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ABSTRACT 

This thesis describes the results of three-dimensional X-ray crystal 

structure analyses of some coordination compounds of V(III), Cr(III), 

Fe(III) and Mo(III), specifically compounds containing octahedral complex 

ions, with a view to establishing important features of chemical interest. 

A general outline is given of the process of crystal structure 

analysis with a detailed discussion of experimental techniques used in this 

research. 

Two thiocyanates have been studied. 	For K
3
[Cr(NCS) 6

].4H
2
0 the 

trigonal unit cell dimensions are a = 14.450, c = 9.625 A, and z = 3. 

These dimensions differ slightly from those reported by Zhdanov, Zvonkova 

and Glushkova. 	The analogous compound K3
[Mo(NCS) 6

].4H2
0 is also shown to 

be trigonal with a = 14.510, c = 9.820 A, and z = 3. The two compounds are 

isomorphous. Weak intermediate layer lines have been observed in X-ray 

photographs of both compounds. This is possibly due to twinning, disorder 

or the presence of superlattice structures. For these reasons difficulties 

arose during this research which prevented complete determinations of 

structures. 	There is sufficient evidence, however, that both compounds 

contain [M(NCS) 6
]
3- 
 ions. 

Crystal and molecular structures of six compounds of the type 

I 	II 
A
2 

[M
I 
 Cl

5
H2
0], with A = K, Rb, NH

4' 
 or Cs; M = Fe, or Mo; have been 

determined. Unit cells, atomic parameters and bond lengths and angles are 

reported for each compound. Four of these adopt the orthorhombic Pnma 

structure characterised by [Rh(NH3
)
5
Cl]Cl

2
.• K

2 
 [MoC1

5
H
2
0], (NH

4
)
2
[M0C1

5
H2

0], 

Rb
2[
M0C1

5
H
2
0] and Rb

2
[FeC1

5
H
2
0]. 	On the other hand, Cs 2

[MoC1
5
H
2
0] and 

Cs2
[FeC1

5
H
2
0] are isomorphous with Cs 2 [RuC1

5  H2 ' 
0] crystallizing with 

orthorhombic Cmcm symmetry. 



The structures of four vanadium(III) coordination compounds have been 

determined. 	The first of these, Cs
2
VC1

5
.4H

2
0 is monoclinic, space group 

C2/m, with a = 17.745, b = 6.183, c = 7.019 A, 0 = 106.4°, and z = 2. 

This structure comprises slightly distorted trans- [VC1
2
(H

2
0)

4
]
+ 

octahedra, 

_ 
Cs

+ 
and Cl ions and thus the compound should be formulated as 

Cs
2
[VC1

2
(H

2
0)

4
1C1

3
. 

Work carried out in collaboration with Podmore has confirmed that the 

structure of Cs
2
VBr

5
.41-1

2
0 is isomorphous with that of the chloro-salt. 

The compound RbVC14 .6H20 crystallizes in the orthorhombic space group 

Cccm, with a = 10.291, b = 15.566, c = 8.319 A, and z = 4. 	This compound 

contains slightly less distorted trans- [VC1 2 (H20) 4 ]
+ 

than Cs 2 [VC1 2 (H20) 4 ]C1 3 , 

together with Rb
+ 

and Cl-  ions and water molecules. 	The formula is thus 

Rb[VC12 (H20) 4 ]C12 .2H20. 

The halide VBr
3
.6H

2
0 is monoclinic, space group P2

1 
 /c, with a = 6.408, 

b = 6.550, c = 12.300 R, 	= 96.15°, and z = 2. 	This compound contains 

trans- [VBr
2
(H

2
0)

4
]
+ 
complex ions, bromide ions and water molecules, and 

thus should be written as [VBr2 (H
2. 

 0)
4 
 ]Br.2H

2
O. 

The structure of VC1
3
.6H

2
0 has been elucidated from data taken from a 

twinned crystal. 	The crystals twin across the (010) plane to give a 

reciprocal lattice with apparent doubling of the c-axis and with the glide 

plane of P2 1/c suppressed to show apparent P2 1/m symmetry. 
	Cell dimensions 

are a = 6.430, b = 6.439, c = 11.901 R, 	= 98.8°. 	This compound is 

isomorphous with [VBr 2 (H20) 4 ]Br.2H20. 

Atomic parameters and bond lengths and angles are given for all five 

V(III) compounds. 	There is evidence of hydrogen bonding in each of the 

structures. 	The structures of these compounds are discussed comparatively. 
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Chapter 1. X-Ray Crystal Structure Analysis  

1.1. 	Introduction  

This thesis describes the application of X-ray diffraction to the 

solution of crystal and molecular structures of a number of coordination 

compounds of trivalent, transition metal ions. 	Initially, interest 

centred on metal to ligand bonding problems encountered in thiocyanates 

of chromium and molybdenum. Later research followed structural questions 

brought to light by others in the Inorganic research group at the 

University of Tasmania. 	These dealt particularly with aquopentachloro 

complexes of Mo(III) and Fe(III) and several aquohalide complexes of 

V(III). 

The purpose of this chapter is firstly to outline in a general 

fashion the process of X-ray crystal structure analysis. 	Then follows a 

discussion of the specific experimental techniques employed in the 

structural studies reported herein. 	The chapter concludes with a 

discussion of accuracy and precision of the experimental data and of the 

results of the structure determinations. 

1.2. 	Crystal Structure Analysis
1-11  

1.2.1. 	X-ray diffraction  

For the purpose of describing the diffraction of X-rays, a crystal 

may be considered as a distribution of electrons which is periodic in 

three dimensions. 

X-rays have wavelengths of the order of the interatomic distances in 

crystals. 	Because of this the electrons surrounding the atomic nuclei in 



a crystal diffract incident X-rays. 	Soon after the discovery of this 

phenomenon by von Laue and co-workers in 1912
12-14

, W.L. Bragg
15 

demonstrated that diffraction could be treated as reflection from planes 

in the crystal lattice. 	(Fig. 1.1). 

Diffracted beams will only appear if the path lengths of rays 

reflected by planes of the same set differ by an integral number of wave-

lengths. 

For this reinforcement to occur, 

nX = 2d sin 0 (where X = wavelength and 
n = integer) 

and this is known as the Bragg equation. 

The regular arrangement of atoms or ions which gives rise to an 

electron distribution can be regarded as having been generated by the 

repetition of a fundamental unit called the unit cell. The unit cell 

can be characterised by three axial lengths, a, b and c along the x, y and 

z coordinate directions respectively, with the angles between the axes 

being a, 0 and y as shown in Fig. 1.2. 

It is convenient in crystallography to consider parallel lattice 

planes which have fractional intercepts on the three axes. 	The indices 

(h, k, Z) which characterize each plane are called Miller indices. 

Bragg also showed that the intensities of diffracted X-ray beams are 

proportional to the squares of complex quantities called structure factors. 

Each plane (hk,E) of the unit cell has a structure factor: 

= E [fn .exp 2ffi(hxn  + kyn  + tzn )] 
n=1 

where fn 
is the atomic scattering factor of the n

th 
atom, x

' 
 y and zn , 

n n 

are the positional coordinates of the n
th 

atom, expressed as fractions of 

the unit cell edges. 
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Fig. 1.1 

Reflection of X-rays from planes in a crystal lattice 

Fig. 1.2 

The generalized unit cell 



The modulus of the structure factor is given by: 

	

IF 	I a ir2 	where I = intensity of diffracted beam. I (Ilia) 

This structure amplitude IF(hke)I is defined as the ratio of the 

amplitude of the radiation scattered in the order (h, k, t) by the contents 

of one unit cell to that scattered by a single electron under the same 

conditions
2.. 

The electron distribution in a unit cell can be expressed as a 

Fourier series: 

1 exp2ffi(hx + ky + tz)] 

	

P (xyz) 	= 	E E E [F (110,)  
h k 

where p = electron density and V = unit cell volume. 

Thus if the structure factors, F (hkz) , are known together with their 

signs the electron density at any point in the unit cell can be determined 

and in principle, the structure can be solved. 	The structure factors are, 

however, complex quantities, having both amplitude and phase. 	Since only 

the amplitude can be obtained directly from the intensities, other methods 

must be used to determine the phase. 	This is the "phase problem" of 

crystal structure analysis. 

There are several methods which can be used to help solve the phase 

determination problem. Of these the Patterson method, is one of the most 

widely used and was applied successfully in the crystal structure analyses 

described herein. 



	

1.2.2. 	The  Patterson Method  

In 1934 Patterson
16

'
17 suggested that while F (hid) 

relates to the 

electron density distribution within the unit cell, IF()  I2 which is 
obtained from the intensities, relates to the distribution of interatomic 

vectors. 	This can be expressed as a Fourier series: 

h k £=+03 
= 	E E E 	[1F 	1 2exp2ffi(hu + kv + tw)] 

	

(uvw) 	V 	(hid) 
h k Z=-03 

The Patterson map obtained from a plot of this function is .a map of 

all interatomic vectors reduced to a common origin. 	Thus to every pair 

of atoms there is a specific peak in the Patterson map together with an 

origin peak reprenting the zero vector of each atom to itself, giving a 

total of (n
2-n) non-origin peaks for n atoms in the unit cell. 	It is 

sometimes possible to deduce the arrangement of atoms which gives rise to 

the vector peaks of the Patterson map by inspection. 	It is difficult 

however, to solve a Patterson for a structure containing many equal atoms 

because of problems associated with peak overlap and with the difficulty 

of identifying one peak from many similar sized peaks as being due to a 

particular atom-atom interaction. 

This problem is simplified if there is a heavy atom or a small number 

of heavy atoms in the structure. These give rise to prominent vector 

peaks on the Patterson map and often make it possible to assign particular 

locations to the heavy atoms. 

Within the Patterson map it is often convenient to consider particular 

concentrations of vector points referred to as Harker lines and planes
18

. 

These Harker concentrations of interatomic vectors arise from the 

interaction of atoms related by symmetry elements of the crystal space 

group. 	For example, the presence of a two-fold axis parallel to the 



monoclinic b-axis in space group P2
1
/m gives rise to vector concentration 

in the Harker plane (u0w). 	In many cases, most of the interatomic vectors 

occur in these Harker lines or planes and this leads to a simplification of 

the process of phase determination. 

1.2.3. 	Trial Structure and Refinement 

Use of one or more of the methods of obtaining the phases of the 

structure factors results in a trial structure. 	This trial structure may 

represent all or only part of the structure, but it often enables the complete 

crystal structure to be found and refined. 

For the trial structure, structure factors can be calculated. 	A 

comparison between observed and calculated structure factors can give some 

indication of the correctness of the model. 	This can be done by inspection, 

but it can be made quantitative by calculation of a residual index R, which 

is defined as: 

R = EIAF1  
E F 

E[IF9 1 - IFr!] 
ElFo l 

where F
o 

= observed structure factor and F
c 

= calculated structure factor. 

If the trial model has resulted in some reasonable correlation of 

observed and calculated structure factors, the phases of the calculated 

values can be assigned to the observed data and these used to calculate a 

Fourier (electron density) map of the unit cell. 

Evaluation of this Fourier map may provide information about changes 

that need to be made to atomic positions and can provide an initial basis 

for structure refinement. This refinement process is severely limited by 

the fact that a Fourier series is infinite and that only a very finite 



number of terms can be obtained from the X-ray data because these data 

are limited by the size and shape of the unit cell. 

A much more versatile refinement process is the difference Fourier 

technique. 	The coefficients used in this type of Fourier series 

calculation are the difference between observed and calculated structure 

factors. 	The electron density expression becomes: 

p
(xyz) 

= 	E E E [A
"

F, 	
1 

,exp2ffi(hx + ky + tz)j 
h k 	14-  

The calculation results in an electron density map of the differences 

between observed and calculated electron densities and does not suffer 

from series termination effects. 	The structure can thus be refined to a 

much greater extent than by the ordinary Fourier technique. 	This is 

because the difference Fourier map gives direct evidence for any changes 

that need to be made to the atomic parameters of the original model. 

The difference Fourier can be regarded as the difference between two 

Fourier syntheses calculated for observed (F 0 ) and calculated (Fc ) 

structure factors respectively. The Fourier from F
o 

values would show 

peaks for real atom positions and that from F
c 
values would show peaks 

where atoms are postulated to be. 	Thus in a difference Fourier an atom 

which has been correctly placed should show up as background in the map. 

If the atom has been misplaced a hole (from F c ) will occur and a corrected 

peak (from F
o
) will indicate where the atom should be. Small errors in 

atomic placement show up as a steep gradient between a hole and a peak and 

the trial atom position can be corrected by moving its location up the 

slope. 

Having obtained a complete structural model and reached a degree of 

refinement using the difference Fourier technique,final refinement is 

usually carried out by the method of least squares. 	In this calculation 



the quantity minimised is: 

E E E 
D =

h k w (hk) 

	

P ( IF 	- 
kFI)

2 
(where k is a scaling parameter) 

, 

which represents the disagreement between the observed and calculated 

structure amplitudes. A weighting factor w (ho.) , can be applied to each 

(IF
o
I - IkF

c
1) according to its importance. 	The computation is arranged 

so that the assumed positional and thermal parameters are adjusted to give 

structure amplitudes of best agreement with the observed quantities. 	This 

method only works satisfactorily on a reasonably refined structural model, 

and cannot be used of itself for the initial solution of the structure. 

1.2.4. 	Conclusion 

A precise X-ray structure analysis gives a complete picture of the unit 

cell of a compound. 	The difficulty, however, lies in arriving at this 

precise analysis. As has been shown above (Section 1.2) it is not possible 

to proceed directly from the experimental data for the structure of a compound. 

It is often a complex and lengthy task to match structure factors from trial 

structures with those from observed diffraction effects. Arrival at 

suitable trial structures depends greatly on the extent of knowledge avail-

able and to some extent on computational facilities. 

The X-ray diffraction technique also suffers from the limitations that 

it is often very difficult to find very light atoms like hydrogen, or to 

distinguish between atoms of neighbouring atomic numbers. 	In these cases, 

other techniques such as neutron diffraction can be used to solve these 

problems. 

Despite these difficulties, X-ray analysis provides the best known 

technique for the solution of crystal and molecular structures of crystalline 

compounds. From these determinations bond lengths and angles can be 

calculated from the atomic parameters, as can intermolecular distances and 

spatial configurations. From atomic thermal parameters the thermal motions 

of individual or bonded atoms can be described. 
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1.3. 	Experimental Techniques 

1.3.1. 	Crystal selection and mounting  

The main aims in crystal selection are to choose crystals which 

possess uniform internal structure and which are of a proper shape and 

size. 	The ultimate test applied to crystals with respect to their 

internal structure is that the diffraction patterns consist of single, 

discrete diffraction spots capable of being indexed on a single lattice. 

It is often common for problems such as twinning of crystals to occur. 	In 

such cases it is usually difficult to isolate diffraction data from 

individual members of a twinned crystal but it is possible to do so. 

(See Section 6.3). 

In determining a proper shape and size for crystals selected a number 

of factors have to be taken into account. The crystal should be smaller 

than the dimensions of the primary X-ray beam so that all the crystal is 

exposed to the same radiation intensity. For example, if the beam used 

has a diameter of approximately 0.5 mm the crystal chosen should be of 

smaller size. On the other hand the crystal should be large enough so as 

to provide an adequate amount of data over a reasonable exposure time. 	In 

particular, care has to be taken to select crystals of a uniform size, small 

enough to neglect corrections for absorption. 	(See section 1.5.1). 	The 

net result of these considerations usually requires the selection of 

crystals of dimensions less than 0.2 x 0.2 x 0.2 mm. 

For reasonably stable compounds the crystals can be mounted on the ends 

of thin glass fibres and held in place by an adhesive such as shellac 

dissolved in alcohol. Crystals that are unstable in air or moisture have 

to be mounted differently. One technique is to coat the crystal with an 

inert material such as nujol and to seal it in a glass capillary tube. 	If 

inert coatings are inadequate an alternative mounting technique, may be to 

shake some crystals into capillaries drawn out of the side of a vacuum 
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reaction vessel and to seal off these capillaries under a dry inert 

atmosphere. 	This is a tedious process and usually has to be repeated 

many times before an appropriate single crystal in a suitable orientation 

is located in the tube. 

Having selected a suitable crystal by one of the above methods the 

fibre or capillary is glued to the top of a goniometer head using an 

adhesive, such as shellac or plasticine. 

1.3.2. 	Crystal Orientation  

The goniometer head to which the mounted crystal is fixed is screwed 

into a rotating spindle of an X-ray camera. This camera is itself 

mounted on an X-ray generator. The crystal as mounted usually requires 

corrections to be made to the goniometer arcs to bring the rotation axis 

perpendicular to the X-ray beam. This can be done in several ways. 	One 

method which is used for a Weissenberg camera is as follows
20

. 	(For a 

description of the Weissenberg technique see Section 1.3.3). 	Initially 

the goniometer head is oscillated through an angle of about 10° using 

unfiltered radiation and the resulting X-ray oscillation photograph is 

examined for misalignment of reciprocal lattice planes. 

The goniometer head is orientated with the bottom arc parallel to the 

X-ray beam direction and oscillated between 5-10° about this position. 

From such an oscillation photograph it is possible to identify the type of 

"pitch" and "roll" errors causing misorientation, and to simultaneously 

correct for both of these by applying correction angles, a,f3 to the 

bottom and top arc respectively. By measuring displacements at different 

values of 20 several simultaneous equations of the form: 
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d/
r 
= sin 20 sin a - (1-cos 20) sin 0 . 

(d = total displacement = a b 

a = roll displacement 

b = pitch displacement 

r = radius of the film). 

can be set up and solved by least squares methods to give accurate values 

of a and 0. 	Two successive applications of the procedure will bring the 

crystal into correct alignment. 	This method requires tedious calculations 

and in actual practice approximations are usually made in determining the 

corrections to be applied. 

1.3.3. 	Weissenberg Technique
21 

A method commonly used to determine the space group and symmetry of 

a crystal as well as to obtain values for cell dimensions and intensity 

data is the Weissenberg equi-inclination technique. 

This technique consists of isolating a single layer line, say (h01) 

by placing an adjustable slotted screen about the goniometer head and 

between it and the film. 	The screen can be adjusted to isolate any one 

of the layer lines up the axis of rotation. The crystal is rotated and 

the film translated past the slit giving an expanded photograph of the 

particular layer line being examined. This photographic method permits 

the recording of a single layer as a two-dimensional array of diffraction 

spots. 

As each layer line is selected by moving the slit, the camera is 

turned to an inclination angle which is related to the reciprocal lattice 

distance between the zero and upper level being considered. From 

Weissenberg photographs taken about the different crystal axes it is 

possible to determine the unit cell parameters, symmetry and possible space 



12 

groups for a crystal. 	It is often difficult, however, to visualize 

the reciprocal lattice directly on the Weissenberg photographs, particularly 

when axial traces may not be present and there are other systematic absences 

of spots to complicate matters. 

To overcome this, the diffraction spots on_anv level can be reduced 
. polar coordinate graph paper 

to a plot of the reciprocal lattice plane by the use ofA polagraph 	paper. 

The r and 0 coordinates of each spot can be measured by use of an apparatus 

described elsewhere
5

. 

1.3.4. 	Intensity Data Collection  

The selected crystal having been aligned and cell dimensions and 

symmetry determined from preliminary photographs, the intensities of 

reflections can be collected by taking equi-inclination Weissenberg 

photographs of as many reciprocal lattice planes as possible. 

The main problems which arise are as follows:- 

(a) Radiation effects from scattering of X-rays by all objects in 

the beam. 

(b) Spectral impurity of the incident beam which give dark streaks 

through some diffraction spots. 

(c) Irregularity of spot size and shape brought about by changes in 

area of reflecting surface as the crystal rotates and by geometric 

factors. 

Allowance can be made for the first two of these because they manifest 

themselves in such ways as darkening of strips of the film, as white 

radiation streaks passing through reflections and as the splitting of 

spots into K and K components. The third problem can often be over-
al 	a2 

come by integrating the intensity spot. An integrating device is used 

in conjunction with the film carriage to produce spots of reasonably 
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regular shape, usually square or rectangular
22,23  

In many cases, 

however, preliminary non-integrated Weissenberg photographs show good spot 

size and shape. Since this requires less than half the recording time of 

integrated photography, non-integrated photographs are often used in such 

cases. 

In order to extend the range of intensity data collection it is common 

to use 4-film packs to allow the more intense reflections to fall into a 

measurable range on the films. This photographic method of data collect- 

. 	24 
ion requires four pieces of film (5 x 7") to be packed into the camera 

and the whole exposed to reflections from a particular lattice row scanned 

by the Weissenberg technique. 	For non-integrated reflections it is usually 

found possible to collect data for the zero levels in about 40-60 hours, 

such that the strongest reflections can be measured on the fourth film in 

the pack. 	For each successive upper level film, collection time is usually 

increased by about two hours per photograph. 	In this way it is found that 

the measured intensities from various levels then fall onto approximately 

the same relative scale. 	This can be checked because layer scale factors 

obtained in the least-squares refinement stages should require only minor 

adjustments with respect to one another. 

1.3.5. 	Measurement of Intensities
25-27- 

The measurement of intensities can involve eye comparison of reflection 

spots with those on a linear scale in an arithmetic progression from 1 to 20, 

the process being carried out on a light box. One method of making a scale 

is to fix a lead screen on a goniometer head. 	In the centre of the screen 

a hole is cut of approximately the same dimensions as the spot shape. 	This 

hole is bathed in copper Ka  radiation and the resulting spot recorded. . 

Twenty such spots are recorded on adjacent parts of the X-ray film by 

moving the camera by a small amount after each exposure. The exposures 

are made at one second intervals from one to twenty seconds. 
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The reflections on a particular level are first indexed by sketching 

a reciprocal lattice grid on a tracing paper overlay and checking this 

against the polar plot of the reciprocal lattice for that level. 

Each diffraction spot on the Weissenberg film is measured through the 

four films in the pack. With experience it is possible to measure about 

200 spots per day without overtaxing the eye or introducing large errors in 

the measurements. There are, of course, many problems experienced in using 

this visual method of measurement. 	It appears to be a matter of experience 

to attain a reasonable degree of accuracy. 

On upper level films it is very noticeable that expansion and contract-

ion of spots leads to errors in estimation. 	Quite often it is possible to 

find an equivalent reflection on another part of the film that does not 

suffer from these effects. 	If such suitable reflections cannot be 

located it is usually found possible to correct for these effects by 

multiplying reflections by the ratio of length to a standard size, if the 

length of the spot varies by a large amount from this standard. 	This 

standard spot length is determined from zero-level photographs of each 

compound because this level usually is not subject to distortion of spot 

size. 	This intensity correction technique is an approximation of a 

formula derived by Phillips
28,29 

for extended reflections. 

Another error can be introduced with the splitting of spots at high 

sin() into the K and K
a2 

components. Care has to be taken to measure 
a1 

 
the intensities from both components and to sum these to give the overall 

spot intensity. 

Problems of variable background due to radiation scattering effects or 

of spectral impurities present are automatically allowed for because the 

eye adjusts to background in the comparison between scale and spot. Because 

the eye has natural integrating properties, measurements carried out in this 

fashion often closely approximate to integrated intensities. 	This is 
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another reason why integration of spots is often not carried out, 

especially when preliminary investigations have shown that reflections 

present are of reasonably regular shapes and sizes. 

The overall accuracy of the visual estimation can be as low as a 

deviation of 10% but it is suspected that for non-integrated data that after 

careful measurement and adjustment for other errors that an overall accuracy 

of approximately - 15% in the intensity (I) is more likely. 

From the data collected in this way it is possible to calculate a film 

factor giving intensity relationships between successive films in the same 

pack
30 . This enables the intensities of reflections to be assigned values 

relative to their intensities on the first film. 

In most cases quite a number of possible reflections are not observed 

because their intensities are less than the minimum observable value. If 

sufficient reflections are observed to provide enough data for an accurate 

structure determination, it is not necessary to extend the data collection 

range to include the previously unobserved reflections. 

For various reasons, such as extreme instability of a compound, it is 

often possible to only collect data about one crystallographic axis. Data 

collection about one axis to an angle of approximately 30° results in about 

30% of the sphere of reflection being unexplored. 

This omission of data does not prevent structure determination to a 

reasonable degree of accuracy but does give some uncertainty to the final 

parameters associated with the rotation axis. 

1.4. 	Calculations
31

'
32 

A major portion of the calculations involved in crystal structure 

determinations is usually carried out on a computer. A suite of X-ray 

• crystallographic programs which can be used for this purpose are described 

in Appendix 1. 



16 

1.5. 	Accuracy in Structure Determinations  

As well as determining the gross crystal structures of compounds, one 

of the main objects of X-ray structure analysis is to obtain bond lengths 

and bond angles between certain atoms in the crystal lattice. 	These 

parameters are derived from a set of atomic coordinates which are themselves 

dependent on the observed data, the structure amplitudes. 	Thus in determin- 

ing the accuracy of bond lengths and angles, the errors in calculation of 

atomic parameters and in measurement of structure amplitudes must be taken 

into account. 

The errors inherent in X-ray structure analysis are usually classified 

as random and systematic errors. Random errors result from a variety of 

causes which it is impossible to know or control and which give rise to 

the spread of the normal error curve and these will be discussed latek. 

The other type of errors are those that affect measurements in a systematic 

way. 	The most promiment of these are discussed below. 

1.5.1. 	Systematic Errors  

• 	1.3 Absorption  

The absorption of X-rays by a crystal is a function of the crystal 

shape and the relation of this shape to the direct and diffracted X-ray 

beams. 	This results in differing absorption effects for each reflection 

measured and corrections can be extremely tedious. 

To correct the observed intensity of a reflection, I
o 

for linear 

absorption the following expression can be used: 

I = I
o 

e t where t = thickness, and p = linear 

absorption coefficient. 
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p can be calculated from: 

p = GE (--) 
P P 

where G = density of the crystal 

= mass absorption coefficient 

p
A 

= fraction by weight of element 

A in compound ABC... 

Absorption corrections can often be neglected if crystals of suitable 

dimensions are chosen. 	The omission of these absorption corrections 

sometimes leads to smaller values of isotropic thermal parameters after 

the structure refinement. This gives a small reduction in accuracy but 

not necessarily in precision. 

. 	1,2 
Extinction 

The extinction effect results in an attenuation of the primary X-ray 

beam when the crystal is in a diffracting position and thus reduces the 

intensity of the diffracted beam. 	There are two forms of extinction. 

(a) Primary Extinction  

This occurs when the intensity of a beam is reduced by interference as 

it passes through a crystal. Most crystals are made up of mosaic blocks 

which are usually small enough so that primary extinction can be neglected. 

(b) Secondary Extinction  

For some reflections an appreciable amount of incident radiation is 

reflected by the first planes encountered by the X-ray beam. 	The deeper 

planes thus receive less incident intensity of radiation and reflect less 

powerfully than should be the case. 	It follows that this effect could be 

more pronounced for reflections of low sine/ A . 	Corrections for secondary 

extinction are not generally made because of their complexity. 	Towards 
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the end of structure refinement it is often common practice to examine 

reflections of sine/X 
<0.2 and to reject these from the final refinement 

if F
calc

IFobs is substantially greater than the residual factor, R. 

Scattering factors  

Each atom in a structure has a certain X-ray scattering power which is 

a function of the atom type and (sin0)/ x . 	The variation of the scattering 

powers of various atoms with (sin0)/x  is used for calculating structure 

amplitudes in the structure determination process. When the wavelength of 

the incident radiation lies near the absorption edge of a scattering atom, 

anomalous dispersion may occur. For these cases a correction to the 

scattering factors can be calculated by: 

fo
anom = f

o 
+ Af' + if" where f

o 
is the normal 

scattering factor, Af' is a real correction term and Af" is the imaginary 

component. An approximation may be made to give: 

fanom = f + Af' 

In practice the scattering curves are often corrected for the real 

part of the anomalous dispersion and the imaginary part neglected in the 

centrosymmetric case. 	This is because it is usually small with respect 

to Af' and much more difficult to calculate. 	It is probable that any 

errors due to anomalous scattering would be very small in comparison, to 

say, absorption, and in fact refinement using scattering factors corrected 

for anomalous scattering often shows no appreciable difference from refine-

ment without such correction. 
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Temperature factors 

Temperature has the effect of spreading the electrons of an atom over 

a larger volume and this has an effect on the scattering factors of an 

atom. 

In the simpler case of isotropic temperature correction the 

scattering factor can be modified by: 

. 2 	2 
f = fo e

- (Bsin 0)/
A where B is called the temperature 

coefficient, 

B = 871.2 u
72 
	where u

2 
is the mean square 

amplitude of oscillation of the 

atoms from their mean position. 

Anisotropic temperature corrections may also be allowed for and take 

the form of a more complex expression. 

n  
f = f e

- (b
11

h
2 

+ 
b22k

2 
+ b

33
2 
 + b12hk  + b

23
kt. + b

31
eh) 

o 
 

The effect of using anisotropic temperature factors in least square 

refinement of a crystal structure, will invariably lower the value of R 

compared to that obtained from isotropic temperature factors. This does 

not of itself justify their use, particularly when there are systematic 

errors present, such as absorption which have not been corrected for. 

Hamilton has proposed a test to identify meaningful changes in R 

produced when the structural model is changed
33

. 	Suppose the R factor 

parameters 
R(1), using isotropic thermal,problcm3 drops to R(2) after the introduction 

of anisotropic thermal parameters and further least squares refinement. 

The ratio 
R(1)/R(2) 

can then be compared at given levels of significance 

(a) using Hamilton's tabulated values for the dimensions and degrees of 

freedom for a particular case. 	A significance level of 1% is commonly 

used for film data and this entails a risk of 1 in 100 of accepting as a 
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significant model improvement one which is actually not. 

1.5.2. 	Random Errors 

These physical factors which affect intensities can be corrected 

for either in the data reduction or least-squares refinement stages. 

The corrections required for geometrical factors affecting intensities 

are discussed in Appendix 1. What cannot be allowed for are errors 

which arise from equipment and its use. Precautions are taken to avoid 

gross sources of such undetected systematic errors but their presence 

must be kept in mind. 	It is possible therefore that the estimated 

standard deviations which take into account random errors, are often much 

smaller than errors not corrected for or not allowed for. 

Errors in atomic parameters are due to
34

: 

(a) Experimental errors in IF obsI S ' 

(b) Imperfections of the molecular model used for the Fcalc's 

(c) Errors in unit cell size, 

(d) Computational approximation errors. 

Standard deviations in atomic parameters account for the standard 

deviations calculated by the least-squares program and for the errors in 

the positions of the heavy atoms due to uncertainties in the weighting 

scheme. 	This estimation of standard deviations allows for (a) above. 

It also roughly allows for corrections to (b) except that it treats the 

latter as random errors when they are really systematic. 	This approximat- 

ion can be checked against final difference Fourier maps where these should 

show no strong features attributable to the calculated model. 

