
ALGEBRAIC REASONING IN LAMBDA
CALCULI

by

Edmund A Kazmierczak, BSc (ions)

Department of Computer Science

Submitted in fulfilment of the requirements

for the Degree of

Doctor of Philosophy

UNIVERSITY OF TASMANIA

HOBART

June 1991

This thesis contains no material which has been accepted for the award of any

other higher degree or graduate diploma in any tertiary institution. To the best

of my knowledge and belief, this thesis contains no material previously published

or written by another person, except where due reference has been made in the

text of the thesis.

E. Kazmierczak

11

Abstract

This dissertation examines some aspects of the relationship between A calculus

and universal algebra. Motivated by the desire to understand the implementation

of abstract data types in functional languages we use A algebras, or models of

the pure A i3 calculus, as a universe in which models for specifications are to be

constructed. Given an arbitrary A algebra M we construct from it a cartesian

closed category with sum objects which we call C(M) . The objects of C(M) are

interpreted as types while the arrows can be thought of as effective functions.

Unlike set theory where the semantics of an abstract data type is often chosen to be

the (isomorphism) class of initial models the simple model of types and functions

presented here contains no initial object. This means more care is required when

choosing the semantics of an abstract data type. In particular the category C(M) ,

which is an extension of the cartesian closed monoids of [Koy82, LS86, Bar84] is

cartesian closed (4.1.6) and so the basic properties of functional languages such as

currying and higher order functions can be modelled.

Using the idea of a T-algebra [LS81, SP82] we construct algebras as the great-

est fixed points of endofunctors over C(M) (4.2.5). While in general systems of

equations do not always exhibit computational properties in many cases they do,

especially if a set of Church-Rosser and strongly normalising rewrite rules can be

extracted from the equations by a technique such as the Knuth-Bendix completion

procedure [KB70]. It is known [KS81] that a Church-Rosser strongly normalising

set of rewrite rules is associated with the word problem in the free algebra and if

the word problem is solvable then there is a recursive function taking each term in

the free algebra to its normal form. We construct models for systems of Church-

Rosser, strongly normalising sets of rewrite rules based on this characterisation of

the word problem (4.3.14).

Secondly a calculus, AEE , is given for reasoning about these models.)EE is

a simply typed A calculus augmented with the operations and equations of the

original specification. It is shown that this calculus is a conservative extension of

the usual equational calculus if a strongly normalising and Church-Rosser set of

rewrite rules can be generated from the original equations (5.2.10).

Thirdly, given a specification and an arbitrary model of that specification in

C(M) , the soundness of deduction in A EE is proved (6.1.5). Finally, a theorem re-

lating the equational theory to A EE , namely that for every model of the equational

theory there exists a unique model of A EE .

iv

V

Acknowledgements

There are many people to whom I owe thanks for both their help and their gen-

erosity of time and spirit.

Firstly to my supervisors, Phil Collier and Clem Baker-Finch. To Clem Baker-

Finch for listening to and reading through many half baked ideas, setting me

straight when I needed setting straight and for his patience with a sometimes

"difficult" student, to Phil Collier for putting up with all my continuing requests

of him even after I had moved to Edinburgh and to both for their encouragement

and faith at all times. Also to the staff at the CS Dept. at the University of

Tasmania for the many fruitful and enjoyable years spent there.

Secondly to the G.C.S.B, that is, Andrew Partridge, David Wright, Bernard

Gunther, Ben Lian, Tony Dekker and James Coleman for their comradeship and

for making my days at the University of Tasmania special. I would, however,

especially like to thank David Wright for his assistance with the LaTeX'ing of

parts of this dissertation, James Coleman for all his friendship and good humour

(especially when I was without mine) and Tony Dekker for all the time we spent

discussing our ideas, relevant or not.

Finally to my wife Therese for all her patience, understanding, encourage-

ment and help, which perhaps went unthanked at the time but certainly not

un-appreciated, and to my parents Helen and Walter for all their selfless help and

support that they have given me throughout the many years.

vi

Contents

Abstract 	 iii

Acknowledgements 	 vi

1 Introduction 	 1

1.1 Background and Related Work 	 4

1.2 Overview 	 9

2 Algebraic Preliminaries 	 12

2.1 Deduction, Computation and the Word Problem 	 13

2.2 S Sorted Theories 	 20

2.3 Algebras for S Sorted Theories 	 26

3 A Calculus 	 31

3.1 A Algebras 	 33

3.2 Cartesian Closed Categories and A Calculus 	 39

4 Models of Equational Theories In Lambda Algebras 	 48

4.1 The Category C(M) 	 49

4.2 Anarchic Algebras in C(M) 	 58

4.3 Algebras Satisfying Equations in C(M) 	 66

4.4 Examples 	 78

4.5 Summary 	 86

5 Extending Equational Theories To Higher Order Equational The-

ories 	 88

vii

5.1 A Simply Typed A Calculus with Equationally Defined Operations 90

5.2 Reduction Properties of A EE 	 100

5.3 Examples 	 108

5.4 Simple Extensions to AEE 	 111

5.5 Comparison with Other Work 	 114

6 Soundness and Free Higher Order Theories 115

6.1 Soundness of AEE Deduction in C(M) 	 116

6.2 The Universal Property of C(M) 	 121

7 Conclusions and Further Work 129

viii

List of Figures

1 The Universal Property of TE(X) 	 14

2 Mediating morphisms 	 28

3 Rules for the Simply Typed AT 	 43

4 Sums and Products in C(M) 	 57

5 The Definition of an Operation in C(M) 	 74

6 Definition of T 	 75

7 Rules to Decide the Word Problem for Free Groups 	 83

8 Deduction rules. 	 92

ix

Chapter 1

Introduction

The universal algebra approach to the design and specification of programs has led

to a number of important and fundamental concepts in computer science. In this

approach programs can be equated to algebras and program specifications with a

set of axioms describing the behaviour of a program that is to solve a particular

problem. Such a view allows for a rigorous treatment of both programs and

specifications as well as the relation between them within one unified framework

and this in turn has facilitated a number of other developments. Thus in software

engineering one may begin the design of programs by first writing a specification

of the various functions required to solve the problem, their domains and ranges

and a set of axioms specifying their behaviour. Such a program specification may

be explored for various logical properties such as consistency, or perhaps it may

be shown to possess some property inherent to the problem domain and thus some

measure of confidence in the specification is gained. From the specification one

must now construct one particular algebra, that is, give a program meeting the

specification.

Specification languages to aid the writing, exploring and understanding of large

specifications have been one such development, for example, CLEAR [GB79], ACT

ONE [EM85] and ACT TWO [EM90], as well as OBJ and OBJ3 [GW88]. A second

development, which is incorporated into some specification languages, is that of

formalising software engineering techniques within this algebraic framework, for

example, one software engineering technique which has been formalised is stepwise

1

refinement.

One aspect of the theory of algebraic specifications which remains unsatis-

factory is the formal definition of implementation and how this should take into

account an actual programming language. What is usual in the initial algebra

approach [JAGW78, EM85] is to consider the actual language as a particular

specification itself, say a collection of abstract data types as in [JAGW78]. With

such an assumption one can define what it means for a program to meet its spec-

ification and so show that any program written in this (abstract) programming

language will meet its specification. The final coding step, however, must still be

done outside the algebraic framework.

Almost in parallel with the development of the theory of algebraic specifica-

tions came the development of higher order functional programming languages

such as Miranda [Tur] and Standard ML [HMT90, MT90]. Functional program-

ming languages offer a simpler alternative than imperative programming languages

for studying the interactions between algebraic specifications and programs be-

cause their view of programs is much simpler. If we are to use a higher order

functional language as a target language for the implementation of algebraic spec-

ifications and again consider the formalisations of software engineering ideas, such

as stepwise refinement and implementation, then we require that the latter take

into account the fact that a program may use higher order functions to realize a

(potentially first order) specification.

Functional languages are still too complex' to deal with directly and so we

choose to simplify the task by considering A calculus as a simple functional pro-

gramming language. Viewed another way, A calculus is a simple abstraction for

higher order functional programming languages and thus, we have the basis for

studying in more detail the interaction between algebraic specifications and func-

tional programming languages.

We wish to understand the logical relationships between equational specifica-

tions and functional programming languages better for two main reasons: (1) such

'Consider for example, type polymorphism, exceptions and the possibility of assignment in
Standard ML [HMT90].

2

an understanding may allow us to improve the facilities offered by functional pro-

gramming languages , for example, to allow mixtures of executable specification

and the more usual style of higher order function definition within one language;

(2) if the relation between implementation and language can be formalised then

we may perform proofs of correctness of the program code against its specifi-

cation within one unified framework. We are not yet at such a point and still

must rely upon a suitable abstraction of programming languages . In the case

of higher order functional languages this abstraction can be made more precise

than the (simpler) assumptions usually found in definitions of implementations of

equational specifications2 .

In this dissertation we examine the problem of constructing implementations

of equational specifications3 in A calculus. In particular we will be concerned with

two questions:

1. under what conditions can algebras in the A calculus be constructed;

2. is there a sound and complete inference system for reasoning about algebras

in the A calculus.

An answer to the first question would enable two things: (1) it would allow us

to devise a test to check if a specification is realizable (in the A calculus) and (2)

it would allow an extension of the usual function definition facilities in functional

languages to include abstract data types. An answer to the second question would

enable us to develop a theory of an implementation in a functional language. To

answer these questions we view the A calculus as a universe in which abstract

implementations may be made.

Rewrite rules are a means of computing with equations [H080, O'D77[and

since we wish to construct algebras within the A calculus their operations will,

in some sense, be computable. For the A calculus this means (0) reduction, that

is, the value of an expression is computed by trying to reduce it to a (#) normal

form. For rewrite rules the same ideas apply and we show how (#) reduction can

2see section 2.1
3 For a more proof theoretic view of implementation between sets of rewrite rules see [KS85].

3

be used to "simulate" the result of rewriting a term to normal form. If (E, E) is

a signature and a set of E equations then we show that under the assumptions

that each sort in S is non-void and that a set of Church-Rosser rewrite rules can

be obtained from the equations in E then an algebra may be constructed from

(E, E).

If A is an algebra in the A calculus satisfying a set of first order equations then

the theory of A may well contain equations which equate terms involving higher

order subterms with first order terms. We show that a simply typed A calculus

extending the algebraic theory together with the usual rules (a) and (#) as well as

the rules of deduction (C) and () [Bar84] and some (S) rules for surjective pairing

is sound for such algebras. We also examine the possibility of some extensions

to this calculus and show that it gives rise to a cartesian closed category, in the

manner of [LS86], which is the free cartesian closed category on the algebraic

theory presented by (E, E).

1.1 Background and Related Work

Since the papers of [JAGW78] the concepts of data refinement and abstract im-

plementations have figured quite prominently in algebraic specifications. Given

an abstract specification of a data type, or program, the problem was to choose a

representation for the data and code for the functions in actual programming lan-

guage so that all the abstract properties of these functions were preserved. Within

each of the major schools of thought in the semantics of algebraic specifications

these two concepts have been studied.

For those researchers using initial algebra semantics [TJWB77, JAG W78, Zi179,

EM85, EM9O] there are a number of definitions of implementation. For example,

in the work of the ADJ group [JAG W78} (but see also [Nou80, Nou83]) an imple-

mentation is a derivor. It is assumed that a programming language or machine

gives rise to a particular algebra in which all the implementations will be made

and in this case a derivor is a map from the (abstract) specification" signature

4 A brief word on nomenclature is required here. We say that a specification or data type is

4

into the set of derived operations of this (concrete) algebra. The implementation

is correct if the image of the derivor is a isomorphic to the initial algebra of the

abstract specification. In the work of [HEP80b, HEP80a, EK83, EM85, EM9O] the

concrete data types are characterised by an equational presentation with initial

algebra semantics. An implementation is then an extension of the signature of

the concrete specification by the sorts and operations of the abstract signature

together with some equations relating the "new" operations back to the original

ones (called an implementation specification). Using this framework the concept of

program development by stepwise refinement can be formalised. Perhaps the dis-

tinguishing feature of this work, from that of [JACW78] is that specifications are

not considered separately from their semantics and so abstract implementations

also have a semantics. This is expressed as the composition of two functors: syn-

thesis and restriction. Synthesis takes each algebra of the concrete specification to

a model of the implementation specification while restriction essentially forgets the

sorts and operations of the concrete data type and restricts the resulting models

to those reachable from the initial algebra of the abstract specification.

In [Ehr78, Ehr82] the focus is purely on the syntactic aspects of implementa-

tion. This is done purely in terms of theories, where the notion of implementation

is defined by specific morphisms between theories. The implementation of an ab-

stract specification in (the theory of) a concrete specification is an extension of

the latter by the operations of the abstract specification together with equations

which relate the new operations back to the operations of the concrete specifica-

tion (as in [HEP8Ob]). The difference between the syntactic approach of Ehrich

and that of [HEP8013) is that the conditions for correctness are also formulated in

a purely syntactic manner and aim at defining a class of permissible implementa-

tions by ensuring that each of the theories, that of the abstract specification and

the concrete specification, is preserved in the theory defining the implementation.

In [ST86] a different perspective on implementations is given. It is assumed

that specifications are loose [SW81], that is, the semantics of a specification is not

concrete if it is a specification of a data type in our actual programming language and does not
need to be refined further before it can be implemented, otherwise we say that it is abstract.

5

simply confined to the initial models as in the work above. The assumption is

made that programs are to be modelled as algebras and under this assumption a

specification implements another specification if each model of the former is also

a model of the latter. How does this differ from the related notions above? In

the work of [JAGW78, Nou80] an implementation takes the theory of an abstract

specification into that of one more closely related to an actual programming lan-

guage. In the framework of [SW81, ST86] abstract implementations make design

choices by simply rejecting certain programs.

Other notions of implementation also exist, for example, [KA84, Hup80, BV85,

Foo85, GM82] and particularly [PV85]. This last notion of implementation is of

interest because of the view of programming language that is taken.

In [PV85] a programming language A is defined in which the basic type struc-

ture of the language may include solutions of recursive equations between the sorts

which are, in effect, domain equations. Thus we may include solutions to recursive

equations like:

List 	 1 + Nat x List

Tree 	 Bool + Tree x Tree

over the basics sorts Nat and Boa The language A of [PV85] also includes higher

order functions. If we are given an (abstract) specification the implementation

in A is given by a pair of maps taking each sort of the specification to a type in

the language and each operation in the specification to term of the appropriate

arity in A which satisfies the equations. The language A of [PV85] is a simple

functional programming language in which data type definitions may be defined

by induction.

In all these approaches to implementation certain assumptions are made re-

garding the best way of representing the programming language. In [JAGW78]

it is assumed that the programming language forms an algebra. The imple-

mentation thus becomes a choice of derived operations within this algebra for

each of the operations demanded by the abstract specification. In the work of

[HEP80b, HEP80a, EK83, EM85, EM90] a particular programming language is

6

considered to be a collection of abstract data types, perhaps organised into a hier-

archy. Implementations are consequently translations between operations specified

in one abstract data type (the abstract specification) and those of another (the

concrete data types of the language).

While these approaches can in theory be extended to higher order functional

languages that has not been not explicitly. Higher order specifications have been

investigated [PG81, Poi86] but it is not yet clear how the theory of initial algebra

semantics that these two approaches rely on extends to the higher order case.

If the purely syntactic approach is adopted as in [Ehr78, Ehr82] then for higher

order functional programming languages this requires a notion of higher order

theories in which implementations may be made. This we feel, is a possible avenue

and it is one of our goals in this dissertation to introduce such theories. Where we

differ from a purely syntactic approach is perhaps the assumption that a higher

order theory is actually itself a specification of a program while the program is a

model of that theory.

The approach of [ST86] has the advantage of being applicable to algebras of a

very general nature and so naturally includes higher order algebras within the gen-

eral framework. Despite this there is still some benefit to be gained from studying

the way in which programs relate back to their specifications. One benefit which

stems from a precise formulation of the relation between (functional) programs

and their specifications is that the ability to reason about specifications, programs

and data refinement is possible within a single framework.

The work on A calculus has unearthed many interesting paradigms for func-

tional programming. Investigations into the semantics of A calculus, for ex-

ample [Sco71, Sco76, Sto77, Wad76, Mey82], has grown into the theory of do-

mains which is now a well understood theory of the models of both the pure

and typed A calculi. Our interest in A calculus stems from the fact that it

can be used to investigate many properties of functional programming languages

without the overhead of having to consider a lot of inessential operational de-

tail. For example, in the sphere of functional programming domains are used to

7

reason about the behaviour of higher order functions [Sto77, Bar84], define suit-

able notions of data type [Sco76, LS81, SP82] and understand type polymorphism

[Mi177, BM84, CW85, MPS86, Rey85, Co187].

An early formalisation of data types in domain theory, and particularly in the

A calculus, can be found in [Sco76] further elaborated in [Sco80]. In this simple

theory a given model of the pure A calculus always contains a single "type" U

which plays the role of the universe of all "types", that is U is a type and all other

types are subtypes of U. A parallel may be seen in some set theories where each

member of a set is drawn from a universe, but the analogy is only a weak one since

the simple models of types that we consider here have only some of the properties

of sets.

An important feature of the domains discussed above is that they contain

solutions to recursive domain equations. Indeed there is an alternative character-

isation of the algebras within a domain which arises from the category theoretic

approach to algebra [LS81, SP82, MA86]. Algebras do not have to be specified

axiomatically, as is done in universal algebra, but can be specified as the solutions

to recursive domain equations involving functors. This necessitates the view that

the data types which can be defined in a domain form a category preferably with

a certain structure which allows the solution of recursive domain equations 5 .

In a simple type theory two essential features thus co-exist: (1) the ability

to define data by solving recursive domain equations (provided that the category

of "types" has enough structure to do this) and (2) the denotations of recursive

functions (because domains are simply models of the A calculus in which the

number theoretic recursive functions may be represented [JRHS72, Cut80, Bar84]).

If there exists a domain in which types and functions can be constructed in a purely

syntactic way, as in [Sco80, Koy82], then that domain would be a very suitable

universe in which to study implementations. The reason is that programs would

be actual syntactic entities which can be treated operationally as well as being the

elements of an algebra satisfying the algebraic specification.

5 1n the context of this discussion it is perhaps better to think of these as recursive iype
equations

8

To construct an implementation in such a universe we need to do two things:

(1) give a type for each sort which will be the carrier of that sort and (2) give

a (A definable) function for each (abstract) operation in the signature. Since A

calculus, and functional programming languages, are both languages for expressing

computations we conjecture (and later show) that if the equations in an equational

specification can be turned into a suitable set of rewrite rules then a special algebra

may be constructed in models of the A calculus (see [Bar84, Mey82]).

Since the implementation is essentially an algebra within the A calculus we

may have equations between functions definable in the A calculus and those of

the implementation which are not deducible using just equational reasoning, for

example, in the theory of lists and natural numbers we may have the equation

fold 0 + [1,2,3] = 6

where "fold" for lists of natural numbers is defined by the usual recursion equa-

tions:

fold x f nil

folds f cons(y,ys) = f(y, fold x f ys)

It is important therefore to provide a system of reasoning about both the model

and the specification in order to be able to prove facts about the algebras in the

A calculus and to verify that specifications are met. One such a system has been

proposed in [PG81] based upon the equational calculus of [Bir35] (see also [GM81,

EM85]). We adopt the approach of combining simply typed A with algebraic

operations because we feel that for A calculus it is a more natural approach.

The same approach has been taken in [BT88] where A calculus is combined with

equations between terms over some signature. We compare our results with [BT88]

in more detail at the end of chapter 5 where such a comparison is perhaps more

relevant.

1.2 Overview

This dissertation is organised as follows.

In chapter 2 we review some universal algebra and some of the theory of term

rewriting. We also discuss the transition from the usual proof theoretic notions

of term rewriting to the equivalent concept for algebras. The remainder of this

chapter then goes on to deal with algebraic theories and the construction of al-

gebras as fixed points of certain polynomial functors [Mac71]. The aim here is to

lay the algebraic foundations for the work in the sequel. In chapter 3 we outline

the correspondence between A calculus and cartesian closed categories by review-

ing firstly A algebras and models, and secondly the construction of free cartesian

closed categories over a simply typed A calculus. A algebras are to be the universes

in which algebras are constructed while the use of cartesian closed categories will

be to show two particular theorems about the calculus AEE which we consider in

chapter 5.

In chapter 4 we give a category which is our abstraction of a programming lan-

guage and then go on to examine the structure of algebras within this category.

In section 4.1 we define the category C(M) and examine some of its structure.

In particular it is a simple extension of the categories of [Koy82], cartesian closed

(theorem 4.1.6) but not bicartesian closed [LS86], but essentially there is enough

structure to deal with the inductively defined data types which we are consider-

ing. In section 4.2 we look at the structure of anarchic algebras in C(M) where

operations are given by the obvious injections (4.2.5). In section 4.3 we look at the

construction of algebras based on confluent and terminating sets of rewrite rules.

Given a set of such rewrite rules we can construct their solution as a recursive

function (4.3.4 but see also [KS81]). The free algebra together with this solution

constitutes an algebra in the sense of 2.3.1 (see 4.3.14). In section 4.4 we look at

some examples while in 4.5 we summarise the chapter.

Chapter 5 deals with extending algebraic theories to cartesian closed categories,

or when dealing with internal languages, embedding free algebras in higher order

logic. Fix a presentation (E, E). The plan is to first define a A calculus generated

by the free E algebra on variables X, AEE. This is done in section 5.1. We

explicitly include products of terms with surjective pairing and projections from

the consideration of the clone of (E, E). The calculus which is thus derived can be

10

considered as a weak axiomatisation of the models of (E, E) in C(M) . In section

5.2 we look at some of the reduction properties of the calculus defined in section

1 and via reduction show that the extension in section 1 is conservative (theorem

5.2.10).

In chapter 6 we return to semantics again and show that the calculus A EE of

chapter 5 is sound with respect to any algebra in C(M) of a presentation (E, E).

This is done by extending the proof that any cartesian closed category is a A

algebra given in [Koy82, Bar84]. We give a cartesian closed category CE ,E which is

obtained by the correspondence between A calculus and cartesian closed categories

[LS86] and show that it is the free cartesian closed category on an algebraic theory

TE ,E . Also we show that the canonical 7,E algebra in C(M) can be uniquely

extended to a CE , E algebra and that the construction is general enough so that

any 7,E can be extended in this way.

In chapter 7 we conclude and give some directions for future research.

11

Chapter 2

Algebraic Preliminaries

If the assumption regarding programs as algebras and program specifications as

presentations of equational theories is adopted then for a program to satisfy its

specification a program must provide at least those functions and types required

by the signature of the specification. Naturally the operations making up the

program must satisfy the axioms but if the axioms themselves can be used for

computation, say as a set of rewrite rules, then the axioms may be used to specify

computations as well. All that is needed is a means of choosing, or constructing,

the data types over which we are to compute. This has been done in the case of

rewrite rules [O'D77, H082] where the value of a computation is simply the normal

form of the term specifying that computation. Assume now that the axioms are

simple equations. lithe equations are in the form of recursion equations then it

is easy to see what the "values" of computations should be, but if they are true

equations then it is not so obvious.

The problem of finding a decision procedure to test the equivalence of two terms

in an algebra is called the word problem for that algebra and the word problem for

free algebras has well known connections with recursive function theory, see for

example [KS81, JABW811. In the first part of this chapter we review some results

in this area before exploiting this connection further in chapter 4. We then give

the category theoretic perspective on algebraic theories and their algebras which

we use later in chapter 6.

12

2.1 Deduction, Computation and the Word Prob-

lem

We begin by a brief review of some universal algebra. The reader is referred

to [Coh81, MB67, Bou86] for further details regarding universal algebra, general

algebra and the set theory, and to [JAGW78, EM85, ST89] for the use of these in

algebraic specifications.

Let S be a set of sorts, 5* be the set of strings formed from elements of S and It

an S* x S indexed family of operation symbols (called an S sorted operator domain

in [JAGW78]). A Signature E is a pair (5, Si) where f2 is an S sorted operator

domain. In the sequel we will write E the set of operation symbols Si,,,s in

E = (5,1)) and e to denote the empty string.

