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ABSTRACT 
Water quality around the globe has been in serious decline for many decades. To reverse the 

degradation of waterways there must be a significant improvement in the way the coastal zone is 

managed. The effective management of the coastal zone requires the ability to effectively monitor 

and assess changes in water quality, and the ability to identify past, current and potential impacts 

on water quality. In recent years, water quality monitoring and assessment programs have been 

significantly improved by the inclusion of biological indicators. Diatoms have been used 

extensively as biological indicators in water quality monitoring and assessment studies, and in 

palaeo-environmental reconstruction of water quality, in many areas of the world. This study 

documents the use of diatoms as biological indicators of water quality, and for environmental 

reconstruction, in south-east Tasmania, Australia. 

The biomass (chlorophyll a) of marine benthic algal mats was determined along a depth gradient 

at two sites within the near-shore marine environment approximately fortnightly for 3 months, to 

determine whether depth significantly influenced biomass. Average chl a levels ranged from 

approximately 9 to 60 mg/m2, and varied inconsistently with depth. Physical disturbance of the 

substrata may account for the greatest variations in biomass observed. Diatoms were found to 

contribute significantly to the productivity of the near-shore, subtidal marine environment of 

south-east Tasmania, comprising approximately 95% of the benthic algal community. 

Canonical correspondence analysis (CCA) was used to identify causative relationships between 

the species composition of diatom communities and the corresponding physical and chemical 

variables from 51 sites within the near-shore, sub-tidal marine zone of south-east Tasmania. The 

composition of micro-algal communities within these habitats was found to be most strongly 

influenced by nutrient concentrations. Transfer functions were generated to infer nitrite/nitrate, 

silicate and sediment size at other sites within the geographic region of the study area. The 

determination of environmental optima and tolerance ranges for south-east Tasmanian diatom 

species, and the generation of transfer functions, provides a valuable water quality monitoring and 

assessment resource for this region. 

The environmental history of Pittwater Lagoon, an impacted Ramsar wetland site, was 

reconstructed from the late 18 th  century using sediment-core fossil diatoms, 2I0Pb dating, transfer 

functions and historical environmental data. A significant change in the diatom flora of the lagoon 

was found to have occurred during the past 100 years. The future health of south-east Tasmanian 

coastal ecosystems will depend on the ability of responsible stakeholders and caretakers to 

incorporate effective biological monitoring and assessment into their management strategies. 
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GENERAL INTRODUCTION 

0.1 	Monitoring and Assessing Water Quality 

Although water is essential to life on earth and is one of our most precious resources, 

waterways world-wide have been in serious decline for decades, and in some cases 

centuries (Chretiennot-Dinet 1998, Gitau 2005). To reverse this situation and maintain 

the biological integrity of our waterways firstly requires the regular monitoring and 

assessment of water quality so that impacts from pollutants and changing land-use 

practices can be determined and quantified. 

Until recently, monitoring and assessment of water quality has relied heavily on the 

comparison of physical and chemical measurements with predetermined guidelines (e.g. 

Environmental Protection Agency guidelines). These guidelines are generally derived 

from toxicological testing, and based on levels known to be toxic to biota. However, 

different results have sometimes been found between laboratory based testing and field 

experiments, and the lack of toxicity testing on Australian species has resulted in 

Australian guidelines being largely derived from overseas information (Chapman & 

Davies 1993, Norris & Norris 1995). 

The trend in recent years has been to take a more holistic approach to determining water 

quality by including biological assessment. Biological assessment of water quality 

usually involves looking at one or more biological 'indicator' groups for which 

preferences and tolerance-ranges are known for specific environmental conditions (such 

as pH, salinity, or nutrient concentrations). Water quality can then be inferred from the 

presence, absence, abundance and/or composition of key species within this group. 

Examples of commonly measured biological indicators of water quality include 

macroinvertebrates (Chessman 1995, Growns et al. 1995, Sheldon & Walker 1998, 

Barton & Metzeling 2004), fish (Cerling 1979, Gehrke & Harris 1994, Pollard 1994, 

Whitfield & Elliott 2002, Chen et al. 2004), and diatoms (Descy 1979, Hodgkiss & Law 

1985, Round 1991, Clerk et al. 2004, Ramstack et al. 2004), among others. 



The use of biological indicators to measure water quality is inherently complex. No two 

water bodies have exactly the same combination of physical and chemical processes 

occurring within them, and changes in these processes can affect different parts of the 

biological community in different ways and over different time scales. Additionally, the 

presence of one biological species can affect the presence or abundance of another (e.g. 

fish may reduce invertebrate numbers). Therefore, to be effective biological indicators 

the group of organisms chosen should ideally be found in large numbers and across a 

wide range of environmental conditions. 

For a group of organisms to be effective biological indicators they must be sensitive to 

biotic and abiotic change, and must respond in a predictable manner so that causal 

inferences can be made (Reid et al. 1995). In addition, biological indicators should 

effectively show both degradation and recovery rates in water quality, be applicable over 

a wide geographic region, and be simple to use (Dixit et al. 1992). It is also essential that 

the biology and ecology of the indicator group is well understood. Studied for over 200 

years, one of the most effective biological indicator groups currently in use is diatoms. 

0.2 	Diatoms as Biological Indicators 

0.2.1 Diatom Biology & Ecology 
Diatoms are single-celled, photosynthetic algae in the class Bacillariophyceae that have 

opaline silica shells. The exact number of existing diatom species is unknown, but it is 

estimated that there are at least 12 000 diatom species, contributing 25% of the world's 

net primary productivity (Werner 1977). 

Diatoms are largely cosmopolitan in distribution, and are ubiquitous and abundant in 

most aquatic environments (Dixit et al. 1992, Reid et al. 1995, Wu et al. 1997). Diatom 

reproduction is mostly vegetative, occurring through cell division. During the cell 

division process, a progressive reduction in cell size occurs over successive divisions 

(Round 1973). After several vegetative reproductive cycles, sexual reproduction occurs 

and restores cell size to its larger 'original' condition. The doubling time for diatoms 

ranges from at least 5 to 60 hours depending on taxa, with smaller taxa usually having 

higher specific growth rates and shorter doubling times (Round 1981). 
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Diatom species generally exhibit annual growth cycles in response to seasonal changes 

in environmental variables (Round 1981), with highest diatom numbers usually 

occurring during the spring (Werner 1977, Jones 1978). However, many diatom species 

experience a bimodal abundance pattern, with blooms in both spring and autumn (Round 

1981, Chessman 1985). Superimposed on the seasonal cycle of diatom growth is the 

pattern of succession (a relatively precise repetitive pattern to the seasonal occurrence of 

species: (Round 1981)). Although the effects of season and succession may result in one 

or two diatom species experiencing peak growth at any point in time, the dominant 

diatom species in a system are always present (May 1988, Round 1991). 

Many diatom species exhibit clear habitat preferences, and diatom communities are 

generally defined according to the habitat type they occupy. Within aquatic 

environments diatoms occupy a variety of natural habitat types, which can be broadly 

defined as follows: 

• epilithon (rock surfaces); 

• epiphyton. (surface of larger plants); 

• epipelon (mud and silt); 

• epipsammon (sand); 

• euplankton (open water environment); and 

• epizoic (attached to animals) 

The preference of diatom species for a particular habitat type can greatly affect the 

characteristics of their immediate environment. For example, euplanktonic taxa may rely 

heavily on nutrients in the water column, while some benthic taxa can obtain nutrients 

from the sediments (Werner 1977, Hudson & Bourget 1981, Stevenson et al. 1985). 

Research has shown that diatoms respond sensitively to changes in many environmental 

variables, including light (Bothwell et al. 1989, O'Donohue & Dennison 1997), moisture 

(Verleyen et al. 2003), temperature (Vyverman & Sabbe 1995, Bloom et al. 2003), 

currents (Reisen & Spencer 1970, Munteanu & Maly 1981, Stevenson 1983), salinity 

(Cumming & Smol 1993, Gasse etal. 1997), pH (Stevenson et al. 1989, Dixit et al. 



1991, Dixit etal. 1993), organic and inorganic carbon (Pienitz & Smol 1993), 

phosphorus (Agbeti 1992, Yang & Dickman 1993), nitrogen (Evans & Marcan 1976, 

Blanco et al. 2004), and silicate (Kilham 1971, Egge & Aksnes 1992, Takano & Hino 

1996, Wu & Chou 2003). 

0.2.2 Effectiveness of Diatoms as Biological Indicators 
There are several reasons why diatoms are particularly suited for use as biological 

indicators. Diatoms are widespread and abundant in most aquatic environments, diatom 

taxonomy is well established, the ecological tolerances and optima for many species are 

clearly defined, and diatoms are sensitive to changes in water chemistry (van Dam et al. 

1981, Reid etal. 1995). Because diatoms have a short cell cycle and colonise rapidly, 

the composition of diatom communities responds quickly to changes in water quality 

(Fairchild & Lowe 1984, Guzkowska & Gasse 1990, Dixit etal. 1992, Reid etal. 1995). 

Many diatom taxa have the ability to attach themselves to substrata by gelatinous pads 

or stalks (Werner 1977), and are therefore indicators of the immediate surrounding 

environment. The attached habit of many diatom species also makes them relatively easy 

to sample. 

• The opaline silica structure of diatom cells (frustules) means that in some aquatic 

sediments (such as lakes) diatom fossils are often well preserved and can therefore be 

used to reconstruct the environmental history of an aquatic ecosystem (Agbeti 1992, 

Roberts & McMinn 1998). Diatoms have been used extensively to infer pH, total 

phosphorus, salinity, and saprobity of palaeo-environments (Bennion 1994, Gell 1997, 

Wu etal. 1997, Rott et al. 1998). Diatoms have also been used in both neo- and 

palaeolimnological studies to detect changes such as eutrophication, acidification, UV 

and climate change (Berge 1979, van Dam et al. 1981, Charles 1985, Niederhauser & 

Schanz 1993, McMinn & Heijneis 1994, Gell 1997, Wu et al. 1997, Crosta etal. 1998, 

Rott et al. 1998, Chivas etal. 2001). Their characteristics and rapid response time to 

environmental change make them ideal for water quality research. 

0.2.3 Relating Diatoms to Water Quality 
Using diatoms as water quality indicators involves relating the diatom community 

composition of a water body to the corresponding physical and chemical variables. 
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Quantitative data is gathered and statistically analysed to determine the ecological 

tolerances and optima of diatom species for certain physico-chemical variables along an 

environmental gradient (Dixit etal. 1992). The species composition of the diatom 

assemblage (rather than a single dominant species) is then used to interpret water quality 

(use of a single dominant species may be misleading if it has a wide tolerance range). 

Although the ecological tolerances and optima for many diatom species is considered 

universal, water quality assessments within a given geographic region require 

knowledge of local indicator species (John 1993). Some diatom species in the southern 

hemisphere do appear to have different ecological tolerances to their northern 

hemisphere counterparts (Round 1991), and there is evidence of endemic species in 

Australia (Thomas 1988, Cameron et al. 1993, Haworth & Tyler 1993, Vyverman etal. 

1997). Other researchers have also highlighted the increased accuracy obtained by using 

regional flora for water quality assessments (Charles 1985, Wu et al. 1997). 

0.2.4 Diatom Research in Tasmania 
Diatoms have been used extensively around the globe for water quality monitoring and 

assessment studies (Hendey 1977, Lange-Bertalot 1979, Prygiel & Coste 1993), and for 

palaeo-environmental reconstruction (Flower 1986, Gronlund 1993, Ng & Sin 2003). 

However, diatom research in Tasmania has mainly focused on freshwater species, and 

there is very little published work on Tasmanian marine diatoms. Palaeo-environmental 

reconstruction of Tasmanian freshwater lakes using diatoms is reported by (Cameron et 

al. 1993, Hodgson etal. 1996a, Hodgson et aL 1998). A reference data set of diatom 

flora from Tasmanian lakes for environmental reconstruction has also been created 

(Vyverman et al. 1995). Other diatom research in Tasmania has also focused on 

freshwater species (Croome & A. 1986, Haworth & Tyler 1993, Vyverman etal. 1996, 

Vyverman etal. 1997). However, estuarine planktonic diatoms from Storm Bay, 

Tasmania were included in the work by (Crosby & Wood 1958); estuarine diatoms from 

the Gordon River estuary were included in the work by (Hodgson et al. 1996b); and 

diatom analysis of late Holocene sediment cores from Macquarie Harbour is reported by 

(McMinn et al. 2003). The marine diatom flora of Tasmania's coastal environment is 

researched here to investigate relationships between species assemblages and 

environmental variables. 
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0.3 	The Study Area: South East Tasmania 

0.3.1 Geography 

The diatom research reported in the following pages was undertaken in the coastal zone 

of southeast Tasmania, Australia (Figure 1). Within the research area are Tasmania's 

capital city Hobart, numerous smaller towns and villages, and various commercial 

activities including aquaculture and forestry. The environmental characteristics of the 

study, area are discussed in more detail below. 

Figure 1: Location of Study Area 
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0.3.2 Population 

Tasmania has a population of approximately 476 000 (March 2003. Source: Australian 

Bureau of Statistics) with approximately 40% of the population living in the capital, 

Hobart. 

0.3.3 Climate and Hydrology 
Tasmania has a predominantly temperate maritime climate, with marked variations of 

cloudiness, temperature and rainfall due to the prevailing westerly air stream. The east 

coast experiences milder, drier and sunnier conditions than the generally cool, wet and 

cloudy west coast. Close to the coast, the daily temperature range is approximately 7°C. 

The long-term (25yr) average temperature in Hobart ranges from 5.7 - 12.9°C (min. — 

max.) in winter to 13.3 — 23.2°C in summer. Extremes of temperature recorded for 

Hobart are —2.8°C and 40.8°C respectively (in 1972 and 1976). Mean annual rainfall 

within the study area (Hobart) ranges from approximately 495 mm to 576 mm year, and 

is relatively uniform throughout the year (Australian Bureau of Statistics). The size and 

flow of water bodies in Tasmania's south-east region is relatively small compared to 

other regions of Tasmania (DPI WE 2003). 

0.3.4 Geology 
The geology of the south-east region of Tasmania is complex. It is dominated by 

Cambrian basalts (and other igneous rocks), Permian to Late Carboniferous 

undifferentiated glacial, glacio-marine, and non-marine sedimentary rocks (mostly 

sandstones and mudstones), and Jurassic dolerites with locally developed granophyre 

(Geoscience-Australia 2004). Along the foreshore, coastal landforms vary considerably 

and include steep buffs and sea cliffs, rocky shorelines and platforms, sandy and muddy 

intertidal flats, sandy and pebble beaches (Green & Coughanowr 2003). 

0.3.5 Land Use 
The Derwent Estuary catchment area of south-east Tasmania comprises approximately 

one-fifth of Tasmania's land mass, covering an area of approximately 8.900 km2 , and 

includes the Derwent River catchment, the Jordan River catchment and other areas 

adjacent to the estuary (Green & Coughanowr 2003). Urban and industrial development 

occupies less than I% of the total land area. Approximately 67% of the land area is 
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covered by forest, scrub and heath; with most of the remaining land being used for 

• agriculture (27%, mostly sheep and cattle grazing) and water storages (3% ) (Green & 

Coughanowr 2003). 

0.4 	Aims and Objectives of the Research 

The future health of Tasmania's waterways (and its associated industries) relies on the 

effective interpretation and management of water quality conditions within those 

waterways. This research aims to investigate the use of diatoms for biological 

monitoring and assessment of water quality, and environmental reconstruction, in the 

near-shore marine environment of southeast Tasmania. 

The objectives of the research are to: 

I. Determine whether depth significantly influences the biomass of marine benthic 

algal mats along a depth gradient at two sites within the near-shore, sub-tidal marine 

environment of south-east Tasmania; 

2. From a diverse range of sites within the south-east Tasmanian near-shore marine 

environment: 

(i) Identify causative relationships between the species composition of the diatom 

community and the corresponding physical and chemical water conditions; 

(ii) Develop a transfer function to infer palaeo-environmental conditions at other 

sites within the study area; and 

3. Reconstruct the environmental history of Pittwater Lagoon (part of a listed Ramsar 

wetland site within the study area) since the late eighteenth-century using sediment-

core fossil diatoms; 

These objectives are addressed in the following three chapters. 
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CHAPTER 1: Biomass of Benthic Algae at Tinderbox Marine Reserve 

and Conningham Beach 

1.1 INTRODUCTION 

1.1.1 Marine Benthic Algal Mats 

Marine benthic algal mats play an important role in coastal ecosystems, contributing 

significantly to the productivity of coastal areas and influencing sediment transport and 

erosion patterns (Grant etal. 1986, Oppenheim 1988, MacIntyre etal. 1996, Austen et 

al. 1999). Benthic algal mats in marine environments are usually dominated by diatoms, 

although mats dominated by cyanobacteria are also common in extreme environments 

(de Jonge 1985, Sundback & Snoeijs 1991a, Sundback etal. 1997). However, relatively 

few studies have been published on benthic algal mats in sub-tidal, near-shore marine 

environments, and little is known about the productivity of such mats (Cahoon et al. 

1993). 

The near-shore marine environment is often a zone of relatively high energy subject to 

frequent physical disturbance. As a result of physical disturbance, some benthic algae 

are resuspended and can constitute a significant proportion of the water-column algal 

population (Lukatelich & McComb 1986, Bloesch 1995, MacIntyre etal. 1996). 

Resuspended algae provide an important food source for filter-feeders (such as oysters). 

Benthic algal mats also provide an important food source for many other organisms, 

including deposit-feeders (such as Hydrobia ulvae: (Austen et al. 1999)). The biomass 

of benthic algal mats can greatly exceed the biomass of the entire water column above, 

even at depths of 200 m (Lukatelich & McComb 1986, Cahoon etal. 1990). Benthic 

algal mats are therefore an important component of the productivity and health of the 

aquatic system as a whole. 

Sediment transport and erosion patterns in the inter-tidal and sub-tidal coastal zones are 

affected by the presence of benthic algal mats. Benthic diatoms increase the resistance of 

the sediment surface to erosion by the production of extracellular polysaccharides 

formed during locomotion and as a means for attaching themselves to substrata (Werner 
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1977, Austen et al. 1999). The presence of this extracellular film also affects the transfer 

of organic matter between the sediment and water column (Grant et al. 1986). Benthic 

algal mats therefore alter the near-shore marine environment physically, chemically and 

biologically. 

The relationship between benthic algal biomass and water depth in near-shore marine 

environments is not well established, but must be considered in the study-design of 

regional calibration sets. Research has shown that benthic algal biomass is reduced by 

physical disturbance of the substrate (Stevenson & Stoermer 1981, Delgado et al. 1991), 

and it is well recognised that diatoms respond to changes in light (Reynolds 1973, 

Werner 1977, Round 1981). However, with increasing water depth, physical disturbance 

is generally reduced, as is photosynthetically available radiation (PAR). Within the near-

shore zone (less than 10 m water depth), where the PAR may not be such a limiting 

factor, the level of physical disturbance may play a more important role. 

1.1.2 Study Sites 

Tasmania has approximately 5 400 km of coastline, and is situated in a cool temperate 

climate zone. The coastline is afforded some protection by the surrounding islands 

(particularly in the southeast), and consists of many bays, cliffs and beaches. The two 

benthic mat study sites, Tinderbox Marine Reserve (Plate 1.1) and Conningham Beach 

(Plate 1.2) were chosen as being representative of natural aquatic conditions in 

Tasmania's south-east marine environment (Figure 1.1) as they are relatively un-

impacted by anthropogenic activity. Their waters are protected to a large extent by 

Bruny Island, and water temperatures in the local area range from approximately 8°C in 

winter to 20°C in summer (DPI WE 2003). 

1.1.2.1 Tinderbox Marine Reserve 
Tinderbox was declared a marine reserve in 1991, is one of only 5 marine protected 

areas in Tasmania, and at 45 ha is also the smallest. Tinderbox beach is a sandy beach 

bordered by sandstone cliffs. Tinderbox Reserve marine flora and fauna include over 30 

species of seaweeds, seagrass, sea dragons and sea horses, bryozoans, filter-feeders, 

sponges, ascidians, anemones, hydroids, squid and fish. The reserve is regularly used by 
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Plate 1.1: Tinderbox Marine Reserve 

divers and snorklers, and a boat ramp provides access to the area outside  the  reserve. 

Plate 1.2: Conningham Beach 
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1.1.2.2 Conningham Beach 

Conningham Beach (Plate 1.2) is Ideated a short distance W-SW of Tinderbox Marine 

Reserve in a protected embayment (North West Bay). It is a gently sloping sandy beach, 

bordered by sandstone cliffs. Although the marine flora and fauna at Conningham Beach 

is not recognised as being as diverse as Tinderbox Marine Reserve, a wide variety of 

fish, crabs, squid, urchins and sea stars were observed during sampling dives. A boat 

ramp at one end of Conningham Beach is regularly used by locals, and the beach by 

locals and residents of an adjoining caravan park. The relatively cool coastal waters of 

Tasmania reduce the extent to which the beach is used by swimmers. 

Figure 1.1: Location of Benthic Algal Mat Study Area 
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1.1.3 Aims and Objectives 

Algal biomass measurements provide valuable ecological data on the productivity of 

aquatic ecosystems, and provide a means for comparing productivity between sites both 

locally and globally. This study aims to determine the biomass of marine benthic algal 

mats along a depth gradient at two near-shore, sub-tidal marine sites in southeast 

Tasmania, Australia. 

The specific objectives of the Benthic Algal Mat study are: 

• Measure benthic algal biomass along a depth transect at Tinderbox Marine Reserve 

and Conningham Beach; 

• Compare and contrast changes in algal biomass at each site to temporal variation, 

depth, temperature, and nutrients; 

• Compare and contrast the results obtained from spectrophotometry with those 

obtained from fluorometry; and 

• Relate the above findings to research reported in the literature. 
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1.2 METHODS 
Sampling was undertaken along two transects in the northern section of the 

D'Entrecasteaux Channel, Tasmania (Figure 1.2) on Jan 30, Feb 13, Feb 27, Mar 20, 

Apr 03 and Apr 19, 2001. Sampling was thus conducted during both summer and 

autumn, providing contrasting environmental conditions. The sampling transects were 

located at Tinderbox Marine Reserve (Transect 1), and Conningham Beach (Transect 2), 

and were oriented due South and 35°E respectively. Sampling at Tinderbox Marine 

Reserve was conducted under DPI WE Permit no. 1076. 

Figure 1.2: Location of sampling transects 

At each transect, sampling was undertaken at water depths of approximately 1, 2, 3, 4 

and 5 metres mean spring low tide (MSLT) using SCUBA equipment. Depth was 

measured using a depth gauge attached to the SCUBA equipment, and adjusted relative 

to fixed starting point noted at low tide prior to the first sampling occasion (a submerged 

rock outcrop). Underwater, the transect bearing was followed using a compass. 
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1.2.1 Water Chemistry 

During each sampling dive, measurements were taken to determine water temperature, 

salinity and nutrient levels. Water temperature for each transect was measured at 3 m 

water depth using a standard mercury thermometer. A 1 litre water sample was collected 

from 3 m water depth to measure salinity (back on shore) using a ProfiLine Conductivity 

Meter (Model: TA 197). Water samples for nutrient analysis were collected from the 3 

m sampling site by using 50 ml syringes to collect a sample from both 1 cm and 1 m 

above the sea floor. Nutrient samples were processed at UTAS laboratories using an 

ALPKEM Auto Analyser, following the ALPKEM Methodology Manual (1992). 

Samples were analysed for nitrite + nitrate (NO2_3), phosphate (PO4) and silicate (Si02) 

concentrations. 

1.2.2 Algal Mat Sampling 

Benthic algal mats generally have a patchy distribution on the ocean floor (Grant et al. 

1986, Delgado et al. 1991). The decision was therefore made to sample the visually 

thickest algal mats at each sampling depth, so that measured biomass represents 

approximately maximum levels. Four samples were collected at each depth: three to 

determine chlorophyll levels and one to inspect the algal flora (i.e. to ascertain whether 

the algal mats were composed primarily of diatoms). All samples were collected using 

sterile 70 ml specimen containers modified for minimal disturbance to the algal mats 

(Figure 1.3). 

Figure 1.1: Sampling container design 
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1.2.2.1 Sampling Container Design 

The 'false floor' of the sampling container was watertight, and constructed by cutting 

1 cm from the base of a 100 ml specimen container, and gluing this section into the top 

of the 70 ml specimen container (Figure 1.3). A 4 mm hole was drilled through the side 

(of both containers) immediately above the false floor. Two separate holes were also 

drilled through the side of the 70 ml container immediately above the original base so 

that water could freely flow into the bottom of the container, making it less buoyant 

under the water. The rubber band was cut from a bicycle tube (Figure 1.3). 

Prior to sampling, the rubber band was moved down so that the 4 mm hole was exposed. 

The sampling container was inverted and very gently placed over the algal mat, then 

gently pushed into the sediment up to the bottom of the hole. While the sampling 

container was still inserted in the sediment, the rubber band was gently pulled down to 

cover the hole and effectively seal the container. This process allowed the water 

overlying the algal mat to escape through the hole as the container was inserted into the 

sediment (rather than being forced down through the algal mat and sediment below), 

thereby ensuring disturbance of the algal mat was minimal. The sampling container 

design ensured a uniform thickness of sediment (1 cm) was obtained for each sample. 

A thin, flat steel blade was used to slice through the sediment immediately below the 

container, and held against the container to seal it while it was removed from the 

sediment. The container was then turned upright so that the blade was on top. The plastic 

cap was positioned above the blade so that as the blade was slid out sideways the cap 

was correctly positioned over the screw thread of the container. The cap was firmly 

tightened, and the container placed in a mesh diving bag. As samples taken for 

chlorophyll a analyses should be protected from light and warmth at all times during 

collection and filtration (Wright & Mantoura 1997), upon arriving back on shore all 

samples were immediately stored in the dark on ice until further processing at UTAS 

laboratories. 

1.2.3 Chlorophyll a Analysis 

Rather than counting cell numbers, algal biomass is usually reported as a measurement 
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of the photosynthetic pigment, chlorophyll a (Sundback & Graneli 1988, Fairchild & 

Sherman 1992, Peletier 1996,.Gibbs 2000). Chlorophyll a can be measured using 

chromatography, spectrophotometry, or fluorometry. The most accurate technique for 

measuring chlorophyll a is High Performance Liquid Chromatography (HPLC) 

(Mantoura etal. 1997a). However, this is also the most expensive of the three methods. 

Consequently, spectrophotometry and fluorometry methods are commonly employed for 

the analyses of algal biomass (MacIntyre et a/. 1996). Fluorometry is the most sensitive 

but least accurate method (Wright & Mantoura 1997). However, whether 

chromatography, spectrophotometry, or fluorometry methods are used, the sampling 

procedure is identical. The samples from Tinderbox Marine Reserve and Conningham 

Beach were analysed using both spectrophotometry and fluorometry to determine algal 

mat biomass. 

Samples taken for chlorophyll a analysis were processed at UTAS laboratories within 4 

hours of sampling. Although samples should be extracted as soon as possible, they can 

be stored in the dark and frozen at -90°C for at least 60 days or at -20°C for less than a 

week without substantial loss of pigment (Mantoura et al. 1997b). All chlorophyll 

processing was done under low light conditions, with samples being stored in the dark as 

much as possible. The presence of water can reduce the accuracy of measurements 

(Porra et a/. 1989, Jeffrey & Welschmeyer 1997) and was therefore minimised in the 

final filtered sample. To remove excess water from the sample, filtered seawater was 

used to wash the entire sample from the original sampling container onto a Whatman 

GFC filter placed in a vacuum pump. Scanning electron microscopy has shown that 

combusted GF filters are as efficient as 0.2 um membrane filters for pigment retention 

(Nayar & Chou 2003). The sample was filtered under a low vacuum to avoid cell 

damage (Wright & Mantoura 1997). 

The filter and all sediment from the sample were then transferred to a sterile 100 ml 

container and 60 ml of methanol was added. The sample was shaken vigorously, and 

stored in a fridge (4°C) for 18 to 24 hours. Although soaking in solvent is the most 

common chlorophyll extraction technique, grinding and sonication are also common. 

Sonication in methanol has been strongly recommended for routine field samples, as 

soaking without mechanical disruption results in recovery which is low and variable 
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(Wright et al. 1997). After overnight storage, the sample Was sonicated for 5 minutes to 

disrupt any remaining resistant cells, then shaken to homogenise the solution. After 

allowing approximately 5 minutes for settling of the sediment, two 10 ml aliquots were 

extracted and centrifuged at 2000 rpm for 5 minutes to remove debris from the solution. 

Solution from one of the 10 ml aliquots was measured for chlorophyll a using 

spectrophotometry, and the other aliquot was measured using fluorometry. 

Spectrophotometric readings were taken for wavelengths of 750, 664, 647, and 630 nm, 

on a Shimatsu 1201 spectrophotometer. Fluorometer readings were undertaken on a 

Turner 10AU fluorometer. For each sample, after the initial reading was taken 2 drops of 

5% hydrochloric acid (HC1) were added to the 10 ml vial of extracted sample. The vial 

was then inverted 3 times to homogenise the mixture. A second reading was then taken 

to determine phaeophytin (at 664 nm for the spectrophotometer). Chlorophyll a was 

calculated as the difference between the readings before and after acidification. 

1.2.4 Determining the Dominant Algal Flora 

On each sampling date, one benthic algal sample from each depth was inspected to 

determine the dominant algal flora (i.e. to determine whether the majority of the cells 

were diatoms). Each sample was rinsed into a 250 ml beaker using approximately 50 ml 

filtered sea water, and stirred 20 times in each direction to dislodge the majority of the 

algae from the sediment. After allowing approximately 5 seconds for the heavier 

sediment to settle out, the stirred solution was poured off into a clean beaker, leaving 

most of the sediment behind. This process was then repeated twice, collecting the stirred 

solution (approx. 150 ml) in a single beaker. At least two permanent microslides of live 

material were made from each sample by pippetting 500 pm of the collected solution 

onto a glass microslide cover-slip and drying for several hours at approximately 60°C on 

a hotplate. Cover slips were mounted on glass microslides using the mounting medium 

Naphrax (refractive index 1.72). Microslides were inspected under a Zeiss Standard 20 

light microscope at 1000x oil immersion magnification. 
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1.3 RESULTS 

1.3.1 Physical and Chemical Results 

1.3.1.1 Temperature & Salinity 
Throughout the study period, measured temperature varied by 4.7°C at Tinderbox 

Marine Reserve and 5.7°C at Conningham Beach, however salinity remained relatively 

constant. Temperature and salinity results for each sampling date are listed in Table 1.1 

below. Salinity measurements are provided hereafter in PSU units. 

Table 1.1: Temperature and Salinity 

Sampling Date 

Tinderbox Marine Reserve 

Temperature (°C) 	Salinity 

Conningham Beach 

Temperature (°C) 	Salinity 

30/1/01 18.0 33.7 18.0 33.7 

13/2/01 19.6 33.0 20.4 33.8 

27/2/01 17.4 34.0 18.8 34.2 

20/3/01 18.1 34.0 18.9 34.2 

03/4/01 18.2 33.9 17.9 33.9 

19/4/01 14.9 33.9 14.7 33.9 

1.3.1.2 Nutrients 
Nutrient concentrations in 1 cm and 1 m samples taken on the same sampling date were 

generally very similar. Nutrient levels for both depths are listed below in Table 1.2 for 

Tinderbox Marine Reserve and Table 1.3 for Conningham Beach. 

Table 1.2: Nutrient levels from Tinderbox Marine Reserve 

NO2 .3 (prnal/L) Si02  (prnol/L) PO4  (pmol/L) 

Date 1 cm 1 m 1 cm 1 m 1 cm 1 rn 
30/1/01 0.05 0.02 1.03 0.94 0.16 0.13 

13/2/01 0.08 0.06 3.89 3.86 0.22 0.20 

27/2/01 0.45 0.45 4.30 4.18 0.26 0.24 

20/3/01 0.04 0.03 0.12 0.08 0.13 0.11 

3/4/01 0.04 0.03 0.43 0.40 0.16 0.12 

19/4/01 0.05 0.03 2.75 2.68 0.22 0.17 
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Table 1.3: Nutrient levels from Conningham Beach 

NO2 .3 (grnol/L) Si02 ( -tmol/L) PO4 (gmol/L) 

Date 1 cm 1 m 1 cm 1 m 1 cm 1 m 
30/1/01 0.04 0.03 0.87 0.79 0.13 0.16 

13/2/01 0.10 0.10 3.79 2.77 0.31 0.16 

27/2/01 0.06 0.04 0.28 0.10 0.09 0.10 

20/3/01 0.04 0.03 0.64 0.60 0.16 -  0.14 

3/4/01 0.05 0.04 4.17 4.07 0.22 0.24 

19/4/01 0.17 0.20 3.27 3.84 0.22 0.22 

Analyses of samples from both sites show little variation between nutrient 

concentrations at 1 cm and 1 m height above the benthos for NO2_3 (R 2 = 0.988) or Si02 

(r2  = 0.958). Phosphate levels vary slightly more between the two depths, the lower 

correlation found (R2  = 0.463) mainly due to a difference at Conningham Beach on the 

second sampling date. PO4 and NO2_3 concentrations did not vary markedly over the 

study period, with the exception of NO2.3 levels at Tinderbox in late February. However, 

at both sites considerable variation occurred between silicate levels on different 

sampling dates (e.g. >50 fold for Tinderbox 1 m between late February and late March). 

1.3.2 Chlorophyll a Results 

Throughout the sampling period, chlorophyll a levels from each depth ranged between 

7.3 and 62.7 mg/m2. Chlorophyll a was measured using both spectrophotometry and 

fluorometry. Results from each method were very similar. The correlation between 

results from these two methods is shown in Figure 1.4 below. 
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Figure 1.4: Comparison of fluorometric and spectrophotometric results 

Although fluorometric and spectrophotometric results were very similar, the fluorometry 

method on average provided a slightly higher reading. The difference between readings 

for the two methods also appeared to increase with higher chi a levels. These results are 

shown in the following figure (Figure 1.5). 

Figure 1.5: Fluorometry results vs. Spectrophotometry results 
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From here on only the spectrophotometric data is presented, given the close relationship 

between the two methods (r2  = 0.93), and that fluorometry is generally less accurate 

(Wright & Mantoura (1997), but the full data set is presented in Table 1.1 as Appendix 

1. On each sampling occasion, the average chlorophyll a level at each site (all samples 

averaged) was very similar, but varied over the sampling period (Figure 1.6). 