Thus the estimated standard deviations are calculated presuming a 

correct model and are then a measure of the consistency of the data set. 
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The accuracy of molecular parameters derived from atomic coordinates 

depends on the accuracy of these coordinates and on the accuracy of 

determination of unit cell dimensions. The order of accuracy of these 

cell dimensions required to match that of the coordinate determination is 

approximately one part in a thousand. This limit of accuracy would 
0 	 0 

correspond to an error of less than 0.003 A in a bond length of 2.000 A. 

Measurements from single crystal photographs usually give cell lengths to 

about 1% and angles with errors of about 1/2
035 . For unit cells commonly 

encountered these limits of error are greater than one part in a thousand. 

Accurate unit cell dimensions can be calculated from X-ray powder 

data. 

The d spacings can be measured reasonably accurately from these 

powder data particularly when use is made of internal calibrants, such as 

sodium chloride or silicon metal
36

. 	The unit-cell parameters can be 

refined bp the least squares method by solving the overdetermined system 

of linear equations obtained by indexing the powder patterns. 

Using this technique unit cell dimensions can be calculated with an 

accuracy of better than 0.1% and this provides a reasonable match with the 

accuracy of molecular parameters. 



22 

Chapter 2. 	Hexathiocyanates of Chromium(III) and Molybdenum(III) 

2.1. 	Introduction 

A wide range of studies has been carried out on the structures of 

complex compounds, where the rules of close packing of spherical groups 

often cannot be used to predict and explain the structures of such compounds. 

The presence of non-spherical groups in the form of, for example, thio-

cyanates and cyanides requires a different approach to structural problems. 

This has been attempted, for instance, by Zhdanov and Zvonkova in their 

study of simple and complex thiocyanates
38

. For simple thiocyanate 

compounds they deduced that the fundamental pattern of the structure does 

not basically depend on the symmetry of the structural components of the 

crystal but, rather, on the nature of the chemical bond. Ionic bonding 

between the cation and the complex anion, and the formation of hydrogen 

bonds, both were used to explain structural modifications in these compounds. 

For complex metallic thiocyanates Zhdanov and Zvonkova 38 
have attempted 

to systematize the available structural information and use their conclusions 

to predict structures for most tetra- and hexa-thiocyanates. 	In some cases 

hydrogen bonding between water molecules and the N atom of the SCN -  group 

stabilizes the crystal, e.g., K
2
[Cd(SCN)

4 
 ].2H

2
039,40 and in others the 

water molecules merely occupy vacancies in the crystal lattice, and only 

minimal decrease in stability is brought about by the removal of water 

molecules, as for instance in K
2
[Co(NCS)

4
].4H

2
0. 

Zhdanov and Zvonkova have also predicted that compounds of the type 

AB [Where B = M(NCS)
n-

] will have stratified lattices, consisting of layers 6 

of octahedral complex ions and cations. They have applied this theory to 

K[Cr(CNS)
6
].4H

2
0 and K4 [Ni(CNS)

6
].4H

2
0
41 

on the basis of these compounds 

having the same space group as K
2 [Pt(SCN) 6

], the structure of which has been 

42 
reported by Hendriks and Merwin . The X-ray structural evidence they 
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produce is, however, inconclusive. 

The X-ray structure analysis of K3 [Cr(CNS) 6 ].4H20 and of the analogous 

molybdenum compound, K3 [Mo(CNS) 6 1.41-120 was the starting point of the research 

work reported in this thesis. 	There are several aspects of interest which 

arise in the structural study of these two compounds. 

(1) Coordination number of the central metal ;  

(2)Attachment of the thiocyanate group; 

(3) The role of the water molecules; 

(4) The symmetry of the complex ions. 

The formation of compounds, such as K
3
[Mo(CNS)

6
].H

2
0.CH

3COOH and the 

experimental loss of three water molecules from the tetrahydrate 

(NH
4 )

3
[Mo(CNS)

6
].4H

2
0 suggested to Maas and Sand43,44 , Pauling

45 
and others 

that Mo(III) has a coordination number of seven in these type of compounds. 

More recently, however, Lewis, Nyholm and Smith 46,47 
have shown that 

K
3
[Mo(CNS)

6
].4H

20 loses four water molecules on dehydration, and furthermore 

that magnetic measurements suggest six coordination for Mo(III) in this 

compound. 	It is reasonable to expect, therefore, that other similar 

compounds should exhibit this six-fold coordination of the central metal 

ion. 

Arhland, Chatt and Davies 48  proposed a. division of elements, which can 

act as .acceptors 
	

into two groups on the basis of their affinity 

for coordinating with either the first or second element from each of three 

groups of ligand atoms in the periodic table. 	Class (a), being those which 

complex most strongly with the first elements, namely nitrogen, oxygen and 

phosphorus, while class (b) consist of those which form most stable complexes 

with the second or subsequent ligand atom. 

The borderline between class (a) and class (b) acceptors falls around 

chromium and molybdenum in the transition metals and a convenient ligand 
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which can be used to decide into which class these elements belong is the 

thiocyanate ion
49 
 . Pepinsky has shown from X-ray crystal structure 

studies that chromium is bonded to the nitrogen end of the thiocyanate group 

in such compounds as ammonium reineckate NH4 [Cr(NCS) 4 .(NH3 ) 2 ].H2050-52 

and pyridinium reineckate 53 . 

On the basis of infrared studies, Lewis, Nyholm and Smith 46  have 

proposed molybdenum to nitrogen bonding in the compound K 3 [Mo(CNS) 6 ].4H20 

which has been shown by optical crystallography to be isomorphous with 

K
3 [Cr(CNS)

6
].4H

2
0. 	This is contrary to an incomplete X-ray structural 	study 

of K
3 [Cr(SCN)

6 ].4H20 in which Zhdanov et a1
41 

report sulphur bonding to 

chromium in the [Cr(SCN) 6 ] 3-  complex ion. 

Lewis, Nyholm and Smith46  also proved that it was possible to remove 

the four molecules of water from K
3 [Mo(CNS)

6 
 ].4H

2 
 0 although this was 

accompanied by decomposition of the product even in the absence of oxygen. 

The original compound is much more stable although it will decompose over a 

period of days on exposure to air under normal conditions. The same 

workers found, however, that the compound (NH
4  ) 3 

 [Mo(CNS)
6
].4H

2
0 lost only 

three molecules of water under vacuum dehydration and the related compounds 

(NH
4

)
3 [Mo(CNS)

6
].0

2
H
5
OH.H

2
0 and (NH

4
)
3
[Mo(CNS)

6
].HC1.H

2
0 retained the water 

molecule under the same conditions. 	In these cases the water molecule 

remaining after dehydration is presumably held in the structure by strong 

hydrogen bonding with the ammonium cation, and this bonding has a strong 

stabilizing effect on the molecule. 

It has been assumed that the bonding in the complex ion [M(NCS)
6

]
3- 

is 

basically octahedral in nature 54-58 
• 

The six-fold coordination of the metal ion discussed above supports 

this assumption and as far as the M-N bonding is concerned this is no doubt 

correct. 	If the metal to thiocyanate bonding is completely linear the 

overall symmetry of the complex ion would remain octahedral, but if there is 
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/N=C=S 
some angular bonding character M' 	, as has been suggested by Lewis, 

Nyholm and Smith
46 

then quite appreciable distortion from octahedral symmetry 

will take place. 

To simplify the following account it is proposed first to outline in 

detail the crystal structure analysis as applied to K 3 [Cr(CNS) 6 ].4H20. 

Then reference is made to similar studies carried out on the analogous 

molybdenum compound. . 

2.2. 	Experimental : K3 [Cr(CNS) 6 ].4H 20 

	

2.2.1. 	Preparation - Crystal Selection  

The compound was prepared by the method of Maas and Sand
43
. Dark red 

hexagonal plate shaped crystals were obtained after recrystallization from 

water. To obtain regular shaped single crystals it was found necessary to 

filter the crystals from solution before the compound formed a crust on the 

surface. The crystals are quite stable in air over long periods of time, 

and suitable specimens for single crystal X-ray studies were separated from 

the sample. Several of these crystals were glued to thin glass fibres with 

shellac, and oriented so that data could be collected around both the a and 

c axes of the trigonal cell. 

	

2.2.2. 	Initial Data Collection 

X-ray powder data were collected on a Guinier-Hagg camera using KC1 as 

an internal calibrant. For single crystal work a Weissenberg camera was 

used. Oscillation photographs taken about the c-axis showed very weak 

intermediate layer lines between a strong set of layer lines (Fig. 2.1). 

Photographs taken about the a-axis showed signs of similar intermediate weak 

layer lines (Fig. 24). Attempts to index the powder data using the unit 

cell derived from the strong layer line oscillation and Weissenberg photo-

graphs proved only partially successful, there being several lines which 

could not be indexed. Doubling of the c-axis was more successful and it was 
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Fig. 2.1 Oscillation Photograph a- axis rotation icCr(CNS) 61.4 H 2  0 

Fig. 2.2 Oscillation Photograph c - axis rotation K3[Cr(CNS)6.1.4H20 
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found possible to index all but one or two very weak lines and one strong 

line. By doubling of all axes all the powder lines could be indexed, but 

this is probably to be expected anyway as the unit cell becomes very large. 

To remove any doubts on the reliability of the powder data the 

measurements were repeated on several different samples using both KC1 and 

Si as internal calibrants, and the data were checked against duplicate data 

obtained from a Philips powder diffractometer at different 20 angles. 

Unfortunately a computer program to refine the cell parameters by 

least squares methods on the powder data was not available for trigonal 

symmetry. The calculations were carried out manually and the final observed 

versus calculated sin 20 values are shown in Table 2.1 for both the large 

and small cells. 	The unit cell dimensions are shown later in Table 2.2 

for convenience of comparative presentation. 

The small cell corresponds to the spacings of the strong layer lines 

about both the a and c axes. It was thought that the weak layer lines 

and consequently the larger cell could be due to a number of possibilities. 

There could be twinning, disorder or superlattice problems. 

At this stage the prospect of computing in the large cell presented 

local problems and it was not evident until later that great difficulties 

would also be encountered for the small cell as well. It was decided to 

collect three dimensional X-ray intensity data for both the weak and strong 

layer lines, and to attempt to solve the structure from the data for the 

small cell. 	It was hoped then to be able to explain the doubling effects, 

and to possibly carry out some calculations on the large cell. 	Problems 

had been encountered with twinning and trial Weissenberg data on some 

crystals showed this in the form of doubled reflections. 	It was possible, 

however, to obtain apparent single crystals by careful recrystallization and 

by selecting very small crystals for mounting. 	There still remained the 

possibility that the crystals used for intensity data collection were twinned 
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TABLE 2.1 

X-Ray Powder Data : K
3
[Cr(CNS)

6
].48

2
0 

Cu K
a 

radiation : sin 
2
0 x 10

4 

(Estimated intensities : s = strong, m = medium, w = weak, b = broad) 

Small Cell Large Cell 

Index 
. 2 	Estimated 

sin 0
obs Intensity 

.2 
sin 0

calc 
.2 

sin 0calc Index 

101 

ill 

201  

211 

112 

301  

202 

220 

221 

212 

400 

101.8 

176.9 

180.2 

	

216.1 	wb 

329.9 

334.6 

364.5 

369.7 

	

401.0 	vw 

405.4 

407.7 

	

414.4 	vw 

455.0 

462.3 

516.0 

523.8 

591.2 

604.9  

101.9 

177.7 

215.6 

329.3 

369.7 

405.1 

407.6 

454.8 

518.8 

521.3 

606.4 

101.8 

177.1 

182.1 

213.7 

327.7 

333.8 

364.3 

370.3 

398.0 

401.5 

404.6 

408.0 

412.4 

454.6 

461.1 

514.4 

515.9 

523.8 

525.3 

590.1 

590.8 

605.2 

605.6 

202  

222  

203  

411  

422  

6 00  

431  

224  

602  

005  

610  

423  

432  

414  

530  

225  

44 0  1 
315  

532  

541  't 

604  j 
4 3 4 -' 

53 3 

606.4 434 
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TABLE 2.1 (Cont.) 

676.3  vw 

VW 

VV7 

796.2  vw 

705.5 

711.9 

718.7 

741.5 

783.4 

788.8 

710.8 

720.1 

784.1 

795.9 

222 

320 

321 

410 

680.9 

703.0 

705.8 

708.7 

709.9 

718.1 

718.5 

743.4 

779.4 

786.9 

790.4 

796.2 

713  

811  t 

550  -I 

440  

406.  

534 .  1,  

543  

730  

642  

700  

820 

107 
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about the c axis in such a way as to superimpose reflections from two twins 

on the one film to give the appearance of reflections from a single crystal. 

2.2.3. 	Intensity Data Collection  

Strong layer line data  

Integrated intensity data for hkn (n = 0-5) and for nkt (n = 0-5) were 

recorded photographically by the Weissenberg equi-inclination technique using 

Cu K
a 

radiation and 4-film packs. The exposure times being of the order of 

50-60 hours per film. Ilford Industrial G film was used. Developing time 

was 7 minutes at 25°C, fixing time 10 minutes at 25°C. 

The data were collected from two small crystals, each of approximately 

the same dimensions in the form of small hexagonal plates mounted about the 

two different axes. The intensities were measured visually against a 

standard linear scale and the data put on a common scale by comparison of 

equivalent spots from the two different orientations. 

The intensity data were corrected for Lorentz and polarisation effects 

but not for absorption or extinction. The Weissenberg photographs taken 

along [001] showed trigonal symmetry, the repeat unit being 120°. 	For the 

small cell there were no systematic absences thus allowing a choice of space 
P3_  _ 9 

groupsA P3m1, Phm, P31m, P3m1, P321, P312 or P3 • 

Weak layer line data  

Attempts to collect integrated data from the weak layer lines failed 

because of the length of exposure time required. For non-integrated data 

collected for four weak layer lines along the c-axis,exposure times of 

approximately 100 hours were required to obtain a fair spread of observed 

reflections. 	The intensities of 157 such reflections were measured by 

visual comparison against a standard scale. 
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Polar plots of these reflections revealed a very interesting phenomenon. 

The reflections obtained could only belong to a large cell with a = 28.90, 

c = 19.25 R, and z = 24 and had indices with h and k values corresponding 

only with weak layer lines about the a-axis. The absence pattern for the 

large cell taking into account both strong and weak reflections is thus for 

hkt. : h+t = 2n+1, a systematic absence not characteristic of any trigonal 

space group. This would appear to suggest that the strong data correspond-

ing to the small cell should give a structure which is the average one for 

all cells with the weak reflections being possibly due to a superlattice 

structure. 

2.2.4. 	Calculations 

At the time this structure analysis was being carried out the suite of 

crystallographic computer programs in ALGOL as described in Appendix 1 was 

not available. The programs used were a version of the Wheatley
59 

series 

in machine-code obtained from the late Dr. A.D. Wadsley of C.S.I.R.O. 	These 

programs were adapted for use on the Elliott 503 computer available to our 

laboratories, and their use suffered from the following severe limitations. 

(1) The least-squares program could not handle the refinement of trigonal 

symmetry with positions of the type (x, 2x, z). 

(2) The Fourier program was not capable of calculating in trigonal 

symmetry, and even if it had been, the time taken to compute even a few 

sections would have been very long, with the need to incorporate about 1200 

reflections in the calculation. 

(3) The computational time was extremely slow. A structure factors 

calculation on 300 reflections took approximately 1 hour and this without 

any refinement cycles. 	To calculate a Fourier of ten sections for the 

above data took a total of at least three hours. This time factor was 

later speeded up considerably but still compared unfavourably with the 
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Algol program suite as discussed in Appendix 1. 

What was eventually done was to consider the trigonal unit cell as if 

it were a special case of triclinic. An examination of space group PI shows 

that the general and special positions available are sufficient to accommodate 

all the positions of the trigonal space groups, albeit with a diminished 

symmetry relationship in most cases. 

It is possible, of course, to compute structure factors in triclinic 

symmetry by using a structural model derived from the trigonal space group. 

Problems arise, however, when attempts were made to refine coordinates and 

temperature factors by the method of least squares. 	In triclinic symmetry 

a six-fold atom position of the trigonal space group becomes 3 two-fold 

positions. Attempts at refinement shifted the coordinates of these posit- 

ions independently of one another, with the result that the trigonal six-fold 

symmetry, initially superimposed, was lost. This required an evaluation of 

atomic coordinates after each attempt at refinement, followed by a manual 

calculation to return the coordinates to the trigonal symmetry before 

proceeding with the next stage of refinement. 

Several attempts were made to get this system working,and although there 

was a slight reduction in the R factor i it was found difficult to refine the 

structure by significant amounts. 

Attention was then turned to refinement by Fourier methods. Again the 

computer programs available precluded direct computation in trigonal symmetry 

and the process was carried out in the lower triclinic symmetry. 	This method 

of calculation was the basis of the attempts at structure determination and 

refinement described in the next section. 
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2.3. 	Discussion 

During the course of this X-ray analysis the crystal structure of a 

similar compound K[Mo(NCS)
6
].H

2
0.CHCOOH was reported by Knox and Eriks 60

. 

Some crystallographic data from their study are shown in Table 2.2 in 

comparison with data from this present work. Knox and Eriks show that the 

Mo atom is octahedrally coordinated to the N end of the thiocyanate group /  

with the angle between adjacent Mo-N bonds being distorted away from the 

expected 90 of a regular octahedron. 	In the structure each potassium ion 

is surrounded by six sulphur atoms in a trigonal prism. In half the prisms 

a.disordered potassium ion is replaced half the time by a water molecule; 

this causes the prism to expand, distorting the octahedron so that four 

Mo-NC angles deviate from linearity. 	Six sulphur prisms form a cavity in 

which the acetic acid molecule is located and bonded by a H-bond to the 

water molecule. 

'While this structure determination removed some of the reasons for 

continuing work on K[Cr(CNS)
6
].4H

2
0 and K[Mo(CNS)

6
].4H

2
0 the structure 

analyses had reached a stage where some interesting problems had been 

encountered. There were signs of twinning, disorder and superlattices in 

the trigonal cells of both compounds. The solution of these problems and 

confirmation of the metal to nitrogen bonding in the complex ions provided 

good reasons for continuing with this work. 

The first and most logical step in determining the structure of 

K
3
[Cr(CNS)

6
].4H

2
0 was to try the Zhdanov, Zvonkova and Glushkova

41 
model. 

These authors had chosen the D
3d 

symmetry of space group P3m1 but for 

reasons discussed above the calculations reported in this thesis were carried 

out in space group P5 simulated in triclinic symmetry. 

A structure factor calculation based on this Zhdanov model, however, 

showed very little relationship between observed and calculated data 
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TABLE 2.2 

Crystallographic Data 

K
3
[Cr(NCS)

6
].4H

2
0 (This work) K

3
[Cr(SCN)

6
].4H

2
0 

(Zhdanov et. al.
41 

Small Cell Large Cell 

a 

c 

z 

d
calc 

d 
Os 

Possible Space 
Groups 

14.45 -2--  0.02 A 
+ 

9.63 - 0.01 A 

3 

1.67 g/cc 

1.71 g/cc
41 

PIral, Phm, 

P31m, P3m1, 

P321, P312 

or P. 

29.02 A 

19.26 A 

24 

- 

14.18 	A 

9.69 A 
3 

1.74 g/cc 

1.71 g/cc 

Plril 

K
3
[Mo(NCS)

6
].4H

2
0 (This work) K

3
[Mo(NCS)

6
].H

2
0.CH

3
COOH 

(Knox and Eriks60 ) 

Small Cell Large Cell 

a 

b 

c 

z 

d
calc 

d
obs 

Space Group 

Mo-N bond 

14.51 -1--  0.02 A 
- 

9.82 ± 0.01 A 
3 

1.76 g/cc 

- 

As for 
K
3
Cr(NCS)

6
.4H

2
0 

29.02 A 
- 

19.64 A 
24 

13.547 ± 0.002 A 
+ 

8.568 - 0.002 A 

9.660 	± 0.001 A 

2 

1.69 g/cc 

1.85 g/cc 

2.088 ± 0.019 A 
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and gave a residual factor of R = 96%, a value patently wrong if the model 

had been even partially correct . This structure factor calculation was 

carried out in the triclinic space group P1 on data taken only from the hIcb 

section of the reciprocal lattice. 

A three dimensional Patterson function was calculated by likewise 

simultating the trigonal symmetry in PI (triclinic). 	Sections from z = 0 

to z = 1/2 with intervals of 1/40 were calculated along [001]. 	Sections 

containing likely peaks were contoured by hand. The interpretation proved 

difficult. The presence of Cr, S and K atoms, all of approximately the 

same atomic number gave rise to many vector peaks of similar heights, 

although the presence of peaks on the Harker line [001] suggests that most 

of this scattering matter is located in planes with y approximately 0, 1/4 

and 1/2. The fact, however, that there are only 3 Cr atoms present in this 

unit cell made interpretation somewhat easier. Considering space group P3 

which covers in the general case both the D 3d 
space groups P31m and Plul; 

the Cr atoms can be located in 3-fold, 3(f) or 3(e) positions or in a 

combination of 1(a) (or 1(b)) and either 2(c) or 2(d) positions. 	The 

presence of appropriate interatomic vectors in the Patterson allows for 

either 3(f), 3(e) or a combination of 1(a) and 2(d) (the 1(b) and 2(d) 

combination is equivalent). 	The 3(f) and 3(e) positions were later ruled 

out, as any possible K or S positions provided by the space group did not 

generate the necessary Cr-K or Cr-S vectors in the Patterson. 	Thus the 

three chromium atoms can be arbitrarily placed at 1(a)(0,0,0)and 2(d)(1/3, 

2/3, z) where z 1/2. 	With the Cr atoms fixed, the next step was to 

search for possible Cr-S vectors at either a theoretical Cr-SCN bond 

distance of about 2.8 A or a Cr-NCS bond distance of about 5.2 A from the 

0 
origin in the Patterson. 	There were no suitable peaks within 3 A of the 

origin and this was taken to rule out the possibility of Cr-SCN bonding in 

the complex ion. At a distance of approximately 5.2 A from the Patterson 

origin a number of possible peaks were located. A possible allocation of 
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three 6(g) positions was made for the 18 S atoms present. 	This gave a D3d  

type arrangement of the CrS
6 
octahedra with respect to the c-axis. This 

arrangement also gave trigonal prismatic arrangements of S atoms (Fig. 2.3) 

+  
about locations which could be occupied by K ions similar to those in the 

structure of K
3
[Mo(NCS)

6
].H

2
0.CH

3
COOH

60
. 	Twelve such locations for the 9 

. 
possible K

+ 
 Ions were thus made available in two 6(g) positions. 	This 

suggested a form of disorder where one of these positions could be occupied 

+  
half the time by K ions and half the time by water molecules, giving a 

+  
correct stoichiometry with respect to the 9 K ions. This possible 

arrangement is shown in Fig. 2.4 by projection down [001]. 	The large 

hexagonal prism shaped holes created between two sets of six sulphur atoms 

could provide locations for the other 9 H 20 molecules, (Fig. 2.5), a fact 

that could account for the ease of removal of 3 waters of crystallization by 

dehydration from each molecule and the difficulty of removing the last water. 

Three such hexagonal prismatic holes occur and it could be expected that each 

will contain 3 waters to maintain the centrosymmetry of the model. To 

locate three water molecules in the prism centered on [001] the positions 

1(b)(0,0, 1/2)and 2(c) (0,0,z) with z 	1/4 would have to be used. 	This 

would give a H 20-H20 distance of < 2.4 A which is less than the 2.56 A 23  

known for strong H 20-H20 H-bonding, and give Cr-OH 2  as 2.4 A which is 

greater than the Cr-OH 2 
bond length of 2.1 A reported in octahedral 

complexes 	Placing water molecules in the other two prisms causes 

identical problems. 	The noncentrosymmetric space groups likewise offer no 

solution to this dilemma. 	Structure factors calculations were carried out 

based on models for the K3CrS6 .H20 portion of the structure and allowing for 

different types of disorder positions for potassium ions and the water 

molecule. 	The best residual factor obtained from these was a model with 

R = 49%.  Subsequent Fourier and difference Fourier calculations revealed 

• possible locations for the N and C atoms and gave a model with R = 42%. 

Difficulties encountered in calculating the Fourier in PI made it hard to 
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Fig. 2.3 Trigonal prism of sulphur atoms 
K3 [Cr(NCS) 5 1.4H2 0 

O S 

K in z- 

) K and 0 in z''2 



in z .z.- K in z 

ED S in z 

	 Cr - NCS 

37 

Fig. 2.4 	Projection on [0011 K 3[Cr(NCS)J.4H 20: Possible Structure 

Cr in z=0 

Cr in z= -.21  I:(6) 
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Fig. 2.5 	Hexagonal prism of sulphur atoms 
K3  [Cr(NCS)51.4H20 

Q s 
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fix possible positions for the water molecules. The Fourier map based on 

the K
3
[Cr(NCS)

6
].H

2
0 model showed peaks for all atoms inserted, with 

reasonable correlation between peak heights and atomic number, but also with 

many ghost peaks of atoms particularly in levels with z = 0 and z = k.  The 

difference Fourier gave reasonably flat contours at atom locations with the 

rest of the map being devoid of any peaks in possible water molecule 

locations. 

Cycles of block diagonal least squares refinement tried on the structure 

factors derived from this model reduced R to 32%. Attempts to include 

isotropic temperature factors in the refinement were unsuccessful as large 

shifts were attributed to these temperature factors for most of the atoms. 

The atomic parameters at which refinement was terminated are shown in 

Table 2.3. A comparison of observed and calculated structure factors is 

given in Appendix 3 as Table A.3.1. The observed intensity data for 

K
3
[Cr(NCS)

6
].4H

2
0 corresponding to the weak layer lines about the c-axis is 

also given in Appendix 3 as Table A.3.3. 

Chronologically data were collected first for the chromium compound. 

When structure determination attempts ran into difficulties attention was 

switched to the molybdenum compound, K 3 [Mo(CNS) 6].4H
2
0. It was hoped that 

the relatively heavy metal (Mo) would facilitate solution of the crystal 

structure. 

2.4. Structure Analysis : K3 (Mo(CNS) 6 1.4H20 

The compound was prepared by Skabo following the method of Maas and 

Sand
43

. 	The crystals were similar in shape with those of the analogous 

chromium compound but were orange in colour. Crystal selection and mounting 

were carried out as for K
3
[Cr(NCS)

6
].4H

20. 
	Oscillation photographs taken 

about both the a and c-axes also showed weak intermediate layer lines. 

Unit cell dimensions were determined as for K
3
[Cr(NCS)

6
].4H

20. 
	Relevant 
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TABLE 2.3 

Atomic Coordinates : K
3
[Cr(NCS)

6
1.4H

2
0 

at R = 32% (As for space group 10) 

Atom x Y z 

Cr 1 0 0 0 

Cr 2 0.333 0.667 0.431 

S 1 0.167 0.333 0.214 

S 2 0.500 0 0.299 

S 3 0.333 0.167 0.232 

N 1 0.931 0.069 0.097 

N 2 0.265 0.735 0.338 

N 3 0.598 0.402 0.433 

C 1 0.890 0.110 0.175 

C 2 0.224 0.776 0.285 

C 3 0.557 0.443 0.382 

K1 0.372 0 0 

K 2 (half 
occupancy) 

0.296 0 0.5 

112
0 1 	(half 

occupancy) 
0.296 0 0.5 

H
2
0 2 0 0 0.400 

H
2
0 3 0.333 0.667 0.205 

1120 4 0.333 0.667 0.528 
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powder data are given in Table 2.4 while unit cell dimensions are recorded 

in Table 2.2. Comparison of powder and single crystal X-ray photographs 

clearly shows the compound to be isomorphous with K 3 [Cr(NCS) 6 ].4H20, and 

hence the molybdenum compound should be written as K3 [Mo(NCS) 6].4H20. 

Integrated intensity data from strong layer lines were recorded for 

hkn (n = 0-5) and nkt. (n = 0-5), and processed in identical fashion with the 

data from K
3
[Cr(NCS)

6
].4H

20. 
	Weak layer line data were recorded but not 

measured. 

The structure determination followed similar lines to that discussed 

for the chromium compound. The R-factor at which structure refinement was 

terminated stood at 38%. The atomic parameters as they were at this stage 

are given in Table 2.5. 	Observed and calculated structure factors are 

listed in Appendix 3 as Table A.3.3. 

2.5 Conclusion 

The discussion given in Section 2.3 of attempts at structure solution 

has been made with the benefit of hindsight. 	Since termination of the 

structure determinations, the author has carried out several other X-ray 

crystal structure analyses which are reported in later chapters of this 

thesis. 

What has emerged from this research on thiocyanates? 

1. The refined unit cell of potassium hexathiocyanatochromate(III)tetra-

hydrate, K
3
[Cr(NCS)

6
].48

2
0 (with z = 3) is slightly different from that 

reported by Zhdanov, Zvonkova and Glushkova
41

. 

2. Unit cell dimensions are reported for the first time for potassium 

hexathiocyanatomolybdate(III)tetrahydrate, K 3 No(NCS) 6 1.41-1 20. 

3. A comparison of powder and single crystal X-ray photographs shows that 

the two compounds are isomorphous. 
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TABLE 2.4 

X-Ray Powder Data : K
3
[Mo(CNS)

6
].4H

2
0 

Cu K
a 

radiation : sin 
2
0 x 10

4 

(Estimated intensities : s = strong, m = medium, w = weak, b = broad) 

Small Cell 	Large Cell 

Index sin 20 	
Estimated 

obs 	Intensity  
. 2 

sin 0 
calc 

2 
sin 0 

calc 
Index 

99.1 

112.8 

174.4 

211.9 

324.9 

338.4 

358.8 

399.9 

451.2 

509.2 

512.7 

1 01 

1 10 

111 

201  

211  

300 

112 

301 

220 

212 

221 

99.1 

99.6 

112.2 

173.9 

176.3 

211.3 

211.8 

323.5 

335.3 

336.6 

359.1 

364.7 

365.4 

398.3 

402.1 

448.8 

451.2 

507.4 

508.7 

510.4 

512.9 

20 2 

300  

220  

222  

203  

320  

402  

411  

422  

413  

600  

224  

520  

431  

602  

610  

440  

53 0 -2 

215  

315  

424  

442  1 

702 

99.1 

112.9 

173.9 

176.5 vw 

211.7 

	

215.9 	vwb 

325.2 

	

337.8 	vw 

357.3 

	

361.7 	vw 

	

399.0 	vw 

403.2 

451.0 

457.6 

506.6 

514.6 
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TABLE 2.4 (Cont.) 

