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ABSTRACT 

This project is the design, implementation and evalua-

tion of a control system for a robot manipulator. It is 

initiated as a foundation research in robotics in the 

Electrical Department, University of Tasmania. The TasrobotO 

is the first robot arm built in the Department. The design 

includes all the necessary electronic hardwares as well as 

softwares for the control of the manipulator. 

A complete robot system is a multi-variable, interact-

ing and non-linear system with time-varying parameters. As 

Hewit has pointed out: "no applicable corpus of control 

theory exists to deal with systems possessing such a 

combination of problematic features", the design of suitable 

'controllers is impossible without making assumptions to 

simplify the system. 

As it is still in the developing stage, the size and 

weight of the TasrobotO manipulator is far less than 

•commonly encountered working robots. The interactions 

between the manipulator links are small. The joint systems 

are thus assumed to be mutually independent systems, with 

time-varying parameters resulting from changes in the arm 

configuration. With a suitable controller, this time-varying 

effect was shown to be insignificant in the closed-loop 

•dynamic response of each joint system. 	 • 

A trajectory planning technique was developed to 

generate cubic spline segment functions which interpolate 

between specified joint coordinates. This technique offers 



optimality in the sense that it defines the shortest curve 

passing through the specified points while at the same time 

satisfying the velocity and acceleration contraints. In the 

operation mode, command signals are generated in real time 

from segment functions derived for each joint to control its 

motion. This helps smoothen jerky motions and reduce the 

deviations of the executed path from the planned path. 

The design and developed techniques have been tested 

and are in use today controlling TasrobotO. 
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CHAPTER ONE 

INTRODUCTION 

1.1 CONTRIBUTIONS 

The contributions of this thesis are: 

+Development of a technique for modelling and control-
ling small and light weight robot arms. 

+Development of a trajectory planning technique which 
guarantees continuity in joint velocities and acceler- 
ations of a robot manipulator. The technique also 
ensures the joint velocities and accelerations are 
within the mechanical limits of the manipulator. 

+Development of a system identification software pack-
age for identifying third order systems. The package 
is also applicable to higher order systems upon minor 
modifications. 

•Development of a technique to convert transfer funct-
ions from discrete-time model to continuous-time model 
with zero-order-hold data extrapolator. 

•A paper[R 3 e] on the identification and control •system 
design of a robot manipulator was accepted by the 
IASTED for presentation at the 15th IASTED 
International Conference on Applied Simulation and 
Modelling, held at Santa Barbara, California USA on 
May 26-29, 1987. 

+Two papers, one on the identification and control of a 
robot manipulator, one on the technique of trajectory 
planning of a robot manipulator, were accepted for 
presentation as poster papers at the IREECON '87. 
Regretfully, these papers have to be withdrawn due to 
lack of Department travel funds. 

1.2 THESIS OUTLINE 

This thesis is an account of the design and implementa-

tion of hardware and software control system for a robot 

manipulator. 



Chapter 1 starts with the contributions and thesis 

outline, continues with a brief description of a robot 

system and ends with a review of the programming methods 

commonly encountered in robot systems. 

Chapter. 2 describes the mechanical structure and the 

control schemes of the TasrobotO manipulator. 

Chapter 3 summarizes the hardware design implementing 

the control schemes discussed in chapter 2. Hardware inter-

face to the IBM/PC microcomputer, the host computer of the 

TasrobotO system, is also included. 

Chapter 4 describes the model building technique for 

the joint systems. Also detailed are the theories, techniq-

ues and results of the identification of the model 

parameters. 

Chapter 5 contains an analysis of the results in 

chapter 4. A complete model of each joint system is estab-

lished to facilitate controller design. Non-linearities and 

time-varying parameters of the joint systems are also 

addressed. 

Chapter 6 describes techniques for trajectory planning 

and path execution. 

Chapter 7 reviews the software design of the control 

system of TasrobotO. It contains detailed descriptions of 

developed softwares for robot programming, trajectory 

planning and path execution. 

Chapter 8 summarizes the contributions and gives 

possible extensions to the work as motivation for further 

work. 

2 



1.3 DEFINITION OF ROBOTS 

In order to distinguish a robot from many single-

purpose machines, which have some features making them look 

like robots, a clear definition is important. The definition 

developed by the Robotics International Division of the 

Society of Manufacturing Engineers (RI/SME) is as follows:- 

"A robot is a reprogrammable multifunctional 

manipulator designed to move materials, parts, 

tools, or specialized devices through variable 

programmed motions for the performance of a 

variety of tasks." 

Reprogrammable in the definition means that the machine can 

be programmed repeatedly to perform a new or different task. 

The definition also emphasizes multifunctional which means 

that the machine must be able to perform many different 

functions, depending on the program and tooling used. By 

this definition, most single-purpose machines are not 

classified as robots since they are usually not programmable 

and can only perform single function. Even though tele-

operators look like robots, they cannot be classified as 

robots according to the robot definition because they 

require human operator to perform a task at a distance and 

are not programmable. 

1.4 THE ROBOT SYSTEM 

At present, industrial robots are actually mechanical 

handling devices that can be manipulated under computer 

control. A basic robot system is illustrated in Figure (1.4- 
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1). The system includes a manipulator, a computer and a 

power source. 

 

ROBOT 
POWER 
SOURCE 

  

    

    

ROBOT 
	

ROBOT 

COMPUTER 
	

MANIPULATOR 

Figure (1.4-1): A Basic Robot System 

(a) Robot Manipulator 

A robot manipulator, which does the physical work of a 

robot system, is a mechanical device driven by electric 

motors, pneumatic devices or hydraulic actuators. In 

general, the structure of a robot manipulator consists of an 

arm, a wrist and an end-effector. An end-effector is located 

at the end of a manipulator where a working tool is attach-

ed. The motion of the arm of the manipulator controls the 

position of the end-effector while the motion of the wrist 

controls the orientation of the end-effector with respect to 

a work piece. Typically, an arm as well as a wrist consists 

of a sequence of mechanical links connected by joints. Each 

joint is driven to provide linear or rotational motion by 

driving element which is either a prismatic or.rotatory 

actuator. A working tool attached to the end-effector can be 

a welding head, a spray gun, a machining tool or a gripper 

with open-close jaws, depending on the applications of the 

robot. 
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The positioning of an 

end-effector in space requires 

motion of at least three 

degree-of-freedom and is 

controlled by the motion of 

the manipulator arm. A typical 

structure of an arm consists 
Figure (1.4a-1): A Typical 

Structure of An Arm of A 
Manipulator 

of three links as shown in 

Figure (1.4a-1). 

Robots can be classified into four basic groups 

according to the characteristics of arm motion or their 

geometric principles. The basic geometries include 

rectangular, cylindrical, spherical and revolute as shown in 

Figure (1.4a-2). Regardless of the type of robot, an arm of 

REVOLUTE 

Figure (1.4a-2): Four Basic Geometries of A Robot 



(a) ROLL- PITCH -YAW 
ANGLES 

./ 

(b) EULER 
ANGLES 

6 

a robot typically consists of three movable joints. The 

combined motion of these three joints enables the 

manipulator to move to required position within its work 

space. 

The orientation of the end-effector is controlled by 

the motion of the manipulator wrist. The wrist motion is 

often a sequence of axial rotations which provide three-

degree-freedom motion for orientation of the end-effector. 

The two types of angles most frequently used to describe 

orientation of the wrist motions are the Euler angles and 

the Roll-Pitch-Yaw angles as shown in Figure (1.4a-3). A 

combination of these axial rotations enables the end-

effector to take any arbitrary orientation in space. 

Nevertheless, there are robots whose wrists are capable of 

only two or even one degree-of-freedom motion. These types 

of robots, however, have limitations in their applications. 

Figure (1.4a-3): Two Typical Types of Angles describing 
Wrist Motions 

(b) Robot Computer 

A robot computer is the source of intelligence of a 

robot system. Its presence distinguishes a robot from a 

teleoperator. The function of a robot computer is to control 
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the motion of a manipulator. It senses signals from sensors 

on the manipulator and generates appropriate command signals 

to drive the manipulator. 

• 	 A robot computer block can be divided into tiqo units, 

the intelligent unit and the controller unit. The 

intelligent unit is often called the host computer, whose 

functions are to communicate with robot users, to store 

necessary information of a task, to plan trajectories for a 

task, to process signals from sensors and, in some advanced 

robots, to make decisions according to stimuli from the 

environment. The controller unit is essentially a path 

controlling unit which receives command signals from the 

host computer and, in turn, generates appropriate signals to 

drive the manipulator. 

The controllers used in the controller unit may be 

servo or non-servo. A servo-controller unit may be as simple 

as a position feedback controller. However, a position 

feedback controller can only result in a basically point-to-

point robot. A more sophisticated servo controller unit can 

receive command signals containing information such as 

required Cartesian position and orientation as well as 

desirable velocity of the end-effector of the manipulator. 

Suitable signals to control the manipulator joints are then 

generated such that the end-effector will move to the 

required position and orientation with the desired velocity. 

A controller of this type is required for continuous-path 

robot. 	 • 



• (c) Robot Power Source 

There are three primary power sources most commonly 

found in robot systems in driving a robot manipulator. They 

are, namely, hydraulic, pneumatic and electric power 

systems. 

A basic hydraulic power system is illustrated in Figure 

(1.4c-1). The principle of a hydraulic system is to force 

• high-pressure incompressible oil into a hydraulic actuator 

which converts hydraulic energy into mechanical energy. The 

motor-driven pump provides oil at high pressure for the 

system from the oil tank while the motor-controlled-four-way 

valve switches the direction of flow of the high pressure 

oil into or out of the actuator thus controlling the 

direction of motion of the driven actuator. 

OIL 	TANK 

AND 

RESERVOIR 

PUMP 
MOTOR 

PUMP 
FOUR-WAY 

VALVE 

HYDRAULIC 

ACTUATOR 

••••••-••••. 

.11-•■■■ 

VALVE -MOTOR 
CONTROL 	  
SIGNAL 

 

...IVALVE - CONTROL 
MOTOR  

 

Figure (1.4c-1): A Basic Structure of A Hydraulic Power 
System 

An advantage in using hydraulic actuator is that it has 

a very large power-to-size ratio and thus is capable of 

handling large loads. However, the high cost in equipment, 

the oil leakage problem and the high maintenance cost tend 

to outweight its advantage. 

The basic components in a pneumatic drive system, is 

same as those in a hydraulic system. A major difference is 



that power is being transferred by gas, usually air, under 

pressure rather than by oil. An obvious advantage of this 

system over a hydraulic system is that system leakage does 

not cause contamination problem to the work area. Also, the 

total cost for a pneumatic system is less than that for a 

hydraulic system. However, using pneumatic drive system 

presents difficulties in achieving feedback control to 

provide proportional operation and multiple stops due to the 

properties of the compressed gas. Therefore, in most 

pneumatic robots, the acutators are driven against fixed 

stops at extremes of travel. 

The electric system includes a source of electrical 

power and an electric motor. In most applications, the 

motors used are servo motors, but stepper motors are also 

used in some robots where the payload is small. A major 

disadvantage of stepper motors in robot applications 

concerns the load torque to allowable speed characteristics 

of a stepper motor. The driving speed of a stepper motor, at 

large loads, cannot be too high; otherwise, loss of steps 

will result. This loss of steps cannot be detected and will 

result in permanent position errors. To allow variations -of 

load torque, the driving speed of a stepper motor is usually 

kept low. Consequently, the motion of the driven link is 

slow. 

Servo motors are usually d. c. , motors although a.c. 

.motors are also used in some robot applications. An electric 

motor provides an excellent source of rotational torque 

either directly, or indirectly through gearings, and is most 

commonly used in driving revolute joints. Linear joint 



motion can also be achieved by using ballscrew drive which 

is analogous to bolt-and-nut operation. The advantages of 

servo motors, particularly d.c. motors, are their excellent 

speed regulation, high torque and high efficiency and are 

therefore ideally suited for control applications. 

1.5 TEACHING METHODS 

In general, a robot computer in a robot system involves 

a control program and a task program. The control program is 

provided by the robot designer to control each joint of the 

manipulator. The task program is provided by the robot 

operator to specify the required manipulator motions for a 

particular job. 

The way of generating -a task program depends on the 

method of teaching or programming employed in a robot 

system. There are two methods of teaching a robot: off-line 

programming and on-line programming. 

(a) Off-line Programming 

In off-line programming, the robot operator makes use 

of commands set by the robot designer to specify conditions 

for a job, such as required pOsitions and orientations of 

the end-effector, its velocity and acceleration for each 

specified point in space. The method is characterized by 

commands which inform the robot what to do, but the robot 

itself is not used during the programming stage. 

This method provides a quick way in programming when 

the required Cartesian points in space are relatively easy 

to access and measure. In practice, however, specifying. 

orientations of the end-effector with respect to a work 

10 



piece can be tedious. Also, it is not easy to visualize the 

• necessary rotation for each wrist joint nor the work limit 

of the manipulator. User-specified points may not be 

accessible by the robot and thus have to be checked before a 

task path can be planned or executed. Moreover, in cases 

where the location of the robot manipulator is frequently 

changed, off-line method becomes undesirable. 

•(b) On-line Programming 

Teach-by-showing is referred to as on-line programming 

and the robot itself is used during the programming stage. 

During the programming stage, the operator moves the 

robot arm through a set of required points or a desired path 

in space by means of some teaching aids such as a teaching 

pendant, a control handle or a joystick. When a required 

point is reached, the operator presses a memory button and 

the system will 'remember' the joint coordinates at that 

instant. These joint coordinates are normally recorded so 

that the robot will aware of its physical working environ-

ment and avoids collision with obstacles during the execut-

ion of a task. 

The additional teaching aid required for robot systems 

using on-line programming may seem to be a disadvantage but 

the software required during the programming stage is far 

simpler than that required by off-line programming method . 

Besides, critical points are easily realized by operator 

during teaching stage. Depending on the teaching aid 

employed, on-line programming can be subdivided into 

individual-joint teaching or lead-through teaching. 

11 



(i) Individual-joint Teaching 

In individual-joint teaching, a teaching pendant 

(teaching box) is used. The pendant consists of push buttons 

and teaching is done by pressing appropriate buttons to 

rotate each joint of the robot until the combination of all 

joint positions and orientations yields the desired position 

and orientation of the end-effector in space. Then the 

operator stores the joints coordinates of the robot at that 

instant by pressing a memory button. The process is repeated 

for each required point in space until the task program is 

completed. This teaching method demands patience in adjust-

ing all joint axes, one by one, every time in giving a 

required point setting of the end-effector in space. A large 

amount of time is thus normally required in teaching the 

robot. 

There are also teaching pendant which, instead of 

controlling a number of joint positions separately, can 

directly manipulate the position and orientation of the end-

effector in space. During the teaching stage, the tool tip 

of the robot can be moved in a straight line and rotated 

about fixed axis in space. Although this solves the probfem 

of adjusting one joint axis at a time, the software required 

for this type of teaching pendant is more complicated and 

involves lengthy mathematics for required transformations 

from Cartesian to joint coordinates and vice versa. The 

resulting motion is, therefore, usually very slow. 

(ii) Lead-through Teaching 

A better way of teaching a robot is perhaps by grasping 

the robot's end-effector, leading it through a desired path, 

12 
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and simultaneously recording the joint positions at desired 

points. Although teaching aid is not required in this method 

while the same robot arm is used for teaching, the fact that 

large forces are required to move the arm against its 

driving and transmission elements prevents this method from 

being ideally used in practice. 

A better approach is to use a teach arm which is 

similar to the actual manipulator but with far simpler 

structure. A teach arm may be equipped with position 

transducers on each joint, but with no driving elements nor 

transmission elements so that it can easily be moved to take 

any configurations. During teaching stage, the actual arm 

follows the configuration of the teach arm; desired posit- 

ions and orientations of the actual arm can be input by push 

buttons on the teach arm. 



CHAPTER TWO 

THE TASROBOTO SYSTEM 

The TasrobotO system is the first robot arm system 

built in University of Tasmania. Similar to most robot 

systems, it has three basic components: the robot 

manipulator, the robot computer and the robot power source. 

2.1 THE MANIPULATOR 

The TasrobotO manipulator belongs to the class of 

revolute coordinate robot and has five axes of rotation. The 

end-effector of the manipulator is a permanently attached 

open/close gripper with two movable jaws. The arm has three-

degree-of-freedom for positioning and two-degree-of-freedom 

for orientating the gripper with respect to a work piece. 

(a) The Arm 

Positioning of the gripper is controlled by motion of 

three revolute joints which are denoted as body joint, 

shoulder joint and elbow joint. These three joints connect 

four links of the manipulator to form the major physical 

structure of the manipulator. The four links are denoted as 

base, body, shoulder and elbow as shown in Figure (2.1-1). 

The motion of each joint is provided through direct 

gearings by an actuator which is a permanent magnet d 

motor. The position of each of the three joints is indicated 

by a position transducer mounted on respective rotating 

14 
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Figure (2.1-1): The TasrobotO Manipulator 

shaft of the joint. The body joint 

15 

has a vertical axis of rotation and 

its motion range is 270°. Each of 

the shoulder joint and elbow joint 

has a horizontal axis of rotation 

and a motion range of 900  as shOwn 

in Figure (2.1a-1). 

The work envelope of the 

system, which is defined as the 

reach of the robot, is illustrated 

in Figure (2.1a-2). A relatively small range of motion of 

the elbow joint compared with other robot systems accounts 

for the small side-view envelope of the TasrobotO 

manipulator. 
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Figure (2.1a-2): Work Envelope of The TasrobotO Manipulator 

16 



(b) The Wrist 

The wrist of the TasrobotO manipulator consists of two 

axes of rotation for control-

ling the orientation of the 

17 

STEPPER 

MOTOR 	 gripper with respect to a work 
GEAR 
MX 

•• - -  PITCH MS 
piece. Two stepper motors are 

STEPPER 
MOTOR 

GEAR 
BOX . 

used to give pitch and roll 

rotations as shown in Figure 
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Figure (2.1b-1): Gearings For aligned with the arm. 
The Wrist Rotation 

Pitch rotation is achieved by rotating the two stepper 

motors in same direction. Roll rotation results when the two 

stepper motors are stepping in different directions. The 

range of motion for roll rotation is physically unlimited, 

while the range of motion for pitch rotation is limited to 

1400  as shown in Figure (2.1a-1). 

(c) The Gripper 

The end-effector of the TasrobotO manipulator is a 

gripper. It consists of two jaws, each of which is a two-

bar-linkage structure. Normally, the jaws are closed by the 

action of a compression spring and can be opened by pulling 

against the spring. The pulling force is provided by a dc 

. motor with gearings. The whole conceptual structure of the 

gripping system is illustrated in Figure (2.1c-1). 

To reduce the effect of weight of the gripping system 

on the joints of the manipulator, the gripper driving unit 

is installed in the body link. But then the steel string has 
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to pass through all links of the manipulator and the 

effective length of the steel string has to depend on the 

configuration of the arm. As a result, the amount of 

rotation required for the gripper motor to rotate to open or 

close the gripper depends on the configuration of the arm. 

Figure (2.1c-1): Conceptual Structure of The 
Gripping System 

A position transducer is used to record the amount of 

rotation required for opening the gripper in a specific arm 

configuration awared during the teaching stage. The shaft 

position for the gripper to be fully closed is assigned in 

such a way that the effective length of the steel string is 

long enough for the gripper to stay closed in any arm 

configuration. However, an attempt to drive the arm with a 

fully open gripper may result in closing or further opening 

of the gripper. Although the former causes no serious 

problem, further opening of the gripper will cause damage to 

the gripper or even the arm as the force resulted from the 

tension of the steel string acts on the joints of the 

•manipulator. 

In normal operation, the gripper will remain closed 

unless instructed to open when comes to a target object. 
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Therefore, the change of arm configuration is usually small 

during the period when the gripper is open. Moving the 

manipulator with an open gripper has been dealt with in 

designing software control and the possibility of' occurrence 

of previously mentioned cases are eliminated. 

2.2 THE ROBOT COMPUTER 

(a) The Host Computer 

The host computer for the TasrobotO system is an IBM/PC 

microcomputer. The computer uses an intel 8088 16-bit micro-

processor and a 4 MHz clock. The computation speed of the 

host computer is greatly improved by installing the intel 

8087 arithematic co-processor. It is also equipped with a 

commercially available interfacing board called Lab-Master 

Board provided by the Scientific Solution Inc.. In addition 

to the conventional analog-to-digital converter (ADC) and 

digital-to-analog converter (DAC), the Board provides timing 

signals through the AM9513 System Timing Controller and 

digital interface through the 8255 Programmable Parallel 

Port Interface (PPI). 

The board can be programmed by using the accompanied 

software package - the Labpac Subroutines - from the Tecmar 

Inc., which are specially written to handle the hardwares in 

the Lab-Master Board. However, the Lab-Master Board provides 

only two channels for D/A conversion, which are obviously 

not enough to control the five axes motion of the 

manipulator; hence, part of the hardware interface were 

designed and built. - 
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The Labpac software provides only 16-bit input and 8- 

bit output in ,the digital-to-digital interface subroutines 

and cannot be used for controlling the additional hardwares. 

Software interfacing subroutines in 8088 assembly 'language 

were developed to control the addition hardwares and to 

provide special functions in manipulator control. These 

subroutines will be discussed in Chapter 7. 

(b) The Controller  Unit 

In the controller unit, two types of controllers, servo 

and non-servo, are used. Here, the positioning of the joints 

and the gripping action of the gripper are monitored by the 

command signals recieved from the host computer. 

Three position feedback controllers are used in the 

controller unit for controlling the positions of the three 

joints. Trading off with its simpler circuitry and much 

lower price, position feedback controller has disadvantage 

of no control in the motion velocity of the joint and will 

result in a basically point-to-point robot. 

The gripper controller is classified as non-servo. The 

feedback signal from the gripper motor does not go directly 

into the controller itself, instead, it is sampled by the 

host computer which then generates suitable commands t 

control the gripper motor as shown in Figure (2.2b-1). The 

overall control of the gripping action is however closed-

loop, although it appears to be open-loop in the controller 

unit. 

Command signals from the host computer, controlling the 

gripping action, consists of two bits. The controller will 
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react to these two bits to turn the motor on in one or the 

other direction or to turn the motor off. 
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Figure (2.2b-1): Control System of (a) Joint (b) Gripper 

The pitch and the roll rotations are provided by motion 

of two stepper motors as shown in Figure (2.1b-1). Positions 

of the two wrist rotation axes are absolute provided that 

the robot arm is properly set to the reference position 

before commencing. Command signals for each axial motion are 

position codes of 12 bits. Although there is no feedback 

signal in the wrist controller, its principle of operation 

is similar to servo type controllers in which the axial 

motion depends on the resulting error signal. 

The feedback signal for each wrist axis is provided by 

a 12-bit counter which acts as a dynamic memory device and 

stores the previous position of that wrist axis in code. The 

magnitude of the error signal generates the number of 

clocking pulses required to move the current position of the 

wrist joint to a desired position while the sign of the 

error signal controls the direction of rotation of the 

motion. Clocking signals for driving the stepper motors are 

also used to renew the counters simultaneously. 

However, when the controller unit is first energized, 

the contents of the counters are arbitrary and so are the 

positions of the two wrist axes. In order that the contents 
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of the counters can represent the positions of the wrist 

joints, the wrist joints must be moved to pre-defined 

positions, called reference positions, and the contents of 

the counters must be assigned pre-defined values, called 

reference codes, corresponding to the reference positions. 

Since there are no sensors mounted on the actual rotating 

shafts of the wrist joints, the computer cannot identify the 

reference positions. The reference positions of the wrist 

joints will have to be set manually before setting the 

contents of the counters. When the reference positions and 

reference codes are set, the counters will function like 

absolute shaft encoders of the two rotating wrist axes 

provided no loss of steps of the stepper motors occurs. 

Since the two stepper motors must be energized to 

perform one axis of rotation, the controller unit is 

designed so that only one axis of rotation is implemented at 

a time. 

2.3 POWER SOURCE 

The power source of the TasrobotO arm are electric 

actuators. There are four permanent magnet dc motors and two 

stepper motors. 

Three of the dc motors are used to drive the position-

ing joints and the other is to provide gripping action. The 

high speed but low torque characteristics of dc motors does 

• not make them prevalent for driving loads directly. In 

practice, higher driving torque is achieved by trading off 

the high speed of the motor through speed reduction 

gearings. Thus, the torque used for driving a load is N 



MEMORY 
SWITCH 

times that developed from motor, but the driving speed is 

reduced to 1/N times the motor speed. 

The stepper motors used are 7•50  stepper motors each 

having four 12V dc windings and permanent magnet rotor 

construction. Each motor is equipped with a gear box which 

reduces the output step angle to 0.6° and decreases the 

maximum step rate to about 20 steps/sec (or 12°/sec) to 

achieve a maximum output torque of the motor. 

2.4 PROGRAMMING THE TASROBOTO MANIPULATOR 

The programming of the TasrobotO manipulator is done 

through the use of a teach arm as shown in Figure (2.4-1). 

POTENTIOMETER 
FOR ELBOW AXIS 

	
In teach mode, the 

POTENTIOMETER 
FOR PITCH AXIS configuration of the actual 

OW SWITCH 	 arm will follow that of the 

POTENTIOMETER POTENTIOMETER 
FOR SHOULDER FORROLLMS 	 teach arm. Therefore, grasping 
AXIS 

the end-effector of the teach 

FOR BODY AXIS 

1Figure (2.4-1): The Structure 
of The Teach Arm of The 
TasrobotO System 

actual arm, better still, the teach arm can easily be moved 

to take any configuration. Desired configuration of the 

actual arm can be recorded by pressing a memory switch 

located at the end-effector of the teach arm. 

There are five potentiometers and two microswitches in 

the teach arm. One potentiometer is installed in each 

rotating joint to indicate the position of that joint. The 

GRIP-switch is to signal the robot computer to open or close 

the gripper. The MEM-switch is to signal the robot computer 

to record the current joint coordinates. 
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During teaching stage, the robot computer samples 

signals from sensors on the teach arm and drives the actual 

manipulator accordingly at the same time. The GRIP-switch 

has two functions. Not only does it tell the computer to 

open or close the gripper of the actual arm, it also allows 

the user to indicate how much the gripper motor must be 

turned to open the gripper in a specific arm configuration 

with respect to how long the GRIP-switch is held pressed. 

Programming a robot for a task using a teach arm is 

simple and convenient since the operator does not need to 

measure the Cartesian coordinates in space as required by 

off-line programming, nor to worry about the position of 

each individual joint of the robot as required in manual 

teaching using teach pendant. In addition, the control 

program for the teaching process is much simpler as no 

mathematics for coordinate transformations are required. 
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CHAPTER THREE 

HARDWARE DESIGN OF THE TASROBOTO CONTROLLER UNIT 

The hardwares for the controller unit consist of three 

printed circuit boards (PCBs) and a power rectifier unit. 

The three PCBs are identified as the analog control board, 

the digital control board and the interface circuit board. 

The analog control board mainly controls the analog 

devices, i.e. the four dc motors of the manipulator. The 

digital control board controls the two stepper motors. And 

the interface circuit board provides communication between 

the control boards and the host computer. The dc power 

required by each board is provided by the rectifier unit 

which converts 240V ac mains power to unregulated dc 

voltages of ±20V and +11V. Regulated dc power required by 

active components used on each board is provided by its 

onboard regulators. Figure (3-1) illustrates a schematic 

structure of the TasrobotO controller unit. 

The complete circuit diagrams for the controller unit 

with pin-to-pin configurations are shown in Appendix A. The 

designed ciruits were built and used as the control hard-

Wares of the TasrobotO system. 

3.1 THE ANALOG CONTROL BOARD 

The analog control circuit was designed to control the 

four dc motors driving the TasrobotO manipulator, three of 

which control the motion of the three positioning joints and 
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Figure (3-1) : Schematic Diagram of The 
TasrobotO Controller Unit 

one controls the gripping action of the two-jaw gripper. The 

former are closed-loop control while the latter is closed- . 

loop control via the host computer. Figure (3.1-1) 

illustrates a schematic layout of the board. 

'BOARD 

PITH  

ROLL 

BODY FEEDBACK 

SHOULDER FEEDBACK 

ELBOW FEEDBACK 

GRIPPER FEEDBACK 
TO COMPUTER 

ANALOG 
CONTROL 
BOARD 

Figure (3.1-1): Schematic Layout of The 
Analog Control Board 
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Figure (3.1a-2): An 
Instrumentation Amplifier 

Figure (3.1a-3): The 
Compensator Circuit 

v0 1 
V02 

(a) The Closed-loop Controller 

The three closed-loop controllers closely resemble each 

other and their typical structure is illustrated in Figure 

(3.1a-1). 
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Figure (3.1a-1): A Typical Structure of A Closed-loop 
Controller of The TasrobotO System 

The differential amplifier block was implemented by an 

instrumentation amplifier as shown in Figure (3.1a-2). By 

choosing RI=R2=R2=R ; R5=R7=R and R5=AR, the output of the 

amplifier becomes: 

Vo = -(V2EFI-V2Er2)(1+2/A) 
	

(3.1a-1) 

The compensation network block is a simple one-pole-

one-zero compensator and was implemented as shown in Figure 

(3.1a-3). The input/output relationship is: 

V02 -(sRC1+1) 
(3.1a-2) 

Vot 	 (sRC2+1) 
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• INPUT 

( from compensator R3 
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C 3 
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- Vcc 

The power amplifier block was implemented by a type 165 

Power Op-amp and the circuit is shown in Figure (3.1a-4). 

Figure (3.1a-4): A Power Op-amp Circuit Using 
Type 165 Op-amp 

These three circuits form the closed-loop controller 

for the positioning joints of the TasrobotO manipulator. 

(b) The Open-loop Controller 

The gripper motor is controlled in closed-loop via the 

host computer. Command signals from the host computer 

directly control the motion of the gripper motor. A 2-bit 

signal is used for controlling the three possible states: 

rotating forward, backward or stop. The implementation of 

the control scheme merely requires a suitable power 

amplifier to drive the motor correspond to the 2-bit command 

signal. 

The control circuit for the gripper motor is shown in 

Figure (3.1b-1). A general purpose light emitting diode 

(LED), with a voltage drop of about 2V across, was used to 

provide reference to the 2-bit TTL command signal from the 

host computer. A gain of 10 in each amplifier allows the 
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output to be pulled up to its maximum or minimum saturation 

voltage, thus enabling higher initial torque and faster 

operation of the motor. 

10 K 
	

10 K 
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LED 

Figure (3.1b-1): The Gripper Control Circuit 

Table (3.1b-1) summarizes the action of the gripper in 

relation to the status of the two command signals (BITO and 

BIT1). 

BIT. BIT1 GRIPPER 	 MOTOR GRIPPER 	 JAWS 

0 0 UNENERGIZED NO 	ACTION 

0 1 CLOCKWISE 	ROTATION OPENING 	 JAWS 

0 ANTICLOCKWISE ROTATION CLOSING 	 JAWS 

1 1 UNENERGIZED NO 	ACTION 

Table (3.1b-1): Actions of Gripper Motor And Gripper Jaws 
With Respect To The States of The 2-bit 
Command Signal 

3.2 THE DIGITAL CONTROL BOARD 

The digital control circuit was designed to control the 

two stepper motors which drive the two wrist rotations of 

the TasrobotO manipulator. The control schemes for the two 

wrist rotations are similar in structure and is illustrated 

in Figure (3.2-1). 

'Unlike the dc servo motor controller, the wrist 

controller does not have feedback directly from correspond- 



ing moving shaft. The feedback signal is from a position 

register which simulates a shaft encoder. 

COMMAND CONTROL STEPPER STEPPER 
SIGNAL COMPARATOR SIGNAL MOTOR MOTOR 

GENERATOR DRIVER ACTUATOR 

POSITION 	  
REGISTER 

Figure (3.2-1): Block Diagram of The Control Scheme For A 
Stepper Motor 

Initially, this position register is assigned a value 

corresponding to a certain position of the rotating axis. 

When a step is sent to rotate the corresponding shaft clock-

wisely, the position register will be incremented by one. 

Similarly, if a step is sent to rotate the shaft anticlock-

wisely, the position register will be decremented by one. 

While pitch and roll rotation cannot occur simultane-

ously, the controller logic unit will only allow one 

rotation at a time with priority given to pitch rotation. 

The control scheme can be implemented by software 

technique through computer programming or by hardware 

technique through digital electronic circuits. The former 

technique was not used because its resulted wrist rotations 

are comparatively slow and hence substantial amount of 

computer time will be required to generate wrist rotations. 

Also, during such wrist rotations, the computer would not be 

able to generate commands for motion of the other joints; 

and very slow overall motion of the manipulator will be 

expected. Although software technique was not used, the 

flow-chart of the control algorithm shown in Figure (3.2-2) 
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helps illustrating the hardware design of the control 

scheme. 

Figure (3.2-2): Flow-chart of The Wrist 
Control Algorithm 

In the implementation of the stepper motor control 

scheme, the control blocks shown in Figure (3.2-1) were 

replaced by hardware functional blocks shown in Figure 

(3.2-3). 

Since a step angle for the stepper motor is 0.6°, a 

minimum of 600 discrete levels or a 10-bit decoder is 

required to unambiguously represent the position of the 

wrist joint shaft. In this design, a 12-bit decoder was 

used to provide greater adaptability of the circuit. For 

example, if the step angle is now changed to 0.09° to 
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provide larger output torque, about 6 times that of 0.6°, 

the same circuit can be used without modification. 

LOAD REFERENCE 
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Figure (3.2-3): Hardware Block Diagram of The Digital 
Control Scheme 

The position register block in the control scheme was 

implemented by a 12-bit Up/Down counter. Command data from 

the host computer is compared with the counter output, the 

latter represents the shaft position of the corresponding 

wrist joint. Compared results were used to signal the 

control logic unit to generate appropriate signals to drive 

the stepper motors and to update the counters. The control 

logic unit also distinguishes pitch or roll rotation and 

gives priority to the former. 

(a) The 12-Bit Comparator 

Two 12-bit comparators are required, one for each wrist 

rotation. Each comparator was implemented by cascading three 

74C85 4-bit magnitude comparators and is illustrated in 

Figure (3.2a-1). 
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Figure (3.2a-1): A 12-bit Magnitude 
Comparator 

(b) The 12-bit Up/Down Counter  

'The control scheme requires two 12-bit up/down count-

ers, one for each wrist rotation. The counters act like 

position indicators of the current shaft positions. Pulses 

generated to move the stepper motors also update the 

counters in such a way that the counter outputs will be 

counted up or down towards the value of the command position 

codes. To enable the position reference data to be set, the 

counters must be presettable and therefore, 74LS191 Preset-

table 4-Bit Binary Up/Down Counters were used. Three 74LS191 

counters were cascaded to give a 12-bit counter and is shown 

in Figure (3.2b-1). 
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Figure (3.2b-1): A 12-bit Up/Down Counter 

(c) The Stepper Motor Driver 

A suggested stepper motor driver IC for the stepper 

motor is the SAA1027. A typical circuit for the driver is 

shown in Figure (3.2c-1). A Low-to-High transition on the 

STEP pin turns the motor by one step. The sequence of output 

signals and the direction of rotation of the motor depend on 

the signal level of the Direction pin (DIR). 

It is important to note that logic high level of the 

SAA1027 is represented by a voltage level between 7.5V to 

12V and low is represented by a voltage level between OV to 

4.5V. 
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STEPPER 
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+12V 

Figure (3.2c-1): Circuit Diagram For The Stepper Motor 
Driver SAA1027 

(d) The Control Logic Unit 

The control logic unit is the heart of the control 

scheme. It generates TTL logic level voltages to update the 

counters. It generates appropriate logic level voltages to 

control the stepper motor drivers in driving the stepper 

motors, with respect to the six resulting signals from the 

two comparators. The six input signals are arranged in two 

groups of three, one group from one comparator. 

. There are four pairs of output signals in the control 

logic unit. Each pair of output signals consists of a 

clocking signal and a direction control signal. Two pairs of 

output signals are TTL logic level voltages for controlling 

the two 12-bit counters. The other two pairs of output 

signals are special logic level voltages for controlling the 

two stepper motor drivers. Figure (3.2d-1) shows the sources 

of the input signals and the destinations of the output 

signals. The symbols used in the figure will carry their 

meanings throughout the rest of this section. 

Figure (3.2d-1) also illustrates the internal structure 

of the control logic unit. Functionally, the unit can be 
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divided into three parts, namely, the clock generator, the 

pulse generator and the direction signal generator. 

