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CHAPTER I 

INTRODUCTION 

1.1.  Introduction.  

Let C be a normed linear space over the field of real or 

complex numbers and M be a finite dimensional linear subspace of C. 

.Given an element f E C, let us define a quantity p (f) by 

pm (f)  =  inf  df-gll • 
gcM 

The general linear approximation problem can be formulated 

as one of determining the existence, uniqueness and characterization 

of the set of elements h c M satisfying 

(1.1.2)  pm (f)  =  . 

Such functions h are called the best approximations to f 

with respect to M and their existence is guaranteed by the 

following theorem., 



Theorem 1.1. 

For any given element f E C, there exists an element h E M 

satisfying equation (1.1.2). 

Proof.  see Buck [4]; Achieser [1], p.10. 

In this thesis, we shall be concerned with the problem of 

uniform ( or Chebyshev) approximation, in both linear and non-

linear cases. In the case of linear uniform approximation, let 

A be a compact space and C[A] be the space of a continuous real-

or complex-valued functions defined on A. Then C[A] is a normed 

linear space with respect to the uniform (or Chebyshev) norm which 

is defined by 

1.1.3)  [III  = . sup If (x )1  , 
xEA 

(see, for example, Simmons [32], p.55). 

Given a function f E C[A], the uniqueness of the best 

uniform approximation to f with respect to a finite dimensional 

subspace M of C[A] can be established provided M satisfies the 

so-called "Haar condition". 



3. 

Definition 1.1. 

A linear subspace M of C[A] of finite dimension n is said 

to fulfill the "Haar condition" if it possesses the property 

that every function in 11 Which is not identically equal to zero 

vanishes at no more than •(n-1) points of A. 

This property gives rise to a sufficient condition for the 

uniqueness of the best uniform approximation. 

Theorem 1.2. 

If the linear subspace M of C[A] satisfies the Haar condition, 

then for every f c C[A],  there exists a unique best uniform 

approximation to f with respect to H. 

Proof.  see Meinardus [21], p:16; Achieser [1], p.68. 

• In the case of non-linear uniform approximation, let D be 

a given set of parameters and N denote a set of functions F(b;X) 

in C[A], which depend on the parameters b c D. For a given 

function f E C[A], we define the minimal deviation p N (f) by 

(1.1.4) 
 

pN (f)  = inf If(x) - r(b; 



A function F(c;x) E N, c E B, is called a best uniform 

approximation to f with respect to N if it satisfies the following 

equation 

(1.1.5)  p (f)  =  If(x) - F(c;x)H . 

The general theory of non-linear uniform approximation has 

been investigated only in the last few years, although some results 

for special cases, were given much earlier. For example, the case 

of rational approximation was considered by Chebyshev in 1899 and 

. de la Valle Poussin in 1919. Unlike the linear case, for a given 

function f EC[A], a best approximation to .f with respect to N does 

not always exist (see Rice [28]). However, the uniqueness of the 

best approximation, when it exists, may be established by an 

appropriate generalization of the Haar condition (see Meinardus 

[21], p.142). 

In this thesis, we shall consider the problems of 

approximation of continuous functions of one variable by polynomials 

and rational functions. These problems have been of interest to 

mathematicians for more than a century; in particular, for the last 

two decades when the development of electronic computers made the 

computation of best uniform approximations possible. Chebyshev 

was the first mathematician to study the characterization of the 

best uniform approximations. The problem was later investigated by 

4. 



Haar, Kolmogroff and de la Vallee Poussin (see Achieser [1], 

chapter 2;11einardus [21], chapters 3 and 2). From their 

results, Bernstein [2] was able to obtain analytic expressions 

for the best uniform approximations to a few particular functions. 

We-shall restrict ourselves to the normed linear space of 

all continuous real-valued functions of one variable defined on a 

finite closed interval [a,b], which will be denoted by C[a,b]. In 

the following two sections, we shall take a closer look at the 

existence, uniqueness and characterization of the best uniform 

approximations for both polynomial and rational approximations 

in the space C[a,b]: 

1.2. On best uniform polynomial approximation. 

Without loss of generality, wa may consider the uniform 

polynomial approximation in the space a-1,1]. Let P
n 
denote 

the space of all polynomials of degree at most n, then P n  is a 

finite dimensional subspace of c[-1,1]. 

, Definition 1.2. 

Let f(x) E C[-1,1]. For any non-negative integer n, the 

quantity E n (f) is defined by 

5. 



6. 

(1.2.1 ) 
 

E( f)  =  inf  . 
pcP n 

Definition 1.3.  

Let f(x) E C[-1,1]. For any non-negative integer h, a 

. polynomial p(x) is called a best uniform polynomial approximation 

of degree n to f(x) if it satisfies the following equation 

(1.2.2)  En (f)  =  . 

Theorem 1.1 assures us that, for a. given function f(x) .  e 

•there exists a best uniform polynomial approximation p(x) to f(x). 

The quantity E n (f). is the maximum error(ccurim in the approximation . 

Since P
n 	 n+1' E +1 (f)  E , (0, for all n. Furthermore, Weierstrass' 

theorem (see below) implies that as n  co, E (f)  0. 

Theorem 1.3.  (Weierstrass). 

If f(x) E C[-1,1], then for every C> 0, there exists a 

'polynomial q(x) of degree n = n(c) such that 

(1.2.3)  If(x) - q n (x)I  e  , 

for all x E .[-1,1]. 



7. 

Proof.  see Achieser [1], p.30; Rivlin [31], p.12. 

.Jackson, Bernstein and several Other authors have 

investigated the order of convergence of the quantity E n (f) and 

itS . dependency.on the structure of the function f and its 

derivatives (see, for example, Heinardus [21], chapter 5). 

In addition, various lower and upper bounds for E n (f) have been 

. obtained by de la Vallee Poussin, Bernstein, Blum & Curtis and 

others (see Rivlin [29]). These results enable us to determine 

how closely a given function with some known properties can be 

approximated by polynomials. They do not, however, help us to 

obtain a best uniform polynomial approximation. To this end, we 

need the following characterization theorem. 

•Theorem •1.4:  (ChebyShev). 

Let f(x) c C[-1,1]. Theip n (x) is a best uniform polynomial 

• approximation to f out of Pn  if and only if the difference 

f(x) - pn (x) attains its extreme values alternately in at least 

(n+2) points of [-1,1]. 

Proof.  see Achieser [1], p.55; Rivlin [31], p.26. 

This property of p(x) gives rise to its uniqueness .. 



-Theorem  

If f(x) € q-1,1] and p (x) is a best uniform polynomial 

approximation to f out of Pn , then 

(1.2.4)  ilf  PhI < V-PH 

for all p(x) E Pn , other than 

Proof.  see Rivlin [31], p.28. 

To sum up, for a given function f(x) E C[-1,1], there exists 

a unique best uniform polynomial approximation p n (x) of degree n to 

f. The polynomial p(x) is characterized by theorem 1.4 and 

the maximum error E n (f) occuring in the approximation is given 

by equation (1.2.2). We shall now obtain similar results for the 

case of uniform rational approximation. 

1.3. On best uniform rational approximation. 

Let V
n,m 

denote the set of all irreducible rational 

functions r(n,m;x) of the form 

8. 

- P( q(xx i 
(1,3J)  r(n,m;x) 



9. 

where p(x) E P n , q(x) E Pm  and -1  x  1. The rational 

function r(n,m;x) is said to be irreducible if the polynomials 

p(x) and.q(x) have no common factors. 

Definition 1.4. 

Let f(x) E Cr-1,1]. For -non-negative integers n and m, 

.t e quantity En,m (f) is defined by 

(1.3,2) En,m (f)  inf  - r(n,m;x)II  . 
rEV 

n,m 

Definition 1.5. 

Let fi(x) E C[-1,1]. For non-negative integers n and m, a 

rational function R(n,m;x) of the form (1.3.1) is called a best 

uniform rational approximation to f out of Vn,111 
if it satisfies 

the following equation 

(1.3.3)  En,m (f)  =  If(x) - R(n,m;x)il  . 

For a given function f(x) C C[-1,1], it is considerably 

more difficult to establish the existence of a best uniform 

rational approximation to f out of V n,m . 



Theorem 1.6 . . 

If f(x) E CHO , then there exists 'a rational function 

R(n i m;x) such that 

. ljf(x) - R(n,m;X)Ik ilf(x) - r(n,m;x)1 

for all r(n,m;x) •V
n,m • 

Proof,  see Achieser [1], p ..53; Rivlin [31] . , 

In analogy with theorem 1.4., we have the following 

:pharacterizatiop property of R(n,m;x). 

Theorem 1.7.  (ChebyShev 

If f(x)  C[-1,1], then R01011;x = p(x)/q(x) is a-best 

uniform rational approximation to f out of V  if and only if.the 
r1.01  

difference f(x).- R(n,m;x) attains its extreme values in at least 

-N points of [-1O], where 

• 	 (;) 
(1.3.4)  11 = 24- max (n + Os, m 

3p and 3q being the degrees of the polynomials p(x) and q(x) 

respectively. 

1 0. 



Proof,  see Achieser [l], p.55; Rivlin [31], p.123. 

Let-  us now •denote by r(n,M;x) a rational function of the 

form (1.3.1), where the coefficients of x n  and xm  of p(x) and 

q(x),• respectively, do not vanish. We derive from theorem 1.7 the 

following result which will be used later on. 

Lemma 1.1. 

• (n,m;x) is the best uniform rational approximation to f(x) 

out of v.n+u,m+v if thectifference f(x) - i-- (n,m;x) attains its 

extreme values alternately in at least (n+m+2+t) points of E-1,1 

where g-_4-44T*-4-t. t = max (u)17) - .. 

Proof.  This is a direct consequence of theorem 1.7. 

As in the case of polynomial approximation, the best 

uniform rational approximation characterized by theorem 1.7 is 

in fact unique. 

Theorem 1.8. 

If f(x) E CI-1,1] and R(n,m;x) is a best uniform rational 

approximation to f out of V
n,m 

then 



12. 

	

(1.3.5 	- R(n,m,x) II < Ilf - 	h,m;x)11 	, 

	

for all 	n,m;x) E Vn,m , other than R(n,m;x). 

	

.Proof. 	see Rivlin [31], p.125. 

Thus, let f(x) be a given function in C[-1,1], and let n,m 

be any two non-negative integers. Then there exists a unique 

best uniform rational approximation R(n,m;x).,to f out of V n,m • 

R(n,m;x) is characterized by theorem 1.7 and the maximum error 

Enm (f) involved in the approximation is given by (1.3.3). , 

• It is worth noting that the 'case of uniform polynomial 

approximation considered in. the previous section is in fact a 

special case of uniform rational approximation. When m = 0, 

En .,,m (f) = E n (f) and R(n,0;x) = pn (x). 

Unlike polynomials, rational functions do not have the

pleasant property of depending linearly on their coefficients. 

The theory of uniform rational approximation-is,therefore, far 

less well developed than that of uniform polynomial approximation. 

Fewer exact and asymptotic results. are to be found in the 

•literature. Furthermore, the question of how closely it is possible 

to approximate a *given function by rational functions has not yet 



been fully investigated. A result by Newman [24], however, 

illustrates that for the function Ixl, rational approximations . 

are far more effective than polynomial approximations. Similar 

. results along this line have been obtained by Turn [36],. Freud 

and Szabados [9]. 

We shall now introduce a system of Orthogonal polynomials 

which plays an important role in the theory of uniform 

approximation. 

Definition 1.6. 

For any non-negative integer n, the Chebyshev polynomial of 

the first kind T(x) of degree n is defined by 

(1.3.6 
 

(x) = cos no  , 

where x = cos() and -1  x  •1 . 

(x)r  is a system of orthogonal polynomials on [-1,1]. 

 

n  n=0 

We have 

T, if r = s = 0 

 

f 1  2 -4 
(1-x ) T 

r 
 (x)T 

s
(x)dx =  47r, if r = s  0, 

-1 
0 , if r  s , 

13. 



(see Clenshaw [5 ]). 

Given a function f(x), defined on [-1,1], we can express f(x) -  

in terms of a series expansion of these polynomials. 

Definition 1.7. 

The Chebyshev series expansion of f(x) defined on [-1,1] 

is defined as 

(1.3.7) f(x)  X' a T k (x)  , 
k=0 

where X' denotes a sum whose first term is halved and the Chebyshev 

coefficient a
k' 

k = 0,1,2,..., are given by 

(1.3.8) 

Definition 1.8. 

1 = j (1-x 2 ) - f(x)T,(x)dx . 
-1 

For any non-negative integer n, the truncated Chebyshev 

series expansion s(x) of f(x) of degree n is defined by 

(1.3.9) s
n
(x) =  y ,  a kT k (x)  . 

k=0 

14. 

From (1.3.6), we find that s n (x) is a polynomial of degree 

at most n. For some functions, s (x) differs very little from 



the best uniform polynomial p n{x), and is therefore often used 

as an approximation to f(x). The maximum error S
n 
 occuring in 

the approximation is defined as follows. 

Definition 1.9. 

For any non-negative integer n, the quantity Sn is defined 

sn  =if - si  

Let 	a. not ,1414, 0441. 
f(x)E C[-1,1],(there exists a Chebyshev series expansion 

of the form (1.3.7), which is uniformly convergent for all 

x E [ - 1,1] (see ClenShaw [5 ]). For many functions, we have analytic 

expressions for. a k . The values of these coefficients have also 

been extensively tabulated (see, for example, Clenshaw [E ], Luke 

[19]). Only for a few functions, however, do we have analytic 

expressions for the quantities , E n (f) or En .,m (f) and the best 

Uniform polynomial or rational approximations.'. In this thesis, 

we shall add to the list of these known functions, some special 

class of continuous functions whose best -uniform rational 

approximations and the quantity En,m(f)  can be given explicitly. 

In addition, we shall show how asymptotic estimates of the 

quantities E
n
(f) and En,m(f),  for large n, may be readily 

computed from the knowledge of the Chebyshev coefficients of f(x). 

15. 



16. 

From this result, we shall obtain the best uniform polynomial 

and rational approximations to certain functions f(x) E C[-1,1]. 

Apart from quoted results, chapters III, IV, V, VI and VII are original. 

In chapter II, we shall give a survey of known results where 

. the best Uniform polynomial and rational approximations are given 

either exactly or asymptotically. We shall consider in detail 

those results which are of some relevance to the later chapters of 

. the thesis, other results will only be briefly mentioned. 

In chapterIll, we shall obtain some explicit results for the 

best uniform rational approximation. We shall define . a Class of 

rational functions which will be extensively used throughout the 

• thesis: These functions can be looked upon as generalizations of 

the Chebyshev polynomials of the first kind. From this class of 

functions, we shall construct a special class of continuous 

functions whose best uniform rational approximations will be obtained 

explicitly. From these general results, we can recover some exact 

results for the best uniform polynomial and rational approximations 

previously given by Bernstein [2], Boehm [3], and RiVlin [30]. 

In chapters IV, V and VI, we shall obtain some asymptotic 

results. An algorithm for finding an asymptotic estimate for the 

quantity En,m (f), for large n, wheref(X) C[-1,1] and m = 0(1)n, 

will be given in chapter IV. We shall prove that when f is a 



polynomial of degree (n+r+1), n and r being two non-negative 

integers, then an asymptotic estimate for E 
nm

(f), for large n, 
,  • 

is given by the eigenvalue of (m+1)
5t 

largest modulus of a certain 

symmetric matrix of order (n+r+1). The coefficients of this matrix 

are in fact the Chebyshev coefficients of f. This result will then 

be generalized to certain functions which are continuous on [-1,1]. 

In chapter V, we shall consider in detail the case of 

uniform polynomial approximation. An asymptotic estimate for 

for large n, will be obtained as a special case of chapter 

IV. From this, we shall then find the polynomial which is 

asymptotic to the best uniform polynomial approximation. Some 

numerical examples will be given in the last section. These 

results, Which are obtained with much less effort, are nevertheless 

comparable to those given byother authors (see Hastings [13], . 

Murnaghan and Wrench [23]). 

ChapterVI will deal with the case of uniform rational 

approximation. The analysis for determining the rational 

function which is asymptotic to the best uniform rational 

approximation is not as satisfactory as in the case of polynomial 

approximation. But unfortunately, we have not been able to 

improve the analysis any further. 

17. 

Finally, in chapterVII,we shall use some results from 



18. 

chapter V to prove a conjecture of.Clenshaw [6]. This conjecture 

concerns with the maximum value of the quantity Sn/En , taken over 

all polynomials of degree (n+r+1), n and r being two non-negative 

integers. Although this chapter bears no direct relation to the 

main theme of the thesis, it was this problem, in fact, that led 

us to otherproblems considered in chapters III, IV, V and VI. 



CHAPTER II 

- A SURVEY OF KNOWN RESULTS 

In section 2.1, we shall give a survey of the known results 

where the best uniform polynomial approximations can be obtained 

either explicitly or asymptotically. Section 2.2 will be devoted 

to the best uniform rational approximations. We shall consider 

in detail those results which are of some relevance to the later 

chapters of the thesis; other results will only be briefly 

mentioned. 

2.1. On best uniform polynomial approximation. 

2.1.1.  Exact results. 

Whereas many explicit analytical results for particular 

functions may be found in literature for least-square approximation, 

(see, for example, Rivlin [31], Chapter 2); this is not so for 

uniform polynomial approximation. There are a very few examples 

where the best uniform polynomial approximation p n (x) of degree n 

to f(x) and the maximum error E
n (f) can be obtained explicitly. 

19. 



2.1.1.1. The polynomial of degree n which deviates least from zero. 

vvuoytic, .NotAriorvi;cti 

• The problem.  of finding the polynomial of degree n which 

• deviates least from zero on the interval [-1,1], is the same as 

that of. finding the best uniform polynomial approximation of 

degree (n71) over [-1,1] to the function f(x) = x n . let us consider. 

the Chebyshev polynomial of degree n defined by (1.3.6). From this 

definition, we find that the function x n  can be expressed in terms 

of Chebyshev polynomials Tk.( ), k = 0(1)n, aSJ011ows. 

20. 

(2.1.1) 
2 

1 
T(x) + 

n-1 n-1 (x)  adr0 (x),  

where a, . i = 0(1)(n-1), are real numbers (see, for example, 
1 

Clenshaw 5 ]). Now, let 

(2.1.2) 
 

Rn_1 (x). = 	 a010(x) - 

1 
then the function f(x)  

Pn-1 ( 
 ) takes its extreme values ± 

2  ' 
alternately at (n+1) points x k  of [-1,1], Where 

(2.1.3) 
kR x k 7 cos — n 

5 for k = 0(1)n . 

Thus, by theorem 1.4 Pn,l(X) is the best polynomial uniform 

1  
approximation to •(x) •of degree (n-1) and 

n-1n
(x) is the 

• 2 
polynOmial of degree n which deviates least from zero, on [-1,1] , 

(see Achieser [1], p.57). 



