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Abstract 

In mathematics, one frequently encounters constructions of a pathological or 

critical nature. In this thesis we investigate such structures in semigroup theory 

with a particular aim of finding small, finite, examples with certain associated infinite 

characteristics. 

We begin our investigation with a study of the identities of finite semigroups. 

A semigroup (or the variety it generates) whose identities admit a finite basis is 

said to be finitely based. We find examples of pairs of finite (aperiodic) finitely 

based semigroups whose direct product is not finitely based (answering a question 

of M. Sapir) and of pairs of finite (aperiodic) semigroups that are not finitely based 

whose direct product is finitely based. These and other semigroups from a large 

class (the class of finite Rees quotients of free monoids) are also shown to generate 

varieties with a chain of finitely generated supervarieties which alternate between 

being finitely based and not finitely based. Furthermore it is shown that in a natural 

sense, "almost all" semigroups from this class are not finitely based. 

Not finitely based semigroups that are locally finite and have the property that 

every locally finite variety containing them is also not finitely based are said to be 

inherently not finitely based. We construct all minimal inherently not finitely based 

divisors in the class of finite semigroups and establish several results concerning a 

fundamental example with this property; the six element Brandt semigroup with 

adjoined identity element, B. 

We then find the first examples of finite semigroups admitting a finite basis 

of identities but generating a variety with uncountably many subvarieties (indeed 

with a chain of subvarieties with the same ordering as the real numbers). For some 

well known classes, a complete description of the members with this property are 

obtained and related examples and results concerning joins of varieties are also 

found. A connection between these results and the construction of varieties with 

decidable word problem but undecidable uniform word problem is investigated. 
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Finally we investigate several embedding problems not directly concerned with 

semigroup varieties and show that they are undecidable. The first and second of 

these problems concern the fundamental relations of Green; in addition some small 

examples are found which exhibit unusual related properties and a problem of M. 

Sapir is solved. The third of the embedding problems concerns the potential embed-

dability of finite semigroup amalgams. The results are easily extended to the class 

of rings. 
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Chapter 1 

Introduction. 

1.1 Historical overview 

1.1.1 Critical structures 

In many areas of mathematics, there exist special structures with critical proper-

ties. This critical nature can manifest itself in different ways but the importance 

and interest in such structures is often fundamental. In many cases the discovery of 

various critical structures have shaped the history of the associated theory. There 

are irreducible units such as the prime numbers in number theory or the finite simple 

groups of finite group theory, generic examples containing or mimicking the proper-

ties of other structures such as universal Turing machines and universal Diophantine 

polynomials, structures with pathological hereditary properties such as the graphs 

K5 and K3,3 in relation to graph planarity, or the lattices M5 and N5 with respect to 

lattice distributivity and modularity, and structures with essentially difficult prop-

erties such as aperiodic tilings, non-recursive sets of natural numbers, and flexible 

polyhedral surfaces. 

Semigroup Theory is by no means exempt from the existence of critical construc-

tions, in fact it is particularly rich in examples. As an example of irreducible units, 

1 
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there is (aside from the celebrated congruence free (simple) groups mentioned above) 

the class of completely 0-simple and completely simple semigroups (irreducible with 

respect to the taking of Rees quotients); the structure of these is determined by the 

powerful results of Rees and Suschkewitz. For generic constructions there are the full 

transformation semigroups Tx and the symmetric inverse semigroups lx on a set X, 

which respectively contain as subsemigroups all semigroups or inverse semigroups 

less than a certain size. Examples of structures with essentially difficult properties 

are the finitely presented semigroups with undecidable word problems and examples 

of semigroups with pathological properties include the inherently nonfinitely based 

semigroups. 

1.1.2 Varieties, identities and Tarski's Finite Basis Problem 

A very useful concept in algebra is that of a variety, that is, an equationally defined 

class of algebras. These were originally introduced and developed by G. Birkhoff [5] 

in 1935 who showed that a variety is equivalent to a class of algebras (of a fixed type) 

closed under taking direct products, subalgebras and homomorphic images. These 

very natural classes of algebras have been extensively investigated since their intro-

duction and are an excellent source of critical examples. Intriguing examples include 

structures with some kind of finite character which also exhibit surprising infinite 

facets to their behaviour. Such examples can arise by examining the properties of 

varieties generated by finite algebras. For example, a particularly interesting aspect 

of a variety is the cardinality of the smallest defining set of identities. Birkhoff 

[5] showed that the set of identities in at most n variables satisfied by any given 

finite algebra can be derived from a finite subset of these identities, that is, they 

are finitely based. Then in 1951, R. Lyndon [49] showed that the identities of a 

two element algebra, of any type are also finitely based. At this stage there was, 

perhaps, some reason to suspect that the variety generated by any finite algebra 

would be finitely based. However in 1954 Lyndon [50] found a 7 element groupoid 
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with no finite basis for its identities. Many more examples were subsequently found 

including (P. Perkins, [631) in particular the six element semigroup, B, consisting 

of the matrices 

0 0 	 01 01 	 , 	 01 o\0 	 , 

00 01 	

01  00 	 , 	 00  0 

( 0 0 

under matrix multiplication (alternatively B1 may be visualised as the monoid with 

semigroup presentation (1, a, b: aba = a, bab = b,  a2 = b2 = ‘. 1) A further example 

presented in [63] is the Rees Quotient {a, b, c}* / (W), where 1(W) is the ideal of 

the free monoid {a, b, c}* consisting of all words that are not subwords of a word in 

the set W = labcba, acbab, abab, aabl. 

While there are many known nonfinitely based finite algebras (and semigroups) 

there are also many well known varieties in which every finite algebra is finitely 

based. Some well known examples are the variety of commutative semigroups [63], 

the variety of idempotent semigroups ([6], [19], and [22]) and the varieties of groups 

[59] and rings ([44] and [47]); there are of course many others. In the 1960's, A. 

Tarski posed the problem of finding an algorithm to determine when a finite algebra 

has a finite basis for its identities. This problem, known as Tarski's Finite Basis 

Problem motivated much of the research into this topic and investigations gave rise 

(see [57] or [64]) to a new concept, that of an inherently nonfinitely based algebra. 

An inherently nonfinitely based algebra is a locally finite algebra whose identities 

have no finite basis and for which every locally finite variety containing it is also 

not finitely based (note that every algebra is trivially contained in a finitely based 

variety that is not locally finite; namely the variety defined by the empty set of 

identities). An inherently nonfinitely based algebra is a good example of a structure 

with a pathological, hereditary property. 
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1.1.3 Inherently nonfinitely based groupoids 

In 1984, R. McKenzie [51] proved a powerful result that associates with every finite 

algebra of arbitrary (finite) type, a special finite groupoid with a finite basis for 

its identities if and only if the original algebra has a finite basis for its identities. 

Therefore Tarski's Finite Basis Problem can be restricted to the case of groupoids. 

A number of impressive results do exist for groupoids. One example is the result of 

Murskii [56] that "almost all" finite groupoids are finitely based; that is, the ratio of 

the number of finitely based groupoids of size n to the number of all groupoids of size 

n tends to 1 as n tends to infinity (in fact this ratio is asymptotically proportional 

to n-6; see [57]). So in some sense there are relatively "few" nonfinitely based finite 

groupoids. On the other hand a result of McNulty and Shallon [53] shows that a 

groupoid with an identity and zero element not satisfying any nontrivial identity 

of the form x W(x), (where W(x) is a groupoid term in the letter x) is either 

inherently nonfinitely based or a semigroup. Furthermore, results of Jezek [37] show 

that even among the class of groupoids satisfying nontrivial identities of the form 

x W(x), there are many inherently nonfinitely based groupoids (in fact he shows 

that there are idempotent, commutative, inherently nonfinitely based groupoids with 

only three elements). So in another sense there appear to be "few" finitely based 

groupoids! In 1996 Tarski's Finite Basis Problem was finally solved in the negative 

by R. McKenzie [52] who showed that the class of finitely based and inherently 

nonfinitely based finite algebras are recursively inseparable. 

1.1.4 Inherently nonfinitely based semigroups 

For the class of semigroups, Tarski's Finite Basis Problem remains unsolved, however 

there have been a number of major steps toward a positive solution. Perhaps the 

most notable contribution in this direction is the aesthetic description of all finite 

inherently nonfinitely based semigroups by M. Sapir (see [73] and [74]). We formulate 
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this description in the following theorem. 

THEOREM 1.1.1 [73] Let Z1  xi  and Zn  a Zn_ixnZn_i. Then a finite semi-

group is inherently nonfinitely based if and only if it satisfies no nontrivial identity 

of the form Zn  ;..-:, W. 

Here the words Zn  are called Zimin words and can be considered as critical structures 

in their own right (see [2] and [97] for an indication of their fundamental properties 

with regards to the avoidability of words). An efficient algorithmic description of 

the same class is given in [74] as follows. Recall that the upper hypercentre of a 

group is the final term in the upper central series for that group. 

THEOREM 1.1.2 [74] (i) If S is a finite inherently nonfinitely based semigroup 

then for some idempotent e E S, eSe is a finite inherently nonfinitely based sub-

monoid of S with identity element e. 

(ii) If S is a finite monoid with period d then S is inherently nonfinitely based if and 

only if for some element a E S dividing an idempotent e E S the elements eae and 

ead+1  e do not lie in the same coset of the maximal subgroup Se  of S containing e 

with respect to the upper hypercentre r(se). 

It turns out that the semigroup 131 plays a surprisingly important role in the finite 

basis properties of finite semigroups. Firstly, the combined results of many authors 

(see [82] for discussion) show that every semigroup of order less than six is finitely 

based so 131 is as small an example as is possible of a nonfinitely based semigroup. 

Secondly for a very large class of finite semigroups, 131 is the minimum example 

of an inherently nonfinitely based semigroup. For example if the subgroups of a 

semigroup S are all nilpotent then S is inherently nonfinitely based if and only if 131 

is contained in the variety of S (see [74]). In contrast with this however M. Sapir 

also constructs for any given centreless group a finite inherently nonfinitely based 

semigroup which does not generate a variety containing B. 
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1.1.5 The lattice of subvarieties of variety 

Another source of critical examples may be found by examining the lattice of sub-

varieties of a given variety. In the case of the lattice of all idempotent semigroup 

(band) varieties (see [6], [19], and [22]) a complete description has been obtained 

but the lattice of all semigroup varieties is very complicated. It is uncountable [17] 

and contains no anti-atoms [18]. Even the (countable) sublattice of commutative 

semigroup varieties contains a copy of every finite lattice [42]! There is a loose con-

nection between the property of being nonfinitely based and generating a variety 

with many subvarieties: if every subvariety of a variety is finitely based (or in fact if 

only countably many subvarieties are nonfinitely based) then the cardinality of the 

lattice of subvarieties of this variety is countable. The converse however is not true: 

in [75] finite semigroups are constructed which each generate a variety with only 

a finite lattice of subvarieties and yet are not finitely based. Furthermore, A. N. 

Trahtman [92] has shown that even a finite semigroup can generate a variety with 

uncountably many subvarieties. The example constructed is the monoid Al given 

by the matrices 

(

0 0 1 0 ( 1 o\ ( 0 1 ( 1 0 ( 0 1 ) 

0 0 0 1 ) 0 0 0 0  1  0  1  

under matrix multiplication. The property of a semigroup generating a variety 

with uncountably many subvarieties is naturally inherited by every supervariety; 

these include varieties generated by finite semigroups that embed Al. In particular 

this means that there are "quite a few" finite semigroups generating varieties with 

uncountably many subvarieties. It is easily verified using Theorem 1.1.2 however 

that A is inherently nonfinitely based. So Al provides no examples of finitely 

based (or even nonfinitely based, non inherently nonfinitely based) finite semigroups 

whose varieties have uncountably many subvarieties. Note also that the important 

semigroup B generates a subvariety and not a supervariety of Al (this fact is 

discussed in [74]; in fact 131 is isomorphic to a subsemigroup of Al x Al). 
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Another related result appearing in [75] is that the set of semigroup varieties 

with only finitely many subvarieties is not a sublattice of the lattice of all semi-

group varieties: there exist semigroups S and T each generating varieties with only 

finitely many subvarieties whose direct product generates a variety with infinitely 

many subvarieties. This is equivalent to the join of the varieties generated by S 

and T having infinitely many subvarieties. A further "nice" property which is not 

stable under direct products is that of being finitely based [75]. A simple example 

is by M. Volkov (see [82]). Let G be any nontrivial finite group and A2 be the 

semigroup Al with the identity element removed. Both the semigroup A2 (see [93]) 

and the group G (see [59]) are finitely based yet their direct product is not finitely 

based! Conversely examples are known of nonfinitely based finite semigroups whose 

direct product is finitely based [75]. All these examples however depend on the 

presence of nontrivial subgroups and this led M. Sapir to ask whether or not there 

is a pair of finite finitely based aperiodic semigroups (semigroups with only trivial 

subgroups) whose direct product is not finitely based. In fact (see [82] for example) 

the class of finitely based finite semigroups is not even closed under the taking of 

subsemigroups and the taking of quotients, even Rees quotients (that this is true 

for the class of not finitely based finite semigroups follows trivially since the one 

element trivial semigroup is isomorphic to a quotient and a subsemigroup of every 

finite semigroup). So the properties of being finitely based and nonfinitely based 

are quite unstable. Amazingly the class of not inherently nonfinitely based finite 

semigroups is closed under all of these operations and therefore forms a pseudova-

riety (this follows from Theorems 1.1.1 or 1.1.2). A (locally finite) semigroup that 

is not inherently nonfinitely based has been called weakly finitely based in [39] and 

similarly it will be convenient to denote those semigroups that are both nonfinitely 

based and not inherently nonfinitely based as being weakly nonfinitely based. 

Throughout the thesis we will abbreviate the phrases finitely based, nonfinitely 

based, inherently nonfinitely based, weakly finitely based, and weakly nonfinitely based 
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as FB, NFB, INFB, WFB and WNFB respectively. A related property not men-

tioned above is that of being hereditarily finitely based (or HFB). A semigroup (or 

variety of semigroups) has this property if it is FB and every subvaziety of the variety 

it generates is also FB. 

1.1.6 Embedding problems: varieties 

Other kinds of critical structures we will investigate are those arising from embedding 

problems. Broadly speaking these are problems of determining when a semigroup 

or related structure from a class C1  can be embedded into a semigroup from a class 

C2. Embedding problems related to closure properties of varieties on their own may 

appear trivial: a variety is closed under the taking of subsemigroups and so clearly 

the class of semigroups embeddable in a semigroup from a variety V is simply itself. 

Associated problems however are not so trivial. For example, Theorem 1.1.2 implies 

that the NFB monoid {a, b, c}* / I (W) from [63] (see above) is WFB. This means 

there is a FB locally finite variety containing {a, b,c}* I(W), but says nothing 

about what the structure of this variety is. A natural question is to ask whether 

{a, b, c}* / I (W) can be embedded in a finite (or even just a locally finite) finitely 

based semigroup of the form X*//(V) for some alphabet X and set of words V? The 

existence of INFB finite semigroups shows that every finite semigroup is embeddable 

in a finite NFB semigroup (any finite semigroup is embeddable in the direct product 

of itself with a finite INFB semigroup) and the construction A2 X G of M. Volkov 

(above) can be used to show that every FB finite semigroup can be embedded in a 

WNFB finite semigroup [82]. By definition, every WNFB finite semigroup can be 

embedded in a FB locally finite semigroup but it is not known if locally finite can 

be replaced by finite here. 
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1.1.7 Embedding problems: other classes 

Semigroup varieties are a rich source of critical examples. However some natural 

embedding problems arise in non varietal situations. By right regular representa-

tions of semigroups, for example, it can be shown that every (finite) semigroup can 

be embedded in a (finite) regular semigroup. If we restrict ourselves to the class 

of inverse semigroups, the situation is more complicated but algorithms still exist 

which describe when a semigroup can be embedded in an inverse semigroup (see 

Corollary 11.15 in Volume II of [10] for a description due to B. Schein). However if 

we restrict ourselves further to the seemingly basic class of all Brandt semigroups 

(inverse semigroups with just one non-zero ideal) then the set of subsemigroups sud-

denly becomes very complicated. In fact this set is not recursive (Kublanovsky, see 

Theorem 1.3 of [25])! 

One of the most studied embedding problems is that concerning the embedding 

of amalgams. Roughly speaking, a semigroup amalgam 

[Si, S2, 	 S,.; 

is a collection of semigroups SI, S2, ... ,Sn  each sharing a common subsemigroup 

U. Clearly, a semigroup amalgam can be thought of as a special kind of partial 

groupoid (a set with a partially defined binary operation). In general the problem 

of determining when a partial groupoid can be embedded in a semigroup can be 

very difficult: a result of Evans (see Connection 2.2 in [39]) shows that even the 

problem of determining when a partial group (see Chapter 5 of this thesis for a 

precise definition) is embeddable in a group or finite group is undecidable. On the 

other hand, the corresponding embedding problem for group amalgams is very much 

simpler: every group amalgam is embeddable in a group (Schreier, [81]). This result 

was extended by T.E. Hall ([24]) when he showed that an inverse semigroup amal-

gam is always embeddable in an inverse semigroup. In fact a semigroup amalgam 

[S1, S2, Sn; U] is always embeddable in a semigroup if U is an inverse semigroup 
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([24], [28]). There are finite inverse semigroup amalgams which are not embeddable 

in any finite semigroup (see page 309 of [29] for an example due to C. J. Ash) and in 

fact there are semigroup amalgams which are not even "partial semigroups" in the 

sense that there are elements x, y, and z so that (xy)z and x(yz) are both defined 

but not equal (see page 139, Volume II of [10] for an example due to Kimura). 

1.2 Outline of results 

In Chapter 2 we investigate the finite basis problem for the class of discrete syntactic 

monoids of finite languages. If S is a semigroup with a subset W then we define the 

discrete syntactic congruence pw of W by (u, v) E pw if and only if for any w E W 

and p,q E S1, puq = w <=> pvq = w. Evidently pw is the largest congruence on S for 

which each element of W constitutes an entire congruence class. If W is a language 

(that is, a subset W of a free monoid X*) then 

I(W) = {w E X* : pwq W Vp,q E X*} 

is the ideal of X* consisting of all words in X* that are not subwords of a word 

in W and X*/pw  is easily seen to be the Rees quotient X*//(W). In general for 

a set of words W in an alphabet we denote the discrete syntactic monoid X*/pw 

by S(W). After many of the results of this chapter were obtained, the author 

received a preprint entitled "On the finite basis problem for syntactic monoids of 

finite languages" by 0. Sapir where some similar material had been independently 

investigated. Some of the results were then jointly refined and developed and have 

been combined in the forthcoming paper [34] (see also [80]). 

It is shown that a very large proportion of discrete syntactic monoids are NFB. 

More precisely, for any given finite alphabet X and any fixed natural number k, the 

ratio between the number of k element sets of words of maximum length n whose 

discrete syntactic monoid is NFB to the number of all k element sets of words in X 

of maximum length n tends to 1 as n tends to infinity. Thus, in a quite natural sense, 
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"almost all" discrete syntactic monoids of finite languages are NFB. Furthermore 

every word w is a subword of a word w' at most four letters longer than w such 

that S({w'}) is NFB. On the other hand it is shown that every finite set of words 

of length less than four letters has a FB discrete syntactic monoid. This is used to 

show that the smallest possible example of a NFB discrete syntactic monoid has 9 

elements; a 9 element example is presented. 

Another result emphasising the complicated nature of the identities of these 

semigroups is that for every set of words W there are finite sets of words Vi for each 

integer i > 0 so that Vo  = W, V C Vi+i and for every j > 1, S(V2j_1) is FB and 

S(V2) is NFB. These facts show that the class of FB (or NFB) discrete syntactic 

monoids of finite languages is not closed under the taking of submonoids and of 

Rees Quotients. A more difficult problem is that of finding finite FB (or NFB) 

semigroups whose direct product is NFB (or FB, respectively). Such examples 

have been constructed by M. Sapir [75] and M. Volkov [82] but all known examples 

depend on the presence of nontrivial subgroups. As noted in the introduction, an 

open problem of M. Sapir asks whether or not there exists a pair of FB aperiodic 

finite semigroups whose direct product is NFB. A solution to the dual problem of 

finding a pair of NFB aperiodic finite semigroups whose direct product is FB was 

found by 0. Sapir: both S({ababl) and S({abba, aabb}) are NFB but their product 

is FB. This result is generalised and it is found that such examples are in fact 

quite common. We also present the first example of a pair of finite FB aperiodic 

semigroups whose product is NFB, answering positively the question of M. Sapir. 

Shortly after the discovery of this example a different example was found by 0. 

Sapir. 

In Chapter 3 we investigate the class of finite INFB semigroups. This class has 

been completely described by M. Sapir in [73] and [74] (see Theorems 1.1.1 and 1.1.2 

above) but some interesting questions remain. It is shown in [74] that if S is a finite 

semigroup with only nilpotent subgroups then S is INFB if and only if 131 E V(S) 
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(here and elsewhere, V(S) denotes the variety generated by the semigroup S). We 

establish some similar results by showing that if C is one of the classes: finite 

regular semigroups; or finite semigroups whose idempotents form a subsemigroup, 

then a semigroup S E C is INFB if and only if 131 E V(S). This is despite the fact 

that there are regular semigroups containing INFB subsemig-roups that generate 

varieties not containing B. In fact a finite regular semigroup is shown to be INFB 

if and only if it contains as a subsemigroup the three element semigroup consisting 

of the two element null semigroup with adjoined identity element. A number of 

corollaries are obtained which show that while every semigroup can be embedded 

in a regular semigroup, "very few" semigroups can be embedded in a finitely based 

regular semigroup. Using existing results of Rasin [71] a further corollary of the 

above is complete description of the FB finite orthodox monoids. 

Attention is then turned to the class of minimal INFB divisors for the class of 

finite semigroups. Two constructions are presented for making small INFB finite 

semigroups whose varieties do not contain B. Combined with the semigroups 131 

and A and modulo certain group properties it is then shown that these form the 

class of minimal INFB divisors amongst finite semigroups. It is also shown that 

the smallest (element wise) INFB semigroup S for which 131 V(S) has exactly 56 

elements (all such examples are easily constructed using the given methods). 

In Chapter 4 we investigate varieties with uncountable lattices of subvarieties. A. 

N. Trahtman [92] has shown that the finite semigroup Al generates a variety with 

uncountably many subvarieties but Theorem 1.1.2 above (from [74]) shows that this 

variety is INFB so provides no locally finite examples of FB varieties with uncount-

ably many subvarieties. In order to find such examples it is shown that if xyx is an 

isoterm for a set E of identities that is closed under deletion then the variety defined 

by E has uncountably many subvarieties. In fact such a variety contains a contin-

uum of subvarieties in the sense that it contains an uncountable chain of subvarieties 

with the same ordering as that of the real numbers. These facts enable the con- 
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struction of a 7 element FB semigroup which generates a variety with uncountably 

many subvarieties. By combining the above with existing results, we then obtain a 

complete description of the varieties with uncountably many subvarieties generated 

by semigroups from the classes of finite orthodox monoids, INFB semigroups, dis-

crete syntactic monoids of (not necessarily finite) languages, or monoids with index 

more than 2. For orthodox monoids the situation is particularly interesting since 

here the properties of being FB, HFB, WFB and that of generating a variety with 

only finitely many subvarieties are all equivalent. Likewise the properties of being 

NFB, INFB and generating a variety with uncountably many (semigroup) subvari-

eties are all equivalent for these semigroups. The theorem also enables an example 

to be constructed of two finitely generated varieties, one with only 3 subvarieties 

and the other a commutative variety with a countable infinity of subvasieties, whose 

join has uncountably many subvarieties. This shows that the set of varieties with 

only countably many subvarieties is not a sublattice of the lattice of all semigroup 

varieties. Several other examples of varieties with uncountably many subvarieties 

are investigated. In particular it is shown that if both B2 (the semigroup obtained 

from 131 by removing the identity element) and the three element monoid consisting 

of the two element null semigroup with adjoined identity are contained in a variety 

then that variety has uncountably many subvarieties. This example is used to a 

second 7 element WFB semigroups that generates variety with uncountably many 

subvarieties. The final results in Chapter 4 relate the problem of finding varieties 

with uncountably subvarieties to the problem of finding varieties V with the fol-

lowing unusual property: every finitely presented semigroup in V has a decidable 

word problem but there is no single algorithm which solves the word problem in any 

finitely presented semigroup from V (that is the uniform word problem is undecidable 

for V). We show how to construct many examples of this type. 

In Chapter 5 we consider some embedding problems not directly related to the 

study of varieties and show that these are undecidable. The first problem concerns 
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Green's relations G, R., 94, D and J. These equivalence relations are some of the 

most useful constructions in semigroup theory, providing insight into the structure of 

ideals and the behaviour of subgroups with respect to other elements of a semigroup. 

There exists a well known and algorithmic characterisation of when a semigroup S 

with subset A can be embedded in a semigroup (or finite semigroup) T so that A 

lies within an L- or R.-class of T respectively (see [21], [48] or [62] for example). 

Such a subset is said to be potentially G- or potentially 7?.-related. The correspond-

ing problem for the relations 9, D and J is quite different. Every semigroup is 

embeddable in an infinite semigroup with just one D and one J class [10] however 

when restricted to the class of finite semigroups the problem becomes undecidable 

(S. Kublanovsky, see [25]) even if the subset A consists of just two elements [45]. 

Likewise, we show that for the relation 71, the corresponding problem is undecidable 

in both the class of finite semigroups (answering problem 1 of [76]) and in the class 

of all semigroups, extending related results obtained by M. V. Sapir in [76]. We also 

show that there is no algorithm that determines when given two disjoint subsets A 

and B of a finite semigroup S whether or not S is embeddable in a semigroup or 

finite semigroup T so that A lies in an G-class of T and B lies in an R.-class of T. 

An infinite semigroup with a potentially r- and potentially 7?.-related subset never 

lying in a 74-class of any embedding semigroup is known and in [76], the existence of 

a finite semigroup with this property is established. We present two eight element 

examples of such semigroups as well as other examples satisfying related properties. 

In the final section we address embedding problems concerning finite semigroup 

amalgams. The most basic question to ask of a semigroup amalgam is whether or 

not it can be embedded in a semigroup. In general for a class C of semigroups, we 

will define the strong decision problem for amalgam embeddability in C to be the 

problem of determining if an amalgam of finite semigroups from C can be embedded 

in a semigroup from C. Similarly we define the weak decision problem for amalgam 

embeddability in C to be the problem of determining when an amalgam of finite 
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semigroups can be embedded in a semigroup from C. For some important classes 

C (such as the class of all groups [81] and the class of all inverse semigroups ([28], 

[24])) every finite amalgam can be embeddable in a semigroup from C and so the 

strong decision problem for amalgam embeddability has a very simple solution. In 

general however we show that the strong decision problem (and the weak decision 

problem) for amalgam embeddability in the class of all semigroups and the class of 

finite semigroups is undecidable. Furthermore the weak decision problem for amal-

gam embeddability in the class of inverse semigroups and the class of finite inverse 

semigroups is shown to be undecidable. A semigroup amalgam can be transformed 

into a ring amalgam by using the notion of semigroup rings. Thus a corresponding 

undecidability result is also obtained for the embeddability of ring amalgams into 

rings and finite rings. 

The case of the undecidability of the decision problem for amalgam embeddability 

in the class of finite semigroups follows from a modification of the main result of 

[45]. In this paper it is shown that there is no algorithm which, when given two 

elements a and b of a finite semigroup S, determines if there is a bigger finite 

semigroup T containing S in which a divides b. Using the construction of [45] 

it is not hard to construct an amalgam which enforces the condition a divides b 

in any embedding semigroup. The proof of the result of [45] however depends 

strongly on the rigid structure of the finite 0-simple semigroups and so this cannot 

be extended to the class of all semigroups (since every semigroup is embeddable in 

an infinite 0-simple semigroup in which every pair of elements divide one another). 

A different construction is therefore required to prove the general result. Subsequent 

to obtaining the results of this section, the author was informed by M. Sapir that 

he had earlier obtained similar results using a different method involving Minsky 

machines [77]. The method used by M. Sapir for the undecidability of the decision 

problem for amalgam embeddability in the class of finite semigroups is similar to 

the one we present here. 
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We note that some of the results in this thesis have been published, accepted 

for publication, or have been submitted for publication. Specifically: the results of 

Sections 5.2 and 5.3 appear in [30]; some of the results from Chapter 2 are to appear 

in [34]; and some of the results from Chapter 4 and Section 5.4 have been submitted 

for publication ([31], [33] and [32]). 

1.3 Preliminaries: notations and definitions 

In this section we define many of the basic concepts and results to be used in 

following chapters. In much of what follows we formulate for semigroups, concepts 

that also apply in a more general setting. The first reason for this restriction is 

because semigroups are the main concern of this thesis and the second is because in 

several cases slight simplifications occur under this restriction. For further general 

information regarding varieties and equational logic, [9] is an excellent reference. For 

a survey of many results specifically regarding identities of semigroups the reader is 

referred to [82]. There are also a number of suitable books providing information 

on general theory of semigroups ([10] and [29] are two of many examples). Chapter-

specific notations and definitions may not appear in this section but will instead be 

introduced as the need arises. 

A semigroup S consists of a set S and a binary operation S x S 	 S which is 

associative. More formally the semigroup S may denoted by the pair (S, •) where • 

is a symbol corresponding to a binary operation defined on the set S. In general we 

will relax the need for this formality and take statements such as "for every s E S" 

to mean "for every s E S". An exception to this rule will be in a few definitions 

below and, especially, in Chapter 5 where it is beneficial to introduce greater rigour 

with regards to the distinction between sets and various operations defined on those 

sets. 
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1.3.1 Identities 

The free monoid and free semigroup on an alphabet X will be denoted X* and X+ 

respectively. Elements of X+ will be referred to as words and elements of X* will 

be referred to as possibly empty words. The equality relation on a free monoid will 

be denoted "" and the length of a word w will be the number of (not necessarily 

distinct) letters appearing in w (denoted lw D. Likewise, if W = {w1,... , w„} is a 

finite set of words then the length of W is the maximum of the lengths of the words 

wi, • • . wn  (denoted I WI). Many of the arguments to follow involve investigations 

into the structure of various words and for this purpose it will be convenient to 

introduce some notation. 

DEFINITION 1.3.1 (i) If x is a letter and w is a word, then occ(x,w) is the 

number of occurrences of x in w, 

(ii)c(w) = {x : occ(x,w) > 0}, that is, the content of w, 

(iii)a letter x is n-occurring in a word w if occ(x,w) = n, 

(iv)a letter x is more than n-occurring in a word w if for some natural number m 

strictly greater than n, occ(x,w) = m, 

(v)a word w is n-limited if occ(x,w) < n for all letters x. 

In the special case when a letter t is 1-occurring in a word w we will say that t 

is a linear letter in w. Several of these definitions may also be extended to finite 

sets of words. In particular, if W = {w1, , w„} is a finite set of words then 

c(W) = U:'_ic(wi) and W is said to be n-limited if w, is n-limited for every i < n. 

An identity' is a formal expression u v where u and v are words. A semigroup 

S will be said to satisfy u Pst v (written S =u v) if for every assignment, 0, of 

elements of S to the letters in c(u) U c(v), 0(u) takes the same value in S as 19(v) 

(equivalently we may say S satisfies u v where u and v are words in the alphabet 

iThe definition we give of an identity differs from the standard definition since we have restricted 

ourselves to the case of semigroups. More accurately, what we define is a semigroup identity. 
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X if for every homomorphism 9 from X+ into S, 0(u) = 0(v)). A set of identities 

will be said to be satisfied by a semigroup if every identity in the set is satisfied 

by the semigroup and a set of identities will be said to be satisfied by a class K of 

semigroups if every identity in the set is satisfied by every semigroup in K. The set 

of all identities in some fixed countably infinite alphabet satisfied by a semigroup 

S (or class of semigroups K) will be denoted by Id(S) (or Id(K) respectively). 

The notion of satisfaction may also be extended in a natural way to include sets of 

identities. If E1  and E2 are sets of identities then E1  = E2 if for every semigroup S, 

the implication s E, = s = E2 holds. 

An important kind of identity is that of the form xi xi+P. It is easily verified 

that every finite semigroup S satisfies an identity of this form and if i and p are 

chosen to be minimal then i is the index and p is the period of S. If a semigroup 

S is a group then S satisfies the identities xl+P x and xPy yxP y and p is 

also said to be the exponent of S. If for some n a semigroup S satisfies the identity 

xn xn+1  then every subgroup of S is a trivial group and S is said to be aperiodic. 

If there are no natural numbers n and m so that S satisfies xn xn+m then S is 

said to be non-periodic. 

If E is a set of identities then we will say that u 	 v can be derived from E 

(written E 	 u 	 v) if there is a sequence of words u 	 u1,u2, ...un_i, 	 v 

in an alphabet X and homomorphisms Oi : X+ 	 X+ so that for each i < n, 

ui 	 u'i0(pi)v'i  and ui+1  E- u'i0(qi)vii  for some possibly empty words 14 and v and 

some identity pi qi E E. The homomorphisms Oi  are called substitutions and the 

number n — 1 is called the length of the derivation of u v from E. By a well 

known theorem (the completeness theorem for equational logic) of G. Birkhoff [5] 

the relations and I- between sets of identities are in fact equivalent. 

The relation H enables us to formally define a basis of identities. 

DEFINITION 1.3.2 A finite set E of identities is a basis for the identities of a 

semigroup S if E is a minimal subset of Id(S) from which all of Id(S) may be 
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derived. 

The case when the set E is infinite provides more difficulties since it is possible that 

the identities of a semigroup S (with no finite basis of identities) have no irreducible 

subset from which /d(S) can be derived (see [91]). However it is also known that 

if the identities of a semigroup S have a finite basis then any infinite subset of 

I d(S) that generates I d(S) contains a finite subset that is a basis for I d(S) (the 

compactness theorem for equational logic; see Chapter II, Exercise 14.10 of [9]). 

Thus for our purposes it will suffice to use the following definition of an infinite 

basis of identities. 

DEFINITION 1.3.3 An infinite set E of identities is a basis for the identities of 

a semigroup S if E is a subset of Id(S) from which all of I d(S) may be derived and 

E contains no finite subset which is a basis for Id(S). 

As noted in the introduction, if a finite basis for the identities of a semigroup ex-

ists then the semigroup is said to be finitely based (abbreviated to FB) and otherwise 

it is said to be nonfinitely based (abbreviated to NFB). 

A set E of identities will be said to be closed under deletion if both E 1- p q 

c(p) = c(q) and E ps  (Ix, where Ps  qx  is the identity obtained by deleting every 

occurrence of some letter x from p q. We will say that an identity p q deletes to 

or can be deleted to p' 	 q' if there is a sequence of such deletions starting at p q 

and ending at p' q'. A word p deletes to a word p' if p p deletes to p' p'. 

We will often be considering the semigroup identities of monoids (semigroups with 

identity elements). If S is a monoid for which there is no word w taking the value 1 

under all possible assignments of elements of S to the letters of w (such as the word 

xn does on a group of exponent n) then the set of semigroup identities satisfied by 

S is closed under deletion since assigning the element 1 to a letter in an identity is 

effectively the same as deleting that letter. In fact a monoid S for which such a word 

w does exist is necessarily a group since S must satisfy the identities wz zw z 
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(where z c(w)) and from this the identity xiu'l z z situ' 	 z may easily be derived 

(these define the semigroup variety consisting of all groups whose exponent divides 

w ). In general we will denote the monoid obtained from a semigroup S by adjoining 

an identity element if it does not already have one by S'. 

It is well known that every set of identities in an alphabet X determines a fully 

invariant congruence on the free semigroup X+ (that is a congruence invariant under 

all homomorphisms of X+ into itself), 

DEFINITION 1.3.4 A word p E X+ is an isoterm relative to a set of identities E 

if El- - p q p q, that is, if the equivalence class of p under the fully invariant 

congruence corresponding to E is {p}. When referring to a specific semigroup S, a 

word will be said to be an isoterm for S if it is an isoterm for Id(S), the set of all 

identities satisfied by S over some fixed countably infinite alphabet. 

As will be seen later in this thesis, many properties of semigroup identities can 

determined by examining the isoterms of a semigroup. 

Several of the concepts in Definition 1.3.1 are easily extended to identities. 

DEFINITION 1.3.5 (i) A letter is n-occurring in an identity u 	 v if it is n- 

occurring in both u and v, 

(ii)an identity u 	 v is n-limited if both u and v are n-limited, 

(iii)an identity u 	 v is said to be balanced if for every letter x, occ(x,u) = 

occ(x , v) . 

1.3.2 Important classes and structural aspects of semigroups 

The variety generated by a class of semigroups K is the closure of K under the 

taking of homomorphic images, subsemigroups and direct products or equivalently 

(by a well known theorem of G. Birkhoff [5]) the class of all semigroups satisfying 

Id(K). This variety will be denoted by V(K). We may extend the notion of free 

semigroup to particular varieties of semigroups as follows: if V is a variety defined 
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by the set E of identities and 0 is the corresponding fully invariant congruence on 

a free semigroup X+ generated by X then the V-free semigroup generated by X 

is the quotient X+ 10. The subvarieties of a given variety V form a lattice under 

inclusion and because of the correspondence between fully invariant congruences on 

free semigroups and identities, the lattice of subvarieties of V is anti-isomorphic to 

the lattice of fully invariant congruences on a countably generated V-free semigroup. 

As is standard in the literature, we will call a variety generated by a finite semigroup 

a finitely generated variety and a variety whose lattice of subvarieties is finite, a small 

variety. Note that for any semigroup S we have that I d(S) = Id(V(S)) and so a 

semigroup has a finite basis of its identities if and only if the variety it generates 

can be defined by a finite set of identities'. 

While varieties are important classes of semigroups there are also many natural 

classes of semigroups that do not form semigroup varieties. Some important exam-

ples include: the class of semigroups in which for every element x there is an element 

y so that xyx = x (regular semigroups); the class of regular semigroups in which the 

product of any two idempotents is again an idempotent (orthodox semigroups); the 

class of orthodox semigroups in which idempotents commute (inverse semigroups); 

the class of regular semigroups in which every element lies in a subgroup (completely 

regular semigroups); the class of finite semigroups in which all subgroups are trivial 

(finite aperiodic semigroups); the class of all finite semigroups. All but the last 

two of these classes contain non trivial subclasses which do form varieties. Further-

more all of these classes exhibit certain "variety-like" characteristics. For example, 

several of these classes are closed under the taking of subsemigroups, the taking 

of homomorphic images and the taking of finite direct products. Such classes are 

called pseudovarieties. Furthermore the class of inverse semigroups actually forms a 

variety if the unary operation -1  is introduced (this is not a semigroup variety since 

2The reader may wish to recall the definitions of WFB, WNFB, INFB and HFB semigroups 

and varieties on page 7 of the Historical Overview. 
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there are subsemigroups of inverse semigroups that are not inverse semigroups). 

The classes just defined were mostly characterised in terms of structural proper-

ties. Some of the most important tools in investigating the structural aspects of a 

semigroup S are Green's relations defined as follows 

.Cs  = {(a,b) : 3 x,y Si  such that xa = b, yb a}, 

= {(a,b) : 3 x, y E such that ax = b, by = a}, 

Js  = {(a,b) :2 w,x,y, z E S1  such that wax = b, ybz = a}, 

= Ls A res,  

Vs LS 0  RS le 0  CS.  

When there is no confusion as to what semigroup a particular relation is being 

defined on, the superscripts of these relations will be dropped. As an example of 

the usefulness of these relations we may reformulate several of the above definitions: 

regular semigroups (or inverse semigroups) are exactly the semigroups in which every 

and every R. class contains at least one idempotent (or exactly one idempotent, 

respectively). Similarly, for finite semigroups, the condition that 1/ is the diagonal 

relational characterises the class of finite aperiodic semigroups (see [67] for a proof 

of this fact). 

For a particular semigroup S and an element a E S denote by La  (respectively 

Ra, Ha, Ja, Da) the equivalence class of (resp. R, 9-1, J, D) containing a. Two 

fundamental results associated with these relations are the following (the first is 

known as Green's Lemma; see [10] or [29]). 



{(i, s13t, v) if PA,; 0 0, 
(i, s , A)(j,t,v) = 

0 otherwise 
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LEMMA 1.3.6 (Green). Let a and b be two R equivalent elements of a semigroup 

S and let s,t E 	 be such that as = b and bt = a (s,t exist by the definition of R.). 

Then the mappings given by x 1-4 xs and y 	 yt for x E La, y E Lb are R.-class 

preserving, mutually inverse, injective mappings from La  to Lb and from Lb to La  

respectively. The dual statement for equivalent elements also holds. 

Let an element a E S be called regular if there is an x E S such that axa = a. 

LEMMA 1.3.7 (i) If a D-class D of a semigroup S contains a regular element then 

every element of D is regular and D is called a regular D-class of S. 

(ii) If a D-class D of a semigroup S is regular, then every G-class and every 'R.-class 

in D contains an 1-1-class that is a subgroup of S. 

A simple semigroup3  S is a semigroup containing no ideals other than itself (that 

is, no subsets I of S so that for every s E 5, s/ C I and Is C I) and a 0-simple semi-

group is a semigroup with a zero element 0 containing no ideals other than itself and 

{0}. Equivalently these two kinds of semigroups can be defined as those consisting 

of just one J-class and one nonzero J-class respectively. For a finite semigroup it 

can be shown that the relations D and J coincide and the simple semigroups and 

0-simple semigroups admit a particularly convenient structural characterisation. Let 

G be a group and P be aAx/ matrix whose entries 13,,, (with (A, i) E A x I) are 

either 0 or elements of G. If no row and no column of P consists entirely of zeros 

then we may define a semigroup operation on the set IxG x AU {0} by letting 

and 

(i,s, A)0 = 0= 0(i, s, A). 

3Vviile this is the usual definition of a simple semigroup it should not be confused with standard 

universal algebraic definition of a simple algebra which is an algebra with no nontrivial congruences. 



CHAPTER 1. INTRODUCTION. 	 24 

and denote the resulting semigroup by .Ae[G, I, A, 11. This semigroup is called a 

Rees matrix semigroup with zero and all finite 0-simple semigroups are isomorphic 

to a Rees matrix semigroup of some kind. If we insist that P contains no zero 

entries and remove the zero element from .A4°[G, I, A, P] we obtain an analogous 

description of the finite simple semigroups (denoted .A4[G, /, A, P]). In the infinite 

case there are simple and 0-simple semigroups that do not share this basic structure 

and in general we call those semigroups isomorphic to a Rees matrix semigroup with 

zero or a Rees matrix semigroup without zero as completely 0-simple and completely 

simple semigroups respectively. In the case where both / and A are finite it is 

often convenient to use the notation .A4 [G, n, m, P] (or M°[G, n, m, 11) to denote 

the semigroup M[G, /, A, /3] (or .Ae[G, /, A, P] respectively) where In = n and 

IA = 771' 

One of the many reasons that completely simple and completely 0-simple semi-

groups are important in the study of finite semigroups is that to some extent, the 

structure of Rees matrix semigroup determines the structure of a J (or D) class of 

a finite semigroup. Associated with every J-class J, of a semigroup S is an ideal 

= S1  sS1  of S. The principal factor of J, is the Rees quotient /s//' where /1  is a 

maximal ideal contained in I, (if it exists) and is isomorphic to either a semigroup 

with zero multiplication or a Rees matrix semigroup with a zero. If I' does not exist 

then Is  is itself a Rees matrix semigroup. 



Chapter 2 

The finite basis problem for 

discrete syntactic monoids of finite 

languages. 

In this chapter we investigate an interesting class of finite aperiodic semigroups 

(that is, semigroups with only trivial subgroups) whose identities are very sim-

ple to describe yet exhibit some complicated behavior. Recall the definition of 

the discrete syntactic monoid S(W) of a language W (see pages 8 and 10). The 

identities of semigroups with this form have been of interest since P. Perkins [63] 

showed that S({abcba, acbab, abab, aab}) is NFB. It is clear from the results in [73] 

and [74] however that for any finite set of words W, the semigroup S(W) is not 

INFB. This means that there does exist a FB, locally finite variety containing 

S ({abcba, acbab, abab, aab}) and it is therefore natural to ask whether this FB, lo-

cally finite variety can be generated by a semigroup of the form S(V) for some finite 

set of finite words V. More generally we may ask: 

QUESTION 2.0.8 (i) If W is a finite set of words, are there finite sets of words 

U, V such that S(W U V) is FB and S(W U II) is NFB? 

25 
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(ii) Conversely, do there exist finite sets of words W such that S(V) is FB (or NFB) 

whenever V D W? 

Another natural question (essentially Question 7.1 of [82]) is the following: 

QUESTION 2.0.9 For what finite sets of words W is the semigroup S(W) FB? 

A partial solution to Question 2.0.9 has been obtained by 0. Sapir in [80]: 

THEOREM 2.0.10 (0. Sapir, MOD If w is an element of {a,b}* then Sawn is 

FB if and only if w is one of the following words: alb', Van (Inbar", or bnabm for 

some n and m. 

This shows that for "most" words w in a two letter alphabet, S({w}) is NFB! In 

Section 2.5 we extend this result by showing that for any fixed finite alphabet A 

(with jAl > 1) and fixed integer k > 0, almost all k element sets of words W 

in A, have a discrete syntactic monoid that is NFB. A similar (but not identical) 

measure concerning the number of FB semigroup operations (that is, FB associative 

binary operations) definable on an n-element set has the opposite solution: almost 

all semigroups are three nilpotent and are therefore FB [41]. 

