
A Translator from
Object Structured Query Language

into
Object Algebra Expression

Sainaaz Bi Hussain

This thesis is submitted in partial fulfilment of the requirements for the Masters
of Science Studies (Computer Science).

Department of Computer Science
University of Tasmania

Australia

January 1994

Declaration of Originality
To the best of my belief this thesis does not contain any material previously
published by another person, except where the reference is made in the text of the
thesis.

Sainaaz Bi Hussain

Acknowledgment

Many thanks to Dr. Chris Keen for his guidance throughout the project.

I would also like to thank Dr. Vishv Malhotra and Dr. Charles Lakos for their help
in getting the parser working. Also many thanks to Carl Lewis for giving valuable
ideas on the implementation of the parser, Sunee Pongpinigpinyo for helping in
the selection of the Object Algebra, Crystal Austin and the Overseas Students
Office for proofreading the thesis.

Last but not the least I would like to thank my husband(Yakub Hussain) and son
(Wafi Isham Hussain) for their support and encouragement throughout the project.

Abstract
Object-Oriented database management systems have been proposed as the
effective solution to providing the database management facilities for complex
applications. This project involves in deriving a set of rules which specifies the
translation of Object SQL statements into an Object Algebra expression.

The language chosen for this project is Object SQL (Object Structured Query
Language). Object SQL is a high-level user language whose standard does not
exist yet.

OA (_Qbject Algebra) is an intermediate level target language designed for a
range of user languages. The algebra used in this project is defined by Dave
Straube. This algebra is used as the target language for the translation of the
Object SQL query statement into the equivalent Object Algebra expression.
Object algebra is used for the procedural specification of queries which can
then be used for the optimisation of queries.

Table of Contents

Chapter 1. Introduction 	 1
1.1. Aims 	 1
1.2. Definitions 	 1
1.3. What is Original? 	 4
1.4. Brief Literature Review 	 5
1.5. Chapter Summaries 	 6

Chapter 2. Background 	 7
Introduction 	 7
2.1. Object-Oriented Database Management Systems 	 7
2.2. Query Languages in OODBMSs 	 8

Introduction 	 8
2.2.1. Object SQL (OSQL) 	 10

2.2.1.1. Object SQL Statements 	 12
2.2.1.2. OODBMS for Object SQL query languages 	23

2.2.2. Query Algebra 	 24
Introduction 	 24
2.2.2.1. The Encore Query Algebra 	 24
2.2.2.2. The Straube Object Algebra 	 26
2.2.2.3. Properties of Query Algebra 	 28

Chapter 3. Implementation of the translator 	 33
Introduction 	 33
3.1. An overview of LEX programming 	 33
3.2. An overview of YACC programming 	 34
3.3. YACC and LEX 	 35
3.4. System Overview 	 36

3.4.1. Modification of the Parser for the Translation Rules. 	37
3.4.2. Use of Translator 	 59

Chapter 4. Results 	 60

Chapter 5. Conclusion 	 70
5.1. Achievements 	 70
5.2. Discussion/Conclusions 	 71
5.3 Summary 	 72
5.3. Future Work 	 73

Appendix A: Object SQL Parser and Translator 	 75
A.1.Explanation of Symbols used in EBNF Grammar 	75

A.2.Grammar for Object SQL parser 	 75

Appendix B: Output file for the translator 	 99

References 	 105

Chapter 1. Introduction 	 1

Chapter 1. Introduction
1.1. Aims
The aim of this project is to design a translator which can translate from Object
Structured Query Language (Object SQL) into an Object Algebra (OA)
expression. Therefore, one of the main contributions of this project is the
derivation of a set of rules to specify the translation of a large subset of Object
SQL statements into the equivalent Object Algebra expressions.

The major conceptual problem in this project is determining a scheme for
compiling Object SQL constructs into Object Algebra expressions. The first part
of the project is to select an Object Algebra. I will use the Object Algebra
proposed by Dave Straube [Straube 1990a]. Then using this Algebra the
translation from Object SQL into Object Algebra expressions will be performed.
The categories of Object SQL statements are :

a) DATA DEFINITION Commands
For example : 	CREATE.

b) DATA MANIPULATION Commands
For example : 	SELECT, DELETE, UPDATE, and INSERT.

1.2. Definitions
Relational Database [Date 1990] : defines a relational database as a database
that is perceived by its users as a collection of tables (and nothing else but
tables).

Object-Oriented : a software development strategy that organises software as a
collection of objects that contain both data structure and behaviour.

Object -Oriented Database Management System (00DBMS) : This is a
database system which supports an object-oriented model. It manages complex
objects with object identity, supports objects that encapsulate data and
behaviour, structures objects in classes, and organises classes in a hierarchy.
The OODBMSs augment the programming language by providing persistence,
concurrent control, a query language, and other Database Management
Systems (DBMS) capabilities [Catell 1992]. The application programmer may
access database objects directly using the data-access operations in the

Chapter 1. Introduction 	 2

programming language, or may perform associative lookups of objects using
the query language.

Query : this is a language expression that describes what data is to be retrieved
from a database and initiates the retrieval operation in the Database
Management System.

Query Optimisation means strategies which seek to improve the efficiency of
query evaluation so that there is minimum use of expensive resources such as
the time involved in using the central processing unit (CPU), the secondary
storage cost, and the storage cost.

Query Languages : this is a special purpose programming language used in the
database system to formulate queries.

Object represents entities and concepts from the application domain being
modelled; a concept, abstraction or thing with definite boundaries and
meanings for the current problem; an instance of a class or type; or
encapsulation of data and functionality (behaviour), for example, a car, a cup, a
person. Objects can be classified as

• literal objects : these are self identifying objects such as integers
and character strings.

• surrogate objects : these are objects that are represented by system
generated, unique, immutable object identifiers or OIDs.

Type : a function type is to characterise objects in terms of the functions that
can be applied to the object.

Class : a description of a group of objects with similar properties, common
behaviour, common relationships, and common semantics.

Function denotes attributes of objects, relationships among objects, and
operations on objects.

Variables : objects can be assigned to variables which can be used as temporary
placeholders for results produced by function calls.

Chapter 1. Introduction 	 3

Extension : the extension of a function defines the mapping between the
arguments and the results of that function. The extension of a type is the set of
objects of that type.

Instances : objects in the extension of a type are the instances of that type.

Abstraction consists of focusing on the essential, inherent aspects of an entity
while ignoring its accidental properties, that is, focusing on what an object is
and does before deciding how it should be implemented.

Encapsulation means hiding representation and implementation in order to
enforce separation between the external interface of an object and its internal
implementation.

Inheritance : an Object-Oriented mechanism that permits classes to share
attributes and operations based on a relationship; deriving new definitions
from existing ones; the way in which classes relate to each other.

Identity : the characteristic of an object that provides a means of uniquely
denoting or referring to the object independent of its state or behaviour.

Abstract Data Types : this is a class of data structures described by an external
view.

Late Binding : an object may be created and stored under the version n of its
class definitions.

Schema : a collection of definitions of types, classes and objects.

Recovery : The process of reproducing a consistent state of a system after a
failure. The failure may be in an application process, the OODBMS, the
operating system, or the underlying hardware.

Complex Objects are the objects which are built from other data structures or
other objects.

Polymorphism : the property that an operation may behave differently on
different classes.

Chapter 1. Introduction 	 4

Data Integrity relates to unauthorised access.

Extensibility : in the Object-Oriented systems it is easier and safer to add extra
program components.

Code Reuse : this means using the existing code in different programs.
Reusability of code (by specialising a class via inheritance) is a very powerful,
robust, and safe way of extending the existing modular codes (that is, creating
a new class just like the parent class but with some differences).

Ease of Use : in an Object-Oriented environment ease of use comes with
experience.

Views : this can be thought of as different ways of looking at "real" objects.

Multi-User Concurrency Control : a mechanism that controls simultaneous
sharing of objects among processes.

Predicate : this is a Boolean expression that can be established as TRUE or
FALSE for a given record by examining that record in isolation.

Procedural Language : A language is referred to as procedural if the user has to
specify in detail the steps necessary to obtain the information he wants to
retrieve.

Data Definition Language (DDL) : This is a traditional term for the subset of
the constructs of a database language in which the data model is declaratively
expressed.

Data Manipulation Language (DML) : This is a traditional term for the subset
of the constructs of a database language in which the behaviour is specified.

1.3. What is Original?
Designing and implementing the Object SQL parser was the first part of the
project. Since this project was a continuation of a 1992 honours project, it was
assumed at the beginning of the project that a parser had already been written.

Chapter 1. Introduction 	 5

Initially the parser did not compile but after working on it for a few weeks, I
managed to compile it only to find that a lot of files were either missing or not
written at all. Also the parser was written in C++ and the E (extension of C++
language) language about which I have very little knowledge.

I decided to write another Object SQL parser. Leroy Cain [Cain 19891 wrote an
ANSI SQL parser in 1989. Using the information (on Object SQL) supplied by
Hewlett-Packard [Lyngbaek 1991], this grammar was modified so that it was
similar to Object SQL. Most of the operators used in the translation rules are
those defined by D. Straube in his Ph.D thesis [Straube 1990a].

1.4. Brief Literature Review
Object-Oriented database systems have been proposed as an effective solution
for providing data management facilities for complex applications [Straube
1990a].

In addition, they combine the advantages of Object-Oriented Programming and
semantics of data modelling (abstract data types, encapsulation, inheritance,
polymorphism, extensibility) with the advantages of traditional data
management systems (declarative queries, set-oriented access, views, access
control, and multi-user concurrency control) [Lyngbaek 1991].

Object SQL is a database language designed for Object-Oriented database
systems. It supports user-defined operations in addition to the traditional data
definitions and manipulations [Lyngbaek 1991].

Queries are an important component of database systems as query languages
define the user interface (both syntactically and functionally) and the query
processing techniques affect performance [Straube 1990a1. Many query
languages have been developed for databases. [Straube 1990a] describes
languages such as SQL and Object SQL as "user" languages whereas languages
such as calculus and algebra are considered as "formal" languages. A calculus
allows queries to be specified declaratively without any concern for processing
details. On the other hand queries expressed in an algebra are procedural in
nature, and this can be optimised. Algebra provides a sound foundation for
rule-based transformation systems which allow experimentation with various
optimisation strategies [Straube 1990a].

Chapter 1. Introduction 	 6

1.5. Chapter Summaries
In Chapter 2 a brief background to the theory of query languages, Object SQL
and Query Algebra is outlined. This chapter also explains why Straube's Object
Algebra was selected for this project.

The experimental design of the project is presented in Chapter 3. The
YACC/LEX grammar and the translation rules are also presented in this
chapter.

Chapter 4 presents the results.

The final chapter has some concluding remarks together with possible
directions for future work.

Chapter 2. Background 	 7

Chapter 2. Background
Introduction
Indexed files were the earliest form of database management systems. These
files provided a simple way of storing records and data. In the 1970s, the first
complete database management system evolved. These used hierarchical and
network models of data. Then in the 1980s relational databases such as INGRES
and ORACLE were developed and commercialised. Since then relational
database management systems have been widely used.

In the early 1980s Object-Oriented data modelling appeared. Since then, this
field of Object-Oriented database has turned into a major research area and has
become reasonably mature. The origin of Object-Oriented systems comes from
the object-oriented programming environment where the main idea is that the
user should be able to deal with objects and operations that closely resemble
the real world. The main advantage of OODBMS over RDBMS is their query
languages and rich data structures. In OODBMS the query languages support a
high level of data abstraction because these database systems are based on
object-oriented data models.

2.1. Object-Oriented Database Management Systems
Object-oriented database management systems have the advantage of both
object-oriented programming and the semantics of data modelling along with
the advantages of traditional data management systems. Its benefits to
application developers include reduced schema complexity, an application
code that is simpler to develop and easier to maintain, code reuse, extensibility,
increased programmer productivity, and ease of use. This means more reliable
and less costly applications.

Object-Oriented databases differ from relational databases in a number of
ways. Object-Oriented databases allow reuse of code, and provide easy
extensibility and increased productivity. Relational databases cannot manage
complex data, while Object-Oriented databases can ;because they tightly
integrate object programming languages with database support. Relational
databases use separate languages and tools which create barriers between
program design, coding, and database access. Crossing these barriers is very
costly in terms of performance and productivity. Object-Oriented database
programs are organised around their fundamental concepts, not along lines
determined by the programming tools. Object-Oriented databases use a single

Chapter 2. Background 	 8

language that handles in-memory data structures and database access, thereby
markedly improving productivity.

According to [ONTOS 1991] some of the main features of Object-Oriented
databases are :
1) Persistence : This feature saves objects on the disk so that they can be

used in future sessions and can be shared by many users. Without
persistence, objects would disappear when the program is completed.

2) Data independence : Application programs have abstract interface to
data, which hides the data structure inside the database from the
application. The database can be changed or recognised without
changing any application code, greatly improving productivity.

3) Query : A query is a filtering or sorting mechanism. A collection of
records can be compared with the query and those that satisfy the query
are returned. A query is an excellent mechanism for finding objects in a
database based on common characteristics.

4) Transaction : A transaction is a single unit of work performed by an
application. It ensures that changes to the database are made in a
consistent fashion. Either the transaction succeeds and all of the changes
are committed to the database, or the transaction is aborted and none of
the changes are made. Transactions insure that the database remains in a
consistent state.

5) Concurrency : Concurrency is the ability for multiple users or
applications to share the same data in a controlled, predictable fashion.
Applications need to share data, but transactions tend to isolate them
from each other. Concurrency mechanisms work together with the
transaction model to synchronise simultaneous accesses to information
in the database. Transaction and concurrency combine to create a
powerful and flexible set of tools for development in complex
application areas which demand the utmost in speed for data storage
and retrieval.

2.2. Query Languages in OODBMSs
Introduction
All database systems have some sort of protocol for accessing their information
content. These protocols most often take the form of a programming language
or its extension. However, a major problem encountered with a programming
language as a database interface is that programmers are the only people

Chapter 2. Background 	 9

capable of using the database. Hence, the query concept is used to overcome
this problem, that is, it allows individuals with little or no programming
expertise to effectively use a database.

A query is a single interaction between an end-user and a database, that is, it is
used for specifying what data is to be retrieved, from where it is to be retrieved
or which data is to be updated in the database. The user formulates a request in
a non-procedural manner, specifying 'what' to do rather than 'how' to do it. In
other words, a query does not specify how to manipulate the data. The query
processor analyses the request, and dynamically constructs and executes a
program to respond to the request. Queries usually operate on sets or
collections of instances and may return or affect a single or a collection of
objects.

A query language is a frame for expressing a query. It consists of data
definition and data manipulation languages.

Traditionally the database query languages had only minimal type checking
requirements. For example, in the relational model type checking ensures that
relational schemes are compatible and that only appropriate comparison
operations are performed on the tuple fields. This is because this model
supports only a limited number of primitive domains (for example : integer,
string, boolean). However, object-oriented database query language introduces
complexity into this process since query results may be homogeneous sets of
objects, that is, all objects in the query results are not of the same type.

According to [Cattell 1992] an OODBMS should satisfy the following goals for
query languages :
• It must provide a declarative DML that can be used for ad hoc

operations.
• A high degree of physical data independence must be provided by the

query language processor.
• An OODBMS must support a programming language that includes

query language as a subset.
• The DML should allow access to all data structures, and provide at least

the capability of the relational calculus with collection results.

Chapter 2. Background 	 10

2.2.1. Object SQL [Lynbaek 1990]
SQL (Structured Query Language) is a well-known and widely used query
language for relational databases. It was originally proposed by IBM in 1981 as
the user interface language to the System R relational database [Harris 1990].
This product was released in 1986. The first commercial SQL product
developed was ORACLE. Since that time, several other implementations have
been made. Because of the general acceptance of SQL in the 1980s, ANSI
undertook languages standardisation.

Since the object paradigm is gaining attention in the programming community,
and because SQL already enjoys considerable popularity, we can expect to see
various implementations of an Object SQL from relational and object system
vendors.