584.4 

591.1 

697.2 

714.4 

775.9 

303 

582.7 

588.3 

698.8 

708.4 

	

779.7 	vw 

	

789.8 	vw 

890.1 

582.2 

583.5 

584.0 

589.1 

590.1 

698.0 

698.1 

698.1 

705.1 

709.3 

710.6 

772.3 

779.9 

787.9 

789.3 

892.1 

415  

6 0 4 

116  

630  

533  

811  

704  

534 

4 0 6i 

640  

64 2 - 

714  

61 5 -i 

506 

606 

302 

103 

222 

103 

321 

543 
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TABLE 2.5 

Atomic Coordinates K
3
[Mo(NCS)

6
].4H

2
0 

at R = 38% (As for space group P3) 

Atom x y z 

Mo 1 0 0 0 

Mo 2 0.167 0.333 0.457 

S 1 0.167 0.333 0.188 

S 2 0.500 0 0.265 

S 3 0.333 0.167 0.287 

N 1 0.883 0.068 0.169 

N 2 0.272 0.735 0.299 

N 3 0.583 0.402 0.505 

C 1 0.873 0.109 0.147 

C 2 0.233 0.776 0.321 

C 3 0.570 0.443 0.322 

K 1 0.378 0 0 

K 2 (half 
occupancy) 

0.303 0 0.5 

H
2
0 1 (half 

occupancy) 

0.303 0 0.5 

112
0 2 0 0 0.400 

112
0 3 0.333 0.667 0.247 

1120 4 0.333 0.667 0.599 
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4. The presence of weak intermediate layer lines on oscillation photographs 

of both compounds suggests that disorder or superlattice phenomena occur in 

their crystal lattices. 

5. Structure determination and refinement on both compounds is incomplete 

at this point. 	There is, however, sufficient evidence to favour metal to 

nitrogen bonding in the [M(NCS)
6

]
3- 

(M=Mo or Cr) complex ions of both 

compounds. This is contrary to metal to sulphur bonding postulated by 

Zhdanov et al
41 

for K
3
[Cr(SCN)

6
].4H

2
0, but agrees with the bonding found in 

K
3 
 [Mo(NCS)

6
].H

2
0.CH

3 
 COOH

60 
and in the reineckates

50-53 

6. There is also evidence to show that there is six-fold coordination of 

thiocyanate ligands around the central metal, M(III) ions. 	There is no 

evidence for coordinate central metal to water bonding. 

With the completion in the near future of a full suite of crystallographic 

computer programs in this Department it should be possible to refine structure 

factors and calculate Fouriers directly in trigonal symmetry. 	It would then 

be possible to make further attempts at solving these structures. 

The information to be gained from a complete structure determination on 

K
3 
 [Cr(NCS)

6]
.4H

2
0 and K

3
[Mo(NCS)

6
].4H

2
0 in the light of the problems 

involved would not, however, be sufficient justification for the effort 

required. 	It would, of course, be interesting to find out the cause of the 

weak layer lines, but other points of interest as discussed in Section 2-1 

could well be obtained from a study of other similar compounds. 	This has, 

in effect, been done in part by Knox and Eriks
60 

with K
3
[Mo(NCS)

6
1.H

2
0.CH

3
COOH. 



46 

Chapter 3  

Crystal and Molecular Structures of Six A
2
I
[M
III

C1
5
H
2
0] Compounds  

(A = K, NH4 , Rb, or Cs; M = Fe or Mo) 

3.1.. Introduction  

Compounds of the type A 2 [MX5H20] (X = halide) have been known for 

some time
61 

 . 	However, it was not until 1945 that crystal structure 

determinations carried out on K 2 
 [FeC1

5  H2 
 0]

62 
and (NH

4
)
2
[FeC1

5
H
2
0]

63 
showed 

that both crystallized with orthorhombic symmetry in space group Pnma, a 

structure type of which [Rh(NH
3

)
5
Cl]C1

2
64 

was already a known member. 	Later 

K[RuCl
5
H
2
0]

65
, (NH

4
)
2
[InC1

5
H
2
0]

66 
and Cs

2
[T1C1

5
H
2
0]

67 
were shown to have 

2 

the same structure. However, in 1966 Hopkins et a1
68 

showed that 

Cs2 [RuCl 5
H
2
0] adopted a different orthorhombic structure, crystallizing with 

space group AMam. 

, Structural studies in these laboratories on compounds of the A 2
[MX

5
H
2
0] 

type have been in progress for some years, and a wide range of such compounds 

have been prepared, and analysed mainly by far infrared and nuclear quadrupole 

resonance (n.q.r.) spectroscopy
61, 69-71 

Far infrared spectra of these 

type of compounds showed definite trends in M-0 and M-C1 stretching frequenc-

ies, in compounds with the same central metal and different cations, and in 

groups of compounds with the same cations and different central metal ions. 

N.q.r. studies showed several anomalies. 

Crystal structure studies were commenced on six compounds: 

K2M0C15H20, (NH4 ) 2M0C15H20, Rb2M0C15H20, Cs 2MoC15H20, Rb2FeC15H20 and 

Cs
2
FeC1

5
H
2
O. 	These structures would then provide data for two comparative 

series of A 2 [MC15H20] compounds. From this data it was hoped to be able 

to explain the far infrared and n.q.r. results. 	The other major object in 

carrying out these crystal structure determinations was to see if the newly 

prepared molybdenum compounds can be classified into the two structural types 
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already known. The results of this classification and the structures of 
• 

the iron salts could then be used to predict the structures of other 

analogous compounds. 

3.2. 	Experimental  

	

3.2.1. 	Preparation and Crystal Selection  

The iron compounds were prepared by passing HC1 gas through a concentrated 

HC1 solution containing stoichiometric amounts of the alkali metal chloride 

and FeC13
.6H

2
0. The molybdenum compounds were precipitated by similar 

procedures. The compounds were prepared by Podmore and Stoessiger in these 

laboratories
61,71 

All six compounds were recrystallized from warm 

concentrated HC1 solution as clear orange needles. 	Rapid recrystallization 

was found to be the best process for growing suitable small crystals. The 

crystals selected for X-ray studies were all of approximate dimensions 0.2 mm 

x 0.1 mm x 0.1 mm. 

It is proposed to describe the method used for data collection and 

structure determination of a representative compound, K
2
MoC1

5
H
2
O. Variations 

encountered in the five other cases will then be discussed. 

A crystal of K2M0C15H20 was selected and mounted along the orthorhombic 

b-axis by gluing it with shellac to a glass fibre. This fibre was then set 
A 

up on a goniometer head and mounted on a Weissenberg camera. 

	

3.2.2. 	Data Collection 

The cell parameters were obtained initially from oscillation and zero-

level Weissenberg photographs, and refined on X-ray powder data (Table 3.1) 

collected on a Philips powder diffractometer using Cu Ka  radiation and KC1 as 

an internal calibrant. 	The powder work was carried out in collaboration 

with Podmore
61 . Crystallographic data for the six compounds studied in 

this work and for analogous compounds reported in the literature are given 

in Table 3.2. 
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TABLE 3.1 

X-ray Powder Data 

(sin 
2
0 x 10

4
) 

(NH
4

)
2
[MoC1

5
H
2
0] K

2
[M0C1

5
H
20] 

. 	2 
sin 	0 

obs. 
. 	2 

sin 	0  
calc. 

Index 

177.7 178.4 0 1 1 

187.0 188.2 2 1 0 

209.9 209.9 1 1 1 

240.5 241.7 2 0 1 

397.2 397.3 1 2 1 

461.8 461.3 3 1 1 

494.2 495.2 1 0 2 

500.7 503.0 4 0 0 

616.8 618.9 4 0 1 

649.9 648.8 3 2 1 

679.5 678.3 0 3 1 

716.0 713.7 0 2 2 

745.5 745.1 1 2 2 

803.8 804.1 2 3 1 

838.8 839.4 2 2 2 

873.5 868.9 4 2 1 

900.2 901.8 5 0 1 

963.6 966.7 4 0 2 

1002.1 999.8 0 4 0 

1078.3 1074.8 1 0 3 

1247.8 1247.6 6 0 1 

1310.0 1310.0 6 1 1 

1387.6 1388.8 3 1 3 

1498.0 1497.6 6 2 1 

1658.3 1657.9 6 1 2 

1745.4 1746.5 3 4 2 

. 	2 
sin 2 o  

. 	2 
sin 	0

calc. 
Index 

146.2 146.8 1 0 1 

175.1 175.9 0 1 1 

182.3 183.1 2 1 0 

206.4 206.7 1 1 1 

238.0 239.3 2 0 1 

394.8 393.4 3 0 1 

452.7 453.2 3 1 1 

478.1 478.6 2 2 1 

495.0 494.9 1 0 2 

635.0 632.7 3 2 1 

663.7 661.7 2 3 0 

705.6 703.4 0 2 2 

739.6 741.4 3 0 2 

889.8 886.4 5 0 1 

958.5 957.2 04 0 

1079.3 1080.5 2 4 0 

1233.4 1234.5 5 0 2 

1299.5 1294.3 5 1 2 

1471.8 1473.8 5 2 2 

1572.2 1573.5 6 0 2 

1705.9 1705.9 , 2 3 3 
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TABLE 3.1 (Cont.) 

Rb
2
[FeC1

5  H2 
 0] Rb 

2 
 [MoC1

5
H
2
0] 

. 	2 	. 	2 
sin 	0

obs. 	
sin 	0

calc. 
Index 

	

174.9 	175.1 

	

181.6 	180.2 

0 1 1 

204.4 	205.1 1 1 

387.6 	385.7 1 2 1 

478.1 	479.8 4 0 0 

487.9 	489.2 

629.9 	625.6 2 1 

661.6 	661.8 2 3 0 

698.9 	700.4 

729.5 	729.5 0 2 

963.1 	963.4 0 4 0 

1621.4 	1621.5 6 3 0 

1696.0 	1695.9 2 3 3 

. 	2 	 2 
sin 0

obs. 	
sin 0

calc. 
Index 

178.1 	179.1 	0 1 1 

 

1 

185.4 	210 

212.4 	210.3 	1 1 1 

240.5 	242.5 	0 2 0 

393.8 	392.2 	1 2 1 

485.8 	221  

3 498.4 	499.1 	4 0 0 

507.5 	505.3 	1 0 2 

617.6 	401  

3 642.7 	641.8 	3 2 1 

669.4 	670.4 	2 3 0 

714.7 	716.6 	0 2 2 

749.6 	747.8 	1 2 2 

861.7 	860.1 	4 2 1 

972.5 	973.2 	4 0 2 

1311.9 	1314.6 	5 1 2 

1366.5 	1365.5 	6 2 0 

1473.1 	1475.3 	1 4 2 

1588.1 	1587.6 	4 4 1 

1647.2 	1647.1 	7 0 1 

1725.0 	1724.8 	3 4 2 
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TABLE 3.1 (Cont.) 

Cs
2
[FeC1

5
H
2
0] Cs

2
[MoC1

5
H
2
0] 

. 	2 	. 	2 
sin 0

dos. 	
sin 0

calc. 
Index 

166.3 168.1 0 2 1 

280.5 281.4 1 3 0 

360.8 360.4 0 0 2 

370.0 371.5 1 3 1 

423.1 423.1 2 0 0 

641.8 641.7 1 3 2 

673.0 672.5 0 4 2 

687.0 683.6 1 5 1 

703.9 702.4 0 6 0 

734.5 735.2 2 4 0 

787.7 783.4 2 0 2 

954.4 953.9 1 5 2 

1092.4 1092.2 1 3 3 

1155.8 1151.9 1 7 1 

1215.0 1215.6 2 6 1 

1248.9 1248.7 0 8 0 

1341.5 1338.8 0 8 1 

1442.4 1441.4 0 0 4 

1487.3 1487.9 3 3 2 

1512.3 1513.2 0 6 3 

1606.0 1609.9 0 8 2 

sin sin
obs. 

sin sin 	0
calc. 

Index 

168.8 170.1 0 2 1 

285.1 285.8 1 3 0 

316.9 317.1 0 4 0 

363.4 363.2 0 0 2 

376.6 376.6 1 3 1 

428.4 429.6 2 0 0 

490.1 490.4 1 1 2 

650.4 649.0 1 3 2 

681.2 680.4 0 4 2 

714.2 713.6 0 6 0 

745.9 746.8 2 4 0 

792.4 792.9 2 0 2 

1108.2 1110.0 2 4 2 

1169.8 1169.4 1 7 1 

1238.5 1235.9 3 3 1 

1268.5 1268.5 0 8 0 

1458.3 1462.2 3 5 0 

1508.3 1508.3 3 3 2 

1628.5 1631.8 0 8 2 

1713.8 1712.9 1 9 0 

1739.5 1738.7 1 3 4 
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TABLE 3.2 

Crystallographic Data 

A2
[MC1

5
H
2
0] compounds 

0 
Cell edges in angstroms. Volume in A 3 . 	Density g/cc. 	Standard 

deviations ( ) 

K
2
[M0C1

5
H
2
0]* (NH

4
)
2
[M0C1

5
H
2
0]* Rb

2
[MoC1

5
H
2
0]* Cs

2
[M0C1

5
H
2
0]* 

a 13.738(6) 13.875(6) 14.066(6) 7.432(5) 

b 9.744(5) 9.958(5) 9.926(5) 17.301(8) 

c 7.154(5) 7.151(5) 7.186(5) 8.083(5) 

V 957.7 988.0 1003.3 

Space 4 4 4 4 
Group Prima Prima Prima Cmcm 

D
obs _ _ _ 

D
calc 2.56 2.20 3.07 3.30 

• 

K
2
[FeC1

5
H
2
0]
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(NH

4
)
2
[FeC1

5
H20]

63 
Rb

2
[FeC1

5
H
2
0]* Cs2

[FeC1
5
H
2
0]* 

a 13.75(2) 13.78 13.764(6) 7.490(5) 

b 9.92(2) 9.85 9.917(5) 17.438(8) 

c 6.93(2) 7.09 7.080(5) 8.115(5) 

V 945.25 962.35 966.4 

Z 4 4 4 4 

Space 
Group Pnma Prima Pnma Cmcm 

D
obs - 1.99 

D
calc 2.91 3.49 

K
2
[RuC1

5
H
2
0]

65 
(NH

4
)
2
InC1

5
H
2
0
66 

Cs2
[T1C1

5
H
2
0]

67 
Cs

2 
 [RuCl

5
H
2
0]

68 
- 

a 13.53(5) 14.10(5) 14.36 7.400(4) 

b 9.55(5) 10.17(5) 10.61 17.289(8) 

c 6.96(3) 7.16(5) 7.38 7.986(5) 

V 899.31 1026.72 1124.41 1021.92 

Z 4 4 4 4 

Space 
Group Prima Prima Pnma Amam 

D
obs _ _ _ 

D
calc 2.76 3.65 

* This work. 
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A trial, zero level, non-integrated Weissenberg photograph showed the 

diffraction spots to be of reasonably regular shape. Because of this, it 

was decided that the collection of integrated data was unnecessary. This 

reduced the collection time by approximately one half. 

A total of 216 observed reflections for five levels hnt. (n = 0-4) 

were recorded by the equi-inclination Weissenberg technique using Cu Ka  

radiation and 4-film packs. Extension of data collection could have been 

made for higher levels and about another axis. 	This was not carried out, 

however, because the h5t. level exhibited diffraction spots of poor 

resolution. Also the data collected about the one axis provides sufficient 

data for the structure determination. 

The intensities of these observed reflections were measured visually 

against a standard scale and were corrected for Lorentz and polarisation 

factors. Because of the small crystals used, no absorption corrections 

were considered necessary. 

Inspection of the Weissenberg photographs revealed the compound to be' 

orthorhombic with the following reflections absent : Okt. : k + t. odd; 

hk0 : h odd. 

The space group corresponding to this absence pattern is Pnma. 

3.3. 	Structure Analyses: K 2M2C1 H20 

The X-ray powder pattern for K2
M0C1

5
H
2
0 is very similar to that of 

K
2
[FeC1

5  H2 
 0] reported by Podmore

61
. 	This suggests that the two compounds 

are isomorphous. 	In order to confirm this, and also to gain increased 

familiarity with the Patterson technique, it was decided to calculate a 

three-dimensional Patterson function. The calculation was made in the 

Patterson group Pmmm. The three Harker planes of the crystal space group 

Pnma are, (1/2yz), (x1/2z) and (xy1/2) and the Harker lines are (x1/21/2), (OyO) and 

(1/20z). 
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In this centrosymmetric case all the required Patterson sections were 

calculated with divisions of 1/40 b from y = 0 to y = k. Two sections 

with y = 0 and y = 1/4 are shown as Figs.3.1 and 3.2. 

The Mo
3+ 
 ions must occupy a four-fold position and since two of the 

three available positions1 4(a) and 4(b) require vectors (0,1/2,0), 

(1/2,0,1/2) and (1/2,1/2,1/2) these positions can be eliminated because 

of the complete absence of the (1/2,0,1/2) vector. 	For the position 4(c), 

one would expect Mo-Mo vectors to occur in the Harker plane (x1/2z) and on the 

lines (x1/21/2) and (1/20z). 	The largest and most probable peak in the Harker 

plane is that at (0.22,0.5,0.6) and the related Harker line peaks occurs 

at (0.72,0.5,0.5) and (0.5,0,0.1). 	This makes it possible to set up three 

expressions: 

+ 2x,1/2, - 2z = 0.22,0.5,0.6 

1/2 - 2x,1/2,1/2 = 0.72,0.5,0.5 

1/2,0,1/2 - 2z = 0.5,0,0.1 

These were solved to give a possible Mo position at (0.11,0.25,0.3). 

The only ions which can occupy eight-fold general positions 8(d) ,  are K
+ 

and some of the chlorines. 	The smallest of these, the K
+ 
 ion can be 

expected to have a radius close to its ionic radius of about1.33 X and since 

the Y coordinate must be smaller than 0.12 owing to the mirror planes 

(x1/4z) and (4z), then the K+  and some of the chlorines must be sited near the 

planes (x0z) and (x1/2z) and the other chlorines and the water molecule were 

thus expected to be situated exactly in the (xlz) and (x 3/4z) planes. 

Using the possible Mo position as a reference point a search was made 

in the Patterson planes (x0z) and (x1/4z) for suitable Mo - K and Mo - Cl 

vectors. 	It was possible to assign the vectors shown in the appropriate 

maps (Figs. 3.1 and 3.2) in this fashion, and thus to arrive at a model for 

the structure to accommodate all the K, Mo and Cl atoms. 	It would have also 

been possible to arrive at a similar model by allocating coordinates to the 

atoms by analogy with the structure of K
2 [FeC1

5
H
2
0].

62 
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CE-H2 0 
CE-CE 
K-C/ 

Mo- CE 

O E- C C( 

CE-K 
CE-CE 
CE- H 20 

Fig. 3.1 	Patterson Sect ion y= o K,MoCt s  H 20 

showing assigned interatomic vectors 
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Fig. 3.2 	Patterson Section y=1 K 2 MoCP5 H 20 
showing assigned interatomic vectors 
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Structure Refinement 

Structure factors, corresponding to the measured reflections, were 

'calculated using the model derived from the Patterson function. 	The 

initial residual factor (R) after interlayer scaling was 24%. 	The signs 

of the calculated structure factors were used in conjunction with the 

observed structure factors to calculate three-dimensional Fourier and 

difference Fourier syntheses. As expected at this initial stage the relative 

heights of the Fourier peaks showed only very approximate correlation to atomic 

number. From an analysis of both maps it was possible to relocate various 

atoms by moving them up the peak gradient shown on the difference Fourier, 

and also to allocate positions to the remaining oxygen atoms. 	A further 

Fourier and difference Fourier were then calculated and since both of these 

were satisfactory, further refinement was carried out by the least squares 

method of correlating observed and calculated structure factors. 	This 

[IF  consisted of refining the function R = 	1 - IF II by use of the full 

E1Fo1 
matrix least squares method. 	Initially the interlayer scale factors and 

coordinates were put through one refinement cycle, the R factor reducing to 

19%. 	Suitable trial isotropic temperature factors assigned to each atom 

were then included in the refinement. 	These temperature factors were 

obtained from the literature by using values for the same atoms found in 

similar environments in other crystal structures. A slight problem arose 

at this stage when the temperature factor for the oxygen atom went negative. 

It was decided to fix this temperature factor and continue. All other 

parameters refined successfully to an R factor of 14%. The oxygen temperat-

ure factor was then allowed to vary together with all other variables and a 

final refinement cycle reduced the R factor to 13%. 

The correlation between F
obs 

and 
Fcalc 

was then examined and observed 

data which showed marked variation from the calculated data were re-

measured. 	It was found that some of the reflections had to be slightly 
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altered and that two of them had been mixindexed. These corrections were 

made to the data set and further least squares refinement gave a final 

R-factor of 9.8%. At this stage all shifts in parameters were within the 

values of the standard deviations. 

In view of the overall accuracy of these structure determinations 

(see Section 1.5) this was taken as a satisfactory conclusion of the 

refinement process. 	It was decided, however, to run a test to see if it 

was possible to introduce and refine anisotropic temperature factors. These 

factors were initially derived from the isotropic temperature factors. 	The 

only refinement found possible was that of the cross diagonal parameters 

giving a final R-factor of 8.7%. 	The limits of error discussed elsewhere 

suggested that this small change in R-factor did not justify the introduction 

of anisotropic temperature factors. 	(Section 1.5). 

Using the refined variables with R = 9.8% a final list of observed 

versus calculated structure factors was produced and these are listed in 

Appendix 3 Table A3.4. Final Fourier and difference Fouriers were 

calculated. At this stage the relative peak heights of atoms in the 

Fourier showed good internal correlation and the difference Fourier map was 

very flat, with no peaks exceeding half the minimum peak height of the 

smallest oxygen atom in the Fourier. 

Final coordinates and isotropic temperature factors are shown in 

Table 3.3. 	Relevant bond lengths and angles are, for convenience, shown 

in the later discussion (Section 3.6) in Table 3.6. 

Description of the Structure of K2 [MoC] 5H20] 

The structure of K2[M0C15H20]  viewed in projection along [010] is.shown 

in Fig. 3.3. 	The four complex ions per unit cell are located in the four- 

fold set of equivalent Mo positions (x,1/4,z), (X,3/4,), (1/2-x,3/4,1/2+z) and 

(1/2+x,1/4,1/2-z) where x = 0.112 and z = 0.314. 	The octahedra consist of the 
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TABLE 3.3 

Atomic Coordinates and Isotropic Temperature Factors 

(Standard deviations in parenthesis) 

K
2
[MoC1

5
H
2
0] 

Atom Position x Y z B 

Mo 4(c) 0.1123(1) 0.25 0.3141(2) 0.97(3) 

K 8(d) 0.3495(2) -0.0002(4) 0.3639(3) 3.02(7) 

C1(1) 4(c) 0.0042(3) 0.25 0.0351(5) 2.77(10) 

C1(2) 4(c) 0.2516(3) 0.25 0.1162(5) 2.53(10) 

C1(3) 4(c) 0.2125(3) 0.25 0.5882(5) 2.72(10) 

C1(4) 8(d) 0.1044(2) 0.0056(12) 0.3124(5) 4.24(11) 

0(H
2
0) 4(c) -0.0238(7) 0.25 0.4938(13) 2.56(22) 

1 

(NH
4

)
2
[M0C1

5
H
2
0] 

Atom Position x Y z B 

Mo 4(c) 0.1117(1) 0.25 0.3131(2) 0.13(2) 
+ 

N(NH
4 

) 8(d) 0.3524(4) -0.0012(5) 0.3409(11) 2.13(14) 

C1(1) 4(c) 0.0038(2) 0.25 0.0420(5) 1.82(6) 

C1(2) 4(c) 0.2500(2) 0.25 0.1058(5) 1.29(6) 

C1(3) 4(c) 0.2191(2) 0.25 0.5786(6) 2.03(7) 

C1(4) 8(d) 0.1042(1) 0.0053(2) 0.3208(4) 1.62(4) 

0(H
2
0) 4(c) 0.9843(5) 0.25 0.4883(13) 2.34(17) 

Rho
2
[MoC1

5
H
2
0] 

Atom Position x Y z B 
, 

Mo 4(c) 0.1124(1) 0.25 0.3118(2) 0.81(3) 

Rb 8(d) 0.3552(1) 0.0002(2) 0.3475(2) 2.57(4) 

C1(1) 4(c) 0.0006(3) 0.25 0.0430(6) 2.43(12) 

C1(2) 4(c) 0.2485(3) 0.25 0.1076(6) 2.11(11) 

C1(3) 4(c) 0.2210(3) 0.25 0.5755(6) 2.66(11) 

C1(4) 8(d) 0.1036(2) 0.0073(10) 0.3171(4) 2.81(9) 

0(H
2
0) 4(c) 0.9880(7) 0.25 0.4931(14) 1.46(24) 	. 
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TABLE 3.3 (Cont.) 

Rb
2
[FeC1

5
H
20] 

Atom Position x Y z B 

Fe 4(c) 0.1159(1) 0.25 0.3100(3) 1.05(4) 

Rb 8(d) 0.3564(1) -0.0005(1) 0.3431(1) 2.11(2) 

C1(1) 4(c) 0.0057(3) 0.25 0.0466(6) 1.74(7) 

C1(2) 4(c) 0.2452(2) 0.25 0.1044(5) 1.12(7) 

C1(3) 4(c) 0.2205(3) 0.25 0.5734(6) 1.71(8) 

C1(4) 8(d) 0.1046(2) 0.0085(2) 0.3212(4) 1.46(4) 

0(H
2
0) 4(c) -0.0039(8) 0.25 0.4955(17) 1.16(14) 
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Fig. 3.3 	FOURIER PROJECTION [010] 
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central metal ion surrounded by three chlorines and the water molecule in 

the plane, with the two remaining chlorines situated above and below the 

central metal. 	The slightly distorted [MoC1 5
H20]

2- 
units are oriented 

with the Cl-Mo-H
2
0 axis in the plane with y = at an angle of approximately 

90 0  to thAxis. A 

+  
The K ions are situated in an eight-fold general position (x,y,z) with 

y = 0 and are surrounded by a distorted cube of six chlorine atoms and two 

water molecules. 

The overall structure is thus a packing of K
+ 

ions and [M0C1
5
H
2
0]

2-  

ions. That this electrostatic attraction provides the major bonding force 

+ . 
linking the octahedra through K Ions is further demonstrated by the fact 

that possible H-bonded links between water molecules of one octahedral group 

and either water or chlorines of another complex ion can be regarded as 

minimal, because the shortest H2
0-C1 distance outside the complex ion is 

3.892 R and the shortest H
2
0-0H2 distance is 4.051 R. Significant 

hydrogen bonding could have been expected to occur if the H 2
0-C1 distance 

is shorter than 3.21 R, the sum of ionic radii72  of Cl -  and 02-72 

Similarly the H 20-0H2  distance for H-bonding would need to be less than 

2.80 A. 

3.4. 	Structure analyses of (NH
41-2

MoC1,1-1_0, Rb_MoC1,H,0 and Rb 2
FeC15

H
2
0 

A comparison of the X-ray powder data suggests that these three compounds 

are isomorphous with K2 [MoC1 5H20]. 	Structure analyses confirmed this. 

Models for each of the three compounds were derived from that of 

K2 [M0C15H20], and the structure refinements carried out by full-matrix 

least-squares methods. 	The final R-factors were 9.5%, 10.4% and 7.9% for 

(NH
4

)
2
M0C1

5
H
2
0, Rb

2
MoC1

5
H
2
0 and Rb

2
FeC1

5
H
2
0 respectively. 	A comparison 

of atomic coordinates and thermal parameters for these three compounds 

and f
o
r K

2
[M0C1

5
H
2
0] is shown in Table 3.3. 	Lists of final 

F
obs 

and 
 Fcalc 

are given in Appendix 3 Tables A.3.5-3.7 for the three 
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compounds. For convenience of presentation relevant distances and bond 

angles are included in the later discussion segment in Table 3.6. 

The standard deviations attached to atomic coordinates, thermal 

parameters, bond lengths and angles (Tables 3.3, 3.4, 3.6, and 3.7) 

are a measure of the consistency of the data set and do not take into 

account errors inherent in intensity measurement or in the measurement of 

unit cell dimensions. 	(See discussion Section 1.5). 

3.5. 	Structure Analyses of Cs MoC1 H 0 and Cs FeC1 H 0 
2--5 2 	2--5 2 

The systematic absences observed in the Weissenberg photographs of 

both Cs
2
MoC1

5
H
2
0 and Cs

2
FeC1

5
H
2
0 are for: hid. : h+k odd; hat : t odd. 

The two orthorhombic space groups corresponding to this absence 

pattern are Cmcm or Cmc2 1 . The centrosymmetric space group Cmcm was 

chosen and later shown to be correct. The X-ray powder data suggests 

that both compounds are isomorphous with Cs 2 [RuC15H20]. 	To check this, a 

three-dimensional Patterson function for Cs
2MoC15

H
20 was calculated in 

Pmmm, the Patterson group for this orthorhombic space group. 	The analysis 

of this function was carried out in a manner similar to that described above. 

for K
2
[MoC15H20]. 	(Section 3.3). 	The basic features of the structure 

were deduced from a study of the relevant Harker lines and planes. 	Ideal- 

ized plots of Patterson sections with x = 0 and x = are shown as Figs. 

3.4 and 3.5. 	The allocation of interatomic vectors is marked on these maps. 

- 
Based on models derived from the Patterson function, the complete 

structures of both compounds were determined from difference Fourier maps, 

and refined by the full-matrix least-squares method to residual R-factors 

of 9.6% and 8.3%, for Cs
2
M0C1

5
H
2
0 and Cs

2 
 FeC1

5  H2 
 0 respectively. 

However, when the coordinates of the oxygen atoms were included in the 

least-squares refinement cycles the resulting positions gave holes on the 

difference Fourier maps, and also gave peak locations which suggested moving 
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Fig.3. 4 Patterson section Xz 0 Cs 2  MoCQ, H 2 0 
Showing assigned interatomic vectors 



C% 
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Fig.3,5 	Patterson section x---:+4. 	Cs,MoC! Hp 
showing assigned interatomic vecors 



65 

the atoms back towards their original positions. To overcome this problem 

the oxygen atom positions were fixed from accurate measurement of peak 

centres on the difference Fourier maps and only the temperature factors of 

these atoms included in the refinement cycles. As the shifts in parameters 

at this stage were less than the standard deviations, and as final Fourier 

and difference Fourier maps showed no anomalies, the structure refinements 

were concluded. At this stage the R-factors were the same as mentioned 

above. 

Powder and crystallographic data for both compounds have been presented 

above in Tables 3.1 and 3.2 (Section 3.2). 	A comparison of atomic and 

thermal parameters for these two compounds is shown in Table 3.4. 	Lists 

of final F
obs 

and 
Fcalc 

are given in Appendix 3 Tables 13.8 and A3.9. 

