

Facultative placentotrophy may in part also explain the presence of increased fat reserves 

in offspring from high altitude. Facultative transfer occurs before developmental stage 40 

is first reached. Young are approximately 150 mg at this stage but must continue to grow 

to around 210 mg before birth (Swain and Jones, 1997, 2000a). During this time young 

must survive on their own reserves. At low altitude where conditions are more predictable, 

this period may be short, while at high altitude significant delays in birth can occur due to 

poor weather. Thus facultative placentotrophy may provide a method of increasing fat 

reserves in high altitude populations, both as a means of providing reserves for growth 

following birth and as a supply of energy and nutrition during the final stages of gestation. 

6.4.3 Summary 

The database describing geographic variation in life history traits in skinks is limited and 

very few underlying patterns are evident (Wapstra and Swain, in press). In N metallicus 

annual variation in clutch characteristics and offspring characteristics were evident, but 

were not great. Consequently, in this species, as in many other geographically ubiquitous 

reptiles, proximate adaptation to environmental variation appears possible. Significant 

levels of geographic variation were evident between populations of N. metallicus. 

Variation on this scale can reflect both proximate effects and evolutionary adaptation 

(Stearns, 1989). However, despite some support for genetic life history variation between 

populations (Niewiarowski and Roosenburg, 1993; Sorci et al., 1996), recent research 

provides strong support for proximate explanations for differences in life history between 

populations (Schneider et al., 1999; Sorci and Clobert, 1999; Wapstra and Swain, in 

press). Geographic variation was evident in a number of life history characteristics 

including clutch size, mass, RCM, offspring size and offspring fat reserves; however, 

previous work on N. metallicus has indicated that almost all of these factors can vary 

significantly as a result of proximate effects in this species (Swain and Jones, 2000b; this 

thesis). Thus the evolution of distinct local genotypes may be unnecessary if phenotypic 

plasticity is sufficient to induce variation in life history traits to suit environmental 
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conditions. However, the possibility still exists that consistent selection pressures, from 

both altitudinal and ecological sources, could act on the genotype of populations, thus 

resulting in genetic variation in life history characteristics, specifically in influencing 

factors such as current reproductive effort (total litter mass and RCM). 
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CHAPTER SEVEN 

Age and size relationships in Niveoscincus metallicus 

7.1 Introduction 

Age and size at maturity, together with longevity, are central parameters in general life-

history models (James, 1991; Galan, 1996) and all can exercise a marked influence on the 

demographic strategies of squamate reptile populations (Tinkle et al., 1970; Dunham et 

al., 1988). Age at maturity, specifically, is a pivotal factor in life history theory as fitness 

is often more affected by variation in this trait than by any other (Stearns, 1992; Galan, 

1996; Rohr, 1997). Species distributed over broad geographic and altitudinal ranges often 

display extensive variation in life-history traits such as age at maturity, growth, and age-

specific schedules of fecundity and survivorship (Niewiarowski, 1994). Differences in size 

and age at first reproduction have been observed often in intra-specific comparisons 

(Ballinger, 1979; Howland, 1992; Larsen etal., 1993; Tinkle etal., 1993; Rohr, 1997; 

Wapstra et al., in press). Variations in these traits have important implications for the life-

history patterns of populations because after maturity energy is diverted away from 

maintenance, growth and storage, and directed towards reproduction (Rohr, 1997). Thus a 

significant trade-off between age at maturity and adult size is often observed (Shine and 

Charnov, 1992; Rohr, 1997). As adult size is closely related to future fecundity in many 

reptile species, early maturity may also reduce future reproductive output (Stearns, 1989; 

Shine and Schwarzkopf, 1992; Bernardo, 1993; Niewiarowski and Dunham, 1994; 

Wapstra et al., in press). Thus, there are two broad strategies of maturation in squamate 

reptiles: "early" versus "late" maturity (James, 1991; Galan, 1996). Each is believed to 

reflect natural selection favoring successful genotypes under particular environmental 

conditions (James, 1991). 

In order to understand delayed maturation, it is important to balance the selection pressure 

to mature early against trade-offs with other fitness components (Stearns, 1992). 

Populations displaying late maturation tend to exhibit larger adult size and greater 

longevity. In contrast, "early" populations tend towards smaller body size and lower 
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survival (Tinkle et al., 1970; Schwarzkopf, 1994; Adolph and Porter, 1996). Early 

reproduction may increase life-time reproductive success if there is no reduction in future 

reproductive output. However, late maturity, accompanied by larger clutch sizes 

(reflecting larger adult body size) or increased survival of young and mother, may be a 

more successful strategy under certain situations (Tinkle etal., 1970; Dunham etal., 1988; 

Galan, 1996). 

Life history characteristics vary widely among species and populations. These differences 

are often ascribed to genetic differences. However, recent work has identified both genetic 

and environmental sources as important determinants of intra-specific life-history 

variation (Ferguson and Brockman, 1980; Niewarowski and Roosenburg, 1993; Bernardo, 

1994; Smith et al., 1994a; Niewarowski, 1995). It has become clear that reptilian life 

histories are often phenotypically plastic, varying in response to many environmental 

variables (Adolph and Porter, 1993). As a result, numerous studies have examined 

proximate environmental influences on the expression of reptilian life history traits 

(Ballinger, 1977, 1979; Dunham, 1978; Porter and Tracy, 1983; Jones and Ballinger, 

1987; Sinervo and Adolph, 1989, 1994; Sinervo, 1990a; Adolph and Porter, 1996; Rohr, 

1997; Wapstra and Swain, in press). Many of these studies specifically address the role of 

the thermal environment, which frequently exerts strong proximate effects (Adolph and 

Porter, 1993; Bernardo, 1994; Wapstra, 2000). Thermal environment (varying with both 

latitude and altitude) determines the length of the growth season in many temperate 

ectotherms. High altitude populations are thus subject to curtailed periods of suitable 

weather both on an annual (Adolph and Porter, 1996) and diurnal (Sinervo and Adolph, 

1989; Smith and Ballinger, 1994a; Rohr, 1997; Wapstra etal., in press) basis. Adolph and 

Porter (1996) argued that the reduction in growth opportunity for high altitude populations 

was directly responsible for delayed maturity, increased longevity and larger adult body 

size. To date, data from a number of studies tend to support their model (Tinlde et al., 

1970; Bruce and Hairston, 1990; Grant and Dunham, 1990; Galen, 1996; Wapstra et al., in 

press): However, Rohr (1997) found that Eulamprus tympanum delayed maturity at high 

altitude longer than predicted by the Adolph and Porter (1996) model. Thus to fully 

understand variability in this phenomenon, data from many more species are required. 

