SMALL SEMIGROUP RELATED
STRUCTURES WITH INFINITE PROPERTIES

Marcel Jackson O‘f arcel G""-"”"""L)

P
NP 0
D renas e e )

Submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

University of Tasmania

June 1999



I declare that this thesis contains no material that has been accepted for the
award of a degree or diploma by the University or by any other institution, and
that, to the best of my knowledge and belief, it contains no material previously

published or written by another person except when due reference is made in the

text of the thesis.

Marcel Jackson



1

This thesis may be made available for loan and limited copying in accordance with

the Copyright Act 1968.

Marcel Jackson



1ii
Abstract

In mathematics, one frequently encounters constructions of a pathological or
critical nature. In this thesis we investigate such structures in semigroup theory
with a particular aim of finding small, finite, examples with certain associated infinite
characteristics.

We begin our investigation with a study of the identities of finite semigroups.
A semigroup (or the variety it generates) whose identities admit a finite basis is
said to be finitely based. We find examples of pairs of finite (aperiodic) finitely
based semigroups whose direct product is not finitely based (answering a question
of M. Sapir) and of pairs of finite (aperiodic) semigroups that are not finitely based
whose direct product is finitely based. These and other semigroups from a large
class (the class of finite Rees quotients of free monoids) are also shown to generate
varieties with a chain of finitely generated supervarieties which alternate between
being finitely based and not finitely based. Furthermore it is shown that in a natural
sense, “almost all” semigroups from this class are not finitely based.

Not finitely based semigroups that are locally finite and have the property that
every locally finite variety containing them is also not finitely based are said to be
inherently not finitely based. We construct all minimal inherently not finitely based
divisors in the class of finite semigroups and establish several results concerning a
fundamental example with this property; the six element Brandt semigroup with
adjoined identity element, BJ.

We then find the first examples of finite semigroups admitting a finite basis
of identities but generating a variety with uncountably many subvarieties (indeed
with a chain of subvarieties with the same ordering as the real numbers). For some
well known classes, a complete description of the members with this property are
obtained and related examples and results concerning joins of varieties are also
found. A connection between these results and the construction of varieties with

decidable word problem but undecidable uniform word problem is investigated.
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Finally we investigate several embedding problems not directly concerned with
semigroup varieties and show that they are undecidable. The first and second of
these problems concern the fundamental relations of Green; in addition some small
examples are found which exhibit unusual related properties and a problem of M.
Sapir is solved. The third of the embedding problems concerns the potential embed-
dability of finite semigroup amalgams. The results are easily extended to the class

of rings.
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Chapter 1

Introduction.

1.1 Historical overview

1.1.1 Critical structures

In many areas of mathematics, there exist special structures with critical proper-
ties. This critical nature can manifest itself in different ways but the importance
and interest in such structures is often fundamental. In many cases the discovery of
various critical structures have shaped the history of the associated theory. There
are irreducible units such as the prime numbers in number theory or the finite simple
groups of finite group theory, generic examples containing or mimicking the proper-
ties of other structures such as universal Turing machines and universal Diophantine
polynomials, structures with pathological hereditary properties such as the graphs
K5 and K33 in relation to graph planarity, or the lattices M5 and N5 with respect to
lattice distributivity and modularity, and structures with essentially difficult prop-
erties such as aperiodic tilings, non-recursive sets of natural numbers, and flexible
polyhedral surfaces.

Semigroup Theory is by no means exempt from the existence of critical construc-

tions, in fact it is particularly rich in examples. As an example of irreducible units,
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there is (aside from the celebrated congruence free (simple) groups mentioned above)
the class of completely 0-simple and completely simple semigroups (irreducible with
respect to the taking of Rees quotients); the structure of these is determined by the
powerful results of Rees and Suschkewitz. For generic constructions there are the full
transformation semigroups 7x and the symmetric inverse semigroups Zx on a set X,
which respectively contain as subsemigroups all semigroups or inverse semigroups
less than a certain size. Examples of structures with essentially difficult properties
are the finitely presented semigroups with undecidable word problems and examples
of semigroups with pathological properties include the inherently nonfinitely based

semigroups.

1.1.2 Varieties, identities and Tarski’s Finite Basis Problem

A very useful concept in algebra is that of a variety, that is, an equationally defined
class of algebras. These were originally introduced and developed by G. Birkhoff [5]
in 1935 who showed that a variety is equivalent to a class of algebras (of a fixed type)
closed under taking direct products, subalgebras and homomorphic images. These
very natural classes of algebras have been extensively investigated since their intro-
duction and are an excellent source of critical examples. Intriguing examples include
structures with some kind of finite character which also exhibit surprising infinite
facets to their behaviour. Such examples can arise by examining the properties of
varieties generated by finite algebras. For example, a particularly interesting aspect
of a variety is the cardinality of the smallest defining set of identities. Birkhoff
[5] showed that the set of identities in at most n variables satisfied by any given
finite algebra can be derived from a finite subset of these identities, that is, they
are finitely based. Then in 1951, R. Lyndon [49] showed that the identities of a
two element algebra, of any type are also finitely based. At this stage there was,
perhaps, some reason to suspect that the variety generated by any finite algebra

would be finitely based. However in 1954 Lyndon [50] found a 7 element groupoid
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with no finite basis for its identities. Many more examples were subsequently found
including (P. Perkins, [63]) in particular the six element semigroup, B2, consisting

of the matrices

) (G G () ()

under matrix multiplication (alternatively B3 may be visualised as the monoid with
semigroup presentation (1,a,b: aba = a,bab = b,a*> = b*> = 0)). A further example
presented in [63] is the Rees Quotient {a,b,c}*/I(W), where I(W) is the ideal of
the free monoid {a, b, c}* consisting of all words that are not subwords of a word in
the set W = {abcba, acbab, abab, aab}.

While there are many known nonfinitely based finite algebras (and semigroups)
there are also many well known varieties in which every finite algebra is finitely
based. Some well known examples are the variety of commutative semigroups [63],
the variety of idempotent semigroups ([6], [19], and [22]) and the varieties of groups
[59] and rings ([44] and [47]); there are of course many others. In the 1960’s, A.
Tarski posed the problem of finding an algorithm to determine when a finite algebra
has a finite basis for its identities. This problem, known as Tarski’s Finite Basis
Problem motivated much of the research into this topic and investigations gave rise
(see [57] or [64]) to a new concept, that of an inherently nonfinitely based algebra.
An inherently nonfinitely based algebra is a locally finite algebra whose identities
have no finite basis and for which every locally finite variety containing it is also
not finitely based (note that every algebra is trivially contained in a finitely based
variety that is not locally finite; namely the variety defined by the empty set of
identities). An inherently nonfinitely based algebra is a good example of a structure

with a pathological, hereditary property.
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1.1.3 Inherently nonfinitely based groupoids

In 1984, R. McKenzie [51] proved a powerful result that associates with every finite
algebra of arbitrary (finite) type, a special finite groupoid with a finite basis for
its identities if and only if the original algebra has a finite basis for its identities.
Therefore Tarski’s Finite Basis Problem can be restricted to the case of groupoids.
A number of impressive results do exist for groupoids. One example is the result of
Murskii [56] that “almost all” finite groupoids are finitely based; that is, the ratio of
the number of finitely based groupoids of size n to the number of all groupoids of size
n tends to 1 as n tends to infinity (in fact this ratio is asymptotically proportional
to n~%; see [57]). So in some sense there are relatively “few” nonfinitely based finite
groupoids. On the other hand a result of McNulty and Shallon [53] shows that a
groupoid with an identity and zero element not satisfying any nontrivial identity
of the form z ~ W(z), (where W(z) is a groupoid term in the letter z) is either
inherently nonfinitely based or a semigroup. Furthermore, results of Jezek [37] show
that even among the class of groupoids satisfying nontrivial identities of the form
z ~ W(z), there are many inherently nonfinitely based groupoids (in fact he shows
that there are idempotent, commutative, inherently nonfinitely based groupoids with
only three elements). So in another sense there appear to be “few” finitely based
groupoids! In 1996 Tarski’s Finite Basis Problem was finally solved in the negative
by R. McKenzie [52] who showed that the class of finitely based and inherently

nonfinitely based finite algebras are recursively inseparable.

- 1.1.4 Inherently nonfinitely based semigroups

For the class of semigroups, Tarski’s Finite Basis Problem remains unsolved, however
there have been a number of major steps toward a positive solution. Perhaps the
most notable contribution in this direction is the aesthetic description of all finite

inherently nonfinitely based semigroups by M. Sapir (see [73] and [74]). We formulate
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this description in the following theorem.

THEOREM 1.1.1 [73] Let Z, = z, and Z, = Zn—12nZn—1. Then a finite semi-
group is inherently nonfinitely based if and only if it satisfies no nontrivial identity
of the form Z, = W.

Here the words Z,, are called Zimin words and can be considered as critical structures
in their own right (see [2] and [97] for an indication of their fundamental properties
with regards to the avoidability of words). An efficient algorithmic description of
the same class is given in [74] as follows. Recall that the upper hypercentre of a

group is the final term in the upper central series for that group.

THEOREM 1.1.2 [74] (i) If S is a finite inkerently nonfinitely based semigroup
then for some idempotent e € S, €Se is a finite inherently nonfinitely based sub-
monoid of S with identity element e.

(it) If S is a finite monoid with period d then S is inherently nonfinitely based if and
only if for some element a € S dividing an idempotent e € S the elements eae and
ea®*tle do not lie in the same coset of the mazimal subgroup S, of S containing e

with respect to the upper hypercentre I'(S.).

It turns out that the semigroup Bl plays a surprisingly important role in the finite
basis properties of finite semigroups. Firstly, the combined results of many authors
(see [82] for discussion) show that every semigroup of order less than six is finitely
based so B1 is as small an example as is possible of a nonfinitely based semigroup.
Secondly for a very large class of finite semigroups, B} is the minimum example
of an inherently nonfinitely based semigroup. For example if the subgroups of a
semigroup S are all nilpotent then S is inherently nonfinitely based if and only if B}
is contained in the variety of S (see [74]). In contrast with this however M. Sapir
also constructs for any given centreless group a finite inherently nonfinitely based

semigroup which does not generate a variety containing BJ.
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1.1.5 The lattice of subvarieties of variety

Another source of critical examples may be found by examining the lattice of sub-
varieties of a given variety. In the case of the lattice of all idempotent semigroup
(band) varieties (see [6], [19], and [22]) a complete description has been obtained
but the lattice of all semigroup varieties is very complicated. It is uncountable [17]
and contains no anti-atoms [18]. Even the (countable) sublattice of commutative
semigroup varieties contains a copy of every finite lattice [42]! There is a loose con-
nection between the property of being nonfinitely based and generating a variety
with many subvarieties: if every subvariety of a variety is finitely based (or in fact if
only countably many subvarieties are nonfinitely based) then the cardinality of the
lattice of subvarieties of this variety is countable. The converse however is not true:
in [75] finite semigroups are constructed which each generate a variety with only
a finite lattice of subvarieties and yet are not finitely based. Furthermore, A. N.
Trahtman [92] has shown that even a finite semigroup can generate a variety with
uncountably many subvarieties. The example constructed is the monoid A} given

by the matrices

00 10 1 0 0 1 10 01

0oo0) \o1/) \oo/ \oo/ \10) \o1
under matrix multiplication. The property of a semigroup generating a variety
with uncountably many subvarieties is naturally inherited by every supervariety;
these include varieties generated by finite semigroups that embed Aj}. In particular
this means that there are “quite a few” finite semigroups generating varieties with
uncountably many subvarieties. It is easily verified using Theorem 1.1.2 however
that Al is inherently nonfinitely based. So Al provides no examples of finitely
based (or even nonfinitely based, non inherently nonfinitely based) finite semigroups
whose varieties have uncountably many subvarieties. Note also that the important
semigroup B} generates a subvariety and not a supervariety of A} (this fact is

discussed in [74]; in fact B3 is isomorphic to a subsemigroup of A} x A3}).
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Another related result appearing in [75] is that the set of semigroup varieties
with only finitely many subvarieties is not a sublattice of the lattice of all semi-
group varieties: there exist semigroups S and T each generating varieties with only
finitely many subvarieties whose direct product generates a variety with infinitely
many subvarieties. This is equivalent to the join of the varieties generated by S
and T having infinitely many subvarieties. A further “nice” property which is not
stable under direct products is that of being finitely based [75]. A simple example
is by M. Volkov (see [82]). Let G be any nontrivial finite group and A; be the
semigroup A} with the identity element removed. Both the semigroup A, (see [93])
and the group G (see [59]) are finitely based yet their direct product is not finitely
based! Conversely examples are known of nonfinitely based finite semigroups whose
direct product is finitely based [75]. All these examples however depend on the
presence of nontrivial subgroups and this led M. Sapir to ask whether or not there
is a pair of finite finitely based aperiodic semigroups (semigroups with only trivial
subgroups) whose direct product is not finitely based. In fact (see [82] for example)
the class of finitely based finite semigroups is not even closed under the taking of
subsemigroups and the taking of quotients, even Rees quotients (that this is true
for the class of not finitely based finite semigroups follows trivially since the one
element trivial semigroup is isomorphic to a quotient and a subsemigroup of every
finite semigroup). So the properties of being finitely based and nonfinitely based
are quité unstable. Amazingly the class of not inherently nonfinitely based finite
semigroups is closed under all of these operations and therefore forms a pseudova-
riety (this follows from Theorems 1.1.1 or 1.1.2). A (locally finite) semigroup that
is not inherently nonfinitely based has been called weakly finitely based in [39] and
similarly it will be convenient to denote those semigroups that are both nonfinitely
based and not inherently nonfinitely based as being weakly nonfinitely based.

Throughout the thesis we will abbreviate the phrases finitely based, nonfinitely
based, inherently nonfinitely based, weakly finitely based, and weakly nonfinitely based
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as FB, NFB, INFB, WFB and WNFB respectively. A related property not men-
tioned above is that of being hereditarily finitely based (or HFB). A semigroup (or
variety of semigroups) has this property if it is FB and every subvariety of the variety

it generates is also FB.

1.1.6 Embedding problems: varieties

Other kinds of critical structures we will investigate are those arising from embedding
problems. Broadly speaking these are problems of determining when a semigroup
or related structure from a class C; can be embedded into a semigroup from a class
C>. Embedding problems related to closure properties of varieties on their own may
appear trivial: a variety is closed under the taking of subsemigroups and so clearly
the class of semigroups embeddable in a semigroup from a variety V' is simply itself.
Associated problems however are not so trivial. For example, Theorem 1.1.2 implies
that the NFB monoid {a,b,c}*/I(W) from [63] (see above) is WFB. This means
there is a FB locally finite variety containing {a,b,c}*/I(W), but says nothing
about what the structure of this variety is. A natural question is to ask whether
{a,b,c}*/I(W) can be émbedded in a finite (or even just a locally finite) finitely
based semigroup of the form X*/I(V) for some alphabet X and set of words V? The
existence of INFB finite semigroups shows that every finite semigroup is embeddable
in a finite NFB semigroup (any finite semigroup is embeddable in the direct product
of itself with a finite INFB semigroup) and the construction A, x G of M. Volkov
(above) can be used to show that every FB finite semigroup can be embedded in a
WNFB finite semigroup [82]. By definition, every WNFB finite semigroup can be
embedded in a FB locally finite semigroup but it is not known if locally finite can

be replaced by finite here.
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1.1.7 Embedding problems: other classes

Semigroup varieties are a rich source of critical examples. However some natural
embedding problems arise in non varietal situations. By right regular representa-
tions of semigroups, for example, it can be shown that every (finite) semigroup can
be embedded in a (finite) regular semigroup. If we restrict ourselves to the class
of inverse semigroups, the situation is more complicated but algorithms still exist
which describe when a semigroup can be embedded in an inverse semigroup (see
Corollary 11.15 in Volume II of {10] for a description due to B. Schein). However if
we restrict ourselves further to the seemingly basic class of all Brandt semigroups
(inverse semigroups with just one non-zero ideal) then the set of subsemigroups sud-
denly becomes very complicated. In fact this set is not recursive (Kublanovsky, see
Theorem 1.3 of [25])!

One of the most studied embedding problems is that concerning the embedding
of amalgams. Roughly speaking, a semigroup amalgam

[Sl, Sg, - Sn; U]

is a collection of semigroups S,, S,, ... ,S, each sharing a common subsemigroup
U. Clearly, a semigroup amalgam can be thought of as a special kind of partial
groupoid (a set with a partially defined binary operation). In general the problem
of determining when a partial groupoid can be embedded in a semigroup can be
very difficult: a result of Evans (see Connection 2.2 in [39]) shows that even the
problem of determining when a partial group (see Chapter 5 of this thesis for a
precise definition) is embeddable in a group or finite group is undecidable. On the
other hand, the corresponding embedding problem for group amalgams is very much
simpler: every group amalgam is embeddable in a group (Schreier, [81]). This result
was extended by T.E. Hall ([24]) when he showed that an inverse semigroup amal-
gam is always embeddable in an inverse semigroup. In fact a semigroup amalgam

[S1,83,...8,; U] is always embeddable in a semigroup if U is an inverse semigroup
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([24], [28]). There are finite inverse semigroup amalgams which are not embeddable
in any finite semigroup (see page 309 of [29] for an example due to C. J. Ash) and in
fact there are semigroup amalgams which are not even “partial semigroups” in the
sense that there are elements z, y, and z so that (zy)z and z(yz) are both defined

but not equal (see page 139, Volume II of [10] for an example due to Kimura).

1.2 Outline of results

In Chapter 2 we investigate the finite basis problem for the class of discrete syntactic
monoids of finite languages. If S is a semigroup with a subset W then we define the
discrete syntactic congruence pw of W by (u,v) € pw if and only if for any w € W
and p,q € S?, pug = w & pvg = w. Evidently pw is the largest congruence on S for
which each element of W constitutes an entire congruence class. If W is a language

(that is, a subset W of a free monoid X*) then
IW)={we X" :pwg g W Vp,q € X~}

is the ideal of X™* consisting of all words in X* that are not subwords of a word
in W and X*/pw is easily seen to be the Rees quotient X*/I(W). In general for
a set of words W in an alphabet we denote the discrete syntactic monoid X*/pw
by S(W). After many of the results of this chapter were obtained, the author
received a preprint entitled “On the finite basis problem for syntactic monoids of
finite languages” by O. Sapir where some similar material had been independently
investigated. Some of the results were then jointly refined and developed and have
been combined in the forthcoming paper [34] (see also [80]).

It is shown that a very large proportion of discrete syntactic monoids are NFB.
More precisely, for any given finite alphabet X and any fixed natural number k, the
ratio between the number of k element sets of words of maximum length n whose
discrete syntactic monoid is NFB to the number of all k£ element sets of words in X

of maximum length n tends to 1 as n tends to infinity. Thus, in a quite natural sense,
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“almost all” discrete syntactic monoids of finite languages are NFB. Furthermore
every word w is a subword of a word w' at most four letters longer than w such
that S({w'}) is NFB. On the other hand it is shown that every finite set of words
of length less than four letters has a FB discrete syntactic monoid. This is used to
show that the smallest possible example of a NFB discrete syntactic monoid has 9
elements; a 9 element example is presented.

Another result emphasising the complicated nature of the identities of these
semigroups is that for every set of words W there are finite sets of words V; for each
integer 1 > 0 so that Vo = W, V; C Vj4, and for every j > 1, S(V;-,) is FB and
S(V2;) is NFB. These facts show that the class of FB (or NFB) discrete syntactic
monoids of finite languages is not closed under the taking of submonoids and of
Rees Quotients. A more difficult problem is that of ﬁndiﬁg finite FB (or NFB)
semigroups whose direct product is NFB (or FB, respectively). Such examples
have been constructed by M. Sapir [75] and M. Volkov [82] but all known examples
depend on the presence of nontrivial subgroups. As noted in the introduction, an
open problem of M. Sapir asks whether or not there exists a pair of FB aperiodic
finite semigroups whose direct product is NFB. A solution to the dual problem of
finding a pair of NFB aperiodic finite semigroups whose direct product is FB was
found by O. Sapir: both S({abab}) and S ({abba,aabb}) are NFB but their product
is FB. This result is generalised and it is found that such examples are in fact
quite common. We also present the first example of a pair of finite FB aperiodic
semigroups whose product is NFB, answering positively the question of M. Sapir.
Shortly after the discovery of this example a different example was found by O.
Sapir.

In Chapter 3 we investigate the class of finite INFB semigroups. This class has
been completely described by M. Sapir in [73] and [74] (see Theorems 1.1.1 and 1.1.2
above) but some interesting questions remain. It is shown in [74] that if S is a finite

semigroup with only nilpotent subgroups then S is INFB if and only if B € V(S)
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(here and elsewhere, V(S) denotes the variety generated by the semigroup S). We
establish some similar results by showing that if C is one of the classes: finite
regular semigroups; or finite semigroups whose idempotents form a subsemigroup,
then a semigroup S € C is INFB if and only if B € V(S). This is despite the fact
that there are regular semigroups containing INFB subsemigroups that generate
varieties not containing B}. In fact a finite regular semigroup is shown to be INFB
if and only if it contains as a subsemigroup the three element semigroup consisting
of the two element null semigroup with adjoined identity element. A number of
corollaries are obtained which show that while every semigroup can be embedded
in a regular semigroup, “very few” semigroups can be embedded in a finitely based
regular semigroup. Using existing results of Rasin [71] a further corollary of the
above is complete description of the FB finite orthodox monoids.

Attention is then turned to the class of minimal INFB divisors for the class of
finite semigroups. Two constructions are presented for making small INFB finite
semigroups whose varieties do not contain Bj. Combined with the semigroups B}
and A} and modulo certain group properties it is then shown that these form the
class of minimal INFB divisors amongst finite semigroups. It is also shown that
the smallest (element wise) INFB semigroup S for which B} & V(S) has exactly 56
elements (all such examples are easily constructed using the given methods).

In Chapter 4 we investigate varieties with uncouﬁta.ble lattices of subvarieties. A.
N. Trahtman [92] has shown that the finite semigroup A} generates a variety with
uncountably many subvarieties but Theorem 1.1.2 above (from [74]) shows that this
variety is INFB so provides no locally finite examples of FB varieties with uncount-
ably many subvarieties. In order to find such examples it is shown that if zyz is an
isoterm for a set X of identities that is closed under deletion then the variety defined
by ¥ has uncountably many subvarieties. In fact such a variety contains a contin-
uum of subvarieties in the sense that it contains an uncountable chain of subvarieties

with the same ordering as that of the real numbers. These facts enable the con-
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struction of a 7 element FB semigroup which generates a variety with uncountably
many subvarieties. By combining the above with existing results, we then obtain a
complete description of the varieties with uncountably many subvarieties generated
by semigroups from the classes of finite orthodox monoids, INFB semigroups, dis-
crete syntactic monoids of (not necessarily finite) languages, or monoids with index
more than 2. For orthodox monoids the situation is particularly interesting since
here the properties of being FB, HFB, WFB and that of generating a variety with
only finitely many subvarieties are all equivalent. Likewise the properties of being
NFB, INFB and generating a variety with uncountably many (semigroup) subvari-
eties are all equivalent for these semigroups. The theorem also enables an example
to be constructed of two finitely generated varieties, one with only 3 subvarieties
and the other a commutative variety with a countable infinity of subvarieties, whose
join has uncountably many subvarieties. This shows that the set of varieties with
only countably many subvarieties is not a sublattice of the lattice of all semigroup
varieties. Several other examples of varieties with uncountably many subvarieties
are investigated. In particular it is shown that if both B, (the semigroup obtained
from B} by removing the identity element) and the three element monoid consisting
of the two element null semigroup with adjoined identity are contained in a variety
then that variety has uncountably many subvarieties. This example is used to a
second 7 element WFB semigroups that generates variety with uncountably many
subvarieties. The final results in Chapter 4 relate the problem of finding varieties
with uncountably subvarieties to the problem of finding varieties V with the fol-
lowing unusual property: every finitely presented semigroup in V has a decidable
word problem but there is no single algorithm which solves the word problem in any
finitely presented semigroup from V (that is the uniform word problem is undecidable
for V). We show how to construct many examples of this type.

In Chapter 5 we consider some embedding problems not directly related to the

study of varieties and show that these are undecidable. The first problem concerns
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Green’s relations £, R, H, D and J. These equivalence relations are some of the
most useful constructions in semigroup theory, providing insight into the structure of
ideals and the behaviour of subgroups with respe& to other elements of a semigroup.
There exists a well known and algorithmic characterisation of when a semigroup S
with subset A can be embedded in a semigroup (or finite semigroup) T so that A
lies within an £- or R-class of T respectively (see [21], [48] or [62] for example).
Such a subset is said to be potentially £- or potentially R-related. The correspond-
ing problem for the relations H, D and J is quite different. Every semigroup is
embeddable in an infinite semigroup with just one D and one J class [10] however
when restricted to the class of finite semigroups the problem becomes undecidable
(S. Kublanovsky, see [25]) even if the subset A consists of just two elements [45).
Likewise, we show that for the relation #, the corresponding problem is undecidable
in both the class of finite semigroups (answering problem 1 of [76]) and in the class
of all semigroups, extending related results obtained by M. V. Sapir in [76]. We also
show that there is no algorithm that determines when given two disjoint subsets A
and B of a finite semigroup S whether or not S is embeddable in a semigroup or
finite semigroup T so that A lies in an L-class of T and B lies in an R-class of T.
An infinite semigroup with a potentially £- and potentially RR-related subset never
lying in a H-class ;)f any embedding semigroup is known and in [76], the existence of
a finite semigroup with this property is established. We present two eight element
examples of such semigroups as well as other examples satisfying related properties.

In the final section we address embedding problems concerning finite semigroup
amalgams. The most basic question to ask of a semigroup amalgam is whether or
not it can be embedded in a semigroup. In general for a class C of semigroups, we
will define the strong decision problem for amalgam embeddability in C to be the
problem of determining if an amalgam of finite semigroups from C' can be embedded
in a semigroup from C. Similarly we define the weak decision problem for amalgam

embeddability in C to be the problem of determining when an amalgam of finite
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semigroups can be embedded in a semigroup from C. For some important classes
C (such as the class of all groups [81] and the class of all inverse semigroups ([28],
[24])) every finite amalgam can be embeddable in a semigroup from C and so the
strong decision problem for amalgam embeddability has a very simple solution. In
general however we show that the strong decision problem (and the weak decision
problem) for amalgam embeddability in the class of all semigroups and the class of
finite semigroups is undecidable. Furthermore the weak decision problem for amal-
gam embeddability in the class of inverse semigroups and the class of finite inverse
semigroups is shown to be undecidable. A semigroup amalgam can be transformed
into a ring amalgam by using the notion of semigroup rings. Thus a corresponding
undecidability result is also obtained for the embeddability of ring amalgams into
rings and finite rings.

The case of the undecidability of the decision problem for amalgam embeddability
in the class of finite semigroups follows from a modification of the main result of
[45]. In this paper it is shown that there is no algorithm which, when given two
elements a and b of a finite semigroup S, determines if there is a bigger finite
semigroup T containing S in which a divides b. Using the construction of [45]
it is not hard to construct an amalgam which enforces the condition a divides b
in any embedding semigroup. The proof of the result of [45] however depends
strongly on the rigid structure of the finite 0-simple semigroups and so this cannot
be extended to the class of all semigroups (since every semigroup is embeddable in
an infinite 0-simple semigroup in which every pair of elements divide one another).
A different construction is therefore required to prove the general result. Subsequent
to obtaining the results of this section, the author was informed by M. Sapir that
he had earlier obtained similar results using a different method involving Minsky
machines [77). The method used by M. Sapir for the undecidability of the decision
problem for amalgam embeddability in the class of finite semigroups is similar to

the one we present here.
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We note that some of the results in this thesis have been published, accepted
for publication, or have been submitted for publication. Specifically: the results of
Sections 5.2 and 5.3 appear in [30]; some of the results from Chapter 2 are to appear
in [34); and some of the results from Chapter 4 and Section 5.4 have been submitted

for publication ([31], [33] and [32]).

1.3 Preliminaries: notations and definitions

In this section we define many of the basic concepts and results to be used in
following chapters. In much of what follows we formulate for semigroups, concepts
that also apply in a more general setting. The first reason for this restriction is
because semigroups are the main concern of this thesis and the second is because in
several cases slight simplifications occur under this restriction. For further general
information regarding varieties and equational logic, [9] is an excellent reference. For
a survey of many results specifically regarding identities of semigroups the reader is
referred to [82]. There are also a number of suitable books providing information
on general theory of semigroups ([10] and [29] are two of many examples). Chapter-
specific notations and definitions may not appear in this section but will instead be
introduced as the need arises.

A semigroup S consists of a set S and a binary operation S x § = S which is
associative. More formally the semigroup S may denoted by the pair (S, ) where -
is a symbol corresponding to a binary operation defined on the set S. In general we
will relax the need for this formality and take statements such as “for every s € S”
to mean “for every s € §”. An exception to this rule will be in a few definitions
below and, especially, in Chapter 5 where it is beneficial to introduce greater rigour
with regards to the distinction between sets and various operations defined on those

sets.
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1.3.1 Identities

The free monoid and free semigroup on an alphabet X will be denoted X* and X+
respectively. Elements of X+ will be referred to as words and elements of X* will
be referred to as possibly empty words. The equality relation on a free monoid will
be denoted “=” and the length of a word w will be the number of (not necessarily
distinct) letters appearing in w (denoted |w|). Likewise, if W = {wy,... ,w,} is a
finite set of words then the length of W is the maximum of the lengths of the words
Wy, ... wy (denoted |W|). Many of the arguments to follow involve investigations
into the structure of various words and for this purpose it will be convenient to

introduce some notation.

DEFINITION 1.3.1 (i) If z is a letter and w is a word, then occ(z,w) is the
number of occurrences of x in w,

(i) c(w) = {z : occ(z,w) > 0}, that is, the content of w,

(iti) a letter x is n-occurring in a word w if oce(z,w) = n,

(iv) a letter z is more than n-occurring in a word w if for some natural number m
strictly greater than n, occ(z,w) = m,

(v) a word w is n-limited if occ(z,w) < n for all letters z.

In the special case when a letter ¢ is l-occurring in a word w we will say that ¢
is a linear letter in w. Several of these definitions may also be extended to finite
sets of words. In particular, if W = {w,... ,w,} is a finite set of words then
(W) = U, c(w;) and W is said to be n-limited if w; is n-limited for every i < n.
An identity' is a formal expression u & v where u and v are words. A semigroup
S will be said to satisfy u ~ v (written S | u = v) if for every assignment, 8, of
elements of S to the letters in ¢(u) U ¢(v), 0(u) takes the same value in S as 6(v)

(equivalently we may say S satisfies u & v where u and v are words in the alphabet

!The definition we give of an identity differs from the standard definition since we have restricted

ourselves to the case of semigroups. More accurately, what we define is a semigroup identity.
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X if for every homomorphism 8 from X* into S, 6(u) = 6(v)). A set of identities
will be said to be satisfied by a semigroup if every identity in the set is satisfied
by the semigroup and a set of identities will be said to be satisfied by a class. K of
semigroups if every identity in the set is satisfied by every semigroup in K. The set
of all identities in some fixed countably infinite alphabet satisfied by a semigroup
S (or class of semigroups K) will be denoted by Id(S) (or Id(K') respectively).
The notion of satisfaction may also be extended in a natural way to include sets of
identities. If &; and X are sets of identities then ; |= I if for every semigroup S,
the implication S E £, = S | £, holds.

An important kind of identity is that of the form z* & z*+7. It is easily verified
that every finite semigroup S satisfies an identity of this form and if 7+ and p are
chosen to be minimal then 7 is the indez and p is the period of S. If a semigroup
S is a group then S satisfies the identities z!*? &~ z and zPy =~ yz? ~ y and p is
also said to be the ezponent of S. If for some n a semigroup S satisfies the identity
z™ =~ z™*1 then every subgroup of S is a trivial group and S is said to be aperiodic.
If there are no natural numbers n and m so that S satisfies 2" ~ z™*™ then S is
said to be non-periodic. |

If £ is a set of identities then we will say that u = v can be derived from E
(written ¥ F u = v) if there is a sequence of words u = u),us,... Un-1,Un = ¥
in an alphabet X and homomorphisms 6; : X* — X' so that for each : < n,
u; = ulf(p;)v! and w41 = ui(gi)v) for some possibly empty words u; and v; and
some identity p; &~ ¢; € £. The homomorphisms 0; are called substitutions and the
number n — 1 is called the length of the derivation of v &~ v from £. By a well
known theorem (the completeness theorem for equational logic) of G. Birkhoff [5]
the relations = and - between sets of identities are in fact equivalent.

The relation F enables us to formally define a basis of identities.

DEFINITION 1.3.2 A finite set T of identities is a basis for the identities of a
semigroup S if ¥ is a minimal subset of 1d(S) from which all of 1d(S) may be
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derived.

The case when the set X is infinite provides more difficulties since it is possible that
the identities of a semigroup S (with no finite basis of identities) have no irreducible
subset from which /d(S) can be derived (see [91]). However it is also known that
if the identities of a semigroup S have a finite basis then any infinite subset of
Id(S) that generates Id(S) contains a finite subset that is a basis for /d(S) (the
compactness theorem for equational logic; see Chapter II, Exercise 14.10 of [9]).
Thus for our purposes it will suffice to use the following definition of an infinite

basis of identities.

DEFINITION 1.3.3 An infinite set L of identities is a basis for the identities of
a semigroup S if ¥ is a subset of Id(S) from which all of Id(S) may be derived and

T contains no finite subset which is a basis for Id(S).

As noted in the introduction, if a finite basis for the identities of a semigroup ex-
ists then the semigroup is said to be finitely based (abbreviated to FB) and otherwise
it is said to be nonfinitely based (abbreviated to NFB).

A set ¥ of identities will be said to be closed under deletion if both L+ p~ ¢ =
c(p) = c(q) and £ F p. ~ g, where p; & ¢ is the identity obtained by deleting every
occurrence of some letter z from p & gq. We will say that an identity p ~ ¢ deletes to
or can be deleted to p’ & ¢' if there is a sequence of such deletions starting at p ~ ¢

and ending at p’ & ¢'.

A word p deletes to a word p’ if p ~ p deletes to p’ ~ p'.
We will often be considering the semigroup identities of monoids (semigroups with
identity elements). If S is a monoid for which there is no word w taking the value 1
under all possible assignments of elements of S to the letters of w (such as the word
x” does on a group of exponent n) then the set of semigroup identities satisfied by
S is closed under deletion since assigning the element 1 to a letter in an identity is

effectively the same as deleting that letter. In fact a monoid S for which such a word

w does exist is necessarily a group since S must satisfy the identities wz ~ zw =~ z
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(where z & c(w)) and from this the identity z!*lz ~ zz!*! & z may easily be derived
(these define the semigroup variety consisting of all groups whose exponent divides
|w|). In general we will denote the monoid obtained from a semigroup S by adjoining
an identity element if it does not already have one by S?.

It is well known that every set of identities in an alphabet X determines a fully
invariant congruence on the free semigroup X* (that is a congruence invariant under

all homomorphisms of X+ into itself),

DEFINITION 1.3.4 A word p € Xt is an isoterm relative to a set of identities ¥
if Sk px q= p=q, that is, if the equivalence class of p under the fully invariant
congruence corresponding to ¥ is {p}. When referring to a specific semigroup S, a
~word will be said to be an isoterm for S if it is an isoterm for 1d(S), the set of all

identities satisfied by S over some fizred countably infinite alphabet.

As will be seen later in this thesis, many properties of semigroup identities can
determined by examining the isoterms of a semigroup.

Several of the concepts in Definition 1.3.1 are easily extended to identities.

DEFINITION 1.3.5 (i) A letter is n-occurring in an identity u =~ v if it is n-
occurring in both u and v,

(ii) an identity u = v is n-limited if both v and v are n-limited,

(111) an identity u ~ v is said to be balanced if for every letter z, occ(z,u) =

oce(z,v).

1.3.2 Important classes and structural aspects of semigroups

The variety generated by a class of semigroups K is the closure of K under the
taking of homomorphic images, subsemigroups and direct products or equivalently
(by a well known theorem of G. Birkhoff [5]) the class of all semigroups satisfying
Id(K). This variety will be denoted by V(K). We may extend the notion of free

semigroup to particular varieties of semigroups as follows: if V is a variety defined
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by the set £ of identities and § is the corresponding fully invariant congruence on
a free semigroup X+ generated by X then the V-free semigroup generated by X
is the quotient X*/0. The subvarieties of a given variety V form a lattice under
inclusion and because of the correspondence between fully invariant congruences on
free semigroups and identities, the lattice of subvarieties of V is anti-isomorphic to
the lattice of fully invariant congruences on a countably generated V-free semigroup.
As is standard in the literature, we will call a variety generated by a finite semigroup
a finitely generated variety and a variety whose lattice of subvarieties is finite, a small
variety. Note that for any semigroup S we have that Id(S) = Id(V(S)) and so a
semigroup has a finite basis of its identities if and only if the variety it generates
can be defined by a finite set of identities?.

While varieties are important classes of semigroups there are also many natural
classes of semigroups that do not form semigroup varieties. Some important exam-
ples include: the class of semigroups in which for every element z there is an element
y so that zyz = z (regular semigroups); the class of regular semigroups in which the
product of any two idempoténts is again an idempotent (orthodoz semigroups); the
class of orthodox semigroups in which idempotents commute (inverse semigroups);
the class of regular semigroups in which every element lies in a subgroup (completely
reqular semigroups); the class of finite semigroups in which all subgroups are trivial
(finite aperiodic semigroups); the class of all finite semigroups. All but the last
two of these classes contain non trivial subclasses which do form varieties. Further-
more all of these classes exhibit certain “variety-like” characteristics. For example,
several of these classes are closed under the taking of subsemigroups, the taking
of homomorphic images and the taking of finite direct products. Such classes are
called pseudovarieties. Furthermore the class of inverse semigroups actually forms a

variety if the unary operation ~! is introduced (this is not a semigroup variety since

2The reader may wish to recall the definitions of WFB, WNFB, INFB and HFB semigroups

and varieties on page 7 of the Historical Overview.
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there are subsemigroups of inverse semigroups that are not inverse semigroups).
The classes just defined were mostly characterised in terms of structural proper-
ties. Some of the most important tools in investigating the structural aspects of a

semigroup S are Green’s relations defined as follows

LS ={(a,b): 3 z,y € S*such that za = b, yb = a},

RS = {(a,b) : 3 z,y € S'such that az = b, by = a},

J® = {(a,b): 3 w,ﬂ-:,y,l € S'such that waz = b, ybz = a},

HS = LS ARS,

DS =L5o0RS =RSo 5.

When there is no confusion as to what semigroup a particular relation is being
defined on, the superscripts of these relations will be dropped. As an example of
the usefulness of these relations we may reformulate several of the above definitions:
regular semigroups (or inverse semigroups) are exactly the semigroups in which every
L and every R class contains at least one idempotent (or exactly one idempotent,
respectively). Similarly, for finite semigroups, the condition that H is the diagonal
relational characterises the class of finite aperiodic semigroups (see [67] for a proof
of this fact).

For a particular semigroup S and an element a € S denote by L, (respectively
R., H,, Jo, D,) the equivalence class of £ (resp. R, H, J, D) containing a. Two
fundamental results associated with these relations are the following (the first is

known as Green's Lemma; see [10] or [29]).
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LEMMA 1.3.6 (Green). Let a and b be two R equivalent elements of a semigroup
S and let s,t € S be such that as = b and bt = a (s,t ezist by the definition of R).
Then the mappings given by z — zs and y — yt forz € Lo, y € L are R-class
preserving, mutually inverse, injective mappings from L, to Ly and from Ly to L,

respectively. The dual statement for L equivalent elements also holds.
Let an element a € S be called regular if there is an = € S such that aza = a.

LEMMA 1.3.7 (i) If a D-class D of a semigroup S contains a regular element then
every element of D is regular and D is called a regular D-class of S.
(i) If a D-class D of a semigroup S is regular, then every L-class and every R-class

in D contains an H-class that is a subgroup of S.

A simple semigroup® S is a semigroup containing no ideals other than itself (that
is, no subsets I of S so that forevery s € S, s/ C I and I's C I) and a 0-simple semi-
group is a semigroup with a zero element 0 containing no ideals other than itself and
{0}. Equivalently these two kinds of semigroups can be defined as those consisting
of just one J-class and one nonzero J-class respectively. For a finite semigroup it
can be shown that the relations D and J coincide and the simple semigroups and
0-simple semigroups admit a particularly convenient structural characterisation. Let
G be a group and P be a A x I matrix whose entries Py; (with (A7) € A x I) are
either 0 or elements of G. If no row and no column of P consists entirely of zeros

then we may define a semigroup operation on the set 7 x G x AU {0} by letting

i,sPy;t,v) if Pa; #0,
(i,s,)\)(j,t,v): ( Aj )f 4\33&

0 otherwise

and

(1,8, A)0 =0 = 0(z, 5, ).

3While this is the usual definition of a simple semigroup it should not be confused with standard

universal algebraic definition of a simple algebra which is an algebra with no nontrivial congruences.
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and denote the resulting semigroup by M°[G, I, A, P). This semigroup is called a
Rees matriz semigroup with zero and all finite O-simple semigroups are isomorphic
to a Rees matrix semigroup of some kind. If we insist that P contains no zero
entries and remove the zero element from M°[G, I, A, P] we obtain an analogous
description of the finite simple semigroups (denoted M[G, I, A, P]). In the infinite
case there are simple and 0-simple semigroups that do not share this basic structure
and in general we call those semigroups isomorphic to a Rees matrix semigroup with
zero or a Rees matrix semigroup without zero as completely 0-simple and completely
simple semigroups respectively. In the case where both I and A are finite it is
often convenient to use the notation M[G,n,m, P] (or M°[G,n,m, P]) to denote
the semigroup M[G, I, A, P] (or M°[G, I, A, P] respectively) where |I| = n and
|A| = m.

One of the many reasons that completely simple and completely 0-simple semi-
groups are important in the study of finite semigroups is that to some extent, the
structure of Rees matrix semigroup determines the structure of a J (or D) class of
a finite semigroup. Associated with every J-class J; of a semigroup S is an ideal
I, = S*'sS* of S. The principal factor of J, is the Rees quotient I,/I’ where I’ is a
maximal ideal contained in I, (if it exists) and is isomorphic to either a semigroup
with zero multiplication or a Rees matrix semigroup with a zero. If I’ does not exist

then I is itself a Rees matrix semigroup.



Chapter 2

The finite basis problem for
discrete syntactic monoids of finite

languages.

In this chapter we investigate an interesting class of finite aperiodic semigroups
(that is, semigroups with only trivial subgroups) whose identities are very sim-
ple to describe yet exhibit some complicated behavior. Recall the definition of
the discrete syntactic monoid S(W) of a language w (see pages 8 and 10). The
identities of semigroups with this form have been of interest since P. Perkins [63]
showed that S({abcba,acbab,abab,aab}) is NFB. It is clear from the results in [73]
and [74] however that for any finite set of words W, the semigroup S(W) is not
INFB. This means that there does exist a FB, locally finite variety containing
S({abcba, acbab, abab, aab}) and it is therefore natural to ask whether this FB, lo-
cally finite variety can be generated by a semigroup of the form S(V) for some finite

set of finite words V. More generally we may ask:

QUESTION 2.0.8 (i) If W is a finite set of words, are there finite sets of words
U,V such that SSWUV) is FB and S(W UU) is NFB?

25
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(ii) Conversely, do there ezist finite sets of words W such that S(V) is FB (or NFB)
whenever VD W?

Another natural question (essentially Question 7.1 of [82]) is the following:
QUESTION 2.0.9 For what finite sets of words W is the semigroup S(W) FB?
A partial solution to Question 2.0.9 has been obtained by O. Sapir in [80):

THEOREM 2.0.10 (0. Sapir, [80]) If w is an element of {a,b}* then S({w}) is
FB if and only if w is one of the following words: a™b™, b"a™, a™ba™, or b™ab™ for

some n and m.