This shows that the general solution to Question 2.0.9 is likely to be very com-

plicated. Results from Sections 2.2, 2.3 and 2.4 for example show that for any 

finite set of finite words W we can find finite sets VI, V2, ... of finite words with 

W C V1  c V2  c ... such that S(V22) is FB and S(V2i_1) is NFB for each i > 0. 

Furthermore every word w is a subword of a word w' at most four letters longer than 

w so that S({w'}) is NFB. Thus we have a positive solution to Question 2.0.8 part 

(i) and consequently a negative solution to part (ii). It is also shown that there are 

finite sets of finite words U1, U2 and VI, 1/2 such that S(Ui), S(U2) are FB, S(Vi), 

S(1/2) are NFB but S(Ui  U U2) is NFB and S(Vi  U V2) is FB. 

We note that the discrete syntactic congruence is closely related to the well 

known syntactic congruence (see [67] for a precise definition) but while the syntac-

tic congruence of a subset W of a semigroup S is the largest congruence on S that 
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saturates W (that is, for which W is a union of congruence classes), the discrete 

syntactic congruence of W is only the largest congruence on S that separates the 

elements of W in the sense that each element of W constitutes an entire congruence 

class. Thus, while the syntactic monoid of an infinite language can be finite (as it is 

for the so called recognizable languages; see [67] for example) the discrete syntactic 

monoid of an infinite language is necessarily an infinite semigroup. On the other 

hand if a language W consists of a single word then, as is easily verified, the discrete 

syntactic congruence for W coincides with the syntactic congruence for W. Fur-

thermore, the syntactic monoid of a subset of a monoid S is always a homomorphic 

image of the discrete syntactic monoid of the subset. 

2.1 Preliminary definitions 

The proofs in this chapter generally involve an analysis of the structure of identities 

and consequently it is necessary to introduce some further terminology. 

DEFINITION 2.1.1 The expression ,x means the ith  occurrence of a letter x in a 

word (see [34] or [80]). 

DEFINITION 2.1.2 If c(w) = {x1, ... ,x„.} and {xi„xi... ,xim} (where m < n) 

is a subset of c(w) then w(si1,xj2,... ,xinz) is the word obtained from w by assigning 

1 to each of the letters in c(w)\-{xi„ xj,,... 

So in accordance with the definition given on page 19 we say that w deletes to  

,xi„) and if p 	 q is an identity with c(p) = c(q) = {x1, 	 ,x} then 

p 	 q deletes to 	 ,x,„,) 	 q(xi„ xj,,... ,x,,n). Since S(W) is always a 

monoid with zero element, S(W) H p 	 q implies that c(p) = c(q) and also that 

every identity that p 	 q deletes to is an identity satisfied by S(W). Because of 

this, in the arguments to follow in this chapter we will tacitly assume that all sets 

of identities are closed under deletion. 
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In this chapter we will be considering words with large numbers of linear (1- 

occurring) letters. To simplify many of the required definitions it will be convenient 

to assume the convention that the letter t (or ti  for any subscript i) always denotes 

a distinct linear letter, even if it appears to occur more than once in a word. For 

example the word x1t1x1x2x2t2t3  will be the same as x1tx1x2x2tt. We will use T to 

denote the set of all linear letters in a word and subwords between successive linear 

letters in a word will be called blocks. 

DEFINITION 2.1.3 If w is a word a1a2  ... an  (the ai  are not necessarily distinct 

letters) then [w, ti is the word a1ta2ta3t ...ant, where different occurrences oft, as 

usual, represent distinct linear letters. Likewise [t,w_l is the word ta1ta2ta3t ...an. 

DEFINITION 2.1.4 A pair of letters (x, y) in an identity p q is called stable if 

p(x,y) q(x,y). If (x, y) is not stable in p q we will say it is unstable in this 

identity. A pair of letters is stable in a word w with respect to a semigroup S if 

S w v implies (x,y) is stable in w v. 

Note that if (x, y) is unstable in an identity p q is and only if (y, x) is unstable in 

p q. Naturally, if every pair of letters is stable in an identity then that identity is 

a tautology (trivial identity). We can define a similar notion of stability for pairs of 

the form (ix y). 

DEFINITION 2.1.5 A pair (ix,i y) is stable in an identity u Psi v if the order of 

appearance of the ith  occurrence of x and the ith  occurrence of y is the same in both 

u and v. If (ix,;y) is not stable in u 	 v then we will say it is unstable in this 

identity. An unstable pair (ix,; y) is a critical pair for u 	 v if it is unstable in 

u v and (ix)(iy) is a subword of u. 

The identities of discrete syntactic monoids of finite languages are easy to inves-

tigate because they are described entirely in terms of isoterms: if w is a subword of 

a word in W then w is an isoterm for the identities of S(W). There may however be 
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many isoterms for a monoid S(W) that are not subwords of the set W. For example 

xx, xxy and yxx are all isoterms for S = S({abb, aab}) since they are equivalent, 

up to a change in names of letters to the words bb, abb and aab, all of which are 

words or subwords of words in the set {abb, aab} . However xyx is also an isoterm 

for S since if S satisfies an identity xyx w for some word w then because xx is an 

isoterm for S and xyx is 2-limited, occ(x, w) = 2 and occ(y, w) = 1. Since xxy and 

yxx are both isoterms for S, w must be xyx. 

2.2 FB discrete syntactic monoids of finite lan-

guages 

In this section we find finite bases for the discrete syntactic monoid of some sets of 

words. The first we consider is the set, Wn, of all n-limited words in the alphabet 

{a,b}. 

Let Ar, denote closure under deletion of letters of the system of two identities: 

n+1 f
x
n 	

X 	 LiXt2Xt3X...tnX 	 Xntit2.-trj• 

THEOREM 2.2.1 For each n> 0, S(W) is FB. 

Proof: Let an identity u v be called n-simple if the identity obtained form u v 

by deleting all more than n-occurring letters is a tautology. We show that /d(S(Wn)) 

is exactly the set of all n-simple identities. Let S(W) =p q. If a letter x is less 

than (n+ 1)-occurring in p then we necessarily have occ(x , p) = occ(x , q) since in this 

case p(x) is an isoterm for S(W) (because Wn  contains a copy of p(x)). Let (x, y) be 

a pair of less than (n + 1)-occurring letters in p. Then p(x y) is an n-limited word in 

two letters. Since there is a copy of all such words in Wn, p(x , y) must be an isoterm 

for S(W). Therefore p(x , y) q(x, y), and so (x, y) is a stable pair. Therefore 

the identity obtained from p q by deleting all more than n-occurring letters is a 
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tautology, that is p q is n-simple. Conversely if p q is an n-simple identity then 

since Wn  is a set of n-limited words, S(W) must satisfy p q because in order that 

p and q do not take the value 0 in S(W) the element 1 must be assigned to every 

more than n-occurring letter. But then p Pe,  q is reduced to a tautology. 

Now we show that An+1  is a basis for the identities of S(W). Firstly S( W) H 

An+1 since An+1  consists of n-simple identities. If p 	 q is a nontrivial n-simple 

identity then we may repeatedly apply t1xt2xt3x...tnxtn±1x 	 xn+Itit2...tn+I  (or an 

identity obtained from this by deleting some linear letters) to every more than n-

occurring letter in p until we have a word with an initial segment consisting entirely 

of more than n-occurring letters and with the remaining portion being n-limited. 

We may then use this identity (or an identity obtained from this by deleting some 

linear letters) again to rearrange the more than n-occurring letters in the initial 

segment into some alphabetical ordering. Applications of xn+2  xn+1  can then 

be applied to reduce the number of occurrences of these letters to n 1. Call the 

resulting word p'. We can do the same for the word q and derive q q'. Since p q 

is n-simple, we have p' q' and therefore An+1  1- p q. 

Several simple corollaries follow. 

COROLLARY 2.2.2 Let S be a monoid satisfying An+1  for some n > 0. Then the 

identities An+1  are a finite basis for Id(S x S(W)). 

COROLLARY 2.2.3 If every word in Wn  is an isoterm for the identities of a 

monoid S and s An+1 then S satisfies the same identities as S(W) and therefore 

is FB. 

COROLLARY 2.2.4 Let S be a semigroup (or finite semigroup) satisfying the set 

of identities An  for some n. Then S is a subsemigroup of a FB semigroup (or a FB, 

finite semigroup respectively). 

A semigroup is said to be k-nilpotent if the product of any k elements is 0 and 

a monoid is said to be k-nilpotent if it is a k-nilpotent semigroup with adjoined 
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identity element. It is clear that if S is a (finite) k-nilpotent monoid then S satisfies 

the conditions of Corollary 2.2.4, with 12 = k and so is a subsemigroup of a finitely 

based (finite) semigroup. However the direct product of S with S(Wk) is not a 

nilpotent semigroup (it has identity element (1,1) but (1,0) is also an idempotent). 

An alternative construction is as follows. Since S and S(Wk) are nilpotent monoids, 

S = S \ {1} and -g(Wk) = S(Wk)\{1} are nilpotent semigroups. Now consider the 

semigroup t on the set 

(S \ {0}) u (S(Wk)\{0}) u {0} 

with multiplication within the subsets S and 3(Wk) unchanged and all other prod- 
ucts equaling zero (this construction is called the 0-direct join of S with S(Wk)). 
Finally let T be the semigroup T with adjoined identity element. It is clear that 

T contains both S and S(Wk) as submonoids and that T is a (2k + 1)-nilpotent 

monoid (since the longest word in Wk is 2k letters long). Finally Corollary 2.2.3 

shows that T is FB. Thus we have shown the following 

COROLLARY 2.2.5 The pseudovariety generated by the class of finite, FB, nilpo-

tent monoids (that is, the closure of this class under taking subsemigroups, homo-

morphic images and finite direct products) contains all finite nilpotent monoids and 

finite nilpotent semigroups. 

The next result uses the fact that the words in Wri  are capable of "dominating" 

smaller collections of words. 

COROLLARY 2.2.6 If W is a finite set of words then there is a set of words 

W' D W involving no more than !c(W) 1 letters such that S(W') is finitely based. 

Proof: If W is a finite set of words in one letter, then S(W) is commutative and 

therefore already finitely based (see [63]). Assume then that c(W) contains two 

letters a and b. Let n be the maximal number of times a letter appears in words in 
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W and take W' to be the union of W and 144,.. Then any word in Wn  is an isoterm 

for S(W') and S(W') satisfies A. By Corollary 2.2.3, S(W') is FB. 

We now examine the bases of identities of "small" sets of words. 

PROPOSITION 2.2.7 Let W be a set of words whose length is at most three. Then 

S (W) is FB. 

Proof: We will essentially use a case by case analysis. First note that if u is a subword 

of a word v then S({v}) is equationally equivalent to S({u, v}). Furthermore, if w is 

the word v written in a different alphabet, then S({u, w}) is equationally equivalent 

to S({u, v}). Finally note that the word xyz is an isoterm for the S(W) whenever 

the word xy is. This means that if W is a set of words of length at most three 

and W contains a word in three different letters, say abc, then the discrete syntactic 

monoid of the set W' obtained from W be replacing abc with ab is satisfies the same 

identities as S(W). Thus we have (up to isomorphism and anti-isomorphism) only 

the following sets of words to consider: 

{a}, lab}, {aa}, {ab, aa} , {aaa} , 

{ab, aaa}, faabl , {aab, aaa}, fabah {aba, aa} , 

{aba, aaa} , {aba, aab} , {aab, baa}, {aba,aab,baa}, 

{aab, baa, aaa} , {atm, aab, aaa} , {atm, aab,baa, aaa} 

In [70] it is shown that any variety satisfying the identity xyx xxy (or xyx yxx) 

is FB. The discrete syntactic monoid of the first eight of the above cases satisfy this 

identity and so are FB. The last nine cases need special attention and are addressed 

in the following two lemmas. 

LEMMA 2.2.8 Let S1  be Saaban, S2 be S({aba,aa}) and S3 be S({aba,aaa}). 

Then a (finite) basis for Si  is the closure under deletion of letters of the set 
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ftiXt2X 	 Pe,  Xj+itit2...ti, xj+1  r-Ze,  x1+2  ,xyy 	 yyx, 

xuyvxy xuyvyx,xuyxvy xuxyvy,xyusvy, 	 yxuxvyl. 

Proof: Let p 	 q be satisfied by Si. It is obvious that xyx is an isoterm for Si  

so the identity obtained by deleting all but linear letters from p 	 q is a tautol- 

ogy. Furthermore if p (or q) deletes to xyx then so does q (or p). The identity 

t1xt2x ti+ix xi+lt1t2...t1 may be used to move all variables occurring three or 

more times in p or q to one side of the word, say the left. All that remains other 

than these occur one or two times. Let x be a 2-occurring letter in p (or q) such that 

p (or q) cannot be deleted to xtx for some linear letter t. The last three identities 

(or identities obtained from these by deleting variables) in the above set can be used 

to move the two occurrences of x closer together. Eventually we obtain the subword 

xx and then the identity xxy yxx may be used to move this subword to the far 

left also. By repeating this for all such letters we obtain an identity p pi  where 

Pi w1w2 and w2  contains exactly all linear letters and all 2-occurring letters x for 

which p deletes to xtx for some linear letter t. The same process performed on the 

word q gives a similar identity q q1  where qi  v1v2  and, since xyx is an isoterm 

for S1, c(v2) = c(w2). All letters in w1  (or vi) are 2-occurring in w1  (or vi) and can 

be rearranged freely using the identities x'+1  xj+2, t1xt2x ti+1X x2+ltit2...ti, 

and yxx xxy. Thus we can assume that w1  v1. It remains to show that we can 

derive w2  V2. 

Assume therefore that both p and q are 2-limited words and for every 2-occurring 

letter x we can delete p (and therefore q) to xtx for some linear letter t. So if (ix,;  y) is 

a critical occurrence pair in p q then x and y must be 2-occurring letters. Therefore 

without loss of generality p q deletes to one of the following: xytyzx yxtyzx, 

xytyx yxtxy, xytxzy yxtxzy, xytxy xytyx, or xtxyzy xtyxzy where t is 

a linear letter and z is either linear or the empty word. In every case one of the 
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identities 

{xuyvxy Paa xuyvyx, xuyxvy xuxyvy, xyuxvy yxuxvy} 

can be applied to one of p to obtain an identity p' q where the number of unstable 

occurrence pairs (ix y) is smaller than that of p q. Since there are only finitely 

many such pairs we eventually obtain a derivation of p q as required. 

LEMMA 2.2.9 The closure under deletion of letters of the set 

4 
{tiXt2Xt3X 	 X3t1t2t3, X3  

xuyvxy xuyvyx , xuyxvy xuxyvy, xyuxvy yxuxvy} 

is a (finite) basis for the identities of 

S({aba,aab}), S({aab,baa}) and S({aba,aab,baa}). 

Likewise, the closure under deletion of letters of set 

{tiXt2Xt3X 	 X3tit2t3, X4  Pe. X
5 

xuyvxy xuyvyx,suysvy ,cze, xuxyvy,xyuxvy, 	 yxuxvy} 

is a (finite) basis for the identities of 

S ({aba , aab, aaa}), S ({aab,baa, aaa}) and S ({aba, aab,baa, aaa}). 

After noting that xx, xyx, xxy and yxx are all isoterms for all of the semigroups 

in this lemma and that xxx is an isoterm for the last three semigroups, this lemma 

can be proved in an almost identical way to Lemma 2.2.8. 	 0 

The proof of Proposition 2.2.7 now follows. 	 0 

PROPOSITION 2.2.10 If S(W) has less than 10 elements then S(W) is FB as 

long as W is not equivalent to {abal)} up to a change of letter names. 
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Proof: If S(W) is NFB, Proposition 2.2.7 implies that W must contain a word with 

at least four letters. It is easily verified that a word, w, of length at least four and 

involving three distinct letters has at least 8 distinct subwords and so Sat* has 

at least 10 elements. Now the only words w of length at least four and involving 

at most two distinct letters for which S({w}) has less than 10 elements contain 

a subword equivalent up to a change in the names of letters to one of the words 

aaaa, aaab, baaa and abab. The word aaaa has only 4 distinct subwords. In [70] 

it is shown that if a semigroup satisfies xyx xxy or xyx yxx then it is FB. 

If xxxx is an isoterm then in order that S(W) not satisfy one of these identities, 

either xyx or both xyy and yyx must also be isoterms for S(W). Thus W contains 

a word with a subword of the form uvu (where uvu uuv and uvu vuu) or W 

contains words with subwords of the form uuv and v'u'u' (where uuv uvu and 

v'u'u' u'v'u'). It then easily follows that S(W) has more than 9 elements; the 

smallest possibility being S({aaaa, abal) with 10 elements. However S({aaaa, aba}) 

and S({aaaa, aab,baa}) have at least 10 elements. The words aaab and baaa each 

have exactly 8 distinct subwords. Therefore a set of words W containing one of 

these words, say aaab, and such that S(W) has at most 10 elements must be the 

set W = laaabl. The proposition now follows since the semigroups S({aaab}) and 

S({baaa}) are F B b y T he ore m 2. 0. 1 0. 0 

Note that it follows from Theorem 2.0.10 above that S({abab}) is NFB (see also 

Example 2.3.4 below). 

We now turn our attention to one last example of a finitely based semigroup of 

the form S(W). This example will become relevant in Section 2.6.1. 

PROPOSITION 2.2.11 The closure under deletion of letters of the set 

E = {tixt2xt3x 	 x3t1t2t3, x2 	 x3, xxt 	 txx, xt1xyt2y 	 xtoxt2Y} 

is a finite basis for the identities of S 	 S({abcab,abcba}). 
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Proof: We first show that every word w can be transformed by E to a word of 

the form x?...x2riu where u is a 2-limited word not containing any of the letters 

xl, x21•••1xn  and such that for every 2-occurring letter x there is a linear letter t so 

that u deletes to xtx (this is similar to the process we used in Proposition 2.2.8). 

Let such a word be called a reduced word for S. 

Firstly, if x occurs more than 3 times in the word u then we may apply the 

identity t1xt2xt3x x3tit2t3  to move all occurrences of it to the left. By applying 

x3  x2  we can then reduce the number of occurrences of x to 2. Thus for any word 

w, E w w' where w' is 2-limited. 

Now say that x is 2-occurring in a 2-limited word w and that there is no linear 

letter t in w for which w(x, t) xtx. So w AxBxC for some words A, B and 

C where every letter in B is 2-occurring in w. If B is empty then we may apply 

txx Pe, xxt to move x to the left as required. If B is not empty then w is equivalent to 

a word of the form AxD(2y)ExC where D contains only first occurrences of letters 

2-occurring in w (this includes the situation where E is empty and x is y). We 

may then move y leftward out of B using repeated applications of one or both of 

xt1xyt2y xt1yxt2y and xxt txx. 

The length of B is reduced by this procedure and therefore by repeating these 

steps a word in which xx is a subword is eventually obtained. Both occurrences of 

the letter x can now be moved to the far left hand end of the word using the identity 

xxt Pe, txx. Since this can be done for all 2-occurring letters x in w such that w does 

not delete to xtx for some t, we have shown (for some n) that E u) x2nu 

where u is a reduced word for S. So if w v is an identity satisfied by S then we 

may use E to derive w x?...x2nui  and v x?...x2nu2  where both u1  and u2  are 

reduced. Since u1  and u2  do not contain x, for i < n, S must satisfy the identity 

ui 	 U2. 

In order to complete the proof we will show how E can be applied to reduce 

the number of unstable occurrence pairs (ix,, y) in an identity u 	 v where u and 
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v are reduced words for S. Let u v be such an identity of S. Now assume that 

u 	 v contains a critical pair of the form (2x,1  y) or (1x,2  y) then by applying the 

identity xtixyt2y 	 xtlyxt2y to the word u we obtain an identity u' v in which 

the number of unstable occurrence pairs is less than that of u v. If u v contains 

a critical pair of the form (1x,1  y) then without loss of generality we may assume 

that u E AxyBsCyD or AxyByCxD for some words A, B, C, D. Since u is a 

reduced word for S, B must contain a linear letter, t. But then we can assign a to 

x, b to y, c to t and 1 to all other letters and u takes the value abcba or abcab, both 

of which are isoterms for S ({abcba, abcab}). This contradicts the assumption that 

(1x,1  y) was a critical pair and therefore such critical pairs do not exist in u v. 

The case for critical pairs of the form (2x,2  y) follows by the symmetry of the set 

{abcba, abcab} 

Similarly we can show that there are no critical pairs of the form (1x, t), (2x, t), 

(t,1  x), or (t,2  x) (t is a linear letter as usual) since there is a linear letter between 

every 2-occurring letter in u v and xtx is an isoterm. Thus for every such 

(nontrivial) identity of S, say u v, we may always apply the identity {xtixyt2y 

xtlyxt2y} to obtain an identity u' v with the property that u' v has fewer 

unstable pairs of the form (ix y). Since there can be only finitely many such pairs 

in the identity u v, by repeating this process we eventually obtain an identity 

with no such pairs. This is necessarily a trivial identity and so a derivation of u v 

has been obtained. Therefore E is a finite basis for S({abcba, abcab}). 0 

2.3 NFB discrete syntactic monoids of finite 

languages: background results 

In this section we prove a number of nonfinite basis theorems for monoids. There 

will be very little interpretation or application of the results in this section; instead 

this will take place in Section 2.4 and Section 2.6. To begin we require some simple 
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results concerning isoterms. 

LEMMA 2.3.1 Let S be a monoid such that xy is an isoterm of S. Let u be an 

isoterm of S containing a linear letter ti. Then 

(i)(0. Sapir 1.80.1) erasing a prefix (suffix) of a block in u gives a new isoterm for S 

and 

(ii)the word v obtained by adding a linear letter t2  immediately to the left (or right) 

of the occurrence of ti  in u is also an isoterm for S. 

Proof: (ii) Let v be as in the statement of the lemma. If v 	 w is a nontrivial 

identity satisfied by S then since u is an isoterm for S, any unstable pair in v w 

must include the letter t2  and not the letter t1  (note that if (t1, t2) was unstable then 

S would satisfy t1t2  t2t1  which is not the case). Let (x, t2) be such a pair. The 

word obtained from v by deleting t1  is equivalent to u up to a change of letter names 

and therefore is an isoterm. This contradicts the fact that (x, t2) is an unstable pair 

in v w. Thus no such w exists and v is an isoterm for S. 

DEFINITION 2.3.2 Let X = {xi, x2, . .} . Then [Xn] and [nX] denote the words 

X1X2...xn and xnx,i_i  ...xi  respectively and [X(2n)] denotes the word 

X2X4 • . X2riX1X3 • • X2n_1• 

We can now state and prove the first of our NFB results. 

LEMMA 2.3.3 Let M be an infinite set of natural numbers. If xyxy is an isoterm 

for a monoid S and for every n E M, the word Ln  [X(2n)]t[X (2n)] is not an 

isoterm for S, then S is NFB. 

Proof: Given that xyxy (and consequently xytxy) is an isoterm for the monoid S it 

follows that if (xi, xi) is an unstable pair in any identity Ln 	 w satisfied by S then 

either i is even, j is odd and j < i or j is even, i is odd and i < j. Furthermore in 
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this case the identity Ln(xi, xj, t) 	 w(xi, xj, t) is equivalent up to a change of letter 

names to the identity xytyx yxtxy. We now show that if LT, w is a nontrivial 

identity of S, then w [X(2n)]t[X(2n)]. 

Let (xi, xj) be an unstable pair in a nontrivial identity L,„ 	 w satisfied by S. It 

is convenient to denote the word to the left of t in LT, by B1  and the word to the 

right of t in LT, by B2. Since xyx is an isoterm for S, (xi, t) is stable in LT, w for 

any i < 2n and so there are corresponding blocks B and B in w either side of the 

linear letter t that are permutations of the corresponding blocks B1  and B2 in L. 

Without loss of generality, we may assume that xi  precedes xi  in B1  and xi  precedes 

xi  in B. As noted above we have that i is odd, j is even and i <j and therefore 

since xytxy is an isoterm for S we can conclude that w(xi, xj, t) E xixitxixi. Now i 

is odd and so we have that Ln(xl, xi, t) xixitxixi, an isoterm for S or i = 1. If i is 

not 1 it follows that x1  precedes xi in B and in B and also that x1  precedes xi  in 

(because xi does). As noted at the start of the proof, the pair (x, x2) is stable 

in L, w and so x2n  occurs after xi and therefore after x1  in B2' . That is, (x1, x2n) 

is an unstable pair in L, w. If x1  precedes x2n  in B/1  (as it does in B1), then 

w(xl, x2n, t) is the word x1x2ntx1x2n, an isoterm for S and so contradicting the fact 

that (xi, x2n) was an unstable pair. So we must have x1  occurring after x2n  in B. 

Since for any odd number j', (x1, xi,) is stable in Ln  w, we must have xi, occurs 

after x2n  in B. Likewise for any even number i', xi, precedes x2n  and therefore x1  

in B. These facts ensure that B is the word [X(2n)]. It now easily follows that 

in B2', x1  precedes x2, x2  precedes x3  and so on, so that B2  is the word [X(2n)]. so 

w [X(2n)]t[X(2n)]. 

We now show by contradiction that if E is a basis for the identities of S then for 

every nontrivial identity Ln w satisfied by S, E contains an identity with at least 

2n letters. Since S satisfies such an identity for infinitely many n, this implies that E 

is infinite. If LT, is not an isoterm for S then we showed above that there is just one 

word w such that s H w. We will denote this word by R. So any derivation 
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of Ln 	 R, involves just one step. Therefore there is an identity p q eE such 

that Ln  U161(p)U2 and 	 U10(q)U2  (indeed it is clear from the form of L. 

that was established above that U1  and U2 can be taken to be empty). Say p q 

involve fewer than 2n distinct letters. The word [X(2n)] involves 2n distinct letters 

and so there must be a letter x in c(p) such that, for some i < 2n — 1, xixi+i  is a 

subword of 0(x). This subword occurs just once in Lin  and w so x must be linear in 

p and q. Similarly there is a variable y such that 0(y) contains a subword of [X(2n)] 

whose length is at least 2, and y is linear in p and q. However the subword 0(x) 

occurs before 0(y) in L, and after 0(y) in R. Therefore p(x , y) 	 q(x , y) is the 

identity xy yx, contradicting the fact that xyxy is an isoterm for S. Hence p q 

must contain at least 2n distinct letters as required. Therefore S is NFB. 	 0 

EXAMPLE 2.3.4 Consider S({abab}). The word xytxy is an isoterm for S({abab}). 

On the other hand it is easily verified that 

S({abab}) 	 [X (2n)]t[X (2n)] 	 [X (2n)]t[X (2n)] 

since for any unstable pair (zi,z2) in this identity, the left hand side deletes to 

z1z2z2z1  and the right hand side deletes to z2z1z1z2. Therefore by Lemma 2.3.3, 

S({ababl) is NFB. 

All our results that are based on this lemma can be proved using a similar lemma 

in [80]. We have included Lemma 2.3.3 for the sake of completeness and because it 

uses a quite different set of identities. 

The following two lemmas will be useful in Section 2.6. 

LEMMA 2.3.5 Let A, B be elements of {xyt,yxt} and p be a substitution defined 

by p(xyt) FE [XY[X72]1  ti P(YXt)  [nX]yx,tj. Let u1, u2, v1, and v2  be elements of 

{xy,yx} such that u1u2  is not xyxy and v1v2  is not xyyx. 

(a) If for some m> 1, AxmymtB, and AxytxytB are isoterms for a monoid S and 
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for every n > 0, 

S =p(A)xyxr x'2n 	 41,3  xyt p(B) p(A)uixr xr2n  .. . x7, u2t P(B), 

then S is NFB. 

(b) If for some m> 1, AxmymtB and AxytyxtB are isoterms for a monoid S and 

for every n, 

S = p(A)xyxrxi2n ...x7yxtp(B) p(A)v1xrxr2n ...x7v2tp(B), 

then S is NFB. 

Proof: We will only prove part (a) since the proof of (b) is almost identical. Let Ln. 

be the word 

p(A)xyx7inx"12  ...x7xytp(B) 

and R„, be the word 

p(A)ttixmen .xmu tp(B). 1 	 2 • • 	 n 	 2 

Let L, w be a nontrivial identity satisfied by S. By both parts of Lemma 2.3.1, for 

any non-linear letter z, Ln(z, .r) is an isoterm (recall that T is the set of linear letters 

in Ln; see page 28). Therefore w differs from Lin  only by permutations within blocks. 

Since there is only one block of length more than one, the only differences between 

L„ and w are to be found in this block. We will refer to this block as the central 

block of L„ and w. Since AxmymtB is an isoterm, Lemma 2.3.1 part (ii) implies 

that Ln(xi, x3, -r) is an isoterm. Thus it must be the case that Ln(xi, , x, -r) is 

an isoterm. Now AxmyrntB is an isoterm for S and so by Lemma 2.3.1 part (i), 

AxmyytB and AxxymtB are isoterms for S. So for any letter x, E {x1,... ,x}, the 

central block of w(x, x2, 7) cannot be of the form xxx7in or x7xx. In particular this 

is true for i = 1 and i = n. Likewise for any xi E {x1,... ,xn} the central block 

of w(y, xi, 7) cannot be of the form yyx71  or xTyy. Thus the central block of w is 

of the form ux1x727e3n x7T ix,v, where u is a permutation of xyxr-1  and v is a 

permutation of x7T-1xy. 
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Now we examine possible derivations of Ln 	 Rn  from the identities of S. In 

any derivation of L 	 R we have a sequence of identities I 	 12, 12 	 13, • • • 

Ih such that /1 	 Ln, Ik -a,-  lin  and for each i there is an identity pi 

and a substitution Oi such that /i 	 u0i(pi)v and /i+i 	 uei(qi)v for some words 

u, v. Let h smallest number such that Ih(x,y) Ih+1(x,Y)  (this exists since by 

the choice of u1  and u2, Ln(x, Y) # Rn(x, Y))• Both Ik and /h+i  are of the form 

of w as described above. Consider ph qh. Clearly O(ph)  contains an occurrence 

of x and an occurrence of y in the central block of Ih  (since these occur in some 

different order in /h+1). Therefore 19(ph) contains both occurrences of at least one of 

x and both occurrences of y since otherwise the identity 0(ph)(x,y) 0(qh)(x,y) is 

the identity xy yx, contradicting the fact that xy is an isoterm for S. Since the 

central block of both Ih and /h+i  contain n + 2 distinct letters, if ph contains less 

than n letters, there must be a letter z in c(ph) such that O(z) contains xixi+1  for 

some j. This subword occurs just once in Ih and /h+1  so z is linear in pi. Similarly 

there are letters x' and y' such that Oi(x') contains x and 9i(y') contains y. Consider 

ph(x' , y' , z , 7) qh(x' , y', z , 7). By the choice of Ih  and /h+i, the pair (x', y') is 

unstable in this identity. Now if z is a linear letter, AxyzxytB and all subwords 

of this word are isoterms. Define a new substitution 0' by defining 0'(x') E x, 

O'(yt) y, O'(z) z and assigning the remaining linear letters in ph(x1,y/,z,r) to 

subwords of AxyzxytB between corresponding occurrences of O'(x'), 9/(y') and 9'(z'). 

That (x', y') is an unstable pair in ph(x',y' , z, 7) qh(x' , y', z, 7) now contradicts the 

fact that AxyzxytB is an isoterm. Thus ph must contain more than n letters. Since 

S satisfies 

p(A)xyx7inxr2n 	 x7Txytp(B);.-. p(A)uixrx7 	 fu2tp(B) 

for every n > 0, any basis for Id(S) must be infinite since for every n > 0 it contains 

an identity with more than n letters. 	 0 
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EXAMPLE 2.3.6 Consider S({abcab,abcba,akbk}) for some k > 2. Some isoterms 

for this semigroup are xytsyt, xytyxt and xkykt. On the other hand it is easy to 

verify that S({abcab,abcba,akbkl) satisfies xyx11...xnkxy xy4...xyx. Therefore 

by either part of Lemma 2.3.5, S({abcab,abcba,akbk}) is NFB. 

LEMMA 2.3.7 Let A, B be elements of {xyt,yxt}*. Say AxyxytB and AyxxytB 

are isoterms for a monoid S and for every n> 0, the word o-(A)xx[nX][Xn]to-(B) 

is hot an isoterm for S, where cr is a substitution defined by cr(xyt) a [x[Xn],t_l 

and o-(yxt)a,  [[n.X]x,t_l. Then S is NFB. 

Proof: The proof will be similar to that of the previous three lemmas. Fix some 

number n and let L„ be the word o-(A)xx[nX][Xn]to-(B). As in the proof of the 

previous lemma, Lemma 2.3.1 shows that for any nonlinear letter y in c(Ln), L(y, 7) 

is an isoterm. Thus if L„ w is a nontrivial identity satisfied by S then w differs 

from L„ only by a permutation within blocks. The word xx[nX][Xn] forms a block 

in L, which we will refer to as the central block B1. Since B1  is the only block 

in Ln  with length more than one, there is a block B2 in w corresponding to the 

central block of L„ which is a permutation of xx[nX][Xn]. Since AyxxytB is an 

isoterm, L7i(xi, xj, 7) is an isoterm for every i, j < n. Thus the central block is an 

interleaving of xx and [nX][Xn]. Because AyxxytB is an isoterm for S, the two 

occurrences of x in B2 cannot lie between the two occurrences of any letter xi since 

in that case w(x, xi, 7) would be an isoterm yet (x, x) an unstable pair in L„ w. 

Furthermore, for every i < n, the central block cannot delete to xxixxi  since then 

w(x, x„ 7) is an isoterm and w(x,x„7) # Ln(x, x2,7). Thus w is either the word 

o-(A)[nX]Cxto-(B), 

where C is a interleaving of x and [Xn], or the word 

o-(A)x[nX][Xn]xto-(B). 
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Now we show that if E is a set of identities with fewer than n distinct letters 

then E F- Lin 	 w only if S 	 E. Thus any basis for S is infinite. 

Let E be such a set of identities and let A' and B' be the words A(x,7) and 

B(x, 7) respectively. Since AyxxytB is an isoterm, Lemma 2.3.1 implies that 

AIXXiBi  (a--  (xt)oc xxt(xt)occ(x,B)) 

and 

A'xtB' 

are isoterms. Lemma 2.3.1 part (ii) implies that A'xxztB' and A'xztB' are also 

isoterms if z is a linear letter. Likewise with A" and B" taken to be A(y, 7) and 

B(y, 7) respectively it follows that A"yxxytB" is an isoterm for S. By assigning 

z the value xx in this word, similar arguments show that A"yzytB" must be an 

isoterm as well. Note that up to a change in the names of letters, A'xzxtB' is the 

word as A"yzytB". Since E L, 'Iv there is an identity p q E E and a substi-

tution 0 such that L„ u0(p)v and u0(q)v is of one of the two forms derived above 

for w. Given the restricted nature of these two forms, 0(p) must contain the word 

xx[n.X][Xn]. Now E contains only identities involving less than n letters so the 

substitution 0 must assign some letter z in c(p) a value containing as a subword the 

word xixi+1. Since this subword occurs just once in L„, z is linear in p. Furthermore 

there must be a letter x' such that 0(x') E x and (x', z) is an unstable pair in p q. 

In either case we have that the identity p(x' , z, 7) q(x' , z 7) is not satisfied by S 

because (x', z) is an unstable pair in this identity and we can delete some linear let-

ters so that after renaming the letter x' as x, the word p(x' , z, 7) becomes a subword 

of one of the words A'xxztE, A'xztB' or A'xzxtE. Thus S is NFB. 

EXAMPLE 2.3.8 It is easily verified using Lemma 2.3.7 that S({abab,abba}) is 

NFB. 
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As mentioned (Theorem 2.0.10 above) a complete description of the finite basis 

property for the discrete syntactic monoids of single words in a two letter alphabet 

has been obtained by 0. Sapir (see [80]). It turns out that the results so far obtained 

in this section are primarily applicable to collections of words in a two letter alphabet 

or in which at most two letters occur more than once. In order to address the Finite 

Basis Problem for more general words and sets of words it is necessary to obtain 

more generalised results. 

First consider the following elementary lemma. 

LEMMA 2.3.9 Let w be an isoterm for a monoid S containing at least two distinct 

letters and X be a subset of c(w). If we replace all maximal subwords of w not 

containing a member of X by linear letters, then the resulting word is also an isoterm 

for S. 

DEFINITION 2.3.10 If w is a word containing the letters a and b then let Cy be 

the word obtained from w by replacing all maximal subwords of w not containing the 

letters a or b by linear letters and replacing all subwords of the form ab by words 

of the form asb, where's is a linear letter. For example, the word abcddbbcbababd 

would become abt1bbt2bababt3  and then as1bt1bbt2bas2bas3bt3. 

LEMMA 2.3.11 Let w be a word containing at least two letters a, b. If w is an 

isoterm for a monoid S then so is fn. 

Proof: Of course (a, b) is a stable pair in ib . Now let 7 be the set of linear letters 

replacing maximal subwords of w not containing a or b and v be the set of linear 

letters introduced when replacing ab by asb. As with t, we will exclude subscripts of 

the letter s, although different occurrences of this letter will always denote distinct 

linear letters. By Lemma 2.3.9, the pairs (a, t) and (b, t) are stable in 6) with respect 

to S if t is from 7. Because w contains at least two letters it must contain a subword 

of the form xy and therefore xy is an isoterm for the monoid S. Thus if t1  and t2 
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are linear letters then the pair (t1, t2) is stable in fv with respect to S. It remains to 

show that (a, s) and (b, s) are stable pairs in 71) if s is a linear letter from v. 

The pair (a, .$) is stable in fo because we can regain w by assigning a to a, 1 

to b, maximal subwords of the form bk to corresponding linear letters s from v and 

the remaining subwords of w can be assigned to corresponding linear letters from T. 

The pair (b, s) is stable in ib because we can assign b to b, 1 to a, maximal subwords 

of the form a/c  to corresponding linear letters s and the remaining subwords of w to 

corresponding linear letters from T. Therefore 'di is an isoterm for S. 

We now obtain a "general" theorem concerning the nonfinite basis properties of 

monoids (the vague notion of being "general" will become more precise in Section 

2.5). The proof is a modified and generalised version of that used by 0. Sapir to 

prove Theorem 2.0.10. 

THEOREM 2.3.12 Let 

w wia ai bi31 w2a0,2pb/32w3  

be a word such that a and b are letters, p, wi, w2  and w3  are possibly empty subwords 

and al, /31, a2  and 132 are non zero and maximal. If both w and xytyx are isoterms 

for a monoid S and for every n E IV the word 

'an 	 tii1a [Xn]b13'-ifb2aa2t[nX]tb13211)3  

is not an isoterm for S, then S is NFB. 

Proof: As usual we will take the alphabet X to be the set {x1, x2, ... }. Let uri 	 v7, 

be a nontrivial identity satisfied by S. We will show that within /d(S), identities 

involving arbitrarily large numbers of distinct letters are required to derive un  vn  

for every n. Thus no finite basis for S can exist, since such a basis would necessarily 

involve identities with a bounded number of letters. We may assume that n > 6. 

Let E be a set of identities that contain less than n — 6 distinct letters and 

let un  a--  pi 	 p2 	 E 'Uri  be a derivation of un 	 yr, from E (we may 
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assume that pi  0 p2). So there is an identity u v and words A and B such that 

Pi A0(u)B and p2  AO(v)B for some substitution 0. Replace the word u by 

the word t1ut2  and v by the word t1vt2  where ti  and t2  are new linear letters and 

extend 0 by letting e9(t1)E.: A and 0(t2) E B. So we have a derivation of un  vn 

from E U {tiut2  tivt2} involving at most 72 - 4 letters such that pi  E 0(tiut2) and 

232  0 0(tivt2). For the sake of simplicity, we will write simply u in place of t1ut2  and 

v in place of t1vt2. 

Now let u' be the smallest subword of u such that 0(u) contains [Xn] and u" be 

the smallest subword of u such that 0(u") contains [nX]. Let t be the first letter in u'. 

By the choice of u', 0(t) must contain xi, the first letter of [Xn]. If 0(t) also contains 

the letter to the left of x1  (in this case the letter a) then t must be linear in un, since 

axi  occurs just once in un. In this case, say where 0(0 z1x1z2  for some words 

zi  and z2  (with zi  not empty), we can replace the letter t in u and v by the word 

t3t4  where 0(t3) z1  and 0(t4) x1z2. Thus we can find a derivation of un  v. 

involving less than n — 3 letters and such that [Xn] is an initial segment of 0(u') 

(where u' is the smallest subword of u such that 0(u') contains [X721). Performing 

the same procedure for the end of [Xn] and the start and end of [nX], we can find 

a derivation of un  vr, involving less than n letters and such that un  0. pi  0 0(u), 

232  0 0(v) and the smallest subword of u whose image under 0 contains [Xn] is 

assigned by 0 the value [Xn] and likewise for [nX]. We will continue with the 

convention that u' and v' are the smallest subwords of u so that O(u') [Xn] and 

19(v1) 	 [nX]. 

Since every letter in the set X occurs exactly twice in un  or not at all, the letters 

occurring in u' and v' do not occur elsewhere in the word u. So because un  -0 pi.7--  P2 

is a nontrivial identity, the word 

I E iviacqu'b131-171)2aa2tv'tb132ib3  

is not an isoterm since we can easily apply the identity u 	 v to it. Our goal is 

to show that this contradicts the claim that w is an isoterm, thereby showing that 
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SE. 

Firstly, since xy is an isoterm for S, any pair linear letters (ti, t2) is .a stable 

pair in I with respect to S. Secondly since xytyx is an isoterm for S, [Xn]t[nX] 

is an isoterm for S and therefore by the choice of u' and v', the word u'tv' is also 

an isoterm for S. Because u v involves fewer than n distinct letters but [Xn] 

and [nX] each have n distinct letters, both u' and v' must contain letters t1  and t2  

respectively such that for some i < n — 1, both 0(t1) and 0(t2) contain the letters 

xi  and x2+1. However every subword of [Xn]t[nX] with length more than 1 occurs 

just once in un. Therefore the letters t1  and t2  must be linear in I. That is, both u' 

and v' contain a linear letter. Now if 

w wo o,' bOi w2act2pbt32w3  

is an isoterm for S then 

E tbiaa1tbi3' 271-, ac,213b02 71,3  

is an isoterm for S by Lemma 2.3.11. (Here for the sake of simplicity we are assuming 

that p contains at least one subword of the form ab or a letter other than a or b so 

that /3 contains a linear letter. The only other case is when p is of the form Vak  for 

some j, k > 0 and then we can replace /3 in the above word by tbi akt tpt without 

effecting the arguments to follow.) By Lemma 2.3.1 part (i) the words 

Cul  aal tb13t -17.D2a"273&32713  

and 

11E-  ibia'Itba1 2a"2t1Y827.703  

are also isoterms for S. Therefore the pairs (a, b), (a, t), (b, t) are stable in I with 

respect to S. If both u' and v' consist entirely of linear letters then I would be just 

the word /1  with some extra linear letters placed next to existing linear letters in 

and therefore an isoterm by Lemma 2.3.1 part (ii), a contradiction. So let us 
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assume there is a letter z that is 2-occurring in u'v' (all nonlinear letters in u'v' are 

2-occurring). To obtain the desired contradiction, it only remains to show that all 

linear letters t in I (not just ones that appear in u'tv') and the letters a and b form 

stable pairs with every non linear letter z, from u'v'. 

Let z be a 2-occurring letter in u'v'. For some linear letter t, I can be deleted to 

ztz, an isoterm for S. If (z, s) is not stable in / for some linear letter s, then S must 

satisfy an identity I J with /(s, z) J(s, z) being the identity zzs szz (since 

zsz is an isoterm). But then /(z, s, t) 	 J(z, s, t) is the identity ztzs sztz and so 

/(s, J(s,t) is the identity st ts. This identity is not satisfied by S since xy is 

an isoterm for S. Thus for any linear letter t in I, (z,t) is stable in I with respect 

to S. 

Now there is at least one linear letter in both u' and v' (say ti  and t3  respectively) 

and at least one linear letter t2, say, between u' and v' in I. Since there exists a 

substitution 0 such that 0(u') a-  [Xn] and 0(21 E [nX], we can choose t1  and t3  

such that u't2vi deletes to a word of the form zt1t2t3z or t1zt2zt3. Thus / can be 

deleted to either 

ac̀l ztibth tb2aa2t2t3zt4b132t-b3  

Or 

	

u.771 	 t1z1i31. -1114)2  a"2  t2zt3t4b132  

Now (b, z) is stable in the first of these words since for any linear letter t, (b, t) and 

(z, t) are stable pairs in I and there is a linear letter t between every occurrence of b 

and an occurrence of z. Likewise, (a, z) is a stable pair in the second of these words. 

The following assignment shows that (a, z) is also a stable pair in the first of 

the words: a a, b 1, z b, ti  t 2  —> p, t3  -4 1, t4  b132-1, and the 

remaining linear letters are assigned the corresponding unassigned (by the above) 

subwords of w. This gives the first word a value that is a subword of w and therefore 

an isoterm. 
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The following assignment shows that (b, z) is also a stable pair in the second 

of the words: a -* 1, b 	 b, z -÷ a, t1 	 ac"-1, t2  -÷ aa2-1  (or bacr2-1  if w2, and 

thereforetb2, is empty), t3  p, t4  —> 1, and the remaining linear letters are assigned 

the corresponding unassigned (by the above) subwords of w. This gives the second 

word a value that is a subword of w and therefore an isoterm. 