Definition 2.1.1 ([GM87]) A signature E is called non-void if for every s c S

either Es.,8 is not empty or there is a function symbol o- : s1 x x s such

that every Si, 1 < i < n, is non-void. Otherwise the sort is called void.

A E algebra is an S indexed family of sets {A,}ses together with an S* x S

indexed family of maps:

-rws 	 -4 A:w

interpreting each operator symbol in E as an actual operation in A. We use the

pair (A, -y) to denote the algebra with carrier A and operations defined by 7. Here

and in the sequel we use.Aw where cy = sl, 	 ,s, to denote the product of sets

Asi x 	 x Asn . Also we write o - A as a shorthand for 7(a).

One algebra of particular interest is the free algebra generated by a set of variables

X which is defined as follows.

Definition 2.1.2 ([JAGW78]) The set of E terms TE(X) generated by a set of

variables X is the least set inductively defined by the following rules:

1.X C TE(X)

2.E„ C TEs(X)

13

TE(X)

A

Figure 1: The Universal Property of TE(X)

3. if w = s1...s„, a E 	 and ti E TEsi (X) for all 1 < i < n, then

ti,) E TE(X)

The E algebra structure on TE(X) is given by interpreting each a E Ews as the

function given by

CIT((ill • • • tn)) = Cr(t1) • • • tn)

If the set of generators X is empty then definition 2.1.2 defines another E algebra

which, if it is non-trivial, is called the E Word Algebra and consists simply of the

those terms built from constants and function symbols only. If E is nonvoid then

TE(0)3 is non-empty for each sort s.

Let A be a E algebra and X a set of variables. An assignment of values in A

to variables in X is a map p : X —> A. p can be extended to a homomorphism p

which interprets every term of T(X) in A as in figure 1. Moreover this extension

is unique PAGW78, EM85k

A E equation is a triple (X,ti,t2), where X is a set of variables and t1, t2 E TE(X)

with var(t1) C X and var(t2) C X. The idea is that each equation (X, t1, t2) is uni-

versally quantified over the variables in X. This is often written as V X.ti = t2 to

make this quantification explicit. An algebra A satisfies the equation V X.ti = t2

if for every assignment p: X —> A,

= P(t2)

where again p is the unique homomorphism extending p. This is written as

A = V X.ti = t2 and we say that V X.ti = t2 is Valid in A. An algebra A satisfies

a set of equations if and only if it satisfies every equation in the set.

14

1 ti if x = xo hi(x) =
otherwise

Let E be a set of equations and Mod[E] the set of all E algebras which satisfy

E. Birkhoff's now familiar equational calculus [Bir35] was originally proposed to

derive equations which will be valid in every algebra of Mod[E]. The original

equational calculus of [Bir35] was intended for the single sorted case but when

this calculus is naively generalised to the many sorted case the problem of un-

sound deduction occurs [GM81] (but see also [GM86, GM87]). Below we present

a modified equational calculus due to [EM85].

Definition 2.1.3 ([EM85]) Given a set of E equations E, a Many Sorted Equa-

tional Calculus is given by the following deduction rules:

Substitution

V X, t1 = t2

V X U Y, h(t1) = h(t2)

where h : X —> TE(Y) andii is the homomorphic extension of h to TE(X).

Replacement

V X, t1 = t2

V X U Y, 	 (t) = h2(t)

where t E TE(X) and hi : X —> TE(Y) such that for some xo E X,

Variables if X0 C X

V X, t1 = t2

V Xo, ti = t2

provided that

1.t1, t2 E TE(Xo)

2.Vs E S, Xs 0 0 implies TE(X0) 0 0

and also Transitivity, Reflexivity and Symmetryl.

1There are alternatives to this particular set of rules which are also sound and complete e.g
[GM8.1]

15

Definition 2.1.4 A Derivation of a theorem e from a set of E equations E is a

sequence e1,. , en such that el E E and en = e and each ei is obtainable from ei_1

by application of one of the rules in 2.1.3 or ei E E. We use E HE e to say that

e follows from E by such a derivation and denote by E*, the set of all equations e

such that E HE e.

Definition 2.1.5 ([EM85]) Let E be a set of E equations. The E congruence

on an algebra A generated by E, which we denote by EE, is defined as follows:

I. if V X. L =REE is an equation then for all assignments h: X 	 A,

h(L) EE h(R)

(Closure under substitution).

2.V a E A. a -EE a

3.if a aE b then b 	 a

4.if a EE b and b =E c then a -..7=E C

5.for each operation symbol a : si X . . . X sn —> s of E, if ai and b• are elements

of sort si and a E bi for each 1 <i < n then

(Compatibility).

A congruence relation on a E algebra A is an equivalence relation on A which

is also compatible (as in 2.1.5(5)) with the E structure. E congruences also

arise in another manner. The Kernel of a homomorphism f: A —> B is the set

1(a, a') I f (a) = f (a')} which is given by the pullback diagram

K er f 	 A

A 	

16

If A is a E algebra and f : TE(X) —> A then ker f will be a E congruence on TE (X)

[Coh81]. The smallest such congruence on TE (X) is the E congruence generated

by E in definition 2.1.5 [Coh81].

Definition 2.1.6 ([EM85, Coh81]) Given an E algebra A and congruence re-

lation q the Quotient of A by q, denoted by Al q, is defined as follows:

1. The carrier of sort s is Hall a E A.} where [a] = la' I (a, a') E q}, that is,

the q equivalence class of a.

2. For each operation symbol a E Ews the corresponding operation in Al q is

given by

Crg (a l 1 • • - I an) = [a Ah(al) • • •) an)]

The following theorem from [EM85] summarises the relationship between the

equational theory, the congruence E E and the free and quotient algebras.

Theorem 2.1.7 (Soundness and Completeness [EM85]) Let (E, E) be a pre-

sentation, X an S indexed set of variables and t and t' two terms in TE(X). Then

the following are equivalent;

1. EI-E V X, t = t'

2. V X. t = t' is valid in all algebras satisfying E.

S. V X. t = t' is valid in TE(X)/ --1-E

4. t :_---E. E t'

Is there a way of deciding if an equation is valid in a particular algebra A?

This question is often referred to as the word problem for A and can be restated

as follows:

Given terms t and t' and an algebra A, find an algorithm to decide if

I and t' both denote the same value in A.

More formally:

17

Definition 2.1.8 ([Coh81], [H080]) The word problem for an algebra A is to

find an algorithm to decide if A =e for some E equation e.

In general the word problem is undecidable [Coh81], but from theorem 2.1.7 if there

is an algorithm to solve the word problem for TE(X) then the relation E HE e is

also decidable. It can be shown [Coh811 that the problem of finding a solution

to the word problem, for a given algebra A, can be reduced to that of finding a

homomorphism from TE(X) to a special subalgebra of itself. This is essentially

what we describe now.

Definition 2.1.9 Let q be a E congruence on a E Algebra A, and R C A. If

each r E R is in exactly one q congruence class such that UrER[r] = A then R is

a Transversal for q in A. 2

If q is an equivalence relation and R a transversal for q in a E algebra A then there

is a function

T : A —> R

which takes any element in A to its representative in R. Moreover R can be supplied

with a E algebra structure as follows:

R(ri, 	 ,rn) = T(ciA(ri, • • • ,rn))

where o- E E 	each ri is an element of As,. If T is recursive then this gives

us a way of computing in A. We consider this for the case when A is the free E

algebra TE(X).

The following can be found in [O'D77, H080, K1o80].

Definition 2.1.10 A set of rewrite rules over a signature E is a set of ordered

pairs of terms

8 = {(t,t1)1t,t1 E TE(X) and var(e) 	 var(t)}

where again var(t) denotes the set of variables of a term t. The Reduction Relation

-46 is the least set containing B and closed under the following two rules:

2If we let .L denote the diagonal of A, i.e {(a,a)I a E A} then another characterisation can
be given as follows : R is a transversal for g in A iff g nR x R =

18

/. Substitution: if t, E TE(X), t -45 t' and : X —> TE(Y) is any substitu-

tion then(t) 	 BS7(ti);

2. Replacement: if ti, t2 E TE(X), t1->Bt2, t E TE(Y) and (pi, co2 are two

substitions such that for some yo E Y, pi(yo) = t1 and (,o2(Yo) = t2 and for

all y yo E Y (pi(y) = P2(Y) = y then (t) —>B TO).

The transitive and reflexive closure of —>8 is denoted by —.

A Redex in t is a subterm t' such that for some rule (ti, t2) E B, and some

substitution cp, co(t1) = t'. A term t is said to be in Normal Form if it contains no

redexes. The reduction relation also gives rise to a pre-order relation on the set

of E terms. Let t <5 t' if t' 	 t. By the substitution and replacement conditions

it follows that if t1 <6 	 and t2 <6 1'2 then t1[t2/ X] <5 tli[ti2/ X]. The symmetric,

transitive and reflexive closure of —>L3 is called the Equivalence Relation generated

by B.

Definition 2.1.11 	 I. 8 is Confluent if for any E term t such that t —>*5 t1 and

t —> 8 t2 then there is a t' such that t1 	 t and t2 —>*B .

2. 13 is Strongly Normalising if for all terms in TE(X), there is no infinite

sequence of reduction steps starting at t, i.e all terms reduce to normal form

along any reduction path.

It is a well known fact [H080] that if a set of rewrite rules is Church-Rosser then

it is also confluent.

We can now state a theorem, due to Newman [New42], which gives sufficient

conditions for a set of rewrite rules to be confluent. Say that a set of rewrite rules

is Locally Confluent if t —>8 t1 and t t2 then there is a t such that t1 —>*5 t' and

t2 	 t'.

Theorem 2.1.12 (Newman) If 8 is locally confluent and strongly normalising

then B is also confluent.

A fundamental result given in [KB70] for testing a set of rewrite rules for local

confluence is the Knuth-Bendix theorem. From the point of view of computing

19

with sets of rewrite rules confluence is important for the reason that normal forms

constitute the results of computation and confluence implies that these results are

unique.

For the sequel we let t[u 4- t'] denote the term which results from t by replacing

the subterm u by t'.

Definition 2.1.13 Let Ai —› pi and)12 	 p2 be two rewrite rules. Let u be a

subterm of Ai and c,o a substitution such that u = c,o(A2). Then the derived pair

resulting from the superposition of A2 -> p2 on Ai 	 pi is the pair

(700[7(u) <— 7(P 2)],7(91))

The theorem below is due to Knuth and Bendix [KB70] and coupled with the

Newman theorem gives a test for the confluence of a set of rewrite rules.

Theorem 2.1.14 (Knuth - Bendix Theorem) The set of rewrite rules B is

locally confluent iff for every critical pair (P, Q) resulting from superpositions in

B, there exists a term R such that P —>* R and Q R

The Knuth Bendix algorithm derives a set of rewrite rules from a set of equa-

tions which solve the word problem for the quotient of the algebra TE(X)i

To decide if an equation t = t' is true in this algebra, both t and t' are rewritten

to normal form and compared. Normal forms can also be considered as the results

of computations performed using the rewrite rules and this leads us finally to the

theorem of [KS81] linking properties of reduction to those of recursive functions:

Theorem 2.1.15 ([KS81]) If E is a set of equations such that the word problem

for TE(X)I EE is solvable, then the retraction T is a partial recursive function.

2.2 S Sorted Theories

In this section we review some results about algebraic theories. Algebraic the-

ories were first proposed by F. W. Lawvere [Law63] to study classes of equa-

tional theories, just as we may use the presentation of equational theories to

20

study classes of algebras. While our ultimate aim in chapters 4 and 5 is to study

algebras in a particular cartesian closed category we start here by looking at

the general theory. The bulk of the material of this section may be found in

[LG85, JAG75, KR89, Law63] and is not original. We assume the definitions of

category, functor, natural transformation, limit and colimit which may be found

in standard texts like [Mac71, AM75, HS79].

Let S be a set of sorts. S may be viewed as a discrete category by letting the

objects of S be the elements of S and the morphisms of S be defined as follows:

1.for any s E S, Hom(s,$) = ids

2.for any s, s' such that s 	 s', Hom(s, sl) = 0.

The category of all (small) sets and functions is here called SET and so the functor

category SETs is the category of all S sorted sets and S indexed families of maps

between them.

More precisely, if A and B are two functors in SETS then a map between

them is a natural transformation h : A B with components h(s) : A(s) B(s)

for every s E S. Note also that we use the notation -4 for natural transformations.

Since S is small then SETs is a topos and so is both complete and cocomplete

(see [Mac71, LS86]).

Definition 2.2.1 ([LG851) Let S be a set of sorts. An S sorted theory T is a

category defined by the following data:

1.The objects of Tare the strings in S* .

2.Let u = u1...un and w = 	 wn, be any two objects of T, that is, u and

w are strings in 5* . An S sorted operation in T is a map a : s —> w for some

sE S. A tuple of S sorted operators is a map (al, 	 ,an) : u —> w in which

each cri is a ui sorted operation in T with codomain w. Thus the elements of

Hom(u,w) are tuples of S sorted operators with codomain w. For each w

there are n distinguished morphisms 	 : w, —> w such that

(al, • • • ,am) 0 7r 	 = ai ui

21

We call the maps irw w-ary variables. wi

Each of the operations a: s w can be thought of as an operation of sort s whose

arguments are of the sorts in w. It then follows that the maps in Hom(s, e) are

the constants of sort s.

Example 2.2.2 ([LG85]) Let S be any non-empty set. The theory To consists

simply of the w-ary variables closed under composition and tupling. If u = ul. un

and w = w1...tv then there is a morphism u —> w if and only if every ui oc-

curring in u also occurs in w. Tc, also contains coproducts. If u and w are two

objects of To (strings in S*) then their coproduct is given by the concatenation uw

with injections in = (r:iw ,r7) and in = (r,. . . , ruw). Every algebraic
Wrn

theory contains a copy of To (see ILG85.1).

The algebraic theory presented by (E, E) is defined to be the free algebraic the-

ory generated by an S* x S indexed collection of sets. To make this construction

explicit we first need the notion of S sorted theory morphism.

Definition 2.2.3 Let T and r be two S sorted algebraic theories. A theory mor-

phism :T —> T' is a functor which preserves objects and w-ary variables, that

is, for any w E Obj(T), 1(w) = w and Tee) = rw in T' wi 	 w,

The category of S sorted theories, TflS, can now be defined. The objects

of THs are S sorted theories and the morphisms of Tlis are S sorted theory

morphisms. If A, B and C are S sorted theories and I : A —> B and g : B C

are two S sorted theory morphisms then their composition is defined such that

g 0 .7-(w) = w and g 0 .7-(7rw) = rw . w,

Definition 2.2.4 A functor

T :THs —> SET

may now be defined as follows: every S sorted theory is mapped to an 8* x S*

indexed family of sets where 'rum = T(u,w). If G :7 T' is an S sorted

theory morphism then T(G) is an S* x S* indexed family of maps Gum such that

for every 0 E 7n,w, G(0) E w

22

The free algebraic theory can now be defined as follows3.

Definition 2.2.5 ([Law63, LG85]) Let E be a signature, that is, an S* x S

sorted set of operator symbols. The free category on E, FE, is defined as follows:

(I) the objects of FE are the strings in S* and (2) the morphisms of .TE(u,v) are

the morphisms of To(u,v) (of example 2.2.2) together with an arrow

for every o- E E ,3. The arrows in FE are closed under tupling, that is, if (pi : 	 ,

1 <i <n are arrows in FE then so is (pi, 	 ,(pn) : u --+ w, and composition. The

arrows in FE are also subject to the following three axioms [Law63]:

Projection if (4)1, 	 41n) : w 	 u then 	 ,(1)n) o stu, = (Di;

Identity if (I) :u —> w,u = u1...un and w = w1...wm. then (I) o (7cui,...,ruun) =

and (rW , 	 , 7rw) o 	 = 4);
wn

Uniqueness if 4) : u 	 w then (43 o ru 	 o) = (1).
Un

We then have the following theorem from [LG85]:

Theorem 2.2.6 FE has the following universal property: if T is any S sorted

theory, y the inclusion of the S* x S sorted set into T(FE) and f: E —› T(T)

then there is a unique f* which make the following diagram commute,

T(FE)

T(T)

Theorem 2.2.6 expresses the fact that FE is the free algebraic theory over a given

signature.

3The Free algebraic theory is the left adjoint to the functor T in definition 2.2.4 [AM75,
Law63, KR89]. We choose a simpler definition due to [BW85] because it avoids the necessity to

introduce adjunctions before defining the algebraic theory defined by a presentation.

23

Example 2.2.7 Consider the signature for groups given by a single sort G, and

operations e :—> G, 	 : GxG—>G and — : G—+ G. The objects of .7" - Grp are

elements of the free monoid generated by the symbol {G} . Some typical operations

of FGrp are given below:

	

G1G2G3 • 	

(7G17 G3)

GiG3 	

(— o 7r ,— o 7rG2)
G4G5

+

We use subscripts to denote the particular copy of G that a variable is referring

to and use ii-G, as a shorthand for 7rGGI—Gn .

An algebraic theory satisfies a set of equations if certain other diagrams com-

mute in the category. For example in a theory of groups, like that of example

2.2.7, the associativity of + is expressed by saying that the diagram:

(7rG1 7 r G2 + 7G3)
G1G2G3 	1 	 G G

(7rG1 + 7G2 , 7 G3) 	 +

GG3 	 G
+

commutes. Equations are imposed on free algebraic theories by giving a con-

gruence relation on the arrows of that theory to force the diagrams, expressing

equations, to commute.

Definition 2.2.8 aLaw631, PAG751) A Theory Congruence, R over an alge-

braic theory 7, is an S* x S* indexed family of equivalence relations such that

I. R(v ,w) c T (v,w) x T (v,w)

2.if ((p, (p') E R(v,w) and (0,0') E R(w, p) then (0 o 	 o 	 E R(v, p)

3.if (01,0) E R(si,w) for all i E {1,...,n}, si E S and w E S*, then

((01, 	 , 0 n), 	 . . , 0)) E R.(v,w)

where v = si ...sn

24

The Theory Congruence, RE, generated by a set of equations E is defined as

follows;

4.If 	 E E. then (t, t') E 	RE(s,w)

5.RE is the least equivalence relation closed under (4) and rules (2) and (3)

above.

Definition 2.2.9 ([JAG75]) If R is a theory congruence and T an algebraic

theory then the factor theory, T R , of T by R is defined as follows: the objects of

T R are the same as those of T and the arrows are equivalence classes of arrows

in T such that coi,co2 : u —> w are equivalent in T I R iff (cpi,c,o2) E R.

The theory presented by a signature and set of S sorted equations (diagrams) is

defined to be the factor theory (see PAG75J) TE/RE of the free algebraic theory

presented by E by the theory congruence generated by E.

In the free concrete theory of [JAG75] each operation a : s —> w is defined as

a term t in TE(X) in which there is at most one free variables in t for each wi in

w. For this reason we blur the distinction between terms in TE(X) and arrows in

TE and by abusing notation we write t' < t if t —*13 t' using a set of rewrite B and

t and t' are arrows in J.

A reduction relation (see 2.1.10) may be translated into the language of S

sorted theories by considering the pre-order defined by such a relation (as in section

section 2.1). Let t = a o , and t' be two morphisms in the algebraic

theory presented by (E, E). If t —> 13* t' and

	

t = 	 ° (el, • • • , en)

then (t, t') E TE/RE(s,w) for some s E S and w E S* and so the diagram

(ei , • • • ,

25

must commute with t > t'. The reduction pre-order can be extended to arbitrary

u-tuples of operators 	 , C,) : u 	 tv by defining

(el, • • • ,> 5- 	 • • • ,

if and only if each < 	 This ordering of the arrows in .FE is also preserved by

composition.

2.3 Algebras for S Sorted Theories

There are a number of ways of describing the algebras for an S sorted algebraic

theory. For single sorted theories Lawvere [Law63] describes algebras of a theory T

as those functors in SETT°P which preserve products4. In [LG85] three equivalent

ways of describing algebras are given including the interpretation of Lawvere's. We

would not only like to describe the algebras of an S sorted theory T as pairs (A, -y)

as in section 2.1 but also to have the constructions independent of the underlying

category because of our desire to study algebras in A calculus.

For the present fix a category C and consider an endofunctor W : C C.

Definition 2.3.1 ([SP82]) Let C be category and T : C C an endofunctor.

I. A kIf Algebra is a pair (A,7) such that 7 is a C morphism -y : T A 	 A. Du-

ally a JI CoAlgebra is a pair (7, B) such that -y is a C morphism y : B – 'I/B.

2. A T algebra (A,7) is a Fixed Point of T if -y is an isomorphism in C .

The algebraic structure of a W algebra A is given by the map 7 : —> A.

Definition 2.3.2 A Homomorphism is a morphism in C such that the diagram

f
WA 	 B

-YA

A

commutes.

4Recall that the variables ir are essentially injections

26

The kli algebras and 41 homomorphisms form a category with composition defined

as follows: if f: (A1 ,71) -4 (A2 ,72) and f: (A2 ,72) —* (A3 ,73) then their com-

position is defined by the composition of f and g in the underlying category C.

Denote the category of kIi algebras and kli homomorphisms by kIf _ mg . In this way

each endofunctor ill defined on C specifies a category of algebras in C much the

same as a signature and set of equations specify a category of algebras in universal

algebra.

An initial fixed point is simply a fixed point of kIf which is initial in the subcat-

egory of fixed points of W (dually the terminal fixed point is a terminal object in

. the category of fixed points and homomorphisms). Initial W algebras and initial

fixed points of kli are related by the following lemma.

Lemma 2.3.3 ([SP82]) The initial xli algebra, if it exists, is also the initial fixed

point of W.

The proof of this lemma may be found in either [SP82] or [MA86]. If C satisfies

some additional properties then there is a canonical way to construct initial (and

therefore by duality terminal) fixed points. The construction is given in the proof

of the Basic Lemma of [SP82]. To formulate the basic lemma of [SP82] let co be

the category with the natural numbers as objects and morphisms all pairs (i,j)

of natural numbers i and j. If (i,j) and (j,k) are any two morphisms in w their

composition is given by (i,k) and the identity for i is (i,i). An co diagram A in a

category C is a functor A : co C.

Definition 2.3.4 ([LS81]) C is an co Category if C has an initial object and all

c,.., diagrams have a colimit in C. Dually, C is an w" Category if C has a terminal

object and all co op diagrams have a limit in C 5 .

Let C be an w category and _l_ be the initial object of C. For each object A, let

_LA : 1 —> A be the unique arrow in C given by the initiality of I. A Mediating

Morphism a : p —> v is the unique arrow from the limiting cone it of the diagram

A to any other cone v for A (see [Mac71]).

5 More precisely A op :co _, cop

27

Figure 2: Mediating morphisms

Now suppose that A is the w chain

fo

	

Do 	

in a category C. Define A- to be the chain

f2
D1 	 •D2 	

in C and it- to be the colimit of A. If F is a functor from the w category C to

the w category D then FA is the chain

F(fo) F() 	 „ F (f2) r, 	
1_/

	

F(Do)) 	 2)

in D and if p : A —> A is a colimit for A in C then F(p) : FA —> F(A) in D.

Lemma 2.3.5 (The Basic Lemma [SP82]) Let C be an CV category and : C — > C.

Also let A be the diagram given by

A = (Tn1, Tn1 1)

If p : A —> A and p : WA —> TA are both colimiting cones for A in C then the

initial III algebra exists and is (A, a), where a is the map a: 	 .

The more familiar kinds of universal algebras can be defined in SET as a

special case of the more general definition given above. Let E be an arbitrary

signature.

Definition 2.3.6 ([MA86]) The functor XE : SETS —> SETs corresponding to

a signature E is defined as follows: XE(A) = A where A is the functor in SETs

such that for each s E S

A(s) = Die I E E,„ and E S*1

D2

	 12

28

The notation

A(s) = DA' I a E E„,s and w E S*1

is from [MAK and means the disjoint union of the family of sets A' where for

every ce E S*, if E not empty then for every operator a E E,„ there is a copy

of At" in the disjoint union.