Reptiles generally show indeterminate growth, with growth slowing following maturity 

(Schwatzkopf, 1994). While age and size may be correlated within a population, temporal 
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and individual variation in growth rate cause adult body size to be a poor predictor of age 

in many species (Andrews, 1982; Dunham etal., 1988). Growth and age are often studied 

in reptiles by fitting growth models to mark-recapture data (James, 1991, Hudson, 1997). 

However, this method is impractical in many small cryptic species of skink, such as 

Niveoscincus metallicus. Alternatively, or in addition.to  mark-recapture programs, 

skeletochronology has been used in a number of extant and fossil species of reptile and 

amphibian to accurately estimate age (Gibbons and McCarthy, 1983, 1984; Leclair and 

Castanet, 1987; Halliday and Verrell, 1988; Hemelaar, 1988; Ryser, 1988; Montori, 1990; 

Forester and Lykens, 1991; Platz and Lathrop, 1993; Buffrenil etal., 1994; Rogers and 

Harvey, 1994; Klinger and Musik, 1995; Wake and Castanet, 1995; Esteban et al., 1998; 

Waye and Gregory, 1998; Caetano and Leclair, 1999; Driscoll, 1999; Horner et al., 1999; 

Esteban and Sanchiz, 2000; Miaud etal., 2000; Trenham et al., 2000). More specifically, 

it has successfully been used in a number of lizard species (Castanet, 1978, Tilley, 1984; 

Castanet etal., 1993; Hudson, 1997; Rohr, 1997; El Mouden etal., 1999; Wapstra etal., 

in press). Hudson (1997) compared von Bertalanffy growth curves fitted to both 

skeletochronological and mark-recapture data in Pseudemoia pagenstecheri and found that 

they were not significantly different from each other. He also found that estimates of age 

at maturity and longevity were similar for both data sets. Despite this, few studies of lizard 

life histories have incorporated age data estimated from skeletochronology. Exceptions 

include Mateo and Castanet (1994), Olsson and Shine (1996), Hudson (1997), Rohr (1997) 

and Wapstra etal., (in press). For reviews on skeletocronology see Castanet etal. (1993) 

and Hudson (1997). 

The main aim of this chapter is to examine size and age at maturity, growth patterns and 

longevity in N. metallicus from the four previously described field sites. Few studies have 

examined intra-specific variation in age and size at maturity in Australian temperate 

skinks (but see Hudson, 1997, Rohr, 1997 and Wapstra etal., in prep). Hudson examined 

age, growth and maturity in a number of southeastern Australian skinks including N. 

metallicus. However, his study of this species was limited to populations at high altitude 

that were identified in Chapter 3 as being genetically distinct. My study examines 

geographic and altitudinal variation in growth and age at maturity in female N. metallicus 

from a single genetically distinct subgroup. The chapter sets out to answer a number of 

specific life-history questions. 
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1) Does female age or size at maturity differ between populations from differing 

climatic extremes (i.e. altitudes)? 

2) Does possible variation in age at maturity simply reflect decreased access to 

thermal opportunity at high altitude, or do sub-adult animals grow significantly 

slower when thermal opportunity rather than actual age is examined? 

3) Does longevity of female N. metallicus increase with altitude, and if so, how might 

this influence lifetime reproductive output? 

4) To what extent does growth decrease following sexual maturity in female animals, 

and does this vary with altitude? 

7.2 Materials and Methods 

7.2.1 Skeletochronological age assessment 

Animals were captured as part of a general study of life history adaptation (Chapter 6) 

from the four previously discussed field sites (Chapter 2). Animals were allowed to give 

birth in the laboratory and from these animals a subset were then killed. Femurs were 

removed and stored in 70% ethanol until processed. A total of 118 mature females, 

covering the complete size range of adult animals from each site, were used in this study. 

The principle behind skeletochronological aging is that the seasonal nature of growth is 

reflected in patterns of bone growth and results in Lines of Arrested Growth (LAGs) 

which occur during periods of winter inactivity in temperate species (Leclair and Castanet, 

1987; Castanet et al., 1993). However, one major problem is often observed when 

employing this method of age determination. This is the loss of LAGs from early life due 

to remodeling of bone. In many species examined to date, endosteal remodeling is lowest 

at a point slightly proximal to the mid-diaphysis, where a single large vascular canal 

passes obliquely through the cortex of the femur (Hudson, 1997). Endosteal remodeling 

generally increases distally from this canal. This was also the case in N metallicus. 

Remodeling of bone tissue can be accounted for by examination of smaller femurs in 
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which no resorption has occurred. From this it is possible to back calculate the number of 

LAGs lost to remodeling in older animals (Hemelaar, 1985; Leclair and Castanet, 1987). 

Femurs were washed and decalcified in 5% nitric acid for 8 hours before rewashing in 

tapwater for 24 hours. They were embedded in paraffin wax using standard techniques 

following alcohol dehydration. Embedded femurs were serially sectioned at 10 gm and 

mounted on slides. These were subsequently dried and stained using Ehrlich's 

haematoxylin for 30 minutes followed by three rinses in tapwater for 3 minutes. This 

technique produced distinct LAG bands throughout the bone section. In almost no case 

was complete resorption of LAGs observed. Even in animals from high altitudeit was 

generally possible to partially see the inner LAG as only one side of the inner medullary 

cavity was removed. In many cases it was also possible to observe part of a birth line 

enclosing paler-stained embryonic bone. Hudson (1997) indicated that in his study of 

several southeastern Australian species, this tissue was evident in 94% of adult animals. In 

contrast Wapstra etal. (in press) found that in N. ocellatus the majority of animals had lost 

their first LAG and in high altitude populations many also lost their second. However, this 

species is significantly larger than N. metallicus and faster growth during sub-adult periods 

may increase resorption. In older animals the number of LAGs at the periphery became 

difficult to establish. Castanet et al. (1988) suggested that making conservative estimates, 

resulting in underestimation of age, was the preferred option. All bones were examined 

over a four-day period and then again in a second blind trial one month later to determine 

reliability of earlier estimations. During these examinations total number of LAGs, and 

diameters of the first 4 LAGs were recorded using an eyepiece graticule. 