21. 

2.1.1.2. The Weierstrass function. 

Let a be a positive number less than 1 and b be an odd 

integer greater than 1, for e E [0,2u], the Weierstrass function 

is defined by 

(2.1.4) 
 

f(0)  =  X a cos b
k
0' , 

k=0 

(see [1], p.66). 

Since (cos b ol _c 1 for all 0 E [0,27] .and k =  the 

infinite series converges uniformly for all B E [0 2 27] and the function 

f(e) is continuous on [0,2'ff]. For a given non-negative integer 

let j be such that 

(2 ..1.5)  bj  < n < b3t1  

and define the function S (0) by 

(2.1.6)  S
n
(0) =  X a cos b

k
0 

k=0 

then S(o) is atpolynomial of degree < n. 

Now, let us put 

(2.1.7) L = max  lf(s) - S (e)I 
8 E [0,2ff] 

Then, 



 j+1 
L  X  a  

- 1-a 
k=j+1 

We observe that this bound is attained by the function 

f(0) - S(0) at (2b  1) points Om  of [0,2q], where 

(2.1.8 
 MIT  

= 0(1)(2d 41 ) . 

Thus, the function f(0) - S
n
(0) takes its extreme values 

aj +1  
± L, where L -

1-a 
, alternately at (2b

3+1 
+ 1) points 0m of 

[0,2Tr]. But, from (2.1.5), 2b  1  2n + 2; it follows from 

theorem 1.4 that S
n (0) is the best uniform polynomial approximation 

We shall now consider a problem which can be looked upon as 

a generalization of the problem of Chebyshev discussed in section 

2.1.1.1. 

2.1.1.3. Zolotareff's problem. 

Zolotareff posed the problem of determining the best 

uniform polynomial approximation of degree n over [-1,1] to the 

polynomial f(x) of degree (n+2) given by 

22. 

d +1 
to f(0) of degree n, with E n (f) -   

1-a 

f( x) = X
n+2  n+1 

- ox (2.1.9) 



where a is a given real number (see Meinardus [21], p.41; Achieser 

[1], p.281). Without loss of generality, we may assume that a 0. 

If pn (x) is the required best approximation, the polynomial Z 2 (x) 

of degree (n+2), where 

(2.1.10) 
n+2  n+1 

n+2 (x)  = x  
- ax. 	- p

n
(x) , 

is the so-called Zolotareff polynomial. For 

(2.1 .1 1) Tr  
0 < a 	(n+2) tan

2
: 2(0_2)  , 

Zolotareff has obtained 

23. 

(2.1.12a) 

with 

(2.1.12b) 

v 

 

n-1 , 1  0+2 T  /   n+2  
Zn4.2 (x) = 2 -  k  

n+2  n+2 
1 + 

n+2 

 

E n (f) = 2-n-1  
n+2 

n+2 

From definition.1.6, we observe that (2.1.12a)can be. 

written in the form 

n+2  n+1 
(2.1.13)  Zn 2 (x) = x  - ax  + q n (x) 

where q(x) is a polynomial of degree n. Furthermore, the function 

Tn+2 (v), where 



x - 
(2.1.14)  

n+2  
a 

n+2 

has n+3) extreme values in the interval -1  v 5 1. From theorem 

1.4, we require that at least (n+2) of these extreme points must 

lie in the interval -1 5 X 5 1 so.that the polynomial q(x) satisfies 

the Characterization property of the best approximation. Hence, in , 

the extreme Case, we must have 

24. 

a 

cos 
n+2 ' 

or 

 

(n+2)tan2  2 	 

Thus, the solution (2.1.12a) is only true for those values 

of a satisfying the condition (2.1.11). The Zolotareff polynomial 

can also be obtained in terms of elliptic-functions for 

> (n+2)tan 2 	 , on using a function-theoretical method, 

(see Achieser [1], 0.282-285), but we shall not go into detail 

here. 

2.1.1,4. A problem of Bernstein and Achieer. 

Bernstein and Achieser considered a special problem of 

Chebyshev (or uniform) approximation (see Achieser [1], p.249-251; 

Tf 
n+2) 



Meinardus [21], p.36-41). From the results obtained, they derived 

explicit.expressions .  for the quantity E(f) for certail rational 

.functions. 

' Let pm(x) be a real, positive polynomial of degree m in 

the interval [-1,1],•defined by 

(2.1.15) pm (x) =  (1 
av  

v71. 

where the numbers a  la
v 

> 1, for v = 1(1)m. 

Let V be finite spate of dimension n whose basis consists 

of the functions of the form 

• x . 

pri7-1( 0(1)(n-1) . 

We want to approximate the function 

(2.1.16)  f(x)  
pm (x) 

by functions out of the space V. Let us firstly define the numbers 

c,, where v = 1(1)m, by 

(2.1.17) 

Then, 

(2.1.18) 

c2v 
- 2c a +1 = 0. 

.vv 

1 	, (c + 	) . v c 

25. 



m 
(l+c 2 ) 

v=1 .  v  

• m -
.11.c 

(2.1.22) Kn  = -v=1 v  

, -fOr n = m, 

26. 

We choose c -  such that 
 

1; for v  1(1)m. 'Now; let the real 

variable x, where 'xi  1, be related to the complex value v by the 

equation 

(2.1.19) 

and set 

(2.1.20) 
• v 

v=1 

and Im( )  0, 

For n _ m, we define the function T n (x, m ) by 

(2.1.21) T x,p 
n-2m- m  -2m-n m v  

+ v  Ip (x) 
.H (v)  m 

Etni (V)  •  m  

where 

2
1-n.

11 (l+c 
2 

v=1  v  
for n > m. 

After some algebra-, we find that'T n (x,pm ) is a polynomial 

of degree n -  whose. coefficient of x is unity. We have the 

following result. 



Theorem 2.1.  

If g(x) is a best Uniform approximation to f(x)but of V, 

then for 11 

Tn (x,pm ) 
(2.1.23)  f( x) - g(x) =pm(x) 

and 

(2.1.24)  = 

Proof  see Meinardus [21], p.38. 

By choosing appropriate polynomial pm (x) and applying this 

result, we can obtain explicit expressions for E n
(f) for certain 

rational functions. As an example, let us put 

2 
(2.1.25) P2 (x) (1 —2-  ) 

a 

where a is a real number such that a > 1. Then, 

(2.1.26) (v) = 
2  

v
2 

- a2 

where a = a 7- ,47:T. From (2.1.21), we can show that, for r  T, 
T
2r

(x .0 ) is a polynomial of degree r in x
2 

and 

27. 

T2r(x°2)  C r  

P2 (x)  ;27;2-  
polynomial of degree 



where - K
2-2r

a
2 

2r 

28. 

Thus, the maximum error occuring when we approximate the 

function 2
1 

2  on the interval [ 7 1,1] by polynomials of degree 
x -a 

2r or  2r+1 is given by 

(2.1.27) 

2r' 
1 	1 	 5-77r)  

r 
X
22 ) = E2r+1

x
2
-a

2) = 
.2a

2
(a

2
-1) 

It is'worth noting that:the function T rI(x,pm ) defined by 

(2.1.21) will be•introduced again in chapters 3 and 4 under a 

different notation. furthermore, a detailed study of its properties 

will be given. 

•  We shall now.consider some further explicit results given 

by Bernstein [2] and Rivlin [30]. 

2.1.1;5. Some further results due to Bernstein and Rivlin. 

In one, of his papers, Bernstein [2] considered the convergence 

of the series expansion of a given function f(x). Suppose that we 

can write f(x) in the form 

(2.1.28)  f(x) =  X  , 
k=0 " 



00 

where  is some polynomial of degree k. The series Y y
k 

"  •  • - •  k=0 
is called "the most economical polynomial polynomial expansion" 

of f(x) if 

(2.1.29)  E (f)  =  ilf(x) - 
k=0 

for each n, where E
n
(f) is defined as in equation (1.2.2); in other 

words, if the n th  partial sum is the best uniform polynomial 

approximation of degree h to f(x), for each n. In the following 

theorem', he showed that for certain class of functions f(x); the 

expansion of f(x) in a series of Chebyshev polynomials is the 

most economical one. 

Theorem 2.2.  (S.M. Bernstein). 

, 

The expansion 

(2.1.30) f(x) 	yi a k  (x) 
k=0 

.where a  0, is ,the most economical one of f(x) if and Only if 
k 

• the ratio k 7F1 
 /k. of the indices of two sucessive non-vanishing 

i 

coefficients ak .  and a  is an odd integer, for every 1. 
1+1 

(see Dtl, 

29. 

4 



30. 

Proof.  We first suppose that the condition is satisfied, then 

for every n such that k i  n <k i+1 ; for some i, the n
th 

partial 

sum S(x) is defined by 

k. 

(2.1.31) 
 

S(x)  =  a T (x)  . 
k=0 

Since T 1,  (x), T k.  (x),..., all have the values ±1 
"i+1  1+2 

alternately at (k+1+1)  points xv  where 

ox) 
9,1T 

(k i+i  2. = 0(1)(k i+1 ) , 

the function f( x) - S (x) takes the value 1  alternately 
k=k1+1 

at these points. As k+1 

 

.  + 1  n + 2, it follows from theorem 
1 

1.4 that S
n
(x) is.the best uniform polynomial approximation to f(x). 

Conversely, if S(x) is the best uniform polynomial 

approximation of degree n to f(x), where k.  n  
k+1* 

.'  Then 
1  1  

CO 

 

I(x) - S(x)II =  1  a  T k (1)I  
k=k 

1+1  • 1+1 

Again, using theorem 1.4, this maximum Must be obtained in at 

least (n+2) points t z , 9, = 0 . (1)(n+1), of [-1,1].  It follows 

that, for each 32, T,  (t,) =  (t ) =  = ±1, the sign 

	

ki 1  x'  "i+2 



-isindependentofk.j?_ . i+1. This implies that the ratio 
J' 

/k.•is an odd integer, for each i, and the theorem is proved. 
i 1  i 

We note that the Weirstrass function (2.1.4) is a special case 

of this theorem, where u. 7 a
i 
and k. = b

i
, for i = 0,1,2,..., 

a being a positive number less than 1, and b being an odd integer 

greater than 1. 

We shall now consider another class Of functions whose 

truncated Chebyshev expansions'are also the best uniform polynomial 

approximations if the coefficients of the highest remaining terms 

are suitably adjusted. 

Theorem 2.3  (T.J. Rivlin) 

Let a,b be non-negative integers, a >0 and 

(2:1.32) f(x) =  Xt 
Taj+b(x) 

 , 
j=0 

where •tl < 1. Then 

(2.1.33) 
T (x) - t T  (x) 

f(x) 	b  2  lb-al  
1 + t - 2t Ta (x) 

If ak + b _ n < a(k+1) + b and if we put 

31. 



32. 

(2.1.34) .q(x) =  XT .  (x) + t
k+2 

j=0  aJ+13 2 Tak+b (x)  ' 
1-t 

then 

(2.1.35)  p(x) 
 = q (x)  ' 

and 

(2.1.36) 
14. 1 k+1 

En (f) -   
1-t2  

Proof. . • ( 2.1.33) follows directly from 2.1.32 if We write f(x) 
• 

in the form: 

(2.1.37)  f(x) = Re[e lba  X  (tel a(3 ) j ] 	, 
.j=0 

and sum the infinite series. Now, let us put • 

E(x) = f(x) - q(x) . 

Then 



[ 

	

c(x) . Re e1b0 ( t k+1
e
ia(k+1)0  "I-2 

t' 	
e
iak0 1  

1 - te ia0  
) j 

1-t
2 

After some algebra, we obtain 

	

6(x) - A+
1 	A(0)  

 

1-t
2' 	B(0) 	' 

where A(0) and B(0) are trigonometric polynomials given by 

A(0) = cos[(k+1)a+b]0 - . 2t cos(ka+b)0 + t 2cos[(k-1)a+b]0 , 

and 

B(0) = 1 +  2t cos a0 . 

If. we now define an angle tp by 

,  2, 
-2t + Cl+t )cos a0  

(2.1.39) •  cos qi 
B(0) 

and 

(2.1.40)  sin tp - (1-t
2
)sin a0  

B(0) 

Then, 

33. 

(2.1.38) 



(2.1.41) 
tkh1  

E(x) -  2  cos[(ak+b)0 + tp] 
1-t 

34. 

As 0 varies from 0 to IT, it follows from (2.1.39) and 

(2.1.40) that 4) varies from 0 to an, and[(ak+b)0 + tp] varies 

continUbusly from 0 to [a(k+1)+b]irr. Thus, E(X) takes the extreme 
k+1 

values ± LL-2— alternately at [a(k+1)-1-b+1] points. Since 
1-t 

n+2  a(k+1)+b+1, the result follows from theorem 1.4. 

Corollary 2.1. 

The result of this theorem can be readily extended to the 

case of the function af(x) + ft,. where a and are two arbitrary 

(real or complex) numbers see Rivlin [3,0]).. 

With suitable choice of the parameters a,b a,R, and t, 

Rivlin then recovered some results previously, given by Bernstein 

([2], p.120), Talbot [35] and Hornecker [14]. 

(1).  If t = X - (X 2-1), where X > 1, then Iti  < . 1.  By 

choosing a = I, b = 0, 4 = 4t/(t
2
-1) and  = -2t/(t 2-1), we obtain 

the function 

1 
f(x) =

'  
X > 1 and -1  x  1 . 

x-X  
(2.1.42) 



The best uniform polynomial approximation of degree n to f(x) is - 

given by 

 

2t  4t 
(2.1.43a)  p(x) =  + 

 

t L -1  ta- 1 j -O 

4t n+1 	 
j (x)  -  6  2 T(x) ' 

(1 -e) 

and 

(2.1.43b) E (f) 
4t

n+2  

(1-t
2

)
2 	' 

This is precisely the result given by Bernstein ([2], p.120) and 

Talbot [35]. 

(ii)  Let. t..= -(1+2c
2
) + 2c(1+c 2 y ,  , where e is any real 

-  
number, then -1 < t < 0.  By choosing a = 2, b = 0,  - 

4 
 t9 

1-t" 
and a = 8t/(1-t 2 ), we find 

(2.1.44) 
1  

f(x) 	
c
2
+x

2 
where 7 1  x  1. 

If 2k  n < 2(k+1), then 

k-1 
(2.1.45)  pn (x) =  

8t y 
2  

tJ T .(x) +  

 

1-t [j=0  i _t2 2k 

35. 

and 



(2.1.46)  En (f) 
citlk" 
(1-t2 ) 2  

36. 

as given by Hornecker [14]. 

So far, we have considered several explicit results 

for the best uniform polynomial approximations. In the following 

section, we shall list a few examples where p(x) and En  were 

. given asymptotically, for large n. 

2.1.2.  Asymptotic results. 

The function f(z) is said to belong to the space A[-1,1] 

if there exist ellipses with foci at -1 and +1, such that f(z) 

is holomorphic in their interiors. Let E denote an ellipse 

.whose semi-sum of the axes iS p, and let q = q(f) be the 

supremum of all numbers p such that f(z) is holomorphic within - c) . 

The ellipse.:S is called the 'regularity ellipse" of f. 

The behaviour of the quantity E n (f), for f E  

as n  was first investigated in a series of papers by 

Bernstein (see [2]). He gave several theorems which led to 

asymptotic estimates for En (f), for large n, for certain classes 

of functions.. In particular, for entire functions, he obtained 



the following results. 

Theorem 2.4. 

Let f(z) be an entire transcendental function which is 

real for real z, and let av , v = 0,1,2,..., be the coefficients 

in. the ChebYshev series expansion of f(z). Then there exists a 

sequence of integers n such that 

(2.1.47) 

E
n,

(f) 

lim 
1 	' 

114.D  n +  =1 

provided that 

(i)  a, +1  0, for p = 1,2,..., and 
up  

CO 

1 	la I 	• 0( la1)  as p÷.. 
v=n +2 .v . 	n + 

Proof.  see Meinardus [21], p.95. 

From the result of this theorem, we can obtain an 

asymptotic estimate for E n (f), for large n, where f is an entire 

function. For example, let us put 

37. 

(2.1.48) 
 

. f(z) = 
etz 



where t is a real number. Then, 

CO 

	

(2.1.49) 	f(z) = 	X' 	v (t) Tv (z) , 
v=0 

where 

	

(2.1.50) 	I v (t) 	y 	(t/2) 21-14-v  

is the modified Bessel function of order v with purely imaginary 

arTnent.*Clarlplit.ri=p, for all 11,. and obtain from (2.1.47) 
1-1 

38. 

	 (1+0(1)) , 
2 (n+1) ! 

From the exact results for rationalfUnctions with single 

poles (see section 2.1.1.5), Bernstein also derived the following 

asymptotic formulas: 

(2.1.52) 
r 	2 	I.- 

E n (log(x-x)) 	LX - ( x 	-1) 2 ] n  

	

2 	3- 
n(A -1)2  

and 

(2.1.53) 	E n ((A-x) -s ) n s-1 
EX - ( A

2
-1 

ircs)1 	(A2_ 1) 	/2  



for n large, where A is a real numbers such that A > 1 and 

-s is an arbitrary number. The proofs of these results can be 

found in [2],. p..121-123. 

In one of his paper, Hornecker [14] also obtained asymptotic 

expressions for En (f) and pn (x), for large n ;  in terms of Chebyshev 

coefficients of f, by using the characterisation of the best 

approximation (see theorem 1.4). Since the results are rather 

lengthy; we shall not reproduce them here. 

So far, we have given a survey of exact and asymptotic 

results found in literature for best uniform polynomial 

approximation. In the following section, a similar survey will 

be given for the case of rational approximation. 

2.2. On best uniform rational approximation. 

2.2.1. Exact results. 

The determination of a best uniform rational approximation 

is, in general, considerably more difficult than that of a best 

uniform polynomial approximation. It is not surprising,. therefore, 

to find that there are even fewer examples where the best uniform 

rational approximation R(n,m;x). and the quantity E nm(f)  are given 
, 

39. 

explicitly. 



c.  = 
1,i  0  , for i+j > n+2 

where i,j = 1(1)(n+1). 
{ 

c
n-i-j+2 ' 

for i+j. .. n+2 , 

(2.2.2) 

2.1.1.1. A result due to Chebyshev and Talbot. 

Let f(x) be a polynomial of degree N defined by 

(2.2.1) 
N. 

f(x) =  X' cw _v  Tv (x) , 
v=0 

wherec.j= 0(1)N, are given real number's. For a non-negative 

integer n - satisfying n < N, we define a Hankel matrix C =(c
1
. 

3
.) of 

, 

order (nil) by 

40. 

Then we have the following result. 

Lemma 2.1. 

For non-negative integers N and n, where n < N, 

(2.2.3) 
1■1-1,n ( • )  11 1  • 

2' 

where X is the eigenvalue of smallest modulus of Hankel matrix C. 