An XE algebra is then a pair (A, 7) consisting of an S-sorted set (functor in

SETS) A and a map -y interpreting the algebraic structure on A. Since for each

S E S As is a coproduct of S sorted sets the structure map for sort s may be given

by case analysis as follows:

= [7ai, 	 'Yon]

where each y. 	 As interprets the operator symbol ai in A.

The category SETs is an c.i.) category (see [MA86]) with initial object 0 and so

we can apply the basic lemma 2.3.5 to construct the initial XE algebra in SETS.

If (T, 'y) is an XE algebra then we have the following S sorted family of maps in

SET .where 7 is the family of maps:

XE (Tsi) .14 Ts,

XE (Ts.) 	 Tsn

If (T, -y) is the initial XE algebra then each of the -ysi above are isomorphisms and

so we obtain the equations:

XE(Tsi) es Ts,

XE (Tsn) 	 Tsn

If XE is the functor corresponding to a signature E then the initial fixed points

of XE , the initial algebra and the term algebra TE (0) (definition 2.1.2) are related

by the following lemma.

29

Lemma 2.3.7 Let E = (S, 12) and TE (0) be the E term algebra on the empty set

of generators as defined in 2.1.2. Then (TE (0),7) is the initial XE algebra, where

each s E S and each operation of sort s in E

7a((ts i ,• • •,t3„)) = 6 (ti,• • •, tn)

We use lemma 2.3.7 to relate the definition of initial XE to the definition of

term algebras (definition 2.1.2).

30

Chapter 3

A Calculus

In the previous chapter we introduced some fundamentals of algebraic specifi-

cation, term rewriting and algebraic theories. The point made is that there is

a correspondence between equational theories in universal algebra and the alge-

braic theories of Lawvere [Law63]. In recent years such connections have also

been studied between the simply typed A calculus and cartesian closed categories,

for example, [Sco80, Lam80a, LS86, Poi86]. For A calculus and cartesian closed

categories the connection has been formalised more strongly than in the case of

equational theories by stating that simply typed A calculi are the internal lan-

guages of cartesian closed categories [LS86] (but see also [Lam74] and [Lam80b]).

The pure A calculus also gives rise to a cartesian closed category [Sco80, Koy82],

perhaps best described as its internal cartesian closed category, but it is of quite

a different nature to those arising from simply typed A calculi. In the case of the

simply typed A calculi one takes the types and terms to be the objects and arrows

respectively of a cartesian closed category while in the case of the pure A calculus

the types and arrows of a cartesian closed category are embedded within the terms

of the calculus.

For us the pure A calculus can be considered to be a simple paradigmatical

functional programming language embodying recursion, through the use of the

fixed point combinator Y, and the idea from combinatory logic [CF68, Bar84]

that functions of many arguments can be reduced to functions of one argument.

The same idea is also present in the theory of cartesian closed categories [Lam80a]

31

in form of the exponential transpose of functions. It is the case for those languages

(like Standard ML [HMT90, MT90]) using the Milner-Hindley type inference sys-

tem [Mi178, DM82] that expressions are first type checked and then evaluated

using untyped expressions. By taking the pure A calculus (or its models) and

imposing a type discipline (in the form of a cartesian closed category) we hope to

recapture some of the properties of this paradigm.

Again we claim no originality for the material in this chapter which may be

found in [Bar84, Koy82, LS86, Mac71].

32

3.1 A Algebras

The pure A calculus is given by the following set of terms, axioms and rules of

deduction [Bar84]. The set A of terms is defined to be the least set satisfying the

following:

Variables X E A where X is a countable set of variables.

Abstraction If M E A and x E X then Ax.M E A.

Application If M, N E A then (M N) E A.

If a set of constants C is included in the definition then the set of A terms with

constants C is denoted by A(C) otherwise the set of pure A terms is denoted A.

A calculus is an equality theory where equality between A terms is written

as M =Gwv N and called Conversion. A calculus is called an equality theory in

[HS86] to distinguish it from equational theories in which equality is "first order".

Conversion is formally defined by the following axioms and rules of inference:

Definition 3.1.1 (a) Ax.M =CNV Ay.M[y I x] if y is not free in M

(@) (Ax.M) N =cNv M[Nlx]

(() If M =cwv N then (X M) =cwv (X N) and (MX) =cwv (N X)

() If M =cwv N then Ax.M =CNV Ax.N for some variable x E X.

The notation M[Nix] means that N is substituted for every free occurrence of x

in M. Formally it is defined as follows:

Definition 3.1.2 ([Bar84])

X [N/X] E N

Y[NlYi E y, if x y

(Ax.M)[Nly] E Ax.M[Nly] provided x y

(Ax.M)[Nly] E- Ax.M if x y

(M1 Al2)[Nlx] E (M1 [AU X]) (M2 [N/ X }

33

If M 7---CNV N then we say that M and N are convertible. In the sequel we adopt

the convention in [Bar84] that all (a) convertible terms are identified.

Turning now to models we now have the following.

Definition 3.1.3 ([Mey82, Bar84]) A Combinatory Algebra is a set M together

with a binary operation • (called application) and distinguished constants k and s

satisfying the following two equations:

(k • x) • y = x for all x,y E M

((s • x) • y) - z = (x • z) • (y - z) for all x,y,z E M

The theory presented by k and s is called combinatory logic and is denoted by CL.

Note that • is left associative and so some parentheses can be omitted in future.

Combinatory algebras are combinatory complete which is to say that for every

polynomial P with variables in {x1, ... , xn} over a combinatory algebra M there

is an element f E M such that

Val ...an E M f al ...an =

There is a natural way to handle abstraction and application within such algebras.

Suppose M is a combinatory algebra. Define the set of terms over M as follows:

•Variables X0, X1, ... E T(M)

•If a E M then ca E T(A4)

• If A E T(M), B E T(M) then (A • B) E T(M)

We can now define an abstraction operator as follows:

Definition 3.1.4 ([Bar84]) Define the operation of variable abstraction, A* by;

A*x.x = s•k•k 	 (or I for Identity)

A*x.P = (k • P) 	 if x does not occur in P

A*x.(M N) = s • (A* x.M) • (A* x.N)

With this definition of abstraction a two way translation between combinatory

algebras and A terms may be defined.

34

Definition 3.1.5 Let M be a combinatory algebra and A(M) the set of ,\ terms

with constants from M. The mappings

CL : A(M) —> T(M)

and

L : T(M) —> A(M)

are given by:

x 	 L(x) = x

c 	 L(a) = a

C L(M)C L(N) 	 L(P - Q) = L(P) L(Q)

A* x.0 L(M) 	 L(k) = Ax.Ay.x

L(s) = Ax.Ay.Az.(x z)(y z)

If p : X —> M is an assignment of values to variables in M then any term in T(M)

may be assigned a value in M as follows:

(x)p = p(x)

(M • N)p = (M)p • (N)p

This now opens up the way to give a denotation for each of the A terms in a

combinatory algebra M.

Definition 3.1.6 The Interpretation of A terms in M is defined by:

EMI]p = (C L(M))p

M = N is Valid in p , or M, p M = N if [[1111p = in and valid if it is

valid in p for every p : X —M which is written as M F=M = IV

Here and in the sequel we use El for the map taking each syntactic term onto its

meaning or denotation in some abstract mathematical domain.

Definition 3.1.7 A A algebra is a combinatory algebra such that for all terms in

T(M)

A f-- L(M) = L(N) implies M =M = N

C L(x) =

C L(c) =

C L(M N) =

C L(Ax.M) =

35

An alternative characterisation of A algebras is given by the following lemma:

Lemma 3.1.8 ([Bar84]) Let M be a combinatory algebra. Then M is a A alge-

bra tff for all M,N E A(M)

I. AI-M = NimpliesMHM = N

2. M 1= C L(L(k)) = k and M = C L(L(s)) = s

Essentially A algebras are those combinatory algebras in which all the equations

between A terms deducible from the axioms by the rules of inference in definition

3.1.1 hold. Among the A algebras there are the models generated by the terms

(perhaps with constants) modulo convertibility, there is the graph model 2(w),

the models D' and the Barn tree models [Bar84].

Polynomials co(xi, 	 , xn) over a A algebra may often be represented within

the algebra which gives rise to the concept of representability.

Definition 3.1.9 ([Bar84]) Let (,o(x1,...,xn) be a polynomial in n variables over

a A algebra M . Then co(xi,...,x„) is Representable over M if there exists an

f EM such that for all ,an EM, we have

f al, . . .a = co(a 	 , an)

Later we will need to reason about the properties of fix points and so we

restrict the class of A algebras under consideration. Firstly, however, we will need

the concepts of head normal form and solvability.

Definition 3.1.10 ([Bar84]) 	 /. A A term M is a Head Normal Form (or hnf)

if M is of the form

Axl...Axn.xi

and M is a hnf if there is an N such that N is a hnf and M =-CNV N.

2. M is Solvable if there are terms {N1,... ,Nn} such that M 	 Nn = I,

where I is Ax.x.

Fact 3.1.11 ([Bar84]) A term M has a head normal form if it is solvable.

36

Fact 3.1.12 ([Bar84]) JI M is a term with no hnf then so are (MN), M[N xi

and As.M for all N E A.

Intuitively, if a term has a head normal form then there is always some finite part

of it (the variable at the head) which can be computed, even if the remaining

terms NI , Nn fail to produce any results.

Adding closed equations between A terms results in new theories as follows.

First, a A theory is consistent if we cannot prove all possible equations.

Definition 3.1.13 ([Bar84]) Let E be a set of closed equations between A terms

and Th(E) the set of equations provable in A + E by the rules of conversion. Then

is a A Theory if E is consistent and T h(E) = E.

A A theory in which all terms with no head normal form have been equated is

useful to reason about nonterminating functions. Doing so gives the following A

theory:

Definition 3.1.14 ([Bar84]) Let

'Ho = {M = N I M,N haven° hnf}

and 7-1 = Th(7-t0) be the A theories defined by equating the terms with no hnf.

[Bar84]

Fact 3.1.15 It is consistent to equate all the terms without a head normal form

Introduce a new symbol into the class of terms of the A calculus, ft, together

with the following (infinite) class of equations:

M = SI if M does not have a head normal form

By fact 3.1.12 the following equations are also provable:

(ft M) = Il

Ax.S2 = f2

To explain the semantics of terms which do have a head normal form requires

some machinery from the theory of domains [Sco76, Sto77] (or [Bir48] for the

theory of ordered sets). Let E be a partial order on a set M. A partially ordered

set (M, C) is an co complete partial order if it has a least element 1 and every

ascending sequence

ao C al a2

has a least upper bound U ai in M [Sco76]. A subset X C M is directed if for

every a, b E X there is acEX such that a C c and b E c. From this it follows

that every finite subset of X has a least upper bound, 11 X, in X.

Definition 3.1.16

A function f : M 	 M is (directed) continuous if and only if for any directed set

X C M

LIf(x) = 	 x)

We denote the space of continuous functions on M is by [M —+ M[.

Fact 3.1.17 ([Bar84, Sto77]) If M1 and M2 are w complete partial orders then

so is M1 X M2 the product of M1 and M2. The ordering on M1 X M2 is given by

, 	 ,

(m1,m2) g (nzi,m2) if mi mi and m2 E m2

Theorem 3.1.18 ([Bar841) 	 1. Every f E [M M] has a fixed point;

2. Moreover there exists a function Fix E [[M -> MI M] such that for all

f E [M -› Mb Fix(f) is the least fixed point off.

Fix(f) is usually constructed as U fr(1)InEw• The usual interpretation of the

fixed point combinator Y in complete partial orders is as the fix operator, while

Y(f) for any term f is then [[Y(f)] = fix(f) [Sco76, Sto77]. It is also usual to

interpret Si as 1, the least element of M .

Definition 3.1.19 	 I. A A algebra (M,.) is continuous if M is a complete par-

tial order and. is a continuous operation on MM x M.

2. An interpretation of the pure A calculus in M is standard if:

38

(a) for any A term M with no head normal form [M] = 1 (and conse-

quently 1M1 C a for any other a E M);

(b) for any A term f, [Y f]] = fix(f) in M .

3.2 Cartesian Closed Categories and A Calculus

Cartesian closed categories are usually defined by stating that the functors C —> 1,

the diagonal CAC xC and C - >A C all have right adjoints for any object A of C.

Here we adopt an axiomatic presentation due to Lambek and Scott [LS86]. What

follows is taken from [LS86, Lam80a, Sco80, Koy82, Bar84].

Definition 3.2.1 A Cartesian Closed Category is a category with a terminal ob-

ject, denoted here by 1 c , and for every pair of objects A and B a product ob-

ject A x B and an exponential object (A —> B). For every arrow f:AxB —> C

there exists an arrow f* : A —> (B —> C), called the exponential transpose off and

special arrows evA , B : BA x A ---> B. The arrows of C must satisfy the following

axioms:

C 1 for every object A there is an arrow idA : A —> A such that for all f : A —> B

andg:C—> A

f 0 idA = f

and

idA o g = g

C2 foranyarrowsf:A—>B,g:B—>C andh:C—*D

(hog)of . ho(go f)

C3 for any .f : A —> 1, f = OA where OA is the unique arrow from A to 1;

C4 Let ir and ir' be projections for the product A X B and f: C -- A, g: C —> B,

then r o (f,g) = f and r' o (f,g) . g

39

C5 for any arrow h : C —> A x B

(7r o 	 o 	 = h

C6 iff:AxB—C thenevBcolxId=f

C7 if g : A —+ CB then (evBc o g x Id)* = g

Axioms (Cl) and (C2) are simply the axioms for any category. From these we can

deduce the following identity

idB o f o idA = f

for any f: A 	 B. Axiom (C3) states that lc is a terminal object in the category

while (C4) and (C5) are the axioms for surjective pairing. Axioms (C6) and (C7)

taken together imply the following isomorphism

Hom(A x B,C) H om(A, CB)

and consequently the exponential transpose is a 1:1 mapping between these Horn

sets.

A cartesian closed category with all finite coproducts is referred to as a Bi-

cartesian closed category [LS86]. Essentially it is a cartesian closed category with

an initial object Oc and for every pair of objects A and B their coproduct A + B

together with maps injA : A—> A.+ B, 3B : B —> A + B and [f, g] : A+ B —> C

for every f: A —÷ C and g : B C. The arrows of a cartesian closed category

must satisfy the axioms (Cl) to (C7) as well as the following three axioms:

C8 for every object A of C there exists a map OA : Oc --÷ A such that for any map

f : 0 A, f = OA

C9 for every pair of maps f : A C and g : B C, [f,g]o injA = f and [f, g] o injB = g

C10 for any h:A+B—C, [h o inj A, h o injB] = h

By (C8) Hom(oc, A) contains exactly one element, while (C9) and (C10) together

imply the following isomorphism [LS86]:

Hom(A,C) x Hom(B,C) Hom(A + B, C)

40

Furthermore the isomorphism Hom(A, C) 	 Hom(lc, CA) characteristic of carte-

sian closed categories implies the existence of a map

• C
A
 X C .

cA+B
AB •

For any arrows f: A C and g : B C the arrow [f,g]:A+B—>Cmay be

defined as

def
= evA+B,c 0 (ci,B 	 ° (riA)*, f 0 (riB)*) n 0 _A-1431 dA+B)

	
(1)

Another facet of products and coproducts in bicartesian closed categories is that

x distributes over + giving the following two isomorphisms (see [LS86]):

A x (B + C) 	 (A x B) + (A x C)
	

(2)

(A + B) x C 	 (A x C) + (B x C)
	

(3)

For example the isomorphism in equation 2 above is given by the arrow

[idA X injB,idA X injc] :AxB+Ax C —> Ax (B +C)

Products and sums in a bicartesian closed category can be expressed in terms

of functors. We already mentioned that products can be defined by stating that

a right adjoint to the diagonal functor A : C —> C x C exists and similarly co-

products can be defined by stating that a left adjoint to the diagonal exists

[AM75, Mac71]. It is not within the scope of this work to delve further except to

note that a product functor

x:CxC —> C

and sum functor

C x C C

may be defined for bicartesian closed categories by this means.

A Natural Numbers Object [LS86] in a cartesian closed category is an initial

object in the category of all diagrams of the form:

0 	
0

	 • N

41

which amounts to saying that for any object A and arrows a: lc —> A and f: A A

there is a unique h : N A making the following diagram,

0
lc 	 • N

A 	 A

commute. If all that can be asserted is the existence of h, with no reference to its

uniqueness, then this is called a Weak Natural Numbers Object [LS86].

We now present two different ways of constructing cartesian closed categories

from A calculi. For the present consider a simply typed A calculus with natural

numbers [LS86].

Types The set of types, T, is defined inductively as follows:

1.1 and N are (the basic or ground) types

2.if a and 0 are types then so are a —> 0 and a x

Terms Let {Xa }°,0, be a family of countable sets of variables and write a : A to

say that a is a term of type A. Then the terms are the least sets indexed by

types closed under the following rules.

1.* : 1

2.if a : a, b : 13 and c : a x 	 then (a , 	 : a x 	 (c) : a and 71-' (c) :

3.if f: 	 13 and a: a then applyo(f , a) :

4.if x : a and (I)(x) : 3 then Ax.(I)(x) : a —>

5.0 :N and if n :N then S(n) : N

6.ifA:a,f:a —aandn:NthenI(a,f,n) : a

The rules and axioms for this simply typed A calculus are given in figure 3. We

call this theory AT.

According to [LS86] we can construct a cartesian closed category from a simply

typed A calculus. Given a simply typed A calculus such as AT, a a cartesian closed

category CCC(AT) is constructed as follows:

42

Logical Rules

e = * for any term e of type 1 (unit)

Ay .(1)(x)[y I x] (a)

= (I)(x)[a I x] (13)

r((x,Y)) = x r'((x,Y)) = y (8)

(71-(z),7'(z)) = z

Non Logical Axioms

I(a, f,0) = a for all a : a and f : a -4 a

I(a, f, S(n)) = f (h(a, f ,n))

Rules of Inference

(I)(x) = W (x)
(e)

Ax.W(x) = Ax.W(x)

(I)(x) = W(x) 	 (I)(x) = W(x)
(C)

X (I)(x) = X W(x) (I)(x) X = W (x) X

and Reflexivity, Symmetry and Transitivity

Figure 3: Rules for the Simply Typed AT

43

Objects The objects of CCC(AT) are the types of AT.

Arrows The arrows in hom(a,)3) are equivalence classes of pairs (x : a, 0(x))

where x : a is a variable of type a and (/)(x) is a term term of type in AT

in which the only free variables are those of type a. Two arrows (x : a,

and (x : a, 1,b(x)) are equivalent if and only if)r I- 0(x) =

For any object a the identity is (x : a, x) while the composition of (x : a, I5(x))

and (y : [3,0(y)) is given by (x : a,0(0(x))), that is, composition is given by

substitution.

The cartesian closed structure may now be recovered by making the following

definitions.

Oc

7roo

7r'
ali

((z : a4)(z)), (z : a, kli(z)))

(z : a x 1, x(z))*

eva,fi

(x : a, *)

(z : a x 13,71-(z))

(z : a x ,3,7r.'(z))

(z : a, (c11(z),T (z)))

(x : a, Ay

(y 	 x aPPlY (Y) 7AY)))

del

de f

de f

de f

de f

del

A weak natural numbers object may be recovered by choosing N to be the type

of natural numbers and then making the following definitions:

0
del

(x : lc ,0)

de f
(x : N, S (x))

de f
(x : (B x BB) x N, I Or(ir(x)) , 	 (x)), ir (x)))

Then there exists an h making the following diagram:

44

commute in CCC(AT) which can be seen by putting h = (x : N, A(a, f, x)) and

then checking that the equations

h o (x; lc ,O) = a and foh= hoS

hold.

Proposition 3.2.2 The cartesian closed category generated by AT is the free carte-

sian closed category generated by AT

The proof is given in [LS86]. It is easy to check that the definition above does

indeed give a cartesian closed category by simply verifying that all the axioms

(Cl) through to (C7) hold. Thus, from a simply typed A calculus a cartesian

closed category has been obtained.

Considering now the pure A calculus a different kind of cartesian closed cate-

gory may be constructed [Sco80, Koy82, Bar84]. It turns out that this construc-

tion is relevant to any A algebra and so we present it thus. First, some notation

is required. We use the translation L : T(M) –4 A(M) of the previous section to

translate elements of M into pure A terms with (possibly) constants from .A4 .

Denote L(a) by Note also that it may be the case that a E M is not equal to

the interpretation of a pure A term (under the mapping CL) and so it is possible

for to simply be a constant from M . On the other hand all terms which are

the interpretation of pure A terms will be translated back into pure A terms, as is

the case for all the closed terms [Bar84].

Definition 3.2.3 Let M be a A algebra and for any a,b E M define composition

by:

a o b = Px.i2(b x)]

The Karoubi Envelope of M , denoted by k(M) , is defined by the following data:

Objects : fa EMia = aoa}

Arrows : Hom(a,b) = { (b, f ,a)lb of oa = f}

The identity for an object a is ida = (a, a, a) and the composition of (b, f , a) : a

and (c,g,b) : b —> c is given by (c,g o f, a).

45

Theorem 3.2.4 /C(M) is a cartesian closed category.

Proof Essentially this is done by making the definitions below and

then verifying the axioms of definition 3.2.1. As in [Bar84] let ic/]]= [Ptx.Ay.yl.

Terminal objects : Define 1jc = MI. The unique arrow from any

other a to lr is given by Qa = (1r, J, a).

Product objects : for any a, b E M define

ax b =

with projections

ab = Px.11(x K)]] and r:b

Iff:a--4bandg:a--+ cthen

(f,g) =Ptx.Ay.y(b(f (72x)))(Z(g(itx)))]]

Exponentials : for any a, b E M the exponential or function space

object is given by

(a 	 b) = Ptf .b o f o-ci]]

and

evab = Px.rboxa(x) rb'axa (4]

If f :axb —> c then the exponential transpose of f is given by

f* 	 Px.Ay.f (Az.z (ix)(by))1]

With these definitions the axioms of a cartesian closed category can

now be verified by direct calculation [Koy82].

The objects of /C(M) can be considered to be simple types. The elements or values

of a type a are defined to be the fixed points of a. If m is a fixed point of a then

this is written as m : a.

46

Two examples of objects of k(M) are U d=e f Px.x]] and J 	 Px.Ay.y]]. As

seen already J is a terminal object in /C(M) and U we call a universe object. The

reason for this is that the arrows in Hom(J, U) are in 1:1 correspondence with the

elements of M . This correspondence is achieved through the following map:

V mEM mi-->k•rn

where k • m : [11 —> VI in K(M). Furthermore, a retract is defined as follows:

Definition 3.2.5 A retract in a category C is a map f : A —> 13 such that there

exists an inverse g : B —> A satisfying" o g = IdB.

It can be shown that every object in /C(M) is a retract of U [LS86] which can be

seen by defining the maps a: a —> U and a: U —> a. The object [[U]] is significant

here because EU] is the universe from which all the values of types are drawn.

Before we can model algebras within this simple model of types some additional

structure is required and this we do in the next chapter.

47

Chapter 4

Models of Equational Theories In

Lambda Algebras

The previous chapter dealt with the construction of a cartesian closed categories

from arbitrary A algebras. Cartesian closed categories do possess all finite products

but to express functors like XE sums are needed. What is also needed are colimits

of co chains. This is so that solutions to the recursive domain equations like those

at the end of chapter 2 are guaranteed to exist. For the case of an arbitrary A

algebra this is not so easy. Indeed there are two problems here: the first is that

there does not appear to be an appropriate general construction for the sum of two

objects within the Karoubi envelope of an arbitrary A algebra and the second is

that an arbitrary co chain may not possess a colimit in a cartesian closed category

in which only finite colimits may be constructed.