The age of females (in months) was calculated by counting LAGs (i.e. winters lived by 

animal) plus the number of months of growth since the last winter and the number of 

months prior to the first winter. All animals from low altitude sites were assumed to have 

been born during mid January and all high altitude animals were assumed to have been 

born during mid February (Jones and Swain, 1996; Chapter 6). Differences between mean 

age of females from each site was assessed using one-way ANOVAs. Homoscedacity of 

variances was investigated by visual inspection of plots of group standard deviations 

versus group means. Normality of the data was evaluated through the inspection of a plot 
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of residuals versus predicted residual values. Significant interactions were further 

examined using Tukey's studentized range tests. 

7.2.2 Growth curves 

I used the relationship between SVL and age to construct growth curves using the von 

Bertalanffy growth model. Two asymptotic growth models based on linear length 

measurements are most often used in reptile studies: the von Bertalanffy growth model 

and the logistic-by-length model (Dunham, 1978; Schoener and Schoener, 1978; Andrews, 

1982; Hemelaar, 1988; James, 1991; Adolph and Porter, 1996). Growth curves were 

constructed entirely from the ages of mature females. Data on small, young individuals 

may be necessary to distinguish among the two separate models, because the major 

differences between them occur in smaller size classes (Yamaguchi, 1975; Frazer et al., 

1990). The von Bertalanffy model predicts that growth (in length) is maximum in newborn 

lizards, whereas the logistic-by-length model predicts maximum growth later in life 

(Andrews, 1982). Hudson (1997) fitted both growth models to data on Pseudemoia 

pagenstecheri and determined that the von Bertalanffy model best described growth. 

Similarly, mark recapture data from five species of Ctenotus skinks was better described 

by the von Bertalanffy model (James, 1991). Stamps (1995) suggested that growth 

patterns are conservative in squamates, so that related species should display similar basic 

growth patterns. Frazer et al. (1990) concluded that von Bertalanffy growth curves can be 

produced from data on larger individuals, provided there is reason to believe a priori that 

the model is appropriate. Therefore the absence of data on juvenile animals should not 

adversely affect estimates of growth parameters using this method. The general form of 

the von Bertalanffy equation is: 

SVLt  = a (1-be -Id) 

Where SVL, is the body size at time t, a is the asymptotic body size, b is a parameter 

related to initial body size, and k is the characteristic growth rate. The parameters a, b and 

k were estimated using nonlinear regression techniques (Andrews, 1982; James, 1991) 

using SYSTAT version 7.0. Growth trajectories were considered to be different at the 0.05 

level if the 95% confidence intervals did not overlap (Dunham, 1978; Schoener and 

Schoener, 1978; James, 1991; Niewiarowski et al., 1997). 
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7.2.3 Age and size at maturity 

In life history theory, the age at maturity is defined as the age at first parturition or 

oviposition, and not when other events (such as vitellogenesis, ovulation or mating) first 

occur (Stearns, 1992). In N. metallicus this is a significant point, as mating and 

vitellogenesis occur approximately 8 months before birth. Therefore, in this study I regard 

age at maturity as the age of parturition of the first litter. Minimum size and age at 

maturity was estimated as the size and age of the smallest and youngest female to have 

given birth from each site. To examine growth to maturity I regressed the size of the 

youngest reproducing female (estimated from the above non-linear regression) against the 

time available for growth from birth to capture. Mean offspring size estimated from 

Chapter 6 was assumed to be constant for all years and was used as the value for the y-

intercept. Linear regression models have been shown to be appropriate for describing 

growth in juvenile animals even to first reproduction in some species (Andrews, 1982; 

Tilley, 1984; Rohr, 1997; Waspstra, 1998). Niveoscincus metallicus from high altitude 

populations experience reduced growing seasons. In order to adjust annual growth to local 

conditions I corrected for hibernation period. Observations in the field indicate that low 

altitude populations emerge during late August while high altitude populations are not 

seen until late September. Low altitude animals go into torpor in mid May while high 

altitude populations submerge in late March. Thus it is assumed that low altitude 

populations have a total of 257 active days during a year while high altitude animals are 

restricted to only 182 days. From the above periods I subtracted the average number of 

rain days during the indicated periods for each site (Rohr, 1997), using data provided by 

the Tasmanian Bureau of Meterology (Chapter 2). 
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7.3 Results 

7.3.1 Age distribution between populations 

In all populations, except that from Clarence Lagoon, age distribution in mature females 

was strongly skewed (Figure 7.1), so that younger females represented the majority of 

animals captured. Clarence Lagoon females displayed a more evenly distributed age 

pattern with animals of all middle age groups represented strongly in the collection. 
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Figure 7.1 Age distribution of female N. metallicus from the four study populations, as estimated from the 

number of LAGs. All LAGS represent one year of growth and females are assumed to be mature at the time 

of their first parturition. Mean ages (± s.e.) for each population (in months) are also shown. 

Mean age differed significantly between sites (ANOVA: F3,115 = 16.83,P < 0.0001). 

Females from Clarence Lagoon were generally older than females from all other sites. 

Hobart and Mt Wellington animals were not significantly different. Orford and Hobart 
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animals were also not different. Mt Wellington animals were, however, significantly older 

on average than those from Orford. All comparisons were considered significant at an 

alpha level of 0.05. Maximum age ranged from 7 years at Orford to 12 years at Clarence 

Lagoon. 

7.3.2 Growth in N. metallicus 

Table 7.1 presents the parameter values and the upper and lower 95% confidence intervals 

estimated from the von Bertalanffy growth model. Parameters are described in Section 

7.2.2. 

Table 7.1 Parameter estimates for von Bertalanffy growth models generated from non-linear regression of 

size (SVL) and age for female Niveoscincus metallicus from Clarence Lagoon, Mt. Wellington, Hobart and 

Orford. Upper and lower estimates are 95% confidence intervals. 