Since every pair of letters from c(/) is stable in I with respect to S it must be 

an isoterm for S. We have reached the desired contradiction and thus no finite basis 

can exist for the identities satisfied by S. 

Note that the proof of Theorem 2.3.12 holds equally well if we replace the word 

apb in the statement of the theorem with bpa along with the requirement that 73 

contains a linear letter or equivalently, that p contains either the subword ab or a 

letter other than a and b (we then require that for every n, 

Cul  a"1  [X 77]1,131-1  th2b152  t[n X]t a'2  t-v3  

is not an isoterm). The proof also holds (after making the obvious adjustments) if 

the order of appearance of the two subwords ab and apb (or bpa) is reversed in the 

word w. 

We now introduce a further definition in the style of Definition 2.3.10. 

DEFINITION 2.3.13 If w is a word then let zô be the word obtained from w by 

replacing every maximal sub word not containing the letter a by a linear letter. 

For example if w E abcbabb then it) E at1at2. 

Another "general" theorem is the following. 

THEOREM 2.3.14 (a) Let w w1tt1au2w2u2au1w3 be a word where a is a letter, 

u1  and u2  are non empty subwords and w1, w2  and w3  are possibly empty subwords. 

If w is an isoterm for a monoid S and for every n the word 

rn  E 	 ti  [Xniat2i1)2t3[nX1047:153 
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is not an isoterm, then S is NFB. 

(b) Let w 	 w1u1au2w2u1au2w3  be a word where a is a letter, u1  and u2  are non 

empty subwords and w1, w2  and w3  are possibly empty subwords. If w is an isoterm 

for a monoid S and for every n the word 

gn ibit1[X2n]at27.-1)2t3a[X2n]t47:6 

is not an isoterm, then S is NFB. 

Proof: (a) By Lemma 2.3.9 and Lemma 2.3.1 part (ii), ib1t1at21b2t3at471,3  is an 

isoterm for S. Therefore for any linear letter t, (a, t) is stable in rn  with respect to 

S. By assigning u1  to x, a to y and u2w2u2  to t in the word xytyx we obtain the 

word u1au2w2u2au1, an isoterm for S. Thus xytyx and consequently [Xn]t[nX] are 

isoterms for S. This combined with the fact that t1t2  is an isoterm shows that for 

any linear letter t, (x1, t) is a stable pair in rn  with respect to S. Therefore if rn  

is a nontrivial identity satisfied by S, then the only unstable pairs in 7', 	 rr, are of 

the form (xi, a). 

Now by the choice of u1  and u2, we also have that 

1xat1ti32t2axib3  

and 

ibiagt1Z.152i2yaib3 

are isoterms for S. So if for some i, (xi, a) is unstable in rn 	 r' then (xi, a) is 

unstable in rn 	 rn' for all i and 

r7,1(a, xi, 7) -a W1axit1i62t2ax1W3. 

Thus r' must be the word 

Wita[Xn]tib2ta[nX]tii)3. 
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Therefore any basis for /d(S) must contain an identity p q with rn  E A0(p)B and 

A0(q)B for some words A and B and a substitution 0. Since the only unstable 

pairs in rn  rim  are of the form (xi, a), we may assume that 0(p) contains both [Xn] 

and [nX]. Now [Xn] and [nX] each contain n distinct letters and any subword of 

these with length more than one occurs just once in rn. So if p q involves fewer 

than n letters then 0 must assign a linear letter, t1, in p to some subword of [Xn] 

and a linear letter t2  to some subword of [nXJ. Thus (by possibly deleting some 

letters in c(p)) we find that S must satisfy the identity 

fn= tD1t1t5at2i152t3at6t4zi)3 	 W1t1at5t2tC52t3t6ateb3  a Tin. 

However this is not possible because of the following assignment: a —> a, t5 	 ui, 

t6  -4 1 and all other (linear) letters are assigned maximal unassigned portions of 

w. This assignment takes the word fn  to the word w but assigns fni  the value 

w1du1u2w2u2au1w3, therefore contradicting the claim that w was an isoterm. So the 

identity p q must contain at least n letters. Since rn  is not an isoterm for every 

n, any basis for S must contain infinitely many identities. 

Proof: (b) As in part (a), the word ib1t1at27:62t3at4i.O3  is an isoterm for S and for 

any linear letter t, the pair (a, t) is stable in gn  with respect to S. Now say that 

(xi, xi) is unstable in gn  with respect to S. So (xi, xi) is unstable in gn(xl,... xn) 

with respect to S. Since xytxy is an isoterm for S (because the word ula(u2w2)ula is 

a subword of w), Lemma 2.3.3 implies that S [X(2n)]t[X(2n)] [X(2n)]t[X(2n)] 

and any basis for the identities of S contains an identity with at least n distinct 

letters. Now assume that (xi, x3) is a stable pair in a nontrivial identity gn  

satisfied by S. So for some i, (a, xi) must be unstable in gn  gni . By the choice of 

u1  and u2  the words 

W1t1xiat2ii)2t3xiat4i153  

and 

t1t1axit212t3axit4i63 
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are isoterms. Thus gni (a, xi, 7-) must be the word 1tax1tz2tx1attà3. Therefore since 

(x, x) are stable in gn  g7, for all i, the pair (x3, a) must be unstable for all j and 

gn(a, xi, T) E tilitiaXjt2TD2t3Xjat421)3. 

So g7,' is the word W1tia[X2n]t2ii32t3[X2n]041.453. 

Therefore if E is a basis for the identities of S then there is an identity p q E E 

so that 

gn  E AO(p)B, g17., E:- AO(q)B 

for some words A and B and a substitution O. If the identity p q contained fewer 

than n letters then there must be letters z, z1  and z2  in p so that 0(z) contains a, 

0(zi) contains xixi+i  and 0(z2) contains x23x23+2 for some i, j. Evidently z1  and z2  

are linear in p q and both (zi, z) and (z2, z) are unstable in p q. However if we 

rename z as a, then both p and q are easily seen to be equivalent to a subword of 

the isoterm 

zD1t1at2ii;2t3at4tD3  

with possibly some extra linear letters introduced next to existing linear letters. 

Thus a contradiction has been obtained and therefore no such identity p q can 

exist. Therefore the basis E must contain identities with arbitrarily large numbers 

of letters and is therefore infinite. 

2.4 NFB discrete syntactic monoids of finite 

languages 

We now have all the information required to address the question as to what is the 

smallest semigroup S(W) which is NFB. Combining Example 2.3.4 with Propositions 

2.2.7 and 2.2.10 we immediately have the following theorem. 
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THEOREM 2.4.1 (i) For any set of words {wi,w2,...,w7,} with the length of each 

wi strictly less than 4, S({tvi,...,wn}) is FB. 

(ii) If W is a set of words so that S(W) has less than 10 elements then S(W) is 

NFB if and only if S(W) S({abab}). 

We note in comparison that the smallest NFB semigroup has 6 elements (take 131 

for example). 

Using Theorem 2.0.10 and other results in [34], [80] and above it is easy to extend 

Theorem 2.4.1. 

THEOREM 2.4.2 (i) For any set of words W = {wi,w2,...,w7,} with the length of 

each wi strictly less than 5, S({wi,...,wn}) is FB if and only if W either contains 

words of each of the forms abab, abba and aabb or W does not contain a word of 

either of the forms abab and abba. 

(ii) If W is a set of words so that S(W) has less than 11 elements then S(W) is 

NFB if and only if either W contains a word of the form abab or abba. 

Proof: (i) From Theorem 2.4.1 we need only consider sets of words of length 4. A 

word of length 4 that contains three distinct letters is equivalent up to a change in 

the names of letters to one of the words abca, abac, aabc, or baac or reverse. Each 

of these words can be replaced in W by perhaps several words of length at most 3 

without changing the identities of S(W). For example one can replace baac in W 

with the two words baa and aac (giving a new language W') since both baa and aac 

are isoterms for S(W) and baac is an isoterm for S(W'). Therefore we need only 

consider the case when W contains a word equivalent up to a change of letter names 

to one of the words abab, abba and aabb. If W contains a word of the form aabb 

and not abab or abba then by a result in [80], S(W) is FB. If it contains words of all 

three forms then it is easy to verify that W contains subwords equivalent up to a 

change in letter names to every 2-limited word in a two letter alphabet and therefore 

S(W) satisfies the same identities as 8(W2) and is FB by Corollary 2.2.3. Finally 



CHAPTER 2. DISCRETE SYNTACTIC MONOIDS AND IDENTITIES. 	 55 

we consider the case when W contains words equivalent to at least one of the words 

abab and abba but not all three of abab, abba and aabb. Let W' be the subset of W 

containing only words of length at most 3. The cases to consider (up to a change of 

letter names) are W1  = {abab} U W', W2 = {abba} U W', W3 = {abab,aabb} U WI, 

W4 = {abba, aabb} U W', and 14/5  = {abab, abba} U W'. It is easily verified that the 

arguments used in Examples 2.3.8 and 2.3.4 can also be used to show that S(Wi), 

S(W3), 8(W5) are NFB. Finally consider 8(14/2) and 8(W4). In [80] it is shown that 

if S is a monoid for which xytyx is an isoterm and for every natural number n, S 

satisfies the identity x[Xn]tx[nX] [Xn]xt[nX]x then S is NFB. Using arguments 

similar to that in Example 2.3.4 it follows that both S(W2) and S(W4) satisfy the 

conditions of this result and therefore are NFB. 

Proof: (ii) Given Propositions 2.2.7 and 2.2.10 we need only consider the case when 

S(W) has 10 elements and W contains a word of length 4. As in the proof of 

Proposition 2.2.10 it is easily verified that every word of length 4 involving 3 distinct 

letters has at least 9 distinct subwords and so has a discrete syntactic monoid of at 

least 11 elements. Thus we need only consider the case when W contains a word 

in a two letter alphabet that is of length 4 or more. By symmetry it suffices to 

consider when W contains a word with a subword equivalent to one of the following 

words: aaab aaba, abba, aaaa abab. The first word has exactly 7 distinct subwords 

and therefore generates a discrete syntactic monoid with 9 elements. Any word w 

containing this as a subword must have at least 2 more subwords: w itself and at 

least one new subword of length 4 or less. In this case Sawn has more than 10 

elements. Likewise for any set of words V, S ({aaab} U V) has either more than 10 

elements or V contains only- one word v that is not a subword of aaab and v is a 

single letter. In this case S({aaab} U V) satisfies the same identities as S({aaab}) 

and is therefore also FB. The second and third words above have a discrete syntactic 

monoid with exactly 10 elements and are consistent with the theorem we are proving 

since S({aabal) is FB by Theorem 2.0.10 and, as mentioned above, S ({abba}) is 
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NFB. 

Now S({abab}) has 9 elements. Therefore if W contains abab and S(W) has 

fewer than 11 elements then either W = fababl or W = {abab, c} for some letter c 

distinct from a and b. In both cases S(W) satisfies the same identities as S({ababl) 

and so is NFB. Finally if W contains a word with aaaa as a subword then using the 

arguments of Proposition 2.2.10 we find that W must contain a word of the form aba. 

If the subword of the form aba involves two letters distinct from the subword of the 

form aaaa then it follows that if S(W) has more than 10 elements. The remaining 

case is when the subword of the form aba shares a letter with the subword of the 

form aaaa. In this case either S(W) has more than 10 elements or is equivalent 

up to a change in letter names to {aaaa, aba} or {aaaa, bab}, which are FB from a 

result in [80] (an obvious extension of Proposition 2.2.8 can also be applied). The 

theorem is proved. 

We will shortly apply Theorems 2.3.12 and 2.3.14 to some longer words but first 

it is convenient to introduce a new definition and some associated results. 

If w is a word and a is a letter in c(w) then we may write w as 

wiani  w2an2w3 wmanm wm+i 

where for every i < m + 1, ni is a positive integer, w1  and w,i+i  are possibly empty 

words, w2, w3, 	 , win  are words and a is not contained in wi. We may then define 

the occurrence vector of a in w to be the m-tuple V(a) = (ni, n2, 	 , nm). Clearly 

En ni = occ(a,w). If we replace the condition that a is a single letter occurring 

in w with the condition that a is a subword of w then we obtain a notion of an 

occurrence vector for arbitrary subwords of w. The notation V(v) is no longer well 

defined however since a given subword of w may have several distinct occurrence 

vectors. For example the word w aaaaa (where a is a letter) can be written as 

(aa)2a or (aa)a(aa) or a(aa)2  and so there are two distinct occurrence vectors for aa 

in w: they are (2) and (1,1). Our primary concern will be with occurrence vectors 

of letters in words and for our purposes it will suffice to assume that when v is a 
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subword of w then V(v) to be any one particular occurrence vector of v in w. 

DEFINITION 2.4.3 An occurrence vector 

v1= (n1, n2, • • 	 np) 

contains an occurrence vector 

V2 = (772.1 , 7712 	 777,q) 

if there is a substitution 0 : X* --+ X* with 0(a) E a (for some fixed letter a) such 

that the word 

an' t an2  t2 	 t_ 1a 

(where the ti are letters) contains as a subword the word 

In this case we will write v1  > v2. 

For example, take v1  and v2  as in the definition and let h1, h2,... , hq  be a subse-

quence of n1, n2, 	 , np  such that mi  < hi. Consider the word 

W E an1tian2t2 	 tp_ianP. 

Since h1, h2,... , hq  is a subsequence of n1, n2, 	 , np, the word w must be of the 

form woahl wiah2 w2  ahqwq  for some words w1, w2, 	 , wq_i  and some possibly 

empty words wo  and wq. Now let 0 be the substitution defined by 0(a) 	 a and 

0(tz) -a--  ah'-m=wi. Evidently 

0(amitiam2t2 	 ahi wiah2 w2 	 a  qwq,  

a subword of w and so by Definition 2.4.3, the occurrence vector v1  contains the 

occurrence vector v2. Also if 9 is a substitution that assigns 1 to all linear letters 

of the form ti  in the word w1  E an' tian2t2 	 tp_ianP and assigns a to itself then 
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0 ( V 1 ) 	 an where n = 	 ni. Therefore the singleton occurrence vector (n i) 

contains the vector v1  for any non-negative integer i. An occurrence vector of a 

subword u in a word w is said to be maximal in w if for every subword v of w, 

V(v) > V(u) = u v. Likewise if W is a set of words containing w then V(u) 

is maximal in W if for every subword v of a word w' E W, Vi(v) > (u 

✓and w' w). Possibly the simplest way in which an occurrence vector V(a) of 

a letter a in a word w can be maximal in a set of words W is if a occurs more 

times in w than any other letter and the remaining words in W are (occ(a , w) — 1)- 

limited (recall Definition 1.3.1). Another simple situation is if there is a power 

of a in w that is higher than the power of any other subword of a word in W. 

On the other hand, there need not be a maximal occurrence vector amongst the 

set of all occurrence vectors of a word (for example in the word aabbcc, we have 

V(a) = V(b) = V(c) = (2) and all other occurrence vectors are the singleton (1)). 

The importance of maximal occurrence vectors lies in the following simple lemma. 

LEMMA 2.4.4 Let w1  and w2  be words with u a subword of wi  and v a subword 

of w2. Let 0 be a substitution. If (for some occurrence vectors V1(u) and V2(v) 

of u in w1  and of v in w2  respectively) V1(u) = V2(v) and V2(v) is a maximal 

occurrence vector in a set W of words containing w2  then 0(wi) is a subword of a 

word in W only if 0(u) a-  1 or both 0(u) # v and 0(wi) is a subword of w2. 

Proof: This is because if 0(u) # 1 then occurrence vector of 0(u) in 0(w1) contains 

the occurrence vector V, (u) which equals V„ (v). Since V2(v) is maximal in W 

then 49(w1) cannot be a subword of any word in W except for the word w2  and in 

this case 0(u) # v. 

THEOREM 2.4.5 Let W be a set of words and w E W be a word containing the 

letters a and b such that V(a) is maximal in W (the set W may of course be simply 

{w} itself). Let 01  and 02 be any positive numbers and p be any (possibly empty) 
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word not containing a or b. If w satisfies one of the following conditions (or their 

reverse) then S(W) is NFB (in each case we will assume that the given subwords of 

w are not contained within each other though they may overlap): 

(i)w has a subword abr3la and a subword apbb132 a; 

(ii)w has a subword abb131 a and a ,§ubword apbI32a; 

(iii)w has subwords of the form aba, apba and ba; 

(iv)w contains aba and ends with apba. For example, w ends with ababa; 

(v)w has a subword of the form abbb131 a and of the form apb. For example abbbab 

is a subword of w; 

(vi)w has a subword aba and a subword apbaa and V(a) is the only occurrence 

vector of a letter in a word in W that contains the occurrence vector V„,(a), where 

WI is obtained by replacing the particular occurrence of apbaa by apaba. 

Proof: In every case we will construct a set of identities fun 	 vn} based on the 

form of w and apply Theorem 2.3.12. Both the sides of the identities constructed 

will contain the letter a and in all except the last case the occurrence vectors of a in 

these words will be identical to that of w. Since V(a) is maximal in W, by Lemma 

2.4.4, if 0 is a substitution then 0(u„) or 0(vn) is a subword of a word in W only if 

0(a) 1 or 0(a) -a-: a. Furthermore, if 0(a)E 'I a then 0(u) (or 0(v)) is a subword of 

the word w. The identities un  vn  will also be constructed so that if 0(a) a-  1 then 

O(u) 0(vn). Therefore in the arguments to follow in this proof it will be sufficient 

to consider the case when W = {w} and 0(a) a. 

First note that in every case in the theorem, w contains a subword of the form ab 

and another of the form ba (not intersecting). This is all that is required to establish 

that xytyx is an isoterm for S({w}). 

We now consider each case of the theorem separately. Each of the cases involves 

a word w with some given subwords but the arguments we will use involving w will 

not depend on the order of appearance of the given subwords in w. Therefore for 

each case of the theorem we will only consider a particular choice for the order of 
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appearance of the given subwords in w. 

(i)Let w wi(ia)b1aw2(ja)p682baw3, where ia and ja, as usual, denote the ith 

and t h  occurrences of a in w respectively. 

Claim: Sawn = u vn  where 

i(ia)[Xn]b1-laii;2(ja)t[nX]tb132bati53  

and 

vn 	 evi(ja)[Xn]b131'aio2(ja)t[nXitb132abie3. 

Let 0 be a substitution such that 0(un) (or 0(v„)) is a subword of w. Between Ja 

and (3+1)a in w there is the word br32b. So 0(t[nX]tbfi2b) (or 0(t[nX]tV2)) must be 

the word NA. Now if 0 assigns b the value 1, then O(u) 	 0(vn) because (a, b) is 

the only unstable pair in un 	 vn. The remaining case is when 0(b) is the letter b 

and we will show that this never occurs (0(b) cannot be a higher power of b since 

otherwise we would have more than occ(b,w) occurrences of b). 

If we are considering un  then 0(b) E b implies 0(t[Xn]t) 	 1 and then the 

subword of un  between ia and (i±oa is simply b131-1. Between ia and (,+i)a in w 

however, there is the word bal and this contradicts the assumption that 9(un) was a 

subword of w since 0(1/31-1) cannot be bth if 0(b) E b. If we are considering vn  then 

this implies 0(t[nX]t) b. If 0([nX1) 1 then the previous argument applies. If 

0(xk) 	 b for some k, then occ(b, (vn)) > occ(b, w) since xk  is 2-occurring in vn. 

(ii)Let w 	 wi(ja)bb11aw2(ja)032aw3. 

Claim: S({w}) = un  vn  where 

n 	 (ict)[Xn]ba'a 2(j a)t[nX]tb)32a io 3  

and 

vn 	 iv-  iGaYX721blii-labio2(ia)t[nXjtOaii)3. 

Let 0 be a substitution such that O(u) is a subword of w. Between za and (i+na in 

w we have the word b1+1. So 0([Xn]b13.1) b1+1. Now 0(b) cannot be bk for any k 
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greater than 1 since then occ(b, (un)) > occ(b, w). If (b) 	 b, then we must have 

0(xk) 	 b for some k. But then occ(b,0(un)) > occ(b,w) since xk is 2-occurring in 

u„, again contradicting the choice of 0. Thus 0(b) a 1, and therefore 0(un) 0(v). 

Now let 0(v) be a subword of w. As in the last case just considered, 0([X74131-1) 

must be the word be'. If b'61-' is empty then for some k, 0(xk) must be the word 

b (since /31  = 1). But then 0(t[nX]t1/32) pbf32  since this is the word between ja 

and u+na in w. Because p does not contain b and 0(xk) E b, 0(tb132) must be V2-1.. 

Thus 0(b) a 1 and 9(v„) 0(un). 

(iii)Let w a wi(ja)baw2(ia)pbaw3bat754  

Claim: S({w}) = un  vn  where 

Un  E 7.7.)1(ia)[Xn]aib2(ja)t[nX]tbaib3tbaiv-  4 

and 

vn  ibi(ja)[Xn]aiv2at[nX]tbaib3tabw4. 

Between ja and (i+1)a in w there is a single letter b. Thus 0([Xn]) a b. So there is 

an xk  such that 0(x2) a- b. Between Ja and (;+i)a in w is the word pb. Therefore 

0(t[nX]tb)a-_- pb. Since 0(xk) b, we must have that 0(b) -a 1 and 0(un) 0(vn). 

(iv)Let w 	 wi(ta)baw2(ja)pba. 

Claim: Sawn un  v„ where 

	

un 	 ivi(ja)[Xn]az72(ja)t[nX]tba 

and 

un 	 ibi(ia)[X*712(ja)t[nX]tab. 

Let 0 be such that 0(u„) or O(v) is a subword of w. As in previous cases we may 

deduce from the subword (ia)[XnJa of both un  and vn  that 0(xk) E b for some 

k. So 0([Xn]) is the letter b. But then from the subword (ja)t[nX]tba in un  and 

(a)t[nXitab in vn  we may deduce that 0(b) 1 and therefore O(u) 0(vn). 
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(v)Let w wi(ia)bbbthaw2(ja)pbw3. 

Claim: Sawn un  Pe, vn, where 

un  a ibi(ia)[Xn]b)3'bat7v2at[nX]tbt-v3  

and 

vn 	 fb i(ia)[X n]bfii abib2at[nX]tbiv3. 

Between ia and (i+na in w we have the word bbhPl. Between (ia) and ((i+i)a) in 

un  and v,,, we have [X n]b°11:4 and [X n]bth respectively. Therefore if 9 is a substi-

tution such that 9(un) or O(v) is a subword of w, then 0 ([X 7-]b131b) or 0 ([X 71]&31) 

respectively must be the word bbbf31. In both cases if we do not have 0(b) 1, then 

occ(b, (u)) (or occ(b, (vn))) is greater than occ(b, w) since for all xk E c([X721), xk 

is 2-occurring in un  and vn. Thus 9(b) a 1 and O(u) 8(vn). 

(vi)For example, w wi(1a)baw2(ia)pbaaw3. 

Claim: Sawn un  vn  where 

tbi(ja)[Xn]afb 2(ja)t[nX]tbaaiv3  

and 

vna--  ti) (ia)[X n]aib2(.;  a)* X]tabaib3. 

The extra condition required for this part is due to the fact that the occurrence 

vector of a in vn  is no longer identical to that of a in w. Once given this condition 

however we are still able to make the assumptions indicated at the start of this proof. 

The extra condition is still held in many commonly occurring cases: for example if 

a occurs more times in w than any other letter. 

If there is a substitution 0 such that O(v) is a subword of w then 0(b) 	 1 since 

there is no nontrivial subword between (3+0a and (+2)a in w yet in vn  the word b 

appears in this position. In this case 0(u) 	 0 (v). For the case where 9(un) is a 

subword of w, we may apply the arguments used in part (iv). 	 0 

Theorem 2.4.5 by no means captures all possible applications of Theorem 2.3.12. 
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For example in the word w E (ba) where n > 2, the vector 17(a) is not maximal 

(since 14„(a) = Vw(b)). Yet for every n > 2, S({(ba)n}) still satisfies the identity 

un  (bta) 3babt[Xn]ta[nX]a (bta)n-3bbat[Xn]ta[nXia E vn  since if 0 is an 

assignment that does not assign a the value 1 and 0(un) is a subword of w then 

either 0(a) a a, 0(a) a b or 0(a) = (ba) (these are the only subwords of w that 

occur as many times as the letter a does in 'an). If 0(a) E ba then clearly 0(b) 1 

and O(u) 9(v). If 0(a) E b then the first occurrence of a in un  must be assigned 

the first occurrence of b in w. The first letter to appear in un  is b and yet there is 

no letter left of the first occurrence of b in w. Therefore 0(b) 1 and O(un) 0(vn). 

The remaining case is when 0(a) a and then the proof becomes effectively the same 

as that of Theorem 2.4.5 part (iv). A similar argument applies when considering vn. 

We have proved that the following is true. 

EXAMPLE 2.4.6 If n > 2 then S({(ba)n}) is NFB. 

Of course this also follows immediately from Theorem 2.0.10. 

The arguments just used did not depend on the fact that (ba)n contained only 

two distinct letters, only on the fact that to the left of the first occurrence of b 

there was no proper subword occurring at least n — 1 times (that is, the number of 

times that the letter b occurs in the identities used for Example 2.4.6). Thus we can 

deduce the following theorem. 

THEOREM 2.4.7 Let w be a word which has exactly two maximally occurring 

letters a and b with the first occurrence of b occurring in w before the first occurrence 

of a and with the property that every letter left of the first occurrence of b occurs 

fewer than occ(a,w) — 1 times. If w satisfies one of the conditions (i) to (vi) of 

Theorem 2.4.5 and the subwords described in the relevant part of Theorem 2.4.5 do 

not involve the first occurrence of a and of b in w then S({w}) is NFB. 

DEFINITION 2.4.8 An occurrence vector V(u) of a subword u in a word w is 

said to be super maximal if the deletion of any one particular occurrence of u in w 
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gives a new word v with the property that for any subword u' of w, 14,(u) < V„(u') 

only if u' a u. Likewise V(u) is super maximal in a set of words containing w if 

for every subword u' of a word w' E W, 14/(u) < V„,(u') only if u u' and w E w'. 

Clearly in this definition Vv(u) can be obtained by subtracting the number 1 from 

one of the entries of V(u) and deleting any zero entries from the resulting vector. 

A simple example of a super maximal occurrence vector is the occurrence vector of 

a letter in a word that has at least two extra occurrences in the word than any other 

letter. 

We may now extend Lemma 2.4.4 as follows (the proof is similar to that of 

Lemma 2.4.4). 

LEMMA 2.4.9 Let W be a set of words, w E W be a word and u be a subword 

of w for which 14,(u) is super maximal in W. If the occurrence vector V„,(u') of a 

subword u' in a second word w' (not necessarily in W) can be obtained by subtracting 

the number 1 from one of the entries of V(u) and deleting any zero entries from 

the resulting sequence then for any substitution 0, 0(w') is a subword of a word in 

W only if 0(u') E 1 or both 0(w') is a subword of w and 0(u') u. 

THEOREM 2.4.10 Let W be a set of words and w E W be a word containing a 

letter a and a letter b such that V(a) is super-maximal in W (the set W may of 

course be simply {w} itself). Let p be any (possibly empty) word not containing the 

letter a and al, a2, 131  and 132  be arbitrary positive integers. If w satisfies one of the 

following conditions or their reverse then S(W) is NFB (in a similar way to before, 

we will assume that unless otherwise stated the given subwords may overlap but may 

not be contained within one another): 

(i)apb131aaaa1b is a subword of w and V(a) is the only occurrence vector of a 

subword in W that contains the occurrence vector of the letter a in the word obtained 

from w by replacing the given occurrence of apbth aaaalb by apVi-  abaalb; 

(ii)baelb, apb and ba are subwords of w and the occurrence of ba in w does not 
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overlap with that of baaalb. For example baababa, abaabba or baabbab is a subword 

of w; 

(iii) apbbf31aaa1b is a subword of w, where a is maximal. For example abbaab is a 

subword of w; 

bi31 ack 1 b132 aa2pb is a subword of w, /31  > 132  and p does not contain b. For example, 

bbabab is a subword of w. 

Proof: The proof of this theorem is similar to that of Theorem 2.4.5 except that the 

identities un  vn  we construct in this case have only occ(a, w) — 1 occurrences of 

a (instead of occ(a, w) occurrences). It is for this reason that we require V(a) to 

be super maximal so that by Lemma 2.4.9 if 0 is a substitution such that 0(un) (or 

0(vn)) is a subword of a word in W, then either both 0(a) a and O(u) (or 0(v)) 

is a subword of w or 0(a) 1, in which case 0(un) E_--  0(v). 

First note that in every case in the theorem, w contains a subword of the form 

ab and another of the form ba (not intersecting). As in Theorem 2.4.5, this is all 

that is required to establish that xytyx is an isoterm for Sawn. 

(i) Let w 	 wiapb)31(2a)ae1bw2. 

Claim: Sawn 	 v, where 

un 	 tii1at1[X02b13i(ja)aai[nX]biV 2  

and 

vn  tiiiati[X020-1(ja)ba0"[nX]bzi)2 

If 9 is a substitution such that O(u) is a subword of w then because occ(a , tin) = 

occ(a,w)-1, 0 must take the ith  occurrence of a in un  to either the ith  or the (i +1)th 

occurrence of a in w (we will write this as 0(ia)a_--  (ia) or (i+i)a in w). Now O([n_X]) 

and 0(b) cannot contain a else we would have more than occ(a, w) occurrences of 

a in 0(u). So in the first case (when 0(ja) (ia)) since the word ac1+1  occurs 

immediately to the right of ia in w but the word aal[nX]b occurs immediately to 

the right of ia in un, we must have 0([nX]b)FL-- 1 or 0([nX]b) contains an occurrence 
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of a. If 0([nX]b) contains a then O(u) contains more than occ(a,w) occurrences 

of a which is not possible. In the second case (when 9(2a) ((i+i)a)), since there 

is the letter a immediately to the left of (i+i)a in w, the next letter left of ,a in un  

not assigned the value 1 by 0, must be assigned a word ending in a. However, b 

cannot be assigned a word containing a. Consequently 0(b) E 1 and consequently 

0(u„.) 0(v„). 

Since V(a) is the only occurrence vector of a letter in w that contains V.(a), 

we may assume as before that if 0 is a substitution with the property that 9(vn) 

is a subword of w then 0(a) E. a. So 0 must assign the ith  occurrence of a in vn  

to either the ith  or the (i 1)th  occurrence of a in w. In the first instance, (i+oa 

lies immediately to the right of ,a in w but in vn, b lies immediately to the right of 

ia. Since 0(b) does not contain a, 0(b) must be 1 and therefore 9(vn) E 0(un). The 

second case follows in a similar way since immediately to the right of (i.foa in w is 

the (i 2)th occurrence of a but b occurs to the right of ia in vn. 

(ii) In this case there are three subwords of w which we must consider. While 

any possible order of appearance of these subwords is allowed, as in Theorem 2.4.5 

we need only consider one of these. Let w wib(2a)aalbw2apbw3baw4. 

Claim: S({w}) 	 1), where 

un 	 1b(1a)a"'-1[Xn]bio2at[nX]tbib3ba4  

and 

v.,,ibib(ia)aa1-1[Xrilbib2at[nX]th?7) ob?7) _ _ 	 4. 

Let 0 be a substitution such that O(u) (or 0(vn)) is a subword of w. 

Case 1. 0(,a) 	 (ia) in w. Since to the right of ia in w we have ac" , 0(acq-'[Xrdbib2) 

must be assigned a word starting with an'. Since 0([Xn]) and 0(b) cannot contain 

a (else there will be more than occ(a,w) occurrences of a), they must be 1 and 

therefore O(un) 	 0(vn). 

Case 2. 0(ja) 	 ((,+1)a) in w. In this case, O(thib) must be assigned a word ending 
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in a, since to the left of (i+oa in w there is the ith occurrence of a. Since 0(b) doesn't 

contain a, it must be 1 and again 0(un) 0(vn). 

(iii)Let w E wiapbbr31(ia)abw2. 

Claim: S({w}) 	 v„ where 

un  a t71at[Xnitbflib(ja)[nX]bti,2  

and 

vn 	 z7iiat[Xn]tb°1(ja)b[nX]biD2. 

Let 6 be a substitution such that 0(un) (or 0(v)) is a subword of w. As before, 

this implies that 0(b) and 0([Xn]) do not contain the letter a. 

Case 1. 9(2a) E (ia) in w. If we are considering un, then 0(b) a- 1 and 0(un) 0(vn) 

since there is an occurrence of a immediately to the right of ia in w but to the right 

of ia in un  there is the word [nX]b. If we are considering vn  then 0(b) is 1 again 

since' immediately to the right of ,a in vn  is the letter b, but a occurs to the right of 

ia in w. 

	

Case 2. 0(2a) 	 ((i+na) in w. In this case 0(un) 	 0(vn) since to the left of ia in 

both un  and vn  is the letter b, but a occurs to the left of („Fi)a in w and therefore 

0(b) FE 1. 

(iv)Let w 	 wibth a"' b)32  (ia)pbw2. 

Claim: S({w}) j= um  vn  where 

un  E ibibi3i au'' [X n]b132  ((2_i)a)t[nX]tbib2  

and 

vn  = 71;10 aal-1[Xn]&32-1((i_na)bt[nX]tbiu2. 

As usual, we will let 0 be a substitution such that 0(un) (or 0(vn)) is a subword 

of w. This implies that 0(b) and 0([Xn]) do not contain the letter a. 

Case 1. 0((i_1)a) a(i_i) a. To the left of (i_1)a in w is the word VI a°1-1. To the 

left of (i_oa in un  is e1-i[Xn10. Since 131  > 02, 0(a) E a and 0(b) cannot be any 
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power of b greater than 1 (else there will be too many occurrences of b) we must 

have either 0(b) _-77 1 or 0(0 	 0([Xn]) E b. In the first case O(u„) 	 9(vn) and 

the second case never occurs since then occ(b, 0(u)) > occ(b, w). The case for vn  is 

similar since to the left of (i_oa in v„ there is the word ac1-1[Xn]V2-1. 

Case 2. 8((2_1)a) Ei  a. To the left of ia in w is the word abf32. To the left of 

in un  (and vn) however we have the word b' [X n]b°2 (or bth [X *132-1  respectively). 

Since 01  > 02 and neither 0(b) nor 0 ([X n]) contain a, we must have 0(1)) E 1. The 

proof is complete. 

The previous two theorems followed from Theorem 2.3.12. We now present an 

analogous theorem using Theorem 2.3.14. 

THEOREM 2.4.11 Let W be a set of words and w E W be a word containing 

letters a,b,c for which 14,(a) is maximal in W and let u and v be any (possibly 

empty) words with a,b c(u) and a, c c(v) (the set W may of course be simply 

{w} itself). If w has one of the following properties (or their reverse) then S(W) is 

not finitely based: 

(i)bac and aucabva are non overlapping subwords of w; 

(ii)bacva and aucab are non overlapping subwords of w; 

(iii)bac and avbacua are non overlapping subwords of w; 

(iv)avbac and avbac are non overlapping subwords of w. 

Proof: Parts (i) and (ii) are obtained by an application of part (i) of Theorem 2.3.14 

with u1  b and u2  c. Since the two proofs are almost identical we will only prove 

part (i) here. Likewise parts (iii) and (iv) follow in a very similar manner from part 

(ii) of Theorem 2.3.14 and so will also not be proved. Since 14„(a) is maximal in w, 

Lemma 2.4.4 implies that if 0 is a substitution so that 0(rn) (or O(r,' )) is a subword 

of w, then either 0(a) E a or 0(a) E 1. As in the previous two theorems we will not 

concern ourselves with the order of appearance of the given subwords in w. 
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(i) Let w E wib(ja)cw2auc(a)bvaw3. We will show that Sawn satisfies the 

identity 

ti)1at1[Xn](ia)t2afh2t[nX](;a)tii;3 	 ibiati(2a)[Xn]t2a?12t(Ja)[nX]tii)3. 

Firstly if 0([Xn]) # 1 or 0(a) E 1 then 0(rn) 	 0(rri' ). Left of ia in w is the letter b. 

So if 0(rn) is a subword of w and 0([Xn]) # 1, then 0([Xn]) contains b. But then 

9([nX1) contains b and so contained in the word between (;_i)a and Ja in 0(rn) is a 

letter b. However between (3_1)a and Ja in w there is no letter b, contradicting the 

assumption that 0(r„) was a subword of w. The case when O(r') is a subword of w 

f oll o w s b y s y m m etr y. 0 

The following corollary is a dual version of Corollary 2.2.6 and follows immedi-

ately from the proofs of Theorems 2.4.5, 2.4.10 and 2.4.11. 

COROLLARY 2.4.12 Let w be a word satisfying the conditions of Theorem 2-4.5, 

2.4.10 or 2.4.11 and let r = maxIocc(x,w) : x E c(w)\{a}}. If W is a set of 

r-limited words then S(W U {w}) is NFB. 

It is clear that the word w in this corollary can be taken from a two letter alphabet. 

Combining Corollaries 2.2.6 and 2.4.12 we obtain 

COROLLARY 2.4.13 If W is a set of words then there are sets of words W = 

Vo, V1, V2,... with Ic(14)1= max(2,1c(W)1) and 14 C Vi+1  for i > 0 so that S(V2) is 

FB and S(V2J+1) is NFB for every j > 0. 

A further result is the following. 

THEOREM 2.4.14 If S is a k-nilpotent monoid then S is a subsemigroup of a 

NFB max(5,(k +3))-nilpotent monoid which is finite if S is finite. 

Proof: We will assume that k > 2 and show that S is a subsemigroup of a k + 3 

nilpotent monoid. Let k' be the smallest integer such that 2k' > k for some number 

k. Consider the monoid S({(ba)k'}). This is certainly (k + 3)-nilpotent since the 
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length of (ba)''' is either k+1 or k+2 and in both cases S({(ba)k'}) is (k+3)-nilpotent. 

Using the same construction as for Corollary 2.2.5 we arrive at a (k + 3)-nilpotent 

monoid T containing both S and Se{(ba)v}) as subsemigroups. To show that T is 

NFB we now use the identities un  vn  of Example 2.4.6 (if k' > 2) or the identities 

{[X(2n)]t[X(2n)):::-.. [X (2n)]t[X (2n)] : n E N} 

of Lemma 2.3.3 (if k' = 2). For the remainder of this proof it will be convenient to 

denote this last set of identities by E. 

If k' > 2 then the semigroup S({(ab)v}) satisfies un 	 vn  and since the only 

unstable pair in these identities is (a, b) and lun(a, b)I = 	 ( a b)i > k, so S must 

also satisfy ur, 	 vn  (since a word w of length k takes the value 0 on S unless 1 is 

assigned to at least one letter in c(w)). Therefore T satisfies un 	 vn. If k' = 2 

then using effectively the same arguments as above we see that S, Saababn and 

therefore T all satisfy the identities E of Lemma 2.3.3. If k' > 2 then T is NFB by 

Theorem 2.4.5 part (iv). If k' = 2 then T is NFB by Le m ma 2.3.3. 0 

An immediate corollary of this is 

COROLLARY 2.4.15 The pseudovariety generated by the class of finite NFB nilpo-

tent monoids contains all finite nilpotent semigroups and all nilpotent monoids. 

This corollary and Corollary 2.2.5 show that both the class of finite FB nilpotent 

monoids and the class of finite NFB nilpotent monoids generate the same pseudova-

riety as that generated by the class of all finite nilpotent monoids. H. Straubing 

[89] has shown that this pseudovariety is exactly the class of finite aperiodic semi-

groups with central idempotents (that is, finite aperiodic semigroups which satisfy 

e2  =e—ex=x e). 

COROLLARY 2.4.16 If S is a finite aperiodic semigroup with central idempotents 

then there are sets of words V1, V2, ... with jc(14)1 = 2 and Vi C Vi+i for i > 0 so 

that for every j > 0, V(S(V2)) is FB, V (S(V2J+1)) is NFB and S E V(S(14)) C 

V(S(V2)) C 
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As an example of the power of the theorems in this section we briefly examine 

an amusing though useless "application" of the results to genetics. 

EXAMPLE 2.4.17 In genetics, the base sequence for a DNA molecule can be 

thought of as a long word, w, in the alphabet fa,c,g,t1 (see Figure 41 of [26] for an 

example of a very short base sequence). The molecules corresponding to these letters 

are called bases. In such a large word, it is extremely likely to find for any pair of 

letters in this alphabet the subwords required for applications of Theorem 2.4.5 or 

2.4.7. Now for a given strand of DNA the word w obviously contains many occur-

rences of each of the letters a, c, g and t, and it would appear to be unlikely that two 

of these letters would occur exactly the same number of times. Further evidence for 

this claim can be found in the results of [35] for example where it is shown that only 

32 % of the base sequence for the DNA of the Antarctic krill Euphausia superba is 

a g or a c (similar results hold for most other organisms as well). Thus the letters 

a and t (or at least one of these letters) occur a significantly greater amount of the 

time than do g or c. If, in a particular strand of DNA, one of the bases a or t occurs 

more times than any other base then Theorem 2.4.5 implies that the discrete syn-

tactic monoid of the corresponding base sequence is NFB (given that the appropriate 

subwords for the application of this theorem are plentiful). Using Theorem 2.4.7 we 

obtain the same result if the two bases a and t occur the same number of times in a 

particular strand (though this event would seem unlikely). 

While this example may not be of interest to geneticists, it does illustrate the 

ability of Theorem 2.4.5 (and Theorem 2.4.7) to apply to long and complicated 

words. 

COROLLARY 2.4.18 Every word w is a subword of a word w' whose length is no 

more than 4 letters longer than w and such that S({w'}) is NFB. If Ic(w)l > 1 then 

w' can be chosen such that c(wl) = c(w). 
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Proof: If ic(w )1 = 0 then w is the empty word and it follows from Theorem 2.4.2 

that the shortest word containing w whose discrete syntactic monoid is not finitely 

based is the word abab or abba. 

If ic(w)1 = 1 then w is of the form ak  for some k. In this case we may choose 

w' to be the word akbab for some new letter b. Using exactly the same argument 

as for Example 2.3.4 it follows that S({w/}) is NFB by Lemma 2.3.3. Now assume 

Ic(w)1 > 1. 

Case 1. w ends with a letter a that occurs a maximal number of times in w and 

there is at least one letter b occurring in w fewer times than a. In this case we may 

take w' to be the word wbaba and apply Theorem 2.4.5 part (iv). 

Case 2. Every letter of w occurs an equal number of times. Let b be the last 

letter in w and a be the next letter left of this that is different to b. So w wiab° 

for some 3> 0. Thus we may take w' to be the word w1abf3aaab and apply Theorem 

2.4.10 part (i). 

Case 3. w ends with a letter, b say, not occurring a maximal number of times 

in w. Let a be the closest letter to the right end of w that does occur a maximal 

number of times. Then we may choose w' as the word waaab and apply Theorem 

2 . 4 . 1 0  p a r t  ( i ) .  0  

EXAMPLE 2.4.19 Consider the monoid S({abcbadef gen). This semigroup is in 

fact FB (this will be shown later; see page 91) but Corollary 2.4.18 implies that the 

semigroup S({abcbadefgef g fgf}) is NFB. Note also that Theorem 2.4.5 part (iv) 

implies that the semigroup S({f ef abcbadef gen) is NFB. 
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2.5 On the Finite Basis Problem for almost all 

discrete syntactic monoids of k element lan-

guages in fixed finite alphabets 

The conditions contained in Theorems 2.4.5, 2.4.10, and 2.4.11 are very general. 

After a little experimentation it becomes clear that for sufficiently long words in 

any fixed finite alphabet the likelihood of one of these theorems applying is very 

high (this was exploited in Example 2.4.17). In this section we investigate this 

apparent property and show that these theorems in fact apply to "almost all" words 

w (and in some sense, sets of words W) in a fixed alphabet. First we formally define 

the notion of "almost all". 

Recall that the length of a set of words W is rnax{Iw w E W}. Fix an alphabet 

A and let W – (1,n,k) be the set of all k element length n sets of words from the free 

monoid A* and N(1,n,k)  be the number of elements of W - (1,n,k) (each of these elements 

are k element, length n sets of words from A*). Now let P be a property and W(p,„,k) 

be the set of all k element length n sets of words from the free monoid A* which 

have the property P. Following the above notation, we will use N(p,n,k) to denote 

the number of elements of W(p,n,k). 

Note that if one word in a k element length 71 sets of words W is a proper subword 

of another word in W, then S(W) is identical to the discrete syntactic monoid of a 

language with fewer elements. 

DEFINITION 2.5.1 For a given positive integer k and a finite alphabet A, a prop-

erty P holds for almost all k element sets of words in A* if N(P,n,k) Ar(1,n,k) -4 1 as 

n oo (or equivalently if (N(1,n,k) N(P,n,k)) I N —> 0 as n oo). 

In general for sequences (sn.)nEhv (tn)nEN and 	 we will write sn  tn  if 

limSn/tn 	 1. 
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That is, given a fixed finite alphabet A, a property P holds for almost all k element 

sets of words in A if and only if N(p,n7k) N(l,n,k). When k = 1 in the above, we are 

considering one element sets of words and the length of such set is simply the length 

of the unique word it contains. In this case we will abbreviate and Ar(pm,i)  

to W(p,n) and AT(p,) respectively and say that the property P holds for almost all 

words if N(1,71). 

