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ABSTRACT

In recent years, Fuchs has described the absolute annihilator aﬁd
the absolute (Jacobson) radical of a torsion group, and Gardner has
characterised the absolute annihilator of a completely decomposable
torsion-free group. In this thesis the problem of describing the
abso]uté annihilator and the absolute radical of certain abelian groups
~ is considered. This will involve a discussion of the rings on these
groups, and the information so obtained allows us to ahswer several other
questions from the theory of ring structufes on abe1ianvgroups.‘

Complete descriptions of the absolute annihilator are given for
vector groups, separable grbups, certain mixed groups of torsion-free
_rank one, reduced algebraically compact groups, cdhesive groubs, and
reduced groups whose quotients mod torsion subgroups are divisible.
Partial characterisations are also provided for cotorsion groups, and
torsion- free groups of rank two. For the absolute radical of a group,
comp]ete descr1pt1ons are provided for certain mixed groups. of torsion-
free rank one, reduced algebraically compact group:?qgg}ongly indecomposable
torsion-free groups of finite rank, and partial descr1pt1ons are given for
completely decomposablé torsibn-free groups, cotorsion groups, torsion-
free groups of rank two, and cohesive groups. A

- The properties of rings on some of the forementioned torsion-free
~groups lead us to.cdnsider various aspects of nilpotcncet Of particular

interest are the T-ni]potent rings on completely decompoéab]e torsion-free
groups. A bound is also provided for the ni]-degree; if it is finite,lof
certain tcrsion-free groups. The mixed groups of torsion-free rank one
_d1scussed in this thesis motivate an investigation of the addltlve group
of a regu]ar ring. A ‘question of Fuchs concerning these groups is

answered in the negative.
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INTRODUCTION

Thrqughout this thesis the word 'group’ wi]]Aajways designate an
additively wriften abelian group, and the word 'ring'_wi11 always designate
a not necessarily associative ring. A »ring on a groué:A is a ring whose
additive group is (isomorphic to) A. |

In 1948, Beaumont [1] inVestigated rings on direct sums of cyclic
groups, and thereby initiated the more gehera] problem of definihg ring
structures on ah arbitrary group. Shortly afterwards Szele [1] studied
trivial rings (rings in which the'product’of every pair of elements is
equal to zero), and several years later Ree and Wisner [1], 1nsp1red by
Szele's work, described the completely decomposable. tors1on free groups
that support only the trivial ring structure.  In 1956, Fuchs [1]
provided a more detailed account of constructing rings on a group. In
part of his paper, Fuchs demonstrated a strong connéctfon between a ring
structure on a torsion group A and the partial multiplication on a basic
subgroup of A.  This khéw]edge enabled Fuchs to completely describe the
absolute annihilator, and later in Fuché [4], the absolute (Jacobson)
radical of a torsion group. Recently, Gardner [5] has described the
absolute annihilator of a completely decompbsable torsion-free group.

In this thesis we investigate the étructure of . the absolute
annihilator and-the absolute radical of certain groups. In so doing we
discuss the rings supported by these groups, and as a consequence are
ab]é to’answer various other questions from the theory of ring structures
on abelian groups. |

' After detailing a number of standard concepts, Chapter One
introduces tﬁe'ébso1ute annihilator and the absolute radica] of a group,
and outlines the present knowledge of the structure of these subgroups.

The rehaindér of the chapter deals with some results concerning these
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two concepts that kill_be useful in Tater work.

In Chapter Two the results of Ree and Wisner [1] and Gardner [5]
are generalised to two other classes of’torsion—free groups; the class.
of vector groups and the class of separable groups.l He also provide
some necessary and sufficient conditions for an arbitrary torsion-free
group to have the property that it supports only the triﬁial ring.

In Chaptér Three we describe the absolute radical of certain
completely decomposable torsion-free groups. In order to do this a
fefation <' defined on a subset of the type set of a completely
decomposable toﬁsion-free group is introduced. It is shown that this
relation has a sigﬁificant connection ﬁith the T-nilpotent rings of
Levitzki [1] and Bass [1]. Moré 1mp0rtaﬁt1y however, is that if A is
an arbitrary completely decomposable torsion-free group then the rglation
<' allows us to write A in a form that is different-frbm‘the usual
represéntation'of A as a direct sum of rational groups. With this form
of A we are able to characterise the_absolute radical of A when the
relation <' satisfies a certain chain condition.

In Chaﬁter Four we initially concentrate our attention'on a
class A of mixed groups of torsion-free rank one. After discussing
some of the rings on groups in this class, comp1ete.descriptions of the
absolute annihilator and absolute radical of groupé inlx4 are given.

The remainder of the chépter is concerned wiih other mixed groups that
have properties similar to-the groups in z4'. Most nOtab]e'amongst
these is the reduced part of the additive group of a regular ring. A"
question of Fuchs [Ij concerning these groups is answered in the negative.
Partial descriptibns of the absolute annihilator and the absolute

radical of a cotorsion group, and complete descriptions of the absolute

annihilator and the absolute radicaT'bf a reddced algebraically compact
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group are é1sovprovided.

In Chapter Five we turn our attention once again to torsion-free
groups. Reid [1] has investigated associative rings on strongly |
indecomposable torsion-free groups of finite rank. Combining some of
Reid's results with several of Beaumont and Pierce [1, 2], we obtain a
1bnfﬁhlwadescription of the absolute rédica] of a stronglyvindecomposab1e
torsion-free group of’fihite rank. We then discuss several classes of
rings on strongly ihdecomposab]e torsion-free groups of finite rank.
These includé the almost nilpotent rings of van Leeuwen and Heyman [1],
the.unequivocal rings of Gardner [2], the rings With the finite norm
property of Levitz and Mott [1], and the rings with the restricted
minimum condition. The chapter concludes with a discussion of -
associative rings on a torsion-free group of rank two. A result of
Freedman [1] is generalised, and a complete description of the abéolute
associative annihilator of a rank two torsion-free group is givén.

| In'thevfirst part of the fina]-chapter we investigate rings on
cohesive groups, and then describe the absolute annihilator of such a
group. ,A partial description of the absb]ute_radical'of a cohesive
group is also given. In the remainder of the chapter we generalise
a recent result of Webb [1] by providing a bound for the nil-degree
(if it is finite) of a torsion-free group A, not necessarily of finite
‘rank, but with certain finiteness conditions on the rank of A/pA, for
each prime p. This involves a discussion of tﬁe embedding of A ih “

its p-adic completion A = T1im A/pkA, for each prime p.
- . (p) ¢



CHAPTER ONE

The purpose of this chapter is to introduce some basic definitions
and results that.wilT be used throughout-the remainder of the thesis.
We commence wifh'some_standard properties of groups and rings and then
introduce thernil groups, the absolute anhihi]ator of a group, and the
.absolute'radical of d group. After surveying the currént khbwTedge of
‘these three concepts we conclude the chapter with some'}esults that will

prove to be_particular1y-usefu1 in later work.

1. BASIC DEFINITIONS AND NOTATION

Thrdughdut this thesis the symbol A w111 be reserved for an
Abelian groub. | T(A) will denote thé torsion subgroup of A, and for.each
prime P> AE wi]1 denote the p-compohgnt oka. The séf of all primes is
denoted by P, and a prime p ¢ P is called a relevant prime'of Aif Ap is
lﬁon -zero. We use the standard notat1on Q, Z, and for a prime p, Z(p ),
' Z(p ) and Jp for the group of rat1onals, the group of 1ntegers, the quasi-
cyclic p-group, the cyclic p-group of order pk and the group of p-adic
integers, respectively. | E |

A subgroup B of A is said to be pure in A if nB = nA n B for all
positive'jntegers'n. If S is a subset of A then %S>}denotes the subgroub
of A generated by S, and if A is torsion-free <S>é (or simp1y1<S>*‘when
the context is é]ear) denotes the uhique minima1 pure subgroup of A
conta1n1ng S <S>* is just the set of all elements of A that depend on S.

o If Ais a tors1on free group, Q®A is the divisible hull of A,

ahd’the rank of A, denoted by r(A), is the Q-rank of()QDA. “If A is a
mixed group then the rank of the torsion-free group A/T(A) is called the

torszon-free rank of A.

For each prime p and each ordinal o the subgroup pOA of A is
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defined inductively in the following manner: p A = A, p°+]A = p(p°A) and

p°A = n pPA when o is a limit ordinal. The maximal p-divisible subgroup

p<o

of A is pTA where Tt is the minimal ordinal such thatvaA = pT+]

A. These
subgroups of A allow us to define the p-height h (a) of an element a in
A. Ifac p'A then hp(a) = o, otherwise hg(a) is the un1que ordinal o
such that a € pOA\p0 ]A. If there is no danger of confusion we shall
simply write hp(a) for the p-height of e in A. The subgroup of A consisting
of all the elements of A with p-height an infinite ordinal for every
prime p is called fhe first Ulm subgroup of A, and is denoted by A].

The height matrix HA(a) of an element a in the g}oup A is defined

as

Chy(a), hy(2a), ..., hy(2Xa), ...
hy(a), hy(3a), ..., hy(3ka), ...
HA(a) = . . . . . . . . . . - . . . . . [0

pk]_'

ooooooooooooooooo

The element °pk
k

pa, for all' pePandk =0,1,2, ... . As usual we will write H(a)

in the (p, k)-position of HA(a) records the p-height of

when the context is clear. If p e P ehen the p-indicator of a in A is
the p-row of H(a), and'it is denoted by Up(a). Up(a) is said to contain
a gap if there is a non-negative integer k such that

| h (p a) +1<h (pk+] ). When dealing with p-indicators in p-groups

the reference to the prime p will be deleted.

| Two w x w matrices [opk] and'[ppk] are Called.equivalent if for
almost all primes p, the p-rows of the twovmatrices are identical, and
for every‘remainfng prime p there exist non-negative-integers £ and m

(depending on p) such that o for al1 k = 0,1, 2, ... .

p.k+2 ~ Pp,k+m
If A has torsion-free rank one then any two elements a and b of infinite

order in A are dependent, so the.height'matrices H(a) and H(b) are
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equiva]ent. Thus there is a uniquely determined_equiQa]ence class of
‘height matrices associated with A; we denote this equivalence class by
H(A). The importance of H(A) can be seen in the following structure

theorem. We give the most general form of this theorem.

(1.1) - (Rotman [1], Megibben [1], Myshkin [1], Wallace [1]).
Let A and B bé.mixed groups of torsion-free rank one with totally
projective torsion subgroups. Then A and B areiisomorphic 1f and only
| (1) T(A):and.T(B) are isomorphic, and
(11) H(A) and H(B) are equivalent. //
o . - ,

It should be noted that Megibben [1] has proved (1.1) for mixed
groups with tqrsion-comp]ete torsion subgroups, and has also provided an
example to show that (1.1) cannot be eXtended to arbitrary mixed groups

of torsion-free rank one.

If a is an element of the torsion-free group A then

k+1a) = hb(pka) + 1 for every prime p and each k = 0, 1, 2, ... .

h,(p
Thus the first column of H(a) gives the same amount of information about
A as the entire matrix H(a). The characteristic x(a) of a in A is
defined to be the first column of H(a); that is

x(a) = (hz(a), h3(a), cees hp(a), ...). Since pr'is the maximal
p-divisible subgroup of A, x(a) is an ordered sequence of noh-negative

integers and symbols w.

Two characteristics (k2, k3, eees kK5 ...) and

Y _
(ﬁzf L35 vers zp,v...) are called equivalent if kp = Rp for almost all
primes p, and if kp # zp for some prime p then both kp and zp are finite.

- An equivalence class of characteristics is called a fype, and is
represented by aICharécteristic in'thisvclass. Thus we write for the

type t



t = (kz, k3’ ..y kp’ ooo) LY

where- the characteristic can be replaced by an equivalent characteristic.
For an element a in a torsion-free group A, if x(a) belongs to

| the type t, then we say that a is of type t and write t(a) = ‘The

set of types of all the elements of A is called the type set of A, and

is denoted by 7"(A)

The product of the two characteristics x = (k 3, cees kp, ve)
and x; = (255 235 .-.s Lp, ...) is defined as o

g = (kg + ps kg * fas wens kp +0ps 1ll)

where the sum of « and anything is <. A characteristic x is called
idempotent if xz =X
either k_ = 0 or kp = .  Since the multiplication of characteristics

p
~ is compatible with the equivalence relation introduced above, we may

It is clear in this case that for every prime p

speak of the product ttl of types t, t], and of an 1demp0tent type t =

A torsion-free group A all of whose non-zero elements have the
same type is ca]léd a homogeneous group. Evidently we are justified_to
speak of the type of A, which we shall denote by t(A). | " Whenever t(A) is
an 1dempotent type we will represent t(A) by the character1st1c containing
0's and «'s only. Also, in this case, we let PA denote the primes p for
which the p-component of t(A) is zero.

For the other elementary properties of type; particularlylthe
quotient t:t1of the types t and‘H, and the relation t §=t1between the
types t and t,, we refer the reader to Fuchs [4], Section 85.

Jénsson [1] has introducéd the following definitions. Suppose'

A and B are tprsion-free groups of finite rank such thafiA is contained
in the divisible hull of B. Then A is quasi-contained in B (denoted by
A ¢ B) if there is a positive integer n such that nA ¢ B. A is quasi-
equal to B if A c B and B ¢ A, and A is quasi-isomorphic to B if A and



B are isomorphic to quasi-equal subgroups of some divisible group. A
is called a quasi-direct sum of subgroups B]’ Bys ..t B, of its divisible
hull if A is quasi-equal to B] ® 82 d... Bm’ and this quasi-equality
is ca11ed a quasi-direct decomposition of A. If A has only trivial
quasi-direct decompos1t1ons then A is called strongly tndecomposable

The p-adie topology of a group A is the topo]ogy of A arising by
declaring the subgroups p A (k =0, 1,2, ...) as a base of neighbourhoods

about 0. - For the group A, ﬁ(p)¢]im A/pkA is called the p-adic completion
o ' k - _
of A. It is well known that ﬁ(p) is complete in-its p-adic topology,

and that A(p) can be made into a p-adic module.
AN other unexplained group theoret1ca1 terminology can be found

in Fuchs £3, 4].

Sihce a ring'oﬁ the group A is a ring whose additive group is
isomorphic to_A, there is no loss of generality in denoting a ring on AV
by (A, *). In tﬁis case we say that A supports (A, Q). An ideal of
(A, «) will always be written (I,'-) and the factor ring'on (A, =)/(1, )
will be denoted by (A/I, ). A subgroup I of A is called an absolute
ideal of A if (I, <) is an ideal of every ring (A, -)'on_A. Since the
left and right multiplications by a fixed element of A are endomorphisms
of A, every fully invariant subgroup of A is an absolute ideal of A.

When there is no danger of confusion we attrfbute to a ring
(A, °) on A properties of the group A. Thus we are justified to use
terms Tike torsion ring, divisible ring, pure ideal,'etc. if R is a
ring we will denote the additive group_of R by RY. The ring of p-adic
integers will bevdenoted by Q;, and the field of rationals by Q.

Every ring (A, +) on the torsion-free group A can be extended
to a ring (Q®A, ) on Q@® A by defining, for 97> 97 in Q and aps a, in
A, | | | '



(q] ®a]) . (q2®a2) = (q1 q2)®(a~| . 32) .
Moreover, (Q ® A, *) can be made into a (not necessarily associative)

algebra over the field Q by defining for 995 9 in Q and a é A,
q](q2®a) = (q] q2)®a .

Thus every torsion-free ring (A, <) can be viewed as a subring of an

algebra over Q.

If (A, ») is a ring on a torsion-free group A, and a and b are

any two elements of A, then for every prime p,
+ : . .
hp(a) hp(b) ézhp(a b)

Thu§ x(a) x(b) < x(a - b).and t(a) t(b) < t(a - b) for all a and b in A.

An e]emeht a in the associative ring (A, <) on the group A‘is
said to be nilpotent if there is a positive integer h such that a" = 0.
(A, +) is said it be nil if every element a ¢ A is nilpotent, and (A, *)
is called nilpotent if,there is a positive integer ﬁ such that (A, -)" = 0.
“Following Levitiki [1] and Bass ‘[1] we call the associative ring (A, *)
left T-nilpotent if for every sequence s A9y .. of its elements there
ié a positive integer n such that ayp * 3 ... v A = 0. Right
T-nilpotence is similarly defined. Clearly a nilpotent ring is left
T-nilpotent, and a left T-nilpotent ring is nil.

