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PREFACE 

There is still an obvious need for better understanding of struc-

tural action and simpler methods of design of engineering structures. 

The increased use of the computer, in recent years, has facilitated the 

design and the checking of certain standard structural components and 

assemblies. However, computers are only tools; the preliminary design 

of the structure and the final checking (of computer solutions) must 

still be performed manually. There are also problems, such as detailed 

designs and particular one-off structures that computers cannot handle 

efficiently. 	 These are problems that I have been confronted with in the 

three years of design work with Gutteridge, Haskins, and Davey, Consul- 

ting Engineers, Hobart, Tasmania. 	 I have designed a number of industrial 

plants, school and office buildings, and also sewage and water treatment 

works. After having performed the tasks of preliminary design and final 

checking using the conventional elastic methods, it appears to me that the 

basic ideas of the plastic limit theory, particularly the lower bound 

theorem, may be better suited for the purposes. I have, therefore, spent 

a period of full-time experimental and theoretical research, exploring the 

power and the limitation of the plastic limit principles with a view to 

their use in the design of a wide range of civil engineering structures. 

This thesis is written, for the appraisal of the professional 

engineers and research workers, to present a point of view on structural 

design. 	 It is hoped that the view and the methods of solution presented 

here will achieve, in a small but important way, the above objectives, 

namely better understanding of structural action, leading to simpler pre-

liminary design processes, and quicker methods of checking and assessing 



the strength of existing designs and structures. Although the basic 

principles are well known, the view presented herein has not been 

previously sufficiently developed in this particular direction. 

I have learnt the idea of design based on picturing a statically 

admissible state from "Theory of Limit Design" by Van den Broek. The 

larger part of the thesis, however, is based on the principles developed 

by Baker, Horne, and Heyman in "The Steel Skeleton, Vol. II". The 

later work has served both as a standard reference and a source of 

inspiration. 

At 	 The thesis is composed of a series of studies in the design of 

structures based on the "statically admissible state" techniques. 	 A 

wide range of problems with increasing difficulty is chosen to demon-

strate the power of the lower bound design technique. 

niques are further developed in subsequent chapters. The simple but 

practical problem of bolted joints under eccentric loading (Chapter II).  

is used as an example of how limit principles, derived from the plastic 

analysis of steel frames, are made to work or can be made to work in a 

given easily definable situation. 	 The limit analysis is supported by a 

series of tests of bolted joints under eccentric loading. 

The concept of thrust line, well known in the theory of arches, 

is extended in Chapter III to multi bay-storey frames and space frames. 

This extension, although simple, provides a direct way of picturing the 

structural action of many frames, which cannot be obtained in any other 

way. 	 I have also, with some satisfaction, combined the thrust-line 

concept and the older method of design of frames by guessing points of 

inflexion to produce a simple minimum mass design method. 

A simple way of picturing the structural action of slabs is 
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presented in Chapter IV. The proposed method is only approximate; 

however, it gives a fairly good estimate of the load-carrying capacity 

of any orthotropic slab within a practical range of dimensions. All 

the above problems have their origins in my practical design work. 

My interest in "funiculaestructures arose from the reading of 

Heyman's work. 	 I have applied these ideas to the assessment of the 

strength and safety of one of Australia's most important and beautiful 

bridges, the Gladesville Arch Bridge. 	 The approach used herein in this 

investigation is very similar to Heyman's approach to stone and masonry 

structures. 	 My contribution is the establishing of the load factors 

for the bridge under three different loading conditions with allowance 

being made for the effects of deflexion and the danger of the crushing 

of the concrete. The work has been done as far as possible from 

published data; however, the Department of Main Roads, (New South Wales) 

and Maunsell and Partners (London and Melbourne) supplied some prelim-

inary design drawings. 

The work on arch dams (Chapter VI) is another attempt at estab-

lishing statically admissible states as the basis of design of these 

structures of great interest and importance. 	 Any attempt to visualize 

the structural behaviour of an arch dam in a simple manner is of value 

to the designer, especially if he has a difficult site, whether the 

difficulty arises from geological considerations, or merely from the 

lack of symmetry. 	 An experimental method of directly obtaining a shape 

for the dam under a given loading condition is proposed. Other stati-

cally admissible states are then used to estimate the load-carrying 

capacity of arch dams. 	 The latter work also gives an indication of how 

the dam may act structurally in transmitting the force to the abutments 

•(which, in practice, also have to be analysed and designed.) 	 I have 



received generous assistance from the Hydro-Electric Commission of Tas-

mania, which has provided a model for the 420 ft high Gordon Arch Dam, 

related design calculations, and valuable advice on various aspects of 

arch dam design. 

Chapters VII and VIII give attention to some additional consider-

ations relevant to the proposed method of design of structures based on 

statically admissible states. 	 Buckling and deflexion are discussed in 

Chapter VII because they do put a limit on the strength of structures. 

These limits arise in various ways which should be understood, if pos-

sible. The view on Non-Euler Buckling, presented herein, is known to 

be controversial, and is intended to be so. 	 It is submitted for 

appraisal. 

A summary of some practical aspects of design is presented in 

Chapter VIII, gathered from my own experience (in the design office and 

in the field) and from existing literature. 	 T•briememetwrieri■i■s■kert4Rtelret• 

The intention is to indicate the type of troubles which may limit 

strength. Although most of the material presented in this chapter is 

well-known, the material is included to emphasize the importance of 

practical considerations, which have often been overlooked in theoretical 

studies, although, of course, designers and builders are well aware of 

the problems. 

The thesis is supported by experimental work consisting of labor-

atory loading tests on various structural models. 	 Attention has not been 

focussed completely on the load-carrying capacity. 	 Instead, much work 

has been done to ascertain the statical (load transmission) action and 

the geometrical (deformation) behaviour of the tested structures, at 

working load and later as failure begins to take place, and, where possible, 

as failure occurs. 	 This experimental work, reported in Appendices Al, 

A2, and A3, consisted of tests of twenty steel, reinforced concrete, and 



plain concrete arches, three reinforced concrete slabs, and a shell. 

They form the background from which various ideas presented in the thesis 

have arisen. 

The numerical works, reported in Appendices Bl, B2, and B3, form an 

addendum to the thesis and present some new extension of the method of 

dynamic relaxation to non-linear problems. They are included because 

they are used in various chapters to substantiate other simple limit cal-

culations. 

The design method proposed in this thesis is, for historical reasons, 

referred to as "limit design", and the principles of plastic theory are 

called "limit principles". 	 Otherwise, the terminology follows the stan- 

dard usage in literature, such as the standard set of terms recommended by 

the American Society of Civil Engineers (to whom, however, "limit design" 

means any limit, and the term loses its meaning through loss of connection 

with its history). 

Metric units are adopted generally throughout the thesis, except 

where existing structures or data are analysed. 	 Imperial units have been 

retained in these situations for ease of reference. 



CHAPTER I 

PRINCIPLES OF DESIGN OF STRUCTURES FOR STRENGTH 

1.1 INTRODUCTION 

The thesis has one single theme, namely "statically admissible 

state" design and is composed of a series of design studies based on 

various techniques of constructing statically admissible states. To' 

set the stage for further discussion, the basic elements of the plastic 

limit theory are first reviewed in this chapter. Emphasis is then 

placed on "statically admissible state" design. Various techniques of 

obtaining statically admissible states are outlined and briefly discussed. 

More thorough applications of the techniques are presented in subsequent 

chapters. 

designer usually does not have a clear picture of what the final design 

will be. 	 The shapes and dimensions of the structure are first roughly 

determined by its functional or aesthetic requirements. 	 A structural 

design is then carried out. The task is to proportion and detail the 

members so that a safe, economical, and suitable structure is produced on 

drawings and specifications. 	 A suitable construction method must also 

be considered, to enable the structure to be built. 	 The three phases 

of work are interconnected. 	 Difficulties in structural design often can 

be avoided by altering the design concept; actual construction practice 

determines how refined the design must be. 

The structural design may be separated into three activities: 

(i) the determination of the loads to be supported by the structure, 

(ii) the selection of suitable materials, and (iii) the application of a 

design theory to proportion and detail the members of the structure, for 

the given loads, with the given materials. 

This thesis is concerned only with the design of structures for 

which strength is the prime design criterion. 	 The structure is to be 



designed so that it will not collapse at a certain level and combination 

of loading, which, of course, must be above the working loads. The design 

is thus based on the concept of a 'load factor', i.e. the ratio of the 

load at collapse to working load. This concept is examined in the next 

section. 

1.3 THE LOAD FACTOR 

The load factor kis defined in most literature as the ratio of the 

predicted collapse load to the normal working load (Ref 1.1). This simple 

definition has many implications which the designer must beware of. 

(i) Of all possible states of loading, only one particular combin-

ation is considered at a time. 

(ii) The loads in any particular combination are not allowed to vary 

independently, but are imagined to be slowly increased in proportion until 

collapse is reached. 

(iii) Most of limit design literature is concerned only with 

static loadings. In the absence of guidance, designers usually convert 

dynamic loads into equivalent static loads. This approach may or may 

not be valid depending on the nature of the particular problem in hand. 

It is further mentioned that the thesis is concerned only with static 

loads. 

(ii) There is no connection between the collapse calculation based 

on a load factor and the real state of overloading (Ref 1.2). The load 

factor is only a device to proportion the structure with some margin of 

safety. 

(iii) Since the load factor reflects the margin of safety, it should 

be chosen with due reference to various uncertainties such as the inac-

curate assessment of the loads, variations in the strength of materials, 

imperfection in fabrication, and so on. 

— 



The idea of a single load factor as presented above is rather limited 

since: 

(i) Some loads can be estimated more accurately than others. 

(ii) Some loads can possibly be increased beyond the estimated 

values while others cannot. 

The concept of a partial load factor is then introduced to overcome 

the above restrictions. 	 Various load factors are chosen for different 

. 	I 
classes of loading to account for their different characteristics. The 

magnitudes of the partial load factors are also varied according to the 

loading combination being considered. 

The choice of a load factor (or partial load factors) involves 

considerable judgement. 	 The values chosen in the design codes are 

usually "arranged so that the same margin of safety is achieved as for 

conventional designs which experience has shown to be satisfactory", 

(Ref 1.3). With the advance of probabilistic design, the load factors 

have been given new meanings related to the reliability of the design. 

Load factors are related to the expected loadings and therefore can be 

assessed using statistical methods. The subject of probabilistic design 

is well outside the scope of the thesis and a lengthy discussion is not 

intended. As far as the thesis is concerned, a load factor (or a set 

of load factors) must be established by whatever means before the design 

can proceed. At present the load factors are established at best semi-

probabilistic, usually empirical. It should also be noted that the load 

factors do not have any relation to real overloading states. 	 Certain 

overloading states must be examined separately as required by the Codes 

of Practice, such as in bridge design. The assessment of safety with 

regard to failure must be made according to the physical conditions 

involved, and its relations to the design of the structure. 	 For 

example, wilful destruction is an overloading which cannot be allowed for; 

similarly the safety of a structure also depends on the condition of the 

supports, and this cannot be ignored. 
— - - 
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1.4 BASIC PRINCIPLES OF DESIGN 

	

(a) 	 The breakdown of the problem. 

The designer usually starts by dividing his structure into elements. 

Each element is required to carry part of the loads in a particular manner, 

	

and it is 	designed accordingly. 	 The breakdown of structure into elements 

is made based on: (i) a prior conception of how the loads can be carried, 

(ii) some understanding of the statics of the elements and (iii) certain 

simplifications as to what 'structural actions are unimportant and can be 

neglected. 

The breakdown of a structure into elements may occur at many levels. 

For example, a building is usually designed as a series of plane frames; 

this is an arbitrary way of deciding how the loads can be carried. The 

actions of members which connect the frames are neglected. A plane frame 

is further divided into beam and column elements, where the beams carry 

the loads mainly by bending action and the columns carry theirs by both 

bending and axial actions. 

A successful breakdown is not easy to make for complicated structures. 

Usually the design is first made at some drastic level of simplification 

and other effects are then introduced as corrections. 

 

• (b) 	 Basic Conditions 

Once the structure has been divided into elements and the major 

forces acting between the elements have been decided, three basic condi-

tions require examination: 

(i) The Geometrical Conditions which ensure the compatibility of 

deformation or movements of the elements. 

(ii) The Equilibrium Conditions of the structure under external 

loads, reactions,and the internal forces between the elements. 

(iii)The Load-deformation characteristics of the elements. 

In relation to strength, these conditions take special forms. The 

deformations that are of interest are only those deformations that could 



cause collapse; movements must occur at sufficient regions to make 

collapse possible. 	 This condition is difficult to put, because a structure 

even at collapse is still intact in some sense. For framed structures 

which carry their loads mainly by bending moment, a 'plastic hinge' is 

considered as a kind of discontinuity with arbitrary rotation. The require- 

s 	 icienb 
ment is that 	 hinges form to allow the structure or part of it to 

move as a mechanism which is compatible with the remaining constraints. 

This condition is generally termed the "mechanism condition". 

The equilibrium conditions are often written with reference to the 

undeformed state of the structure. This implies that the deformations, 

even at collapse, are small and do not markedly change the equilibrium 

equations written without them. However, deformation may not be neglected 

for certain classes of elements such as the column element, if collapse 

condition is affected by deformation. 	 The equations of equilibrium must 

include the changing geometrical terms in these cases. 

In a design for strength, only the limiting load-deformation charac-

teristic is considered. The main features, that the load deformation 

relations must have, are that a definite collapse load must be reached and 

that the collapse load stays constant as deformation increases. This con-

dition is generally known as the "yield condition"; it is characterized 

by the idealized load-deformation curve of Fig 1.1. 	 Figure 1.1 results 

from an assumption of an elastic-perfectly plastic behaviour of the material. 

In most calculations, the curve is approximated to two straight lines as 

shown partly dotted. 

When there are several forces causing collapse, the interaction of 

the forces must be considered. 	 The plot of all the combinations of the 

forces that could cause collapse is known as a "yield surface". 	 The 

localized deformations at the yielded zones associated with the forces are 

fixed in ratio and direction, i.e. they must be geometrically permissible 

along the chosen collapse mode. This condition is generally known as the 

"normality rule". (Ref 1.5) 
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The preceding presentation of basic relations emphasizes the impor-

tance of the decision as to what are the vital internal forces. This 

decision requires an understanding of the manner in which the structure 

carried its loads. 

(c) Fundamental Theorems 

The simple concept of load factor based upon proportional loading 

is used here to state the fundamental theorems. 

The uniqueness theorem states that if all three basic conditions of 

mechanism, equilibrium, and yield are satisfied, then the load factor has 

a definite unique value kc, which is the collapse load factor of the 

structure. 

The upper bound theorem states that for any assumed mechanism of 

collapse which satisfies the yield condition, the load factor kis always 

greater than or at best equal to the collapse load factor X 	 The 

theorem is also known as 'unsafe' or 'kinematic' theorem. 

The lower bound theorem states that for any statically admissible 

state which balances the applied load and is everywhere satisfying the 

yield condition, the associated load factor kis always less than or at 

best equal to the collapse load factor X. . The theorem is also known 

as safe' or 'static' theorem. 

The formal proofs for these theorems can be found in the standard 

texts (Ref 1.1, 1.4, 1.13, 1.14, 1.15). 	 It is noted that the theorems 

were intuitively understood and used by engineers long before they were 

formally stated. 	 Coulomb made good use of the upper bound theorem in 

solving the problems of strength of a prism, of soil thrusting against a 

retaining wall, and of the failure of masonry arches (Ref 1.6). 	 Rankine's 

solution of the limiting equilibrium problem of soil mass, or the old 

method of designing frames by guessing points of inflexion, can be con-

sidered as applications of the lower bound theorem. 



1.5 DISCUSSIONS ON THE BASIC PRINCIPLES 

The implications of the basic principles as presented above to the 

actual design of a structure are now examined. 

(i) 	 Load redistribution and sharing 

The prime requirement for strength design is the ability of the 

structure to adjust itself to carry the applied load if at all possible, 

within the limits assumed in the design. Load redistribution is a statical 

concept based upon the 'flatness' of the load-deformation curve (Fig 1.1). 

Once certain regions of the structure reach their ultimate load-carrying 

capacity, they are capable of holding this load with further deformation, 

therefore allowing the other regions to take up the extra load if possible. 

The suitability of a structure to be designed by this method depends 

on how closely the load-deformation relation for its members can approximate 

the ideal curve of Figure 1.1, which represents the elastic-perfectly 

plastic behaviour. 	 Structural steel is normally ductile and its properties 

can be approximated fairly well to this curve. Strain hardening will 

occur eventually for mild structural steel but its neglect is intuitively 

'safe' in a general sense. 	 For most commonly used sections in flexure, 

. strain hardening has a more important role in preventing local instability, 

and in maintaining the 'plateau of the moment-curvature curve. Its 

presence allows the force redistribution process to occur more completely. 

moment redistribution should be allowed in the design since unlimited load 

redistribution can no longer be assumed. 	 Dry friction may also be re- 

presented by the characteristics of Figure 1.1, therefore the plastic theory 

is also applicable to structures whose load carrying capacity is derived 

from frictional forces. 

Detailed design is another important consideration. It is useless to 

provide ductility for the members when ductility is absent in the joints, 

where the forces are likely to be the highest. 	 Joints should be designed 



not only to have sufficient strength but also to possess adequate rota-

tional capacity so that full load redistribution can be achieved. The 

problem will be further discussed in Chapter VIII. 

(ii) Use of fundamental theorems 

The upper bound theorem implies that if a failure path exists, 

then the structure will not stand up. 	 It is mainly an analysis tool; 

the load computed on the basis of an assumed mechanism will always be 

greater or at best equal to the true collapse load. 	 Its usefulness 

lies in the relative ease of picturing the collapse mode, and of calcu- 

lating a collapse load from this. 	 If a wrong mode of collapse is 

pictured, an incorrect result is obtained. The ability to perform the 

calculation from a pictured collapse mode depends on a knowledge of the 

main actions at sufficient points in the structure from geometrical and 

statical considerations. The use of upper bound theorem requires some 

prior knowledge of the structure; some minimisation techniques are also 

used to obtain the lowest possible collapse load. 

The lower bound theorem, on the other hand, is a powerful design 

tool, since its use, as will be described herein, does not require any 

prior knowledge of the structural members. The theorem reflects the 

ability of the structure to adjust itself to carry the loads if at all 

possible. The main problem is to construct a "statically admissible 

state"; 	 the yield condition can be met by "covering" the structure with 

adequate strength. This aspect is perhaps the most important contribution 

of the plastic limit theory; it allows a design to be made by equilibrium 

considerations alone. 	 The designer selects a suitable pathway for the 

forces and provides the members with sufficient strength to carry those 

forces. 

The collapse mode is often easier to picture than a statically 

admissible state; therefore the upper bound theorem is, in many cases, 

easier to use than the lower bound theorem. 	 Practically, one finds that 

the upper bound calculation is often very close to the actual collapse load 
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if a nearly correct mode of collapse is pictured. For difficult problems 

where an 'exact' calculation of the ultimate load is not possible, the 

two theorems enable the collapse load to be bracketed closely enough for 

practical engineering purposes. 

The words "lower bound" and "upper bound" are meaningful only in a 

mathematical sense. For complicated structures, the mathematical model 

used in the analysis involves drastic simplification of the actual structure. 

The actual collapse load (experimentally obtained from models for example) 

can even be higher than the upper bound solution. One classic example is 

the failure of a slab with restrained edges; the yield line solution 

(upper bound) is usually conservative; the slab has some reserve of strength 

due to membrane effects which have been neglected in the analysis. 

(iii) Limiting factors. 	 Two kinds of limiting factors must be consi- 

dered in the application of the fundamental theorems to the design of struc- 

tures. Firstly, the basic assumptions of the method must be met. 	 The 

proofs of theorems (Ref 1.4), in particular the lower bound theorem, require 

ductility in the members and the structure. 	 Local and overall instability 

of the members and structure must be prevented. Construction materials do 

not always behave in a ductile manner. For steel structures, the effects of 

brittle fracture, fatigue, and residual stress must be prevented. For con-

crete structures, the effects of shrinkage, creep, and temperature must be 

allowed for. 	 Secondly, there are serviceability limit states which must be 

considered since a plastic design is based solely on the limit state of col- 

lapse. There are the limit states of deflexion, local damage, vibration, 

durability, and fire resistance. 	 The criteria governing these service- 

ability limit states vary with the kind of structures and service conditions, 

and may well become the governing design criteria. . Proper attention 
4 

to the detailed design, however, can often help to alleviate some of 

these problems. 
-• ■ 
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1.6 THE STATICALLY ADMISSIBLE STATE DESIGN 

Design based on statically admissible state is the central theme of 

this thesis. 	 The approach is valid only if strength is the prime design 

criterion. 	 The design process consists of picturing a way the structure 

can carry its loads, then providing adequate strength in the structure so 

that the loads can be carried that way. Care of course must be taken to 

ensure that the designed strength can actually be realized, i.e. the level 

of load redistribution assumed in the design is acceptable geometrically. 

The concept of statically admissible state is now further examined. 

Firstly, the statically admissible state is constructed at some 

level of approximation. 	 The question of statically admissible state is 

relevant only after a prior decision has been made regarding those aspects 

of structural actions that are important for a particular structure. 	 A 

design based on the statically admissible state is only safe if the main 

action that causes collapse is included in the calculations. 

Secondly, for statically indeterminate structures there are many 

possible statically admissible states. The more statically indeterminate 

the structure is, the more ways it can find to carry its loads, or, what 

is more important, the more pathways the designer has at his disposal to 

provide the total load carrying capacity. 

Thirdly, the statically admissible state of a highly indeterminate 

structure can be made to be statically determinate. 	 This is an important 

aspect since it allows a simple way of constructing the statically admissible 

state. 	 The picturing of collapse mode can be used here, since the collapse 

state is often statically determinate. 	 If a wrong mode is pictured, the 

equilibrium calculations will suggest an alternative. 	 In this connection 

the two techniques, of constructing statically admissible state and of 

picturing collapse mode, complement each other. Problems may arise when 

partial collapse occurs, as this may leave part of the structure statically 

indeterminate. 
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Fourthly, the statically admissible state must satisfy the statical 

boundary conditions for the design to be safe. For example, a statically 

admissible state for a fixed-base portal frame cannot be used to design a 

pinned-base portal frame. However, some minor geometrical changes such as 

the settlement of supports do not invalidate the basis of the design as 

long as the change does not materially affect the statical equilibrium of 

the system. 
177---TECHNTWES—Or—vmmuavEnu—oLrli 

The statically admissible state can only be obtained if the basic 

statical concept of load carrying and distribution throughout the structure 

is understood. 	 Once the understanding of the way the structure carries 

its load is achieved, simplification is possible and will still give adequate 

design. 	 Some of the techniques of obtaining the statically admissible 

state are described below. 

(i) Slicing Technique. 	 This technique divides a complex •structure 

into simpler parts, whose structural actions are better understood. The 

design of a building as a series of plane frames can be considered as an 

application of the technique. 	 Heyman (Ref 1.16) used the slicing technique 

in assessing the strength of stone domes and vaults. The early method of 

designing an arch dam as a series of arches is another application. The 

interacting effects between various slices are neglected, and therefore the 

technique is only successful if such neglects are justifiable. 	 The 

slicing technique is used in Chapter VI to estimate the load-carrying capa-

city of arch dams. 