Relevant bond lengths and angles are included in the later discussion 

segment (Table 3.7). 

Description of Structure of Cs
2
[M0C1

5LI.2
0]  and Cs

2
[FeC1

5
H
2
0] 

To illustrate these two isomorphous structures, that of Cs 2 [M0C15
H
2
0] 

viewed in projection along [100] is shown in Fig. 3.6. 	The structure is 

isomorphous with that found for Cs 2 [RuC15H20]. 	The choice here of space 

group Cmcm in preference to Amam reported for Cs
2
[RuC1

5
H
2
0]

68 
was made to 

conform with the orientation used by the International Tables for X-Ray 

Crystallography Volume 1
9
, although both space groups are the same. 

The central Mo atoms of the distorted octahedral [MoC1
5
H
2
0] 	ion are 

- 
located in a four-fold special position at (0,y,1/4), (0,y,3/4), (1/2,1/2+y,1/4) 

and (1/2,1/2-y,3/4). 	The octahedra are oriented with the trans Cl-Mo-H 2
0 

direction lying in the planes with x = 0 and x = ½ and at right angles to 

the c axis. 	The remaining four chlorines occupy a general sixteen-fold 

(x,y,z) position and lie just above and below planes with x = and x = 

The central Mo atom lies out of the plane of the four chlorine atoms which 

themselves form a rectangle rather than a square. 	Both the C1(1)-Mo-C1(2) 
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TABLE 3.4 

Atomic Coordinates and Isotropic Temperature Factors 

(Standard deviations in parenthesis) 

Cs
2
[M0C1

5
H
2
0] 

Atom Position x y z B 

Mo 4(c) 0 0.1175(1) 0.25 1.78(3) 

Cs(1) 4(c) 0 0.4711(1) 0.25 3.25(4) 

Cs(2) 4(c) 0 0.7540(1) 0.25 3.68(5) 

C1(1) 4(c) 0 0.2516(4) 0.25 2.91(16) 

C1(2) 16(h) 0.2261(5) 0.1122(2) 0.4620(3) 4.17(7) 

0(H
2
0) 4(c) 0 -0.0070 0.25 5.48(63) 

Cs
2
[FeC1

5
H
2
0] 

Atom Position x Y z B 

Fe 4(c) 0 0.1216(2) 0.25 1.54(6) 

Cs(1) 4(c) 0 0.4704(1) 0.25 1.60(3) 

Cs(2) 4(c) 0 0.7541(1) 0.25 2.20(4) 

C1(1) 4(c) 0 0.2562(4) 0.25 3.01(19) 

C1(2) 16(h) 0.2229(5) 0.1116(1) 0.4575(2) 2.06(5) 

0(H
2
0) 4(c) 0 -0.0010 0.25 4.88(52) 
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Fig.3.6 Fourier projection [100] from x , o to x =-4-. for Cs2[MoCI5H20] 
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bond angles of 92.2° and the C1(2)-Mo-OH2  of 87.8° are distorted from 90 0  

by appreciable amounts, giving rise to a point symmetry of 2mm for the Mo 

rather than the symmetrical 4mm point group. This contrasts with the 

structure of for example, K 2 [M0C15H20] where the Mo lies at the midpoint of 

a line between two chlorines rather than on the line between chlorine and 

the water molecule. Also the four chlorines of K
2
[M0C1

5
H
2
0] do not lie in 

a plane as in Cs 2 [MoC1 5H20] and the point group of the molybdenum atom is 

I rather than 2mm. 

. The Cs+  Ions occupy two four-fold special positions of the type 

(0,y,1/4) and link the octahedral with strong electrostatic attraction both 

in the plane with x = 0 and between octahedral units in planes with x = 0 

and x = 1/2 	Again there is no evidence for H-bonding between ligands of 

different octahedra; the distance of closest approach of C1-H 20 = 3.419 A 

and H
2
0-H

2
0 = 4.065 A being outside the expected hydrogen-bonded limits. 

3.6. Discussion 

Crystallographic data for the twelve compounds of type A 2 [MC1 5H20] 

whose structures have been determined by three-dimensional X-ray analysis 

have been given above in Table 3.2 (page 51). 

There is an expected clear pattern to be observed in the unit cell 

dimensions. As the central metal ion increases in size so does the volume 

of the unit cell. 	In a similar manner the unit cell volume increases as 

the size of the cation increases. 

On the basis of the X-ray crystal structure evidence now available, both 

from single crystal and from powder data, compounds of the type A 2
I
[M
III

X5H20] 

can be classified as belonging to either the Pnma, [Rh(NH
3

)
5
C1]Cl

2 
type

64 
or 

to the Cmcm, Cs
2
[RuC1

5
H
2
0] 

t
ype68 These are listed in Table 3.5. Podmore

61 

has suggested that the changeover point from one structural type to the other 

is related to the size of the M
3+ 

central ion. The same author suggests 
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TABLE 3.5 

Classification of A2MX5H20  Compounds 

[Rh(NH
3

)
5
C1]C1

2 
 type Cs

2
[RuC1

5  H2 
 0] type 

Compound X-ray data Reference Compound X-ray data ReferencE 

I 
A
2
TiC1

5
H
2
0 Powder 61 Cs

2
TiC1

5
H
2
0 Powder 61 

(A = K
+
, NH

4
+
, Rb

+
) 

AI  VX H 0 
2 	5 2 

Powder 61 Cs
2
VC1

5
H
2
0 Powder 61 

X = Cl, Br 

(A = K+, NH
4
+
, Rb

+
) 

, 
Cs

2
VBr

5
H
2
0 Powder 61 

AICrX
5 2 	2 
H 0 
+ 

Powder 61 Cs
2 
 CrC1

5  H2 
 0 Powder 61 

(A = K+, NH
4
+
, Rb

+
) Cs

2
CrBr

5
H
2
0 Powder 61 

X = Cl, Br 

K
2
FeC1

5
H
2
0 Single 62 Cs

2
FeC1

5
H
2
0 Single This wor..P 

Crystal Crystal 

(NH
4

)
2
FeC1

5
H
2
0 Single 63 

Crystal 

(Rb
2
)FeC1

5
1i
2
0 Single This work 

Crystal 
I 

A
2
Pea.

5H2
0 Powder 61 Cs2FeBr5  H2 

 0 Powder 61 

(A = K
+
, NH4 ,b

+
) 

' 
K
2
MoC1

5
H
2
0 Single This work Cs MoC1H0 

52 
Single This work 

Crystal Crystal 

(NH
4

)
2
M0C1

5
H
2
0 Single This work 

Crystal 

RbMoC1
5
H
2
0 Single This work 

Crystal 
I A
2
MoBr

5
H
2
0 Powder 61 Cs

2
MoBr

5
H
2
0 Powder 61 

(A = K, NH4 , Rb) 

K
2
RuC1

5
H
2
0 Single 65 CsRuC1

5
H0 Single 68 

Crystal 
22 

Crystal 

Cs
2
T1C1

5
H
2
0 Single 67 

Crystal 

(NH
4

)
2
InC1

5
H
2
0 Single 66 

Crystal 
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that there is a limiting central metal M + ionic radius above which the 

Cs
+ 

salts revert to the [Rh(NH
3

)
5
Cl]C1

2 structure because of the more 

favourable crystal packing arrangements. 	In the one caesium salt, 

Cs2 [T1C15
H
2
0], which has been shown

67 
to crystallize with the Pnma 

072 symmetry, the ionic radius of Tl
3+ 

(1.05 A) 	is much greater than the radii 

of the M
3+ 
 in transition metal compounds studied. For example, the ionic 

radius of Fe
3+ 
 is 0.628 1 

72
. 	If it were possible to prepare crystalline 

0 72 Cs
2 
 [InC1

5  H2 ' 0] (In ionic radius = 0.714 A) 	classification of this struct- 

ure into either the Pnma or Cmcm symmetry would help towards the solution 

of the problem. 	Podmore
61 

suggests that the structure of Cs
2
[GaC1

5
H
2
0] might 

also lie somewhere near the changeover borderline. 

For the compounds which crystallize with space group Pnma a comparison 

of the major bond lengths and angles within the complex ions and some short 

contact distances in the structures are given in Table 3.6. 	Similar data 

for the three compounds crystallizing in space group Cmcm are given in 

Table 3.7. 

Neglecting the high M-0H2  bond length in K2 [M0C1 5H20] the average bond 

lengths calculated over all the Mo and Fe structures reported gives: 

Mo-Cl = 2.42 ±0021 ;  Fe-C1 = 2.39 	0.05 A; Mo-OH2  = 2.17 ± 0.01 A; 

÷ 	0 
Fe-OH

2 = 2.09 - 0.04 A. 

The average Fe-C1 distance lies midway between reported values of 

Fe-C1 = 2.48 A in anhydrous FeC13  and Fe-C1 = 2.30 A in  [FeC12 (H20) 4 3C1.2H2073 . 

This is probably to be expected as there is a decrease in octahedral symmetry 

around the central iron atom from FeC1
3 

through [FeC1
5
H
2
0]

2- 
to [FeC1

2
(H

2
0)

4
]
+ 

The Fe-OH2 distance of 2.09 A is within the limits, the same as that 

found in [FeC1
2
(H

2
0)

4
]C1.21-1

2
0
73 

where Fe-OH
2 

= 2.07 R. 

A comparison of the symmetry of the complex ions in 1th 2 [M0C1 5H20] and 

2
[MoC1

5
H
20] is shown as Fig. 3.7. 	As can be seen from these diagrams the 

distortion of both these complex ions is approximately the same. 	The 
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• TABLE 3.6 

Bond Lengths (A) and Bond Angles (degrees) 

(Standard deviations in parenthesis) 

EM = Mo, Fe, Ru, In] 

[A = K, NH4 , Rb, Cs] 

K
2
[M0C1

5
H
2
0] (NH

4
)2[MoC1

5
H
2
0 Rb2[M0C15H20]  K

2
[FeC1

5
H
2
0] 

62  
(NH

4
)
2
[FeC1

5
H
2
0 3 

M-C1(1) 2.488(2) 2.450(2) 2.491(3) 2.50 2.35 

M-C1(2) 2.381(2) 2.425(2) 2.415(2) 2.39 2.39 

M-C1(3) 2.396(2) 2.413(2) 2.436(3) 2.39 2.39 

M-C1(4) 2.384(6) 2.439(1) 2.412(5) 2.45 2.41 

Av. M-C1 2.407(42) 2.433(20) 2.433(58) 2.44 2.39 

M-0H
2 

2.26(5) 2.167(4) 2.183(5) 2.05 2.08 

A-C1(1) 3.314(2) 3.372(3) 3.311(1) 3.50 

A-C1(2) 3.300(2) 3.332(4) 3.374(2) 3.35 

A-C1(3) 3.246(3) 3.262(4) 3.338(2) 3.40 

A-C1(4) 3.271(3) 3.447(2) 3.425(2) 3.45 

A-OH
2 3.940(5) 3.893(6) 3.955(4) 3.85 

Rb
2
[FeC1

5
H
2
0] K

2
[RuC1

5
H
2
0]

65 
(NH

4
)
2
(InC1

5
H
2
0]

66 
Cs

2
[TiC1

5
H
2
0]

67 

M-C1(1) 2.404(3) 2.34 2.52 2.54 

M-C1(2) 2.298(2) 2.31 2.71 2.52 

M-C1(3) 2.356(3) 2.33 2.60 2.51 

M-C1(4) 2.401(1) 2.50 2.54 2.55 

Av. M-C1 2.372(74) 2.40 2.58 2.53 

M-OH
2 

2.108(6) 2.12 2.23 2.29 

A-C1(1) 3.317(1) 3.42 
' 

A-C1(2) 3.372(2) 3.59 

A-C1(3) 3.300(2) 3.63 

A-C1(4) 3.429(2) 3.48 

A-OH
2 

3.951(6) 4.02 
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TABLE 3.6 (Cont.) 

K2 [M0C1 5H20] (NH4 ) 2 [MoC15H20] Rb2 [M0C15H20] Rb2 [FeC1 5H20] 

< C1(1)-M-0H 2  87.8(1) 87.6(1) 87.5(1) 89.4(2) 

< C1(2)-M-0H2 178.0(2) 177.6(1) 179.2(1) 179.3(2) 

< C1(3)-M-0H2  90.4(2) 92.8(2) 89.4(2) 92.4(2) 

< C1(4)-M-0H2 
88.0(2) 87.3(1) 87.1(2) 85.8(2) 

< C1(1)-M-C1(2) 90.1(1) 90.0(1) 91.8(1) 89.9(1) 

< C1(1)-M-C1(3) 178.5(1) 179.6(1) 179.8(1) 179.5(1) 

< C1(1)-M-C1(4) 88.2(1) 89.5(1) 88.9(1) 89.1(1) 

< C1(2)-M-C1(3) 91.4(1) 89.6(1) 88.4(1) 91.6(1) 

< C1(2)-M-C1(4) 91.9(2) 92.7(1) 92.9(1) 94.1(1) 

< C1(3)-M-C1(4) 91.7(2) 90.5(1) 91.1(1) 90.8(1) 

TABLE 3.7 

Bond Lengths (A) and Bond Angles (degrees) 

(Standard deviations in parenthesis) 

[M = Mo, Fe, Ru] 

Cs 2 [M0C15H2
0] Cs2

[FeC1
5
H
2
0] Cs

2
[RuC1

5
H
2
0] 68 

M-C1(1) 2.339(2) 2.329(2) 2.311(8) 

M-4C1(2) 2.416(2) 2.364(2) 2.353(4) 

M-0H
2 

2.170(1) 2.121(1) 2.104(28) 

M-C1(Av) 2.401(62) 2.357(28) 2.34 

Cs(1)-4C1(2) 3.432(2) 3.442(2) 3.408(4) 

Cs(1)-0H
2 

3.765(1) 3.750(1) 3.720(3) 

Cs(1)-C1(1) 3.828(2) 3.707(2) 3.848(8) 

Cs(2)-4C1(2) 3.645(2) 3.624(2) 3.619(4) 
. 

Cs(2)-C1(1) 3.745(1) 3.718(1) 3.701(2) 

Cs(2)-0H
2 

4.168(1) 4.238(1) 4.153(28) 

C1(1)-4C1(2) 3.426(2) 3.437(2) 3.347(7) 

C1(2)-0H2 3.185(2) 3.059(2) 3.109(18) 

C1(2)-C1(2) 3.387(5) 3.314(5) 3.289(8) 

C1(2)-C1(2) 3.440(3) 3.353(2) 3.363(8) 

< C1(2)-M-0H
2 

87.8(1) 85.8(1) 88.3(1) 

< C1(2)-M-C1(2) 89.0(1) 89.0(1) 91.2(2) 

< C1(2)-M-C1(2) 90.8(1) 90.4(1) 88.7(2) 

< C1(2)-M-C1(1) 92.2(1) 94.2(1) 91.7(1) 



Fig3.7 (A) 
[MoCE 5 1-I 2O] 2-  configuration in Rb2[MoCE)--1 2 0] 
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Fig.3.7(B) 

[MoCFA01 2-  configuration in Cs 2(MoC15 1-12 01 

Mo 
0 H,0 

C t 
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[MC1
5
H
2
0]

2- structural type may thus be regarded as a deformed octahedral 

structure. This accounts for the lower symmetry of these compounds by 

comparison to the cubic symmetry shown, for example, by K 2PtC16  where the 

complex ion has regular octahedral symmetry. 

As mentioned in Section 3.1 far infrared spectra of these compounds 

showed definite trends in the M-0 and M-Cl stretching frequencies in 

comparative series of these compounds
61

. 	It was thought that these 

variations might occur in systematic fashion and could be a result of 

packing considerations caused by different sized atoms. Also considerat-

ions of H-bonding could not be ruled out. 

Within the accuracy of the structure studies reported in this work, 

however, it was found that the M-Cl and M-0H2 
bond lengths for the same 

central metal were approximately the same. 

N.q.r. studies show several anomalies. 	For instance, Rb
2
[FeC1

5
H
2
0] 

and 1th
2
[CrC1

5
H
2
0] exhibit 

35Cl n.q.r. frequencies at temperatures ranging 

from 77°K to 298°K, whereas such frequencies were not observed in 

61 
1th

2
[MoC1

5  H2 
 0] even at low temperatures. 	In compounds of the Cs 2

[RuC1
5
H
2
0] 

structural type 
35
Cl n.q.r. frequencies observed at 298°K for Cs 2

[CrC1 5
H0] 

and Cs 2 [MoC1 5
H
2
0] were not observed for Cs 2 [FeC1

5
H
2
0]

61
. 	It is possible 

that M-C1 bond lengths might vary because of different degrees of hydrogen-

bonding between molecules, or that these n.q.r. anomalies might simply be due 

to the different size of the metal ions causing differences in the overall 

crystal lattice. 	On the other hand, the n.q.r. data collecting process may 

suffer from problems such as low signal-noise ratio which might make 

consistent data difficult to obtain. 	However, the X-ray structural evidence 

discussed above shows no significantly different degrees of hydrogen-bonding 

in these compounds and does not show any variations in bond-lengths to 

account for the differences in n.q.r. spectra. 
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Chapter 4  

Crystal Structures of Vanadium(III) Aqua Chloro Complexes  

I. 	Cs VC1 .4H 0 and Cs 2VBr5 .4H20 
5 	2 

4.1. 	Introduction  

Of particular interest in the study of the coordination chemistry of 

vanadium(III) is a series of aqua chloro complexes which have been isolated 

by several workers
74-81  

Recently Podmore and Smith
70 

of these laboratories 

have reported spectral, magnetic susceptibility and some X-ray powder data 

on a range of such compounds. 	Their report deals in particular with a 

group of "green" compounds of empirical formulae VX
3
.6H

2
0 (X = Cl, Br), 

RbVC14 .6H20, and C52VX5 .nH20 (X = Cl or Br; n = 4 or 5). 

Reflectance spectra in the visible region were assigned by Podmore and 

Smith
70

, and others 
77,82, 

 on the basis of an octahedral ligand field, to 

suggest the presence of [VX2(H20)4]
+ 

complex ions in these compounds. 

Infrared spectra in the region 4000-270 cm
-1 

showed only one band in the 

expected V-X (X = Cl or Br) stretching frequency range for compounds contain-

ing [VX 2 (H20) 4 1 1-  ions. 	This was interpreted as being evidence for trans  

complex ions. By comparison, Podmore and Smith have found two measurable 

M-Cl stretching frequencies for a related compound [VC14 (CH3COOH) 2 ], and 

from this have postulated a cis configuration of the acetic acid ligands. 

For the "green" V(III) complexes studied by Podmore and Smith the 

magnetic moments recorded at room temperature are close to the spin-only 

value expected for octahedral coordination. 	For the range of V(III) 

compounds reported they also found that magnetic moments varied with 

2° 
temperature in the order [VC1

2
(H

2
0)

4
]
+ 

< [VC1
5
(H

2
0) ] < [VC1

6
]
3-

, suggesting 

a larger ground state splitting for the [VC1
2
(H

2
0)

4
]
+ 

compounds. 	This 

would indicate a greater distortion from the cubic field for this type of 

compound than for the others. 



76 

Similar compounds of other first row transition metals have also been 

reported by other workers. Podmore
61 

has reviewed the literature up to 

1973. Probably the most significant results in this area are those of 

X-ray diffraction studies. The compounds FeC1
3
.6H

2
0 and CrC1

3
.6H

2
0 have 

been shown to have crystal structures which contain the complex ions 
83 	84,85 

[FeC1
2
(H

2
0)

4
]
+ 

and [CrC1
2
(H

2
0)

4
] 	respectively. 	This is in contrast 

to the structure of the non-transition metal compound GdC1
3
.6H

2
0, which . has 

_ 
been shown

86 
to consist of [Gd(H

2
0)

6
] 3+ and Cl ions. Compounds of similar 

stoichiometry but with the central metal in the 2+ state have also been 

studied. 	Two of these compounds, CoC1
2 
 .6H

2  0
87

, and NiC1
2
.6H

2
0
88 

crystallize 

with trans-[MC1
2
(H

2
0)

4
] °  (M = Co or Ni) units in their crystal lattices. 

Another similar compound but of a non-transition metal, MgC1
2
.6H

2
0
89

, 

_ 
however, contains [Mg(H

2
0)

6
]
2+ 

complex ions and Cl ions. 	Thus it is of 

particular interest to identify the type of complex ion present in the 

"green" V(III) complexes discussed above. 

The best method of effectively clarifying these structural problems 

associated with the V(III) compounds is by X-ray crystal structure analysis. 

In the field of V(III) chemistry a survey of the literature to March 1973 

reveals that, apart from single crystal X-ray studies reported on four 

coordination compounds of vanadium(III), K
3
[V(C

2
0
4

)
3
].3H

2
0
90,91 

V[PS
2
(0Et)

2
]
3
92

, VC1
3
(NMe

2
)
3
93 

and [(1T-C
5
H
5
)V(CF

3COO)2 ]2' 
94

- there is very 

little X-ray data, other than that obtained by powder diffraction for simple 

V(III) compounds. 	The results of this survey are listed in tabdlar form in 

Appendix 4. 

In order, therefore, to obtain more structural information about the 

"green" aqua halides of vanadium(III), single crystal X-ray structure 

analyses were carried out on five compounds whose overall stoichiometry can 

be expressed as shown in Table 4.1. 	In this chapter the structures of the 

two caesium compounds, C5
2
VC1

5
.4H

2
0 and C5

2
VBr

5
.4H

2
0 will be presented. 

The following two chapters will deal with similar reports on the other three 
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TABLE 4.1 

Overall Stoichiometry of V(III) Compounds Studied 

Cs
2
VC1

5
.4H

2
0 

Cs
2
VBr

5
.4H

2
0 

RbVC14 .6H2
0 

VC1
3
.6H

2
0 

VBr
3
.6H

2
0 

compounds shown in Table 4.1. A subsequent chapter will be devoted to a 

comparative discussion of the five V(III) crystal structures reported 

herein. 
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4.2. 	The Crystal Structure of Cs 2VC1 .411 20 

4.2.1. 	Experimental  

Preparation - Crystal Selection  

The sample used was prepared by Podmore of this Department
61

. 	The 

green crystalline compound was obtained from an aqueous solution containing 

caesium chloride and vanadium(III) chloride, by saturating with hydrogen 

chloride at room temperature. The needle shaped crystals were extremely 

sensitive to moisture and to oxygen, and this made the mounting of single 

crystals difficult. 	It was possible, however, to handle the compound in 

air for a few minutes, thus allowing suitable crystals to be selected with 

the aid of a binocular microscope. The crystals were then sealed into 

previously dried capillaries. 	This proved unsuccessful because the ' 

crystals decomposed rapidly, probably by reacting with oxygen from the air 

in the capillaries. 

The next step was to coat selected crystals with inert protective 

materials such as nujol, paraffin oil, vacuum grease and various commercial 

preparations. 	The coated crystals were then sealed in capillary tubes. 

This was partially successful but in each case after one or two days the 

crystals decomposed, thus making data collection by normal photographic 

methods unsatisfactory. 

The crystal finally used for X-ray data collection was one of several 

transferred into a dried capillary tube drawn from the side of the main 

reaction vessel. 	The operation was carried out under nitrogen atmosphere 

on a vacuum line. Many attempts were required before a suitable single 

crystal lodged in the capillary tube at an appropriate angle, and 

sufficiently separated from its neighbours. 	This crystal had approximate 

dimensions of 0.2 x 0.1 x 0.1 mm. 
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X-ray data collection  

Cell parameters were initially obtained from oscillation and equi-

inclination Weissenberg X-ray photographs of this single crystal. 	Further 

refinement of these parameters was carried out by least squares methods on 

X-ray powder data (Table 4.2) collected from a Philips powder diffractometer 

using Cu Ka  radiation and KC1 as an internal calibrant. The lattice 

parameters are given in Table 4.3. 	This powder work was carried out jointly 

by Podmore
61 

and the author. 

The density reported elsewhere
95 

was verified by the gradient tube 

method described in Appendix 2. From this and the cell volume, it was 

calculated that the unit cell contained two formula units (z = 2) of 

Cs
2
VC1

5
.4H

20 molecules per unit cell. 

Trial zero level equi-inclination Weissenberg X-ray photographs taken 

with Cu K
a 
radiation showed the diffraction spots to be of reasonably 

regular shape. Because of this and because of the difficulty in mounting a 

stable single crystal, non-integrated data were collected for several further 

levels by the Weissenberg technique on 4-film packs as discussed in Section 

1.3. These photographs were taken about the monoclinic b-axis for the 

four levels lint. (n = 0-3), giving a total of 243 observed reflections. 

This number could have been increased by data collection of levels with 

k>3 and about another axis. As will be shown later, however, these 243 

observed reflections provided sufficient data for structure det rmination 

and refinement. 	(See Section 4.2.2). 	This together with the difficult- 

ies with crystal stability was considered sufficient reason for limiting 

the data collection. Also attempts to photograph level ha showed only a 

few reflections of very poor resolution. The photographs of the various 

layers were taken over periods ranging from 48 hours for the zero ha level 

to 57 hours for the third hie. level. 	Using these exposure times the most 

intense reflections for each level fell into a measurable range on the fourth 
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TABLE 4.3 

Crystallographic Data 

Cs
2
VEr

5
.4H

2
0
61 

VC1
5
.4H

2
0 

	

17.745 	0.008 R 

6.183 - 

• 

0.005 A 

7.019 - 

• 

0.005 A 

	

106.4 	- 

• 

0.5° 

2 

2.50 g/cc 

2.54 g/cc 

h+k = 2n+1 

Monoclinic C2/m 

•18.484 - 

• 

0.009 A 

6.423 - 

• 

0.005 A 

	

7.266 	0.006 A 

	

106.1 	- 

• 

0.5° 

2 

3.20 g/cc 

3.16 glee 

hkt: h+k = 2n+1 

C2/m 

a 

f3 

d
o4s cal° 

d
obs 

Systematic 
Absences 

Space Group 

Axis of data 
Collection 

Observed 
Reflections 243 511 
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film of the packs. 	It was also found that the increase of exposure times 

by about three hours per successive level helped place the data from various 

layers on a reasonably close overall scale. 	The intensities of the reflect- 

ions observed were estimated visually with a standard scale and were corrected 

for Lorentz and polarisation factors. No correction was made for absorption. 

The optimum thickness calculated for this compound is 0.04 mm. 	In neglecting 

absorption corrections it is possible, therefore, that there would be some 

slight decrease in the accuracy of measurements of intensity data. 	(See 

also Section 1.5.1). 

Inspection of the equi-inclination Weissenberg photographs revealed the 

compound to be monoclinic, and that reflections with h+k odd were systematic-

ally absent. 	The space groups corresponding to these observations are 

C2/m, Cm or C2
9

. 	In accordance with general crystallographic practise the 

centrosymmetric C2/m was chosen as the most likely space group. The 

subsequent structure determination confirmed this choice. 

4.2.2. 	Structure Determination and Refinement 

A three-dimensional Patterson function was calculated in space group 

C2/m, which is also the Patterson space group. 	Sections were calculated 

along the b-axis at intervals of 1/40 for sections 0-20. 	A plot of the 

relevant Harker plane (x0z) is shown as Fig. 4.1, with dimensions a/2 x c. 

The main Patterson vector information is contained in this Harker plane 

and in the Harker line (0y0). 	In fact, there are no significant peaks 

outside the plane with y = 0 except in the symmetry related plane with y = 1/2, 

and this was interpreted to mean that most of the scattering material of the 

real cell is likewise located in the planes with y = 0 and y = 1/2. 	This is 

confirmed by the fact that the only peak on the Harker line (OyO) occurs at 

the origin. 

With z = 2 it was possible to fix the two vanadium atoms in the unit 
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Fig. 41 	Patterson sect ion y= o 
Cs,VC15.4 
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cell at the special position of space group C2/m, 2(a) (0,0,0) and 

(1/2,1/2,0). 	For convenience the peaks of the Patterson map are labelled 

numerically in Fig. 4.1 and will be referred to as such. 	As a starting 

point the largest non-origin peak (1), of height 268 relative to the origin 

peak of height 856, was treated as a Cs-Cs vector. 	The second largest peak 

(2), of height 196 was assigned as resulting from a V-Cs interatomic vector. 

Since the vanadium had already been fixed at the origin, then peak (2) 

becomes a possible Cs location in the real cell at a position 4(i), with 

coordinates of approximately (0.31,0,0.24). 

In seeking possible Cl locations in the real cell a possibility exists 

that there is at least one chlorine coordinated to the vanadium atom. On 

• 	- 
the basis of the sum of reported

72 
 ionic radii of V

3+ 
 (0.625 A) and Cl 

0 
(1.81 A) such a bonded chlorine would be expected to lie at less than 2.5 A 

from the origin. 	There is only one peak, (4), of height, 31, in the 

Patterson at about this distance (Fig. 4.1). 	This Cl location (4), with 

coordinates of approximately (0.10,0,0.87) is supported by a possible 

Cs-C1 vector at (5). 	If location (4) represents a Cl ligand attached to 

the vanadium atom, then the symmetry operation of the space group fixes a 

related Cl in the trans- configuration on the opposite side of the origin. 

It is possible that the remaining chlorines may also be bonded to the 

vanadium, but this can be ruled out because there are no other vectors of 

sufficient weight close enough to the origin peak. 	The chlorines remaining 

were located from the reasonably large possible Cs-C1 vectors (6). of height 

101, and (7) of height 114, giving two locations for such chlorines at 2(d) 

(0,1/2,1/2) and 4(i) (0.30,0,0.75). 

This allocation of vectors gave a model containing all Cs, V and Cl 

atoms. This model was used to calculate structure factors corresponding 

to the 243 observed reflections. After initial interlaying scaling had 

been carried out, a residual factor of 26% was obtained from a comparison of 

observed and calculated structure factors. 	The signs of the calculated 
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structure factors were then allocated to the observed data, and Fourier and 

difference Fourier syntheses were calculated. 	The atomic positions appeared 

as peaks in the Fourier map with peak heights consistent with their respect-

ive atomic numbers. There were no anomalous negative regions occurring at 

these positions in the difference Fourier. 

The assignment of the remaining oxygens of the water molecules was made 

on the basis of a peak occurring at approximately (0.06,0.2,0.2) in the 

Fourier and difference Fourier maps. 	Inspection of the relevant Patterson 

map section with y = 8/40 showed a possible Cs-OH2 
vector consistent with 

the allocation of the oxygens. 

The completed model was used to calculate further structure factors, 

and the structure was refined by the full-matrix least-squares method 

initially on the atomic coordinates. 	The R factor, as defined in Section 

1.2l at this stage was 18%. 	Suitable trial values of isotropic temperature 

factors were introduced, these being obtained by analogy with values for 

similar atoms in structures discussed in Chapter 3. 	The refinement 

continued down to a residual factor of 13%. 	Inspection of the relationship 

between individual observed versus calculated structure factors revealed 

several reflections which showed poor correlation. 	The intensity of these 

particular reflections were checked. 	It was found that all were either in 

the wide angle range and showed a,13 splitting or occurred along streaks on 

the film making them difficult to measure. 	Three reflections with very low 

intensity were deleted and several other more intense spots were 'measured on 

both sides of the film and the average value substituted in the calculations. 