We now establish some basic facts concerning the combining of properties that 

hold for almost all k element sets of words of a finite alphabet. It is easy to verify that 

the relation is an equivalence since for any properties P, Q, R, we have: AT(p,n,k) 

N(P,n,k); N(P,n,k) 	 N(Q,n,k) 	 N(q,n,k) 	 N(P,n,k); and if both N(p,n,k) 	 N(Q.n7k) and 

N 	 then N(P,n,k) P,n,k) 	 N(R,n,k) 	 A further important property of the 

relation 	 is given in the following lemma. Here if P and Q are properties, then 

P n Q is the property of having both the properties P and Q. 

LEMMA 2.5.2 For any fixed finite alphabet, if N(p,„,k) 	 N(l,n,k) and N(Q,n,k) 

1V(1,,,k) then N(pnc?,n,k)  

Proof: We want to show that N(pnQ,n,k)/N(1,n,k) —* 1 as n —÷ oo. Now 

W(1,n,k)VW(P,n,k) n WP,n,k)) = 

(W(P,n,k)\W(Q,n,k))U (141(Q,n,k)\W(p,n,k))U (W(1,n,k)VW(P,n,k)U  

But W(P,n,k)\W(Q,n,k) g W(1,n,k)\W(Q,n,k), W(Q,n,k)\W(p,n,k) g W(1,n,k)\W(P,n,k) and 

(W(1,n,k)\(W(P,n,k) U W(Q,n,k))) g W(1,n,k)\W(P,n,k)• 

So therefore 

1W(1,n,k)\(W(p,n,k) n 141(Q ,n,k))I <
2 
IW(1,72,1c)  W(Pm,k)  

N(1,n,k) 	 N(1,n,k) 

which tends toward 0 as n tends to infinity since both 

1W(1,n,kAW(Q,n,k)I  

N(1,n.k) 

IW(1,n,k)\W(P,n,k)1 	 IW(1,n,k)  W(q,n,k)1  
and 

N(1,n,k) 	 N(1,n,k) 
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niv,n(,kcQP,n,k)  tend toward 0 as n tends to infinity. Therefore N(1,,k)-01\1 	 0 as n 	 oo and 

N(PnQ,,k) as required. 

The proportion of k element, length n sets of words that have a property P is 

exactly the probability of selecting a set of words at random from W — (1,n,k) that has 

the property P. For this reason it is convenient to interpret problems concerning 

the ratio N(.,„,k)/N(1,n,k)  in terms of probability. 

LEMMA 2.5.3 If w is a word in a finite alphabet A then almost all words in AS 

have w as a subword. 

Proof: Let lAl = r and the length of w be m. For any n there are rn words of 

length n. Therefore the likelihood of a randomly chosen word of length m being 

the word w is exactly 1/rm. Any word w' of length n can be partitioned into [n/m] 

(where [n/m] denotes the integer part of n/m) subwords of length m along with a 

remaining subword of length less than m. If w' does not contain w as a subword, 

then it is necessary that each of these partitions is not the word w. Thus for a word 

w' of length n the likelihood that that w' does not contain w as a subword is less 

than or equal to (1 — 1/rm)(7012). Since 1 — 1/rm = (rm — 1)/rm < 1, it must be 

that ((rm — 1)/rm)[nimi 0 as n oo. That is, almost all words in AS  have w as 

a subword. 	 0 

Ultimately we want to show that almost all words and almost all k element sets 

of words in a fixed finite alphabet have discrete syntactic monoids that are NFB. In 

order to apply the most general theorems of the previous section we need to show 

that one can find a maximal occurrence vector for a letter in almost all words in a 

fixed finite alphabet (and a maximal occurrence vector in almost all k element sets 

of words). As discussed earlier (see page 58), one of the simplest ways that this can 

happen is if almost all words have a unique maximally occurring letter. The next 

few lemmas establish this fact. 
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LEMMA 2.5.4 Let A = 	 , ar} be a fixed finite alphabet of r > 2 distinct 

letters. Let a word w in A+ have the property P if it contains no letter a so that 

occ(a,w) > occ(x,w) for all x E c(w)\{a} , that is, that there is no unique maximally 

occurring letter in w. Then 

EN(P,n)/NO,n) 5 ( 	 E 
(277t

2) 	
m
)(1/2)2-(

2m  
n  (2/r)2m(1 — 2/r)n-'  

n/r<m<n/2 

Proof: Let Xi  be a random variable corresponding to the number of occurrences 

of the letter ai  in a word of length n. Each successive letter appearing in the 

word can be thought of as the outcome of a Bernoulli trial, with the appearance 

of the letter ai  (which occurs with probability 1/r) considered a success and the 

appearance of any other letter considered a failure. Evidently Xi  is binomially 

distributed and the probability of Xi taking a particular value x < n is given by 

(nx)(1/r)x  (1 — 1/r) (information regarding the Binomial distribution Bi(n , 0) can 

be found in many books concerning probability or statistics; see [87] for example). 

For distinct numbers i, j < n, the variables Xi and X7  are not independent since the 

number of occurrences, say m, of the letter ai in a given word of length n reduces the 

potential number of occurrences of the letter a; to n — m. However the distribution 

of the sum Xi  + X3  is easily seen to be Bi(n, 2/r) and given a particular value of 

+ Xi, say k, the probability that Xi takes some value m (necessarily less than or 

equal to k) is (nc)(1/2)m(1 — 1/2)k—m  = (717z̀)(1/2)k. 

Let E be the event that there is no unique maximally occurring letter in a word 

w, that is that w has the property P. Clearly a letter that occurs less than n/r 

times in a word of length n in an r letter alphabet cannot be a maximally occurring 

letter. Therefore 

E C {Xi = X3  > n/r, for some i j} 
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and so 

N(p,)/N0,70 =Pr(E) 

<Pr(Xi = X > n/r, for some 

'Pr(U{Xi = Xi n/r}) 

< 	 Pr(Xi  X;  n/r) 

= 	 Pr(Xi  = X2 n/r). 

Now let S = X1+ X2. The distribution of S is Bi(n, 2/r) and so 

Pr(Xj. = X2 n/r) 

•E Pr(X1  = X2 n/rIS = k)Pr(S = k) 
k=0 

• E Pr(Xi  = m n/r1S = 2m)Pr(S = 2m) 
0<m<n/2 

•E Pr(Xi  = miS = 2m)Pr(S = 2m) 
n/r<m<n/2 

• E ((m) (1/2)2m) ((2n) 2/2m1 — 2/7)n-2m) 
n/r<m<n/2 

as required. 

We now want to show that the bound for Np,n/Ari,n  obtained in Lemma 2.5.4 

tends toward 0 as n tends toward infinity. The following lemma proved by B. M. 

Brown establishes this fact. Since this lemma is unpublished we present its proof 

here for the sake of completeness. 

LEMMA 2.5.5 (B. M. Brown, private communication) 

E (2m) (1/2)2m (n) (2/)2m(1 — 2/r)1-27n 

n/r<n/2 

1 
< — 
— 2 

Proof: We first use Legendre's duplication formula (see page 5 of [16] for example) 

N/F(2z) = 22z-lr(z)F(z + 1/2), 
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where r(z) = f e-ttz-idt is the Gamma function. This implies 

(2m) (2m)! 	 r(2m + 1)  
m  (m!)2 	 1-'2(m + 1) 

2mr(2m)  
m21'2(m) 

2 22'72-1r(m)r(m  + 1/2)  
rn 

 

/F2(m) 

22'71  r(m  + 1/2)  
F(m) 

This means that the expression on the left of the lemma can be reduced to 

E ( 2m)n(2/02m(i _2/7.
)._2,n 1 r(m+ 1/2) 

n/r<n/2 	
rn‘Fr 	 r(m) 

To complete the proof we now need to examine the term r(m+1/2)  F(m) • 

LEMMA 2.5.6 r(m+1/2)  < r(m) 

Proof: The The proof suggested by B. M. Brown used the product form of the Gamma 

function (see page 1 of [16] for example). Instead we use a simpler argument based 

on Stirling's formula. It is well known that Stirling's formula for factorials can 

be extended to the Gamma function; indeed it follows from one proof of Stirling's 

formula that 

where y(x) decreases monotonically toward a limit of 0 as x tends toward infinity 

(see Chapter 3 of [1]; two alternative proofs of Stirling's formula may also be found 



Now if the distribution of X is Bi(n, 2/r) and Y = f (X ) is a random variable that 

depends on X then the expected value E(Y) is 

hj =
{gjI2 	 if j is even and j (2n)/r, 

0 	 otherwise. 
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in [7]). Therefore e(x+112) I egx) < 1 and so 

1"(m + 1/2)  < (m +1/2)m 	 em 

F(m) 	 m+1/2 (mm-1/2) 

(M + 1/2)m  \irri 

mm 	 Nie 
((m + 1/2)r 

m 

Vrn 

as required required (note that it also follows from this proof that r(m+1/2)/r(m) Vrn,).0 

We may now complete the proof of Lemma 2.5.5. Let g-,,= r(m+1/2)  < 1/.0-777-  mv-7,r(m) 

and let 

E P(X = k) f (k) = E (ni)(2/r)k(1 — 21r)n-k  f(k). 
k=0 	 k=0 

So the expression 

E (2nm) (2,02m(i _ 2/Tr-27n  
n/r<m<n/2 

1  r(m + 1/2) 

m\rn-  r( m) 

is the expected value E(hx) where the distribution of X is Bi(n, 2/r). But 

X = (2n)/r + z„Vn(2/r)(1 — 2/r) 

where by the Central Limit Theorem for binomially distributed random variables 

the distribution of zn  tends toward N(0,1) (the standard normal distribution) as n 
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tends toward infinity. (Here we use the notation zn  instead of the usual Z, to avoid 

confusion between the Zimin words Z, of Theorem 1.1.1.) 

The value of h; is alternately g312  or 0 as j is even or odd. It follows from a 

simple examination of binomial probabilities for even integer values that as E(hx) 

1/2E(gx12)x(X/ 2 	 n/r) (where for a condition C, the value of x(C) is 1 if the 

condition C is true and 0 otherwise). Now by Lemma 2.5.6, 

g{x/2} = gfnir-Ezn  \/(n/20(1-2/0 < 
	 (n/r +

) — 
	zn 

when X/2 > n/r. But 

	  —1/2 
2)) 

(n/r zn  

	  —1/2 

7±2r (1  — 
< iNF/72 

when zn  > 0 (or equivalently, when X/2 > n/r). So 1/2E(gx12) 
1 	 r 
-2-V nir and 

therefore E(hx) < WT. as required. 	 0 

Combining Lemma 2.5.4 and Lemma 2.5.5 we have the following lemma. 

LEMMA 2.5.7 Almost all words in a fixed finite alphabet have the property that 

there is a unique maximally occurring letter. 

Proof: This-is because the property P' that a word has a unique maximally occurring 

letter is the compliment of the property P in Lemma 2.5.4. Since by Lemma 2.5.5, 

limn„ N(p,n)/N(l,n) = 0, it must be the case that limn,  Nur, IN 	 = 1 as ,n), - (1,n) 

required. 

To generalise Lemma 2.5.7 to k element sets of words it is necessary to obtain 

variations of Lemmas 2.5.4 and 2.5.5. First note that a k element, length n set 

of words W in a finite alphabet .4 can be constructed by first selecting a word of 

length n from A* and then selecting k — 1 distinct words from the remaining words 

in A* that have length at most n. In the lemma to follow it is convenient to relax 

the condition that these words must all be distinct. In this case it is possible that 

the set of words constructed actually has fewer than k elements and so is not of the 
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desired form. However if Al1 = r, then the total number of words of length at most 

n in A* is easily seen to be rn rn-1  + + r. Thus in the process of selecting k 

(not necessarily distinct) words in a length n set of words W, the likelihood of a 

word being selected twice is proportional to 1/(rn +rn-1+ ...+r) < iirn. That is, 

almost all selections of k words of length at most n (including at least one of length 

n) have no repeats. 

LEMMA 2.5.8 Let A = 	 ,arl be a fixed finite alphabet of r > 2 distinct 

letters. Let P be the property of a k element set W = {w1,... , wk} of words of 

maximum length n and in the alphabet A that for every letter a E A occurring at 

least nlr times in a word w in W, there is a distinct word v E W containing a 

(possibly identical) letter b so that occ(a,w) = occ(b,v). Then 

2 
N(p,n,k) < (ric

) 	

((n)
(11r)

lc
(1 — 1/(r))). 

No.,„,k) 	 2 	 k 
n/r<rrt<n 

Proof: Note that allowing for repeated words in W actually allows for extra ways 

in which a letter can occur the same number of times in different words. Thus the 

N(P 	n k)  • 	 • true value for 	 is likely to be smaller than that obtained in this lemma. 
,v(1,n,k) 

Since the longest word in a length n set of words W = {w1, 	 , wk} has length 

n we may assume without loss of generality that the length of w1  is exactly n, 

although for some i> 1 it is possible that 1wi  1 < n. Let Xij  be the random variable 

corresponding to the number of occurrences of the letter a, in the word wi. As in 

Lemma 2.5.4 we will only be concerned with the situation when Xi,, > 1/r. If 

lwil < n then the expected value E(X,,j) is lw, lir < n/r and so the probability 

= m> n1r) is less than Pr(Xij  = in n1r). Therefore it suffices to prove 

the lemma in the case when every word has length n. 

Let E be the event that a k element set of words from A* has the property P, 

that is, the event 

{Xi  = 	 > n/r, for somei' i} 
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and so 

=Pr(E) 

=Pr({Xij  = Xii,j, > n/r, for some i' 0 in 

( =Pr U{Xij = Xii,j,  > n/r} 
i<i,  

5_E Pr(Xij = 	 n/r) 

= 
 (

rk) 
Pr(X1,1  = X2,1 > n/r). 

2 

Now the event {X1,1  = X2,1 > n/r} is exactly the event Un1r<i<n{X1,1 = X2,1 
Since the probability P(X1,1  = i) = (7)(1/01(1 - 1/0n-1  we must have 

2 

Pr(X1,1  = X2,1> n/r) < E 	 (1/01(1 — 1/0n-1) . 
n/r<i<n 

Note that the word w2  is distinct from the word w1  and so the probability that X2,1 

takes on a value i given that X1,1  = i is actually less than (7)(1/01(1 - 1/0n-1. 

When r = 6, for example, the probability En/r<k<n ((:)(i/oko. _ 1/on-k)2  is  

exactly the likelihood of rolling two fair die n times and obtaining exactly the same 

-number of l's from the first dice as from the second and having this number greater 

than or equal to n/6. Intuitively, one might expect that as n increases toward 

infinity, the value of this probability decreases toward zero; indeed this is what we 

now prove. 

LEMMA 2.5.9 

2 

E ((,)(1/0k(1_ 1/r)'k) 	 r/-0/7(r -1) 
n/r<k<n 

Proof: We first note that by the Central Limit Theorem the distribution of both X1,1  

and X1,2 is increasingly well approximated by N(.2,0-2) where y is the expected value 
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E(Xi,i) = n/r and a2  is the variance var(XIA = var(X2,i) = (n/r)(1 — 1/r) = 

n(r — 0/r2. The probability density function for this distribution is 

1 	 1 (x — 	2) 
fX1,1 (X) 	 E 

	 2 	 a ) 

Because fx,,, (x) is the probability density function of a random variable with ex-

pected value p,  we must have 

fx (x)dx — 1/2 

and so 

L
oo 	 1 	 2 
Exp 	 2  (x /1) dx = a.07/2. 

Therefore 

E WO (1/01c(1  — lir)—k)2  
n/r<k<n 

2 

.., fc°  (cy1 	r  Exp (-1i.  ( 71') 2) ) dx 

1 
= 
a 
27 f Exp ( (x  —  /12) dx 2 	 a A 

1 	
2 

227r fc°  Exp ( 1  (x  —  Y)) = 	 dx 
a 	 2 al.\,/ A 

1 

a22 
	  ((cr/ ) 
71- 
1 

0.1717  

r/N/n7r(r — 1) 

as required. 	 0 

We can now prove the following lemma. 

LEMMA 2.5.10 For any k > 0, almost all k element sets of words in a fixed finite 

alphabet have the property that there is a unique, maximally occurring letter. 
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Proof: It follows from Lemmas 2.5.8 and 2.5.9 that almost all k element sets of 

words in a fixed finite alphabet have the property that there is a unique word whose 

maximally occurring letters occur more times than in any other word in the set. By 

Lemma 2.5.7, however, this word almost always has a unique maximally occurring 

letter. Therefore almost all k element sets of words in a fixed finite alphabet have 

t h e d e si r e d p r o p e rt y. o 

We now have all the results needed to prove the main theorem of this section. 

If A is an alphabet consisting of a single letter then for all words w and all sets of 

words W from A*, the monoids Sawn and S(W) are easily seen to be FB. We now 

show that for I Al > 1 the opposite is nearly true. 

THEOREM 2.5.11 Let A be a finite alphabet with lAl > 1 and k be a fixed positive 

integer. Then for almost all k element sets of words W c A*, S(W) is not finitely 

based. 

Proof: Combining Lemmas 2.5.2, 2.5.3 and 2.5.10 it follows that almost all k element 

sets of words W in a fixed finite alphabet contain a word w with a letter a occurring 

more times than any other letter in c(W) and that w contains the word, say, abbbab 

as a subword for some letter b E c(w). The occurrence vector of a in w is maximal 

in W so by Theorem 2.4.5, S(W) is almost always not finitely based. 0 

COROLLARY 2.5.12 For any fixed positive letter k, almost all discrete syntactic 

monoids of k element languages from a fixed finite alphabet A are not finitely based. 

Proof: If two discrete syntactic monoids of k element sets of words W1  and W2 in 

a finite alphabet A are isomorphic then the sets W1  and W2 must have the same 

length, say n. There is exactly one minimal generating set for each of 8(W1) and 

8(W2) and these are c(Wi) and c(W2) respectively. Therefore we may assume that 

c(Wi) = c(W2) and that any isomorphism t : S(W1) S(W2) must restrict to 

a permutation of c(WI) = c(W2) C A. Clearly this permutation along with the 



CHAPTER 2. DISCRETE SYNTACTIC MONOIDS AND IDENTITIES. 	 85 

multiplication of S(W1) determines the multiplication on S(W2). There are at most 

lAl! permutations of c(W1) and therefore there are at most lAl! discrete syntactic 

monoids of a k element subset of A* that are isomorphic to S(Wi). By defining an 

equivalence relation 0 on the set of all k element subsets of A* by (V1, V2) E 0 if and 

only if 8(V1) S(V2) we have 1W(1,„,k)/01 N(l,n,k)/(01!)-  Let P be the property 

that a k element set of words W does not contain any unique maximally occurring 

letter a. Now N(P,n,k) IW(P,v,,k) I 91 so therefore 

IW(P,n,k) /01< 	 N (P,n,k) = 
IW (1,n ,k) I 01 	 (N (1,n ,k) I (IAI!))  

which tends toward 0 as n tends toward infinity. This combined with the above 

results shows that for any fixed positive integer k, almost all discrete syntactic 

monoids of k element languages in a finite alphabet are NFB. 	 0 

We note as a comparison that the results of [41] and [43] show that almost all 

semigroups (monoids) are in fact 3-nilpotent (3-nilpotent monoids) in the sense that 

the ratio of the number of 3-nilpotent semigroup operations (monoid operations) 

definable on an n element set to the number of all semigroup operations (monoid 

operations) definable on an n element set tends to 1 as n tends to infinity. It is easily 

shown that a 3-nilpotent semigroup or monoid must satisfy xyx xxy and therefore 

is FB by results from [70]. In fact a 3-nilpotent semigroup satisfies x1x2x3  yiy2y3 

and so generates a HFB variety with only finitely many subvarieties. 

2.6 Joins of varieties generated by discrete syn-

tactic monoids 

Examples found by M. Volkov (see [82] for example) and M. Sapir [75] show that 

the class of finite FB semigroups and the class of finite NFB semigroups are not 

closed under taking direct products (or indeed of subsemigroups and homomorphic 

images). The properties of these examples appear to depend on the existence of 



CHAPTER 2. DISCRETE SYNTACTIC MONOIDS AND IDENTITIES. 	 86 

nontrivial subgroups. In this section we will address the problem of finding FB 

finite aperiodic semigroups whose direct product is NFB and NFB finite aperiodic 

semigroups whose direct product is FB. Note that Corollaries 2.2.6 and 2.4.12 above 

show that the class of finite FB aperiodic semigroups and the classes of finite FB and 

finite NFB aperiodic semigroups (and in particular the classes of FB or NFB discrete 

syntactic monoids of finite languages) are also not closed under taking subsemigroups 

or homomorphic images. 

The following simple lemma is useful. 

LEMMA 2.6.1 [3.4] Let W1  and W2 be two sets of words over some alphabet X. 

Then S(W1UW2) satisfies the same identities as the direct product 8(W1) X S(W2)• 

DEFINITION 2.6.2 For each n > I let An  be the set of all words starting with a 

in the alphabet fab,bal whose length is n (as words in this alphabet) and let A be a 

fixed element of A,„ say (ab)mI(ba)m2...(ab)mk, where mi  > 0 for all i < k, mk > 0, 

and ELmi = n. 

For n > 2, at least one of the words (ab)'ba and ab(ba)l is contained in the 

set A„ \ {A}. Fix one of them that is contained in AA{A} and call it B. For each 

m > 1 let em  be a substitution defined by ern(ab) E [Xm], em(ba) [mX]. We now 

construct an identity LA,m  RA,m  as follows. To make the word LA,m, first replace 

every occurrence of ab in the word A by the word abt (where t is, as usual, a linear 

letter) and every occurrence of the word ba by the word bat. Let the resulting word 

be denoted by A'. Now replace every occurrence of a in A' by the letter and every 

occurrence of b by corresponding occurrences of em(ab) or em(ba) from the word 

6m(B). That is, if the ith  letter to appear in B as a word in the alphabet {ab, ba} is 

ab then the it h  occurrence of b in A' is to be replaced by ",n(ab). Otherwise the ith  

occurrence of b in A' is to be replaced by 6m(ba). The same procedure is followed to 

make the word RA,m  except each occurrence of b in A' is replaced with x and each 

occurrence of a is replaced with the corresponding subwords of em(B). For example 
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let n = 3 and A ababba. So the only choice of B is the word abbaba. Now in this 

case A' is the word abt1abt2bat3  and 

LA,,, 	 (x(x1x2...x,i)ti)(x(x, 	 x2x1)t2)((xm...x2x1)xt3) 

Likewise, 

RA,,, 	 ((x1x2...x,i)xti)((x, ...x2xi)xt2)(x(x,...x2xi)t3). 

LEMMA 2.6.3 Ifs is a monoid for which the elements of M{A} (for some n >2) 

are isoterms and for every 777, > 0, S LA,m  RA,,, then S is NFB. 

Proof. If A is not the word (ab) then by assigning a to x and b to respective 

linear letters t we find that LA,m(x,r) becomes the word (ab) (recall that 7 is the 

set of linear letters in a word). Since this is an isoterm for S, LA,m(x,T) must 

be too. If A (ab)n then both (ab)iba and (ab)-2baab must be isoterms. By 

assigning a to x and maximal subwords of the form bi  to corresponding linear letters 

t we find that xt1xt2...xtn_1x and xt1xt2...xtn_2xxtn  are isoterms. These two facts 

combined ensure that xt1xt2...xti, is an isoterm. So for every non-linear letter y in 

L A,m  %:Z=,  RA,m, the identity LA,„,(y, 7) RA,m(y , 7) is a tautology and the words in 

this identity are isoterms for S. Since B is an isoterm for S, LA,m(x1,x2,...,x,) is 

an isoterm and for any i < m, LA,„,(x, xt) is essentially the word A (up to a change 

in letter names). 

Let LA,m 	 w be any nontrivial identity satisfied by S. The word xt1xt2... xtn 

is an isoterm for S so w differs from LA,,, only by permutations within blocks. This 

means that for all i < m, w(x, xi) is equivalent up to a change in letter names to a 

word in A, and for some i < m the pair (x, xi) is unstable in L A,m  w (the pair 

(x„ xi) must be stable in this identity since LA,,,(x„ x3) is essentially the word B, 

an isoterm for S). In fact since all words except A in An  are isoterms for S, w(x,x,) 

must be equivalent up to change in letter names to the word A and so for every 
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k < n, the pair (kx,k xi) is unstable in LA,m •=ze,  w. Because w(x, xi) 	 LA,m(x, x,) it 

must be the case that w(x, xi)7,-  RA,m(x, xi). We now show that w RA,m • 

Without loss of generality we may assume that B is the word (ab)'ba. The first 

letter of A is the letter a so it follows that xx1x2... Xi... xm  is an initial segment 

of LA,m. Since w(x, xi) -a- Rx,,, and LA,m(xi, x2, ... xm) 	 w(xl, x2, . xna) is an 

isoterm, the word x1x2 	 xix is an initial segment of w. This means that (x, x1) 

is an unstable pair in LA,m 	 w. Indeed, as discussed above, this implies that for 

every k < n, the pair (kx,k xi) is unstable in LA,rn. Now because A B, one of the 

words xxm  ... x1  or x1... xmx is a subword of LAfin. However (x, xi) is unstable in 

LA,m  w and LA,m(xi, xm) is an isoterm for S so (x, xn) is also an unstable pair. 

Again this means that for every k < n, (kx,k xn.) is unstable. It is now evident from 

the fact that LA,m(xl,... , xm) is an isoterm for S that w RA,m• 

Now we show that there is no derivation of LA,m 	 RA,m  involving identities of 

S that contain less than n letters. Assume otherwise. There is an identity p 	 q 

involving fewer than n letters and a substitution 0 such that LA,m  E u0(p)v and 

RA,m  E u0(q)v. By the choice of B we can assume without loss of generality that 

there is only one occurrence of the subword xi+ix, in LA,m, say the jth occurrence. 

Since we are assuming that Ic(p) 1 < n there must be a linear letter z in c(p) such 

that 0(z) contains xi+ixi  as a subword. There is also a letter x' E c(p) whose Oh  

occurrence (for some k) is assigned by 0 the jth  occurrence of x in LA,m. By the 

structure of RA,m  it follows that (kx', z) is unstable in p q and p q can be 

deleted to the identity 

XIt ...( 3,x')z(tii)x'ti,+1...x't(occ(r,,p)) 	 xit1...z(3,x')(t2,)x'ti,.+1.••x't(occ(x',p))• 

Since xti...xt, is an isoterm and occ(x' , p) < n, by Lemma 2.3.1 the left hand side 

of this is an isoterm, a contradiction. Thus no such identity p q exists. Therefore 

any basis for S must contain identities involving arbitrarily large numbers of letters 

a n d i s t h er ef or e i nfi nit e. 0 

Recall that Mir, is the set of all words in the alphabet fa, bl with at most n 
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occurrences of any letter. For any fixed word A from An  with n > 1 let WA,„ be 

the result of removing from W„, the word A and the word A obtained from A by 

simultaneously replacing a by b and b by a. 

COROLLARY 2.6.4 For n > 1, S(W„,A) is NFB. 

Proof: For n > 2 Lemma 2.6.3 can be used as follows. Since A,A{A,A} is a subset 

of WA,, every word in An\{A,A} is an isoterm for S(WA,n). On the other hand, 

every word in WA,„ has length less than 2n + 1. So if 0 is a substitution such 

that O(LA,,n) is contained in WA,„ then O(LA,,n) must have length less than 2n + 1. 

Therefore 0 must assign 1 to all but at most two letters from {x} U {xi; i < m}. In 

this case either O(LA,m) 9(Rm,A) or O(LA,„„) is equivalent up to a change of letter 

names to A and O(RA,„,) is similarly equivalent to A. Since S(WA,„) = A A, 

S( WA,) 	 LA,m. 	 RA,m, for every m > 1. Therefore by Lemma 2.6.3, S(WA,n) is 

NFB. 

For n = 2, A, is the set {abab, abba} . In this case S(W) is equationally equivalent 

to S ({abab, abba, aabb}) since {abab, abba, aabb} contains a copy (up to a change 

of letter names) of every 2-limited word in a two letter alphabet. Thus to prove 

the result we need to show that S ({abab, aabb}) and S({abba, aabb}) are NFB. For 

the first of these cases we can apply Lemma 2.3.3. The second case is due to 

0. Sapir and follows from a similar lemma in [34] or [79]. For example xytxy is 

an isoterm for S ({abab, aabb}) since xyxy and xyx are. However for any unstable 

pair of letters (x, y) in the identity Ln  E [X2n]t[X2n] [X2n]t[X2n]E.--  Rn, the 

identity 1,7,(s, y) 	 Rn(x,y) is the identity xyyx 	 yxxy which is a satisfied by 

S ({abab, aabb}). Thus S ({abab, aabb}) 	 Rn  for every n > 0 and by Lemma 

2.3.3, is NFB. The Corollary is proved. 	 0 

The description in [80] of all words w in a two letter alphabet {a, b} for which 

Sawn is NFB (see Theorem 2.0.10 of this thesis) shows that for any word A chosen 

from An, the syntactic monoid S({A}) is NFB. The following corollary now follows 

Corollary 2.2.2 and Corollary 2.6.4. 
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COROLLARY 2.6.5 For every n > 1 and every word A E An, the monoids S({A}) 

and S(W„,A) are NFB but S({A}) x S(Wn,A) and S({A} U Wn,A ) are FB. 

Since S ({abab}) and Saabban are NFB, one might wonder if S({abab, abbal) 

is FB, therefore giving a smaller example. Example 2.3.8 shows however that this 

is not true. Nevertheless, we can find two words w1  and w2  such that S({wi}) and 

S({w2}) are NFB but S({w', w2}) is FB. First consider the following lemma. 

LEMMA 2.6.6 If w is an isoterm for a monoid S then Id(S) c id(s({wl)). 

Proof: Let p q be an identity not satisfied by S({w}). This means that there is a 

substitution 0 such that 0(p) is a subword of w and 0(p) 0(q). So w u0(p)v for 

some words u and v so that u0(p)v u0(q)v. But then p qi-  u0(p)v u0(q)v so 

w is not an isoterm for any semigroup satisfying p q. That is, S p q. The 

lemma is proved. 

Let w be the word ababcddee. Since S({w}) contains the subsemigroup S({abab}) 

and the subsemigroup S({ddee}), /d(Sawn) is contained in both Id(S({abab})) 

and I d(S ({aabb})) and therefore also in I d(S ({abab, aabb})). On the other hand 

since xyxy, xyyx, xxy, yxx and xyx are all isoterms for S({abab,aabb}), so must 

be the word w and therefore Lemma 2.6.6 shows that 

I d(S ({ababcddee})) I d(S ({abab, aabb})). 

We can conclude that the monoid S({ababcddee}) is equationally equivalent to the 

monoid S ({abab, aabb}). In a similar way one can show that S ({ababcddee, abba}) is 

equationally equivalent to S ({abab, aabb, abba}). Combining these ideas we obtain 

the following example. 

EXAMPLE 2.6.7 The monoids S({ababcddee}) and S({abba}) are NFB but the 

monoid S({ababcddee,abba}) is FB 

Another simple example is the following. 



CHAPTER 2. DISCRETE SYNTACTIC MONOIDS AND IDENTITIES. 	 91 

EXAMPLE 2.6.8 The monoids S({abcba}) and S({abcab}) are NFB but the monoid 

S({abcba,abcab}) is FB. 

Proof: The argument used in Example 2.3.4 applies equally well to the monoid 

S({abcabl) and likewise a similar lemma from [34] due to 0. Sapir may be used in 

the case of S({abcbal). So S({abcab}) and S({abcab}) are NFB. On the other hand 

in Theorem 2.2.11 above it was shown that S({abcab,abcba}) (and by Lemma 2.6.6, 

S ({abcabde f g f e})) is FB. 

The relevance of this example is due to the following theorem. 

THEOREM 2.6.9 For any n > 2 the monoids S({abcab, abcbal) and S({anbn}) 

are FB but the monoids S({abcab, abcba}) x S({ab'}) and S({abcab,abcba,anbn}) 

are NFB. 

Proof: Theorem 2.2.11 shows that S({abcab,abcba}) is FB and S({anbn}) is FB by 

Theorem 2.0.10. Example 2.3.6 shows that S {abcab, abcba, anbn}) is NFB. 	 0 

Thus by Lemma 2.6.1 and this theorem we have an example of two finite FB 

aperiodic semigroups whose direct product is NFB. The problem of finding such an 

example was raised by M. Sapir about 10 years ago. 



Chapter 3 

Small INFB finite semigroups. 

As discussed in the historical overview, a powerful algorithmic description of the class 

of finite INFB semigroups has been obtained by M. Sapir [73], [74]; see Theorem 

1.1.1 and Theorem 1.1.2 of this thesis. 

The power of these theorems is demonstrated by the following simple example 

[73]. Consider the monoid rq.  with semigroup presentation (1, a, b : a2  = b2  

0, aba = a,bab = b); clearly 131 has period* ab is idempotent and a divides ab. 

However both ab(a)ab and ab(a2 )ab equal 0 in 131 and 0 is not an element of the 

maximal subgroup containing ab. Therefore by Theorem 1.1.2, 131 is INFB. 

In what follows it will frequently be necessary to consider pairs of the form (a, e) 

where a and e are elements of a semigroup S, e is idempotent and a divides e. Such 

a pair will be called a dividing pair and we will say INFB occurs at (a, e) if this 

pair satisfies the conditions of part (ii) of Theorem 1.1.2 for some submonoid of S 

containing a and e. Recall also that S e  is the maximal subgroup of S containing e 

(see Theorem 1.1.2). 

The semigroup 131 is a particularly important example of a finite INFB semi-

group since it generates a variety that is minimal amongst those generated by finite 

INFB semigroups [74]. In particular if S is any semigroup that has only- nilpotent 

subgroups (such as an aperiodic semigroup) then S is INFB if and only if 131 E 
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the variety generated by S [74]. 

DEFINITION 3.0.10 Let M be a finite INFB semigroup from a variety V. If 

there is a subvariety V' of V containing M so that for every semigroup S E V', S 

is INFB if and only if M E V(S) then M will be said to be a minimal finite INFB 

semigroup for V and the minimum finite INFB semigroup for V'. The variety V (M) 

will be called a minimal finitely generated INFB variety. Similarly if C is a class 

of semigroups (not necessarily a variety) containing M and for every S E C, S 

is INFB if and only if M E V(S) then M will also be called the minimum INFB 

semigroup for C. 

So in the terminology of this definition, 131 generates a minimal finitely generated 

INFB variety and generates a variety that is the minimum INFB variety for the 

class of finite semigroups with only nilpotent subgroups. In this chapter we use the 

theorems of [73] and [74] to find some other classes for which V(B1) is the minimum 

INFB variety and, modulo certain properties of completely simple semigroups, we 

give a description of all minimal finite INFB divisors. In connection with the results 

of the previous chapter, it is interesting to note that 131 is in fact the syntactic 

monoid of the language { ab}*. 

3.1 Classes for which V(131) is the minimum INFB 

variety 

We first recall an extract of a result that is central to the arguments used in [74] 

(proved partly by M. Sapir in [74] and partly by L. Shevrin [83], [84] and [85]). 

LEMMA 3.1.1 Let S be a finite monoid. If there is no homomorphic image of a 

submonoid of S isomorphic to 131 or A then for every idempotent e E S and every 

element a dividing e in S the element eae belongs to Se. Furthermore if for every 

idempotent e E S and every element a dividing e in S the element eae belongs to Se 



CHAPTER 3. SMALL INFB FINITE SEMIGRO UPS. 	 94 

then for every idempotent f E S and any element b dividing f in S, the element 1)2  

divides f in S. 

We now have enough information to prove the following simple theorem, effectively 

a corollary of Theorems 1.1.1 and 1.1.2. 

THEOREM 3.1.2 If S is a finite regular semigroup with period d then the following 

are equivalent: 

(i)S is INFB, 

(ii)131 E V(S), 

(iii)S({a}) E V(S), where S({al) is the three element monoid with presentation 

(1,a; aa = 0), 

(iv)S 	 xyx 	 (xy)d+lx. 

Proof: The implications (ii)(i) and (ii)(iii)(iv) follow immediately since 131 

is INFB, S({a}) E V(131) and S({a}) EL xyx (xy)d+lx for any d> 0. Implication 

(i)(iv) follows since if S xyx (xy)d+lx the Zimin word Z2 is not an isoterm 

for S and by Theorem 1.1.1, S is not INFB. 

We now show that condition (iv) implies condition (ii). Say that the identity 

xyx (xy)d+ix fails on the finite regular semigroup S. So there are elements a and 

b of S for which aba 	 (ab)d+la. Since S is regular there is an idempotent e with 

d-F eR.a and ea = a. So aba = (eabe)a and (ab)d+la = (cab)' ea = (eabe)d+la. Now 

consider the monoid eSe. This is a regular monoid since for any element exe E eSe 

with inverse x' in S, exe = (exe)x/(exe) = (exe)(ex'e)(exe). If eSe is completely 

regular then it satisfies x Xd+1  . In this case eabe = (eabe)d+1  and therefore 

aba = eabea = (eabe)d+la = (ab)d+la, a contradiction. Therefore eSe is not com-

pletely regular and there is an element c E eSe which does not lie in a subgroup 

of eSe. Consider the D-class D, of c in eSe. The principle factor P of D, is a 

completely 0-simple semigroup in which c2  = 0. Since D, is regular there is a (non 

zero) idempotent f E D, so that c divides f.  However in P we have c2  = 0 and so 
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c2  does not divide f in P or therefore in eSe and so by Lemma 3.1.1, at least one of 

the INFB monoids 131 or Al is contained in V(S) and S is INFB. The result now 

follows since 131 E V(A1) ( s e e p a g e 6). 0 

Theorem 3.1.2 is particularly surprising when one considers the existence of finite 

INFB semigroups not generating varieties containing 131 and the fact that every 

(finite) semigroup is embeddable in a (finite) regular semigroup (of course this em-

bedding involves a comparatively large semigroup of all transformations of a set). 

The situation is emphasised by the following corollary of Theorem 3.1.2. 

COROLLARY 3.1.3 A finite monoid S is embeddable in a finitely based finite 

regular semigroup only if S is regular. 

Proof: The statement follows because a finite monoid containing a non group element 

generates a variety containing S({a}). 0 

It would be interesting if the reverse implication also held true for WFB monoids and 

to obtain a corresponding theorem for finite semigroups without an identity element. 

d+ Since any semigroup satisfying xyx (xy)d+ 	 x23 l 	 , x satisfies x3 	 Theorem 3.1.2 

implies that no semigroup with index greater than three can be embedded in a 

finitely based finite regular semigroup. In fact we can reduce these bounds further. 

PROPOSITION 3.1.4 If S is a semigroup with index greater than two, then S is 

not embeddable into a finite finitely based regular semigroup. 

Proof: Assume that S is embedded in a finite regular semigroup R. There is an 

element aES CR so that a2  a2+' for any i > 0. Since R is regular there is an 

idempotent e so that ea = a. The element eae cannot lie in a subgroup of R since 

then for some d we have a2  = (ea)(ea) = (eae)a = (eae)1+1 a  = ad+2. Therefore the 

monoid eRe is INFB since S({a}) E V(eRe). 0 

Note that there are many WFB and even FB regular semigroups with index equal 

to two (an example is B2 = \ {1}). 
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Recall that an orthodox semigroup is a regular semigroup whose idempotents 

form a subsemigroup. Orthodox semigroups are a well known and important gen-

eralisation of inverse semigroups. Rasin [71] has showed that a finite orthodox 

completely regular semigroup is HFB and Question 8.2 of [82] asks whether a finite 

orthodox semigroup S is finitely based if and only if 131 V(S). Combining the 

result of Rasin with Theorem 3.1.2 we get the following partial solutions to this 

question. 

COROLLARY 3.1.5 A finite orthodox monoid is FB if and only if it is HFB and 

if and only if it is not INFB. A finite orthodox semigroup S is INFB if and only if 

131 E V(S). 

In the class of monoids therefore, Question 8.2 of [82] has a positive solution. Re-

calling the examples of Chapter 2 (see Theorem 2.5.11 for example) we see that 

there are a large number of WNFB finite semigroups whose idempotents form a 

subsemigroup, even a subsemilattice but are not regular. Therefore if the condition 

of regularity is removed from the definition of an orthodox semigroup the first sen-

tence of Corollary 3.1.5 no longer holds. The second sentence however does continue 

to hold. 

THEOREM 3.1.6 If the idempotents of a finite semigroup S form a subsemigroup 

of S then S is INFB if and only if 131 E V(S). 

Proof: If the idempotents of a semigroup S form a subsemigroup then for every 

idempotent e, the idempotents of the submonoid eSe also form a subsemigroup of 

eSe. Therefore by Theorem 1.1.2 we need only consider the case when S is a monoid. 

If 131 E V(S) then S is INFB by the definition of being inherently nonfinitely 

based. Assume that 131 V(S). Since 131 E V(A), by Lemma 3.1.1 for every 

dividing pair (a, e), eae E Se. Now for any i > 0, ai divides a' and by Lemma 

3.1.1, a" divides e. Therefore eai e E Se  for all i > 0. We now use induction to show 
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that eaie = (eae)i. From this it follows that ead+le = (eae)d+1  = eae E Se, and by 

Theorem 1.1.2, S is not INFB. 

For any g E Se, let g-1  denote the group inverse of g in Sc. Now for any k > 0 

we have that (eae)la and a(eae)' are both idempotent since, for example, 

(eae)ia(eae) la = (eae) leae(eae)-la = (eae) 

Therefore (eae)-laa(eae)i = (eae)-1ea2e(eae)l is idempotent and since 

\-1 2 	 \-1 (eae) ea e/eae) E Se, 

(eae)-1  ea2  e(eae)-1  = e. Therefore ea2e = (eae)2. 

Now assume that eake = (eae)k. Since (eae)la and ak(eake)_l are idempotent, 

so is the element (eae)_laak(eake)_l. Therefore 

(eae)iaak(eake)-1  = (eae)_l eak+ie(eake\-1 ) = (eae)_leak+le(eae)_k  = e. 

Therefore eak-Fle = (eae)k+1  as required. In particular ead+le = (eae)d+1  = eae 

since the exponent of Se  divides the period, d, of S. 	 0 

By a well known result from [4] the class of all finite semigroups whose idem-

potents form a subsemigroup is exactly the psuedovariety generated by the class of 

finite orthodox semigroups. 

Theorem 1.1.2 also provides a way of increasing the power of this result. 

DEFINITION 3.1.7 If P is a property of semigroups then a semigroup S has the 

property P locally or S is locally-P, if for every idempotent e, eSe has the property 

P. 

COROLLARY 3.1.8 If P is a property so that the finite semigroups with P are 

INFB if and only iffil is contained in the variety they generate then a finite locally-

P semigroup is INFB if and only if 131 is contained in the variety it generates. 
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Proof: Let S be a finite locally-P semigroup. Then by Theorem 1.1.2, S is INFB 

if and only if eSe is INFB for some idempotent e E S. The semigroup eSe has 

the property P and therefore is INFB if and only if B1 E V(eSe). Since eSe is a 

subsemigroup of S the result follows. 

3.2 Number of elements in a minimal finite INFB 

semigroup 

In this section we address the possible size of an INFB semigroup S for which 

131 V(S). We will assume throughout that S is a finite INFB monoid of period d 

with 13; V(S) and that INFB occurs at the dividing pair (a, e). As in the previous 

section Se  will denote the largest subgroup of S containing e and ease E Se  for every 

i > 0. A number of simple lemmas will lead to a lower bound for the cardinality of 

an INFB semigroup S with 131 V(S). 

LEMMA 3.2.1 No subgroup of S contains a. 

Proof: If a were in a subgroup of S then a = ad+1  and eae = ead+1  e contradicting 

the fact that INFB occurs at (a, e). 	 0 

LEMMA 3.2.2 Let s and t be elements of Se  and i > 0. 

(i)The elements as, sa are not contained in Se, 

(ii)sae = tai 	 s = t, 

(iii)sai 0 at and sa 	 ait. 

Proof: (i) If sa E Se  then rs-lsa = ra E Se  for any r E Se. Say ea = r for some 

r E S. Then ead+le = reade = r2ead-le = = rdeae = eae, contradicting the 

fact that INFB occurs at (a, e). That as Se  follows by symmetry. 
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(ii)Say sai = tai. Then 

s = s(eale)(eaie)' 

= (sai)e(eale)-1  

= (tai)e(eaie)-1  

= t(eaie)(ea1e)-1  

= t. 

(iii)Say sai = at for some s, t E S. So eae = eatt-1  = sa1t-1  = att-1  = ae. 

But eae E Se  and ae Se  by part (i), a contradiction. The case sa = at follows by 

symmetry. 

LEMMA 3.2.3 Let s and t be arbitrary elements of Se. Then sa2  ta and a2s 

at. 

Proof: Say sa2  = ta. Then sad+1 = sa2ad-1  = taad-1  = ts-lsad = ts-1(sa2)ad-2  = 

ts-ltad-1  = = (ts-i)d-ita = (ts-1)-lta = st-ita = sa. Therefore eae = 

s-lsae = s-lsad±le = ead±le, contradicting the fact that INFB occurs at (a, e). 

That a2s 0 at f oll o ws b y s y m m etr y. 0 

LEMMA 3.2.4 For every s E Se, we have sa2  Se  and a2s Se. 

