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PREFACE

Therelis still an obvious need for better understanding of struc-
tural action and simpler methods of design of engineering structures.
The increased use of tﬁe computer, in recent years, has facilitated the
- design éndlthe checking of certain standa?d structural components and
assemblies. However, computers are only tools; the preliminary design
of the structure and the final checking (of computer solutions) must - ]
still be performed manually. There are also problems, such as detailed
designs and particular one-off structures that computers cannot handle
efficiently. Tﬁese are problems that I have been confronted with inlthe
three years of design work with Gutteridge, Haskins, and Davey, Consul-
ting Engineefs, Hobart, Tasmania. I have designed a number of industrial
'plants, school and office buildings, .and aléo sewage and water treatment
works. After having performed the tasks of preliminary design and final
checking using tﬁe conventional elastic methods, it appears to me th;t the
basic ideas of the plastic limit theory, particularly the lower bound
theorem, may be better suited for the purposes. I have, therefore, spent
a period of full-time experimental and theoretical research, exploring the

power and the limitation of the plastic limit principles with a view to

their use in the design of a wide range of civil engineering structures.,

* * *

This thesis is written, for the_appraisal of the professional
engineers and research workers, to present a point of view on structural
design. It is hoped that the view and the methods of solution presénted
here will achieve, in a small but important way, the above objectives,
namely betterlunderstanding of structural action, leading to simpler pre-

liminary design processes, and quicker methods of checking and assessing
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the strength of existing designs and structures. Although the basic
principles are weli known, the view presented herein has not been - I
previously sufficiently developed in this particular direction.

I have'learnt the idea of design based on picturing a statically -
admissible state from "Theorf of Limit Design' by Van den Broek. The
larger part of the thesis, however, is based on the principles de?elopedl
by Baker, Horne, and Heyman in "The Steel Skeleton, Vol. II". The
later work has served both as a standard reference and a source' of

inspiration.

L

%  The thesis is composed of a series of studies in the design of
‘structures based on the "statically admissible state" techniques. A
wide raﬁgéfof'problems with increasing difficulty is chosen to demon-~

}stfate the power of the lower bound design technique.

niques are further developed in subsequent chapters. The simple but
practical problem of bolﬁed jpints under eccentric loading (Chapter I1)
is used as an example of how limit principles, derived from the plastic
analysis of steelkframes,lare made to work or can be made to work in a
given easily definable situation. The 1imit analysis is supported by a
series of tests of bolted joints under eccentric loadiﬁg.

The concept of thrust line, well known in the theory of arches,
- is extended'in Chapter III to multi bay-storey frames and.space frames.
This extension, although simple, provides a direct way of picturing the
structural action of many frames, which cannot be obtained in any other
way. I have élso, with some satisfaction, combined the thrust-line
concept and the older method of design of frames by guessing points of
inflexion to produce a simple minimum mass design method.

A simple way of piﬁturing the structural action of slabs is
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presented in Chapter IV. The proposed method is only approximate;
however, it gives a fairly good éstimate of the load-carrying capacity
of any orthotropic slab within a practical range of dimensions. All
the above problems have their origins in my practical design work.

My interest in "funicular"structures arose from the reading of
Heyman's work. I have épplied these ideas to the assessment of the
strength and saféty of one of Australia's most important and beautiful |
bridges, the Gladesville Arch Bridge. The approach used herein in this
in*estigation is.very similar to Heyman;s approach to stone and masonry
structures. My contribution is the establishing of the load factors
for the bridge under three different loading conditions with allowance
being made for the effects of deflexion and the danger of the crushing
of the concrete. The work has been done as far as possible from
published data; however, the Department of Main Roads, (New South Wales)
and Maunsell and Paftners (London and Melbourne) supplied some prelim-
inary design drawings.

The work on arch dams (Chapter VI) is another attempt at estab-
lishing statically admissible states as the basis of design of these
structures of great interest and importance. Any attempt to visualize
the structural behaviour of an arch dam in a simple manner is of value
to the designer, especially if he has a difficult site, whether the
"difficulty arises from geological considerations, or merely from the
lack of symmetry. An experimental method of directly obtaining a shape
for the dam under a given loading condition is proposed. _ther stati-
cally admissible statesﬂare then used to estimate the load-carrying
capacity of arch dams. The latter work aiso gives an indication of how
the dam may act structurally in ttansmitting the force to the abutments

‘(which, in practice, also have to be analysed and designed.) I have
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received generous assistance from the Hydro-Electric Commission ofTa;—
mania, wﬁich has proviaed a model for the 420 ft high Gordon Arch Dam,
related design calculations, and valuable advicg on various aspects of
arch dam design.

Chapters VII and VIII give attention to some additional consider-
ations relevant_to the proposed method of design of structures based on
statically admissible states. Buckling and deflexion are discussed in |
Chapter VII because they do put a limit on the strength of structures.
These limits arise in various ways which should Be understood, if pos-
sible. The view on Non-Euler Buckling, presented herein, is known to
be controversial, and is intended to be so. It is submitted for
éppraisal.

A summary of some practical aspects of design is presented in
Chapter VIII, gathered from my own experience (in tﬁe design office and

in the field) and from existing literature. gty byt

"The intention is to indicate the type of troubles which may limit i
strength.. Although most of the méte;ial ﬁresentéd in this cﬁapter is;
-well;known, the méterial is included to emphasizg £he iﬁportance of E !
practic;i cénsiderations; which have often been overl&okea.in thgoreti§a1
studies, although, qf courée, designers and builders'are well aware 6f  -_-é

the problems.

The thesis is supported by experimental work-consisting of labor-
atory loading tests on various structural modéls. Attention has not been
focussed completely oﬁ the load-carrying capacify. Instead, much work
has been done to ascertain the statical (load transmission) action and
the geometrical (deformation) behaviour of the tested structures, at
working load and laﬁer as failure begins to take place, and, where possible,

~as failure occurs. This experimental work, reported in Appendices Al,

A2, and A3, consisted of tests of twenty sﬁeel, reinforced concrete, and
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plain concrete arches, three reinforced concrete slabs, and a shell.
They form the background from which various ideas presented in the thesis
have arisen. |

The nﬁmeriéal works, reported in Appendices Bl, B2, and B3, form an
addendum to the thesis and present some new extension of the method of
dynamic relaxation to non-linear problems. They are included because
they are use& in various chapters to substantiate other simple liﬁit calf

culations.

The design method proposed in this thesis is, for historieal reasons,
referred to as "limit design", and the principles of plastic theofy are
called "limit principles". Otherwise, the terminology follows the stan-
dard usage in litefature, such as the standard set of terms recommended by
the American Sociéty of Civil Engineers (to whom, however, "limit design"
means any liﬁit, and the term loses ifs meaning through loss of connection
with its history).

Metric units are adopted generally throughout the thesis, except
where existing structureé or data are analysed. Imperial units have been

retained in these situations for ease of reference.



CHAPTER I

PRINCIPLES OF DESIGN OF STRUCTURES FOR STRENGTH

1.1 INTRODUCTION

The thesis has one single theme, naﬁely "statically admissible
Istate" design and islcomposed of a series of design studies based oﬁ
varioué techniq;és.of constructing st;tically'admiséible sta;es.'.To'
set tﬁe stage for furthef discﬁssion, ﬁhe bas%é elements éf thé-plastic
iimif theory are‘firs; ré%iewed'in ghis chaptgr:_ Emphasis is then
pléced on "staﬁicaily admissible state" deéién. ._Vérious'teéhniQues of_.
ob;aining staﬁicqlly admissible states ﬁre outlined an& briefly discusséd.
Mofe:thordugh appliéations of the techniques aré pre§énted in subsequent

- chapters.

4 o e

designer usually does not have a clear picture of what the final design
will be. The shapes and dimensions of the structure are first roughly
determined by its functional or aesthetic requirements. A structural
design is then carried out. The task is to proportion and detail the
members so that a safe, economical, and suitablé.structure is produced on
drawings ané specifications. A suitable construction method must also
be considered, to enable the structure to be built. The three phases
of work are interconnected.- Difficulties in structural design often can
be avoided by altering the design concept; actual construction practice
determines how refined the design must be.

The structural design may be separated into three activities:
(1) the determination of the loads to be supported by the structure,
(ii) the selection of suitable materials, and (iii) the application of a
design th?ory to proportion and detail the members of the structure, for
the g;ventloads; with the given materials.

Thislthesis is concerned only with the design of structurés for

which strength is the prime design criterion. The structure is to be



designed so that it will not collapse at a certain level and combination
of loading, which, of course, must be above the working loads. The design
is thus based on the concept of a 'load factor', i.e. the ratio of the

load at collapse to working load. This concept is examined in the next

section.

1.3 THE LOAD FACTOR

The load factor A\_is defined in most literature as the ratio of the
predicted collapse load to fhe normal working load (Ref 1.1). This simple
definition has many implications which the designer must beware of.

(i) Of all possib%e states of loading, only one particular combin-
ation is conéidered at a time.

(ii) The loads in any particular combination are not allowed to vary
independently, but are imagined to be slbwly increased in proportion until

collapse is reached. |

- e e —

- (dii) ﬁbét.gf‘iimit-design‘literature is conéerﬁéd only with |
" static loadings. 1Imn fhe‘absence of guidénce, deéigners usually éonvertA’
. dynamic loads intd equivalént sfatic loads;, This apﬁroachnﬁay or may‘: |
not-be valid depending on the nature of the_particﬁlar proBiem in hand. . i
_fIt is further ménfioned ;hat tﬁe thesis is concé£ﬁed_only‘wifﬁbététié f

" loads.

(ii) .There is no conhection between thé collapse calé&iatidﬁ based
on a load factor and the real state of overloading (Ref 1.2). The load
factor is only a device to proportion the structure with some margin of
safety. |

(iii) Since the load factor reflects the margin of safety, it should
be chosen wiﬁh due reference to various uncertainties such as the inac-
curate asseésment of thé 1oad$, variations in the strength of materials,

imperfection in fabrication, and so on.



The idea of a single load factor as presented above is rather limited
since: |

(i) Some loads can be estimated more accurately than others.

(1i) Some loads can possibly be increased beyond the eetimated,
values while others cannot.

The concept of a partial load factor is then introduced to overcome
the above restrictions. Various load factors are chosen for different
classes of loading to account for their different characteristics. The
magnitudes of the partial load factors are also varied according to the
loading combination being considered.

The choice of a load factor (or partial load factors) involves
considerable judgement. . The values chosen in the design codes are
usually "arranged so that the same margin of safety is aehieved as for

conventional designs which experience has shown to be satisfactory",

(Ref 1.3). W1th the advance of probabilistlc de51gn, the load factors

= Ihave.been given new meanings related to the reliabllity of the design.
Load faetors are related to the expected loadings and therefofe can be.
aeseesed u51ng stat13t1cal methods. ihe 5ub§eet of probabilistic design
is well outside the scope of the thesis and a lengthy dlscussion is not

_ intended._ As far as the the315 is concerned, a load factor (or a set

-of 1oad faetors) must be establiehed by whatever oeans.before the design -
can proeeed. At preseﬂt'the load factors are‘established at beetlsemi—
 probabil1st1c, usually emplrical. It ‘should also be noted that the load
factors do not.have any relation to real overloading states. Certain
i0verloading states must be examined separately as.;equired by the Codee
of Practice, such as in brldge design.. ' The asseesmeﬁt of safet? with-
regard to failure must be nade accordlng to the phy51cal cond1t10ns
1nvolved and its relatloos to the design of the structure..f'Fot
example, w11fu1 destruction is an overloading which cannot be allowed for;
similatly-the safety of a_strueture_also depends.on.the conditioo of the )

supports, .and this cannot be ignored.




1;4 BASIC PRINCIPLES OF DESIGN

(a) The breakdown of the problem.

The designer usually starts by dividing his structure into elements.
Each element is required to carry part of the loads in a particular manner,
and it is desigﬁed accordingly. The breakdown of structure into elements
is made based on: (i) a prior conception of how the loads can be canried,'
(ii) some understanding of the stapics of the elements and (iii) certain
simplifications as to what ‘structural actions are unimportant and can bé
neglected. |

The breakdown of a structure into elements may occur at ﬁany levels.
- For example, a building is usually designed as a series of plane frames;
this is an.érbitrary way of deciding how the loads can be carried. The
actions of members which connect the frames are neglected. A plane frame
is further divided into beam and column elements, where the beams carry
the loads mainl& by bending action and the columns carry theirs by both
bending and axial actions.

A successful breakdown is not easy to make for complicated structures.
Usually the design is first made at some drastic level of simplificatiﬁn
and other effects are then introduced as corrections.

- (b) Basic Conditions

Once the structure has been divided into glements and the major
forces acting between the elements have been decided, three basic condi-
tions reqﬁirg examination:

(1) The Geometrical Conditions which ensure the compatibility of
deformation or movémants'of the elements.

(i1) The Equilibrium Conditions of the structure under external
loads, reactions,and the internal forces between the elements.

- (1ii) The Load-deformation characteristics of the elements.
In relation to strength, these conditions take special forms. The

deformations that are of interest are only those deformations that could



cause collapse; movements must occur at sufficient regions to make

cbllapse possible. This condition is difficult to put, because a structure
even at collapse is still intact in some sense. For framed sgructures
-which carry their loads mainly by bending moment, a 'plastic hinge' is
considered as a kind of discontinuity with arbitrary rotation. The require-
ment is that M hinges form to allow the structure or part of it to
move as a mechanism which is compatible with the remaining constraints.

This condition is generally termed the "mechanism condition".

The equilibrium conditions are often written with reference to the
undeformed state of the structure. This implies that the deformations,
even at collapse, are small and do not markedl& change the equilibrium
equations written without them. However;'deformation may not be neglected
Ifor certain classes of elements such as the column element, if collapse
conditibn is affected by deformation. The equationé-of equilibrium must
include the cﬂanging geometrical terms in these cases.

In a design.for strength, only the limitingIload-deformation charac-
teristic is considered; The main features, that fhe load deformation
relations must have, are that a definite collapse load must be reached and
that the collapse load stays constant as deformation increases. This con-
dition is generally known as the "yield condition"; it is characterized
by the idealized load-deformation curve of Fig 1.1. Figure 1.1 results
from an assumption of an elastic-perfectly plastic behaviour of the material.
In most calculations, the curve is approximated to two straight lines as

shown partly dotted.

When there are several forces causing collapse, the interaction of
the forces must be copsidered. The plot of all the combinations of the
forces that could cause collapse is known as a "yield surface'. The
localized deformations at the ylelded zones associated with the forces are
fixed in fagio and direction, i.e. they must bg géometrically permissible

along the chosen collapse mode. This condition is generally known as the

"nofmality rule". (Ref 1.5)
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The preceding presentation bf basic relations emphasizes fhe impor-
tance of the decision as to what are the vital internal forces. This
. decision requires an understanding of ghe-manner in which the structure
carried its loads. |

(c) Fundamental Theorems

The simple ;oncept of load factor based upon proportionaIIIOading
is used here to state the fundamental theorems.

The uniqueness theorem states that if all three basic conditions of

mechanism, equilibrium, and yield are satisfied, then the load factor has
a definite unique value )LC, which is the collapse load factor of the
structure.

The upper bound theorem states that for any assumed mechanism of

collapse which satisfies the yield condition, the load factor N is always
greater than or at best equal to the collapse load factor‘)Lc. The
theorem is also known as 'unsafe' or 'kinematic' theorem.

The lower bound theorem states that for any statically admissible

state which balances the applied load and is everywhere satisfying the
yield condition, the associated load factor 7Lis alw;ys less than or at
bes;.equal to the collapse load factor >¥:. The theorem is also known
as 'safe' or 'static' theorem. |
Tﬁe.formal proofs for these theorems can be found in the standard
texts (Ref 1.1, 1.4, 1.13, 1.14, 1.15). Itlis noted that the theorems
were intuitively understood and used by engineers long before they were
formally'stated. Coulomb made good use of the uppér bouﬁd theorem in
solving the problems of strength of a prism, of soil thrusting against a
retaining wall, and of the failure of masonry arches (Ref 1.6). Rankine's
solution of the limiting equilibrium problem of soil mass, or the old
method of désigning frames by guessing points of infiexian, can be con-

sidered as applications of the lower bound theorem.



1.5 DISCUSSIONS ON THE BASIC PRINCIPLES

The implications of the basic principles as presented above to the
actual design of a structure are now examined.

(i) Loed redistribution and sharing

The prime requirement for Etrength design is the ability of the
structure to adjust itself to carry the applied load if at all possible,
within the limits assumed in the design. Load redistfibution is a statical
concept based upon the 'flatness' of the load-deformation cﬁrve (Fig 1.1).
Once certain regions of the structure reach their ultimate 1oad-cerrying
capacity, they are capable of holding ehis load with further deformation,
therefore allowing the other regions to-take up the extra load if possible.

The suitability of-a structure to be deslgned by this method depends
on how closely the load-deformation relation for its members cen approximate

" the ideal curve of Figure 1.1, which represents the elastic-perfectly

plastic behaviour.. Structural steel is normally ductile and its properties

~can be approximated fairly well to this curve. Strain hardening will ]

.qecur eventeally for mild structural steel-but its neglect is intuitively

'safe' in a general sense. For most commonly used sections in flexure,

strain hardenlng has a more 1mportant role in preventing local 1nstab111t§,
. and in maintalnlng the plateau of the moment-curvature curve.. lts

presence allows the force redistribution process to occur more completely. "j

moment redistribution should be allowed in the design since unlimited Toad
redistribution can no longer be assumed. Dry friction may else be re-
presented by the characteristics of Figure 1.1, therefore the plastic fheory
is also applicable to structures whose load carrying capacity is derived
from frictional forces.

Detailed design is another important consideration. It is esaless to
provide ductility for the members when ductility is absent in the joints,

where the forces are likely to be the highest.  Joints should be designed



not only to have sufficient strength but also to possess adequate rota-
tional capacity so that full load redistribﬁtiOn can be achieved. The
problem ﬁill be further discussed in Chapter VIII.

(ii) Use of fundamental theorems

The upper bound theorem implies that if a failure path exists,
then the structure will not stand up. It is mainly an analysis tool;
the load computed on the basis of an assumed mechanism will always'be
greater or at best equal to the true collapse load. Its usefulness
lies in the relative ease of picturing the collapse mode, agd of calcu-
lating a collapse-load_from this. If a wrong mode of collapse is
pictured, an incorrect result is obtained. The ability to perform the
calculation from a pictured collapse mode depends on a knowledge of the
main actions at sufficient points in the structure from geometrfcal and
statical consideratiOns._' The use of uppef bound theorem requires some
prior knowlédge of the structure; some minimisation techniques are also
used to obtain the loﬁest possible collapse load.

The lower bqund theorem, on the other hand, is a powerful design
tool, since its use, as will be described herein, does not require any
prior knowledge of the structural members. The theorem reflects the
ability of the structure to adjust itself to carry the loads if at all
possible. The main problem is to construct a "statigally admissible
state"; the yield condiﬁion can be met by 'covering" the structure with
adequate strength. This aspect is perhaps the most important cpntribution
of the plastic limit theory; it allows a design to be made by equilibrium
considerations alone. The designer selects a suitable pathway for the
forces and provides the members with sufficient strength to carry those
forces.

The coliapse mode is often easier to pictupe than a statically
édmissible state; therefore the upper bound theorem is, in many cases,
easier to use than the lower bound theorem. Practically, one finds that

the upper bound calculation is often very close to the actual collapse load
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if a nearly correct mode of collapse is pictured. For difficult‘problems

where an 'exact' calculation of the ultimate load is not possible, tﬁ: h Tl
two theorems enable the collapse load to be bracketed closely enough for QK\\\\
practical engineering purposes.

The words "lower bound" and "uppér bound" are meaningful only in a

. mathematical seﬁse. For complicated structures, the mathematical model
used in the analysis involves drastic simplification of the actuai structure.
The actual collapse load (experimentally_obtaiﬁed from models for example)
can e§en be higher than the upper bound solution. One classic example is
the failure of a slab with restrained edges; the yield line solution.
(upper bound) is usually conservative; the slab has some reserve of strength
due to membrane effects which have been neglected in the aﬁalysis.

(iii) Limiting factors. Two kinds of limiting factors must be consi-
dered in the aﬁplication of the fundaﬁental theorems to the desigﬁ of struc-
gures. Firstly, the basic assumptions of the method mus;_be met. . The
proofs of theorems (Ref 1.4i, in partiéular the lower bound theorém, require
ductility in the members and the structure. Local and overall instability
of the members and structure must be prevented. Construction materials do
not always behave in a ductile manner. For steel structures, the effe;ts of
brittle fracture, fatigue, and residual stress must be prevented. For con-
crete structures, the effects of shrinkage, creep, and temperature must be
allowed for. Secondly, there are serviceability limit states which must be
considered since a plastic design is based solely on the limit state of col-
lapse. There aré the limit states of deflexion, local damage, vibration,
durability, and fire resistanpe. The criteria governing these service=

ability limit states vary with the kind of structures and service conditions,'

e

and may well become the governing design criteria.  Proper attention
o : . i

to the detailed design, however, can often help to alleviate some of

these problems.

R s T
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1.6 THE STATICALLY ADMISSIBLE STATE DESIGN

Desién based on statically admissiblé state is the central theme of
ﬁhis thesis. The approach is valid only if strength is the primé design
criterion. The design process consiéts of picturing a way the structure
can carry its loads, then providing adequate strength in the structure so
that the loads can be carried that way. Care of course must be taken to
ensure that the designed strength can actually be realized, i.e. the level
of load redistribution assumed in thé design is acceptable geometrically.

The concept of statically admissible state is now further examined.

Firstly, the statically admissible state is constructed-at'some
level of approximation. The question of statically admissible state is
re;evant only éfter a prior_decision has been made regarding those aspects
of structural actions that afé important for a particular structure. A
design based on the statically admissible state is only safe if the main -
action that causes collapse is included iﬁ the calcﬁlations.

Secondly, for statically indeterminate structures there are many
possible statically admiséible states. The more statically indeterminate
the stfucture is, the more ways it can find to carry its loads, or, what
is more iﬁportant, the more pathways the designer has at his disposal to
provide the total load cgrrying capacity.

Thirdly, the statically admissible state of a.highly indeterminate
structure can be made tolbe statically determinate. This is an important
aspect since it ailows a simple way of constructing the statically admissible
state. The picturing of collapse mode can be used here, since the coilapse
state is often statically determinate. If a wrong mode is piqtured, the
equilibrium calculations will suggest an alternative. In this connection
the two techniques, of constructing Statically admissible state and of
picturing collapse mode, complement each other. Problems may arise when
partial collapse occurs, as this may leave part of the structure statically

indeterminate.
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Fourthly, the statically admissible state must satisfy the statical.
boundary conditions for the design to be safe. For example, a statically

admissible state for a fixed-base portal frame cannot be used to design a

pinned-base portal frame. However, some minor geometrical changes such as
the settlement of supports do not invalldate the ‘basis of the design as

long as the change does not mater1a11y affect the statlcal equlllbrium of

the system.