Parameters from von Bertalanffy growth model 

a b k r2  

Site lower mean upper lower mean upper lower mean upper 

Clarence 56.66 58.02 59.38 0.578 0.616 0.653 0.029 0.036 0.044 0.97 

Wellington 58.80 60.86 62.91 0.598 0.635 0.672 0.026 0.031 0.036 0.97 

Hobart 56.96 58.69 60.42 0.581 0.620 0.660 0.035 0.043 0.051 0.96 

Orford 56.56 58.88 61.19 0.540 0.602 0.665 0.040 0.054 0.069 0.93 

Both a and b appear not to differ between sites. This is not surprising as adult body size 

and initial size at birth do not differ greatly between populations. Of interest are the 

differences evident in k (characteristic growth rate). Females from low altitude sites 

appear to grow at a faster rate than females from high altitude. However, differences were 

only significant between animals from Orford and Mt. Wellington (non-overlap of 95% 

confidence intervals). Von Bertalanffy growth curves overlaid on age data for each 

population are shown in Figures 7.2 to 7.5. The growth equation provided a reliable fit to 

observed data (r2  values ranging from 0.93 to 0.97). Clearly there is considerable overlap 

in parameter estimates between sites and differences occur only in the time to asymptote. 
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Figure 7.2 Von Bertalanffy growth curve  fitted  to age versus size data for female N. metallicus from 

Clarence Lagoon. All data points represent mature females carrying young or immediately post-partum. The 

y-intercept value was calculated from  mean  juvenile size for young born in the laboratory during 1996-97, 

1997-98 and 1998-99 field seasons. 
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Figure 7.3 Von Bertalanffy growth curve  fitted  to age versus size data for female N. metallicus from Mt 

Wellington. All data points represent mature females carrying young or immediately post-partum. The y-

intercept value was calculated from mean juvenile size for young born in the laboratory during 1996-97, 

1997-98 and 1998-99 field seasons. 
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Figure 7.4 Von Bertalanffy growth curve fitted to age versus size data for female N. metallicus from Hobart. 

All data points represent mature females carrying young or immediately post-partum. The y-intercept value 

was calculated from mean juvenile size for young born in the laboratory during 1996-97, 1997-98 and 1998- 

99 field seasons. 

Figure 7.5 Von Bertalanffy growth curve fitted to age versus size data for female N. metallicus from Orford. 

All data points represent mature females carrying young or immediately post-partum. The y-intercept value 

was calculated from mean juvenile size for young born in the laboratory during 1997-98 and 1998-99 field 

seasons. 
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7.3.3 Growth to maturity in N. metallicus 

Minimum size at maturity was relatively consistent between all populations. The smallest 

mature female observed at Clarence Lagoon and Mt Wellington were 47.7 mm and 47.9 

mm respectively. Orford and Hobart displayed minimum sizes at maturity of 48.1 mm and 

47.2 mm (Chapter 6). Animals from both low altitude sites matured in 2 years. This was 

one year faster than for animals at high altitude sites (Figure 7.1). However, when I 

account for differences in activity and available thermal opportunity (Figure 7.6) it 

becomes apparent that there is little difference between growth rates of high and low 

altitude populations. The slopes of the linear regression lines for animals from Mt 

Wellington and Clarence Lagoon were 0.099 and 0.104 respectively. Animals from Orford 

and Hobart displayed decreased slopes of 0.080 and 0.079, indicating that growth was 

perhaps slower in young from low altitude. However this cannot be tested statistically 

since each line is based on only two data points. It seems unlikely, however, that this 

observed difference is real, as animals from high altitude sites are pre-adapted for activity 

during cool periods (Chapter 5). Young from these sites may therefore be active more 

often that predicted by these estimates (i.e. during periods of rain, as was observed in the 

field). If this is so it would decrease the slope of the growth estimates for females from 

these populations, restoring it to a level similar to that calculated for low altitude animals. 

Age (active days to maturity) 

I —Mt Wellington —Clarence Lagoon -- Hobart  —Orford  I 
Figure 7.6 Growth to first reproduction for female N. metallicus from low and high altitude field sites. The 

time available for growth was adjusted for differences in the length of activity and for the number of rain 

days for each site, as in Rohr (1997). Size at maturity was determined from the von Bertalanffy growth 

models described in Section 7.3.2. 
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7.4 Discussion 

Skeletochronology proved to be an effective method of aging female N metallicus. 

Femoral sections were clear and easily interpreted and LAGs were clearly visible. 

Resorption of bone in older animals was usually minimal, with at least part of the early 

LAGs remaining. A birth line was also evident in the majority of animals from all 

populations. LAG distribution in mature animals appeared to mirror typical lizard growth 

patterns with initial pre-maturation LAGs being well spaced and later LAGS being closely 

packed, indicating decreased growth later in life. This pattern is considered to be due 

primarily to energy demands placed upon animals for gonadal maturation and other costs 

associated with reproduction (Andrews, 1982; Anderson and Vitt, 1990; Shine and 

Schwarkopf, 1992; Schwarkopf, 1994; Rohr, 1997). Closely grouped LAGs in older 

animals were still easily distinguished and easily counted. If growth ceased in older 

animals, then additional LAG formation would also cease, resulting in an underestimation 

of age in older animals. However, Hudson (1997) found that a related species, Psuedemoia 

pagenstecheri, continued to grow even when approaching maximum age. 

I examined growth and maturity in female N. metallicus only; however, some discussion 

of possible sexual variation in this species in required. Both female and male animals 

mature at a similar size and reach a similar maximum size (Chapter 6). There is also no 

variation in size at birth between sexes (Chapter 6). Wapstra (1998) found no variation in 

growth rate between sexes in juvenile N ocellatus held in the laboratory. He also found no 

variation in size at maturity and maximum size between sexes in this species. Likewise 

Hudson (1997) also found no differences in growth rates of male and female P. 

pagenstecheri, although females reached a slightly larger maximum size. This pattern of 

increased body size in females is common in skinks (Greer, 1989; James, 1991; 

Hutchinson, 1993; Forsman and Shine, 1995). However, models of life-history evolution 

predict a general similarity in growth rates and population responses of closely related 

species experiencing the same overall environmental conditions (Dunham and Miles, 

1985; James, 1991; Vitt and Blackburn, 1991; Stamps, 1995). Thus, given similarities in 

adult body size between male and female animals, it seems probable that N metallicus 

resembles N. ocellatus in showing no sexual variation in growth rate. 
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Growth curve data indicate that there is considerable within year variation in adult female 

body size. This was most evident following maturation. Variation on this scale has been 

reported in many lizard species (Dunham, 1978; Andrews, 1982; Tilley, 1984; Zug and 

Rand, 1987; Sinervo, 1990a; Galan, 1996; Olsson and Shine, 1996; Hudson, 1997; 

Wasptra et al., in press) and is a direct result of high individual variation in growth rate 

(Andrews, 1982; James, 1991; Smith and Ballinger, 1994a, 1994b; Hudson, 1997). 