Proof: Assume sa2  E Sc. So s- sl a2 = ea2 E Se  and therefore ea2  = ea2e. Let i and 

p be the index and period respectively of the subsemigroup (a) of S generated by a. 

Case 1. p is odd. 

If i is odd then ai+1  = ai+1+7  and i 	 1 is even. Let 2j be the even element 

of {i, i 	 1} (that is, j is the integer part of (i + 1)/2). So ea2j = ea2a2i-2  = 

ea2ea2i-2  = 	 = (ea2)3  E Se. But since p is odd, ea2; = ea23-Fp = ea2J(a2)(p-1)12a  = 

),(0)(a2)(p-1)/2-1a  = 	 = (ea2)+(p-i)/2 a. Now ea2  E Se  and by Lemma 3.2.2, 
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sa Se, so therefore (ea2)i+P/2-1/2a Se, contradicting the fact that (ea2)i-E(P-1)12a = 

ea2i  = (ea2)3  E Se. 

Case 2. p is even. 

Since p divides d and p is even, 5 divides g and d is even. Therefore if for some 
S E Se, we have sP/2  = e then 3d/2  = e. Now since ea2  E Se, 

\ ead+le = ea2ad-le = ea2eead-1e = 	 = (ea2 )d/2  eae. 

We now show that (ea2)P/2  = e and therefore ead+le = eae, a contradiction as 

required. 

2  Let 2j be the even element of {i, i 1}. So ea2i = ea2a2i-2 = 	 = (ea2) E Se.  

But 

ea2j = ea2j+P = ea2(a2)j+p/2-1 = ea2e(a2)j-Fp/2-1 = 	 = 
(ea2)i+P/2 

Therefore (ea2)i = (ea2)/2 — ea2  Nea2)P/2  and so (ea2)P/2  e as required. 

Therefore sa2  is not contained in Se. That a2s is not contained in Se  follows by 

symmetry. 

LEMMA 3.2.5 For any elements s,t E Se, sa2  a2t. 

Proof: If sa2  = a2t then sa2e = a2te = a2t. But by Lemma 3.2.4, a2t Se, contra-

dicting the fact that sa2e E S. 

LEMMA 3.2.6 If i,j E {1,2} and s E Se  then aisai 0 Se. 

Proof: Say aisai E Se  and let t = ears E Se. Then aisai = eaisai = ta3  a contra-

diction since tai is not an element of Se  by Lemmas 3.2.2 part (i) and 3.2.4. 

LEMMA 3.2.7 If i, j,k,1 E {1,2} and s,t E Se  then aisa3  = aktal  implies s = t, 

i = k, j =1. 
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Proof: Say j 1. Without loss of generality we may assume j = 1 and 1 = 2. Then 

aisa = akta2  and so (eais)a = (eakt)a2, contradicting Lemma 3.2.3. Therefore, by 

symmetry, i = k and j = 1. So aisai = aitai and therefore eaisaie = eaitaie. So 

s = t as required. 

LEMMA 3.2.8 If i, j,k E {1,2} and s,t E Se  then aisai act  or tak. 

Proof: If aisal = akt then eaisai = eakt, contradicting Lemmas 3.2.2 (i) and 3.2.4. 

Likewise, by symmetry, aisai talc. 	 0 

LEMMA 3.2.9 For any s E Se, 

a {.s,sa,as,saa,aas,asa,aasa,asaa,aasaa,1}. 

Proof: Firstly a 0 1 since otherwise eae = ead+le E S. Secondly for any i, j E 

{0,1, 2}, (aisaj)d+1  = ai(sai+i e)dsai = aisai . Since eae 	 ead+le, the result follows. 

LEMMA 3.2.10 For any i, j E {0,1,2} and s E Se, 1 az sa3  

Proof: If i > 0, 1 0 aisai since then e = el = aisai e, contradicting Lemmas 3.2.2 

(i) and 3.2.4. By symmetry the only remaining case is when i = j = 0, that is when 

1 = s E Se. This is impossible since a = al 0 as by Lemma 3.2.2 (i). 

Combining Lemmas 3.2.2 through 3.2.10 we have the following. 

THEOREM 3.2.11 The sets {1}, {a}, {azsaj : s E Se, i,j <2} are disjoint in S. 

COROLLARY 3.2.12 If T is a semigroup with III < 56 then T is INFB if and 

only B1 E V(T). 
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Proof: If S is a finite INFB semigroup and 1:q. 	 V(S) then eae E Se  for every 

dividing pair (a, e). By Theorem 1.1.2, for one such dividing pair (a, e), eae and 

ead+le do not lie in the same coset of Se  modulo P(Se) (recall that if G is a group 

then r(G) is the upper hypercentre of G). Since both these elements are contained 

in Se, we must have F(Se) S. If G is a group then by definition, r(G) = G 

exactly when G is nilpotent. The smallest non nilpotent group G is the six element 

centreless group S3 with upper hypercentre equal to {1}. By Theorem 3.2.11 there 

is a disjoint copy of Se  for each pair {(i,i);  i,jE {0,1,2}} (that is, nine copies of 

Se) as well as an element 1 and the element a. This sets the minimum size for such 

a se migro u p as 9 x 6 + 1 + 1 = 5 6. 0 

As will be shown in the following section, there do exist quite a few INFB semi-

groups S with 56 elements and with 131 V(S), so this bound is the best possible. 

A second corollary of Theorem 3.2.11 also follows. 

COROLLARY 3.2.13 If S is a semigroup with at most 8 non-nilpotent subgroups 

then S is INFB if and only if 131 E V(S). 

3.3 Minimal INFB divisors for finite semigroups 

We now describe two constructions for making finite INFB monoids generating va-

rieties not containing B. These constructions will be based around finite centreless 

groups. The importance of centreless groups here lies in the fact that the upper hy-

percentre of a group G is a normal subgroup r(G) such that G/r(G) is centreless. 

Throughout the remainder of this chapter it will be convenient to consider (con-

trary to the usual convention) the ijth  entry of a matrix as the entry in the (i 1)th 

row and the (j 1)th  column. For example the first entry in any matrix will be the 

00th  entry and a Rees matrix semigroup (without 0 element) M(G, in;  n, P) over a 

group G with n x m matrix P will be considered as a set of the form 

{(i,g,j): g E G,0 < i <m — 1,0 <j < n — 1} 
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with multiplication (i, g, j)(i' , g' ,j') = (i, g 	 , j' ), where P,.;  is the ijth  entry of 

the matrix P (according to the altered convention above). If a is a non group element 

of a monoid S we will let a°  denote the identity element 1 of S. 

DEFINITION 3.3.1 Let G be a finite centreless group with identity element e and 

exponent d. Let g and gi  be (possibly identical) elements of the group G. Construct 

a 3 x 3 matrix with group entries as follows: let P2,2 = g and let gi denote the 

element (gig)g1; let h be any element of G\{g2-1g02-1}; and for i,j < 2 define 

e, if i =j=0 

h, if id-j=1 

gi+i .98;.1 if +j > 2.  

Then Ei[G,g, gi,h] consists of the set M(G,3,3,P) U {a,1} with multiplication 

lx = xl = x for every x, aa = (2, g2, 2), 

and 

a(i, k, j) = 

{

(i+1,k,j), if i<2 

(2, g3gV k, j) = (2, gigk, j), if i = 2 

(i, kg;-1  g3,2) = (2, kg , j), if j = 2. 

Multiplication within M(G, 3, 3, P) will be as usual. 

{(i,k,j +1), if 
(i , k , j)a = 

NOTE 3.3.2 In general, 

gVgi  = gT1g- lgT1 (giogiogi  

= g(gig)1-3g1 

and likewise, gig' = gi(ggi)i  39- 

= (2, gi, 2)a. 

This means, in particular, that a(2,gi, 2) = 
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LEMMA 3.3.3 For any centreless group G, the groupoid 	 g, , h] as con- 

structed in Definition 3.3.1 is an INFB semigroup with 131 	 i[G, g, gi, hp . 

Proof: First we check that 7:11[G, g, 	 h] is a semigroup. Since M[G,3,3, P] is a 

semigroup, up to symmetry we have five cases to consider. 

Case 1. a[(i, s, j)(e,t, j')] = [a(i, s, .i)1(i',t,  j'). 

If i < 1 then the left side of this expression becomes 

a[(i,s,j)(i',t,f)) = a(i, 	 j') = (i 	 1, 	 j'). 

Likewise the right side becomes 

[a(i,s,j)J(i',t,j') = (i 	 1,s, j)(i' ,t, j') = (i 	 1, 	 j') 

as required. If i = 2 then the left side becomes 

a[(2, s, j)(i' ,t, j')] = 	 j') 

and the right hand side becomes 

[a(2, s, j)](i', t, j') = (2, g3gV s, j)(i' ,t, j) = (2, g3gV spot, j') 

as required. 

Case 2. (i, s, j)[a(i' ,t , j')] = [(i, s, j)a](i',t, j') 

If both j and i' are less than 2 then the left side becomes 

(i, Ma(ii 	 = 	 + t 	 = (i, s 	 +it ,f) 

and the right side becomes 

[(i s, j)al(il ;t, ji) = (i s, j 	 1)(i' , t ,j') = (i, spi+ixt, j'). 

Since for any a, b, c,d < 2, Pa,b = Pc4 if a + b = c d, the two sides are equal. 
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If j = 2 and i' < 2 then the left side becomes 

(i, s,2)[a(i', t, j')] = (i, s, 2)(i' + 1, t, jI) 

= (i,sP2,e+it,f) 

= (i,•3919e+1+2.9Vt, j') 

and the right side becomes 

[(i, s,2)a](ii,t, j') = (i, sg1  g3, 2)(i' ,t, j') 

(i, sgV 	 j) 

(i,  sg 1 g3g 	 +2g.;1 t j).  

To show the two sides are equal we need to show that 

-1 	 -1 	 -1 	 -1 	 -1 
92 9e+392 = 92 9392 92'+292 • 

Since gi  = (gig)1l gi  by definition, we have 

(gV +3)gV =(g(gig)ii  gi)gTi g,71  (by Note 3.12) 

=.9(91.9)1s-1  

=gTi (gig' 

=9T1(919)ii  (91990(919M-1  

=(giggi)_l (gig giggi)(giggi)_i (gig)il  +1 gi(gig 

=tgiggir1(g1gg1ggi)(g1ggirigi,+2(giggi)' 

,-1 
=.92 Y3.92 .9ii-E2Y2 

as required. The proof is similar when j < 2 and i' = 2. 

Finally we need to consider the case when j = = 2. In this case the left hand 

side becomes 

(i,s,2)[a(2, t, j')] = (i, , 2)(2, g3git, j') 

= (i s P2,2g3g 	 i') 

(i,  SgV. g4g g3g1t,  ii) 
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and the right hand side becomes 

	

[(i,s,2)a](2,t, j') = 	 g3,2)(2,t, j') 

(i, sgi-1  g3P2,2t, 

	

= 	 SgV■ g3g;.1 g4g1t, ii). 

Applying the same arguments as before, we get 

(9vg4)(gvg3)(g1) 
=(ggiggi)(ggi)(gTig-ig-i ) (by Note 3.3.2) 

=ggig 

=ggiggiggi(giggi 

=gVg3gVg4gcl  (by Note 3.3.2) 

as required. 

Case 3. a[a(i, s, j)] = [aa](i, s, j). 

If i = 0 then we have a[a(0,s,j)] = a(1, s,j) = (2,s,j) = (2, g2gV g2gV s, j) = 

	

(2, g2P2,os, i) = (2,92,2)(0, 	 = [act](0,s,j). If i = 1 then we have a[a(1,s,i)] = 

a(2,s,j) = (2, g3g1  s, j) = (2, g2g1g3gV = (2,g2P2,1s, j) = (2, 92,2)(1, s, i) = 

[aa](1, s, j). Finally if i = 2 we have a[a(2, s, j)] = a(2,g3g;-1s, j) = (2, (g3g1)2s, j) = 

(2, (gig)2  s, j) (by Note 3.3.2) and (2, (gig)2s, j) = (2, gi(ggi)gs, j) = (2, g4gV s, j) 

(again by Note 3.3.2) and (2, g4gV s, j) = (2, g2gV g4.g.;1  s,i) = (2, g2P2,2s :7) = 

(2, g2, 2)(2, s, j) = [aa](l, s, j) as required. 

	

Case 4. [a(i,s,j)]a = 	 s, Act]. 

If both i and j are less than 2 then 

[a(i,s, j)]a = (i 	 1, s, j)a = (i + 1, s, j 	 1) = a(i, s, j 	 1) = a[(i,s, j)a]. 

If i = 2 and j <2 then 

[a(2,s,j)]a = (2, g3gV s, j)a = (2, g3gV.  s, j 	 1) = a(2,s, j +1) = a[(i,s,j)a]. 

If i = j = 2 we have 

[a(2, s, 2)]a = (2, g3gV 3,2)a = (2, g3gVsgVg3, 2) = a(2, sgV g3, 2) = a[(i, s, j)a] 
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as required. The proof is similar if i < 2 and j = 2. 

Case 5. a[aa] = [aala. 

This follows because a[aa] = a(2, g2  , 2) = (2, g3g2-1g2, 2) = (2, g3, 2) = (2, g2g2-1g3, 2) = 

(2, g2,2)a = [aa]a. 

	

So Ei[G, g, 91, h] is a semigroup. To show it is INFB first note that El  [G, g, 	 h] 

is a monoid and that the element a divides the idempotent (0, e, 0) because 

(0,g1/30-3-,0)aa(2, P2—L 	= (0, glP(2,71,0)(2,g2,2)(2, P271,0) = (0, e, 0). 

However the period of EI[G,g,g1, h] is d (the exponent of G) and ad  +1  = (2,91, 2) 

SO 

(0, c, 0)a(0, e, 0) = (0, h, 0) 0 (0, g;-lgigl, 0) = (0, e, 0)(2,gi, 2)(0, e, 0). 

as required by Theorem 1.1.2. Finally we need to show that 131 is not contained 

in the variety V(Ei[G,g,gi, h]). It is well known and easy to verify that a Rees 

matrix semigroup over a group of exponent d satisfies the identities x xd+1  and 

(xyz)d  (xz)d. Therefore M[G, 3, 3, P] satisfies the identity (xyx2y)d (xy)d. 

Furthermore if we delete all occurrences of a given letter from this identity then the 

resulting identity is still satisfied by M[G, 3, 3, P]. Therefore the monoid obtained 

from )14[G, 3, 3, P] by adjoining an identity element satisfies (xyx2y)d 	 (xy)d. So 

in order to show that--7.71[G,g,g1, h] satisfies (xyx2y)d 	 (xy)d we need only check 

cases where the element a is assigned to at least one of the letters x and y. If a is 

assigned to both x and y or if a is assigned to just one of these and 1 is assigned to 

the other then both sides simply equal ad.  If a is assigned to x but (i, s,j) is assigned 

to y, then xy becomes (i', t, j) for some i' and some t E G. In this case, both sides 

of the identity become the idempotent in the subgroup Hi, of all elements of the 

form (i', r, j), where r E G. The case when a is assigned to y and (i, s, j) is assigned 

to x is similar. Thus 

(xyx2y)d 	 (xy)d. 
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However B1 17& (xyx2y)d (xy)d since (as noted in the introduction to this chapter) 

131 contains two elements, a and b, such that ab is a nonzero idempotent but a2  = 0. 

Since the left side of (xyx2y)d (xy)d contains x2  but the right side is of the form 

(xy)d, assigning a to x and b to y ensures the left side becomes 0 but the right side 

beco mes t he no nzero i de m pote nt. 0 

We will say that El  [G, g, h] is a small INFB finite semigroup of the first kind 

and denote the set of all such monoids by El. 

NOTE 3.3.4 In [74] a finite INFB monoid T is presented for any centreless group 

G with a non identity element g with the property 131 0 V (T). By letting e be 

the identity element of G it is possible to show that the monoid Ei[G,g, e] is a 

(proper) homomorphic image of T. 

Note also that if S3 is the six element centreless group then Ei  [S3, g , , h] has exactly 

56 elements for any valid choice of g, gi  and h from S3. By Corollary 3.2.12 this is 

the smallest possible size for such a semigroup. 

For integers a, b, r we will use the notation a + (b mod(r)) to denote the sum of 

a with the smallest non-negative element of the equivalence class b mod(r). We will 

also use the notation [alb] to denote the integer part of the rational number alb. 

For example, for any pair of integers n and m we have n = m[n/m] (n mod(m)). 

DEFINITION 3.3.5 Let G be a centreless group with exponent d and identity ele-

ment e and let (a) be a finite cyclic semigroup of index 2 and period p generated by 

an element a. Suppose p has two divisors l and r, not both 1, such that there are ele-

ments L and R of G with order p I l and plr respectively and a mapping f: (a) -4 G 

satisfying: 

(i)f (a) 	 gal+P), 

(ii)for all i, j >0 with i +j <1 + p, 

= L[j f (a2-Ei+( rnod(1))) = f(a21-2-1-(j rnod(r)))R[j/r), 



.(i,kgi-1)11],2+ ((j —1)mod(1))), if 2 < j < 2 +I 

and aix = ai-1(ax), xai  = (xa)ai-1. 

(i, k, j)a = {(i,k,j +1), if j <2, 
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(iii) for any j < p, if f(ai+j) = f(a2) for every i with 1 +p > i > 2 then p = j. 

Then E.2[G, L, R, f,p] is the groupoid 

M(G,2 +1,2 + r, P) U {1,a,a2,... 

where Pij = f(ai÷), P0,0 = e and multiplication is defined by 

a(i , k, j) = 
{ (i+1,k,j), if i <2, 

(2 ± ((i — 1)mod(r)),RRz-1)Ir1k, j), if 2 < i < 2 + r 

LEMMA 3.3.6 In general, an (i, s, j) = (2 ± ((i n — 2)mod(r)), RRi+n-2)1r1  s, j) 

and (i, s, j)an = (i, s LR3+n-2)11], 2+ ((j 	 n — 2)mod(1))). 

Proof: We use induction. Firstly a(i,s, j) = (2 ± ((i — 1)mod(r)),RRi-1)111S,j) so 

the claim is true for n = 1. Assume that 

an (i, j) = (2 ± ((i n — 2)mod(r)), liRt+n-2)1r}  s, j). 

We now show that an+1(i,s,j) = (2 ± ((i n — 1)mod(r)), RRt+n-1)Iris, j). 

Now 

an+i(i,s,i) 

=a(2 ((i n — 2)mod(r)),RRi+n-2)I1  S, j), (by assumption) 

.(2 ± (2 ± ((i n — 2)mod(r)) —1)mod(r)), 

R[(2+((i+n-2)rn0d(7.))-1)1dR[(2+n-2)1r] s,  j) 

=(2 	 ((i 	 n — 1)mod(r)), 
	 1+((i+n-2)mod(r)))17.1 RR2+n-2)1 s  j).  

It remains to show that R[(1-1-((i+n-2)mod(r)))/7.]R[(i+n-2)/r] 	 Let t be the 

element RR1+((2+n-2)m0d(r)))/r1R[(i+n-2)/7'] E G. Now either 1±((i + n —2)mod(r)) < r 



CHAPTER 3. SMALL INFB FINITE SEMIGROUPS. 	 110 

or 1+((i+n-2)mod(r)) = r. If 1+((i+n-2)mod(r)) < r then ((i+n —1)mod(r)) < r 

and so [2+nr-2] = r+;---1]. In this case t = R[(i+11-2)/r]  = R[(i+71-1)/ri as required. If 

1+ ((i+n-2)mod(r)) = r then Ri(1+((i+.-2)m0d(r)))/ri  R, ((i +n —2)mod(r)) = r-1 

and [i.4-771r  [  1-±7-1.-1] 1. Sot = RR[(i+n-1)/d-1  = Ri(i+12-1)/r)  as required. Therefore 

by induction the result is true for all n > 1. 

The corresponding result for multiplication on the right follows by symmetry. 0 

LEMMA 3.3.7 The groupoid :72[G, L, R, f, as constructed in Definition 3.3.5 is 

an INFB semigroup and 131 V (E2[G , L, R, f P]) • 

Proof: First we will show that 1E2  [G, L, R, f , p] is a semigroup. Since .A4(G, 2+r, 2+ 

1, P) is a semigroup we have, up to symmetry, four cases to consider. 

	

Case 1. an[(i, s, j)(ii, t, j')] = [an(i, s, 	 j'). 

This is similar to Case 1 in Lemma 3.3.3: multiplying an element (i, s,j) on the left 

by an gives an element of the form (k,rs,j) where r is some element of G, k is a 

number and both r and k depend only on the numbers n and i. Thus 

	

anKi, s, j)(i' ,t, j')] = an (i, 	 j') = 	 j') 

and 

[an (i, s, j)](ii  , h, j') = [an(i, s, j)](i' , h, j') = (k, rs, j)(i' ,h, j') = (k,rspixt, j') 

as required. 

Case 2. (i,s, j)[an(i' ,t, j')] = [(i, s, j)an](i' , t, j'). 

The case when j, n and i' are sufficiently small that both i' + n and j n are less 

than or equal to 2 is essentially the same as the first case considered in Case 2 of 

Lemma 3.3.3. Now say that i' + n < 2 but j n > 2(if + n > 2 and j n < 2 

then the proof is similar). In this case the left side becomes 

s, j)[an(ii, t, j')] = (i, s, j)(i' + n, t, j') = (i, sPJ,P+nt, j'). 
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Now using Lemma 3.3.6 the right hand side becomes 

[(i, s, 	 j') = (i, 8Li(3±n-2)/11, 2+ ((j 	 n — 2)mod(1)))(i',t, j') 

= (i, sL2)/1] p2+((i+n_
2)mod(0),iit ..7) • 

If associativity is to hold then 

	

L[U-1-n-2)11] D., 	 . 

I  ,2-1-(0-1-n-2)mod(1)) = Pj,i1-1-n• 

The left side of this is 

gi-i-n-2)11] D. 
r 2' ,2-1-((i+n-2)rnod(1)) = L[Cii-n-2)11] f (

a2+i'+((i+n-2)mod(1))) 

= 

= 

which is the right hand side as required. 

Finally consider the case when i'-F n and j n are both greater than 2. In this 

case the left side becomes 

(i, s, j)[an(i',t, j')] .(i, s, j)[an(2 	 — 2, t, j')] 

	

s, j)(2 	((n 	 — 2)mod(r)), R[(71+2l 	 jf) 

(by Lemma 3.3.6) 

no[(n-1-e-2)/rit,  it) =(i, SPj,2+((n+ii-2)mod(r))1E,  

and the right side becomes 

	

= (i,sL1(2+n-2)/11, 2 + ((j 	 n — 2)mod(1)))(i' 

= (i, S 03+n-2)111 P2+((3-i-n-2)mod(1))),iit ii). 
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Now 

Pj,24-((n+ii-2)mod(r)) RE(n+i
1-2)/r] = f(a2+((n-I-V-2)mod(r))+j)R[(n+V-2)/r] 

= 

= 	 f (a2-Fil-1-(0+n-2)mod(1))) 

= gi+n-2)/11P21-((i+n-2)mod(0)),i' 

as required. 

Case 3. an[am(i,t,j)] = [anal(i,h,j). 

This follows immediately since from Definition 3.3.5 we have that an(i, h, j) = 

an-1(a(i, ki)). 

Case 4. [an(i, s, A]an' 	 anRi, s,j)aml. 

This follows for essentially the same reasons as the result in Case 1. 

Therefore associativity holds and E2[G, L, R, f,p] is a semigroup. Also, by The-

orem 1.1.2, INFB occurs at the dividing pair (a, (0, e, 0)) since 

(0, e, 0)a(0, e, 0) = (0, f (a), 0) 

and by Lemma 3.3.6, 

(0, e,0)ad+1(0, e, 0) = (0, e, 0)a'(0, e, 0) = (0, f (aP+1), 0) 

where f (a) 0 f(aP+1). 

Finally, to show that B is not contained in V(-22[G, L, R, f,p]) we again use the 

identity (xyx2y)q (xy)q where q is the period of E2[G, L, R, f, p], or equivalently 

the lowest common multiple of the exponent d of G and the period p of (a). Since 

both p and d divide q as numbers, it follows that E2[G, L, R, f,p] satisfies this 

identity for essentially the same reasons as in the proof of Lemma 3.3.3. 0 

We will say that E2[G, L, R, f, p] is a small INFB semigroup of the second kind 

and denote the set of all such monoids by E2. 

We will now construct an example. 
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it follows that the direct product of L' with any finite group also generates such a 

variety; see Corollary 3.1.5 below). 

Summarising and combining the ideas above we obtain the following theorem. 

THEOREM 4.1.13 (i) For any semigroup Si  (finite or otherwise) there are finite 

semigroups S2 and S3 generating hereditarily finitely based varieties so that Si  X 

S2 X S3 generates a variety with uncountably many subvarieties. 

(ii)If M is a monoid of index more than two then there is a finite group G generating 

a hereditarily finitely based variety with only 3 subvarieties so that M x G generates 

a variety with uncountably many subvarieties. 

(iii)If M is a monoid of index less than or equal to two then either M satisfies both 

xyx xxy and xyx yxx or there is a finite semigroup S generating a hereditarily 

finitely based variety so that M x S generates a variety with uncountably many 

subvarieties. 

Proof: (i) For S2 and S3 one can take, for example, the semigroups L' and S({aab}) 

or the semigroups B and S({aa}). 

(ii)The monoid S({aal) is contained in the variety generated by M and therefore 

the claim follows by taking G to be the group B above. To obtain a aperiodic 

example one may replace the group B in this argument by the direct product of 12 

with its right dual R.' and obtain a similar result. The semigroup L1  x R.1  generates 

a band variety with a lattice of subvarieties consisting of 13 elements. 

(iii)If M does not satisfy one of the described identities then one of the semi-

groups M x S({aabl) or M x S({abb}) generates a variety whose identities are 

closed under deletion, have index three and do not contain either of the identities 

xyx xxy and xyx yxx. By the last part of Theorem 4.1.2, one of these semi-

groups generates a variety with uncountably many subvarieties. 

In connection with part (iii) of this theorem we note that a monoid of index one 

satisfying both xyx 	 xxy and xyx 	 yxx is a semilattice of groups (a Clifford 
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EXAMPLE 3.3.8 As our group we will take the symmetric group S3 of order 6 

(and exponent 6) with presentation (L, R; L3  = R2  = e,LR = RL2). Let p be the 

number 6. The orders of L and R are 3 and 2 respectively so the numbers 1 and r 

required by Definition 3.3.5 are 2 and 3 respectively. Finally we define our mapping 

f according to the following table: 

f (a) f (a2) f (a3) f (a4) f(a5) f(a6) f (a7) 

L L R L2  L R L3  = R2  = e L2  R 

It is easily verified that f satisfies the requirements of Definition 3.3.5. So the 

sandwich matrix P of the completely simple ideal of 1-12[S3, L, R, f, p] is 

7  e L L H\ 

L L R 

L R L2  LR 

R L2  LR e 

\L2  LR e L2R1  

We now show that the class E l  U 	 U BY contains all minimal finite INFB 

semigroups. 

THEOREM 3.3.9 Let S be a finite semigroup. The S is INFB if and only if there 

is a monoid T E U L-72 U {B1} with T E V(S). 

Proof: The "if" implication follows immediately from the property of being INFB. 

Now we show that the reverse implication is also true. Firstly by Theorem 1.1.2 

we may assume that S is a monoid with identity element 1 and that there is an 

idempotent e and an element a so that INFB occurs at (a, e). Now assume that 

131 V(S). So by Lemma 3.1.1, eate E Se  for every i > 0. We will take a series of 

subsemigroups and homomorphic images until we arrive at a semigroup isomorphic 
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to one from Ei  U E.2. This process is equivalent to taking a single homomorphic 

image of a subsemigroup of S (see [66] for example). The small INFB semigroup we 

arrive at is therefore a divisor of S. 

Consider the subsemigroup T of S generated by the set Se  U { a, 1}. Now a 

still divides e in T since (e)a(e(eae)') = e. Let i and p be the index and period 

respectively of (a) (the subsemigroup generated by a). By Lemma 3.2.1, i is at least 

2. Also since p divides the period of T and the period of T divides the period of S 

(say d), the property eae eaP+le modulo r(se) is preserved and therefore T is an 
INFB submonoid of S. Note that Te  is identical to Se. 

Since T is generated by Te  U fa,* and ea' e E Te  for every k > 0 (recall 

a° = 1), every element in T except 1 can be considered as a word of the form ansam 

where n and m are non negative integers and s E T. We now want to replace the 

non-nilpotent group Te  with a centreless (and therefore also non-nilpotent) group. 

Consider the equivalence 01  defined as 

{(x, y)  :x =y  or x= arise y = ante, n,m >0 and s t mod r(re)}. 

This is a congruence since if an Sam and antam are equivalent modulo 01  then 

anigami ansam = a' 

and 

an' gam ante = an' geaml+netam 

for any non-negative integers n' and m' and g E Te. Since s 	 t mod r(re) we 
must have 

geami' es gee' + n et mod r(re) 

and therefore 

(an' geami+nesam , an' gee!' etam) E 01. 

So 01  is a left congruence and likewise, by symmetry, a right congruence. Let 'I 

denote the monoid T/01. This is still an INFB monoid since eae and ead+1  e were 
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not equivalent modulo F(Te) so 

(eae)/Oi  = (eae)F(Te) 	 (ead+le)r(Te) = (ead+1e)/01. 

To avoid unnecessarily complicated expressions we will relabel the equivalence classes 

of T so that a/01  becomes a and e/Oi  becomes e. By the definition of the upper 

central series, the group 'le  is centreless and so F(Te) = {e}. Therefore two elements 

of I', are equivalent modulo r(t) if and only if they are equal. 
Let j be the smallest positive integer so that eai-je 	 eai+P-je (recall that i 

is the index of (a)). Such a j exists since eae 	 eaP+le and eal-(2-1)e = eae and 

eal+P-(i-l)e = eaP+1e. So by the choice of j, for any k < j, eaj-ke = eal+P-ke. Now 

a divides ai-j-1(eai-j-le)-1  since 

= 	 x a x (eae)'. 

Also ai-3-1(eai-j-1e)-1  is idempotent since 

ai-j-1(eai-j-le)-1. 

Therefore (a, ai-j-1(eai-j- 
 
le)') is a dividing pair and the set fai-j-ls : s E Tel 

is a subgroup of 't isomorphic to I', (it is easily verified that the map f : T } 
: S E tel given by f(s) = ai-j-i(eai-j-ie)_'s is an isomorphism). Now 

(ai-j-1(eai-j-10-1)a(ai-j-1(eai-j-le)-1) 

is equal to 

ai-j-1(eai-j-  e) 	 e(ea' e)1  

and 

i-j-le)-1)aP4-1(ai-j-1(ea2-j-le)-1) 
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is equal to 

a 	 - --1 ■-1 	 i-j-1 e) ea 	 e(ea 	 e) -1. 

But since eai-je and eai+P-i e are not equal, neither can be 

and 

e(eai-j-10-1. 

Therefore INFB occurs at (a, ai-j-1(eai-j-le)-1) and for every k> 1, 

(ai-j-1(eai-j-ie)_i)ak(ai-j-i(eai-J-10-1) 

is equal to 

e)-1)aP+k(ai-j-1(eai-j-le)-1). 

Let the idempotent ai-j-1(eai-3'e)' be denoted by f and let U be the sub-

monoid of T generated by I', u fa, 11. Using the same kind of argument as was 
used in the case of T, we have that U is an INFB submonoid of T and INFB occurs 

at (a, f). However, as was noted above, fak  f = fak+P f in U for all k> 1. 

	

Now consider the equivalence on the set {a, a2, a3, 	 ai+P-1} given by 

	

(I) p = {(as, ak) :j = k or j, k > 1 and j 	 k(mod(p))}. 

Since sfak ft = sfak+P ft in U for all k > 1 and any s,t E Uf op generates a 

congruence 02 on U equal to 

	

{(x,y) : x = y Or 	 y) E Op; 

:2 

	

or x = a sa 	 _ , y - a2  sak2  and both (ail, a32),(a/d1ak2) E 

Let U be the semigroup U/02. For the sake of simplicity we will relabel the equiv-

alence classes so that a/02  becomes a and f102  becomes e. So (a, e) is a dividing 

pair, Tie  is centreless, eaje EU, for all j > 0, and eae eal+Pe. Furthermore, the 

index of (a) (the subsemigroup generated by a) is now 2, that is a2  = a2+P. 
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Consider now the subsemigroup 

C = {ai  sai : j > 0, s E tie} 

This is an ideal of the semigroup la and every element in C divides every other 

element since for any i, i', 	 > 0, s, t E 

sai = (ait-1(eaii  e)-1)(ail  taji  )((ea3  e)-1  sai). 

Thus C is a completely simple subsemigroup of U. It is clear also that thel-t-classes 

of C are sets of the form faisai : s E -eel and we will denote such an 74-class by 

The proof will now split into two cases. The first is the situation when a2  is 

contained in C. The corresponding semigroups will be elements of El, the INFB 

semigroups of the first kind. The second situation is when a2  ■0 C. In this case it is 

possible that some further reduction may be made. 

Case 1. a2  E C. 

In this case the set {a2, a3, 	 al+P} is a cyclic subgroup of some group Hij. Now 

by the Rees-Suschkewitz theorem, C is isomorphic to a Rees Matrix Semigroup over 

the centreless group Cc  with sandwich matrix P. Since every element in C is of the 

form aisai and a2  E C, P must be at most a 3 x 3 matrix. Since Theorem 3.2.11 

shows that the sets {1, a} and each Hi ,a for i, j < 2 are disjoint, P must be exactly 

a 3 x 3 matrix. Now if a2  = aisai where i < 2 and j < 2 then every element in C 

can be written in the form alitaf for t E < 2 and j' < 2 and then P is be 

only an i' x 3 or 3 x i' matrix, a contradiction. Therefore, by symmetry, a2  = a2sa2  

for some s E Ue  and the subgroup {a2, a3, al+P} is a cyclic subgroup of H2,2. 

Note also that {a2, a3, 	 al+P} is generated by al-EP since (al+P)n = an+np = 

For some g1  E Ue, a1 	a2g1a2. Let g be the element ea4e and define a map 

t: 	 g, gi, eae) by 

t(1) = 1, t(a) = a, t(a2  sa3) = (i, s, j). 

We show that t is an isomorphism. It is certainly a bijection since during the 

arguments above we have shown that U contains only elements of the form 1, a, 
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and ai sai (for i, j < 2 and s E tie) and Theorem 3.2.11 shows that these are distinct 

in any finite INFB semigroup whose variety does not contain B. We need to show 

that for any elements x,y E U, t(zy) = t(x)t(y). The case when x or y is 1 is trivial. 

Consider the case when x = sai and y = al' taii  . Now 

t(ai  sai aii  a 	 t(ai  seaii+j etaii) = (i, seaii+i et ,j') 

and 

t(ai  saj)t(aii  tai') = (i, s, j)(i' ,t, j') = (i, sPj,1it j'). 

As in Definition 3.3.1, put gi  = (gig)i-lgi. If i' j > 2 then 

a+' 	 (a2gia2)j±2  = a2(g1 ea4e)j+
ii-1gia2 --- a2g j+i, a2 

and therefore eaj+ii  e = ea2egi+ilea2e. Now a2 = a2g2a2 so ea2e = ea2g2a2e. There-

fore g2  = (ea2e)-1. This implies that 

• 

ea3+i e = ea2eg3+2,ea2e = g2-1gi+i,g2-1  = Pj,i, 

as required. If i' = j = 0 then 

= Po,o = e = ea°  e 

as required. Finally if i' = 1 and j = 0 (the case when i' = 0 and j = 1 follows by 

symmetry) then 

t(ai  sata' ) = (i, seaet, j') = (i, sPcot, ii) = (i, s, 0)(1, t,j') = t(ai  s)b(ataii), 

also as required. 

Now consider the case when x = a and y = aisai. Firstly assume i = 0. Then 

t(aaisaj) = t(asaj) = (1,s,j) = a(0,s, j) = 

as required. 
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Now assume that i > 0. Therefore 

t(aaisai ) = t(ai+lsaj) =t(a2g2+1 a2saj) = (2, gi+1  ea2es, i)• 

But ea2e = 	 so t(aaisai)= (2, gi+02-1s, j). If i = 1 then 

(2, gi+igVs,j) = (2,s,j) = a(1,s,j) = t(a)t(asaj) 

as required. If i = 2 then 

(2,9i+1gvs,i) = (2,g3gvs,j,  = ) 	 a(2,s,j) = t(a)t(a2sai), 

also as required. 

Up to symmetry, the only remaining case is when x = y = a. That c(aa) = 

t(a)t(a) follows immediately since in t.j we have a2  = a2g2a2  while a2  = (2, g2, 2) in 

Ei(ee,g,gi,eae). Therefore c. is an isomorphism. 

Case 2. a2 ,0 C. 

Since {a2, a3,... , al+P} forms a cyclic subgroup o. 	it must be that ai  C for all 

i > 0. Recall that if i > 1 then eaie = eai+Pe and that Op  is the equivalence 

{(aS,ak) :j = k or j,k > 1 and j k(mod(p))} 

on the set {a, a2,a3, ...}. Let q be the smallest number such that for all i > 1, 

ease = edi+qe. It is easily verified that the equivalence 03  given by 

{(x,y): x = y; or (x,y) E 0q; 

or x = asa , y = aii  saf , and both (ai,at'), (as, as') E (1) q} 

is a congruence that preserves the property of being an INFB monoid. Let the 

semigroup U/03  be denoted V and let the equivalence classes a/03  and el03  be 

relabeled a and e respectively. Note that the group V, = Tie/03  is isomorphic to 

tie  and that the period of (a) (the subsemigroup of V generated by a) is now the 

number q. 
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In V, eaie = eai+je for all i > 1 if and only if j = q. If ea2  = ea2+i then 

ea2ai-2  = eal  = ea2+jai-2  = eai+i for any i > 2. Therefore the number j in these 

equations must be q. Likewise a2e = a2+3e if and only if j = q. Say there exists 

j > 2 such that ea' = ga for some g E V,. Then eajaq = ea i and gaaq = gaq+'. 

Therefore gae = ease = ga le, a contradiction since eae eaq+le. It follows that 

no such j exists and likewise that there is no integer j > 2 such that aje = ag. 

This also guarantees that no j > 1 exists so that aie = g or eai = g since then, 

for example, aj+1  e = ag. Now let r be the smallest number such that a2e = a2+rR 

for some R E V, and 1 be the smallest number such that ea2  = La2+1  for some 

L E Ye. Now r must divide q since otherwise there are numbers k and k' such 

that kr k'(mod(q)) and k' < r. In this case a 2+kre  = a2Rk and a2-}-kre  = a2+kie,  

contradicting the minimality of r. Likewise, 1 must divide q also: say q= nr = ml. 

Now since a2+qe = a2e and a2+qe = a2+nre  = a2Rn we must have that Rn  = e and 

therefore the order of R divides q. Let the order of R be k (note that k necessarily 

divides n). Then a2+rke = a2Rk  = a2e and therefore eaie = eai+rke for every i > 1. 

By the choice of V however, this is true only if rk = q. Therefore the order of R is 

n and, by symmetry, the order of L is m. 

If 1 = r = 1 then L and R have the same order and for any integer i > 0, 

L2(ea2e) = ea2+ie = (ea2e)Ri. Furthermore for any k > 1 and i,j > 0, 

a2+k  X aisai = a2Ri+ksaj 

and 

a2Rk(ea2e)-1a2  x aisaj = a2Rk(ea2e)- ea2Risaj 

= a2Ri+ksaj. 

Likewise a'sa3  X a2+k  = aisaJ x a2(ea2e)-1  Lka2. But ea2eRk = Lk  ea2e and so 
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Therefore multiplication on the left of an element of C by a2 	the same as 

multiplication on the left by a2Rk(ea2e)-1a2  (or equivalently by a2(ea2e)-1Lka2) 

and likewise with multiplication on the right. We also have 

	

k 	 2+ = a (k+1) 	 x a  

	

a X a2+ 	 = a2+k  

and 

a x a2Rk(ea2e)ia2 = a2Rki-v(ea2e)1a2 = a2Rk(ea2e)ia2 X a. 

Therefore the equivalence 94 given by 

{(x,y): x = y; or x = a2+k  and 

y  = a2Rk(ea2e) 	
Or X 

i 
, 

a2. 	 = a2Rk(ea20-1a2 and y  = a2-Fk}  

is a congruence. The resulting quotient of V is an INFB semigroup of the type 

described in Case 1. Therefore we can assume that not both of 1 and r are 1. 

Now we are ready to compare V to a semigroup from E.2• Define a map 

f : 	 Ve  

by f(a1) = eaie. For any i < r and any s E Ye, a2+2e 	 a2s and likewise for 1, 

there are at most (2 + r) x (2 + 1) '11-c1asses H2,3. To see that there are exactly 

(2 + r) x (2 + 1) 9-1-classes of the form 1-11j, note that if aisai = aii  tali  with j and 

j' less than 2 + 1 then eaisai = ealitaji  , that is there is an element v E Ye  so that 

ea i = vaii  . Say j' j. If both j and j' are greater than 1 then because a2+P = a2  

we have ea2  = contradicting the minimality oft. If one of j and j', say 

j', is less than 2 then, we have either ea = eai or e = ea. In either case we obtain 

ea = ea' for some k > 1. But then ea2  = eal+k. By the arguments above, 1 + k 

must equal 2 +p and therefore ea = eal+P, contradicting the fact that INFB occurs 

at (a, e). Therefore j must equal j'. Likewise by symmetry if i and i' are less than 

2 + r then i = 
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For i < 2+r, j < 2+1 and 0 < k < 1+ q define a map t' : V E2(Ve, L, R, f, q) 

by 

ti (ai  sa3) = (i, s, j), ti (ak) = ak. 

It is clear that t' is a bijection. To show it is an isomorphism, up to symmetry there 

is only one nontrivial case to check that is not already covered by corresponding 

arguments for the map t in Case 1. The case that remains is when ti ((ak)(ai sai)) = 

t' (ak)il (ai sai). If (k + i) > 2, the left side of this equals 

(a2+((k+i-2)mod(r))R[(k+i-2)/r]sa3) 

= (2 + ((k + i — 2)mod(r)), R[(k÷2-2)/r}  s, j) 

= ak  (i, s, j) (by Note 3.3.6) 

= (ak)il (ai  sai) 

as required. If (k +i) < 2 we can assume that k = 1 and i = 0 (since the cases when 

k = 0 are trivial) and the left side becomes 

= (1, s, j) = a(0,s,j) = il(a)//(sai) 

as required. Therefore V is isomorphic to E-12[Ve, L, R, f, q]. The proof is complete. 

0 

We now have the following Theorem. 

THEOREM 3.3.10 There are infinitely many minimal finitely generated INFB va-

rieties. 

Proof: We will only consider the small INFB semigroups of the first kind. It is 

well known that if p > 2 is a prime number then the dihedral group Dp  given by 

(a, b : aP = 1  = b2,ap-1b  = ba) is centreless (the proof of this and more general 

results are popular exercises in many group theory texts; see [3] or [72]). Let S 

and T be two monoids from El  with largest subgroup Dp  and Dq  respectively (p 

and q distinct primes). For each number n > 1, D„ has exponent 2n so therefore 
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S x2 x2 +2P and Tx2+2q. In this case, any semigroup U E V(S) n V(T) 
x2+g.c.d.(2p,2q) 	 x2+2 . satisfies x2 	 Any subgroup G of U must therefore have 

exponent 2. So G satisfies xy xy(yxyx) x(yy)xyx xxyx yx. That is, G 

is abelian, and therefore nilpotent. Therefore U is INFB if and only if 131 E V(U). 

Since 131 V(S) and 131 V(T), U is WFB. The result now follows since there 

are infinitely many prime numbers and consequently infinitely many dihedral groups 

D. 

Note that if INFB occurs at a dividing pair (x, y) in a semigroup S E E'l U 

with maximal subgroup G, then since a is the only non group element in S, x must 

equal a by Lemma 3.2.1. Every idempotent in S of the form (i, s, j) for s E G and 

i + j > 1 can be written in the form ai(0,t,O)a3  for some element t E G. But since 

i +i > 1 and the index of S is 2, 

ai(0,t,O)a3aaj(0,t,O)ai =ai(0,t,0)(23+i+1(0,t,O)ai 

= ai(0,t,O)ai+i+1+d(0,t,O)ai 

= a(0, t,O)aiad+lai(0,t,O)ai 

and therefore INFB does not occur at (a, ai(0, t, 0)a3). So the idempotent y must 

be one of 1, (0, e, 0) or possibly ad  if S E E2• Since INFB occurs at (a, y) it is easily 

verified that the only possibility for y is (0, e, 0). That is, there is only one dividing 

pair in S where INFB occurs. Since INFB occurs for at least two distinct dividing 

pairs in both B and Al, by Lemma 3.1.1 we have proved the following theorem. 

THEOREM 3.3.11 If INFB occurs at only one dividing pair in a finite semigroup 

S then 131 is not contained in the variety V(S) and there is a monoid T E U :2 

such that T E V(S). 