If (A, <) is a ring on A then the annihilator of (A, ), denoted by
(05 (A, +)), is defined as {a e Ala - a' = a' - a =0 for all a' ¢ A};
Clearly ((0; (A, +)), +) is an ideal of (A, +); furthermore if A is
torsion-free then ((0; (A, +)), <) is a pure ideal of (A, ). The
annihilator of the element a in (A, ), denoted by (0; a), is similarly
defined as {a' ¢ Ala » a' = a' - a=0}. |

If (A, +) is an associative ring on A then a e A is called right

quasi-regular if there is an a' ¢ A for whicha + a' +aa' =0. The



right ideal (I, +) of (A, +) is called a right quasi-regular right ideal
of (A, ) if every element of (I, +) is a right quasi-regular elemeht in
(A, *). A left quasi-regular left ideal of (A, ) is defined analogously.
The éum of all the right quasi-regular right idea}s of (A, +) is |
also a right quasi-regular right ideal of (A, ¢); it is c&l]ed the
Jacobson radical of (A, <), and denoted by J(A, -). (J>(A, <), ¢) is a two
sided ideal of (A, ) containing every other right duasi-regu]ék Eight
ideal of (A, +) (and in particular every nil right ideal of (A, +)).
It is well known that (A/J (A, ), *) is an associati?e ring containing
no proper right quasi-regu]arvright ideals, and also that if (I, ) is
an ideal of (A, +) then J (I, +) = (I, ») N J(A, *).
The Jacobson radical of an .associative ring has many alternate
descriptions. To give some of these we require some further definifions.
Suppose (A, +) is an associative ring on the group A. A right
ideal (I, -) of (A, +) is said to be a modular right ideal of (A, ;) if
there is an a'e'A such that a = i - i e I for all i e I. Modular left

ideals of (A, +) are defined analogously. The right (A, +)-module M

is faithful if the annihilator of M, {a « (A, - » is trivial.

M is called irredﬁcib?e if it is not the trivial modu]e‘and it contains
no proper submodules. (A, +) is called right primitive if it admits a
faithful irreducible right module. A two sided ideal (I, «) of (A, *)
is called a right primitive ideal of (A, +) if (A/I, +) is a right

primitive ring. A left primitive ideal of (A, +) is defined in a

similar manner.

(1.2) (Jdacobson [1]). If (A, *) is an associative ring on
the group A then the Jacobson radical of (A, +) is equal to
(i) the sum of all the right quasz-regular right idealé of (A <),

(ii) the sum of aZZ the left quasi-regular left ieals of (A, *),
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(i11) ‘the intersection of all the modular mazimal right ideals
of (R, +), |
(iv) the intersectioﬁ of all the,modular maximal left ideals of
(A, ),
(v) the intersection of all the right primitive ideals of (A, ),
(vi) the intersection of all the left primitive ideals of (A, +),
(vii) f{a e Ala + a' is right.quasi—regular, for every.a' e A}, :

(viii) {a e Ala' « a is left quasi-regular, for every a' e A}. //

'It is evident from (i) or (ii) above that if (A, +) and (B, *)
are two associative rings'and_¢ : (A, «) > (B, ¢) is a.surjective ring'
homomorphism fhen.¢ carries J (A, *) into J(B, ). If further ¢ is a
ring isomorphism then J (A, -) is isomorphic to J (B, ). From (iii)
or (iv) in (1.2) it is also clear that if (A, +) is an associative and
commutative ring with identity on a group A then J(A;_-) is the
intersection of all the maximal ideals of (A, +).

A ring R of 1ineaf transformations of a vector space V is called
dense if for eVery linearly independent sUbset'{u], uz,i..., un} of V
and any set {v], Vos wees vn} of V there is an f ¢ R $uch that f(ui) = vy

foralli=1,2, ..., n.

(1.3) (Jacobson-[1]). If (A, ) s an associative ring on the :
group A then (A/J(A, <), *) is isomor?hic tov | |

(i) a subdirect product of right primitive rings, and

(ii) a dénse riﬁg of linear transformations én_a right vector

space over a division ring. //

We will also require the fo]]owing well known result. First
we need another definition. An associative ring (A, «) on a group A is

called Artinian if it satisfies the minimum condition on left ideals.



(1.4) (Jacobson [11). If (A, *) is an Artinian ring on the

group A then J(A, ) is nilpotent. [/

For the remainder of this thesis whenever we refer to the Jacobson
radical of én assbciative ring (A, +) on the group'A we shal} call it the
radical of (A, +). If J(A, +) = A then (A, +) is called a radical ring,
while if J(A, ) = 0 then (A, ) is called a semisimple ring. Accordingly
Haimo [1] has called a group A a radical group if A supports a non-trivial'
radical ring, and an anti-radical group if A is not a radical group.
Similarly, Beaumont and Lawver [1] have called a group A a semisimple
group if A supports a semisimple ring, and astrongly semisimple group
if A supports a non-trivia] associative ring and every non-tri&iaI
associative ring on A is semisimp]e.

A11 other unexplained ring theoretical fermino]ogy can be found

in Divinsky [1] or Jacobson [1].

2. THE ABSOLUTE ANNIHILATOR AND THE ABSOLUTE RADICAL

Following Fuchs [2] we introduce for the group ﬁ the set Mult A.
of all binary compositions on A which are both left and right distributive
with respect to addition. An element of Mult A is called a multiplication
on A. Clearly there isla one-to-one correspondence between'Mult A and
the set of all rings supported by A. For o and B in Mult A we define
the addition of a and B by the ru]e -

(o +8) (a, b) = afa, b) + B(a, b)

for all a and b in A.  With this definition of addition, Mult A is
readily seen to be a group, called the group of multipziéatiﬁns on A.
The zero of Mult A is the multiplication corresponding to the trivial
ring on A.

Fuchs [2]-has shown that Mult A is isomorphic to Hom(A, E(A)),
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where E(A) is the endomorphism ring of A. Thus to every ring (A, -)
on A there corrésponds a map ¢ ¢ Hom(A, E(A)). This ¢ is defined via
¢(a)b = a - b for all a and b in A. |

Szele [2] defined the nil-degree (milstufe) of a group A to be
« or the largest integer n (if one exists) such that fhere is an
associative ring (A, +) on A with (A, +)" # 0. Gardner [5] has defined
fhe strong niz-degree.of A similarly, where for'the.hon-associative rihg
(A, +) on A, (A, +)" is the sdbring of (A, +) generated by all broducts

of the form (;..((a] s a,) cag) - ..) -

n- . A group A is called nil

(respectively strongly nil) if A has niI—deQree one (respeqtiveiy strong
nil-degree one); o N

| Szele [1] has shown that a torsion group is nil exactly if it is
divisible, and that there exist no mixed nil groups. ‘Included in his
proof of the latter result is a method of defining a.noh-trivial :
associative rfng on a mixed group with divisible torsion subgroup.
Since this ring will prove to be particularly usefullin‘Chapter Four,

we outline Szele's construction.

(1.5) (Szele [1]). Suppose A is a mixed group with divisible
torsion subgroup. Then A can be written as A = T(A)GB A;» where A, is
some proper subgroup of A.

Select a fixed but arbitrary é]ement a of infinfte order'ih A,
and let the non-zero component of a in A] be aj. If we embed A] in.its
di'visib]e.huvﬂn Q®A1' thén we can write Q@A] = Q@A2 »where a, has non-
zero component q]'in Q, and A2 is a suitable torsion-free divisible group.

If now b fs any'e]ément of A, b will have a unique repreSentation
b = t, + (n/m)q] + b2 R

where t, ¢ T(A),'b2 e hAy,and nand m# 0 are»ihtegers.

For some prime p ¢ P there is a quasi-cyclic subgroup Z(pm) of
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T(A). Suppose Z(p~) is generated by the elements t],-tz, ... subject

to the conditions
Pty = 0, Pty = 1y wous Pt = e ps oen -

‘Suppose n and m # 0 are integers. If (m, p) = 1 define (n/m)t] to be
the unique solution of the equation mt = nt, in Z(p©). On the other

hand if m = pK

m' where k is a positive integer and (m', p) = 1 then
define (n/m)t] to be the unique solution of the equation m't = n tk+l in
Z(p”). In either case (n/m)t] is a well defined element of Z(p"~).

Moreover, if " and m # 0 are also integers,
(#)  ((n/m) + (ny/my))tq = (n/mty + (ny/mpdty .
If now b' is another element of A, then b' can be written uniquély
bt =ty # (my/mday b
where toe T(A), bé € A2 and ny and my # 0 are integers. Now define
b +b'= ((nnl)/(mm-‘))t1 .

It is readi]y checked that (%) ensures that - is ﬁoth left and
right distributive over +. Moreover, since every product of length
three vanishes; - is associative. Thus (A, ) is an associative ring
on A. Clearly (A, +) is not the trivial ring on_A; since

a1 -a]=t.|#0-.'/f

The only other class of groups for which the'nillgroups have
been charactefised is the class of torsion-free completely decomposab]e
groups. A torsion-free group A is called compZeteZy.dbcomposabZeIif it
is a direct sum of rank one groups. We give the following paraphrase of
the major result of Ree and Wisner [1].

(1.6) (Ree and Wisner [1]). IfA= @ A, where the A, are
: jel : :
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rational groups, then A is nil (equivalently strongly nil) 1f and only
if t(Ai) t(Aj) L t(Ak) for all i, j and k in 1. //

Contained in a subsequent proof of (1.6) by Gardner [5] is the
following construction of associative rings on certain completely
decomposable grbubs. These rings will prove useful in Chapter Two.

(1.7) (Gar"dner‘ [51). Let A= @ A'i’ where the Ai are rational

_ : ' el :
groups. If t'(Ai) t(Aj) < t(Ak) for some i, j and k in 1 then there is
an assoctative ring (.AI, *) on A with Ai . Ag # 0 for some % e 1, and

Am-A£=0foi'azImeI,mfi.//

The absolute annihilator A(*) of a group A is defined as the
intersection of the annihilators of all rings on A;' 'Analogously we
define the absolute associative annthilator A(a)(*) of A as the |
intersectionlof the annihilators of all associative rings on A. Clearly
CA(x%) ¢ A(a)(*)'for all groups A. Also if A is a torsion-free group then
both A(*) and A(a)(*) are pure subgroups of A. _

As wifh the nil groups, the present knowledge of the structure
of the absolute annihilator (absolute associative annihilator) of a group
does not extend beyond the torsion groups and the torsion-free completely

decomposable groups.

(1.8) (Fuchs [1]). If A is a torsion group then
A(x) = A(a)(*) = Al ‘Moreover, there is an associative and ebnmtative
ring (A, +) on A such that (0; (A, +)) = A]. /1

(1.9) (Gardner [5]). Let A = @® A'i where each Ai i8 a rational

iel
group, and let

I =i ¢ I|there do not exist j and k in 1 such that t(Ai)t(AJ.) < t(Ak)}.
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Then A(x) = A () = @ A.. s/
- dely !

The absolute radical J(AR) of a group A is the intersection of
the radicals J(A, +) of all associative rings (A, <) on A.  As with the
absolute annihflator, Fuchs [4] has been able to describe the absolute
radical of a torsion group. |

(1.0) (Fuchs [4]). If A is a torsion group fhen J(A) = N pA.
S | p -

Furthermore, there is an associative and commutative ring (A, *) on A
such that J(A, +) = N pA. //
p

3. PRELIMINARY RESULTS

The following result is of fundameﬁta] importance.

PROPOSITION 1.11. ILet A be a growp and a an element of A.  If,
for some prime p,'Up(a) commences with an integer and contains a gap,

fhen a¢ A(a)(*).

Proof: Assume p is the prime for which Up(a) commenceslwith an
integer and contains a gap. Then there is an integer i for which a gap
occurs between hp(pia) and hp(p1+]a), where we can assume hp(pia) is
finite, say hp(p1a) = kj < =.  Thus there is an element a' ¢ A such

that p'*!

a = pa' and hp(a') 2 ki + 1. But then (p'a -a') #0is an
element of order p and of heightamin(hp(p1a), hp(a')) = k;.  Writing

k.,
pia - a' = p 'a" where a" < A, Corollary 27.2 of Fuchs [3] shows <a">

is a direct summand of A, say A = <a“>»@9A] for some subgroup A] of A.
If we set a" + a" = a" we obtain an associative ring (<a"§, +) on <a">.
Letting (A], .) be-the trivial ring on Ay, we now define (A, ) to be
the ring direct éum of (<a">, +) and (AI’ *). Clearly (A, *) is an

associative ring on A. Now
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(p1a - al‘) . g" = (p.'a) . aﬂ - ,al . an = p1 (a . an)
. ok H :
since hp(a') > k; + 1 and a" has order p " . On the other hand

A - k. - K. .
(pla-a') - a"=(p 1af) ca"=pla"#0.
Thus a - a" # 0, so a ¢ A@)(x). 7/
COROLLARY 1.12Q For a group A, T(A(x)) g:T(A(a)(*)) g,(f(A))]. //

COROLLARY 1.13.  If A is a group such that A/T(A) is divisible

then A(*) gzﬂ(a)(*) g=A]. If fﬁrfher A is reduced A(;) = A(a)(*) = A].

(a) = k is

finite for some prime p. If Up(a) does not contain a'gap, then

Proof: Suppose a is an element of A such that h

hp(pna) =k + n for eﬁery positive integer n. Let o : A+ A/T(A) denote
the natural map. Since A/T(A) is divisible, hp(aa) ;gk, so there is an

a' € A such that aa = pk+1(aa'). Thus a - pk+la' e T(A). Suppose

k+2+1

0(a - pk+]a') = me where (p, m) = 1. Then pgma =p m a',-so

L.y _ L - k+2+1
hp(p a) hp(p ma)_ hp(p

ma') >k+2+1,

contradictiog the fact that hp(pna) = k + n for each positive integer n.

Therefore Up(a)-oontains at leaét one gap. Proposition 1.11 now yields
a ¢ A Thus A < Al@) () < Al

- To prove the final aosertion it sufficés.to show that A1 c A(x)

for a reduced group A with A/T(A) divisible. First we show _

(T(A))] < A(x). Consider any ring (A, +) on A and Tet a e (T(A))].

It is clear that a annihilates T(A). If a' is any element of infinite

order in A and 0(a) = n then the divisibility of A/T(A) shows a' =na" + t,

where a" is an element of infinite order in A and t ¢ T(A). But then
ara'=a-m"+a-t=0,

so a € A(*).
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Next suppose a is an element of infinite order in A]. Again
let (A, ) be any ring on A and suppose ¢ ¢ Hom(A, E(A)) defines (A, ).
Then ¢(a) ¢ E(A), and since a has infinite p-height for all primes p,
¢(a)|T(A) = 0. Hence ¢(a) factors through A/T(A),

o(A) : A—A
vV 72
A/T(A)
Since A/T(A) is divisible and A is fequced; ¢(a) is necessarily the zero

map. That is a e A(x). //
The next lemma will-be needed on several occasions.

LEMMA 1.14.  For the growp A= @ A, Alx) < @ Ai(*) and
iel o

jel
A(a)(*) < ® Ag‘_“)(*). If every A'i is an absolute ideal of A then
: jel s . _
A) = @ A(x) and A () = @ Al®) ().
jel _ jel

Proof: Ne shall only prove the assertions for the absolute
annihilator of A, the broofs for the absolute associative annihilator
being identical.

For a given i ¢ I,Tet (Ai’ -)'be a ring on Ai.' By defining
the trivial ring (® A., <) on @ A, and taking the ring direct sum

it j#i !
of (Ai, ) and (g? Aj, -) we obtain a ring (A, +) on A. Clearly
J#i

(05 (A, -)) = (0; (Ai’ ‘)@ (‘D. Aj .
J#i

Since this is true for every ring (A;, +) on A, and for every i ¢ I,
AGx) ¢ @ Aj(x). -
iel _ :
If for each i ¢ I,Ai is an absolute ideal of A, then the equality
A(x) = @ ﬂﬁ(*) follows immediate1y;from the fact that every ring (A, *)
iel ' ' _
on A is the ring direct sum of the ideals (A;, ¢), i e I.//
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Gardner [5] has introduced a chain
A(1) = A(2) ¢ ... ¢ A(u) < ...

of subgroups of a group A, defined inductively as follows: A(1) = A(x),
A(a + ])/A(a) = [A/A(a)](*), and A(B) = y A(a) if B is a limit ordinal.

a<B

It is clear that A(p + 1) = A(n) for some ordinal p.

PROPOSITION 1.15.  For any group A, A(a) is an absolute ideal of

A for all ordinals a.

Proof: First we show that A(x) is é fully invariant subgroup of
A. Let f e E(A) and a ¢ A. If f(a) ¢ A(x) then there is a homomorphism
o « Hom(A, E(R)) such that ¢(f(a)) # 0. But ¢f < Hom(A, E(A)) and
(6f)(a) # 0, so a & A(x). |

A triviai transfinite induction argument shows that A(a) is fully
invariant in A for all ordinals a. The probosition.now follows

immediately. //

If we employ the same methods of proof as those used to prove

Corollary 2.4 of Gardner [5] we can now establish

COROLLARY 1.16. IfA = A(u) for some ordinal ﬁ then every
associative ring (A, *) on A is left and right T-nilpotent. If in

addition y is finite then (A, -)uf] =0.//

For the remainder of this chapter we shall be concerned with
properties of the absolute radical of a group. We begin with some

useful lemmas.

" LEMMA 1.17. If A and B are isomorphic groups then J(A) is

isomorphic to J(B). '
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Proof: Let ¢ : A+ B denote the isomorphism. If (B, *) is an
associative ring on B then it is possible tp define an associative ring
(A, +) on A such that ¢ : (A, ) > (B, *) is a ring isomorphism. Since
¢ is surjective ¢(J(A, +)) < (B, +), so ¢(J(A)) < J(B, *). This is
true for every as#ociative ring (B, +) on B, so ¢(J(A)) ¢ J(B). A
J(B). //

n

similar argument verifies ¢ (J(8)) < J(A). Thus J(A)

LEMMA 1.18. - If B is an absolute ideal of the group A then |
J(B) < J(A).