Consequently females show considerable size overlap within age classes once maturity has 

been reached. Size is therefore a poor indicator of age following maturation and provides 

little information on age based demographics. Similarly Pengilley (1972) concluded that 

Pseudemoia entrecasteauxii could not be reliable aged beyond one year using size data 

alone. 

Age distribution of mature females (Figure 7.1) was negatively skewed in all but one 

population. This pattern is expected if age structure is stable (Hudson, 1997). Low altitude 

populations were most strongly biased towards young animals, indicating that these made 

up the majority of the population. This may indicate that survival beyond 5 years at these 

sites is uncommon. At both high altitude sites older animals are seen more commonly. At 

Mt Wellington, animals appear to easily reach 7 years while the majority of animals 

continue on until 9 years of age at the Clarence Lagoon site. This has obvious effects on 

reproductive output within populations. Few animals from low altitude sites appear to live 

beyond 5 years, and thus are only able to reproduce for 4 years. Animals from high 

altitude sites can, however, expect to survive well beyond this time frame and even though 

they mature one year later, they may expect to have reproductive lives of not less than 6 to 

7 years. While this type of analysis is not a direct measure of survivorship, the age 

structures seen to imply that, while high altitude animals display a greater maximum age, 

mortality pressures during any one year are probably also significantly decreased. 

Consequently most females at high altitude, that survive an initial winter, can "expect" to 

live longer lives. 

Growth curves produced for N. metallicus were created entirely from adult animals, 

covering the entire body size range observed at each site. Data on small animals may be 

necessary when fitting asymptotic growth models (Dunham, 1978). This is especially 

important when discriminating between the von Bertalanffy and logistic models. However, 

the absence of data on small individuals has a minimal effect on parameter estimates, if 
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there is sufficient reason to believe a priori that the von Bertalanffy model is the correct 

model to apply (Hudson, 1997). In contrast the absence of data on larger individuals 

would significantly detract from the power of parameter estimation using this model. 

Specifically the asymptotic size and growth coefficient estimates would be very 

unreliable. Hudson (1997) has previously described growth in most members of the 

Niveoscincus and Pseudemoia group. In all cases the von Bertalanffy model provided the 

most satisfactory description of growth. 

Minimal differences between growth parameters were evident in N. metallicus across the 

altitudinal range examined. No variation in the asymptotic size or body size at age zero 

were detected. This trend was also apparent in field observations and other life history data 

(Chapter 6). The only coefficient to vary notably between populations was that for growth, 

and this differed significantly only between the two extreme high and low altitude sites 

(Orford and Mt Wellington). The trend that was evident was for high altitude populations 

to display a decreased growth coefficient, reflecting an increase in time to reach the 

asymptotic size. Wapstra et al. (in press), in an investigation of N ocellatus, found that all 

model parameters varied between high and low altitude populations. Niveoscincus 

ocellatus from high altitude displayed significantly greater asymptotic size, birth size and 

significantly lower growth coefficients. Thus, growth strategies in these two closely 

related species are quite different. Growth has previously been studied in N. metallicus 

(Hudson, 1997); however, his investigation looked at growth from high altitude 

populations only, and from mainland and northwestern sub-populations. These populations 

are genetically distinct from each other and from those sites studied here (Chapter 3), thus 

making comparative analysis of proximate effects difficult. Hudson also found that these 

populations were long lived (10 to 11 years), although they matured in only two years. 

However, other than the significantly increased body size of mainland N. metallicus 

females, growth patterns were not significantly different from those described for the 

populations I studied. 

Few investigations of Australian lizard life histories have examined variation in size and 

age at maturity on a geographic or altitudinal basis using skeletochronological data. 

However Rohr (1997), Hudson (1997), and Wapstra etal. (in press) provide recent 

exceptions. In contrast skeletochronology has been used extensively to study geographic 

variation in age at maturity in amphibians (e.g. Hemelaar, 1988; Bruce and Hairston, 
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1990; Sagor eta!, 1998; Esteban and Sanchiz, 2000; Miaud etal., 2000). Many species of 

skink mature at a very early age, often within one year (Hudson, 1988; Henle, 1989). 

However, larger species, or species inhabiting colder climates tend to delay maturity. 

Some species such as Tiliqua rugosa, a large skink, can delay maturity for five years. 

Greer (1989) reviewed the estimated age of maturity in a number of Australian skinks, but 

provided minimal data on geographic variability. 

Minimum size at maturity was estimated from the smallest female to have given birth or 

be in late pregnancy from each site. For Hobart this was 47.2 mm, for Orford, 48.1 mm, 

for Mt Wellington, 47.9 mm and for Clarence Lagoon, 47.7 mm (Chapter 6). Maximum 

sizes for females from these populations were 61.4 mm, 64.0 mm, 64.2 mm and 62.8 mm 

respectively. From this it is possible to estimate a ratio of SVL at maturity to maximum 

female size (Shine and Charnov, 1992). This value has been established as approximately 

0.74 in female lizard species (Shine and Charnov, 1992) and ranges from 0.75 to 0.77 in 

N. metallicus. This suggests that size at maturity has been accurately estimated in N. 

metallicus. There is little variation between sites in relation to this variable. 

Age at maturity does, however, appear to differ between populations on an altitudinal 

basis. Animals from both low altitude sites matured at two years of age, while maturation 

was delayed a further year at high altitude. This is identical to results reported for N. 

ocellatus across a similar altitudinal range. Niveoscincus ocellatus from Orford mature at 

two years, while those from Lake Augusta (comparable to my Clarence Lagoon site) 

mature at three years (Wapstra et al., in press). However, in contrast, N ocellatus mature 

at a larger size at high altitude, a phenomenon not observed in N. metallicus. 

While age and size at maturity are significant life history parameters (Roff, 1992; Stearns, 

1992; Galan, 1996; Rohr, 1997), few investigations have examined whether variation in 

these traits represents proximate environmental influences or genetic adaptation (Adolph 

and Porter, 1996). Delayed maturity is very common in reptiles inhabiting colder climates 

(Ballinger and Congdon, 1981; Adolph and Porter, 1993, 1996; Rohr, 1997) and is thought 

to reflect an inability by these populations to reach minimum maturation size in the time 

taken by low altitude populations (Adolph and Porter, 1996). Thus N. metallicus females 

from high altitude are only able to achieve minimum reproductive size after three years, 

whereas those from low altitude require only two years. However, when differences 
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between thermal opportunity are accounted for (Figure 7.6) it becomes apparent that 

animals grow at a similar rate between sites. Maturation at identical sizes, but over 

differing time frames is uncommon in lizards. Generally two patterns are observed. The 

first, as seen in N. ocellatus, is for animals to mature later and at a larger body size at high 

altitude. This pattern is most common in geographically widespread species (Ballinger and 

Congdon, 1981; Jones and Ballinger, 1987; Shine and Charnov, 1992; Niewarowski, 1995; 

Rohr, 1997; Wapstra etal., in press). A second strategy utilized by lizards from colder 

habitats is to mature at the same age as their warmer site counterparts, but at a 

significantly reduced size (Forsman and Shine, 1995; Mathies and Andrews, 1995). 

