
HARDWARE/SOF TWARE SYS TEM DES IGN FOR A ROBOT ARM

by

Raymond Hang Yick Lam, B.E. (Hons.)

Submitted in fulfilment of the requirements

for the degree of

Master of Engineering Science

UNIVERSITY OF TASMANIA

HOBART

. 1987

I declare that this thesis does not contain anything

that has been accepted for the award. of a degree or diploma

in any other university, and also that, to the best of my

knowledge and belief, the th�sis does not contain a copy or

a paraphrase of material written and/or published by anyone

else except where due reference to it is made in the text of

the thesis.

Raymond Hang Yick Lam

CONTENTS

ABSTRACT v

ACKNOWLEDGEMENTS vii

CHAPTER 1. INTRODUCTION /

, 1.1 CONTRIBUTIONS /

1.2 THESIS OUTLINE /

1.3 DEFINITION OF ROBOTS 3

1.4 THE ROBOT SYSTEM 3
(a) Robot Manipulator
(b) Robot Computer
(c) Robot Power Source

1.5 TEACHING METHODS 10
(a) Off-line Programming
(b) On-line Programming

(i) Individual-joint teaching
(ii) Lead-through teaching

CHAPTER 2. THE TASROBOTO SYSTEM 14

2.1 THE MANIPULATOR 14
(a) The Arm
(b) The Wrist
(c) The Gripper

2.2 THE ROBOT COMPUTER 19
(a) The Host Computer
(b) The Controller Unit

2.3 POWER SOURCE 22

2.4 PROGRAMMING THE TASROBOTO
MANIPULATOR 23

CHAPTER 3. HARDWARE DESIGN OF THE TASROBOTO
CONTROLLER UNIT 25

3.1 THE ANALOG CONTROL BOARD 25
(a) The Closed-loop Controller
(b) The Open-loop controller

3.2 THE DIGITAL CONTROL BOARD 29
(a) The 12-bit Comparator

• (b) The 12-bit Up/Down Counter
(c) The Stepper Moter Driver

• (d) The Controller Logic Unit
(i) The clock generator
(ii) The pulse generator
(iii) The direction signal

generator

3.3 THE INTERFACE CIRCUIT BOARD 42

(a) The Decoder And The Data
Register Circuit

(b) The DAC Circuit

3.4 THE POWER SUPPLY CIRCUIT DESIGN. 48

•CHAPTER 4. IDENTIFICATION OF THE MANIPULATOR
SYSTEM 5/

4.1 MODEL BUILDING 52

4.2 PARAMETERS TO BE IDENTIFIED 56

4.3 IDENTIFICATION TECHNIQUE 57

4.4 TEST INPUT 61

4.5 IMPLEMENTATION OF THE
IDENTIFICATION PROCESS 64

4.6 CONVERSION FROM DISCRETE-TIME MODEL
TO CONTINUOUS-TIME MODEL 66

4.7 RESULTS OF IDENTIFICATION ON THE
THREE JOINT SYSTEMS 67

CHAPTER 5. MODEL ANALYSIS AND COMPENSATOR DESIGN 72

5.1 ANALYSIS OF IDENTIFIED MODELS 72

5.2 EFFECTS OF SATURATION NON-LINEARITY
ON STEP RESPONSE 73

5.3 EFFECTS OF DISTURBANCE TORQUE 80

5.4 EFFECTS OF DEAD-SPACE NON-LINEARITY 84

5.5 DESIGN OF CONTROLLERS 85

5.6 EFFECTS OF VARIATION OF EFFECTIVE
INERTIA 93

CHAPTER 6. TRAJECTORY PLANNING 95

6.1 PATH APPROXIMATION 97

6.2 SPLINE FUNCTION FOR EACH SEGMENT 99
(a) Cubic Splines For Intermediate

Segments
(b) Fourth-order Spline For The

Beginning And End Segments
(c) Fifth-order Spline Function For

A Two-point Section

6.3 TIME SCALE FACTOR 108

6.4 EVALUATION OF MAXIMUM VELOCITY AND
ACCELERATION FOR SPLINE SEGMENTS 112

6.5 METHODS OF IMPLEMENTATION 113

CHAPTER 7. SOFTWARE CONTROL OF THE TASROBOTO
SYSTEM 118

7.1 SUBROUTINES 118
(a) The STPORT Subroutine
(b) The DIGOUT Subroutine
(c) The POSITN, WRIST and ARMOUT

Subroutines
(d) The BEEP Subroutine
(e) The SELFADJ Subroutine

7.2 MAIN PROGRAMS 122
(a) The Initializing Stage
(b) The Programming Stage
(c) The Compiling Stage
(d) The Executing Stage
(e) The Intermediate Stage
(f) The Idling Stage

7.3 THE SOFTWARE CONTROL BATCH FILE 139

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 141

8.1 CONCLUSIONS 141

8.2 FUTURE WORK 142

REFERENCES 146

APPENDIX A. CIRCUIT DIAGRAMS OF THE CONTROLLER
UNIT 149

iii

APPENDIX B. SOFTWARE CONTROL PROGRAMS 153

APPENDIX C. CONVERSION FROM DISCRETE-TIME TRANSFER
FUNCTION TO CONTINUOUS-TIME FOR A
THIRD-ORDER SYSTEM 173

iv

APPENDIX D. SYSTEM IDENTIFICATION PROGRAMS 179

ABSTRACT

This project is the design, implementation and evalua-

tion of a control system for a robot manipulator. It is

initiated as a foundation research in robotics in the

Electrical Department, University of Tasmania. The TasrobotO

is the first robot arm built in the Department. The design

includes all the necessary electronic hardwares as well as

softwares for the control of the manipulator.

A complete robot system is a multi-variable, interact-

ing and non-linear system with time-varying parameters. As

Hewit has pointed out: "no applicable corpus of control

theory exists to deal with systems possessing such a

combination of problematic features", the design of suitable

'controllers is impossible without making assumptions to

simplify the system.

As it is still in the developing stage, the size and

weight of the TasrobotO manipulator is far less than

•commonly encountered working robots. The interactions

between the manipulator links are small. The joint systems

are thus assumed to be mutually independent systems, with

time-varying parameters resulting from changes in the arm

configuration. With a suitable controller, this time-varying

effect was shown to be insignificant in the closed-loop

•dynamic response of each joint system. 	 •

A trajectory planning technique was developed to

generate cubic spline segment functions which interpolate

between specified joint coordinates. This technique offers

optimality in the sense that it defines the shortest curve

passing through the specified points while at the same time

satisfying the velocity and acceleration contraints. In the

operation mode, command signals are generated in real time

from segment functions derived for each joint to control its

motion. This helps smoothen jerky motions and reduce the

deviations of the executed path from the planned path.

The design and developed techniques have been tested

and are in use today controlling TasrobotO.

v i

ACKNOWLEDGEMENTS

I would like to express my thanks to the following

people:

My supervisor Mr.Gregory The for his enthusiasm and

constant assistance in my process throughout the thesis.

My parents, brothers and sisters, who have provided

encouragement and support during my study overseas.

The workshop staff of the Electrical Engineering

Departments, especially Mr.Bob Barclay and Mr.John Grace,

for the equipment they have made for me.

Finally, , my thanks to Ms.May Wong, my best friend, who

helped prepare the drawings and edit the final draft of the

thesis.

vii

CHAPTER ONE

INTRODUCTION

1.1 CONTRIBUTIONS

The contributions of this thesis are:

+Development of a technique for modelling and control-
ling small and light weight robot arms.

+Development of a trajectory planning technique which
guarantees continuity in joint velocities and acceler-
ations of a robot manipulator. The technique also
ensures the joint velocities and accelerations are
within the mechanical limits of the manipulator.

+Development of a system identification software pack-
age for identifying third order systems. The package
is also applicable to higher order systems upon minor
modifications.

•Development of a technique to convert transfer funct-
ions from discrete-time model to continuous-time model
with zero-order-hold data extrapolator.

•A paper[R 3 e] on the identification and control •system
design of a robot manipulator was accepted by the
IASTED for presentation at the 15th IASTED
International Conference on Applied Simulation and
Modelling, held at Santa Barbara, California USA on
May 26-29, 1987.

+Two papers, one on the identification and control of a
robot manipulator, one on the technique of trajectory
planning of a robot manipulator, were accepted for
presentation as poster papers at the IREECON '87.
Regretfully, these papers have to be withdrawn due to
lack of Department travel funds.

1.2 THESIS OUTLINE

This thesis is an account of the design and implementa-

tion of hardware and software control system for a robot

manipulator.

Chapter 1 starts with the contributions and thesis

outline, continues with a brief description of a robot

system and ends with a review of the programming methods

commonly encountered in robot systems.

Chapter. 2 describes the mechanical structure and the

control schemes of the TasrobotO manipulator.

Chapter 3 summarizes the hardware design implementing

the control schemes discussed in chapter 2. Hardware inter-

face to the IBM/PC microcomputer, the host computer of the

TasrobotO system, is also included.

Chapter 4 describes the model building technique for

the joint systems. Also detailed are the theories, techniq-

ues and results of the identification of the model

parameters.

Chapter 5 contains an analysis of the results in

chapter 4. A complete model of each joint system is estab-

lished to facilitate controller design. Non-linearities and

time-varying parameters of the joint systems are also

addressed.

Chapter 6 describes techniques for trajectory planning

and path execution.

Chapter 7 reviews the software design of the control

system of TasrobotO. It contains detailed descriptions of

developed softwares for robot programming, trajectory

planning and path execution.

Chapter 8 summarizes the contributions and gives

possible extensions to the work as motivation for further

work.

2

1.3 DEFINITION OF ROBOTS

In order to distinguish a robot from many single-

purpose machines, which have some features making them look

like robots, a clear definition is important. The definition

developed by the Robotics International Division of the

Society of Manufacturing Engineers (RI/SME) is as follows:-

"A robot is a reprogrammable multifunctional

manipulator designed to move materials, parts,

tools, or specialized devices through variable

programmed motions for the performance of a

variety of tasks."

Reprogrammable in the definition means that the machine can

be programmed repeatedly to perform a new or different task.

The definition also emphasizes multifunctional which means

that the machine must be able to perform many different

functions, depending on the program and tooling used. By

this definition, most single-purpose machines are not

classified as robots since they are usually not programmable

and can only perform single function. Even though tele-

operators look like robots, they cannot be classified as

robots according to the robot definition because they

require human operator to perform a task at a distance and

are not programmable.

1.4 THE ROBOT SYSTEM

At present, industrial robots are actually mechanical

handling devices that can be manipulated under computer

control. A basic robot system is illustrated in Figure (1.4-

4

1). The system includes a manipulator, a computer and a

power source.

ROBOT
POWER
SOURCE

ROBOT
	

ROBOT

COMPUTER
	

MANIPULATOR

Figure (1.4-1): A Basic Robot System

(a) Robot Manipulator

A robot manipulator, which does the physical work of a

robot system, is a mechanical device driven by electric

motors, pneumatic devices or hydraulic actuators. In

general, the structure of a robot manipulator consists of an

arm, a wrist and an end-effector. An end-effector is located

at the end of a manipulator where a working tool is attach-

ed. The motion of the arm of the manipulator controls the

position of the end-effector while the motion of the wrist

controls the orientation of the end-effector with respect to

a work piece. Typically, an arm as well as a wrist consists

of a sequence of mechanical links connected by joints. Each

joint is driven to provide linear or rotational motion by

driving element which is either a prismatic or.rotatory

actuator. A working tool attached to the end-effector can be

a welding head, a spray gun, a machining tool or a gripper

with open-close jaws, depending on the applications of the

robot.

BODY SWEEP

SHOULDER
SWIVEL (

RECTANGULAR

SPHERICAL

ELBOW EXTENSION

The positioning of an

end-effector in space requires

motion of at least three

degree-of-freedom and is

controlled by the motion of

the manipulator arm. A typical

structure of an arm consists
Figure (1.4a-1): A Typical

Structure of An Arm of A
Manipulator

of three links as shown in

Figure (1.4a-1).

Robots can be classified into four basic groups

according to the characteristics of arm motion or their

geometric principles. The basic geometries include

rectangular, cylindrical, spherical and revolute as shown in

Figure (1.4a-2). Regardless of the type of robot, an arm of

REVOLUTE

Figure (1.4a-2): Four Basic Geometries of A Robot

(a) ROLL- PITCH -YAW
ANGLES

./

(b) EULER
ANGLES

6

a robot typically consists of three movable joints. The

combined motion of these three joints enables the

manipulator to move to required position within its work

space.

The orientation of the end-effector is controlled by

the motion of the manipulator wrist. The wrist motion is

often a sequence of axial rotations which provide three-

degree-freedom motion for orientation of the end-effector.

The two types of angles most frequently used to describe

orientation of the wrist motions are the Euler angles and

the Roll-Pitch-Yaw angles as shown in Figure (1.4a-3). A

combination of these axial rotations enables the end-

effector to take any arbitrary orientation in space.

Nevertheless, there are robots whose wrists are capable of

only two or even one degree-of-freedom motion. These types

of robots, however, have limitations in their applications.

Figure (1.4a-3): Two Typical Types of Angles describing
Wrist Motions

(b) Robot Computer

A robot computer is the source of intelligence of a

robot system. Its presence distinguishes a robot from a

teleoperator. The function of a robot computer is to control

7

the motion of a manipulator. It senses signals from sensors

on the manipulator and generates appropriate command signals

to drive the manipulator.

• 	 A robot computer block can be divided into tiqo units,

the intelligent unit and the controller unit. The

intelligent unit is often called the host computer, whose

functions are to communicate with robot users, to store

necessary information of a task, to plan trajectories for a

task, to process signals from sensors and, in some advanced

robots, to make decisions according to stimuli from the

environment. The controller unit is essentially a path

controlling unit which receives command signals from the

host computer and, in turn, generates appropriate signals to

drive the manipulator.

The controllers used in the controller unit may be

servo or non-servo. A servo-controller unit may be as simple

as a position feedback controller. However, a position

feedback controller can only result in a basically point-to-

point robot. A more sophisticated servo controller unit can

receive command signals containing information such as

required Cartesian position and orientation as well as

desirable velocity of the end-effector of the manipulator.

Suitable signals to control the manipulator joints are then

generated such that the end-effector will move to the

required position and orientation with the desired velocity.

A controller of this type is required for continuous-path

robot. 	 •

• (c) Robot Power Source

There are three primary power sources most commonly

found in robot systems in driving a robot manipulator. They

are, namely, hydraulic, pneumatic and electric power

systems.

A basic hydraulic power system is illustrated in Figure

(1.4c-1). The principle of a hydraulic system is to force

• high-pressure incompressible oil into a hydraulic actuator

which converts hydraulic energy into mechanical energy. The

motor-driven pump provides oil at high pressure for the

system from the oil tank while the motor-controlled-four-way

valve switches the direction of flow of the high pressure

oil into or out of the actuator thus controlling the

direction of motion of the driven actuator.

OIL 	TANK

AND

RESERVOIR

PUMP
MOTOR

PUMP
FOUR-WAY

VALVE

HYDRAULIC

ACTUATOR

••••••-••••.

.11-•■■■

VALVE -MOTOR
CONTROL 	
SIGNAL

...IVALVE - CONTROL
MOTOR

Figure (1.4c-1): A Basic Structure of A Hydraulic Power
System

An advantage in using hydraulic actuator is that it has

a very large power-to-size ratio and thus is capable of

handling large loads. However, the high cost in equipment,

the oil leakage problem and the high maintenance cost tend

to outweight its advantage.

The basic components in a pneumatic drive system, is

same as those in a hydraulic system. A major difference is

that power is being transferred by gas, usually air, under

pressure rather than by oil. An obvious advantage of this

system over a hydraulic system is that system leakage does

not cause contamination problem to the work area. Also, the

total cost for a pneumatic system is less than that for a

hydraulic system. However, using pneumatic drive system

presents difficulties in achieving feedback control to

provide proportional operation and multiple stops due to the

properties of the compressed gas. Therefore, in most

pneumatic robots, the acutators are driven against fixed

stops at extremes of travel.

The electric system includes a source of electrical

power and an electric motor. In most applications, the

motors used are servo motors, but stepper motors are also

used in some robots where the payload is small. A major

disadvantage of stepper motors in robot applications

concerns the load torque to allowable speed characteristics

of a stepper motor. The driving speed of a stepper motor, at

large loads, cannot be too high; otherwise, loss of steps

will result. This loss of steps cannot be detected and will

result in permanent position errors. To allow variations -of

load torque, the driving speed of a stepper motor is usually

kept low. Consequently, the motion of the driven link is

slow.

Servo motors are usually d. c. , motors although a.c.

.motors are also used in some robot applications. An electric

motor provides an excellent source of rotational torque

either directly, or indirectly through gearings, and is most

commonly used in driving revolute joints. Linear joint

motion can also be achieved by using ballscrew drive which

is analogous to bolt-and-nut operation. The advantages of

servo motors, particularly d.c. motors, are their excellent

speed regulation, high torque and high efficiency and are

therefore ideally suited for control applications.

1.5 TEACHING METHODS

In general, a robot computer in a robot system involves

a control program and a task program. The control program is

provided by the robot designer to control each joint of the

manipulator. The task program is provided by the robot

operator to specify the required manipulator motions for a

particular job.

The way of generating -a task program depends on the

method of teaching or programming employed in a robot

system. There are two methods of teaching a robot: off-line

programming and on-line programming.

(a) Off-line Programming

In off-line programming, the robot operator makes use

of commands set by the robot designer to specify conditions

for a job, such as required pOsitions and orientations of

the end-effector, its velocity and acceleration for each

specified point in space. The method is characterized by

commands which inform the robot what to do, but the robot

itself is not used during the programming stage.

This method provides a quick way in programming when

the required Cartesian points in space are relatively easy

to access and measure. In practice, however, specifying.

orientations of the end-effector with respect to a work

10

piece can be tedious. Also, it is not easy to visualize the

• necessary rotation for each wrist joint nor the work limit

of the manipulator. User-specified points may not be

accessible by the robot and thus have to be checked before a

task path can be planned or executed. Moreover, in cases

where the location of the robot manipulator is frequently

changed, off-line method becomes undesirable.

•(b) On-line Programming

Teach-by-showing is referred to as on-line programming

and the robot itself is used during the programming stage.

During the programming stage, the operator moves the

robot arm through a set of required points or a desired path

in space by means of some teaching aids such as a teaching

pendant, a control handle or a joystick. When a required

point is reached, the operator presses a memory button and

the system will 'remember' the joint coordinates at that

instant. These joint coordinates are normally recorded so

that the robot will aware of its physical working environ-

ment and avoids collision with obstacles during the execut-

ion of a task.

The additional teaching aid required for robot systems

using on-line programming may seem to be a disadvantage but

the software required during the programming stage is far

simpler than that required by off-line programming method .

Besides, critical points are easily realized by operator

during teaching stage. Depending on the teaching aid

employed, on-line programming can be subdivided into

individual-joint teaching or lead-through teaching.

11

(i) Individual-joint Teaching

In individual-joint teaching, a teaching pendant

(teaching box) is used. The pendant consists of push buttons

and teaching is done by pressing appropriate buttons to

rotate each joint of the robot until the combination of all

joint positions and orientations yields the desired position

and orientation of the end-effector in space. Then the

operator stores the joints coordinates of the robot at that

instant by pressing a memory button. The process is repeated

for each required point in space until the task program is

completed. This teaching method demands patience in adjust-

ing all joint axes, one by one, every time in giving a

required point setting of the end-effector in space. A large

amount of time is thus normally required in teaching the

robot.

There are also teaching pendant which, instead of

controlling a number of joint positions separately, can

directly manipulate the position and orientation of the end-

effector in space. During the teaching stage, the tool tip

of the robot can be moved in a straight line and rotated

about fixed axis in space. Although this solves the probfem

of adjusting one joint axis at a time, the software required

for this type of teaching pendant is more complicated and

involves lengthy mathematics for required transformations

from Cartesian to joint coordinates and vice versa. The

resulting motion is, therefore, usually very slow.

(ii) Lead-through Teaching

A better way of teaching a robot is perhaps by grasping

the robot's end-effector, leading it through a desired path,

12

13

and simultaneously recording the joint positions at desired

points. Although teaching aid is not required in this method

while the same robot arm is used for teaching, the fact that

large forces are required to move the arm against its

driving and transmission elements prevents this method from

being ideally used in practice.

A better approach is to use a teach arm which is

similar to the actual manipulator but with far simpler

structure. A teach arm may be equipped with position

transducers on each joint, but with no driving elements nor

transmission elements so that it can easily be moved to take

any configurations. During teaching stage, the actual arm

follows the configuration of the teach arm; desired posit-

ions and orientations of the actual arm can be input by push

buttons on the teach arm.

CHAPTER TWO

THE TASROBOTO SYSTEM

The TasrobotO system is the first robot arm system

built in University of Tasmania. Similar to most robot

systems, it has three basic components: the robot

manipulator, the robot computer and the robot power source.

2.1 THE MANIPULATOR

The TasrobotO manipulator belongs to the class of

revolute coordinate robot and has five axes of rotation. The

end-effector of the manipulator is a permanently attached

open/close gripper with two movable jaws. The arm has three-

degree-of-freedom for positioning and two-degree-of-freedom

for orientating the gripper with respect to a work piece.

(a) The Arm

Positioning of the gripper is controlled by motion of

three revolute joints which are denoted as body joint,

shoulder joint and elbow joint. These three joints connect

four links of the manipulator to form the major physical

structure of the manipulator. The four links are denoted as

base, body, shoulder and elbow as shown in Figure (2.1-1).

The motion of each joint is provided through direct

gearings by an actuator which is a permanent magnet d

motor. The position of each of the three joints is indicated

by a position transducer mounted on respective rotating

14

I
body
axis

DIMENSIONS 	 M MI

roll axis

f•J

gear box

right
stepper
motor

GRIPPER

ELBOW

SHOULDER

gear box

lett
stepper
motor

300

BODY

BASE

-Figure (2.1a-1): Range of
Motion of The TasrobotO
Manipulator

Figure (2.1-1): The TasrobotO Manipulator

shaft of the joint. The body joint

15

has a vertical axis of rotation and

its motion range is 270°. Each of

the shoulder joint and elbow joint

has a horizontal axis of rotation

and a motion range of 900 as shOwn

in Figure (2.1a-1).

The work envelope of the

system, which is defined as the

reach of the robot, is illustrated

in Figure (2.1a-2). A relatively small range of motion of

the elbow joint compared with other robot systems accounts

for the small side-view envelope of the TasrobotO

manipulator.

•

0
ZEOR POSITION

	

ME 	 11.11

	

1111 	 Aa k 	

	

II 	
Adir e-C 	 Or s

	 II/

	

11 	

SCALE : 1 mm= 10 mm

0

(a) TOP VIEW

SCALE: 1 mm =10mm

(W SIDE VIEW

Figure (2.1a-2): Work Envelope of The TasrobotO Manipulator

16

(b) The Wrist

The wrist of the TasrobotO manipulator consists of two

axes of rotation for control-

ling the orientation of the

17

STEPPER

MOTOR 	 gripper with respect to a work
GEAR
MX

•• - - PITCH MS
piece. Two stepper motors are

STEPPER
MOTOR

GEAR
BOX .

used to give pitch and roll

rotations as shown in Figure

(2.1b-1). The lack of yaw

rotation does not allow the

GRIPPER

o I •
ROLL
AXIS 	 gripper to reach objects not

Figure (2.1b-1): Gearings For aligned with the arm.
The Wrist Rotation

Pitch rotation is achieved by rotating the two stepper

motors in same direction. Roll rotation results when the two

stepper motors are stepping in different directions. The

range of motion for roll rotation is physically unlimited,

while the range of motion for pitch rotation is limited to

1400 as shown in Figure (2.1a-1).

(c) The Gripper

The end-effector of the TasrobotO manipulator is a

gripper. It consists of two jaws, each of which is a two-

bar-linkage structure. Normally, the jaws are closed by the

action of a compression spring and can be opened by pulling

against the spring. The pulling force is provided by a dc

. motor with gearings. The whole conceptual structure of the

gripping system is illustrated in Figure (2.1c-1).

To reduce the effect of weight of the gripping system

on the joints of the manipulator, the gripper driving unit

is installed in the body link. But then the steel string has

GRIPPER DRIVING UNIT

STOP -ER'

- -

FIXED ENDI
OF THE STEED

STRING I• 	 STEEL
STRING 	 • 	 I

GRIPPER

TWO BAR
LIN • E

100416

MOVING
HEAD

CONNECTING
ROD

ROTATING
SHAFT

• COMPRESSION
SPRING 	 TWO BAR

LINKAGE

JAW

Iii
RIPPER
MOTOR

to pass through all links of the manipulator and the

effective length of the steel string has to depend on the

configuration of the arm. As a result, the amount of

rotation required for the gripper motor to rotate to open or

close the gripper depends on the configuration of the arm.

Figure (2.1c-1): Conceptual Structure of The
Gripping System

A position transducer is used to record the amount of

rotation required for opening the gripper in a specific arm

configuration awared during the teaching stage. The shaft

position for the gripper to be fully closed is assigned in

such a way that the effective length of the steel string is

long enough for the gripper to stay closed in any arm

configuration. However, an attempt to drive the arm with a

fully open gripper may result in closing or further opening

of the gripper. Although the former causes no serious

problem, further opening of the gripper will cause damage to

the gripper or even the arm as the force resulted from the

tension of the steel string acts on the joints of the

•manipulator.

In normal operation, the gripper will remain closed

unless instructed to open when comes to a target object.

18

Therefore, the change of arm configuration is usually small

during the period when the gripper is open. Moving the

manipulator with an open gripper has been dealt with in

designing software control and the possibility of' occurrence

of previously mentioned cases are eliminated.

2.2 THE ROBOT COMPUTER

(a) The Host Computer

The host computer for the TasrobotO system is an IBM/PC

microcomputer. The computer uses an intel 8088 16-bit micro-

processor and a 4 MHz clock. The computation speed of the

host computer is greatly improved by installing the intel

8087 arithematic co-processor. It is also equipped with a

commercially available interfacing board called Lab-Master

Board provided by the Scientific Solution Inc.. In addition

to the conventional analog-to-digital converter (ADC) and

digital-to-analog converter (DAC), the Board provides timing

signals through the AM9513 System Timing Controller and

digital interface through the 8255 Programmable Parallel

Port Interface (PPI).

The board can be programmed by using the accompanied

software package - the Labpac Subroutines - from the Tecmar

Inc., which are specially written to handle the hardwares in

the Lab-Master Board. However, the Lab-Master Board provides

only two channels for D/A conversion, which are obviously

not enough to control the five axes motion of the

manipulator; hence, part of the hardware interface were

designed and built. -

19

The Labpac software provides only 16-bit input and 8-

bit output in ,the digital-to-digital interface subroutines

and cannot be used for controlling the additional hardwares.

Software interfacing subroutines in 8088 assembly 'language

were developed to control the addition hardwares and to

provide special functions in manipulator control. These

subroutines will be discussed in Chapter 7.

(b) The Controller Unit

In the controller unit, two types of controllers, servo

and non-servo, are used. Here, the positioning of the joints

and the gripping action of the gripper are monitored by the

command signals recieved from the host computer.

Three position feedback controllers are used in the

controller unit for controlling the positions of the three

joints. Trading off with its simpler circuitry and much

lower price, position feedback controller has disadvantage

of no control in the motion velocity of the joint and will

result in a basically point-to-point robot.

The gripper controller is classified as non-servo. The

feedback signal from the gripper motor does not go directly

into the controller itself, instead, it is sampled by the

host computer which then generates suitable commands t

control the gripper motor as shown in Figure (2.2b-1). The

overall control of the gripping action is however closed-

loop, although it appears to be open-loop in the controller

unit.

Command signals from the host computer, controlling the

gripping action, consists of two bits. The controller will

20

HOST

COMPUTER

command
signals JOINT

CONTROLLER

JOINT

-MUM

react to these two bits to turn the motor on in one or the

other direction or to turn the motor off.

21

 	command
HOST signals GRIPPER Grump

COMPUTER CONTROLLER wmm

POSITION FEEDBACK 	 POSITION
	

FEEDBACK

Figure (2.2b-1): Control System of (a) Joint (b) Gripper

The pitch and the roll rotations are provided by motion

of two stepper motors as shown in Figure (2.1b-1). Positions

of the two wrist rotation axes are absolute provided that

the robot arm is properly set to the reference position

before commencing. Command signals for each axial motion are

position codes of 12 bits. Although there is no feedback

signal in the wrist controller, its principle of operation

is similar to servo type controllers in which the axial

motion depends on the resulting error signal.

The feedback signal for each wrist axis is provided by

a 12-bit counter which acts as a dynamic memory device and

stores the previous position of that wrist axis in code. The

magnitude of the error signal generates the number of

clocking pulses required to move the current position of the

wrist joint to a desired position while the sign of the

error signal controls the direction of rotation of the

motion. Clocking signals for driving the stepper motors are

also used to renew the counters simultaneously.

However, when the controller unit is first energized,

the contents of the counters are arbitrary and so are the

positions of the two wrist axes. In order that the contents

22

of the counters can represent the positions of the wrist

joints, the wrist joints must be moved to pre-defined

positions, called reference positions, and the contents of

the counters must be assigned pre-defined values, called

reference codes, corresponding to the reference positions.

Since there are no sensors mounted on the actual rotating

shafts of the wrist joints, the computer cannot identify the

reference positions. The reference positions of the wrist

joints will have to be set manually before setting the

contents of the counters. When the reference positions and

reference codes are set, the counters will function like

absolute shaft encoders of the two rotating wrist axes

provided no loss of steps of the stepper motors occurs.

Since the two stepper motors must be energized to

perform one axis of rotation, the controller unit is

designed so that only one axis of rotation is implemented at

a time.

2.3 POWER SOURCE

The power source of the TasrobotO arm are electric

actuators. There are four permanent magnet dc motors and two

stepper motors.

Three of the dc motors are used to drive the position-

ing joints and the other is to provide gripping action. The

high speed but low torque characteristics of dc motors does

• not make them prevalent for driving loads directly. In

practice, higher driving torque is achieved by trading off

the high speed of the motor through speed reduction

gearings. Thus, the torque used for driving a load is N

MEMORY
SWITCH

times that developed from motor, but the driving speed is

reduced to 1/N times the motor speed.

The stepper motors used are 7•50 stepper motors each

having four 12V dc windings and permanent magnet rotor

construction. Each motor is equipped with a gear box which

reduces the output step angle to 0.6° and decreases the

maximum step rate to about 20 steps/sec (or 12°/sec) to

achieve a maximum output torque of the motor.

2.4 PROGRAMMING THE TASROBOTO MANIPULATOR

The programming of the TasrobotO manipulator is done

through the use of a teach arm as shown in Figure (2.4-1).

POTENTIOMETER
FOR ELBOW AXIS

	
In teach mode, the

POTENTIOMETER
FOR PITCH AXIS configuration of the actual

OW SWITCH 	 arm will follow that of the

POTENTIOMETER POTENTIOMETER
FOR SHOULDER FORROLLMS 	 teach arm. Therefore, grasping
AXIS

the end-effector of the teach

FOR BODY AXIS

1Figure (2.4-1): The Structure
of The Teach Arm of The
TasrobotO System

actual arm, better still, the teach arm can easily be moved

to take any configuration. Desired configuration of the

actual arm can be recorded by pressing a memory switch

located at the end-effector of the teach arm.

There are five potentiometers and two microswitches in

the teach arm. One potentiometer is installed in each

rotating joint to indicate the position of that joint. The

GRIP-switch is to signal the robot computer to open or close

the gripper. The MEM-switch is to signal the robot computer

to record the current joint coordinates.

23

POTENTIOMETER

arm will be similar to grasp-

ing the end-effector of the

During teaching stage, the robot computer samples

signals from sensors on the teach arm and drives the actual

manipulator accordingly at the same time. The GRIP-switch

has two functions. Not only does it tell the computer to

open or close the gripper of the actual arm, it also allows

the user to indicate how much the gripper motor must be

turned to open the gripper in a specific arm configuration

with respect to how long the GRIP-switch is held pressed.

Programming a robot for a task using a teach arm is

simple and convenient since the operator does not need to

measure the Cartesian coordinates in space as required by

off-line programming, nor to worry about the position of

each individual joint of the robot as required in manual

teaching using teach pendant. In addition, the control

program for the teaching process is much simpler as no

mathematics for coordinate transformations are required.

24

CHAPTER THREE

HARDWARE DESIGN OF THE TASROBOTO CONTROLLER UNIT

The hardwares for the controller unit consist of three

printed circuit boards (PCBs) and a power rectifier unit.

The three PCBs are identified as the analog control board,

the digital control board and the interface circuit board.

The analog control board mainly controls the analog

devices, i.e. the four dc motors of the manipulator. The

digital control board controls the two stepper motors. And

the interface circuit board provides communication between

the control boards and the host computer. The dc power

required by each board is provided by the rectifier unit

which converts 240V ac mains power to unregulated dc

voltages of ±20V and +11V. Regulated dc power required by

active components used on each board is provided by its

onboard regulators. Figure (3-1) illustrates a schematic

structure of the TasrobotO controller unit.

The complete circuit diagrams for the controller unit

with pin-to-pin configurations are shown in Appendix A. The

designed ciruits were built and used as the control hard-

Wares of the TasrobotO system.

3.1 THE ANALOG CONTROL BOARD

The analog control circuit was designed to control the

four dc motors driving the TasrobotO manipulator, three of

which control the motion of the three positioning joints and

25

26

A. C. MAINS
SUPPLY

POWER

RECTIFIER

UNIT

20 V
- GN

2 0 V
. 11 V

- G ND

BODY
ACTUATOR

SHOULDER
ACTUATOR

ELBOW
ACTUATOR

OR
MOTOR

BODY REFERENCE

SHOULDER RE FE RENCE

ELBOW REFEREKE

GRIPPER SIGNALS OPEN LOOP
CONTROLLER

.21V-r.111V

BODY

.2rir / IND

SHOULDELL
ELBOW
GRIPPFU
GRIPPER.]

ANALOG

CONTROL

-BOARD

BODY ACTUATOR

-. SHOULDER ACTUATOR

ELBOW ACTUATOR

}GRIPPER MOTOR

FROM 	 16
HOST 	
COMPUTER

INTERFACE

CIRCUIT

BOARD

co

5
12

GND 40VM V
12 11

DIGITAL

CONTROL

-11 LEFT
--.JSMTOETPOPRE R

AME
I

R
 MOTOR

Figure (3-1) : Schematic Diagram of The
TasrobotO Controller Unit

one controls the gripping action of the two-jaw gripper. The

former are closed-loop control while the latter is closed- .

loop control via the host computer. Figure (3.1-1)

illustrates a schematic layout of the board.

'BOARD

PITH

ROLL

BODY FEEDBACK

SHOULDER FEEDBACK

ELBOW FEEDBACK

GRIPPER FEEDBACK
TO COMPUTER

ANALOG
CONTROL
BOARD

Figure (3.1-1): Schematic Layout of The
Analog Control Board

- CLOSE-LOOP CONTROLLER. r---- - - _ _ _ - - - - --------

DIFFERENTIALI 	 POWER
	 AMPLIFIER 	 AMPLIFIER

COMPENSATION
NETWORK

ACTUATOR

v
RE F 2

Figure (3.1a-2): An
Instrumentation Amplifier

Figure (3.1a-3): The
Compensator Circuit

v0 1
V02

(a) The Closed-loop Controller

The three closed-loop controllers closely resemble each

other and their typical structure is illustrated in Figure

(3.1a-1).

27

REFERENCE

FEEDBACK

Figure (3.1a-1): A Typical Structure of A Closed-loop
Controller of The TasrobotO System

The differential amplifier block was implemented by an

instrumentation amplifier as shown in Figure (3.1a-2). By

choosing RI=R2=R2=R ; R5=R7=R and R5=AR, the output of the

amplifier becomes:

Vo = -(V2EFI-V2Er2)(1+2/A)
	

(3.1a-1)

The compensation network block is a simple one-pole-

one-zero compensator and was implemented as shown in Figure

(3.1a-3). The input/output relationship is:

V02 -(sRC1+1)
(3.1a-2)

Vot 	 (sRC2+1)

1K

OUTPUT
(to actuator)

• INPUT

(from compensator R3
circuit output) 	 1K

C 3
I 0.24F

- Vcc

The power amplifier block was implemented by a type 165

Power Op-amp and the circuit is shown in Figure (3.1a-4).

Figure (3.1a-4): A Power Op-amp Circuit Using
Type 165 Op-amp

These three circuits form the closed-loop controller

for the positioning joints of the TasrobotO manipulator.

(b) The Open-loop Controller

The gripper motor is controlled in closed-loop via the

host computer. Command signals from the host computer

directly control the motion of the gripper motor. A 2-bit

signal is used for controlling the three possible states:

rotating forward, backward or stop. The implementation of

the control scheme merely requires a suitable power

amplifier to drive the motor correspond to the 2-bit command

signal.

The control circuit for the gripper motor is shown in

Figure (3.1b-1). A general purpose light emitting diode

(LED), with a voltage drop of about 2V across, was used to

provide reference to the 2-bit TTL command signal from the

host computer. A gain of 10 in each amplifier allows the

28

output to be pulled up to its maximum or minimum saturation

voltage, thus enabling higher initial torque and faster

operation of the motor.

10 K
	

10 K

29

LED

Figure (3.1b-1): The Gripper Control Circuit

Table (3.1b-1) summarizes the action of the gripper in

relation to the status of the two command signals (BITO and

BIT1).

BIT. BIT1 GRIPPER 	 MOTOR GRIPPER 	 JAWS

0 0 UNENERGIZED NO 	ACTION

0 1 CLOCKWISE 	ROTATION OPENING 	 JAWS

0 ANTICLOCKWISE ROTATION CLOSING 	 JAWS

1 1 UNENERGIZED NO 	ACTION

Table (3.1b-1): Actions of Gripper Motor And Gripper Jaws
With Respect To The States of The 2-bit
Command Signal

3.2 THE DIGITAL CONTROL BOARD

The digital control circuit was designed to control the

two stepper motors which drive the two wrist rotations of

the TasrobotO manipulator. The control schemes for the two

wrist rotations are similar in structure and is illustrated

in Figure (3.2-1).

'Unlike the dc servo motor controller, the wrist

controller does not have feedback directly from correspond-

ing moving shaft. The feedback signal is from a position

register which simulates a shaft encoder.

COMMAND CONTROL STEPPER STEPPER
SIGNAL COMPARATOR SIGNAL MOTOR MOTOR

GENERATOR DRIVER ACTUATOR

POSITION 	
REGISTER

Figure (3.2-1): Block Diagram of The Control Scheme For A
Stepper Motor

Initially, this position register is assigned a value

corresponding to a certain position of the rotating axis.

When a step is sent to rotate the corresponding shaft clock-

wisely, the position register will be incremented by one.