Figure 1.6: Average chlorophyll a levels for each site over the sampling period 

1.3.3 Algal Biomass and Environmental Variables 

No clear trend was discernible between chlorophyll a levels and water depth at either 

site. Chlorophyll a levels varied more temporally than spatially. The relationship 

between chlorophyll a levels and depth at each site is shown in Figure 1.7 for Tinderbox 

Marine Reserve, and Figure 1.8 for Conningham Beach. 
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Figure 1.7: Chlorophyll a levels for each depth at Tinderbox Marine Reserve 

Figure 1.8: Chlorophyll a levels for each depth at Conningham Beach 

Algal biomass was not strongly correlated with any of the nutrient concentrations (r 2  was 

<0.38 for each nutrient at each site on each sampling date). NO2,3 and PO4 did not vary 

greatly during the study period, however silicate varied considerably and with different 

temporal trends at each site. The temporal variation in Si02 and the corresponding algal 

biomass at each site is shown in Figure 1.9 and 1.10. 
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Figure 1.9: Silicate and Chi a levels at Tinderbox Marine Reserve 

Figure 1.10: Silicate and Chl a levels at Connin am Beach 

1.3.4 Composition of Benthic Algal Mats 

Counts made of approximately 300 cells from the benthic algal samples obtained from 

each depth determined that algal mats were composed primarily of diatoms (— 95%). At 

Tinderbox Marine Reserve, the main diatom species included Opephora olsenii, 

Nitzschia amphibia, Navicula monoculata var. omissa, Cocconeis peltoides and 

Amphora subturgida. At Conningham Beach, Opephora olsenii and Nitzschia amphibia 

were generally less abundant, and the main diatom species included Navicula 

monoculata var. omissa, Cocconeis scutellum, Navicula cancellata and Amphora 

subturgida. 
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1.4 DISCUSSION 
There are a wide range of sampling devices currently in use across a broad range of 

scientific disciplines, all of which have inherent design problems that can affect the 

degree to which samples accurately reflect the features of the sediment under 

investigation (Lane & Taffs 2002). Careful consideration must be given to the effects 

that sampling procedure and sampler design have on study outcomes, with acceptable 

levels of bias being determined by the purposes of the study. The design of the sampling 

container used in this study was found to be effective for obtaining relatively 

undisturbed sediment samples of uniform surface area and thickness for chlorophyll a 

analyses. The thickness (depth) of sediment sampled in most chlorophyll studies ranges 

from 0.5 to 1 cm, because light penetration is largely confined to the top 2 mm of 

sediment and therefore most chlorophyll can be found within the top few mm 

(Lukatelich & McComb 1986, MacIntyre etal. 1996, Peletier 1996, Masini & McComb 

2001). However, because the thickness of sediment sampled varies between studies it 

must be considered when comparing chlorophyll results reported in the literature. 

Tinderbox Marine Reserve and Conningham Beach algal biomass levels (-7.3 to 62.7 

mg/m2) are well within the range of levels commonly reported in the literature for 

benthic algal biomass, which vary widely. Chlorophyll a concentrations of 27 to 558 

mg/m2  were reported from surface sediments in the Peel-Harvey estuarine system, 

Western Australia, by Lukatelich and McComb (1986), who cited 10 other studies (from 

estuarine and open marine environments in various locations around the world) across 

which chlorophyll concentrations ranged from 6 to 770 mg/m -2 . Another comparison of 

35 studies from various estuarine and open marine environments around the globe 

showed surface sediment chlorophyll a levels ranging from < 1 to 560 mg/m -2  

(MacIntyre et al. 1996). Smaller chlorophyll ranges, such as those recorded from 

Tinderbox Marine Reserve and Conningham Beach, are also commonly reported — for 

example, a chlorophyll a range of 2.6 to 62.0 mg/m2 was reported from sediments of 

Onslow Bay, North-Carolina, by Cahoon et al. (1990). 

Although fluorometric and spectrophotometric results were very similar (r2  = 0.93), the 

fluorometry readings were, on average, slightly higher. These results are contrary to 
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findings reported in the literature that spectrophotometry often provides slightly higher 

readings than fluorometry (Cahoon et al. 1990). The reasons for this discrepancy are not 

clear, however the variation in measurement between the two methods was relatively 

small and may simply be due to fluorometer calibration shift. The fluorometric and 

spectrophotometric methods used in this study provided strongly correlated results, and 

there is substantial research reporting close alignment between HPLC results and those 

obtained using spectrophotometric and fluorometric acidification techniques (MacIntyre 

etal. 1996, Mantoura etal. 1997a). 

The presence of chlorophyll degradation products (phaeopigments) present in natural 

samples can result in an overestimation of chlorophyll a when acidification techniques 

are used. This is largely because the phaeopigment determination doesn't adequately 

distinguish between phaeophytin a and phaeophorbide a derivatives, and the presence of 

chlorophyll b falsely increases the reading for phaeopigments after acidification 

(Lukatelich & McComb 1986, Mantoura et al. 1997a). Chlorophyll a correlations with 

HPLC are significantly improved using the phaeopigment-correcting acidification 

methods of (Lorenzen 1967) and (Holm-Hansen et al. 1965), however these methods do 

not eliminate interference from phaeophytin and phaeophorbide (Mantoura et al. 1997a). 

Chlorophyll a values obtained using spectrophotometric and fluorometric acidification 

techniques to determine phaeopigments are therefore considered to be an approximation. 

The results from this study therefore provide a good approximation of maximum 

biomass of marine benthic algal mats at Tinderbox Marine Reserve and Conningham 

Beach. 

Temporal changes in average algal biomass levels at Tinderbox Marine Reserve and 

Conningham Beach were remarkably similar throughout the study period. The similarity 

in algal biomass at each site suggests that the two sites were responding in the same way 

to significant changes in some environmental variable(s), and further, that this change in 

environmental variable(s) was very similar at both sites. There are many environmental 

variables that may affect biomass levels, and the variables measured in this study were 

not strongly correlated with the variation in measured biomass. Spatial and temporal 

changes in temperature and salinity do not appear to explain the algal biomass variations 

recorded. Although algal biomass showed the same pattern of variation at each site, the 
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nutrients measured (NO2_3, PO4, SO2) did not. Silica levels, for example, were 

approximately 15-40 times higher at Tinderbox Marine Reserve than Conningham 

Beach in late February (27/02/01). However, by late March (20/03/01), when a sudden 

decline in biomass was recorded, it was noted that considerable physical disturbance of 

the sediments had occurred at both sites as a result of a recent storm event. Physical 

disturbance of the substrata can significantly impact on biomass levels, and is thought to 

have resulted in the reduced biomass recorded at this time. 

With the exception of the above-mentioned sudden decline in biomass in late March, 

algal biomass levels at both sites increased throughout the study period (i.e. from 

January to April). The recovery of algal biomass to previous levels following the sudden 

decline was very rapid (two weeks), suggesting that occasional large-scale physical 

disturbance of the substrata may not significantly impact on long-term average algal 

biomass at Tinderbox Marine Reserve and Conningham Beach. 

Variations in algal biomass with depth were not consistent temporally or spatially. The 

depth range investigated (1 to 5 m MSLT) was relatively shallow, and within the 

euphotic zone of each site. Although physical disturbance of the substrata is more 

common in shallower water, both sites are relatively protected and the extent of physical 

disturbance is therefore likely to be relatively small. Longer-term or larger-scale 

investigation of the relationship between biomass and depth at these sites may reveal a 

clearer cause-and-effect relationship. The results of this study suggest that algal biomass 

levels are similar at Tinderbox Marine Reserve and Conningham Beach between the 

depths of 1 and 5 m MSLT. 

1.4.1 Conclusions 

Algal biomass levels measured in this study at Tinderbox Marine Reserve and 

Conningham Beach are broadly similar to levels reported in the literature from other 

areas of the world. Algae, and in particular diatoms, contribute significantly to the 

overall productivity of the near-shore, subtidal marine environment of south-east 

Tasmania. Average algal biomass levels were very similar at the two sites temporally, 

and appeared to respond similarly to large changes in environmental conditions. It was 
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found that physical disturbance of the substrata may affect algal biomass more than the 

effects of depth, temperature, salinity or nutrients at the study sites. 

The fluorometric and spectrophotometric methods investigated in this study provided 

very similar and strongly correlated results, and appeared to provide a good 

approximation of maximum biomass of marine benthic algal mats at Tinderbox Marine 

Reserve and Conningham Beach. 
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CHAPTER 2: Quantifying the Relationship between Water Quality 

and Diatom Community Composition in South-East Tasmania 

2.1 INTRODUCTION 
Oceans cover 71% of the earth's surface, yet comparatively little is known about them. 

As an integral part of the world's ocean ecosystems, coastal marine environments 

provide feeding, breeding and nursery grounds for many (often commercially important) 

species, supporting a diverse array of flora and fauna, and provide a buffer zone between 

human activity and marine biota. With most of the world population living in the coastal 

zone (Goldberg 1994), the current and potential impacts on coastal aquatic ecosystems 

are very significant. The greatest impact in many cases is eutrophication, a result of 

increased nutrient loading (Sundback & Snoeijs 1991b, Hallegraeff 1992). However, 

human occupation of coastal areas also frequently results in physical changes to aquatic 

environments, such as land fill, chemical contamination, reduced light from turbidity 

and shading around marinas, construction of rock walls altering sand movement along 

our beaches, and localized alteration of water temperatures around outlet pipes. 

Significant changes in the physical and/or chemical conditions of a water body generally 

result in changes occurring at the base of the food chain, the algal community (Round 

1981). The algal community is a significant and integral part of aquatic ecosystems, and 

changes in algal composition can have far-reaching impacts on higher levels of the food 

chain. The long-term benefits of better understanding the interactions between 

environmental variables and algal communities in the near-shore marine environment 

are therefore immense, and fundamental to sustainable management of coastal aquatic 

ecosystems. 

Relationships between diatoms and water quality variables have been examined 

• extensively in the recent past (Archibald 1972, Slade& 1986, Flower & Nicholson 1987, 

Royle & King 1992, Roberts & McMinn 1996, Dokulil etal. 1997, Rothfritz et al. 1997, 

Mayer & Galatowitsch 1999, Ng & Sin 2003, Crosta et al. 2004). Relationships have 

been examined from a diverse array of aquatic environments, from fresh or estuarine 

water bodies including lakes (Outridge et al. 1989, Guzkowska & Gasse 1990, Fritz et 

al. 1993, Niederhauser & Schanz 1993, Wu et al. 1997) and rivers (Stevenson 1984, 
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Chessman 1985, Chessman 1986, Kutka & Richards 1996, Rott et al. 1998) to the near-

shore coastal marine environment (Rao & Lewin 1976, Witkowski 1991, Sakson & 

Miller 1993) and open sea (Cahoon et al. 1990, McMinn et al. 2001, Barron et al. 2004, 

Crosta et al. 2004). Extensive research has also been reported from saline lakes (Gell & 

Gasse 1990, Cumming & Smol 1993, Juggins etal. 1994, Gell 1997, Roberts & 

McMinn 1998, Roberts etal. 2001, Taffs 2001). 

During the past two decades, advances in statistical techniques have improved the 

efficiency and accuracy with which diatom community structure can be related to 

environmental variables (ter Braak 1986, 1989, ter Braak & Juggins 1993, Juggins 

2003). Consequently, there are increasing numbers of studies on the relative influence of 

various environmental variables on diatom species composition, and the generation of 

transfer functions to infer environmental variables from palaeo-ecological diatom 

communities (Bennion 1994, Wilson etal. 1994, Jones & Juggins 1995, Vyverman & 

Sabbe 1995, Roberts etal. 2000, Ruhland & Smol 2002, Bloom et al. 2003, Yang et al. 

2003, Tibby 2004). There are, however, comparatively few reported associations 

between near-shore, sub-tidal, benthic marine diatom assemblages and nutrient 

concentrations. However, sheltered marine waters such as semi-enclosed or protected 

embayments provide a similar environment for examining diatom-nutrient relationships 

to non-marine environments such as lakes and rivers. In semi-enclosed and sheltered 

marine environments (as opposed to open marine environments) water quality 

conditions can more readily be affected by the impacts of land-based anthropogenic 

activity (such as increased nutrients) due to proximity and reduced tidal exchange. 

Sheltered marine environments are also often heavily utilized (for marinas, aquaculture, 

industry) because of the fact they are sheltered. Quantitative inference models have been 

successfully used to infer environmental variables in this type of coastal marine 

environment (Ng & Sin 2003), and their use to infer nutrients in palaeo-ecological 

environments has the potential to add significantly to understanding coastal ecosystem 

processes. 

Causative relationships between environmental variables and diatom assemblages are 

identified for the near-shore marine environment of south-east Tasmania. Investigation 

of those environmental variables having the greatest influence on diatom community 
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composition in this area will lead to an improved understanding of the level and type of 

impact that both natural and anthropogenic activity is having on the coastal aquatic 

community. Transfer functions for nutrient concentrations are generated for use in these 

environments as a means of assessing and monitoring the effects of eutrophication. This 

research therefore: 

(i) examines relationships between diatom assemblages and environmental variables 

in the south-east Tasmanian near-shore, sub-tidal marine environment; 

(ii) determines how the diatom community is responding to environmental 

conditions; and 

(iii) establishes a means of monitoring the effects of environmental change on our 

important coastal marine ecosystems. 

2.1.1 Study Area 

The coastal environment of south-east Tasmania around the capital city, Hobart, 

provides a large area of relatively calm waters for much of the year (Figure 2.1). The 

complex coastline includes many sheltered bays, and is protected to a large extent by the 

presence of Bruny Island. Between Bruny Island and the main land mass of Tasmania is 

the D'Entrecasteaux Channel (also referred to simply as the Channel). The study area 

includes approximately 200 square kilometers of waterway, covering an area extending 

from the north of Hobart to approximately the southern tip of Bruny Island. 
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Figure 2.1: Study Area 

Because of the protected nature of these waters, a considerable and growing aquaculture 

industry occurs in the Channel area, particularly salmon farms. These fish farms are 

comprised of large concave nets, suspended around their outer diameter by a buoyant 

structure (Plate 2.1), and often contain thousands of fish. The largely unrestricted water 

flow through the nets prevents the water in which the fish are growing from becoming 

stagnant or putrefied, thus providing a more natural habitat for the fish to grow in. 

However, operation of the fish farms requires daily feeding of the fish, and both digested 

and undigested fish food escapes from the net into the surrounding water, adding 

substantial nutrients to the system (Coughanowr 2000). 
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Plate 2.1: Fish farms in the D'Entrecasteaux Channel 

Plate 2.2: Industry (Pasminco zinc works) on the banks of the Derwent River 

The protected waters of the many bays also provide a safe haven for boats, and there are 

numerous marinas around the general Hobart and Channel areas. Consequently, 

antifouling paints and hydrocarbons from the marinas (Volkman et al. 1992) are added 

to the urban run-off already entering these harbours. In addition, industrial activity along 

the banks of the Derwent River include a pulp-fibre mill, zinc works (Plate 2.2), ship 

33 



builders, and numerous factories (e.g. Cadbury's). In the middle and lower reaches of 

the Derwent estuary, sewage is the main major source of organic pollutant (Green & 

Coughanowr 2003). Yet, despite the obvious problems accompanying the gradual 

processes of eutrophication, the Derwent River is still home to rare endemic fish species 

such as the spotted handfish (Brachionichthys hirsutus) and fragile seahorses (such as 

Hippocampus abdominalis), and supports a diverse array of flora and fauna. Tasmania's 

estuaries and marine ecosystems are, in fact, amongst the most diverse on earth, and 

contain many endemic species (Bruce etal. 1998, Haddy & Pankhurst 1998, Swain etal. 

1982). Yet, little is known about Tasmanian marine and estuarine ecology, or about the 

impacts of anthropogenic activity on these systems. 

2.1.2 Aims and Objectives 

The need exists for a water quality monitoring system in the lower Derwent and Channel 

areas, capable of detecting and predicting changes to the microbial aquatic communities 

so that impacts from pollutants and changing land-use practices can be more fully 

understood. The aim of this research is to develop a diatom-based water quality 

monitoring and assessment tool that can additionally be used to infer the palaeo-

environmental history of marine sites within the region. The objectives of the research 

are to: 

(i) Determine the main diatom species of the south-east Tasmanian near-shore, sub-

tidal marine environment; 

(ii) Identify relationships between the species composition of diatom communities 

and the corresponding physical and chemical water conditions, from a wide 

range of sites within the study area; and 

(ii) 	Develop a transfer function to infer environmental conditions at other sites 

within the study area. 
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2.2 METHODS 

2.2.1 Site Selection 

Approximately 100 coastal sites were selected from hydrographic maps of south-east 

Tasmania as potential sampling sites. Site selection aimed to identify sites likely to be 

relatively physically-protected environments (such as bays), likely to have broadly 

similar physical characteristics, but spanning a wide environmental gradient of nutrient 

conditions. 

After field investigation of all 100 sites, 51 sites were selected as the sampling set for the 

study (Figure 2.2; locations of site numbers are listed in Table 2.1). The choice of the 

final sampling sites was made on the basis of accessibility and site conditions (primarily 

substrate, flora, depth, and degree of exposure). Common reasons for excluding sites 

from the sampling set included rocky substrate, dense macrophyte vegetation (especially 

kelp), water depth greater than 6 m (e.g. at the base of a cliff), and rough water 

conditions. 

2.2.2 Site Sampling 

Sampling of sediments for diatoms at all sites was undertaken between 25/10/01 and 

02/11/01 (mid to late spring), as highest diatom numbers usually occur during the spring 

• (Werner 1977). However, as many diatom species bloom in both spring and autumn 

(Round 1981, Chessman 1985), physical and chemical parameters at each site were 

measured both at the time of diatom sampling and again in mid to late autumn (between 

22/04/02 and 04/05/02) to identify environmental conditions during both times of peak 

growth. The GPS location for each site was recorded at the time of sampling using a 

• Garmin eTrex GPS receiver (Table 2.1). 

2.2.2.1 Sediment Samples 
It was originally intended that benthic sediment samples for diatom analyses would be 

" collected from all sites using a Glew corer (Glew 1989) operated from a boat. However, 

while the Glew corer worked well in finer sediments, in substratum consisting of coarse 

sand it was usually not possible to retrieve a short core intact (the sand fell out of the 
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bottom of the corer during the retrieval process). Diatom sampling of sites was therefore 

undertaken using a Glew corer for finer sediments, and by snorkel using 100 ml 

specimen containers for coarser sediments. Where samples were collected using the 

Glew corer, the top 1 cm of the core was retained for diatom analyses. Where samples 

were collected by snorkel, they were obtained using a 100 ml specimen container to 

collect sediment from the top 1 cm of the substrate, and were immediately capped 

underwater. A second sediment sample was also obtained from each site for sediment 

size analysis and total organic carbon measurement. All benthic sediment samples were 

stored in the dark on ice until processing at University of Tasmania (UTAS) 

laboratories. 
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Table 2.1: Sampling Site Locations 
Site no. Latitude S Longitude E Location 

1 42 49 055 147 18 901 Risdon Cove 
2 42 43 461 147 18 276 Prince of Wales Bay - near entrance 
3 42 49 896 147 18 179 Prince of Wales Bay - inside 
4 42 50 763 147 19 040 Newtown Bay 
5 42 50 314 147 26 606 Geilston Bay 
6 42 51 198 147 19 314 Cornelian bay 
7 42 50 914 147 21 425 Lindisfarne Bay 
8 42 51 942 147 21 274 Montague Bay 
9 42 52 548 147 20 294 Ross Bay - southern end toward slipyards 
10 42 52 361 147 21 753 Kangaroo Bay 
11 42 53 097 147 19 961 Sullivans Cove - near Ferry Wharf 
12 42 53 784 147 20 036 Sandy Bay - near Hutchins boat shed jetty 
13 42 54 760 147 21 498 Sandy Bay Beach 
14 42 54 805 147 24 879 Tranmere - above Tranmere Point 
15 42 56 327 147 24 785 Trywork Point 
16 42 54 834 147 26 107 Ralphs Bay - Rokeby Beach area 
17 42 54 809 147 27 858 Ralphs Bay - Lauderdale area 
18 42 55 884 147 27 662 Richardson Beach - Ralphs Bay 
19 42 56 890 147 27 274 Huxleys Beach - Ralphs Bay 
20 42 58 725 147 26 829 Mortimer Bay- Ralphs Bay 
21 42 58 794 147 25 055 Shelley Beach- Ralphs Bay 
22 42 58 381 147 24 035 Mary Arme Bay 
23 42 57 227 147 21 125 Taroona Beach 
24 42 59 012 147 19 594 Kingston Beach 
25 43 00 347 147 19 587 Blackmans Bay 
26 43 02 311 147 24 346 Beacroft Bay 
27 43 03 537 147 19 737 Tinderbox Marine Reserve 
28 43 03 959 147 21 003 Dermes Point - near Jetty 
29 43 03 713 147 190 19 North West Bay - north-eastern corner 
30 43 01 234 147 17 169 North West Bay - north-west corner 
31 43 04 623 147 16 943 Conningham Beach 
32 43 06 845 147 16 295 Oyster Cove 
33 43 07 437 147 15 503 Little Oyster Cove (Kettering) 
34 43 07 914 147 15 305 Trial Bay 
35 43 08 138 147 13 665 Barnes Bay 
36 43 09 501 147 17 166 Apollo Bay 
37 43 09 723 147 14 647 Peppermint Bay - Woodbridge 
38 43 10 875 147 14 877 Fleurtys Point 
39 43 12 362 147 15 582 Whaleboat Rk - between Fluertys Point and Gordon 
40 43 16 081 147 14 529 Gordon - near Jetty 
41 43 15 883 147 13 209 Simpsons Bay 
42 43 19 112 147 01 358 Port Esperance - near Dover Jetty 
43 43 22 598 147 13 127 Little Taylors Bay 
44 43 25 145 147 12 181 Cloudy Bay Lagoon 
45 43 25 991 146 58 496 Southport - near Jetty 
46 43 02 119 147 15 278 Between Tiger Hd and Spectacle Isl. - Dodges Ferry 
47 42 49 115 147 36 898 Dodges Ferry - south of entrance to Pittwater 
48 42 50 166 147 36 284 Pittwater - behind Seven Mile Beach (spit) 
49 42 49 095 147 33 966 Pittwater - between spit and island 
50 42 48 552 147 01 280 Pittwater - between island and Pittwater causeway 
51 42 47 900 147 32 630 Pittwater - near Orielton Lagoon causeway 
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All samples were collected within the subtidal zone, below 6.5 m water depth (mean 

tidal height). Based on the biomass results from Chapter 1, samples were generally 

collected between 1 m and 5 m water depth. However, samples were collected over 

several days and consequently under various tidal conditions. The depth recorded for 

each site was therefore corrected relative to the tide level for Hobart at the time of 

sampling, and adjusted to reflect the mean tidal height over the previous 12 months. 

2.2.2.2 Physical and Chemical Sampling 

Salinity, temperature and depth were measured using a Conductivity, Temperature and 

Depth (CTD) meter. Water clarity was measured using a Secchi disc (Tyler 1968). 

Duplicate 10 ml water samples for nutrient analyses were collected from approximately 

2 m water depth using a 2-litre Niskin bottle (General Oceanics Inc.), and were stored in 

the dark on ice until processing at UTAS laboratories. 

2.2.3 Sample Analyses 

2.2.3.1 Nutrients 

Nutrient samples were processed at UTAS laboratories using an ALPKEM Auto 

Analyser, following the ALPICEM Methodology Manual (1992). Samples were analysed 

for NO2_3, PO4 and Si02 concentrations. 

2.2.3.2 Total Organic Carbon 

Sediment total organic carbon (TOC) was analysed by the Central Science Laboratory at 

the University of Tasmania, using a Thermo Finnigan Flash Elemental Analyser (1112 

Series). 

2.2.3.3Sediment Size Analysis 

Each sediment sample was divided in half. The weight (g) of each half-sample was then 

recorded (to 4 decimal places). The lighter of the 2 half-samples was dried in an oven at 

60°C for 24 hours and reweighed. The moisture content calculated for the dried half-

sample was used to infer the dry-weight of the second half of the sediment sample. 
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The second half of the sediment sample was wet-sieved through 2 mm, 125 gm and 63 

!..tm sieves. Each fraction was dried in the retaining sieve in an oven at 60°C for 24 

hours, then removed from the sieve and reweighed. The < 63 gm fraction of the 

sediment sample was calculated as: Inferred dry weight of sample less the weight of the 

three retained fractions (2 mm, 125 gm and 63 um). 

2.2.4 Diatom Community Composition 

From each sample, approximately 5 - 10 g was placed in a 250 ml beaker with 50 ml 

10% hydrochloric acid (HCI) to remove any carbonate material that may be present. 

Beaker contents were gently simmered on a hot-plate for 2 hours in a fume-cupboard, 

after which time distilled water was added to bring the beaker volume to 250 ml. The 

samples were then left to settle for 6 to 12 hours, after which time the supernatant 

(approx. 70% volume) was carefully poured off. Samples were then rinsed two 

additional times, repeating the above procedure. Samples were subsequently treated with 

100 ml 10% Hydrogen peroxide (1-1202) to remove organic matter, using the same 

method as for the HC1, and rinsed three times. 

At least two permanent microslides were made from each sample by pippetting 500 um 

of the prepared solution onto a glass microslide cover-slip and drying for several hours 

at approximately 60°C on a hotplate. Cover slips were mounted on glass microslides 

using the mounting medium Naphrax (refractive index 1.72). Microslides were inspected 

under a Zeiss Standard 20 light microscope using 1000x oil immersion optics. 

At least 400 diatom species were enumerated from each sample. Species are expressed 

as a relative abundance (% of counted frustules). Species identifications were based 

primarily on the works by (Round etal. 1990, 'Crammer & Lange-Bertalot 1991b, 

1991a, 1997b, 1997a, Witkowski etal. 2000) and particularly the Australian works by 

(Foged 1978, John 1983). 
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2.2.5 Statistical Analyses 

22.5.1 Canonical Correspondence Analysis 
Relationships between diatom assemblages and measured environmental variables were 

examined using Canonical Correspondence Analysis (CCA) to determine which 

environmental variables best explain variations in the diatom assemblage data. CCA, a 

direct gradient ordination technique (ter Braak 1986), was performed using Canoco 

version 4.5. 

Measurements for a total of 22 environmental variables were used in the initial CCA 

analyses, including: site depth; total organic carbon; spring and autumn salinity and 

temperature at 1 m water depth and 0.1 m above the bottom; spring and autumn Secchi 

depth; spring and autumn NO2_3, PO4 and Si02 concentrations, and relative percentage 

of four sediment-size fractions (<63 um, 63-125 urn, 0.125-2mm, >2mm). 

All 22 variables in the environmental training set were log transformed (logio(x+1)) 

prior to statistical analyses to reduce skewness in the data (Verleyen et al. 2003). All 

diatom species that represented ?_ 2% of at least one sample were included in the species 

training set (111 species) (Katoh 1993). In each CCA, rare species were down-weighted 

and sample scores were scaled to be weighted averages of species scores. Following 

preliminary CCA analysis, 2 environmental variables were identified as having a high 

variance inflation factor (VIF >20) and subsequently removed from the data set. A high 

VIF value occurs when an environmental variable is almost perfectly correlated with 

other variables and doesn't contribute additional information to the ordination (ter Braak 

1988). The two environmental variables removed were spring temperature at 1 m water 

depth, and spring salinity at 1 m water depth, which were strongly correlated with spring 

temperature (R2  = 0.88) and spring salinity (R2  = 0.81) respectively at the sediment-

water interface. 

Forward selection was used to identify the environmental variables that contributed 

significantly to explaining the variation in the species data. Unrestricted Monte Carlo 

permutation tests (499 permutations) were used to judge the statistical significance of 

each variable. The relative explanatory strength of each environmental variable 
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identified as significant (P < 0.05) in the forward selection process was independently 

checked in a constrained CCA (ter Braak 1988). In this type of analysis, the variable that 

explains the most variance in the species data has the highest X1/X2 ratio (Dixit et al. 

1991). The 2.I/X2 ratios from the constrained CCA analyses were used to determine 

variables suitable for the development of a transfer function (Dixit etal. 1991). In this 

study, transfer functions were developed for variables with a X1/X2 ratio >0.5 (Table 2.2). 

CanoDraw version 4.12 was used to provide graphical representation of the CCA 

analysis. 

Table 2.2: Forward selection results for significant variables with high k1/A.2 ratios 

Environmental Variable P value X.1/X2 ratio 

Spring NO2-3 0.002 0.796 

% sediment size <631m 0.002 0.734 

spring Si02 0.002 0.678 

autumn NO2-3 0.002 0.502 

2.2.12 Transfer Functions 
Transfer functions were generated for the best explanatory variables in the 

environmental data set (these variables were identified as contributing significantly to 

explaining the variation in the species data through Unrestricted Monte Carlo 

Permutation tests and constrained CCAs, as outlined in the Section 2.2.5.1 above). 

Transfer functions were generated for: spring NO2_3, % sediment size < 631.im, spring 

Si02  and autumn NO2.3 (Table 2.2), using C 2  software (Juggins 2003). Environmental 

variables included in the transfer function generation were log transformed, and only 

diatom species representing 2% of at least one sample were included in the species 

training set. Weighted averaging with both inverse deshrinking and classical 

deshrinking, with and without tolerance down-weighting, and with boot-strapping cross-

validation was applied to the training set. Simple weighted averaging with inverse and 

classical deshrinking, as well as with and without tolerance down-weighting, has been 

shown to be as effective as other methods (e.g. weighted averaging partial least squares) 

for providing reliable inference models and reconstructions (Oster et al. 2004). 

42 



2.3 RESULTS 

2.3.1 Physical and Chemical Results 

2.3.1.1 Salinity, Temperature and Depth 

Salinity was generally above 30 (at maximum water depth) on both sampling occasions 

(spring and autumn). However, although a maximum-depth salinity measurement of above 

30 was recorded for each site at least once, salinity did vary widely at some sites during the 

study period, and maximum-depth salinity ranged from 8.95 (Site 1, Risdon Cove, in spring; 

31.6 in autumn) to 34.95 at Site 5 (Geilston Bay, autumn). Surface water (1 m water depth) 

salinity at each site was more strongly correlated with maximum-depth salinity during spring 

(R2  = 0.81) than autumn (R2  = 0.22) due to a difference in the amount of overlying fresh 

water. Full results for spring and autumn salinity are included in Table 2.3. Spring and 

autumn salinity for the maximum water depth at each study site are shown in Figure 2.3. 

Water temperature measurements were generally around 16°C during spring and 14°C 

during autumn (Table 2.3). Surface water (1 m water depth) temperature at each site was 

strongly correlated with maximum-depth temperature during both spring (R 2  = 0.88) and 

autumn (R2  = 0.91). Full results for spring and autumn temperature are listed in Table 2.3. 

Spring and autumn water temperature for the maximum water depth at each study site are 

shown in Figure 2.4. 

Water depth (adjusted to reflect mean tidal height) ranged from 0.44 m (Site 44, Cloudy Bay 

Lagoon) to 6.41 m (Site 9, Ross Bay) (Table 2.3). The average sampling depth of all sites 

was 2.93 m (mean tidal height). Water depth at each site is listed in Table 2.3. 

2.3.1.2 Light Penetration 

Secchi depth measurements at most sites were at least equal to the water depth from which 

the sample was taken, thus most sampling sites were within the euphotic zone. Site 2 

(Dowsings Point) was the only site at which Secchi depth was less than water depth on both 

sampling occasions (Secchi depth at Site 2 was 74.3% of water depth in spring and 80.3% of 

water depth in autumn). The lowest recorded Secchi depth measurement was 1.2 m at Site 3 

(Prince of Wales Bay) in spring; the highest was 6.41 m at the deepest site (Site 9, Ross Bay) 

in autumn (Table 2.3). 

43 



Table 2.3: Training set site locations, water and Secchi depth, temperature and salinity 

Site 
nos. 

Latitude 
South 

Longitude 
East 

Water 
Depth 

Spring 
Secchi 
(% water 
de th 

Autumn 
Secchi 
(% water 
de th 

Spring 
Water 
Temp °C 
1 m 

Spring 
Water 
Temp °C 
bottom 

Spring 
Salinity 
1 m 

Spring 
Salinity 
bottom 

Autumn 
Water 
Temp °C 

1 m 

Autumn 
Water 
Temp °C 
bottom 

Autumn 
Salinity 
1 m 

Autumn 
Salinity 
bottom 

1 42 49 055 147 18 901 1.39 100 100 16.67 16.73 9.18 8.95 15.95 16.00 24.84 31.60 
2 42 43 461 147 18 276 2.49 74.30 80.32 14.76 13.97 13.60 29.91 16.03 16.03 30.63 32.64 
3 42 49 896 147 18 179 1.98 60.61 100 15.66 15.59 10.53 10.96 16.01 16.00 27.67 32.07 
4 42 50 763 147 19 040 2.36 95.34 100 14.06 13.86 30.16 31.24 16.06 16.07 31.14 32.14 
5 42 50 314 147 26 606 5.45 40.37 100 13.76 13.31 29.47 33.10 15.63 15.78 23.62 34.95 
6 42 51 198 147 19 314 4.27 70.26 100 13.76 13.41 30.25 32.80 16.20 16.20 26.23 26.23 
7 42 50 914 147 21 425 1.07 100 100 16.38 16.38 15.06 15.06 16.08 16.08 29.56 30.82 
8 42 51 942 147 21 274 3.05 100 75.41 14.74 14.79 25.70 31.65 16.03 16.04 30.55 32.89 
9 42 52 548 147 20 294 6.41 54.60 100 13.75 13.29 31.94 33.20 15.90 16.01 30.05 33.41 
10 42 52 361 147 21 753 3.34 100 100 14.56 14.48 31.66 31.90 15.92 15.98 32.11 32.78 
11 42 53 097 147 19 961 4.84 100 100 14.26 13.49 31.73 33.20 15.74 15.76 29.85 32.53 
12 42 53 784 147 20 036 2.87 100 100 14.31 14.21 31.71 32.04 15.80 15.78 30.73 32.09 
13 42 54 760 147 21 498 2.42 100 100 14.17 13.83 32.50 32.97 15.70 15.68 32.44 32.57 
14 42 54 805 147 24 879 2.91 100 100 12.73 12.75 26.86 26.99 15.46 15.49 27.95 32.27 
15 42 56 327 147 24 785 2.95 100 81.36 13.76 13.78 29.01 28.96 15.35 15.44 30.43 31.55 
16 42 54 834 147 26 107 3.06 100 100 14.17 14.10 30.89 31.52 15.33 15.32 29.78 30.38 
17 42 54 809 147 27 858 2.27 100 100 14.17 14.17 25.85 26.03 15.51 15.60 31.76 32.30 
18 42 55 884 147 27 662 2.71 100 88.56 14.05 14.05 26.90 26.86 15.38 15.60 31.56 32.44 
19 42 56 890 147 27 274 3.13 100 100 13.86 13.86 27.27 27.37 15.36 15.39 31.84 32.11 
20 42 58 725 147 26 829 2.95 100 100 13.78 13.79 27.65 27.82 15.60 15.64 32.26 32.54 
21 42 58 794 147 25 055 2.48 100 100 14.09 14.07 28.29 28.57 15.38 15.41 32.33 32.47 
22 42 58 381 147 24 035 3.19 100 100 13.93 13.94 29.25 29.92 15.53 15.54 31.65 32.64 
23 42 57 227 147 21 125 3.21 100 100 15.57 15.33 30.73 31.76 15.82 15.83 33.05 33.34 
24 42 59 012 147 19 594 3.03 100 100 15.16 15.10 31.98 32.03 15.70 15.72 33.17 33.47 
25 43 00 347 147 19 587 5.42 100 100 , 13.69 13.42 33.44 33.62 15.58 15.69 33.04 33.38 
26 43 02 311 147 24 346 2.72 100 100 14.07 14.06 30.66 30.63 15.39 15.62 31.90 33.53 

Continued..... 
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Table 2.3 (continued): Training set site locations, water and Secchi depth, temperature and salinity 

Site 
nos. 