Among Australian skinks this pattern is best seen in Lampropholis delicata, which is 

significantly smaller in colder southern populations (Forsman and Shine, 1995). The first 

pattern is generally thought to occur because animals are able to provide additional energy 

to growth before maturity and thus can obtain increased size in the following year. 

However, in N. metallicus it is apparent that, even given an extra year, high altitude 

animals can still only just achieve the minimum maturation size found at low altitude. 

Thus this species appears to follow a third and hitherto undescribed strategy whereby 

females are unable to gain the advantage of increased size often obtained with delayed 

maturity. 

While age at maturity may be delayed at high altitude, due to limitations in thermal 

opportunity and possibly in resource availability, the strategy can still be assumed to 

maximise reproductive output. If delaying maturity resulted in significant costs in future 

reproduction, then selection could be expected to lead to the evolution of life history 

adaptations that would maximise lifetime reproductive success (Bernardo, 1993; Adolph 

and Porter, 1996). However, in cooler environments, mortality pressures, at least in adults, 

are usually decreased (Adolph and Porter, 1993) due to increased time in hibernation and 

retreat from inclement weather conditions. Predator numbers may also be decreased at 

high altitude (Chapter 4). This would result in increased survivorship of age classes from 

year to year at high altitude, a phenomenon that may be occurring in N metallicus (see 

earlier discussion). Combined with increased longevity in high altitude populations, and 

accounting for a slight reductions in clutch size during any one year (Chapter 6), high 

altitude animals could be expected to display increased future reproductive potential in 

comparison to low altitude conspecifics (Shine and Schwarzkopf, 1992; Schwarzkopf, 

1994). Thus, N. metallicus is able to decrease reproductive output at high altitude by 
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delaying maturity and producing slightly smaller clutches, but is still able to maintain a 

relatively high lifetime fecundity via increased longevity. Niveoscincus metallicus thus 

appears to only partially fit the models of Adolph and Porter (1993, 1996) as high altitude 

populations are not characterized by larger adults producing larger clutches. 

Skeletochronology proved to be a productive tool for examining age related life-history 

adaptation in N. metallicus. Such studies would be impractical using capture-mark 

recapture techniques in cryptic and reasonably long-lived species. Differences in growth 

rates between the high and low altitude populations appear to directly influence age at first 

reproduction, but not size at first reproduction. Variation in growth rate is believed to 

directly affect other life-history variables, including size and age at maturity in may lizard 

species (Grant and Dunham, 1990; Bernado, 1993, Mateo and Castanet, 1994; Smith etal., 

1994; Adolph and Porter, 1996; Rohr, 1997; Wapstra etal., in press). However, N. 

metallicus does not follow the same pattern as the closely related N. ocellatus in that size 

at maturity and maximum size are not greater at high altitude. This study supports the 

view that age at maturity is a phenotypically plastic trait modified by thermal opportunity 

(Adolph and Porter, 1996; Rohr, 1997) and concludes that N. metallicus is able to exploit 

environments with differing thermal conditions with little if any genetic adaptation being 

necessary. 
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CHAPTER EIGHT 

General Discussion 

Species that occupy broad geographic ranges are presented with significant challenges 

arising from variation in a number of environmental factors including thermal 

environment, habitat, food availability, intra and inter specific competition and predation 

(Smith, 1996, 1998; Schneider et al., 1999). As a consequence, such species often display 

reproductive, physiological and behavioural traits that compensate for environmental 

variability (Stearns, 1976; Dunham etal., 1988; Smith etal., 1993; Niewiarowski, 1994). 

Niveoscincus metallicus is found on all but a few offshore islands and on the Tasmanian 

mainland from sea level to alpine elevations. It also has a more restricted mainland 

distribution. Across this range the species has been shown to display considerable 

variation in genotype, as well as in thermal biology and reproductive life history. 

Previously, Wapstra and Swain (in press) have examined life history adaptation in the 

ubiquitous sister species N. ocellatus. Despite this work, and some other recent Australian 

research (Forsman and Shine, 1995; Rohr, 1997), information pertaining to variation in 

any aspect of biology on a geographic basis in southeastern Australian skinks is scant. 

Investigations of morphological variation, performance and habitat use in ubiquitous 

species generally assume that any geographic pattern revealed reflects adaptation to 

prevailing selective pressures (Losos and Miles, 1994). Similarly, geographic variation in 

life history characteristics is often assumed to reflect genetic adaptation (Niewiarowski, 

1994). However, such interpretations are difficult in the absence of historical information, 

because phylogenetic effects will confound conventional statistical methods when 

examining adaptation (Brooks and LcLennan, 1991). The relative importance of 

geographic isolation versus diversifying selection across environmental gradients, as a 

force for speciation in reptiles, has been studied in a tropical rainforest setting (Schneider 

etal., 1999). However, most examinations of ecological adaptation involving analysis of 

phylogenetic history examine variation between species or genera (e.g. Brooks and 

McClennan, 1991; Harvey and Pagel, 1991; Melville and Swain, 1998, 2000a). This is 

because the importance of history is widely appreciated at this level (Niewiarowski, 1994). 

In contrast, an acknowledgement of the potential influence of history on traits among 
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populations is largely absent. However, populations, like species and higher taxa, also 

have an evolutionary history (Avise, 1989), and ignoring that history can affect inferences 

about the processes responsible for observed patterns of trait variation (Niewiarowski, 

1994). While N. metallicus has an extensive distribution, adaptation of genotype to local 

conditions has not occurred in the absence of historical isolation (Chapter 3). Five 

phylogenetically distinct sub-types were evident across the range of N. metallicus. These 

five groups were identified using both RFLP and sequencing information. Divergence 

levels indicate that these groups separated during the Pleistocene glaciations. This 

conclusion is in accord with those of Melville and Swain (1998, 2000a) who proposed that 

the genus Niveoscincus first appeared in the Tertiary, and then diverged in the early 

Pleistocene. To reduce the effects of historical events in shaping trait variation in modern 

populations, all field sites for examination of variation in thermal biology and life history 

were selected from the Type I population. Thus variation observed across this range can be 

thought to reflect primarily adaptation to prevailing selective pressures. 