Similarly, if a step is sent to rotate the shaft anticlock-

wisely, the position register will be decremented by one.

While pitch and roll rotation cannot occur simultane-

ously, the controller logic unit will only allow one

rotation at a time with priority given to pitch rotation.

The control scheme can be implemented by software

technique through computer programming or by hardware

technique through digital electronic circuits. The former

technique was not used because its resulted wrist rotations

are comparatively slow and hence substantial amount of

computer time will be required to generate wrist rotations.

Also, during such wrist rotations, the computer would not be

able to generate commands for motion of the other joints;

and very slow overall motion of the manipulator will be

expected. Although software technique was not used, the

flow-chart of the control algorithm shown in Figure (3.2-2)

30

DECREASE PITCH
POSITION REGISTER
BY ONE

READ PITCH POSITION

COMMAND SIGNAL

PITCH 	 PITCH
COMMAND >POSITION ?
IGNAL REGIST

PITCH 	 PITCH
COMMAND< POSITION ?
IGNAL 	 REGIST

ROTATE PITCH AXIS
CLOCKWISELY
BY ONE STEP

INCREASE PITCH
POSITION REGISTER
BY ONE

Y ROTATE PITCH AXIS
ANTICLOCKWISELY

ST

ROTATE ROLL AXIS
CLOCKWISELY

BY ONE STEP

HINCREASE ROLL
POSITION REGISTER
BY ONE

ROTATE ROLL AXIS
ANTICLOCKWISELY
BY N ST P

DECREASE ROLL
POSITION REGISTER
BY ONE •

ROLL 	 ROLL
COMMAND > POSITION ?

IGNAL REGIS

ROLL 	 ROLL
COMMAND < POSITION ?

GNAL REGIS!'

POSITION REGISTERS

READ ROLL POSITION
COMMAND SIGNAL

helps illustrating the hardware design of the control

scheme.

Figure (3.2-2): Flow-chart of The Wrist
Control Algorithm

In the implementation of the stepper motor control

scheme, the control blocks shown in Figure (3.2-1) were

replaced by hardware functional blocks shown in Figure

(3.2-3).

Since a step angle for the stepper motor is 0.6°, a

minimum of 600 discrete levels or a 10-bit decoder is

required to unambiguously represent the position of the

wrist joint shaft. In this design, a 12-bit decoder was

used to provide greater adaptability of the circuit. For

example, if the step angle is now changed to 0.09° to

31

provide larger output torque, about 6 times that of 0.6°,

the same circuit can be used without modification.

LOAD REFERENCE
DATA SIGNAL

32

1)ITCH
i

paralle load

9 	 ,-•-4
2‘. i

12-BIT UP/DOWN
1=1 	 COUNTER

- out 	 :1424-"I

a-
a

12 -BIT
PITCH
COMMAND

12

12 - BIT 	
ROLL
COMMAND

12 	 .

	

inputs B 	 9?

12-BIT

	

MAGNITUDE 	 4
UMW/UM

12 -BIT
MAGNITUDE
COMPARATOR

inputs B

f 	

_,..]

ri 12- :BIT UP/DOWN:

outputs

0 COUNTER 	 _. a
-.
> 	 Parallel load ri

Ln
as

C
ON
T
R
OL

LO
GI
C
UN
 I
T

■- ■

-4. LEFT
STEPPER

a MOTOR
DRIVE

LEFT
STEPPER
MOTOR

MOT
B. STEPPER

MOTOR
DRIVE 56.

RIGHT
STEPPER
MOTOR

on 	

	

C9-1- 	

'ROLL
LOAD REFERENCE

DATA SIGNAL

Figure (3.2-3): Hardware Block Diagram of The Digital
Control Scheme

The position register block in the control scheme was

implemented by a 12-bit Up/Down counter. Command data from

the host computer is compared with the counter output, the

latter represents the shaft position of the corresponding

wrist joint. Compared results were used to signal the

control logic unit to generate appropriate signals to drive

the stepper motors and to update the counters. The control

logic unit also distinguishes pitch or roll rotation and

gives priority to the former.

(a) The 12-Bit Comparator

Two 12-bit comparators are required, one for each wrist

rotation. Each comparator was implemented by cascading three

74C85 4-bit magnitude comparators and is illustrated in

Figure (3.2a-1).

3 BIT COMPARED RESULTS
TO CONTROL LOGIC UNIT

GT EQ LT

/
A)13 A=B AB
A3 .3

74C85

	

1 	 B1

	

0 	 BO

AB A=B MB
I 	 I 	 I

MB A=B MB

	

A3 	 B3

A2 74C85 82

	

A1 	 B1

	

A
O 	 BO
AB A=B A.B

A)B A=B AB

	

A3 	 B3

A2 74C85 B2

	

At 	 B1

	

Ao 	 Bo

MB A=B AiB

±

33

• 11

•12-BIT
DATA < •
FROM
HOST

COMPUTER
•
•

•

(11

12-BIT
DATA
FROM
COUNTER

+ 5V

Figure (3.2a-1): A 12-bit Magnitude
Comparator

(b) The 12-bit Up/Down Counter

'The control scheme requires two 12-bit up/down count-

ers, one for each wrist rotation. The counters act like

position indicators of the current shaft positions. Pulses

generated to move the stepper motors also update the

counters in such a way that the counter outputs will be

counted up or down towards the value of the command position

codes. To enable the position reference data to be set, the

counters must be presettable and therefore, 74LS191 Preset-

table 4-Bit Binary Up/Down Counters were used. Three 74LS191

counters were cascaded to give a 12-bit counter and is shown

in Figure (3.2b-1).

. 	 CP 	 . •

• 0/D rili FL
D3 	 Q3

74LS191 c/2
Di 	 1 	 Q1

_..c.
1

0 Do D O —Co
D _

(P

Um rTC PI
D3 	 D3

0274L5191 Q2
D1 	 Q1
Do 	 Q0

LOAD REFERENCE DATA

"LOAD SWITCH

UM 	 LT—.
D11 	 03 	 Q3 	 C11

Dz743191 Q2
Q1

oo 	 ao

•

34

12-BIT
DATA
FROM
HOST
COMPUTER

12-BIT DATA
TO COMPARATOR

UD 	 CLK

FROM CONTROL LOGIC UNIT

Figure (3.2b-1): A 12-bit Up/Down Counter

(c) The Stepper Motor Driver

A suggested stepper motor driver IC for the stepper

motor is the SAA1027. A typical circuit for the driver is

shown in Figure (3.2c-1). A Low-to-High transition on the

STEP pin turns the motor by one step. The sequence of output

signals and the direction of rotation of the motor depend on

the signal level of the Direction pin (DIR).

It is important to note that logic high level of the

SAA1027 is represented by a voltage level between 7.5V to

12V and low is represented by a voltage level between OV to

4.5V.

FROM 	 STEP
CONTROL
LOGIC
UNIT 	 DIR

STEPPER
MOTOR

+12V

Figure (3.2c-1): Circuit Diagram For The Stepper Motor
Driver SAA1027

(d) The Control Logic Unit

The control logic unit is the heart of the control

scheme. It generates TTL logic level voltages to update the

counters. It generates appropriate logic level voltages to

control the stepper motor drivers in driving the stepper

motors, with respect to the six resulting signals from the

two comparators. The six input signals are arranged in two

groups of three, one group from one comparator.

. There are four pairs of output signals in the control

logic unit. Each pair of output signals consists of a

clocking signal and a direction control signal. Two pairs of

output signals are TTL logic level voltages for controlling

the two 12-bit counters. The other two pairs of output

signals are special logic level voltages for controlling the

two stepper motor drivers. Figure (3.2d-1) shows the sources

of the input signals and the destinations of the output

signals. The symbols used in the figure will carry their

meanings throughout the rest of this section.

Figure (3.2d-1) also illustrates the internal structure

of the control logic unit. Functionally, the unit can be

35

PITCH CONTROL ROLL CONTROL

12- BIT

COMPARATOR

GT EQ IT

D2 C1 02 Ui P1

divided into three parts, namely, the clock generator, the

pulse generator and the direction signal generator.

•The clock generator outputs a continuous TTL clock

signal with a constant frequency. This clock signal is fed

into the pulse generator to provide clocking signal to the

two counters and the stepper motor drivers. The clocking

frequency is about 20Hz providing maximum working torque for

the motors. The direction signal generator generates

appropriate signals to up-count or down-count the counters

and to rotate the stepper motor in either directions.

36

ONTROL LOGIC UNIT

CLOCK

GENERATOR

PULSE Pi

GENERATOR
- r--•••• STEP

STEPPER MOTOR CONTRO

LEFT
STEPPER
MOTOR
DRIVER

RIGHT
STEPPER
MOTOR
DRIVER

STEP 	 D R STFP rR

- -------

STEPL 	 R L 	 STEP R DIR

E1

03

DIRECTION

SIGNAL

GENERATOR

DO

Ul
MRR

MRL

Figure (3.2d-1): Block Diagram of The Input Sources And
Output Destinations of The Control Logic
Unit

Dl-

(i) The clock generator

The clock generator of the control logic unit is a

free-running multivibrator as illustrated in Figure

(3.2d(i)-1).

With R1=R2=R4=R; R5>>R5 and R5<<R, the frequency of

oscillation fooc can be shown as:

fosc = 1/1.386R3C 	 (3.2d(i)-1)

Resistor R3 was selected as 22k and C. as 1.5pF, and the

resultant frequency of oscillation is about 22Hz.

37

R 3
R5

8
LM311

1
v o

R4

Figure (3.2d(i)-1): The Clock
Generator Circuit

(ii) The pulse generator

The main functions of the pulse generator are to

provide non-TTL signal, STEP, to the stepper motor drivers

to drive the stepper motors; and to provide TTL signals, PO

and Pi, to activate the counting function of the two

counters.

The non-TTL signal, STEP, will be activated unless both

• the EQ signals from the two comparators are high. Therefore,

only the input signals, Eo and El, of the control logic unit

are required to implement clocking control of the stepper

motors.

The clocking source of the pulse generator is the clock

generator. By enabling or disabling the clocking source, the

outputs of the pulse generator, Po and Pl, will activate or

deactivate counting function of the counters. Since only one

type of rotation is allowed at a time and higher priority is

given to pitch rotation, clocking signal for roll rotation

INPUTS OUTPUTS

E
•0
E
1
CLKI P

O
P
1
STEP

0 0 0 0 1 0

0 0 1 1 1 1

0 1 0 0 1

1 	 1 	 1

0

0 1 1 1 1 1

1 0 0 1 0 0

1 0 1 1 1 1

1 1 0 1 1. 1

1

NOTE :

0 =LOW LOGIC LEVEL

1 -HIGH LOGIC LEVEL

• HIGH LOGIC LEVEL IS • 12 V AND
LOW LOGIC LEVEL IS 0 V

..CLK IS THE SIGNAL FROM THE

OUTPUT OF THE CLOCK GENERATOR

'O
t 	 00 01 11 	 10

0

1

010 010 111 100

111 111 111 111

[STEP R

STEP L

10K

counter, PI, will only be enabled when the specific pitch

rotation has completed.

Figure (3.2d(ii)-1):
Karnaugh Map For The

Table (3.2d(ii)-1): Truth Table, Output Signals PoPISTEP,
•For The Outputs of The Pulse 	 of The Pulse Generator
Generator

The required truth table for the signals Po, Pi and

STEP is shown in Table (3.2d(ii)-1). The karnaugh map for

the output signals is illustrated in Figure (3.2d(ii)-1).

The logical expression for each output is:

Po = Eo+CLK (3.2d(ii)-1)

PI 	= gO+El+CLK (3.2d(ii)-2)

STEP = E0El+CLK (3.2d(ii)-3)

The circuit for the pulse generator is shown in Figure

(3.2d(ii)-2).

CLK

pULSE GENERATOR

P
o

P
I

•12V

Ei

38

r"-po

..

Figure (3.2d(ii)-2): Circuit Diagram of
The Pulse Generator

(iii) The direction signal generator

The direction signal generator provides two types of

signals: non-TTL type signals, DIRL and DIRR, to control the

type of rotation, pitch or roll, as well as its direction;

and TTL type signals, Uo and Ul, to control the counting

direction of the counters.

39

INPUT
• -SHAFT
AXIS

DIFFERENTIAL
GEARINGS

EF-- = =r411)irn , er=7 1=1 0

‘a 	 LEFT
INPUT LEFT

SHAFT
MOTOR

OUTPUT
SHAFT

OUTPUT
SHAFT
AXIS

Figure (3.2d(iii)-1): Motions
of The Input Shafts And The
Output Shaft of The Wrist

INIATTSHAFT
MOT ION

INIRIFSVIAFT
MOTION

OUTPUT SHAFT MOTION

L1 R 1
PITCH CLOCKWISE

R 2 ROLL CLOCKWISE

RI ROLL ANTICLOCKWISE

I. •
2

R
2

PITCH ANTICLOCKWISE

Table (3.2d(iii)-1): Types And
Directions of Motion Referring
to Figrue(3.2d(iii)-1)

RIGHT

	

RIGHT 	 INPUT

	

STEPPER 	 SHAFT
MOTOR

The axes of rotation of the two stepper motors are

aligned in one axis with differential gearings as shown in

Figure (3.2d(iii)-1). Two non-TTL signals, DIRL and DIRR,

from the direction signal generator, control the two stepper

motor drivers. With two possible directions of motion for

each motor, the output shaft has four different types of

resulting motion. Taking Li, L2, RI and R2 to be the

directions of motion of the two input shafts as shown in

Figure (3.2d(iii)-1), the resulting motion of the output

shaft is shown in Table (3.2d(iii)-1). The definitions of

directions of pitch and roll rotations are shown in Figure

(3.2d(iii)-2). The required DIRL and DIRR signals to achieve

various wrist motions are shown in Table (3.2d(iii)-2).

ELBOW \
. Ilk 	 \

•

.CLOCISMg_."-"\ATCH ROTATION

ANTICLOCKWISE

GRIPPER

The additional requirement to give higher priority to

pitch rotation is achieved by generating the two direction

control signals, DIRL and DIRR, for pitch rotation first.

•40

ROLL ROTATION

DIR L DIR R WRIST 	 MOTION

. 	 0 0 PITCH CLOCKWISE

0 1 ROLL CLOCKWISE

• 1 0 ROLL ANTICLOCKWISE

1 1 PITCH ANTICLOCKWISE

t-P
r-A

Figure (3.2d(iii)-2):
Definitions of The Wrist
Rotations

Table (3.2d(iii)-2): Wrist
Rotations With Respect To The
Direction Control Signals

The truth table for the signals DIRL and DIRR is shown

in Table (3.2d(iii)-3). The karnaugh maps for the two

signals DIRL and DIRR are shown in Figure (3.2d(iii)-3); and

the logical expressions for the two signals are:

DIRL = Do +I5i D2
	

(3.2d(iii)-1)

DIRR = Do +D3 E
	

(3.2d(iii)-2)

Two TTL type signals, Uo and Ul, are generated by the

direction signal generator for controlling counting direct-

ion of the two counters. Unlike the non-TTL signals, Uo and

Ul are not governed by the priority requirement. This allows

the signals Uo and Ul to be generated in a simpler scheme

as:

Uo = DI 	 (3.2d(iii)-3)

(3.2d(iii)-4)

The overall circuit diagram for the direction signal •

generator is shown in Figure (3.2d(iii)-4). Open-collector

00 	 01 	 11 	 10
1 X 0

1 1 X 0

X X X X

0 1 X 0

00 	01 	11 	 10
X l x

0 1 X 0

X X •X X

1 X 0

(b)

Figure (3.2d(iii)-3):

Karnaugh Maps For
(a)DIRL Signal And
(b)DIRR Signal

0

7

0 0.

0

1 0

0

00

01

11

10

D3

NAND gates are used to provide non-TTL signals, DIRL and

DIRR, with a high level of +12V and a low level of OV.

P3 D2 01 DO DIRL DIRR REMARKS

0 0 0 0 X X BOTH ROTATIONS COMPLETED

0 0 0 1 1 1 PITCH ANTICLOCKWISE 	ROTATION

0 0 1 1 0 0 PITCH 	CLOCKWISE ROTATION

0 0. 1 1 X X DO NOT OCCUR

0 1 0 0 1 0 ROLL CLOCKWISE ROTATION

0 1 0 1 I 1 (PRIORITY) PITCH ANTICLOCKWISE ROTATION

0 1 1 0 0 0 (PRIORITY) PITCH 	CLOCKWISE 	ROTATION '

1 1 1 X X DO NOT OCCUR

1 0 0 0 0 1 ROLL ANTICLOCKWISE 	ROTATION

0 0 1 1 I (PRIORITY) PITCH ANTICLOCKWISE ROTATION

1 0 1 0 0 0 (PRIORITY) PITCH CLOCKWISE ROTATION

1 0 1 1 X X ,

1 1 0 0 X X

1 1 0 1 X X DO NOT OCCUR

1 1 1 0 •X X

1 • 1 1 X X

NOTE: 	 I'• = LOGIC HIGH LEVEL

" 0 =

LOGIC LOW LEVEL

X = DON'T CARE

Table (3.2d(iii)-3): Truth Table For The
Control of The Wrist Rotations

41

•12 V

10K 10K
01

02)3-

/ c> DIRL
Do

0/ c> DI RR

U1

Figure (3.2d(iii)-4): Circuit
Diagram of The Direction Signal
Generator

42

3.3 THE INTERFACE CIRCUIT BOARD

In the TasrobotO system, the major hardware interfacing

was done by a commercially available interfacing board, the

Lab Master Board, from the Tecmar Inc.. The board, located

at addresses 0710H to 071FH, provides three major types of

interface, namely, analog-to-digital, digital-to-analog and

digital-to-digital interfaces. Each type of interface can be

initiated by writing appropriate signals to its correspond-

ing address shown in the manual[R 32]. Software subroutines

written for the board were provided by a commercially

available package, the Lab-pac Subroutines, from the

Scientific Solutions Inc.. Each of these subroutines was

written for a specific function as described in the

manual[R 33].

The analog-to-digital interface of the Lab Master Board

consists of an 8-bit multiplexer, giving 256 possible analog .

input channels. The DAC installed has a resolution of 12

bits. With the aid of the Lab-pac Subroutines, the input

channels can be sampled at regular intervals with maximum

sampling frequency as high as lkHz. Regular sampling can be

achieved by hardware interrupts generated by the System

Timing Controller AM9513. All the analog input interfacing

for the TasrobotO system was done through the Lab Master

Board using Lab-pac Subroutines.

However, the Lab Master Board provides only two

digital-to-analog channels which are not enough for control-

ling the three dc servo motors of the TasrobotO manipulator.

Three digital-to-analog channels were designed. Each channel

is accessed through the data bus using the 8255 Programm-

able Parallel Port Interface (PPI) in the Lab Master Board.

The digital-to-digital interface of the Lab Master

Board is provided by the 8255 PPI. The PPI occupies four

address locations, one for command register and three for

data registers. There are 24 programmable input/output

channels in the PPI. The command register, located at 071FH,

allows each of the 24 channels, which are arranged in three

8-bit ports: portA, portB and portC, to be programmed as

either input or output channels. The input data or output

data can be read or written through the data registers

located at 071CH to 071EH for portA, portB and portC

respectively.

PortA, the upper 8-bits of the 24 bits, was programmed

as input port for manipulating digital input signals. At

present, there are three one-bit digital input signals, one

from the MEM-switch and one from the GRIP-switch, both

mounted on the teach arm. The third signal is from the +5V

power supply rail so that the power supply for the

electronics in the TasrobotO controller unit can be

examined.

PortB and portC which occupy the lower 16 bits of the

24 bits were programmed as output ports. Since there are six

output devices, four dc motors and two stepper motors, to be

controlled, six registers are required to latch data to

appropriate devices. The upper 4 bits of the 16 bits output

from the host computer were used to initialize one of the

six registers using a 3-to-8 decoder, and the lower 12 bits

were used as data bits. The interfacing circuit of the

43

TasrobotO system thus consists of six 12-bit data registers,

one 3-to-8 decoder and three DACs as shown in Figure (3.3-

1)

4

INTERFACE CIRCUIT

12 	 •

 BOARD

>---

DAC>—
*-
BODY
 COMMAND
SIGNAL

SHOULDER
CO
IG
M
N
M
A
A
L
ND

 S

ELBOW
COMMAND
SIGNAL

WRIST /PITCH
COMMAND

3 : 8 	
DECODER ROBOT

HOST
COMPUTER

1:15-
12

D12

an-00 f
DATA
REGISTER

12
DATA
REGISTER

DAC

12
DATA
REGISTER

DAC
11,9

12

JA.,1
DATA
REGISTER

11

SIGNAL

WRIST/ ROLL
I DATA

REGISTER 29

24.1

12

10

COMMAND
SIGNAL

GRIPPER 	MOTOR
CONTROL 	SIGNAL

'

DATA

REGISTER
SPARES

Figure (3.3-1): Layout of The
Interface Circuit Board

(a) The Decoder and The Data Register Circuit

The 3-to-8 decoder and the six 12-bit data registers

form the addresses of the output devices. Three of the data

registers latch data for the three DACs to control the

positioning motion of the manipulator while the remaining

three provide digital control on the stepper motors and the

gripper motor. The data signals for the five joint motors

are 12-bit. The gripper motor only requires 2-bit data

signals and 10 bits are spare in its data register.

Of the 16 bits from the computer data bus, four bits

are used to generate the chip-select-signals: three of which

decode the address of the six output devices and one enables

the decoder.

44.

3:9
DECODER

12

Dll

	

015 	

from 	 Di4 	
4 MSBs
of data
bus 	 1

DATA REGISTER

from
lower
12 -bit
of the
data b

+5v

i
clear 	 CFK----'
D6
n_ -t 	 CI6
'-', 	 to— 	 as
04 (7) 	 Q4 	
03-i

--i- 	
Q3 	

D2 r.- 	 Q2
DI 	 CI1

clear 	 CLK
06 	 Q6
05 r- 05

04 c7; 	 a4
C13

r--- 	 Q2
Dl 	 Q1

+5V

I 	 I

Or,

12 -bit
Latched
output

Figure (3.3a-1): Decoder And A
Data Register Circuit

Yo

The 74LS138 3-to-8 Decoder was used in the design. It

decodes one-of-eight lines based on the conditions of the

three binary select inputs: A, B and C; and the three enable

inputs: GI, G2A and G2B. When the decoder is enabled, one of

the eight outputs is pulled down to low level according to

the levels on the select inputs as shown in Table (3.3a-1).

Two 74LS174 Hex D Flip-Flops were used to form a data

register circuit. Six registers are driven by the decoder,

all having similar circuits as shown in Figure (3.3a-1) but•

driven by different output of the decoder as indicated in

45

Table (3.3a-2).

INPUTS
OUTPUTS

Naa uau

61 C B A YO Yi Y2 Y3 Y4 Ìfs y6 y7

X X X H H H H H H H H

H LL L L H H H H H H

H L L H HL H H H H H H

H L HL HHL H H H H H

H L H H H H HL H H H H

H HL L H H H HL H H H

H H L H H H H H HL H H

H HHL HH HH LH

H.H H H H H H H H HL

NOTE: " H" • LOGIC HIGH

" L " • LOGIC LOW

" X " = DM T CARE

mAND Gm ARE HELD LW.

Table (3.3a-1): Truth Table of
The Decoder 74LS138

SELECT INPUTS
OF DECODER

ENABLED
OUTPUT

BA°""°c"

ENABLED
DATA REGISTER

C

L LL Yo BODY

L LH yi WRIST /PITCH

L HL Y2 SHOULDER

L HH Y3 WRIST I ROLL

HL L V4 ELBOW

HL H Y5 GRIPPER MOTOR

H H L Y6
NOT USED

HH H Y7

Table (3.3a-2): Data Register
Enabled With Respect To Select
Inputs of The Decoder 74LS138

In order to avoid erronous decoding due to transient

states of the signals on the select inputs, decoding is done

in a sequence of three steps. Firstly, the 3-bit chip-select

signals are sent to the decoder while the outputs of the

decoder are disabled by holding GI low. Secondly, GI is

changed to high with the select signals unaltered. This

causes the corresponding output to go low. Thirdly, GI is

switched back to low and a positive-going triggering signal

for an appropriate data register is generated. The enable

signal, GI, and the 3-bit chip-select signals were generated

in this sequence by softwares which programmes the 8255 with

8088 assembly language and will be discussed in Chapter 7.

(b) The DAC Circuit

Three DACs are required to provide analog signal

commands to the three positioning joints. The three DAC

circuits are identical, each consisting of an AD7541 12-Bit

Monolithic Multiplying DAC plus external circuit to convert

the binary weighted output currents to the equivalent binary

weighted voltages.

For full four-quadrant multiplying D/A conversion, the

AD7541 can be connected with two op-amps as shown in Figure

(3.3b-1). The output voltage can be expressed as:

VOUTA = (1-2D)Vrof 	 (3.3b-1)

where

46

Bil 	 Bio
D = 	 + 	 +

2 	 22

Bo
(3.3b-2)

212

The code and voltage output relationship is shown in

Table (3.3b-1) which is an offset binary coded conversion.

+ 5V

R2
I 1K

Vcc. 	 RFKB 1 	

IOUT1

	

0 .- 	 ®
m -4 --E4 R4
a-

L

s- 	
t,

	

t--- 	 - 	1 1(D

12-BIT 12
DATA

vOUTA

GND I OUT2

R7
1K =

5 O.

VREF
-10V

Figure (3.3b-1): Circuit Diagram For Bipolar
Conversion of Offset Binary Codes

47

DIGITAL 	 INPUTS NORMINAL ANALOG OUTPUT

111111111111 -.0•999512 VREF

100000000001 • 	' - 0•000488 VRE.F

100000000000 0

0 1 0 0 0 0 0 0 0 0 0 0 0.5 00000 VREF

0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 	0 0 0 VREF

DIGITAL 	 INPUTS NORMINAL ANALOG OUTPUTS

011111111111 9.9 9 S 	1 2 V

0 0 0 0 0 0 0 0 0 0 0 1 4.8 8 3 mV

0 0 0 0 0 0 0 0 0 0 0 0 0 V

1 1 	0 0 0 0 0 0 0 0 0 0 -5.0 V

1 0 0 0 0 0 0 0 0 0 0 0 -10.0 V

Table (3.3b-1): Offset Binary Table (3.3b-2): Two's Complement
Code Conversion 	 Code Conversion With VREF=-10V

The offset binary code is a natural consequence of the

structure of the DAC. However, the two's complement code is

preferred for binary mathematics. The DAC can easily be

structured to convert the two's complement code to its

equivalent voltage by inverting the MSB of the digital

signal before it is connected to the MSB pin (Bit) of the

DAC. The output voltage expression for the two's complement

conversion can be written as:

VouT = (1-2F)Vref 	 (3.3h-3)

where,

Bit 	 Bi o
	

Bo
F = — + — + • • •

	
(3.3b-4)

2 	 22
	

212

The code and voltage output relationship is shown in

Table (3.3b-2).

3.4 THE POWER SUPPLY CIRCUIT DESIGN

The design circuit boards discussed so far have their

own voltage regulators on board. Unregulated power are

supplied to each board so that each piece of circuitry has

an individual regulated supply. This arrangement has an

advantage of avoiding disturbation to regulated supply via

inevitably noise-voltage affected leads which increases the

ripple factor of the regulated supply.

The power required by each circuit board and the

regulators used are shown in Table (3.4-1). Circuit diagrams

for connecting these regulators are standardized. The pin-

to-pin configurations and the full board circuit diagrams

are shown in Appendix A.

CIRCUIT 	BOARD REGULATED
VOLTAGE

TOTAL MAX.POSSIBLE
CURRENT

SELECTED
REGULATOR

UNREGULATED
BUS

ANALOG

CONTROL

BOARD

+15 	V 1.5 	A LM 340T-15 BUS2

- 15 	V -1. 5 	A LM 3201--15 BUS3

+10 	V 10 	 mA LM 78 L - 10A BUS2

-10 	V -10 	 mA LM 39 L- 5A BUS3

DIGITAL
CONTROL
BOARD

+12 	V 1. 0 	A LM 340 T -12 BUS2

+ 	5 	V 280 m A LM 340T-5A BUS1

INTERFACE

CIRCUIT
BOARD

+15 V 12 	 A LM 340T:15 BUS2

-1 0 V 6 m A LM 79 L - 5A BUS-3

+ 	5 V 240 mA LM 340T - 5A BUS 1

-Table (3.4-1): Power Requirement For Each Circuit Board And
The Regulators Used

48

BUS1 (+12V)

— SMOOTHING
— CAPACITOR
I-- 	 Cl

	 GND

	 BUS2 (+20V)

	 SMOOTHING
— CAPACITOR

C 2

— SMOOTHING
— CAPACITOR

C3

0-----BUS3(-20J)

A. C.

MAINS

The power supply circuit for the three circuit boards

is illustrated in Figure (3.4-1). Three unregulated voltage

buses are provided, they are BUS1, BUS2 and BUS3.

BUS1 has nominal voltage of +12V and provides power for

+5V regulated supply; BUS2 and BUS3 have nominal voltages of

+20V and -20V respectively and provide power to ±15V, +12V

and ±10V regulated supply in the circuit boards. The current

supply requirement for each regulator is also shown in Table

(3.4-1).

TRANSFORMER
Ti

-- --
BRIDGE
RECTIFIER
BR2

Figure (3.4-1): Power Supply Circuit For The Hardware
Control Boards

The minimum requirements of the passive components used

in the •power supply circuit are shown in Table (3.4-2).

49

MINIMUM
REQUIREMENTS

ON
SMOOTHING
CAPACITORS

SELECTED 	C (allowing
50% variation on ()

8 95 2 	 p F 1 4 3 2 	 p F

RIPPLE 	 FACTOR 4 	 % 8 	 ek

VRIPPLE (PK)
1.13 V 1.13 	V

I ruppi F (allowing100 °A
variation on 	C)

4. 5 	A 0. 72 A

MINIMUM
REQUIREMENTS ON
BRIDGE RECTIFIERS

(PER 	DIODE)

I 	(AV) / 	DIODE 1.25 A
-

0.25 A

I FM / DIODE 7.5 	A 1 • 5 	A

IF (R MS) /DIODE 2. 5 	A 0. 5 	A

ISURGE/ DIODE 60 	 A 12 . 5 	A

MINIMUM
REQUIREMENTS

ON TRANSFORMERS

VSEC
(RMS) 1 8 .74 	V 10 . 6 	V

R S 0 . 5 	A 1- 2 	A

VA 	RATING 66 	 VA 7.5 	VA

Table (3.4-2): Summary of The Design Process of The
Unregulated Voltage Supply Buses And The
Minimum Requirements of The Elements Used In
The Power Supply Circuit

50

CHAPTER FOUR

IDENTIFICATION OF THE MANIPULATOR SYSTEM

A complete robot manipulator system is a non-linear

multi-variable system. Upon analysing the dynamics of a

robot manipulator using Lagrangian mechanics] , the torque

acting on a manipulator joint is due to a combination of

effective inertia and viscous friction of the joint and the

effect of motion of other joints. The latter includes

coupling inertia, centripetal acceleration and coriolis

acceleration. However, the TasrobotO arm is only a test

robot arm. Its size and weight are far less than commonly

encountered working robots. The interactions between links

are thus small. The effects due to coupling inertia,

centripetal acceleration and coriolis acceleration can be

neglected. The torque acting on a TasrobotO manipulator

joint can be approximated as due to effective inertia and

viscous friction of the joint only. For a horizontal joint

system, the extra torque due to the weight of the links and

the carried load can be included as a disturbance torque.

The TasrobotO is a robot manipulator system with five

degrees of freedom. The roll and pitch rotations of the

wrist joints are controlled by stepper motors. The rotations

of the body-, shoulder- and elbow-joints are controlled by

dc motors with constant field excitation. To control the

latter three joints and provide servo operation, analogue

controllers were designed. To facilitate the design, models

51

for the three joint systems and their unknown parameters

were built and identified.

4.1 MODEL BUILDING

Although the models of respective joint systems have

different parametric values, their structures are identical

as shown in Figure (4.1-1).

52

COMMAND .
SIGNAL d

	

COMPENSATION 	 PM/ ER

	

NETWOM 	 AMPLIFIER d
ARMATURE
CONTROLLED
D. C.
MOTOR

GEAR

REDUCTION
LOAD

UIFFERENTML

AMPLIFIER

POSITIONAL

SENSOR

Figure (4.1-1): Block Diagram of A Joint
System of The TasrobotO Manipulator

In the model building stage, the differential amplifier

and the power amplifier in each joint system are grouped

together and modelled as an amplifier with controllable gain

A. Since the compensator used is a simple one-pole-one-zero

compensator, the compensation network is modelled by a

transfer function Gco mp(S) with pole at s=-1/T2 and zero at

s=-1/TI:

sTi +1
Gco mp(S) —

(4.1-1)

sT2 +1

The dc servo motor, the reduction gear box, the load

and the position sensor together are considered as a

subsystem. The physical model of this dc motor subsystem is

illustrated in Figure (4.1-2). The symbols listed below are

used in Figure (4.1-2) and will be used in the derivation of

the transfer function of the dc motor subsystem model:

Va = voltage applied to the motor armature

Bm

posit ional
sensor

load shaft indicator

la = armature current

Ra = motor armature resistance

La = motor armature inductance

N = gear reduction ratio of the gear train

= effective inertia of the motor

= coeficient of viscous friction of the motor

= effective inertia of the load

= coefficient of viscous friction of the load

Om(t) = motor shaft angular displacement

OL(t) = load shaft angular displacement

Figure (4.1-2): A Physical Model of A Joint
System of The TasrobotO Manipulator

Considering the motor side of the dc motor subsystem,

the electrical terminal equations of the constant-field

armature-controlled dc servo may be obtained by equating the

voltage drop around the armature loop as:

Va (t) -Kv Om (t) = Raja (t) + La —ia (t) 	 (4.1-2)
dt

where Kv is the back e.m.f. constant of the motor.

The torque, Tm(t), generated by an armature controlled

dc servo is proportional to the armature current, ia, and is

given by:

Tm (t) = KT la (t) 	 (4.1-3)

where KT is the torque constant of the dc motor.

53

On the load side, the motor is geared down to drive the

load with gear reduction ratio N. Assuming an ideal gear

box, the torque on the load is N times the driving torque

and the driving shaft velocity is N times the load velocity.

If J is the total inertia and B is the resulting coefficient

of viscous friction acting on the motor shaft, then:

J = Jm + JL /N2
	

(4.1-4a)

B = Bm + BL /N2
	

(4.1-4b)

Om(t) = NO(t)
	

(4.1-5)

The last terms of equations (4.1-4a) and (4.1-4b)

represent respectively the reflected inertia and the

reflected coefficient of viscous friction of the load on the

motor shaft. If TL is the resulting load torque acting on

the motor shaft due to these inertia and viscous friction,

then Ti. can be expressed as:

TL(t) = Bom(t) + Jbm(t) 	 (4.1-6)

In some cases where the axis of rotation of the joint

is not vertical, there is an additional torque acting on the

joint due to the weight of its driven links. This additional

torque, caused by the gravity loading effect, will be

modelled as a disturbance torque and designated by Tg. If T

is the total load torque acting on the motor shaft, then

T(t) = B6m(t) + JOm(t) + Tg(t) 	 (4.1-7)

This total load torque required is provided by the

motor generated torque, Tm(t). Therefore, equating equations

(4.1-3) and (4.1-7) and rearranging, one gets:

KT ia (t) - Tg (t) = Bern (t) + Jom (t) 	 (4 . 1- 8)

If Ve is the voltage from the position sensor having a

proportional constant Kb, then

54

11(B+s7)

55

Ve (t) = Kb0(t) 	 (4.1-9)

A model for the dc motor system can now be established

according to equations (4.1-2) to (4.1-9) and is illustrated

in Figure (4.1-3).

T
9

1/ (Res

Figure (4.1-3): Block Diagram of The DC Motor Subsystem

In practice, there are non-linearities that cannot be

ignored in the system. The most commonly encountered non-

linearities are the saturation non-linearity due to

saturation of amplifiers and the dead-space non-linearity

due to static friction between sliding surfaces of the

joint. The parameters for the saturation non-linearity model

can be determined by direct measurements. But the parameters

of the dead-space non-linearity model are usually time-

varying as the non-linearity is caused by the coefficient of

static friction which changes with joint position.

If VI and V2 represent the positive and negative

saturations of the amplifier used, and DI and D2 represent

the characteristics of the dead-space non-linearity, then

the model structure of .a joint system can be illustrated in

Figure (4.1-4).

ar.L412-0
	

vo , 	
VIZ

T9

Vol

It a11 co s B • s I

Figure (4.1-4): Block Diagram of A Model Structure of .A
Joint System

4.2 PARAMETERS TO BE IDENTIFIED

Since the dc motor subsystem contains most of the

parameters of the model, the identification is mainly a

construction of an optimum transfer function for the dc

motor subsystem.

The postulated model shown in Figure (4.1-4) is closed-

loop. There are two ways to identify the parameters of the

subsystem. Either, the closed loop transfer function of the

system is identified and then the model of the subsystem is

derived from the identified parameters. Or, the open-loop

transfer function of the system is identified directly by

opening the feedback path. The latter method was used in

order to eliminate the effect of amplifier saturation on the

model parameters.

If the parameters of the dead space non-linearity model

are small and can be linearized, the appromixated transfer

function for the dc motor subsystem followed from Figure

(4.1-4) can be written as:

G(s) = 	 (4.2-1)
s(s2+as+b)

56

TEST INPUT

Mt)

OUTPUT

ERROR.eM

Figure (4.3-1): Block Diagram of The Generalized
Model-Adjustment Technique

AKb NKt

where 	 K =
JLe

Ra 	 B
— + -

La 	 J

Ra B + Kv Kt

JLa

4.3 IDENTIFICATION TECHNIQUE

The model to be identified, is a third order continuous-

time transfer function denoted by G(s). The type of

technique used for solving the parameter estimation problem

is called generalized model-adjustment technique as

illustrated in Figure (4.3-1).

The Blocks Fo,F1, ...Fm and Go ,G1 , 	 Gn are operators

such as linear transfer function, non-linear operators etc..

These blocks, together with the 'potentiometers'

ao,a2,....an and 00,131-,.. .13m and the summer, form a

57

'generalized model' of the process. The noise, n(t),

represents the measurement error of the output, y(t) ; and

e(t) represents the equation error. An estimation scheme

minimizing the sum squares of the equation error with

respect to values ao,a1,....ao and 00,01 , 	 Bro was used.

For implementation of the technique in a digital computer, a

discrete model rather than an analog model was adopted. The

parameters in the identified model are thus discrete-time.