Object SQL is a subset of the ANSI SQL standard with object processing
extensions. It is a language for posing questions about objects using the SQL
paradigm. It is a high-level database language for object-oriented database
management systems that supports both user-defined operations and
traditional data definition and manipulation languages. It was defined to create
a standard language for object-oriented databases that would be independent
of any specific application programming language and specific implementation
of object-oriented database management systems. Its main aim is to provide a
database interface with modelling constructs which closely matches the real-life
situations and the needs of business or technical applications. It has the
advantages of both object-oriented programming : abstraction, encapsulation,
extensibility and reuse, and the relational data definition and manipulation
languages : declarative queries, set-oriented access, views, and authorisation.
Being a functional language with special syntactic form, Object SQL closely
resembles SQL for common database functions. The four basic constructs of
Object SQL are :
1) 	Objects - The two types of objects are :

• literal objects : They may be
- atomic, such as Num, Char, Binary, Boolean, Date, Time,

DateTime, Decimal, Float, Integer, LongInt, SmallInt.
- aggregate, such as Set, Bag, List, Tuple. A set or bag is an

unordered collection of objects whereas a tuple is an
ordered, fixed-sized collection of objects.

• surrogate objects.

Chapter 2. Background 	 11

2) Type - Types are related in a subtype/supertype hierarchy, known as the
type hierarchy. The type hierarchy models the mode type containment,
that is, if an object is an instance of a type it is also an instance of all the
type's supertypes. In Object SQL a given type can have multiple
supertypes. Object SQL's aggregate types (sets, bags, lists, tuples)
support arbitrarily complex objects and can be composed of other types
and objects using a set of object constructors. The constructor [. . . .
constructs bags, 	. . } constructs sets, [I II constructs lists, and < . .
. . > constructs tuples. For example, (char) is a set of character strings and

'green', 'red', 'blue') is an instance of the above type.
3) Functions - Functions that perform database updates by updating other

functions may change the state of the database as a side-effect of their
execution. A function consists of a declaration (defining the signature of
the function and the constraints of its extension) and implementation
(defining the behaviour of the function). A stored function maintains its
extension as an associated, persistent data structure and so has no side-
effects on the database state. A function whose body is defined by an
Object SQL statement may query or update the database. If the defining
Object SQL program is a query, the function is called a derived function
(has no side-effects) whereas if the defining program contains a
statement other than a query, the function is called a procedure (has
side-effects).

Object SQL is not tied to a specific language but is intended to combine the best
from object-oriented programming languages with the benefits of declarative
data definition and manipulation languages of SQL. Specifically, Object SQL
was designed to provide the following goals :
• Provide object-oriented features such as improved productivity,

extensibility, and code reuse.
• Provide declarative database language features such as association

access, query optimisation, alternative views of data and integrity.
• Since Object SQL is a semantic superset of SQL, it provides the current

technology features of SQL such as multi-user access, and
authorisation/security.

• Adopt a functional language approach, since the fundamental Object
SQL primitive is function invocation. Hence, features and functionality
of the language are provided by a set of built-in functions; for example,
the TypeCreate function creates new types and FunUpdate function
updates the database.

Chapter 2. Background 	 12

• Ensure that the Object SQL syntactic form and keywords closely
resemble SQL wherever possible in order to lessen the learning curve for
Object SQL programmers.

• For built-in functions, it should provide language constructs for common
data definition and manipulation tasks, in the form of Object SQL
statements. For example, the SELECT statement is a syntactic
embodiment of the SELECT function.

4) 	Variables - Since Object SQL supports variables, they can be used to
communicate data between Object SQL and an application program.
There are two types of variables :
1) Local variables - these have a declared type. They can be declared

inside function bodies and in the FOR EACH clause of certain
Object SQL statements. They have limited scope, that is, the scope
of a variable declared in a function is limited to the body of that
function and the scope of a variable declared in a given statement
is limited to that statement.

2) Session variables - are global, do not require explicit declarations,
cannot be used inside function bodies, can be thought of as being
implicitly declared of type Object, and can be used any time
during an Object SQL session. An object of any type can be
assigned to a session variable.

2.2.1.1. Object SQL Statements
Object SQL statements are provided for defining, implementing, and declaring
types and functions. The definition of types and functions in an Object SQL
application correspond roughly to the definition of tables and views in an SQL
application.

a) 	Data Definition
i) Defining Types
CREATE TYPE - defines a new type by specifying its name and its supertypes,
for example, the TeachingAssistant shown in Figure 2.1 below can be created by
the following statement.

Chapter 2. Background
	

13

CREATE TYPE TeachingAssistant SUBTYPE OF Student, Teacher;

Figure 2.1 [Lynbaek 1991]

If the SUBTYPE clause is omitted then the new type automatically becomes a
subtype of the built-in type UserType.

A type can also be created together with a set of functions on the new type, for
example, the Employee and its functions shown in Figure 2.2 below can be
created with the following statement :

CREATE TYPE Employee SUBTYPE OF Person FUNCTIONs (
FixedSalary Integer,
Salary Integer AS FORWARD,
Date0fHire Date,
SocSecNum Char[11] UNIQUE

);

Chapter 2. Background
	

14

Employee subtype of Person
FixedSalary
Salary = FixedSalary
Date0fHire
SocSecNum

Teacher subtype of Employee

Admin subtype of Employee
OvertimePay
Salary = FixedSalary + OvertimePay

Researcher subtype of Employee
ContractPay
Salary = FixedSalary + 1/2 * ContractPay

TeachingAssistant subtype of Student, Teacher
UnitsTaught
Salary = UnitsTaught * UnitPay

Figure 2.2: Payroll Application [Lynbaek 1991]

The optional keywords AS FORWARD specified for the function Salary shows
that implementation is deferred although the function is being declared. A
function can not be used until its implementation is specified. Those functions
without an AS FORWARD specification are implemented as stored functions.

The optional keywords UNIQUE specified for function SocSecNum indicates a
uniqueness constraint; that is, each result of the function is a unique string.
Other optional keywords such as DISJOINT specified for a multi-valued
function constraint indicates that the bag and set result objects of the functions
are disjoint, that is, a given object can belong to at most one of the result objects
of the function.

ii) Defining and Implementing Functions
a) CREATE FUNCTION - This statement defines a new function, for example,
the function Marriages is defined as follows :

CREATE FUNCTION Marriages(Person) -> f<Person, Date>) AS
FORWARD;

Chapter 2. Background
	

15

The AS clause specifies how the function is implemented and FORWARD
clause defers the implementation. The keywords AS STORED specifies the
stored function:

SELECT statement is used to implement a derived function; for example,

CREATE FUNCTION Salary(Employee e) -> Integer s AS
SELECT s
WHERE FixedSalary(e) = s;

defines a derived function, Salary, in terms of the function Fixed Salary. Here the
salary of the employee is defined to be equal to the employee's fixed salary.

The value of a specified function can be changed by using the UPDATE
statement; for example,

CREATE FUNCTION RaiseAllSalaries (Integer incr) AS
UPDATE FixedSalary(e) = newsal
FOR EACH Employee e, Integer newsal
WHERE newsal = FixedSalary(e) + incr;

defines the procedure, RaiseAllSalaries. The procedure body updates the
function FixedSalary by increasing the salaries of all the employees by a certain
amount.

b) IMPLEMENT FUNCTION - This statement provides an implementation for
a previously declared function. The various options for implementations are
the same as those for CREATE FUNCTION statements. For example, the
function Salary declared on the type Employee could be implemented using the
following statement :

IMPLEMENT FUNCTION Salary(Employee e) -> Integer s AS
SELECT s
WHERE FixedSalary(e) = s;

Chapter 2. Background
	

16

iii) Deleting Types and Functions
A type or function can be removed from the database schema if it is no longer
needed. For example, the function Salary defined on the type Employee can be
deleted by the following statement :

DELETE FUNCTION Salary.Employee;

The ALL option can be used to delete all the functions with a given generic
name; for example :

DELETE TYPE TeachingAssistant;

deletes the type TeachingAssistant. A CASCADE option can also be used to
automatically delete the types, subtypes, and the functions defined on the
deleted types. The CASCADE option should be used to delete a function that is
used in the implementation of other functions.

DELETE TYPE statements can be used to delete a type which has no functions
defined on it and no subtypes

b) 	Populating The Database
CREATE statements are used to create new objects. This statement optionally
allows variables to be bound to the new object for future direct reference to the
object; for example :

CREATE Person :mary, :alex, :sue;

creates three new Person objects in the object identifier form such that the
objects can be referred to by the variables :mary, :alex, and :sue.

It is also possible to specify selected functions of those functions to be
initialised. This is very similar to inserting tuples into tables in an SQL
database. For example :

Chapter 2. Background
	 17

CREATE Person FUNCTIONS (Name, Address, Birthdate, Children)
:george ('George Smith', 'Santa Cruz', DATE' 1955-03-18', t:kevin)),
:linda ('Linda Norton', 'Sunnyvale', DATE'1957-02-23', t:alex, :sue));

creates two additional Person objects and initialises their Name, Address,
Birthdate, and the name of their Children functions. A single-valued as well as a
many-valued function can be initialised in the same Object SQL statement.

An object can have several types. Initially it has the type it was created with
and all supertypes of that type. However, at any time additional types can be
added or existing types deleted. ADD TYPE statements can be used to add
types to objects, for example, the following statement gives the additional type
Employee to the Person object representing George Smith and denoted by the
variable :george:

ADD TYPE Employee FUNCTIONS (FixedSalary, Date0fHire, SocSecNum) TO
:george (2000, DATE'1990-02-01', 218-34-33421;

REMOVE TYPE statements can be used to remove types from objects, for
example :

REMOVE TYPE Employee FROM :george;

DELETE statements can be used to delete an object explicitly. This has the effect
of removing the object from each of its types.

c) 	Updating the Database (Function Update)
UPDATE statements can be used to explicitly update the updatable functions.
An update is used to change the value of the functions for future calls. When a
function is updated, all functions derived from that function are also updated;
for example :

Chapter 2. Background
	

18

UPDATE Address(linda) := 'San Jose';

The value of function Address for object :linda is changed to 'San Jose'. The "+="
assignment operator may extend the existing value of a function by adding
components, while the "-=" assignment removes components from the existing
value of a function.

d) 	Querying The Database
The SELECT statement provides the basic query facilities of Object SQL and has
three parts :

SELECT result specifications
FOR EACH local variable declarations
WHERE predicate

Result specification in the SELECT clause determines the objects to be
returned. It may contain constants, functions (a single function, several
functions separated by a comma, a list of functions, a tuple of functions, a
set of functions, or a bag of functions), reserved functions (AVG, SUM,
MIN, MAX, COUNT), expressions (consists of multiplication, division,
addition or subtraction of constants, functions or reserved functions. For
example, 5 * AVG(Salary(p)) or Salary(p) + OvertimePay(p)).

Declarations of variables in the FOR EACH clause defines a set of target
values for the variables.

Predicate specified in the WHERE clause specifies a criteria for pruning
the variables to a final set. It is a boolean expression consisting of
function calls (including recursive SELECT Calls), literal objects, local
and session variables, comparison (<, >, <>, =, <=, >.) and boolean
operators (AND, OR, and NOT).

The SELECT statement always returns a Bag object. For example Q2.1 returns a
bag of character strings ([char]}. The WHERE clause is optional.

Chapter 2. Background
	

19

The following queries illustrate some of the different forms of the SELECT
statement.

Example Q2.1 : Obtain the names of all people who live in San Jose.

SELECT Name(p)
FOR EACH Person p
WHERE Address(p) = 'San Jose';

Example Q2.2 : Obtain the names of all people who live in either San Jose or Los
Angeles.

SELECT Name(p)
FOR EACH Person p
WHERE Address(p) = 'San Jose' OR Address(p) = 'Los Angeles';

Example Q2.3 : Obtain the names of all people whose age is greater than 40.

SELECT Name(p), Age(p)
FOR EACH Person p
WHERE Age(p) > 40;

Example Q2.4: Obtain full details of all employees.

SELECT *
FOR EACH Employee e;

Example Q2.5: Obtain the .names of all people who have a son named ALEX. This is
an example of a nested query where a SELECT statement appears within the
predicate of another SELECT statement. Nested queries use IN, NOT IN,
EXISTS, NOT EXISTS to specify whether something is present in another
SELECT statement or not.

Cl_lapter 2. Background
	

20

SELECT Name(p)
FOR EACH Person p
WHERE Name(p) IN

(SELECT Name(c)
FOR EACH Children c
WHERE Name(c) = 'Alex');

OR

SELECT Name(p)
FOR EACH Person p, Children c
WHERE Name(c) = 'Alex' AND Name(c) IN Children(p);

Complex Queries
The basic statements can be extended with the following clauses.
1) DISTINCT - specifies that the result should not contain any duplicates.
2) UNION operator - combines the results of two subqueries into a single

result with no duplicates. The UNION ALL operator concatenates the
results of two subqueries and has duplicates.

3) GROUP BY - groups objects together into bags of related objects. The
HAVING clause specifies a predicate on each bag formed by the GROUP
BY clause.

4) ORDER BY - useful for producing reports. It specifies an order
(ascending, descending) in which the results are to be returned.

e) 	Cursors
Object SQL supports the concept of a cursor which is a mechanism that allows
query results to be obtained one (or several) at a time.
OPEN CURSOR - associates a cursor with a given query; for example, in the
following a cursor called names is created for the retrieval of Person names :

OPEN names FOR
SELECT Name(p)
FOR EACH Person p;

Chapter 2. Background
	

21

FETCH - allows one or more objects from the query results to be returned.
NEXT clause can be used to return several results; for example, the following
query can be used to obtain the next five objects of the query results :

FETCH names NEXT 5;

CLOSE - closes and deletes the cursor. For example, the following statement
closes the cursor :

CLOSE names;

Control Flow
Some of the basic control flow Object SQL statements used for defining
procedure bodies are :

BEGIN 	END. This block contains an optional list of local variables
followed by one or more statements. Here the scope of the variable is limited to
the BEGIN 	 END block.

IF predicate THEN statement ELSE statement. If the predicate is true than the
first statement is executed, otherwise the second one is executed. The ELSE
clause is optional.

WHILE predicate DO statement. The statement is executed if the specified
predicate evaluates to true, otherwise the loop terminates. These steps are
executed repeatedly until the predicate evaluates to false.

FOR EACH varname IN bag_specification DO statement. The specified
statement will be executed for each set of binding (defined by the bag of
specifications) of the specified variable.

Authorisation And Access Control
All database languages support access control and security property. The
traditional SQL language provides support for controlled access to data. On the

Chapter 2. Background
	

22

other hand, Object SQL which is based on a functional approach provides
support for controlling the calling and updating of functions.

Object SQL provides statements for granting and revoking privileges to
individual users and groups. The GRANT statement can be used to grant
privilege. For example, the following statement grants call authority on the
function Salary.Employee to the salary-user user :

GRANT CALL ON FUNCTION Salary.Employee TO salary-user;

The REVOKE statement can be used to revoke privileges. For example, the
following statement revokes update authority from the PUBLIC group :

REVOKE UPDATE ON FUNCTION FixedSalary FROM PUBLIC;

Object SQL also provides statements for creating and deleting users, and
changing their password.

h) 	Session And Transaction Control
Object SQL provides statements for database transactions and session control.
These statements are very similar to SQL statements.

A transaction is a unit of work consisting of a series of accesses to the database.
A transaction is started with the BEGIN WORK statement. The COMMIT
WORK ends the current transaction and so all changes made during the
transaction becomes permanent. The ROLLBACK WORK statement can also be
used to terminate the current transaction.

A session consists of zero or more transactions and can be established between
an application process and a database with the CONNECT statement, for
example :

CONNECT TO testdatabase;

Chapter 2. Background
	

23

This statement also supports additional options for different system
configurations, for example, the host machine name, login account name and a
database password can be specified.

DISCONNECT statement is used to terminate a session, for example :

DISCONNECT testdatabase;

2.2.1.2. OODBMS for Object SQL query languages

1) ONTOS
ONTOS [ONTOS 1991], a product of Ontologic Inc., is a commercial Object-
Oriented database based on the C++ language. It provides a persistent object
store for C++ programs. It is based on a client/server architecture where
multiple clients on different workstations can concurrently access object stored
on one or more servers.

The schema of database is managed by DataBase (DB) Designer which is a
browsing tool and an interactive visual schema design.

The queries can be stored as objects in a database. Thus queries which are used
very often do not have to be specified repetitively. Once a query object is
created it can be named and evaluated. Object SQL defines types for queries
and query results. Users may freely define subtypes and supertypes so as to
replace, refine or redefine the query processing operations.

2) Open0DB
Open0DB, developed by the Hewlett-Packard Company, is a hybrid OODBMS
evolved from and coexisting with RDBMS. It includes an Object SQL language
interface and a graphical browser on the client side and an object manager with
a relational data storage engine and an external interface on the server side.