On using the characterisation theorem (see theorem 1.7), 

Chebyshev obtained this result by a complex variable method, 

(see Achieser [l], p.278-280). Later on, Talbot [35] re-derived 



this result as an application of what he called "the surd 

factorisation theorem'. He also gave an explicit form for the 

rational -  function R(N-1,m -;x) of best uniform approximation. 

The analysis it rather lengthy and we shall not go into detail 

here. It is worth noting that Meinardus ([21], p.166) posed the 

question "whether the function f(x) - R(H-1,n;x) plays a role in 

the theory of rational approximation similar to the role of 

Tchebycheff polynomials in the theory of polynomial approximation". 

We shall attempt to answer this question later on in the thesis 

(see Chapters3,6). 

2.2.1.2. A result due to Boehm. 

In one of his papers, Boehm [3] gave complete characterisations 

for some classes of functions whose best uniform rational 

approximations are polynomials. He then constructed a family of 

functions from certain series of Chebyshev polynomials and 

'obtained their best approximations explicitly. 

Let k be a positive integer and q be an odd integer greater 

than unity.  For any summable sequence a= fa i l of non-negative 

real number,a'.,.we define the function f(a,k,q) on [-1,1] by 

41. 

Co 

f(a,k,q) = 	y a. T 
i=1  kq i-1 

(x)  ' (2.2.4) 



where T(x) is the Chebyshev polynomial of degree j (see definition 

1.6). 

For any non-negative Integer p,  let us put 

(2.2.5) f
P
(a,k,q) = 

i1 
a

i  Tk  i -1
(x) 

= 

then we have the following result. 

Lemma 2.2. 

The polynomial f (a,k,q) of degree kq P-1  is the best 

uniform rational approximation R(ke -1  + t,u;x), (see. definition 
Co 

1.5), to f(a,k,q) on [-1,1], with maximum error X  a 1 , 
i=p+1 ' 

all integers t,u such that 

(2.2.6)  0  t 5 k(q -qP-1 ) - 1 and 
 

k(e-qP -1 ) - 1. 

Proof. We first observe that since IT, il l1 for all i = 1,2,3,... 

and x E [-1,1], the series (2.2.4) converges uniformly for all 

x E [-1,1], and the function f(a,k i q) is continuous on this 

interval. Now, let 

CO 

(2.2.7)  c(x) = f(a,k,q) - f (a,k,q) = X 	a. T  (x) 
i  :13+1 	

k i 
 . 

42. 



43. 

For each i  p+1, the Chebyshev polynomial T k i _ 1 (x) 

n  q 
assumes its maximum value ±1 alternately at (kqr+1) points x v  

of [-1,1], where 

V7 
(2.2.8)  xv  = cos 

ke 
= 0(1) .(ke) . 

. Furthermore, the sign is independent of i, since q.is an odd 
CO 

integer. Thus, E(x) assumes its maximum value  a. 
i=p+1 1  

alternately at these (ke+1) points. The result now follows 

. from lemma 1.1. 

. We note that the Weierstrass function defined in (2.1.4) 

is a.special case of the functions'qa,k,q) if we put a = (a i l, 

k = 1 and q = b in equation (2.2.4). The functions f(a,k,q) can 

be generalised further so that the result of lemma 2.2.still 

holds. The only condition we have to impose on the series 

(2:2.4) is that the degree of each Chebyshev polynomial in the. 

seriesbeirgan odd multiple (greater than unity) of. the degree of 

the previous term. The series obtained in this way were originally 

investigated by Bernstein for the best uniform polynomial 

approximations, (see section 2.1.1.5). 

We shall now consider some particular functions where 

the quantity En,m(f)  is given asymptotically, for large n. 



2.2.2. Asymptotic results. 

Although much work has been done to determihe the order 

of convergence of the quantity E n,m (f) and its dependency on the 

structure of the function f(x) or the modulus of continuity of f 

and its derivatives (see [2],.[T3],[21]), one can not find many 

particularfunctionsforwhichE
nm

.(f) is obtained asymptotically 
, 

for large n. 

2.2.2.1. The exponential function  

Meinardus (see D11, p.168) represented the exponential 

e
x 

in the form (2.1.51). On constructing a special. rational function 

Of the form.  );(11,1;x), he then proved that, as. h-*0., 

(2.2.9 E 1  (ex ) - n, 
1 

1 + 0(1)). 
2 n+1 (n+1)(+2)! 

Comparing this result with (2.1.51), we see that 

asymptotically, for large n, the function e x  can be approximated more 

closely by rational functions in V
n,1 

than by polynomials in P. 

By using the same method, asymptotic values for En,m (f), where 

m > 1, for large n, may be obtained, and he conjectured that 

44. 



45. 

•  x  n!m!  
(2.2.10)  E

n,m
(e) -  (1+0(1)) , 

n+m  , 2 	(n+m)!(n+m+1)! 

as n+m -4- 

The function Lxl. 

For some classes of functions, the orders of convergence 

. of the quantities E n (f) and E n,m (f) in the limit as ri4c0 are the 

same. In other words, for such functions, the uniform polynomial 

approximation is equally effective as the uniform rational 

approximation, (see, for example, Lorentz [18], chapter 4; 

Goncar Dl]). This is not always true', however, as we have seen 

in the previous section for the case of an entire function. To 

emphasize this fact, Newman [24] has given a remarkable example 

where the quantity En,n (f) converges to zero as  at a much 

faster rate than E .(f). For the function f(x) = lxi, . where 

-1  x  1, • he constructed a particular rational function which 

is of the form F(n,n;x) if n is even and of the form F(n+1,n-1;x) 

if n is odd. He then obtained the maximum error occuring in 

approximating this rational function to lx1 and derived the 

following result. 

Theorem 2.5. (Newman). 

For non-negative integer n > 4, 



(2 7 2.11) 

if n is even ., and 

E nn (Ix1) , 2 
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(2.2.12) 	E 	 ,1 ,_ 	(Ix1) 	3e -n  

if n is odd. 

Proof. see [24]. 

The above theorem provides an upper bound for  

e also obtained its lower bound, by using a different method. 

Theorem 2.6 (Newman 

If r(x) E Vk2t , where k 2 2,  n, then 

(2.2.13) 

k -9n - , 	1 maxIlx1 - r(x)1 

Proof. 	see [24]. 

From this result, we find that the rational function 

constructed by Newman is not too far from the best rational 

approximation. Furthermore, the order of convergence of E n,n (1x1) 

is e  2  where c is a positive constant, which is far better than 
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the order of convergence k/n of E n (lx1), where k is also a constant. 

Similar result can also be obtained fora wider class 

of functions. 

2.2.2.3. The function xa , where a is a positive real number. 

Using a different technique, Freud and Szabados [9] 

constructed a rational function of the form T-(n,n;x) and prove 

the following result. 

Theorem 2.7. 

Let a be an arbitrary positive real number. Then there 

exists a rational function r
n
(x,a) of the form T(n,n;x) such 

that 

(2 ..2.14)  lxa  - r
n 

x;a)]  19 expt-0.78a.  z 1 
(1+30), A 

for all x in [0,1] and for sufficiently large n. 

Proof.  see [9]. 

Thus, E 
fl
(xa ) converges to zero at a rate of at least 

R 

e
-cn " 

, whereas E
n
(xa ) converges to zero at a rate of k/xa, 



where c,k,are some constants. 

Further.results along this line can be found in 

SzabadoS [34] and Turn Deg. 

In the next chapter, we shall generalize some exact 

results given in this chapter. 

48. 



CHAPTER III 

SOME EXPLICIT RESULTS FOR THE BEST UNIFORM RATIONAL 

APPROXIMATION TO CERTAIN CONTINUOUS FUNCTIONS 

In. section 3.1, we shall define a class of rational ' 

functions which will be extensively used later on. We shall derive 

some of its properties, and then introduce a special class of 

continuous functions. The best uniform approximations to these 

• continuous functions will be given explicitly in sections 3.2 

and 3.3. From these general results, we recover some particular 

results for the best uniform polynomial and rational approximations 

• previously given by Bernstein [8], Boehm [3] and Rivlin [30] (see 

also sections 2.1.1.5 and 2.2.1.2). 

3.1. A class of rational functions F(x) and its properties. 

We shall begin with some definitions. 

Definition 3.1 .. 

Let a be any integer and t be any real or complex number 

49. 
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such that Itl < 1. For 0 E  , we define a function (a,t;0) by 

6(a,t;0) = i log 
te la° -1  

t - e ia0 

  

where we choose that branch of the logarithmic function so that 

ga,t;0) = 0 and ga,t;ff).= ccir 

The function (a,t;0) has the following properties. 

Lemma 3.1. 

•(1 .) ga,tiO) is a continuous function of 0 in 10,111. 

(ii) (a,t;0) = ga,f;0), where the bar denotes the complex 

conjugate. 

(iii) 6 is real for all .0 in [0,7r] when t is real. 

Proof.  Since Itl < 1, 6(a,t;0) has no singularities in [0,7], 

hence it is a continuous function. (ii) and (iii) can be obtained 

directly from (3.1.1). 

Definition 3.2. 

Let T
2. 

be a set of 9, real or complex numbers  

satisfying the conditions 
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It 5 1  1, for s = 1(.1)g ; • 

(ii) if t
s 

E T
9, 
and Im(ts)  D, then i

s 
c T

. 
. 

To each t
s 
inT  we associate a number

s' 
where

s 
is either 

t' 

+1 or -1. We let Y.: denote the set fc
1
,c
2'•• ,t 

with the . 

restriction that if t
s 

is complex, then we shall associate the. • 

same value c to t and i . When t =  T and E
k 
are taken to 

s S  s  .  St, 

be null sets. 

To each ts  in T
k' 
 we also associate a set of integers {a

j,S
} 

 . 

which may be finite or infinite. If t s  is complex, then we shall 

imposettleconditionthatthesetoOntegers(.}-is the same aj,S 

for t
s 

and
s

.  We shall denote by A the set of integers {a. s  }. j, 
taken over all j  and all s. 

Definition 3.3. 

For 0 E [0,n], we define the function Ai (A,Tx ,ye) by 

3.1.2) 	A.(A,T ,E ;0) 	=  j 	k k 	s 	j,s s • s=1 

When there is no possibility of confusion over the sets A, Tz  and 

Ev we shall abbreviate A.(A,T E -0) by A .0). The function j 

Az,j (0) has the following properties. 



Lemma 3.2. 

(i) A(0). is a real continUous function of 0 on [0,R]. 

A .(0) = 0 and A  =  X c ix. 7 . 
Z,J 	s s=1 

Proof:  follows directly from lemma 3.1. 

Definition 3.4. 

For any integer k, we define a real function 

,Fk 
A,Tt ,yx) on [-1,1] by 

(3.1.3)  Fk (A,Tz ,Z z ;x) = cos[k0 +  

.where x = cos 0. 

Again, when there is no possibility of confusion over the 

sets A, T st  and E t , we shall abbreviate F k (A,TR, ,Z z ;x). by Fk,z (x). 

These functions can be looked upon as generalizations of the 

Chebyshev polynomials of the first kind. For when 9. = 0, 

F k (A,T0 ,E0 ;x) =Jk (x). It is worth noting that although we have 

introduced F
k 
 (A,Tk'  E ;x) as in(3.1.A this class of functions .  

has also been used by other authors under different notations, 

52. 



(see, for example, section 2.1.1.4 and Heinardus [21], p.38). We 

shall now obtain some properties of F k4p). 

Lemma 3.3. 

Fk z (x) attains its extreme values of ±1 alternately in at ,  

least (1 + 1k +  c a.  1) points of . [-1,1]. 
s=1 

• Proof.  As 0 varies from 0 to ff, Eke 	A (0)] takes all values in 

[0,(1( + X c a.  )ff], since A  .(0) is a real continuous function 
s=1  

k,J 

of 0 in [0,ff]. The result follows immediately. 

Lemma 3.4. 

F  (x) is a quotient of two polynomials of degree 

(Jki  y. la.  I) and (  y  la.  1) respectively. 
s=1  J' s  s=1 

Proof.  We can assume without loss of generality that c = 

for s = 1(1)21 , and -1 for s.= (91 +1)(1)(2). Then Fk,z (x) 

can be written in the form 

 

F 	ia. 0 - 
R, 1  t e J,s 

e k0 -Fr s 	-1 
-a
j,S

0  
s=1. 

t 5 -e  
s=k

1
+1 

0  } 
t
s
-e 

ia
j,S

0  
t
s
e  -1 

 

F  (x) = Re . 
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By multiplying both the numerator and denominator by the 

complex conjugate of the latter, We observe that the denominator is 

a-polynomialof-degree(X1cx
j
.1) in cos 0, and the numerator 
,s 

s=1 
is a polynomial of degree  (1k1 + X laj,S1),  also in cos 0. 

s=1 

The result now follows immediately. 

The class Of rational functions Fk,k(x)  possesses some 

further important properties as we shall see in chapter 4. We shall 

now introduce a special class of continuous functions which will 

be used in the next two sections. 

 

Let {k.r  be a subsequence of non-negative integers and 
j j=0 

ox = {A
j

}
j=0 

be any sequence of arbitrary (real or complex) numbers 

• such that X 1A.1 is finite. We define a function f(A,T „A;x) 
j=0 

by 

(3.1.4)  f(A,T  dc,x)  A.  Fk  (A,Tv E t ;x) . 
j=0  j 

When there is no possibility of confusion over the sets  

and the sequence A, we shall denote f(A,T 9, ,Z t ,X;x) by •f(x). 

The function f(x) has the following property. 

Lemma 3.5.  

54. 

f(x) is continuous for all x E -1,1]. 



Proof. Since IFk z (x)I =l for every x E - 1,1], and 

CO 	 CO 

X X. is finite, the series X A i F(x) converges uniformly 
j j=0  =0  j 

on [-1,1]. Hence, f(x) is a continuous function of x on [-1,1], 

(see, for example, Simmons [32], p.84)... 

We shall now obtain an extension of a result by Rivlin [30], 

using appropriate choice of the sets A, Z and the sequences 

{X.}, {k.}. 
J  J 

3.2. A generalization of a result due to Rivlin. 

Let a. 	= a 	for s = 1(1)2 and all j, so that A is a 

finite set of k integers. Also, let c s  = +1, for s = 1(1)Z, 

and A. = y3 ,' where  is a real number satisfying 1'y' < 1. If 

wechoosek.=aj+b, where a,b are positive integers, a  1 and 

b  0. Then the function f(x) can be expressed as follows. 

Lemma 3.6. 

(3.2.1) 

 

F, z(x 	
'AdtbLa,p,(x) 

f(x) =  u ,  2  
1 + y - 2y Ta(X) 

55. 

Proof.  From (3.1.4), we have 



f(x) =• yj  Fai +b , i(X) 
J =O 

which can be re-written as 

ilb0+A 
f(x) = Refe  k'j  (ye  )J} . 

j=0 

Identity (3.2.1) is now obtained by summing the infinite 

series. 

For any non-negative integer p, we define the function 

f
p
(A,T EX;x) by 

p+2 
3.2.2) f (A,T E A - x) = 	yi F 	) + 	F  (x) . p  aj+b,k, 

	

I-y2  ap+b,2, 
j=0  

We shall denote the function f
p
(A,T A;x) by f (x) and obtain 

the following theorem. 

Theorem 3.1. 

 

Leta  positive integers such that X  
s.

5 a - , and 

	

as 	
s=1 

a 
 

let.m be any integer satisfying 

(3.2.3) y a  m  a-1 
s=1 s  

56. 

Let n be any non-negative-integer, and suppose p is such 



Enm ( ) 
, 

(3.2.5) 

that 

(3.2.4)  ap+b+. y a  ri__apl) +b-1  . 
s=1 s  

Then f .(x) is the best uniform rational approximation 

R(n,m;x) to f(x) and 

57. 

Proof.  Let us write 

c(x) = f(x) - f (x) . 

Then, 

l[b0+A ,j j  00 
E(x) = Re e  (y  ia0 j 

_j =p+1  e  

yp+2 
 e "" 
1-y

2 

e i[b0+At,j eiape  
= Re YP+1  

1-y
2 

_ 
la() 

e -y  

1-ye
ia0  

 

on summing the series. Hence, 

e(x) =  
p+1 

 Y 	F 
1 _12  ap+b 

(3.2.6) 
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where c  = +1, t
t+1 

 = y and a
Xt1 	

a. 
t+1  

From lemma 3.3, the function F
ap+b (A,Tt+1 

,E - ;x attains 
t+1 

its extreme values ±1 alternately in at least 

(ap + b +  a + a + 1) points. • Also, from lemma 3.4,f (x) is 
s=1 s  

P. t • 
a rational function Of the form Fs(ap + b +  a

' 	
a ;x). 

s=1 s s=1 s  

Thus, by lemma .1.1, f (x) is the best uniform rational approximation 

R(ap + b +  a
s 

+ u,  a + v;x) to f(x), where 
s=1  s=1 

• t 
0  u,v  1. By putting  = ap + b + y a s  +u 
• s=1  s=1 

2. 

and m =  a, + v, the conditions (3.2.3) and (3.2.4) follow. 
s=1 

We have 

E  (f)  =  max(x)1  -  I Y 1   . 
n,m  xE[-1,1]  .  1 - y

2•  

Corollary 3.1. 

The results in theorem 3.1 can be readily extended to the 

case of the function (a+Bf), where a and i3 are two arbitrary 

(real or complex) constants. 
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Comment. . 

If St, = 0, a,b are two integers Such that a  1, b 
 

and 

y is a real number satisfying Iii < 1, then 

(3.2.7)  f(x) = 
Tb (x) - yT

lb-al(x)  

1 + y2  - 2yT (x) 

Let m be an integer satisfying 0  m_ a-1 and n be any 

given non-negative integer, then the best uniform rational 

approximation R(n,m;x) to f(x) out o
f 

V
n,m 

is a polynomial of 

degree (ap+b), where p is such that ap+b  n  a(p+1)+b-1. We have 

p+2 
(3.2.8)  n,m;x) =  yj T  Y 

 

2 Tap+b 
j =0 

 ' 

and 

(3.2.9) E
n,m

(f)  1 ii P+1 

 

• 1 - y2  

. In particular, when m = 0, R(n,0;x) = p n (x), En;0 (f)  
n (f) ' 

and we obtain precisely Rivlin's results [30] for the case of 

polynomial approximation.  (see section 2.1.1.5). 



3.3. A generalisation of a result due to Bernstein. 

Let 9, be an even integer, c s  = +1 for s = 1(1)(t/2) 

co 
and c = -1 for s = (t/2 + 1)(1)(t). Let 

fkj1j=0 
be such - 

s 

that the ratios k
+ 1  ' 
. /k. j = 0,1,2,..., are odd integers greater 
J  J 

than (22 + 1). Furthermore, we choose). ,s  = ki , for s = 1(1)9 and 

let {A.}c°
0 
 be a sequence of non-negative real numbers such that 

CO 

X A. is finite. We define the function f (A,T „ ;x) by 
j=0  • 

•  0 
(3.3.1)  • f A,T „A;x)  X A. F  A,Ti, ;x). 