Latitude 
(South) 

Longitude 
(East) 

Water 
Depth 
(m) 

Spring 
Secchi 
(% water 
depth) 

Autumn 
Secchi 
(% water 
depth) 

Spring 
Water 
Temp °C 
(1 m) 

Spring 
Water 
Temp °C 
(bottom) 

Spring 
Salinity 
(1 m) 

Spring 
Salinity 
(bottom) 

Autumn 
Water 
Temp °C 
(1 m) 

Autumn 
Water 
Temp °C 
(bottom) 

Autumn 
Salinity 
(1 m) 

Autumn 
Salinity 
(bottom) 

27 43 03 537 147 19 737 4.27 100 100 13.99 13.66 32.45 32.49 15.75 15.73 33.67 33.69 
28 43 03 959 147 21 003 1.02 100 100 14.78 14.78 32.54 32.54 15.53 15.53 33.73 33.68 
29 43 03 713 147 190 19 2.89 100 100 15.03 14.34 32.10 32.31 15.74 15.70 33.72 33.69 
30 43 01 234 147 17 169 4.30 100 100 15.01 14.23 32.31 32.07 15.73 15.29 33.46 33.20 
31 43 04 623 147 16 943 2.82 100 100 14.54 14.33 32.24 32.30 15.58 15.59 33.74 33.65 
32 43 06 845 147 16 295 4.49 100 100 14.42 13.63 32.18 32.63 15.90 15.89 33.42 33.31 
33 43 07 437 147 15 503 2.88 100 100 14.81 14.69 31.92 31.87 15.60 15.56 33.46 33.45 
34 43 07 914 147 15 305 1.85 100 100 15.29 15.38 31.79 31.68 15.63 15.63 33.41 33.45 
35 43 08 138 147 13 665 2.69 100 100 15.20 14.52 32.05 31.79 15.61 15.60 33.62 33.57 
36 43 09 501 147 17 166 2.34 100 100 14.79 14.79 32.06 32.10 15.60 15.60 33.58 33.56 
37 43 09 723 147 14 647 5.06 100 100 14.96 14.91 31.94 32.10 15.62 15.60 33.44 33.41 
38 43 10 875 147 14 877 5.36 100 70.90 14.59 13.54 32.01 33.43 15.60 15.60 33.39 33.39 
39 43 12 362 147 15 582 5.10 100 100 14.54 14.01 32.47 33.02 15.54 15.54 32.47 33.02 
40 43 16 081 147 14 529 1.66 100 100 15.52 15.53 31.37 31.32 14.95 14.95 33.40 33.36 
41 43 15 883 147 13 209 1.32 100 100 14.63 14.64 32.01 32.04 15.29 15.28 33.32 33.19 
42 43 19 112 147 01 358 4.08 100 100 14.42 14.28 33.20 33.28 14.88 14.87 33.24 33.49 
43 43 22 598 147 13 127 1.35 100 100 12.58 12.60 31.88 31.88 15.39 15.39 33.75 33.75 
44 43 25 145 147 12 181 0.44 100 100 13.86 13.86 33.37 33.37 15.60 15.60 33.37 33.37 
45 43 25 991 146 58 496 3.02 100 100 13.78 13.75 34.03 34.07 15.12 15.15 32.93 32.91 
46 43 02 119 147 15 278 1.11 100 100 13.64 13.64 33.04 33.04 15.50 15.59 33.04 33.04 
47 42 49 115 147 36 898 2.22 100 100 13.58 13.58 32.89 32.76 15.30 15.29 32.89 32.76 
48 42 50 166 147 36 284 1.19 100 100 13.47 13.48 32.81 32.78 15.46 15.47 32.81 32.78 
49 42 49 095 147 33 966 3.72 100 100 13.52 13.52 32.67 32.65 15.32 15.31 32.67 32.65 
50 42 48 552 147 01 280 2.04 100 100 13.27 13.27 31.67 31.79 15.50 15.59 31.67 31.79 
51 42 47 900 147 32 630 0.46 100 100 13.63 13.63 31.47 31.47 15.44 15.47 31.47 31.47 
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2.3.1.3 Nutrient Concentrations 

Concentrations of NO2_3 at most sites was low (<0.5 umol/L) for both spring and 

autumn samples, and at 16 sites was below the detection limit of 0.01 gmo1/1, on at 

least one sampling occasion. However, several sites experienced much higher NO2-3 

levels (up to > 8 gmol/L), particularly sites in the Derwent Estuary immediately above 

and below Hobart during spring (Sites 1 to 9, and Sites 10 to 14, respectively) (Figure 

2.6). Average NO2_3 concentrations were slightly lower during autumn (0.18 umol/L) 

than spring (0.76 gmol/L). Recorded levels for all nutrients are listed in Table 2.4. 

Phosphate was closely correlated with NO2_3 (R 2  = 0.87) during spring (Figure 2.5), 

but to a much lesser extent during autumn (R2  = 0.57), and ranged from 0.10 to 1.21 

umol/L. Phosphate was marginally higher during spring at Sites 1 to 9, and up to 4 

times the average spring level for all sites of 0.29 gniol/L. 

Figure 2.5: Correlation between Spring Pat and Spring NO2-3 

Average silicate levels were much higher in spring than in autumn (up to 45 times 

greater at Site 22, Mary Ann Bay), and overall were highest in the Derwent Estuary 

above Hobart (Sites 1 to 9) (Figure 2.7 and Table 2.4). Silicate levels ranged from 

0.16 !Amon (Site 24, Kingston Beach, autumn) to 64.16 gmol/L (Site 2, entrance to 

Prince of Wales Bay, spring). 
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2.3.1.4 Sediment Size Analyses & Total Organic Carbon 
Sediment size analyses of training-set samples determined the relative percentage 

fractions of < 63 gm, 63-125 gm, 0.125-2 mm and > 2 mm. The range of substrate 

sediments encountered at sites within the study area was very broad, from —85% of 

sediment <63 gm (Site 3, Prince of Wales Bay), to —98% of sediment 0.125-2 mm 

(Site 51, Orielton Lagoon causeway). Sediment analyses results are listed in Table 

2.5. 

The range of sediment total organic carbon (TOC) also varied widely across the 

training-set sites, from 0.01% (Sites 25, Blacicrnans Bay, & Site 26, Seacroft Bay) to 

. 8.85% (Site 3, Prince of Wales Bay). TOC was generally highest at sites within the 

Derwent Estuary, and was correlated with the % fraction of sediment <63 jim (R 2  = 

0.70) (Figure 2.8). The full range of TOC results are listed in Table 2.5. 

Figure 2.8: Correlation between sediment size and sediment TOC 
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Table 2.5: Sediment size and TOC for training set sites 

Site nos. < 63 p.m 63-125 pm 0.125-2 mm >2 mm Sediment % TOC 
1 25.92 20.51 52.21 1.36 0.74 
2 66.85 18.15 14.99 0.00 6.80 
3 84.87 7.21 6.14 1.78 8.85 
4 30.66 14.81 54.23 0.29 3.14 
5 62.42 8.13 29.46 0.00 5.03 
6 18.97 10.45 70.58 0.00 0.80 
7 22.62 30.05 47.33 0.00 0.72 
8 60.76 18.81 20.00 0.43 5.02 
9 32.00 20.25 46.73 1.01 2.46 
10 38.50 25.49 35.33 0.67 1.11 
11 60.17 19.16 18.50 2.16 4.73 
12 43.90 27.88 28.23 0.00 1.64 
13 4.35 57.26 38.39 0.00 0.24 
14 5.12 10.88 82.68 1.32 0.25 
15 3.03 27.10 69.87 0.00 0.08 
16 6.85 17.60 75.56 0.00 0.27 
17 2.92 18.48 78.60 0.00 0.24 
18 3.59 4.97 74.18 17.26 0.15 
19 1.77 16.67 81.55 0.00 0.22 
20 6.26 35.19 58.56 0.00 0.33 
21 1.85 1.10 97.05 0.00 0.21 
22 2.25 5.63 91.76 0.36 0.06 
23 2.46 25.25 72.25 0.04 0.20 
24 1.38 8.45 86.04 4.13 0.36 
25 1.15 2.31 96.54 0.00 0.01 
26 1.74 30.85 67.10 0.31 0.01 
27 2.48 17.15 80.11 0.26 0.14 
28 2.70 13.57 80.73 3.00 0.06 
29 2.07 6.87 89.96 1.10 0.15 
30 45.01 30.73 23.92 0.34 1.41 
31 5.15 4.81 87.24 2.80 0.17 
32 67.30 22.52 9.73 0.45 1.95 
33 52.76 6.64 24.95 15.65 2.96 
34 21.45 17.94 40.93 19.69 0.89 
35 28.47 13.00 44.94 13.58 1.78 
36 3.93 10.07 81.11 4.89 0.21 
37 79.55 13.00 7.45 0.00 1.71 
38 52.82 37.95 7.86 1.37 1.23 
39 36.01 59.12 4.86 0.00 1.08 
40 13.37 15.07 71.56 0.00 0.15 
41 2.74 1.24 96.02 0.00 0.11 
42 7.31 59.92 32.18 0.59 0.13 
43 3.97 12.25 83.77 0.00 0.10 
44 7.44 29.13 63.43 0.00 0.18 
45 5.29 5.44 89.20 0.07 0.51 
46 1.93 32.28 64.43 1.37 0.04 
47 5.84 29.91 63.90 0.35 0.29 
48 3.61 3.65 92.74 0.00 0.06 
49 3.44 3.80 92.77 0.00 0.17 
50 13.81 14.53 71.65 0.00 0.36 
51 0.87 0.37 98.39 0.37 0.23 
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2.3.2 Diatom Community Composition 

All diatom species comprising at least 2% of at least one sample were included in the 

analyses of the training set data. Together, these species constituted > 90% of the 

diatom community at every site in the training set except one (Site 30), and accounted 

for an average 95% of all total diatom counts (at Site 30, Dru Point, these species 

constituted 84% of the diatom community). The following section focuses on the 

above-mentioned diatom species from the training set (listed in Table 2.7). Diatom 

species names and authorities, and diatom abundance and composition for the training 

set, are listed in Table 2.1 and Table 2.2 respectively, in Appendix 2. 

A total of 111 diatom species from 46 genera were recorded at 2% of at least one 

sample from the 51 sampling sites. For each sampling site, the seven numerically 

dominant diatom species from the site constituted between approximately 51% and 

91% of the diatom community. The main species from each site are shown in Figure 

2.9. On average, the species listed in this figure constitute —76% of the assemblage at 

each site (range 51% to 93%, except for site 30 (42%) which contained many species 

in small proportions). 

Navicula monoculata var. omissa was the only diatom taxon recorded from all 51 

sites, and was the dominant taxon at 16 sites. Across all sites, N. monoculata van 

omissa averaged 14% of diatom community composition (range 0.8 to 56.2%). 

Skeletonema costatum was dominant at seven sites, and Nitzschia amphibia was 

dominant at six sites. The numerically dominant species at remaining sites were 

Opephora olsenii, Synedra tabulata var. tabulata, Planothidium delicatulum, 

Plagiogramma staurophorum, Navicula arenaria var. rostellata, Fragilaria pinnata, 

Ehrenbergia granulosa, Cyclotella striata, Cocconeis carminata, Amphora 

subturgida, Amphora laevissima, Cymatosira aff. belgica, and two unidentified 

species (Species 1 and Species 4). 
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2.3.3 Statistical Analyses 

Results from the canonical correspondence analysis (CCA) showed that the sum of 

unconstrained eigenvalues (representing the total diatom variance in the dataset) was 

2.86. The twenty selected environmental variables explained approximately 46% of 

the total diatom variance (combined eigenvalues totalling 1.31). The environmental 

variables that best explained the variation in diatom community structure were spring 

NO2_3, spring Si02, % sediment < 63 gm and autumn NO2.3 (P = 0.002 for all). These 

four variables together explained —17.5% of the total variation in diatom community 

composition. Spring NO2_3 explained approximately 6% of the total variation in 

diatom community composition (eigenvalue 0.17), while the other three variables 

(spring Si02, % sediment < 63 gm and autumn NO2_3) each explained approximately 

4% of the variation observed (eigenvalues of 0.11 each). The relationships between 

the active environmental variables, the sites sampled, and the species assemblage of 

the diatom communities are shown in the following biplots (Figures 2.10 and 2.11). In 

the following figures, the arrowed lines for each environmental variable show the 

relative direction of increasing levels for that variable (these lines can also be 

extended in the reverse direction through the point of origin (0,0)). 
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The relative position of each sampling site along the gradient for each active 

environmental variable indicates the relative influence of the environmental variable at 

the sampling site. For example, Sites 3 and 5 (north-east quadrant, Figure 2.10) are 

located far along the environmental gradients (arrows) for spring NO2_3, and also for 

sediment fraction < 63p,m, and are therefore fine sediment sites with high NO2-3 

concentrations. Conversely, Sites 44 and 46 (south-west quadrant) have low NO 2 _3  levels 

and coarser sediments. 
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The species-environment relationships shown in Fig 2.11 are high: 0.939 for axis one 

(horizontal axis, Eigenvalue 0.195) and 0.910 for axis two (Eigenvalue 0.167), indicating 

a strong relationship between diatom species and the active environmental variables. By 

connecting a line (arrow) from the point of origin (0,0) to a species point, the direction in 

which the species' abundance value increases at the largest rate across the ordination 

diagram is indicated (ter Braak & 'Smilauer 2002). 
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2.3.3.1 Transfer Functions 
Transfer functions for each of the four active environmental variables (spring NO2-3, 

spring Si02, % sediment < 63 pm and autumn NO2_3) were generated using C 2  

software (Juggins 2003) (see Methods Section 2.2.5 re determining 'active' 

environmental variables). Weighted averaging with both inverse deshrinldng and 

classical deshrinking, with and without tolerance down-weighting, and with boot-

strapping cross-validation was applied to the training set. 

The best results for spring NO2_3, spring Si02 and % sediment <631.tm were obtained 

using weighted averaging with inverse deshrinking. This method provided the highest 

correlation (0.88, 0.81 and 0.75 respectively), the lowest average and maximum bias, 

the lowest root mean square of the error (RMSE) (0.08 logio [mon, 0.16 log i o 

[anon and 0.26 respectively), and the lowest or second lowest RMSE of prediction 

(RMSEP) (0.15 logio innol/L, 0.26 logio [mon and 0.38 respectively) (Table 2.6). 

The training set was checked for outliers for each variable, identified as those samples 

having a residual greater than the standard deviation of the environmental variable in 

the training set (Jones & Juggins 1995). Weighted averaging with inverse deshrinking 

showed no outliers forilie above"thtee -ericifoliffiental variables. The strength of the 

relationships between observed and diatom-predicted values for spring NO2.3, spring 

Si02 and % sediment size <63pm are shown in Figures 2.12 to 2.14. 

The best results for autumn NO2.3 were also initially obtained using weighted 

averaging with inverse deshrinlcing. However, most of the autumn NO2_3 samples in 

the data set were identified as outliers using either inverse or classical deshrinking 

without tolerance downweighting. Tolerance downweighting was therefore 

investigated for autumn NO2_3. However, the squared correlation between bootstrap 

predicted and observed values for autumn NO2_3 was so low (<0.01) that developing a 

transfer function for this variable was not a viable option (Table 2.6). This variable 

was therefore omitted from further analyses. 
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Table 2.6: Summary statistics showing performance of Transfer Function models 

(see key below table for codes) 
Variable Model R2 Average Bias Max. Bias RMSE Boot R2 RMSEP 

Spring NO2.3 WA_Inv 0.877 -1.98813E-16 0.157 0.081 0.686 0.151 
WA_Cla 0.877 -2.87624E-16 0.221 0.087 0.696 0.146 
WATOL_Inv 0.864 -9.1192E-17 0.209 0.085 0.545 0.209 
WATOL_Cla 0.864 -9.37431E-17 0.195 0.092 0.557 0.210 

Spring Si02 WA_Inv 0.815 6.85726E-16 0.256 0.161 0.610 0.262 
WA_Cla 0.815 1.08192E-15 0.431 0.178 0.614 0.256 
WATOL_Inv 0.757 3.04767E-17 0.311 0.184 0.562 0.310 
WATOL_Cla 0.757 -5.00689E-17 0.574 0.212 0.562 0.318 

Sed<63um WA_Inv 0.745 -3.06944E-16 0.381 0.262 0.529 0.381 
WA_Cla 0.745 -8.42463E-16 0.403 0.304 0.535 0.382 
WATOL_Inv 0.719 1.11022E-15 0.298 0.276 0.516 0.424 
WATOL_Cla 0.719 1.31268E-15 0.453 0.325 0.521 0.447 

Autumn NO2.3 WA_Inv 0.756 8.27225E-17 0.124 0.047 0.230 0.089 
WA_Cla 0.756 1.39322E-16 0.099 0.054 0.240 0.091 
WATOL_Inv 0.630 -3.42863E-17 0.115 0.057 0.003 0.105 
WATOL_Cla 0.630 -5.65996E-17 0.051 0.072 0.006 0.114 

Key: 

WA_Inv 	Weighted averaging model (inverse deshrinking) 
WA_Cla 	Weighted averaging model (classical deshrinking) 
WATOL_Inv 	Weighted averaging model (tolerance downweighted, inverse deshrinking) 
WATOL_Cla 	Weighted averaging model (tolerance downweighted, classical deshrinking) 
RMSE 	Root mean squared error for the training set (apparent RMSE) 
R2 	Squared correlation between inferred and observed values 
Average Bias Average bias in residuals 
Max. Bias 	Maximum bias in residuals 
Boot R2 	Squared correlation between bootstrap predicted and observed values 
RMSEP 	Root mean squared error of prediction (sl + s2) (bootstrap RMSEP) 

2.3.3.2 Species Optima and Tolerances 

Optima and tolerances of the training set species for spring NO2_3, spring Si02 and % 

sediment < 63 gm are shown in Figures 2.15 to 2.17. Species optima and tolerance for 

all three variables show a logged distribution. A complete list of optima and tolerance 

ranges for all species in the training set is provided in Table 2.7 at the end of the 

results section. 
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Figure 2.12: Relationship between observed and diatom-predicted values for spring 

NO2.3, showing bootstrapped r2  values. 
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• Figure 2.13: Relationship between observed and diatom-predicted values for spring 

Si02, showing bootstrapped r 2  values 
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Figure 2.15: Optima and tolerances of the training set species for spring NO2-3 
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Figure 2.16: Optima and tolerances of the training set species for spring Si02 
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Table 2.7: List of training-set species, species code number used in analyses, number of occurrences (N), effective number of occurrences (N2 - 
(Hill 1973)), maximum relative abundances (% of diatom community composition at each site), and optima & tolerance range for spring NO2-3, 
spring Si02 and % sediment <63 pm 

Species 
Code Species Name N N2 

Maximum 
Relative 

Abundance 
(%) 

Optima & Tolerance Range 
NO2-3 (pmoVL) 

Optimum 	Min. 	Max. 

Optima & Tolerance Range 
Si02 (prnol/L) 

Optimum 	Min. 	Max. 

Optima & Tolerance Range 
°A, Sediment <631.m 

Optimum 	Min. 	Max. 
1 Achnanthes &wipes 1 1.0 5.25 0.380 0.001 1.086 8.77 3.63 19.61 44.71 15.02 129.41 
2 Achnanthes residensis 28 21.0 5.29 0.508 0.001 1.688 10.66 2.92 33.66 10.88 2.47 39.66 
3 Achnanthes oblongella 3 2.2 2.00 0.935 0.134 2.303 15.31 6.20 35.95 48.41 36.94 63.34 
4 Amphora aequalis 10 8.5 8.35 0.037 0.001 0.126 7.30 2.72 17.50 4.39 1.31 11.60 
5 Amphora decussate 4 3.1 4.09 0.163 0.032 0.309 12.41 6.82 22.00 2.84 1.97 3.97 
6 Amphora exigua 4 3.4 10.82 0.178 0.059 0.311 12.89 6.46 24.87 3.21 1.85 5.22 
7 Amphora laevissima 20 10.5 43.75 0.292 0.001 0.964 9.31 3.78 21.24 5.30 1.09 17.99 
8 Amphora maletractata var. constricts 12 9.6 7.56 0.152 0.016 0.306 4.54 2.15 8.77 13.52 3.25 48.57 
9 Amphora species 1 2 1.6 12.38 0.006 0.001 0.022 14.33 9.71 20.93 2.52 0.77 5.96 
10 Amphora submontana 1 1.0 2.27 0.023 0.001 0.546 5.03 1.86 11.71 2.72 0.30 9.60 
11 Amphora subturgida 42 34.5 23.68 0.442 0.001 1.363 9.87 3.56 24.88 11.93 3.11 39.67 
12 Anaulus minutus 22 16.2 10.37 0.213 0.001 0.738 9.40 3.67 22.14 5.01 1.19 15.48 
13 Anorthoneis vortex 11 6.5 6.56 0.053 0.010 0.097 4.30 1.70 9.41 4.81 2.36 9.05 
14 Bacillaria paradoxa 34 25.9 9.40 0.407 0.001 1.228 10.11 4.08 23.28 17.92 4.59 62.98 
15 Cocconeis stauroneiformis 14 10.8 4.97 0.657 0.001 1.822 10.58 3.55 28.50 20.13 4.80 75.99 
16 Catenula adhaerens 39 29.7 16.46 0.295 0.001 0.929 11.39 4.86 25.22 7.90 1.78 27.54 
17 Chaetocerus resting spores 9 6.2 8.95 0.821 0.119 1.963 13.04 5.20 30.78 23.57 4.72 104.56 
18 Cocconeis carminata 1 1.0 10.90 1.344 0.551 2.543 62.10 28.92 132.06 25.92 8.43 75.79 
19 Cocconeis disculoides 33 26.2 10.95 0.443 0.001 1.722 8.09 2.28 24.15 10.54 2.56 36.36 
20 Cocconeis disrupta 15 9.0 3.38 0.314 0.001 1.039 6.75 1.56 22.39 10.20 2.42 35.75 
21 Cocconeis molesta var. crucifera 7 6.8 2.00 0.170 0.038 0.319 7.06 6.23 7.97 40.21. 27.19 59.26 
22 Cocconeis peltoides 22 17.3 4.81 0.206 0.001 0.538 6.82 2.46 16.64 6.56 1.56 21.35 
23 Cocconeis placentula 15 11.5 3.47 0.459 0.001 1.727 14.82 6.12 34.14 10.31 1.88 43.46 
24 Cocconeis placentula var. euglypta 19 15.0 8.58 0.690 0.001 2.286 14.10 4.87 37.88 17.94 4.32 66.34 
25 Cocconeis scutellum 33 25.3 20.09 0.313 0.001 0.981 6.85 2.78 15.30 14.08 3.56 48.82 
26 Cocconeis scutellum var. parva 3 2.7 5.80 1.951 1.143 3.062 50.37 36.93 68.57 32.89 19.07 56.23 

27 Cyclotella steffigera 8 5.8 6.22 3.332 1.036 8.219 42.39 21.70 81.93 43.48 20.07 92.89 

Continued.... 
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Table 2.7 (continued) 

Species 
Code Species Name N N2 

Maximum 
Relative 

Abundance 
(%) 

Optima & Tolerance Range 
NO2-3 (gmoVL) 

Optimum 	Min. 	Max. 

Optima & Tolerance Range 
Si02 (i.tmoVL) 

Optimum 	Min. 	Max. 

Optima & Tolerance Range 
% Sediment <63pm 

Optimum 	Min. 	Max. 
28 Cyclotella striate 11 5.6 22.89 2.882 1.005 6.519 38.19 20.40 70.77 36.98 13.27 100.10 
29 Cymballa minute 

Cymballa sumatrensis 
8 
5 

5.5 
3.5 

2.50 
2.00 •30 	 24.44 

1.060 
0.629 

0.001 
0.027 

3.868 
1.587 

14.46 
11.46 

4.12 
5.10 

45.73 21.55 
21.94 

4.71 
4.77 

88.04 
90.19 

31 Delphineis sudrella 5 2.9 6.83 0.137 0.001 0.985 2.63 0.60 7.24 3.58 0.93 9.83 
32 Dimerogramma minor var. nana 6 3.4 2.27 0.819 0.001 2.515 12.42 3.16 42.28 35.42 9.16 129.51 
33 Diploneis notabilis 6  3.7 6.61 1.142 0.191 2.852 16.52 7.01 37.33 25.91 7.51 84.10 
34 Diploneis subovalis 7 5.2 5.68 1.536 0.139 4.650 23.11 7.60 66.55 40.43 11.30 138.56 
35 Diploneis vacillans 14 10.2 10.32 0.240 0.001 0.573 6.24 3.23 11.38 10.96 1.72 51.50 
36 Etuanbergia granulosa 12 6.6 21.71 0.081 0.001 0.174 3.70 1.92 6.56 7.04 1.47 25.10 
37 Fallacia litodcola 22 15.2 19.19 1.008 0.125 2.583 15.08 6.35 34.18 22.32 5.69 80.26 . 
38 Fallacia subforcipata 13 9.5 6.61 0.343 0.001 0.924 8.69 3.95 17.97 13.82 3.24 50.86 
39 Fragilada atomus 2 1.3 2.50 0.058 0.001 0.245 5.21 4.36 6.19 2.49 1.56 3.75 
40 Fragilada crotonensis 8 6.7 3.67 0.910 0.001 2.681 13.42 4.33 38.07 20.16 4.33 83.08 
41 Fragilaria martyi 10 9.0 5.34 0.127 0.001 0.299 7.56 3.48 15.35 3.61 1.37 7.96 
42 Fregilada pinnate 28 22.1 24.06 0.100 0.001 0.265 7.24 3.07 15.67 4.06 1.62 8.77 
43 Fragilaria pinnate var. pinnate 11 5.6 16.74 1.874 0.001 7.997 19.79 5.89 61.74 19.39 3.63 88.85 
44 Fragiladopsis cylindrus 19 12.3 9.92 0.499 0.001 1.923 15.65 5.64 40.75 7.61 1.32 30.86 
45 Gramatophora oceanica 25 17.2 6.63 0.359 0.001 1.115 8.22 3.18 19.34 16.61 3.91 62.21 
46 Gpcsigma fasciola 7 3.6 5.87 0.139 0.075 0.206 10.88 5.48 20.79 5.03 0.47 23.75 
47 Gyrcsigma perthense 4 3.0 2.06 . 0.175 0.001 0.534 6.49 1.96 17.96 42.31 17.23 101.88 
48 Hyalodiscus scoticus 9 6.6 3.18 0.659 0.034 1.662 10.43 3.76 26.44 10.59 2.09 42.53 
49 Lunella bisecta 5 3.6 11.09 0.162 0.055 0.279 9.81 6.50 14.57 2.09 1.44 2.92 
50 Mastoglia smithii 1 1.0 2.95 0.001 0.001 0.511 6.24 2.44 14.28 80.28 27.49 230.90 
51 Mastogloia pusilla var. pusilla 12 9.8 3.50 0.141 0.001 0.314 6.00 2.92 11.50 10.34 2.43 36:51 
52 Mastogloia species 1 20 14.8 5.41 0.309 0.001 1.038 8.14 2.76 21.21 15.34 3.47 58.76 
53 Melosira nummuloides 8 5.7 3.71 1.767 0.584 3.833 24.98 11.66 52.32 29.67 19.22 45.52 
54 Navicula arenada var. rostellata 23 15.4 12.50 0.353 0.001 1.160 9.97 4.63 20.41 10.88 . 	2.34 41.25 
55 Navicula cancellata 23 17.5 7.08 0.147 0.005 0.310 5.99 2.60 12.56 5.71 1.52 16.86 
56 Navicula cryptocephala 2 1.3 3.83 0.264 0.128 0.417 6.03 4.08 8.73 1.77 0.15 5.67 
57 Navicula menisculus 6 3.9 7.75 0.169 0.001 0.375 7.43 6.29 8.76 46.96 27.41 79.96 

Continued 	
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Table 2.7 (continued) 

Species 
Code Species Name N N2 

Maximum 
Relative 

Abundance 
(%) 

Optima & Tolerance Range 
NO2-3 (urnoVL) 

Optimum 	Min. 	Max. 

Optima & Tolerance Range 
Si02 (.unoVL) 

Optimum 	Min. 	Max. 

Optima & Tolerance Range 
% Sediment <6311m 

Optimum 	Min. 	Max. 
58 Navicula monoculata var. omissa 51 44.3 56.16 0.270 0.001 0.902 8.09 3.08 19.25 7.55 1.76 25.50 
59 Navicula nyella 6 4.6 6.16 0.369 0.001 1.067 7.03 1.99 20.60 12.30 2.46 50.09 
60 Navicula pygmaea 6 4.5 3.69 0.404 0.032 0.910 9.47 5.34 16.29 34.04 16.32 69.90 
61 Navicula salinarum 13 8.1 5.79 0.312 0.001 0.759 8.23 3.56 17.68 7.23 1.50 26.06 
62 Navicula species 1 18 12.6 12.36 0.163 0.001 0.530 11.57 4.90 25.76 5.85 1.31 19.30 
63 Navicula species 2 2 1.9 2.64 0.321 0.052 0.660 13.98 10.18 19.09 6.14 5.06 7.40 
64 Navicula tripunctata 15 9.7 6.65 0.161 0.010 0.334 4.89 2.34 9.37 14.47 3.10 57.35 
65 Nitzschia amphibia Grun. 49 41.2 32.23 0447 0.001 1.493 10.60 3.91 26.41 10.82 2.52 38.69 
66 Nitzschia dissipata var. dissipate 4 3.6 2.00 0.612 0.001 1 ..952 7.95 2.00 25.66 11.68 2.55 44.34 
67 Nitzschia laevis 14 10.5 4.44 0.184 0.001 0.436 10.92 6.08 19.07 5.71 1.73 15.51 
68 Nitzschia longissima 1 1.0 6.83 0.001 0.001 0.511 2.47 0.64 6.31 1.95 0.03 7.42 
69 Nitzschia lorenziana var. subtilis 21 14.6 8.00 0.129 0.001 0.394 8.70 3.95 18.00 6.57 1.20 25.08 
70 Nitzschia ovalis 5 4.2 2.23 0.555 0.001 2.662 8.88 3.12 22.69 25.66 7.11 86.62 
71 Nitzschia panduriformis var. minor 40 30.8 3.75 0.515 0.001 1.674 12.29 4.89 29.00 12.35 2.61 48.33 
72 Nitzschia species 1 17 13.1 6.19 0.590 0.001 1.874 12.11 4.40 30.85 15.48 4.43 48.99 
73 Nitzschia species 2 15 11.9 2.00 0.588 0.001 2.104 17.35 8.75 33.55 7.03 1.02 30.98 
74 Opephora martyi 1 1.0 3.49 8.333 5.176 13.103 53.95 25.06 114.89 84.11.  28.83 241.83 
75 Opephora olsenii 49 38.8 28.07 0.421 0.001 1.574 10.07 3.44 26.59 9.17 2.02 33.25 
76 Paralia sulcata 13 11.2 5.04 0.662 0.001 2.127 14.62 5.17 38.56 18.56 4.83 64.68 
77 Pat1ibellus cf. plicatus 9 7.0 5.02 0.357 0.001 1.245 6.88 1.97 19.88 13.21 4.90 33.22 
78 Plagiogramma staurophorum 21 13.1 32.71 0.358 0.001 1.288 16.55 8.52 31.38 6.51 1.23 24.33 
79 Plagiotropis species 2 4 2.7 4.02 0.059 0.021 0.098 2.43 0.89 5.23 4.89 2.48 8.95 
80 Plagiotnaois species 1 1 1.0 2.54 0.072 0.001 0.619 1.34 0.11 3.94 7.51 1.98 23.28 
81 Planothidium delicatulum 35 22.9 15.16 0.491 0.001 1.883 12.28 4.16 33.18 9.82 2.21 35.42 
82 Pseudonitzschia australis 9 6.1 8.37 0.336 0.001 0.960 10.97 6.28 18.69 21.92 5.47 80.24 
83 Skeletonema costatum 29 20.4 70.10 0.700 0.001 2.180 14.45 6.03 32.93 11.48 2.77 40.28 
84 Sutirella fastuosa 3 1.7 6.88 0.200 0.001 0.621 6.37 3.72 10.51 36.40 5.36 218.84 
85 Cocconeis aff. pinnata 14 7.0 9.73 0.113 0.001 0.631 6.70 2.65 15.20 4.51 0.87 15.27 
86 Synedra investiens 10 6.5 9.50 0.213 0.001 0.741 8.40 4.39 15.41 21.15 6.87 61.32 
87 Synedra tabulata 34 22.9 15.45 0.563 0.001 1.488 12.09 4.82 28.42 11.15 2.39 42.50 
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Table 2.7 (continued) 

Species 
Code S ecies Name N N2 

Maximum 
Relative 

Abundance 
% 

Optima & Tolerance Range 
NO2-3 (pmol/L) 

0 imum 	Min. 	Max. 

Optima & Tolerance Range 
SiO2 (1.unol/L) 

0 tim um 	Min. 	Max. 

Optima & Tolerance Range 
% Sediment <63prn 

0 timum 	Min. 	Max. 
88 Thalassionema nitzschoides 11 8.5 4.98 1.848 0.212 5.694 20.35 7.09 55.29 17.23 3.35 75.48 
89 Thalassiosira eccentrica 12 7.0 10.23 1.390 0.513 2.776 24.92 12.33 49.40 23.36 7.52 68.62 
90 Thalassiosira oestrupii 8 5.8 5.72 0.899 0.001 3.995 11.69 2.55 44.32 14.00 3.45 49.55 
91 Achnanthes species 1 6 4.6 2.55 0.251 0.024 0.527 7.32 4.01 12.80 5.77 1.55 16.98 
92 Species 1 27 18.4 20.88 0.628 0.001 2.000 11.65 4.63 27.41 25.08 6.89 85.23 
93 Navicula halophila 11 8.3 3.49 0.135 0.001 0.411 6.03 2.20 14.48 9.09 1.90 34.10 
94 Diploneig species 1 8 5.4 14.19 3.026 0.501 9.799 27.88 9.14 81.22 39.14 12.49 118.41 
95 Cocconeis species 1 10 6.8 3.21 0.260 0.001 0.681 7.72 2.88 18.60 9.32 1.96 34.96 
96 Navicula species 3 4 2.7 2.33 0.077 0.001 0.250 14.21 7.87 25.09 9.18 2.36 29.79 
97 Species 2 8 6.7 3.59 0.135 0.001 0.310 4.70 1.87 10.34 3.89 1.96 7.08 
98 Fragilaria species 1 10 7.5 3.73 0.110 0.001 0.254 4.95 2.05 10.58 7.64 2.83 18.47 
99 Cymatosira aft belgica 14 9.7 31.93 0.076 0.001 0.326 12.62 5.77 26.39 4.63 1.48 11.75 
100 Species 3 2 1.8 6.96 0.951 0.342 1.838 32.08 7.85 122.68 31.33 21.23 46.02 
101 Navicula cincta 12 9.4 4.72 0.432 0.001 1.479 8.13 3.01 19.78 6.49 1.03 26.61 
102 Species 4 24 14.4 34.95 0.680 0.001 2.076 12.54 4.46 32.59 9.90 1.88 40.21 
103 Species 6 3 2.5 3.24 0.084 0.041 0.128 6.79 2.07 18.77 4.63 1.41 12.11 
104 Species 7 1 1.0 5.78 0.072 0.001 0.619 7.71 3.13 17.37 13.45 4.07 40.24 
105 Species 5 1 1.0 12.94 0.096 0.001 0.657 4.01 1.38 9.57 5.17 1.16 16.59 
106 Species 8 1 1.0 5.68 0.148 0.001 0.735 13.13 5.70 28.79 1.75 0.01 6.86 
107 Species 9 2 1.7 6.37 0.332 0.289 0.376 13.59 6.49 27.45 1.97 1.41 2.67 
108 Species 10 3 1.5 9.62 1.239 0.001 4.381 17.88 6.68 45.44 37.32 8.84 148.24 
109 Species 11 1 1.0 5.32 0.445 0.001 1.184 9.72 4.08 21.60 4.37 0.88 14.32 
110 Diploneis species 2 2 1.5 3.54 0.385 0.001 1.928 9.74 2.67 30.46 4.62 0.01 46.47 
111 Fragilaria vaucheriae 2 1.5 16.98 0.117 0.099 0.135 6.23 4.22 9.01 2.56 1.18 4.80 
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2.4 DISCUSSION 

2.4.1 Nutrient Concentrations in South-east Tasmanian Marine Waters 

Nutrients concentrations in the marine environment of south-east Tasmania are 

comparable with other marine environments around the world. Nutrient 

concentrations recorded from the south-east Tasmanian sites ranged from < 0.01 to 

8.24 pmol/L for NO2_3, 0.10 to 1.21 [anon for PO4, and 0.16 to 61.65 pmol/L for 

Si02 . Nutrient concentrations in the surface waters of the Indonesian Archipelago 

have been reported, with concentrations of NO3-N ranging from < 0.1 to 1.0 [mon 

(m,' NO3 of < 0.44 to 4.4 pmol/L), PO4-P from 0.05 to 0.3 p.moUL ( PO4 of 0.15 to 

0.81 mon), and H4SiO4 of 1.0 to 3.0 gmoUL, with the higher concentrations 

occurring during seasonal upwelling (van Iperen etal. 1993). (Nilsson et al. 1991) 

reported seawater nutrient concentrations from the shallow (2 m depth) coastal 

waters of Sweden of NO2.3< 1.0 gmoUL, P03.4 <0.2 pmoUL, and Si(OH)4 between 

2.5 and 7.5 p.moUL. 