Note also that since the index of every semigroup S in E U E2 is only 2, for 

any element x, x2  lies in a subgroup of S. From this it is easily verified that 

every semigroup from :El  of period d satisfies (x2y)d  (x3y)d and (yx2)d  (yx3)d 
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However if S is a semigroup from E2 then the numbers / and r are not both 1, 

and either a2(0, e, 0) and a3(0, e, 0) or (0, e, 0)a2  and (0, e, 0)a3  must lie in different 

subgroups of S. In this case one of the identities (x2y)d (x3y)d and (yx2)d (yx3)d 

must fail on S. Thus a minimal finite INFB semigroup in a variety generated by 

a semigroup from El  must be a semigroup from E. It is unknown if the same is 

true for the semigroups in E.2: possibly there are no minimal finite INFB semigroups 

in 1'2  (in which case Ei  U {131} contains all minimal finite INFB semigroups). If 

however we replace "minimal finite INFB semigroups" with "minimal finite INFB 

divisors" a complete description is possible and indeed, this class contains many 

small INFB semigroups of the second kind (here a semigroup S is a divisor of a 

semigroup T if S is a homomorphic image of a subsemigroup of T). To prove this 

we consider the cases of Ei  and 172  separately. 

If G is a centreless group and a and b are elements of G then we will say that a 

and b are r-separate in G if for every proper normal subgroup N, aN bN modulo 

r(G/N). In other words, a and b are distinct modulo r(G) but in every quotient 

of G, the cosets containing a and b are equivalent modulo the corresponding upper 

hypercentre. In a semigroup from Ei  we have that (1, e, 1)a(1, e,1) = (1, h ,1) and 

(1, e,1)ad+1(1, e, 1) = (1, g2-igig2-1, 1). Since INFB occurs at the pair (a, (1, e, 1)) 

the group elements h and g2-1g,g2-1  must be distinct. This motivates the following 

definition. 

DEFINITION 3.3.12 Let 21  be the subset of Ei  consisting of all monoids of the 

form Ei[G,g,gi,h] so that (gig) 2gi-1  and h are F -separate in G and equivalent 

modulo r(H) for every proper subgroup H of G containing h and g2-1  gig2-1  (for 
1 <i < p). 

THEOREM 3.3.13 Every monoid in 21  is a minimal INFB divisor for the class of 

finite semigroups and every minimal INFB divisor for the class of finite semigroups 

in Ei  is contained in 21. 
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Proof: Firstly if El  [G, g, gi, h] is not contained in 21  then either (gig)-2  gi-1  and h are 

not F-separate in G or there is a subgroup H of G containing the entries of the sand-

wich matrix of M[G, 3, 3, PJ in which (gig)2g1' and h are not equivalent modulo 

r(H). In the first case, there is a normal subgroup N of G so that (gig)29,1-1N and 

hN are not equivalent modulo F(G/N). The quotient G/N induces a congruence 

0 on El  [G, g, , h] defined by 

{(x,y): x = y, or x = (i, s , j), y = (i,t, j), and sN = tN}. 

Since (gig)-2gT1N and hN are not equivalent modulo 1'(G/N), it must be the case 

that El  [G/N, gN,giN, hINT] is an INFB divisor of Ei[G,g,.41, h]. 

In the second case since every entry in the sandwich matrix P of .A4(G, 3, 3, P) 

is an element of H, there is a proper INFB subsemigroup of El  [G, g , h] generated 

by H, 1 and a. So, again, Z-7-,i[G, g, hi is not a minimal INFB divisor. 

Now assume that S = Ei[G,9,g1,h] is an element of 21. Since 131 V(S), 

Theorem 3.2.11 implies that any congruence on S whose corresponding quotient T 

is INFB must only collapse elements within-I-I-classes. This corresponds to taking a 

quotient of the group Gin every 9-t-class of M[G, 3, 3, But since (gig)-2g1-1  and 

h are F-separate and T is INFB, the normal subgroup of G must be trivial and so 

T is isomorphic to S. For similar reasons, the definition of 21  and Theorem 3.2.11 

imply that there are no proper INFB subsemigroups of S. Therefore S is a minimal 

INFB divisor. 

We now investigate semigroups from E2. 

DEFINITION 3.3.14 Let E2 be the subset of 1-2  consisting of all monoids of the 

form E.:2[G, L, R, f,  p] so that: 

(i)the elements f (al+P) and f (a) are I' -separate in G and equivalent modulo r(H) 

for every subgroup H of G containing f (a2) for all 1 <i < p 1; 

(ii)the numbers r and 1 (that is p (order(R)) and p I (order(L))) are the smallest 
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choices of i and j respectively with the property that for all k < p, f (a2+k+i) = 

f (a2+k)g and f (a2±k+i) = h f (a2+k) for some elements g and h of G not dependent 

on k. 

THEOREM 3.3.15 Every monoid in 22  is a minimal INFB divisor for the class 

of finite semigroups and every minimal INFB divisor in.E2  is contained in 22. 

Proof: Let S = 2 [G, L, R, f ,p1 be a semigroup from E. 2 for which at least one of the 

conditions of Definition 3.3.14 is not satisfied. If the first condition is not satisfied 

then it follows by only trivial modifications of the argument used in the proof of 

Theorem 3.3.13 that there is a proper INFB divisor of S. So now assume that the first 

condition holds for S but the second condition does not. In particular let us assume 

that there is a smallest number r' < r so that f(a2+k+r') = f (a2+k)K for some 

K E G and for every k < p. Now f(a2+k)R = f(a2-1-k-Fr) = f(a2-1-k-1-((r)m0d(r1)))K[r/r1) 

and since (r)mod(r') < r', by the minimality of r' we must have that (r)mod(r') = 0 

and K[r1r1  = R. Therefore r' divides r and RK = KR. We now show that the 

equivalence 0 given by the symmetric closure of 

A V {((2 + k, K g, j), (2+ ((k r')mod(r)), R[(k+1-')17]  g, j)) : 

0 < k < r — 1, 0 < j < 1 + , g E G}, 

(where A denotes the diagonal relation on S) is a congruence so that S/0 is INFB. 

Let (2+i, K g, j) and (2+ ((i +r')mod(r)), R[(i+ri)Idg, j) be two 0 equivalent elements. 

Firstly 

a(2 + ((i + r')mod(r)), R[(i+71111g, j) 

1 (2 + ((1 + i + r')mod(r)), R[(1÷2+r2Vilg, j), if i <r-1 (2 + ((ri)mod(r)), kri  Rg, j), if i=r — 1, 

which is equivalent modulo 0 to (2 + 1 + i,Kg,j) = a(2 + Kg,j) if i < r — 1 

and equivalent modulo 0 to (2, KRg,j) = (2, RKg,j) = a(2 + i, Kg, j) if i = r + 1. 
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That (2 + i, K g, j)a and (2 + ((i + r')mod(r)), RRi+r1)/r}g, j)a are equivalent modulo 

0 is trivial. Likewise if kl, k2  < 1 + 1 and h E G then (2 + i, Kg, i)(ki, h, k2) and 

(2 + ((i + r')mod(r)), R[(i+ri)irjg j)(ki, h, k2) are also trivially equivalent modulo 0. 

Now 

(k1, h, k2)(2 + ((i + r')mod(r)), 	 j) 

= (k1, hf (ak2+2+((i+ri)m°d(r)))Ri(i+rWrig, j) 

(k1, hf(a2142+z±ri  )g :7) 

(k1, h f (a2+k2+i)K 9 :7) 

(ki, h, k2)(2 + K 

as required. So therefore 0 is a congruence on S. By definition 9 does not collapse 

elements within 14-classes of S and so therefore f (a) and f (al+P) are still not equiv-

alent modulo r(G) and S is INFB. This means that elements of E2 that are not 
elements of 22  are not minimal INFB divisors. We now show that elements of E2 

that are not minimal INFB divisors are not elements of '22. 

Let 0 be a congruence on a semigroup S = E2[G,L, R, f,p] from E2  so that 

T = 5/9 is INFB. 

Case 1. (a, a) E 0 where p + 1 > j > 1 and i j. 

Since the set {a2, a3, 	 , al+q} is a cyclic subgroup of 5 we must have (a/Ii-ii,  ak) E 

9 for all k > 2. Then ((O, f(ak+Ii-31), 0), (0, f (ak), 0)) E 9 for all k > 2. Since for 

some k > 2 the elements f (ak+Ii-ji) and f(ac)  are distinct in G (by Definition 3.3.5), 

0 induces a nontrivial congruence on G and therefore, f (a) and f (al+P) cannot be 

F-separate in G (since T is INFB). That is, 5 

Case 2. ((j, g, k), (j' ,h, le)) E 0 where (j, g, k) does not equal (j1  ,h,k!). 

If j = j' and k = k' but g h then clearly the restriction of 0 to G is a nontrivial 

congruence so f (a) and f (al+P) again cannot be F-separate and S 	 2 If  j 

(say, j < j') then both j and j' are greater than 1 (see proof of Case 2 of Theorem 

3.3.9). So assume 1 <j < j' < r + 1. Now because (j, g, k) = a(0, e, 0)(0, g, k) and 
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(j', h, k') = a3' (O, e, 0)(0, h, k') we have that 

a2+P-Jaj(0, e, 0)(0, g,k)(0,PZdg-1  ,0) = a2(0, e, 0) 

and 

a2+P-jaii  (0, e, 0)(0, h, k)(0, PZdg-1, 0) = 	 (0, 	 , 0). 

By multiplying on the left by (0, e,O)ak  (0 < k < 1 + p) we have that 

((0, e, 0)a2+n(0, e, 0), (0, e, 0)a2+?'  (0, 	 , 0)) E 9 

and therefore 

((0, f (a2+k),0), (0, f (a2+k+31-2)hg-1, 0)) E 0 

for every k > 0. If f(a2+k) = f(a2+k-Ff--; )n 	 then condition (iii) implies S 	 22 

(since j' - j < r). If f(a2 ) f(a2+k' )hg  then the congruence 9 induces 

a nontrivial congruence on the group G. Since we have assumed S/0 is INFB the 

group elements f (a) and f(al+P) are not equivalent modulo r(G/o) and therefore 

they are also not r-separate in S. So S is not a semigroup from 22• 

Case 3. (ai,(j,s,k)) E 0 for some i, j, k < p + 1. 

By Theorem 3.2.11, (a, (j, s, k)) 9. Say (ai, (j, s, k)) E 0 with i > 2. Since we have 

that {a2, a3, , al+P} is a subgroup of S, (al', (j,s, k)) E 0 for every i' > 2. By 

the arguments used above in Case 2 of the proof of Theorem 3.3.9, we can assume 

that j = k = 2. In accordance with Definition 3.3.5, let / and r be such that pll 

and plr are the orders of L and R respectively. Now at least one of / and r (say 

r) are greater than 1 and therefore without loss of generality we may assume that 

a2(1, e,2) = (3, e, 2). But since (a2, (2,g, 2)) E 0 for some group element g E G, 

we must have that g, 2)(1, e, 2), (3, e, 2)) E 0, that is ((2, g f (0), 2), (3, e, 2)) E 

and therefore S 722 by Case 2 above. 	 0 

EXAMPLE 3.3.16 For any integer p> 1 and minimal centreless group divisor G 

(say S3 for example) the semigroup E'2[G, e, e, f,  p] is a minimal INFB divisor if 

f(ai) = e for every i > 1 except when i = 1 + p. 
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It would have been convenient in Definition 3.3.12 if we had defined elements 

a, b E G to be 1"-separate when in every quotient H/N of a subgroup H of G contain-

ing a and b (that is, in every relevant divisor of G), aN and bN are equivalent modulo 

r(H/N). However this choice would make Definition 3.3.14 too complicated since 

here one needs to account for all the values of f(at)  and not just f (a) and f(a'+P). 

It is conceivable that there is a group G and elements f (a), f(a2),. , f(al) 

satisfying the conditions of Definition 3.3.5 such that in every subgroup H of G 

containing f(a1) for all i < 1 p, f(a) and f(al+P) are equivalent modulo r(H) 

but also that there is a subgroup H' containing f (a) and f(al+P) (but not contain-

ing at least one element f(at)) in which f (a) and f(al+P) are not equivalent modulo 

r(w). Under the proposed alternative definition of being r-separate, the semigroup 

S = E2[G, e, e, f,  p] might be a minimal INFB divisor even though f (a) and f (a1+1)) 

were not r-separate. 

Combining Lemma 3.1.1, and Theorems 3.3.13 and 3.3.15 we have a description 

of all minimal finite INFB divisors. 

COROLLARY 3.3.17 The class 21U E2 U 031, AD is, up to isomorphism, the 

class of minimal finite INFB divisors. 

Theorem 3.1.2 shows that even though the semigroups from El  andL-72  can each 

be embedded in finite regular semigroups, these semigroups necessarily generate va-

rieties containing B. Another embedding theorem is that every (finite) semigroup 

is embeddable in an idempotent generated (finite) semigroup (see [29] for two al-

ternative constructions). As a final observation we show that there are finite INFB 

idempotent generated semigroups that do not generate varieties containing B. We 

use a construction due to T. E. Hall (see [29]). Take an arbitrary semigroup S 

from U FL2 with period d and therefore satisfying the identity (xyx2y)d (xy)d. 

Construct a Rees matrix semigroup .A4 [S,ISHS1, 	 over S with sandwich matrix 

satisfying Pi, = P,1  = 1 and S = {Pi,3  : i,j 	 11. Then M[S, ISL S , P] is 

idempotent generated. 
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PROPOSITION 3.3.18 The semigroup M = M[S, ISI, SI, P] as constructed above 

is an INFB idempotent generated finite semigroup not generating a variety contain-

ing B. 

Proof: M is obviously finite and also INFB since S is embedded in M (for example 

.S (1, s, 1) is an embedding) and S is INFB. We show that M (xyx2y)d (xod  

where d is the period of S. Since both sides of the identity (xyx2y)d (xy)d start 

and finish with the same letter, any value these words assume in M always lies 

within the same set Mij = {(i,s, j) : s E S}. Indeed (xyx2y)d lies in the same 

subgroup of Mi j  as (xy)d. Now M has period d and index 2 since S has this period 

and index respectively. Therefore (xyx2y)d  and (xy)d are both idempotents (note 

that d > 2 since, as noted in the proof of Theorem 3.3.10, a group of period 2 is 

abelian) and therefore equal. Since B1 does not satisfy (xyx2y)d (xy)d (see proof 

of Lemma 3.3.3), 131 V(M). 



Chapter 4 

Finitely generated varieties with 

uncountably many subvarieties. 

By a well known result of Oates and Powell [59], every finite group generates a 

variety V with the property that V and every subvariety of V can be given by 

finitely many identities. Such a variety is called hereditarily finitely based. Since 

there are only countably many finite sets of identities, a hereditarily finitely based 

variety has at most countably many subvarieties (in fact a variety generated by a 

finite group has only finitely many subvarieties [59]). This situation does not extend 

to semigroups in general however. In [92] it is shown that the variety generated 

by Al has uncountably many subvarieties. Since any variety containing Al also 

has uncountably many subvarieties, this example immediately provides a number of 

finite semigroups, each generating uncountably many subvarieties. However since 

Al is INFB so must be every finite semigroup whose variety contains it. This leaves 

open the question as to the existence of a FB finite semigroup generating a variety 

with uncountably many subvarieties. 

The important semigroup Bl generates a proper subvariety of V(A1) so the 

result of [92] also leaves open the possibility that V(I31) generates a variety with 

only countably many subvarieties. Likewise the small INFB semigroups found in 

131 
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Chapter 3 could possibly generate such varieties. Note that there does exists a finite 

semigroup which is not finitely based and generates a variety with only finitely many 

subvarieties ([75]). 

A subsemigroup or homomorphic image of a semigroup S generates a subvariety 

of V(S). In [75] however it is shown that the class of semigroups generating a variety 

with only finitely many subvarieties is not closed under direct products. Likewise it 

is natural to ask whether the class of (finite) semigroups generating varieties with 

countably many subvarieties is closed under direct products. 

In Section 4.1 we will use a result proved in [78] to establish a theorem which in 

turn provides a solution to all of the above questions. It will follow that there exist 

finite FB semigroups generating varieties with uncountably many subvarieties, that 

every finite INFB semigroup generates a variety with uncountably many subvarieties 

and that there are two finite semigroups generating a varieties with finitely many and 

countably many subvarieties respectively, but whose direct product has uncountably 

many subvarieties. These examples also show that for any HFB (finite) semigroup 

S1  there are HFB finite semigroups S2 and S3 such that at least one of SI  X S2 and 

Si  X S2 X S3 is not HFB (note the distinction between the arbitrary HFB semigroup 

S3 and the symmetric group S3 of the previous chapter). For some large classes of 

semigroups, we will also obtain a complete description of those members generating 

a variety with uncountably many subvarieties. 

In Section 4.2 further examples of varieties with uncountably many subvarieties 

are found. In particular it is shown that the semigroup B2 X S({a}) generates a 

variety with uncountably many subvarieties. 

A universal algebra S with presentation (A; R) (A is a finite alphabet of gen-

erators and R is a finite set of relations between words in the alphabet A) within 

a variety V is said to have a decidable word problem (relative to V) if there exists 

an algorithm which determines when two words w1  and w2  in the alphabet A are 

equivalent in S. The variety V has a decidable word problem if each finitely pre- 
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sented algebra in V has a decidable word problem relative to V. A variety V has a 

decidable uniform word problem if there exists a single algorithm which solves the 

word problem (relative to V) in all the finitely presented algebras from V. Obviously 

the decidability of the uniform word problem in V implies the decidability of the 

word problem in V. There is an interesting connection between varieties with un-

countably many subvarieties and the solvability of the uniform word problem. This 

connection is examined in Section 4.3 where we use it to construct varieties which 

have decidable word problem but undecidable uniform word problem. 

4.1 A theorem concerning varieties with uncount-

ably many subvarieties 

In this section we establish a result concerning monoids generating semigroup vari-

eties whose lattice of subvarieties is uncountable. A number of corollaries follow. In 

fact the lattice of subvarieties of these varieties contain a continuum of subvarieties 

in the sense that they contain an uncountable chain with the same ordering as the 

real numbers. This is so because the lattices involved contain a copy of the lattice 

of all subsets of the natural numbers. We use an argument from [61] (page 82). If() 

is the set of all rational numbers then for any real number r and with Ar  defined as 

the set {q E 1Q : q < r}, it is easily seen that Ar, C Ar, if and only if ri  < r2. Thus 

there is an uncountable chain in the lattice of subsets of and therefore also in the 

lattice of subsets of the natural numbers. This argument applies to every example 

of a variety with uncountably many subvarieties in this Chapter. 

For each n > 2 let L7, be the word 

Y1X1X2X3X4Y1Y2X5Y2Y3X03...Yn-1X71+2Yn—On X7143Xn-F4Xn+5Xni-6Yn. 

The following result is proved in [78]. 
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LEMMA 4.1.1 [78] Assume that L 	 w is a balanced identity, that w can be 

deleted to yixiyj  if and only if Ln. can be deleted to yixiyi, and that 1 < i < j < n+6 

implies w deletes to xixi. If a substitution 0 exists so that 0(L„) is a subword of w 

then m = n. • 

We now use this lemma to show the following. 

THEOREM 4.1.2 Let E be a set of identities closed under deletion. If xyx is an 

isoterm for E then the variety defined by E has uncountably many subvarieties. 

Proof: A semigroup S with a zero element in the signature {•, 0} satisfies an identity 

u 0 exactly when it satisfies the semigroup identities ux yu u (x and y are 

letters not occurring in the word u). For this reason it will be convenient to consider 

semigroups with zero element to be in the signature {-, 0} and satisfying the identities 

x0 Ox 0. This is not essential, but simplifies the arguments to be used. Let V 

be a variety defined by a set, E, of identities closed under deletion and for which 

xyx is an isoterm. If M is a subset of the natural numbers, IN, then we will take 

Em to be the set of identities {L, 0 : n E M}. We show that for every subset 

M of IN, E U Em Lin  P.-- 0 if and only if n E M. That is for each pair of subsets 

P, Q of IN, the sets of identities E U Ep and E U EQ define the same subvariety of 

V if and only if P = Q. Since there are uncountably many subsets of the natural 

numbers, there are uncountably many subvarieties of V. 

Fix some set M C IN and assume that E U Em H Lim  0 for some m E IN. By 

the definition of a derivation of an identity there are words ul, 	 un  with u1 	 L„, 

0 and for each i < n, u2+1  is obtained from ui  by a single application of an 

identity from E U Em. The set E is closed under deletion and xyx is an isoterm for 

E, so E I/ L, 0. Therefore we may find a smallest number k such that uk+1  is 

obtained from uk by an application of an identity from Em. Now since xyx is an 

isoterm for E the words x and xy are also isoterms for E. So a letter ; is linear in 

uk  if and only if it is linear in L„. Also every 2-occurring letter y;  in LT, occurs on 
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either side of a linear letter xi, that is, L, deletes to y3xiyi. Since xyx is an isoterm, 

this happens exactly when uk  deletes to y.ixiy; and therefore yj is 2-occurring in uk 

also. So L„ uk satisfies the first two conditions of Lemma 4.1.1. Finally xy is an 

isoterm for E so uk deletes to xix; if 1 <i<j<n+ 6 and the third condition also 

holds. Therefore we may apply Lemma 4.1.1 to the identity L, uk. 

Now uk+i  is obtained from uk by an application of an identity of the form Li  for 

some i E M. So by Lemma 4.1.1, i must equal m and therefore m E M as required. 

LJ 

We note also that if xx is an isoterm for a monoid S and S satisfies a nontrivial 

identity of the form xyx w then w must be a nontrivial permutation of the letters 

in xyx. So w is one of the words xxy or yxx. However it is shown in [70] that 

either of the identities xyx xxy and xyx yxx define hereditarily finitely based 

varieties and therefore the variety generated by S can have only countably many 

subvarieties. Since xx is an isoterm for a monoid if and only if it has index three or 

more we have proved the following. 

COROLLARY 4.1.3 A monoid of index three or more generates a variety with 

uncountably many subvarieties if and only if it does not satisfy xyx xxy or xyx 

yxx or equivalently if and only if it is not hereditarily finitely based. 

This corollary can also be extracted from the proof of Lemma 7 and Proposition 

4 of [78]. These two results of [78] explicitly concern only nonperiodic monoids 

(monoids which satisfy no identity of the form xn xn+m) and make extensive use 

the fact (established elsewhere in [78]) that a nonperiodic hereditarily finitely based 

semigroup necessarily satisfies the implication e2=e &P ,  f-÷ef=efe or its 

dual. While this implication is not always available in the periodic case (for example 

the variety Al of normal bands does not satisfy this implication and yet by results of 

Perkins [63] there exist hereditarily finitely based periodic semigroups of arbitrarily 

large index generating varieties containing Al), it has been pointed out to the author 

by M. Volkov (private communication) that if the condition of being nonperiodic is 
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replaced by being a monoid of index at least three then this implication is no longer 

necessary and the corresponding arguments in [78] continue to hold. 

The remainder of this section will be concerned with examining the many con-

sequences of Theorem 4.1.2. 

The first consequence we investigate is the following. 

COROLLARY 4.1.4 If S is a finite inherently nonfinitely based semigroup then 

V(S) has uncountably many subvarieties. 

Proof: We use Theorem 1.1.1: S is .a finite INFB semigroup if and only if for every 

natural number n, Zn  is an isoterm for the identities of S, where Zi  xi  and 

Zn  Zn — XnZn —l• Now Theorem 1.1.2 implies that S has an INFB subsemigroup, 

T, with identity. Since Z2 X1X2X1 is an isoterm for the identities of T, Theorem 

4.1.2 applies and therefore V(T) (and consequently V(S)) has uncountably many 

s u b v a r i e t i e s .  0  

Finite bases for all monoids of less than 6 elements are established in [14], [15] 

and [90]. By examining bases of identities described in these papers, it is evident 

that Theorem 4.1.2 does not apply to any of them: all monoids of order five or 

less satisfy a nontrivial identity of the form xyx w(x, y) where w (x y) is a word 

in the alphabet {x, y} . A seven element monoid with a finite basis for identities 

for which Theorem 4.1.2 applies can however be constructed as follows. Recall the 

definition of the monoid S(W) for a language W (see page 10). It was seen in 

that chapter that if W is a set of words then S(W) is a monoid for which every 

word in W is an isoterm. In particular xyx is an isoterm for the monoid S({aba}) 

and therefore by Theorem 4.1.2, the variety generated by S({abal) has uncountably 

many subvarieties. By Lemma 2.2.8 a finite basis for the identities of S({aba}) is 

the closure under deleting letters of the following set of identities 

{xyxzx xxyz, xyy yyx, xuyvxy xuyvyx, 

xuyxvy xuxyvy, xyuxvy yxuxvy} 
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We have shown the following. 

EXAMPLE 4.1.5 The monoid S({aba}) has 7 elements and generates a FB variety 

with uncountably many subvarieties. 

Note that 131 and Al each have only 6 elements and generate varieties with 

uncountably many subvarieties (by Corollary 4.1.4 above or, in the case of Al, by 

the result in [92]) however they are also NFB. 

We now show that the monoid in Example 4.1.5 is quite closely connected to 

Theorem 4.1.2. Let S be a semigroup such that the set /d(S) of all identities 

satisfied by S satisfy the conditions of Theorem 4.1.2. Since xyx is an isoterm for 

S, if an identity u v E Id(S) can be deleted to an identity u' R-, v' where u' is of 

the form aba (or a subword of this), then u' vi. Therefore S({abal) satisfies every 

identity in /d(S) and so Theorem 4.1.2 applies to a set E of identities only when 

Saaban is contained in the variety defined by E. We have proved the following 

theorem. 

THEOREM 4.1.6 A set of identities E contains a subset satisfying the conditions 

of Theorem 4.1.2 if and only if S({aba}) is contained in the variety generated by E. 

In this case the variety defined by E has uncountably many subvarieties. 

NOTE 4.1.7 The semigroup obtained from Saaban by removing the identity ele-

ment satisfies x1x2x3x4  y1y2y3y4 and consequently has only finitely many subva-

rieties. 

If a word w contains a subword of the form xyx then Sawn will generate 

a variety containing S({aba}) and therefore have uncountably many subvarieties. 

This means that monoids of the form S(W) which generate such varieties are likely 

to be very common. Indeed we have the following theorem. 

THEOREM 4.1.8 Let W be a non-empty set of words. The following are equiva-

lent: 



CHAPTER 4. VARIETIES WITH MANY SUBVARIETIES. 	 138 

(i)the variety V(S(W)) has only countably many subvarieties; 

(ii)the variety V(S(W)) has infinitely many but not uncountably many subvarieties; 

(iii)S( W) xyx yxx or S( W) =xyx xxy; 

(iv)either every word in W is, for some n > 1 and m > 1, of one of the forms 

a1a2  ... a, and a1a2 	 an_larn„ or every word in W is of one of the forms a1a2  ... an  

and ara2 	 an_ia„, exclusively (the ai are distinct letters); 

(v)S(W) generates a hereditarily finitely based variety; 

(vi)S({aba})V(S(W)). 

Proof: (i).#>(iii). Since both xyx 	 yxx and xyx 	 xxy define hereditarily finitely 

based varieties, in order to prove the equivalence of the conditions (i) and (iii) we 

need to show that if S(W) has only countably many subvarieties then it satisfies 

one of these identities. By Corollary 4.1.3 we need only consider the case when xx. 

is not an isoterm for S(W). If xx is not an isoterm for S(W) then W contains no 

subwords of the form uu (where u is a word). If it does not contain a subword of the 

form uvu either (since xx is not an isoterm for S(W), v must be a word distinct from 

u), then it is a collection of words of the form a1a2  ... an  (where the ai  are distinct 

letters) and is easily seen to satisfy xyx xxy. If W does contain a subword of the 

form uvu then xyx is an isoterm for S(W) and so Theorem 4.1.2 implies S(W) does 

not have countably many subvarieties. 

(iii)<#.(v). Since xyx 7.-2• yxx and xyx 	 xxy define hereditarily finitely based va- 

rieties we need only show that condition (v) implies condition (iii). This follows since 

a hereditarily finitely based variety necessarily satisfies condition (i) and condition 

(i) implies condition (iii). 

(iii)<=>(iv). That condition (iv) implies condition (iii) is easily verified. Now 

assume that S(W) 1=  xyx 	 xxy or xyx yxx. So W cannot have a subword 

of the form uvu where uvu 	 uuv or vuu, since then xyx would be an isoterm. 

Similarly W cannot contain two subwords, one of the form uuv and the other of the 

form v'u'u' (where uuv vuu or uvu and v'u'u' u'v'u' or u'ulv1) since then both 
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xxy and yxx are isoterms and S(W) would not satisfy condition (iii). Therefore W 

must satisfy exactly one of the two situations described in (iv). 

(i)<=>(vi). From the proof of the equivalence of conditions (i) and (iii), the monoid 

S(W) generates a variety with uncountably many subvarieties if and only if Theorem 

4.1.2 applies to the identities of S(W). The equivalence of conditions (i) and (vi) 

now follows from Theorem 4.1.6. 

To complete the proof it remains to show that S(W) at least an infinity of 

subvarieties. Since W is non-empty, V(S(W)) is a supervariety of V(S({a})) where 

a is a single letter. It is trivial to establish that this semigroup variety is given by 

the identities {xy yx,xx xxx}. For each n the (n-nilpotent) variety given by 

{x,x, 	 xn  yiy2 • • . yn, xx 	 xxx,xy yx} 

defines a distinct subvariety of V(S({a})). The theorem is proved. 

Examples presented in [75] show that the class of semigroups generating varieties 

with only finitely many subvarieties is not closed under the taking of direct products 

(or equivalently joins of varieties). Likewise we have the following result: 

COROLLARY 4.1.9 The class of finite semigroups each generating a variety with 

countably many sub varieties is not closed under direct products. Therefore the class 

of varieties with countably many subvarieties does not form a sublattice of the class 

of all varieties. 

Proof: Theorem 4.1.8 shows that S({xyyl) and S({xxyl) generate varieties with 

countably many subvarieties. However S({xyyl) x S({xxyl) does not satisfy either 

of the identities xxy xyx or yxx xyx and the word xx is an isoterm for 

this monoid. So by Theorem 4.1.2, S({xyyl) x S({xxy}) generates a variety with 

u nc o u nta bl y ma n y s u b varieties. 0 

In fact the examples used in this corollary show that the join of two hereditarily 

finitely based varieties generated by finite semigroups can have uncountably many 

subvarieties. A more striking example is obtained by considering any finite group not 
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satisfying one of the identities xxy xyx or yxx xyx. As mentioned above, the 

semigroup variety generated by a finite group G has only finitely many subvarieties. 

If G does not satisfy xxy 	 syx, say, then the direct product G x S({baa}) is a 

monoid of index three not satisfying either of the identities xxy 	 xyx or yxx 

xyx. By Theorem 4.1.2 G x Setbaan generates a variety with uncountably many 

subvarieties (clearly if G did not satisfy either of the described identities then instead 

of S({baal) one may take the semigroup S({aa})). The smallest group with this 

property is the symmetric group S3 with six elements. 

In terms of subvarieties however, a quite surprisingly small example is possible. 

Let B be the 27 element group with presentation 

(a, b, c : a3  = b3  = 1, cb = bc, ac = ca, ab = bac) 

([8], page 145). This group satisfies neither of the identities xyx xxy or xyx yxx 

since aba = baca = baac, aab = abac = bacac = baacc, and baa represent different 

elements of B. It is also easy to establish that B can be generated by just the two 

elements a, b, that it is of exponent 3 and that it is nilpotent of class 2. Indeed it is 

the only nonabelian group of order dividing 27 that has exponent 3 (see [8]) and is in 

fact the free Burnside group of exponent 3 on two generators (see [23] for example). 

Thus every two generated group in the variety of B (considered either as a semigroup 

variety or as a group variety) has order dividing 27 and therefore is either isomorphic 

to B or is abelian. However, since the identity xy yx involves just two letters, any 

noncommutative semigroup variety must contain a two generated noncommutative 

semigroup. Therefore there are no noncommutative proper subvarieties of V(B). 

Since the only commutative variety of exponent 3 is that generated by the additive 

group of integers modulo 3, the lattice of subvarieties of V(B) is a three element 

chain (note that every group variety with fewer than three subvarieties is abelian 

since the atoms in the lattice of semigroup varieties are generated either by a two 

element semigroup or a cyclic group of prime order; see [18]). We have shown the 

following. 
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EXAMPLE 4.1.10 The lattice of subvarieties of the variety V(B) is the 3 element 

chain and the lattice of subvarieties of V(S({a})) is countable but the lattice of 

subvarieties of V(B x Saan) is uncountable. 

The group B also plays an important role in the examples constructed in [75]. 

A small, aperiodic (that is, with only trivial subgroups) example of a pair of 

semigroups generating hereditarily finitely based varieties whose join has uncount-

ably many subvarieties is also possible. Let Ll  be the left zero semigroup with 

adjoined identity element. 

EXAMPLE 4.1.11 The lattice of subvarieties of the variety V (L1) has five ele-

ments and the lattice of subvarieties of V(S({aab}) is countable but the lattice of 

subvarieties of V(1) x S ({aab})) is uncountable. 

We now prove this claim. The lattice of band varieties has been completely described 

in [6], [19] and [22], and it follows that this semigroup generates a variety with only 

three proper, nontrivial subvarieties (the variety of semilattices, the variety of left 

zero semigroups and the variety of left normal bands). Since L1  contains a left 

zero semigroup it does not satisfy the identity xyxP.,- yxx. So the direct product 

S({aab}) x Ll  is a monoid of index three not satisfying either of the identities 

xxy;:...-, xyx or yxx 74-, xyx and therefore by Theorem 4.1.2 it generates a variety with 

uncountably many subvarieties. As seen above, the monoid S({aab}) generates a 

hereditarily finitely based variety. 

These examples suggest the following question. 

QUESTION 4.1.12 Do there exist two (finite) semigroups each generating a vari-

ety with only finitely many subvarieties whose direct product has uncountably many 

subvarieties? 

Note that the direct product of the semigroup L1  above with any finite band gener- 

ates a variety with still only finitely many subvarieties (in fact from results of [71], 
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it follows that the direct product of 1,1  with any finite group also generates such a 

variety; see Corollary 3.1.5 below). 

Summarising and combining the ideas above we obtain the following theorem. 

THEOREM 4.1.13 (i) For any semigroup S1  (finite or otherwise) there are finite 

semigroups S2 and S3 generating hereditarily finitely based varieties so that S1  X 

S2 X S3 generates a variety with uncountably many subvarieties. 

(ii)If M is a monoid of index more than two then there is a finite group G generating 

a hereditarily finitely based variety with only 3 subvarieties so that M x G generates 

a variety with uncountably many subvarieties. 

(iii)If M is a monoid of index less than or equal to two then either M satisfies both 

xyx xxy and xyx yxx or there is a finite semigroup S generating a hereditarily 

finitely based variety so that M x S generates a variety with uncountably many 

subvarieties. 

Proof: (i) For S2 and S3 one can take, for example, the semigroups 	 and S({aab}) 

or the semigroups B and S({aa}). 

(ii)The monoid S({aa}) is contained in the variety generated by M and therefore 

the claim follows by taking G to be the group B above. To obtain a aperiodic 

example one may replace the group B in this argument by the direct product of L' 

with its right dual It' and obtain a similar result. The semigroup L' x Ft' generates 

a band variety with a lattice of subvarieties consisting of 13 elements. 

(iii)If M does not satisfy one of the described identities then one of the semi-

groups M x S({aab}) or M x S({abb}) generates a variety whose identities are 

closed under deletion, have index three and do not contain either of the identities 

xyx xxy and xyx yxx. By the last part of Theorem 4.1.2, one of these semi-

groups generates a variety with uncountably many subvarieties. 	 0 

In connection with part (iii) of this theorem we note that a monoid of index one 

satisfying both xyx 	 xxy and xyx 	 yxx is a semilattice of groups (a Clifford 
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semigroup), each satisfying these identities. This is because by a well known theo-

rem of A. H. Clifford (see [10] or [29]) a semigroup of index one is a semilattice of 

completely simple semigroups. A completely simple semigroup that is not merely 

a group cannot not satisfy both the identities syx xxy and xyx yxx since it 

contains a divisor isomorphic to either a left or a right zero semigroup. Therefore if 

M is a monoid of index one satisfying both of these identities it is a semilattice of 

groups; obviously every subgroup of M also satisfies these identities. 

A further class for which we can give a complete description of the finite monoids 

generating varieties with uncountably many subvarieties is the class of orthodox 

semigroups. The next result follows almost immediately from Corollary 4.1.4, Corol-

lary 3.1.5 of Chapter 3 and existing results. 

COROLLARY 4.1.14 Let S be a finite orthodox monoid with period p. The fol-

lowing are equivalent 

(i)S has uncountably many subvarieties, 

(ii)S has infinitely many subvarieties, 

(iii)S is not hereditarily finitely based, 

(iv)S is not finitely based, 

(v)S is INFB, 

(vi)B E V(S), 

(vii)S({a}) E V(S), 

S is not a union of groups. 

(ix) S 15 xyx 	 (xy)P+1x. 

Proof: One of the main results of [71] is that a finite completely regular orthodox 

semigroup generates an HFB variety with only finitely many subvarieties. This com-

bined with Corollary 3.1.5 and Corollary 4.1.4 implies the equivalence of conditions 

(i) to (v) above. The equivalence of conditions (iv) to (ix) follows from Corollary 

3. 1. 5 a n d T h e or e m 3. 1. 2. 0 
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This result shows that orthodox monoids always satisfy quite extreme semigroup 

properties and emphasises the weak connection between the number of subvarieties 

of a variety and the presence of a finite basis of identities. 

NOTE 4.1.15 Ifs is a finite orthodox semigroup (not necessarily a monoid) which 

is not a union of groups then the variety V(S) has infinitely many subvarieties. 

This is because S contains a non group element a which, since S is regular, lies in an 

ideal whose principal factor is an orthodox completely 0-simple semigroup which is 

not a union of groups. Consider the two semigroups B2 and A2. If C is a completely 

0-simple semigroup that is not a union of groups then there is a subsemigroup of 

a quotient of C that is isomorphic to either B2 or A2. Since B2 E V(A2) it must 

be the case that B2 E V(S) (in fact A2 contains idempotents whose product is not 

an idempotent and therefore cannot be contained in the variety of S anyway). A 

finite basis for the identities of B2 has been found by A. N. Trahtman (see page 46 

of [82]): it is the set 

{x
2 
r-s•-■' x3, X2y2 P..-1 y2X2, xyx ',----- xyxyx}. 

Since every identity in this set contains a letter that occurs at least twice on both 

sides, they are never applicable to any identity of the form x1x2  ... xn  ,-:.,- yiy2 ... yn. 

Thus by adjoining an identity of this form to the above set of identities, a proper 

subvariety of V(B2) is obtained. Since there are infinitely many such identities and 

each describes a distinct variety it follows that the variety V(B2) contains infinitely 

many subvarieties. Thus a finite orthodox semigroup containing a non group element 

always generates a variety with infinitely many subvarieties. 

We finish this section with two final applications of Theorem 4.1.2. Let Sn  be the 

semigroup variety generated by all semigroups of order n and Mn  be the semigroup 

variety generated by all monoids of order n. Naturally, Mn  C Sn. 

COROLLARY 4.1.16 Mn, and consequently Sn, has uncountably many subvari-

eties for n > 3. For n < 3, Mn  and Sn  have at most countably many subvarieties. 



CHAPTER 4. VARIETIES WITH MANY SUBVARIETIES. 	 145 

Proof: If n > 4, Mr, contains the following: the three element monoid L' (the two el-

ement left zero semigroup with adjoined identity element); its right zero counterpart 

It'; and the four element monoid S(taal). Therefore Mr, contains the direct product 

of these. Since xx is an isoterm for S({aa}), L xyx yxx, and R xyx xxy, 

Theorem 4.1.2 now applies. Up to isomorphism there are only two, two element 

monoids (the two element group and the two element semilattice) and these are 

both commutative. There are five, two element semigroups (the two previously 

mentioned along with the two element null semigroup and the two element left and 

right zero semigroups) and it is trivial to verify that these all satisfy the identities 

xyzw xzyw and x2  x4. Therefore both IVI7, and Sri  generate hereditarily finitely 

based varieties and consequently have countably many subvarieties (see [63]). 

The following question remains unanswered 

QUESTION 4.1.17 Do M3 and S3 have uncountably many subvarieties? 

It can be checked that xyx xyx7  is an identity for both of these varieties. For a 

list of all semigroups of order three the reader is referred to [65]. 

4.2 Further varieties with uncountably many sub-

varieties 

The proof of Corollary 4.1.4 depends on the fact that every INFB finite semigroup 

contains an INFB submonoid. If a locally finite INFB semigroup is infinite then this 

need not be the case. A particularly important example, Zoo, is that obtained by 

taking the Rees quotient of a free semigroup with respect to the ideal consisting of 

all words that are not subwords of a Zimin word. It is shown in [74] that a locally 

finite semigroup whose variety V contains only WFB groups is INFB if and only if 

Zoo  is contained in V. Thus for varieties with only WFB groups, Zoo  is the unique 

minimum INFB variety. It follows from results in [2], [97] and [74] however that Z,„ 
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satisfies the identity xy2  zy2  and so xyx is not an isoterm for any monoid in the 

variety V(Z00). Therefore Theorem 4.1.2 cannot be applied to the semigroup Z. 

We now prove the following result which establishes that the variety V(Zoo) also has 

uncountably many subvarieties. 

THEOREM 4.2.1 Let E be a set of identities. If for every n the Zimin word Z„ is 

an isoterm for E then the variety defined by E has uncountably many subvarieties. 

Proof: The proof uses a similar method to that of Theorem 4.1.2. We construct 

some words L„ so that the identities of Zoo  combined with some set {Lm  0 : 

mEMClI\11 cannot be applied to derive any identity L, 0 if n I% M. In some 

sense the proof in this case is simpler than that for Theorem 4.1.2 since the words 

L„ will turn out to be isoterms for Zoo  which is not necessarily the case for the 

corresponding words in Theorem 4.1.2. 

Before continuing the proof we introduce a definition and list some properties of 

Zimin words. 

DEFINITION 4.2.2 (i) If w uv is a word then [ulw is the word v (that is, we 

have removed the initial segment u) and wit)] is the word u (that is, we have removed 

the final segment v); 

(ii) (following the notation of [73]) If u and v x1x2... x„ are words (the xi's not 

necessarily distinct) then 

[u, v] 	 uaxiux2u 	 uxnub; a, b E {0,1}. 

(here, if w is a word then we take w°  to be the empty word). 

Note that there is only a superficial similarity between the words denoted by [u, 

and by [u, t] since the former denotes a word in which the letter x occurs lul times 

whereas the latter denotes a word in which a distinct linear letter ti  is placed between 

every successive pair of letters in u. 

A few simple facts concerning Zimin words may help the reader (for convenience 

we will take Z0  to be the empty word). 
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NOTE 4.2.3 (i) Z1  a xl, Z2 a XiX2X1, Z3 a xix2xix3x1x2xl, etc. 

(ii)Zn  is 2n — 1 letters long. 

(iii)If 0 is the substitution defined by 0(xi) = x,n+i  (m, i > 1) then for n > 772,, 

Z2n 	 [9( Zn—rn  ), Znz  

(iv)Z2n 	 [ZO I Z2 [Z2 I 1  Z.4 tZI4 Z6 • . . [Z(2n_.2) I Z2n  • 

(v)Every subword of a Zimin word contains a variable that is 1-occurring. 

(vi)For every n, there are no subwords of Zn  of the form uu (u is a word). 

For more information on Zimin words and proofs of some of these facts the reader 

should consult [2], [97], or [73]. 

We now define the words which we will be considering. For each n E N, let Ln  

be the word denoted by 

z1tit2z1x1s1x1x2y2x2 ...xnynxnz2t3t4z3. 

Note that these words are very similar to the words used in Theorem 4.1.2. It is 

shown in [69] that these words are independent in the sense that for any distinct 

natural numbers n and in there is no substitution 0 so that Ln, contains 0(Ln) as a 

subword. Thus if the word L, is an isoterm for Zoo  for all numbers i> 0 then for 

any two distinct subsets P and Q of the natural numbers, the sets Id(Z) U {Ln  

0 : n E P} and Id(Z) U {Ln  0 : n E Q} define distinct varieties. As in Theorem 

4.1.2 this shows that V(Z) has uncountably many subvarieties. 

In the following table we define a substitution 0 of subwords of Zimin words for 

the letters in Ln  so that 0(Ln) is itself a subword of the Zimin word Z24. We will 

assume that for any letter x not in the content c(L) of Ln, the assignment 0 assigns 

x some letter that is never a subword of any Zimin word. 
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x 0(x) 

Xi X22-1Z22-2 

yi  x2iZ2i-2 

Zi Xm+i 

Z2 Xm+3 

ti ZmIX11 

t2 X1Xm-F2Zm 

t3 ZmXm.fiXiX2XIX3 

t4 [0(t3)1Z7n+2Xml-4Zmi-2 

[Z,77,Xm+IXIX2XiX3IZm+2Xml-4Zm+2 

Now 

0(xiyixi) -a x2i--1Z2i- 2x2iZ2i- 2x2i- IZ2i- 2 	 [x2i- ix22x2i- 1, Z22-2]? 	 [Z22-2IZ2i• 

Let An  denote the subword of Ln  given by xiyixi 	 So we have s2y2x2  . • • XnYnXn• 

0(An) E0(xly1xi)0(x2y2x2 • • • XnYnXn) 

E[ZolZ20(X2Y2X2 • • • XnYnXn) 

-E[ZolZ2[Z21Z40(X3Y3X3 • • • XnYnXn) 

... 	 [ZolZ2[Z21Z4  • [Z2n-2IZ2n 

EZ2n, by Lemma 4.2.3. 