This shows that for “most” words w in a two letter alphabet, S({w}) is NFB! In
Section 2.5 we extend this result by showing that for any fixed finite alphabet A
(with |A| > 1) and fixed integer k& > 0, almost all k element sets of words W
in A, have a discrete syntactic monoid that is NFB. A similar (but not identical)
measure concerning the number of FB semigroup operations (that is, FB associative
binary operations) definable on an n-element set has the opposite solution: almost
all semigroups are three nilpotent and are therefore FB [41].

This shows that the general solution to Question 2.0.9 is likely to be very com-
plicated. Results from Sections 2.2, 2.3 and 2.4 for example show that for any
finite set of finite words W we can find finite sets V;,V,,... of finite words with
W C Vi CcV,C... such that S(Va) is FB and S(Va;-;) is NFB for each 7 > 0.
Furthermore every word w is a subword of a word w’ at most four letters longer than
w so that S({w'}) is NFB. Thus we have a positive solution to Question 2.0.8 part
(i) and consequently a negative solution to part (ii). It is also shown that there are
finite sets of finite words U;, U, and V4, V; such that S(U,), S(U) are FB, S(V;),
S(V,) are NFB but S(U; UU,) is NFB and S(V; U V2) is FB.

We note that the discrete syntactic congruence is closely related to the well
known syntactic congruence (see [67] for a precise definition) but while the syntac-

tic congruence of a subset W of a semigroup S is the largest congruence on S that
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saturates W (that is, for which W is a union of congruence classes), the discrete
syntactic congruence of W is only the largest congruence on S that separates the
elements of W in the sense that each element of W constitutes an entire congruence
class. Thus, while the syntactic monoid of an infinite language can be finite (as it is
for the so called recognizable languages; see [67] for example) the discrete syntactic
monoid of an infinite language is necessarily an infinite semigroup. On the other
hand if a language W consists of a single word then, as is easily verified, the discrete
syntactic congruence for W coincides with the syntactic congruence for W. Fur-
thermore, the syntactic monoid of a subset of a monoid S is always a homomorphic

image of the discrete syntactic monoid of the subset.

2.1 Preliminary definitions

The proofs in this chapter generally involve an analysis of the structure of identities

and consequently it is necessary to introduce some further terminology.

DEFINITION 2.1.1 The expression ;x means the i*h occurrence of a letter z in a
word (see [34] or [80]).

DEFINITION 2.1.2 Ifc(w) = {z1,...,z.} and {z;i,, Zip, ... ,Zi,, } (wherem < n)
is a subset of c(w) then w(zi,,Ziy,... , i, ) is the word obtained from w by assigning

1 to each of the letters in c(w)\{zi,, Ziy- .. , Tin }-

So in accordance with the definition given on page 19 we say that w deletes to
w(Ti), Tip, - - - » Tipy) and if p & ¢ is an identity with ¢(p) = ¢(¢) = {z1,... ,za} then
p =~ q deletes to p(zi,,Tiy, .- i) = q(Tiy, Tigy ..., Tipy). Since S(W) is always a
monoid with zero element, S(W) = p =~ ¢ implies that ¢(p) = ¢(q) and also that
every identity that p =~ ¢ deletes to is an identity satisfied by S(W). Because of
this, in the arguments to follow in this chapter we will tacitly assume that all sets

of identities are closed under deletion.
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In this chapter we will be considering words with large numbers of linear (1-
occurring) letters. To simplify many of the required definitions it will be convenient
to assume the convention that the letter ¢ (or ¢; for any subscript ¢) always denotes
a distinct linear letter, even if it appears to occur more than once in a word. For
example the word z:t;7,z2,t2t; will be the same as zitz 7222t We will use 7 to
denote the set of all linear letters in a word and subwords between successive linear

letters in a word will be called blocks.

DEFINITION 2.1.3 Ifw is a word a,a;,...a, (the a; are not necessarily distinct
letters) then |w,t] is the word ajtastast...a,t, where different occurrences of t, as

usual, represent distinct linear letters. Likewise |t,w] is the word ta,tastast. .. a,.

DEFINITION 2.1.4 A pair of letters (z,y) in an identity p = q is called stable if
p(z,y) = q(z,y). If (z,y) is not stable in p ~ q we will say it is unstable in this
identity. A pair of letters is stable in a word w with respect to a semigroup S if

S E w =~ v implies (z,y) is stable in w ~ v.

Note that if (z,y) is unstable in an identity p & ¢ is and only if (y, z) is unstable in
p = q. Naturally, if every pair of letters is stable in an identity then that identity is
a tautology (trivial identity). We can define a similar notion of stability for pairs of

the form (;z,;y).

DEFINITION 2.1.5 A pair (;z,;y) is stable in an identity u = v if the order of
appearance of the i** occurrence of z and the j** occurrence of y is the same in both
u and v. If (;z,;y) is not stable in u =~ v then we will say it is unstable in this
identity. An unstable pair (;z,;y) is a critical pair for v = v if it is unstable in

u = v and (;z)(;y) is a subword of u.

The identities of discrete syntactic monoids of finite languages are easy to inves-
tigate because they are described entirely in terms of isoterms: if w is a subword of

a word in W then w is an isoterm for the identities of S(W). There may however be
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many isoterms for a monoid S(W) that are not subwords of the set W. For example
zz, zzy and yzz are all isoterms for S = S({abb, aab}) since they are equivalent,
up to a change in names of letters to the words bb, abb and aab, all of which are
words or subwords of words in the set {abb,aab}. However zyz is also an isoterm
for S since if S satisfies an identity zyz & w for some word w then because zz is an
isoterm for S and zyz is 2-limited, occ(z,w) = 2 and occ(y,w) = 1. Since zzy and

yzz are both isoterms for S, w must be zyz.

2.2 FB discrete syntactic monoids of finite lan-
guages

In this section we find finite bases for the discrete syntactic monoid of some sets of
words. The first we consider is the set, W,,, of all n-limited words in the alphabet
{a,b}.

Let A, denote closure under deletion of letters of the system of two identities:
{a" = 2™ tizteztsn.. tox & 2ty )
THEOREM 2.2.1 For each n> 0, S(W,,) is FB.

Proof: Let an identity u & v be called n-simple if the identity obtained form u ~ v
by deleting all more than n-occurring letters is a tautology. We show that Id(S(W,))
is exactly the set of all n-simple identities. Let S(W,,) & p ~ q. If a letter z is less
than (n41)-occurring in p then we necessarily have occ(z, p) = occ(z, g) since in this
case p(z) is an isoterm for S(W,) (because W, contains a copy of p(z)). Let (z,y) be
a pair of less than (n + 1)-occurring letters in p. Then p(z,y) is an n-limited word in
two letters. Since there is a copy of all such words in W,,, p(z,y) must be an isoterm
for S(W,.). Therefore p(z,y) = g(z,y), and so (z,y) is a stable pair. Therefore

the identity obtained from p = g by deleting all more than n-occurring letters is a
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tautology, that is p = ¢ is n-simple. Conversely if p & ¢ is an n-simple identity then
since W, is a set of n-limited words, S(W,) must satisfy p = ¢ because in order that
p and q do not take the value 0 in S(W,) the element 1 must be assigned to every
more than n-occurring letter. But then p ~ ¢ is reduced to a tautology.

Now we show that A, is a basis for the identities of S(W,,). Firstly S(W,,) k=
A1 since A,y consists of n-simple identities. If p & ¢ is a nontrivial n-simple
identity then we may repeatedly apply t,zt,zt3z...tn2tns 1T & 27118y, 4, (or an
identity obtained from this by deleting some linear letters) to every more than n-
occurring letter in p until we have a word with an initial segment consisting entirely
of more than n-occurring letters and with the remaining portion being n-limited.
We may then use this identity (or an identity obtained from this by deleting some
linear letters) again to rearrange the more than n-occurring letters in the initial
segment into some alphabetical ordering. Applications of z"*? ~ z™*! can then
be applied to reduce the number of occurrences of these letters to n + 1. Call the
resulting word p’. We can do the same for the word ¢ and derive ¢ & ¢’. Since p ~ ¢
1s n-simple, we have p’ = ¢’ and therefore A, F p = q. ]

Several simple corollaries follow.

COROLLARY 2.2.2 Let S be a monoid satisfying Any1 for somen > 0. Then the
identities Any1 are a finite basis for [d(S x S(W,)).

COROLLARY 2.2.3 If every word in W, is an isoterm for the identities of a
monoid S and S |= Anyy then S satisfies the same identities as S(W,) and therefore
is FB. '

COROLLARY 2.2.4 Let S be a semigroup (or finite semigroup) satisfying the set
of identities A, for somen. Then S is a subsemigroup of a FB semigroup (or a FB,

finite semigroup respectively).

A semigroup is said to be k-nilpotent if the product of any k elements is 0 and

a monoid is said to be k-nilpotent if it is a k-nilpotent semigroup with adjoined
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identity element. It is clear that if S is a (finite) k-nilpotent monoid then S satisfies
the conditions of Corollary 2.2.4, with n = k and so is a subsemigroup of a finitely
based (finite) semigroup. However the direct product of S with S(W}) is not a
nilpotent semigroup (it has identity element (1,1) but (1,0) is also an idempotent).
An alternative construction is as follows. Since S and S(W}) are nilpotent monoids,
S = S\{1} and S(W}) = S(W,)\{1} are nilpotent semigroups. Now consider the

semigroup T on the set

(S\{0}) U (S(Wi)\{0}) U {0}

with multiplication within the subsets S and 5(W,) unchanged and all other prod-
ucts equaling zero (this construction is called the 0-direct join of S with S(W;)).
Finally let T be the semigroup T with adjoined identity element. It is clear that
T contains both S and S(W;) as submonoids and that T is a (2k + 1)-nilpotent
monoid (since the longest word in Wy is 2k letters long). Finally Corollary 2.2.3
shows that T is FB. Thus we have shown the following

COROLLARY 2.2.5 The pseudovariety generated by the class of finite, FB, nilpo-
tent monoids (that is, the closure of this class under taking subsemigroups, homo-
morphic images and finite direct products) contains all finite nilpotent monoids and

finite nilpotent semigroups.

The next result uses the fact that the words in W, are capable of “dominating”

smaller collections of words.

COROLLARY 2.2.6 If W is a finite set of words then there is a set of words
W' 2 W involving no more than |c(W)| letters such that S(W') is finitely based.

Proof: If W is a finite set of words in one letter, then S(W) is commutative and
therefore already finitely based (see [63]). Assume then that ¢(W) contains two

letters @ and b. Let n be the maximal number of times a letter appears in words in
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W and take W’ to be the union of W and W,,. Then any word in W, is an isoterm
for S(W’) and S(W’) satisfies A,. By Corollary 2.2.3, S(W"') is FB. o

We now examine the bases of identities of “small” sets of words.

PROPOSITION 2.2.7 Let W be a set of words whose length is at most three. Then
S(W) is FB.

Proof: We will essentially use a case by case analysis. First note that if u is a subword
of a word v then S({v}) is equationally equivalent to S({u,v}). Furthermore, if w is
the word v written in a different alphabet, then S({u,w}) is equationally equivalent
to S({u,v}). Finally note that the word zyz is an isoterm for the S(W) whenever
the word zy is. This means that if W is a set of words of length at most three
and W contains a word in three different letters, say abc, then the discrete syntactic
monoid of the set W’ obtained from W be replacing abc with ab is satisfies the same
identities as S(W). Thus we have (up to isomorphism and anti-isomorphism) only

the following sets of words to consider:

{a},{ab}, {ac}, {ab,aa}, {aaa},
{ab,aaa}, {aab}, {aab,aaa}, {aba},{aba,aa},
{aba, aaa},{aba,aab},{aab,baa}, {aba,aab,baa},
{aab, baa,aaa},{aba,aab,aaa}, {aba,aab,baa,aaa}.

In [70] it is shown that any variety satisfying the identity zyz =~ zzy (or zyz ~ yzz)
is FB. The discrete syntactic monoid of the first eight of the above cases satisfy this
identity and so are FB. The last nine cases need special attention and are addressed

in the following two lemmas.

LEMMA 2.2.8 Let S; be S({aba}), S, be S({aba,aa}) and S3 be S({aba,aaa}).

Then a (finite) basis for S; is the closure under deletion of letters of the set
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{tiztsz .. . tipz = 2ty 8, 2 = 2™ Yy & yyz,

TUYVTY R TUYVYT, TUYTVY X TUTYVY, TYUTVY = YTUTVY}.

Proof: Let p = q be satisfied by S;. It is obvious that zyz is an isoterm for S;
so the identity obtained by deleting all but linear letters from p = ¢ is a tautol-
ogy. Furthermore if p (or q) deletes to zyz then so does ¢ (or p). The identity
tiztoz .. . tis T = ztH,t,...¢; may be used to move all variables occurring three or
more times in p or g to one side of the word, say the left. All that remains other
than these occur one or two times. Let z be a 2-occurring letter in p (or ¢) such that
p (or q) cannot be deleted to ztz for some linear letter ¢. The last three identities
(or identities obtained from these by deleting variables) in the above set can be used
to move the two occurrences of z closer together. Eventually we obtain the subword
zz and then the identity zzy =~ yzz may be used to move this subword to the far
left also. By repeating this for all such letters we obtain an identity p &~ p, where
P = wywp and w, contains exactly all linear letters and all 2-occurring letters z for
which p deletes to ztz for some linear letter . The same process performed on the
word g gives a similar identity ¢ = ¢ where ¢; = v;v; and, since zyz is an isoterm
for S;, c(v2) = c(w,). All letters in w; (or v;) are 2-occurring in w; (or v;) and can
be rearranged freely using the identities '+! & 2'+2, t1ztoz .. . tipz & 2. 8,
and yzz =~ zzy. Thus we can assume that w; = v;. It remains to show that we can
derive wy = vs.

Assume therefore that both p and ¢ are 2-limited words and for.every 2-occurring
letter 2 we can delete p (and therefore ¢) to ztz for some linear letter ¢. Soif (;z,;y) is
a critical occurrence pair in p & ¢ then z and y must be 2-occurring letters. Therefore
without loss of generality p ~ ¢ deletes to one of the following: zytyzz ~ yziyzz,
rytyz ~ yxtry, zytzzy = yatrzy, zytzy =~ zytyz, or ztzyzy = xtyzzy where t is

a linear letter and z is either linear or the empty word. In every case one of the



CHAPTER 2. DISCRETE SYNTACTIC MONOIDS AND IDENTITIES. 34
identities
{zuyvzy = zuyvyz, zuyzvy & zuryvy, TYyuzVY ~ Yyruzvy}

can be applied to one of p to obtain an identity p’ =~ ¢ where the number of unstable
occurrence pairs (;z,;y) is smaller than that of p & ¢. Since there are only finitely

many such pairs we eventually obtain a derivation of p = ¢ as required. 0o
LEMMA 2.2.9 The closure under deletion of letters of the set

{tiztoxtsz ~ 23t t5ts, 2° ~ 24,

TUYVTY N TUYVYT, TUYTVY R TUTYVY, TYUTVY N YTUTVY}
s a (finite) basis for the identities of
S({aba,aab}), S({aab,baa}) and S({aba,aab,baa}).
Likewise, the closure under deletion of letters of set

{tiztrztsz ~ 23t tats, 2 = 2°,

TUYVTY N TUYVYT, TUYTVY N TUTYVY, TYUTVY N YyTUTVY }
is a (finite) basis for the identities of

S({aba,aab,aaa}), S({aab,baa,aaa}) and S({aba,aab,baa,aaa}).

-After noting that zz, zyz, zzy and yzz are all isoterms for all of the semigroups
in this lemma and that zzz is an isoterm for the last three semigroups, this lemma
can be proved in an almost identical way to Lemma 2.2.8. )

The proof of Proposition 2.2.7 now follows. O

PROPOSITION 2.2.10 If S(W) has less than 10 elements then S(W) is FB as

long as W is not equivalent to {abab} up to a change of letter names.
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Proof: If S(W) is NFB, Proposition 2.2.7 implies that W must contain a word with
at least four letters. It is easily verified that a word, w, of length at least four and
involving three distinct letters has at least 8 distinct subwords and so S({w}) has
at least 10 elements. Now the only words w of length at least four and involving
at most two distinct letters for which S({w}) has less than 10 elements contain
a subword equivalent up to a change in the names of letters to one of the words
aaaa, aaad, baaa and abab. The word aaaa has only 4 distinct subwords. In [70]
it is shown that if a semigroup satisfies zyz = zzy or zyr = yzz then it is FB.
If zzzz is an isoterm then in order that S(W) not satisfy one of these identities,
either zyz or both zyy and yyz must also be isoterms for S(W). Thus W contains
a word with a subword of the form uvu (where wvu # uuv and wvu % vuu) or W
contains words with subwords of the form uwuv and v'u'u’ (where uuv # wvu and
v'u'u’ # u'v'u’). It then easily follows that S(W) has more than 9 elements; the
smallest possibility being S({aaaa, aba}) with 10 elements. However S({aaaa, aba})
and S({aaaa,aab,baa}) have at least 10 elements. The words aaab and baaa each
have exactly 8 distinct subwords. Therefore a set of words W containing one of
these words, say aaab, and such that S(W) has at most 10 elements must be the
set W = {aaab}. The proposition now follows since the semigroups S({aaab}) and
S({baaa}) are FB by Theorem 2.0.10. 0

Note that it follows from Theorem 2.0.10 above that S({abab}) is NFB. (see also
Example 2.3.4 below).

We now turn our attention to one last example of a finitely based semigroup of

the form S(W). This example will become relevant in Section 2.6.1.
PROPOSITION 2.2.11 The closure under deletion of letters of the set
Y = {tiztrztzr =~ $3t1t2t3, z? :1:3, rzt & trx, otyzyty = ztyyetay}

is a finite basis for the identities of S = S({abcab,abcba}).
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Proof: We first show that every word w can be transformed by ¥ to a word of
the form z?...z2u where u is a 2-limited word not containing any of the letters
Ty, Z3,..., Tn and such that for every 2-occurring letter z there is a linear letter ¢ so
that u deletes to ztz (this is similar to the process we used in Proposition 2.2.8).
Let such a word be called a reduced word for S.

Firstly, if z occurs more than 3 times in the word u then we may apply the
identity ¢;zt2t3z & z°t1,t3 to move all occurrences of it to the left. By applying
z3 &~ 2? we can then reduce the number of occurrences of z to 2. Thus for any word
w, & F w =~ w’ where w' is 2-limited.

Now say that z is 2-occurring in a 2-limited word w and that there is no linear
letter ¢ in w for which w(z,t) = ztz. So w = AzBzC for some words A, B and
C where every letter in B is 2-occurring in w. If B is empty then we may apply
tzx ~ rzt to move z to the left as required. If B is not empty then w is equivalent to
a word of the form AzD(,y)ExzC where D contains only first occurrences of letters
2-occurring in w (this includes the situation where E is empty and z is y). We
may then move y leftward out of B using repeated applications of one or both of
ztizyly = ztiyety and 22t = tzx.

The length of B is reduced by this procedure and therefore by repeating these
steps a word in which zz is a subword is eventually obtained. Both occurrences of
the letter z can now be moved to the far left hand end of the word using the identity
zzt & tzz. Since this can be done for all 2-occurring letters z in w such that w does

2 2

not delete to ztz for some ¢, we have shown (for some n) that £ F w= z}...2%u

where u is a reduced word for S. So if w &~ v is an identity satisfied by S then we

2 2

may use I to derive w = z}..z2u; and v & z?

2
1|||$

Zug where both u; and u, are

reduced. Since u; and u; do not contain z; for ¢« < n, S must satisfy the identity
Ui ~ Usg.
In order to complete the proof we will show how ¥ can be applied to reduce

the number of unstable occurrence pairs (;z,;y) in an identity © &~ v where u and
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v are reduced words for S. Let u = v be such an identity of S. Now assume that
u = v contains a critical pair of the form (22,1 y) or (1z,2y) then by applying the
identity ztyzytoy = zt;yziay to the word u we obtain an identity u’' = v in which
the number of unstable occurrence pairs is less than that of u &~ v. If u & v contains
a critical pair of the form (;z,;y) then without loss of generality we may assume
that u = AzyBzCyD or AzyByCzD for some words A, B, C, D. Since u is a
reduced word for S, B must contain a linear letter, {. But then we can assign a to
z,btoy, ctotand 1 to all other letters and u takes the value abcba or abcab, both
of which are isoterms for S({abcba, abcab}). This contradicts the assumption that
(12,1 y) was a critical pair and therefore such critical pairs do not exist in u = v.
The case for critical pairs of the form (yz,,y) follows by the symmetry of the set
{abcba, abcab}.

Similarly we can show that there are no critical pairs of the form (iz,1), (2z,1),
(thz), or (t,2z) (t is a linear letter as usual) since there is a linear letter between
every 2-occurring letter in v = v and ztz is an isoterm. Thus for every such
(nontrivial) identity of S, say u ~ v, we may always apply the identity {zt,zyty =~
ztiyztay} to obtain an identity u’ & v with the property that u’ ~ v has fewer
unstable pairs of the form (;z,;y). Since there can be only finitely many such pairs
in the identity u = v, by repeating this process we eventually obtain an identity
with no such pairs. This is necessarily a trivial identity and so a derivation of u = v

has been obtained. Therefore ¥ is a finite basis for S({abcba, abcab}). )

2.3 NFB discrete syntactic monoids of finite
languages: background results

In this section we prove a number of nonfinite basis theorems for monoids. There
will be very little interpretation or application of the results in this section; instead

this will take place in Section 2.4 and Section 2.6. To begin we require some simple
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results concerning isoterms.

LEMMA 2.3.1 Let S be a monoid such that zy is an isoterm of S. Let u be an
isoterm of S containing a linear letter t,. Then

(1) (O. Sapir [80]) erasing a prefix (suffi) of a block in u gives a new isoterm for S
and

(1) the word v obtained by adding a linear letter t; immediately to the left (or right)

of the occurrence of t, in u is also an isoterm for S.

Proof: (ii) Let v be as in the statement of the lemma. If v & w is a nontrivial
identity satisfied by S then since u is an isoterm for S, any unstable pair in v =~ w
must include the letter ¢, and not the letter ¢; (note that if (¢,,¢2) was unstable then
S would satisfy t;¢, = t»t; which is not the case). Let (z,?2) be such a pair. The
word obtained from v by deleting ¢, is equivalent to u up to a change of letter names
and therefore is an isoterm. This contradicts the fact that (z,ts) is an unstable pair

in v & w. Thus no such w exists and v is an isoterm for S. ]

DEFINITION 2.3.2 Let X = {z1,22,...}. Then [Xn] and [nX] denote the words

T1Tp...Tn and TuZn-1 ...T1 respectively and [X(2n)] denotes the word
ToTgq...T20l1X3...T2n-1-
We can now state and prove the first of our NFB results.

LEMMA 2.3.3 Let M be an infinite set of natural numbers. If zyzy is an isoterm
for a monoid S and for every n € M, the word L, = [X(2n)]i[X(2n)] is not an
isoterm for S, then S is NFB.

Proof: Given that zyzy (and consequently zytzy) is an isoterm for the monoid S it
follows that if (z;,z;) is an unstable pair in any identity L, ~ w satisfied by S then

either ¢ is even, 7 is odd and 7 < 7 or j is even, ¢ is odd and z < j. Furthermore in
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this case the identity Ln(z;, zj,t) = w(z;, z;,t) is equivalent up to a change of letter
names to the identity zytyz =~ yztzy. We now show that if L, = w is a nontrivial
identity of S, then w = [X(2n))t[X (2n)].

Let (z;,z;) be an unstable pair in a nontrivial identity L, =~ w satisfied by S. It
is convenient to denote the word to the left of ¢ in L, by B; and the word to the
right of ¢ in L, by B,. Since zyz is an isoterm for S, (z;,¢) is stable in L, ~ w for
any ¢ < 2n and so there are corresponding blocks B; and Bj in w either side of the
linear letter ¢ that are permutations of the corresponding blocks B; and B; in L,.
Without loss of generality, we may assume that z; precedes z; in By and z; precedes
z; in B]. As noted above we have that ¢ is odd, j is even and 7 < j and therefore
since zytzy is an isoterm for S we can conclude that w(zi, zj,t) = zzitziz;. Now 1
is odd and so we have that L,(z,,z;,t) = z;2;tx12;, an isoterm for Sori = 1. If ¢ is
not 1 it follows that z, precedes z; in B; and in Bj and also that z; precedes z; in
B; (because z; does). As noted at the start of the proof, the pair (z;,22,) is stable
in L, ® w and so z,, occurs after z; and therefore after z, in B). That is, (z,,z2,)
is an unstable pair in L, ~ w. If z, precedes z2, in B; (as it does in B;), then
w(Z1, Ton, t) is the word z122,t2122,, an isoterm for S and so contradicting the fact
that (z1,22.) was an unstable pair. So we must have z, occurring after z, in Bj.
Since for any odd number j’, (z;,z;) is stable in L, ~ w, we must have z; occurs
after z4, in Bj. Likewise for any even number ¢', z;; precedes z,, and therefore
in B]. These facts ensure that Bj is the word [X(2n)]. It now easily follows that
in Bj, z, precedes 3, 2, precedes z3 and so on, so that Bj is the word [X(2n)]. so
w = [X(2n)][X(2n)]. '

We now show by contradiction that if ¥ is a basis for the identities of S then for
every nontrivial identity L, ~ w satisfied by S, ¥ contains an identity with at least
2n letters. Since S satisfies such an identity for infinitely many n, this implies that &
is infinite. If L, is not an isoterm for S then we showed above that there is just one

word w such that S = L, = w. We will denote this word by R,. So any derivation
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of L, = R, involves just one step. Therefore there is an identity p % ¢ € ¥ such
that L, = U,0(p)U; and R, = U,0(q)U (indeed it is clear from the form of L, =~ R,
that was established above that U; and U, can be taken to be empty). Say p =~ ¢
involve fewer than 2n distinct letters. The word [X(2n)] involves 2n distinct letters
and so there must be a letter z in ¢(p) such that, for some i < 2n — 1, z;z;4, is a
subword of 6(z). This subword occurs just once in L, and w so z must be linear in
p and ¢. Similarly there is a variable y such that 6(y) contains a subword of [X(2n)]
whose length is at least 2, and y is linear in p and q. However the subword 0(z)
occurs before 8(y) in L, and after 6(y) in R,. Therefore p(z,y) ~ g(z,y) is the

identity zy & yz, contradicting the fact that zyzy is an isoterm for S. Hence p = ¢

must contain at least 2n distinct letters as required. Therefore S is NFB. O

EXAMPLE 2.3.4 Consider S({abab}). The word zytzy is an isoterm for S({abab}).
On the other hand it is easily verified that

S({abab}) [ [X(2n)]t[X (2n)] ~ [X(2n))t[X (2n)]

since for any unstable pair (z;,z;) in this identity, the left hand side deletes to
21292921 and the right hand side deletes to zp21zy25. Therefore by Lemma 2.5.3,

S({abab}) is NFB.

All our results that are based on this lemma can be proved using a similar lemma
in [80]. We have included Lemma 2.3.3 for the sake of completeness and because it
uses a quite different set of identities.

The following two lemmas will be useful in Section 2.6.

LEMMA 2.3.5 Let A, B be elements of {zyt,yzt}™ and p be a substitution defined
- by p(zyt) = |zy[Xnl,t], p(yzt) = |[nX]yz,t]. Let uy, us, vy, and vy be elements of
{zy,yz} such that uyu, is not zyzy and viv, is not TYyz.

(a) If for some m > 1, Az™y™tB, and AzytzytB are isoterms for a monoid S and
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for every n > 0,
S p(A)zyzl'zy ... 27 zytp(B) = p(A)mizT'2y - . . 2 uatp(B),

then S is NFB.
(b) If for some m > 1, Az™y™tB and AzytyztB are isoterms for a monoid S and

for every n,
S = p(A)zyzTay ...z yztp(B) ~ p(A)vmizlzy ... 2y vatp(B),
then S is NFB.

Proof: We will only prove part (a) since the proof of (b) is almost identical. Let L,
be the word

p(A)zyzTzy ...z zytp(B)

and R, be the word
p(A)uizTzy ...z uqstp(B).

Let L, ~ w be a nontrivial identity satisfied by S. By both parts of Lemma 2.3.1, for
any non-linear letter z, L,(z,7) is an isoterm (recall that 7 is the set of linear letters
in Ln; see page 28). Therefore w differs from L, only by permutations within blocks.
Since there is only one block of length more than one, the only differences between
L, and w are to be found in this block. We will refer to this block as the central
block of L, and w. Since Az™y™tB is an isoterm, Lemma 2.3.1 part (ii) implies
that L,(z;,z;,7) is an isoterm. Thus it must be the case that L.(zy,...,2,,7) is
an isoterm. Now Az™y™tB is an isoterm for S and so by Lemma 2.3.1 part (i),
Az™yytB and Azzy™tB are isoterms for S. So for any letter z; € {z1,...,z.}, the
central block of w(z,z;,7) cannot be of the form zzz or z["zz. In particular this
is true for 1 = 1 and 7 = n. Likewise for any z; € {z1,...,z.} the central block
of w(y, z;,7) cannot be of the form yyz™ or zMyy. Thus the central block of w is
of the form uz;2z] ...2™ z,v, where u is a permutation of zyz*™" and v is a

permutation of z* 'zy.
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Now we examine possible derivations of L, ~ R, from the identities of S. In
any derivation of L, =~ R, we have a sequence of identities I, ~ I, L ~ I3, ...,
Iy-y = I such that I} = L,, Iy = R, and for each i there is an identity p; ~ ¢;
and a substitution §; such that I; = ufi(p;)v and [;4; = ub;(g:)v for some words
u,v. Let h smallest number such that I;(z,y) # In41(z,y) (this exists since by
the choice of u; and us, L.(z,y) # R.(z,y)). Both I and I4; are of the form
of w as described above. Consider p, = g¢,. Clearly 6(p,) contains an occurrence
of z and an occurrence of y in the central block of I; (since these occur in some
different order in I54;). Therefore 6(py) contains both occurrences of at least one of
z and both occurrences of y since otherwise the identity 6(ps)(z,y) =~ 0(qr)(z,y) is
the identity zy ~ yz, contradicting the fact that zy is an isoterm for S. Since the
central block of both I;, and I,4, contain n + 2 distinct letters, if p, contains less
than 7 letters, there must be a letter z in ¢(ps) such that 6;(z) contains z;z;4, for
some j. This subword occurs just once in I} and I44; so z is linear in p;. Similarly
there are letters z” and y' such that 6;(z") contains z and 6;(y’) contains y. Consider
pu(z',y',2,7) = qu(z’,y',z,7). By the choice of I, and Iy, the pair (z/,y') is
unstable in this identity. Now if z is a linear letter, AzyzzytB and all subwords
of this word are isoterms. Define a new substitution ¢’ by defining 6'(z') = =z,
¢'(y') =y, #'(z) = z and assigning the remaining linear letters in ps(z’,y’, 2, 7) to
subwords of Azyzzyt B between corresponding occurrences of §'(z’), 6'(y’) and ¢'(2’).
That (z',y") is an unstable pair in px(z’,y', z,7) = gua(2’, y’, 2z, 7) now contradicts the
fact that AzyzzytB is an isoterm. Thus py must contain more than n letters. Since

S satisfies
p(A)zyai'zy ... a7 eytp(B) = p(A)uizT'zs ... 2 ustp(B)

for every n > 0, any basis for /d(S) must be infinite since for every n > 0 it contains

an identity with more than n letters. O
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EXAMPLE 2.3.6 Consider S({abcab, abcba,a*b*}) for some k > 2. Some isoterms
for this semigroup are zytzyt, zytyzt and z*y*t. On the other hand it is easy to
verify that S({abcab, abcba, a*b*}) satisfies zyzt...zkzy ~ zyz* .. zFyz. Therefore
by either part of Lemma 2.3.5, S({abcab, abcba,a*b*}) is NFB.

LEMMA 2.3.7 Let A, B be elements of {zyt,yzt}*. Say AzyzytB and AyzzytB
are isoterms for a monoid S and for every n > 0, the word o(A)zz[nX]|[Xn]to(B)
is not an isoterm for S, where o is a substitution defined by o(zyt) = |z[Xn],t]

and o(yzt) = |[nX]z,t]. Then S is NFB.

Proof: The proof will be similar to that of the previous three lemmas. Fix some
number n and let L, be the word o(A)zz[nX][Xnlto(B). As in the proof of the
previous lemma, Lemma 2.3.1 shows that for any nonlinear letter y in ¢(L,), L(y, T)
is an isoterm. Thus if L, = w is a nontrivial identity satisfied by S then w differs
from L, only by a permutation within blocks. The word zz[nX][Xn] forms a block
in L, which we will refer to as the central block B;. Since B; is the only block
in L, with length more than one, there is a block B, in w corresponding to the
central block of L, which is a permutation of zz[nX][Xn]. Since AyzzytB is an
isoterm, L,(z;,z;,7) is an isoterm for every ¢,7 < n. Thus the central block is an
interleaving of zz and [nX][Xn|. Because AyzzytB is an isoterm for S, the two
occurrences of z in B, cannot lie between the two occurrences of any letter z; since
in that case w(z,z;, 7) would be an isoterm yet (z,z;) an unstable pair in L, &~ w.
Furthermore, for every i < n, the central block cannot delete to zz;zz; since then

w(z,z;,7) is an isoterm and w(z,z;,7) # La(z,z;,7). Thus w is either the word
o(A)[nX]Czto(B),
where C is a interleaving of z and [Xn], or the word

o(A)z[nX][Xn]zto(B).
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Now we show that if ¥ is a set of identities with fewer than n distinct letters
then & F L, =~ wonly if S j&£ X. Thus any basis for S is infinite.
Let ¥ be such a set of identities and let A’ and B’ be the words A(z,7) and

B(z,7) respectively. Since AyzzytB is an isoterm, Lemma 2.3.1 implies that
A'zztB’ (E (mt)occ(z!A)mxt(mt)om(:,B))

and

A’:L'tB’ (-E ($f){occ(z'L“)-l))

are isoterms. Lemma 2.3.1 part (ii) implies that A'zzztB’ and A’zztB’ are also
isoterms if z is a linear letter. Likewise with A” and B” taken to be A(y,T) and
B(y, ) respectively it follows that A”yzzytB” is an isoterm for S. By assigning
z the value zz in this word, similar arguments show that A”yzytB” must be an
isoterm as well. Note that up to a change in the names of letters, A'zzztB' is the
word as A”yzytB”. Since £ F L, = w there is an identity p =~ ¢ € ¥ and a substi-
tution 6 such that L, = uf(p)v and uf(q)v is of one of the two forms derived above
for w. Given the restricted nature of these two forms, 6(p) must contain the word
zz[nX][Xn]. Now X contains only identities involving less than n letters so the
substitution # must assign some letter z in ¢(p) a value containing as a subword the
word z;z;4+;. Since this subword occurs just once in Ly, z is linear in p. Furthermore
there must be a letter z’ such that 6(z’) = z and (2, 2) is an unstable pair in p =~ gq.
In either case we have that the identity p(z’,2,7) = q(z’, 2, 7) is not satisfied by S
because (z’, z) is an unstable pair in this identity and we can delete some linear let-

ters so that after renaming the letter 2’ as z, the word p(z’, z, 7) becomes a subword

of one of the words A’zz2tB’, A'zztB’ or A'zzztB’. Thus S is NFB. o

EXAMPLE 2.3.8 It is easily verified using Lemma 2.3.7 that S({abab, abba}) is
NFB.
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As mentioned (Theorem 2.0.10 above) a complete description of the finite basis
property for the discrete syntactic monoids of single words in a twolletter alphabet
has been obtained by O. Sapir (see [80]). It turns out that the results so far obtained
in this section are primarily applicable to collections of words in a two letter alphabet
or in which at most two letters occur more than once. In order to address the Finite
Basis Problem for more general words and sets of words it is necessary to obtain
more generalised results.

First consider the following elementary lemma.

LEMMA 2.3.9 Let w be an isoterm for a monoid S containing at least two distinct
letters and X be a subset of c(w). If we replace all marimal subwords of w not

containing a member of X by linear letters, then the resulting word is also an isoterm

for S.

DEFINITION 2.3.10 If w is a word containing the letters a and b then let W be
the word obtained from w by replacing all mazimal subwords of w not containing the
letters a or b by linear letters and replacing all subwords of the form ab by words
of the form asb, where s is a linear letter. For example, the word abcddbbcbababd

would become abt bbtybababts and then as,bt,bbt,bas,bassbts.

LEMMA 2.3.11 Let w be a word containing at least two letters a, b. If w is an

isoterm for a monoid S then so is w.

Proof: Of course (a,b) is a stable pair in @. Now let 7 be the set of linear letters
replacing maximal subwords of w not containing a or b and v be the set of linear
letters introduced when replacing ab by asb. As with ¢, we will exclude subscripts of
the letter s, although different occurrences of this letter will always denote distinct
linear letters. By Lemma 2.3.9, the pairs (a,t) and (b, ¢) are stable in @ with respect
to S if t is from 7. Because w contains at least two letters it must contain a subword

of the form zy and therefore zy is an isoterm for the monoid S. Thus if ¢; and ¢,
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are linear letters then the pair (¢, ¢2) is stable in W with respect to S. It remains to
show that (a,s) and (b, s) are stable pairs in w if s is a linear letter from v.

The pair (a,s) is stable in W because we can regain w by assigning a to a, 1
to b, maximal subwords of the form b* to corresponding linear letters s from v and
the remaining subwords of w can be assigned to corresponding linear letters from 7.
The pair (b, s) is stable in W because we can assign b to b, 1 to a, maximal subwords
of the form a* to corresponding linear letters s and the remaining subwords of w to
corresponding linear letters from 7. Therefore W is an isoterm for S. ]

We now obtain a “general” theorem concerning the nonfinite basis properties of
monoids (the vague notion of being “general” will become more precise in Section
2.5). The proof is a modified and generalised version of that used by O. Sapir to
prove Theorem 2.0.10.

THEOREM 2.3.12 Let
w = w,a* 5P wa®? pbPrwg

be a word such that a and b are letters, p, wy, wy and w3z are possibly empty subwords
and a;, b1, az and B, are non zero and mazimal. If both w and zytyz are isoterms

for a monoid S and for every n € IN the word
Up = W10 [ Xn)bP a2t [n X |thPbs
is not an isoterm for S, then S is NFB.

Proof: As usual we will take the alphabet X to be the set {z,,z,...}. Let u, = v,
be a nontrivial identity satisfied by S. We will show that within 7d(S), identities
involving arbitrarily large numbers of distinct letters are required to derive u, =~ v,
for every n. Thus no finite basis for S can exist, since such a basis would necessarily
involve identities with a bounded number of letters. We may assume that n > 6.
Let ¥ be a set of identities that contain less than n — 6 distinct letters and

let u, = p1 " pp & ... ® pp = v, be a derivation of u, = v, from £ (we may
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assume that p; Z p;). So there is an identity u & v and words A and B such that
p1 = Af(u)B and p, = A6(v)B for some substitution §. Replace the word u by
the word t,ut; and v by the word t,vt, where ¢, and ¢, are new linear letters and
extend 0 by letting 8(t;) = A and 0(t2) = B. So we have a derivation of u, ~ v,
from ¥ U {t,ut; = t1vt,} involving at most n — 4 letters such that p; = 0(¢,ut,) and
p2 = 0(tvty). For the sake of simplicity, we will write simply u in place of t,ut, and
v in place of t,vi,.

Now let u’ be the smallest subword of u such that 6(u) contains [Xn] and u” be
the smallest subword of u such that §(u") contains [nX]. Let ¢ be the first letter in v’.
By the choice of v/, §(t) must contain z,, the first letter of [Xn]. If 6(¢) also contains
the letter to the left of z; (in this case the letter a) then ¢ must be linear in u,, since
az; occurs just once in u,. In this case, say where 6(t) = z;z,2, for some words
z; and z; (with z; not empty), we can replace the letter ¢ in u and v by the word
tsty where 0(3) = z; and 6(t4) = z,22. Thus we can find a derivation of u, ~ v,
involving less than n — 3 letters and such that [Xn] is an initial segment of 6(u’)
(where v’ is the smallest subword of u such that () contains [Xn]). Performing
the same procedure for the end of [Xn] and the start and end of [nX], we can find
a derivation of u, = v, involving less than n letters and such that u, = p; = 6(u),
p2 = 0(v) and the smallest subword of u whose image under # contains [Xn] is
assigned by 6 the value [Xn] and likewise for [nX]. We will continue with the
convention that u’ and v’ are the smallest subwords of u so that 8(u’) = [Xn] and
6(v") = [nX].

Since every letter in the set X occurs exactly twice in u, or not at all, the letters
occurring in v’ and v’ do not occur elsewhere in the word u. So because u, = p; =~ p,

Is a nontrivial identity, the word
I = 00U 0P 10,022 0t b2,

is not an isoterm since we can easily apply the identity v &~ v to it. Our goal is

to show that this contradicts the claim that w is an isoterm, thereby showing that
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S L.

Firstly, since zy is an isoterm for S, any pair linear letters (¢;,¢;) is.a stable
pair in I with respect to S. Secondly since zytyz is an isoterm for S, [Xn]t[nX]
is an isoterm for S and therefore by the choice of u’ and v’, the word utv’ is also
an isoterm for S. Because u & v involves fewer than n distinct letters but [Xn]
and [nX] each have n distinct letters, both «’ and v’ must contain letters ¢; and ¢,
respectively such that for some 7 < n — 1, both 6(¢;) and 6(t;) contain the letters
z; and z;,,. However every subword of [Xn]t[nX] with lengfh more than 1 occurs
just once in u,. Therefore the letters ¢; and ¢, must be linear in /. That is, both «’

and v’ contain a linear letter. Now if

w= wla""bﬁ‘wga"""pb‘a’wg
is an isoterm for S then

D = W™ 10 D02 pbP s

is an isoterm for S by Lemma 2.3.11. (Here for the sake of simplicity we are assuming
that p contains at least one subword of the form ab or a letter other than a or b so
that p contains a linear letter. The only other case is when p is of the form ¥/ a* for
some j,k > 0 and then we can replace p in the above word by tb’a*t = tpt without

effecting the arguments to follow.) By Lemma 2.3.1 part (i) the words
tI)la"“ tbﬁl“llbgaazﬁbﬁzlb3
and
I, = W, th" " bya 2 b2 i

are also isoterms for S. Therefore the pairs (a,bd), (a,t), (b,t) are stable in I with
respect to S. If both «’ and v’ consist entirely of linear letters then I would be just
the word I; with some extra linear letters placed next to existing linear letters in

I, and therefore an isoterm by Lemma 2.3.1 part (ii), a contradiction. So let us
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assume there is a letter z that is 2-occurring in uv’ (all nonlinear letters in u'v’ are
2-occurring). To obtain the desired contradiction, it only remains to show that all
linear letters ¢ in I (not just ones that appear in u'tv’) and the letters a and b form
stable pairs with every non linear letter z, from u'v’".

Let z be a 2-occurring letter in u'v’. For some linear letter ¢, I can be deleted to
ztz, an isoterm for S. If (z, s) is not stable in I for some linear letter s, then S must-
satisfy an identity I & J with I(s, z) = J(s,2) being the identity zzs ~ szz (since
zsz is an isoterm). But then I(z,s,t) = J(z,s,t) is the identity ztzs ~ sztz and so
I(s,t) = J(s,t) is the identity st = ts. This identity is not satisfied by S since zy is
an isoterm for S. Thus for any linear letter ¢ in I, (2,t) is stable in I with respect
to S.