The object manager supports all Object-Oriented features; that is, it supports
complex objects, dynamic schema modifications, dynamic typing, multiple
inheritance, encapsulation, late binding, object identity, overloaded functions, a
type hierarchy, and unlimited user-defined types.

Chapter 2. Background 	 24

The relational database, ALLBase/SQL, provides the data storage and
manipulation capabilities such as authorisation, declarative queries, high
availability, multimedia (for example, graphics, images, voice) support, multi-
user concurrency support, recovery, referential integrity, and transaction
management.

Object SQL can be used to create types, functions, and objects. Functions define
attributes, and relationships that are retrieved or calculated with Object SQL
statements.

This Object SQL also includes programming flow statements, such as
IF....THEN....ELSE, FOR, and WHILE. This procedural language allows the
definition of complex functions.

2.2.2. Query Algebra
Introduction
Currently, query algebra is gaining a lot of attention in the database area. The
two main reasons for this are :
1) Query algebra provides an abstract language which provides not only

the meaning of the queries but also the expressiveness of user query
languages.

2) One of the important uses of query algebra is query optimisation.

A number of researchers are currently trying to define a query model and an
Object-Oriented algebra which corresponds to the relational algebra used for
the optimisation of the queries in relational databases. The two algebras
considered for this project were the Encore query algebra [Shaw 1989] and the
object algebra by Straube [Straube 1990a].

2.2.2.1. The Encore Query Algebra
In 1989 Shaw and Zdonik [Shaw 1989] developed an algebra for the Encore
Object-Oriented database system. This algebra characterises all types as
abstract data types whose implementations are hidden from the algebra.

This query algebra provides type specific operation against collections of
complex objects with unique identities. It provides only two parameterized

Chapter 2. Background 	 25

types, namely Tuples and Sets. The data model used in this algebra views
everything as an object with an identity.

Most operations of this query algebra return collections of existing database
objects as well as create new objects to store the requested relationships. The
operators preserve the typing of the object-oriented data model.

Definitions of Encore Query Operators
This algebra defines the following operators :

1) Select. The operation creates a collection of database objects which
satisfy a selection predicate. The operation is defined as :

Select (S,p) = fs I (s in S) A p (s))

where S is a collection of objects and p is a predicate defined over the
type of the objects in S. This operation creates a new collection object
containing the identifiers of all members of collection S satisfying the
predicate.

2) Image and Project. These operations are used primarily to return
components of objects in the collection being queried.

The Image operation is used to return a single component or value for
each object in the queried collection and has the following form :

Image (S, f : T) = (f(s) I s in S)

where S is a collection of objects and f returns an object of type T.

The Project operation extends Image by returning multiple components
of an object. Thus the maintenance of selected relationships between
components of an object is supported. The relationships are stored as
tuples, with the tuple type defined by the operation as follows :

Project (S, < (Alti),...,(Anfn)>) = (<A1 : 	fn(s)> I s in S)

where S is of type Sean the Ai's are unique attribute names, and each fi
takes a single input of type T and returns an object of type Ti.

Chapter 2. Background 	 26

3) Ojoin. This operation is an explicit join operator used to create
relationships between objects from two classes in the database. It creates
new tuples with unique identities in the database to store the generated
relationships. Ojoin is modified to handle sets of objects which may not
be tuples.

4) Set operations. The algebra includes set operations Union, Difference, and
Intersection which are used to create new collections of objects. They are
the general set operations with set membership based on object identity.

The other set operations are Flatten, Nest and UnNest which are used to
restructure collections of objects.

The Flatten operation is used to restructure sets of sets and is defined in
the following way :

Flatten (S). = fr I 3 t t in S A r in t)

Nest and UnNest operations allow the representation of tuples as flat or
nested relations. The Nest operation compares attribute values using
object identity and collects values of objects into a set type. The UnNest
operation converts a set type into a simple type.

A result collection may be either existing database objects or new tuple
objects created during the operation. To maintain the identity of objects
in the database, the algebra contains two identity operators :

DupEliminate (S, i) : This operator keeps only one copy of i-equal objects
from a collection of objects.

Coalesce (S, Ak, i) : used for the collection of tuple objects. This operator
eliminates i-equal duplication in the Ak components (attributes) of the

tuples.

2.2.2.2. The Straube Object Algebra
This object algebra is a collection of operators on objects. Operands and results
in the object algebra are set of objects. Hence the algebra maintains the closure

Chapter 2. Background 	 27

property (the result of a query can be used as the input to another). Some of the
operators are qualified by a predicate.

Definitions of Object Algebra Operators
This algebra defines the following six operators :
1) Union (denoted P u Q). Here the set of objects are in either P or in Q or in

both.

2) Difference (denoted P — Q). Here the set of objects is only in P and not in

Q.

3) Intersection (denoted P Q) can be derived by P-(P-Q). Here the set of
objects is in both P and Q.

4) Select (denoted P oT <Q1...Qk>). Select returns the objects denoted by p
in each vector <p,q/,...,qk> E P x Qi xQk which satisfies the predicate

F.

For example, find all documents about cars by persons over 50 years of
ages. Let d range over Doc and p range over Person. Then

Doco- ("car" E <d>.keywords A p == <d>.author A "50" = x A "True" =
<p,x>.age.greater j <Person>
The result of this expression is a set of Document objects and not sets of
<Document, Person> objects. This is because the algebra has an 'object
preserving' nature and does not create new objects. Hence, Select is like
a semi-join operator.

5) Generate (denoted QlYtF<Q2...Qk>). F is a predicate with the condition
that it must contain one or more generating atoms for the target variable
t where t does not range over any of the argument sets. This operation is
objects denoted by t in F for each vector <qi,...,qk> E QI XxQk such

that it satisfies the predicate F.

For example, return all coauthors of the document "Object oriented
concepts". Let t be the target variable and d range over Doc. Then

Doc YrObject oriented concepts" = <d>.title A t e <d>.coauthors)<>

Chapter 2. Background 	 28

The most common uses of Generate operators are :
• to collect results of method applications.
• to iterate over the content of set valued objects.

6) 	Map (denoted Qi -> must <Q2 ...Qk>). Let must be a list of method names
of the form m 1 ...mm . Map applies the sequence of methods in must to
each object q 1 E Qi using objects in <Q2 ...Qk> as parameters to the

methods in must. This returns the set of objects resulting from each
sequence application. If no method in must requires parameters, then
<Q2. ..Qk> is the empty sequence <>. Map is a special case of the generate

operator.

2.2.2.3. Properties of Query Algebra
[Yu 1991] identified several features that could be used for evaluating query
algebras. They are as follows : object-orientedness, expressiveness, formal properties,
performance, and database issues.

a) 	Object-Orientedness : The four main properties that should be
supported by query algebra are :

1) Object identities : To support object identity, an object algebra should
define its semantics over identities. That is, its operations should take
object identities as input and produce an object identity as output.
Straube's object algebra is defined on sets of identities, supporting
identity-test whereas Encore's query algebra is defined in terms of the
identities of collection of objects.

2) Encapsulation : To support encapsulation, the definition of an object
algebra should be restricted to the operation on objects only through their
interfaces. Straube's object algebra operates on objects whose internal
representation is inaccessible, while Encore's query algebra supports
encapsulation by defining Tuple and Set objects.

3 	Inheritance hierarchy : To support this concept, queries expressed in an
object algebra should be allowed to be directed against an inheritance
hierarchy root. Straube's object algebra uses the semantics of the
inheritance hierarchy as a generalisation pattern. The leaves of their

Chapter 2. Background 	 29

query trees can be either a class name C or a class sub-hierarchy C* which
includes all members of class C and its subclasses. On the other hand,
Encore's query algebra supports type inheritance for integrity.

4) 	Heterogenous sets : Heterogenous sets are those sets which can have
members of different types. They may have to be used to support the
generalisation concept. For example, if a set has member type Person
then it may contain objects of Person, Student and Employee. Both
Straube's object algebra and Encore query algebra support heterogenous
sets.

b) Expressiveness.
1) 	Extends relational algebra consistently : For query algebra to be at least as

powerful as relational algebra, it should be provided with the five
operations that are defined in relational algebra : Selection, Projection,
Cartesian product, Union and Difference. These operations work on sets of
objects rather than on objects only. Straube's object algebra has five
operations : Select, Union, Difference, Generate and Map which are similar
to the relational algebra. However, Projection and Cartesian product are
not included in this algebra. Encore's query algebra is seen as an
extension of relational algebra, for example, Ojoin with appropriate
predicate specifications can simulate the Cartesian product defined in
relational algebra. The five operations of Encore's query algebra are :
Select, Image, Project, Ojoin and Set operations.

c) Formal Properties. The 2 main properties are :
1) A Formal semantics. It is important for the query algebra to have a precise

mathematical definition for each of its operations. The correctness of
proposed query evaluation algorithms should be provided
mathematically. Straube's object algebra has a concise, mathematical
semantics whereas Encore's query algebra has only a partially formal
semantics.

2) A closed algebra. Any algebra should specify the types of objects it
supports and the allowable operations on objects of each defined type.
All legal operations should be closed, so that no operation produces a
result which lies outside of the scope of the algebra. Thus all its
operations take as input and produce as output objects of a single type.
Both Straube's and Encore object algebra satisfy this property. Operations

Chapter 2. Background 	 30

can produce atomic or aggregate objects. Its set operations do not accept
atomic and aggregate objects as operands.

d) 	Performance.
1) Provides optimisation strategies. The main aspect of the query algebra is the

implementation efficiency. Therefore, equivalence properties between the
algebra operations should be studied and strategies for optimising
algebraic expressions should be provided. Straube's object algebra
defines semantic transformations for some of its operations. Equivalence-
preserving rewrite rules that can be applied to object algebra expressions
are also defined. Most of the conditions under which a transformation
occurs reduces the execution cost of an expression. Encore's query
algebra defines a form of equivalence as weak equivalence [Shaw 1989]. It
is based only on database objects returned by a query. i-equivalence
recognises the preservation of the relationship between database objects
and structural equivalence recognises differences in identities in the
structures of objects storing query results.

2) Supports strong typing. Every variable must have its type declared and it
should be only assigned objects of its type or of a subtype of its type. This
property determines whether an algebraic expression is type safe or not.
This can help in preventing run-time failures and the performance can be
greatly increased. Both Straube's object algebra and Encore query algebra
operate upon entity types, class names and collections of objects.

e) 	Database Issues.
1) Support both persistent and transient objects. The query algebra should

provide assignment operations that distinguish between persistent and
transient objects. Persistently tagged objects are retained as the
permanent object store while transiently tagged objects stay in volatile
memory. Straube's object algebra deals with persistent objects while
Encore query algebra does not deal with this issue.

2) Equivalent object calculus. It is desirable to have an object calculus whose
expressive power is equivalent to that of the object algebra as a basis for
an end-user language. Straube's object algebra defines a calculus for their
object algebra and the equivalence of expressive power between the
calculus and the algebra, while Encore's query algebra does not define a
calculus.

Chapter 2. Background
	

31

Table 2.1 summarises the two query algebras considered in this project.

Framework

Query 	Algebra

Straube Encore

Object-Orientedness
+

+

• +
 	

. + 	
+

+
 	

+
+

 	
I

I

Supports identities
Suports encapsulation
Supports inheritence hierarchy
Supports heterogeneous sets

Expressiveness
Extends relational algebra consistenly

Formal Properties
A formal semantics
A closed algebra

Performance
Provides optimisation strategies
Supports strong typing

Database Issues
Support for persistent & transient objects
Equivalent Object calculus

Table 2.1: Comparison of Query algebras

KEYS:
satisfies
does not satisfy

There are two main features that make the Object Algebra an important
internal representation which can be used in the optimiser. Firstly, Object
Algebra is a procedural language since an expression in Object Algebra gives a
set of operations on sets and the order in which they are to be performed.
Secondly, Object Algebra is an intermediate level language designed for a
range of user languages.

It is very important for an object algebra to support encapsulation so that it is
consistent with the concept of abstract data type and it has a concise semantic.
Moreover, it should provide optimisation strategies.

Chapter 2. Background 	 32

Although neither Straube's object algebra nor Encore's query algebra satisfies
all the properties, Straube's object algebra is considered superior because it
deals with formal semantics and its mathematical definition for its operators
are more efficient than the Encore's query algebra.

Chapter 3. Implementation 	 33

Chapter 3. Implementation of the translator
Introduction
The first part of the project was to design and implement the Object SQL
parser. The implementation of the Object SQL parser is based on Leroy Cain's
version of the ANSI SQL parser written in 1989.

The implementation was written in YACC and LEX, which are available on
most machines. After writing the parser, the translation rules for the Object
Algebra expressions were added to the parser. The rules were written in C
language.

Section 3.1 briefly describes LEX programming while section 3.2 describes
YACC programming. Section 3.4 gives an overview of the system developed. It
also describes how the translation was done.

3.1. An overview of LEX programming
LEX (LEXical analysis program generator) is a software tool that allows the
user to solve a wide class of problems drawn from text processing (can be used
to check the spelling of words for errors), code enciphering (can be used to
translate certain patterns of characters into others), compiler writing (can be
used to determine what tokens, that is, smallest meaningful sequences of
characters or reserved words, there are in the program to be compiled), and
other areas.

LEX can also be used to collect statistical data on features of the input, such as
character count, word length, number of occurrences of a word, etc.

A LEX specification consists of at most three sections :
1) Definitions : may contain #include, or abbreviations,
2) Rules : each rule consists of a specification of the pattern sought and the

action(s) to take on finding it, and
3) User subroutines : an action code that is to be used for several rules can

be written here and called when needed.

The sections for definitions and user subroutines are optional but if they are
present then they must appear in the order indicated; that is definitions,
followed by rules, followed by user subroutines.

Output :
Tokens,

Texts, etc.

LEX
Analyser
Program
(yylex())

LEX
Analyser

in C

Chapter 3. Implementation 	 34

The lexical analyser that LEX generates (not the file that stores it) has the name
yylex(). Figure 3.1 given below shows the creation and the use of a Lexical
analyser with LEX.

Figure 3.1 : An overview of LEX [Guide 19891

3.2. An overview of YACC programming
YACC (Yet Another Compiler-Compiler) provides a general tool for imposing
structure on the input to a computer program. The YACC user prepares a
specification that includes :
• a set of rules to describe the elements of the input.
• the code to be invoked when a rule is recognised.
• either a definition or declaration of a low-level routine to examine the

input.

YACC then turns the specification into a C language function that examines the
input stream. This function (parser) works by calling the low-level input
scanner (lexical analyser) which picks up the tokens from the input stream.
Tokens are then compared with the input construct rules (grammar rules).
When one of the rules is recognised the user code supplied (action) for this rule

Chapter 3. Implementation 	 35 "

is invoked. Actions are fragments of C language code and so they can return
values and also make use of the values returned by other actions.

Each grammar rule describes a construct and gives it a name. One grammar rule
might be :

date : month_name day ',' year ;

where date, month_name, day, and year represent constructs; month_name,
day, and year may be defined elsewhere. The comma enclosed in single quotes
means that a comma will appear literally in the input.

The lexical analyser is an important part of the parsing function. This user-
supplied routine reads the input stream, recognises the low-level constructs,
and communicates these as tokens to the parser.

A full specification file looks like :

declarations (optional)
%%

(grammar) rules
%%

subroutines (optional)

YACC turns the specification file into a C language procedure, which parses the
input according to the specifications given. The function produced by YACC is
yyparser() which is an integer valued function.

3.3. YACC and LEX
YACC and LEX can be used on their own but often a combination is more
appropriate. LEX is used to partition the input stream and the parser generator
assigns structure to the resulting pieces. The generated program (by LEX),
yylex(), is used by YACC for its analyser.

36 ' Chapter 3. Implementation

	

Lexical 	 Grammar

	

rules 	 rules

Parsed input

yylex()

Object SQL 	YACC Grammar

Parser

Co
Ge ration

Object
Algebra

Mapping
Object SQL -> Object Algebra

Object Algebra
Expression

of the Object
SQL Statement

Figure 3.2: 3.2 : LEX with YACC [Lesk]

3.4. System Overview
Figure 3.3 shows the design model of the translator from Object SQL into the
Object Algebra expression.