(ii) Replacing a complex structure by overlapping simpler structural 

elements. 	 The division of a slab into two series of beams or the division 

of an arch dam into two series of arches and cantilevers are applications 

of this technique. 	 The replacement is valid only if the interaction effects 

between various structural actions are negligible. 	 This technique is used 

in Chapter IV to estimate the strength of slabs and in Chapter VI to estimate 

the strength of arch dams. 
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(iii)Algebraic technique. 	 This technique is useful in two or three 

dimensional problems, such as slabs or shells, where the structural actions 

are too difficult to picture but the differential equations representing 

the equilibrium state are readily available. 	 Algebraic expressions are 

specified for all structural actions, such that the equilibrium equations 

are satisfied everywhere and the yield conditions are nowhere violated. 

The technique is used most often in deriving lower bound solutions for 

slabs. 	 Further discussions will be found in Chapter IV. 

(iv) Thrust Lines and Surfaces. 	 This is perhaps the most satisfying 

way of picturing the statically admissible state. 	 The idea, originated 

in the design of masonry arches, can be extended to handle frames and 

similar structures. The use of the thrust line concept is particularly 

useful in space frames where structural actions are numerous and difficult 

to picture. The thrust surface is an extension of the thrust line into 

three dimensions. A membrane is the inverted picture of a thrust surface 

under acting loads. Heyman mentioned the concept of a thrust surface in 

the assessment of dome strength (Ref 1.17). 	 The uses of thrust lines in 

the design of plane and space frames are explored in Chapter III; a three 

dimensional thrust surface is constructed experimentally for an arch dam 

in Chapter VI. 

1.7 CONCLUDING REMARKS 

The basic principles of the plastic limit theory have been presented 

together with discussions on the aims, assumptions, and limitations of the 

method. The limit design method of picturing statically admissible states 

is chosen for further development. 	 Various techniques of obtaining 

statically admissible states are outlined, and they will be further devel-

oped in subsequent chapters for particular structures or members. 



CHAPTER II 

THE STRENGTH OF BOLTED JOINTS UNDER ECCENTRIC LOADING 

2.1 INTRODUCTION 

Theproblem of beam bending and the concept of the plastic hinge 

have been used too often (to the exclusion of almost everying else) to 

demonstrate limit design ideas. The concept of 'statically admissible 

state' design pursued in the thesis is much more fundamental and is 

capable of much wider applications. The problem of bolted joints under 

accentric loading, therefore, has been selected to demonstrate the basic 

design approach used in the thesis. 

The problem of bolted joints under eccentric loading is in itself 

an interesting one. 

relationship of the joint is not linear. 	 These objections led the Ameri- 

can Institute of Steel Construction (Ref. 2.1) to adopt the empirical 

approach of "effective eccentricity" to provide a less conservative and 

more realistic allowable load; 	 this is the currently accepted method o.f 

design. 

This chapter does not contain any original contribution. The 

plastic design of bolted joints under eccentric loading and its various 

limitations are presented together with extra supporting experimental 

works. 	 The emphasis, however, is not on the method itself but on the 

limit design thinking behind the method. 

2.2 REVIEW OF PREVIOUS RESEARCH 

A full bibliographY on bolted and riveted joints has been prepared by 

the American Society of Civil Engineers (Ref. 2.2). This section is only 

concerned with the ultimate strength approach to the problem. 

For friction-grip joints, there is little published guidance for the 

designer of eccentrically loaded joints. For bearing joints, Abolitz 

(Ref. 2.3) has used an ultimate strength approach with the basic assumption 
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that each bolt would exert its maximum resistance at collapse. This is 

not fully justified due to the lack of ductility of individual bolts. 

Kulak (Ref. 2.4) has used the "load-deformation response of the indiv-

idual bolt" to predict the ultimate strength of the joint. 144.444-haa 

Kulak and Crawford's method is applicable only to bearing joints in which 

there is no lack of fit. 	 Since both statics and geometry of deformation 

are used in Kulak and Crawford's solution, the "statically admissible 

state" philosophy is not used, although the results are, of course, stat-

ically admissible. 
.ine nenavour or a-ununre-rapp-ed-joinr-With a single 1561-t is used as 

the basis for the treatment which follows and is described briefly here. 

Three test specimens were assembled as shown in Fig. 2.1(a). Each speci-

men consists of two identical joints. 	 The test bolt was tightened 

according to the standard turn-of-nut procedure (Ref. 2.7). The assem-

blies were loaded in tension in a testing machine. Movement of the joint 

was measured from the gauge points set on the plates. Due to material 

discrepancies, manufacturing tolerances, etc., the ultimate load of the 

specimens was reached when only one joint had failed. 

Fig. 2.1 shows a complete graph, of load against movement, for a 

specimen tested to failure. 	 There are three distinct phases of behaviour. 

(i) The Friction Grip Region OA: very small movement, measured 

across the joint, is recorded and the load is carried mainly by friction. 

Examination of the plate, after failure, indicates that the grip is 

provided mainly by a small region around the nut. 

(ii) The Slippage Region AB: the joint begins to slip. It is 

still capable of resisting the severe load as before. A slight increase 

in load is noted as slipping progresses. 

(iii)The Shearing Region BC: the bolt is actually being sheared 

when all the clearance around the hole has been taken up. The behaviour 

is non-linear and there is little ductility in the bolt itself. 
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The friction-grip strength is only achieved if the bolt is high-

strength friction-grip type, and is tightened according to a proper 

procedure such as the turn-of-nut method. (Ref. 2.7). Otherwise, the 

friction-grip strength is considerably reduced but the rest of the joint 

behaviour remains the same. 	 The load-movement curve for the joint in 

the shearing region is affected by the type of materials and the thick-

ness of the connecting plates, although the ultimate strength of the 

joint is not very much affected by these parameters. (Ref. 2.9). 

2.4 BEHAVIOUR OF BOLTED JOINTS UNDER ECCENTRIC LOADING 

Fig. 2.2 shows the general arrangement for the tests. Fifteen 

specimens, which included seven different bolt groupings with varying 

eccentricities and bolt sizes were tested. 	 The specimens were designed 

so that the test bolts were the critical components. Two joints were 

tested simultaneously. Measurements were made of the movement of one 

plate relative to the other. A typical load-movement graph is shown in 

Fig. 2.3. 

The behaviour follows closely that of a joint with a single bolt. 

There is a friction-grip region, a slippage region, and a shearing region. 

It is significant that not all the bolts have attained their full strength 

when the joint fails. 	 Examination of the bolts, after collapse, indicates 

that all bolts deform substantially, although some have more deformation 

ieovvie. %anti- movement-  grey, of Ti5.2..1 
than others. 	 It followskthat there is a certain amount of load redistri- 

bution, but it is incomplete when failure occurs. 

2.5 ANALYSIS OF BOLTED JOINTS UNDER ECCENTRIC LOADING 

The bolted joint of Fig. 2.4 is subjected to an eccentric force P 

acting at a distance e from the centroid of the joint. (Ref. 2.5). 

Rotation is presumed to take place about some point A, whose position is 

as yet unknown. 	 Bolt i, distance r
i 
from A, has coordinates.( x y) 
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measured from A. 	 All bolts are, at this stage, considered to carry 

equal forces F acting in the direction normal to the line joining A to 

the bolt. 	 The equations of equilibrium are 

(i) Vertical equilibrium: 

(ii) Horizontal equilibrium: 

(iii)Sum of moments about A: 

Fcos = P 

Fsin OL = 0 

ZF.rL  =Re+c) 

 

 

 

 

where ei. ,c are defined in Fig. 2.4. 

These equations may be easily solved graphically by trial and error, for 

most joints having simple layouts of the bolts, to give •a position for 

the centre of rotation A, and the magnitude of the bolt force F. 

2.6 APPLICATION OF LIMIT PRINCIPLES TO THE DESIGN OF A BOLTED JOINT 

Before a bolted joint can be designed using limit principles, it 

must be clearly defined what constitutes 'failure'. 	 If no movement of 

the joint can be tolerated, then from the load-movement graph of Fig. 2.3, 

'failure' starts at the beginning of slippage. This type of joint is 

generally known as friction-grip joint. 	 On the other hand, if movement 

can be tolerated, then the joint can take up much higher load before 

failure occurs. This type of joint is generally known as bearing joint. 

It is noted that movement of the joint can be beneficial; it allows some 

load redistribution, not only in the joint itself, but also in the frame 

of which it is a part. Both types of joints described above can be designed 

using limit principles. 

(i) Friction grip joints 

The load is carried by friction, and failure is considered to occur 

at slippage. 	 From the shape of the load-movement graph (Fig. 2.1) for 

this region, there is little doubt that limit principles are applicable. 

Fig. 2.5 shows a summary of the results of test and calculation based on 

the strength of a single bolt joint. It is seen that good agreement is 

obtained. 
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- 	 BOLT 	GROUP BOLT 	SIZE 
AND 	TYPE 

ECCEN- 
TRICITY(fre* 

TEST SLIP 
LOAD (kN) 

CALCULATED 
SLIfkkilAD 

19.05 mm 
diam (11") 
HSFG 

0 302 
306 
346 

294 01-- 	 -E). -49- lie-   -e- 	 c—e. 

15.8 mm 
diam Al 
HSFG 

152 26.7 26.7 

"iP
e  

ilm  

I n■ m 

e 

15.8 mm 
diam (i'l 
HSFG 

127 66.7 65.8 

4_  

io 

I° *ISamm 

• 	 Figure 2. 5 

FRICTION GRIP TEST 

Friction grip strengths of single bolt joints are: 

147 kN for 19.05 mm HSFG bolt (average of three) 

44.5 kN for 15.8 mm HSFG bolt 
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(ii) Bearing joints 

The designer may be prepared in some cases to define failure as 

occurring when the ultimate load-carrying capacity of the joint is reached, 

i.e. some slippage is allowed. 	 From the characteristic load-movement 

graph of Fig. 2.1 for this region, it is seen that there is little ductility 

in the bolt itself. One cannot assume, in this case, that all the bolts 

will reach their full strength. If limit principles of design are used, 

one has to designate a bolt strength at some level which all the bolts 

can reach on the average. 

Fig. 2.6 shows a summary of the results of tests and calculations. 

It can be said that on the average all bolts reach about 80% of their 

ultimate strength. 	 To support this conclusion results of Kulak's test 

(Ref. 2.4) and American Institute of Steel Construction test on rivets 

(Ref. 2.6) are analysed in Fig. 2.7. 

2.7 LIMITATIONS ON THE APPLICATION OF THE METHOD 

Limit principles can be used in the design of eccentrically loaded 

bolted joints without any reservation if the joint is of the high strength 

friction-grip type, and failure is considered to occur at slippage. 	 It 

should be noted that slip resistance is affected by the condition of the 

surface of the connecting plates and the shape of the holes (Ref. 2.8); 

proper allowances must be made in the design accordingly. 

If the joint is of the bearing type, certain limitations are neces-

sary. 	 It is obvious that the amount of load redistribution before 

failure in a bearing joint depends on (i) the shape and fit of the joint, 

and (ii) the rigidity of the connecting plates. 	 The conclusion reached 

In the previous section is based on existing experimental data in which the 

joints are compact and the connecting plate is rather rigid. If these 

requirements are not met, then the above figures may be misleading. A 

simple way of testing the compactness of the joint is to plot eccentricity 
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BOLT 	GROUP TYPE 
30L1 SIZECCENTRI-JTEST 

:ITY e, 
ln mm 

ULT 
LOAD in 
kN 

POSITION 
..JF CENTER 
c, in mm 

CALCU- 
LATED UL7 
LOAD * 

, 
F/Fu  

+  	

Pi 

E- 	

, e 

6.35 mm 
•ia 	(i") 

H.S.bolt 

F u  = 

8 + 2 kN 

152.4 20.7 16.9 0.632F 0.856  102 	 F.  

J-- -4). 

P 

:s above 152.4 
23.6 

22.7 
5.8 0.871F 

0.707 

0.681 

34'' 

34mm 
e 	 • • . .I 

34mm.  

Sinl Y1 	Il 

:s above '  177.8 
36.5 

40.5 
46174 
21. 5 

1.205F 

0.791 

0.878 

1-1°-  
102mr.% 

1.— 4- . 
I  +  e 

-(I)-- 

I my,' 

;s above 177.8 36.2 29.9 

, 

0.978F 0.968 
to2. mrvi 

1+ 
• 34mrn 

15.8 mm 

Jia  (s") 

HSFG 

Fu = 

789  kN 

152.4 

147.9 

153.0 

0.6F 

0.853 

0.882 1.4, 

Figure 2- 6 

BEARING TEST 
Calculations were done assuming each bolt carried the same force F at collapse. 
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KULAK'S TEST 

(Bolts are ASTM A325 	 in diam.- for details of joints see Ref.2.4) 

Ultimate strength of individual bolt 	 Fu = 329 + 10 kN. 

Specimen 
Number 

Eccentricity 
e, 	in mm. 

Test ultimate 
load, in kN 

Position of 
center c, 
in mm. 

Calculated 
Ultimate Load 
Cm F) 	 * 

F/F
u 

81 203 500.4 18.2 1.836F 0.828 

82 254 511.5 20.0 1.768F 0.879 

B3 305 422.6 12.5 1.489F 0.862 

84 330 558.2 28.8 1.996F 0.849 

85 381 491.5 24.3 1.747} 0.855 

B6 305 587.1 25.4 2.119F 0.842 

B7 381 471.5 20.3 1.717F 0.834 

88 381 591.6 22.4 2.199F 0.817 

AISC TEST 

(Rivets are 	 in diam. - for details of joints see Ref.2.6) 

Ultimate strength of individual rivet Fu  = 267 kN 

Specimen 
Number 

Eccentricity 
e, 	in mm. 

Test ultimate 
load, in kN 

Position of 
center c, 
in mm. 

Calculated 
Ultimate 
Load 

TP1 63 480 46.5 2.041F 0.88 

TP2 89 358 25.0 1.624F 0.82 

TP3 165 222 3.82 0.910F 0.92 

TP4 63 1223 245.9 5.371F 0.85 

TP5 114 978 118.9 4.407F 0.83 

TP6 165 805 72.1 3.506F 0.86 

TP7 89 493 34.1 1.855F 0.99 

TP8 165 267 21.8 1.124F 0.89 

TP9 89 1263 75.6 5.480F 0.86 

TP10 165 787 42.6 3.603F 0.81 

Calculations were done assuming each bolt carried the same force F 

at collapse. 

Figure 27 
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against the position of the centre. 	 In Fig. 2.8 it is seen that most 

•tested joints fall in the region a b. 	 Another criterion, which is 

•rather obvious, is that the amount of load redistribution occurs more fully 

if the bolt lever arms 'r' are more nearly 'equal'. 	 If the two above 

criteria are observed, then the limit design method will give a good 

indication of the joint strength. 

2.8 CONCLUDING REMARKS 

The design method presented above is a good example of how the limit 

principles, derived from the plastic analysis of steel frames,are made to 

work or can be made to work in a different situation. A simple statically 

admissible state is chosen, from which the strength of the joint is esti-

mated. 	 For friction grip joints it is a lower bound method. For bearing 

joints it is not a lower bound method due to the lack of ductility of the 

individual bolts. 	 An empirical factor has been introduced by assigning 

the average strength of the bolts to some value less than their actual 

strength. The complexities of the joint (lack of fit, local yielding of 

plate, non-linear behaviour of the bolt) and the need for a simple method 

of design makes the introduction of such an empirical factor unavoidable. 

What is needed is further experimental data so that definite limitations 

can be placed on the size and layout of joints, and thus render this 

approach acceptable for use in the design office. 

Since the strength of the whole connection must necessarily include the 

strength of the connecting members, the established solution, strictly 

speaking,are only partial lower bound solution. A complete lower bound 

solution can only be established if the strengths of the connecting members 

are also assessed. 	 • 	  



CHAPTER III 

THE USE OF THRUST LINES IN THE DESIGN OF FRAMES 

3.1 INTRODUCTION 

In this chapter, the use of the limit design method of picturing 

the statically admissible state is further explored, in a simple well-

known context, that of the design of frames. One of the most satisfying 

ways of picturing the statically admissible state for a frame is to draw 

its thrust lines. The idea, which originated in the design of masonry 

arches, is extended here to cover multi-bay, multi-storey frames and 

gpa-Ce fraides. 

Once the thrust lines are drawn, moments, shears, and thrusts can 

be estimated. 	 The moment-shear-thrust diagrams are then 'covered' with 

strength, i.e. the members are proportioned so that the yield condition is 

satisfied everywhere. 	 A safe design results, based on the lower bound 

theorem of plastic limit analysis. 

This chapter consists of two parts. In the first part, a practical 

minimum mass design method is proposed combining the older and well-tried 

method of design of plane frames by guessing points of inflexion and the 

lower bound theorem of plastic limit analysis. In the second part, the 

use of thrust lines in the analysis of space frames is explored. Three 

cases are considered: (i) simple space frames under horizontal loads, 

(ii) free-standing staircases, and (iii) arch-ribbed domes. 	 Experimental 

results are used to check the calculations. 

3.2 PRACTICAL MINIMUM MASS DESIGN OF FRAMES BY GUESSING POINTS OF INFLEXION 

A simple way of obtaining a statically admissible state for a frame 

is to guess enough points of inflexion so that the thrust line can be drawn. 

If a linear relation is used between the mass /length of a beam and its 

plastic moment, as depicted by Baker in Reference 3.1, then a practical 
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approximate minimum mass design can be achieved by moving the points of 

•inflexion until a more favorable moment distribution results. 	 The method 

need not be pressed so far that an absolute minimum mass solution is 

achieved. 	 The designer, with a table of available beam sizes, can soon 

•reach a satisfactory solution which is sufficiently close to minimum mass. 

Many plane frames or structures containing plane frames are designed 

and built. 	 Often much time is spent in proportioning them, whether by 

elastic design (which is very tedious) or by the quicker known method of 

plastic design. 	 It is a matter of some satisfaction to the author to 

have combined the very old method of guessing points of inflexion with the 

power of the lower bound theorem of plastic design to produce a simple and 

rapid method of direct design. 

3.2.1 REPRESENTATION OF FORCES IN FRAMES BY THRUST LINES 

The basic properties of the thrust line hold whether the frame is 

elastic or plastic; namely its component in the direction of the member 

is the axial force, the component normal to the member is the shear force,  

and the product of the normal distance from any point on the member and 

the magnitude of the thrust is the bending moment at the point. The idea 

is quite often used in the analysis of arches. The extension to plane 

frames containing several bays or several storeys appears complicated but 

is in fact simple. 	 The seemingly complex force diagrams can be drawn quite 

readily with practice and need little explanation, so little is given. 

Fig. 3.1(b) shows the thrust line for the loaded portal frame of 

Fig. 3.1(a). 	 The thrust line is drawn by guessing two points of inflexion 

on the beam and one on one of the columns. The fourth point of inflexion 

is given by equilibrium considerations as indicated by the force diagram, 

Fig. 3.1(c). 	 The resultant bending moment diagram is given in Fig. 3.1(d). 

Similarly, Fig. 3.2(b) shows the diagram of the thrust lines for the 
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two-bay pitched roof frame of Fig. 3.2(a). 	 The three thrust lines for 

the three members that meet at joint B also meet, but elsewhere, to satisfy 

statical equilibrium. Fig. 3.3(b) shows a suitable statically admissible 

state for a two-storey frame with both vertical and horizontal loadings, 

Fig. 3.3(a). Note that the three thrust lines for the three members with 

the common joint E meet, while those for joint B do not meet, but are in 

equilibrium with the external horizontal load as shown on the force diagram, 

Fig 3.3(c). 	 The diagrams of Fig. 3.2 and 3.3 may appear a little complex, 

as graphical constructions often do. They are, with a little practice, 

very easy to draw, and their drawing gives an insight into frame behaviour 

which is obtainable in no other simple way. 

3.2.2 MINIMUM MASS DESIGN BY GUESSING POINTS OF INFLEXION 

Figs. 3.1, 3.2 and 3.3 are pictures of plausible equilibrium states, 

upon which designs can be based by drawing the resultant bending moment 

diagrams and shear force diagrams and "covering" the members with strength. 

The designs are then safe. 	 It is obvious that the resulting bending moment 

diagram should be made to correspond to a collapse mechanism so that all 

three basic conditions of equilibrium, mechanism, and yield are met. This 

is done by matching the maximum bending moments with the plastic moments 

of the sections at a sufficient number of points on the frame. To obtain 

a minimum weight design it is only necessary to shift the points of inflexion 

to obtain a more favourable distribution of moments. The following examples 

illustrate the method. In these examples, the loads have been multiplied 

by a design load factor 	 and since the mechanism condition is always 

• observed, A. is also the actual collapse load factor for the frame. Some 

of the examples are taken from Reference 3.2. 

Single-bay portal frame 

Consider the frame of Fig. 3.4(a). 	 A plausible equilibrium state 

is obtained by guessing two points of inflexion on the beam at 1/8 and 1/4 
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span from each end. The thrust line, shown dotted in Fig. 3.4(d), indi-

cates that the frame requires a plastic moment of 120 kN-m for both beam 

and column. The nearest universal section, available in Australia 

(Ref. 3.3), is a 250 UB, 37 kg/m, with plastic section modulus 

Z = 485 x 103  mm3. 	 The mass of the designed frame is 20 x 37 = 740 kg. 

To reduce the mass of the frame, it is desirable that more moment should 

be put in the beam and less in the columns. This is done by shifting the 

1/4 span point of inflexion to 1/8. 	 This gives the solid thrust line of 

Fig. 3.4(d) and the resultant bending moment diagram Fig. 3.4(c). The 

design becomes: column: 200 UB, 25 kg/m, Zp  = 260 x 103  mm3  , 

beam: 310 UB, 40 kg/m, 	 Zp  = 625 x 103  mm3. 	 The mass of the frame 

is then (10 x 40) + (19 x 25) = 650 kg. 	 Any further shift will not give 

a lower mass design, and the above design is accepted as satisfactory. 

Two-bay. portal frame 

Consider the two-bay portal frame of Fig. 3.5(a) with the loading as 

shown. This frame is first designed with the condition that all members 

are of equal cross section, of uniform N. 	 Thus from among various 

• possible statically admissible states that state which has all the bending 

moment distributed rather evenly must be selected. This is done by trial 

and error. One of the more favourable bending moment distributions is 

represented by the dotted thrust line of Fig. 3.5(e); the resultant 

bending moment diagram is drawn in Fig. 3.5(b). To "cover" this bending 

moment diagram with bending strength, the section 310 UB, 40 kg/m, 

Z = 625 x 10
3 
mm
3
, is selected. This gives the mass of the frame as 

5 x 10 x 40 = 2000kg. 

seetion 
Alternatively, if we are prepared to use two sizes of beam, one for 

the MO beams and the other for the three stanchions, the minimum mass 

design proceeds as follows. More moment should be placed on the beams 

and less on the columns. 	 The solid thrust lines of Fig. 3.5(c) give the 

bending moment diagram of Fig. 3.5(c). This results in the design 
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columns: 250 UB, 31 kg/m, Z = 396 x 103 mm
3 
; beams 310 UB, 46 kg/m, 

Z = 723 x 10
3 
mm
3
. 	 The mass of the frame is then 

(30 x 31) + (20 x 46) = 1850 kg. This is a practical minimum mass. 