•The clock generator outputs a continuous TTL clock 

signal with a constant frequency. This clock signal is fed 

into the pulse generator to provide clocking signal to the 

two counters and the stepper motor drivers. The clocking 

frequency is about 20Hz providing maximum working torque for 

the motors. The direction signal generator generates 

appropriate signals to up-count or down-count the counters 

and to rotate the stepper motor in either directions. 
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Figure (3.2d-1): Block Diagram of The Input Sources And 
Output Destinations of The Control Logic 
Unit 

Dl- 

(i) The clock generator 

The clock generator of the control logic unit is a 

free-running multivibrator as illustrated in Figure 

(3.2d(i)-1). 

With R1=R2=R4=R; R5>>R5 and R5<<R, the frequency of 

oscillation fooc can be shown as: 

fosc = 1/1.386R3C 	 (3.2d(i)-1) 



Resistor R3 was selected as 22k and C. as 1.5pF, and the 

resultant frequency of oscillation is about 22Hz. 
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Figure (3.2d(i)-1): The Clock 
Generator Circuit 

(ii) The pulse generator 

The main functions of the pulse generator are to 

provide non-TTL signal, STEP, to the stepper motor drivers 

to drive the stepper motors; and to provide TTL signals, PO 

and Pi, to activate the counting function of the two 

counters. 

The non-TTL signal, STEP, will be activated unless both 

• the EQ signals from the two comparators are high. Therefore, 

only the input signals, Eo and El, of the control logic unit 

are required to implement clocking control of the stepper 

motors. 

The clocking source of the pulse generator is the clock 

generator. By enabling or disabling the clocking source, the 

outputs of the pulse generator, Po and Pl, will activate or 

deactivate counting function of the counters. Since only one 

type of rotation is allowed at a time and higher priority is 

given to pitch rotation, clocking signal for roll rotation 
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counter, PI, will only be enabled when the specific pitch 

rotation has completed. 

Figure (3.2d(ii)-1): 
Karnaugh Map For The 

Table (3.2d(ii)-1): Truth Table, Output Signals PoPISTEP, 
•For The Outputs of The Pulse 	 of The Pulse Generator 
Generator 

The required truth table for the signals Po, Pi and 

STEP is shown in Table (3.2d(ii)-1). The karnaugh map for 

the output signals is illustrated in Figure (3.2d(ii)-1). 

The logical expression for each output is: 

Po = Eo+CLK (3.2d(ii)-1) 

PI 	= gO+El+CLK (3.2d(ii)-2) 

STEP = E0El+CLK (3.2d(ii)-3) 

The circuit for the pulse generator is shown in Figure 

(3.2d(ii)-2). 
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Figure (3.2d(ii)-2): Circuit Diagram of 
The Pulse Generator 



(iii) The direction signal generator 

The direction signal generator provides two types of 

signals: non-TTL type signals, DIRL and DIRR, to control the 

type of rotation, pitch or roll, as well as its direction; 

and TTL type signals, Uo and Ul, to control the counting 

direction of the counters. 

39 

INPUT 
• -SHAFT 
AXIS 

DIFFERENTIAL 
GEARINGS 

EF-- = =r411)irn  , er=7 1=1 0 

‘a 	 LEFT 
INPUT LEFT 

SHAFT 
MOTOR 

OUTPUT 
SHAFT 

OUTPUT 
SHAFT 
AXIS 

Figure (3.2d(iii)-1): Motions 
of The Input Shafts And The 
Output Shaft of The Wrist 

INIATTSHAFT 
MOT ION 

INIRIFSVIAFT 
MOTION 

OUTPUT SHAFT MOTION 

L1 R 1 
PITCH CLOCKWISE 

R 2 ROLL CLOCKWISE 

RI  ROLL ANTICLOCKWISE 

I. • 
2 

R
2 

PITCH ANTICLOCKWISE 

Table (3.2d(iii)-1): Types And 
Directions of Motion Referring 
to Figrue(3.2d(iii)-1) 

RIGHT 

	

RIGHT 	 INPUT 

	

STEPPER 	 SHAFT 
MOTOR 

The axes of rotation of the two stepper motors are 

aligned in one axis with differential gearings as shown in 

Figure (3.2d(iii)-1). Two non-TTL signals, DIRL and DIRR, 

from the direction signal generator, control the two stepper 

motor drivers. With two possible directions of motion for 

each motor, the output shaft has four different types of 

resulting motion. Taking Li, L2, RI and R2 to be the 

directions of motion of the two input shafts as shown in 

Figure (3.2d(iii)-1), the resulting motion of the output 

shaft is shown in Table (3.2d(iii)-1). The definitions of 

directions of pitch and roll rotations are shown in Figure 

(3.2d(iii)-2). The required DIRL and DIRR signals to achieve 

various wrist motions are shown in Table (3.2d(iii)-2). 



ELBOW \ 
. Ilk 	 \ 

• 

.CLOCISMg_."-"\ATCH ROTATION 

ANTICLOCKWISE 

GRIPPER 

The additional requirement to give higher priority to 

pitch rotation is achieved by generating the two direction 

control signals, DIRL and DIRR, for pitch rotation first. 
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ROLL ROTATION 

DIR L DIR R WRIST 	 MOTION 

. 	 0 0 PITCH CLOCKWISE 

0 1 ROLL CLOCKWISE 

• 1 0 ROLL ANTICLOCKWISE 

1 1 PITCH ANTICLOCKWISE 

t-P 
r-A 

Figure (3.2d(iii)-2): 
Definitions of The Wrist 
Rotations 

Table (3.2d(iii)-2): Wrist 
Rotations With Respect To The 
Direction Control Signals 

The truth table for the signals DIRL and DIRR is shown 

in Table (3.2d(iii)-3). The karnaugh maps for the two 

signals DIRL and DIRR are shown in Figure (3.2d(iii)-3); and 

the logical expressions for the two signals are: 

DIRL = Do +I5i D2 
	

(3.2d(iii)-1) 

DIRR = Do +D3 E 
	

(3.2d(iii)-2) 

Two TTL type signals, Uo and Ul, are generated by the 

direction signal generator for controlling counting direct-

ion of the two counters. Unlike the non-TTL signals, Uo and 

Ul are not governed by the priority requirement. This allows 

the signals Uo and Ul to be generated in a simpler scheme 

as: 

Uo = DI 	 (3.2d(iii)-3) 

(3.2d(iii)-4) 

The overall circuit diagram for the direction signal • 

generator is shown in Figure (3.2d(iii)-4). Open-collector 
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1 1 X 0 

X X X X 

0 1 X 0 

00 	01 	11 	 10 
X l x 

0 1 X 0 

X X •X X 

1 X 0 

(b) 

Figure (3.2d(iii)-3): 

Karnaugh Maps For 
(a)DIRL Signal And 
(b)DIRR Signal 

0 

7 

0 0. 

0 

1 0 

0 

00 

01 

11 

10 

D3 

NAND gates are used to provide non-TTL signals, DIRL and 

DIRR, with a high level of +12V and a low level of OV. 

P3 D2 01 DO DIRL DIRR REMARKS 

0 0 0 0 X X BOTH ROTATIONS COMPLETED 

0 0 0 1 1 1 PITCH ANTICLOCKWISE 	ROTATION 

0 0 1 1 0 0 PITCH 	CLOCKWISE ROTATION 

0 0. 1 1 X X DO NOT OCCUR 

0 1 0 0 1 0 ROLL CLOCKWISE ROTATION 

0 1 0 1 I 1 (PRIORITY) PITCH ANTICLOCKWISE ROTATION 

0 1 1 0 0 0 (PRIORITY) PITCH 	CLOCKWISE 	ROTATION ' 

1 1 1 X X DO NOT OCCUR 

1 0 0 0 0 1 ROLL ANTICLOCKWISE 	ROTATION 

0 0 1 1 I (PRIORITY) PITCH ANTICLOCKWISE ROTATION 

1 0 1 0 0 0 (PRIORITY) PITCH CLOCKWISE ROTATION 

1 0 1 1 X X , 

1 1 0 0 X X 

1 1 0 1 X X DO NOT OCCUR 

1 1 1 0 •X X 

1 • 1 1 X X 

NOTE: 	 I'• = LOGIC HIGH LEVEL 

" 0 = 

 

LOGIC LOW LEVEL 

X = DON'T CARE 

Table (3.2d(iii)-3): Truth Table For The 
Control of The Wrist Rotations 
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•12 V 

10K 10K 
01 

02 )3- 

/ c> DIRL 
Do 

0/ c> DI RR 

U1 
 

Figure (3.2d(iii)-4): Circuit 
Diagram of The Direction Signal 
Generator 
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3.3 THE INTERFACE CIRCUIT BOARD 

In the TasrobotO system, the major hardware interfacing 

was done by a commercially available interfacing board, the 

Lab Master Board, from the Tecmar Inc.. The board, located 

at addresses 0710H to 071FH, provides three major types of 

interface, namely, analog-to-digital, digital-to-analog and 

digital-to-digital interfaces. Each type of interface can be 

initiated by writing appropriate signals to its correspond-

ing address shown in the manual[R 32 ]. Software subroutines 

written for the board were provided by a commercially 

available package, the Lab-pac Subroutines, from the 

Scientific Solutions Inc.. Each of these subroutines was 

written for a specific function as described in the 

manual[R 33 ]. 

The analog-to-digital interface of the Lab Master Board 

consists of an 8-bit multiplexer, giving 256 possible analog . 

input channels. The DAC installed has a resolution of 12 

bits. With the aid of the Lab-pac Subroutines, the input 

channels can be sampled at regular intervals with maximum 

sampling frequency as high as lkHz. Regular sampling can be 

achieved by hardware interrupts generated by the System 

Timing Controller AM9513. All the analog input interfacing 

for the TasrobotO system was done through the Lab Master 

Board using Lab-pac Subroutines. 

However, the Lab Master Board provides only two 

digital-to-analog channels which are not enough for control-

ling the three dc servo motors of the TasrobotO manipulator. 

Three digital-to-analog channels were designed. Each channel 



is accessed through the data bus using the 8255 Programm-

able Parallel Port Interface (PPI) in the Lab Master Board. 

The digital-to-digital interface of the Lab Master 

Board is provided by the 8255 PPI. The PPI occupies four 

address locations, one for command register and three for 

data registers. There are 24 programmable input/output 

channels in the PPI. The command register, located at 071FH, 

allows each of the 24 channels, which are arranged in three 

8-bit ports: portA, portB and portC, to be programmed as 

either input or output channels. The input data or output 

data can be read or written through the data registers 

located at 071CH to 071EH for portA, portB and portC 

respectively. 

PortA, the upper 8-bits of the 24 bits, was programmed 

as input port for manipulating digital input signals. At 

present, there are three one-bit digital input signals, one 

from the MEM-switch and one from the GRIP-switch, both 

mounted on the teach arm. The third signal is from the +5V 

power supply rail so that the power supply for the 

electronics in the TasrobotO controller unit can be 

examined. 

PortB and portC which occupy the lower 16 bits of the 

24 bits were programmed as output ports. Since there are six 

output devices, four dc motors and two stepper motors, to be 

controlled, six registers are required to latch data to 

appropriate devices. The upper 4 bits of the 16 bits output 

from the host computer were used to initialize one of the 

six registers using a 3-to-8 decoder, and the lower 12 bits 

were used as data bits. The interfacing circuit of the 
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TasrobotO system thus consists of six 12-bit data registers, 

one 3-to-8 decoder and three DACs as shown in Figure (3.3-

1) 

4 

INTERFACE  CIRCUIT 

12 	 • 

 BOARD 

>--- 

DAC>—
*- 
BODY 
 COMMAND 
SIGNAL 

SHOULDER 
CO
IG
M
N
M
A
A
L
ND  

 S 

ELBOW 
COMMAND 
SIGNAL 

WRIST /PITCH 
COMMAND 

3 : 8 	  
DECODER ROBOT 

HOST 
COMPUTER 

1:15-  
12 

D12 

an-00 f 
DATA 
REGISTER 

12 
DATA 
REGISTER 

DAC 

12 
DATA 
REGISTER 

DAC 
11,9 

 

12 

JA.,1
DATA  
REGISTER 

11 

SIGNAL 

WRIST/ ROLL 
I DATA 

REGISTER 29 
 

24.1 
 

12 

10 

COMMAND 
SIGNAL 

GRIPPER 	MOTOR 
CONTROL 	SIGNAL 

' 

DATA 

REGISTER 
SPARES 

Figure (3.3-1): Layout of The 
Interface Circuit Board 

(a) The Decoder and The Data Register Circuit 

The 3-to-8 decoder and the six 12-bit data registers 

form the addresses of the output devices. Three of the data 

registers latch data for the three DACs to control the 

positioning motion of the manipulator while the remaining 

three provide digital control on the stepper motors and the 

gripper motor. The data signals for the five joint motors 

are 12-bit. The gripper motor only requires 2-bit data 

signals and 10 bits are spare in its data register. 

Of the 16 bits from the computer data bus, four bits 

are used to generate the chip-select-signals: three of which 

decode the address of the six output devices and one enables 

the decoder. 
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3:9 
DECODER 

12 

Dll 

	

015 	 

from 	 Di4 	 
4 MSBs 
of data 
bus 	 1 

DATA  REGISTER 

from 
lower 
12 -bit 
of the 
data b 

+5v 

i  
clear 	 CFK----'  
D6  
n_ -t 	 CI6 
'-', 	 to— 	 as 
04  (7) 	 Q4 	  
03-i 

--i- 	
Q3 	  

D2 r.- 	 Q2 
DI 	 CI1 

clear 	 CLK 
06 	 Q6 
05 r- 05 

04 c7; 	 a4 
C13 

r--- 	 Q2 
Dl 	 Q1 

+5V 

I 	 I 

Or, 

12 -bit 
Latched 
output 

Figure (3.3a-1): Decoder And A 
Data Register Circuit 

Yo 

The 74LS138 3-to-8 Decoder was used in the design. It 

decodes one-of-eight lines based on the conditions of the 

three binary select inputs: A, B and C; and the three enable 

inputs: GI, G2A and G2B. When the decoder is enabled, one of 

the eight outputs is pulled down to low level according to 

the levels on the select inputs as shown in Table (3.3a-1). 

Two 74LS174 Hex D Flip-Flops were used to form a data 

register circuit. Six registers are driven by the decoder, 

all having similar circuits as shown in Figure (3.3a-1) but•

driven by different output of the decoder as indicated in 
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Table (3.3a-2). 

INPUTS 
OUTPUTS 

Naa uau 

61 C B A YO Yi Y2 Y3 Y4 Ìfs y6  y7  

X X X H H H H H H H H 

H LL L L H H H H H H 

H L L H HL H H H H H H 

H L HL HHL H H H H H 

H L H H H H HL H H H H 

H HL L H H H HL H H H 

H H L H H H H H HL H H 

H HHL HH HH LH 

H.H H H H H H H H HL 

NOTE: " H" • LOGIC HIGH 

" L " • LOGIC LOW 

" X " = DM T CARE 

mAND Gm  ARE HELD LW. 

Table (3.3a-1): Truth Table of 
The Decoder 74LS138 

SELECT INPUTS 
OF DECODER 

ENABLED 
OUTPUT 

BA°""°c" 

ENABLED 
DATA REGISTER 

C 

L LL Yo BODY 

L LH yi  WRIST /PITCH 

L HL Y2 SHOULDER 

L HH Y3  WRIST I ROLL 

HL L V4  ELBOW 

HL H Y5 GRIPPER MOTOR 

H H L Y6 
NOT USED 

HH H Y7 

Table (3.3a-2): Data Register 
Enabled With Respect To Select 
Inputs of The Decoder 74LS138 



In order to avoid erronous decoding due to transient 

states of the signals on the select inputs, decoding is done 

in a sequence of three steps. Firstly, the 3-bit chip-select 

signals are sent to the decoder while the outputs of the 

decoder are disabled by holding GI low. Secondly, GI is 

changed to high with the select signals unaltered. This 

causes the corresponding output to go low. Thirdly, GI is 

switched back to low and a positive-going triggering signal 

for an appropriate data register is generated. The enable 

signal, GI, and the 3-bit chip-select signals were generated 

in this sequence by softwares which programmes the 8255 with 

8088 assembly language and will be discussed in Chapter 7. 

(b) The DAC Circuit 

Three DACs are required to provide analog signal 

commands to the three positioning joints. The three DAC 

circuits are identical, each consisting of an AD7541 12-Bit 

Monolithic Multiplying DAC plus external circuit to convert 

the binary weighted output currents to the equivalent binary 

weighted voltages. 

For full four-quadrant multiplying D/A conversion, the 

AD7541 can be connected with two op-amps as shown in Figure 

(3.3b-1). The output voltage can be expressed as: 

VOUTA = (1-2D)Vrof 	 (3.3b-1) 

where 
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Bil 	 Bio 
D = 	 + 	 + 

2 	 22  

 

Bo 
(3.3b-2) 

 

212 

The code and voltage output relationship is shown in 

Table (3.3b-1) which is an offset binary coded conversion. 



+ 5V 

R2 
I  1K 

Vcc. 	 RFKB 1 	  

IOUT1 

	

0 .- 	 ® 
m -4 --E4  R4 
a- 

L 

s- 	
t, 

	

t--- 	 - 	1 1( D 

12-BIT 12  
DATA 

vOUTA 

GND I OUT2 

R7 
1K = 

5 O. 

VREF 
-10V 

Figure (3.3b-1): Circuit Diagram For Bipolar 
Conversion of Offset Binary Codes 
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DIGITAL 	 INPUTS NORMINAL ANALOG OUTPUT 

111111111111 -.0•999512 VREF 

100000000001 • 	' - 0•000488 VRE.F 

100000000000 0 

0 1 0 0 0 0 0 0 0 0 0 0 0.5 00000 VREF 

0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 	0 0 0 VREF 

DIGITAL 	 INPUTS NORMINAL ANALOG OUTPUTS 

011111111111 9.9 9 S 	1 2 V 

0 0 0 0 0 0 0 0 0 0 0 1 4.8 8 3 mV 

0 0 0 0 0 0 0 0 0 0 0 0 0 V 

1 1 	0 0 0 0 0 0 0 0 0 0 -5.0 V 

1 0 0 0 0 0 0 0 0 0 0 0 -10.0 V 

Table (3.3b-1): Offset Binary Table (3.3b-2): Two's Complement 
Code Conversion 	 Code Conversion With VREF=-10V 

The offset binary code is a natural consequence of the 

structure of the DAC. However, the two's complement code is 

preferred for binary mathematics. The DAC can easily be 

structured to convert the two's complement code to its 

equivalent voltage by inverting the MSB of the digital 

signal before it is connected to the MSB pin (Bit) of the 

DAC. The output voltage expression for the two's complement 

conversion can be written as: 

VouT = ( 1-2F)Vref 	 (3.3h-3) 

where, 

Bit 	 Bi o 
	

Bo 
F = — + — + • • • 

	
(3.3b-4) 

2 	 22 
	

212 



The code and voltage output relationship is shown in 

Table (3.3b-2). 

3.4 THE POWER SUPPLY CIRCUIT DESIGN 

The design circuit boards discussed so far have their 

own voltage regulators on board. Unregulated power are 

supplied to each board so that each piece of circuitry has 

an individual regulated supply. This arrangement has an 

advantage of avoiding disturbation to regulated supply via 

inevitably noise-voltage affected leads which increases the 

ripple factor of the regulated supply. 

The power required by each circuit board and the 

regulators used are shown in Table (3.4-1). Circuit diagrams 

for connecting these regulators are standardized. The pin-

to-pin configurations and the full board circuit diagrams 

are shown in Appendix A. 

CIRCUIT 	BOARD REGULATED 
VOLTAGE 

TOTAL MAX.POSSIBLE 
CURRENT 

SELECTED 
REGULATOR 

UNREGULATED 
BUS 

ANALOG 

CONTROL 

BOARD 

+15 	V 1.5 	A LM 340T-15 BUS2 

- 15 	V -1. 5 	A LM 3201--15 BUS3 

+10 	V 10 	 mA LM 78 L - 10A BUS2 

-10 	V -10 	 mA LM 39 L- 5A BUS3 

DIGITAL 
CONTROL 
BOARD 

+12 	V 1. 0 	A LM 340 T -12 BUS2 

+ 	5 	V 280 m A LM 340T-5A BUS1 

INTERFACE 

CIRCUIT 
BOARD 

+15  V 12 	 A LM 340T:15 BUS2 

-1 0 V 6 m A LM 79 L - 5A BUS-3 

+ 	5 V 240 mA LM 340T - 5A BUS 1 

-Table (3.4-1): Power Requirement For Each Circuit Board And 
The Regulators Used 
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BUS1 (+12V) 

— SMOOTHING 
— CAPACITOR 
I-- 	 Cl 

	 GND 

	 BUS2 (+20V) 

	 SMOOTHING 
— CAPACITOR 

C 2 

— SMOOTHING 
— CAPACITOR 

C3 

0-----BUS3(-20J) 

A. C. 

MAINS 

The power supply circuit for the three circuit boards 

is illustrated in Figure (3.4-1). Three unregulated voltage 

buses are provided, they are BUS1, BUS2 and BUS3. 

BUS1 has nominal voltage of +12V and provides power for 

+5V regulated supply; BUS2 and BUS3 have nominal voltages of 

+20V and -20V respectively and provide power to ±15V, +12V 

and ±10V regulated supply in the circuit boards. The current 

supply requirement for each regulator is also shown in Table 

(3.4-1). 

TRANSFORMER 
Ti 

-- -- 
BRIDGE 
RECTIFIER 
BR2 

Figure (3.4-1): Power Supply Circuit For The Hardware 
Control Boards 

The minimum requirements of the passive components used 

in the •power supply circuit are shown in Table (3.4-2). 
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MINIMUM 
REQUIREMENTS 

ON 
SMOOTHING 
CAPACITORS 

SELECTED 	C (allowing 
50% variation on ( 	) 

8 95 2 	 p F 1 4 3 2 	 p F 

RIPPLE 	 FACTOR 4 	 % 8 	 ek 

VRIPPLE (PK) 
1.13 V 1.13 	V 

I ruppi F (allowing100 °A 
variation on 	C ) 

4. 5 	A 0. 72 A 

MINIMUM 
REQUIREMENTS ON 
BRIDGE RECTIFIERS 

( PER 	DIODE ) 

I 	(AV) / 	DIODE 1.25 A 
- 

0.25  A 

I FM / DIODE 7.5 	A 1 • 5 	A 

IF  (R MS ) /DIODE 2. 5 	A 0. 5 	A 

ISURGE/ DIODE 60 	 A 12 . 5 	A 

MINIMUM 
REQUIREMENTS 

ON TRANSFORMERS 

VSEC 
( RMS) 1 8 .74 	V 10 . 6 	V 

R S 0 . 5 	A 1- 2 	A 

VA 	RATING 66 	 VA 7.5 	VA 

Table (3.4-2): Summary of The Design Process of The 
Unregulated Voltage Supply Buses And The 
Minimum Requirements of The Elements Used In 
The Power Supply Circuit 
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CHAPTER FOUR 

IDENTIFICATION OF THE MANIPULATOR SYSTEM 

A complete robot manipulator system is a non-linear 

multi-variable system. Upon analysing the dynamics of a 

robot manipulator using Lagrangian mechanics ] , the torque 

acting on a manipulator joint is due to a combination of 

effective inertia and viscous friction of the joint and the 

effect of motion of other joints. The latter includes 

coupling inertia, centripetal acceleration and coriolis 

acceleration. However, the TasrobotO arm is only a test 

robot arm. Its size and weight are far less than commonly 

encountered working robots. The interactions between links 

are thus small. The effects due to coupling inertia, 

centripetal acceleration and coriolis acceleration can be 

neglected. The torque acting on a TasrobotO manipulator 

joint can be approximated as due to effective inertia and 

viscous friction of the joint only. For a horizontal joint 

system, the extra torque due to the weight of the links and 

the carried load can be included as a disturbance torque. 

The TasrobotO is a robot manipulator system with five 

degrees of freedom. The roll and pitch rotations of the 

wrist joints are controlled by stepper motors. The rotations 

of the body-, shoulder- and elbow-joints are controlled by 

dc motors with constant field excitation. To control the 

latter three joints and provide servo operation, analogue 

controllers were designed. To facilitate the design, models 
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for the three joint systems and their unknown parameters 

were built and identified. 

4.1 MODEL BUILDING 

Although the models of respective joint systems have 

different parametric values, their structures are identical 

as shown in Figure (4.1-1). 

52 

COMMAND  .   
SIGNAL d  

	

COMPENSATION 	 PM/ ER 

	

NETWOM 	 AMPLIFIER  d
ARMATURE 
CONTROLLED 
D. C. 
MOTOR 

GEAR 

REDUCTION 
LOAD 

UIFFERENTML 

AMPLIFIER 

POSITIONAL 

SENSOR 

Figure (4.1-1): Block Diagram of A Joint 
System of The TasrobotO Manipulator 

In the model building stage, the differential amplifier 

and the power amplifier in each joint system are grouped 

together and modelled as an amplifier with controllable gain 

A. Since the compensator used is a simple one-pole-one-zero 

compensator, the compensation network is modelled by a 

transfer function Gco mp(S) with pole at s=-1/T2 and zero at 

s=-1/TI: 

sTi +1 
Gco mp(S) — 

 

(4.1-1) 

 

sT2 +1 

The dc servo motor, the reduction gear box, the load 

and the position sensor together are considered as a 

subsystem. The physical model of this dc motor subsystem is 

illustrated in Figure (4.1-2). The symbols listed below are 

used in Figure (4.1-2) and will be used in the derivation of 

the transfer function of the dc motor subsystem model: 

Va = voltage applied to the motor armature 



Bm  

posit ional 
sensor 

load shaft indicator 

la = armature current 

Ra = motor armature resistance 

La = motor armature inductance 

N = gear reduction ratio of the gear train 

= effective inertia of the motor 

= coeficient of viscous friction of the motor 

= effective inertia of the load 

= coefficient of viscous friction of the load 

Om(t) = motor shaft angular displacement 

OL(t) = load shaft angular displacement 

Figure (4.1-2): A Physical Model of A Joint 
System of The TasrobotO Manipulator 

Considering the motor side of the dc motor subsystem, 

the electrical terminal equations of the constant-field 

armature-controlled dc servo may be obtained by equating the 

voltage drop around the armature loop as: 

Va ( t ) -Kv Om ( t ) = Raja ( t ) + La —ia ( t ) 	 (4.1-2) 
dt 

where Kv is the back e.m.f. constant of the motor. 

The torque, Tm(t), generated by an armature controlled 

dc servo is proportional to the armature current, ia, and is 

given by: 

Tm (t) = KT la (t) 	 (4.1-3) 

where KT is the torque constant of the dc motor. 
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On the load side, the motor is geared down to drive the 

load with gear reduction ratio N. Assuming an ideal gear 

box, the torque on the load is N times the driving torque 

and the driving shaft velocity is N times the load velocity. 

If J is the total inertia and B is the resulting coefficient 

of viscous friction acting on the motor shaft, then: 

J = Jm + JL /N2 
	

(4.1-4a) 

B = Bm + BL /N2 
	

(4.1-4b) 

Om(t) = NO(t) 
	

(4.1-5) 

The last terms of equations (4.1-4a) and (4.1-4b) 

represent respectively the reflected inertia and the 

reflected coefficient of viscous friction of the load on the 

motor shaft. If TL is the resulting load torque acting on 

the motor shaft due to these inertia and viscous friction, 

then Ti. can be expressed as: 

TL(t) = Bom(t) + Jbm(t) 	 (4.1-6) 

In some cases where the axis of rotation of the joint 

is not vertical, there is an additional torque acting on the 

joint due to the weight of its driven links. This additional 

torque, caused by the gravity loading effect, will be 

modelled as a disturbance torque and designated by Tg. If T 

is the total load torque acting on the motor shaft, then 

T(t) = B6m(t) + JOm(t) + Tg(t) 	 (4.1-7) 

This total load torque required is provided by the 

motor generated torque, Tm(t). Therefore, equating equations 

(4.1-3) and (4.1-7) and rearranging, one gets: 

KT ia ( t ) - Tg ( t ) = Bern ( t ) + Jom ( t ) 	 ( 4 . 1- 8 ) 

If Ve is the voltage from the position sensor having a 

proportional constant Kb, then 
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11(B+s7) 
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Ve (t) = Kb0(t) 	 (4.1-9) 

A model for the dc motor system can now be established 

according to equations (4.1-2) to (4.1-9) and is illustrated 

in Figure (4.1-3). 

T
9  

1/ (Res 

Figure (4.1-3): Block Diagram of The DC Motor Subsystem 

In practice, there are non-linearities that cannot be 

ignored in the system. The most commonly encountered non-

linearities are the saturation non-linearity due to 

saturation of amplifiers and the dead-space non-linearity 

due to static friction between sliding surfaces of the 

joint. The parameters for the saturation non-linearity model 

can be determined by direct measurements. But the parameters 

of the dead-space non-linearity model are usually time-

varying as the non-linearity is caused by the coefficient of 

static friction which changes with joint position. 

If VI and V2 represent the positive and negative 

saturations of the amplifier used, and DI and D2 represent 

the characteristics of the dead-space non-linearity, then 

the model structure of .a joint system can be illustrated in 

Figure (4.1-4). 



ar.L412-0 
	

vo , 	
VIZ  

T9  

Vol 

It a11 co s  B • s I 

Figure (4.1-4): Block Diagram of A Model Structure of .A 
Joint System 

4.2 PARAMETERS TO BE IDENTIFIED 

Since the dc motor subsystem contains most of the 

parameters of the model, the identification is mainly a 

construction of an optimum transfer function for the dc 

motor subsystem. 

The postulated model shown in Figure (4.1-4) is closed-

loop. There are two ways to identify the parameters of the 

subsystem. Either, the closed loop transfer function of the 

system is identified and then the model of the subsystem is 

derived from the identified parameters. Or, the open-loop 

transfer function of the system is identified directly by 

opening the feedback path. The latter method was used in 

order to eliminate the effect of amplifier saturation on the 

model parameters. 

If the parameters of the dead space non-linearity model 

are small and can be linearized, the appromixated transfer 

function for the dc motor subsystem followed from Figure 

(4.1-4) can be written as: 

G(s) =  	 (4.2-1) 
s(s2+as+b) 
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TEST INPUT 

Mt) 

OUTPUT 

ERROR.eM 

Figure (4.3-1): Block Diagram of The Generalized 
Model-Adjustment Technique 

AKb NKt 

where 	 K = 
JLe 

Ra 	 B 
— + -  

La 	 J 

Ra B + Kv Kt 

JLa 

4.3 IDENTIFICATION TECHNIQUE 

The model to be identified, is a third order continuous-

time transfer function denoted by G(s). The type of 

technique used for solving the parameter estimation problem 

is called generalized model-adjustment technique as 

illustrated in Figure (4.3-1). 

The Blocks Fo,F1, ...Fm and Go ,G1 , 	 Gn are operators 

such as linear transfer function, non-linear operators etc.. 

These blocks, together with the 'potentiometers' 

ao,a2,....an and 00,131-,.. .13m and the summer, form a 
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'generalized model' of the process. The noise, n(t), 

represents the measurement error of the output, y(t) ; and 

e(t) represents the equation error. An estimation scheme 

minimizing the sum squares of the equation error with 

respect to values ao,a1,....ao and 00,01 , 	  Bro was used. 

For implementation of the technique in a digital computer, a 

discrete model rather than an analog model was adopted. The 

parameters in the identified model are thus discrete-time. 

The interface between the analog model and the 

computer is through a digital latch and a DAC which can be 

modelled as a zero-order hold data-extrapolator having a 

transfer function: 

-e-ST 

Gzoh(s) -  	 (4.3-1) 

where T is the sampling interval 

The resulting transfer function of the process 

including the zero-order hold data-extrapolator, G*  (s), can 

be written as: 

G*(s) = Gzoh(s).G(s) 

1-e-sT r  
or, 	 G* (s) -  	 (4.3-2) L s(s2+as+b)] 
Applying the Z-transformation, one obtains: 

B* o +B* z" +B* 2 z' 2  +B* 3 Z- 3 	 Y(z) 
G*(z) - 	  = 	 (4.3-3) 

1-A*1 z- 1  -A*2 Z- 2  -A* a z" 3 	 X(z) 

where G* (z) represents an ideal discrete-time transfer 

function of the dc motor subsystem; Y(z) and X(z) are the Z-

transforms of the corresponding sampled output signal, y(t) 

and input signal, x(t); and A*I , A*2, A*2, B*o, B*1, B*2 and 
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model-adjustment technique as shown in Figure (4.3-2). 

	 MIMS 	  
NOIS ,N(Z) 

TEST INPUT 

X (Z) 

DISCRETE-TIME 
PARAMETRIC 
MODEL VIZI 

OUTPUT 
r(z) 

I. 

B*3 are the ideal discrete-time parameters of the process 

and can be found as: 

B*0 = 0 

B*1 = -Ka(1-a)/b2  + KT/b + DE 

B*2 = -Ka(0-1)/b2  - 2aKT/b - 2DE 

B*3 = -Ka(a-13)/b2  + 5KT/b + DE 
	

(4.3-4) 

A*1 = (2a+1) 

A*2 = -(2a+0) 

A*3 = p 

and, 	 a = e-grcoswT 

0 = e-2aT 

E = e-oTsinwT 	 (4.3-5) 

a = a/2 

w = 

D = K(a-b-a)/b2w 

This process model can be identified using discrete 

ERROR. E(Z) 

Figure (4.3-2): Block Diagram of The Discrete 
Model-Adjustment Technique For Identifying 
Joints of The TasrobotO Arm 

From Figure (4.3-2), the discrete equation error E(z)•

can be expressed as: 
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E(z) = X(z)Biz-1  + X(z)B2z-2  + X(z)B5z-3  - Y(z) 
- Y(z)Atz-1  - Y(z)A2z-2  - Y(z)A5z-3 	 (4.3-6) 

Denoting the kth sampled value of the output as yk, it 

follows from the Z-transform theory that: 

Y(z)z 	 = Yk-n 	 (4.3-7a) 

Similarly, 

X(Z)Z 	 = Xk-n 
	 (4.3-7b) 

Therefore equation (4.3-6) can be expressed in matrix 

form as: 

Yk=(Xk-1 Xk-2 Xk-3 Yk-1 Yk-2 Yk-3] B1 

B2 

135 
AI 
A2 

A3 

For a large number of input and output measurements, 

k=1,2, 

Y4 

Y5  
: = 

n, equation 

X3 	 X2 	 X1 

X4 	 X3 	 X2 

(4.3-6) 	can be 

Y3 	 Y2 	 yi 	 - 

Y4 	 Y3 	 Y2 

: 

Bi 
B2 

B3 

written 

+ 

e4 
e5 
: 

as: 

(4.3-9) 
Ai : 

A2 : 

Yn Xn-1 	Xn-2 	Xn-3 Yn-1 Yn-2 	Yn-3 As en 

Or, 	 Y = H.0 + E (4.3-10) 

where Y and E are the [nxl] output- and error-vectors; H is 

the [nx6] input-output matrix;and o is the [6x1] unknown 

parameter-vector. Equation (4.3-10) can also be written as: 

E = Y - H.0 	 (4.3-11) 

If On is the best estimator such that the sum of 

squares of the error vector components is minimized, then 

the cost function J can be expressed as: 

J = %(Y-H•0)T(Y-H.0) 	 (4.3-12) 

For a minimum J with respect to 0, it requires that: 

-HT(y-ii.o) =0 	 (at 4P.4n) 
	

(4.3-13) 
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Solving equation (4.3-13) gives the least squares 

estimate of the parameter-vector, 8., as: 

On = PnHTY 	 (4.3-14) 

where P =(HTH)-i. 

If there is an additional set of measurement: xk+1 and 

yk+1, the refined best estimator can be written as[ R 2 6 ] 

6. 	 + Kn + (Yn +1 -Hn + &n ) 
	

(4.3-15) 

	

where K0+1 = PnlipT(l+Hn+IPnHn-tT)-i 
	

(4.3-16) 

Pn +I = Pn - Kn +1 Hn + Pn 
	

(4.3-17) 

Hn+1 = (Xn Xn-1 Xn-2 Yn Yn-1 Yn- 
 
) 	 (4.3-18) 

System identification using recursive least squares 

method can be initiated with: 

either (i) a data block of say, k=10, and computing 810 

and Pio 

or (ii) an initial estimate for ocs and a P matrix of 

large diagonal values. 

4.4 TEST INPUT 

The test signal used to energize a joint system for 

identification process is a 12-bit maximal length pseudo-

random binary sequence (PRBS). It can be easily generated 

using a digital computer and is reproducible. Its bandwidth 

can be adjusted so that all frequency modes of the system 

under test can be excited. 