In Australia, NO3 concentrations <2 !mon, and P03_4 < 1 gmon were reported 

from Moreton Bay, a large marine embayment on the east coast of the mainland 

(O'Donohue & Dennison 1997). Nutrient concentrations in Moreton Bay were also 

reported by (O'Donohue et al. 2000), with oceanic samples having NO3 

concentrations of 0.0 to 0.3 gmol/L, and P03.4 of 0.0 to 0.4 grnol/L. From the Gulf 

of Carpentaria, northern Australia, average nutrient concentrations from four sites on 

nine sampling occasions showed NO2.3 concentrations ranging from 0 to 3.68 

pmol/L, PO4 from 0.09 to 3.0 gmoUL, and SiO3 from 0.19 to 13 pmol/L (Burford 

1995) (six of these sampling occasions were during the monsoonal wet season, when 

river output increased nutrient loadings and reduced salinity at the sites from 35-36 

to 31-32). 

The ANZECC guidelines for fresh and marine water quality (ANZECC 2000) 

include 'trigger values' that are commonly used as a guide to the level at which 

nutrient concentrations may pose a threat to marine and estuarine water quality in 

Australia. These guidelines provide figures for individual states of Australia, 

however they have been determined from geographical regions that do not include 

Tasmania, and the guidelines therefore recommend caution in applying these trigger 

values to Tasmanian systems. (Trigger values for the marine environment in the 
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ANZECC guidelines are provided in ig/L, but have also been converted here to 

approximate 'mon, for ease of comparison). ANZECC trigger values for nitrogen 

and phosphorus in Tasmania's marine environment are as follows: NO of 5 lig/L 

0.093 pmol/L); and TP of 25 pg/L 0.807 wnoUL, and is equivalent to PO4 of 

—2.475 !mon). The ANZECC trigger values provided for estuarine environments 

are 3 times higher for NO„ (15 1.1g/L or — 0.28 pmol/L) and 1.2 times higher for TP 

(30 pg/L or — 0.97 gmol/L, or 2.97 i_tmol/L PO4). Nutrient concentrations at some 

sites in the Derwent were therefore above the ANZECC guidelines at the time of 

sampling' for NO but not for PO4. 

The range of nutrient concentrations recorded from the south-east Tasmanian marine 

environment is therefore similar to concentrations reported from near-shore marine 

environments in other areas of the world, including mainland Australia, although 

some NO2_3 and Si02 concentrations were relatively high at some sites in this 

Tasmanian study. 

Although nitrogen and phosphorus concentrations play a key role in the process of 

eutrophication, silica also plays a key role, particularly in determining the dominant 

type of algae present (Kilham 1971, Egge & Aksnes 1992, Wu & Chou 2003). . 

Research has shown that in many aquatic ecosystems diatoms are the dominant 

species if silica is in sufficient supply, however other taxa such as Phaeocystis will 

often dominate when silica concentrations become low (Egge & Aksnes 1992). 

Additionally, enrichment with silica may give rise to a greater increase in the 

biomass of phytoplankton (especially diatoms) than additions of nitrogen and 

phosphorus (Wu & Chou 2003) depending on the nutrient balance in the system. 

Therefore, the concentration of silicate in a system plays a very important role in the 

process of eutrophication, and (Kilham 1971) suggests that some level of 'silica 

demand' could be used as an index of increasing eutrophication. Silica 

concentrations at south-east Tasmanian sites were relatively high during spring, 

especially at sites with high N and P, but were significantly lower during autumn, 

and should be monitored along with N and P concentrations as the balance between 

these nutrients is as important as their overall levels (Hecky & Kilham 1988). 
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2.4.2 Physical and Chemical Conditions within the Study Area 

A better understanding of the relationships between the diatom assemblages and their 

environment can be obtained by a thorough investigation of the physical and 

chemical characteristics of sites within the study area. The intention of the original 

site selection was to choose sites that would be broadly similar and only differ in 

nutrient concentration. The sites were sufficiently similar so that nutrient 

concentrations, along with fine sediment composition, did explain the greatest 

variation in diatom assemblages. However, there was also considerable variability 

between sites, and a more detailed examination shows that within the study area 

there are various 'environmental zones'. These zones can be used to distinguish 

between areas that contain sites which are similar either physically or chemically, or 

both. The following section discusses the grouping of sites into zones, and some of 

the key inter-site differences and similarities, to provide a more comprehensive 

picture of the environmental conditions throughout the study area. 

Although the near-shore coastal marine sites sampled for the training set had a 

similar salinity and temperature, the influence of warmer fresh water was clearly 

evident at Sites 1, 3 and 7 (upper Derwent Estuary) during spring (with temperatures 

— 2°C above average and salinity < 15). Here, low salinity measurements were 

directly associated with an increase in water temperature. The environmental factor 

separating these sites from near-by sites is water depth (< 2 m). At surrounding sites 

(Sites 2, 5, 6 and 8), overlying freshwater was also evident (from 1 m water depth 

measurements), however these sites were deeper (> 2.4 m) and were more saline at 

the bottom. The middle to lower reaches of the Derwent Estuary (south of the Bowen 

Bridge) have been reported as being partially- to well-mixed (dominated by tidal and 

wind-driven mixing) (Coughanowr 1997). Therefore, it is likely that Sites 1 to 8 

would all experience reduced salinity occasionally as tidal and river flows fluctuate, 

and land-based run-off varies. 

Freshwater influence during spring was also evident in Ralphs Bay, where an 

increasing salinity gradient (from —26 to 30 ) was recorded with distance away from 

the village of Lauderdale toward the entrance to the bay (sites 17 to 22). However, 

these sites ranged in depth from —2.3 m to 3.2 m, and spring salinity was almost 

identical at maximum depth and lm depth. The reduced salinity at these sites is 

related to the freshwater flow through the lower Derwent Estuary. In the Derwent 
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Estuary between Hobart and the northern tip of Bruny Island, sampling sites on the 

western side of the estuary had noticeably higher spring salinity than sites on the 

eastern side of the estuary. This suggests that the freshwater leaving the Derwent was 

flowing on the eastern side of the estuary, and was subsequently well mixed with the 

more saline marine waters of Ralphs Bay. This finding is supported by lower salinity 

at 1 m at eastern sites also occurring during autumn, and is consistent with previous 

findings and hydrodynamic models developed for the Derwent by the CSIRO (1994, 

cited in (Coughanowr 1997)). 

There are thus two zones within the study area in which sites experienced reduced 

salinity for at least part of the year: (i) the Derwent estuary between the Tasman 

Bridge and the Bowen Bridge, also including Montague Bay (Sites 1 to 8); and (ii) 

sites in the northern half of Ralphs Bay (Sites 16 to 21). 

Sites in the upper Derwent Estuary (Sites 1 to 9) had higher light attenuation during 

spring than most other sites in the study area (although Secchi depth was 100% of 

water depth at sites 1 and 7, they were very shallow — 1.39 m and 1.07 m 

respectively). The high light attenuation in the upper Derwent sites is partly a result 

of these sites generally having finer benthic sediments which are more easily 

suspended, in addition to the sediment-laden overlying freshwater flowing down-

river, and input from urban run-off, sewage and industry. Light attenuation has been 

shown to significantly influence diatom community composition (O'Donohue & 

Dennison 1997, Whitehead & McMinn 1997). As a consequence of combined 

differences in salinity, temperature and reduced light, sites in the upper Derwent 

have significantly different environmental characteristics to other sites within the 

study area. 

Sites in the upper Derwent (Sites 1 to 9) had different nutrient concentrations to other 

sites, with the overall highest spring concentrations of NO2_3, PO4 and 5i02. The 

most eutrophic bay in the Derwent was Prince of Wales Bay (Sites 2 at the entrance 

to the bay, and Site 3 well inside the bay). Site 2 had the highest spring Si02 and 

autumn NO2_3, and Site 3 had the highest autumn Si02, spring NO 2 _3 , and spring and 

autumn PO4. Prince of Wales Bay is a medium-sized, relatively shallow (2-5 m) and 

morphologically complex bay with a restricted opening into the Dement. Nutrient 

input into this bay is considerable. Situated at the entrance to this bay, along and 
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inside the southern embankment, are the workshops of International Catamaran 

(Incat), a large (international) commercial-catamaran building company. Further 

inside the bay along the southern bank is a sewage treatment plant. Numerous boat 

jetties, residential development and major roads surround the remaining shoreline of 

the bay. The sediment sample obtained from Site 3 contained a tar-like substance and 

had a strong unpleasant smell. With such high nutrient inputs, increased light 

attenuation and restricted flushing due to the relatively narrow entrance, the water 

quality of this bay is degraded, and threatened by further eutrophication. 

It is also possible to group sites according to sediment size. There were two 

geographic zones within the study area in which all sites contained a high percentage 

of fine-grained sediments. One zone includes the upper Derwent Estuary down to 

Sandy Bay (Sites 1 to 12), and the other zone includes all of the sites on the western 

side of the D'Entrecasteaux Channel from Oyster Cove (Site 32) to Gordon (Site 40) 

(this is a relatively narrow area of the Channel). Most sites on the eastern side of the 

Channel had coarser sediments, except for one relatively protected site (Site 35 at 

Barnes Bay). Differences in the sediment size in various zones are indicative of the 

difference in the energy of water flow within the area (with finer sediments settling 

in calmer waters). 

Although the entire depth range for all sites (0.44 m to 6.41 m) did not have as 

significant an influence on diatom community composition as nutrient concentration, 

many studies report finding differences in diatom community structure associated 

with depth (Round 1981, Stevenson & Stoermer 1981, Stevenson et al. 1985) and 

transfer functions have been developed to infer depth (Whitehead & McMinn 1997, 

Yang et al. 2003). It is therefore likely that intra-site depth-related differences in 

diatom assemblages did exist, particularly since co-variables (such as salinity, 

temperature and light) changed to such a large extent with depth in some areas (e.g. 

upper Derwent). The fact that associations between depth and community 

composition were not identified in this study may simply be a consequence of the 

over-riding influence of nutrients and sediment size on the diatom assemblages. 

The physical and chemical differences between sites can be used to qualitatively 

group sites into the following zones (Figure 2.18): 
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(i) Zone 1: Derwent Estuary from Site 1 to 8 — Fine to medium grain—size 

sediments, high to very high nutrient concentrations, low light, and variable 

salinity and temperature; 

(ii) Zone 2: Derwent Estuary from Site 9 to 12 — Fine to medium grain—size 

sediments, moderate to high nutrient concentrations, moderate light; 

relatively stable salinity; 

(iii) Zone 3: Ralphs Bay (Sites 16- 21) Medium grain-size sediments, low to 

moderate nutrient concentrations, variable (reduced) salinity; 

(iv) Zone 4: Lower Derwent to the Channel (Sites 13 to 31 - excluding Zone 3 & 

Site 30) Medium grain- size sediments, low to moderate nutrient 

concentrations, stable salinity; 

(v) Zone 5: Western side of the D'Entrecasteaux Channel from Oyster Cove to 

Gordon (Site 30 to 40, excluding Sites 31, 36) Fine to medium grain —size 

sediments, generally low to moderate nutrient concentrations, stable salinity; 

(vi) Zone 6: Bruny Island and Lower Channel (Sites 36, 41 to 45) Medium grain-

size sediments, generally very low nutrient concentrations, salinity slightly 

higher and more stable; 

(vii) Zone 7: Pittwater area (Sites 46 to 51) Medium grain- size sediments, low to 

moderate nutrient concentrations (increasing toward the causeway), stable 

salinity. 
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Figure 2.18: Classification of study area into zones 

The above classification divides the study area into zones in a linear fashion 

(excluding zone 7) so that changes can be more easily identified across a continuum 

(Figure 2.18). This highlights a key point in regard to environmental conditions 

within the study area. Although nutrient concentrations generally decrease 

southwards from sites in the Derwent down through the D'Entrecasteaux Channel, 

individual sites located adjacent to more densely populated areas  still  showed 
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elevated nutrient concentrations (e.g. at Kingston Beach, Blackmans Bay and North 

West Bay — Sites 24, 25 and 30, respectively), and the highest nutrient concentrations 

overall were from the most densely populated areas. This direct link between human 

occupation and increased nutrient concentrations highlights the need for ongoing 

monitoring and assessment of the impacts on the micro-algal community in the 

south-east Tasmanian marine environment. 

Surprisingly, at two sites in close proximity to fish farms (within — 100450 m at 

Sites 29 and 38) samples showed particularly low nutrient concentrations. Fish farms 

are generally located in areas of moderately high water flow to avoid de-oxygenation 

of the water within the nets. It is possible that increased water flow, or the direction 

of flow, may be directing the nutrient load away from the sampling area. However, 

the impact may also be more localised around the nets. 

A second point highlighted by the classification of sites into zones is the broad range 

of environmental conditions at sites across the study area as a result of variations in 

only a few environmental variables. Within each zone, inter-site differences are still 

considerable, and it could therefore be expected that the composition of diatom 

assemblages would reflect this. 

2.4.3 Diatom Assemblages 

The dominant diatom species at each site varied both between environmental zones, 

and between sites within environmental zones. This reflects the wide range of 

environmental factors combining in different ways to affect the floral composition at 

each site. However, certain trends in the distribution of individual species were 

evident. The dominant diatom species from each of the identified environmental 

zones are discussed below. 

The most widespread diatom species was Navicula monoculata var. omissa, which 

was recorded from every site and numerically dominant at 16 sites. Although N 

monoculata var. omissa was widespread, it was recorded in very low numbers in the 

Derwent Estuary from sites 1 to 12, and also more generally from sites with fine 

sediments. Navicula monoculata var. omissa showed a preference for coarser 

sediments and low to moderate nutrient concentrations, although it was recorded in 
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high abundance at sites with fine to medium grain-sized sediments and moderate 

nutrients. The fact that N. monoculata var. omissa was present at all sites indicates 

the wide environmental tolerance range of this species. Although species with wide 

tolerance ranges may generally not be as useful as environmental indicators, the 

absence of this species in any future sampling would be noteworthy as this would 

suggest a very significant change in environmental conditions. 

Sites in the Derwent Estuary (Zone 1) were dominated by Skeletonema costatum, 

Opephora olsenii, Fragilaria pinnata var. pinnata, Cyclotella striata, Cocconeis 

placentula var. euglypta, and Nitzschia amphibia. Sites in Zone 2 of the Derwent 

were dominated by S. costatum, N. amphibia and (at Site 12) Navicula monoculata 

var. omissa. Commonly found in coastal environments, these are cosmopolitan 

species that have been reported as dominating or being abundant in brackish and/or 

marine diatom assemblages from many areas of the globe, and are discussed below. 

Skeletonema costatum is common in the marine environment (Round 1981) and has 

been widely reported from many areas including False Bay, Washington (Rao & 

Lewin 1976), coastal deposits of the Netherlands (Vos & de Wolf 1988, 1993a), the 

Northern Adriatic Sea (Thornton & Thake 1998), Netarts Bay, Oregon (Whiting & 

McIntire 1985) and northern Australia (Hallegraeff & Jeffrey 1984). Skeletonema 

costatum was also reported by (Twomey & John 2001) as periodically dominating 

the diatom flora in the lower Swan-Canning estuary in Western Australia. 

Skeletonema costatum is often associated with low light conditions (Pratt 1965) and 

high nutrient concentrations (Round 1981). The abundance, and at some sites the 

dominance, of this species in the Derwent is therefore consistent with reports on its 

autecology. 

Opephora species are also common epipsammic diatoms in the marine environment 

(Werner 1977, Round 1981), and Opephora olsenii has been reported from many 

coastal environments including the coastal shallows of Puck Bay, Poland (Witkowski 

1991) and the west coast of Sweden (Sundback & Snoeijs 1991b). Witkowski (1991) 

described 0. olsenii as a species typical of coastal shallow sediment, and indeed this 

species was recorded from most of the shallow coastal sites in south-east Tasmania. 

However, whereas Witkowski (1991) also reports an increase in the abundance of 0. 

olsenii coinciding with higher organic matter content of the sediment, at south-east 
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Tasmanian sites 0. olsenii was recorded in high proportions from sites with either 

high or low sediment TOC. 

Fragilaria species are common in both fresh water and marine environments (Round 

1973). Although varieties of Fragilaria pinnata are commonly reported from marine 

environments (Rao & Lewin 1976, Palmer 1978, Whiting & McIntire 1985, Vos & 

de Wolf 1993a), F pinnata var. pinnata has not been reported as widely. However, 

this variety has been reported from Basin Head Harbour, Prince Edward Island 

(Atlantic Canada) (Palmer 1978), and categorised as oligohalobian (normally 

freshwater). In the Derwent, F. pinnata var. pinnata was abundant at Site 3 (Prince 

of Wales Bay) which had low salinity during spring, but was uncommon and 

recorded only in very small numbers elsewhere. This suggests that F pinnata var. 

pinnata may have a similar tolerance for salinity in south-east Tasmania to that 

reported by Palmer (1978). 

Cyclotella striata is generally a brackish species (Round 1981), and has been 

reported from a wide range of brackish and marine environments including the Baltic 

Sea (Gronlund 1993, Bianchi etal. 2000), coastal deposits of the Netherlands (Vos & 

de Wolf 1993a) the Indonesian Archipelago (van Iperen et al. 1993), continental 

shelf waters of north and north-west Australia (Hallegraeff & Jeffrey 1984), eastern 

Australia (Foged 1978) and the Swan-Canning Estuary from Western Australia (John 

1983, Twomey & John 2001). The presence of Cyclotella striata at south-east 

Tasmanian sites was mostly restricted to sites higher up the Derwent, where it was 

recorded at > 20% relative abundance at Sites 2 and 5, and in smaller abundance at 

other sites. The presence of C. striata at these sites is therefore consistent with 

reports on its preference for brackish environments. 

Cocconeis species are commonly epipsammic flora in marine environments, however 

Cocconeis placentula var. euglypta is an epiphytic form (Round 1981). Cocconeis 

placentula var. euglypta has been reported from coastal areas including the north-

western Baltic (Miller & Risberg 1990), False Bay, Washington (Rao & Lewin 

1976), Netarts Bay, Oregon (Whiting & McIntire 1985), and was reported by John 

(1983) as a common epiphytic species in the upper reaches of the Swan River, 

Western Australia. Cocconeis placentula var. euglypta has been categorised as a 

dominant epiphytic diatom on the seagrass species, Zostera marina (Edsbagge 
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• 1966b, 1966a) cited in (Werner 1977). In the Derwent and Channel areas, small beds 

of the seagrass Heterozostera tasmanica still exist around Cornelian Bay (Site 6), the 

northern part of Halfmoon Bay and Opossum Bay (both between Sites 22 and 26), as 

well as smaller patches in some locations further north in the Derwent (Green & 

Coughanowr 2003). Historic aerial photographs indicate that seagrass beds were 

formerly much more widespread, and abundant in Ralphs Bay (Sites 16 to 21) (Rees 

1993). The occurrence of Cocconeis placentula var. euglypta in the Derwent, 

Channel and Pittwater areas may therefore be associated with remaining patches of 

the seagrass Heterozostera tasmanica. Further research on this matter may provide a 

means for reconstructing the environmental history of seagrass distribution in south-

east Tasmania. 

Nitzschia amphibia is a cosmopolitan species reported from many estuarine and 

coastal environments, including sediments of the north-western Baltic (Miller & 

Risberg 1990), estuaries of South Africa (Watt 1998), Western Australia (John 1983) 

and eastern Australia (Foged 1978). It has been suggested that Nitzschia amphibia 
may avoid high nutrient concentrations (Seenayya 1972). However, N. amphibia 

occurred at most of the study sites in south-east Tasmania, and was the dominant 

species at six sites, including two sites with particularly high nutrient concentrations 

in the upper Derwent (Sites 8 and 9) and one site with moderate nutrient 

concentrations (Site 10). The other three sites at which this species was dominant 

(Sites 27, 34 and 36) had particularly low nutrient concentrations. Nutrient optima 

and tolerance ranges calculated for N amphibia in south-east Tasmanian waters 

show an optimum for moderate nutrient concentrations (e.g. NO2.3 of 0.447 !mon, 

Table 2.6) but a wide tolerance range. This highlights the importance of using optima 

and tolerance ranges for species that have been derived from the geographical region 

in which they are to be used. 

Ralphs Bay (Zone 3) was dominated by Skeletonema costatum, Navicula monoculata 
var. omissa, Plagiogramma staurophorum, and Cymatosira aff belgica. 
Plagiogramma and Cymatosira species (also common epipsammic diatoms in 

brackish and marine environments) are non-motile or only slowly motile genera 

(Round 1981). Plagiogramma staurophorum has been reported from False Bay, 

Washington (Rao & Lewin 1976), coastal areas of the Netherlands (Vos & de Wolf 

1988, 1993a), shallow coastal waters of Sweden (Sundback & Snoeijs 1991b), the 
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Swan River Estuary in Western Australia (John 1983), eastern Australia (Foged 

1978) and Macquarie Harbour, Tasmania (McMinn et al. 2003). The abundance of 

Plagiogramma staurophorum at south-east Tasmanian sites was greatest in Ralphs 

Bay and the north-eastern side of the causeway at Pittwater lagoon. Apart from being 

the dominant species at Site 18 in Ralphs Bay, P. staurophorum was generally 

recorded in relatively small proportions at other sites, as was the case in south-

western Tasmania (McMinn et al. 2003) and Western Australia (John 1983). There 

were no single outstanding differences measured between Site 18 and other nearby 

sites, so the reasons for the abundance of P. staurophorum at Site 18 (-33%) are 

unclear. However, this species is reported as being very common in some areas, as 

was reported in epipsammic samples from False Bay, Washington (Rao & Lewin 

1976). 

Cymatosira belgica is a common marine tychoplanlctonic species reported from 

estuarine and costal environments from areas including the coastal wetlands of the 

Netherlands (Vos & de Wolf 1993b, 1993a) and the Ems Estuary, Wadden Sea (de 

Jonge 1985). However, Cymatosira species have not previously been reported from 

Tasmania, and were not recorded in the survey of diatoms from the Swan River 

Estuary in Western Australia (John 1983), nor in the bibliotheca of diatoms in 

eastern Australia by Foged (1978). Cymatosira lorenziana was recorded from the 

Gulf of Carpentaria, northern Australia by (Hallegraeff & Burford 1996) (and 

previously by (Hasle et al. 1983)), who describe this species as widely distributed on 

warmer coasts. The presence of Cymatosira in south-east Tasmania is somewhat 

surprising, however the morphology of the Tasmanian Cymatosira species varies 

from the nominal variety (e.g. in its shorter length - generally < 10 p.m), and may 

have different ecological requirements. Cymcnosira aff. belgica was restricted to two 

areas within the study region — Ralphs Bay (where it was the dominant species at Site 

20 and 21, constituting 32% and 26% of community composition respectively), and 

sites in Pittwater (— 4 to 13%) . Very small proportions (< 1%) of Cymatosira aff. 

belgica were also recorded from Sites 5, 9 and 10 in the Derwent (close to Ralphs 

Bay), possibly as a result of resuspension and deposition, and at both Site 46 (< 3%) 

and Site 47 (< 1%) at the mouth to Pittwater. Salinity was reduced during spring in 

Ralphs Bay (-28, at Sites 20 and 21) but not in Pittwater, which suggests that 

Cymatosira aff. belgica may be euryhaline. 
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The lower Derwent to Channel area (Zone 4) was dominated by Navicula 

monoculata var. omissa, Navicula arenaria var. rostellata, Amphora laevissima, 

Synedra tabulata, Nitzschia amphibia, Fragilaria pinnata, Ehrenbergia granulosa 

and an unidentified species (Species 4). 

• Navicula arenaria var. rostellata (synonym: N rostellata) has been reported as a 

marine, probably cosmopolitan species common on the North Sea coasts and in the 

Baltic Sea (Witkowski et al. 2000). It also was reported as being very common as 

epipelon in False Bay, Washington (Rao & Lewin 1976) and Netarts Bay, Oregon 

(Whiting & McIntire 1985). Although Navicula arenaria var. rostellata was 

recorded from 23 of the 51 training-set sites, its abundance was generally < 2%. 

However, at Site 13 its relative abundance of 12.5% made it the dominant species. 

Amphora laevissima is a brackish/marine species reported from the Finmark, 

Scotland and England (Cleve 1965), and in small proportions from False Bay, 

Washington (as Amphora laevis var. laevissima) (Rao & Lewin 1976). (Witkowski et 

al. 2000) report that Amphora laevissima is a widespread marine species known from 

the Arctic to the tropics. At south-east Tasmanian sites A. laevissima was recorded 

from 21 of the training-set sites, and was particularly abundant at Site 15 with a 

relative abundance of 44%. 

Synedra tabulata is a very widely reported, cosmopolitan species (Witkowski et al. 

2000), that has been recorded from the coastal shallows of Puck Bay, Poland 

(Witkowski 1991), north-western Baltic (Miller & Risberg 1990), Gulf of Riga, 

eastern Baltic (Sakson & Miller 1993), Gotland Basin, Baltic Sea (Gronlund 1993), 

the north coast of Cornwall (Hendey 1977), False Bay, Washington (Rao & Lewin 

1976) and eastern Australia (Foged 1978). This species was common at south-east 

Tasmanian sites, however its relative abundance was generally < 3%. The greatest 

relative abundance of Synedra tabulata (15.5%) occurred at Site 25 in the Channel. 

Fragilaria pinnata is a cosmopolitan species that is often reported from freshwater 

environments (Agbeti 1992, Pienitz & Smol 1993, Bloom et al. 2003). However, this 

species has also been reported from Netarts Bay, Oregon (Whiting & McIntire 1985), 

and False Bay, Washington (Rao & Lewin 1976), and was common in small 

proportions at south-east Tasmanian sites, and the dominant species at Site 29 (24%). 
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Ehrenbergia granulosa has been reported from areas including tidal flats of the 

North Sea and Atlantic coasts in Europe, the western Baltic Sea, New Caledonia, and 

South Africa (Witkowski et al. 2000). Ehrenbergia granulosa was recorded from 

only 12 of the 51 training-set sites in south-east Tasmanian sites, and was generally 

in very low proportions (< 2%), but was the dominant species at Site 31 (21%). Site 

31, and the only other site at which Ehrenbergia granulosa was recorded in 

abundance (Site 43, also 21% relative abundance) both had particularly coarse 

sediments (> 83%> 0.125 pm). However, other researchers have reported Paralia 

sulcata from a wide range of sediment types (within the one study), including fine 

muds and coarse sands (Whiting & McIntire 1985, Huang 1990). 

On the western side of the D'Entrecasteaux Channel, northern sites (Zone 5) were 

dominated by Amphora subturgida, Navicula monoculata var. omissa, Nitzschia 

amphibia and Skeletonema costatum. The Bruny Island and lower Channel areas 

(Zone 6) were dominated by Nitzschia amphibia, Navicula monoculata var. omissa 

and Ehrenbergia granulosa. 

Amphora subturgida was reported as being found in large numbers from the Swan 

River Estuary in Western Australia by John (1983). At the training-set sites in south-

eastern Tasmania, Amphora subturgida was very widespread, being recorded from 

most sites with a relative abundance generally around 5-10%, and recorded from Site 

34 with an abundance of 23.6% 

Sites around Pittwater area (Zone 7) were dominated by Navicula monoculata var. 

omissa, Opephora olsenii, Planothidium delicatulum and Fragilaria pinnata. 

Witkowski et al. (2000) describe Planothidium delicatulum (synonym: Achnanthes 

delicatula) as being one of the most common inhabitants of sandy sediments of 

world-wide occurrence on marine and brackish water coasts, that is sometimes 

abundant at places affected by waste water outflow. This species has been reported 

from the north-western Baltic (Miller & Risberg 1990), estuaries from South Africa 

(Watt 1998), the west coast of Sweden (Sundback & Snoeijs 1991b), coastal 

wetlands of the Netherlands (Vos & de Wolf 1993a), the United Kingdom 

(Oppenheim 1988), coastal shallows of Poland (Witkowski 1991), and the Swan 

River, Western Australia (John 1983). At south-east Tasmanian sites, Planothidium 
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delicatulum was widespread (occurring at 35 sites), but was most abundant at sites in 

Pittwater where its maximum relative abundance reached —15% at Site 49. 

Planothidium delicatulum clearly has a wide tolerance range for environmental 

conditions, also occurring in proportions around 5-10% in Pittwater and sites higher 

in the Derwent (esp. Sites 1, 2 and 3). The range of nutrient concentrations and 

sediment size across these sites was the maximum range encountered throughout the 

study. The occurrence of Planothidium delicatulum at south-east Tasmanian sites is 

therefore consistent with its wide occurrence elsewhere, including its abundance at 

sites affected by waste water outflow (Witkowski et al. 2000). 

Many of the dominant diatom species recorded from the training set (discussed 

above) show similar environmental preferences to those reported in the literature 

from other areas of the world. However, some differences also exist. There is a 

paucity of data available on the auteco logy of coastal marine species, and differences 

in the environmental requirements of diatom species from different areas of the 

world are not uncommon. The use of diatoms as water quality indicators therefore 

requires the use of local indicator species. The calculation of species optima and 

tolerances in this study, and the generation of the transfer functions to infer 

conditions at other sites (including palaeo-environmental conditions), is therefore 

integral to the effective use of diatoms as biological indicators in coastal south-east 

Tasmanian ecosystems. 

2.4.4 Transfer Functions 

The development of transfer functions for inferring nutrients in the near-shore coastal 

environment of south east Tasmania will provide coastal managers with a significant 

additional resource for monitoring and assessing water quality. Additionally, the 

ability to reconstruct the environmental history of sites within the study area using 

diatoms means that historical impacts on water quality can be more easily assessed 

and the likely consequences of continuing current practices can be more accurately 

predicted. 

The spread of species across the logged range of nutrient concentrations indicates the 

strong effect that small variations in nutrient concentrations can have on the 

composition of diatom assemblages. Given the variability of environmental 
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conditions across the range of study sites, the fact that nutrients are having the 

• greatest influence on diatom community composition indicates that anthropogenic 

activity is having a strong impact on the micro-algal community. This situation 

highlights the need for effective coastal management strategies for the region. This 

also highlights the success of using diatoms as biological indicators of nutrient 

concentrations in the south-east Tasmanian near-shore marine environment. 

2.4.5 Conclusions 

A diverse array of environmental conditions exists within the near-shore marine 

environment of south-east Tasmania. The composition of micro-algal assemblagess 

within these habitats is most strongly influenced by nutrient concentrations. 

Although nutrient concentrations generally decrease with distance away from the 

upper Derwent, an increase in nutrient concentrations is evident around more densely 

populated areas. Nutrient concentrations at some sites in the Derwent are particularly 

high, for example at Prince of Wales Bay. The proportion of fine benthic sediments 

at some sites also strongly influences diatom community composition, and is 

indicative of the physical energy associated with the hydrology in the area. Sites can 

be grouped environmentally according to differences in their physical and chemical 

characteristics. 

Although many of the main diatoms species in south-east Tasmania show similar 

environmental preferences to those reported from other areas of the world, 

differences in these preferences also exist. The determination of environmental 

optima and tolerances for south-east Tasmanian diatom species, and the development 

of transfer functions to infer nutrient concentrations at other sites, provides a 

valuable water quality monitoring and assessment resource that can also be used for 

environmental reconstruction of palaeo-marine sites within the study area. 

2.4.6 Recommendations 

The micro-algal community of south-east Tasmanian can now be used as biological 

indicators of nutrient concentrations in this region. The inclusion of diatoms in water 

quality monitoring and assessment programs is recommended for the Derwent River 

and D'Entrecasteaux Channel areas. The inclusion of Si02 measurements in the 

chemical analyses of water within these areas is also recommended. 
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CHAPTER 3: Environmental Reconstruction of Pittwater Lagoon, 

South-east Tasmania 

3.1 INTRODUCTION 
One of the most informative ways we can improve our knowledge of the ecological 

consequences of environmental impacts is to investigate these consequences 

retrospectively. The development of transfer functions to infer palaeo-environmental 

history from coastal habitats using diatoms provides a means of doing this. By 

calibrating palaeo-sediment data using the ecological optima and tolerances of 

diatom species, the environmental history of the aquatic environment from which a 

core is taken can be reconstructed (Stevenson et al. 1989). Long-term trends and 

fluctuations in environmental variables can thus be identified, and the long-term 

ecological consequences of environmental change can be more accurately 

determined (Dixit et al. 1991). 

Environmental reconstruction using diatoms has been undertaken extensively around 

the globe from a wide range of environments, including the Arctic (Ruhland & Smol 

2002), Antarctic (McMinn & Heijneis 1994, Crosta etal. 1998, Roberts & McMinn 

1999, Taylor & McMinn 2001), Australia (Gell et al. 1994, Taffs 2001), Africa 

(Gasse 1987), America (Fritz et al. 1991, Dixit et al. 1993), the Baltic sea (Morris et 
al. 1988, Miller & Risberg 1990, Korhola & Blom 1996), Canada (Palmer 1978, 

Cumming & Smol 1993), the U.K. (Juggins etal. 1996) Kenya (Cerling 1979, 

Barker et al. 1990), Siberia (Flower et al. 1995), and many other countries. 

In Tasmania, environmental reconstruction using diatoms has recently been 

undertaken in Lake Fidler to determine the history of meromixis (Hodgson et al. 
1996a, Hodgson et al. 1998), in coastal lagoons for salinity (Saunders 2002), and in 

Macquarie Harbour to examine the effects of mine development (McMinn et al. 

2003). The palaeolimnology of Lake Nicholls has also been reported by (Cameron et 
al. 1993). However, no work has been reported to date on reconstruction of nutrient 

conditions in Tasmania's coastal environment. 