Further cycles of least-squares refinement brought the residual factor down 

to 10.3%. 	However, in checking this refinement stage by Fourier and 

difference Fourier calculations it was noted that the eight-fold oxygen 

ligand position gave rise to a much smaller peak than was expected on the 

Fourier, and a slight "hole" or negative region on the difference Fourier 

map. This suggested that the ligand should be shifted to a point along the 
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y direction further away from the vanadium atom. A bond length calculation 

on the model with residual factor of 10.3% gave the V-OH 2  bond as 1.85 A, a 

value considerably shorter than an expected bond length of about 2.0 R found 
in the other compounds containing [VC1

2 
 (H

2  0)4 ]
+ 

ions discussed in later 

portions of this thesis. 	(Chapters 5 and 6). 

Also the isotropic temperature factor of the water (5.88 Rt was 
considerably greater than expected for such a ligand. As discussed earlier 

most of the contents of unit cell are concentrated in the plane (x0z) with 

the water molecules being the only groups outside this plane. 	Thus all the 

refinement along the b direction is concentrated on the y coordinate of the 

oxygen atom. 	It must be remembered also that only four levels of data were 

collected along the b-axis, thus the refinement was throwing all the errors 

onto two variables of the smallest atoms present. 	In the light of V-OH2  

bond lengths found in all other studies, it was decided to carry out the 

selection and refinement of the water position by difference Fourier methods. 

Beginning again with the partial Cs 2VC1 5  model included in a structure factor 

calculation but with the oxygens excluded, least-squares refinement gave a 

residual factor of 13%. From this a difference Fourier was calculated with 

sections of 1/100 b. The relevant section with the missing oxygen peak 

occurred at 21/100 b and this was contoured on the plotter and the centre of 

the peak found by measurement to have fractional coordinates of (0.0057,0.209, 

0.206). 	Inclusion of this fixed position for the oxygen atom and refinement 

of overall structure resulted in a residual factor of 10.6% and gave a V-OH 2 

bond length of 1.983 A. 	This is in good agreement with the average V-OH 2  

bond length of 2.01 A found in the other related compounds reported herein. 

A final Fourier showed good peak height correlation and the difference Fourier 

showed no anomalies at the new oxygen position. At this stage the structure 

refinement was concluded. A comparison of observed and calculated structure 

factors is given in Appendix 3 as Table A.3.10. 
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For reasons discussed in Section 1.5 anisotropic temperature factors 

were not included in the refinement cycles. Together with the four layer-

scale factors the maximum number of variables refined in the least-squares 

method was 19. The 243 observed reflections therefore provided more than 

ten data items per variable, and this was considered sufficient for struct-

ure refinement. 

Data showing atomic coordinates and isotropic temperature factors, and 

some bond lengths and angles are shown as Tables 4.4 and 4.5. 	The standard 

deviations attached to these data refer to the deviations calculated from the 

least-squares and bond lengths computer programs (Appendix 1), and do not 

take into account errors inherent in intensity measurement or in the 

measurement of unit cell dimensions. 

It can be seen from Table 4.4 that the final temperature factors' 

calculated for the heavier atoms have relatively low values. 	This probably 

arises in the refinement stages to compensate for errors occurring in 

intensity data because of the neglecting of absorption corrections. 	(See 

also Section 1.5.1). 

4.2.3. 	Description of the Structure  

The structure of Cs
2
VC1

5
.4H

20 is shown viewed along [010] in 

Fig. 4.2. 	The Fourier section with y = 0 is also shown. 	(Fig. 4.3). 

The vanadium atoms are located at the two-fold special position (0,0,0) and 

(1/2,1/2,0). 	Each vanadium is at the centre of a complex [VC1 2 (H20) 4 ] -1-  

ion, the chlorines of which are trans  to one another with V-Cl = 2.361 A, 

and occupy a four-fold (x,0,z) position such that the line Cl-V-C1 lies in 

the planes with y = 0 and y = 1/2. 	The oxygen ligands with V-OH 2  = 1.983 A 

are in an eight-fold (x,y,z) general position, four such ligands thus forming 

a rectangular plane with the vanadium at the centre. 

The complex ion is distorted from D4h  tetragonal symmetry, the bond 

angles being 91.10° for Cl-V-OH2 , 92.0° for H
2
0-V-0H

2
. The H

2
0-0H

2 
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TABLE 4.4 

Atomic Coordinates and Isotropic Temperature factors 

Cs
2
[VC1 2

(H2
0) 4

1C1 3 

(Standard deviations in parenthesis) 

Atom Position x(ax ) y(a) 
Y 

z(a) B(a 	) 
B 

V 2(a) 0 0 0 .98(7) 

Cs 4(i) 0.2980(1) 0 0 -.2442(1) .71(2) 

C1(1) 4(i) 0.1098(2) 0 -0.1273(5) 1.35(7) 

C1(2) 4(i) 0.3072(2) 0 0.7518(6) 1.76(7) 

C1(3) 2(d) 0 0.5 0.5 1.86(10) 

0(H
2
0) 8(j) 0.0557 0.209 0.206 2.99(20) 

TABLE 4.5 

Distances and Angles 

(Standard deviations in parenthesis) 

Complex ion 

V-C1(1) = 2.361(2) A 
	

C1(1) - OH
2 

= 3.054(8) A and 3.113(1) A 
V-OH2 	

= 1.983(10) A 

< C1(1)-V-OH
2 

= 91.1(1)° 

< H2
0-V-0H

2 	
= 92.0(2) °  

Other closest approach distances 

Cs-C1(1) = 3.612(1) and 3.696(1) A 

Cs-C1(2) = 3.520(3) and 3.615(1) A 

Cs-C1(3) = 3.528(1) A 

C1(2)-0H
2 
= 2.973(7) R 

C1(3)-0H
2 
= 3.102(5) R 
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• 

Fig. 4.2 Projection - down [010] 
Cs2 D/V2(H 20))V3  

•--• ---- in plane y=0 	, V; tCs 

— in plane y.1 

0= H 20 
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Fig. 4.3 	FOURI ER SECTION y7--  0 Cs2(VCE2(H20)4 1 Ct3 
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distance in the octahedra is 2.585 A. 

Of the remaining non-bonded chloride ions those labelled C1(3), 

occupy equivalent positions (0,1/2,1/2) and (1/2,0,1/2) and the other four 

C1(2), are located in a four-fold (x,0,z) location. 	The caesium ions are 

likewise in 4(i), (x,0,z) positions. 

Each caesium ion is surrounded by eight chlorines as nearest neighbours 

(Fig. 4.4); four of these are C1(2) ions from two planes separated by b/2, 

one is a C1(3) ion from the (010) plane and the remaining three are C1(1) 

ligands from two different octahedra. 	This arrangement is close to the 

CsC1 body-centered cubic structure. 

The nearest neighbours of the chloride ions C1(2), form a distorted 

octahedron comprising four caesium ions with Cs-C1 = 3.520 A and two water 

ligands from different complex ions with C1-0H 2  = 2.973 A (Fig. 4.5). 

The other type of chloride ion C1(3) is also surrounded by six nearest 

neighbours occupying the corners of a slightly distorted octahedron. 	Two 

0 
of these are caesium ions in the same plane with Cs-C1 = 3.528 A; the others 

are water ligands from four different complex ions with C1-0H 2  = 3.102 K. 
0 

(Fig. 4.6). Each chlorine ligand C1(1) has three caesium ions at 3.696 A 

as nearest neighbours. 

The overall structure is thus one of close packing of Cs + , [VC1 2 (H20) 4 1 

- 
and Cl ions in layers with y = 0 and y = 1/2 perpendicular to the b axis. 

The major forces holding these species and layers together is therefore most 

probably electrostatic attraction. The distance of closest approach of the 

chloride ions C1(2) and C1(3) to the water ligands is less than 3.2 A. 	Since 

72
i  

2- 	0 
the sum of reported ionic radii of Cl and 0 	s 3.21 A, it is likely that 

there is some hydrogen bonding between the chloride ions of one layer and 

coordinated water molecules of octahedra centered in planes on either side 

of this layer. The absence of waters of crystallization in this compound 

precludes the presence of H-bonded "cages" of water molecules linking octa- 
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Fig. 4.4 	Projection on [010] 
Showing eight fold coordination of chlorines 
about the caesium ions. 
Cs2[VC12(1-120)4]C13 
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Fig. 4.5 
Projection down [010] 
Showing distorted octahedral environment of 
Cl (2) ions. Cs2[VC12(H20)41C13 
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Fig. 14  6 
Projection down [010] 
Showing octahedral environment of 01(3) ion. 
Cs2[VCl2(H20)4]Cl3 
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hedra in chains, as has been described in [CrC1
2
(H

2
0)

4
]C1.2H20

84,85 
and 

suggested for [FeC1
2
(H

2
0)

4
]C1.2H

2
0
83

. 

The correct formula of this compound is thus Cs 2 [VC1 2 (H20) 4 ]C1 3 , and 

it should be named as dicaesium trans -dichlorotetraquovanadium (111) trichlOride, 

4.3. 	The Structure of Cs
2 
 VBr .4H

2 
 0 

The work on this structure was jointly undertaken by Podmore
61 

and the 

author. The author collaborated to the extent of supervising and advising 

on the X-ray data collection process, and assisting in carrying out the 

computational work involved in the structure determination. The details of 

this structure determination have been presented in Podmore's Ph.D. Thesis
61 

 . 

The unit cell dimensions were initially obtained from oscillation and 

zero-level equi-inclination Weissenberg X-ray photographs, and refined on 

powder data (See above,Table 4.2) obtained from a Philips powder diffracto-

meter using Cu Ka  radiation and KC1 as an internal calibrant. These dimens-

ions and other crystallographic data are shown above in Table 4.3 by 

comparison with data from Cs 2 [VC1 2 (H20) 4 ]C1 3 . 

A single crystal of approximate dimensions 0.5 x 0.2 x 0.2 mm was 

mounted in a capilliary using the technique described for Cs 2VC1 5 .4H20. 

(Section 4.2). Single crystal X-ray data were collected by the equi- 

inclination Weissenberg method on 4-film packs. 	These data were taken 

about the monoclinic b-axis for the five levels hne, (n = 0-4), giving a total 

of 511 observed reflections. 	The data were corrected for Lorentz and 

polarisation factors but not for absorption. 

Inspection of the X-ray powder data and single-crystal photographs 

suggested that this compound was isomorphous with that reported here for 

Cs
2
[VC12 (H

2
0)

4
]Cl

3' and hence the structure refinement was carried out using 

a model for Cs
2VBr5 .4H20 derived by analogy from the chlorine compound. 

The structure was refined by varying atomic coordinates and isotropic 



96 

temperature factors using the technique of full-matrix least-squares refine-

ment. 	The lowest residual factor obtained was 17%. The structure could 

be 	refined by correcting for absorption as the crystal used was a 

relatively large one. However, Fourier and difference Fourier maps of the 

structure with this residual factor showed no anomalies, so the refinement 

was terminated at this point. 

Relevant data showing atomic coordinates, isotropic temperature factors 

and bond lengths and angles are shown in Tables 4.6 and 4.7. 	The standard 

deviations attached to the coordinates were calculated from the least-squares 

refinement program and do not take into account errors in data collection or 

unit cell measurements. A comparison of observed and calculated structure 

factors is shown in Appendix 3 as Table A3.11. 	This compound is isomorphous 

with Cs 2 [VC1
2
(H

2
0)

4
]C1

3 
and hence should be formulated as Cs2 [VBr 2 (H

2
0)

4
]Br

3' 

dicaesium trans -
dibromotetraquOvanadium (111) tetrabromide. 

The data obtained from this structure determination can be correlated 

with the other V(III) structures reported in this work and this will be 

amplified in Chapter 7. 
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TABLE 4.6 

Atomic coordinates and isotropic temperature factors 

Cs2 [VBr2
(H

2
0)

4
]Br

3
61 

(Standard deviations in parenthesis) 

Atom Position x(a
x

) y (a 	) 
Y 

z (a z ) B(0
B

) 

V 2 (a) 0 0 0 1.01(5) 

Cs 4(1) 0.2982(1) 0 0.2452(1) 1.19(2) 

Br(1) 4(1) 0.1111(1) 0 -0.1325(2) 1.55(3) 

1 
Br(2) 4(i) 0.3070(1) 0 0.7473(2) 1.73(3) 

Br(3) 2(d) 0.5 0 0.5 1.57(3) 

D(H
2
0) 8(j) 0.5060(4) 0.2271(18) 0.1930(11) 1.55(19) 

TABLE 4.7 

Bond lengths and angles 

Cs2 [VBr2
(H

2
0)

4
]Br

3
61 

(Standard deviations in parenthesis) 

V-Br(1) 

V-OH
2 

Cs-Br(1) 

Cs-Br(2) 

Cs-Br(3) 

Br(1)-Br(2) 

Br(1)-0H2  

Br(2)-0H
2 

Br(3)-0H
2 

2.497(1) 

2.060(7) 

3.775(1) 

3.607(2) 

3.677(1) 

3.954(1) 

3.229(6) 

3.091(5) 

3.175(6) 

< Br(1)-V-OH
2 

90.3(2) 
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Chapter 5  

Crystal Structures of Vanadium(III) Aqua Chloro Complexes  

II. 	RhVC1
4 
 .611_

2
0 

------  

5.1. 	Introduction 

The rubidium salt, RbVC1
4
.6H

2
0 contains the same number of atoms as 

Cs
2
VC1

5
.4H

20 (Chapter 4) but has a different overall stoichiometry. 
	It is 

of interest to see if this rubidium salt also contains the [VC1
2 (H20) 4

] + 

complex ion as found in the caesium salt. Further interest centres around 

overall packing considerations, the possible presence of hydrogen bonding 

and the relationship of this compound to the other V(III) complexes 

discussed in this thesis. 

5.2. 	Experimental  

The green crystalline material was prepared by Podmore 61 
by passing 

hydrogen chloride into a solution of vanadium(III) chloride and rubidium 

chloride. 	Similar problems were encountered in mounting single crystals as 

for Cs2 [VC1 2 (H
2
0)

4
]C1

3 (Section 4.2), and a single crystal was isolated in 

the same way. 	This needle-shaped crystal of approximate dimensions 

0.2 x 0.1 x 0.1 mm was used for intensity data collection. 

Preliminary lattice parameters were obtained from oscillation and 

equi-inclination Weissenberg photographs, and refined by least-squares 

methods on powder data (Table 5.1) collected from a Philips powder diffracto-

meter using Cu Ka  radiation, and KC1 as an internal calibrant. 	Unit cell 

parameters are shown in Table 5.2. 

Collection of intensity data from the single crystal of this compound 

was carried out using the equi-inclination Weissenberg technique, described 

in Section 1.3.3. Trial photographs having shown the diffraction spots to 

be of a regular shape, the non-integrated data collection technique was 



99 

TABLE 5.1 

X-Ray Powder Data
61 

RbVC1
4
.6H

2
0 

sin 
2
0
obs. 

sin  
sin 	

. 2 
Index 

80.3 vs 80.5 1 1 0 

98.5w 97.9 020  

165.9 m 166.2 1 1 1 

322.8 vs , 322.0 2 2 0 

345.0 s 342.9 0 0 2 

361.4 w 362.1 1 3 1 

390.7 s 391.8 0 4 0 

425.2 w 423.4 1 1 2 

438.7 w 440.8 0 2 2 

564.9 w 567.0 2 0 2 

616.4 m 615.9 2 4 0 

666.4 m 664.9 2 2 2 

697.6 w 701.6 2 4 1 

727.4 m 724.5 3 3 0 

755.1 w 753.9 1 5 1 

809.0 vw 810.3 3 3 1 

874.4 m 871.6 3 1 2 

995.8 vw 994.3 4 2 0 

1011.9 w 1011.1 1 5 2 

1104.9 w 1105.6 2 6 0 

1217.9 w 1224.4 0 6 2 

1259.5 s 1255.9 1 7 0 

1290.1 w 1288.1 4 4 0 

1349.3 vw 1341.6 1 7 1 

1446.0 vw 1448.5 2 6 2 

1509.2 w 1510.7 5 1 1 

1569.0 s 1567.2 0 8 0 

1694.7 vw 1693.6 2 2 4 
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TABLE 5.2 

Crystallographic Data 

RbVC1
4

.611
2
0 

- 

a 10.291 ± 0.005 A 

15.566 0.007 A 

8.319 - 0.005 A. 

4 

d
obs 

d
calc 

Systematic 
Absences 

Space Group 

95 
1.93 g/cc 

1.93 g/cc 

h+k = 2n+1 

Okt.: 	= 2n+1 

hOL: 	= 2n+1 

Orthorhombic Cccm 
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was employed rather than the more time consuming integrating method. This 

time-saving was required because of the extreme instability of the compound. 

These preliminary data had also shown the compound to be orthorhombic, 

and intensity data were collected down the c-axis for levels hkn (n = 0-4), 

giving a total of 161 observed reflections. 	More reflections could have 

been recorded over longer exposure times or about the other two orthorhombic 

axes. 	This was, in fact, tried during the course of data collection but the 

crystals decomposed during the period of trial data collection. 	The data 

that were collected came from a crystal whose hk5 level showed extreme 

distortion of spots and obvious signs of crystal decomposition, and hence 

could not be used for further data collection about other axes. 

The observed intensities of reflections were estimated visually against 

a standard scale and corrected for Lorentz and polarisation effects. ' 

Because of the small size of the crystal used, corrections were not made for 

absorption. 	(See discussion Section 1.5.1). 

Inspection of the Weissenberg photographs taken about the c-axis, and 

from zero-level (short-term exposure) photographs taken about the other two 

axes, revealed the compound to be orthorhombic, and showed that reflections 

were systematically absent for hid.: h+k = 2n+1, Okt.: 	= 2n+1 and hae.: 	= 

2n+1. The axes chosen corresponds to the standard orientation used in the 

International Tables of Crystallography
9
, and the absence pattern corresponds 

to the space groups Cccm or Ccc2. The subsequent structure determination 
- 

confirmed the choice of the centrosymmetric space group Cccm used for the 

calculations. Using the reported density of 1.93 g/cc
95

, and the volume 

of the unit cell, it was calculated that there were four formula units of 

RbVC1
4
.6H20 per unit cell. 
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5.3. 	Structure Determination and Refinement  

The crystal has the space group Cccm but the Patterson function can be 

calculated in the Patterson Group, Cmmm, of higher symmetry. 	(Section 

1.2.2). 	A three dimensional Patterson function was therefore calculated in 

this space group Cmmm, the required sections being taken along the c-axis 

at intervals of 1/40 for levels 0-20. 	The symmetry elements of the crystal 

space group Cccm manifest themselves as vector concentrations in the relevant 

Harker planes (Oyz), (x0z) and (xy0), and in the Harker lines (xn1/2), (OA) 

and (00z). 	Several attempts were made to interpret this Patterson function 

using the information contained in these Harker lines and planes. 	The 

interpretation was complicated by the appearance of many possible vector 

peaks on the various sections. 	The description that follows is of a 

solution of the Patterson function which provided a partial model for the 

molecule, and which led to satisfactory structure completion and refinement. 

The allocation of the main interatomic vectors in the Harker plane (xy0) and 

in the plane with y = i of the Patterson function is shown in Figs. 5.1 and 

5.2. 

The relatively heavy atom in this structure is the Rb
+ 
 ion, and this 

must occur in one of the four-fold special positions as must the central 

vanadium ion. 	Along the Harker line (00z) the only peaks occur at (0,0,0) 

and (0,0,1/2), suggesting that the main scattering matter in the unit cell 

i lies in the planes with z = 0 and z = 	If the Rb
+ 
 ion s located at 4(a), 

(0,0,1/4) then Rb-Rb vectors would be expected at (0,0,1/2), (1/2,1/2,0), 

and (1/2,1/2,1/2). 	Large peaks of relative height 737, 960 and 548 

respectively do occur at these positions. 	(Origin peak, 1260). 	It is 

possible then that the vanadium atoms can occur in either planes with y = 0 

or y = %. 	Examination of the other four-fold special positions available 

eliminates all but 4(f) (1/4,3/4,0) or 4(e) (1/4,1/4,0) positions, on the 

grounds that suitable Rb-V and V-V vectors only show up on the Patterson for 
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(a) 

Fig. 5.1 	Patterson section zr.o 
RbVC14.6 H20 
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(b) 

Fl g.5.2 Patterson sect ion zz 025RbVC14.6H20 
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these combinations with the Rb
+ 
position at 4(a). 	Since both available 

positions are at this stage equivalent, the vanadium was placed at 4(e) 

(1/4,1/4,0). 

In looking for possible chlorine positions it was thought best to 

search for V-Cl vectors of less than 2.5 R corresponding to expected bond 
lengths for this pair of atoms

72
. 	Inspection of the Patterson revealed 

only the one peak of height 130, close enough to the origin to be considered. 

(Fig. 5.1). 	Confirmation of this as a V-Cl vector comes from the relatively 

large peak of height 273, in the level with z = 1/2, corresponding to an Rb-Cl 

vector (Fig. 5.2). 	Thus the chlorine ligands were placed at a position of 

type 8(i), (x,y,0) locating them in a trans-  configuration with respect to 

the vanadium metal ion. 	This allocation of interatomic vectors gave a 

possible model for the structure containing the Rb, V and 4 Cl atoms. 

With this partial model of the structure it became possible to proceed 

with the identification of the complete structural unit. 	Structure factors 

were calculated corresponding to all the observed reflections, and the signs 

of these used to produce a Fourier and difference Fourier with sections of 

0/40 to 10/40 along the c axis. 	From peaks on the (xy0) plane a further 

eight-fold position could be assigned to the remaining packing chlorines, 

and a possible sixteen-fold position for the oxygens of the bonded water 

ligands. This latter position agreed with the type of octahedral orientat-

ion found in other similar molecules (Chapters 4 and 6). Upon further 

structure factor calculations, however, it was found that the regidual factor 

increased from 37% to 43%. While the consequent Fourier showed a reasonable 

peak for the chlorine added, that which represented the proposed oxygen 

position was only about half the expected height. 

On the difference Fourier map, however, a relatively large hole 

appeared where the oxygen of the water molecule was presumed to be. 	Delet- 

ion of this oxygen position and retention of the chlorine led to an R-factor 

calculation of 28% which suggested a more reasonable structural model. 
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Again, a Fourier and difference Fourier were calculated and the results 

examined for extra peaks. The only peaks on the difference Fourier 

suggestive of oxygen bonded ligands, were with the octahedral unit pointing 

along the z direction. 	Accordingly these were placed in an 8(i) (0,0,z) 

position, and the remaining bonded oxygens in 8(t) (x,y,0). 	Structure 

factors calculations resulted in a drop of the residual factor to 20%. 

The final task was to locate the remaining eight oxygen atoms. 

Peaks on the difference Fourier suggested few possible locations for 

these atoms. 	Various positions of the type 8(h) (x,0,1/4) were tried, each 

time resulting in an approximate 10% rise in R-factor and the production of 

large holes in the resulting difference Fouriers. 	The four-fold positions 

cannot be occupied because they are too close to positions already filled by 

other atoms. 

At this point it was thought that perhaps there were no other water 

molecules present, but a repeat analysis on the sample from which the crystal 

was taken confirmed their presence. 	Because there were no suitable peaks 

on the difference Fourier for the oxygens of these water molecules, it was 

decided to carry out several cycles of least-squares refinement on the 

Rb[VC1 2 (H20) 4
]Cl

2 
portion of the molecule already obtained. 	Refinement 

of first the coordinates, and then the coordinates and isotropic temperature 

factors reduced the residual factor to 11%. At this stage a further Fourier 

and difference Fourier were calculated and examined for peaks which could . 

suggest locations for the remaining water molecules. 	This time 'a small peak 

occurred on the difference Fourier with approximate coordinates (0.06,0.57,0), 

and this position of type 8(t) (x,y,0) was allocated to the remaining oxygen 

atoms. Further full-matrix least-squares refinement was carried out varying 

atomic coordinates and isotropic temperature factors of all atoms and the 

residual factor dropped to 9.5%. 	At this stage the shifts in parameters 

were less than the standard deviations. 	Because of this and because final 



107 

Fourier and difference Fourier maps showed no anomalies the structure refine-

ment was concluded. Anisotropic temperature factors were not introduced 

into the refinement, because the observed data (161 reflections) did not 

provide enough data to justify their use. 	(See Section 1.5.1). 

Relevant data, showing atomic coordinates, isotropic temperature factors 

and bond lengths and angles are shown in Tables 5.3 and 5.4. 	The standard 

deviations shown for these were calculated from the particular operations 

of the computer programs used, and do not include allowance for errors in 

intensity data collection and measurement of unit cell dimensions. 

A comparison of observed and calculated structure factors after the 

last refinement cycle is shown in Appendix 3 Table A.3.11. 

5.4. 	Description of the Structure: 

The structure of RbVC1
4
.6H

2
0 is illustrated in projection from z = 0 to 

z = *along [001] in Fig. 5.3. 	The vanadium atoms lie at centres of 

symmetry 4(e) (1/4,1/4,0), (1/4,3/4,1/2), (3/4,3/4,0) and (3/4,1/4,1/2), and 

are arranged in layers parallel to the (001) plane separated by c/2 = 4.16 A. 

The complex [VC1
2
(H

2
0)

4 ]
+ 

ions are oriented with a H
2
0-V-0H

2 axis lying 

parallel to the c-axis, and the other two waters and the two trans- chlorine 

ligands occupy the corners of a slightly distorted rectangle around the V 

atom in the (001) plane. 	The oxygens of the water ligands occupy two 

different eight-fold positions, one of type 8(e), (x,y,0) with V-OH2  = 2.003 A 

and the other of type 8(h), (0,y,1/2) with V-OH 2  = 2.044 A. 	The'chlorine 

ligands occupy equivalent eight-fold positions 8(t.), (x,y,,0), the V-Cl 

distance being 2.367 A. 	The bond angles within the octahedral complex ion 

are,within standard deviations,equal to 90°, the two H 20-0H2  distances are 

2.862 and 2.65 A and the relevant Cl-OH
2 
distances are 3.127 and 3.093 A. 

Thus there is only a very slight distortion from the tetragonal D4h  symmetry. 

Each rubidium ion is surrounded by eight chlorines at the corners of a 
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TABLE 5.3 

Fractional Atomic Coordinates and Isotropic Thermal Parameters 

Rb[VC12 (H20) 4
]C1

2
.2H

2
0 

(Standard deviations in parenthesis) 

Atom Position x(a
x

) 17 	(a 	) 
Y 

z 	(a
z

) (GB ) 

V 4(e) 0.25 0.25 0.0 1.96(8) 

Rb 4(a) 0.0 0.0 0.25- 1.69(5) 

C1(1) 8(Z) 0.2115(3) 0.1001(2) 0.0 1.91(8) 

C1(2) 8(Z) 0.8455(3) 0.1303(2) 0.0 1.44(8) 

0(H20. 8(k) 0.25 0.25 0.2457(18) 3.83(21) 

0(H20P 8(t) 0.4421(8) 0.2292(5) 0.0 3.72(25) 

0(H20)3 8(i) 0.0510(7) 0.5748(5) 0.0 3.50(50) 
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TABLE 5.4 

Distances and Angles 

(Standard deviations in parenthesis) 

Complex ion 

V-C1(1) = 2.367(1) 
	

H
2
0(1)-0H

2
(2) = 2.862(7) 

V-0H
2
(1) = 2.044(8) A 

V-0H2
(2) = 2.003(4) A 

C1(1)-0H2
(1) = 3.127(6) A 

C1(1)-0H 2 (2) = 3.109(3) A and 3.093(3) A 

< C1(1)-V-0H
2
(1) = 90.0(2) °  

< C1(1)-V-0H2 (2) = 90.3(1) °  

< H
2
0(1)-V-0H2

(2) = 90.0(3) °  

Other closest approach distances 

Rb-C1(1) = 3.390(1) A 

Rb-C1(2) = 3.312(1) A 

C1(1)-0H
2
(3) = 3.515(4) A 

C1(1)-C1(2) = 3.634(1) A 

H
2
0(2)-0H2

(3) = 2.652(4) A 

C1(2)-0H 2
(2) = 3.092(3) A 

C1(2)-0H2
(1) = 2.985(6) A 

C1(2)-0H
2
(3) = 3.152(4) A 

H
2
0(3)-0H2

(3) = 2.554(4) A 
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Fig. 5.3 Projection down [001] from z = 0 to z 

4W; , 	V 	 O' A z1-'17 

H20 	- - 	H- bonds 

Rb [VC1 2(H2 0),1C12.2 F1 2 0 
/

1 C? 

Rb z 
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slightly distorted cube, similar to the CsC1 structural type (Fig. 5.4). 

Four octahedra centred in two layers with z = 0 and z = ½ each contribute 

one chlorine ligand i Rb-C1 = 3.390 R, and two each of the remaining four 

chlorine are chloride ions in the planes with z = 0 and z = 1/2 with Rb-C1 = 

3.312 R. 	The overall effect is to provide a series of "cages" in which 	the 

. 
Rb

+  ions lie, holding the various sheets of octahedra together by strong 

electrostatic attraction. 

Each chloride ion is surrounded by six nearest neighbours at the corners 

of a distorted octahedron (Fig. 5.5). 	Two of the neighbours are Mc+  ions 

at 3.312 R, one a hydrate water molecule at 3.152 A and theother three are 

water ligands from different complex ions (C1-0H 2  =_2.985 and 3.092 A). 

The complex ions can be regarded as being linked to form a sheet-like structure 

within alternate layers with z = 0 and z = 1/2 perpendicular to the c-axis. 

In the layer with z = 0 each octahedral ion is linked to its neighbours in a 

chain along the [110] direction via two hydrate water molecules, each of which 

may be a proton acceptor in two hydrogen bonds from ligand water molecules of 

two octahedra. 	The chloride ions in the same layer, lie along the [110] 

direction at points equidistant between chains of octahedra, and possibly 

accept one hydrogen-bond from a ligand water (C1-H 20 = 2.985 A), and a second 

from an hydrate water molecule (C1-H 20 = 3.152 A), which is in turn hydrogen-

bonded to a water ligand of a complex ion in another chain (H 20-H20 = 2.652 A), 

the whole forming a sheet-like arrangement in the (001) plane. 	There is 	also 

a possibility of weaker H-bonding between Cl -  ions in one layer and two water 

ligands of type 8(h) from complex ions in two different layers. 