The principle of generation of the test signal has been 

described elsewherelit16.1/181. In the case of a 12-bit PRBS, 

the generation scheme is illustrated in Figure (4.4-1). The 

input to the shift register is from a clock generator with 

frequency fc. The PRBS is obtained from the 12th stage 
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output of the shift register. The actual test signal is 

generated by converting the two logical levels of the PRBS 

into corresponding voltage levels using a comparator as 

shown in Figure (4.4-1). 
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12-BIT SHIFT REGISTER 

PR BS 

Figure (4.4-1): The Principle of Generating A 12- 
Bit Maximal Length PRBS Test Signal 

A discussion of the nature of the test signal will be 

followed. For the sake of convenience, the two states of the 

binary sequence are assigned values +1 and -1 . A typical 

section of the PRBS test signal is shown in Figure (4.4-2). 

prum 

• 1 

TIME 

Figure (4.4-2): A Typical Section of A PRBS 

The corresponding autocorrelation function, ox(T), of 

the PRBS signal is shown in Figure (4.4-3) and is given 

byt R 1 5 

	

-1 	 L+1 
Ox(T) = 	 +'--- 	 g(T-kLTc) 

	
(4,4-1) 

	

L 	 lacs=-00 

where L = 2N-1. 

N = number of bit in the shift register. (=12) 

Tc =1/fc = period of clock driving the shift register 



g(T) = pr(T+Tc) - 2pr (T) + pr(T-Tc) 

where pr (T) is a unit ramp function. 

Figure (4.4-3):(4.4-3): Auto-Correlation Function 
of A Maximal Length N-Bit PRBS 

The function consists of an infinite series of triangular 

spikes centered at T=kLTc for 

The power-density spectrum, Ox (f), of the PRBS can be 

found from the Fourier Transform of the periodic auto-

correlation function, ox(T), in equation (4.4-1). The 

transform relation for the discrete spectra, with 

fundamental frequency 1/LTc Hz, is given by(R151: 

1 	 L+lisin(rn/L)1  
Ox (f ) = —Uo (f) +   Uo (f- —) (4.4-2) 

L2 	 r" L2L (rn/L) 	 LTc 

where Uo(f-r/LTc) is a unit impulse function centered at 

f=r/LTc. 

The shape of the power-density spectrum Ox (f) is a 

discrete sinc2  function and is shown in Figure (4.4-4). It 

• should be noted that because of the very small dc component 

in the PRBS signal, the power density spectrum •at f=0 is 

very small and has value 1/L2. The bandwidth of the signal 

is equal to the driving clock frequency, 1/Tc or fc. It can 

be varied by simply varying the driving clock frequency. 
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2N_ 1) 
Figure (4.4-4): Power-Density Spectrum 

of A Maximal Length N-Bit PRBS 

However, from equation (4.4-2), the number of line spectra 

within the bandwidth of the test signal is constant for a 

fixed number of bits of the PRBS and is equal to (2N-1). If 

the bandwidth of the signal is increased, the fundamental 

frequency of the discrete spectra will also be increased. 

4.5 IMPLEMENTATION OF THE IDENTIFICATION PROCESS 

The identification process was implemented off-line by 

a series of programs written in Fortran-77 language. Details 

of the programs can be found in Appendix D. The programs can 

be arranged in a series of three main stages. The first 

stage is the generation of a 12-bit maximal length PRBS 

whose two states are represented by user-specified voltage 

levels. In the second stage, the generated PRBS is used as a 

test signal to excite a joint system and the resulting 

output is sampled and stored. The clock frequency generating 

the PRBS is user-specified. In the third stage, the PRBS 

data generated and the corresponding output data sampled are 

used to estimate the parameters of the discrete model using 

the technique discussed in section 4.3. The recursive least 

squares method is applied starting with an estimate for the 
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unknown parameter-vector and a P matrix with large diagonal 

values. 

During the identification of a joint system, the 

equivalent voltage levels and the driving clock frequency of 

the PRBS must be carefully selected. When the voltage level 

is too small, the dead-space non-linearity cannot be 

overcome; where if it is too large, the amplifier becomes 

saturated. Also, the clocking frequency for the PRBS must be 

high enough to excite all modes of a joint system. But the 

higher the clocking frequency is, the larger the fundamental 

frequency of the PRBS discrete-spectra will be. When the 

signal passes through a low pass system, the power output 

decreases as the fundamental frequency of the signal 

discrete spectra increases. While most mechanical systems 

have low pass characteristics, the output power of a joint 

system excited by the PRBS input will be degraded as the 

clocking frequency of the PRBS increases. This reduces the 

output signal-to-noise ratio and thus lowers the accuracy of 

the identified parameters. 

Owing to the integrating nature of a dc. motor 

subsystem, an excited joint may move out of its limits 

during identification and cause damage to the gearings. The 

identification process is programmed to terminate itself 

whenever the joint limits are likly to be exceeded by the 

excited joint. 

The shoulder joint and the elbow joint of the TasrobotO 

'system have horizontal axes of rotation. To eliminate the 

gravitation effect on the parameters, the joint axis was 

aligned with the vertical in the respective identification 
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process. The gravitational effect will be discussed in next 

chapter. 

The three joint systems are assumed to be mutually 

independent. Only one joint will be excited during each 

identification process. However, the effective inertia of a 

joint depends on the configuration of the arm. It is well-

known in feedback control theory that the variation of open-

loop parameters will have little effect on the closed-loop 

dynamic response of a system if the loop gain is 

sufficiently large. In Figure (4.1-4), provided adequate 

loop gain is allowed for, the two feedback loops will reduce 

the effect of the varying effective inertia of a joint 

caused by changes in arm configuration. It is, therefore, 

assumed that variation of joint effective inertia is 

negligible for any joint system of the TasrobotO. This 

assumption will be checked in next chatper. 

Under this assumption, the arm configuration becomes 

insignificant in the controller design for the three dc 

motor joints. In the identification process, the links are 

configured so that the moment of inertia of a joint system 

is set approximately to the average value of any likely 

values. 

4.6 CONVERSION FROM DISCRETE-TIME MODEL TO CONTINUOUS-TIME 
MODEL 

Since a discrete time model has been adopted, its 

transfer function must be translated to a corresponding 

continuous-time transfer function to enhance the design of 

an analog compensator. The approximated discrete-time 

transfer function is in the form: 



B1 z-1  +B2 z-  2  +B3 Z- 3  
G(z) =  	 (4.6-1) 

1-Al z- 1-A2 z-  2 -A3 Z- 3  

In order to convert this form into a corresponding 

continuous-time transfer function, equation (4.6-1) must 

first be converted from z-domain to s-domain by taking 

inverse Z-transformation. The resulting form in s-domain is 

then factorized into two continuous-time transfer functions 

- one for the zero-order-hold data extrapolator representing 

the DAC and the other for the dc motor subsystem. 

For a third order system with transfer function shown 

in equation (4.6-1), there are four possible cases of 

conversion depending on the nature of the roots of the 

denominator polynomial. These four cases are analysed and 

shown in Appendix C. 

4.7 RESULTS OF IDENTIFICATION ON THE THREE JOINT SYSTEMS 

In applying the recursive least squares method, the 

initial estimates for the model parameters are zero and the 

diagonal elements of matrix P are set to 100. 

For the body-joint system, the equivalent voltage level 

and the clock period of the PRBS input test signal were set 

to 0.5V and 0.05 seconds respectively. 4095 input/output 

measurements were obtained. From these data, the unknown 

_parameters of the body-joint discrete-time model were 

deduced. The transfer function of the model, GB(z), can be 

expressed as: 

0.02507851z2+0.03633119z+0.02122747 
GB (z) -  	 (4.7-1) 

(z-0.9999464)(z-0.0972323)(z-0.3817543) 
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1.8 

3.11 

3.4 

The variations of parameters for the last 500 estimates 

is shown in Figure (4.7-1). Little variations can be seen in 

the parameters in their estimation process. The final values 

of the diagonal elements of the P matrix are in the order of 

10-9  to 10-5. Hence, the parameter-vector converges. From 

Figure (4.7-1), the percentage variations of the numerator 

coefficients are larger than that of the denomiator 

coefficients in the discrete-time function. These variations 

account for the presence of zeros in the translated 

continuous-time transfer function and will be discussed in 

next chapter. 
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Figure (4.7-1): Variations of Parameters For The Last 500 
• Estimates of The Body-joint System 

For the shoulder-joint system, the same PRBS test 

signal was used as input and 3133 input/output measurements 

were obtained. The transfer function, Gs(z), can be 

expressed as: 

0.08505298z2+0.15495700z+0.08702245 
Gs(z) - 	 • 	 (4.7-2).  

(z-0.9998622)(z-0.2744630)(z-0.1776742) 

• For the elbow-joint system, a slightly modified PRBS 

input test signal was used. The equivalent voltage level and 

the clock period of the PRBS test signal were set to 0.5V 



and 0.02 seconds respectively. The higher frequency PRBS 

input enhances a larger collection of data within a shorter 

time before the elbow joint is terminated for tendancy to 

exceed its limits in the open loop identification process. 

1426 input/output measurements were obtained and the 

transfer function, GE (z), can be expressed as: 

0.12504890z2+0.17420570z+0.05432743 
GE(z) -  	 (4.7-3) 

(z-0.9990688)(z-0.5215821)(z-0.0080810) 

The variations of the parameters for the shoulder- and 

the elbow-joint systems are as minimal as that for the body-

joint system. The final values of the diagonal elements of 

the P matrix for each case are also in the same order of 

magnitudes. 

The accuracy of the discrete-time model is checked by 

comparing the actual output of the joint system with the 

model output as shown in Figures (4.7-2). From these 

figures, the variations of the model outputs are same as the 

actual outputs but there are significant drifts in the body-

and shoulder-joint cases. Since the employed least squares 

method minimizes only the equation error, the output error 

has not been emphasised. The relationship between the 

equation error, Eeq(Z), and the output error, Eout(z), can 

be shown as; 

Eou t (z) 	 1 

Eeq (Z) 	 1-At z-  1  -A2 Z.. 2  -A3 	 3  

where 1-Aiz-l-A2z-2-A3z-  is an approximated denominator 

polynomial of an identified system. Owing to the existence 

of an integrating element in each identified system, its 

equation error is also integrated. If the equation error has 
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a non-zero mean, the output error will accummulate. This 

accounts for the drifts in the body- and the shoulder-joint 

systems. 

A steepest-descent method using the least squares 

estimates as the starting point was also used to minimize 

the sum of the squares of the output error. However, the 

optimum parameter values obtained differ only by about 2% 

from the least squares estimates and there was no signifi-

cant improvement in the degree of match. 

Each of the discrete-time transfer functions contains a 

pole very close to z=1, which is as expected since each 

joint system contains an integrating element. Formula (C-7) 

and (C-9) shown in Appendix C were used and the correspond-

ing continuous-time transfer functions for the dc motor 

subsystem can be found as: 

0.141(0.000423s 2 +0.01055s+1) 
Gs (s) (4.7-5a) 

s(0.02145s+1)(0.05192s+1) 

0.493(0.000394s 2  -0.01240s+1) 
Gs (s) = (4.7-5b) 

s(0.,02893s+1)(0.03867s+1) 

0.692(0.000304s 2  -0.00772s+1) 
GE (s) = (4.7-5c) 

s(0.01038s+1)(0.07682s+1) 

where subscripts B, S and E are designated for the body-, 

shoulder- and elbow-joint systems respectively. These 

translated transfer functions will be analysed in next 

chapter. 
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CHAPTER FIVE 

MODEL ANALYSIS AND COMPENSATOR DESIGN 

5.1 ANALYSIS OF IDENTIFIED MODELS 

After the identification of the discrete-time pulse 

transfer function, the transfer function is translated into 

its corresponding continuous-time form. Each dc motor 

subsystem obtained is a third order system having one pole 

at s=0 and generally two zeros. The form of the translated 

transfer function, Gi(s), from the identification and the 

translation processes can be written as: 

ki (b2 s2  +1131 s+1) 
Gi(s) -  

	

	 (5.1-1) 
s(sT2+1)(sT4+1) 

where lc' represents the velocity constant; b2s2+bls+1 

represents the numerator polynomial; and -1/T3 and -1/T4 

represent the poles of the continuous-time transfer function 

of the dc motor subsystem. 

The conversion process in Appendix C shows that the 

poles of the translated continuous-time transfer function 

depend on the poles of the identified discrete-time transfer 

function only. But the zeros of the translated continuous-

time transfer function depend on both the zeros and poles of 

the identified discrete-time transfer function in a complex 

fashion. 

For a system having no zeros, the translated values of 

b2 and bi will only vanish when the following conditions are 

valid: 
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7 3 

(i) Ft = ( a3 F2 +az F3 ) T 	 (5.1-2a) 

(ii) ( az +a3 ) Ft = a2 a3 ( F2 +F3 ) T (5.1 -2b) 

 

• Bi +32 +B3 

   

where Ft = 

    

    

 

( C2 - 1) ( C3 - 1) 

   

 

Bi C2 2  +Bz Cz +33 

  

F2 = 

    

    

 

(C2 - 1) 2  ( C2 - C3 ) 

Bt.  C3 2  +Bz Ca +B3 

  

F3 = 

    

    

(C3 -1 )2  (C3 -C2 ) 

az = -ln[C2]/T 

a3 = -ln[C3]/T 

where Bt, B2 and B3 are the identified zeros; Cz and C3 are 

the identified poles; and T is the sampling period. Because 

of errors in model structure and the finite word length 

representation of numbers in digital computers, the 

coefficients bz and lot do not normally vanish. While in this 

case, the resulting translated coefficients bz and 1)1 are 

small, and the original continuous-time transfer function 

has no zero, the non-zero values of bz and bt can be 

considered as parametric errors introduced in the 

identification and the translation processes and will be 

neglected. 

5.2 EFFECTS OF SATURATION NON-LINEARITY ON STEP RESPONSE 

From the previous assumptions and analysis, a joint 

system can be schematically represented by the block diagram 

shown in Figure (5.2-1). 

The symbols used in Figure (5.2-1) are related by the 

following equations: 

E(t) = r(t) -c(t) 	 (5.2-1) 



C( t)  COMMAND  r (ti:y E(t) 
INPUT 

APPROXIMATED TRANSFER 
FUNCTION OF D.C. MOTOR 
SUBSYSTEM G(S) 

u (t ), 

LIMITER 

AMPLIFIER GAIN 
A 

AE(t) 	 for -Q<AE(t)<Q 
u(t) =IQ  for AE(t)>Q 

-Q 	 for A(t)<-Q 

C(s) = U(s)G(s) 

(5.2-2a) 
(5.2-2b) 
(5.2-2c) 

•(5.2-3) 
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Figure (5.2-1): Block Diagram of A Joint System 

Suppose at t=0 and c(t)=0, a step input r(t)=R is 

applied. The step response of a joint system can be divided 

into two stages. In the first stage, the amplifier is 

saturated and the system output is the response of the dc 

motor subsystem, G(s), subjected to an input step of Q (or 

-Q) volts. In the second stage, the amplifier becomes 

unsaturated and the system output is equivalent to the 

closed-loop response of the system subjected to the step 

input R. If ti is the time when the amplifier becomes 

unsaturated, then the step response of a joint system can be 

expressed as: 

c(t) = L-I1G(s)R/s1 	 for 05t5ti 	 (5.2-4) 

where L-I is the inverse Laplace transform operator. For 

tiSt, the output time response, c(t), can be obtained by 

solving the appropriate differential equations shown in 

section 4.1 with initial conditions equal to the end point 

conditions of equation (5.2-4). 

In the analysis, the step response is assumed to be 

over-damped. For under-damped response, the two stages will 

be occurring alternatively. It is important to realize that 



the end-point boundary conditions of one stage becomes the 

initial point boundary conditions of the next stage. 

If the gain of the amplifier is large, the transient 

response of a step input to a joint system will be dominated 

by the step response of the dc motor subsystem, G(s), which 

can be expressed in the form: 

C(s) 
G(s) - 	 =  	 (5.2-5) 

U(s) 	 s(sTa+1)(sTo+1) 

where Ta, To are poles of the transfer function. 

When the amplifier is saturated, the input to the dc 

motor subsystem is a step of magnitude Q. The transient 

response of a joint system can be expressed as:: 

kQ 
C(s) =  	 (5.2-6) 

s2(sTa+1)(sTo+1) 

or, 
kQTa 2 	 kQTo 2  

c(t)=-kQ[Ta+To] + kQt + 	 e-t/Ta 	 -----e-t/Tb 	 (5.2_7) 
Ta -To 	 Ta -To 

If Ta and To are small compared to the transient period 

of the response, the transient output of a joint system, 

c(t), can be approximated as: 

	

c(t) = kQt 	 (5.2-8) 

Q represents the saturation voltage of the amplifier 

and is unaltered once the circuit is built, while k is the 

velocity constant of the dc motor subsystem and is an 

assumed constant. Hence, the transient response of a joint 

system can be approximated by a ramp function with slope kQ. 

From the analysis of the process of translating 

transfer function from discrete-time to continuous-time, it 

has been shown that the translated velocity constant of a dc 

motor subsystem is subjected to relatively large errors 
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compared with the translated poles. Futhermore, it has also 

been shown[R4] that the velocity constant is affected by the 

dead-space and the backlash non-linearities of the joint 

systems. Equation (5.2-8) offers another approach to obtain 

the velocity constant of a dc motor subsystem by measuring 

the transient behaviour of an actual step response of a 

joint system. Thus, the accuracy of the translated velocity 

constant can be investigated. 

The actual step responses of the three joint systems 

are shown in Figures (5.2-2) and the transient response 

characteristics are listed in Table (5.2-1). By measuring 

76 

-UN 

-301 

-IU 

-588 

-780 

-SU 

-918 

-sem 

-nee 
4.8133mV 

(.10msec) 

N M M M M M M M M M 

(a) BODY — WE STEP  

//11913 
SS 181 I N 251 5,8  319 358 181 (58 588 

6.10 msec) 

(b) BODY — -VE STEP 

.4•883mV • 

NU 

III 

e4.883mV 
1181 

Figure (5.2-2): Actual Step Responses of The Three Joint 
Systems 
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JOINT 

SYSTEM 
APPLIED 

STEP/ V 

LINEAR PORTION 

SLOPE 	 V/SEC 
PERCENTAGE 

OVERSHOOT 
FIGURE 
SHOWN 

BODY 
5 2.2 - 0 % 5.2-3a 

- 5 - 	2.3 - 0 % 5.2 - 3b 

SHOULDER 
5 8.0 6.2% 5.2-3c 

- 5 - 	8.3 2.4% 5.2-3d 

ELBOW 
5 11.0 0 °A 5.2-3e 

- 5 -12.5  8.2% 5.2-3f 

Table (5.2-1): Step Response Characteristics of The Joint 
Systems Deduced From Figure (5.2-3) 

the slopes of the transient responses and the saturation 

voltages of the amplifiers, the velocity constants of the 

three joint systems can be found from equation (5.2-8) and 

are shown in Table (5.2-2). 

JOINT 
SYSTEM 

MODELLED VELOCITY 
CONSTANT • K 

MEASURED 	AMPLIFIER 
SATURATION 	VOLTAGE 

ESTIMATED 	 VELOCITY 	CONSTANT 
FROM ACTUAL STEP RESPONSE 

+VE - VE from +ve step from-ye step AVERAGE 

BODY 0.149 12.00V -12.25V 0.183 0.187 0.185 

SHOULDER 0.493 12.30V - 12.50V 0.650 0.665 0.658 

ELBOW 0.692 11.75V - 12.80V 0.936 0.976 0.956 

Table (5.2-2): Predicted velocity constants of The Three 
Joint Systems 

Since each joint system is controlled by discrete 

signal commands from the host computer, the step response 

characteristics of each joint system is of the utmost 

important. In order that the transfer functions of each 

joint system can represent the step response of the acutal 

system more accurately, the velocity constants are replaced 

by those deduced from the actual step responses using 

equation (5.2-8). The modified transfer functions for the dc 

motor subsystems of the three joints are: 

0.185 
GB (S) =  	 (5.2-9) 

s(0.02145s+1)(0.05192s+1) 



0.658 
Gs (s) =  	 (5.2-10) 

s(0.02893s+1)(0.03867s+1) 

0.956 
GE(s) =  	 (5.2-11) 

s(0.01038s+1)(0.07682s+1) 

Using these modified transfer functions ,the step 

response of each joint system can be simulated. A technique 

very similar to analog computer technique was used in 

simulating a joint system in digital computer. This 

•technique is provided by a commercially available simulation 

package - TUTSIM - from Meerman Automation[R31] .  The 

functional blocks used are shown in Figure (5.2-3). 
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GAIN 

     

Figure (5.2-3): Functional Blocks of A Simulated Joint 
System 

The results of the simulated step respOnse for each 

joint system are shown in Figure (5.2-4a) to (5.2-4f). The 

deduced step response characteristics are listed in Table 

(5.2-3). 

By comparing the characteristics of the simulated step 

responses with those of the acutal responses, the modified 

transfer function can be used to predict the behaviour of 

the actual systems. The three modified transfer functions 

shown in equations (5.2-9) to (5.2-11) are used to 

approximate the actual systems and to help'design suitable 

compensators for the three joint systems. 
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Figure (5.2-4): Simulated Step Responses of The Three Joint 
Systems 

JOINT 
SYSTEM 

LINEAR 	REGION 	SLOPES 	 V/SEC PERCENTAGE 	OVERSHOOT 	 Vo 

«VE STEP - VE 	STEP +VE STEP ,VE STEP 

BODY 2.12  - 	2.17 1.0 	% 1.0 	 % 

SHOULDER 7.60  - 	8.50 4.8 	% 6.8 
	 % 

ELBOW 11.09 -11.09 7.2 	% 7.6 	 % 

Table (5.2-3): Step Response Characteristics of The 
Simulated Joint Systems 
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5.3 EFFECTS OF DISTURBANCE TORQUE 

During the identification process and the step response 

analysis, gravitational disturbance had been eliminated by 

aligning the joint axis with the vertical. However, in 

practice, rotating axes for shoulder and elbow joints are 

horizontal. The weight of the link and its neighbouring 

links, plus the load carried, impose a torque onto the 

joint. 

This torque is time-varying in nature. It varies with 

the configuration of the arm as well as the load carried. 

The effect of this disturbance torque on a joint system can 

be seen in Figure (4.1-4). It can also be represented by an 

equivalent voltage, Vd, applied at the input of the motor 

subsystem as shown in Figure (5.3-1). 

EQUIVALENT 
DISTURBANCE 
VOLTAGE 

LIMITER 	 vd 
AMPLIFIER 	 I 	 APPROXIMATED D.C.MOTOR 
GAIN 	 U 	 I 	 SUMSTEMTRANgERFUW.TMN 

COMMAND 
SIGNAL 

   

Vi  

V2 

    

 

A 

 

G(S) 

   

     

     

        

        

         

         

         

OUTPUT 

• 	 Figure (5.3-1): Block Diagram of A Joint System With 
Disturbances 

From Figure (5.3-1), it can be seen that the 

disturbance will increase the steady state error in a step 

response since there must exist an error voltage to 

compensate for the disturbance,voltage, Vd. The disturbance 

also affects the shape of the transient response of a step . 

input as it alters the actual voltage input to the dc motor 

transfer function, G(s). The latter effect enables the value 
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of Vd to be estimated by comparing the transient responses 

of a joint system with and without the disturbance effects. 

The responses without the disturbance had been shown in 

Figures (5.2-2a) to (5.2-2f) and in Table (5.2-1). The 

responses with disturbance effects were found by setting the 

shoulder and elbow to operate in normal positions, i.e. with 

horizontal axes of rotation. The step response of the joints 

are shown in Figures (5.3-2a) to (5.3-2d). It can be seen 
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( 0)  SHOULDER—  WE STEP 

) ELBOW 	 WE STEP 	 M ELB W 	 WE STEP 

Figure (5.3-2): Actual Step Responses of The Shoulder And 
The Elbow Joint Systems In Normal Positions 

from Figures (5.3-2) that the transient slopes are also 

constant in the responses with disturbance effects. This 

suggests that the time-varying effect of the disturbance 

torque caused by changes of arm configuration is small and 

can be neglected. Vd can, therefore, be approximated by a 

constant. By measuring the transient slopes and by using 

equation (5.2-8), the effective values of the input step 

applied to the dc motor subsystem can be evaluated. Vd for 



0v 
	 TUTSIM 

-5V 

14 	 24 	 3.0 	 4.0 	 TIM 
(Se') . 

each joint can be calculated from the difference between the 

effective step input and the saturation voltage of the 

amplifier. The results are listed in Table (5.3-1). 

JOINT 
SYSTEM 

STEP 
APPLIED/V 

SLOPE DEDUCED 
V /SEC 

ESTIMATED 	Vd 
V 

FIGURE 
SHOWN 

SHOULDER 
+5 6.96  - 1. 7 3 5.3-2a 

.-5 -10.19 - 2. 98 5.3 - 2 b 

ELBOW 
.5 11.11 - 0. 34 5.3 - 2c 

-5 -14.30 - 2.26 5.3-2d 

Table (5.3-1): Results of Step Responses Under Disturbances 
For The Shoulder And The Elbow Joints 

Simulation results with disturbance effects are shown 

in Figure (5.3-3a) to (5.3-3d). The responses agree to the 

actual responses, and the slopes predicted are accurate to 

within 8%. 
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Figure (5.3-3): Simulated Step Responses of The Shoulder And 
Elbow Joint Systems With Disturbances 



G(S) V 

AMPLIFIER GAIN 

A 

The steady state error, Et (in degree), due to the 

effects of the disturbance torque (or the equivalent 

disturbance voltage, Vd, is illustrated in Figure (5.3-4) 

and can be expressed.as:- 

Vd 

AKb 

(5.3-1) 

where Kb is the position transducer constant in v/deg. 

Hence, the steady state error, El, can be reduced by 

increasing the a mplifier gain A. 

APPROXIMATED D.C.MOTOR 
SUBSYSTEM TRANSFER FUNCTION 

83 

	 STEADY STATE 
‘..ERROR, E 2 

Figure (5.3-4): Block Diagram of A Joint System Due Only To 
The Effects of Disturbance At Steady State 

However, the actual steady state error depends on the 

sophistication of the mechanical structure of a joint, such 

as the amount of backlash in the gearings and the rigidity 

of the arm structure. As with the TasrobotO arm which 

mechanical structure has not been emphasized, the error 

tolerance is selected to be about 1 degree. To reduce the 

effect of the disturbance torque on the steady state error 

to achieve this error tolerance, the minimum amplifier gains 

required for the shoulder and the elbow joints can be 

calculated from equation (5.3-1) as 13 and 10 respectively. 
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5.4 EFFECTS OF DEAD-SPACE NON-LINEARITY 

The dead-space non-linearity is caused by static 

friction in a joint. The parameters for this non-linearity 

model can be estimated by direct measurement. 

As static friction in a joint is not constant, a 

symmetrical dead-space characteristics is assumed and the 

maximum magnitude of the dead-space voltage is measured and 

adopted as the model parameter. If D is the maximum 

magnitude of dead-space voltage measured, the steady state 

error, E2 (in degree), due to the dead-space voltage D can 

be found as: 

E2 	 (5.4-1) 
AKb 

Equation (5.4-1) is similar to equation (5.3-1) and the 

error due to dead-space non-linearity can be reduced by 

increasing the amplifier gain A. For an error tolerance of 1 

degree, the minimum amplifier gain required to reduce dead-

space non-linearity effect on the steady state error can be 

found using equation (5.4-1) and is shown in Table (5.4-1). 

JOINT 
SYSTEM 

D MEASURED 
' 
DEAD SPACE 
VOLTAGE 	(V) 

TOTAL FEEDBACK 
VOLTAGE 	(V) 

TOTAL 	RANGE 
OF MOTION 	(°) 

FEEDBACK 
CONSTANT(V/ '4 

MINIMUM 
AMPLIFIER GAIN 
REQUIRED 

BODY 4 . 6 20 270 0. 07274 62 

SHOULDER 8 . 0 20 90 0. 	22222 18 

ELBOW 8.0 20 90 0. 	22222 18 

Table (5.4-1):_The Measured Dead-Space Voltages, Feedback 
Constants And Minimum Gains of The Three 
Joint Systems For An Error Tolerence of One 
Degree 



5.5 DESIGN OF CONTROLLERS 

Because of limited accuracy of measurements, variations 

of disturbance torque and variations of system parameters, 

the steady state error tolerances for the joints may not be 

achieved if the minimum required amplifier gains are used. 

Also, the total maximum steady state error is the sum of the 

error due to the disturbance torque and the error due to the 

dead-space non-linearity. To ensure the steady state error 

to be within the error tolerance, amplifier gain larger than 

the minimum required will be used. Table (5.5-1) shows the 

amplifier gain used for each joint and their resulting 

maximum steady state errors. 

JOINT 
SYSTEM 

AMPLIFIER 	GAIN 
USED 

ERROR DUE TO 
DEAD SPACE , E2  

ERROR 	DUE TO 

DISTURBANCE,Ei 
TOTAL MAXIMUM ERROR 

El * E 2 

BODY 124  0.50 ° 00 0. 5 0 ° 

SHOULDER 70 0.51 	° 0.19° 0.700 

ELBOW 54 0.67 ° 0.19° 0. 86 ° 

Table (5.5-1): Steady State Errors Due To Dead-Space Non-
Linearity And Disturbances For The Three 
Joint Systems 

After selecting the amplifier gains to ensure that the 

open-loop gains for the systems are adequate for accuracy, 

it will often be found that the system transient performance 

is not satisfactory without modification. In order for the 

system to meet the requirements of stability and accuracy, 

certain types of compensator must be added to the system. 

In the compensator design, since each joint system 

recieves discrete signal commands from the host computer, 

the step response characteristics of the joint system will 

mainly be concerned. The compensator required for each joint 

system will base on stability and step response of the 
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system. Moreover, the transient behaviour of the step 

response of each joint system will also be concerned to give 

short and smooth transient and low percentage overshoot. 

Because of the presence of non-linearities in the joint 

systems, classical linear feedback control theories cannot 

be used directly. However, using those classical linear 

theories as guidelines and basing on the simulated step 

response of each compensated system, suitable compensator 

can be designed. 

The bode plot of each joint system is shown in Figure 

(5.5-1). From these plots, the phase margin and the gain 

margain for each joint system can be estimated and are shown 

in Table (5.5-2). The bode plot of the 'shoulder joint shows 

86 

la I BODY 
	

(b).  M O M 

-60 

-120 

PHASE(deg) 

-240 

-300 

360 

80 

GAIN (dB) 

-40 

-80 

0.1 	 1.0 	 10.0 

FREQUENCY (rod /sec 

  

w mow , 

Figure (5.5-1): Bode Plots of The Uncompensated Joint 
Systems 
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JOINT 
SYSTEM 

PHASE 	MARGIN GAIN MARGIN 
STABILITY SHOWN 
IN BODE PLOT 

FIGURE 
SHOWN 

BODY 19 	° 6 	 d B STABLE 5.5 	- 	1 	a 

SHOULDER / /  UNSTABLE 5.5 	- 	1 	b 

• ELBOW 14 	° 5 	 d B STABLE 5.5 	- 	1 	c 

Table (5.5-2): Phase And Gain Margins of The Three 
Uncompensated Joint Systems 

that the shoulder joint is unstable. Although the body and 

'elbow systems appear to be stable from the plots, their low 

phase- and gain-margins indicate relatively low degree of 

stability. 

Using the simulation technique discussed before, 

simulated step responses of the three joint system without 

compensators are shown in Figures (5.5-2) to (5.5-4). From 

these figures, the step response characteristics of each 

joint system can be estimated and are shown in Table (5.5- 

3). The simulated elbow joint system is unstable because the 

velocity and acceleration, as shown in Figure (5.5-4b), are 

in constant amplitude oscillations. The simulated shoulder 

joint system is stable. Although these might be caused by 

the effect of saturation non-linearity and truncation errors 

during the simulation process, these figures reflect 

critical stability of the two systems. 

All joint systems have time-varying moment of inertias. 

To reduce the effects of these open-loop time-varying 

parameters on the dynamic response of the closed-loop 

systems, phase-lag series compensators were designed to 

allow sufficient gain- and phase- margins. The time-varying " 

effects of the parameters on the responses of the 

compensated systems will be investigated in next section. 
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JOINT 
SYSTEM 

STEP INPUT 
APPLIED 
V 

MAXIMUM 
ACCELERAT'N 
°/SEC2  

MAXIMUM 
RETARDAT'N 
0/SEC2  

MAXIMUM 
VELOCITY 
°/SEC 

PERCENTAGE 
OVERSHOOT 
°A 

RISE-TIME 
SEC 

TRANSIENT 
OSCILLATION TIME 

SEC 

FIGURE 
SHOWN 

BODY +5. 311 311 30 1.1 2.4 -0.5  5.5-2a- b 

SHOULDER .5 573 >675 32 3.8 0.8 >4 . 2 5.5-3a- b 

ELBOW +5 >675 >675 49 5-8 0.5 >4 . 5 5.5-4a- b 

Table (5.5-3): Step Response Characteristics From The 
Simulation of The Three Uncompensated Joint 
Systems 

The bode plots of the compensated joint systems are 

shown in Figures (5.5-5a) to (5.5-5c). The compensator pole 

to) 	 BODY 	 - 
	

lb) SHOULDER 

Cc)  ELBOW 

Figure (5.5-5): Bode Plots of The Compensated Joint Systems 

and zero designed for each joint system and the resulting 

phase- and gain-margins are shown in Table (5.5-4). The 

simulated step responses of the compensated joint systems 

are shown in Figures (5.5-6) to (5.5-8). The step response 

characteristics deduced are shown in Table (5.5-5). 
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JOINT 
SYSTEM 

COMPENSATON TRANSFER 
FUNCTION, 	G 	 (S) 

PHASE 
MARGIN 

GAIN 
MARGIN 

STABILITY FIGURE 
SHOWN " 

BODY (0.47 5 4.1) 	I 	( S . 1 ) 44 ° 12 dB STABLE 5.5- 4 a 

SHOULDER ( S + 1 	) /(2.2 S +1) 22 ° 5 d B STABLE 5.5- 4 b 

ELBOW (0.47 S +1) 	/(1.5 S • 1 ) 300 15 d B STABLE 5.5- 4c 

Table (5.5-4): Compensators Designed And The Corresponding 
Phase And Gain Margins of The Three Joint 
Systems 
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Figure (5.5-6): Simulated Step Response of The Compensated 
Body Joint System 
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Figure (5.5-7): Simulated Step Response of The Compensated 
Shoulder Joint System 
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Elbow Joint System 
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JOINT 
SYSTEM 

STEP 
INPUT 
V 

MAXIMUM 
ACCELERATION 
°/SEC2  

MAXIMUM 
RETARDATIM 
°ISEC2  

MAXIMUM 
VELOCITY 
°/SEC 

PERCENTAGE 
OVERSHOOT 

°A 

RISE-TIME 
SEC 

TRANSIENT 
OSC. TIME 
SEC  

FIGURE 
SHOWN 

BODY .5 155 237 28.6  2 . 8 2.9 1.0 5.5-6-b 

SHOULDER + 	5 180 319 21. 8 3 . 9 1.3 2- 	1 5.5-7a-b 

ELBOW + 5 155 311 2 7. 8 9 . 7 1.0 3.1 5 .5-8a- b 

Table (5.5-5): Step Response Characteristics From Simulated 
Joint System With Designed Controllers 

When the designed compensators were implemented on the 

joint systems, the actual system responses are shown in 

Figures (5.5-9a) to (5.5-9c). From these figures, the step 

response characteristics are estimated and shown in Table 

(5.5-6). 
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Figure (5.5-9): Actual Step Responses of The Three 
Compensated Joint Systems 
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JOINT 
SYSTEM 

PERCENT AGE 
OVERSHOOT 

% SEC 
RISE - TIME  

TRANSIENT
OSCILLATION TIME 

SEC 

FIGURE 
SHOWN 

BODY -1.0  2. 5 1 . 5 5 . 5 - 9 a 

SHOULDER 3.4 1.3 0.4 5 . 5 -9 b  

ELBOW 1.7 2.0 1.3 5.5 	.9 c 

Table (5.5-6): Actual Step Response Characteristics of The 
Three Compensated Joint Systems 

The characteristics values and shapes of the actual 

responses and the simulated responses match, yet overall 

actual responses exhibit slightly less overshoots, less 

transient time, and faster response. 