L./ L bDWLQWrU'E_U'D'l'BT“'Ihu [l ¥ i Wy - TURTR w PR

The statically admissible state can only be obtained if the basic
statical concépt of load carrying and distribution throughout the structure
is understood. Once the understanding of the way the structure carries
its load is achieved, simplificatiﬁn is possible and will still give adequate
desigﬁ. Some of the techniques of obtaining the statically admissible
state are described below. | |

(1) Slicing Techniﬁue. This technique divides a complex structure
into simpler parts, whose structural a;tions are befter understood. The
design of a building as a series of plane frames can be considered as an
application of the technique." Heyman (Ref 1.16) used the slicing techniqué
. in assessing the strength of stone domes and vaults. The early method of
designing an a;ch daﬁ as a series of arches is another application. The
interacting effects between various slices are neglected; and therefore the
technique is only successful if such neglects are justifiable. The
slicing technique is used in Chapter VI to estimate the load-marryinglcapa-
city of arch dams. |

(ii1) Replacing a complex structure by overlapping simpler structural
elements. The division of a slab into two series of beams or the division
of an arch dam into two series of arches and cantilevers are applications
of this technique. The replacement is wvalid only if the interaction effects
between various structural actions afe negligible. This technique 1is used
in Chapter iV to estimate the strength of slabs and in Chapter VI to estimate

the strength of arch dams.
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(iii) Algebraic technique. This techniqﬁe'is useful in two or three

dimensional problems, such as slabs or shells, where the structural actioms

are too difficult to picture but the differential equations representing
the equilibrium state are readily available. Algebraic expressions are
specified for all structural actions, such that the equilibrium equations
are satisfied everywhere ;nd the yield conditioﬁs are nowhere violaﬁed.
The teﬁhnique is used most often in deriving lower bound solutions for
slabs.  Further discussions will be found in Chapter IV.

(iv) .Thrust Lines %ﬂd Surfaces. This is perhaps the most satisfying
way of picturing the statically admissible state. The idea, 6riginated
in the design of masonry arches, can be extended to handle frames and
similar structures. The use of the thrust line concept is particularly
usefui.in space frames where structural actions are numerous and difficult
to picture. The thrust surface is an extension of the thrust line into
three diménsions. A memﬁrane is the inverted picture of a thrust surface
under acéing 1oadé. Heyﬁan mentioned the concept of a thrust gurface in |
the assessment of do&e strength (ﬁef 1.175. The uses of thrust lines in
‘the design of plane and space frames are explored in Chapter III; a three

dimensional thrust surface is constructed experimentally for an arch dam
1

in Chapter VI.

1.7 CONCLUDING REMARKS

The basic principles of the plastic limit theory have been presented
togethef with discusaions on the aims, assumptions, and limitations of the
method.j- The 1imit design method of picturing staticallyladmissible states
is chosgﬁ for further developmeht. Various techniques of obtaining
staticaily admissible states are outlined, and they will be further devel-

oped in subsequent chapters for particular structures or members.



CHAPTER II

THE STRENGTH OF BOLTED JOINTS UNDER ECCENTRIC LOADING -

2.1  INTRODUCTION

e e e ——

The problem of beam,bendlng and the concept of the plastlc hinge i
have been used too often_(to the exclusion of almost everying else) to ' -i'
demonstrate limit design ideas. The cancept.of 'statically admissible

state' design pursued in the thesis is much more fundamental and is

capable of much wider aﬁplidations. The problem of bolted joints under

accentric loading, therefore, has been selected to demonstrate the basic
design approach used in the thesis.

The problem of bolted joints under_eccentric'loading is in itself

. an interesting one.

'relationship of the joint is not linear. Tﬁese objections led fhe Ameri-
can Institute of Steel Construction (Ref. 2.1) to adopt the empirical
approach of “effective ecéentricity"-to provide a less conservative and
more realistic éllowﬁfle_load; this is the currently accepted method of

design.

This chapter does not contain any original confribution. The
_plastic design of bolted joints under eccentric,loading and its various
'llmitatlons are presented together with extra supportlng experlmental

works. The emph331s, however, is not on the me*bod itself but on the

limit de51gn thinking behind the method.

2.2 REVIEW OF PREVIOUS RESEARCH

A full bibliography on bolted and riveted joints has been prepared by
the American Society of Civil Engineers (Ref. 2.2). This section is only
concerned with the ultimate strength approach to the problem. |

For friction—grip joints, there is little'published guidance for the
designer of eccentrically loaded joints. For bearing joints, Abolitz

(Ref. 2.3) has used an ultimate strength approach with the basic assumption
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that each bolt would exert its maximum resistance at collapse. This is
- not fully justified due to the lack of ductility of individual bolts.
Kulak (Ref. 2.4) has used the "load-deformation response of the indiv-

1dual bolt" to predict the ultimate strength of the joint. Kulak-has

Kulak and Crawford's method is apﬁlicable only to bearing'jaints in wﬁich
.Itﬁére is no_lack of fit. Since both statics and geometry of deformétibﬁ
are:uséd in Kulak and Crawférd‘s.solution, the "stéficallﬁla&miééiblg

state" philosophy is not-ﬁsed, although the résults afé, of éoﬁrse,_stat—

ically admissible.

“IneTpenavour oI —aouﬁIe—Iﬁprﬂ_jﬁIﬁf'ﬁTfh a single bolt is uséd as
the basislfor the treatment which follows and is described briefly here.
Three test specimens were assembled as shown in Fig. 2.1(a). Each speci-
men consists of two identfcal joints. The test bolt was tightened
according to the standard turn-of-nut procedure (Ref. 2.7). The assem- _
blies were loa&ed in tension in a testing machine. Movement of_fhe joint
was ﬁeasured from Ehe gauge points set on the plates. Due to maﬁerial.
discrepancies, maandcturiﬁg toleranceé, etc., the ultimate loa§ of the
specimens:was_réaQQed.wheu oaly one joint had fgiled.
" Fig. 2.1 shows a complete graph; qf load against movement, for a
specimen iestédlfg failure. There are three distinct phases of.behaviour.
(i) The Friction Grip Region OA: very small movement, measured
across ?hé joint, is recorded and the load is carried mainly by frictionm.
Examination of the plate, after failure, indicates that the grip is
provided mainly by a sméll region around the nut.
(ii) The Slippage Region AB: the joint begins to slip. It is
still caﬁable of {esisting the severe load as before. A slight increase

in load is noted as slipping progresses.

(1ii1) The Sheariﬁg Region BC: the bolt is actually being sheared
‘when all tﬁg:clearhﬁce around the hole has been taken up. The behaviour

is non-linear andlfhere is little ductility in the bolt itself.



LOAD W

aT

(kjlo nQWfon) _
200 }
\
150 | | o ' N \
\ \ \ |
\ , _
\ \ \ e \ \ B - - 'T
A \ N \ \ \\ V - alkn
~0 N \ : I
[QO } \ \ \ ‘ . ) , | %'. —r 200 mwm
\ \ \ ‘ | | il - ?““%:
\ ' --—#—- <= '.3 en3
Bolt size 16 mm cliq. HSF& L
Center Fla"'es 25mm thick : — T L
501 ' : - : Side Flafes 12 mm thick l ‘
' _ Surfoce_ . clean mill Scole, w w
| ULE. strength of loolt : 834 MM, @
[ > of plate.: 250 MPa. .
‘\-“ole Yolerance @ 3 mmm :
1.0 2.0 3.6 4o 50 6o 7.0

MOVEMENT OF CENTER PLATES (mm)

Figuré 2



17

The friction-grip strength is only aéhieved if the bolt is high~
strength friction-grip type, and is tightened according to a proper
procedure such as the turn-of-nut method. (Ref. 2.7). Otherwise, the
R friction—grip strquth islconsiderabiy reduced but the rest of the joiﬂt
behaviour remdins the same. The load-movement curve for the joint in
‘the shearing regidn is affected by the type of materials and the thick-
ness of the cqnnecting plates, although the ultimate strength of the

Joint is not very much affected by these parameters. (Ref. 2.9).

2.4 BEHAVIOUR OF BOLTED JOINTS UNDER ECCENTRIC LOADING

Fig. 2.2 éhqws the general arrangement for the tests. Fifteen
specimens, which included seven different boltlgrQUPingS with varying
‘eccentricities and Bolt sizes were tested. The specimens were designed
so that the test bolts were the critical componenfs. Two joints were
tested simultaneously. Measurements were made of the movement of one
plate rélative to,éhelothef. A typical load-movement graph is shown in
Fig. 2.3. | i

The behaviour fsllows closely th;t bf a joint with a single bolt.

|
There is alfriction-grip region, a slippage region, and a shearing region.
it is sigﬁificant-that not!all the bolts have attained their full strength
when the joint fails. Examination of the bolts,.after collapse, indicates
that all bolts deform substantially, although some have more deformation
m the load- moviment ara o{. ?-3 2

than others. It follongthat there is a certain amount of load redistri- -

bution, but it is incomplete when failure occurs.

2.5 ANAIYSIS OF BOLTED JOINTS UNDER ECCENTRIC LOADING
The bolted joint of Fig. 2.4 is subjected to an eccentric force P
acting at a distance'e from the centroid of the joint. (Ref. 2.5).

Rotation is presumed to take place about some point A, whose position is

as yet unknown. Bolt i, distance r, from A, has coordinates ( x )

i 1* Vi
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measured from A. All bolts are, at this stage, considered to carry

equal forces F acting in the direction normal to the line joining A to

the bolt. The equations of equilibrium are

(i) Vertical equilibrium: ' Z FCO-S 9;‘.. = P veee.e (2.1)
 (ii) Horizontal equilibrium: - Z Fsin QL = 0 veeee (2.2)
(iii) Sum of moments about A: Z F_. r — P(E*C) ceees (2.3)

where gi.)c are defined in Fig. 2.4.
These equations may be easily solved graphically by trial and error, for
most joints having simple layouts of the bolts, to give a position for

the centre of rotation A, and the magnitude of the bolt force F.

2.6 APPLICATION OF LIMIT PRINCIPLES TO THE DESIGN OF A BOLTED JOINT
‘Before a bolted joint can be designed using limit principles, it

must be cle;rly defined what constitutes 'failure'. If no movement of

the joint can be ﬁolerated, then from the load-movement grapﬁ of Fig. 2.3,

'failure' starts at the beginning of slippage. This type of joint is

generally known as friction-grip joint. On the other hand, if movement

can be tolerated, then the joint can take up much higher load before

failure occurs. This type of joint is generally known as bearing joint.

- It is noted that movement of the joint can be beneficial; it allows some

load redistribution, not only in the joint itself, but also in the frame
of which-it is a part. Both types of joints described above can be designed
using limit principles;
(i) Friction grip joints

~The load is carried by friction, and failure is considered to oécur
at slippagé; From the shape of the load-movement graph (Fig. 2.1) for
this region, fhere is little doubt that limit principles are applicable.
Fig. 2.5 shows a summary of the results of test and calculation based on
the strength of a single bolt joint. It is seen that good agreement is

obtained.
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Friction grip strengths of single bolt joints are:

FRICTION GRIP TEST

147 kN for 19.05 mm HSFG bolt (average of three)

44,5 kN for 15,8 mm HSFG bolt

CALCULATED
BOLT SIZE | ECCEN- TEST SLIP
BOLT  GROUP AND TYPE TRICITY(mn] LoAD (kN) |SLIRRPAD
19.05 mm 0 302 294
| nsre 346
_|P
102 . 15.8 mn 152 2647 2647
mm diam (")
- HSFG .
Slmm _ -
P
4+ [
02 L 15.8 mm 127 6607 65.8
- N diam (2")
_¢_ HSFG
Simm I
Figure 25




23

(ii) Bearing joints

The designer may be prepared in some cases to define.failure as
occurring when the ultimate load-carrying capacity of the joint is reached,
i.e. some slippage is allowed. From the characteristic load-movement
graph of Fig. 2.1 for this region, it is seen that there is little ductility -
in th; bolt itself. One cannot assume, in this case, that all the bolts
will reach their full strength. If limit principles of design are used,
one has to designate a bolt strength at soﬁe level which all the bolts
can reach on the average.

' Fig. 2.6 shows a summary of the results of tests and calculations.

It can be said that on the average all bolts reach about 80% of their
ultimate strength. To support this conclusion-results of Kulak's test
(Ref. 2.4) and American Institute of Steel Construction test on rivets

(Ref. 2.6) are analysed in Fig. 2.7.

2.7 LiHITATIONS ON THE APPLICATION OF THE METHOD

Limit principles can be used in the design of eccentricaliy loaded
Boltéd joints without any resefvation if the joint is of the high strength
frictiop-grip type, and failure is considered to occur at slippage. It
should be noted that slip resistance is affected by the condition of the
surface of the connecting plates and the shape of the holes (Ref. 2.8);
proper allowances must be made in the design accordingly.

If the joint is of the bearing type, certain limitations are neces-
sary. It is obvious fhat the amount of load redistribution before
failure in a bearing joint depends on (i) the shape and fit of the joint,
and (i1) the rigidity of the connecting plates. The conclusionlreached
in the previous section is based on existing experimental data in which the
joints are cﬁmpact and the conﬁecting plate is rathér rigid. If these
requirements are not met, then the above figures may be misleading. A

simple way df testing the compactness of the joint is to plot eccentricity
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BOLT GROUP Type  FITY e, JLOAL in [ CENTER|iATED uLf F/F

OLT SIZiJEI(;ENTHI-TEE—;T ULT POSITION |CALGU-
in mm kN c, in mm l{oAD *

dia (3")

| e [HeS.bolt | 1554 | 20.7 | 1600 |o.632F | 0.e56
102mm Fy = .

_L__¢_ 38 + 2 kN

pl
6.35
4$_ mm

"}
34mm
+— e _| L 23.6 | 0.707
J4mm - ht | s ahove 152.4 ' 5.8 0.871F
i B .¢. 22.7
' 0.€81

4 | & | | 0.791
e 36.5 :
ps above |- 177.8 #59  |1.205F
40,5 - 2.5

_L_¢_ 4 a | o.e78

ps above | 177.8 36.2 29.9 |0.,978F 0.968

|
- Ic 15.€& mn

“ | ' Hia (") 147.9 0.853
102 = ' o

_L_¢_ I ' DE9 kN
-I";r,,ml

Figure 2-0

_ BEARING TEST
* Calculations were done assuming each bolt carried the same force F at collapse.
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KULAK'S TEST

(Bolts are ASTM A325 7 in diam. — for details of joints see Ref.2.4)
Ultimate strength of individual bolt Fy = 329 + 10 kN.
_|Specimen| Eccentricity | Test ultimate | Position of | Calculated F/
Number | e, in mm. load, in kN | center c, Ultimate Load Fu
' in mm. (% F) #
Bl 203 500. 4 18.2 1.836F 0.828
B 254 511.E 20,0 1.768F 0.879
B3 305 : 422.6 12.5 1.489F 0.862
B4 330 5982 28.8 1.996F 0.849
B5S 381 491.5 24.3 1.747F 0.855
B6 305 587.1 25.4 2.119F 0.842
B7 " 381 a71.5 20.3 1.717F 0.834
B8 381 591.6 22.4 2.199F 0.817
A1SC TEST
(Rivets are % in diam. —- for details of joints see Ref.2.8)
Ultimate strength of individual rivet F, = 267 kN
Specimen | Eccentricity | Test ultimate | Position of | Calculated :
Number ey in mm. load, in kN |center c, Ultimate E/F
- |in mm. Load * u
TP1 63 480 46.5 2.041F 0.88
TP2 89 358 25.0 1.€24F 0.82
TP3 165 222 3.82 0.910F 0.92
TP4 63 1223 245.9 95.371F 0.85
TPS 114 978 118.9 4.407F 0.23
TP6 ;65 805 72.1 3.506F 0.26
TP7 89 493 34,1 1.855F 0.99
TP8 165 - 267 21.8 1.124F 0.89
TP9 89 1263 75.6 5. 480F 0.86
TP10 165 787 42,6 3.603F 0.€1

Calculations were done assuming each bolt carried the same force F

at collapsq.

Figure 2-7
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agaiﬁst the position of the centre. In Fig. 2.8 it is seen that most
tested-joints fall in the region a b. Another criterion, which is

- rather obvious, is that the amount of load redistribution occurs more fully
if the bolt lever arms 'r' are more nearly 'equal'. If theltwo above
¢riteria are observed, then the limit design meihod will giv& a good

indication of the joint strength.

2.8  CONCLUDING REMARKS

The design metﬁod presented above is a good exampie of how the limit
principles, derived from the plastic_analysis of steel frames,are-made to
work or can be made to work in a different situation. A simple statically
admissible state is chosen, from which the strength of the joint is esti-
mated. For friction grip joints it is a lower bound method. For bearing
“joints it is not a lower bound method due to the lack of ductility of the
iﬁdividual bolts. An empirical factor has been introduced by.asaigning
the average strength of the bolts to some value less than their actual
strength. The'complexities of the joint (lack of fit, local yielding of
plate, non-linear behaviour of the bolt) and the need for a simple method
of design makes the introduction of such an empirical factor unavoidable.
IWhat is neéded is further experimental data so that definite limitations
can be placed on the size and layout of joints, and thqs render this

approach acceptable for use in the design office.

Since the strength of the whole connection must necessarily include the
strength of the connecting members, the established solution, strictly

spéaking;are only_partial lower bound solution. A complete lower bound

~ solution can only be established if the strengths of the connecting members N

are also assessed.




CHAPTER III

THE USE OF THRUST LINES IN THE DESIGN OF FRAMES

3.1 INTRODUCTION

In this chapter, th; use of the limit design method of picturing
the statically admissible state is further explored, in a simple well-
known context, that 6f the design of frames. One of the most satisfying
" ways of picturing the statically admissible state for a frame ié to draw |
its thrust lines. The idea, which originated in the design of masonry

arches, is extended here to cover multi-bay, muiti-storey frames and

some classes of space frames.

Once the thrust lines are drawn, moments, shears, and thrusts can
be estimated; The moment-shear-thrust diagrams are then 'covered' with
strength, i.e. the memberé are proportioned so that the yield condition is
satisfied everywhere. A safe design results, based on the lawer bound
theorem of plastic limit anaiysis.

This chapter:consists of two parts. 1In the first part, a préttidal
minimum mass design method is proposed combining the older and well-tried
method of desigﬁ of plane frames by guessing points of inflexion and the
lower bbun& theorem of plastic limit gnalysis. In the second part, the
use of thrust lines in.the analysis of space frames is explored. Three
cases are considered: (i) simple space frames under horizontal loads,
(ii) free-standing staircases, and (iii) arch-ribbed domes. Experimental

results are uéed to check the calculations.

3.2 PRACTICAL MINIMUM MASS DESIGN OF FRAMES BY GUESSING POINTS OF INFLEXION

A éimple way of obtaining a statically admissible state for a frame
is to guess enough points of inflexion so that the thrust line can be drawn.
If a linear relation is used between the mass /length of a beam and its

plastic moment, as depicted by Baker in Reference 3.1, then a practical
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approximate minimum mass design can be achieved by moving the points of
.inflexion until a more favorable moment distribution results. The method
need not be pressed so far that an absolute minimum mass solution is
achieved. The designer,-with a table of available beam sizes, can soon
" reach a satisfactory solution which is sufficiently close to minimum mass.
Many plane frames or structures éontaining plane frames are designed
and built. Often much time is spent in proportioning them, whether by
elastic design (which is very tedious) or by the quicker known method of
plastic design. It is a matter of some satisfaction to the author to
have combined the very old method of guessing points of inflexion with the
power of the lower bound theorem of plastic design to produce a simple and

rapid method of direct design.

3;2.1 REPRESENTATION OF FORCES IN FRAMES BY THRUST LINES

The basic properties of the thrust line hold whether the frame is
elasfic or plastic; namely its coﬁponent in the direction of the member
is the axial force, the component normal to the memﬁer is the shear force,
and the product of the normal distance from any point on the member and
the magnitude of the thrust is the bending moment at the point. The idea
is quite often used in the analysis of-archés. The extension to plane
frames containing several bays or several storeys appears complicated-but
is in fact simple. The seemingly complex force diagrams can be drawn quite
readily with practice and need little explanation, so little is given.

Fig. 3.1(b) shows the thrust line for the loaded portal frame of
Fig. 3.1(&). 'The thrust line is drawn by guessing two points of inflexion
on the beam and one on one of the columns. The fourth point of inflexion
is given by equilibrium considerations as indicated by the force diagram,
Fig. 3.1(c). The resultant bending moment diagram is given in Fig. 3.1fd).

Similarly, Fig. 3.2(b) shows the diagram of the thrust lines for the
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two-bay pitched roof frame of Fig. 3.2(a). The tﬁree thrust lines for

the three members that meet at joint B also meet, but elsewhére, to satisfy
statical equilibrium.. Fig. 3.3(b) shows a suitable statically admissible
state for'a-two-storey frame with both vertical and horizontal loadings,

- Fig. 3.3(a). Note that the three thrust lines for the three members with
the common joint E heet, while those for joint B do not meef, but are in
equilibrium with the external horizontal load as shown on the force diagram,
Fig 3.3(c).  The diagram§ of Fig. 3.2 and 3.3 may appear a little complex,
as graphical constructions often do. They are, with a little practice,
;ery easy to draw, an&-their drawing gives an insight into frame behaviour

which is obtainable in no other simple way.

3}2.2 MINIMUM MASS DﬁSIGN BY GUESSING POINTS OF INFLEXION

Figs. 3.1, 3.2 and 3.3 are pictures of plausible equilibrium states,
upon which designs can bé based by drawing the resultant bending moment
&iagrams and shear force diagrams and "covering" the members with strength.
The designs are tﬁen safe. It is obvious that the resulting bending moment
diagram should be made to correspond to a collapse mechanism so that all
three basic conditions of eqﬁilibrium, mechanism, and yield are met. This
is done by matching the maximum bending moments with the plastic moments
of the sections at a sufficient number oflpoints on the frame. To obtain
a ﬁinimum weight design it is only necessary to shift the points of inflexion
- to obtain é more favourable distribution of moments. The following examples
illustrate the méthod. In these examples, the loads have beeﬁ multiplied
by a design load factor A » and since the mechanism condition is always
. observed, )k is also the actual collapse load factor for the fréme. Some

of the examples are taken from Reference 3.2.

Single-bay portal frame
Consider the frame of Fig. 3.4(a). A plausible equilibrium state

is obtained by guessing two points of inflexion on the beam at 1/8 and 1/4
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span from each end. The thrust line, shown dotted in Fig. 3.4(d), indi-

qates that the frame requires a plastic moment of 120 kN-m for both beam

and column. The nearest universal sectioﬁ, available in Australia

(Ref} 3.3), is a 250 UB, 37 kg/m, with plastic section modulus

Zp = 485 x 103 mm3. The mass of the designed frame is 20 x 37 = 740 kg.
To reduce the mass of the frame, it is desirable that more moment should

be put in the beam and less in the columms. This is doﬁe by shifting the
1/4 span point of inflexion to 1/8. This gives the solid thrust lineiof
Fig. 3.4(d) and the resultant bending moment diagram Fig. 3.4(c). The

design becomes: column: 200 UB, 25 kg/m, Z, = 260 x 10> m’

beam: 3J0 UB, 40 kg/m, Zp = 625 x 103 mma. The mass of the frame
is then (10 x 40) + (19 x 25) = 650 kg. Any further shift will not give

' a lower mass design, and the above design is accepted as satisfactory.

Two-bay. portal frame

Consider the two-bay portal frame of Fig. 3.5(a) with the loading as
shﬁwn. This frame is first désigned with the condition that all members
are of equal cross section, of uniform Hp. Thus froﬁ among various
possible statically admissible states that state which has all the bending
moment distributed rather evenly must be selected. This is done by trial
and error. One of the more favourable bending moment diétributions is
represented by the dotted thrust line of Fig. 3.5(e);' the resultant
bgnding moment diagram is drawn in Fig. 3.5(b). To "cover" this bending
moment diagram with bending strength, tﬁe section 310 UB, 40 kg/m,
ZP'= 625 x 103 mm3, is selected. This gives the mass of the framé as
5 x 10 x 40 = 2000kg.