Proof: If (A, ) is any associat%ve ring on A t'hén (B, ») is an
ideal of (A, ). Since J(B, *) = (B, ) N J(A, *),
J(B) g J(B, +) < J(A, +). This is true for every associative ring
(A, +) on A, so J(B) c J(A). //

For any group A, T(A) is an absolute ideal of A. Thus Lemma
1.18 yields J(T(A)) < J(A) for all groups A. This containment has
previously been observed by Fuchs [4]. - '

LEWA 119, 17 A = @ A, then J(A) '.e-)l JAS).  If further
' le Te

A; is an absolute ideal of A for every i e I, J(A) = @ J(Ai)‘
jel -

Proof: For i ¢ I,let (‘Ai’ *) be an associative ring on A;. If
we extend this ring to an associative ring (A, +) on A in the usual way

by defining the trivial m’ng.on @ Aj, we have
' J#i
JA, ) = AL )@ @ A
' J# Y |
Since this is true for every associative ring (Ai’ ) on A; and every

@ J(Ay).

iel
The last assertion of the Lemma follpws immediately. from Lemma

1.18. //

ie I, J(A)

fin
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The nekt proposition will be extremely useful ih_describing the

absolute radicé] of a group.

PROPOSITION 1.20.  If A/J(A, -) is a torsion group for every

associative ring (A, ) on A then N pA < J(A).
p

Proof: Suppose (A, +) is an associative ring on A. Since

A/J(A, +) is a torsion group, (1.10) yields J(A/J(A, *)) =n p(A/J(A, -)).
' Y

~ Since also J(A/J(A, +), +) = 0 it is clear that n p(A/J(A, +)) = 0.
: . p _

NOW [ﬂPA + J(As ')]!J(As ') gl'l p(A/J(As '))9 3-0 n pA éJ(As ')-I
p | p . P

This is true for every associative ring (A, +) on A, so h pA g=J(A),

‘as required. //

Beéumont and Lawver [1] have desgribed the semisimple rational
groups (and more generally the semisimple strongly indecomposable tofsion-
_ free groups of finite rank). In the next result we'usé Beaumont and
Lawver's description to characterise the absolute radical of an arbitrary
rational group. This characterisation plays an important role in

subsequent chapters.

THEOREM 1.21.  Suppose A is a torsion-free group of rank one.
Then exactly one of tﬁe deZowing conditions holds: - |
(i) J(A) = A;
(ii) J(A) = 0;
(iii) J(A)

nA (nA # 0, nA # A), for a suitable integer n.

(1) holds exactly if A is a nil group, (i) holds exactly if t(A) is
idempotent and !P?I =0 or EP?I = w, and (111) holds exactly if t(A) is

idempotent and 0 # lP?l < o, in which case N = p:  Furthermore,
peP?

there is an aé_sqaiative and commutative ring (A, *) on A for which
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J(A, ¢) = J(A).

Proof: It is clear that if A is a ni1 group then J(A) = A.

Thus assume A is non-nil, in which case t(A) is idempotent. From
Theorem 3.2 of Beaumont and Lawver [1] if |P?| =0 or |P¢| = o then
J(A) = 0. | MoreoVer, any non-trivial associative ring (A, *) on A
(and such rings-do exist) is commutative and has trivial radica],

Assume now that t(A) is idempotent and 0 # |P?| <, Consider
an associative ring (A’,') on A. Theofem 3.2 of Beaumont and Lawver
(1] shows J(A, ) # 0,vso since A has rank one, A/J(A, -) is}neceSSarily
a torsion group.  This is true for every associative fing (A, *) on A,

o) Proposition'1.20 now yields n pA < J(A). Since n pA =N, PA,
v P P pePy .

N, PA < J(A).
peP1

Next we give an example of an associative and commutative ring

(A, *) on A for which J(A, *) = n , PA. Since isomorphic rings have
peP] .

fsomorphic radicals we lose no generality in assuming A = <p'm|p € P\P?>..
Consider the associative and commutative ring (A, +) defined by 

ay s 3, =aya, for é]l ars a, in A, where the latter multiplication is
mu]tip]icatibn'in the field Q. For each p e'P? it is clear that (A/pA, *)
is a non-trivial associative ring. . Since A/pA has rank one, (A/pA, -)v
is now a field, so J(A/pA, *) = 0. Therefore J(A, +) < pA, and so

J(A, *) = n a PA. (Beaumont and Lawver [1] have also observed the
peP] :

existence of such a ring on A).

Consequently if t(A) is idempotent and 0 # |P?|,< ®,

J(A) = n p PA = nA where n = TTA p. Evidently nA is a proper subgroup

peP] | peP]
of A.

We comp}ete the proof by observing that the three conditions A
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is a nil group, t(A) is idempotent such thaq |P¢| =0 or 1P?l = =, and
t(A) is idempotent such that O # |P?| < » are mutually exclusive and =

exhaustive conditions for A. //
We close this chapter with the following result.

PROPOSITION 1.22.  For every group A, J(T(A/J(A))) = O.
Furthermore if A/T(A) is divisible thén J(A/J(A)) = 0.

Proof:'.To prove the first assertion suppose a + J(A) € T(A/J(A))
where a ¢ J(A). AssumeAn is the order of a + J(A) in T(A/J(A)). For
every associative ring (A, °) on‘A let ne.) be the order of a + J(A, Q)
in T(A/J(A, +)). Lemma 1.18 and the fact that (A/J(A, +), +) is a semi-
simple ring imply J(T(A/J(A, *))) < J(A/I(A, +)) = 0, so.(].10) shows n(.)
is a square-free integer. Since na ¢ J(A, -), n(.) necessarily divides

Yo, e . o o 5
n. Ifn-= Py Py ... P s the canonical representation of n as a -
product of powers of primes, let h'i= Py Pp --- Py- Since'n(.) divides
‘n'; n'ae J(A, -). This is true of every associative ring (A, -) on A,
son'ae J(A). 'Consequentiyvn = ﬁ', that is n is a square-free integer.
Thus T(A/J(A)) is an elementary group, so (1.10) yields J(T(A/J(A))) =-0.

Next consider a group A such'that A/T(A) is diVisib]e. Since
J(T(A/J(A))) = 0, Lemma 1.18 shows J((A/J(A))pj = O, for every prime p.
Consider a fixed prime'p. (1.10) implies that (A/J(A))p is an ejementary
p-group, so | |

() AR = A, @ AP aa),
for some subgroup A(p) of A. Since (T(A) + J(A))/J(A) < T(A/39(A)),

[A/3(AYI/L(T(A) + 3(A))/9(A)]
T(A/I(A))/L(T(A) + 3(A))/A(N)T

[A/3(R)I/T(AZI(R))
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But

[A73(A)1/C(T(A)+3(A))/3(A)] = A/(T(A)+JI(A)) = [A/T(A)I/L(T(A)+I(A))/T(A)],
so [A/J(A)]1/T(A/J(A)) is a homomorphic image of A/T(A). Thus
[A73(A)]/T(A/3(A)) is a p-diviéib]e group.  Now

AP)raca) = ARV (A9 (A))

and [A/J(A)]/(A/J(A))p is an extension of the p-divisible group
T(A/J(A))/(A/J(A)) by the p-divisible group [A/J(A)]/T(A/J(A)). Thus
A(p)/J(A) is a p- d1v1s1b1e subgroup of A/J(A); moreover since (A/J(A))
is-an elementary p-group, A(p)/J(A) is the maximal p- d1v1s1b1e subgroup
of A/J(A).

Suppose now J(A/J(A)) # | It is clear that A/J(A) # T(A/J(A))
Now for each pr1me P, (A/J(A)) and A(p)/J(A) are both abso]ute ideals of
A/J(A). Thus (1.10) and Lemma 1.19 app11ed to the decomposition (x)
~yield 3(aza(a)) = o(aP)sa(ay). Hence.J(A/J(A))'gA(p)/J(A). Since -

this is true for every prime p, J(A/J(A)) ch (A(p)/J(A)).
‘ D _

Denoting N (A(p)/J(A)) by A]/J(A), for some subgroup A; of A, it
p , ' .
is readily checked that A]/J(A) is torsion-free and divisible. Thus
A/3(R) = AJ/I(R) @A,/3(A)

for some subgroup A2 of A. Lemma 1.19 and Theorem 1.21 now show

J(A/3(A)) ¢ J(A2/J(A)) Consequently
0 # J(A/J(A)) < (A /3(A)) n (AZ/J(A))

We conclude therefore that J(A/J(A)) = 0. //
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CHAPTER TWO

In Chapter One two major results from the Titerature concerning
rings on completely decomposable torsion-free groups were given. (1.6)
characterised the nil completely decomposable groups, whiie (1.9) gave a
description of the»absb]ute annihilator of a completely decomposable
group. In this‘cﬁapter we are concerned with_generélising these results
to other classes of torsion-free groups. It is pleasing to report that
genera]isatibns'are possible to the class of vector groups and to the
class of separable groups. We conclude the chabtervby providing some
necessary and sﬁfficient'conditions for an arbitrary torsiqn-free group

to be strongly nil.

1. VECTOR GROUPS

Following Fuchs [4] we call a group V a vector group if V is a

direct produét of rank one torsiop-free groups (that is; v =”JT; Ri where
: el

the Ri are rational groups). |

We begfn this section by giving a description of the nil vector
groups. To do this we need the following definitiohs,_and the well known
results (2.1) to (2.3).

A sZender'group A is a torsion-free group with the property that

-every homomorphism from a countable direct broduct of infinite cyclic
groups <e >, n - 1, 2, ..., into A sends almost all components <e,> into
the zero of A. These groups were introduced and studied by J. Zo§ (see
Fuchs [4], Section 94). | -

A set I is measurable if I admits.a countably additive measure u

such that u assumes only the values 0 and 1, and

u(I) =1, p(i) =0 for all i e I .
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(2.1) (Sagaida [1], Nunke [1]). Every countable and reduced

torsion-free group is slender. [/

(2.2) (Fuchs [21). A direct sum of slender groups is a slender
group. [/ '

(2.3) (£0$; see Fuchs [4], pp. 161,162)." If A is a slender group,
Ai (i € 1) are torsion-free groups, and the index set 1 is not méasurable,

then

(i) if ¢ is a homomvrphzsm fham'TT_A into A such that
iel . .

(@ Ay) =0, then ¢ =0
iel

(ii): there is a natural isomorphism

Hom(TT Ass A) = @ Hom(A;, A) . //

iel jel

Whenever we represent a vector group as a direct product

=TT R; it is to be understood that the R; are rational groups.
iel

We are now in a position to prove

LEMMA 2.4. IfV =TT R is a vector group such that the index

1eI

set 1 is not ﬁeasurable, and

Hom(R- ﬂB Hom(R k)) # 0 for some i and k in 1, then for such an i
Jel
and k there. emzsts aj el such that t(R ) t(R ) < t(Rk)

IProof: Hom(R , GB Ham(R Rk)) is a subgroup of
Je : ' .

Hom(R, TT Hom(R., R, )), so Hom(R., Hom(R., R )) # O for some j  I.
' Jel J . ! J :

Now.Hom(Rj, Rk) is a rank one torsion-free group whose type is

t(R,) :t(Rj) (see Fuchs [4], p. 111). Thus

t(R;) t(Rj) ;;[t(Rk) : t(Rj)] t(Rj) < t(Ry), as requireq. //
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;THEOREM 2.5. ILet V=TT R; be a vector group where the index
S el

set 1 is not measurable. Then the following‘ conditions are equivaZent:
(i) V is strongly nil;
(ii) V is nil;

(111) t(R;) t(R;) § t(R) for all i, j and k in 1.

Proof:-(ij > (i1) is immediate.

(ii) = (ii1).  Suppose t(Ri) t(Rj) ;g't(Rk) for some i, j and k
in I. It follows from (1.7) that we can define a non-trivial associative
ring (V', ) oﬁ a completely decomposable direct summand V' of V.  This
ring can be extended fo the who]é'of.vlby-defining ali other products to
be zero, SO U is non-nil.

(iii) =>(i). If V is not strongly nil, then Hom(V, Hom(V, V)) # O.
since t(R;)? § t(R;) for all i ¢ I and I is not measurable, (2.1) and (2.3)

(ii) yield Hom(V, V) = 11' @B Hom(R ) Now Hom(Rj, Rk) is either
' kel jel '

zero or a rank one torsion-free group whose type is less than or equal to

t(Rk).' (2.1) and (2.2) now imply that g) Hom(R k) is a slender group,
Jel

for all k € 1. Applying (2.3) (ii) we obtafn

Hom(V, Hom(V, V)) & 'TT'-GB:_Hom(Ri, .(3 Hom(R Rk)) .
| . kel jel jelI 3

Henée Hom(R., @ 'Hom(R., Rk)) # 0 for some i and k in I. From Lemma

2.4 We now conclude that t(R ) t(R ) < t(Rk) for some j eI, contradicting
(iii). //

COROLLARY 2.6. Let V = _I—II- R; be a vector group, where I is |
: le

not measurable. Then \ is nil if cmd only if @ Rsisnil. //
iel -

We now turn our attention to the absolute annihilator V(*) of a

vector group V.
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THEOREM 2.7.  Suppose V = || Ri 18 a vector group with the
iel '

index set 1 not measurable, and
= {i e I| there do not exist j and k in I such that t(R ) t(R ) < t(Rk)}.

Then V(%) = V@ (4) = TT R,.
IeII

Proof: Let v be a non-zero element of'V(a)(*); “Write
v=_(..., ris ...) where each ri € R; and some r. # 0. Assume there
exist j and k in I such that t(Ri) t(Rj) §=t(Rk). Applying (1.7) we
obtain an associative ring (VO, .) on_é finite rank completely decomposable

direct summand Vo = @ R, of V such that i ¢ I,
' OEIO T0 _ .

L e 10.’ and Rm . RR. =0 for all m € IO, m#i. Lgt Vv *-'VO@V' for some

Ri . Rz # 0 for some

subgroup V' of V. By taking the ring direct sum of (VO, ) and the

trivial ring on V' we obtain an associative ring (V, <) on V. Now

v = 1 ZI rid +v', where v' ¢ V'.  Thus 0=v :r, =r «r, forall
0°°0
ro € Rg. This cannot be the case since R . R # 0, whence v € T Ri'
iel
1

Conversely, suppose V is a non-zero element of T R, Itis
' el
1

clear that Rj is'reduced for all j e I. Assume v ¢ V(*). Then there is
an element ¢ ¢ Hom(V, Hom(V, V)) such that ¢(v) # O. " Thus

Hom( TIr Ri» Hom(V, V)) # 0. (2.1), (2.2) and (2.3) (ii) imply
ie 1

Hom( TT Ryi» Hom('ITR T R.)) T @ Hom(R @ Hom(R Rk)) R
16]1 kel kel 1eI] Jel

n

so there exists an i « I and k ¢ I such that Hom(R §B Hom(R Rk)) # 0.
Je

From Lemma 2.4 we infer that t(Ri) t(Rj) ;;t(Rk) for some j € I, contrary

to our choice of v. Hence v e V(x). //
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‘We conclude this section with Some necessary conditibné for a
direct product of slender groups to be nilr ‘
PROPOISITIGN 2.8. Suppose A = ;IJ; A'i’ where -gach A'-i is a slender
group, and the index set 1 is not measurable. Let (A, °) be a ring on A.

If @ A; is a subgroup of (0; (A, «)) then (A, ) is the trivial ring on
iel ' .

A.
Proof: Let ¢ e Hom(TT A,, Hom(TT A., TT A.)) be the map
. jel - Jed J kel
defining (A, -), and consider an arbitrary element a e A. Under the

natural isomorphism
Hom(TT Aj, TT A) = TT Hon(TT A, A)
Jel kel kel  jel
o(a) >~ (..., m, ¢(a), ...), where m, : ] A, ~ A_ is the natural
_ k k " el i k
projection for all k e I.  Now for each a' ¢ @ Ai'we have

jel
0 for a1l k ¢ I, so (2.3) (i) implies that

M ¢la)a' = M (a +« a')
m ¢{a) = 0 for all k e I. Thus ¢(a) = 0. Since a was chosen to be an
arbitrary element of A, (A, <) is the trivial ring on A. //

COROLLARY 2.9, Let A = TT A; be a direct product of the slender
' iel :

groups Ay, i e I where 1 is not measurable. If @ Ai 18 a subgroup of
' : : el
A (a)(*) then A is nil. //

We require the following result.
(2.10) (Gardner [1]). Let-{An]n =1, 2, ...} be a countable
family of torsion-free groups, and suppose B is an.arbitrzwy group. If

Hom( @ A ,B) =0 then Hom(TT A , B) = 0. //
n=] n=l

_ - |
PROPOSITION 2.11.  Suppose A = T A, s where each A is a slender
_ o n=1 o _
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group. If Mult (@ A) = 0 then Mult A = 0, in which case A is nil.
n=1

Proof: Since Hom{ @ Al‘(, Hom( @ A,
k=1

A)) =0,
L

Hom( @ Ak, Hom( @ -A“'], An)) = 0 for each positive int_eger n. Consider
k=1 m=1

such an integér n. Clearly Hom( @ Ak’ 0 Hom(Am, .An)) = 0. Thus,
' k=1 m=1 '

since @ Hom(A , A ) is a subgroup of | Hom(A , A ), i't_is evident
m=1 mon m=1 m-n

that Hom( ® Ak, @® Hom(Am, An)) = 0. Since An is slender (2.3) (ii)
k=1 m=1 _

now yields Hom( @ Ak’ Hom( TT Am, An)) = 0. Consequently (2.10) implies
k=1 m=1 o

Hom(TT Ak, Hom( T Am’ An))- = 0. This is true for every positive
k=1 m=1 '

integer n, so clearly IHom(T[; A Hom( TT Am,_'|T An)) =0, as required. //
k= m=1 n=1

2.  SEPARABLE GROUPS

The separable groups were introduced by Baer [1]. A torsion-free
group A is called separable if every finite set of e!eﬁents of A is |
contained in a completely decomposable direct summand of A. It is clear
that thig summand can be choseh to have finite rank.