J=0  j 

We shall denote the function f (A,T ,E ,X;x) by f (x) and obtain 

the following result. 

Theorem 3.2. 

Given two non-negative integers n,m, and suppose p is such 

that 

 

(t+l)k  n  k
p+1  - tk - 1, p 

0.3.2) 
and 
 

tk  m  k
p+1 

- (t+l)k 

60. 

Then f (x) is the best uniform rational approximation 

R(nim;x) to f(x) and 



(3. 3 : 3 ) E 
m
(f) 

n  

61. 

Proof.  Let us write 

(3.3.4) 
 

c(x) = f(x) - f (x), 

=  y F  (A,T,,E k ;x 

j=P+ 1  '"j 

We want to consider the values of E(x) at 
:13+1 	

) 

 

points x of [-1,1], where 

X q  cos0  = cos   q =  k
p+1 

Then, 

k 
= 	y x. cos[k.0 + y 6 6(k.,t  )] . j=p+1 3-  Jo s . l s3sq 

But from definition (3.1), we have 

 

qk.  ciki R 
k.,t ;0 ) = 6 --/— , t .ff) 
j s q 

P 4-1  

This is independent of s, so that 

qk 4 11-  
y C$  o(k.,  ;0 ) — 

k  E 	= 0 , -s s=1 3  q  p+1 s=1 



and 

,qk. 
=  A'. cos (

k  
=  (-1)  Xj  , 

• 
j=k+1  1)+ 1  j=P+ 1  

62. 

as 
kj/kp+1 

is an odd integer whenever j > (p+1). Thus, c(x) 

attains its extreme values  y A. in at least (k  + 1) points 

i7P+ 1  j  
11)+1 

in [-1,1]. From lemma 3.4, we, find that f (x) is a rational 

function of the formF.((t+l)k
' 
 ,k ;x). By using the result of 

P  P 

lemma 1.1, f is the best uniform rational approximation 

R((t+l)k + u, kk + v; x) to f(x), where 0  u,v  k
p+1

-(2k+l)k -1. 

We now put n = (t+l)k p+u and m = tk p+v and obtain the conditions 

(3.3.2) for p. Theorem 3.2 is then proved. 

Comments. 

(i) When t = 0, the Chebyshev series 

CO 

(3.3.5) f(A,T
0 
 ,E ,X;x) = xj 

j = 0 •-• 
(x ) 

has its truncated series f (A,T ,E ,X;x) of degree p as its best 
p  0 0 

uniform rational approximation R(n,m;x) if p Satisfies k  n  k  -1. 
p+1 

and 0  m  k+1-l.  In particular, when in = 0, we obtain a 

result for the best uniform polynomial approximation given by 

Bernstein (see section 2.1.1.5 and Golomb LA, p.163). 
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(ii) As a special case of theorem 3.2, we choose k. = ab j , where 

a is a positive integer and be is an odd integer > (2t+1):  We . 

obtain a result which Can be looked ,upon as an extension of a 

result due to Boehm [3], who considered essentially the case R. = 

(see also section 2.2.1.2). 

(iii)Wenowchoosek.=a4,. where a is an odd integer greater 

than (2:2+1), and A:  where y is a real number satisfying 

0 < y < 1. When 32 = 0, f(A,T0 ,
0' 
E A; ) is then the well-known 

Weierstrass function 

(3.3.6)  =  X y i  T ; (x) , 
j=0 3  a' 

(see Achieser [1], p.66). Putting m = 0, we obtain its best 

uniform polynomial approximation (see section 2.1.1.2). 

We have obtained some explicit results for the best 

uniform rational approximation. In the next three chapters, we 

shall obtain some asymptotic results.  An algorithm for finding 

an asymptotic .estimate for En,m (f),for large n, where f is a continuous 

function on [-1,1] and m = 0(1)n, will be given in chapter IV. 

Special cases of this result will be discussed in chapters 

V and VI. 



64. 

CHAPTER IV. 

AN ALGORITHM FOR ESTIMATING E n,m (f), pERE-m = 0(1)n 

Let f(x) EC[-1,1]. The Chebyshev coefficients a k  of f(x), 

defined by-(1.3.8) exist for all k = 0,1,2,... For many functions, 

we have analytic expressions for a k , which have also been extensively 

tabulated (see, for example, Clenshaw [5], Luke [19]). As we have 

seen in chapters II andIII, however, only for a few functions 

do we have analytic expressions for the quantity E n,m (f) and the 

rational function of best uniform approximation R(n,m;x)... In all 

other cases, we have to evaluate them numerically using, for 

example, Maehly's algorithm (see [12]). The purpose of this 

chapter is to show how an estimate of En,m(f),  for large n, may 

be readily computed from the knowledge of the Chebyshev 

coefficients of f(x). In section 4.1, we shall investigate some 

further important properties of the class of rational functions 

F
k,t

(x) which was defined in the last chapter. In sections 4.2 

and 4.3, we shall prove the main result, which states that when 

f(x) is a polynomial of degree (+r+1), then an estimate E(f) 
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Of Enm (f), valid for large n, is given by the modulus of the 
, 

eigenvalue of (m+l) st  largest modulus .  of a certain Matrix of 

order (m+r+1), In section 4.4, we shall consider the'generalisation 

of this result to certain functions that are continuous on [-1,1]. 

4.1. Some further properties of F k 2, (x). 

Throughout the rest of the thesis, we shall denote by F k :z (x) 

the function F
k 
 (A,T

t' 
 E ;x), Where A is a finite set of t integers 
 t 

taking the value of unity, so that a.  = a = 1, for all j and 
j,s  s 

s = 1(1)2,. The functions 5(a i. ,s .,t s ;0) and Az ,j (0) are - therefore 

independent of j and we may denote them by ,5(0) and A 2,(0) 

respectively. We also impose another condition on the set T v  

in addition to the conditions (i) and (ii) in definition 3.2, 

(iii) .  ts  .A 0, for s = 

We shall now obtain some important properties of F k,z (x) 
11,.ese  propc,r6 

and of some related functions.A4e4 will be extensively used 

on.  These results are rather lengthy; furthermore ;  they only 

play a minor.role in the analysis discussed.in  other sections 

of this thesis. We, therefore, suggest the reader to go on to 

the next section and refer back tO this section - whenever necessary. 
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Lemma 4.1. 

For R. 7 	and any integer k,  (x) satisfies 

the following recurrence relations: 

(4.1.1 2[i(t9.+ 
1

) - x]Pk,t  " z  

-c a  
t  F

k+102 - 1 
- 2F

1(.5 9.
- 1

+ 	
k - 1,t - 1 ' 

and 

(4.1.2)  Fk,z  
k-1  -c,(k-j)  .-E 
X '  k t  F. • F 

j=0 

-Ez  
1 	t + 	1 , 	sz 	j 	0,z_l 	V,Z-1  

1 Lx 	(tz  

Proof.  (4.1.1) follows in a straightforward manner by writing 

(4.1.3)  Fk,t  =  fexp[i(k0 + Ad] + exp [-(k0 + AdD, 

and observing from definition 3.1 that 

(4.1.4) 
t 9. 	 - e

i0 
 

e
ic

2.2. 

t 
c

e
i0 

By using the same identity (4.1.3), if we now write 



ic 6 
2, 

e  =  (e7 i°  - t 76  ).(1 - e
-10 -1 

67. 

and 

e 2.
6  

=  
(e

i0 
 -)(1 - t2. e

i0
) 

then .expand these equations in terms of the infinite series of 

e
-i0 

and e
ie 

respectively, (4.1.2) will be obtained. 

We shall now introduce the so-called "elementary symmetric 
-e 

functions' of the quantities t s  s , s = 1(1)k.. 

Definition 4.1. 

For t = 1,2,3,...,  and j = 1(1)2., let P.  denote the sum 
-6 

of the products of t s  s , s = 1(1)2., taken j at a time. We 

also define 

 

09 
 = 1  for t = 

, 

and 

P.2, = 0  for j > k and j < 0 . 
.3; 



As an immediate consequence of this definition we have the 

following results. 

Lemma 4.2.. 

For 9= 1,2,3,.,. and j = 1(1)9, 

P.  = 
-c 

Pj,t-1 
+ 

ttkPj-1,t-1 

Proof,  follows readily from definition 4.1. 

Lemma 4.3. 

-c 
The quantities 
 

= 1(1)9, are the zeros of the 

polynomial P(z) of degree k defined by 

(4. 1.6) T (z) =  X (-1) j  
. k j=0 

Proof.  This follows immediately from the definition of P 

68. 

and since P
0, 

1, the polynomial P(z)  is exactly of degree k. 

In addition to the quantities P.  we shall also require 
•  -c 

the "homogeneous product sums of weight j" of t
s 

s
, s = 1(1)5, 

which we shall denote by Q. 



Definition 4.2.. 
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For j,Z = 1,2,3,..., the quantities Q,  are 
J,Z 

defined by 

(4.1.7) 0 

where Q0  1 . 

As an immediate consequence of this definition, We have 

the following result. 

Lemma 4.4. 

For j,Z = 1,2,3,..., 

n. 	= 	D 	n.  
F S,i 	' 

s=1 

0,9 = 1. and P.  = 0 for j > i. 
J, 32,  

Proof, follows readily from the definition of 

Equation (4.1.5) relates the quantities Pj,k  and  

we shall now derive a similar result for Q. 

(4. 1.8 ) 

where 



Lemma 4. .5. . 

For j,k = 1,2,3,..., 

(4.1.9)  Q.  =  X 
s0  t 
 Q k 	j - s,k - 1 	• 

= 

Proof.  This follows by induction on k, .using lemma 4.4. 

Definition 4,3. 

For , k = 1,2,3,..., we define the polynomial 01 (x) of degree 

k by 

(4.1.10) 1  (x) 	n  +  ) - x] 
s=1 

2 s  
1 

 t
s  

We want to express its Chebyshey coefficients in terms of the 

quantities P.  and Q. . 
J,Z  3,k 

Lemma 4.6.  

For 2, = 1,2,3,..., 

70. 

(x) = 	X 	b
k-m 

T
m
(x) , 

m=0 
(4.1.11) 



. where 

iii 
(4.1.12) 	bm 

 
(St,-1 

Proof. 	Let us write 

(4.1.13) 
"E X 	p g(x) = 	= 	VINS (t 	s  - x) 	xs  

s=1 	s 	s=0 

The second equality follows from lemma 4.3. Then, 

E s (4.1.14) 	x g 	= (-1 	(t5 5 -x) 	 X 	(-I) t-s Ps,txs  • s=1 	s=0 

We have 

g(x) g(-51-(-) = (-1) Z  P 	H [(x+—) - 1 " 
t,t s=1 	s 	f-s-  " 

(4.1.15) 

where z = —1 (x + —1 ) . 2 

( X P 

Also, 

71. 

s=0 Pt,t 

for m = °Mt. 
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g(x ) g(-)1() Y  
s0 (

-1 )•P 	x )(
0 
 (-1) k-s  P 	x s  

x 	= 

(4. 1.16 ) 
2. 
( X Cm  xm) 

x m=0 

where 

(4.1.17) 2,4fl V p 

s0 	
for m = 0(1)29 , 

L  S  9,-M+S  ' = 	' 	' 

But, for m = 0(1)Z, 

= Cm 

since 	= 0 for j > 32 and j < 0. Hence, we can re-write 4.1.14) 

as 

(4.1.18) 
2. 

g(x) g(1) = 2 X C 	T (z) + C 
m=1 

 

using the identity 2T (z) = xP + x, for p = 0,1,2,.. 
P 

Lemma 4.6 then follows by comparing (4.1.15) and (4.1.18). 

Lemma 4.7. 

For k,t = 1,2,3,..., 

	

2k 	(01  
(4.1.19) 	22.Q 2. (x) 	k2. (x) 	= 	y 	T k  . 	(x) , j- j=0 

where • 



for j  =  0(1)9.  . P ,H11, 	Pm, R,   , R,  p t,t 	m/.0  

(4.1.20) (Z)  Bj 	= 

 

(_ 1) j  2R- .j 

P for  = 
m0  m+j- Pk,k  = 3"Z  

1)(1)(2). 

Proof. By applying the recurrence relation (4.1.1) 9, times, We 

find that 2.Qi(x) F k,t (x) may be expressed as a sum of Chebyshev 

polynomials T ik ji.j,t1 (x), where j = 0(1)22,. Furthermore, the 

coefficients of T 
k+j-9(x) 

 only depend on j and k, and we shall 
l,1 

denotethemby From(4.1.1),wecandeducethatB. (t)  

satisfy the following recurrence relation 

(4.1.21)  B. (0 .  
j2 

- 2B 1 ' 
 
+ t 

c 
 k j 

j = 2(1)(29,-2), 

with conditions 

B (0 = 	1  B  
-2P 

(k)  1,Z 

 

0 1  P
k,k k,k 

(4.1.22) 

B
29,L1  

=  B 29 	
p 

	

, 	 9.,, 9. 

First, we observe that these conditions are satisfied by the 

expressions 0:1.20 for B. ( ' ) . For i = 2(1)k, we substitute 

•(4.1.20) in the left hand side of (4.1.21) and obtain 



74. 

(-I) j t  • j-2  - 
_   

t  t  P.  P+ 
J  •  Pt-1,2,-1  m=0  

m,t-i,  

j71  - 
X 	 -tg. 	

P 	P  X p 
j-l-m,t-1 m, t-1  j-m,t-1 Pm,t-1 

m  
2 

=0  m=0 

On using - (4.1.5), this equation becomes 

. (t)  ( -1) J  j  
B  / P- 

Pt,t m=0 J -"' m ' j  • 

Thus, for j = 0(1)t, the expressions (4.1.20) for 

satisfy the linear recurrence relation (4.1.21) and the conditions 

(4.1.22). Similar resultsmay be obtained .  for j = (9.+1)(1)(2,0, and 

the  lemma is proved. 

We have found the Chebyshev coefficients for two polynomials 

(x) and 2 9'Q (x) F
kt 

 (x), we shall now derive a similar result 
, 

for the polynomial part of the rational function F,
K 
 (x). By 
, 

continued application of (4.1.2), we note that F k,t (x) i8 a 

polynomial of degree k plus terms involving products of factors 
7ct k 1  

like tz  +
1 

) - x]. Let us denote the polynomial 

 

2 2,  t t  

part of F, (x) by G
k (x) and the remainder by M

k 
(0. Then, 

,t 

( 4. 1 . 2 3 ) 
	

F
k,t

(x) = G(x)  



4K-j)  -6 

	

• 	

G 

k,2.-1 ' 
(4.1.24) Gk,z  

Lemma 4.8. 

For k =  and 2. =  k,9,  satisfies the 

recurrence relation 

with Gk 0 (x) = 
 

(x) and 

Proof,  follows directly from lemma 4.1. 

We now let A
j
(Gk t ) denote the coefficient of T(x) in. 

 

,  •  J 

the Chebyshev series expansion of G, 2.(x) and obtain the 

following property. 

Lemma 4.9. 

For k,t = 0,1,2,... and j= 0(1)k, 

(4.1.25) 
Aj(Gkt ) 
 A. 

,  j+1 k+1,t 

Proof.  We note first that for all values of t, G
kt 

 (x) is a 
, 

polynomial of degree k. In (4.1.24), the coefficients of 

are independent of x. And since for a given t, these coefficients 

75. 



depend only upon the value of (k-j), the result follows. 

We shall now find an explicit expression for Aj (Gk,z ) 

in terms of the quantities P.  and Q. . 

Lemma 4.10. 

For j = 0(1)k, and k,t = 0,1,2,..., 

(4.1.26)  Aj (Gk,z ) = (- 

k-i 
k-j+9  (-1  

s=0 
s,t t+s-k+j,t • 

Proof.  From the result of lemma 4.9, we observe that (4.1.26) 

is true if we can prove that 

(4.1.27)  Al (Gk,z  
) k+t-1  (-1  

s=0 
s,t 2.+s-k+1,9.  • 

For convenience, let us now denote Ai(Gk)  by g k,z  . 

Then, from lemma 4.8, g koz  must satisfy the recurrence relation 

(4.1.28)  gkoz,  = 
k-1  -ct (k-j) 	- E

t 
•
) 
j1 

tz 	9j,2. -1 	t9, 	91(,9,-1 1  
= 

for it = 1,2,3,..., together with the conditions 

76. 
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(4.1.29) 

for 1,2,3,... 

6 
k,1 

for k= 

j=S+1 • 
k+s-j+1,Z 

• 1  -6 (k-j)  (-1) j-  t 1 k+1 tz-69, P
Z+s-

k
,9-1 . 

First we note that these boundary conditions are satisfied 

by the expression (4 : 1.27) of g k,z . Next, let us denote the right 

hand side of - (4.1.28) by h k,z . On using (4.1..27), we have 

k-1 j-1 

X• X 	(- 
j=1 s=0 

4.4s 
t 

-62,(k-j) 
Q 	P s,Z-1 Z+s-j,Z-1 

hk,Z 

k-2 

=  X Qs 32-1 
s=0 

On inverting the order of summatiOn in the double sum.. With 

j .udiciaus application of lemma 4.2 1  the term inside the brackets 

can be written as 

Thus, 
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k-2 
h  =  X

s,t-1 
s=0 

-e
( 
k-j) k+s ( 	(.1) j - 1 t 	Z 

, Q 
j=s+1 

- (-1)
k+1 
 tt  

-et  k-1 
)  t

Q  
X 

Pt+s-k,t-1  
-  (-1 ) Q

5,t-1  t+s-k,t-1 
s=0 

Applying lemma 44 to the last term, we find after a little 

algebra that 

k-1  k  
- 1 	-e (k-j) 

h
k 	

=  Q  
=s+1
2, (-1) j  t  P

k+s+1 -j,t • 
k+s 	r 

,t 	
s=0 

s,t-1 ( 
j, 

If in the second sum, we write s+1-j = -u and invert the 

orders of summation, we obtain 

k-1  k-(1+u)  -et (t-1L-u-s) 
h
k,t =  (-1)Z u

10 
(-1)u .13.32-u 9,  1s0  t  Qs,32-1 • 

= 

On using lemma 4.5, we find that h k,t  = g k,t  as given 

by (4.1.27). Thus the expression for g k,t  as given by equation 

(4.1.27) satisfies the linear recurrence relation (4.1.28) and 

the boundary condition (4.1.29) and the lemma is proved. 

We have obtained an explicit expression for the Chebyshev 

coefficients of the polynomial part of F k,t (x), we shall now 

find an expression for the remainder  



Lemma 4.11. 

For k,32, = 

79. 