In this chapter we construct models of S sorted theories within continuous A

algebras with the prime purpose of seeking out the conditions under which such

models can be explicitly constructed. Starting in section 4.1 we give the con-

struction of a category, in the style of /C(M) from the elements of a continuous

A algebra M , which also includes finite sums. In section 4.2 we show that an-

archic algebras can be constructed within this category by the methods outlined

in chapter 2.4 and then in section 4.3 we look at the problem of finding solutions

to systems of equations and in particular to deriving recursive functions for the

operations in E from sets of rewrite rules obtained from the original E equations.

48

4.1 The Category C(M)

Starting from k(M) we now wish to define algebras in K(M) by the use of the

techniques outlined in section 2.3. Since /C(M) is cartesian closed it has all finite

products but there is a problem in dealing with sums in a similar fashion.

To illustrate the difficulty in defining the sum of two objects in IC(M) for

an arbitrary A algebra M consider the case where M is the A algebra given by

(equivalence classes of) pure A terms modulo the conversion rules. Disjoint sum

[Sco76] is usually defined by the following equivalence class:

a b I [Ax (x) (K , a 7' (x)) (J, b (x))}

Then

a+boa+b = a+b

in M if an only if a +boa+ b E [a + b], that is,

a+boa+ b =CNV a b

So we have

a + boa -Fb del

CNV

Ax.(a + b) ((a + b) x)

Ax .71- (71-(x) r(x) (K, a 71-' (x)) (J, b (x)))

(K , a ri (7r (x) (K , a r' (x)) (J,b (x)))

(J,b 71) (r (x) (K, a r i (x)) (J, b (x)))

which is in head normal form and is different from

Ax (x) (K , a 7' (x)) (J,b 71) (x))

Convertibility is not strong enough to show that the sum a + b defined above is

an object of the Karoubi envelope constructed from the pure A terms.

We wish to construct a category from arbitrary A algebras in which the sum

of two objects a + b is itself an object. A second criterion is that such a category

posseses colimits of w chains. We begin by giving a definition of closures and

mappings between closures which are intended to be more general than the objects

49

and arrows of definition 3.2.3. First recall that m : a means that m is an element

of the set 1m a • m = ml, that is, the set of elements of type a. Now given a A

algebra M we define the following two sets:

1. C/os(M) = falVm E M. (a o a) m = in if am = ml which is called the

set of closures of M ;

2. Map(a,b) = {(b, f,a)IV m : a, b(fm) = f ml which is called the set of

mappings in M.

The composition of two mappings (b, f, a) and (c,g,b) is given by

(c, g , b) o (b, f , a) = (c, Px.y (f x)1, a)

while the identity mapping for a closure a is again (a, a, a).

An intuition behind the definition of the category /C(M) is that each object is

its own identity function which, because of the axioms for a category ((Cl) and

(C2) of definition 3.2.1) is idempotent. In weakening the definition each object is

still intended to have this property except now a closure a is to be thought of as

an identity if it has the same set of fixed points as a o a. With this definition of

identity mapping for a closure a the old definition of arrows (3.2.3) is no longer

adequate to prove that a o a = a, and so we adopt a slightly weaker definition'.

The definition of mappings above also implies the following simple identity which

is characteristic of arrows in k(M) :

Vm E M a(m) = in = (b o f o a)(m) = (m)

We still do not have a category, for example, the axiom (C5) is not valid, and so

an equivalence relation on mappings is imposed to recover the category structure.

The following lemma now holds.

Lemma 4.1.1 ([Sco76]) If M is a A algebra then for any in e M

(a + b)(m) = m if (a + b o a + b)(m) = M

'The idea that an element f E M defines a mapping from one subset A of M to another B
if for all a : A f (a) : B can also be found in [MPS86]

50

For our definition of _+_ case analysis is given by:

[f , 9] tf [[Au.(n- (u K))(f (u J)) (g (u J))11

and the injections by

inja

injb 	 itAu.(J, b (r/u))11

To see that closures and mappings do not form a category consider again the A

algebra of pure ,\ terms modulo convertibility and the axiom idb o f = f for any

(b, f , a) : a —> b. We have

(b, b, b) o (b, f, a) = (b, Az .b (f z), a)

but in general Az.b(f z) ICNV f. For any m : a however, we know by the defini-

tion above that b (f m) = f(m) and also that f (a(m)) = f (m).

From the definition of closures it thus seems reasonable that we should have

for any (b, [[fi, a), (b, IA, a) E Hom(a, b), (b,[f], a) = (b,[[g]], a) if and only if

V m : a, En m = [g]] • m 	 (4)

where f[l interprets closed A terms in M . Taking the quotient of each set

Map(a, b) with respect to this axiom should be adequate to regain the category

structure, but if we also wish to retain cartesian closure (as we do) then this is

not good enough. If a category is cartesian closed then for any objects A, B and

C,

H om(A x B, C) Hom(A, B —> C)
	

(5)

but if we simply use the axiom (4) to take the quotient then in the isomor-

phism we have considered two maps to be extensionally equal over the values

of type A x B on the left hand side while only taking into account the type A

on the right hand side. Thus, by using just the equation (4) the isomorphism (5)

51

will no longer hold. Let M be the A algebra of pure terms modulo conversion

and (c, f, a x b) and (c, g, a x b) two arrows such that for all elements (m, n) of

type a x b, f((m,n)) = g((m, n)). By definition 3.2.3 f*= Ax.Ay.f (x, y)) which

means for any m : a, f*(m) = Ay. f((m, y)) and similarly g*(m) = Ay.g((m,y)),

but to show Ay.f((a,y)) = Ay.g((a,y)) we need to show f((m,y)) = g((m,y))

which in general may not be provable by conversion alone because of the need to

take into account the free variable y. In general, Vm : a Vn : b f((m,n)) = g((m,n))

does not imply that f* (a) =Gwv g*(a).

To get a cartesian closed category from the closures and mappings we adopt

a technique of J. Zucker (see [Bar84] appendix A) called extensional collapse.

Extensional collapse is a technique for obtaining an extensional model of the simply

typed A calculus from an arbitrary model of the simply typed A calculus. Let T

be a set of types such that:

1.0 E T where 0 is a (unique) base type;

2. T2 E T implies ri 	 72 e T.

A model of the simply typed A calculus is a pair

MT = (fAir }TETI t'orlaTET)

where {M}ET is a T indexed family of sets such that M, is the set of values

for the type T and .„ is the application operation such that if f e and

a E Mc, then f .„ a E Mr.

Now define an equivalence relation on the set {MT}TET as follows [Bar84]:

I. V x,y E Mo x Eo y if x = y

2. V x,y E 	 x 	 y if V z, E M(7. (z 	 z' = x z 	 y • z')

Put A/c. = Ix E M n x 	 x}, the set of well behaved terms of M . The exten-

sional collapse, M 	MT is defined as:

MTE =

where if x EJV 	 and y E AI, then [x] .„ [y] = [x .„ y]

52

We start by considering the following subset of all the closures which we call

the finite closures of M :

1.Eftl, 	 = 1c and 1U1 are finite (basic) closures;

2.if a and b are finite closures of M then so are a x b, a + b and a —> b.

Definition 4.1.2 Let a and b be two finite closures and f: a —* b and g : a —> b

be any two mappings. Define the relation--=-b by induction on the finite closures of

M as follows:

1.if b is a basic closure of M then

(b, La) Eb (b, g, a) if V x : lc 	 a, fox =gox

2.If b is al x a2 then let f = 	 .1.2) and g = (g1,92) and define

(a1 X u2, f, a) --aixcr, (ai x a2,g, a) if f1 E-a, and f2 2
g2

- a

3.If b is •i 	 a2 then

(a1 	 a2, f, a) a'ai 	 (al —> a2, g, a)

iff for all maps

x : 1c(m) —> o-i, ev o (f , x) E.9.2 ev o (g , x)

	

Lemma 4.1.3 	 is an equivalence relation.

Proof That Er is reflexive and symmetric follows immediately from

the definition 4.1.2. Transitivity can be shown by induction on the type

T. The only interesting case is when f,g,h: a Cb; and f E-b_,, g and

g Eb_,, h. By 4.1.2(3) we have for all a: b —> c

	

ev o (f , a) E., ev o(g, a) 	 ev o (h, a)

by the induction assumption and so for all a : b c f Eb, h. 	 0

53

We then have the following:

Lemma 4.1.4 Let M be a continuous A algebra and let F be an element of

M such that if a is any finite closure of M then F0 (a) is a finite closure of .A4 .

Then Y F is a closure of M .

Proof let w be the set of natural numbers. We need to show that

VmEM (Y (F) o Y (F))(m) = in if Y(F)(m) = in

Note that m = Ufml. Then by the continuity of application and o:

(11{Fn (1) I n E (-4 0 11{F(I) n E w})illml = 11{(Fn (1) o Fn (1))(m)}

= 772

But for each n > 0 [q] = 1 is a finite retract and by the premise

Fn (1) is also a finite retract. By the definition of Cios(M)

(F' (1) 0 Fn (1))(777) = MiffFn (i)(M) = in

But then

11{(Fm (1) 0 Fn (i))(rit)} = rit if 11{Fn (1)(m)} = m

El

If F E M is a function mapping closures to closures then by lemma 4.1.4 Y(F) is

also a closure and referred to as a limit closure.

Definition 4.1.5 If M is a A algebra then define C(M) to be the category given

by the following data:

1. The objects of C(M) are the finite closures of M . If F E M is any function

taking finite closures of M to finite closures of M then Y (F) is also an object

of C(M) .

2. Hom(a,b) is the set Map(a,01

We now have:

54

de f
—

de f

Theorem 4.1.6 C(M) is a cartesian closed category.

Proof As in [Koy82] make the following definitions:

1. The terminal object of C(M) is the same as for K(M) , i.e

lc = Px.Ay.d. The arrow from any other a to l c is given by

Oa : a —> lc is (1c , Px.Ay.y],a).

2. Product objects are the same as for /C(M) with projections

(a,[[Ax.rt(x K)], a x b)

(b,iAx.b(x J)1, a x b)

If (b, f, a) : a --> b and (c, g, a) : a —> c then ((b, f, a), (c, g, a)) : a —> b x c

is given by

(b x c,Ptx.Ay.y b(f (7 i x))Z(y (b x))]], a)

3. The exponential object associtated with a and b is given by

(a ---> b) = IA f .b o f o It]

and the exponential transpose of f:axb --> c is given by

f* = ((b —> c), Px.Ay.f(Az.z x y)1, a)

evab = (b, Ax.(—> b) (7r x) (Ti(r' x))1, (a --> b) x a)

The axioms for a cartesian closed category from definition 3.2.1 can

now be shown to hold by using the definition of closure and mapping.

For example, equations 4 and 5 of 3.2.1 can be verified as follows. Let

f:axb —> c and g : a —> (cb) be arrows in C(M) .

Then for f:

ev o f* x /db —=, (c, Pu.f (Ax.x (T/ (u K)) (b (u J)))1, a x b)

55

by conversion and applying the definition of ET. Now if m:axb then

a (m K) =a m K and b(m J) FEb m J. Then

ev o f* x Idb(m) 	 (c, RAu.f (Ax.x (u K))(b(u J)))) m, a x b)

(c, [[f ml, a x b) by definition of closures and (i3)

(c, f, a x b) by definition of mapping

and so ev o f* x Id EF.c f.

Similarly for g:

(ev o g x Id)* Eb_,c (Au.(Ax.(r x)(rix))(Az.z (g (ii(u K)))) (b(u J)))*

E-6—■c (Aa.(g (it (u 	 (b(u J)))*

El)—■c Ax•Ay.g (a x)(bx)

g

again using the definition of closures and mappings.

Intuitively the morphisms of C(M) are equal if they are extensionally equal as

functions their domain rather than as functions over all of M , that is, a mapping

f : a —> b is total taking every fixed point of a to a fixed point of b.

We now have sums but in general coproducts do not exist which can be shown

by considering the diagram in figure 4. Call a retract a strict if a • 1121 = [[121 in

M . The definition of C(M) requires all arrows to be considered as total functions

from a + b to a x b but since a x b is not a strict retract but the arrow [f,g] is

strict then

[f ,g11 = 110 	 x

and so [f, g] f2 is not of type a x b. The consequence of this is that the usual

distributivity of products over sums:

+ B) x C 0 (A x C)+(Bx C)

A x (B C) 0 (Ax B) + (A x C) 	 (6)

56

a + b

a

injb

[f , g] 	 b

/

a x b

Figure 4: Sums and Products in C(M)

which one might have hoped for, does not hold in C(M) , but in general there are

maps:

(A + B) x C —> (A x C)+ (B x C)

A x (B + C) —> (A x B) + (A x C)
	

(7)

The problem is that the inverses are not defined on Pi and so are not arrows in

C(M) . The following, however, does hold:

Lemma 4.1.7 Let a and b be any objects of C(M) and c1 a strict retract, that is

1111]]: cl. Then there is a unique map h making the diagram;

a + b

a [f ,g] 	 b

/

Cl

commute.

Proof Firstly let f : a —> cl, g : a —* c1 and define h by [f,g].

Now [f, g] • [[]] = [[11]] since [f, g] is strict and since c1 is also strict

then (c1, [f , g], a + b) is a map in C(M) .

57

We can show that the diagram commutes by using (fl) reduction and

definition of disjoint sum above. The uniqueness of h follows from the

definition of a, and fixed point induction (see [Sto77]). 	 0

If A, B and C are therefore strict retracts then the isomorphisms in (6) do hold.

4.2 Anarchic Algebras in C(M)

Algebras in C(M) may be defined using the techniques of chapter 2.3 but since

C(M) has no initial object we dualise the basic lemma and use colimits of w"

chains rather than limits of ci.) chains. To do this we need to ensure that the

colimits exists in C(M) . The idea below is to define a class of functors for which

the colimit of an co" chain can be constructed in C(M) .

Definition 4.2.1 Let W : C(M) —+ C(M) be an endofunctor. Then W is Repre-

sentable if there exist polynomials T 0 and WA over M such that

1.for any object a of C(M) W(a) = 410(a)

2.for any arrow (b, f, a) of C(M) W((b, f, a)) = (W 0(b), TA(f), tifo(a))

3.T 0 and WA are representable.

Also we make use of the following property.

Lemma 4.2.2 1f F1 and F2 are representable endofunctors over C(M) then so is

their composite F1 0 F2.

Proof Let F1 and F2 be represented by 40 = (Vo, VA) and 7,b = (00, OA)

respectively. Let a E Obj(C(M)) and put a' = p0(a) = F(a). Then

F1 0 F2 a =00 a' by representability

58

which is representable [Bar84]. Likewise for any arrow (b, f,a) of

C(M)

o F2((b, f, a)) = FiGoo(b),(Pa(f),(Po(a))

= (00 ° Wo(b), OA 0 coA(i), 00 0

where A ° 'PA(f) is representable [Bar84]. 	 0

Lemma 4.2.3 Let a be an object of C(M) .

1.The functor _ x a taking every object b to b x a and every map (c, f, b) : b —> c

to (c x a, f X ida,b X a) is representable.

2.The functor _+ a taking every object b to b + a and every map f: b c to

(c + a, [f o inja,inja],b + a) is representable.

Proof Make the following definitions:

def
_ X a E Ptb.Ax.Ay.y (b (x.K))((x J))1

def
_ + a 	 Pb.Ax.(x K)(K,b(x J))(J,It(x J))11

Now verify that lAb.Ax.Ay.y (b (x K)) (it (x J))]] does satisfy the prop-

erties for a functor. Let (c, g , b) and (b, g , a) be two maps in C(M) .

Then

go f x a =

while

gxao f x a 	 = 	 [[Ax.Ay.y (g (f (x K)))(a (a (x J)))1

— cXa [Ax.Ay.y (g (f (x K))) (a (x J))]]

since for any objects a of C(M) Ax.a (a x) = a o a ET a. The proof

that the representation of _ + a is a functor follows along similar lines.

0

59

F',:0 lc
Fon

n FAOYF

So far we have considered any A algebra but below we need to restrict the choice

in order to guarantee limits of chains. Consider an co" diagram in C(M) , and a

functor F represented by the pair (F0, FA).

Fo (ao) 	 Fo(Fo(ao))
a11 	 a2

If ac, = 1 then the least fixed point for the chain {F:(1)}„ca, in any continuous

A algebra is, by 3.1.19, Y Fo. This turns out also to be a colimit for the co" chain.

Theorem 4.2.4 Let F be a representable endofunctor over C(M) which is repre-

sented by (F0, FA) and further that FA = Fo. If

A °P 	 (4(1 c), F:14(0(yF)))

is an w" chain in C(M) then (Y F0) is a colimit for the diagram A".

Proof First we show by induction on n that (Y(F0),1tn), where

= (4(1c), F;(0(y F)),Y Fo)

is a cone for A°P, i.e that for each n the diagram

commutes. Recall that the map Oa : a 	 lc is simply (1c, iJ1, a).

For n = 0;

(1c, [1]], Fo 1c) 0 (Fo lc , 	 J1, Y Fo) = (1c, Paid ((F J)u)}I, YFo)

= (1c, [I fl,YFo)

For the induction case n 1;

60

(Fon lc,[rGn A, Fon+1 ic) 0 (Fon+1 lc ,ITan+1 JLY Fo)

= (Pc;lc, [[P'An (,1 o (FA J))1,Y Fo) by the functoriality of F

= (Fon lc ,IGn 4 Y Fo)

=IL
.

Therefore (Y Fo, pn) is a cone for A".

Now consider any other cone (B, vn) for A'. For each n we have,

B

,/,,
Fon(OF lc)

	
F'O. lc

F": lc

For each n:

/In = Fn(OF(10) ° Vn+1

= Fn(OF(10) ° (Fn+1(0F(1))

=i n 	 1 i F in Fnk.IF(1c)/ ° k.- "4 \ ■../F(1c) I1

o vn+2)

o Fn+2
(l.)
f-N
F(1)) 0

and so each vn is the infinite composition

Vn = Fn(OF(10) 0 Fn+2(n) .,.--F(1c), ° - • •

that is

lin = Fn(OF00) 0 Fn+1 (0F00) 0 ...

= Fn(OF(1c) ° F(OF(1)) 0 ...) by thefunctoriality of F

= Fn(OF00) by definition of Opoo

Now define a as (Y Fo,Y Fo, B). It is easy to show a is an arrow of

C(M) by applying the definitions in 4.1.5. Now we show that for each

Vn+1

61

n the diagram

FAI (0)

F::(0 F(lc))

(Y F)

commutes.

For n = 0.

0 F(1c) ID a

and for n = k

(1c, 	 Y F0)0 (Y Fo, Y Fo,B)

(lc, 	 o (Y F)01, B)

(1c 	 B)

= 0 _ F(ic)

Fk (0 F(lc))0(Y Fo,Y Fo, B)

= (F1(1c), F1:1(0 F(lc)),Y Fo) 0 (Y F0, Y F0, B)

= 	 F ik4(0 F(lc)) 0 Y Fo, B)

= (45)(1c), FI:4(0F(lc)) 0 F1(̀)(Y F0), B)

= (F7)(1c), F ,k4(0 F(le) 0 Y F0), B)

by the functoriality F

and the premise that FA = FO

= (F7)(1c) Fl,q(0 F(1)) B) by definition of OF(1)

and so for any other object B of C(M) there exists an arrow a: B Y Fo.

Finally we show a is unique. To this end assume a' is any other arrow

in C(M) making the diagram commute. First some items that need

noting. If b:B and a' makes the diagram above commute then we

must have (Y F)(c/ (b)) = (b) by the definition of arrows in C(M) .

a

62

Furthermore for every n E Al, where Al is the set of natural numbers,

we have:

Fn(01,) 0 a' (b) = Fn(Oic)(b)

by the fact that a' makes the above diagram commute. Now we can

transform this equality as follows. Let I: lc —> 1 where Pi = 1 E M.

For any other arrow f: lc —> 1, 1 o fie = 1 by fact 3.1.12 and so 1

is also a terminal object in C(M) . Thus for every n c Al:

Fn(1) o Fn(O1) o a'(b) = Fn(I) o Fn(Qic)(b) 	 (8)

which by the functoriality of F and fact 3.1.12 gives:

Fn(1) o ai(b) = Fn(1)(b)

for all b:B. Now

a(b) = [[(Y F)(b)

= LifFnln€Ar LifbInEAr

= 11{Fn(b)}„EAr by continuity of application

= 11{Fn o a' (b)}nEAr by 8

= (11{Fn}nEAr o LifailnEN)(b) again by continuity of application

= [[Y F] o cti (b)

= a' (b)

which, by the definition e implies a E, a'. Thus Y F is the terminal

object in the category of cones over the diagram A" and consequently

the limit. 	 0

Theorem 4.2.5 (The Existence of Algebras) Let M be a continuous A alge-

bra, kli a representable endofunctor over C(M) and A" = Olin OC) IV OC be an

co" chain in C(M) . Then (Y k I 1 c),idy 4,) is an algebra for W.

Proof We show this by applying the basic lemma (2.3.5) and con-

structing a co-algebra for xli which is also an algebra for W.

63

That Y is an object of C(M) follows immediately from 4.1.4 and by

4.2.4 this is a colimit for A". Applying the basic lemma we then have

that (Y kli,/d(,4,) is a terminal Ii co-algebra, but since the structure

map is simply the identity function for Y then (Y /dy,p) is also

a n al g e b r a f o r W. 0

Now let E be an S sorted signature where S = Isi, , .50 and 	 be the

functor corresponding to sort i analogous to the functor XE in definition 2.3.6. If

each sort in C(M) is given by the fixed point of a then we require solutions to

the following set of domain equations in C(M) :

F1 =

= 	 (r1,• • •,r.)

(9)

Each Wi is a functor consisting purely of compositions of the basic objects of

C(M) and the sum and product functors. The following theorem giving the so-

lution to such sets of equations is well known and can be found in, for example,

[MW85].

Theorem 4.2.6 Let 11,... , fn be n functions defined by mutual recursion as fol-

lows:

A = 4,i(fi,• • •,f.)

In = (1).(Ii, • • • , fn)

(10)

If

F = X. (01(7ri (X), • • • rn(X)), • • ,(Dn(ri(X), • • • ,rn(X)))

then Y(F) is a solution for the set of equations in (10) where each fi = ri(Y(F)).

64

Consider the set of equations in (9) above. If each 	 is representable then this

set of equations can be solved by putting

	

= AX. (4)i (ri (X), • • ,rn(X)), • • , 	 (xi (X), • • • Irn(X)))

and then using theorem 4.2.6 to get the following set of solutions for the ri as

retracts in C(M) :

F1 = r1(")

FT, = rn(Y T)

By lemma 4.2.2 W is representable if each 	 is representable and by the fact

that the identities for products are defined pointwise in C(M) and by theorem

4.2.5 it follows that (Y klf,idy,k) is a 	 algebra.

Notation 4.2.7 Let r- denote the product Fs, x 	 x

Now let a E E,,, and (Y 41, id y 41) be a algebra. Suppose that

de f
41 = AX. 	 rw(x)i E Ews and w E S*1

(as in definition 2.3.6). Then

Y 	 ‘11)1 E Ews and co E S*1

such that the operation corresponding to a is the injection injw : 	 —> Fs.

Fact 4.2.8 Each Fs is the disjoint sum of the domains of each of the operations

of sort s.

In the sequel the ri will be referred to as the carriers of the 	 algebra and the

operation in (Y xli) corresponding to a E Ews will be denoted by'.

Example 4.2.9 Consider the following specification of lists of natural numbers:

65

Spec Nat

Sorts Nat

Operations 0 	 Nat

S : Nat Nat

End

Spec List _o f _N at

Nat +

Sorts List

Operations Nil : List

Cons : Nat x List ---+ List

End

The functor corresponding to List_Of_Nat is

List dg [AL.(' r(L),1 	 (L))1

which, by theorem 4.2.5 has the solution (Y List, idy List) with

r Nat def Pr(Y List)]

rList
del

IfrI(Y List)]]

Here 0 is represented by the element of M 	 /)] (or inji : lc 	 (Y List)),

while S is represented by [Ax.(, Fivat (x))1. Similarly Nil is represented by Px.(3,

and Cons by Px.(1, rNat X PLi3i(x))1. We use the Church numerals Tz to denote
different injections into the sum.