Figure 3.3: Design Model of Object SQL Translator

Chapter 3. Implementation 	 37

Based on the design model shown above the following steps were undertaken
to write the parser and the translator from Object SQL statements into the
Object Algebra expressions :
1) Using YACC and LEX, Leroy Cain's ANSI SQL parser [Cain 1989], and

the information supplied on Object SQL by Hewlett-Packard [Lynbaek
1991] the Object SQL parser was written.

2) The translation of Object SQL query statement into the equivalent Object
Algebra expression was performed using Dave Straube's Object Algebra
operators [Straube 1990a], namely UNION, INTERSECTION,
DIFFERENCE, MAP, and GENERATE. Using the C language the parser
was modified to write the translation rules.

The parser was written for all Object SQL statements, but the translation of an
Object SQL statement into the equivalent Object Algebra expression was
peformed only for the SELECT statement (query statement). Because of time
limitations the translation rules for the GROUP BY, ORDER BY, and HAVING
clauses for the SELECT statement were not written. Translation of the SELECT
statement with only the session variable (SELECT Name(:Alex);) was also not
done because the Object Algebra does not have the operator to handle this.

3.4.1. Modification of the Parser for the Translation Rules.
As each word of the Object SQL statement goes through the parser, it is
recognised by the compiler as a token (that is, a reserved word such as SELECT,
FOR EACH, WHERE, etc) or an identifier (that is, types, subtypes or
supertypes, functions, predicate in the WHERE clause, etc).

i) 	Creation of data dictionary using the CREATE statement
Before parsing the query statement to produce the Object Algebra expression,
the functions, types, subtypes, and supertypes have to be created and stored in
the 2-dimensional array called st_types defined below. This is referred to as the
data dictionary throughout the project.

st_types[MAXNUMIDS][MAXSTRING]

where
MAXNUMIDS : this is the maximum number of functions, types, subtypes or

supertypes that can be stored for translation of the Object
SQL query.

Chapter 3. Implementation 	 38

MAXSTRING : this is the number of characters that each function or type
can have. Function Name has 4 characters, for example.

The MAXNUMIDS and MAXSTRING values are defined in the header file
named variables.h and can be changed if necessary.

The initialisation of all the arrays is done in the initilisation.c file.

The following file st_types.c shows how the types and functions are stored in
the st-types array.

File st_types.c

include "variables.h"
#include <string.h>

store_types()
/* This procedure stores the types, subtypes, supertypes and functions in the data
dictionary so that it can be used in the translation of the queries. */

initialisationOfstoring_types();
ml = 0;
while ((ml < MAXNUMIDS) && (st_types[ml][0] != '\0'))

ml++;
if (ml == MAXNUMIDS)

printf("ERROR in storing functions");
else

stropy(st_types[ml], s_type[0]);
init_st_types = 1;

initialisationOfstoring_types()
/* This procedures initialises the st_types array only once during the execution of
the program so that more types can be added on.*/

if (init_st_types != 1)
for (m1=0; ml<= MAXNUMIDS; ml++) st_types[ml][0] =

Creation and Storing of types, subtypes, supertypes and functions can be done
using the following four statements :

1) CREATE TYPE typenamel, typename2, etc. Can have the MAXNUMIDS
(defined in the variables.h header file) of types.

Chapter 3. Implementation 	 39

2) CREATE path_element FUNCTION (type_name_list) varlist. In this
statement path_element is the name of the type, supertype or subtype
and type_name (type_name_list) is used for storing functions.

3) CREATE object_name plist. In this statement object_name is the name
of the type, supertype or subtype.

4) CREATE path_element (t_list) r_type. Here also path_element is the
name of the type, supertype or subtype.

More types, subtypes, supertypes and functions can be added to the data
dictionary in each running of the program. That is, once the program is
compiled and is running, a data dictionary consisting of the type, subtypes,
supertypes and functions can be created. SELECT statements can then be
parsed and the Object algebra expression of the statement obtained. At any
time during the execution of the program new types, subtypes, supertypes and
functions can be added to the data dictionary if the need arises.

ii) 	Storing of Result Specifications, Local variable declarations, and
Predicates of the SELECT statement.

The basic form of the SELECT statement is as follows:

SELECT result specification
FOR EACH local variable declaration
WHERE predicate

The basic form of the Object algebra expression is as follows :

Q1 y t F<Q2...Qk>

where
Ql, Q2, Qk are sets of objects, the symbol is the generate operator, F is the
predicate, and t is the target variable.

i) Result Specification
As described in Chapter 2, the result specification determines objects to be
returned. As applied to the Object Algebra expression, these result

Chapter 3. Implementation 	 40

specifications are the target variable (t) for the Object Algebra expression. The
result specification of the parser constructed has the following forms :
a) One or more functions, types, subtypes or supertypes separated by

comma or a tuple, list, bag, or set of functions. The functions can be
single valued, for example, Age, Name, etc or multi-valued, for example,
Children which may in turn have single-valued or multiple-valued
functions.

b) Constants.
c) Reserved functions (Average, Minimum, Maximum, Count, and Sum).
d) Expressions with one of the above, that is, functions, constants or

reserved functions and the manipulation operators : multiplication (*),
addition (+), subtraction (-), or division (/).

NOTE : To avoid duplicates the word DISTINCT is used.

Some of the different types of expressions implemented are :

1) 	Simple expressions
a) SELECT DISTINCT Name(p).
b) SELECT DISTINCT Name(p), Age(p).
c) SELECT DISTINCT I Name(p), Age(p) I).
d) SELECT DISTINCT < I Name(p), Age(p) >.
e) SELECT DISTINCT [I Name(p), Age(p) I].
f) SELECT DISTINCT [: Name(p), Age(p) :].

where
Name and Age are the functions and p is the range variable -for the type. [I ... I }
is a set of functions, [: :] is a bag of functions, < I ... I > is a tuple of
functions, and [I ... I] is a list of functions.

In the above statements, <p>. Name and <p>.Age are the target variables(t) for the
Object Algebra expression. When doing the translations for a list, bag, tuple,
and set of objects the Object Algebra MAP operator is used.

The target variable(t) for the above simple expressions are :
a) 	t e <p>.Name
b)-f) t E <p>.(Name, Age).

Chapter 3. Implementation 	 41

Types, supertypes, or subtypes such as Children(p) which are multi-valued, that
is, which have several single-valued functions can also be used in the result
specification.

NOTE: A query may have only one of the above forms. Although the parser
will not give an error message if more than one of the above result
specifications is used in the query, the Object Algebra expression produced will
not be correct. That is, if the result specification for a query has the following
form :

b) 	SELECT DISTINCT E l Name(p), Age(p) I], < I Name(p), Age(p) I>

then the target variable (t) for the Object Algebra expression is t E <p>.(Name,
Age, Name(p), Age(p)). This is not correct because the specification needs a list
and a tuple of functions.

Assumption : All the range variables in the set, list, bag, tuple, or result
specification with more than one simple expression should be of the same type.
That is, if the type is Person then the range variable should all be "p", range
variable for type "Person" and not a combination of type Person, p, and
subtype Children, c. For example, the following is correct :

SELECT DISTINCT [I Name(p), Age(p) I]

whereas this is not correct
SELECT DISTINCT [I Name(p), Age(c) I]

2) Expressions with constants
a) 	SELECT DISTINCT 5

where
5 is a constant. In the above statement, 5 is the target variable(t) for the Object

Algebra expression; that is, t E 5.

3) Expressions with reserved functions
a) 	SELECT DISTINCT AVG(Sal(p))

where

Chapter 3. Implementation 	 42

AVG (Average) is a predefined function, Salary is a function and p is the range
variable for the type Person. In the above statement, AVG(<p>. Salary) is the
target variable(t) for the Object Algebra expression, that is, t E AVG(<p>.Salary).

Other types of predefined functions that were implemented include MIN
(Minimum), MAX (Maximum), SUM, and COUNT.

4) 	Expressions with operators
a) 	SELECT DISTINCT [5* Salary(p)]

where
5 is a constant, * is an operator for the expression, Salary is a function and p is
the range variable. In the above statement, (5 * <p>.Salary) is the target
variables(t) for the Object Algebra expression, that is, t E (5 * <p>.Salary).

NOTE : A query can have any number of the above four types of expressions,
that is, Simple expressions, Expressions with constants, reserved functions or
with operators.

Each function, constant, reserved function, and the expression containing the
operators that will be used for the translation into the Object Algebra
expressions is recorded or saved in a 4-dimensional array; that is, an array with
the following structure :

array name[...][...][...][...].

For example, if t E <p>.Name, then function Name is stored in

function[MAXSELECT][MAXLEVEL][MAXNUMIDS][MAXSTRING]

where
MAXSELECT : this is the maximum number of subqueries or subselect

statements. It is used for the translation of a UNION,
INTERSECTION, MINUS, and DIVIDEBY of SELECT
statements, for example, SELECT 	, etc. UNION SELECT
	 MAXSELECT increases when there is a UNION,
INTERSECTION, MINUS, OR DIVIDEBY in the query.

Chapter 3. Implementation 	 43

MAXLEVEL : 	this is the level of nesting in each SELECT clause, for
example,

SELECT
FOR EACH
WHERE 	 N

(SELECT
FOR EACH
WHERE ... etc.)

MAXLEVEL =0

MAXLEVEL = 1

MAXNUMIDS, and MAXSTRING have the same definitions as those defined
for the st_types array.

The MAXSELECT and MAXLEVEL values are also defined in the header file
named variables.h and can be changed if the need arises.

File stjunction.c : The following four procedures show how the function array
defined above is used for storing the functions.

#include "variables .h"
#include <string.h>

check_func_or_types()
/* This procedure checks for the existence of the function present in the result
specification in the data dictionary*/

if (st_types[ml][0] != '\0')
if (ml == MAXNUMIDS)

printf("Too many functions or types ");
else

if (strcmp(function[0], st_types[m1]) == 0)
{
func_or_type = 1;
check_num_stats();
1

else
{
ml ++;
check_func_or_types();

else

printf("\n !!!! result specification");
printf(" '%s' is not in the database", function[0]);

check_num_stats()
/* This procedure checks for the MAXSELECT level, that is, which subquery it is :
first, second, etc. */

Chapter 3. Implementation 	 44

int tempi;
templ = j + 1;
if ((num_stats[j] == 1) && (num_stats[templ] == 0))

stat_level=j;
store_functions();

else

store_functions()
/* This procedure checks for the MAXLEVEL, that is, the level of nesting in the
query. */

int temp;
temp = i + 1;
if ((level_nesting[stat_level][i] == 1) &&
(level_nesting[stat_level][temp] == 0))

a_level=i;
st_functions();

else
i++;

st_functions()
/* This procedure stores the function in the appropriate array */

{
fl = 0;
while((fl<MAXNUMIDS)Wfunctions[stat_level][a_level][fl][0]!='\0'))

fl++;
if (fl == MAXNUMIDS)

printf("ERROR in function name");
else

strcpy (functions [stat_level] [a_level] [f 1] , function [0]);

Dissection of St f-unction.c file
The procedures in this file check if the function, type, subtype or supertype is
present in data dictionary. If it is present then it is stored in the appropriate
array for translation.

Procedure check_func_or_types() checks whether the function to be selected is
present in the database or not. The function is first stored in a two dimensional
array called functionf.S.J. This is done in the YACC specification of the parser.
This function is then compared with the functions stored in the data dictionary.
If the function or type used in the query is present in the existing data
dictionary then the procedure check_num_stats() will be executed, otherwise the
message "result specification not in the data dictionary" appears on the screen.
Each time a new function is encountered when the query is parsed, the array
function[..][..] is overwritten. (This is because the previous function has already
been stored). If two functions are queried and only one of them is in the data

Chapter 3. Implementation 	 45

dictionary then only the Object Algebra expression of the function in the data
dictionary will be performed.

Procedure check_num_stats0 checks the statement level; that is, whether it is a
first subquery, second, third, etc.

Procedure storejunctions0 checks the level of nesting in the SELECT
statement. The level of nesting increases if there is another SELECT statement
in the WHERE clause of the previous SELECT statement.

Procedure st_functions0 stores the function.

The constants (for example, 5), reserved functions (for example,
AVG(Salary(p))), other expressions (for example, [5 * Salary(p)l), and range
variables for types, subtypes, and supertypes are stored using a similar 4-
dimensional array and a similar file as shown for storing the functions. Table 3.1
summarises the arrays and files for storing the constants, range variables,
reserved functions, and other expressions.

Expression and examples Array name File name

functions or types
eg. Name(p), Children(p)

functions (eg. Name)
ranges (eg. p)

st_functions.c
st_funcranges.c

constants
eg. 5

constl constants.c

Reserved functions
eg. AVG(Salary(p))

resfuncs (eg. AVG)
col_funcs (eg. Salary)
col_ranges (eg. p)

resfunction.c
st_colfuncs.c
st_colranges.c

Other expressions
eg. [3 * Salary(p)]
or [5 * M1N(Salary(p))1

other_funcs (eg. Salary)
other_func_ranges (eg. p)
other_consts (eg. 3, 5)
other_reswords (eg. MN)
other_res_ranges (eg. p)
other_resfuncs (eg. Salary)
other_ops (eg. *)

st_otherfuncs.c
st_otherranges.c
st_otherconsts.c
st_otherreswords.c
st_otherresranges.c
st_otherresfuncs.c
st_otherops.c

Table 3.1 : Arrays and files for storing expressions

Chapter 3. Implementation 	 46

Local variable declarations
The local variable declaration describes the set of target values for the result
specification. These are either objects, types, subtypes, or supertypes. As
applied to the Object Algebra expression, these local variable declarations are
the sets of objects which are the arguments to the GENERATE operator, y, that
is, Qi y t F <Q2, , Qk>. Here Qi Qk are the local variable declarations.

For example :

SELECT
FOR EACH Person p, Children c

where Person is an object, p is a range variable for Person, Children is a subtype
of Person, and c is a range variable for Children. These are also stored in a 4-
dimensional array and similar sort of file as shown above for storing the
functions. Table 3.2 summarises the arrays and files for storing the types,
subtypes, supertypes and the range variables for types, subtypes and
supertype.

Types and examples Array name File name

types, subtypes, supertypes
eg. Person(p), Children(p)

types (eg. Person)
type_rangeS (eg. p)

st_expr_types.c
st_typeranges.c

Table 3.2: Arrays and files for storing types, subtypes, supertypes and
objects

NOTE : The root type of the query is always stored in the first element of the
array. This is done so that the Object Algebra expression generates the types of
objects specified by the root type.

iii) predicate
This is a boolean expression consisting of function calls, comparison and
boolean operators, or other SELECT statements. The predicate defined here is
used as the predicate (F) of the Object Algebra expression. The set of objects
will only be obtained if the predicate specified is true.

Chapter 3. Implementation 	 47

a) Queries with simple predicate (contains comparison and boolean
operators) :

SELECT Name(p)
FOR EACH Person p, Children c
WHERE Name(c) = 'Tom' AND Name(c) IN Children c;

This query has the condition that the name of the child should be Tom and that
he should be present in the subtype Children of the Person type. Therefore, the
predicate (F) for the Object Algebra expression will be <c>.Name = 'Tom' AND
<c>.Name E <c>.Children.

Or another example could be

SELECT Name(p)
FOR EACH Person p
WHERE Address(p) = 'Tasmania';

This query has the condition that the Address of the Person should be Tasmania.

NOTE : In Object Algebra expression "A" is AND and "E" (ELEMENT of) is

b) Nested queries, that is, predicate containing SELECT statement :
When another SELECT statement appears in the predicate clause of the
previous SELECT statement, the translation is done in a slightly different way.

For example :

SELECT Name(p)
FOR EACH Person p
WHERE (Name(p)) IN

(SELECT Name(c)
FOR EACH Children c
WHERE Age(c) >= 2);

This is a nested query and has the condition that the Age of the Children should
be greater than or equal to 2.

The Object Algebra expression produced is as follows :

Chapter 3. Implementation
	 48

Person y t Et e <p>.Name A <c>.Name E

(Children yt Et e <c>.Name A <c>.Age >= 21<>}]<>

The second SELECT statement, that is,
SELECT Name(c)
FOR EACH Children c
WHERE Age(c) >= 2;

is translated into the Object Algebra expression (shown in {..)) and this becomes
the predicate of the first SELECT statement.

NOTE: In the Object Algebra expression the target variables and the predicates
are enclosed in the square brackets, that is, they will appear in [..].

All other nested queries are translated in a similar way, that is, each SELECT
statement appearing in the predicate clause appears in C.} in the Object Algebra
expression. The nested queries use the same variables but only increase the
level_nesting to the required level.