A]Tternaltively', if we are prepared to use two sizes of %:2:? one for
the-two keams and the other for the three stanchions, fhe minimum mass
design ﬁrocéeds as follows. More moment should be placed dn the beams

and less on the columns. The solid thrust lines of Fig. 3.5(c) give the

bending moment diagram of Fig. 3.5(c). IThis results in the design
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columns: 250 UB, 31 kg/m, Zp = 396 x 103 mm3 ; beams 310 UB, 46 kg/m,
Zp =723 x 103 mma. The mass of the frame is then

(30 x 31) + (20 x 46) = 1850 kg. This is a-practical minimum mass.

The "true" minim&m mass solution is given by Fig. 3.5(d), (if a linear

weight function is used), but will not result in a lighter frame due to

the limited availability of sectioms.

Two-storey frame ' !

The two-storey frame of Fig. 3.6(a) is to be designed for the loading
shown. The frame is first designed so that egch storey has uniform
sect;on.members. This_conditiop requires an even moment disfriﬁution for
each storey,'such as that gi#en in Fig. 3.6(b). The design is then
top storey: 250 UB; 37 kg/m, bottom stétey: 410 UB, 54 kg/m.

The mass of the frame is then (37 x 25) + (54 x 25) % 2280Ikg.

The frame is now re-designed for minimum mass. This is done by
reducing'the moﬁents in the top storey, increasing the moments in the
bottom storey beaﬁ and reducing those in the bottom columns. The modified
thrust line of Fig. 3.6(d) gives the bending moments of Fig. 3.6(c).

The design becomes: :top storey beam and stanchion: 250 UB, 31 kg/m;
bottom storey beam: '410_UB, 54 kg/m; bottom storey stanchions:

360 UB, 45 kg/m. The mass of the frame is reduced to

(31 x 25) + (45 x 15) + (54 x 10) = 1990 kg.

3.3 THEI USE OF THRUST LINES IN THE ANALYSIS OF SPACE FRAMES
| Most of the research work in plastic limit analysis applying to
space frameé has been concerned with either transversely loaded grids or
with beams which are curved in piane. For space frames, the numbér of
possible collapse modeé is large, and the reliability of designs based-
on an assumed collapse mode depends very much on how closely the assumed

mode approximates the actual collapse mode.
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In this section, the use of thrust lines to picture.statically admis-
sible state is explored for various frames and loading conditions. - The
" basic proﬁerties of the space thrust line are similar to those of the plane
thrust line. Since the line is now in space there are two shear com-
ponents, two bending moment components, and one torsion component to be

considered, in addition to the axial force.

3.3.1 Simple space frames under horizontal loads ' o
The load-carrying capacity of the simple portal type space framelof

Fig. 3.7(a) is examined for horizontal loads in two different directions.

‘All the hofizontal members of the frame form a truss-like structure, which

will not deform subétantially under horizontal load. The collapse mode

of the frame involves the formation of hinges on the columns onlf. The

column section is circular so that the plastic moment is the same aboup any

¢ross—sectional axis.

The test frames were made from 3mm diameter welding rod, the column length

is 210 mm. The torsional strength of the columm is therefore negligible

compared with its flexural Strength. Fig. 3.7(a) shows a pléusible thrust

line pattern for the indicated horizontal loading. Torsional'strength
‘has been neglected in this construction of the thrust 1ine,”thepefore the
thrust.line is in the same plane with the columm. It is part of the lower

limit design philosophy that a minor source of strength'caq_Eg“qgglgggqqt

thrusts are in equilibrium with the applied force H. Since the frame has
rigid bases, it can be shﬁwn that the maximum resistance of each column is
F = 2Mp/h, wﬁere Mp is the plastic moment of the section and h is the height
of the colu;ns. |

For the case of Fig. 3.7(a), the center of rotation is found to be
at A; for the case of Fig. 3.8(a), the center is found to be at a distance
0.355L from the side. Fig. 3.9 shows the measured load against deflexion
graphs and the results of calculations. The calculated values are less

than the actual collapse loads due to the omission of torsional strength
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FIGURE 3.10

The collapse of space frames under horizontal loads.
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in the calculations. Fig. 3.10 shows the actual collapse pictures of the
frames; it can be seen that the assumptions of a rigid platform and of

a center of rotation are experimentally justified.

3.3.2 The free-standing staircase

The free-standing staircase of Fig. 3.11(a) 1s analysed for a concen-
trated vertical load W as shown. For eaée of analysis, the end of the
stair is assumed to be pinned. The stair is restrained from horizontal
sway. The thrust line indicates that there is a horizontal force component
H. The value of H can be estimated from the thrust line.position and the

value of W.

‘From 'the thrust line of Fig. 3.}}(b), the three.compoﬁenfs of the

thrust are F_= 0,674 , Ffo.os}; , T_=0.50% ; the magnitude of tze

(8

thrust F is 0.834% . The maximum moments occur at the joints B and B!,

and their magnitudes are given by Mwax = f.,a , vhere 2 is the normal

- distance from the thrust line to joints B or B'. Calculations were )

Iperformed with the values of 2 measured from the undefomed. and deformed

frame. Eig. 3.12 - shows ﬁheE£ESu1ts of measurement and calculation on

a small model staircase, made of circular rods. The calculation is

. not & complete analysis , but only a statical check via thrust line.

The purpose is to demonstraie the use of thrust line in picturing the

“statics of this particular frame. o o

I . . —_———

pinned arch-ribbed dome under a vertical load placed on one of the ribs.
(see Fig. 3.14). |

For the arches 2-2', 3-3' and 4-4', which carry no external loads,
the thrust lines are straight lines which go tﬁrough the pins at crown and
supports. The maximum moments occur at the centers of the ribs. Due to
symmetry, the thrusts in the arches 2-2', 3-3', 4-4', and in the rib 0-1'

can be resolved into a vertical force and a horizontal force at the crown O

“in the plane of the arch 1-1'. These forces must be in equilibrium with
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FIGURE 3.13

Model of the thrust line for the free standing staircase.

FIGURE 3.17

The collapse of an arch ribbed dome.
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the external load W and the reaction at support 1. Figure 3.15(a) showé_
the constructions of the thrust lines on the undeformed dome.

A semi-circulgr arch-ribbed dome, consisting of eight ribs made
from 1/8" diameter rod, was tested under a single vertical load at midspan.
of one of the ribs. It was found éxperimentally that hinges formed at
midrib in all ribs except 3-0-3'. The maximum thrust that each rib can
take was 9.0 Newton. This data was derived theoretically .and checked

experimentally.

Calculation wés mmde based ;n-the observed coliapse mode: _fibs 2;2', 3-3',
.1-1'werg_failing while rib 4-4' remained elgstic. If F is fhe forée_in
thé failing ribs_(9.0 Newton previously established)land i is thg force in
the eiastic rib, then fhé vaiué of X can be deterﬁinéa from the knowlédge
-1;hat é fulllplastic mﬁmént_value (1.35 kN mmj occurs at the loading poiﬁﬁ{
.The problem is best.solved by graphical ffial and érro; method. From the
calculated value of X, the collapse load can beldetéymined. ‘ |

Figure 3.;5(3) shows the equilibriumlcondition of'the undeforméd'
dome;' The ultimate load is estimated at 71.0‘N.-_ This value is well 
‘above the méasured col}apéé.load 45de. The.méaéﬁred vertical défléxioﬂ -
at the 1eading'point at near goliapse is about 22 mm; | It is thbught
~ therefore that the deformatioq may have a large effect on the final collapse
load. To obtain a statical chgck via thrust line for the dome, ghe:deformed
shape of the dome was traced and calculations similaf'to those done on the
undeformed shape were performed. Figure_3.15(b) shows the équilibriﬁﬁ
:condition of the deformed dome; the ultimate load is estimate& aé 42.0 ﬁ.
-_Figure_§f16 compares the measuremeé;s'aﬂd éalculations, wh}ie Figure 3.17

shows the collapsed dome.




CHAPTER IV

THE STRENGTH OF ORTHOTROPIC SLABS

4.1  INTRODUCTION

In this chapter, the strength of rectangular orthotropic slabs under
uniformly distribﬁ;ed load is examined. Unlike frames whosg structural
actions Ean be pictdred by thrust lines, there is no éimilar way of
picturing thelstrﬁctural actions of slabs. The standard lower bound
solutions, giving moment fiélds énd'collapsé loads in terms of ﬁlosed—form
expressions, are available only for a few cases.

The aim of this chapter is to find a siﬁple way of picturing the
structural actions of slabs. The proposed apprgéch is to replace the slab
by an assembly of simpler structural components. The solutioﬁs for the
slabs obtained in this way are very simple both in form and in derivation;
Ihe solutions are not strictly lower bound solutions since the interaction
effects between vapiﬁus structural components have been neglected. However,
by.comparing-the proposed approximate soiut;ons-with yield 1ine solutions,
existing and newly-derived-lpwer bound solutions, it is found that the
proposed method gives a fairly accurate estimate of the strength of the

rectangular orthotropic slabs.

4,2 LOWER BOUND APPROACH
4.2.1 Basic Conditions

A lower bound solution for slabs requirés the specification of the
moment fields such thaﬁ (i) the equilibrium condition is satisfied every-
where,_including-thgﬁboundary conditions and (ii) the yield condition is

nowhefe violated.

~* The idea was introduced by the author in a diécussion on a paper by
Ragan (Ref 4.15). The discussion is published in Journl.of Struct. Div.

ST2, ASCE, Feb, 1974.
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The equilibrium eqﬁations for the slab are:

aM:\:' _ BM&: -

Sy ——-563 = Q=

My _ M=y _ . eevieeee. (1)
AQ 2Qy _ _

amm * Y - P

in which Mx and My are bending moments per unit lengths in x and y
direction respectively, Mxy is the twisting moment per unit length, Qx
and Qy are the shears per unit length, and p is the collapse load per unit
-area of the slab. Figure 4.1 shows the sign Cdnvention for shear, |
moment, and twi;t in a slab. ther general notations are also included
in the'same'figuré. |
Equations (la) are usually reduced to a single second order equation
by eliminating the shear force terms (Ref 4.1).
2 ' 2 2
DM | 3My 5 I My
dx? dy* _ éx.ég

The yield condition for an orthotropically reinforced concrete slab

=_....,o (1b)

with equal positﬁe and negative yield moments is as follows:

?or positive yield M:dg (M- MQ(J«M _‘Mﬂ)
. e e ) | P ¢))
or negative yie Mxvs(M*Mx)(}*M*’Mj) |
where M and/M-H are yield moments in x and y directions,}&is the coefficient
of orthotropy. The yield criterion has been derived theoretically by
various authors (Ref 4.2, 4.3) and experimentally checked by others
(Ref 4.4). N
4.2.2 Difficulties with the lower bound approach

The main difficulty with the lower bound approach lies in the
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‘specifications of the moment fields Mx, My and Mxy such that (1b) and (2)
are satisfied everywhere. The moment fields at any point, following a
Mohr's circle, must be tested in every direction, against the normal yield
momentsMn, which are governed by a different Mohr's circle, applying to
the reinforcement, (Mﬂ=MCosze +|~.¢Msin26 ). Kemp (Ref 4.5) pointed out
that the sﬁccess of any prescribed moment fields depends on whether the
yield moment is reached at the corners; the specificagion of the twisting
moment field is particularly important in'this aspect. ' |
Tﬁe use of fhe-differential equation (1b) requires careful coﬁsid-
eration of the boundary conditions. The rigorous definition of statically
admissible field as proposed by Fox (Ref 4.6) must be followed. For
- example, the conditions (1b) and (2) alone are not adequate to ensure a
lower bound solution for a slab with a free edge; the conditibn of no

shear along the free edge must also be observed.

4.2.3 Existing iower bound solutions

As the result of ;he difficulties encountered, few lower bound sélu-
-tions exist. Hillerborg (Ref 4.7) developed the strip method, in which
the torsional moment capacity is neglected and the load at any point on the
slab is carried to the nearest support by bending in the plane perpendi-
cular to the éupport. The method attempts to directly design a slab with
variable :einforceﬁentf Wood (Ref 4.8) has shown that the method can be
modified to give an exact solution. Kemp (Ref 4.5) propoéed a closéd form
lower bound solution for slabs uniformly loadeq and simply supported on
four sides. Holmes and Steel (Ref,4.9) used numerical method to obtain
lower bound solutions for isotropically reinforced slabs restrained on the
shorter sides. Ragan (Ref 4.15) gave lower bound solutions for slabs
restrained.on the shorter sides and slabs restrained on all sides.

Due to the difficulties with the strict lower bound approach and the
scarcity of existing lower bound solutions, the following approximate

method is proposed.
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4.3 OUTLINE OF THE APPROXIMATE METHOD

The proposed method is based on the basic hypothesis that the applied
load can be carried independently by the moment capacity in two directions
and the torsional moment capacity of the slab. Aécordiugly, the slab is
éubdivided into three parts: (i) a series of strips in x-direction,
(11) a series of strips in y-direction, and (iii) a number of plates which
can carry only twisting moments.

Under these restrictions the yield conditions become:

For the strips in the x-direction Mx € M

-

(3)

-

For the strips in the y-direction My s}d{

For the twisted plates -bbcySJ}T M (Mx =My =20) .

In equation(3), M aﬁd}aH are yield moment in x and y directions respectively,
amd/"L is the coefficient of ortho?ropy.

It is seen that the yield conditions as stated in (3) are not iden-
tical éo the exact yield conditions of (2). The interaction effects
between various structuralléctions have been neglected. To determine how
serious the effect-of this is upon the solutions, comparison will be made.
between the ensuing solutions, the yield line solutions, and other eiisting
and newly derived 1§wer bound solutions.

If the above conditions are accepted, a solution can be obtained very

simply as follows. The general forms of the moment values are

2 2

Mx = K,p,L ; My =K p,1° ; Mxy =K, p,IL ......0... 4)

1P1 3P3
where p = Py + Py + Py is the collapse load of the slab; _Kl, KZ and K3
are constants whose values depend on the boundary conditions.

The solution of equation (3) and (4) gives the collapse load in the

following form

=..f£_ a}k + a, F +a3f2 (5)



where ajs a5, and ay are constants whose values depend on boundary
conditons,. and f’_" "}L )

In equation (5) the first and third terms are the contributions of
the moment capacity in x and y directions and the second term is the
torsional moment capacity contribution to the total_load carried by the
slab. Several examples, making use of thelabove solution, are discussed

in the following section.

4.4 COiLAPSE LOADS FOR SLABS WITH VARIOUS BOUNDARY CONDITIONS

A-slab supported on four sides is replaced by three simpler structural
components: strips in the x~-direction, strips in the y-direction, and a
number of plates which can only carfy twisting moments, Fig 4.2(a). The
twisted plates afe obtained by making two Eﬂts along the line of symmetry
and by replacing the loading and its reactions to two equivalent couples
acting at the foﬁr corners of each quarter of the slab. The.average value
of the twisting moment due to a uniform load Py is then Mxy = 1/8 p31L.

For a slab simply supported on four sides, Fig 4.2(a)
e

LgM_ F,

gm /L
[ & M | F_:. < SﬁM/zz
tL s"/_"M | F3’ < S'JF.M/?«L
S M
p,=- = FI*TF*-'-*F::, < ‘g(f*f/Tf*/QT‘
C = {; = 3 (}4 Ji f’ +Fz e (8)

Similarly, for slabs restrained on four sides, Fig 4. 2(b),

c;z le(}&m{/sz. +1> ) “ SRR . (?)I

For slabs restrained on two shorter edges, Fig 4.2(c),

C = 3(/4. 4—[Ff> + 2.137‘) e ®

For slabs restrained on one short edge, Fig 4.2(d),

C = 3(/,(_+\|72r+l.4_-57|:z> A €
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For slabs restrained on two adjacent edges, Fig 4.2(e),

C = 8(1"457/4 +I/Tr +:.4~57f1) C eeeieeeee. (10)

.Similarly, a slab supported on three sides can be replaced by two
cbmponents: strips betﬁeen'the opposite supporting éides, and a number
of twisted plates. The twisted plates are obtained, in this case, by
making ﬁﬁe cut along the line of symmetry and replacing thé loading and
its reactions to two equivalent couples acting at the four corners of each
half of the slab, Fig 4.3(a). - The average twisting moment due to a
uniform load Py 1is tﬁen Mxy = 1/4 ple.l

For slabs with three sides simply supported, Fig 4.3(a),

C = S(f?'-* -fJ/T/?-) PR ¢ £ 5
For slabs with three sides restrained, Fig 4.3(b),

C

2 : . o
lGr + Ap-rl}‘? + 2./-1, (12)
For slabs with two short edges simply supported and one long edge

restrained, Fig 4.3(c),

C = SF’“ + 4-|>(}T + 2.}4. _.(13)_

For slabs with two short edges restrained and one long edge

simply supported, Fig 4.3(d),

C = I6f"+ L[-fl—/t e (18)

4.5 COMPARISON WITH UPPER BOUND SOLUTIONS

Figure 4.4 shows a summary of the upper bound solutions, obtained
ffom yield line tﬁeory (Ref 4.10, 4.11), and the corresponding approximate
solutions, obtained froq the proposed.apﬁroximéte method. According to
Wood (Ref 4.14), the upper bound solutions can be reduced by up to 8 %,

depending on the boundary conditions, to account for the corner effects.
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* Upper bound value (Yield Line Theory)
Approximate Lower bound value
Percentage of difference

- Figure 4+ .6

C = p12/M
three edges simply supported |three edges restrained and
P and one long edge free one long edge free
Mo=1 = 1/4 M= 1 = 1/4
13.86 * 10.45 26.58 20.05
1 12.00 t 10.00 22.00 - 18.50
(13.41)° (4.34) (17.25) (7.75)
9.35 6.47 17.94 12.40
/4 - 7.50 6.00 14.00 11.00
(19.82) (7.20) (21.98) (11.31)
8.04 5.35 15.50 10.27
./3' 6.22 4.89 11.78 8.94
(22.63) (8.70) (24.01) (12.93)
5.44 3.46 11.02 6.65
12 4.00 3.00 8.00 5.50
(26.45) (13.41) (27.40) (17.25)
U B reduced by 2% U B reduced by 6%
C = plZIM
two short edges simply two short edges restrained,
P supported, one long edge one long edge simply
restrained, other free  Isupported, other free
=1 /—l—;l/& =1 = 1/k
17.00%" 11.52 23.04 18.83
14.00 ¥ 10.50 20.00 18.00
17.71)° (8.85) (13.19) (4.42)
12.05 7.40 14.79 11.33
/4 9.50 6.50 12.00 10.50
(21.15) (12.13) (18.89) (7.35)
) 10.53 6.24 12.48 9.26
'3 8.22 5.39 9.78 8.44
(21.92) (13.63) (21.64) (8.82)
- 7.82 4.25 8.51 5.76
_ /2 6.00 3.50 6.00 5.00
(23.23) (17.71) (29.47) (13.19)
U B reduced by 47 U B reduced by 4%
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c = piém
) two short edges restrained
'P four edges restrained two long edges simply
M = M =4 =1 =4
*

44.16 + 104.08 34.11 68.05

1 40.00 . 96.00 32.00 64.00
(9.42) (7.76) (6.19) (5.95)

34.13 90.49 24,47 56.15

/ 31.00 85.00 23.00 53.00
4 (9.18) (6.06) (6.01) (5.62)
31.22 86.32 21.75 52.60

/3' 28.44 81.78 20.44 49.78
(8.90) (5.26) (6.00) . (5.37)

26.02 78.51 17.01 - 46.08

/2 1. 24.00 76.00 16.00 44.00
(7.76) (3.19) (5.95) (4.51)

U B reduced by 8% U B reduced by 4%
c = p12/H
: two adjacents edges
gzﬁei:OZEmsgieszsgzziiged restrained others simply
Supported

? /k, =1 _ /.L= 4 /H- =_]_ /u-= 4
28.77 * 62.12 33.57 79.12

1 27.66 1 59.66 31.31 74.28
: (3.87) (3.96) (6.73) (6.12)
3 21.37 52.58 - 25.95 68.79
/4 20.56 50.56 24.21 65.18
(3.80) (3.85) (6.69) (5.25)

2 19.26 49.70 23.74 65.62
/3 18.51 47.85 22,17 62.47
(3.85) (3.73) (6.60) (4.80)

L 15.53  44.35 19.78 59.68
/2 14.91 42.91 18.57 57.54
(3.96) (3.25) (6.12) . (3.59)

.U B reduced by 2% U B reduced by 4%

* Upper bound value (Yield Line Theory)
Approximate lower bound value
Percentage of difference

o

Figure 4- 5
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Figure 4.5 and Figﬁfe 4.6 compare the upper and approximate values.
The following points may be noted: -

(i) From Figure 4.4 it is seen that the proposed formulae are
simpler both in form and in derivation. Yield line solutions, although
simple in principle, involve a considerable amount of algebraic manipu-
latioﬁ.' The proposed method on the other hand, is very simple alge-
braically; the only complication is the estimate of the load that can
be carried by twisting action aloné.

(ii) Figure 4.5 compares the approximate and upper bound values of
C =~§l§ , for slabé supported on all four sides. All values are in agree-
ment to witﬁ 10%. The case of slabs with four sides simply supported
has been found by Kemp (Ref 4.5) to give even better agreement (within 27%).

(iii) Figure 4.6 compares the approximate and upper bound valﬁes for
slabs supported on three sides. The agreement'is.poorer in these cases,
variation ranging from 4% to 30%. The proposed method did not allow any
load to be carried-in the direction normal to the free edge, while obviously
some load must be carried in this way. The argument isljustifiéd by
observing thét the agreements between the approximate and upper bound

solutions are better for cases where/‘.= 1/4 than that for/l.= 1.

4.6  COMPARISON WITH LOWER BOUND SOLUTIONS

A strict lower boﬁnd solution to the collapse'load is obtained by
specifying the moment fields Mx, My, and Mxy such that (i) the statical
boundary conditions, (ii) the equilibrium condition as given by Equation 1(b),
and (iii) the yield condition as given by Equation 2, are satisfied.:
Existing and newly derived lower bound solﬁtions are now compared with the
approximate solutions obtained in 4.4.
4.6.1 Slabs supported on four sides

For slabs simply supported on four sides, Kemp (Ref 4.5) proposed the
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following moment fields:
Mz = M (- ax*/1¥)
IMﬂ' =pM (- ay*/Ll7) . e, : (15)
My = 4 M (=/L) (y/1)

The above fields give the same collapse load as the approximate

method, i.e.

< UM = 8 e grp e

For slabs restrained on the shorter sides, Ragan. (4.15) proposed the

following moment fields

My = M[(:_gxm}p @ p) (YLt )(1- 42/17)]
My

/uM(I -*4—‘2/"/1 ) - (16)
Mma = AM(le)(tJ 1)1 - 4xL* )(H— 12.¢ E )

fhe collapsg load is given by
. B
- ]ol/M" = S+ 2Ap + l6p”

Ragan obtained the value of A's by using a curve fitting process.

The proposed approximate solution is equivalent to Ragan's solution with
>\=4r/?. |
4.6.2 Slabs supported on three sides.

For slabs with a free edge, there is no existing lower bound solution,
and the foliowing solutions are proposed. It may be noted that one extra
condition is required here, besidesl(b) and 2, namely there is no reaction
along the free edge, i.e.