4.3 Algebras Satisfying Equations in C(M)

The algebras given in the last section were privileged in the sense that there is

an explicit way of constructing these from the signature E. In general algebras

66

satisfying sets of E equations do not correspond to the algebras that can be con-

structed using theorem 4.2.5 but are actually retracts of anarchic algebras given

by that theorem. If we now consider equational presentations such that the equa-

tions can be treated as a set of rewrite rules then this retract may be recursively

defined (see chapter 2.1).

Consider a nonvoid signature E and the initial fixed point TE of the functor XE

that is, the pair (T, 'y) where 7 is an isomorphism. If we now assume that the word

problem for TE is solvable then there exists a (recursive) map T : TE TE taking

each element of TE to its canonical representative, in which case the following

composition is also defined:

'Y
XE (TO 	 TE 	 TE

Consequently (TE, T 0 -y) is also a XE algebra.

Definition 4.3.1 Let A dg A1 .. . An and B be objects of C(M) . Then if

or

we say that A x B is Expanded along 0.

Consider the set of solutions 	 , FO to the equation (9) of section 4.3 given

by theorem 4.2.6. Each ri is of the form

-F 	 AT,

where each Ai is a product of some set of carriers

Iri, • • • ,rkl.g {ri, • • • , F.}

Suppose ri = A, + ...+ Ai, and now consider a single expansion of the finite

product of the {r,,...,rk} along some map 0 as follows:

r, x 	 x (ri_, x ((A, + ...+ Ap) x (ri+, 	 x rk)))

x 	 x (ri_, x (A, x ri+, 	 x rk + ...Ap x ri+, 	 x rk)

67

Then by a finite number of additional expansions we can achieve the following

expansion of the original product:

ri x 	 x ri_, x A, x ri+, 	 x rk + ...+ r, x 	 x ri_, x Ap x ri+, 	 x r,

We say that the product r, x 	 x r, has been expanded to Standard Form2

Every product of the ri which results from the equation (9) of chapter 4.3 can be

expanded to a standard form although this is not unique nor is it isomorphic to

the original product in C(M) .

Lemma 4.3.2 (Derived Operations) Let ‘11 be an endofunctor and (r1, ,

the carriers for a hi algebra in C(M) . Then:

1. If 6 : rwi --+ F 	an injection, A = U Ai is an expansion of rsi x 	 x r,

along yo, w =si 	 and cp : 	 A then there exists an injection injrwi x...xrwn

of rwi x 	 x rwn into A1+ . + Ai making the diagram

Ai + + Ai

(10

x 	 x ruin 	 • rs, x ...r,
x 	 x

commute in C(M) .

2. Let Tr : 	 —> F. be an operation of the IF algebra (Y t11) and 6 x ... X 	 be a

product of injections such that each 6 is a map I' 	 Psi. Then there exists

an injection Ty such that Tr o x . . . x G is an injection of Fwl x 	 x rwn

into rs.

Proof Proof sketch:

1. We wish to show that there is an injection injr,), x...xrwn of the do-

main of the map el x x G, into an expansion of rs, x x rsii.

We do this by induction on n, the number of multiplicands in the

2Considering the resemblance to disjunctive normal forms in boolean algebra perhaps "dis-
junctive Standard Form" would have been a more apt name

68

product:

Basis case follows directly from fact 4.2.8.

Induction Case Assume that the lemma is true for an n-fold

product, that is, the following diagram commutes:

Ai + + Ai

(rwi x 	 x rwn) 	 rs, x ...r„
x 	 x en

Now for an n+1 fold product the functoriality of _ x _ ensures

that the diagram:

r„ x (A1 +... +Ai)

rwn+, x (F 	 x rwn) 	 rsn+i x (rs, x

also commutes. By fact 4.2.8 and the assumption that Th_Fi :

rwn+i
sn+ is an injection rsn+, must have an expansion

of the form

Now for some A, in A1 + + Ai, 1 < < j, such that

	

Ai = 	 x x

there is an expansion 7 such that rs+, x (A1 + 	 + Ai) is

of the form

+ 	 + r'n+1 x F 	 x ruin + ...Br'

and so there is an injection of 1-'1+1 x r1 x 	 x r" into an ex-

pansion of rsn+, x rs, x 	 x

69

2. To show that 7 o x 	 x en is an injection of 	 x 	x r-n
into a standard form of rs consider the diagrams

Ai + + r, x 	x r„ +...+ Ap

-

+ ...+ rl x 	 x 	 + 	 +B.;

inj
	

f(pi

	 rs

where co = si 	 sn and cp and cp' are expansions.

Now notice that the map

Bi -I- • • • -I- co + • • • + Bi

is a proper expansion of B1 + 	 + + 	 + B3.

0

Now consider a presentation (E, E) of an equational theory. If the set of

equations E can be turned into a confluent and strongly normalising set of rewrite

rules then by theorem 2.1.15 there exists a recursive functions T: TE T E. We

now outline an algorithm to construct T from a set of Church-Rosser strongly

normalising rewrite rules.

Definition 4.3.3 let 0 : X 	 TE(Y) be a substitution. We say that a term t

matches a term t' via 0 if

0(t')= t

where-0 is the extension of 0 to the set of all terms with variables in X.

Definition 4.3.4 Let B be a strongly normalising and Church-Rosser set of rewrite

rules. Define the function T on ground terms by the rules:

70

I. If there is a rule a(ei,...,n) 	 cp(ei,...,4') in B and substitution 0 such

that a(ti,...,tn) matches 	 via 0 then put

and define:

2. Otherwise put

co(ei, • • • ,tin) = 46(40(ei, • • • ,ek))

r (a (t . 	 t n)) = (46(T (4) , • • , 	 k)))

.,t0) = (Per(4), • • • TWO)

First we show that the image of T is indeed a transversal for E-E in TE.

Lemma 4.3.5 If cr is a ground term in normal form then

7- (a) =

Proof By By structural induction and the definition of T.

We use the notation t -1* t' if (t, t) E B and say that t reduces to t' in one step.

We also write t 124 t' if there is a sequence of one step reductions such that

t 	 tk-1 	 tf

We write t j, as a shorthand for t —>*8 t j. and t t is in normal form. The bound of

t is the maximum length of the reduction sequence of t to normal form. Denote

the bound of a term t by bound(t).

	

Lemma 4.3.6 For any cr(ti,...,tn) and ti, i E {1, 	 , n}

1.bound(cr(ti,...,tn))> ti

2.bound(o-(t 	 ,tn)) 	 bound(o(ti L,. ,tn J,))

	

Proof Follows from the definition of bound. 	 0

Lemma 4.3.7 Let 5(47... ,tn) be a ground term. Then

(cr(ti, 	.,t)) = 	(t1,.

71

Proof Let B be a set of strongly normalising, Church-Rosser set of

rewrite rules. Then all sequences of 1 step reductions of a(ti, , tn)

to normal form are finite.

Now, by induction on the bound of a(ti, , tn) we show that

cr —>
* 	 ,

4- implies r(a) = a I

Basis case : bound(cr(ti,...,tn)) = 1

If cr(ti,... ,tn) 	 co(ev... ,em) then c,o(tii, 	 , em) is in normal form and

each t: is in normal form. Now there are two possible cases: either there

is a rule

I

016, • • • , fl) 	 co(i, • • • ,L)

in 13 such that cr(ti,... ,tn) matches o(6, 	 ,) via 0 or there is not.

We give the case in which there is such a rule since the other case can

be shown in similar fashion.

By definition 4.3.4

T(Cr(ti, 	 tn) = T(Ar(t1), 	 T(tm)))

and by lemma 4.3.5 each T(ti) = ti, therefore:

7.((Per(ti), • • • ,T(t m))) = T(0(ti, • • • , t m))

= (P(ti, • • • tm)

where c,o(ti, 	 , tm) is the normal form of a(ti,... ,tn).

Induction case : Assume V k < n

(10(ti • • • , tm) 	 co(ti • • • , t m)

implies

=

and the bound of (,o(ti 	 , tm) is n. Again we show only the case in

which there is a rule

°g1, • • • ,W ->8 	• • • 4
)

72

in 8 in which case:

r(a(ti,..• tn)) = T(Ca(T(tii), • • • ,T(t:n.)))

For each t: we have that bound(cp(ei . . . ,em)) > bound(t) by lemma 4.3.6

and so by the induction assumption r(t) = t: 1. Then

tri)) = T(ver(ei),...,r(em)))

T(V(tii t, •-• t:

By lemma 4.3.6 and the induction assumption again we have that

bound(w(ei, 	 , ern)) bound(w(ei 	 , ern I)) and so

= v(ei, 	, em)
That a-(ti, 	 , tn) = ca(4, 	 , en) follows from the Church-Rosser prop-

erty of B. 	 0

Another property of T that we will have occasion to use is the following:

Lemma 4.3.8 T is idempotent.

Proof by lemmas 4.3.5 and 4.3.7.

Theorem 4.3.9 The image of T is a transversal for E-E in TE.

Proof By lemmas 4.3.5 and 4.3.7 the image of TE under T is the

set of —>8 normal forms and so also a subset of TE. Since ->5 is

both Church-Rosser and strongly normalising each equivalence class

[t] E TE/ =E contains a unique such normal form.

Thus we have defined a recursive function T which is idempotent by lemma 4.3.8

and which is a retract of TE. We now give the definition of T in C(M) .

Theorem 4.3.10 For any signature E and set of strongly normalising, Church-

Rosser rewrite rules 8, let(Y;(7- 1: 1 —> I's be the operations in Y (W) corresponding to

the the ground terms a and a t respectively. Then there exists an arrow T : Fs —+ Fs

such that T 0

73

. 	.
Zfljpi x...xrwn

x rs, x • . x r,

sA

Figure 5: The Definition of an Operation in C(M)

To give a proof of theorem 4.3.10 we first present an algorithm to construct T and

give two preliminary lemmas.

Consider the set of all operations of sort s E 8, fan 	 ak}, and the set of all

rewrite rules in B of sort .9:

	

1 	 1

Crl (el • • • I en) —4 (PI

k\
ni —> (Pk

1.Define A to be the standard form of Fs such that (1) there is an injection

	

inj, o inj, x 	 x in jF x 	 A

for each of the rules in (11) (this is guaranteed by lemma 4.3.2) and so if Fẁ

is the domain of cri(,• • • ,

	

e 	 e) in C(M) then rw$ is a summand of A.

	

1 	k,

2.Now let the number of summands of A be p. We want T to make each of the

equations in (11) valid, that is, for each i E {1, 	 , ml the diagram in figure

6 must commute. Now we have p summands and k equations and we wish

to construct a set {01, 	 , Op} so that each cki corresponds to the action of

T on the i-th summand of A, that is, q,: 	 rs. Let {Ts}sEs be a family

of new variables, one for each sort s E S. Define the Ok as follows:

74

rw,
x x

	 •rs, x 	 x r„

Fs

Figure 6: Definition of T

•If there is a rule °k(1,. , 	 (gel, 	 , 	 in B such that

TiV—G, • • • ,Z;;)
	 Wk

	

A

is an arrow in C(M) then put

	

= Ts 075k 0 (Tsi 0
	

• TS1
o e)

•otherwise put Ok = TrT o (Tsi o el, 	 , Ts, o

Let

4).si= [Oliersi, • • • , rsn), • • 	 (T 	• • • ,Tsn)] ° 7s;

Now we have the n equations

	

= 	 31 (T31 • • • 5 TS n)

T3n = 4°3,1(r31 " • TSn)

and by theorem 4.2.6 has the solution

= Y(AT.(4)31 	 (T), 	 , rn(T)), 	 , 	 (71(T), • • • 	n(T))))

where 	 is the expansion of rs, x 	 x r, making the diagram in figure 5 com-

mute. Each Ts, can now be projected from the solution to the equations. We can

now give a semantics for each operation a E E 	C(M) defining Fr as the arrow

75

in C(M) making the following diagram commute.

TS

T

where each of the -y's is any appropriate expansion.

Lemma 4.3.11 Let B be a set of rewrite rules. If u is a B normal form and

-Cr : lc — > ra is the operation in Y iJJ corresponding to o- then T, 0 Ers •

Proof In the case when T. is a ground term the diagram in figure 5

reduces to the following:

r s

A

Since 7 makes the diagram above commute then by the definition of T

we have

Ts -07 = [017 • • • 7 Op] -0)

for some Op Since Tr corresponds to a normal form then there is no

rule in B of the form a -4 a' and so by the definition of T, cb3 = 7.

— Lemma 4.3.12 If a is a ground term of sort s and a -4 a .j then T 0 -cf. E , a t

Proof If a -14 al, then either:

76

1.there is a rule o-(6, 	 , 4.n) —> in B such that a matches o-(6., 	 , G,)

via a substitution cb and OM = a 1, or

2.a is of the form a(

	

.11, • • • ,ti, • • • ,tn), 	aJ 	 o(ti, • • • 	 • • • 7 in)

	

and ti 	 til

In the first case there is a rule cr(6, 	 ,) —>••• , co(e 	 e) such that 1, m

cr(ti, 	 tn) 	 ,t1m) and so:

	

Ts 07 0 (Ts, 0 Fi, 	 , Tsm 0 Fm)

by defnition of Ts

= 	 0 c0 0 	 Fm

= 	 ° (F1, • • • Fm)

by lemma 4.3.11.

In the second case we must have had a subterm u of t, which reduces

to u t and so u matches some a via a substitution cb and a co is a

rule in B. This case can then be shown in a similar manner to the first.

We assume without loss of generality that ti and u are identical. Then

by lemma 4.3.11 a o (ii,. , is the representation of a t. 0

Now we come to the proof of theorem 4.3.10.

Proof We do this by natural induction on the bound of a term a as

before.

The case of bound(a) = 1 follows form lemma 4.3.12. The induction

case is handled in the same way as theorem 4.3.7.

Assume V k < n

	

ti 4 ti t implies r3 o11 	 r. ti

Then,

Ts 0 71 0 (11, • • • 'in) = Ok ° (41, • • • 74j)

77

for some terms (qi, 	 , qj). Put

	

cbk ° (-41> • • •)43) = Ts 0 (To, 0 (Tsi 	 Tsn o Fn)

	

= Ts 0 (10 0 (ti 	 In)

by induction assumption

o (t' 	 . .

by applying the induction assumption twice. 	 0

	

Corollary 4.3.13 V m : F3. (7- o r)m = T m, that is TOT 	 T in C(M)

Algebras constructed by the algorithm in the proof of theorem 4.3.10 satisfy the

equations of the original presentation (E, E) (which is shown by the following theo-

rem) but what is interesting is that algebras can be constructed in C(M) simply by

requiring that E gives a term algebra which is non-empty and that the equations

define rules for computation.

Theorem 4.3.14 (T Algebras) Let (E, E) be a presentation. If E is non-void

and there is exists a strongly normalising Church-Rosser set of rewrite rules B

obtainable from E such that B solves the word problem for TEE and XE the functor

corresponding to E then there exists an arrow T in C(M) such that (Y T 0 idy

is a XE algebra satisfying the equations in E.

Proof By theorem 4.2.5 (Y idy kit) is a klf algebra in C(M) and

by theorem 4.3.10 if t t I then in C(M) T Oi TI. If B solves

the word problem for TEE then by theorem 2.1.7 if E HE t= tf then

there exist a t" such that t --**B t" and t' —4; t". By theorem 4.3.10 this

means that Ts 01 1 and Ts o 1 which by the transitivity of

implies Ts 01 Er3 Ts 0 F in C(M) . 	 0

4.4 Examples

We introduce some notation for the examples which follow. Suppose we have a

set of s sorted rewriting rules

78

then write

1-(ai(i, • • • ,)) 	 r(tk1er(E1), • • • T(El,)))

	

r(a m (ivn 7 • • • 7 C M 	 Telkm ME
In'
7 • • • 7 T(67/)))

to stand for the solution of the recursion equation as defined in theorem 4.3.10.

Example 4.4.1 In the first example we look at a simple specification of truth

values.

Spec Booleans

Sorts Bool

Operations T, F :—> Bool

A, V : Bool x Bool Bool

: Bool Bool

Axioms Vx E Bool

T A x =x

FAx=F

TVx=T

FVx=x

= F

End

From definition 2.3.6 the functor we require is

Bool -a- PB.1+1+BxB+BxB+131

and is representable by lemma 4.2.2. We intend that the first product B x B be

the domain of the A operation while the second is the domain of the V operation.

79

The final summand B is intended to be the domain of the operation and so by

theorem 4.2.5 (Y Bool,idy Bow) is a Bool algebra. Put bool I (Y Bool). Then

idbooi Bool(Y Bool) —> (Y Bool)

and so

idbool = [T, F, A, V, -] : 1 + 1 + bool x bool + bool x bool + bool 	 bool

Then the operations in the (anarchic) bool algebra in C(M) are defined as follows:

de f
inji

del
inji

A
de f

inibooixbool

V
de f

inibooixbool

del

ini bool

If we now we consider the equations of the Booleans specification as left to right

rewriting rules then by the construction of T in theorem 4.3.10 operations on bool

can be defined as functions in C(M) , for example,

del
A 	 K(False) 0 0, x B 	 . • .1 0

de f
V 	 [[[K (True) 0 olxBoohir , ...j o

Since C(M) is a cartesian closed category then the exponential transposes of these

operations can also be defined.

Alternatively we might wish to specify booleans using just T, F and the one

operation Nand as follows:

Spec Booleans

Sorts Bool

Operations T, F :—> Bool

Nand : Bool x Bool Bool

80

Axioms V x E Bool

Nand(T,T) = F

Nand(T, F) = T.

Nand(F,x) = T

End

In this case the functor is given by:

Bool' E Pt./3.1+1+ B x Bl

and by theorem 4.2.5 we put boor = (Y Boor ,idY Bool')• The operation Nand is
- —

given by

Nand tf UK(False),K(True),K(True)]° 7 A and]]

We can now give the usual definition of A in terms of Nand.

d.f [Wand o (Nand, True o 0 booli xbooP)11

Despite being equal on the values True and False (if we choose the same repre-

sentation in C(M) for both) A' and A are two different arrows in C(M) . Indeed

they are not even in the same Horn sets.

In our next example we consider free groups generated by an arbitrary type.

Traditionally the free group generated by an arbitrary set is a universal algebra

(GRP(X), 77) making the diagram

71 GRP(X)

commute for any p and group G (see definition 2.1.2 and the following discussion

there). In the diagram n is the inclusion of generators into GRP(X). In the

example which follows this is made explicit by introducing a coercion from the

sort X into the sort GRP.

81

Example 4.4.2 Groups generated by an arbitrary type F.

Spec Group

Sorts X Grp

	

Operations e 	 : —> 	Grp

injx : X —> Grp

Grp x Grp —> Grp

: Grp —> Grp

Axioms V x,y,z E X,

e + inj(x) = inj(x)

—(inj(x))+ inj(x) = e

(inj(x)+inj(y))+inj(z) = inj(x)+(inj(y)+inj(z))

End

Consider an arbitrary type F. , The functor GRP is defined as follows:

GRP --f 	 +rx +G x G+

The equations can be turned into a Church-Rosser, strongly normalising set of

rewrite rules by applying the Knuth Bendix completion procedure. The resulting

set of rules is given in figure 7 and in C(M) the corresponding arrow T is given by

the following set of recursive rules.

7-(e + inj(x)) —> r(inj(x))

7-((inj(x)+ inj(y))+ inj(z)) —> r(r(inj(x))+ er(inj(y))+ r(inj(z)))

	

r(—inj(x)+ inj(x)) 	 e

	

r(—inj(x)+ (inj(x) + inj(z))) 	 r(inj(z))

	

r(—e + inj(x)) 	 r(inj(x))

	

r(—(—inj(x))) 	 r(inj(x))

r(inj(x)+ e) —> r(inj(x))

r(inj(x)+ (—inj(x)))

	

r(inj(x)+ (—inj(x) + inj(z))) 	 r(inj(z))

82

e+ inj(x)

-

inj(x)

(inj(x)+ inj(y))+ inj(z)

-

inj(x)+ (inj(y)+ inj(z))

—inj(x)+ inj(x)

-

e

—inj(x)+ (inj(x)+ inj(z))

-

inj(z)

	

—e+ inj(x) 	 inj(x)

.—(—inj(x))

-

inj(x)

inj(x)+ e

-

inj(x)

	

inj(x) + (—inj(x)) 	 e

	

inj(x) + (—inj(x)+ inj(z)) 	 inj(z)

Figure 7: Rules to Decide the Word Problem for Free Groups

	

r(inj(x)+ (inj(y)+ inj(z))) 	 T(inj(x))+ (r(inj(y))+ r(inj(z)))

	

(e) 	 e

In the case of normal forms like e we do not need to reapply 7- because lemmas

4.3.7 and 4.3.5 already state that T has no effect on operations representing values

(normal forms).

Remark 4.4.3 Some remarks need to be made.

I. The first is that there is essentially only one operation being defined in the

example of groups, that is, the + operation. Although the axioms guarantee

the existence of an inverse for any element x there are no rules specifically

stating how to calculate such an inverse. Here inverses for elements of type

x are represented by prefixing them with a — (essentially an injection)3.

3See for further reference [Kur65] or [MB67] for a definition of groups in terms of semigroups

and [Coh81] for a presentation of groups without reference to the operation of inverse or identity

83

2. The second remark concerns the group operation +. Here + simply stands for

the group operation and bears no relation to any other computable function,

say + on the natural numbers, which also satisfies the group equations.

Our final example continues with lists of natural numbers first introduced in

example 4.2.9. We now consider adding two partial functions head and tail.

Example 4.4.4 Lists of Natural Numbers.

Spec List_O f _Naturals

Naturals +

Sorts List

Operations Nil : —> List

Cons : Nat x List —> List

Head : List —> Nat

Tail : List —> List

Axioms V n E Nat, 1 E List

Head(Cons(n,1)) = n

Tail(Cons(n,1)) = 1

End

To overcome the fact that we are dealing only with total functions some elements

representing error values may be added in the manner of [Gog78].

Spec List_O f _Nat

Naturals +

Sorts List

Operations Nil 	 : —> List

Cons : Nat x List —> List

Head : List —> Nat

Tail : List —* List

Errors 	 ListE : —> List

NatE : —> Nat

84

Axioms V n E Nat, 1 E List

Head(Cons(n,1)) = n

Tail(Cons(n,1)) = 1

Head(Nil) = NatE

Tail(Nil) = ListE

Error Axioms

Head(ListE) = NatE

Tail(ListE) = ListE

Cons(n, ListE) = List E

Cons(NatE,I) = List E

End

where Nat is given in example 4.2.9. The functor corresponding to this signature

is

IAL.(1 + 1 + 7r(L), 1 + 1 + LA

If we treat the equations directly as left to right rewrite rules then T is given by

the following set of recursion equations:

7(Head(N I L)) = NatE

	

r(Head(Cons(n,1))) 	 7(n)

	

r(Tail(N I L)) 	 ListE

	

r(Tail(Cons(n,1))) 	 7(1)

r(Head(ListE)) = NatE

r(Tail(ListE)) ListE

r(Cons(n, ListE)) = ListE

r(C ons(NatE,1)) ListE

85

4.5 Summary

There are two aspects to the problem of constructing a representation in C(M) of

an arbitrary presentation which are to first choose a representation and then to

define functions over that representation. If the set E of equations is Knuth-Bendix

completable then we have such a system of equations and if the specification is

nonvoid then the ground term rewriting system is also Church-Rosser and strongly

normalising. The set of normal forms then provide a choice of representation. A

simple version of this idea is summed up in the Principle of Definition4 defined

by Huet and Hullot [0J82]:

Definition 4.5.1 Let E be a signature, C a set of constructors and D a set of

defined operations such that E = C U D. Also let E be set of equations. Then

the Principle of Definition is expressed as the conjunction of the following two

properties:

1. For every ground term M there exists a ground constructor term N such

that M =E N

2. For every pair of ground constructor terms M and N, M =E N

We do not consider such explicit partitions of the signature but rely on the com-

pletion procedure to indicate the constructors within the signature.