Each of the functions, range variables, comparisons and boolean operators, and
so on are also stored in separate files using different 4-dimensional arrays. Table
3.3 shows the array names and files for storing the predicate Identifiers.

Chapter 3. Implementation 	 49

Predicate types and example Array name File name

functions or types predfunc1 st_predfuncs.c
eg. Name(c), Age(c) predfunc_range1 st_predfuncranges.c

Comparison operators(=, <, >, <=, Comp_operator1 comp_operators.c
>=, <>) and IN and NOT_IN

Strings
eg. 'Tasmaina', Alex

subtypes, types,supertypes

str1

pred_type1

st_strings.c

st_predtypes.c
eg.....IN Children(c) pred_type_range1 st_predtyperange.c

Operators(IN, NOT_IN, EXISTS pred_op_type1 predfunc.c
NOT_EXISTS) in nested SELECTs

functions, types for the nested pred_infunc1 st_pred_infuncs.c
SELECTs, that is,Name(p) IN pred_infunc_range1 st_pred_infuncranges.c
(SELECT....)

Table 3.3: Arrays and files for storing predicates

Joining two or more subqueries with simple predicate or predicates
containing SELECT statements could be as follows :
Two or more subqueries can be joined together using the UNION,
INTERSECTION, and MINUS (DIFFERENCE) set operators. The translations of
these queries are same as the above two queries (simple and nested) including
only the set operator between the subqueries.

For example, the following query returns the names of all people who have a
Child named Tom OR who live in Tasmania.

SELECT Name(p)
FOR EACH Person p, Children c
WHERE Name(c) = 'Tom' AND Name(c) IN Children c;

UNION

SELECT Name(p)
FOR EACH Person p
WHERE address(p) = 'Tasmania';

Chapter 3. Implementation 	 50

Translation
Once all the variables are stored in appropriate files as defined in the tables
above, they are translated and printed out as they will appear in the Object
Algebra expression. The printing of the SELECT query is done in the printingl .c
file and printing.c file.

The printingl.c and printing.c files are the same except that printingl.c files
prints the output, that is, the Object algebra expression onto an output file
while the file printing.c simply prints it on the screen for the user to see it.

File : printingl.c
******* * **** * **** ***** *rt * 114 *** ***** *** *V* ******* *** **** * 	* ***** **** * ***** 	* ** **** * •140K+* 	* V* .1* *

include "variables. h"
#include <string.h>
#include <stdio.h>
int a;
FILE *ifp;

/**/

/* This procedure prints the introduction of each object algebra expression obtained
*/

introduction()
{
fprintf(ifp, "\n \n **.);
fprintf(ifp, "\n\nThe Object Algebra Expression of the above Query is :\n");
}

/** **** ******* ***** ******* ***** ******* ***** ******* ***** ******* ***** **/

/* This procedure prints the object algebra expression
*/

Chapter 3. Implementation 	 51

printing_OA_expression()

setl = 0;
i = 0;
a_level = 0;
stat_level = 0;
introduction();
fprintf(ifp,"\n\n");
print_OA_expr();
check_for_next_select_statement();

**/

print_OA_expr()

print_levels();
print_rest_of_exprs();
a_level = 0;

/**/

print_levels()

fprintf(ifp, "%s ", types[stat_level][a_level][0));
fprintf(ifp, "GEMMA (t) [t is an ELEMENT of ");
print_specs();

/**/
/* This procedure checks the combinations of the result specification of the query
*/

print_specs()
{
if (functions[stat_level][a_level][0][0] != '\0')

if (col_funcs[stat_level][a_level][0][0]
if (constl[stat_level][a_level][0][0] != '\0')

if (other_exprl[stat_level] [a_level)(0)!='\0')
{
print_expr_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_func_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_const_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_other_expr_spec();
1

else

print_expr_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_func_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_const_spec();
}

else
if (other_exprl[stat_level][a_level)[0]!='\0')

{
print_expr_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_func_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_other_expr_spec();

else

print_expr_spec();
fprintf(ifp," AND t is an ELEMENT of ");

Chapter 3. Implementation 	 52

print_func_spec();

if (constl[stat_level][a_levell[0][0)
if (other_exprlistat_level)(a_level][0]!='\0')

print_expr_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_const_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_other_expr_spec();

else

print_expr_spec();
fprintf(ifp," AND t is an -ELEMENT of ");
print_const_spec();

else
if (other_exprl[stat_level][a_level][0]!=

print_expr_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_other_expr spec();

else
print_expr_spec();

if (col_funcs[stat_level][a_level][0][0)
if (constl[stat_level](a_level][0][0] != '\0')

if (other_exprl(stat_level)(a_level][0)!='\0')

print_func_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_const_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_other_expr_spec();

else

print_func_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_const_spec();

if (other_exprl[stat_levellla_level][0]!='\0')

print_func_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_other_expr_spec();

else
print_func_spec();

if (constl[stat_level)(a_level][0][0] !=
if (other_exprl[stat_level][a_level][0]!='\0')

print_const_spec();
fprintf(ifp," AND t is an ELEMENT of ");
print_other_expr_spec();

else
print_const_spec();

else
if (other_exprl[stat_level][a_level][0]!= '\O')

print_othe_expr_spec();

check_predicate();
check_for_next_level();

else

else

else

else

Chapter 3. Implementation 	 53

/**/
/* This procedure translates other expressions of the result specification of the
query
*/

print_other_expr_spec()
{
ocl = 0;
opl = 0;
ofrl = 0;
of]. = 0;
ores]. = 0;
orangl = 0;
orfl = 0;

if (other_exprl[stat_level][a_level)(0) == 1)
fprintf(ifp,"(");

for (oel = 1; oel < 100; oel++)
{
if (other_exprl[stat_level)[a_level][oel) !=

print_other_expr();
if (other_exprl[stat_level][a_level](oel] == 1)

{
ocl++;
opl++;
ofrl++;
of1++;
oresl++;
orangl++;
orfl++;
fprintf(ifp,",(");
print_other_expr();

}

/******** ********************** ********************** ****************/

print_other_expr()
{
if (other_exprl[stat level][a_level Hoel] == 3)

fprintf(ifp,"i-s", other consts[stat_level][a_level][oc1]);
if (other_exprl(stat level][a -level Hoel] == 5)

fprintf(ifp," -is ", otlier_ops(stat levela_level][opl]);
if (other_exprl[stat_level][a_level][oel]- 	

ll
== 2)

{
fprintf(ifp,"<%s>", other_func_ranges[stat_level][a_level][ofr1));
fprintf(ifp,".%s", other_funcs[stat_level][a_level)(of].]);

if (other_exprl[stat_level](a_level][oel] == 4)

fprintf(ifp,"%s", other_reswords[stat_level)(a_level] [ores1]);
fprintf(ifp,"(<%s>", other_res_ranges[stat_level][a_level][orang1]);
fprintf(ifp,".%s)", other_resfuncs[stat_level][a_level][orf1]);

if (other_exprl[stat_level][a_level][oel] == 6)
fprintf(ifp,")");

/**/
/* This procedure translates the constants of the result specification of the query
*/

print_const_spec()

if (constl(stat_level] [a_level][1][0] ==
fprintf(ifp,"%s", constl[stat_level][a_level][0]);

Chapter 3. Implementation 	 54

else

fprintf(ifp,"%s", constl[stat_level][a_level][0]);
for (conl.= 1; conl < 10; conl++)

if (constl[stat_level][a_level](con1)(01
fprintf(ifp,",%s",Constl[stat_level][a_level)[conl]);

/**/
/* This procedure translates the functions, types, subtypes, supertypes of the
result specification of the query
*1

print_expr_spec()

if (functions(stat_levellla_level][1][0] ==
fprintf(ifp,"<%s>.%s", ranges(stat_levelfla_level][0],
functions(stat_level][a_level][0]);

else

fprintf(ifp,"<%s>.(%s",
ranges(stat_levellla_level][0],functions[stat_level][a_level] [0]);
for (fl = 1; fl < 10; fl++)

if (functions[stat_levelHa_level][f1](0]
fprintf(ifp,",%s", functions[stat_level) [alevel][fl]);
fprintf(ifp,")");

/**/
/* This procedure translates the reserved functions of the result specification of
the query

print_func_spec()

fprintf(ifp,"%s(<", res_funcs[stat_level][a_level][0]);
fprintf(ifp,"%s>.", col_ranges(stat_level][a_level)[0]);
fprintf(ifp,"%s)", col_funcs[stat_level][a_level][0]);
if (col_funcs[stat_level][a_level][1][0] != '\0')

crl = 0;
rfl = 0;
for (cl = 1; cl < 10; cl++)

crl++;
rfl++;
if (col_funcs[stat_level](a_level)(c1] [0] !=

fprintf(ifp," AND t is an ELEMENT of ");
fprintf(ifp,"%s(<",res_funcs(stat_level][a_level]
fprintf(ifp,"%s>.",
col_ranges[stat_level][a_level] [crl));
fprintf(ifp,"%s)", col_funcs(stat_level] [a_level]
1

/***/
/* This procedure checks if there are any predicates or not
*/
check_predicate()

if (pred_spec != 0)
print_pred_spec();

/***/
/* This procedure translates the predicate of the Query

Chapter 3. Implementation 	 55

print_pred_spec()

char in_op[1][128];
char not_in_op[1][128];
copl = 0;
sl = 0;
pael = 0;
Pt = 0;
pte = 0;
strcpy(in_op[0], "IN");
strcpy(not_in_op[0], "NOT IN");
for (pal = 0; pal < 5; pal++)

if (predfuncl[stat_level)(a_level)(pal)[0] !=

fprintf(ifp," AND <%s>.",
predfunc_rangel[stat level)[a_level][pael]);

fprintf(ifp,"%s", predfuna[stat_level](a_level)(pal));
if(strcmp(in_op[0],

Comp_operatorl[stat_levellla_level][copl])=0)
{
fprintf(ifp," IS AN ELEMENT OF ");
fprintf(ifp,"<%s",
pred_type_rangel[stat_level][a_level](pte));
fprintf(ifp,">.%s",pred_typel[stat_level][a_level](pt));
pt++;
pte++;

else if(strcmp(not_in_op[0],
Comp_operatorl[stat_level][a_level][cop1))==0)

{
fprintf(ifp," IS NOT AN ELEMENT OF ");
fprintf(ifp,"<%s",
pred_type_rangel[stat_level][a_level] [ptep;
fprintf(ifp,">.%s",pred_typel[stat_level][a_level](pt));
pt++;
pte++;

else
{
fprintf(ifp,"%s",
Comp_operatorl[stat_level][a_level)[copl]);
fprintf(ifp," %s ", strl[stat_level] [a_level][s1]);
cop 14+;
sl++;

}
pael++;

/***/

/* This procedure translates other types, subtypes and supertypes.

print_tables()
{
a_level = a;
if (types[stat_level][a_level][1] ==

fprintf(ifp,"<>");
else

fprintf(ifp,"<");
fprintf(ifp,"%s", types[stat_level] [a_level](1));
for (ti = 2; tl < 10; tl++)

if (types[stat_level](a_levelMt1)[0] != '\0')
fprintf(ifp,",%s", types[stat_level][a_level] [t1]);

fprintf(ifp,">");

Chapter 3. Implementation 	 56

/***/
/* This procedure translates the next level of the SELECT statement in the. nested
queries
*/

check_for_next_level()
{
char p_in_op[1][128];
char p_not_in_op[1][128);
i++;
strcpy(p_in_op[0], "IN");
strcpy(p_not_in_op[0], "NOT_IN");
if(level_nesting[stat_level][i] ==1)

fprintf(ifp," AND ");
fprintf(ifp,"<%s>.", pred_in_func_rangel[stat_level][a_level][0]);
fprintf(ifp,"%s", pred_in funcl[stat level][a level][0]);
if(stromp(p_in_op[0],pred'op_typel[si-at_leveff[a_level][pfl])==0)

{
fprintf(ifp, " IS AN ELEMENT OF ");
pfl++;
1

else
if (stromp(p_not_in_op[0],pred_op_typel[stat_level][a_level]
[pfl])==0)

{
fprintf(ifp, " IS NOT AN ELEMENT OF ");
pfl++;

a_level++;
fprintf(ifp," \n{");
print_levels();

/***/
/* This procedure translates the remaining expressions after printing the predicates
*/

print_rest_of_exprs()

for (a = a_level; a > 0; a--)

fprintf(ifp,"]");
print_tables();
fprintf(ifp,"I");

if (a == 0)
{
fprintf(ifp,"]");
print_tables();

/***/
/* This procedure checks for the existence of other subqueries
*/

check_for_next_select_statement()

stat_level++;
if (num stats[stat_level] == 1)

fprintf(ifp," \n\n%s\n\n", set_opl[set1]);
print_OA_expr();
setl++;
check_for_next_select_statement();

Chapter 3. Implementation 	 57

Dissection of printingl.c file
Procedure introduction° just prints the introduction.

Procedure printing 0A_expression0 calls procedure print_OA_exprO. It also
checks if there are any more subqueries available.

Procedure print_OA_exprO checks if there are any SELECT statements to be
translated. If there are then this procedure calls the procedures print_levels°
and print rest_of exprs0.

Procedure print_levels° translates the root type as the first argument of the
GENERATE operator (represented by GEMMA). It then calls the procedure
print spec°.

Procedure print_spec0 checks the different combinations of the four types of
result specifications : constants, functions, reserved functions, and other
expressions containing operators. If there is some value in the arrays for storing
the functions, constants, reserved functions, and other expressions then it
means that the result specifications have that type of expression so it has to be
translated. This procedure will then call other appropriate procedures to do the
translations. The four procedures for the translations of the result specification
(of Object SQL query) into the target variable, t (for the Object Algebra
expressions) are : print_const_specO, print expr_specO, print_func_specO, and
print other_expr_specO. In this procedure the procedures check_predicate°
and check_for_next_level0 are also called.

Procedure print_const spec° does the translation of the expressions with
constants. All the constants are printed out one after the other.

Procedure print expr_spec0 does the translation of the simple expressions with
list, tuple, set, or bag of functions, types, subtypes, supertypes, or simply
functions, types, subtypes, supertypes separated by commas.

Procedure print_func_spec0 does the translation of the expressions with
reserved functions.

Chapter 3. Implementation 	 58

Procedure print_other_expr_spec0 does the translation of the expressions with
manipulation operators (for example, [5 * AVG(Salary(p)) + OverTimePay(P)] .
To make the translations easier an array

other_exprl [stat_level][a)level][oel]
is used to assign a number to each of the open and closed square brackets,
functions, constants, and reserved functions encountered. That is, if "[" is
encountered then the number "1" is stored in the other_exprl array; if a function
or type such as Name(p) is encountered then the number "2" is stored in the
other_exprl array, and so on. Table 3.4 shows what number is assigned to which
of the symbols or expressions in the other expressions.

Identifier/Token Number

[
function (eg. Salary(p))
Constant (eg. 4)
Reserved function (eg, AVG)
Operator (eg, 1
]

v--
CV

 C
y)

 '1
' L

O
 C

O

Table 3.4

During the translation this array is checked first to see how the expression
should be printed out. It is important to note that these expressions are printed
out as they appear in the result specification of the Object SQL query. Although
the precedence of the operators has been implemented in the parser, it does not
matter in the translation rules.

Procedure check_predicates0 checks if the query has any predicates or not. If it
has then the procedure print_pred_spec0 is called.

Procedure print_pred_spec0 translates the predicate part of the Object SQL
query into the Object Algebra expression.

Procedure print_tables0 translates all the types, subtypes, and supertypes of
the Object SQL query.

Procedure checkjor_next level() checks for the presence of the nested queries.

Procedure print_rest of exprs0 translates all the expressions after translating
the predicate of the Object SQL query.

Chapter 3. Implementation 	 59

Procedure check_for_next_select_statement0 checks if there are any
subqueries.

3.4.2. Use of Translator
The following steps show how to obtain the Object Algebra expression using
the parser (translator) written :
1) Firstly, compile the program using the make command.
2) Then run the program using object_sql.
3) At the 1» prompt use the CREATE statement to create the functions,

types, subtypes and supertypes. If this step is not done then the Object
Algebra expression will not be produced. The message "Result
Specification not in the database" will appear on the on the screen.

4) Then type the required Object SQL SELECT statement. The parser goes
through each word and recognises each one according to the grammar
rules specified in the YACC and LEX files.