Now there is at least one linear letter in both u’ and v’ (say t; and 3 respectively)
and at least one linear letter t,, say, between u’ and v’ in I. Since there exists a
substitution 8 such that #(u’) = [Xn] and 6(v') = [nX], we can choose t; and 3
such that u'tyv’ deletes to a word of the form zt,fyt32z or t12¢3zt3. Thus I can be
deleted to either

w;a®! Zt;bﬁl-lﬁgaagtgtgzhbﬁzﬁa

or

tf:la"“ tIZbﬁi-llbgaagtgzt3t4bﬁzﬁl3

Now (b, z) is stable in the first of these words since for any linear letter ¢, (b,t) and
(z,t) are stable pairs in [ and there is a linear letter ¢ between every occurrence of b
and an occurrence of z. Likewise, (a,z) is a stable pair in the second of these words.

The following assignment shows that (a,z) is also a stable pair in the first of
the words: @ — a, b — 1,z = b, t; = b5~ ty = p ta — 1, t, — %71 and the
remaining linear letters are assigned the corresponding unassigned (by the above)
subwords of w. This gives the first word a value that is a subword of w and therefore

an isoterm.
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The following assignment shows that (b, z) is also a stable pair in the second
of the words: @ = 1,0 = b, 2 = a, t; = a®7}, t; — a®27! (or ba®**™! if wy, and
therefore 1, is empty), t3 = p, t4 — 1, and the remaining linear letters are assigned
the corresponding unassigned (by the above) subwords of w. This gives the second
word a value that is a subword of w and therefore an isoterm.

Since every pair of letters from ¢(I) is stable in I with respect to S it must be
an isoterm for S. We have reached the desired contradiction and thus no finite basis
can exist for the identities satisfied by S. m]

Note that the proof of Theorem 2.3.12 holds equally well if we replace the word
apb in the statement of the theorem with bpa along with the requirement that p
contains a linear letter or equivalently, that p contains either the subword ab or a

letter other than a and b (we then require that for every n,
Wya® [ Xn]bP L iybP2t [n X ]ta® s

is not an isoterm). The proof also holds (after making the obvious adjustments) if
the order of appearance of the two subwords ab and apb (or bpa) is reversed in the
word w.

We now introduce a further definition in the style of Definition 2.3.10.

DEFINITION 2.3.13 If w is a word then let ¥ be the word obtained from w by

replacing every mazimal subword not containing the letter a by a linear letter.

For example if w = abebabb then o = atats.

Another “general” theorem is the following.

THEOREM 2.3.14 (a) Let w = wyujauswausau ws be a word where a is a letter,
u; and uy are non empty subwords and w,, w, and w; are possibly empty subwords.

If w is an isoterm for a monoid S and for every n the word

Th = t}j:ltl[Xn]atgtb;tg[nX]at4zb3
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is not an isoterm, then S is NFB.,
(b) Let w = wiujauwaouau,ws be a word where a is a letter, u, and u, are non
empty subwords and w,, wy and wz are possibly empty subwords. If w is an isoterm

for a monoid S and for every n the word
gn = tl}ltl[X2n]atztﬁgt3a[22n]t4t'b3
is not an isoterm, then S is NFB.

Proof: (a) By Lemma 2.3.9 and Lemma 2.3.1 part (ii), Witiatowstzataws is an
isoterm for S. Therefore for any linear letter ¢, (a,?) is stable in r, with respect to
S. By assigning u; to z, a to y and usw,u, to t in the word zytyz we obtain the
word ujau,wauzau;, an isoterm for S. Thus zyiyz and consequently (X n|t[nX] are
isoterms for S. This combined with the fact that #,¢, is an isoterm shows that for
any linear letter ¢, (z;,t) is a stable pair in r, with respect to S. Therefore if r, = r/,
is a nontrivial identity satisfied by S, then the only unstable pairs in r, = r;, are of
the form (z;,a).

Now by the choice of u; and us, we also have that
153$Gt1152t20$1b3

and

?.:‘..)1 ayt;t}.}gtg yat})3

are isoterms for S. So if for some 7, (z;,a) is unstable in r, & 7, then (z;,a) is

unstable in 7, & r/, for all 7 and
' - - .
ri(a,z;,7) = Wazt Watraz;W3.
Thus 7], must be the word

wita[ Xn|twta[n X |tws.
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Therefore any basis for /d(S) must contain an identity p &~ ¢q with r, = A8(p)B and
!, = A6(q) B for some words A and B and a substitution §. Since the only unstable
pairs in r, & r), are of the form (z;, a), we may assume that 6(p) contains both [Xn]
and [nX]. Now [Xn] and [nX] each contain n distinct letters and any subword of
these with length more than one occurs just once in r,. So if p & ¢ involves fewer
than n letters then 6 must assign a linear letter, ¢;, in p to some subword of [Xn]
and a linear letter ¢; to some subword of [nX]. Thus (by possibly deleting some

letters in ¢(p)) we find that S must satisfy the identity
Ty = tﬁlflt5at2ﬁ)2t3afst4lﬁ3 ~ wityatstawstslgatws = F:z'

However this is not possible because of the following assignment: a — a, t5 — uy,
te — 1 and all other (linear) letters are assigned maximal unassigned portions of
w. This assignment takes the word 7, to the word w but assigns 7, the value
Wy aU UsWausau W3, therefore contradicting the claim that w was an isoterm. So the
identity p &~ g must contain at least n letters. Since 7, is not an isoterm for every
n, any basis for S must contain infinitely many identities.

Proof: (b) As in part (a), the word w,t;atowstzat ws is an isoterm for S and for
any linear letter ¢, the pair (a,t) is stable in g, with respect to S. Now say that
(zi,z;) is unstable in g, with respect to S. So (z;,z;) is unstable in g.(z1,...2zn)
with respect to S. Since zytzy is an isoterm for S (because the word uja(usws)usa is
a subword of w), Lemma 2.3.3 implies that S = [X(2n)]t[X(2n)] = [X(2n)]¢[X(2n)]
and any basis for the identities of S contains an identity with at least n distinct
letters. Now assume that (z;,z;) is a stable pair in a nontrivial identity g, &~ ¢/,
satisfied by S. So for some ¢, (a,z;) must be unstable in g, = g},. By the choice of
u; and ug the words

’LE?] tiz;ats ?.;E}gtgxz‘atq 153

and

tbltlaxgtgzirgt3ax,-t41i33
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are isoterms. Thus ¢/ (a, z;, 7) must be the word 1, taz;tw,tz;atiws. Therefore since

(zi, ;) are stable in g, & g, for all 4, the pair (z;,a) must be unstable for all  and
gn(a,a:j,'r) = t})ltla.ﬁjtzibz%wjautb;;.

So g, is the word w;t1a[X2n]tawets[X2n]at ;. |
Therefore if ¥ is a basis for the identities of S then there is an identitypx~ g€ £
so that

9. = A0(p)B, g, = Ab(q)B

for some words A and B and a substitution §. If the identity p & ¢ contained fewer
than n letters then there must be letters z, z; and z; in p so that 8(z) contains a,
0(z,) contains z;z;+; and 6(z2) contains ;2242 for some 7, 5. Evidently z; and z,
are linear in p &~ q and both (2, z) and (2, 2) are unstable in p ~ ¢q. However if we
rename 2 as a, then both p and g are easily seen to be equivalent to a subword of
the isoterm

‘t}:’l tlatgl}:}gi3atqtﬁ3

with possibly some extra linear letters introduced next to existing linear letters.
Thus a contradiction has been obtained and therefore no such identity p &~ ¢ can
exist. Therefore the basis £ must contain identities with arbitrarily large numbers

of letters and is therefore infinite. O

2.4 NFB discrete syntactic monoids of finite
languages

We now have all the information required to address the question as to what is the
smallest semigroup S(W) which is NFB. Combining Example 2.3.4 with Propositions

2.2.7 and 2.2.10 we immediately have the following theorem.
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THEOREM 2.4.1 (i) For any set of words {wy,ws, ..., w,} with the length of each
w; strictly less than 4, S({ws, ...,w,}) is FB.

(it) If W is a set of words so that S(W) has less than 10 elements then S(W) is
NFB if and only if S(W) = S({abab}).

We note in comparison that the smallest NFB semigroup has 6 elements (take B3
for example).

Using Theorem 2.0.10 and other results in [34], [80] and above it is easy to extend
Theorem 2.4.1.

THEOREM 2.4.2 (i) For any set of words W = {w;, ws, ..., w,} with the length of
each w; strictly less than 5, S({wi,...,wn}) s FB if and only if W either contains
words of each of the forms abab, abba and aabb or W does not contain a word of
either of the forms abab and abba.

(it) If W is a set of words so that S(W) has less than 11 elements then S(W) is
NFB if and only if either W contains a word of the form abab or abba.

Proof: (i) From Theorem 2.4.1 we need only consider sets of words of length 4. A
word of length 4 that contains three distinct letters is equivalent up to a change in
fhe names of letters to one of the words abca, abac, aabe, or baac or reverse. Each
of these words can be replaced in W by perhaps several words of length at most 3
without changing the identities of S (W). For example one can replace baac in W
with the two words baa and aac (giving a new language W') since both baa and aac
are isoterms for S(W) and baac is an isoterm for S(W’). Therefore we need only
consider the case when W contains a word equivalent up to a change of letter names
to one of the words abab, abba and aabb. If W contains a word of the form aabb
and not abab or abba then by a result in [80], S(W) is FB. If it contains words of all
three forms then it is easy to verify that W contains subwords equivalent up to a
change in letter names to every 2-limited word in a two letter alphabet and therefore

S(W) satisfies the same identities as S(W;) and.is FB by Corollary 2.2.3. Finally
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we consider the case when W contains words equivalent to at least one of the words
abab and abba but not all three of abab, abba and aabb. Let W' be the subset of W
containing only words of length at most 3. The cases to consider (up to a change of
letter names) are W, = {abab} U W', W, = {abba} U W', W3 = {abab,aabb} U W’,
Wy = {abba,aabb} UW’, and W5 = {abab, abba} UW’. 1t is easily verified that the
arguments used in Examples 2.3.8 and 2.3.4 can also be used to show that S(W)),
S(W3), S(Ws) are NFB. Finally consider S(W,) and S(W,). In [80] it is shown that
if S is a monoid for which zytyz is an isoterm and for every natural number n, S
satisfies the identity z[Xn]tz[nX] ~ [Xn]zt[nX]z then S is NFB. Using arguments
similar to that in Example 2.3.4 it follows that both S(W2) and S(W,) satisfy the
conditions of this result and therefore are NFB.

Proof: (ii) Given Propositions 2.2.7 and 2.2.10 we need only consider the case when
S(W) has 10 elements and W contains a word of length 4. As in the proof of
Proposition 2.2.10 it is easily verified that every word of length 4 involving 3 distinct
letters has at least 9 distinct subwords and so has a discrete syntactic monoid of at
least 11 elements. Thus we need only consider the case when W contains a word
in a two letter alphabet that is of length 4 or more. By symmetry it suffices to
consider when W contains a word with a subword equivalent to one of the following
words: aaab aaba, abba, aaaa abab. The first word has exactly 7 distinct subwords
and therefore generates a discrete syntactic monoid with 9 elements. Any word w
containing this as a subword must have at least 2 more subwords: w itself and at
least one new subword of length 4 or less. In this case S({w}) has more than 10
elements. Likewise for any set of words V, S({aaab} U V) has either more than 10
elements or V contains only one word v that is not a subword of aaab and v is a
single letter. In this case S({aaab} U V) satisfies the same identities as S({aaab})
and is therefore also FB. The second and third words above have a discrete syntactic
monoid with exactly 10 elements and are consistent with the theorem we are proving

since S({aaba}) is FB by Theorem 2.0.10 and, as mentioned above, S({abba}) is
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NFB.

Now S({abab}) has 9 elements. Therefore if W contains abab and S(W) has
fewer than 11 elements then either W = {abab} or W = {abab, c} for some letter ¢
distinct from a and b. In both cases S(W) satisfies the same identities as S({abab})
and so is NFB. Finally if W contains a word with aaaa as a subword then using the
arguments of Proposition 2.2.10 we find that W must contain a word of the form aba.
If the subword of the form aba involves two letters distinct from the subword of the
form aaaa then it follows that if S(WW) has more than 10 elements. The remaining
. case is when the subword of the form aba shares a letter with the subword of the
form aaaa. In this case either S(W) has more than 10 elements or is equivalent
up to a change in letter names to {aaaa,aba} or {aaaa,bab}, which are FB from a
result in [80] (an obvious extension of Proposition 2.2.8 can also be applied). The
theorem is proved. o

We will shortly apply Theorems 2.3.12 and 2.3.14 to some longer words but first
it is convenient to introduce a new definition and some associated results.

If wis a word and a is a letter in ¢(w) then we may write w as
wiaM wea™ w3 . . W@ " Wit

where for every : < m + 1, n; is a positive integer, w; and w41 are possibly empty
words, wsy, ws, ..., Wy, are words and a is not contained in w;. We may then define
the occurrence vector of a in w to be the m-tuple V,,(a) = (ny,n2,... ,n,). Clearly

~ ni = occ(a,w). If we replace the condition that a is a single letter occurring
in w with the condition that @ is a subword of w then we obtain a notion of an
occurrence vector for arbitrary subwords of w. The notation V,,(v) is no longer well
defined however since a given subword of w may have several distinct occurrence
vectors. For example the word w = aaaaa (where a is a letter) can be written as
(aa)?a or (aa)a(aa) or a(aa)? and so there are two distinct occurrence vectors for aa
in w: they are (2) and (1,1). Our primary concern will be with occurrence vectors

of letters in words and for our purposes it will suffice to assume that when v is a
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subword of w then V,,(v) to be any one particular occurrence vector of v in w.
DEFINITION 2.4.3 An occurrence vector

v = (ny,n2,... ,np)
contains an occurrence vector

vy = (Mmy,ma,... ,my,)

if there is a substitution 6 : X* — X* with 6(a) = a (for some fized letter a) such
that the word

a™tia™ty. . . ty_1a™

(where the t; are letters) contains as a subword the word
f(a™t1a™ty . . tg-1a™).
In this case we will write v; > v,.

For example, take v; and v; as in the definition and let Ay, hs,... ,h, be a subse-

quence of n1,ny,... ,n, such that m; < h;. Consider the word
w = a™ta™ty .. o 1a™.

Since hy,ha,... ,h, is a subsequence of ny,ns,... ,n,, the word w must be of the

hw,atw, ... aMw, for some words wy, wo, ..., wy-; and some possibly

form wpa
empty words wo and w,. Now let # be the substitution defined by f(a) = a and

6(t;) = a®~™iw;. Evidently
ﬂ(am‘tlam% e tq_lam‘f) = ah‘wlahz Wy ... ah"wq,

a subword of w and so by Definition 2.4.3, the occurrence vector v, contains the
occurrence vector v;. Also if 6 is a substitution that assigns 1 to all linear letters

of the form ¢; in the word w; = a™t;a™¢,...¢,-1a™ and assigns a to itself then
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P
=1

f(w,) = a™ where n = ni. Therefore the singleton occurrence vector (n + 1)
contains the vector v, for any non-negative integer i. An occurrence vector of a
subword u in a word w is said to be mazimal in w if for every subword v of w,
Vuw(v) > Vi(u) = u = v. Likewise if W is a set of words containing w then V,(u)
is maximal in W if for every subword v of a word w' € W, Vi, (v) > V,(u) = (u =
v and w’ = w). Possibly the simplest way in which an occurrence vector V,,(a) of
a letter @ in a word w can be maximal in a set of words W is if a occurs more
times in w than any other letter and the remaining words in W are (occ(a,w) — 1)-
limited (recall Definition 1.3.1). Another simple situation is if there is a power
of a in w that is higher than the power of any other subword of a word in W.
On the other hand, there need not be a maximal occurrence vector amongst the
set of all occurrence vectors of a word (for example in the word aabbcc, we have

Vi(a) = Viu(b) = Viu(c) = (2) and all other occurrence vectors are the singleton (1)).

The importance of maximal occurrence vectors lies in the following simple lemma.

LEMMA 2.4.4 Let w; and w, be words with u a subword of w, and v a subword
of wy. Let 0 be a substitution. If (for some occurrence vectors V,, (u) and V,,(v)
of u in wy and of v in wy respectively) V,, (u) = Vi, (v) and V,,,(v) is a mazimal
occurrence vector in a set W of words containing w, then 8(w,) is a subword of a

word in W only if 6(u) =1 or both 8(u) = v and O(w,) is a subword of w,.

Proof: This is because if (u) # 1 then occurrence vector of 8(u) in 6(w;) contains
the occurrence vector V,,, (u) which equals V,,,(v). Since V,,,(v) is maximal in W
then #(w;) cannot be a subword of any word in W except for the word w; and in

this case §(u) = v. O

THEOREM 2.4.5 Let W be a set of words and w € W be a word containing the
letters a and b such that V,,(a) is mazimal in W (the set W may of course be simply

{w} itself). Let B, and B, be any positive numbers and p be any (possibly empty)
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word not containing a or b. If w satisfies one of the following conditions (or their
reverse) then S(W) is NFB (in each case we will assume that the given subwords of
w are not contained within each other though they may overlap):

(i) w has a subword ab®'a and a subword apbb®a;

(ii)) w has a subword abb’'a and a subword apb®a;

(111) w has subwords of the form aba, apba and ba;

(iv) w contains aba and ends with apba. For ezample, w ends with ababa;

(v) w has a subword of the form abbbP*a and of the form apb. For ezample abbbab
is a subword of w;

(vi) w has a subword aba and a subword apbaa and V,(a) is the only occurrence
vector of a letter in a word in W that contains the occurrence vector V. (a), where

w' is obtained by replacing the particular occurrence of apbaa by apaba.

Proof: In every case we will construct a set of identities {u, ~ v,} based on the
form of w and apply Theorem 2.3.12. Both the sides of the identities constructed
will contain the letter ¢ and in all except the last case the occurrence vectors of a in
these words will be identical to that of w. Since V,,(a) is maximal in W, by Lemma
2.4.4,if 6 is a substitution then 6(un) or 8(v,) is a subword of a word in W only if
0(a) =1 or §(a) = a. Furthermore, if §(a) = a then 8(u,) (or 6(v,)) is a subword of
the word w. The identities u, & v, will also be constructed so that if §(a) = 1 then
6(un) = 0(vn). Therefore in the arguments to follow in this proof it will be sufficient
to consider the case when W = {w} and 6(a) = a.

First note that in every case in the theorem, w contains a subword of the form ab
and another of the form ba (not intersecting). This is all that is required to establish
that zytyz is an isoterm for S({w}). |

We now consider each case of the theorem separately. Each of the cases involves
a word w with some given subwords but the arguments we will use involving w will
not depend on the order of appearance of the given subwords in w. Therefore for

each case of the theorem we will only consider a particular choice for the order of
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appearance of the given subwords in w.
(i) Let w = wy(;a)bP aw,(ja)pbP2baws, where ;a and ja, as usual, denote the it*
and j** occurrences of a in w respectively.

Claim: S({w}) F u, & v, where
un = W1 (;0)[Xn)bP e,y (ja)t[n X]th7batis

and

Up = W1 (;a)[ X n]bP " ady (ja)t[n X ]th%2abiws.

Let ¢ be a substitution such that 6(u,) (or 6(v.)) is a subword of w. Between ;a
and (j41)a in w there is the word b%b. So 8(¢[nX]tb’2b) (or 8(t[nX]tb*)) must be
the word bb”2. Now if 6 assigns b the value 1, then 8(u,) = 6(v,) because (a,b) is
the only unstable pair in u, = v,. The remaining case is when 6(b) is the letter b
and we will show that this never occurs (6(b) cannot be a higher power of b since
otherwise we would have more than oce(b,w) occurrences of b).

If we are considering u, then 6(b) = b implies 8(¢[Xn]t) = 1 and then the
subword of u, between ;a and (;41)a is simply bP1-1. Between ;a and (i+1)@ In w
however, there is the word b* and this contradicts the assumption that 8(u,) was a
subword of w since §(6% ') cannot be b if 8(b) = b. If we are considering v, then
this implies (¢[nX]t) = b. If §([nX]) = 1 then the previous argument applies. If
f(zx) = b for some k, then occ(b, 8(v,)) > oce(b, w) since zj is 2-occurring in v,.

(i1) Let w = w;(;a)bb% aw,(;a) pb* aws.

Claim: S({w}) = un = v, where

Uy = ﬁ)l(,—a)[Xn]bﬁ‘atbg(ja)t[nX]tbﬁzatba

and

Un = Wy (;0)[X n)bP~Labity(ja )t [n X |t ats.

Let 6 be a substitution such that 6(u,) is a subword of w. Between ;a and (;41)a in

w we have the word b%+1. So 4([Xn|bPt) = bAr+1. Now 6(b) cannot be b* for any k
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greater than 1 since then occ(b,8(u,)) > occ(b,w). If 8(b) = b, then we must have
0(zx) = b for some k. But then occ(b,8(u,)) > occ(b,w) since z; is 2-occurring in
un, again contradicting the choice of . Thus 8(b) = 1, and therefore §(u,) = 6(v,).

Now let 8(v,) be a subword of w. Asin the last case just considered, §([Xn]b%1~!)
must be the word b%. If ¥%1~! is empty then for some k, 6(z;) must be the word
b (since B; = 1). But then 8(t[nX]tb?) = pb® since this is the word between ja
and (j+1)a in w. Because p does not contain b and 8(zx) = b, (tb%?) must be b%1.
Thus 6(b) = 1 and 8(v,) = 0(un)-

(iii) Let w = wy (;a)baws(;a)pbawsbatdy

Claim: S({w}) = un = v, where
Uy = W1(;a)[Xnjaw,(ja)t[nX]tbawstbatd,

and

v, = W1(;a)[Xnlawqat[nX]tbawztabwsy.

Between ;a and (;;1)e in w there is a single letter b. Thus 8([Xn]) =b. So there is

an zi such that f(z;) = b. Between ja and (j;)a in w is the word pb. Therefore

f(t[nX]tb) = pb. Since 6(z;) = b, we must have that 6(b) = 1 and 0(u,) = 8(v,).
(iv) Let w = wi(;a)baws(;a)pba.

Claim: S({w}) F u, = v, where

Uy = Wy (;a)[Xn]aws(ja)t(nX]tba

and

U = W1 (;a)[Xnjaw,(ja)t[nX]tab.

Let 6 be such that #(u,) or 8(v,) is a subword of w. As in previous cases we may
deduce from the subword (;a)[Xn]a of both u, and v, that §(zz) = b for some
k. So 8([Xn]) is the letter b. But then from the subword (;a)t[nX]tha in u, and
(ja)t[nX]tab in v, we may deduce that 6(b) =1 and therefore 8(u,) = 6(v,).
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(v) Let w = w; (;a)bbb* awg(ja)pbzf;)3.
Claim: S({w}) = un & vy, where

un, = W, (;a)[X )P batbqat[n X |tbivs

and

vn = W) (;a)[ X n)bP  abibyat[n X this.

Between ;a and (i41)a in w we have the word bbbP!. Between (;a) and ((i41)a) in
u, and v, we have [Xn]b?1b and [Xn]b" respectively. Therefore if 6 is a substi-
tution such that 8(u,) or 8(v,) is a subword of w, then 8([Xn]b#1b) or 6([Xn)bP)
respectively must be the word bbb°'. In both cases if we do not have §(b) = 1, then
oce(b, 0(un)) (or oce(b,8(vy,))) is greater than occ(b, w) since for all zx € ¢([Xn]), zx
is 2-occurring in u, and v,. Thus 8(b) =1 and 6(u,) = 0(v,.).

(vi) For example, w = w; (;a)baw,(;a)pbaaws.

Claim: S({w}) & u, ~ v, where
Uy = W1(;a)[Xnlaws(ja)t[nX]tbaatvs

and

v, = Wi(;a)[Xnlaws(ja)t[nX]tabas.

The extra condition required for this part is due to the fact that the occurrence
vector of a in v, is no longer identical to that of a in w. Once given this condition
however we are still able to make the assumptions indicated at the start of this proof.
The extra condition is still held in many commonly occurring cases: for example if
a occurs more times in w than any other letter.

If there is a substitution 8 such that 6(v,) is a subword of w then 8(b) = 1 since
there is no nontrivial subword between (;;;ya and (j42)a in w yet in v, the word b
appears in this position. In this case 6(u,) = 6(v,). For the case where 8(u,) is a
subword of w, we may apply the arguments used in part (iv). O

Theorem 2.4.5 by no means captures all possible applications of Theorem 2.3.12.
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For example in the word w = (ba)™ where n > 2, the vector V,(a) is not maximal
(since Vy(a) = Vi (b)). Yet for every n > 2, S({(ba)"}) still satisfies the identity
u, = (bta)"3babt[Xn]ta[nX]a ~ (bta)" 3bbat[Xn]ta[nX]a = v, since if 8 is an
assignment that does not assign a the value 1 and 6(u,) is a subword of w then
either §(a) = a, 6(a) = b or §(a) = (ba) (these are the only subwords of w that
occur as many times as the letter a does in u,). If (a) = ba then clearly 6(b) = 1
and 6(un) = 0(v,). If §(a) = b then the first occurrence of a in u, must be assigned
the first occurrence of b in w. The first letter to appear in u, is b and yet there is
no letter left of the first occurrence of b in w. Therefore 6(b) =1 and 8(u,) = 6(v,).
The remaining case is when 6(a) = a and then the proof becomes effectively the same
as that of Theorem 2.4.5 part (iv). A similar argument applies when considering v,,.

We have proved that the following is true.
EXAMPLE 2.4.6 Ifn > 2 then S({(ba)"}) is NFB.

Of course this also follows immediately from Theorem 2.0.10.

The arguments just used did not depend on the fact that (ba)™ contained only
two distinct letters, only on the fact that to the left of the first occurrence of b
there was no proper subword occurring at least n — 1 times (that is, the number of
times that the letter b occurs in the identities used for Example 2.4.6). Thus we can

deduce the following theorem.

THEOREM 2.4.7 Let w be a word which has ezactly two mazimally occurring
letters a and b with the first occurrence of b occurring in w before the first occurrence
of a and with the property that every letter left of the first occurrence of b occurs
fewer than occ(a,w) — 1 times. If w satisfies one of the conditions (i) to (vi) of
Theorem 2.4.5 and the subwords described in the relevant part of Theorem 2.4.5 do
not involve the first occurrence of a and of b in w then S({w}) is NFB.

DEFINITION 2.4.8 An occurrence vector V,,(u) of a subword u in a word w is

said to be super maximal if the deletion of any one particular occurrence of u in w
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gives a new word v with the property that for any subword v’ of w, V,(u) < V,(v')
only if u' = u. Likewise V,,(u) is super mazimal in a set of words containing w if

for every subword v’ of a word w' € W, V,(u) < Vi (u') only if u = v and w = w'.

Clearly in this definition V,(u) can be obtained by subtracting the number 1 from
one of the entries of V,,(u) and deleting any zero entries from the resulting vector.
A simple example of a super maximal occurrence vector is the occurrence vector of
a letter in a word that has at least two extra occurrences in the word than any other
letter.

We may now extend Lemma 2.4.4 as follows (the proof is similar to that of

Lemma 2.4.4).

LEMMA 2.4.9 Let W be a set of words, w € W be a word and u be a subword
of w for which V,(u) is super mazimal in W. If the occurrence vector Vi (u') of a
subword u’ in a second word w' (not necessarily in W) can be obtained by subtracting
the number 1 from one of the entries of V,,(u) and deleting any zero entries from

the resulting sequence then for any substitution 6, 0(w’) is a subword of a word in

W only if (u') = 1 or both 6(w') is a subword of w and 8(v') = u.

THEOREM 2.4.10 Let W be a set of words and w € W be a word containing a
letter a and a letter b such that V,,(a) is super-mazimal in W (the set W may of
course be simply {w} itself). Let p be any (possibly empty) word not containing the
letter a and ay, a3, By and B2 be arbitrary positive integers. If w satisfies one of the
following conditions or their reverse then S(W) is NFB (in a similar way to before,
we will assume that unless otherwise stated the given subwords may overlap but may
not be contained within one another):

(i) apbPraaa®b is a subword of w and V,(a) is the only occurrence vector of a
subword in W that contains the occurrence vector of the letter a in the word obtained
from w by replacing the given occurrence of apb® aaa®'b by apb® ~aba*'b;

(i1) baa®'b, apb and ba are subwords of w and the occurrence of ba in w does not
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overlap with that of baa®'b. For ezample baababa, abaabba or baabbab is a subword
of w; |

(iii) apbbP aa®b is a subword of w, where a is mazimal. For ezample abbaab is a
subword of w;

(iv) bP a®16P2a%2pb is a subword of w, B > B, and p does not contain b. For ezample,

bbabab is a subword of w.

Proof: The proof of this theorem is similar to that of Theorem 2.4.5 except that the
identities u, & v, we construct in this case have only occ(a,w) — 1 occurrences of
a (instead of occ(a,w) occurrences). It is for this reason that we require V,,(a) to
be super maximal so that by Lemma 2.4.9 if 6 is a substitution such that 8(u,) (or
6(v,)) is a subword of a word in W, then either both 8(a) = a and 8(u,) (or 8(va))
is a subword of w or 8(a) = 1, in which case 0(u,) = 6(v,).

First note that in every case in the theorem, w contains a subword of the form
ab and another of the form ba (not intersecting). As in Theorem 2.4.5, this is all
that is required to establish that zytyz is an isoterm for S({w}).

(i) Let w = w;apb® (;a)aa* bw,.

Claim: S({w}) = un = vn, where

un = Wyat; [Xn]tod? (;a)a® [n X )b,

and

Up = ‘lIJlatl [Xn]tgbﬁ"l(,'a)ba“‘ ['nX]b’Lb'z

If 4 is a substitution such that 6(u,) is a subword of w then because occ(a,u,) =
oce(a, w)—1, 8 must take the i* occurrence of a in u, to either the 1** or the (1 +1)*
occurrence of a in w (we will write this as 8(;a) = (ia) or (;4+1ya in w). Now 6([nX])
and 6(b) cannot contain a else we would have more than occ(a,w) occurrences of
a in 6(u,). So in the first case (when 6(;a) = (;a)) since the word a®'*! occurs
immediately to the right of ;a in w but the word a®!'[nX]b occurs immediately to

the right of ;a in u,, we must have §([nX]b) = 1 or §([nX]b) contains an occurrence
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of a. If 8([nX]b) contains a then 6(u,) contains more than occ(a,w) occurrences
of a which is not possible. In the second case (when 6(;a) = ((i4+1)a)), since there
is the letter a immediately to the left of (;;;)a in w, the next letter left of ;a in u,
not assigned the value 1 by 6, must be assigned a word ending in a. However, b
cannot be assigned a word containing a. Consequently #(b) = 1 and consequently
O(un) = 8(vn).

Since V,,(a) is the only occurrence vector of a letter in w that contains V,,(a),
we may assume as before that if § is a substitution with the property that 6(v,)
is a subword of w then f(a) = a. So 6 must assign the i** occurrence of a in v,
to either the i** or the (i + 1)** occurrence of @ in w. In the first instance, (i+1)@
lies immediately to the right of ;a in w but in v,, b lies immediately to the right of
ia. Since §(b) does not contain a, §(b) must be 1 and therefore 6(v,) = 6(u,). The
second case follows in a similar way since immediately to the right of (;;1ya in w is
the (z 4+ 2)** occurrence of a but b occurs to the right of ;a in v,.

(ii) In this case there are three subwords of w which we must consider. While
any possible order of appearance of these subwords is allowed, as in Theorem 2.4.5
we need only considér one of these. Let w = w;b(;a)a* bwyapbwsbawy.

Claim: S({w}) = u, = v, where
Up = W1b(;a)a® " X n)bibyat[n X |tbibsbaib,

and

v, = Wb(;a)a® " X n|bisat[n X tbibzabib,.

Let 6 be a substitution such that 6(u,) (or 6(v,)) is a subword of w.
Case 1. 6(;a) = (;a) in w. Since to the right of ;a in w we have o, 8(a* ! [ X n]bib,)
must be assigned a word starting with a®'. Since §([Xn|) and 6(b) cannot contain
a (else there will be more than occ(a,w) occurrences of a), they must be 1 and
therefore 0(u.) = 0(vy).

Case 2. 6(;a) = ((i+1)a) in w. In this case, 8(0;b) must be assigned a word ending
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in a, since to the left of (;41)a in w there is the i** occurrence of a. Since 8(b) doesn’t
contain a, it must be 1 and again 6(u,) = 6(v,).

(iii) Let w = w;apbb® (;a)abws,.
Claim: S({w}) E un = v, where

Un = W at[Xnth” b(;a)[n X )b,

and
v, = Wyat[Xnjth” (;a)b[nX]bivs.

Let 6 be a substitution such that 6(u,) (or 8(v,)) is a subword of w. As before,
this implies that 6(b) and 6([Xn]) do not contain the letter a.
Case 1. 0(;a) = (;a) in w. If we are considering u,, then 6(b) =1 and §(u,) = 6(v,)
since there is an occurrence of a immediately to the right of ;a in w but to the right
of ;a in u, there is the word [nX ]b If we are considering v, then 6(b) is 1 again
since immediately to the right of ;a in v, is the letter b, but a occurs to the right of
;a 1n w.
Case 2. 0(;a) = ((i+1)a) in w. In this case f(u,) = 6(v,) since to the left of ;a in
both u, and v, is the letter b, but a occurs to the left of (;1;)a in w and therefore
6(d) = 1.

(iv) Let w = w67 a®16% (;a)pbw,.
Claim: S({w}) F un = v, where

Un = W67 a7 X n]bP2((i_q)a)t[nX]tbib,

and
Un = W16 @ T [ Xn]bP 7 ((121)a) bt [n X | tbid,.
As usual, we will let 8 be a substitution such that 6(u,) (or #(v,)) is a subword
of w. This implies that 8(b) and 8([Xn]) do not contain the letter a.
Case 1. 0((-1)a) =(-1) a. To the left of ;_1ja in w is the word bPrae1=1. To the
left of (i_1ya in u, is a®1~}[Xn]bP2. Since B; > B2, 6(a) = a and 6(b) cannot be any
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power of b greater than 1 (else there will be too many occurrences of b) we must
have either §(b) = 1 or 6(b) = §([Xn]) = b. In the first case §(u,) = 6(v,) and
the second case never occurs since then occ(b, 8(u,)) > oce(b, w). The case for v, is
similar since to the left of ;_;ja in v, there is the word a®~![Xn]bP2~1.
Case 2. 0((i-1)a) =i a. To the left of ;a in w is the word ab®2. To the left of (i-1)@
in u, (and v,) however we have the word 5% [Xn]b? (or %[ Xn]b%~! respectively).
Since B > (2 and neither 8(b) nor 6([Xn]) contain a, we must have 6(b) = 1. The
proof is complete. ]
The previous two theorems followed from Theorem 2.3.12. We now present an

analogous theorem using Theorem 2.3.14.

THEOREM 2.4.11 Let W be a set of words and w € W be a word containing
letters a,b,c for which V,(a) is mazimal in W and let u and v be any (possibly
empty) words with a,b &€ c(u) and a,c & c(v) (the set W may of course be simply
{w} itself). If w has one of the following properties (or their reverse) then S(W) is
not finitely based:

(i) bac and aucabva are non overlapping subwords of w;

(ii) bacva and aucab are non overlapping subwords of w;

(iii) bac and avbacua are non overlapping subwords of w;

(iv) avbac and avbac are non overlapping subwords of w.

Proof: Parts (i) and (ii) are obtained by an application of part (i) of Theorem 2.3.14
with u; = b and u; = ¢. Since the two proofs are almost identical we will only prove
part (i) here. Likewise parts (iii) and (iv) follow in a very similar manner from part
(i1) of Theorem 2.3.14 and so will also not be proved. Since V,(a) is maximal in w,
Lemma 2.4.4 implies that if § is a substitution so that 6(r,) (or 6(r’)) is a subword
of w, then either 6(a) = a or §(a) = 1. As in the previous two theorems we will not

concern ourselves with the order of appearance of the given subwords in w.
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(i) Let w = wib(;a)cwqauc(;a)bvaws. We will show that S({w}) satisfies the

identity
wyati [ Xn](;a)tawqt[nX](ja)ts & Wyat;(;a)[Xnltatst(ja)[nX]tws.

Firstly if ([Xn]) =1 or §(a) =1 then (r,) = 6(r},). Left of ;a in w is the letter b.
So if 8(ry) is a subword of w and ([Xn]) # 1, then 6([Xn]) contains b. But then
8([nX]) contains b and so contained in the word between (;_;ja and ja in 6(r,) is a
letter b. However between (;_;ja and ja in w there is no letter b, contradicting the
assumption that 6(r,) was a subword of w. The case when §(r,) is a subword of w
follows by symmetry. ' O

The following corollary is a dual version of Corollary 2.2.6 and follows immedi-

ately from the proofs of Theorems 2.4.5, 2.4.10 and 2.4.11.

COROLLARY 2.4.12 Let w be a word satisfying the conditions of Theorem 2.4.5,
2.4.10 or 2.4.11 and let r = maz{occ(z,w) : = € c(w)\{a}}. If W is a set of
r-limited words then S(W U {w}) s NFB.

It is clear that the word w in this corollary can be taken from a two letter alphabet.

Combining Corollaries 2.2.6 and 2.4.12 we obtain

COROLLARY 2.4.13 If W is a set of words then there are sets of words W =
Vo, Vi, Va, ... with |e(V;)| = maz(2, |[c((W)|) and V: C Vigy for i > 0 so that S(Vay) is
FB and S(Vaj41) is NFB for every j > 0.

A further result is the following. -

THEOREM 2.4.14 If S is a k-nilpotent monoid then S is a subsemigroup of a
NFB maz(5, (k + 3))-nilpotent monoid which is finite if S is finite.

Proof: We will assume that £ > 2 and show that S is a subsemigroup of a & + 3
nilpotent monoid. Let k¥’ be the smallest integer such that 2k’ > k for some number

k. Consider the monoid S({(ba)*'}). This is certainly (k + 3)-nilpotent since the
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length of (ba)*' is either k+1 or k+2 and in both cases S({(ba)*'}) is (k+3)-nilpotent.
Using the same construction as for Corollary 2.2.5 we arrive at a (k + 3)-nilpotent
monoid T containing both S and S({(ba)*'}) as subsemigroups. To show that T is

NFB we now use the identities u, = v, of Example 2.4.6 (if &' > 2) or the identities
{[X(2n)]t[X(2n)] = [X(2n)]t[X(2n)] : n € N}

of Lemma 2.3.3 (if ¥’ = 2). For the remainder of this proof it will be convenient to
denote this last set of identities by X.

If k¥ > 2 then the semigroup S({(ab)*'}) satisfies un, = v, and since the only
unstable pair in these identities is (a,b) and |us(a,d)| = |va(a,b)| > k, so S must
also satisfy u, = v, (since a word w of length k takes the value 0 on S unless 1 is
assigned to at least one letter in ¢(w)). Therefore T satisfies u, =~ v,. If ¥’ = 2
then using effectively the same arguments as above we see that S, S({abab}) and
therefore T all satisfy the identities ¥ of Lemma 2.3.3. If ¥/ > 2 then T is NFB by
Theorem 2.4.5 part (iv). If k¥’ = 2 then T is NFB by Lemma 2.3.3. ®]

An immediate corollary of this is

COROLLARY 2.4.15 The pseudovariety generated by the class of finite NFB nilpo-

tent monoids contains all finite nilpotent semigroups and all nilpotent monoids.

This corollary and Corollary 2.2.5 show that both the class of finite FB nilpotent
monoids and the class of finite NFB nilpotent monoids generate the same pseudova-
riety as that generated by the class of all finite nilpotent monoids. H. Straubing
[89] has shown that this pseudovariety is exactly the class of finite aperiodic semi-
groups with central idempotents (that is, finite aperiodic semigroups which satisfy

2

e’ = e — ez = ze).

COROLLARY 2.4.16 IfS is a finite aperiodic semigroup with central idempotents
then there are .set.s of words Vi, Vs, ... with |¢(Vi)] = 2 and V; C Viyy fori > 0 so
that for every 7 > 0, V(S(Va;)) is FB, V(S(Vaj+1)) is NFB and S € V(S(W1)) C
V(SWe))c....
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As an example of the power of the theorems in this section we briefly examine

an amusing though useless “application” of the results to genetics.

EXAMPLE 2.4.17 In genetics, the base sequence for a DNA molecule can be
thought of as a long word, w, in the alphabet {a,c,g,t} (see Figure 41 of [26] for an
ezample of a very short base sequence). The molecules corresponding to these letters
are called bases. In such a large word, it is extremely likely to find for any pair of
letters in this alphabet the subwords required for applications of Theorem 2.4.5 or
2.4.7. Now for a given strand of DNA the word w obuviously contains many occur-
rences of each of the letters a, ¢, g and t, and it would appear to be unlikely that two
of these letters would occur ezxactly the same number of times. Further evidence for
this claim can be found in the results of [35] for ezample where it is shown that only
32 % of the base sequence for the DNA of the Antarctic krill Euphausia superba is
a g or a ¢ (similar results hold for most other organisms as well). Thus the letters
a and t (or at least one of these letters) occur a significantly greater amount of the
time than do g orc. If, in a particular strand of DNA, one of the bases a or t occurs
more times than any other base then Theorem 2.4.5 implies that the discrete syn-
tactic monoid of the corresponding base sequence is NFB (given that the appropriate
subwords for the application of this theorem are plentiful). Using Theorem 2.4.7 we
obtain the same result if the two bases a and t occur the same number of times in a

particular strand (though this event would seem unlikely).

While this example may not be of interest to geneticists, it does illustrate the
ability of Theorem 2.4.5 (and Theorem 2.4.7) to apply to long and complicated

words.

COROLLARY 2.4.18 FEvery word w is a subword of a word w' whose length is no
more than 4 letters longer than w and such that S({w'}) is NFB. If [c(w)| > 1 then

w’ can be chosen such that c(w') = c(w).
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Proof: If |c(w)| = 0 then w is the empty word and it follows from Theorem 2.4.2
that the shortest word containing w whose discrete syntactic monoid is not finitely
based is the word abab or abba.

If [c(w)| = 1 then w is of the form a* for some k. In this case we may choose
w' to be the word a*bab for some new letter b. Using exactly the same argument
as for Example 2.3.4 it follows that S({w'}) is NFB by Lemma 2.3.3. Now assume
le(w)] > 1.

Case 1. w ends with a letter @ that occurs a maximal number of times in w and
there is at least one letter b occurring in w fewer times than a. In this case we may
take w’ to be the word wbaba and apply Theorem 2.4.5 part (iv).

Case 2. Every letter of w occurs an equal number of times. Let b be the last
letter in w and a be the next letter left of this that is different to b. So w = w;ab?
for some 8 > 0. Thus we may take w’ to be the word w;ab’aaab and apply Theorem
2.4.10 part (i).

Case 3. w ends with a letter, b say, not occurring a maximal number of times
in w. Let a be the closest letter to the right end of w that does occur a maximal
number of times. Then we may choose w’ as the word waaab and apply Theorem

2.4.10 part (i). a)

EXAMPLE 2.4.19 Consider the monoid S({abcbadefgef}). This semigroup is in
fact FB (this will be shown later; see page 91) but Corollary 2.4.18 implies that the
semigroup S({abcbadefgefgfgf}) is NFB. Note also that Theorem 2.4.5 part (iv)
implies that the semigroup S({fefabcbadefgef}) is NFB.



CHAPTER 2. DISCRETE SYNTACTIC MONOIDS AND IDENTITIES. 73

2.5 On the Finite Basis Problem for almost all
discrete syntactic monoids of k£ element lan-
guages in fixed finite alphabets

The conditions contained in Theorems 2.4.5, 2.4.10, and 2.4.11 are very general.
After a little experimentation it becomes clear that for sufficiently long words in
any fixed finite alphabet the likelihood of one of these theorems applying is very
high (this was exploited in Example 2.4.17). In this section we investigate this
apparent property and show that these theorems in fact apply to “almost all” words
w (and in some sense, sets of words W) in a fixed alphabet. First we formally define
the notion of “almost all”.