The interface between the analog model and the

computer is through a digital latch and a DAC which can be

modelled as a zero-order hold data-extrapolator having a

transfer function:

-e-ST

Gzoh(s) - 	 (4.3-1)

where T is the sampling interval

The resulting transfer function of the process

including the zero-order hold data-extrapolator, G* (s), can

be written as:

G*(s) = Gzoh(s).G(s)

1-e-sT r
or, 	 G* (s) - 	 (4.3-2) L s(s2+as+b)]
Applying the Z-transformation, one obtains:

B* o +B* z" +B* 2 z' 2 +B* 3 Z- 3 	 Y(z)
G*(z) - 	 = 	 (4.3-3)

1-A*1 z- 1 -A*2 Z- 2 -A* a z" 3 	 X(z)

where G* (z) represents an ideal discrete-time transfer

function of the dc motor subsystem; Y(z) and X(z) are the Z-

transforms of the corresponding sampled output signal, y(t)

and input signal, x(t); and A*I , A*2, A*2, B*o, B*1, B*2 and

58

model-adjustment technique as shown in Figure (4.3-2).

	 MIMS 	
NOIS ,N(Z)

TEST INPUT

X (Z)

DISCRETE-TIME
PARAMETRIC
MODEL VIZI

OUTPUT
r(z)

I.

B*3 are the ideal discrete-time parameters of the process

and can be found as:

B*0 = 0

B*1 = -Ka(1-a)/b2 + KT/b + DE

B*2 = -Ka(0-1)/b2 - 2aKT/b - 2DE

B*3 = -Ka(a-13)/b2 + 5KT/b + DE
	

(4.3-4)

A*1 = (2a+1)

A*2 = -(2a+0)

A*3 = p

and, 	 a = e-grcoswT

0 = e-2aT

E = e-oTsinwT 	 (4.3-5)

a = a/2

w =

D = K(a-b-a)/b2w

This process model can be identified using discrete

ERROR. E(Z)

Figure (4.3-2): Block Diagram of The Discrete
Model-Adjustment Technique For Identifying
Joints of The TasrobotO Arm

From Figure (4.3-2), the discrete equation error E(z)•

can be expressed as:

59

E(z) = X(z)Biz-1 + X(z)B2z-2 + X(z)B5z-3 - Y(z)
- Y(z)Atz-1 - Y(z)A2z-2 - Y(z)A5z-3 	 (4.3-6)

Denoting the kth sampled value of the output as yk, it

follows from the Z-transform theory that:

Y(z)z 	 = Yk-n 	 (4.3-7a)

Similarly,

X(Z)Z 	 = Xk-n
	 (4.3-7b)

Therefore equation (4.3-6) can be expressed in matrix

form as:

Yk=(Xk-1 Xk-2 Xk-3 Yk-1 Yk-2 Yk-3] B1

B2

135
AI
A2

A3

For a large number of input and output measurements,

k=1,2,

Y4

Y5
: =

n, equation

X3 	 X2 	 X1

X4 	 X3 	 X2

(4.3-6) 	can be

Y3 	 Y2 	 yi 	 -

Y4 	 Y3 	 Y2

:

Bi
B2

B3

written

+

e4
e5
:

as:

(4.3-9)
Ai :

A2 :

Yn Xn-1 	Xn-2 	Xn-3 Yn-1 Yn-2 	Yn-3 As en

Or, 	 Y = H.0 + E (4.3-10)

where Y and E are the [nxl] output- and error-vectors; H is

the [nx6] input-output matrix;and o is the [6x1] unknown

parameter-vector. Equation (4.3-10) can also be written as:

E = Y - H.0 	 (4.3-11)

If On is the best estimator such that the sum of

squares of the error vector components is minimized, then

the cost function J can be expressed as:

J = %(Y-H•0)T(Y-H.0) 	 (4.3-12)

For a minimum J with respect to 0, it requires that:

-HT(y-ii.o) =0 	 (at 4P.4n)
	

(4.3-13)

60

+ ek 	 (4.3-8)

Solving equation (4.3-13) gives the least squares

estimate of the parameter-vector, 8., as:

On = PnHTY 	 (4.3-14)

where P =(HTH)-i.

If there is an additional set of measurement: xk+1 and

yk+1, the refined best estimator can be written as[R 2 6]

6. 	 + Kn + (Yn +1 -Hn + &n)
	

(4.3-15)

	

where K0+1 = PnlipT(l+Hn+IPnHn-tT)-i
	

(4.3-16)

Pn +I = Pn - Kn +1 Hn + Pn
	

(4.3-17)

Hn+1 = (Xn Xn-1 Xn-2 Yn Yn-1 Yn-

) 	 (4.3-18)

System identification using recursive least squares

method can be initiated with:

either (i) a data block of say, k=10, and computing 810

and Pio

or (ii) an initial estimate for ocs and a P matrix of

large diagonal values.

4.4 TEST INPUT

The test signal used to energize a joint system for

identification process is a 12-bit maximal length pseudo-

random binary sequence (PRBS). It can be easily generated

using a digital computer and is reproducible. Its bandwidth

can be adjusted so that all frequency modes of the system

under test can be excited.

The principle of generation of the test signal has been

described elsewherelit16.1/181. In the case of a 12-bit PRBS,

the generation scheme is illustrated in Figure (4.4-1). The

input to the shift register is from a clock generator with

frequency fc. The PRBS is obtained from the 12th stage

61

BIT BIT
1

COMPARATOR
BIT BIT 	 BIT
9 	 10 	 11

BIT
5

BIT
4

BIT
8

SHIFT
DRIVE
SIGNAL

FFFOBACK EXCLUSIVE OR

BIT
12

BIT
7

BIT
6

BIT
3

output of the shift register. The actual test signal is

generated by converting the two logical levels of the PRBS

into corresponding voltage levels using a comparator as

shown in Figure (4.4-1).

62

12-BIT SHIFT REGISTER

PR BS

Figure (4.4-1): The Principle of Generating A 12-
Bit Maximal Length PRBS Test Signal

A discussion of the nature of the test signal will be

followed. For the sake of convenience, the two states of the

binary sequence are assigned values +1 and -1 . A typical

section of the PRBS test signal is shown in Figure (4.4-2).

prum

• 1

TIME

Figure (4.4-2): A Typical Section of A PRBS

The corresponding autocorrelation function, ox(T), of

the PRBS signal is shown in Figure (4.4-3) and is given

byt R 1 5

	

-1 	 L+1
Ox(T) = 	 +'--- 	 g(T-kLTc)

	
(4,4-1)

	

L 	 lacs=-00

where L = 2N-1.

N = number of bit in the shift register. (=12)

Tc =1/fc = period of clock driving the shift register

g(T) = pr(T+Tc) - 2pr (T) + pr(T-Tc)

where pr (T) is a unit ramp function.

Figure (4.4-3):(4.4-3): Auto-Correlation Function
of A Maximal Length N-Bit PRBS

The function consists of an infinite series of triangular

spikes centered at T=kLTc for

The power-density spectrum, Ox (f), of the PRBS can be

found from the Fourier Transform of the periodic auto-

correlation function, ox(T), in equation (4.4-1). The

transform relation for the discrete spectra, with

fundamental frequency 1/LTc Hz, is given by(R151:

1 	 L+lisin(rn/L)1
Ox (f) = —Uo (f) + Uo (f- —) (4.4-2)

L2 	 r" L2L (rn/L) 	 LTc

where Uo(f-r/LTc) is a unit impulse function centered at

f=r/LTc.

The shape of the power-density spectrum Ox (f) is a

discrete sinc2 function and is shown in Figure (4.4-4). It

• should be noted that because of the very small dc component

in the PRBS signal, the power density spectrum •at f=0 is

very small and has value 1/L2. The bandwidth of the signal

is equal to the driving clock frequency, 1/Tc or fc. It can

be varied by simply varying the driving clock frequency.

63

64

2N_ 1)
Figure (4.4-4): Power-Density Spectrum

of A Maximal Length N-Bit PRBS

However, from equation (4.4-2), the number of line spectra

within the bandwidth of the test signal is constant for a

fixed number of bits of the PRBS and is equal to (2N-1). If

the bandwidth of the signal is increased, the fundamental

frequency of the discrete spectra will also be increased.

4.5 IMPLEMENTATION OF THE IDENTIFICATION PROCESS

The identification process was implemented off-line by

a series of programs written in Fortran-77 language. Details

of the programs can be found in Appendix D. The programs can

be arranged in a series of three main stages. The first

stage is the generation of a 12-bit maximal length PRBS

whose two states are represented by user-specified voltage

levels. In the second stage, the generated PRBS is used as a

test signal to excite a joint system and the resulting

output is sampled and stored. The clock frequency generating

the PRBS is user-specified. In the third stage, the PRBS

data generated and the corresponding output data sampled are

used to estimate the parameters of the discrete model using

the technique discussed in section 4.3. The recursive least

squares method is applied starting with an estimate for the

65-

unknown parameter-vector and a P matrix with large diagonal

values.

During the identification of a joint system, the

equivalent voltage levels and the driving clock frequency of

the PRBS must be carefully selected. When the voltage level

is too small, the dead-space non-linearity cannot be

overcome; where if it is too large, the amplifier becomes

saturated. Also, the clocking frequency for the PRBS must be

high enough to excite all modes of a joint system. But the

higher the clocking frequency is, the larger the fundamental

frequency of the PRBS discrete-spectra will be. When the

signal passes through a low pass system, the power output

decreases as the fundamental frequency of the signal

discrete spectra increases. While most mechanical systems

have low pass characteristics, the output power of a joint

system excited by the PRBS input will be degraded as the

clocking frequency of the PRBS increases. This reduces the

output signal-to-noise ratio and thus lowers the accuracy of

the identified parameters.

Owing to the integrating nature of a dc. motor

subsystem, an excited joint may move out of its limits

during identification and cause damage to the gearings. The

identification process is programmed to terminate itself

whenever the joint limits are likly to be exceeded by the

excited joint.

The shoulder joint and the elbow joint of the TasrobotO

'system have horizontal axes of rotation. To eliminate the

gravitation effect on the parameters, the joint axis was

aligned with the vertical in the respective identification

66

process. The gravitational effect will be discussed in next

chapter.

The three joint systems are assumed to be mutually

independent. Only one joint will be excited during each

identification process. However, the effective inertia of a

joint depends on the configuration of the arm. It is well-

known in feedback control theory that the variation of open-

loop parameters will have little effect on the closed-loop

dynamic response of a system if the loop gain is

sufficiently large. In Figure (4.1-4), provided adequate

loop gain is allowed for, the two feedback loops will reduce

the effect of the varying effective inertia of a joint

caused by changes in arm configuration. It is, therefore,

assumed that variation of joint effective inertia is

negligible for any joint system of the TasrobotO. This

assumption will be checked in next chatper.

Under this assumption, the arm configuration becomes

insignificant in the controller design for the three dc

motor joints. In the identification process, the links are

configured so that the moment of inertia of a joint system

is set approximately to the average value of any likely

values.

4.6 CONVERSION FROM DISCRETE-TIME MODEL TO CONTINUOUS-TIME
MODEL

Since a discrete time model has been adopted, its

transfer function must be translated to a corresponding

continuous-time transfer function to enhance the design of

an analog compensator. The approximated discrete-time

transfer function is in the form:

B1 z-1 +B2 z- 2 +B3 Z- 3
G(z) = 	 (4.6-1)

1-Al z- 1-A2 z- 2 -A3 Z- 3

In order to convert this form into a corresponding

continuous-time transfer function, equation (4.6-1) must

first be converted from z-domain to s-domain by taking

inverse Z-transformation. The resulting form in s-domain is

then factorized into two continuous-time transfer functions

- one for the zero-order-hold data extrapolator representing

the DAC and the other for the dc motor subsystem.

For a third order system with transfer function shown

in equation (4.6-1), there are four possible cases of

conversion depending on the nature of the roots of the

denominator polynomial. These four cases are analysed and

shown in Appendix C.

4.7 RESULTS OF IDENTIFICATION ON THE THREE JOINT SYSTEMS

In applying the recursive least squares method, the

initial estimates for the model parameters are zero and the

diagonal elements of matrix P are set to 100.

For the body-joint system, the equivalent voltage level

and the clock period of the PRBS input test signal were set

to 0.5V and 0.05 seconds respectively. 4095 input/output

measurements were obtained. From these data, the unknown

_parameters of the body-joint discrete-time model were

deduced. The transfer function of the model, GB(z), can be

expressed as:

0.02507851z2+0.03633119z+0.02122747
GB (z) - 	 (4.7-1)

(z-0.9999464)(z-0.0972323)(z-0.3817543)

67

1.8

3.11

3.4

The variations of parameters for the last 500 estimates

is shown in Figure (4.7-1). Little variations can be seen in

the parameters in their estimation process. The final values

of the diagonal elements of the P matrix are in the order of

10-9 to 10-5. Hence, the parameter-vector converges. From

Figure (4.7-1), the percentage variations of the numerator

coefficients are larger than that of the denomiator

coefficients in the discrete-time function. These variations

account for the presence of zeros in the translated

continuous-time transfer function and will be discussed in

next chapter.

68

82

81

CS 	 IA 	 Ii 	 LA 	 II 	 3.• 	 Li 	 4.• 	 4.1 	 SA 	 CS C92
WP M

(a) numerator 	 coefficients

Al

A3
8.1 	 1.8 	 9.1 	 2.1 	 2.1 	 LS 	 4.4 	 C• 	 1.1 	 CO 	 LS 1.2

4114.1.411

A2

(b) denominator 	 coefficients

1.4

1.8

L4

Figure (4.7-1): Variations of Parameters For The Last 500
• Estimates of The Body-joint System

For the shoulder-joint system, the same PRBS test

signal was used as input and 3133 input/output measurements

were obtained. The transfer function, Gs(z), can be

expressed as:

0.08505298z2+0.15495700z+0.08702245
Gs(z) - 	 • 	 (4.7-2).

(z-0.9998622)(z-0.2744630)(z-0.1776742)

• For the elbow-joint system, a slightly modified PRBS

input test signal was used. The equivalent voltage level and

the clock period of the PRBS test signal were set to 0.5V

and 0.02 seconds respectively. The higher frequency PRBS

input enhances a larger collection of data within a shorter

time before the elbow joint is terminated for tendancy to

exceed its limits in the open loop identification process.

1426 input/output measurements were obtained and the

transfer function, GE (z), can be expressed as:

0.12504890z2+0.17420570z+0.05432743
GE(z) - 	 (4.7-3)

(z-0.9990688)(z-0.5215821)(z-0.0080810)

The variations of the parameters for the shoulder- and

the elbow-joint systems are as minimal as that for the body-

joint system. The final values of the diagonal elements of

the P matrix for each case are also in the same order of

magnitudes.

The accuracy of the discrete-time model is checked by

comparing the actual output of the joint system with the

model output as shown in Figures (4.7-2). From these

figures, the variations of the model outputs are same as the

actual outputs but there are significant drifts in the body-

and shoulder-joint cases. Since the employed least squares

method minimizes only the equation error, the output error

has not been emphasised. The relationship between the

equation error, Eeq(Z), and the output error, Eout(z), can

be shown as;

Eou t (z) 	 1

Eeq (Z) 	 1-At z- 1 -A2 Z.. 2 -A3 	 3

where 1-Aiz-l-A2z-2-A3z- is an approximated denominator

polynomial of an identified system. Owing to the existence

of an integrating element in each identified system, its

equation error is also integrated. If the equation error has

69

actual

188 	 288 	 388 481 	 588 	 688 	 780 	 0118 	 988 1880 1188 1253 1388 1480 1508 1688 1788 1888 1988 2881 2108 2258 2388 2488 2588 2688 2708 2580 2980 1188 3180 3208 3388 	 488 	 85.\.6-171 	 3808 398 	 4680

fjf

modelled

SMVLS

(c) ELBOW

-W

-N

- M

POSITION(deg)

40

30

20

10

-20

- 30

-10

POSITION (deg)

30

20

10

(a) 	 BODY

(b) SHOULDER

Figure (4.7-2): The Modelled Outputs And The Actual Outputs
Variations of The Three Joint Systems

a non-zero mean, the output error will accummulate. This

accounts for the drifts in the body- and the shoulder-joint

systems.

A steepest-descent method using the least squares

estimates as the starting point was also used to minimize

the sum of the squares of the output error. However, the

optimum parameter values obtained differ only by about 2%

from the least squares estimates and there was no signifi-

cant improvement in the degree of match.

Each of the discrete-time transfer functions contains a

pole very close to z=1, which is as expected since each

joint system contains an integrating element. Formula (C-7)

and (C-9) shown in Appendix C were used and the correspond-

ing continuous-time transfer functions for the dc motor

subsystem can be found as:

0.141(0.000423s 2 +0.01055s+1)
Gs (s) (4.7-5a)

s(0.02145s+1)(0.05192s+1)

0.493(0.000394s 2 -0.01240s+1)
Gs (s) = (4.7-5b)

s(0.,02893s+1)(0.03867s+1)

0.692(0.000304s 2 -0.00772s+1)
GE (s) = (4.7-5c)

s(0.01038s+1)(0.07682s+1)

where subscripts B, S and E are designated for the body-,

shoulder- and elbow-joint systems respectively. These

translated transfer functions will be analysed in next

chapter.

71

CHAPTER FIVE

MODEL ANALYSIS AND COMPENSATOR DESIGN

5.1 ANALYSIS OF IDENTIFIED MODELS

After the identification of the discrete-time pulse

transfer function, the transfer function is translated into

its corresponding continuous-time form. Each dc motor

subsystem obtained is a third order system having one pole

at s=0 and generally two zeros. The form of the translated

transfer function, Gi(s), from the identification and the

translation processes can be written as:

ki (b2 s2 +1131 s+1)
Gi(s) -

	

	 (5.1-1)
s(sT2+1)(sT4+1)

where lc' represents the velocity constant; b2s2+bls+1

represents the numerator polynomial; and -1/T3 and -1/T4

represent the poles of the continuous-time transfer function

of the dc motor subsystem.

The conversion process in Appendix C shows that the

poles of the translated continuous-time transfer function

depend on the poles of the identified discrete-time transfer

function only. But the zeros of the translated continuous-

time transfer function depend on both the zeros and poles of

the identified discrete-time transfer function in a complex

fashion.

For a system having no zeros, the translated values of

b2 and bi will only vanish when the following conditions are

valid:

72

7 3

(i) Ft = (a3 F2 +az F3) T 	 (5.1-2a)

(ii) (az +a3) Ft = a2 a3 (F2 +F3) T (5.1 -2b)

• Bi +32 +B3

where Ft =

(C2 - 1) (C3 - 1)

Bi C2 2 +Bz Cz +33

F2 =

(C2 - 1) 2 (C2 - C3)

Bt. C3 2 +Bz Ca +B3

F3 =

(C3 -1)2 (C3 -C2)

az = -ln[C2]/T

a3 = -ln[C3]/T

where Bt, B2 and B3 are the identified zeros; Cz and C3 are

the identified poles; and T is the sampling period. Because

of errors in model structure and the finite word length

representation of numbers in digital computers, the

coefficients bz and lot do not normally vanish. While in this

case, the resulting translated coefficients bz and 1)1 are

small, and the original continuous-time transfer function

has no zero, the non-zero values of bz and bt can be

considered as parametric errors introduced in the

identification and the translation processes and will be

neglected.

5.2 EFFECTS OF SATURATION NON-LINEARITY ON STEP RESPONSE

From the previous assumptions and analysis, a joint

system can be schematically represented by the block diagram

shown in Figure (5.2-1).

The symbols used in Figure (5.2-1) are related by the

following equations:

E(t) = r(t) -c(t) 	 (5.2-1)

C(t) COMMAND r (ti:y E(t)
INPUT

APPROXIMATED TRANSFER
FUNCTION OF D.C. MOTOR
SUBSYSTEM G(S)

u (t),

LIMITER

AMPLIFIER GAIN
A

AE(t) 	 for -Q<AE(t)<Q
u(t) =IQ for AE(t)>Q

-Q 	 for A(t)<-Q

C(s) = U(s)G(s)

(5.2-2a)
(5.2-2b)
(5.2-2c)

•(5.2-3)

74

Figure (5.2-1): Block Diagram of A Joint System

Suppose at t=0 and c(t)=0, a step input r(t)=R is

applied. The step response of a joint system can be divided

into two stages. In the first stage, the amplifier is

saturated and the system output is the response of the dc

motor subsystem, G(s), subjected to an input step of Q (or

-Q) volts. In the second stage, the amplifier becomes

unsaturated and the system output is equivalent to the

closed-loop response of the system subjected to the step

input R. If ti is the time when the amplifier becomes

unsaturated, then the step response of a joint system can be

expressed as:

c(t) = L-I1G(s)R/s1 	 for 05t5ti 	 (5.2-4)

where L-I is the inverse Laplace transform operator. For

tiSt, the output time response, c(t), can be obtained by

solving the appropriate differential equations shown in

section 4.1 with initial conditions equal to the end point

conditions of equation (5.2-4).

In the analysis, the step response is assumed to be

over-damped. For under-damped response, the two stages will

be occurring alternatively. It is important to realize that

the end-point boundary conditions of one stage becomes the

initial point boundary conditions of the next stage.

If the gain of the amplifier is large, the transient

response of a step input to a joint system will be dominated

by the step response of the dc motor subsystem, G(s), which

can be expressed in the form:

C(s)
G(s) - 	 = 	 (5.2-5)

U(s) 	 s(sTa+1)(sTo+1)

where Ta, To are poles of the transfer function.

When the amplifier is saturated, the input to the dc

motor subsystem is a step of magnitude Q. The transient

response of a joint system can be expressed as::

kQ
C(s) = 	 (5.2-6)

s2(sTa+1)(sTo+1)

or,
kQTa 2 	 kQTo 2

c(t)=-kQ[Ta+To] + kQt + 	 e-t/Ta 	 -----e-t/Tb 	 (5.2_7)
Ta -To 	 Ta -To

If Ta and To are small compared to the transient period

of the response, the transient output of a joint system,

c(t), can be approximated as:

	

c(t) = kQt 	 (5.2-8)

Q represents the saturation voltage of the amplifier

and is unaltered once the circuit is built, while k is the

velocity constant of the dc motor subsystem and is an

assumed constant. Hence, the transient response of a joint

system can be approximated by a ramp function with slope kQ.

From the analysis of the process of translating

transfer function from discrete-time to continuous-time, it

has been shown that the translated velocity constant of a dc

motor subsystem is subjected to relatively large errors

75

1U 	 -181

-3S8

-181

-GU

-781

-8111

-941

-1811

-11U
4.13133mV

SS 188 me 288 ZSB 381 358 ON 151 9101
(•Smsec)

(d) SHOULDER — -VE STEP

MPLI
ese 	 588 se mse m mste m m

(c) SHOULDER — WE STEP

(',brut)
 uarte
SS 181 851 289 158 3811 351 US OS SU

(e) ELBOW— WE STEP

4.883mV
nee

1818

788

II'

see

11

3118

EIS

(t) ELBOW— -VE STEP

compared with the translated poles. Futhermore, it has also

been shown[R4] that the velocity constant is affected by the

dead-space and the backlash non-linearities of the joint

systems. Equation (5.2-8) offers another approach to obtain

the velocity constant of a dc motor subsystem by measuring

the transient behaviour of an actual step response of a

joint system. Thus, the accuracy of the translated velocity

constant can be investigated.

The actual step responses of the three joint systems

are shown in Figures (5.2-2) and the transient response

characteristics are listed in Table (5.2-1). By measuring

76

-UN

-301

-IU

-588

-780

-SU

-918

-sem

-nee
4.8133mV

(.10msec)

N M M M M M M M M M

(a) BODY — WE STEP

//11913
SS 181 I N 251 5,8 319 358 181 (58 588

6.10 msec)

(b) BODY — -VE STEP

.4•883mV •

NU

III

e4.883mV
1181

Figure (5.2-2): Actual Step Responses of The Three Joint
Systems

77

JOINT

SYSTEM
APPLIED

STEP/ V

LINEAR PORTION

SLOPE 	 V/SEC
PERCENTAGE

OVERSHOOT
FIGURE
SHOWN

BODY
5 2.2 - 0 % 5.2-3a

- 5 - 	2.3 - 0 % 5.2 - 3b

SHOULDER
5 8.0 6.2% 5.2-3c

- 5 - 	8.3 2.4% 5.2-3d

ELBOW
5 11.0 0 °A 5.2-3e

- 5 -12.5 8.2% 5.2-3f

Table (5.2-1): Step Response Characteristics of The Joint
Systems Deduced From Figure (5.2-3)

the slopes of the transient responses and the saturation

voltages of the amplifiers, the velocity constants of the

three joint systems can be found from equation (5.2-8) and

are shown in Table (5.2-2).

JOINT
SYSTEM

MODELLED VELOCITY
CONSTANT • K

MEASURED 	AMPLIFIER
SATURATION 	VOLTAGE

ESTIMATED 	 VELOCITY 	CONSTANT
FROM ACTUAL STEP RESPONSE

+VE - VE from +ve step from-ye step AVERAGE

BODY 0.149 12.00V -12.25V 0.183 0.187 0.185

SHOULDER 0.493 12.30V - 12.50V 0.650 0.665 0.658

ELBOW 0.692 11.75V - 12.80V 0.936 0.976 0.956

Table (5.2-2): Predicted velocity constants of The Three
Joint Systems

Since each joint system is controlled by discrete

signal commands from the host computer, the step response

characteristics of each joint system is of the utmost

important. In order that the transfer functions of each

joint system can represent the step response of the acutal

system more accurately, the velocity constants are replaced

by those deduced from the actual step responses using

equation (5.2-8). The modified transfer functions for the dc

motor subsystems of the three joints are:

0.185
GB (S) = 	 (5.2-9)

s(0.02145s+1)(0.05192s+1)

0.658
Gs (s) = 	 (5.2-10)

s(0.02893s+1)(0.03867s+1)

0.956
GE(s) = 	 (5.2-11)

s(0.01038s+1)(0.07682s+1)

Using these modified transfer functions ,the step

response of each joint system can be simulated. A technique

very similar to analog computer technique was used in

simulating a joint system in digital computer. This

•technique is provided by a commercially available simulation

package - TUTSIM - from Meerman Automation[R31] . The

functional blocks used are shown in Figure (5.2-3).

78

STEP

GENERATOR

2

SUMMER

6 	 7
1 ST ORDER 	 1ST ORDER 	 SIMULATED

OUTPUT
FUNCTION 	 FUNCTION

1 	 1
ST01 , 	 STI1+1

GAIN

A

LIMITER

GAIN

Figure (5.2-3): Functional Blocks of A Simulated Joint
System

The results of the simulated step respOnse for each

joint system are shown in Figure (5.2-4a) to (5.2-4f). The

deduced step response characteristics are listed in Table

(5.2-3).

By comparing the characteristics of the simulated step

responses with those of the acutal responses, the modified

transfer function can be used to predict the behaviour of

the actual systems. The three modified transfer functions

shown in equations (5.2-9) to (5.2-11) are used to

approximate the actual systems and to help'design suitable

compensators for the three joint systems.

- OV
TUTSIN

-5V

, • 	 c.

44 	 TIME
(sec)

79

' TUTBIM

5V

OV

1.0 	 2.0 	 3.0 	 4.0 	 TIME
Ise0

(a) BODY - •VE STEP (b) 	 BODY- -YE STEP

1.0 	 2.0 	 3.0 4.0 THE
(sec)

10 	 2.0 	 3.0 4.0 TIME
(sec)

(c) SHOULDER - •VE STEP Id) SHOULDER - -VE STEP

1.0 	 2.0 	 3.0

le) ELBO W- 'YE STEP

4.0 TIME
(sec)

1.0

(f)

2.0 	 3.0

ELBOW- -YE STEP

4.0 TIME
Ise r.)

Figure (5.2-4): Simulated Step Responses of The Three Joint
Systems

JOINT
SYSTEM

LINEAR 	REGION 	SLOPES 	 V/SEC PERCENTAGE 	OVERSHOOT 	 Vo

«VE STEP - VE 	STEP +VE STEP ,VE STEP

BODY 2.12 - 	2.17 1.0 	% 1.0 	 %

SHOULDER 7.60 - 	8.50 4.8 	% 6.8
	 %

ELBOW 11.09 -11.09 7.2 	% 7.6 	 %

Table (5.2-3): Step Response Characteristics of The
Simulated Joint Systems

80

5.3 EFFECTS OF DISTURBANCE TORQUE

During the identification process and the step response

analysis, gravitational disturbance had been eliminated by

aligning the joint axis with the vertical. However, in

practice, rotating axes for shoulder and elbow joints are

horizontal. The weight of the link and its neighbouring

links, plus the load carried, impose a torque onto the

joint.

This torque is time-varying in nature. It varies with

the configuration of the arm as well as the load carried.

The effect of this disturbance torque on a joint system can

be seen in Figure (4.1-4). It can also be represented by an

equivalent voltage, Vd, applied at the input of the motor

subsystem as shown in Figure (5.3-1).

EQUIVALENT
DISTURBANCE
VOLTAGE

LIMITER 	 vd
AMPLIFIER 	 I 	 APPROXIMATED D.C.MOTOR
GAIN 	 U 	 I 	 SUMSTEMTRANgERFUW.TMN

COMMAND
SIGNAL

Vi

V2

A

G(S)

OUTPUT

• 	 Figure (5.3-1): Block Diagram of A Joint System With
Disturbances

From Figure (5.3-1), it can be seen that the

disturbance will increase the steady state error in a step

response since there must exist an error voltage to

compensate for the disturbance,voltage, Vd. The disturbance

also affects the shape of the transient response of a step .

input as it alters the actual voltage input to the dc motor

transfer function, G(s). The latter effect enables the value

(x5msec)
181111.1

288 258 388 358 410 	 458 185 	 -

4.883mV

tell

Sal

688

414

(4 =4)

IOU
488 450 588

4.883mV

1885

8118

688

458

258

-255

-188

-145

-1551

lb) SHOULDER — - VE STEP

1.4.883mV

1158

all

651

4811

(.5alse0
1611M

M M M M M M
-285

-485

-815

-11118

of Vd to be estimated by comparing the transient responses

of a joint system with and without the disturbance effects.

The responses without the disturbance had been shown in

Figures (5.2-2a) to (5.2-2f) and in Table (5.2-1). The

responses with disturbance effects were found by setting the

shoulder and elbow to operate in normal positions, i.e. with

horizontal axes of rotation. The step response of the joints

are shown in Figures (5.3-2a) to (5.3-2d). It can be seen

81

(0) SHOULDER— WE STEP

) ELBOW 	 WE STEP 	 M ELB W 	 WE STEP

Figure (5.3-2): Actual Step Responses of The Shoulder And
The Elbow Joint Systems In Normal Positions

from Figures (5.3-2) that the transient slopes are also

constant in the responses with disturbance effects. This

suggests that the time-varying effect of the disturbance

torque caused by changes of arm configuration is small and

can be neglected. Vd can, therefore, be approximated by a

constant. By measuring the transient slopes and by using

equation (5.2-8), the effective values of the input step

applied to the dc motor subsystem can be evaluated. Vd for

0v
	 TUTSIM

-5V

14 	 24 	 3.0 	 4.0 	 TIM
(Se') .

each joint can be calculated from the difference between the

effective step input and the saturation voltage of the

amplifier. The results are listed in Table (5.3-1).

JOINT
SYSTEM

STEP
APPLIED/V

SLOPE DEDUCED
V /SEC

ESTIMATED 	Vd
V

FIGURE
SHOWN

SHOULDER
+5 6.96 - 1. 7 3 5.3-2a

.-5 -10.19 - 2. 98 5.3 - 2 b

ELBOW
.5 11.11 - 0. 34 5.3 - 2c

-5 -14.30 - 2.26 5.3-2d

Table (5.3-1): Results of Step Responses Under Disturbances
For The Shoulder And The Elbow Joints

Simulation results with disturbance effects are shown

in Figure (5.3-3a) to (5.3-3d). The responses agree to the

actual responses, and the slopes predicted are accurate to

within 8%.

82

01/
	 TUTSIN

1.0
	

2.0
	

3.0
	

"

	 TIM
	

1.0 	 2.0
	

"
	 TIME

•(a) SHOULDER — •VE STEP . 	 b 	 SHOULDER— -VE STEP

Cc) ELBOW— •VE STEP 	 _ 	 d 1 ELBOW— -VE STEP

Figure (5.3-3): Simulated Step Responses of The Shoulder And
Elbow Joint Systems With Disturbances

G(S) V

AMPLIFIER GAIN

A

The steady state error, Et (in degree), due to the

effects of the disturbance torque (or the equivalent

disturbance voltage, Vd, is illustrated in Figure (5.3-4)

and can be expressed.as:-

Vd

AKb

(5.3-1)

where Kb is the position transducer constant in v/deg.

Hence, the steady state error, El, can be reduced by

increasing the a mplifier gain A.

APPROXIMATED D.C.MOTOR
SUBSYSTEM TRANSFER FUNCTION

83

	 STEADY STATE
‘..ERROR, E 2

Figure (5.3-4): Block Diagram of A Joint System Due Only To
The Effects of Disturbance At Steady State

However, the actual steady state error depends on the

sophistication of the mechanical structure of a joint, such

as the amount of backlash in the gearings and the rigidity

of the arm structure. As with the TasrobotO arm which

mechanical structure has not been emphasized, the error

tolerance is selected to be about 1 degree. To reduce the

effect of the disturbance torque on the steady state error

to achieve this error tolerance, the minimum amplifier gains

required for the shoulder and the elbow joints can be

calculated from equation (5.3-1) as 13 and 10 respectively.

84

5.4 EFFECTS OF DEAD-SPACE NON-LINEARITY

The dead-space non-linearity is caused by static

friction in a joint. The parameters for this non-linearity

model can be estimated by direct measurement.

As static friction in a joint is not constant, a

symmetrical dead-space characteristics is assumed and the

maximum magnitude of the dead-space voltage is measured and

adopted as the model parameter. If D is the maximum

magnitude of dead-space voltage measured, the steady state

error, E2 (in degree), due to the dead-space voltage D can

be found as:

E2 	 (5.4-1)
AKb

Equation (5.4-1) is similar to equation (5.3-1) and the

error due to dead-space non-linearity can be reduced by

increasing the amplifier gain A. For an error tolerance of 1

degree, the minimum amplifier gain required to reduce dead-

space non-linearity effect on the steady state error can be

found using equation (5.4-1) and is shown in Table (5.4-1).

JOINT
SYSTEM

D MEASURED
'
DEAD SPACE
VOLTAGE 	(V)

TOTAL FEEDBACK
VOLTAGE 	(V)

TOTAL 	RANGE
OF MOTION 	(°)

FEEDBACK
CONSTANT(V/ '4

MINIMUM
AMPLIFIER GAIN
REQUIRED

BODY 4 . 6 20 270 0. 07274 62

SHOULDER 8 . 0 20 90 0. 	22222 18

ELBOW 8.0 20 90 0. 	22222 18

Table (5.4-1):_The Measured Dead-Space Voltages, Feedback
Constants And Minimum Gains of The Three
Joint Systems For An Error Tolerence of One
Degree

5.5 DESIGN OF CONTROLLERS

Because of limited accuracy of measurements, variations

of disturbance torque and variations of system parameters,

the steady state error tolerances for the joints may not be

achieved if the minimum required amplifier gains are used.

Also, the total maximum steady state error is the sum of the

error due to the disturbance torque and the error due to the

dead-space non-linearity. To ensure the steady state error

to be within the error tolerance, amplifier gain larger than

the minimum required will be used. Table (5.5-1) shows the

amplifier gain used for each joint and their resulting

maximum steady state errors.

JOINT
SYSTEM

AMPLIFIER 	GAIN
USED

ERROR DUE TO
DEAD SPACE , E2

ERROR 	DUE TO

DISTURBANCE,Ei
TOTAL MAXIMUM ERROR

El * E 2

BODY 124 0.50 ° 00 0. 5 0 °

SHOULDER 70 0.51 	° 0.19° 0.700

ELBOW 54 0.67 ° 0.19° 0. 86 °

Table (5.5-1): Steady State Errors Due To Dead-Space Non-
Linearity And Disturbances For The Three
Joint Systems

After selecting the amplifier gains to ensure that the

open-loop gains for the systems are adequate for accuracy,

it will often be found that the system transient performance

is not satisfactory without modification. In order for the

system to meet the requirements of stability and accuracy,

certain types of compensator must be added to the system.

In the compensator design, since each joint system

recieves discrete signal commands from the host computer,

the step response characteristics of the joint system will

mainly be concerned. The compensator required for each joint

system will base on stability and step response of the

85

so

-60

co
-120

RIASE(deg) 	 GAIN(dB)

-240
-40

-300

-80
360

so

40

GA1N(dB)

-40

-80

-60

-120

PHASE (deg)

-240

-300

360

0.1 	 1.0 	 100

FREQUENCY (rod /sec) -Z

01 	 1.0 	 10.0

FRENQUENCY (radlsec)

system. Moreover, the transient behaviour of the step

response of each joint system will also be concerned to give

short and smooth transient and low percentage overshoot.

Because of the presence of non-linearities in the joint

systems, classical linear feedback control theories cannot

be used directly. However, using those classical linear

theories as guidelines and basing on the simulated step

response of each compensated system, suitable compensator

can be designed.

The bode plot of each joint system is shown in Figure

(5.5-1). From these plots, the phase margin and the gain

margain for each joint system can be estimated and are shown

in Table (5.5-2). The bode plot of the 'shoulder joint shows

86

la I BODY
	

(b). M O M

-60

-120

PHASE(deg)

-240

-300

360

80

GAIN (dB)

-40

-80

0.1 	 1.0 	 10.0

FREQUENCY (rod /sec

w mow ,

Figure (5.5-1): Bode Plots of The Uncompensated Joint
Systems

87

JOINT
SYSTEM

PHASE 	MARGIN GAIN MARGIN
STABILITY SHOWN
IN BODE PLOT

FIGURE
SHOWN

BODY 19 	° 6 	 d B STABLE 5.5 	- 	1 	a

SHOULDER / / UNSTABLE 5.5 	- 	1 	b

• ELBOW 14 	° 5 	 d B STABLE 5.5 	- 	1 	c

Table (5.5-2): Phase And Gain Margins of The Three
Uncompensated Joint Systems

that the shoulder joint is unstable. Although the body and

'elbow systems appear to be stable from the plots, their low

phase- and gain-margins indicate relatively low degree of

stability.

Using the simulation technique discussed before,

simulated step responses of the three joint system without

compensators are shown in Figures (5.5-2) to (5.5-4). From

these figures, the step response characteristics of each

joint system can be estimated and are shown in Table (5.5-

3). The simulated elbow joint system is unstable because the

velocity and acceleration, as shown in Figure (5.5-4b), are

in constant amplitude oscillations. The simulated shoulder

joint system is stable. Although these might be caused by

the effect of saturation non-linearity and truncation errors

during the simulation process, these figures reflect

critical stability of the two systems.

All joint systems have time-varying moment of inertias.

To reduce the effects of these open-loop time-varying

parameters on the dynamic response of the closed-loop

systems, phase-lag series compensators were designed to

allow sufficient gain- and phase- margins. The time-varying "

effects of the parameters on the responses of the

compensated systems will be investigated in next section.