4.1.30) 5 

where H
s,

k (x) is independent of k. 

Proof.  From (4.1.2) and (4.1.23), it follows that Mk,z (x) 

satisfies the recurrence relation 

 

k- 1  -c o (k-j) 

4 k ,

9, (x) = 	(tt 	9, 	j=0 

 
MJ,1-1 

	
) 

-2c 

 

1-t 
-2ck

)  m
k' k-1 (x) + 	,...,tk;x)t z  

with M
k,0

(x) = 0, for all k. The function p is given by 

- E 

(1) (t 
 

F 	(x) 0,Z-1 	1 	1 

F 	(x) - t F  (x) 
- 1,Z- 1  

-2- (t n  + T— ) - x u k  

. The proof of the lemma follows by induction on k. 

We shall assume that t i ,t 2 ,...,t k  are distinct, the modifications 

that have to be made when this is not the case are straightforward. 

First, from (4.1.31), 

(4.1.31) 



M k,1 (x) = 
1 

-  ) (p(t ;x 
1 

-e 1 k 
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for all. k, so that the lemma is true when St, = 1. Next, let us 

suppose that the lemma is true for 9. = 1(1)(L-1) and all k. 

That is, we shall assume that H 5 (x) is independent of k for 

= 1(1)(L-1). With 9, = L-1, on substituting (2.1.30) into. 

(2 ..1.31), we obtain Mk,L(x)  in the required form provided we 

define 

-E 	-E , 
t 	s t

L 
L -1 

H s 	
s

e ,L (x) -  -e 	H
s,L-1

(x),  for s = 1(1)(L-1), 
-  

t  
L

- t  s  
L  s 

and 

HLL (x) 
, 

{-E -E 
4. t  , L-1 t  

L
L 	s  H

s 

T  
l(x) ' V 	_c 	-E 	s,L- '- . 

s=1 t  L _ t 

 

L  s 

+ ¢(t1,t2'.'.,t1_;x)  }. 

Thus, H s,L (x) is independent of k for s = 1(1)L, and the 

lemma follows by induction principle. 

We shall now consider a generalisation of lemmas 4.10 and 

4.11. By applying the recurrence relation (4.1.2) u times, 
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where 0  u  9 we find that F
kz 

 (x) can be written as the sum 
, 

of two parts .. The first part Gku (x) is the sum of terms 

involving F.  (x), j = 0(1)k, whose coefficients will be 

denoted.by C. 
.(kZ) 

.The second part which we-shall call the 
„ 

remainder M
kZu 

 (x) Consists of products of factors like 

-c k 
1  1 

/[ — (t
Z  + 
 - x].  Thus, 

2  t
Z  

(4.1.32)  F
k,Z

(x) = G
ku  -

(x) + M
ku

(x) , 

where 

(4:1.33)  G
ku

(x)  =  F. 	(x). 
j=0  

j,Z-u 

Lemma 4.12. 

For k,Z = 0,1,2,..., u = 0(1)Z and j = 0(1)k, 

(4.1.34)  C. 
 (k,Z) = 	k-j+u 

s=0 

 
Qs,u Pu+s-k+j,u ' 

-c s 
-where P , and Q  are symmetric functions of t

s  
, s =  

su  s,u 

as defined in definitions 4.1 and 4.2. 

Proof.  We note that when u = Z, C. (k ' Z)  = A.(G 
J,Z  k,Z" 

for j 7 0(1)k, and G k;z01 (x) = k,z (x):  The proof follows in 



-e  -6 

L-1  t  L .ft  s 

- 
-6 L  -e s 	s,L-1,u (x)  

t 
ss 

1 - 	 + cp (t i, t 2 , . ..tL ;x) 

82. 

exactly the same way as that of lemma 4.10 if we replace Chebyshev 

polynomials  .x), j = 0(1)k, by functions F.  (x) , and the T(x) 
 

symmetric functions P
s,t' 

Q
s,Z 

by P
s,u' 

Q
S,u 

respectively. 

In analogy with lemma 4.11, we have the following result. 

Lemma 4.13  

For k,t = 0,1,2,... and u = 0(1)Z,. 

2. -6 k 
(4.1.35)  Mkz ( ) =  X  Hs,t(x) t 

 

, ,u  
s 

 

s=t-u+1  
,u 

 

where H 1(x), for s = 9-u+1)(1)2,, are independent of k. 

Proof. With appropriate modifications, the proof may be 

obtained,in.a way .Similar. to that of lemma .  4.11 if we define 

-E 	-E1  
EL 

t
s  

t
L 	

- 

 

H 
sLu(x) 

 - '  H
s,L-1,u

(x) , for s = L-u+1)(1)(L-1), 
-E

L 
t
L 	

t s
-Es 

and 



We can now state sufficient conditions under which M
ku

(x) 

will be negligible for all x E [ -1,1]. 

Lemma 4.14. 

If 
 - 6

s 	
, for s = Z-u+1)(1)9, then 

(4.1.36)  limM
k  

(x) = 0,  for all x E [-1,1] . 
k÷.0  ' Z ' u  

Proof.  This follows from lemma 4.13, since the right hand 

side of (4.1.35) is a finite sum and the functions H
su

(x), 

for s = (2-u+1)(1)2., are independent of k. 

We have obtained several important properties of the class 

of rational functions F
kSZ 

 (x) and some related functions. In the 

following section, we shall apply these results to show how an 

asymptotic estimate E ry,m (f) of the quantity E 11 (f) may be readily 

obtained from the Chebyshev coefficients of f(x). 

4.2. An expression fo r  

In this and the next section, we shall assume that f(x) 

is a polynomial of degree (n+r+1), where n,r are two non-negative 

integers. We shall denote it by f ri+1,41 (x)• If R(n,m;x) denotes 

83. 



the rational function of best uniform approximation to f
n+r+1

(x) 

Out of V  , where m = 0(1)n, then we have 
n,m 

(4.2.1)  fn+ri_ 1 (x) - R(n,m;x) = E n ,m  0(x) . 

In this equation (and as we shall do subsequently) we have 

written E
n,m 

for 
En,m(fn+r+1)• 

 Assuming that fri41,11 (x) is normal 

for .(n,m), (see Rivlin [31], p.126), the error function 0(x) has 

. the property that it take its extreme values of ±1 alternately in 

at least (n+m+2) points of [-1,1]. For an arbitrary polynomial 

it does not appear possible to find analytic expressions 

for E
nm 

 and qb(x). Instead, following Bernstein [2] and Clenshaw 
, 

[6], we shall first of all consider a representation of f ri+1, 1_ 1 (x) 

in terms of rational function F
k 
 (x), with suitable values of 
,Z 

k and Z. 

Let 
Fn+r+1,m+r(x) 

 denote the rational function 

Fn+r+1 (A,T
m+r'm+r

;x), where A is a finite Set of (m+r) integers 

taking the value of +1, so that it possesses all properties 

given in the previous section. Furthermore, we choose the set 

ffi-f.r 
such that

s 
= +1, for s = 1(1)m and c s  = -1, for 

s  1)(1)(m+r). 

84. 

Applying the recurrence relation 4.1.2) r times, we 



find that 
Fn+r+1,m+r(x) 

 can be written in the form 

(4.2.2) F
n+r+1,m+r

(x) = G
n+r+1,m+r,r (x)  Mn+r+1,m+r,r (x)  ' 

where 

n+r+1 
(4.2.3) .(x)  =  C. 

Gn+r+1,m+r,r  
j=0  J ' r  

n r+1,m+r 
• 	(x) , 
J011  

as in equation (4.1.32) and (4.1.33). From lemma 4.14, 

Fn+r+1,m+r
(x) is asymptotically equal to 

Gn+r+1,m+r,r(x), 
 for n 

sufficiently large, provided It 5 1 < 1, for s = (m+1)(1)(m+r). 

From (4.2.3) and lemma 3.4, we see that 
Gn+r+1,m+r,r(x) 

 may be 

decomposed into a quotient of two polynomials, both of degree m, 

and a polynomial of degree (n+r+1). We observe that this 

polynomial is the polynomial part 
Gn+r+1,m+r(x) 

 of Fro.ril,m+r (x) 

as defined in (4.1.23), and whose Chebyshev coefficients are given 

in lemma 4.10. Alternatively, we can write 

G
n+r+1,m+r,r 	

a polynomial of degree n  
a polynomial of degree m + (a polynomial of 

degree (n+r+1) whose lowest degree of T k (x) 

is (n+l -m)), 
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as 0  m  n. 



Given a polynomial f ro.ril (x) of degree (n+r+1), let us 

write it as 

(4.2.4)  f rii1, 41 ( ) 
n,m;r n+r+1,m+r,r

(x) , 

where E 
n,m;r 

 is chosen to  
n;r 

be a positive constant, p  (x) 

andq 
m; r

(x) are two polynomials of degree  n and  m respectively. 

It is easily seen that it is plausible to write f rol_0 (x) -  in this 

way if we choose.q mo,,(x)..to . be Qm (x) (see definition 4.3). By 

multiplying both sides of (4.2.4) by Oa(X)  and comparing - the 

coefficients T.(x), j = 0(1)(m+n+r+1), we obtain a set of 

(n+m+r+2) equations with (n+m+r+2)unknowns. These unknowns are 

*  * 
the (n+1) coefficients of P n;r(x) the constant E n ,

.11.1
;r 

and the 

constants i s , s = 1(1)(m+ .6, which determine G ri+rii,m+r,r (x) and 

0 (x). 
in. 

For n sufficiently large and if It s ' < 1, for s = (m+1)(1)(m+r), 

Mm+r+1,m+r,r
(x) will be negligible for all x E [-1,1] by lemma 

4.14 and the behaviour of 
Gn+r+1,m+r,r(x) 

 will closely resemble • 

that of the rational function F r1+01,m+r (x)• In particular, 

from lemma 3.3, G ni_ro,m+r,r (x) will oscillate between its 

extreme values of ±1, taking these values alternately in at least 

(m+n+2) points of [-1,1]. This is precisely the behaviour of the 

error function (I)(x) in equation (4.2.1), and we may compare 
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*  • 
with E, and the rational function p 

n;r
(x)/q  (x) n,m . n,m;r  m;r 

with R(n,m;x). 

To sum up, for a given polynomial fri+0_ 1 (x), if we can 

find the constants t
s' 

s = 1(1)(m+r), such that It 5 1 < 1, for 

s = (m+1)(1)(m+r) and (4.2.4) is valid, then for large enough n, 

nm;r will be asymptotic to E  and p 
n;r

(x)/q 
 n;r

(x) will be 
,  n,m 

asymptotic to R(n,m;x). We are now in a position to obtain an 

expression for the quantity 
Enm;r 

 using the equation (4.2.4). 
,' 

Before doing so, it is convenient to define a matrix and a 

column vector. 

Definition 4.4. 

For non-negative integers n,r, and m = 0(1)n, let 

A
n,m+r = (a) be the symmetric matrix of order (m+r+1) defined 

by 

(4.2.5)  a  = 

i+j  

{ a

n+i+j-m-1, 

0  ,  i+j > 

for i,j = 1(1)(m+r+1), where a k , k = 0(1)(n+r+1), is the 

coefficient of T
k
(x) in the Chebyshev series expansion of f 

n+r+1
(x), 

(see definition 1.6). 



Definition 4.5. 

For non-negative integers m,r, let P  be the column 

vector of dimension (m+r+1) defined by 

,(4.2.6)  PlorT  = (P
(..vm+rp 

,m+r' 131,m+r'''  m+r,m+r ' 

where 
Ps,m+r' 

s = 0(1)(m+r) are the elementary symmetric 
-c. 

functionsoft. 3 , j = 1(1)(m+r), (see definition 4.1). 

• We shall now state and prove two theorems which provide 

* 
the basis for the algorithm from - which the quantity E n m,r 

may be computed. 

Theorem 4.1. 

Suppose there exi
s
t E 

n,m;r 
and a set T

m+r 
such that 

equation (4.2.4) is valid. Then, either +E  or -E 
n,m;r  n,m;r 

is an eigenvalue of the matrix A n,01, with Pm+y, being the 

corresponding eigenvector. 

Proof.BycwiparingcoefficientsofT.(x), for j = (n+1-m)(1)(n+r+1), 

on each side of equation (4.2.4), we have 
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(4.2;7) = ±E 	A.(G aj 	n,m;r j n+r+1,m+r,r ) ' 

We observe that, for j = (n+1-m)(1)(n+r+1), A.(G 
J n+r+1,m+r,r ) 

are precisely the same as Aj (Gri+r+1,m r ) whose explicit expressions 

are given in lemma 4.10. Thus, 

m+r 
(4.2.8) a 	= ±E 	(-11 s p 	n  

n,m;r s=m- n+1+j 	s,m+r s -m+n+l -j,m+r ' 

for j = n+l-m)(1)(n+r+1).. Or, 

m+r 
(4.2.9) 	an+k+l-m = _ n 

	sk ,m;r X (-1) Ps,m+r Qs-k,m+r' = 

for k = 0(1)(m+r). Now, writing k = k+j, multiplying both sides 

by this equation by (-l)i Pj,m+r' and summing over j from 0 to 

(m+r-9,), we find 

m+r,- Z * m+r-z m+r 

j0
n+ 2+1-m+j (-1)j  Pj,m+r = +E n,m;r j0  X 	X 1(-1)sP s ,m+r = = 	s=z+j 

Qs t-i,m+r (-1 	j,m4. 

= ±E 
m+r 	s-k p

.X n,m;r L s 
S=2,  '

m+r 
J=0 

Pj,m+r Qs-k-j,m+rj' 



on.interchanging the order of summation in the double sum. 

From definition 4.2, we have 

X 	(- 1  
j=0 j ,m+r Qs-Z-j ,m+r 

, for s  k, 

, for s 	2. 

Hence, 

m+r-2, 

 

(4.2.10)  a 
j0  

.(-1 
n+t+l-m+J  

Pj,m+r = ±E 
n,m;r  

P 
= 

for it. = 0(1)(m+r). We can write this sytem of equations in matrix 

form, as 

 

(4.2.11) 
 

A
n,m+r m+r = 	

P
m+r ' 

and the theorem is proved. 

This theorem is proved under the assumption that the 

polynomial
n+r+1

(x) can be written in the form given by equation 

(4.2.4). This will not always be true, and whetherforil (x) 

can be written in this way, will not be known a priori. Thus, we 

would like to state sufficient conditions under which foril (x) 

can be-written in the form of equation (4.2.4), together with 

the condition that 
Mn+r+1,m+r,r(x) 

 is -negligible for all x E [-1O]. 
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Theorem 4.2. 

Given a polynomial f oril (x) with aoro  0 7  Let X be a 

non-zero eigenvalue of the matrix A n,m11, and x = (x 0 ,x 1 ,.,.,xm+r ) 

be the Corresponding eigenvector. Suppose ip m+r (z) . denotes the 
m+r 

polynomial y (-1) s x s z
m+r-s 

, and let,(f3 1 ,R2 ,..., m+r } be the zeros 
s=0 

of tpliviT (z).  If 

(a) x 0 
 , and 

(b) I s 1 > 1, for s = (0)(1)(m), and I(3 s 1 < 1, for s = (m+1)(1)(m+r 

then • 

( 1 ) {PI,  = Timis , 

(ii) IXI = E 
n,m;r  m+r  = 

(iii) equation (4.2.4) is valid, 

lim  M-+r+1,m+r,r(x) = 0, for all x  [-1,1]. 
n-÷00 " 

Proof.  Since An,m41, is a real, symmetric matrix, X and x are real. 

The polynomial ip r (z) has real coefficients and therefore its 

zeros occur as complex conjugate pairs. From 

(4.2.12)  A
n,m+r 

= Xx _ 
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0, we can normalize the vector x so that 
0 

Since x 
^ 

We find in particular tha
t an+r+1 

x
0 

= Aximl,. Since none of A, 

x
0 

and a n+r+1 is zero, xm+r  0. Consequently, none of the 

zeros of Lpthils (z) can - be zero. Again, since x o  0,tPm+r (z) is 

a polynomial of degree (m+r), so that 

it has (m+r) zeros (with due regard to multiplicity).' These 

results together With (b), show that the zeros f'3 1 ,62 ,••,6m41.1 

form a set T
m+r 

and (i) is proved.. 
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x = 1. The polynomial IP
m+r

(z) can be identified with T  (z) 
0  m+r 

(see equation (4.1.6)), and the normalized vector x with P mil, 

(see definition 4.5). From (4.2.12), we have 

(4.2.13)  a  . 1 j  P.  = x(-1  P 
j=0  

n+10-1-m+j  j,m+r  9,,m+r ' 

fork = 0(1).(m+r).. On reversing the steps in the proof of. 

theorem 4.1, We find after some algebra that 

(4.2.14) a. = AA. 
-J n+r+1,m+r,r )  

for j = (n+l-m)(1)(n+r+1). Comparing this with equation (4.2.7), 

we obtain A = ±E  Thus, (ii) and (iii) are proved. 

Finally,  follows from (b), on using lemma 4.14. 
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•  We have shown that either +E  or -E  is an 
n,m;r  n,m;r 

eigenvalUe of the matrix 
An,m;r' 

the sign being chosen .so that 

n,m;r will be positive. There remains to be determined, 

- however,  the criterion that must be used for choosing E 

from among the(mn) eigenvalues of A n,m+r  so that, in particular, 

condition (b) of theorem 4.2 is satisfied. We shall consider. this 

problem.in.the next section. 

•* 
CharacterisatiOn of E 

Throughout this section, we shall assume that n,m and .r 

are fixed non-negative integers, where 0 m _ n.  For convenience, 

we shall write N = m+r. In the last section, we have insisted 

that E  is positive hence there is no guarantee that E 
n,m;r  n"r 

is an eigenvalue of A  We shall therefore introduce another 

*  * 
matrix C  which has the property that both 

+E,m;.r 
and. -E n n,m;r 

are its eigenvalues, one of these being an eigenvalue of A n,N . 

Definition 4.6. 

For k = 0(1)N, the square matrix B k  =(bi,i ) of order (k+1) 

•is defined by 



\ BT kI  

0 i k ) 

an+r+1+(i-j), I 5_ j, 
(4.3.1)  b 1  

0  > j, 

where i j = 1(1)(k+1 

Definition 4.7. 

For k = 0(1)N, the symmetric matrix C 2k  of order (2k+2) 

is given by 

(4.3.2)  
C2k 

We shall obtain some properties of C 2k . 

Lemma 4.15. 

All eigenvalues of C 2k  are real, and if p is an eigenvalue, 

so is -p. Furthermore, 1.1 2  is an eigenvalue of B k
T
B k . 

Proof.  Since C
2k 

is symmetric, all its eigenvalues are real. 