The design of compensators were based on positive step 

responses. However, the actual systems are also stable in 

negative step responses except that the responses are a 

little different from the positive step responses due to the 

different disturbance effects. The negative step responses 

for the actual joint systems are shown in Figure (5.5-10a) 

to (5.5-10c). 
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Figure (5.5-10): Actual Step Responses of The Three 
Compensated Joint Systems With Negative 
Step 
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5.6 EFFECTS OF VARIATION OF EFFECTIVE INERTIA 

It has been assumed that variations of joint effective 

inertia has negligible effect on the dynamic response of the 

closed-loop system. To check this assumption, the discrete-

time pulse transfer functions of the joint systems having 

links configured to give the maximum and the minimum moment 

of inertias were identified using the same technique 

discussed in the chapter. 

For the body-joint system, the identified pulse 

transfer function were found to be:- 

0.0419657z2+0.03937502z+0.0131784 
GBmin(Z)- 	 (5.6-1) 

z2-1.387503z2+0.3520289z+0.03551182 

0.01868824z2+0.05040691z+0.03426383 
Gemax(z)=. 

 

(5.6-2) 

 

z2  -1.458098z2  +0. 5169129z-0.05875563 

where the subscripts max and min designate the pulse 

transfer functions corresponding to the maximum and the 

minimum moment of inertia respectively. 

The designed controller for the body joint was 

converted into discrete-time using bilinear-transformat-

i0n[222]. The step responses in discrete-time were then 

simulated and are shown in Figure (5.6-1). Similarly, the 

step responses for the shoulder joint under maximum and 

minimum moment of inertias were simulated as shown in Figure 

(5.6-2). As the variations of effective inertia of the elbow 

joint system is only due to the position change of the small 

and light weight wrist, the amount of variation can be 

neglected. 
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From Figures (5.6-1) and (5.6-2), it can be seen that 

although the body-joint and the shoulder-joint are subjected 

to quite large variations of moment of inertias, the effects 

on closed-loop performance of the joint systems have been 

significantly reduced by the designed compensators which 

give large phase- and gian-margins to the joint systems. 

ANGULAR DISPLACEMENT 

MAX INERTIA 

20 
MIN. INERTIA 

10 

2 	 3 4 	 5 	 6 	 7 SECONDS 

Figure (5.6-1): Step Response of The Body Joint System Under 
Maximum and Minimum Moment of Inertias 

ANGULAR DISPLACEMENT 

Figure (5.6-2): Step Response of The Shoulder Joint System 
Under Maximum and Minimum Moment of Inertias 



CHAPTER SIX 

TRAJECTORY PLANNING 

In most robot applications, it is necessary for a 

manipulator to follow a planned path; in some cases, the 

manipulator is required to follow the shape of an object on 

which it is working, in other cases, it has to avoid 

obstacles during the execution of a task. In order to define 

the path for a manipulator such that the robot will 

accgrately follow the shape of an object or will safely 

avoid collisions with obstacles, critical points along the 

desired path have to be specified by the robot operator. 

Positions and orientations of an attached working tool 

of a robot arm at any point in space can be specified in two 

different ways. Either, one can specify directly such 

positions and orientations of the working tool in a 

coordinate system in which the robot users can visualize and•

measure, such as the Cartesian coordinates system. Or, one 

can specify the respective joint positions at that instant 

such that particular positions and orientations of the 

working tool can be produced by a combination of the joint 

positions. 

• Following the ways the critical points are specified, 

there are two methods of planning a trajectory. The first 

method is to plan the trajectory in space coordinates so 

that the working tool can move along a path containing all 

the specified point coordinates. The second method is to 
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plan a trajectory for each joint so that each joint will 

arrive at its specified corresponding joint positions 

simultaneously. 

The first method result's in Cartesian coordinate motion 

which is a natural consequence of Cartesian coordinates. The 

manipulator will move along straight lines and rotate about 

fixed axes in space. This method, however, has a number of 

disadvantages. It has the burden of converting between 

Cartesian and joint coordinates during each sampling period. 

This is necessary because to calculate the errors in the 

Cartesian path, current joint positions must be converted to 

their equivalent Cartesian coordinates using Jacobian 

transformations[R 1 ] (direct kinematics problem). To 

determine the equivalent errors in joint coordinates, one 

has to use the inverse Jacobian transformations which 

converts the current Cartesian coordinates into their 

equivalent joint positions (inverse kinematics problem). 

Then, necessary torques for the joints are calculated using 

the robot's dynamic equations. The complexity of these 

calculations severely limits the sampling frequency of the 

robot controller. Also, it is impossible to predict whether 

a trajectory segment for Cartesian motion will involve 

excessive joint rates of change before it is executed. It is 

difficult to estimate motion times and accelerations as 

, Cartesian velocities and accelerations are related to the 

limiting joint velocities and accelerations in a complicated 

manner, and depend on the configurations of the manipulator. 

The second method, planning the trajectory in joint 

coordinates, results in joint coordinate motion. This type 
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of motion is comparatively less expensive both in 

computation time and effort since complicated 

transformations are not required during motion execution. 

Joint accelerations and velocities can be checked against 

their limits before the motion is executed. A disadvantage 

of this method is that the resulting Cartesian motion is not 

defined and straight line path characteristics can no longer 

be attained. Nevertheless, deviations from a desired 

Cartesian path can be reduced by specifying more points. 

Because of the efficient algorithm, trajectories can be 

planned and implemented in real time. This second method is 

used to implement the actual motion of the TasrobotO system. 

Although the planned trajectory is based on specified 

joint coordinates, specified points can be input by an 

operator in Cartesian coordinates, which will then be 

converted into functionally equivalent path in joint 

coordinates using inverse Jacobian transformation. However, 

a more direct method is to input the specified points in 

joint coordinates. This method of specifying data is a 

natural consequence to robots requiring direct teaching, as 

in the case of the TasrobotO system. During the teaching, 

process, the robot computer will record every joint position 

specified by the operator. 

6.1 PATH APPROXIMATION 

In order to approximate a Cartesian path by functions 

in joint variables, m approximation functions are required 

for an m-joint manipulator - one for each joint. The 

approximation function for a particular joint must pass 
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through all the specified joint coordinates. Also, the 

function must be continuous in position, velocity and 

acceleration in order to remain within the physical 

limitations of the robot. These conditions can be met by 

deriving a single polynomial which passes through all the 

specified points; but such a function will be complex and 

difficult to fit. In addition, it is likely to contain 

•extrema between specified points. These extrema would have 

to be checked against the limits of the robot. 

A better approach is to define a separate polynomial 

joining two consecutive specified points for each joint, 

with the constraint that specified corresponding joint 

coordinates must be reached at the same instant of time. 

Therefore the corresponding Cartesian path will, at least, 

pass through all the specified coordinates. This method of 

connecting data points with smooth curves is widely used in 

the field of computer graphics. These curves, known as 

spline functions, have been thoroughly studied and 

investigated and found to provide the shortest path which 

satisfies the continuity constraints[R 6 ]. 

Terms, which are frequently used during the derivations 

and disscussions of the method are defined as follows:- 

Point - a joint coordinate data specified by operator. 

Goal point - point specified by operator at which the arm 
must be temporarily stopped, for example, to 
open or close the grippers. 

Intermdeiate point - critical point in between goal 
points.This point must be reached 

• during the motion. 

Segment - a path joining two consecutive points. 

End segment - a path joining one intermediate point and a 
• goal point. 
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Intermediate segment - a segment joining two consecutive 
intermediate points. 

Section - a path joining two goal point possibly passing 
through a series of intermediate points. 

In general, the motion of the robot may consist of 

several sections. Each section must contain at least two 

points, i.e. the start and the end points of a section. For 

a section consisting of n points, where n 	 2, there are (n- 

1) segments and (n-2) intermediate points. 

For a section with n points, the following notations 

are used:- 

Xi - starting position of a joint in a section. 

Xk - intermediate kth  position of a joint within a section. 

Xn - end position of a joint in a section. 

ak+1 - parametric variable with value denoting the time 
interval taken for a joint to go from position Xk to 
position Xk + 1 . 

x(a) - position of a joint as a function of a, where 
0 5 a 5 akfl. 

X'k - velocity of a joint at position Xk. 

x' (a) - velocity of a joint as a function of a, where 
0 5 a 5 akfl . 

X"k - acceleration of a joint at position Xk. 

x" (a) - acceleration of a joint as a function of 
where 0 5 a 5 ak+1 . 

6.2 SPLINE FUNCTION FOR EACH SEGMENT 

•Cubic splines were used to join all the intermediate 

points. For the end segments, there is an additional 

requirement that the velocities and the accelerations at the 

end points of a section must be zero. Thus, a fourth-order 

polynomials are required for the end segments. 
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The proposed method of fitting spline functions to the 

specified points requires at least five points to define a 

section, two goal points and three intermediate points. For 

cases where only three or four points are specified for a 

section, additional points are inserted to satisfy this 

requirement. The generation of the additional points are 

included in the designed software which will be discussed in 

next chapter. However, in some applications, the robot may 

only be required to go from one point to the other point, 

such as in pick-and-place operation in a clear environment. 

Breaking the two specified points into five or more points 

in order to satisfy the requirement is unnecessary and leads 

to slow motion. Therefore, a two point section is also 

included. For a section with two points, a fifth-order 

polynomial is used to approximate a two-point section to 

satisfy the six boundary conditions: two positions specified 

by operator, zero velocities and accelerations at the two 

end points. 

For the sake of simplicity, the trajectory planning 

method for a single-joint manipulator is first considered. 

The method extended to a multi-jointed arm and will be 

described later in this section. 

(a) Cubic Splines For Intermediate Segments 

The equation of a cubic spline between two intermediate 

points Xk and Xk+1, where 2 5 k 5 n-2, of an n-point 

trajectory, where n 	 5, consisting of (n-2) spline 

segments, may be written for a single joint as : 

x(a) = B1 + B2a + B2a + B4a3 	 (6.2a-1) 

The boundary conditions for this segment are : 
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x(0) = Xk 

x'(0) = X'k 
(6.2a-2) 

x(ak+1) = Xk+1 

x1(ak*I) = X'k 

Solving for B's and expressing in matrix form gives: 
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1 	 0 	 0 	 0 

	

0 	 0 	 1 	 0 

	

-3 	 ' 3 	 -2 	 -1 

ak+12 	 ak+12 	 ak+1 	 ak+1 

	

2 	 -2 	 1 	 1 

ak+1 3 	 ak+1 2 	 ak+1 2 	 ak+1 2  

B2 

B4 

 

Xk 

Xk+1 

Xlk 

X k 4. 1 

(6.2a-3) 

   

In order to calculate the cubic spline coefficients, 

ak+1, X'k+1 and Xlk+1 must be determined. The value of ak+1 

is governed by the velocity and acceleration constraints of 

the joint. For a system with multi-degree of freedom, the 

value of ak+1 must be the same for every joint in order for 

the tool-tip to reach the specified position in space. The 

value of akfl also depends on the velocity and acceleration 

constraints of other joints. Its value must be chosen so 

that the maximum velocity and acceleration of each joint in 

each segment is within the physical limit of that joint. 

However, the maximum velocity and acceleration of a joint in 

a segment can only be determined after the spline function 

has been established for that joint. Therefore, the value of 

ak+1 must first be expressed in some unit of time to be 

determined' afterward. The value of ak+1 is made equal to the 

norm of (Xk- Xk+1) as : 

ak+1 = [I (Xk+ -Xk)2  l 4 	 (6.2a-4) 

where the summation is taken over all the joints. 



The value of XIk and X'k+1 can be determined by the 

acceleration continuity constraint at the intermediate 

points. For two consecutive segments joining three 

consecutive intermediate points Xk, Xk+1 and Xk+2, the 

• acceleration at the end of one segment must be equal to the 

acceleration at the beginning of the next segment. 

For segment joining Xk and Xk+1,,  the acceleration at 

the end point of the segment can be written as : 

1 6 (Xk -Xk +I ) 
• x"(ak+i) =   •+ 2X'k + 4X'k+1 	 (6.2a-5) 

ak+1 	 ak+1 

Similarly, for the segment joining Xk+1 and Xk+2, the 

acceleration at the beginning of the segment can be written 

as : 

x"(0) = 
1 	 30Ck+2 -)Ck+1) 

ak+2 	 ak+2 

2X'k+1 - X'k+2 1 

	

(6.2a-6) 

Equating equations (6.2a-5) and (6.2a-6), and rearranging 

terms gives : 

ak+2X'k + 2(ak+1+ak+2)X'k+1 + ak+1X"k+2 

3 	 ' 
	  [ak+12(Xk+2-Xk+1) + ak+22(Xk+I-Xk)] (6.2a-7) 
ak+lak+2 

Expressing equation (6.2a-7) 	for all intermediate 

segments in matrix form yields : 

a4 2(a3+a4) 	 a3 	 0 	0 	... 0 0 0-  

0 an 	'2(a4+an,) 	 a4 	0 	.. .0 	0 0 X'3 

2(an-3+an-4) 	 an-3 X'n-2 

an-1 	 2(an-2+an-1) an-2 X'n-1_ 
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a3 2  (X4 —X3 ) 	 a4 2  (X3 —X2 )1 

3 

C5 U4 

3 

3 

a4 a3 
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(6.2a-8) [a42 (X5 —X4 ) 	 a5 2  (X4 —X3 )1 

an-lan-2 

Equation (6.2a-8) represents a system of (n-5) 

algebraic equations with (n-3) unknowns. In order to obtain 

a solution to equation (6.2a-8), it is necessary to state 

•the boundary conditions at the end points of the cubic 

spline functions. These end point conditions are provided by 

the two end segments and will be derived in the following 

subsections. 

(b) Fourth-order Spline For The Beginning Awl End 
Segments 

For the first and last segments of the trajectory, 

additional constraints of zero velocity and zero 

acceleration are required at the end points (goal points), 

i.e. 

X'l = X"I = X'n = X"n = 0 	 (6.2b-1) 

This requires a fourth-order spline segment of the 

form: 

x(a) = B1 + B2a + B3a2  + B4a3  + B5a4 	 (6.2b-2) 

For the first segment, the boundary conditions are: 

x(0) = Xi 

x(t2) = X2 

X1(0) = 0 	 (6.2b-3) 

x'(t2) = X'2 

X"(0) = 0 

[an - 2 2  (Xn - 1 —Xn -2 ) 	 an - 1 2  (Xn - 2 —Xn - 3 )1 



Solving for B's in the first segment, gives: 

Bi = Xi (6.2b-4) 

132 = 0 (6.2b-5) 

B3 = 0 (6.2b-6) 

4 1 
= - (6.2h-7) -XI) 
az 3  a22  

3 1 
= ---(X1 -X2) •+ (6.2b-8) 
az4  a23 	 . 

The acceleration at the end point of the first segment 

may be written as : 

12 	 6 
x"(a2) = ---(X1 -X2) + ---X'2 

	
(6.2b -9) 

a22 	 a2 

The initial acceleration of the second segment can be 

written as : 

x"(0) = 
2 3 (X3 -X2 ) 

X3 [ 

	

a3 
	 2X'2 - X13 

From the acceleration continuity constraint, the 

acceleration at the end point of the first segment must 

equal to the acceleration at the beginning of the second 

segment, and hence: 

(2a2+3a2 )X12 + az X 3 

3 
[a22(X3-X2) 	+ 2a32(X2-X1)] 	 (6.2b-11) 

a2a3 

Similarly, for the last segment, the boundary 

conditions are: 

x(0) = Xn-1 

x(an) = Xn 

x'(0) = X'n-1 
	

(6.2b-l2) 

x'(an) = 0 
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(6.2b-10) 



x"(an) = 0 

Solving for B's in the last segment gives: 

B1 = X11-t 

82 =  

1 

B3 = — [6 (Xn -Xn - ) - 3X n - t an 
an 2  

1 84 = -- 18(Xn-1-Xn) + 3Xin-lan] 
an 3  

1 

[ 3 (Xn -Xn - 
an 4  
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B5 - 	 n I an] 

(6.2b-13) 

(6.2b-14) 

(6.2b-15) 

(6.2b-16) 

(6.2b-17) 

Again, from the acceleration continuity constraint, the 

acceleration at the end point of the second last segment 

must be equal to the acceleration at the beginning of the 

last segment, and it can be shown that: 

anX'n-2 + (3an-1+2an)X'n-1 

3 

an -tan 

n -1 2  (Xn 	 - 1 ) + an 2  (Xn - 1 —X5 - 2 ) 	 (6.2b-18) 

Combining the results of equations (6.2a-8), (6.2b-11) and 

(6.2b-18) allows the Unknown intermediate point velocities 

	

X'3, 	 Xin-1, 	to be solved; 

can be expressed as : 

	

2(a2+3a3) 	 a2 	 0 

a4 	 2 (a3+a4 ) 	 a3 	 0 	 . 

and these 	(n2) equations 

X'2 

X'3 

0 a5 	 2(a4+a5) 	 a4 0 X'4 

0 	  2 (an - 3 +an - 4 ) 	 an - 3 0 X'n-3 

an - I 	 2(an-2+an-4 an-2 X'122 

0 0 	 an (3an-1+2an) 



3 
[a22(X3-X2) + 2a23(X2-Xi)] 

az a3 

3 
[az 3  (X4 -X3 ) + az 4  (X3 -X2 ) 

a3 a4 

[a2 4  (Xs -X4 ) + •az 5  (X4 -X3 )1 
a4 a3 

(6.2b-19) 

[ an-22(Xn-1—Xn-2) + an-1 2  (Xn-2—Xn-3) 

an-2an-1 

3 
[ 2an -1 ( Xn —Xn - 1 ) + an ( Xn - 1 —Xn - 2 )] 

an - 1 an 

, symbolically: 

(A] (X'] = [D] 	 (6.2b-20) 

where [A] is an (n-2)x(n-2) matrix 

[X'] is an (n-2)xl matrix 

[D] is an (n-2)xl matrix 

[X'] can be obtained by solving the system of linear 

algebraic equations shown in equation (6.2b-19). Since the 

[A] matrix is a tridiagonal matrix, there is a very 

efficient algorithm for solving this particular type of 

system of equations[229]. Given the equations: 

bizi + c1z2 = di, 

az zi + bz Z2 + 'C2 Z3 = d2 

(6.2b-21) 

an-iZn-2 + bn-1Zn-1 + Cn-1Zn =  

an Zn - 1 + bn Zn = dn , 

operators uk, vk and wk can be formed such that: 

1.1k = • ak Vk - 	 + bk 

Vk = Ck Alk 

( vo = 0 ) 	 (6.2b-22) 

(6.2b -23) 
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w = (dk 	 ak Wk - 1 ) 
	

( wo = 0 ) 	 (6.2b-24) 

for k = 1,2,3 ..... ,n. 

Successive elimination of zi,z2, 	  ,zo-1 from 2nd, 

3rd,....., nth equations yields the equivalent system•

equation: 

Zk = Vk Zk + 	 Wk 	 for k = 1,2, 	 n-1 	 (6.2h-25) 

Z n = W n 	 (6.2h-26) 

whence zo,zo-i, 	 zi can be successively evaluated. 

For matrices with dominant main diagonal, this 

procedure is stable[R261  in the sense that all errors 

rapidly damp out ( 0 ( ck/uk < 1 ). 

Solving equation (6.2b-19) allows coefficients of the 

spline functions for each segment to be found. These results 

for a single joint system can be extended to a multi-degree 

of freedom system with m joints simply by duplicating the 

spline function generation procedure for each joint and 

using the same values of a+1. The [A] matrix for multi-

joint system will be unaltered, and [X'] and [D] matrices 

will become (n-2)xm matrices. A path through n points for a 

robot with m joints will consist of 2m unique fourth-order 

spline functions and mx(n-3) unique cubic spline functions. 

The efficient alogorithm discussed above for solving 

single-joint systems is also applicable to multi-joint 

systems. Since equations (6.2b-22) and (6.2b-23) do not 

depend on the d's in equations (6.2b-21), and the [A] matrix 

is unchanged, the intermediate velocities for other joints 

can be evaluated using the same alogrithm and the same 

values of uk and vk. Only the values of wk are renewed for 

each joint. 



(c) Fifth-order Spline Function For A Two-point 
Section 

For a section with only two defining points, i.e. only 

the goal points, there are six boundary conditions to be 

satisfied A fifth order spline function is required to 

specify the section. The form of the fifth-order spline is 

given by: 

x(a) = Bi + B2a + B a2  + B4a2  + Bsa4  + B6a5 	 (6.2c-1) 

The boundary conditions required are : 

• 

• Substituting equations 	(6.2c-2) 	into 

solving for B's gives : 

Bi 	= Xi 

(6.2c-1) 	and 

(6.2c-3) 

B2 = 0 (6.2c-4) 

B3 = 0 (6.2c-5) 

10(X2-Xi) 
B4 - (6.2c-6) 

a2 

- 15(X2 - Xi) 
B5 = (6.2c-7) 

a2 4  

6 (X2 	 ) 
Bs = (6.2c-8) 

a2 5  

6.3 TIME SCALE FACTOR 

• Once the spline functions are defined for all 

manipulator joints, the parametric variable a defined in 
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x(0) 	= Xi 

x(a2) 	= X2 

x'(0) 	= 	0 

x'(a2) 	= 	0 

x"(0) 	= 0 

x"(a2) 	= 0 

(6.2c-2) 



equation (6.2a-4) must be associated with some unit of 

physical time. This can be done by replacing the parametric 

variable a in the spline segments by t/S, where t is the 

elapsed physical time since the beginning of the spline 

segment and S is a scale factor to determined. 

Without loss of generality, a cubic spline segment is 

considered: 

x(a) = Bi + B2a + B2a2  + B4a3 	 (6.3-1) 

Replacing a by t/S in equation (6.3-1), gives : 

x (t) = Ci + C2 t + Ca t2  + C4 t3 
	

(6.3-2) 

where 	 Ci = Bi 

C2 = B2 /S 

C3 = 133 /S2  (6.3-3) 

C4 = B4 /S3  

The scale factor, S, must be assigned one value for 

each section, such that S is large enough to prevent the 

maximum velocity or acceleration to be exceeded by any of 

the robot's joints during the execution-of the section. 

Also, it should be as small as possible in order that the 

motion of that section could be completed in a reasonable 

short time. Therefore, the maximum value of S necessary to 

stay within the physical limits of the robot's joints must 

be found. 

The real time velocity can be expressed as : 

x1(a) 
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t S 

In order to stay within the velocity constraint, the 

real time velocity for a joint must stay below the velocity 

constraint, V, of that joint during motion. Hence, S must be 

x' (t) - (6.3-4) 



greater than or equal to x'(a)/V. To stay within the 

velocity constraint, the minimum value of S, Sv, is given 

by: 
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MAX [maxX 

- MAX 	  (6.3-5) 

where maxX'ij represents the maximum velocity of the ith  

spline segment for the jth  joint, and Vj represents the 

velocity constraint_for the jth  joint. 

Similarly, the real time acceleration for a joint can 

be written as : 

x" (a) 
(6.3-6) x"(t) = 

S2  a= t /S 

To stay within the acceleration constraint, the minimum 

value of S, Sa, is: 

MAX [maxX"i 	 1/2 

= MAX 	  (6.3-7) 
Aj  

where maxX"ij represents the maximum acceleration of the ith  

spline segment for the jth  joint; and Aj represents the 

acceleration constraint for the jth joint. 

In general, revolute joints, particularly those with 

horizontal axes of rotation, have different velocity 

constraints in different direction of rotation. Their 

acceleration and retardation constraints are also different 

due to the effects of external torques. Therefore, there are 

two values of velocity constraints - one for each direction, 

and two values of acceleration constraints - one for 

acceleration and one for retardation, for every revolute 

joint. This results in four values of S necessary to stay 



within the constraints - two for velocity constraints, 

denoted by Sv1 and Sv2 and two for acceleration constraints 

denoted by SA1 and SA2. 

In some cases, there may also be time constraint in 

addition to velocity and acceleration constraints mentioned 

above. This time constraint is mainly to adjust the motion 

execution time so that the robot can be synchronized with 

the working environment. In the case of the TasrobotO 

system, the time constraint is introduced to synchronize the 

positioning process of the body-, shoulder- and elbow-joints 

with the orientation process of the pitch and the roll 

•rotations. These two processes in the TasrobotO system are 

controlled individually but carried out at the same time. 

If Tij represents the minimum time required by the ith  

segment of the jth  joint to carry out its motion, then the 

minimum value of S necessary to give the required amount of 

time, ST, is: 

Tlj 11 
ST = MAX{ MAX[----- 	 (6.3-8) 

i al +1 

In some applications, the time constraint may only be 

imposed on the total time taken for the motion of a section. 

For example, during pick-and-place operations, for stepper 

motor controlled wrist joints, only the wrist joint 

positions at the end points of a section are essential. That 

is, only the number of steps for each wrist joint from 

initial position to final position of a section will be 

required. 
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If Tj represents the minimum time required for the it h 

joint to complete a section, then the minimum value of S 

necessary to give the required amount of time, Si, is: 

Ti 
Si = MAX  	 (6.3-9) 

j 	 at f I 

During the trajectory planning process, either equation 

(6.3-8) or equation (6.3-9) can be used to specify the time 

constraint. 

The desired minimum value of the scale factor S can be 

obtained by choosing the maximum value amoung the five 

constraints, i.e. 

S = MAX I Sv , SV 2 , SA 1 SA 2 , ST I 
	

(6.3-110) 

Once S is evaluated, the spline functions in real time, 

t, of each segment for each joint can be re-established, as 

shown in equations (6.3-2) and (6.3-3). Although only third 

order spline functions are shown, the fourth- and the fifth-

order polynomial functions are similar. 

6.4 EVALUATION OF MAXIMUM VELOCITY AND ACCELERATION FOR 
SPLINE SEGMENTS 

The evaluation of S requires maximum velocity and 

acceleration to be evaluated for each spline segment of each 

joint within a specified section. To find the maximum 

velocity or acceleration for each joint, the parametric 

variable, amax, at which maximum velocity or acceleration 

occurs should be determined first. In cases where the 

calculated amax falls outside the a-range of a spline 

segment, the maximum value will occur at either end points 

of that spline segment. 
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Maximum velocity occurs within the a range of the ith 

segment for the jth  joint can be expressed as : 

maxX'Jj = X'ij(a)la.avmax 	 (6.4-1) 

where avmax is the parametric variable, a, at which velocity 

is maximum and 0 5 avmax 	 al+1 

Similarly, maximum acceleration within the ith segment 

for the jth joint is given by : 

maxX"tj = X"ii(a)la=aamax 
	 (6.4-2) 

where aamax is the'parametric variable, a, at which 

acceleration is maximum and 0 5 aamax 5 ai+J. 

Table (6.4-1) shows the values of avmax and aamax for 

each segment of a section. 

ith INTERMEDIATE 
SEGMENT 

FIRST 
SEGMENT 

LAST 
SEGMENT 

TWO -POINT 
SECTION 

tvmax - B3I3B 4 - B412B5 B3/6B5 tn  t2/2 

t amax t i, i  - BO 4B5 - B4 14B5 -1(- —1) t2 1  
2 	 1.5 

Table (6.4-1): Equations For Maximum Velocities And Maximum 
Accelerations To Occur In Segment Functions 

6.5 METHODS OF IMPLEMENTATION 

The trajectory control process can be divided into two 

stages. The first stage, which is the trajectory planning 

stage, is to design a desired path from the specified points 

by calculating the necessary coefficients of each spline or 

polynomial segment function for each joint. The second stage 

is to implement the desired path, i.e. the path execution 

stage. 

The first stage is implemented off-line. That is, a 

desired path is planned after all the specified points for a 
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path are input. The design of a path for a given section 

using the discussed technique can be summarized by a series 

of steps. Firstly, the parametric value a, as shown in 

equation (6.2a-4), is caluclated. Secondly, the intermediate 

velocities, as shown in equation (6.2b-19), are evaluated so 

that the coefficients of each approximating segment function 

can be calculated; this step is not required for a two-point 

section. Thirdly, the maximum velocities and accelerations 

are calculated from the evaluated segment functions so that 

the time scale factor can be determined. Then, from the 

determined time scale factor, the real time required to 

execute each segment function can be found; ; nd the segment 

functions can be converted into real time functions. These 

steps can be summerized in the flow-chart shown in Figure 

(6.5-1). 

The spline segment functions for a desired path 

obtained from the trajectory planning stage are real time 

functions. Although the functions are continuous in nature, 

the representation of the functions by digital computer can 

only be in discrete points. The more the points are used, 

the more accurate the approximated function will be. 

However, the more points used, the more memory for storing 

the points are required. As an example, for a three-joint 

system, 9 additions and about 15 multiplications are 

required to compute a set of joint data. The 8087 numeric 

processor unit, which is installed in the host computer of 

the TasrobotO system, can compute an addition in about 21 

microseconds and a multiplication in 24 microseconds. The•

total time required to calculate a set of joint data for the 
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EVALUATE COEFFICIENTS FOR 
NEXT INTERMEDIATE SEGMENT 

EVALUATE INITIAL 
LENGTH OF TIME 
BETWEEN THE TWO POINTS 

EVALUATE TIMES FOR 
MAXIMUM VEL. & ACC. 

EVALUATE. MAXIMUM VEL. &ACC. 
FOR THAT SEGMENT 

LAST SEGMENT ? 

EVALUATE TIMES FOR 
MAXIMUM VEL. & ACC. 
FOR THAT SEGMENT 

CONVERT CALCULATED 
SEGMENT FUNCTIONS INTO 
REAL TIME FUNCTIONS 
USING THE DETERMINED 
TIME SCALE FACTOR 

EVALUATE MAXIMUM VEL. &ACC. 
FOR INITIAL SEGMENT 

EVALUATE TIMES FOR 
MAXIMUM VEL. & ACC. 
, WITHIN INITIAL SEGMENT  

EVALUATE COEFFICIENTS OF 
INITIAL SEGMENT 

EVALUATE 	 INITIAL 
LENGTH OF TIME 
BETWEEN CONSECUTIVE POINTS 

EVALUATE INTERMEDIATE 
VELOCITIES 	 AT 
SPECIFIED 	 POINTS 

EVALUATE MAXIMUM VEL. & ACC. 
OCCURRED WITHIN SECTION 

EVALUATE MAXIMUM VEL. & ACC. 
FOR LAST SEGMENT 

EVALUATE COEFFICIENTS FOR 
LAST SEGMENT 
4 th ORDER POLYNOMIAL  

EVALUATE TIMES FOR 
MAXIMUM VEL. & ACC. 
FOR LAST SEGMENT 

EVALUATE COEFFICIENTS FOR 
S th ORDER POLYNOMIAL 

EVALUATE TIME SCALE FACTOR 
FROM KNOWN VEL. & ACC. 
CONSTRAINTS  

IEXIT 

Figure (6.5-1): Flow-chart of The Trajectory Planning 
Process 
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three-joint system is about 549 microseconds. For a job 

requiring 30 seconds to complete, the total number of data 

calculated is more than 163,000. A large memory space will 

be required to store the necessary joint data for that job 

if off-line method is used. On the other hand, if the path 

execution stage is implemented on-line, only the 

coefficients of the segment functions required to be stored 

and generating a command data set in 549 microseconds is 

sufficiently fast for controlling most mechanical systems. 

Therefore, the path execution stage is implemented using on-

line method. 

The implementation of the path execution stage requires 

a real time clock which provide real time values. Upon 

executing each segment function, the clock is reset and 

started. Joint position data are then calculated by reading 

the real time values from the clock and substituting into 

the corresponding real time segment function. The data 

calculated is output to that joint. A flow-chart of the path 

execution process is shown in Figure (6.5-2). 

Figures (6.5-1) and (6.5-2) only summarize the 

technique of the trajectory control process. A more detailed 

account for the actual implementation of the process will be 

discussed in next chapter. 
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RESET REAL TIME CLOCK 
& START CLOCK 

READ REAL TIME DATA 
FROM CLOCK 

RENEW COEFFIC ENTS OF 
SEGMENT FUNCTION 
& TIME LIMIT 

EVALUATE POSITION DATA 
REQUIRED AT THAT TIME 

OUTPUT POSITION DATA 
TO CORRESPONDING JOINT 

EXIT 

SET COEFFICIENTS OF 
1st SEGMENT FUNCTION 
& TIME LIMIT 

Figure (6.5-2): Flow-chart of The Path Execution Process 
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CHAPTER SEVEN 

SOFTWARE CONTROL OF THE TASROBOTO SYSTEM 

The software control of the TasrobotO system consists 

of eight main programs written in Fortran-77 language. These 

programs can be executed on the host computer of the 

TasrobotO system, which is an IBM/PC microcomputer. The 

programs are interconnected by a batch file called 

TASROBOT.BAT, to form the software control system of the 

TasrobotO manipulator. 

In addition to the Lab-pac subroutines, seven public 

subroutines written in 8088 assembly language and Fortran-77 

language were developed to access to hardwares in the IBM 

microcomputer and hardwares in the Lab Master interface 

board, and to increase program execution speed. 

7.1 SUBROUTINES 

There are six assembly language subroutines: STPORT, 

DIGOUT, POSITN, WRIST, ARMOUT and BEEP; and one Fortran 

subroutine, SELFADJ. These subroutines will be discussed in 

this section. The Lab-pac subroutines will not be discussed 

as they are detailed in its user' guide[R 32 ]. There are 

specific procedures required in the assembly language 

subroutines for linking with the eight Fortran main programs 

are discussed in the Microsoft Fortran Complier User's 

Guide[ 34 ]. 
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The listing of these subroutines can be found in 

Appendix B. 

(a) The STPORT Subroutine 

This subroutine reprograms the 8255 parallel port in 

• the Lab Master Board so that its 24 I/O pins can be re-

arranged as 8 bit-wide input port and 16 bit-wide output 

port. This call is necessary to override the initialization 

call of the Lab-pac subroutines which uses 16 bit-wide input 

port and 8 bit-wide output port. 

(b) The DIGOUT Subroutine 

The subroutine call is in the format DIGOUT(CMD,LATCH). 

CMD is a 12-bit integer command signal to be output to 

control the motion of a joint. LATCH is a 3-bit integer 

address of a joint register as shown in Table (7.1b-1). 

The two input values, CMD and LATCH, are concatenated 

into a 16-bit data such that the lower 12 bits (bit0-bit11) 

contains the command signal and the upper 3 bits (bit12- 

bit14) contains the address signal. The latch enable signal 

for a specified register must be in the correct sequence as 

described in section 3.3a. Figure (7.1b-1) illustrates the 

flow chart of the DIGOUT subroutine. 

(c) The  POSITN, WRIST and ARMOUT Subroutines 

The functions of these subroutines are very similar to 

functions of the DIGOUT subroutine except that the command 

signals for these subroutines are in integer array form. The 

POSITN subroutine call is in the format POSITN(CMDP), where 

CMDP is an integer array of three elements representing the 

119 



SEND LATCH ENABLE SIGNAL TO 
SPECIFIED LATCH 

OUTPUT AX REGISTER TO DATA 
REGISTER OF PARALLEL PORT 

MERGE LOWER I. BITS OF DX 
REGISTER INTO THE UPPER I. 
BITS OF AX REGISTER 

LOAD CONTENT CF MEMORY LOCATION 
OF (MD TO AX REGISTER 

LOAD CONTENT OF MEMORY LOCATION 
OF LATCH TO DX REGISTER 

120 
LATCH 

NO. 
ENERGIZED 

JOINT 
0 BODY 

WRIST! PITCH 

2 SHOULDER 

WRIST ! ROLL 

4 ELBOW 

5 GRIPPER 

'RETURN  I 

Table(7.1b-1): Joint Energized Figure(7.1b-1): Flow-chart of 
Corresponding To Latch Number The DIGOUT Subroutine 

command signal for the body-, shoulder- and elbow-joints 

respectively. 

The wrist subroutine call is in the format WRIST(CMDP), 

where CMDP is an integer array of two elements representing 

the command signals for the pitch and roll rotations 

respectively. 

The ARMOUT subroutine call is in the format 

ARMOUT(CMDP), where CMDP is an integer arrayof five 

elements representing the command signal for the body-, 

shoulder- and elbow-joints as well as the pitch and roll 

rotations repectively. 

The main purpose of these subroutines is to reduce the 

time in outputing command signals. Since, in many cases, 

more than one joint are energized at a time, these subrout-

ines reduce the need of calling the DIGOUT subroutine 

recursively. 

(d) The BEEP  Subroutine 

The subroutine BEEP accesses the sound generating 

hardwares inside the IBM microcomputer. The subroutine call 

is of the format BEEP(DELAY), where DELAY is an integer 



TURN SPEAKER ON 

IWAIT FOR 100 mSEC I 

'DECREASE OX BY ONE 

ITURN SPEAKER OFF 
IMMMI  

constant or integer variable representing the duration of 

the sound in multiples of 0.1sec. 