-SOVISECL TIME
(seo

SV/SEC„
SOWSEC'

TUTSIN

VEL

88

0

-20\45(
•i 	 c 2

TUTSIN

TIME
Neo

2.0
jo 	 4141

0

•
-30V/SEC

1.0 	 20 	 3.0 	 4.0 	 TIME 	 -150V/SEC
Isec)

TUTSIM

' ACC.

30V/SEC 	
150vrsEci

1,0

TUTSIM

TUTSIM _

1.0 	 2.0 	 3.0 	 40 	 TIME
Isecl

(al 	 POSITION Ibl VELOCITY 8 ACCELERATION

Figure (5.5-2): Simulated Step Response of The Uncompensated
Body Joint System

n 	 u 	 443 	 TIME
tsec)

(co 	 POSITION

Figure (5.5-3):

20V/SEC,
150V/SEC̀

3.0 	 4.0
	

TIME
(seo

01 VELOCITY & ACCELERATION

Simulated Step Response of The Uncompensated
Shoulder Joint System

W 	 POSI11024

Figure (5.5-4): Simulated Step Response of The Uncompensated
•Elbow Joint System

11:11 	 VELOCITY L ACCELERATION

01 	 1.0 	 10.0

FREQUEN-C-1,--1-cag I se c

0.1 10.0

FREQUENCY

80

-60

-120

PHASEldeg) 	 GAIN(dB)

-240
-40

-300

-BO

360

80

-60

-120

FHASEIdeg)

-240

-300

gam

-360

-40

-80

OIL gain (ac. mato;l'\
OIL gain (dc.matorj‘.

-60

-120

PHASEIdeg)

-240

-300

-360

80

40

GAIN(dB)

-40

phase
—

0.1 	 10.0 	 .
FREQUENCY (rod

OIL gain Id. c. motor

-80

89

JOINT
SYSTEM

STEP INPUT
APPLIED
V

MAXIMUM
ACCELERAT'N
°/SEC2

MAXIMUM
RETARDAT'N
0/SEC2

MAXIMUM
VELOCITY
°/SEC

PERCENTAGE
OVERSHOOT
°A

RISE-TIME
SEC

TRANSIENT
OSCILLATION TIME

SEC

FIGURE
SHOWN

BODY +5. 311 311 30 1.1 2.4 -0.5 5.5-2a- b

SHOULDER .5 573 >675 32 3.8 0.8 >4 . 2 5.5-3a- b

ELBOW +5 >675 >675 49 5-8 0.5 >4 . 5 5.5-4a- b

Table (5.5-3): Step Response Characteristics From The
Simulation of The Three Uncompensated Joint
Systems

The bode plots of the compensated joint systems are

shown in Figures (5.5-5a) to (5.5-5c). The compensator pole

to) 	 BODY 	 -
	

lb) SHOULDER

Cc) ELBOW

Figure (5.5-5): Bode Plots of The Compensated Joint Systems

and zero designed for each joint system and the resulting

phase- and gain-margins are shown in Table (5.5-4). The

simulated step responses of the compensated joint systems

are shown in Figures (5.5-6) to (5.5-8). The step response

characteristics deduced are shown in Table (5.5-5).

(3) VELOCITY & ACCELERATION a 	 POSITION

4.0 	 TIME
(sec)

1.0 	 2.0 	 3.0

(a) 	 POSITION

TUTSIN

3omu
isova0

JOINT
SYSTEM

COMPENSATON TRANSFER
FUNCTION, 	G 	 (S)

PHASE
MARGIN

GAIN
MARGIN

STABILITY FIGURE
SHOWN "

BODY (0.47 5 4.1) 	I 	(S . 1) 44 ° 12 dB STABLE 5.5- 4 a

SHOULDER (S + 1) /(2.2 S +1) 22 ° 5 d B STABLE 5.5- 4 b

ELBOW (0.47 S +1) 	/(1.5 S • 1) 300 15 d B STABLE 5.5- 4c

Table (5.5-4): Compensators Designed And The Corresponding
Phase And Gain Margins of The Three Joint
Systems

5V

OV

A 	 I 	 I

(sec)

VEL

co TIME
(sec)

5V/SEC
50V/SECL

• 5V/SEC

Figure (5.5-6): Simulated Step Response of The Compensated
Body Joint System

90

Figure (5.5-7): Simulated Step Response of The Compensated
Shoulder Joint System

- Mat.
10 	 20 	 M 	 4 0 	 TIME 	 -150MMEU 	 1.0 	 M 	 M 	 411

lied
IC) 	 POSITION 	 (dl VELOCITY t ACCELERATION

Figure (5.5-8): Simulated Step Response of The Compensated
Elbow Joint System

TIME
lied

TUTSIM

, 1.0 	 2.0 	 3.0 	 4.0

110 VELOCITY 8, ACCELERATION

TIME
(set)

YE

TUTSIM TUISIM

SS M M M M 311 74 UM GB UM

Smsecl

b) 	 SHOULDER

DMZ

21111 	 SU 288 355 	 411 458 SU

(lOmsec)
II 	 1111 	 151

BBB

788

3111

SU

388

21111

1/03

91

JOINT
SYSTEM

STEP
INPUT
V

MAXIMUM
ACCELERATION
°/SEC2

MAXIMUM
RETARDATIM
°ISEC2

MAXIMUM
VELOCITY
°/SEC

PERCENTAGE
OVERSHOOT

°A

RISE-TIME
SEC

TRANSIENT
OSC. TIME
SEC

FIGURE
SHOWN

BODY .5 155 237 28.6 2 . 8 2.9 1.0 5.5-6-b

SHOULDER + 	5 180 319 21. 8 3 . 9 1.3 2- 	1 5.5-7a-b

ELBOW + 5 155 311 2 7. 8 9 . 7 1.0 3.1 5 .5-8a- b

Table (5.5-5): Step Response Characteristics From Simulated
Joint System With Designed Controllers

When the designed compensators were implemented on the

joint systems, the actual system responses are shown in

Figures (5.5-9a) to (5.5-9c). From these figures, the step

response characteristics are estimated and shown in Table

(5.5-6).

x4.1383mV 	 x4.883mV

1180 	 11110

18811 	 1885

181 	 III

813 	 B811

788 	 780

688 	 6131

S1111 	 SU

4811 	 418

381 	 388

281

111 	 118

NMI
55 188

	
2118 255 	 2111 351 UP 011

(x1Ornsec)

(a) 	 BODY

c 	 ELBOW

Figure (5.5-9): Actual Step Responses of The Three
Compensated Joint Systems

SO 	 US 158 288 355 3115 	 350 see 450 -110

-358

-455

-581

-sae

-715

-no

-118

-1511

WOmsed

55511514
-155

-zee

-3U

-488

-50S

-685

-785

7.681

-980

-II=

	

-1158 	 -1188

	

a4.1383mV 	 • 4.883mV

5s5 M50

185 155 251 255 3118 751 455 455 585M012

92

JOINT
SYSTEM

PERCENT AGE
OVERSHOOT

% SEC
RISE - TIME

TRANSIENT
OSCILLATION TIME

SEC

FIGURE
SHOWN

BODY -1.0 2. 5 1 . 5 5 . 5 - 9 a

SHOULDER 3.4 1.3 0.4 5 . 5 -9 b

ELBOW 1.7 2.0 1.3 5.5 	.9 c

Table (5.5-6): Actual Step Response Characteristics of The
Three Compensated Joint Systems

The characteristics values and shapes of the actual

responses and the simulated responses match, yet overall

actual responses exhibit slightly less overshoots, less

transient time, and faster response.

The design of compensators were based on positive step

responses. However, the actual systems are also stable in

negative step responses except that the responses are a

little different from the positive step responses due to the

different disturbance effects. The negative step responses

for the actual joint systems are shown in Figure (5.5-10a)

to (5.5-10c).

M 	 N W
	

(b) 	 SHOULDER

(alOmsec)

MU
SI H O Mt U M M M M M M

(c) 	 EL M,/

Figure (5.5-10): Actual Step Responses of The Three
Compensated Joint Systems With Negative
Step

.-

-255

-401

-580

-665

5.6 EFFECTS OF VARIATION OF EFFECTIVE INERTIA

It has been assumed that variations of joint effective

inertia has negligible effect on the dynamic response of the

closed-loop system. To check this assumption, the discrete-

time pulse transfer functions of the joint systems having

links configured to give the maximum and the minimum moment

of inertias were identified using the same technique

discussed in the chapter.

For the body-joint system, the identified pulse

transfer function were found to be:-

0.0419657z2+0.03937502z+0.0131784
GBmin(Z)- 	 (5.6-1)

z2-1.387503z2+0.3520289z+0.03551182

0.01868824z2+0.05040691z+0.03426383
Gemax(z)=.

(5.6-2)

z2 -1.458098z2 +0. 5169129z-0.05875563

where the subscripts max and min designate the pulse

transfer functions corresponding to the maximum and the

minimum moment of inertia respectively.

The designed controller for the body joint was

converted into discrete-time using bilinear-transformat-

i0n[222]. The step responses in discrete-time were then

simulated and are shown in Figure (5.6-1). Similarly, the

step responses for the shoulder joint under maximum and

minimum moment of inertias were simulated as shown in Figure

(5.6-2). As the variations of effective inertia of the elbow

joint system is only due to the position change of the small

and light weight wrist, the amount of variation can be

neglected.

93

1 	 2 	 -3 	 4 	 5 	 6 	 7 SECONDS

INERTIA
20

MIN INERTIA

0

94

From Figures (5.6-1) and (5.6-2), it can be seen that

although the body-joint and the shoulder-joint are subjected

to quite large variations of moment of inertias, the effects

on closed-loop performance of the joint systems have been

significantly reduced by the designed compensators which

give large phase- and gian-margins to the joint systems.

ANGULAR DISPLACEMENT

MAX INERTIA

20
MIN. INERTIA

10

2 	 3 4 	 5 	 6 	 7 SECONDS

Figure (5.6-1): Step Response of The Body Joint System Under
Maximum and Minimum Moment of Inertias

ANGULAR DISPLACEMENT

Figure (5.6-2): Step Response of The Shoulder Joint System
Under Maximum and Minimum Moment of Inertias

CHAPTER SIX

TRAJECTORY PLANNING

In most robot applications, it is necessary for a

manipulator to follow a planned path; in some cases, the

manipulator is required to follow the shape of an object on

which it is working, in other cases, it has to avoid

obstacles during the execution of a task. In order to define

the path for a manipulator such that the robot will

accgrately follow the shape of an object or will safely

avoid collisions with obstacles, critical points along the

desired path have to be specified by the robot operator.

Positions and orientations of an attached working tool

of a robot arm at any point in space can be specified in two

different ways. Either, one can specify directly such

positions and orientations of the working tool in a

coordinate system in which the robot users can visualize and•

measure, such as the Cartesian coordinates system. Or, one

can specify the respective joint positions at that instant

such that particular positions and orientations of the

working tool can be produced by a combination of the joint

positions.

• Following the ways the critical points are specified,

there are two methods of planning a trajectory. The first

method is to plan the trajectory in space coordinates so

that the working tool can move along a path containing all

the specified point coordinates. The second method is to

95

plan a trajectory for each joint so that each joint will

arrive at its specified corresponding joint positions

simultaneously.

The first method result's in Cartesian coordinate motion

which is a natural consequence of Cartesian coordinates. The

manipulator will move along straight lines and rotate about

fixed axes in space. This method, however, has a number of

disadvantages. It has the burden of converting between

Cartesian and joint coordinates during each sampling period.

This is necessary because to calculate the errors in the

Cartesian path, current joint positions must be converted to

their equivalent Cartesian coordinates using Jacobian

transformations[R 1] (direct kinematics problem). To

determine the equivalent errors in joint coordinates, one

has to use the inverse Jacobian transformations which

converts the current Cartesian coordinates into their

equivalent joint positions (inverse kinematics problem).

Then, necessary torques for the joints are calculated using

the robot's dynamic equations. The complexity of these

calculations severely limits the sampling frequency of the

robot controller. Also, it is impossible to predict whether

a trajectory segment for Cartesian motion will involve

excessive joint rates of change before it is executed. It is

difficult to estimate motion times and accelerations as

, Cartesian velocities and accelerations are related to the

limiting joint velocities and accelerations in a complicated

manner, and depend on the configurations of the manipulator.

The second method, planning the trajectory in joint

coordinates, results in joint coordinate motion. This type

96

of motion is comparatively less expensive both in

computation time and effort since complicated

transformations are not required during motion execution.

Joint accelerations and velocities can be checked against

their limits before the motion is executed. A disadvantage

of this method is that the resulting Cartesian motion is not

defined and straight line path characteristics can no longer

be attained. Nevertheless, deviations from a desired

Cartesian path can be reduced by specifying more points.

Because of the efficient algorithm, trajectories can be

planned and implemented in real time. This second method is

used to implement the actual motion of the TasrobotO system.

Although the planned trajectory is based on specified

joint coordinates, specified points can be input by an

operator in Cartesian coordinates, which will then be

converted into functionally equivalent path in joint

coordinates using inverse Jacobian transformation. However,

a more direct method is to input the specified points in

joint coordinates. This method of specifying data is a

natural consequence to robots requiring direct teaching, as

in the case of the TasrobotO system. During the teaching,

process, the robot computer will record every joint position

specified by the operator.

6.1 PATH APPROXIMATION

In order to approximate a Cartesian path by functions

in joint variables, m approximation functions are required

for an m-joint manipulator - one for each joint. The

approximation function for a particular joint must pass

97

through all the specified joint coordinates. Also, the

function must be continuous in position, velocity and

acceleration in order to remain within the physical

limitations of the robot. These conditions can be met by

deriving a single polynomial which passes through all the

specified points; but such a function will be complex and

difficult to fit. In addition, it is likely to contain

•extrema between specified points. These extrema would have

to be checked against the limits of the robot.

A better approach is to define a separate polynomial

joining two consecutive specified points for each joint,

with the constraint that specified corresponding joint

coordinates must be reached at the same instant of time.

Therefore the corresponding Cartesian path will, at least,

pass through all the specified coordinates. This method of

connecting data points with smooth curves is widely used in

the field of computer graphics. These curves, known as

spline functions, have been thoroughly studied and

investigated and found to provide the shortest path which

satisfies the continuity constraints[R 6].

Terms, which are frequently used during the derivations

and disscussions of the method are defined as follows:-

Point - a joint coordinate data specified by operator.

Goal point - point specified by operator at which the arm
must be temporarily stopped, for example, to
open or close the grippers.

Intermdeiate point - critical point in between goal
points.This point must be reached

• during the motion.

Segment - a path joining two consecutive points.

End segment - a path joining one intermediate point and a
• goal point.

98

Intermediate segment - a segment joining two consecutive
intermediate points.

Section - a path joining two goal point possibly passing
through a series of intermediate points.

In general, the motion of the robot may consist of

several sections. Each section must contain at least two

points, i.e. the start and the end points of a section. For

a section consisting of n points, where n 	 2, there are (n-

1) segments and (n-2) intermediate points.

For a section with n points, the following notations

are used:-

Xi - starting position of a joint in a section.

Xk - intermediate kth position of a joint within a section.

Xn - end position of a joint in a section.

ak+1 - parametric variable with value denoting the time
interval taken for a joint to go from position Xk to
position Xk + 1 .

x(a) - position of a joint as a function of a, where
0 5 a 5 akfl.

X'k - velocity of a joint at position Xk.

x' (a) - velocity of a joint as a function of a, where
0 5 a 5 akfl .

X"k - acceleration of a joint at position Xk.

x" (a) - acceleration of a joint as a function of
where 0 5 a 5 ak+1 .

6.2 SPLINE FUNCTION FOR EACH SEGMENT

•Cubic splines were used to join all the intermediate

points. For the end segments, there is an additional

requirement that the velocities and the accelerations at the

end points of a section must be zero. Thus, a fourth-order

polynomials are required for the end segments.

99

The proposed method of fitting spline functions to the

specified points requires at least five points to define a

section, two goal points and three intermediate points. For

cases where only three or four points are specified for a

section, additional points are inserted to satisfy this

requirement. The generation of the additional points are

included in the designed software which will be discussed in

next chapter. However, in some applications, the robot may

only be required to go from one point to the other point,

such as in pick-and-place operation in a clear environment.

Breaking the two specified points into five or more points

in order to satisfy the requirement is unnecessary and leads

to slow motion. Therefore, a two point section is also

included. For a section with two points, a fifth-order

polynomial is used to approximate a two-point section to

satisfy the six boundary conditions: two positions specified

by operator, zero velocities and accelerations at the two

end points.

For the sake of simplicity, the trajectory planning

method for a single-joint manipulator is first considered.

The method extended to a multi-jointed arm and will be

described later in this section.

(a) Cubic Splines For Intermediate Segments

The equation of a cubic spline between two intermediate

points Xk and Xk+1, where 2 5 k 5 n-2, of an n-point

trajectory, where n 	 5, consisting of (n-2) spline

segments, may be written for a single joint as :

x(a) = B1 + B2a + B2a + B4a3 	 (6.2a-1)

The boundary conditions for this segment are :

100

x(0) = Xk

x'(0) = X'k
(6.2a-2)

x(ak+1) = Xk+1

x1(ak*I) = X'k

Solving for B's and expressing in matrix form gives:

101

	

1 	 0 	 0 	 0

	

0 	 0 	 1 	 0

	

-3 	 ' 3 	 -2 	 -1

ak+12 	 ak+12 	 ak+1 	 ak+1

	

2 	 -2 	 1 	 1

ak+1 3 	 ak+1 2 	 ak+1 2 	 ak+1 2

B2

B4

Xk

Xk+1

Xlk

X k 4. 1

(6.2a-3)

In order to calculate the cubic spline coefficients,

ak+1, X'k+1 and Xlk+1 must be determined. The value of ak+1

is governed by the velocity and acceleration constraints of

the joint. For a system with multi-degree of freedom, the

value of ak+1 must be the same for every joint in order for

the tool-tip to reach the specified position in space. The

value of akfl also depends on the velocity and acceleration

constraints of other joints. Its value must be chosen so

that the maximum velocity and acceleration of each joint in

each segment is within the physical limit of that joint.

However, the maximum velocity and acceleration of a joint in

a segment can only be determined after the spline function

has been established for that joint. Therefore, the value of

ak+1 must first be expressed in some unit of time to be

determined' afterward. The value of ak+1 is made equal to the

norm of (Xk- Xk+1) as :

ak+1 = [I (Xk+ -Xk)2 l 4 	 (6.2a-4)

where the summation is taken over all the joints.

The value of XIk and X'k+1 can be determined by the

acceleration continuity constraint at the intermediate

points. For two consecutive segments joining three

consecutive intermediate points Xk, Xk+1 and Xk+2, the

• acceleration at the end of one segment must be equal to the

acceleration at the beginning of the next segment.

For segment joining Xk and Xk+1,, the acceleration at

the end point of the segment can be written as :

1 6 (Xk -Xk +I)
• x"(ak+i) = •+ 2X'k + 4X'k+1 	 (6.2a-5)

ak+1 	 ak+1

Similarly, for the segment joining Xk+1 and Xk+2, the

acceleration at the beginning of the segment can be written

as :

x"(0) =
1 	 30Ck+2 -)Ck+1)

ak+2 	 ak+2

2X'k+1 - X'k+2 1

	

(6.2a-6)

Equating equations (6.2a-5) and (6.2a-6), and rearranging

terms gives :

ak+2X'k + 2(ak+1+ak+2)X'k+1 + ak+1X"k+2

3 	 '
	 [ak+12(Xk+2-Xk+1) + ak+22(Xk+I-Xk)] (6.2a-7)
ak+lak+2

Expressing equation (6.2a-7) 	for all intermediate

segments in matrix form yields :

a4 2(a3+a4) 	 a3 	 0 	0 	... 0 0 0-

0 an 	'2(a4+an,) 	 a4 	0 	.. .0 	0 0 X'3

2(an-3+an-4) 	 an-3 X'n-2

an-1 	 2(an-2+an-1) an-2 X'n-1_

102

a3 2 (X4 —X3) 	 a4 2 (X3 —X2)1

3

C5 U4

3

3

a4 a3

103

(6.2a-8) [a42 (X5 —X4) 	 a5 2 (X4 —X3)1

an-lan-2

Equation (6.2a-8) represents a system of (n-5)

algebraic equations with (n-3) unknowns. In order to obtain

a solution to equation (6.2a-8), it is necessary to state

•the boundary conditions at the end points of the cubic

spline functions. These end point conditions are provided by

the two end segments and will be derived in the following

subsections.

(b) Fourth-order Spline For The Beginning Awl End
Segments

For the first and last segments of the trajectory,

additional constraints of zero velocity and zero

acceleration are required at the end points (goal points),

i.e.

X'l = X"I = X'n = X"n = 0 	 (6.2b-1)

This requires a fourth-order spline segment of the

form:

x(a) = B1 + B2a + B3a2 + B4a3 + B5a4 	 (6.2b-2)

For the first segment, the boundary conditions are:

x(0) = Xi

x(t2) = X2

X1(0) = 0 	 (6.2b-3)

x'(t2) = X'2

X"(0) = 0

[an - 2 2 (Xn - 1 —Xn -2) 	 an - 1 2 (Xn - 2 —Xn - 3)1

Solving for B's in the first segment, gives:

Bi = Xi (6.2b-4)

132 = 0 (6.2b-5)

B3 = 0 (6.2b-6)

4 1
= - (6.2h-7) -XI)
az 3 a22

3 1
= ---(X1 -X2) •+ (6.2b-8)
az4 a23 	 .

The acceleration at the end point of the first segment

may be written as :

12 	 6
x"(a2) = ---(X1 -X2) + ---X'2

	
(6.2b -9)

a22 	 a2

The initial acceleration of the second segment can be

written as :

x"(0) =
2 3 (X3 -X2)

X3 [

	

a3
	 2X'2 - X13

From the acceleration continuity constraint, the

acceleration at the end point of the first segment must

equal to the acceleration at the beginning of the second

segment, and hence:

(2a2+3a2)X12 + az X 3

3
[a22(X3-X2) 	+ 2a32(X2-X1)] 	 (6.2b-11)

a2a3

Similarly, for the last segment, the boundary

conditions are:

x(0) = Xn-1

x(an) = Xn

x'(0) = X'n-1
	

(6.2b-l2)

x'(an) = 0

104

(6.2b-10)

x"(an) = 0

Solving for B's in the last segment gives:

B1 = X11-t

82 =

1

B3 = — [6 (Xn -Xn -) - 3X n - t an
an 2

1 84 = -- 18(Xn-1-Xn) + 3Xin-lan]
an 3

1

[3 (Xn -Xn -
an 4

105

B5 - 	 n I an]

(6.2b-13)

(6.2b-14)

(6.2b-15)

(6.2b-16)

(6.2b-17)

Again, from the acceleration continuity constraint, the

acceleration at the end point of the second last segment

must be equal to the acceleration at the beginning of the

last segment, and it can be shown that:

anX'n-2 + (3an-1+2an)X'n-1

3

an -tan

n -1 2 (Xn 	 - 1) + an 2 (Xn - 1 —X5 - 2) 	 (6.2b-18)

Combining the results of equations (6.2a-8), (6.2b-11) and

(6.2b-18) allows the Unknown intermediate point velocities

	

X'3, 	 Xin-1, 	to be solved;

can be expressed as :

	

2(a2+3a3) 	 a2 	 0

a4 	 2 (a3+a4) 	 a3 	 0 	 .

and these 	(n2) equations

X'2

X'3

0 a5 	 2(a4+a5) 	 a4 0 X'4

0 	 2 (an - 3 +an - 4) 	 an - 3 0 X'n-3

an - I 	 2(an-2+an-4 an-2 X'122

0 0 	 an (3an-1+2an)

3
[a22(X3-X2) + 2a23(X2-Xi)]

az a3

3
[az 3 (X4 -X3) + az 4 (X3 -X2)

a3 a4

[a2 4 (Xs -X4) + •az 5 (X4 -X3)1
a4 a3

(6.2b-19)

[an-22(Xn-1—Xn-2) + an-1 2 (Xn-2—Xn-3)

an-2an-1

3
[2an -1 (Xn —Xn - 1) + an (Xn - 1 —Xn - 2)]

an - 1 an

, symbolically:

(A] (X'] = [D] 	 (6.2b-20)

where [A] is an (n-2)x(n-2) matrix

[X'] is an (n-2)xl matrix

[D] is an (n-2)xl matrix

[X'] can be obtained by solving the system of linear

algebraic equations shown in equation (6.2b-19). Since the

[A] matrix is a tridiagonal matrix, there is a very

efficient algorithm for solving this particular type of

system of equations[229]. Given the equations:

bizi + c1z2 = di,

az zi + bz Z2 + 'C2 Z3 = d2

(6.2b-21)

an-iZn-2 + bn-1Zn-1 + Cn-1Zn =

an Zn - 1 + bn Zn = dn ,

operators uk, vk and wk can be formed such that:

1.1k = • ak Vk - 	 + bk

Vk = Ck Alk

(vo = 0) 	 (6.2b-22)

(6.2b -23)

106

3

3

107

w = (dk 	 ak Wk - 1)
	

(wo = 0) 	 (6.2b-24)

for k = 1,2,3 ,n.

Successive elimination of zi,z2, 	 ,zo-1 from 2nd,

3rd,....., nth equations yields the equivalent system•

equation:

Zk = Vk Zk + 	 Wk 	 for k = 1,2, 	 n-1 	 (6.2h-25)

Z n = W n 	 (6.2h-26)

whence zo,zo-i, 	 zi can be successively evaluated.

For matrices with dominant main diagonal, this

procedure is stable[R261 in the sense that all errors

rapidly damp out (0 (ck/uk < 1).

Solving equation (6.2b-19) allows coefficients of the

spline functions for each segment to be found. These results

for a single joint system can be extended to a multi-degree

of freedom system with m joints simply by duplicating the

spline function generation procedure for each joint and

using the same values of a+1. The [A] matrix for multi-

joint system will be unaltered, and [X'] and [D] matrices

will become (n-2)xm matrices. A path through n points for a

robot with m joints will consist of 2m unique fourth-order

spline functions and mx(n-3) unique cubic spline functions.

The efficient alogorithm discussed above for solving

single-joint systems is also applicable to multi-joint

systems. Since equations (6.2b-22) and (6.2b-23) do not

depend on the d's in equations (6.2b-21), and the [A] matrix

is unchanged, the intermediate velocities for other joints

can be evaluated using the same alogrithm and the same

values of uk and vk. Only the values of wk are renewed for

each joint.

(c) Fifth-order Spline Function For A Two-point
Section

For a section with only two defining points, i.e. only

the goal points, there are six boundary conditions to be

satisfied A fifth order spline function is required to

specify the section. The form of the fifth-order spline is

given by:

x(a) = Bi + B2a + B a2 + B4a2 + Bsa4 + B6a5 	 (6.2c-1)

The boundary conditions required are :

•

• Substituting equations 	(6.2c-2) 	into

solving for B's gives :

Bi 	= Xi

(6.2c-1) 	and

(6.2c-3)

B2 = 0 (6.2c-4)

B3 = 0 (6.2c-5)

10(X2-Xi)
B4 - (6.2c-6)

a2

- 15(X2 - Xi)
B5 = (6.2c-7)

a2 4

6 (X2)
Bs = (6.2c-8)

a2 5

6.3 TIME SCALE FACTOR

• Once the spline functions are defined for all

manipulator joints, the parametric variable a defined in

108

x(0) 	= Xi

x(a2) 	= X2

x'(0) 	= 	0

x'(a2) 	= 	0

x"(0) 	= 0

x"(a2) 	= 0

(6.2c-2)

equation (6.2a-4) must be associated with some unit of

physical time. This can be done by replacing the parametric

variable a in the spline segments by t/S, where t is the

elapsed physical time since the beginning of the spline

segment and S is a scale factor to determined.

Without loss of generality, a cubic spline segment is

considered:

x(a) = Bi + B2a + B2a2 + B4a3 	 (6.3-1)

Replacing a by t/S in equation (6.3-1), gives :

x (t) = Ci + C2 t + Ca t2 + C4 t3
	

(6.3-2)

where 	 Ci = Bi

C2 = B2 /S

C3 = 133 /S2 (6.3-3)

C4 = B4 /S3

The scale factor, S, must be assigned one value for

each section, such that S is large enough to prevent the

maximum velocity or acceleration to be exceeded by any of

the robot's joints during the execution-of the section.

Also, it should be as small as possible in order that the

motion of that section could be completed in a reasonable

short time. Therefore, the maximum value of S necessary to

stay within the physical limits of the robot's joints must

be found.

The real time velocity can be expressed as :

x1(a)

109

t S

In order to stay within the velocity constraint, the

real time velocity for a joint must stay below the velocity

constraint, V, of that joint during motion. Hence, S must be

x' (t) - (6.3-4)

greater than or equal to x'(a)/V. To stay within the

velocity constraint, the minimum value of S, Sv, is given

by:

110

MAX [maxX

- MAX 	 (6.3-5)

where maxX'ij represents the maximum velocity of the ith

spline segment for the jth joint, and Vj represents the

velocity constraint_for the jth joint.

Similarly, the real time acceleration for a joint can

be written as :

x" (a)
(6.3-6) x"(t) =

S2 a= t /S

To stay within the acceleration constraint, the minimum

value of S, Sa, is:

MAX [maxX"i 	 1/2

= MAX 	 (6.3-7)
Aj

where maxX"ij represents the maximum acceleration of the ith

spline segment for the jth joint; and Aj represents the

acceleration constraint for the jth joint.

In general, revolute joints, particularly those with

horizontal axes of rotation, have different velocity

constraints in different direction of rotation. Their

acceleration and retardation constraints are also different

due to the effects of external torques. Therefore, there are

two values of velocity constraints - one for each direction,

and two values of acceleration constraints - one for

acceleration and one for retardation, for every revolute

joint. This results in four values of S necessary to stay

within the constraints - two for velocity constraints,

denoted by Sv1 and Sv2 and two for acceleration constraints

denoted by SA1 and SA2.

In some cases, there may also be time constraint in

addition to velocity and acceleration constraints mentioned

above. This time constraint is mainly to adjust the motion

execution time so that the robot can be synchronized with

the working environment. In the case of the TasrobotO

system, the time constraint is introduced to synchronize the

positioning process of the body-, shoulder- and elbow-joints

with the orientation process of the pitch and the roll

•rotations. These two processes in the TasrobotO system are

controlled individually but carried out at the same time.

If Tij represents the minimum time required by the ith

segment of the jth joint to carry out its motion, then the

minimum value of S necessary to give the required amount of

time, ST, is:

Tlj 11
ST = MAX{ MAX[----- 	 (6.3-8)

i al +1

In some applications, the time constraint may only be

imposed on the total time taken for the motion of a section.

For example, during pick-and-place operations, for stepper

motor controlled wrist joints, only the wrist joint

positions at the end points of a section are essential. That

is, only the number of steps for each wrist joint from

initial position to final position of a section will be

required.

111

If Tj represents the minimum time required for the it h

joint to complete a section, then the minimum value of S

necessary to give the required amount of time, Si, is:

Ti
Si = MAX 	 (6.3-9)

j 	 at f I

During the trajectory planning process, either equation

(6.3-8) or equation (6.3-9) can be used to specify the time

constraint.

The desired minimum value of the scale factor S can be

obtained by choosing the maximum value amoung the five

constraints, i.e.

S = MAX I Sv , SV 2 , SA 1 SA 2 , ST I
	

(6.3-110)

Once S is evaluated, the spline functions in real time,

t, of each segment for each joint can be re-established, as

shown in equations (6.3-2) and (6.3-3). Although only third

order spline functions are shown, the fourth- and the fifth-

order polynomial functions are similar.

6.4 EVALUATION OF MAXIMUM VELOCITY AND ACCELERATION FOR
SPLINE SEGMENTS

The evaluation of S requires maximum velocity and

acceleration to be evaluated for each spline segment of each

joint within a specified section. To find the maximum

velocity or acceleration for each joint, the parametric

variable, amax, at which maximum velocity or acceleration

occurs should be determined first. In cases where the

calculated amax falls outside the a-range of a spline

segment, the maximum value will occur at either end points

of that spline segment.

112

Maximum velocity occurs within the a range of the ith

segment for the jth joint can be expressed as :

maxX'Jj = X'ij(a)la.avmax 	 (6.4-1)

where avmax is the parametric variable, a, at which velocity

is maximum and 0 5 avmax 	 al+1

Similarly, maximum acceleration within the ith segment

for the jth joint is given by :

maxX"tj = X"ii(a)la=aamax
	 (6.4-2)

where aamax is the'parametric variable, a, at which

acceleration is maximum and 0 5 aamax 5 ai+J.

Table (6.4-1) shows the values of avmax and aamax for

each segment of a section.

ith INTERMEDIATE
SEGMENT

FIRST
SEGMENT

LAST
SEGMENT

TWO -POINT
SECTION

tvmax - B3I3B 4 - B412B5 B3/6B5 tn t2/2

t amax t i, i - BO 4B5 - B4 14B5 -1(- —1) t2 1
2 	 1.5

Table (6.4-1): Equations For Maximum Velocities And Maximum
Accelerations To Occur In Segment Functions

6.5 METHODS OF IMPLEMENTATION

The trajectory control process can be divided into two

stages. The first stage, which is the trajectory planning

stage, is to design a desired path from the specified points

by calculating the necessary coefficients of each spline or

polynomial segment function for each joint. The second stage

is to implement the desired path, i.e. the path execution

stage.

The first stage is implemented off-line. That is, a

desired path is planned after all the specified points for a

113

path are input. The design of a path for a given section

using the discussed technique can be summarized by a series

of steps. Firstly, the parametric value a, as shown in

equation (6.2a-4), is caluclated. Secondly, the intermediate

velocities, as shown in equation (6.2b-19), are evaluated so

that the coefficients of each approximating segment function

can be calculated; this step is not required for a two-point

section. Thirdly, the maximum velocities and accelerations

are calculated from the evaluated segment functions so that

the time scale factor can be determined. Then, from the

determined time scale factor, the real time required to

execute each segment function can be found; ; nd the segment

functions can be converted into real time functions. These

steps can be summerized in the flow-chart shown in Figure

(6.5-1).

The spline segment functions for a desired path

obtained from the trajectory planning stage are real time

functions. Although the functions are continuous in nature,

the representation of the functions by digital computer can

only be in discrete points. The more the points are used,

the more accurate the approximated function will be.

However, the more points used, the more memory for storing

the points are required. As an example, for a three-joint

system, 9 additions and about 15 multiplications are

required to compute a set of joint data. The 8087 numeric

processor unit, which is installed in the host computer of

the TasrobotO system, can compute an addition in about 21

microseconds and a multiplication in 24 microseconds. The•

total time required to calculate a set of joint data for the

114

EVALUATE COEFFICIENTS FOR
NEXT INTERMEDIATE SEGMENT

EVALUATE INITIAL
LENGTH OF TIME
BETWEEN THE TWO POINTS

EVALUATE TIMES FOR
MAXIMUM VEL. & ACC.

EVALUATE. MAXIMUM VEL. &ACC.
FOR THAT SEGMENT

LAST SEGMENT ?

EVALUATE TIMES FOR
MAXIMUM VEL. & ACC.
FOR THAT SEGMENT

CONVERT CALCULATED
SEGMENT FUNCTIONS INTO
REAL TIME FUNCTIONS
USING THE DETERMINED
TIME SCALE FACTOR

EVALUATE MAXIMUM VEL. &ACC.
FOR INITIAL SEGMENT

EVALUATE TIMES FOR
MAXIMUM VEL. & ACC.
, WITHIN INITIAL SEGMENT

EVALUATE COEFFICIENTS OF
INITIAL SEGMENT

EVALUATE 	 INITIAL
LENGTH OF TIME
BETWEEN CONSECUTIVE POINTS

EVALUATE INTERMEDIATE
VELOCITIES 	 AT
SPECIFIED 	 POINTS

EVALUATE MAXIMUM VEL. & ACC.
OCCURRED WITHIN SECTION

EVALUATE MAXIMUM VEL. & ACC.
FOR LAST SEGMENT

EVALUATE COEFFICIENTS FOR
LAST SEGMENT
4 th ORDER POLYNOMIAL

EVALUATE TIMES FOR
MAXIMUM VEL. & ACC.
FOR LAST SEGMENT

EVALUATE COEFFICIENTS FOR
S th ORDER POLYNOMIAL

EVALUATE TIME SCALE FACTOR
FROM KNOWN VEL. & ACC.
CONSTRAINTS

IEXIT

Figure (6.5-1): Flow-chart of The Trajectory Planning
Process

115

three-joint system is about 549 microseconds. For a job

requiring 30 seconds to complete, the total number of data

calculated is more than 163,000. A large memory space will

be required to store the necessary joint data for that job

if off-line method is used. On the other hand, if the path

execution stage is implemented on-line, only the

coefficients of the segment functions required to be stored

and generating a command data set in 549 microseconds is

sufficiently fast for controlling most mechanical systems.

Therefore, the path execution stage is implemented using on-

line method.

The implementation of the path execution stage requires

a real time clock which provide real time values. Upon

executing each segment function, the clock is reset and

started. Joint position data are then calculated by reading

the real time values from the clock and substituting into

the corresponding real time segment function. The data

calculated is output to that joint. A flow-chart of the path

execution process is shown in Figure (6.5-2).

Figures (6.5-1) and (6.5-2) only summarize the

technique of the trajectory control process. A more detailed

account for the actual implementation of the process will be

discussed in next chapter.

116

RESET REAL TIME CLOCK
& START CLOCK

READ REAL TIME DATA
FROM CLOCK

RENEW COEFFIC ENTS OF
SEGMENT FUNCTION
& TIME LIMIT

EVALUATE POSITION DATA
REQUIRED AT THAT TIME

OUTPUT POSITION DATA
TO CORRESPONDING JOINT

EXIT

SET COEFFICIENTS OF
1st SEGMENT FUNCTION
& TIME LIMIT

Figure (6.5-2): Flow-chart of The Path Execution Process

117

CHAPTER SEVEN

SOFTWARE CONTROL OF THE TASROBOTO SYSTEM

The software control of the TasrobotO system consists

of eight main programs written in Fortran-77 language. These

programs can be executed on the host computer of the

TasrobotO system, which is an IBM/PC microcomputer. The

programs are interconnected by a batch file called

TASROBOT.BAT, to form the software control system of the

TasrobotO manipulator.

In addition to the Lab-pac subroutines, seven public

subroutines written in 8088 assembly language and Fortran-77

language were developed to access to hardwares in the IBM

microcomputer and hardwares in the Lab Master interface

board, and to increase program execution speed.