European settlement of Tasmania has resulted in a significant change in land-use 

practices and resource-use of marine environments over the past two hundred years. 

The long-term effects of these changes on the ecology of Tasmania's marine 

environment are not well understood, although several results have been well 
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documented, such as the loss of seagrass and kelp beds (Rees 1993), introduced 

marine pests including the northern Pacific seastar (Asterias amurensis) (Green & 

Coughanowr 2003) and toxic dinoflagellates (Gymnodinium catenatum) (McMinn et 
al. 1997), and the contamination of waterways from heavy metals and organic 

nutrients (Green & Coughanowr 2003). Very little is known about the historical 

impacts of anthropogenic activity on the micro-algal communities from Tasmania's 

coastal waters. 

Five marine ecosystems have been identified within Tasmania's coastal environment 

as being of high ecological importance and subsequently protected as special 

reserves. These include the marine reserves at Nine Pin Point, Tinderbox, Mariah 

Island, Governor Island and Macquarie Island. However, aside from Macquarie 

Island, only 0.06% of Tasmania's coastal waters are protected and it is estimated that 

only 0.05% of Tasmania's marine species occur in reserves (Resource Planning and 

Development Commission, 2003). There are many ecologically important sites in 

Tasmania's marine environment that are either wholly or relatively unprotected. One 

such area of high ecological importance is Pittwater Lagoon, identified as a wetland 

of international importance to migratory birds under the international Rarnsar 

agreement in 1982, and one of only ten Ramsar sites in Tasmania (Ramsar 2005). 

Although listed as a Ramsar site, Pittwater Lagoon is used for aquaculture (oyster 

farming) and receives considerable nutrient input from anthropogenic sources (e.g. 

surrounding residential development and urban run-off) (Wetlands International 

2005). 

A better understanding of the ecological changes that have occurred in Pittwater will 

assist not only for the better protection and management of Pittwater, but also in 

understanding the ecological changes occurring elsewhere in the region. This study 

examines historical changes in the micro-algal community of Pittwater Lagoon, with 

the aim of improving understanding of the long-term effects of anthropogenic 

activity on the ecology of south-east Tasmanian marine environments. 

3.1.1 Study Area 

Pittwater lagoon (Figure 3.1) is a Ramsar listed wetland site, which has restricted 

tidal flow as a result of a causeway originally constructed in 1868, and modified in 
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1906, 1953 and 2003 (Plate 3.1). The causeway has a narrow opening under the 

eastern end which allows restricted tidal exchange. 

Figure 3.1: Location of Pittwater lagoon 

Plate 3.1: Pittwater causeway separating Pittwater Lagoon (on left) from the open 

marine environment 
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Pittwater is very important ecologically, being a major feeding area for a large range 

of migratory bird species that come from as far away as the Arctic (Wetlands 

International 2005). In addition, six species of threatened plants are found around the 

lagoon, which also contains the highest known concentration of the threatened 

starfish, Patriella vivipara (Green & Coughanowr 2003). 

The main tributary entering Pittwater is the Coal River. The catchment for the Coal 

River is 541.6 km2, has an average annual rainfall of 631 mm, and its geology is 

predominantly sedimentary rocks, with the high surrounding ridges and rounded hills 

formed from Jurassic dolerite intrusives (DPI WE 2003). Land within the catchment 

is predominantly privately owned and much of it has been cleared for agriculture, 

rural-residential settlements and townships. Pittwater has considerable nutrient input 

as it's surrounded by farms and the townships of Sorrel and Midway Point. Water 

quality issues within the catchment include vegetation clearing, soil erosion, urban 

run-off, sewage discharge, leachates from septic systems, fertiliser run-off, stock • 

access to streams and altered flow regimes (DPI WE 2003). In the 1930s a weir was 

constructed across the Coal River near the bridge at Richmond, causing a barrier to 

upper tidal influence in the estuary. Construction of the Craigborne Dam in the Coal 

River in 1986 (Crawford & Mitchell 1999) altered flows into Pittwater Lagoon, 

decreasing flows in winter and increasing flows in summer (DPI WE 2003). A second 

weir constructed 0.5 km below the original weir at Richmond further reduced 

freshwater input into Pittwater. A 94% decline in seagrass in Pittwater (equating to 

1201 ha) occurred between approximately 1948 and 1990 (Rees 1993). Pittwater is 

currently used for oyster farming. 
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3.2 METHODS 

3.2.1 Coring Site 

Pittwater is a large and relatively shallow water body that is partially enclosed by a 

causeway. Toward the causeway, the passage of water into and out of Pittwater is 

largely directed along a deeper channel which flows through openings constructed at 

one end of the causeway wall. The site chosen for coring was away from this channel 

(north-east) toward a more sheltered area of the lagoon. The coring site and the 

approximate location of the channel are shown in Figure 3.2. 

Figure 3.2. Site map showing location of core sample from Pittwater Lagoon and 

Coal River sample. 
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Plate 3.2: Pittwater core 

3.2.2 Core Collection 

From approximately 4.2 m water depth, a 69 cm long sediment core was collected 

from Pittwater on November 22, 2001, using a purpose-built diver-operated coring 

device (Plate 3.2) (constructed by Iona Mitchell from the Tasmanian Fisheries and 

Aquaculture Institute — TAFI, Hobart). The coring device consists of a clear Perspex 

tube (9 cm outside diameter, 80 cm long) with a handle attached on 2 sides near the 

top. The corer was pushed into the sediment almost up to the handles. A waterproof 

cap was then placed over the top of the tube providing a vacuum seal, so that as the 

core was extracted the sediment sample remained intact. A waterproof cap was 

placed over the bottom of the tube as soon as the corer was fully extracted from the 

sediment. The core was maintained in a vertical position and removed from the 

water. 

Back on shore, the core was extracted by removing the base cap, inserting the plunger, 

removing the top cap, and pushing the 

sediment up through the core using the 

plunger. The core was sectioned as it 

was removed by placing a 1 cm 

Perspex ring (cut from the original 

tube) on top of the corer and pushing 

the sediment up until it was level with 

the top of this ring. A thin steel blade 

was used to slice through the sediment 

between the corer and the top ring, 

providing sediment sections of 

approximately 1 cm thickness. Each 

section was halved diametrically to 

provide 2 samples for various analyses, 

bagged in 'zip-lock' bags, labelled, and 

stored in the dark on ice for later 

processing at UTAS laboratories. 

3.2.2.1 Coal River Sediment Sample 

A surface sediment sample was collected from 1.5 m water depth in the lower 

reaches of the Coal River, above where this tributary enters Pittwater lagoon, on the 
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same day that coring was undertaken (22/11/01). The purpose of this sample was to 

provide data on the composition of diatom species that may be entering Pittwater 

from the Coal River, to aid in the interpretation of species assemblages in the core. 

Using SCUBA equipment and a 100 ml specimen container, the sample was 

collected from the top 1 cm of the substrate at 1.5 m water depth, and was 

immediately capped underwater. The sample was stored in the dark on ice for later 

processing. The location of this sampling site is shown in Figure 3.2. 

3.2.3 Physical and Chemical Sampling 

Physical and chemical parameters at both sites were measured at the time that 

sediment samples were collected. Salinity, temperature and depth were measured 

using a CTD meter. Water clarity was measured using a Secchi disc (Tyler 1968). 

Duplicate 10 ml water samples for nutrient analyses were collected by the divers 

(prior to collecting the core) from approximately 2 m water depth (for the core), and 

from approximately 1 m water depth for the Coal River sample. Water samples were 

stored in the dark on ice until processed at UTAS laboratories. 

3.2.3.1 Sample Analyses 

Methods for the analysis of water samples for nutrients, and sediment samples for 

TOC and grain size analyses were followed as in Chapter 2. All core samples are 

treated as described for the surface sediment samples. 

3.2.4 Sediment Dating 

To be able to reconstruct the environmental history of an aquatic environment it is 

necessary to determine the chronology of changes that have occurred. Dating of the 

Pittwater core was undertaken to determine the chronology of the core and relate any 

changes that may have occurred in the microflora. 210Pb is the principal isotope for 

dating on the time scale of 100-150 years (Appleby et al. 1990, El-Daoushy 1990). 

Dating of the Pittwater core sediments using rn isotopes was undertaken at the 

Australian Nuclear Science and Technology Organisation (ANSTO) in Sydney using 

alpha spectrophotometry. Excess 210Pb was determined by subtracting individual 

226Ra values. Age depth relationships were obtained using the modified CIC 

technique (Brugam, 1978) allowing for non-linear sedimentation rates. The 2I0Pb 

dating data is provided in Table 3.1 in Appendix 3. 
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3.2.5 Diatom Community Composition 

Methods for the analyses of diatom community composition were followed as in 

Chapter 2. 

3.2.6 Statistical Analyses 

The transfer functions created for NO2_3 and Si02 (see Chapter 2) were applied to the 

species training set from the Pittwater core using C2  software (Juggins 2003). 
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3.3 RESULTS 

3.3.1 Physical and Chemical Results 

3.3.1.1 Salinity, Temperature & Depth 

The sediment core was collected from approximately 4.02 m water depth (adjusted to 

reflect mean tidal height at Hobart). Salinity was relatively constant throughout the 

depth profile (measurements ranged between 30.03 and 30.30). Water temperature 

decreased from approximately 16.5°C at the surface to 15.8°C at maximum depth. 

3.3.1.2 Light Penetration & Nutrient Concentrations 

Light penetration through the water column was relatively low, with Secchi depth 

measured at 1.55 m. Nutrient analyses of water samples collected immediately prior 

to core collection showed NO2_3 concentrations of 0.03 umol/L, PO4 at 0.19 !mon 

and Si02 at 18.61 innol/L. 

3.3.1.3 210Pb Dating & Sedimentation Rates 

The 2I°Pb chronology dates the bottom of the sediment core back to approximately 

the early 1880s (Table 3.1). As the sectioned core provided samples of 

approximately 1.2 cm thickness, the chronological age from the top to the bottom of 

an individual section (slice) varies. Therefore 2I0Pb results provide a ± date range. 

Sedimentation rates, calculated from the relationship between core depth and 2I0Pb 

dated age, were applied to the core to determine the age of each sediment section. 

The sedimentation rate increased very slightly in the top half of the core (Table 3.1). 

Table 3.1: 210Pb chronology of Pittwater Core, and sedimentation rates 

Depth (cm) —Year Plus/minus (years) 	Sedimentation Rate (cm/yr) 

0 2001 0 
0.0 to 4.3 Mixed surface layer 

9.6 1991 3 0.542 
17.2 1977 3 0.542 
26.4 1960 4 0.542 
37.2 1939 6 0.536 
43.2 1929 6 0.536 
49.2 1918 7 0.536 
57.6 1902 8 0.536 
67.2 1884 9 0.536 
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3.3.1.4 Sediment Size Analysis 

Sediment size analysis was undertaken on sections (slices) from various depths of the 

core (Figure 3.3). Each core section was approximately 1.2 cm thick — in the 

following pages the use of a single measurement refers to the base of that section. 

During the late 1800s, the sediment fraction < 63 gm increased by almost 12%, with 

a corresponding decrease in the percentage of fractions 63 -125 gm and (to a lesser 

extent) 0.125 pun —2 mm. During the 1900s sediment size remained relatively 

constant, with a small variation evident in the mixing layer of the top few cm. The 

core did not contain sediment > 2 mm. 

Figure 3.3: Sediment size analyses of the Pittwater Lagoon core 
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3.3.1.5 Total Organic Carbon 

Total organic carbon (TOC) analyses of the core sediments shows that TOC 

increased sharply by almost 50% during the late -1800s (Figure 3.4). A similar rise 

in TOC levels is evident in the top 6 cm of the core (from -1994). TOC was wealdy 

correlated with the percentage of sediment fraction <63 lam (r2  = 0.55). 

Total Organic Carbon (%) 
Year0 0 	0.5 	1.0 	1.5 	2.0 	25 
2001 

- 
_ 

_ 
1.2 
2.4 Depth 

_ 3.6 " ) 
1996 	.:_ _ 4.8 
1994 _ 6.0 
1993 _ 7.2 
1992 _ 8.4 
1991 _ 9.6 
1988 _ 10.8 
1986 _. 12.0 
1982 _ 14.4 
1977 _ • 16.8 
1975 _ 18.0 
1973 _ 19.2 
1969 _ 21.6 
1964 _ 24.0 
1960 _ 26.4 
1956 _ 28.8 
1951 	_ 31.2 
1946 _ 33.6 
1941 	_ 36.0 
1939 _ 37.2 
1937_ 38.4 
1933 _ 40.8 
1929 _ 43.2 
1925 _ 45.6 
1920 _ 48.0 
1916 _ 50.4 
1911 	_ 52.8 
1907 _ 55.2 
1902 _ 57.6 
1898 _ 60.0 
1893 _ 62.4 
1889 _ 64.8 
1884 _ 67.2 
1882 1 I 1 68.4 

0.0 	0.5 1.0 1.5 2.0 	2.5 

Figure 3.4: Total Organic Carbon in the Pittwater Lagoon core 
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3.3.2 Application of the Transfer Functions 

The transfer functions generated from the training set (Chapter 2) were applied to the 

sediment core from Pittwater Lagoon to reconstruct the nutrient history of the 

lagoon. The number and effective number of diatom species in the fossil data set, as 

well as the number of species in the fossil data set present in the training set, are 

• listed in Table 3.2 in Appendix 3). Reconstructed NO2_3 concentrations for the 

Pittwater core are shown in Figure 3.5 (reconstructed Pittwater core values for NO2-3 

and Si02 are listed in Table 3.3 in Appendix 3). 
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Figure 3.5: Reconstructed spring NO2.3 concentrations and calculated RMSEP errors 

for Pittwater core 

Inferred NO2_3 concentrations in Pittwater show low to moderate concentrations with 

peaks occurring in the mid-late -1920s, mid-late -1960s, and early -1990s. 
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Reconstructed Si02 concentrations for Pittwater core are shown in Figure 3.6. 
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Figure 3.6: Reconstructed spring Si02 concentrations and calculated RMSEP errors 

for Pittwater core 

Inferred Si02 concentrations in Pittwater show low to moderate concentrations that 

have overall decreased since the early —1930s, with peaks occurring in the late 

—1890s, mid-late —1920s, and early —1990s. 

3.3.3 Diatom Community Composition 

All diatom species comprising at least 2% of at least one sample were included in the 

analysis of the core data. Together, these species averaged > 93% of the diatom 

community from every sample (Range 88% to 99%). The following section focuses 

on the above-mentioned diatom species from the core. Diatom species names and 
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authorities, and abundance and composition for the core, are provided in Tables 3.4 

and 3.5 respectively, in Appendix 3. 

A total of 36 diatom species from 23 genera were recorded at 2% of at least one • 

sample from the core. The species composition of diatom assemblages changed 

significantly over the length of the core. From the base of the core (-1882) up to 

approximately 1951 (31cm sample), diatom assemblages were strongly dominated by 

the centric tychoplanktonic species Paralia sulcata and Ehrenbergia granulosa, 

which together constituted >50% of all diatom assemblages (averaging 65%) (Figure 

3.7). However, the abundance of these two species declined rapidly after this date, 

constituting only 31% of assemblages in -1956 (28.8 cm sample), 7% of the 

assemblage in -1960 (26.4 cm sample), and averaging 3.2% of remaining samples to 

the top of the core (2001). 

The middle section of the core, from -1956 to -1977 (samples 28.8 cm up to 16.8 

cm), covers the transition zone between the decline of Paralia sulcata and 

Ehrenbergia granulosa, and the emergence and dominance by Cymatosira aff. 

belgica. Diatom assemblages in this middle section were not as strongly dominated 

by individual species, and consisted mostly of Catenula adhaerens, Glyphodesmis 

distans, Plagiogramma staurophorum, Gramatophora oceanica and C'occoneis aff. 

pinnata. 

Diatom assemblages from -1982 (from the 14.4 cm sample up) were strongly 

dominated by Cymatosira aff. belgica (averaging 45% of the assemblages). This 

species first appeared in significant proportions (15.4%) in approximately 1975 (in 

the sample at 18 cm). Prior to this time, the only recording of this species was two 

specimens from -1960 (26.4 cm section). However, the complete absence of this 

species between -1960 and -1975 (26.4 and 18 cm) suggests that the two individual 

specimens may have been the result of contamination as the sediment was extruded 

through the coring chamber during sectioning. Other species in abundance in the top 

sections of the core include Cocconeis aff. pinnata, Opephora olsenii, and Catenula 

adhaerens. 

97 



0 

5 - 

10 - 

15 - 

20- 

25- .. 

C1 40- 

45- 
_ 

50- 

55- 

60- 

65- 

70 - 

AM 

cP9' 

• J`> 

qp 

N4C)  

co*Q .  
L.L-1 

m 

1.

▪ 

1 
1111. 
=MI 

L_L_L_LJ—LJ al al.1.1.1a1 	Ip.  al  a 	1 	II 	 1 1 

rrl rrT/-1 1,1 	.1.1 , 1 	II .1 , 1 
0 10 0 10 20 0 10 0 10 20 30 0 10 0 10 20 30 0 10 20 30 40 50 60100 0.50 1.00 1.500 	10 20 30 40 

r-r-f 

10 20 30 

L_LJ 

• 
• 
• • 

• M 

• on 

▪ ,o

▪ 

r 
um 	• 

• 

1■1 

• 11111.1M rn mm r-rl Fri 
0 10 20 30 40 0 10 20 30 40 50 60 0 100 100 100 100 100 10 

L.LJ 
	

L-LJ L_LJ 

• • 
• 

moo 

Relative Abundance (%) 

Figure 3.7: Diatom stratigraphy showing the most abundant species in the Pittwater core, and transfer function diatom-inferred NO2.3 and Si02. 
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3.3.4 Coal River Sample 

Physical and chemical measurements taken at the time of collecting the surface 

sediment sample (22/11/01) showed that temperature was 17.8°C at the surface and 

18°C at the bottom (depth 1.5 m), salinity was 20.0, and Secchi depth was 0.65 m. 

Nutrient concentrations were as follows: 

NO2.3 = 0.68 'mon.; 	PO4 = 0.71 timol/L; 	Si02= 78.52 umol/L. 

Sediment size composition was as follows: 

<63 gm = 96.53% 	63- 125 	= 2.17% 	0.125 pm -2 mm = 1.30 

There were only six diatom species from this sample that constituted 	2% of the 

assemblage. These species were: 

Navicula arenaria var. rostellata 37.0% 

Navicula species 1 12.4% 

Nitzschia amphibia 12.5% 

Nitzschia species 1 5.3% 

Navicula monoculata var. omissa 4.6% 

Cymatosira aff belgica 2.7% 

Sampling at this site was undertaken to provide additional relevant information 

regarding the possible input of allochthonous species to the Pittwater core to aid in 

interpreting the core data. Data from this site has therefore not been included in any 

of the statistical analyses in this study. 
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3.4 DISCUSSION 

3.4.1 Physical and Chemical Parameters of Pittwater 

3.4.1.1 Salinity and Temperature 

Salinity at the Pittwater coring site (-30) was very similar at the time of sampling to 

salinities measured several weeks earlier at training-set sites on the other side of the 

causeway. The small change in salinity (0.27) that occurred throughout the 4 m depth 

profile shows that the water was well mixed. Previous research has shown that salinity 

near the Pittwater causeway generally ranges between approximately 30 and 37, 

averaging 33 to 35 (over a 2 year period), the waters are well mixed, and salinity 

tends to increase with distance up the Coal River Estuary due to evaporation and low 

freshwater input (as a result of the Craigbourne Dam, and weirs between the dam and 

Pittwater) (Crawford & Mitchell 1999). Pittwater is therefore typically marine, with 

reductions in salinity occurring only every few years after exceptionally heavy rainfall 

and extensive flooding (Crawford & Mitchell 1999). 

Water temperature at the time of sampling (-16°C) was toward the high end of the 

temperature range normally experienced in Pittwater (-7 to 18 °C, depending on 

season: (Crawford & Mitchell 1999).The Secchi disc measurement in Pittwater at the 

time of sampling (1.55 m) was low in comparison with other marine sites in the 

region. However, a thick algal mat was visible on the sediment surface (and surface of 

the core), and Secchi depth measurements of almost 4 m (maximum site depth) were 

recorded on the other side of the causeway from sites in the training-set. This 

indicates that light penetration at the coring site is usually sufficient for algal growth, 

and suggests that the Secchi depth measurement at the site may not always be so low. 

Sampling at the coring site was undertaken around the turn of the tide, which may 

have resulted in increased turbidity of the water column. 

3.4.1.2 Sediments 

Sediment size analysis of the core revealed a gradual increase of> 10% in the 

proportion of the sediment fraction < 63 gm from the late —1800s until —1902, with a 

corresponding decrease in the percentage of coarser fractions (> 63 to 2 mm). The 

percentage composition of sediment-size fractions remained relatively constant after 

this initial change. The gradual reduction of the coarser fractions of the sediment is 
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thought to be a result of the construction of the causeway, resulting in restricted tidal 

flow and consequential reduction in the sediment-carrying capacity of the inflowing 

tide. In the sample at the top of the core (after —1996) the fine sediment fraction has 

again increased. However, the top of the core is subject to reworking through 

bioturbation and resuspension, and this uppermost sample may represent the lighter 

resuspended sediment that is last to settle after disturbance. Hence, limited 

information can be drawn from this single uppermost sample. 

3.4.1.3 Total Organic Carbon 

Total organic carbon (TOC) in the Pittwater Lagoon core sediments increased sharply 

by almost 50% during the late —1800s until the 20 th  century. The results showed that 

TOC was positively correlated with the fraction of sediment size < 63 pm (r2 = 0.55), 

which increased during the same period. Hence, the increase in TOC during this 

period is probably associated with the increase in the fine sediment component and 

the reduction in tidal flushing resulting from the construction of the causeway. 

Additionally, the fact that TOC remained relatively stable during the 20 th  century, and 

at concentrations above those of the late —1800s, further suggests that the permanent 

shift in TOC concentrations was a consequence of the construction of the causeway 

altering the hydrological processes in Pittwater. 

3.4.1.4 Nutrients 

Nutrient concentrations in Pittwater at the time of sampling were low except for 

silicate (NO2.3 = 0.03 gmol/L; PO4= 0.19 gmol/L; Si02= 18.61 gmol/L), and were 

very similar to sites from the training-set in the D'Entrecasteaux Channel and Ralphs 

Bay. Previous research has shown that nutrient concentrations in Pittwater are 

generally low, with NOx  concentrations averaging less than 4 p.g/L (-0.07 gmol/L), 

but ranging from 0.1 to 34.0 gg/L (-0.002 to 0.63 gmol/L) over a period of > 3 years 

(1991-94) (Crawford & Mitchell 1999). PO4 concentrations during the same period 

were generally in the range of 5 to 15 gg/L (-0.05 to 0.16 umol/L), and Siat 

concentrations measured only during the last year of the aforementioned study (1994) 

ranged from 32.25 to 211 gg/L (approximately equivalent to 0.5 to 3.4 grnol/L of 

Si02). Nutrient concentrations in Pittwater at the time of core collection were 

therefore similar to previous findings. However, Si02 concentrations were relatively 

high, and were similar to concentrations measured on the eastern side of the causeway 
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and in Ralphs Bay during spring 2001 (Chapter 2). Nutrient concentrations in 

Pittwater at the time of coring are also similar to those reported from other coastal 

areas in Australia and overseas, and are below the trigger values provided in the 

ANZECC guidelines (see Discussion, Section 2.4.1). 

3.4.2 Inferred Nutrient Concentrations in Pittwater 

Inferred NO2.3 concentrations throughout the Pittwater core ranged from 

approximately 0.28 to 1.30 gmol/L (average 0.73 gmol/L), with highest overall 

concentrations occurring toward the top of the core. Inferred concentrations are an 

estimate of the average nutrient concentrations for each sample, which in this study 

represents approximately two years. The highest of these inferred concentrations is 

above the higher limit previously reported for Pittwater, however NO concentrations 

in Pittwater may vary by more than 40 fold in the space of a few months, and average 

annual concentrations can vary by more than 13 times (Crawford & Mitchell 1999). 

Modem NO2.3 concentrations, inferred from the NO2.3 transfer function applied to the 

fossil data (0.95 !mon) do not closely agree with NO2.3 concentrations measured at 

the time of coring (0.03 gmol/L). However, at the two sites on the eastern side of the 

causeway NO2.3 concentrations were 0.51 !mon (Sites 50) and 0.93 gmol/L (Site 

51) during autumn sampling for the training set (Chapter 2). These concentrations are 

very similar to those inferred for the nearby Pittwater coring site on the western side 

of the causeway, and highlight the variability in the NO2.3 concentrations in this 

system. The range of NO2.3 concentrations inferred for the Pittwater core is therefore 

considered to approximate real values, and this is supported by the strong correlation 

obtained in the generation of the transfer function (r 2  = 0.88). 

The inferred NO2.3 concentrations in Pittwater show fluctuating, low to moderate 

concentrations with peaks occurring in the mid-late —1920s, mid-late —1960s, and 

early —1990s. Following the peak NO2.3 concentration in 1964, NO23 levels steadily 

declined until the late —1980s, before peaking at their highest concentration in —1992 

and remaining at relatively high concentrations since. The increase in nutrient 

concentrations after —1988 coincides with the construction of the Craigbome Dam in 

1986, which decreased flows in winter and increased flows in summer (DPI WE 
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2003). Since diatom growth is greatest during the warmer months, during which time 

freshwater flow into Pittwater is also increased, the composition of the diatom 

assemblages may be reflecting increased nutrient concentrations associated with the 

increased freshwater input during summer. 

Present day Si02concentrations, as inferred from the Si02 transfer function applied to 

the fossil data (17.56 umol/L), agree closely with Si02 concentrations measured at the 

time of coring (18.61 umol/L), and are similar to many of the other marine sites in 

south-east Tasmania. This suggests that that the transfer function generated for 

inferring Si02 can be used to infer past Si02 concentrations in this near-shore marine 

environment of south-east Tasmania. Reconstructed Si02 concentrations in Pittwater 

Lagoon show a significant decline from the early —1930s to the present day. Although 

Si02  concentrations are still relatively high in Pittwater Lagoon, the reduction in 

concentrations from the early —1930s onwards indicates a significant change in the 

system. This change coincides with the construction of the weir at Richmond in the 

early 1930s, which altered hydrological flows into Pittwater. However, because silica 

concentrations are relatively high in Pittwater Lagoon they are unlikely to be a strong 

limiting factor for diatom growth, and therefore unlikely to be independently and 

significantly impacting on the diatom community in Pittwater. Nonetheless, the 

change in Si02 concentrations in Pittwater is an example of the impact that 

anthropogenic changes further upstream can have on our coastal marine systems. 

3.4.3 Historical Changes in the Diatom flora 

There are profound changes in the diatom flora of Pittwater Lagoon during the last 

century. From the —1880s until approximately 1951, Paralia sulcata and Ehrenbergia 

granulosa strongly dominated diatom assemblages, constituting > 50% of all diatom 

assemblages and averaging 65%. However, by —1956 the relative abundance of these 

two species had declined to a little over 30%, and from the —1960s onwards they 

averaged only 3.2% of remaining samples to the top of the core (2001). The decline in 

the abundance of these species was very abrupt. 
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Paralia sulcata (synonym: Melosira sulcata) and Ehrenbergia granulosa (synonym: 

Coscinodiscus granulosus) are common constituents of marine littoral sediments and 

are widely reported from coastal diatom communities around the world (Round 1981, 

Witkowski et al. 2000). For example, Paralia sulcata has been reported from areas 

including the north coast of Cornwall (Hendey 1977), coastal deposits of the 

Netherlands (Vos & de Wolf 1993a), coastal waters of Hong Kong (Ng & Sin 2003), 

the continental shelf of Taiwan (Huang 1990), upper Florida Bay (DeFelice 1978), 

Netarts Bay, Oregon (Whiting & McIntire 1985) and the continental shelf waters of 

north and north-west Australia (Hallegraeff & Jeffrey 1984). Ehrenbergia granulosa 
has been reported from areas including tidal flats of the North Sea and Atlantic coasts 

in Europe, the western Baltic Sea, New Caledonia, and South Africa (Witkowski et al. 

2000). However, neither of these two species has previously been reported from 

Tasmania. 

The relatively low abundance of Paralia sulcata and Ehrenbergia granulosa in 

modem sediment samples from Pittwater is similar to modern sediment samples from 

elsewhere in the south-east Tasmanian coastal region. Paralia sukata was recorded 

from 13 sites throughout the training-set study area, but only in small proportions, 

with the maximum abundance of 5% recorded from Site 50 on the eastern side of the 

Pittwater causeway. There is therefore a significant difference between the modern-

day abundance of Paralia sulcata at all south-east Tasmanian marine sites, and the 

abundance of ParaIia sulcata in the Pittwater core up to —1960. A similar situation 

exists regarding the abundance of Ehrenbergia granulosa, which was recorded in 

surface sediment samples from only 12 of the 51 training-set sites in abundances of < 

3%, except for Sites 31 and 43 in the Channel. At these latter two sites, Ehrenbergia 
granulosa was the dominant species with a relative abundance of 20-21%. However, 

these two sites are on opposite sides and at opposite ends of the Channel, and have 

little in common apart from both containing a high proportion of coarse sediments (> 

80%> 0.125 gm), which is the opposite of the fine sediment composition throughout 

the Pittwater core. 
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The middle section of the Pittwater core (approximately 1956 to 1977) represents a 

transition zone between the decline of Paralia sukata and Ehrenbergia granulosa, 

and modern day assemblages which have been relatively stable in Pittwater since 

—1982. Dominant species in this middle section include Gramatophora oceanica, 

Glyphodesmis distans, Plagiogramma staurophorum, Catenula adhaerens, and 

Cocconeis aff. pinnata. 

Gramatophora oceanica is a cosmopolitan species in brackish water and marine 

coasts (Witkowski et al. 2000), and is widely reported from areas including Atlantic 

Canada (Palmer 1978), coastal waters of Hong Kong (Ng & Sin 2003),the north-

western Baltic (Miller & Risberg 1990), the north coast of Cornwall (Hendey 1977), 

the continental shelf waters of north and north-west Australia (Hallegraeff & Jeffrey 

1984), and the Swan River Estuary in Western Australia (John 1983). Gramatophora 

oceanica was present throughout the core profile in small proportions, and was found 

at many of the training-set sites (again, in small proportions). The relative abundance 

of G. oceanica in the core increased from approximately 1964 as the abundance 

Paralia sulcata and Ehrenbergia granulosa began to decline, and abruptly declined 

after —1973 to —pre-1964 levels as the abundance of other species in modern day 

assemblages increased. 

Glyphodesmis distans (synonym: Dimeregramma distans) was recorded in small 

numbers throughout the core, and showed a very similar increase and subsequent 

decline in relative abundance to that of Gramatophora oceanica. Glyphodesmis 

distans is a widespread marine species in the littoral sediments of coastal 

environments, including the Baltic Sea (Witkowski etal. 2000), and has previously 

been reported from Australia in the Swan River Estuary by John (1983). However, 

Glyphodesmis distans was not recorded from any of the training-set sites in south-east 

Tasmania, and its relative abundance in the Pittwater core was generally < 2%, 

although reached 10.3% in the middle section of the core before declining again in 

more recent assemblages. 
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Plagiogramma staurophorum first appeared in the core in approximately 1920, and 

was recorded in relatively small abundances from this time on. Plagiogramma 

staurophorum showed a very similar increase and subsequent decline in relative 

abundance to that of Gramatophora oceanica and Glyphodesmis distans. 

Plagiogramma staurophorum is a common epipsammic diatom in brackish and 

marine environments, and has been widely reported from coastal environments 

around the world (discussed in Chapter 2). The abundance of Plagiogramma 

staurophorum at south-east Tasmanian sites from the training-set was greatest in 

Ralphs Bay and the north-eastern side of the causeway at Pittwater lagoon, and was 

generally recorded in relatively small proportions, as was the case in south-western 

Tasmania (McMinn etal. 2003) and Western Australia (John 1983). 

Catenula adhaerens first appeared in the Pittwater core in approximately 1933, but 

was present in proportions of < 2% until becoming relatively abundant (> 10%) in 

—1960 until the late —1970s, and has averaged approximately 6% of diatom 

assemblages since that time. Although C. adhaerens shows a generally similar 

increase and decline in relative abundance to the above-mentioned species in the 

middle section of the core, its relative abundance has generally been higher during the 

past 20 years than before it became abundant in —1960. Catenula adhaerens is a 

common species in marine littoral zones, often recorded from the epipsammon 

(Witkowski et al. 2000), and has been reported from the Gotland Basin in the Baltic 

Sea (Gronlund 1993), the Ems Estuary, Wadden Sea (de Jonge 1985), coastal 

wetlands of the Netherlands (Vos & de Wolf 1993a), and the west coast of Sweden 

(Sundback & Snoeijs 1991b). However, Catenula adhaerens has not previously been 

reported from Tasmania, and Australian records of this species are scarce or non-

existent. Catenula adhaerens was widespread throughout the south-east Tasmanian 

training-set sites, occurring at 39 out of the 51 sites, mostly in relatively small 

proportions (< 2%). It was most abundant in Ralphs Bay, where the maximum 

abundance of Catenula adhaerens (-16.5%) occurred at Site 21, and was recorded 

from all sites within Pittwater (maximum abundance < 4%). 
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Cocconeis aff. pinnata was present throughout the Pittwater core, however its relative 

abundance was <2% until approximately 1941, after which time its relative 

abundance was always > 2% and averaged 10.8%. The greatest abundance of 

Cocconeis aff. pinnata occurred within the middle section of the core, however the 

abundance of this species significantly increased in —1960 and remained 

comparatively high ever since. Cocconeis pinnata is a marine littoral species 

(Witkowski et al. 2000) and was rare at south-east Tasmanian sites, occurring at less 

than 2% at all sites except those near Pittwater, where its abundance still remained at 

<10%. 

From —1982, the top sections of the core were dominated by Cymatosira aff. beligica, 

which averaged > 45% of diatom community composition (range 36 to 56.3%). The 

first appearance of Cymatosira aff. beligica in the Pittwater core was in 

approximately 1960. However, only two specimens were recorded from this sample, 

and the next appearance was four samples above this (in —1975), at which point 

Cymatosira aff. beligica constituted 15.4 % of the diatom assemblage. In —1982, C. 

aff. beligica constituted 50.1% of the diatom assemblages. The appearance and 

subsequent dominance of Cymatosira aff. beligica in the sediment core is of particular 

interest as it represents a significant change and is a recent introduction to the 

microflora in the Pittwater core. Cymatosira aff. beligica is discussed further in the 

following section on interpretation of the changes in Pittwater. 

3.4.4 Coal River Diatoms 

Diatoms in the Coal River sample differed considerably from those in the Pittwater 

core, however all diatom species from the Coal River present in ?_ 2% relative 

abundance were also recorded in training-set samples. Paralia sulcata and 

Ehrenbergia granulosa were not recorded from the Coal River. None of the main 

diatom species from the Pittwater core were present at 2% abundance in the Coal 

River sample, with the exception of Cymatosira aff. belgica. However, C.. belgica did 

not constitute a significant proportion of the diatom assemblage (only 2.7%), 

suggesting the Coal River is not a major allochthonous source for the Pittwater site. 
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3.4.5 Interpretation of Historical Changes in the Microflora 

3.4.5.1 Base Sections of the Core: —1882 - —1960 

There is strong evidence indicating that the rapid decline in the abundance of Paralia 

sulcata and Ehrenbergia granulosa in Pittwater Lagoon is a result of modifications to 

the causeway in the 1950s. Historical photographs of the section of the Pittwater 

causeway that separates Pittwater Lagoon from the main water body of Pittwater (i.e. 

from Pittwater Bluff to Midway Point) show that the previous structure 

(fundamentally a bridge supported by pylons: State Library of Tasmania 2004) 

allowed the relatively free flow of water under the causeway for most of its length. 