Also 

0(t1t2) E Zmx„,,+2Z7n, and 0(t3t4) 	 Zm-1-2Xm-1-4Zirt-4-2• 

So finally we have that 

8(zi) 	 e(tit2) 	 e(zi) e(An) 8(z2) 	 e(t3t4) 	 e(z2) 

0(Ln) =(xm+1)(Zmx,n-1-2Zm)(xm+1)(Zrn)(xm.+3)(Zm-F2xml-4Zrn+2)(xm+3) 

and this is a subword of the Zimin word Zm.+4. 
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Let be a substitution and p q be an identity such that Op) is a subword of 

L„.  and p q does not imply any nontrivial identity of the form Zk W (clearly 

any identity of Zoo  satisfies this second property). Whenever 0(p) is a subword of 

Zk, we must have q5(p) ck(q). Let L, u0(p)v and L'n  u4>(q)v. We have that 

(0 o 0)(p) is a subword of Zni+4 because 0(uc5(p)v) = 0(u)(0 o c5)(p)0(v). Therefore 

o 0)(p) (0 o 0)(q) and so O(ucb(q)v) 0(u0(p)v). The proof will therefore be 

complete if we can show that 0(4)(q)v) 0(u0(p)v) implies that tick(p)v Es. uck(q)v 

since this in turn shows that 0(p) 

Now xni+4  occurs just once in 0(L„) so the same is true in 0(4) (since these are 

identical). The only letter assigned a word containing x„,+4  by 0 is t4. Furthermore, 

to the right of 9(t4) in 0(L,) (and therefore in 0(4)) there is just one letter, the 

letter xn,+3. So in L'n  to the right of t4  we must have just one letter and that letter 

must be assigned the letter x,,+3  by 0. The only letter assigned xni+3  by 0 is z2  and 

therefore t4z2  is a final segment of L. 

Now to the left of 0(t4) in 0(L„) and 0(L) we have the letter x3. Thus the letter 

to the left of t4  in L' be assigned a word ending in x3  and the only letter for 

which this is true is the letter t3. So t3t4z2  is a final segment of L. To the left of 

0(t3) in 0(L,) and 0(4) we have the letter xm+3. Thus the letter to the left of t3  

in L'7, must be assigned a word ending in xm+3  and the only letter for which this is 

true is the letter z2. So z2t3t4z2  is a final segment of L. 

To the left of 0(z2t3t4z2) in 0(L„), the letter xm+2 occurs just once. There is only 

one letter assigned by 0 a word containing xr,i+2  whose length is less than or equal 

to 0(L7i)10(z2i3t4z2)1 and that is t2. Similar arguments to the above now show that 

an initial segment of 0(4) is z1t1t2z1  so therefore only the central portion, 0(A„), 

remains to be examined. 

Now the first letter of 0(A,) is x1  since 0(24,) 	 Zn2. So the letter to the right 

of the second occurrence of z1  in T7', must be assigned by 0 a word beginning in xl. 

There are five possibilities: xl, t1, t2, t3  and t4  however all but the first two of these 
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are assigned words longer than the whole of 0(An) and so can be eliminated. Now 

0(t3) 	 Z,n  'xi] E_---. 0(An.)Ix1l  which leaves only the letter x1  remaining in 0(An). The 

only letter assigned x1  by 0 is the letter x1  itself. So then L'n 	 z1t1t2z1t1x1z2t3t4z2. 

This is certainly not possible since we can find a new substitution 0' defined by 

0'(x) 0(x) if x E fzi, t1, t2, xl, z2, 13, t41 = c(L) and t otherwise (for some letter 

t not of the form xi). Then 0'(L'n) 0(L'n) which is a subword of Zni+4 but 0'(Ln) 

contains the new letter t so is not a subword of Z,n+4, contradicting the choice of 

p q. 

So therefore the first letter after the second occurrence of z1  in T is xl. The next 

letter in 0(An) is x2  and the only letter assigned a word starting with x2  by 0 is the 

letter yi. Following this in 0(An) we have the letter xl. This time there is only one 

letter assigned a sufficiently short word starting with x1  and that letter is x1  itself. 

To the right of this, every new portion of An  of the form xiyixi  begins with a letter 

which completely determines a corresponding letter xi or yi and thus completely 

determines the fact that the central portion of L'n  is An  also. Thus Theorem 4.2.1 

is proved since we have shown LT, -a-- L. 0 

By results of [73], a variety V contains an infinite, finitely generated nil-semigroup 

(a semigroup satisfying xn 0 for some n) only if Z,, is contained in V. Thus we 

have the following corollary. 

COROLLARY 4.2.4 Any variety V containing an infinite, finitely generated nil-

semigroup has uncountably many subvarieties. 

Theorems 4.2.1 and 4.1.6 show that a semigroup variety containing Z„, or S({aba}) 

respectively has uncountably many subvarieties. We now find a different example 

of this kind. 

THEOREM 4.2.5 If V is a variety containing the semigroups B2 and Saan then 

V has uncountably many subvarieties. 
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Proof: Let S be the semigroup B2 x S({al). Since B2 and S({a}) are (up to 

isomorphism) subsemigroups of S, a variety V contains S if and only if it contains 

both By and S({a}) and the semigroup S satisfies an identity p q exactly when 

both the subsemigroups B2 and S({a}) satisfy p q. It is easily verified that the 

semigroup S({al) =p q if and only if c(p) = c(q) and occ(x , p) = 1 a occ(x , q) = 

1. As noted above, a basis for the identities of B2 is the set fx 2y2 y2x2,  xyx  

xyxyx , x2 	 x31. It is clear that B2 	 p 	 q implies c(p) 	 c(q) and therefore 

S = p q if and only if both B2 p Re, q and there is no letter t that is linear on 

one side of p q but nonlinear on the other. We will show via the following lemmas 

that for every odd number n > 0 the word 

L7, 	 (zitit2z1)(xlYixi)(x2Y2x2) • • • (xnYnx.)(z2t3t4z2) 

is an isoterm for S (the condition of being odd here merely serves to reduce in what 

follows the number of cases necessary to consider). These words were used in the 

proof of the previous theorem, and thus if the word L, is an isoterm for S for all 

odd numbers i > 0. then for any two distinct subsets P and Q of the odd natural 

numbers, the sets Id(S) U {L„ 0 : n E P} and Id(S) U {Ln  0 : n E Q} define 

distinct varieties. This shows that V(S) has uncountably many subvarieties. 

It will be convenient to consider the semigroup B2 as the semigroup on the set 

{a, b, ab,ba, 0} with presentation (a, b : aba = a, bab = b, aa = bb = 0). It is clear 

that any word in the alphabet {a, b} that starts with the letter a represents in B2 

one of the words a, ab or 0 and likewise words starting with b represent one of the 

words b, ba or 0. The following two lemmas establish the structure of possible words 

r for which B2 = L,„ r. 

LEMMA 4.2.6 If B2 = L, r then r begins with the letter z1  and ends with the 

letter z2. 

Proof: For every number i less' than n assign a to the letters x22-1, y2„ t1  and t3, 

b to the letters x2i, y2i-1 and zi, and ba to t2  and Li. Call this assignment 01. Un- 
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der Oi, L takes the value [(b)(a)(ba)(b)](aba)(bab). . .(aba)[(b)(a)(ba)(b)] = b. Since 

B2 = L„ r, the word r must also be assigned the value b under O.  This shows 

that r cannot start with any of the letters x22-13Y2i, t1 or t3. Let 02 be the same as 

01  except with ab assigned to z1, and b assigned to t2. This gives L„ the value ab 

and shows that r cannot start with any of the letters x22, 2i, z2, t2 and t4. Thus 

r starts with the letter z1. By the symmetry of the word L, and of the semigroup 

B2 there are dual assignments to the above that show that r must finish with the 

l e t t e r  z 2 .  0  

LEMMA 4.2.7 If B2 	 r and u is a two letter subword of r then either u is a 

two letter subword of L„ or u is contained in the set {ylti, YiYi-i, t4y7, : 0 < i < n}. 

Proof: Since bb and aa equal zero in the semigroup B2, the assignments 01, 02  and 

their duals above show that the only possible two letter subwords involving letters 

of the form xi and yi  are x2iy2; or its reverse, x2i_iY2;_1 or its reverse, X22X23-1 or its 

reverse, and y21_iy2; or its reverse. Assume that r contains the subword of the form 

x2iy2;  or its reverse. Say i < j and define an assignment cb2i  as follows. Assign a to 

all letters X2if and with i' < i and b to all letters x22/_1 and y2,, with i' < i. 

Assign a to all letters x23,_i and y23,  for j' > i 1 and b to all letters x2i,  and Y22'-1 

for ji > i +1. Assign ba to x2i+1  and y21+1. Since 2i is even and n is odd, 02i assigns 

the word 

(x1y1x1)(x2y2x2) • • • (x2iY2ix2i)[x2i+02i+ix2i±d(x2i-F2Y2i+2x21+2) • • • (XnYnXn) 

the value 

(bab)(aba).. .(aba)[(ba)(ba)(ba)](bab)...(aba) = ba. 

To complete the definition of 02„ let q52i assign ba to z1  and z2, b to t1  and t3  and 

a to t2  and t4. An analogous assignment for odd numbers 2i — I exists and we will 

denote this by 02i-1• Now 02, gives Ln  the value ba on the semigroup B2. However 
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it also assigns any word X2iy2i/ (or reverse) the value aa = 0 if i < j'. Since it has 

been assumed that r contains the subword x2iy2; for i < j and B2 H Ln  r it must 
be that i = j. In the case when j < i the same arguments using the substitution 02;  

instead of 02i again show that i = j. These assignments also show that if x22x2i+1  

is a subword of r then j = i and that if y2;4.1y21 is a subword of r then j = i (note 

however that there are no such subwords in La). Similarly, using 02i_i  one can show 

that if x2i-1Y2i-1 (or its reverse), x2i_1x23, and y2iy2i-1  are subwords of r then i = j. 

Thus the only possible two letter subwords of r in the alphabet {xi, y; : 0 < 

j < n} are those already occurring in Lin  and subwords of the form yiyi_i. The 

arguments above are easily extended to the two letter subwords of r containing any 

of the letters xi, yi, zi or ti. It is routine to verify in this case that the only possible 

two letter subwords of r that do not already occur in Ln  are those found above and 

the words yiti  and tlyn. The lemma is proved. 	 0 

Recall that we are assuming that B2 H Ln 	 r and that S = B2 X S({a}). 

Denote the set of all possible two letter subwords of r by R (note that not all of 

these subwords need occur in any particular choice of the word r). We now complete 

the proof of Theorem 4.2.5 by showing that if S J=  La  r then Ln  r. 

We associate with the word r a sequence of consecutive edges, or a pathway, in 

a directed graph G(r) with vertex set V (G(r)) = c(r) U {0} and edge set E (G(r)) = 

{(u, v) : uv E R} U 1(0, zi), (z2, 0)} (no duplicate edges are allowed). This graph is 

shown in Figure 4.1 (here the dotted lines represent edges corresponding to the two 

letter subwords contained in R but not occurring in the word La). The first edge in 

the pathway corresponding to r is the edge (0, zi) and successive edges correspond to 

successive two letter subwords in r. That is, the ith  edge in this pathway corresponds 

to the (i —1)th two letter subword to occur in r. Finally, the last edge in the pathway 

is the edge (z2, 0). Naturally for some choices of r the corresponding pathway does 

not contain every edge. For example, the word Ln  (which is a possible choice for 

r since S H Ln  L, trivially) corresponds to the (unique) pathway passing every 
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Figure 4.1: The directed graph constructed for the word r. 

non dotted edge exactly once. If the semigroup S 	 L,„ 	 r then all linear letters 

in L„ are linear in r also. Therefore for every linear letter, say t, the pathway 

corresponding to r contains only one edge leaving the vertex t and one entering 

the vertex t. We will assume that this pathway contains a dotted edge (that is, r 

contains a two letter subword not contained in Lin) and show that a contradiction 

arises. 

Assume that the edge (yi, y,_i) is contained in the pathway corresponding to r 

and that i is the largest number with this property. Thus either the edge immediately 

preceding (yi, yi_i) is (xi, yi) or i = n and the edge immediately preceding (yi, yi-i) 

is (t4, yn). Let j be the smallest number for which (y3+1, yi) is an edge succeeding 

(yi, yi_i) in the pathway. Therefore either the edge immediately following (yi-1-1, yi) 

is (y3, xi) or j = 1 and the edge immediately following (y3+1, y3) is (yi, ti). For the 

sake of simplicity we will only consider the cases when i does not equal n and j does 

not equal 1. The remaining cases follow in the same manner essentially by using z1  

and z2  instead of x3  and x, respectively (aside from simple arguments regarding t2 

and t3). So r contains the subword Xjjjij2  • . • y3+03x3. The only edges pointing 

left in the graph are of the form (yk, Ilk-i), (M., ti) and (t4, yri). Thus if an edge of 

the form (Ilk, xk) is contained in the pathway corresponding to r then, since Ilk  is 
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linear in r, every edge to follow can never finish at the vertex xk. Therefore r must 

be of the form 

XiXi±i . . 

where A does not contain xk or yk for any k > j or the letters z2, t3  and t4  and B 

does not contain xk, or yk, for any k' < i +1 or the letters z1, ti  and t2. Assign ab to 

all letters in r up to (but not including) the first occurrence of the letter xi, assign 

a to xi, ba to yi  and b to yi-1. Assign ab to the letters yk for i — 1 < k < j and ba to 

all other letters. Clearly (since ab and ba are idempotent in B2) these rules assign 

A the value ab and B the value ba. Thus r is assigned the value 

[ab](ab)(ab) . (ab)(a)(ba)(b)(ab)(ab) . . .(ab)(ab)(ab)(ab) . . .(ab)(a)(ba)[ba] = a. 

However L„ contains the subword xi_iyi_i  which takes the value abb = 0 under this 

assignment. Thus we have reached a contradiction. 

So the pathway corresponding to r does not pass along any of the dotted edges 

but does pass through every vertex. Since the vertices ti, , t4  and yi, , yn  can 

be passed only once, it is easily verified that the pathway corresponding to r must 

be identical to that of L. Thus r LT, a s r e q uir e d. 0 

It is a routine exercise to verify that both B2 and S({a}) satisfy the identity 

syxzx xzxyx but S({aba}) does not and therefore S({abal) V(B2  x S({a})). 

Similarly B2 X S({a}) V(S({aba})) since S({abal) = xyxy yxyx but B2 X 

S({a}) 	 xyxy yxyx. It is also evident that the direct product of B2 with S({a}) 

is not INFB (see Theorem 1.1.2 for example) and therefore Z03  V(B2  x S({a})). 

Proposition 3 of [78] shows that if V is a nonperiodic variety then V is HFB only 

if the regular elements of every semigroup S in V lie in subgroups of S. To prove 

this result it is shown that a semigroup T containing a nongroup, regular element 

generates a variety containing either B2 or the bicyclic semigroup with presentation 

(p,q : pq = 1). It is then shown that if a variety V contains either B2 or the 

bicyclic semigroup and is non periodic then V is not HFB. In fact the condition of 
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nonperiodicity here serves only to ensure that certain identities are balanced. The 

identities in question will also be balanced if (as in the comments after Corollary 

4.1.3) the condition of being nonperiodic is replaced by the condition of containing 

a monoid of index more than three. Thus the regular elements of a semigroup in a 

hereditarily finitely based variety containing a monoid of index at least four are all 

group elements. We obtain the following improvement on these results. 

COROLLARY 4.2.8 If V is an hereditarily finitely based variety that contains a 

monoid of index greater than one (that is, a monoid that is not completely regular) 

then the regular elements of any semigroup S in V lie in subgroups of S. On the 

other hand if a variety V contains a semigroup with a nongroup, regular element and 

V also contains a monoid of index greater than one then V has uncountably many 

subvarieties. 

Proof: The arguments used to prove Proposition 3 of [78] (described above) show 

that if a variety V contains a semigroup with a nongroup, regular element then V 

contains either B1 or the bicyclic semigroup. In the first case, if V also contains a 

monoid of index greater than one, Theorem 4.2.5 implies that V has uncountably 

many subvarieties and so cannot be HFB. Now the bicyclic semigroup is a monoid 

with identity element 1 and is nonperiodic (since, for example, pn = pm if and only 

if n = m). Therefore by Corollary 4.1.3 it generates a HFB variety if and only if xyx 

is an isoterm for its identities, that is, if and only if it does generate a variety with 

uncountably many subvarieties. However it is known that the bicyclic semigroup is 

NFB [86] and therefore not HFB. The theorem now follows. 

This theorem provides an example of a seven element, not INFB semigroup 

whose identities are not closed under deletion. We may think of B2 and S({c}) 

as sharing a single common element, the zero element (here we use the letter c in 

the semigroup S({c}) to avoid confusion between elements of S({c}) and elements 

of B2) and define a semigroup multiplication on the set B2 U (S({C})) to coincide 

with that on the subsemigroups B2 and S({c}) and to equal zero elsewhere (this 
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construction is called the zero direct join of B2 and S({c}); see also page 31). 

EXAMPLE 4.2.9 The seven element semigroup B2 U (S({c})) with the described 

multiplication generates a variety with uncountably many subvarieties. 

It is trivial to verify that this semigroup has seven elements and generates a variety 

satisfying the conditions of Theorem 4.2.5 (it generates the same variety as B2 X 

S({c})). This semigroup also satisfies xyxzxR..- xzxyx and so is not INFB by results 

of [73] since this identity implies that the word Z3 is not an isoterm (see proof of 

Corollary 4.1.4 above). The identities of this semigroup are not closed under deletion 

since xyxzxR.', xzxyx deletes to yz%Z.,' zy and B2 is not commutative. Indeed since 

the identity xy Re, yx defines a hereditarily finitely based variety (see [63]), this 

argument shows that any subvariety of V(B2  x S({c})) whose identities are closed 

under deletion has only countably many subvarieties. 

A more extreme example is the semigroup Zoo  above. 

EXAMPLE 4.2.10 The semigroup variety generated by Zoo  has uncountably many 

subvarieties but contains no nontrivial monoids. 

Proof: As was noted, this semigroup can be shown to satisfy the identity x2yR.,- x2z 

and so it follows that any monoid in this variety must satisfy y P.-. z and therefore 

m u s t  b e  t r i v i a l .  0  

A similar example is that found by J. Jezek in [36]. 

EXAMPLE 4.2.11 [36] The variety V' defined by x2y R-,' yx2'R.,- x2  has uncountably 

many subvarieties but contains no nontrivial monoids. This variety is the variety of 

all semigroups where the square of any element is the zero element. 

Proof: That V' has uncountably many subvarieties is the main result of [36]. Now 

if 1 is the identity element of a monoid then 12  = 1 and it follows that if s is an 

element of a monoid S from V', then s = s12  = 12 = 1. That is, all monoids in V' 

a r e  t r i v i a l .  0  



CHAPTER 4. VARIETIES WITH MANY SUB VARIETIES. 	 158 

The variety V' however is not generated by a finite semigroup, indeed it contains the 

well known three generated infinite semigroup constructed by Morse and Hedlund 

[55] and so is not even locally finite. That it has uncountably many subvarieties 

therefore also follows from Corollary 4.2.4 above. 

Note also that Theorem 4.2.5 shows that the direct product B2 with any monoid 

of index greater than zero generates a variety with uncountably many subvarieties. 

If B2 generates a hereditarily finitely based variety then we would obtain an im-

provement of Theorem 4.1.13. As an inverse semigroup in the signature {.,-1  }, B2  

does generate such a variety [40]. This motivates the following question. 

QUESTION 4.2.12 Does B2 generate a hereditarily finitely based semigroup vari-

ety? 

The word xyx is an isoterm for all examples found above. On the other hand a 

recent result of J. Kadourek [38] shows that the semigroup variety defined by the 

identity x2y xy has uncountably many subvarieties. Clearly xyx is not an isoterm 

for this variety. We now present a second example with this property which permits 

a proof along similar lines to others in this thesis. However it is not known whether 

the example in [38] or the example below can be modified to imply the existence of 

finite semigroups whose varieties have uncountably many subvarieties. For instance, 

the variety defined by x2y xy contains the variety of all bands and therefore by a 

result from [79], cannot be generated by any finite semigroup. 

For every k > 0 let Vk be the variety defined by {xyx xyk+1  x, xyxy yxyx} 

Note that while x2y xy xyx Xyk+1  X , the variety defined by {x2  y xy,  , xyxy 

yxyx} has only countably many subvarieties since these identities imply xyx ,=--- 

xyxyx yxyxx yxx. 

EXAMPLE 4.2.13 For every k > 0, Vk has uncountably many subvarieties. 

Proof: For every n > 0 let LT, be the word 

X1X2 
X1,„2,„2 	 ,,2

X3X4X3. ,91 Y2 • • • Yn 
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and R..„ be the word 

2„,2 	 „,2 
XI,X2SlYnYn-1 • • • Y1X3X4X3. 

Fix a subset M of the natural numbers IN and let n be any element of IV. We 

will show that {xyx xyk+lx,xyxy yxyx, Li  : i E M} H LT, r-z.1 Rn  only 

if n E M. As in previous proofs, this implies that the variety Vk has uncountably 

many subvarieties. 

	

Let the set {xyx xyk+lx,xyxy yxyx, Li 	 : i E M} be denoted by Em 

and assume that Em H LT, Rn. By the definition of a derivation we can select a 

number m and pairwise distinct words u1, u2,... ,Um  with u1  E Ln, umE.: lin  such 

that for each i < m, there is a substitution Oi and an identity pi q2  E Em such 

that u24.1  is obtained from ui by replacing a subword of the form Oi(pi) in ui with the 

subword Oi(qi). Let j be the largest number so that {xyx xyk+lx,xyxy yxyx} 1- 

u1  uj. There are only two subwords of Ln  of the form xyx and none of the form 

xyxy. Since {xyx xyk+lx,xyxy Re, yxyx} H Ln  u;  it is easily established by 

induction on j that for some integers p,q> 0, 

pk+1 	 2 2 	 2 	 qk+1 
Itj "a: X1X2 	 xi  yi  y2  .. . ynx3x4 	 x3. 

Because this word is not Rn  it follows that {xyx xyk+1  x,xyxy yxyx}1/ Ln  Rn  

and so there exists a number h E M and a substitution 9 such that ui E rO(Lh)s and 

u3+1 	 rO(Rh)s. The first letter of Lk is xl. Since x1  is 2-occurring in Lh and x1x2x1 

is a subword of Lk, there must be a subword of ui of the form uvu for some words 

u and v. By inspection, the pair (u, v) is one of the following: (x1, x3k+1), (xe21, 

(x3, xq4k+1), (x2, 42) (where e, and f, are natural numbers satisfying el  + fi<  pk+1 

and e2  + f2  < qk + 1). The second last of these is obviously impossible since then 

uvu would be a final segment of u, but uvu must be followed in u, by 9(y1) since this 

follows x1x2x1  in Lk. The last of the possibilities is also impossible since the only 

letter that occurs twice to the right of x4  in ui is x4  itself. This enforces 9(x) = x24  

for every letter x E c(Lh) (for some i depending on x) and therefore O(Lh) e(Rh )• 



CHAPTER 4. VARIETIES WITH MANY SUB VARIETIES. 	 160 

In this case ui 	 u3+1, contradicting both the choice of j as the largest such that 

{xyx xyk+lx,xyxy yxyx}E- LP.; u;  and the fact that ui  and ti3+1  are distinct 

words. A similar argument applies for the second of the possibilities unless for some 

x E c(Lh)\fxl, x2} the letter x1  appears in 0(x). In this case however, there is only 

one occurrence of x1  to the right of x2  in u; and so x must be 1-occurring in Lh• 

The only remaining 1-occurring letter in Lh is x4. However then for every i < h 

there is an i' so that 0(yi) xj21. Therefore 0(Lh  ) 0(Rh  ), once again contradicting 

the fact that ui # u3+1. So the only remaining possibility is that 0(x1) # x1  and 

0(x2) x3k÷1. The same arguments show that 0(x3) E x3  and 0(x4) 4'14. In 

this case it is easily verified that h = n and O(y) yi for all i < n. Thus n E M as 

r e q u i r e d .  0  

We finish this section with a number of questions concerning semigroup varieties 

with uncountably many subvarieties. 

QUESTION 4.2.14 (i) Does A2 generate a variety with uncountably many subva-

rieties? 

(ii) Does B2 generate a variety with uncountably many subvarieties (see also Ques-

tion 4.2.12)? 

QUESTION 4.2.15 Is there a finite WFB regular semigroup generating a variety 

with uncountably many subvarieties? 

Note that a negative answer to this question would imply a negative answer to both 

parts of Question 4.2.14 and enable a generalisation of Corollary 3.1.5. 

QUESTION 4.2.16 (i) What is the smallest finite semigroup (or monoid) gener-

ating a variety with uncountably many subvarieties? 

(ii) What is the smallest finitely based finite semigroup (or monoid) generating a 

variety with uncountably many subvarieties? 

Two examples of seven element WFB semigroups were found above: S({aba}) and 

that found in Example 4.2.9. In fact Theorem 4.1.2 and Theorem 4.2.5 enable the 
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construction of many such examples and a list of those found is presented in the 

appendix. 

QUESTION 4.2.17 Is there a finite monoid generating a variety with uncountably 

many subvarieties for which xyx is not an isoterm? 

A negative answer to this question would help improve the bounds for a solution to 

Question 4.2.16 as well as provide a partial solution to Question 4.1.17. 

QUESTION 4.2.18 Is the membership problem for the class of finite semigroups 

generating varieties with uncountably many subvarieties decidable? 

4.3 Connections with the uniform word problem 

In several recent papers [11], [12], [13], [54], [96] (and in the doctoral thesis of B. 

Wells [95]) examples have been found of varieties, V, with decidable word problem 

but undecidable uniform word problem (see the introduction to this chapter for a 

definition of these concepts). A second kind of example presented in the above papers 

are varieties V in which every finitely generated V-free algebra has a decidable word 

problem but the equational theory of V is undecidable. Such a variety is said to be 

psuedorecursive. A further variation on these ideas are pseudorecursive varieties with 

decidable word problem (that is, pseudorecursive varieties in which every finitely 

presented algebra in the variety has a decidable word problem, not just the finitely 

generated free algebras); we will call such a variety strongly pseudorecursive. It 

is well known that the undecidability of the equational theory of a variety implies 

the undecidability of the uniform word problem for that variety. Thus a strongly 

pseudorecursive variety is also a variety of the first kind described above (trivially 

it is pseudorecursive as well). Examples of strongly pseudorecursive varieties are 

also presented in the above papers. Of particular interest is the example of Delie 

[13] which is a finitely based strongly pseudorecursive variety, although its basis is 
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quite complicated (see [12]). On the other hand the identity basis for the strongly 

pseudorecursive variety presented in [12] is infinite, but of quite a simple form. 

To emphasise the subtleties of the above definitions it is worth considering a fur-

ther property of pseudorecursive varieties. An identity involving at most n distinct 

letters is satisfied by a variety V if and only if it is satisfied by the V-free algebra on 

n generators. If V is pseudorecursive then this fact can be algorithmically verified 

since the finitely generated V-free algebras in V have a decidable word problem. 

Thus for any fixed n E N there is an algorithm that determines if an identity in at 

most n distinct letters is satisfied by V but (since V is pseudorecursive) the equa-

tional theory of V is undecidable (this property is in fact an alternative definition of 

the concept of pseudorecursiveness)! Thus to show the decidability of an equational 

theory E it does not suffice to take an identity in n letters and construct an algo-

rithm which determines if n is contained in E unless the actual algorithm does not 

depend on n. For further discussions of this nature, the reader is referred to [96]. 

As noted in [96] (see Remark 11.2.4) it is easy to establish the existence of 

(strongly) pseudorecursive varieties as follows. There are only countably many re-

cursive sets of identities (sets of identities with decidable membership problem). 

Thus a variety with uncountably many subvarieties must contain uncountably many 

subvarieties with undecidable equational theory! In a locally finite variety all finitely 

presented algebras are finite (since they must be finitely generated if they are finitely 

presented) and a finite algebra (with finitely many operations) always has a decid-

able word problem (an algorithm is provided by the Cayley table for each of the 

operations of the algebra). Thus locally finite varieties with finitely many oper-

ations have decidable word problems and locally finite varieties with uncountably 

many subvarieties have uncountably many (strongly) pseudorecursive varieties. Of 

course this only establishes the existence of pseudorecursive varieties and does not 

give any explicitly. 

In this section we show how to explicitly describe strongly pseudorecursive sub- 
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varieties of each of the locally finite varieties with uncountably many subvarieties 

which were found in the previous sections. We note (as in Remark 11.2.2 of [96]) 

that a finitely based locally finite variety has decidable equational theory and thus 

cannot be pseudorecursive. Consequently all the examples we will construct are 

NFB. They will however have a recursive basis of identities, that is they have a ba-

sis, E, of identities and there exists an algorithm that determines when an arbitrary 

identity is contained in E (the strongly pseudorecursive varieties described in [11], 

[12], [54], [95] and [96] are also NFB; a FB pseudorecursive variety with "no more 

than 350000 axioms" is found in [96] and a FB strongly pseudorecursive variety is 

found in [13]). 

The method we will use is effectively the same as that used in many of the above 

papers: construct a locally finite variety with a recursive basis of identities but 

with undecidable equational theory. By the above comments this variety is strongly 

pseudorecursive. We initially formulate our results in a general, universal algebraic 

setting before applying them to the semigroup varieties of preceding sections. For 

further information regarding concepts of universal algebra see [9]. 

Recall that a primitive recursive function : IN 	 IN is a function constructed 

in a basic way (namely by composition and primitive recursion) from certain funda-

mental functions on IN (see [88] for a description of these fundamental functions and 

for a precise definition of a recursive function). Importantly, given and n E IN one 

can effectively compute 4)(n). A subset M C IN is said to be recursively enumerable 

if it is the empty set or it is the range of a recursive function and is said to be 

recursive if both M and IN \ M are recursively enumerable. It is well known that 

there exist recursively enumerable sets that are not recursive (see [88] for example). 

Let V be a variety of some type .T and I d(V) be the set of identities of V in 

some fixed countably infinite set of variables X. Let Fv(X) be the V-free algebra 

generated by X. We now introduce the following definition. 

DEFINITION 4.3.1 An infinite list W = {tv,w1;w2,...} of type .7.  terms from 
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T(X) (the term algebra of type F over X) is said to be strongly independent with 

respect to V (or strongly independent with respect to E, a basis for Id(V)) if for 

every distinct pair of subsets P, Q C INT the identities E U Re. w : n E P} and 

E U { wn  w : n E Q} determine distinct subvarieties of V. 

LEMMA 4.3.2 Let : .EV —> 1V be a primitive recursive function such that A = 

{On) : n E .1N} is a recursively enumerable but not recursive set and letV be a vari-

ety of type .7-  algebras with recursive basis of identities E. If W = {w, w1,w2,...} is 

a countably infinite recursive set of type F terms strongly independent with respect 

to V then the identities 

4)(E7  W, 0) = E U {tV2n  r-Z.% w: n E i\r} U {w2n W20(n)-1 n E IV} 

is a recursive basis for a subvariety V' of V with non recursive equational theory. 

Proof: Firstly the identities (I)(E, W, 0) form a basis for the identities of V' since W 

is strongly independent with respect to E. Secondly this basis is recursive: since E 

and -fw L  -2n 	 w : n E IN} are recursive we need only check identities of the form 

W2n W2m-l• Clearly such an identity is contained in (1)(E, W, 0) if and only if m is 

the number cf)(n), which can be effectively calculated. 

The identities {w W20(n)-11 are easily seen to be a consequence of 0(E, W, 0). 

Since W is strongly independent with respect to V, if M is any subset of IN then 

E U {wi w : i E M} H wi w if and only if j E M. Thus W2n-1 w e Id(V') if 

and only if n E A. Since the set A is not recursive, neither can be Id(V'). 

For the remainder of this section we shall continue the notation (1)(E, W, 0) from 

this lemma with the function 0 a fixed primitive recursive function defining a recur-

sively enumerable, nonrecursive set. We have the following. 

COROLLARY 4.3.3 If V is a locally finite variety with recursive basis E and W 

is a countably infinite, recursive set of terms W that is strongly independent with 

respect to V then the variety V' defined by the identities (1)(E, W, 0) is a recursively 

based, strongly pseudorecursive variety. 
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In the previous sections of this chapter we found varieties V with infinite, recur-

sive lists of words W that are strongly independent in V. By Corollary 4.3.3 if E is a 

recursive basis for V then (I)(E, W, 0) is a recursively based, strongly pseudorecursive 

variety of semigroups. Since (as noted above) a finitely based locally finite variety 

has decidable equational theory, HFB varieties have no pseudorecursive subvarieties. 

Thus, by Corollary 4.1.3 for example, we have the following result. 

COROLLARY 4.3.4 If V is a locally finite variety with recursive basis E and V is 

generated by a monoid of index more than two, V has a pseudorecursive subvariety if 

and only if V is not hereditarily finitely based and if and only if xyx is an isoterm for 

V. If xyx is an isoterm for V then the variety described by (1,(E, W, 0) where W is the 

list { (yi  x x2x3x4yi  )y2  X5Y2Y3X6Y3 • • • Yn-1 Xn-1-2Yn-1(YnXn-1-3Xn+4Xn+5Xn-}-6Yn) : n E 

is a strongly pseudorecursive subvariety of V. 

There are corresponding corollaries of this kind for all results from preceding sections 

concerning locally finite varieties with uncountably many subvarieties. 

A simple example is the following. 

EXAMPLE 4.3.5 The variety defined by (I)(E, W, 0) where E is the set 

{(xy)z 	 x(yz), x3 	 x4, 

xy1xy2x y1y2xxx, xxylx yixxx, xylxx yixxx, xxxyl  yixxxl 

and W is the list of words in Corollary 4.3.4 is strongly pseudorecursive. 

Proof: The set of identities E is obviously equivalent to the identities A3 which by 

Corollary 2.2.3 form a basis of the identities of the semigroup S ({abab, aabb, abba}). 

Now Theorem 4.1.8 and the proof of Theorem 4.1.2 implies that the words W of the 

example are strongly independent with respect to V (S ({abab, aabb, abba})) and the 

result then follows by Corollary 4.3.3. 

The basis of the variety in Example 4.3.5 is obtained by adjoining the six iden-

tities to an infinite set of identities (though this infinite set contains identities of 
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two slightly different forms). We note that the simple example of a strongly pseu-

dorecursive groupoid variety in [12] also has six identities adjoined to an infinite 

system. 

The existence of a (strongly) pseudorecursive variety of groups is noted in [96] 

and the possible existence of a recursively based example is an open question in [96] 

(see Remark 11.4.2). We now show how some existing results can be combined with 

Corollary 4.3.3 above to provide such an example. Let [x, y] be the group theoretic 

commutator x-ly-'xy and for n > 3, let [xl, x2, ... , xn] = [[x1,...xn_i],xn]. In [94] 

it is shown that the group words T given by 

r 	 rr 
ix
16 
 , LLY17 1/2,1/3], [xl, x2], [x3, x4], • • • 7 [x2_1, x2], [Y1, Y2, 1/3] j .• i  E IN}  

are strongly independent with respect to the (locally finite) group variety V de- 

fined within the variety of groups by the identity w;:_,- 1 where w is the word 

xispi, z2, z31,  j [Z4, Z5, Z6], [Z7, Zs]l (a similar result is found in [61]). Therefore Corol- 

lary 4.3.3 implies that (I) = (1)(1(xy)z--:..- x(yz), xl..=.--_, x, xx-1  :.----- x-ixP-..1 w P:i 1}, T, O) 

determines a strongly pseudorecursive variety of groups. 



Chapter 5 

Some undecidable embedding 

problems for finite semigroups. 

In this chapter we consider a number of embedding problems which have no algo-

rithmic solution. In each case we use a method that first appeared in [25]. Roughly 

speaking (a precise description will be given in the following section) we consider an 

arbitrary partially defined finite group G and from it construct a new structure S 

with the property that S is embeddable in a semigroup of the desired form exactly 

when the original partial group can be embedded in a group. It follows from a 

result of T. Evans (see Connection 2.2 of [39]) that the set of finite "partial groups" 

embeddable in a finite group, or a group, is not recursive and therefore the set of 

structures embeddable in finite semigroups or semigroups with the desired property 

also is not recursive. This method appears to be extremely useful in showing various 

embedding problems to be undecidable and has been used in a number of recent pa-

pers: [25], [30], [45], [46] and [76] (the second paper in this list concerns the results 

in Sections 5.2 and 5.3.2 to follow). 

167 
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5.1 Preliminaries 

A number of preliminary results and definitions are required before we prove the 

main results of this chapter. The following concept was introduced by M. Sapir and 

is a useful tool in "transcribing' the structure of a partial group into an appropriate 

semigroup structure. 

DEFINITION 5.1.1 (M. Sapir) A split system is a triple of sets (A,B,C) with an 

associated operation A x B 	 C. An embedding of a split system into a semigroup S 

is a triple of maps (i, j,k) such that the maps i : A —> S, j : B 	 S and k : C 	 S 

are injective and i(a)j(b) k(ab), for each a E A and b E B. 

On occasions the generality of this concept is unnecessary and it is convenient to 

instead use a simplified notion as follows. 

DEFINITION 5.1.2 A split pair is a pair of sets (A, B) with an associated op-

eration A x A -4 B. An embedding of a split pair into a semigroup S is a pair 

of maps (j,  k) such that the maps j : A S and k : B S are injective and 

j(a)j(b) = k(ab), for each a,b E A. 

By a partial group G we will mean a set with an element 1 and a partially defined 

binary operation such that for every x E G, lx = x 1 = x and if both (xy)z and 

x(yz) are defined then they are equal. The following definition appears in [25]. 

(For the purposes of this definition it is convenient to make a distinction between a 

semigroup (or partial semigroup) S and its universe S.) 

DEFINITION 5.1.3 Let Go  and G be partial groups such that Go is embedded in 

G. For each i = 0,1,2, . . . , let Gio  be the subset of the universe of G defined as 

follows: Gg = {1} (the identity element), GI)  = Go, go+1  = GioGo. Then for k > 2, 

the partial group G is an extension of rank k of Go  if and only if 

N G 
(ii) for every pair of positive integers i, j with i +j < k and every pair of elements 
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x E G , y E Gii), the product xy exists and is contained in 

(iii)if j > k and x E Gio  \ go-1  , y E G\ G' then the product xy is not defined, 

(iv)if id- j+I < k and x E G, y E Gjo, z E Gio, then (xy)z and x(yz) are defined 

and equal, 

(v)for f,g,h E G, if fg = f h or gf = hf, then g = h. 

From Connection 2.2 in [39] we have that the unsolvability of the uniform word 

problems in the pseudovariety of all groups (which, of course, is also a variety) and 

in the pseudovariety of finite groups imply that the problem of determining whether 

a finite partial group is embeddable in a group or in a finite group is undecidable. 

A group H can be viewed trivially as an extension of arbitrary rank of itself. So 

for every k, a partial group G is embeddable in a group (or a finite group), H, if 

and only if there is an extension of rank k of G that is embeddable in H. If the 

problem of determining whether or not an extension of rank k of a partial group 

is embeddable in a group (or a finite group) is decidable then we would obtain 

the following algorithm for determining when an arbitrary finite partial group G is 

embeddable in a group (or a finite group), contradicting the fact that this second 

problem is undecidable: 

1.Construct all extensions of rank k of G (there are only finitely many and they 

can be effectively listed); 

2.If one of the extensions of rank k is embeddable in a group (or a finite group), 

H, then G is embeddable in H. Otherwise G is not embeddable in a group (or a 

finite group). 

We therefore have the following lemma: 

LEMMA 5.1.4 [25] The problem of determining whether or not an extension of 

rank k of a partial group is embeddable in a group or in a finite group is undecidable. 

DEFINITION 5.1.5 An '14-embedding of a split system (A, B , C) (or split pair 

(A, B)) is an embedding (i, j, k) (or (i, j) respectively) of (A, B ,C) ((A, B) respec- 
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tively) into a semigroup S so that i(A), j(B) and k(C) (or i(A), j(B) respectively) 

lie within 94 classes of S. 

For a given G, an extension of rank 2 of a finite partial group Go, we can construct 

an associated split system (A, B,C) where A = { al, 	 , a„} and B = {b1, 	 ,b.} 

are disjoint copies of Go, C = {ci, , cm} a copy of G, and with operation aib; = ck 

whenever gigj = gk in G. In an analogous way we can construct an associated split 

pair (A, C) by replacing the requirement that the sets A and B are disjoint with 

the requirement that they are identical. It is clear that an embedding of a split 

pair constructed in this way determines an embedding of the original split system. 

Furthermore any embedding 0 of G into a group determines a natural embedding 

(i,i) of the split pair (A, C) (with i(ak) = j(ck) = 0(gk)). Part (i) of the next lemma 

is Lemma 7 of [76] and part (ii) follows from the arguments above. 

LEMMA 5.1.6 (i) (M. Sapir) Let (A, B, C) be the split system associated with G, 

an extension of rank 2 of a finite partial group Go. There is an 74-embedding (i, j,k) 

of (A, B, C) into a semigroup S if and only if G is embeddable in a subgroup of S. 

(ii) Let (A, B) be the split system associated with G, an extension of rank 2 of a 

finite partial group Go. There is an 1-1-embedding (i, j) of (A, B) into a semigroup 

S if and only if G is embeddable in a subgroup of S. 

In the following sections we will be constructing semigroups (or related struc-

tures) whose structure is determined by certain extensions of rank k of partial groups. 

Because of Lemma 5.1.6, the use of split systems (and in the following section, split 

pairs) is helpful in simplifying arguments concerned with connecting the embed-

dability properties of partial groups with the desired embedding properties of our 

constructions. 
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5.2 Potentially 7-1-embeddable subsets 

In this section we examine a natural embedding problem concerned with the 71 

relation of Green. Let U represent one of Green's relations on a semigroup S. From 

the definitions of Green's relations (see Section 1.3.2) it is easy to determine when 

given a subset A of a semigroup S whether or not A lies in U-class of S Furthermore, 

if A is a Us-related subset of S and 0 is an embedding of S into a semigroup T then 

19(A) is a UT-related subset of T. On the other hand the restriction of a UT-class 

of a semigroup T to some subsemigroup S need not be a Us-class. 

DEFINITION 5.2.1 If S is a finite semigroup andACSxSthen we say A is 

potentiallyi U-related if A C UT for some supersemigroup T containing S. If T can 

be chosen from a particular class IC of semigroups (the class of finite semigroups for 

example) then we say A is potentially U-related in k. If A C S then we say that A 

is potentially U-embeddable in a class IC if A x A is potentially U-related in k. 

Note that if there exists an algorithm determining for an arbitrary semigroup 

S whether or not a given finite subset of S x S is potentially U-related then there 

certainly exists an algorithm determining if a given finite subset of S is potentially 

U-embeddable. 

Define the following relations on a semigroup S: 

r* = {(a , b) : ax = ay <#. bx = by Vx, y E Si}, 

7Z* = {(a, b) : xa = y a 	 xb = yb Vx, y E S1}, 

We have the following well known result (for example, see [21], [48] or [62]). 

11n some of the literature ([30] and [76] for example), the word "eventually" is used here instead 

of "potentially". 
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LEMMA 5.2.2 If S is a semigroup then a subset A C SxS is potentially 

related (respectively potentially R.-related) if and only if A C G* (respectively A C 

R* ). Furthermore if S is finite, then a subset AC SxS is potentially L-related 

(respectively potentially R.-related) if and only if it is potentially ,C-related within the 

class of finite semigroups (respectively potentially 7-related within the class of finite 

semigroups). 

This lemma works for C (resp. 'R.*) because of the left (respectively right) regular 

representation of S by inner left (respectively right) translations on the set S'. There 

is no natural analogue of this for the 7-1-relation. 

Lemma 5.2.2 provides a simple algorithm for testing whether a given subset 

of a finite semigroup is potentially G-embeddable (or potentially R.-embeddable). 

In [76] however, M. V. Sapir has shown that the problem of determining, for two 

disjoint subsets A, B of a finite semigroup S, whether or not (A x A) U (B x B) 

is potentially 71-related is undecidable. This, along with Lemma 5.2.2, implies the 

existence of a finite semigroup S and a subset (A x A)U (B x B) of S x S for which 

(A x A) U (B x B) C 74* but are not potentially 71-related (Corollary 1 of [76]). 

The main aims of this section will be to provide examples of such semigroups and 

to prove the following extension of the results in [76]. 

THEOREM 5.2.3 The problem of determining whether or not a subset A of a finite 

semigroup S is potentially 7-1-embeddable in the class of finite semigroups or in the 

class of all semigroups is undecidable. 

Problem 1 of [76] asks if there is an algorithm for determining whether a subset A 

of a finite semigroup S is potentially 74-embedded in the class of finite semigroups. 

Theorem 5.2.3 answers this in the negative. It is also remarked in [76] that there is 

an algorithm for determining whether or not a subset A of a finite semigroup S is 

potentially 9-1-embedded in the class of all semigroups. This statement is not proved 

in [76] and in fact Theorem 5.2.3 of this thesis shows that it is not true. 
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For the arguments to follow, let G always denote an extension of rank 2 of a 

partial group Go with the elements of Go  labeled 	 g2, 	 , gn} and such that .0'1 

is the identity element. Let the remaining elements of G be labeled 	 • • , gin} • 

DEFINITION 5.2.4 For the split pair (A, B) associated with G, an extension of 

rank 2 of a partial group Go, define S(G,G0) to be the semigroup whose universe is 

the set{O}UAUB and with multiplication ai  a; = bk if aia;  = bk in (A, B) and 0 

otherwise. 