7.1 SUBROUTINES

There are six assembly language subroutines: STPORT,

DIGOUT, POSITN, WRIST, ARMOUT and BEEP; and one Fortran

subroutine, SELFADJ. These subroutines will be discussed in

this section. The Lab-pac subroutines will not be discussed

as they are detailed in its user' guide[R 32]. There are

specific procedures required in the assembly language

subroutines for linking with the eight Fortran main programs

are discussed in the Microsoft Fortran Complier User's

Guide[34].

118

The listing of these subroutines can be found in

Appendix B.

(a) The STPORT Subroutine

This subroutine reprograms the 8255 parallel port in

• the Lab Master Board so that its 24 I/O pins can be re-

arranged as 8 bit-wide input port and 16 bit-wide output

port. This call is necessary to override the initialization

call of the Lab-pac subroutines which uses 16 bit-wide input

port and 8 bit-wide output port.

(b) The DIGOUT Subroutine

The subroutine call is in the format DIGOUT(CMD,LATCH).

CMD is a 12-bit integer command signal to be output to

control the motion of a joint. LATCH is a 3-bit integer

address of a joint register as shown in Table (7.1b-1).

The two input values, CMD and LATCH, are concatenated

into a 16-bit data such that the lower 12 bits (bit0-bit11)

contains the command signal and the upper 3 bits (bit12-

bit14) contains the address signal. The latch enable signal

for a specified register must be in the correct sequence as

described in section 3.3a. Figure (7.1b-1) illustrates the

flow chart of the DIGOUT subroutine.

(c) The POSITN, WRIST and ARMOUT Subroutines

The functions of these subroutines are very similar to

functions of the DIGOUT subroutine except that the command

signals for these subroutines are in integer array form. The

POSITN subroutine call is in the format POSITN(CMDP), where

CMDP is an integer array of three elements representing the

119

SEND LATCH ENABLE SIGNAL TO
SPECIFIED LATCH

OUTPUT AX REGISTER TO DATA
REGISTER OF PARALLEL PORT

MERGE LOWER I. BITS OF DX
REGISTER INTO THE UPPER I.
BITS OF AX REGISTER

LOAD CONTENT CF MEMORY LOCATION
OF (MD TO AX REGISTER

LOAD CONTENT OF MEMORY LOCATION
OF LATCH TO DX REGISTER

120
LATCH

NO.
ENERGIZED

JOINT
0 BODY

WRIST! PITCH

2 SHOULDER

WRIST ! ROLL

4 ELBOW

5 GRIPPER

'RETURN I

Table(7.1b-1): Joint Energized Figure(7.1b-1): Flow-chart of
Corresponding To Latch Number The DIGOUT Subroutine

command signal for the body-, shoulder- and elbow-joints

respectively.

The wrist subroutine call is in the format WRIST(CMDP),

where CMDP is an integer array of two elements representing

the command signals for the pitch and roll rotations

respectively.

The ARMOUT subroutine call is in the format

ARMOUT(CMDP), where CMDP is an integer arrayof five

elements representing the command signal for the body-,

shoulder- and elbow-joints as well as the pitch and roll

rotations repectively.

The main purpose of these subroutines is to reduce the

time in outputing command signals. Since, in many cases,

more than one joint are energized at a time, these subrout-

ines reduce the need of calling the DIGOUT subroutine

recursively.

(d) The BEEP Subroutine

The subroutine BEEP accesses the sound generating

hardwares inside the IBM microcomputer. The subroutine call

is of the format BEEP(DELAY), where DELAY is an integer

TURN SPEAKER ON

IWAIT FOR 100 mSEC I

'DECREASE OX BY ONE

ITURN SPEAKER OFF
IMMMI

constant or integer variable representing the duration of

the sound in multiples of 0.1sec.

This subroutine is used in programming or teaching

stage to acknowledge the operator that positions and

orientations specified by the operator are stored. It is

also used to remind the operator that the memory assigned

for storing joint data are

LOAD CONTENT OF MEMORY LOCATION
OF DELAY TO DX REGISTER 	 running low or full. Audio

SET TIMER-2 OF 8253 TIMER TO 	 signal is considered to be
GIVE CLOCK FREQUENCY OF
1 KHz OUTPUT

more effective than visual

display during teaching stage

since the operator can devote

his time in adjusting proper

arm configuration without

having to scan the screen

frequently for warning

signals. Figure (7.1d-1)

Figure(7.1d-1): Flow-chart of
The BEEP Subroutine 	 illustrates the flow chart of

the BEEP subroutine.

(e) The SELFADJ Subroutine

This subroutine is written in Fortran-77 language. It

brings the manipulator from its current position to a

specified position. This function is required in both

training mode and operating mode. In training mode, the

manipulator has to be aligned with the teaching arm. In

operating mode, the manipulator has to be brought to the

starting position of a specified task. The SELFADJ

subroutine implements the trajectory control algorithm,

discussed in Chapter 6, in real time.

121

SAMPLE GRIPPERS MOTOR POSITION
SENSOR POT

IS GRIPPER OPEN CLOSE THE GRIPPER

SAMPLE JOINT POSITIONS TO ESTABLISH
STARTING POSITION DATA

TARTING 	 SPECIFIED
POSITION 	 END POSITION

OUTPUT SPECIFIED

wrast POSITION DATA
RETURN

PLAN TRAJECTORY FOR
EACH JOINT

IEXECUTE TRAJECTORY

RETURN 	 I

Figure(7.1e-1): Flow-chart of
The SELFADJ Subroutine

The subroutine call is in the format SELFADJ(F2), where

F2 is an integer variable array containing specified

positions of the five manipulator joints. The current

position of the arm is obtained by sampling the position

sensors mounted on the manipulator.

122

Owing to the inherent

dependence of the effective

length of the gripper steel

string on arm configuration,

as discussed in section 2.l c,

the subroutine will always

ensure that the gripper is in

closed position before any

motion is executed. Figure

(7.1e-1) illustrates the flow

chart of the SELFADJ

subroutine.

7.2 MAIN PROGRAMS

The eight main programs for the software control of the

TasrobotO manipulator can be divided into six stages,

namely, the initializing stage, the programming stage, the

compiling stage, the executing stage, the intermediate stage

and the idling stage.

The initializing stage enables the manipulator to be

programmed for a specific task. Data specified in the

programming stage will be trimmed and processed in the

compiling stage to generate executable data for the

executing stage. After the completion of a task, options are

(- FROM DOS SYSTEM

INITIALIZING

PROGRAMMING

COMPILING

EXECUTING

INTERMEDIATE

I DUNG

(EXIT TO DOS SYSTEM)

Figure(7.2-1): Software
Control System of The
TasrobotO Manipulator

provided in the intermediate stage to re-direct to one of

the stages. When the robot is not intended to be used in a

short period, it can be put in to the idling stage. Then,

the robot will not response, but the power for the

electronics will be maintained to enable the system to be

123

reactivated without going

through the initializing

stage.

Each stage consists of

one or more main programs and

the ending of one stage can

trigger the starting of next

by an autoexecuting batch

file, called TASROBOT.BAT. By

running this batch file, each

of the eight programs will be

initialized in a sequence

illustrated in Figure (7.2-1).

(a) The Initializing Stage

This stage consists of program ALIGN. This program

provides step by step instructions for setting the reference

positions of the pitch and roll axes of the wrist which are

shown in Figure (7.2a-1). These reference settings are

important to produce absolute

The pitch rotation has a

the roll rotation has a range

position codes.

range of motion of 140 0 and

of motion of 270° as shown in

Figure (7.2a-2). Since each stepper motor has step angle of

0.6°, the pitch position can be discretized into 234 levels

and the roll position into 450 levels, with each level

equivalent to one step angle as shown in Table (7.2a-1).

After the reference positions are set, the codes 100

decimal and 150 decimal are sent to the pitch and the roll

registers respectively. It is important that these codes are

sent after the registers are powered; otherwise, these

signals will be lost. Therefore, the power ON signal will be

checked before the reference position codes are sent. Flow

chart of the ALIGN program is shown in Figure (7.2a-3).

(b) The Programming Stage

• The programming of the TasrobotO manipulator is through

on-line method using a teaching arm which contains five

position sensors and two switches as shown in Figure (2.4-

1). During programming stage, the manipulator will follow

the configuration of the teaching arm. A specific arm

configuration can be recorded by pressing the MEM-switch,

and the gripping function of the manipulator is controlled

by the GRIP-switch.

The programming stage consists of two programs, OPFILE

and LEARN. The program OPFILE is to enable users to specify

a global filename for storing specified data points which

may be required by other programs in the other stages.

Before a file with a specified filename is opened, the

existence of a file with the same name will be checked to

ensure that the existing file will not be overwritten

• leading to loss of data in that file. If a file with the

same filename exists, options are provided to re-specify a

filename or to allow the existing file to be overwritten.

124

REFERENCE
MARKS

GRIPPER

ELBOW LINK

ZERO POSITION

	Plad
AXIS

REFERENCE POSITION
(DOTTED LINES)

t_
ati-tCANCI

60°

sfi).X
o4,

SEND REFERENCE CODES TO
PITCH & ROLL REGISTERS

INFORMING USER TO POSITION
WRIST TO REFERENCE MARKS

INFORMING USER TO PUT ALIGN
SWITCH TO ON POSITION

INFORMING USER TO TURN ON
POWER OF ROBOT

I 'EXIT 	 1

125

SHOULDER LINK

Figure(7.2a-1): Reference Positions of The Wrist Joints

(a) PITCH ROTATION AXIS 	 (b) ROLL ROTATION AXIS

Figure(7.2a-2): Definitions of The Wrist Positions

ZERO
POSITION
CODE

REFERENCE
POSITION
CODE

MAXIMUM
POSITION
CODE

PITCH
AXIS

100 242

ROLL
AXIS 150 300

Figure(7.2a-3): Flow-chart of 	 Table(7.2a-1): Position Codes
The ALIGN Subroutine of The Wrist Axes

The actual programming process is implemented by the

,program LEARN. To track the configuration of the teaching

arm, the five position sensors in the teaching arm are

sampled. Since the body-, shoulder- and elbow-joint sensors

in the teaching arm are the same as those in the

manipulator, the sampled position codes are used as control

codes to drive these three joints of the manipualtor.

However, the sampled position codes from the wrist sensors

in the teaching arm are different from the control codes for

controlling the manipulator wrist. Therefore,

transformations are required to convert the sampled position

codes to the control codes for controlling the wrist motion.

The transformations are:

WP = (WPPOT + 1242)/10.23724 	 (7.2b-1)

WR = (WRPOT + 1856)/8.066 	 (7.2h-2)

where WP and WR are integer constants representing the

control codes for the pitch and the roll rotations

respectively; and WPPOT and WRPOT are integer constants

representing the sampled position codes from the pitch and

the roll axes of the teaching arm. Because of sampling

errors and rounding off errors, the transformed wrist

control code may vary by plus or minus one unit even if the

wrist positions of the teaching arm remains unchanged. This

results in oscillation of the wrist rotations. The problem

is solved by energizing the wrist rotations only when there

• are more than one unit of change in the converted control

codes. It is also important that the control codes are

positive to ensure correct operation of the magnitude

126

comparators used in the wrist control hardware. The algor-

ithm of the transformation is shown in Figure (7.2b-1).

SAMPLE WPPOT & WRPOT OF
TEACH ARM

WPPOT • 1242
W -

10 • 23724

WRPOT • 1856

8 • 066

Wps 0

= 0

DWP • I Wp - Wp0. I

DWR 	 I W 	 06 I

Wp 0 • W

WRO •W

OUTPUT WRIST COMMAND POSITION

CODES Wp &

(M WMM)

• NOTE : INITIALLY Wp & WO ARE SET TO ZERO

Figure(7.2b-1): Algorithm For Transforming Sampled Wrist
Values To Wrist Command Codes

During the execution of the LEARN program, the status

of the two switches in the teaching arm are also examined.

The control codes of the five joints are recorded to the

specified file when the MEM-switch is pressed. When the

GRIP-switch is pressed, the state of the gripper will be

checked. If the gripper is opened (or closed) the gripper

motor will be energized to close (or to open) the gripper.

Because of the mechanism of the gripper as discussed in

section 2.1c, the amount for the gripper motor to turn to

127

open or close the gripper depends on the arm configuration.

Therefore, during the opening of the gripper, the gripper

motor will be energized as long as the GRIP-switch is

pressed. The amount of opening by the gripper motor in a

specific arm configuration is recorded. To close the

gripper, the gripper motor is rewinded to the pre-programmed

position at which the gripper is closed regardless of arm

configuration. The routine when a GRIP-switch is pressed is

shown in Figure (7.2b-2).
WHEN GRIP SWITCH
IS PRESSED

128

TURN GRIPPER MOTOR
TO OPEN GRIPPER

I STOP GRIPPER MOTOR]

SAMPLE GRIPPER mount's
POT AS GRIPPER DATA

SET GMODE • 1

SAMPLE GRIPPER MOTOrtS,,,,____,
POT , GPOT

(STOP GRIPPER MOTOR

SET GRIPPER DATA TO 0
& GMODE • 0

TURN GRIPPER MOIDR
TO CLOSE GRIPPER

(CONTINUE)

• GMODE IS THE STATUS OF THE GRIPPER
GMODE • 1 WHEN GRIPPER IS OPEN
GMODE .0 WHEN GRIPPER IS CLOSE
INITIALLY GMODE IS SET AT 0

Figure(7.2b-2): Flow-chart of The GRIP-switch Subroutine

The program provides a maximum of 50 sets of data to be

recorded to the specified file. Each set of data is recorded

whenever the MEM-switch or the GRIP-switch is pressed and is

acknowledged by a short beeping sound. The teaching process

can be terminated by pressing the ESC-button on the

keyboard. When 45 sets of data are recorded, the user will

be warned by a beeping sound of about 5 seconds. When 50

sets of data are recorded, the user will be informed by a

long beeping sound of about 10 seconds and the teaching

process will be terminated. At the same time, options are

provided to re-start the programming process or to carry on

to the next stage.

In many robot applications, it is necessary for the

manipulator to return to its starting position after it

finishes a specific job so that the job can be repeated.

When a teaching process is terminated, the first specified

data and the last specified data are compared. If the two

data are the same, the programming stage will be completed.

Otherwise, options are provided to allow user to adjust the

end points in four different ways. The first way simply to

ignores the difference between the first and the last

specified data. However, this will prevent the manipulator

from repeating the job druing the executing stage. The

second way is to replace the last data by the first data.

This will usually be used because it is usually more

difficult to bring the teach arm back to the same initial

point. The third option allows the manipulator to go back to

the starting position by inserting the first data set to the

end of the record. The last option enable the manipulator to

avoid the same obstacles when the arm is on its way back to

the starting position by duplicating the same specified set

of data in reverse order. This option also doubles the

memory available for storing specified data. For example, if

50 sets of data are specified, the actual file will contain

99 sets of data.

129

AUGN MANIPULATOR WITH TEACH ARM
BY CALUNG SUBROUTINE SELFADJ

SAMPLE JOINT POSITIONS Cf TEACH ARM

CONVERT SAMPLED WRIST (gnon CCC
TO WRIST POSITION COMMAND CODES
USING TRANSFORMATIONS 	 -

OUTPUT DATA TO CONE MARIPULA

OFFER OPTIONS TO ADJUST LAST DATA

ADJUST DATA ACCORDING TO
SELECTED OPTION

EXIT)

Figure(7.2b-3): Flow-chart of The LEARN Program

Before teaching process starts, the manipulator is

aligned with the teaching arm. This is carried out by the

subroutine SELFADJ as described in section 7.1e. Before the

LEARN program terminates, the gripper will be ensured to be

closed. The overall function of the LEARN program is

summarized by a flow chart shown in Figure (7.2b-3).

(c) The Compiling Stage

The compiling stage processes data obtained in the

programming stage so that these data can be interpolated by

segment functions as described in chapter six. This stage

130

consists two main programs, TRIM and SMOOTH. The TRIM

program processes the data obtained in the programming stage

to ensure conditions required in trajectory planning, as

descirbed in chapter six, to be satisfied. The SMOOTH

program implements the trajectory planning process.

In TasrobotO, a typical task may be defined by a few

sections. Each section consists of a number of user-defined

data sets. Each date set consists of the five joint control

codes and a gripper motor position code. To implement the

trajectory planning technique, the data set must satisfy two

conditions. First, a section must consist either two data

sets or at least five data sets. Second, no two consecutive

data sets can have identical control codes. The TRIM program

ensures the first criterion_to be achieved by inserting

additional data sets to the specified data file; and satisfy

the second criterion by deleting one of the data sets when

two consecutive data sets are identical. The flow chart of

the TRIM program is shown in Figure (7.2c-1).

Data processed by the TRIM program are recorded back to

•the specified file. In addition to the processed data, the

recursive nature of the data, which is indicated by the

identical data sets at the beginning and end of the record,

will be stored at the beginning of the file in a flag. This

information will pass on to the program SMOOTH to help

identify a processed data file, and to generate executable

data for the executing stage.

The program SMOOTH evaluates approximating functions

for joining specified data points. Since a programed task

131

STORE READ DATA IN
REGISTER OLD

READ NEXT DATA FROM
SPECIFIED DATA FILE 1,
STORE READ DATA IN
REGISTER NEW

WRITE 'T TO SPECIFIED
DATA FILE

RECORD ALL READ DATA
TO SPECIFIED FILE

RECORD REGISTER OLD
TO TEMP. FILE

RECORD DATA BACK TO
SPECIFIED ALE INSERTING

Y TWO MORE DATA SETS,
ONE BETWEEN 1ST L 2N
DATA SETS AND ONE
BETWEEN 2ND It 3RD
DATA SETS

RECORD DATA BACK TO
SPECIFIED FILE INSERTING
ONE MORE DATA SET
BETWEEN 2ND & 3RD
DATA SETS

READ 1ST DATA FROM
SPECIFIED DATA FILE

1
RECORD LAST DATA TO
TEMP. FILE

READ A SECTION OF DATA
FROM TEMP. FILE

1.,... WRITE 'F TO SPECIFIED
DATA FILE

132

Figure(7.2c-1): Flow-chart of The TRIM Program

usually consists of several sections, the program identifies

each sections in a task and performs trajectory planning.

-The coefficients of the segment functions for each

section are evaluated by the subroutine, SPLINE, of the

program. The evaluated coefficients of each segment

functions are stored in an executable data file called

BUFFER.JOB. No specific new file is generated for storing

the evaluated coefficients of the segment functions for a

specific task because such a file occupies a lot more space

than a file containing only joint coordinates. Also, in many

robot applications, once the executable file is generated,

it will be used for a period of time. The time required to

generate an executable file is usually relatively short

compared to the "life" time of the executable file.

Therefore, it is preferrable to store the specified joint

coordinates for a specific task, although it requires

replanning of a trajectory before the task can be executed.•

- Two options are provided in programming the orientation

of the gripper during task execution. First the wrist

joints are programmed to rotate to all specified positions.

However, in some robot application, such as in pick-and-

place operation, the actual wrist orientation is only

essential at the time when the robot starts to pick or to

place an object. The second option provided will allow the

manipulator to ignore the intermediate wrist positions and

only wrist positions for the gripping or releasing will be

implemented during the execution of a task.

The flow chart of the SMOOTH program is shown in Figure

133

(7.2c-2).
!RECORD RLENAME TO FILE BUFFER.JOB

READ REPEATABIUTY INDICATOR. FROM
SPECIFIED FILE

14RI1E SELECTED OPTION t REPEA1ABIUTY INDICATOR TO BUFFER. JOB

IREAD 1ST JOINT DATA RICH SPECIFIED FL

ItaTE 151 JOINT DATA TO BUFFER.108

E '0' TO BUFFER. JOB

!WRITE '1' TO 	 BUFFER. JOB

READ A SECTION OF JOINT DATA
FROM SPECIFIED FILE

EVALUATE COEFFICIENTS OF SEGMENT
FUNCTIONS FOR SECTION t STORE
COEFFICIENTS IN BUFFER. JOB BY
CALLING SUBROUTINE 'SPUN('

Figure(7.2c-2): Flow-chart of The SMOOTH Program

The subroutine call, SPLINE, of the SMOOTH program uses

the technique discussed in Chapter 6 to evaluate the

coefficients of segment functions. In this subroutine call,

the number of points in a section is checked to ensure that

only two-point or at least five points are in a section. For

a two point section, the coefficients of the required fifth-

order polynomial function are evaluated for each joint by

initializing a routine. For a section with more than or

equal to five defining points, another routine is

initialized to evaluate the necessary coefficients of the

segment functions for each joint. To reduce the dynamic

memory required and hence reducing the size of the exectable

program, the initial coefficients of the segment functions

are temporarily stored in a scratch file. They are converted

into coefficients of real time functions when the time scale

factor is evaluated. The subroutine call SORT evaluates the

maximum veloci ty and acceleration of each joint within a

segment to give the time scale factor of the section. The

subroutine call RENEW converts the approximating functions

into real time functions using the evaluated time scale

factor as discussed in section 6.3. Figure (7.2c-3) shows

the flow chart of the SPLINE subroutine.

(d) The Executing Stage

The executing stage executes a programmed task through

a pre-planned path. This stage consists of the main program

GO. This program reads information from the exectable file -

BUFFER.JOB, and generates commands, in real time, to the

controller unit of the TasrobotO system to drive the

actuators of the manipulator.

134

EVALUATE INITIAL LENGTH
OF TIME BETWEEN THE '
TWO DATA SETS

ERROR
EVAWATE INITIAL LENGTH OF TIME
BETWEEN TWO CONSECUTIVE DATA

EVALUATE COEFFICIENTS
THE TWO-POINT SECTION

F'ROGRAM
STOP

EVALUATE COEFFICIENTS OF SEGMENT
FUNCTION FOR EACH JOINT & STORE
INTO SCRATCH FILE

!EVALUATE TIME SCALE FACTOR

EVALUATE TIME SCALE FACT011

RENEW OXFFICIENTS INTO
REAL TIME COEFFICIENTS
L REAL TIME LIMIT

STORE COEFFICIENTS & LIMI
TO BUFFER JOB

RETURN

ERROR

PROGRAM
STOP

STORE 1ST GRIPPER DATA & NO. OF
DATA SETS IN SECTION TO BUFFER. JOB

INITIATE REGISTERS FOR MAXIMUM
VEL. & ACC. OF EACH JOINT TO ZEROS

REVISE MAXIMUM VEL &ACC. FOR EACI-
JOINT BY CALLING SUBROUTINE 'SORT'

EVALUATE REAL TIME LIMIT RV EACH
SEGMENT FUNCTION OF EACH JOINT

IEVAWAlE TOTAL TIME REQUIRED FOR SECTICNI

RENEW COEFFICIENTS OF SEGMENT RICO
BY CALLING SUBROUTINE 'RENEW'

ram COEFFICIENTS & TIME LIMIT
TO BUFFER. JOB

I RETURN I

Figure(7.2c-3): Flow-chart of The SPLINE Subroutine

• When the program GO is executed, it first accesses the

default executable file - BUFFER.JOB, and identify the data

filename from which the executable data are generated.,

Options are provided to allow other executable files to be

specified.

Before the specified task is executed, the arm is

brought to the starting position of the task by calling the

135

subroutine SELFADJ. If the task is a repeatable type, the

user can also specify a desirable number of times of

repetition.

•The task is executed by sending position commands to

the joints of the manipulator. The commands are generated

from real-time segment functions formed during the

trajectory planning process. The real-time data are obtained

from the real-time clock provided by the Lab Master Board

and from the subroutines provided by the Lab-pac softwares.

The program GO has been designed to increase as far as

possible the rate of generating position commands, since the

higher the rate of generating the commands, the closer the

actual path to the desired path will be. During execution,

the ESC-key provides emergency stop function. Before the

program is terminated, the gripper will again be ensured to

be closed.

The flow chart of the program is shown Figure (7.2d-1).

(e) The Intermediate Stage

The intermediate stage allows users to go to one of the

five stages excluding the intermediate stage itself.

additions, this stage also enables users to return to the

DOS system.

This stage is only required when the batch file is used

to execute the eight main programs. Since batch file

commands do not provide proper communication between the

computer and the user, the program - SETFLAGS - is used to

display a list of options for the user to select and set

appropriate flag to initialize the required stage. Figure

(7.2e-1) shows the flow chart of the program SETFLAGS.

136

GRIPPER NEED
BE OPEN ?

OPEN GRIPPER TO
SPECIFIED AMOUNT

SET INITIAL EXECUTABLE FILE AS
BUFFER. JOB

I READ INITIAL DATA MGM DIECUT. FILE

REQUEST ANOTHER.
EXECUTABLE FILENAME

MANIPULA1OR TO STARTING FOSITION

READ NO. OF POINTS IN SECTION
FROM EXECUTABLE FILE

READ COEFFICIENTS I, TIME LIMIT
FOR TWO-POINT SECTION

READ COEFFICIENTS & TIME LIMIT
FOR SECTION

I SET REAL TIME CLOCK TO ZERO

READ REAL TIME DATA FRCM CLOCK

ESC-BUTTON PRESE CONTINUE PROGRAM

READ GRIPPER DATA FROM
EXECUTABLE FILE

MORE DATA

IS GRIPPER OPEN

IS GRIPPER OPEN

EXIT

OPEN GRIPPER TO SPECIFIED FILE

DATA FILENAME OK

137

Figure(7.2d-1): Flow-chart of The GO Program

OPEN A FILE CALLED FLAG1. SET H

OPEN A ALE CALLED FLAG2. SET

OPEN A FILE CALLED FLAG3. SET H

OPEN A FILE CALLED FLAGLSET

OPEN A FILE CALLED FLAGS.SET

OPEN A FILE CALLED FLAG6. SET

Figure(7.2e-1): Flow-chart of The SETFLAG Program

(f) The Idling Stage

The idling stage is to temporarily shut down most of

the functions of the robot system. This stage may be

energized when the programmed task is completed and the

manipulator is not required to perform any function for a

short period of time. This stage has two main functions.

First, it preserves the absolute position codes for the

wrist joints. Second, it retains the software control system

on the computer. In other word, the computer will still be

the host computer of the robot system.

The program SLEEP is used in this stage. It ensures the

power supply to the electronic hardwares of the manipulator

is maintained so that the absolute position codes of the

wrist joints are valid. If the power supply is switched off,

the software control system of TasrobotO will be terminated.

During the idling stage, the ESC-key can be pressed to

138

DISPLAY COMMAND TO RECOVER
CONTROL ON MANIPULATOR

I OPEN FILE FL AG 6 . SET

(EXIT)

retrieve full control of the manipulator. Figure (7.2f-1)

shows the flow chart of the SLEEP program.

Figure(7.2f-1): Flow-chart of The SLEEP Program

7.3 THE SOFTWARE CONTROL BATCH FILE

With the use of batch subcommands and conditional

execution of commands, the eight main programs can be

interconnected to form the network of the software control

system of the TasrobotO system. The software control is

initialized by using the TASROBOT batch file.

Before executing the first main program, the eight main

programs are examined. When all the main programs are found

and all files that are used as flags in the intermediate

stage are removed, the batch file will proceed. The flow

chart of the batch file is shown in Figure (7.3-1).

139

DELETE •FLAG2. SET'
• 'NAME. JOB'

DELETE • FLAG3. SET •
L 'NAME JOB'

DELETE •FLAG4.SET •
/4 'NAME JOB'

DELETE 'FLAG6.SET'

140

ICHECK COSTENCE CF 8 MAIN PROGRAMS'

NOICATE WhICH PIECRAM NCI

EXAMINE EXISTENCE OF ALL FILES
HAVING EXTENSION 'SET'

IINITIALIZE PROGRAM 'ALIGN

'INITIALIZE PROGRAM • OPFILE • I

I INITIALIZE PROGRAM 'LEARN

I INITIALIZE PROGRAM 'TRIM '

[INITIALIZE PROGRAM 'SMOOTH' I

'INITIALIZE PROGRAM 'GO'

I INITIALIZE PROGRAM 'SETFLAG •

DELETE 	 • FLAGS.SET •

I INITIALIZE PROGRAM 'SLEEP •

DELETE 'NAME. JOB

EXIT

Figure(7.3-1): Flow-chart of The TASROBOT Batch File

CHAPTER EIGHT

CONCLUSIONS AND FUTURE WORK

8.1 CONCLUSION

TasrobotO is a robot manipulator system with five

degrees of freedom. The roll and pitch rotations of the

wrist joints are driven by stepper motors. The rotations of

the body-, shoulder- and elbow-joints as well as the

gripping jaws are driven by dc motors with constant field

excitation. Three types of control scheme were designed and

built to drive different joints of the manipulator according

to the types and functions of the actuators used.

A complete robot arm system is a non-linear multi-

variable time-varying system. For a small and light weight

robot arm, the control system can be simplified to a

combination of several individual single-input-single-output

joint systems with time-varying parameters. Analogue

controller were designed for the three joint systems. The

effects of time-varying parameters on their closed-loop

dynamic responses are significantly reduced. Their steady-

state position errors also fall within one degree accuracy .

A technique on trajectroy planning was developed to

generate spline segment functions which interploate between

specified joint coordinates. This cubic spline trajectory

planning technique was applied to the body-, shoulder- and

elbow-joints of the TasrobotO manipulator and the

performance is best illustrated by Figure (8.1-1), which

141

6

4

2

SHOULDER

10 	 20 	 30 	 I 40 SECONDS

ELBOW

shows repeated motions of the three joints with respect to

the same set of command signals. It shows that the

controlled variable of each joint follows the desired

trajectory and the repeatability of each controlled joint

system is excellent.

POSITION TRANSDUCER

8 - VOLTS

Figure (8-1): Time Responses of The Joint-system After
Training

The manipulator in operation is shown in Figure (8.1-2)

and the complete TasrobotO system is shown in Figure (8.1-

3)

8.2 FUTURE WORK

TasrobotO, which is the first version of Tasrobot

manipulator, marks the beginning of research in robotics in

the Electrical Engineering Department of University of

Tasmania. Based on the study of TasrobotO, there are a

142

1 L3

FIGURE (8.1-2 	 : The TasrobotO Manipulator In Operation

FIGURE (8 .1-3) : The TasrobotO System, From Left To Right : Manipulator

Controller Unit , Teach Arm And Host Computer

number of ideas and suggestions to future development of

Tasrobot arms and further investigation in robotics.

(a) On Manipulator Structure

As the TasrobotO manipulator is still in the developing

stage, the sophistication of mechanical structure of

TasrobotO has not been emphasized. There are a number of

suggestions to the next version of the arm:

The physical size of the arm should be increased to

extend the accessible distance of the arm.

The elbow joint should have larger range of motion to

increase the work envelope of the arm.

The wrist motion should be redesigned to replace

stepper motors by dc servo-motors and to provide yaw-

rotation.

The gripper motor should be located as close to the

gripper as possible to eliminate the dependence of the

effective length of the connected steel string on arm

configuration.

(b) On Controller Design

As the level of sophistication of Tasrobot arms

improves, more complex controllers will be required. There

are a number of control methods to be investigated, such as

decentralized control suggested by Prof.M.Vukobrotovic, PID

control, computed torque methods, resoled rate and

acceleration method, as well as adaptive control technique.

Prof.M.vukobratovic pointed out: 'the complexity of the

controller would depend on the level of sophistication and

autonomy of the robot under consideration'. A suitable

144

controller should be selected according to the mechanical

sophistication of the arm.

(c) On Trajectory Planning

Command signals are generated from real-time segment

functions by the host computer. During path execution, the

host computer can afford no time to perform other functions.

Since the generation of command signals involves only

additions and multiplications which are easier and faster to

do by pre-wired hardwares, numeric processor or

microprocessor. If a microprocessor unit is used as a

command generator, the host computer will only need to

output the coefficients of the segment functions. The host

computer can then spare to monitor other sensor signals like

force sensor signal or vision sensor signal during path

execution. This will certain improve the control of the

Tasrobot arm and widen the scope of the Tasrobot system.

As Prof.Saridis has pointed out: 'the manipulator

control problem has not been successfully resolved',

solution to control problem on robotics will rely on further

research in this area.

145

REFERENCES

[1] Paul,R.P.:'Robot Manipulators, Mathematics, Programming
and Control', MIT press, Cambridge, Mass., 1981.

[2] Wilson,D.R.:'Modern Practice in Servo Design', Pergamon
Press, 1970.

[3] Taylor,P.L.:'Servomechanisms', Longmans, 1960.

[4] Shinners,S.M.:'Modern Control System Theory And
Application', Addison-Wesley, 1972.

[5] Vukobratovic,M. and Potkonjak,V.:'Applied Dynamics and
CAD of Manipulation Robots', Springer-Verlag, 1985.

[6] Ahlberg,J.H., Nilson,E.N. and Walsh,J.L.:'The Theory of
Splines and Their Applications', Academic Press, 1967.

[7] Vukobratovic,M. and Kircanski,M.:'Kinematics and
Trajectory Synthesis of Manipulation Robots', Springer-
Verlag, 1986.

[8] Ranky,P.G. and Ho,C.Y.:'Robot Modelling, Control and
Applications With Software', Springer-Verlag, 1985.

[9] Pugh,A.:'Robotic Technology', Peter Peregrinus, 1983.

[10] Koren,Y.:'Robotics For Engineers', McGraw-Hill, 1985.

[11] Coughlin,R.F. and Driscoll,F.F.:'Operational Amplifiers
and Linear Integrated Circuits', Prentice-Hall, 1982.

[12] Rehg,J.A.:'Introduction to Robotics', Prentic-Hall
1985.

[13] Aleksander,I.:'Computing Techniques For Robots', Kogan
Page, 1985.

[14] Malcolm,D.R.:'Robotics, An Introduction', Breton, 1985.

[15] Cumming,I.G.:'Autocorrelation Function and Spectrum of
a Filtered Pseudorandom Binary Sequence', Proc. IEE,
vol.114, no.9, September 1967, pp1360-1362.

(16] Karmer,C.:'A Low-Frequency Pseudo-Random Noise
Generator', Electronic Engineering, July,1965, pp465-
467.

[17] Robert,P.D. and Davis,R.H.:'Statistical Properties of
Smoothed Maximal-length Linear Binary Sequences', Proc.
IEE, vol.113, no.1, January 1966, pp190-196.

[18] Hazlerigg,A.D.G. and Noton,A.R.M.:'Application of
Crosscorrelating Equipment to Linear-system
Identification', Proc. IEE, vol.112, no.12,December
1965, pp2385-2400.

146

[19] Rowe,I.H. and Kerr,I.M.:'A Board-Spectrum Psudorandom
•Gaussian Noise Generator', IEEE Transactions on
Automatic Control, vol.AC-15, no.5, October 1970,
pp529-534.

[20] Coffron,J.W.:'Programming The 8086/8088' Sybex, 1983.

[21] Kalaba,R. and Spingarn,K.:'ControI, Identification, and
Input Optimization', Plenum Press, 1982.

[22] Sage,A.P. and Melsa,J.L.:'System Identification',
Academic Press, 1971.

[23] Isermann,R.:'Digital Control Systems', Springer-Verlag,
1981.

[24] Mendel,J.M.:'Discrete Techniques of Parameter
Estimation', Marcel Dekker, 1973.

[25] Eykhoff,P.:'System Identification, Parameter and State
Estimation:', John Wiley & Sons, 1974.

[26] Goodwin,G.C. and Payne,R.L.:'Dynamic System
Identification, Experiment Design and Data Analysis',
Academic Press, 1977.

[27] Sheingold,D.H.:'Analog-Digital Conversion Handbook',
Prentice-Hall, 1986.

[28] Loriferne,B.:'Analog-Digital and Digital-Analog
Conversion', Heyden & Son, 1982.

[29] Hildebrand,F.B,:'Introduction to Numerical Analysis',
McGraw-Hill, 1974, Chapter 10.

[30] 'IBM Technical Reference', IBM, 1984.

[31] 'TUTSIM User's Manual For IBM/PC Computers', Meerman,
Automation, 1983.

[32] 'Lab Pac User Guide', Tecmar, 1984.

[33] 'Lab Master Installation Manual and User's Guide',
Scientific Solutions, 1985.

[34] 'Micro-soft Fortran Compiler User's Guide', Microsoft,
1984, Chapter 9.

[35] Snyder,W.E.:'Industrial Robots:Computer Interface And
Control', Prentice-Hall, 1986.

[36] Hollerbach,J.M.:'A Recursive Lagrangian Formulation of
• Manipulator Dynamics and a Cooperative Study of

Dynamics Formulation Complexity', IEEE Trans. On
Systems, Man and Cybernetics, vol.10, no.11, November
1980, pp730-736.

147

[37] Luh,J.Y.S, Walker,M.W. and Paul,R.P.C.:' On-line
Computational Scheme For Mechanical Manipulators',
Journal of Dynamic Systems, Measurement, and Control,
Tran. of ASME, vol.102, no.2, June 1980, pp69-76.

[38] The,G. and Lam,R.:'Identification and Control System
Design For A Robot Manipulator', 15th IASTED
International Conference On Applied Simulation and
Modelling, 1987.

148

APPENDIX A

149

CIRCUIT DIAGRAMS OF THE CONTROLLER UNIT

•VE

El

E 2

•

VE

by

} GRIPPER

ROLL 	 150

- PITCH

--• ELBOW 	 SIMULATED

—•

SHOULDERI 	 ARM

	 BODY

--• ELBOW

—• SHOULDER

- BODY

0-1pF

•10V •20V o 	

(NOTE 3)

— 0.33 pF

1
0.1pF 0 0-1pF

217A

I79 LLM- SAr
(NOTE 4 1

—• BODY

--• SHOULDER

—• ELBOW

BODY
-10V

--•SHOULDER

—• ELBOW

—• PITCH

—• ROLL

ACTUAL

ARM

MMMMM
ARM

LM
78 L-10A

GND

2.2 p F

-20V • 	

BODY 	 CONTROL
(SHOULDER CONTROL 1
(ELBOW CONTROL)

560K

	

NOTE:111 MAX CURRENT DRAWN 	 • 1.5 A

(2) MAX CURRENT DRAWN 	 • 1.5 A

(3) MAX CURRENT DRAWN 	 • 10mA

	

(41 MAX CURRENT DRAWN 	 • 10 m A

(5) TWO SIMULAR CIRCUITS FOR CONTROLLING SHOULDER & ELBOW

(6) VALUE OF R3 & R4 TO BE MADE AS CLOSE AS POSSIBLE

(7) EACH REQUIRED HEAT SINK OF -

DO MOUNTED ON V7 HEAT SINK

Figure (A-1): Schematic Circuit Diagram of The Analog
Control Board

(NOTE 1 1

•15V

1.0pF

GNU

1.0 pF

15V -20V

• 20V

GND

Pit GAIN
1.0K .ADJUSTMENT/

VFBK

1-15V

2

1

415 v
V F

J 	
R3 10K

(NOTE 6)
R1
10K

(NOTE 6)

(MINIMIZE) P2
COMMON 10K

OUTPUT
MODE

—4,

-1 V

747
A NOTE

L 165
•

•15V

	 DRIVERIEODY
DRIVERISHOULDER)
(DRIVEINELBOW1 3

11.1

41g-4-

T
022p

10K
	C7.1 	

•15 V

C 1
3,9

747
1t1

(OFFS

NULL

ET1
OUTPU

)
-15V

LM IN OUT IN •20 V 	 5V

151 0.33 p F

340T-12

0.33 pF

GNO • 	

12V 	 .11 V •

p F

1.74LSO4

LM 	 OUT
3401- 5A

0.1 p F

0V

rf5:1 	 /.741304

•.
S3

S

54

rom TR clock
4....(r
-ren.Lsoi.
s2

•12V

3

74LS191 a- MN

S 0

WP1 1
WP1 0
WP 9
WP

WP 7
WP 6
WP
WP 4

WP 3
W P 2
W PI
W P 0

17

-1-44LSO4

5 	 6

Si

9

113

mum
S M.
111:M

74C 85 74 LS191

c 	
.1

	

A 	
militon

74 LS191

	

Millkilli ll 	 1 1116111114 111nLIM
a
a
a

a a

53 	

TTL CLOCK

1.7403

ui:E=)

5.