Lizards can respond in several ways to long term (e.g. seasonal, altitudinal) changes in 

thermal environment (Van Damme et al., 1989; Spencer and Grimmond, 1994). 

Behavioural adjustments are generally thought to be the main compensatory mechanism 

controlling small scale spatial and temporal variation in a thermal environment (Hertz and 

Huey, 1981; Avery, 1982; Van Damme etal., 1987). These small scale behavioural 

adaptations generally take the form of shifts in basking, activity times, postural changes 

and microhabitat selection. Daily and seasonal activity patterns have been examined in 

high altitude N. metallicus from Mt Wellington (Melville and Swain, 1997b). These 

animals were found to be diurnally active. Activity was not examined in my investigation, 

although variation in both seasonal and daily activity may be expected between sites. 

Microhabitat occupation was, however, investigated as a part of this study (Chapter 4), 

and appears to represent a significant aspect of thermal control in N. metallicus. The most 

obvious response observed was that high altitude animals tend to bask more overtly and 

generally on rock, in order to maintain a constant body temperature. In contrast animals at 

low altitude generally bask under cover and on wood. 

Behavioural adaptations can, however, represent an inadequate means of compensating for 

differing thermal loads, or they may be too costly in terms of time and energy (Huey and 

Slatkin, 1976). Under such conditions a lizard may display some level of physiological 
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acclimatization and/or genetic adaptation to varying environmental conditions (Van 

Damme et al., 1989). Niveoscincus metallicus shows strong evidence for genetic 

adaptation across its altitudinal range. This was most obvious from thermal limit 

differences evident between high and low altitude populations; these were not affected by 

laboratory acclimation and were also present in newborns (Chapter 5). In contrast, small 

seasonal fluctuations within populations were the only evidence of any acclimatization 

effects. Data from N. metallicus support the "labile" view of thermal adaptation in reptiles, 

despite the fact that body temperature is effectively maintained at a similar level at all 

sites. Interestingly N metallicus also displayed variation in the thermal relations of their 

sprint performance with high altitude animals sprinting significantly faster at extreme 

temperatures. Thus, curve breadth but not relative position was affected by altitude. This 

pattern is, to the best of my knowledge, unreported in any other lizard. Both Van Damme 

et al. (1989) and Crowley (1985) supported the "static" view in examinations of sprint 

curves between thermally distinct populations of Podarcis tiliguerta and Sceloporus 

undulatus respectively. Niveoscincus metallicus also showed altitudinal variability in 

willingness to sprint, with high altitude populations stopping less often at extreme 

temperatures. 

Niveoscincus metallicus therefore appears to use behavioural mechanisms to enable it to 

maintain Tb at a similar level at all sites. However, at high altitude animals will often be 

unable to maintain a high Tb, or will require significant time to achieve a preferred Tb. As 

high altitude lizards are often exposed on rocks and are less wary (personal observation), 

increased sprinting speed and willingness to sprint at low Tbs may represent a significant 

adaptation to cooler environments. Sprint speed has been shown to scale directly with 

foraging and escape success (Huey and Stevenson, 1979; Christian and Tracy, 1981). 

Thus, as high altitude populations must spend significant periods of time at Tbs that are 

considerably lower than those preferred, selection should favor a shift in thermal limits 

and performance to adapt to cool conditions. This should be most evident during spring 

and autumn. The fact that N. metallicus is restricted to an annual reproductive cycle, and 

collection of body reserves primarily occurs during spring and autumn in females, means 

that animals must be active during these periods even if environmental conditions are 

poor. The Tasmanian environment is very unpredictable, with high altitude sites 

periodically remaining cold until at least November and animals often forced to retreat as 

early as April. Snow may also fall at any stage of the year, even during mid summer. As a 
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result the ability to be active and able to forage during cool periods would represent a 

significant adaptation and may be one factor that allows high altitude populations to 

maintain an annual reproductive cycle, even during very poor years. 

In contrast to thermal adaptations, which appear to have a significant genetic component, 

adaptation of life history characteristics seems to occur primarily through proximate 

variation induced by environmental constraints. What induces variation in life history 

characteristics, either genetic variation or plastic responses to environment, represents a 

central question in modern biology. It has become apparent that many patterns of 

geographic variation among lizard populations are induced primarily by proximate factors 

such as thermal conditions and food availability (Roff, 1992; Adolph and Porter, 1993, 

1996; Abell, 1999; Wapstra and Swain, in press); however, genetic variation between 

populations has also been demonstrated (Niewiarowski and Roosenburg, 1993). An 

understanding of the role of proximate influences on variation in life history 

characteristics is important for a complete understanding of life history patterns (Ballinger, 

1983; Sinervo and Doughty, 1996). 

Variation in life history characteristics in N. metallicus was found at both a geographic 

level and, to a lesser extent, at an annual level within populations. Annual variation within 

a population can only result from phenotypic responses to environmental variability; 

however, geographic variation can have both proximate and genetic components. Little 

intra-annual variability was observed in N. metallicus, although proximate effects have 

been shown to influence reproductive output and neonate size in N. metallicus (Swain and 

Jones, 2000b). Clutch size was observed to vary on an annual basis, as did some aspects of 

offspring morphology and fat body deposition. Thus, all aspects of maternal biology 

appeared to be capable of responding to proximate influences. Nevertheless, variation on a 

geographic scale was more pronounced, specifically in terms of RCM which was reduced 

at high altitude (Chapter 6). Thus the possibility exists that genetic adaptation is present in 

this species. The occurrence of genetic variation in thermal biology in N metallicus, 

despite its general lack of importance in most species, further supports the conclusion that 

genotype may play a role in maintaining reproductive variability between populations in 

this species. 
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In contrast to the above life history characteristics, growth, age at maturity and longevity 

were all clearly under the control of proximate influences (Chapter 7). Size at maturity and 

maximum size did not differ between populations. The life history pattern exhibited by N. 

metallicus at high and low altitude is reasonable consistent with the models proposed by 