This subroutine is used in programming or teaching 

stage to acknowledge the operator that positions and 

orientations specified by the operator are stored. It is 

also used to remind the operator that the memory assigned 

for storing joint data are 

LOAD CONTENT OF MEMORY LOCATION 
OF DELAY TO DX REGISTER 	 running low or full. Audio 

SET TIMER-2 OF 8253 TIMER TO 	 signal is considered to be 
GIVE CLOCK FREQUENCY OF 
1 KHz OUTPUT 

more effective than visual 

display during teaching stage 

since the operator can devote 

his time in adjusting proper 

arm configuration without 

having to scan the screen 

frequently for warning 

signals. Figure (7.1d-1) 

Figure(7.1d-1): Flow-chart of 
The BEEP Subroutine 	 illustrates the flow chart of 

the BEEP subroutine. 

(e) The SELFADJ Subroutine  

This subroutine is written in Fortran-77 language. It 

brings the manipulator from its current position to a 

specified position. This function is required in both 

training mode and operating mode. In training mode, the 

manipulator has to be aligned with the teaching arm. In 

operating mode, the manipulator has to be brought to the 

starting position of a specified task. The SELFADJ 

subroutine implements the trajectory control algorithm, 

discussed in Chapter 6, in real time. 
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SAMPLE GRIPPERS MOTOR POSITION 
SENSOR POT 

IS GRIPPER OPEN CLOSE THE GRIPPER 

SAMPLE JOINT POSITIONS TO ESTABLISH 
STARTING POSITION DATA 

TARTING 	 SPECIFIED 
POSITION 	 END POSITION 

OUTPUT SPECIFIED 

wrast POSITION DATA 
RETURN 

PLAN TRAJECTORY FOR 
EACH JOINT 

IEXECUTE TRAJECTORY 

RETURN 	 I 

Figure(7.1e-1): Flow-chart of 
The SELFADJ Subroutine 

The subroutine call is in the format SELFADJ(F2), where 

F2 is an integer variable array containing specified 

positions of the five manipulator joints. The current 

position of the arm is obtained by sampling the position 

sensors mounted on the manipulator. 
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Owing to the inherent 

dependence of the effective 

length of the gripper steel 

string on arm configuration, 

as discussed in section 2.l c, 

the subroutine will always 

ensure that the gripper is in 

closed position before any 

motion is executed. Figure 

(7.1e-1) illustrates the flow 

chart of the SELFADJ 

subroutine. 

7.2 MAIN PROGRAMS 

The eight main programs for the software control of the 

TasrobotO manipulator can be divided into six stages, 

namely, the initializing stage, the programming stage, the 

compiling stage, the executing stage, the intermediate stage 

and the idling stage. 

The initializing stage enables the manipulator to be 

programmed for a specific task. Data specified in the 

programming stage will be trimmed and processed in the 

compiling stage to generate executable data for the 

executing stage. After the completion of a task, options are 



(-  FROM DOS SYSTEM 

INITIALIZING 

PROGRAMMING 

COMPILING 

EXECUTING  

INTERMEDIATE 

I DUNG 

(EXIT TO DOS SYSTEM) 

Figure(7.2-1): Software 
Control System of The 
TasrobotO Manipulator 

provided in the intermediate stage to re-direct to one of 

the stages. When the robot is not intended to be used in a 

short period, it can be put in to the idling stage. Then, 

the robot will not response, but the power for the 

electronics will be maintained to enable the system to be 
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reactivated without going 

through the initializing 

stage. 

Each stage consists of 

one or more main programs and 

the ending of one stage can 

trigger the starting of next 

by an autoexecuting batch 

file, called TASROBOT.BAT. By 

running this batch file, each 

of the eight programs will be 

initialized in a sequence 

illustrated in Figure (7.2-1). 

(a) The Initializing Stage 

This stage consists of program ALIGN. This program 

provides step by step instructions for setting the reference 

positions of the pitch and roll axes of the wrist which are 

shown in Figure (7.2a-1). These reference settings are 

important to produce absolute 

The pitch rotation has a 

the roll rotation has a range 

position codes. 

range of motion of 140 0  and 

of motion of 270° as shown in 

Figure (7.2a-2). Since each stepper motor has step angle of 

0.6°, the pitch position can be discretized into 234 levels 



and the roll position into 450 levels, with each level 

equivalent to one step angle as shown in Table (7.2a-1). 

After the reference positions are set, the codes 100 

decimal and 150 decimal are sent to the pitch and the roll 

registers respectively. It is important that these codes are 

sent after the registers are powered; otherwise, these 

signals will be lost. Therefore, the power ON signal will be 

checked before the reference position codes are sent. Flow 

chart of the ALIGN program is shown in Figure (7.2a-3). 

(b) The Programming Stage  

• The programming of the TasrobotO manipulator is through 

on-line method using a teaching arm which contains five 

position sensors and two switches as shown in Figure (2.4- 

1). During programming stage, the manipulator will follow 

the configuration of the teaching arm. A specific arm 

configuration can be recorded by pressing the MEM-switch, 

and the gripping function of the manipulator is controlled 

by the GRIP-switch. 

The programming stage consists of two programs, OPFILE 

and LEARN. The program OPFILE is to enable users to specify 

a global filename for storing specified data points which 

may be required by other programs in the other stages. 

Before a file with a specified filename is opened, the 

existence of a file with the same name will be checked to 

ensure that the existing file will not be overwritten 

• leading to loss of data in that file. If a file with the 

same filename exists, options are provided to re-specify a 

filename or to allow the existing file to be overwritten. 
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REFERENCE 
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GRIPPER 
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ZERO POSITION 
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AXIS 

REFERENCE POSITION 
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t_ 
ati-tCANCI 
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sfi).X 
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SEND REFERENCE CODES TO 
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INFORMING USER TO PUT ALIGN 
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SHOULDER LINK 

Figure(7.2a-1): Reference Positions of The Wrist Joints 

(a) PITCH ROTATION AXIS 	 (b) ROLL ROTATION AXIS 

Figure(7.2a-2): Definitions of The Wrist Positions 

ZERO 
POSITION 
CODE 

REFERENCE 
POSITION 
CODE 

MAXIMUM 
POSITION 
CODE 

PITCH 
AXIS 

100 242 

ROLL 
AXIS 150 300 

Figure(7.2a-3): Flow-chart of 	 Table(7.2a-1): Position Codes 
The ALIGN Subroutine of The Wrist Axes 



The actual programming process is implemented by the 

,program LEARN. To track the configuration of the teaching 

arm, the five position sensors in the teaching arm are 

sampled. Since the body-, shoulder- and elbow-joint sensors 

in the teaching arm are the same as those in the 

manipulator, the sampled position codes are used as control 

codes to drive these three joints of the manipualtor. 

However, the sampled position codes from the wrist sensors 

in the teaching arm are different from the control codes for 

controlling the manipulator wrist. Therefore, 

transformations are required to convert the sampled position 

codes to the control codes for controlling the wrist motion. 

The transformations are: 

WP = (WPPOT + 1242)/10.23724 	 (7.2b-1) 

WR = (WRPOT + 1856)/8.066 	 (7.2h-2) 

where WP and WR are integer constants representing the 

control codes for the pitch and the roll rotations 

respectively; and WPPOT and WRPOT are integer constants 

representing the sampled position codes from the pitch and 

the roll axes of the teaching arm. Because of sampling 

errors and rounding off errors, the transformed wrist 

control code may vary by plus or minus one unit even if the 

wrist positions of the teaching arm remains unchanged. This 

results in oscillation of the wrist rotations. The problem 

is solved by energizing the wrist rotations only when there 

• are more than one unit of change in the converted control 

codes. It is also important that the control codes are 

positive to ensure correct operation of the magnitude 
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comparators used in the wrist control hardware. The algor-

ithm of the transformation is shown in Figure (7.2b-1). 

SAMPLE WPPOT & WRPOT OF 
TEACH ARM 

WPPOT • 1242 
W - 

10 • 23724 

WRPOT • 1856 

8 • 066 

    

    

Wps 0 

   

   

    

    

    

= 0 

   

   

    

    

DWP • I Wp - Wp0.  I 

DWR 	 I W 	 06  I 

Wp 0 • W 

WRO •W 

OUTPUT WRIST COMMAND POSITION 

CODES Wp & 

(M WMM)  

• NOTE : INITIALLY Wp & WO ARE SET TO ZERO 

Figure(7.2b-1): Algorithm For Transforming Sampled Wrist 
Values To Wrist Command Codes 

During the execution of the LEARN program, the status 

of the two switches in the teaching arm are also examined. 

The control codes of the five joints are recorded to the 

specified file when the MEM-switch is pressed. When the 

GRIP-switch is pressed, the state of the gripper will be 

checked. If the gripper is opened (or closed) the gripper 

motor will be energized to close (or to open) the gripper. 

Because of the mechanism of the gripper as discussed in 

section 2.1c, the amount for the gripper motor to turn to 
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open or close the gripper depends on the arm configuration. 

Therefore, during the opening of the gripper, the gripper 

motor will be energized as long as the GRIP-switch is 

pressed. The amount of opening by the gripper motor in a 

specific arm configuration is recorded. To close the 

gripper, the gripper motor is rewinded to the pre-programmed 

position at which the gripper is closed regardless of arm 

configuration. The routine when a GRIP-switch is pressed is 

shown in Figure (7.2b-2). 
WHEN GRIP SWITCH 
IS PRESSED 
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TURN GRIPPER MOTOR 
TO OPEN GRIPPER 

I STOP GRIPPER MOTOR] 

SAMPLE GRIPPER mount's 
POT AS GRIPPER DATA 

SET GMODE • 1  

SAMPLE GRIPPER MOTOrtS,,,,____, 
POT , GPOT 

(STOP GRIPPER MOTOR 

SET GRIPPER DATA TO 0 
& GMODE • 0 

TURN GRIPPER MOIDR 
TO CLOSE GRIPPER 

(CONTINUE)  

• GMODE IS THE STATUS OF THE GRIPPER 
GMODE • 1 WHEN GRIPPER IS OPEN 
GMODE .0 WHEN GRIPPER IS CLOSE 
INITIALLY GMODE IS SET AT 0 

Figure(7.2b-2): Flow-chart of The GRIP-switch Subroutine 

The program provides a maximum of 50 sets of data to be 

recorded to the specified file. Each set of data is recorded 

whenever the MEM-switch or the GRIP-switch is pressed and is 

acknowledged by a short beeping sound. The teaching process 

can be terminated by pressing the ESC-button on the 

keyboard. When 45 sets of data are recorded, the user will 

be warned by a beeping sound of about 5 seconds. When 50 



sets of data are recorded, the user will be informed by a 

long beeping sound of about 10 seconds and the teaching 

process will be terminated. At the same time, options are 

provided to re-start the programming process or to carry on 

to the next stage. 

In many robot applications, it is necessary for the 

manipulator to return to its starting position after it 

finishes a specific job so that the job can be repeated. 

When a teaching process is terminated, the first specified 

data and the last specified data are compared. If the two 

data are the same, the programming stage will be completed. 

Otherwise, options are provided to allow user to adjust the 

end points in four different ways. The first way simply to 

ignores the difference between the first and the last 

specified data. However, this will prevent the manipulator 

from repeating the job druing the executing stage. The 

second way is to replace the last data by the first data. 

This will usually be used because it is usually more 

difficult to bring the teach arm back to the same initial 

point. The third option allows the manipulator to go back to 

the starting position by inserting the first data set to the 

end of the record. The last option enable the manipulator to 

avoid the same obstacles when the arm is on its way back to 

the starting position by duplicating the same specified set 

of data in reverse order. This option also doubles the 

memory available for storing specified data. For example, if 

50 sets of data are specified, the actual file will contain 

99 sets of data. 
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AUGN MANIPULATOR WITH TEACH ARM 
BY CALUNG SUBROUTINE SELFADJ 

SAMPLE JOINT POSITIONS Cf TEACH ARM 

CONVERT SAMPLED WRIST (gnon CCC  
TO WRIST POSITION COMMAND CODES 
USING TRANSFORMATIONS 	 - 

OUTPUT DATA TO CONE MARIPULA 

OFFER OPTIONS TO ADJUST LAST DATA 

ADJUST DATA ACCORDING TO 
SELECTED OPTION 

EXIT  )  

Figure(7.2b-3): Flow-chart of The LEARN Program 

Before teaching process starts, the manipulator is 

aligned with the teaching arm. This is carried out by the 

subroutine SELFADJ as described in section 7.1e. Before the 

LEARN program terminates, the gripper will be ensured to be 

closed. The overall function of the LEARN program is 

summarized by a flow chart shown in Figure (7.2b-3). 

(c) The Compiling Stage 

The compiling stage processes data obtained in the 

programming stage so that these data can be interpolated by 

segment functions as described in chapter six. This stage 
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consists two main programs, TRIM and SMOOTH. The TRIM 

program processes the data obtained in the programming stage 

to ensure conditions required in trajectory planning, as 

descirbed in chapter six, to be satisfied. The SMOOTH 

program implements the trajectory planning process. 

In TasrobotO, a typical task may be defined by a few 

sections. Each section consists of a number of user-defined 

data sets. Each date set consists of the five joint control 

codes and a gripper motor position code. To implement the 

trajectory planning technique, the data set must satisfy two 

conditions. First, a section must consist either two data 

sets or at least five data sets. Second, no two consecutive 

data sets can have identical control codes. The TRIM program 

ensures the first criterion_to be achieved by inserting 

additional data sets to the specified data file; and satisfy 

the second criterion by deleting one of the data sets when 

two consecutive data sets are identical. The flow chart of 

the TRIM program is shown in Figure (7.2c-1). 

Data processed by the TRIM program are recorded back to 

•the specified file. In addition to the processed data, the 

recursive nature of the data, which is indicated by the 

identical data sets at the beginning and end of the record, 

will be stored at the beginning of the file in a flag. This 

information will pass on to the program SMOOTH to help 

identify a processed data file, and to generate executable 

data for the executing stage. 

The program SMOOTH evaluates approximating functions 

for joining specified data points. Since a programed task 
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Figure(7.2c-1): Flow-chart of The TRIM Program 

usually consists of several sections, the program identifies 

each sections in a task and performs trajectory planning. 

-The coefficients of the segment functions for each 

section are evaluated by the subroutine, SPLINE, of the 

program. The evaluated coefficients of each segment 

functions are stored in an executable data file called 

BUFFER.JOB. No specific new file is generated for storing 

the evaluated coefficients of the segment functions for a 

specific task because such a file occupies a lot more space 

than a file containing only joint coordinates. Also, in many 

robot applications, once the executable file is generated, 

it will be used for a period of time. The time required to 

generate an executable file is usually relatively short 

compared to the "life" time of the executable file. 

Therefore, it is preferrable to store the specified joint 



coordinates for a specific task, although it requires 

replanning of a trajectory before the task can be executed.• 

- Two options are provided in programming the orientation 

of the gripper during task execution. First the wrist 

joints are programmed to rotate to all specified positions. 

However, in some robot application, such as in pick-and-

place operation, the actual wrist orientation is only 

essential at the time when the robot starts to pick or to 

place an object. The second option provided will allow the 

manipulator to ignore the intermediate wrist positions and 

only wrist positions for the gripping or releasing will be 

implemented during the execution of a task. 

The flow chart of the SMOOTH program is shown in Figure 
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(7.2c-2). 
!RECORD RLENAME TO FILE BUFFER.JOB 

READ REPEATABIUTY INDICATOR.  FROM 
SPECIFIED FILE 

14RI1E  SELECTED OPTION t REPEA1ABIUTY INDICATOR TO BUFFER. JOB 

IREAD 1ST JOINT DATA RICH SPECIFIED FL 

ItaTE 151 JOINT DATA TO BUFFER.108 

   

E '0' TO BUFFER. JOB 

   

!WRITE '1' TO 	 BUFFER. JOB 

    

       

       

 

READ A SECTION OF JOINT DATA 
FROM SPECIFIED FILE 

    

  

       

 

EVALUATE COEFFICIENTS OF SEGMENT 
FUNCTIONS FOR SECTION t STORE 
COEFFICIENTS IN BUFFER. JOB BY 
CALLING SUBROUTINE 'SPUN( ' 

    

       

       

       

Figure(7.2c-2): Flow-chart of The SMOOTH Program 



The subroutine call, SPLINE, of the SMOOTH program uses 

the technique discussed in Chapter 6 to evaluate the 

coefficients of segment functions. In this subroutine call, 

the number of points in a section is checked to ensure that 

only two-point or at least five points are in a section. For 

a two point section, the coefficients of the required fifth-

order polynomial function are evaluated for each joint by 

initializing a routine. For a section with more than or 

equal to five defining points, another routine is 

initialized to evaluate the necessary coefficients of the 

segment functions for each joint. To reduce the dynamic 

memory required and hence reducing the size of the exectable 

program, the initial coefficients of the segment functions 

are temporarily stored in a scratch file. They are converted 

into coefficients of real time functions when the time scale 

factor is evaluated. The subroutine call SORT evaluates the 

maximum veloci ty and acceleration of each joint within a 

segment to give the time scale factor of the section. The 

subroutine call RENEW converts the approximating functions 

into real time functions using the evaluated time scale 

factor as discussed in section 6.3. Figure (7.2c-3) shows 

the flow chart of the SPLINE subroutine. 

(d) The Executing Stage 

The executing stage executes a programmed task through 

a pre-planned path. This stage consists of the main program 

GO. This program reads information from the exectable file - 

BUFFER.JOB, and generates commands, in real time, to the 

controller unit of the TasrobotO system to drive the 

actuators of the manipulator. 
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EVALUATE INITIAL LENGTH 
OF TIME BETWEEN THE ' 
TWO DATA SETS 

ERROR 
EVAWATE INITIAL LENGTH OF TIME 
BETWEEN TWO CONSECUTIVE DATA 

EVALUATE COEFFICIENTS 
THE TWO-POINT SECTION 

F'ROGRAM 
STOP 

EVALUATE COEFFICIENTS OF SEGMENT 
FUNCTION FOR EACH JOINT & STORE 
INTO SCRATCH FILE 

!EVALUATE TIME SCALE FACTOR 

EVALUATE TIME SCALE FACT011 

RENEW OXFFICIENTS INTO 
REAL TIME COEFFICIENTS 
L REAL TIME LIMIT 

STORE COEFFICIENTS & LIMI 
TO BUFFER JOB 

RETURN 

ERROR 

PROGRAM 
STOP 

STORE 1ST GRIPPER DATA & NO. OF 
DATA SETS IN SECTION TO BUFFER. JOB 

INITIATE REGISTERS FOR MAXIMUM 
VEL. & ACC. OF EACH JOINT TO ZEROS 

REVISE MAXIMUM VEL &ACC. FOR EACI- 
JOINT BY CALLING SUBROUTINE 'SORT' 

EVALUATE REAL TIME LIMIT RV EACH 
SEGMENT FUNCTION OF EACH JOINT 

IEVAWAlE TOTAL TIME REQUIRED FOR SECTICNI 

RENEW COEFFICIENTS OF SEGMENT RICO 
BY CALLING SUBROUTINE 'RENEW' 

ram COEFFICIENTS & TIME LIMIT 
TO BUFFER. JOB 

I RETURN I 

Figure(7.2c-3): Flow-chart of The SPLINE Subroutine 

• When the program GO is executed, it first accesses the 

default executable file - BUFFER.JOB, and identify the data 

filename from which the executable data are generated., 

Options are provided to allow other executable files to be 

specified. 

Before the specified task is executed, the arm is 

brought to the starting position of the task by calling the 
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subroutine SELFADJ. If the task is a repeatable type, the 

user can also specify a desirable number of times of 

repetition. 

•The task is executed by sending position commands to 

the joints of the manipulator. The commands are generated 

from real-time segment functions formed during the 

trajectory planning process. The real-time data are obtained 

from the real-time clock provided by the Lab Master Board 

and from the subroutines provided by the Lab-pac softwares. 

The program GO has been designed to increase as far as 

possible the rate of generating position commands, since the 

higher the rate of generating the commands, the closer the 

actual path to the desired path will be. During execution, 

the ESC-key provides emergency stop function. Before the 

program is terminated, the gripper will again be ensured to 

be closed. 

The flow chart of the program is shown Figure (7.2d-1). 

(e) The Intermediate  Stage  

The intermediate stage allows users to go to one of the 

five stages excluding the intermediate stage itself. 

additions, this stage also enables users to return to the 

DOS system. 

This stage is only required when the batch file is used 

to execute the eight main programs. Since batch file 

commands do not provide proper communication between the 

computer and the user, the program - SETFLAGS - is used to 

display a list of options for the user to select and set 

appropriate flag to initialize the required stage. Figure 

(7.2e-1) shows the flow chart of the program SETFLAGS. 
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GRIPPER NEED 
BE OPEN ? 

OPEN GRIPPER TO 
SPECIFIED AMOUNT 

SET INITIAL EXECUTABLE FILE AS 
BUFFER. JOB 

I READ INITIAL DATA MGM DIECUT. FILE 

REQUEST ANOTHER. 
EXECUTABLE FILENAME 

MANIPULA1OR TO STARTING FOSITION 

READ NO. OF POINTS IN SECTION 
FROM EXECUTABLE FILE 

READ COEFFICIENTS I, TIME LIMIT 
FOR TWO-POINT SECTION 

READ COEFFICIENTS & TIME LIMIT 
FOR SECTION 

I SET REAL TIME CLOCK TO ZERO 

READ REAL TIME DATA FRCM CLOCK 

ESC-BUTTON PRESE CONTINUE PROGRAM 

READ GRIPPER DATA FROM 
EXECUTABLE FILE 

MORE DATA 

IS GRIPPER OPEN 

IS GRIPPER OPEN 

EXIT 

OPEN GRIPPER TO SPECIFIED FILE 

DATA FILENAME OK 
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Figure(7.2d-1): Flow-chart of The GO Program 



OPEN A FILE CALLED FLAG1. SET H 

OPEN A ALE CALLED FLAG2. SET 

OPEN A FILE CALLED FLAG3. SET H 

OPEN A FILE CALLED FLAGLSET 

OPEN A FILE CALLED FLAGS.SET 

OPEN A FILE CALLED FLAG6. SET 

Figure(7.2e-1): Flow-chart of The SETFLAG Program 

(f) The Idling Stage 

The idling stage is to temporarily shut down most of 

the functions of the robot system. This stage may be 

energized when the programmed task is completed and the 

manipulator is not required to perform any function for a 

short period of time. This stage has two main functions. 

First, it preserves the absolute position codes for the 

wrist joints. Second, it retains the software control system 

on the computer. In other word, the computer will still be 

the host computer of the robot system. 

The program SLEEP is used in this stage. It ensures the 

power supply to the electronic hardwares of the manipulator 

is maintained so that the absolute position codes of the 

wrist joints are valid. If the power supply is switched off, 

the software control system of TasrobotO will be terminated. 

During the idling stage, the ESC-key can be pressed to 
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DISPLAY COMMAND TO RECOVER 
CONTROL ON MANIPULATOR 

I OPEN FILE FL AG 6 . SET 

( EXIT ) 

retrieve full control of the manipulator. Figure (7.2f-1) 

shows the flow chart of the SLEEP program. 

Figure(7.2f-1): Flow-chart of The SLEEP Program 

7.3 THE SOFTWARE CONTROL BATCH FILE 

With the use of batch subcommands and conditional 

execution of commands, the eight main programs can be 

interconnected to form the network of the software control 

system of the TasrobotO system. The software control is 

initialized by using the TASROBOT batch file. 

Before executing the first main program, the eight main 

programs are examined. When all the main programs are found 

and all files that are used as flags in the intermediate 

stage are removed, the batch file will proceed. The flow 

chart of the batch file is shown in Figure (7.3-1). 
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DELETE •FLAG2. SET' 
• 'NAME. JOB' 

DELETE • FLAG3. SET • 
L 'NAME JOB' 

DELETE •FLAG4.SET • 
/4 'NAME JOB' 

DELETE 'FLAG6.SET' 
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ICHECK COSTENCE CF 8 MAIN PROGRAMS' 

 

NOICATE WhICH PIECRAM NCI 

 

EXAMINE EXISTENCE OF ALL FILES 
HAVING EXTENSION 'SET' 

IINITIALIZE PROGRAM 'ALIGN 

'INITIALIZE PROGRAM • OPFILE • I 

I  INITIALIZE PROGRAM 'LEARN 

I  INITIALIZE PROGRAM 'TRIM ' 

[INITIALIZE PROGRAM 'SMOOTH' I 

'INITIALIZE PROGRAM 'GO' 

I INITIALIZE PROGRAM 'SETFLAG • 

DELETE 	 • FLAGS.SET • 

I  INITIALIZE PROGRAM 'SLEEP •  

DELETE 'NAME. JOB 

EXIT 

Figure(7.3-1): Flow-chart of The TASROBOT Batch File 



CHAPTER EIGHT 

CONCLUSIONS AND FUTURE WORK 

8.1 CONCLUSION 

TasrobotO is a robot manipulator system with five 

degrees of freedom. The roll and pitch rotations of the 

wrist joints are driven by stepper motors. The rotations of 

the body-, shoulder- and elbow-joints as well as the 

gripping jaws are driven by dc motors with constant field 

excitation. Three types of control scheme were designed and 

built to drive different joints of the manipulator according 

to the types and functions of the actuators used. 

A complete robot arm system is a non-linear multi-

variable time-varying system. For a small and light weight 

robot arm, the control system can be simplified to a 

combination of several individual single-input-single-output 

joint systems with time-varying parameters. Analogue 

controller were designed for the three joint systems. The 

effects of time-varying parameters on their closed-loop 

dynamic responses are significantly reduced. Their steady-

state position errors also fall within one degree accuracy . 

A technique on trajectroy planning was developed to 

generate spline segment functions which interploate between 

specified joint coordinates. This cubic spline trajectory 

planning technique was applied to the body-, shoulder- and 

elbow-joints of the TasrobotO manipulator and the 

performance is best illustrated by Figure (8.1-1), which 
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2 

SHOULDER 

10 	 20 	 30 	 I 40 SECONDS 

ELBOW 

shows repeated motions of the three joints with respect to 

the same set of command signals. It shows that the 

controlled variable of each joint follows the desired 

trajectory and the repeatability of each controlled joint 

system is excellent. 

POSITION TRANSDUCER 

8 - VOLTS 

Figure (8-1): Time Responses of The Joint-system After 
Training 

The manipulator in operation is shown in Figure (8.1-2) 

and the complete TasrobotO system is shown in Figure (8.1-

3) 

8.2 FUTURE WORK 

TasrobotO, which is the first version of Tasrobot 

manipulator, marks the beginning of research in robotics in 

the Electrical Engineering Department of University of 

Tasmania. Based on the study of TasrobotO, there are a 

142 



1 L3 

FIGURE ( 8.1-2 	 : The TasrobotO Manipulator In Operation 

FIGURE ( 8 .1-3) : The TasrobotO System, From Left To Right : Manipulator 

Controller Unit , Teach Arm And Host Computer 



number of ideas and suggestions to future development of 

Tasrobot arms and further investigation in robotics. 

(a) On Manipulator Structure 

As the TasrobotO manipulator is still in the developing 

stage, the sophistication of mechanical structure of 

TasrobotO has not been emphasized. There are a number of 

suggestions to the next version of the arm: 

The physical size of the arm should be increased to 

extend the accessible distance of the arm. 

The elbow joint should have larger range of motion to 

increase the work envelope of the arm. 

The wrist motion should be redesigned to replace 

stepper motors by dc servo-motors and to provide yaw-

rotation. 

The gripper motor should be located as close to the 

gripper as possible to eliminate the dependence of the 

effective length of the connected steel string on arm 

configuration. 

(b) On Controller Design  

As the level of sophistication of Tasrobot arms 

improves, more complex controllers will be required. There 

are a number of control methods to be investigated, such as 

decentralized control suggested by Prof.M.Vukobrotovic, PID 

control, computed torque methods, resoled rate and 

acceleration method, as well as adaptive control technique. 

Prof.M.vukobratovic pointed out: 'the complexity of the 

controller would depend on the level of sophistication and 

autonomy of the robot under consideration'. A suitable 
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controller should be selected according to the mechanical 

sophistication of the arm. 

(c) On Trajectory Planning 

Command signals are generated from real-time segment 

functions by the host computer. During path execution, the 

host computer can afford no time to perform other functions. 

Since the generation of command signals involves only 

additions and multiplications which are easier and faster to 

do by pre-wired hardwares, numeric processor or 

microprocessor. If a microprocessor unit is used as a 

command generator, the host computer will only need to 

output the coefficients of the segment functions. The host 

computer can then spare to monitor other sensor signals like 

force sensor signal or vision sensor signal during path 

execution. This will certain improve the control of the 

Tasrobot arm and widen the scope of the Tasrobot system. 

As Prof.Saridis has pointed out: 'the manipulator 

control problem has not been successfully resolved', 

solution to control problem on robotics will rely on further 

research in this area. 
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CIRCUIT DIAGRAMS OF THE CONTROLLER UNIT 
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SOFTWARE CONTROL PROGRAMS 



DATA 	 SEGMENT PUBLIC 'DATA' 
DATA 	 ENDS 
DGROUP GROUP DATA 
CODE 	 SEGMENT 'CODE' 

ASSUME CS:CODE,DS:DGROUP,SS:DGROUP 
PUBLIC POSITN 
POSITN PROC 	 FAR 

PUSH 	 BP 
NOV 
	

BP, SP 
LES 
	

BX,DWORD PTR [BP+6] 
NOV 
	

DX,071DH 
NOV 
	

AX,ES:DX] 
OR 
	

AX,OF000H 
AND 
	

AX,OOFFFH 
OUT 
	

DX,AX 
OR 
	

AX, 080001! 
OUT 
	

DX,AX 
AND 
	

AX,07FFFH 
OUT 
	

DX, AX 
NOV , 	 AX,ES:(15X+2] 
OR 
	

AX,OF000H 
AND 
	

AX,02FFFH 
• OUT 

	
DX,AX 

OR 
	

AX,08000H 
OUT 
	

DX,AX 
AND 
	

AX,07FFFH 
• OUT 

	
DX, AX 

MOV 
	

AX,ES:DX+4] 
OR 
	

AX,OF000H 
AND 
	

AX,04FFFH 
OUT 
	

DX,AX 
OR 
	

AX, 080001! 
OUT 
	

DX, AX 
AND 
	

AX,07FFFH 
OUT 
	

DX, AX 
NOV 
	

SP,BP 
• POP 

	
BP 

RET 
	

041! 
POSITN END? 
CODE ENDS 
END 

DATA 
	

SEGMENT PUBLIC 'DATA' 
DATA 

	
ENDS 

DGROUP GROUP DATA 
CODE 

	
SEGMENT 'CODE' 
ASSUME CS:CODE,DS:DGROUP,SS:DGROUP 

PUBLIC WRIST 
WRIST PROC 	 FAR 

PUSH 	 BP 
NOV 	 BP,SP 
LES 	 BX,DWORD PTR [BP+6] 
NOV 	 DX,071DH 
NOV 	 AX,ES:[BX] 
OR 	 AX,OF000H 

; PUBLIC ASSEMBLY SUBROUTINES 

DATA 
	

SEGMENT PUBLIC 'DATA' 
DATA 

	
ENDS 

DGROUP GROUP DATA 
CODE 

	
SEGMENT 'CODE' 
ASSUME CS:CODE,DS:DGROUP,SS:DGROUP 

PUBLIC STPORT 

	

STPORT PROC 	 FAR 

	

PUSH 	 BP 

	

NOV 	 BP,SP 

	

NOV 	 DX,071FH 

	

NOV 	 AL,090H 

	

OUT 	 DX,AL 

	

MOV 	 SP,BP 

	

POP 	 BP 
• 
	 RET 

STPORT ENDP 
CODE ENDS 
END 

DATA 
	

SEGMENT PUBLIC 'DATA' 
DATA 

	
ENDS 

DGROUP GROUP DATA 
CODE 

	
SEGMENT 'CODE' 
ASSUME CS:CODE,DS:DGROUP,SS:DGROUP 

PUBLIC DIGOUT 

	

DIGOUT PROC 	 FAR 

	

PUSH 	 BP 

	

NOV 	 BP,SP 

	

LES 	 BX,DWORD PTR [BP+10] 

	

NOV 	 AX,ES:(BX) 
OR 	 AX,OF000H 

	

LES 	 BX,DWORD PTR IBP+63 

	

NOV 	 DX,ES:[BX] 

	

NOV 	 CL,4 

	

ROR 	 DX,CL 

	

OR 	 DX,OOFFFH 

	

AND 	 AX,DX 

	

AND 	 AX,07FFFH 

	

MOV 	 DX,071DH 

	

OUT 	 DX,AX 

	

OR 	 AX,08000H 

	

OUT 	 DX,AX 

	

AND 	 AX,07FFFH 

	

OUT 	 DX,AX 

	

NOV 	 SP,BP 

	

POP 	 BP 

	

RET 	 081! 
DIGOUT ENDP 
'CODE 

	
ENDS 

END 
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WRIST 
CODE 
END 

DATA 
DATA 
DGROUP 
CODE 

PUBLIC 
ARMOUT 

AND 
	

AX,03FFFH 
OUT 
	

DX,AX 
OR 
	

AX,08000H 
OUT 
	

DX,AX 
AND 
	

AX,07FPFH 
OUT 
	

DX,AX 
NOV 

	
AX,ES:DX+2] 

OR 
	

AX,OF000H 
AND 
	

AX,01FFFH 
OUT 
	

DX,AX 
OR 
	

AX, 08000H 
OUT 
	

DX,AX 
AND 
	

AX,07FFFH 
OUT 
	

DX,AX 
NOV 

	
SP,BP 

POP 
	

BP 
RET 
	

04H 
END? 
ENDS 

SEGMENT PUBLIC DATA 
ENDS 
GROUP DATA 
SEGMENT 'CODE' 
ASSUME CS:CODE,DS:DGROUP,SS:DGROUP 
ARMOUT 
PROC 	 FAR 
PUSH 	 BP 
NOV 	 BP,SP 
LES 	 BX,DWORD PTR (BP+6] 
NOV 	 DX,071DH 
MOV 	 AX,ES:(BX) 
OR 	 AX,OF000H 
AND 	 AX,OOFFFH 
OUT 	 DX,AX 
OR 	 AX,08000H 
OUT 	 DX,AX 
AND 	 AX,07FFFH 
OUT 	 DX,AX 
NOV 	 AX,ES:(BX+2] 
OR 	 AX,OF00011.  
AND 	 AX,02FFFH 
OUT 	 DX,AX 
OR 	 AX,08000H 
OUT 	 DX,AX 
AND 	 AX,07FFFH 
OUT 	 DX,AX 
NOV 	 AX,ES:(BX+4] 
OR 	 AX,OF000H 
AND 	 AX,04FFFH 
OUT 	 DX,AX 
OR 	 AX,08000H 
OUT 	 DX,AX 
AND 	 AX,07FFFH  

OUT 
	

DX,AX 
NOV 
	

AX,ES:[BX+61 
OR 
	

AX,OF000H 
AND 
	

AX,03FFFH 
OUT 
	

DX,AX 
OR 
	

AX, 08000H 
OUT 
	

DX,AX 
AND 
	

AX,07FFFH 
OUT 
	

DX,AX 
NOV 

	
AXIS:(BX+8] 

OR 
	

AX,OF000H 
AND 
	

AX,01FFFH 
OUT 
	

DX,AX 
OR 
	

AX, 08000H 
OUT 
	

DX,AX 
AND 
	

AX,07FPFH 
OUT 
	

DX,AX 
NOV 
	

SP, B? 
POP 
	

BP 
RET 
	

04H 
ARMOUT END? 
CODE ENDS 
END 

DATA 	 SEGMENT PUBLIC 'DATA' 
DATA 	 ENDS 
DGROUP GROUP DATA 
CODE 	 SEGMENT 'CODE' 

ASSUME CS:CODE,DS:DGROUP,SS:DGROUP 
PUBLIC BEEP 
BEEP 	 PROC 	 FAR 

PUSH 	 BP 
NOV 	 BP,SP 
LES 	 BX,DWORD PTR (BP+6] 
NOV 	 AX,ES:(BX] 
NOV 	 BX,AX 
NOV 	 AL,10110110B 
OUT 	 43H,AL 
NOV 	 AX, 533H 
OUT 	 42H,AL 
NOV 	 AL,AR 
OUT 	 42H,AL 
IN 	 AL,61H 
NOV 	 AH,AL 
OR 	 AL,03 
OUT 	 61H,AL 
NOV 	 CX,01999H 