We comménce this section with a description of the nil separable
groups. First however, we need to consider the following subgroups of a
separable group.

Suppose (A, +) is a ring on the separable group A, and Ay @Az is
a completely decomposable direct summand of A. We are permitted to write

AT @@ ... @ <an] > %
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and

A2.= n]+'l *©<a +2*@ ®<az>

. - ,
for suitable e]erpents 15 855 --ns a“2 of A, and A A] ®A2@A2 for

some subgroupl Aé of A. Since Aé is a direct summahd of A, Theorem 87.5
of Fuchs [4] shows it is separable, so there is a finite rank comp]eteiy
decomposable summand A3 of Aé with the property that Ay @Az@A3 contai_né
all products of the form a; - a, where i e {1,2, ..., n']} and

J
je{l,2, ..., n2}. Thus

Ay = <a I n,+1 >x @ <a o2 > ® .. @<a 3>*. |

for suitable elements anzﬂ, an2+2, cees an3 of A.  Since A, @A2@A3
is a pure subgroup of A it is clear that a - b e A, @A2®A3 for all
ae A] and all beA]@A

LEMMA 2.12.  Let (A, *) be a ring on a separable group A, and
let Al » Ay and'A3 be the subgroups of A defined as above. If

Hom(A-l, Hom(A-‘ @Az-, A] @ Aé@ A3)) # 0 then there exist

ie{l,2, ccomb de{l, 2, o, n) and ke {1, 2, ...y g} such
that t(a;) t(aj) < tla,).

Proof: Clearly
hy M M3 |
Hom(A],Hom(A]@_Az-,AleAz@A3)) T @ & k@ Hom(<a1-'>*,Hdm(<aj>*,<ak>*)).
: i=1 j=1 k=1 .
Proceeding as ip the proof of Lemma 2.4 we obtain the required result. //

THEOREﬂ 2.13. For a separable group R the following conditions
are equivalent: |

(i) A is strongly nil;

(i1) A is nil;

(i1i1i) every rank n (n < 3) completely decomposable direct summand
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of A s nil.

Proof: Clearly (i) = (ii) and (ii) = (iii). It remains to show
(iii) = (i). Suppose there is a ring (A, +) on A, and elements a, b in -
A such that a « b # 0. Let »‘%1 be a finite rank compieie]y decomposable
direct summand of A containing a and b, and let A, = 0. Define A3'as we
did prior to Lemma 2.12. For e e Al define ¢ : A] > Hom(A], A] @A3) by
o(e)f
¢(a)b

n (n< 3) direct summand of A that is non-nil. //

e - f for all f e A;. Then ¢ € Hom(A], Hom(AP A, @A3)) and

a+b#0. Wenowapply Lemma 2.12 and (1.7) to obtain a rank

Having characterised the nil separable groups we are now in a
position to describe the structﬁr‘e of the absolute annihilator of a
separable group. We need to make the following definitions.

A fim’te set of elements {a], ps ees an} of a separable group
A is called basic if it is independent and <a]>*®<a2>*© e @ <ap>x
is a direct summand of A. An element a ¢ A is called a basic element
of A if the set {a} is basic. For the separable group A we define
A' = {a e Ala is a basic element of A with the property that there do not

| exist basic elements b, ¢ in A with {a, I.a,‘ c} basic and

t(a) t(b) < t(c)}.

THEOREM 2.14. Let A-be a separable group and let A' be defined
as above. - Then A(*) = ﬁ(a)(*) i8 the pure subgroup of A generated by
A'. |

Proof: If a is a non-zero element of <A'>, then we can write
where n # 0, Nys Nps «..5 Ny are integers and a; € A' fori=1,2, ..., k.

If a; 4 A(x) for-some i ¢ {1, 2, ..., k} then there is a ring (A, +) on A
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such that a; - a' # 0 for some a' ¢ A. Let A] = éai>* and let

A2 = <a2>*@<a3>*@ @<an2>*

be such that A] (+)A2 is a completely decomposable diréct slimmaﬁd of A
containing a'.  Define Aé- as we did prior to Lemma 2.12. As in the
proof of Theorem 2.13, ay - a' # 0 implies
Hom(A, , Hom(A; @ A,, A, @AZ@A3)) # 0, so Lemma 2.12 shows
t(a;) t(aJ.) < t(a"() for some j e {i, 2, 3, ..., n,} and
ke{i, 2,3, ..., ng}. This contradicts the fact that a; < A'.
Therefore for each i ¢ 1, 2, ..., k}, a; € A(x), so na-e A(*). Since
A(*) is pure in A it follows that a e A(*).

Next suppose'ha is a non-zero element of A(a)(*). Now a can be

embedded in a finite rank compietely décomposab]e direct summand A] of A,

A] = <ap> @<a2>* ®...D <an]>* >

and there exist integers n # 0, Nys Nps ooy N such that
. 1 :

na = n] a] +n2 a2 + ... +nn] an_] .

If a, ¢ A' for some i ¢ {1, 2, ..., n]} then there are basic elements b
and ¢ in A such that {ai, b, c} is basic and t(ai) t(b) < t(c). By
(1.7) there exists an associative ring (A, +) on A with_ai -a'#0 for

some a' ¢ A, If we let
A2 N <an]+]>_* @<an]+2>* ®... @<an2>*.

be such that A] ®A2 is a completely decomposable summa_‘nd of A containing
a', and define A as usual, then as in the proof of Theorem 2.13, |
a; - a' # 0 implies Hom(<a;>,, Hom(A; @A, A; @A, DA;)) #0. A
reference to Lemma 2.12 now yields t(a;) t(a;) < t(a)) for some

jedl, 2, ...,nland ke {l,2, ..., ng}. (1.7) now shows that we

can define an associative ring (A] ®A2 (+)A3, x) on A] @Az ®A3 such
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that <a,>, x <a,>, # 0 for some £ e 1,2, ..., n3}'énd @p>, x <a,>, =0
for all me {1, 2, ..., n3}, m#i. (Jfk1 ©A2®A3’- x) can be extended |
to an associative ring (A, x) on A by setting all other products equal to

zero. But then
0 = (na)x a, = ("i ai)x a.
Thus if n; # 0, a; € A'.  Therefore a e <A'>,. //

Finally, we note how some of the methods of this chapter can be
general ised to-provide some necessary and sufficient conditions for an
arbitrary torsion-freé group A to be strongly nil. It is necessary
to introduce certain rational subgroups of A. In the case that A has
rank two_thesé Subgroups correspond to the 'groups of_rénk one' defined
by Beaumont and Wisner [1].

Suppose A is a torsion-free group and'{aili e I} is a maximal
independené set df_e]ements of A. Eacha ¢ A cap now be uniquely

expressed as

() a=o; a. +oa. a: + ...+ 0. as

for a suitable subset {éi.|j =1, 2, ..., n} of {aili e I}, and suitable
J

rationals Of 5 Oy 5 ooy di . For each i ¢ I we now define two subgroups
1 2 n
of the rationals, called the rational groups belonging to aj, as follows:

LO
L}

{a € Q|there is an expression of the form (x) containing

aa; as a component}

Q) = {a e Qloa; € A}

In .

Clearly Q;_ Qa.’ 1e Q;. and Qé. a, = <a;>4, for each i e I.
i i i i _

PROPOSITION 2.15.  Suppose A is a torsion-f?ee group and
{aili e 1} is a maximal independent set of elements of A. ‘Let-Qa- and
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Q) be the rational groups belonging to a;, for each 1 ¢ 1. If
1 - R

t(Q, ) t(Qéo) $ t(Qak) for all i, j and k in I then A isstrongly nil.
J ' '

Conversely if Aisstrongly nil then Qa Qa i{Qé for all i, j and k in
i 7 k .
I.

Proof: Suppose (A, ) is a non-trivial ring on the group A.
Since {ai]i e I} is-a maximal independent set of elements of A there are
indices i and j in I such that a; a‘j # 0. Also, for suitable non-zero

integers n, n, , n. , ..., Nn. we can write
1 T2 Tm

. . m

n(ai . aj) = RZ n. a.

Qhere {ai§|£ =1,2, ..., m {s some non-void subset of'{aili e I},
Now consider arbitrary non-zero B, anq Bj_1h Q;i and Q;j

réspectively. By definition, Bi a; and Bj aj-are both elements of A,

S0 (Bi ai) . (Bj aj) eA. It is readiiy checked that

o

n((8; a;) + (85 a;)1 = nl8; 85 (a; * a)] -

-81- B [n(a, - aj)]_' |

=g, B; [ I n, a;,]
inJ g] ip iy
m
) Zl ", % %3 a‘z
Thus if k € {i1. iz, vens im}, N Bi Bj € Qak. ' By consgcutive]y choosing
Bj = 1 and Bi = 19t is immediate that_nk Bi € Qak and nk_Bj € Qak.
Hence n Qé_ < Q. and g Qé_ 5=Qa" for each k « {j], [PYRRRR im}.

i~ % i k

Next consider fixed non-zero elements Bi and Bj in Qé and Q;

respectively. Then for k e {i,, 12, cees im}
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%, %,
t (8t 7 ()
. -Q. X Q! I
n, a. n a.
t K Tn 8t k -9 (n 8;)
Qa d .-
t X (n 8t Kin 8y
A -
<t “(ng 8y (n 85))

RURECS

A

=t(Q, )
a
since nk2 Bi Bj is a non-zero element of Qa . Evidently the first
_ ) K _
assertion of the Proposition has been verified.

To prove the converse statement suppose there exist i, j and k in

I such that QaQ Qa.

i 5
then <a1-_>g®ﬂ, '<aj>g®A anq <ak>3®A will all obviously be direct

€ Q) - If we embed A in its divisible hull Q@® A,

summands of Q ® A.  Consequently we can define a ring (Q® A, +) on
Q® A by letting 'ai . aj =---a‘[;,---'ahd all other products not thus accounted
for be zero. - If now a and b are arbitrary elements of A then from the
definition of (.Q®A, -) it is clear that a » b is either zero, or

. Since Q, Q, <Q!,
a; 3 "y = Ty

a-b-= oy o ak'where a; € Qai and aj € Q
a-+*beA. Thus (A, «) is a subring of (Q®A, +), and since

aj * a5 =y 7 0, A is not strongly nil. //

Consider the completely decomposable group A = @ Ai’ where fhe
' .- jel

Ai are rational groups'. If for 'each ielwe sel’ect a non-zéro element
a; € A;, then {a'i]i e I} is a maximal independént set of elements of A,

and Q;. = Qa. = Ai‘ A routine argument verifies that for all i, j and
i i

k in I, t(Ai) t(AJ-) < t(Ak) if and only if A, AJ. < A Consequently

the Ree and Wisner result (1.6) is a special case of Proposition 2.15.
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Beaurﬁont and Wisner [1] héve shown that if Uy cU, V5 cV are

rational grbups #uch that U/U'0 ¥ V/V, then there exist; a torsion-free

group of rank two with independent elements {a, b} such that Q; = Ug,
Qa = U, Qt') =VV0, and Qb =V, Pr_opositiqn 2.15 therefore also provides
us with abundant é*ém'p]es of (strongly) nil forsion-free groups of rank

two. -
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CHAPTER THREE

It is apparent from the previoﬁs chapter and- the results (1.6)
anﬁ (1.9) of Chapter One that for certain torsiori-free groups A the
condition tha;.there exist elements a, band c inA chh that
t(a) t(b) < t(c) is extremely useful. The first part of this chapter -
is devoted to a-further analysis 6f this concept in completely
decomposab}e torsion-free groups. We 1ntroduée a rg]ation:;' defined
on a subset of-the type set of a tomp]étely decomposable torsion-free
group A.  The relation <' has an interesting connection with the
T-nilpotent rings of Lévitzki [1] and Bass [1]. Also, it allows us to
write A in a'forh ;haf is different from the usual répresentation_of A
as a direct sum of rational groups. With A written in this fofﬁ and .
the relation <' satisfying a.certaih_chain,condition we are then able

to describe the absolute radical of A.

1. A RELATION ON A SET OF TYPES IN A COMPLETELY DECOMPOSABLE TORSION-
FREE GROUP.
Throughout this chapter a compiete1y decomposable torsion-free
group will éimply be called a completely decomposab]e'group; For a

completely decomposable group A = @ Aﬁ,zwhere A; is a rational group
: S iel :

for each i « I, let ?(A) denote thegset'{t(Ailli e I}. We define a
relation <' on T(A) in the following manner: for i and j in I we say

t(A;) <' t(A;) if there is an ij < I such that t(A,) t'(Ai']') < t(A;).

It is c]eér that <' is an antisymmetric and transitive, but not
‘necessarily reflexive relation on f(A). ' |
By a.-chain of length n in T(A) is meantva.sequénce of n (not

necessarily distinct) types t(Ai )s t(Ai ) t(Ai ) in T(A) with the
1 2 ‘ .

n
property that
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t(A; ) < (A ) <t 2t (A )
| ‘ 2 n
The existence of chains of length n in T(A) is not a new idea.

Gardner [5] has defined a 2 X'h_ n;matrﬁx to be a 2 x n matrix of types

such that t7; Ty < Tg44q fOr i =1,2, ...son - ].._ It is clear that
for a completely decomposable group A the existence of a chain of length
n in T(A) is equivalent to the existence of a 2 x n m-matrix over T(A).
Consequeﬁtly : | |
~ (3.1) (Gardner [5]1). Suppose A= @ A, is a completely
. . : 1e : _
decomposable group where each A; is a rational group, and let for each

positive integer n,

I, = {i € I|there exists no chain of length n + 1 in T(A) cammencing with
t(A;)}. _ | |
Then A(n) = @ ‘Ai’ and the following conditions are equivalent:
jel - o
n

(i) A=A(n), n<x, and A # A(n-1); '
(ii) there are chains of length n but no chaine of length n + 1
in ?(Aj;
(iii1) A has strong nil-degree n. //
If A= W“F'Ai is a vector group, where A; is a rational group for
iel _ -
each i ¢ I, then we can define T(A) and the relation <' on T(A) in the
same way as'we defined the same concepts for a completely decomposable
group. (3.1) now has an immediate extension to vector groups. The only
difference in the statement of (3.1) is that A = 'TT'Ai where the index
' : iel : - .

set I is not measuréb]e, and for each n, A(n) = T[ Ai’  The proof of
: s _ : el :
n
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the corresponding statement of (3.1) for vector groups is identical to

the original proof of (3.1). We now know, therefore, that if A = 'rrrAi

el
is a vector'group.whére I is not measurable then A and‘F%~Ai have the

. €
same strong ni];degree.

Vinsonhaler and Wickless [1] have studied another éoncept in a
completely decomposable group A that is related to the existence of
chains of length n in T(A); Following Visonhaler and Wickless we define
a triangle of size n to be a collection of ﬂj%ill-rational groups indexed

by all sequences of the form (i, i + 1, ..., i + j) where 1 < i < n,

0<jsn-1, such that

tAG i1, i40)) B GG, ingez, . inge) £ HAG in,L L indek))
for all i, j-as above and k with i + j + k < n. '
If A = ) Ai-is a completely decohposab]e'group,'where each Ai
el ' A
is a rational group, then clearly the existence of a triangle of size n

formed from the set of groups {Aili e I} implies the eXistence-of a chain

of length n in f(A).

(3.2) (Vinsonhaler and Wickless (11). Let A = ® Ai be a

jel
completely decomposable group, where Aj‘is a rational group for each i € I.
Let (A, *) be an associative ring on A and suppose 1(A) ie an ordered set.

IFf (A, DU 0 for some positive integer n, then a triangle of size N can

be formed by chéosing groups f?om_{Aili e 1}. //

Vinsonhaler and Wickless (1] have stated that the requirement
that T(A) is an orderedvset‘cannot be deleted in (3.2). ‘.HOWever if we
replace Vinsonhaler and Wickless' triangle of size n condition with our

weaker condition_then,(3,2) can be substantia]]y'improved."
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THEOREM 3.3.  If (A, +) is a ring on the completely decomposable
group A such that (A, -)n # 0 for some bositz’.ve integer N then there
exists a chain of length n in ?(A).