Recall that the length of a set of words W is mam{llw] : w € W}. Fix an alphabet
A and let Wiy 5 1) be the set of all k element length n sets of words from the free
monoid A* and Ny, k) be the number of elements of W(; ,, x) (each of these elements.
are k element, length n sets of words from A*). Now let P be a property and W(p, i
be the set of all k£ element length n sets of words from the free monoid A* which
have the property P. Following the above notation, we will use N(p.x) to denote
the number of elements of Wp, i

Note that if one word in a k element length n sets of words W is a proper subword
of another word in W, then S(W) is identical to the discrete syntactic monoid of a

language with fewer elements.

DEFINITION 2.5.1 For a given positive integer k and a finite alphabet A, a prop-
erty P holds for almost all k element sets of words in A* if Npniy/Nunk) — 1 as

n — oo (or equivalently if (N nx) — Npag))/Nank = 0 asn — 00).
In general for sequences (8, )new and (tn)new we will write s, ~ t, if

lim s,/t, = 1.
n—oo
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That is, given a fixed finite alphabet A, a property P holds for almost all & element
sets of words in A if and only if Npnx) ~ Nk When k& = 1 in the above, we are
considering one element sets of words and the length of such set is simply the length
of the unique word it contains. In this case we will abbreviate Wip, 1) and Npn 1y
to Wipn) and N(pn) respectively and say that the property P holds for almost all
words if Nipn) ~ N(1.n).

We now establish some basic facts concerning the combining of properties that
hold for almost all k element sets of words of a finite alphabet. It is easy to verify that
the relation ~ is an equivalence since for any properties P, ), R, we have: N(pn ) ~
Npnk)y; Nengy ~ Nonk) = Nk ~ Npnky; and if both Npa iy ~ Nigak and
Nomnk) ~ NErnr) then Npngy ~ Nprngr. A further important property of the
relation ~ is given in the following lemma. Here if P and @) are properties, then

P N Q is the property of having both the properties P and Q.

LEMMA 2.5.2 For any fized finite alphabet, if N(P,n,k) ~ N{l,n,k} and N(Q,n,k) ~
N k) then Nipag k) ~ Nk -

Proof: We want to show that N(pagnk)/Nink — 1 as n — co. Now

W(lvnlk)\(W{Pvﬂrk) n W{Q,n,k)) =
(Wipnk) \W0.mne) Y (Wi@nn\WEak) U (Wann\(Wearn YU Won))-

But Wipnn)\W@.nk) € Wit \W@n k) W@ \Wieak € Wiank\Wear and
Wani)\(WEnr UWonk) € Wann\Weai-

So therefore

Wi i) \(W (k) N Wignim)l < 21W(1.n.k)\W(P,n,k)| 4 W) \W(@ k)l
N1,n.k) -

N(I.n,k) N{l,n,k)

which tends toward 0 as n tends to infinity since both

(Wi ni) \Wipnil and W10 \W(@,n0)]
N1 n,k) N )
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tend toward 0 as n tends to infinity. Therefore N“"""}V;li‘: }"Q""’" — 0 as n — oo and
Npngmk) ~ N nk) as required. m

The proportion of k element, length n sets of words that have a property P is
exactly the probability of selecting a set of words at random from W/, ) that has
the property P. For this reason it is convenient to interpret problems concerning

the ratio N(pnk)/N1nk) in terms of probability.

LEMMA 2.5.3 If w is a word in a finite alphabet A then almost all words in A*

have w as a subword.

Proof: Let |A| = r and the length of w be m. For any n there are " words of
length n. Therefore the likelihood of a randomly chosen word of length m being
the word w is exactly 1/r™. Any word w’ of length n can be partitioned into [n/m)]
(where [n/m] denotes the integer part of n/m) subwords of length m along with a
remaining subword of length less than m. If w’ does not contain w as a subword,
then it is necessary that each of these partitions is not the word w. Thus for a word
w’ of length n the likelihood that that w' does not contain w as a subword is less
than or equal to (1 — 1/r™)*/™ Since 1 — 1/r™ = (r™ — 1)/r™ < 1, it must be
that ((r™ — 1)/r™)*/™ — 0 as n — co. That is, almost all words in A* have w as
a subword. g

Ultimately we want to show that almost all words and almost all k element sets
of words in a fixed finite alphabet have discrete syntactic monoids that are NFB. In
order to apply the most general theorems of the previous section we need to show
that one can find a maximal occurrence vector for a letter in almost all words in a
fixed finite alphabet (and a maximal occurrence vector in almost all k element sets
of words). As discussed earlier (see page 38), one of the simplest ways that this can
happen is if almost all words have a unique maximally occurring letter. The next

few lemmas establish this fact.
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LEMMA 2.5.4 Let A = {ay,...,a,} be a fized finite alphabet of r > 2 distinct
letters. Let a word w in A* have the property P if it contains no letter a so that
occ(a,w) > occ(z,w) for all z € c(w)\{a}, that is, that there is no unique mazimally

occurring letter in w. Then

Npmy/Nam < (;) i (2,:1)(1/2)2’“( n )(2/r)2’“(1 — ofp)r-2m

nfr<m<n/2 2m

Proof: Let X; be a random variable corresponding to the number of occurrences
of the letter a; in a word of length n. Each successive letter appearing in the
word can be thought of as the outcome of a Bernoulli trial, with the appearance
of the letter a; (which occurs with probability 1/r) considered a success and the
appearance of any other letter considered a failure. Evidently X; is binomially
distributed and the probability of X; taking a particular value z < n is given by
(M) (1/r)*(1=1/r)** (information regarding the Binomial distribution Bi(n,6) can
be found in many books concerning probability or statistics; see [87] for example).
For distinct numbers 7, 7 < n, the variables X; and X are not independent since the
number of occurrences, say m, of the letter a; in a given word of length n reduces the
potential number of occurrences of the letter a; to n — m. However the distribution
of the sum X; + X is easily seen to be Bi(n,2/r) and given a particular value of
X: + Xj, say k, the probability that X; takes some value m (necessarily less than or
equal to k) is (¥)(1/2)™(1 — 1/2)k™ = (*)(1/2)*.

Let E be the event that there is no unique maximally occurring letter in a word
w, that is that w has the property P. Clearly a letter that occurs less than n/r
times in a word of length n in an r letter alphabet cannot be a maximally occurring

letter. Therefore

E C{X;= X; >n/r, for some i # j}
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and so
Npny/ Ny =Pr(E)
<Pr(X; = X; > n/r, for some i # 7)
=Pr(U{X;‘ = X; >n/r})

< Z‘;(X; = X; > n/r)
= (;) Pr(X, = X; > n/r).

Now let § = X; + X,. The distribution of S is Bi(n,2/r) and so
Pr(X, =X, 2 n/r)

= i Pr(X, = X2 2 n/r|S =k)Pr(S = k)

k=0
= Y Pr(X,=m2>n/r|S=2m)Pr(S = 2m)

0<m<n/2
= Z Pr(X; = m|S = 2m)Pr(S = 2m)
n/r<m<n/2
- = (CrYarem) (o )mima - 2mr=n)
as required. : )

We now want to show that the bound for Np,/N; ., obtained in Lemma 2.5.4
tends toward 0 as n tends toward infinity. The following lemma proved by B. M.
Brown establishes this fact. Since this lemma is unpublished we present its proof

here for the sake of completeness.

LEMMA 2.5.5 (B. M. Brown, private communication)

> (s )emma -y < gy 2

nfr<n/2

Proof: We first use Legendre’s duplication formula (see page 5 of [16] for example)

VAT (22) = 2271 (2)T(2 + 1/2),
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where [(z) = [;° e~*t*~'dt is the Gamma function. This implies

(2m) _(2m)! T(2m+1)
m )  (mD)?2  T?(m+1)
_ 2mT'(2m)
~ m2I2(m)
2 22710 (m)(m +1/2)
m V7l?(m)
22m T(m +1/2)
my/m  I'(m)

This means that the expression on the left of the lemma can be reduced to

n 2m _ r n—2m ]‘ F(m + 1/2)
) (Qm)(zfr) 0 -2/7) -

nfr<n/2 mﬁ

To complete the proof we now need to examine the term H—’l’.%:{-a

LEMMA 2.5.6 “ZEY2 < /m.

78

Proof: The proof suggested by B. M. Brown used the product form of the Gamma

function (see page 1 of [16] for example). Instead we use a simpler argument based

on Stirling’s formula. It is well known that Stirling’s formula for factorials can

be extended to the Gamma function; indeed it follows from one proof of Stirling’s

formula that

I(z) = V2rz= /e m+4(%)

where u(z) decreases monotonically toward a limit of 0 as z tends toward infinity

(see Chapter 3 of [1]; two alternative proofs of Stirling’s formula may also be found
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in [7]). Therefore e#(=+1/2) [ex(#) < 1 and so

[(m+1/2) _(m+1/2)™ em

T(m) = emtl/z (mm-1/2)
41/
m™ Ve
- ()" v
m Ve
sV
N
v

as required (note that it also follows from this proof that I'(m+1/2)/T(m) ~ /m).O

We may now complete the proof of Lemma 2.5.5. Let g, = g\"/"TfFl(% <1/y/mm
and let

. gjj2 if jiseven and j > (2n)/r,
j =

0 otherwise.
Now if the distribution of X is Bi(n,2/r) and Y = f(X) is a random variable that
depends on X then the expected value E(Y) is

n

> P =0k = 3 () @/ -2t h),

k=0 k=0

So the expression

Z (2";;) (2/?‘)2m(1 _ Q/T)n—2m 1 P(m + 1/2)

nfr<m<n/2 m\/"-_r P(m)

is the expected value E(hx) where the distribution of X is'Bi(n,2/7). But

X = (2n)/7 + zay/n(2/7)(1 = 2/7)

where by the Central Limit Theorem for binomially distributed random variables

the distribution of 2, tends toward N(0,1) (the standard normal distribution) as n
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tends toward infinity. (Here we use the notation z, instead of the usual Z, to avoid
confusion between the Zimin words Z, of Theorem 1.1.1.)

The value of h; is alternately g;/, or 0 as j is even or odd. It follows from a
simple examination of binomial probabilities for even integer values that as E(hx) ~
1/2E(gx/2)x(X/2 > n/r) (where for a condition C, the value of x(C) is 1 if the
condition C is true and 0 otherwise). Now by Lemma 2.5.6,

-1/2

1 n 2
G = St sen/ T S 7 (”/””" 3 (I‘F))

when X/2 > n/r. But

12
(n/r+zn ;—r(l——z—)) <+rin

r

when z, > 0 (or equivalently, when X/2 > n/r). So 1/2E(gx;2) < 3+/= and

therefore E(hx) < 34/ as required. : ]

Combining Lemma 2.5.4 and Lemma 2.5.5 we have the following lemma.

LEMMA 2.5.7 Almost all words in a fized finite alphabet have the property that

there is a unique mazimally occurring letter.

Proof: This is because the property P’ that a word has a unique maximally occurring
letter is the compliment of the property P in Lemma 2.5.4. Since by Lemma 2.5.5,
limpoyoo Npny/Namy = 0, it must be the case that limn e Nprn)/Namy = 1 as
required. m

To generalise Lemma 2.5.7 to k element sets of words it is necessary to obtain
variations of Lemmas 2.5.4 and 2.5.5. First note that a k element, length n set
of words W in a finite alphabet A can be constructed by first selecting a word of
length n from A and then selecting k — 1 distinct words from the remaining words
in A that have length at most n. In the lemma to follow it is convenient to relax
the condition that these words must all be distinct. In this case it is possible that

the set of words constructed actually has fewer than k elements and so is not of the
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desired form. However if |A| = r, then the total number of words of length at most
n in A* is easily seen to be 7 + r*~! + ... + r. Thus in the process of selecting k
(not necessarily distinct) words in a length n set of words W, the likelihood of a
word being selected twice is proportional to 1/(r* + 7"~ +...+r) < 1/r". That is,
almost all selections of k words of length at most n (including at least one of length

n) have no repeats.

LEMMA 2.5.8 Let A = {ay,...,a.} be a fized finite alphabet of r > 2 distinct
letters. Let P be the property of a k element set W = {wy,... ,wx} of words of
mazimum length n and in the alphabet A that for every letter a € A occurring at
least n/r times in a word w in W, there is a distinct word v € W containing a
(possibly identical) letter b so that occ(a,w) = occ(b,v). Then

N < () 5 ((Bamra-ver)

N{l,n,k) B nfr<m<n

Proof: Note that allowing for repeated words in W actually allows for extra ways
in which a letter can occur the same number of times in different words. Thus the
true value for %(%}’- is likely to be smaller than that obtained in this lemma.

Since the longest word in a length n set of words W = {wy,... ,w} has length
n we may assume without loss of generality that the length of w, is exactly n,
although for some 7 > 1 it is possible that |w;| < n. Let X;; be the random variable
corresponding to the number of occurrences of the letter a; in the word w;. As in
Lemma 2.5.4 we will only be concerned with the situation when X;; > |w;|/r. If
|w;} < n then the expected value E(X;;) is |w:|/r < n/r and so the probability
Pr(X;; =m > n/r) is less than Pr(X,; = m > n/r). Therefore it suffices to prove
the lemma in the case when every word has length n.

Let E be the event that a k element set of words from A* has the property P,
that is, the event

{X:; = Xij 2 n/r, for somei’ # 1}
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and so
Npnk)
— —Pr(E
N{l.n,k) r( )
=PT’({X,"J‘ = Aqg > n/‘r‘, for some ?:f # 1})
=Pr (U{X':‘j = X,‘:,jf 2 n/r})
i<it
<> Pr(Xi; = Xijo 2 nfr)
i<i’

=(r2k) Pr(Xi, = Xa1 > n/r).

Now the event {X); = X2, > n/r} is exactly the event U,/,<icn{X11 = X2, = i}
Since the probability P(X;; =1) = (?)(l/r)‘(l —-I/r)”" we must have

Pr(Xy=Xpu 2n/r) < 3 ((’:)(1 /Py -1 /r)n-e)z.

nfr<i<n

Note that the word ws is distinct from the word w; and so the probability that X, ;
takes on a value i given that X;; =1 is actually less than (7)(1/r)'(1-1/r)*"*. O

When 7 = 6, for example, the probability 3,/ ., ((3)(1/m)*(1 - 1/1")""“)2 is
exactly the likelihood of rolling two fair die n times and obtaining exactly the same
‘number of 1’s from the first dice as from the second and having this number greater
than or equal to n/6. Intuitively, one might expect that as n increases toward
infinity, the value of this probability decreases toward zero; indeed this is what we

now prove.

LEMMA 2.5.9
nfrszksn ((:>(l/r)k(l - I/T)n-k)z ~r/y/nm(r = 1)

Proof: We first note that by the Central Limit Theorem the distribution of both X} ;

and X, 7 is increasingly well approximated by N(u, c?) where u is the expected value
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E(X,,1) = n/r and o? is the variance var(X;,) = var(X3,) = (n/r)(1 —1/r) =
n(r — 1)/r?. The probability density function for this distribution is

fria(e) = —=Eap (‘% (w : #)2) '

Because fx, ,(z) is the probability density function of a random variable with ex-

pected value u, we must have

/m fxl,l(x)dz =1/2

e'e} _ 2
f Ezp (—l (:1: ,u) ) dz = o+/7/2.
u 2 g
Therefore

2 ((’;)(I/r>‘=(1 - 1/r)“-‘°)2

nfr<k<n

/:0 (ﬁE:cp (_% (z ; p)g))zdm
= 021% /:, Ezp (— ("” - "")2) dz
- [ (5 (A) )

= 5 ((o/va)(Vam)
1

= r/y/nn(r—1)

and so

as required. =

We can now prove the fdllowing lemma.

LEMMA 2.5.10 For any k > 0, almost all k element sets of words in a fized finite

alphabet have the property that there is a unique, mazimally occurring letter.
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Proof: It follows from Lemmas 2.5.8 and 2.5.9 that almost all k element sets of
words in a fixed finite alphabet have the property that there is a unique word whose
maximally occurring letters occur more times than in any other word in the set. By
Lemma 2.5.7, however, this word almost always has a unique maximally occurring
letter. Therefore almost all k element sets of words in a fixed finite alphabet have
the desired property. m]

We now have all the results needed to prove the main theorem of this section.
If A is an alphabet consisting of a single letter then for all words w and all sets of
words W from A*, the monoids S({w}) and S(W) are easily seen to be FB. We now
show that for |A| > 1 the opposite is nearly true.

THEOREM 2.5.11 Let A be a finite alphabet with |A| > 1 and k be a fized positive
integer. Then for almost all k element sets of words W C A*, S(W) is not finitely
based.

Proof: Combining Lemmas 2.5.2, 2.5.3 and 2.5.10 it follows that almost all k£ element
sets of words W in a fixed finite alphabet contain a word w with a letter a occurring
more times than any other letter in ¢(W') and that w contains the word, say, abbbad
as a subword for some letter b € ¢(w). The occurrence vector of a in w is maximal

in W so by Theorem 2.4.5, S(W) is almost always not finitely based. O

COROLLARY 2.5.12 For any fized positive letter k, almost all discrete syntactic
monoids of k element languages from a fized finite alphabet A are not finitely based.

Proof: If two discrete syntactic monoids of k£ element sets of words W, and W, in
a finite alphabet A are isomorphic then the sets W; and W, must have the same
length, say n. There is exactly one minimal generating set for each of S(W)) and
S(W,) and these are ¢(W;) and ¢(W;) respectively. Therefore we may assume that
c(W1) = ¢(W,) and that any isomorphism ¢ : S(W,) — S(W,) must restrict to
a permutation of ¢(W;) = ¢(W;) C A. Clearly this permutation along with the
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multiplication of S(W,) determines the multiplication on S(W;). There are at most
[A|! permutations of ¢(W;) and therefore there are at most |A|! discrete syntactic
monoids of a k element subset of A that are isomorphic to S(W;). By defining an
equivalence relation 6 on the set of all k& element subsets of A* by (V},V2) € 6 if and
only if (V1) = S(V;) we have [W(1,4k) /0| > N nky/(|Al'). Let P be the property
that a k element set of words W does not contain any unique maximally occurring
letter a. Now Npn ) = |W(pni)/0| so therefore

[Wipnx/b < NP,k .y A]IN(P,n,k)
IWaney/0l — (Nang/(AlY) Nk

which tends toward 0 as n tends toward infinity. This combined with the above

results shows that for any fixed positive integer k, almost all discrete syntactic
monoids of k element languages in a finite alphabet are NFB. 0

We note as a comparison that the results of [41] and [43] show that almost all
semigroups (monoids) are in fact 3-nilpotent (3-nilpotent monoids) in the sense that
the ratio of the number of 3-nilpotent semigroup operations (monoid operations)
definable on an n element set to the number of all semigroup operations (monoid
operations) definable on an n element set tends to 1 as n tends to infinity. It is easily
shown that a 3-nilpotent semigroup or monoid must satisfy zyz =~ zzy and therefore
is FB by results from [70]. In fact a 3-nilpotent semigroup satisfies z,z,z3 =~ ¥1y2y3

and so generates a HFB variety with only finitely many subvarieties.

2.6 Joins of varieties generated by discrete syn-
tactic monoids

Examples found by M. Volkov (see [82] for example) and M. Sapir [75] show that
the class of finite FB semigroups and the class of finite NFB semigroups are not
closed under taking direct products (or indeed of subsemigroups and homomorphic

images). The properties of these examples appear to depend on the existence of
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nontrivial subgroups. In this section we will address the problem of finding FB
finite aperiodic semigroups whose direct product is NF'B and NFB finite aperiodic
semigroups whose direct product is FB. Note that Corollaries 2.2.6 and 2.4.12 above
show that the class of finite FB aperiodic semigroups and the classes of finite FB and
finite NFB aperiodic semigroups (and in particular the classes of FB or NFB discrete
syntactic monoids of finite languages) are also not closed under taking subsemigroups
or homomorphic images.

The following simple lemma is useful.

LEMMA 2.6.1 [3{] Let W, and W, be two sets of words over some alphabet X.
Then S(W,UW,) satisfies the same identities as the direct product S(Wy) x S(W).

DEFINITION 2.6.2 For each n > 1 let A, be the set of all words starting with a
in the alphabet {ab,ba} whose length is n (as words in this alphabet) and let A be a
fized element of A,, say (ab)™ (ba)™...(ab)™*, where m; >0 for all i <k, mj 20,

and EL]mg =n.

For n > 2, at least one of the words (ab)"~!ba and ab(ba)™~! is contained in the
set A,\{A}. Fix one of them that is contained in A,\{A} and call it B. For each
m > 1 let &, be a substitution defined by &,(ab) = [Xm], {n(ba) = [mX]. We now
construct an identity La ., ~ R A,,;; as follows. To make the word L 4 n, first replace
every occurrence of ab in the word A by the word abt (where ¢ is, as usual, a linear
letter) and every occurrence of the word ba by the word bat. Let the resulting word
be denoted by A’. Now replace every occurrence of a in A’ by the letter z and every
occurrence of b by corresponding occurrences of &, (ab) or £,(ba) from the word
ém(B). That is, if the i** letter to appear in B as a word in the alphabet {ab, ba} is
ab then the i*" occurrence of b in A’ is to be replaced by &, (ab). Otherwise the it
occurrence of b in A’ is to be replaced by £,,(ba). The same procedure is followed to
make the word R4 ,, except each occurrence of b in A’ is replaced with z and each -

occurrence of a is replaced with the corresponding subwords of ¢, (B). For example
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let n =3 and A = ababba. So the only choice of B is the word abbaba. Now in this

case A’ is the word abt,abt,bats; and

Lam = (z(z122...20)t1)(2(Tm . . . 2221)t2) (T - - - T21)T3)
Likewise,

Ram = (2122 .. . Tm)2ty)((Zm . .. z2z1)2t2)(2(Zm . . . T221)13).

LEMMA 2.6.3 IfS is a monoid for which the elements of A\\{A} (for somen > 2)
are isoterms and for everym >0, S|= Laom & Ram, then S is NFB.

Proof. If A is not the word (ab)™ then by assigning a to z and b to respective
linear letters ¢ we find that L4 m(z,7) becomes the word (ab)” (recall that 7 is the
set of linear letters in a word). Since this is an isoterm for S, L4, (z,7) must
be too. If A = (ab)" then both (ab)"~'ba and (ab)"~2baab must be isoterms. By
assigning a to z and maximal subwords of the form ' to corresponding linear letters
t we find that zt,zt,...xt,—1z and ztzt,...2t,_22zt, are isoterms. These two facts
combined ensure that zt,zt;...zt, is an isoterm. So for évery non-linear letter y in
Lgm =~ Ram, the identity Lan(y,7) & Ram(y,7) is a tautology and the words in
this identity are isoterms for S. Since B is an isoterm for S, L4 . (z1,22,...,Zm) is
an isoterm and for any 1 < m, L n(z,z;) is essentially the word A (up to a change
in letter names).

Let L4, &~ w be any nontrivial identity satisfied by S. The word zt,zt,...zt,
is an isoterm for S so w differs from LA‘,,; only by permutations within blocks. This
means that for all 1 < m, w(z,z;) is equivalent up to a change in letter names to a
word in A, and for some ¢ < m the pair (z,z;) is unstable in L4.,, & w (the pair
(z:,z;) must be stable in this identity since L4 (i, ;) is essentially the word B,
an isoterm for S). In fact since all words except A in A, are isoterms for S, w(z,z;)

must be equivalent up to change in letter names to the word A and so for every
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k < n, the pair (x,x z;) is unstable in La., ~ w. Because w(z,z;) # Lan(z,z;) it
must be the case that w(z,z;) = Rgm(z,z:). We now show that w = Rs .

Without loss of generality we may assume that B is the word (ab)*~'ba. The first
letter of A is the letter a so it follows that zz;z;...2;...2, is an initial segment
of Lom. Since w(z,z;) = Ry, and Lam(zy,2a,...2Tm) = w(Z1,22,...2m) is an
isoterm, the word z,z;...z;z is an initial segment of w. This means that (z,z;)
is an unstable pair in Ls,, &~ w. Indeed, as discussed above, this implies that for
every k < n, the pair (xz,; z1) is unstable in L4 . Now because A # B, one of the
WOrds TZm ... Ty OF Z1...ZnT is a subword of L4 py,. However (z,z,) is unstable in
Lpm ~wand Lymnm(zy,...2,) is an isoterm for S so (z, z,) is also an unstable pair.
Again this means that for every ¥ < n, (xz,; z,) is unstable. It is now evident from
the fact that L m(z1,...,2Zm) is an isoterm for S that w = R4 m.

Now we show that there is no derivation of L4, & Ram involving identities of
S that contain less than n letters. Assume otherwise. There is an identity p ~ q
involving fewer than n letters and a substitution @ such that L4, = uf(p)v and
Ram = uf(q)v. By the choice of B we can assume without loss of generality that
there is only one occurrence of the subword z;;z; in Ly, say the ;% occurrence.
Since we are assuming that |¢(p)| < n there must be a linear letter z in ¢(p) such
that 0(z) contains z,41z; as a subword. There is also a letter z' € ¢(p) whose k*
occurrence (for some k) is assigned by 8 the j** occurrence of z in L4,,. By the
structure of Ry, it follows that (xz’,2) is unstable in p = ¢ and p ~ ¢ can be

deleted to the identity

m'tl...(j»:r')z(tj;)x’tj:_,_l ...Ift(occ(ra,p)) ~z'ty. ..z(j»:c')(t_,-f):c’t_,-:.!.l ...I;t{occ(_rx‘p)}.

Since zt;...zt, is an isoterm and occ(z’,p) < n, by Lemma 2.3.1 the left hand side
of this is an isoterm, a contradiction. Thus no such identity p ~ ¢ exists. Therefore
any basis for S must contain identities involving arbitrarily large numbers of letters
and is therefore infinite. o

Recall that W, is the set of all words in the alphabet {a,b} with at most n
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occurrences of any letter. For any fixed word A from A, with n > 1let W4, be
the result of removing from W, the word A and the word A obtained from A by

simultaneously replacing a by b and b by a.
COROLLARY 2.6.4 Forn > 1, S(W,,) is NFB.

Proof: For n > 2 Lemma 2.6.3 can be used as follows. Since A,\{A4, A} is a subset
of W ., every word in A,\{A, A} is an isoterm for S(Wy,). On the other hand,
every word in W4, has length less than 2n 4+ 1. So if § is a substitution such
that 6(Lam) is contained in Wy, then 6(L ) must have length less than 2n + 1.
Therefore 6 must assign 1 to all but at most two letters from {z} U {z;;¢ < m}. In
this case either 8(Lam) = 0(Rm,4) or 6(Lam) is equivalent up to a change of letter
names to A and (R4 ) is similarly equivalent to A. Since S(Wa,.) E A ~ A4,
S(Wan) E Lam = Ram for every m > 1. Therefore by Lemma 2.6.3, S(Wy,,) is
NFB.

For n = 2, A, is the set {abab, abba}. In this case S(W,) is equationally equivalent
to S({ababd, abba,aabb}) since {abab,abba,aabb} contains a copy (up to a change
of letter names) of every 2-limited word in a two letter alphabet. Thus to prove
the result we need to show that S({abab,aabb}) and S({abba,aabb}) are NFB. For
the first of these cases we can apply Lemma 2.3.3. The second case is due to
0. Sapir and follows from a similar lemma in [34] or [79]. For example zytzy is
an isoterm for S({abab,aabb}) since zyzy and zyz are. However for any unstable
pair of letters (z,y) in the identity L, = [X2n]t[X2n] = [A2n]t[X2n] = R,, the
identity L,(z,y) = R.(z,y) is the identity zyyz =~ yzzy which is a satisfied by
S({abab,aabb}). Thus S({abab,aabb}) = L, ~ R, for every n > 0 and by Lemma
2.3.3, is NFB. The Corollary is proved. O

The description in [80] of all words w in a two letter alphabet {a,b} for which
S({w}) is NFB (see Theorem 2.0.10 of this thesis) shows that for any word A chosen
from A, the syntactic monoid S({A}) is NFB. The following corollary now follows
Corollary 2.2.2 and Corollary 2.6.4.
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COROLLARY 2.6.5 For everyn > 1 and every word A € A,, the monoids S({A})
and S(W, 4) are NFB but S({A}) x S(Wy,4) and S({A} U W, 4) are FB.

Since S({abab}) and S({abba}) are NFB, one might wonder if S({abab, abba})
is FB, therefore giving a smaller example. Example 2.3.8 shows however that this
is not true. Nevertheless, we can find two words w; and w, such that S({w;}) and

S({w,}) are NFB but S({w;,w,}) is FB. First consider the following lemma.
LEMMA 2.6.6 If w is an isoterm for a monoid S then Id(S) C Id(S({w})).

Proof: Let p = ¢ be an identity not satisfied by S({w}). This means that there is a
substitution @ such that 8(p) is a subword of w and 8(p) # 0(g). So w = ub(p)v for
some Iwords u and v so that uf(p)v # ub(q)v. But then p ~ qF ub(p)v = ub(q)v so
w is not an isoterm for any semigroup satisfying p =~ ¢q. That is, S }£ p ~ q. The
lemma is proved. O

Let w be the word ababeddee. Since S({w}) contains the subsemigroup S({abab})
and the subsemigroup S({ddee}), Id(S({w})) is contained in both Id(S({abab}))
and [d(S({aabb})) and therefore also in Id(S({abab,aabb})). On the other hand
since zyzy, zyyz, 7y, yzz and zyz are all isoterms for S({abab, aabb}), so must

be the word w and therefore Lemma 2.6.6 shows that
Id(S({ababcddee})) D 1d(S({abab,aabb})).

We can conclude that the monoid S({ababcddee}) is equationally equivalent to the
monoid S({abab, aabb}). In a similar way one can show that S({ababcddee, abba}) is
equationally equivalent to S({abab, aabb,abba}). Combining these ideas we obtain

the following example.

EXAMPLE 2.6.7 The monoids S({ababcddee}) and S({abba}) are NFB but the
monoid S({ababcddee, abba}) is FB

Another simple example is the following.
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EXAMPLE 2.6.8 The monoids S({abcba}) and S({abcab}) are NFB but the monoid
S({abcba, abcab}) is FB.

Proof: The argument used in Example 2.3.4 applies equally well to the monoid
S({abcab}) and likewise a similar lemma from [34] due to O. Sapir may be used in
the case of S({dbcba}). So S({abcab}) and S({abcab}) are NFB. On the other hand
in Theorem 2.2.11 above it was shown that S({abcab, abcba}) (and by Lemma 2.6.6,
S({abcabdefgfe})) is FB. |

The relevance of this example is due to the following theorem.

THEOREM 2.6.9 For any n > 2 the monoids S({abcab,abcba}) and S({a™b"})
are FB but the monoids S({abcab, abcba}) x S({a™b"}) and S({abcabd,abcba,a™s"})
are NFB.

Proof: Theorem 2.2.11 shows that S({abcab, abcba}) is FB and S({a"t"}) is FB by
Theorem 2.0.10. Example 2.3.6 shows that S{abcab, abcba,a™b"}) is NFB. ]

Thus by Lemma 2.6.1 and this theorem we have an example of two finite FB
aperiodic semigroups whose direct product is NFB. The problem of finding such an

example was raised by M. Sapir about 10 years ago.



Chapter 3

Small INFB finite semigroups.

As discussed in the historical overview, a powerful algorithmic description of the class
of finite INFB semigroups has been obtained by M. Sapir 73], [74]; see Theorem
1.1.1 and Theorem 1.1.2 of this thesis.

The power of these theorems is demonstrated by the following simple example
[73]. Consider the monoid B} with semigroup presentation (1,a,b : a* = b =
0,aba = a,bab = b); clearly B; has period ‘1, ab is idempotent and a divides ab.
However both ab(a)ab and ab(a?)ab equal 0 in B} and 0 is not an element of the
maximal subgroup containing ab. Therefore by Theorem 1.1.2, B} is INFB.

In what follows it will frequently be necessary to consider pairs of the form (a, €)
where a and e are elements of a semigroup S, e is idempotent and a divides e. Such
a pair will be called a dividing pair and we will say INFB occurs at (a,e) if this
pair satisfies the conditions of part (ii) of Theorem 1.1.2 for some submonoid of S
containing a and e. Recall also that S, is the maximal subgroup of S containing e
(see Theorem 1.1.2).

The semigroup B2 is a particularly important example of a finite INFB semi-
group since it generates a variety that is minimal amongst those generated by finite
INFB semigroups [74]. In particular if S is any semigroup that has only nilpotent
subgroups (such as an aperiodic semigroup) then S is INFB if and only if B} € V(S),

92
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the variety generated by S [74].

DEFINITION 3.0.10 Let M be a finite INFB semigroup from a variety V. If
there is a subvariety V' of V containing M so that for every semigroup S € V', S
is INFB if and only if M € V(S) then M will be said to be a minimal finite INFB
semigroup for V and the minimum finite INFB semigroup for V'. The variety V(M)
will be called a minimal finitely generated INFB variety. Similarly if C is a class
of semigroups (not necessarily a variety) containing M and for every S € C, S
is INFB if and only if M € V(S) then M will also be called the minimum INFB

semigroup for C.

So in the terminology of this definition, B} generates a minimal finitely generated
INFB variety and generates a variety that is the minimum INFB variety for the
class of finite semigroups with only nilpotent subgroups. In this chapter we use the
theorems of [73] and [74] to find some other classes for which V(B3) is the minimum
INFB variety and, modulo certain properties of completely simple semigroups, we
give a description of all minimal finite INFB divisors. In connection with the results
of the previous chapter, it is interesting to note that B} is in fact the syntactic

monoid of the language {ab}".

3.1 Classes for which V(B}) is the minimum INFB
variety

We first recall an extract of a result that is central to the arguments used in [74]

(proved partly by M. Sapir in [74] and partly by L. Shevrin [83], [84] and [85]}).

LEMMA 3.1.1 Let S be a finite monoid. If there is no homomorphic image of a
submonotid of S isomorphic to B} or A} then for every idempotent e € S and every
element a dividing e in S the element eae belongs to S.. Furthermore if for every

idempotent e € S and every element a dividing e in S the element eae belongs to S,
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then for every idempotent f € S and any element b dividing f in S, the element b?
divides f in S.

We now have enough information to prove the following simple theorem, effectively

a corollary of Theorems 1.1.1 and 1.1.2.

THEOREM 3.1.2 IfS is a finite reqular semigroup with period d then the following
are equivalent:

(i) S is INFB,

(ii) B} € V(S),

(zii) S({a}) € V(S), where S({a}) is the three element monoid with presentation
(1,a;aa = 0),

(iv) S £ zyz =~ (zy)*z.

Proof: The implications (ii)=>(i) and (ii)=>(iii)=(iv) follow immediately since B}
is INFB, S({a}) € V(B}) and S({a}) ¥ zyz = (zy)**'z for any d > 0. Implication
(i)=>(iv) follows since if S = zyz ~ (zy)**z the Zimin word Z, is not an isoterm
for S and by Theorem 1.1.1, S is not INFB.

We now show that condition (iv) implies condition (ii). Say that the identity
zyz = (zy)?*!z fails on the finite regular semigroup S. So there are elements a and
b of S for which aba # (ab)**'a. Since S is regular there is an idempotent e with
eRa and ea = a. So aba = (eabe)a and (ab)**'a = (eab)?*'ea = (eabe)?*'a. Now
consider the monoid eSe. This is a regular monoid since for any element exe € eSe
with inverse 2’ in S, eze = (eze)z'(eze) = (exe)(ez’e)(eze). If eSe is completely

41 In this case eabe = (eabe)?*! and therefore

regular then it satisfles z ~ ¢
aba = eabea = (eabe)**'a = (ab)?*'a, a contradiction. Therefore eSe is not com-
pletely regular and there is an element ¢ € eSe which does not lie in a subgroup
of eSe. Consider the D-class D, of ¢ in eSe. The principle factor P of D, is a
completely O-simple semigroup in which ¢? = 0. Since D, is regular there is a (non

zero) idempotent f € D, so that ¢ divides f. However in P we have ¢ = 0 and so
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¢? does not divide f in P or therefore in eSe and so by Lemma 3.1.1, at least one of
the INFB monoids B} or Aj is contained in V(S) and S is INFB. The result now
follows since B} € V(A3) (see page 6). )
Theorem 3.1.2 is particularly surprising when one considers the existence of finite
INFB semigroups not generating varieties containing B} and the fact that every
(finite) semigroup is embeddable in a (finite) regular semigroup (of course this em-
bedding involves a comparatively large semigroup of all transformations of a set).

The situation is emphasised by the following corollary of Theorem 3.1.2.

COROLLARY 3.1.3 A finite monoid S is embeddable in a finitely based finite

reqular semigroup only if S is regular.

Proof: The statement follows because a finite monoid containing a non group element
generates a variety containing S({a}). m]
It would be interesting if the reverse implication also held true for WFB monoids and
to obtain a corresponding theorem for finite semigroups without an identity element.
Since any semigroup satisfying zyz ~ (zy)?*'z satisfies z° &~ 22¢+3  Theorem 3.1.2
implies that no semigroup with index greater than three can be embedded in a

finitely based finite regular semigroup. In fact we can reduce these bounds further.

PROPOSITION 3.1.4 IfS is a semigroup with index greater than two, then S is

not embeddable into a finite finitely based regular semigroup.

Proof: Assume that S is embedded in a finite regular semigroup R. There is an
element a € S C R so that a® # a?* for any 7 > 0. Since R is regular there is an
idempotent e so that ea = a. The element eae cannot lie in a subgroup of R since
then for some d we have a? = (ea)(ea) = (eae)a = (eae)?*'a = a?*2. Therefore the

monoid eRe is INFB since S({a}) € V(eRe). ]
 Note that there are many WFB and even FB regular semigroups with index equal

to two (an example is B, = B3\{1}).
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Recall that an orthodox semigroup is a regular semigroup whose idempotents
form a subsemigroup. Orthodox semigroups are a well known and important gen-
eralisation of inverse semigroups. Rasin [71] has showed that a finite orthodox
completely regular semigroup is HFB and Question 8.2 of [82] asks whether a finite
orthodox semigroup S is finitely based if and only if B} ¢ V(S). Combining the
result of Rasin with Theorem 3.1.2 we get the following partial solutions to this

question.

COROLLARY 3.1.5 A finite orthodoz monoid is FB if and only if it is HFB and
if and only if it is not INFB. A finite orthodoz semigroup S is INFB if and only if
B; € V(S).

In the class of monoids therefore, Question 8.2 of [82] has a positive solution. Re-
calling the examples of Chapter 2 (see Theorem 2.5.11 for example) we see that
there are a large number of WNFB finite semigroups whose idempotents form a
subsemigroup, even a subsemilattice but are not regular. Therefore if the condition
of regularity is removed from the definition of an orthodox semigroup the first sen-

tence of Corollary 3.1.5 no longer holds. The second sentence however does continue

to hold.

THEOREM 3.1.6 If the idempotents of a finite semigroup S form a subsemigroup
of S then S is INFB if and only if B} € V(S).

Proof: If the idempotents of a semigroup S form a subsemigroup then for every
idempotent e, the idempotents of the submonoid eSe also form a subsemigroup of
eSe. Therefore by Theorem 1.1.2 we need only consider the case when S is a monoid.

If B; € V(S) then S is INFB by the definition of being inherently nonfinitely
based. Assume that B} ¢ V(S). Since B} € V(A3}), by Lemma 3.1.1 for every
dividing pair (a,e), eae € S.. Now for any 7 > ﬁ, a' divides a?' and by Lemma

3.1.1, o divides e. Therefore ea‘e € S, for all i > 0. We now use induction to show
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that ea'e = (eae)’. From this it follows that ea®*'e = (eae)?t! = eae € S., and by
Theorem 1.1.2, S is not INFB.
For any g € S, let g~! denote the group inverse of g in S.. Now for any k& > 0

we have that (eae)™'a and a(eae)™! are both idempotent since, for example,

1 1 1

(eae) 'a(eae)™'a = (eae) 'eae(eae)'a = (eae) a.

Therefore (eae)~'aa(eae)™! = (eae) 'ea’e(eae)™! is idempotent and since
(eae)'ea’e(eae)” € 8.,

(eae) lea’e(eae)™! = e. Therefore ea’e = (eae)?.
Now assume that ea*e = (eae)*. Since (eae)~'a and a*(ea*e)~! are idempotent,

so is the element (eae)~'aa*(eake)~!. Therefore

(eae)'aa*(ea"e)™ = (eae)lea**'e(ea*e) ™! = (eae)ea*t e(eae)F = e.

*+1 as required. In particular ea®*'e = (eae)**! = eae

Therefore ea**tle = (eae)
since the exponent of S, divides the period, d, of S. mi

By a well known result from [4] the class of all finite semigroups whose idem-
potents form a subsemigroup is exactly the psuedovariety generated by the class of
finite orthodox semigroups.

Theorem 1.1.2 also provides a way of increasing the power of this result.

DEFINITION 3.1.7 If P is a property of semigroups then a semigroup S has the

property P locally or S is locally-P, if for every idempotent e, eSe has the property
P.

COROLLARY 3.1.8 If P is a property so that the finite semigroups with P are
INFB if and only if B} is contained in the variety they generate then a finite locally-

P semigroup is INFB if and only if B} is contained in the variety it generates.
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Proof: Let S be a finite locally-P semigroup. Then by Theorem 1.1.2, S is INFB
if and only if eSe is INFB for some idempotent ¢ € S. The semigroup eSe has
the property P and therefore is INFB if and only if B3 € V(eSe). Since eSe is a

subsemigroup of S the result follows. ]

3.2 Number of elements in a minimal finite INFB
semigroup

In this section we address the possible size of an INFB semigroup S for which
B; ¢ V(S). We will assume throughout that S is a finite INFB monoid of period d
with B ¢ V(S) and that INFB occurs at the dividing pair (a,e). As in the previous
section S, will denote the largest subgroup of S containing € and ea‘e € S, for every
¢ 2 0. A number of simple lemmas will lead to a lower bound for the cardinality of

an INFB semigroup S with B ¢ V(S).

LEMMA 3.2.1 No subgroup of S contains a.

Proof: If a were in a subgroup of S then a = a?*! and eae = ea?*!

the fact that INFB occurs at (a,€). o

e contradicting

LEMMA 3.2.2 Let s and t be elements of S, and 1 > 0.
(1) The elements as, sa are not contained in S.,

(ii) sa* = ta* = s = t,

(iii) sa* # at and sa # a't.

Proof: (i) If sa € S, then rs~'sa = ra € S, for any r € S.. Say ea = r for some

7 € S.. Then ea®*'e = rea’e = r?ea? e = ... = rfeae = eae, contradicting the

fact that INFB occurs at (a,€). That as ¢ S, follows by symmetry.
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(ii) Say sa' = ta’. Then

s = s(ea'e)(ea’e) !
= (sa’)e(ea’e)™

= (ta')e(ea’e)™

= t(ea'e)(ea’e)™?

=1t.

(iii) Say sa' = at for some s, t € S,. So eae = eatt™! = sa't™! = att~! = qe.
But eae € S, and ae ¢ S, by part (i), a contradiction. The case sa = a't follows by

symmetry. o

LEMMA 3.2.3 Let s and t be arbitrary elements of S,. Then sa® # ta and a*s #

at.

Proof: Say sa? = ta. Then sa?*! = sa’a?"! = taa® ! = ts~'sa? = ts™!(sa?)a?"? =
ts~lta?"! = ... = (ts7)¥ Ya = (ts7!)"'ta = st~'ta = sa. Therefore eae =
s7lsae = s”lsa%le = ea?tle, contradicting the fact that INFB occurs at (a,e).

That a’s # at follows by symmetry. : m]

LEMMA 3.2.4 For every s € S,, we have sa®> € S, and a®s ¢ S..

2 2

Proof: Assume sa? € S,. So s~ 1sa? = ea? € S, and therefore ea? = ea’e. Let 7 and

p be the index and period respectively of the subsemigroup (a) of S generated by a.
Case 1. pis odd.