The "true" minimum mass solution is given by Fig. 3.5(d), (if a linear 

weight function is used), but will not result in a lighter frame due to 

the limited availability of sections. 

Two-storey frame 

The two-storey frame of Fig. 3.6(a) is to be designed for the loading 

shown. 	 The frame is first designed so that each storey has uniform 

section members. This condition requires an even moment distribution for 

each storey, such as that given in Fig. 3.6(b). The design is then 

top storey: 250 UB, 37 kg/m, 	 bottom storey: 410 UB, 54 kg/m. 

The mass of the frame is then (37 x 25) + (54 x 25) = 2280 kg. 

The frame is now re-designed for minimum mass. This is done by 

reducing the moments in the top storey, increasing the moments in the 

bottom storey beam and reducing those in the bottom columns. The modified 

thrust line of Fig. 3.6(d) gives the bending moments of Fig. 3.6(c). 

The design becomes: top storey beam and stanchion: 250 UB, 31 kg/m; 

bottom storey beam: 410 UB, 54 kg/m; bottom storey stanchions: 

360 UB, 45 kg/m. 	 The mass of the frame is reduced to 

(31 x 25) + (45 x 15) + (54 x 10) = 1990 kg. 

3.3 THE USE OF THRUST LINES IN THE ANALYSIS OF SPACE FRANES 

Most of the research work in plastic limit analysis applying to 

space frames has been concerned with either transversely loaded grids or 

with beams which are curved in plane. For space frames, the number of 

possible collapse modes is large, and the reliability of designs based 

on an assumed collapse mode depends very much on how closely the assumed 

mode approximates the actual collapse mode. 
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In this section, the use of thrust lines to picture statically admis-

sible state is explored for various frames and loading conditions. The 

basic properties of the space thrust line are similar to those of the plane 

thrust line. 	 Since the line is now in space there are two shear com- 

ponents, two bending moment components, and one torsion component to be 

considered, in addition to the axial force. 

3.3.1 Simple space frames under horizontal loads 

The load-carrying capacity of the simple portal type space frame of 

Fig. 3.7(a) is examined for horizontal loads in two different directions. 

All the horizontal members of the frame form a truss-like structure, which 

will not deform substantially under horizontal load. The collapse mode 

of the frame involves the formation of hinges on the columns only. The 

column section is circular so that the plastic moment is the same about any 

cross-sectional axis. 

The test frames were made from 3mm diameter welding rod, the column length 

is 210 win. 	 The torsional strength of the column is therefore negligible 

compared with its flexural gtrength. 	 Fig. 3.7(a) shows a plausible thrust 

line pattern for the indicated horizontal loading. Torsional strength 

has been neglected in this construction of the thrust line, therefore the 

thrust line is in the same plane with the column. 	 It is part of the lower 

limit design philosophy that a minor source of strength can be neglected. 

- 

thrusts are in equilibrium with the applied force H. Since the frame has 

rigid bases, it can be shown that the maximum resistance of each column is 

F = 2Mp/h, where Mp is the plastic moment of the section and h is the height 

of the columns. 

For the case of Fig. 3.7(a), the center of rotation is found to be 

at A; for the case of Fig. 3.8(a), the center is found to be at a distance 

0.355L from the side. 	 Fig. 3.9 shows the measured load against deflexion 

graphs and the results of calculations. The calculated values are less 

than the actual collapse loads due to the omission of torsional strength 
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The collapse of space frames under horizontal loads. 
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in the calculations. Fig. 3.10 shows the actual collapse pictures of the 

frames; it can be seen that the assumptions of a rigid platform and of 

a center of rotation are experimentally justified. 

3.3.2 The free-standing staircase 

The free-standing staircase of Fig. 3.11(a) is analysed for a concen-

trated vertical load W as shown. For ease of analysis, the end of the 

stair is assumed to be pinned. The stair is restrained from horizontal 

sway. 	 The thrust line indicates that there is a horizontal force component 

H. The value of H can be estimated from the thrust line position and the 

value of W. 

'From.the thrust line Of Fig. 3.11(b), the three compOnents of the 

thrust are F= 0.67W F 	 F 	 ; the magnitude of • the • x 	 Y • 	 z 	 • 	 • 

•thrust  F is 0.8341 . The maximum moments occur at the joints B and B', 

and their magnitudes are given. by M
max = F.a , where a is the normal 

distance from the thrust line to joints B or 	 Calculations were• 

performed with the values of a meazured from 'the undefomed. and deformed 

frame. Fig. 3.12 , ..shoWs the,r6su1ts of measurement and, calculation on 

•a small model staircase, made of circular rods. The calculation is 

not a complete analysis , but only a statical check via thrust line.. 

•The purpose is to demonstrate the use of thrust line in picturing the 

. statics of this particular frame. 

pinned arch-ribbed dome under a vertical load placed on one of the ribs. 

(see Fig. 3.14). 

For the arches 2-2', 3-3' and 4-4', which carry no external loads, 

the thrust lines are straight lines which go through the pins at crown and 

supports. The maximum moments occur at the centers of the ribs. Due to 

symmetry, the thrusts in the arches 2-2', 3-3', 4-4', and in the rib 0-1' 

can be resolved into a vertical force and a horizontal force at the crown 0 

in the plane of the arch 1-1'. These forces must be in equilibrium with 
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Model of the thrust line for the free standing staircase. 

FIGURE 3.17 

The collapse of an arch ribbed dome. 
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Figure 3.14 
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the external load W and the reaction at support 1. 	 Figure 3.15(a) shows 

the constructions of the thrust lines on the undeformed dome. 

A semi-circular arch-ribbed dome, consisting of eight ribs made 

from 1/8" diameter rod, was tested under a single vertical load at midspan 

of one of the ribs. 	 It was found experimentally that hinges formed at 

midrib in all ribs except 3-0-3'. 	 The maximum thrust that each rib can 

take was 9.0 Newton. This data was derived theoretically and checked 

experimentally. 

Calculation was made based on the observed collapse mode: ribs 2-2', 3-3', 

1-1'were failing while rib 4-4' remained elastic. 	 If F is the force in 

the failing ribs (9.0 Newton previously established) and X is the force in 

the elastic rib, then the value of X can be determined from the knowledge 

that a full plastic moment value (1.35 kN mm) occurs at the loading point. 

The problem is best solved by graphical trial and error method. 	 From the 

calculated value of X, the collapse load can be determined. 

Figure 3.15(a) shows the equilibrium condition of the undeformed 

dome. 	 The ultimate load is estimated at 71.0'N. This value is well 

above the measured collapse load 45.0N. 	 The measured vertical deflexion 

at the leading point at near collapse is about 22 mm. 	 It is thought 

therefore that the deformation may have a large effect on the final collapse 

load. To obtain a statical check via thrust line for the dome, the deformed 

shape of the dome was traced and calculations similar to those done on the 

undeformed shape were performed. Figure 3.15(b) shows the equilibrium 

condition of the deformed dome; the ultimate load is estimated at 42.0 N. 

• Figure 3.16 compares the measurements and calculations, while Figure 3.17 

shows the collapsed dome. 



CHAPTER IV 

THE STRENGTH OF ORTHOTROPIC SLABS 

4.1 INTRODUCTION 

In this chapter, the strength of rectangular orthotropic slabs under 

uniformly distributed load is examined. Unlike frames whose structural 

actions can be pictured by thrust lines, there is no similar way of 

picturing the structural actions of slabs. The standard lower bound 

solutions, giving moment fields and collapse loads in terms of closed-form 

expressions, are available only for a few cases. 

The aim of this chapter is to find a simple way of picturing the 

structural actions of slabs. The proposed approach is to replace the slab 

by an assembly of simpler structural components. The solutions for the 

slabs obtained in this way are very simple both in form and in derivation. 

The solutions are not strictly lower bound solutions since the interaction 

effects between various structural components have been neglected. However, 

by comparing the proposed approximate solutions with yield line solutions, 

existing and newly-derived lower bound solutions, it is found that the 

proposed method gives a fairly accurate estimate of the strength of the 

rectangular orthotropic slabs. 

4.2 LOWER BOUND APPROACH 

4.2.1 Basic Conditions 

A lower bound solution for slabs requires the specification of the 

moment fields such that (i) the equilibrium condition is satisfied every-

where, including the boundary conditions and (ii) the yield condition is 

nowhere violated. 

The idea was introduced by the author in a discussion on a paper by 

Ragan (Ref 4.15). 	 The discussion is published in Journl.of Struct. Div. 

ST2, ASCE, Feb, 1974. 
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The equilibrium equations for the slab are: 

&v•= _ = c-A,c  

(la) 3214_ 
a 
_ )ft_4: 

in which Mx and My are bending moments per unit lengths in x and y 

direction respectively, Mxy is the twisting moment per unit length, Qx 

and Qy are the shears per unit length, and p is the collapse load per unit 

area of the slab. 	 Figure 4.1 shows the sign convention for shear, 

moment, and twist in a slab. 	 Other general notations are also included 

in the same figure. 

Equations (la) are usually reduced to a single second order equation 

by eliminating the shear force terms (Ref 4.1). 

-g-AA 	
2 .)2-mx 	 = -P 

	
(lb) 

I 

The yield condition for an orthotropically reinforced concrete slab 

with equal positve and negative yield moments is as follows: 

For positive yield 

(2) 

For negative yield Ma  (11+11,)(rm+my) 

where M andr-M are yield moments in x and y directions,fLis the coefficient 

of orthotropy. The yield criterion has been derived theoretically by 

various authors (Ref 4.2, 4.3) and experimentally checked by others 

(Ref 4.4). 

4.2.2 Difficulties with the lower bound approach 

The main difficulty with the lower bound approach lies in the 

td 
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specifications of the moment fields Mx, My and Mxy such that (lb) and (2) 

are satisfied everywhere. The moment fields at any point, following a 

Mohr's circle, must be tested in every direction, against the normal yield 

momentsM
n
, which are governed by a different Mohr's circle, applying to 

ts.4 
the reinforcement, (M.,I=Mcos

2A  4-rotsin v ). 	 Kemp (Ref 4.5) pointed out 

that the success of any prescribed moment fields depends on whether the 

yield moment is reached at the corners; the specification of the twisting 

moment field is particularly important in this aspect. 

The use of the differential equation (lb) requires careful consid-

eration of the boundary conditions. The rigorous definition of statically 

admissible field as proposed by Fox (Ref 4.6) must be followed. For 

example, the conditions (lb) and (2) alone are not adequate to ensure a 

lower bound solution for a slab with a free edge; the condition of no 

shear along the free edge must also be observed. 

4.2.3 Existing lower bound solutions 

As the result of the difficulties encountered, few lower bound solu-

tions exist. 	 Hillerborg (Ref 4.7) developed the strip method, in which 

the torsional moment capacity is neglected and the load at any point on the 

slab is carried to the nearest support by bending in the plane perpendi- 

cular to the support. 	 The method attempts to directly design a slab with 

variable reinforcement. Wood (Ref 4.8) has shown that the method can be 

modified to give an exact solution. Kemp (Ref 4.5) proposed a closed form 

lower bound solution for slabs uniformly loaded and simply supported on 

four sides. Holmes and Steel (Ref,4.9) used numerical method to obtain 

lower bound solutions for isotropically reinforced slabs restrained on the 

shorter sides. 	 Ragan (Ref 4.15) gave lower bound solutions for slabs 

restrained on the shorter sides and slabs restrained on all sides. 

Due to the difficulties with the strict lower bound approach and the 

scarcity of existing lower bound solutions, the following approximate 

method is proposed. 
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4.3 OUTLINE OF THE APPROXIMATE METHOD 

The proposed method is based on the basic hypothesis that the applied 

load can be carried independently by the moment capacity in two directions 

and the torsional moment capacity of the slab. 	 Accordingly, the slab is 

subdivided into three parts: (i) 	 a series of strips in x-direction, 

(ii) a series of strips in y-direction, and (iii) a number of plates which 

can carry only twisting moments. 

Under these restrictions the yield conditions become: 

For the strips in the x-direction Mx ‘ M 

For the strips in the y-direction My 4r ; 	 (3) 

For the twisted plates Mxy4547t M (Mx = My = 0) . 

In equation(3), M andp.M are yield moment in x and y directions respectively, 

andie- is the coefficient of orthotropy. 

It is seen that the yield conditions as stated in (3) are not iden-

tical to the exact yield conditions of (2). 	 The interaction effects 

between various structural actions have been neglected. To determine how 

serious the effect.of this is upon the solutions, comparison will be made 

between the ensuing solutions, the yield line solutions, and other existing 

and newly derived lower bound solutions. 

If the above conditions are accepted, a solution can be obtained very 

simply as follows. 	 The general forms of the moment values are 

MX = K1p1L
2 
; My = K2p21

2 	
; MXy = K3p31L 	 (4) 

where p = pl  + p2  + p3  is the collapse load of the slab; Kl, K2  and K3  

are constants whose values depend on the boundary conditions. 

The solution of equation (3) and (4) gives the collapse load in the 

following form 

a  2. 
p c 	—  2  cif + az  9.7. r 4- a

3 I (5) p  
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where a
l' 
a
2' 
and a

3 
 are constants whose values depend on boundary 
 , 

conditons, anct tiL . 

In equation (5) the first and third terms are the contributions of 

the moment capacity in x and y directions and the second term is the 

torsional moment capacity contribution to the total load carried by the 

slab. 	 Several examples, making use of the above solution, are discussed 

in the following section. 

4.4 COLLAPSE LOADS FOR SLABS WITH VARIOUS BOUNDARY CONDITIONS 

A slab supported on four sides is replaced by three simpler structural 

components: strips in the x-direction, strips in the y-direction, and a 

number of plates which can only carry twisting moments, Fig 4.2(a). 	 The 

twisted plates are obtained by making two cuts along the line of symmetry 

and by replacing the loading and its reactions to two equivalent couples 

acting at the four corners of each quarter of the slab. 	 The average value 

of the twisting moment due to a uniform load p3  is then Mxy = 1/8 p31L. 

For a slab simply supported on four sides, Fig 4.2(a) 

t%/i =ii-rx 4/km 	 st.mitt 

M= *LL 	 1,3 	 11(t L 

13  2. 	 pi +1,2.73 	 g 	 sricf  +r) my_ 

c = 	 c), cri 	 r2- 
Similarly, for slabs restrained on four sides, Fig 4.2(b), 

C =I6)4. +fiZ 

For slabs restrained on two shorter edges, Fig 4.2(c), 

C = 3 (ft 4-9T- 1)  
For slabs restrained on one short edge, Fig 4.2(d), 

C = 	 (9)  5  (it.  + rit r 1.457r2-) 	  

(6) 

(7) 

(8) 
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For slabs restrained on two adjacent edges, Fig 4.2(e), 

C = 	 ..1+57t + 	 + 1.457 	 (10) 

Similarly, a slab supported on three sides can be replaced by two 

components: strips between the opposite supporting sides, and a number 

of twisted plates. The twisted plates are obtained, in this case, by 

making one cut along the line of symmetry and replacing the loading and 

its reactions to two equivalent couples acting at the four corners of each 

half of the slab, Fig 4.3(a). The average twisting moment due to a 

uniform load p3  is then Mxy = 1/4 p31L. 

For slabs with three sides simply supported, Fig 4.3(a), 

C = s(+ -r9-02-) 
For slabs with three sides restrained, Fig 4.3(b), 

C 	 1Gr2*+ 	
21t 

	
(12) 

For slabs with two short edges simply supported and one long edge 

restrained, Fig 4.3(c), 

+ 411--t-t 	 (13) 

For slabs with two short edges restrained and one long edge 

simply supported, Fig 4.3(d), 

C = 
	

(14) 

4.5 COMPARISON WITH UPPER BOUND SOLUTIONS 

Figure 4.4 shows a summary of the upper bound solutions, obtained 

from yield line theory (Ref 4.10, 4.11), and the corresponding approximate 

solutions, obtained from the proposed approximate method. According to 

Wood (Ref 4.14), the upper bound solutions can be reduced by up to 8%, 

depending on the boundary conditions, to account for the corner effects. 



!G(/•Iff Piz 4-t-) four edges restrained 

± 	 ) 

or 24/4(3i  

wtiere 

2 f.2. 	 9/4/2e1  - 2 Op 

Pz -74 

UPPER BOUND (YIELD LINE) 

2 

r  /14 
PROPOSED METHOD 

2-4/44- 

fi +rip- - 	 iL 
(r+pl-r four edges simply 

supported 

two long edges simply 
supported and two short 
edges restrained 

24)A- 

ti3+2f7,- - ricz7o---t 12-  
s 	 f + 2 r 2-  ) 

one short edge restrained 
and other edges simply 
supported 

24/4.4- 

[13 I. 457 f217. - I. 2.07 	 12  

two adjacent edges 
restrained and other two 
edges simply supported 113 +-f204- - rIrFit 

I. 14-57/A- + r 117 +(.41-S7.114) 

24t- 	
12-- 

Ii4+91L/pz - 2- 3 r 

+pkr - / 2p 

three edges simply 
supported and one long 
edge free 

crt (4p, 1)  or 

	

, 5   -  	 (322.  
v4h e re 

ri "if-71-41112. 	 .} l214-  

	

1$2 =it 	 I 

 

} /4r2 

three edges restrained 
and one long edge free 

two short edges simply 
supported, one long edge 
restrained, and the other 
free 

6p (413.,-f-t)  or 

wiltre 	 r  

pi = f)21'elt  2  OP 
- I/2r2-  

two short edges 
restrained, one long edge 
simply supported, and one 
long edge free 

r+41FP) 

4 8it 

EDGE CONDITIONS 

60 

Figure 4•4 



61 

C = pl
2/M 

p and 
three edges simply supported 

one long edge free 
three edges restrained and 
one long edge free 

1/4 

13.86 * 10.45 26.58 20.05 
1 12.00 t 10.00 22.00 18.50 

(13.41)* (4.34) (17.25) (7.75) 

9.35 6.47 17.94 12.40 
3
/ 4 

7.50 6.00 14.00 11.00 
(19.82) (7.20) (21.98) (11.31) 

8.04 5.35 15.50 10.27 
6.22 4.89 11.78 8.94 
(22.63) (8.70) (24.01) (12.93) 

5.44 3.46 11.02 6.65 
1
/2 

4.00 3.00 8.00 5.50 
(26.45) (13.41) (27.40) (17.25) 

U B reduced by 2% 
	

U B reduced by 6% 

C = pl
2
/M 

p two short edges simply 
supported, one long edge 
restrained, other free 

two short edges restrained, 
one long edge simply 
supported, other free 

= 1 74-- = 1/4 
1.4-= 1 1.1-= 1/4 

41e 17.01„ 11.52 23.04 18.83 
1 14.00T 10.50 20.00 18.00 

(17.71)°  (8.85) (13.19) (4.42) 

12.05 7.40 14.79 11.33 
9.50 6.50 12.00 10.50 
(21.15) (12.13) (18.89) (7.35) 

10.53 6.24 12.48 9.26 
8.22 5.39 9.78 8.44 
(21.92) (13.63) (21.64) (8.82) 

7.82 4.25 8.51 5.76 
6.00 3.50 6.00 5.00 
(23.23) (17.71) (29.47) (13.19) 

U B reduced by 4% 
	

U B reduced by 4% 

* Upper bound value (Yield Line Theory) 
t Approximate Lower bound value 
° Percentage of difference 

Figure 4. .6 
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C = pl
2
/M 

f 

four edges restrained 
two short edges restrained 
two long edges simply 
„ported 

,

w, .  1 /IA-  = 4 14- = 1 14- = 4 

1 

* 
44.16 
40.00 . 
(9.42) 

104.08 
96.00 
(7.76) 

34.11 
32.00 
(6.19) 

68.05 
64.00 
(5.95) 

3 
/4 

34.13 
31.00 
(9.18) 

90.49 
85.00 
(6.06) 

24.47 
23.00 
(6.01) 

56.15 
53.00 
(5.62) 

31.22 
28.44 
(8.90) 

86.32 
81.78 
(5.26) 

21.75 
20.44 
(6.00) 

52.60 
49.78 
(5.37) 

1/ 
2 

26.02 
24.00 
(7.76) 

78.51 
76.00 
(3.19) 

17.01 
16.00 
(5.95) 

46.08 
44.00 
(4.51) 

U B reduced by 8% 
	

U B reduced by 4% 

= pl
2
/M 

i' 

_ 

one short edge restrained 
others simply supported 

two adjacents edges 
restrained others simply 
supported 

)14,  = 1 i-L-= 4 /1-4- = 1 1-,--= 4 

28.77 * 62.12 33.57 79.12 
1 27.66 1-  59.66 31.31 74.28 

(3.87)°  (3.96) (6.73) (6.12) 

21.37 52.58 25.95 68.79 
3
/ 
4 

20.56 50.56 24.21 65.18 
(3.80) (3.85) (6.69) (5.25) 

19.26 49.70 23.74 65.62 
2
/3 

18.51 47.85 22.17 62.47 
(3.85) (3.73) (6.60) (4.80) 

15.53 44.35 19.78 59.68 
14.91 42.91 18.57 57.54 
(3.96) (3.25) (6.12) (3.59) 

U B reduced by 2% 
	

U B reduced by 4% 

* Upper bound value (Yield Line Theory) 
t Approximate lower bound value 
° Percentage of difference 

Figure 4. 
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Figure 4.5 and Figure 4.6 compare the upper and approximate values. 

The following points may be noted: 

(i) From Figure 4.4 it is seen that the proposed formulae are 

simpler both in form and in derivation. Yield line solutions, although 

simple in principle, involve a considerable amount of algebraic manipu-

lation. 	 The proposed method on the other hand, is very simple alge- 

braically; 	 the only complication is the estimate of the load that can 

be carried by twisting action alone. 

(ii) Figure 4.5 compares the approximate and upper bound values of 

p12  
C =---- , for slabs supported on all four sides. All values are in agree- 

ment to with 10%. The case of slabs with four sides simply supported 

has been found by Kemp (Ref 4.5) to give even better agreement (within 2%). 

(iii)Figure 4.6 compares the approximate and upper bound values for 

slabs supported on three sides. The agreement is poorer in these cases, 

variation ranging from 4% to 30%. The proposed method did not allow any 

load to be carried in the direction normal to the free edge, while obviously 

some load must be carried in this way. The argument is justified by 

observing that the agreements between the approximate and upper bound 

solutions are better for cases wherelL= 1/4 than that fort.= 1. 

4.6 COMPARISON WITH LOWER BOUND SOLUTIONS 

A strict lower bound solution to the collapse load is obtained by 

specifying the moment fields Mx, My, and Mxy such that (i) the statical 

boundary conditions, (ii) the equilibrium condition as given by Equation 1(b), 

and (iii) the yield condition as given by Equation 2, are satisfied.' 

Existing and newly derived lower bound solutions are now compared with the 

approximate solutions obtained in 4.4. 