The replacement structure was a solid wall of earth and rock, with an opening under 

the road at one end to allow water exchange. This replacement structure therefore 

significantly reduced tidal exchange between the eastern and western side of the 

causeway. 

Modification to the causeway began in 1953 and ended in 1957 (Structurae 2004). 

Prior to these causeway modifications, Paralia sulcata and Ehrenbergia granulosa 

constituted over 50% of all diatom assemblages (core samples up to 1951). However, 

during the period of causeway modification a decline in the abundance of these two 

species to —30% occurred (-1956). After —1960, these two species averaged only 

3.2% of remaining samples to the top of the core (2001). This indicates that 

modifications to the causeway in the 1950s were directly related to the abrupt decline 

in Paralia sulcata and Ehrenbergia granulosa in Pittwater Lagoon. 

Further evidence suggests that the area from which the core was collected was also an 

area of deposition of resuspended frustules of Paralia sulcata and Ehrenbergia 

granulosa. The factors suggesting this relate to the hydrodynamics within Pittwater, 

sediment size within Pittwater, and substrate preferences for these species. Wind 

driven waves are a prominent feature of the hydrodynamics of Pittwater (Crawford & 

Mitchell 1999), and as the dominant wind direction in Tasmania is from the west, a 

considerable amount of resuspended material may be naturally transported the eastern 

side of Pittwater. The natural channel through Pittwater also directs some incoming 

and outgoing tidal water toward the eastern side of Pittwater (Crawford & Mitchell 

1999). Lower Pittwater surveys have shown that the substrate is generally medium to 
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fine sands (Crawford & Mitchell 1999), as opposed to the very fine silt where the core 

was taken. Additionally, sediment size analysis of training-set sites on the eastern side 

of the causeway in Pittwater showed that sediments were —64 to 99%> 0.125 gm. 

The core was collected from a relatively sheltered area on the eastern side of 

Pittwater, and the fine sediment throughout the core indicates that the coring site is an 

area where fine suspended sediments (and by inference resuspended diatoms) are 

naturally deposited. 

Other researchers have reported Paralia sulcata from a wide range of sediment types 

(within the one study), including fine muds and coarse sands (Whiting & McIntire 

1985, Huang 1990). This suggests that Paralia sulcata and Ehrenbergia granulosa 

were occurring naturally on the fine sediments at the core site. However, the transfer 

functions generated from the training-set (Chapter 2) inferred that in south-east 

Tasmania, Paralia sukata and Ehrenbergia granulosa prefer coarse sediments (with 

optima for sediment < 63 gm of <20% and < 10% respectively). In fact, the only 

(two) sites from the training-set in which these species were abundant had coarse 

sediments that were > 80%> 0.125 gm. Neither Paralia sulcata nor Ehrenbergia 

granulosa were recorded from the Coal River sample. This suggests that Paralia 

sulcata and Ehrenbergia granulosa may have been widespread (although not 

necessarily abundant) on the coarser sediments in Pittwater. 

If Paralia sulcata and Ehrenbergia granulosa were more widespread on the coarser 

sediments of Pittwater, and the coring site is a natural area of deposition of fine 

material (including resuspended diatoms) in Pittwater, then resuspended 

tychoplanktonic species in Pittwater would be found in significantly greater 

proportions at the coring site than would naturally occur there. Similar findings have 

been reported from Japan, where Paralia species were found in large numbers as an 

allochthonous component in tidal marsh deposits, thought to be a result of the long 

chains of this species floating more readily and being easily transported by tidal 

currents (Sawai 2001). Prior to the modifications to the causeway in the 1950s, 

resuspended frustules of Paralia sulcata and Ehrenbergia granulosa from the entire 

larger Pittwater area (and perhaps from the bay outside) may in fact have been 

deposited at the coring site. Following the causeway modifications, by far the greater 

part of Pittwater was separated from the coring area, thus reducing the potential 
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allochthonous input of Paralia sulcata and Ehrenbergia granulosa. This would 

account for the significant and abrupt change in the abundance of Paralia sulcata and 

Ehrenbergia granulosa at the coring site, and is supported by an additional factor. In 

other surface-sediment samples from training-set sites within south-east Tasmania, 

Paralia sulcata and Ehrenbergia granulosa occur naturally only in relatively small 

proportions, similar to those proportions recorded from the Pittwater core after 

modifications to the causeway. This means that the abundance of P. sulcata and E. 

granulosa recorded in the core after the causeway modifications in the 1950s are 

more consistent with other diatom assemblages in south-east Tasmania, and further 

supports the argument that the abundance of these species in the core prior to 1960 

was a result of resuspension and deposition. 

3.4.5.2 Middle Sections of the Core: —1960 — —1975 

The increase in the relative abundance of species within the middle section of the core 

(-1960 to —1975) follows the decline in relative abundance of Paralia sulcata and 

Ehrenbergia granulosa. Although a higher relative abundance of Catenula adhaerens 

and Cocconeis aff. pinnata continues to the top of the core, the contribution of these 

two species to the community composition since —1960 was significantly outweighed 

by that of Cymatosira aff. belgica. 

3.4.5.3 Top Sections of the Core: —1975 - —2001 

The relatively recent appearance and rapid and sustained dominance by Cymatosira 

aff. belgica in the top sections of the Pittwater core suggest that this species was 

introduced to Pittwater. As discussed in Chapter 2, Cymatosira species have not 

previously been reported from Tasmania, and were not recorded in the survey of 

diatoms from the Swan River Estuary in Western Australia (John 1983) or eastern 

Australia (Foged 1978). Cymatosira aff. belgica was restricted to two areas within the 

study region — Pittwater (including training set sites), and Ralphs Bay (where it was 

the dominant species at Site 20 and 21). Pittwater opens into Frederick Henry Bay, 

and Ralphs Bay is separated from Frederick Henry Bay by a narrow strip of land at 

Lauderdale. This strip of land has a canal which runs most of the distance between the 

two bays, leaving the bays separated by less than 100 m. This canal has also been 

deliberately opened between the two bays in the past. The spread of Cymatosira aff. 

belgica in considerable proportions from one of these two bays to the other is 

110 



therefore quite possible. 

Species introduction can occur from a variety of sources, and consequently is reported 

for a wide range of organisms (including diatoms) from all around the world (Kelly 

1993, Ruiz etal. 2000, Grosholz & Ruiz 2003, Trowbridge 2004), including 

Tasmania (Ross et al. 2004). Ballast water, migrating birds, fouling organisms, 

transport vessels, wind and freak meteorological events are only a few of the 

mechanisms by which species may be introduced from one area to another. The 

possible introduction of a new diatom species to Tasmanian waters is therefore not an 

unlikely or necessarily unusual event. It is possible, for example, that the introduction 

of Cymatosira aff. belgica may be associated with the introduction of Pacific Oysters 

(Crassostrea gigas) into Pittwater from Japan in 1947-1948, and again in 1951-52 

(English et al. 2000). Most of these oysters were transferred to Port Sorrell in 

Tasmania's north in 1953 in the hope of improving growth conditions in the warmer 

waters, but were re-introduced into Pittwater in 1981 from colonies in the Tamar 

River (northern Tasmania) (English et al. 2000). As Cymatosira aff. belgica has had 

such a significant impact on the community composition in Pittwater Lagoon, and is 

dominating diatom assemblages at two nearby sites in Ralphs Bay, further research on 

the origin, and current and historical distribution of this species is warranted. The 

inclusion of a sediment core from one or more of the training-set sites in Ralphs Bay, 

and investigation of diatom community composition from other Tasmanian coastal 

sites including Port Sorrel and the Tamar River, may add significantly to 

understanding the origin and spread of this species. 

• Pittwater is important both ecologically, as a designated Ramsar wetland site and 

habitat for rare and threatened marine species, and commercially as an oyster growing 

area (Crawford & Mitchell 1999). Since European settlement of the area, Pittwater 

has experienced significant physical, chemical and biological changes. The future 

health of Pittwater Lagoon ecologically and as a commercial oyster-growing area will 

depend on the ability of responsible stakeholders and caretakers to incorporate 

effective biological monitoring and assessment of the area into their management • 

strategies. 
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3.4.6 Conclusions 

Pittwater Lagoon has undergone significant changes since the late 18th  centtuy in 

relation to hydrological flows and freshwater input, organic carbon content of the 

sediments, species introduction, and to a lesser extent nutrient concentrations and 

sediment size composition. The dramatic changes that have occurred in the microflora 

throughout the core appear to be a result of reduced tidal exchange as a consequence 

of causeway alterations in the 1950s, and the introduction of a new diatom species to 

Pittwater. The application of the transfer-functions to infer nutrient concentrations in 

• Pittwater show that nutrient concentrations have altered in Pittwater since the late 18 th  

century (with an overall increase in NO2_3 and decrease in Si02). However, other 

physical and biological changes have had a greater impact than nutrient changes on 

the microflora in this system. However, the generation and practical application of the 

transfer functions in Pittwater now means that NO2_3 and Si02 can be reconstructed 

from south-east Tasmanian near-shore marine environments to help water quality 

managers assess impacts and determine best rehabilitation and maintenance routines 

for these sensitive coastal ecosystems. 

3.4.7 Recommendations 

Ongoing biological monitoring and assessment, in conjunction with chemical 

measurements, is essential for maintaining the ecological integrity of Pittwater. 

Further research on the origin, distribution and historical abundance of Cymatosira 

aff belgica in south-east and northern Tasmania is warranted as this species 

represents a very significant change in the microflora of at least one site, and its 

dominance at two other sites indicates that it is a relatively competitive species in 

south-east Tasmania. The investigation of a sediment core from Ralphs Bay would 

add significantly to understanding the origin and spread of this species. 
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4.0 CONCLUDING GENERAL DISCUSSION 
The issues relating to water quality have been significantly increasing on a global 

scale for many decades. Eutrophication, anthropogenic alterations to the physical 

structure of waterways, and the introduction of exotic species have resulted in 

changes globally to natural aquatic ecosystems (Sundback & Snoeijs 1991b, Grosholz 

& Ruiz 2003, Trowbridge 2004). Simultaneously, growth in our understanding of the 

primary issues relating to maintaining the biological integrity of our waterways, and 

the ecological complexities of species interactions with their environment and each 

other, combined with recent improvements in statistical techniques and technological 

advances that have improved the dissemination of information, have increased our 

awareness and ability to address these issues. 

The near-shore coastal marine environment is one of the areas that have been 

receiving increasing attention in recent times. With most of the world's population 

living in the coastal zone, significant impacts on coastal ecosystems are continually 

being identified, and there is growing public awareness of the limited capacity of 

coastal aquatic systems to cope with these anthropogenic impacts. This study aimed to 

identify some of these impacts on the micro-algal community in the south-east 

Tasmanian near-shore coastal marine environment, provide a means for future 

monitoring and assessment of these impacts, and provide a tool for identifying the 

historical impacts that these changes have had. To achieve these aims: 

(i) The biomass of the benthic microflora in south-east Tasmania has been 

measured and related to depth, temperature, nutrients, temporal variation, and 

algal biomass from other areas of the globe; 

(ii) Causative relationships have been identified between the species composition 

of diatom communities and the corresponding physical and chemical 

conditions from 51 south-east Tasmanian sites; 

(iii) Transfer functions have been developed to infer NO2.3, Si0 2 , and sediment 

size for palaeo-reconstruction of near-shore marine sites in south-east 

Tasmania; and 

(iv) The environmental history of an impacted Ramsar wetland site in south-east 

Tasmania has been reconstructed to identify historical anthropogenic impacts 

from changes in the microflora. 
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This research has shown that, both historically and currently, the diatom communities 

in south-east Tasmania are signifiCantly affected by anthropogenic activity. The 

diatom assemblages in south-east Tasmania are generally similar to many other areas 

of the globe and, as has been shown to be the case in many other areas, change in 

response to altered nutrient concentrations, physical modifications to hydrological 

regimes, and the introduction of exotic species. 

The development of transfer functions to infer nutrient concentrations in the coastal 

marine environment has not previously been undertaken in Australia. Very little 

research has previously been undertaken on Tasmanian marine diatoms, and 

consequently most of the species recorded during this study have not previously been 

reported from Tasmania, and several have not previously been reported from 

Australia. The results of this study therefore contribute significantly to the body of 

knowledge on Australian diatoms and their causative relationships with 

environmental variables, and provide a valuable resource for management of 

Tasmania's coastal marine environment.  

The future health of Tasmania's coastal environment relies on the regular monitoring 

and assessment of the water quality in the region, and on improving our understanding 

of the ecological consequences of anthropogenic activities. Since the micro-algal 

community constitutes the major component of the base of the food chain in most 

marine systems, it is imperative that changes in the micro-algal community are 

regularly monitored and assessed, and that our understanding of the interactions 

involved is continually improved. Hence, a number of recommendations are made 

here regarding the use of diatoms in water quality research in south-east Tasmania, 

and their inclusion in water quality monitoring programs. 

4.1 	Recommendations 

Effective water quality assessment requires the inclusion of biological indicators in 

water quality programs. The research presented here highlights the value of using 

diatoms as indicators of nutrient concentrations in the south-east Tasmanian coastal 

environment, and provides the necessary ecological data for their inclusion in future 
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water quality programs and environmental impact assessments in this region. Diatoms 

are particularly valuable as biological indicators of water quality, and should be 

included in water quality monitoring and assessment programs in south-east 

Tasmania. Both the abundance and community composition of micro-algal 

assemblages provide valuable information on changes occurring in response to altered 

environmental conditions. Specifically, substantial benefit would be gained from the 

following: 

(i) Regular monitoring of benthic algal biomass in selected areas of Tasmania. 

This would provide valuable information on the long-term trends of algal 

productivity in this region, and thus be useful in detecting the onset of 

eutrophication or the impact of contaminants; 

(ii) Regular assessment of diatom community structure at selected sites within 

Tasmania. This would provide valuable data on changes occurring in micro-

algal community structure over time in response to changing nutrient 

concentrations. This data would provide a direct measure of the effect that 

changes in nutrient concentrations are having on the base of the food chain, 

and should therefore be a fundamental component in the decision-making 

processes of coastal managers; 

(iii) The inclusion of diatoms in environmental impact assessments of projects 

within the coastal environment of south-east Tasmania. This would improve 

identification of those projects and activities having adverse short or longer-

term impacts on the marine microflora, and thus contribute significantly to 

coastal management in this region; 

(iv) Further research to improve knowledge of diatom species abundance and 

distribution in Tasmania's coastal environments. This will add significantly to 

our ability to use diatoms as biological indicators in south-east Tasmanian 

coastal ecosystems. Additional palaeo-envirorunental reconstructions from 

this region will significantly add to the understanding of the long-term 

impacts of environmental change in our waterways. 

(v) Including measurement of silica concentrations in water quality assessment 

regimes. Although nitrogen and phosphorus are key components of 

eutrophication processes, silica also plays a key role in determining 

community composition, particularly at times of maximum algal growth when 

algal blooms may pose a threat. Measurement of silica concentrations should 
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therefore also be included when determining nutrient concentrations, to 

provide a more comprehensive picture of the processes occurring in algal 

communities. 
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Plate 1: Diatom Photos 

1. Achnanthes brevipes Agardh 

3. Achnanthes oblongella Ostrup 

5. Amphora decussata Grunow 

7. Amphora laevissima Gregory 

2. Achnanthes residensis Foged 

4. Achnanthes sp. 1 

6. Amphora exigua Gregory 
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Plate 2: Diatom Photos 

8 Amphora maletractata var. constricta Heiden Simonsen 

9. Amphora subturgida Hust. 

10.Amphora sp. 1 	11 & 12. Anaulus minutus Gn.m. in Van Heurck 

13. Anorthoneis vortex Sterrenburg 14. Aulocosiera ambigua (Grun.) Simonsen 
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Plate 3: Diatom Photos 

15. Bacillaria paradoxa Crmelin 	16. Campylodiscus daemelianus Grun. 
17. Catenula adhaerens Mereschkowsky 	18. Chaetocerus resting spore 
19. Cocconeis all pinnata Gregory ex Greville 20. Cocconeis carminata Cholnoky 
21. Cocconeis disculoides Hust. 	22. Cocconeis disrupta Gregory 
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Plate 4: Diatom Photos 

23. Cocconeis molesta var. crucifera Grunin Van Heurck 

24. Cocconeis peltoides Hust. 	25. Cocconeis placentula Ehr. 

26. Cocconeis placentula Ehr. var. euglypta (Ehr.) Grim. 

27. Cocconeis scutellum Ehr. 	28. Cocconeis scutellum var.  parva  Grun. 

29. Cocconeis sp. 1 	30. Cocconeis stauroneiformis (Van Heurck) Okuno 
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Plate 5: Diatom Photos 

31. Cyclotella atomus Hust. 	32. Cyclotella stelligera Cleve & Grun. 

33. Cyclotella striata (Utz.) Grun. 34, 35, 36. Cymatosira aff. belgica Grun. 

37. Cymbella minuta Hilse ex Rabh. 38 Cymbella sumatrensis Hust. 

39. Dactyliosolen spp. 
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Plate 6: Diatom Photos 

40. Dimerogramma minor var. nana (Greg.) Van Heurck 

41. Diploneis notabilis (Grey.) Cleve 	42. Diploneis subovalis Cleve 

43. Diploneis vacillans (A. Schmidt) Cleve 	44. Diploneis sp. 1 

45. Diploneis sp. 2 	 46. Ehrenbergia granulosa (Gran.) Witkowski 

47. Fallacia litoricola (Hust.) D. G. Mann 	48. Fallacia subforcipata (Hust.) D. 

G. Mann 
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Plate 7: Diatom Photos 

49. Fragilaria atomus Hust. 	50. Fragilaria crotonensis Kitton 

51. Fragilaria martyi (Heribaud) Lange-Bertalot 

52 & 53. Fragilaria pinnata Ehrenberg 	54 Fragilaria pinnata Ehr. var. pinnata 

55 & 56 Fragilaria vaucheriae Kiitzing Petersen 	57. Fragilaria sp.  1 
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Plate 8: Diatom Photos 

58. Fragilaria sp. 2 59. Fragilariopsis cylindrus (Grun.) Krieger 

60. Glyphodesmis distans (Greg.) Grun. 	61 & 62. Gramatophora oceanica Ehr. 

63. Hyalodiscus scoticus (Kiitz.) Grun. 64. Gyrosigma perthense  John 

65. Lunella bisecta Snoeijs 
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Plate 9: Diatom Photos 

66. Lyrella david-mannii Witkowski 

67. Mastogloia pusilla (Grun.) Cl. var. pusilla 	68. Mastogloia sp. 1 
69. Melosira nummuloides Agardh 

70. Navicula arenaria Donken var. rostellata Lange-Bertalot 
71 & 72. Navicula cancellata Donkin 73. Navicula cincta (Ehr.) Ralfs in Pitchard 
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Plate 10: Diatom Photos 

74. Navicula cryptocephala Kiitz. 75. Navicula halophila (Grun.)  Cl. fo.  robusta 

76. Navicula menisculus Schumann 

77. Navicula monoculata var. omissa (Hust.) Lange-Bertalot 

78. Navicula nyella Hust. 	79. Navicula pygmaea Kiitz. 

80 & 81. Navicula salinarum Grim. in Cleve & Grum var. salinarum 

82. Navicula tripunctata (0. F. Muller) Borg. 
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Plate 11: Diatom Photos 

83. Navicula sp.l. 	84. Navicula sp.2 
	

85. Navicula sp. 3 

86. Nitzschia amphibia Grum 	87. Nitzschia dissipata (Katz.) Grun. var. dissipata 

88. Nitzschia laevis Hust. 	89 & 90. Nitzschia longissima (Breb.) Ralfs 

91 & 92. Nitzschia lorenziana Grim. var. subtilis Grim. 
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Plate 12: Diatom Photos 

93. Nitzschia ovalis Arnott ex Gnmow in Cleve & Grunow 

94. Nitzschia panduriformis Greg. var. minor Greg. 

95. Nitzschia punctata var. coarctata (Grun.) Hust. 96. Nitzschia sp.  1 

97. Nitzschia sp. 2 	98. Odontella aurita (Lyng.) Ag. 

99. Opephora martyi Herib. 	100. Opephora olsenii M011er 
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Plate 13: Diatom Photos 

101. Paralia sulcata (Ehr.) Cleve 	102. Parlibellus cf. plicatus (Donkin) Cox 

103. Petrodictyon gemma (Ehr.) D. G. Mann 

104.Plagiogramma appendiculatum Giffen. 

105.Plagiogramma staurophorum (Greg.) Heiberg 106. Plagiotropis sp.1 

107. Plagiotropis sp.2 108. Planothidium delicatulum (Kiitz.) Round & Buktiyarova 

109. Planothidium quarnerensis (Grun.) 
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Plate 14: Diatom Photos 

110. Pseudonitzschia australis Freng. 111. Skeletonema costatum  (Grey.) 
112. Surirella fastuosa (Ehr.) Kiitz 	113. Synedra investiens W. Smith 
114.Synedra tabulata (Ag.) Kiitz. var. tabulata 
115. Thalassiosira eccentrica (Ehr.) Cl. 
116. Thalassiosira oestrupii (Ostenfeld) Hasle 
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Appendix 1: Spectrophotometry and Fluorometry Results Tables 

Table 1.1: Chlorophyll a results for Tinderbox Marine Reserve and Conningham 
Beach using Spectrophotometry and Fluorometry 

Date Water 
Depth (m) 

Tinderbox Mar. Res. 
Spectro chi a 	Fluoro chi a 

(mg/m2) 	(mg/m2) 

Conningham Beach 
Spectro chi a 	Fluoro chi a 

(mg/m2) 	(mg/m2) 
30/01/01 1 10.78 11.75 23.99 34.51 

1 19.69 16.24 24.53 33.73 
1 12.58 26.63 22.02 29.13 
2 32.27 27.62 31.64 29.09 
2 25.53 26.52 26.88 33.51 
2 25.53 32.04 31.64 34.25 
3 36.23 36.83 45.22 56.27 
3 32.09 44.27 40.00 56.57 
3 31.01 32.41 51.95 49.35 
4 29.67 22.69 27.42 24.42 
4 24.99 30.79 28.05 24.31 
4 21.94 20.70 26.25 23.39 
5 26.79 28.36 27.96 23.05 
5 24.99 22.72 27.96 23.20 
5 30.38 23.57 32.01 26.88 

13/02/01 1 13.12 13.44 56.19 82.09 
1 14.30 15.65 36.58 51.82 
1 15.64 14.18 47.93 45.68 
2 30.84 30.93 30.39 35.35 
2 28.59 30.93 39.37 48.78 
2 28.75 33.14 40.00 48.06 
3 20.23 23.05 42.97 38.61 
3 21.40 18.08 34.06 50.27 
3 24.45 20.14 44.68 49.72 
4 33.35 29.46 41.09 49.05 
4 38.12 47.21 31.56 33.00 
4 30.84 32.78 48.99 46.40 
5 29.13 28.36 25.00 25.13 
5 39.46 25.41 28.05 25.85 
5 29.13 39.99 30.92 27.62 

27/02/01 1 16.09 20.27 36.03 46.68 
1 17.98 23.04 41.97 52.98 
1 14.84 18.17 41.43 54.91 
2 40.55 40.49 66.51 79.82 
2 38.21 40.60 68.30 108.27 
2 29.85 29.09 59.94 81.98 
3 43.60 48.17 29.30 34.86 
3 44.76 50.49 34.69 44.63 
3 47.73 52.48 29.30 32.98 
4 29.22 30.88 72.90 97.66 
4 33.01 31.82 38.21 38.89 
4 28.60 32.04 47.19 46.40 
5 36.41 39.28 41.80 43.36 
5 33.90 36.96 34.61 37.18 
5 37.50 40.77 41.80 48.34 

(continued 	) 
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Table 1.1 (continued.) 
Tinderbox Mar. Res. Conningham Beach 

Date Water Spectro chi a Fluoro chi a Spectro chl a Fluoro chi a 
Depth (m) (mg/m2) (mg/m2) (mg/m2) (mg/m2) 

20/03/01 1 15.34 16.34 18.30 14.44 
1 8.71 9.51 no data no data 
1 8.44 9.86 no data no data 
2 8.83 9.27 7.94 8.13 
2 10.14 11.21 8.47 7.81 
2 9.40 9.94 5.51 5.41 
3 17.57 20.60 8.67 8.80 
3 13.76 16.34 8.13 7.46 
3 11.45 13.69 11.48 12.63 
4 12.22 13.34 15.06 17.64 
4 15.50 20.68 14.33 17.95 
4 13.99 15.43 19.38 21.86 
5 15.76 16.93 12.52 20.64 
5 12.76 13.57 15.06 18.11 
5 9.40 13.65 9.71 12.00 

3/04/01 1 31.21 38.35 53.85 70.79 
1 29.67 37.33 53.38 69.44 
1 32.89 39.85 56.47 71.34 
2 35.90 43.88 34.28 42.06 
2 30.21 33.62 31.28 38.67 
2 39.52 48.61 31.28 35.83 
3 27.12 30.30 61.01 76.78 
3 27.20 30.54 36.91 41.82 
3 23.50 27.78 39.45 46.48 
4 41.99 46.32 44.54 38.98 
4 38.37 47.03 41.06 36.06 
4 45.07 49.08 37.91 39.46 
5 42.00 46.88 22.50 24.94 
5 39.91 49.32 30.21 32.43 
5 44.46 55.87 33.28 46.17 

19/04/01 1 37.37 49.64 64.64 77.97 
1 31.20 40.64 51.09 66.29 
1 45.14 55.56 72.34 76.86 
2 40.45 46.56 60.01 46.56 
2 31.35 37.64 40.98 47.51 
2 40.52 49.72 39.44 57.61 
3 34.28 36.77 53.16 61.32 
3 35.83 42.30 49.62 49.87 
3 39.38 42.46 45.92 37.72 
4 55.79 54.53 36.22 67.08 
4 37.69 38.51 76.12 53.74 
4 38.30 38.12 49.62 37.72 
5 59.41 70.23 39.92 34.88 
5 54.71 60.84 38.84 38.27 
5 63.49 67.39 40.85 99.59 
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Appendix 2: Training Set Species No.s, Names, and Relative Abundance 
Table 2.1: Species comprising > 2% relative abundance in Training Set (Chapter 2)  

Species No. 	Species Name 
1 	Achnanthes brevipes Agardh 
2 	Achnanthes residensis Foged 
3 	Achnanthes oblongella Ostrup 
4 	Amphora aequalis Krammer 
5 	Amphora decussata Grunow 
6 	Amphora exigua Gregory 
7 	Amphora laevissima Gregory 
8 	Amphora maletractata var. constricta (Heiden) Simonsen 
9 	Amphora sp 1 
10 	Amphora submontana Hustedt 
11 	Amphora subturgida Hustedt 
12 	Anaulus minutus Grunow in Van Heurck 
13 	Anorthoneis vortex Sterrenburg 
14 	Bacillaria paradoxa Gmelin 
15 	Cocconeis stauroneiformis (Van Heurck) Olcuno 
16 	Catenula adhaerens Mereschkowsky 
17 	Chaetocerus resting spores 
18 	Cocconeis carminata Cholnolcy 
19 	Cocconeis disculoides Hustedt 
20 	Cocconeis disrupta Gregory 
21 	Cocconeis molesta var. crucifera Grunow in Van Heurck 
22 	Cocconeis peltoides Hustedt 
23 	Cocconeis placentula Ehrenberg , 
24 	Cocconeis placentula Ehrenberg var. euglypta (Ehr.) Grunow 
25 	Cocconeis scutellum Ehrenberg 
26 	Cocconeis scutellum var. parva Grunow 
27 	Cyclotella stelligera Cleve & Grunow 
28 	Cyclotella striata (Kiitzing) Grunow 
29 	Cymbella minuta Hilse ex Rabenhorst 
30 	Cymbella sumatrensis Hustedt 
31 	Delphineis surirella (Ehrenberg) G. Andrews 
32 	Dimerogramma minor var. nana (Gregory) Van Heurck 
33 	Diploneis notabilis (Greville) Cleve 
34 	Diploneis subovalis Cleve 
35 	Diploneis vacillans (A. Schmidt) Cleve 
36 	Ehrenbergia granulosa (Grunow) Witkowski 
37 	Fallacia litoricola (Hustedt) D. G. Mann 
38 	Fallacia subforcipata (Hustedt) D.G. Mann 
39 	Fragilaria atomus Hustedt 
40 	Fragilaria crotonensis Kitton 
41 	Fragilaria martyi (Heribaud) Lange -Bertalot 
42 	Fragilaria pinnata Ehrenberg 
43 	Fragilaria pinnata Ehrenberg var. pinnata 
44 	Fragilariopsis cylindmis (Grunow) Krieger 
45 	Gramatophora oceanica Ehrenberg 
46 	Gyrosigma fasciola (Ehrenberg) Griffith & Henfrey 
47 	Gyrosigma perthense John 
48 	Hyalodiscus scoticus (Kiitzing) Grun. 
49 	Lunella bisecta Snoeijs 
50 	Mastoglia smithii Thwaites 
51 	Mastogloia pusilla (Grunow) Cleve var. pusilla 
52 	Matsogloia sp 1 
53 	Melosira nummuloides Agardh 
54 	Navicula arenaria Donken var. rostellata Lange-Bertalot 

(continued 
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Table 2.1 (cont.): Species comprising >2% relative abundance in Training Set (Chapter  2) 
Species No. 	Species Name 

55 	Ncrvicula cancellata DonIdn 
56 	Navicula ayptocephala Ktitzing 
57 	Navicula menisculus Schumann 
58 	Navicula monoculata var. omissa (Hustedt) Lange-Bertalot 
59 	Navicula nyella Hustedt 
60 	Ncrvicula pygmaea Kiitzing 
61 	Navicula salinarum Grunow var. salinarum 
62 	Navicula sp 1 
63 	Navicula sp 2 
64 	Navicula tripunctata (0. F. Muller) Borg. 
65 	Nitzschia amphibia Grunow 
66 	Nitzschia dissipata (Kiltzing) Grunow var. dissipata 
67 	Nitzschia laevis Hustedt 
68 	Nitzschia longissima (Brebisson) Ralfs 
69 	Nitzschia lorenziana Grunow var. subtilis Grunow 
70 	Nitzschia ovalis Amott ex Grunow in Cleve & Grunow 
71 	Nitzschia panduriformis Gregory var. minor Gregory 
72 	Nitzschia sp 1 
73 	Nitzschia sp2 
74 	Opephora martyi Heribaud 
75 	Opephora olsenii Moller 
76 	Paralia sukata (Ehrenberg) Cleve 
77 	Parlibellus cf. plicatus (Donkin) Cox 
78 	Plagiogramma staurophorum (Gregory) Heiberg 
79 	Plagiotropis sp 2 
80 	Plagiotropis spl 
81 	Planothidium delicatulum (Kutzing) Round & 13u1ctiyarova 
82 	Pseudonitzschia australis Frenguelli 
83 	Skeletonema costatum (Greville) Cleve 
84 	Surirella fastuosa (Ehrenberg) Ktitzing 
85 	Cocconeis aff. pinnata Gregory ex. Greville 
86 	Synedra investiens W. Smith 
87 	Synedra tabulata (Agardh) Ktitzing var. tabulata 
88 	Thalassionema nitzschoides Hustedt 
89 	Thalassiosira eccentrica (Ehrenberg) Cleve 
90 	Thalassiosira oestrupii (Ostenfeld) Hasle 
91 	Achnanthes sp 1 
92 	Spp 1 
93 	Navicula halophila (Grunow) Cleve fo. robusta Hustedt 
94 	Diploneis sp 1 
95 	Cocconeis sp 1 
96 	Navicula sp 3 
97 	Spp 2 
98 	Fragilaria sp 1 
99 	Cymatosira aff. belgica Grunow 
100 	Spp 3 
101 	Navicula cincta (Ehrenberg) Ralfs in Pritchard 
102 	Spp 4 
103 	Spp 6 
104 	Spp 7 
105 	Species 5 
106 	Spp 8 
107 	Spp 9 
108 	Spp 10 
109 	Spp 11 
110 	Diploneis sp 2 
111 	Fragilaria vaucheriae Kiltzing Petersen 
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Appendix 2 (Cont...) 
Table 2.2: Relative abundance (%) of Training Set Species 
Species 1 2 3 4 	. 5 6 7 8 

Site 1 0.00 4.87 0.00 0.00 0.00 0.00 0.00 0.00 
Site 2 0.00 1.99 0.00 0.00 0.00 0.00 0.00 0.00 
Site 3 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 
Site 4 0.00 0.00 0.00 0.00 0.00 0.00 1.86 0.00 
Site 5 0.00 2.73 0.91 0.00 0.00 0.00 0.00 0.00 
Site 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 8 0.00 2.43 0.00 0.00 0.00 0.00 0.00 0.00 
Site 9 0.00 1.99 0.20 0.00 0.00 0.00 0.00 0.00 
Site 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 
Site 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 12 0.00 0.80 0.00 0.00 0.00 0.00 7.21 0.00 
Site 13 0.00 2.08 0.00 0.00 0.69 0.00 0.00 0.00 
Site 14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 15 0.00 0.00 0.00 0.00 4.09 10.82 43.75 0.00 
Site 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 17 0.00 2.99 0.00 0.00 0.00 0.00 0.00 0.00 
Site 18 0.00 0.00 0.00 3.04 0.00 0.00 0.00 0.00 
Site 19 0.00 0.00 0.00 0.94 0.00 0.00 0.75 0.00 
Site 20 0.00 0.00 0.00 0.93 0.00 0.00 1.86 0.00 
Site 21 0.00 0.00 0.00 2.95 0.00 0.00 0.00 0.00 
Site 22 0.00 0.00 0.00 0.00 0.00 5.98 0.00 0.00 
Site 23 0.00 2.22 0.00 0.00 0.00 1.33 0.00 0.00 
Site 24 0.00 0.48 0.00 0.00 0.00 0.00 11.00 0.96 
Site 25 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.00 
Site 26 0.00 0.00 0.00 0.00 1.17 0.00 24.46 0.00 
Site 27 0.00 0.19 0.00 0.00 0.00 0.00 0.37 2.59 
Site 28 0.00 0.76 0.00 0.00 0.57 0.00 12.76 0.38 
Site 29 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 
Site 30 5.25 0.25 2.00 0.00 0.00 0.00 0.00 5.00 
Site 31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 32 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.00 
Site 33 0.00 0.74 0.00 0.00 0.00 0.00 0.50 5.46 
Site 34 0.00 0.48 0.00 0.00 0.00 0.00 0.00 0.00 
Site 35 0.00 0.25 0.00 0.00 0.00 0.00 0.50 1.50 
Site 36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 
Site 38 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 39 0.00 0.00 0.00 1.73 0.00 0.00 0.43 1.73 
Site 40 0.00 1.45 0.00 0.00 0.00 0.00 0.00 0.00 
Site 41 0.00 3.64 0.00 0.00 0.00 0.00 0.00 0.00 
Site 42 0.00 0.00 0.00 0.00 0.00 2.05 0.68 2.05 
Site 43 0.00 1.03 0.00 0.00 0.00 0.00 2.06 7.56 
Site 44 0.00 5.29 0.00 0.00 0.00 0.00 0.00 0.00 
Site 45 0.00 1.23 0.00 0.00 0.00 0.00 1.48 3.69 
Site 46 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 
Site 47 0.00 0.46 0.00 8.35 0.00 0.00 0.23 0.00 
Site 48 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 
Site 49 0.00 2.04 0.00 6.33 0.00 0.00 0.00 0.00 
Site 50 0.00 0.48 0.00 2.40 0.00 0.00 0.48 0.00 
Site 51 0.00 3.17 0.00 3.62 0.00 0.00 0.00 0.00 
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Table 2.2 (continued.): Relative abundance (%) of Training Set Species 
Species 
no...-+ 