If ¢ is odd then a™*' = a**'*? and i + 1 is even. Let 2 be the even element

of {i,7 4+ 1} (that is, 7 is the integer part of (i + 1)/2). So ea? = ea?a¥~? =

2

ea’ea®"? = ... = (ea®)’ € S.. But since p is odd, ea¥ = ea?*? = ea?(a?)P~1)/2q =

(ea®)?(a?)(a?)P~1)/21g = .. = (ea?)*(P-1)/2q, Now ea? € S, and by Lemma 3.2.2,
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sa & S., so therefore (ea®)i*?/2-1/2q ¢ S, contradicting the fact that (ea2)i*+(P-1)/2g =
ea¥ = (ea?)’ € 8S..

Case 2. pis even.
Since p divides d and p is even, £ divides % and d is even. Therefore if for some

s € S, we have s?/? = ¢ then s¥? = e. Now since ea? € S,

d+1 2.d 2 d-1

e =ed’a’'e = ea’eea’le = ... = (ea?)?/?

ea eae.

We now show that (ea?)”’? = e and therefore ea®t'e = eae, a contradiction as
required.
Let 27 be the even element of {1,7+ 1}. So ea® = ea?a*~2 = ... = (ea?)’ € S..

But

eatl = eq¥t? = ea2(az)s’+pl2-1 = ea2e(a2)i+p/2-1 =.. .= (602)3'-!-?/2

Therefore (ea?)’ = (ea?)’*?/2 = (ea?)!(ea?)P/? and so (ea?)?/? = e as required.
Therefore sa® is not contained in S,. That a?s is not contained in S, follows by

symmetry. 0O

LEMMA 3.2.5 For any elements s,t € S, sa® # a°t.

Proof: If sa? = a®t then sa’e = a’te = a?t. But by Lemma 3.2.4, a®t ¢ S., contra-

dicting the fact that sa’e € S.. m

LEMMA 3.2.6 Ifi,j € {1,2} and s € S, then a'sa’ ¢ S..

Proof: Say a'sa’ € S, and let t = ea’s € S,.. Then a’sa’ = ea'sa’ = ta’, a contra-

diction since ta’ is not an element of S, by Lemmas 3.2.2 part (i) and 3.2.4. ]

LEMMA 3.2.7 If1,5,k,l € {1,2} and s,t € S, then a'sa’ = a*ta’ implies s = t,
i=k, j=1.
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Proof: Say j # [. Without loss of generality we may assume j =1 and [ = 2. Then
a'sa = a*ta® and so (ea’s)a = (ea*t)a?, contradicting Lemma 3.2.3. Therefore, by
symmetry, i = k and j = l. So a’se’ = a'ta’ and therefore ea’sa’e = ea’ta’e. So

s =t as required. o

LEMMA 3.2.8 Ifi,5,k € {1,2} and s,t € S, then a*sa’ # a*t or ta*.

Proof: If a'sa’ = a*t then ea'sa’ = ea*t, contradicting Lemmas 3.2.2 (i) and 3.2.4.

Likewise, by symmetry, a‘sa’ # ta*. o

LEMMA 3.2.9 For any s € S,
a & {s,sa,as,saa,aas,asa,aasa,asaa,aasaa,l}.

Proof: Firstly a # 1 since otherwise eae = ea®t'e € S,. Secondly for any 7,5 €
{0,1,2}, (a'sa?)?*! = a'(sa*’e)?sa’ = a'sa’. Since eae # ea’*'e, the result follows.

O

LEMMA 3.2.10 For anyi,j € {0,1,2} and s € S, 1 # a'sa’.

Proof: If i > 0, 1 # a'sa’ since then e = el = a'sa’e, contradicting Lemmas 3.2.2
(i) and 3.2.4. By symmetry the only remaining case is when ¢ = j = 0, that is when

1 = s € S,. This is impossible since a = al # as by Lemma 3.2.2 (i). o

Combining Lemmas 3.2.2 through 3.2.10 we have the following.

THEOREM 3.2.11 The sets {1}, {a}, {a'sa’ : s € S,, 1,5 < 2} are disjoint in S.

COROLLARY 3.2.12 If T is a semigroup with |T'| < 56 then T is INFB if and
only B} € V(T).
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Proof: If S is a finite INFB semigroup and B2 ¢ V(S) then eae € S, for every
dividing pair (a,e). By Theorem 1.1.2, for one such dividing pair (a,e€), eae and
ea*t'e do not lie in the same coset of S, modulo I'(S.) (recall that if G is a group
then I'(G) is the upper hypercentre of G). Since both these elements are contained
in S., we must have ['(S.) # Se. If G is a group then by definition, I'(G) = G
. exactly when G is nilpotent. The smallest non nilpotent group G is the six element
centreless group S; with upper hypercentre equal to {1}. By Theorem 3.2.11 there
is a disjoint copy of S, for each pair {(3,7);7,7 € {0,1,2}} (that is, nine copies of
S.) as well as an element 1 and the element a. This sets the minimum size for such
a semigroup as 9 x 6 + 1+ 1 = 56. o

As will be shown in the following section, there do exist quite a few INFB semi-
groups S with 56 elements and with B ¢ V(S), so this bound is the best possible.
A second corollary of Theorem 3.2.11 also follows.

COROLLARY 3.2.13 IfS is a semigroup with at most 8 non-nilpotent subgroups
then S is INFB if and only if B € V(S). '

3.3 Minimal INFB divisors for finite semigroups

We now describe two constructions for making finite INFB monoids generating va-
rieties not containing B}. These constructions will be based around finite centreless
groups. The importance of centreless groups here lies in the fact that the upper hy-
percentre of a group G is a normal subgroup I'(G) such that G/T'(G) is centreless.

Throughout the remainder of this chapter it will be convenient to consider (con-
trary to the usual convention) the ij** entry of a matrix as the entry in the (¢ +1)*
row and the (5 + 1) column. For example the first entry in any matrix will be the
00" entry and a Rees matrix semigroup (without 0 element) M(G,m,n, P) over a

group G with n x m matrix P will be considered as a set of the form

{(1,9,7):9€G,0<i<m—-10<j<n—1}
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with multiplication (1,9,7)(¢,d',5') = (¢,9P;¢',j'), where P,; is the i5** entry of
the matrix P (according to the altered convention above). If a is a non group element

of a monoid S we will let a® denote the identity element 1 of S.

DEFINITION 3.3.1 Let G be a finite centreless group with identity element e and
ezponent d. Let g and g, be (possibly identical) elements of the group G. Construct
a 3 x 3 matriz with group entries as follows: let P2 = g and let g; denote the

element (g19)' "' g1; let h be any element of G\{g;'gq19;"}; and for i,7 < 2 define

4

e, ifi=7=0

Pj=<Sh,ifi+j=1

|92 943955 if i+5 22
Then =[G, g, 1, h] consists of the set M(G,3,3,P) U {a,1} with multiplication

lz =zl = z for every z, aa = (2, g2,2),

Y

. (i41,k,j), if i <2
a(z,k,7) = <

\(239392_1193.?.) = (2,9191935"), Zf 1=2

and
4

(kg +1), if <2

\(i,kg{1g3,2) = (Q:kgglaj)’ 2f3 =2
Multiplication within M(G, 3,3, P) will be as usual.

(i,k,7)a = {

NOTE 3.3.2 In general,
' = 97'97'97"(919)(919)(919) 2 n
= 9(19) %o

and likewise, gigy' = ¢i1(9g1)"3g. This means, in particular, that a(2,g;,2) =
(‘2,9’:‘+132) = (2?9'5&2)‘1' )
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LEMMA 3.3.3 For any centreless group G, the groupoid =,|G,g,q:,h] as con-
structed in Definition 3.3.1 is an INFB semigroup with B} € V(24(G, g, g1, h])-

Proof: First we check that =[G, g, g1,k] is a semigroup. Since M[G, 3,3, P] is a
semigroup, up to symmetry we have five cases to consider.
Case 1. a[(1,s,7)(7,t,7)] = [a(s, s, )](7, t.,j').
If 7 <1 then the left side of this expression becomes
al(i,s,7)(#,t,7)] = a(i,sPjit, ') = (1 + 1,sP; 0t, 7).
Likewise the right side becomes
la(i, s, (1, 57) = (i + 1,5,0)(F, 8, 5") = (i + 1, sPurt, §')
as required. If 7 = 2 then the left side becomes
al(2,5,7)(',t,5)] = a(2, 5Py 3t,5") = (2, 9395 " s Py jt, 5)
and the right hand side becomes
[a(2,5,9)1(,t,5") = (2, 95975, 5)(&', £, 5) = (2, 9395 ' s Pyt ')
as required.

Case 2. (i,s,)la(i"t, 5] = [(i, s, 7)al({ 1, 7)
If both j and 7’ are less than 2 then the left side becomes

(z’,s,j)[a(z”,t,j’)] = (i=3aj)(if + 13t:jf) = (iaspi‘5’+lt=j’)
and the right side becomes
[(i=3:j)a](ir?tajf) = (is‘s:j + l)(irat:j!) = (i:SPj-I-l,i't:jf)'

Since for any a,b,¢,d <2, P,y = P4 if a + b = ¢ + d, the two sides are equal.
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If = 2 and ¢’ < 2 then the left side becomes
(3,5,2)[a(?,t,7)] = (i,5,2)( + 1,¢,5)
= (i,8Pyi41t,7)
= (1 592_19:"+1+29;1ta )
and the right side becomes
((,5,2)a](i,t,5") = (i,595 93, 2)(¥',¢,5")
= (i,59;'93Part, j)
= (1,595 9397 ' gir+297 't 7)-

To show the two sides are equal we need to show that

97 974395 " = 959397 ' gir+295 .

Since g; = (919)""*g1 by definition, we have

(95 9v43)95 " =(9(919)" 91)97 97 g7" (by Note 3.3:2)

=9(g1g)"
=97 (9:19)"
=971(919)" (91991)(91991)

=(91991)""(91991991)(91991) " (19

=(91991) " (91991991 )(91991) " gir+2(91991)

=0;"'939; ' gir+295 "

as required. The proof is similar when j < 2 and i’ = 2.

)€’+lgl(glggl)—1

105

Finally we need to consider the case when 7 = 7' = 2. In this case the left hand

side becomes
(z,8,2)[a(2,t,5)] = (i,s,?)(?,gw{'t,j')_
= (1,5P22039; 't,5")

= (4,595"'9495 " 9395 't, ")
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and the right hand side becomes

[(G,5,2)al(2,8,5) = (1,597 "95,2)(2,1,5")
= (i,597 ' 93P2t,5")
o= (45979395 9495 ', 7).
Applying the same arguments as before, we get

-1 _-1

(9294)(97 " 93)(97 ") =(991991)(991)(9; g™ 9") (by Note 3.3.2)

=999
=991991991(91991) "
=g; ' 9397 ‘94957 (by Note 3.3.2)

as required.

Case 3. ala(t,s,7)] = [aa](i,s, 7).
If 7 = 0 then we have a[a(0,s,)] = a(1,s,7) = (2,5,7) = (2,929 ' 92955, J) =
(2,92P208,7) = (2,92,2)(0,,7) = [aa](0,s,7). If i = 1 then we have a[a(1,s,7)] =

a(2,5,7) = (2,93975,7) = (2,995 9397 '5,7) = (2,02 P215,7) = (2,92, 2)(1,6,7) =
[ad](1,s,7). Finallyifi = 2 we have a[a(2,s,7)] = a(2,9397's,7) = (2, (g3g;")%s,7) =

(2,(919)%s,5) (by Note 3.3.2) and (2,(9:19)%s,7) = (2,91(991)95,7) = (2,9495"s,7)
(again by Note 3.3.2) and (2,9495's,7) = (2,9297'9497 '5,7) = (2,92P2025,5) =
(239212)(2:31j) = [aa](las:j) as required.

Case 4. [a(z,s,7)]a = a[(3,s, j)al.
If both i and 7 are less than 2 then

[a(i,s,Nla= (i+1,8,5)a=(i+1,57+1) =a(i,sj+1)=a[(i,s,])a].

If i =2 and 7 <2 then

[0(2,5,9)la = (2,937 s, 5)a = (2,995 75,5 + 1) = a(2,5,5 + 1) = a[(i, 5, 5)a].

If 1 =35 =2 we have

[a(2,5,2)]a = (2,9395"'s,2)a = (2,959 ' s95 ' 95, 2) = a(2, sg; ' g3,2) = a[(¢, s, 7)a]
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as required. The proof is similar if i < 2 and 7 = 2.

Case 5. a[aa] = [ad]a.
This follows because a[aa] = a(2,92,2) = (2,9395 ' 92,2) = (2, 93,2) = (2, 9295 '93,2) =
(2,92,2)a = [ad]a.

So 51[G, g, 91, h] is a semigroup. To show it is INFB first note that =[G, g, g1, &)

is a monoid and that the element a divides the idempotent (0, e,0) because
(01 92-1 PO?L’I ] 0)66(21 P2_,21= 0) = (03 92-1 P(5:211 0)(2$ g2, 2)(23 P2_,21 H 0) = (0: €, 0)

However the period of =,[G, g, g1, A] is d (the exponent of G) and a®*! = (2, g,2)

S0

(0,€,0)a(0,€,0) = (0,4,0) # (0,95 " 919, ", 0) = (0,€,0)(2,61,2)(0, ¢,0).

as required by Theorem 1.1.2. Finally we need to show that B} is not contained
in the variety V(=,[G, g, 91,h]). It is well known and easy to verify that a Rees
matrix semigroup over a group of exponent d satisfies the identities z ~ z%*! and
(zyz)? = (zz)?. Therefore M[G,3,3, P] satisfies the identity (zyz?y)? ~ (zy)%.
Furthermore if we delete all occurrences of a given letter from this identity then the
resulting identity is still satisfied by M[G, 3,3, P]. Therefore the monoid obtained
from M[G, 3,3, P] by adjoining an identity element satisfies (zyz?y)? ~ (zy)¢. So
in order to show that =[G, g, g1, h] satisfies (zyz?y)? ~ (zy)? we need only check
cases where the element a is assigned to at least one of the letters z and y. If a is
assigned to both z and y or if a is assigned to just one of these and 1 is assigned to
the other then both sides simply equal a?. If a is assigned to z but (1, s, ) is assigned
to y, then zy becomes (7', ¢, j) for some ¢’ and some ¢t € G. In this case, both sides
of the identity become the idempotent in the subgroup Hy ; of all elements of the
form (1,7, 7), where r € G. The case when a is assigned to y and (3, s,7) is assigned

to z is similar. Thus

El[ngagl’h] |= (xyxzy)d ~ (xy)d'
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However B} [~ (zyz?y)? ~ (zy)? since (as noted in the introduction to this chapter)
B3 contains two elements, a and b, such that ab is a nonzero idempotent but a? = 0.
Since the left side of (zyz?y)? =~ (zy)? contains z? but the right side is of the form
(zy)?, assigning a to z and b to y ensures the left side becomes 0 but the right side

becomes the nonzero idempotent. m

We will say that =;(G, g, g1, k] is a small INFB finite semigroup of the first kind

and denote the set of all such monoids by =;.

NOTE 3.3.4 In [7{] a finite INFB monoid T is presented for any centreless group
G with a non identity element g with the property Bl ¢ V(T). By letting e be
the identity element of G it is possible to show that the monoid =,[G,g,97, €] is a
(proper) homomorphic image of T.

Note also that if Sg is the six element centreless group then =, [Ss, g, 91, k] has exactly
56 elements for any valid choice of g, g; and h from S3. By Corollary 3.2.12 this is
the smallest possible size for such a semigroup.

For integers a,b,r we will use the notation a + (b mod(r)) to denote the sum of
a with the smallest non-negative element of the equivalence class b mod(r). We will
also use the notation [a/b] to denote the integer part of the rational number a/b.

For example, for any pair of integers n and m we have n = m[n/m] + (n mod(m)).

DEFINITION 3.3.5 Let G be a centreless group with exponent d and identity ele-
ment e and let (a) be a finite cyclic semigroup of index 2 and period p generated by
an element a. Suppose p has two divisors | and r, not both 1, such that there are ele-
ments L and R of G with order p/l and p/r respectively and a mapping f : (a) = G
~ satisfying:

(i) f(a) # f(a*),

(i) for all i,7> 0 withi+j <1+ p,

f(a2+i+j) _ L[j,’llf(a2+£+(i mod(l))) — f(a2+€+{j mc"d(r)))ﬁ[i/r]1
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(iii) for any j < p, if f(a't?) = f(a') for every i with 1 +p>1i> 2 thenp = j.
Then =;[G, L, R, f, p] is the groupoid

M(G,2+ 1,2+, P)U{l,a,d®...,a"""}

where P;; = f(a'*7), Pyo = e and multiplication is defined by

8
a(z,k,7) = 4
| (24 (( = D)mod(r)), RE-D/k, 5), if 2<i <247

4

ikj+1), if <2,
ik fa= ] :

(3, kLWG=-D/0 2 4 ((5 — 1)mod(l))), if 2<j <241

.

and 'z = ¢'~(az), za' = (za)a*™.

LEMMA 3.3.6 In general, a"(i,s,7) = (2 + ((i + n — 2)mod(r)), R((+7=2/"I5_3)
and (3, s,5)a™ = (i, sLI+"=2/1 2 4 ((j + n — 2)mod(1))).

Proof: We use induction. Firstly a(i,s,j) = (2 + (( — 1)mod(r)), RE-V/s ) so

the claim is true for n = 1. Assume that
a"(i,s,7) = (2 + ((i + n — 2)mod(r)), RUUF"=D/"lg 5y,

We now show that a™*'(i,s,j) = (2 + ((i + n — 1)mod(r)), RIG+»=D/7ls 5),
Now
A" (i, s, 7)
=a(2 4 ((1 + n — 2)mod(r)), RU+"=D/Tg 5) (by assumption)
=2+ (2+ ((: + n — 2)mod(r)) — 1)mod(r)),
R[(2+'[("‘i'ﬂ"2}1"1«¢’d("‘)]'-1)f"]R[(*"l'ﬂ-?]'f"]51 7)

—(2 4+ ((i + n — 1)mod(r)), RIO+(4n=2Imedr))/r] plli+n=2)/r]g J).

It remains to show that RI(1+((+n=2)med(r))/7] pli+n=2)/r] — Rl(+n-1)/7] et ¢ be the
element RI+((i+n=2med(r))/r] Rl(i+n=-2)/r] ¢ G. Now either 1+((i+n—2)mod(r)) < r
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or 1+((i+n—2)mod(r)) = r. f 14((i+n—2)mod(r)) < r then ((i+n—1)mod(r)) < r
and so [#2=2] = [#2=1] Ip this case t = RI(+n=2/1) = RIE+n-U/"T a5 required. If
14+ ((i+n—2)mod(r)) = r then RI+((+n=2modr)}/7} = R ((i+n—2)mod(r)) = r—1
and [#2=2] = [H#2=1] ], So ¢ = RRI(+n-1/7I-1 = RIG+n=1/7] a5 required. Therefore

by induction the result is true for all n > 1.

The corresponding result for multiplication on the right follows by symmetry. O

LEMMA 3.3.7 The groupoid =[G, L, R, f,p] as constructed in Definition 3.3.5 is
an INFB semigroup and B} & V(=,[G, L, R, f, p]).

Proof: First we will show that =;(G, L, R, f, p] is a semigroup. Since M(G,2+r,2+
l, P) is a semigroup we have, up to symmetry, four cases to consider.

Case 1. a*[(i,s,j)(¢,,7)] = [a*(3, s, 7))(i", . §').
This is similar to Case 1 in Lemma 3.3.3: multiplying an element (¢, s,7) on the left
by a™ gives an element of the form (k,rs,j) where r is some element of G, k is a

number and both r and k depend only on the numbers n and . Thus
a”((z,s,7)(',t, 7)) = a"(i,sP;t,j') = (k,rsP;ut,5')
and
[a"(3, s, D&, b, 5) = [a™(3, 8, )] (', b, ') = (R, 7s,5) (i, b, 5') = (k,rsPjut, 5)

as required.

Case 2. (i,s,7)[a"(,t,7)] = [(4, s, )a™) (7, ¢, 7).
The case when j, n and ¢ are sufficiently small that both 7’ + n and j 4+ n are less
than or equal to 2 is essentially the same as the first case considered in Case 2 of
Lemma 3.3.3. Now say that /4 n < 2butj+n>2(if'+n>2and 74+n <2

then the proof is similar). In this case the left side becomes

(i: saj)[a‘n(irat!jf)] = (ias&j)(i’ + n=t$j!) = (£33Pj,f'+ﬂt:j’)‘



CHAPTER 3. SMALL INFB FINITE SEMIGROUPS. 111

Now using Lemma 3.3.6 the right hand side becomes
(5, 5,7)a™)(#',8,5") = (&, s, 2 4 (5 + n ~ 2)mod(1))) (7,1, 5')
= (1, sLU* Py Gimeymoaqirt, 5')-
If associativity is to hold then
LIGHF=2 P, o+ (Gen-2)mod(t)) = Pjir4n-

The left side of this is

LIGH=20 Py 5 (4n-2)modqyy = LITHP= D1 g2+ +(Fn=2med())
— f(ai‘+.f+n})
= i 4n
which is the right hand side as required.

Finally consider the case when ¢’ + n and 7 4+ n are both greater than 2. In this

case the left side becomes

(1,5, )&, 2, 5)] =(3, 5, 7)[@™(2 +1" = 2,1, 7))
=(4,5,5)(2 + ((n + ' = 2)mod(r)), R+ =2y, 57)
(by Lemma 3.3.6)

=(4, $P; g4 (ntir—2)mod(r)) B =D/ 5

and the right side becomes

(5,5, 7)a™)(¢',2,5) = (5, L0021 (5 + n = 2)mod(1))) (i1, 5")

= (‘i,lSL[(j+n_2}ﬂ]P2+({j+n—2)mod(l'))},f't:j’)'
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Now
P; 24 ((n+i~2)mod(r)y R 727) = f(@2t{(n4i=2mod(m)43) Rlln+i'=2)/1]
= f(a™"+)
= [IGHn=2/1) (24 +(n=2)mod(1)))
= [lG+n-2/1 p, H(Gn=2)mod(l)))i"
as required.

Case 3. a™[a™(i,t,7)] = [a"a™](i, h, 7).
This follows immediately since from Definition 3.3.5 we have that a™(:,;h,7) =
a™1(a(i, h, 7)).

Case 4. [a"(s,s,])]a™ = a™[(s, s,7)a™].
This follows for essentially the same reasons as the result in Case 1.

Therefore associativity holds and =3[G, L, R, f, p| is a semigroup. Also, by The-
orem 1.1.2, INFB occurs at the dividing pair (a, (0, e, 0)) since

(0,€,0)a(0,e,0) = (0, f(a),0)
and by Lemma 3.3.6,

where f(a) # f(a"*).

Finally, to show that B} is not contained in V(Z,|G, L, R, f,p]) we again use the
identity (zyz?y)? & (zy)? where g is the period of =[G, L, R, f, p], or equivalently
the lowest common multiple of the exponent d of G and the period p of (a). Since
‘both p and d divide g as numbers, it follows that =;[G, L, R, f, p] satisfies this
identity for essentially the same reasons as in the proof of Lemma 3.3.3. m]

We will say that =[G, L, R, f, p] is a small INFB semigroup of the second kind
and denote the set of all such monoids by =,.

We will now construct an example.
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it follows that the direct product of L* with any finite group also generates such a
variety; see Corollary 3.1.5 below).

Summarising and combining the ideas above we obtain the following theorem.

THEOREM 4.1.13 (i) For any semigroup S; (finite or otherwise) there are finite
semigroups S; and Sz generating hereditarily finitely based varieties so that S; x
S; x S3 generates a variety with uncountably many subvarieties.

(i1) If M is a monoid of indez more than two then there is a finite group G generating
a hereditarily finitely based variety with only 3 subvarieties so that M x G generates
a variety with uncountably many subvarieties.

(i) If M is a monoid of index less than or equal to two then either M satisfies both
ryz & zzy and zyz = yzz or there is a finite semigroup S generating a hereditarily
finitely based variety so that M x S generates a variety with uncountably many

subvarieties.

Proof: (i) For S, and S3 one can take, for example, the semigroups L' and S({aab})
or the semigroups B and S({aa}).

(ii) The monoid S({aa}) is contained in the variety generated by M and therefore
the claim follows by taking G to be the group; B above. To obtain a aperiodic
example one may replace the group B in this argument by the direct product of L*
with its right dual R* and obtain a similar result. The semigroup L* x R? generates
a band variety with a lattice of subvarieties consisting of 13 elements.

(iii) If M does not satisfy one of the described identities then one of the semi-
groups M x S({aab}) or M x S({abb}) generates a variety whose identities are
closed under deletion, have index three and do nét contain either of the identities
zyr ~ rzy and zyr = yzzr. By the last part of Theorem 4.1.2, one of these semi-
groups generates a variety with uncountably many subvarieties. ]

In connection with part (iii) of this theorem we note that a monoid of index one

satisfying both zyr ~ zzy and zyz = yzz is a semilattice of groups (a Clifford
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EXAMPLE 3.3.8 As our group we will take the symmetric group S; of order 6
(and ezponent 6) with presentation (L,R;L* = R® = e,LR = RL?). Let p be the
number 6. The orders of L and R are 3 and 2 respectively so the numbers [ and r
required by Definition 3.3.5 are 2 and 3 respectively. Finally we define our mapping
f according to the following table:

@] 1@ | 1@ ] 1@ | @) | £ | £ |
L | L | R| | LR|P=R=c|LR|

It is easily verified that f satisfies the requirements of Definition 3.3.5. So the
sandwich matriz P of the completely simple ideal of =,[Ss, L, R, f,p] is

(e L L R

L L R IL?
L R L* LR
R L* LR e

\I* LR ¢ IR

We now show that the class =; U =, U B} contains all minimal finite INFB

semigroups.

THEOREM 3.3.9 Let S be a finite semigroup. The S is INFB if and only if there
is @ monoid T € =, UZ, U {B3} with T € V(S).

Proof: The “if” implication follows immediately from the property of being INFB.
Now we show that the reverse implication is also true. Firstly by Theorem 1.1.2
we may assume that S is a monoid with identity element 1 and that there is an
idempotent e and an element a so that INFB occurs at (a,e). Now assume that
Bl ¢ V(S). So by Lemma 3.1.1, ea‘e € S, for every : > 0. We will take a series of

subsemigroups and homomorphic images until we arrive at a semigroup isomorphic
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to one from =; U =;. This process is equivalent to taking a single homomorphic
image of a subsemigroup of S (see [66] for example). The small INFB semigroup we
arrive at is therefore a divisor of S.

Consider the subsemigroup T of S generated by the set S, U {a,1}. Now a
still divides e in T since (e)a(e(eae)™!) = e. Let 7 and p be the index and period
respectively of (a) (the subsemigroup generated by a). By Lemma 3.2.1, 7 is at least
2. Also since p divides the period of T and the period of T divides the period of S
(say d), the property eae # ea?*'e modulo I'(S,) is preserved and therefore T is an
INFB submonoid of S. Note that T, is identical to S..

Since T is generated by T. U {a,1} and ea*e € T, for every k > 0 (recall
a® = 1), every element in T except 1 can be considered as a word of the form a”sa™
where n and m are non negative integers and s € T.. We now want to replace the
non-nilpotent group T. with a centreless (and therefore also non-nilpotent) group.

Consider the equivalence 6, defined as
{(z,y):z =y or z=a"sa™, y=a"ta™, n,m >0 and s =t mod ['(T,)}.

This is a congruence since if a"sa™ and a™ta™ are equivalent modulo 6, then

+n m

r ’ L} L
a” ga™ a"sa™ = a" gea™ ""esa

and

m'4n m

' i '
a” ga™ a™ta™ = a™ gea eta

for any non-negative integers n’ and m’ and g € T.. Since s = t mod I'(T.) we
must have

gea™"es = gea™ et mod ['(T.)

and therefore

I ' I r
(a" gea™ T"esa™, a” gea™ teta™) € 0.

So 8, is a left congruence and likewise, by symmetry, a right congruence. Let T

denote the monoid T/6,. This is still an INFB monoid since eae and ea’tle were
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not equivalent modulo I['(T.) so
(eae)/0, = (eae)l(T.) # (ea®*'e)I(T.) = (ea®*'e)/h;.

To avoid unnecessarily complicated expressions we will relabel the equivalence classes
of T so that a/8, becomes a and e/f, becomes e. By the definition of the upper
central series, the group T, is centreless and so I'(T,) = {e}. Therefore two elements
of T, are equivalent modulo I'(T,) if and only if they are equal.

Let j be the smallest positive integer so that ea’~7e # ea**?~J¢ (recall that ¢
is the index of (a)). Such a j exists since eae # ea?*'e and ea’~(-Ye = ege and
eat?=(i-1e = eaPtle. So by the choice of 7, for any k < j, ea*"Fe = eai+tP~*e. Now

a divides a1 (ea’~7"'e)~! since
a1 (ea'"1e)™t = ¢ (ea*" " e) ™! x a x (eae)”l.
Also a*~i7}(ea’~i1e)~! is idempotent since
@i (e i1 e) " I (eai=i1e) )

= (1"_"'1(ea"'*""le)'1ect“'j'le(ea‘b'j'le)'l

= o (ea"i"1e) 1,

Therefore (a,a'~7"(ea’~"~'€)™!) is a dividing pair and the set {a'7"'s : s € T.}
is a subgroup of T isomorphic to T, (it is easily verified that the map f : T. —

{a*=i-1s : s € T.} given by f(s) = a7~} (ea"7~1e)~1s is an isomorphism). Now
(ai_j_l(eai_j_le)'l)a(a{d‘j_l(eai_j_le)_l)

is equal to

a7 eat i e) rea T e(eat i e) !

and

(ai—j—l(eai—j—le)-l)ap+1(at'—j—l(eai—j-le)-—l)



CHAPTER 3. SMALL INFB FINITE SEMIGROUPS. 116

is equal to

a"’"l(ea"'j"le)'lea”""ie(ea"'*f'le)".

But since ea*~7e and ea**?~7e are not equal, neither can be
a"'-"'l(cs'c:;"_"'lns)'1ea""jce(ec:;“'j‘le)‘1

and

a1 ea' T e) lea' P e(ea ™ e) L.
Therefore INFB occurs at (a,a*~?~(ea’#~1e)!) and for every k > 1,

(@3 (ea'i"1e) V) ak(a"i"} (ea*~i"1e)Y)
is equal to
(@'~} (ea™™i €)™ )aP (@i (ea' I Te) ).

Let the idempotent a*~7~!(ea*~?~!e)~! be denoted by f and let U be the sub-
monoid of T generated by T; U {a,1}. Using the same kind of argument as was
used in the case of T, we have that U is an INFB submonoid of T and INFB occurs
at (a, f). However, as was noted above, fa*f = fa**?f in U for all k > 1.

Now consider the equivalence on the set {a,a? a®,...a"*?"1} given by

ép = {(a’,a*) : j =k or j,k > 1 and j = k(mod(p))}.

Since sfa*ft = sfa**?ft in U for all k > 1 and any s,t € Uy, ¢, generates a

congruence #; on U equal to

{(z,y) :z =y or (z,9) € &y

or z = a’*sa®, y = a”sa® and both (a’,a’?), (a*,a"?) € ¢,}.

Let U be the semigroup U/6,. For the sake of simplicity we will relabel the equiv-
alence classes so that a/f, becomes a and f/6, becomes e. So (a,e) is a dividing
pair, U, is centreless, ea’e € U, for all j > 0, and eae # ea'*Pe. Furthermore, the

index of (a) (the subsemigroup generated by a) is now 2, that is a® = a?*?.
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Consider now the subsemigroup
C ={a'sa’ :4,7 > 0,s € U,}

This is an ideal of the semigroup U and every element in C divides every other

element since for any 4,4, 7,7 > 0, s,t € U,,
a'sa’ = (a't™(ea”e)™!)(a"ta’)((ea’ €)' sa?).

Thus C is a completely simple subsemigroup of U. It is clear also that the H-classes
of C are sets of the form {a‘sa’ : s € U.} and we will denote such an H-class by
H; ;. The proof will now split into two cases. The first is the situation when a? is
contained in C. The corresponding semigroups will be elements of Z;, the INFB
semigroups of the first kind. The second situation is when a? ¢ C. In this case it is
possible that some further reduction may be made.
Case 1. a? € C.

In this case the set {a?,a>,...a'*?} is a cyclic subgroup of some group H;;. Now
by the Rees-Suschkewitz theorem, C is isomorphic to a Rees Matrix Semigroup over
the centreless group U, with sandwich matrix P. Since every element in C is of the
form a'sa’ and a? € C, P must be at most a 3 x 3 matrix. Since Theorem 3.2.11
shows that the sets {1,a} and each H;; for i, < 2 are disjoint, P must be exactly
a 3 x 3 matrix. Now if a? = a’sa’ where i < 2 and j < 2 then every element in C
can be written in the form a¥ta’’ fqr t e U, i <2and j/ <2 and then P is be
only an ¢’ x 3 or 3 x 7’ matrix, a contradiction. Therefore, by symmetry, a®? = a%sa?
for some s € U, and the subgroup {a?,¢?,...a'*?} is a cyclic subgroup of H,.,.
Note also that {a?,a®,...a'*?} is generated by a!*? since (a!*?)* = o™t = g™

2

For some g, € U,, a'*? = a?gya®. Let g be the element ea*e and define a map

U= El(ﬂe,g,gl,eae) by
(1) =1, «(a) = a,i(a’sa’) = (3,5, 7).

We show that ¢ is an isomorphism. It is certainly a bijection since during the

arguments above we have shown that U contains only elements of the form 1, q,
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and a’sa’ (for 7,5 < 2 and s € U,) and Theorem 3.2.11 shows that these are distinct
in any finite INFB semigroup whose variety does not contain B}. We need to show
that for any elements z,y € U, ¢(zy) = ¢(z)¢(y). The case when z or yis 1 is trivial.

Consider the case when z = a*sa’ and y = a¥'ta’’. Now
. . L
a'sa’a" ta’ ) = 1(a'sea’ Veta’ ) = (i,sea’ Het, ;')

and
Wa'sa’)u(a"ta") = (i, ,§)(7,1,5) = (i, sPjut, ).
As in Definition 3.3.1, put ¢; = (g19)""*g:. If i’ + 7 > 2 then
' = (a1+p)j+a" = (a’q, az)j+£’ = a¥(g, ea"e)”“"l gi1a® = a? Gjsi a2

2

] i
and therefore ea’** e = ea’eg;+iea’e. Now a? = aga? so ea’e = ea’gya’e. There-

fore g» = (ea’e)~!. This implies that
ea’t'e = ea’egj,uea’e = g7 givgs ' = Piy
as required. If 7/ = 7 = 0 then
0

Pjﬁ'f = Po.o =e=€ea e

as required. Finally if '/ = 1 and j = 0 (the case when ¢ = 0 and j = 1 follows by

symmetry) then
Wa'sata’) = (i, seaet, ') = (3, sPont, 7') = (i,s,0)(1,¢, ) = u(a’s)(ata’),

also as required.

Now consider the case when z = a and y = a'sa’. Firstly assume i = 0. Then
aa'sa’) = (asa’) = (1,s,7) = a(0,s,7) = ¢(a)(sa?),

as required.
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Now assume that 7 > 0. Therefore

(aa’sa?) = (a*t'sa?) = u(a’gipr1a’sa’) = (2, gipied’es, j).

But ea’e = g; ', so t(aa’sa’) = (2,gi4197's,7). If i =1 then

(2, 94195 "s,5) = (2,5,5) = a(1,5,5) = a)u(asa’)

as required. If ¢ = 2 then

.(2,9,;4_192_18,3') = (2’939‘2-13aj) = 6(2, S,j) = L(G)L(azsaj):

also as required.
Up to symmetry, the only remaining case is when z = y = a. That ((ea) =

2 = a?gya? while a? = (2,9,2) in

t(a)e(a) follows immediately since in U we have a

Z1(Ue, g, g1, eae). Therefore ¢ is an isomorphism.
Case 2. a’ ¢ C.

Since {a?,d%, ... ,a'*?} forms a cyclic subgroup of U, it must be that a* ¢ C for all

¢ > 0. Recall that if ¢ > 1 then ea‘e = ea’*Pe and that ¢, is the equivalence
{(a?,a*): 5=k or j,k > 1 and j = k(mod(p))}

on the set {a,a?a* ...}. Let q be the smallest number such that for all i > 1,

ea’e = ea'tle. It is easily verified that the equivalence 83 given by

{(z,y) : z =y; or (z,y) € &g;

or z=a'sal, y= a"'sa’, and both (a“,a“’),(a",a’q) € ¢}

is a congruence that preserves the property of being an INFB monoid. Let the
semigroup U/f; be denoted V and let the equivalence classes a/f; and e/f; be
relabeled a and e respectively. Note that the group V, = U,/83 is isomorphic to
U. and that the period of (a) (the subsemigroup of V generated by a) is now the

number gq.
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@

In V, ea'e = ea’tie for all 7 > 1 if and only if j = ¢q. If ea®? = ea®* then
ea’a’~? = ed' = ea’*a'~? = ea't’ for any i > 2. Therefore the number j in these
equations must be g. Likewise a’e = a?*’e if and only if j = ¢q. Say there exists
7 > 2 such that ea’ = ga for some g € V.. Then ea’a? = ea’ and gaa? = gat!.
Therefore gae = ea’e = ga‘?'f'le, a contradiction since eae # ea?*'e. It follows that
no such j exists and likewise that there is no integer j > 2 such that a’e = ag.
This also guarantees that no j > 1 exists so that a’e = g or ea’ = g since then,
for example, a’*'e = ag. Now let r be the smallest number such that a’e = a®**"R
for some R € V. and [ be the smallest number such that ea? = La** for some
L € V.. Now r must divide ¢ since otherwise there are numbers k and &’ such
that kr = k'(mod(q)) and &’ < r. In this case a®***"e = a?R* and a*** e = o?>*¥'e,
contradicting the minimality of . Likewise, [ must divide g also: say ¢ = nr = ml.
Now since a’*?e = a’e and a?t%¢ = a?*""e¢ = a*R"™ we must have that R” = e and
therefore the order of R divides q. Let the order of R be k (note that k& necessarily
divides n). Then a?*"*e = a?R*¥ = a’e and therefore ea’e = ea'*"*e for every i > 1.
By the choice of V however, this is true only if rk = q. Therefore the order of R is
n and, by symmetry, the order of L is m.

If |l = r =1 then L and R have the same order and for any integer i > 0,

241

Li(ea%e) = ea**'e = (ea’e)R'. Furthermore for any k > 1 and 4,5 > 0,

a* x a'sa’ = a?Rit*sa’

and

a’*R*(ea’e)™a® x a'sa’ = a® R*(ea’e) ' ea’R'sa’

= a’R"**sdd.
Likewise a'sa’ x a®** = a'sa’ x a?(ea’e)™'L*a?. But ea’eR* = L*ea’e and so

a2(eaze)'1Lka2 = a’R*(ea’e)™'a’.



CHAPTER 3. SMALL INFB FINITE SEMIGROUPS. 121

Therefore multiplication on the left of an element of C by a?** is the same as
multiplication on the left by a?R*(ea’¢)~'a® (or equivalently by a*(ea’e)™*L*a?)

and likewise with multiplication on the right. We also have

2+k _ a2+{k+1) = az-l-k

axa X a

and

a x a’R*(ea’e)™a® = a’R**"(ea’¢)™a® = a’R*(ea’e) ™ a® x a.
Therefore the equivalence 6, given by

2+k

{(z,y) :z =y; or z = a®*" and

y = a’R*(ea’e)'a%; or z = a’R*(ea’e)™a” and y = a?**}

is a congruence. The resulting quotient of V is an INFB semigroup of the type
described in Case 1. Therefore we can assume that not both of ! and r are 1.

Now we are ready to compare V to a semigroup from =,;. Define a map
f:{a,d%...a"*"} =V,

by f(a') = ea’e. For any i < r and any s € V., a**e # a’s and likewise for [,
there are at most (2 + r) x (2 4+ {) H-classes H;;. To see that there are exactly
(2 +7) x (2 +1) H-classes of the form H;;, note that if a’sa’ = a''ta’’ with j and
7' less than 2 + [ then ea'sa’ = ea’ta?’, that is there is an element v € V, so that
ea’ = va’’. Say j' # j. If both j and j" are greater than 1 then because a?*? = a2
we have ea? = va?tl~7'l, contradicting the minimality of [. If one of j and j, say
7', is less than 2 then, we have either ea = ea’ or e = ea’. In either case we obtain

ea = ea* for some k > 1. But then ea?

= ea'**. By the arguments above, 1 + &
must equal 2 + p and therefore ea = ea'*?, contradicting the fact that INFB occurs
at (a,e). Therefore j must equal j'. Likewise by symmetry if 7 and i’ are less than

24+ rthenz=17".
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Fori<2+r,j<2+4+land 0 <k <l4qdefineamap: :V = Z(Ve,L,R, f,q)
by

V(a*sd’) = (i,s,7), /(a*) = a*.

It is clear that ¢’ is a bijection. To show it is an isomorphism, up to symmetry there
is only one nontrivial case to check that is not already covered by corresponding
arguments for the map ¢ in Case 1. The case that remains is when ¢/((a¥)(a’sa?)) =

! (ak)/(aisa?). If (k + i) > 2, the left side of this equals
/(a2+((i=Dmod(r)) pllk+i=2)/r) g4

= (24 ((k +1 — 2)mod(r)), RIE+=2/g 75
= a*(4,5,7) (by Note 3.3.6)

= /'(a*)/(a'sa?)

as required. If (k+17) < 2 we can assume that £k = 1 and ¢ = 0 (since the cases when

k = 0 are trivial) and the left side becomes

Y((a)(sa”) = (1,5,4) = a(0,5,5) = ¢'(a)¢'(sa?)

as required. Therefore V is isomorphic to Z,[V,, L, R, f, q]. The proof is complete.
0

We now have the following Theorem.

THEOREM 3.3.10 There are infinitely many minimal finitely generated INFB va-

Tieties.

Proof: We will only consider the small INFB semigroups of the first kind. It is
well known that if p > 2 is a prime number then the dihedral group D, given by
(a,b:a? =1 = b*a?"'b = ba) is centreless (the proof of this and more general
results are popular exercises in many group theory texts; see [3] or {72]). Let S
and T be two monoids from =; with largest subgroup Dy and Dy respectively (p

and g distinct primes). For each number n > 1, D, has exponent 2n so therefore
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SEz? ~ 2% and T | 2% ~ 22*%. In this case, any semigroup U € V(S) N V(T)
satisfies 2 &~ g2t9<4(%7.29) = z2+2 Any subgroup G of U must therefore have
exponent 2. So G satisfies zy ~ zy(yzyz) = z(yy)zyr ~ zzyr ~ yz. That is, G
is abelian, and therefore nilpotent. Therefore U is INFB if and only if B € V(U).
Since B3 ¢ V(S) and B} ¢ V(T), U is WFB. The result now follows since there
are infinitely many prime numbers and consequently infinitely many dihedral groups
D;. o

Note that if INFB occurs at a dividing pair (z,y) in a semigroup S € Z; U =,
with maximal subgroup G, then since a is the only non group element in S, z must
equal @ by Lemma 3.2.1. Every idempotent in S of the form (4, s, j) for s € G and
i+ 7 > 1 can be written in the form a*(0,%,0)a’ for some element ¢t € G. But since

t+ 7 >1 and the index of S is 2,

a'(0,t,0)a’aa’(0,t,0)a’ = a'(0,t,0)a’*+(0,1,0)a’
= a*(0,t,0)a?*+1+4(0,1,0)a’

= a'(0,t,0)a’a?*'a*(0,1,0)a’

and therefore INFB does not occur at (a,a’(0,¢,0)a’). So the idempotent y must
be one of 1, (0, €,0) or possibly a* if S € =,. Since INFB occurs at (a,y) it is easily
verified that the only possibility for y is (0,e,0). That is, there is only one dividing
pair in S where INFB occurs. Since INFB occurs for at least two distinct dividing

pairs in both B3 and A}, by Lemma 3.1.1 we have proved the following theorem.