.12V

6

•12V.
10K

TO- DI RL

M MI112

TO DRIVER'S INPUT

.5V

WRIST
ALIGNMENT
SWITCH

- Well
W PIO
WP 9
WP

WP7
WP 6
WP 5
WP 4

WP 3
 • WP 2
WP I
W PO

E

WPII
WP10
WP 9
WP 8

WP 7
WP 6
WP 5
104

WP 3
WP 2
WP 1
WP 0

WP1
W1210
WP 9
We 8

WP 7
we
WP 5
WP 4

WP 3
we
WP1
WPO

74C 85

• Ito

	

a 	 74LS191 	 a

	

ummin■ is 	 U.

74LSOO

74LS191

8 	 14 	 4

13

41111
1

741504

10°111
FROM TTL CLOCK

1112
L 314
R 1/2
R 314

[

11127(31,
115V1

9 4

•;I O man

3
DRIVER'S INPUT

FROM DIRL
11
L2
13
4

SAA1027

1 12
TO TTL CLOCK

0.1p F •12 V
100/I

3 FROM DIRR 22K

[)2071
13 	 4

17I
112
R3
174

SAA1027 II

.1 V

7 4 C85

7 4. C 85

•5‘.1

76C 85

S 0

a 	 74LS191 	 awn
1 	 11:MI

00141111111www■
fi

74C 85
a

1•■•••••=1
6
	

8

•5V
	

CIV

-2W ONO OW
152

791-5A 	• 10V
OUT

LM 	 OUT
3407 -5

— 0.33p F GLlpF-1-

-T-0.1pF 	 0217 i.OpF

	

/ 	

	

2.2pF 	 24

GNO

MEMORY

[

SWITCH
 GRIPPER
S WITCH l•SV I
WRIST
ALIGNMENT
SWITCH

E GNO

	 GNO

.15 V

GND

- 15 V

GNO

IN

1:1014

0013

0012

• 20 V.

ONO

-20 V

5V

GND

74LS174

V

	 41S174

•5V
	 AO

.7404

I.
1tV■ vax■ ill

:MEMn. 	
to

AD7541

Li
11

lb
U.
It
IF
fL

RI, 2K
(NOTE 2)

(121K

,R310K

11:72
isL113413

(NOTE 4)

R6,390K

R5,50aft
(NOTE 3)

I CONTROL / BODY

(CONTROL / SHOULDER)

(CONTROL / ELBOW)

All
AtO
A9

A
A6

A
A4
A3
A2

A II

MI
MO
A9
A8
A7
A6

AS

A2
Al
AO

I.

74LS174

A

74LS174
IL

DOtt

Sig
881
006

005
003
002
DOI
000

000

NOTE s 	 (1) TWO MORE SIMILAR CIRCUITS FOR OUTPUT I SHOULDER & OUTPUT / ELBOW BUT WITH LINES A4 & Al

TO CONTROL PIN 9S OF 74LS174 RESPECTIVELY

(2) RI ADJUSTED SO THAT WHEN CODE = 100 000 000 000 , VOUT = - 10 V

(3) 115 ADJUSTED SO THAT WHEN CODE = 000 000 000 000 , VOUT = 0 2 0.2 mV

(4) PIN4 = .15V • PIN 11 = -15V

WRIST PITCH

WRIST ROLL

N /C

) GRIPPER CONTROL

Figure (A-3): Schematic Circuit Diagram of The Interface
Circuit Board

APPENDIX B

153

SOFTWARE CONTROL PROGRAMS

DATA 	 SEGMENT PUBLIC 'DATA'
DATA 	 ENDS
DGROUP GROUP DATA
CODE 	 SEGMENT 'CODE'

ASSUME CS:CODE,DS:DGROUP,SS:DGROUP
PUBLIC POSITN
POSITN PROC 	 FAR

PUSH 	 BP
NOV
	

BP, SP
LES
	

BX,DWORD PTR [BP+6]
NOV
	

DX,071DH
NOV
	

AX,ES:DX]
OR
	

AX,OF000H
AND
	

AX,OOFFFH
OUT
	

DX,AX
OR
	

AX, 080001!
OUT
	

DX,AX
AND
	

AX,07FFFH
OUT
	

DX, AX
NOV , 	 AX,ES:(15X+2]
OR
	

AX,OF000H
AND
	

AX,02FFFH
• OUT

	
DX,AX

OR
	

AX,08000H
OUT
	

DX,AX
AND
	

AX,07FFFH
• OUT

	
DX, AX

MOV
	

AX,ES:DX+4]
OR
	

AX,OF000H
AND
	

AX,04FFFH
OUT
	

DX,AX
OR
	

AX, 080001!
OUT
	

DX, AX
AND
	

AX,07FFFH
OUT
	

DX, AX
NOV
	

SP,BP
• POP

	
BP

RET
	

041!
POSITN END?
CODE ENDS
END

DATA
	

SEGMENT PUBLIC 'DATA'
DATA

	
ENDS

DGROUP GROUP DATA
CODE

	
SEGMENT 'CODE'
ASSUME CS:CODE,DS:DGROUP,SS:DGROUP

PUBLIC WRIST
WRIST PROC 	 FAR

PUSH 	 BP
NOV 	 BP,SP
LES 	 BX,DWORD PTR [BP+6]
NOV 	 DX,071DH
NOV 	 AX,ES:[BX]
OR 	 AX,OF000H

; PUBLIC ASSEMBLY SUBROUTINES

DATA
	

SEGMENT PUBLIC 'DATA'
DATA

	
ENDS

DGROUP GROUP DATA
CODE

	
SEGMENT 'CODE'
ASSUME CS:CODE,DS:DGROUP,SS:DGROUP

PUBLIC STPORT

	

STPORT PROC 	 FAR

	

PUSH 	 BP

	

NOV 	 BP,SP

	

NOV 	 DX,071FH

	

NOV 	 AL,090H

	

OUT 	 DX,AL

	

MOV 	 SP,BP

	

POP 	 BP
•
	 RET

STPORT ENDP
CODE ENDS
END

DATA
	

SEGMENT PUBLIC 'DATA'
DATA

	
ENDS

DGROUP GROUP DATA
CODE

	
SEGMENT 'CODE'
ASSUME CS:CODE,DS:DGROUP,SS:DGROUP

PUBLIC DIGOUT

	

DIGOUT PROC 	 FAR

	

PUSH 	 BP

	

NOV 	 BP,SP

	

LES 	 BX,DWORD PTR [BP+10]

	

NOV 	 AX,ES:(BX)
OR 	 AX,OF000H

	

LES 	 BX,DWORD PTR IBP+63

	

NOV 	 DX,ES:[BX]

	

NOV 	 CL,4

	

ROR 	 DX,CL

	

OR 	 DX,OOFFFH

	

AND 	 AX,DX

	

AND 	 AX,07FFFH

	

MOV 	 DX,071DH

	

OUT 	 DX,AX

	

OR 	 AX,08000H

	

OUT 	 DX,AX

	

AND 	 AX,07FFFH

	

OUT 	 DX,AX

	

NOV 	 SP,BP

	

POP 	 BP

	

RET 	 081!
DIGOUT ENDP
'CODE

	
ENDS

END

2

WRIST
CODE
END

DATA
DATA
DGROUP
CODE

PUBLIC
ARMOUT

AND
	

AX,03FFFH
OUT
	

DX,AX
OR
	

AX,08000H
OUT
	

DX,AX
AND
	

AX,07FPFH
OUT
	

DX,AX
NOV

	
AX,ES:DX+2]

OR
	

AX,OF000H
AND
	

AX,01FFFH
OUT
	

DX,AX
OR
	

AX, 08000H
OUT
	

DX,AX
AND
	

AX,07FFFH
OUT
	

DX,AX
NOV

	
SP,BP

POP
	

BP
RET
	

04H
END?
ENDS

SEGMENT PUBLIC DATA
ENDS
GROUP DATA
SEGMENT 'CODE'
ASSUME CS:CODE,DS:DGROUP,SS:DGROUP
ARMOUT
PROC 	 FAR
PUSH 	 BP
NOV 	 BP,SP
LES 	 BX,DWORD PTR (BP+6]
NOV 	 DX,071DH
MOV 	 AX,ES:(BX)
OR 	 AX,OF000H
AND 	 AX,OOFFFH
OUT 	 DX,AX
OR 	 AX,08000H
OUT 	 DX,AX
AND 	 AX,07FFFH
OUT 	 DX,AX
NOV 	 AX,ES:(BX+2]
OR 	 AX,OF00011.
AND 	 AX,02FFFH
OUT 	 DX,AX
OR 	 AX,08000H
OUT 	 DX,AX
AND 	 AX,07FFFH
OUT 	 DX,AX
NOV 	 AX,ES:(BX+4]
OR 	 AX,OF000H
AND 	 AX,04FFFH
OUT 	 DX,AX
OR 	 AX,08000H
OUT 	 DX,AX
AND 	 AX,07FFFH

OUT
	

DX,AX
NOV
	

AX,ES:[BX+61
OR
	

AX,OF000H
AND
	

AX,03FFFH
OUT
	

DX,AX
OR
	

AX, 08000H
OUT
	

DX,AX
AND
	

AX,07FFFH
OUT
	

DX,AX
NOV

	
AXIS:(BX+8]

OR
	

AX,OF000H
AND
	

AX,01FFFH
OUT
	

DX,AX
OR
	

AX, 08000H
OUT
	

DX,AX
AND
	

AX,07FPFH
OUT
	

DX,AX
NOV
	

SP, B?
POP
	

BP
RET
	

04H
ARMOUT END?
CODE ENDS
END

DATA 	 SEGMENT PUBLIC 'DATA'
DATA 	 ENDS
DGROUP GROUP DATA
CODE 	 SEGMENT 'CODE'

ASSUME CS:CODE,DS:DGROUP,SS:DGROUP
PUBLIC BEEP
BEEP 	 PROC 	 FAR

PUSH 	 BP
NOV 	 BP,SP
LES 	 BX,DWORD PTR (BP+6]
NOV 	 AX,ES:(BX]
NOV 	 BX,AX
NOV 	 AL,10110110B
OUT 	 43H,AL
NOV 	 AX, 533H
OUT 	 42H,AL
NOV 	 AL,AR
OUT 	 42H,AL
IN 	 AL,61H
NOV 	 AH,AL
OR 	 AL,03
OUT 	 61H,AL
NOV 	 CX,01999H

L1: 	 LOOP 	 Li
DEC 	 BX
JNZ 	 Li
NOV 	 AL,AH
OUT 	 61H,AL
NOV 	 SP,BP
POP 	 BP
RET 	 04H

;SET TIMER-2,LBS,MBS BINARY
;WRITE THE TIMER MODE REG.
;DIVISOR FOR 1000 HZ
;WRITE TIMER-2 CNT-LSB

;WRITE TIMER-2 CNT-MSB
;GET CURRENT SETTING OF PORT B
;SAVE THAT SETTING
;TURN SPEAKER ON

;SET CNT TO WAIT 50MS
;DELAY BEFORE TURNING OFF
;DELAY CNT EXPIRE?
;NO-CONTINUE BEEPING SPEAKER
;RECOVER VALUE OF PORT B

BEEP 	 ENDP 	 C
CODE 	 ENDS 	 C 	 PUBLIC FORTRAN SUBROUTINE
END 	 C

$STORAGE:2
$N0FLOATCALLS

SUBROUTINE SELFADJ(F2)

INTEGER F1(6),F2(5),CHNRAY(7)
DIMENSION F(3),VCMX(3),VCMN(3),ACMX(3),ACMN(3)
DIMENSION B1(3),B4(3),B5(3),B6(3)

• SETTING UP CHANNEL POSITIONS.
CHNRAY(1)=6
CHNRAY(2)=7
CHNRAY(3)=8
CHNRAY(4)=3
CHNRAY(5)=4
CHNRAY(6)=5
CHNRAY(7)=999

• RECORDING PRESENT ARM POSITION BY SAMPLING.
CALL INTRON
CALL ADSWST(CHNRAY,1,F1,6,1)
CALL INTROFF

• CLOSING THE GRIPPER IF IT IS OPEN.
IF(F1(6).NE.0)THEN
CALL DIGOUT(2,5)

50 	 CALL ADIN(5,F1(6))
IF(F1(6).GT.0)GOTO 50
CALL DIGOUT(0,5)

ENDIF

• CONVERTING WRIST PITCH & ROLL VALUES TO NO. OF STEPS.
F1(4)=NINT((F1(4)+1242)/10.23724)
IF(F1(4).LT.0)F1(4)=0
F1(5)=NINT((F1(5)+1856)/8.06333)
IF(F1(5).LT.0)F1(5)=0

• COMPARING POSITION DATA TO SEE IF DATA ARE MATCHED.
DO 60 J=1,3
IF(F1(J).NE.F2(J))GOTO 70

60 CONTINUE

• OUTPUTING WRIST ORIENTATION IF POSITION DATA MATCHED.
CALL wRIsT(F2(4))

RETURN

• SETTINT 6TH ORDER SPLINE COEFFICIENTS TO JOINT THE 2 POINTS.
• IF POSITION DATA DO NOT MATCH.
70 	 DO 75 J=1,3

F(J)=REAL(F2(J)-F1(J))
75 CONTINUE

T=SQRT(F(1)**2+F(2)**2+F(3)**2)
VCMX(1)=574
VCMN(1)=-574
VCMX(2)=1140
VCMN(2)=-3280
VCMX(3)=1200
VCMN(3)=-1800
ACMX(1)=2332
ACMN(1)=-2332
ACMX(2)=8497
ACMN(2)=-11015
ACMX(3)=7596
ACMN(3)=-7452
S=0
TVM=T/2
TAM=0.788675*T
DO 80 J=1,3

B1(J)=FLOAT(F1(J))
H4(J)=10*F(J)/(T**3)
85(J)=-15*F(J)/(T**4)
36(J)=6*F(J)/(T**5)
VMAX=3*94(J)*(TVM**2)+4*B5(J)*(TVM**3)+5*B6(J)*(TVM**4)
AMAX=6*B4(J)*TAM+12*B5(J)*(TAM**2)+20*B6(J)*(TAM**3)
IF(VMAX.GT .0)THEN _

SV=VMAX/VCMX(J)
ELSE

SV=VMAX/VCMN(J)
ENDIF
IF(AMAX.GT.0)THEN

SA=SQRT(AMAX/ACMX(J))
ELSE

SA=SQRT(AMAX/ACMN(J))
ENDIF
ST=ABS((REAL(F2(4)+F2(5)-F1(4)-F1(5)))/(20*T))
S=MAX(SV,SA,ST,S)

80 CONTINUE
S=1000*S
TOUT=T*S
DO 90 J=1,3

B4(J)=34(J)/(S**3)
B5(J)=B5(J)/(S**4)
B6(J)=B6(J)/(S**5)

90 CONTINUE

OUTPUTING SPLINE FUNCTION IN REAL TIME.
CALL HRIST(F2(4))
IF(TOUT.GT.30000.0)GOTO 120
CALL TIMST(0)

100 CALL TIMRD(0,IT1ISC)
T=FLOAT(ITMSC)
IF(T.GT.TOUT)GOTO 200
T3=T**3
T4=T3.0T

T5=T4*T
DO 110 J=1,3

F2(3)=NINT(B1(J)+B4(J)*T3+B5(J)*T4+86(3)*T 5)
110 CONTINUE

CALL POSITN(F2(1))
GOTO 100

120 CALL TIMST(0)
130 CALL TIMRR(0,TMSEC)

CALL M2ISQQ(TMSEC,T)
IF(T.GT.TOUT)GOTO 200
T3=T**3
T4=T3*T
T5=T4*T
DO 140 J=1,3

F2(J)=NINT(31(J)+54(J)*T3+35(J)*T4+B6(J)*T5)
140 CONTINUE

CALL POSITN(F2(1))
GOTO 130

200 RETURN

END

$STORAGE:2 	 $STORAGE:2
SNOFLOATCALLS 	 PROGRAM OPFILE

CHARACTER FNAME*11,KEY*1
PROGRAM ALIGN 	 LOGICAL OLDFILE

	

50 	 WRITE(*,60)
IMPLICIT INTEGER(A—Z) 	 60 	 FORMAT(///,' PLEASE INPUT A FILE NAME, XXX.DAT, WHICH DATA',

*/,' ARE TO BE STORED & MANIPULATED.',
INITIALIZING THE LAB—PACK SUBROUTINES. 	 *//,' (NOTE: XXX MUST BE LESS THAN 7 CHARACTER.]',/)
CALL INIT 	 READ(*.'(A)')FNAME
CALL INTROFF 	 INQUIRE(FILE=FNAME,EXIST=OLDFILE)
CALL STPORT 	 IF(.NOT.OLDFILE)GOTO 80

WRITE(*,70)
WRITE(*,50) 	 70 	 FORMAT(//,' WARNING: FILE WITH THE SAME NAME ALREADY EXISTS.',

50 	 FORMAT(/////,10X,'PLEASE FOLLOW THE INSTRUCTIONS EXACTLY, AND', 	 V 	 */,' DO YOU WANT TO SPECIFY ANOTHER NAME? (YIN) ')
//,6X,'BE SURE EACH STEP DONE BEFORE RETURN—BUTTON PRESSED.', 	 READ(,.(A)')KEY

IF(KEY.NE.'N')GOTO 50

	

80 	 OPEN(5,FILE='NAME.JOB.,STATUS.a'NEW)
PAUSE ' BRING THE GRIPPERS TO THEIR REFERENCE POSITIONS.' 	 WRITE(5,'(A)')FNAME
WRITE(*,'(///)') 	 CLOSE(5)

END
PAUSE • SWITCH THE ALIGN SWITCH TO ON POSITION:'
WRITE(*,'(///)')

PAUSE ' SWITCH ON THE POWER SUPPLY OF THE ARMS.'
WRITE(*, '(///)')

CALL DISTAT(0,7,POWER,O)
IF(POWER.EQ.0)THEN
WRITE(*,60)

60 	 FORMAT(//,' NO POWER IS DETECTED.',
//,' PLEASE CHECK POWER SUPPLY.',//)

65 	 CALL DISTAT(0,7,POWER,0)
IF(POWER.EQ.0)GOTO 65

ENDIF
CALL DIGOUT(100,3)
CALL DIGOUT(150,1)

PAUSE ' SWITCH THE ALIGN SWITCH BACK TO OPERATE POSITION.'
WRITE(*.' (///).)

WRITE(*,70)
70 	 FORMAT(///////,16X,' ALIGNMENT PROCESS FINISHED.',///////)

END

SSTORAGE:2
	

DATRAY(4)=NINT((DATRAY(4)+1242)/10.23724)
SNOFLOATCALLS

	
IF(DATRAY(4).LT.0)DATRAY(4)=0
DATRAY(5)=NINTUDATRAY(5)+1856)/8.06333)

PROGRAM LEARN
	

IF(DATRAY(5).LT.0)DATRAY(5)=0

IMPLICIT INTEGER (A-Z) 	 CALL SELFADJ(DATRAY)
DIMENSION DATRAY(5),JOINT(6,50),CHRAY1(6)
CHARACTER FNAME*11,KEY*1 	 C 	 OPENING A FILE FOR STORING DATA TO THE SPECIFIED FILENAME
LOGICAL OLDFILE, 	 50 	 OPEN(5,FILE=FNAME,STATU5='NEW')

C 	 INITIALIZING THE LABPACK ROUTINES 	 C 	 INFORMING USER WHILE THE SYSTEM IS READY AFTER INITIALIZATION
CALL INIT 	 55 PAUSE • THE ROBOT IS READY TO BE TAUGHT.'
CALL INTROFF
CALL STPORT 	 WRITE(*,57)
CALL STTIMEB(2000). 	 57 	 FORMAT(//////////,17X,' ROBOT IS NOW BEING TAUGHT.',

*//,7X, PRESS ESC-BUTTON WHEN FINISH TEACHING PROCESS.',
SETTING CHANNEL NOS.
CHRAY1(1)=0
CHRAY1(2)=1
CHRAY1(3)=2
CHRAY1(4)=3
CHRAY1(5)=4
CHRAY1(6)=999
DATA5=0 '
DATA4=0.

• INITIALIZING THE FLAGS REQUIRED
M=1
GRPMOD=0

60 MEMODE=0

• DETECTING WHETHER ESC BUTTON IS PRESSED FOR TERMINATION
70 	 CALL ESC(PRESSED)

IF(PRESSED.EQ.1)GOTO 140
• TRYING TO READ FILE NAME.JOB

INQUIRE(FILE='NAME.JOB',EXIST=OLDFILE) 	 C 	 SAMPLING 5 A/D CHANNELS WITH SAMPLING RATE 1000 SAMPLES/SEC..
IF(.NOT.OLDFILE)GOTO 30 	 CALL INTRON
OPEN(50,FILE=14AME.JOB.) 	 CALL ADSWST(CHRAY1,1,DATRAY,5,1)
READ(50,.(A)',ERR=30)FNAME 	 CALL INTROFF
GOTO 41

CONVERTING WRIST PITCH & ROLL VALUES TO NO. OF STEPS
• REQUESTING FILENAME TO BE USED FOR STORING DATA 	 C 	 OUTPUTING ONLY IN THE INCREMENT OF 2 STEPS.
30 	 WRITE(*,35) 	 DATRAY(4)=NINT((DATRAY(4)+1242)/10.23724)
35 	 FORMAT(' PLEASE INPUT FILENAME, XXX.DAT, TO WHICH , 	 IF(DATRAY(4).LT.0)DATRAY(4)=0

•/,' JOINT DATA ARE TO BE STORED.', 	 DATRAY(5)=NINT((DATRAY(5)+1856)/8.06333)
*//,' [NOTE: XXX MUST BE LESS THAN 7 CHARACTERS.)',!) 	 IF(DATRAY(5).LT.0)DATRAY(5)=0
READ(*,.(A) •)FNAME 	 DELTA4=DATRAY(4)-DATA4
WRITE(*,'(///).) 	 IF(ABS(DELTA4).LT.2)THEN

DATRAY(4)=DATA4
• CHECKING INPUT FILE IF ALREADY EXIST. 	 ELSE

INQUIRE(FILE=FNAME,EXIST=OLDFILE) 	 DATA4=DATRAY(4)
IF(.NOT.OLDFILE)GOTO 41 	 ENDIF
WRITE(* ,39) 	 DELTA5=DATRAY(5)-DATA5

39 	 FORMAT(//,' WARNING: FILE WITH THE SAME NAME ALREADY EXISTS.', 	 IF(ABS(DELTA5).LT.2)THEN
*//,' DO YOU WANT TO SPECIFY ANOTHER NAME? (WN).) 	 DATRAY(5)=DATA5
READ(*,.(A)')KEY 	 ELSE
WRITE(*, '(/////)•) 	 DATA5=DATRAY(5)
IF(KEY.NE.'N')GOTO 30 	 ENDIF

C 	 ALIGNING THE ACTUAL ARM WITH RESPECT TO THE SIMULATED ARM. 	 C 	 DETECTING WHETHER GRIP OR MEMORY SWITCHES ARE PRESSED
41 	 CALL INTRON 	 CALL DISTAT(0,0,GRIP,0)

CALL ADSWST(CHRAY1,1,DATRAY,5,1) 	 CALL DISTAT(0,1,MEMORY,O)
CALL INTROFF

1 	 2

'OUTPUTING THE DIGITIZED VALUES TO THE ACTUAL ARM
CALL ARMOUT(DATRAY)

• OPENING/CLOSING THE GRIPPER WHEN GRIP SWITCH IS DETECTED
IF(GRIP.EQ.0)GOTO 100
IF(GRPMOD.EQ.1)GOTO 90

• OPENING THE GRIPPER
CALL DIGOUT(1,5)

85 	 CALL DISTAT(0,0,GRIP,O)
IF(GRIP.EQ.1)GOTO 85
CALL DIGOUT(0,5)
CALL ADIN(5,GPOT)
GRPMOD=1
GOTO 110

• CLOSING THE GRIPPER
90 	 CALL DIGOUT(2,5) 	 -
95 	 CALL ADIN(5,DATA)

IF(DATA.GT.0)GOTO 95
CALL DIGOUT(0,5)
GPOT=0
GRPMOD=0
GOTO 110

• STORING JOINT POSITION DATA WHEN MEMORY SWITCH IS DETECTED.
100 IF(MEMORY.EQ.0)GOTO 60

IF(MEMODE.EQ.1)GOTO 70
110 MEMODE=1

CALL BEEP(1)
JOINT(1,M)=DATRAY(1)
JOINT(2,M)=DATRAY(2)
JOINT(3,M)=DATRAY(3)
JOINT(4,M)=DATRAY(4)
JOINT(5,M)=DATRAY(5)
JOINT(6,M)=GPOT

ADVANCING TO THE NEXT MEMORY LOCATION AND LIMITING THE STORED
DATA TO 50 SETS
M=M+1
IF(M.GT.50)GOTO 130
IF(M.NE.45)GOTO 70
CALL BEEP(5)
WRITE(*,120)

120 FORMAT(' WARNING: ONLY 5 MORE MEMORIES LEFT.',)
GOTO 70

130 M=50
CALL BEEP(10)
WRITE(*,135)

135 FORMAT(///,15X,' MEMORY FULL! LEARN PROCESS TERMINATED.',
*//,' DO YOU WANT TO KEEP THE DATA 	 (YIN)')
READ(.,.(A) •)KEY
IF(KEY.NE.'N')GOTO 190
WRITE(*,137)FNAME

137 FORMAT(//,' THE FILE ',A,' IS DISCARDED. W)
CLOSE(5,STATUS&DELETE')

WRITE(*,138)
138 FORMAT(//,' DO YOU WANT TO TRY AGAIN? (Y/N) ',///)

READ(*,'(A) ')KEY
IF(KEY.NE.'N')GOTO 50

GOTO 500

140 M=M-1
WRITE(*,150)M

150 FORMAT(///,' LEARN PROCESS TERMINATED.',
' NO. OF POINTS RECORDED =',I4,//,)

• DETECTING IF ENOUGH DATA ARE RECORDED
IF(M.GT.1)GOTO 190
WRITE(*,160)

160 FORMAT(//,' DATA RECORDED WILL NOT BE ENOUGH FOR A JOB.'
*//,' PLEASE TRY AGAIN.'//)
REWIND(5)
GOTO 55

• STORING DATA TO FILE SPECIFIED
190 DO 200 I=1,M-1

WRITE(5,.(I5,5110,I5)')I,(JOINT(J.,I),J=1,6)
200 CONTINUE

• DETECTING IF END POINTS ARE MATCHED
DO 205 J=1,5
IF(JOINT(J,1).NE.JOINT(J,M))GOTO 210

205 CONTINUE
WRITE(5,'(I5,5I10,I5) ')M,(JOINT(J,M),J=1,6)
L=M
GOTO 400

210 L=M
WRITE(*,220)

220 FORMAT(THE FINAL POSITION DOES NOT MATCH WITH THE INITIAL.',
*//,' DOES IT MATTER 7 (Y/N)')
READ(*,.(A) ')KEY
IF(KEY.EQ.'N')GOTO 310

230 wRITE(.,240)
240 FORMAT(//,' PLEASE SELECT THE FOLLOWING OPTIONS:-',

*//,5X,'1 = ADJUSTING THE END POINT TO MATCH THE STARTING POINT.',
*//.5X,'2 . USING AN ARBITRARY ROUTE TO JOINT THE END POINTS.',

= FOLLOWING THE SAME ROUTE BACK TO THE STARTING POINT.',

READ(*,*,ERR=230)IBACK
IFHIBACK.LE.0).0R.(IBACK.GT.3))GOTO 230
GRIPER=0
GOTO(260,270,290)IBACK

260 L=M
WRITE(5,.(I5,5110,I5)')M,(3OINT(J,1),J=1,5),JOINT(6,M)
GOTO 400

4

270 L=M+1
WRITE(5,'(I5,5110,I5)')M,(JOINT(J,M),J=1.6)
/F(JOINT(6,M).NE.0)THEN
DO 280 J=1.5
JOINT(J,2)=JOINT(J,M)+2

280 	 CONTINUE
WRITE(5,'(I5,5110,I5)')L,(JOINT(J,2),J=1,5),GRIPER
L=M+2

ENDIF
WRITE(5,.(I5,5110,I5) ')L,(JOINT(J,1),J=1.5),GRIPER
GOTO 400

290 DO 300 I=1,M
L=M+I-1
K=M-I+1
WRITE(5..(I5,5110,I5)')L,(JOINT(J,K),J=1.5),GRIPER

300 CONTINUE
GOTO 400 •

310 L=M
WRITE(5,.(I5,5110,I5) •)M,(JOINT(J,M),J=1,6)
GOTO 400

400 WRITE(*,410)FNAME,L
410 FORMAT(//, ALL JOINT DATA ARE STORED IN THE FILE:- ',A,

*//,' TOTAL NO. OF RECORD =',I4,//)
CLOSE(5)

$STORAGE:2
$N0FLOATCALLS

PROGRAM TRIM

IMPLICIT INTEGER(A-Z)
DIMENSION TRIMDAT(100,6),DATA(6),OLDDAT(6)
CHARACTER FNAME*11,KEY*1
LOGICAL OLDFILE,CYCLIC,LAST
COMMON TRIMDAT

• CHECKING IF FILENAME HAS BEEN SPECIFIED
INQUIRE(FILE='NAME.JOB',EXIST=OLDFILE)
IF(.NOT.OLDFILE)GOTO 50
OPEN(50,FILE=.11AME.JOB.)
READ(50,'(A)',ERR=50)FNAME
GOTO 70

• REQUESTING A FILENAME HAS IT NOT BEEN SPECIFIIED
50 	 WRITE(*,60)
60 	 FORMAT(//,' PLEASE INPUT A FILENAME, XXX.DAT, IN WHICH',

*/,' DATA ARE TO BE TRIMMED.',
*//,' [NOTE: XXX MUST BE LESS THAN 7 CHARACTERS.]',//)
READ(*,.(A))FNAME

• CHECKING IF SPECIFIED FILE IS A NEW FILE
70 	 INQUIRE(FILE=FNAME,EXIST=OLDFILE)

IF(.NOT.OLDFILE)GOTO 200

CLOSING THE GRIPPER IF IT IS OkN BEFORE EXITING THE PROGRAM.
500 CALL ADIN(5,IPOT5) 	 WRITE(*,75)

IF(IPOT5.GT.0)THEN 	 75 	 FORMAT(//////////,20X,'DATA IS BEING TRIMMED.',

CALL DIGOUT(2,5) 	
*//11X 'ANY DUMMY DATA DETECTED WILL BE REMOVED.',/////////////)

510 	 CALL ADIN(5,IPOT5)
IF(IPOT5.GT.0)GOTO 510 	

• 	

OPENING FILE-5 DEFINED TO BE THE SPECIFIED FILE

CALL DIGOUT(0,5) 	 OPEN(5,FILE=FNAME)

ENDIF
CONTINUE 	 C 	 SETTING COUNTERS. N FOR DATA & I FOR TRIMMED DATA

N=1

END 	 I=1

READ(5,80,IOSTAT=IOCHK,ERR=160)(DATA(J),J=1,6)
80 	 FORMAT(5X,5110,I5)

90 N=N+1
DO 100 J=1,6
OLDDAT(J)=DATA(J)

100 CONTINUE

READ(5,80,END=130)(DATA(J),J=1,6)

COMPARING TWO CONSECUTIVE DATA

DO 110 J=1,3
IF(OLDDAT(J).NE.DATA(J))GOTO 115

110 CONTINUE
GOTO 90

CALL INSERT(JBASE1)
C 	 STORING THE OLD DATA IF TWO DATA DO NOT MATCH. 	 DATINS=DATINS+2
115 DO 120 J=1,6 	 ENDIF

TRIMDAT(I,J)=OLDDAT(J) 	 148 IF(LAST)GOTO 150
120 CONTINUE 	 J=J+1

I=I+1 	 IF(J.EQ.I)GOTO 150
GOTO 90 	 JBASE=J

GOTO 140
• STORING THE LAST DATA. 	 150 WRITE(5,500)(TRIMDAT(I,M),M=1,6)
130 DO 132 J=1,6 	 152 CLOSE(5)

TRIMDAT(I,J)=OLDDAT(J)
132 CONTINUE 	 WRITE(*,155)FNAME,N,DUMMY,DATINS

155 FORMAT(//,20X,' TRIM PROCESS TERMINATED.',
• CHECKING DATA SET TO SEE IF CYCLIC, AND WRITE TO THE FILE. 	 *//.10X,' No. OF RECORD IN ORIGINAL FILE:-',A,' = ',I4,

DO 134 J=1,5 	 *//,10X,' NO. OF DUMMY DATA DELETED = ',I4,
IF(TRIMDAT(1,J).NE.TRIMDAT(I,J))GOTO 136 	 *//,10X,' NO. OF DATA INSERTED = ',I4,11/)

134 CONTINUE 	 GOTO 220
CyCLIc=.TRUE.
GOTO 138 	 160 IF(IOCHK.NE.0)GOTO 180

136 CYCLIC=.FALSE. 	 WRITE(*,170)FNAME
138 REWIND(5) 	 170 FORMAT(//,' THERE IS NO DATA IN FILE ',A)

WRITE(5,.(L5)')CYCLIC 	 GOTo 215

N=N-1
DUMMY=N-I

• INSERTING DATA TO A SECTION APPROPRIATELY.
DATINS=0
LAST=. FALSE.
JBASE=1
J=1

140 IGRIP=TRIMDAT(7,6)
IDATA=1

142 IF(TRIMDAT(J+1,6).NE.IGRIP)GOTO 145
J=J+1
IF(J.EQ.I)GOTO 144
IDATA=IDATA+1
GOTO 142

144 LAsT=.TRUE.
145 wRITE(5,500)(TRImDAT(JBAsE,m),M=1.6)
500 FORMAT(5X,5110,I5)

IF(IDATA.GE.4)THEN
Do 146 K=1,IDATA-1

witaTE(5,500)(TRImDAT(JDASE+K.M),M=1,6)
146 	 CONTINUE

ELSEIF(IDATA.EQ.3)THEN
WRITE(5,500)(TRIMDAT(JBASE+1,M),M=1,6)
JBASE1=JBASE+1
CALL INSERT(JBASE1)
WRITE(5,500)(TRIMDAT(JBASE+2,M),M=1,6)
DATINs=DATINS+1

ELSEIF(IDATA.EQ.2)THEN
CALL INSERT(JBASE)
WRITE(5,500)(TRIMDAT(JBASE+1,M),M=1.6)
JBASE1=JBAsE+1

180 WRITE(*,190)FNAME
190 FORMAT(//,' FILE ',A.' IS NOT IN APPROPRIATE FORMAT.')

GOTO 215

200 WRITE(*,210)FNAME
210 FORMAT(//, FILE ',A,' DOES NOT EXIST.')

215 WRITE(*,217)
217 FORMAT(//,' DO YOU WANT TO TRY ANOTHER FILE ? (YIN) ',//)

READ(*,.(A))KEY
IF(KEY.NE.'N')GOTO 50

220 CONTINUE

END

SUBROUTINE INSERT (.3)
INTEGER TEMP(5),TRIMDAT(100,6)
COMMON TRIMDAT
DO 50 1=1,5

TEMP (I) = (TRIMDAT(J,I)+TRIMDAT(J+1 I)) /2

50 CONTINUE
wRITE(5,.(5X,5110,I5))(TEMP(I),I=1,5),TRIMDAT(J,6)
RETURN
END

$STORAGE:2 	 IFHOPMODE.NE.'A').AND.(OPMODE.NE..K))GOTO 48
$N0FLOATCALLS

• OPENING THE FILE-5 DEFINED TO BE THE SPECIFIED DATA FILE
PROGRAM SMOOTH

	

• 	

FROM WHICH DATA ARE TO BE READ
OPEN(5,FILE=FNAME)

REAL VCMX(3),VCMN(3),ACMX(3),ACMN(3)
INTEGER BODY(50),SHODER(50),ELBOW(50),WPITCH(50),WROLL(50) 	 C 	 READING DATA TO SEE IF DATA SET IS REPEATABLE.
INTEGER GRIPER(2) 	 READ(5,.(L5)',ERR=180)CYCLIC
CHARACTER FNAME*11,0PMODE*1
LOGICAL OLDJOB,FAST,CYCLIC 	 C 	 OPENING THE FILE-20 FOR STORING SMOOTHED DATA

OPEN(20,FILE='BUFFER.JOB',STATUS='NEW')
COMMON BODY,SHODER,ELBOW,WPITCH,WROLL,GRIPER,N,TSUM 	 WRITE(20,'(20X,A)')FNAME
COMMON /BLK3/VCMX,VCMN,ACMX,ACMN

• RECORDING SELECTED OPTION.
• DETECTING WHETHER FILENAME HAS BEEN SPECIFIED 	 WRITE(20,'(2L5)')FAST,CYCLIC

INQUIRE(FILE='NAME.JOB',EXIST=OLDJOB)
IF(.NOT.OLDJOB)GOTO 30 	 C 	 SETTING THE POINTER-N TO 1 FOR THE FIRST READ DATA AND
OPEN(50,FILE=.NAME.JOB.) 	 C 	 START READING DATA FROM THE SPECIFIED FILE
READ(50,.(A)',ERR=30)FNAME 	 TIME=0
GOTO 46 	 MSECTN=0

N=1
• REQUESTING A FILENAME FROM WHICH DATA ARE TO BE SMOOTHED 	 READ(5,50,END=160,ERR=180)BODY(N),SHODER(N),ELBOW(N),WPITCH(N),
30 	 WR/TE(*,40) 	 *WROLL(N),GRIPER(1)
40 	 FORMAT(PLEASE INPUT A FILENAME, XXX.DAT, FROM WHICH', 	 50 	 FORMAT(5X,5110,I5)