4.6.1 Slabs supported on four sides 

For slabs simply supported on four sides, Kemp (Ref 4.5) proposed the 
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following moment fields: 

M3c  = M (1 - 4r/L) 

1'1\ =it M (I - 41e) 
	

(15) 

The above fields give the same collapse load as the approximate 

method, i.e. 

c = elm =  
For slabs restrained on the shorter sides, Ragan (4.15) proposed the 

following moment fields 

fv\ 	 - soc3-10-)+ (4-XIFAx4/1:4)(1- 

-4yie) 	 (16) 

= NM(x.10(y11)(( — 4x21C-)( ÷i2.,,c712.) 

The collapse load is given by 

= taiM = 	 7-A + (6 1)27  

ck■ i 	 4- ric. 
Ragan obtained the value of A's by using a curve fitting process. 

The proposed approximate solution is equivalent to Ragan 's solution with 

4.6.2 Slabs supported on three sides. 

For slabs with a free edge, there is no existing lower bound solution, 

and the following solutions are proposed. 	 It may be noted that one extra 

condition is required here, besides 1(b) and 2, namely there is no reaction 

along the free edge, i.e. 

_ 
Cl I 0 113 free 4ac15e 

 

(17) 
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(a) Slabs simply supported on three sides. 

A simple solution can be obtained from the following fields. 

Mx.. m(1-4/L2-) 

(18) 

The above fields satisfy (lb), (2), and (15) and give the same 

collapse load as the approximate method, i.e. 

= i)t iM 	 Sr-4- 4. 974 f 
2_ 

An improved solution is obtained by allowing some load to be taken 

flexurally in the y direction; the moment fields for these conditions 

are 

Mz= M - 

= 	 (y10211- apt) 
	

(19) 

mxj= ritM WO( 	 k (rif)P1(x10 41t)(I-- 

The collapse load is 

= rt2lm 
	

(20) 

in which k is a parameter to be determined so that the yield condition 

is satisfied everywhere. 

The value of k is found numerically by drawing the Mohr's circles 

for a number of points on the slab and checking the yield conditions 

accordingly. The value of k is given in Figure 4.7 for various values 

of rand 

(b) Slabs restrained on one long side. 

The moment fields are 

= M ( I — 4x21 LI") 

-)A-m 	 1'1(v/02-(i- It) 

jk ris" M (RIL-X̀Jit)( - j]t) 

 

(21) 
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Slabs with one long side restrained 

two short sides simply supported 

k 
Slabs simply supported on three sides 

2 

Figure 4•7 

3 4 

r. 
Slabs with three simply 
supported sides 

Slabs with one 
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simply sunno4ed 
It= 1/4  
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10.33 

10.00 
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12.00 
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10.50 

14.44 

14.00 

A
CI  
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3.00 

4.56 

4.00 

3.60 
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The collapse load is given by 

C = 	 r 2t g 97A f) 	 ...... (22) 

where the value of k is also given in Figure 4.7. 	 The solution is 

identical to that given by the approximate method with k = 4. 

Figure 4.8 compares the values obtained from these solutions and 

the approximate solutions. 

(c) 	 Slabs restrained on two short sides. 

The moment fields are 

Mb  = 0 	 ••  	 (23) 

v 1 -_,Fit m xxxvit )(I- 4x%/L2. ) 	 x,/0-)  

The collapse load is given by 

C = \A-21M = le iz  2A(7Z   (24) 

For the range of F  between 1/2 and 2, the value of k is approxi-

mately 2. The solution is then identical to that given by the approxi-

mate method. 

The technique of obtaining the moment fields outlined above can be 

used for cases with different boundary and loading conditions, (e.g. 

linearly varying load). However, no precise lower bound solution is 

available for slabs restrained on three or four sides. 	 The difficulty 

lies in the specification of the twisting moment field. 

4.7 CONCLUDING REMARKS 

The approximate method presented in section 4.3 readily provides an 

estimate of the strength of any orthotropic slab, and of the relative 

importance of various structural actions. The main advantages of the 

method are the ease of derivation and the simplicity of the solution. 
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Its main drawbacks are the approximate treatment of the twisting action 

and the neglect of the interaction effects which makes the solution 

unsafe. 	 The comparisons made in section 4.4 and 4.5, however, show that 

the method gives a fairly good estimate of the strength of any orthotropic 

slabs within the practical range of dimensions. 

The moment fields obtained in section 4.6 offer a rational basis 

for the design of reinforcement and the estimate of the edge forces. 

The lower bound solutions obtained for slabs with a free edge are believed 

to be new. 

Some further work on slabs can be found in Appendix A2 where an 

analogy is proposed for picturing the yield line patterns. 



CHAPTER V 

LOAD CARRYING CAPACITY OF STRUCTURES WITH NO TENSILE STRENGTH 

5.1 INTRODUCTION 

In this chapter, the strength of structures made of materials having 

no (or little) tensile strength is examined. 	 In the past, the design of 

these structures has usually been made based on some form of elastic 

analysis with a chosen 'safe stress' level. 	 The application of elastic 

methods to imperfectly elastic structures is not rational. The 'safe 

stress' design approach does not reflect in any way the load carrying 

capacity of the structures nor does it give a proper measure of their safety. 

Heyman has applied the limit principles, derived from plastic analysis of 

steel frames, to masonry structures (Ref 5.1, 5.2, 5.3, 5.4, 5.5). Heyman's 

works have provided a better understanding of the structural behaviour and 

a more rational basis for the design of masonry structures. The two basic 

assumptions underlying Heyman's approach are: 	 (i) there is no danger of 

crushing of the material in compression and (ii) sliding failure does not 

occur. 	 Sliding failures could and did occur under the conditions of 

reduced arch thrust due to the support movements (Ref 5.6). A proper 

analysis of sliding failures requires the knowledge of the material and 

of the support conditions. 	 The assumption that there is no danger of 

crushing is justified for old stone arch bridges where the stress is 

relatively small compared with the strength of the material. For highly 

stressed modern structures, the danger of crushing cannot be overlooked 

and should instead be allowed for. As Mainstone (Ref 5.6) stated, the 

thrust line should be made to be "sufficiently within the depths of the 

arch rib to remove completely the risk of local failures under highly 

concentrated compressions of the hinge points. The question is: how 

far within?" 
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of a plain concrete section under the combined actions of axial load and 

bending moment is studied. The study results in a rational method of 

positioning the thrust line at collapse, allowing for the effect of 

crushing of the concrete. The problem of predicting the strength of 

masonry walls is then dealt with, using the above method. In the second 

part, the strength of the Gladesville Arch Bridge is studied for three 

different loading conditions. 	 Since the arch is slender, the effects of 

changing geometry and of concrete crushing are included in the calcula- 

tions. It is believed that this study gives a more realistic measure of 

safety of this important bridge than the conventional 'safe stress' 

approach. 

5.2 STRENGTH OF A SECTION 

The strength of an unreinforced concrete section is analysed. 

stress-strain curve for concrete is approximated to the idealized form of 

Figure 5.1(a). This curve is a well-known approximation recommended by 

the European Concrete Committee in the "International Recommendations for 

the design and construction of concrete structures " (F.I.D. Sixth Congress, 

Prague). 	 It will be assumed in all the following work that the tensile 

'strength of concrete is neglected. For simplicity only a solid rectangular 

sectiOn is analysed, although the principles used are applicable to any 

other section. 

plane sections remaining plane on average, Figure 5.1(c) shows stress 

distribution patterns for the cracked and uncracked states. The distri-

bution of stress in the concrete follows the stress-strain curve of 

Figure 5.1(a). 	 The total concrete force must be equal to the applied 

load P. The moment-thrust-rotation (M-P-0 relation for the section is 

derived numerically using the flow chart of Figure 5.2. The ultimate 

strength is reached when the compressive strain at the outermost fibre is 

0.0035; the corresponding bending moment is then the maximum moment that 
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Given P, 

Calculate E:= P/EA 

= 	 + 2 kV.  d 

Calculate 
E2  = E -  21\/d 

Use cs---(E relation to obtain stress diagram 

Integrate to obtain axial force P' and moment M' 

EQUAL 
Compare P and P' 

UNEQUAL 

Set 	 = C.+ 	  
EA 

Correct value of M obtained. 

Figure 5.2 



W)cis e„,„„ 

73 

Mori evil-  M 

kip') 
R.__ G8 kips , M,"= 176.1 ihskip ;. em,a„ 2.60 

I 0 

P. M 	 —II( thski Fs, wi.ts — • 	 e,ay= 3.os 
— — 

17-0 

40 	 P=178 s M= 31.7 ;Ask( 
Max:—  

in. 
16" 

ci,= 8" 
f,,=1.56 ksi 

0.000 g 

6—(ksi) 

1.56 a  

1  

0.002 0.0035 

2.00 I  2.50 

Axial Load P 
(Kirs) 

(6) 
	

Mo ment (nsktrs) 

'Figure '5.3 
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can be carried by the section under the considered axial load. From the 

values of moment and thrust the maximum permissible eccentricity of the 

thrust is derived. 

Figure 5.3(a) shows the M-P-4'relation for a rectangular concrete 

section. 	 From the graph, estimate of the maximum permissible eccentricity 

can be made for any given axial load. The moment rotation relation 

also indicates whether it is justifiable to use limit principles in the 

analysis of the structure. 	 For the considered section, the N14 curve 

for the axial load P = 36 kips approximates quite well to the ideal 

'elastic-plastic' behaviour, while the M-+ curve for the axial load 

7 
P = 198 kips does not. 	 It may be also noted that the 'middle third' 

rule, which is based on a linear stress distribution with zero stress at 

one edge as the limit, has no particular significance. 	 For high axial 

load the thrust must be placed well within the section (hence the middle 

third rule is not necessarily safe); while for low axial load, the thrust 

can be placed very close to the edge of the section. 

5.3 STRENGTH OF MASONRY WALLS 

This sections deals with the problem of predicting the strength of 

masonry walls under compressive and transverse loads. The strength of 

masonry is a combination of the strength of the actual concrete unit and 

the mortar that binds the units together. The compressive strength of 

the masonry can be estimated by testing three or five layers of masonry 

(Ref 5.7 and 5.8). The procedure is similar to those for the testing of 

standard concrete cylinders. Concrete masonry usually has about 35 to 55% 

of that of individual block strength; it depends on mortar joint thickness 

and quality. 

Once the average masonry strength is established, the wall can be 

analysed as a homogenous concrete body. The tensile strength of the 

joining mortar is neglected. 	 Figure 5.4(a) shows the forces acting on a 
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section of a masonry wall. 	 The effective wall height is he, width b, 

the axial load is P, and the transverse pressure is p. 	 The thrust is 

placed at a distance c from the center line of the section; the distance c 

is determined from the magnitude of the axial load P as outlined in the flow 

chart of Figure 5.2. 	 Equilibrium analysis of the system gives the fol- 

lowing equation. 

p(c cs-)+ 	 (b. 

in which (S.  is the central wall deflexion. 

The transverse pressure to cause collapse is given by 

 

SPCc-g)  
Pcollorse 	 6. g: 

 

(5.1) 

 

Figure 5.4(b) shows the position of the thrust line at collapse. 

The above analysis is applied to Yokel's experimental work on masonry 

walls (Ref 5.7). 	 Figure 5.5 shows Yokel's general test set-up and wall 

dimensions. 	 T 

by-akehel. Figure 5.6 shows a summary of the results of calculations and 

le As seen in Figure 5.5, the bottom of Yokel's wall is partially restrained 

against rotation with a steel channel. The proposed analysis assumes both ' 

ends of the wall are free to rotate, therefore an effective wall height 

• must be established for the analysis. 	 Yokel suggested 0.8h as a realistic 

• measure of effective wall height and this value will be used in the 

following calculation. 

using the technique of dynamic relaxation. 	 The outline of the method is 

44k ( 	 The main purpose of the above analysis and calculations is to demon- 

strate the advantage of the proposed method of placing the hinges at the 

specified position over the conventional method of placing hinges at the 

edge of the section. In Figure 5.6 reading downward in each column, it 

will be observed that there are definite improvements in the estimate of 

the load capacity. 
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(6) (a) 

Figure 5.4 
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Figure 5.5 



WALL DESIGNATION 3-3 3-4 3-5 3-6 
* 

3-7 
* 

3-8 
* 

3-9 3-10 

AXIAL LOAD (Kip) 25 50 100 150 200 300 400 500 

MEASURED 	-_-_a_  DEFLEXION (in) 0.49 0.61 0.23 0.79 0.40 0.20 0.19 0.29 
(cit 	ma)(ivvr) load.) 

MEASURED MAXIMUM TRANSVERSE LOAD 3.29 5.94 8.17 15.12 15.26 13.80 15.59 6.10 
(psi) 

'HINGE' POSITION (AS IN 5.2) 	(in) 3.65 3.50 3.17 2.85 2.52 1.88 1.25 0.60 

I 	

I 
PR
ED
IC
TE
D 
WA
L L
 CA
PA
C
I T
Y 

(p
s
i)
  

WITH 'HINGE' PLACED AT EDGE 3.69 7.38 14.77 22.16 29.55 44.33 59.10 73.88 

OF SECTION AT ZERO DEFLEXION ** 
(12.1) (24.2) (80.8) (46.5) (93.6) (221.2) (279.0) (1111.1) 

WITH 'HINGE 	PLACED AT POSITION 
3.54 6.76 12.30 16.50 19.5 21.9 19.40 11.60 

INDICATED AT ZERO DEFLEXION 
(7.6) (13.8) (50.5) (9.1) (27.7) (58.7) :24.4) (90.2) 

WITH 'HINGE' PLACED AT POSITION 3.08 5.60 11.40 12.10 16.40 19.50 16.30 6.00 
INDICATED AT MAXIMUM DEFLEXION :-6.4) (-5.7) (12.9) (-19.9) (7.4) (41.3) (4.5) (-1.6) 

(Predicted value - Measured Value)  
* * 	 Values in bracket = 	

Measured Value 
	 x100 

Wall did not actually fail, 	 test discontinued. 

Figure 5.6 
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5.4 STRENGTH OF GLADESVILLE ARCH BRIDGE 

5.4.1 General Description of the arch and the actual design method. 

The Gladesville Arch bridge, which spans the Parramatta River between 

Gladesville and Drummoyne (Sydney, Australia), is the longest single 

concrete arch span bridge in the world. 	 Its novel design and construction 

technique have been described fully by the designers in Reference 5.9. 

The bridge consists of a concrete arch spanning 1000 ft, supporting pre-

stressed concrete flexible columns and a prestressed concrete beam deck of 

100 ft spans. 	 The arch has four ribs, each 20 ft wide and 14 ft deep at 

the crown, built of hollow concrete voussoirs. The voussoirs were placed 

upon false work, jointed with insitu concrete, and made into arches by 

means of flat jacks permanently built into the structure at quarter points 

to induce thrust. 	 The general geometry of the arch rib is given in Figure 

5•8• 

The Arch was designed so that it would be made perfectly funicular 

under its own weight (Ref 5.10). The effect of live load was estimated 

using an elastic analysis. No estimate was made of the ultimate load- 

carrying capacity of the structure. The designers stated that the arch 

had "an enormous factor of safety against failure" and Pippard said "even 

if tension did occur, the arch would still have a considerable margin of 

safety"; however, no actual figures were mentioned. 

It is interesting to apply the limit principles to establish a measure 

of safety for this important bridge. 	 Since the stress in the concrete is 

high in this case, the assumption usually made that there is no danger of 

crushing of the material is not fully justified. 	 However, allowance for 

the crushing effects can be made by limiting the thrust eccentricities as 

proposed in Section 5.2. 	 The calculations made herein assume that the 

arch is a voussoir arch, as designed and as it was intended to be built. 
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It is the author's belief that the safety of 'funicular structures' 

such as this bridge cannot be adequately assessed by the conventional 

'safe stress' methods. 	 The application of limit principles to this kind 

. of structure is a more rational approach and calculations similar to the 

following should be made in all such cases. 

5.4.2 Strength of the voussoir sections 

Following the approach in 5.2, the capability of the voussoir sections 

to carry bending moments under their own dead weight thrusts is investi-

gated. The characteristics of the moment-rotation curves will indicate 

whether the application of limit principles are suitable to the analysis 

of this particular arch bridge. 

The geometry of the section is given in Figure 5.8. The stress-

strain curve for concrete is approximated to a bi-linear relation, Figure 

5.10(a). 	 The dead load thrust line is plotted in Figure 5:9, from which 

the values of the dead load thrusts at the sections are estimated. 	 (Data 

was gathered from Ref 5.9). The analysis follows the flow chart of Figure 

5.2. Figure 5.10 shows the moment-rotation curves of the sections at the 

estimated dead load thrusts. 	 It is seen that all the moment-rotation 

curves can be approximated fairly well to the ideal elastic-plastic beha- 

viour (Fig 1.1 - Chapter I). 	 It follows that the application of limit 

principles are suitable for the analysis of the arch. The positions of 

the thrust lines will be further modified with the addition of live load 

in subsequently calculations. 

5.4.3 Strength of a single arch rib under point load 

Each arch rib was placed and jacked into position independently before 

the spandrel columns and crossheads were erected. The strength of an 

Isolated rib under single point load therefore needs to be examined to 

establish the margin of safety of the rib against a disturbing load which 

may arise during construction. 
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The worst condition, that is a single point load acting at a quarter 

span, is examined. 	 Since the arch was made perfectly funicular under its 

own weight the positions of the hinges at the collapse of the arch can be 

located by drawing the point load thrust line (Fig 5.11). The equili- 

brium of the system is given in Figure 5.12. 	 The following equili- 

brium equations are used to determine the collapse load: 

(i) Sum of moments about points2 and 3 for the segments 1-2 and 3-4 

respectively. 

(ii) Sum of moments about 3 for the segment 1-3. 

(iii)Sum of the vertical forces and reactions for the entire arch 

rib. 

The equations are 

with 

'?"11  = 1?r1 	 C Co5 2.6.8 + C2.  c s 14.o 2 

Tel 3 = 	 C,c -os 26.8 — C3 co s 4- 

0  

- C3 CeS 	 - C4cos2..B 

The symbols are defined in Figure 5.12. 
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Effects of deflexion 

The effects of deflexion of the arch at collapse can be incorporated 

into the above analysis. 	 If the point 2 is displaced vertically by a 

distance S then point 3 will move upward by 1.45Ss(obtained from a simple 

geometric analysis of the motion of the mechanism, see Figure 5.11). 

Therefore the values of FIL  in equation 5.2 are replaced by 

= 14,_ - S 

-14,1  . 	zi..4  -I- 1.45S 
4 

Calculations are made in the following order: 

(i) 	 The hinges are placed at the edge of the section and the 

collapse load and the reactions are calculated. 	 From these results the 

Figure 5.13 summarizes the results of various calculations on the arch 

rib with a concentrated load at quarter span. The descending parallel 

lines in Figure 513 are results of various second order rigid-plastic 

analyse. The slopes of the lines give the rate at which the bridge's 

load capacity decreases with increased deflexion. 	 The positions of the 

lines show the effects upon ultimate load calculations of placing the 

hinges at various positions. The proposed method gives an estimate of 

the ultimate load 20% - 30% (depending on the magnitude of deflexion) 
4 

below that given by a conventional rigid-plastic analysis. The non-

linear elastic analysis (effect of deflexion included) was performed in 

the manner proposed in Appendix B1 and solved by the method of dynamic 

relaxation with the arch divided into 20 elements. The non-tensile 

non-linear analysis was performed in the manner proposed in Appendix B3. 

Both of these analyse are believed to be new works. The reliability 

of these calculations is not known; there are no readily available 

experimental results to check with. However, all the-analyse when plotted 

together as in Figure 5.13 present'a consistent picture, from which the 

collapse load can be estimated. 
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CONDITION g(ft) H (kip) V
1 
(kip) V

4 
(kip) Cer(k/ft) * 

• 0 26,615 17,209 11,217 19.6 

Hinges placed on edge of section 	 • 

3 22,161 13,873 10,226 10.9 

0 24,622 15,573 • 10,813 15.5 

Hinge positions modified by dead load thrust 

20,629 12,626 9,941 7.89 

0 23,167 14,360 10,506 12.5 

Hinge positions modified by dead and live 

load thrust 
3 19,718 11,816 9,730 5.8 

* Values are for one arch rib. 

SUMMARY OF CALCULATIONS FOR A SINGLE ARCH RIB 

UNDER DEAD LOAD AND LIVE LOAD OVER HALF SPAN 

Figure •5.15 
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four ribs, therefore the collapse load factor for this particular loading 

condition is 6.6. 

5.4.4 Strength of the arch bridge under live load over half span. 

Similar calculations are performed for the bridge under uniformly 

distributed live load acting over half of the span. The dead loads now 

include the weights of the columns, crossheads and the deck. 	 The live 

load is transmitted to the arch ribs through the spandrel columns, and it 

is assumed that the live loads are equally shared among the columns. 

The calculations follow the same process outlined in 5.4.3. 	 Figure 5.15 

summarizes the results. 	 It is concluded that each arch rib would 

collapse at a live load of at least 5.8k/ft acting over half of the span. 

The design live load is 600 lb/ft in each of the six lanes, thus the 

collapse load factor for this loading condition is 6.4. 

5.4.5 The strength of a single arch rib under lateral load. 

The designers have expressed some concern over the lateral stability 

of a single arch rib during construction. 	 The load capacity of a single 

arch rib under lateral pressure and its own weight is now investigated. 

The mode of failure induces three components of force: axial thrust, 

lateral bending moment and torsional moment. The failure criterion cor-

responding to these forces is a complicated one, and a full investigation 

is outside the scope of this thesis. 	 For a monolithic section, most 

experimenters observed some form of skew bending failure. Failure 

theories proposed by Cowan, Zia, Swamy (Ref 5.10. 5.11, 5.12) are a combin-

ation of Mohr's maximum stress theory and Coulombs internal friction 

theory. 

For our particular problem, the principal factor appears to be the 

influence of the voussoir joints on the behaviour of the section. This, 

in turn, depends on the magnitude of the axial thrust at the section. 
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(i) If the axial thrust is sufficiently high, the influence of 

the joint may be non-existent and the section behaves as if it is con-

tinuous. 	 In this case the standard theory may be used. \Swamy (Ref 5.12) 

stated that a circular interaction curve is a good lower bound approxi-

mation and gave the following failure criterion. 

with 	 = /11-P I 	 fa' FT 

where M. is the torsional strength of a plain concrete hollow section P 

Nis the stress due to the axial force 

and FT  is the tensile strength of concrete. 

(ii) If the axial thrust is low, the section may slip at the joint 

when the maximum frictional resistance is reached. There is no existing 

theory for this situation. 	 It is proposed to derive the failure criterion 

as follows: 

(a)For a given curvature, with a known axial thrust and with an 

assumed linear strain distribution, the stress distribution is deduced with 

cracked regions neglected. (See Section 5.2). 

(b)The frictional shear resistance is assumed to be proportional to 

the normal compressive stress: 1: 	 withp-= 0.75 for finished con- 

crete. 	 (The value of/A-can be varied according to the actual condition.) 

(c)The torsional moment is assumed to be resisted entirely by these 

frictional shear forces. It is obtained by taking the moment of the shear 

forces about the centroid of the area of the section which is in compression. 