L1: 	 LOOP 	 Li 
DEC 	 BX 
JNZ 	 Li 
NOV 	 AL,AH 
OUT 	 61H,AL 
NOV 	 SP,BP 
POP 	 BP 
RET 	 04H 

;SET TIMER-2,LBS,MBS BINARY 
;WRITE THE TIMER MODE REG. 
;DIVISOR FOR 1000 HZ 
;WRITE TIMER-2 CNT-LSB 

;WRITE TIMER-2 CNT-MSB 
;GET CURRENT SETTING OF PORT B 
;SAVE THAT SETTING 
;TURN SPEAKER ON 

;SET CNT TO WAIT 50MS 
;DELAY BEFORE TURNING OFF 
;DELAY CNT EXPIRE? 
;NO-CONTINUE BEEPING SPEAKER 
;RECOVER VALUE OF PORT B 



BEEP 	 ENDP 	 C 
CODE 	 ENDS 	 C 	 PUBLIC FORTRAN SUBROUTINE 
END 	 C 

$STORAGE:2 
$N0FLOATCALLS 

SUBROUTINE SELFADJ(F2) 

INTEGER F1(6),F2(5),CHNRAY(7) 
DIMENSION F(3),VCMX(3),VCMN(3),ACMX(3),ACMN(3) 
DIMENSION B1(3),B4(3),B5(3),B6(3) 

• SETTING UP CHANNEL POSITIONS. 
CHNRAY(1)=6 
CHNRAY(2)=7 
CHNRAY(3)=8 
CHNRAY(4)=3 
CHNRAY(5)=4 
CHNRAY(6)=5 
CHNRAY(7)=999 

• RECORDING PRESENT ARM POSITION BY SAMPLING. 
CALL INTRON 
CALL ADSWST(CHNRAY,1,F1,6,1) 
CALL INTROFF 

• CLOSING THE GRIPPER IF IT IS OPEN. 
IF(F1(6).NE.0)THEN 
CALL DIGOUT(2,5) 

50 	 CALL ADIN(5,F1(6)) 
IF(F1(6).GT.0)GOTO 50 
CALL DIGOUT(0,5) 

ENDIF 

• CONVERTING WRIST PITCH & ROLL VALUES TO NO. OF STEPS. 
F1(4)=NINT((F1(4)+1242)/10.23724) 
IF(F1(4).LT.0)F1(4)=0 
F1(5)=NINT((F1(5)+1856)/8.06333) 
IF(F1(5).LT.0)F1(5)=0 

• COMPARING POSITION DATA TO SEE IF DATA ARE MATCHED. 
DO 60 J=1,3 
IF(F1(J).NE.F2(J))GOTO 70 

60 CONTINUE 

• OUTPUTING WRIST ORIENTATION IF POSITION DATA MATCHED. 
CALL wRIsT(F2(4)) 

RETURN 

• SETTINT 6TH ORDER SPLINE COEFFICIENTS TO JOINT THE 2 POINTS. 
• IF POSITION DATA DO NOT MATCH. 
70 	 DO 75 J=1,3 



F(J)=REAL(F2(J)-F1(J)) 
75 CONTINUE 

T=SQRT(F(1)**2+F(2)**2+F(3)**2) 
VCMX(1)=574 
VCMN(1)=-574 
VCMX(2)=1140 
VCMN(2)=-3280 
VCMX(3)=1200 
VCMN(3)=-1800 
ACMX(1)=2332 
ACMN(1)=-2332 
ACMX(2)=8497 
ACMN(2)=-11015 
ACMX(3)=7596 
ACMN(3)=-7452 
S=0 
TVM=T/2 
TAM=0.788675*T 
DO 80 J=1,3 

B1(J)=FLOAT(F1(J)) 
H4(J)=10*F(J)/(T**3) 
85(J)=-15*F(J)/(T**4) 
36(J)=6*F(J)/(T**5) 
VMAX=3*94(J)*(TVM**2)+4*B5(J)*(TVM**3)+5*B6(J)*(TVM**4) 
AMAX=6*B4(J)*TAM+12*B5(J)*(TAM**2)+20*B6(J)*(TAM**3) 
IF(VMAX.GT .0)THEN _ 

SV=VMAX/VCMX(J) 
ELSE 

SV=VMAX/VCMN(J) 
ENDIF 
IF(AMAX.GT.0)THEN 

SA=SQRT(AMAX/ACMX(J)) 
ELSE 

SA=SQRT(AMAX/ACMN(J)) 
ENDIF 
ST=ABS((REAL(F2(4)+F2(5)-F1(4)-F1(5)))/(20*T)) 
S=MAX(SV,SA,ST,S) 

80 CONTINUE 
S=1000*S 
TOUT=T*S 
DO 90 J=1,3 

B4(J)=34(J)/(S**3) 
B5(J)=B5(J)/(S**4) 
B6(J)=B6(J)/(S**5) 

90 CONTINUE 

OUTPUTING SPLINE FUNCTION IN REAL TIME. 
CALL HRIST(F2(4)) 
IF(TOUT.GT.30000.0)GOTO 120 
CALL TIMST(0) 

100 CALL TIMRD(0,IT1ISC) 
T=FLOAT(ITMSC) 
IF(T.GT.TOUT)GOTO 200 
T3=T**3 
T4=T3.0T 

T5=T4*T 
DO 110 J=1,3 

F2(3)=NINT(B1(J)+B4(J)*T3+B5(J)*T4+86( 3 )*T 5 ) 
110 CONTINUE 

CALL POSITN(F2(1)) 
GOTO 100 

120 CALL TIMST(0) 
130 CALL TIMRR(0,TMSEC) 

CALL M2ISQQ(TMSEC,T) 
IF(T.GT.TOUT)GOTO 200 
T3=T**3 
T4=T3*T 
T5=T4*T 
DO 140 J=1,3 

F2(J)=NINT(31(J)+54(J)*T3+35(J)*T4+B6(J)*T5) 
140 CONTINUE 

CALL POSITN(F2(1)) 
GOTO 130 

200 RETURN 

END 



$STORAGE:2 	 $STORAGE:2 
SNOFLOATCALLS 	 PROGRAM OPFILE 

CHARACTER FNAME*11,KEY*1 
PROGRAM ALIGN 	 LOGICAL OLDFILE 

	

50 	 WRITE(*,60) 
IMPLICIT INTEGER(A—Z) 	 60 	 FORMAT(///,' PLEASE INPUT A FILE NAME, XXX.DAT, WHICH DATA', 

*/,' ARE TO BE STORED & MANIPULATED.', 
INITIALIZING THE LAB—PACK SUBROUTINES. 	 *//,' (NOTE: XXX MUST BE LESS THAN 7 CHARACTER.]',/) 
CALL INIT 	 READ(*.'(A)')FNAME 
CALL INTROFF 	 INQUIRE(FILE=FNAME,EXIST=OLDFILE) 
CALL STPORT 	 IF(.NOT.OLDFILE)GOTO 80 

WRITE(*,70) 
WRITE(*,50) 	 70 	 FORMAT(//,' WARNING: FILE WITH THE SAME NAME ALREADY EXISTS.', 

50 	 FORMAT(/////,10X,'PLEASE FOLLOW THE INSTRUCTIONS EXACTLY, AND', 	 V 	 */,' DO YOU WANT TO SPECIFY ANOTHER NAME? (YIN) ') 
*//,6X,'BE SURE EACH STEP DONE BEFORE RETURN—BUTTON PRESSED.', 	 READ(*,.(A)')KEY 

IF(KEY.NE.'N')GOTO 50 

	

80 	 OPEN(5,FILE='NAME.JOB.,STATUS.a'NEW) 
PAUSE ' BRING THE GRIPPERS TO THEIR REFERENCE POSITIONS.' 	 WRITE(5,'(A)')FNAME 
WRITE(*,'(///)') 	 CLOSE(5) 

END 
PAUSE • SWITCH THE ALIGN SWITCH TO ON POSITION:' 
WRITE(*,'(///)') 

PAUSE ' SWITCH ON THE POWER SUPPLY OF THE ARMS.' 
WRITE(*, '(///)') 

CALL DISTAT(0,7,POWER,O) 
IF(POWER.EQ.0)THEN 
WRITE(*,60) 

60 	 FORMAT(//,' NO POWER IS DETECTED.', 
//,' PLEASE CHECK POWER SUPPLY.',//) 

65 	 CALL DISTAT(0,7,POWER,0) 
IF(POWER.EQ.0)GOTO 65 

ENDIF 
CALL DIGOUT(100,3) 
CALL DIGOUT(150,1) 

PAUSE ' SWITCH THE ALIGN SWITCH BACK TO OPERATE POSITION.' 
WRITE(*.' (///).) 

WRITE(*,70) 
70 	 FORMAT(///////,16X,' ALIGNMENT PROCESS FINISHED.',///////) 

END 



SSTORAGE:2 
	

DATRAY(4)=NINT((DATRAY(4)+1242)/10.23724) 
SNOFLOATCALLS 

	
IF(DATRAY(4).LT.0)DATRAY(4)=0 
DATRAY(5)=NINTUDATRAY(5)+1856)/8.06333) 

PROGRAM LEARN 
	

IF(DATRAY(5).LT.0)DATRAY(5)=0 

IMPLICIT INTEGER (A-Z) 	 CALL SELFADJ(DATRAY) 
DIMENSION DATRAY(5),JOINT(6,50),CHRAY1(6) 
CHARACTER FNAME*11,KEY*1 	 C 	 OPENING A FILE FOR STORING DATA TO THE SPECIFIED FILENAME 
LOGICAL OLDFILE, 	 50 	 OPEN(5,FILE=FNAME,STATU5='NEW') 

C 	 INITIALIZING THE LABPACK ROUTINES 	 C 	 INFORMING USER WHILE THE SYSTEM IS READY AFTER INITIALIZATION 
CALL INIT 	 55 PAUSE • THE ROBOT IS READY TO BE TAUGHT.' 
CALL INTROFF 
CALL STPORT 	 WRITE(*,57) 
CALL STTIMEB(2000). 	 57 	 FORMAT(//////////,17X,' ROBOT IS NOW BEING TAUGHT.', 

*//,7X, PRESS ESC-BUTTON WHEN FINISH TEACHING PROCESS.', 
SETTING CHANNEL NOS. 
CHRAY1(1)=0 
CHRAY1(2)=1 
CHRAY1(3)=2 
CHRAY1(4)=3 
CHRAY1(5)=4 
CHRAY1(6)=999 
DATA5=0 ' 
DATA4=0. 

• INITIALIZING THE FLAGS REQUIRED 
M=1 
GRPMOD=0 

60 MEMODE=0 

• DETECTING WHETHER ESC BUTTON IS PRESSED FOR TERMINATION 
70 	 CALL ESC(PRESSED) 

IF(PRESSED.EQ.1)GOTO 140 
• TRYING TO READ FILE NAME.JOB 

INQUIRE(FILE='NAME.JOB',EXIST=OLDFILE) 	 C 	 SAMPLING 5 A/D CHANNELS WITH SAMPLING RATE 1000 SAMPLES/SEC.. 
IF(.NOT.OLDFILE)GOTO 30 	 CALL INTRON 
OPEN(50,FILE=14AME.JOB.) 	 CALL ADSWST(CHRAY1,1,DATRAY,5,1) 
READ(50,.(A)',ERR=30)FNAME 	 CALL INTROFF 
GOTO 41 

CONVERTING WRIST PITCH & ROLL VALUES TO NO. OF STEPS 
• REQUESTING FILENAME TO BE USED FOR STORING DATA 	 C 	 OUTPUTING ONLY IN THE INCREMENT OF 2 STEPS. 
30 	 WRITE(*,35) 	 DATRAY(4)=NINT((DATRAY(4)+1242)/10.23724) 
35 	 FORMAT(' PLEASE INPUT FILENAME, XXX.DAT, TO WHICH , 	 IF(DATRAY(4).LT.0)DATRAY(4)=0 

•/,' JOINT DATA ARE TO BE STORED.', 	 DATRAY(5)=NINT((DATRAY(5)+1856)/8.06333) 
*//,' [NOTE: XXX MUST BE LESS THAN 7 CHARACTERS.)',!) 	 IF(DATRAY(5).LT.0)DATRAY(5)=0 
READ(*,.(A) •)FNAME 	 DELTA4=DATRAY(4)-DATA4 
WRITE(*,'(///).) 	 IF(ABS(DELTA4).LT.2)THEN 

DATRAY(4)=DATA4 
• CHECKING INPUT FILE IF ALREADY EXIST. 	 ELSE 

INQUIRE(FILE=FNAME,EXIST=OLDFILE) 	 DATA4=DATRAY(4) 
IF(.NOT.OLDFILE)GOTO 41 	 ENDIF 
WRITE(* ,39) 	 DELTA5=DATRAY(5)-DATA5 

39 	 FORMAT(//,' WARNING: FILE WITH THE SAME NAME ALREADY EXISTS.', 	 IF(ABS(DELTA5).LT.2)THEN 
*//,' DO YOU WANT TO SPECIFY ANOTHER NAME? (WN).) 	 DATRAY(5)=DATA5 
READ(*,.(A)')KEY 	 ELSE 
WRITE(*, '(/////)•) 	 DATA5=DATRAY(5) 
IF(KEY.NE.'N')GOTO 30 	 ENDIF 

C 	 ALIGNING THE ACTUAL ARM WITH RESPECT TO THE SIMULATED ARM. 	 C 	 DETECTING WHETHER GRIP OR MEMORY SWITCHES ARE PRESSED 
41 	 CALL INTRON 	 CALL DISTAT(0,0,GRIP,0) 

CALL ADSWST(CHRAY1,1,DATRAY,5,1) 	 CALL DISTAT(0,1,MEMORY,O) 
CALL INTROFF 

1 	 2 



'OUTPUTING THE DIGITIZED VALUES TO THE ACTUAL ARM 
CALL ARMOUT(DATRAY) 

• OPENING/CLOSING THE GRIPPER WHEN GRIP SWITCH IS DETECTED 
IF(GRIP.EQ.0)GOTO 100 
IF(GRPMOD.EQ.1)GOTO 90 

• OPENING THE GRIPPER 
CALL DIGOUT(1,5) 

85 	 CALL DISTAT(0,0,GRIP,O) 
IF(GRIP.EQ.1)GOTO 85 
CALL DIGOUT(0,5) 
CALL ADIN(5,GPOT) 
GRPMOD=1 
GOTO 110 

• CLOSING THE GRIPPER 
90 	 CALL DIGOUT(2,5) 	 - 
95 	 CALL ADIN(5,DATA) 

IF(DATA.GT.0)GOTO 95 
CALL DIGOUT(0,5) 
GPOT=0 
GRPMOD=0 
GOTO 110 

• STORING JOINT POSITION DATA WHEN MEMORY SWITCH IS DETECTED. 
100 IF(MEMORY.EQ.0)GOTO 60 

IF(MEMODE.EQ.1)GOTO 70 
110 MEMODE=1 

CALL BEEP(1) 
JOINT(1,M)=DATRAY(1) 
JOINT(2,M)=DATRAY(2) 
JOINT(3,M)=DATRAY(3) 
JOINT(4,M)=DATRAY(4) 
JOINT(5,M)=DATRAY(5) 
JOINT(6,M)=GPOT 

ADVANCING TO THE NEXT MEMORY LOCATION AND LIMITING THE STORED 
DATA TO 50 SETS 
M=M+1 
IF(M.GT.50)GOTO 130 
IF(M.NE.45)GOTO 70 
CALL BEEP(5) 
WRITE(*,120) 

120 FORMAT(' WARNING: ONLY 5 MORE MEMORIES LEFT.',) 
GOTO 70 

130 M=50 
CALL BEEP(10) 
WRITE(*,135) 

135 FORMAT(///,15X,' MEMORY FULL! LEARN PROCESS TERMINATED.', 
*//,' DO YOU WANT TO KEEP THE DATA 	 (YIN)') 
READ(.,.(A) •)KEY 
IF(KEY.NE.'N')GOTO 190 
WRITE(*,137)FNAME 

137 FORMAT(//,' THE FILE ',A,' IS DISCARDED. W) 
CLOSE(5,STATUS&DELETE') 

WRITE(*,138) 
138 FORMAT(//,' DO YOU WANT TO TRY AGAIN? (Y/N) ',///) 

READ(*,'(A) ')KEY 
IF(KEY.NE.'N')GOTO 50 

GOTO 500 

140 M=M-1 
WRITE(*,150)M 

150 FORMAT(///,' LEARN PROCESS TERMINATED.', 
' NO. OF POINTS RECORDED =',I4,//,) 

• DETECTING IF ENOUGH DATA ARE RECORDED 
IF(M.GT.1)GOTO 190 
WRITE(*,160) 

160 FORMAT(//,' DATA RECORDED WILL NOT BE ENOUGH FOR A JOB.' 
*//,' PLEASE TRY AGAIN.'//) 
REWIND(5) 
GOTO 55 

• STORING DATA TO FILE SPECIFIED 
190 DO 200 I=1,M-1 

WRITE(5,.(I5,5110,I5)')I,(JOINT(J.,I),J=1,6) 
200 CONTINUE 

• DETECTING IF END POINTS ARE MATCHED 
DO 205 J=1,5 
IF(JOINT(J,1).NE.JOINT(J,M))GOTO 210 

205 CONTINUE 
WRITE(5,'(I5,5I10,I5) ')M,(JOINT(J,M),J=1,6) 
L=M 
GOTO 400 

210 L=M 
WRITE(*,220) 

220 FORMAT( THE FINAL POSITION DOES NOT MATCH WITH THE INITIAL.', 
*//,' DOES IT MATTER 7 (Y/N)') 
READ(*,.(A) ')KEY 
IF(KEY.EQ.'N')GOTO 310 

230 wRITE(.,240) 
240 FORMAT(//,' PLEASE SELECT THE FOLLOWING OPTIONS:-', 

*//,5X,'1 = ADJUSTING THE END POINT TO MATCH THE STARTING POINT.', 
*//.5X,'2 . USING AN ARBITRARY ROUTE TO JOINT THE END POINTS.', 

= FOLLOWING THE SAME ROUTE BACK TO THE STARTING POINT.', 

READ(*,*,ERR=230)IBACK 
IFHIBACK.LE.0).0R.(IBACK.GT.3))GOTO 230 
GRIPER=0 
GOTO(260,270,290)IBACK 

260 L=M 
WRITE(5,.(I5,5110,I5)')M,(3OINT(J,1),J=1,5),JOINT(6,M) 
GOTO 400 

4 



270 L=M+1 
WRITE(5,'(I5,5110,I5)')M,(JOINT(J,M),J=1.6) 
/F(JOINT(6,M).NE.0)THEN 
DO 280 J=1.5 
JOINT(J,2)=JOINT(J,M)+2 

280 	 CONTINUE 
WRITE(5,'(I5,5110,I5)')L,(JOINT(J,2),J=1,5),GRIPER 
L=M+2 

ENDIF 
WRITE(5,.(I5,5110,I5) ')L,(JOINT(J,1),J=1.5),GRIPER 
GOTO 400 

290 DO 300 I=1,M 
L=M+I-1 
K=M-I+1 
WRITE(5..(I5,5110,I5)')L,(JOINT(J,K),J=1.5),GRIPER 

300 CONTINUE 
GOTO 400 • 

310 L=M 
WRITE(5,.(I5,5110,I5) •)M,(JOINT(J,M),J=1,6) 
GOTO 400 

400 WRITE(*,410)FNAME,L 
410 FORMAT(//, ALL JOINT DATA ARE STORED IN THE FILE:- ',A, 

*//,' TOTAL NO. OF RECORD =',I4,//) 
CLOSE(5)  

$STORAGE:2 
$N0FLOATCALLS 

PROGRAM TRIM 

IMPLICIT INTEGER(A-Z) 
DIMENSION TRIMDAT(100,6),DATA(6),OLDDAT(6) 
CHARACTER FNAME*11,KEY*1 
LOGICAL OLDFILE,CYCLIC,LAST 
COMMON TRIMDAT 

• CHECKING IF FILENAME HAS BEEN SPECIFIED 
INQUIRE(FILE='NAME.JOB',EXIST=OLDFILE) 
IF(.NOT.OLDFILE)GOTO 50 
OPEN(50,FILE=.11AME.JOB.) 
READ(50,'(A)',ERR=50)FNAME 
GOTO 70 

• REQUESTING A FILENAME HAS IT NOT BEEN SPECIFIIED 
50 	 WRITE(*,60) 
60 	 FORMAT(//,' PLEASE INPUT A FILENAME, XXX.DAT, IN WHICH', 

*/,' DATA ARE TO BE TRIMMED.', 
*//,' [NOTE: XXX MUST BE LESS THAN 7 CHARACTERS.]',//) 
READ(*,.(A) )FNAME 

• CHECKING IF SPECIFIED FILE IS A NEW FILE 
70 	 INQUIRE(FILE=FNAME,EXIST=OLDFILE) 

IF(.NOT.OLDFILE)GOTO 200 

CLOSING THE GRIPPER IF IT IS OkN BEFORE EXITING THE PROGRAM. 
500 CALL ADIN(5,IPOT5) 	 WRITE(*,75) 

IF(IPOT5.GT.0)THEN 	 75 	 FORMAT(//////////,20X,'DATA IS BEING TRIMMED.', 

CALL DIGOUT(2,5) 	
*//11X 'ANY DUMMY DATA DETECTED WILL BE REMOVED.',/////////////) 

510 	 CALL ADIN(5,IPOT5) 
IF(IPOT5.GT.0)GOTO 510 	

• 	

OPENING FILE-5 DEFINED TO BE THE SPECIFIED FILE 

CALL DIGOUT(0,5) 	 OPEN(5,FILE=FNAME) 

ENDIF 
CONTINUE 	 C 	 SETTING COUNTERS. N FOR DATA & I FOR TRIMMED DATA 

N=1 

END 	 I=1 

READ(5,80,IOSTAT=IOCHK,ERR=160)(DATA(J),J=1,6) 
80 	 FORMAT(5X,5110,I5) 

90 N=N+1 
DO 100 J=1,6 
OLDDAT(J)=DATA(J) 

100 CONTINUE 

READ(5,80,END=130)(DATA(J),J=1,6) 

COMPARING TWO CONSECUTIVE DATA 

DO 110 J=1,3 
IF(OLDDAT(J).NE.DATA(J))GOTO 115 

110 CONTINUE 
GOTO 90 



CALL INSERT(JBASE1) 
C 	 STORING THE OLD DATA IF TWO DATA DO NOT MATCH. 	 DATINS=DATINS+2 
115 DO 120 J=1,6 	 ENDIF 

TRIMDAT(I,J)=OLDDAT(J) 	 148 IF(LAST)GOTO 150 
120 CONTINUE 	 J=J+1 

I=I+1 	 IF(J.EQ.I)GOTO 150 
GOTO 90 	 JBASE=J 

GOTO 140 
• STORING THE LAST DATA. 	 150 WRITE(5,500)(TRIMDAT(I,M),M=1,6) 
130 DO 132 J=1,6 	 152 CLOSE(5) 

TRIMDAT(I,J)=OLDDAT(J) 
132 CONTINUE 	 WRITE(*,155)FNAME,N,DUMMY,DATINS 

155 FORMAT(//,20X,' TRIM PROCESS TERMINATED.', 
• CHECKING DATA SET TO SEE IF CYCLIC, AND WRITE TO THE FILE. 	 *//.10X,' No. OF RECORD IN ORIGINAL FILE:-',A,' = ',I4, 

DO 134 J=1,5 	 *//,10X,' NO. OF DUMMY DATA DELETED = ',I4, 
IF(TRIMDAT(1,J).NE.TRIMDAT(I,J))GOTO 136 	 *//,10X,' NO. OF DATA INSERTED = ',I4,11/) 

134 CONTINUE 	 GOTO 220 
CyCLIc=.TRUE. 
GOTO 138 	 160 IF(IOCHK.NE.0)GOTO 180 

136 CYCLIC=.FALSE. 	 WRITE(*,170)FNAME 
138 REWIND(5) 	 170 FORMAT(//,' THERE IS NO DATA IN FILE ',A) 

WRITE(5,.(L5)')CYCLIC 	 GOTo 215 

N=N-1 
DUMMY=N-I 

• INSERTING DATA TO A SECTION APPROPRIATELY. 
DATINS=0 
LAST=. FALSE. 
JBASE=1 
J=1 

140 IGRIP=TRIMDAT(7,6) 
IDATA=1 

142 IF(TRIMDAT(J+1,6).NE.IGRIP)GOTO 145 
J=J+1 
IF(J.EQ.I)GOTO 144 
IDATA=IDATA+1 
GOTO 142 

144 LAsT=.TRUE. 
145 wRITE(5,500)(TRImDAT(JBAsE,m),M=1.6) 
500 FORMAT(5X,5110,I5) 

IF(IDATA.GE.4)THEN 
Do 146 K=1,IDATA-1 

witaTE(5,500)(TRImDAT(JDASE+K.M),M=1,6) 
146 	 CONTINUE 

ELSEIF(IDATA.EQ.3)THEN 
WRITE(5,500)(TRIMDAT(JBASE+1,M),M=1,6) 
JBASE1=JBASE+1 
CALL INSERT(JBASE1) 
WRITE(5,500)(TRIMDAT(JBASE+2,M),M=1,6) 
DATINs=DATINS+1 

ELSEIF(IDATA.EQ.2)THEN 
CALL INSERT(JBASE) 
WRITE(5,500)(TRIMDAT(JBASE+1,M),M=1.6) 
JBASE1=JBAsE+1 

180 WRITE(*,190)FNAME 
190 FORMAT(//,' FILE ',A.' IS NOT IN APPROPRIATE FORMAT.') 

GOTO 215 

200 WRITE(*,210)FNAME 
210 FORMAT(//, FILE ',A,' DOES NOT EXIST.') 

215 WRITE(*,217) 
217 FORMAT(//,' DO YOU WANT TO TRY ANOTHER FILE ? (YIN) ',//) 

READ(*,.(A) )KEY 
IF(KEY.NE.'N')GOTO 50 

220 CONTINUE 

END 

SUBROUTINE INSERT (.3) 
INTEGER TEMP(5),TRIMDAT(100,6) 
COMMON TRIMDAT 
DO 50 1=1,5 

TEMP (I) = (TRIMDAT(J,I)+TRIMDAT(J+1 I) ) /2 

50 CONTINUE 
wRITE(5,.(5X,5110,I5))(TEMP(I),I=1,5),TRIMDAT(J,6) 
RETURN 
END 



$STORAGE:2 	 IFHOPMODE.NE.'A').AND.(OPMODE.NE..K))GOTO 48 
$N0FLOATCALLS 

• OPENING THE FILE-5 DEFINED TO BE THE SPECIFIED DATA FILE 
PROGRAM SMOOTH 

	

• 	

FROM WHICH DATA ARE TO BE READ 
OPEN(5,FILE=FNAME) 

REAL VCMX(3),VCMN(3),ACMX(3),ACMN(3) 
INTEGER BODY(50),SHODER(50),ELBOW(50),WPITCH(50),WROLL(50) 	 C 	 READING DATA TO SEE IF DATA SET IS REPEATABLE. 
INTEGER GRIPER(2) 	 READ(5,.(L5)',ERR=180)CYCLIC 
CHARACTER FNAME*11,0PMODE*1 
LOGICAL OLDJOB,FAST,CYCLIC 	 C 	 OPENING THE FILE-20 FOR STORING SMOOTHED DATA 

OPEN(20,FILE='BUFFER.JOB',STATUS='NEW') 
COMMON BODY,SHODER,ELBOW,WPITCH,WROLL,GRIPER,N,TSUM 	 WRITE(20,'(20X,A)')FNAME 
COMMON /BLK3/VCMX,VCMN,ACMX,ACMN 

• RECORDING SELECTED OPTION. 
• DETECTING WHETHER FILENAME HAS BEEN SPECIFIED 	 WRITE(20,'(2L5)')FAST,CYCLIC 

INQUIRE(FILE='NAME.JOB',EXIST=OLDJOB) 
IF(.NOT.OLDJOB)GOTO 30 	 C 	 SETTING THE POINTER-N TO 1 FOR THE FIRST READ DATA AND 
OPEN(50,FILE=.NAME.JOB.) 	 C 	 START READING DATA FROM THE SPECIFIED FILE 
READ(50,.(A)',ERR=30)FNAME 	 TIME=0 
GOTO 46 	 MSECTN=0 

N=1 
• REQUESTING A FILENAME FROM WHICH DATA ARE TO BE SMOOTHED 	 READ(5,50,END=160,ERR=180)BODY(N),SHODER(N),ELBOW(N),WPITCH(N), 
30 	 WR/TE(*,40) 	 *WROLL(N),GRIPER(1) 
40 	 FORMAT( PLEASE INPUT A FILENAME, XXX.DAT, FROM WHICH', 	 50 	 FORMAT(5X,5110,I5) 

*/,' DATA ARE TO BE CURVE-FITTED.', 
*//,' [NOTE: XXX MUST BE LESS THAN 7 CHARACTERS. l//) 	 C 	 WRITING THE INITAIL DATA POINTS TO BUFFER.JOB. 
READ(*,.(A)')FNAME 	 WRITE(20,*(5I10).)BODY(1),SHODER(1),ELBOW(1),WPITCH(1),WROLL(1) 

• CHECKING THE SPECIFIED FILE IF IT IS NEW 	 C 	 SETTING ACTUAL IGRIP & READING THE SECOND DATA 
46 INQUIRE(FILE=FNAME,EXIST=OLDJOB) 	 IGRIP=0 

IF(.NOT.OLDJOB)GOTO 120 	 IF(GRIPER(1).NE.0)IGRIP=1 
WRITE(20,.(I10)')IGRIP 

& ACCELERATION CONSTRAINTS. 	 N=2 
READ(5,50,END=140,ERR=180)BODY(N),SHODER(N),ELBOW(N),WPITCH(N), 
*WROLL(N),GRIPER(2) 

• DETECTING STATUS OF GRIPPER. IF CHANGED, THE FIRST READ 
• DATA UP TO THE DATA JUST READ ARE TREATED AS A SECTION. 
60 	 IF(GRIPER(2).NE.0)GOTO 70 

IF(IGRIP.EQ.0)GOTO 80 
CALL SPLINE(FAST) 
IGRIP=0 
GOTO 75 

70 	 IF(IGRIP.EQ.1)GOTO 80 
CALL SPLINE(FAST) 

SELECTING OPTIONS. 	 IGRIP=1 
48 	 WRITE(*,49) 
49 FORMAT(//,' PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS:- 	 C 	 SETTING THE END POINT OF THE LAST SECTION AS THE INITAL 

' K = KEEP ALL THE WRIST POSITIONS AT SPECIFIED POINTS.', 	 c 	 POINT OF THE NEXT SECTION. 
*//,5X,' A = KEEP ONLY THE WRIST POSITIONS AT THE GRIP POINTS.', 	 75 	 BODY(1)=BODY(N) 

SHODER(1)=SHODER(N) 
READ(*,'(A)')OPMODE 	 ELBOW(1)=ELBOW(N) 
IF(OPMODE.EQ.W)FAST=.FALSE. 	 WPITCH(1)=WPITCH(N) 

IF(OPMODE.EQ.'A')FAST=.TRUE.  WROLL(1)=WROLL(N) 

SETTING UP VELOCITY 
VCMX(1)=574 
VCMN(1)=-574 
VCMX(2)=1140 
VCMN(2)=-3280 
VCMX(3)=1200 
VCMN(3)=-1800 
ACMX(1)=2332 
ACMN(1)=-2332 
ACMX(2)=8497 
ACMN(2)=-11015 
ACMX(3)=7596 
ACMN(3)=-7452 



GRIPER(1)=GRIPER(2) 
MSECTN=MSECTN+1 
TIME=(TIME+TSUM) 	 C 	 THIS SUBROUTINE IS TO EVALUATE SPLINE FUNCTIONS FOR EACH 
N=2 	 C 	 DATA SEGMENT FOR EACH JOINT. 
GOTO 85 	 SUBROUTINE SPLINE(FAST) 

80 	 N=N+1 	 REAL U(50),V(50),W(50) 
85 	 READ(5,50,END=90)BODY(N),SHODER(N),ELBOW(N),WPITCH(N),WROLL(N), 	 INTEGER H,BODY(50),SHODER(50),ELBOW(50),WPITCH(50),WROLL(50) 

*GRIPER(2) 	 INTEGER GRIPER(2) 
GOTO 60 	 DIMENSION T(50),F(50,3),FDASH(50,3) 

DIMENSION VMX(3),VMN(3),AMX(3),AMN(3),VCMX(3),VCMN(3),ACMX(3) 
C 	 DETECTING NO. OF DATA READ WHEN END OF SPECIFIED FILE IS 	 DIMENSION ACMN(3) 
C 	 ENCOUNTERED. IF NO DATA IS READ, THE PROGRAM WILL BE TERMINATED. 	 LOGICAL FAST 
90 N=N-1 

IF(N.EQ.1)GOTO 100 	 COMMON BODY,SHODER,ELBOW,WPITCH,WROLL,GRIPER,N,TSUM 
CALL SPLINE(FAST) 	 COMMON /BLK1/B1,B2,B3,54,B5,156 
MSECTN=MSECTN+1 	 COMMON /BLK2/T,VMX,VMN,AMX,AMN 
TIME=TIME+TSUM 	 COMMON /BLK3/VCMX,VCMN,ACMX,ACMN 

100 CLOSE(5) 	 C 	 INITIALIZING MAX. & MIN. VELOCITIES & ACCELERATIONS TO ZEROS. 
CLOSE(20) 	 DO 101 J=1,3 

VMX(J)=0 
CONVERTING TIME INTO SEC. 	 VMN(J)=0 
TIME=TIME/1000.0 	 AMX(J)=0 

AMN(J)=0 
WRITE(*,110)MSECTN,TIME 	 101 CONTINUE 

110 FORMAT(//////////.20X,'SMOOTH  PROCESS FINISHED.', 
*//,10X,'DATA ARE PUT TO BUFFER AND READY TO BE USED.', 	 C 	 OPENING A TEMPORARY FILE TO STORE SPLINE COEFFICIENTS. 
*///,21X,'NO. OF SECTIONS = ',I2, 	 OPEN(30,FILE='SPLINE.TMP',STATUS='NEW') 
*//,21X,'TOTAL PATH TIME REQUIRED = ',F5.1,' SEC.',//////////) 

WRITING THE AMOUNT THAT THE GRIPPER NEEDED TO BE OPENED. 
GOTO 200 	 WRITE(20,.(I10)')GRIPER(1) 

120 WRITE(*,130) 
	

C 	 WRITING NO. OF POINTS FOR THIS SECTION. 
130 FORMAT( FILE NOT FOUND. PLEASE SPECIFY ANOTHER FILE.',//) 

	
WRITE(20,*(I10)')N 

GOTO 30 
SETTING THE F MATRIX 

.140 WRITE(*,150)FNAME 
	

DO 30 I=1,N 
150 FORMAT(//,' DATA IN FILE ',A,' IS NOT ENOUGH FOR A JOB.', 	 F(I,1)=FLOAT(BODY(I)) 

*/,' PLEASE TRY ANOTHER FILE.',//) 
	

F(I,2)=FLOAT(SHODER(I)) 
GOTO 30 

	
F(I,3)=FLOAT(ELBOW(I)) 

30 CONTINUE 
160 WRITE(*,170)FNAME 
170 FORMAT(//,' THERE IS NO DATA IN FILE ',A,' 	 CALCULATING TIME INTERVAL BETWEEN TWO DATA POINTS FOR 

' PLEASE TRY ANOTHER FILE.',//) 	 C 	 EACH SEGMENT 
GOTO 30 	 TSUM=0 

DO 50 K=1,N-1 
180 WRITE(*,190)FNAME 	 SUMSQ=0 
190 FORMAT(//,' DATA IN FILE ',A, 'Is NOT IN APPROPRIATE FORMAT.', 	 DO 40 J=1,3 

*/,' PLEASE TRY ANOTHER FILE.',//) 	 SUMSQ1=(F(K+1,J)-F(K,J))**2 
GOTO 30 	 SUMSQ=SUMSQ+SUMSQ1 

40 	 CONTINUE 
200 CONTINUE 	 T(K+1)=SQRT(SUMSQ) 

TSUM=TSUM+T(K+1) 
END 	 IF(T(R+1).EQ.0)GOTO 666 

3 	 4 



50 'CONTINUE 103 CONTINUE 

C DETECTING IF TWO DATA ARE RECORDED 5-ORDER SPLINE FUNCTION C SETTING UP THE SPLINE FUNCTIONS FOR THE SECOND UP TO THE 
C WILL BE USED. C LAST SECOND SEGMENTS FOR EACH JOINT 

IF(N.EQ.2)GOTO 200 N1=N-1 
IF(N.LT.5)GOTO 999 105 ISEG=ISEG+1 

IF(ISEG.EQ.N1)GOTO 115 
C SETTING UP EFFICIENT ALGORITHM OPERATORS. DO 110 J=1,3 	 - 

N2=N-2 B1=F(ISEG,J) 
U(1)=2*T(2)+3*T(3) B2=FDASH(ISEG-1,J) 
V(1)=-T(2)/U(1) 33=(3*(F(I5EG+1,J)-F(ISEG,J))/T(ISEG+1)-2*FDASH(ISEG-1,J)- 
DO 60 I=2,N2-1 	 * 	 FDASH(ISEG,J))/T(ISEG+1) 	 _ 
U(I)=T(I+2)*V(I-1)+2*(T(I+1)+T(I+2)) 	 B4=(2*(F(ISEG,J)-F(ISEG+1,J))/T(ISEG+1)+FDASH(ISEG-1,J)+ 
V(I)=-T(I+1)/U(I) 	 • 	 FDASH(ISEG,J))/(T(ISEG+1)**2) 

60 CONTINUE 	 B5=0 
U(N2)=T(N)*V(N2-1)+3*T(N-1)+2*T(N) 	 B6=0 

IF(ABS(B4).LT.1E-30)THEN 
C 	 CALCULATING THE INTERMEDIATE VELOCITIES FOR EACH SEGMENT. 	 TVMAX=T(ISEG+1) 

DO 90 J=1,3 	 ELSE 
D=3*((T(2)**2)*(F(3,J)-F(2,J))+ 	 TVMAX=-83/(3*B4) 

• 2*(T(3)**2)*(F(2,J)-F(1,J)))/(T(2)*T(3)) 	 ENDIF 

W(1)=D/U(1) 	 TA11AX=T(ISEG+1) 

DO 70 I=2,N2-1 	 CALL SORT(ISEG,J,TVMAX,TAMAX) 
D=3*((T(I+1)**2)*(F(I+2,J)-F(I+1,J))+ 	 wRITE(30,.(4E12.5))81,B2,B3,B4 

(T(I+2)**2)*(F(I+1,J)-F(I,J)))/(T(I+1)*T(I+2)) 	 110 CONTINUE 
W(I)=(D-T(I+2)*W(I-1))/U(I) 	 GOTO 105 

70 	 CONTINUE 
D=3*(2*(T(N-1)**2)*(F(N,J)-F(N-1,J))+ 	 C 	 SETTING UP THE SPLINE FUNCTION FOR THE LAST SEGMENT FOR 

(T(N)**2)*(F(N-1,J)-F(N-2,J)))/(T(N-1)*T(N)) 	 C 	 EACH JOINT 
W(N2)=(D-T(N)*W(N2-1))/U(N2) 	 115 DO 130 J=1,3 

• FDASH(N2,J)=W(N2) 	 B1=F(N-1,J) 
DO 80 I=1,N2-1 	 82=FDASH(N-2,J) 
FDASH(N2-I,J)=V(N2-I)*FDASH(N2-I+1,J)+W(N2-I) 	 B3=(6*F(N,J)-6*F(N-1,J)-3*FDASH(N-2,j)*T(N))/(T(N)**2) 

80 	 CONTINUE 	 B4=(-8*F(N,J)+8*F(N-1,J)+3*FDASH(N-2,j)*T(N))/(T(N)**3) 
90 	 CONTINUE 	 B5=(3*F(N,J)-3*F(N-1,J)-FDASH(N-2,J)*T(N))/(T(N)**4) 

B6=0 
SETTING UP THE SPLINE FUNCTION FOR THE FIRST SEGMENT 	 IF(ABS(B5).LT.1E-30)THEN 
FOR EACH JOINT. 	 TVMAX=T(N) 
ISEG=1 • 	 TAMAX=T(N) 
DO 103 J=1,3 	 ELSE 
B1=F(1,J) 	 TVMAX=B3/(6*35*T(N)) 
B2=0 	 TA14AX=-84/(4*B5) 
B3=0 	 ENDIF 
B4=4*(F(2,J)-F(1,J))/(T(2)**3)-FDASH(1,J)/(T(2)**2) 	 CALL SORT(ISEG,J,TVMAX,TAMAX) 
B5=3*(F(1,J)-F(2,J))/(T(2)**4)+FDASH(1,J)/(T(2)**3) 	 WRITE(30,'(5E12.5).)B1,B2,113,B4,B5 
B6=0 	 130 CONTINUE 

IF(ABS(B5).LT.1E-30)THEN 	 GOTO 300 
TVMAX=T(2) 
TAMAX=T(2) 	 C 	 CALCULATING THE SPLINE FUNCTION WHEN ONLY TWO DATA ARE GIVEN. 