My Mo - O I (7))
[ag il vas B

qhqs Fte¢43a
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(a) Slabs simply supported on three sides.

A simple solution can be obtained from the following fields.
Mx_= M( | - 4‘12/'—1)

My= o | . (18)
Myy= 2 (EM (/1) (y/L)

The above fields satisfy (1b), (2), and (15) and give the same

collapse load as the approkimaie method, i.e.
Y 2. .
Ft/M = ‘3']:’4'4")/41:
An improved solution is obtained by allowing some load to be taken

flexurally in the y direction; the moment fields for these conditions

are

M. = MO - 4x*/L*)

= _
Mﬁ = kftm (jll) (" ‘}“) .......... (19)
Moy= 2.{FM(,x[L)(5£J+ 2 H}A f)M le)[}lt) (1- /L)
The collapse load is
2 :

- plin - 9r"+4(/7f"+ﬁ/4 ......... . Qo
in ﬁhich k is a parameter to be determined so that the yield condition
is satisfied everywhere.

The wvalue of k is found numefically by drawing the Mohr's circles

for a number of points on the slab and checking the yield conditions

accordingly. The value of k is given in Figure 4.7 for various values
of f)and/ﬂ- .
(b) Slabs restrained on one long side.

The moment fields are
IMx_: M(l""-xz/'l-.l‘) )

M.a —_ -/uM(le,)z—l- '&FFM(\M[)Z'O-,IE) ....... (21)
May= 3R AFM RGN0 - y2) |
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Slabs with one long side restrained

two short sides simply supported

\ _
Slabs simply supported on three sides

A ] 1 1

[ | 2 . 3 {,/
Figure4-7 |
Slabs with one long side
Slabs with three simply restrained two short sides
supported sides ) simpl ted
r }“-=lf4 J-t=1 }-.=1/4 }-L=l
.
36.42 41.33 34.6 46.00
36.00° 40.00 36.5 42.00
10.33 12.92 10.20 14.44
10.00 12.00 10.50 14.00
3.23 4,56 3.60 6.57
3.00 4.00 3.50 6.00

*f Lov\h..r'lowmd So\u‘l"u'ovl .
° P/‘oToseA oTrfo-x;ma‘.f'g Sa]u‘hovt.

Figure 4-8
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: The collapse load is given by
2 2 R
- C = P[/M = gf *2p J)Tr AP ¢2))|
where the value of k is also given in Figure 4.7. The solution is
ideqtical to that given by the approximate method with k = 4.

Figure 4.8 compares the values obtained from these solutions and

the approximate solutions.

(c) Slabs restrained on two short sides.

The moment fields are

My = MLG-82) ¢ 2 RUFIP) (eI (1- 42712 ]

May= k (M (%/L)(y/2)(1- 4=/1>) (1+ 1271

The collapse load is given by

C = ‘JLZ/M = 'le?_*"‘ Z‘VRJFF ereeees (28)

Mti ;._o | (23)

For the range of r between 1/2 and 2, the value. of k is apprdxi-
mately 2. The solution is then identical to tﬁat given by the approxi-
mate method.

The technique of obtaining the moment fields outlined above can be
used for cases with different boundary and loading conditions, (e.g.
linearly varying 1oad); However, no'precise lower bound solution is
available for slabs restrainéd on three or four sides. The difficulty

" lies in the specification of the twisting moment field.

4.7 CONCLUDING REMARKS

The approximate method presented in section 4.3 readily provides an
estimate of the strength of any ofthotr0pic slab, and of the relative
importance of various structural actions. Thé main advan&ages of the

method are the ease of derivation and the simplicity of the solution.
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Its main drawbacks are the approximate treatment of the twisting gction
and the neglect of the interaction effects which makes the solution
unsafe. The comparisons made in section 4.4 and 4.5, however, show that
Ithe method gives a fairly good estimate of the strquth of any orthotropic
.8labs within the practical range of dimensions.

The moment fields obtained in section 4.6 offer a rational basis
for the design of reinforcement and the estimate of the edge forces.
The lower bound solutions obtained for slabs with a free edge are believed
to belnew. |

Some fufther work on slabs can be found in Appendix A2 where an

énalogy is'prbposed for picturing the yieid line patterns.



CHAPTER V

LOAD CARRYING CAPACITY OF STRUCTURES WITH NO TENSILE STRENGTH

5.1 INTRODUCfION

In th;a chapter, the strength of-structures made of meterials having
no (or little)ltensile etrength is examined. In the past, the design of.
these structures has usually been made based on some form_ of elastic
analysis with a chosen 'safe stress' level. The application of elastic
methods to imperfectly elastic structures is not'rational; The 'safe
stress' design approach doea not reflect in any way the load carrying
Icapacity of the structures nor does it give a proper measure of their safe
Heyman has applied the limit principles, derived from plastic analysis of
~ steel frames, to masonry structures (Ref 5. 1 5.2, 5.3, 5.4, 5.5). Heyman
‘works have provided a better understanding of the structural behaviour and
a more rational basis for the design of masonry structures. The two basic
assumptions underlying Heyman's approach are: (1) therelis no danger of

crushing of the material in compression and (ii) sliding faiiore_does not

occur. Sliding failures could and did occur under the conditions of

reduced arch thrust due to the support movements (Ref 5.6). A proper

analysis of sliding failures requires the knowledge of the material and

ty.

8

of the support conditions. The aSSumption that there is no danger of
crusoing is-juStified for old stone_arch bridges where the stress is
relatively small compared witﬁ the strength of the materiai. ‘For highly
stressed modern structures, the danger of crushing cannot-pe overlooked
and-ehould instead be allowed for. As. Mainstone (Ref 5. 6) stated, the
thrust line should be made to be suff1c1ent1y wlthln the depths of the
arch rib to remove oompletely the risk of local fallures'under highly
concentrated eompressions.of the hinge points. The question ist how

~ far within?"
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.of a plain concrete section under the combined actions of axial load and
sending ﬁoment is studied. The study results in a rafiongl method of
positioning the thrust line at collapse, allowing for the effect of
crushing of the concrete. The problem of predicting the strength of
masonry walls is then dealt with, using the above method. In the second
part, the strength of the Gladesville Arch Bridge is studied for three
different loading conditions. Since the arch is slender, the effects of
changing geometry and of concrete crushing are included in the calcula-
tions. It is believed that this study gives a ﬁore realistic measure of
safefy of this iméﬁrtant bridge than the conventional 'safe stress'

. approach.

5.2 STRENGTH OF A SECTION

The strength of an unreinforced condrete section is analjsed. The

' stress-strain curve for concrete is approximated to the idealized form of
Figuré 5.1(a). This curve is a well—knowﬁ approgimation'recammended by

- the European Concrete.Committee in the "International Recomﬁendatidns for
the design aﬁd.construction'of concrete structures "-(f.I.D. Sixth Congress,
Prqgue).i It will.be_éssumed in all the following work that the fenéile

" strength of concrete is néglected. For simplicity only a solid reétangulér
sgctibn is analySed, aithough the priﬁciples u;ed are applicable to any

other section.

plane sections rémainipg plane on average, Figure_s.l(c) shows stress
distribution patterns for the cracked and uncracked states. The distri-
bution of stress in the concrete follows the stresé—strain curve of
Figure 5.1(a). The total concrete force musg be equal to the applied
load P. The moment-thrust-rotation (H;P—¢D relation for the section is
derived numericaliy using the flow chart of Figure 5.2. The ultimate .
strength is reached when the compressive strain at the outermost fibre.is

0.0035; the corresponding bending moment is then the maximum moment-that
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Given P, I-\

Calculate £= P/EA

é__l € + zl\/d

Calculaté

(=

9 €—2I’\/d

Use B~ € relation to obtain stress diagram

Integrate to obtain axial force P' and moment M'

EQUAL

. Compare P and P'

Correct value of M obtained.

Figure 5.2
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can be carried by the section under the considered axial load. From the
values of moment and thrust the maximum permissible eccentricity of the
thrust is derived.

Figure 5.3(a) showé the M—P-ﬁ’relafien for a rectangular concrete
section. From the graph, estimate of the maximum permissible eccentricity
can be made for aﬁy given axial load. The moment rotation relation
also indicates whether it is-justifiabie to use limit principles in the
analysis of the structure. For the considered section, the Pq““? curve
for the axial load P = 36 kips approximates quite well to the ideal
'elastic;plastic' behaviour, while the M-qﬁ curve for the axial load
P = 1;8 kips'does not. It may be also noted that the 'middle third'
rule, which is based on a linear stress distribution with zero.stress at
one edge as the iimit, has no particular significance. For high axial
load the thrust must be placed well within the section (hence the middle
third rule is not necessarily safe); while for low axial load, the thrust

can be placed very close to the edge of the section.

5.3 STRENGTH OF MASONRY WALLS

. This éectionsldeals with the problem of ﬁredictiug the strength of
masdnry’walls under compressive and transverse loads. The strength of
~masonry is a combination of the strength of the actual concrete unif and
the mortar that binds ﬁhé units together. . The compressive strength of
the masonry can BE'esEimated by testing three or five layers of masonry
(Ref 5.7 and 5.8). The procedure 1s similar to'thbse for the testing of
standard concrete cylinders. Concrete masonry usually has about 35 to 55%
of that of individual block strength; it depends on mortar joint thickness
and qualify;

Once the average masonry strength is established, the wall can be

analysed as a homogenous concrete body. The tensile strength of the

joining mortar is neglected. Figure 5.4(a) shows the forces acting on a



75

section of.a masonry wall. The effective wall height is he’ width b,

the axial load is P, and the transverse pressure is p. The thrust is
placéd at a distancé c¢ from the cehter line of the section; the distance c
is dgtermined from the magnitude of the.axial load P as outlined in the flow
chart of Figure 5.2. Equilibrium analysis of the system gives the fol-

lowing equation.

pec-s)+ (bhep) e = (ke ke

in which S-is thé central wall deflexion.

The transverse pressure to cause collapse is given by

P - "8PCC;5? | | erereeee. (5.1)
_ Collar;se. | b. Ge .

Figure 5.4(b) shows the posi;ion.of the thrust line at collapse.

. The above analysis is applied to-Yokel's'experimental work on masonry

walls (Ref 5.7). . Figure 5.5 shows Yokel's general test set-up and wall

dimeﬁsions.-

bypdepleed . Figure'5.6 shows a summary of the results of calculations and

As seen in Figure 5.5, the bottom of Yokel's wall is pértially réstraiped
agéinst rotation with a steel channel. Thelpropdée& anaijsis.assumes both
ends'of the wall are free to rotéte, therefore an effectivé ﬁall height

‘must be established for the analysis. Yokel suggested 0.8h-aslélrealistit :

measure of effective wall height and this value will be used in the-

,folléwing calculation. _ I —

—

L —

using the technique of ‘dynamic relaxation. _Thelbutline of the method is

* The main purpose of the above analysis and calculations is to demon-

strate the adﬁantage of the proposed method of placing the hinges at the
specified position over the conventional method of placing hinges at the
edge of the section. . In Figure 5.6 reading downward in each column, it

will be observed that there are definite improvements in the estimate of

the load capacity. _ ' »
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' . : * * .
WALL DESIGNATION 3-3 3-4 3-5 3-6 3-7 3-8" 3-9 3-10
AXTAL LOAD (Kip) 25 50 100 | 150 200 300 400 500
MEASURED "-..=. DEFLEXION (in) 0.49 | 0.61 0.23 0.79 0.40 | 0.20 | 0.19 0.29
(at wmaxium load ) . _
MEASURED MAXIMUM TRANSVERSE LOAD 3.29 5.94 8.17 [15.12 |15.26 [13.80 |15.59 6.10
(psi) '
'HINGE' POSITION (AS IN 5.2) (in) 3.65 3.50 3.17 2.85 2.52 1.88 1.25 0.60
> | WITH 'HINGE' PLACED AT EDGE 3.69 7.38 {14.77 [(22.16 |29.55 {44.33 {59.10 73.88
& | :
(&) : .
2 OF SECTION AT ZERO DEFLEXION (12.1)™ [(24.2)  [(80.8) K46.5) [(93.6) [221.2) [279.0) [1111.1)
< _
-1 t L] X : : .
3 | WITH 'HINGE" PLACED AT POSITION | 3.5, | 6,76 |[12.30 |16.50 |19.5 |21.9  [19.40 | 11.60
= 0| TINDICATED AT ZERO DEFLEXION ' - '
- & | (7.6) |(13.8) [50.5) [(9.1) [27.7) [58.7) [24.4) |(90.2)
| & . .
o | WITH 'HINGE' PLACED AT POSITION | 3 03 | 560 |11.40 [12.10 |16.40 [19.50 |16.30 6.00
[+4 . .
A INDICATED AT MAXIMUM DEFLEXION v o .y | 5.7) 2.9 [-19.9) |76 (413 |5 [-1.6)
(Predicted value - Measured Value)
%% Values in bracket = x 100

Measured Value

Wall did not actually fail,

Figu'.re 5.6

test discontinued.

LL
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5.4  STRENGTH OF GLADESVILLE ARCH BRIDGE
5.4.1 General Description of the arch and the actual design method.

The Gladesville Arch bridge,_which spans the Parramatta River between
Gladesville and Drummoyne (Sydney,lAustralia), is the longest single
concrete aréh span bridge in the world. Its novel design and construction
technique have been described fuily by the designers in Reference 5.9.

The bridge consists of a concrete arch spanning 1000 ft, supporting pre-
stressed concrete flexible ?olumns and a prestresséd concrete beam deck of
100 ft spans. The arch has four ribs, each 20 ft wide and 14 ft deép at
the crown, built-of hollow concrete voussoirs. The voussoirs were placed
upon false work, jointed with insitu concrete, and made into arches by
means of flat jacks permanéntly built into the structure at quarter points
to induce thrust. The general geometry of the arch rib is given in Figure.
5.8.

The Arch was désigned so that i; woul& be made perfectly funicular
under its own weight (Ref 5.10). The effect of live load was estima;ed
using an elaséic analysis. No estimaté was made of the ultimate load-
carrying capacity of the structuré. The designers stated that the arch
had "an enormous factor of safety against failure' and Pippard said "even .
if tension did occur, the arch would still have a considerable margin of
safety"; however, no actual figures were mentioned. | |

It is interesting.to apply the_limit principles to establish a measufe
_ of éafet& for this important bridge. Since the stréss in the concrete is
high in this case, the assumption usually made tﬁa; there is no dangef of
crushing of the material is not fully justified. However, allowance for
the crushing effects can be made by limiting the thrusﬁ eccentricities as
proposed in Section 5.2. The calculations made herein assume that the

arch is a Q@uséoir arch, as designed and as it was intended to be built.
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It ié the author's belief that the safety of .!funicular strucfurés’
such as this Sfidge cannot be adequately-assessed by the conventional
'safe sttéss' methods. The application of 1limit principles to this kind
. of structure is a more rational apprqaéh and calculations similar to the

following should be made in all such cases.

5.4.2 Stfengtﬁ of the voussoir sections

Fﬁllowing the approach in 5.2, the capability of the voussoir sections
to carry bendinglmoments under their own dead weight thrusts is invesfi—
gated. The ch&racteristics of the moment-rotation curves will indiéate
whether the application of limit principles are suitable to the analysis
oflthis pafticular arch bridge. |

The geometry of the section is given in Figure 5.8. The stress-
strain curve for concrete.is approximated to a bi;l}near relation, Figure
5.10(a). The dead 1bad_thrust line is plotted in Figure 5.9, from which
the values of the dead load thrusts at the sections are estimaﬁed. (Data
was gathered from Ref 5.9). The analygis follows the flow chart of Figure
5.2. Figure 5.10 shows the moment-rotation curves of the sections at the-
estimated dead load thrusts. It is seen that all the moment-rotation
curves can be approximated fairly well to the ideal elastic-plaétic beha-
viour (Fig 1.1 - Chapter I). It follows that the afplication of limit
principles are spitabie for the analysis of the arch. The positions of
the thrust linés will.be further modified with the addition of 1ive load

in subsequently calculations,

5.4.3 Strength of a single arch rib under point loéd

- Each arch rib was placed and jacked into position 1ndependent1y before
the spandrel columns and crossheads were erected. The strength of an
isolated rib under éingle point load therefore needs to be examined to
establish tﬁe margin of safety of the rib against a disturbing load which

may arise during construction.
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All dimensions qre in f“t |

Dimensions 0{'\ ardh nb-and wussoir sections.

Figure 58
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The worst céndition, that is a single point load acting at a quarter
span, is examined. Since the arﬁh wa§ made perfectly funicular under its
own weight the positions gf the hinges at the collapse of the arch can be
located by drawing the point load thrust line (Fig 5.11). The equili-
brium of the system is given in Figure 5.12. The foilowing equili—
brium equations are used to determine the collapse loéd;

(i) Sum of moments about point52 and 3 for the segments l-é and 3-4
respectively. | |

(ii) Sum of moments about 3 for the segment 1;3.

(iii) Sum of the vertical forces and reactions fOr the entire arch

The gQuations are

/

-h, Ly o o) H Z w‘-ci‘_
-2

SBLel, o L, Vi | | Z eouds

—— 1_.3

p .

-y o Lz o Va 7 eoid; (5.2)
3-4

o ! b= \v Y w;

with

I .
%z = qu_ +. G Cos 26 8 + Cs cos 4.0
By = hy * Ccos26.8 - C3c053.4

bo= %4 - Cacos®4 - Cacos268

The symbols are defined in Figufe 5.12.

b
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Effects of deflexion
Tﬁe effects of deflexion of the arch at collapse can be incorporated
_ into the above analysis. If the point 2 is displaced vertically by a
distance & then point 3 will move upward oy 1.45é‘(obtained from a simple
geometric analysis of the motion of the mechanism, see Figure 5.11).
Therefore the values of Ra'in equation 5.2 are replaced by
b _ h, - S

31; &3 + 14568
o= hy l.458

i

Calculations are made in the following order:.
(i) The hinges are placed at the edge of the section and the

collapse load and. the reactions are calculated. From these results the

5% Figure 5.13 summarizes the results of various caleulations on the arch

‘rib with a concentrated load at quarter span. - The descending parallel
lines in Flgure 513 are results of various second ordex rlgid-plastic
analyse. The slopes of the lines give the rate at Which the bridge’ s.
load capacity decreases with increased deflexion. The pOSlthﬂS of the -
lines show the effects ‘upon ultimate load calculations of plac1ng the
hinges at various positions. The proposed method gives an estimate of_ -
the ultimate load 20% - 30% (depending on the magnitude of deflexion)
below that given by a conventional rigid-plastic analysis The non-
linear elastic-analysis (effect of deflexion included) was perfo;med in
the manner proposed in Appenoix'Bl and solved by:tte method of dynamio
relaxation.with tﬁe arch-diﬁided'into 20 elements. The non-tensile

' non-liﬁear analysis was peffofmed in the manner.ptoposed-io Aopendix B3.
-Both_of these analyse arelbelieved to be new ﬁorks. . lhe reliability

of these calculations is not known; tﬁere.ate no readily available
experimental results to check wlth However, all the-analyse when plotted
l-together as in Figure 5. 13 present a consistent picture; from which the

collapse load can be estimated.
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CONDITION N H (kip) v, (kip) v, (kip) o (k/£t)
. 0 26,615 17,209 11,217 19.6
- Hinges placed on edge of section '
3 22,161 13,873 10,226 10.9
0 24,622 15,573 10,813 15.5
Hinge positions modified by dead load thrust .
| 3 20,629 12,626 9,941 7.89
: 0 23,167 14,360 10,506 12.5
Hinge positions modified by dead and live
' load thrust : '
3 _ - 19,718 11,816 9,730 5.8

* Values are for one arch rib.

= SUMMARY OF

UNDER DEAD

CALCULATIONS FOR A SINGLE ARCH RIB

LOAD AND LIVE LOAD OVER HALF SPAN

Figure 5.15
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four ribs, therefore the collapse load factor for this particular loading
condition 1is 6.6.
5.4.4 Stréngth of_the arch bridge under live load over half sﬁan.

Similar calculations are performed for the bridge under uniformly
distributed live load acting over half of the span. The dead loads now
include the weights of the columns, crossheads ana the deck. The live
load is transmitted to the arch ribs thfough thé spandrel columns, and it
is assumed that the live loads are equally shared among fhe columns.

The calculations follow the same procéss outlined in 5.4.3. Figure 5.15
summarizes the results. It is concluded that each arch rib would
qollapée at a live load of at least 5.8k/ft acting over half of the span.
The design live load is 600 1b/ft in each of the six lanes, thus the
collapse load factor for this loading condition is 6.4.

5.4.5 The strength of a single arch rib under lateral load.

The designers have expressed some concern over the lateral stabilit&
of a single arch rib during construction. - The load cap;city of a single‘
arch rib under lateral pressure and its own_ﬁeight is now invgstigatéd.
The mode of failure induces three components of force: axial thrust,

" lateral bending moment and torsional moment. The failure criterion cor-
responding to these forces is a complicated one, and a full investigation
is outside the scope of this thesis. For a monolithic section, most
experimenters observed some form of skew bending failure. Failure
theories proposed by Cowan, Zia, Swamy (Ref 5.10. 5.11, 5.12) are a combin-
ation of Mohr's maximum stress theory and Coulombs internal frictiﬁn
theory.

| For our particular problem, the principal.facfor appears to be the
influence of the voussoir joints on the behaviour of the sectioﬁ. This,

in turn, depends on the magnitude of the axial thrust at the section.
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(1) If the axial thrust is sufficiently high, the influence of
the joint may be non-existent and the section behaves as 1f it is con-
tinuous. In this case the standard theory may be used. ‘Swamy (Ref 5.12)
stated that a circular interaction curve is a good lower bound approxi-

mation and gave the following failure criterion.

with To = Myp |+ fetfFy

where P1ﬂpis the torsional strength of a plain concrete hollow section
f%[ is the stress due to the axial force

and FH- is the tensile strength of concrete.

'I(ii) If the axial tﬁrust is low, the section may slip at the joint'_"
- when the maximum frictional resistance is reached. There is no existing |
theory for.tﬁis situation. It is proposed to derive the failure criterion
as foliows:

(a) For a given curvature, with a known axial thrust and with an
assumed linear strain distribution, the stress distribution is deduced with
cracked regions neglected. (See Section 5.2).

(b) The.frictional shear resistance is assumed to be proportional to
the normal .compressive stress: T :}&-F withﬂ. = 0.75 for finished con-
crete. (The value of/4-can be varied according to the actual condition.)

(c¢) The torsional moment is assumed to be resisted entirely by these
frictional shear forces. It is obtained by taking the moment of the shear
forces about the centroid of the area of the section which is in compreésion.

It is seen that this simple approach accounts for the influence of
the cracks due to flexure. This aspect is neglected by the conventional

maximum stress theory.
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ﬂé'rhere are no experlmental results available for ‘segmental concrete

sections under the combined flexure, axial force and torsion. The
.‘assumptlon of a friction failure through the interface is a new one; the

ossomption was derived tentatively from expefimenting with a.number of

' oooden voussoir arches-(one was made to scale with the Gladesville Arch).