It is seen that this simple approach accounts for the influence of 

the cracks due to flexure. This aspect is neglected by the conventional 

maximum stress theory. 
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There are no experimental results available for segmental concrete 

sections under the combined flexure, axial force.and'torsion. 	 The 

Assumption of a friction failure through the interface is a new one; the 

assumption was derived tentatively from experimenting with a number of 

wooden voussoir arches (one was made to scale with the Gladesville Arch). 

Calculations were performed using both the conventional maximum stress 

theory and the newly proposed friction-shear theory. 	 For the latter,  

a value of friction coefficient of 0.75 was selected from a paper by 

Mast, R.F. "Auxiliary Reinforcement in Concrete Connections" (Journal 

of Struct. Div. ASCE, Vol 94 No. ST6, 1968). 

must still be everywhere safely within the arch (Fig 5.17). Under in-

creasing magnitude of wind load the arch may fail with two, three OT four 

hinges, depending on the ratio of ultimate torsional resistance to the 

ultimate lateral bending resistance of the cross section. The inform- 

1E 
ation required for analysis is presented in Figure 5.18. *3  

** The treatment of wind as a static problem for this slender arch 

is rather over-simplified. 	 It can only be considered as a first step , 

towards a solution of this complicated problem. 

high, only the collapse modes with 2 or 3 hinges are possible in the 

Gladesville arch rib. 

Referring to Figure 5.19, the lateral component of the reaction at 

the abutment is R, the thrust line intersects the vertical plane through 

the center line of the arch at J, (coordinate43-17i measured from A). 

The force R, which is equal to half of the total lateral loads, can be 

considered as acting at the point J. The lateral bending moment and tor- 

. 
sional moment at A are 

MA 	 R 
	

R.ED-  .  

For equilibrium in the lateral direction, it is obvious that Gj is 

parallel to AB, where G is the .centroid of the applied lateral load. 
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From Figure 5.16 we have 

0 G = OA + 	 ) cos e 

 

(5.3) 

 

The failure criterion for the arch cross-section at the abutment A becomes 

(a) Two hinge mode. 	 The arch may collapse with two hinges, one at 

each of the abutments A and B (Ref 5.15); 	 the axis of rotation of the 

collapsing arch is then the line AB. 	 From Hill's principle of plastic 

work, if '2( is the angle between the axis of rotation of the hinge and the 

I  normal at the abutment then tqvi o = 	 cl M . 	 — 	 For the two hinge mode, 
0 

we have 	 = 90- (2, 	 (Fig 5.16) . 

TA. 	 R F 7  
Co'y —  	 5.5(a) 

	

AIMA 	 g 2.1 j 

Equations 5.3,5.4 and 5.5(a) are used to solve for the value of maximum 

lateral pressure. 	 If w is the collapse wind pressure, the equations then 

become 

R 	 ctr = 73 8 

= 

cAg 

2 

 

of% 

17 3. 

= 	 = 0. 8 
Kmax 

7 

c&1 
2_ 2 	 1 
ok 

The solutions are: 

ty 	 = 66.8 fh 
cl 

co 

co 	= 	c'.162, 
1.   

The lateral bending moment at the crown is given by 

R 	 . 

• 

5.6 

tE.1* 
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where H is the centroid of the applied lateral load fella A to C. 	 Since 

the position of J is known, HJ can be computed. Thebending moment at 

the crown is found to be Mic.= 275,000 ft-kip which is far greater than 

the maximum ultimate value of the moment at the crown 101,000 ft-kip. 

This collapse mode violates the failure condition and it is 

therefore not the correct collapse mode. 

(b) Three hinge mode. 	 The hinge at the crown sustains lateral 

bending moment only (due to symmetry of the mode), while those at the 

abutments sustain both bending and torsion. Equation 55(a) is 

now invalid and is replaced by 

1°1 ,0.0 

with HT = A H + t3cos - 	 sin't 

The final equations are then 

0.77q 	 t O. 477 1:d. 

2 	 2_ 
O. 64-$17  

5.5(b) 

5.7 

and their solution, obtained by iterative method, is 

1L-E3 	 17.0 fE. 	
&IAA. 	 w 	 0. Ho ki 60-  

Effect of misalignment of voussoirs. 	 It is assumed in the above calcu- 

lation that the arch is perfectly aligned laterally. 	 Misalignment due 

to lack of fit between the voussoirs may have some adverse effect on the 

load-carrying capacity of the arch. 	 The effect of misalignment is 

equivalent to having the initial thrust line off center. The effect can 

be allowed for by putting 
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where H is the horizontal thrust due to dead load and g is the amount 

of misalignment. 

Equations 5.7 are resolved allowing for various amounts of mis-

alignment 

for  S 	 1.0 .fE 	 EA/ = 	 105 Ici s,cp 

for S =.2o ft 	
14.1- 	 o . 10 0 	 cE 

It seems unlikely that the misalignment will exceed 2 ft, so that it may 

be concluded that the lateral pressure to cause collapse is about 100 lb/ 

sq ft. The design wind pressure in the Sydney area, as laid down in the 

Australian Standard Loading Code (CA45, pt 2), is 24 lb/sq ft. Thus the 

collapse load factor for wind load is about 4.2. 

5.5 CONCLUDING REMARKS 

The load-carrying capacity of structures made of materials having no 

tensile strength has been investigated. 	 A Method of allowing for the 

effect of crushing Of concrete is proposed and used to investigate the 

suitability of a structure for the application of limit principles. 	 The 

strength of masonry walls is predicted and compared with actual measurements. 

The load factors for the Gladesville Arch Bridge are established for three 

different loading conditions. The thrust line concept is used in all cases 

to picture the structural action. 	 It is believed that the use of the 

limit principles, as described above, offers a more rational approach and 

provides a better understanding of the structural actions of 'funicular' 

\ structures than th
\  
e conventional 'safe stress' approach, and in spite of its 
\ \ 

 shortcomings is more\ uitable for designing such structures than any other 

\ 
method of which the 	 hor is aware. 



CHAPTER VI 

SOME ASPECTS OF DESIGN OF ARCH DAMS FOR STRENGTH 

6.1 INTRODUCTION 

The design of an arch dam is, at present, a trial and error process 

based on some form of elastic analysis. 	 To perform the analysis, the 

shape of the dam must be guessed, based on general experience. 	 The 

problem of selecting a suitable dam shape for a given site condition is 

an important, difficult, and time-consuming part of arch dam design. 

There are few methods of directly getting a suitable shape. In this 

chapter an experimental method of directly obtaining a shape for an arch 

dam is proposed. 	 The method is based on the concept of a thrust surface 

(an extension of the two-dimensional thrust line). 

Since arch dams are 'funicular structures', the accepted definitions 

of the factor of safety based on stress (i.e. the ratio of the compressive 

strength of concrete to the maximum stress at design loads) does not 

reflect at all the load-carrying capacity of the dam. 	 The load-capacity 

of an arch dam can be estimated using limit principles. 	 Several methods 

of estimating the load-carrying capacity of arch dams are proposed using 

the lower bound theorem of plastic theory. 	 The equilibrium approach, 

attempted herein, provides a relatively simple yet realistic assessment 

of the strength of arch dams. 

The present state of design is first discussed so that the work is 

viewed in proper perspective. 

6.2 STATE OF ARCH DAM DESIGN 

An arch dam is a curved dam that carries the major part of its load 

to the abutmentsby thrust. 

The two primary loads on an arch dam are its weight and the 
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hydrostatic pressure of the water. These two loads are known with great 

accuracy' once the design is finalized. 	 The effects of gradual application 

of these loads are sometimes investigated, mainly to prevent cracking or 

instability of blocks. Additional loads may be imposed by tail-water 

pressure, deposition of silt, and formation of ice surfaces. 	 Temperature 

effects are important in arch dams. Expansion and contraction are caused 

by heat of hydration during construction and temperature differences 

between the submerged and exposed parts of the dam. Dynamic forces such 

as seismic action in some areas, or the effect of land or rock slide into 

the reservoir, are also considered in special cases. 

There are other loads which act on the foundations. Seepage of 

water through rock mass causes uplift which seldom has an important bearing 

on the safety of the proper dam, although grouting and drainage are most 

important preparations for the abutments. Deformation of the abutment 

rock due to the thrust from the dam may have serious weakening effects on 

the dam (Ref 6.1). 

Ideally, an arch dam should transfer all its loads to the abutments 

by thrust so that the stresses are compressive everywhere. Site condition 

and construction method make this impossible. 	 Designers therefore attempt 

to shape and proportion the dam to approach this ideal. 	 Their efforts 

can be seen through the evolution of the arch dam shape. 

Early arch dams are cylindrical in shape and they were designed as 

a series of arches of constant radius; the arch thickness is increased 

towards the base to account for the increase in pressure. Since the val-

ley opening decreases towards the base, arches of various radii are then 

used to reduce the volume of the dam and to improve the reception condition 

of the thrust to the valley. Although the designers actually used the 

permissible stress approach, these designs can be considered as limit 

design based on statically admissible states. 
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The interaction between various arches causes tension zones to 

develop near the base of the dam on the upstredm face, and on the down-

stream face in the upper third of the structure. 	 By introducing some 

vertical curvatures, the weight of the structure tends to reduce these 

tension zones. 	 Usually, the upstream face is undercut near the base, 

and the upper portion of the dam is overhung. The amount of vertical 

curvature is limited by practical construction methods. 

Progressive refinement of shape and proper proportioning of arch 

thickness are the objects of the current state of the art. The design 

is usually accomplished with the use of one of the following methods of 

analysis: trial load, shell theory, three dimensional finite element 

method,or dynamic relaxation method. These methods are all based on 

elastic theories of structures. 	 The influence of cracks on the state 

of stress in the dam is usually treated as a local effect. 

The development of model testsalso contributes greatly to the 

design of arch dams. The models are usually tested under working load 

conditions; the test results are used to improve the design or as a•

check against analytical methods. Only a few of the models are tested 

to failure. 

Design methods have drifted from the early strength design gradu-

ally towards the more conventional basis of elastic design. The 

thinkings of French engineers are more oriented towards strength design; 

they proposed the theory of "active arches" (voutes actives) which empha-

sizes the importance of keeping the arches at the bottom of the dam thin 

(Ref 6.2). 	 Coyne (Ref 6.3) proposed the method of "inclined arches" 

which takes into account the weight of the structure. 

Since cracks must be avoided, especially in th,,  upstream face, an 

elastic analysis is essential for the final design. However, limit 

design ideas are helpful in picturing the way the dam carries its load. 
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Once this picture is formed, it can be used to obtain the dam shape for 

a preliminary design and to estimate the load-carrying capacity 

of the dam. 	 These ideas are explored in this chapter. 

6.3 PRELIMINARY DESIGN OF ARCH DAMS WITH STRING MODELS 

When a highly statically indeterminate structure like an arch dam is 

to be designed, the use of a simple model is often helpful. The object 

is to gain some understanding of the structural action and hence to deter-

mine whether simple calculations are possible and/or adequate. 	 The view 

taken here is that of a designer who has a limited amount of geological 

Information of the site on which an arch dam is to be designed. 

(a) Picturing the structural action of an arch dam by a thrust 

surface 

Since the main part of the loading in an arch dam is to be carried 

by direct axial thrust, it is convenient to picture the dam action in 

terms of a thrust surface (an extension of the two-dimensional thrust 

line for arch action). 	 If it is assumed that the concrete cannot sustain 

tensile stresses, then it follows that the surface must be everywhere 

safely within the dam thickness. 	 Ideally the shape of the dam should be 

the shape of the thrust surface so that the stress is compressive every- 

where. 	 The geometry of such a surface is complex. However, it can be 

constructed quite readily with the aid of a system of strings and weights 

as described below. 

(b) Description of the set up 

A net of strings is set up with pulleys and weights as shown in 

Figure 6.1. 	 The weights are hung and adjusted to represent hydrostatic 

loading conditions. 	 The outline of the abutment is -epresented by the 

steel frame. 	 The counterweights over the pulleys are adjusted so that 

the thrust surface enters the abutment at the most favourable angle 
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(usually from 40°  to 50°). 	 The most favourable shape is obtained by 

adjusting the weights by trial and error. Experience in the process comes 

quite quickly with practice. 

The system provides the following information. 

(i) Approximate shape of the thrust surface for certain kinds of 

loading. 	 In this case it is the hydrostatic load corresponding to a 

full reservoir behind the dam. 

(ii) Magnitude and direction of the abutment thrust for the given 

loading conditions. 

The information is most valuable to the designers particularly in the 

preliminary design stage. 

(c) Test results on the Gordon Dam model 

The Gordon Dam is a double curvature arch dam being built in Southern 

Tasmania (Fig 6.2). Site information as given here was supplied by the 

Hydro-Electric Commission. A string model of this dam was set up as des-

cribed in (b) above and adjusted so that the thrust surface angle to abut-

ment was about 45
0 
- 50

0 
(Fig 6.3). 	 The shape obtained is plotted as a 

series of vertical profiles in Figure 6.4. The actual profile of the dam 

is included in the same figure for comparison. 	 thc  

Since the 'experimental' thrust surface is quite close to the 

actual dam shape, it is expected that the experimental values of thrust 

• are comparable to those calculated by Trial Load Method for the waterload 

only condition. 	 This comparison is presented in Figure 6.5. 

the top of the dam than those given by calculation. The difference in 

shape between the model and the actual dam at the lower region is due to 

the omission of the dead weight of the structure on the model. 	 A close 

inspection of the model profile reveals that the exoclimental thrust sur- 

face correctly indicates the tension zones due to water load. 	 The thrust 

surface profiles near the abutment do not show the same good agreement 
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with the actual dam shape. This is due to the poor representation of 

hydrostatic pressure on the model in these regiom. 	 (The hydrostatic 

pressure is always acting normal to the upstream face of the dam and 

this condition is not realized on the model. Possible improvements of the 

method will be discussed in Section (e) ). 

(d) Use of the method in the design of arch dams 

The experimental method described above has two possible uses in the 

preliminary design of arch dams; 

(i)The thrust surface as constructed above can serve as a guide in 

the selection of a suitable dam shape. Allowance must be made for the 

dead weight action to obtain the correct shape. Since the reactions can 

be varied independently, it is possible to derive the shape that will 

give the most favourable reaction to the abutment on a given site. The 

values of the thrust are also useful in determining the dam thickness. 

(ii)If a shape has been decided upoa, the thrust surface repre-

sents a statically admissible state for the given load. 	 If the thrust 

surface is adequately "covered", i.e. it is everywhere safely within the 

dam thickness, then the design is safe according to the lower bound 

theorem of plastic analysis. 

(e) Comparison with other methods of shaping the dam 

The only other method of shaping the dam that can be found in liter-

ature is given by Fiahlo (Ref 6.4). This method uses a rubber membrane 

with thickness varying similarly to that anticipated for the arch dam. 

The shape of this membrane under hydrostatic load is used as the shape of 

the arch dam. 

The method proposed in this thesis, when compared with Fiahlo's 

membrane method shows several disadvantages. 

(i) Hydrostatic pressure is not as accurately represented. 

(ii) The shape is not completely defined. There is a small region 
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near the top of the dam which is not defined by the strings. 

However, the following advantages are rea-ized. 

(i) Reactions can be varied so that it is possible to vary the 

shape, especially the angle of the thrust at the abutment. In contrast, 

membrane models are entirely dependent on the membrane properties; the 

angle of thrust at the abutment tends to be more acute than the actual 

site condition permits, and it cannot be changed on the membrane model. 

(ii) Estimates of the values of the thrust are directly available 

from the test in the proposed method, while this information is not 

directly available in the membrane method. 

(0 Possible improvements of the method. 

The experimental method of string models presented above is still 

very crude and it can be improved in many ways. Representation of the 

hydrostatic pressure can be improved by either using more pulleys and 

weights arranged as in Figure 6.6, or by using a plastic waterbag as a 

means of loading with a net representing the dam as in Figure 6.7. 

Such improvements would lead to a more definite shape for the dam and 

also provide better estimates of the values of thrust. Gravity load 

can be introduced with the use of extra weights and strings. However 

this may not be necessary since corrections for dead weight can be readily 

calculated once the thrust line for water load is known. 

• 6.4. THE LOAD-CARRYING CAPACITY OF ARCH DAMS 

The structural action of arch dams is investigated, using limit 

principles derived from plastic theory of steel frames. 	 The object is to 

construct simple statically admissible states, from which the load-

carrying capacity of arch dams can be estimated. 

The load-carrying capacity of arch dams is investigated here in 

terms of increasing hydrostatic load. There are two ways of picturing the 

Increasing load: 	 (i) by imagining a gradual increase in the water level 
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above the design level, or (ii) by imagining a gradual increase in the 

' density of the liquid in the reservoir, (Fig 6.8). 	 Although both alter- 

natives can be produced in the laboratory, neither corresponds to any 

actual overloading state. This objection does not invalidate the use of 

a load factor in the design. 	 As pointed out in Chapter I, there need not 

be a connection between the load factor and the actual overloading state. 

The concept of a load factor based on a gradual increase of the 

liquid density is used since it has been favoured by other investigators 

(Ref 6.5 and 6.6) and will thus provide the means of comparison with 

other works. 	 The cylindrical dam models, tested by Bustamente in Refer- 

ence 6.5, is used as a basis for comparison between various methods of 

estimating load capacity of arch dams. 

6.4.1 Review of existing literature 

The problem of the strength of arch dams has not been investigated 

fully in literature. 	 Two methods however have been proposed. 

(a) 	 Bustamente's method (Ref 6.5). 	 The arch dam is divided into two 

series of arches and cantilevers. The cantilevers are subjected to 

bending and the arches to axial thrust, Figure 6.9(a). 	 The failure 

criteria are: 

For a section in compression  wletx 

For .a section in bending 	 M 	 — 0.95 fl  t-2/8 - 	 (6.1) 

For a section in combined 	 = 0.85 	 c 

bending and, compression 
11‘'Llox  := 0.85 	C •(t12  -  	 2-) 

where t is the section thickness, c is the width of the area in compression 

N
max 

is the thrust, and M
max 

the bending moment capacity of the section, 

Figure 6.9(b). 	 Bustamente's failure conditions will Je used in all the 

following works. 
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The applied hydrostatic pressure is directly distributed to the arch 

and cantilever elements. Bustamente used a linear programming technique 

to determine the maximum load that an arch dam can sustain. The effects 

of vertical curvature can be included into Bustamente's method of calcu-

lation without any difficulty. 

The results for his own tested models (Fig 6.10) are: 

Computed values Measured values 

Model I p
max 

= 16.9 kg/cm2-  18.0 kg/cm
2 

Model II 
P   max = 21.04kg/cm2  20.5 kg/cm

2 

(b) 	 Swaminathan's Method (Ref 6.6). 	 The dam is divided into arches and 

cantilevers as in Bustamente's method. However, the compatibility of 

deformation of the arches and the crown cantilever is retained. 	 The 

arches are assumed to be elastic. The hydrostatic pressure is distributed 

between the arches and cantilevers according to the deformation of the 

crown section. 	 Swaminathan investigated the effects of gradual increases 

in hydrostatic pressure and distinguished several stages of failure. 

The failure criteria used are those adopted by Bustamente, Equation 6.1. 

Various graphs are given from which the ultimate load capacity can be 

calculated. 

For Bustamente's model I, Swaminathan's method gives the following 

results: 

; 330 	 191 
Valley shape factor 	 = 2.20. 

150 
Slenderness ratio —

18 
- 10.6. 

2.0(0.85tc) 
Pressure required to collapse the dam p 	 - 18.6 kg/cm

2
. 

max 	 10.6 

Bustamente's method and Swaminathan's method are both based on the 

same statical picture of dividing the dam into arches and cantilevers. 

Two new methods of estimating the strength of arch dams are now proposed 

based on different statically admissible states. 
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6.4.2 Inclined arch method 

The dam is considered as a series of independent arches; each arch 

slice is considered to support the hydrostatic load independent of the 

adjacent slices. The arches are obtained by cutting the dam with inclined 

planes pivoted about a horizontal line located at a distance from the 

crown at full water level (Fig 6.11). The idea originated from the obser-

vation that isostatic lines on arch dam models tend to incline downwards. 

This ideas was first introduced by Coyne (Ref 6.3) in his design of arch 

dams based on elastic behaviour. The proposal to use the same idea to 

estimate the ultimate strength is believed to be new. The inclined arches 

are stronger than their horizontal counterparts because of the extra 

curvature in their own plane and of the varying cross section areas. 	 The 

following steps are performed in the analysis. 

(i) The profiles of the arch slices are established, usually by 

tracing from drawings. 

(ii) The loads,  on each arch slice are calculated. 

(iii)Thrust lines are drawn for each inclined arch. 

(iv) From the thrust lines the magnitude of the thrust and bending 

moments are estimated, hence the load factor to cause collapse is calcu-

lated. 

The analysis must be carried out for various hinge line positions; 

for each hinge line position, various slices must be investigated in order 

to obtain the highest possible lower bound. 

For Bustamente's models, the inclined arches are elliptical in 

profile with varying cross section area. A summary of the calculation 

is given in Figure 6.12. The resultant thrust lines show that there is 

little bending moment. If the bending moments are lieglected, a direct 

estimate of the horizontal thrust at the crown can be made from equili-

brium consideration5. For the two models consideredothe results are:- 
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Model I p
max 

= 13.8 kg/cm
2 
(cf. 18 kg/cm

2 
experimentally obtained) 

Model II pm  = 19.9 kg/cm2  (cf. 20.5 kg/cm2  experimentally obtained). 

• 	 For comparison, an estimate of the dam capacity is made using 

horizontal slices. For Bustamente's cylindrical dam models, the maximum 

hydrostatic pressure is, of course, at the base of the dam. The value 

of this pressure is given by p
max 

= N
max
/ R (circular arch under radial 

pressure). 

The results are 

Model I p
max 

= 9.29 kg/cm2  cf. 18 kg/cm2  experimentally obtained) 

Model II Pmax = 11.45 kg/cm2  (cf. 20.5 kg/cm2  experimentally obtained). 

It is clear from the above figures that the inclined arch method gives a 

better estimate of the load capacity than the horizontal arch method. 

" 	
*" 

6.4.3 Tumbler method 

An alternative method of obtaining a statically admissible state 

for the arch dam is to treat the dam as part of a shell of revolution 

under hydrostatic load. The general forces acting on an element of a 

shell of revolution will be as shown in Figure 6.13. 

Following Flugge (Ref 6.7), the equations of equilibrium for an 

element of a shell of revolution under hydrostatic load can be reduced to 

ale 
 - *6M,c  

r-- 0 
	
5 

_( 	 (6.2) 
R. 	 R1 1 	 9c 

Physically, it means that the hydrostatic load is resisted mainly by 

direct thrust in the horizontal direction, and by direct thrust and 

*.The name "Tumbler" was first used to describe the approximation of arch 

dams as part of a shell o.f revolution by Pippard et al in the•elastic analy-

sis of Dokan Arch Dam (Ref 6.8). 
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bending moment in the vertical direction. For single curvature dams, 

these actions are reduced to arch action in the horizontal direction and 

bending action in the vertical direction. 

The above equations of equilibrium are used as the basis for the 

estimate of the load capacity. These are two alternative methods of 

solution. 