5) After the whole query is parsed and there is no error the Object Algebra
expression is printed out onto the output_file.

6) Open the output_file using the vi editor. Each of the SELECT statements
is separated by a line of stars (*'s)•

Notes :
1) Each time the program is run, a number of queries can be performed.

However, each time a new program is run, that is, each time "object_sql"
is typed, a new file is created. In other words the output_file is
overwritten so if it is required to store the previous Object Algebra
expressions the output_file should be copied to another file before
running the program again.

2) During the actual printing of the Object Algebra expression in the
output_file the symbol y is replaced by the word "GEMMA" and the
symbol E is replaced by the words "is an ELEMENT of".

Chapter 4. Results 	 60

Chapter 4. Results
The following examples cover most of the translations performed or handled
by the translator. Appendix B gives the output result of some of these queries.

1) Some of the simple queries translated are :

Example 1 : Select the names of all people who live in Los Angeles.

Object SQL SELECT QUERY

SELECT Name(p)

FOR EACH Person p

WHERE Address(p) = 'Los Angeles';

The Object Algebra expression of the above query is :

Person yt[t E <p>.Name A <p>.Address = 'Los Angelesl<>

Example 2 : Select the names and age of all people. This is a tuple of 2
functions.

Object SQL SELECT QUERY

SELECT <IName(p), Age(p)I>
FOR EACH Person p;

The Object Algebra expression of the above query is :

Person yt[t E <p>.(Name, Age)]<>

Example 3 : Select the set of names, age, dateofbirth, salary of all people.
This is a list of four functions.

Chapter 4. Results 	
61

Object SQL SELECT QUERY

SELECT {IName(p), Age(p), DateOfBirth(p), Salary(p)11

FOR EACH Person p;

The Object Algebra expression of the above query is :

Person yt[t E <p>.(Name, Age, DateOfBirth, Salary)]<>

Example 4: Select the names of all people who have a child called Alex.

Object SQL SELECT QUERY

SELECT Name(p)

FOR EACH Person p, Children c

WHERE Name(c) = 'Alex' AND Name(c) IN Children(p);

The Object Algebra expression of the above query is :

Person yt [t E <p>.Name A <c>.Name = 'Alex' A <c>.Name

<p>.Children]<Children>

Example 5: Select the names and AVG(Salary(p)) of all people.

Object SQL SELECT QUERY

SELECT Name(p), AVG(Salary(p))

FOR EACH Person p;

The Object Algebra expression of the above query is :

Person yt[t E <p>.Name A t EAVG(p.Salary)]<>

Chapter 4. Results
	 62

Example 6: Select constant 5 of all people.

Object SQL SELECT QUERY

SELECT 5

FOR EACH Person p;

The Object Algebra expression of the above query is :

Person yt[t E 51<>

Example 7: Select constant 5* Salary of all people.

Object SQL SELECT QUERY

SELECT [5 *Salary(p)]

FOR EACH Person p;

The Object Algebra expression of the above query is :

Person yt[t e (5 * <p>.Salary)]<>

Example 8 : Select the set of names, age, dateofbirth, and Children and
Average Salary of all people.

Object SQL SELECT QUERY

SELECT IINarne(p), Age(p), DateOfBirth(p), Children(p)11, AVG(Salary(p))

FOR EACH Person p;

The Object Algebra expression of the above query is :

Person yt[t E <p>.(Name, age, DateOfBirth, Children) A t E AVG(p.Salary)]<>

Chapter 4. Results 	 63

Example 9 : Select constant 5 * Salary + Overtime pay of all people.

Object SQL SELECT QUERY

SELECT [5 * Salary(p) + OvertimePay(p)]

FOR EACH Person p;

The Object Algebra expression of the above query is :

Person yt[t E (5 * <p>.Salary + <p>.OvertimePay)]<>

Example 10 : Select the names of all people who live in the State of Tasmania
and in the City of Hobart and in the Street of Murray.

Object SQL SELECT QUERY

SELECT Name(p)

FOR EACH Person p

WHERE State(p) = 'Tasmania' AND City(p) = 'Hobart' AND Street = 'Murray';

The Object Algebra expression of the above query is :

Person yt[t E <p>.Name AND <p>.State = 'Tasmania' AND <p>.City = 'Hobart' AND

<p>.Street = 'Murray']<>

ii) Nested queries, that is, queries containing SELECT statements in its
WHERE predicate.

Example 1: Select the names of all people who have children greater than 10
years of age.

Chapter 4. Results
	 64

Object SQL SELECT QUERY

SELECT Name(p)

FOR EACH Person p

WHERE Name(p) IN

(SELECT Name(c)

FOR EACH Children c

WHERE Age(c) > '10') ;

The Object Algebra expression of the above query is :

Person yt[t E <p>.Name A <p>.Name E

Children yt[t E <c>.Name A <c>.Age > '101<> }]<>

Example 2 : Select the names of all people who have children whose name is
not Tom.

Object SQL SELECT QUERY

SELECT Name(p)

FOR EACH Person p

WHERE Name(p) NOT_IN

(SELECT Name(c)

FOR EACH Children c

WHERE Name(c) = `Tom');

The Object Algebra expression of the above query is :

Person yt[t E <p>.Name A <p>.Name NOT E

f Children yt[t E <c>.Name A <c>.Name = 'Alex']<> }]<>

Example 3 : Select the names of all people and names of all the children
whose age is less than two.

Object SQL SELECT QUERY

Chapter 4. Results 	 65

SELECT Name(p)

FOR EACH Person p

WHERE Name(p) IN

(SELECT Name(c)

FOR EACH Children c

WHERE Age(c) NOT_IN

(SELECT Age(c)

FOR EACH Children c

WHERE Age(c) < '2')) ;

The Object Algebra expression of the above query is :

Person yt[t E <p>.Name A <p>.Name E

(Children yt[t E <c>.Name A <c>.Age NOT E

Children yt[t e <c>.Age A <c>.Age < '21<> 1]<>}}<>

iii) Combining the result bag of 2 subqueries using UNION,
INTERSECTION, MINUS, or DIVIDEBY.

Example 1 : Select the names of all people who live in either Los Angeles or
in San Jose.

Object SQL SELECT QUERY

SELECT Name(p)

FOR EACH Person p

WHERE Address(p) = 'Los Angeles'

UNION

SELECT Name(p)

FOR EACH Person p

WHERE Address(p) = 'San Jose';

The Object Algebra expression of the above query is :

Chapter 4. Results
	

66

Person yt[t e <p>.Name A p.Address = 'Los Angeles']<>

UNION

Person yt[t E <p>.Name A p.Address = 'San Jose']<>

Example 2 : Select the names of all people that receive either salaries of
Teachers or salaries of Researchers.

Object SQL SELECT QUERY

SELECT Salary(r)

FOR EACH Researcher r

UNION

SELECT Salary(t)

FOR EACH Teacher t;

The Object Algebra expression of the above query is :

Researcher it[t E <r>.Salary]<>

UNION

Teacher yt[t E <t>.Salary]<>

Example 3 : Select constant 5 * Salary of all people or select the names of all
people who have children greater than 10 years of age.

Object SQL SELECT QUERY

SELECT [5 * Salary(p)]

FOR EACH Person p

UNION

Chapter 4. Results 	 67

SELECT Name(p)

FOR EACH Person p

WHERE Name(p) IN

(SELECT Name(c)

FOR EACH Children c

WHERE Age(c) > 10;

The Object Algebra expression of the above query is :

Person yt[t e (5 *<p>.Salary)]<>

UNION

Person yt[t E <p>.Name A <p>.Name E

{ Children yt[t E <c>.Name A <c>.Age > 101<> 11<>

Example 4: Select the names of all people who have children whose name is
not Tom or select the names of all people and names of all the children
whose age is less than two.

Object SQL SELECT QUERY

SELECT Name(p)

FOR EACH Person p

WHERE Name(p) NOT_IN

(SELECT Name(c)

FOR EACH Children c

WHERE Name(c) = 'Tom'

UNION

SELECT Name(p)

FOR EACH Person p

WHERE Name(p) IN

(SELECT Name(c)

FOR EACH Children c

Chapter 4. Results 	 68

WHERE Age(c) NOT_IN

(SELECT Age(c)

FOR EACH Children c

WHERE Age(c) < '2';

The Object Algebra expression of the above query is :

Person yt[t E <p>.Name A <c>.Name IS NOT AN E

{ Children yt[t E <c>.Name A <c>.Name = 'Alexl<> }]<>

UNION (U)

Person yt[t E <p>.Name A <p>.Name E

{ Children yt[t E <c>.Name A <c>.Age > 10 AND <c>.Age NOTE

{ Children yt[t E <c>.Age A <c>.Age < '2']<> }}<>1]<>

Example 5 : Select the names of all people who live in the State of Tasmania
and the City of Hobart.

Object SQL SELECT QUERY

SELECT Name(p)

FOR EACH Person p

WHERE State(p) = 'Tasmania'

INTERSECTION

SELECT Name(p)

FOR EACH Person p

WHERE City(p) = 'Hobart';

The Object Algebra expression of the above query is :

Person yt[t E <p>.Name A <p>.State = 'Tasmanial<>

INTERSECTION

Chapter 4. Results 	 69

Person yt[t e <p>.Name A <p>. City = 'Hobartl<>

Chapter 5. Conclusion 	 70

Chapter 5. Conclusion

5.1. Achievements
The main aim of this project was to write a translator from Object SQL into the
Object Algebra expression. The project was worked on from early February
1993 to mid January 1994. During this period the following goals were
accomplished :
a) a working definition of the Object SQL statements, that is, a parser for

the Object SQL was written.
b) Using Straube's object Algebra [Straube 90a], the rules for translations of

Object SQL statements into Object Algebra expressions were written.
(The selection of the Object Algebra to be used in this project was done
by a Masters student as part of her thesis.)

c) Then using the translation rules and the working parser, a working
translator was written. The translator uses the Object SQL query
statement as input and produces an Object Algebra expression as the
output.

The results of the translations from Object SQL into the Object Algebra
expressions is presented in Chapter 4 of this thesis. The implementation
methods are discussed in Chapter 3.

The translation of the logical operator "AND" was performed but not the
translations for the logical operator "OR". This was so because the "UNION"
operator can be used to combine two subqueries which will have the same
effect as having an "OR" in the predicate of the Object SQL query statement.

When doing the nested queries, only the "IN" and "NOT IN" operators were
implemented. To make the implementation easier the "NOT IN" is used as a
single word "NOT_IN".

Clauses like GROUP BY, ORDER BY, and HAVING were not translated. Also,
since the translation of other Object SQL statements such as UPDATE,
CREATE, DELETE, INSERT are not as well defined for objects stores as for
relational databases, translation of these was not performed.

Chapter 5. Conclusion 	 71

5.2. Discussion/Conclusions
Although this project was a continuation of a 1992 honours project in which the
Object SQL parser was written, the parser was not used. Instead a completely
new parser was written.

Since the official (Hewlett-Packard) Object SQL grammar does not exist yet,
there is no guarantee that the grammar rules that I have written will closely
resemble those written by Hewlett-Packard.

After some initial problems in using the YACC and LEX to write the parser I
found that YACC and LEX provided a convenient form of making the Object •
SQL compiler. One of the major problems encountered during the writing of
the parser was the "conflicts (shift/reduce or reduce/reduce)" in some of the
rules. Because there were so many rules at times it was hard to get rid of some
of the shift/reduce conflicts. The rules that had the conflicts had to be studied
very carefully to make sure that the right result was obtained.

Also the use of C language with YACC and LEX to write the translation rules
was very convenient. During the course of this project I learnt a lot about C,
YACC and LEX programming.

A data dictionary was created before doing the translations of the query.

Since an Object SQL standard does not exist yet, the existing Leroy Cain's SQL
compiler provided a convenient starting point for the Object SQL compiler.
With slight modifications some of Leroy Cain's [Cain 1989] files used in the
SQL parser were used in the Object SQL parser.

The Object Algebra (by Straube) used in this project was a more convenient
target language than other Object Algebras such as the one provided by Zdonik
and Shaw [Shaw 1989]. Also fortunately the Object Algebra used had an
operator GENERATE which could be used in the translation of the Object SQL
into the Object Algebra expression.

Dave Straube's Object Algebra was used to fulfil the role of a complete internal
representation of the Object SQL queries. This enabled the subset of Object SQL
queries to be translated into the Object Algebraic expressions.

Chapter 5. Conclusion 	 72

Some of the features that Straube's object algebra supports are :
1) Object-Orientedness (supports identities, encapsulation, inheritance

hierarchy, and heterogenous sets).
2) Formal Properties (a formal semantics and a closed algebra).
3) Performance (provides optimisation strategies and supports strong

typing).
4) Database Issues (has an equivalent object calculus).

Also, Straube's Object Algebra has a very detailed mathematical definition of
its operations. The proofs of all these operations are also provided. This is very
important so that the meaning of the Object Algebra is very clear and can be
easily used in the query optimisation process.

5.3 Summary
This project involved OODBMS, new technology that is still in the early stages
of the development process. In the next couple of years OODBMS is likely to
become a very common and widely used database system. Object-Oriented
databases and languages have some major advantages over relational
databases. They tend to provide a more structured, consistent, and powerful
base than their older counterparts.

Some of the important features that OODBMS allows are :
• complex type definitions.
• encapsulation of information in a package-like environment, removing

the possibility of non-standard functions accessing private data.
• ability to overload methods, providing convenience for programmers

who then do not have to remember extra function names.
• abstraction of implementation away from the end-users.
For these reasons OODBMS is appearing as one of the leading technologies for
this decade.

Object SQL is used as a query language for the OODBMS. It is a subset of the
ANSI SQL standard with object processing extensions. It is not tied to a specific
language but is intended to combine the best from object-oriented
programming languages with the benefits of declarative data definition and
manipulation languages of SQL.

Chapter 5. Conclusion 	 73

Nowadays, query algebra is gaining a lot of attention in the database area.
Researchers are trying to define a query model and an Object-Oriented algebra
that will help in query optimisation.

Some of the properties of the query languages are : object-orientedness,
expressiveness, formal properties, performance, and database issues.

5.3. Future Work
One of the major criticisms of most database management systems is their lack
of efficiency in handling the powerful operations they offer. This can be
particularly seen on gaining data accesses through the use of queries, where it
is essential to provide immediate responses to user requests. Query
optimisation attempts to solve this problem. Hence query optimisation is seen
as one of the important aspects of query languages.

The translator from Object SQL into the Object Algebra expression written in
this project can be used in the optimisation process. Most of the translation
rules have been written. The translation of clauses like GROUP BY, ORDER BY,
and HAVING of the Object SQL query statement has not yet been
implemented. The Object Algebra used in this project needs to be extended to
include these translations.

In the implementation of the translator the data dictionary used for storing the
functions and types is an array. This data dictionary could be divided into a
data dictionary containing the functions and a data dictionary containing the
types.

In the result specification it is assumed that the range variables for all the
functions in the list, set, etc, are the same. That is, for example, at the moment
the result specification should have the following form :

I Name(p), Age(p), Birthdate(p) I)
If it is not in the above form the translator will not give an error message and
the Object Algebra expression produced will not be correct. However, this
translation rule could be modified further to check for the range variables of
different types, subtypes and supertypes.

Chapter 5. Conclusion 	 74

Furthermore, some more operators need to do added to Straube's Object
Algebra to translate the DELETE, INSERT, UPDATE, and CREATE statements.

75 Appendix

Appendix A: Object SQL Parser and Translator

A.1. Explanation of Symbols used in EBNF Grammar
Table A.1 summarises some of the symbols used in the EBNF grammar rules.

Symbol Symbol Meaning

WORD Terminal symbol (reserved word)

word Non-terminal symbol, that is, a 'pointer' to
another rule in the grammer

i l Optional

() Grouping

1 Or

"s", 's' If s is a symbol, then it is a non-terminal,
otherwise, it is a symbol having the same
character sequence as in the input.

()* Zero or more

()+ One or more

{ } C procedures for rule translations

Table A.1: Symbols used in EBNF grammar

In the following section the Extended Backus Naur Form (EBNF) of the Object
SQL language (as defined in the Object SQL parser) is presented.