The sheets formed by hydrogen-bonding between chains of octahedra in 

planes with z = 0 and z = 1/2 form a series of "cages" which are occupied by 

. 
Rb

+ 
 ions in planes with z = 	and z = %. Strong electrostatic bonding 

would, therefore, exist between these Rb
+ 
 ions and the chloride ions in the 

sheets, (Rb-Cl = 3.312 A) and there would also be electrostatic bonding 
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Fig. 5.4 	Projection on [001] 

Showing eight-fold coordination around RID. 
Rb [V02( KM C122H20 
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'09 

3.75 • 

Fig: 5.5 Projection on [001] showing distorted 
octahedral environment of C112) ions. 
Rb[VC12(H20)jC12.2H20 
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between Cl 

formulated 

dichloride 

Chapter 7. 

ions and [VC1 2  (H2  0) 4
+ 
ions. Thus the compound should be 

,  

as Rb[VC1 2 (H2
0) 4

]C1
2
.2H

2
0, rubidium dichlorotetraaquovanadium(III) 

dihydrate. 	Further discussion of this compound will be made in 
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Chapter 6  

Crystal Structures of Vanadium(III) Aqua Chloro Complexes  

III.r .6H20 and 
VC13 .6H20  

6.1. 	Introduction  

The crystal structures of Cs2 [VC1 2 (H20) 4 ]C1 3  and Rb[VC1 2 (H20) 4 ]C1 2 .2H20 

discussed in Chapters 4 and 5 provide the first information on V(III)-C1 and 

V(III)-OH2 bond distances in octahedral complex ions of vanadium. 	Some 

comparisons of these bond lengths with those in similar octahedra in, for 

example, [CrC1 2 (H20) 4 ]C1.2H20
84,85 

and [FeC12  (H2  0) ]C1.2H2 0
83 

could now be 4  

made. These comparisons are, however, restricted in scope by the different 

stoichiometry of the Pb and Cs salts of V(III) compared to those reported 

for Cr(III) and Fe(III), and by the different degrees of H-boriding in the 

structures. 

In order to obtain direct structural comparisons a structure determinat-

ion on VC13  .6H2  0 was commenced. Preliminary X-ray data collected on this 

compound suggested that it was monoclinic, space group P2 1/m, with cell 

dimensions of approximately a = 6.4, b = 6.4, c = 23.1 A, and 13 = 99° and 

with z = 4. Refinement of this cell on X-ray powder data enabled all 

powder lines to be indexed. Three dimensional X-ray diffraction data 

were collected for VC1
3
.6H

2
0 and a Patterson function calculated from these. 

Attempts to refine the structure on models derived from this Patterson map 

were unsuccessful and there appeared to be no structural requirement for 

the long c-axis. During attempts to solve the structure several other 

crystals were mounted, but each gave similar Weissenberg photographs. 

Because twinning is common to crystals of these V(III) compounds, it was 

suspected that this could be the cause of the problems for VC1 3
.6H20. 

Accordingly attention was switched to the analogous bromo compound VBr3 .6H20. 
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6.2. 	Crystal Structuie of VBr3 .6H20  

6.2.1. 	Experimental  

The sample used in this work was prepared by Podmore
61 as a green 

crystalline compound, precipitated from vanadium(III) bromide solution by 

evaporation and cooling. 	The crystals were extremely unstable in air 

and moisture, and in most cases showed signs of twinning under microscopic 

examination. Even with the experience gained in mounting single crystals 

of other unstable compounds, it still required several attempts to finally 

select a small needle shaped crystal, coat it with nujol, and seal it in a 

soda-glass capillary tube. The crystal had approximate dimensions 

0.2 x 0.1 x 0.1 mm. 

The needle axis proved to be the monoclinic b-axis and subsequent 

equi-inclination Weissenberg photographs were taken with this b-axis as the 

axis of rotation. The preliminary determination of space group and cell 

dimensions were made using the Weissenberg technique with Cu K a 
radiation. 

The cell dimensions were refined on X-ray powder data (Table 6.1), obtained 

from a Debye-Scherrer Camera using KC1 as an internal calibrant
61 . These 

powder data are consistent with those reported by Nichols and Wilkinson
96

. 

aYe 
Crystallographic data is listed in Table 6.2. 	This was the only compound 

handled in this study which proved too unstable for either Guinier-Hgqg 

or Philips Diffractometer X-ray powder data collection. This extreme 

instability is characteristic of these vanadium(III) complexes and it was 

perhaps fortunate that a single crystal was mounted in this simple fashion 

under nujol; a technique that did not work for the slightly more stable 

compounds discussed in Chapters 4 and 5. 

The monoclinic space group was uniquely determined to be P2 1/c, the 

absent reflections being for the conditions; hOt: 	= 2n+1 and Ok0: k = 

2n+1. The allocation of unit cell edges was made according to the 
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TABLE 6.1 

X-ray Powder Data
61 

VBr
3
.6H

2
0 

. 	2 	. 	2 
sin 0

obs. 	
sin

calc. 
Index 

176.4 m 177.8 0 1 1 

266.6 w 272.2 1 0 -2 

297.4 vs 296.8 0 1 -2 

346.3 m 340.2 1 1 1 

413.9 w 410.3 1 1 -2 

549.9 vs 552.4 0 2 0- 

590.4 w 592.0 0 2 -1 

644.1 vw 634.7 0 0 -4 

687.6 m 690.2 1 1 3 

725.0 m 722.8 2 1 0 

804.8 m 808.6 2 0 2 

839.0 w 846.1 1 0 4 

884.8 s 889.8 1 2 2 

1106.0 s 1104.5 1 2 3 

1179.6 w 1177.6 2 1 3 

1345.3 w 1349.8 2 0 4 

1359.6 w 1360.9 2 2 2 

1421.5 m 1428.0 0 0 -6 

1490.7 m 1487.9 2 1 4 

1597.4 m 1599.8 0 3 3 

1656.6 m 1663.9 3 1 -3 

1930.3 vw 1928.7 3 2 -2 

2031.2 w 2028.8 1 2 -6 

2114.3 w 2113.9 1 1 -7 

2211.3 w 2209.5 0 4 0 

2498.1 vw 2496.1 0 2 7 

2563.4 vw 2566.5 0 4 -3 

2755.3 m 2756.4 1 2 7 

3309.2 w 3309.0 2 2 7 

3525.6 w 3525.0 3 4 0 
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TABLE 6.2 

Crystallographic Data 

VBr3 .6H2
0 

a 6.408 - 

• 

0.004 A 

6.550 - 

• 

0.004 A 

12.300 	0.007 A 

96.15 - 

• 

0.05° 

  

d
calc 

d
obs 

Systematic 
Absences 

Space Group 

Axis of Data 
Collection 

Observed 
Reflections 

2.58 g/cc 

2.48 g/cc 

2 

ha: 	= 2n+1 

Ok0: k = 2n+1 

P2
1
/c 

430 (372 used in refinement) 



119 

classification in the International Tables for X-ray Crystallography 9 
using 

the second monoclinic setting. The density of the compound was measured 

by the gradient tube method to be 2.48 g/cc. Taken in conjunction with 

the cell volume there are therefore two molecules of VBr
3
.6H

20 per unit 

cell. 

A total of 430 non-integrated intensity data for hme (n = 0-4), were 

recorded photographically by the Weissenberg equi-inclination technique 

using Cu Ka  radiation and 4-film packs. The main reason for favouring 

non-integrated data collection was because it was suspected that the crystal 

would decompose before sufficient integrated data could be obtained. 

Intensities were measured visually against a standard linear scale and 

corrected for Lorentz and polarisation factors. Because the crystal used 

was quite small, no correction was made for either absorption or extinction. 

The intensity data were initially put on a common scale by using a filming- 

intensity factor. 

6.2.2. 	Structure Determination and Refinement  

A three-dimensional Patterson function for this compound was calculated 

in the Patterson P2/m group, of higher symmetry than the actual P2 1/c space 

group to which the crystals belong. Twenty sections of the Patterson 

function were calculated along [010] from y = 0 to y = 1/2. 	For space group 

P2
1/c the appropriate Harker line is (0111/2), and the Harker plane is (xkz). 

The majority of peaks in the Patterson are located in this (x1/2z) plane and 

in the plane (x0z). 	The Patterson section with y = 0 is shown in Fig. 6.1. 

The peaks quoted in this discussion are labelled numerically on this figure. 

Along the Harker line (0171/2), there is only the one peak at the location 

with .y = k. 	Solution of the equation ½- 2y = ½ gives values of y = 0 or %, 

and suggest that the majority of the scattering matter in real space lies in 

these two planes. Because there are two molecules per unit cell, the 
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Figs 6.1 
	

PATTERSON SECTION y= o 
V1313.6H20 
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vanadium atom can arbitrarily be taken to occupy the centres of symmetry 

(0,0,0) and (0,1/2,1/2). 	The two possible non-bonded bromide ions can then 

be assigned to one of the other available two-fold positions. The most 

likely of these positions are at (1/2,0,1/2) and (1/2,1/2,0) and this is 

confirmed by a large Br-Br vector at (0,1/2,1/2), and a V-Br vector at 

position (3), (1/201/2). 

0 
The only large interatomic vector within 3.0 A of the origin, (1), can 

be attributed to a vanadium bonded-bromine interaction and this is confirmed 

by the appropriate Br-Br vectors at (2) and (5). 	From this, the bromine 

ligands can be located in a general four-fold (x,y,z) position with y 

approximately equal to zero. This partial model showed a marked similarity 

to the structure of the iron compound
83 , [FeC1 2 (H20) 4 ]C1.2H 2

0 which, however, 

crystallizes in space group C2/m with z = 2. By analogy with the Fe structure 

it was expected that the bromine ligands would lie in the (010) plane, and 

that the water ligands would occupy symmetrical positions parallel to this 

plane. The change in space group from C2/m to P2 1/c could then be attributed 

to the larger bromine ligands distorting the complex ion, and lying slightly 

out of the (001) plane, a position untenable in C2/m. This assumption turned 

out to be only partially correct, as repeated attempts to refine the structure 

based on an [FeC1 2 (H20) 4 ]C1.2H20 type model terminated at R = 24%. 
	Closer 

examination of the Patterson showed, however, that the V-Br vector did in 

fact lie out of the (010) plane by an appreciable amount, thus giving a model 

with the complex ion tilted at an angle to this plane. 

As mentioned above refinement was initially attempted on a model 

derived from the [FeC1 2 (H20) 4 ]C1.2H20 structure. 	When this proved 

unsuccessful a fresh start was made with a model based only on the positions 

of the V and Br atoms derived from the Patterson. From this model, structure 

factors corresponding to the observed reflections were calculated and Fourier 

and difference Fourier syntheses carried out. From these it was possible 

to locate the oxygens of the water ligands and of the waters of crystallizat- 
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ion. 	Initial structure factor calculations on this complete model gave 

R = 24%. The refinement then proceeded through several full-matrix 

least-squares cycles, varying first the layer scale factors and atomic 

coordinates and then including isotropic thermal parameters in the refinement 

cycle, giving R = 17%. 

At this stage, however, it was noticed that the R-factor for the layer 

with k = 4 was 29% while those for the other four layers were 15%, 16%, 

18% and 14% respectively. Re-examination of the films of the fourth level 

data showed distortion of the spots which could indicate the possibility of 

crystal decomposition. For this reason and because of the poor residual 

factor of the data from this level, these reflections were deleted from the 

refinement process. Further least-squares refinement on the remaining four 

levels of data gave an R-factor of 15%. 

As discussed above, problems had been encountered in crystal selection 

because of twinning and decomposition. The one crystal that was possible to 

mount and collect intensity data from, gave diffraction spots of differing 

shape on different parts of the films. 	Initial intensity measurements did 

not fully allow for corrections to be made to account for this and were 

confined to data on one side of each film. When the structure failed to 

refine below R = 15% the intensity data were re-examined. As discussed in 

Section 1.3.5 it is possible to correct for varying spot size and for a,13 

splitting at high angles. For the other compounds discussed, correction 

for varying spot size had not been considered necessary. 

For this VBr
3
.6H

2
0, however, it was decided to remeasure 

the data. 	This time, two sets of data, one from each side of the films, 

were measured and corrections made for spot length where the reflections 

were elongated. 	These data were averaged out, recorrected for Lorentz 

and polarisation factors and subjected to several further cycles of full- 

matrix least-squares refinement. 	The last cycle based on 372 reflections 
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for hne (n = 0-3) layers gave a residual R = 11%. 

Since the shifts in parameters were within the standard deviations, 

and there were no anomalies in a Final Fourier and Difference Fourier 

synthesis, this was considered to be a satisfactory completion of the 

structure determination. As a matter of completeness the Patterson function 

was re-examined and interatomic peaks verified for all Br - other atom 

interatomic vectors and in most cases for V - other atom vectors. 	Some of 

these are shown above in Fig. 6.1. 

Final atomic and thermal parameters are listed in Table 6.3. 	Some 

distances and angles are given in Table 6.4, and a comparison of F obs  and 

Fcalc is given in Appendix 3 Table A.3.13. 

The standard deviations attached to atomic coordinates, thermal 

parameters and bond lengths and angles, are a measure of the consistency of 

the data set. They do not take into account errors in cell dimensions or 

intensity data measurement. 

6.2.3. 	Description of the structure  

Fig. 6.2 is a drawing of the unit cell in projection down [010]. 	The 

Fourier section with y = 0 is shown as Fig. 6.3. The vanadium atoms are 

located at (0,0,0) and (0,1/2,1/2) and are surrounded by six ligands, two of 

which are bromine atoms trans to one another and the other four are water 

molecules, the whole forming a distorted octahedral environment around the 

central metal. The distortion from tetragonal D
4h 

symmetry is small, the 

Br-V-OH2 and H20-V-0H2 
bond angles differing 3° or less from 90° and the 

two H20-0H2 distances being nearly equal. Dimensions in the complex ion 

are also shown in Table 6.4. 

The overall arrangement of the [VBr 2
(H

2
0)

4
]
+ 

ions and the remaining 

bromide ions and water molecules is as illustrated in Fig. 6.2. 	The 

centres of the two complex ions per unit cell are located in equivalent 
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TABLE 6.3 

Fractional Atomic coordinates and Isotropic Thermal Parameters 

[VBr
2
(H

2
0)

4
]Br.2H

2
0 

(Standard deviations in parenthesis) 

Atom Position x(ax ) Y(a 	) 
Y z(a) B(a ) 

B 

V 2(a) 0.0 0.0 0.0 1.05(2) 

Br(1) 2(d) 0.50 0.0 0.50 1.71(1) 

Br(2) 4(e) 0.2812(1) -0.0239(1) 0.1615(1) 1.97(1) 

0H
2
(1) 4(e) 0.8048(5) -0.0199(8) 0.3016(3) 1.91(6) 

0112
(2) 4(e) 0.1905(6) 0.1286(8) -0.0948(3) 2.16(9) 

0H2
(3) 4(e) -0.0729(6) 0.2674(8) 0.0602(3) 2.58(9) 	. 

... 
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TABLE 6.4 

Distances and Angles 

(Standard deviations in parenthesis) 

Complex ion 

V-Br(2) 2.539(1) 

V-OH2
(2) 1.967(4) 4 

V-0H
2
(3) 1.977(5) 	A 

Br(2)-0H2 (2) 3.298(2) 	A 

Br(2)-OH
2
(3) 3.313(3) 	A 

H
2
0(2)-0H

2
(3) 	2.747(7) and 2.828(5) 

	

< Br(2)-V-0H
2
(2) 
	

93.2(1) °  

	

< Br(2)-V-0H2 (3) 
	

93.5(1) °  

	

< H
2
0(2)-V-0H

2 (3) 
	

88.3(2) °  

Other Closest approach distances 

Br(1)-0H 2
(1) 

Br(1)-OH2
(2) 

Br(1)-0H
2
(3) 

Br(2)-0H
2
(1) 

H
2
0(1)-0H

2
(2) 

H20(1)-0H 2 (3) 

3.287(2) 

3.273(4) 

3.150(4) 

3.334(5) 

2,644(3) 

2.675(5) 
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Fig. 6.2 EVBr2 (H 20)43 Br 2H 20 	[010] Projection 
centered in plane 

- - - - y 
 

-0 	Br) 

 

y - 2 

 

Hp 
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Br(2) 

H20(1) 

/4 

Br (1) 

Fig. 6.3 FOURIER SECTION WITH yrz o [VBr2 (H2 0)4 ] Br.21-120 
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positions (0,0;0) and (0,1/2,1/2). 	The Vr-V-Br axes are inclined at an 

angle of approximately 6° from the perpendicular to the b-axis, and make an 

angle of approximately 60° with the a-axis. The ligand oxygens do not 

occupy symmetrical locations parallel to the (010) plane, but rather occupy 

general positions that enable the complex ion to be tilted away from this 

symmetrical arrangement as adopted by [FeC1 2 (H20) 4 ]
+ 

ions in 

83 
[FeC1 2

(H
2
0)

4
].C1.2H

2
0 • The two remaining bromide ions are fixed in a two- 

fold location (1/2,0,1/2) and (1/2,1/2,0). 	The four oxygens of the waters 

of crystallization occupy a general (x,y,z) position located just above and 

below the planes with y = 0 and y = 

Each bromide ion is surrounded by a distorted octahedron of six water 

molecules; two of these, with Br-OH2 
= 3.150 R are waters not bonded to V 

atoms and four with Br-OH 2 
= 3.273 and 3.287 A, are water ligands one .from 

each of four different complex ionsgeeFig. 6.4(a). These four water molecules 

link the complex ions by hydrogen bonds to free water molecules, the H 20-0H2 

distances being 2.644 and 2.675 A. 	This - 	H-bonding environment is 

shown in Fig. 6.4(b), and some H-bond and close approach distances are listed 

above in Table 6.4. 

The bromide ions lie mid-way between octahedra in the (010) plane, the 

0 
closest Br(ion)-Br(ligand) distances being 8.2 A approximately in the plane 

and 6.4 A to the octahedra centered in the plane distance y = ½ away. 	Thus 

the bonding between layers of complex ions in planes along the c-axis is 

presumably both electrostatic between [V3r 2
(H

2
0)

4
1 4-  and Br -  ions and strengthen-

ed by H-bonding as discussed above. Therefore the compound should be 

formulated as [VBr
2
(H

2
0)

4
]Br.2H2

0, trans- dibromotetraaquovanadium(III) 

bromide dihydrate. 

Having thus determined the crystal strfucture of VBr 3
.6H

2
0, a re-examinat-

ion was then commenced of the data obtained for VC1 3 .6H2
0 in an attempt to 

solve the possible twinning problem. 



Dr(1) 

Fig. 6.4(a) Projecflon on [010]Br(1) environment 
(Bromine surrounded by distorted octahedron 
of water molecules) 

Fig..6.4 (b) (VBr2 (H201,]Br .2H,0 
Possible H-bonding environment viewed down 
the x- axis. 
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6.3. 	The crystal structure of VC1
3
.6H

2
0 

6.3.1. 	Experimental  

The sample used was prepared by Podmore
61 

from vanadium(III) chloride 

solution by evaporation and cooling. The green crystals were extremely 

unstable in air and moisture. 	It was possible to select apparent single 

crystals under nujol and mount them in a sealed capillary in a similar manner 

to that employed for [VE3r 2 (H20) 4]Br.2H20. 	As discussed in Section 6.1 

preliminary Weissenberg photographs taken about the monoclinic b-axis 

indicated a unit cell with a c-axis approximately twice that in the bromine 

compound. The absence of reflections for Ok0 with k = 2n+1 suggested the 

monoclinic space group P2
1
/m

9
. 

These cell dimensions were refined by least-squares methods on powder 

data collected on a Philips powder diffractometer using KC1 as an internal 

calibrant. 	The density measured by the gradient tube technique was 1.65 g/cc. 

The volume of the unit cell thus required four molecules per unit cell giving 

a calculated density of 1.79 g/cc. 	This cell has dimensions a = 6.430, 

b= 6.439 and c = 23.802 A, (3= 98.8° 

Preliminary Weissenberg photographs also showed very regular spot sizes 

and shapes and because of the possibility of crystal decomposition 427 non-

integrated X-ray intensity data were collected for levels hnt (n = 0-4) and 

recorded photographically on 4-film packs using Cu K a  radiation. 	The 

intensities were measured visually against a standard linear scale and 

corrected for Lorentz and polarisation factors. Corrections were not made 

for absorption or extinction. 

Using values of F
2
obs 

from this process a three-dimensional Patterson 

function was calculated in the Patterson group P2/m for sections between 

y = 0 and y = ½ with intervals of 1/40. 
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6.3.2. 	Structure Determination and Refinement  

The detailed interpretation of the Patterson function will not be 

discussed here because this did not lead to the structure. 	Structural 

models obtained from the Patterson were, however, used for several attempted 

structure determinations but the best of these did not refine below a 

residual factor of R = 24%. At this stage the structure analysis was 

abandoned in favour of the bromine compound discussed above. 	(Section 6.2). 

On completion of the structure of [VBr 2 (H20) 4 ]Br.2H20 in space group 

P21/c, attention reverted to the chlorine compounds. 	The powder data for 

VC1
3 
 .6H

2  0 are similar to those found for the bromine compound, and it was, 

in fact, found that the powder data of VC1
3
.6H

2
0 could be indexed and 

refined for a cell with half the c dimension in space group P2 1/c. 	(Table -- 

6.5). 	This suggested that VC13
.6H

2
0 and [VBr2 (H20) 4 ]Br.2H20 are isomorphous. 

This smaller cell required two molecules per unit cell. Some form of 

twinning was suspected and the Weissenberg data were examined to see if it 

were possible to isolate the data from a single member of the possible 

twinned crystal. 	Idealized polar plots of the reciprocal lattice of levels 

hOt and hlt are shown as Figs. 6.5(a) and 6.5(b). 	A plot of hl t is 

representative of all levels with n > 0. 

For the plot of level hOt a grid can be drawn which relates to a cell 

of dimensions a= 6.430, b= 6.439, c= 11.901 R, and (3 = 98.8°, with the 

absence pattern corresponding to P2
1  /c. 

For convenience this grid will be regarded as resulting from crystal 

(1) and is illustrated by unbroken lines through reflections marked with a 

small circle. Using a commonc* reciprocal axis, another grid can be drawn 

for crystal (2) through the remaining unindexed reflections, but with the 

axis at an angle of 13.9° to the negative a axis of crystal (1). 	Reflect- 

ions that can be attributed to the lattice of crystal (2) are marked with 

crosses, while reflections common to both grids are shown as circles 
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Powder Data
61 

VC1
3
.6H

2
0 

. 	2 
sin 0

obs 
. 	2 

sin 0
calc 

Index 

146.6 

172.2 

185.1 

271.8 

309.3 

357.6 

527.3 

572.2 

666.4 

738.2 

742.8 

858.8 

930.9 

1237.9 

1259.8 

1464.5 

1483.6 

1546.2 

146.8 

171.6 

186.0 

270.0 

308.7 

357.2 

529.1 

572.4 

662.3 

738.0 

744.0 

856.4 

930.3 

1241.0 

1258.7 

1465.6 

1483.7 

1545.4 

100  

0 0 -2 

011  

1 0 -2 

1 1 -1 

111  

013  

020  

2 0 -2 

1 2 -1 

0 2 -2 

202  

104  

1 1 -5 

0 2 -4 

310  

115  

1 0 -6 
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e common reflections 

-  

Fig.6.5 	(b) 	4- 
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a* a2 
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c* l' 2 
Fig. 6.5 (a) .  hoe 

Twinned Reciprocal Lattice [VCe2(H20)410E,2H20 
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superimposed on crosses, and the lattice for crystal (2) shown as broken 

lines. 	It can be seen that both .  grids satisfy the absence of reflections 

for t = 2n+1. Reflections with h = 0, - 4 and - 8 are common to both 

lattices. 

On the polar plot of the hlt layer two similar grids can be sketched 

in a comparable manner, corresponding to reflections from crystals (1) and 

(2). Here it can be seen that reflections with h even are common to both 

lattices with the lack of systematically absent reflections satisfying the 

space group P21
/c. 

Thus the crystals can be considered as being twinned across the (010) 

plane such that their reciprocal lattices share b* and c* axes, with the a* 

axes of each twin oriented at 28* = 162.4° to one another. 	This has the 

effect of removing an extinction due to the glide-plane of the single crystal 

in space group P2 1/c and giving the twinned lattice the higher symmetry of 

P2
1
/m.  It was fortunate that the superposition of one crystal lattice on 

the other is not exact and it became possible to resolve the reciprocal 

lattices from one another. This made it a relatively simple matter to draw 

appropriate nets for the lattices of each twin, and to record the reflections 

unique to one of the crystals. Dimensions of this smaller unit cell are 

given in Table 6.6. 

An extensive discussion on twinning of crystals is given by Buerger 

in the book "Crystal-Structure Analysis"
3  , and this provided the theoretical 

basis for the twin resolution discussed above. 

The reflections corresponding solely to the strong twin, crystal (1) 

were extracted and corrected for Lorentz and polarisation factors. 	No 

correction was made for absorption. Out of the 427 reflections from the 

twinned material this made available 126 unique single crystal reflections 

for the structure refinement process. 

Because of the similarity of powder data and unit cell dimensions it 
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TABLE 6.6 

Crystallographic Data 

VC1
3
.6H

2
0 

a 
	

6.430 	0.

• 

004 R 

6.439 	0.

• 

004 A 

11.901 - 

• 

0.006 

98.8 	- 

• 

0.1° 

d
calc 
	

1.77 g/cc. 

d
obs 
 

1.65 g/cc. 

Systematic 
Absences 
	

hOt: 	= 2n+1 

Space 
Group 
	Ok0: k = 2n+1 P2

1 
 /c 

Axis of 
Data 
Collection 

Observed 
	

126 corresponding to strong twin 
Reflections 

	
(from 427 reflections from twinned 
pair). 
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- 
was presumed that the chlorine and bromine compounds were isomorphous 

• Therefore a model derived from the structure of the bromine compounds was 

adapted to account for the smaller V-Cl as compared to V-Br bond lengths, 

and this model was used for refinement of the VC1 3
.6H

2
0 structure. 

Structure factors were calculated corresponding to the 126 observed 

reflections used. A comparison of observed versus calculated structure 

factors gave an initial residual factor of R = 20%. Fourier and difference 

1 

	

	Fourier syntheses based on this data showed no reasons for changing the 

structure. Accordingly, full matrix least-squares refinement on the 

structure factors proceeded through several cycles, varying first the 

coordinates and scale factors and then including isotropic thermal para- 

meters. 	The shifts in parameters in the final cycle were inside the 

standard deviations, giving a final R factor of 12%. 	Final Fourier and 

difference Fourier maps showed no anomalies. 

It would be possible to calculate the contribution of crystal (1) to 

each of common reflections on the twinned lattice. This was not done, 

however, because the 126 reflections used provided over five reflections per 

variable in the final refinement cycles, and gave satisfactory values to the 

variable parameters and also for bond lengths and angles which were calculated 

from them. This was accordingly regarded as the termination of the structure 

determination. Atomic coordinates and isotropic thermal parameters are 

listed in Table 6.7. 

A comparison of F
obs 

versus 
Fcalc 

is given as Table A3. 	Appendix 3.14. 

6.3.3. 	Description of the Structure  

This compound, [VC1 2 (H20) 4 ]C1.2H20 is isostructural with that of 

[VBr2 (H20) 4 ]Br.2H2
0 discussed in detail in Section 6.2.3. 	In the distorted 

octahedral unit of [VC1 2 (H20) 4 ] -1-  the V-Cl bond length is 2.361 A, and the 

0 
two V-OH2 bond lengths are 1.961 and 2.024 A, values that are consistent 

with bond lengths found in the other two compounds, Cs 2 [VC12 (H20) 4 ]C13 and 
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TABLE 6.7 

Fractional Atomic Coordinates and Isotropic Thermal Parameters 

[VC12 (H20) 4
]C1.2H

2
0 

(Standard deviations in parenthesis) 

Atom Position x(ax
) y(a) 

Y 
z(a) B(a

B
) 

V 2(a) 0.0 0.0 0.0 1.93(6) 

C1(1) 2(d) 0.50 0.0 0.50 1.43(8) 

C1(2) 4(e) 0.2707(3) -0.0293(6) 0.1577(2) 3.59(6) 

0H2
(1) 4(e) 0.7813(8) 0.0097(17) 0.2979(5) 3.44(15) 

0H
2
(2) 4(e) 0.1931(9) 0.1490(14) -0.0927(5) 3.b4(15) 

0H
2
(3) 4(e) -0.0761(10) 0.2621(12) 0.0656(5) 3.49(16) 

Rb[VC12 (H20) 4 1C1 2 .2H20, and the V-OH2  bond length found in [VBr 2 (H20) 4 ]Br.2H20. 

The distortion of the complex ion from tetragonal D 4h 
symmetry is small, with 

bond angles deviating by less than 4° from 90°. Dimensions in the complex 

ion are shown in Table 6.8. 

The chloride ions, C1(2), are surrounded by a distorted octahedron of 

two waters of crystallization with Cl-H 20 = 3.111 A, and four water ligands 

with Cl-H20 = 3.097 and 3.229 A, one from each of four complex ions. 

Like the overall arrangement in [V3r 2 (H20) 4 ]Br.2H20, the crystal 

structure of [VC1 2 (H20) 4 ]C1.2H2
0 consists of a close-packed array of 

_ 
[VC12 (H20) 4 ]

+ 
and Cl ions and water molecules, with the bonding between 

species being electrostatic supported by hydrogen bonding between complex ions 

through H20-0H2  links. Relevant H-bonded and closest approach distances in 

the unit cell are also shown in Table 6.8. 
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TABLE 6.8 

Distances and Angles 

(Standard and deviations in parenthesis) 

Complex ion 

V-C1(2) 

V-OH2
(2) 

V-OH2
(3) 

C1(2)-0H2 (2) 

C1(2)-OH2
(3) 

H20(2)-H2
0(3) 

< C1(2)-V-0H2 (2) 

< C1(2)-V-0H2 (3) 

< H20(2)-V-H20(3)  

2.361(2) R 

2.024(5) X 

1.961(7) A 

3.053(6) A 

2.999(7) A 

2.784(11) and 2.852(7) A 

92.1(1)° 

92.6(2) 0  

88.6(2)° 

Other closest approach distances 

C1(1)-0H2 (1) 

C1(1)-OH2 (2) 

C1(1)-0H2 (3) 

C1(2)-0H
2
(1) 

H 0(1)-H2
0(2) 

2 

H20(1)-H20(3) 

3.229(4) 

3.097(7) 

3.111(6) 

3.015(10) 

2.684(6) 

2.809(9) 
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Chapter 7  

Crystal Structures of Vanadium(III) Aqua Chloro Complexes  

Discussion 

The four crystal structures of V(III) complexes reported in this thesis, 

and that of Cs
2
VBr

5
.4H

20 reported jointly with Podmore, have all been shown 

to contain the trans-[VX
2
(H

2
0)

4
]
+ 

(X = Cl, Br) complex ion. 	Similar complex 

ions have been found in aqua halide compounds of other first row transition 

metals, and it is, therefore, relevant here to briefly describe the structures 

of these compounds before discussing structural comparisons. 