THEOREM 3.3.11 If INFB occurs at only one dividing pair in a finite semigroup
S then B} is not contained in the variety V(S) and there is a monoid T € =, U=,

such that T € V(S).

Note also that since the index of every semigroup S in =, U Z; is only 2, for
any element z, z? lies in a subgroup of S. From this it is easily verified that

every semigroup from Z; of period d satisfies (z%y)? ~ (2%y)? and (yz?)¢ =~ (yz®)%
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However if S is a semigroup from =; then the numbers [ and r are not both 1,
and either a%(0,¢,0) and a®(0,¢,0) or (0,e,0)a? and (0, e,0)a® must lie in different
subgroups of S. In this case one of the identities (z%y)? ~ (z%y)? and (yz2)¢ ~ (yz®)
must fail on S. Thus a minimal finite INFB semigroup in a variety generated by
a semigroup from =; must be a semigroup from Z;. It is unknown if the same is
true for the semigroups in Z;: possibly there are no minimal finite INFB semigroups
in Z; (in which case =; U {B3}} contains all minimal finite INFB semigroups). If
however we replace “minimal finite INFB semigroups” with “minimal finite INFB
divisors” a complete description is possible and indeed, this class contains many
small INFB semigroups of the second kind (here a semigroup S is a divisor of a
semigroup T if S is a homomorphic image of a subsemigroup of T). To prove this
we consider the cases of =, and =, separately.

If G is a centreless group and a and b are elements of G then we will say that a
and b are I'-separate in G if for every proper normal subgroup N, ¢N = bN modulo
['(G/N). In other words, a and b are distinct modulo I'(G) but in every quotient
of G, the cosets containing a and b are equivalent modulo the corresponding upper
hypercentre. In a semigroup from =; we have that (1,e,1)a(1,e,1) = (1,k,1) and
(1,e,1)a***(1,e,1) = (1,95 "'9ig7*,1). Since INFB occurs at the pair (a,(1,¢,1))

the group elements h and g;'g;g; ' must be distinct. This motivates the following

definition.

DEFINITION 3.3.12 Let =, be the subset of =1 consisting of all monoids of the
form =[G, g,91,h] so that (g19)2g;' and h are T-separate in G and equivalent
modulo ['(H) for every proper subgroup H of G containing h and gy 'gigy"' (for
1<e<p)

THEOREM 3.3.13 Every monoid in =, is a minimal INFB divisor for the class of
finite semigroups and every minimal INFB divisor for the class of finite semigroups

in = is contained in =;.
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Proof: Firstly if Z1[G, g, g1, h] is not contained in =, then either (¢19)~%¢; " and h are
not I'-separate in G or there is a subgroup H of G containing the entries of the sand-
wich matrix of M[G, 3,3, P] in which (g1g)~%¢7" and k are not equivalent modulo
['(H). In the first case, there is a normal subgroup N of G so that (g19)~%¢g7'N and
hN are not equivalent modulo I'(G/N). The quotient G/N induces a congruence
0 on =[G, g, 91, h] defined by

{(z,v): 2=y, or 2 = (i,5,), ¥ = (i,t,5), and sN = ¢N}.

Since (g19)~2g7'N and AN are not equivalent modulo ['(G/N), it must be the case
that Z,[G/N, gN, g;N, AN} is an INFB divisor of =[G, g, g1, A)-

In the second case since every entry in the sandwich matrix P of M(G,3,3, P)
is an element of H, there is a proper INFB subsemigroup of =[G, g, ¢1, 4] génerated
by H, 1 and a. So, again, =[G, g, g1, ] is not a minimal INFB divisor.

Now assume that S = =[G, g,9;,h] is an element of =,. Since B} ¢ V(S),
Theorem 3.2.11 implies that any congruence on S whose corresponding quotient T
is INFB must only collapse elements within H-classes. This corresponds to taking a
quotient of the group G in every H-class of M[G, 3,3, P]. But since (g;¢)"?g; " and
h are I'-separate and T is INFB, the normal subgroup of G must be trivial and so
T is isomorphic to S. For similar reasons, the definition of =; and Theorem 3.2.11
imply that there are no proper INFB subsemigroups of S. Therefore S is a minimal
INFB divisor. 0

We now investigate semigroups from =,.

DEFINITION 3.3.14 Let =, be the subset of =, consisting of all monoids of the
form =3[G, L, R, f, p| so that:

(i) the elements f(a'*?) and f(a) are I'-separate in G and equivalent modulo T'(H)
for every subgroup H of G containing f(a') forall 1 <i <p+1;

(i) the numbers r and [ (that is p/(order(R)) and p/(order(L))) are the smallest
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choices of 1 and j respectively with the property that for all k < p, f(a?*t*+) =
f(a®**)g and f(a®**+3) = hf(a®*F) for some elements g and h of G not dependent

onk.

THEOREM 3.3.15 Every monoid in = is a minimal INFB divisor for the class

of finite semigroups and every minimal INFB divisor in =, is contained in =,.

Proof: Let S = =Z,[G, L, R, f,p] be a semigroup from =, for which at least one of the
conditions of Definition 3.3.14 is not satisfied. If the first condition is not satisfied
then it follows by only trivial modifications of the argument used in the proof of
Theorem 3.3.13 that there is a proper INFB divisor of S. So now assume that the first
condition holds for S but the second condition does not. In particular let us assume
that there is a smallest number ' < r so that f(a?***t"') = f(a®>**)K for some
K € G and for every k < p. Now f(a***)R = f(a®**+r) = f(a?+5+((rImod(r))) glr/r]
and since (r)mod(r') < r’, by the minimality of v’ we must have that (r)mod(r’) =0
and KU'/™1 = R. Therefore r’ divides r and RK = KR. We now show that the

equivalence § given by the symmetric closure of

AV A{((2+k,Kg,5), (2 + ((k + ')mod(r)), R**g, 7)) :
0<k<r-1,0<;5<1+!, g€ G},
(where A denotes the diagonal relation on S) is a congruence so that S/6 is INFB.

Let (2414, Kg,7) and (24 ((i+r")mod(r)), R+l 5) be two 6 equivalent elements.
Firstly

a(2 + ((¢ + r")ymod(r)), R[(”r’”rlgaj)
(24 (1 + + rymod(r)), RO++g, 1) if i < —1
(2 + ((r')mod(r)), R/ Rg, j), if i=r -1,

which is equivalent modulo 6 to (2+1+1¢,Kg,j) = a(2+ ¢, Kg,7)if1 <r -1
and equivalent modulo 8 to (2, KRg,7) = (2,RKg,j) =a(2+1,Kg,j)ifi=r+ 1.
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That (2+1,Kg,j)a and (2 + ((z + r')mod(r)), R+ /7lg j)a are equivalent modulo
6 is trivial. Likewise if ky,k; < 1+ 1 and h € G then (2 + 1, Kg, j)(k1, k, k;) and
(2 + ((i + r)ymod(r)), RG+)/")g §)(ky, h, k;) are also trivially equivalent modulo 6.

Now

(K1, by k2)(2 + (i + r'ymod(r)), RE+)g j)
(kl , hf(akg+2+{(i+r')mod(r)})R[{i-l-r')fr]g’ J)

= (ki hf(a**+7)g, 5)
= (ki,hf(a®*"*) Ky, j)
= (kl:l ha IP"32)(2 + 3.’ I{Q,J)

as required. So therefore 8 is a congruence on S. By definition 8 does not collapse
elements within H-classes of S and so therefore f(a) and f(a'*?) are still not equiv-
alent modulo I'(G) and S is INFB. This means that elements of =; that are not
elements of =, are not minimal INFB divisors. We now show that elements of =
that are not minimal INFB divisors are not elements of =,.

Let 6 be a congruence on a semigroup S = =[G, L, R, f,p] from =, so that
T =S/ is INFB.

Case 1. (a',a’) € § where p+1>i,5>1and i # j.
Since the set {a?,a% ... ,a'*?} is a cyclic subgroup of S we must have (a**1~71, o*) €
6 for all k > 2. Then ((0, f(a*+=71),0), (0, f(a¥),0)) € 0 for all k > 2. Since for
some k > 2 the elements f(a**!"~71) and f(a*) are distinct in G (by Definition 3.3.5),
0 induces a nontrivial congruence on G and therefore, f(a) and f(a'*?) cannot be
-separate in G (since T is INFB). That is, S & =,.

Case 2. ((4,9,k), (5, h, k")) € 6 where (7, g, k) does not equal (', h,k").
If 7= 7" and k = k£’ but g # h then clearly the restriction of 8 to G is a nontrivial
congruence so f(a) and f(a'*?) again cannot be [-separate and S & =,. If j # 5/
(say, 7 < j') then both j and j are greater than 1 (see proof of Case 2 of Theorem
3.3.9). So assume 1 < j < 7' < r+ 1. Now because (4, g,k) = a’(0, ¢,0)(0, g, k) and
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(7', h, k") = a7’ (0, €,0)(0, h, k') we have that
a®*?~7a7(0,¢,0)(0,9,k)(0, Pog*,0) = a*(0, ¢,0)
and
a®**=3a7'(0,€,0)(0, b, k)(0, Prog™",0) = a7 (0, hg™*, 0).
By multiplying on the left by (0,¢,0)a* (0 < k <1+ p) we have that
((0, e,0)a2*™(0,¢,0), (0, e,0)a>**+7'=3(0, g™, 0)) € 8

and therefore
((0, £(a®**),0), (0, f(a***77)hg™",0)) € 6
for every k > 0. If f(a***) = f(a?+*+'=3)hg=! then condition (iii) implies S & =,
(since j' — j < r). If f(a®**) # f(a*t*+7'~7)hg~! then the congruence 8 induces
a nontrivial congruence on the group G. Since we have assumed S/6 is INFB the
group elements f(a) and f(a'??) are not equivalent modulo I'(G/6) and therefore
they are also not I-separate in S. So S is not a semigroup from =,.
Case 3. (a',(j,s,k)) € 6 for some 4,5,k < p+ L.

By Theorem 3.2.11, (a, (j, s, k)) & 6. Say (a*, (4, s,k)) € 6 with 1 > 2. Since we have
that {a? a®, ... ,a'*?} is a subgroup of S, (a*,(j,s,k)) € 8 for every 7/ > 2. By
the arguments used above in Case 2 of the proof of Theorem 3.3.9, we can assume
that j = k£ = 2. In accordance with Definition 3.3.5, let [ and r be such that p/!
and p/r are the orders of L and R respectively. Now at least one of [ and r (say
r) are greater than 1 and therefore without loss of generality we may assume that
a’(1,e,2) = (3,¢,2). But since (a?(2,9,2)) € 0 for some group element g € G,
we must have that ((2,9,2)(1,e,2),(3,¢,2)) € 6, that is ((2,gf(a®),2),(3,¢,2)) € 8
and therefore S ¢ =, by Case 2 above. ]

EXAMPLE 3.3.16 For any integer p > 1 and minimal centreless group divisor G
(say Ss for ezample) the semigroup =3[G, e, e, f,p| is a minimal INFB divisor if

f(a*) = e for every i > 1 except when i =1+ p.
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It would have been convenient in Definition 3.3.12 if we had defined elements
a,b € G to be I-separate when in every quotient H/N of a subgroup H of G contain-
ing a and b (that is, in every relevant divisor of G), aN and bN are equivalent modulo
['(H/N). However this choice would make Definition 3.3.14 too complicated since
here one needs to account for all the values of f(a') and not just f(a)and f(a*?).
It is conceivable that there is a group G and elements f(a), f(a?),..., f(a'*?)
satisfying the conditions of Definition 3.3.5 such that in every subgroup H of G
containing f(a') for all 1 < 1+ p, f(a) and f(a'*?) are equivalent modulo I'(H)
but also that there is a subgroup H' containing f(a) and f(a!*?) (but not contain-
ing at least one element f(a')) in which f(a) and f(a'*?) are not equivalent modulo
['(H'). Under the proposed alternative definition of being I'-separate, the semigroup
S = =,[G, e, ¢, f, p] might be a minimal INFB divisor even though f(a) and f(a!*?)
were not [-separate.

Combining Lemma 3.1.1, and Theorems 3.3.13 and 3.3.15 we have a description
of all minimal finite INFB divisors.

COROLLARY 3.3.17 The class =; U =, U {B3, A1} is, up to isomorphism, the

class of minimal finite INFB divisors.

Theorem 3.1.2 shows that even though the semigroups from =; and =, can each
be embedded in finite regular semigroups, these semigroups necessarily generate va-
rieties containing B}. Another embedding theorem is that every (finite) semigroup
is embeddable in an idempotent generated (finite) semigroup (see [29] for two al-
ternative constructions). As a final observation we show that there are finite INFB
idempotent generated semigroups that do not generate varieties containing B3. We
use a construction due to T. E. Hall (see [29]). Take an arbitrary semigroup S
from =, U =, with period d and therefore satisfying the identity (zyz’y)? ~ (zy)<.
Construct a Rees matrix semigroup M(S, |S|, |S|, P] over S with sandwich matrix
satisfying P,; = P,y = 1 and S = {F,; : 1,7 # 1}. Then M[S,|S|,|S|, P] is

idempotent generated.
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PROPOSITION 3.3.18 The semigroup M = MS, |S|, |S|, P] as constructed above
is an INFB idempotent generated finite semigroup not generating a variety contain-

ing B}.

Proof: M is obviously finite and also INFB since S is embedded in M (for example
s+ (1,s,1) is an embedding) and S is INFB. We show that M & (zyz?y)? = (zy)¢,
where d is the period of S. Since both sides of the identity (zyz?y)? ~ (zy)? start
and finish with the same letter, any value these words assume in M always lies
within the same set M;; = {(i,s,5) : s € S}. Indeed (zyz?y)® lies in the same
subgroup of M;; as (zy)?. Now M has period d and index 2 since S has this period
and index respectively. Therefore (zyz?y)? and (zy)? are both idempotents (note
that d > 2 since, as noted in the proof of Theorem 3.3.10, a group of period 2 is
abelian) and therefore equal. Since B} does not satisfy (zyz?y)? ~ (zy)? (see proof

of Lemma 3.3.3), B3 & V(M). O



Chapter 4

Finitely generated varieties with

uncountably many subvarieties.

By a well known result of Oates and Powell [59], every finite group generates a
variety V with the property that V and every subvariety of V can be given by
finitely many identities. Such a variety is called hereditarily finitely based. Since
there are only countably many finite sets of identities, a hereditarily finitely based
variety has at most countably many subvarieties (in fact a variety generated by a
finite group has only finitely many subvarieties [59]). This situation does not extend
to semigroups in general however. In [92] it is shown that the variety generated
by A} has uncountably many subvarieties. Since any variety containing Al also
has uncountably many subvarieties, this example immediately provides a number of
finite semigroups, each generating uncountably many subvarieties. However since
A} is INFB so must be every finite semigroup whose variety contains it. This leaves
open the question as to the existence of a FB finite semigroup generating a variety
with uncountably many subvarieties.

The important semigroup B} generates a proper subvariety of V(A}) so the
result of [92] also leaves open the possibility that V(B}) generates a variety with

only countably many subvarieties. Likewise the small INFB semigroups found in

131
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Chapter 3 could possibly generate such varieties. Note that there does exists a finite
semigroup which is not finitely based and generates a variety with only finitely many
subvarieties ([75]).

A subsemigroup or homomorphic image of a semigroup S generates a subvariety
of V(S). In [75] however it is shown that the class of semigroups generating a variety
with only finitely many subvarieties is not closed under direct products. Likewise it
is natural to ask whether the class of (finite) semigroups generating varieties with
countably many subvarieties is closed under direct products.

In Section 4.1 we will use a result proved in [78] to establish a theorem which in
turn provides a solution to all of the above questions. It will follow that there exist
finite FB semigroups generating varieties with uncountably many subvarieties, that
every finite INFB semigroup generates a variety with uncountably many subvarieties
and that there are two finite semigroups generating a varieties with finitely many and
countably many subvarieties respectively, but whose direct product has uncountably
many subvarieties. These examples also show that for any HFB (finite) semigroup
S; there are HFB finite semigroups S, and S3 such that at least one of S; x S, and
S1 % Sy X Sz is not HFB (note the distinction between the arbitrary HFB semigroup
Sz and the symmetric group S3 of the previous chapter). For some large classes of
semigroups, we will also obtain a complete description of those members generating
a variety with uncountably many subvarieties.

In Section 4.2 further examples of varieties with uncountably many subvarieties
are found. In particular it is shown that the semigroup B, x S({a}) generates a
variety with uncountably many subvarieties.

A universal algebra S with presentation (A; R) (A is a finite alphabet of gen-
erators and R is a finite set of relations between words in the alphabet A) within
a variety V is said to have a decidable word problem (relative to V) if there exists
an algorithm which determines when two words w; and w, in the alphabet A are

equivalent in S. The variety V has a decidable word problem if each finitely pre-
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sented algebra in V has a decidable word problem relative to V. A variety V has a
decidable uniform word problem if there exists a single algorithm which solves the
word problem (relative to V) in all the finitely presented algebras from V. Obviously
the decidability of the uniform word problem in V implies the decidability of the
word problem in V. There is an interesting connection between varieties with un-
countably many subvarieties and the solvability of the uniform word problem. This
connection is examined in Section 4.3 where we use it to construct varieties which

have decidable word problem but undecidable uniform word problem.

4.1 A theorem concerning varieties with uncount-

ably many subvarieties

In this section we establish a result concerning monoids generating sen;igroup vari-
eties whose lattice of subvarieties is uncountable. A number of corollaries follow. In
fact the lattice of subvarieties of these varieties contain a continuum of subvarieties
in the sense that they contain an uncountable chain with the same ordering as the
real numbers. This is so because the lattices involved contain a copy of the lattice
of all subsets of the natural numbers. We use an argument from [61] (page 82). IfQ
is the set of all rational numbers then for any real number r and with A, defined as
the set {g €Q: ¢ < r}, it is easily seen that A, C A,, if and only if r; < ry. Thus
there is an uncountable chain in the lattice of subsets of  and therefore also in the
lattice of subsets of the natural numbers. This argument applies to every example
of a variety with uncountably many subvarieties in this Chapter.

For each n > 2 let L, be the word

Y1T1T2X3T41Y2T5Y2Y3T6Y3 -+ - YUn—-1Tn4+2Yn-1YnTn+3Tn+4Tn+5Tnt6ln.

The following result is proved in [78].
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LEMMA 4.1.1 [78] Assume that L, ~ w is a balanced identity, that w can be
deleted to yjz;y; if and only if L, can be deleted to y;z;y;, and that 1 <i< j <n+6
implies w deletes to z;z;. If a substitution 0 exists so that (L) is a subword of w

then m = n.
We now use this lemma to show the following.

THEOREM 4.1.2 Let ¥ be a set of identities closed under deletion. If zyz is an

isoterm for ¥ then the variety defined by ¥ has uncountably many subvarieties.

Proof: A semigroup S with a zero element in the signature {-, 0} satisfies an identity
u =~ 0 exactly when it satisfies the semigroup identities uz ~ yu =~ u (z and y are
letters not occurring in the word u). For this reason it will be convenient to consider
semigroups with zero element to be in the signature {-,0} and satisfying the identities
z0 = 0z =~ 0. This is not essential, but simplifies the arguments to be used. Let V
be a variety defined by a set, X, of identities closed under deletion and for which
zyz is an isoterm. If M is a subset of the natural numbers, IN, then we will take
L m to be the set of identities {L, = 0 : n € M}. We show that for every subset
Mof N, XUZyF L, = 0ifand only if n € M. That is for each pair of subsets
P,Q of IN, the sets of identities ¥ U Xp and ¥ U £y define the same subvariety of
V if and only if P = @. Since there are uncountably many subsets of the natural
numbers, there are uncountably many subvarieties of V.

Fix some set M C IN and assume that ¥ U Xy F L,, = 0 for some m € IN. By
the definition of a derivation of an identity there are words u,, ... u, with u; = L,,,
U, = 0 and for each ¢ < n, u;3; is obtained from u; by a single application of an
identity from £ U Zps. The set £ is closed under deletion and zyz is an isoterm for
¥,s0 ¥ L, =~ 0. Therefore we may find a smallest number k such that uz4; is
obtained from u; by an application of an identity from £;;. Now since zyz is an
isoterm for ¥ the words z and zy are also isoterms for £. So a letter z; is linear in

ug if and only if it is linear in L,,. Also every 2-occurring letter y; in L, occurs on
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either side of a linear letter z;, that is, L, deletes to y;z;y;. Since zyz is an isoterm,
this happens exactly when u, deletes to y;z;y; and therefore y; is 2-occurring in uy
also. So L,, & uy satisfies the first two conditions of Lemma 4.1.1. Finally zy is an
isoterm for ¥ so uy deletes to z;z; if 1 <7 < j < n+6 and the third condition also
holds. Therefore we may apply Lemma 4.1.1 to the identity L., ~ ux.

Now uj4; is obtained from ux by an application of an identity of the form L; for
some ¢ € M. So by Lemma 4.1.1, « must equal m and therefore m € M as required.
O

We note also that if zz is an isoterm for a monoid S and S satisfies a nontrivial
identity of the form zyz & w then w must be a nontrivial permutation of the letters
in zyz. So w is one of the words zzy or yzz. However it is shown in [70] that
either of the identities zyr =~ zzy and zyz =~ yzz define hereditarily finitely based
varieties and therefore the variety generated by S can have only countably many
subvarieties. Since zz is an isoterm for a monoid if and only if it has index three or

more we have proved the following.

COROLLARY 4.1.3 A monoid of index three or more generates a variety with
uncountably many subvarieties if and only if it does not satisfy ryz =~ zzy or Ty ~

yzz or equivalently if and only if it is not hereditarily finitely based.

This corollary can also be extracted from the proof of Lemma 7 and Proposition
4 of [78]. These two results of [78] explicitly concern only nonperiodic monoids
(monoids which satisfy no identity of the form z™ & 2™*™) and make extensive use
the fact (established elsewhere in [78]) that a nonperiodic hereditarily finitely based
semigroup necessarily satisfies the implication e? = e & f? = f — ef = efe or its
dual. While this implication is not always available in the periodic case (for example
the variety A of normal bands does not satisfy this implication and yet by results of
Perkins [63] there exist hereditarily finitely based periodic semigroups of arbitrarily
large index generating varieties containing A'), it has been pointed out to the author

by M. Volkov (private communication) that if the condition of being nonperiodic is
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replaced by being a monoid of index at least three then this implication is no longer
necessary and the corresponding arguments in [78] continue to hold.

The remainder of this section will be concerned with examining the many con-
sequences of Theorem 4.1.2.

The first consequence we investigate is the following.

COROLLARY 4.1.4 If S is a finite inherently nonfinitely based semigroup then

V(S) has uncountably many subvarieties.

Proof: We use Theorem 1.1.1: S is a finite INFB semigroup if and only if for every
natural number n, Z, is an isoterm for the identities of S, where Z; = z; and
Zn = Zpn-1TnZn-1. Now Theorem 1.1.2 implies that S has an INFB subsemigroup,
T, with identity. Since Z, = z,z2z, is an isoterm for the identities of T, Theorem
4.1.2 applies and therefore V(T) (and consequently V(S)) has uncountably many
subvarieties. o

Finite bases for all monoids of less than 6 elements are established in [14], [15]
and [90]. By examining bases of identities described in these papers, it is evident
that Theorem 4.1.2 does not apply to any of them: all monoids of order five or
less satisfy a nontrivial identity of the form zyz ~ w(z,y) where w(z,y) is a word
in the alphabet {z,y}. A seven element monoid with a finite basis for identities
for which Theorem 4.1.2 applies can however be constructed as follows. Recall the
definition of the monoid S(W) for a language W (see page 10). It was seen in
that chapter that if W is a set of words then S(W) is a monoid for which every
word in W is an isoterm. In particular zyz is an isoterm for the monoid S({aba})
and therefore by Theorem 4.1.2, the variety generated by S({aba}) has uncountably
many subvarieties. By Lemma 2.2.8 a finite basis for the identities of S({aba}) is

the closure under deleting letters of the following set of identities

{zyzzz =~ zzyz, TYYy = yyz, TUYVTY N TUYVYT,

TUYTVY R TUTYVY, TYUTVY = YyTuTvy}
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We have shown the following.

EXAMPLE 4.1.5 The monoid S({aba}) has 7 elements and generates a FB variety

. with uncountably many subvarieties.

Note that B} and A} each have only 6 elements and generate varieties with
uncountably many subvarieties (by Corollary 4.1.4 above or, in the case of A3, by
the result in [92]) however they are also NFB.

We now show that the monoid in Example 4.1.5 is quite closely connected to
Theorem 4.1.2. Let S be a semigroup such that the set /d(S) of all identities
satisfied by S satisfy the conditions of Theorem 4.1.2. Since zyz is an isoterm for
S, if an identity u = v € Id(S) can be deleted to an identity u’ & v’ where u’ is of
the form aba (or a subword of this), then u’ = v’. Therefore S({aba}) satisfies every
identity in Id(S) and so Theorem 4.1.2 applies to a set & of identities only when
S({aba}) is contained in the variety defined by £. We have proved the following

theorem.

THEOREM 4.1.6 A set of identities ¥ contains a subset satisfying the conditions
of Theorem 4.1.2 if and only if S({aba}) is contained in the variety generated by T.

In this case the variety defined by L has uncountably many subvarieties.

NOTE 4.1.7 The semigroup obtained from S({aba}) by removing the identity ele-
ment satisfies T12923T4 = Y1Y2y3ys and consequently has only finitely many subva-

rieties.

If a word w contains a subword of the form zyz then S({w}) will generate
a variety containing S({aba}) and therefore have uncountably many subvarieties.
This means that monoids of the form S(W') which generate such varieties are likely

to be very common. Indeed we have the following theorem.

THEOREM 4.1.8 Let W be a non-empty set of words. The following are equiva-

-~ lent:
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(i) the variety V(S(W)) has only countably many subvarieties;

(ii) the variety V(S(W)) has infinitely many but not uncountably many subvarieties;
(iii)) S(W) | zyz = yzz or S(W) | zyz =~ zzy;

(iv) either every word in W is, for some n > 1 and m > 1, of one of the forms
@10z . ..0n and aya;y .. .an_1a] or every word in W is of one of the forms aja;...a,
and al'as . ..an_1a, ezclusively (the a; are distinct letters);

(v) S(W) generates a hereditarily finitely based variety;
(vi) S({aba}) & V(S(W)).

Proof: (i)« (iii). Since both zyz =~ yzz and zyz = zzy define hereditarily finitely
based varieties, in order to prove the equivalence of the conditions (i) and (iii) we
need to show that if S(W) has only countably many subvarieties then it satisfies
one of these identities. By Corollary 4.1.3 we need only consider the case when zz
is not an isoterm for S(W). If zz is not an isoterm for S(W) then W contains no
subwords of the form uu (where u is a word). If it does not contain a subword of the
form uwu either (since zz is not an isoterm for S(W), v must be a word distinct from
u), then it is a collection of words of the form a,a;...a, (where the a; are distinct
letters) and is easily seen to satisfy zyz ~ zzy. If W does contain a subword of the
form uvu then zyz is an isoterm for S(W) and so Theorem 4.1.2 implies S(W) does
not have countably many subvarieties.

(iii)e(v). Since zyz ~ yrz and zyr =~ zzy define hereditarily finitely based va-
rieties we need only show that condition (v) implies condition (iii). Thisfollows since
a hereditarily finitely based variety necessarily satisfies condition (i) and condition
(1) implies condition (iii).

(i) (iv). That condition (iv) implies condition (iii) is easily verified. Now
assume that S(W) |= zyz = zzy or zyz = yzz. So W cannot have a subword
of the form wvu where uvu # wuv or vuu, since then zyz would be an isoterm.
Similarly W cannot contain two subwords, one of the form uuv and the other of the

form v'u'u’ (where uuv # vuu or uvu and v'u'v’ # u'v'y’ or u'u'v’) since then both
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zzy and yzz are isoterms and S(W) would not satisfy condition (iii). Therefore W
must satisfy ekactly one of the two situations described in (iv).

(i) (vi). From the proof of the equivalence of conditions (i) and (iii), the monoid
S(W) generates a variety with uncountably many subvarieties if and only if Theorem
4.1.2 applies to the identities of S(W). The equivalence of conditions (i) and (vi)
now follows from Theorem 4.1.6.

To complete the proof it remains to show that S(W) at least an infinity of
subvarieties. Since W is non-empty, V(S(W)) is a supervariety of V(S({a})) where
a is a single letter. It is trivial to establish that this semigroup variety is given by

the identities {zy &~ yz,zz =~ zzz}. For each n the (n-nilpotent) variety given by
{2122 2. R Y1y2. .. Yn, 2T = TTT,TY N YT }

defines a distinct subvariety of V(S({a})). The theorem is proved. O
Examples presented in [75] show that the class of semigroups generating varieties
with only finitely many subvarieties is not closed under the taking of direct products

(or equivalently joins of varieties). Likewise we have the following result:

COROLLARY 4.1.9 The class of finite semigroups each generating a variety with
countably many subvarieties is not closed under direct products. Therefore the class
of varieties with countably many subvarieties does not form a sublattice of the class

of all varieties.

Proof: Theorem 4.1.8 shows that S({zyy}) and S({zzy}) generate varieties with
countably many subvarieties. However S({zyy}) x S({zzy}) does not satisfy either
of the identities zzy = zyz or yzz =~ zyz and the word zz is an isoterm for
this monoid. So by Theorem 4.1.2, S({zyy}) x S({zzy}) generates a variety with
uncountably many subvarieties. o

In fact the examples used in this corollary show that the join of two hereditarily
finitely based varieties generated by finite semigroups can have uncountably many

subvarieties. A more striking example is obtained by considering any finite group not
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satisfying one of the identities zzy ~ zyz or yzz =~ zyz. As mentioned above, the
semigroup variety generated by a finite group G has only finitely many subvarieties.
If G does not satisfy zzy ~ zyz, say, then the direct product G x 5({baa}) is a
monoid of index three not satisfying either of the identities zzy = zyz or yzz =
zyz. By Theorem 4.1.2 G x S({baa}) generates a variety with uncountably many
subvarieties (clearly if G did not satisfy either of the described identities then instead
of S({baa}) one may take the semigroup S({aa})). The smallest group with this
property is the symmetric group Ss with six elements.

In terms of subvarieties however, a quite surprisingly small example is possible.

Let B be the 27 element group with presentation
(a,b,c:a®> =0 =1,cb = bc,ac = ca,ab = bac)

([8], page 145). This group satisfies neither of the identities zyz = zzy or zyz =~ yzz
since aba = baca = baac, aab = abac = bacac = baacc, and baa represent different
elements of B. It is also easy to establish that B can be generated by just the two
elements a, b, that it is of exponent 3 and that it is nilpotent of class 2. Indeed it is
the only nonabelian group of order dividing 27 that has exponent 3 (see [8]) and is in
fact the free Burnside group of exponent 3 on two generators (see [23] for example).
Thus every two generated group in the variety of B (considered either as a semigroup
variety or as a group variety) has order dividing 27 and therefore is either isomorphic
to B or is abelian. However, since the identity zy = yz involves just two letters, any
noncommutative semigroup variety must contain a two generated noncommutative
semigroup. Therefore there are no noncommutative proper subvarieties of V(B).
Since the only commutative variety of exponent 3 is that generated by the additive
group of integers modulo 3, the lattice of subvarieties of V(B) is a three element
chain (note that every group variety with fewer than three subvarieties is abelian
since the atoms in the lattice of semigroup varieties are generated either by a two
element semigroup or a cyclic group of prime order; see {18]). We have shown the

following.
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EXAMPLE 4.1.10 The lattice of subvarieties of the variety V(B) is the 3 element
chain and the lattice of subvarieties of V(S({a})) is countable but the lattice of
subvarieties of V(B x S({a})) is uncountable.

The group B also plays an important role in the examples constructed in [75].

A small, aperiodic (that is, with only trivial subgroups) example of a pair of
semigroups generating hereditarily finitely based varieties whose join has uncount-
ably many subvarieties is also possible. Let L! be the left zero semigroup with

adjoined identity element.

EXAMPLE 4.1.11 The lattice of subvarieties of the variety V(L) has five ele-
ments and the lattice of subvarieties of V(S({aab}) is countable but the lattice of
subvarieties of V(L' x S({aab})) is uncountable.

We now prove this claim. The lattice of band varieties has been completely described
in [6], [19] and [22], and it follows that this semigroup generates a variety with only
three proper, nontrivial subvarieties (the variety of semilattices, the variety of left
zero semigroups and the variety of left normal bands). Since L! contains a left
zero semigroup it does not satisfy the identity zyz ~ yzz. So the direct product
S({aab}) x L! is a monoid of index three not satisfying either of the identities
zzy ~ zyr or yrr ~ zyz and therefore by Theorem 4.1.2 it generates a variety with
uncountably many subvarieties. As seen above, the monoid S({aab}) generates a
hereditarily finitely based variety.

These examples suggest the following question.

QUESTION 4.1.12 Do there exist two (finite) semigroups each generating a vari-
ety with only finitely many subvarieties whose direct product has uncountably many

subvarieties?

Note that the direct product of the semigroup L' above with any finite band gener-

ates a variety with still only finitely many subvarieties (in fact from results of [71],



CHAPTER 4. VARIETIES WITH MANY SUBVARIETIES. 142

it follows that the direct product of L' with any finite group also generates such a
variety; see Corollary 3.1.5 below).

Summarising and combining the ideas above we obtain the following theorem.

THEOREM 4.1.13 (i) For any semigroup S; (finite or otherwise) there are finite
semigroups Sy and S3 generating hereditarily finitely based varieties so that S, x
S2 x Sz generates a variety with uncountably many subvarieties.

(it) If M is a monoid of index more than two then there is a finite group G generating
a hereditarily finitely based variety with only 3 subvarieties so that M x G generates
a variety with uncountably many subvarieties.

(111) If M is a monoid of indez less than or equal to two then either M satisfies both
zyz = zzy and zyz = yzz or there is a finite semigroup S generating o hereditarily
finitely based variety so that M x S generates a variety with uncountably many

subvarieties.

Proof: (i) For S, and S; one can take, for example, the semigroups L? and S({aab})
or the semigroups B and S({aa}).

(i1) The monoid S({aa}) is contained in the variety generated by M and therefore
the claim follows by taking G to be the group B above. To obtain a aperiodic
example one may replace the group B in this argument by the direct product of L
with its right dual R? and obtain a similar result. The semigroup L? x R* generates
a band variety with a lattice of subvarieties consisting of 13 elements.

(iii) If M does not satisfy one of the described identities then one of the semi-
groups M x S({aab}) or M x S({abb}) generates a variety whose identities are
closed under deletion, have index three and do not contain either of the identities
zyzr ~ rzy and zyz = yrz. By the last part of Theorem 4.1.2, one of these semi-
groups generates a variety with uncountably many subvarieties. O

In connection with part (iii) of this theorem we note that a monoid of index one

satisfying both zyz ~ zzy and zyz ~ yzz is a semilattice of groups (a Clifford
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semigroup), each satisfying these identities. This is because by a well known theo-
rem of A. H. Clifford (see [10] or [29]) a semigroup of index one is a semilattice of
completely simple semigroups. A completely simple semigroup that is not merely
a group cannot not satisfy both the identities zyz ~ zzy and zyz = yzz since it
contains a divisor isomorphic to either a left or a right zero semigroup. Therefore if
"M is a monoid of index one satisfying both of these identities it is a semilattice of
groups; obviously every subgroup of M also satisfies these identities.
A further class for which we can give a complet.e description of the finite monoids
generating varieties with uncountably many subvarieties is the class of orthodox
semigroups. The next result follows almost immediately from Corollary 4.1.4, Corol-

lary 3.1.5 of Chapter 3 and existing results.

COROLLARY 4.1.14 Let S be a finite orthodox monoid with period p. The fol-
lowing are equivalent

(i) S has uncountably many subvarieties,

(i1) S has infinitely many subvarieties,

(iii) S is not hereditarily finitely based,

(iv) S is not finitely based,

(v) S is INFB,

(vi) B3 € V(S),

(vii) S({a}) € V(S),

(viii) S is not a union of groups.

(iz) S ¥ zyz = (zy)Pz.

Proof: One of the main results of [71] is that a finite completely regular orthodox
semigroup generates an HFB variety with only finitely many subvarieties. This com-
bined with Corollary 3.1.5 and Corollary 4.1.4 implies the equivalence of conditions
(i) to (v) above. The equivalence of conditions (iv) to (ix) follows from Corollary

3.1.5 and Theorem 3.1.2. )
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This result shows that orthodox monoids always satisfy quite extreme semigroup
properties and emphasises the weak connection between the number of subvarieties

of a variety and the presence of a finite basis of identities.

NOTE 4.1.15 IfS is a finite orthodoz semigroup (not necessarily a monoid) which

_is not a union of groups then the variety V(S) has infinitely many subvarieties.

This is because S contains a non group element a which, since S is regular, lies in an
ideal whose principal factor is an orthodox completel‘y 0-simple semigroup which is
not a union of groups. Consider the two semigroups Bz and A,. If C is a completely
0-simple semigroup that is not a union of groups then there is a subsemigroup of
a quotient of C that is isomorphic to either B, or A,. Since B; € V(A3z) it must
be the case that B, € V(S) (in fact A, contains idempotents whose product is not
an idempotent and therefore cannot be contained in the variety of S anyway). A
finite basis for the identities of B; has been found by A. N. Trahtman (see page 46
of [82]): it is the set

3

{22 = 2°, 2%y’ = y*2*, zyz ~ zyayz}.

Since every identity in this set contains a letter that occurs at least twice on both
sides, they are never applicable to any identity of the form z,z,...2, ~ y1y2...Yn.
Thus by adjoining an identity of this form to the above set of identities, a proper
subvariety of V(B,) is obtained. Since there are infinitely many such identities and
each describes a distinct variety it follows that the variety V(Bz) contains infinitely
many subvarieties. Thus a finite orthodox semigroup containing a non group element
always generates a variety with infinitely many subvarieties.

We finish this section with two final applications of Theorem 4.1.2. Let S, be the
semigroup variety generated by all semigroups of order n and M,, be the semigroup

variety generated by all monoids of order n. Naturally, M, C S,,.

COROLLARY 4.1.16 M,,, and consequently S,, has uncountably many subvari-

eties forn > 3. Forn <3, M,, and S, have at most countably many subvarieties.
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Proof: If n > 4, M, contains the following: the three element monoid L! (the two el-
ement left zero semigroup with adjoined identity element); its right zero counterpart
R1; and the four element monoid S({aa}). Therefore M,, contains the direct product
of these. Since zz is an isoterm for S({aa}), L £ zyz = yzz, and R ¢ zyz ~ zzy,

Theorem 4.1.2 now applies. Up to isomorphism there are only two, two element
" monoids (the two element group and the two element semilattice) and these are
both commutative. There are five, two element semigroups (the two previously
mentioned along with the two element null semigroup and the two element left and
right zero semigroups) and it is trivial to verify that these all satisfy the identities
zyzw =~ zzyw and z? m z*. Therefore both M,, and S,, generate hereditarily finitely

based varieties and consequently have countably many subvarieties (see [63]). O

The following question remains unanswered
QUESTION 4.1.17 Do M3 and S; have uncountably many subvarieties?

It can be checked that zyz & zyz” is an identity for both of these varieties. For a

list of all semigroups of order three the reader is referred to [65].

4.2 Further varieties with uncountably many sub-

varieties

The proof of Corollary 4.1.4 depends on the fact that every INFB finite semigroup
‘contains an INFB submonoid. If a locally finite INFB semigroup is infinite then this
need not be the case. A particularly important example, Z.,, is that obtained by
taking the Rees quotient of a free semigroup with respect to the ideal consisting of
all words that are not subwords of a Zimin word. It is shown in [74] that a locally
finite semigroup whose variety V contains only WFB groups is INFB if and only if
Z 1s contained in V. Thus for varieties with only WFB groups, Z, is the unique

minimum INFB variety. It follows from results in [2], [97] and [74] however that Z,
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satisfies the identity zy? =~ zy? and so zyz is not an isoterm for any monoid in the
variety V(Zw). Therefore Theorem 4.1.2 cannot be applied to the semigroup Z.
We now prove the following result which establishes that the variety V(Zo) also has

uncountably many subvarieties.

- THEOREM 4.2.1 Let ¥ be a set of identities. If for every n the Zimin word Z, is

an isoterm for ¥ then the variety defined by £ has uncountably many subvarieties.

Proof: The proof uses a similar method to that of Theorem 4.1.2. We construct
some words L, so that the identities of Z,, combined with some set {Ln = 0:
m € M C IN} cannot be applied to derive any identity L, ~ 0 if n ¢ M. In some
sense the proof in this case is simpler than that for Theorem 4.1.2 since the words
L, will turn out to be isoterms for Z., which is not necessarily the case for the
corresponding words in Theorem 4.1.2.

Before continuing the proof we introduce a definition and list some properties of

Zimin words.

DEFINITION 4.2.2 (i) If w = uv is a word then [u|w is the word v (that is, we
have removed the initial segment u) and w|v] is the word u (that is, we have removed
the final segment v);

(i1) (following the notation of [13]) If u and v = z,z,. .., are words (the z;’s not

necessarily distinct) then
[u,v])f = v*z1uzou. .. uz,u’; a,b€ {0,1}.
(here, if w is @ word then we take w°® to be the empty word).

Note that there is only a superficial similarity between the words denoted by [u, z|{
and by |u,t] since the former denotes a word in which the letter z occurs |u| times
whereas the latter denotes a word in which a distinct linear letter ¢; is placed between
every successive pair of letters in u.

A few simple facts concerning Zimin words may help the reader (for convenience

we will take Zg to be the empty word).



CHAPTER 4. VARIETIES WITH MANY SUBVARIETIES. 147

NOTE 4.2.3 (i) Z) = z1, Z2 = 712971, Z3 = T1T2T1T3T 12221, etc.

(i) Z, is 2" — 1 letters long.

(iii) If 0 is the substitution defined by 0(z;) = ZTm4i (M, © 2 1) then for n > m,
Zon = [0(Zn-m), Zm]}

() Zan = [Z0|Z2]2Z2|Z4[Z4| Zs - - - [Z(2n~2)| Z2n-

(v) Every subword of a Zimin word contains a variable that is 1-occurring.

(vi) For every n, there are no subwords of Z, of the form uu (u is a word).

For more information on Zimin words and proofs of some of these facts the reader
should consult [2], [97], or [73].
We now define the words which we will be considering. For each n € N, let L,

be the word denoted by
21818221 21 Y1 T1T2Y2T2 - - . TnYnTnZol3le2a.

Note that these words are very similar to the words used in Theorem 4.1.2. 1t is
shown in [69] that these words are independent in the sense that for any distinct
natural numbers n and m there is no substitution @ so that L,, contains 6(L,) as a
subword. Thus if the word L; is an isoterm for Z. for all numbers : > 0 then for
any two distinct subsets P and @ of the natural numbers, the sets [d(Zq) U {L, =~
0:n € P} and [d(Ze)U {L, =~ 0:n € Q} define distinct varieties. As in Theorem
4.1.2 this shows that V(Z) has uncountably many subvarieties.