(i) Algebraic method. 	 This method is similar to the method used in the 

analysis of load-carrying capacity of slabs (Chapter IV). The moment 

and force fields are described by functions which satisfy the equilibrium 

equations 6.2. 	 The failure condition, Equation 6.1, is then used to 

calculate the ultimate pressure. 

For the Bustamente's cylindrical dam models, the following expres-

sions for the force and moment fields are proposed. 

= 	 k; ( 1i--03+  WI-Se 

\ 1  \I 	 R C 	 )( 2 	2Cck 

where K and C are constants to be determined so that the failure conditions 

are satisfied everywhere. 	 Using equation 6.1 as the failure condition, 

the maximum pressure (at the base of the dam) is found to be 

Gkt_218 

For Bustamente's model Ilwe find 

max 
p 	 = 15.1 kg/cm

2 
 . (cf. 18 kg/cm

2 
 experimentally obtained). 

(ii) Graphical method. The equilibrium equations can be handled graph-

ically in the following manner. 

Draw a loading diagram p(x). 

Guess a distribution of N such that the failure criterion is 

17tqa x.=  
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observed. 

Determine 
dQ,
from the equilibrium equations. 

dx 

Graphically integrate 
dQ'
to obtain Q. 

dx 

Graphically integrate Qx  to obtain N. 

Check combined failure condition in the vertical direction. 

Appropriate boundary condition must be inserted and the calculation 

is repeated until both failure and equilibrium conditions are observed. 

Calculation for Bustamente's Model I is given in Figure 6.14. 

The graphical method is far more flexible than the algebraic method 

in dealing with varying boundary conditions, non-uniform thickness, etc. 

6.5 CONCLUDING REMARKS 

Some aspects of the design of arch dams for strength have been 

discussed. An experimental method of directly obtaining the dam shape 

for a given loading and site condition is proposed using strings and 

weights. 	 The method is based on the concept of a thrust surface. 	 The 

load-carrying capacity of arch dams is then investigated by construction 

of various statically admissible states. 

Further work can be found in Appendix A3 where the test of a shell 

is reported and an approximate 'elastic-plastic' method of analysis is 

proposed and applied to various dam models. 



CHAPTER VII 

DEFLEXION, BUCKLING, AND STRENGTH 

7.1 INTRODUCTION 

The limit design method of picturing statically admissible states 

described in previous chapters enables a design to be made to sustain a 

given load. The calculations are reliable only if deflexions do not have 

any marked effects on the equilibrium conditions and local (and overall) 

stability is assured. 	 The effects of deflexions and buckling on the 

strength of structures are discussed in this chapter. 	 In particular, 

The influence of deflexion on the load capacity of structures has been 

commented upon in previous chapters where particular structures are 

analysed. Various new methods of estimating deflexion are proposed in 

the Appendices Bl, B2, and B3. The statements on deflexion in this 

chapter recapitulate the works presented elsewhere in the thesis. 

Buckling of structures is a large subject and is not within the scope 

of the thesis. 	 This chapter discusses, with the help of a simple 

example, the relevance of the Euler type stabi4lity analysis in the 

assessment of the strength of structures. 

7.2.1 Deflexions which do not affect the strength-cr-Strucirm.0, 

These deflexions, under working load, must be estimated so that the 

structure is acceptable for service. 	 For frames which support their loads 

mainly by bending moment, deflexions are basically given by a double inte-

gration of the bending moment diagrams. For a statically admissible state 

design, the bending moment diagrams can be easily estimated and the 

deflexions can be calculated with the use of the virtual work equation or 

complementary energy methods (Ref 7.1 and 7.2). 	 In this connection, it 

should be noted that to predict accurately the deflexions for a frame with 

a particular loading condition (past the first yield) is practically 
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impossible; the calculations are so sensitive that minor differences in-

stress-strain relations could cause major differences in the results. 

What is wanted in the design is the estimate of the load that a structure 

can carry at a particular deflexion. This deflexion can be easily esti-

mated by approximate methods. The argument can be best seen from a 

typical load-deflexion graph for a frame. (Fig 7.1). 

In Appendix Bl, an iterative method of estimating deflexion in 

elastic-plastic framed structures is proposed using dynamic relaxation 

technique. 	 The method differs from other methods in assuming that the 

yielded regions are spread out instead of being localized. The results, 

however, are in close agreement with other methods and experimental measure-

ments. 

The deflexion question can sometimes be avoided altogether; e.g. 

for slabs, the deflexion requirement can be satisfied by the selection of 

proper thickness such as recommended by the Codes (Ref 7.3). 

7.2.2 Deflexions which affect the strength of structures. 

These problems occur when the equilibrium equations are sensitive to 

the effects of deformation, particularly with compression members. 	 In 

many cases, these deflexions can be included in the limiting equilibrium 

equation, and an estimate of the reduction in load-carrying capacity can be 

easily made. An analysis of this kind together with some form of elastic 

analysis often gives a very good indication of the likely form of the load-

deflexion curve as seen in Figure 7.2 Calculations of this kind have been 

done for the Gladesville Arch in Chapter V and for various models in 

Appendix Al. 	 The possibility of performing these calculations should 	be 

investigated for all designs. 

7.3 BUCKLING 

The term "buckling" is used here with its traditional meaning: the 

widely diverse behaviour of practical structureslin the field and in 
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laboratory tests7  where the effects of change of geometry influence the 

load carrying capacity of the structures or members. A full treatment 

of this subject is well outside the scope of this thesis; this section 

intends only to examine the relevance of stability analysis of the Euler 

type, to the assessment of strength of structures. 

7.3.1 EULER AND NON-EULER BUCKLING 

The ultimate capacity of many metal strucures and elements is limited 

by some kind of instability. 	 Most of the present stability theories have 

their roots in the Euler analysis of a_pin-ended column.- The theories are, 

therefore, applicable only if the underlying assumptions in the Euler-type 

theories are satisfied. 	 There are structures, such as arches, over-braced 

frames, and shells, which do not conform to the Euler type theory. In 

these structures, the internal forces that cause buckling are not statically 

determinate and redistribute markedly as buckling deformations occur. 

The basic differences in the behaviour of the two types of buckling 

may now be considered. 

(a) 	 Euler-type buckling 

The term Euler-t31e buckling is used here to denote the elastic 

behaviour of structures characterized by the load-deformation relation of 

Figure 7.3. 	 This applies to both in-plane and lateral buckling. A large 

amount of work and writing has been devoted to instability and buckling 

behaviour using this approach; such studies have the following character-

istics in common. 

Physically, the major internal forces in the structures, such as the 

axial forces in braced frames, or the bending moments in beams liable to 

lateral buckling, are often statically determinate, or almost so. This 

may imply at times that the deformations of the structure are fairly small, 

but, more importantly, that there are no marked redistributions, as the 
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buckling deformations occur, of the major internal forces causing buckling. 

Most of the structures so treated are not exactly statically determinate: 

however, for these structures, the internal forces or bending moments are 

normally easily obtained and there is little redistribution of them. 

For example, as a braced frame buckles, in or out of its plane, the curva-

ture of the members indicates the existence of bending moments and there-

fore end shears; these affect the equilibrium of the joints but not enough 

to alter greatly the axial forces in the members until very large deform-

ations occur. For unbraced frames, for example, a portal frame buckling 

in a sway mode, the redistribution may be somewhat greater, but its effect 

is still not very important. 

Mathematically, it is often found that the associated differential 

equations are linear and reducible to a single governing differential 

equation. This reduction is possible because the force and displacement 

variables are often separable. 	 The problem can be identified as an eigen- 

value problem and the bucklg modes are orthogonal. 

Experimentally, Euler-type buckling is associated with the Southwell 

plot technique for analysing measured deformations which participate in the 

buckling mode. A linear Southwell plot is often obtained (depending mainly 

on whether the structure is deforming in a well-defined mode), which gives 

an estimate of the corresponding critical load. 	 Kjar (Ref 7.4) established 

the rules under which the Southwell technique can be used to obtain the 

critical load. These rules have the same mathematical properties as those 

mentioned above. 

(b) Non-Euler Buckling - An example. 

The load-deformation behaviour of the simple over-braced frame of 

Figure 7.4 is described here to illustrate the non-Euler buckling behaviour. 

The frame is one degree over-braced. 	 For any external load W, the 
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distribution of the internal forces P
1,  P2' 

P
3 
is not known; however, if 

one force is assumed, say P3, then others can be estimated from equilibrium 

condition. 	 The distribution of the forces, which is determined by the 

conditions of geometrical compatibility, can be derived iteratively using 

dynamic relaxation. The complete numerical analysis is given in Appendix 

B2. 	 Figure 7.5 shows a typical load-deformation graph and Figure 7.6 an 

internal force distribution graph. 

The following observations were made: 

(i) The internal forces Pl' P2' P3 
 varied non-linearly with the 

load as buckling developed. There is marked redistribution of the forces 

as shown in Figure 7.6. 

(ii) The load-deformation graph, Figure 7.5, did not have the char-

acteristics described for Euler-type buckling. 	 The deflexion appeared to 

run away at some lower load but then the curve started to rise before 

running away again at some higher value. 	 It is suggested that the cause of 

this behaviour is the redistribution of the axial forces in the frame. 

The same kind of behaviour has been observed previously in the labor-

atory for the above frame (Ref 7.5) and for the thin arches liable to 

lateral buckling (Ref 7.6). 

7.3.2 RELEVANCE OF EULER-TYPE ANALYSES IN THE PREDICTION OF STRENGTH OF 
STRUCTURES 

It can be stated that, in general, Euler-type analyses are applicable 

to the elastic portion of the loading path of a structure only if the 

internal forces that cause buckling do not redistribute markedly as 

buckling deformations occur. 

Thus, Euler analyses are relevant in the assessment of the ultimate 

strength of statically determinate structures of suitplge stiffness, such 

as columns, beams, braced frames, and trusses, and for some classes of 
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statically indeterminate structures where the major internal forces causing 

instability change only marginally as buckling chavelops. 	 Arches, over- 

braced frames, and statically indeterminate structures in general, do not 

behave in the Euler fashion. (It is a matter for laboratory and field 

testing to determine if an Euler-type study is approximately suitable, as 

it may be for lateral buckling of continuous beams.) The redistribution 

of internal forces seems to have a beneficial effect in many cases. 

For plates, and structures containing large plate element, such as 

thin webs of girders, deck plates of bridges, and the hulls of ships, the 

relevance of an Euler-type analysis depends on the type of boundary support. 

Plates with edges free to move have little reserve of strength after the 

Euler load is reached, while plates whose edges are restrained against 

pulling in have large post-buckling strength, and failure can occur only 

, after yielding of the most highly stressed region as buckling progress. 

The Euler critical load has little physic.1 significance in this case. 

Shells form a class of their own, where the redistribution of internal 

forces as buckling deformations occur has a weakening effect on the struc-

ture. 	 The benaviour of an axially loaded thin circular cylinder is well- 

known, but difficult to describe with any clarity as there are now so many 

mathematical treatments designed to fit the results of tests. 	 In any 

case, this particular theory gives only limited guidance to designers of 

other types of thin shells. 

7.4 	 CONCLUSION' 

The relations between deflexion, buckling,and strength have been 

briefly discussed. In particular, the relevance of the stability analysis 

of the Euler type to the assessment of strength of structures has been 

examined. The foregoing notes present a view point which differs somewhat 

from that accepted. 	 The structural engineer must never take the stability 
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of a structure for granted. 	 The possibility of buckling during erection 

or in service must be envisaged and prevented. 	 Furthermore, if buckling 

is a problem, the designer should not assume that ideas and methods based 

on Euler type analyses are wholly satisfactory in coming to grips with 

what really happens. 



CHAPTER VIII 

PRACTICAL DESIGN CONSIDERATIONS 

8.1. INTRODUCTION 

In the application of limit design methods, just as in any other 

design method; there are a number of important practical design factors 

-1k The thesis has discussed the design of structures for strength. 	 The • 

. discussion is not complete if the factors which may limit strength are 

not presented. 

IC* 
detailed design of joints. 

The topics, which appear to be disjointed, are in fact intimately 

connected from the practical design point of view. Joints are most 

likely to be highly stressed regions and the material problems such as 

brittle or fatigue failure in steel or creep and shrinkage cracks in 

concrete often occur at the joints. 

these topics, to indicate the problems for which neglect may lead to 

misleading results, and to outline some design approaches by which these 

problems can hs taken into consideration. 

If *  	  
*4( The materials presented in this chapter are available in most 

yr 

text books; some statements are rather trivial or self-evident from a 

theoretical point of view. However, these factors should always be in 

the designer's mind since they do set limits on any design. 	 The 

materials are therefore well worth repeating even if the coverage may be 

inadequate. 
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steel in a different manner: extremely rapidly and with little deforma-

tion. 	 This type of failure occurs more frequently, at low temperature 

under static or impact loading and is often 1nduce0 1,5T a crack or a 

notch. 	 Notch sensitivity of a metal is its resistance to the starting 
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and the propagating of a crack at the base of a standardised notch. 

The Charpy V-notch test is most often used to determine this notch 

toughness (Ref 8.1). 

Fatigue of steel is a progressive failure caused by large variation 

in stress (especially with a reversal of stress) over a period of time. 

The average stress across the section may be well below yield point, but 

the non-uniformity of the stress distribution may caused yielding in a 

small region which eventually produces minute cracks; the cracks further 

increase the non-uniformity of the stress distribution which in turn 

cause the cracks to propagate. 	 Fatigue failure occurs with the appli- 

cation of large numbers of loading cycles with large variations in stress 

or with local stress concentration (Ref 8.2). 

Although both types of failure exhibit little ductility,. brittle 

fracture resistance decreases with temperature while fatigue resistance 

does not. Cracks propagate slowly and intermittently in fatigue failure 

while brittle fracture cracks propagate at high speed. 

8.2.1 Design against brittle fracture 

As mentioned abovc, the Charpy V-notch test has been used most often 

in accessing notch toughness of metal. 	 Other tests such as the Tipper 

notch tensile test and the Pellini test are sometimes used to determine 

the suitability of a metal or a welding process for a particular situation. 

Brittle fracture failure is most likely when there is a combination of low 

service temperature together with (i) thick plates or thick sections, 

(ii) severe stress concentration resulting from poor connections and 

details and (iii) def ects in welding such as cracks or lack of fusion, 

(Ref 8.3). 	 Naturally, the above combinations should be avoided if 

possible. 	 The safeguard against brittle fractures Lnus lies in three 

factors. 
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(i) The proper selection of materials. Materials should be 

selected with regard to service temperature an plate thickness (Ref 8.4). 

The steel should be impact-tested, such as recommended in Reference 8.5. 

(ii) Correct welding procedure. Another major essential for notch 

toughness is that the correct welding procedure must be followed. This 

problem will be further discussed in the detailed design of welded joints. 

(iii)Good fabrication technique and careful supervision. 

8.2.2 Design against fatigue 

The results of fatigue tests are usually presented as graphs of 

nominal stress causing failure against the number of cycles (for labor-

atory specimens of simple shape). The designer should be aware of how 

these numbers are obtained, as there are many types of fatigue tests, 

loadings, and specimens. 	 There is a growing tendency to do a full 

scale fatigue test under representative loading conditions when fatigue 

is a major design consideration. 

The 'classicaie  type of fatigue response involves a dropping range 

followed by a runout range (known as the endurance limit). Figure 8.1 

shows the maximum permissible stress range plotted from Reference 8.3. 

In all modern fatigue rules, the fatigue strength is considered to be 

independent of the yield stress of the material. 	 The design against 

fatigue is therefore based on the reduction of permissible stress with 

loading conditions. 	 The concept of load factors for fatigue has been 

attempted but without any clarity (Ref 8.7). 	 From Figure 8.1 it is seen 

that no fatigue is predicted for less than 20,000 cycles (two applications 

per day for 25 years). It follows that fatigue will rarely be a problem 

in most civil engineering structures (with the exception of crane struc- 

tures). 	 Wind loads are excluded from fatigue consid2ration in the A.S. 

Codes of Practice (Ref 8.3) although low, frequently occurring winds 
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associated with aerodynamic resonance can conceivably cause fatigue 

problems. 

Detailed design of joints are particularly important in fatigue 

consideration. 	 From Figure 8.1 it is seen that the fatigue strength 

varies considerably with the type of detail used. 	 Improved fatigue 

strength can be obtained by detail design, such as avoiding abrupt 

change of section by large fillet radius, stress relieving grooves, or, 

in cases of cut-outs, by providing suitable reinforcement. Tolerances, 

edge distances of holes, surface finish and effects of machining pro-

cessesIshould be watched so that stresses introduced by misalignment, 

shrinkage and other causes are reduced to a minimum. 	 In making design 

modifications to avoid fatigue failures, it should be watched that the 

procedure does not simply transfer the problem to another location. 

This may result in more damage without any increase in overall fatigue 

life (Ref 8.6). 

8.3 CREEP AND SHRINKAGE Or CONCRETE 

When concrete is stressed to a low or moderate intensity by a 
• 

constant and sustained load, an immediate deformation occurs (called 

instantaneous elastic strain) followed by a gradual deformation at a 

continuously diminishing rate (called creep strain or simply creep). 

The two effects are not separable by ordinary testing methods; the 

terns are used in a descriptive sense only. It is not known definitely 

whether creep strain will ever settle, but the rate of change diminishes 

in such a way that a limiting value seems to exist. Creeping strain 

varies with the age of the concrete at which the load is applied. 

McHenry (Ref 8.8) observed that if deformation due to several loads 

applied simultaneously or successively is considered, then the resulting 

deformation at any time is given by the sum of deformation of each 
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individual loading up to that time. 	 This 'superposition' principle 

made possible the practical problem of determihing time-varying stresses 

and strains in concrete structure. 

Shrinkage is caused by the loss of moisture by evaporation while 

concrete is drying, and also by the chemical change in the hydration of•

cement (the former factor is predominating). 	 In reinforced concrete 

even uniform shrinkage causes strains: compression in steel, tension in 

concrete. 	 In mass concretes shrinkage appears to confine almost exclu- 

sively to the outer skin of concrete. 

8.3.1 Effects of creep and shrinkage on structural behaviour 

Creep and shrinkage cause time-dependent deflexion in reinforced 

concrete members. However, the most important effect of creep and 

shrinkage on the structural behaviour is that they can produce a differ-

ential  deformation between various parts of a structure. This differ-

ential deformation causes extra stresses in the structural members apart 

from the normally computed dead, live, and wind load stresses. 	 The 

redistribution of the internal forces in a structure caused by creep and 

shrinkage may or may not affect the strength of the structure. 	 The 

following factors are relevant to the design consideration. 

(i) Creep and shrinkage are affected by the environment. Temper-

ature and humidity effects are important because they affect the volume 

change of concrete. The exposed and submerged face of a dam or the 

interior and exterior columns in a building have different creep rates. 

Differential deformation between these parts is possible. 

(ii) Creep and shrinkage are also affected by the volume-surface 

ratio. Thus, differential deformations may occur between the shear wall 

core and adjacent columns, causing differential settlement in the slabs 

and supporting beams (Ref 8.9). 
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(iii)Creep is also affected by the magnitude of stress and the 

amount of steel reinforcement. Both of these factors may cause differ-

ential shortening in columns. 

(iv) Lastly, creep is affected by the time factor. Creep is 

greater the younger the concrete at the time of loading. This point 

is important since the effects of creep on a structure depends just as 

much on construction technique as on the design. 

The effects of shrinkage is most critical in the design of rein-

forced concrete water retaining structures. In these structures, shrinkage 

may cause unacceptable cracks. In prestressed concrete structures the 

effect of creep and shrinkage are especially significant as they cause 

loss of prestress. The problem is further complicated by the relaxation 

of the prestressing steel. 

While in most cases creep and shrinkage do not substantially affect 

the strength of structural members, in long and slender compressive members 

creep can produce deformations leading to instability so that the load-

carrying capacity of the member is reduced. Creep buckling of long 

columns is a recognised problem, although it is still imperfectly under-

stood. 	 Effects of creep on arches and arch dams can also be quite crit- 

ical. These structures are designed so that the load is carried mainly 

by axial compression, the thrust line for the arch (or the thrust surface 

for arch dams) nearly coincides with the centerline of the structure. 

Creep strains deform the structure and increase the eccentricity of the 

thrust line (or surface). 	 This, in turn, increases the stresses in the 

structure. The stress increase is followed by some creep increase. If 

the load is sufficiently high, it is conceivable that the structure may 

deteriorate to the point of collapse. 	 In the design of the Gladesville 

Bridge, Sydney, creep is considered in detail and measurements are still 

being made to assess its efiects (Rief8.10 ). 
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The effects of creep, however, are not always adverse. The effects 

of creep on a beam and column arrangement, for example, are self correcting. 

The differential shortening in the columns induces moments and shears in 

the beams. The beams in turn respond by reducing the load on the column 

which settles most. The columns which settle less will receive additional 

loads from the columns which settle more. This redistribution creates a 

new modified stress level for creep. 	 There are also the beneficial 

effects of creep in the relief of stress concentration with time. 

8.3.2  Design to avoid creep and shrinkage effects 

The most common method to avoid the problem is by inserting contrac-

tion and expansion joints. 	 Proper detail designs can eliminate differ- 

ential creep and shrinkage such as recommended by Fintel and Khan (Ref 8.9); 

interior columns should be designed to have the same steel percentage and 

volume surface ratio; slabs should be hinged around the stiffer shear 

wall core. Note that fixity attracts and increases volume change and 

should not be made more than necessary.' 

8.3.3 Design to allow for creep and shrinkage effects 

For structures in which the loads are carried mainly by axial 

compressive forces developed in the concrete such as columns, arches,and 

arch dams, the effects of'concrete creep and shrinkage cannot be avoided 

altogether. 	 Some designers take the concrete behaviour as visco-elastic, 

i.e. a delayed elastic behaviour. Stress-strain relations are still 

written in linear form identical to elastic behaviour with the elastic 

constants replaced by integral operator. In simple form this becomes an 

elastic analysis with a reduced effective elastic modulus (Ref 8.12). 

More precise analysis requires expressions for predicting creep. These 

expressions contain a number of empirical and quasi-rational coefficients. 

Neville (Ref 8.12) reviewed six different types of expressions for the creep 
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1 
functions and presented yarious methods of creep analysis for structural 

members. 	 It is noted that all treatments for creep are, at present, 

limited to working loads. There are no guides to the problem of creep 

at ultimate load. 

In massive concrete structures such as dams the effect of creep on 

the stress development in the structure is difficult to predict (espec-

ially if considerations are given to the foundation which has different 

creep properties). Fortunately, from effective modulus elastic calcu-

lations, it has been observed that a wide variety in properties results 

in limited effects on stresses and deformations (Ref 8.11). 

Finally, the problems of creep and shrinkage can be alleviated 

somewhat by quality control of concrete. 	 Strong concrete creeps less. 

However, if the quality of the concrete is inconsistent, the differential 

creep may be greater. Curing is important in reducing shrinkage cracks. 