There are similarities between T and the Eval function in [P1o77]. Plotkin

[P1o77] considers a language with higher order functions, in which Programs are

closed terms of ground type. If ,C is a language with higher order functions and P

is a program of ground type a then the definition of Eval is

Eval(P) = c if P --*c c

where —> c* is the reflexive and transitive closure of a reduction relation associated

with the language L. In the case of the function T defined in 4.3.4 the language G

is given by the signature E of the data type, the reduction relation -4*8 is obtained

4 1n principle it is the same as the idea of Sufficient Completeness given in [VG78]

86

from the equations of the data type and for every closed term t of ground type

r(t) = c if t —>*8 c

The two conditions of theorem 4.3.14, that E can be completed to a strongly

normalising and Church-Rosser system of rewrite rules and E is non-void, are now

re-assessed. The condition that the rules be Church-Rosser is essential since if they

are not r : TE —> TE will not be a function and so not representable in C(M) . The

second condition is that of strong normalisation which is not forced on us by the

category C(M) . Consider, for example, the following presentation:

Example 4.5.2 The natural numbers are given as follows:

Spec RECURSE

Sorts S

	

Operations a 	 : —> S

	

f 	 : S 	 S

• :SxS —÷S

Axioms VM E S

f(M) = n1 + Am)

End

The corresponding definition of T gives

r(f (a))
	

r(a) o (Pa))

ao r(f (a))

which is representable in C(M) as a lazy operation. We conjecture that the premise

to theorem 4.3.14 may be weakened to exclude strong normalisation.

87

Chapter 5

Extending Equational Theories To

Higher Order Equational Theories

In the previous chapter we studied the conditions under which models of some

equational specifications can be constructed in C(M) (theorem 4.3.14). Given an

equational specification which satisfies the conditions one can construct a model

in C(M) but the original specification is now no longer a complete axiomatisa-

tion of this model. By theorem 4.3.14 deduction of theorems from the axioms

of the specification is sound, that is, if E HE e then any model constructed by

theorem 4.3.14 satisfies e, but more equations are valid within this model than

can be deduced using first order equational reasoning. Consider the specification

of booleans given in example 4.4.1. One consequence which can not be deduced

using purely first order reasoning is that

RA o (I', x))1 - E (7)*

which follows from the fact that M is a A algebra, and so satisfies all the rules of

the A calculus, and the equation

T A x = x

which is valid in (Y B ool , 7). Is there an axiomatisation of the theory of the model

of booleans given in example 4.4.1?

In giving an answer to this question a number of factors must be taken into

account. The first is that the original equational theory must be preserved since

88

any model constructed by theorem 4.3.14 is a model of the equational theory

presented by the specification. The second is that all equations provable in the

A calculus are provable in any A algebra M and so these also must appear in the

theory but there are other possibilities, for example equations between terms of

ground type involving a mixture of first order and higher order subterms.

In this chapter we give a typed A calculus freely generated by an equational

presentation and study some of its properties. We show that for the kind of

specifications that give rise to the models of chapter 4 the proposed A calculus is

conservative over the equational theory while in chapter 6 the soundness of this

calculus is shown.

89

5.1 A Simply Typed Calculus with Equationally

Defined Operations

The simply typed A calculus proposed here is obtained by adding abstraction,

application and pairing to the operations of the signature E. While our ultimate

aim is to study the passage from first order theories to higher order theories and

then to the models proposed in chapter 4, for the present we fix a presentation

(E, E) and study some properties of the proposed calculus. Given a presentation

(regardless of whether it satisfies the preconditions of theorem 4.3.14) the simply

typed A calculus,)EE, based upon (E, E) is given by a set of types, a set of terms

and a set of equations and inference rules which are given below.

Definition 5.1.1 The set of Types, T, is inductively defined by the following

rules:

1.1 is a type (called the unit type) and every s E S is a type. These are called

the base types.

2.If a and 9 are types then a x [3 and a 	 13 are also types.

Let {X},„ be a countable set of variables for each type a E T. Then the set of

terms is inductively defined by the following rules:

1.if x E .X0, then x is a term of type a;

2.if a E 	 then a is a constant of type s (Algebraic constants);

3.if a E E 	I a vector of terms where each ti is of type ai then a(i) is a

term of type s (Algebraic terms);

4.if x E Xcv and e is a term of type [3 then Ax.e is a term of type a --+

(Abstraction)1 and if el is a term of type a 	 and e2 is a term of type p

then el e2 is a term of type 13 (Application);

'Sometimes we will write Ax.ep to make the types explicit

90

5.if el and e2 are terms of types a and 13 respectively then (el, e2) is a term of

type a x # (pairing) and finally if e is a term of type a x # then rage) and

(e) are terms of types a and # respectively. a/3

6.* is the only term of type lA

The set of terms of type a is denoted by AE,c,(X) while we use AE(X) to denote

the set of all terms regardless of type. Points 1., 2. and 3. of definition 5.1.1 are

the same as the definition of the free E algebra generated by a (countable) set of

first order variables Y. We may assume up to renaming that these are included in

the set of all variables, that is, Y, C Xs for all s E S, then there is an injection

: T(Y) --> AE(X). If t E TE(Y) then we often write just t for 77(t).

The rules for substitution M[N/x] are the same as those in definition 3.1.2 aug-

mented by the following rules:

(el,e2)Wil = (ei[e' x], e2V xi)

r(eHeril = r(erel

71)(e)[-eli] = 7ri(e[q

where a is an operator symbol from E. The rule given above for substitution on

algebraic terms simply states that substitution is a homomorphism when applied

to algebraic terms. If is a vector of variables such that each variable xi is also a

member of X then we may think of each 4gril as a function

: AE(X) —> AE(X) 	 (11)

Axioms are written as el =CNV e2 where we use =CNV to mean that el is

equal to e2 by the conversion rules, or rules of deduction, given in figure 8. The

rules of deduction are simply those of the simply typed A calculus with surjective

pairing augmented by the equations of the specification.

Definition 5.1.2 Let I be a set of ASE equations of the form M =civy N. Then

.1 I- A,E e where e is an equation, if:

91

Logical Rules

(unit) e -=-CNV * For any term e of type 1A

/law eo =CNV AYa.eo[Yixi (a)

()x.e) e1 =CNV e[e2ix] (0)

rao((xa)Y0)) =CNV xa rap((xalY0)) =CNV YO (b)

(7a0(Zax0)70,0(Zax0)) =CNv Z

Non Logical Axioms

If (X,t,t') E E then t =CNV t' is a non logical axiom.

Inference Rules

M =CIsiv N

Ax.M =cNv Ax.N

M =CNV N 	 M =CAA. N (C)
X M =CNV X N MX =CNV N X

and Reflexivity, Symmetry and Transitivity

Figure 8: Deduction rules.

92

1.e E

2.e is an instance of one of the axiom schemas (a), (0) or one of the axiom

schemas (8)

3.If one of the equations in .F is a premise of one of the rules (e), (() or

reflexivity, symmetry or transitivity and e is the consequent of that rule.

From now on we adopt the same convention as in [Bar84] that (a) congruent terms

are identified, and that if the terms Mi, 1 < i < n appear in a particular context

then their free variables are chosen so that they are different from any bound

variables in that context. Also we will omit type subscripts where it is clear from

context which types are involved.

A concept which is useful for relating higher order theories to first order the-

ories, as in universal algebra, is the of congruence. A congruence for a universal

algebra A is an equivalence relation which is compatible with the E structure of A.

Likewise a congruence for a higher order theory will need to be compatible with

the operations of abstraction, application and surjective pairing. We consequently

have the following:

Definition 5.1.3 The equivalence relation H.AE is defined as the least relation

satisfying:

1.if be any substitution on terms and Tk the extension of to all terms of

AE(X) and

E = {(0(t), Sb(e)) J (X ,t,e) E E }

then

(t1, t2) E E implies t1 =Et2

(closure under substitution);

2.if cr E 	 and ti 	 tip 	 tn 	
I
n then

EAE 	 • tin)

(E compatibility);

93

3. for any efl and e'or, (Ax.9)e'a =AE e[eilx]

irap((e,e')) EAE e

rIo((e,e')) EAE eI

(ro(h),7c,' p(h)) EAE h;

5. if e 	 then for any f of the appropriate type, (e f) EAE (eV) and (f e) EAE (1 e');

6- if e EAE e then Ax.e E-AE

7.for any e, e EAE e;

8.if e -AE e then e' —AE e;

and e2 	 —AE - 9.if el =AE e2 	 —AE e3 then el 	 3; e

We now have the following theorem.

Theorem 5.1.4 E 'A,E M =CNV N zff m EAE N.

Proof () By induction on the length of the derivation E 	 M =CNV N •

Basic Case If E hA,E M — =CNV N in one step then by the definition

of F-A,E either of the following must have occured:

•M =CNV N E E, in which case (M, N) EEC 	 by def-

inition.

•M =CNV N is an instance of one of the axiom schemas (a)

(/3) or (8) each instance of which belongs to =AE by definition

5.1.3.

Induction Step Assume that E hA,E M =CNV N implies M -EAE N

in n steps. Then any application of a rule of inference to M

returns a consequent MI =CNV N' as follows:

•by (0, E 1A,E X M =cpw X N which by definition 5.1.3 is

in EE; Likewise E 1A,E MX =civv N X is in =,\E;

•by () E hA,E Ax.M = Ax.N which by definition 5.1.3 is in

EAE;

=CNV N

94

• compatibility, reflexivity, symmetry and transitivity inference

rules follow by similar means.

If Ar =CNV N' is an instance of an axiom schema or extra-logical

axiom then this is independent of the induction assumption and

so follows by the same argument as the basis case.

()

Inductively define the sequence of sets Ui as follows:

U0 = EU

{((Ax.M)N,M[nIxDIM,N E AE(X)} U

{fra((11/1 N))) M) I M,N E AE(X)} U

{(7r((M)N)), N) M, N E AE(X)} U

{((7003(M),rico(M)),M) I M E AE,,,x0(X)IVa, E

{(M, M) I M E AE(X)}

= {(XM,XN)I(M,N)E Un}U

{(MX,NX)1(M,N) e UnIU

{(Ax.M,Ax.N) I (M, N) E Un} U

{(M,N) I (N, 	 E U„}

{(M, N) I (M, P),(P, 	 E UnI

Let U = U Ui. Now by induction on i we have that U1 C E and by

definition 5.1.3 EAEC_ U1 for some i and so EAE = U. By induction on

i if (M, N) E Ui then E HA,E M =CNV N

From the definitions given above EECAE (see 2.1.5) and so by theorem 2.1.7 and

by theorem 5.1.4 we also have

E HE V X.t = tf implies E 1AE t =cwv tf

where the free variables of t and t' are all in X. Equations which were universally

quantified in E are now to be considered as equal "functions" (of their free vari-

ables). If (X, t, t') E E then E 1AE t =CNV if and so by applying the () inference

rule once for each of the variables in X the following equation

Axi 	 Ax 	 =CNV AX1 • • • Axn.t'

95

is also provable, that is, we have an equality between functions. Now by applying

(() and (fl) several times we can also show that:

ve. t[ell] =CNV ti[el Xi

where the e may contain higher order terms2.
The following theorem is now a direct consequence of theorem 5.1.4 and defi-

nition 5.1.3.

Theorem 5.1.5 Let (E, E) be a presentation. Then every derivation E HE M = N

in the equational calculus can be translated to a derivation E HAE M =-CNV N in

the A calculus generated by the terms and equations of (E, E).

Proof The proof of this theorem is based upon a mapping between

proof trees given by the inference rules of the equational calculus and

those of the calculus AEE.

•Let X = {xi,..., xn} and cp : {xi, ..., xnj 	 TE(X) and be a

substitution. Then each instance of the substitution schema of

definition 2.1.3
Vs E X. t = t'

Vs E X UY. (75(t) = 7(P)

is replaced by

Axl 	 Axn.t = Axl 	 Axn.t'

(Axi.:Axn.t)7(xi) • • .7i(xn) = Pal • • • Axn•e)7(xi). • •7(x.)

t[7(xi)/xil • • •

[ç3(x)/x] = t'P(xi)/xil • • • [7(x.)/x.]

in AEE where abstraction (0, application (C) and (0) rules are

used to achieve the same substitution;

•Let (,oi and y02 be substitutions such that (pi(x) = x for all x E X

except one xi such that c,oi(xi) = t1 and (,o2(x1) = t2. Then for

2The implication here is that in AEE an implicit universal quantification has been introduced,

that is, if E FA,E t =cNv t' then we have 'lx E a. t(X) =CNV if where a is the type of the free
variables of t and t'

96

some t E TE(X) each instance of the schema;

Vx E X. ti =t2

Vx E X U (Ti(t) = W(t)

is mapped to:

= t2

(Axi.t)t1 = (Axi.t) t2

t[tilxi] = t[t2lx1]

•All instances of the Transitivity, Reflexivity and Symmetry rules

remain unchanged.

It now remains to show that given an equation t = t' such that E HE t = t'

then E 	 t -CNV i. By induction on the length of the derivation t

E HE t = t' we have

Basis case if E HE t = t' in 1 step then t = t' must be an instance of

an axiom in which case E 'A,E t= cNv t', or t is identical to t'

and the equation follows by an application of reflexivity in which

case by reflexivity in AEE, E HA,E t =CNV ti

Induction case Assume E HE t = tt implies El- - A,E t =CNV tf. Now

by the definition of substitution in definition 3.1.2 if : {x1, 	 ,x,} —> Ty

then

7(0 = t[(P(xi)/xi] • • • ko(x.)/x.1
	

(12)

•An application of the substitution inference rule gives

E,t = t HE tio(t) = 7(e)

The induction assumption together with the translation for

the substitution rule above gives

Elt =CNV

t[75(x1)/x1l • • • [7(x.)/x.] = ti[7(x1)/x1] • • • [(70(x.)/x.]

97

which by (12) above and the definition of derivation is equiv-

alent to

E 1A,E C-5(t) =C NV

• An application of the rule of replacement gives

E,t1= t2 HA,E71(t) = 72(0

for some t where (pi and co2 meet the premises of the re-

placement rule of definition 2.1.3. The induction assumption

together with the translation again give

E,t1=CNV t2 HA,E t[t11 Xi] =CNV t[t2lX1]

which by (12) above and the definition of derivation is equiv-

alent to

E 1A,E 71(0 —CNV (P2(t)

relexivity, symmetry and transitivity follow trivially.

The proof of the converse is given in the next section. 	 0

The mapping referred to in the proof of theorem 5.1.5 gives derived rules in AE

for the substitution and replacement rules of the equational calculus (definition

2.1.3). These rules now give us the means within the calculus A EE to carry out

first order equational proofs, or put another way, to realize proof theoretically

what was hinted at by the fact that EEC

Finally to make some important comparisons later a term model for AEE may

be constructed from EAE•

Definition 5.1.6 Define the term model,

AEE(X) ctf (AE(X) I AEI (-) -)) r oral a)3ET7 {71- al a} «PET .1)

for A EE by:

(i) For each type a, the elements of type a are given by {[Ma] Ma E AE(X)},

where[Ma] is the [_ 	 _ the AE equivalence class of Ma.

98

(ii) The operations are given by:

•pairing operations are defined as follows

7.0([111.0b,) = [ro(m.0)1A

rc,"0([-moexplA) = [7rcy' 00/1.,3%

l[mh, [N]A) = 	 NAA

•application, denoted by is defined by [Ma] • [Ach = [MAI

•algebraic operations are defined by a),([MdA, • • • ,[MniA) = [a(Mi, • • • ,Mn)b,

for each a E Ews and [Mi]A, • • • 'PI/1.h G AE,E(X).

Let p : X 	 AE,E(X) be an assignment of values in AE,E() for the variables in

X.

Definition 5.1.7 The interpretation of terms in AE,E(X) defined by p is given

by:

1. [x]b, 	 p(x)

2- irf(Mi, • • • ,MnAp = 6A(iiMilp, • • • ,W,L1p)

3.EIVI, nip =
ir(Max,3)]p = r(EMaxPlp)

Pri(Maxa)lp = riaiAlcoolp)

4. = En • ENDp

5.Ptx.ML = [Ax•M[Pilxi] • • •[Pnixnl]Aif {x1,• • .,xn} are the free variables

of M and p(xi) = Pi, • • .,p(xn) =

Lemma 5.1.8 If M a-AE N and for each i such that 1 < i < n, F --AE Pit then

M[Pilxi]•••[PnIxn] EE N[P41]... [P,11/Xn1

Proof By induction on the structure of M.

AEE is indeed a model of AEE as is shown by the following theorem:

99

Theorem 5.1.9 E 'A,E M =GNI, N if V p : X 	 AE,E) [[Mlp = IN1p.

Proof Let {x1, ,x,} be the free variables in M and N and let p be

an arbitrary assignment such that p(xi) = [P]A Then if E 	 M =CNV N

by theorem 5.1.4 M =AE N. If 	 E [PdA then by lemma 5.1.8

M[P1/X1]) • • • [Pn/Xn] E-AE N[P;/X1],' • •)[Pni/x711

and so Dip =

Conversely if Vp, 	 = [[Nlp then for any P1, 	 , Pn we have

P(xi) = [NA, m[Pdxri]• • • [P,/x} = NEPI/xil • • • [13/x]

In particular if p(xi) = xi then M EAE N and by theorem 5.1.4 E FA,E M = N.

It is worth noting that if we were to continue the development of term algebras

along the lines of chapter 2.1 then we might consider the algebra AE,E(0). By

definition 5.1.1 if X is empty then there are only algebraic terms (terms of type

s for each .S E S) and pairs of algebraic terms (terms of type si x s2 for any

si, 32 E 8).

5.2 Reduction Properties of ,\

We wish to analyse the relation —AE further in order to show that AEE is a con-

servative extension of the equational calculus (definition 2.1.3). This we do below

but first we study some reduction properties of AEE.

Definition 5.2.1 Let B be a set of rewrite rules and define the reduction relation

#(55 by the following set of schema and rules:

X

(Ax.M) N —> 058

7r((M, N))

100

r'((M, N)) 	 N

(r(P)Ori(P)) —>f36L3 P

as well as for each rule t -48 t' from B a rule t 	 t'. As in definition 2.1.10

let

813613d {(M, N) It 	 and M = Ot and N = 00}

for all substitutions q5 of free variables oft and t'. Use ---+* to denote the transitive
068

and reflexive closure of 80613.

A useful lemma is given in [K1o80] which states that ([3) and (6) reduction

rules can be interchanged without affecting the result. The lemma below gives

essentially the same result for B and ,36 reductions but before presenting this

lemma some notation is introduced. One step reductions involving just the (0)

and (6) rules will be denoted by --+0,5 while those involving just reductions from B

by —>8. If M N by just using rules in B then we write M —**5 N and similarly

we write M 	 N if M —›* N by using only (a), (11) and (8) reductions. 06 	 os8

Lemma 5.2.2 (Interchange Lemma) If we have a series of one step reductions

11 	 B 12 	 t3

then there is a t' making the following reduction sequences confluent:

081
t'

108
• 	 t3

Proof The proof is by induction on the structure of t1. The only

interesting case is if ti = (Ax.0) a.

Now either a —>L3 a' or 0 —+B 01.

101

• If a 	 a' then,

(Ax.0) a -46 (Ax.0) a' by compatibility

ps O[a' I x] by (#)

in which case put t' = (k[al x]. Then

(Ax.0)a -40s (gal x] by (i3)

8 qqa' I x] by induction on

• If 0 --13 0' then,

(Ax.0) a 	 >13 	 x.0') a by compatibility

0.5

01[a x] by (#)

in which case put t' = cb[a I x]. Then

(Ax.0)a 	 O[a I x] by (0)

0'[a x] by definition 80813

0

We now show that if a set of rewrite rules B obtained from a set of E equations

E is Church-Rosser and strongly normalising then the set of all equations derivable

from the axioms and rules of EE is a conservative extension of the set of all

equations derivable by the axioms in E and the rules of definition 2.1.3. The proof

of this proceeds in two stages. First, we show that if B is strongly normalising then

so is the reduction relation It is well known that a simple induction on the

structure of terms is insufficient to prove the strong normalisation property and so

we adopt a simplified version of the computability method of Girard [Tai67, Gal].

102

Secondly we show that if B is Church-Rosser then -4)358 is Church-Rosser. It is

then simple to show that for any two algebraic terms t and t' if t --4/356 t then

t ti.

Say that a term M E AE(X) is strongly normalising if M strongly normalises

and let SNa C AE(X) be the set of terms which are strongly normalising. The

computability method now proceeds as follows:

1.define a subset Ca of SNa which can be thought of as the set of all reducible

terms [Gal];

2.show that AEcy(X) C Ca.

Start with the following definition.

Definition 5.2.3 The family of sets {Ca}aET, where T is the set of types defined

in 5.1.1, is defined inductively as follows:

1.Ca= SNa = {tit E AE,,,(X)} if a is 1 or any s E S;

2.Cao = Ca x C U IM I M a* se X Ni . Nn } where x E 	 and

E 	 1 < i < n;

3.Ca_o = IM E AEa_olV N E Ca, (M N) E Col.

Lemma 5.2.4 For all types a E T, Ca C SNa.

Proof The proof is by induction on types. The base cases of a = 1

and a=sES follow immediately from definition 5.2.3. In the induc-

tion case we have:

1. If M E Cx0 then either M E Ca x Co or

M E Ulf I M -- 0*613 x 	 Nn

In the first case M 	 (M1, M2) where, by the induction assump-

tion, M1 E SNa and M2 E SNo. If M1 	 7r(M') and M2 7I-'(M')

103

then (M1, M2) E SWaxo otherwise if M1 = 71-(0) and M2 = (r)

then

WO), r i(0)) —46 Mi

and by the induction assumption M' E Sko. In the second

case if M —>* x 	 Nn then by the induction assumption 068

each Ni E SN„ and so we can reduce each Ni to normal form.

Then

M 13* st3 x NI. • • • Nn -4/3* 68 X Nit • • • Nn

where x 	 . • • Nn te SNaxo•

2. If M E Ca_,0 then for all N E Cc, (MN) E Co by definition 5.2.3.

By the induction assumption all terms Ca C S/Vp and so (M N) E

SNo, but then M E SN 0 also.

Thus we have fulfilled the first part of the computability proof. The second requires

some further results.

Lemma 5.2.5 ([Gal]) For all types a e T Ca satisfies the following two closure '

properties.

(Si) For every variable x E 	 and Ni E S N„, 1 < i < n, x 	 Nn E Co.

(S2) For all M E 	 N E S N„ and Ni E S N,, 1 < i < n, if

M[Nlx]N1... Nn E

then

	

(Ax.M) N 	 Nn

In addition to these two closure properties one further property is required.

Lemma 5.2.6 If the set of rewrite rules B is strongly normalising, t, E C,,, 1 < i < n,

and TEEWS then cr(ti,... ,tn) E

104

Proof First note that for all .s e S Cs = SNs and therefore each ti

is in SNsi. Now

613cr(tit,...,tnt)

since ti E SATs, and so there are no/3 or 6 redexes left in cr(ti t,...,tn t).

By the assumption that B is strongly normalising we can reduce cr(t, L. , tn

to normal form using only B reductions and therefore a(ti,...,tn) E SNs.

0

Lemma 5.2.7 If M E Ca, x E Xao and N E Co then M[Nlx] E Ca.

Proof By induction on the structure of M. The base cases where

M = *, M = cr where o- e E M = x E Xc, all follow in a

straight-forward manner. The induction cases are shown as follows.