Caiculations were performeo using both the conventional maximom stress
theory and the newly proposed frlctlon—shear theory. ' For the latﬁer,
a value of frlotion coefficient of 0.75 was selected from a paper by

'Mast R.F. Auxlllary Relnforoement in Conorete Conneotions" (Journal '

~of Struct. Div. ASCE, Vol 94 No. ST6, 1968)

must still be everywhere safely within the arch (Fig 5.17). Under in-
oreasing magnitude of wind load the arch'may fail with two, three or four
hinges, depending on the ratio of ultimate torsional resistance to tho
ultimate lateral bending resiotance of the cross section. The inform-

%KX

ation required for analysis is presented in Figure 5.18.

aé%g._The treatment of wind as a static problem for this slender arch
is rather over-simplified. It can only be considered as a first step

-towards a solution of this compliCated problem.

high, only the collapse modes with 2 orl3 hinges are oossible in the
Gladesville arch.rib. ! -

Referring to Figure 5.19, the lateral component of the reaction at
tﬁe abutment is R, the thrust line intersects the vertical plane through

the center line of the arch at J, (coordinates{zj-)_"]j} measured from A).

The force R, which is equal to half of the total lateral loads, can be

considered as acting at the point J. The lateral bending moment and tor-

sional moment at A are

F“’]I ) .TA = R\'E;f
For equilibrium in the lateral direction, it is obvious that GJ is

parallel to AB, where G is the centroid of the applied lateral load.

=
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From Figure 5.16 we have

0G = (OA+ Es)cosp + ERE e (5.3)

The failure criterion for the arch cross-section at the abutment A becomes

2
PRANE X F I TS
ou]T * Ty .-.(;‘"‘) P RO
where O( =I T""“r
Mﬂha;n

(a) Two hinge mode. The arch may collapse with two hinges, one at
each of the abutments A and B (Ref 5.15); the axis of rotation of the
collapsing afch is then fhe line AB. From Hill's principie of plastic
work, if 7( is the angle between the axis of rotation of the hinge and the
normal at the abutment then Tan Y = T/a’zM . For the two hinge mode,
we have Y= c‘o"_F, _ (Fig 5.16). | -

IA _R#y _ s . - 1€)
My LPRYy &Y

CbTYS =

Equations 5.3,5.4 and 5.5(a) are used to solve for the value of maximum

lateral pressure. If w is the collapse wind pressure, the equations then

become

R =(Z-3a) W o= 7382 w

. Momax ’ iy
- J = +qn(qo-F'} - ’l‘qﬂGl‘sa . s s eses e .
A1y '
2
T
otzr]‘;. + 195- = —————mw) = ___”3°7 )
R ok
The solutions are:
= 66.8f6
&y f and  w = o623 K[t

vlj_ =56.15(:

The lateral bending moment at the crown is given by

M = 3) % R
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where H is the centroid of the applied lateral load ﬁq;:'a to C. Since
the posigion of J is known, HJ can be computed. The bending . moment at
the crown is found to be fﬂc- 275,000 ft-kip which is far greater than
the maximum ultimate value of the moment at the crown 101,000 ft-kip.
This collapse mode violates the failure conditi&n and it is

therefore not the correct collapse mode.

(b) Three hinge mode. The hinge at the crown sustains lateral
bending moment only (due to symmetry of the mode) , while those at the
abutments sustain both bending and torsion. Equation 55(a) is

now invalid and is replaced by

Mc = RMHI) M = lo| ooco f{’-Kir 5.5(b)

P

with HJ = AW+ Z _cos¥ - jjsin-{

The final equations are then

OQTqEJ-ro.4174; = 25.8B
2 2 ' 2 eeeeans 5.7
o064y * Ty = 1737/ w
w (248 + 046 E;- 099y ) = 13.64
and their solution, obtained by iterative method, is
. E = \T'O " .
N %tt: GJﬁA. w = o-llo kj GEL
Wy = 148 .4t
Effect of misalignment of voussoirs. It is assumed in the above calcu-

lation that the arch is perfectly aligned laterally. Misalignment due
to lack of fit between the voussoirs may have some adverse effect on the
load-carrying capacity of the arch. The effect of misalignment is
equivalent to having the initial thrust line off center. The effect can

be allowea for by putting

Mc_: MP“H'S
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where H is the horizontal thrust due to dead load and é;is the amount
of misalignment.
Equations 5.7 are resolved allowing for various amounts of mis-

. alignment

-for S
8

It.aeems-unlikely that the miéalignment will exceed 2 ft, so that it'may

n

l‘clvft » w = o lo5 k]sﬂgz: 5
2.0 ft oy w = o.loa k[salgf:

be concluded that the lateral pressure to cause collapse is about 100 1b/
sq ft. The design wind pressure in the Sydney area, as laid down in the
Australian Standard Loading Code (CA45, pt 2), is 24 1b/sq ft. Thus the

'collapse load factor for wind load is about 4.2.

5.5 CONCLUDING REMARKS

The load-carrying capacity of structures made of materials having no
_ _ [
tensile strength has been investigated. A method of allowing for the

effect of crushing éf concrete is proposed ﬁhd used to Investigate the b
suitability.of a st&ucture tor the applicafion of limit principles. The
strength of masonrf walls is predicted and compared with actual measurements.
The load factors fgr the Gladesville Arch Bridge aré establishéd for three
different loading conditions. The thrust line conéépt is used in all cases
to picture the structural action. It is believed.that the use of the
|

limit principles, ;s described above, offers a more rational approach and
provides a better ﬁnderstanding of the structural actions of 'funicﬁlér'
étructures than'th%\conventional 'safe stress' approach, and in spite of its
shortcomings is moréEE;itable for designing such structures than any other

. \ _

method of which the awthor is aware.



CHAPTER VI.

SOME ASPECTS OF DESIGN OF ARCH DAMS FOR STRENGTH

6.1  INTRODUCTION

The designlof an arch dam is, at present, a trial and error process
based on some form of elastic énalysis. 'To perform the analysis, the
shape of the dam must be guessed, based on general experience. The
problem of selecting a suitable dam shape for a given site condition is
an 1mp§rtant, difficult, and time-consuming part of arch dam design.

There are few methods of directly getting a suitable shape. 1In this
chapter an experimental method of directly obtaining a shape for én arch
dam is proposed. The method is based on the concept of a thrust surface
(an extension of the two-dimensional thrust line).

Since arch dams are 'funicular structures', the accepted definitions
of the factor of saféty based on stress (i.e. the ratio of the compressive
strength of concrete to the maximum stress at design loads) does not
reflect at all the load-carrying c;pacity of tﬁe dam. The load-capacity
of an a;ch dam can be estimated using limit principles. Severallmethods
of estimating the load-carrying capacity of arch dams are préposed using
the lower'bﬁund theorem of plastic théory. The equilibrium approach,
attempted herein, provides a relatively simple yet realistic assessment
of the strength'of'arch dams.

Thelpresent state of design is first discussed so that the work is

viewed in proper perspective.

6.2 STATE OF ARCH DAM DESIGN
An arch dam is a curved dam that carries the major part of its load
to the abutments by thrust.

The two primary loads on an arch dam are its weight and the
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hydrostatic pressure of the water. Tﬁese two loads are known with great
acéuracy‘oﬁce the design is finalized. The etfects of gradual application
of these loads are someﬁimes investigated, mainly to prevent cracking or

" instability of blocks. Additional loads may be imposed by tail-water
pressure, &eposition of siIg, and formation.of ice surfaces. Temperature

effects are important in arch dams. Expansion and contraction are caused

by heat of hydration during construction and temperature differences
between the submerged and exposed parts of the dam. Dynamic forcgs such
as seismic action in some areas, or thg effect of land or rock slidelihto
the reservoir, are also coqsideréd in special cases. |
| There aré other loads which act on the foundations. Seepage of
water through rock mass causes uplift which seldom has an important bearing
on the safety of the proper dam, although grouting and drainage are most
important preparations for the abutments. Deformation of the abutment
rock due to the thrust from the dam may have serious_weakening effects on
the dam (Ref 6.1). |

Ideally, an arch dam should transfer all its loads to the abutments
by thrustlso that the stresses are compressive everywhere; Site condition
and construction method make this impossible. Designers therefore attempt
to shape and proportion the dam to apprdach this ideal.. Their efforts
can be seen through the evolution of the arch dam shape.

Early arch dams are cylindrical in shape and they were designed as
a series of arches of constant radius; the arch thickness is increasedl
towards the base to account for the iﬁcreése in pressure. Since the val-
ley opening decreases towﬁrds the base, arches of various radii are then
used to reduce the volume of the dam and to improve the.reception condition
of the thrust to the valley. Although the designers actually used the
permissible stress approach, these designs can be considered as limit

design based on statically admissible states.
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The interaction between various arches causes tension zones to
develop near the base of the dam on the upstream face, and on the down-
stream face in the upper third of the structure. By introducing some
vertical curvatures, the weight of the structure tends to reduce these
tension zones. Usually, the upstream face is undercut near the base,
-and the upper portion of the dam is overhung. . The amount of vertical
curvature is limited by practical construction methods. -

Progressive refinement of shape and proper proportioning of arch
thickness aré the objects of the current_state of the art. The design
is usually accomplished with fhe use of one of the following methods of
. analysis: trial load, SHéll theory, ﬁhree dimensional finite element
method,or dynamic relaxation method. These methods are-all based on
elastic theories of structures. The influence of cracks on the state
of stress in the dam is usually treated as a local effect.

The development of model testsalso contributes greétly to_the
design of arch daméi The models are usuaiiy tested under working load
conditions; the test results are used tc improve the design or as a
check against analYfical methods. Only a few of the models are tested
to failure.

Design methods ﬁave drifted from the early étrength desigﬁlgradu-
ally towards the more conventional basis of elastic design. The
thinkingé &f Frenchlengineers.are more oriented towards strength design;

they proposed the theory of "active arches" (voutes actives) which empha-

sizes the importance of keeping the arches at the bottom of the dam thin |

(Ref 6.2). Coyne (Ref 6.3) proposed'the method of "inclined arches"l
which takes into account the weight of the structure.

Since cracks must be avoided, especially in thes upstream face, an
élastic analysis is essential for the final design. However, limit

design ideas are helpful in picturing the way the dam carries its load.
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Once this plcture is formed, it can be used to obtain the dam shape for
a preliminary design and to estimate the load-carrying capacity

of the dam. These ideas are explored in this chapter. .

6.3 PRELIMINARY DESIGN Of ARCH DAMS WITH STRING MODELS

Wheﬁ'a highly statically indeterﬁinate structure like an arch dam is
to Be designed, the use qf a simple model is often helpfula- The object
is to gain some understan&ihg of the structural action and hence to deter- .
mine wﬁether simple calculétioné are possible and/or adequate. Thé view .
taken here is that of a designer who has a limited amount of geological
information of the site on which an afch dam is to be designed. |

(a) ficturing the structural action of an arch dam by a thrust

surface

Since the main part of the loading in an arch dam is to be carried
by direct axial thrust, it is convenient to picture the dam action in
terms of a thrust surface (an extension of the two-dimensional thrust
line for érch actioﬂ). If it is assumed that the concrete cénnﬁt sustain
tensile stresses, then it follows that the surface must be everywhere
.safely within the dam thickness. Ideally the #hape of the dam should be
the shape of the thrust surface so that the stress is compressive évery-
whére. The geometry of such a surface is complex. However, it can be
constructed quite readily with the aid of a system of strings and weights

as described below.

(b) Description of the set up

A net of strings is set up with pulleys and weights as shown in
Figure 6.1. The weights are hung and adjusted to represent hydrostatic
loading conditions. The outline of the abutment is “epresentedlby the
steel frame. ‘The counterwelghts over the pulleys are adjusted so tﬁ;t

the thrust surface enters the abutment at the most favourable angle
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(usually from 40° to 50°). The most favourable shape is obtained by
adjusting the weights by trial and error. Experienbe in the process comes
quite quickly with practice.
The system provides the following information.
(i) Approximate shape of the thrust surface for certain kinds of
loading. In this cése it is the hydrostatic load corresponding to a
full reservoir behind the dam. -
(11) Hagﬁit;de and direction of the abutment thrust fdr.thg given
loading conditions. -
. The information is most valuable to the designers particularly in the
preliminary design stage;l -
(¢) Test results on the Gordon Dam model
The Gordon Dam is a double curvature érch dam being built in Southérn

Tasmania (Fig 6.2). Site information as given here was supplied by the

Hydro-Electric Commission. A string model of this dam was set up as des-

cribed in (b)-above'and adjusted so that the thrust surface angle to abut- .
ment was about 45° - 50° (Fig 6.3). The shape obtained is plotted as a
series of vertical profiles in Figure 6.4. The actual profile of the dam

is included in the same figure for comparison. Grephe—ef—the—values—et

Since the 'experimental' thrust surface is quite close to the

actual dam shape, it is expected that the experimeutal'values of thrust

‘are comparable to those calculated by Trial Load Method for the waterload

only condition. ‘This comparison is presented in Figure 6.5.

the top of the dam than those given by calculation. The differeﬁée‘ih“-
shape between the model and the actual dam at the lower region is due to
the omission of thé dead weight of the structure on the model. A close
inspection of thé model profile reveals that the exp~.imental thrust sur-
face correctly indicates the tension zbnes due to water load. The thrust

surface profiles near the abutment do not show the same good agreement
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with the actual dam shape. This is due to the poor representation of
hydfostatic pressure on the ﬁpdel in these regioms. (The hydrostatic
pPressure is always acting normal to thé upstream face of the dam and
;hiscondigion is not realized on the.mgdel, Possible improvements of the
" method wiil be discussed in Section (e) ).

(d) Use of the methoh 1n the design of arch dams

The experimental method_described above has two possible uses in the
preliminary design of arch dams;

| (1) The thrust surface as constructed above can serve as a guide in

the selection of a suitable dam shape. Allowance must be made for the
~ dead weightlactioﬁ to ébtain the correct shape. Since the reactions can
be varied indebendently, it is possible ﬁo derive the shape that will
give_the most favourable reaction to the abutment on a given site. The
valueé_of the thrust are also useful 1h determining the dam thickness.

tii) ff a shépe has been decided upoa, the thrust surface repre-
sents a statically admissible state for the given load. If the thrust
surface 1is adequatelf "covered", i.e. it is everywhere safely within the
dam thickness, then the design is safe'according to the lower bound
theorem of plasﬁic analysis.

(e) Comparison with other methods of shaping the dam

The only other method of shaping tﬁe dam that can be found in liter-
ature is given by Fi;hlo (Ref 6.4). This method uses a rubber membrane
with thickness varying similarly to thaﬁ anticipated for the arch dam.
Ihé shape of this membrane under hydrostatic load is used as the shaﬁe of
the arch dgm.

The method Proﬁoéed-in this thesis, when compared with Fiahlo's
membraﬁe method shows sevefél disadvantages.

(i) Hydrostatic pressure is not as accurately represented.

I .
(ii) The shape is not completely defined. There is a small region

l
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near the top of the daﬁ which is not ‘defined by the strings.

However, the following advantages are rea.ized.

(1) Reactions can be varied so that it is possible to vary_the
shape, eépecially the angle of the thrust at the abutment. In contrast,
memprane models are entirely dependent on the membrane properties; the
angle of thrust at the abutment tends to be more acute than the actual
site condition permits, and it cannot be changed on the membrane modei.

(11) Estimatesof the values of the thrust are directlylavailable
from the test in the proposed method, while this information is not
directly available in the membrane method.

(f) Possible improvements of the method.

The experimental method of string models presented aﬁove is still
very crude and it can be improved iﬁ many ways. Representation of the
hydrostatic pressure can be improved by either using more pulleys and
_Iweights arranged as in Figure_ﬁ.ﬁ, or by using a plastic waterbag as a
means of loading with a net'repreéenting the dam as in Figure 6.7.

Quch improvements woﬁld lead to a more definite shape for the dam and
also provide better estimages of the values of thrust. Gravity load
can be introduced with the #se of extra weights and strings. However
fhis may not be necessary since corrections for dead weight can be readily

- calculated once the thrust line for water load is known.

6.4. THE LOAD-CARRYING CAPACITY OF ARCH DAMS

The structural action of arch dams is investigated, usingllimit
principles derived from plastic theory qf steel frames. The object is to
construct simple statically admissible states, from which thé load-
carrying capacity of arch dams can be estimated. |

The load-carrying capacity of arch dams is investigated here in
terms of increasing hydrostatic load. There are two ways of picturing the

increasing load: (1) by imagining a gradual increase in the water level
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above the design level, or (ii) by imagining a gradual increase in the
density of the liquid in the reservoir, (Fig 6.R). Although both alter;
natives can be ?roduced in fhe laborafory, neither corresponds to any
actual overloading state. This objection does not invalidate the use of
a load factor in the design. As pointed out in Chapter I, there need not
be a connection between the load factor and the actual overloading state.
The concept of a load factor based on a gradual increase of the
liquid density is used since it has been favoured by other investigators
(Ref 6 5 and 6.6) and will thus provide the means of comparison with
other wqus. The cylindrical dam models, tested by Bustamente in Refef;
ence 6.5, is used as a basis for comparison between various methods of

- estimating load capacity of arch dams.

6.4.1 Review of existing literature

The problem of the strength of arch dams has not been investigated _
fully in litersture. - Two methods however have been proposed.
(a) Bustaﬁente's method (Ref 6.5). . The-arch dam is divided into two
series of arches and cantilevers. Ths cantilevers are subjected to
bending and the archés to axial thrust, Figure 6.9(a). The failure

criteria are:

N -t
For a section in compression N, = 0.85 fe- 3

’ 2
For a section in bending x = O-BSfct/B Y eeees  (6.1)

M
I
For a section in combined N“"Gx = 085 f,_- c
. bending and compression , .
M ax — o‘gsfc.'(;‘(tb- - C./?_) )

where t is the section thickness, ¢ is the width of the area in compression
N is the thrust, aﬁd M the bending moment capacity of the section,
max max _

Figure 6.9(b). Bustsmence's failure conditions will ve used in all the

following works.
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The applied hidrostatic pressure is directly distributed to the arch
and cantilever elements. Bustamente used a linear_progfamming technique
to determine the maximum load that an arch dam can sustain. The effects
of yertical curvature can be included into Bustamente's method of calcu-
lation without any difficulty. |

The results for hislown tested models (Fig 6.10) are:

.+ Computed values .____Measured values
2
Hodel I Prax = 16.9 kg/cm 18.0 l-cg/n::m2
Model IT | p___ = 21.04ke/cm? 20.5 kg/cm®
max . g/cm . g/cm

- (b> Swaminatﬁan's Hethod (Ref 6.6). The dam ié divided into arches and
cantilevers as in Bustamente's method. However, the compatibility of o
deformation of the arches and the crown cantilever is retained. The
arches are agéumed to be elastic. The hydrostatic pressure is distributed -
between the arché; and cantilevers according to the deformation of the
crown section. Swaminatﬁan investigated the effects of gradual increases
in hydrostatic pressﬁre and dastinguished several stages of failure.

The Eailure_criteria.usedlare those adopted by Bustamente, Equation 6.1.
Various éraphs are giveﬂ from which the ultimate load capacity-can'be
calculated.

1

For Bustamente's model I, Swaminathan's method gives the following

results:
o .. 330 191
Valley shape factor —— = 2.20. Slenderness ratio 48 10.6.
150 : '
- ’ g : '
2.0(085 2
Pressure required to collapse the dam Prax = -7%;E;jiil = 18.6 kg/cm™.

Bustamente's method and Swaminathan's method are both based on the
same statical picturé of dividing the dam into arches and cantilevers.
Two new methods of estimating the strength of arch dams are now proposed

based on different statically admissible states.
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T
6.4.2 Inclined arcL method

The dam is considered as a series of independent arches; each arch
slice is considered ta support the hydrostatic load independent of the
adjacent slices. The arches are obtaiﬁed by cutting the dam with inélined
planes pivoted about a horizontal line located at a distance from the
crown at full water leyel (Fig 6.11). The idea originated from the obser-
vation that isostatic lineélon arch dam models tend to_incline downwards.
This ideas was first intro&uced By Cque (Ref 6.3) in his design 6f arch
dams based on elastic. behaviour. - The proﬁosal to use the same idea to
estimate the ultimate streﬁgth is believéd to be new. The inclined arches
are stronger than their horizontal counterparts because of the extra
curvature in their own plaﬁe and of the varying cross section areas. The
following steps are performed in the aq#lysis.

(1) The profiles_of the grch slices are established, usually Sy
tracing from dréwings.

(ii) The loéds;on éach arch slice are calculated.

(1ii) Thrust lines are drawn for each inclined arch.

; (iv)l,From'the thrust lines the magnitude of the thrust and bending
ﬁoments are estimated, hence the load factor to cause collapse is calcu-
lated. |

Tﬁe anélysis must be carried out for various hinge line positions;
for each hinge line p@sition, various slices must be investigated in order |
to obtain the highesf pbssible lower bound.

" For Bustamente's models, the inclined arches are elliptical in

profile with varyinglcrcss section area. A summary of the calculation

is given in Figure 6.12. The resultant thrust lines show that there is
little bending moment. If the bending moments are ueglected, a direct
estimate of the horizontal thrust at the crown can be made from equili-

brium consi&erations. For the two models considered,the results are:-
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Model I Ppax = 13.8 kg/cm2 (cf. 18 kg/cm2 experimentally obtained)

Model II | 19.9'kg/cm2 (cf. 20.5 kg/cﬁ2 experimentally obtained).

For comparison, an estimate of the dam capacity is made using
horizontal slices. For Bustamente's cylindrical dam models, the maximum
hydrostatic pressure is, of course, at the base of the dam. The value
of this pressure is given by p =N /R (circular arch under radial

: max max :
pressure).

The results are
Model I Ppax 9.29 kg/cm2 (cf. 18 ___kglcm2 experimentally obtained)

Model II p__ = 11.45 kg/em> (cf. 20.5 kg/cm® experimentally obtained) ..

It is clear from the above figures that the inclined arch method gives a

better estimate of the load capacity than the horizontal arch method.

6.4.3”Tuﬁbie§"method

An alternative metho& of obtaining a statically admissible state
for the arch dam is to treat the dam as part ot ; shell of revolution
under hydrostatic loadf The general_forces acting on an element of a
shell of revolution wiil be as shown in Figure 6.13. _

Following Flugge (Ref 6.7), the equations of equilibrium for an

element of a shell of revolution under hydrostatic load can be reduced to

My
Se- 3% = °
S N= ’_"1) e e (6.2)
Rx. P‘Y 2 x ' ' : .

Physically, it méans that the hydrostatic load is resisted mainly by

direct thrust in the horizontal direction, and by direct thrust and

* The name "Tumbler" was first used to describe the approximation of arch |
dams as part of a shell o.f revolution by Pippard et al in the-elastic analy-—

sis of Dokan Arch qu (Ref 6.8).
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bending moment in the vertical direction. for single curvature dams,
these actions are reduced to arch action in the horiéontal direction and
bending action in the vertical direcétion.

.Thé above equations of equilibrium afe used as the basis for the
estimate of the load capacity. ' These are two alternative methods of
solution.

(1) Algébraic method. This method is similar to the method used in the
‘analysis of load-carrying capacity of slabs (Chapter IV). The moment

and force fields are described by functions which satisfy the equilibrium
equations 6.2. The failure condition, Equation 6.1, is then used to
calculate the ultimate pressure.

For the Bustamente'é cylindrical dam models, the following éxpres—

sions for the force and moment fields are proposed.
L
+

- — (- = (_ -

Mx__. K\ (H) H) ]?_))

Ny = - R_C-Cﬁ)(?- 5—> >

1]

where K and C are constants to be determined so that the failure conditions
are satisfied everywhere. Using equation 6.1 as the failure condition,
the maximum pressure (at the base of the dam) is found to be

cxt/8 . 3c

‘1mx L Z.

For Bustamente's model I,welfind : o
P

max - 15.1 kg/cmz. (éf. 18 kg/cmz expérimentally obtained).