In the following table we define a substitution 8 of subwords of Zimin words for
the letters in L, so that §(L,) is itself a subword of the Zimin word Zy,4+4. We will
assume that for any letter z not in the content ¢(L,) of L,, the assignment § assigns

z some letter that is never a subword of any Zimin word.
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z 6(z)
T; Toi-122i-2
Yi T2i 222
21 Tm+1
29 Tm+3
tl Zm |$1]
to T1Tm422m
i3 Zn T 4121222123
4 [9(13)|2m+237m+4zm+2
= [ZmTm4121220123| Zmy2TmgaZm2

Now

_ — 0 _
H(x,-ygxg) = T9i-122i-2%2iL2i—2T2i-1202i-2 = [3325—1»1‘253725-1; 225-2]1 = [ZZ£—ZIZZ£-

Let A, denote the subword of L, given by z1y121Z2y222 ... ToYnTr. So we have

0(An) =6(z1y121)0(z2y22 . . . TnYnTy)
=([20|Z20(z2y272 - - . TnYnTn)
=(20|Z2[22|1Z460(z3y323 . . - TuYnZn)
=...=[20|2:|22|24 . . . [Z3n-2|Z2n
=Zon, by Lemma 4.2.3.

Also

o(tltg) = Zm$m+QZm, and 9(t3t4) = Zm+2Im+4Zm+2.

So finally we have that

8(z1) B(t1t2) 6(z1) 6(An) 6(z2) B(taty)

0(z2)

e e e e N e e e N, e ~——
0(Ln) =(2m+1)(Zmzm+2Zm)(Tms1)(Zn)(@m43) (Zmy2Tmta Zm+2)(Tm+3)

and this is a subword of the Zimin word Z,, 4.

148
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Let ¢ be a substitution and p & ¢ be an identity such that ¢(p) is a subword of
L, and p =~ g does not imply any nontrivial identity of the form Z, ~ W (clearly
any identity of Z., satisfies this second property). Whenever ¢(p) is a subword of
Zy, we must have ¢(p) = ¢(q). Let L, = up(p)v and L], = ugp(q)v. We have that
(0 0 ¢)(p) is a subword of Zm44 because 8(ud(p)v) = 0(u)(8 o ¢)(p)8(v). Therefore
(00 ¢)(p) = (0 0 ¢)(q) and so 8(ud(q)v) = 6(ug(p)v). The proof will therefore be
complete if we can show that §(u¢(q)v) = 6(ué(p)v) implies that ug(p)v = ug(q)v
since this in turn shows that ¢(p) = ¢(q).

Now zm44 occurs just once in §(L,) so the same is true in #(L,) (since these are
identical). The only letter assigned a word containing z,,+4 by 6 is 4. Furthermore,
to the right of 8(t4) in 8(L,) (and therefore in (L)) there is just one letter, the
letter z,43. So in L7, to the right of {4 we must have just one letter and that letter
must be assigned the letter z,,+3 by 8. The only letter assigned z,,4+3 by € is z; and
therefore 4z, is a final segment of L.

Now to the left of 6(t4) in 6(L,) and §(L,) we have the letter z3. Thus the letter
to the left of ¢4 in L] must be assigned a word ending in z3 and the only letter for
which this is true is the letter t3. So {31422 is a final segment of L. To the left of
f(t3) in 6(L,) and 6(L]) we have the letter z,,43. Thus the letter to the left of ¢3
in L] must be assigned a word ending in z,,+3 and the only letter for which this is
true is the letter z;. So 2;t3t42; is a final segment of L.

To the left of 6(zatst422) in 8(L,), the letter z,,42 occurs just once. There is only
one letter assigned by # a word containing z,,+2 whose length is less than or equal
to 6(L,)|6(z2tstaz2)] and that is 5. Similar arguments to the above now show that
an initial segment of §(L, ) is z1t;¢,2; so therefore only the central portion, 6(A,),
remains to be examined.

Now the first letter of 6(A,) is z; since §(A,) = Z,,. So the letter to the right
of the second occurrence of z, in T, must be assigned by § a word beginning in z;.

There are five possibilities: z,, t;, t2, t3 and t4 however all but the first two of these
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are assigned words longer than the whole of §(A,) and so can be eliminated. Now
0(t3) = Zn|z1] = 0(As)|z,] which leaves only the letter z, remaining in 0(A,). The
only letter assigned z; by 8 is the letter z, itself. So then L/, = z;t,t,2,t; T, 2ot 5t425.
This is certainly not possible since we can find a new substitution ¢ defined by
0'(z) = 0(z) if z € {z1,11,t2,21, 22, 3,84} = ¢(L},) and t otherwise (for some letter
t not of the form z;). Then ¢'(L}) = (L) which is a subword of Z,,14 but '(L,)
contains the new letter ¢ so is not a subword of Z,, 44, contradicting the choice of
P q. |

So therefore the first letter after the second occurrence of z; in T, is z;. The next
letter in #(A,) is z2 and the only letter assigned a word starting with z, by § is the
letter y1. Following this in §(A,) we have the letter ;. This time there is only one
letter assigned a sufficiently short word starting with z;, and that letter is z; itself.
To the right of this, every new portion of A, of the form z;y;z; begins with a letter
which completely determines a corresponding letter z; or y; and thus completely
determines the fact that the central portion of L/ is A, also. Thus Theorem 4.2.1
is proved since we have shown L, = L. O

By results of [73], a variety V contains an infinite, finitely generated nil-semigroup
(a semigroup satisfying 2™ ~ 0 for some n) only if Z, is contained in V. Thus we

have the following corollary.

COROLLARY 4.2.4 Any variety V containing an infinite, finitely generated nil-

semigroup has uncountably many subvarieties.

Theorems 4.2.1 and 4.1.6 show that a semigroup variety containing Z,, or S({aba})

respectively has uncountably many subvarieties. We now find a different example

of this kind.

THEOREM 4.2.5 IfV is a variety containing the semigroups By and S({a}) then

V has uncountably many subvarieties.
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Proof: Let S be the semigroup Bz x S({a}). Since B, and S({a}) are (up to
isomorphism) subsemigroups of S, a variety V contains S if and only if it contains
both B; and S({a}) and the semigroup S satisfies an identity p & ¢ exactly when
- both the subsemigroups B; and S({a}) satisfy p &~ ¢. It is easily verified that the
semigroup S({a}) k= p = ¢ if and only if ¢(p) = ¢(q) and occ(z,p) = 1 & oce(z,q) =
1. As noted above, a basis for the identities of Bz is the set {z%y? ~ y%z?, zyz ~
zyryz,z? ~ z3}. It is clear that B, = p ~ q implies ¢(p) = ¢(q) and therefore
S | p ~ ¢ if and only if both B, = p & q and there is no letter ¢ that is linear on
one side of p &~ ¢ but nonlinear on the other. We will show via the following lemmas

that for every odd number n > 0 the word
Ly = (z1t1t221)(219171)(2292%2) - - - (TaYnTn)(22tat422)

is an isoterm for S (the condition of being odd here merely serves to reduce in what
follows the number of cases necessary to consider). These words were used in the
proof of the previous theorem, and thus if the word L; is an isoterm for S for all
odd numbers z > 0, then for any two distinct subsets P and Q of the odd natural
numbers, the sets Id(S)U{L, =~ 0:n € P} and Id(S)U{L, ~ 0: n € Q} define
distinct varieties. This shows that V(S) has uncountably many subvarieties.

It will be convenient to consider the semigroup B2 as the semigroup on the set
{a,b,ab,ba,0} with presentation (a,b: aba = a,bab = b,aa = bb = 0). It is clear
that any word in the alphabet {a, b} that starts with the letter a represents in B,
one of the words a, ab or 0 and likewise words starting with b represent one of the

words b, ba or 0. The following two lemmas establish the structure of possible words

r for which B, E L, =~ r.

LEMMA 4.2.6 If B, = L, ~ r then r begins with the letter z; and ends with the

letter z,.

Proof: For every number 7 less than n assign a to the letters zai_1, vsi, t; and 3,

b to the letters z3;, y2:-1 and z;, and ba to t; and t,. Call this assignment #,. Un-
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der 6,, L, takes the value [(b)(a)(ba)(b)](aba)(babd)...(aba)[(b)(a)(ba)(b)] = b. Since
B; & L, = r, the word r must also be assigned the value b under 6,. This shows
that r cannot start with any of the letters z2;_;, ya;, t1 or t3. Let 65 be the same as
8, except with ab assigned to z;, and b assigned to t,. This gives L, the value ab
and shows that r cannot start with any of the letters z3;, y2;-1, 22, t2 and £4. Thus
r starts with the letter z;. By the symmetry of the word L, and of the semigroup
B, there are dual assignments to the above that show that » must finish with the

letter z,. O

LEMMA 4.2.7 IfB; |= L, ® r and u is a two letter subword of r then either u is a

two letter subword of L, oru is contained in the set {y1t1, Yi¥i-1, tayn:0 < < n}.

Proof: Since bb and aa equal zero in the semigroup B2, the assignments 6;, 6, and
their duals above show that the only possible two letter subwords involving letters
of the form z; and y; are z2iy»; or its reverse, Ta;_1y2;-1 OI its reverse, z;T2;—) Or its
reverse, and ya;_1Y2; Or its reverse. Assume that r contains the subword of the form
TiY2; Or its reverse. Say ¢ < j and define an assignment ¢; as follows. Assign a to
all letters zo; and yp—; with ¢/ < 7 and b to all letters x5, and yop with 3" < 2.
Assign a to all letters 55—y and ysjs for 5 > i+ 1 and b to all letters z3; and yo;0_1
for 7/ > ¢+ 1. Assign ba to 241 and yz;41. Since 2¢ is even and n is odd, ¢; assigns

the word

(mynxl)(xzyzirz) . (I2£y2i$2i)[$2i+ly2i+l x2i+1]($2s+2y2s+2$2=’+2) v (mnynxn)

the value

(bab)(aba) ... (aba)[(ba)(ba)(ba)](bab). .. (aba) = ba.

To complete the definition of ¢, let ¢y; assign ba to z; and 22, b to t; and t3 and
a to ty and 4. An analogous assignment for odd numbers 2 — 1 exists and we will

denote this by ¢;_;1. Now ¢; gives L, the value ba on the semigroup B,. However
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it also assigns any word z2;y,; (or reverse) the value aa = 0 if 7 < j'. Since it has
been assumed that r contains the subword zy;y,; for : < j and B, | L, & r it must
be that ¢ = j. In the case when j < i the same arguments using the substitution ¢,;
instead of ¢,; again show that i = j. These assignments also show that if z2;z2j41
is a subword of r then 7 = ¢ and that if y3;41y2: is a subword of r then ;7 = ¢ (note
however that there are no such subwords in L, ). Similarly, using ¢,;_ one can show
that if z2;_1y2;-1 (or its reverse), T2;_1Z2;, and y»;Y2;—1 are subwords of r then ¢ = j.

Thus the only possible two letter subwords of r in the alphabet {z;,y; : 0 <
1,7 < n} are those already occurring in L, and subwords of the form y;y;_,. The
arguments above are easily extended to the two letter subwords of » containing any
of the letters z;, y;, 2; or t;. It is routine to verify in this case that the only possible
two letter subwords of r that do not already occur in L,, are those found above and
the words y;t; and t4y,. The lemma is proved. O

Recall that we are assuming that B, = L, =~ r and that S = B, x S({a}).
Denote the set of all possible two letter subwords of » by R (note that not all of
these subwords need occur in any particular choice of the word r). We now complete
the proof of Theorem 4.2.5 by showing that if S = L, ~ r then L, =r.

We associate with the word r a sequence of consecutive edges, or a pathway, in
a directed graph G(r) with vertex set V(G(r)) = ¢(r) U {0} and edge set E(G(r)) =
{(u,v) : uwv € R} U {(0, 21),(22,0)} (no duplicate edges are allowed). This graph is
shown in Figure 4.1 (here the dotted lines represent edges corresponding to the two
letter subwords contained in R but not occurring in the word L,). The first edge in
the pathway corresponding to r is the edge (0, z;) and successive edges correspond to
successive two letter subwords in 7. That is, the i** edge in this pathway corresponds
to the (¢ —1)** two letter subword to occur in 7. Finally, the last edge in the pathway
is the edge (22,0). Naturally for some choices of r the corresponding pathway does
not contain every edge. For example, the word L, (which is a possible choice for

r since S = L, &~ L, trivially) corresponds to the (unique) pathway passing every
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7 — i | ~
N " ~ - <
4 N AR, NF T\ \
t1 '\_.'J-tz Y‘T.l XT'l Ym .l Ynfl tam _b'ta
2 . =t ——y ——P ... ] - []
} X, xz Xn1 X Z;

Figure 4.1: The directed graph constructed for the word r.

non dotted edge exactly once. If the semigroup S = L, = r then all linear letters
in L, are linear in r also. Therefore for every linear letter, say ¢, the pathway
corresponding to r contains only one edge leaving the vertex ¢ and one entering
the vertex t. We will assume that this pathway contains a dotted edge (that is, r
contains a two letter subword not contained in L,) and show that a contradiction
arises.

Assume that the edge (y;,yi-1) is contained in the pathway corresponding to r
and that 7 is the largest number with this property. Thus either the edge immediately
preceding (yi, yi—1) is (i, y:) or © = n and the edge immediately preceding (v, yi-1)
is (ts,yn). Let j be the smallest number for which (y;41,y;) is an edge succeeding
(¥i, yi-1) in the pathway. Therefore either the edge immediately following (yj+1,7;)
is (y;,z;) or j =1 and the edge immediately following (y;4+1,y;) is (y1,¢1). For the
sake of simplicity we will only consider the cases when i does not equal n and j does
not equal 1. The remaining cases follow in the same manner essentially by using z,
and z; instead of z; and z; respectively (aside from simple arguments regarding ¢,
and t3). So r contains the subword z;y;yi—1yi-2 . . . y;+1y;2;. The only edges pointing
left in the graph are of the form (yk,yx—1), (y1,%1) and (t4,y.). Thus if an edge of

the form (yk,zx) is contained in the pathway corresponding to r then, since y; is
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linear in r, every edge to follow can never finish at the vertex z;. Therefore r must

be of the form
[A]x,'a:jﬂ s T T YiYie1 Y5 YT T e T 1 T4 [B]

where A does not conta.iﬁ zy or yi for any k > 7 or the letters z,, ¢35 and t4 and B
does not contain z; or yx for any k' < i+ 1 or the letters z,, t; and ¢,. Assign ab to
all letters in r up to (but not including) the first occurrence of the letter z;, assign
a to z;, ba to y; and b to y;—,. Assign ab to the letters y; for 2 —1 < k < j and ba to
all other letters. Clearly (since ab and ba are idempotent in B;) these rules assign

A the value ab and B the value ba. Thus r is assigned the value

(ab)(ab)(ab). . (ab)(a) (ba) (b)(ab)(ab)... . (ab)(ab)(ab)(ab) .. . (ab) (a) ba){ba] = a.

However L, contains the subword z;_,y;—; which takes the value abb = 0 under this
assignment. Thus we have reached a contradiction.

So the pathway corresponding to r does not pass along any of the dotted edges
but does pass through every vertex. Since the verticest;, ... ,t4and y;, ..., Yy can
be passed only once, it is easily verified that the pathway corresponding to r must
be identical to that of L,. Thus r = L, as required. O

It is a routine exercise to verify that both B, and S({a}) satisfy the identity
zyzzz ~ zzzyz but S({aba}) does not and therefore S({aba}) & V(B x S({a})).
Similarly B2 x S({a}) € V(S({aba})) since S({aba}) | zyzy ~ yzyz but B, x
S({a}) ¥ zyzy =~ yzyz. It is also evident that the direct product of B; with S({a})
is not INFB (see Theorem 1.1.2 for example) and therefore Zo, ¢ V(B2 x S({a})).

Proposition 3 of [78] shows that if V is a nonperiodic variety then V is HFB only
if the regular elements of every semigroup S in V lie in subgroups of S. To prove
this result it is shown that a semigroup T containing a nongroup, regular element
generates a variety containing either B, or the bicyclic semigroup with presentation
(p,q : pg = 1). It is then shown that if a variety V contains either B, or the

bicyclic semigroup and is non periodic then V is not HFB. In fact the condition of
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nonperiodicity here serves only to ensure that certain identities are balanced. The
identities in question will also be balanced if (as in the comments after Corollary
4.1.3) the condition of being nonperiodic is replaced by the condition of containing
a monoid of index more than three. Thus the regular elements of a semigroup in a
hereditarily finitely based variety containing a monoid of index at least four are all

group elements. We obtain the following improvement on these results.

COROLLARY 4.2.8 IfV is an hereditarily finitely based variety that contains a
monoid of indez greater than one (that is, a monoid that is not completely regular)
then the regular elements of any semigroup S in V lie in subgroups of S. On the
other hand if a variety V contains a semigroup with a nongroup, regular element and
V also contains a monoid of index greater than one then V has uncountably many

subvarieties.

Proof: The arguments used to prove Proposition 3 of 78] (descfibed above) show
that if a variety V contains a semigroup with a nongroup, regular element then V
contains either B} or the bicyclic semigroup. In the first case, if V also contains a
monoid of index greater than one, Theorem 4.2.5 implies that V has uncountably
many subvarieties and so cannot be HFB. Now the bicyclic semigroup is a monoid
with identity element 1 and is nonperiodic (since, for example, p* = p™ if and only
if n = m). Therefore by Corollary 4.1.3 it generates a HFB variety if and only if zyz
is an isoterm for its identities, that is, if and only if it does generate a variety with
uncountably many subvarieties. However it is known that the bicyclic semigroup is
NFB [86] and therefore not HFB. The theorem now follows. m]

This theorem provides an example of a seven element, not INFB semigroup
whose identities are not closed under deletion. We may think of B; and S({c})
as sharing a single common element, the zero element (here we use the letter ¢ in
the semigroup S({c}) to avoid confusion between elements of S({c}) and elements
of Bz) and define a semigroup multiplication on the set B, U (S({c})) to coincide

with that on the subsemigroups B, and S({c}) and to equal zero elsewhere (this
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construction is called the zero direct join of B, and S({c}); see also page 31).

EXAMPLE 4.2.9 The seven element semigroup Bo U (S({c})) with the described

multiplication generates a variety with uncountably many subvarieties.

It is trivial to verify that this sémigroup has seven elements and generates a variety
satisfying the conditions of Theorem 4.2.5 (it generates the same variety as B, x
S({c})). This semigroup also satisfies zyzzz ~ zzzyz and so is not INFB by results
of [73] since this identity implies that the word Z; is not an isoterm (see proof of
Corollary 4.1.4 above). The identities of this semigroup are not closed under deletion
since zyzrzz =~ rzzyz deletes to yz ~ zy and B; is not commutative. Indeed since
the identity zy &~ yz defines a hereditarily finitely based variety (see [63]), this
argument shows that any subvariety of V(B2 x S({c})) whose identities are closed
under deletion has only countably many subvarieties.

A more extreme example is the semigroup Z, above.

EXAMPLE 4.2.10 The semigroup variety generated by Z., has uncountably many

subvarieties but contains no nontrivial monoids.

Proof: As was noted, this semigroup can be shown to satisfy the identity z%y ~ z?

¥4
and so it follows that any monoid in this variety must satisfy y & z and therefore
must be trivial. 0O

A similar example is that found by J. Jezek in {36].

EXAMPLE 4.2.11 [36] The variety V' defined by 2%y =~ yz? =~ z? has uncountably
many subvarieties but contains no nontrivial monoids. This variety is the variety of

all semigroups where the square of any element is the zero element.

Proof: That V' has uncountably many subvarieties is the main result of [36]. Now
if 1 is the identity element of a monoid then 12 = 1 and it follows that if s is an
element of a monoid S from V', then s = s12 = 12 = 1. That is, all monoids in V'

are trivial. O
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The variety V' however is not generated by a finite semigroup, indeed it contains the
well known three generated infinite semigroup constructed by Morse and Hedlund
[55] and so is not even locally finite. That it has uncountably many subvarieties
therefore also follows frém Corollary 4.2.4 above.

Note also that Theorem 4.2.5 shows that the direct product B, with any monoid
of index greater than zero generates a variety with uncountably many subvarieties.
If B, generates a hereditarily finitely based variety then we would obtain an im-
provement of Theorem 4.1.13. As an inverse semigroup in the signature {-,”! }, B2

does generate such a variety [40]. This motivates the following question.

QUESTION 4.2.12 Does B, generate a hereditarily finitely based semigroup vari-
ety?

The word zyz is an isoterm for all examples found above. On the other hand a
recent result of J. Kadourek [38] shows that the semigroup variety defined by the
identity %y &~ zy has uncountably many subvarieties. Clearly zyz is not an isoterm
for this variety. We now present a second example with this property which permits
a proof along similar lines to others in this thesis. However it is not known whether
the example in [38] or the example below can be modified to imply the existence of
finite semigroups whose varieties have uncountably many subvarieties. For instance,
the variety defined by z%y =~ zy contains the variety of all bands and therefore by a
result from [79], cannot be generated by any finite semigroup.

For evéry k > 0 let Vi be the variety defined by {zyz =~ zy**'z, zyzy ~ yzyz}.
Note that while %y ~ zy F zyz ~ zy**'z, the variety defined by {z%y ~ zy, zyzy ~
yzyz} has only countably many subvarieties since these identities imply zyz =

TYTYT N YTYIrT X YII.
EXAMPLE 4.2.13 For every k > 0, V. has uncountably many subvarieties.

Proof: For every n > 0 let L, be the word

2,2 2
TiZ2T1Y1Y2 - - - YpT3T4ZT3.
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and R, be the word

2.2 2
L1Z2T1YpYp—1 - - - Y1 T3TL4T3.

Fix a subset M of the natural numbers IN and let n be any element of IN. We

k+ly zyzy ~ yzyr,L; ~ R; : 1 € M} + L, = R, only

will show that {zyz ~ zy
if n € M. As in previous proofs, this implies that the variety Vi has uncountably
many subvarieties. .

Let the set {zyz ~ zy**lz,zyry ~ yzyz,L; ~ R; : 1 € M} be denoted by Ty
and assume that ¥js F L, = R,. By the definition of a derivation we can select a
number m and pairwise distinct words uj,us,... ,u, with u; = L,, un = R, such
that for each ¢ < m, there is a substitution #; and an identity p; = ¢ € L such
that w4, is obtained from u; by replacing a subword of the form 6;(p;) in u; with the
subword 0;(g;). Let j be the largest number so that {zyz ~ zy**+'z, zyzy ~ yryz} F
u; & uj. There are only two subwords of L, of the form zyz and none of the form
zyzy. Since {zyz ~ zy**'z,zyry ~ yryz} + L, = u; it is easily established by

induction on j that for some integers p,q > 0,

— pk+1 2, 2 2 qk+1
Uj =125 1YYy ---Y, 3T, ZT3.

Because this word is not R, it follows that {zyz ~ zy**'z,zyzy ~ yzyz} ¥/ L, ~ R,
and so there exists a number A € M and a substitution 8 such that u; = rf(L,)s and
uj41 = r0(Ry)s. The first letter of Ly, is x,. Since z, is 2-occurring in L; and z;z272;
is a subword of Lj, there must be a subword of u; of the form uvu for some words

‘u and v. By inspection, the pair (u,v) is one of the following: (z;,22""), (29, zJ"),

(23, 23%Y), (222, 22?) (where ¢; and f; are natural numbers satisfying e, + f; < pk+1
and e; + f, < gk + 1). The second last of these is obviously impossible since then
uvu would be a final segment of u; but uvu must be followed in u; by 8(y, ) since this
follows zyz5z, in L. The last of the possibilities is also impossible since the only

letter that occurs twice to the right of 4 in u; is z4 itself. This enforces 6(z) = z}

for every letter z € ¢(Ly) (for some i depending on z) and therefore 8(Ly) = 6(Ry).
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In this case u; = u;41, contradicting both the choice of j as the largest such that
{zyz ~ zy**'z, zyzy ~ yzyz} + L, ~ u; and the fact that u; and u;4; are distinct
words. A similar argument applies for the second of the possibilities unless for some
z € ¢(Ly)\{z1,22} the letter z, appears in 6(z). In this case however, there is only
one occurrence of z; to the right of z, in u; and so z must be 1-occurring in Lj.
The only remaining l-occurring letter in Ly is z4. However then for every 1 < A
there is an i so that 8(y;) = zi. Therefore (L) = 6(R3), once again contradicting
the fact that u; # u;+1. So the only remaining possibility is that 6(z;) = z; and

0(z,) = 25+, The same arguments show that 6(z3) = z3 and 8(z,) = 23

. In
this case it is easily verified that A = n and 0(y;) = y; for all : < n. Thus n € M as
required. O

We finish this section with a number of questions concerning semigroup varieties

with uncountably many subvarieties.

QUESTION 4.2.14 (i) Does A, generate a variety with uncountably many subva-
rieties?
(i) Does B, generate a variety with uncountably many subvarieties (see also Ques-

tion 4.2.12)7

QUESTION 4.2.15 Is there a finite WFB regular semigroup generating a variety

with uncountably many subvarieties?

Note that a negative answer to this question would imply a negative answer to both

parts of Question 4.2.14 and enable a generalisation of Corollary 3.1.5.

QUESTION 4.2.16 (i) What is the smallest finite semigroup (or monoid) gener-
ating a variety with uncountably many subvarieties?
(i) What is the smallest finitely based finite semigroup (or monoid) generating a

variety with uncountably many subvarieties?

Two examples of seven element WFB semigroups were found above: S({aba}) and

that found in Example 4.2.9. In fact Theorem 4.1.2 and Theorem 4.2.5 enable the
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construction of many such examples and a list of those found is presented in the

appendix.

QUESTION 4.2.17 Is there a finite monoid generating a variety with uncountably

many subvarieties for which zyz is not an isoterm?

A negative answer to this question would help improve the bounds for a solution to

Question 4.2.16 as well as provide a partial solution to Question 4.1.17.

QUESTION 4.2.18 Is the membership problem for the class of finite semigroups

generating varieties with uncountably many subvarieties decidable?

4.3 Connections with the uniform word problem

In several recent papers [11], [12], [13], [54], [96] (and in the doctoral thesis of B.
Wells [95]) examples have been found of varieties, V, with decidable word problem
but undecidable uniform word problem (see the introduction to this chapter for a
definition of these concepts). A second kind of example presented in the above papers
are varieties V in which every finitely generated V-free algebra has a decidable word
problem but the equational theory of V is undecidable. Such a variety is said to be
psuedorecursive. A further variation on these ideas are pseudorecursive varieties with
decidable word problem (that is, pseudorecursive varieties in which every finitely
presented algebra in the variety has a decidable word problem, not just the finitely
generated free algebras); we will call such a variety strongly pseudorecursive. It
is well known that the undecidability of the equational theory of a variety implies
the undecidability of the uniform word problem for that variety. Thus a strongly
pseudorecursive variety is also a variety of the first kind described above (trivially
it is pseudorecursive as well). Examples of strongly pseudorecursive varieties are
also presented in the above papers. Of particular interest is the example of Delié

[13] which is a finitely based strongly pseudorecursive variety, although its basis is
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quite complicated (see [12]). On the other hand the identity basis for the strongly
pseudorecursive variety presented in [12] is infinite, but of quite a simple form.

To emphasise the subtleties of the above definitions it is worth considering a fur-
ther property of pseudorecursive varieties. An identity involving at most n distinct
letters is satisfied by a variety V if and only if it is satisfied by the V-free algebra on
n generators. If V is pseudorecursive then this fact can be algorithmically verified
since the finitely generated V-free algebras in V have a decidable word problem.
Thus for any fixed n € IN there is an algorithm that determines if an identity in at
most n distinct letters is satisfied by V but (since V is pseudorecursive) the equa-
tional theory of V is undecidable (this property is in fact an alternative definition of
the concept of pseudorecursiveness)! Thus to show the decidability of an equational
theory ¥ it does not suffice to take an identity in n letters and construct an algo-
rithm which determines if n is contained in ¥ unless the actual algorithm does not
depend on n. For further discussions of this nature, the reader is referred to [96].

As noted in [96] (see Remark 11.2.4) it is easy to establish the ezistence of
(strongly) pseudorecursive varieties as follows. There are only countably many re-
cursive sets of identities (sets of identities with decidable membership problem).
Thus a variety with uncountably many subvarieties must contain uncountably many
subvarieties with undecidable equational theory! In a locally finite variety all finitely
presented algebras are finite (since they must be finitely generated if they are finitely
presented) and a finite algebra (with finitely many operations) always has a decid-
able word problem (an algorithm is provided by the Cayley table for each of the
operations of the algebra). Thus locally finite varieties with finitely many oper-
ations have decidable word problems and locally finite varieties with uncountably
many subvarieties have uncountably many (strongly) pseudorecursive varieties. Of
course this only establishes the existence of pseudorecursive varieties and does not
give any explicitly.

In this section we show how to explicitly describe strongly pseudorecursive sub-
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varieties of each of the locally finite varieties with uncountably many subvarieties
which were found in the previous sections. We note (as in Remark 11.2.2 of [96])
that a finitely based locally finite variety has decidable equational theory and thus
cannot be pseudorecursive. Consequently all the examples we will construct are
NFB. They will however have a recursive basis of identities, that is they have a ba-
sis, &, of identities and there exists an algorithm that determines when an arbitrary
identity is contained in ¥ (the strongly pseudorecursive varieties described in {11],
(12], [54], [95] and [96] are also NFB; a FB pseudorecursive variety with “no more
than 350000 axioms” is found in [96] and a FB strongly pseudorecursive variety is
found in [13]).

The method we will use is effectively the same as that used in many of the above
papers: construct a locally finite variety with a recursive basis of identities but
with undecidable equational theory. By the above comments this variety is strongly
pseudorecursive. We initially formulate our results in a general, universal algebraic
setting before applying them to the semigroup varieties of preceding sections. For
further information regarding concepts of universal algebra see [9].

Recall that a primitive recursive function ¢ : IN — IN is a function construcfed
in a basic way (namely by composition and primitive recursion) from certain funda-
mental functions on IN (see [88] for a description of these fundamental functions and
for a precise definition of a recursive function). Importantly, given ¢ and n € IN one
can effectively compute ¢(n). A subset M C N is said to be recursively enumerable
if it is the empty set or it is the range of a recursive function and is said to be
recursive if both M and IN\M are recursively enumerable. It is well known that
there exist recursively enumerable sets that are not recursive (see [8§] for-example).

Let V be a variety of some type F and I/d(V) be the set of identities of V in
some fixed countably infinite set of variables X. Let Fy(X) be the V-free algebra

generated by X. We now introduce the following definition.

DEFINITION 4.3.1 An infinite list W = {w,w;,ws,...} of type F terms from
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T(X) (the term algebra of type F over X ) is said to be strongly independent with
respect to V (or strongly independent with respect to ¥, a basis for 1d(V)) if for:
every distinct pair of subsets P, Q C IN the identities X U {w, =~ w: n € P} and

SU{w, = w: n€ Q} determine distinct subvarieties of V.

LEMMA 4.3.2 Let ¢ : IN — IN be a primitive recursive function such that A =
{é(n) : n € IN} is a recursively enumerable but not recursive set and let V be a vari-
ety of type F algebras with recursive basis of identities . If W = {w,w;,w,,...} s
a countably infinite recursive set of type F terms strongly independent with respect

to V then the identities
Q(E,W,8) =EZU{wam R w: n € N} U {wa, = wygmn)-1: n € IN}
is a recursive basis for a subvariety V' of V with non recursive equational theory.

Proof: Firstly the identities ®(Z, W, ¢) form a basis for the identities of V' since W
is strongly independent with respect to . Secondly this basis is recursive: since ¥
and {wy, = w : n € IN} are recursive we need only check identities of the form
Waon & Wom-1. Clearly such an identity is contained in ®(Z, W, ¢) if and only if m is
the number @(n), which can be effectively calculated.

The identities {w & wag(n)-1} are easily seen to be a consequence of &(Z, W, 4).
Since W is strongly independent with respect to V, if M is any subset of IN then
YU{w;,~w:1i€ M} Fw; ~wif and only if j € M. Thus wa,1 &~ w € Id(V') if
and only if n € A. Since the set A is not recursive, neither can be Id(}'). ]

For the remainder of this section we shall continue the notation ®(Z, W, ¢) from
this lemma with the function ¢ a fixed primitive recursive function defining a recur-

sively enumerable, nonrecursive set. We have the following.

COROLLARY 4.3.3 IfV is a locally finite variety with recursive basis ¥ and W
is a countably infinite, recursive set of terms W that is strongly independent with
respect to V then the variety V' defined by the identities ®(X, W, $) is a recursively

based, strongly pseudorecursive variety.
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In the previous sections of this chapter we found varieties V with infinite, recur-
sive lists of words W that are strongly independent in V. By Corollary 4.3.3if S isa
recursive basis for V then ®(X, W, ¢) is a recursively based, strongly pseudorecursive
variety of semigroups. Since (as noted above) a finitely based locally finite variety
has decidable equational theory, HF B varieties have no pseudorecursive subvarieties.

Thus, by Corollary 4.1.3 for example, we have the following result.

COROLLARY 4.3.4 IfV is a locally finite variety with recursive basis ¥ and V is
generated by a monoid of indezx more than two, V has a pseudorecursive subvariety if
and only if V is not hereditarily finitely based and if and only if zyx is an isoterm for
V. Ifzyx is an isoterm for V then the variety described by ®(Z, W, @) where W is the
list {(y1212223Z431)Y225Y2Y3T6Y3 - - - Yn-1Zn+2Yn~1(YnTnt3Tn+4Tns5Tneln) : 7 € IV}

is a strongly pseudorecursive subvariety of V.

There are corresponding corollaries of this kind for all results from preceding sections
concerning locally finite varieties with uncountably many subvarieties.

A simple example is the following.
EXAMPLE 4.3.5 The variety defined by ®(Z, W, ¢) where ¥ is the set

{(zy)z ~ z(yz2), 2° =~ z*,

TYITY2T R Y1Y2TTT, TTYT N Y1 TLT, TY12T R Y1TITT, TITY) = Y1 TTT}
and W s the list of words in Corollary 4.3.4 is strongly pseudorecursive.

Proof: The set of identities T is obviously equivalent to the identities A3 which by
Corollary 2.2.3 form a basis of the identities of the semigroup S({abab,aabb, abba}).
Now Theorem 4.1.8 and the proof of Theorem 4.1.2 implies that the words W of the
example are strongly independent with respect to V(S({abab, aabb, abba})) and the
result then follows by Corollary 4.3.3.

The basis of the variety in Example 4.3.5 is obtained by adjoining the six iden-

tities to an infinite set of identities (though this infinite set contains identities of



CHAPTER 4. VARIETIES WITH MANY SUBVARIETIES. 166

two slightly different forms). We note that the simple example of a strongly pseu-
dorecursive groupoid variety in [12] also has six identities adjoined to an infinite
system.

The existence of a (strongly) pseudorecursive variety of groups is noted in [96]
and the possible existence of a recursively based example is an open question in [96]
(see Remark 11.4.2). We now show how some existing results can be combined with
Corollary 4.3.3 above to provide such an example. Let [z,y] be the group theoretic
commutator z7'y~'zy and for n > 3, let [z1,Z2,... ,2a] = [[21,. .- ZTnoi), Tn). In [94]

it is shown that the group words T given by

{xIG’ [[yla Ya, y3]'.l [.7:1, :‘72]: [373,:2?4], ey [3:25'-1:3215]) [yls Y2, y3]] it € IN}

are strongly independent with respect to the (locally finite) group variety V de-
fined within the variety of groups by the identity w ~ 1 where w is the word
z'®([21, 22, 23), (24, 25, 26), [27, 28]] (@ similar result is found in [61]). Therefore Corol-
lary 4.3.3 implies that ® = ®({(zy)z = z(yz), 2l ~* z, zz" = z7 'z mw ~ 1}, T, ¢)

determines a strongly pseudorecursive variety of groups.



Chapter 5

Some undecidable embedding

problems for finite semigroups.

In this chapter we consider a number of embedding problems which have no algo-
rithmic solution. In each case we use a method that first appeared in [25]. Roughly
speaking (a precise description will be given in the following section) we consider an
arbitrary partially defined finite group G and from it construct a new structure S
with the property that S is embeddable in a semigroup of the desired form exactly
when the original partial group can be embedded in a group. It follows from a
result of T. Evans (see Connection 2.2 of [39]) that the set of finite “partial groups”
embeddable in a finite group, or a group, is not recursive and therefore the set of
structures embeddable in finite semigroups or semigroups with the desired property
also is not recursive. This method appears to be extremely useful in showing various
embedding problems to be undecidable and has been used in a number of recent pa-
pers: [25], {30], {45}, [46] and [76] (the second paper in this list concerns the results

in Sections 5.2 and 5.3.2 to follow).

167
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5.1 Preliminaries

A number of preliminary results and definitions are required before we prove the
main results of this chapter. The following concept was introduced by M. Sapir and
is a useful tool in “transcribing” the structure of a partial group into an appropriate

semigroup structure.

DEFINITION 5.1.1 (M. Sapir) A split system is a triple of sets (A, B,C) with an
associated operation Ax B — C. An embedding of a split system into a semigroup S
is a triple of maps (i, 7,k) such that the mapsi: A—S,j:B—+Sandk:C - S
are injective and i(a)j(b) = k(ab), for eacha € A and b € B.

On occasions the generality of this concept is unnecessary and it is convenient to

instead use a simplified notion as follows.

DEFINITION 5.1.2 A split pair is a pair of sets (A, B) with an associated op-
eration A X A — B. An embedding of a split pair into a semigroup S is a pair
of maps (j,k) such that the maps j : A - S and k : B — S are injective and
7(a)j(b) = k(ab), for each a,b € A.

. By a partial group G we will mean a set with an element 1 and a partially defined
binary operation such that for every z € G, 1z = z1 = z and if both (zy)z and
z(yz) are defined then they are equal. The following definition appears in [25].
(For the purposes of this definition it is convenient to make a distinction between a

semigroup (or partial semigroup) S and its universe S.)

DEFINITION 5.1.3 Let Go and G be partial groups such that Gg is embedded in
G. For each i = 0,1,2,..., let G} be the subset of the universe of G defined as
follows: G§ = {1} (the identity element), Gy = Go, G5 = GiGo. Then for k > 2,
the partial group G is an extension of rank k of Gg if and only if

(i) G = Ui, Go,

(i) for every pair of positive integers 1,7 with i + 7 < k and every pair of elements
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z€Gi, y€ Gf;, the product zy ezists and is contained in G,‘_:,H,
iWi) ifi4+j > k and z € G\ G5, y € G\ GL™! then the product zy is not de ned,
0\Go 0\Go
(iv) ifi+j+1<kand z € Gi, y € G}, z € G}, then (zy)z and z(yz) are defined
and equal,

(v) for f,9,h € G, if fg = fh or gf = hf, then g = h.

From Connection 2.2 in [39] we have that the unsolvability of the uniform word
problems in the pseudovariety of all groups (which, of course, is also a variety) and
in the pseudovariety of finite groups imply that the problem of determining whether
a finite partial group is embeddable in a group or in a finite group is undecidable.
A group H can be viewed trivially as an extension of arbitrary rank of itself. So
for every k, a partial group G is embeddable in a group (or a finite group), H, if
and only if there is an extension of rank k¥ of G that is embeddable in H. If the
problem of determining whether or not an extension of rank k of a partial group
is embeddable in a group (or a finite group) is decidable then we would obtain
the following algorithm for determining when an arbitrary finite partial group G is
embeddable in a group (or a finite group), contradicting the fact that this second
problem is undecidable:

1. Construct all extensions of rank k of G (there are only finitely many and they
can be effectively listed);

2. If one of the extensions of rank k is embeddable in a group (or a finite group),
H, then G is embeddable in H. Otherwise G is not embeddable in a group (or a
finite group).

We therefore have the following lemma:

LEMMA 5.1.4 [25] The problem of determining whether or not an eztension of

rank k of a partial group is embeddable in a group or in a finite group is undecidable.

DEFINITION 5.1.5 An H-embedding of a split system (A, B,C) (or split pair
(A, B)) is an embedding (i,7,k) (or (i,7) respectively) of (A, B,C) ((A, B) respec-
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tively) into a semigroup S so that i(A), j(B) and k(C) (or i(A), j(B) respectively)

lie within H classes of S.

For a given G, an extension of rank 2 of a finite partial group Go, we can construct
an associated split system (A, B,C) where A = {a;,... ,a,} and B = {by,... ,bn}
are disjoint copies of Go, C = {c1,... ,cm} a copy of G, and with operation a;b; = ¢k
whenever g;g; = gr in G. In an analogous way we can construct an associated split
pair (A,C) by replacing the requirement that the sets A and B are disjoint with
the requirement that they are identical. It is clear that an embedding of a split
pair constructed in this way determines an embedding of the original split system.
Furthermore any embedding 8 of G into a group determines a natural embedding
(1,7) of the split pair (A, C) (with i(ax) = j(cx) = 8(gx)). Part (z) of the next lemma

is Lemma 7 of [76] and part (iz) follows from the arguments above.

LEMMA 5.1.6 (i) (M. Sapir) Let (A, B,C) be the split system associated with G,
an extension of rank 2 of a finite partial group Go. There is an H-embedding (z, j, k)
of (A, B,C) into a semigroup S if and only if G is embeddable in a subgroup of S.

(ii) Let (A, B) be the split system associated with G, an extension of rank 2 of a
finite partial group Go. There is an H-embedding (i,7) of (A, B) into a semigroup
S if and only if G is embeddable in a subgroup of S.

In the following sections we will be constructing semigroups (or related struc-
tures) whose structure is determined by certain extensions of rank k of partial groups.
Because of Lemma 5.1.6, the use of split systems (and in the following section, split
pairs) is helpful in simplifying arguments concerned with connecting the embed-
dability properties of partial groups with the desired embedding properties of our

constructions.



CHAPTER 5. UNDECIDABLE EMBEDDING PROBLEMS. 171

5.2 Potentially H-embeddable subsets

In this section we examine a natural embedding problem concerned with the H
relation of Green. Let I/ represent one of Green’s relations on a semigroup S. From
the definitions of Green’s relations (see Section 1.3.2) it is easy to determine when
given a subset A of a semigroup S whether or not A lies in U/-class of S Furthermore,
if A is a US-related subset of S and 6 is an embedding of S into a semigroup T then
6(A) is a UT-related subset of T. On the other hand the restriction of a UT-class

of a semigroup T to some subsemigroup S need not be a US-class.

DEFINITION 5.2.1 If S is a finite semigroup and A C S x S then we say A is
potentially* U-related if A CUT for some supersemigroup T containing S. If T can
be chosen from a particular class K of semigroups (the class of finite semigroups for
ezample) then we say A is potentially U-related in K. If A C S then we say that A
is potentially U-embeddable in a class K if A x A is potentially U-related in K.

Note that if there exists an algorithm determining for an arbitrary semigroup
S whether or not a given finite subset of S x S is potentially U-related then there

certainly exists an algorithm determining if a given finite subset of S is potentially
U-embeddable.

Define the following relations on a semigroup S:

L*={(a,b) :ax =ay & bz =by Y2,y € S'},

R* ={(a,b):za =ya & zb=yb Vz,y € S'},

H =L AR

We have the following well known result (for example, see [21], [48] or [62]).

'In some of the literature ([30] and [76)] for example), the word “eventually” is used here instead

of “potentially”.
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LEMMA 5.2.2 If S is a semigroup then a subset A C S x S is potentially L-
related (respectively potentially R-related) if and only if A C L* (respectively A C
R*). Furthermore if S is finite, then a subset A C S X S is potentially L-related
(respectively potentially R-related) if and only if it is potentially L-related within the
class of finite semigroups (respectively potentially R-related within the class of finite

semigroups).

This lemma works for £* (resp. R*) because of the left (respectively right) regular
representation of S by inner left (respectively right) translations on the set S*. There
is no natural analogue of this for the #-relation.

Lemma 5.2.2 provides a simple algorithm for testing whether a given subset
of a finite semigroup is potentially L-embeddable (or potentially R-embeddable).
In [76] however, M. V. Sapir has shown that the problem of determining, for two
disjoint subsets A, B of a finite semigroup S, whether or not (A x A)U (B x B)
is potentially H-related is undecidable. This, along with Lemma 5.2.2, implies the
existence of a finite semigroup S and a subset (A x A)U (B x B) of S x S for which
(Ax A)U (B x B) C H* but are not potentially H-related (Corollary 1 of [76]).
The main aims of this section will be to provide examples of such semigroups and

to prove the following extension of the results in [76].