Dance and Freeman
84 

have reported that CrC1
3
.6H

2
0 should in reality be 

trans-[CrC1
2
(H

20) 4 ]C1.2H20. 	
This has been confirmed by Morosin

85
. 	In the 

structure there are four molecules per unit cell in the monoclinic group, 

C2/c. The slightly distorted complex ions are linked in chains by hydrogen-

bonded "cages" of water molecules and chloride ions. This hydrogen-bonding 

- 
reinforces the electrostatic attraction between Cl and [CrC1

2
(H

2
0)

4
] + ons. 

Some crystal structure data for this are given in Table 7.1. 

. 	8 
Lind

3 
 has shown the analogous compound FeC1

3 
 .6H

2 
 0 to be trans-  

[FeC12 (H20) 4 ]C1.2H20. 	The compound crystallizes, however, in a different 

monoclinic space group, C2/m, with only two molecules per unit cell. 	The 

packing of slightly distorted [FeC1 2 (H20) 4 ] +  ions, water molecules and chloride 

ions suggests strong electrostatic forces between the ions together with 

hydrogen bonding. Four water molecules form apparent hydrogen-bond bridges 

between adjacent complex ions and each chloride ion is likewise apparently 

hydrogen-bonded to six water molecules, two of which are waters of crystallizat-

ion and the other four are ligands in four different complex ions. 

By contrast the non-transition metal Gd forms a coordination compound 

GdC1
3
.6H

20, which has been shown to contain [Gd(H2
0)

6
) 3+  and Cl -  ions86 . 

The compound crystallizes in space group P2/n with cell dimensions similar to 

FeC13*
6H

20 as shown in Table 7.1. 
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TABLE 7.1 

Crystallographic Data 

. CrC1
3
.6H

2
0
84 

FeC1
3
.6H

2
0
83 

GdC13
.6H

2
0
86 

0 
a(A) 12.053 11.89 9.651 

b(R) 6.840 7.05 6.525 

c(R) 11.640 5.99 7.923 

0(0) 94.2 °  100.5° 93.7° 

z 4 2 2 

Space 
Group C2/c C2/m P2/n 

8 
CcC1

2
.6H

2
0

7  
NiC1 .6H2

0
88 

MgC1
2
.6H

2
0
89 

a 10.30 10.23 9.90 

7.06 7.05 7.15 

c 6.67 6.57 6.10 

0 122.3° 122.2° 94.0° 

z 2 2 2 

Space 
Group C2/m C2/m C2/m 

In the 2 oxidation state, structures of other similar coordination 

87 
compounds have been reported. Two of these compounds C0C1 2

.6H
2
0 and 

NiC12 .6H20
88 

contain trans-PIC1
2 (H20) 4

r(M = Co or Ni) units. 	Crystallo- 

graphic data for these are also shown in Table 7.1. 	The compounds have 

, 
similar structures to FeC1

3 .6H20
83 
 and crystallize in the same space group. 

A brief structural description
87 

of for example, [CoC1
2
(H

2
0)

4
].2H

2
0 is that 

adjacent sheets of "cage" linked octahedra are held together by weak hydrogen 
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bonds, between one hydrated water molecule and a ligand water from each of 

two complex ions. 

The structures of these two compounds are in contrast to that of the 

non-transition metal compound MgC1 2
.6H20. For this compound Andress and 

Gundermann
89 

show that there is a six-fold coordination of water ligands 

around the metal with no metal-chlorine bonding. That is, the compound 

should be formulated as [Mg(H20) 6 ]Clas. 

Structural Comparisons  

The two isomorphous halides (reported in Chapter 6) which can be 

formulated as [VC1 2 (H20) 4 ]C1.21-120 and [VBr2
(H

2
0)

4
]Eir.2H

2
0 have similar 

structures to [FeC1 2 (H20) 4 ]C1.2H20
83 

 . 	The monoclinic space group adopted 

by [VC1 2 (H20) 4 ]C1.2H20 is P2 1/c, rather than C2/m as for the iron compound, 

but both have in common two molecules per unit cell. 	In the iron compound 

the CI-Fe-CI axis lies in the plane with y = 0, but the Cl-V-C1 axis is 

inclined at an angle of approximately 6° to this plane in the vanadium 

complex. 	This is somewhat more related to the C1-Cr-C1 axis which lies at 

an angle to the plane containing the Cr atoms in [CrC1 2 (H20) 4 ]C1.2H20
84

, 

although this chromium compound crystallizes in a different space group again 

namely, C2/c, with = 4. All these compounds which do not contain M 
1+ 

cations have in common the hydrogen-bonded "cages" of water molecules and 

Cl-  or Br -  ions which link the complex ions in chains. It is interesting 

that three compounds of similar stoichiometry and only differing in the type 

of M
3+ 

atom should crystallize in three different monoclinic space groups. 

In this context, it has been shown by Podmore
61 that TiC1 3

.6H
2
0 has a 

similar powder pattern to VC1
3
.6H2

0, both of which are different from the 

patterns obtained from CrC1
3
.6H

2
0 and FeC1

3
.6H

2
0. 	It can be expected', 

therefore, that the structure of TiC1
3 .6H2

0 is isomorphous with that of 

The powder data for TiC1 3 .6H20 is similar to that reported by 
VC13

.6H2
0. 

. 	97 
Gardiner . 
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The structures of the two isomorphous caesium compounds, 

2 [VC12 (H20) 4 ]Cl 3 
and Cs2 [VBr2 (H20) 4 'Br3' 

(Chapter 4) can also be compared 

with that of [FeC1 2 (H
2
0)

4
]C1.2H

2
0. 	These three compounds crystallize in 

space group C2/m with z = 2. 	In the structure of the vanadium compounds, 

two non-bonded halide ions occupy positions analogous to free water molecules 

in the iron compound. The caesium ions in the V(III) structures are located 

in the (010) plane between the ligand halogens and the free halide ions. 

This gives rise to a much greater a-axis and a slightly expanded c-axis 

compared with those of the iron compound. The degree of apparent hydrogen-

bonding in the V(III) compounds is much less than in the iron compound, 

because of the absence of waters of crystallization. This factor also 

precludes the H-bonded "cages" of water molecules reported for 

[CrC1
2
(H 0)

4
]C1.2H

2
0, and postulated for [FeC1 2

(H
2
0)

4
]C1.2H

2
0. 

The other V(III) compound studied RbVC1 4
.6H

2
0 (Chapter 5) has the same 

number of atoms in the molecule as Cs 2[VC1 2 (H20) 4 1C1 3 , but the two compounds 

are of differing stoichiometry. The rubidium compound which should be 

formulated as Rb[VC12 (H2 0) 4 ].C1 2 .2H20, is the only one of this set which 

crystallizes in orthorhombic symmetry with space group Cccm, and z = 4. 

The presence of waters of crystallization in the rubidium compound 

suggests a greater degree of hydrogen-bonding than in Cs 2 [VC1 2 (H20) 4 ]C1 3 , 

and this indeed appears to be the case. 	In fact, the distance of closest 

0 
H-bond approach of 2.56 A for H

2
0-0H2 in the rubidium compound is smaller 

than that found in any of the other compounds. The orthorhombic symmetry 

. 
appears to arise because the packing of the Rb

+ 
 Ions and the arrangement of 

the other species with respect to one another, imposes higher symmetry of 

the overall structure than is the case for the other compounds. 

•Bond Lengths  

The bond lengths in the complex ions of type [VX 2 (H20) 4 ]
+ 

(X = Cl, Br), 

in compounds discussed in Chapters 4, 5 and 6 are shown in Table 7.2. 	The 
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TABLE 7.2 

Bond lengths in [MX2
(H

2
0)

4
]
+ 

(X = Cl, Br) (M = V, Cr, Fe) ions. 

(Angstroms) 

(Standard deviations in parenthesis) 

M-X M-H20(1) M-H
2
0(2) 

Cs2
[VC1

2
(H

2
0)

4
]C1

3 
2.361(2) 1.983(5) - 

Rb[VC12
(H

2
0)

4
]C1

2
.2H

2
0 2.367(1) 2.003(4) 2.044(8) 

[VC1 2 (H20) 4
]C1.2H

2
0 2.361(2) 1.961(7) 2.024(5) 

Cs2  [VBr2  (H2 
 0)

4 
 'Br

3
61  

2.497(1) 2.060(7) - 

1 

V[Br2 (H20) 4
]Br.2H

2
0 2.539(1) 1.967(4) 1.977(5) 

[CrC12 (H2
0)

4
]C1.2H

2
0
84 + 

2.289 - 0.001 2.004 + - 0.004 2.066 + - 0.004 

[FeC1
2
(H

2
0)

4
]C1.2H

2
0
83 + 

2.30 	- 0.02 
+ 

2.07 	- 0.02 - 

average values for the bond lengths as calculated from all five structures 

are, V-Cl = 2.363 	0.004 A, V-Br = 2.52 i 0.02 R and V-OH2  = 2.01 	0.04 A. 

The V-Br bond lengths found in Cs 2 [VBr 2 (H20) 4 ]Br3  and [VBr2 (H20) 4 ]Br.2H20 

are in close agreement. 

98 
The V-Cl distance lies between that reported in VC1 3 

,where V-Cl = 2.45 R 
93 

and in VC1
3
(NMe)

2 '
where V-Cl = 2.239 R. n Direct comparisons cannot be made 

between these, as the environment around the V(III) ion is different in each 

case. Comparisons can be made with bond lengths reported in the structures 
64 	 63 

of Cr[C1 2 (H2
0) 4 ]C1.2H20 and [FeC1 2 (H20) 4 ]C1.2H2

0 ,the bond lengths being 

shown above in Table 7.2. 	The average V-Cl bond length of 2.363 R is 

larger than both Cr-C1 = 2.289 A and Fe-C1 = 2.30 R, and when it is considered 

that Cr-C1 in CrC1
3 

is 2.35 A and Fe-C1 in FeC1
3 

is 2.38 R, the relative 

magnitudes of M-Cl bonds in [MC1 2 (H20) 4 ] +  ions follows the same pattern. 

This is clearly shown in Table 7.3. 
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TABLE 7.3 

Comparison of M-Cl bond lengths (Angstroms) 

(14 = Ti, V, Cr, Fe) 

Ti-Cl V-Cl Cr-C1 Fe-C1 

MC1
3 

(MC1
2
(H

2
0)

4
] + 

2.4799 

_ 

2.45
98 

2.363 

2.35
100  

2.289 64  

2.38
101  

2.3063 

This would suggest that the degree of ionic bonding in the complex ions 

is less than in the MC1
3 
compounds, with orbital overlap in the M-Cl bonds 

of the complex ions having the effect of reducing the M-Cl bond lengths. 

The V-H2
0 distance averaged for the five compounds, is consistent with 

the average value of 2.00 - 0.02 X calculated from the three compounds 

0 
containing [VC1

2
(H

2
0)

4
]
+ 

ions- and the value 2.02 I 0.004 A obtained from 

the two compounds containing [VBr
2
(H

2
0)

4
] ions. 

The M-0H2 bond lengths in [MC1 2
(H

2
0)

4
]
+ 

complex ions do not show such 

a clear pattern as the M-Cl bond lengths. The average values are V-OH 2  = 

2.01 	0.04 71, Cr-OH2  = 2.055 	0.005 R 84  and Fe-OH2  = 2.07 	0.02 A 83 . 

On the M-Cl trends it would be expected that the V-OH 2  should be > 2.07 R but 
none of the V-OH

2 bond lengths exceeded 2.05 R. As mentioned in Chapter 4 

the determination of water positions produced some problems and structure 

analyses of greater accuracy could give V-OH 2  bond length slightly different 

to that found in this work. 

Symmetry of the complex ions  

In the five V(III) compounds studied, the complex ions all show 

distortion from tetragonal D
4h 

symmetry. A comparison of the 

bond lengths and bond angles in the complex ions is shown in Figs. 7.1 and 

7.2. 	In most cases the X-V-OH
2 angles are less than the H 2

0-V-OH 2 
angles 



•gE- 1  
(a) Cs,JVCt2 (H 2.0)4 10E3  

144 

(b) Rb(VCE4H20).10E. 2 2H20 

. . . - ■ 
/ 	

N. 

i 	1  

Fig. 7.1 

A comparison of (VCE. 2(H,.0)4 ) 
octahedral coordination in 
three compounds 
,.. 

0 V 
0 H20 

(c) (VCE4H2 0)4 1CL2H20 
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Fig. 72(a) 
Cs2 [VBr2 (H2 0),]Br, 

[VBr2 (1-120)4 ]Br.21-120 
Fig. 7.2(b) 

EVBr2 (H20),r octahedral coordination in two different 
compounds 
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with deviations being within - 4° of 90 0  in all cases. It might be expected 

that the distortion in the bromine complexes would be greater, because of the 

size increase of bromine ligands over chlorine. The angular distortions 

are, however, very close to those of the chlorine complexes, the only 

difference being that the H 20-0H2  distances in the bromine compounds are 

slightly longer than those in the chlorine compounds. The distortion of 

the octahedral complex ion symmetry is comparable to that found in 

64 
[CrC1 2 (H20) 4 ]C1.2H20 and (FeC12

(H
2
0)

4
]C1.2H2

063 While the X-ray crystallo-

graphic data show appreciable distortion of the [VC1 2 (H20) 4 1
+ 
octahedral 

ions there is no direct evidence to support a lesser distortion for compounds 

caesium and rubidium double salts 
containing the 5 2 JA 	.eii6.:,,a.s,,pp,stulated by Podmore and Smith

70
. 

However, an analogy can perhaps be taken with iron compounds of the two 

types while structures are known. Where the angular distortion in the 

complex ions in [FeC1 2 
 (H2 

 0)
4 
 ]C1.2H20

63 
and for example Rb 2

[FeC1
5
(H2

0)] 

(Chapter 3) is approximately of the same order, the latter compound lies 

closer to cubic symmetry by virtue of greater equivalence of bond lengths. 

It would be of interest, therefore, to determine the crystal structure 

of the M
2
[VC15

(H
2
0] (M = K, NH

4' 
Rb, Cs) compounds mentioned in Section 3. 

As well as classifying these compounds into Pnma or Cmcm types, dimensions 

in the complex ions could prove that there is less distortion in these type 

of compounds than those containing [VC1 2 (H2
0)

4
]
+ 

ions, thus confirming 

postulates made from magnetic data
61 . Evidence from bond lengths could 

also provide data on which to develop trends in bond lengths in different 

types of complex ions and to show there is in fact a decrease in V-Cl bond 

length in the order [VC1
6

]
3- 

< [VC1
5
H
2
0]

2- 
< [VC14

(CH
3
COOH)

2]
1- 

< [VC1
2
(H

2
0)

4
]
+ 
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Ionic Radii 

In considering ionic radii of, for example, M
3+ 
 first row transition 

elements in octahedral complexes, the traditional approach is to predict 

a contraction of ionic radii across the group because of increasing 

effective nuclear charge. 	This approach requires modification, however, 

because the non-spherical distribution of d electrons gives rise to imperfect 

shielding of one d electron by another from the nuclear charge, giving rise 

to ionic radii which fall below the theoretical values. 

For Ti
3+ 

the one d electron in t
2g lies away from the octahedral 

ligands, resulting in little shielding between the ligand and Ti 3+ . 	This 

causes the ionic radii to be lower as the ligand is drawn closer to the 

metal, than would have been the case if the ligands had been spherically 

shielded. A similar theory applies to V
3+ 

and Cr
3+ 

where two and three 

t
2g electrons would provide much less shielding than spherically distributed 

d electrons. 

3+ 	3+ 
the ground state configurations t

3
, e

1 For Mn and Fe 	 and 
2g 	g 

	t
2g

3
' 

2 
e have electrons in orbitals along the ligand axes and hence provide more 

symmetrical screening between the metal and the ligand. Thus the ionic 

radii would be expected to increase. A similar sequence of decrease then 

increase of ionic radii would be expected in the second half of the series. 

Whereas this type of reasoning has been confirmed for M
2+ 
 ions there is 

little experimental data available for M
3+ 

compounds from which verification 

72 
can be made. Wells gives M

3+ 
radii in compounds of the type A

III BIII 03 

where the ionic radius for the d
2 
configuration (V

3+
) is the only one which 

does not fit the predicted pattern. (Table 7.4). 

X-ray structure studies have been made of several compounds of the 

type MC1 3  and the M-Cl bond lengths calculated are given above in Table 7.3. 

_ 
If the bonding is presumed to be ionic and the radii of the Cl ion taken 

072 
to be 1.81 A , then the M

3+ 
ionic radii can be calculated. This gives 
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TABLE 7.4 

M
3+ 

radii 

72 
III 	I 

A 	M
I 	

0 MC1
3 

M
2
0
3 

[MC1
2
(H

2
0)

4
] + 

from M-0 

[MC1
2
(H

2
0)

4 ]
+ 

from M-C1 

Sc 

Ti 

V 

Cr 

Mn 

Co 

0.686 

0.610 

0.625 

0.608 

- 

0.628 

0.560 

- 

0.57
99 

0.64
98 

054
100 

_ 

101 
0.57 

- 

- 

0.68 

0.66 

0.62 

0.66 

- 

- 

- 

0.604 

0.605
84 

- 

0.607
83 

- 

- 

- 

0.550 

0.479
84 

- 

0.490
83 

- 

TABLE 7.5 

Bond lengths in M203  compounds
102 

(Angstroms) 

	

M-0(1) 
	

M-0(2) 

Ti
2
0
3 
	2.01 
	

2.08 

2
0
3 
	1.96 
	

2.06 

Cr
2
0
3 
	1.97 
	

2.02 

Fe
2
0
3 
	1.91 
	

2.06 
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values of 0.66, 0.64, 0.54 and 0.57 A for Ti 3+ , V3+ , Cr3+  and Fe
3+ 

respectively and these are also shown in Table 7.4. 	This pattern agrees 

with the theoretical discussion above, except that the Fe
3+ 

radius might 

have been expected to be somewhat greater. 

Crystal structure studies of simple oxides with the formula M 2
0
3
102 

show each metal atom surrounded by six oxygen atoms at the corners of an 

octahedron, with two different M-0 bond lengths (see Table 7.5). 	If 0
2- 

is taken as having a radius of 1.40 A, then the M 3+  radii from the longer 

M-0 bonds are 0.68, 0.66, 0.62 and 0.66 A for Ti3+ , V3+ , Cr3+  and Fe3+  

respectively. 	(Table 7.4). 

For the tetragonally distorted octahedral complex ions of formula 

[MC1
2
(H

2
0)

4
]
+ the bond lengths are listed in Table 7.2. From M-0 bond 

lengths and taking 0 	1.40 A 72  the ionic radii are 0.604, 0.605 and 

0.607 R for V3+ , Cr3+  and Fe 3+ respectively. From M-Cl bond lengths with 

Cl taken as 1.81 A the values of 0.55, 0.479 and 0.49 are obtained. 

(Table 7.4). 
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Conclusion 

X-ray crystallographic techniques have been used to study the crystal 

and molecular structures of some chemically interesting compounds containing 

pseudo-octahedral complex ions of M(III) transition metals. 

The study of thiocyanates of Cr(III) and Mo(III) was complicated by 

the possible presence of twinning, disorder or superlattice effects. 	The 

incomplete structure determinations do, however, provide evidence of metal to 

nitrogen bonding in the complex ions, and that K 3 [Cr(NCS) 6 ].4H20 and 

K
3
[Mo(NCS)

6
].4H

2
0 are isomorphous. 

I III 
Structures of six compounds of the type A 2

[M Cl
5
H
2
0], with 

A = K, Rb, NH4' 
or Cs; M = Fe or Mo; have been determined. 	From these it 

has been possible to calculate bond lengths and angles in the complex ions 

of the type [M0C1 5  H2 
 0]

2- 
 and [FeC1 5

H20]
2-

. 	Further, the compounds studied 

can now be classified as belonging to either the Pnma, [Rh(NH 3 ) 5C1]C1 2  or to 

the Cmcm, Cs 2  [RuCl 5H2
0] structural types. It appears that there is a limit-

ing central metal M
3+  ionic radius above which the caesium salts revert to 

the [Rh(NH 3 ) 5C11C1 2  structure, because of more favourable crystal packing 

considerations. 

Five "green" compounds of V(III), Cs 2VC1 5 .4H20, Cs2VBr5 .4H20, 

RbVC14 .6H20, VBr3 .6H20 and VC1 3 .6H20, have been shown to contain the slightly 

distorted octahedral trans-WX 2
(H

2
0)

4
1 + complex ion. The bonding between 

species in these compounds is mainly electrostatic, supported to varying 

degrees by hydrogen bonding between free ions and water molecules, with 

ligand molecules from the complex ions. 

Bond lengths and angles in the complex ions have been calculated. 

Average values for bond lengths are V-Cl = 2.363 - 0.04 71, V-Br = 2.52 - 0.02 R 

and V-OH
2 
= 2.01 - 0.04 A. 	The complex ions show appreciable distortion 

from D4h 
tetragonal symmetry: 
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It is possible to compare the radii of the M(III) species in series of 

similar compounds, and to show trends across the first row transition metal 

ions. 

In all these structure determinations there are limitations on the 

accuracy and precision of data. This is brought about by limiting the 

data collection, mainly because of the extremely unstable nature of some of 

the compounds studied, and is also inherent in the film collection of X-ray 

data and in the eye measurement of these data. The standard deviations 

reported for atomic coordinates, thermal parameters and bond lengths and 

angles, are those calculated by least-squares methods in the computer 

programs involved. Thus these deviations represent a measure of the 

consistency of the data set, and do not take into account errors in cell 

dimensions or in intensity measurement. 

It would be of interest, as a continuation of the research described 

herein, to determine the sttuctures of several other compounds. For 

instance, the structures of A
I
[VC1

5
H
2
0] (A = K, NH

4 - 
, Rb or Cs) compounds, 

2  

could provide evidence to show less distortion in the expected [VC1 5
H
2
0]

2- 

complex ion than in [VC1 2 (H20) 4 ]
+ 
ions. Bond length data could verify an 

expected decrease in V-Cl distances in the order [VC1 6 ] 3-  < [VC1 5H20] 2-  

< [VC12 (H20) 4 ] + . 	The structures of the A i [VC1
5
H
2
0] compounds could also be 

2 

classified as belonging to either the Pnma or Cmcm types, known for similar 

compounds of other tervalent metals. 

Because the M(III) compounds [VC1 2 (H
2
0)

4
]C1.2H

2
0, Cr[C1 2 (H20) 4 ]C1.2H20 

and [FeC1 2 (H2
0) 4 ]C1.2H2

0 crystallize in different monoclinic space groups 

with slightly different structures, it would be interesting to determine 

the structure of the analogous compound TiC1 3
.6H20. 
	Powder data suggests 

that it is isomorphous with the vanadium compound and this could best be 

verified from a single crystal X-ray diffraction study. Data from this 

structure would provide further evidence for trends in properties in similar 

compounds of first row transition M(III) metals. 
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Appendix 1  

Computer Calculations  

A major portion of the calculations involved in these structure 

determinations were made on an Elliott 503 digital computer, to which is 

linked a Digital Equipment Corporation PDP8/I computer. This linkage 

enables the Elliott 503 to make use of the DEC tape and disk file units of 

the PDP8/I and enhances its own main store capacity of 8192 (8K) words and 

core-backing-store capacity of 16384 (16K) words. 	The basic language is 

ALGOL with extensive use being made of machine-coded procedure inserts. 

The suite of X-ray crystallographic programs was designed and written by 

Finney of this department over the past four years and is at present 

incomplete
31,32 

A.1.1. 	Description of Program Suite  

The completed suite envisages the use of thirteen programs, which 

includes provision for Direct Methods calculations. 	In this work, however, 

only six of these programs were used and these are shown in Fig. 1. 

U1212 Powder 
Refinement  

X1 Lorentz-Polarisation 
Correction 

X16 All-purpose 
Fourier 

X24 Structure Factors 
Least Squares 

  

X18 Plotter X26 Bond Lengths 
and Angles 

 

  

Fig. 1. 	Program Suite  
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A.1.2. 	The Lorentz-Polarisation Correction Program (X1) 

In using observed intensity data for structure determination use is 

made of the structure amplitude IFI where: 

IFI a 	IT- 	[ 1 = intensity] 

These structure amplitudes are required for calculating electron density 

maps used during structure determinations. This program (X1) converts 

the raw intensities to 
IFobservedI 

 by using the following expression: 

I F (hkt)I = 11—(hkt) 
Lp 

The Lorentz factor, L, is required to allow for the specific type 

of motion of the crystal in the Weissenberg camera geometry used in this 

study and is given by: 
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sin()  
L = 	 (0 = Bragg angle 

sin20(sin
2
0-sin

2
p) 

p = equi-inclination 
setting) 

The polarisation factor, p, is given by 

p = 1 + cos
2
20  

2 

and arises from polarisation of the X-ray beam on reflection by a crystal. 

It is a simple function of 20 and is independent of the type of data 

collection technique. The program accepts unit cell constants, wavelength 

of radiation used, equi-inclination angle for the first level, rotation 

axis and scaled intensity data and generates a set of Fhk,ej  x 10
2
, each 

plane having been corrected for Lorentz and polarisation effects. 

A.1.3. 	The Fourier Program (X16) 

This program is used for calculating Fourier syntheses of the 

following types: 

(a) Patterson 

(b) Electron density 

(c) Difference Fourier 

(d) E-maps (Direct Methods) 
r • 

The expression required for electron density maps is of the form: 

h,ka. = +co 

p 	= 	EEE 	 -2ffi(hx + ky + tz) 
F
(h
ke

) e  (xyz) 	V 
= -co 

and in this program the equation is rewritten as: 

2. 
E [A. 	cos2ff(hx + ky + tz) 

V 	t) (xyz) 	(hk  
hk-e. + Bolktrin2n(hx + ky + Zz)] 
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where 	F(hkZ) = A(hkZ) + iB (hkt)' 

and rearranged to read: 

CO CO CO 

2 
= — 

(xyz) 	V 
EEEA 	(ccc-css-scs-ssc) 
h k

n 	(hkt) 

+ EEE B(hkt) n. 	(ccs 	csc + scc - sss) 
h k 

(where e.g., csc = cos 2fflax sin 2ffky cos 2 -rrtz etc.) 

Since the compounds discussed in this work all crystallized in 

centrosymmetric space groups the expression can be further simplified to 

delete the B term, and in some cases further product terms drop out for 

specified index parity groups. For example, in the case of 

Cs2 [VC1 2 (II20) 4 )C13 
which crystallizes in the monoclinic space group C2/m 

the expression calculated for the electron density was: 

CO Co CO 

2 

(xYz) - 	
EEEA0 
h k 	

(hk.c.) 	
(ccc + scs) 

The program (X16) operates in several steps: 

a) Sorts the data for more efficient calculation; 

b) Corrects the reflections for multiplicity; 

c) Attaches a code word to each reflection to control the form of 

the trigonometric function to be used; 

d) Calculates sections of the electron density function and displays 

these on a lineprinter; 

e) Stores these sections for subsequent plotting by program X(18). 
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F (hkt) = E n.f. E exp (-h
T
B. 	i 

h) cos2ffhTx 
3 s 	s 

+ iE n.f. E exp(-h
T
B. h)sin2ffh

T
x. 

3 3 	3s 	js 
j=1 	s=1 

wheren.istheoccupancyparameterofthej th atom,f.is the scattering 

th. 
power of sin0

(hk1)/X 
of the 3 	atom, B

js 
is a 3 x 3 temperature factor 

. 
matrix for the 3 

th 
 atom in symmetry position s, xjs 

is the coordinate vector 

.th 
of the 3 	atom in position s, 

x. is the coordinate vector of the 3 
.th 
 atom in position s, 

3s 

h is the reciprocal space vector h, k, Land h
T 
 its transpose, 

n is the number of independent atoms, 

p is the number of symmetry positions. 

The presence of symmetry elements simplifies the expression for 

and these modified forms of the structure factors are given in the 
F (hkt) 

appropriate chapters where necessary. 

The program outputs the calculations on a lineprinter and stores the 

information in the core-backing-store for use• in subsequent Fourier 

computations. 

The second stage in this program allows for the refinement of 

structural parameters by the least squares method. This involves the 

full-matrix least squares refinement generating corrections for the atomic 

parameters. The course of the refinement may be followed by the calculation 

of a residual factor: 

R = E [I Fo  I - IFo l/I Fo  

The output from this part of the program can be used in a cyclic manner as 

input for another round of structure factor calculations and parameter 

refinement. 
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A.1.4. 	The Plotter Program (X18) 

The lineprinter output of the Fourier program only gives sections of 

rectangular cell geometry and these only approximately to scale. 	The 

plotter program overcomes this deficiency as it can be used to plot 

contoured sections of all cell types to a high degree of accuracy. 	An 

example of one of these plots is shown as Fig. 2. Fourier Plot. 

A.1.5. 	The Structure Factors-Least  Squares Program (X24) 

The structure factor 
F(hkZ) 

 is a function of h, k, and 	the Miller 

index of a reflection from a lattice plane. 	Its modulus is called the 

structure amplitude, and is defined as the amplitude of the radiation 

scattered in the order h, k, by the contents of one unit cell, to that 

scattered by a single electron under the same conditions. 	The generalised 

structure factor can be written as: 

F = E f. e
-id 

7. 	3  

and for a given reflection h, k, g as: 

f. scattering factor of the 

.th 
3 atom 

(S. phase with respect to an origin. 

F 	= E f. e
-2ffi(hx. + ky. + tz.) 

(10..) 	j  

[x., y., z. are the fractional 

	

1 	3 	3 

coordinates of the .
th

3 	atom] 

When using the structure factor program for calculating the structure 

factor F 	for each reflection based on parameters specified for a trial 
(hkt)' 

or final structural model the expression used is: 
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	 C 

FIG. 2  

Fourier Section y = o, for K2 (M2C1 H 20) 

Sample Plotter Output  

(Contour interval = 50.0) 
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Alternatively it can generate data for use in further Fourier 

calculations or provide the input data by way of the core-backing store 

for calculations of bond lengths and bond angles and the provision of final 

detailed lists of calculated and observed structure factors. 

A sample list of input and output data from a structure factor-least 

squares calculation on [VBr 2 (H2 0) 4 1Br.2H
2
0 is shown as Table A.1.1. 

A.1.6. 	The Bond-Lengths and Bond-Angles Program (X26)  

Of major interest in the determination of these crystal structures is 

that it makes possible the derivation of structural parameters other than 

the gross molecular structure of the compounds under study. Two of the 

main parameters which can be derived are bond-lengths and bond-angles. 