*/,' DATA ARE TO BE CURVE-FITTED.',
*//,' [NOTE: XXX MUST BE LESS THAN 7 CHARACTERS. l//) 	 C 	 WRITING THE INITAIL DATA POINTS TO BUFFER.JOB.
READ(*,.(A)')FNAME 	 WRITE(20,*(5I10).)BODY(1),SHODER(1),ELBOW(1),WPITCH(1),WROLL(1)

• CHECKING THE SPECIFIED FILE IF IT IS NEW 	 C 	 SETTING ACTUAL IGRIP & READING THE SECOND DATA
46 INQUIRE(FILE=FNAME,EXIST=OLDJOB) 	 IGRIP=0

IF(.NOT.OLDJOB)GOTO 120 	 IF(GRIPER(1).NE.0)IGRIP=1
WRITE(20,.(I10)')IGRIP

& ACCELERATION CONSTRAINTS. 	 N=2
READ(5,50,END=140,ERR=180)BODY(N),SHODER(N),ELBOW(N),WPITCH(N),
*WROLL(N),GRIPER(2)

• DETECTING STATUS OF GRIPPER. IF CHANGED, THE FIRST READ
• DATA UP TO THE DATA JUST READ ARE TREATED AS A SECTION.
60 	 IF(GRIPER(2).NE.0)GOTO 70

IF(IGRIP.EQ.0)GOTO 80
CALL SPLINE(FAST)
IGRIP=0
GOTO 75

70 	 IF(IGRIP.EQ.1)GOTO 80
CALL SPLINE(FAST)

SELECTING OPTIONS. 	 IGRIP=1
48 	 WRITE(*,49)
49 FORMAT(//,' PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS:- 	 C 	 SETTING THE END POINT OF THE LAST SECTION AS THE INITAL

' K = KEEP ALL THE WRIST POSITIONS AT SPECIFIED POINTS.', 	 c 	 POINT OF THE NEXT SECTION.
*//,5X,' A = KEEP ONLY THE WRIST POSITIONS AT THE GRIP POINTS.', 	 75 	 BODY(1)=BODY(N)

SHODER(1)=SHODER(N)
READ(*,'(A)')OPMODE 	 ELBOW(1)=ELBOW(N)
IF(OPMODE.EQ.W)FAST=.FALSE. 	 WPITCH(1)=WPITCH(N)

IF(OPMODE.EQ.'A')FAST=.TRUE. WROLL(1)=WROLL(N)

SETTING UP VELOCITY
VCMX(1)=574
VCMN(1)=-574
VCMX(2)=1140
VCMN(2)=-3280
VCMX(3)=1200
VCMN(3)=-1800
ACMX(1)=2332
ACMN(1)=-2332
ACMX(2)=8497
ACMN(2)=-11015
ACMX(3)=7596
ACMN(3)=-7452

GRIPER(1)=GRIPER(2)
MSECTN=MSECTN+1
TIME=(TIME+TSUM) 	 C 	 THIS SUBROUTINE IS TO EVALUATE SPLINE FUNCTIONS FOR EACH
N=2 	 C 	 DATA SEGMENT FOR EACH JOINT.
GOTO 85 	 SUBROUTINE SPLINE(FAST)

80 	 N=N+1 	 REAL U(50),V(50),W(50)
85 	 READ(5,50,END=90)BODY(N),SHODER(N),ELBOW(N),WPITCH(N),WROLL(N), 	 INTEGER H,BODY(50),SHODER(50),ELBOW(50),WPITCH(50),WROLL(50)

*GRIPER(2) 	 INTEGER GRIPER(2)
GOTO 60 	 DIMENSION T(50),F(50,3),FDASH(50,3)

DIMENSION VMX(3),VMN(3),AMX(3),AMN(3),VCMX(3),VCMN(3),ACMX(3)
C 	 DETECTING NO. OF DATA READ WHEN END OF SPECIFIED FILE IS 	 DIMENSION ACMN(3)
C 	 ENCOUNTERED. IF NO DATA IS READ, THE PROGRAM WILL BE TERMINATED. 	 LOGICAL FAST
90 N=N-1

IF(N.EQ.1)GOTO 100 	 COMMON BODY,SHODER,ELBOW,WPITCH,WROLL,GRIPER,N,TSUM
CALL SPLINE(FAST) 	 COMMON /BLK1/B1,B2,B3,54,B5,156
MSECTN=MSECTN+1 	 COMMON /BLK2/T,VMX,VMN,AMX,AMN
TIME=TIME+TSUM 	 COMMON /BLK3/VCMX,VCMN,ACMX,ACMN

100 CLOSE(5) 	 C 	 INITIALIZING MAX. & MIN. VELOCITIES & ACCELERATIONS TO ZEROS.
CLOSE(20) 	 DO 101 J=1,3

VMX(J)=0
CONVERTING TIME INTO SEC. 	 VMN(J)=0
TIME=TIME/1000.0 	 AMX(J)=0

AMN(J)=0
WRITE(*,110)MSECTN,TIME 	 101 CONTINUE

110 FORMAT(//////////.20X,'SMOOTH PROCESS FINISHED.',
*//,10X,'DATA ARE PUT TO BUFFER AND READY TO BE USED.', 	 C 	 OPENING A TEMPORARY FILE TO STORE SPLINE COEFFICIENTS.
*///,21X,'NO. OF SECTIONS = ',I2, 	 OPEN(30,FILE='SPLINE.TMP',STATUS='NEW')
*//,21X,'TOTAL PATH TIME REQUIRED = ',F5.1,' SEC.',//////////)

WRITING THE AMOUNT THAT THE GRIPPER NEEDED TO BE OPENED.
GOTO 200 	 WRITE(20,.(I10)')GRIPER(1)

120 WRITE(*,130)
	

C 	 WRITING NO. OF POINTS FOR THIS SECTION.
130 FORMAT(FILE NOT FOUND. PLEASE SPECIFY ANOTHER FILE.',//)

	
WRITE(20,*(I10)')N

GOTO 30
SETTING THE F MATRIX

.140 WRITE(*,150)FNAME
	

DO 30 I=1,N
150 FORMAT(//,' DATA IN FILE ',A,' IS NOT ENOUGH FOR A JOB.', 	 F(I,1)=FLOAT(BODY(I))

*/,' PLEASE TRY ANOTHER FILE.',//)
	

F(I,2)=FLOAT(SHODER(I))
GOTO 30

	
F(I,3)=FLOAT(ELBOW(I))

30 CONTINUE
160 WRITE(*,170)FNAME
170 FORMAT(//,' THERE IS NO DATA IN FILE ',A,' 	 CALCULATING TIME INTERVAL BETWEEN TWO DATA POINTS FOR

' PLEASE TRY ANOTHER FILE.',//) 	 C 	 EACH SEGMENT
GOTO 30 	 TSUM=0

DO 50 K=1,N-1
180 WRITE(*,190)FNAME 	 SUMSQ=0
190 FORMAT(//,' DATA IN FILE ',A, 'Is NOT IN APPROPRIATE FORMAT.', 	 DO 40 J=1,3

*/,' PLEASE TRY ANOTHER FILE.',//) 	 SUMSQ1=(F(K+1,J)-F(K,J))**2
GOTO 30 	 SUMSQ=SUMSQ+SUMSQ1

40 	 CONTINUE
200 CONTINUE 	 T(K+1)=SQRT(SUMSQ)

TSUM=TSUM+T(K+1)
END 	 IF(T(R+1).EQ.0)GOTO 666

3 	 4

50 'CONTINUE 103 CONTINUE

C DETECTING IF TWO DATA ARE RECORDED 5-ORDER SPLINE FUNCTION C SETTING UP THE SPLINE FUNCTIONS FOR THE SECOND UP TO THE
C WILL BE USED. C LAST SECOND SEGMENTS FOR EACH JOINT

IF(N.EQ.2)GOTO 200 N1=N-1
IF(N.LT.5)GOTO 999 105 ISEG=ISEG+1

IF(ISEG.EQ.N1)GOTO 115
C SETTING UP EFFICIENT ALGORITHM OPERATORS. DO 110 J=1,3 	 -

N2=N-2 B1=F(ISEG,J)
U(1)=2*T(2)+3*T(3) B2=FDASH(ISEG-1,J)
V(1)=-T(2)/U(1) 33=(3*(F(I5EG+1,J)-F(ISEG,J))/T(ISEG+1)-2*FDASH(ISEG-1,J)-
DO 60 I=2,N2-1 	 * 	 FDASH(ISEG,J))/T(ISEG+1) 	 _
U(I)=T(I+2)*V(I-1)+2*(T(I+1)+T(I+2)) 	 B4=(2*(F(ISEG,J)-F(ISEG+1,J))/T(ISEG+1)+FDASH(ISEG-1,J)+
V(I)=-T(I+1)/U(I) 	 • 	 FDASH(ISEG,J))/(T(ISEG+1)**2)

60 CONTINUE 	 B5=0
U(N2)=T(N)*V(N2-1)+3*T(N-1)+2*T(N) 	 B6=0

IF(ABS(B4).LT.1E-30)THEN
C 	 CALCULATING THE INTERMEDIATE VELOCITIES FOR EACH SEGMENT. 	 TVMAX=T(ISEG+1)

DO 90 J=1,3 	 ELSE
D=3*((T(2)**2)*(F(3,J)-F(2,J))+ 	 TVMAX=-83/(3*B4)

• 2*(T(3)**2)*(F(2,J)-F(1,J)))/(T(2)*T(3)) 	 ENDIF

W(1)=D/U(1) 	 TA11AX=T(ISEG+1)

DO 70 I=2,N2-1 	 CALL SORT(ISEG,J,TVMAX,TAMAX)
D=3*((T(I+1)**2)*(F(I+2,J)-F(I+1,J))+ 	 wRITE(30,.(4E12.5))81,B2,B3,B4

(T(I+2)**2)*(F(I+1,J)-F(I,J)))/(T(I+1)*T(I+2)) 	 110 CONTINUE
W(I)=(D-T(I+2)*W(I-1))/U(I) 	 GOTO 105

70 	 CONTINUE
D=3*(2*(T(N-1)**2)*(F(N,J)-F(N-1,J))+ 	 C 	 SETTING UP THE SPLINE FUNCTION FOR THE LAST SEGMENT FOR

(T(N)**2)*(F(N-1,J)-F(N-2,J)))/(T(N-1)*T(N)) 	 C 	 EACH JOINT
W(N2)=(D-T(N)*W(N2-1))/U(N2) 	 115 DO 130 J=1,3

• FDASH(N2,J)=W(N2) 	 B1=F(N-1,J)
DO 80 I=1,N2-1 	 82=FDASH(N-2,J)
FDASH(N2-I,J)=V(N2-I)*FDASH(N2-I+1,J)+W(N2-I) 	 B3=(6*F(N,J)-6*F(N-1,J)-3*FDASH(N-2,j)*T(N))/(T(N)**2)

80 	 CONTINUE 	 B4=(-8*F(N,J)+8*F(N-1,J)+3*FDASH(N-2,j)*T(N))/(T(N)**3)
90 	 CONTINUE 	 B5=(3*F(N,J)-3*F(N-1,J)-FDASH(N-2,J)*T(N))/(T(N)**4)

B6=0
SETTING UP THE SPLINE FUNCTION FOR THE FIRST SEGMENT 	 IF(ABS(B5).LT.1E-30)THEN
FOR EACH JOINT. 	 TVMAX=T(N)
ISEG=1 • 	 TAMAX=T(N)
DO 103 J=1,3 	 ELSE
B1=F(1,J) 	 TVMAX=B3/(6*35*T(N))
B2=0 	 TA14AX=-84/(4*B5)
B3=0 	 ENDIF
B4=4*(F(2,J)-F(1,J))/(T(2)**3)-FDASH(1,J)/(T(2)**2) 	 CALL SORT(ISEG,J,TVMAX,TAMAX)
B5=3*(F(1,J)-F(2,J))/(T(2)**4)+FDASH(1,J)/(T(2)**3) 	 WRITE(30,'(5E12.5).)B1,B2,113,B4,B5
B6=0 	 130 CONTINUE

IF(ABS(B5).LT.1E-30)THEN 	 GOTO 300
TVMAX=T(2)
TAMAX=T(2) 	 C 	 CALCULATING THE SPLINE FUNCTION WHEN ONLY TWO DATA ARE GIVEN.

ELSE 	 200 ISEG=1

TVMAX=-84/(2*B5) 	 DO 220 J=1,3

TAMAX=-B4/(4*85) 	 B1=F(1,J)

ENDIF 	 82=0

• CALL SORT(ISEG,J,TVM)X,TAMAX) 	 B3=0

WRITE(30,'(5E12.5)')B1,B2,83,B4,B5 	 B4=10*(F(2,J)-F(1,J))/(T(2)**3)

B5=-15.(F(2,J)-F(1,J))/(T(2)..4)
B6=6*(F(2,J)-F(1,J))/(T(2)**5)

TVMAX=T(2)/2
TAMAX=0.788675134.T(2)
CALL SORT(ISEG,J,TVMAX,TAMAX)
WRITE(30,'(6E12.5)')B1,B2,83,B4,B5,86

220 CONTINUE

• EVALUATING TIME SCALE FACTOR TO CONVERT TO REAL TIME.

• EVALUATING SCALE FACTOR, SVA, DUE TO VELOCITY & ACCELERATION
• CONSTRAINS.
300 SVA=0

DO 310 J=1,3
SVMAX=VMX(J)/VCMX(J)
SVMIN=VMN(J)/VCMN(J)
IF(AMX(J).GT.0)THEN
SAMAX=SQRT(AMX(J)/ACMX(J))

ELSE
SAMAX=0

ENDIF
IF(AMN(J).LT.0)THEN
SAMIN=SORT(AHN(J)/ACMN(J))

ELSE
SAMIN=0

ENDIF
SVA=MAX(SVMAX,SVMIN,SAMAX,SAMIN,SVA)

310 CONTINUE

• EVALUATING SCALE FACTOR, ST, DUE TO TIME CONSTRAINTS.
IF(FAST)THEN
TC=(REAL(WPITCH(N)+WROLL(N)-WPITCH(1)-WROLL(1)))/20
ST=ABS(TC/TSUM)
WRITE(20,'(2I10)')WPITCH(N),WROLL(N)

ELSE
ST=0
DO 315 K=1,N-1
TC=IREAL(WPITCH(K+1)+WROLL(K+1)-WPITCH(K)-WROLL(K)))/20
STC=ABS(TC/T(K+1))

' ST=MAX(STC,ST)
WRITE(20,'(2I10)')WPITCH(K+1),WROLL(K+1)

315 - 	 CONTINUE
ENDIF

• EVALUATING THE ULTIMATE SCALE FACTOR, S.
S=MAX(SVA,ST)

C 	 CONVERTING THE SCALE FACTOR IN THE UNIT OF MSEC.
S=1000*S

• RENEWING COEFFICIENTS OF SPLINE TO REAL TIME FUNCTION.
REWIND (30)
IF(N.EQ.2)GOTO 380

• RENEWING FOR THE 1ST SEGMENT.

K=1
DO 330 J=1,3
READ(30,'(5E12.5))B1,82,53,84,B5
CALL RENEW(S)
WRITE(20,'(3E12.5)')B1,B4,B5

330 CONTINUE

• RENEWING FOR THE INTERMEDIATE SEGMENTS.
340 K=K+1

IF(K.EQ.N1)GOTO 360
DO 350 J=1,3
READ(30,'(4E12.5)')81,B2,B3,B4
CALL RENEW(S)
WRITE(20,.(4E12.5).)B1,82,B3,84

350 CONTINUE
GOTO 340

• RENEWING FOR THE LAST SEGMENT.
360 DO 370 J=1,3

READ(30,.(5E12.5)')B1,132,B3,B4,85
CALL RENEW(S)
wRITE(20,'(5E12.5)')B1,82,B3,B4,95

370 CONTINUE
GOTO 400

• RENEWING WHEN ONLY 2 POINTS RECORDED.
380 DO 390 J=1,3

READ(30,'(6E12.5).)B1,112,B3,B4,B5,B6
CALL RENEW(S)
WRITE(20,.(4E12.5)')B1,84,B5,B6

390 CONTINUE

400 CLOSE(30,STATUS='DELETE')

• CALCULATING THE REAL TIME IN MSEC FOR EACH SEGMENT.
TSUM=S*TSUM
DO 410 K=1,N-1
T(K+1)=S*T(K+1)
WRITE(20,'(E12.5)')T(K+1)

410 CONTINUE

RETURN

• TERMINATING THE PROGRAM WHEN DUMMY DATA DETECTED
666 STOP 'DUMMY DATA EXIST. PLEASE REPROGRAM THE ROBOT.'

• TERMINATING THE PROGRAM WHEN SECTION NO. NOT MATCH.
999 STOP 'BAD DATA. PLEASE REPROGRAM THE ROBOT.'

END

• THIS SUBROUTINE IS TO EVALUATE THE MAXIMUN VELOCITIES AND
• ACCELERATIONS ON EACH JOINT.

SUBROUTINE SORT(ISEG,J,TVMAX,TAMAX)

$STORAGE:2
$N0FLOATCALLS

PROGRAM GO

REAL B1(50,3),B2(50,3),B3(50,3),34(50,3),85(2,3),B6(1,3)
REAL TOUT(50)
INTEGER W(2.50)
DIMENSION IDATA(5)
LOGICAL OLDJOB,FAST,NFAST,CYCLIC
CHARACTER FNAME*11,KEY*1

INITIALIZING LAB-PACK SUBROUTINES.
CALL INIT
CALL INTROFF
CALL STPORT

• OPENING FILE-BUFFER.JOB .
INQUIRE(FILE='BUFFER.JOB.,EXIST=OLDJOB)
IF(.NOT.OLDJOB)GOTO 24
OPEN(7,FILE='BUFFER.JOB.)

• READING THE FILE NAME OF THE DATA FROM WHICH BUFFER.JOB IS
• CREATED.
10 	 READ(7,'(20X,A).,END=420,ERR=440)FNAME

• DISPLAYING DATA FILE NAME.
WRITE(*,20)FNAME

20 	 FORMAT(//,' JOB DATA IS FROM:- ',A,/, OK ? (Y/N).,//)
READ(*,'(A)')KEY
IF(KEY.NE.'N')GOTO 44
CLOSE (7

24 	 WRITE(*,28)
28 	 FORMAT(//,' PLEASE SPECIFY ANOTHER JOB FILE NAME.',//)

READ(*,.(A) •)FNAME
INQUIRE(FILE=FNAME,EXIST=OLDJOB)
IF(OLDJOB)GOTO 36
WRITE(*,32)

32 	 FORMAT(//,' JOB FILE NOT FOUND.',//)
GOTO 24

36 	 OPEN(7,FILE=FNAME)
GOTO 10

44 	 WRITE(*,48)
48 	 FORMAT(//,' DO YOU WANT TO RE-ALIGN THE WRIST ? (Y/N).,//)

READ(.,'(A))KEY
IF(KEY.EQ.'N')GOTO 52

• RESETTING REFERENCE OF THE WRIST POSITIONS.
WRITE(*,40)

40 	 FORMAT(//,' PLEASE FOLLOW THE INSTRUCTIONS BELOW TO RESET THE',
*/,' WRIST POSITIONS:- ',
*//,5X,'1. TURN THE POWER SUPPLY OF THE ARM OFF.',
*//,5X,.2. POSITION THE WRIST TO THE REFERENCE LINES...

DIMENSION T(50),VMX(3),VMN(3),AMX(3),AMN(3)

COMMON /BLK1/B1,B2,B3.84,85,86
COMMON /BLK2/T,VMX,VMN,AMX,AMN

SETTING FINCTIONS FOR EVALUATING VELOCITY & ACCELERATION.
VEL(TIME)=B2+2.113*TIME+3*B4*(TIME**2)+4*B5*(TIME**3)+

5.136*(TIME**4)
ACC(TIME)=2*B3+6*B4*TIME+12*B5*(TIME**2)+20*B6*(TIME**3)

CALCULATING MAX. & MIN. VELOCITIES .6, ACCELERATIONS.
K=ISEG+1
IF(TVMAX.GT.T(K))TVMAX=T(K)
VMAX=VEL(TVMAX)
IF(TAMAX.GT.T(K))TAMAX=T(K)
AMAX=ACC(TAMAX)

CHOOSING THE GLOBAL MAX. & MIN. OF VELOCITIES & ACCELERATIONS.
VMX(J)=MAX(VMAX,VMX(J))
VMN(J)=MIN(V)IAX,VMN(J))
AMX(J)=MAX(AMAX,AMX(J))
AMN(J)=MIN(AMAX,AMN(J))

RETURN
END

THIS SUBROUTINE IS TO RENEW THE COEFFICIENTS OF THE SPLINE
FUNCTION INTO REAL TIME FUNCTION.
SUBROUTINE RENEW(S)

COMMON /BLK1/B1,B2,B3,B4,55,B6

B2=B2/S
B3=B3/(S**2)
B4=B4/(S**3)
B5=B5/(S**4)
B6=B6/(S**5)

RETURN
END

*1/.5X,'3. PUT ALIGNMENT SWITCH TO ON POSITION.',
*//,5x,'4. TURN THE POWER ON OF THE ARM ON.',
*//,5X,'4. PRESS ANY KEY WHEN ALL THE ABOVE DONE.',//)
READ(*,'(AP)KEY
IDATA(4)=100
IDATA(5)=150
CALL WRIST(IDATA(4))
WRITE(* .50)

50 	 FORMAT(//, WRIST REFERENCE POSITION SET.',
*//,' PLEASE SWITCH ALIGNMENT SWITCH BACK TO OP. POSITION.',
*//,' PRESS ANY KEY WHEN READY.',//)
READ(*,.(A) •)KEY

• READING NO. OF POINTS FOR THE SECTION.
60 	 READ(7.'(I10)',ERR=440)N

NN1=N-1
IF(FAST)NN1=1
N2=N-2
N1=N-1

• READING WRIST POSITIONS.
DO 65 K=1,NN1
READ(7,'(2I10)',ERR=440)(W(J,K),J=1,2)

65 CONTINUE

IF(N.EQ.2)GOTO 300
C 	 READING THE APPROPRIATE OPERATION MODE.
52 	 READ(7,.(2L5),ERR=440)FAST,CYCLIC 	 C 	 READING COEFFICIENTS OF 5TH ORDER SPLINE FOR THE 1ST SEGMENT.

NFAST=.NOT.FAST 	 DO 70 J=1,3
• READ(7,'(3E12.5)',ERR=440)B1(1,J),B4(1,J).B5(1,J)

C 	 REQUESTING NO. OF TIMES THE PROCESS WANTED TO BE REPEATED. 	 70 CONTINUE
IF

54 	 WRITE(*,56) 	 C 	 READING COEFFICIENTS OF 4TH ORDER SPLINE FOR THE INTERMEDIATE
56 	 FORMAT(//,' PLEASE SPECIFY NO. OF TIMES THAT THE PROCESS', 	 C 	 SEGMENTS.

* /,' TO BE REPEATED.', 	 DO 80 ISEG=2,N2
* /,' [NOTE: ENTER 0 FOR UNLIMITED NO. OF TIMES. l',//) 	 DO 75 J=1,3

KEAD(*,*,ERR=54)NTImEs 	 READ(7,'(4E12.5).,ERR=440)B1(ISEG,J),132(ISEG,J),H3(ISEG,J),
IF(NTIMES.LT.0)GOTO 54 	 * 	 B4(ISEG,J)

ELSE 	 75 	 CONTINUE
NTIMES=1 	 80 CONTINUE

ENDIF
C 	 READING COEFFICIENTS OF 5TH ORDER SPLINE FOR THE LAST SEGMENT.

C 	 POSITION THE ARM TO STARTING POSITION. 	 90 DO 100 J=1,3
READ(7,.(5I10)',ERR=440)(IDATA(J),3=1,5) 	 READ(7,'(5E12.5)',ERR=440)B1(N1,J),B2(N1,J),}33(N1,J),B4(N1,J),
CALL SELFADJ(IDATA) 	 * 	 B5(2.J)

100 CONTINUE
PAUSE • THE ROBOT IS READY TO GO.'
WRITE(*,57)

57 	 FORMAT(//////////,14X,' ROBOT IS IN OPERATION.',
*//,10X,'PRESS ESC-BUTTON FOR EMERGENCY sTOP.',/////////////)

READING REQUIRED GRIPPER STATUS AND VALUE ON GRIPPER POT.
IGSTAT=0
MTIMES=1

58 	 READ(7,'(110)',ERR=440)IGRIP
READ(7,'(I10)',ERR=440)IGPOT
IF(IGSTAT.EQ.0)THEN
IF(IGRIP.EQ.1)THEN

CALL GOPEN(IGPOT)
IGSTAT=1

ENDIF
ELSE
IF(IGRIP.EQ.0)THEN
CALL GCLOSE
IGSTAT=0

ENDIF
ENDIF

• READING REAL TIME LIMIT FOR EACH SEGMENT.
DO 110 K=2,N
READ(7,.(E12.5)',ERR=440)TOUT(K)

110 CONTINUE

• EVALUATING & OUTPUTING DATA FOR THE 1ST SEGMENT.
CALL WRIST(W(1,1))
CALL TIMST(0)

120 CALL TimRR(0,TmsEC)
CALL m2ISQQ(TMSEC,T)
IF(T.GT.TOUT(2))GOTO 140
T3=T**3
T4=T*T3
DO 130 J=1,3
IDATA(J)=NINT(B1(3,,J)+84(1,J)*T3+B5(1,J)*T4)

130 CONTINUE
CALL POSITN(IDATA)
GOTO 120

C 	 EVALUATING & OUTPUTING DATA FOR THE INTERMEDIATE SEGMENTS.
140 DO 170 K=2,N2

CALL ESC(ISTOP) 	 DO 330 3=1,3
IF(ISTOP.EQ.1)THEN 	 IDATA(3)=NINT(B1(1,J)+B4(1,J)*T3+B5(1,J)*T4+B6(1,J)*T5)
PAUSE 	 330 CONTINUE

ENDIF 	 CALL POSITN(IDATA)
IF(NFAST)THEN 	 GOT 320
CALL WRIST(W(1,K))

ENDIF 	 C 	 READING & PREPARING GRIPPER STATUS FOR NEXT SECTION.
CALL TIMST(0) 	 350 READ(7,'(I10)',END=360,ERR=440)IGPOT

150 	 CALL TIMAR(0,TMSEC)
CALL M2ISQQ(TMSEC,T) 	 C 	 CLOSING/OPENING GRIPPER IF THE GRIPPER IS OPENED/CLOSED.
IF(T.GT.TOUT(K+1))GOTO 170 	 IF(IGSTAT.EQ.1)THEN
T2=T*T 	 CALL GCLOSE
T3=T2*T 	 IGSTAT=0
DO 160 J=1,3 	 ELSE
IDATA(J)=NINT(131(K,J)+B2(K,J)*T+83(K,J)*T2+B4(K,J)*T3) 	 CALL GOPEN(IGPOT)

160 	 CONTINUE 	 IGSTAT=1
CALL POSITN(IDATA) 	 ENDIF
GOTO 150

170 CONTINUE 	 GOTO 60

• EVALUATING & OUTPUTING DATA FOR THE LAST SEGMENT. 	 C 	 REPEATING THE PROCESS IF REQUIRED.
IF(NFAST)THEN 	 360 IF(MTIMES.EQ.NTIMES)GOTO 600
CALL WRIST(W(1,N1)) 	 MTIMKS=MTIMES+1

ENDIF 	 C 	 REWINDING THE FILE TO APPROPRIATE POSITION TO REPEAT THE PROCESS.
CALL TIMST(0) 	 REWIND(7)

180 CALL TIMRR(0,TMSEC) 	 READ(7,.(A)')FNAME
CALL M2ISQQ(TMSEC,T) 	 READ(7,'(2L5)')FAST,CYCLIC
IF(T.GT.TOUT(N))GOTO 350 	 READ(7,.(5110)')(IDATA(J),J=1,5)
T2=T*T 	 GOTO 58
T3=T2*T
T4=T3*T 	 DISPLAYING ERROR MESSAGES IF ANY.
DO 190 J=1,3 	 400 WRITE(*,410)
IDATA(J)=NINT(B1(N1,J)+82(N1,J)*T+83(N1,J)*T2+B4(N1,J)*T3+ 	 410 FORMAT(//,' NO BUFFER.JOB FILE CREATED.',//)

B5(2,J)*T4) 	 GOTO 610
190 CONTINUE 	 420 WRITE(*,430)

CALL POSITN(IDATA) 	 430 FORMAT(//. NO DATA IN FILE:-BUFFER.JOB .',//)
GOTO 180 	 GOTO 610

440 WRITE(*,450)
• READING COEFFICIENTS OF 6TH ORDER SPLINE FOR 2-POINT SECTION. 	 450 FORMAT(//,' DATA IN BUFFER.JOB NOT IN APPROPRIATE FORMAT.,//)
300 DO 310 J=1,3 	 GOTO 610

READ(7,'(4E12.5)',ERR=440)B1(1,J),B4(1,J),85(1,J),36(1,J)
310 CONTINUE 	 CLOSING THE GRIPPER IF IT IS OPEN BEFORE EXITING THE PROGRAM.

READ(7,.(1312.5)',ERR=440)TOUT(2) 	 600 CALL ADIN(5,IPOT5)
IF(IPOT5.GT.0)THEN

• EVALUATING & OUTPUTING DATA FOR THE 2-POINT SECTION. 	 CALL GCLOSE
IF(NFAST)THEN 	 ENDIF
CALL WRIST(W(1,1))

ENDIF 	 610 CONTINUE
CALL TIMST(0)

320 CALL TIMAR(0,TMSEC) 	 END
CALL M2ISQQ(TMSEC,T)
IF(T.GT.TOUT(2))GOTO 350
T3=T**3 	 C 	 THIS SUBROUTINE IS TO CLOSE THE GRIPPER.
T4=T3*T 	 SUBROUTINE GCLOSE
T5=T4*T

$STORAGE:2

PROGRAM SETFLAGS

CHARACTER FLAG*11

C 	 DISPLAYING THE OPTIONS
30 	 WRITE(*,40)
40 	 FORMAT(//,

*' PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS TO CONTINUE:-',
' 1 = REPEAT THE JOB JUST TAUGHT.',

*//,5X,' 2 = START THE ROBOT AGAIN WITH ALIGNMENT PROCEDURE.',
*//,5X,' 3 = TEACH THE ROBOT A NEW JOB.',
*//,5x,' 4 = ASK THE ROBOT TO DO AN OLD JOB.',

* 5 . PUT THE ROBOT TO SLEEP MODE.',
' 6 = RETURN TO THE DOS SYSTEM.',//)

READ(*,*,ERR=50)IFLAG
IFUIFLAG.LE.0).0R.(IFLAG.GT.6))GOTO 50
GOTO(100,200,300,400,500,600)IFLAG

50 	 WRITE(*,60)
60 FORMAT(//,' ONLY NUMBER FROM 1 TO 6 IS ACCEPTED.',

*/,' PLEASE TRY AGAIN.',//)
GOTO 30

SETTING APPROPRIATE FLAG.
100 FLAG='FLAG1.SET.

GOTO 550
200 FLAG='FLAG2.SET.

GOTO 550
300 FLAG='FLAG3.SET'

GOTO 550
400 FLAG='FLAG4.SET'

GOTO 550
500 FLAG='FLAG5.SET'

550 OPEN(10,FILE=FLAG,STATUS&NEW)
ENDFILE(10)
CLOSE(10)

600 CONTINUE

END

CALL DIGOUT(2,5)
50 	 CALL ADIN(5,IPOT5)

IF(IPOT5.GT.0)GOTO 50
CALL DIGOUT(0,5)
RETURN
END

THIS SUBROUTINE IS TO OPEN THE GRIPPER.
SUBROUTINE GOPEN(IGPOT)

CALL DIGOUT(1,5)
50 	 CALL ADIN(5,IPOT5)

IF(IGPOT.GT.IPOT5)GOTO 50
CALL DIGOUT(0,5)
RETURN
END

$STORAGE:2
$N0FLOATCALLS

PROGRAM SLEEP

IMPLICIT INTEGER(A-Z)

• INITIALIZING THE LAB-PACK SUBROUTINES.
CALL INIT
CALL INTROFF

WRITE(*,50)
50 	 FORMAT(//,17X,' ROBOT IS NOW SLEEPING.',

' PLEASE DO NOT DISTURB HIM.',//,
[WARNING: DO NOT SWITCH OFF THE POWER SUPPLY OF THE ROBOT.)',

*//,10X,' PRESS ESC-BUTTON IF YOU WANT TO WAKE HIM UP.',

• DETECTING THE ESC-BUTTON.
60 	 CALL ESC(PRESSED)

IF(PRESSED.EQ.1)GOTO 80

• DETECTING THE POWER SUPPLY OF THE ROBOT.
CALL DISTAT(0,7,POWER,0)
IF(POWER.EQ.1)GOTO 60

OPEN(10,FILE='FLAG6.SET',STATUS=0NEW)
ENDFILE(10)
CLOSE(10)

WRITE(*,70)
70 	 FORMAT(//////////,20X,' POWER IS CUT

' ROBOT DE-ENERGIZED.',//////////)

CALL PAUSE(10000)
GOTO 110

80 	 WRITE(*,90)
90 	 FORMAT(//////////,22X, ROBOT IS READY.',//////////)
100 CALL PAUSE(5000)

110 CONTINUE

END

REM 	
REM THE TASROBOT BATCH FILE
REM 	

ECHO OFF
CLS
BREAK ON
ECHO THE ROBOT IS NOW BEING ENERGIZED.
IF EXIST ALIGN.EXE GOTO PASS1
ECHO PROGRAM ALIGN.EXE NOT FOUND.
GOTO ERROR

:PASS1
IF EXIST OPFILE.EXE GOTO PASS2
ECHO PROGRAM OPFILE.EXE NOT FOUND.
GOTO ERROR

:PASS2
IF EXIST LEARN.EXE GOTO PASS3
ECHO PROGRAM LEARN.EXE NOT FOUND.
GOTO ERROR

:PASS3
IF EXIST TRIM.EXE GOTO PASS4
ECHO PROGRAM TRIM.EXE NOT FOUND.
GOTO ERROR

:PASS4
IF EXIST SMOOTH.EXE GOTO PASS5
ECHO PROGRAM SMOOTH.EXE NOT FOUND.
GOTO ERROR

:PASS5
IF EXIST GO.EXE GOTO PASS6
ECHO PROGRAM GO.EXE NOT FOUND.
GOTO ERROR

:PAS$6
IF EXIST SETFLAGS.EXE GOTO PASS7
ECHO PROGRAM SETFLAGS.EXE NOT FOUND.
GOTO ERROR

:PASS7
IF EXIST SLEEP.EXE GOTO PASS8
ECHO PROGRAM SLEEP.EXE NOT FOUND.

:ERROR
ECHO ROBOT CANNOT BE INITIALIZED.
GOTO DOS

:PASS8
IF NOT EXIST *.SET GOTO START
DEL *.SET

:START

1

ALIGN 	 ECHO RETURN TO DOS

:TEACH
CLS
OPFILE
CLS
ECHO TEACH PROCESS IS BEING INITIALIZED.
LEARN
TRIM

:DO
CLS
ECHO
SMOOTH
PAUSE

:REPEAT
CLS
GO

DATA IS BEING FUTHER PROCESSED.

:SETFLAGS
CLS
SETFLAGS
IF NOT EXIST FLAG1.SET GOTO FLAG2
DEL FLAG1.SET
GOTO REPEAT

:FLAG2
IF NOT EXIST FLAG2.SET GOTO FLAG3
DEL NAME.JOB
DEL FLAG2.SET
GOTO START

:FLAG3
IF NOT EXIST FLAG3.SET GOTO FLAG4
DEL NAME.JOB
DEL FLAG3.SET
GOTO TEACH

:FLAG4
IF NOT EXIST FLAG4.SET GOTO FLAGS
DEL NAME.JOB
DEL FLAG4.SET
GOTO DO

:FLAGS
IF NOT EXIST FLAG5.SET GOTO DOS
DEL FLAG5.SET
CLS
SLEEP
GOTO SETFLAGSS

:DOS
DEL NAME.JOB
CLS

APPENDIX C

CONVERSION FROM DISCRETE-TIME TRANSFER FUNCTION

TO CONTINUOUS-TIME FOR A THIRD-ORDER SYSTEM

173

174

• 	 APPENDIX C

CONVERSION FROM DISCRETE-TIME TRANSFER FUNCTION TO

• 	 CONTINUOUS-TIME FOR A THIRD-ORDER SYSTEM

The discrete-time transfer function is in the form:

z- 1 +B2 z- 2 +B3 Z- 3
G(Z) = 	 (C-1)

z- I -Az z- 2 A3 z- 3

For the rest of this Appendix, T will be used to denote

the sampling period.

CASE 1

The denominator polynomial can be factorized into three

real roots ci, 	c2 	and c3, where ci, c2 	or c3 does not equal

to unity. Then, equation (C-1) can be expressed as:

Fiz F2z F3z
G(z)

roz
= 	(1-z-I) 	 +

z-1
+

z-ci Z-C2
+ ----
Z-C3

(C-2)

where Fo 	- 	
Bi +Bz +132

(1-ci)(1-c2)(1-c3)

BI Cl 2 +B2 CI +B3

(ci -1) (ci -c2 (ci -ca)

Bi C2 2 +B2 C2 +B3 (C-3)
F2 -

(C2 1) (c2 -ci) (c2 -c3)

Bl C3 2 +B2 C3 +B3

(c3 -1) (c3-c2) (c3-ci)

Taking inverse Z-transform on equation (C-2) gives:

bo s2 +bl S+bo
G(s) -

s 	 [((s-a2) (s-a3
(C-4)

where bo =

bi =

bz =

at =

az =

(C-5) -ln[ci]/T

-ln[cz]/T

a3 = -1n(c3]/T

175

a a2 a3 Fo

(at az +az a3 +a3 at) Fo + az a3 Fi + a a3 F2 +
ai az F3

-(al+az+a3)Fo - (a2+a3)F1 7 (al+a3)F2 -
(al +az) F3

CASE 2

This is a special case of CASE 1 when one of the roots

of the denorminator polynomial is unity. This occurs when

the identifying system contains an integrating element.