The groupoid S(G,G0) is a semigroup, since the product of any three elements in 

S(G,G0) is zero (that is, S(G,G0) is 3-nilpotent). 

DEFINITION 5.2.5 If C is a group then define -C as the semigroup whose universe 

is C U A, U B, U {0}, where A, and B, are disjoint copies of the universe of C and 

with multiplication (for ai E A,, bi E Bc, ci E C, and where xi  is one of ai, bi, or 

Ci) 

ai  • a;  = bk, if cic;  = ck in C 

xi  • c; = ci  • x = xk, if cicj = ck in C 

and all other products take the value 0. 

Now C is a semigroup since the subscripts of the elements behave as in the group 

C and the letter names of the elements behave according to the following table: 

0 A, B, C 

0 0 0 0  0 

A, 0 B, 0 A, 

B, 0 0 0 B, 

C 0 A, B, C 
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which is a commutative, 3-nilpotent semigroup with adjoined identity element, 

C (indeed, C is an extension of this semigroup). Note that since C is a group, the 

91-classes of --0-  are {O}, Ac, Bc, and C. 

Theorem 5.2.3 follows from the following lemma and Lemma 5.1.4 part (ii). 

LEMMA 5.2.6 Let (A, B) be the split pair associated with G, an extension of rank 

2 of a partial group Go. The subset A of S(G,G0) is potentially 94-embeddable in the 

class of semigroups (or finite semigroups) if and only if G is ernbeddable in a group 

(or a finite group). 

Proof: Suppose 9 is an embedding of G into a group C, with the elements of C 

labeled so that 61(g,) = c. Then 0' :S(G,Go) 	 defined by 

9'(a2) = a, E Ac, O'(bi)= b E Bc, 611(0) = 0 

is an embedding of S(G,Go in C which sends A to a subset of the 7-1-class A. 

So now assume that S(G,G0) is the subsemigroup of a bigger semigroup T, in 

which A lies in an 7-IT-class, HA. We may assume that T is regular, since every 

(finite) semigroup can be embedded into a (finite) regular semigroup, and its 3-1- 

classes will still be within 9-1-classes of the regular semigroup. Now for every g„ g3  E 

Go, whenever xa, = a3  and yai = az, for some x,y E T we have xazai  = ajai 

and yaial  = ajai, or xb, = bj and ybi = bz, so therefore b2GTbi. Similarly, biR.Tbi, 

and thus, b9-tTbi. For bk E B, with gk Go, we can find (by the definition 

of A) ai, a;  E A with aia;  = bk. Since A C HA, there exists x,y E T' with 

xa, = al, yai  = ai. So 

xbk  = xa,a3  = alai =b3  and ybi  = yaiaj = aiaj = bk 

and hence it follows that bkrTb3. Similarly bkR.Tbi  and since bi9-1Tbi, we have shown 

that B is contained in an 'HT-class, HB• 

We can now use Lemma 5.1.6 (ii). By construction, there is a natural embedding 

(i, j) of the split pair (A, B) into S(G,G.). Since S(G,G0) is embedded in a semigroup 
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T where A and B lie in HT  classes this embedding can be extended to an 11 em- 

bedding of (A, B) and therefore by Lemma 5.1.6 the extension G of rank 2 of the 

partial group Go  is embeddable in a subgroup of T as required. 	 0 

Theorem 5.2.3 is proved. 	 0 

We now turn our attention to the construction of li*-related subsets of semi-

groups that are not potentially W-embeddable. In [76] it is proved that there exists 

a finite semigroup S with a subset A of S x S that satisfies A C 9-t- but which is not 

potentially 7-t-re1ated. Theorem 5.2.3 implies the existence of a finite semigroup for 

which there is an 7-1*-class that is not potentially 74-embeddable. Such an example 

is not presented in [76] nor seems to have been published elsewhere. By Lemma 

5.2.6 the subset A of the semigroup S(G,G0) is potentially 91-embeddable if and only 

if G is embeddable in a group. Thus to find the desired example it suffices to find 

an extension of rank 2 of a partial group that is not embeddable in any group. 

EXAMPLE 5.2.7 Consider the eight element semigroup S(G,G0) where Go  is the 

partial group defined by: 

91 92 93 

91 

92 

93 

94 

92 

93 

92 

93 

93 

92 

G is an extension of rank 2 of Go  defined by: 

91 92 93 94 

91 94 92 93 94 

92 92 93 94 

93 93 94 92 

94 94 
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Then the three element subset A of S(Go,G) is an 7-1* class of S(Go,G) that is not 

potentially 71-embeddable in the class of semigroups (and therefore in the class of 

finite semigroups). 

Proof: In G we have (g2g2)(g2g2) = g3g3 = g2  = g2g1  and g2(g2(g2g2)) = g2g4  

so therefore g2g1  = g2g4, a property not satisfied by any group. Thus G is not 

embeddable in a group and so by Lemma 5.2.6, the subset A is not potentially 7-1- 

embeddable. It is easily verified that A is an 7-1*-c1ass of S(G,G0)• 0 

While Lemma 5.2.6 shows that any extension of rank 2 of a partial group not 

embeddable in a group will give rise to a semigroup with a subset that is not 7-1- 

embeddable, it is a very simple and routine exercise to show that any 3 element 

extension of rank 2 of a partial group is always embeddable in a group and so no 

smaller examples can be obtained by exactly the methods used above. This fact also 

makes it impossible to use the above method to construct semigroups with an 7-1*- 

related pair that are not potentially 9-1-related. The following 3-nilpotent semigroup 

S shows that such examples nevertheless exist. 

EXAMPLE 5.2.8 Let S be the semigroup given by the following cayley table 

0 al  a2  b1  b2  c1  c2  c3  

0 0 0 0 0 0 0 0 0 

al  0 0 0 ci  c3 0 0 0 

a2  0 0 0 c2 C3 0 0 0 

b1  0 c1 C3 0 0 0 0 0 

b2 0 c2 C2 0 0 0 0 0 

Cl 0 0 0 0 0 0 0 0 

C2 0 0 0 0 0 0 0 0 

C3 0 0 0 0 0 0 0 0 
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Then the set A = {al,a2} in S is an 7-t* -class of S but is not potentially 7-1- 

embeddable. 

Proof: A is an Ls-class of S, since for i E {1, 2}, ax = aiy, for x, y E 	 x 	 y 

if and only if both x and y are contained in {0, ai,a2, ci, c2, c3}. Likewise, A is an 

7s classand therefore an ?*_class.  

Now let T be any semigroup in which S can be embedded so that A is LT-related. 

So there is an x E T such that xal  = a2  (of course we may assume that x is not the 

identity element of T since al  0 a2). Therefore, 

(xbi)ai  = x(bial) = xci = xalbi = a2b1 = e2 = 

However 

(xbi)a2  = x(bia2) = xc3  = xa1b2  = a2b2  = c3  c2  = b2a2. 

So therefore A, as a subset of T is not 'Rs-related. That is, whenever A is L-related 

in some embedding semigroup, it is neither 7?.-related nor potentially R.-related in 

that semigroup. 	 0 

Infinite examples consisting of single Ws-classes that are not potentially 9-

related are also known. For example J. Fountain has noted (see comment in [76]) 

that any cancellative semigroup not embeddable in a group is Rs-related but not 

potentially R-embeddable (see [10] for such an example by A. Malcev). By tak-

ing the 0-direct join of any of the above examples with an infinite null semigroup 

one obtains other examples of infinite semigroups with Rs-related, not eventually 

1-1-embeddable subsets. On the other hand, it is a simple task to prove that a fi-

nite semigroup for which R* is the universal relation (as in the infinite examples 

suggested by Fountain) is a group. 
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5.3 Potentially — 1Z-embeddable subsets 

Using essentially the same method as in the previous section we now prove a variation 

on Theorem 5.2.3. For a subset A of a semigroup S to be potentially 94-embeddable 

there must be an embedding semigroup T so that A is simultaneously LT  and RT-

related. We now replace the notion of a subset being potentially 1-1-embeddable with 

a similar but possibly weaker condition on pairs of disjoint subsets. 

DEFINITION 5.3.1 If A and B are disjoint subsets of a finite semigroup S then 

the pair [A, B] is potentially R. — L-embeddable if there is a supersemigroup T con-

taining S in which A is contained in a RT -class and B is contained in an LT -class. 

[A, B] is potentially R. — G-embeddable in IC if T can be chosen from a particular 

class IC of semigroups. 

We now prove an analogous result to Theorem 5.2.3 concerning potentially 7Z—r-

embeddable pairs of disjoint subsets. 

THEOREM 5.3.2 The problem of determining for two disjoint subsets A and B 

of a finite semigroup S whether [A, B] is potentially R. — r-embeddable in the class 

of all semigroups and in the class of finite semigroups is undecidable. 

As before, for all arguments to follow in this section, we will assume that G is 

an extension of rank 2 of a partial group Go. 

For the purposes of the following definition it is again convenient to make a 

distinction between a partial semigroup and its universe. 

DEFINITION 5.3.3 Let G2 be an extension of rank 3 of G, and let G1  be the 

set theoretic union G2  U G. (Here and for the rest of this definition we assume the 

multiplication of G2 on the subsets Gi of G2. This means, for example, that the set 

G2\G may be non empty.) Let A, B, C, D be disjoint copies of the sets Co, G, G1 G2 

respectively. Then define S (G,G0,Gi ,G2) to be the semigroup whose universe is A U 
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BUCUDU {0} and has the following operation: 

aiaj  = bk, whenever gi,g; E Go, and gig; = gk E G, 

aibj = biaj  = ck, whenever gig.; = gk E G1  and gi E Go, gj E G or reverse, 

aici = ciaj = dk, whenever gigj = 9k E G1  and gi  E Go, gi E G1 or reverse, 

bib.;  = dk, whenever gi,gi E G and gigj = gk E G2, 

0, otherwise. 

Note that S(G,G0,G1,G2) is a semigroup since the subscripts of elements behave ac-

cording to the extension of rank 3 of G which is associative, and the letter names 

behave according to the 5-nilpotent semigroup 

0 A B C D 

0 0 0 0 0 0 

A O B C D 0 

B O C D 0 0 

C O D  0 0 0 

DO 0 0 0 0 

for which associativity can be routinely verified. 

Theorem 5.3.2 now follows from Lemma 5.1.4 and the following lemma. 

LEMMA 5.3.4 Let G be an extension of rank 2 of a partial group Go. Then G 

is embeddable in a group (or a finite group) if and only if there exists an extension 

G2 of rank 3 of G such that for the subsets A and B of the semigroup S(G,G0,G1 ,G2)  

(with G1  appropriately defined), [A, B] is potentially R. — L-embeddable in the class 

of semigroups (or in the class of finite semigroups respectively). 



CHAPTER 5. UNDECIDABLE EMBEDDING PROBLEMS. 	 180 

Proof: Firstly assume G is embeddable in a group H and G2 is an extension of rank 

3 of G that is compatible with the multiplication of H (that is, G2 is embeddable 

in H). Then by adjoining an identity element, 1, to the table above and then 

constructing a new semigroup T by replacing the letters A, B, C, D,1 with disjoint 

copies of the group H as in Definition 5.2.5, it is quickly seen that S (G,Go  G1  G2) 

is embedded in T such that all of the sets A, B,C,D, {0} lie in 'HT-classes. So 

certainly [A, B] is potentially R — G-embeddable. Notice also that T is finite if and 

only if H is finite. 

So now assume there is an extension G2 of rank 3 of G such that the semigroup 

S (G,Go,Gi ,G2) (with G1  defined as before) is embedded in a semigroup T in which 

[A, B] is R. — C-embedded. Proceeding as in the proof of Lemma 5.2.6 from the last 

section, we have that A being 'R.T-related implies that B is 'R.T -related. But B is 

LT-related by our assumption, so therefore B is potentially 7-1-embeddable. We now 

show that there is an extension G3 of rank 2 of G (itself an extension of rank 2 of 

G0) for which the semigroup S(G,,G) is the subsemigroup of S(Go,  G,G1,G2) generated 

by the set B and therefore by Lemma 5.2.6, G3, hence G, is embeddable in a group 

(and if T is finite, then G is embeddable in a finite group). 

Let D' = {dk E D : bib.;  = dk}. Consider the extension G3 of rank 2 of G 

whose universe is the set GI, and whose multiplication is gig; = gk, if gi, g; E G and 

gig; = gk in the extension of rank 3 G2;gzg1 = gigi = gi, if gi  E G1; and undefined 

otherwise. This is a "sub partial group" of G2 and therefore the semigroup S(G3,G) 

is isomorphic to the subsemigroup of S(G,G0,G,,G2) on the set {0} U B U D'. Since 

B is 7-t related in T, Lemma 5.2.6 applies and so G is embeddable in a subgroup of 

T. 

Theorem 5.3.2 is proved. 	 0 

The main result of this section implies the existence of semigroups with poten-

tially .C- and potentially R-embeddable subsets with the property that these subsets 

are never simultaneously C and R. related in any embedding semigroup. Such an 
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example would be found if we could find an extension of rank 3 of a partial group 

that is not embeddable in a group however such an example is unnecessarily com-

plicated. A much simpler example is found by modifying the second example of the 

previous section. 

EXAMPLE 5.3.5 To the multiplication table for S in the Example 5.2.8 above, 

add two elements d1,d2  with the multiplication dix = y whenever ax = y; xdi = y 

whenever xa, = y; and all other products not already defined take the value 0. Let 

the resulting 3-nilpotent semigroup be denoted by U. 

Then the subsets fd1,d21 and {ai,a2} of U are R.* and .C* classes of U respec-

tively but [{d1, d2}, {al, a21] is not potentially R. — .C-embeddable. 

Proof: Since {al, a2} is an 7-1*-class of S, then {al, a2} and {d1, d2} lie within 

classes of U (in fact they lie within the same 1-1*-class) and so certainly they lie in 

r* and R*-classes respectively. 

Now let T be any semigroup in which U can be embedded so that al  and a2  are 

LT-related. So there is an x E T such that xai  = a2. Therefore, 

(xbi)di  = x(bidi) = xci = xalbi = a2b1 = c2 = b2d1. 

However 

(xbi)d2  = x(bid2) = xc3  = xa1b2  = a2b2 ---= C3 0 C2 = b2d2 • 

So therefore d1  and d2  are not R*-related in T. Hence Rd1, d2}, fah a21] is not 

potentially R. — L-embeddable. 

Let D* be defined as ,C* V R. As a final example in this theme we use a result of 

[25] to construct an example of D*-classes of finite semigroups that are not poten-

tially D-embeddable (or J-embeddable) within the class of finite semigroups (recall 

that every semigroup is potentially D and J-embeddable in a (possibly infinite) 

semigroup and that on a finite semigroup, the relations D and J coincide; see [10]) 

EXAMPLE 5.3.6 Let D be defined by the following 3-nilpotent semigroup: 
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Oabc 

0 0 

0 

a 0c 0 0 

b 0c 0 0 

0 

0 

0 

0 

0 

0 

Then the set {a,b,c} is a D*-class of D but is not potentially D-embeddable (or 

potentially J-embeddable) in a finite semigroup. 

Proof: The r* classes of D are {a, b} , {c} , {0} and the R.* classes of D are {a}, 

{b, c} and {0}. Hence {a, b, c} is a D*-class. However if {a ,b, c} is D-embeddable 

in a finite semigroup, then it is D-embeddable in a finite 0-simple semigroup. In 

a finite 0-simple semigroup we have xyz = 0 xy = 0 or yz = 0 (this property 

is called categorical at 0), however in D we have aaa = 0 with aa 0. (This is a 

direct application of Theorem 2.5 of [25] which states that a 3-nilpotent semigroup 

is embeddable in a completely 0-simple semigroup if and only if it is categorical at 

0.) Hence D is not embeddable in a finite 0-simple semigroup, and therefore {a, b, c} 

is not potentially D or J.  embeddable within the class of finite semigroups. 0 

Note that Fountain (Example 2.2 in [20]) has found an 8 element example with 

D*-related idempotents e and f satisfying e> f (recall that for idempotents e, f, we 

define e < f to mean ef = fe = e). Since D-classes containing idempotents e, f with 

e > f are infinite (see [10]) these two elements are not potentially D-embeddable in 

a finite semigroup. 

5.4 On the embeddability of semigroup amalgams 

In this section we investigate the problem of determining when an amalgam of 

semigroups can be embedded in a member of some important class of semigroups. 

Let K be a class of semigroups and let {Si  : i E I} be a set of (finite) members of 
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K indexed by the (finite) set I such that for some semigroup (necessarily finite) U 

there are injective homomorphisms cki  : U Si. This collection of semigroups and 

mappings is called a (finite) K amalgam and is denoted by [{Si : i E /}; U; {c¢i  : i E 

/}] or more briefly [Si; U; ciSi] or even simply [Si; U]. Less formally, a K amalgam 

may be viewed as a collection of semigroups from K (the Si) each sharing a common 

subsemigroup from K (the semigroup U). The semigroup U is known as the core 

of the amalgam. In these definitions we have not used any specific facts concerning 

semigroups and indeed we could replace the word "semigroup" in the above by any 

class of algebraic structures of some fixed type. In several cases we will translate 

results found for semigroups into related results in ring theory. 

An embedding of a K amalgam [Si; U; Oi] is a set of injective homomorphisms 

{vi  : i E /} with vi  : Si  T for some semigroup T so that for s E Si  and t E Si, 

vi(s) = vi(t) if and only if i = j and s = t or there is auEU such that Oi(u) = s 

and Oi(u) = t. 

The fundamental question to be asked concerning a K amalgam is the following: 

QUESTION 5.4.1 Given a finite K amalgam A = [Sill], is A embeddable in a 

member of K ? 

The classes K which we will be primarily concerned with in this section are the class 

of all semigroups, the class of finite semigroups, the class of all inverse semigroups 

and the class of finite inverse semigroups. To a lesser degree we will also be interested 

in similar classes of rings. 

For the class of all groups and the class of finite groups, Question 5.4.1 has a 

remarkably simple solution: the answer is "always" [81]. For semigroups and rings 

however this is not the case. Consider the following pair of semigroups2: 

2A similar example due to Kimura is presented on page 139 of volume II of [10] 
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0123 0124 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 1 1 0 0 0 2 

2 0 0 0 1 2 0 0 0 2 

3 0 1 1 3 4 0 2 2 4 

The two semigroups share a common three element semigroup with zero mul-

tiplication and so we may consider them as a semigroup amalgam. However this 

amalgam is not embeddable in any semigroup T since in that case we would have 

3 . (1 . 4) = 3 . 2 = l and (3 . 1) 4 = 1 • 4 = 2. 

(Here we regard {0,1, 2, 3, 4} as being a subset of T, and the maps 01, 02 Ul 

V2 as being the identity maps on their domains.) That is, associativity fails in any 

groupoid in which the amalgam is embeddable. It is clear that a semigroup amalgam 

A determines a partial groupoid in a natural way but the example above shows that 

this is not necessarily a partial semigroup in the sense that we do not necessarily 

have (xy)z = x(yz) whenever both sides of this expression are defined. 

Question 5.4.1 for rings and semigroups has consequently been the subject of 

a substantial quantity of work and several books on semigroup theory contain a 

chapter devoted to it and associated concepts. More generally we may formulate 

the following decision problems: 

PROBLEM 5.4.2 (i) Given a finite semigroup (ring) amalgam A = [Si; U] of 

semigroups (rings) from a class K, determine if A is embeddable in a semigroup 

(ring) from K. 

(ii) Given a finite semigroup (ring) amalgam A = [S i ; 15], determine if A is embed-

dable in a semigroup (ring) from a class K. 

We will call problems 5.4.2 (i) and (ii) respectively (within the class of semigroups 

or rings) the strong decision problem for amalgam embeddability in K and the weak 
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decision problem for amalgam embeddability in K respectively. Note that a negative 

answer to the strong decision problem for a class K implies a negative answer to 

the weak decision problem for K. In terms of decidability and undecidability these 

problems will coincide for some classes. For example if K is a variety then any 

semigroup (ring) amalgam containing a subsemigroup (subring) not from K (that 

is, not satisfying one of the defining identities of K) clearly is not embeddable in a 

member of K. This is similar to trying to embed a non-associative groupoid (non-

associative ring) in a semigroup (ring). Recent results of Kublanovsky and Sapir [45] 

can be used to show that strong and weak decision problems for embeddability of 

semigroup (ring) amalgams in the class of finite semigroups (rings) are undecidable 

(see Theorem 5.4.10). The main result we prove in this section is the following 

theorem. 

THEOREM 5.4.3 There is no algorithm to decide when given an arbitrary finite 

semigroup (ring) amalgam A = [Si; U] whether A is embeddable in a semigroup 

(ring). That is, the strong and weak decision problems for embeddability of amalgams 

in the class of semigroups (rings) and in the class of finite semigroups (finite rings) 

are undecidable. 

In particular Problems 5.4.2 part (i) and part (ii) are undecidable. We note that 

there are several important classes for which the corresponding problems have a 

very different solution. We have seen that any finite group amalgam can be embed-

ded in a finite group. Similarly any finite amalgam of inverse semigroups can be 

embedded in an inverse semigroup (see [29]), however this is not necessarily finite 

(see page 309 of [29] for an example, due to C. J. Ash, of a finite inverse semi-

group amalgam not embeddable in a finite semigroup). Interestingly, we will show 

that the weak decision problem for inverse semigroups and finite inverse semigroups 

is undecidable. The class of subsemigroups of inverse semigroups has a decidable 

membership problem (see [10] for a description due to B. Schein). However if K is a 

class closed under taking subsemigroups (or subrings respectively) wi°th undecidable 
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membership problem then the weak decision problem for amalgam embeddability in 

K is undecidable since individual semigroups (rings) can be considered, trivially, as 

amalgams by themselves ([S; S] in our notation). A good example of a class closed 

under the taking of subsemigroups that has undecidable membership problem is the 

class of subsemigroups of completely 0-simple semigroups which was shown to have 

this property by Kublanovsky (see [25]). Naturally, this argument does not apply 

to the strong decision problem for amalgam embeddability. 

A generalization of amalgam embeddability is weak amalgam embeddability (see 

[29]). If A is a semigroup (ring) amalgam [Si; U; Oil then we will say A is weakly 

embeddable in a semigroup (ring) T if for each i there are injective homomorphisms 

•: Si --+ T such that for every u E U, O2(u) = .s and 4;(u) = t imply vi(s) = vi(t). 

So any embedding of an amalgam is a weak embedding but not every weak embed-

ding is an embedding. We can replace "embeddable" with "weakly embeddable" 

in Problem 5.4.2 (i) and (ii) and call the respective decision problems the strong 

decision problem for weak amalgam embeddability in K and the weak decision prob-

lem for weak amalgam embeddability in K. It is conceivable that a class K has an 

undecidable (strong or weak) decision problem for amalgam embeddability but a de-

cidable (strong or weak) decision problem for weak amalgam embeddability (or vice 

versa). We will show that this is not the case for the class of all rings (semigroups) 

and the class of finite rings (semigroups). 

THEOREM 5.4.4 The strong and weak decision problems for weak embeddability 

of ring (semigroup) amalgams in the class of all semigroups (rings) and in the class 

of finite semigroups (finite rings) are undecidable. 

Let S be a semigroup and Z2 be the field of two elements, {0,1}. Then the 

universe of the semigroup ring Z2[S] is the set of all functions f : S {0, 1} which 

map only finitely many elements of S to 1. The addition on Z2[S] is pointwise 

and the multiplication is defined by f g(s) = E f(s2)g(s3). There is a natural 
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embedding of every semigroup S into the multiplicative semigroup of the semigroup 

ring Z2[S] which sends an element s to the function f, defined by Mt) = 1 if s = t 

and 0 otherwise. Also if S is a subsemigroup of a semigroup T then by considering 

those elements of Z2[S] which are functions sending all elements t E T\S to 0 we 

have that the semigroup ring Z2[S] is a subring of Z2[T]. These facts enable one to 

translate many semigroup embedding problems into ring embedding problems. This 

will also be true of amalgam embeddability. 

Given a semigroup amalgam A = [Si; U] we can construct the ring amalgam 

Z2[A]= [Z2[S2]; 12[U]]. The amalgam A can be embedded into the multiplicative 

semigroup amalgam of Z2[A] as a "sub-amalgam" in the natural way. If A is 

(weakly) embeddable in T then Z2[A] is (weakly) embeddable in Z2[T] (which is 

finite if and only if T is). Furthermore, if Z2 [A] is (weakly) embeddable in a ring or 

finite ring R then the amalgam A (which is a "sub-amalgam" of the multiplicative 

semigroup amalgam of the ring amalgam Z2 [A]) is (weakly) embeddable in the 

multiplicative semigroup of R. Thus it will suffice to prove Theorems 5.4.3 and 

5.4.4 in the case of semigroups. This will be done in the style of the previous results 

in this chapter. However the role of partial groups will be replaced by the slightly 

more specific symmetric partial groups. 

A symmetric partial group (see [45]) is a partial group G with the property that 

for every g E G there is a unique g' E G' such that gg' = g'g = 1. For any finite 

partial group we may construct a symmetric extension G' of G which is a symmetric 

partial group containing G such that for every g E G', either g or g' is contained 

in the partial group G. This condition ensures that there are only finitely many 

possible symmetric extensions and they may be effectively listed. It is also clear 

that if G is embeddable in a group then there is a symmetric extension of G that is 

embeddable in a group, since every group may be considered as a symmetric partial 

group (where the "partial" operation is defined everywhere). Thus the problem of 

determining whether a finite symmetric partial group is embeddable in a group or 
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in a finite group is also undecidable. 

For all arguments to follow we will take G4 to be an extension of rank four of a 

finite symmetric partial group G1  and Gi  will be used to denote the set U oGi for 

i < 4. 

DEFINITION 5.4.5 For any group G, we will let B(G) denote the Brandt semi-

group M[G,n,n, I] where I is an n x n identity matrix over G U {0}. 

Despite the apparently simple structure of the Brandt semigroups, in [25] it is shown 

that the set of finite subsemigroups of Brandt semigroups is not recursive. It is well 

known that all Brandt semigroups are inverse semigroups. 

We now define a finite semigroup S(Gi, G4) corresponding to any finite extension 

G4 of rank four of a symmetric partial group G1. 

DEFINITION 5.4.6 Let G4 be an extension of rank four of a symmetric partial 

group G1  with Go, G1, , G4 defined as before. Then we construct the semigroup 

S(G1,G4) on the set 

{(i,g,j): 0 <i < j < 5,g E 	 U {0} 

with the multiplication (i,g, j) • (k,h,l) = (i,gh,l) if j = k and gh is the product of 

g with h in G4 and 0 otherwise. 

As in the constructions presented in the previous two sections, it is not difficult to 

verify that this is indeed a semigroup. Associativity holds essentially because we 

required it to be so in our definition of an extension of rank k. If G4 is embeddable 

in a group H then S(Gi, G4) can be viewed as a subsemigroup of "the upper half" 

of the Brandt semigroup B5(H) over H. 

Let (1) be the one element group. Now the intersection of the universe of B5 ((1)) 

with the universe of S(Gi  G4) consists of those elements of B5((1)) of the form 

(i, j) where i < j. Furthermore the restriction of the operations of both B5((1)) 
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and S(Gi, G4) to this set coincide and form a subsemigroup. We will denote this 

subsemigroup by S((1), (I)) which is consistent with our previous definition, since 

(I) can be considered as an extension of rank four of itself. We can now construct 

the following amalgam. 

DEFINITION 5.4.7 For a finite extension G4 of rank four of a symmetric partial 

group G1  define an associated semigroup amalgam A(G1,G4) by 

A (Gi  , G4) = [S (Gi  , G4), B5((1)); S((1), (1))) 

The following tables representing S (GI  , G4) and B5((1)) respectively may help to 

visualize the amalgam we have constructed (here (i, G, j) = {(i, g, j) : g E G}): 

(1, Go, 1) (1, GI, 2) (1, G2, 3) (1, G3, 4) (1, G415) 

(2, Go, 2) (2, Gi, 3) (2, G2, 4) (2,G3, 5) 

(3,G0, 3) (3, GI, 4) (3, G2, 5) 

(4, G0, 4) (4, GI, 5) 

(5, G0, 5) 

(1, G0,1) (1, G0,2) (1, G0, 3) (1, G0, 4) (1, G0, 5) 

(2, Go, 1) (2, Go, 2) (2, Go, 3) (2, Go, 4) (2,Go, 5) 

(3,Go, 1) (3, G0, 2) (3, G0, 3) (3, G0, 4) (3, G0, 5) 

(4, Go, 1) (4, Go, 2) (4, G0, 3) (4, Go, 4) (4, Go, 5) 

(5, G0, 1) (5, G0, 2) (5, G0, 3) (5, G0, 4) (5, Go, 5) 

Theorems 5.4.3 and 5.4.4 now follow from the following theorem. 

THEOREM 5.4.8 Let G1  be a finite symmetric partial group. The following are 

equivalent: 
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(i)G1  is embeddable in a group (finite group); 

(ii)There is an extension G4 of rank four of G1  that is embeddable in a group (finite 

group); 

(iii)There is an extension G4 of rank four of G1  such that A(Gi, G4) is embeddable 

in a Brandt semigroup (finite Brandt semigroup); 

(iv)There is an extension G4 of rank four of G1  such that A(Gi, G4) is embeddable 

in a semigroup (finite semigroup); 

(v) There is an extension G4 of rank four of G1  such that A(Gi, G4) is weakly 

embeddable in a Brandt semigroup (finite Brandt semigroup); 

(vi)There is an extension G4 of rank four of G1  such that A(Gi, G4) is weakly 

embeddable in a semigroup (finite semigroup). 

Proof: That (i)(ii) follows from comments following the definition of an extension 

of rank k of a partial group. 

(ii) = (iii): Say G4 is embeddable in a group H. Then it is easily verified that 

A(Gi, G4) is embedded in the Brandt semigroup B5(H) by the identity maps: 

S(Gi, G4) — > B5(H) and v2  : B5((1)) B5(H) that take an element from 

their respective domains and assign to it the element with the same name in B5 (H). 

Note that B5(H) is an inverse semigroup that is finite if and only if H is a finite 

group. 

(iii)(iv) and (v)(vi): Trivial. 

(iii)(v) and (iv)(vi): This follows since every embedding of an amalgam is a 

weak embedding of that amalgam. 

(vi)(i): Say the amalgam A(Gi, G4) is weakly embeddable in a semigroup T 

(a finite semigroup T) via the injective homomorphisms vi  : S(Gi, G4) — . T and 

v2  : B5((1)) --4 T. 

For any element g E G1  consider the element vi(2,g, 3) of T. Now since G1  is 

symmetric, there is an element g' such that gg' = g'g = 1 in G1  (and of course in G4 

since G1  is contained within G4). So vi  (2, g, 3)[vi  (3, g', 4)] = vi  ((2, g, 3)(3, g', 4)) = 
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vi((2,1,4)) and 

vi((2, 1,4))[v2((4, 1, 2))v1((2, g,3))] =[vi  ((2, 1, 4))/12((4, 1, 2))]v1  ((2, g, 3)) 

(by associativity) 

=[v2((2, 1, 4))v2((4, 1, 2))]vi((2, g, 3)) 

(since vi((2,1,4)) = v2((2,1,4))) 

=[v2((2, 1, 4)(4, 1, 2))Jvi((2, g, 3)) 

=[v2((2, 1, 2))]vi((2, g, 3)) 

=[vi  ((2, 1, 2))]vi((2, g, 3)) 

(since v1((2, 1, 2)) = v2((2, 1, 2))) 

=vi  ((2, g, 3)). 

Note that we do not know what the product v2((4,1,2))v1((2,g,3)) from the first 

line actually is in T, only that it does exist. Therefore the set H2,3 = 	 ( (2, g, 3)) : 

g E G1} is R.-related to vi((2,1,4)). In particular H2,3 lies within an R-class of T. 

Also [v1((1,g',2))]vi((2,g,3)) = v1((1,g',2)(2,g,3)) = vi((1,1,3)) and 

[vi((2, g, 3))//2((3, 1, 1))]vi((1, 1,3)) =v1((2, g, 3))[v2((3, 

=v1((2, g, 3))[v2((3, 

=vi((2, g, 3))[112“3, 

1, 1))vi  ((1, 1, 

1, 1))v2((1, 1, 

1,1)(1, 1,3))] 

3))] 

3))] 

=v1((2,g,3))[v2((3,1,3))] 

=v1((2, g, 3))[vi  ((3, 1, 3))] 

=vi((2,g, 3)). 

Thus H2,3 is within an L-class of T. In particular since H2,3 is both G- and 1Z-related 

in T, it lies within an 1-I-c1ass of T. 

Now for each g E G1 we can consider the element vi((3,g,4)) of T. Replacing 

every expression of the form (i,h,j) in the above arguments by (i 1, h, j 1) we 
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obtain the analogous result that the set H3,4 = { (3, g, 4) : g E G1} is also contained 

in an 9i-class of T. 

Consider the extension G2 of rank 2 of G1  consisting of the elements of the set 

G2 with the partial operation f • g = h if and only if either f or g is contained 

in the set G1  and fg = h in G4. We can construct the associated split system 

({ a} x G1  x {b}, {b} x G1  x {c}, {a} X G2 X {C}) and a corresponding embedding 

(j, k , 1) into T defined by 

j((a,g,b))= iii((2,g, 3)), k((b,g,c)) = v1((3, g, 4)), j((a,g,c)). vi((2,h, 4)) 

where x E {j, k, l}, y E {a, b}, z E {b, c}, y z, and g is contained in G1  and h is 

contained in G2. It is clear that these maps are injective and constitute an embed-

ding of ({a} x G1  x {b}, {b} x G1  x {c}, {a} X G2 X {c}) since j ((a, g ,b))k((b, h, c)) = 

vi((2,g,3))vi((3,h,4)) = vi((2,g,3)(3,h,4)) = vi((2,gh,4)) = 1((a,gh,c)). Fur-

thermore since the images of j and k are the sets 112,3  and H3,4 respectively and 

these lie within 9-t-c1asses of T we may apply Lemma 5.1.6 to show that G1  is em-

beddable in a group. The Theore m is proved. 0 

The two semigroups B5((1)) and S((1), (1)) involved in the amalgams used for 

this proof are fixed throughout. Furthermore since Brandt semigroups are inverse 

semigroups we have actually proved the following result. 

COROLLARY 5.4.9 There is no algorithm that determines when given a finite 

semigroup amalgam A = [S1, S2; U] with 1S21< 26, IUI < 16, whether A is embed-

dable (or weakly embeddable) in any of the following: a semigroup; a finite semi-

group; an inverse semigroup; a finite inverse semigroup. 

So the weak decision problem for amalgam embeddability in the class of inverse 

semigroups and finite inverse semigroups is undecidable. 

In the case of embedding (weak or otherwise) a semigroup amalgam in a finite 

semigroup (or in a finite inverse semigroup) we may improve the bounds in this 

theorem as follows. 
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THEOREM 5.4.10 There is no algorithm that determines when given a finite 

semigroup amalgam A = [S1, S2; with 15'21 < 7, iUi < 5, whether A is em-

beddable in a finite semigroup or a finite inverse semigroup. 

Proof: This essentially follows from the main result in [45]. For any extension G3 of 

rank 3 of a partial group G1  (with Gi for i < 3 defined as before) we may construct 

a semigroup S(GI, G3) in the following way: the universe of S(Gi, G3) is the set 

{(i,g,j) : 0 < i < j < 4,g E and the multiplication is defined in the same 

way as that for S(Gi, G4) in Definition 5.4.6 (this semigroup first appeared in [25]). 

In [45], Kublanovsky and Sapir show that for a symmetric partial group G1  one can 

find an extension G3 of rank three of G1  embeddable in a finite group, if and only if 

one can find a finite semigroup T containing S(Gi, G3) with elements x,y E such 

that x • (1,1,4) • y = (2,1, 3) in T. With this in mind, we can construct an amalgam 

consisting of S(Gi, G3) along with a semigroup that enforces this condition in any 

embedding semigroup. This second semigroup, S2, can be taken as the set 

{(2,1, 1), (4,.1,3), (2,1,3), (1,1,4), (2,1, 4), (1,1,3), 0} 

with multiplication as within a Brandt semigroup. The set 

U= {(2,1, 3), (1,1,4), (2,1,4), (1,1,3), 0} 

is common to both S2 and S(Gi, G3) and furthermore the restriction of the oper-

ations of these semigroups to U coincide and forms a subsemigroup of both which 

we will call U. It is now easily verified that the following constitutes a semigroup 

amalgam: 

Al[Gi, G3] = [S(G17 G3), S2; 

Furthermore if G3 is embeddable in a finite group H, then this amalgam is em- 

beddable in B4(H) in the obvious way (analogous to the embedding of A(Gi, G4) 

into B5(H) in the proof of Theorem 5.4.8). On the other hand, if Ai(Gi, G3) is 
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embeddable into a finite semigroup T by the maps v1  and v2  then we have 

v2((2,1,1))vi((1,1,4))v2((4,1,3)) = v2((2,1,1))v2((1,1, 4))v2((4,1, 3)) 

= v2((2,1,3)) 

= vi  ((2, 1, 3)) 

and therefore G1  is embeddable in a group. 	 0 

Note that there is a subsemigroup U' of U on the three element set 

{(2,1, 3), (1,1, 4), 0} 

If we replace U by U' throughout the proof of Theorem 5.4.10, all arguments remain 

valid except the natural embedding of AC(Gi, G3) into B4(H) is now only a weak 

amalgam embedding since vi((2, 1,4)) = v2((2, 1,4)) though (2,1, 4) U'. Thus we 

have proved 

THEOREM 5.4.11 There is no algorithm that determines when given a semigroup 

amalgam A = [S1, S2; In with1S21=7, 10 = 3, whether A is weakly embeddable in 

a finite semigroup. 

In [77], Sapir proves the undecidability of the strong decision problem for amal-

gam embeddability in the class of finite semigroups using an almost identical struc-

ture to that we use to prove Theorem 5.4.10 above however the bounds for 1821 and 

itf I are 17 and 7 respectively. 

Fundamental to the proof of Kublanovsky and Sapir's result [45] is the fact that 

finite semigroups consisting of only one non zero J-class have a particularly well 

defined structure: they are completely 0-simple and by a well known theorem of 

Rees, isomorphic to a Rees Matrix semigroup with zero over a group (see [10] or [29] 

for details). The completely 0-simple structure is not available in the general case of 

embedding in a J-class of an arbitrary semigroup (indeed any finite semigroup can 
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be embedded in an infinite semigroup with a single s-class which is not completely 

0-simple), and this is why the proofs of Theorem 5.4.10 and Theorem 5.4.11 only 

apply for embedding amalgams in the class of finite semigroups. 

NOTE 5.4.12 Theorems 5.4.9, 5.4.10 and 5.4.11 have ring analogues. To obtain 

these we can replace "semigroup" with "ring" and any numbers n appearing in the 

theorems by 2.  

This is because if S is a finite semigroup with n elements then the semigroup ring 

Z2[S] has 2n elements. 

Necessary and sufficient conditions for the embeddability of a semigroup amal-

gam into a semigroup have been found by Howie [27]. We will describe this charac-

terisation since by Theorem 5.4.3 the conditions involved must not be algorithmically 

verifiable. 

Let A = [{Si : i E I}; U; {c¢i : i E I}] be a semigroup amalgam. We will assume 

that the sets Si are pairwise disjoint (here, as usual, Si  denotes the universe of Si). 

The free product, II*Si, is the semigroup generated by the set XA = US, with the 

Cayley tables of the Si determining the relations RA. That is, II*Si  is the semigroup 

(XA; RA). We may define a congruence 0 on II*Si  as the congruence generated by 

{(0i(u), 03(u)) : j E I, u E U}. The free product of the amalgam A is the 

semigroup HS = (XA; RA )/O. For each i E I there are homomorphisms vi from 

each Si  into HISZ defined by vi(s) = s. If these maps constitute an embedding of 

the amalgam A then it is said that A is naturally embedded in its free product. 

THEOREM 5.4.13 [27] The amalgam A is embeddable in a semigroup if and only 

if it is naturally embedded in its free product. 

Let X'A  be the set 

U U (XAVOi(u) : u E U, i E /1) 
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and RA  determined by the set of Cayley tables of the Si  with every occurrence of 

an element of the form Oi(u) replaced by the element u. We have 

1T&S1  = (XA; RA)/O 	 (X; R). 

The previous theorem can now be restated as 

THEOREM 5.4.14 The amalgam A is embeddable in a semigroup if and only if 

the elements X'A  are distinct in (X/A; R'A). 

Thus we may reformulate Theorem 5.4.3 for semigroups as 

COROLLARY 5.4.15 There is no algorithm that will solve the following decision 

problem: given a finite semigroup amalgam A, determine whether two generators 

x,y E XA represent different elements of the semigroup (Xi; KA). 

We finish with some questions. 

QUESTION 5.4.16 (i) What are the minimal pairs (1S11, 1U1) for which Theorems 

5-0, 5.4.10 or 5.4.11 (or their ring analogues) are true and are these minimal pairs 

the same? 

(ii)Are there classes for which the decision problem for amalgam embeddability is 

decidable (or undecidable) and the decision problem for weak amalgam embeddability 

is undecidable (or decidable respectively)? 

(iii)Are there varieties V for which the (strong or weak) decision problem for amal-

gam embeddability or weak amalgam embeddability is decidable (or undecidable) but 

the opposite is true for the finite trace of V (that is, the finite members of V)? 

Regarding the first of these questions we note that in [25] it is shown that any 

semigroup amalgam with a two element core is embeddable in a semigroup. The 

last question seems of particular interest when V is the class of inverse semigroups 

(which form a variety in the signature {.,-1  }) since it is known that every inverse 

semigroup amalgam is embeddable in an inverse semigroup, but also that not every 
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such finite amalgam is embeddable in a finite inverse semigroup (see [29]). We 

note however that one of the main results of [60] shows that there is an algorithm 

that determines, given a finite semigroup amalgam A with inverse semigroup core, 

whether A is embeddable in a finite semigroup, though the embedding semigroup 

is not inverse. 



Appendix A 

Ten small WFB semigroups that 

generate varieties with 

uncountably many subvarieties. 

Here we list the Cayley tables some seven element WFB semigroups that generate 

varieties with uncountably many subvarieties. That each of these semigroups is 

WFB follows from results of [74] (see Theorem 1.1.2). The first seven monoids have 

index three and therefore by Theorem 4.1.2 generate varieties with uncountably 

many subvarieties if and only if they do not satisfy xyx yxx or xyx xxy. It 

is a routine matter to verify that these identities are not satisfied by any of the 

semigroups below. The eighth example is isomorphic to S({aba}) and therefore has 

the desired property by Theorem 4.1.6. The final two examples are isomorphic to the 

seven element semigroup described in Example 4.2.9 and a corresponding example 

constructed from A2. Finite bases of identities have not been established for any 

but S({aba}) (see above) and the first example below. It is possible to show that 

the closure under deletion of letters of the following set of identities is basis for the 

198 
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semigroup identities of this semigroup. 

{xxx 

199 

U {xu 1 xu2xu3x xu l ti2 xu3x, xu 1 xu 2xu3x xu i xu 2 u3x} 

U {xuou2xy xu 1 yu 2 yx, xyu i xu 2 y yxu lxu 2 y} 

01 ab cde 0 lab cde 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 abcd 101 abcde 

a 0 a 0 0 a 0 0 a 0 a 0 0 a 0 0 

Obaba 0 0 bObab 0 00 

0 c 0 0 c 0 0 0 c 0 0 c 0 0 

Od 0 0 0 e 0 d 0 d 0 0 0 e 0 

0 e 0 0 0 0 0 e 0 e 0 0000 

0 lab cde 0 lab c de 

000 0 0 0 0 0 0 0 0 0 0 0 0 •0 

101 ab cde 101 abc de 

a 0 a 0 0 0 0 0 a 0 a 0 0000 

b 0 b 0 0 b 0 0 bObabb 0 0 

0 a 0 0 0 cOca cc 00 

d 0 d 0 0 0 0 d 0 d 0 00 e 0 

0 0 0 0 0 0 0 e 0 0000 
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0 1 a b c de 01 a b c de 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 a b c d e 1 0 1 a b c d 

a 0 a 1 c b d e a Oa 1 c bd 

0 b b 0 0 00 0 b b b b 00 

0 c c 0000 0cc cc 00 

Odd 0 0 e 0 0 dd 0 0 e0 

0 e e 0000 0 e e 0 0 0 0 

1 a b cde f 0 1 a b c de 

1 1 a b c d e f 0 0 0 0 0 0 0 0 

a a a a a a a a 1 01 a b c d 

b a a a c a a a 0 a 0 c 0 e 0 

c cc cc c c 0 b d 0000 

d d d d d d d 0 ce 0000 

e a a a a f a 0 d 0 0000 

f a a a a a a 0 e 0 0000 

0 a b cde f 0 ab cd e f 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a 00 c 0 a 0 0 a 0 a b a b 00 

0 d 0 b 0 0 0 000  a b 0 0 

0 a 0 c000 0 cd c d00 

0 0 b 0 d 0 0 000  c d 0 0 

000 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 e 0 0 0 e f 
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