This program (X26) accepts as input refined coordinate parameters and unit 

cell data from the Structure Factors/Least Squares program and outputs a 

list of bond-lengths and bond-angles together with standard deviations in 

these parameters. 

The fundamental equation for the distance between two points in a 

generalised triclinic lattice is of the form: 

= I—  (Axa) 2  + (Ayb) 2  + (Azc) 2  + 2ab Ax Ay cosy 

+ 2ac Ax Az cos i3 + 2bc Ay Az cosa 

where the two points have fractional coordinates (x l , yl , z 1 ) and (x 2 , y2 , 

z
2
) and a, b, c, a, 	y are the unit cell parameters. 

This equation of course can be simplified for lattices of higher 

symmetry. 

In the case of bond angles between. any three points A, B and C it is 

possible to calculate the angle 0 by the equation: 

0 = cos
-1 

[(AB)
2 

+ (AC)
2 
 - (BC)

2 
 ] 

2 (AB) (AC) 
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TABLE A.1.1 

STRUCTURE FACTORS-LEAST SQUARES INPUT-OUTPUT DATA 

AUMHEm 	UF 	CfC-Es.  
4UMdEt4 	OF 	VA4IA8CtS 
:40 , 0te, 	UT 	ObStKVAVIONS 
:4um6tH 	OF 	F-CupvtS 
qUMnth 	UF 	AVOMS 
-41 	et6 	Uk 	SYM4t14T 	PO$11I0NS 
VUMotR OF  scALts 
Numrtr, 	OF 	ISuf60 , 1C 	A10mS 

AAI 	uf 	DATA 	1.:ULLCCTION 

LOHtSI 	IN0Ev 	IS 
J0St4v411UNS 	Ai-)t 
AtiuriliNu 

IVBr70122241131,2f.20 

22 
362 

3 
6 
2 
4 
6 

0 

SET 	= 	1.0 
C 	 SOS 

	

SCAift1N6 	Cur(vtS: 

	

vx.xoium 	u 
c2.100 	21.710 20.840 - 19.156 	17.470 15.790 14.210 
12.71 	. 	11.560 10.620 9.6700 	9.0400 6.4100 7.9900 
i.4700 	/.2/00 6.9700 6.7300 	0.4900 6.2700 6.0500 
5.0400 	5.6200 5.4100 5.2000 	5.0000 4.7900 4.5900 
4.6vUu 	4.2000 4.0100 3.8200 
b74u4IN. 	- 
37.100 	6 ,,.160 61.910 29.230 	26.750 24.640 22.860 
21.320 	19.920 18.640 17.3/0 	16.090 1 4 .910 13.840 
12.7/u 	11.840 10.920 10.160 	9.4000 6.7900 8.1800 
7.7100 	/.2400 6.6700 6.5000 	6.2200 5.9500 5.7200 
5.5006 	5.6307 5.16110 4.9900 
UxluE 	2 - 
0.0000 	7.7980 1.2560 6.4870 	5.6330 4.8110 4.0900 
3.4940 	6.0160 2.63/0 2.3400 	2.1100 1.9370 1.8090 
1.7190 	1.6560 1.6150 1.5800 	1.5720 1.5620 1.5570 
1.5530 	1.5520 1.5510 1.5500 	1.55110 1.5500 1.5500 
1.5500 	1.5500 1.5500 1.5500 

srM1E1HY 	frUSIIIONs: 

X. 	 Y. L; 
-x.  Y.1/2. 

.:ECIPHOCAL 	CELL 	0014: 	% 

A.= 	.15700 	tr.= 	.15267 C. 	.08179 COS(ALPHA*)= 	.0o000 COS(bEix.). .10713 COS(GAH)IA./. 

OXTA 	SCALES: 

6.9800. 
4.3060. 
4.3400. 
4.9200. 

	

ENALL 	1/FACIUR: 

	

AldMiC 	PAr,AMtiti.6 	061041 

FCURVt 

.00000 
ktFINEmENI: 

UCCUPANCY 1.0000 
X .00000000 
O .00000000 

.000110000 

oft 	1 • 

1.76b0. 

iCuRVE 2 
OCCUPANCY 1.0000 

.50000000 

.001100000 

.50000000 
0 2.6000. 

00 2 
FUUmVt 2 
0h.:C- 01, 4.<Y 2.0000 
X .2820000U. 

-.U2300000. 
.1610000U. 
2./000. 

h21 1 
i:CuPv0 	6 
JCCuPANCY 	2.0000 

.79960000. 
-.01400000. 
.7990000U. 
1./700. 

H2U 2 
rt.:unvt 
JC1.UP4vCY 	2.0000 
A 	 .20000000. 

.12700U00. 
-.69000000. 
3.0000. 

H24 3 
rt.UnVt 	3 
iCCUOANICY 	2.0000 
A 	 - .07600U00. 

.263110000o 

.063U0000. 
3.00U0. 

.00000 
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Fig. 3 showing the appropriate lengths. 

Fig. 3 

Bond Angles 

The program outputs a list of appropriate bond-lengths and bond-angles 

together with standard deviations in all parameters. 

A.1.7. 	Powder Refinement Program (U1212) 

In order to obtain accurate cell dimensions X-ray powder diffraction 

data were collected for all compounds using either KCl or silicon metal as 

internal standards. 	Initial cell dimensions were obtained from single 

crystal Weissenberg photographs and these were refined by the least squares 

method using this program. 

The input to the program basically consists of a set of trial cell 

dimensions and a list of observed sin
2
0 values. 	The unit-cell parameters 

are refined by solving the overdetermined system of linear equations 

obtained by indexing the powder pattern. 

A sample output of data from this program is shown as Table A.1.2. 
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TABLE A.1.2  

SAMPLE DATA OUTPUT FROM PROGRAM U1212  

FOR Os 2 [VC1 2 01 2014 IC1 3  

THE uAlA II) Ft HEiINEU. 	CSVCL 6013 3 
CONSISTS UV  22 SIN  s,,u4,E0  vr....uE5 COLLECTED Al A WAVELFN.ITH oF  1.54050 ANGSTROM UNITS 
IHE INDEX MAIJ4I4 ,,XIENuS 4J 	hi 	4. n= 12. L. 0 AND THE INDEXING IS REQUIRED 
wIIH AN INIIIAL ACLu,ACr or"  .001086 I 0 u-vALOE UNITS. 
[ME A55uoE0 ST•Imf,y 15 ou'.ucLiNic  ”-Axi5 uulOuE 
ihE IHIAL CELL IS: 

CELL ELEmtNIS: 

8611.9200 8= 6.1600  C. 7.1050  ALPHA6 90.0000 
 

HETA= 107.0000  GAMMA= 90.0000 

ImE INPUI 0414 AS u-vALOES 

1  .913619 

2  .021059 
3  .025637 
4  .O4645.3 
5  .054703 
b 	 .0566/0 

• 7  .064769 
8 

. 9  

.061649

007631 

10  .093065 

11  .0963/9 

• 12.  .104365 
13  .112086 
14 .1154q6 

15  .118409 
16  .120993. 

17  .124106 
16  .120971 

19 

20  
.130494 
.150673 

OOHS  H 	 K 	 L 	UCALC UIFF 
.013619  2  U U 
.021659 •  U  1  

.013620  .n00001 
U .021661'  .000002 

U  U  -1  .021661  .000002 
.025637  7  U  -1  .025238 .000399 
.046453  2  0  1  .045325  .001128 

1  1  -1  

• 

.000055 
.054763  4  U  u  

.046398 

.054482  .000281 
4 	U 	-1  .056055  .001292  • 
1  1  1 .056442  .001679 

.056870  4  0  -1  .056055 .000615 

.  • 

1  1  1 .056442  .000428 
3  1  0  .057000  .000130 

.064269  3  1  -1  .063595 .000675 

.081849  2  0  -2 .001b72 

O 0  

2  
• 

.087631  
.080177 

.066644  .000967 
U 0 	 -2 

	• 

.066644  .000987 
.093665  3 	1 	.1 .093726  .000061 

• 

.096379  4  U  1  .096231  .000148 

.104385  0  2  0 .001029  • 

.112088  5  1  U  
.105414 

.000606 

1  
3  -2  

.111481 

.113512  .001474 
.115493  6 	 u 	 - 1 	 .114113 

 • 

.001379  • 
.118409  2  2  0 
.120903  2  0  2  

.119035  .000626 

. .120352  000551  
6  U  6 .122584  .0016E11  • 

.124106  6  0 

 

0 .001522 
.126971  1  

• 
1  2 	

.122584 

.000524 

0  2 	-1 .127075  .000104 
O 2  1  

. 

.126447 

.127075 .000104 
.130494  2 	 2  - 1  .130652  
.150653  '2 	2  1  

.000158 
.150739 .000087 

MEAN= .000524 siANuAku UEVIATION. .000520 FOR 20 INDEXED LINES 
CELL ELEMENis: 

A. 1 .7.8035 N= 6.1763  C. 7.0542  ALPHA= 90.0000 
 

0ETA= 106.6126  GAI*14= 90.0000 

KEAN= .000209 
 

sTANDARD DEVIATION. .0001211013  20 INDEXED LINES 
- CELL ELEMENI5: 

A. 17.8027  H= 6.1 7 79 
 

C = /.U770 	ALFHAE 90.0000 
	

BETA= 106.6258  GAMMA= 90.0000 

CELL ELEMENTS: 

 MEAN= .000201 
	

STANDAk0 DEVIATION= .000129 FOR 20 INDEXED LINES 

A. 17.8027 H= 0.1779  C. 7.0570 
 

ALpHA. 90.0000 
 

BETA= 106.6258  GAmMA. 90.0000 

MEAN. .000201  SIANDARO DEVIATION. .000129 FOR  20 INDEXED LINES 

NU IMPROVENtN1 

H 	K  L  OOHS  OCALC  a  .  DEWOLFF 
2  U  0  .013619  ' .013746  .000127  .002165 

0  0  1  .021659  .021870  .000211  .001876 
2 	 0  -I  .025637  .025694  .000058  .001775 
1  1  -1  .040453  .045547  .00009 4  .001444 

4 	0 	0 	.054203 	.054985  .000222  .001359 

4 	0 	- 1 	.056870  .057011  .000141  .0013 4 0 

3  1  -1  .064269  .004117  .000152  .001280 

2  U  -2  .061849  .081383  .000466  .001166 

LI  0  2  .087631  .087491  .000150  .001135 

3  1  1  .093665  .093883  .000218  .001106 
4 	U 	1 	.096379  .096699  .000320  .001094 

O 2 	u 	.104385  .104805  .000420  .001059 

5  1  U  .112078  .112115  .000027  .001030 

6  0  -1  .115493  .115820  .000378  .001017 

2  2  0  .116409  .118551  .000143  .001007 

2 	2  2 	.120903  .121071  .000168  .000999 

6  0 	0  .124106  .123716  .000390  .000988 

1  1  2  .126971  .1270 4 0  .000069  .000979 

2  2  -1  .130494 .  .130499  .000006  .000966 

2 	 2 	 1 	 .150653  .150343  .000310  .009922 
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Appendix 2  

Density Determination  

To facilitate crystal structure determination it is necessary to 

calculate the number of molecules of a compound that occupy the unit cell. 

For this purpose density measurements on the compounds are required. 

In some cases the densities have been determined by other workers and 

where these showed reasonable agreement with calculated values only an 

approximate check was made on the densities of the crystals concerned. 

This consisted of finding a liquid of slightly less density than the 

crystalline material and in which it was insoluble and observing that small 

crystals did just sink in the medium. 

Where original determinations had to be made, the gradient tube method 

11,37 
was used 	• In all cases some idea of the density expected was known. 

Two miscible liquids covering the density range were mixed in a vertical tube 

with a plunger-type stirrer, giving linear density gradient near the surface. 

The gradient was calibrated using drops of immiscible liquids of 

known density. 	Small crystals of the samples were then introduced into the 

column and their densities measured from the point at which they became 

stationary. This method proved adequate for the use that was made of the 

densities and such problems as cavities or inclusions in the crystalline 

samples could be ignored. 
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Appendix 3  

Structure Factor Tables 

The following fourteen tables comprise lists of structure factors, 

observed and calculated, for each of the structures reported in this thesis. 

The data in Tables A3.1 and A3.3 were extracted from output of the structure 

factors program discussed in Section 2.2. 	Table A3.2 contains only 

observed structure factors for the weak layer line data collected for 

K
3
[Cr(NCS)

6
].41-12

0 (see also Section 2.2). 	The data in Tables A3.4 to 

A3.14 have been obtained directly as output from the ALGOL computer program 

X24 (Appendix 1). 
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5 	2 
5 	3 
5 	4 
5 	5 
5 	7 
5 	8 
5 	9 

Hr 

• 1 
5 	3 
5 	5 

Hr 

6 	0 
o 1 
6 	2 
6 	3 
e 4 
6 	5 
• 7 
6 	8 
O 9 

H. 
6 	0 
6 	1 
6 	2 
6 	3 
6 	4 
• 5 
6 	6 
6 	7 
• 8 
O 9 

Hr 
0 

o 1 
6 	2 
6 	3 
6 	4 
O 5 
• 6 
6 	7 
6 	8 
6 9 

H. 
6 	1 
6 	3 

H: 

6 	0 

6 	2 
6 	4 
6 	6 

H: 
7 	0 
7 	1 
7 	2 
7 	3 
7 	4 
7 	5 

Hr 

7 	0 
7 	1 
7 	3 
7 	4 
7 	5 
7 	8 

H. 
7 	1 

7 	2 
7 	3 
7 	5 
7 	6 

.7 	7 
7, 	9 

H= 
7 	0 
7 	2 
7 	4 
7 	6 

H. 
8 	0 
8 	1 
8 	2 
8 	3 
8 	4 
8 	5 
8 	6 
8 	7 
8 	8 
8 	9 
8 10 

Hr 

8 	0 
1 

6 
43  8 

8 	5 

	

10 	K •F C 	 H 	K 	1 	IO 	b4FC 

	

79 	66 

 

- 121 	-106 	0 	7 	1 	209 	219 

	

-316 -338 	8 	8 	1 	203 	208 

	

118 	99 	6 	9 	1 	-163 -215 

	

-94 	-87 

	

-250 	-253 	14= 	6. 	L. 	2 

	

88 	81 	8 	0 	2 	-111 	-111 
6 	1 	-97 	-77 

	

L= 4 	 8 	4 	-89 -106 

	

103 	103 	8 	5 	- 115 	-85 

	

-88 	-69 

	

103 	108 	h= 	• 	I= 	3 
• 0 	-177 -151 

	

L= 0 	 8 	2 	101 	103 

	

-231 	-236 	8 	4 	- 142 -135 

	

195 	185 

	

62 	92 	Mr 	L= 	1 

	

- 175 	- 161 	9 	0 	- 210 - 206 

	

- 224 	-203 	4 	1 	-139 -117 

	

187 	179 	9 	3 	110 	103 

	

-138 	-126 	9 	4 	-162 -180 

	

-179 	-160 	9 	5 	-97 	-96 

	

185 	152 	9 	8 	-132 -134 

Hr 
9 	0 
9 	1 
9 	2 
✓ 4 
9 	5 

H. 
9 	0 
9 	2 
9 	4 
9 	6 
• 8 

Hr 

• 1 
9 	3 
4 	5 

H= 1 
10 	0 
10 	1 
10 	2 
10 	3 
10 	4 
10 	5 
10 	6 
10 	7 
10 	8 
10 	9 

H= 10. 	L= 	1 
10 	0 	1 	-207 	-175 
10 	1 	1 	-165 	-154 
10 	2 	1 	113 	113 
10 	3 	1 	134 	132 
10 	4 	1 	-154 	-162 
10 	5 	1 	-157 	-154 
10 	6 	1 	99 	103 
10 	8 	1 	-108 -136 

H= 10. 	L= 	2 
10 	0 	2 	-143 	-142 
10 	1 	2 	91 	98  
10 	4 	2 	-137 	-134 

H= 10. 	L. 	3 
10 	0 	3 	111 	111 
10 	1 	3 	112 	99 
10 	2 	3 	-92 	-92 
10 	3 	3 	-93 	-92 

9 10 	4 	3 	4 	100  
10 	5 	3 	94 	92  

M. 11. 	L. 	1 
11 	1 	1 	179 	153 
11 	2 	1 	- 137 	-132 
11 	3 	1 	-120 	-142 
11 	5 	1 

M. 11. 	L!40 	

144 

2  
11 	0 	2 	278 	266 
11 	2 	2 	- 136 	-148 
11 	4 	2 	239 	247 

H= 11. 	L. 	3 
11 	0 	3 	133 	144 
11 	1 	3 	- 220 	- 250 
11 	3 	3 	204 	230 
11 	4 	3 	114 	129 
11 	5 	3 	-197 	-234 

m= 11. 	L. 	4 
11 	0 	4 	-181 	-208 
11 	2 	4 	89 	111 

H= 12. 	L= 	0 
12 	1 	0 	-147 	- 145 
12 	3 	0 	122 	12 9  
12 	5 	0 	-119 	-1 4 8 
12 	7 	0 	85 	109 

H= 12. 	L= 	1 
12 	0 	1 	- 298 	-361 

12 	4 	1 	-296 	-329 

H .  12. 	L= 	2 
12 	0 	2 	160 

	
136 

12 	1 	2 	154 
	

168 
12 	2 	2 	-160 	-138 
12 	3 	2 	-137 	- 152 
12 	4 	2 	152 

	
127 

12 	5 	2 	113 
	

158 

	

H.,  12, 	L= 	3 
12 	1 	3 	- 154 	-157 
12 	3 	3 	146 	110 

L.. 	1 
420 	433 
203 	178 

- 231 	- 222 
-167 	- 148 
371 	368 
178 	164 

- 188 	- 183 
- 119 	- 108 
249 	276 
136 	135 

L= 	2 
291 	255 

- 271 	-240 
- 152 	- 112 
200 	214 
230 	213 

- 222 - 212 
-92 	-65 
181 	165 
190 	152 

-152 	-170 

L= 	3 
- 68 	-66 

	

75 	58 

. 	L= 	4 
113 	44 

- 126 	-91 
100 	83 
-89 	-69 

L= 	1 
203 	173 

-138 	-107 
-90 	-71 
116 	90 
137 	136 
-89 	-98 

L= 2 
-265 	-251 
102 	75 
-79 	-70 

- 218 	- 223 

	

90 	60 
- 180 	- 174 

L= 	3 
214 	186 

-150 	- 142 
- 168 	- 162 
176 	185 

-115 	-111 
-115 	-131 
133 	165 

L= 	4 
285 	287 
-129 	-108 
253 	261 

-109 	-101 

L. 	0 
447 	492 
261 	251 

-277 	-279 
-230 	- 218 
398 	420 
225 	219 

- 216 	- 228 
-164 	-156 
307 	308 
177 	170 

-171 	-175 

L= 	1 
348 	324 

- 295 	- 309 
276 	782 
268 	280 

- 242 	-271 

L. 2 
-85 
105 
87 

-94 
118 

L. 3 
385 

- 125 
290 
-94 
252 

L= 	4 
- 221 
216 

-217 

L. 0 
265 

-227 
-146 
205 
266 

-169 
-100 
159 
207 

-172 

-79 
109 
60 

-72 
1/6 

380 
-117 
346 

-114 
273 

-235 
216 
-217 

291 
-211 
-115 
197 
262 
-189 
-97 
160 
204 
-152 

177 

TABLE 81.5  

FOR (884 ) 2 1t2C15 11201  MOB 

m 	K 
L 	10 	n•Fc 

M= 0, L. 0 

O 2 	0 	-407 -459 
O 6 	0 	-354 -318 
O 8 	0 	561 	555 
O 10 	0 	- 238 -230 

H. 	O. 	L= 	1 
0 	3 	1 	36o 	397 
O 5 	1 	-403 -382 
0 	7 	1 	288 	268 
U 	9 	1 	-306 -286 
0 	11 	1 	154 	192 

H= 	0. 	L= 2 
0 	2 	2 	- 240 - 243 
0 	4 	2 	- 175 	- 178 
O 6 	2 	-127 	-80 
O 8 	2 	-201 -146 

11= 	O. 	L. 	3 
O 1 	3 	50 	39 

3 	3 	-65 	-35 

H. 	0, 	L. 	4 
O 4 	4 	-104 	-09 

H. 1 	L. 1 
1 	1 	1 	134 	111 

	

1 	3 	1 	-96 	-68 
1 	4 	1 	- 123 	-116 

	

1 	5 	1 	115 	87 

	

1 	7 	1 	-63 	-58 

	

1 	8 	1 	-96 	-80 

H= 	1. 	L= 	2 

	

1 	1 	2 	103 	129 

	

1 	2 	2 	246 	279 

	

1 	3 	2 	-106 -104 

	

1 	4 	2 	145 	115 

	

1 	5 	2 	145 	135 

	

1 	6 	2 	158 	124 

	

1 	7 	2 	-90 	-83 

	

1 	8 	2 	142 	83 

	

1 	9 	2 	119 	116 

H= 	1, 	L= 	3. 

	

1 	1 	3 	- 122 -145 

	

1 	2 	3 	- 131 	- 131 

	

1 	3 	3 	150 	126 

	

1 	4 	3 	310 	315 

	

1 	5 	3 	-152 -138 

	

1 	,6 	3 	-130 	-120 

	

1 	7 	3 	90 	96 

	

1 	!8 	3 	271 	239 

	

1 	4 	3 	-131 	- 115 

' H. 	1. 	L= 	4 

	

1 	1 	4 	-162 	-217 

	

1 	2 	4 	126 	118 

	

1 	3 	4 	213 	192 

	

1 	4 	4 	- 293 - 272 

	

1 	5 	4 	- 205 - 193 

	

1 	6 	4 	131 	104 

	

1 	7 	4 	125 	144 

H= 2. 	L= 0 

	

2 	0 	0 	48 

	

2 	1 	0 	-358 -420 

	

2 	3 	0 	280 	333 

	

2 	5 	0 	- 338 - 332 

	

2 	7 	0 	288 	225 

	

2 	9 	0 	-292 -249 

4= 	2. 	L. 	1 

	

2 	0  ... 	1 	- 485 	-557 

	

2 	1 	1 	-114 	-86 

	

2 	2 	1 	198 	163 

	

2 	3 	1 	76 	65 

	

2 	4 	1 	-413 	-434 

	

2 	5 	1 	- 88 	-67 

	

2 	6 	1 	164 	158 

	

2 	8 	1 	-367 -310 

O 2. 	L= 	2 
2 1 =  2 	243 	246 

	

2
2 3 	

2 	-76 	-61 

	

2 	2 	- 190 	-207 

	

2 	5 	2 	225 	217 

	

2 	7 	2 	-154 	-152 

	

2 	9 	2 	160 	172 

,-,-", 	2. 	L. 	3 

	

2 	0 	3 	200 	211 

	

2 	1 	3 	-57 	-60 

	

2 	2 	3 	-90 	-42 

	

2 	3 	3 	57 	51 

	

2 	4 	3 	206 	173 

	

2 	6 	3 	-83 	-78 

	

2 	8 	3 	140 	124 

h . 	2. 	L= 	4 
2 	0 	4 	113 

	
131 

2 	2 	4 	-129 	- 122 

2 	6 	4 	- 118 
2 	4 	4 	147 

-69 
10i 

MBE), E(EALC) 

H K 	L 	O 	K4FC 

H= 	3. 	L. 	1 
3 	0 	1 	231 	236 
3 	1 	1 	156 - 117 
3 	2 	1 	-238 -231 
3 	3 	1 	-111 	-96 
3 	4 	1 	211 	176 
3 	5 	1 	121 	110 
3 	6 	1 	-168 -145 
3 	7 	1 	-91 	-76 
3 	8 	1 	138 	125 

M= 3. 	L. 2 
3 	0 	2 	634 	676 
3 	1 	2 	-180 - 135 
3 	2 	2 	-193 -212 
• 3 	2 	147 	114 
3 	4 	2 	456 	520 
3 	5 	2 	-158 -120 

6 	2 	-182 -175 
3 	7 	2 	42 	65 
3 	8 	2 	337 	348 
3 	9 	2 	-119 	-96 

H= 3. 	L= 
3 	0 	3 	-166 -120 
3 	1 	3 	-307 -314 
3 	2 	3 	110 	100 
3 	3 	3 	285 	271 
3 	4 	3 	-152 	-112 
3 	5 	3 	-293 -273 
3 	6 	3 	85 	76 
3 	7 	3 	202 	197 
3 	8 	3 	-115 	-42 
3 	9 	3 	-203 -216 

H= 	
4 
3

. 	
L= 	4 

3 	0 	-193 -225 
3 	1 	4 	83 	89 
3 	3 	4 	-88 	-79 
3 	4 	4 	-192 -200 
3 	5 	4 	111 	83 

H= 	4. 	L= 	0 
4 	0 	0 	-245 -220 

2 	0 	-357 -339 
4 	0 	- 214 	-196 

.6 	0 	- 190 	-130 
4 	b 	0 	-212 - 156 

H= 	4. 	L= 	1 
4 	0 	1 	-351 	-351 
4 	1 	1 	266 	260 
4 	3 	1 	-220 -222 

4 	4 	1 	- 262 -263 

41 	
237 	240 

4 	1 	- 184 	- 169 
4 	Et 	1 	-192 	-169 
4 	9 	1 	195 	196 

H= 4. 	L. 	2 
4 	0 	2 	648 	641 
4 	1 	2 	163 	141 
: 2 	2 	-293 -290 

3 	2 	-139 	-118 
4 	4 	2 	468 	505 
4 	5 	2 	129 	113 
4 	6 	2 	- 243 -222 
4 	7 	2 	-93 	-78 
4 	8 	2 	338 	339 
4 	9 	2 	96 	82 
4 10 	2 	-108 -163 

H. 	4. 	L= 	3 
4 	1 	3 	-233 -200 
4 	2 	3 	58 	43 
4 	3 	3 	185 	179 
4 	5 	3 	-182 	-165 
4 	7 	3 	152 	134 
4 	9 	3 	- 111 	-125 

H= 	4. 	L. 	4 
4 	2 	4 	74 	55 

Mr 	5. 	L= 	1 
5 	0 	1 	251 	220 
5 	1 	1 	-167 	-132 
5 	3 	1 	135 	116 
5 	4 	1 	199 	183 
5 	5 	1 	- 81 	-98 
5 	8 	1 	157 	139 

H. 	5, 	L= 	2 
5 	0 	2 	-383 -360 
5 	1 	2 	-336 	-355 
5 	2 	2 	'165 	158 
5 	3 	2 	302 	304 
5 	4 	2 	- 203 -283 
5 	5 	2 	-279 	-298 
5 	6 	2 	147 	128 
5 	7 	2 	206 	216 
5 	8 	2 	- 211 	-190 
5 	9 	2 	- 243 -226 
5 10 	2 	120 	96 

H. 	5, 	L= 	3 
0 	3 	-392 	-391 
1 	3 	141 	112 
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' Appendix 4  

Literature Review V(III) Structures 

Detailed surveys of the structural chemistry of transition metal 

compounds have been carried out up to 1968 by Colton and Canterford
103 

by Nichols
104 , and on V(III) in particular by Clark

105
. Podmore

61 has 

continued the survey of halides and oxy-halides of first row transition 

elements to September 1972. 

A summary of the structural data obtained from powder and single, 

crystal X-ray diffraction studies on compounds of vanadium(III), is 

presented here in tabular form. 
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TABLE A:4.1 

Reported structural data for halides, oxy-halides and 

some related compounds of vanadium(III) 

Compound Cell dimensions Comments References 

VF
3 

- 	a.= 5.373 A 

a = 57.9° 

Rhombohedral 

V-F = 1.95 A 

106 

VC1
3 

a = 6.735 R Rhombohedral 98 	• 

a =53.00 V-Cl = 2.46 A 
a = 6.012 A Hexagonal 98 

c = 17.34 A 
a = 6.045 A Hexagonal 107 

c = 17.45 A 

VBr
3 

a = 6.40 	A Hexagonal 6 

c = 18.53 A 

VI
3 

a = 6.919 A Hexagonal 109 

c = 19.91 4 110 

VOF Tetragonal 105 

VOC1 a = 3.78 A Orthorhombic 111(112,113) 

b = 3.30 A 
c . 7.91 A 

CsNiVF
6 

a = 10.36 A 
, 

Cubic 114 

CsCuVF
6 

a = 10.39 A 
CsC0VF

6 
a = 10.42 A 

CsFeVF
6 

a = 10.48 A 

CsMnVF
6 

a = 10.57 A 

' VF 
'  3 	6  a = 	8.70 A Cubic 115(116) 
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TABLE A.4.1 (Cont.) 

(NH
4

)
3
VF

6 
Rb

3
VF

6 
T1

3
VF

6 
Cs 3

VF6 

a = 9.04 R 
a = 9.07 A 
a = 9.04 R 
a = 9.47 A 

Cubic 

• 

117,118 

119 

115 

115 

(NH
4

)
2
VF

5
.H

2
0 a = 8.42 A Cubic 120 

Rb
2
VF

5
.H

2
0 a = 8.42 4 

Ti VF.H0 a = 8.45 R. 
5 	2 

KVF4 
a = 7.596 A Orthorhombic 121 

b = 7.738 R 
c = 12.28 A 

RbVF4 
a = 7.596 A Tetragonal 121 

c = 6.315 A 
a = 3.78 	A Tetragonal 122 

c = 6.23 	A 
a = 8.34 	R Cubic above 500°C 122 

a . 7.24 A Hexagonal 123 

c = 17.94 A Isomorphous with 

Cs
3
Cr

2
Cl

9 

V
2
0
3 

a = 5.647 A N7-0 = 1.96 A 124 

a = 53 0 45' and 	2.06 A 

Rhombohedral 
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TABLE A.4.2 

Reported Crystallographic data for complexes of vanadium(III) 

K
3
[V(C

2
0
4

)
3

]
90,91 92 

VC1
3
(NMe

3
)
2 

V[PS
2
(0Et)

2
]
93
3 

[(71.-C
5
H
5
)V(CF

3 
 COO

2 
 P 
 2 

a(A) 7.81 9.817 8.644 9.00 

b(R) 20.01 10.127 18.487 8.75 

c(R) 10.35 13.152 17.688 8.88 

a (0) 65.90 0  

f3 108.6° 930 105.50 

Y 102.8° 

z 4 4 	
• 4 1 

d
calc 2.102 g/cc 1.4 g/cc 1.43 g/cc 1.81 g/cc 

d
obs 2.09 g/cc 1.78 g/cc 

Space Group P2
1 
 /c Pnma C2/c P1 

Observed 1350 573 1124 750 

Reflections 

Final R. .15 .074 .077 .14 

V-C1(Av) No bond 
lengths 
given 

2.239 

V-0(bridge) 2.05 A 