Adolph and Porter (1993, 1996). These models propose that variation in life history 

between populations can be explained in terms of the effects of the thermal environment 

on daily and seasonal activity. They predict that animals from populations subject to short 

potential activity seasons (high altitude) will have a high annual survival, a low 

reproductive effort, delayed maturity, and maturity will occur at a large size. In contrast 

animals from sites with long activity seasons (low altitude) will display early maturity at a 

smaller size, greater reproductive effort, and a lower annual survival rate. Niveoscincus 

metallicus conforms to this model in most respects, the exception being that size at 

maturity does not differ between sites. Reproductive output did conform to predictions in 

N. metallicus, although, in the sister species, N. ocellatus, RCM did not change in 

populations from high and low altitude (Wapstra and Swain, in press). Further work is 

required to better understand the factors that influence reproductive output between 

populations of skinks, because to date no consistent patterns have emerged. In addition to 

the work described here on Niveoscincus species, Forsman and Shine (1995) found 

increased reproductive output in populations with shorter activity seasons in Lampropholis 

delicata, whereas in Eulamprus tympanum, RCM followed a pattern similar to that found 

by me for N. metallicus (Rohr, 1997). 

The characteristics of offspring phenotype that were measured produced generally 

consistent results both within and between field sites (Chapter 6). The only exceptions to 

this generalisation were young from Orford which were larger than neonates from other 

sites and offspring from high altitude which had significantly heavier fat reserves than 

those from low altitude populations. Variation in size of offspring is often explained in 

terms of selection pressures at specific sites. While this is undoubtedly true in N. 

metallicus, there also appears to be a trade-off occurring between offspring size and 

number in low altitude populations. RCM at low altitude is high; however, it is suggested 

that predation appears to select for large offspring at the Orford site. As a result, perhaps 

because of space limitation (Olsson and Shine, 1997) females reduce the number of young 

they carry. Within population trade-offs between offspring size and number were not 

examined in this thesis. The other characteristic that differed between populations in N. 
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metallicus was fat reserves at birth. Larger fat reserves at high altitude have obvious 

advantages. Embryos at high altitude can use these reserves to maintain themselves at 

stage 40 if external conditions delay birth, and young may use these reserves to survive 

their first winter, which arrives no more than two months after birth. In contrast, low 

altitude young have about 4 months to collect resources before they overwinter. Whether 

genetic or environmental factors promote this extra fat deposition is unclear; however, 

Swain and Jones (2000b) suggest that proximate control is significant, with environmental 

conditions influencing neonate fat reserves via facultative placentotrophy in N. metallicus 

(Swain and Jones, 2000a). To date no other research has examined variation in fat levels in 

newborn offspring on a geographic scale. 

Swain and Jones (2000b) have shown that thermal environment and food availability 

during gestation directly affect offspring phenotype and fat reserves in IV. metallicus. Data 

from the Orford site also indicate that fat reserves can vary significantly on an inter-annual 

level within a site. Since food quantity and thermal conditions available to pregnant 

females are generally good at low altitude, females would have the resources required to 

provide young with additional abdominal fat stores. However, RCM is significantly lower 

in high altitude populations. As a result, females from these sites may be able to eat prey 

even during late pregnancy, while low altitude mothers are unable to ingest significant 

amounts of food. Indeed decreased food intake in low altitude mothers was observed in the 

laboratory (personal observation) and has been reported as a significant cost of 

reproduction in reptiles (Schwarzlcopf, 1996). Female Eulamprus tympanum with 

relatively large numbers of ova or embryos ate relatively less, and therefore decreased 

food intake in females may represent a fecundity-dependent cost of reproduction in some 

lizards. Thus, an ability to hold more food and the fact that mothers must support a smaller 

litter may provide a female with excess reserves, which can be redirected to offspring 

reserves, through facultative placentotrophy. This may provide another strong selective 

advantage of decreased RCM at high altitude, further supporting the possibility of a 

genetic component to this trait in high altitude populations. What is apparent is that 

offspring morphology and fat reserves, while both obviously affected strongly by the same 

proximate forces, act independently of each other in N. metallicus. 

Despite the evidence of some degree of genetic variation in N. metallicus, flexibility in life 

history, reproduction and habitat use all play a major role in allowing this species to 
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maintain it widespread distribution. Reproductive events are delayed at high altitude and 

this strategy ensures that gestation occurs relatively rapidly during the warmest months at 

these sites. Other widespread species also display this characteristic (e.g. Anolis sagrei, 

Lee et al., 1989; Sceloporus scalaris, Mathies and Andrews, 1995; N. ocellatus, Wapstra 

and Swain, in press). Similarly relatively precise thermal control of Tb, as is evident in N 

metallicus, requires some flexibility in the use of structural habitat elements (Christian et 

al., 1983; Adolph, 1990). Niveoscincus metallicus also displays considerable life history 

plasticity in responses to environmental conditions, particularly temperature. This 

plasticity in the face of varying environmental conditions represents a significant 

advantage to species living across large ranges and/or in fluctuating environments. 

Widespread species that are not genetically restricted in their phenotypic responses may be 

better able to cope with temporal climatic variation, thus further enhancing their fitness. 

Thus, the evolution of distinct local genotypes in fluctuating environments may not occur 

if phenotypic plasticity is sufficient to induce variation in traits to suit that environment. 

Field studies examining correlation between environmental conditions and aspects of an 

organism's ecology are important to our understanding of geographic variability in factors 

such as life history (Ballinger, 1983). However, the number of uncontrolled variables in 

such studies makes identification of causation difficult. Niveoscincus metallicus provided 

an excellent model to investigate adaptation on a geographic scale using largely field data. 

This species appears to follow a somewhat uncommon pattern in terms of thermal 

adaptation, with genetic factors playing a pivotal role in survival at high altitude. In 

contrast, it adopts a more conventional approach to life history adaptation, opting for a 

largely environmentally induced variability; however, some aspects of life history may 

still be controlled on a genetic basis. A logical extension of this study would be to 

examine, using common garden or transplant design experiments, the genetic versus 

environmental importance of variation in offspring fat deposition between high and low 

altitude populations. Also variation in RCM between sites could be examined; however, 

this would require growing juveniles under common conditions until adult size (2 years) 

and is probably unfeasible as a short term study. Most studies examine the genetic versus 

environmental importance to growth in neonates (Niewiarowski and Roosenburg, 1993; 

Sorci et al., 1996; Wapstra, 1988). However, growth variation in most species, including 

N. metallicus, is found to result primarily from proximate sources. Thus, other life history 
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variables need to be examined to truly understand the importance of genetic factors on life 

history adaptation. 
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