8.4 DETAILED DESIGN FOR DUCTILITY 

Many experienced desianers have observed that most of the failures 

in steel and concrete structures have becn of a brittle type. 	 Special 

attention must be given to the detail design of joints as these are often 

the regions of high moment and shear. Local weakness at these points 

will govern the structures capacity to carry loads. Precise solutions 

for the strength of joints are not necessary provided that they are on 

the lower bound; more attention should be given to the detailing of 

joints. The aim is to achieve ductility, i.e. ability to undergo deform-

ation beyond the elastic range while still maintaining loads. Ductility 

provides safeguard against overload and impact since it allows large 

redistribution of forces in the structures (Ref 8.13). 

8.4.1 Concrete detailing 

(i) 	 Shear failures in concrete are quite sudden and without 
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warning and they should be avoided at all stages. Members should be 

checked for shear so that up to ultimate capac4;iy (flexural) no shear or 

diagonal failures can take place. Shear re-inforcement must be adequate 

up to ultimate capacity without relying on concrete capacity to take 

shear. 

(ii) Anchorage. 	 Particular attention should be given to the 

anchorage of the main bars especially at regions near to columns. 

Splicing should be far from regions of high stresses a d must be stag-

gered. Anchorage for transverse reinforcing, stirrup hooks, should be 

checked. 

(iii)Confinement of concrete in high axial load members is useful 

in maintaining ductility. This is done by providing high yield steel 

hoops closely spaced. 	 The higher the axial load, the more confinement 

of concrete is necessary. 

(iv) Quality of steel and concrete. Concrete crushing must be 

avoided by adequate steel provision (a limit of 2.5% is usually used for 

design). High yield steel reduces ductility while high strength concrete 

increases it. 

(v) Ductility requirement for beams and columns. For a beam to 

have adequate ductility, the steel percentage must be kept well below 

those for "balanced elastic design". 	 Over reinforced beams have little 

ductility as the concrete may crush before the steel yields. 	 For a 

column to possess ductility, the maximum compressive force should be below 

one quarter of the ultimate compressive strength of the column section. 

This requirement can easily be seen from a typical column interaction 

curve (Fig A1.10, Appendix Al). 

8.4.2 Steel detailing 

(i) 	 Joint layout. 	 Simple joint layout is important. 	 The cost 

of fabrication is usually high for joints. 	 The number of pieces which 
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require marking out, cutting and fitting, special edge preparation, should 

be minimised. 	 The two most common methods fo. joining metals together 

are bolting and welding. Welding is still the main method used in the 

shop, and with modern methods of inspection works of very high standard 

can be expected. Bolting has largely replaced riveting with the devel- 

opment of high strength bolts, and is popular in the field. 	 The general 

trend is to have all the pieces welded in the shop where high quality 

welding is possible •and bolted in the field for ease of erection. A 

combination of bolting and field welding is sometimes used such as in 

column-beam connection. Another obvious point in designing joint layout 

is to make the job accessible for welding or bolting; this feature is 

sometimes overlooked by the designer. 

(ii) Welded joint. 	 The following points should be watched when 

a welded joint is designed. 

Selection of welding process and piecautions. Arc welding is a 

fusion process in which the electrodes are melted to provide the filler 

metal. The difference in welding with or without flux should be noted. 

The heat affected zone on the parent metal is likely to cause cracks and 

this should be eliminated with proper precautions. For carbon steel, 

weldability decreases with the increase of carbon contents. For low alloy 

steel the main danger is underbead cracking. High alloy steel is sus-

ceptible to embrittlement from grain growth at high temperature. Each 

steel must be considered separately and weldability is related to the 

type of joint used. 

Effects of distortion and residual stresses. Due to the presence 

of the heat in welding, the dimension of the end product will change; 

this causes distortion and stresses. Thus over weld4ng must be avoided. 

Preheating helps to eliminate same distortion and stresses. Normally 

the effects are not important as they can be absorbed by plastic 
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deformation, unless precautions are not taken and the welded joints 

become brittle. Stress relieving procedures rsually alleviate these 

problems. 

Service conditions. Joints which are excellent for one job may 

not be adequate for others because of different operating conditions. 

The nature of the stress in the joint must be considered; tension, 

shear, torsion, bending.. .since different joint design is suitable for 

different stress application. 

Weld selection. Fillet and lap welds are easier to make than 

butt welds. Automatic welding is fast and reduces the cost of deposit 

metal. Shop welding is good and reliable. Field welding is expensive 

and should be kept to a minimum, preferably replaced by bolting. 

Continuous single run fillet welding is desirable, especially when 

corrosion is to be considered. 

(iii) Bolted Joint. With the development of high strength bolts, 

the use of bolted joints has largely replaced riveted joints in structures. 

The advantage is of course the ease of erection. 	 The tightening pro- 

cedure by courting the turn of the nut has been shown to be reliable, 

easily used and inspected in the field. Research has shown the superi- 

ority of bolts over rivets in both fatigue and static tests. 	 Tests on 

large bolted joints showed that the strength of the fastener in shear 

far exceeds the strength of the section. Misalignment and condition of 

the surface have little effect on the joint efficiency. For moment 

connections it has been shown that bolted joints can accommodate large 

rotational displacement if flexible end plates are used. There is only 

one failure of bolted joints reported in literature; the cause is attri-

buted to corrosion and overtightening effect. 

The design of bolted joints should be made so that the failure is 
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forced into the connected material rather than the bolts themselves, 

since this type of failure is more ductile. 

8.5 CONCLUDING REMARKS 

Various aspects of practical design consideration have been dis-

cussed. 	 The discussion is by no means complete and is limited by the 

author's own practical experience. 	 The prime purpose is to achieve 

ductility in the members and the structure. 	 Most of the problems can be 

avoided by careful and suitable detailing, particularly in the detailed 

design of joints. 	 Thorough supervision is required since so much depends 

on common sense and good construction practice. 	 The successful comple- 

tion of a job depends on many persons. However, the prime responsibility 

rests with the designer. Hemust issue adequate instructions on drawings 

and specifications to ensure that the structure will be properly built 

since he is the only one with the most comprehensive view of the project. 



SUPPORTING EXPERIMENTAL STUDIES 
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APPENDIX Al .' 

TESTS OF ARCHES AND RELATED qALCULATIONS 

INTRODUCTION 

Tests on three series of arches (steel, reinforced concrete, and 

plain concrete) were made to study the behaviour of arches under increasing 

vertical loads. Both symmetrical and unsymmetrical loading arrangements 

were used. 

All arches were loaded to collapse. Deflexion and strain measure-

ments were taken at all stages of loading; thrust lines were plotted from 

experimental data, and the collapse modes were studied. 

GENERAL DESCRIPTION OF TEST SET-UP AND EXPERIMENTAL PROCEDURE 

All arches were mounted on specially designed steel beams. 	 Tests 

were performed in (i) an Amsler testing machine, (ii) a Shimadzu testing 

machine, and (iii) a.  specially designed loading rig with Roberts mechanism 

which allowed the arches to sway freely. The general loading arrangements 

were shown in Figure A1.1(a), (b), (c), and (d). 

Measurements were made with dial gauges for deflexions, Huggenberger 

mechanical gauges for strains in steel and concrete. Electrical strain 

gauges were also used at places inaccessible to the Huggenberger gauges. 

All arches were loaded to collapse; measurements were made at all 

stages of loading. The collapse modes were studied. 

Properties of the materials were obtained in the usual way; tensile 

tests for the steel specimens made from the same batch of steel, and 

compression tests for the standard 6" cylinder concrete specimens made 

from the same mix as the experimental models. 	 In arW.ition, the plastic 

moment for the steel section was obtained from simple beam tests, and the 

yield surface for the reinforced concrete section, subjected to combined 



(a) General loading arrangement on the Shimadzu testing machine. 

(b) General loading arrangement on the Amsler testing machine. 

FIGURE Al.]. 



(c) General loading arrangement with proving ring and Roberts 
mechanism for free horizontal movement. 

(d) General arrangement for symmetric loading condition. 

.FIGURE Al.]. 
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bending and axial forces, was obtained from a series of tests of columns 

(of the same section) under eccentric loadings 

From the strain readings at a certain load level and the stress-

strain curves for the materials, bending moments and axial forces were 

calculated for various locations on the arches; the thrust line for that 

load was plotted to obtain an overall equilibrium check. While the overall 

equilibrium condition is satisfactory, detail comparisons of the thrust 

and bending moment values often show poor agreement. The shift of the 

thrust line under different load levels was also observed. 

EXPERIMENTAL RESULTS, RELATED CALCULATIONS, AND DISCUSSIONS 

STEEL ARCHES 

The dimensions and other details of the steel arches are given in 

Figure A1.2(a). 	 The arches are made from 1" x 1" x 1/8" rectangular 

hollow section, bent to the desired circular shape, then annealed before 

testing. Half inch base plates are welded to the arches and bolted to 

the supporting beams. After yielding occurs, difficulties were exper-

ienced in maintaining a steady load while readings were taken. 

ARCHES UNDER SINGLE POINT LOAD AT QUARTER SPAN 

A typical load-deflexion graph is presented in Figure A1.2(b), 

together with related calculations. Yield was first reached under the 

point of loading C, then at the support A, then at the region D, and 

finally at the support B. 	 There was considerable spreading of the 

yielded regions A, C, and D, while the support B remained elastic for 

most of the test's duration. 

From the strain readings, thrust lines were plotted in Figure A1.3. 

A picture of the collapsed arch is in Figure A1.4(a). 

CALCULATIONS. The axial force in the arch is small and the load is 

resisted mainly by flexural action. A simple plastic analysis is 
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performed by drawing the plastic thrust line for the point load. 	 The 

calculated ultimate load is 17.2kN, well above he measured 14.2kN. The 

effect of vertical deflexion is taken into account as shown in Figure A1.5 

and A1.6. The result is the sloping line UP2  in Figure A1.2(b). The 

measured ultimate load is higher than this estimate; strain hardening of 

the section with increasing deformation is thought to be the cause of the 

difference. An elastic-plastic analysis using dynamic relaxation (Appen-

dix B1) is also performed and shown on the same graph, Figure A1.2(b). 

ARCHES UNDER SINGLE POINT LOAD AT THE CROWN 

The results of tests and calculations are presented in Figure A1.7. 

The picture of the collapsed arch is in Figure A1.4(b). 	 It is seen that 

there is considerable spreading of the yielded regions B, C, and D, while 

the supports A and E remain elastic for most of the test's duration. It 

can be said that the 'hinges' at A and E were not properly formed. 	 The 

reason can be easily seen in Figure A1.7; most of the deformation occurs 

in the regions B-C-D. The influence of deflexion on the load-carrying 

capacity is quite marked as shown on the secuad order rigid-plastic analy-

sis, Figure A1.7. 

EFFECT OF STRAIN HARDENING 

Some unannealed arches were also tested to study the effect of strain 

hardening. 	 The results are compared in Figure A1.8. 	 The unannealed 

arches were considerably stiffer and consequently the ultimate load cap-

acity was much higher. However, while the annealed arches could hold 

ultimate load with increasing deflexion, the unannealed ones could not. 

The arches were under the conflicting influences of strain hardening and 

deflexion. 	 For the unannealed arches, the influence of deflexion (which 

decreases the load-carrying capacity) is offset by the influence of strain 

hardening (which increases the load capacity). 	 For the unannealed arches, 



156 

41=1•11•• 



(a) The collapse of a steel arch under one single point load 
at one quarter span. 

(b) The collapse of a steel arch under one single point load 
at the crown. 

FIGURE A1.4 
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there are no further strain hardening effects after the ultimate load is 

reached, and the increasing deflexion causes t: load capacity of the arch 

to drop (Ref A1.1). 

REINFORCED CONCRETE ARCHES 

The dimensions of the arches and the details of reinforcement are 

given in Figure A1.9. 	 The reinforcements (4-3/16" wire) are welded to the 

base plates. 	 The base plates have four steel bolts on their other sides, 

enabling the arch to be mounted on the supporting beam. 

Strains were measured both on the concrete and steel reinforcement 

with Huggenberger strain gauges. From these data, thrust lines were 

plotted for various loading levels to obtain overall equilibrium check. 

A series of reinforced columns were made from the same mix with the arches 

and tested under varying eccentricities to obtain the yield surface for 

the section; the results are presented in Figure A1.10. 

ARCHES UNDER SINGLE POINT LOAD AT QUARTER SPAN 

A picture of the collapse arch is in Figure A1.11(a); only three 

regions of extensive deformation are observed. Cracks were formed quite 

early in the test. Concrete crushing only occurred when the arch nearly 

reached its ultimate capacity; there was a drop in the load capacity 

when the concrete started to crush. The calculated and measured thrust 

lines are plotted in Figure A1.12(a). 	 Calculations were performed as in 

the steel arches, i.e. a simple plastic analysis, then corrections were 

made for the effects of axial loads (from the interaction curve Figure 

A1.10) and deflexions (from the analysis) of the motion of the mechanism, 

Figure A1.12(b). 	 The equilibrium conditions are as given in Figure A1.6. 

The load-deflexion graph is in Figure A1.12(c). Tbc difference in the 

measured and calculated values is due to the incomplete redistribution of 

moments. The calculations assume that the ultimate moment as given by 
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(a) The collapse of a reinforced concrete arch under one 
single point load. 

(b) The collapse of a reinforced concrete arch under four 
symmetric point loads. 

FIGURE A1.11 



166 

o 

i-Ve  +Am st  



167 



168 

LoadW(khi) 

10 

Vertfcq clef le )4  OV1  Of 10  oiht ()-r911) 

Figure A1.121) 



169 

the yield surface can be maintained with increasing deformations while 

actually there is a drop in the capacity of th_ sections with increasing 

deformation (Ref A1.2, A1.3). 

ARCHES UNDER FOUR SYMMETRICAL POINT LOADS 

The arches failed locally near the support with broken ties 

and the main reinforcement was buckled. No other cause of failure was 

visible. 	 The thrust lines for the arch are in Figure A1.13, the picture 

of collapse in Figure A1.11(b). 

PLAIN CONCRETE ARCHES 

The dimensionsof the arches are the same as those of the reinforced 

concrete arches. 

ARCHES UNDER SINGLE POINT LOAD AT ONE THIRD SPAN 

The behaviour of the arches is influenced by the tensile strength 

of the concrete. After cracks have formed, the arches can carry very 

small loads. The arches fail with four hinges as pictured in limit 

theory, Figure A1.14(b). 	 However, with some support movement it is 

possible that the slipping failure would occur near the loading point as 

observed in some tests at our laboratory. 

ARCHES UNDER FOUR POINT SYMMETRICAL LOADS 

Sine the thrust line lies within the arch and there is little 

bending moment, failure could only occur with extensive crushing of the 

concrete. There are only three regions of extensive crushing when the 

ultimate load is reached, Figure A1.14(b). 	 A four hinge mechanism type 

of failure is not possible as can be seen from the position of the thrust 

line, Figure A1.15. 

CALCULATIONS. There is no standard treatment of this mode of failure. 

The following scheme of lower bound calculation is proposed. 
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(a) The collapse of a plain concrete arch under one single 
point load. 

(b) The collapse of a plain concrete arch under four 
symmetric point loads. 

FIGURE A1.14 
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Only half of the arch is considered due to symmetry. From the 

thrust line in Figure A1.15 it is obvious that he two most highly stressed 

regions are A and C. The equilibrium of the system is given in Figure 

A1.16. 	 For simplicity the rectangular Whitney's stress block is used. 

The value of thrust and moment at a section is given by 

= o.e5f. c  i TA = &BS fie  . C. ( 2 — 

• where t is the section thickness, c is the width of the stress block. 

Trial values of thrust and moment are guessed at the two failing sections, 

the equilibrium of the system is checked, and the value of the collapse 

load obtained. 	 The iterative procedure, which is presented in the flow 

chart of Figure A1.16, is repeated until satisfactory agreement is reached. 

The effect of the crown deflexion can also be included in the scheme of 

calculations as shown in Figure A1.16. 

The results of the calculations are: 

With no deflexion: At the crown c = 1.74" ) 
). 

	

, At poia, C 	 c = 1.98" ) 

With 1" deflexion 
at point C : , At the crown 	 c = 1.84" ) 

	

At point c 	 c =1.99" ) 

W = 2.01.(0.85 

W = 1.80.(0.85 Cc) 

The measured ultimate load is W
u 
= 8000 lbs, with crown deflexion 1". 

The strength of concrete is fte  = 5500 lb/in2  (from cylinder tests); 

therefore W(collapse)= 9300 lbs (no deflexion) , W = 8400 lbs (1" deflexion). 

The calculated value of the collapse load is only 5% different from the 

measured value. 	 It is envisaged that the proposed method of calculation 

can be suitably applied to the problems of arches under symmetrical load. 

CONCLUSION 

The results of tests en steel, reinforced concrete, and plain concrete 

arches were reported. Various aspects of the collapse behaviour are 
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discussed and related limit calculations are performed. 	 The actual 

redistribution of moments and the collapse loaC can differ significantly 

from plastic limit theory. The differences are due mainly to the limited 

redistribution of moment in the arches, particularly reinforced concrete 

arches. Deflexion is another major factor for the discrepancies between 

theory and observed behaviour; however a second order rigid-plastic anal-

ysis (which includes deflexion effects) can usually be performed easily. 

Connection detailed designs are particularly important as they may cause 

major changes in the behaviour of the arches. 	 In all, the tests provide 

an insight into the basic structural behaviour of steel, reinforced con-

creteland plain concrete arches. 
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APPENDIX A2 

YIELD LINE PATTERNS OF SLABS AND THE ROOF ANALOGY 

INTRODUCTION 

Three slabs of different dimensions and boundary conditions were 

tested under uniformly distributed load. The aims were to observe the 

collapse behaviour and to compare the yield line patterns with a proposed 

roof analogy. 

GENERAL DESCRIPTION OF TEST SET UP AND EXPERIMENTAL PROCEDURE 

The dimensions, support conditions, and details of the reinforce-

ment of the slabs are given in Figure A2.1. 	 All slabs are 25.4 mm thick; 

reinforcements are made of 1.6 mm diameter wire 25.4 mm spacing placed 

centrally both ways. 

The uniform loading is provided by a rubber bag loaded with either 

air or water pressure. 	 The pressure is measured with demountable pres- 

sure gauge; 	 the total load on the slab is obtained from proving ring 

readings. 	 A picture of the test set up is presented in Figure A2.2(a). 

Deflexions were measured with dial gauges. 	 Strains were measured 

with electric strain gauges. 	 The strain readings were difficult to inter- 

pret due to the presence of cracks. 

OBSERVED COLLAPSE BEHAVIOUR 

Due to the high tensile strength of concrete and the light centrally 

placed reinforcement, it is difficult to tell whether the reinforcing 

steel has any influence on the behaviour of the slab. 

Two types of cracks are formed. 	 The major cYclas which divide the 

slab into portions; extensive deflexion and rotations are observed along 

these cracks; they are usually termed the yield lines. 	 With each region 
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divided by the major cracks, there are minor cracks which allow the slab 

to deflect to conform with the deformation pat ern provided by the major 

cracks. The corner effects, i.e. the branching of the major cracks as 

they enter a corner, are also observed. 

THE ROOF ANALOGY 

A simple way of picturing the yield line pattern is obtained from 

the following roof analogy. 

The slab is considered as the area to be covered by a roof. A 

supported edge of the slab is equivalent to a side of the roof with rain 

gutter. A free edge is equivalent to a side of the roof without rain 

gutter. A column support is equivalent to a down pipe. 

If a roof pattern is devised so that the rain water can flow down 

the prescribed way, then the projection of the ridges is a possible yield 

line pattern. 

COMPARISON OF YIELD LINE PATTERNS AND ROOF ANALOGIES 

Figure A2.4 presents the roof patterns and the corresponding yield 

line patterns uf the three tested slabs. 	 Figure A2.2(b), Figure A2.3(a) 

and Figure A2.3(b) show the actual yield line patterns. 	 The overall agree- 

ment is fairly good. A major difference is found in Slab No. 3 where a 

circular yield line is obtained around the column support instead of the 

predicted square pattern. However, the former can be considered as a 

limiting case of the latter (Ref A2.1). 
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(a) General set up for the testing of slabs. 

(b) Failure pattern of Slab No. 1. 

FIGURE A2.2 



(a) Failure pattern of Slab No. 2. 

(b) Failure pattern of Slab No. 3. 

FIGURE A2.3 
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APPENDIX A3 

TEST OF A SHELL AND RELATED CALCULATIONS 

INTRODUCTION 

A concrete circular cylindrical shell supported on three sides was 

tested under uniform radial loading condition. The test was performed 

as a preliminary step in the investigation of the strength of shell struc-

tures in general, and of arch dams in particular. 

GENERAL DESCRIPTION OF TEST SET UP AND EXPERIMENTAL PROCEDURE 

The dimensions and the supporting conditions, of the shell are 

presented in Figure A3.1(a). 	 The shell is 25.4 mm thick; reinforcements 

are made of 1.6 mm diameter wire, 25.4 mm spacing placed centrally both 

ways. 

The general arrangement of the test set up is sketched in Figure 

A3.1(b). The uniform radial pressure is provided by a curved rubber 

bag, especially designed for the test, loaded with water. pressure. The 

pressure is measured with demountable pressure gauge; the total load on 

the shell is measured with four proving rings placed at four corners of 

the supporting frame. A picture of the test set up is presented in Figure 

A3.2(a). 

Deflexion was measured with dial gauges placed at various positions 

along the crown of the shell. Strains on the concrete were measured with 

electric strain gauges placed on both faces of the shell, Figure A3.1(a). 

OBSERVED BEHAVIOUR 

The high tensile strength of concrete and the light reinforcement 

made it difficult to assess the effects of the reina,rcement on the beha-

viour of the shell. The exact supporting condition was not known; 

fully hinged restraint was originally intended but it was observed 
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(a) General set up for the testing of a shell under uniform 

radial load. 

(b) Picture of shell after collapse. 

FIGURE A3.2 
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subsequently that partial sliding actually occurred. 

The load-crown deflexion graph is presen-,d in Figure A3.4. At 

low pressure (under 60 kPa), there was no crack and the shell behaviour 

was elastic and repeatable. The pressure was taken up to 60 kPa, then 

reduced to zero three times. Consistent readings of deflexions and 

strains were recorded. As the load increased, the behaviour became non-

linear. Cracks were formed and the movements of the support observed. 

Sketches of cracking patterns are presented in Figure A3.3 for various 

loading levels. The cracks originated from the straight edges and were 

thought to be caused by the deformation of the supporting rig. There 

was crushing of the concrete at the crown and the supports in the trans-

verse direction at high pressure. The final collapse was sudden, the 

upper part of the shell (near the free edge) caved in; the instability 

was caused by extensive crushing of concrete and large deflexion. A 

picture of the collapsed shell is present0d in Figure A3.2(b). 	 The 

ultimate pressure was 138 kPa. 

CALCULATIONS 

Calculations were done on the basis that the steel reinforcement 

had no influence on the load-carrying capacity. 

For the uncracked state, an elastic analysis by Finite Element 

method, (Ref A3.1), represented by the line OA in Figure A3.1, shows fairly 

good agreement with the measured data (Ref A3.1). 