•If M = cr(ti, 	 , tn) then

M[Nlx] = o-(ti[Nlx],...,tn[Nlx])

By the induction assumption each 12[N/x] E Cs, if ti E Cs, and so

by lemma 5.2.6 cr(ti,. . .,t)[N/x] E

•If M = 	 M2) then

M[Nlx] = (M1[Nlx],M2[Nlx])

By the induction assumption M1 e Ca and M2 E Co and so

(M1, M2) E Ca x Co ç cax,

If M E Ca = r(M1) then 7-(0)[Nlx] = i1-(0[N/x]) which is in

Co, by the induction assumption and similarly for M =

•If M = (el e2) then (e1 e2)[N x] = (ei[N xi) (e2[N x]). By the

induction assumption ei[NI x] ECa+aand e2[Nlx] E Cc, and by

the definition of Ca_43 (e1[Nlx])(e2[N1 x]) E

105

•If M = Ay.e then (Ay.M)[NIx] = Ay.M[NI By the induction

assumption M[Nix] E Co and so by (S2) of lemma 5.2.5 for all

N E Ca, (Ay.M)N E CO3, but this is just the requirement that

Ay.M be in Ca_o.

0

Theorem 5.2.8 --41388 is strongly normalising.

Proof By lemma 5.2.4 for all type a E T Cc, C Sk. To prove the

theorem we show that for all types a e T AE, C Ca, that is we carry

out part two of the computability method. We do this by induction

on the structure of terms. The basic cases of *, constants a in Ews

and variables follow almost immediately from the definitions. The

induction cases are as follows:

•Terms of the form cr(ti, 	 , tn) are in C, if a E E,,, by the induc-

tion hypothesis that each ti E C8, and by lemma 5.2.6.

•For terms of the form (M1, M2) the induction hypothesis gives

E Ca and M2 E Co, but then

AI M2) E Ca x Cp ç Cax0

For r(M) the induction hypothesis gives M E Ciao. If M is

(M1, M2) then by induction 7r((M1, M2)) E Ca and otherwise

7r(M) —13* 55 7r(x N1 • • • Nn) E SNa

•For terms (M1 M2) the induction hypothesis gives M1 E Ca_o and

M2 E Ca which by definition of Ca_o gives (M1 M2) E

•For Ax.M we have by lemma 5.2.7 that for all N E Ca M[Nix] E

but then by the definition of C„..43 Ax.M E

0

This gives us the following:

106

Theorem 5.2.9 If B is a strongly normalising and Church-Rosser set of rewrite

rules then -WE; is also strongly normalising and Church-Rosser.

Proof If B is strongly normalising then so is —>06/3 by theorem 5.2.8.

Next we show that it is also Church-Rosser. Recall that (#) is a schema

and so should be considered as a whole family of rules where each term

in AE(X) is put in place of the meta-variables in (#). We also assume

that the other symbols of AEE such as 7r, 7rI and (_,_) are disjoint from

those of B.

Let cp —> E-E, then there are two critical pairs to consider,

a, co [a 1 xl) and ((Aa .t)11,,t[, o I x])

The first is the superposition of so —› 	 on (Ax.) a and the second

from superposing co 	 ik on Pa .t)(p.

1.In the first case, after (0) reducing, we have O[a x] and c,o [a 1

By the compatibility of 055 with the AEE structure c,o[a/x] --+ 06N 71,[a I 4

2.In the second case after (i3) reducing, we have t[z/Vx] and tko/x].

By induction on t and compatibility of —wB with the AEE struc-

ture t[o/x] —>065 40/4

Then by the Newman theorem 2.1.12 and Knuth-Bendix theorem 2.1.14

-V368 is Church Rosser.

We now have the following theorem.

Theorem 5.2.10 Let B be a Church-Rosser and strongly normalising set of rewrite

rules. If t and t' are algebraic terms such that I, I' E TE(X) and E FAE t = t' then

E HEt = tf .

Proof By theorem 5.2.9, if E IME t = t' the 3 t" such that t 	 t"

and t' —> 613 t". But since t and t' are terms from TE(X) then they

contain no (#6) redexes, and so t —>*8 t" and t' —+ . Since B reduction

rules do not introduce terms not in TE(X) then t" E TE(X) and since

B is Church-Rosser then E HE t= .

107

5.3 Examples

We now briefly re-examine the examples of chapter 3.4.

Example 5.3.1 In the first example we re-examine the simple specification of

truth values.

Spec Booleans

Sorts Bool

Operations T, F :—> Bool

A, V : Bool x Bool —> Bool

—. 	 : Bool —+ Bool

Axioms V x E Boot

TAx=x

FAx=F

TVx=T

FVx=x

--,(T) = F

End

Some functions that are definable in ABooleans are given below.

•The exponential transpose of the A and V operators are simply Ax.Ay.x A y

and Ax.Ay.x V y. From the axioms we have T A x = x which by () (figure

8) gives Ax.T A x = Ax.x

•Identity functions of all types can be defined, for example, AxBooi.x.

•Iterators of all types can be defined. The iterator for a type a is given by

the term

Yo, V

where the first parameter n is the Church numeral

Ax.x

108

• Sequences of boolean values can also be formed. The empty sequence is

given by *1 and the addition of a boolean value onto the front of a sequence

is defined by

CONSi dg AxBoopAYBooli.(x,Y)

where Boo1' is the product

Bool x (Bool x (...(Bool x Bool)...)

with i repetitions of the type Bool. The head of the sequence is given by

(x) a n d ay xBoo/i+ AX Booli+1 Bool,Booli 	 d the tail b A 	 1 ' 71 Bool,Boolt(X).

The theory generated by the lists presentation is a bit more interesting. For

the present we ignore the error values Head (Nil) and Tail(Nil).

Example 5.3.2

Spec List_O f _Naturals

Naturals +

Sorts Nat List

Operations Nil :—> List

Cons : Nat x List 	 List

Head : List 	 List

Tail : List —> List

Axioms V n E Nat, 1 E List

Head(Cons(n,1)) = n

Tail(Cons(n,1)) = 1

End

Functions definable over the presentation of lists, in addition to those already

definable over Naturals, now include some useful higher order functions.

• The higher order (iterative) function map can be defined in the theory AList,

for example, MAP?, for the type List may be defined for any positive integer

109

n as follows:

An(Li3t—a18t)-4Li3t—oL18t)• f Nat—■Nat. List .71 (AlList.Cons(f(Head(1)),Tail(1)))1

The Map functions are not definable by general recursion but can be defined

for each list of length n. Since general recursion can only be introduced by

the equations in of the presentation all the lists of this theory are finite.

• As for the map function above Fold can be similarly defined. FOLD„ for

any positive integer n can be defined by:

FOLD 	(AF.Af.Aa.Ad.f(Head(1))(Tail(1)))(Azi.Az2.Az3.z2)

The point here is that with iteration and the higher order types the theories of

Boolean and List are closer to what may be considered functional programming.

Indeed what we lack here is a means of general recursion. A second point is

that when considering a functional programming language as the target of an

implementation or refinement step, all the higher order operations are available in

defining concrete operations.

Finally we present an example of equational deduction taken from [EM85].

Example 5.3.3 The theory of rings is equationally presented as follows:

Spec Ring

Sorts R

Operations 0,1 	 : —> R

-F,• 	 RxR—+R

R R

Axioms V x,y,z E R

x + 0 x

x-F(y+z).(x+y)d-z

—x +x = 0

x+y =y+x

1- x = x

110

x • (y • z) = (x • y) • z

x•(y+z)= x•y-Fx•z

(x+y)•z= x•z+y•z

End

In [EM85] an example proof of the theorem 0 x = x is given by using the equa-

tional calculus. The proof of the same theorem in the theory ARings is given in

figure 5.3.

5.4 Simple Extensions to A EE

The simple extension we have in mind is the addition of a family of fixed point

combinators K, one for each type a, with the usual reduction rules:

Ya(f...) = f(Y(f))

This simple extension is not a conservative extension of the first order equa-

tional calculus. Consider the following example adapted from [K1o80].

Example 5.4.1 Let

Yi E ((a —> a) —> (o- —> a)) —> (o- —> o-)

Y2 E (a a) --+ 0-

x E —>

de f where a = a x for any two ground types a and 0. Put

C d-;f Yi ().c.Ama .x (r(m),71-'(x (c m))))

A t-f Y2(AZ or .0 z)

111

1. x+(y+z) 	 (x+y)+z 	 axiom

2. Ax.Ay.Az.x + (y + z) 	 Ax .Ay z .(x + y) + z

3. (Ax.Ay.A.z.x + (y + z)) x (- x) x 	 ()tx 	 + (y + z))x (-x) x (()

4. x + (-x + x) 	 (x + (-x)) + x 	 (#)

5. lemma - x + x = 0

6. x+y = y+x 	 axiom

7. Ax. .x + y = Ax.Ay.y + x

8. (Ax.Ay .x + y) (-x) x = (Ax.Ay.y + x) (-x) x

9. -x + x = x + (-x) 	 (0)

10. x + (-x) 	 0 	 axiom

11. -x + x = 0 	 transitivity

12. x+y = x+y 	 reflexivity

13. Ax.Ay.x + y = Ax.Ay.x + y

14. (Ax.Ay.x + y)x (-x + x) 	 (Ax.Ay.x + y) x 0 	 (() and 11.

15. x+(-x+x) 	 x+ 0 	 (0)

16. (x+(-x))+x = x+(-x+x)

commutativity of 4.

17. (x+(-x))+x = x+0 	 transitivity

18. (x + (-x) 	 0 	 axiom

19. x+y = x+y 	 reflexivity

20.)x.Ay.x + y = Ax.Ay.x + y

21. (Ax.)y.x + y) (x + (- x)) x 	 (Ax.Ay.x + y) Ox 	 (C)

22. (x+(- x))+x = 0+x

23. 0+x 	 (x+(-x))+x

commutativity of 22.

24. 0+x = x+0

transitivity of 23. and 17.

25 	 x + 0 = x 	 axiom

26 	 0+x

transitivity of 25. and 24.

112

Then we have the following sequence of reductions:

A
	

CA 	 • C (x (C A))

x (71-(A),71-'(C A))

x (7(CA), w)(C A))

x (C A)

and it can be shown [K1o80] that C (x (C A)) 0 x (C A) and so we have lost the

Church-Rosser property in the extension.

A second example of the loss of the Church-Rosser property is given in [BT88].

Example 5.4.2 Consider the following system of rewrite rules over natural num-

bers:

X - X -> 0

suc(x) — x 	 suc(0)

Then we have the following sequence of reductions:

Y(suc) — Y(suc)
	

0

suc(Y(suc))— Y(suc)

suc(0)

from which we can conclude that 0 = suc(0).

In both examples 5.4.1 and 5.4.2 the original sets of rewrite rules were not

regular in the sense of [K1o80]. The adjunction of a family of fixed point operators

113

to the set of equations (considered as rewrite rules) of example 5.3.2 does not suffer

from this problem. An open question is whether every set of rewrite rules which

is regular can be conservatively extended by a family of fixed point operators.

5.5 Comparison with Other Work

In [BT88] a calculus much the same as
)EE is presented. The major theorems

that are proved in [BT88] are:

1.if B is a confluent reduction relation then so is --*013;

2.the simply typed A calculus extended by an algebraic theory is a conservative

extension of the algebraic theory.

The first is essentially a version of theorem 5.2.10 which is weaker in its

premises. In theorem 5.2.10 we have given a stronger version in which both the

properties of strong normalisation and the Church-Rosser are preserved when al-

gebraic theories are combined with the simply typed A calculus. In particular

theorem 5.2.8 shows that strong normalisation is preserved in the combination.

The second result is of more importance since it is the conservativity result

of chapter 5.2. Our proof is essentially a proof by rewriting while in [BT88]

the proof is by giving an algorithm to transform proofs in)EE to proofs using

HE. This is more general than our rewriting proof. We have chosen to work

with deduction trees which has resulted in the two derived rules in AEE which

"implement" equational deduction while in [BT881 chains of equivalences are used.

One of the complexities of constructing a proof of E HE e from E 	 e is that a

single step using HE is equivalent to a number of steps in 	 (see the translation

in the proof of 5.1.4). To then translate a derivation in HE back to HE would

require that sequences of rules be found in the derivation which correspond to

steps in HE. For our purposes the restricted case when a set of equations gives

rise to a set of strongly normalising and Church-Rosser rewrite rules is sufficient

because the algebras constructed in chapter 4.1 are based on the assumption that

the equations have this property.

114

Chapter 6

Soundness and Free Higher Order

Theories

At this point we have both a model, the model constructed from a Church-Rosser

strongly normalising set of rewrite rules, and the conservative extension of the

equational calculus, A EE
. What we now show is that A EE deduction is sound, that

is, if E M = N then the two terms M and N are identical in C(M) . The

basic approach stems from the models of A calculus in arbitrary cartesian closed

categories of [Koy82] (but see also [Bar84]) and the correspondence between A

calculus and cartesian closed categories (as in [Poi86, LS86]).

There is a second application of this correspondence in the second section of

this chapter where it is shown that the algebraic theory presented by (E, E) can

be extended to a cartesian closed category and that this category has a universal

property, in essence, that every algebra in C(M) constructed according to theorem

4.3.14 can be uniquely extended to a (higher order) model of this cartesian closed

category (or equivalently of the simply typed A calculus generated by (E, E)).

115

6.1 Soundness of A E Deduction in C(M)

We start by giving the interpretation of terms of the calculus
,EE
 in C(M) relative

to a model A. A is necessary for the interpretation of the algebraic terms and

indeed if A can be constructed by theorem 4.3.14 then we assume that it is the

model we have in mind.

Let (E, E) be a presentation and let A be a model given by:

Carrier The family of types { Uses;

Operations For each a E E an operation a-A

Now for each type T E T of AEE we associate an object of C(M) as follows:

Let p = xi . xn be a sequence of variables where each xi E X 	define

--p d_e_f
— iced] x 	 x ken]]

The canonical projection functions are defined by the projections in C(M) and we

let

7rP : rP 	 [ai]]

denote the projection from FP onto the ith coordinate. Let p = xi . x„ and

= yi 	 yni be two sequences of variables such that

IY1,•••„y7.1g { xi, • • •, x.}

Following [Bar84] the map

HP : FP
IL

116

is defined as (rP) [Bar84, Koy82]. If (f1, 	 , fn) is a tuple of functions " Ym

then

7rP ° (f11 • • • 1 f.) = fi xi

while

HP 0 (A, • • • , f.) = 	 • 	 fm')

where each = 7° . 2 	 xi

Now let M be a term of type a in AEE and p = xi...xn be a sequence of

variables such that the free variables of M, FV(M), are a subset of the {x1, 	 , xn}.

Before giving the interpretation of a term M relative to A we introduce some

notation. If p = xi ...xn then p, x is the sequence of variables ac, 	 xn, x.

Definition 6.1.1 Let (E,E) be a presentation and A a model of (E, E). If M is a

term in AEE, p = xi.. xn a sequence of variables such that FV(M)C {xi, 	 , xn}

then the denotation of Min C(M) is a map [[M]] : rP 	 defined by the fol-

lowing rules:

=

Vx E X [[xlp =

QI1p = ev ° (PL,11(211p)

[Pa 	 = (EPL)*

ii(1),Q)11p = (1111,11(21p)

[[r(t)1], = r o [N]p

[[ri(t)lip = Ir o L[t]lp

tn)1]p = 	 0 Tap, • • • Ilinlp)

The interpretation given in 6.1.1 is based upon the cartesian closed structure of

C(M) and follows the interpretation of the pure A calculus in arbitrary cartesian

closed categories'. The following three lemmas are simple adaptations of lemma

5.5.4 in [Bar84] (but see also [Koy82]). The proofs of the first two lemmas are by

lsee [Koy82] and [Bar84], chapter 5.5

117

3.

structural induction but we only give some cases because the omitted cases are

very similar in character and can be found in [Bar84].

Lemma 6.1.2 Let M be a term in AEE . If FV(M) C {it} c {p} then EML = PILL o H.

Proof By induction on the structure of M.

1.

Er (01 p = r o Et]ip

7r o (tL o HP by induction hypothesis A

= (r o Eti„) o 11PA

= 	 (t)1A o

2.

o 11PA

(1)([[131A,x o 	 x id)

4:0([[PL,r o IIPtx)

(KM p,x) by induction hypothesis

a A o 	 , niA) o fro

aA o WiLo 	 I[tn]jA o HP)

o-A o 	 Pnip) by induction hypothesis

= 1(7(47 	 tnlP

0

118

Lemma 6.1.3 If FV (M) C {p} = {} and g can be substituted for the I and

FV(M) c {p} then

11111[11/411A = 11A1, 0 (ElvilA, • • • , IINnii,)

Proof By induction on the structure of M.

1.

1171-(011, 0 <Pa,' • • • , IINnl,)
	

r o (Woo (Filt„ .. • ,[[Nn1A))

= 7r o [t[Ar. I]L by induction hypothesis

= Er(iNillt,

2.

FAx.Pr g I ill, = [[(Ax.P)[R, x I th' , xEL,

=

= tqUip,. 0 (ftNii,,,r, ... , prni, Exbi,$)

by induction hypothesis

= (1)([[111,,x o (I[N1L,s 0 IV/2'x, ... , 	0 rlit:'x 'MI 	 llii:'s))

= (DUIPILL,x 0 (11Ard, ... ,IN,3) x id.)

= (1)(11311p,$) 0 an • • • , IINnI1)

= [[Ax.PL 0 (ENA, . • • ,[[Nn1)

3.

licr(ti, ... ,tn)I1 p 0 (IINIL, • • • , IINnIlp.) 	 GrA 0 (Eta), • • • , VnIlp)

°(11N1llio • - • , IIN/111A)

= ° rA 0 at 11 p 0 1[1k • • • , it nt, ° 11-g11)

= a A 0 WIER 1 iilp, . . . , it rjg I ill A)

by induction hypothesis

= Ila (t 1, . • • ,tn)[A T. I ill it

119

where IN) = UAL • - • , [WTI)
0

Lemma 6.1.4 If FV(M) C {p}, FV((Ax.P)Q) c {p} and {p} c {p} then

EM[Nlx]i t, = Wip o (I-1;, 1NL)

Proof

IM[Nlx1],, = Em[g,Arig,x]L
. who (nt;,ENL) by lemma 6.1.3

0

Theorem 6.1.5 (Soundness) If E I- A , E M = N then [[MI] p = [Nl p

Proof By induction on the length of the derivation E hA ,E M = N.

Base case If E I- A , E e in one step then e must be a logical axiom Or

non-logical axiom

1. In the case of the axiom (0) we have:

Px.P)Q1 p = ev o (Px..13 1 p ,[1(21 p)

-, ev 0 (4. (IIPIIP,x) , II QII p)
-,- ev 0 (1) (iPlip,x) x idr. 0 (idrP, 1101p)

= 111711p,. 0 (id, 11Q11,)
= [P[Q/x]l p by lemma 6.1.4

2. If e E E then by theorem 4.3.14 A satisfies e.

3. Finally for the S rules we have:

1[7((x,y)l p = ir o

= 7r 0

120

The axiom 7r1((x, y) = y is similar.

Er (x), 71 (x))1, = (r o iri, r':)

= rP
x

= ExL,

Induction step Assume E I- A,E P = Q in n steps implies that for all

P [Pb = Mp.
1.

[lip = IP] jp by assumption

implies IPIp o IIPp's = m p 0 Hr by lemma 6.1.2

implies 	 1[131p,x = 	[[Q] p,x

implies 	 (1)([11) =

implies 	 EAx.Plp =

and therefore the () rule is sound.

2.

EX Ph = ev o (XL, PL)

= ev o ([[Xlp,[[Q]p) by induction hypothesis

= IX Op

The case for the ruleP=QDPX=QXis similar.

0

6.2 The Universal Property of C(M)

We conclude this section by proving one theorem relating algebraic (equational)

theories with higher order theories (presented by A
EE

). In the previous section the

correspondence between A calculus was used to prove the soundness of deduction

in AEE with respect to a model of (E, E) by using the translation from A calculus

to cartesian closed categories in [Koy82]. Below we use the correspondence in the

opposite direction in the manner described prior to 3.2.2.

121

Let (E, E) be the presentation of an equational theory and suppose that B is a

strongly normalising and Church-Rosser set of rewrite rules. Let A be a the model

of (E, E) given by theorem 4.3.14. Then we can define an algebra for the algebraic

theory presented by (E, E) as a product preserving functor (see [Law63, KR89]):

A: 	 C(M)

Definition 6.2.1 Define a functor

R : 	 —> C(M)

as the product preserving functor such that on

Objects 141T) = lc and R(s) = rs for every s E S

Morphisms For every map 0 : s it in TE,E , R(0) = where El is the de-

rived operation in C(M) given by theo. rem . 3 . 1 .4 For every object w of TE,E,

R(id) = R,(w).

It is easy to verify that 7Z is a functor, for example,

7Z(0) 0 7Z(0)
def

Ect T 0 0 I 	 ‘T 0 	 0 n)

	

T 0 0 (01 	 T 0 0,11)

	

Ea T 0 —0 0 (-01 	 On)

7Z(0 0 0)

since by theorem 4.3.10 both T 0 0 (01, 	 On) and 19 o (OIL 	 , r 0 On I) are

equal to (0 o 	 , On))1

From the calculus AEE a cartesian closed category may be constructed in the

manner of [LS86]. First notice that any term with free variables {x1 E 	 , xn E X }

is equal to a term in which the free variables have been replaced by a single vari-

able z E Xai,,...„,,n. In the case of terms with just one free variable we have the

following lemma:

122

Lemma 6.2.2 If M, N and P be three terms each with a single free variable: xa,

yo and zy respectively, then

M[NIx][Ply] = M[N[Ply]lx]

Proof By induction on the structure of M and the definition of sub-

stitution. 	 0

Definition 6.2.3 If (E, E) is a presentation then the category based on (E, E),

CE,E, is defined as follows:

Objects the objects of CE,E are the types of AEE ;

,• k Morphisms if M(xa„...,xan) is a term in AE({yo, •• ,Y0}) such that

{x0,1,• • -,san} g IY,81,• • •,Y0,1

and where p = yoi 	 is an arrow in Hom(Oix 	 x I'3,, a) then the pair:

(z o„ . , z ok, M(r:i(z), .

is an arrow in CEE(131 x 	 x 13k, '4

The identity arrow for an object a is the pair (xa, xa). Composition is defined by

(xa, M(x)) o (y,, Na(y)) = (y-y, M[N(Y)i x])

Composition is associative by lemma 6.2.2.

Following [LS86] we can show that CE,E is a cartesian closed category.

Theorem 6.2.4 CE,E is a cartesian closed category.

Proof The proof is similar to that for the simply typed A calculus

given in [LS86]. We prove the theorem by again- first defining the

cartesian closed structure and then verifying the axioms of definition

3.2.1.

1. the terminal object of CE,E is the type I and the arrow from any

any type a to I is given by (x,,,*);

123

2.products are defined by:

((x„,P(x)),(x,„Q(x)))dg (x,,,(P(x),Q(x)))

with projections:

del
= (XaX13, 	

clef
r(x)) and ir = (x„„0,7r (x))

3.evaluation is defined by:

def
eVap = (Z,,,3x„,7r(Z) r'(z))

and if f E (xaxo, f(x)) the exponential transpose by of f is given

by:

cirlf (Xa,AYP..f((X,Y)))

The axioms of definition 3.2.1 are now shown to hold by straight-

forward calculation, for example, the axiom ev o f* x id = f:

ev o f* x id = (z,0xa, (z) r'(z)) o (x ax 0, (Ayfl.f ((r(x), y)),R-'(x))

=

= (xaxo, f(x))

0

We can relate TE,E and CE,E easily enough by a product preserving functor

:EE CEE. More formally .1 can be defined on objects as follows:

1(1) = 1 1(s) = s for any s E S T(si sn) = si x 	 x sn

and on arrows by:

(4))

if w = 51 — • sn

si
	 = 	 zw,(x))

.1(0) =
	

0(<,(x), • • • ,r:n(x)))

124

for any 0 E

1(0) =

	

if 0 = 	 11) in TEE

	

-7-(01, • • • 'On)) = (TOO , 	 , T(thetan))

Once an algebra for 7,E is chosen in a cartesian closed category k then this

essentially determines an algebra for CE,E as a functor into K.

	

Theorem 6.2.5 If k is a cartesian closed 	category and A :TE'EP 	 k any TE,E algebra

then A may be uniquely extended to a functor A' : CEE 	 IC which preserves the

cartesian closed structure of CE,E and make the diagram

commute.