Proof: Suppose A = @ A where each A is a rational group, and
iel _

X{s Xgs «uss xn'are elements of A such_that
| I'(...((x] -_xz) . x3) o« L) e x, # 0.
For each i L let a; be an arbitrary but fixed element of A..
Then t(ai) = t(Ai), and each element of A; can be written uniquely in
the form aa, for a suitable rational o. Thus for each k ¢ {1, 2, ..., n}

there exist élements ik, 1), i(k, 2), veey i(k, mk)}i"'j such that
M
Coallxg = xp) = xg) e vnn) = xp = Z “1(k 2) i(k 2)*

yhere % (k,2) fs a non-zero rational for each £ « {l,l?? cees Mt In

particular |
- | ' M1
(ool oxg) = xg) s o) =Xy = b Si(nin,g) Bi(n-1,0)°
SO | |
_ , Mn-1 - _ ' |
(e (lxg * %) °'x3) . ...? - x = 221 ai(n-],l)-(ai(n-l,z) . x).
On the other hand
(ol = xp) * xg) = ‘ Z “i(n,0) %(n,2) °

Therefore for every 2(n) ¢ {1, 2, ..., mn} there exists ‘an
2(n-1) € {1, 2, ..., m__;} such that % (n-1,2(n-1)) * *n has .a non-zero

component in “i(n,z(h))' In other words

Hi(n-1,0(n-1)) £ H@in,00m))) -

If we similarly analyse the product
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(...((x] . XZ) . x3) .« ..L) . xﬁ_]'

it is possible to choose an k(n-z) e {1, 2, ..., mn_z} such that

t(a(n-2,2(n-2))) £ t@j(n-1,2(n-1))) -
Repeating this procedure n times will produce a sequence of elements

3 (1,2(1))° aj(z,z(z))s cos 3i(n,e(n)) in A such that

tEi0,0))) 2 H@i2,0020)) £ - 2 000y

where 2(j) ¢ {1, 2, ..:, m;} for each j ¢ {1, 2, ..., n}. //

The definitions of a left T-nilpotent ring and a right TQnilpotent
ring given by Levitzki [lj and Bass [1] (see Chapter One) can be
generalised to include the non-associative rings. Indeed suppose (A, *)
is a non-associative ring on the group A. (A, +) is called Zeft
T-nilpotent if'for every sequence a;, a3, ... of its elements there is
a pbsitive intéger n such that.(...((a] . a2) -‘a3) c L..) e a = 0.
Right T-nilpotence is defined similarly.

Gardner [4j has shown that if A is a groub such that every
assocfative ring on A is left-T-nprotent then every associative ring
on A is right TQnilpotent. With a similar proof we can show that if
every ring on A is left T-nilpotent then every ring on A is right
T-nilpotent. in this'case we'are justified in sayingithat every ring
on A is T—ninétent.

Now for the major result of this section.

THEOREM 3.4. Let A be a completely decomposable group; - Then
every mlng'_on A is T-nilpotent if and only if f(A) satisfies the ascending

chain condition with respect to the relation <'.

Proof: Suppose (A, ) is a fing on A tﬁat is not left T-nilpotent.
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let A= @ A » where each A is a rational group, and select elements
iel s :

Xps Xos een of A such that for each positive integgr n

(...((-xl . xé) -_x3) TS I x, # 0. Theorem 3.3 yields, for each
positive integer n, a chain of length n in ?(A). Moredver, an analysis
of the proof of Theorem 3.3 shows that the kth term (where k is a positive
integer) of any one of these chains must be the typelof one of at moét

m distinct rational” groups A » 1 el.

With the notation of the proof of Theorem 3.3, define C to be the

set of chains in T(A) with respect to <' corresponding to the sequence
Xps Xgs e such that the first term of each of these chain; is a type
from {t(Ai(l,n))|£ e {1, 2, ...;'m]}}. It is c]ear'that.c-is an infinite
set with the property that all the elements of C commence with a type '
from a finite subset of T(A). Hence we can choose an i, e I such that

there are infinitely many chains in C commencing with t(Ai ). (Notice
]

that i] = §(1, &) for some 2 ¢ {1, 2, ..., m]}). Each of these chains
can have only a finite number of distinct second terms, so it is possible
to choose an-iz_e I such that C contains ihfinitely many ‘elements nith _ -
first and second terms t(Ai ) and t(Ai )'reSpective1y. - Repeating this

r 2 _
procedure it is possible to find an infinite chain

t(A; ) < t(A ) < e f-'.t(A'i ) < .
1 2 n -

in T(A). Thus T(A) will not satisfy the ascending chain condition.
(It should be noted that the above argument is based upon the proof of -

a gfaph theoretical result, namely Kénig's lemma (see Wilson [I],_p. 40) ).
Next_suppose

(A ) <t t(Ay ) < <t (A ) <L
L 2 n

is an infinite as@ending chain in T(A). Then there exist indices
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Jis Jos -.. in I such that t(A, ) t(A, ) < t(A, ) forall k=1, 2, ... .
1* Y2 1k i = i

k+1

Thus there are elements a, , a, and a, in A, , A. and A, respectively
. i,” %, i, i)’ Ty i,

such that x(ai.) x(aj ) < x(ai ). -Suppose now for each k ¢ {1,-2, ..., m} .
1 Y1 2 _ |

we have selected elements a, , a. and a, inA, , A; and A

Tk Tk+1 Tk Ik

respectively, such that x(ai ) x(aj ) S.X(31 ). Since
k k k+1 _

L

t(Ai ) t(A; ) §=t(Ai ), there are elements a; - s @ and a!
Tm+1 Im+1 m+2 ml Iml Tm+2

in Ai » A. .and Ai respectively, such that
mel Ime] m2

x(a% ) x(a; )< x{ai ). Since a; and a%- ~are dependent

mt] Im+1 T2 m+1 m+1

it is now possible to choose an element a, € Ai
' o o m+2 m+2
). Thus for each k =1, 2, ...,

elements of Ai
' mt+]

such that x(a. ) x(a, ) g!x(a.
Tl I Tm+2

there are.e]ements a; » a; and ai" in A, Aj and-Ai - respectively,
kK Jk k1 Tk Yk kt1 o

such that'x(é. ) x(a. ) < x(a ). Define a, - a, and let
: L% I = i _ : i

=a
k+1 kK ko Tk
all other proddcts in A not thus accounted for be zero. - In this way

~we obtain a ring (A, <) on A for which

) ¢+ L) e 3y ' =a; 70

) »a; ) - a.
Jpo n-1 ’'n

(...(((ai] . aj] 3

for each positive-integer n. . Thus (A, ) is not left T-nilpotent. //

2. THE ABSOLUTE RADICAL OF A COMPLETELY D_Ecomosm_s TORSION-FREE GROUP

If Ais a completely decomposable group then”the_relation <'on
T(A) discusséd in the previous section facilitates aﬁ alternate description
of A, and it is this description-of A that allows us to defermine the ‘
structure of the absolute radical J(A) when the non-idempotent types in
T(A) satisfy the ascendihg chain condition with respect to <'.
| _For the cémplete]y decomposable group A, if we collect together

all the rank pﬁe summands of A with the same type then it is possible to
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write A in the following form:

A=@Ai®®B°a
jel jed J

for suitable index sets I and J, where each Ai’ ie I,'aﬁd each Bj. Jed
is a homogeneous completely decomposable group, all the components in
this decoﬁposition of A have distinct-tybes, the type of each Ai’ iel,
is maximal in f(ﬁ) with respect to the relation <', and the type of each
Bj» J € J, is not maximal in T(A) with respect to <'. It is clear that
this decomposition of A is unique (up to rearrangements of the Ai terms
or the Bj terms). Tﬁis'decomhosition of A is-calIgd the h-decomposition
of A. | | |
From Lemma 1.19 it is immediate that

A L ® I B B IB;)
iel Jed

It is not difficult to establish that since A, has maximal type in T(A)
with respect to éj; Ai is an absolute ideal of A, for_eéch iel.” Thus

Lémma 1.18 yields

® J(A) < I(A) .

_ el
It is apparent from these two inequalities that to characterise the
abso1uté radical of a completely decomposable group we ihitia]ly need to
concentrate our attention on describing the absolute radical of a
homogeneou§ completely decomposable group; To do th1§ we require the

following two well known results.

(3.5) (Fuchs [4]). Let A be a homogeneous completely decomposable
group of finite rank. Then every pure subgroup of A is a direct summand
of A. //

(3.6) (Baer [1], Kulikov [1], Kaplansky [1]). Direct summands of
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completely decomposable groups are completely decomposable. [/
For later purposes we will also need the fdl.]ewing useful Temma.

LEMMA 3.7. Suppose (A, *) is an associative ring on a homogeneous
completely decompoédble group A of finite rank, t(A) -'723. idempotent and
0 # ]P?l < o, If‘- J(A, *) #0 then-eitﬁer J(A, *) has rank equal to the
rank ef Aor A cdﬁt&ins a proper d’iréct-smmd with trivial ab_soiute -
radical. . = | -

Proof: Let (A, ) be an associative ring on A for which
J(A, ) # 0. For notational convenience denote <J(A, ;)>* by A].
(3.5) shows t_het A, is a summand of A, so A = A; @A, for some subgroup
A, of A.

Smce J(A, +) is an ideal of (A, ) (A], ) is also an ideal of
(A, *). Therefore J(A], «) = (A], ) nJ(A, <), so J_(A], <) = J(A, ).
This means <J(A], )>, = A], so A /<J(A], )> is a torsion gir-oup " The
proof of Proposﬂ:wn 1.20 now yields 2 PA; < J(A], ), s0o 0 # |P]| < o

indicates that A /J(A] > *) is a bounded torsion group. Suppose n s a
bound of AIIJ(A ). | _.

_ Now as groups A/J(A, «) = (A]/J(A], ) ®A,. Since
nA, = n((A]/J(A], ) @Az), nA, is an absolute ideal of (A]')J(A], ) @A,.
~From Lemma 1.18, J(nA,) c J((A;/(A;, +)) ®A,). J(A/J(A, +)) = 0 and
Lemma 1.17 now show J(nA’z)- = 0. Since A, # nAz, J(Aé) =0. The . .

assertion is now immediate. //

PROPOSITION 3.8. et A be a homogeneous completely decomposable
 group of finite rank such that t(A) is idempotent and 0 # IP?] < w, Then

n, pA
perh

J(A) =



44.

Proof: We use induction on the rank of A. The case when A has |
rank one is settled by Theorem 1.21, so assume A is as stated in the
Proposition and also that the Prohosition_is true for such groups whose
ranks are étrict]y less than n, n a posifiye integer;

First, we c]éim that A cannot support a semisimple ringQ Indeed
suppose (A, {),is_an associative ring'on A such that J(A, <) =0. If
(1, *) is.a non-zero ideal of (A, +) then (<I>,, +) will be a non-zero
pure ideal ofl(A, *). Owing to (3.5), <I>, is a direct summand of A so
(3.6) implies that <I>, is a completely decomposable group. If A/I is '
not a torsion group then r(<I>,) ;{r(A). The inductjoh hypothesis now
shows J(<I>,) # 0;'sb.J(<I>*, <) #0. Since- _ |
J(<I>y, +) = (<I>,, +) N J(A, +), J(A, +) # O, contradicting the
semisimplicify of (A, +). Therefore if (I, ) is a hon-iero ideal of
(A, *), A/I is_a-tbrsion group. | |

(1.3) show§ that (A, +) is isomorphic to.a sub&irect product of
right primitive rings (Ai’ «), i e I. A reference to Jacobson [1] shows
that for each i g'i, (Ai’ ) is 1somdrphic to (A/Pi, *), where (Pi’ .)
is a right primitive ideal of (A, ), and also that (Ai, +) is isomorphic
to a dense ring of linear transformations on a right vector space over a
division ring Di.f If, for i ¢ I, the charapteristiq of D, is the prime
p then é]early Ai is an elementary p-group, and furthermore, p ¢ PA.

On the other hand if the chéracteristic of bi is zero then it is readily
checked that A, is.tﬁfsion-free, which we know cannot be the case.
Theréfore (A,.;)'is isomorphic to a subdirecf product of Bounded rings
(Ai’;')’ ie I; where for each i ¢ I the pound of A; is a prime belonging
to P?J ' Since-P? is finite, A must be a torsion group. Evidently our
claim is now established.

If now (A, ) is any associative ring on_A_thén Lemma 3.7 shows
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that either A/J(A, +) is torsion, or A contains a proper direct summand
with trivial absolute radical. The 1a£ter alternative can be deleted
»by virtue df;(3.6) ahd the induction hypothesis, so Proposition 1.20

y1e1ds n oA pA < J(A). The proof is cohp]eted by observingbthat’Lemma
peP 1 _ -

1.19 and Theorem 1.21 together 1mp1y J(A) = n A PA. /]
peP-I

Wickless [1] has given an example of a countably infinite rank
completely decomposable group supporting a semisimple ring. We can
- extend Wickless' argument to prove

LEMMA 3.9. isuppose A= @ Ak where each A, is a ratzonal group.
k=1 .

If t(A ) t(A )< t(A for aZZ i and J in {1, 2, ...} then A supports

i)

a semmstmple rzng.

Proof: Assume t(A%) t(Aj) ézt(Ai+j)'for a]} i ahd j in'{l, 2, ...}.
" As in the proof of Theorem 3f4 an induction argument‘shows that for each
ied{l,2, ...}vWe can select elements a; « A, such tﬁat '
x(a;) x(aj)”; X(ai+j) for'alj iand j in {1, 2, ...}.. We can now define
a ring (A, ')voﬁ A by letting a; - a; = ai+jffor all i and jin {1, 2, ...}.
If is clear thaf'(A, +) is an associative and Commutative ring on A.
Suppbsé now that a and B are ﬁon-zero é]emenfs of A. Let n be
the largest pos1t1ve 1nteger such that a has a non-zero component in An
and m be the largest pos1t1ve 1nteger such that b has a non zero component
in Am. Then a - b has a non-zero_component in Anin? and since ’

n+mj maX{n, m}, it is evident that a + b + a = b # 0. ~ Consequently

7&

(A, +) can never contain a non-zero right quasi-regular element. Thus

(A, +) is semisimple. //

It should be noted that if A in‘Lemma_3.9 is a]so'homogeneous ’
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with idempotent type, then Lemma 3.9 can be proved using a more geheral
result proved by Amitsur [1]; if R is an associative ring with trivial
nil radical then the polynomial ring over R is Jacobson semisimple.

Now for the description of the absolute radical of a homogeneous

completely decomposable group.

THEORE!*_’! 3.10. If A is a homogeneous completely decomposable
group then exactly one of the following conditions holds

(i) J(A) = A;
('i'l) J(A) = O; or

(#11) J(A) = N, pA.

(i) hotds ea:aétly when t(A) is not idempotent, (i1) holds exactly when

t(A) is idempotent and either r(A) is infinite, |P?| =0 or IP?I = o,
while (iii) holds exactly when t(A) is idempotent, r(A) is finite and
0# IP?I < w;'; | ‘

Proof: If t(A) is not idempotent then A is a nil group, so

J(A) = A. Suppose therefore that t(A) is idempotent. If r(A) is
infinite and a is a non-zero element in J(A), then it fﬁ possible to
embed a in a éountably infinite rank completely decomposable direct
summand A, of'.A. Writing A = A; @ A, for some subgroup A, of A, Lemma
1.19 yields J(A) < J(A,) @ J(A,). From Lemma 3.9 it is evident that
J(A}) =0, 50.(A) c Ay Thus 0 7#acA  NA, We conclude therefore
that J(A) = 0. If |P?l =0 or |P?| = @ then Lemma 1.19 and Theorem 1.21.
yield J(A) = 0. On the other hand if A has_finite-fank and 0 # |P?|.< -
then Proposition 3.8 shows J(A) = pnpA pA. As in the proof of Theorem

. eP] , -

1.21 the final assertion of the Theorem is evident from'the fact that the
three conditions mentioned there are mﬂtué?ly exclusive and-ekhaUstive :

- conditions for A. //
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COROLLARY 3.11. If A is a homogeneous completely deeomposable
group then J(A/J(A)) = 0. //

Consider a completely decomposable group A with-h-decomposition

A= @ A® @ B. .
iel  jed d

Having completely characterised the absolute radical of Ai_for each i € I
we now turn our attention to defining subgroups K(Bj) of Bj for each
Jj € J that wi]i.render possible a description of the absolute radical of
A when the non- 1dempotent types in T(A) satisfy the ascending chain
condit1on with respect to <' We need to develop some- notat1on and give
some prel1m1nany resu)ts.

For eacﬁ j-e J define };(j) to be the set of components in the
h- decomposit1on of A whose types, w1th respect to <', are strict]y greater
than t(B ). Let A(J) denote the direct sum of the elements of 13(3).

For the compTete]y decomposable groﬁp A above we can prove

LEMMA 3.12.  For each § < J the subgroups AY) ana AU ®8, of

A are absolute ideals of A.

Proof: Suppose (A, +) is a ring on A such that'(ﬁ(j), ) is not
an ideal of (A, -). Tﬁen we can assume without loss of generality .
that there.exist-elemenfs ay € A(J), a, ¢ A and ag € A\A(J) such that
ay *a, = a3.: This amounts to the ex1stence of two components of the
~h-decomposition of A, C and D say, such that C ¢ 13(3), D ¢_13Q’) and
£(C) <' t(0). But then £(B,) 5't(C) shows t(B;) ;' t(0), that is
D e l?(j).' This‘prbves the first assertion of the Lemma. The proof
that AL3) @ B is an absolute ideal of A is identical. //

For each.j'g J we now give four conditions on the completely

decembosab}e.group A that will make the definition of the subgroup K(Bj)
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of Bj and the propf of our major result far easier. Fof each j € J we

say that A satisfies

i(1) if-l;(j) U {Bj} contains a group C such that J(C) = 0.

j(2) if l;(j) U {Bj} contains.no group with idempotent type.

j(3) if A does not satisfy j(1) and Bj has idempotent fype.

j(a) if Bj has non-idempotent type, lg(j) contains at least one group
with idempotent type, and every group with idempotent type in

13(3) has non-trivial absolute radical.