A.2. Grammar for Object SQL parser

NOTE: Although not shown, each rule terminates with a semicolon.

object_sql_internal_statement ::= (stats)+

I RW_STORE RW_PROGRAM prog_name `(` parmlist ')' (stats)+ RW_END

RW_STORE

stats ::= states (`;' states)*

Appendix 	 76

states ::= [ses_var ':'] osql_statement

parm_list ::= parm (`, 1 parm)*

parm ::= parm_name ['=' expr RW_ASSIGN]

parm_name ::= IDENTIFIER

initialization_of_arrays ::=

init_of_arrays();

initialization0f_num_stats ::=

for 0=0; j <=10; j++)

num_stats[j] = 0;

initialization0f_l_nesting ::=

for 0=0; j <=10; j++)

level_nesting[j][0] = 0;

osql_statement ::= add I alter I audit I begin I check I close I comment I commit I

connect I create I delete I disconnect I drop I dump I fetch I grant I import I info

I insert I lock I open I remove I repair I restore I revoke I rollforward I

rollback I savepoint I initialization0f_num_stats initialization0f_l_nesting

{sel_stat = 0;} select I ses_var I set I shell I start I sync I update I export I

SCRIPT

create ::= RW_CREATE RW_TYPE multi_valued_objects [sub_type function_defs]

I RW_CREATE type view_name [vfd] RW_AS select_statement [with_clause]

I RW_CREATE RW_SYNONYM syn_name RW_FOR path

I RW_CREATE unique RW_CLUSTER RW_INDEX index_name RW_ON path

I RW_CREATE RW_DATABASE dbname RW_TYPE dbtype RW_ON hname

[with_clause]

Appendix 	 77

I RW_CREATE RW_DOMAIN domain_name_list RW_IS domain_types defaults

domain_restricts

I RW_CREATE RW_CONSTRAINT constr_name triggerlist RW_CHECK

predicate

I RW_CREATE path_element RW_FUNCTION '(' type_name_list varlist

I RW_CREATE object_name p_list

I cs RW_FUNCTION path_element '(` t_list 	[r_type]

I RW_CREATE RW_CLUSTER RW_TABLE path tfd_list [with_clause] '('

order_list 	[with_clause]

p_list ::= ses_var (ses_vars)*

cs ::= RW_CREATE

I RW_IMPLEMENT

t_list ::= type_name_list

I fp_list

fp_list ::= var_decl (',' var_decl)*

r_type ::= RW_AS as_list

tfd_list ::= [primary_keys] [foreign_keys] field_defs

primary_keys ::= RW_PRIMARY '(` primary_keys ')'

primary_keys ::= field (',' field)*

foreign_keys ::= foreign_keys foreign_key

foreign_key ::= RW_FOREIGN '(' f_key IDENTIFIER path nulls

RW_DELETE RW_OF effect RW_UPDATE RW_OF path effect

f_key ::= IDENTIFIER

nulls ::= RW_NULL RW_ALLOWED

I RW_NULL RVV_NOT RW_ALLOWED

field_defs ::= '(' field_definitions 9'

Appendix 	 78

field_definitions ::= single_definition (',' single_definition)*

single_definition ::= var_decl [declaration_option] [opt_null]

var_decl ::= type_name vname

type_name ::= IDENTIFIER

s_type[0][0] =

strcpy(s_type[0], yytext);

store_types();

[type_elm]

I aggregate

type_elm ::= IDENTIFIER

aggregate ::= tuplet I bagt I sett I listt

tuplet ::= "<l" type_name_list

bagt ::= "[:" type_name_list ":]"

sett ::= "{I" type_name_list

listt ::= "[I" type_name_list "I]"

type_name_list ::= type_name (',' type_name)*

declaration_option ::= RW_FUNCTION

I `(` expr 9'

opt_null ::= nulls

view_name ::= [user 	record

record ::= IDENTIFIER

Appendix

syn_name ::= IDENTIFIER

order_list ::= path orderdir RW_ORDER (',' path orderdir)*

dbtype ::= IDENTIFIER

I PARM

hname ::= IDENTIFIER

domain_name_list ::= domain_name (',' domain_name)*

domain_types ::= domain_type

I '(' domain_type_list T

domain_type ::= type_name ('(' iJist T)*

i_list ::= INTEGER (',' INTEGER)*

domain_type_list ::= domain_type (',' domain_type)*

defaults ::= RW_DEFAULT

domain_restricts ::= where_clause

I select_statement

constr_name ::= IDENTIFIER

trigger_list ::= trigger (',' trigger)*

trigger ::= RW_AT event

I RW_AFTER event RW_OF path RW_FROM path

I RW_BEFORE event RW_OF path RW_FROM path

event ::= RW_COMMIT

I RW_DELETE

I RWJNSERT

I RW_UPDATE

fexpr ::= select_expr

79

Appendix 	 80

I insert

I update

I expr

I block

block ::= RW_BEGIN create RW_END

type ::= RW_VIEW

1 RW_FRAGMENT

I RW_SNAPSHOT

sub_type ::= RW_SUBTYPE RW_OF multi_valued_objects

multi_valued_objects ::= m_object (',' m_object)*

m_object ::= IDENTIFIER

{

s_type[0][0] =

strcpy(s_type[0], yytext);

store_types();

1

function_defs ::= RW_FUNCTION '(' funct_list T

funct_list ::= m_object [as_clause] (',' m_object [as_clause])*

as_clause ::= RW_AS as_list

as_list ::= RW_FORWARD I RW_FOREIGN I RW_DERIVED I RW_PROCEDURAL I

RW_STORED I RW_EXTERNAL I RW_STANDARD I fexpr

select ::=

I

sel_stat = 1;

1

initialization_of_arrays

select_expr [order_clause]

{

introduction();

Appendix 	 81

printing_OA_expression();

pred_spec = 0;

func_or_type = 0;

printf("\n")

1

order_clause ::= RW_ORDER RW_BY sort_specification_list

sort_specification_list ::= sort_specification (`,' sort_specification)*

sort_specification ::= IDENTIFIER `(` IDENTIFIER ')' orderdir

orderdir ::= RW_ASC

I RW_DESC

select_expr::= inc_num_stats inc_level_nesting select_statement (m_select_expr)*

m_select_expr ::= inc_num_stats inc_level_nesting RW_UNION st_set_OP_type

[any] select_statement

I RW_MINUS select_statement

I RW_DIVIDEBY select_statement

I inc_num_stats inc_level_nesting RW_INTERSECT st_set_OP_type

select_statement

st_set_OP_type ::=

{

set_op[0][0] =

strcpy(set_op[0], yytext);

store_set_ops();

1

any ::= RW_ANY

I RW_ALL

select_statement ::=

select_clause RW_FOR RW_EACH table_list [select_options]

select_options ::= where_clause

I group_clause

Appendix 	 82

group_clause ::= RW_GROUP RW_BY IDENTIFIER T IDENTIFIER ')' having

having ::= RW_HAVING hav_clause

hav_clause ::= IDENTIFIER '(' IDENTIFIER ')' c_ops ints

ints ::= INTEGER

1 REAL

c_ops ::= 	1 "<>" 1 '>' I '<' 1 ">=" 1 "<="

select_clause::= RW_SELECT sellist

1 RW_SELECT RW_UNIQUE sellist

1 RW_SELECT unique

sellist ::= sel_expr_type (',' sel_expr_type)*

sel_expr_type ::= sel_expression

1 function_list

1 ses_var

1 const

1 other_expressions

sel_expression ::= expr

1 "<I" expr (',' expr)* "1>"

I "[I" (',' expr)* "]"

1 "[:" expr (',' expr)* ":]"

I "{I" expr (',' expr)* "I}"

expr ::= exprl T elm_type ')'

elm_type ::= elml

1 ses_var

other_expressions ::= T Istore_stat_lbracket(); expr2 (type_op)+ '1'

[store_stat_rbracket();

type_op ::= '+'

Appendix 	 83

other_op[0][0] =

strcpy(other_op[0], yytext);

store_stat_other_ops();

1

expr2
I P .. ,

other_op[0][0] = '\O';

strcpy(other_op[0], yytext);

store_stat_other_ops();

1
expr2

I I*,

other_op[0][0] =

strcpy(other_op[0], yytext);

store_stat_other_ops();

1

expr2

I '/'

other_op[0][0] =

strcpy(other_op[0], yytext);

store_stat_other_ops();

1

expr2

expr2 ::= exp2 1 (' elm2 ')'

I INTEGER

other_const[0][0] =

strcpy(other_const[0], yytext);

store_stat_other_consts();

1

I REAL

I RW_AVG

other_resword[0][0] = '\0';

Appendix 	 84

strcpy(other_resword[0], yytext);

store_stat_other_resword();

1

'(' col_spec ')'

I RW_SUM

other_resword[0][0] =

strcpy(other_resword[0], yytext);

store_stat_other_resword();

1

'(' col_spec ')'

I RW_MAX

other_resword[0][0] =

strcpy(other_resword[0], yytext);

store_stat_other_resword();

1

'(' col_spec ')'

I RW_MIN

other_resword[0][0] =

strcpy(other_resword[0], yytext);

store_stat_other_resword();

1

'(' col_spec ')'

col_spec ::= colm_name '(' colm_elm ')'

exp2 ::= IDENTIFIER

other_func[0][0] =

strcpy(other_func[0], yytext);

store_stat_other_funcs();

1

elm2 ::= IDENTIFIER

other_func_range[0][0] =

strcpy(other_func_range[0], yytext);

Appendix 	 85

store_stat_other_func_ranges();

colm_name ::= IDENTIFIER

other_resfunc[0][0] =

strcpy(other_resfunc[0], yytext);

store_stat_other_res_func();

colm_elm ::= IDENTIFIER

other_res_range[0][0] =

strcpy(other_res_range[0], yytext);

store_stat_other_res_ranges();

function_list ::= set_function_specification

set_function_specification ::= distinct_set_function

distinct_set_function ::= RW_AVG st_res_func '(' column_specification

I RW_MAX st_res_func '(' column_specification ')'

I RW_MIN st_res_func '(' column_specification

I RW_SUM st_res_func '(' column_specification

I RW_COUNT st_res_func '(' column_specification

st_res_func ::=

res_func[0][0] =

strcpy(res_func[0], yytext);

store_res_funcs();

column_specification ::= column_name '(' column_elm 9'

column_name ::= IDENTIFIER

if (sel_stat == 1)

Appendix 	 86

col_func[0][0] =

strcpy(col_func[0], yytext);

ml=0;

check_col_func();

else

printf("....NOT SELECT STATEMENT....");

column_elm ::= IDENTIFIER

col_range[0][0] =

strcpy(col_range[0], yytext);

store_colranges();

exprl ::= IDENTIFIER

if (sel_stat == 1)

function[0][0] =

strcpy(function[0], yytext);

ml = 0;

check_func_or_types();

else

printf("....NOT SELECT STATEMENT....");

elml ::= IDENTIFIER

range[0][0] =

strcpy(range[0], yytext);

store_function_ranges();

unique ::= RW_ALL

I RW_DISTINCT

Append ix

I RW_UNIQUE

table_list ::= table 1 _name table_elm 1 (',' table 1 _name table_elm1)*

table_elml ::= IDENTIFIER

type_range[0][0] != '\0';

strcpy(type_range[0], yytext);

store_type_ranges();

table 1 _name ::= IDENTIFIER

if (sel_stat == 1)

type[0][0] != '\0';

strcpy(type[0], yytext);

ml =0;

check_types();

else

printf("....NOT SELECT STATEMENT....");

where_clause ::= RW_WHERE {pred_spec = 0} predicate { pred_spec = 1}

RW_WHERE '(' p_in_atts ')' p_in_op_type inc_level_nesting '('

select_statement ')'

p_in_atts ::= p_atts '(' p_attelm ')' (',' p_atts '(' p_attelm ')')*

p_atts ::= IDENTIFIER

if (sel_stat == 1)

pred_in_att[0][0] =

strcpy(pred_in_att[0], yytext);

ml =0;

check_pred_in_att();

87

Appendix

else

printf("....NOT SELECT STATEMENT....");

p_attelm ::= IDENTIFIER

if (sel_stat == 1)

pred_in_att_elm[0][0] =

strcpy(pred_in_att_elm[0], yytext);

st_stat_pred_in_att_elm();

else

printf("....NOT SELECT STATEMENT....");

p_in_op_type ::= pred_in_op_type

I pred_exist_op_tYpe

pred_in_op_type ::= RW_IN st_pred_in_op_type

I RW_NOT_IN st_pred_in_op_type

pred_exist_op_type ::= RW_EXISTS

I RW_NOT_EXISTS

st_pred_in_op_type ::=

pred_op_type[0][0] =

strcpy(pred_op_type[O], yytext) ;

store_pred_func();

inc_level_nesting ::=

int temp_nesting;

temp_nesting = j + 1;

if ((num_stats[j] == 1) && (num_stats[temp_nesting]==0))

stat_level =

88

Appendix 	 89

i = 0;

while((i < 10) && (level_nesting[stat_level][i] != 0))

ii-÷;

if (i == 10)

printf("ERROR in level of nesting");

else

level_nesting[stat_level][i] = 1;

inc_num_stats ::=

j = 0;

while((j < 10) && (num_stats[j] != 0))

j++;

if (j == 10)

printf("ERROR in number of select statement");

else

num_stats[j] = 1;

predicate ::= op_predicate (RW_AND op_predicate)*

op_predicate ::= predattrib1 '(` predelm1 ')' comp_op predicate_type

predicate_type ::= string 1

I pred_table '(' pred_tble_elm ')'

pred_table ::= IDENTIFIER

if (sel_stat == 1)

pred_type[0][0] = '\0';

strcpy(pred_type[0], yytext);

ml =0;

check_pred_types();

else

printf("....NOT SELECT STATEMENT....");

Appendix 90

pred_tble_elm ::= IDENTIFIER

pred_type_elm[0][0] =

strcpy(pred_type_elm[0], yytext);

store_pred_type_elms();

predattribl ::= IDENTIFIER

if (sel_stat == 1)

predatt[0][0] =

strcpy(predatt[0], yytext);

ml = 0;

check_pred_funcs();

else

printf("....NOT SELECT STATEMENT....");

predelm 1 ::= IDENTIFIER

predatt_element[0][0] =

strcpy(predatt_element[0], yytext);

store_predattelms();

comp_op ::= '=' st_ops I "<>" st_ops I '<' st_ops I "<=" st_ops I ">=" st_ops I `>'

st_ops I RW_IN st_ops

st_ops ::=

Comp_operator[0][0] =

strcpy(Comp_operator[0], yytext);

store_operator();

Appendix 	 91

string 1 ::= STRING

str[0][0] = '\0';

strcpy(str[0], yytext);

store_strings();

savepoint ::= ses_var ":=" RW_SAVEPOINT

connect ::= RW_CONNECT RW_TO dbname

disconnect ::= RW_DISCONNECT RW_FROM dbname

I RW_DISCONNECT dbname

dbname ::= IDENTIFIER

begin ::= RW_BEGIN [work]

work ::= RW_WORK

commit ::= RW_COMMIT [work]

rollback ::= RW_ROLLBACK [work]

I RW_ROLLBACK sync

sync ::= RW_SYNC

check ::= RW_CHECK

dump ::= RW_DUMP RW_DATABASE dbname [to_clause]

I RW_DUMP RW_TABLE dbname [to_clause]

to_clause ::= RW_TO filename

filename ::= IDENTIFIER

repair ::= RW_REPAIR

restore ::= RW_RESTORE RW_DATABASE dbname [rfrom_clause]

Appendix 	 92

I RW_RESTORE RW_TABLE dbname [rfrom_clause]

rfrom_clause ::= RW_FROM filename

fetch ::= RW_FETCH cname [next]

next ::= RW_NEXT INTEGER

cname ::= IDENTIFIER

close ::= RW_CLOSE dbname

open ::= RW_OPEN dbname [cursoropt]

cursoropt ::= password

I RW_FOR select_statement

password ::= IDENTIFIER

ses_var ::= SESVAR

shell ::= RW_SHELL `(` STRING ')'

info ::= RW_INFO

remove ::= RW_REMOVE RW_TYPE tname RW_FROM remJist

tname ::= IDENTIFIER

rem_list ::= remel (`,' remel *

remel ::= ses_var

I vname

vname ::= IDENTIFIER

export ::= RW_EXPORT object_type object_name [into_clause]