Without loss of generality, the root cl will be assumed to

be unity. Therefore, the discrete-time transfer function can

be factorized as:

Fo z
G(z) = (1-z-1)[--- +

z-1

where Fo = -Fz-F3

Bi +132 +B3
Ft -

(1-c2) (1C3)

F1 z

(z-1)2

F2 z

z-cz

F3 Z

z-c3-1
(C-6)

B1 C2 2 +B2 C2 +B3 	 (C-7)
F2 —

(C2 —1) 2 (C2 —C3)

B1 C3 2 +B2 C3 +B3

F3 —

(C3 —1) 2 (ca—c2)

Taking inverse Z-transform on equation (C-6) gives:

1_e-ST 	 bo s2+1:31 s+bo
G(s) = 	 I 	 (C-8)

(s-az)(s-a3)

(s-a3)(s2+2as+a2+w2)]

1 -e-ST 	 b s2 +bi s+bo

G (s) - (C-13)

where bo = az a3 Ft /T

176

bi = (a2+a2)Fl/T - a2a2F2 	 .a2a3F3

bz = 	 Pr - a3F2 a2 F3

a2 = -1n(c2]/T

= -111(c2]/T

(C-9)

CASE 3

If two of the three roots of the denorminator

polynomial are imaginary pairs, the denorminator polynomial

of equation (C-1) can thus be expressed in the form:

	

1-At z-1 -A2 z- 2 -A3 z- 3 = 	(1-C1 Z- 1 -C2 Z- 2) (1-C3 Z- 1) 	 (C-10)

Using partial technique, equation (C-1) can be

factorized as:

	

rFo z 	 Ft z 	 F2 Z+F3 Z

	

G(z) = (1-z-1
 Lz-1 	 (z-C2) 	 z2-Clz+C2-1

	 (C-11)

Bi +B2 +B3
where Fo -

(1-C2)(1-Cli-C2)

B1 C3 2 +B2 C3 +B3

(C3-1)(C32-C1C3+C2) 	 (C-12)

F2 = -F0 -F1

C2 C3 FO +C2 Fl
F3 -

C3

Taking inverse Z-transform on equation (C-11) gives:

where bo = a3(a2+w2)F0

bi = (a2+w2+2aa3)Fo 	 a2 +w2 	 aa3 F2
+ a3wK

= (2a+a3)F0 + 2aFI + (a+a3)F2 + wK

= -ln[C3]/T

a = -ln[C2]/2T

(C-14)

177

1 	 r Cl
w = -arcosi----

T 	 L2/C2

F3+F2e-aTcoswT
K=

e-aTsinwT

CASE 4

Again, this is a special case of CASE 3 when the real

root of the denominator polynomial is unity, i.e. C3=1.

Hence, equation (C-1) can be expressed as:

Z FiZ 	 F2 Z+F3 Z rF0

G(z) 	= 	(1-z-1 (C-15)

where Fo = -F2

(Z-1)2 	 Z2 -CI Z+C2

Bt +B2 +Ba

1 -Ct+C2

Bt (CI -2C2) +B2 (1-C2) +Ba (2-Ct)
	

(C-16)
F2 - 	

(1 -Ct+C2)2

Bi (C2 -1) C2 +B2 (CI -2) C2 +B3 (1+CI 2 -2C1 -C2)

(1-Ci+C2)2

Taking inverse Z-transform on equation (C-15) gives:

1-e-BT 	 bo s2 +1D1 S+b0
G(s) -

[s (s2+2as+a2+w2)]
(C-17)

where bo = (a2+w2)F1/T

bi = 2aFIL/T - (a2.1.w2)F2

b2 = FI/T - aF2 + wK

	

a = -ln[C2]/2T 	 (C-18)

1 	 Ci
w = -arcos[----]

2/C2

F3+F2e-aTcoswT
-

e-aTsinwT

Therefore, by using the results of these four cases,

almost any discrete-time transfer function can be converted

into its corresponding continuous-time transfer function,

provided that the discretized system is approximated by a

zero-order-hold data extrapolator, which is the most

commonly encountered case, since discrete signals, in many

cases, are sent to analog systems through DACs which can be

approximated by a zero-order-hold extrapolator.

178

APPENDIX D

179

SYSTEM IDENTIFICATION PROGRAMS

MAIN PROGRAM: THIS IS THE FIRST PROGRAM OF THE PROGRAM SERIES
WRITTEN FOR SYSTEM IDENTIFICATION.
THIS PROGRAM IS TO GENERATE A PSEUDO-RANDOM
BINARY SEQUENCE EQUIVALENT TO ONE GENERATED
USING 12-STAGE SHIFT REGISTER.
THE TWO STATES OF THE BINARY SEQUENCE ARE
REPRESENTED BY VOLTAGE LEVELS WHICH CAN THAN
BE OUTPUT TO A 12-BIT D/A CONVERTER.

"BY: LAM H.Y.R.

DATE: MAY,1986.

$STORAGE:2
PROGRAM SYSID1
INTEGER PRBS
LOGICAL BIT(12),TEMP(3)

TEMP(3)=.FALSE.
IF(TEMP(1).NEQV.TEMP(2))TEMP(3)=.TRUE.
DO 100 I=1,11
BIT(13-I)=BIT(12-I)

100 	 CONTINUE
BIT(1)=TEMP(2)

150 CONTINUE

CLOSE(5)
CLOSE (6)

WRITE(*,160)
160 FORMAT(//,' PRBS IS STORED IN FILE :- PRBS.DAT

*//,' PLEASE USE THE PROGRAM-SYSID2-OF THE SAME SERIES',
*/,' (IF AVAILABLE) FOR OUTPUTING THE PRBS DATA TO
*/,' THE SYSTEM AND AT THE SAME TIME SAMPLING THE SYSTEM',
*/, OUTPUT TO CONTINUE THE SYSTEM IDENTIFICATION PROCESS.',//)

END

REQUESTING PRBS VOLTAGE LEVEL EQUIVALENT.
30 	 WRITE(*,40)
40 	 FORMAT(//,' PLEASE INPUT THE VOLTAGE LEVEL, V1, EQUIVALENT',

*/,' TO THE TWO STATES OF THE BINARY SEQUENCE, SUCH THAT:-',
*//,' 	 V1 IS EQUIVALENT TO 1, AND',
*/,' 	 -V1 IS EQUIVALENT TO O.',
*//,' [NOTE: V1 MUST BE POSITIVE & LESS THAN OR EQUAL TO 10.]',//)
READ(*,*)V1
IF((V1.GT.0).AND.(V1.LE.10))GOTO 45
GOTO 30

CONVERTING THE VOLTAGE LEVEL INTO EQUIVALENT D/A DATA.
45 	 IVHIGH=NINT(2047*V1/10)

IVLOW=NINT(-2048*V1/10)

C
	

RESETTING THE REGISTERS.
DO 50 1=1,12
BIT(I)=.TRUE.

50 CONTINUE

OPENING FILES TO STORE PREIS DATA & PARAMETERS.
OPEN(5,FILE='PRBS.DAT',STATUS='NEW')
OPEN(6,FILE='SYSID.DAT',STATUS='NEW)
WRITE(6,'(F10.5)')V1

GENERATING THE PRBS DATA.
DO 150 K=1,4095
PRBS=IVLOW
IF(BIT(12))PRBS=IVHIGH
WRITE(5,'(I10).)PRBS
TEMP(1)=.FALSE.
IF(BIT(2).NEQV.BIT(10))TEMP(1)=.TRUE.
TEMP(2)=.FALSE.
IF(BIT(11).NEQV.BIT(12))TEMP(2)=.TRUE.

WRITE(*,130)
130 FORMAT(//,' DO YOU WANT TO IMPOSE A SAFETY LIMIT ON THE SYSTEM',

*/,' OUTPUT, SO THAT I.D. PROCESS WILL BE TERMINATED WHEN',
*/,' SAMPLED OUTPUT EXCEEDS THE SPECIFIED LIMIT_? (Y/N)',//)
READ(*,'(A) ')KEY
IF(KEY.NE.'N')THEN

135 	 WRITE(*,137)
137 	 FORMAT(//,' PLEASE SPECIFY THE LIMIT.',

• //,' [NOTE: 0 (LIMIT (= 2047]',//)
READ(*,*,ERR=135)LIMIT
IF(LIMIT.LE.0)GOTO 135

ELSE
LIMIT=3000

ENDIF

RECORDING CLOCK PERIOD & SAMPLING INTERVAL USED & DAY & TIME.
WRITE(33,*(2I20)')CLOCK,INTVAL
CALL QTIME(IHR,IMIN,ISEC,IHUND)
CALL QDATE(IYR,IMTH,IDAY)
WRITE(33,'(5I10)')IHR,IMIN,IYR,IMTH,IDAY

MAIN PROGRAM: THIS IS THE SECOND PROGRAM OF THE PROGRAM SERIES
WRITTEN FOR SYSTEM IDENTIFICATION.
THIS PROGRAM IS TO OUTPUT A PRBS DATA TO A
SYSTEM AND AT THE SAME TIME SAMPLE THE OUTPUT
OF THE ENERGIZED SYSTEM IN ORDER THAT THE
PARAMETERS OF THE SYSTEM CAN BE IDENTIFIED
USING RECURSIVE LEAST SQUARE METHOD.
THE PROGRAM CAN FUNCTION UP TO 12-BIT PRBS DATA.
[NOTE: THE PRBS DATA MUST BE AVAILABLE

IN THE FILE:-.PRBS.DAT' PRIOR TO THE
EXECUTION OF THE PROGRAM.

WRITTEN ,BY: LAM H.Y.R.

DATE: AUGUST,1986

SSTORAGE:2
PROGRAM SYSID2
IMPLICIT INTEGER(A-Z)
REAL DUMMY1,DUMMY2
DIMENSION PRBS(4095),Y(4095),CHANEL(2),X(4095)
LOGICAL OLDFILE
CHARACTER REV.].

INITIALIZING THE LAB-PACK SUBROUTINES.
CALL INIT
CALL INTROFF

CHECKING FILES TO SEE IF EXISTS.
INQUIRE(FILE='PRBS.DAT',EXIST=OLDFILE)
IF(.NOT.OLDFILE)GOTO 300
OPEN(11,FILE='PRBS.DAT')
OPEN(22,FILE='SYSIO.DAT',STATUS='NEW')
INQUIRE(FILE='SYSID.DAT',EXIST=OLDFILE)
IF(.NOT.OLDFILE)GOTO 370
OPEN(33,FILE='SYSID.DAT')
READ(33,*(F10.5)',ERR=370)DUMMY1

N=4095

• READING DATA FROM FILE-'PRBS.DAT'.
DO 50 I=1,N
READ(11,'(I10)',ERR=320)PRBS(I)
X(I)=PRBS(I)

50 CONTINUE

• REQESTING PARAMETERS FROM USER.
70 	 WRITE(",80)
80 	 FORMAT(//,' PLEASE INPUT THE D/A CHANNEL NO. TO WHICH',

*/,' THE PRBS ARE TO BE OUTPUT.',
*//,' [NOTE: ONLY 0 OR 1 IS AVAILABLE.]',//)
READ(*,*)DACHAN

IFHDACHAN.NE.1).AND.(DACHAN.NE.0))GOTO 70

SETTING THE INITIAL CONDITION TO ZERO.
INITL=0
CALL DAOUT(DACHAN,INITL)

READ(*,*)ADCHAN
IF((ADCHAN.GT.15).0R.(ADCHAN.LT.0))GOTO 90
WRITE(*,120)
FORMAT(//,' PLEASE INPUT CLOCK PERIOD & THE NO. OF CLOCKS',
*/,' BETWEEN WHICH SAMPLING TAKES PLACE.',

[NOTE: CLOCK PERIOD IS IN THE ORDER OF MICRO-SECOND.',
' THE MIN. CLOCK PERIOD IS 1,000 MICRO-SEC.',

*/,7X,' THE MAX. CLOCK PERIOD IS 32,767 MICRO-SEC.',
*/,7X,' THE MAX. NO. OF CLOCKS BETWEEN SAMPLES IS 32,767.',
*/,7X,' BOTH DATA ARE TO BE INTEGERS.
READ(*,*,ERR=110)CLOCK,INTVAL
IFUCLOCK.LT.1000).0R.(CLOCK.GT.32767))GOTO 110
IFHINTVAL.LE.0).0R.(INTVAL.GT.32767))GOTO 110

• SETTING INTERRUPT CLOCK PERIOD.
CALL STTIMEB(CLOCK)

• SETTING UP A/D CHANNEL.
CHANEL(1)=ADCHAN
CHANEL(2)=999

• OUTPUTING THE PRBS & SAMPLING THE SYSTEM OUTPUT.
CALL DASWST(DACHAN,INTVAL,X,N,1,1,0)

90 	 WRITE(",100)
100 FORMAT(//,' PLEASE INPUT THE A/D CHANNEL NO. FROM WHICH',

*/, SYSTEM OUTPUT IS TO BE SAMPLED.',
*//,' (NOTE: ONLY NO. FROM 0 TO 15 IS AVAILABLE.1',//)

110
120

CALL ADSWST(CHANEL,INTVAL,Y,N,O) 	 CLOSE(11)
CLOSE(22)

• ENABLING INTERRUPT OF THE LAB-MASTER INTERFACING UNIT. 	 CLOSE(33)
CALL INTRON

WRITE(*,160)
C 	 WAITING UNTIL SPECIFIED NO. OF SAMPLES OBTAINED; OR SPECIFIED 	 160 FORMAT(//,' SYSTEM INPUT & OUTPUT DATA ARE STORED IN FILE:-',
C 	 LIMIT ON OUPUT VALUE EXCEEDED. 	 */,' SYSIO.DAT .',
140 CALL ADSWAB(0,NBUFER) 	 *//,' PLEASE USE THE PROGRAM-SYSID3-OF THE SAME SERIES',

OUTPUT=ABS(Y(NBUFER)) 	 */,' (IF AVAILABLE) FOR ESTIMATING THE SYSTEM PARAMETERS',
IF(OUTPUT.GT.LIMIT)GOTO 143 	 */,' USING RECURSIVE LEAST SQUARE METHOD.',//)
IF(NBUFER.NE.N)GOTO 140 	 GOTO 500

• DISABLE INTERRUPT OF THE LAB-MASTER INTERFACING UNIT. 	 C 	 DISPLAYING ERROR SIGNALS (IF ANY).
143 CALL DAOUT(DACHAN,INITL) 	 300 WRITE(*,310)

CALL INTROFF 	 310 FORMAT(//,' NO PRBS DATA AVAILABLE.',//)
GOTO 350

• DETECTING IF SPECIFIED OUTPUT LIMIT EXCEEDED. 	 320 WRITE(*,330)
IF(NBUFER.EQ.N)GOTO 147 	 330 FORMAT(//,' UNACCEPTABLE DATA FORMAT IN FILE PRBS.DAT .',//)
CALL ADSWAB(1,IDUMMY)
WRITE(*,145)NBUFER 	 350 WRITE(*,360)

145 FORMAT(//,' IDENTIFICATION PROCESS TERMINATED DUE TO THE', 	 360 FORMAT(//,' PLEASE CHECK DATA FILE:-PRBS.DAT, OR',
*/,' SPECIFIED OUTPUT LIMIT EXCEEDED.', 	 */,' RE-RUN THE PROGRAM-SYSID1-TO REGENERATE',
*//,' NO. OF SAMPLE RECORDED = ',I5, 	 */,' PRBS DATA.',//)
*//,' DO YOU WANT TO TRY AGAIN ? (Y/N)',//) 	 GOTO 500
READ(*,'(A)')KEY
IF(KEY.EQ.'N')GOTO 146 	 370 WRITE(*,380)
WRITE(*,200) 	 380 FORMAT(//,' CONDITIONS FOR GENERATING SYSTEM INPUT DATA LOST.',

200 FORMAT(//,' DO YOU WANT TO CHANGE THE STARTING POINT OF PRBS DATA 	 *//,' PLEASE RE-START THE PROGRAM SERIES BY USING THE',
*7 (Y/N)',//) 	 */,' PROGRAM-SYSID1 .',//)
READ(*,'(A)')KEY 	 GOTO 500
IF(KEY.EQ.'N')GOTO 240

205 WRITE(*,210)
210 FORMAT(//,' INPUT NO. OF DELAY OF PRBS DATA.', 	 500 CONTINUE

*//,' [NOTE: 1 <= NO. OF DELAY <= 4094 .]',//)
READ(*,*)NSTART 	 END
IFUNSTART.LT.1).0R.(NSTART.GT.4094))GOTO 205
DO 220 I=1,4095-NSTART
X(I)=PRBS(I+NSTART)

220 CONTINUE
DO 230 I=1,NSTART
X(4095-NSTART+I)=PRBS(I)

230 CONTINUE
240 REWIND(33)

READ(33,'(F10.5)')DUMMY1
GOTO 110

146 N=NBUFER

STORING THE PRBS INPUT & THE SAMPLED SYSTEM OUTPUT DATA
C 	 TO FILE:-'SYSIO.DAT'.
147 DO 150 J=1,N

Y(J)=Y(J)+7
WRITE(22,*(2I10)')X(J),Y(J)

150 CONTINUE

$N0FLOATCALLS
$STORAGE:2

MAIN PROGRAM: THIS IS THE THIRD PROGRAM OF THE IDENTIFICATION
PROGRAM SERIES.
THIS PROGRAM IS TO ESTIMATE THE COEFFICIENTS OF
A THIRD ORDER TRANSFER FUNCTION WITH AN
INTEGRATING ELEMENT BY MINIMIZING THE SUM OF
SQUARES OF THE EQUATION ERROR.

*/,' SQUARE ALGORITHM.',
*//,' (NOTE: 0 (WINDOW FACTOR (= 1 	 l',//)
READ(*,*)DELTA
IFUDELTA.GT.1).0R.(DELTA.LE.0))GOTO 58
WRITE(.62)

62 	 FORMAT(//,' PLEASE INITIALIZE THE ALGORITHM BY SPECIFYING',
' THE DIAGONAL ELEMENT OF THE INITIAL P MATRIX &',

*/,' THE INITIAL VALUE OF THE SYSTEM PARAMETERS.',//)
READ(*,*)PDIAGL,THETA0

WRITTEN BY:

DATE:

R.H.Y.LAM

MAY,1986

63 	 WRITE(*,65)
65 FORMAT(//,' PLEASE INPUT A NAME FOR THE IDENTIFIED SYSTEM.',

*//,' (WARNING: NOT MORE THAN 50 CHARACTERS ARE ACCEPTED.]',//)
READ(*,'(A)')SNAME

PROGRAM SYSID3

REAL X(4095),Y(4095),TEMPP(6,6),P(6,6),THETA(6,1),H(1,6)
REAL K(6.1),TRANSH(6,1),TEMP1(6,1),TEMP2(1,1),TEMP3(1,6)
REAL TEMP4(6,6),TEMP5(6,6),TEMP6(1,1),TEMP7(6,1),INVDEL
REAL C(4095)
INTEGER DATAX,DATAY,CLOCK
CHARACTER SNA1IE*50,KEY*1
LOGICAL OLDFILE

CHECKING TO SEE IF DATA FILES AVALIABLE.
INQUIRE(FILE='SYSIO.DAT',EXIST=OLDFILE)
IF(.NOT.OLDFILE)GOTO 220
INQUIRE(FILE='SYSID.DAT',EXIST=OLDFILE)
IF(.NOT.OLDFILE)GOTO 280

SETTING UP FILES FOR READING & STROING DATA.
OPEN(1,FILE='PRN')
OPEN(44,FILE='SYSID.DAT')
OPEN(55,FILE='SYSIO.DAT')
OPEN(66,FILE='SYSOUTS.DAT',STATUS='NEW)
OPEN(77,FILE='SYSINFO.DAT',STATUS='NEW)
OPEN(88,FILE='SYSERRS.DAT',STATUS='NEW)

C 	 READING CONDITIONS FOR DATA GENERATION.
READ(44,*(F10.5)',ERR=280)V1
READ(44,.(2I20)',ERR=320)CLOCK,INTVAL
READ(44,'(5I10)',ERR=320)IHR,IMIN,IYR,IMTH,IDAY

• INITIALZING P TO A LARGE DIAGONAL MATRIX.
CALL UNIT(TEMPP,6)
CALL SCAMUL(PDIAGL,TEMPP,P,6,6)

• INITIALIZING THETA TO ARBITRARY COLUMN MATRIX.
DO 70 J=1,6
THETA(J,1)=THETA0

70 CONTINUE

• INITIALIZING SUMS OF THETA & THETA SQUARE.
CALL NULL(SUM,6,1)
CALL NULL(SUMSQ,6,1)

SET INITIAL ERROR TO ZERO
ERROR=0
C(1)=0
C(2)=0
C(3)=0

PERFORMING RECURSIVE LEAST SQUARE METHOD TO
ESTIMATE THETA MATRIX.
DO 80 M=4,N
SETTING UP H MATRIX.
H(1,1)=X(M-1)
H(1,2)=X(M-2)
H(1,3)=X(M-3)
H(1,4)=Y(M-1)
H(1,5)=Y(M-2)
H(1,6)=Y(M-3)

DO 50 I=1,4096
READ(55,'(2I10)',END=55,ERR=240)DATAX,DATAY
X(I)=FLOAT(DATAX)
Y(I)=FLOAT(DATAY)

CALCULATING K MATRIX.
CALL TRANSP(H,TRANSH,1,6)
CALL MULTI(P,TRANSH,TEMP1,6,6,1)
CALL MULTI(H,TEMP1,TEMP2,1,6,1)

50 CONTINUE CONSTA=1/(DELTA+TEMP2(1,1))
CALL SCAMUL(CONSTA,TEMP1,K,6,1)

55 NI-1 CALCULATING P MATRIX.
CALL MULTI(H,P,TEMP3,1,6,6)

REQUESTING NECESSARY PARAMETERS FROM THE USER. CALL MULTI(K,TEMP3,TEMP4,6,1,6)
58 WRITE(*,60) CALL SUBTR(P,TEMP4,TEMP5,6,6)
60 FORMAT(//, 	PLEASE INPUT WINDOW FACTOR FOR THE RECURSIVE LEAST', INVDEL=1/DELTA

CALL SCAMUL(INVDEL,TEMP5,P,6,6)
• CALCULATING REFINED THETA MATRIX.

CALL MULTI(H,THETA,TEMP6,1,6,1)
CONSTB=Y(M)-TEMP6(1,1) •
CALL SCAMUL(CONSTB,K,TEMP7,6,1)
CALL ADD(THETA,TEMP7,THETA,6,1)
C(M)=CONSTB

80 CONTINUE

• CALCULATING MODELLED OUTPUT USING THE MEAN OF THE ESTIMATED
• THETA AND STORING THE ACTUAL & THE MODELLED OUTPUTS TO FILE:-
• 'SYSOUTS.DAT' .
83 	 Y(1)=0

Y(2)=THETA(1,1)*X(1)+THETA(4,1)*Y(1)
Y(3)=THETA(1,1)*X(2)+THETA(2,1)*X(1)+THETA(4,1)*Y(2)+
A 	 THETA(5,1)*Y(1)
DO 85 J=4,N
Y(J)=THETA(1,1)*X(J-1)+THETA(2,1)*X(J-2)+THETA(3,1)*X(J-3)+

THETA(4,1)"Y(J-1)+THETA(5,1)*Y(J-2)+THETA(6,1)"Y(J-3)
IF(ABS(Y(J)).GT.1.0E+30)GOTO 86

85 CONTINUE
GOTO 88

86 	 WRITE(*,87)
87 	 FORMAT(//,' WARNING: SIMULATED SYSTEM UNSTABLE.',

*/,9X,' MODELLED OUTPUT EXCEEDING 1E50.',
*//, MODELLING PROCESS TERMINATED.',//)

88 REWIND 55
DO 89 I=1,J
READ(55,'(10X,I10)',ERR=91)DATAY
YORGN=FLOAT(DATAY)
OUTERR=YORGN-Y(I)

DATANO=FLOAT(I)
WRITE(66,'(3E12.5)',ERR=91)DATANO,YORGN,Y(I)
WRITE(88,'(3E12.5)',ERR=91)DATANO,C(I),OUTERR

89 CONTINUE

•91 	 CLOSE(44)
CLOSE (55)
CLOSE(66)
CLOSE(88)

WRITE(1.90)SNAME,IDAY,IMTH,IYR,IHR,IMIN,V1,V1,CLOCK,INTVAL,N,
*DELTA
WRITE(1,'(A1)')'1'

WRITE(77,90)SNAME,IDAY,IMTH,IYR,IHR,IMIN,V1,V1,CLOCK,INTVAL,N,
*DELTA

90 FOR14AT(15X,' 	 SYSTEM PARAMETER IDENTIFICATION 	

*////,' SYSTEM: 	 ',A,
"//,' TIME
*//,' INPUT: 12-BIT PSEUDO-RANDOM BINARY SEQUENCES',

"//,' PRBS VOLTAGE LEVEL: 	 (+)',F8.5,' OR (-)',F8.5,' VOLT',
*//,. CLOCK: 	 ',I6,' MICRO-SEC.',
"//,' SAMPLING INTERVAL: ',I6,' (CLOCKS)',

3

' NO. OF I/O PAIRS: ',I6,
*HU,' IDENTIFICATION METHOD: RECURSIVE LEAST SQUARE',
*//,' WINDOW FACTOR: ',F5.3,
*////,38X,'B1*Z(-1)+B2*Z(-2)+B3*Z(-3).,
*/,' MODELLED TRANSFER FUNCTION: G(Z)= 	

*/,36X,' 1-A1*Z(-1)-A2*Z(-2)-A3*Z(-3)')
WRITE(1,93)THETA(1,1),THETA(2,1),THETA(3,1),
*THETA(4,1),THETA(5,1),THETA(6,1)
WRITE(77,93)THETA(1,1),THETA(2,1),THETA(3,1),
*THETA(4,1),THETA(5,1),THETA(6,1)

93 	 FORMAT(////,' ESTIMATED PARAMETERS VALUES:-',
*//40X,'B1=',F15.10,5X,
*//,10X,'B2=',F15.10,5X,
"//,10X,'B3=',F15.10,5X,
*//,10X,'Al=',F15.10,5X,
*//,10X,'A2=',F15.10,5X,
*//,10X,'A3=',F15.10,5X)

CLOSE (1)
CLOSE(77)

WRITE(*,95)
95 FORMAT(//,' ALL THE INFORMATION & RESULTS OF THE IDENTIFICATION',

*/,' PROCESS ARE PRINTED AND ALSO STORED IN FILE:-SYSINFO.DAT
*//)

WRITE(*,100)
100 FORMAT(//,' ACTUAL OUTPUT & MODELLED OUTPUT ARE STORED IN',

"/,' FILE:- SYSOUTS.DAT',
*/,' EQUATION ERROR & OUTPUT ERROR ARE STORED IN FILE:-',
*/,' 	 SYSERRS.DAT',
*//,' PLEASE USE THE PROGRAM SYSID4 OF THE SAME SERIES TO',
*/,' DISPLAY THE OUTPUTS OR THE ERRORS.',//)

GOTO 500

DISPLAYING ERROR MESSAGE (IF ANY).
220 WRITE(*,230)
230 FORMAT(//,' SYSTEM INPUT/OUTPUT DATA NOT AVAILABLE.',//)

GOTO 260

240 WRITE(*, 250)
250 FORMAT(//,' INPUT/OUTPUT DATA NOT IN ACCEPTABLE FORMAT.',//)

260 WRITE(.,270)
270 FORMAT(//,' PLEASE CHECK DATA FILE:-sYsIo.DAT, OR',

*/,' RE-RUN THE PROGRAM-SYSID3 .',//)
GOTO 500

280 WRITE(*,290)
290 FORMAT(//,' CONDITIONS FOR INPUT DATA GENERATION LOST

*//,' PLEASE RE-START THE IDENTIFICATION PROCESS BY
*/,. USING THE PROGRAM-SYSID1 .',//)
GOTO 500

4

320 WRITE(.,330)
330 FORMAT(//,' PRBS DATA CHANGED.',

• ' PLEASE RE-NEW THE SYSTEM INPUT/OUTPUT BY USING',
*/,' THE PROGRAM-SYSID2 .',//)

500 CONTINUE

END

SUBROUTINES FOR MATRIX CALCULATION

C MATRIX ADDITION
SUBROUTINE ADD(A,B,C,M,N)
DIMENSION A(M,N),B(M,N),C(M,N)
DO 1 I=1,M
'DO 1 J=1,N

1 	 C(I,J)=A(I,J)+B(I,J)
RETURN
END

C MATRIX SUBTRACTION
SUBROUTINE SUBTR(A,B,C,M,N)
DIMENSION A(M,N),B(M,N),C(M,N)
DO 1 I=1,M
DO 1 J=1,N

1 	 C(I,J)=A(I,J)-B(I,J)
RETURN
END

C TRANSPOSE OF A MATRIX
SUBROUTINE TRANSP(A,B,M,N)
DIMENSION A(M,N),B(N,M)
DO 1 I=1,M
DO 1 J=1,N

1 	 B(J,I)=A(I,J)
RETURN
END

C SET IDENTITY MATRIX
SUBROUTINE UNIT(A,M)
DIMENSION A(M,H)
DO 1 1=1,m
DO 1 J=l,M
A(I,J)=1.0

1 	 IF (I.NE.J) A(I,J)=0.0
RETURN
END

C MULTIPLICATION OF MATRICES
SUBROUTINE MULTI(A,B,C,L,M,N)
DIMENSION A(L,M),B(M,N),C(L,N)

DO 1 I=1,L
DO 1 J=1,N
C(I,J)=0.0
DO 1 K=1,M

1 	 C(I,J)=C(I,J)+A(I,K)"B(K,J)
RETURN
END

C MATRIX MULTIPLICATION BY A SCALAR
SUBROUTINE SCAMUL(S,A,B,M,N)
DIMENSION A(M,N),B(M,N)
DO 1 I=1,M
DO 1 J=1,N

1 	 B(I,J)=S*A(I,J)
RETURN
END

5
	

6

SNOFLOATCALLS
$STORAGE:2

50 CONTINUE

N=1000
GOTO 65

MAIN PROGRAM: THIS IS THE FOURTH PROGRAM OF THE IDENTIFCATION
PROGRAM SERIES.
THIS PROGRAM IS TO DISPLAY THE OUTPUTS OR THE
ERRORS VARIATIONS OF THE IDENTIFIED TRANSFER
FUNCTION.

WRITTEN BY: R.H.Y.LAM

DATE: MAY 1986

PROGRAM.SYSID4

REAL X(1000),Y1(1000),Y2(1000),XTEMP(100),Y1TEMP(100)
REAL Y2TEMP(100)
CHARACTER XTEXT*6,YTEXT*6,KEY*1
LOGICAL OLDFILE,FRAME,ANALOG,EXPAND,FILEND,FSTSEG

5 	 WRITE(*,10)
10 	 FORMAT(//,' PLEASE CHOOSE THE FOLLOWING OPTIONS:-',

*/,5X,' 1 = PLOT THE ACTUAL AND THE MODELLED OUTPUTS.'.
*/,5X,' 2 = PLOT THE EQUATION ERROR AND THE OUTPUT ERROR.',//)
READ(*,*)IKEY .
IFMKEY.NE.1).AND.(IKEY.NE.2))GOTO 5
GOTO(20,30)IKEY

• CHECKING THE APPROPRIATE FILE.
20 	 INQUIRE(FILE='SYSOUTS.DAT',EXIST=OLDFILE)

IF(.NOT.OLDFILE)GOTO 500
OPEN(55,FILE='SYSOUTS.DAT')
GOTO 35

30 	 INQUIRE(FILE='SYSERKS.DAT',EXIST=OLDFILE)
IF(.NOT.OLDFILE)GOTO 500
OPEN(55,FILE='SYSERRS.DAT')

• SETTING FLAGS TO APPROPRIATE CONDITIONS.
35 	 EXPAND=.FALSE.

FILEND=.FALSE.
FSTSEG=.TRUE.

.

• 	

READING & SORTING DATA FROM FILE-SYSOUTS.DAT .
READ(55,'(3E12.5)',END=540,ERR=520)X(1),Y1(1),Y2(1)
YMIN=MIN(Y1(1),Y2(1))
YMAX=MAX(Y1(1),Y2(1))
REWIND (55)

40 	 DO 50 1=1,1000
READ(55,'(3E12.5)',END=60,ERR=520)X(I),Y1(I),Y2(I)
YMIN=MIN(YMIN,Y1(I),Y2(I))
YMAX=MAX(YMAX,Y1(I),Y2(I))

60 	 N=I-1
FILEND=.TRUE.
CLOSE(55)
IF(N.LT.10)GOTO 250

65 NPT=N

FORMING X-AXIS & YAX/S PRARMETERS.
XXMIN=X(1)-1
XMIN=XXMIN
XXMAX=X(N)
XMAX=XXMAX
XORG=XXMIN
NDECX=0
XLENGH=XXMAX-XXMIN
IF(XLENGH.LE.10)THEN
XMARK=1

ELSEIF(XLENGH.LE.100)THEN
XMARK=10

ELSE
XMARK=100

END IF
XTEXT='SAMPLE'

IF(.NOT.FSTSEG)GOTO 75

WRITE(.73)
73 FORMAT(//,' PLEASE SPECIFY TEXT FOR LABELLING Y-AXIS.',

*//,' [WARNING: NOT MORE THAN 6 CHARACTERS WILL BE ACCEPTED.)',//)
READ(*,*(A) ')YTEXT

75 	 WRITE(*,80)YMIN,YMAX
80 	 FORMAT(//,' MIN. & MAX. VALUES OF Y ARE: ',F7.1,' & ',F7.1,

*//,' PLEASE SPECIFY MIN. & MAX. VALUES ON Y-AXIS.' .1/)
READ(*,*)YYMIN,YYMAX
IF((YYMIN.LE.YMIN).AND.(YYMAX.GE.YMAX))GOTO 84
WRITE(*,82)

82 FORMAT(//,' ERROR: BOUNDARIES ON Y-AXIS TOO SMALL.',
*//,' PLEASE TRY AGAIN.')
GOTO 75

84 	 wRITE(*,86)
86 	 FORMAT(//,' PLEASE SPECIFY MARRING INTERVALS ON Y-AXIS.',//)

READ(*,*)YMARK
YINTVL=(YYMAX-YYMIN)/YMARK
IF(YINTVL.LE.20.0)GOTO 90
WRITE(.87)

87 	 FORMAT(//,' WARNING: MARKING INTERVALS TO CLOSE TOGETHER.',
*//,' PLEASE TRY AGAIN.')
GOTO 84

90 YORG=0
IF(YYMIN.GT.0)YORG=YYMIN
IF(YYMAX.LT.0)YORG=YYMAX

1 	 2

NDECY=0
FRAME= . TRUE .

100 CALL XYFRAM(XXMIN,RxmAX,YYMIN,YYMAX,XoRG,YORG,XMARR,YmARR,XTEXT.
*YTEXT,NDECX,NDECY,FRAME)

PLOTTING THE ACTUAL OUTPUT CURVE WITH NO SYMBOL ADDED.
NMARR=1
ISYMBL=-2
ANALOG=.TRUE.
IF
CALL XYPLOT(XTEMP,Y1TEMP,NPT,N1'IARR,ISYMBL,ANALOG)

ELSE
CALL XYPLOT(X,Y1,NPT,NMARR,ISYMBL,ANALOG)

ENDIF

C 	 PLOTTING THE MODELLED OUTPUT CURVE WITH CROSSES ADDED:
NMARR=20
ISYMBL=-1
IF(EXPAND)THEN
CALL XYPLOT(XTEMP,Y2TEMP,NPT,NMARR,ISYMBL,ANALOG)

ELSE
CALL XYPLOT(X,Y2,NPT,N1'IARR,ISYMBL,ANALOG)

ENDIF

• GRAPHICS PAUSE UNTIL ANY KEY DEPRESSED.
105 CALL XYCLS

IF(EXPAND)GOTO 115

OPTION FOR DISPLAYING THE PLOTS AFTER CLEARING SCREEN.
WRITE(*,110)

110 FORMAT(//,' DO YOU WANT TO DISPLAY THE PLOT AGAIN ? (Y/N)',//)
READ(*,'(A)')REY
IF(REY.EQ.'Y')GOTO 100
IF(N.LE.200)GOTO 200

• OPTION FOR DISPLAYING PORTION OF THE PLOT.
115 IF(EXPAND)THEN

WRITE(*,120)
120 	 FORMAT(//, DO YOU WANT TO DISPLAY ANOTHER PORTION ? (Y/N)',/)

ELSE
WRITE(*.130)

EXPAND=.FALSE.
1,30 	 FORMAT(//,' DO YOU WANT TO DISPLAY AN EXPANDED PORTION OF',

• /,' THE PLOT CONTAINING 100 SAMPLES ? (Y/N)',//)
ENDIF
READ(*,.(A) ')REY
IF(REY.EQ.'N')GOTO 200

• PLOTTING AN EXPAND PORTION OF THE PLOT CONTAINING 100 SAMPLES.
IXLOW=INT(XMIN)
IXUP=INT(XMAX)-100

135 WRITE(*,140)IXLOW,IXUP
140 FORMAT(//,' PLEASE SPECIFY THE STARTING SAMPLE NO.',

*//,' [NOTE: 	 (= NO. SPECIFIED 0=
	

I'd/1
READ(*,*,ERR=135)NST
IF((NST.LT.IXLOW).0R.(NST.GT.IXUP))GOTO 135
YmIN=mIN(Y1(NST+1),Y2(NST+1))
YMAX=MAX(Y1(NST+1),Y2(NST+1))
DO 170 1=1,100
XTEMP(I)=FLOAT(NST+I)
Y1TEMP(I)=Y1(NST+I-IRLOW)
Y2TEMP(I)=Y2(NST+I-IXLOW)
YMIN=MIN(Y1TEMP(I),Y2TEMP(I),YMIN)
YMAX=MAX(Y1TEMP(I),Y2TEMP(I),YMAX)

170 CONTINUE
EXPAND=.TRUE.
XXMIN=XTEMP(1)-1
XXMAX=XTEMP(100)
XMARR=10
XORG=RXMIN
NPT=100
GOTO 75

• STARTING THE NEXT SEGMENT OF DATA PLOTTING.
200 IF(FILEND)GOTO 700

EXPAND=.FALSE.
FSTSEG=.FALSE.
WRITE(*,210)

210 FORMAT(//,' PRESS ANY KEY TO CONTINUE OR <E) TO EXIT PLOTTING.',

READ(*. (A)
IF(REY.EQ.'E')GOTO 700
YMIN=MIN(Y1(N),Y2(N))
YMAX=MAX(Y1(N),Y2(N))
GOTO 40

250 WRITE(*,260)
260 FORMAT(//,' LESS THAN 10 DATA LEFT.',

*//,' PLOTTING INHIBITED.',//)
GOTO 700

• DISPLAYING ERROR MESSAGES (IF ANY).

500 WRITE(*,510)
510 FORMAT(//,' DATA FILE (SYSOUTS.DAT/SYSERRS.DAT) NOT FOUND.',//)

GOTO 600
520 wRITE(*,530)
530 FORMAT(//,' DATA NOT IN APPROPRIATE FORMAT.',//)

GOTO 600

540 wRITE(*,550)
550 FORMAT(//,' NO DATA FOUND IN FILE SYSOUTS.DAT/SYSERRS.DAT.',//)

GOTO 600

600 WRITE(*,610)
610 FORMAT(' PLEASE RE-RUN THE PROGRAM-SYSID3 TO RE-GENERATE',

*/,' DATA TO FILE SYSOUTS.DAT/SYSERRS.DAT.',//)

188

In

CLOSE (55)