THEOREM 5.2.3 The problem of determining whether or not a subset A of a finite
semigroup S is potentially H-embeddable in the class of finite semigroups or in the

class of all semigroups is undecidable.

Problem 1 of [76] asks if there is an algorithm for determining whether a subset A
of a finite semigroup S is potentially H-embedded in the class of finite semigroups.
Theorem 5.2.3 answers this in the negative. It is also remarked in [76] that there is
an algorithm for determining whether or not a subset A of a finite semigroup S is
potentially H-embedded in the class of all semigroups. This statement is not proved

in [76] and in fact Theorem 5.2.3 of this thesis shows that it is not true.
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For the arguments to follow, let G always denote an extension of rank 2 of a
partial group Go with the elements of Gg labeled {g;, g2, - - - , gn} and such that 91.

is the identity element. Let the remaining elements of G be labeled {gnt1,... ,9m}-

DEFINITION 5.2.4 For the split pair (A, B) associated with G, an eztension of
rank 2 of a partial group Go, define S(g,g,) to be the semigroup whose universe is
the set {0} U AU B and with multiplication a; - a; = bx if a;a; = by in (A, B) and 0

otherwise.

The groupoid S(g,g,) is a semigroup, since the product of any three elements in

S(G,Go) is zero (that is, S(g,q,) is 3-nilpotent).

DEFINITION 5.2.5 IfC is a group then define C as the semigroup whose universe
is CU A, U B, U {0}, where A, and B, are disjoint copies of the universe of C and
with multiplication (for a; € A., b; € B., ¢; € C, and where z; is one of a;, b;, or
c)
ai-a; =by, if cic;=crin C
$£‘Cj=C{‘$jI=$k, if cici=cxin C

and all other products take the value 0.

Now C is a semigroup since the subscripts of the elements behave as in the group

C and the letter names of the elements behave according to the following table:

0 A, B. C
0/0 0 0 o
A lo B. 0 A
B.|[o 0 0 B
clo A B C
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which is a commutative, 3-nilpotent semigroup with adjoined identity element,
C (indeed, C is an extension of this semigroup). Note that since C is a group, the
HC-classes of C are {0}, A, B., and C.

Theorem 5.2.3 follows from the following lemma and Lemma 5.1.4 part (ii).

LEMMA 5.2.6 Let (A, B) be the split pair associated with G, an extension of rank
2 of a partial group Go. The subset A of S(g,G,) s potentially H-embeddable in the

class of semigroups (or finite semigroups) if and only if G is embeddable in a group

(or a finite group).

Proof: Suppose 6 is an embedding of G into a group C, with the elements of C
labeled so that 6(g;) = ¢;. Then ¢ : S(g g,) — C defined by

8'(a;) = a; € Ac, 0'(b;) = b; € B., 6'(0) =0

is an embedding of S(g,g,) in C which sends A to a subset of the HC-class A..

So now assume that S(g g, is the subsemigroup of a bigger semigroup T, in
which A lies in an HT-class, H4. We may assume that T is regular, since every
(finite) semigroup can be embedded into a (finite) regular semigroup, and its H-
classes will still be within H-classes of the regular semigroup. Now for every g;,g; €
Go, whenever za; = a; and ya; = a;, for some z,y € T we have za;a; = aja,
and yaje; = a;ay, or zb; = b; and yb; = by, so therefore b:;LTb;. Similarly, b,-’RTbj,
and thus, b;HTb;. For by € B, with gi ¢ Gg, we can find (by the definition
of A) a;,a; € A with a;a; = bi. Since A C Hy, there exists z,y € T! with

za; = a1, ya; = a;. S0
zbr = ra;a; = aya; = b; and yb; = ya,a; = a;a; = by

and hence it follows that b;£LTb;. Similarly b, RTb; and since b;HTb;, we have shown
that B is contained in an HT-class, Hg.
We can now use Lemma 5.1.6 (ii). By construction, there is a natural embedding

(z,7) of the split pair (A, B) into S(g,G,)- Since S(g,g,) is embedded in a semigroup
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T where A and B lie in HT classes this embedding can be extended to an H em-
bedding of (A, B) and therefore by Lemma 5.1.6 the extension G of rank 2 of the
partial group Gy is embeddable in a subgroup of T as required. o

Theorem 5.2.3 is proved. )

We now turn our attention to the construction of H*-related subsets of semi-
groups that are not potentially H-embeddable. In [76] it is proved that there exists
a finite semigroup S with a subset A of S x S that satisfies A C H* but which is not
potentially H-related. Theorem 5.2.3 implies the existence of a finite semigroup for
which there is an H*-class that is not potentially H-embeddable. Such an example
is not presented in [76] nor seems to have been published elsewhere. By Lemma
5.2.6 the subset A of the semigroup Sg g, is potentially H-embeddable if and only
if G is embeddable in a group. Thus to find the desired example it suffices to find

an extension of rank 2 of a partial group that is not embeddable in any group.

EXAMPLE 5.2.7 Consider the eight element semigroup S(g,g,) where Gy is the
partial group defined by:

9 92 g3
9|5 g9 G3
92192 g3
g3 | g3 92

G is an extension of rank 2 of Go defined by:

91 G2 g3 G4

g1 |91 92 g3 G4
92 1 92 93 G4

g3 |93 Ga G2

9a | 94
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Then the three element subset A of S(g,,G) is an H* class of S(Go,G) that is not
potentially H-embeddable in the class of semigroups (and therefore in the class of

finite semigroups).

Proof: In G we have (9:292)(9292) = 9395 = g2 = g2g1 2nd g2(92(9292)) = 9294
so therefore g,g1 = g2g4, a property not satisfied by any group. Thus G is not
embeddable in a group and so by Lemma 5.2.6, the subset A is not potentially H-
embeddable. It is easily verified that A is an H*-class of S(g,g,)- o

While Lemma 5.2.6 shows that any extension of rank 2 of a partial group not
embeddable in a group will give rise to a semigroup with a subset that is not #-
embeddable, it is a very simple and routine exercise to show that any 3 element
extension of rank 2 of a partial group is always embeddable in a group and so no
smaller examples can be obtained by exactly the methods used above. This fact also
makes it impossible to use the above method to construct semigroups with an #*-
related pair that are not potentially H-related. The following 3-nilpotent semigroup

S shows that such examples nevertheless exist.

EXAMPLE 5.2.8 Let S be the semigroup given by the following cayley table

0 ay ax by by, ¢ ¢ ¢
o0 0 0 0 0 0 0 0
ap |0 0 0 ¢ e 0 0 0
a [0 0 0 ¢ e3 0 0 0
by |0 ¢, 3 0 0 0 0 0
by |0 ¢ 2 0 0 0 0 0
al0 0 0 0 0 0 0 0
|0 0 0 0 0 0 0 0
{0 0 0 0 0 0 0 0
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Then the set A = {a1,a2} in S is an H*-class of S but is not potentially H-
embeddable.

Proof: A is an L*-class of S, since for i € {1,2}, a;z = a;y, for z,y € S, z # y
if and only if both = and y are contained in {0, a1, a2, ¢1,¢2,¢3}. Likewise, A is an
R*-class and therefore an H*-class.

Now let T be any semigroup in which S can be embedded so that A is £LT-related.
So there is an z € T such that za; = a, (of course we may assume that z is not the

identity element of T since a; # a;). Therefore,
(xbl)al = :z:(blal) =Ic = ‘.I:a]_b] = agbl =C2 = bgal.

However

(.‘Bb])ag = x(blag) =IC3 = .Ia]bg = agbg = C3 ?{—' Cyp = bgag.

So therefore A, as a subset of T is not R*-related. That is, whenever A is L-related
in some embedding semigroup, it is neither R-related nor potentially R-related in

that semigroup. O

Infinite examples consisting of single H*-classes that are not potentially H-
related are also known. For example J. Fountain has noted (see comment in [76])
that any cancellative semigroup not embeddable in a group is H*-related but not
potentially H-embeddable (see [10] for such an example by A. Malcev). By tak-
ing the O-direct join of any of the above examples with an infinite null semigroup
one obtains other examples of infinite semigroups with H*-related, not eventually
H-embeddable subsets. On the other hand, it is a simple task to prove that a fi-
nite semigroup for which H* is the universal relation (as in the infinite examples

suggested by Fountain) is a group.
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5.3 Potentially £ — R-embeddable subsets

Using essentially the same method as in the previous section we now prove a variation
on Theorem 5.2.3. For a subset A of a semigroup S to be potentially H-embeddable
there must be an embedding semigroup T so that A is simultaneously LT and RT-
related. We now replace the notion of a subset being potentially H-embeddable with

a similar but possibly weaker condition on pairs of disjoint subsets.

DEFINITION 5.3.1 If A and B are disjoint subsets of a finite semigroup S then
the pair [A, B] is potentially R — L-embeddable if there is a supersemigroup T con-
taining S in which A is contained in a RT-class and B is contained in an LT -class.
(A, B] is potentially R — L-embeddable in K if T can be chosen from a particular

class K of semigroups.

We now prove an analogous result to Theorem 5.2.3 concerning potentially R~ £-

embeddable pairs of disjoint subsets.

THEOREM 5.3.2 The problem of determining for two disjoint subsets A and B
of a finite semigroup S whether [A, B] is potentially R — L-embeddable in the class

of all semigroups and in the class of finite semigroups is undecidable.

As before, for all arguments to follow in this section, we will assume that G is
an extension of rank 2 of a partial group Gy.
For the purposes of the following definition it is again convenient to make a

distinction between a partial semigroup and its universe.

DEFINITION 5.3.3 Let G, be an eztension of rank 3 of G, and let G, be the
set theoretic union G* U G. (Here and for the rest of this definition we assume the
multiplication of Gy on the subsets G; of G2. This means, for example, that the set
G*\G may be non empty.) Let A, B,C, D be disjoint copies of the sets Go, G, G, G,

respectively. Then define S(g go,G,,G;) to be the semigroup whose universe is AU
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BUC UDU{0} and has the following operation:
a;a; = br, whenever gi,9; € Go, and gig; = gk € G,

a;b; = bija; = ¢, whenever gig; = g € Gy and g; € Go, g; € G or reverse,
a;c; = cia; = di, whenever gi;g; = gr € Gy and g; € Go, g; € G, or reverse,
bib; = di, whenever g;,g; € G and gig; = gi € Gy,

0, otherwise.

Note that S(g,G,,G:,G,) is @ semigroup since the subscripts of elements behave ac-

cording to the extension of rank 3 of G which is associative, and the letter names

behave according to the 5-nilpotent semigroup

.10 A B C D
0(0 0 0 0 O
Aj0 B CD o0
Bi{0o C D 0 0
Cio D 0 0 O
D{0 0 0 0 O©

for which associativity can be routinely verified.

Theorem 5.3.2 now follows from Lemma 5.1.4 and the following lemma.

LEMMA 5.3.4 Let G be an extension of rank 2 of a partial group Go. Then G
is embeddable in a group (or a finite group) if and only if there exists an extension
G2 of rank 3 of G such that for the subsets A and B of the semigroup S(G,Go,G,G2)
(with Gy appropriately defined), [A, B] is potentially R — L-embeddable in the class

of semigroups (or in the class of finite semigroups respectively).
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Proof: Firstly assume G is embeddable in a group H and G is an extension of rank
3 of G that is compatible with the multiplication of H (that is, G5 is embeddable
in H). Then by adjoining an identity element, 1, to the table above and then
constructing a new semigroup T by replacing the letters A, B, C, D, 1 with disjoint
copies of the group H as in Definition 5.2.5, it is quickly seen that 5(G.Go,G1,G2)
is embedded in T such that all of the sets A, B,C,D,{0} lie in HT-classes. So
certainly [A, B} is potentially R — L-embeddable. Notice also that T is finite if and
only if H is finite.

So now assume there is an extension G; of rank 3 of G such that the semigroup
S(G.Go,G1,G2) (With G defined as before) is embedded in a semigroup T in which
[A, B]is R — L-embedded. Proceeding as in the proof of Lemma 5.2.6 from the last
section, we have that A being RT-related implies that B is RT -related. But B is
LT -related by our assumption, so therefore B is potentially H-embeddable. We now
show that there is an extension Gjs of rank 2 of G (itself an extension of rank 2 of
Go) for which the semigroup S(g,,g) is the subsemigroup of S(g,,G,c,,c,) generated
by the set B and therefore by Lemma 5.2.6, G3, hence G, is embeddable in a group
(and if T is finite, then G is embeddable in a finite group).

Let D' = {dx € D : b;b; = di}. Consider the extension Gz of rank 2 of G
whose universe is the set G, and whose multiplication is g;g; = gx, if ¢;,g; € G and
9ig; = gr in the extension of rank 3 Gz; g:g1 = ¢19; = gi, if g € G;; and undefined
otherwise. This is a “sub partial group” of G and therefore the semigroup S(g,,qg)
is isomorphic to the subsemigroup of S(g G, c,,g,) on the set {0} U BU D’. Since
B is H related in T, Lemma 5.2.6 applies and so G is embeddable in a subgroup of
T. O

Theorem 5.3.2 is proved. ]

The ﬁlain result of this section implies the existence of semigroups with poten-
tially £- and potentially R-embeddable subsets with the property that these subsets

are never simultaneously £ and R related in any embedding semigroup. Such an
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example would be found if we could find an extension of rank 3 of a partial group
that is not embeddable in a group however such an example is unnecessarily com-
plicated. A much simpler example is found by modifying the second example of the

previous section.

EXAMPLE 5.3.5 To the multiplication table for S in the Ezample 5.2.8 above,
add two elements dy,d; with the multiplication d;z = y whenever a;z = y; zd; = y
whenever za; = y; and all other products not already defined take the value 0. Let
the resulting 3-nilpotent semigroup be denoted by U.

Then the subsets {d1,d>} and {a1,a2} of U are R* and L* classes of U respec-
tively but [{di,d2}, {a1,a2}] is not potentially R — L-embeddable.

Proof: Since {ai, a2} is an H*-class of S, then {a;,a,} and {d;,d,} lie within H*-
classes of U (in fact they lie within the same H*-class) and so certainly they lie in
L* and R*-classes respectively.

Now let T be any semigroup in which U can be embedded so that a; and a; are

LT-related. So there is an z € T such that za; = a,. Therefore,
(xbl)dl = I(bldl) =Ic = walbl = agbl = (2 = bgdl.

However

(zby)dy = z(bidz) = ze3 = Tarby = azby = c3 # 3 = bad,.

So therefore d; and d; are not R*-related in T. Hence [{d;,d,},{a1,a;}] is not
potentially R — L-embeddable. O

Let D" be defined as £*VR*. As a final example in this theme we use a result of
[25] to construct an example of D*-classes of finite semigroups that are not poten-
tially D-embeddable (or J-embeddable) within the class of finite semigroups (recall
that every semigroup is potentially D and J-embeddable in a (possibly infinite)

semigroup and that on a finite semigroup, the relations D and J coincide; see [10])

EXAMPLE 5.3.6 Let D be defined by the following 3-nilpotent semigroup:
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0 a b ¢
00 0 0 0
al0 ¢ 0 0
b|0 ¢ 0 0
cl0 0 0 0

Then the set {a,b,c} is a D*-class of D but is not potentially D-embeddable (or
potentially J-embeddable) in a finite semigroup.

Proof: The L~ classes of D are {a,b}, {c}, {0} and the R* classes of D are {a},
{b,c} and {0}. Hence {a,b,c} is a D*-class. However if {a,b,c} is D-embeddable
in a finite semigroup, then it is D-embeddable in a finite 0-simple semigroup. In
a finite 0-simple semigroup we have zyz = 0 < zy = 0 or yz = 0 (this property
is called categorical at 0), however in D we have aaa = 0 with aa # 0. (This is a
direct application of Theorem 2.5 of [25] which states that a 3-nilpotent semigroup
is embeddable in a completely 0-simple semigroup if and only if it is categorical at
0.) Hence D is not embeddable in a finite 0-simple semigroup, and therefore {a, b, ¢}
is not potentially D or J embeddable within the class of finite semigroups. m]

Note that Fountain (Example 2.2 in [20]) has found an 8 element example with
D*-related idempotents e and f satisfying e > f (recall that for idempotents e, f, we
definee < ftomeanef = fe = e). Since D-classes containing idempotents e, f with
e > f are infinite (see [10]) these two elements are not potentially D-embeddable in

a finite semigroup.

5.4 On the embeddability of semigroup amalgams

In this section we investigate the problem of determining when an amalgam of
semigroups can be embedded in a member of some important class of semigroups.

Let K be a class of semigroups and let {S; : i € I} be a set of (finite) members of
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K indexed by the (finite) set I such that for some semigroup (necessarily finite) U
there are injective homomorphisms ¢; : U — S;. This collection of semigroups and
mappings is called a (finite) K" amalgam and is denoted by [{S;:1 € I}; U;{¢; :i €
I}] or more briefly [S;; U; ¢;] or even simply [S;; U]. Less formally, a K amalgam
may be viewed as a collection of semigroups from K (the S;) each sharing a common
subsemigroup from K (the semigroup U). The semigroup U is known as the core
of the amalgam. In these definitions we have not used any specific facts concerning
semigroups and indeed we could replace the word “semigroup” in the above by any
class of algebraic structures of some fixed type. In several cases we will translate
results found for semigroups into related results in ring theory.

An embedding of a K amalgam [S;; U; ;] is a set of injective homomorphisms -
{vi: i€ I} with 1; : §; — T for some semigroup T so that for s € S; and ¢ € S;,
vi(s) = v;(t) if and only if ¢ = j and s = ¢ or there is a u € U such that ¢;(u) = s
and ¢;(u) =t.

The fundamental question to be asked concerning a K amalgam is the following:

QUESTION 5.4.1 Given a finite K amalgam A = [S;U], is A embeddable in a

member of K ?

The classes K which we will be primarily concerned with in this section are the class
of all semigroups, the class of finite semigroups, the class of all inverse semigroups
and the class of finite invefse semigroups. To a lesser degree we will also be interested
in similar classes of rings.

For the class of all groups and the class of finite groups, Question 5.4.1 has a
remarkably simple solution: the answer is “always” [81]. For semigroups and rings

however this is not the case. Consider the following pair of semigroups?:

%A similar example due to Kimura is presented on page 139 of volume II of [10]
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01 2 3 01 2 4
0{0 0 0 O 010 0 0 O
10 0 0 1 110 0 0 2
210 0 0 1 210 0 0 2
310 1 1 3 410 2 2 4

The two semigroups share a common three element semigroup with zero mul-
tiplication and so we may consider them as a semigroup amalgam. However this

amalgam is not embeddable in any semigroup T since in that case we would have
3-(1-4)=3-2=1and (3-1)-4=1-4=2.

(Here we regard {0,1,2,3,4} as being a subset of T, and the maps ¢, ¢, v1,
V2 as being the identity maps on their domains.) That is, associativity fails in any
groupoid in which the amalgam is embeddable. It is clear that a semigroup amalgam
A determines a partial groupoid in a natural way but the example above shows that
this is not necessarily a partial semigroup in the sense that .we do not necessarily
have (zy)z = z(yz) whenever both sides of this expression are defined.

Question 5.4.1 for rings and semigroups has consequently been the subject of
a substantial quantity of work and several books on semigroup theory contain a
chapter devoted to it and associated concepts. More generally we may formulate

the following decision problems:

PROBLEM 5.4.2 (i) Given a finite semigroup (ring) amalgam A = [S;; U] of
semigroups (rings) from a class K, determine if A is embeddable in a semigroup
(ring) from K.

(1i) Given a finite semigroup (ring) amalgam A = [S;; U], determine if A is embed-

dable in a semigroup (ring) from a class K.

We will call problems 5.4.2 (i) and (ii) respectively (within the class of semigroups

or rings) the strong decision problem for amalgam embeddability in K and the weak
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decision problem for amalgam embeddability in K respectively. Note that a negative
answer to the strong decision problem for a class K implies a negative answer to
the weak decision problem for K. In terms of decidability and undecidability these
problems will coincide for some classes. For example if K is a variety then any
semigroup (ring) amalgam containing a subsemigroup (subring) not from K (that
is, not satisfying one of the defining identities of K) clearly is not embeddable in a
member of K. This is similar to trying to embed a non-associative groupoid (non-
associative ring) in a semigroup (ring). Recent results of Kublanovsky and Sapir [45)
can be used to show that strong and weak decision problems for embeddability of
semigroup (ring) amalgams in the class of finite semigroups (rings) are undecidable
(see Theorem 5.4.10). The main result we prove in this section Iis the following

theorem.

THEOREM 5.4.3 There is no algorithm to decide when given an arbitrary finite
semigroup (ring) amalgam A = [S;; U] whether A is embeddable in a semigroup
(ring). That is, the strong and weak decision problems for embeddability of amalgams
in the class of semigroups (rings) and in the class of finite semigroups (finite rings)

are undecidable.

In particular Problems 5.4.2 part (i) and part (ii) are undecidable. We note that
there are several important classes for which the corresponding problems have a
very different solution. We have seen that any finite group amalgam can be embed-
ded in a finite group. Similarly any finite amalgam of inverse semigroups can be
embedded in an inverse semigroup (see [29]), however this is not necessarily finite
(see page 309 of [29] for an example, due to C. J. Ash, of a finite inverse semi-
group amalgam not embeddable in a finite semigroup). Interestingly, we will show
that the weak decision problem for inverse semigroups and finite inverse semigroups
is undecidable. The class of subsemigroups of inverse semigroups has a decidable
membership problem (see [10] for a description due to B. Schein). However if A" is a

class closed under taking subsemigroups (or subrings respectively) with undecidable
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membership problem then the weak decision problem for amalgam embeddability in
K is undecidable since individual semigroups (rings) can be considered, trivially, as
amalgams by themselves ([S;S] in our notation). A good example of a class closed
under the taking of subsemigroups that has undecidable membership problem is the
class of subsemigroups of completely 0-simple semigroups which was shown to have
this property by Kublanovsky (see [25]). Naturally, this argument does not apply
to the strong decision problem for amalgam embeddability.

A generalization of amalgam embeddability is weak amalgam embeddability (see
[29]). If A is a semigroup (ring) amalgam [S;; U; ¢;] then we will say A is weakly
embeddable in a semigroup (ring) T if for each 7 there are injective homomorphisms
v; : §; = T such that for every u € U, ¢;(u) = s and ¢;(u) = t imply vi(s) = v;(2).
So any embedding of an amalgam is a weak embedding but not every weak embed-
diné is an embedding. We can replace “embeddable” with “weakly embeddable”
in Problem 5.4.2 (i) and (ii) and call the respective decision problems the strong
decision problem for weak amalgam embeddability iﬁ K and the weak decision prob-
lem for weak amalgam embeddability in K. It is conceivable that a class K has an
undecidable (strong or weak) decision problem for amalgam embeddability but a de-
cidable (strong or weak) decision problem for weak amalgam embeddability (or vice
versa). We will show that this is not the case for the class of all rings (semigroups)

and the class of finite rings (semigroups).

THEOREM 5.4.4 The strong and weak decision problems for weak embeddability
of ring (semigroup) amalgams in the class of all semigroups (rings) and in the class .

of finite semigroups (finite rings) are undecidable.

Let S be a semigroup and Z, be the field of two elements, {0,1}. Then the
universe of the semigroup ring Z»[S)] is the set of all functions f: S — {0,1} which
map only finitely many elements of S to 1. The addition on Z;[S] is pointwise

and the multiplication is defined by fg(s) = st:s f(si)g(s;). There is a natural
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embedding of every semigroup S into the multiplicative semigroup of the semigroup
ring Z5[S] which sends an element s to the function f; defined by f,(t) =1ifs=1¢
and 0 otherwise. Also if S is a subsemigroup of a semigroup T then by considering
those elements of Z,[S] which are functions sending all elements ¢ € T\S to 0 we
have that the semigroup ring Z,[S] is a subring of Z,[T]. These facts enable one to
translate many semigroup embedding problems into ring embedding problems. This
will also be true of amalgam embeddability.

Given a semigroup amalgam A = [S;; U] we can construct the ring amalgam
Z,[A] = [Z,[S;]; Z,[U]]. The amalgam A can be embedded into the multiplicative
semigroup amalgam of Z,;[A] as a “sub-amalgam” in the natural way. If A is
(weakly) embeddable in T then Z,[A] is (weakly) embeddable in Z,[T] (which is
finite if and only if T is). Furthermore, if Z,[A] is (weakly) embeddable in a ring or
finite ring R then the amalgam A (which is a “sub-amalgam” of the multiplicative
semigroup amalgam of the ring amalgam Z,[A]) is (weakly) embeddable in the
multiplicative semigroup of R. Thus it will suffice to prove Theorems 5.4.3 and
5.4.4 in the case of semigroups. This will be done in the style of the previous results
in this chapter. However the role of partial groups will be replaced by the slightly
more specific symmetric partial groups.

A symmetric partial group (see [45]) is a partial group G with the property that
for every g € G there is a unique ¢’ € G’ such that g¢’ = ¢’g = 1. For any finite
partial group we may construct a symmetric eztension G’ of G which is a symmetric
partial group containing G such that for every g € G/, either g or ¢ is contained
in the partial group G. This condition ensures that there are only finitely many
possible symmetric extensions and they may be effectively listed. It is also clear
that if G is embeddable in a group then there is a symmetric extension of G that is
embeddable in a group, since every group may be considered as a symmetric partial
group (where the “partial” operation is deﬁned everywhere). Thus the problem of

determining whether a finite symmetric partial group is embeddable in a group or
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in a finite group is also undecidable.

For all arguments to follow we will take G4 to be an extension of rank four of a
finite symmetric partial group G; and G; will be used to denote the set Uf;:oGj for
i < 4.

DEFINITION 5.4.5 For any group G, we will let B,(G) denote the Brandt semi-
group M[G,n,n, I] where I is an n x n identity matriz over G U {0}.

Despite the apparently simple structure of the Brandt semigroups, in [25] it is shown
that the set of finite subsemigroups of Brandt semigroups is not recursive. It is well
known that all Brandt semigroups are inverse semigroups.

We now define a finite semigroup S(G;, G4) corresponding to any finite extension

G4 of rank four of a symmetric partial group G;.

DEFINITION 5.4.6 Let G4 be an estension of rank four of a symmetric partial
group Gy with Go, Gy, ..., G4 defined as before. Then we construct the semigroup
S(G1,G4) on the set

{(4,9,7): 0 <i<j < 5,9 €G-} U{0}

with the multiplication (1,9, ) - (k, h,l) = (¢,g9h,l) if j = k and gh is the product of
g with h in G4 and 0 otherwise.

As in the constructions presented in the previous two sections, it is not difficult to
verify that this is indeed a semigroup. Associativity holds essentially because we
required it to be so in our definition of an extension of rank k. If G4 is embeddable
in a group H then S(G;, G4) can be viewed as a subsemigroup of “the upper half”
of the Brandt semigroup Bs(H) over H.

Let (1) be the one element group. Now the intersection of the universe of Bs((1))
with the universe of S(Gy, G4) consists of those elements of Bs({1)) of the form
(z,1,7) where ¢ < j. Furthermore the restriction of the operations of both Bs((1))
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and S(Gj, G4) to this set coincide and form a subsemigroup. We will denote this
subsemigroup by S((1),(1)) which is consistent with our previous definition, since
(1) can be considered as an extension of rank four of itself. We can now construct

the following amalgam.

DEFINITION 5.4.7 For a finite extension G4 of rank four of a symmetric partial
group G define an associated semigroup amalgam A(Gy, Gy) by

A(G1,G4) = [S(G1,G4),Bs((1)); S((1),(1))]

The following tables representing S(G;, G4) and Bs((1)) respectively may help to
visualize the amalgam we have constructed (here (i,G, j) = {(i,9,7) : ¢ € G}):

(1,Go,1) | (1,G1,2) | (1,G4,3) | (1,G3,4) | (1,G4,5)
(2,Go,2) | (2,G1,3) | (2,G2,4) | (2,G4,5)

(3,Go,3) | (3,G1,4) | (3,G-,5)

(4,Go,4) | (4,G4,5)

(5,Go,5)

(1,Go1) | (1,Go,2) | (1,G0,3) | (1,G0,4) | (1, Go, 5)
(2,Go,1) | (2,G0,2) | (2,G0,3) | (2,Go,4) | (2,Go,5)
(3,Go,1) | (3,Go,2) | (3,Go,3) | (3,Go,4) | (3,Go,5)
(4,Go,1) | (4,Go,2) | (4,Go,3) | (4,Go,4) | (4,Go,5)
(5,Go,1) | (5,Go,2) | (5,Go,3) | (5,Go,4) | (5,G0,5)

Theorems 5.4.3 and 5.4.4 now follow from the following theorem.

THEOREM 5.4.8 Let Gy be a finite symmetric partial group. The following are

equivalent:
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(i) Gy is embeddable in a group (finite group);

(i) There is an extension Gy of rank four of G, that is embeddable in a group (finite
group); _

(¢1t) There is an extension G4 of rank four of Gy such that A(G1, Gy) is embeddable
in a Brandt semigroup (finite Brandt semigroup);

(iv) There is an extension G4 of rank four of Gy such that A(G1, Gy) is embeddable
in a semigroup (] ﬁﬁite semigroup);

(v) There is an eztension G4 of rank four of Gy such that A(Gy,Gy) is weakly
embeddable in a Brandt semigroup (finite Brandt semigroup);

(vi) There is an eztension G4 of rank four of Gy such that A(Gy, Gy) is weakly

embeddable in a semigroup (finite semigroup).

Proof: That (i)=(ii) follows from comments following the definition of an extension
of rank k of a partial group.
(12) = (u12): Say Gy is embeddable in a group H. Then it is easily verified that
A(G,,Gy4) is embedded in the Brandt semigroup Bs(H) by the identity maps:
v1 ¢ S(G1,G4) = Bs(H) and v, : B5((1)) — Bs(H) that take an element from
their respective domains and assign to it the element with the same name in B5(H).
Note that Bs(H) is an inverse semigroup that is finite if and only if H is a finite
group.

(iii)=(iv) and (v)=>(vi): Trivial.

(iii)=>(v) and (iv)=-(vi): This follows since every embedding of an amalgam is a
weak embedding of that amalgam.

(vi)=(i): Say the amalgam A(Gj, G4) is weakly embeddable in a semigroup T
(a finite semigroup T) via the injective homomorphisms v : S(G1,G4) — T and
vy : Bs((1)) — T.

For any element g € Gy consider the element v1(2,g,3) of T. Now since Gy is
symmetric, there is an element ¢’ such that g¢’ = g'¢g = 1 in G; (and of course in G4

since G; is contained within Gg). So 11(2,9,3)[11(3,¢',4)] = 11((2,9,3)(3,9',4)) =
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11((2,1,4)) and

1((2,1,4)[2((4,1,2)n((2, 9,3))] =[11((2,1,4))r2((4, 1, 2))]11((2, 9, 3))
(by associativity)
=[12((2,1,4))12((4,1,2))11((2, 9,3))
(since 11((2,1,4)) = 11((2,1,4)))
=[12((2,1,4)(4,1,2))]11((2, 9,3))
=[+2((2,1,2))]n1((2, 9,3))
=[11((2,1,2))]1((2, 9,3))
(since 11((2,1,2)) = 1n((2,1,2)))

=VI((2$ g, 3))
Note that we do not know what the product 15((4,1,2))11((2,9,3)) from the first

line actually is in T, only that it does exist. Therefore the set Hy3 = {11((2,9,3)) :
g € Gy} is R-related to 11((2,1,4)). In particular H, 3 lies within an R-class of T.

Also [1((1,4',2))v((2,9,3)) = vi((1,9',2)(2,9,3)) = 1((1,1,3)) and

[Vl((zaga 3))V2((3= 1, 1))]V1((1’ 1'—'3)

11((2,9,3)lr2((3,1,1))n((1,1,3))]
(2,9,3))2((3,1,1))12((1,1,3))]
(2,9,3)w2((3,1,1)(1,1,3))]
( (( )
( (( )
(

v (
v (
11((2,9,3))[((3,1,3))]
v1((2,9,3))[»1((3,1,3))]

_Vl( 2 » 9, )

Thus H» 3 is within an £-class of T. In particular since H 3 is both £- and R-related
in T, it lies within an H-class of T. _

Now for each g € G; we can consider the element v;1((3,g,4)) of T. Replacing
every expression of the form (7, A, 7) in the above arguments by (¢« + 1,h,7 + 1) we
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obtain the analogous result that the set Hz 4 = {(3,9,4) : ¢ € G;} is also contained
in an H-class of T.

Consider the extension G of rank 2 of G; consisting of the elements of the set
G, with the partial operation f - g = h if and only if either f or g is contained
in the set Gy and fg = h in G4. We can construct the associated split system
({a} x Gy x {b},{b} x Gy x {c},{a} x G2 x {c}) and a corresponding embedding
(7,k,1) into T defined by

j((aaga b)) = Vl((2’933))a k((b,g, C)) = Vl((3sg:4))a j((a,g,c)) = Vl((Q;h)4))

where z € {j,k,l}, y € {a,b}, z € {b,c}, y # 2, and g is contained in G; and A is
contained in G,. It is clear that these maps are injective and constitute an embed-
ding of ({a} x G; x {b}, {b} x G1 x {c},{a} x G2 x {c}) since j((a,g,b))k((b, h,c)) =
((2,9,3)1((3,h,4) = 11((2,9,3)(3,h,4)) = 1((2,6h,4)) = I((a,gh,c)). Fur
thermore since the images of j and k are the sets Hy 3 and Hjz 4 respectively and
these lie within H-classes of T we may apply Lemma 5.1.6 to show that G; is em-
beddable in a group. The Theorem is proved. i

The two semigroups Bs({1)) and S((1),(1)) involved in the amalgams used for
this proof are fixed throughout. Furthermore since Brandt semigroups are inverse

semigroups we have actually proved the following result.

COROLLARY 5.4.9 There is no algorithm that determines when given a finite
semigroup amalgam A = [S;,S2; U] with |S2| < 26, |U| < 16, whether A is embed-
dable (or weakly embeddable) in any of the following: a semigroup; a finite semi-

group; an inverse semigroup; a finite inverse semigroup.

So the weak decision problem for amalgam embeddability in the class of inverse
semigroups and finite inverse semigroups is undecidable.

In the case of embedding (weak or otherwise) a semigroup amalgam in a finite
semigroup (or in a finite inverse semigroup) we may improve the bounds in this

theorem as follows.



CHAPTER 5. UNDECIDABLE EMBEDDING PROBLEMS. 193

THEOREM 5.4.10 There is no algorithm that determines when given a finite
semigroup amalgam A = [S,,S;; U] with |S;| < 7, |U| < 5, whether A is em-

beddable in a finite semigroup or a finite inverse semigroup.

Proof: This essentially follows from the main result in [45]. For any extension G3 of
rank 3 of a partial group G, (with G; for ¢ < 3 defined as before) we may construct
a semigroup S(Gy, Gs) in the following way: the universe of S(G;, G3) is the set
{(3,9,7) : 0 < i < j < 4,9 € Gj—;} and the multiplication is defined in the same
way as that for S(Gy, G4) in Definition 5.4.6 (this'semigroup first appeared in [25]).
In [45], Kublanovsky and Sapir show that for a symmetric partial group G; one can
find an extension G3 of rank three of G; embeddable in a finite group, if and only if
one can find a finite semigroup T containing S(G1, G3) with elements z,y € Tl_ such
that 2-(1,1,4)-y=(2,1,3) in T. With this in mind, we can construct an amalgam
consisting of S(Gi, G3) along with a semigroup that enforces this condition in any

embedding semigroup. This second semigroup, S;, can be taken as the set
{(2,1,1),(4,1,3),(2,1,3),(1,1,4),(2,1,4),(1,1,3),0}
with multiplication as within a Brandt semigroup. The set
U=1{(21,3),(1,1,4),(2,1,4),(1,1,3),0}

is common to both S; and S(G1, G;) and furthermore the restriction of the oper-
ations of these semigroups to U coincide and forms a subsemigroup of both which
we will call U. It is now easily verified that the following constitutes a semigroup

amalgam:

A’[Gl, G3] = [S(Gl, Ga), Sg; U]

Furthermore if Gj is embeddable in a finite group H, then this amalgam is em-
beddable in B4(H) in the obvious way (analogous to the embedding of A(G;, Gy4)
.into Bs(H) in the proof of Theorem 5.4.8). On the other hand, if A'(G;,G3) is
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embeddable into a finite semigroup T by the maps v, and v, then we have

v2((2,1,1))11((1,1,4))r2((4, 1,3)) = v2((2,1,1))r2((1, 1, 4))r2((4,1,33))
=1,((2,1,3))
=1((2,1,3))

and therefore G; is embeddable in a group. O

Note that there is a subsemigroup U’ of U on the three element set

{(2,1,3),(1,1,4),0}

If we replace U by U’ throughout the proof of Theorem 5.4.10, all arguments remain
valid except the natural embedding of A'(G;, G3) into B4(H) is now only a weak
amalgam embedding since 11((2,1,4)) = 12((2, 1,4)) though (2,1,4) ¢ U’. Thus we

have proved

THEOREM 5.4.11 There is no algorithm that determines when given a semigroup
amalgam A = [S,,Sy; U] with |Sz| =7, |U| = 3, whether A is weakly embeddable in

a finite semigroup.

In [77], Sapir proves the undecidability of the strong decision problem for amal-
gam embeddability in the class of finite semigroups using an almost identical struc-
ture to that we use to prove Theorem 5.4.10 above however the bounds for |S;| and
|U| are 17 and 7 respectively.

Fundamental to the proof of Kublanovsky and Sapir’s result [45] is the fact that
finite semigroups consisting of only one non zero J-class have a particularly well
defined structure: they are completely 0-simple and by a well known theorem of
Rees, isomorphic to a Rees Matrix semigroup with zero over a group (see [10] or [29]
for details). The completely O-simple structure is not available in the general case of

embedding in a J-class of an arbitrary semigroup (indeed any finite semigroup can



CHAPTER 5. UNDECIDABLE EMBEDDING PROBLEMS. 195

be embedded in an infinite semigroup with a single J-class which is not completely
0-simple), and this is why the proofs of Theorem 5.4.10 and Theorem 5.4.11 only

apply for embedding amalgams in the class of finite semigroups.

NOTE 5.4.12 Theorems 5.4.9, 5.4.10 and 5.4.11 have ring analogues. To obtain
these we can replace “semigroup” with “ring” and any numbers n appearing in the

theorems by 2™.

This is because if S is a finite semigroup with n elements then the semigroup ring
Z,[S] has 2" elements.

Necessary and sufficient conditions for the embeddability of a semigroup amal-
gam into a semigroup have been found by Howie [27]. We will describe this charac-
terisation since by Theorem 5.4.3 the conditions involved must not be algorithmically
verifiable.

Let A = [{Si: i€ I};U;{¢:: ¢ € I}] be a semigroup amalgam. We will assume
that the sets S; are pairwise disjoint (here, as usual, S; denotes the universe of S;).
The free product, II*S;, is the semigroup generated by the set X, = US; with the
Cayley tables of the S; determining the relations R4. That is, II*S; is the semigroup
(X4; Ra). We may define a congruence 6 on II*S; as the congruence generated by
{(¢i(u),dj(u)) : 2,5 € I, u € U}. The free product of the amalgam A is the
semigroup II7;S; = (X4; Ra)/6. For each 1 € I there are homomorphisms v; from
each S; into II};S; defined by v;(s) = s. If these maps constitute an embedding of
the amalgam A then it is said that A is naturally embedded in its free product.

THEOREM 5.4.13 [27] The amalgam A is embeddable in a semigroup if and only

if it is naturally embedded in its free product.

Let X/, be the set

UU(Xa\{¢i(u):ue U, iel})
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and R/, determined by the set of Cayley tables of the S; with every occurrence of

an element of the form ¢;(u) replaced by the element u. We have
I5S: = (Xa; Ra)/0 = (X5 RY).
The previous theorem can now be restated as

THEOREM 5.4.14 The amalgam A is embeddable in a semigroup if and only if

the elements X, are distinct in (X; R.,).
Thus we may reformulate Theorem 5.4.3 for semigroups as

COROLLARY 5.4.15 There is no algorithm that will solve the following decision
problem: given a finite semigroup amalgam A, determine whether two generators

T,y € X4 represent different elements of the semigroup (X';; R,).
We finish with some questions.

QUESTION 5.4.16 (i) What are the minimal pairs (|S,|, |U]) for which Theorems
5.4.9, 5.4.10 or 5.4.11 (or their ring analogues) are true and are these minimal pairs
the same?

(i1) Are there classes for which the decision problem for amalgam embeddability is
decidable (or undecidable) and the decision problem for weak amalgam embeddability
is undecidable (or decidable respectively)?

(iti) Are there varieties V for which the (st;‘ong or weak) decision problem for amal-
gam embeddability or weak amalgam embeddability is decidable (or undecidable) but
the opposite is true for the finite trace of V (that is, the finite members of V)?

Regarding the first of these questions we note that in [25] it is shown that any
semigroup amalgam with a two element core is embeddable in a semigroup. The
last question seems of particular interest when V is the class of inverse semigroups
(which form a variety in the signature {-,7!}) since it is known that every inverse

semigroup amalgam is embeddable in an inverse semigroup, but also that not every
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such finite amalgam is embeddable in a finite inverse semigroup (see [29]). We
note however that one of the main results of [60] shows that there is an algorithm
that determines, given a finite semigroup amalgam A with inverse semigroup core,
whether A is embeddable in a finite semigroup, though the embedding semigroup

is not inverse.



Appendix A

Ten small WFB semigroups that
generate varieties with

uncountably many subvarieties.

Here we list the Cayley tables some seven element WFB semigroups that generate
varieties with uncountably many subvarieties. That each of these semigroups is
WFB follows from results of [74] (see Theorem 1.1.2). The first seven monoids have
index three and therefore by Theorem 4.1.2 generate varieties with uncountably
many subvarieties if and only if they do not satisfy zyz ~ yzz or zyz ~ zzy. It
is a routine matter to verify that these identities are not satisfied by any of the
semigroups below. The eighth example is isomorphic to S({aba}) and therefore has
the desired property by Theorem 4.1.6. The final two examples are isomorphic to the
seven element semigroup described in Example 4.2.9 and a corresponding example
constructed from A,. Finite bases of identities have not been established for any
but S({aba}) (see above) and the first example below. It is possible to show that

the closure under deletion of letters of the following set of identities is basis for the

198
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semigroup identities of this semigroup.

{zzz ~zzez}
U {$u1$UQ$U3IB " TUIURTUIT, TUITULTUIT =~ xulxugugx}

U {zu1yuszy & TU1YU2YT, TYUITULY R YTUITUY }

0 1 a b c d e 0 1 a b c d e
0{0 0 0 0 0 0 O 0{0 0 0 0 0 0 O
110 1 a b ¢ d e 110 1 a b ¢ d e
al0 a 0 0 a 0 O a|0 0 0 a 00
b{0 b a b a 0 0 b{0O b ab 0 0 O
c|{0 ¢c 0 0 ¢c 0 O c|0 ¢ 0 0 ¢c 0 O
dj{0 d 0 0 0 e O d{0 d 0 0 0 e O
e{0 e 0 0 0 0 O e|0 e 0 00 0O

0 1 a b c d e 0 1 a b c d e
0{0 0 0 0 0 0 O 0i0 0 0 00 0O
1{0 1 a b ¢ d e 1{0 1 a b ¢ d e
al0 a 0 0 0 0 O al0 a 0 0 0 0 O
b{0Ob 00 b 0 0 b|0 b a b b 0 0
c|0 c a 0 ¢c 0 O c|{0 ¢c a ¢c c 00
di{0 d 0 0 0 € O di0 d 0 0 0 e O
el0 e 00 0 0 O el0 e 000 00
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