ELSE 	 200 ISEG=1 

TVMAX=-84/(2*B5) 	 DO 220 J=1,3 

TAMAX=-B4/(4*85) 	 B1=F(1,J) 

ENDIF 	 82=0 

• CALL SORT(ISEG,J,TVM)X,TAMAX) 	 B3=0 

WRITE(30,'(5E12.5)')B1,B2,83,B4,B5 	 B4=10*(F(2,J)-F(1,J))/(T(2)**3) 



B5=-15.(F(2,J)-F(1,J))/(T(2)..4) 
B6=6*(F(2,J)-F(1,J))/(T(2)**5) 

TVMAX=T(2)/2 
TAMAX=0.788675134.T(2) 
CALL SORT(ISEG,J,TVMAX,TAMAX) 
WRITE(30,'(6E12.5)')B1,B2,83,B4,B5,86 

220 CONTINUE 

• EVALUATING TIME SCALE FACTOR TO CONVERT TO REAL TIME. 

• EVALUATING SCALE FACTOR, SVA, DUE TO VELOCITY & ACCELERATION 
• CONSTRAINS. 
300 SVA=0 

DO 310 J=1,3 
SVMAX=VMX(J)/VCMX(J) 
SVMIN=VMN(J)/VCMN(J) 
IF(AMX(J).GT.0)THEN 
SAMAX=SQRT(AMX(J)/ACMX(J)) 

ELSE 
SAMAX=0 

ENDIF 
IF(AMN(J).LT.0)THEN 
SAMIN=SORT(AHN(J)/ACMN(J)) 

ELSE 
SAMIN=0 

ENDIF 
SVA=MAX(SVMAX,SVMIN,SAMAX,SAMIN,SVA) 

310 CONTINUE 

• EVALUATING SCALE FACTOR, ST, DUE TO TIME CONSTRAINTS. 
IF(FAST)THEN 
TC=(REAL(WPITCH(N)+WROLL(N)-WPITCH(1)-WROLL(1)))/20 
ST=ABS(TC/TSUM) 
WRITE(20,'(2I10)')WPITCH(N),WROLL(N) 

ELSE 
ST=0 
DO 315 K=1,N-1 
TC=IREAL(WPITCH(K+1)+WROLL(K+1)-WPITCH(K)-WROLL(K)))/20 
STC=ABS(TC/T(K+1)) 

' ST=MAX(STC,ST) 
WRITE(20,'(2I10)')WPITCH(K+1),WROLL(K+1) 

315 - 	 CONTINUE 
ENDIF 

• EVALUATING THE ULTIMATE SCALE FACTOR, S. 
S=MAX(SVA,ST) 

C 	 CONVERTING THE SCALE FACTOR IN THE UNIT OF MSEC. 
S=1000*S 

• RENEWING COEFFICIENTS OF SPLINE TO REAL TIME FUNCTION. 
REWIND (30) 
IF(N.EQ.2)GOTO 380 

• RENEWING FOR THE 1ST SEGMENT.  

K=1 
DO 330 J=1,3 
READ(30,'(5E12.5))B1,82,53,84,B5 
CALL RENEW(S) 
WRITE(20,'(3E12.5)')B1,B4,B5 

330 CONTINUE 

• RENEWING FOR THE INTERMEDIATE SEGMENTS. 
340 K=K+1 

IF(K.EQ.N1)GOTO 360 
DO 350 J=1,3 
READ(30,'(4E12.5)')81,B2,B3,B4 
CALL RENEW(S) 
WRITE(20,.(4E12.5).)B1,82,B3,84 

350 CONTINUE 
GOTO 340 

• RENEWING FOR THE LAST SEGMENT. 
360 DO 370 J=1,3 

READ(30,.(5E12.5)')B1,132,B3,B4,85 
CALL RENEW(S) 
wRITE(20,'(5E12.5)')B1,82,B3,B4,95 

370 CONTINUE 
GOTO 400 

• RENEWING WHEN ONLY 2 POINTS RECORDED. 
380 DO 390 J=1,3 

READ(30,'(6E12.5).)B1,112,B3,B4,B5,B6 
CALL RENEW(S) 
WRITE(20,.(4E12.5)')B1,84,B5,B6 

390 CONTINUE 

400 CLOSE(30,STATUS='DELETE') 

• CALCULATING THE REAL TIME IN MSEC FOR EACH SEGMENT. 
TSUM=S*TSUM 
DO 410 K=1,N-1 
T(K+1)=S*T(K+1) 
WRITE(20,'(E12.5)')T(K+1) 

410 CONTINUE 

RETURN 

• TERMINATING THE PROGRAM WHEN DUMMY DATA DETECTED 
666 STOP 'DUMMY DATA EXIST. PLEASE REPROGRAM THE ROBOT.' 

• TERMINATING THE PROGRAM WHEN SECTION NO. NOT MATCH. 
999 STOP 'BAD DATA. PLEASE REPROGRAM THE ROBOT.' 

END 

• THIS SUBROUTINE IS TO EVALUATE THE MAXIMUN VELOCITIES AND 
• ACCELERATIONS ON EACH JOINT. 

SUBROUTINE SORT(ISEG,J,TVMAX,TAMAX) 



$STORAGE:2 
$N0FLOATCALLS 

PROGRAM GO 

REAL B1(50,3),B2(50,3),B3(50,3),34(50,3),85(2,3),B6(1,3) 
REAL TOUT(50) 
INTEGER W(2.50) 
DIMENSION IDATA(5) 
LOGICAL OLDJOB,FAST,NFAST,CYCLIC 
CHARACTER FNAME*11,KEY*1 

INITIALIZING LAB-PACK SUBROUTINES. 
CALL INIT 
CALL INTROFF 
CALL STPORT 

• OPENING FILE-BUFFER.JOB . 
INQUIRE(FILE='BUFFER.JOB.,EXIST=OLDJOB) 
IF(.NOT.OLDJOB)GOTO 24 
OPEN(7,FILE='BUFFER.JOB.) 

• READING THE FILE NAME OF THE DATA FROM WHICH BUFFER.JOB IS 
• CREATED. 
10 	 READ(7,'(20X,A).,END=420,ERR=440)FNAME 

• DISPLAYING DATA FILE NAME. 
WRITE(*,20)FNAME 

20 	 FORMAT(//,' JOB DATA IS FROM:- ',A,/, OK ? (Y/N).,//) 
READ(*,'(A)')KEY 
IF(KEY.NE.'N')GOTO 44 
CLOSE (7 

24 	 WRITE(*,28) 
28 	 FORMAT(//,' PLEASE SPECIFY ANOTHER JOB FILE NAME.',//) 

READ(*,.(A) •)FNAME 
INQUIRE(FILE=FNAME,EXIST=OLDJOB) 
IF(OLDJOB)GOTO 36 
WRITE(*,32) 

32 	 FORMAT(//,' JOB FILE NOT FOUND.',//) 
GOTO 24 

36 	 OPEN(7,FILE=FNAME) 
GOTO 10 

44 	 WRITE(*,48) 
48 	 FORMAT(//,' DO YOU WANT TO RE-ALIGN THE WRIST ? (Y/N).,//) 

READ(.,'(A) )KEY 
IF(KEY.EQ.'N')GOTO 52 

• RESETTING REFERENCE OF THE WRIST POSITIONS. 
WRITE(*,40) 

40 	 FORMAT(//,' PLEASE FOLLOW THE INSTRUCTIONS BELOW TO RESET THE', 
*/,' WRIST POSITIONS:- ', 
*//,5X,'1. TURN THE POWER SUPPLY OF THE ARM OFF.', 
*//,5X,.2. POSITION THE WRIST TO THE REFERENCE LINES... 

DIMENSION T(50),VMX(3),VMN(3),AMX(3),AMN(3) 

COMMON /BLK1/B1,B2,B3.84,85,86 
COMMON /BLK2/T,VMX,VMN,AMX,AMN 

SETTING FINCTIONS FOR EVALUATING VELOCITY & ACCELERATION. 
VEL(TIME)=B2+2.113*TIME+3*B4*(TIME**2)+4*B5*(TIME**3)+ 

5.136*(TIME**4) 
ACC(TIME)=2*B3+6*B4*TIME+12*B5*(TIME**2)+20*B6*(TIME**3) 

CALCULATING MAX. & MIN. VELOCITIES .6, ACCELERATIONS. 
K=ISEG+1 
IF(TVMAX.GT.T(K))TVMAX=T(K) 
VMAX=VEL(TVMAX) 
IF(TAMAX.GT.T(K))TAMAX=T(K) 
AMAX=ACC(TAMAX) 

CHOOSING THE GLOBAL MAX. & MIN. OF VELOCITIES & ACCELERATIONS. 
VMX(J)=MAX(VMAX,VMX(J)) 
VMN(J)=MIN(V)IAX,VMN(J)) 
AMX(J)=MAX(AMAX,AMX(J)) 
AMN(J)=MIN(AMAX,AMN(J)) 

RETURN 
END 

THIS SUBROUTINE IS TO RENEW THE COEFFICIENTS OF THE SPLINE 
FUNCTION INTO REAL TIME FUNCTION. 
SUBROUTINE RENEW(S) 

COMMON /BLK1/B1,B2,B3,B4,55,B6 

B2=B2/S 
B3=B3/(S**2) 
B4=B4/(S**3) 
B5=B5/(S**4) 
B6=B6/(S**5) 

RETURN 
END 



*1/.5X,'3. PUT ALIGNMENT SWITCH TO ON POSITION.', 
*//,5x,'4. TURN THE POWER ON OF THE ARM ON.', 
*//,5X,'4. PRESS ANY KEY WHEN ALL THE ABOVE DONE.',//) 
READ(*,'(AP)KEY 
IDATA(4)=100 
IDATA(5)=150 
CALL WRIST(IDATA(4)) 
WRITE(* .50) 

50 	 FORMAT(//, WRIST REFERENCE POSITION SET.', 
*//,' PLEASE SWITCH ALIGNMENT SWITCH BACK TO OP. POSITION.', 
*//,' PRESS ANY KEY WHEN READY.',//) 
READ(*,.(A) •)KEY 

• READING NO. OF POINTS FOR THE SECTION. 
60 	 READ(7.'(I10)',ERR=440)N 

NN1=N-1 
IF(FAST)NN1=1 
N2=N-2 
N1=N-1 

• READING WRIST POSITIONS. 
DO 65 K=1,NN1 
READ(7,'(2I10)',ERR=440)(W(J,K),J=1,2) 

65 CONTINUE 

IF(N.EQ.2)GOTO 300 
C 	 READING THE APPROPRIATE OPERATION MODE. 
52 	 READ(7,.(2L5),ERR=440)FAST,CYCLIC 	 C 	 READING COEFFICIENTS OF 5TH ORDER SPLINE FOR THE 1ST SEGMENT. 

NFAST=.NOT.FAST 	 DO 70 J=1,3 
• READ(7,'(3E12.5)',ERR=440)B1(1,J),B4(1,J).B5(1,J) 

C 	 REQUESTING NO. OF TIMES THE PROCESS WANTED TO BE REPEATED. 	 70 CONTINUE 
IF  

54 	 WRITE(*,56) 	 C 	 READING COEFFICIENTS OF 4TH ORDER SPLINE FOR THE INTERMEDIATE 
56 	 FORMAT(//,' PLEASE SPECIFY NO. OF TIMES THAT THE PROCESS', 	 C 	 SEGMENTS. 

* /,' TO BE REPEATED.', 	 DO 80 ISEG=2,N2 
* /,' [NOTE: ENTER 0 FOR UNLIMITED NO. OF TIMES. l',//) 	 DO 75 J=1,3 

KEAD(*,*,ERR=54)NTImEs 	 READ(7,'(4E12.5).,ERR=440)B1(ISEG,J),132(ISEG,J),H3(ISEG,J),  
IF(NTIMES.LT.0)GOTO 54 	 * 	 B4(ISEG,J) 

ELSE 	 75 	 CONTINUE 
NTIMES=1 	 80 CONTINUE 

ENDIF 
C 	 READING COEFFICIENTS OF 5TH ORDER SPLINE FOR THE LAST SEGMENT. 

C 	 POSITION THE ARM TO STARTING POSITION. 	 90 DO 100 J=1,3 
READ(7,.(5I10)',ERR=440)(IDATA(J),3=1,5) 	 READ(7,'(5E12.5)',ERR=440)B1(N1,J),B2(N1,J),}33(N1,J),B4(N1,J),  
CALL SELFADJ(IDATA) 	 * 	 B5(2.J) 

100 CONTINUE 
PAUSE • THE ROBOT IS READY TO GO.' 
WRITE(*,57) 

57 	 FORMAT(//////////,14X,' ROBOT IS IN OPERATION.', 
*//,10X,'PRESS ESC-BUTTON FOR EMERGENCY sTOP.',/////////////) 

READING REQUIRED GRIPPER STATUS AND VALUE ON GRIPPER POT. 
IGSTAT=0 
MTIMES=1 

58 	 READ(7,'(110)',ERR=440)IGRIP 
READ(7,'(I10)',ERR=440)IGPOT 
IF(IGSTAT.EQ.0)THEN 
IF(IGRIP.EQ.1)THEN 

CALL GOPEN(IGPOT) 
IGSTAT=1 

ENDIF 
ELSE 
IF(IGRIP.EQ.0)THEN 
CALL GCLOSE 
IGSTAT=0 

ENDIF 
ENDIF  

• READING REAL TIME LIMIT FOR EACH SEGMENT. 
DO 110 K=2,N 
READ(7,.(E12.5)',ERR=440)TOUT(K) 

110 CONTINUE 

• EVALUATING & OUTPUTING DATA FOR THE 1ST SEGMENT. 
CALL WRIST(W(1,1)) 
CALL TIMST(0) 

120 CALL TimRR(0,TmsEC) 
CALL m2ISQQ(TMSEC,T) 
IF(T.GT.TOUT(2))GOTO 140 
T3=T**3 
T4=T*T3 
DO 130 J=1,3 
IDATA(J)=NINT(B1(3,,J)+84(1,J)*T3+B5(1,J)*T4) 

130 CONTINUE 
CALL POSITN(IDATA) 
GOTO 120 

C 	 EVALUATING & OUTPUTING DATA FOR THE INTERMEDIATE SEGMENTS. 
140 DO 170 K=2,N2 



CALL ESC(ISTOP) 	 DO 330 3=1,3 
IF(ISTOP.EQ.1)THEN 	 IDATA(3)=NINT(B1(1,J)+B4(1,J)*T3+B5(1,J)*T4+B6(1,J)*T5) 
PAUSE 	 330 CONTINUE 

ENDIF 	 CALL POSITN(IDATA) 
IF(NFAST)THEN 	 GOT 320 
CALL WRIST(W(1,K)) 

ENDIF 	 C 	 READING & PREPARING GRIPPER STATUS FOR NEXT SECTION. 
CALL TIMST(0) 	 350 READ(7,'(I10)',END=360,ERR=440)IGPOT 

150 	 CALL TIMAR(0,TMSEC) 
CALL M2ISQQ(TMSEC,T) 	 C 	 CLOSING/OPENING GRIPPER IF THE GRIPPER IS OPENED/CLOSED. 
IF(T.GT.TOUT(K+1))GOTO 170 	 IF(IGSTAT.EQ.1)THEN 
T2=T*T 	 CALL GCLOSE 
T3=T2*T 	 IGSTAT=0 
DO 160 J=1,3 	 ELSE 
IDATA(J)=NINT(131(K,J)+B2(K,J)*T+83(K,J)*T2+B4(K,J)*T3) 	 CALL GOPEN(IGPOT) 

160 	 CONTINUE 	 IGSTAT=1 
CALL POSITN(IDATA) 	 ENDIF 
GOTO 150 

170 CONTINUE 	 GOTO 60 

• EVALUATING & OUTPUTING DATA FOR THE LAST SEGMENT. 	 C 	 REPEATING THE PROCESS IF REQUIRED. 
IF(NFAST)THEN 	 360 IF(MTIMES.EQ.NTIMES)GOTO 600 
CALL WRIST(W(1,N1)) 	 MTIMKS=MTIMES+1 

ENDIF 	 C 	 REWINDING THE FILE TO APPROPRIATE POSITION TO REPEAT THE PROCESS. 
CALL TIMST(0) 	 REWIND(7) 

180 CALL TIMRR(0,TMSEC) 	 READ(7,.(A)')FNAME 
CALL M2ISQQ(TMSEC,T) 	 READ(7,'(2L5)')FAST,CYCLIC 
IF(T.GT.TOUT(N))GOTO 350 	 READ(7,.(5110)')(IDATA(J),J=1,5) 
T2=T*T 	 GOTO 58 
T3=T2*T 
T4=T3*T 	 DISPLAYING ERROR MESSAGES IF ANY. 
DO 190 J=1,3 	 400 WRITE(*,410) 
IDATA(J)=NINT(B1(N1,J)+82(N1,J)*T+83(N1,J)*T2+B4(N1,J)*T3+ 	 410 FORMAT(//,' NO BUFFER.JOB FILE CREATED.',//) 

B5(2,J)*T4) 	 GOTO 610 
190 CONTINUE 	 420 WRITE(*,430) 

CALL POSITN(IDATA) 	 430 FORMAT(//. NO DATA IN FILE:-BUFFER.JOB .',//) 
GOTO 180 	 GOTO 610 

440 WRITE(*,450) 
• READING COEFFICIENTS OF 6TH ORDER SPLINE FOR 2-POINT SECTION. 	 450 FORMAT(//,' DATA IN BUFFER.JOB NOT IN APPROPRIATE FORMAT.,//) 
300 DO 310 J=1,3 	 GOTO 610 

READ(7,'(4E12.5)',ERR=440)B1(1,J),B4(1,J),85(1,J),36(1,J) 
310 CONTINUE 	 CLOSING THE GRIPPER IF IT IS OPEN BEFORE EXITING THE PROGRAM. 

READ(7,.(1312.5)',ERR=440)TOUT(2) 	 600 CALL ADIN(5,IPOT5) 
IF(IPOT5.GT.0)THEN 

• EVALUATING & OUTPUTING DATA FOR THE 2-POINT SECTION. 	 CALL GCLOSE 
IF(NFAST)THEN 	 ENDIF 
CALL WRIST(W(1,1)) 

ENDIF 	 610 CONTINUE 
CALL TIMST(0) 

320 CALL TIMAR(0,TMSEC) 	 END 
CALL M2ISQQ(TMSEC,T) 
IF(T.GT.TOUT(2))GOTO 350 
T3=T**3 	 C 	 THIS SUBROUTINE IS TO CLOSE THE GRIPPER. 
T4=T3*T 	 SUBROUTINE GCLOSE 
T5=T4*T 



$STORAGE:2 

PROGRAM SETFLAGS 

CHARACTER FLAG*11 

C 	 DISPLAYING THE OPTIONS 
30 	 WRITE(*,40) 
40 	 FORMAT(//, 

*' PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS TO CONTINUE:-', 
' 1 = REPEAT THE JOB JUST TAUGHT.', 

*//,5X,' 2 = START THE ROBOT AGAIN WITH ALIGNMENT PROCEDURE.', 
*//,5X,' 3 = TEACH THE ROBOT A NEW JOB.', 
*//,5x,' 4 = ASK THE ROBOT TO DO AN OLD JOB.', 

* 5 . PUT THE ROBOT TO SLEEP MODE.', 
' 6 = RETURN TO THE DOS SYSTEM.',//) 

READ(*,*,ERR=50)IFLAG 
IFUIFLAG.LE.0).0R.(IFLAG.GT.6))GOTO 50 
GOTO(100,200,300,400,500,600)IFLAG 

50 	 WRITE(*,60) 
60 FORMAT(//,' ONLY NUMBER FROM 1 TO 6 IS ACCEPTED.', 

*/,' PLEASE TRY AGAIN.',//) 
GOTO 30 

SETTING APPROPRIATE FLAG. 
100 FLAG='FLAG1.SET.  

GOTO 550 
200 FLAG='FLAG2.SET.  

GOTO 550 
300 FLAG='FLAG3.SET' 

GOTO 550 
400 FLAG='FLAG4.SET' 

GOTO 550 
500 FLAG='FLAG5.SET' 

550 OPEN(10,FILE=FLAG,STATUS&NEW) 
ENDFILE(10) 
CLOSE(10) 

600 CONTINUE 

END 

CALL DIGOUT(2,5) 
50 	 CALL ADIN(5,IPOT5) 

IF(IPOT5.GT.0)GOTO 50 
CALL DIGOUT(0,5) 
RETURN 
END 

THIS SUBROUTINE IS TO OPEN THE GRIPPER. 
SUBROUTINE GOPEN(IGPOT) 

CALL DIGOUT(1,5) 
50 	 CALL ADIN(5,IPOT5) 

IF(IGPOT.GT.IPOT5)GOTO 50 
CALL DIGOUT(0,5) 
RETURN 
END 



$STORAGE:2 
$N0FLOATCALLS 

PROGRAM SLEEP 

IMPLICIT INTEGER(A-Z) 

• INITIALIZING THE LAB-PACK SUBROUTINES. 
CALL INIT 
CALL INTROFF 

WRITE(*,50) 
50 	 FORMAT(//,17X,' ROBOT IS NOW SLEEPING.', 

' PLEASE DO NOT DISTURB HIM.',//, 
[WARNING: DO NOT SWITCH OFF THE POWER SUPPLY OF THE ROBOT.)', 

*//,10X,' PRESS ESC-BUTTON IF YOU WANT TO WAKE HIM UP.', 

• DETECTING THE ESC-BUTTON. 
60 	 CALL ESC(PRESSED) 

IF(PRESSED.EQ.1)GOTO 80 

• DETECTING THE POWER SUPPLY OF THE ROBOT. 
CALL DISTAT(0,7,POWER,0) 
IF(POWER.EQ.1)GOTO 60 

OPEN(10,FILE='FLAG6.SET',STATUS=0NEW) 
ENDFILE(10) 
CLOSE(10) 

WRITE(*,70) 
70 	 FORMAT(//////////,20X,' POWER IS CUT 

' ROBOT DE-ENERGIZED.',//////////) 

CALL PAUSE(10000) 
GOTO 110 

80 	 WRITE(*,90) 
90 	 FORMAT(//////////,22X, ROBOT IS READY.',//////////) 
100 CALL PAUSE(5000) 

110 CONTINUE 

END  

REM 	  
REM THE TASROBOT BATCH FILE 
REM 	  

ECHO OFF 
CLS 
BREAK ON 
ECHO THE ROBOT IS NOW BEING ENERGIZED. 
IF EXIST ALIGN.EXE GOTO PASS1 
ECHO PROGRAM ALIGN.EXE NOT FOUND. 
GOTO ERROR 

:PASS1 
IF EXIST OPFILE.EXE GOTO PASS2 
ECHO PROGRAM OPFILE.EXE NOT FOUND. 
GOTO ERROR 

:PASS2 
IF EXIST LEARN.EXE GOTO PASS3 
ECHO PROGRAM LEARN.EXE NOT FOUND. 
GOTO ERROR 

:PASS3 
IF EXIST TRIM.EXE GOTO PASS4 
ECHO PROGRAM TRIM.EXE NOT FOUND. 
GOTO ERROR 

:PASS4 
IF EXIST SMOOTH.EXE GOTO PASS5 
ECHO PROGRAM SMOOTH.EXE NOT FOUND. 
GOTO ERROR 

:PASS5 
IF EXIST GO.EXE GOTO PASS6 
ECHO PROGRAM GO.EXE NOT FOUND. 
GOTO ERROR 

:PAS$6 
IF EXIST SETFLAGS.EXE GOTO PASS7 
ECHO PROGRAM SETFLAGS.EXE NOT FOUND. 
GOTO ERROR 

:PASS7 
IF EXIST SLEEP.EXE GOTO PASS8 
ECHO PROGRAM SLEEP.EXE NOT FOUND. 

:ERROR 
ECHO ROBOT CANNOT BE INITIALIZED. 
GOTO DOS 

:PASS8 
IF NOT EXIST *.SET GOTO START 
DEL *.SET 

:START 

1 



ALIGN 	 ECHO RETURN TO DOS 

:TEACH 
CLS 
OPFILE 
CLS 
ECHO TEACH PROCESS IS BEING INITIALIZED. 
LEARN 
TRIM 

:DO 
CLS 
ECHO 
SMOOTH 
PAUSE 

:REPEAT 
CLS 
GO 

DATA IS BEING FUTHER PROCESSED. 

:SETFLAGS 
CLS 
SETFLAGS 
IF NOT EXIST FLAG1.SET GOTO FLAG2 
DEL FLAG1.SET 
GOTO REPEAT 

:FLAG2 
IF NOT EXIST FLAG2.SET GOTO FLAG3 
DEL NAME.JOB 
DEL FLAG2.SET 
GOTO START 

:FLAG3 
IF NOT EXIST FLAG3.SET GOTO FLAG4 
DEL NAME.JOB 
DEL FLAG3.SET 
GOTO TEACH 

:FLAG4 
IF NOT EXIST FLAG4.SET GOTO FLAGS 
DEL NAME.JOB 
DEL FLAG4.SET 
GOTO DO 

:FLAGS 
IF NOT EXIST FLAG5.SET GOTO DOS 
DEL FLAG5.SET 
CLS 
SLEEP 
GOTO SETFLAGSS 

:DOS 
DEL NAME.JOB 
CLS 
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• 	 APPENDIX C 

CONVERSION FROM DISCRETE-TIME TRANSFER FUNCTION TO 

• 	 CONTINUOUS-TIME FOR A THIRD-ORDER SYSTEM 

The discrete-time transfer function is in the form: 

z-  1  +B2 z- 2  +B3 Z- 3  
G(Z) =  	 (C-1) 

z-  I -Az z- 2 A3 z- 3  

For the rest of this Appendix, T will be used to denote 

the sampling period. 

CASE 1  

The denominator polynomial can be factorized into three 

real roots ci, 	c2 	and c3, where ci, c2 	or c3 does not equal 

to unity. Then, equation (C-1) can be expressed as: 

Fiz F2z F3z 
G(z) 

roz 
= 	(1-z-I) 	 + 

z-1 
+ 

z-ci Z-C2 
+ ---- 
Z-C3 

(C-2) 

where Fo 	- 	  
Bi +Bz +132 

(1-ci)(1-c2)(1-c3) 

BI Cl 2  +B2 CI +B3 

(ci -1) (ci -c2 (ci -ca ) 

Bi C2 2  +B2 C2 +B3 (C-3) 
F2 - 

(C2 1) (c2 -ci ) (c2 -c3 ) 

Bl C3 2  +B2 C3 +B3 

(c3 -1 ) (c3-c2 ) (c3-ci ) 

Taking inverse Z-transform on equation (C-2) gives: 

bo s2  +bl S+bo 
G(s) - 

s 	 [( 	 (s-a2 ) (s-a3 
(C-4) 



where bo = 

bi = 

bz = 

at = 

az = 

(C-5) -ln[ci]/T 

-ln[cz]/T 

a3 = -1n(c3]/T 
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a a2 a3 Fo 

(at az +az a3 +a3 at ) Fo + az a3 Fi + a a3 F2 + 
ai az F3 

-(al+az+a3)Fo - (a2+a3)F1 7 (al+a3)F2 - 
(al +az ) F3 

CASE 2 

This is a special case of CASE 1 when one of the roots 

of the denorminator polynomial is unity. This occurs when 

the identifying system contains an integrating element. 

Without loss of generality, the root cl will be assumed to 

be unity. Therefore, the discrete-time transfer function can 

be factorized as: 

Fo z 
G(z) = (1-z-1)[---  + 

z-1 

where Fo = -Fz-F3 

Bi +132 +B3 
Ft - 

(1-c2 ) (1C3) 

F1 z 

(z-1)2  

F2 z 

z-cz 

F3 Z 

z-c3-1 
(C-6) 

B1 C2 2  +B2 C2 +B3 	 (C-7) 
F2 — 

(C2 —1) 2  (C2 —C3 ) 

B1 C3 2  +B2 C3 +B3 

F3 — 

(C3 —1) 2  (ca—c2 ) 

Taking inverse Z-transform on equation (C-6) gives: 

1_e-ST 	 bo s2+1:31 s+bo 
G(s) = 	 I 	 (C-8) 

(s-az)(s-a3) 



(s-a3)(s2+2as+a2+w2)] 

1 -e-ST 	 b s2  +bi s+bo 

G (s) - (C-13) 

where bo = az a3 Ft /T 
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bi = (a2+a2)Fl/T - a2a2F2 	 .a2a3F3 

bz = 	 Pr - a3F2 a2 F3 

a2 = -1n(c2]/T 

= -111(c2]/T 

(C-9) 

 

CASE 3 

If two of the three roots of the denorminator 

polynomial are imaginary pairs, the denorminator polynomial 

of equation (C-1) can thus be expressed in the form: 

	

1-At z-1  -A2 z- 2  -A3 z- 3  = 	(1-C1 Z- 1 -C2 Z- 2  ) (1-C3 Z- 1  ) 	 (C-10) 

Using partial technique, equation (C-1) can be 

factorized as: 

	

rFo z 	 Ft z 	 F2 Z+F3 Z 

	

G(z) = (1-z-1 
 Lz-1 	 (z-C2) 	 z2-Clz+C2-1 

	 (C-11) 

Bi +B2 +B3 
where Fo - 

(1-C2)(1-Cli-C2) 

B1 C3 2  +B2 C3 +B3 

(C3-1)(C32-C1C3+C2) 	 (C-12) 

F2 = -F0 -F1 

C2 C3 FO +C2 Fl 
F3 - 

C3 

Taking inverse Z-transform on equation (C-11) gives: 



where bo = a3(a2+w2)F0 

bi = (a2+w2+2aa3)Fo 	 a2 +w2 	 aa3 F2 
+ a3wK 

= (2a+a3)F0 + 2aFI + (a+a3)F2 + wK 

= -ln[C3]/T 

a = -ln[C2]/2T 

(C-14) 
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1 	 r Cl 
w = -arcosi---- 

T 	 L2/C2 

F3+F2e-aTcoswT 
K= 

e-aTsinwT 

CASE 4 

Again, this is a special case of CASE 3 when the real 

root of the denominator polynomial is unity, i.e. C3=1. 

Hence, equation (C-1) can be expressed as: 

Z FiZ 	 F2 Z+F3 Z rF0 

G(z) 	= 	(1-z-1  (C-15) 

where Fo = -F2 

(Z-1)2 	 Z2 -CI Z+C2 

Bt +B2 +Ba 

1 -Ct+C2 

Bt (CI -2C2 ) +B2 (1-C2 ) +Ba (2-Ct) 
	

(C-16) 
F2 - 	  

(1 -Ct+C2)2  

Bi (C2 -1) C2 +B2 (CI -2) C2 +B3 (1+CI 2 -2C1 -C2 ) 

(1-Ci+C2)2  

Taking inverse Z-transform on equation (C-15) gives: 

1-e-BT 	 bo s2  +1D1 S+b0 
G(s) - 

[ s (s2+2as+a2+w2  )] 
(C-17) 



where bo = (a2+w2)F1/T 

bi = 2aFIL/T - (a2.1.w2)F2 

b2 = FI/T - aF2 + wK 

	

a = -ln[C2]/2T 	 (C-18) 

1 	 Ci 
w = -arcos[----] 

2/C2 

F3+F2e-aTcoswT 
-  

e-aTsinwT 

Therefore, by using the results of these four cases, 

almost any discrete-time transfer function can be converted 

into its corresponding continuous-time transfer function, 

provided that the discretized system is approximated by a 

zero-order-hold data extrapolator, which is the most 

commonly encountered case, since discrete signals, in many 

cases, are sent to analog systems through DACs which can be 

approximated by a zero-order-hold extrapolator. 
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SYSTEM IDENTIFICATION PROGRAMS 



MAIN PROGRAM: THIS IS THE FIRST PROGRAM OF THE PROGRAM SERIES 
WRITTEN FOR SYSTEM IDENTIFICATION. 
THIS PROGRAM IS TO GENERATE A PSEUDO-RANDOM 
BINARY SEQUENCE EQUIVALENT TO ONE GENERATED 
USING 12-STAGE SHIFT REGISTER. 
THE TWO STATES OF THE BINARY SEQUENCE ARE 
REPRESENTED BY VOLTAGE LEVELS WHICH CAN THAN 
BE OUTPUT TO A 12-BIT D/A CONVERTER. 