9 10 11 12 13 14 15 16 

Site 1 0.00 0.00 4.64 0.00 0.00 0.93 0.00 3.25 
Site 2 0.00 0.00 0.00 0.25 0.00 0.50 0.25 0.75 
Site 3 0.00 0.00 2.33 0.00 0.00 0.00 0.00 0.23 
Site 4 0.00 0.00 1.44 0.00 0.00 1.65 0.00 0.00 
Site 5 0.00 0.00 0.00 0.00 0.00 1.82 0.68 0.91 
Site 6 0.00 0.00 11.29 0.00 0.00 0.68 2.48 0.90 
Site 7 0.00 0.00 10.20 0.00 0.00 0.00 0.00 0.00 
Site 8 0.00 0.00 7.04 0.97 0.00 2.18 1.70 0.00 
Site 9 0.00 0.00 5.77 0.99 0.00 0.80 4.97 1.59 
Site 10 0.00 0.00 11.58 0.00 0.00 1.97 0.00 6.16 
Site 11 0.00 0.00 3.20 1.97 0.00 1.48 0.00 0.00 
Site 12 0.00 0.00 0.60 0.00 0.00 0.00 0.00 1.60 
Site 13 0.00 0.00 4.17 0.00 0.00 2.31 0.46 2.31 
Site 14 0.00 0.00 19.34 0.00 0.00 0.00 0.00 0.66 
Site 15 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.48 
Site 16 0.00 0.00 2.86 0.00 0.44 1.98 0.00 2.42 
Site 17 0.00 0.00 6.79 5.99 0.20 1.40 0.00 3.59 
Site 18 0.00 0.00 1.17 0.00 0.00 0.47 0.00 1.87 
Site 19 12.38 0.00 2.44 1.50 0.00 2.25 0.00 1.50 
Site 20 1.40 0.00 1.17 0.93 0.00 0.70 0.00 6.06 
Site 21 0.00 0.00 0.84 0.63 0.00 0.42 0.00 16.46 
Site 22 0.00 0.00 0.00 3.28 0.00 0.00 0.00 2.32 
Site 23 0.00 0.00 0.67 2.44 0.89 0.00 0.00 1.33 
Site 24 0.00 0.00 1.67 0.96 0.00 0.48 0.00 2.15 
Site 25 0.00 0.00 6.82 0.00 0.00 2.05 0.91 1.82 
Site 26 0.00 0.00 0.00 10.37 0.00 0.00 0.00 0.00 
Site 27 0.00 0.00 4.63 0.00 0.00 0.37 0.37 0.00 
Site 28 0.00 0.00 8.95 0.95 0.19 0.00 0.76 0.00 
Site 29 0.00 0.00 0.00 0.00 0.00 0.00 1.42 0.94 
Site 30 0.00 0.00 8.25 0.00 0.00 0.25 3.50 1.75 
Site 31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 
Site 32 0.00 0.00 7.34 0.00 0.00 9.40 0.92 0.92 
Site 33 0.00 0.00 3.97 0.00 0.00 4.22 0.00 1.99 
Site 34 0.00 0.00 23.68 0.00 0.00 3.83 0.00 0.24 
Site 35 0.00 0.00 7.25 0.00 0.00 3.25 0.00 0.00 
Site 36 0.00 0.00 16.82 0.00 0.00 2.13 0.00 0.00 
Site 37 0.00 0.00 1.23 0.00 0.00 3.44 4.18 0.25 
Site 38 0.00 0.00 6.73 0.00 0.00 3.99 0.00 1.00 
Site 39 0.00 0.00 1.30 0.22 0.00 2.60 0.00 0.00 
Site 40 0.00 0.00 0.00 5.30 2.65 0.00 0.00 3.61 
Site 41 0.00 2.27 5.45 1.82 0.00 0.00 0.00 0.68 
Site 42 0.00 0.00 6.16 0.00 0.00 1.83 0.00 0.00 
Site 43 0.00 0.00 10.31 0.17 0.34 1.37 0.00 0.52 
Site 44 0.00 0.00 5.92 0.00 0.42 0.21 0.00 0.21 
Site 45 0.00 0.00 0.74 0.99 1.48 0.49 2.46 0.00 
Site 46 0.00 0.00 0.00 1.59 0.00 0.00 0.00 2.05 
Site 47 0.00 0.00 0.93 0.00 0.00 0.00 0.00 1.16 
Site 48 0.00 0.00 3.47 4.40 1.39 0.00 0.00 1.62 
Site 49 0.00 0.00 0.45 3.39 6.56 0.45 0.00 2.26 
Site 50 0.00 0.00 4.80 0.72 0.00 0.00 0.00 3.84 
Site 51 0.00 0.00 0.90 0.00 0.23 0.00 0.00 2.04 
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Table 2.2 (continued.* Relative abundance (%) of Training Set Species 
Species 
no...-■ 

17 18 19 20 21 22 23 24 

Site 1 0.00 10.90 5.57 0.46 0.00 2.32 0.93 8.58 
Site 2 0.00 0.00 10.95 0.25 0.00 0.00 0.75 2.99 
Site 3 0.00 0.00 2.33 0.00 0.00 0.00 0.23 0.70 
Site 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 5 0.45 0.00 0.00 0.00 0.00 MO 0.00 1.82 
Site 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 
Site 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 8 L70 0.00 2.67 0.00 0.00 0.00 0.00 0.00 
Site 9 8.95 0.00 0.20 0.00 0.00 0.00 0.00 0.00 
Site 10 0.25 0.00 2.22 0.00 0.00 0.00 0.00 1.97 
Site 11 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.99 
Site 12 0.00 0.00 3.21 2.81 0.00 2.81 0.00 0.00 
Site 13 0.00 0.00 0.46 0.00 0.00 1.62 0.00 0.46 
Site 14 0.00 0.00 1.98 0.00 0.00 0.00 0.00 0.00 
Site 15 0.00 0.00 1.20 0.00 0.00 0.00 0.72 0.00 
Site 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 17 0.00 0.00 0.00 1.00 0.00 1.20 0.60 0.00 
Site 18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 21 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.00 
Site 22 0.00 0.00 0.00 0.19 0.00 0.00 3.47 2.70 
Site 23 0.00 0.00 0.00 0.00 0.00 2.66 0.00 0.00 
Site 24 0.96 0.00 2.39 0.00 0.00 1.67 0.96 0.00 
Site 25 2.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 26 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00 
Site 27 0.00 0.00 0.19 0.19 0.00 4.81 0.37 0.00 
Site 28 0.00 0.00 0.19 0.38 0.00 0.76 0.00 0.00 
Site 29 0.00 0.00 0.00 0.00 0.00 2.36 0.00 0.00 
Site 30 0.00 0.00 0.00 0.00 1.25 0.00 0.00 0.50 
Site 31 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 
Site 32 1.38 0.00 0.00 0.92 0.92 0.23 0.00 0.00 
Site 33 0.00 0.00 1.24 0.00 1.99 0.00 0.74 4.96 
Site 34 0.00 0.00 2.39 0.00 1.44 0.00 0.00 0.00 
Site 35 0.00 0.00 0.75 0.00 2.00 0.00 0.50 2.25 
Site 36 0.00 0.00 9.95 0.00 0.00 0.00 0.00 0.00 
Site 37 1.72 0.00 0.00 0.00 0.00 0.74 0.25 0.00 
Site 38 0.00 0.00 2.24 0.00 2.00 0.00 1.00 1.00 
Site 39 0.43 0.00 4.11 0.00 1.08 4.55 0.22 0.87 
Site 40 0.00 0.00 6.02 0.00 0.00 0.00 1.20 0.00 
Site 41 0.00 0.00 6.36 0.68 0.00 4.32 0.00 0.00 
Site 42 0.00 0.00 2.28 0.00 0.00 1.14 0.00 0.00 
Site 43 0.00 0.00 1.72 0.86 0.00 0.52 0.00 0.00 
Site 44 0.00 0.00 3.38 3.38 0.00 1.27 0.00 0.00 
Site 45 0.00 0.00 4.93 0.00 0.00 2.46 0.00 0.00 
Site 46 0.00 0.00 6.38 0.23 0.00 0.00 0.00 0.00 
Site 47 0.00 0.00 7.19 0.00 0.00 0.23 0.00 0.46 
Site 48 0.00 0.00 3.70 0.23 0.00 0.46 0.00 1.85 
Site 49 0.00 0.00 4.07 0.23 0.00 1.36 0.00 0.90 
Site 50 0.00 0.00 7.19 0.00 0.00 0.48 0.00 2.40 
Site 51 0.00 0.00 6.33 0.00 0.00 0.68 0.00 5.20 
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Table 2.2 continued.): Relative abundance (%) of Training Set Species 
Species 
no... 

25 26 27 28 29 30 31 32 

Site 1 0.00 5.80 2.32 1.86 0.23 0.00 0.00 0.00 
Site 2 1.49 0.00 6.22 22.89 1.74 0.00 0.00 0.00 
Site 3 0.00 0.00 2.33 1.16 0.00 0.00 0.23 0.00 
Site 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 5 0.91 2.27 1.14 22.50 0.45 0.68 0.00 2.27 
Site 6 4.06 0.00 0.00 3.84 0.00 0.00 0.00 0.00 
Site 7 0.00 1.22 0.61 0.41 0.00 0.00 0.00 0.00 
Site 8 0.24 0.00 0.00 0.24 0.00 0.00 0.00 0.00 
Site 9 4.77 0.00 0.40 0.60 0.00 0.20 0.00 0.00 
Site 10 2.22 0.00 0.74 0.00 0.49 0.00 0.00 0.00 
Site 11 1.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 13 0.00 0.00 0.46 0.69 0.00 0.23 0.00 0.00 
Site 14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 15 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 18 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 
Site 19 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 
Site 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 22 1.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 23 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 24 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 25 3.41 0.00 0.00 0.45 0.00 0.00 0.00 0.00 
Site 26 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 
Site 27 1.30 0.00 0.00 0.00 1.67 0.74 0.00 0.00 
Site 28 1.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 30 2.25 0.00 0.00 0.00 2.50 2.00 0.00 0.00 
Site 31 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.22 
Site 32 3.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 33 6.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 34 3.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 35 6.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 36 1.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 37 4.67 0.00 0.00 0.00 0.00 0.00 0.00 0.74 
Site 38 2.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 39 11.90 0.00 0.00 0.00 0.00 0.00 0.00 0.22 
Site 40 7.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 41 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 42 20.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 43 3.09 0.00 0.00 0.00 0.34 0.00 5.15 0.17 
Site 44 1.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 45 2.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 46 11.16 0.00 0.00 0.00 0.00 0.00 6.83 0.00 
Site 47 0.46 0.00 0.00 0.00 0.00 0.00 0.70 0.00 
Site 48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 
Site 49 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 2.2 (continued.* Relative abundance (%) of Training Set Species 
Species 
no... 

33 34 35 36 37 38 39 40 

Site 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 3 0.00 0.93 0.00 0.00 3.26 0.00 0.00 0.47 
Site 4 2.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 5 0.00 5.68 0.00 0.00 11.14 0.00 0.00 0.00 
Site 6 0.00 0.00 0.00 0.00 19.19 0.00 0.00 1.13 
Site 7 0.61 0.00 0.00 0.00 0.41 0.00 0.00 0.00 
Site 8 0.00 3.88 0.00 0.00 6.07 0.97 0.00 1.70 
Site 9 0.00 0.00 0.00 0.00 6.96 0.00 0.00 0.80 
Site 10 0.00 0.00 0.00 0.00 4.68 0.00 0.00 0.00 
Site 11 0.00 0.00 1.23 0.00 0.74 0.00 0.00 0.00 
Site 12 6.61 0.00 4.01 0.00 9.22 6.61 0.00 0.00 
Site 13 0.00 0.00 1.39 0.00 0.00 0.00 0.00 0.00 
Site 14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 16 0.00 0.00 0.00 0.00 0.00 0.66 0.00 1.54 
Site 17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 21 0.00 0.00 0.00 0.00 0.21 0.42 0.00 0.00 
Site 22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 23 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.00 
Site 24 0.48 0.00 3.35 0.00 4.31 2.63 0.24 0.00 
Site 25 0.00 0.00 0.45 0.68 4.55 0.00 0.00 1.59 
Site 26 0.00 0.39 0.00 0.00 0.00 0.00 0.00 0.00 
Site 27 0.00 0.00 1.11 0.74 0.37 0.74 0.00 0.00 
Site 28 0.38 0.95 1.33 0.00 0.19 0.00 0.00 0.00 
Site 29 0.00 0.00 0.71 0.47 0.00 0.00 0.00 0.00 
Site 30 0.00 0.00 0.50 0.00 6.50 1.00 0.00 0.00 
Site 31 0.00 0.00 0.00 21.71 0.00 4.61 0.00 0.00 
Site 32 0.00 0.00 0.00 0.69 0.46 0.00 0.00 3.67 
Site 33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 35 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 
Site 36 0.00 0.00 1.18 0.00 0.00 0.00 0.00 0.00 
Site 37 0.49 0.98 10.32 2.70 1.47 1.23 0.00 0.00 
Site 38 0.00 0.75 0.00 0.50 0.00 0.00 0.00 0.00 
Site 39 0.00 0.00 0.43 0.00 1.73 0.87 0.00 0.00 
Site 40 0.00 0.00 0.00 0.72 0.00 2.89 0.00 0.00 
Site 41 0.00 0.00 0.68 1.82 1.59 0.00 2.50 0.00 
Site 42 0.00 0.00 0.00 0.00 1.14 0.00 0.00 0.00 
Site 43 0.00 0.00 3.95 20.96 0.00 0.34 0.00 0.00 
Site 44 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00 
Site 45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 
Site 46 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 
Site 47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 50 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 
Site 51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 2.2 (continued.): Relative abundance (%) of Training Set Species 
Species 
no... 

41 42 43 44 45 46 47 48 

Site 1 0.00 0.00 0.00 0.70 0.93 0.00 0.23 0.00 
Site 2 0.00 0.00 0.75 0.50 0.00 0.00 0.00 0.00 
Site 3 0.00 0.00 16.74 0.70 0.47 0.00 0.00 0.00 
Site 4 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.00 
Site 5 0.00 0.00 0.00 1.59 0.68 0.00 0.00 0.23 
Site 6 0.00 0.68 0.00 0.68 0.00 0.00 0.00 0.00 
Site 7 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 
Site 8 0.00 0.00 0.24 0.00 0.49 0.00 0.00 1.21 
Site 9 0.00 0.00 0.00 0.00 1.99 0.00 0.00 1.99 
Site 10 0.00 0.00 0.00 0.00 3.94 0.00 0.00 0.74 
Site 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 13 0.00 1.62 0.00 0.00 0.23 0.00 0.00 0.46 
Site 14 1.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 15 0.00 2.88 0.00 0.72 0.00 1.92 0.00 0.00 
Site 16 2.42 3.08 0.44 0.00 0.00 0.00 0.00 0.00 
Site 17 0.00 3.79 0.00 0.80 0.00 0.00 0.00 0.00 
Site 18 0.00 3.74 0.00 1.64 0.00 0.00 0.00 0.00 
Site 19 2.81 6.94 0.56 0.00 0.00 0.00 0.00 0.00 
Site 20 0.00 4.20 0.47 1.86 0.00 0.00 0.00 0.00 
Site 21 0.00 0.84 0.00 9.92 1.48 0.00 0.00 0.00 
Site 22 0.00 1.54 0.00 0.00 0.00 0.19 0.00 0.00 
Site 23 2.66 4.88 0.00 0.00 0.00 0.00 0.00 0.00 
Site 24 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 
Site 25 0.00 0.45 0.00 0.45 2.73 0.00 0.00 3.18 
Site 26 4.31 4.31 0.00 0.00 0.00 5.87 0.00 0.00 
Site 27 3.52 2.59 0.00 0.56 0.19 0.00 0.00 0.00 
Site 28 0.00 1.90 0.00 0.00 0.00 0.19 0.00 0.00 
Site 29 0.94 24.06 1.65 0.00 0.00 0.00 0.00 0.00 
Site 30 0.00 0.00 0.00 1.25 1.25 0.00 0.00 0.00 
Site 31 0.00 12.94 1.75 0.00 0.00 0.00 0.00 0.00 
Site 32 0.00 0.46 0.00 0.00 0.92 0.92 2.06 0.00 
Site 33 0.00 0.00 0.00 0.50 0.25 0.00 0.00 0.00 
Site 34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 35 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 
Site 36 0.00 0.00 0.00 0.00 3.32 0.00 0.00 0.00 
Site 37 0.00 0.00 0.00 0.00 6.63 0.00 0.00 0.00 
Site 38 0.00 0.00 0.00 0.00 1.25 0.25 1.25 0.00 
Site 39 0.87 2.81 0.00 0.00 1.95 0.00 0.00 0.00 
Site 40 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.48 
Site 41 0.00 3.18 0.00 0.23 0.00 0.00 0.00 0.45 
Site 42 0.00 4.57 0.00 0.00 5.02 0.00 0.00 2.97 
Site 43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 44 0.00 0.85 0.00 0.00 1.69 0.21 0.42 0.00 
Site 45 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 
Site 46 1.37 12.30 0.00 3.64 0.23 0.00 0.00 0.00 
Site 47 5.34 13.92 0.23 0.46 0.00 0.00 0.00 0.00 
Site 48 0.00 6.71 0.00 0.00 0.00 0.00 0.00 0.00 
Site 49 0.00 2.26 0.00 0.00 0.00 0.00 0.00 0.00 
Site 50 0.00 3.36 1.20 0.00 0.24 0.00 0.00 0.00 
Site 51 0.00 0.23 0.00 0.23 0.00 0.00 0.00 0.00 
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Table 2.2 (continued.): Relative abundance (%) of Training Set Species 
Species 
no... 

49 50 51 52 53 54 55 56 

Site 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 3 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 
Site 4 0.00 0.00 0.00 0.00 3.71 1.44 0.00 0.00 
Site 5 0.00 0.00 0.00 0.00 0.68 0.00 0.00 0.00 
Site 6 0.00 0.00 0.00 0.00 2.71 0.00 0.00 0.00 
Site 7 0.00 0.00 0.00 0.00 2.04 0.00 0.00 0.00 
Site 8 0.00 0.00 0.00 4.85 0.24 0.97 0.00 0.00 
Site 9 0.00 0.00 0.00 0.40 0.00 '0.00 0.00 0.00 
Site 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 11 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 
Site 12 0.00 0.00 0.00 5.41 0.00 0.00 0.00 0.00 
Site 13 0.46 0.00 0.00 0.00 0.00 12.50 6.94 0.00 
Site 14 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00 
Site 15 0.00 0.00 0.00 0.00 0.00 0.72 1.20 0.00 
Site 16 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 
Site 17 0.00 0.00 0.00 0.40 0.00 0.80 0.00 0.00 
Site 18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 20 0.00 0.00 0.00 0.70 0.00 2.80 0.00 0.00 
Site 21 0.00 0.00 0.63 0.00 0.00 0.00 2.53 0.00 
Site 22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 23 11.09 0.00 0.89 1.33 0.00 0.67 0.00 0.00 
Site 24 2.63 0.00 0.00 0.00 0.00 0.00 6.46 3.83 
Site 25 0.00 0.00 0.00 0.00 0.00 1.82 0.23 0.00 
Site 26 7.83 0.00 0.00 0.00 0.00 0.00 5.48 0.00 
Site 27 0.00 0.00 1.11 0.00 0.00 1.11 0.00 0.00 
Site 28 0.57 0.00 2.10 1.14 0.00 0.00 3.43 0.00 
Site 29 0.00 0.00 0.00 1.18 0.00 0.00 0.00 0.00 
Site 30 0.00 0.00 3.50 0.00 0.25 0.00 0.00 0.00 
Site 31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 32 0.00 0.00 0.46 0.69 0.00 4.13 0.00 0.00 
Site 33 0.00 0.00 0.00 0.00 0.50 2.73 1.74 0.00 
Site 34 0.00 0.00 1.91 0.00 0.00 1.20 1.44 0.00 
Site 35 0.00 0.00 1.25 0.50 1.00 4.50 0.00 0.00 
Site 36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 37 0.00 2.95 0.00 4.91 0.00 0.00 0.00 0.00 
Site 38 0.00 0.00 0.00 2.00 0.00 0.25 1.25 0.00 
Site 39 0.00 0.00 0.00 1.08 0.00 0.43 2.81 0.00 
Site 40 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.00 
Site 41 0.00 0.00 0.68 0.68 0.00 1.82 0.00 0.00 
Site 42 0.00 0.00 0.00 0.23 0.00 0.91 7.08 0.23 
Site 43 0.00 0.00 0.00 1.89 0.00 0.00 0.69 0.00 
Site 44 0.00 0.00 0.85 0.00 0.00 0.21 3.59 0.00 
Site 45 0.00 0.00 0.74 0.74 0.00 0.00 3.69 0.00 
Site 46 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 
Site 47 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.00 
Site 48 0.00 0.00 0.00 0.69 0.00 0.23 0.69 0.00 
Site 49 0.00 0.00 0.00 4.07 0.00 0.00 0.45 0.00 
Site 50 0.00 0.00 0.00 1.20 0.00 0.00 1.20 0.00 
Site 51 0.00 0.00 0.00 0.00 0.00 1.36 2.04 0.00 
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Table 2.2 (continued.): Relative abundance (%) of Training Set Species 
Species 
no... 

57 58 59 60 61 62 63 64 

Site 1 0.00 2.78 0.00 0.00 0.00 0.23 0.00 0.00 
Site 2 0.00 3.23 0.00 0.00 0.00 0.00 0.00 0.00 
Site 3 0.00 1.40 0.00 0.00 0.00 0.00 0.00 0.00 
Site 4 0.00 2.68 0.00 0.00 0.00 0.62 0.00 0.00 
Site 5 0.00 0.91 1.36 0.00 0.91 0.00 0.00 0.00 
Site 6 0.00 7.45 0.00 0.90 0.00 0.00 0.00 0.00 
Site 7 0.00 0.82 0.00 0.00 0.00 0.00 0.00 0.00 
Site 8 0.00 2.43 0.00 0.00 0.00 0.00 0.00 0.00 
Site 9 0.00 1.59 0.00 0.00 0.00 0.00 0.00 0.00 
Site 10 0.00 3.69 6.16 3.69 0.00 0.00 0.00 0.00 
Site 11 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 
Site 12 0.00 23.05 0.00 0.00 0.20 0.00 0.00 0.00 
Site 13 0.00 12.04 0.00 0.00 2.31 0.00 0.00 1.39 
Site 14 0.00 5.93 0.00 0.00 0.00 0.00 1.10 0.22 
Site 15 0.00 9.62 0.00 0.00 0.00 2.64 0.00 0.00 
Site 16 0.00 3.52 0.00 0.00 0.00 1.10 2.64 0.00 
Site 17 0.00 23.15 0.00 0.00 0.00 3.19 0.00 0.00 
Site 18 0.00 1.40 0.00 0.00 0.00 1.40 0.00 0.00 
Site 19 0.00 7.32 0.00 0.00 0.00 0.75 0.00 0.00 
Site 20 0.00 11.89 0.00 0.00 0.00 1.63 0.00 0.00 
Site 21 0.00 6.96 0.00 0.00 0.00 0.00 0.00 0.00 
Site 22 0.00 34.36 0.00 0.00 5.79 12.36 0.00 0.00 
Site 23 0.00 38.58 0.00 0.00 0.00 0.00 0.00 0.00 
Site 24 0.00 27.75 0.48 0.00 2.63 0.00 0.00 0.72 
Site 25 0.00 7.95 0.00 0.00 0.00 0.00 0.00 0.45 
Site 26 0.00 11.35 0.00 0.00 0.00 0.00 0.00 0.00 
Site 27 0.00 15.19 0.00 0.00 0.00 0.00 0.00 0.00 
Site 28 0.00 24.19 0.00 0.19 0.00 0.38 0.00 0.76 
Site 29 0.00 16.75 2.36 0.00 0.00 0.00 0.00 0.00 
Site 30 7.75 5.00 0.00 0.00 0.25 0.50 0.00 3.25 
Site 31 0.00 14.47 0.00 0.00 0.00 0.00 0.00 0.00 
Site 32 0.00 10.78 0.00 2.29 0.00 0.00 0.00 6.65 
Site 33 0.25 15.14 0.00 0.50 0.00 0.00 0.00 0.50 
Site 34 2.15 7.89 0.48 1.44 0.48 0.00 0.00 0.00 
Site 35 0.25 2.50 0.00 0.00 0.00 0.00 0.00 0.00 
Site 36 0.00 7.58 0.00 0.00 0.00 1.66 0.00 0.00 
Site 37 5.65 3.44 0.00 0.00 0.49 2.70 0.00 0.00 
Site 38 0.75 14.96 0.00 0.00 0.50 0.00 0.00 6.23 
Site 39 0.00 17.32 0.00 0.00 0.00 0.43 0.00 0.00 
Site 40 0.00 27.71 0.00 0.00 0.48 0.00 0.00 0.00 
Site 41 0.00 32.73 0.00 0.00 0.00 0.00 0.00 0.91 
Site 42 0.00 21.00 0.00 0.00 5.02 0.91 0.00 0.23 
Site 43 0.00 9.79 0.00 0.00 0.52 0.00 0.00 3.61 
Site 44 0.00 31.08 0.00 0.00 0.00 0.00 0.00 1.69 
Site 45 0.00 56.16 4.43 0.00 0.00 0.00 0.00 0.25 
Site 46 0.00 10.02 0.00 0.00 0.00 0.68 0.00 0.00 
Site 47 0.00 14.62 0.00 0.00 0.00 1.39 0.00 0.46 
Site 48 0.00 52.55 0.00 0.00 0.46 0.00 0.00 0.00 
Site 49 0.00 14.48 0.00 0.00 0.00 0.00 0.00 0.00 
Site 50 0.00 7.19 0.00 0.00 0.00 0.00 0.00 0.00 
Site 51 0.00 30.32 0.00 0.00 0.00 0.68 0.00 0.00 

160 



• Table 2.2 continued.): Relative abundance (%) of Training Set Species 
Species 65 66 67 68 69 70 71 72 
110._ 

Site 1 2.32 0.00 0.00 0.00 0.93 0.00 0.70 0.00 
Site 2 3.48 0.00 0.00 0.00 0.00 0.00 1.74 0.00 
Site 3 6.74 0.00 0.00 0.00 0.00 0.70 0.70 0.00 
Site 4 2.27 0.62 0.00 0.00 0.00 0.00 0.00 6.19 
Site 5 5.23 0.00 0.00 0.00 0.00 0.00 3.64 0.00 
Site 6 4.97 0.00 0.00 0.00 0.00 0.00 1.58 0.00 
Site 7 3.67 0.00 0.00 0.00 0.00 0.00 0.00 3.88 
Site 8 21.60 0.00 0.00 0.00 0.00 0.00 1.70 0.00 
Site 9 16.30 0.00 0.00 0.00 • 0.00 0.00 0.40 0.00 
Site 10 23.89 0.00 0.00 0.00 0.00 0.00 2.96 0.00 
Site 11 	• 7.64 0.00 0.00 • 0.00 0.49 0.00 0.25 0.49 
Site 12 0.40 0.80 •1.00 	• 0.00 0.00 0.00 0.80 0.00 
Site 13 7.87 • 0.00 	• 0.93 0.00 1.85 0.46 2.31 0.00 
Site 14 14.73 0.00 0.44 0.00 0.00 0.00 • 0.88 1.32 
Site 15 '0.72 0.00 0.24 0.00 0.24 0.00 0.48 0.00 
Site 16 3.30 0.00 0.66 0.00 0.44 0.00 0.44 3.08 
Site 17 15.97 0.00 0.00 0.00 0.40 0.00 1.40 1.20 
Site 18 6.07 	• 0.00 4.44 0.00 1.17 0.00 0.47 0.00 
Site 19 	• 11.44 0.00 0.00 0.00 3.75 0.00 0.38 1.31 
Site 20 6.99 0.00 0.23 0.00 0.00 0.00 1.17 0.00 
Site 21 11.39 0.00 0.00 0.00 0.42 0.00 2.95 0.00 
Site 22 1.16 0.00 0.00 0.00 	• 0.00 0.00 0.00 0.00 
Site 23 1.77 0.00 1.77 0.00 0.00 0.00 1.11 0.00 
Site 24 0.00 0.00 1.44 0.00 	• 0.48 0.00 0.48 • 0.00 
Site 25 	• 6.82 0.00 0.00 • 0.00 0.00 0.00 2.73 0.00 
Site 26 6.85 0.00 0.00 0.00 1.76 0.00 2.15 0.00 
Site 27 26.30 0.00 0.74 0.00 0.00 0.00 0.00 0.56 
Site 28 0.00 1.33 0.00 0.00 8.00 0.00 1.52 0.00 
Site 29 2.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 30 2.50 0.00 0.25 0.00 0.25 0.00 2.00 1.00 
Site 31 3.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 32 7.80 0.00 0.00 0.00 1.15 0.00 0.92 2.06 
Site 33 7.69 0.00 0.00 0.00 0.00 2.23 0.50 1.24 
Site 34 24.88 0.00 0.96 0.00 0.00 0.00 0.96 0.00 
Site 35 2.75 0.00 0.00 	• 0.00 0.00 1.75 3.75 0.00 
Site 36 32.23 0.00 1.42 0.00 0.71 0.00 0.47 0.00 
Site 37 1.47 0.00 0.00 0.00 1.72 0.00 1.97 0.25 
Site 38 13.22 0.00 0.00 0.00 0.75 0.00 0.00 1.25 
Site 39 	• 8.87 0.00 0.00 0.00 0.00 0.00 0.87 0.00 
Site 40 5.30 0.00 0.00 0.00 0.00 0.00 0.48 0.00 
Site 41 12.05 0.00 0.00 0.00 0.00 0.00 0.68 0.68 
Site 42 • 0.46 0.00 0.00 0.00 0.00 0.00 0.23 0.00 
Site 43 4.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 44 15.22 0.42 • 0.00 0.00 0.00 0.00 0.00 1.69 
Site 45 0.25 	• 0.00 • 0.00 0.00 0.00 0.00 0.49 0.25 
Site 46 3.19 0.00 0.00 6.83 0.00 0.00 1.59 0.00 
Site 47 • 6.73 0.00 0.00 0.00 0.23 0.00 0.23 0.00 
Site 48 4.40 0.00 0.00 0.00 0.00 0.69 0.00 0.00 
Site 49 7.24 0.00 0.00 0.00 2.94 	• 0.00 0.45 0.00 
Site 50 1.44 0.00 0.96 0.00 1.92 0.00 0.24 0.96 
Site 51 	• 1.81 0.00 0.00 0.00 0.90 0.00 0.00 0.00 
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Table 2.2 (continued.): Relative abundance (%) of Training Set Species 
Species 
no... 

73 74 75 76 77 78 79 80 

Site 1 0.00 0.00 4.87 2.32 0.00 0.00 0.00 0.00 
Site 2 1.00 0.00 3.23 1.49 0.00 1.00 •0.00 0.00 
Site 3 0.23 3.49 21.86 0.00 0.00 0.00 0.00 0.00 
Site 4 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.00 
Site 5 0.00 0.00 3.86 3.64 0.00 2.27 0.00 0.00 
Site 6 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 
Site 7 0.00 0.00 3.88 0.00 1.43 0.00 0.00 0.00 
Site 8 0.49 0.00 11.65 0.00 0.00 0.49 0.00 0.00 
Site 9 0.00 0.00 0.40 1.59 0.00 0.80 0.00 0.00 
Site 10 0.00 0.00 2.96 0.74 0.00 0.00 0.00 0.00 
Site 11 1.97 0.00 0.00 0.00 0.00 0.74 0.00 0.00 
Site 12 0.00 0.00 0.40 0.00 0.00 1.60 0.00 0.00 
Site 13 0.46 0.00 2.08 0.00 0.00 0.00 0.00 0.00 
Site 14 0.44 0.00 2.20 0.00 0.44 0.00 0.00 0.00 
Site 15 0.00 0.00 0.96 0.00 0.00 1.92 0.00 0.00 
Site 16 0.66 0.00 2.86 0.88 0.00 3.52 0.00 0.00 
Site 17 0.20 0.00 5.79 0.00 0.00 0.80 0.00 0.00 
Site 18 1.40 0.00 18.69 0.00 0.00 32.71 0.00 0.00 
Site 19 0.75 0.00 1.88 0.00 0.00 2.06 0.00 0.00 
Site 20 0.70 0.00 1.63 2.56 0.00 2.80 0.00 0.00 
Site 21 1.90 0.00 4.43 0.00 0.00 2.53 0.00 0.00 
Site 22 0.00 0.00 8.69 0.00 0.00 0.39 0.00 0.00 
Site 23 0.22 0.00 9.31 0.00 0.00 0.00 0.00 0.00 
Site 24 0.00 0.00 1.44 0.00 0.00 0.96 0.00 0.00 
Site 25 1.59 0.00 2.73 1.36 0.00 0.45 0.00 0.00 
Site 26 1.37 0.78 0.00 0.00 0.00 0.20 0.00 
Site 27 0.00 0.00 20.56 0.00 0.00 0.00 0.00 0.00 
Site 28 0.00 0.00 1.33 0.00 0.00 0.00 2.10 0.00 
Site 29 0.00 0.00 16.27 0.00 0.00 0.00 0.00 0.00 
Site 30 0.00 0.00 2.50 1.50 0.50 0.00 0.00 0.00 
Site 31 0.00 0.00 13.16 0.00 1.32 0.00 0.00 0.00 
Site 32 0.00 0.00 9.40 0.00 0.00 0.00 0.00 0.00 
Site 33 0.00 0.00 0.50 0.25 0.00 0.00 0.00 0.00 
Site 34 0.00 0.00 3.83 0.00 5.02 0.00 0.00 0.00 
Site 35 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 
Site 36 0.00 0.00 2.37 0.00 0.95 0.47 0.00 0.00 
Site 37 0.00 0.00 1.97 1.47 0.00 0.00 0.00 0.00 
Site 38 0.00 0.00 10.22 0.00 1.00 0.00 0.00 0.00 
Site 39 0.00 0.00 8.23 0.00 0.00 0.00 0.00 0.00 
Site 40 0.00 0.00 16.63 0.00 0.00 0.00 0.00 0.00 
Site 41 0.00 0.00 5.91 0.00 0.00 0.23 0.00 0.00 
Site 42 0.00 0.00 0.68 0.00 0.00 1.14 0.00 0.00 
Site 43 0.00 0.00 5.50 0.00 0.52 0.00 0.00 0.00 
Site 44 •0.00 0.00 0.42 0.00 1.69 0.00 4.02 2.54 
Site 45 0.00 0.00 1.97 0.00 0.00 0.00 0.00 0.00 
Site 46 0.00 o.00 9.11 2.28 0.00 0.00 0.00 0.00 
Site 47 0.00 0.00 28.07 0.00 0.00 0.00 0.46 0.00 
Site 48 0.00 0.00 3.70 0.00 0.00 0.00 0.00 0.00 
Site 49 0.00 0.00 7.92 0.00 0.00 0.00 0.00 0.00 
Site 50 0.00 0.00 18.23 5.04 0.00 0.00 0.00 0.00 
Site 51 0.00 0.00 4.30 0.00 0.00 3.39 0.00 0.00 
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Table 2.2 (continued.): Relative abundance (%) of Training Set Species 
Species 
no... 