(ii) Graphical method. The équilibrium equations can be handled graph-
ically in the following manner.
Draw a loading diagram p(x).

Guess a distribution of Ny such that the failure criterion is
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dq, :
Determine ax from the equilibrium equations.
Graphically integrate %g’to obtain Qx'
x
Graphically integrai_:e.Qx to obtain Hx.

Check combined failure condition in the vertical direction.

Appropriate boundary condition must be inserted and the calculatiﬁn
is repeated until both failure and equilibrium conditions are observed.
Calculatian for Bustamente's ﬁodel I is given in Figure 6;14.

The graphical method is far more flexible than the algébraic method

in dealing with varying boundary conditions, non-uniform thickness, etc.

6.5 CONCLUDING REMARKS =

Some aspects of the design of arch dams for strength have been
discussed. An experimental method of directly obtaining the dam shape
for a given loading and site condition.is proposed using strings and
weights. The method ié based on the concept of a thrust surface. | The
load?carrying capacity of arch dams is then investigated by construction
of various sfaticéll& admissible states.

Further work can be found in Appeﬁdix A3 where tﬁé test of a shell
.13 reported and an approximate 'elastic-plastic' method of aﬁalysis is

proposed and applied to various dam models.



CHAPTER VII

DEFLEXION, BUCKLING, AND STRENGTH

7.1  INTRODUCTION

The111mit design method of picturing statically admissible states
described in previous chapters enables a design to be-made to sustain a
given load. The calculations are reliable only if deflexions do not have
any marked effects on the equilibrium conditions and local (and overall)

stability is assured.. The effects of deflexions and buckling on the

~ strength of structures are discussed in this chapter. Ia—partieular,

.The influence of deflexion on the 1oa&-capac££y of structures has been
commented upon in préviouslchapters whefé pérticular étruétures are
analysed. Various new methods of estimating deflexion are proposed in
the Appendices Bl1, B2,-and B3. The statements on deflexion in this
chapter recapitulate the works presénted elgewhere in the ;hesis.
Buckiiﬁglof structures is a large subject and is not within the scope
~of the thesis@ This chapter discusses, with the help of a simple |
:example, the relevanée Qﬁ.;he Euler type stability analysis in the

assessment of the strength of structures.

7.2.1 Deflexions which do not affect the stfengfﬁ‘bt—scruuturcau'
These deflexions, un&et working 16&6, must be estimated so that the
structure is'acceptab;e for service. For frames which support their loads
mainly by bending momént; deflexions are basically giyen by a double inte-
gration of the bending moment diagrams. For a statically admissible state
design, the bending moment diagrams can be easily estimated and the
deflexions can be calculated with the use of the virtual work equation or
complementary energy methods (Ref 7.1 and ?.2). In this connection, it
should be noted- that fo predict accurately the deflexions for a frame with

a particular loading condition (past the first yield) 1is practically
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impossible; the calculatioﬁs are so sensitive that minor differences in-
stress-strain relations could cause major diffevences in the results.
What is wanted in the design is the estimate of the load that a structure
can carry at a particular deflexion. This deflexion can be easily esti-
mated-by approximate methods. The argument can be best seen from a
typical load-deflexion graph for a frame. (Fig 7.1). .

In Appendix Bl, én iterative method .of estimating deflexion in
elastic-plastic frémed structures is proposed using dynamic relaxation
technique. The method differs from other methods in'assuming that the
yielded rggions are spread out instead of being localized. The results,
however, are in close agreement wiéh other methods and exﬁerimental measure-—
ments.

The deflexion question can-sometimes be avoided altogether; e.g.
for slébs, the defiekion requiremen; can be satisfied by the selection of

" proper thickness such as recommended by the Codes (Ref 7.3).

?;2.2 Deflexions which affect the strength of structures.

These problems oécur when the equii{brium equations are sensitive to
the effects of deformation, particﬁlarly with_compression members. In
many cases, these deflexions can be included in the limiting equilibrium
equation, and an estimate of the reduction in load-carrying capaéity_can.be
easily made. An analysis of this kind_together with some form of elastic
analysis often-gives a very good indication of the likely form ﬁf the load-
deflexioﬁ curve as seen in Figure 7.2  Calculations of this kind have been
doﬁe fﬁr the Gladesville Arch in Chapter V and for various moﬁels in
Appendix Al. The possibility of performing these calculations should be

investigated for all designs.

7.3 BUCKLING
The term "buckling" is used here with its traditional meaning: the

widely diverse behaviour of practical structures,in the field and in
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laboratory tests,where Fhe effects of change of gqu?tpzminfluence the
load éarrying dﬁbacity of tﬂé;stru;tures or members. A full treatment
of this subject is well outside the scope of this thesis; this section
intends only to examine the relevance of stability analysis of the Euler

type, to the assessment of strength of structures.

7.3.1 EULER AND NON-EULER BUCKLING
The ultimate capacity of many metal strucures and elements is limited

by some kind of instability. Most of the present stability theories have

their roots in the Edlgr analysis of a pin-ended columm.- The theoriés are,

-therefore, applicable only if the underlying assumptions in the Euler-t&pe
theories are satisfied. There are structures, such as arches, over-braced
frames, and shells, which do not conform to ;he Euler type theory. In
these structures, the internal fqrces_that cause buckling are not staticaliy
determinate and :édisgribute markedly as buckling deformations occur.

The basic differences in the behaviour of the two types of buckling
may now be considered.

“(a) Euler-type buckling

The férmmEu1er-;yge buckling is used here to denote the elastic
behaviour of étructures characterized by the load-deformation relation of
Figure 7.3. This applies to both in~plane and 1aterél buckling. A large
amount of work and writing has been devoted to instability and buckling
behéﬁioqr usiﬁgltﬁié aéproach; such studies have the following character-
istics in common.

Physically, the major internal forces in the structures, such as the
axial forces in braced frames, or the bending moments in beams liable: to
miéteral bﬁ;kiiﬁg,-ére often statically determinate,'or almost so. This

may imply at times that the deformations of the structure are fairly small,

but, more importantly, that there are no marked redistributions, as the
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buckling deformations occur, of the major internal forces causing buckiing.
Most of the structures so treated are not exactly statically determinate:
however, for these structures, the internal forces or bending moments are
normally easily obtained and there is little redistribution of them.

For example, as a préced frame buckles, in or out of its plane, the curva-’
ture of the members indicates the existence of bending moments and there-
fore end shears; these affect thé equilibriﬁm of the jointg but not enough
to alter greatly the axial forces in the members until very large deform-
ations occur. For unbraced frames, for example, a portal ffamé buckliné

in a sway mode, the redistribution may be somewhat greater, but its effect

is still not very important. . ' i

Mathematically, it-is often found that the associated differential
equations are linear and reducible to a single governing differential
equation. This reduction 1is possibie because the force and displacement
variables are often separable._ The problem can be identified as an_eigenf_
value problem and the buckling modes are orthogonal.

Experimentally, Euler-type buckling is associated with the Southwell
plot technique for_énalysing measured deformations which participate in the
buckling mode. A linear Southwell plot is often obtained (depending ﬁainly
on whether the structure is deforming in a well-defined mode), which gives
an estiﬁate of the corresponding critical load. ‘Kjar (Ref 7.4) established
-the rules under which the Squthwell technique can be used to obtain the

critical load. These rules have the. same mathematical properties as those

mentioned ébove.

(b) Non-Euler Buckling ~ An example.
The load-deformation behaviour of the simple over-braced frame of
Figure 7.4 is described here to illustrate the non-Euler buckling behaviour.

The frame is one degree over-braced. For any external load W, the
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A

distribution of the internal forces Pl’ P2, P3 is not knowm; however,lif
one force is'assumed,_;ay P3, then others can be estimated from equilibrium
condition. The distribution of the forces, which is determined by the
conditions of geometrical compatibility, can be derived iteratively using
dynamic relaxation. The complete numeriﬁal analysis is given‘in Appendix-_
B2, Figure 7.5 éhows,a typical load-deformation graph and Figure 7.6 an
internal force distribution graph.

The following observations were made:

(1) The internal forces P P, varied non-linearly with the

_ 1 P20 Py
~load as buckling developed. There is marked redistribution of the forces
as shown in Figure 7.§.

(ii) The load-deformation graph, Figure 7.5, did nét have the char-
acteristics described for Euler-type buckling. The deflexion appeared to
run away at some lower load but then the curve started to rise beforé
running away again at some higher value. It is suggested that the cause of

this behaviour is the redistribution of the aiial forces in the frame.
| The same kind of behaviour has been observed previ&usly in the labor-
atory for the above frame (Ref 7.5) and for the thin-arches liable to
lateral buckling (Ref 7.6).
7.3.2 RELEVANCE OF EULER-TYPE ANALYSES IN THE PREDICTION OF STRENGTH OF

STRUCTURES

It can be stated that, in general, Euler-type analyses are applicable
to the elastic portion of the loading path of a structure only if the
internal forées that cause buckling do not redistribute markedly as
buckling deformations occur.

Thus, Euler analyses are relevant in the assessment of the ultimate

strength of statically determinate structures of suiteble stiffness, such

as columns, beams, braced frames, and trusses, and for some classes of
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statically indeterminate structures where the major internal forces causing
instability change only marginally as buckling14evelops. Arches, over-
braced frames, and statically indeterminate structures in general, do not
behave in the Euler fashion. (It ig a matter for laboratory and field

testing to determine if an Euler-type study is approximately suitable, as

it'may be for lateral buckling of continuous beams.) The redistribufien
of internal forces seems to have_a beneficial effect in many cases.

For plates, and structures containing large plate element, such as
thin webs of girders, deck plates of bridges, and the hulls of ships, the
relevance of an Euler-type analysis depends on the type of boﬁndary support.
Plates with edges free to move have little reserve of strength after the
Euler load is reached, while plates.whoée edges are restrained against
pulling in have large post-buckling.strength, and failure can dccur oqu
- after yielding of the most highly stressed region as buckling progress.-

The Euler critical load has little physical significance in thié_case.

Shells form a class of thei; own, where the redistribution of internal
forces as buckling deformations occur has a weakening effect on the struc-
ture., The'benavibur of an axially loaded thin circular cylinder is well-
known, but diffichit to describe with any clarity as there are now so many
mathematical'treatments designed to fit the results of tests. In any

case, this parti&ular theory gives only limited guidance to designers of

other types of thin shells.

i
[

7.4  CONCLUSION '
The relations between deflexion, buckling,and strength have been
briefly discusse&. In particular, the relevance of the stability analysis

of the Euler type to the assessment of strength of structures has been
examined. The foregoing notes present a view point which différs somewhgt

from that accepted. The structural engineer must never take the stability
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of a structure for granted. The possibility of buckling during erection
or in service must be envisaged and prevented. Furthermore, if buckling
is a problem, the designer should not assume that ideas and methods b;sed
on Euler type analyses are wholly satisfactory in coming to griﬁs with

what really happens.



CHAPTER VIII

PRACTICAL DESIGN CONSIDERATIONS

8.1 INTRODUCTION
In the application of limit design methods, just as in any other

design method, there are a number of important practical design factors

¥ The thesis has discussed the &esign'of structures for strength. The
discussion is not complete if the factors which may limit strength are

not presented.

detailed design of joints.

3 ¥ The topics, which appear_to be disjointed, are in fact int}matei;“

. L .
connected from the practical design point of view. Joints are most

likely to be highly stressed reglons and the materlal problems such as

brlttle or fatlgue failure 1n steel or creep and shrlnkage cracks in

concrete often occur at the joints.

these topics, to indicate the problems for which neglect may lead to
misleading results, and to outline some design approaches by which these

problems can k2 taken into consideration.

K ¥ ~ - R

(_ ¥ qadk The materlals presented in this chapter are available in most

text books; some statements are rather trivial or self-ev1dent from a
theoreticai point of view. However, these factors should always be in-
‘the designer s mind since they do set limits on any de81gn. The

materlals are therefore well worth repeatlng even 1f the coverage may be

inadequate,

— -t e e vv—-——u e e o MU S Trd TIUre 0 f
e — . :

steel in a different manner: extremely rapidly and with little deforma-
tion. This type of failure occurs more frequently at low temperature
under static or impact loading and is often induced Ly a crack or a

notch. Notch sensitivity of a metal is its resistance to the starting
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and the propagating of a crack at the base of a standardised notch.
The Charpy V-notch test is most often used to determine this notch
toughness (Ref 8.1). |

Fatigue of steel is a progressive failure caused by large variation
in stress (especially with a reversal of stress) over a period of time.
The average stress acrosé the section mﬁy be well below yield point, but.
the non—ﬁniformity of the stress distribution may caused yielding in a
small region which eventually produces ﬁinute cracks; -the cracks further
increase the non-uniformity of the stress distribution which in turn
cause the cracks to propagate. Fatigue failure océurs with the aﬁpli—
+ cation of large numbers of loading cycles with large variations in stress
or with local stress concentration (Ref 8.2).

Although both types of failure exhibit little ductility, brittle
fracture resistance decreases with temperature while fatigué resistance
. does not. Cracks propagate slowly and_lntermittently in fatigué failure

while brittle fracture cracks propagate at high speed.

8.2.1 Design against brittle fracture

As mentioned abovc, the Charpy V-notch test has been used most often-
in accessing notch toughness of metal. Other tests such as the Tipper
notch tensile test and the Pellini test are sometimes used to determine
the suitability of a metal or a welding-process for a particular situation.
Brittle. fracture failure is most likely when there is a combination of low
service temperature together with (i) thick plates or thick sections, |
(ii) severe stress concentration resulting from poor connections and

details apd (iii) def ects in welding such as cracks or lack of fusion,
(Ref 8.3). Naturally, the above combinations should be avoided if

possible. The safeguard against brittle fracture< Lnus lies in three

factors.
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(i) The proper selection of materials. Materials should be
selected with regard to service temperature and plate thicknéss (Ref 8.4).
The steel shoﬁld be impact-tested, such as recommended in Reference 8.5.

(i1) Correct welding procedure. Another major essential for notch
toughness is tﬁat the corfect welding procedure must be followed. This
problem will be further discﬁssed in the detailed design of welded joints.

(iii) Good fabrication technique and careful supervision.

8.2.2 Design against fatigue

The results of fatigue tests are usually presented as graphs of
nominal stress causing failure against the number of cycles (for labor-
atory specimens of simple shape). The designer should be aware ;f_hOW
these numbers are obtained, as there are many types of fatigue tests,
ibadings, and specimens. There is a growing tendency to do a full
scale fatigue test under representative loading conditions when fatigue
is a major design consideration.

The.'classicaf' type of fatigue response involves a droﬁping range
followed by a runout range (known as the endurance limit). Figure 8;1
shows the maximum permissible stress range plotted from Reference 8.3.

In all modern fatigue rules, the fatigue strength is considered to be
independent of the yield stress of the material. The design against
fatigue is therefore based ﬁn the reduction of permissible stress with
loading conditions.; The éoncept of load factors for fatigue has been
attempted but without any clarity (Ref 8.7). From Figure 8.1 it is seen
that no fatigue is predicted for less than 20,000 cycles (two applic#tions
per day for 25 years).. It.follows tﬁat fatigue will rarely be a.problem
in most civil engineering structures (with the exception of crane struc-
tures). Wind loads are excluded from fatigue consid:ration in the A.S.

Codes of Practice (Ref 8.3) although low, frequently occurring winds
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associated with aerodynamic resonance can concéivably cause fatigue
problems.

Detailed design of joints_are'particularly important in fatigue
consideration. From Figure 8.1 it is seen that the fatigue strenéth
varies considerably with the type of detail used. Improved fatigue
strength caﬁ be obtained by detail design, such as avoiding abrupt{
change of section by large fillet radius, stress relieving grooves, Or,
in cases of cut-outs, by providing suitable reinforcement. Tolerances,
edge distances of holes, surface finish and effects of mgchininé pro-
cesses, should be wafched so that stresses introduced by misalignment,
shrinkage and other causes are reduced to a minimum. 1In making'design
modifications to avoid fatigue failures, it should be watched that the
proce&ureldoes not simply transfer the problem to another location.
This may result in more dﬁmage without any increase in overall fatigue

life (Ref 8.6).

8.3 CREEP AND éHRiNKAGE OF CONCRETE

When concrete: is stressed to a_lﬁw or moderate intensity by a
constant and suétained load, an iémediate deformation occurs (called.
instantaneous elastic strain) followed by a graduai deformation at a
continuously diminishing rate (called creep strain or simply creep).
The two effects are not separable by ordinary testing methods; the
terms are used in a descriptive semse only. It is not known definitely-
whether creep strain will ever settle, but the rate of change diminishes
in such'a'way thaﬁ a limiting value seems to exist. Creeping strain
varies with the age of the concrete at which the load is applied.
McHenry (Ref 8.8) observed that if deformation due to several loads
applied simultaneously or successively is considered, then the resulting

deformation at any time is given by the sum of deformation of each
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1ndividual loading up to that time. This 'superposition' principle
mgde possible the practical problem of determiwing time-varying stresses
and strains in concrete structure.

Shrinkage 1is caused by the loss of moisture by evaporation while
concrete is drying, and 5130 by the chemical change in the hydration of
éement (the former factor is predominating).. In reinforced concrete
even uniform shrinkage causes strains: compression in steel, tension in
concrete. In mass concretes shrinkage appears to confine almost éxclu-
sively to the ouger skin of concrete.

8.3.1 Effects of creep and shrinkage on structural behaviour

Creep and shrinkage cause time-dependent deflexion in reinforced
concrete members. However, the most important effect of éreep and.
shrinkage on the structural behaviour is that they can produce a differ-
ential deformation between various parts of a structure. This differ-
ential deformation causes extra stresses in the structurgl members apart
from the nﬁrmaliy computed dead, live, and,wiﬁd load stresses. The
redistribution of the internal forces in a structure caused by creep and
sﬁrinkage may or may not affect the strength of the structure. The
f@llowing factors are relevant to the design consideration.

(1) Creep and shrinkage.are affected by the environment. Temper-
ature and humidity effects are important because they affect the volume
change of concrete. The exposed and submerged face of a dam or the
interior and exterior columns in a building have different creep rates.
Differential deformation between these parts is poasible.

(i1) Creep and shrinkage are also affected by the volume-sur face
ratio. Thus, differential deformations may occur:between the shear wall
core and adjacent columns, causing differential settlement in the slabs

and supporting beams (Ref 8.9).
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(iii1) Creep is also affected by the magnitude of stress and the
emount of steel reigforcemeﬁt. Both of these factors may cause differ-
ential shortening in columms.

(iv) Lastly, creep is affected by the time factor. Creep is
greater the yoanger_the concrete at the time of loading. This point
is ;mportant since the effects of-creep on. a structure depends just as
much on construction technique as on the design.

The effects of shrinkage is most critical in.the design of rein-
forced concrete water retaining structures. In these structures, shrinkage
may cause unacceptable eracks.l In preetressed concrete structures the
effect of creep and shrinkage are especially significant as they cause
loss of prestress. The problem is further complicated by the relaxation
of the prestressing steel.

While in mest cases creep and shrinkage ﬁo not substantially affect
the strength of structural members, in lo1g and slender compressive members
creep can produce deformations leading to instability so that the load-
carrying capacity of the member is reduced. Creep buckliug of long
columns is a 1ecognised problem, although it is still imperfectly under-
stood. Effects of creep on arches and arch dams can also be quite crit-
ical. These structures are designed so that the load is carried mainly
by axial conpression, the thrust line for the arch (or the thrust surface
for arch dams) nearly coincides with the centerline of the structure.
Creep strains deform the structure and increase the eccentricity of the
thrust line (or surface). This, in turn, increases the stresses %n the
structure. The stress increase is followed by some creep increase; If
the load is sufficiently high, it is conceivable that the structure may
deteriorate :5 the point of collapse. In the design of the Gladesville
Bridge, Sydney, creep is coneidered in detail and measurements are still

being made to assess its efiects (Refg,10)-
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The effects of:creep, however, are not always adverse. The effects
of creep on a beam and column arrangement, for example, are self correcting;
The differential shofteninglin the columns induces moments énd shears in
_the beams. The beams in tur% respond by reducing the load on the gﬁlumn
~which settles most. The colummns which settle less will receive additional
loads from the columns which settle more. This redistribution-créateé-a
new modified stress level for creep. ' There are also the beneficial

. effects of creep in the relief of stress concentration with time.

8.3.2 Design to avoid creep and shrinkage effects

The most common method to avoid the problem is by'inserting contrac-
tion and expansion joints. Proper detail designs can eliminate differ-
ential creep and shrinkage such as recommende& by Fintel aﬁd Khan (Ref 8.9);
interior columns should be designed to have the saﬁe steel perceﬁtage and
volume surface ratio; slabs should be hinged around the stiffer shear
wall-core. Note that fixity attracts and increases volume change énd

should not be made more than necessary.

8.3.3 Design to allow for:créep and shrinkage effects

For structures: in wﬁich the loads are carried mainl? by axial
compressive forces déveloﬁed in the concrete such as qoluums, aréhes,éﬁd
arch dams, the éffecés of concrete creef and shrinkage cannot be avoided
altogether. Some designers take the concrete behaviourlas visco-elastic,
i.g. a delayed elastic bepaviour. Stress-strain relations are still
written in linear form iaéntical_to elastic behaviour with the elastic
constants replaced by integral operatof. In simple form this becomes an
elastic analysis‘with a reduced effective elastic modqlus (Ref8.12).
Moré precise ana1ysis requires expressions for predicting creep. These

expressions contain a number of empirical and gquasi-rational coefficients.

Neville (RefS.lZ)reGieweﬂ six different types of expressions for the creép'
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functions and presented various methods of creep analysis for structural
members. It is noted that all treatments for creep are, at present,
limited to working loads, There are no guides to the ﬁtoblem of creep
at ultimate load. B

In massive concrete structures such as dams the effect of creep on
the stress deﬁelopment-in the structure is difficult to predict (espec-
ially if consideratiqns are given to the foundation which has different
creep properties). Fortuﬂately, from effeétive modulus elastic calcu-
lations, it has been oﬁserved that a wide variety in properties results
in limited effects on stresses and deformations (Ref 8.11).

Finally, the problems of creep and shripkage can be alleviated
somewhat by quality control of concrete. Strong conérete creeps less.
Howevér, if the quality of the concrete is inconsistent, the differential

creep may be greater. Curing is important in reducing shrinkage cracks.

8.4  DETAILED DESIGN FOR DUCTILITY

Many experienced desioners have observed that most of the failures
in steel and concrete structures have tecn of a brittle type;- Special
attention must be given to the detail design of joints as these are often
the regions of high moment and shear. Local ﬁeakness at these points
will govern the structures capacity to carry loads. Precise solutions
for the strength og joints are not necessary provided that thef are on
the lowef bound; more attention should be given to the detailing of
joints. Thé aim is to achieve ductility, i.e. ability to undergo deform—
ation beyon& the elastic range while still maintaining loads. Ductility.
provides safeguérd against overload and impact since it allows large

redistribution of forces in the structures (Ref 8.13).

8.4.1 Concrete detailing

(i). Shear faiiures in concrete are quite sudden and without
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warning and they should be avoided at‘all stages. Members sh;uld be
checked for shear so that up to ultimate capacd}y (flexural) no shear or
diagonal failures can take place. Shea: re-inforcement must be adeduate
up to ultimate capacity witﬁout relying on concrete capacity to take
shear.