" For each jed ft is readi]y checked that the conditions j(1),

j(2), 3(3) and j(4) are mutua11y eXﬁ]usive and exhaustive condftions for -
A. .

We need'one final piece of notation. If for somé J elJ; t(Bj)“

is not idempotént and lg(j) contains some elements with idempotent type

then define
p%J) = U {p?lc ¢ BU) ang t(C) is idempotent}.

Now for the definitions of K(Bj), jJed. Foreach jeld define

the subgroup K(Bj) of Bj as follows

0 if A satisfies condition j(1).
B. if A satisfies condition j(2).
K(B,) .= J - :
J J(85) if A satisfies condition j(3).
\. N /.y PB;, if A satisfies condition j(4).
peng) ]

From previous comments it is clear that for each j e J, K(Bj) is
a weT] defined subgroup of Bj. It should be noted that»qlthough the
above definitions of the groups K(Bj) for j € J are complicated these
definitions do make the statement of thé main Theorem of this chapter

extfeme]y sfmp]e: we will prove that 1f‘A is a'complete]y'décombOSable
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group with h-decomposition

- @ A® ® B
jel Jed

such that the set of non-1dempotent types in T(A) sat1sf1es the ascend1ng

chain condition wlth respect to <' then
JA) = ® AN D D K(By) .
iel Jed
‘The containment
@ J(A;) @ ® K(B;) £ I(A)
iel - Jed . .

is proved by a series of lemmas.

LEMMA 3.13.  Suppose A is a completely decomposable group with
h-deaompositioﬁ

=@ A GB > B >
iel Jed J

and j € J is such that A satisfies condition j(3) Then IB(j)l < ®
and if CeB(j) u {B } then C has fzmte rank, t(C) is idempotent and
0# Ip]l < @,

Proof: Since A satisfies j(3), t(Bj) is idempotent and J(Bj)'# 0.

Thus Theorem 3.10 yields 0 # |P?j[ <.m 1f ¢ « BU) Uﬁ{B } then c]early'
t(B ) <.t(G)- Consequently C must also have 1dempotent type and, since

A does not satisfy 3(1) Theorem 3. 10 shows that C has finite rank and

that 0 # |P] | <@ If now |B(3)|,|_ = = then t(B;) < t(c) for a11 ¢ ¢ B

B. _ - . .
yields IP]JI = w, Thus.|13t3)| < =, as required. //

" LEMMA 3.'|-'4. Suppose A is a completely decomposable group of

finite rank wmth h decomposztzon

=@ ADD B; s
iel ° jed
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where each Ai’ ie{l,2, ..., n}', has idempotent type. If, for each
je{1,2, ..., m}, A satisfies condition j(3) then -

n m '
=1 ge

Proof: We induct on n + m. Clearly there is nothing to prove
when n + m = 1.  Therefore assume the Lemma is trué for all groups df
the stated '_kind ,m'{:h the nuniber' of components -in their h=decompositions
beiﬁg less than. n + m, and consider A as stated in the Lemma. For each
Ciedl, 2, ...,n}, A; is an absolute ideal of A, so Lemma 1.18 yields
| J(Ai) < J(A). Thus it suffices to show that if j e {1, 2, ..., m}l is
such that K(BJ.) # 0 then K(Bj)- < J(A). We consider two cases:

Case (i). Bj does not have minimal type in T(A) with respect to

<'. In this case it is possible to select j] e {1, 2, ..., m} such that

iy # 3 t(BJ.']) < t(8;) and B, does have mininal type in F(A) with respect

to <'. From Lemma 3.12, A ! is an -absolute idea] of A, so by Lemma

(37) (3y)
1.18, J(A 1 ) < J(A). It is readily checked that A . satisfies all
' (3p)

the hypotheses of the Lemma. Thus, since A is a proper subgroup of

| (3y)
A, the induction assumption yields K(BJ.)' < J(A ! ).  Therefore
K(B;) < J(A). |

Case (ii). Bj does have minimal type in T(A) with respect to <'.
If A(j) ® Bj is a proper subgroup of A then since A(j) @Bj satisfies all
the hypotheses of the Lemma we can again use the induction assumption on
the absolute ideal A(J) @ B of A to obtam K(B ) ¢ J(A) Hence assume -
A= ald) ®8;. '
_ From Lemma 3 13 every C ¢ B (3) must have idempotent type and
0# |P]| <o, Now A(J) satisfies all the hypotheses of the Lemma, so
the induction assumptwn applied to A(j) and the def1n1t1ons of - I((B .)
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for' j' € J yield <J(A'('j))>* = A(j).

| Suppose nqﬁw (A, +) is an associativeh ring on _A.'- Lemma 3.12
shows (A(j), +) is an ideal of (A,_o),'so J(A(j), .) ;; J(A, *). Since

3y ¢ awl), o, Al ¢ wa, s, But (A, -)5, < AW) ®8,,

S0

A, ) = A9 @ (850 (A, )5

Now Bj N <J(A, +)>, is pure in A, so it is pure in B:j Since Bj has

. finite raqk, (3.5) shows that BJ. n <J(A, +)>, is a direct summand of Bj.
Hence there is a summand Bj of Bj__such that A_= <J(A, *)® Bi. From
Lemma 3.13 we know ihat every C ¢ B (3) U {Bj} has idempotent type ﬁnd
0# |P?| < o, ._IThus A is reduced and, for almost all primes p, pA = A.

- Consequently for almost all primes p, p <J(A, *)>, = <J(A, ?)}*. Héﬁce
the proof of Lemma 3.7 indicates that either A = <J(A, «)>, or J(Bj)' =

(3.6) implies that Bj' is a homogeneous completely decomposable group.

Since r(Bj) is finite, .t_(Bé) is idempotent and 0 # |I5-]jl < w, the
conclusion J(B') = 0 above contradicts Theorem 3.10. Therefore
A = <J(A, )> s and since this is true for every assoc1atwe r1ng (A, .)

on A, Propos1t1on 1. 20 yields N pA < J(A) It is clear that
p .

K(B;) = B pB; = N pB,
: P

n A.
Jspp
pEP-l

Thus K(Bj) < J(A). //
- COROLLARY 3.15.  Suppose A is alco'mpleteiy decomposable group
with h-decomposition | |

= ® A DS B, .
iel jed ¢

If j € J is such that A satisﬁes condition j(3) then K(’Bj_) < J(A).



52.

- Proof: Let j ¢ J and suppose A satisfies j(3). Frdm Lenﬁw
3.13 it follows thét A(j) (-BBJ. is a finite rank completely decomposable
.groub satisfying the conditions of Lemma 3.14. C]eafly Bj'is one of
the homogeneous compdnents in the h-decbmposition of A(j)GB Bj,
Moreover, since Bj has non-maximal type in T(A) with respect to <', B
- is one of the homogeneous components with non-maximal type (with respect
to <') in the h-decomposition of A(j_) @® BJ.. 'EvidentTy A(j) @B.
satisfies condition .j(3), so Lemma 3.14 now yields K(Bj) < J(A(j @BJ.).
From Lemma 3.12we see that J(A(j) (-BBJ.) < J(A), so I((BJ.)-; J(A), as

required. //

LEMMA 3.16, | Let A be a co@letely decomposaﬁle 'gmup'with
h-decomposétion a -

@A@@BJ,
iel Jjed

and suppbse the non-idempotent types in T(A) satisfy the ascending chain
condition with respect to <'. If j € J is such that A satisfies condition

j(4) then K(Bj) < J(A).

Proof: Suppose j e J is such that A satisfies j(4). Let A]('j)
be the direct shm of those groups in B(j) U {BJ} with idempotent types;
and let A(J) be the d1rect sum of those groups in BU) y {B;} with non-
1dempotent types C]early A(J) @® B = A(J) @ A(J)

Suppose A_%J) ‘has h-decomp051t1on

We know that évery homogeneous componeni; of A%J) ha's idempotent type and _
non-zero absolute radical, so for each j; « J],'A{‘]_). must satisfy j](3).

Since A; is an absolute ideal of AI(J) for each i, € I;, Lemma 1.18 and
1 - _



53.

Corollary 3.15 now yield

® JA)® @ K, )cJ(A‘J’)
-IeI.I " JIeJ]

From the definition of P{j) it is immediate that

np(j) Pﬂgj) =@ (N, A @ (_n g PB:) .
pe'l

el e T ey pePq 1

Now for each 3y € 99, k(Bj.) = J(Bi“)’ so Theorem 3.]0fyie1ds
' o 1 .
)pA{”= e A )® ® KB, ).
pePy™. el T ey

Thus
ng(j)lpA{J) S=J(A{JI) )

Now consider an associative ring (A, +) on A and suppose

ae n (J-) p(A(fj) @B.). We are permitted to write a in the form

a s a] + a, where ay € pA{ j) and a2 € P(J) pA(j). Now every

Pe P(J)

group C € 13(3)w1th 1dempotent type satisfies 0# |PC| < , §0
an argument similar to the proof of Lemma 3.12 shows that A(J) is an

absolute ideal of A. Consequently ( n ( ) pA(J) ) is an ideal of =

(A, *). Therefore for each p031t1ve 1nteger n, a" = x + a2 where

X € ) pA(J)

le(J
For the positive integer n'censider the element eg If ag ¢ A(j)

then we can obta1n, in the same way as in Theorem 3.3, a cha1n of length

n in T(A). Moreover, the Tast term of this chain can be chosen to be a

non-idembotent type in T(A). Since a, € AéJ) the first term of this

chain is a non-idempotent type greater than or equa1 to t(Bj) (with
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‘respect to <'). As before, if C ¢ lg(j).and t(C) is idempoteni then
0-¥'|P$| < é, _Hence every element of this chain of length n in f(A)

must be a non-idempotent type. Arguing as in the first half of the

proof of Theorem 3.4 we see that if a2 ¢ A(J) for all positive 1ntegers

n then there ex1sts an infinite ascending chain in the non-idempotent _
types in T(A) This violates our assumed ascending ‘chain condition,

so there is a positive integer n such that az € A(j)

Now A(J) is pure in A, so a2 € N pA(']) Thus

p(J)

Ia; € J(A](j))'g'J(A](j), *). Also x ¢ J(A](‘]), ), so a" ¢ J(A{j), ).

ald)

Since is an absolute ideal of A, A(‘]). is an abso]u'te ideal of

A(_*j) @B From Lemma 3. 12 (A(J) @B ) is a r‘_i-_ng on A1) @ B’J-, so
J(A.}‘j) ‘) e J(A(J) ® B .). Consequently for the integer n above

(a+J(A(3)®B )—J(A(J)@B DF

The element a was chosen to be an arbitrary element of n ( ) p(A(‘]) ) B ),

SO

) P
pep{d) PR @ B;) + IR @By, -

- a@) g,
is a nil ideal of( l— , . ). Ssince the latter ring is

I @, -)

semisimb]e N
(3) < 3(ald) )

From Lemma 3. 12 J(A(J) @8 5> ‘) e J(A, ‘), so
P(J) p(A(J) @B ) 3 .J(A .). Th1s is true for every assoc1at1ve ring

on A; so

,K(Bj) = pgp(j) ij < J(A) . //
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PROPOSITION 3.17. Let A be a completely decomposable group with

h-decomposition

- @ MO @ B
iel Jed

If the non-i&empotent types in T(A) satisfy the ascending chain condition

- with respect to <', then

. @ JM)@@ K(B)CJ(A)

jel Jed _
Proof: Corollary 3.15, Lenma 3.16 and the comments prior to (3.5)
show that it Suffices to prove that if j ¢ J is such that A satisfies
condition. j(2) then K(Bj) < J(A). However, this is imﬁediate sin;e'in
this case K(Bj) = Bj, and Theorem 3.4 and Lemma 3.12 imply that any
associative ring -'(A, <) on A w_ﬂ'l contain (A(j) @Bj, -_)- as a T-nilpotent

(and therefore radical) ideal. //

We now turn our attention to proving the reverse inclusion
S IR = @© IA) @ @ KIB;)
_ iel Jed -

for the comp]ete1y‘decomposab1e group A as described in Proposition 3.17.
Again this will be achieved with a series of lemmas.  First however,
we outline a method oflconstructing non-trivial associative rings on
certain completely decomposable groups. These rings are fundamental

for our subsequent results.

EXAMPLE'3.18. As usual let A be a completely dedomposab?e group
with h-decomposition |

- ® A0 ® 8,
iel Jed

Choose for a f1xed j € J, a non-zero element b » and suppose there

J
isace BU) u {B;} such that t(C) is 1dempotent
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Since B. is a completely decomposable group it is possible to
choose a finite rank completely decomposable direct summand of B
contalning b.._ Also, since t(C) is idempotent and t(B ) <' t(C) we

can select a basis {b ,b. , ..., b. } of th1s summand, and a non-
17 3 Ik(j) -

zero element ¢ ¢ C such that
(1) there are non-zero integers.n, n;, ny, ..., M(j) With

(n9 nis nzs ey nk(J)) 1 such that

n bj = nl bj] + nz b

.+ ...+ n sy by ’
32 ' k(J) Jk(j)

© P3a) | "
(111) x(b; ) < x(c) for each k € {1, 2, ..., k(i)},
.- k . ' . .

(i) <bj1>* ©,<bjz>* ... <bj >, is a direct summand of B.

(iv) <>y is a direct sunﬁand of C, and
(v) ~x(c) contains 0's and ='s only. |
From conditions (iii) and (v) it is evident that for each

k e {l;,z, cees k(3)1, x(bj ) x(bj )'g;x(c), x(b; ) x(c) < x(c) and
ko T T

x(c) x(c) < x(c). Thus for each k € {1, 2, ..., k(j)} it is possible
to define a ring (A, +) on A by letting

bjk.bjk=bjk.czc.bjk=c.c=c,

and letting all other products not thus accounted for be zero. It is
‘readily checked that (A, +) is an associative ring on A,

(A, -)2 c (<c>y, *) and (<c>4, +) is an ideal of (A, +). //"

LEMMA 3.19.  Suppose A is a completely decomposable group with
h-decomposition - | | .

A = GD ;\ GD GD B >
iel jed J

and suppose the component of a e 'J(A) in Bj 18 bj’ for a fized j € J.
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If there is a growp € « BUW) u (8} such that J(C) = O ,then by = 0.

Proof: Suppose bj # 0. Since J(C) = 0 it follows from Lemma

1.19 that we can assume C # Bj. We consider two distinct cases:

Case (i). C has finite rank. With the same notation as
Example 3.18, ny # 0.  Thus for k =I1, ExampTe 3.18 yields an associative_
ring (A, °) 6n A. | _
| Now J(€C) = 0 and (<c>,, -)2 # 0. Thus Theorem 3.10 and the .proof
of Tﬁeorem 1.21 show J(<c>*, «) =.0.  Hence J(<c>,) = 0, so Lemma 1.19 |
shows that the combonent of a in <é>; must be zero. from the construction

of (A, +) it is now evident that -
(na) = ¢ ='(n] bji) sc=nyc.
Therefore (na) «c e J(A, ) N (<c>4, *), so since (<c>,, +) is an ideal

of (A, <), (na) - ¢ € J(<c>,, «) = 0. Thus nyc= 0,'contradicting the -
0.

fact that " # 0.' He conclude therefore that bj
Case (ii). C has infinite rank. As in Exampla'3.18 it is

possible to select non-zero elements Cps Cgs --n in C such that

<Cr B <Cpy @ . . NCRCR MRS
is-a direct summand of C, and, for each i ¢ {2, 3, ...}, x(bj ) é?X(ci)'
' 1

and X(cf) con#ists of 0's and ='s only. We can now define a ring (A, *)

on A by Tetting

CIR MR " B I Mt MR I R I A

for all i, j in {2, 3, ...}, and letting all other products not thus
accounted for be zero. It is a routine matter to verify that (A, -) is

an associative ring on A, and that

- (<_c2>*@<_c3-->*@ @<Cn>*© vees o)
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is an ideal of (A, *). Denoting this ideal by (I, -); an analysis of
- the proof of Lemma 3.9 shows that (I, +) is a semisimple ring. If we

now proceed in the same way as in Case (i) of this Leﬁnw we obtain
~(na) - Cy =Ny Cye J(I, *)=0.
Therefore n] = 0, so again we conclude bj =

COROLLARY 3.20.  If A is a non-reduced camplefely decomposable
0. // |

]

group then J(A)

 LEMMA 3.21. et A be a completely decomposable group with

h-decomposition.