Appendix 	 93

object_type ::= RW_DATABASE I RW_DOMAIN I RW_PROGRAM I RW_SYNONYM I

RW_TYPE I RW_TABLE I RW_VIEW I RW_FUNCTION

object_name ::= IDENTIFIER

s_type[0][0] =

strcpy(s_type[0], yytext);

store_types();

into_clause ::= RW_INTO filename

set ::= RW_SET option_list

option_list ::= option (',' option)*

option ::= IDENTIFIER

I IDENTIFIER IDENTIFIER

I IDENTIFIER 	const

const ::= INTEGER st_consts

I REAL I STRING I RW_DEFAULT I RW_NULL I PARM

st_consts ::=

const[0][0] =

strcpy(const[0], yytext);

store_consts();

import ::= RW_IMPORT object_type object_name rfrom_clause

revoke ::= RW_REVOKE [privilege] [gr_on] RW_FROM users

I RW_REVOKE RW_UPDATE RW_ON RW_FUNCTION [privilege] RW_FROM

RW_PUBLIC

privilege ::= (privilig)+

privilig ::= priv_name ('(' field_list ')')*

Appendix 	 94

priv_name ::= IDENTIFIER I RW_ALTER I RW_DELETE I RW_DUMP I RW_RESTORE I

RW_DROP I RW_INSERT I RW_LOCK I RW_SELECT I RW_UPDATE I RW_CALL I

RW_ALL

field_list ::= fld (`,' fld)*

fld ::= IDENTIFIER '(' field T

I field

field ::= IDENTIFIER

gr_on ::= RW_ON object_type objects

objects ::= object_name (',' object_name)*

users ::= user (',' user)*

user ::= IDENTIFIER

I PARM

lock ::= RW_LOCK RW_TABLE path RW_IN mode RW_MODE

path ::= path_e_list ('(' element_name)J)*

path_e_list ::= path_element ('.' path_element)*

element_name ::= norder_list

norder_list ::= expr orderdir RW_ORDER (',' expr orderdir RW_ORDER)*

path_element ::= IDENTIFIER

s_type[0][0] =

strcpy(s_type[0], yytext);

store_types();

mode ::= IDENTIFIER I RW_SHARE I RW_EXCLUSIVE I RW_ALL

Appendix 	 95

audit ::= RW_AUDIT [into_clause] path_list [from_clause] [where_clause1]

path_list ::= path (',' path)*

from_clause ::= RW_FROM path_list

where_clausel ::= RW_WHERE predicate

drop ::= RW_DROP RW_INDEX index_name

I RW_DROP object_type path

index_name ::= path

comment ::= RW_COMMENT RW_ON path

I RW_COMMENIT RW_ON path RW_IS comment_str

comment_str ::= STRING 	STRING)*

alter ::= RW_ALTER path alter_list [with_clause]

I RW_ALTER RW_TABLE path [with_clause]

with_clause ::= RW_WITH option_list

alter_list ::= alteration (',' alteration)*

alteration ::= RW_ADD '(' a_tfd_fields 9'

I RW_DROP [vfd]

I RW_MODIFY '(' m_tfd_fields ')'

a_tfd_fields ::= tfd [before] (',' tfd [before])*

tfd ::= field [o_domain_name]

I field '(' field_list ')' [o_domain_name]

o_domain_name ::= domain_name

I function

domain_name ::= IDENTIFIER

Appendix 	 96

before ::= RW_BEFORE field

vfd ::= `(` vfd_list

vfd_list ::= field (',' field)*

m_tfd_fields ::= field tfd (1 ,' field tfd)*

rollforward ::= RW_ROLLFORWARD path RW_FROM path [roll_op]

roll_op ::= RW_TO STRING [time]

time ::= STRING

grant ::= RW_GRANT [privilege] [gr_on] RW_TO users [at_option] [between_option]

[on_option] [where_option] [wgo]

I RW_GRANT RW_CALL RW_ON RW_FUNCTION path_element period_elm

RW_TO users [at_option] [between_option]

at_option ::= RW_AT terminallist

terminal_list ::= tty (',' tty)*

tty ::= IDENTIFIER

between_option ::= RW_BETWEEN time1 RW_AND time2

time 1 ::= IDENTIFIER

time2 ::= IDENTIFIER

on_option ::= RW_ON day 1 RW_AND day2

day 1 ::= IDENTIFIER

day2 ::= IDENTIFIER

where_option ::= RW_WHERE predicate

Appendix 	 97

wgo ::= RW_WITH RW_GRANT RW_OPTION

insert ::= RW_INSERT RW_INTO rec_alias `(` field_list `)' icond

I RW_INSERT RW_INTO rec_alias icond

rec_alias ::= ses_var

I path

I path alias

alias ::= IDENTIFIER

icond ::= RW_FROM filename

I select_statement

I RW_VALUES `(` expr_list `)'

expr_list ::= expr (`,' expr)*

delete ::= RW_DELETE RW_FROM rec_alias [where_clause]

I RW_DELETE RW_TYPE path doto

I RW_DELETE RW_FUNCTION path_element [period_elm] [doto]

I RW_DELETE ses_var

period_elm ::= `.' IDENTIFIER

doto ::= effect

effect ::= RW_CASCADE

I RW_RESTRICTED I RW_NULLIFIES I RW_ALL

add ::= RW_ADD RW_TYPE tname RW_FUNCTION `(' field_list ')' RW_TO var_list

var_list ::= sing_var (`,' sing_var)*

sing_var ::= ses_var '(` e_list

e_list ::= STRING

I INTEGER

I `[` ses_var (`,' ses_var)* `]'

Appendix 	 98

start ::= prog_name `(` expr_list

prog_name ::= IDENTIFIER

update ::= RW_UPDATE rec_alias [set_show] where_clause
I RW_UPDATE path_element `(' ses_var T ":=" update_type

update_type ::= STRING I INTEGER I REAL

set_show ::= RW_SHOW set_elements
I RW_SET set_elements

set_elements ::= set_element (`,' set_element)*

set_element ::= fld `=` expr RW_ASSIGN
I fld `. 1 select_statement RW_ASSIGN
I `C 	T `="(` expr_list T RW_ASSIGN
I `(` field_list `)".' select_statement RW_ASSIGN

Appendix 	 99

Appendix B: Output file for the translator

This is the output file which shows some of the translations (of the Object SQL
statements) done by the translator. This output file only contains the Object
Algebra expressions. The Object SQL query statements are shown to make the
reading of the Object Algebra expressions easier.

****************-A-A-A-**1-lrk***********Irk******** -/rirk**Irk***Irk***

Object SQL Query :
SELECT Name(p)
FOR EACH Person p;

The Object Algebra Equivalent of the Query is :
Person GEMMA (t) [t is an ELEMENT of <p>.Name]<>

*******-**************Irk*********************** 	*******

Object SQL Query :
SELECT {IName(p), Age(p), Children(c), Salary(p)11
FOR EACH Person p;

The Object Algebra Equivalent of the Query is :
Person GEMMA (t) [t is an ELEMENT of <p>.(Name,Age,Children,Salary)]<>

Ir***

Object SQL Query :
SELECT 5
FOR EACH Person p;

The Object Algebra Equivalent of the Query is :
Person GEMMA (t) [t is an ELEMENT of 51<>

IHririr A-kirk* **************-A-**irk **************************Irk*** *

Object SQL Query :
SELECT [5 *Salary(p)]
FOR EACH Person p;

Appendix 	 100

The Object Algebra Equivalent of the Query is :
Person GEMMA (t) [t is an ELEMENT of (5 * <p>.Salary)]<>

************************************Ir***********************
Object SQL Query :
SELECT Name(e), AVG(Salary(e))

FOR EACH Employee e;

The Object Algebra Equivalent of the Query is :
Employee GEMMA (t) [t is an ELEMENT of <p>.Name AND t is an ELEMENT of

AVG(<e>.Salary)]<>

***********Irk-A-*****-k****lririrk ****************** 	*******
Object SQL Query :
SELECT Name(p)

FOR EACH Person p

WHERE Address(p) = 'Tasmania';

The Object Algebra Equivalent of the Query is :
Person GEMMA (t) [t is an ELEMENT of <p>.Name AND <p>.Address= 'Tasmania']<>

*************** 	****************-1r**********irklnl-*********
Object SQL Query :
SELECT Name(p)

FOR EACH Person p

WHERE Address(p) = 'Tasmania' AND Salary(p) > '2000';

The Object Algebra Equivalent of the Query is :
Person GEMMA (t) [t is an ELEMENT of <p>.Name AND <p>.Address= 'Tasmania' AND

<p>.Salary> ' 2000']<>

*****Ir*************
Object SQL Query :
SELECT Name(p)

FOR EACH Person p

Appendix 	 101

WHERE (Name(c)) IN
(SELECT Name(c)
FOR EACH Children c
WHERE Age(c) > '10');

The Object Algebra Equivalent of the Query is :
Person GEMMA (t) [t is an ELEMENT of <p>.Name AND <c>.Name
(Children GEMMA (t) [t is an ELEMENT of <c>.Name AND <c>.Age > '10']<>1]<>

***********lr irkkirkirk*** 	AAAAAA irkirkirsir*

Object SQL Query :
SELECT Name(p)
FOR EACH Person p
WHERE (Name(p)) IN

(SELECT Name(c)
FOR EACH Children c
WHERE (Age(c)) IN

(SELECT Name(c)
FOR EACH Children c
WHERE Age(c) > '10'));

The Object Algebra Equivalent of the Query is :
Person GEMMA (t) [t is an ELEMENT of <p>.Name AND <p>.Name is an ELEMENT of
(Children GEMMA (t) [t is an ELEMENT of <c>.Name AND <c>.Age is an ELEMENT of
(Children GEMMA (t) [t is an ELEMENT of <c>.Name AND <c>.Age > '101<>1]<>1]<>

***************************************4r***********—A—****t^k**

Object SQL Query :
SELECT Name(r)
FOR EACH Researcher r
WHERE Salary(r) > '2000'

UNION

SELECT Name(t)
FOR EACH Teacher t
WHERE Salary(t) > '2000';

Appendix 	 102

The Object Algebra Equivalent of the Query is :

Researcher GEMMA (t) [t is an ELEMENT of <r>.Name AND <r>.Salary> '2000' lc>

UNION

Teacher GEMMA (t) [t is an ELEMENT of <t>.Name AND <t>.Salary> '2000' 1<>

*-A-k*******-k************************Irkiirk 	*******
Object SQL Query :
SELECT Name(r)

FOR EACH Researcher r

UNION

SELECT Name(t)

FOR EACH Teacher t;

The Object Algebra Equivalent of the Query is :

Researcher GEMMA (t) [t is an ELEMENT of <r>.Name]<>

UNION

Teacher GEMMA (t) [t is an ELEMENT of <t>.Name]<>

*** 	***********************-k***********Irk ***Irk** irlr*irir**
Object SQL Query :

SELECT Name(r)

FOR EACH Researcher r

INTERSECTION

SELECT Name(t)

FOR EACH Teacher t;

The Object Algebra Equivalent of the Query is :

Appendix
	

103

Researcher GEMMA (t) [t is an ELEMENT of <r>.Name]<>

INTERSECT

Teacher GEMMA (t) [t is an ELEMENT of <t>.Name]<>

*************-k***********************irk*******Irk 	**

Object SQL Query :

SELECT Name(p)

FOR EACH Person p

WHERE Address(p) = 'Tasmania'

UNION

SELECT Name(p)

FOR EACH Person p

WHERE Address(p) = 'Queensland';

The Object Algebra Equivalent of the Query is :

Person GEMMA (t) [t is an ELEMENT of <p>.Name AND <p>.Address= 'Tasmania' 1<>

UNION

Person GEMMA (t) [t is an ELEMENT of <p>.Name AND <p>.Address= 'Queensland']<>

*** ***1c***************************

Object SQL Query :

SELECT Name(p)

FOR EACH Person p

WHERE Address(p) = 'Tasmania'

	** *Irk**** 	AA A A A k*

INTERSECTION

SELECT Name(p)

FOR EACH Person p

WHERE City(p) = 'Hobart';

Appendix 	 104

The Object Algebra Equivalent of the Query is :

Person GEMMA (t) [t is an ELEMENT of <p>.Name AND <p>.Address= 'Tasmania']c>

INTERSECT

Person GEMMA (t) [t is an ELEMENT of <p>.Name AND <p>.City= 'Hobart']<>

References 	 105

References
Abiteboul, S. and Grumbach, S. 1990. "A Logic Based Language for Complex

Objects", in Advances in Database Programming Languages, Addison
Wesley (ACM Press) 1990, pp. 347 -374.

Ahad, R. and Dedo, D. 1992. "Open ODB from Hewlett-Packard : a commercial
object-oriented database management system", Journal of Object
Oriented Programming, February 1992, pp. 31 -35.

Ahmed et al, S. 1991. "A Comparison of Object-Oriented Database
Management Systems for Engineering Applications", Research report
R91-12, Massachusetts Institute of Technology.

Barry, D. K. 1991. 'Perspectives on changes for ODBMSs", Journal of Object
Oriented Programming, Vol 4, No. 2, July/August 1991, pp. 19 - 20.

Cain, L. 1989. ANSI SQL parser. Columbia University.

Date, C. J. 1990. "An Introduction to Database Systems", 5th ed. Addison Wesley
1990.

Fishman, D. H., Beech, D., Cate, H. P., Chow, E. C., Connors, T., Davis, J. W.,
Derrett, N., Hoch, C. G., Kent, W., Lynbaek, P., Mahbod, B., Neimat,
M. A., Ryan, T. A. and Shan, M. C. 1987. "Iris : An Object-Oriented
databases Management System", ACM Transactions on Office
Information Systems, Vol. 5, No. 1, January 1987, pp.48 - 69.

Harris, G. and Duhl, J. 1990. "Object SQL" in Object-Oriented DataBase with
applications, edited by Gupta and Horotwitz.

"Open0DB from Hewlett-Packard". Technical report.

"ITASCA Technical Summary", September 1991, Technical Report, Itasca
Systems, Inc.

Kim, W. and Bancilhon, F. 1990a. "Object-Oriented Databases: Systems : In
Transition", SIGMOD RECORD, Vol. 19, No. 4, December 1990, pp.
49- 53.

References 	 106

Kim, W., Garza, J. F., Ballou, N. and Woelk, D. 1990b. "Object-Oriented
databases: definitions and research directions", IEEE Transaction on
Knowledge and Data Engineering, Vol. 2, No. 1, March 1990, pp. 109 -
123.

Kim, W. 1990c. "Object-Oriented databases: definitions and research
directions", IEEE Transaction on Knowledge and Data Engineering, Vol.
2, No. 3, September 1990, pp. 327 - 340.

Kim, W. 1991. "Object-Oriented Database Systems: strengths and weaknesses",
Journal of Object-Oriented Programming, July 1991,pp. 21 -30.

Lesk, M. E. and Schmidt, E., "LEX - A Lexical Analyser Generator", Bell
Laboratories, Murray Hill, NJ.

Lyngbaek, P., Wilkinson, K. and Hasan, W. 1990. "The Iris Architecture and
Implementation". EEE Transaction on Knowledge and Data Engineering,
Vol. 2, No. 1, March 1990, pp. 63- 75.

Lyngbaek, P. 1991. "OSQL: A Language for Object Databases", Hewlett-packard
Technical Report HPL-DTD-91-4, 1991.

"Questions and Answers : Object-Oriented Databases", ONTOS, Inc. 1991.

Orenstein et al, J. 1992. "Query processing in the ObjectStore Database System",
ACM SIGMOD, July 1992.

Unix System, Release 3.2, Programmer's Guide, Vol. 1, pp 5-1 - 5-21 and 6-1 6-
57.A. T. Schreiner and h. George Friedman, Jr., "Introduction to
Conpiler Construction with Unix", Prentice-Hall 1985.

Shaw, G. M. and Zdonok, S. B. 1989. "Object-Oriented Query
Algebra",Proceeding 2nd International Workshop on Database
Programming Languages, Oregon, 1989, pp 111 -120.

Straube, D. D. 1990a. "Queries and Query Processing in Object-Oriented
Database Systems". Technical Report TR90-33, December 1990.

References 	 107

Straube, D. D. and Ozsu, M. T. 1990. "Queries and Query Processing in Object-
Oriented Database Systems", ACM Transactions on Information
Systems, Vol 8, No 4, October 1990, pp. 387 - 430.

Soloviev, V. 1992. "An Overview of Three Commercial Object-Oriented
Database Management Systems : ONTOS, ObjectStore, and 02",
SIGMOD RECORD, Vol. 21, No. 1, March 1992, pp 93 - 104.