(ii) Anchorage. Particular attention shouid be given to the

~anchorage of the main bars especially at regions near to columms.
Sﬁlicing shoulﬁ be far from regions of high stresses a d must be stag;
gered. Anchorage for transversé reinfbfcing, stirrup hooks, should be
checked.

(11i) Confinement of concrete in high axial load members is useful
in maintaining ductility. This is done by providing high yield steel
hoops closely spaced. The higher the axial load, the more confinement
of concrete iq necessary.

(iv) Quality of steel and concrete. Concrete crushing must be
avoided by adequateisteel provision (a limit of 2.5% is usually used for
design). High yield steel reduces ductility while high strengfh concrete
increases it. |

(v) Ductility requirement for beams and columns. For a beam to
have adequate ductiiity, the steel percentage must be kept well below B
those for "balanced elastic design". Over feinforced beams have little
ductility as the coacrete may crush before the steel yields. For a
column to possess ductility, the maximum compressive force should be below
one quarter of the ;ltimaté compressive strength of the column section.
This requirement caﬁ easily belseen from a typical column interaction

curve (Fig A1,10, Appendix Al).

8.4.2 Sfeel detailing
(i) Joint layout. Simple joint layout is important. The cost

of fabrication_is usually high for jbiuté._ The number of pieces which
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require marking out,' cuttiﬁg and fittiilg, special edge preparation, should
be minimised. The two most common methods fo. joining metals together
are bolting and welding. ' Welding is still the main method wused in the
shop, and with modern methods of inspection works of very high standard
can be ei:pectefi. - Bolting has largely replaced riveting with the devel-.
opment of high stlrength bolts, and is popular in the field. _ The gene'rai
trend is to have all the pieces welded in the shop where high quality
welding is possible and boited_ in the field for ease of erection. A
combination of bolting and field welding is sometimes used such as in
colunm-;beam_ connection. .Another obvious point 1in designing joint layout
is to make the job alccessib'le for welding or bolting; this féature is
sometimes overlooked by the designer.

(ii) Welded joint. The following points should be watched when
a welded joint is designed. |

Selection bff welding process and piecautions. Arc velding is a
fusion process in whidh the electrocies are melted to provid-e the filler
metal. The difference in welding with or without flux should be noted.
The heat affected zéne on the parent metal is likely to cause cracks and
this should Be eliminated with proper precautions. For carbon steel,
" weldability decréasés with the increase of carbon contﬁents. For low alloy
steel the ma:i.n danger is underbead cracking. High alloy steell is sus-
ceptible to embrittlement from grain growth at high temperature. Egch
stegl must be considered separately and weldability is related to the
type of joint used.

Effects of distortion and residual stresses. Due to the presence
of the heat in welding, the dimension of the end product will cﬁange;
this causes distort.ion and stresses. Thus over weld"pg mt_Jst be a\_roided.
Preheating helps to eliminate some distortion_and stresses . Normally

the effects are not important as they can be absorbed by plastic
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deformation,_unless-precaufions_are not taken and the welded joints
become brittle. Stress Felieving procedures Lqually alleviate these
problems. o | |

Service conditions. Joints ﬁhich are excellent for one job may
not be adeﬁﬁate for others becggse of different operating conditions;
The nature of the stress in the joint must be considered; tension,
shear, tofsion, bending...since differentljoint design is suitable for
different stress application.

Weld selecti?p. Fillet and lap welds are easier to make than
butt welds. Automatic welding is fast and reduces the cost of deposit
metal. Shop welding is good and reliable. Field welding is expensive
and should be kept to a minimum, preferably replaced by boltiné.
Confinuous single run fi}let welding isldesirable, eépecially when
corrosion is to be considered. |

(iil) Boited Joint. With the development of high strength bolts,
the use of bolted joints has largely replaced riveted joints in_stfuctures.
The advantage is ofgcourse the ease of erection.. The tightehing ﬁro-
'cedufe by courting the tﬁrn-of the nut has been shown to be reliable,
easily used and inspected in the field. Research has shown the superi-
ority of bolts over rivets in Eoth fatigqg and static tests. Tests on
_iarge bolted joints-sﬁowed that the strength of the fastener in shear
far exceeds the strength of the section. Misalignment and condition of
the surface have little effect on the joiﬁt efficiency. For moment
connections it has been shown that bolted joints can accommodate large
rotational displaceﬁent if flexible end plates are used. There ié only
one failure of bolted joints reported in literature; the cause ié attri-
buted to corrosion and overtightening effect.

The design of bolted joints should be made so that the failure is
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forced into the connected material rather than the bolts.themselves,

since this type of failure is more ductile.

8.5 CONCLUDING REMARKS

Various aspects of practical design consideration have been dis-
cussea. The discussion is by no means complete and is limited by the
author's own practicai experience. The prime purpése is to achieve
Quctility in the members and the structure. Most of the problems can be

avoided by careful and suitable detailing, particularly in the detailed

design of joints. Thorough supervision is required since so much depends .

on common sense and good construction practice. The successful comple-

tion of a job depends on many persons. However, fhe prime responsibility

rests with the designer. He must issue adequate instructions on drawiﬁgs
and specifications to ensure that the structure will be properly built

since he is the only one with the most comprehensive view of the project.

R,
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'z:rié TESTS OF ARCHES AND RE£ATED CALCULATIONS

' §
INTRODUCTION

| Tests on thrée series of_arches (steel, reinforced concrete, and
plain concréte) were made to study the behaviour of-arches under increasing
vertical loads. . Both.symmetrical and unsymmetrical loading arrangements
were used. - .

All arches were ldadgd to collapse; Deflexion and strain measure-

ﬁeﬁts were takén at all stagés of loéding; thfust lines were plotted from

experimental data, and the collapse modes were studied;_

GENERAL DESCRIPTION OF TEST SET-UP AND EXPERIMENTAL PROCEDURE

All arches were mounted on apecially designed steel beams. Tests
ﬁere-performed in (1) én Amsler teatiné_machiné, (11).3 Shimadzu testing
machine, and (iii) a=spe§ially designed 1oadiné rig ﬁith Roberts mechanism
which allowed the arches to sway freely. The ' general loading arréngements
were shown in Figure Al.1(a), (b), (c), and (d).
Measuréﬁents were made with dial.gauges for deflexions; Huggenberger.
 mechanical gaﬁges for strains in steeizand concrete. Electfic#l strain
gauges were also used at places inaccessible to the Huggenberger gauges.

All arches were loaded to collapse, measurements were made at all
stages of loading, The collapse modes were s£udied. |

Pf&perties of the materiais were obtained in the usual way; 'tensile
tests for the steel specimens made from the same batch of steel, and
, compressioﬁ tests for,the standard 6" cylinder concrete specimens made
from the same mix as the experimental models. In adfition, the plastic
moment for the steel section was obtained from simple beam tests, and the

yield surface for the reinforced concrete section, subjected to combined



(b) General loading arrangement on the Amsler testing machine.

FIGURE Al.1



(c) General loading arrangement with proving ring and Roberts
mechanism for free horizontal movement.

(d) General arrangement for symmetric loading condition.

+FIGURE Al.1l
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behding and axial forces, was obtained from a series of testé of columns
(of the same section) under eccentric loadings

From the strain readings at a certain load level and the sfress-
strain curves for the materials, bending moments and axial forces were
calculated for various locations on the arches; the thrust line for that
load was plotted to obtain an overall equilibrium check.. While the overall.
‘equilibrium condition is satisfactdfy, detail comparisons of the thrust
anq bendipg moment values often show poor agreemenp; The'shiff of the

thrust line under different load levels was also observed.

EXPERIMENTAL RESULTS, RELATED CALCULATIONS, AND DISCUSSIONS

STEEL ARCHES
The dimensions‘and other details of the steel arches are given in
Figure Al.2(a). The arches are made from 1" x 1" x 1/8" rectangular
hollow section, bent to the desired circular shape, then annealed before
testing. Half inch base plates are welded to the arches and bolted to
the supporting beamgl A}tar yielding oécurs, difficulties were exper-

ienced in maintaining a steady load while reaaings were taken.
i

ARCHES UNDER SINéLE POINT LOAD AT QUARTER SPAN

A typical load-deflexion graph is presented in Figure Al.2(b),
together with related caléulations. Yield was first reached under the
point of loading C, then at the support A, then at the region D, and
finally at the support B. There was considerable spreading of the
yieldedlregidns A, C, and D, while the supporﬁ'B remained elastic for
most of the test's duration.

From thé strain readings, thrust lines were.plotted in Figure Al.3.

A picture of the collapsed arch is in Figure Al.4(a).

CALCULATIONS. The axial force in the arch is small and the load is

resisted mainly by flexural action. A simple plastic analysis is
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performed by drawing the plastié thrust line for the point load. The
calculated ultimate load is 17.2kN, well above che measured 14.2kN. The
effect of vertical deflexion is taken into account as shown in Figure Al.5

and A1.6. The result is the sloping line UP in Figure Al1.2(b). The

2
" measured ultimate load is higher than this estimate; strain hardening of
the section with increasing deformation is thought to be the cause of the

difference. An elastic-plastic analysis using dynamic relaxation (Appen-

' dix Bl) is also performed and shown on the same graph, Figure Al.2(b).

ARCHES UNDER SINGLE POINT LOAD AT THE CROWN

The results of tests and calculations aré presented in Figure Al.7.
The picture of the collapged,arch is in Figure Al.4(b). It is seen that
there is considerablé spreading of the yielded regions B, C, and D, whilel
the supports A and E remain elastic for ﬁost of the test's dﬁration. It
can be said that the 'hinges' at A and E were not properly formed. The
reason can be easily seen-in Figure Al.7; most of the deformation occurs
in the regions B-C-ﬁ. . The influence of defleiion on the load-carrying
capacity is quite marked as shown on the second order rigid—plastic analy-

sis, Figure Al.7.

EFFECT OF STRAIN HARDENING

Some unannealed arches were also tested to study the effect of strain
. hardening.‘ The results are compared in Figure-Al.S. The unanneaied
arches were considerably stiffer and consequently the ultimate load cap-
acity was mucﬁ higher. However, while the annealed arches could hold
ultimate load with increasing deflexion, the uninnealed omes could not.
The arches were under the conflicging influences of strain hardening and
.deflexion; For the unannealed érches, the influence of deflexioﬁ (which
decreases the load-carrying capacity) is offset by the influence of strain

hardening (which increases the ioad capacity). For the unannealed arches,
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(a) The collapse of a steel arch under one single point load
at one quarter spane.

(b) The collapse of a steel arch under one single point load
at the -crowne.

FIGURE Al.4
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there are no further strain hardening effects after the ultimate load is
reached, and the incfeasing deflexion causes t. : load capacity of the arch

to drop (Ref Al.1l).

REINFORCED CONCRETE ARCHES

The dimensioqs.of the arches and the details of reinforcement are
given in Figure Al1.9. The reinforcements (4-3/16" wire) are welded to the
base plateq; The base piates have four steel bolts on their other sides,
enabling the arch to be mounted on the supporting beam. |

Strains were m?asured both on the concrete and steel reinforéement
with Huggenberger strain gauggs. From theSe data, thrust lines were
plotted for various loading levels to obtain overall equilibrium check.

A series of reinforced coluﬁns were made from the same mix with the arches
and tested under varying eccentricities to obtain the yield surface for

the section; - the results are presented in Figure Al.10.

‘ARCHES UNDER SINGLE POINT'LOAD AT QUARTER SPAN _

A.picturé-qf the collapse arch is.in Figure Al.11(a); only three
regions of extensive?deforﬁation'are observed. Cracks were formed quite
early in tﬁe tést. Concrete crushing oﬁly occurred when the arch nearly
reached its ultimate.capacity; there was aldrop'in the load capacity
when the concrete stﬁrted to crush. The calculated and.u@asured thrust
1ines afe plotted in Figure Al.12(a). Calculations were performed as in
the steel arches, i.e. a simplé plastic analysis, then corrections were |
made for the effects of axial loads (from the interaction curve Figure
Al.10) an& déflexions (from the analysis) of the motion of the mechanism,
Figure Al1.12(b). The equilibrium éonditions are as given in Figure Al.6.
Tﬁe load-deflexioﬁ éraph is in Figure Al.12(¢). The difference in the
measured and calculated values is due to the incomplete redistribution of

moments. The calculations assume that the ultimate moment as given by
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(a) The collapse of a reinforced concrete arch under one
single point load.

(b) The collapse of a reinforced concrete arch under four
symmetric point loads.

FIGURE Al.11



W=12.8 kN

-

' -8 +4
- TN

RO~
N D A

+7.0 B +.8 -2.0
® o @

+ve tengion

._;._ Meqsurgdy Hrust line J’ 12.8 kN . Stan ﬁaum ,uos
=== Galevlated thrust Ime at &=Bmm . |

- Ve a.-m,;w.ssion

Measured and calcolated thrust line for e rei'n{-‘omcl uu&et arches loaded af c‘uartr :Pén .
Figure ALI2(a) | |

:
i

991



Inshnfénwvs Ct—'\‘tu'

Figure ALI2(b)

L9T



5

lo

168

Load W(CKNY |

Znorder‘ rigicl._ ?\qsfhc_ anal\/sis .

load ~ de‘Cle:uom curve for Hre Tasted vesmforced

Cov\cre"-z qvc'r\ |an{cc‘ o."' 3(161,{11’.1‘ SFQV_).

A -Measuremen+
T < A . 5

1 !

| _ \/e.rTiCq‘ Jef(exiov\ at ]Oad\ihalfom’]’(mm)

Figure AI.I2(G\)



169

the yield surface can be maintained with increasing deformations while
actually there is a drop in the capacity of th_ sections with increasing

deformation (Ref Al.2, Al.3).

ARCHES UNDER FOUR SYMMETRICAL POINT LOADS

The arches failed locélly near-thé support with broken ties
and the main reinforcement ﬁas buckled. No other cause of failure was
visible. The thrust lines for the arch are in Figure Al.13, the picture

]

of collapse in Figure Al.11(b).
o _

|  PLAIN CONCRETE ARCHES

The!dimensions of the arches are the same as those ofthe reinforced

concrete arches. |
ARCHES ﬁNDER SINGLE POINT LbAD AT ONE THIRD SPAN

. The behaviour of the arches is influenced by the tensile strength
of fhe concrete. éfter cracks have formed, the afches can carfy very
small loads.  The arches fail with four hinges-ashpictured in limit
'theory, Figure Al.lé(b). However, with some support movement it is
possible that the slipping failure would occur near the loading point as

observed in some tests at our laboratory.

ARCHES - UNDER FdUR POINT SYMMETRICAL - LOADS

| Sine the thrust line lies within the arch and there is little
bending moment, failure could only occur with extensive crushing of thg
concrete. There are only three regions of extensive crushing when the
ultimate load is re;ched,.Figure gl.lé(b). A four hinge mechanism type
of failure is not p&ssible as caa bé seen from the position of the thrust

line,'Figufe Al.15.

@

CALCULATIONS. There is no standard treatment of this mode of failure.

The following scheme of lower bound calculation is proposed.
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(a) The collapse of a plain concrete arch under one single
point load.

(b) The collapse of a plain concrete arch under four
symmetric point loads.

FIGURE Al.14
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Only half of tae érch-is considered &ué to symmetry. From the
~thrust line in Figure Al.15 it is obvious that :he two most highly stressed
regions are A and C.; The equilibrium of the system is given in Figure
A1.16. For simplicity the rectangular Whitney's stress block is used.

The value of thrust and moment at a section is given by

" where t is the section thickness, ¢ is the width of the stress block.
Trial values of thrust apd moment are guessed at the two failing sections,
the equilibrium of the system is checked, and the value of the collapse
load obtained. The iterative procedure, which is presented in the flow
chart of Figure Al.1l6, 1s-repeated until safisfactory agreement ié reached.
The effect of the ér;wn deflexion can also be included in the scheme of
calculations as shoﬁn in Figure Al.16. -

The results of the calculations are:

With no deflexion: At the crown c = 1.74" )
: ). W=2.01.(0.85 £' )
) c

L}

. At poin. C c =1,98"

With 1" deflexion
at point C : , At the crown c = 1.84" )

) W= 1.80.(0.85 f')
) c’.

At point ¢ c ='1.99"
The measured ultimate load is Wu = 8000 1bs, with crown deflexion 1".
The strength of conérete is f'c = 5500 lb/in2 (from cylinder tests);

therefore W(pollapse)= 9300 1bs (no deflexidn) , W =28400 1bs (1" deflexion).

The calculated value of the collapse load is only 5% di fferent from the
measured value. It is envisaged that the proposed method of calculation

can be suitably applied to the problems of arches under symmetrical load.

¢

CONCLUSION
The results of tests cn steel, reinforced concrete, and plain concrete

arches were reported. Various aspects of the collapse behaviour are
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- discussed and.related limit calculations are performed. The actual
redistribution of moﬁents and the collapse loac can differ significantly
from plastic limit tﬁeory. The diffe;en;es are due mainly to the limited
redistribution of moment in the archea; particu;arly.reinﬁorced concrete
arches. Deflexion is another major factor for the discrepancies between.
theory and observed behaﬁiﬁur; however a secondlorder rigid—plastié anal-
ysis (which includes deflexion effects).cah usually Be per formed eaéily.1
Connection detailed desigﬁs are particularly important as they may cause
major changes in the behaviour of the arches. In all, tbe tests provide
an insight into the basic s£ructural behaviour of steel, reinforced con-

‘crete,and plain concrete arches.
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APPENDIX A2

YIELD LINE PATTERNS OF SLABS AND THE ROOF ANALOGY

-~ INTRODUCTION

Three slabs of different dimensions and boundary conditions were
tested under uniformly distributed load. The aims were to observe the
collapse behaviour and to compare the yield line patterns with a proposed

roof analogy.

GENERAL DESCRIPTION OF TEST SET UP AND EXPERIMENTAL PROCEDURE

The dimensions, suppert conditions, and details of the reinforce-
ment of the slabs are given in Figure A2.l. All slabs are 25.4 mm thick;
reinforcements are made of.1.6 mm diameter'wire 25.4 mm spacing placed
centrally both ways. | -

The uniform loading is provided by a rubber bag loaded with either
air or water pressuré. The pressure is measured with demountable pres-
sure gauge; the ;otal load on the slab is obtained from proving ring |
readings. A picture of the test set up is presented in Figure A2.2(a).

Dgflexions were measured with dial gﬁuges. Strains were measured
with electric strain gauées. The st;ain readings were difficult to inter -

pret due to the presence of cracks.

OBSERVED COLLAPSE BEHAVIOUR

Due to the high tensile strgngth of concrete and the lighf centrally
placed rginforcement, it is difficult to tell whether theﬂreinforcing
steel has any influénce on the behaviour of the slab.

Twé types of cracks are formed. The major cra;ks which divide the
slab into portions; extensive deflexion and rﬁtatians are observed along

these cracks; they are usually termed the yield lines. With each region
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divided by the major cracks, there are minor cracks which allow the slab
to deflect to conform with the deformation pat .ern provided by thé'major
cracks. The corner effects, i;e. the branching of the major cracks as

they enter a corner, are also observed. -

THE ROOF ANALOGY

A simple way of picturing the yield line pattern is obtained from
the following roof analogy. | _

The slab is considered as the area to be covered by a roof. A
suppofted édge of the slab is equivalent to a sidé of the roof with rain
gutter. A free edge is equivalent to‘a side of-the roof:withqut rain
gutter. A colummn support is equivalent to a down pipe.

If a roof patfern is devised.so that.the-rain water can flow down
the prescribed way, then the projection of thé ridges-is a possiﬁle yield

line pattern.

COMPARISON OF YIELD LINE PATTERNS AND RbOF ANALOGIES

Figure A2.4 presenté the roof patterns and the corresponding yield
line patterns uf the three tested slabs. Figure A2.2fbj, Figure A2.3(a)
and Figure A2.3(b) show the actual yield line ﬁatterns. ~ The overall agree-
ment is fgirly good. A major differénce'is found in Slab No. 3 where a
circular yield line is obtained around the columh support instead of the
predicted séuare patﬁerﬁ.' However, the former can be considgred as a

limiting case of the latter -(Ref A2.1).
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(a) General set up for the testing of slabs.

(b) Failure pattern of Slab No. 1.

FIGURE A2,2



(a) Failure pattern of Slab No. 2.

(b) Failure pattern of Slab No. 3.

FIGURE A2.3
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APPENDIX A3

TEST OF A SHELL AND RELATED CALCULATIONS

INTRODUCTION

A concrete circular cyiindrical shell supported on three sides was
tested under uniform radigl loading condition.l The test was performed
as a preliminary step in the investigat;oﬁ of fhe strength of shell struc-

tures in general, and of arch dams in particular.

GENERAL DEsCRIPTION OF TEST SET UP AND EXPERIMENTAL PROCEDURE

The dimensions and the supporting conditions of the shell are
presented in Figure A3.1(a). The shell is 25.4 mm thick; reinforcements
are made of 1.6 mm diameter wire, 25.4 mm spacing placed centrally both
ways. -

Tﬁe general arrangement of the test set up is sketched in ?igure
A3.1(b). The unifqrm radial pressure is provided by a curved rubber
bag, especially designed forlthe test, loaded with water.pressﬁre. The
-ipreégure is me2sured with demountable pressure gauge; the total load on
the shell is measuréd with four proving rings placed at four corners of
the supporting fpame. A.picture of the test set up is presented in Figure
A3.2(a). |

Deflexipn was measured with dial gauges placed at various positions
. along the crown of the sheil. Strains on the concrete were measured with

electric strain gauges piaced on both faces of the shell, Figure A3.1(a).

OBSERVED BEHAVIOUR

The high tensile strength of concrete and the light reinforcement
made it d;fficult to assess the effects of the reinZorcement on the beha-
viour of the shell. | The exact supporting condition was not known;

_fuliy hinged restraint was originally intended but it was observed
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(a) General set up for the testing of a shell under uniform
radial loade

(b) Picture of shell after collapse.

FIGURE A3.2
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subsequently that partial sliding actually occurred.

The load—crowngdeflexion graph is presen*~d in Figure A3.4. At
low-pressure-(under 60 kPa), there was no crack and the shell behaviour
was elastic and repeatable. The pressure was taken up to 60 kPa,-thenl
reduced to zero three times. _ Consisteﬁt readings of deflexions and
strains were recorded. As the load increased, the behaviouf became non-
linear. Cracks were formed and-the ﬁ0vemehts of- the suﬁport observed.
Sketches of cracking patterns are presented in Figure A3.3 fﬁr various
'1o;ding levels. The cracks originated from the straight edges and were
thought to be caused by thé deformation of the supporting rig. There
was crushing of the conérete ;t the crown and the supports in the trans-
verse direction at high pressure. The final cbllapse was sudden, the
upper part of the shélll(near the free edge) cave& in; the instability.
was caused by extensive ﬁrushing of concrete and large deflexion. A
picture of the c&llapsed shell is presented in Figure A3.2(b). The

ultimate pressure was 138 kPa.
) [

- CALCULATIONS

Calculations were done on the basis that the steel reinforcement
had no influence on the load-carrying capacity.

For tﬁe uncracked state, an elastic analysis by Finite E;ement'
method, (Ref A3.1), represented by the line OA in Figure A3.1, shﬁws fairly
good agreement with the measured data .(Ref A3.1). o

For fhe ultimate loading test, it was observed that the supporting
rig had been deformed perménently and the edge conditions had changed from
hinge to free to'slide. An approximate elastic-p;astic analysis of the
shell following the line suggested in the next section was performed, and

the results represented by the line OCD in Figure A3.4.
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APPROXIMATE ELASTIC-PLASTIC ANALYSIS OF CYLINDRICAL SHELL UNDER RADIAL LOADS
Following Tolke's simplified method of e.astic analysis of arch dams
(Ref A3.2), the folléwing approximate elastic-plastic analysis of cylin-
drical shell under radial loads is proposed. The method is most suitable
. for the analysis of arch dams. | |
The shell is divided into a serles of’horizontQI arches.- The arches
are assumed to resist the radial loads elastically until tﬁe combined
axial thrust and bending moment reach'thé combined failure condition;
_then it is assumed that the arch will—not_take_any further extra load.