®A®@B s
iel i Jed

and suppose the component of a € J(A) in B; 28 by, for a fized j € J.
If t(B ) is not zdbmpotent and there exists a C ¢ 13(3) with idempotent |

type such that 0 # IP | < e then b pB
1 C
pSP]

Proof: Assume bj # 0. From Lemma 3.19 it is clear that every.
groub in lg(j):ﬁ'{ﬂj} must have non-zero absolute radical. With the
notation of Exampie 3.18, for k ¢ {1, 2, ..., k(j)} define the associative
ring (A, °) oh A as in Example 3.18. Suppose the coﬁponent of a in J(C)
isc. IfC =_Ai for some i é I then J(C) < J(A). ‘On thé other hand

if C = Bj for some j] ¢ J then the fact that every group in l?tj) has
J ) ' ' '

non-zefo absolute radical implies that A-satisffes condition j](3);
Consequently Coro]1éry 3.15 shows J(C) = K(C) < J(A). Thus in either
case, J(C) < J(A). Hence ay=a-c ed(A). In particular
a € J(A,;-i, ) (na]) . bjk e J(A, «). But |

(né1) . ij = (nk'bjk) . bjk =n ¢,
S0
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ne e J(A, +) N (<cops 1) = J(<cog, ).

The definition of the ring (<c>,, <) and the proof of Theorem

1.21 together imply that Jd(<c>,, *) = N o p <c>,. Consequently
pe]

n.cC e p <c>,, so since x(c) consists of 0's and ='s only, n, is
k pEPC k.
1
divisible by each p « P%. Since this is true for every
kedl, 2, ,k(j)} bj e N ¢ P By //
pe
Now for the promised characterisation of the absolute radical.

THEOREM 3.22.  Suppose A is a completely decomposable group with
h-decomposition

= ©® MO @ B,
iel . Jjed

If the set of non-idempotent types 'i.‘.n T(A) satisfies the ascending chain

eondition &Jith'r{espect to <' then .

J(A) @ J(A;) ® @ K(B ) .
3 Jed

Proof: From Proposition 3.17 it suffices to'pfove
M) = @ IR @ @ K(B;) -
iel Jjed
Lemma 1.19 yields

amceumeﬁum,
Je

SO any element a ¢ J(A) can be written uniquely as a finite sum

ra= ] oagt+ ] by
iel Jed

where each a; ¢ J(Ai) and each bj € J(Bj). If j € J is such that A
satisfies condition j(]) then Lemma 3.19 shows bj € K(Bj); Alternatively

if j € J is such that A satisfies either condition j(2) or j(3), then the
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definition of K(Bj) yields bj € K(Bj). Thus it suffices to show that
if j e J is such that A satisfies condition j(4) then bj € K(Bj). But
this is immediate from Lemma 3.21 and the definitions of K(Bj) and P%J). //

It should be noted that it is difficult to delete from Theorem
3.22 the cohdition that the non-idempotent types in ?(A)'satisfy the
ascending chain_condifion with respect to <'. Indeed if we did discard
this condition, two major problems would immediately arise. The first
is that we would now not be able to use Theorem 3.4 as we héve done at
several stages in the proof of Theorem 3.22. The second problem is
that it is extremely difficult to define a'usefu1 associative ring on a
completely decomposabTe-group A that has_aﬁ infinite ascending chain in
T(A) with resbect to <'. This Iattéf problem has also arisen in

'?ihsonha1ér and Wickless [1].

We cdnc]ude this chapter by showing that a completely deéomposab]e
group satisfying the conditions of Theorem 3.22 has the property that
J(A/J(A)) = 0. . The following lemma is.requirgd.

LEMMA 3.23.  Let A = <a> @ Ay where <a> is a cyclic group of
order p, and A],is a rational group such that pA] # AI.' Then J(A) §=DA]‘

Proof: From Lemma 1.19 and (1.10) we see that
J(A) < J(<a>) @J(A1) = J(A])' R

so J(A) < Ay. Cﬁnsider an element a; ¢ Aj\pA;.  Since A, is a rational
group every element of A, can be written uniquely in the form (n/m)a],
where n and m } 0 are suitable integers, (n, m) = 1 énd (my p) = 1. Now
<a> has ﬁo m-torsion, so clearly (1/m)a is a well defined element of <a>.

Thus we can define a ring (A, +) on A by letting

. - T . = c‘ =
a] a a a] a a a .
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It is readily checked that (A, -) is an associative ring on A, and that

(<a>, +) is an ideal of (A, +). If now ay € J(A, ), then
a;ra=ac J(A, -) N (<a>, +) = J(<a>, ) .

However (<a>, ¢) is a field, so J(<a>, +) = 0. Thus ay { J(A, ), and
50 ay ¢ J(A). We conclude therefore that J(A) gsz]. //

THEOREM 3.24. If A is a completely decomposable group such that
the set of non—zdempotent types in T(A) satisfies the ascend'z,ng chain

condition with respeet to <', then J(A/J(A))

. Proof: Suppose A has h-decomposition -

@A@@BJ
iel Jed

From Theorem 3.22 we know

J(A) = @ J(A, )® ® K(B ),
iel - Jed

SO

WA 2 8 (1A © B (3y/K(B)

Consider the group G defined by

() C) (A;/3(A5)) @ C% (B;/K(B ) .
Je

Corollary 3.11 éhows that for each i ¢ I, J(Ai/J(Ai))‘= 0. Thus Lemma
1.19 applied to the decomposition (*) yie]ds

- J(6) ¢ @ J(B /K(B ))
Jed

| Suppose now there is a non-zero element g ¢ J(G). If for each
j € J the component of g in J(Bj/K(Bj)) is dénoted by 53, where'bj € Bj,
then there is a fixed j ¢ J such that 53 # 0. From the definitions of

K(Bj) and Corollary 3.11 it is clear that A cannot satisfy conditions
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i(2) or j(3).
If A satisfies condition j{(1) then there is a C ¢ 13(3) u {Bj}

with idempotent type such that J(C) = 0. If C occurs as a B; for some

3
j] € J then K(C) = 0. Consequently, whether C occurs as an Ai-for some
ielorasa le'for some j] € J, the componenf of the decomposition (*j
corresponding to C is precisely C. Since K(Bj) = 0, the component of
() corresponqing to Bj is Bj. 'Nﬁw J(c/a(c)) = 0 and_J(Bj/J(Bj)) 70,
so C and Bj are Qistinct groups. Since g ¢ J(G) and J(C) = 0, Lenn@'
1.19 shows that the componenf; of g in C@BJ. in the decomposition (*)
is necessarily bj. Appiying Lemma 1.}9.again to the decamposition ()
yields b, « J(C® BJ.). However, from Theorem 3.22 we know that
J(C@Bj) = 0. Thus A cannot satisfy j(1).

We now know that A must satisfy condition j(4). If K(Bj) #0

then, since Bj is a homogeneous completely decomposable group,
B./K(B;) = B,/ N /. pB.
A M pepgs) j

is necessarily an e]eﬁentary torsion group.  Thus (].10) shows

J(Bj/K(Bj)) = 0. Hence we may assume that_l((Bj = pEP%j) ij = 0.

In this case Bj{K(Bj) = Bj, so the component of the decomposition
(*) corresponding to B.j is precisely Bj. Since Bj is a homogeneous

completely decomposab1e group we may'write Bj = @ (Bj)k, where K is
. keK

some index set and each (Bj)k is a rational group. For each k e K Tet

(b'j)k denote the component of bj in (Bj)k' Consider now k e K such that
(bj)k # 0. o | -
Let p € P%J). Then there is a C ¢ 13(3) such that t(C) is

idempotent, J(C) # 0 and p € P]. If C occurs as a Bj for some jI e d
. 1

then, since A satisfies-j(4), A will satisfy j1(3). Consequently

K(C)_é J(C). Thus whether C occurs as an Ai for someli e I or as a
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Bj for some j, e J, the component of (*) correspondingvfo C is C/J(C).
1

Since p e‘P? and J(C) # 0, it is evidenf from Theorém 3.J0 that C/J(C)
fs an e]ementary torsion group with a noﬁfzero p-component. Hence we
can select a cyclic e]ementary p-group (C/J(C))(p) that is a direct
summand of C/J(C). |

Since g € J(G); Lemma 1.19 shows that the component of g in
((B ) ® (C/J(C))(p)) in the decompos1t1on (*) is (b, )k + c, where .

C e J((C/J(C))(p)) App1y1ng Lemma 1.19 aga1n,y1e1ds

(by)y + T € 3((8;), @ (cm(c))“’))

But (C/J(C))(p) is a cyclic elementary p-group and p((B ) ) # (Bj)k’ 50
Lemma 3.23 implies J((Bj)k@ (c/a(c)){P)) < P(B;)y.  Thus c =0 and
(bj)k € p(Bj)kf Since this is true for every k ¢ Kvwith (bj)k 0,

it is clear that bj € ij.- Now the prime p was chosen to be an

arbitrary prime in P%j), sob. e n (j pB. = 0, contradicting our
J pld) "J , .

choice pf bj.
"We conclude therefore that J(G) = 0. Since G =A/J(A), a

reference to Lemma 1.17 completes the proof. //

We close this chapter with tﬁe remark that the conclusions of
Theorem‘3.22 and Theorem 3.24 are valid for completely decomposable
groups of finite rank (and more generally, completely decomposabie
groups-with'a finite number of components in their h-dedompositidns).
‘We omit the proof since it is virtually identical to the proofs.of'the
forementioned Theorems. The stages.af which the ascending chain
cdndftion is required can be surmounted by straightforwafd induction .

arguments.
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CHAPTER FOUR

In this chapter we investigate ring structures supported by
cértain mixéd groups. A class 14-of'mixed groups of torsion-free rank
one is introduced, and several questions concerning rings on groups in
this cTasS are discussed. We then give complete descriptions of the
absolute annihiiator'ahd the absolute radical of groups in A. The
remaindér of the chapter deals with other mixed groups that have
prdpertiés similar io groups in A . Amongst these i§ the reduced paft
of the additibe group of a regd]ar r{ng. A question of Fuchs ]
concerning tﬁese.groups is answered in the negative. We then conclude
the chapter with partial descriptions of the absolute:anﬁihi]afdr and
the absolute radical of a cotorsion group, and complete'descriptions of
the absolute annihilator and the absolute radical of a.rgduced algebraically

compact group.

1. A CLASS OF MIXED GROUPS

Let_z4.denoteihe class of groups A such that A has torsion-free
rank one and A can be embedded as a pure subéroup of the direct prbduct
of its p-components Ah. '

- That is a group Ain ;4 has the property that it can be viewed as

a pure subgroup of'TTAp. For the remainder of this chapter groups in

P .
the class A will be thought of in this context. Since Tl'Ap/®Ap
- _ p P
is torsion-free and divisible, it follows immediately that A/(-BAp is

P
torsion-free divisib]e and of rank one. . .

Suppose now A is an arbitrary mixed group with toréioh subgroup
C)Ap. For a in 'rrAp let a denote the image of a under the natural map
X . _ _

p

TTAp'-»T]'Ap/@Ap. " A characterisation of the groups in 4 can now be
p p p :

given.
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PROPOSITION 4.1. Let A be a growp in A and suppose a is an
element of infinite order in A.  Then A is the ir:cverse image of <a>,

under the natural map '|TA +~TTA }@Ap
P p p
any element a in TTAp of infinite order, the group A defined as the inverse
S L o '
image of <a>, under the natural map TTAP +TTAp/ > Ab 18 a member of A.
p _

Conversely for p-groups Ap and

Proof: Let A ¢ A4 and suppose a is an element of infinite order

in A. Since A/ ®A_ is pure in T]"A [ DA, <@, c A/@A But then

<a>* is pure 1n A/ @Ap, and since they are both torsion-fr'ge and of
. p ' -

rank one, <a>, = A/ @Ap.

' ' p

To prove the second statement it suffices to show that such a

group A is bure in TTAP. This is immediate since@Aﬁ is pure in
P | | P
'[TA'D and A/ (-I-)Ap' is pure in ']TAP/@ Ap. //

p p " P T op

As mentioned earlier, a group A <A has the property that it is

a pure subgroup of "[TAp.' Consequently a strong connection exists
between the height matrices of elements of A and the indicators of

certain 'elements of the p-components Ap. This can be _statéd as follows.

LEMMA 4.2. If A is a group in A anda=(ay, 85 -..sa, ...)

p
is an arbitrary element of A then the p-indicator of a in A is the

‘tndiecator of ap in Ap for each prime p.

Proof: The p-indicator of a in A is

_ K o
(hp(a). hp(pa), cens hp(p a)s ...) .

Now

Ky o poker oo kim0 |
Ihp(p a) hp(p a' + p_(O, 0, ...» Q, ap 0, .5f))
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for all positive integers k, where

a' = (a .)-(0,0,...,0,a,0, ...)

a
P

2, a3’ s o0y p, ..

obviously has infinite p-height in 11'Ap, and so has infinite p-height

p
in A. Thus
h(pa) = h ((0, 0, ..., 0, pa, 0, ...))
P p p> 7’
Ak
= hP(pta) ,

p (P3p)

for each‘positive integer k. //
We give another characterisation of the groups in A. The method

of proof is known.

PROPOSITION 4.3. If A is a group in A then A, is a direct

summand of A vfbr each prime p. Conversely if R is a non-splitting mixed

group such that A/ G—)Ap 2 Q and Ap
P

P, then the reduced part of A is a member of A.

i8 a direct summand of A for each prime.

Proof: The first assertion is obvious. To prove the second part
of the Proposition let A be a non-splitting mixed group with the stated
properties. We need only show that if A is reduced then A is in A.

For each prime p, A_is é summand of A, so there is a Subgroup A(R) of

e

A such that A = Ap@A(p).. Now A(P) = A/A , and the Tatter group is an

A p
extension of the p-divisible group()l\/A by the p-divisib]e group
q
A/()l\ Thus A(p) is a p-divisible subgroup of A, and consequent]y

n A(p) is a divisible subgroup of A. Since A is reduced, N A(p) = 0.

p _ P

Hence the projections A ~ A_ yield an embedding of A in T A

' ’ . p- .

@A The purity of the emb'eddingAfoHows from the pur'ity bf@Ap in -
Bl -

containing

P P

TTA and the pumty of A/GDAp in T['A /@A_.

p P p P >
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A consequence of Proposition 4.3 is that if A fs a reduced mixed
_group of torsioanree rank one then various conditions on either the
| endomorphfsm ring E(A) of A or the rings supported.by»A force A to be
in the class:4_. We mention a few examples: E(A) is;génera]ised left
continuous (Rangaswamy [1]), E(A) is m-regular (Fuchs,ahd Rangaswamy [1]),
A is the additive group of a regular ring (Fuchs [Tj), or A is the
additive group 6f an ideal in a m-regular ring with identity (Fuchs and
Rangaswamy [1]); ~ Also a reduced mixed group A with A/T(A) torsion-free
divisible and of rank one such that either A has no e]ements of infinite
p-height for a11 pr1mes p and E(A) is commutative (Szele and Szendre1
[1]), A has no elements of infinite p-he1ght for all primes p and A
supports a ring (A, ) such that-(A, <) = E(A) (Schultz [1]), A is
a$$ociative-closed (see Proposition 4.19), or A sUpports only commutative-
- rings (see;Proposition 4.21) is in A. Other similar examples to the

ones above are abundant.

If A is a group in the class A then Proposition 4.3 shows us fhat
one method of'definihg a ring on A is to define a ring on the p-component
Ap of A for some prime p, and then extend this ring in ihe obvious.way
to a ring on A. The ring so obtained.éan be usefu?, as is demonstrated
by Proposition 1.11; however it ié ﬁot too complicated, in the sense that
the product of any two elements of A is in the p-component Ab of A.
Notice that the dn]y other rings that have been defined on mixed gfoups,
namely Szele's ring in (1.5) and the.ring defined in the proof of Lemma
| 3.23 alsO'share‘thfs property. In the next resu]t we outline a method
of def1n1ng more comp11cated ring structures on certaln groups A in the
class A. we requ1re the following notation.

~Let A be a group in 14.and suppose a= (az, a3,A{..,.a L) is

ps
an element of infinite order in A. Define
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P(a) pePlay o).

PROPOSITION 4.4. Let A be a growp in A and suppose

= (a2’ 63, ey @ ' ) 18 an element of infinite order in A. If

p’
fbr almost alZ primes P € P%a), <ap> i8 a dzrect summand of A, then there

is an_assoczattve and commutative ring (A, ) on A such that

)2 L T(A).

Proof: For each prime p for which <ap> is a summand of Ap we

define an associative and commutative ring (A , ) on Ap in the'following

p’
manner.  Suppose A-p = <ap>,@A(p) for some subgroup.A(p) of A. . Define -

an associative and commutative ring (<ap>, ) on <a_> by letting

p

ap . ap = ap, and define the trivial ring on A(p) Take the ring direct

sum of these two" rings to obta1n an associative and commutative ring
(Ap, <) on Apg- If q is a prime for which <aq> is not a summand of A
then defihe-(Aq, ),to be the trivial ring on Aq.