If p is an eigenvalue of C 2k , then we shall have 
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( 7 1 '1  0  t' -  I  ,B  I ' 0 

 

;I
I

,- .- .  • , t  k  I , 
- -4- --- - - -.. - - 

0 i IS
T 	: 

71.1I  0 1 I 
I  k , 

On multiplying out the matrices, we have 

det 
( 	B k  

Ti - - B 
k 	

pi 

so that -p is also an eigenvalue of C 2k . Finally, this last 

equation can be written as det(B k
T
B k  - p

2
I) = 0, thus, p

2 

is an eigenvalue of the matri .x.B kTB k . 

Definition 4.8. 

For k = 0(1)N, let the eigehvalues of c 2N  be denoted by 

±p  , for j = 0(1)k, and suppose they are ordered so that 
j , 

Pl,k  ";  Pk,k  
0 

 

The importance of the matrix 2N is given by the following 

lemma. 
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Lemma 4.16. 

If X-is an eigenvalue of A n  N, then both +X and -X are 

eigenValues of C 2N . 

Proof.  Let x be an eigenvector o
f 

A
n,N 

corresponding to the 

'T 
eigenvalue X, where x = (x 0 ,x 1 ,...,x 1 ). Let zdenote a column 

vector defined by 

= 	( 	2X 1 20602XN2X leee2X 2X ) 

It is easily seen that the equation 

(4.3.3) 
 

C
2N 

y_ 

• is no more than the equation An,N  x = Xx written down twice. 

Since X is an eigenvalue of C2N , so is -X by lemma 4.15, and•

the result follows. 

From theorem 4.2, E 
n,m;r 

 is the modulus of one of the 

eigenvalues of An,N , it follows that E now, must be chosen 

from among the positive eigenvalues p j,N , j = 0(1)N, of the 

matrix .0
2N* 

Our criterion for choosing E 
nm;r 

is that r zeros ,  

of the polynomial constructed from the corresponding eigenvector, 
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must lie within the unit circle. In order to apply this 

criterion, we shall make use of the Schur-Cohn theorem (see 

theorem 4.3). 

Letp.  j = 0(1)N, be any positive eigenvalue of C
2 

and let
J  

y.
,N 
 be the corresponding eigenvector. Now, let us 

.  

write 

(4.3.4)  y 
j,N 	

(x
o' 
 

N 
 ...,x0 ) , 

where -for ease of notation, we have not used the suffices j,N 

on theelements of the vector yjo  . 

Definition 4.9. 

Let tpN (z) denote a polynomial of degree _ N defined by 

97. 

(4.3.5) 

Definition 4.10. 

1pN (z) = 
s=0 

z N-s 

For k . = 0(1)R, let Mk  = (m) be the square matrix 

of order (k+1), defined by, 



(4.3.7)  m 
1,3 

4.3.6) 

- 

m. . 
1,j 

2 

{ 0 

i 	j, 
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for i  = 1 (1)(k+1 

Definition 4.11. 

For k = 0(1)N, let M k  

order (k+1), defined by 

. .) be the square matrix of 
1,3 

for i  = 1(1)(k+1 

Theorem 4,3.  (Schur-Cohn). 

For k = 0(1)N, let 

(4.3.8)  Ak  = det • 
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If A
k 
 x 0, for k = 0(1)(N ,-1)., then tp

N 
 (z) has no zeros 

o I I = 1. If there are p. variations of Sign in the sequence 

then LPN (z) has p zeros inside .  the unit 

circle IzI = 1. 

Proof.  see Marden [20], chapter 10. 

From the structure of the matrix 211 
	can be readily 

seen that the equation 

(4.3.9) C  y.  = p.  y. 2N  J,N 	3,11 j,\I 

is equivalent to the system of equations 

*T (4.3.10) 	M 	B k 	k 

for k•0(1)N. 

= u 
,N 

In order to apply the Schur-Cohn theorem, we need to 

determine sgn Ak , for k = 0(1)N. 

Lemma 4.17. 

0 and det(M J,N 0 for k . = 0(1)N, then, 
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k 	2  
(4.3.11)  sgn Ak  -= (-1)1 k+ 

sgnT-T (p . • - 
X=0 	J ' N  j" K  

for  = 0(1)N. 

Proof.  From equation 4.3.8), since the matrices M k  and Mk*T  

commute, we have 

An+
4 
M 
k T M k 

m  *T * 
= "'""  n 	-k. 

On using (4.3.10), we can write this as 

detfMk* 
 

2
1 
	(B kT  B ) - I 

P  j,N

Mk * I 

since
J  

p.
,N 

x • Since det(Mk  )  0, we obtain 

sgnAk  sgn det(B T  - 112j,N I 

The result now follows immediately since the eigenvalues of 

Bk
T 

Bk  are given by  for for t = 0(1)k. (see lemma 4.15). 

Thus, we have shown that, for k = 0(1)N, the signs of 

'6k vary with the choice of p  from among (N+1) positive 

eigenvalues of C2N . We need the following result. 



Lemma 4.18. 

For k  0(1)N and j = 0(1)k, 

2  2 
(4.3.12)  

P  j,k-1  P  j,k ' 

Proof.  This is merely a statement of the separation theorem 

for the eigenvalues of a real symmetric matrix and those of 

its leading principal minor as applied to the sequence of 

matrices B k  B k 
 and B k-1 Bk1' For a proof, see Wilkinson 

- 

/[38], pp.103-104. 

We are now in a position to state sufficient conditions 

to enable us to obtain E n,m;r 
 from the moduli of the eigenvalues 

of A n,N 

Theorem 4.4. 

Given An,m  with ani.ril  0. Let A be an eigenvalue of 

(m+l) st  largest modulus of An,N . Suppose A satisfies the 

following conditions 

(a)  0 0 	' 

(b) neither +A nor -A is an eigenvalue of A n  - +I,N-1' 

101 .  
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(c)  1A1 is greater than the modulus of the eigenvalue of 

largest modulus of An+m — ,  
+1 N-m-1 

Then, 

 

(1) A is the only eigenvalue of (m+1  largest modulus of 

A. 

n,m;r = 

Proof.  We note that in the special case when m = 0, 

conditions (b) and (c) are equivalent. 

(i) Since A is an eigenvalue of (m+l) st  largest modulus of 

An,N , pm,N  - IXI is a positive eigenvalue of C 2N . From (b), 

pm,N  cannot be an eigenvalue of C 2(N..1) , so that we must have 

(4.3.13) Pm,N-1 < Pm,N < m-1,N-1 

by lemma 4.18. Again, from lemma 4.18, we have u 
• m-1,N-1 5' Pm-1,N 

and pm+ , ,- u  Thus, pm+1,N  < pm,N  < p -, . and pm,N  is a 
1 N 5' 'm,N-1' 	 m I,N 

simple eigenvalue of C
2N' 

This implies that A is the only 

eigenvalue of (m+l) s  largest modulus of A n  

(ii) The result follows from theorem 4.2 if conditions (b) of 

that theorem is satisfied. We want the polynomial 4) 14 (z) to have 



r zeros inside the unit circle. From Schur-Cohn theorem, 

the sequence {1,A
0'

...,A
N-1

} must therefore have r variations 

in sign. From (c), we have 

(4.3.14) p  > m,N .   

k 
Thus, sgn fl  (112 111N  - p2z,k ) is strictly positive for k = 0(1)(N-m-1 

Z=0  
, 

 
so that the sequence {1,A0 ,...,A} has N-m=r variations in sign, 

by *lemma 4.17. From (4.3.12), (4.3.13) and (4.3.14), we find 

(4.3.15) 
 

p. 
m-k 1,N-k 

< p
m,N 

 < 
m-k,N-k ' 

for k = 1(1)m. Thus, by lemma 4.18, 

4.3.16) 
 

sgn  
m-k+1. 

= 
 

for k = 1(1)m, which is independent of k so that there is no 

variation in sign.in  the seqbencelAN _m ,AN_m+i,...,AN_ I I . 

Furthermore, sinde sgn ANifi1  sgn A N_m  = (-1)
N+m 
 , the sequence 

{1,A0 ,Al' ...,AN-1 } has r variations,in sign, and the polynomial 
-  

4, 14 (z) has 'r zeros inside the unit circle. Finally, it is readily 

seen that under the conditions of this theorem, X is the only 

eigenvalue of An,N  for which the corresponding polynomial Ip N (z) 

• has r zeros inside the unit circle. For any eigenvalue p  of 
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C2m , other than 1rnP4'the 
 sequence -(1,L ,A ,...,A- ,) will have 

less or greater than r variations in Signs. Hence, (ii) is 

prOVed , . 

We shall now state an alternative condition to condition 

(a) of theorems 4.2 and 4.3. 

Lemma 4.19. 

104. 

'0 .6/eriA
nN 

 with 
an+r+1  

0. Let X be a non-zero eigenvalue 
, 

of A  If neither +X nor -X is an eigenvalue of A
n+2,N-2' 

then xo  '0. 

Proof. If neither +X nor -X is an eigenvalue of A  then 
n+2,N-2' 

both +Xand -A are not eigenvalues of  Since X is an 

eigenvalue of Anx  both +X and -X are eigenvalues of C 2  

Hence, 

(4.3.17) 
 

C
2i 

y_ = ±Ay.  , 

where y =  ; Let us now 

suppose that xo  = 0, then from (4.3.17), we have, in particular, 



(4.3.18)  a
n+r+1 

x
0 

Since an41,41  x 0 and A x 0, this implies that X N = 0. The 

equation (4.3.17) is then 'reduced to 

4.3.19) Y =  Y 
C20- 2)—  ' 

where Y T  = (x i  . .,xN_,,x m_ 1 ,...,x 1 ). Hence ±A are eigenvalues 

of 
C2(N2)  

This is a contradiction. Thus x
0  

0 and the 
-*  

lemma is proved. 

To sum up, let firwil (x) be a polynomial of degree (n+r+1 

where n,r are two non-negative integers. We have shown that, 

* . 
under certain conditions, an asymptotic estimate E n,m;r 

for the 

quantity En,m (f), for m = . 0(1)n„ and n sufficiently large, can 

be obtained directly from the Chebyshev coefficients off or i (x). 

E h,M;r 
:  is given by the modulus of the eigenvalue of (0.1)5t 

largest Modulus of a symmetric matrix of order (m+r+1) defined 

by (4.2.5). In the following 'section, we shall consider the 

generalisation of this result to certain functions that are 

continuous on the interval [-1,1]. 
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4.4. The limiting case as r  co. 

In the last two sections, we have assumed that the function 

f(x) is a polynomial of degree (n+r+1), we would like to extend these 

results to the case when f(x) is a continuous function. Let us 

suppose that f(x) is a continuous function such that we can 

write 

(4.4.1) 
n+r+1 

f(x) = lim  1 1  a kT k (x) , 
r-*cc k=0 

the sum converging to f(x) for all x E [-1,1]. Having chosen 

n,m, where 0 5 . M 5 n, we shall firstly approximate to f(x) by 

a polynomial of degree (n+r+1) and use the above analysis to obtain 

the quantity E n,m;r . An estimate of Em(f)  is then found by 

considering the limit of the sequence {E n,m;r } as r ± co . The 

question immediately arises as to under what conditions does 

lim E 
n,m;r 

 exists, and to partially answer this, we have the 

following theorem. 

Theorem 4.5. 

Suppose f(x) = lim 'f riri_ 1 (x) -, for - all X E [-1,1]  For 

given

r+co  
nand m, where 0 5 M 5 n, the.sequence . {E  } n,m;-r converges 

as r  co, provided la k I5A/k(P, where (I) > 1 and A > 0. 

r÷00 
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Proof.  As we have seen in theorem 4.4, the quantity E 
n,m;r 

is the modulus of an eigenvalue of the matrix An,N . Consider 

the Gerschgorin circles of this matrix, we obtain 

(4,4,2 
.m+r 

E  X.  la 
n,m;r  n+k-m+1 

k=0 

If la k l  A/04) , where A > 0 and  > 1, then this series 

:converges in the limit as r  (  roqs Yva" c-*-4-Ple6  

The condition lak l 5 A/0, 0 > 1, of theorem 4.5 is not 

a very restrictive one in practice. Indeed, it is also a 

sufficient condition to guarantee that lim fn41. 1.1 (x) = f(x), 

uniformly for all x  [-1,1].  TILL 

In this chapter, we have given an algorithm for estimating 

the quantity E n,m (f), where m = 0(1)n, and f(x) is a certain 

continuous function on [-1,1]. We have neither, however, 

investigated the ratio E  
/En,m;r' 

 for a given value of r, 
n,m  

nor the asymptotic rational function of best uniform approximation 

,  * 
p n;r kx)/q wr (x) of f(x).  These problems will be dealt with 

in the next two chapters. In chapter V, we shall consider the 

case of best Uniform polynomial approximation. We shall obtain 

the asymptotic polynomial of best uniform approximation 

and various bounds for the ratioE 
n 
 /E 

 n;r* 
 In chapter VI, an 



A 
.rexpresSion for the as9mptotic rational function of best uniform 

approximation p ;r 	m;r (x)/q 	(x) will b given. n  
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CHAPTER V 

THE CASE OF BEST UNIFORM POLYNOMIAL APPROXIMATION 

In section 5.1, weshall obtain the asymptotic polynomial 

of best uniform approximation p 
n;r  (x). Various bounds for the 

ratio E 
/En;r' 

 where 
 n;r 
E  is an asymptotic estimate of E

n
, for n  

large n will be given in section 5.2.  Finally, in section 

5.3, we shall deal with some numerical examples which will be 

compared with the results given by other authors. 

5.1.  The asymptotic polynomial of best uniform approximation p 
nr

(x). 

Asa special case of section 4.2, we let n,r be two given 

non-negative integers and m = O. Suppose f ni.r.1.1 (x) is a polynomial 

of degree (n+r+1), from equation (4.2.4), we may write 
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11 0. 

5.1.1 f  (x) =  p 
n;r

(x) ± E*  G 
n+r+1  n;r n r+1,r(

x) , 

where E 
n;r:is 

 a positive constant and p 
n;r 

 is a polynomial of 

degree  The function 
Gn+r+1  

.  r(X)  is the polynomial part of the , 

rational function*Fn+r+1,r(x),  (see equation 4.1.23). We note here 

that F+1 
r. 
 (x) denotes the function F

n+r+1 (A,Tr'r' 
-x), defined 

n+r,  

as in (3.1.3), where A is a finite set of r integers taking the 

value of +1 and E is such that c = -1, - for s = 1(1)r. From 
• r  s . 

lemma. 3.3, we find that Fn+r+1,-r • (x) attains its extreme Values 

±1 in at least (n+2) points of [-1,1], and therefore satisfies the 

• characterisation property of the error function of the best 

uniform polynomial aPprOxiMation. -  Also, from lemma 4.14, for 

n sufficiently large and if It s.  <-1, for s = 1(1)r, the behaviour 

of 
Gn+r+1,r(x) 

 will .closely resemble that of F 
n+r+1,r

(x). Thus, 

for a given polynomial f n41,41 (x), if wecan find the constants 

ts , s = 1(1)r, such that It s ' < 1 and (5.1 ..1) is valid, then 

for n sufficiently large, E n;r  will be asymptotic to E n 
 and P n;r (x)  

will be asymptotic to p n (x)• We have the following result. 

Theorem 5.1  

.Given An,r  (see definition 4.4) with an+r+1  0. Let A be 
.  

an eigenvalue of largest modulus of An,r • Suppose A satisfies the 

following conditions• . 



(a) the corresponding eigenvector of X has a non-zero first 

component, 

(b) neither +X nor -X is an eigenvalue of A 

Then, 

(i) X is the only eigenvalue of largest modulus of A n,r , 

(ii) E 	IA1- n;r 

Proof. This can be obtained as a special case of theorem 4.4, 

on putting m = 0, and observing that the conditions (b) and (c) 

of that theorem are equivalent in this case. 

Suppose now that the polynomial P n;r (  ) is written as 

(5.1.2) P n;r  (x) =/ k=0 

then we have the following result. 

Theorem 5.2. 

For k= 0(1) 

*  r 
TE 	Y (-1)P 	Q k 	n;r 	.s,r n+l-k+s,r ' s=0 

(5.1.3 
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where P  and Q  are symmetric functions of the quantities t
' s,r  s,r  j  

j = 1(1)r, (see definitions4.1 and 4.2). 

Proof..  We note that under - the conditiomof theorem 5.1, we can • 

.write fni.r.1.1 (x) in the form (5.1:1), (see theorems 4.2 and 4.4). 

The result - now follows by comparing.the coefficients of T k (x), 

for k = 0(1)n, of both sides of .equation (5.1.1), on using lemma 

4.10. 

Thus, we see that in order to evaluate the polynomial 

p  n;r (k), we must know the eigenvector P r 
of A

n,r 
 which corresponds 

to the eigenvalue A. The vector P r  is of dimension (r+1) and is 

defined by 

(5.1.4 P
r
T 

= r' -P 1,r' .
" 	

)rpr,r 

   

(see definition 4.5). Once the quantities (-1)sPs,r  are 

known, we may compute Q s,r , for s = 1(1)(n+r+1), recursively 

from the relation 

(5.1.5) 
s,r 

1  
3,r s-j,r 

j= 

where
. 
Q
0 ,r 

= 1 and P.  7 0 for j > r, (see lemma 4.4). Finally, 
3,r • 

we note that the result (i) Of theorem 5,1, together'with the 
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condition. P  1 enables the eigenvector P
r 

to be determined 
• .  0,r 

uniquely. This enables us to determine the polynomial P n;r
(x) * 

5,2:  Bounds for E  
n;r' 

As we have mentioned in the last section, for a fixed value of 

. 
r, E n;r  ls given as the modulus of the eigenvalue of the largest 

modulus of the matrix A
n;r 

. We want to obtain an upper bound 

for the quantity E /E 
n;r* 

Lemma 5.1. 

For non-negative integers n,r. 

(5.2.1) 

or 

(5.2.2) 

E
n  

max  
xE[-1,1] 

IG n+r+1,r(x)I 
n,r 

E
n  

1 + max 

,  
Mn+r+1,r(x)1 

E nr 
 

Proof.  By definition 1.1, we have 

E
n 	

max  (x) 
n+r+1  

- p n;r(x)I  . 
xE[-1,1]  



Thus, 

(5.2.3)  E
n 	

max  1E n,r Gn+r+1, r (x)I 
x€[-1,1] 

on using equation (5.1.1)_ .(5.2.1) immediately follows. The 

second inequality (5.2.2) i8 obtained from (5.2.3), on using 

equation (4.1.23) and the fact that r1)1(ac -1,1] IF
n+r+1,r

(x)1 = 1. 

We note that the first upper bound is useful in practice. 

Once the quantities (-1)5P 
s,r 

 , s = 1(1)r, are known, the Chebyshev 

coefficients of 
Gn+r+1,r(x) 

 may be computed, using lemma 4.10. 