Proof Define A' as follows:

on objects A' is defined inductively by:

A'(1) = 1k

	

A'(s) 	 = 	 A(s) for any s E S

A'(oti x 	 x an) 	 = 	 A'(ai) x 	 x A'(an)

	

A1(a —> /3) 	 = 	 A' (a) ---+ A'(/)

on arrows A' is defined by induction on the terms of)EE by:

AVx«,*)) — av(a)

A'((x.9i 	 cr (7r:c(x), 	 ,7:n(x)))) 	 A(o) where c s —> w in TEE

125

(111(P), A1(Q))

A' (a)AV3)

71- A' (a) A' (0)

= (A Maxp) f(z))))*

evA,(c)A,(0)

It now remains to show that the diagram above commutes and that A'

is the only functor which preserves the cartesian closed structure and

makes the diagram commute.

That A' makes the diagram commute follows by direct calculation from

the definition of F, for example, if 0:s—>wis an n-ary operation in

TE,E and 0 E E,,.:

	

o .T(0) = 11'((xsix...xs„, 0(7rxwi 	 S (x), 	 ,1- 7wn(x))))

= A(u) by definition A'

To show that A' is the unique such functor making the diagram com-

mute consider another functor G making the diagram commute. First

by induction on the types of CE,E for all types a, Ai(a)

basic case for the type 1

Ai(1) = A(1) = g(1)

and for any s E S

A'(s) = A(s) = G(s)

induction case assume that A'(a) = G(a) and A'(/3) = G(/3) then

A'(a x fl) = A' x A')(fl)

= g(a) x G(3) by induction assuprntion

= G(a x 13)

and similarly Al(a -4 13) = C(cf 	 /3).

126

Now by induction on the structure of terms of AEE , we show that

for any arrow : a —> 13 in CE ,E AV) = G(f). Let (xa ,(1)(x)) be

an arrow a => # in CE ,E . Now we proceed by an induction on the

structure of terms in AEE . Since both A' and G make the diagram

commute then if 0(x) is an algebraic term in which no higher order

variables 7r'' occur then

((x 0(x))) = A((x c„0(x))) =G((x 0(x)))

which is true for the cases when 0(x) is *, a constant a- E E s and an

algebraic term a(t i ,...,tn). If 0(x) = Ayo .P((x, y)) is an abstraction

then

= (A'(P(zaxp)) *

= (G(P(zax0))* by induction assumption

=

since G preserves the

cartesian closed structure of CEE

and similarly

AVx c„ P(x) Q(x))) = G ((x a , P(x) Q(x))

The cases for pairing and projections follow in a similar manner.

Corollary 6.2.6 Every 'kE algebra may be uniquely extended to a CE ,E algebra

in C(M) .

Algebras in C(M) can be related back to algebras in SET by considering the

forgetful functor from C(M) to SET.

Definition 6.2.7 The (forgetful) functor tIc is defined as follows:

1. for any object a of C(M) :

lIc (a) = {mEMIam= ml

127

2. for any arrow (b,f,a) in C(M) :

Uc(f) = f: Uc(a) 	 Uc(b)

where 7(m) = f • m and • is the binary operation in M .

Ue is the forgetful functor from C(M) to SET. If TE,E is an algebraic theory then

the models of TE,E in C(M) give rise to models of TE,E in SET by transport along

Uc (see [KR89]), for if A is a TE,E algebra in C(M) then an algebra LA can be

defined as the functor making the diagram below:

SET. 	

Uc

C(M)

commute. For every sort s E S, Af(s) is simply the set of all values of type F

C(M).

Since Hom(1, _) : TEE SET is the initial TEE algebra then there is a unique

homomorphism (natural transformation) 1, : Hom(1, _) Uc o A but in general

Uc o A is not initial, for example, in the list algebra of example 5.3.2 we have

in rust the elements [[S-11] [[injisNtatXrLs.st nlit)] and many more expressions which
involve the denotations of unsolvable terms. If (E, E) is a presentation then the

scheme for constructing algebras in chapter 4 associates (the denotation of) a (8)

normal form with every term of the free E algebra but the expressions above do

not have (i3) normal forms [Bar84] and so are not the image of any term in the

initial algebra. Consequently there is junk in the carrier Uc o A(s) and so the list

algebra Uc o A is not initial.

128

Chapter 7

Conclusions and Further Work

In this dissertation we have looked at the construction of algebras in A algebras

from sets of strongly normalising and Church-Rosser rewrite rules and have given

sufficient conditions under which such algebras can be constructed. We have

then presented a simply typed A calculus for reasoning about algebras within

the category C(M) which is sound but not complete. Turning to term rewriting

properties we showed that given a presentation (E, E), if a strongly normalising

Church-Rosser set of rewrite rules B can be obtained from E then the rewrite

relation obtained by combining the rules of B with those of E is also strongly

normalising and Church-Rosser.

We started by giving a simple universe, C(M) , in which implementations can

be made. Equational specifications then denote classes of algebras in C(M) and

theorem 4.3.14 simply gives conditions under which one algebra from this class

may be "picked". Surprisingly at first C(M) contains very few basic objects but

these are enough to define the data type of natural numbers (as Y(AN.1 N))

and the partial recursive number theoretic functions'.

An unsatisfactory element of C(M) is the treatment of sums. The addition

of a sum construct to the original category 1C(M) was necessary for us to be

able to reason about C(M) but this addition required some technical detail which

'Recall that we only required strong normalisation of term rewriting systems so that we could
construct algebras in C(M) but did not require that all arrows in C(M) be the denotations of
strongly normalising A terms.

129

could perhaps be avoided if we had used a model theoretic approach rather than

insisting that A calculus be the target language for our constructions. Another

candidate could be the ideal models of [MPS86] since they too embody the idea

of a universe of values from which all types are retracts (or in the case of [MPS86]

ideals) and already has a definition of sum. Another feature of the ideal model

of [MPS86] is that it is a model of type polymorphism as found in languages like

Standard ML. It would therefore be interesting to carry out the same program as

in this dissertation on this ideal model to learn more of the interaction between

type polymorphism and polymorphic equational specifications. We feel that this is

one useful avenue of future research. Another avenue of research would attempt to

remove some of the shortcomings of C(M) . One example of this is the restriction

to total functions. Specifications often define only partial functions which could

be studied by choosing a suitable category of types and partial functions. This

would be especially useful for understanding expansion which is required before

case analysis on the representations of terms can be performed.

The algorithm for constructing T in chapter 4.3 makes a number of assump-

tions.

1. The first assumption is that products and sums, at least, are present in any

category in which T is to be defined and that there are arrows, as in the

equations 6 of chapter 4.1, which expand products over sums. The algorithm

for generating T, however, does not rely on the existence of coproducts.

2. The second assumption is that colimits of 2P chains involving the sum and

product functors exist (or dually limits of w chains) in any category in which

r is to be constructed. In C(M) T is defined as an arrow between types

representing sorts all of which are limits of w" chains. The construction

corresponding to colimits in C(M) is the least fixed point construction (see

theorem 3.1.18).

It is not easy to see how to weaken either of these two assumptions since they

are what is required of a category in order to define the functors corresponding to

signatures (definition 2.3.6) and to find solutions for recursive domain equations.

130

The algorithm to construct T is presented abstractly and one remaining task is to

give more efficient algorithms to perform computations within an algebra.

The proof that A EE is sound with respect to algebra in C(M) is itself a simple

adaptation of the proof in [Koy82] that an arbitrary cartesian closed category

with an object U such that U U is a retract of U and a terminal object 1 is

a A algebra. The work involved in showing this theorem was in constructing a

cartesian closed category from M .

The calculus A EE which we use to reason about algebras in C(M) is a simple

variant of the simply typed A calculus. Theorem 5.2.8, theorem 5.2.9 and theorem

5.2.10 state that the transition from equational reasoning to higher order reasoning

is a smooth one as long as one does not consider signatures with operations of

higher order types (see examples 5.4.1 and 5.4.2). The derived rules given in the

proof of theorem 5.1.5 are a means of translating proofs of equational theorems

from a set of equations E using the many sorted system of [EM85] to proofs of

equational theorems using simply typed A calculus with non-logical axioms E.

There are two problems however with A EE .

1. AEE is sound with respect to models of algebras in C(M) (theorem 6.1.5)

but not in general complete.

2. A deals only with the equational calculus.

The first of these is a problem if we wish to reason about algebraic terms which

may involve infinite computations while the second problem would need to be

overcome if we were to consider more powerful specification logics such as condi-

tional equational logic or first order logic with equality. These areas need to be

further investigated if we are to achieve a fuller understanding of the relationship

between implementations (algebras) and specifications (logic).

Finally an indication of the use of our theory. Consider a simple extension to

Standard ML's abstype facility [HMT90] which allows axioms. With this extension

131

in mind we write the Group abstract data type of example 4.4.2 as follows:

abstype a Group with

ops

e : —p a Group

+ : a Group * a Group —* a Group

— : a Group —). a Group

axioms V x,y,z E X,

e + x = x

—(x) + x = e

(x + y)+ z = x + (y + z)

end

Consider a function f : a Group —> # for some type /3. Then to evaluate the

application of f to a member a of a Group we would evaluate:

AO dll f(T(a))

Adding constructs like these to programming languages to increase the power of

the available abstraction facilities is again another area of future research.

132

Bibliography

[AM75] Michael A. Arbib and Ernest G. Manes. Arrows, Structures and Func-

tors. Academic Press, New York, 1975.

[Bar84] H. P. Barendregt. The Lambda-Calculus: its Syntax and Semantics,

volume 103 of Studies in Logic and the Foundations of Mathematics.

North-Holland, second edition, 1984.

[Bir35] G. Birkhoff. On the Structure of Abstract Algebras. Proceedings of

the Cambridge Philosophical Society, 31:433 — 454, October 1935.

[Bir48] G. Birkhoff. Lattice Theory. Colloquium Publications. American

Mathematical Society, 1948.

[BM84] K. B. Bruce and Albert R. Meyer. The Semantics of the Second Order

Polymorphic Lambda Calculus. In Semantics of Data Types, LNCS

173, pages 131 — 144. Springer-Verlag, June 1984.

[Bou86] .N. Bourbaki. The Theory of Sets. Elements of Mathematics. Hermann

Publishers in Arts and Sciences, 1986.

[BT88] V. Breazu-Tannen. Combining Algebra and Higher Order Types. In

Logics in Computer Science, pages 82 — 90. Computer Society Press,

July 1988.

[BV85] C. Beierle and A. Voss. Implementation Specifications. In H. J. Kre-

owski, editor, Recent Trends in Data Type Specification, pages 39 — 53.

Springer-Verlag, 1985.

133

[BW85] M. Barr and C. Wells. Toposes, Triples and Theories. Springer Verlag,

1985.

[CF68] H. P. Curry and R. Feys. Combinatory Logic. North Holland, 1968.

[Coh81] Paul M. Cohn. Universal Algebra, volume 6 of Mathematics and Its

Applications. D. Reidel Publishing Company, second edition, 1981.

[Co187] P. A. Collier. Type inference in the presence of a basic type hier-

achy. In Actus de la VII, Conferencia de la Chilena de Ciencia de la

Computation, 1987.

[Cut80] N. J. Cutland. Computability : An Introduction to Recursive Function

Theory. Cambridge University Press, 1980.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data ab-

straction and polymorphism. Computing Surveys, 17(4):471 - 522,

December 1985.

[DM82] Luis Damas and Robin Milner. Principle Type Schemes and Functional

Programs. In Principles of Programming Languages, pages 207 — 212,

1982.

[Ehr78] H. D. Ehrich. Extensions and implementations of abstract data types.

In Mathematical Foundations of Computer Science, LNCS 64. Springer

Verlag, 1978.

[Ehr82] H. D. Ehrich. On the theory of specification, implementation and pa-

rameterisation of abstract data types. Journal of the A.C.M, 29(1):206

- 227, January 1982.

[EK83] H. Ehrig and H. J. Kreowski. Compatibility of parameter passing and

implementation of abstract data types. Theoretical Computer Science,

27:255 - 286, 1983. ,

134

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I.

EATCS: Monographs on Theoretical Computer Science. Springer-

Verlag, 1985.

[EM90] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2

: Module Specifications and Constraints. EATCS: Monographs on

Theoretical Computer Science. Springer-Verlag, 1990.

[Foo85] N. Foo. Algebraic specifications as solutions of implementation equa-

tions. Technical Report Technical Report 263, Basser Dept. of Com-

puter Science, University of Sydney, May 1985.

[Gal] J. H. Gallier. On Girard's Candidates de Reductibilite. Draft

Manuscript.

[GB79] J. A. Goguen and R. M. Burstall. The semantics of clear, a specifica-

tion language. In Abstract Software Specifications, LNCS 86. Springer-

Verlag, 1979.

[GJ82] Huet G. and Hullot J. Proofs by induction in equational theories with

constructors. Journal of Computer and System Sciences, 25:239 - 266,

1982.

[GM81] J. A. Goguen and J. Meseguer. Completeness of many sorted equa-

tional logic. Sigplan Notices, 16(7):24 - 32, July 1981.

[GM82] J. A. Goguen and J. Meseguer. Universal realization, persistent inter-

connection and implementation of abstract data types. In ICALP '82,

LNCS 140, pages 265 - 281, July 1982.

[GM86] Joseph A. Goguen and Jose Meseguer. Remarks on remarks on many

sorted equational logic. Bulletin of the EATCS, 30:66 - 73, October

1986.

[GM87] Joseph A. Goguen and Jose Meseguer. Remarks on many sorted equa-

tional logic. Sigplan Notices, 22(4):41 - 48, April 1987.

135

[Gog781 Joseph A. Goguen. Abstract errors for abstract data types. In E. J.

Newhold, editor, Formal Description of Programming Concepts. North

Holland Publishing Co., 1978.

[GW88] J. A. Goguen and T. Winkler. Introducing OBJ3. Technical Report

SRI-CLS-88-9, SRI International, August 1988.

[HEP80a] B. Mahr H. Ehrig, H. J. Kreowski and P. Padawitz. Compound al-

gebraic implementations. In Mathematica Foundations of Computer

Science, LNCS 88, pages 231 - 245. Springer-Verlag, 1980.

[HEP8013] H. J. Kreowski H: Ehrig and P. Padawitz. Algebraic implementation

of abstract data types : Concepts, syntax, semantics and correctness.

In Automata, Languages and Programming 80, LNCS 85. Springer-

Verlag, July 1980.

[HMT90] R. Harper, R. Milner, and M. Tofte. The Definition of Standard ML.

The MIT Press, 1990.

[H080] Gerard Huet and Derek C. Oppen. Equations and Rewrite Rules. In

Ronald V. Book, editor, Formal Language Theory: Perspectives and

Open Problems, pages 349 - 405. Academic Press, 1980.

[11082] Christopher M. Hoffman and Michael J. O'Donnell. Programming

with Equations. A. C.M Transactions on Programming Languages and

Systems, 4(1):83 - 112, January 1982.

[HS791 Horst Herrlich and George E. Strecker. Category Theory. Sigma Series

in Pure Mathematics. Heldermann-Verlag, 1979.

[HS86] R. J. Hindley and J. P. Seldin. Introduction to Combinators and

Lambda-Calculus. Cambridge University Press, 1986.

[Hup80] Ulrich L. Hupbach. Abstract Implementation of Abstract Data Types.

In Mathematical Foundations of Computer Science, LNCS 88, pages

291 - 304. Springer-Verlag, 1980.

136

[JABW81] J. V. Tucker J. A. Bergstra, M. Broy and M. Wirsing. On the Power

of Algebraic Specifications. In Mathematical Foundations of Computer

Science, LNCS 118. Springer-Verlag, 1981.

[JAG75] E. G. Wagner J. B. Wright J. A. Goguen, J. W. Thatcher. An in-

troduction to categories, algebraic theories and algebras. Technical

Report 23477, IBM Thomas J. Watson Research Centre Mathemati-

cal Sciences Department, 1975.

[JAGW78] J. W. Thatcher J. A. Goguen and E. G. Wagner. An initial algebra

approach to the specification, correctness and implementation of ab-

stract data types. In Yeh, editor, Current Trends in Programming

Methodology IV, pages 80 - 144. Prentice Hall, New York, 1978.

[JRHS72] B. Lercher J. R. Hindley and J. P. Seldin. Introduction to Combi-

natory Logic. London Mathematical Society Lecture Notes Series 7.

Cambridge University Press, 1972.

[KA84] Samuel Kamin and Myla Archer. Partial implementations of abstract

data types: A dissenting view on errors. In LNCS 174: Semantics of

Data Types. Springer-Verlag, 1984.

[KB70] D. E. Knuth and P. B. Bendix. Simple problems in universal algebra.

In J. Leech, editor, Computational Problems in Abstract Algebra, pages

203 - 297. Pergammon Press, 1970.

[K1o80] J.W Klop. Combinatory Reduction Systems. Tracts in Computer Sci-

ence. CWI, 1980.

[Koy82] C. P. J. Koymans. Models of the lambda-calculus. Information and

Control, 52:306 - 332, 1982.

[KR89] A. Kock and G.E Reyes. Doctrines in categorical logic. In John Bar-

wise, editor, Hanbook of Mathematical Logic, pages 283 - 313. Elsevier

Science Publishers, fifth edition, 1989.

137

[KS81] Herbert A Klaeren and Martin Schulz. Computable algebras, word

problems and canonical term algebras. In LNCS 104: 5th GI Confer-

ence, Karlsruhe, March 1981.

[KS85] Deepak Kapur and Mandayam Srivas. A rewrite rule based approach

for synthesising abstract data types. In LNCS 185: Mathematical

Foundations of Software Development. Springer - Verlag, 1985.

[Kur65] A.G. Kurosh. General Algebra. Pergamon, 1965.

[Lam74] Joachim Lambek. Functional completeness of cartesian closed cate-

gories. Annals of Mathematical Logic, 6:259 —292, 1974.

[Lam80a] •Joachim Lambek. From lambda calculus to cartesian closed categories.

In J.P. Seldin and J.R. Hindley, editors, To H.B. Curry : Essays on

Combinatory Logic, Lambda Calculus and Formalism, pages 376 — 402.

Academic Press, 1980.

[Lam8013] Joachim Lambek. From type to sets. Advances in Mathematics, 36:113

- 164, 1980.

[Law63] F.W. Lawvere. Functorial Semantics of Algebraic Theories. PhD the-

sis, University of Columbia, 1963.

[L085] Bloom S. L. and Wagner E. G. Many-sorted Theories and their Al-

gebras with some Applications to Data Types. In Maurice Nivat and

John C. Reynolds, editors, Algebraic Methods in Semantics, pages 133

- 168. Cambridge University Press, 1985.

[LS81] D.J. Lehmann and M.B. Smyth. Algebraic specifications of data types:

A synthetic approach. Mathematical Systems Theory, 14:97 - 139,

1981.

[LS86] J. Lambek and P.J. Scott. An Introduction to Higher Order Categorical

Logic. Cambridge Studies in Advanced Mathematics 7. Cambridge

University Press, 1986.

138

[MA86] Ernest G. Manes and Michael A. Arbib. Algebraic Approaches to Pro-

gram Semantics. Springer-Verlag, Berlin, 1986.

[Ma,c71] Saunders Maclane. Categories for the Working Mathematician. Num-

ber 5 in Graduate Texts in Mathematics. Springer-Verlag, 1971.

[MB67] Saunders Maclane and Garrett Birkhoff. Algebra. Macmillan Corn-

pany, 1967.

[Mey82] Albert R. Meyer. What is a Model of the Lambda-calculus? Informa-

tion and Control, 52:87 - 122, 1982.

[Mi177]Robin Milner. A Theory of Type Polymorphism in Programming.

Internal Report CSR-9-77, University of Edinburgh, Department of

Computer Science, September 1977.

[Mi178]George J. Milne. A Mathematical Model of Concurrent Computation.

PhD thesis, University of Edinburgh, March 1978.

[MPS86] David MacQueen, Gordon Plotkin, and Ravi Sethi. An Ideal Model

for Recursive Polymorphic Types. Information and Control, 71:0 - 0,

1986.

[MT90] R. Milner and M. Tofte. Commentary on Standard ML. MIT press,

1990.

[MW85] Zohar Manna and Richard Waldinger. The Logical Basis for Computer

Programming. Addison Wesley, 1985.

[New42] M.H.A Newman. On theories with a combinatorial definition of equiv-

alence. Annals of Mathematics, 43(2), April 1942.

[Nou80] C. Farshid Nourani. A model-theoretic approach to specification, ex-

tension and implementation. In International Symposium on Program-

ming, LNCS 83, pages 282 - 297. Springer-Verlag, 1980.

139

[Nou83] C. Farshid Nourani. Abstract implementations and their correctness

proofs. Jouranl of the A.C.M, 30(2):343 - 359, April 1983.

[O'D77] Michael J. O'Donnell. Computing Systems Described by Equations.

Springer-Verlag, 1977. LNCS 58.

[PG81] Kamran Parsaye - Ghomi. Higher Order Abstract Data Types. PhD

thesis, University of California, Los Angeles, 1981.

[P1o77] G. D. Plotkin. Lcf considered as a programming language. Theoretical

Computer Science, 5:223 — 255, 1977.

[Poi86] Axel Poigne. On specifications, theories and models with higher types.

Information and Control, 68(1):1 - 43, March 1986.

[PV85] Axel Poigne and Josef Voss. On the implementation of abstract data

types by programming languages. In Mathematical Foundations of

Software Development, LNCS 185, volume 1. Springer-Verlag, 1985.

[Rey85] John C. Reynolds. Three approaches to typing. In Mathematical Foun-

dations of Software Development, LNCS 185, volume 1, pages 97 — 138.

Springer-Verlag, March 1985.

[Sco71] D. Scott. Continuous lattices. Technical Monograph PRG-7, Princeton

University, August 1971.

[Sco76] D. Scott. Data types as lattices. SIAM Journal of Computing, 5(3):552

- 587, September 1976.

[Sco80] D. Scott. Relating Theories of the Lambda Calculus. In J. P. Seldin

and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory

Logic, Lambda Calculus and Formalism, pages 402 — 450. Academic

Press, 1980.

[51382] M.B. Smyth and G. D. Plotkin. The category theoretic solution of

recursive domain equations. SIAM Journal of Computing, 11(4):761 —

783, November 1982.

140

[ST86] D. Sannella and A. Tarlecki. Toward Formal Development of Programs

from Algebraic Specifications: Implementations Revisited. Technical

Monograph ECS-LFCS-86-17, Laboratory for the Foundations of Com-

puter Science, December 1986.

[ST89] D. Sannella and A. Tarlecki. Toward Formal Development of ML

Programs: Foundations and Methodology. Technical Monograph ECS-

LFCS-89-71, Laboratory for the Foundations of Computer Science,

February 1989.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott Strachey Approach to

Programming Language Theory. MIT Press, 1977.

[SW81] D. Sannella and M. Wirsing. Implementation of Parameterised Speci-

fications. In Automata Languages and Programming, LNCS 140, pages

473 - 488. Springer-Verlag, July 1981.

[Tai67] W.W. Tait. Intensional Interpretation of Functionals of Finite Type.

Journal of Symbolic Logic, 32:198 -212, 1967.

[TJWB77] Wagner E. G. Thatcher J. W. and Wright J. B. Initial algebra seman-

tics and continuous algebras. Journal of the A.C.M, 24(1):68 - 95,

January 1977.

[Tur] D. A. Turner. Miranda : A non-strict functional language with poly-

morphic types. To appear in Proceedings IFIP International Confer-

ence on Functional Programming Languages and Computer Architec-

ture, Nancy September 1985.

[VG78] Guttag J. V. and Horning G. The algebraic specification of abstract

data types. Acta Informatica, 10:27 - 54, 1978.

[Wad76] C. Wadsworth. The relation between computational and denotational

properties for scott's d infinity models of the lambda calculus. Siam

Journal of Computing, 5(3), September 1976.

141

[Zi179] N. Zilles. An introduction to data algebras. In Abstract Software

Specifications, LNCS 86, 1979.

142