For the ultimate loading test, it was observed that the supporting 

rig had been deformed permanently and the edge conditions had changed from 

hinge to free to slide. An approximate elastic-plastic analysis of the 

• shell following the line suggested in the next section was performed, and 

the results represented by the line OCD in Figure A3.4. 
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APPROXIMATE ELASTIC-PLASTIC ANALYSIS OF CYLINDRICAL SHELL UNDER RADIAL LOADS 

Following Tolke's simplified method of e-astic analysis of arch dams 

(Ref A3.2), the following approximate elastic-plastic analysis of cylin-

drical shell under radial loads is proposed. The method is most suitable 

for the analysis of arch dams. 

The shell is divided into a series of *horizontal arches. The arches 

are assumed to resist the radial loads elastically until the combined 

axial thrust and bending moment reach the combined failure condition; 

then it is assumed that the Arch will not take.any further extra load. 

The failure condition for the concrete arch section is 

N1,141( 	 0.85fr c 
	

M,, 0.s5fc.' 	 -(112 - cii) 

where c is the width of compressive part of the section and t is the 

section thickness (Fig A3.5). The crown deflexion of an arch cAt.  under 

uniform radial pressure p is proportional to the pressure  

	

. The factor Kis found from elastic theory of arches (Ref A3.3). 	 can be 

made to accommodate various boundary conditions including the changing 

shape of the supports (triangular, rectangular, trapizoidal, etc...), the 

deformation of the support, and the degree of fixity at the shell edges. 

The factor 1< can be different for different slices of the shell. 

Consider a strip of unit width along the crown of the shell in the 

vertical direction. This strip is imagined as being placed on a non-

uniform elastic foundation provided by the arches, and is analysed as such. 

The strip is assumed to be elastic and to carry its loads by bending moment 

until the failure condition is reached. For a concrete section, the 

failure condition is 

MAMA% 
	 = -PI  'el ES . 

where t is the shell thickness. 

The analysis of the shell is thus reduced to the analysis of a strip 
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on elastic foundation. 	 The deflexion of the strip at a particular level 

determines the pressure which acts at that lev-l. 	 The magnitude of the 

thrusts and moments are determined from the value of the pressure, using 

the elastic theory of arches. With increasing load, either the vertical 

bending moment in the strip at a section reaches its ultimate value 

(a hinge is then formed at that section) or the combined bending and 

thrust on an arch section reach the failure condition (the 'elastic' 

support is then considered as absent for any further increase in load). 

The calculations are performed in the following order: 

(i) the elastic analysis of all arch slices to determine the arch 

stiffness factors at the crown using elastic arch theory. 

(ii) the analysis of the beam on 'elastic' support. This analysis 

can be done either analytically or numerically. Due to the changing 

properties-of the sections, it is best to use a numerical technique such 

as Finite Element or Dynamic Relaxation to solve the problem. 

The calculations for the tested shell model are summarized in 

Figure A3.5. 	 It is seen that despite the drastic simplification made, 

the results agree fairly well with the measured data. 

Similar calculations are performed for the Bustamente's arch dams 

model (Ref A3.4 and Chapter VI). The results are summarized in Figure 

A3.6. 

One of the advantages of the proposed method is that it can be used 

to assess the load-carrying capacity of arch dams with elastic abutment. 

One of such analysis is performed for the arch dam type I (Ref A3.5), the 

results are presented in Figure A3.7. 

CONCLUSION 

Test of a shell with boundary conditions sim11r to those of an arch 

dam under uniform. radial loads is presented. An approximate elastic-

plastic method of analysing such a shell is proposed. The method is then 

used to analyse some arch dams with rigid and elastic abutments. 
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APPENDIX Bl 

DYNAMIC RELAXATION TREATMENT OF DEFLEXION 

IN ELASTIC-PLASTIC FRAMED STRUCTURES 

SUMMARY 

Deflexions of framed structures loaded into the elastic-plastic 

range can be estimated using the technique of dynamic relaxation. 

The calculation is made simple if a cubic function is used to des-

cribe the deformed shape of the frame element. The method differs from 

other methods in assuming that the yielded regions are spread out instead 

of being localized. The results are compared with those given by Heyman 

(Ref B1.4). 

INTRODUCTION 

Treatments of deflexions in elastic-plastic framed structures have 

been given by Symonds and Neal (Ref B1.1), Lee (Ref B1.2), Stevens (Ref B1.3) 

and Heyman (Ref B1.4). The treatment given below differs in assuming that 

the yielded resions are spread out instead of being localized at the hinges. 

Consequently there is no plastic hinge discontinuities. This assumption is 

supported by experimental observations as reported in Appendix Al. Local-

ized deformation is dominant only when the ultimate load is reached. The 

use of dynamic relaxation technique allows the separation of equilibrium 

and geometrical conditions, and results in a very simple computing proce-

dure. The results are in close agreement with other methods and experi-

mental measurements. 

FORMULATION OF THE METHOD 

(a) Geometry. 	 Consider the member AB in fle:Iural action only 

(Figure B1.1). A cubic function is used to describe the deformation Of 

3  (AY = Ct X- 4" b x.2  + c x. + 
the member': 
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If the end rotations of the members are GA, GB , and the end 

deflexion WA, c44, the curvature expressions _Jr the ends A and B are 

% 

$c\f.  =(:* 4 ( 011) + 2(064) 6 647A- 04)/t2  
' A 

_(44.1=  2( °Alt) + 4 (681.1) 6( C CA are)/ t 
cixtc4te. 
(b)Moment - Curvature relation. Any established moment-curvature 

relation can be used. 	 For simplicity the elastic-perfectly plastic 

moment curvature relation is used here. 

ML  1\i- 
	

(2) 

P\P  cot' 	 VA.y 

(c)Equilibrium. 	 Both the equilibrium of the joints and the equil- 

ibrium of the members are considered. For frames which carry the loads 

mainly by bending moment, the equilibrium of the joints results in two 

sets of equations. 

Sum of the moment at a joint :DI 
(3) 

	

Sum of the forces at a joint Z. V 	 o 

The equilibrium of each member gives the value for the end shears 

	

QA = GB = (MA M B)/ t 	 (4) 

(d)Dynamic relaxation iterative procedure. 	 The general scheme 

of calculation is given in the flow chart of Figure B1.2. One starts 

with an initial guess for the deformation of all joints)  (ca,  OL ) 

Curvatures are computed from (1), end moments from (2), end shears from (4). 

	

Overall equilibrium check is given by (3). 	 If equilibrium is not reached, 

the deformations are relaxed as in standard dynamic relaxation process 

and the calculation repeated until convergence is reached. 

2. 

	  (I) 
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EXAMPLES 

(a)Fixed end beam. The load-deflexion graph for a fixed end beam 

under one single point load is given by Figure B1.3 and is compared with 

that given by Heyman (Ref. B1.4). It is seen that the deflexion given by 

our method is less than that by Heyman's for the same load, the reason 

being the omission of hinge discontinuities. As observed by Gregory 

(Ref. B1.4) it is not possible to calculate the deflexion for a given load 

with any good agreement with the experimental results. The question is 

"At a given deflexion, what is the load that can be supported?". 	 In 

this sense the two methods show fairly good agreement. 

(b)Portal Frame. I  The portal frame, tested by Baker in Ref. B1.6 

is analysed. The results are presented in Figure B1.4. The analysis 

used both elastic-perfectly plastic and elastic-strain hardening moment 

curvature relation. The agreement is fairly good. 

CONCLUSION. 

A simple method of estimating the deflexions of framed structures in 

the elastic-plastic range has been presented. The model used in the anal-

ysis allows the spreading of the yielded regions along the member length 

instead of localized hinges. 	 It is noted that the two models (localized 

hinges or spread out yielded regions) are only approximations of the actual 

physical condition, which is perhaps somewhere in between. The developed 

model is useful in the analysis of concrete structures where unlimited 

hinge rotations are not possible, and tests have shown considerable 

spreading of the failure region. 
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APPENDIX B2 

DYNAMIC RELAXATION TREATMENT OF ELASTIL. STABILITY 

PROBLEMS IN OVERBRACED FRAMES 

SUMMARY 

A numerical study of the load-deformation behaviour of overbraced 

frames by the method of dynamic relaxation is presented. The results . 

show that the major internal forces causing buckling in overbraced frames 

are not statically determinate and redistribute markedly as buckling 

deformations occur. The ordinary stability analysis of the Euler type 

is not adequate to describe the behaviour of such frames. 

INTRODUCTION 

The overbraced frame of Figure B2.1 is used to demonstrate the 

application of the method of dynamic relaxation to problems of elastic 

stability. The method is flexible, allowing for the inclusion of the 

effects of crookedness and prestrain. Dynamic relaxation uses a damping 

technique to snlve a structural problem by a process of iteration between 

the equations of geometrical compatibility and the equations of equili-

brium. The basis of the method has been fully explained by Otter et al 

(Ref B2.1) and will not be repeated here. 

FORMULATION OF THE PROBLEM 

The rigidly-jointed triangulated frame of Figure B2.1 has the 

internal axial force distribution (as yet unknown) as defined in Figure 

B2.2. 	 To solve the problem iteratively, nine degrees of freedom are used 

to describe the deformation of the frame. They are six joint rotations 

and three mid-span displacements, Figure B2.3(a). 	 The corresponding 

forces are moments at the ends of members M1 
to M

18' 
 and shear forces at 

the ends of members Q1  to Q6, Figure B2.3(b). 



B2.2 

member at joints 2, 4, 6 equal to zero 
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Only the elastic behaviour of the frame is studied. the general 

form of the moment-displacement relation for a -,traight member AB Figure 

B2.3(c) is 

MA = (EI/1.){(5+ SC)1)/1. 	 se 	 SC 0e,  
B2.1 

MB  = 	 1,,)1(s:+ sc)ult + sc.() A  .+ s 	 } 

where.  S, SC are the stability function coefficients (Ref B2.4) which 

depend on the axial force P in the member. 

The equations of equilibrium are: 

(i) Sums of end of member moments 

M2L  + 14121.4i 	 /v1 i+r5 	 = 

equal to zero at joints 1 - 7. 

L =. 	 6 

1442i. 4 N1  21+t 	 C.) 

PlAl  + P.11  + 	 !3 	 -- 

M 14 	 MI6 	 Mia 	 7.= C) 

(ii) Sums of forces normal to the 

Q6- 

_ 

Qz  

     

     

=0 

0 

   

B2.3 

   

      

(iii) The shear forces are obtained by taking moments of each member 

about its end. 

Q, 41,11+ m2. - (  U7 + UIT(V2) 

02  = [M5  + M4  + P1 ( + WV( L/z) 

Q3 = [M5 + M6 - P,(y; u3)]/(L/2) 
B2.4 

Q5.= {M9  + Mio  -P ( Ue2)  + U2)] /(-/2.) 

0,6= [M ,, + M1 t (U; + Uz)]/(1./2.) 
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where 	 is the initial crookedness and LJ  is the lateral displacement of 

the point i. Note that the last terms of equations B2.4 represent the 

non-linear effect of axial load on lateral displacement. 

For compatibility calculations, it will be necessary to calculate 

the shortening of each member due to axial forces and bending moments. 

The axial shortening, due to axial force P, is given by 

P. L EA   B2.5 

The bending shortening is given by 

(C- 	 I  6  = 0 a= 4  
If the deformed shape of the member is assumed to be 

.= A sin (IF "rc. %/L) + cos (47 Tx/L.) + c. + b . 

where r = PPE  and A, B, C, D are constants to be determined from the 
boundary condition: Vx..  = (4.1.L  = 0 ; (f) ,= 

x=0 

(h/d%) 	 = 93 	 the bending shortening then becomes2  
X.= L. 

gb = - (LhT) 	 F;( --09.1  ) F2. GA RS ) 

where F F
2 
can be shown to be the derivatives, with respect to 

the stability functions S an4  SC respectively (Ref B2.2). 

The total shortening of the member is then 

s= gcl 4  gt, 

For any external load W, the distribution of the axial forces in 

the frame are not known. 	 However, if one is assumed, say P3  (Fig B2.2), 

then the others can be deduced from statics, and hence the deformation of 

the whole frame can be calculated using equations B2.1 - B2.4. 

If the frame is thought of as consisting of two parts, the star 

frame (inner part,/L) and the delta frame (outer part,t1), then the 

displacements A and 	 of point A relative to the line BC (Fig B2.4) 

of the two parts are compatible only if the correct values of axial forces 

distribution are used in the calculations. The values of 411  and Az. 

are given by 

B2.6 

of 

B2.7 
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= 	 - 	 (delta frame) 

2E4  _ SJS/2_ (star frame) , 
	 B2.8 

.where ./s1 )cc 	 c3) 1
4 are the total shortening of the members 1, 2, 

3, 4 as shown In Figure B2:4. 

The scheme of Calculation is shown in the flow.  chart of Figure 82.5. 

EFFECTS OF CROOKEDNESS AND PRESTRAIN 

(i) Crookedness. Any required amount of crookedness can be imposed 
0 

upon the frame by specifying the values ofUel3  z U5  Note that 

Various modes, of buckling' can be stimulated by appropriate specification 

of the crookedness values. 

(ii) Prestrain. Prestrain can be included as a set of constant forces 

which are in equilibrium with themselves without any external loading, 

Figure B2.6. Note that the values of crookedness and prestrain are not 

necessarily independent. If an attempt is made to specify them separately, 

the values of prestrining-forces will alter the values of initial crook- • 

edness at no load. 

SUMMARY OF RESULTS OF CALCULATION 

Calculations for the first mode only are presented here. 	 Figure 

B2.7 shows the effects of crookedness on the behaviour of a frame free of 

prestrain. Load-deformation graphs are shown for crookedness values of 

(a) 0.0625 x 163L 	 (b) 0.0625 x 162L (c) 0.0625 x 161L. 	 It is clear 

that the behaviour does not follow the usual Euler type buckling behaviour 

of a pin-ended column. Obviously a Southwell plot cannot be used to 

obtain the buckling load. 

Figure 8 shows the effect of prestrain upon frames with crookedness 

-2 	 - 
of 0.0625 x 10 L and 0.0625 x 101L. 	 It should be ,toted that the amount 

of.prestrain affects the,  onset of large deformation and therefore can be 

made beneficial or otherwise. 
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Figure B2.9 shows the distribution of internal forces at various 

levels of loading. 	 It is seen that the distrThution is linear at low 

load where the deformations are small but becomes non-linear at higher 

load where large deformations develop. The dotted curve gives the 

buckling load of the'frame obtained by the usual Euler approach at various 

levels of distribution of axial forces. 	 It is called the interaction 

curve (Ref B2.3). It is noted that as the internal force distribution 

becomes non-linear, it appears to head for the peak of the interaction 

curve. 

CONCLUSIONS 

(i) The behaviour of overbraced frames cannot be described by the usual 

Euler-type stability analysts. The reason is that the internal forces 

causing buckling are not statically determinate and redistribute markedly 

as buckling deformations develop. 	 (Euler-type analysis always assume 

that the distribution of internal forces causing buckling remains constant 

at all level of loadings.) 

(ii) Initial crookedness has large effects cr. the behaviour of the frame. 

Large crookedness cause the redistribution of internal forces to occur 

earlier. 

(iii)Prestraining forces control the onset of.large'deformation. 	 Their 

effects can be predicted in any particular case. 

(iv) If the frame remains elastic, it appears that the ultimate buckling 

load is independent of both crookedness and prestrain and is given by the 

peak of the interaction curve. 

(v) In any real frame, due to the large deformation, the frame will prob-

ably yield well before the ultimate elastic buckling load is reached. It 

Is, therefore, necessary to study the whole load-de.Lormation behaviour of 

the frame in the manner carried out above. 	 It may also be noted that 	the 

effect of yielding can be included in the above scheme of calculation 

without difficulty. 



Figure B2.1 

P2= W/2 P3)/ IT 

Figure B2.2 
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(b) 

MA 

(c) 
Figure B2.3 
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Figure B2.4 

PC  

Figure 82.6 
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APPENDIX B3 

DYNAMIC RELAXATION TREATMENT OF STRUCTURES WITH NO 

TENSILE STRENGTH 

SUMMARY 

Behaviour of structures which have no tensile strength is studied 

numerically by the method of dynamic relaxation. The standard approach 

of estimating the flexural stiffness El and correcting it with reference 

to the moment-thrust-curvature (M-P-11? diagrams requires large numbers of 

stored M-P-KLcurves. The present method dispenses with this storage. 

Direct use is made of the stress-strain diagrams which can be either linear 

or non-linear. Calculations are done for a prestressed wooden beam and a 

voussoir arch as examples. 

INTRODUCTION 

Treatment of cracks and their influence on structures is normally an 

iterative process based on an elastic analysis. The standard approach 

for beams and frames is to estimate the flexural stiffness El of the 

members and to analyse the structure elastically. The values of El are 

then corrected (by the removal of the tension zones) with reference to 

the moment-thrust-curvature diagrams (M-P- IV. The structure is then 

re-analysed. 	 The process is repeated until satisfactory convergence is 

reached. 	 This treatment requires large numbers of stored M-P-I\sdiagrams. 

The method proposed below dispenses with this storage. 	 Direct use is 

made of the stress-strain relations which can be linear or non-linear. 

The method uses the iterative technique called Dynamic Relaxation which 

iterates between the equations of geometrical compatibility and the 

equations of statical equilibrium. The basis of dynamic relaxation has 

been fully explaineciby Otter et al and will not be repeated here. 

(Ref B3.1) 
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FORMULATION OF THE METHOD 

Consider the member 1-2 (Fig B3.1). Undax the action of moment M, 

axial force P and shear force Q, the member deforms and cracks. The 

centre line of the member is chosen as the reference line which is inde-

pendent of cracking. The axis of centroids of the compression zone, on 

the other hand, is determined by the extent of cracking which may vary 

considerably across the depths of the section and along the lengths of the 

member. 

The deformations of the *member may be described by those of the 

reference line: two displacements u, v and a rotation 9 at each end of 

the member (Fig B3.2). A cubic function is used to describe the varia-

tion in v, normal to the member and a linear function for u, along the 

member. The expressions for curvatures and strain become: 

G( Ara  _ Jo/ 1,1" + 4 Alt -1- 2. 021t, 

z 	it, 4 4-02/ 
• • • 

 

.. 	 (B3.1) 

  

where KII )(),..are  the curvatures at ends 1 and 2 of the member, 6: is 

the average axial strain in the member. 

The problem is to relate these expressions of curvatures and strain 

(which are defined on the centre line only) to the actual forces, P and M, 

acting on the cross-section. 	 This is done by integrating the stress- 

diagram across the section to obtain the forces. Consider the member 1-2 

of Figure B3.3. 	 If the axial strain 4:and curvatures )
) 	

are given, 

then the axial forces P
1 
and P

2 
and moments M

1 
and M

2 
at ends 1 and 2 of 

member can be calculated. The diagrams of Figure B3.4 are obtained for 

linear stress-strain relation. 	 In general, it is seen that P
1 
and P

2 
are 

not equal if this section cracks. This inequality results from the 

difference in the position of the centroidal axis and the reference line 
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upon which deformations are defined. Equilibrium of the element is not 

satisfied; to proceed any further one has to r'.nd a way of recovering 

the equilibrium of the member. Two alternatives are available: 

(i) If the axial force P in the member is statically determinate or 

known, as it may be for a prestressed beam or masonry wall, the problem is 

then to relate the curvature yo the moment M such that the total force 

across the section is P. This problem can be solved iteratively with the 

flow chart of Figure B3.5. 

(ii) If P is statically indeterminate such as in a voussoir arch, then 

the problem is to find a value of P for the member such that equilibrium is 

recovered. This can be done by either 

(a) Setting P = EA e then proceeding as in (i) to find the relation 

between iviandisL, or 

(b) Integrating the stress diagram as in Figure B3.3, then setting 

P =22"....(P1 	 132).  

It is seen that both approaches are only approximate. The only way 

to find out whether they will give satisfactory results is to apply them 

to particular problems and to compare the results with experiment. 

PRESTRESSED WOODEN BLOCK BEAM 

Consider the wooden block beam of Figure B3.6. Such a structure is 

easily made and tested, and the results are informative. The prestressing 

force is P acting at a distance e from the centre line. 	 The load W is 

applied at mid span. The structure is analysed by dividing it into a 

number of elements of length DX. Then equilibrium of the element gives 

(Fig B3.7). 

1=42 
	 + M2)/DX - P(v2  - vi)/DX . 	 (B3.2) 

The second term on the right represents the non-linear effect of 
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axial force upon the deformation. Equilibrium of each joint give 254 =c,  

Since the axial force on the member is known, the alternative (i), 

defined previously, is used. A solution is obtained following the iter-

ative scheme of Figure B3.8. 	 Figure B3.9 shows the results of the calcu- 

lation. The graphs of load against central deflections are shown for 

(i) experimental measurement, (ii) elastic calculation, (iii) non-tension 

calculation. The differences between calculated and measured behaviour 

are due to the lack of fit between the wooden blocks, and to slippage 

between the blocks, due to shear forces, as cracks open. 

VOUSSOIR ARCH 

The voussoir arch of Figure B3.10 is analysed for the loading 

shown. The structure is statically indeterminate, the axial force distri-

bution in the structure is not known, and alternative (ii), as set out 

previously, is used. 	 Either of the approaches given in section (ii) gives 

approximately the same results. However (b) converges more quickly than 

(a). 

Figure B3.11 shows the stresses on the intrados and on the extrados 

of the arch; the results are compared with those from elastic calculation 

for the uncracked state. 	 It is seen that the influence of cracks on the 

structure is fairly local. 	 Figure B3.12 compares the deformations of 

the elastic and cracked arches. 	 It is seen that cracked structures deform 

more than those which behave elastically and do not crack. 

CONCLUSION 

A simple workable approach to the non-linear analysis of structures 

made of materials which carry no tension has been given above. The method 

dispenses with large storage of the M-P-'diagrams of members, normally 

required for such analysis. Reasonable agreement with experimental data 

is obtained. The common &sign practice of considering cracking as a 
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local effect and allowing for the increase of stress only at or near that • 

cross-section is seen to be justified to some ,ctent. 
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Figure B3.2 

Figure B3.3 
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Figure B3.6 
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Calculate lev.9 Calculate M (use Fig. B3.3) 
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Figure B3.8 
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ABSTRACT 

The philosophy of design of structures by picturing statically 

admissible states is outlined and applied to various members and structures. 

The strength of bolted joints under eccentric loading is investigated. 

The concept of thrust line is applied to multi story bay frames and space 

frames, and a graphical method of minimum weight design by guessing points 

of inflexion is presented. 	 Various solutions for the load-carrying 

capacity of orthotropic slabs are proposed. 	 The strength and safety of 

the Gladesville Arch Bridge is investigated; the load factors for the 

bridge are established for three different loading conditions. 	 An experi- 

mental method for directly obtaining a shape for an arch dam under a given 

loading condition is proposed. 	 Load-carrying capacity of arch dams are 

also estimated by picturing various statically admissible states. 	 The 

relation between deflexion, buckling, and strength is discussed. 	 The 

concept of Non-Euler Buckling is introduced. Various practical design 

considerations are summarized, including the detailed design of joints. 

In the appendices, tests on arches, slabs, and a shell are reported, 

together with related calculations. The numerical method of Dynamic 

Relaxation is applied to the problem of estimating deflexion in elastic-

plastic frames, the elastic stability problem of over-braced frames, and 

the non-linear analysis of structures made of,materials having no. tensile 

strength. 