However, for analytical purpose,.as we are interested in the limit 

of E
n 
 /E 

n;r 
 as r  (5.2.2) is to be preferred. We shall now 

obtain a lower bound for E
n
/E 

n;r* 

Lemma 5.2. 

For non-negative integers n,r, 

(5.2.4) 
En 
 ii 1 y  

*  (-1) s Ps,r  Qs,r  I 	. 
En;r 	

- 4 s=0  
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Proof.  From equation (5.1.1), we have 
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a n+I = ±E. 	A n+1 (Gn+r+ ) ' 

(5.2.5) 

	

= ±E 	x (-1) D 	n 
n ' r s=0 	l s,r 's,r 	' 

on using lemma 4.10. Since 

(5.2.6) 
	

En 	
-47 la n+11 

(see Rivlin [26]), (5.2.4) readily follows. 

This result may be further improved in the case when all the 

Chebyshev coefficients ak  of fm.r4.1 (x) are non-negative. 

Lemma 5.3. 

For non-negative integers n, r, if a k  are non-negative, for 

k = 0(1)(n+r+1), then 

(5.2.7) 
En  

I X 	( -1 ) 	P1 • 
E n,r 	s=0 	s,r s,r  

Proof. 	When a k are non-negative, we have 
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(5.2.8) 
 

E
n >a n+ 

(see Rivlin [29]). The result immediately follows from (5.2.5). 

The lower bounds (5.2.4) and (5.2.7) although very useful 

for numerical purposes, do not have the advantage of the upper 

bound (5.2.2), since they do not provide us with any information 

about their behaviour when r  co. Unfortunately we have not been 

able to obtain any bound better suited to that purpose. 

We have seen in section 4.4 that if f(x) = lim f or+1 (x), 
r-Ko 

for all x E [-1,1], then the sequence (E 
11r

1 converges as r  co, 

provided la k l 5 -
A
- , where (I) > 1 and A > 0. We shall now obtain 

a result from the case where 0 <  < 1. 

Lemma 5.4. 

If a
k 
= A/0, where 0 <  < 1 and A > 0, then the 

sequence fE
*

1.10,} diverges in the limit as r  00. 

Proof.  Since E
n;r 

 is the largest eigenvalue of the matrix 

C
2r 

we have 

u TC u 

u u 
(5.2.9) 
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where u is any real column vector of dimension 2r+2 . From 

definition 4.7, we can write this as 

v(B + Br
T
)y_ 

r  
n;r 

v 
5 

where v is now any column vector of dimension (r+1). In particular, 

if we choose v so that each of its element is 1, then 

r+1 
E
*  1  A(r+2)  >  Y ka  > 

r+1  n+k - 
2(n+r+W n;r  k=1  

as (I) > 0. Also, since (1) ,  •< 1, this lower bound diverges in the 

limit as r  co. 

In the following section, we shall obtain some numerical 

examples and compare them with the results given by Murnaghan and 

Wrench [23]. 

5.3 Some numerical examples. 

We shall consider two functions f(x) = arctan x and 

 

a+x  10 2+1  
f(x) = log 

('57;- 
 ) , where a -  , -1  x  1, which 

10 2 -1 
have been discussed by Murnaghan and Wrench [23]. For a fixed 

value of n, we shall compute the quantity E
n;r 

 for 'various 



values of r to obtain En which is the limit of the sequence 

* 
{E• n;r

} as r ÷  . In practice, the convergence i5 quite rapid 

as we shall see below. Once the value E
n 

is obtained at a 

certain value of r, we may compute Q s,r ,.s = 1(1)(n+r+1), 

recursively from equation (5.1.5), where (-1)
s 

P 
s,r

, s = 0(1)r, 

are the components of the eigenvector corresponding to the 

eigenvalue +E 
n;r  n,r 

or -E  The coefficients of the asymptotic 
* 

polynomial of best uniform approximation will then be given by 

(5.1.3). 

f(x) = arctan x, where -1  x 5 

The Chebyshev coefficients of arctan x are given by 

k 2k+1 
(5.3.1) 
 

a2k+1 =  2k+  ' 

for k = 0,1,2, 7 _, where p = 21  - 1 = 0.414213562, (see [23]). 

For n = 6, the rapid convergence of E 6 .0„ to E6  is well illustrated 

in table 5.1. 

In tables 5.2 and 5.3, we exhibit the values of the 

quantities P
58' 

 for s = 0(2)8, and of the quantities 
Q5,8' 

for 
, 

s = 0(2)14. Since f(x) = arctan x is an odd function, all the 

values of P  and 
Qs,8' 

 where s . is an odd integer, vanish. 
s,8  

118. 



We note that in all tables, 0.(10d ol d 0.2 .... denotes 

that there are k zerosimmediately following the decimal point. 

VALUES OF E 
6;r

( ), r = 4(4)16, f(x) = artan x. 

r 
E* 

6;r 

4 0.(3)89925 

8 0.(3)60859 

12 0.(3)60859 

16 0.(3)60859 

TABLE 5.1 

VALUES OF 
Ps,8, 

 s = 0(2)8, FOR f(x) = artan x. 

S P 0  
s,u 

0 1.0 

2 -0.1335 7106 

4 0.0187 6247 

6 -0.(2)27 2406 

8 0.(3)3 9717 
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VALUES OF Q8  s = 0(2)14, FOR f(x) = artan x. 

s Qs,8 

0 1.0 

2 0.1335 7106 

4 -0.(3)9 2124 

6  . OM) 9439 

-  8 -0.(5) 336 

10 : -0.(4) 5779 

12 -0.(5) 703 

14 0.(6) 10 

TABLE 5.3 

In table 5.4, we give the polynomial P 6,8(x) for artan x, 

and compare it with p 6 (x) as computed by Hastings [13], Murnaghan 

and Wrench [23]. 
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.POLYNOMIAL APPROXIMATION TO artan x; -1 < x < 

HASTING'S 
RESULT 

M.  & W.'S 
RESULT 

 

0 0.9953 54 0.9953 580 0.9953 5796 
COEFFICIENTS 

1 -0.2886 79 -0.2886 902 -0.2886 9024 
OF x

2k+1 

2 0.0793 31 0.0793 390 0.0793 3904 

0.(3)6 086 0.(3)6 086 0.(3)6 0859 

TABLE 5.4 

(ii) f(x) = log a+x ) , where a 
a-x 

10
.2
+1  

4  
, and -1  x 

10-1 

' The Chebyshev coefficients of f(x) are given by 

(5.3.2 
4Mp

2k+1  
a
2k+1  2k+1  ' 

for k = 0,1,2,..., where M = log e = 0.4342 9448 and 

p = a - (a 2 -1)4  = 0.28013, (see [23]). 

The values of E 
4;r 

 r = 4(4)16, are given in table 5.5. 
' 

In table 5.6 and 5.7, we exhibit the values of P s,8 , for s = 0(2)8 

and of Qs,8 , for s =0(2)12. As in the previous example, P5,8 
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and qs,8  where s is an odd integer, vanish.  In table 5.8, we 

give the polynomial p 4;8 (x) for log (--),.and compare it with 

p
4
(x) as computed by Murnaghan and Wrench [23]. 

VALUES OF E
4;r 

 (f) r = 4(4)16, 
' 

f(x) = log  . 

r 
E* 

4;r 

4 0.(3)89732 

8 0.(3)60123 

12 0.(3)60123 

16 0.(3)60123 

TABLE 5.5 

VALUES OF 
Ps,8, 

 s = 0(2)8, FOR f(x) = log a+x  . 
a-x 

S P
s,8 

0 1.0 

2 0.0560 6772 

4 0.(2)34 2267 

6 0.(3)2 1978 

8 0.(4) 1454 

TABLE 5.6 



VALUES OF Q 5,8 , s = 0(2)12, FOR fCx) = log :1 . 

S c 0  JO-) 

0 1.0 

2 -0.0560 6772 

4 -0(3)2 7908 

6 -0.(4) 1223 

8 -0.(6) 58 

10 0.(6) 95 

12 -0.(7) 4 

TABLE 5.7 

a+x  a  _ 10+1  , 1 	x 	1.  
POLYNOMIAL APPROXIMATION TO log 

a-x 

k 
M.  & W.'s 
RESULT 

p 

COEFFICIENTS. 0 0.4433470 0.4483470 

OF x
2k+1  ' 1 0.0510518 0.05105176 

E
4 

0.(3)6012 0.(3)60123 
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We note here that our results are comparable to /hose given 

by Hastings, Murnaghan and Wrench. Furthermore, these results were 

.obtained with much * less effort since the algorithm involves only 

the computation of the eigenvalue of largest modulus of a symmetric 

matrix and its corresponding eigenvectors. 

We have, in this chapter, considered in detail the evaluation 

of E (f) and p(x) for the best polynomial approximation. In the 

next chapter, we shall discuss the problem of finding the asymptotic 

rational function of best uniform approximation. 
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CHAPTER VI 

THE ASYMPTOTIC RATIONAL FUNCTION OF BEST UNIFORM 

APPROXIMATION p
*n;  ci r (x)/*m;rcx) ' 

In section 6.1, we shall discuss the special case when f(x) 

is a polynomial of degree (n+1). All the results for this case 

will be obtained exactly, and not asymptotically. In section 6.2, 

an expression for the rational function p 
n;r

/q 
 m;r 

for the general 

case when f(x) is a polynomial of degree (n+r+1), r being a 

non-negative integer, will be given. 

6.1.  The case when f(x) is a polynomial of degree (n+1). 

We shall denote f(x) by frol (x) throughout this section. 

We want to approximate to f ri4.1 (x) by rational function from the 

set 
Vn,m, 

 where 0 m n. This problem has been previously 
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discussed by other authors (see Achieser [1], p.278; . Meinardus [21] ;  

p.166; Talbot [35]; see also section 2.2.1.1). An exact expression 

for E -(f  ) m n+1 has been given by all authors; Talbot has also - 
n,  

given an expression for the corresponding best rational approximation 

R(n,m;x):. However, no author has determined explicitly the error 

function 

(6.1.1) 
 

f
+1

(x) - R(n,m;x) 

or discussed its properties in any detail. We propose to do so 

in this section. 

We first observe that this problem is a special case of 

that analysed in section 4.2 where we have put r = 0. From 

equation (4.2.4), we may write 

* 
P .,(x)  * 

(6.1.2  f
+1
(x) -  *n ''   ± E  F  (x) 

n,m;0 n+1,m  ' 
q  (x) 
m;0 

where E 
n,m;0  n;0 

is a positive constant, and p  (x) and q  (x) 
m;o 

are two polynomials of degree  n and  m respectively. The 

right hand side of (6.1.2) follows from the fact that 

Gn+1,m,0 (x) = F +1 m (x) and M
n+1,m,0

(x) = 0, (see equation 
n, 

(4.2.2)). Again, we note that 
Fn+1,m(x) 

 denotes the rational 

function Fol (A,Tm ,Em ;x), defined as in (3.1.3), where A is a 



finite set of m integers taking the value +1, and E rn  is such that 

c s = +1, for s =l(l)m. From lemma 3.4, 
Fn+1,m(x) 

 is a rational 

function of the form F(n+m+1,m;x). As we have mentioned in 

section 4.2, it is easily seen that it is plausible to write f 1 (x) 

in this way if we choose q mo (x) to be S-241 (x), (see definition 

4.3). 

From lemma 3.3, Frol,m (x) attains its extreme values of ±1 

alternately in at least (n+m+2) points of [-1,1]. This is precisely 

the required property which characterizes the best uniform rational 

approximation. Thus, equation (6.1.2) provides us exactly with the 

rational function of best uniform approximation p(x)/Q(x) and the 

maximum error 
En,m(fn+1). 

 We can rewrite (6.1.2) as 

p (x) 
(6.1.3)  f

n+1(
x) -  n  ± E  F  (x) n,m n+1,m 

qm (x) 

and obtain the following result. 

Theorem 6.1. 

 

Given A
nm 

 (see definition 4.4) with a
n+1 	

0. Let X be 
, 

an eigenvalue of smallest modulus of 
An,m' 

Suppose A satisfies 

the following conditions 
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(a) the corresponding eigenvector of X has a non-zero first 

component, 

(b) neither +X nor -X is an eigenvalue of A n41,m_ i . 

Then, 

(i) X is the only eigenvalue of smallest modulus of A n,m , 

(ii) En .,m ' N. 

Proof.  This can be obtained as a special case of theorem 4.4, 

on putting r= 0. The condition (c) of theorem 4.4 is no longer 

necessary in this case since the matrix A n411.011  has no element. 

We note that under the conditions of theorem 6.1, the 

eigenvector  Corresponding to X is given by 

(6.1.4)  
Pm

T 
 =  m,-P i  , (-1 

where P
0m  mm 

0 and P  0. Furthermore, equation (6.1.3) is 

valid, (see theorems 4.2 and 4.4). We shall now find explicit 

expressions for pn (x)/qm (x). First, let us write 

(6.1.5) 
rn 

q(x)  =  I'  b. T.(x)  , 
j=0 m-J  

then we have the following result. 



Lemma 6.1. 

For j = 0(1)m, 

j  

 

6.1.6  b. =  ( - 1) +m  ( X  p  P  ) • 
2(m-1-4 

m,m s=0  s,m m-j+s,m 

	

Proof.  This follows directly from lemma 4.6, since we have 

chosen q(x) to be 

Now 'let, 

(6.1.7) 
n+m+1 

f  (x) q (x) =  d.  (x) 
n+1  m  

j=0 

then we have the following lemma. 

Lemma 6.2. 

1 m  

 

(6.1.8) a  b .  . d
O  i=0 	1 M-1 

and 

(6.1.9)  d.  = 1  
m

I 	h .X 	wm-i 	alj-i ) 
1.0 

129. 



for j = 1(1)(n+m+1), where a k  0 for k > n+1 

• Proof.  This can be readily obtained from (6.1.7), on using a 

• property of Chebyshev polynomials of the first kind, 

(6.1.10) 2T().(x) •=  (x) + T  (x) Tj  Tk+i  
lk-j1  ' 

for k,j = 0,1,2,... . 

Finally, let us write p(x) as 

(6.1.11) p
n
(x). =  X'  e.T.(x)  , 

j=0 

and obtain explicit expressions for its coefficients. 

Lemma 6.3. 

 

(6.1.12)  e. = d.,  for j = 0(1)(n-m) , 
J  J 

and 

 

(6.1.13)  e. = d. T  13(m) 
j  E 

j  n,m  j+m-n-P for j.= 
 (n+1-m)(1)(n), 

where : 
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k k 

-s,m 
B  (m)  ( - 1) 	y (6.1.14)  p  k = 0(1)m. 
k  -  m  L.  s,m ' 

2 P  s=0 
m,m 

Proof.  By multiplying both sides of equation (6.1.2) by q(x) 

and comparing the Chebyshev coefficients, the result is obtained 

on using (6.1.7), (6.1.11) and lemma 4.7. 

Thus, we have obtained an exact expression for the best 

uniform rational approximation R(n,m;x) of f rol (x). It is worth 

mentioning here that Meinardus, (see [21], p.166), posed the 

question "whether the function f rill (x) - R(n,m;x) plays a role 

in the theory of rational approximation similar to the role of 

Tchebycheff polynomials in the theory of polynomial approximation". 

As we have seen in this section, the function of interest is no 

more than the rational function 
Fn+1,m(x), 

 which is a generalisation 

of a Chebyshev polynomial of the first kird. When m = 0, 

F41,0 (x) = Trol (x), and we recover a result for polynomial 

approximation, (see section 2.1.1.1). Furthermore, a more 

general form of Fn+1,m(x)' 
which we have dealt with in chapter III. 

has led us to several explicit results in the best uniform 

rational approximation. From these results, we recovered some 

particular results for best uniform polynomial and rational 

approximations previously given by Bernstein [2], Boehm [3] and 

Rivlin [30], where 
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Chebyshev polynomials of the first kind were used. Thus, the 

. answer to Meinardus' question isAo doubt in the affirmative. 

However, we do not know how important is the role of rational 

functions F
k,k

(x) in the theory of unifOrm rational approximation. 

This problem still remains to be investigated. 

We have obtained the exact results for the -special case 

where f(x) is a polynomial of degree (n+1). In the following 

Section, we shall consider the asymptotic results for the general 

case where f(x) is a polynomial of degree (n+r+1), r being a 

positive integer. 

*  * 
6.2. An expression for  

As we have discussed in chapter IV, given a continuous 

function f(X), we first approximate to it by a polynomial of degree 

(n+r+1). We then compute the quantity E 
nm;r 

 , for 0 < m 5_ n, 

which is given as the modulus of the eigenvalue of (m+l) st  largest 

modulus of the symmetric matrix A n,m+y, (see definition 4.4 and theorem 

44). An estimate of En,m(f)  is obtained as the limit of E n,m;r 

as r  00. The rapid convergence of E 
n,m;r 

 to  E
nm 

 for some 
, 

functions is Well 'illustrated in tables 6.1 and 6.2, where we 

have computed 
E-nn;r 

 for two functions f(x) = log x,  x 	1, 
,  
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and f(x) F eX , - 1 	X 5 1.  The results are comparable with 

Ahose.given by Curtis and Osborne [7], and Ralston [26], who have 

obtained 10 5 E
22 

 (log x) =-0.1714628 and 104 E
2,2

(ex ) = 0.8689996 
,  . 

respectively. 

5 * 
VALUES OF 10 E 

2,2;r(f), 
 r = 1(2)9, f(x) = log 

r 
5* 

10  E 
2,2;r

(f) 

1 5.6319 9627 

3 0.2257 7531 

5 0.1714 7154 

7 0.1714 7145 

9 0.1714 7145 

TABLE 6.1 

VALUES OF 104E*2,2;r(f)' r = 1(2)5, f(x) = ex , -1  x < 1. 

104E*
2,2;r

(f)  

r•-•-• 	
C

) 	
LC) 

4.5474 1131 

0.8663 2432 

0.8690 4548 

TABLE 6.2 



Once the valuelOr En,m(f)  is obtained as the quantity 

E. 
n,m;rC.f) 

 for a certain value of r, we May compute the 

asymptotic rational function of the best uniform approximation 

•
(x), using the analysis which will be discussed 

P n;r (x)/c1  m;r 

below. 

Let P 
m+r 

 (see definition 4.5) be the corresponding eigenvector 

of either 
+E.n,m;r 

or 
 -E,m;r  

Under the conditions of theorem 

4.4, the polynomial Tm+r(z)  (see equation 4.1.6) has exactly m 

zeros; t.  , j = 1(1)m, outside and r zeros t.  , j = (m+1)(1)(m+r 

inside the unit circle. Now, let P s,m (1) , s = Q(1)m, and 

(2)
, s =0(1)r, denote the "elementary symmetric functions" of 

the quantities t. J, j = 1(1)m, and of the quantities t. 
.  J  J 

j = (m+1)(1)(m+r), respectively. Similarly, let Q  (1)  and Q  (2)  

for s = 0,1,2,..., be the corresponding "homogeneous product sums 

of weight 's", (see definitions 4.1 and 4.2). Furthermore, let us 

write the polynomial q 
;r 
 (x) as follows 

m 

* 
(6.2.1)  q-;r (x) =  X'  b -  T(x) . 

in  • m -j J 

We want to express the coefficients b mm  = 0(1)m, 

in terms of the quantities P s,m (1) , s = 0(1)m. 
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Lemma 6.4. 