81 82 83 84 85 86 87 88 

Site 1 8.58 0.00 0.00 0.00 0.00 0.00 3.94 0.00 
Site 2 5.97 0.00 0.00 0.00 0.25 0.00 0.00 4.98 
Site 3 3.02 0.00 4.65 0.00 0.00 0.00 0.47 1.40 
Site 4 0.62 0.62 70.10 0.00 0.00 0.00 0.00 0.00 
Site 5 0.91 0.00 0.00 0.00 0.00 0.00 1.14 0.00 
Site 6 0.90 0.00 19.64 0.00 0.00 0.00 1.58 1.81 
Site 7 0.00 0.00 65.51 0.00 0.00 0.41 0.82 0.00 
Site 8 0.24 0.00 1.46 0.00 0.24 0.00 2.18 0.49 
Site 9 0.80 0.00 2.98 0.20 0.00 0.40 14.12 1.19 
Site 10 3.20 0.00 2.22 0.00 0.00 1.23 4.19 0.00 
Site 11 0.00 8.37 46.31 0.00 0.00 0.00 0.99 0.00 
Site 12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 13 0.00 0.00 1.39 0.00 0.00 0.00 2.31 1.39 
Site 14 1.10 0.00 4.40 0.00 0.00 0.00 1.54 0.00 
Site 15 0.48 0.00 0.72 0.00 0.00 0.00 2.16 0.00 
Site 16 0.66 2.42 43.96 0.00 0.00 1.54 1.32 0.00 
Site 17 7.58 0.80 1.40 0.00 0.60 0.00 0.00 0.00 
Site 18 0.00 0.23 8.41 0.00 0.00 0.00 0.93 0.00 
Site 19 0.38 0.94 32.65 0.00 0.00 0.00 0.19 0.00 
Site 20 3.26 0.00 3.96 0.00 0.00 0.00 0.00 0.00 
Site 21 0.84 0.21 2.53 0.00 0.00 0.00 0.00 0.21 
Site 22 4.44 0.00 0.00 0.00 0.00 0.00 0.19 0.00 
Site 23 0.00 0.00 0.00 0.00 0.22 0.00 1.33 0.67 
Site 24 0.48 0.00 0.00 0.00 0.24 0.00 1.44 0.00 
Site 25 0.00 0.00 7.73 0.00 0.00 0.00 15.45 2.05 
Site 26 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 
Site 27 0.19 0.00 0.00 0.00 0.00 0.00 0.56 0.00 
Site 28 0.00 0.00 6.10 0.00 0.00 0.00 0.00 0.00 
Site 29 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 
Site 30 2.25 0.00 1.00 0.00 0.25 0.00 0.00 0.00 
Site 31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 32 0.00 3.90 0.92 6.88 0.00 0.00 0.00 0.00 
Site 33 0.99 0.00 1.24 0.00 0.25 2.73 2.98 0.00 
Site 34 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 
Site 35 0.25 4.25 25.50 0.00 0.00 9.50 2.00 0.00 
Site 36 3.79 0.00 2.13 0.00 0.00 0.95 0.71 0.00 
Site 37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 38 1.75 0.00 0.00 0.00 0.00 1.25 1.75 0.00 
Site 39 0.22 0.00 0.87 0.00 0.00 0.00 1.73 0.87 
Site 40 6.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 41 0.23 0.00 0.00 0.68 0.23 0.00 0.45 0.00 
Site 42 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 
Site 43 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 45 0.49 0.00 0.00 0.00 0.00 0.25 0.49 0.00 
Site 46 1.37 0.00 4.10 0.00 1.82 0.00 2.51 0.00 
Site 47 1.62 0.00 1.86 0.00 0.46 0.00 0.00 0.00 
Site 48 2.31 0.00 0.00 0.00 1.39 0.00 0.00 0.46 
Site 49 15.16 0.00 0.90 0.00 4.30 0.00 0.68 0.00 
Site 50 8.39 0.00 0.00 0.00 7.43 0.00 0.00 0.00 
Site 51 14.03 0.00 1.58 0.00 9.73 0.45 0.90 0.00 
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Table 2.2 (continued.): Relative abundance (%) of Training Set Species 
Species 
no... 

89 90 91 92 93 94 95 96 

Site 1 1.86 0.00 0.00 0.46 0.00 0.00 0.00 0.00 
Site 2 0.00 5.72 0.00 7.21 0.00 3.48 0.00 0.00 
Site 3 0.23 0.00 0.00 0.47 0.00 14.19 0.00 0.00 
Site 4 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.00 
Site 5 10.23 0.00 0.00 1.36 0.00 0.00 0.00 0.00 
Site 6 4.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 8 0.97 0.00 0.00 3.40 0.00 1.21 0.00 0.00 
Site 9 5.96 0.00 0.00 3.18 0.60 0.00 0.00 0.00 
Site 10 0.00 0.00 0.00 1.48 0.00 0.00 0.00 0.00 
Site 11 0.00 0.00 0.00 6.65 0.00 1.23 0.00 0.00 
Site 12 0.00 0.00 0.00 0.00 0.00 0.00 3.21 0.00 
Site 13 0.23 3.24 2.55 3.01 0.00 0.00 0.00 0.00 
Site 14 0.00 0.00 0.66 1.10 0.00 0.00 1.32 0.00 
Site 15 0.00 0.00 0.00 0.00 2.40 0.00 0.72 0.00 
Site 16 1.10 0.00 0.00 0.88 0.00 0.66 0.00 0.00 
Site 17 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
Site 18 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 19 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 
Site 20 0.00 1.17 0.00 0.00 0.00 0.00 0.00 2.33 
Site 21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 22 0.00 0.00 0.00 1.16 0.00 0.00 0.19 0.00 
Site 23 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00 
Site 24 0.48 0.00 0.00 0.00 0.96 0.00 0.00 0.00 
Site 25 0.45 0.00 0.00 2.27 0.00 0.00 0.00 0.00 
Site 26 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00 
Site 27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 28 0.00 0.00 2.48 0.00 0.00 0.00 0.19 0.00 
Site 29 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 
Site 30 0.00 0.00 0.75 1.25 0.00 0.00 0.00 0.50 
Site 31 0.00 0.00 0.00 0.00 0.00 2.19 0.00 0.00 
Site 32 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.00 
Site 33 0.00 0.00 0.00 16.63 0.25 0.00 0.00 0.00 
Site 34 0.00 0.00 0.00 4.55 0.00 0.00 0.00 0.00 
Site 35 0.00 2.75 0.25 0.00 1.00 0.00 0.00 0.00 
Site 36 0.00 0.00 0.00 1.66 0.00 0.00 0.00 0.00 
Site 37 0.00 0.00 0.00 20.88 0.00 0.00 0.00 0.00 
Site 38 0.00 0.00 0.00 4.99 3.49 0.00 1.00 0.00 
Site 39 •  0.00 0.00 0.00 11.90 0.00 0.00 0.00 0.00 
Site 40 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 41 0.00 0.00 0.68 0.68 0.00 0.00 0.23 0.00 
Site 42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Site 43 0.00 0.00 0.00 0.52 1.03 0.00 0.00 0.00 
Site 44 0.00 1.27 0.00 0.42 0.00 0.00 0.00 0.00 
Site 45 0.00 0.25 0.00 0.00 1.97 0.00 0.00 0.00 
Site 46 0.00 0.46 0.00 0.00 0.00 0.00 2.28 0.00 
Site 47 0.00 0.00 0.00 0.00 0.00 0.00 1.16 0.00 
Site 48 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.00 
Site 49 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 
Site 50 0.00 0.00 0.00 0.00 0.00 0.48 0.24 0.48 
Site 51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 
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Table 2.2 (continued.): Relative abundance (%) of Training Set Species 
Species - 
no._ 

97 98 . 99 100 101 .  102 103 104 

Shel OMO OMO 0.00 6.96 OMO 0.93 OMO OMO 
Site2 OMO OMO OMO OMO OMO OMO aoo aoo 
Site 3 OMO OMO 0.00 MMO 0.47 332 OMO ,0.00 
Sfte4 OMO OMO OMM 0.00. OMO OMO OMO OMO 
Site5 aMO OMO 0.68 aoo 023 0.00 0.00 OMO 
Site6 OMO OMO OMO OMO OMO 339 OMO OMO' 
Site7 OMO OMO OM OMO OMO OMO 0.00 OMO 
Site8 OMO OMO OMO OMO 1.94 2.91 OMO OMO 
Site9 OMO OMO. 020 OMO OMO 0.00 OMO OMO 
Site l0 OMO 0.99 034 .  OMO 0.00 OMO OMO 0.00 
Shell OMO 0.00 OMM OMO OMO 7.64 OMO OMO 
Site 12 OMO OMO OMO OMO 1.60 OMO OMO 0.00 
Site 13 OMO OMO 0.040 OMO 0.00 OMO OMO OMO 
Site 14 0.66 OMO 0.00 OMO OMO 34.95 OMO OMO 
Site 15 0.00 OMO OMO OMO aoo OMO 2.16 OMO 
Site 16 OMO OMO 5.93 OMO OMO 1.98 0.00 OMO 
Site 17 OMO OMO 539 OMO 0.00 OMO OMO OMO 
Site 18 aoo 030 631 OMO OMO 0.93 0.00 OMO 
Site 19 OMO OMO 035 OMO OMO 0.56 OMO 0.00 
Site20 OMO 0.00 31.93 OMO 0.00 030 OMO OMO 
Site 21 0.00 . 0.00 25.95 OMO OMO OMO OMO 0.00 
Site 22 OMO OMM OMO OMO OMO OMO OMO OMO 
Site 23 333 OMO OMO OMO OMO 0.44 OMO 0.00 
Site 24 OMO OMO 0.00 OMO 3.83 0.48 OMO OMO 
Site 25 0.91 OMO OMO OMO 0.45 7.05 OMO OMO 
Site 26 OMO OMO OMO OMO OMO 1.57 OMO 0.00 
Site27 1.11 0.00 OMO.  OMO 1.67 OMO OMO OMO 
Site 28 2.67 OMO OMO OMO 4.57 1.14 OMO OMO 
Site 29 OMO OMO OMO OMO 432 031 OMO OMO 
Site 30 OMO 0.00 0.00 2.00 0.00 OMO OMO OMO 
Site 31 0.00. 333 OMO OMO 0.00 OMO OMO OMO 
Site 32 OMO OMO OMO OMO OMO 138 0.00 OMO 
Site 33 OMO OMO 0.00 OMO OMO 0.50 OMO OMO 
Site 34 aoo 0.96 OMO OMO OMO OMO 0.00 0.00 
Site 35 OMO OM OMO OMO OMO .  025 0.50 OMO 
Site 36 OMO OMO OMO OMO 339 024 OMO OMO 
Site 37 0.00 OMO 0.00 aoo OMO 025 OMO aoo 
Site 38 OMO OMO OMO OMO 0.00 OMO OMO OMO 
Site 39 OMO 022 OMO OMO 0.87 OMO OMO OMO 
Site 40 OMO OMO 0.00 OMO OMO OMO OMO 538 
Site 41 OMO 023 OMO OMO OMO 0.45 OMO OMO 
Site 42 1.83 0.68 OMO OMO 137 0.00 OMO OMO 
Site 43 OMO OMO OMO OMO OMO 5.84 OMO OMO• 
Site 44 3.59 OMO OMO OMO OM OMO OMO 0.00 
Site45 OMO 034 0.00 OMO M.00 OMO OMO 0.00 
Site 46 OMO OMO 233 OMO OMO OMO OMO OMO 
Site 47 0.46 030 023 OMO OMO OMO OMO OMO 
Site 48 OMO OMO OMO OMO OMO OMO 324 OMO 
Site 49 OMO 1.58 6.56 OMM OMO 0.90 OMO OMO 
Site 50 0.00 0.00 12.95 0.00 OMO OMO 0.00 0.00 
Site 51 OMO OMO 3.85 OMO OMO OMO 0.00 OMO 
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Table 2.2 continued . .): Relative abundance (%) of Training Set Species 
Species 
no... 

105 106 107 108 109 110 111 Other sp 

Site 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.58 
Site 2 0.00 0.00 0.00 0.50 0.00 0.00 0.00 4.48 
Site 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.26 
Site 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.27 
Site 5 0.00 0.00 0.00 0.00 0.00 0.45 0.00 3.64 
Site 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.39 
Site 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.67 
Site 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.80 
Site 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.77 
Site 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 443 
Site 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.94 
Site 12 0.00 0.00 0.00 9.62 0.00 0.00 0.00 6.41 
Site 13 0.00 0.00 0.00 0.00 5.32 0.00 0.00 9.26 
Site 14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.98 
Site 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.05 
Site 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 
Site 17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.60 
Site 18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.34 
Site 19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.44 
Site 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.96 
Site 21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.48 
Site 22 0.00 0.00 6.37 0.00 0.00 0.00 0.00 3.67 
Site 23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.32 
Site 24 0.00 0.00 1.20 0.00 0.00 0.00 0.00 5.26 
Site 25 0.00 0.00 0.00 0.23 0.00 0.00 0.00 5.23 
Site 26 0.00 5.68 0.00 0.00 0.00 0.00 0.00 2.94 
Site 27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33 
Site 28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 
Site 29 0.00 0.00 0.00 0.00 0.00 3.54 16.98 1.42 
Site 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.75 
Site 31 12.94 0.00 0.00 0.00 0.00 0.00 1.10 5.26 
Site 32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.05 
Site 33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.94 
Site 34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.50 
Site 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.75 
Site 36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.79 
Site 37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.86 
Site 38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.98 
Site 39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.25 
Site 40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.37 
Site 41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.41 
Site 42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.53 
Site 43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.98 
Site 44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.71 
Site 45 0.00 0.00 0.00 .0.00 0.00 0.00 0.00 3.69 
Site 46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.19 
Site 47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 
Site 48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.17 
Site 49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 
Site 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.60 
Site 51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.81 
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Appendix 3: 21°Pb  Dating Data, Pittwater Core Nutrients, Species No.s, Names & 

Relative Abundance 

Table 3.1: 210Pb Dating Data 
Mid 
section 
depth (cm) 

+ /- 
cm 

Po - 210 Ra -226 Excess Pb-210 

0.7 0.5 2.43 +/- 0.12 0.29 +/- 0.02 2.14 +/- 0.12 
4.3 0.5 2.78 +/- 0.12 0.23 +/- 0.01 2.55 +/- 0.12 
9.1 0.5 2.15 +/- 0.06 0.26 +/- 0.01 1.89 +/- 0.06 
16.3 0.5 1.73 +/- 0.05 0.22 +/- 0.01 1.50 +/- 0.05 
25.9 0.5 1.07 +/- 0.04 0.26+!- 0.02 0.81 +/- 0.05 
36.7 0.5 0.64 +/- 0.02 0.26 +/- 0.02 0.38 +/- 0.03 
42.7 0.5 0.77 +/- 0.03 0.24 +/- 0.01 0.52+!- 0.03 
48.7 0.5 1.22 +/- .0.35 0.27 +/- 0.02 0.95 +/- 0.04 
57.1 0.5 0.51 +/- 0.02 0.27 +/- 0.02 0.24 +/- 0.03 
66.7 0.5 0.40 +/- 0.02 0.27 +/- 0.02 0.13 +/- 0.03 

NB: All sample analyses performed by Environmental Division Laboratories, 
ANSTO, Lucas Heights, Sydney 

Dating data provided forms part of a larger project: 
Project Title: 	Impact of catchment changes on the ecology of the Pitt Water 

estuary. 
AINSE Grant No. 	01/106 
Project Leader: 	Iona Mitchell, TAFI Marine Res earch Laboratories, Taroona 
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Table 3.2: Number and effective number of diatom species in the fossil data set, and 

number of species in the fossil data present in the training set (see key below table) 

Core Depth 
(cm) N_Fossil N2_Fossil N_In_Modern 

1.2 21 13.6 21 
2.4 20 11.3 20 
3.6 18 12.2 18 

• 4.8 24 14.0 24 
6 23 14.2 23 

7.2 20 11.9 20 
8.4 25 14.7 25 

•9.6 19 12.4 19 
10.8 21 10.2 21 
12 25 15.3 25 

14.4 21 11.8 21 
16.8 25 16.7 25 
18 25 15.9 25 

19.2 23 16.1 23 
21.6 20 13.5 20 
24 21 14.3 21 

26.4 24 16.0 24 
28.8 22 15.3 22 
31.2 19 13.6 19 
33.6 18 13.0 18 
36 19 12.9 19 

38.4 19 11.3 19 
40.8 22 12.3 22 
43.2 16 8.9 16 
45.6 19 12.8 19 
48 17 9.7 17 

50.4 13 7.2 13 
52.8 16 9.0 16 
55.2 15 8.5 15 
57.6 15 9.6 15 
60 15 9.9 15 

62.4 13 8.0 13 
64.8 14 8.6 14 
67.2 15 8.3 15 
68.4 17 9.3 17 

Key: 	N_Fossil 
	

Number of species in fossil data 
N2_Fossil 
	

Effective number of species in fossil data - (N2 - (Hill 1973)) 
N_In_Modern 	Number of species in fossil data present in training set 
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Table 3.3: Reconstructed NO2.3 and Si02 concentrations for Pittwater core 
Depth (cm) Spring NO2_3 (gmol/L) Spring Si02 (grnol/L) 

1.2 0.95 17.56 
2.4 1.03 12.96 
3.6 0.83 15.98 
4.8 1.00 16.11 
6 0.89 16.48 

7.2 0.76 9.47 
8.4 1.30 17.31 
9.6 0.56 11.68 
10.8 0.46 7.92 
12 0.59 11.78 

14.4 0.83 12.93 
16.8 0.73 12.67 
18 0.79 14.36 

19.2 0.90 12.31 
21.6 0.88 12.84 
24 0.97 13.40 

26.4 0.69 11.15 
28.8 0.70 12.22 
31.2 0.75 15.64 
33.6 0.87 15.84 
36 0.73 15.04 

38.4 0.53 15.78 
40.8 0.65 16.34 
43.2 0.89 24.76 
45.6 0.89 19.69 
48 0.59 18.43 

50.4 0.28 18.82 
52.8 0.51 19.68 
55.2 0.47 19.16 
57.6 0.74 21.66 
60 0.73 24.65 
62 0.53 20.65 

64.8 0.68 22.73 
67.2 0.31 13.52 
68.4 0.64 20.24 
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Appendix 3 (cont...) 

Table 3.4: Diatom species No. and name from the Pittwater core  
Species No. Species Name  

19 	Cocconeis disculoides Hustedt 
24 	Cocconeis placentula Ehrenberg var. euglypta (Ehr.) Grunow 
32 	Dimerogramma minor var.nana (Gregory) Van Heurck 
36 	Ehrenbergia granulosa (Grunow) Witkowski 
42 	Fragilaria pinnata Ehrenberg 
43 	Fragilaria pinnata Ehrenberg var. pinnata 
45 	Gramatophora oceanica Ehrenberg 
54 	Navicula arenaria Donken var. rostellata Lange-Bertalot 
58 	Navicula monoculata var. omissa (Hustedt) Lange-Bertalot 
69 	Nitzschia lorenziana Grunow var. subtilis Grunow 
70 	Nitzschia ovalis Arnott ex Grunow in Cleve & Grunow 
71 	Nitzschia panduriformis Gregory var. minor Gregory 
74 	Opephora martyi Heribaud 
75 	Opephora olsenii Moller 
76 	Paralia sulcata (Ehrenberg) Cleve 
78 	Plagiogramma staurophorum (Gregory) Heiberg 
81 	Planothidium delicatulum (Kutzing) Round & Buktiyarova 
85 	Cocconeis aff. pinnata Gregory ex Greville 
86 	Synedra investiens W. Smith 
98 	Fragilaria sp 1 
99 	Cymatosira aff. belgica Grunow 
100 	Spp 3 
112 	Aulocoseira ambigua (Grunow) Simonsen 
113 	Campylodiscus daemelianus Grunow 
114 	Catenula adhaerens Mereschkowsky 
115 	Cyclotella atomus Hustedt 
116 	Glyphodesmis distans (Gregory) Grunow 
117 	Lyrelia david-mannii Witkowski 
118 	Nitzschia punctata var. coarctata (Grunow) Hustedt 
119 	Odentella aurita (Lyngbye) Agardh 
120 	Plagiogramma appendiculatum Giffen. 
121 	Planothidium quamerensis (Grunow) 
122 	Petrodictyon gemma (Ehrenberg) D. G. Mann 
123 	Trachysphenia australis Petit var. australis 
124 	Dactyliosolen spp. 
125 	Fragilaria sp 2 
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Appendix 3 (cont...) 
Table 3.5: Relative abundance (%) of diatoms in the Pittwater Core 

Depth (cm) 
Species Nos. 

19 	24 32 36 42 43 45 54 58 69 70 71 74 75 76 78 81 85 86 
0-1.2 1.22 0.73 0.49 0.00 0.98 1.47 0.24 2.44 0.00 1.47 0.00 0.00 0.00 7.33 0.49 1.22 2.69 11.49 1.47 
1.2-2.4 1.20 0.24 0.00 0.00 0.00 2.64 0.72 0.96 0.48 1.20 0.00 0.00 0.00 3.85 0.00 0.96 0.00 11.54 0.48 
2.4-3.6 1.97 2.21 0.00 0.00 3.93 0.98 0.00 0.74 1.47 2.21 0.25 0.00 0.00 9.09 0.25 0.00 2.21 7.37 0.74 
3.6-4.8 0.97 0.24 0.00 0.49 0.24 3.16 1.46 1.46 1.22 0.97 0.00 0.00 0.49 6.57 0.24 0.97 1.95 13.87 0.00 
4.8-6.0 1.68 0.00 0.24 0.00 1.20 1.44 0.00 0.48 1.92 0.96 2.40 0.00 0.00 7.93 0.48 1.20 2.64 9.13 1.20 
6.0-7.2 1.24 0.00 0.00 0.00 0.00 0.74 0.50 0.00 1.49 1.74 0.74 0.50 0.00 7.94 0.74 1.24 0.74 9.93 0.25 
7.2-8.4 0.72 0.24 0.24 0.00 0.48 1.92 0.96 0.00 1.20 2.64 0.00 0.00 0.24 5.53 0.96 1.68 1.20 17.07 0.00 
8.4-9.6 1.71 0.49 0.00 0.00 4.63 2.68 0.49 0.00 0.73 0.24 0.00 0.00 0.98 5.37 0.00 1.46 3.90 10.24 0.00 
9.6-10.8 0.73 0.24 0.00 0.98 1.96 0.98 1.96 0.00 0.00 0.00 0.00 0.24 0.00 4.89 0.24 2.20 0.24 14.18 0.00 
10.8-12 0.48 1.20 0.24 1.20 7.91 2.16 1.92 0.00 1.92 0.00 0.00 0.00 0.00 6.95 0.24 2.16 0.24 8.39 0.48 
13.2-14.4 0.25 0.49 0.25 0.00 4.69 6.67 1.23 0.00 0.49 0.00 0.00 0.00 0.49 4.20 0.49 3.46 0.99 8.40 10.86 
15.6-16.8 1.46 0.24 0.97 3.89 3.65 0.24 6.08 0.00 0.00 0.49 0.00 0.49 2.19 1.95 6.33 9.73 0.73 22.14 0.00 
16.8-18 0.74 1.96 0.74 2.45 10.29 1.72 3.68 0.25 0.49 0.00 0.00 0.74 0.00 5.64 1.23 7.60 1.72 10.29 0.00 
18-19.2 0.70 0.23 2.79 13.95 0.93 0.47 20.23 0.00 0.00 0.00 0.00 2.09 0.47 0.23 5.81 9.30 0.00 6.05 0.00 
20.4-21.6 0.48 0.48 2.88 1.92 1.92 0.72 14.90 0.00 0.00 0.48 0.00 0.96 1.20 1.20 2.16 8.65 0.00 17.79 0.00 
22.8-24 0.74 1.23 3.93 3.69 0.98 1.47 16.95 0.00 0.00 0.00 0.00 0.49 5.65 0.49 2.70 6.88 0.49 17.69 0.00 
25.2-26.4 0.94 0.70 1.64 3.29 1.88 0.94 14.32 0.00 0.00 0.00 0.00 5.40 1.41 0.47 3.99 4.93 0.94 17.14 0.00 
27.6-28.8 0.00 0.00 3.81 15.48 0.00 0.24 13.81 0.00 0.00 0.48 0.00 0.24 5.00 0.24 15.95 2.38 0.24 5.48 0.00 
30-31.2 0.66 0.00 3.06 34.35 0.00 0.00 9.19 0.00 0.00 0.00 0.00 0.00 1.97 0.00 20.35 1.75 0.22 2.19 0.00 
32.4-33.6 0.22 0.00 2.88 35.03 0.00 0.00 7.76 0.00 0.00 0.00 0.00 0.00 3.10 0.00 19.73 3.10 0.00 2.22 0.00 
34.8-36 0.93 0.00 2.10 34.11 0.00 0.00 8.64 0.00 0.00 0.00 0.00 0.00 2.57 0.00 18.22 1.87 0.00 3.27 0.00 
37.2-38.4 0.00 0.00 2.37 50.00 0.24 0.24 1.66 0.00 0.00 0.00 0.00 0.00 3.55 0.00 18.25 0.47 0.00 1.18 0.00 
39.6-40.8 0.24 0.24 3.37 42.79 0.00 0.24 3.85 0.00 0.00 0.00 0.00 0.00 3.61 0.00 20.67 1.44 0.00 1.92 0.00 
42-43.2 0.00 0.00 3.29 46.12 0.00 0.00 2.59 0.00 0.00 0.00 0.00 0.00 0.71 0.00 24.00 0.24 0.00 0.24 0.00 
44.4-45.6 0.00 0.00 2.87 36.60 0.00 0.00 3.11 0.00 0.00 0.96 0.00 0.00 2.39 0.00 2L77 0.96 0.00 1.67 0.00 
46.8-48 0.49 0.00 1.95 45.50 0.00 0.00 3.16 0.00 0.00 0.24 0.00 0.00 2.43 0.00 23.60 0.73 0.00 0.49 0.00 
49.2-50.4 0.00 0.00 2.63 57.04 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 1.19 0.00 20.76 0.00 0.00 0.00 0.00 
51.6-52.8 0.00 0.00 6.96 34.11 0.23 0.00 2.09 0.00 0.00 0.00 0.00 0.00 2.55 0.00 33.18 0.00 0.00 0.46 0.00 
54-55.2 0.00 0.00 4.18 41.52 0.25 0.00 2.46 0.00 0.00 0.00 0.00 0.00 1.47 0.00 28.99 0.00 0.00 0.25 0.00 
56.4-57.6 0.00 0.00 3.87 33.94 0.00 0.00 2.51 0.00 0.00 0.00 0.00 0.00 2.73 0.00 30.30 0.00 0.00 0.46 0.00 
58.8-60 0.48 0.00 5.04 30.46 1.20 0.00 5.52 0.00 0.00 0.00 0.00 0.00 1.92 0.00 32.61 0.00 0.00 0.00 0.00 
61.2-62.4 0.00 0.00 3.77 35.61 0.00 0.24 3.77 0.00 0.00 0.00 0.00 0.00 1.42 0.00 35.38 0.00 0.00 0.00 0.00 
63.6-64.8 0.00 0.00 1.66 36.02 0.00 0.00 4.74 0.00 0.00 0.00 0.00 0.00 0.71 0.00 31.04 0.00 0.00 0.71 0.00 
66-67.2 0.25 0.00 1.49 39.80 0.00 0.50 2.49 0.00 0.00 0.00 0.00 0.00 1.24 0.00 28.11 0.00 0.00 0.00 0.00 
67.2-68.4 0.25 0.00 1.50 35.75 0.00 0.50 4.25 0.00 0.00 0.00 0.00 0.00 1.75 0.00 32.00 0.00 0.00 0.00 0.00 

(continued....) 
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Table 3.5 (continued...): Relative abundance (%) of diatoms in the Pittwater Core 
Species No.s 

Depth (cm) 98 99 100 112 113 114 115 116 117 118 119 120 121 122 123 124 125 Other 
spp 

0-1.2 1.47 46.45 0.00 0.00 0.00 5.38 0.00 1.22 0.24 2.69 0.00 0.00 0.00 2.69 0.00 0.00 0.00 6.11 
1.2-2.4 0.72 56.25 0.00 0.24 0.00 7.69 1.44 1.92 0.00 0.96 0.00 0.00 0.24 2.16 0.00 0.00 0.00 4.09 
2.4-3.6 1.47 44.23 0.00 0.00 0.00 7.86 0.00 2.95 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.09 
3.6-4.8 0.49 48.18 0.00 1:70 0.00 2.68 0.00 2.19 0.00 1.95 0.00 0.00 0.49 2.19 0.24 0.00 0.00 5.60 
4.8-6.0 1.20 48.32 0.00 0.00 0.00 6.73 0.72 1.68 0.00 1.20 0.00 0.00 0.24 1.20 0.24 0.00 0.00 5.53 
6.0-7.2 1.99 51.61 0.00 0.00 0.00 5.71 0.00 1.49 0.00 0.99 0.00 0.00 0.50 1.99 0.00 0.00 0.00 7.94 
7.2-8.4 0.72 36.06 0.00 1.20 0.00 7.69 0.96 2.40 0.00 1.92 0.24 0.00 0.48 3.13 0.24 0.00 0.00 9.86 
8.4-9.6 3.90 40.98 0.00 0.00 0.00 7.07 0.24 1.22 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 3.41 10.00 
9.6-10.8 0.73 55.99 0.49 0.00 0.00 9.78 0.24 0.49 0.00 0.00 0.00 0.00 0.24 1.22 0.00 0.00 0.49 1.47 
10.8-12 1.92 35.97 2.16 0.48 0.00 9.11 2.88 1.44 0.00 0.00 0.24 0.00 0.24 0.24 0.00 0.00 1.92 7.91 
13.2-14.4 0.74 50.12 0.25 0.49 0.00 0.00 0.25 2.96 0.00 0.00 0.00 0.00 0.00 1.23 0.00 0.00 0.00 0.99 
15.6-16.8 0.49 8.27 1.46 1.70 0.00 12.17 0.00 5.35 0.00 0.00 0.24 0.73 0.97 0.00 0.00 0.73 0.00 7.30 
16.8-18 0.49 15.44 1.47 0.00 0.00 18.14 0.00 7.35 0.00 0.00 0.25 0.74 0.25 0.00 0.00 0.25 0.49 5.39 
18-19.2 0.00 0.00 2.79 1.86 0.00 3.49 0.00 9.77 0.47 0.00 0.70 1.86 2.33 0.00 0.93 3.72 0.00 8.84 
20.4-21.6 0.00 0.00 6.25 0.00 0.00 24.52 0.00 6.73 0.00 0.00 0.00 0.00 1.68 0.00 0.48 0.72 0.00 3.85 
22.8-24 0.00 0.00 0.98 0.25 0.00 15.48 0.00 10.32 0.00 0.00 0.00 0.98 0.00 0.00 1.23 1.23 0.00 6.14 
25.2-26.4 0.23 0.47 4.46 0.00 0.00 14.79 0.00 6.57 0.00 0.00 0.23 0.94 1.17 0.00 0.23 0.94 0.00 11.97 
27.6-28.8 0.00 0.00 4.05 1.90 0.71 1.90 0.00 6.43 0.00 0.00 1.90 1.90 0.95 0.00 1.19 3.33 0.00 11.90 
30-31.2 0.00 0.00 128 1.97 1.09 0.00 0.00 1.53 1.09 0.00 1.53 0.88 2.63 0.00 2.41 2.84 0.00 6.56 
32.4-33.6 0.00 0.00 1.77 2.66 0.44 0.00 0.00 3.33 0.89 0.00 0.89 1.55 1.77 0.00 2.00 2.44 0.00 7.76 
34.8-36 0.00 0.00 1.87 4.44 0.47 0.93 0.00 3.74 0.47 0.00 0.93 0.47 1.17 0.00 0.47 2.80 0.00 10.05 
37.2-38.4 0.00 0.00 1.42 3.32 3.08 0.00 0.00 0.47 1.18 0.00 0.47 0.24 2.13 0.00 1.66 3.55 0.00 3.79 
39.6-40.8 0.00 0.00 1.44 4.33 0.24 0.24 0.24 1.68 0.48 0.00 0.96 0.96 0.96 0.00 1.20 1.44 0.00 6.97 
42-43.2 0.00 0.00 1.18 5.65 1.41 0.00 0.47 1.18 3.53 0.00 0.00 0.47 0.00 0.00 0.47 0.94 0.00 6.35 
44.4-45.6 0.00 0.00 1.20 4.07 3.59 0.00 1.20 1.67 1.91 0.00 0.24 0.72 0.72 0.00 0.72 2.39 0.00 9.81 
46.8-48 0.00 0.00 0.24 4.62 1.95 0.00 0.73 0.00 1.95 0.00 0.00 0.24 0.00 0.00 1.70 1.70 0.00 7.06 
49.2-50.4 0.00 0.00 0.72 4.30 1.91 0.00 0.72 0.00 0.72 0.00 0.00 0.00 0.24 0.00 0.48 1.67 0.00 5.97 
51.6-52.8 0.23 0.00 0.00 2.78 0.70 0.00 1.39 0.23 0.70 0.00 0.00 0.00 0.23 0.00 3.71 3.94 0.00 5.80 
54-55.2 0.00 0.00 0.00 7.13 0.98 0.00 1.23 0.00 1.23 0.00 0.00 0.25 0.74 0.00 0.98 1.47 0.00 6.14 
56.4-57.6 0.00 0.00 0.23 5.92 1.59 0.00 1.37 0.23 2.05 0.00 0.00 0.23 0.00 0.00 2.96 3.64 0.00 7.29 
58.8-60 0.00 0.00 0.48 2.88 0.48 0.00 2.16 0.72 1.92 0.00 0.00 0.00 0.00 0.00 1.44 3.12 0.00 8.87 
61.2-62.4 0.00 0.00 0.00 6.13 0.47 0.00 2.12 0.00 2.12 0.00 0.00 0.00 0.24 0.00 0.24 4.01 0.00 3.77 
63.6-64.8 0.00 0.00 0.00 6.16 1.18 0.00 4.27 0.00 0.71 0.24 0.00 0.00 0.24 0.00 1.42 3.55 0.00 6.87 
66-67.2 0.50 0.00 0.00 9.45 2.24 0.00 0.50 1.00 0.25 0.00 0.00 0.00 0.50 0.00 0.00 8.46 0.00 3.23 
67.2-68.4 0.00 0.00 0.25 7.25 1.00 0.00 2.25 1.00 0.50 0.00 0.25 0.25 0.00 0.00 0.75 5.25 0.00 4.75 
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