"BY: LAM H.Y.R. 

DATE: MAY,1986. 

$STORAGE:2 
PROGRAM SYSID1 
INTEGER PRBS 
LOGICAL BIT(12),TEMP(3)  

TEMP(3)=.FALSE. 
IF(TEMP(1).NEQV.TEMP(2))TEMP(3)=.TRUE. 
DO 100 I=1,11 
BIT(13-I)=BIT(12-I) 

100 	 CONTINUE 
BIT(1)=TEMP(2) 

150 CONTINUE 

CLOSE(5) 
CLOSE (6) 

WRITE(*,160) 
160 FORMAT(//,' PRBS IS STORED IN FILE :- PRBS.DAT 

*//,' PLEASE USE THE PROGRAM-SYSID2-OF THE SAME SERIES', 
*/,' (IF AVAILABLE) FOR OUTPUTING THE PRBS DATA TO 
*/,' THE SYSTEM AND AT THE SAME TIME SAMPLING THE SYSTEM', 
*/, OUTPUT TO CONTINUE THE SYSTEM IDENTIFICATION PROCESS.',//) 

END 

REQUESTING PRBS VOLTAGE LEVEL EQUIVALENT. 
30 	 WRITE(*,40) 
40 	 FORMAT(//,' PLEASE INPUT THE VOLTAGE LEVEL, V1, EQUIVALENT', 

*/,' TO THE TWO STATES OF THE BINARY SEQUENCE, SUCH THAT:-', 
*//,' 	 V1 IS EQUIVALENT TO 1, AND', 
*/,' 	 -V1 IS EQUIVALENT TO O.', 
*//,' [NOTE: V1 MUST BE POSITIVE & LESS THAN OR EQUAL TO 10.]',//) 
READ(*,*)V1 
IF((V1.GT.0).AND.(V1.LE.10))GOTO 45 
GOTO 30 

CONVERTING THE VOLTAGE LEVEL INTO EQUIVALENT D/A DATA. 
45 	 IVHIGH=NINT(2047*V1/10) 

IVLOW=NINT(-2048*V1/10) 

C 
	

RESETTING THE REGISTERS. 
DO 50 1=1,12 
BIT(I)=.TRUE. 

50 CONTINUE 

OPENING FILES TO STORE PREIS DATA & PARAMETERS. 
OPEN(5,FILE='PRBS.DAT',STATUS='NEW') 
OPEN(6,FILE='SYSID.DAT',STATUS='NEW) 
WRITE(6,'(F10.5)')V1 

GENERATING THE PRBS DATA. 
DO 150 K=1,4095 
PRBS=IVLOW 
IF(BIT(12))PRBS=IVHIGH 
WRITE(5,'(I10).)PRBS 
TEMP(1)=.FALSE. 
IF(BIT(2).NEQV.BIT(10))TEMP(1)=.TRUE. 
TEMP(2)=.FALSE. 
IF(BIT(11).NEQV.BIT(12))TEMP(2)=.TRUE. 



WRITE(*,130) 
130 FORMAT(//,' DO YOU WANT TO IMPOSE A SAFETY LIMIT ON THE SYSTEM', 

*/,' OUTPUT, SO THAT I.D. PROCESS WILL BE TERMINATED WHEN', 
*/,' SAMPLED OUTPUT EXCEEDS THE SPECIFIED LIMIT_? (Y/N)',//) 
READ(*,'(A) ')KEY 
IF(KEY.NE.'N')THEN 

135 	 WRITE(*,137) 
137 	 FORMAT(//,' PLEASE SPECIFY THE LIMIT.', 

• //,' [NOTE: 0 ( LIMIT (= 2047 ]',//) 
READ(*,*,ERR=135)LIMIT 
IF(LIMIT.LE.0)GOTO 135 

ELSE 
LIMIT=3000 

ENDIF 

RECORDING CLOCK PERIOD & SAMPLING INTERVAL USED & DAY & TIME. 
WRITE(33,*(2I20)')CLOCK,INTVAL 
CALL QTIME(IHR,IMIN,ISEC,IHUND) 
CALL QDATE(IYR,IMTH,IDAY) 
WRITE(33,'(5I10)')IHR,IMIN,IYR,IMTH,IDAY 

MAIN PROGRAM: THIS IS THE SECOND PROGRAM OF THE PROGRAM SERIES 
WRITTEN FOR SYSTEM IDENTIFICATION. 
THIS PROGRAM IS TO OUTPUT A PRBS DATA TO A 
SYSTEM AND AT THE SAME TIME SAMPLE THE OUTPUT 
OF THE ENERGIZED SYSTEM IN ORDER THAT THE 
PARAMETERS OF THE SYSTEM CAN BE IDENTIFIED 
USING RECURSIVE LEAST SQUARE METHOD. 
THE PROGRAM CAN FUNCTION UP TO 12-BIT PRBS DATA. 
[NOTE: THE PRBS DATA MUST BE AVAILABLE 

IN THE FILE:-.PRBS.DAT' PRIOR TO THE 
EXECUTION OF THE PROGRAM. 

WRITTEN ,BY: LAM H.Y.R. 

DATE: AUGUST,1986 

SSTORAGE:2 
PROGRAM SYSID2 
IMPLICIT INTEGER(A-Z) 
REAL DUMMY1,DUMMY2 
DIMENSION PRBS(4095),Y(4095),CHANEL(2),X(4095) 
LOGICAL OLDFILE 
CHARACTER REV.]. 

INITIALIZING THE LAB-PACK SUBROUTINES. 
CALL INIT 
CALL INTROFF 

CHECKING FILES TO SEE IF EXISTS. 
INQUIRE(FILE='PRBS.DAT',EXIST=OLDFILE) 
IF(.NOT.OLDFILE)GOTO 300 
OPEN(11,FILE='PRBS.DAT') 
OPEN(22,FILE='SYSIO.DAT',STATUS='NEW') 
INQUIRE(FILE='SYSID.DAT',EXIST=OLDFILE) 
IF(.NOT.OLDFILE)GOTO 370 
OPEN(33,FILE='SYSID.DAT') 
READ(33,*(F10.5)',ERR=370)DUMMY1 

N=4095 

• READING DATA FROM FILE-'PRBS.DAT'. 
DO 50 I=1,N 
READ(11,'(I10)',ERR=320)PRBS(I) 
X(I)=PRBS(I) 

50 CONTINUE 

• REQESTING PARAMETERS FROM USER. 
70 	 WRITE(",80) 
80 	 FORMAT(//,' PLEASE INPUT THE D/A CHANNEL NO. TO WHICH', 

*/,' THE PRBS ARE TO BE OUTPUT.', 
*//,' [NOTE: ONLY 0 OR 1 IS AVAILABLE.]',//) 
READ(*,*)DACHAN  

IFHDACHAN.NE.1).AND.(DACHAN.NE.0))GOTO 70 

SETTING THE INITIAL CONDITION TO ZERO. 
INITL=0 
CALL DAOUT(DACHAN,INITL) 

READ(*,*)ADCHAN 
IF((ADCHAN.GT.15).0R.(ADCHAN.LT.0))GOTO 90 
WRITE(*,120) 
FORMAT(//,' PLEASE INPUT CLOCK PERIOD & THE NO. OF CLOCKS', 
*/,' BETWEEN WHICH SAMPLING TAKES PLACE.', 

[NOTE: CLOCK PERIOD IS IN THE ORDER OF MICRO-SECOND.', 
' THE MIN. CLOCK PERIOD IS 1,000 MICRO-SEC.', 

*/,7X,' THE MAX. CLOCK PERIOD IS 32,767 MICRO-SEC.', 
*/,7X,' THE MAX. NO. OF CLOCKS BETWEEN SAMPLES IS 32,767.', 
*/,7X,' BOTH DATA ARE TO BE INTEGERS.  
READ(*,*,ERR=110)CLOCK,INTVAL 
IFUCLOCK.LT.1000).0R.(CLOCK.GT.32767))GOTO 110 
IFHINTVAL.LE.0).0R.(INTVAL.GT.32767))GOTO 110 

• SETTING INTERRUPT CLOCK PERIOD. 
CALL STTIMEB(CLOCK) 

• SETTING UP A/D CHANNEL. 
CHANEL(1)=ADCHAN 
CHANEL(2)=999 

• OUTPUTING THE PRBS & SAMPLING THE SYSTEM OUTPUT. 
CALL DASWST(DACHAN,INTVAL,X,N,1,1,0) 

90 	 WRITE(",100) 
100 FORMAT(//,' PLEASE INPUT THE A/D CHANNEL NO. FROM WHICH', 

*/, SYSTEM OUTPUT IS TO BE SAMPLED.', 
*//,' (NOTE: ONLY NO. FROM 0 TO 15 IS AVAILABLE.1',//) 

110 
120 



CALL ADSWST(CHANEL,INTVAL,Y,N,O) 	 CLOSE(11) 
CLOSE(22) 

• ENABLING INTERRUPT OF THE LAB-MASTER INTERFACING UNIT. 	 CLOSE(33) 
CALL INTRON 

WRITE(*,160) 
C 	 WAITING UNTIL SPECIFIED NO. OF SAMPLES OBTAINED; OR SPECIFIED 	 160 FORMAT(//,' SYSTEM INPUT & OUTPUT DATA ARE STORED IN FILE:-', 
C 	 LIMIT ON OUPUT VALUE EXCEEDED. 	 */,' SYSIO.DAT .', 
140 CALL ADSWAB(0,NBUFER) 	 *//,' PLEASE USE THE PROGRAM-SYSID3-OF THE SAME SERIES', 

OUTPUT=ABS(Y(NBUFER)) 	 */,' (IF AVAILABLE) FOR ESTIMATING THE SYSTEM PARAMETERS', 
IF(OUTPUT.GT.LIMIT)GOTO 143 	 */,' USING RECURSIVE LEAST SQUARE METHOD.',//) 
IF(NBUFER.NE.N)GOTO 140 	 GOTO 500 

• DISABLE INTERRUPT OF THE LAB-MASTER INTERFACING UNIT. 	 C 	 DISPLAYING ERROR SIGNALS (IF ANY). 
143 CALL DAOUT(DACHAN,INITL) 	 300 WRITE(*,310) 

CALL INTROFF 	 310 FORMAT(//,' NO PRBS DATA AVAILABLE.',//) 
GOTO 350 

• DETECTING IF SPECIFIED OUTPUT LIMIT EXCEEDED. 	 320 WRITE(*,330) 
IF(NBUFER.EQ.N)GOTO 147 	 330 FORMAT(//,' UNACCEPTABLE DATA FORMAT IN FILE PRBS.DAT .',//) 
CALL ADSWAB(1,IDUMMY) 
WRITE(*,145)NBUFER 	 350 WRITE(*,360) 

145 FORMAT(//,' IDENTIFICATION PROCESS TERMINATED DUE TO THE', 	 360 FORMAT(//,' PLEASE CHECK DATA FILE:-PRBS.DAT, OR', 
*/,' SPECIFIED OUTPUT LIMIT EXCEEDED.', 	 */,' RE-RUN THE PROGRAM-SYSID1-TO REGENERATE', 
*//,' NO. OF SAMPLE RECORDED = ',I5, 	 */,' PRBS DATA.',//) 
*//,' DO YOU WANT TO TRY AGAIN ? (Y/N)',//) 	 GOTO 500 
READ(*,'(A)')KEY 
IF(KEY.EQ.'N')GOTO 146 	 370 WRITE(*,380) 
WRITE(*,200) 	 380 FORMAT(//,' CONDITIONS FOR GENERATING SYSTEM INPUT DATA LOST.', 

200 FORMAT(//,' DO YOU WANT TO CHANGE THE STARTING POINT OF PRBS DATA 	 *//,' PLEASE RE-START THE PROGRAM SERIES BY USING THE', 
*7 (Y/N)',//) 	 */,' PROGRAM-SYSID1 .',//) 
READ(*,'(A)')KEY 	 GOTO 500 
IF(KEY.EQ.'N')GOTO 240 

205 WRITE(*,210) 
210 FORMAT(//,' INPUT NO. OF DELAY OF PRBS DATA.', 	 500 CONTINUE 

*//,' [NOTE: 1 <= NO. OF DELAY <= 4094 .]',//) 
READ(*,*)NSTART 	 END 
IFUNSTART.LT.1).0R.(NSTART.GT.4094))GOTO 205 
DO 220 I=1,4095-NSTART 
X(I)=PRBS(I+NSTART) 

220 CONTINUE 
DO 230 I=1,NSTART 
X(4095-NSTART+I)=PRBS(I) 

230 CONTINUE 
240 REWIND(33) 

READ(33,'(F10.5)')DUMMY1 
GOTO 110 

146 N=NBUFER 

STORING THE PRBS INPUT & THE SAMPLED SYSTEM OUTPUT DATA 
C 	 TO FILE:-'SYSIO.DAT'. 
147 DO 150 J=1,N 

Y(J)=Y(J)+7 
WRITE(22,*(2I10)')X(J),Y(J) 

150 CONTINUE 



$N0FLOATCALLS 
$STORAGE:2 

MAIN PROGRAM: THIS IS THE THIRD PROGRAM OF THE IDENTIFICATION 
PROGRAM SERIES. 
THIS PROGRAM IS TO ESTIMATE THE COEFFICIENTS OF 
A THIRD ORDER TRANSFER FUNCTION WITH AN 
INTEGRATING ELEMENT BY MINIMIZING THE SUM OF 
SQUARES OF THE EQUATION ERROR. 

*/,' SQUARE ALGORITHM.', 
*//,' (NOTE: 0 ( WINDOW FACTOR (= 1 	 l',//) 
READ(*,*)DELTA 
IFUDELTA.GT.1).0R.(DELTA.LE.0))GOTO 58 
WRITE( .62) 

62 	 FORMAT(//,' PLEASE INITIALIZE THE ALGORITHM BY SPECIFYING', 
' THE DIAGONAL ELEMENT OF THE INITIAL P MATRIX &', 

*/,' THE INITIAL VALUE OF THE SYSTEM PARAMETERS.',//) 
READ(*,*)PDIAGL,THETA0 

WRITTEN BY: 

DATE: 

R.H.Y.LAM 

MAY,1986 

63 	 WRITE(*,65) 
65 FORMAT(//,' PLEASE INPUT A NAME FOR THE IDENTIFIED SYSTEM.', 

*//,' (WARNING: NOT MORE THAN 50 CHARACTERS ARE ACCEPTED.]',//) 
READ(*,'(A)')SNAME 

PROGRAM SYSID3 

REAL X(4095),Y(4095),TEMPP(6,6),P(6,6),THETA(6,1),H(1,6) 
REAL K(6.1),TRANSH(6,1),TEMP1(6,1),TEMP2(1,1),TEMP3(1,6) 
REAL TEMP4(6,6),TEMP5(6,6),TEMP6(1,1),TEMP7(6,1),INVDEL 
REAL C(4095) 
INTEGER DATAX,DATAY,CLOCK 
CHARACTER SNA1IE*50,KEY*1 
LOGICAL OLDFILE 

CHECKING TO SEE IF DATA FILES AVALIABLE. 
INQUIRE(FILE='SYSIO.DAT',EXIST=OLDFILE) 
IF(.NOT.OLDFILE)GOTO 220 
INQUIRE(FILE='SYSID.DAT',EXIST=OLDFILE) 
IF(.NOT.OLDFILE)GOTO 280 

SETTING UP FILES FOR READING & STROING DATA. 
OPEN(1,FILE='PRN') 
OPEN(44,FILE='SYSID.DAT') 
OPEN(55,FILE='SYSIO.DAT') 
OPEN(66,FILE='SYSOUTS.DAT',STATUS='NEW) 
OPEN(77,FILE='SYSINFO.DAT',STATUS='NEW) 
OPEN(88,FILE='SYSERRS.DAT',STATUS='NEW) 

C 	 READING CONDITIONS FOR DATA GENERATION. 
READ(44,*(F10.5)',ERR=280)V1 
READ(44,.(2I20)',ERR=320)CLOCK,INTVAL 
READ(44,'(5I10)',ERR=320)IHR,IMIN,IYR,IMTH,IDAY 

• INITIALZING P TO A LARGE DIAGONAL MATRIX. 
CALL UNIT(TEMPP,6) 
CALL SCAMUL(PDIAGL,TEMPP,P,6,6) 

• INITIALIZING THETA TO ARBITRARY COLUMN MATRIX. 
DO 70 J=1,6 
THETA(J,1)=THETA0 

70 CONTINUE 

• INITIALIZING SUMS OF THETA & THETA SQUARE. 
CALL NULL(SUM,6,1) 
CALL NULL(SUMSQ,6,1) 

SET INITIAL ERROR TO ZERO 
ERROR=0 
C(1)=0 
C(2)=0 
C(3)=0 

PERFORMING RECURSIVE LEAST SQUARE METHOD TO 
ESTIMATE THETA MATRIX. 
DO 80 M=4,N 
SETTING UP H MATRIX. 
H(1,1)=X(M-1) 
H(1,2)=X(M-2) 
H(1,3)=X(M-3) 
H(1,4)=Y(M-1) 
H(1,5)=Y(M-2) 
H(1,6)=Y(M-3) 

DO 50 I=1,4096 
READ(55,'(2I10)',END=55,ERR=240)DATAX,DATAY 
X(I)=FLOAT(DATAX) 
Y(I)=FLOAT(DATAY) 

CALCULATING K MATRIX. 
CALL TRANSP(H,TRANSH,1,6) 
CALL MULTI(P,TRANSH,TEMP1,6,6,1) 
CALL MULTI(H,TEMP1,TEMP2,1,6,1) 

50 CONTINUE CONSTA=1/(DELTA+TEMP2(1,1)) 
CALL SCAMUL(CONSTA,TEMP1,K,6,1) 

55 NI-1 CALCULATING P MATRIX. 
CALL MULTI(H,P,TEMP3,1,6,6) 

REQUESTING NECESSARY PARAMETERS FROM THE USER. CALL MULTI(K,TEMP3,TEMP4,6,1,6) 
58 WRITE(*,60) CALL SUBTR(P,TEMP4,TEMP5,6,6) 
60 FORMAT(//, 	PLEASE INPUT WINDOW FACTOR FOR THE RECURSIVE LEAST', INVDEL=1/DELTA 



CALL SCAMUL(INVDEL,TEMP5,P,6,6) 
• CALCULATING REFINED THETA MATRIX. 

CALL MULTI(H,THETA,TEMP6,1,6,1) 
CONSTB=Y(M)-TEMP6(1,1) • 
CALL SCAMUL(CONSTB,K,TEMP7,6,1) 
CALL ADD(THETA,TEMP7,THETA,6,1) 
C(M)=CONSTB 

80 CONTINUE 

• CALCULATING MODELLED OUTPUT USING THE MEAN OF THE ESTIMATED 
• THETA AND STORING THE ACTUAL & THE MODELLED OUTPUTS TO FILE:- 
• 'SYSOUTS.DAT' . 
83 	 Y(1)=0 

Y(2)=THETA(1,1)*X(1)+THETA(4,1)*Y(1) 
Y(3)=THETA(1,1)*X(2)+THETA(2,1)*X(1)+THETA(4,1)*Y(2)+ 
A 	 THETA(5,1)*Y(1) 
DO 85 J=4,N 
Y(J)=THETA(1,1)*X(J-1)+THETA(2,1)*X(J-2)+THETA(3,1)*X(J-3)+ 

THETA(4,1)"Y(J-1)+THETA(5,1)*Y(J-2)+THETA(6,1)"Y(J-3) 
IF(ABS(Y(J)).GT.1.0E+30)GOTO 86 

85 CONTINUE 
GOTO 88 

86 	 WRITE(*,87) 
87 	 FORMAT(//,' WARNING: SIMULATED SYSTEM UNSTABLE.', 

*/,9X,' MODELLED OUTPUT EXCEEDING 1E50.', 
*//, MODELLING PROCESS TERMINATED.',//) 

88 REWIND 55 
DO 89 I=1,J 
READ(55,'(10X,I10)',ERR=91)DATAY 
YORGN=FLOAT(DATAY) 
OUTERR=YORGN-Y(I) 

DATANO=FLOAT(I) 
WRITE(66,'(3E12.5)',ERR=91)DATANO,YORGN,Y(I) 
WRITE(88,'(3E12.5)',ERR=91)DATANO,C(I),OUTERR 

89 CONTINUE 

•91 	 CLOSE(44) 
CLOSE (55) 
CLOSE(66) 
CLOSE(88) 

WRITE(1.90)SNAME,IDAY,IMTH,IYR,IHR,IMIN,V1,V1,CLOCK,INTVAL,N, 
*DELTA 
WRITE(1,'(A1)')'1' 

WRITE(77,90)SNAME,IDAY,IMTH,IYR,IHR,IMIN,V1,V1,CLOCK,INTVAL,N, 
*DELTA 

90 FOR14AT(15X,' 	  SYSTEM PARAMETER IDENTIFICATION 	  

*////,' SYSTEM: 	 ',A, 
"//,' TIME 
*//,' INPUT: 12-BIT PSEUDO-RANDOM BINARY SEQUENCES', 

"//,' PRBS VOLTAGE LEVEL: 	 (+)',F8.5,' OR (-)',F8.5,' VOLT', 
*//,. CLOCK: 	 ',I6,' MICRO-SEC.', 
"//,' SAMPLING INTERVAL: ',I6,' (CLOCKS)', 

3  

' NO. OF I/O PAIRS: ',I6, 
*HU,' IDENTIFICATION METHOD: RECURSIVE LEAST SQUARE', 
*//,' WINDOW FACTOR: ',F5.3, 
*////,38X,'B1*Z(-1)+B2*Z(-2)+B3*Z(-3)., 
*/,' MODELLED TRANSFER FUNCTION: G(Z)= 	  

*/,36X,' 1-A1*Z(-1)-A2*Z(-2)-A3*Z(-3)') 
WRITE(1,93)THETA(1,1),THETA(2,1),THETA(3,1), 
*THETA(4,1),THETA(5,1),THETA(6,1) 
WRITE(77,93)THETA(1,1),THETA(2,1),THETA(3,1), 
*THETA(4,1),THETA(5,1),THETA(6,1) 

93 	 FORMAT(////,' ESTIMATED PARAMETERS VALUES:-', 
*//40X,'B1=',F15.10,5X, 
*//,10X,'B2=',F15.10,5X, 
"//,10X,'B3=',F15.10,5X, 
*//,10X,'Al=',F15.10,5X, 
*//,10X,'A2=',F15.10,5X, 
*//,10X,'A3=',F15.10,5X) 

CLOSE (1) 
CLOSE(77) 

WRITE(*,95) 
95 FORMAT(//,' ALL THE INFORMATION & RESULTS OF THE IDENTIFICATION', 

*/,' PROCESS ARE PRINTED AND ALSO STORED IN FILE:-SYSINFO.DAT 
*//) 

WRITE(*,100) 
100 FORMAT(//,' ACTUAL OUTPUT & MODELLED OUTPUT ARE STORED IN', 

"/,' FILE:- SYSOUTS.DAT', 
*/,' EQUATION ERROR & OUTPUT ERROR ARE STORED IN FILE:-', 
*/,' 	 SYSERRS.DAT', 
*//,' PLEASE USE THE PROGRAM SYSID4 OF THE SAME SERIES TO', 
*/,' DISPLAY THE OUTPUTS OR THE ERRORS.',//) 

GOTO 500 

DISPLAYING ERROR MESSAGE (IF ANY). 
220 WRITE(*,230) 
230 FORMAT(//,' SYSTEM INPUT/OUTPUT DATA NOT AVAILABLE.',//) 

GOTO 260 

240 WRITE(*, 250) 
250 FORMAT(//,' INPUT/OUTPUT DATA NOT IN ACCEPTABLE FORMAT.',//) 

260 WRITE(.,270) 
270 FORMAT(//,' PLEASE CHECK DATA FILE:-sYsIo.DAT, OR', 

*/,' RE-RUN THE PROGRAM-SYSID3 .',//) 
GOTO 500 

280 WRITE(*,290) 
290 FORMAT(//,' CONDITIONS FOR INPUT DATA GENERATION LOST 

*//,' PLEASE RE-START THE IDENTIFICATION PROCESS BY 
*/,. USING THE PROGRAM-SYSID1 .',//) 
GOTO 500 

4 



320 WRITE(.,330) 
330 FORMAT(//,' PRBS DATA CHANGED.', 

• ' PLEASE RE-NEW THE SYSTEM INPUT/OUTPUT BY USING', 
*/,' THE PROGRAM-SYSID2 .',//) 

500 CONTINUE 

END 

SUBROUTINES FOR MATRIX CALCULATION 

C MATRIX ADDITION 
SUBROUTINE ADD(A,B,C,M,N) 
DIMENSION A(M,N),B(M,N),C(M,N) 
DO 1 I=1,M 
'DO 1 J=1,N 

1 	 C(I,J)=A(I,J)+B(I,J) 
RETURN 
END 

C MATRIX SUBTRACTION 
SUBROUTINE SUBTR(A,B,C,M,N) 
DIMENSION A(M,N),B(M,N),C(M,N) 
DO 1 I=1,M 
DO 1 J=1,N 

1 	 C(I,J)=A(I,J)-B(I,J) 
RETURN 
END 

C TRANSPOSE OF A MATRIX 
SUBROUTINE TRANSP(A,B,M,N) 
DIMENSION A(M,N),B(N,M) 
DO 1 I=1,M 
DO 1 J=1,N 

1 	 B(J,I)=A(I,J) 
RETURN 
END 

C SET IDENTITY MATRIX 
SUBROUTINE UNIT(A,M) 
DIMENSION A(M,H) 
DO 1 1=1,m 
DO 1 J=l,M 
A(I,J)=1.0 

1 	 IF (I.NE.J) A(I,J)=0.0 
RETURN 
END 

C MULTIPLICATION OF MATRICES 
SUBROUTINE MULTI(A,B,C,L,M,N) 
DIMENSION A(L,M),B(M,N),C(L,N) 

DO 1 I=1,L 
DO 1 J=1,N 
C(I,J)=0.0 
DO 1 K=1,M 

1 	 C(I,J)=C(I,J)+A(I,K)"B(K,J) 
RETURN 
END 

C MATRIX MULTIPLICATION BY A SCALAR 
SUBROUTINE SCAMUL(S,A,B,M,N) 
DIMENSION A(M,N),B(M,N) 
DO 1 I=1,M 
DO 1 J=1,N 

1 	 B(I,J)=S*A(I,J) 
RETURN 
END 

5 
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SNOFLOATCALLS 
$STORAGE:2 

50 CONTINUE 

N=1000 
GOTO 65 

MAIN PROGRAM: THIS IS THE FOURTH PROGRAM OF THE IDENTIFCATION 
PROGRAM SERIES. 
THIS PROGRAM IS TO DISPLAY THE OUTPUTS OR THE 
ERRORS VARIATIONS OF THE IDENTIFIED TRANSFER 
FUNCTION. 

WRITTEN BY: R.H.Y.LAM 

DATE: MAY 1986 

PROGRAM.SYSID4 

REAL X(1000),Y1(1000),Y2(1000),XTEMP(100),Y1TEMP(100) 
REAL Y2TEMP(100) 
CHARACTER XTEXT*6,YTEXT*6,KEY*1 
LOGICAL OLDFILE,FRAME,ANALOG,EXPAND,FILEND,FSTSEG 

5 	 WRITE(*,10) 
10 	 FORMAT(//,' PLEASE CHOOSE THE FOLLOWING OPTIONS:-', 

*/,5X,' 1 = PLOT THE ACTUAL AND THE MODELLED OUTPUTS.'. 
*/,5X,' 2 = PLOT THE EQUATION ERROR AND THE OUTPUT ERROR.',//) 
READ(*,*)IKEY . 
IFMKEY.NE.1).AND.(IKEY.NE.2))GOTO 5 
GOTO(20,30)IKEY 

• CHECKING THE APPROPRIATE FILE. 
20 	 INQUIRE(FILE='SYSOUTS.DAT',EXIST=OLDFILE) 

IF(.NOT.OLDFILE)GOTO 500 
OPEN(55,FILE='SYSOUTS.DAT') 
GOTO 35 

30 	 INQUIRE(FILE='SYSERKS.DAT',EXIST=OLDFILE) 
IF(.NOT.OLDFILE)GOTO 500 
OPEN(55,FILE='SYSERRS.DAT') 

• SETTING FLAGS TO APPROPRIATE CONDITIONS. 
35 	 EXPAND=.FALSE. 

FILEND=.FALSE. 
FSTSEG=.TRUE. 

.

• 	

READING & SORTING DATA FROM FILE-SYSOUTS.DAT . 
READ(55,'(3E12.5)',END=540,ERR=520)X(1),Y1(1),Y2(1) 
YMIN=MIN(Y1(1),Y2(1)) 
YMAX=MAX(Y1(1),Y2(1)) 
REWIND (55) 

40 	 DO 50 1=1,1000 
READ(55,'(3E12.5)',END=60,ERR=520)X(I),Y1(I),Y2(I) 
YMIN=MIN(YMIN,Y1(I),Y2(I)) 
YMAX=MAX(YMAX,Y1(I),Y2(I))  

60 	 N=I-1 
FILEND=.TRUE. 
CLOSE(55) 
IF(N.LT.10)GOTO 250 

65 NPT=N 

FORMING X-AXIS & YAX/S PRARMETERS. 
XXMIN=X(1)-1 
XMIN=XXMIN 
XXMAX=X(N) 
XMAX=XXMAX 
XORG=XXMIN 
NDECX=0 
XLENGH=XXMAX-XXMIN 
IF(XLENGH.LE.10)THEN 
XMARK=1 

ELSEIF(XLENGH.LE.100)THEN 
XMARK=10 

ELSE 
XMARK=100 

END IF 
XTEXT='SAMPLE' 

IF(.NOT.FSTSEG)GOTO 75 

WRITE( .73) 
73 FORMAT(//,' PLEASE SPECIFY TEXT FOR LABELLING Y-AXIS.', 

*//,' [WARNING: NOT MORE THAN 6 CHARACTERS WILL BE ACCEPTED.)',//) 
READ(*,*(A) ')YTEXT 

75 	 WRITE(*,80)YMIN,YMAX 
80 	 FORMAT(//,' MIN. & MAX. VALUES OF Y ARE: ',F7.1,' & ',F7.1, 

*//,' PLEASE SPECIFY MIN. & MAX. VALUES ON Y-AXIS.' .1/) 
READ(*,*)YYMIN,YYMAX 
IF((YYMIN.LE.YMIN).AND.(YYMAX.GE.YMAX))GOTO 84 
WRITE(*,82) 

82 FORMAT(//,' ERROR: BOUNDARIES ON Y-AXIS TOO SMALL.', 
*//,' PLEASE TRY AGAIN.') 
GOTO 75 

84 	 wRITE(*,86) 
86 	 FORMAT(//,' PLEASE SPECIFY MARRING INTERVALS ON Y-AXIS.',//) 

READ(*,*)YMARK 
YINTVL=(YYMAX-YYMIN)/YMARK 
IF(YINTVL.LE.20.0)GOTO 90 
WRITE( .87) 

87 	 FORMAT(//,' WARNING: MARKING INTERVALS TO CLOSE TOGETHER.', 
*//,' PLEASE TRY AGAIN.') 
GOTO 84 

90 YORG=0 
IF(YYMIN.GT.0)YORG=YYMIN 
IF(YYMAX.LT.0)YORG=YYMAX 

1 	 2 



NDECY=0 
FRAME= . TRUE . 

100 CALL XYFRAM(XXMIN,RxmAX,YYMIN,YYMAX,XoRG,YORG,XMARR,YmARR,XTEXT. 
*YTEXT,NDECX,NDECY,FRAME) 

PLOTTING THE ACTUAL OUTPUT CURVE WITH NO SYMBOL ADDED. 
NMARR=1 
ISYMBL=-2 
ANALOG=.TRUE. 
IF  
CALL XYPLOT(XTEMP,Y1TEMP,NPT,N1'IARR,ISYMBL,ANALOG) 

ELSE 
CALL XYPLOT(X,Y1,NPT,NMARR,ISYMBL,ANALOG) 

ENDIF 

C 	 PLOTTING THE MODELLED OUTPUT CURVE WITH CROSSES ADDED: 
NMARR=20 
ISYMBL=-1 
IF(EXPAND)THEN 
CALL XYPLOT(XTEMP,Y2TEMP,NPT,NMARR,ISYMBL,ANALOG) 

ELSE 
CALL XYPLOT(X,Y2,NPT,N1'IARR,ISYMBL,ANALOG) 

ENDIF 

• GRAPHICS PAUSE UNTIL ANY KEY DEPRESSED. 
105 CALL XYCLS 

IF(EXPAND)GOTO 115 

OPTION FOR DISPLAYING THE PLOTS AFTER CLEARING SCREEN. 
WRITE(*,110) 

110 FORMAT(//,' DO YOU WANT TO DISPLAY THE PLOT AGAIN ? (Y/N)',//) 
READ(*,'(A)')REY 
IF(REY.EQ.'Y')GOTO 100 
IF(N.LE.200)GOTO 200 

• OPTION FOR DISPLAYING PORTION OF THE PLOT. 
115 IF(EXPAND)THEN 

WRITE(*,120) 
120 	 FORMAT(//, DO YOU WANT TO DISPLAY ANOTHER PORTION ? (Y/N)',/) 

ELSE 
WRITE(*.130) 

EXPAND=.FALSE. 
1,30 	 FORMAT(//,' DO YOU WANT TO DISPLAY AN EXPANDED PORTION OF', 

• /,' THE PLOT CONTAINING 100 SAMPLES ? (Y/N)',//) 
ENDIF 
READ(*,.(A) ')REY 
IF(REY.EQ.'N')GOTO 200 

• PLOTTING AN EXPAND PORTION OF THE PLOT CONTAINING 100 SAMPLES. 
IXLOW=INT(XMIN) 
IXUP=INT(XMAX)-100 

135 WRITE(*,140)IXLOW,IXUP 
140 FORMAT(//,' PLEASE SPECIFY THE STARTING SAMPLE NO.',  

*//,' [NOTE: 	 (= NO. SPECIFIED 0= 
	

I'd/1 
READ(*,*,ERR=135)NST 
IF((NST.LT.IXLOW).0R.(NST.GT.IXUP))GOTO 135 
YmIN=mIN(Y1(NST+1),Y2(NST+1)) 
YMAX=MAX(Y1(NST+1),Y2(NST+1)) 
DO 170 1=1,100 
XTEMP(I)=FLOAT(NST+I) 
Y1TEMP(I)=Y1(NST+I-IRLOW) 
Y2TEMP(I)=Y2(NST+I-IXLOW) 
YMIN=MIN(Y1TEMP(I),Y2TEMP(I),YMIN) 
YMAX=MAX(Y1TEMP(I),Y2TEMP(I),YMAX) 

170 CONTINUE 
EXPAND=.TRUE. 
XXMIN=XTEMP(1)-1 
XXMAX=XTEMP(100) 
XMARR=10 
XORG=RXMIN 
NPT=100 
GOTO 75 

• STARTING THE NEXT SEGMENT OF DATA PLOTTING. 
200 IF(FILEND)GOTO 700 

EXPAND=.FALSE. 
FSTSEG=.FALSE. 
WRITE(*,210) 

210 FORMAT(//,' PRESS ANY KEY TO CONTINUE OR <E) TO EXIT PLOTTING.', 

READ(*. (A) 
IF(REY.EQ.'E')GOTO 700 
YMIN=MIN(Y1(N),Y2(N)) 
YMAX=MAX(Y1(N),Y2(N)) 
GOTO 40 

250 WRITE(*,260) 
260 FORMAT(//,' LESS THAN 10 DATA LEFT.', 

*//,' PLOTTING INHIBITED.',//) 
GOTO 700 

• DISPLAYING ERROR MESSAGES (IF ANY). 

500 WRITE(*,510) 
510 FORMAT(//,' DATA FILE (SYSOUTS.DAT/SYSERRS.DAT) NOT FOUND.',//) 

GOTO 600 
520 wRITE(*,530) 
530 FORMAT(//,' DATA NOT IN APPROPRIATE FORMAT.',//) 

GOTO 600 

540 wRITE(*,550) 
550 FORMAT(//,' NO DATA FOUND IN FILE SYSOUTS.DAT/SYSERRS.DAT.',//) 

GOTO 600 

600 WRITE(*,610) 
610 FORMAT(' PLEASE RE-RUN THE PROGRAM-SYSID3 TO RE-GENERATE', 

*/,' DATA TO FILE SYSOUTS.DAT/SYSERRS.DAT.',//) 



188 

In 

CLOSE ( 55) 