‘The failure condition for the concrete arch section is
N‘max = °‘85f¢' = ) Mma, = O-Bsfc.- c.(H2 .d ) )

where c-is the width of compressive part of the section and t is the
section thickness (Fig A3.5). The crown deflexion of an arch &) under
un:lforﬁa radial pressure p is proportional to the presaui:el P = K. W, |

" The factor K 1s found from elastic theory of arches (Ref A3.3). K can be
made to accommodate ;arious béunda:y conditions including the changing
shape of the supports (tfiangul&r, rectangular, trapizoidal, etc...), the
deformation of the shpport, and the degree of fixity at the shell edges.
The factor ¥ can be different for different slices of the shell.

Consider a strip of unit width along the crown of the shell in the
ﬁertical direction. - This strip is imagined as being placed on a non-
uniform elastic foundation provided‘by the archeé, and 1s analysed as éuch.
The strip is assumed to be elastic aqd to carry its loads by bending moment
until the failure condition is reached. For a concrete section,_the |
failure éoﬂdition is

M mmax = équS‘ch{?/fa
where t is the shell thickness.

The analysis of the shell is thus reduced to the analysis of a strip
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on elastic foundation. The deflexion of the strip at a particular level .
determines the pressgfe which acts at that lev~l. The magnitude of the
thrusts and moments ére determined from the value of the pressure, using
the elastic theory of arches. With increasing load, either the vertical
bending moment in the strip at a section reaches its yltimate value

(a hinge ié then formed at that section) or the combined bending and
thrust an an arch section reach the failure condition (the 'elastic'
support is then considered as absent for any further increase in load).

The calculations are ﬁerformed in the following order:

(1) the elastic analysis of all arch slices éo_dqtermine the arch
stiffneaé factérs at the érpwn using elastic arch theory.

(i1) ‘the analysié-of the beam on 'elastic' support. This analysis
can be done either analytically or numerically. Due to the changing
properties .of the septions, it is best to use a numerical technique such
as Finite Element of Dynamid Relaxation to solve the problem.

Thé calcuiations for the tested shell model are summarized in
Figure A3.5. It ié seen that despite the drastic simplification made,
the results agree fairly well with the measured data.
| Similar calculations are performed for the Bustamente's arch dams
model (Ref A3.4 and Chapter VI). The results are summarized in Figure
A3.6.

One of the advantages of the proposed method is that it can be used
to assess tpe load-carrying capacity of arch dams with elastic abutment.
One of such analysis is performed for the arch dam type I (Ref A3.5), the

results are presented iﬁ Figure A3.7.

CONCLUSIO&I

Teaf of a shell with boundary conditions similar to those Af an arch
dam under.ﬁniform-radia} loads is presented. An approximate elastic-
plastic meth;d of analysing such a shell is proposed. The method is then.

used to analyse some arch dams with rigid and elastic abutments.
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APPENDIX Bl

DYNAMIC RELAXATION TREATMENT OF DEFLEXION

IN ELASTIC-PLASTIC FRAMED STRUCTURES

SUMMARY

Deflexions of framed strﬁctures loaded into the elastic-plastic
~ range can be estimated using the technique of dynamic relaxation.
The calculation is made simple 1f a cubic function 1is used to des-
~cribe the'deformed_shape pf'the frame element. The method differs from
other methods in assuming.that the yielded fegions are spread out instead
of being localized. | The results are compared with those given by Heyman

(ﬁef Bl.4).

INTRODUCTION

Treatments of_deflexions in elastic-plastic framed structures have
been given by Symonds and Neal (Ref Bl.1), Lee (Ref Bl.2), Stevems (Ref Bl.3)

j - :

and Heyman (Ref Bl.4). The treatment given below differs in assuming that
the yielded regioné are spread out instead of being lbcaliged at the hinges.
Consequently there ié no plastic hinge discontinuities. This assumption is
supported by experimental observations as reported in Appendix Al. Local-
ized defo;ﬁation is dominant only when the ultimate load is reached. The
use of d&n#mic relaxation tedhnique allows thé separation of equilibrium
and geometrical conditions, and results in a very simple computing proce-
dure. The results are in close agreement with other methods and experi-

mental measurements.

FORMULATION OF THE METHOD
(a) Geometry. Consider the member AB in flexural action only
(Figure Bl.1). A cubic function is used to describe the deformation of

the member: 3 2
' W= ax + bx+cx +d
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If the end rotations of the members are O . GB , and the end

deflexion Wp,, Wy , the curvature expressions ..r the ends A and B are

e (‘3'5’:2‘ 4 (0alL) + 2(8e/8) + 6(wy-wy)/1?
{, | |

..l‘.dt...."(l)

i

o) = 208a11) + 4 (811) 2 (e, 1

‘iqede

(b) Moment_- Curvature relation. Any established moment-curvature '
relation can be used. For simplicity the elastic-perfectly plastic

moment curvature relation is used here.

M, = (EI) Ne Pr R € Ry . @
M = Mep for KL > Ky
(c) Equilibrium. Both the equilibrium of the joints and the equil-

ibrium of the members are considered. For frames which carry the loads

mainly by bendipg moment, the equiliBrium of the joints results in two

o |

Sum of the forces at a joint Z. V = O

sets of equations.

]

i
Sum of the moment at a joint ZM
- & 8 8 8 &0 B8 (3)

The equilibrium of eéch member gives the value for thé end shears

Qu =- Qg = (M4 +Mg)/1 L

(d) Dynamic relaxation iterative procedure. The general scheme
of calculation is given in the flow chart of Figure Bl.2. -One starts
with an initial guess for the deformation of all joints, (w; ©.) .
Curvatures are computed from (1), end moments from (2), end shears from (4).
Overall equilibrium check is given by (3). If equilibrium is not reached,
the deformations are relaxed as in standard dynamic rélaxation process

and the calculation repeated until convergence is reached.
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EXAMPLES

(a) Fixed end beam. The load-deflexion graph for é fixed end beam
under one single point load is given by Figure Bl.3 and is compared wiﬁh |
that giveh by Heéman (Ref. B1.4) .. It is seen that the deflexion given by
our_method is less than that by He?man's for the same load, the. reason
being :ﬁe omission of hinge discontinuities. As observed by Gregory
(Ref. B1.4) it is ndt'poaSible to calculate the deflexion for a given load
with any good agreement with the experimental results. The question is
"A? a given deflexion, wﬁét is the load that can be supported?". 1In

this sense the two methods show fairly good agreement.

(b) Portal Frame. | The portal frame, tested by Baker in _Ref. BL.6
is analysed. The results are presented in Figure Bl.4. The analysis
used both elastic-pe}fectly plastic and elastic-strain hardening moment

curvature relation. The agreement is fairly good.

CONCLUSION.
| A simple methéd of estimating the deflexious of framed structures in
the éiéstic-plastic:range has been presented. The model used in the anal-
ysis allows the spreading of the yielded regions along the member lengthl
inste;d of localized hinges. It is noted that the two models (localized
| ﬁinges'ﬁr spread out yielded regions) are only approximations of the actual
physical condition, which is perhaps somewhere in between. The developed
model 18 useful in the analysis of concrete structures where unlimited

hinge rotations are not possible, and tests have shown considerable

spreading of the failure region.
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APPENDIX B2

DYNAMIC RELAXATION TREATMENT OF ELASTI. STABILITY

PROBLEMS IN OVERBRACED FRAMES

suuuani

| "A_numericﬁl étudy of the load-deformation behaviour of overﬁraced
frames by the method of dynamic relaxation is presented. The re;ulta
‘show that the major internal forces causing bﬁckling in overbraced frames
are not statically determinate and redistribute markedly as Buckling
défofmétiona occﬁr. The ordinar&_stabilify analysis of the Eulgr type

1s'not adequate to describe the behaviour of sﬁch frames.

INTRODUCT ION i

The overbrhced.framé of Figure B2.1 is ﬁsed to demonstrqte the
'application of the method of dynamic relaxation to problems of elastic
stability. The method is fléxible, Qllowing for tﬁe inclusion of the
effects of crookednéss and prestrain. Dynamic relaxation uses a démping :
technique to.snlve a strﬁétural'problém by a process of iteration between
the equAtiqna of geometrical compatibility and the equations of equili-
brium. The basis of the method has been fully explained by Otter_et al
(Ref BZ.l)'and:will not ;q repeated here. | '
FORMULATION OF THE PROBLEM

The rigidly-jointed triangulated frame of Figure B2.1 has the.l
internal axial force distribution (aé yet unknown) as defined'in Figure
B2.2., To solvé the problém iteratively, nine degrees of freedom are used
to describe the deformation of the frame. They are six joint rotations
- and three mid-span displacements, Figure B2.3(a). The correapon?ing
| forces are moments at the ends of members Hl to M18? and shear forces gt

the ends of members Ql to QG’ Figure B2.3(b).
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Only the élast;c behaviour of the frame is studied. the general .
form of the moment—d;splacement relation for a ~traight member AB Figure
B2.3(c) 1s L

Ma =(E]:[£){(s¢|~sc)ull + 56,4 + SC 0§
Mg =(x/L){(s+5AOUIL +5c 8y + S b5}

where S, SC are the stability function coefficients (Ref B2.4) which
depend'on the axial force P in the member.
The equations of equilibrium are:

(;) Sums of end of member moments equal to zero at joints 1 - 7.
My + Mz.i.-u_ "' M.i_a-ﬁ.
Mo+ Moy,

My + M, =+ Mls

(i1) Sums of forces normal

Q4 - Q3 - 0 ' ) . o.-c;‘ooot. 32‘3
. QZ'-. IQI = O

(111i) The shear forces are obtained by taking mmmenfs of each member

about its end.

Qi =[M,+ My - B(UT+ V(M2

Q, =[Ms + My + PL(UT+ U (L/2)

Qs =[Ms+Ms - R(U5 + U]/(L/2)

Q, = -M., + Mg + R(US+U][(L]2) e
Q= [Mq + Mo - R(U; + U] [(/2)

5

Q= [Mu+ Mg * P(U?_+U,_)]/(L/2)'
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whére L%:is the initial crookedness and Lk is the latérgl displacement of
the point 1. Note éhat the-lést terms of equations B2.4 represent the
non-linear effect of axial load on lateral displacémgnt.
For compatibilitylcalculations, it will be necessary to calculate
the shortening of each memeber due to axial forces and bending ﬁoments.
Tﬁe axial shortening; due to axial force P, is given by
S = P.LIEA . | evereeer.  B2.5
The bending sh;rtening is given By |
L 2 '
& =4 (gL ds
If the deformed shape of the member is assumed to be
y =Asin([p=/L)+Beos(fp Tx/L)+Cx +D
where f'= Pf-PE .and'_A, B, C, D are constants to be determined from the
boundary condition: :(3)“; =Y) =0 ; (d?f"l")xzo"' O ;
Ld‘a!dx)xﬂ-.; GB 5 the bending shortening then l:oecomei:2
gb =-(L/11")(_‘;‘_E('9:* O;-) + F19A93> ETRERERE B2.6
1> F, can be shown to be the derivatives, with respect to f’, of
the stability functions S an? SC respectively (Ref B2.2).

wheré F

The total shortening of the member is then

8 = gq.._ gb ‘ ceosisenns B2.7

For any external load W, the distribution of the axial forces in
the frame are not known. However, if onme is assumed, say P, (Fig B2.2),
then the otﬁers can be deduced from Bt;atics, and hence the deformation of
the whole frame can be calculated using equations B2.1 - B2.4. |
If the frame is thought of as consisting of tﬁo parts, the star
| frame (inner part, *) and the delta frame (outer part, Z\), then the
displacements 4, and 4, of point A relative to the line BC (Fig B2.4)
_ot‘ the two parts are compatible only 1f the correct values of axial forces
distribﬁtion are used in the calculations. The values of 4, and A,

are given by
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A, = ?_3,”3 - 52!25 ~ (delta frame)

: | cevereeee. B2.8
.152 = 85 + 254 - SZE/Z (star frame) .

.where S 2, S S are the total shortening of the members 1, 2,
3, 4 as shown in Figure B2. 4 | -

The scheme of éalculation'is shown in the flow chart of Figure B2.5.

EFFECTS OF CROOKEDNESS AND PRESTRAIN

(1) Crookedn;ss. Any required amount of crookedness can be imposed

upon the framu b:\rI specifying the valueg-of U, 5 U_; )' U; . Note that
various modes of buckling can be stimulated by appropriate apecifi'cation

of the crookedness values. |

(11) _Pfustrain. Presurain can be included as. a set of constant forces
which are in equi.'librium with themselves without any external loading,
Figure B2.6. Note lthat the values of crookedness and prestrain are not
.necessari1y ;ndependent. If an attempt s made to specify them separately,

the values of prestraining forces will alter the values of initial crook- -

edness at no load.

SUMMARY OF RESULTS OF CALCULATION

Calculations for .the first mode only are presented here. Figure
B2.7 shows the effecis of crookedness on the behaviour of a frame free of
.prestrain. ILoad-deformation gfaphs are shown for crookedness values-of

(a) 0.0625 x 10°L  (b) 0.0625 x 10°

L (c) 0.0625 x 10°L. It is clear
that the behaviour does not follow the usual Euler type buckling behaviour
of a pin-ended column. Obviously a Southwell plot cannot be used to
obuain the buckling load. -

Figuré 8 shows the effect of prestrain upon frames- with crookedness
of 0.0625 x IBZL and 0.0625 x 161L. It should be uioted that the amount

of prestrain affects the onset of large deformation and therefore can be

made beneficial or otherwise.
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Figure B2.9 shows the.distribution of intermal f&rces at various
levels of 1oading; It ig seen that the distr. bution is linear at low
load where the deforﬁatiqns are sﬁall but becomes non-linear-at-higher
load where large &efqrmations develop. ihé dotted curve gives the
buckling load ﬁf theffraﬁe obtained by the usual Euler approach at various

.1éveis of distfibuti;n of axial forces. It is called the interaction
curve (Ref B2.3). It is noted that as the internal force distribution
becomes non-linear; it appears to head for.the peak of the interac;ion

curve.

CONCLUSIONS

(1) IThe behaviour of overbraced frames cannot be described by the usual
Euler-type stability analysis. The reason is that the internal forces
causing buckling are:not statically determinate and rgdistribute markedly
as bucklingIQeformations develop. (Euler-type anai?sia always assume
.that the distribution of internal forces causiné buckiiﬁg rema1ns constant'
"at all level of'loadings.) |

(ii) Initial crooke&ness ﬁas large effecté cn the behaviour of the frame.
Large.crookedness cause the redistribution of internal fotcesltd occur
earlier. | |

(1i1) Prestraining forces control the onset ofjlarge'deformation. Their
-effects can be prediéted in any particular case.

(iv) 1If the frame rémains,elastic, it appears that‘the ultimate buckliné
load is.independent of both crookedness and prestrain and is given by the
peak of the interaction curve. -

(v) In any real frame, due to the large deformation, the frame will prob-
ably yield well before the ultimate elastic buckling load ié reached. It
is, therefore, necessary to Study the whole load-deriormation beﬁaviour of
‘the frame in the manner carried out above. It may also be noted that the
effect of yieldiﬁg can be included in the above scheme of calculation

without difficulty.
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APPENDIX B3

DYNAHIC'RELAiATION TREATMENT OF STRUCTURES WITH NO

 TENSILE STRENGTH

SUMMARY

'Behaviour'bf_séructures which hﬁve no tensile stfengﬁh is studied
numerically by the method of dynamic relgxétibn. " The standard approach
_of es;imating the-flexurallstiffness EI and correcting it with reference
to the moment;thrust-curvaturé (MéP-ﬂz-diagrams requires large numbers of
létored M-P-hifurves. Thé present method dispensés with this storage.
Direct use is made of the stress-strain diagrams which ?Fn be either linear

or non-linear. - Calculations are done for a prestressed wodden beam and a

voussoir arch as examples.:

INTRODUCTION

Treatment of cracks and their influence on structures is normally an
iterative process baéed on anlelagtic analysis. The standard abproach
for beams.and framesiis-to estimate the flexural stiffness EI of the
members and-to analyée the structure elastically.. The value§ of EI are
'then corrected'(by tﬁe removal of the tension zones) with reference to
the moment-thrust-curvature diagrams (Hktéi\?.  The strucgufe is then
re-analyéed.* The process is repeated until satiéfactory convergence is
reached. This ;reétmhnt!requires large numbérs of stored ﬁ-P-]ghdiagfams.
The.method proposed below dispenses with this storage. pirect.use is
made of the stress-strainlrgiations which can be linear or noﬂ-linear.
Ihe'method uses the iterative technique cailed pynamic Relaxation which
iterates betﬁeen #he equations of geometriéal compqtibility and the

equations of statical equilibrium. The basis of dynamip'relaxation has

been fully eipléined}by Otter et al and will not b§ repeated here.

* ’ -
" (Ref B3.1)
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FORMULATION OF THE METHOD

Consider the mepber 1-2 (Fig B3.1). Undef tﬁe action of moment M,
axial force P and she#r force Q, the member deforms and cracks. The
centre line of the member is chosen as the réferencé line which is inde-
pendent of cracking. Thg axis of ceﬁtroids of the compression zone, on
the other h#nd, 13 defermiﬁed ﬁy the extent of cracking wﬁicﬁ may vary
?onsiderably across the depths of the section and along tﬁe lengths of the
memﬁer. | |

The deforqations of the member may be described by those of the

_referencé line: two displacements u, v and a rotation © at each end of

the member (Fig B3.2). A cubic function is used to describe the varia-
tion in v, normal to the member and a linear function for u, along the
member. ° The éxpreséions for curvatures and strain become:
. . I 1'
Ky = 6(va-w[L+ 40[Lr 28[L
2
o = Gl 9L+ RAIL 4 A]L
1 !
E = (“z-ﬂD/L

where ﬁ, )\ﬁlare the curvatures at ends 1 and 2 of the member, &£ is

ceeniianee (B3.1)

the average axial st:ain in the member.

The problem islto relate these expregsions of curvatures and strain
(which are defined on fhe centre line only) to the éctual forces, P and M,
acting on the cross-section. This is done by integrating thejstresa-
diagram across the section to obtain the forces. Consi&er'the member 1-2

of Figure B3.3. If the axial strain € and curvatures ﬁ" ﬁ‘_are given,

then the axial forces Pl and P2 and moments Ml and MZ at ‘ends 1 and 2 of

member can be calculated. The diagrams of Figure B3.4 are obtained for

linear stress-strain relation. In general, it is seen that P, and P2 are

1
not equal if this aegtidn.cracks; This inequality results from the

difference in the position of the centroidal axis and the reference line
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opoo which deformatiops are defined. Equilibrium of the element is not
satisfied; to proceed any further one has to “‘nd a way of recovering
the equilibrium of tﬁe member . Two alternatives are available:
(i): If the axial force P in the member is statically determinate or
known, as it may be for a prestressed beam or masonry wall, the problem is
then to relate the curvature K\to the moment M such that the ‘total force
across the section is P. - This problem can be solved iteratively with the
flow chart of Figure B3.5. |
(ii) 1If P is statically indeterminate such as.in a voussoir arch; then
the problem is to.find a value of P for the member such that equilibrium is
recovered. This can be done by either -
(a) Setting f = EA € then proceeding as in (i) to find the relation
between M and K\ or
(b) Integrating the stress diagram as in Figure B3 3 then setting
P =-i-(P1 + P2)'.
It is seen that both approaches are only approximate. The only way
to find out .whether they will give satisfactory results is to apply them

to particular problems and to compare the ‘results with experiment.

PRESTRESSED WOODEN BLOCK BEAM

Consider the wooden block beam of Figure B3.6. Such a structure is
easily made and.tested, and tte results are ioformative. The prestressing
force is P acting at a distance e from the centre line. The load W is |
applied at mid span. The structure is analysed by dividing it into a
number of elements of length'DX. | Then equilitrium of the element gives

-

_(Fig B3.7).
= (M, +M)/DX - P(v, - v,)/DX . cieresnees (B3.2)

Q=9

The second term on the right represents the non-linear effect of
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axial force upon the deformation. Equilibrium of each joint give :E}4 z—o
Since the axial force on the member‘is known, the alternative (i),

defined previously, is used. A solution is obtainéd following the iter-
ative scheme of Figure B3.8. Figure-BB.Q shows the reeults of the calcu-
lation. The graphs of load egainstlcentral deflections are shown for

(1) experimental measurement, (ii) elastic calculation, (iii) non-tension
calculation. The differences between calculated and measured behaviour
are due to the‘laek of fit between the wooden Blbcks, and to slippage'

between the blocks, due to shear forces, as cracks open.

' YOUSSOIR ARCH

The voussoir arch qf Figure B3.10 is analysed for the loading

shown. The structure is.statically indetermiﬁate, the axial force distri-
Ibution in the structure is not known, and alternative (ii), as set out
previously, is nsed. Either of the approaches given in section (ii) gives
" approximately the same results. However (b) converges more quickly than
(a).

" Figure B3. 11 shows the stresses or. the intrados and on the extrados
of the arch; the results are compared with those from elastic calculation
for the uncracked state. It is seen that the influence of cracks on the

~ structure is fairly local. Figure B3.12 compares the deformations ef
the elastic and cracked arches. It is seen that cracked structures deform

more than those which behave elastically and do not crack.

CONCLUSIO&

A simple workaple approach to the non-linear analysis of structures
made of materials which carry no tension has been given above. The method
dispenses with large storage of the H4P-*\;diagrams of menmers? normally
required for such analysis. Reasonable agreement with experimental data

is obtained. The common drsign practice of considering cracking as a
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local effect and alldwing for the increase of stress only at or near that

cross-section is'seeﬂ'to.be justified to some _xstent.



FIGURE B3.l

Cracked region

L
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Figure B3.3 )
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- Figure B3.6
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Figu're B3.1O
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ABSTRACT

The philosophy of design'of structures by picturing statically
admissible states is outlined and applied to various nwmbers_and structures.
The strength of bolted joints under eccentric loading is investigated.

The concept of-thrust-line is applied to multi story bay frames and space
frames, and a graphical method of minimum weight design by guessing points
of inflexion is presented. Variéus solutions for the load-carrying |
capacity of orthotropic'slébs.are proposed. The strength andﬂséfety of
the Gladesville Arch Bridge is investigated; the load factors for the
bridge afe established for three different loading conditions. An expefi— ‘
mental method for directly obtaining a shape fof-an arch dam under a giveﬁ
loading condition is proﬁosed. Load-carrying capacity 6f arch dams are
also estimated by picturing various statically admissible states. The
relation between deflexion, buckling, and strength is discussed. The
concept of Non-Euler Buckling is introduced. Various practical design
considerations are summarized,  including the detailed design of joints.

In the appendices, tests on ;rches, slabs, and a shell_are reported,
together with related-calculations. .The numerical method of Dynamic
Relaxation is applied tp the problem of-estiméting deflexion in elastic-l
plastic frames, the eléstic stability problem of over-braced frames, and
the non—linear aﬁalysis of structures made of,materials having no. tensile

strength.
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