For j = 0(1)m, 

(6.2.2) b
*  (-1) j4m  (1)  ( 1 ) 

2 (m-1) P  (1)  (s=0 s,m 
 m-j+s,m 

m;m   

Proof.  This follows directly from lemma 4.6, since we have 

chosen q m;r  to be Qm (x) (see ection 4.2). We also note that 
-E. 

P  (1)  x 0 since It. J I > 1, for j = 1(1)m. 
m,m 

Now, let 

 

n+m+r+1  * 
(6.2.3)  f

n+r+1 ;r 
(x)  (x) =  X'  d. T(x) , 

 

j=0  J  J 

then we have the following lemma. 

Lemma 6.5. 

(6.2.4)  a. b  . , 

 

0  m-1 
i=0 

and 
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 * 

d  1 1  b  . (a.  + al. .1 - 	M-1 	0-11 
1=0 

(6.2.5) 
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for j = 1(1)(n+m+r+1), where a k  . 0 for k > (n+r+1). 

Proof.  The result readily follows by using (6.1.10). 

By using equation (4.1.33), we can re-write (4.2.4) as 

(6.2.6)  1 n+r+1
(x) = P  n;r (  )  *  n+r+1 

E  X' C  (n+r+1,m+r) 

q  Th;r(x)  n 'm'r  j=0  j' r  
Fjm (x) 

'  ' 

where the coefficients C
j,r

(n+r+1,m+r)
= 0(1)(n+r+1), are given 

by 

n+r+l-j 
(6.2.7)  C

j,r 	 (=l)s4s,r
(2)P(2) 

 
n+r+1,m+r)  n-j 1  

s=0 

on applying lemma 4.12. Finally, let us write the polynomial 

P *n;r(
x) as 

(6.2.8 p n;r(
x)  =  X' e. T.(x) 

j.0 J 

and obtain explicit expressions for its coefficients. 

Lemma 6.6. 

For k = 0(1)n, 
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*  *  n+r+1 
(6.2.9)  ek  = d  E  7. 

 
• (niT+1,m+r) B'01) 

n m . r 
" j=0 J' r  

where 

 

(6.2.10)  B k (rn)  = 

(-1) k   k  (1)  (1) Y PP  , for k = 0(1)m, 

 

2mP  (1)  -  k-s ,m 
 s ,m m,m  s-0 

(-1)
k 	2m-k 	

(1) P  
(1)

, for k = 

 

m  (1)  Pm-2,m 

 

2 P  s=0  s+k-m,m 
11101  (m+1)(1)(2m), 

  

amd B (m) = 0 for k < 0 and k > 2m. 

Proof.  By multiplying both sides of equation (6.2.6) by q ;r  (x) m 

and comparing the Chebyshev coefficients, the result follows 

from (6.2.3), (6.2.8) and lemma 4.7. 

To sum up, we have obtained explicit expressions for 

P n;r
(x) and q 

m;r 
 (x). Unfortunately, this analysis has one 

disadvantage in practice. In the case of uniform polynomial 

approximation (see Chapter V), we only require the components 

(-1) P
s,r 

 , s = 0(1)r, of the eigenvector corresponding to the 

chosen eigenvalue, in order to compute the best approximation. 

In this general case, however, once the quantities (-1)5P
s,m+r' 

s = 0(1)(m+r), are obtained, we require the knowledge of 

the quantities P = 0(1)m and P 
s,m  s,r 

(2) 	
s = 0(1)r. 



(1) , .s =.• O(l)m, are the elementary symmetric functions of the 
s,m 

m roots -  outside the unit circle of the polynomial T
m+r 

 (z), whereas 

• 
• s = 0(1)r, are the elementary symmetric functions of 

s,r 

the r roots inside the unit circle. Thus, the computation of 

P 110,..(x) and q  (x) 
m;r  

involves an extra step of finding the zeros 

ofTm+r (z), from which the values of P  (1) , s = 0(1)m, and 
s,m 

• s = 0(1)r, may be obtained. This disadvantage would 

be overcome, however, if a relationship between the quantities 

P 
 s,m+r' P 

 (1)  and Ps,r(2).,  which enables us to compute P  (1) 
s,m  s,m 

and P
s,r

(2)  
s,m+r, were found. directly from the knowledge of P 

• .  - 

Unfortunately, we have not been able to obtain such a relationship, 

and therefore have not been able to improve the analysis any further. 
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CHAPTER VII 

ON A CONJECTURE OF C.W. CLENSHAW 

Le-C 	 0,4suo,o,t, 
If f(x) E C[-1,1]4there exists 4 Chebyshev series expansion 

of the form (1.3.7), which is uniformly convergent for all 

X E [-1,1] (see Clenshaw [5]). As we have mentioned in chapter IV, 

while the evaluation of the best uniform polynomial approximation 

Pri(x) 
s somewhat tedious; the truncated Chebyshev series 

expansion s n (x) of degree n (see definition 1.7), on the other 

hand, is easier to compute. For many functions, we have analytic 

expressions for the Chebyshev coefficients a k , which have also 

been extensively tabulated (see Clenshaw [5], Luke [19]). It is 

useful, therefore, to ask whether it is worthwhile to compute 

or to use the truncated Chebyshev series expansion s(x) 

to approximate the best uniform polynomial approximation to a 
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given function. Some work on the comparison of the effectiveness 

of s
n
(x) an

n
(x) has been carried out by many authors, and 

a sumMary of these results has been given by Rivlin [29]. They 

provide us with .various bounds for the quantity S
n
/E

n
, which are 

very -useful in the case of rapidly convergent Chebyshevseries. 

In one of his paper,-Clenshaw [6] has consideredthe same 

problem under less restrictive conditions . . 

For given non-negative, integers n and r, Clenshaw has 

dealt with the problem of finding the maximum value of S n/En  

taken over all polynomials 
f6+r+1(x) 

 of degree (n+r+1). He 

considered in great detail the cases when r = 1,2, and 3, and 

from these results, he was led to a conclusion concerning the 

maximum value of S./Efor all values of r. He made the 
n n 

following three assumptions: 

(i) n is large, 

(in for all r, S /E has its overall maximum when all 
n n 

the coefficients of 
fn+r+1(x) 

 - s(x) are either of the 

same, or of strictly alternating sign, 

(iii) a quantity 
jr 

 (see definition 4.1) is. equal to or 

all j = 0(1)r. 

The third assumption was a conjecture obtained from a 

study of the cases when r = 1,2, and 3, assuming that (i) and 
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(ii) are valid. In this chapter, we shall show that under the 

- assumptions ti) and (ii), the necessary condition for S n /En  

to be a maximum over all polynomials of degree (n+r+1) is 

• satisfied.ifwechooseR.=C- .) - for•j = 0(1)r and r = 0,1,2,... 

In section •7.1, we shall find an explicit expression for the 

asymptotic estimate, for large n, of the quantity S n /En , 

which we shall denote by 1"n; n1 	An extreme value of this 

quantity will be given in section 7.2. 

7.1. An explicit-expression for 

Suppose. fn+14i(x) is a polynomial of degree (n+r+1), 

where n,r are - non-negative integers. We can write 
fn+r+1

(x) 

in a series of Chebyshev polynomials, as 

n+r+1 
(7.1.1)  f  (x) n+r+1  =  

k=0 
/ I  ak  (x)  • 

From equation (1.3.10), we have 

.n+r+1 
(7.1.2)  S

n 
= max  1  X  a

k 
T
k
(x)I 	, 

-1xA k=n+1 
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where the coefficients a k  are given by 



1 
(7.1.3) a • 	(1-t k 	Tf 	• fu41,41 (t) - pu tt)] Tk(t)dt. 

On using (1..3.8), this last result follows from the fact that 

T
k
(t), foric = (n 1) ..(1)(n+r+1), is orthogonal to all polynomials 

of degree. n in the interval [-1,1]. If we write . x = cos tp and 

t = cos 0, (7.1.2;) becomes . 

• n+r+1 - 
=. max  I X . cos 4 (?- fff  [f 

n+r+1 
 (case) - p

n
(cos0)]cos ked0)1. 

• 0457 k=n+1 

On assuming that the coefficients a k , k = (n+1)(1)(n+r+1), are 

of the same, or strictly alternating, sign, we can re-write this 

equation as 

n+r+1 
(7.1.4)  S X  7 fn+r 1 cos0) - p n (cos0)]cos kOd01. 

k=n+1  0 

Wenowneedanexpressionforfnil_0 (cos0-pri (cos0). As in 

*. 
. chapter V, we let E n;r  denote an asymptotic estimate of E. 

*  - 
andPn;r(x) be asymptotic to the best uniform polynomial 

approximation p n (x), for large n. Then, 

(7.1.5)  fn+r+1 (cos0 - p 
n;r

(cos0) = E 
n;r 

G
n+r+1,r

(cos 0) , 

where Gn+r+1 r (cos0) is the polynomial part of the rational 
, 

function Fn+r+1,r(cos0).  Again, we note that F
n+r+1,r

(cos0) 
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denotes the function Fn+r+1.( A 02r
,Kr;cos0), where A is a finite set 

of r - integers taking the value of unity and Er  is such that 

c
s 

= - 1, for s = 1(1)r; so that Fn+r+1,r- (cos()) satisfies the 

required characterisation Of the error function of the best 

uniform polynomial approximation. We also note that (7.1.5) 

was obtained under the assumption that the elements t s , for 

s = 1(1)r, of the set T
' 
 satisfy the condition It < 1. 

r 

From equation (7.1.4) and (7.1.5), on replacing p(cos0) 

by p n;r (cos0), we find 

Sn  
n+r+1 

2  

En;r  

0. 

	

k=1 	jo 
G 
 01.+1,r (coso)cos kode I . 

.  

Thus, 

(7.1.6) 

 

S  r 
n  

 

*  
-  I 

 

 
E  • 	 k  

A n+01  (Gn _Fril ,r ) 1 
=0  

n;r 

where Ak Gn+r+1 r ) denotes the k
th 

Chebyshev coefficient of  
, 

n+r+1r• For convenience, we shall denote the finite sum in 
, 

the right hand side of (7.1.6) by N r,n • We obtain an explicit 

expression for N  in terms of the symmetric functions P . r,n 

and Qi,r , j = 0(1)r, of the quantities t s , s = 1(1)r. (see•

definition 4.1 and 4.2). 



Lemma 7.1. 

For non-negative integers n and r, 

k 
(7.1.7)  N

r  
= 1(X 

U 
(-1) Pk r n  

=  k,1.10  ,r 

Proof.  From lemma 4.10, 

r+1 k-1 

(-1) 
r+k+s+1 

/  
k=1 s=0 

s,r r+s+1-k,m • 

If, in place of summation over s, we sum over k, where 

. r+s+1.-5 = k and then interchange the orders of summation, we find 

r+1 

r,n  
k0 =ml-k 

Qk+k-r-1,r Pk,r ' 
= k  

Equation 7J.7 readily follows. 

7.2. An extreme value of 

Lemma 7.1 has given us an explicit expression for N r,n  
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as a function of the quantities pj,r , j = 0(1)r. We shall now 

prove that in the particular case when Pi 
r 
 is taken equal - 

, 
 

to -( ) for j = 1(1)r and all r, then  
r,n 

 
J  •  9P. 

j,r 

First, we observe from lemma 4.2 that, for a given integer 

9. such that 1 5_ R.  r, the quantity Qt,r  is a function of 

. where j = 1(1)9., only. Thus, we have trivially. 

Lemma 7.2. 

r DQ Z  
(7.2.1.)  ,- 0,  for j > 9. ?_ 1. 

DP. 
j,r 

Lemma 7.3. 

For s  j and j = 1(1)(r-l), 

(7.2.2 
4s+1,r _ 
DPj+1,r 

PrOof.  From definition 4.2, we can write for k = 1(1)r, 

P .  . 
-s,r "s,r  

0 
 

s=0 

For any j = 1(1)(r 7 1), we have on differentiating partially 

with respectto 
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(-1 -FX. (-1) 
.  S=J 

39s,r  
k7s,r aP. 

j,r 
.= 	0. 
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On -replacing j,k by (j+1) and (k+1 respectively, we 

obtain 

 

k+1  3Q 
+  X  (-1)

s P
k+l-s,r  P  

= 0. 
-j ,r 

s=j+1  j+1,r 

Subtracting these, two equations, we find that 

[  

_ 

9Q s,r 	'6Qs+1,r  
-s,r  3P

j  
+ 

,r  
BP

j+1,r _ 

= 0, 

from which (7.2.2) follows. 

Lemma 7.4. 

For r = 1,2,3,,.., and j = 1(1)r, 

(7.2.3) 
311
r,n _ 

DP. (-1 
.  9Q  

yo j-1  k-j+1,r r 
BP 	2, 	(-1) P k,r 

k=j  1,r  k=k 

Proof.  This result followsfrom differentiating (7.1.7) partially 

with respect toP
j 
.r' using lemma 7.2 and making repeated use of 

, 



lemma 7.3. 

We now want to consider the behaviour of  r'n 
BR  

for j = 1(1)r, 
, 

• Jo 
when  takes the particular value of (--) as suggested by Pj,r 

Clenshaw. To this end, we need some further results. 

Lemma 7.5. 

If for j =  
j,r 

0(1)r,  = ( 7' , then 
• j 

(7.2.4) 
 

Q j,r = 	-1 j 	. 

Proof.  The result is trivially true when j = 0. Suppose now 

that it is true for j =- 0(1)J. Then, from lemma 4.4, 
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QJ+1 

J+1 
J X (- ) (  )• J+1 -s  ' 

s=1 

{ 

j  J+1  

)  / (-0 ( J4i-s 
s=0 

• 

The sum vanishes by Vandermonde's theorem (see [22]), and the 

result follows. 
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Lemma 7.6. 

If for j = 0(1)r, j,r  then 

7.2.5) 
BQl,r 	Q2,r  

+  — 0 , 
3  DP 

1,r 

and 

o. 
(7.2.6) 
 

=. 0 ,  for j = 3(1)r. 
1,r 

?roof.  From lemma 4.4  
1 ,r = 

1,r  and Q
2,r 

= P
1,r

2 
- 

 Q  

so that (7.2.5) readily follows. Using lemmas 4.4 and 7.5, we 

can prove (7.2.6) by induction: 

We now come to the main result. 

Theorem 7.1_ 

With 3  
P.,r = (t, for j = 1(1)r, 

j 

(7.2.7) 
DNrn _ 
313j,r 

0. 
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Proof.  From lemmas 7.4 and 7.6, we have - 

apr,n  _ ( _ 1  )3 y Qz 	+ 1 (.1 ) ,„-1 	96, ) ,] 	 , 	y vi ) k j 	3Q.  . 41 r  

 

j,r  Z=0  ' r  t=j  1 ,r  k=t 

(-1) j 	Q 	P-  . 

 

r  j,r 
t=0 -' 

Using lemma 7.5, it follows that the right hand side 

vanishes and the theorem is proved. 

Thus, we have shown that when P
j,r takes the value (

-2.), 

for j = 1(1)r, we have satisfied necessary conditions for 

and therefore 
Sn/En 

to have a local maximum. The conditions 

N 
r,n  

p. 
,r 

- 0,  for j = 1(1)r, 

however; are not alone sufficient to guarantee that N r,n  has a 

local maximum. Unfortunately, we have not been able to show that 

the sufficient conditions are satisfied for all r. From examination 

of particular cases when r = 1,2 .,3 and 4, however, it can be 

shown that these conditions are satisfied. 

Finally, we obtain an explicit expression for the 

maximum value of N  denoted by R
(r) 

r,n? 

,r 



Theorem 7.2. 

For r = 0,1,2,..,, 

(7.2.8)  R (r)  
j=-0 

Proof.  The result follows directly from lemmas 7.1 and 7.5. 

From 7.2.8), Clenshaw concluded that 

(7.2.9)  
E
n 
 <  1  (3.35 + log r +  

for large r. He also noted in particular that this bound is 

less than 2 if r  18, so that "in the great majority of 

practical applications, the extra labour involved in calculating 

a best approximation may not be worth-while". As we have mentioned 

earlier, the evaluation of S n /En  for various functions has also 

 considered by many authors, and a summary of such results 

• has been given by Rivlin [29]. More recently, Powell [25] has 

shown that-if . f(x) is continuous in [Mil, then 
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(7.2.10) 

 S
n  

1 +g 0, for large n. 
n 



Now, the polynomials of degree (n+rtl) are certainly continuous 

functions in [-1,1], so that (7.2.10) is true for all values of r. 

On comparing the inequalities (7.2.9) and (7.2.10), we see that 

for r > n, Powell's result gives a better upper bound than 

Clenshaw's. However, for 1 5 r < n; (7.2.9) is to be preferred and 

indeed it was for r in this range that Clenshaw did his numerical 

experiments, which led to his conjecture for the values of 

j = 0(1)r. 



APPENDIX  

- LIST OF SYMBOLS  

A,  ai, - s  

a
k 

A.J
(G,

K 	
) 

A
n,m+r 

B
k 

C
2k• 

C..  
(k,Z) 

,j,u  •  • 

CE - 1 .,11 

gaj,s ,ts ;0) 

A  .(0), A.(A,T  E  .0 
St,'  t' 

,(e),  6s (e) 

A.  
- k 

En (f) 

En,m(f). 

E n,m;r 

s 

f(A,Tt ,E t ,X;x) 

fn+r+1(x) 

Fk,z (x),  A,T  ,E z ;x) 

G
k,t

(x) 

Gk,9 6(x) 

Tt  . 	' 

.H 5  (x) 

51 

14 .  

75 

87 

93 

94 

81 

5

50 

50 

65 

•98 

6. 

..9 
86 

51

54.• 

83 

52 

74 

81 

50 

79 

•Hs,t,u(x) 

AX.} 

M k.,t (x) 

:N.1ku(X)  ' 

m 
k 
* 

t. 
l k 

Pj,k. 

p 11 (x) 

p
n 
* 

P (  ) 

p. 

p 
m+r 

6 
 

82 
 

54 

74  - 

81 

97 

98  

95 

51 

86. 

67 • 

88 

86 

68 

8 

11 .  

9 

14 

15 

97 

68 

51. 

8 

c/. mo,...00 .. 

Qi.,i 

r(n,6;x) 

(n,m;x) 

R(n,m;x) 

s(x) • 

S
n

. 

lfrm+r(z) 

- T  z 

 

z(  ). 

t 

V
n,m 
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