Now take'the'ring direct product of the rings (A , -)'to obtain

an associative and commutative r1ng (]"FA » *) on 11'A .. We show
P
(A, ) is a subring of (TT'Ap .) w1th the property that (A, )? $:T(A).
s p N -

This amounts to'ehowing that if b and c are e1ements of,infinite'order
in A then b - ciie Tikewise an element of infinite order in A. |

Since A has torsion-free rank one there are_non-zero'ihtegers.
Nps Nps My and mé.such that n,a ='m1b, nya = myc. But then
my mz(b . c)'= " nz(a".a). For almost all p e P%a), the definition
of (A, <) shows ap Tay = an. 'Thes a-+a=at+twheret eIT(A). If
O(t) n then n m1 m, (b «C) = n] n, a, so Proposition 4.1 shows b * ¢

1s an element of 1nf1n1te order in A. //
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From the comments prior to (1.5) we know thef there exist no
mixed ni]_groups; and that a torsien group is nil exactly if it 15
_divisible It seems a reasonable question therefore, to ask which
groups A in 14 have the property that if (A, «) is any ring on A then
-'(A, -)‘ ng(A). Equivalently, which groups A in 14 haye the property
that the natural embedding of Hom(A, Hom(A, T(A)) in Mult A is an
isomorphism? |

To answer this question we need to make the fo11owing'def1nitions.
Before doing this, however; notice that Lemma 4.2 1mpiies that for a
~group A jn A and an element a of infiﬁite order in A, if, for some prime
_ pf Up(e) commeﬂceS'wifh.a nonrinfinftyl(w) ordinal then Up(a) contains

at least one gap. |

| Let A be a group ie the class A, and a be an element of infiﬁite
order in A. _Forlthe prime p € P%a)‘we'say that'Up(a) 1s reasonable if.
Up(a) = (w,'é, ...)_or Up(a) commences with zero and eontains only one
gap. The height matrix H(a) is called ‘a reasonable matriz if for almost
all primes p e P%a) ] (a) is reasonable. H(a) is called a very
reasonable matrmx if for almost all primes p ¢ P%a) ] (a) G
or for almost all primes p € P% a) ] (a) commences w1th zero and conta1ns
only one gap. Notice that if b is another element of infinite order 1n_

A then H{(a) is (very) reasonable exactly if H(b) is (very) reasonable.

THEOREM 4. 5.-.; Suppose R is a group in A and a is an element of
infinite order in'ﬁ; If there is a ring (R, *) on A -s_uch that '
(A, -)zli_T(A), then H(a) is a reasonable matﬁx. Conve’rs.ely, if H(a)
18 a very. reasoﬁable matrixz then there is an associative and commutative

ring (A, *) on A for wheich (A, -)2_ $ T(A).
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Proof: To prove the first assertion suppose H(é) is not a
reasonable matrix, and consider any ring (A, *) on A. Then for
infinitely mény primes p « P%a) there exists an integer k(p) and an

ordinal ak(p) such that

k(P)y = o
"p(PTa) = oy p)

where k(p) <.ak(p) < w, Thus pk(p)a = pk(p)+]a' for some a' ¢ A.
But then pk(p)(a - a)=pa'- pk(p)a). Since a' - pk(p)a is an element

a .
of p k(P)p it is clear that

ok -
hp(p (p)(a . é)) iaak(p) + 1.

Hence H(a + a) is not equivalent to‘H(a),:so.a - a cannot have infinité'
order in A. | Tﬁus (A, -)2 < T(A).

To prove the converse stétement suppose H(a) is a very feasonable
matrix. We deal with the two cases séparate]y. |

Case (i).: For a]most all primes p « P%a), Up(a) = (&, ®, ...).
In this case there is a pbsitive integer hvsuch thatvUp(na) ='(@, ©, ...)
fdr every,prime p. It now follows from Fuchs [4],.p. ]98; that na belongs
to the divisible parf oflA, SO A sph’ts, A = T(A) @A]- where A] is some
subgroup of A, A1.5.Q. " Clearly by defining the field (A], *) on A] and
extending this in the usual manner to a ring (A, -)_on A, we obtain an

associative and commutative ring (A, ) on A for which (A, -)2_$=T(A).

(a)

Case (ii). For almost all primes p € P1 R Up(é) cohmences with

zero and contains only one gap. If we write a = (az,,a3, cees A ...)

where a ¢ Ap for each prime p, it is clear that for almost all p P%a)

Up(a)=(0’ ], 2’ ooo,np-],w,w’ ?'0)4’

where n_ > 1 and 0(a ) =n Lemma 27.2 of Fuchs [3] now shows that for

p p p’
(a)

almost all primes'p e'“P1 s <ap> is a direct summand of Ap; A reference
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to Proposition 4.4 completes the proof. //

From Proposition 4.1 and Lemma 4.2 it is evident that there are
groups A in A for which the heightﬁmatrix of any element of infinite
order in A is reasonable but not very reasonable. If, however, we
restrict our attgntion to the subclass 145 of zi.consisting of those
groups A in ;4 with the'property that for all relevgnﬁ'primes ﬁ, Ap
is a reduced separable p-group-(that'is, has no e]emént§ of infinite
p-height), than the concepts of a reasonable matrix and a very reasonable
matrix coincide. (In fact in this-case, for the elément a in-A having

infinite order, H(a) is a reasonable matrix if for almost all'p € P%a),

'Up(a)_commenées with zero.and contains only one gap);_ - Thus

 COROLLARY 4.6.  Suppose A is a group in A and a is an element
of inf_‘inité order in A.  Then the folioﬁing conditions are equivalent:
| (i) H(a) is reasomable; - |
(ii) there is a ring (A, *) on A for which (.A-, -._)2 i T(A);
(iii) t'herel is an associative and commutative mng (A, *) on A

for which (A, +)% & T(A). //
We requife-the following general result.

| LEMMA 4.7. Suppose a and b are elements in an @bi.traivy group
A. If (A, -) is any ring on A then H(a) < H(a + b).
Proof:. The assertion follows immediately from the observation

that for each primé p and each integer n,

(N I PO
hy(pa) < hy(p a b) . //

Fuchs [4] has shown that a ring with (left) identity element

exists on a torsion group A exactly if A is bounded. This re;ult has
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an immediate generalisation to groups in the class 4.

PROPOSITION 4.8. ILet A be a group in 44 and suppose a is
‘an element of'infinite order in A. A ring with (left) identity

can be deftned on A if and onZy if fbr all relevant przmes p there
by N _
p such that Ap 18 bounded p p, and for almost all

relevant primes p,

18 an integer n

-'l,w, m, c-c) .

Up(a) = (0, 1, 2,».7., np

Proof: . Suppose (A, ¢) is airing with left identity,defined on A.
For each relevant prime p, A - Ap @A(p) for some subgroup A(p) of A.
(0; (A, +)) is non-trivial and (A; +) will consequently not have a left
‘ideoiity.eiemént; Thus for each re]evanf prime-p, (A, *) splits as the
ring direct sum of (A b’ ) and (A( P) *). Evidently (A ) hust be a
ring with left 1dent1ty e]ement, SO Ap is bounded. Suppose p p 1s the
‘minimal bound of Ap.

If 1 is the left identity of A, then 1 has infinite order in A,
so H(1) and H(a) are equivalent. Lemma 4.7 yields H(i)lézH(a') fop 511
a' ¢« A.  For each re]eVant prime p, A_is boundedv(minimaiiy) by pnp,

Y
SO Ap contains a direct summand <ap> of order p p Clearly

U(a) (' 1,2, ....n

p - 1, ©, @, ...) .

is boundéd'by

Thus Lemma 4.2 and the fact that the component of 1 in Ap

| p p now yield

Up(]):' (0,], 2, cecey hp"‘[’ é, (D’ oou) .

Consequently theAelemént a of infinite order in A will have the required

form.
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Next suppose for all re]evaht primes’p there is an integer hp

n
such that p P Ap = 0 and, for almost all relevant primes p,

Up(a) = (0,1, 2, ..., np -1, ©, o, ...} .

It suffices to show that A is isomorphic to a group A' upon which a ring
with identity can be defined.

For each relevant prime p, A  is a direct sum of cyclic groups

P

v n * :
with a cyclic summand of order p p, say Ap = <ap> C)Ap,»where O(ap) = np-. .

* .
and A is some subgroup of A . Letting a_ be zero when q is not a

P P q

relevant prime of A, consider the element a' = (az, 335 .ees ap ...)vin

TT Ap. Define A' to be the inverse image of <a%, under the natural
p ' - : v
map T]'Ap —rT{'Ab/.@Ap.- It is immediate that H(a') is in the equivalence
P P P

class H(A) and the equivalence class H(A'), so (1.1) shows A = A'. For

each relevant prime p a ring with identity a_ can be defined on Ap by -

P

* .
and letting a

P P
1. As in the proof of Proposition 4.4 these rings extend to a ring

defining the trivial ring on A act as multiplication by

(A', +) on A’ for which a' = (az, a3; s ap, ...) will be the identity

element. //

We now turn our attention to characterising the absolute
annihilator of a group in the class 14,. A complete description can

be given.

THEOREM 4.9.  Let A be a group in the class 447.' If A is reduced
then A(%) = A@)(x) = A1, Othervise A() = A (x) = ((a))!.

Proof: Since A e A, A/T(A) is divisible. Hence if A is reduced,
Corollary 1.13 yields A(x) = A(a)(*) = Al.  Assume therefore that A is a
non-reduced group. As in the proof of Corollary 1.13, (T(A))l < A(x), so
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the proof is completed by showing A(al(*) g,(T(A))];

Considér_the case when A contains a divisible torsion subgroup.
We are permitted to write A = D@A', where D is the divisible torsion
part of A and-A' is some subgroup of A. Let a be an element of infinite
order in A and suppose its fnon-zero) component in A' is aofl Embed A’
in its divisible hull D' @ Q, where D' is a torsion divisible group.
If the component of'a0 in Q is aé, then define thela$sociative ring
(D®Q, *) on D@ Q as in Szele's example (1.5) such that a('] . a6 #0.
This ring cﬁn be-éxtended in the obvious manner to an associative ring
OD®Q@DD', +) on DD Q@ D' which will contain (A, _-) as a subring,
since the.prodUCt-of any two elements of A is in D. “Clearly
a-a;-= aé . aé-f 0, so a ¢_A(a)(*). Consequently;'Corollary 1.13
yields A3 (x) < (1N’ | |

If A does not contain a divisible torsion subgroup then A must

"

split, so A = T(A) ® B for some subgroup B'of A such that B = Q. Lemma

1.14, (1 8) and’ (1 9) now. show
‘“’(*) < (T(A))(a’(*)ea‘a’(*) - (T(An‘

as required. //

A complete description of the absolute radical of a gr'_odp in tﬁe

class A can also be given.

THEOREM 4.10.  Suppose A is a group in A and a is an element
of infinite order in A. Then J(A) = n pA exactly when H(a) is not a
_ P
reasonable matrix and; for almost all primes p, Ub(a) does not commence

with zero. Otherwise J(A) = N p(T(A)).
p

Proof- Since A ¢ A Proposition 4. 3 shows that for each prme

p, A A @A(p), wher'e A(p) is some p-divisible subgroup of A. _ '_f_hu_s
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Lemma 1.19 and (1.10) imply
A £ 3a) @A) ¢ pa @A),

so J(A) < pA.

Suppose H(a) is not a reasonable matrix and, for almost all
primes p, Up(a) does not commence with'zéro. Consider an associative
ring (A, <) on A.  Since H(a) is nof é reasonable matrix, Proposition
4.5 imp]ies-(Ai .)2 < T(A). Since fof almost all prfmes Ps Up(é) does

not commence with zero, there is an integer n for which na € n pA.. Thus

P
- for every b ¢ A,
na + be T(A) N (N pA) =n p(T(A)) .
From Lemma 1.18 and (l.]Q),'ﬂ p(T(A)) < J(A) < J(A, +), so na + b is a

, _ P. .
right quasi-regular element of (A, +). Consequently (1.2) shows

na € J(A, *), so A/J(A, -) is a torsion group. Since this is true of

every associative ring (A, +) on A, ProbOsition 1.20 yields N pA < J(A),

. P

as required. | '
The other case occurs when, fdr infiniteTy many primes p, Up(a)

commences. with zero, or for almost all primes p, Up(a):= (w0y o, ...).

In the first case J(A) = N pA shows J(A) must be torsion. Thus
J(T(A)) < J(A) implies J(A) = J(T(A)) = N p(T(A)). In the second case

- ‘ : ‘ p :

D(A), the maximal divisible subgroup of A, contains an element of infinite

order. Hence A splits, so A = T(A) @Ay, where Ay is some subgroup of .

A such that A] = Q. | Lemma 1.19 and Theorem 1.21 show

J(A) £ AT(A)) @ I(A)) = I(T(A)) ,

so again J(A) = N p(T(A)). //
P .
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It shoujd be noted that Proposition 1.22 shows that if A is a
group in the class A then J(A/J(A)) = 0.

Another question that can be partially settled for groups in the
class A concerns the endomorphism ring. Fuchs [4] has asked whether
two mixed groups of torsion-free rank one are necessari]y isomorphic if
their endomorphism rings are isomorphic and their quotients mod torsion
subgroups aré isdmdrphic to Q. Fof-the elementary‘properties of

endomorphism rings we refer the reader to Fuchs [4], Section 106.

PROPOSITION 4.11.  Let A and B be groups in A such that T(A)
and T(B) are both totaily_projectivé (or tofsion-c&mpléfe). Then A
an& B are isbmdrphic if énd only éf

(i) E(A) and E(B) are isomorphic, and

(i1) H(A) and H(B) are equivalent.

Proof: It is well known that if A =B then E(A) = E(B).  Thus
(1.1) shows it suffices to prove that if E(A) = E(B) then T(A) = T(B).
Since A ¢ 14 , Proposition 4.3 shows that for each prime p,
A = AP©A(p) where A(p) is a p-divisib]é subgroup of A. Consider this
decomposition for a fixed prime p.  From Fuchs [4] we know that B splits
also, so we are permitted to write B =-31€B B2 for subgroups BI’ B2 of

B such that E(Ah) = E(By), E(A(p))

[[H

E(Bz). If By contains an element

of order q, q a'prime, q # p, then B] will contain a direct summand (B])q
that is a co;yclic q-group. If ¢ : Bl + (B])q is the corresponding
prOjection_then e is a primitive idempotent. Denoting the isomorphism
E(B]) ] E(Ap) by ¢, ¢(e) is then a primitive idempotent qf E(Ap),.so
¢(e)Ap is a cocyclic direct summand of Ap such that E(¢(e)Ap) E E((Bl)q)‘
Clearly this cannot be the case, so T(B]) is necessarily a p-group. Thus
T(By) is a direct summand of By, so if By is not torsion then B, will

contain a torsion-free divisible summand, 83 say. The afgumeni above
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applied to B, agaio yie]ds a contradiction, so 81 is necessarily a
torsion group. Theorem 108.1 of Fuchs [4] now shows A £B;. An
argument similar to the one above applied to the second summand B2
estab11shes B, f p> SO Ap 2 B.. Since th1s is true for each prime p, _

P
the Proposition follows. //

2. THE ADDITIVE GROUP OF A REGULAR RING
An associative ring (A, ) on a group A is regular (in the sense
~of von Neumann) if for each a e A there is some b e A such that‘aba =

Fuchs [1] has proved the following.

(4.12) (Fuch's [1]). The additive group A of a regular ring is
the direct sum of a torsion-free divisible group and a reduced group C
such ohat

. A,
pp;CTF

where the A are elementary p-groups and C/ @ A 18 torsion-free and
P

divisible. [/

Fuchs asks which groups with this additive structure support
regular rings. He answers this in the affirmative when C =@Ap or

_ o P
C ='T[Ap by defining fields on each Ap and the torsion-free divisible
P _

part.

It is possib]e'to also answer Fuchs' question in the affirmative
for a large class of groups. Before doing this we need an alternate
descr1pt1on of groups that embed purely in the direct product of their

p-components This descr1pt1on is very similar to the description of

the groups 1n A g1ven in Propos1t1on 4.1.
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PROPOSITION 4.13. Let A be a pure subgroup of-lTAp, and let
p .

{ai|'i e 1} be a maximal independent set of elements of infinite order in
A. Then A is the inverse image of <§-|i e I>, under the natural map

TTA 'ITAp/ @A Conversely for p-groups A and any independent set
{a |i € I} of elements of infinite order in TrAp, the group A defmed

as the inverse mage of <a1]1 € I>, under the natural map

T]_Ap -*—ITA / @A 18 a pure subgroup of ']TA contazmng@ A
_ p

Proof: Suppose A is a pure subgroup of T]'Ap, and {a;|i e I}
| D |

is a maximal independent set of elements of infi'nité order in A. ,Sin_ce'
A/@A_is pure in TTA /@A , <a.|ie I>, <« A/®A_ . Suppose now
af0and ac A/@Ap. Since {a;|i e I} is a maximal independent set
of elements of infinite order in A there are integers

n#0, s Nos oo nk such that

‘= n,-as + + ..+ .
na = n;-ay n, a, L PR

1 k

for some 1‘],'1'2, cees 1'k e I. Consequently

"ma=n,a. +n,a +...+n a. ,
171, 2 i, k‘k._

s0, since <'a_i|i e I>, is precisely the set of all elements of '[TAP/@AP
L , o p p
depending upon the set {a;}i e I}, a e <a;|i ¢ I>,.
The secohd statement is proved ’in_ the same way as the analogous

statement in Proposition 4.1. //

Suppose now A is a pure subgroup of _'ITAp, where each Ap is an
: | , o
elementary p-group. If {ail‘i e I} is a maximal independent set of

elements of infinite order in A, then Proposition 4.13 shows
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A/ @Ap = ,<E1.|'i e I>,. Moreover, since A/ @Ap is torsion-free and
P - p '

di‘v_isih]e, A/ @Ap @ <a; >* For each i ¢ I, a1; may be written
P ‘el _ : : '

uniquely in the form

s 6,28, ),

where agp) € Ap- for each prime p. Consider a relevant prime p. Since

Ap is an e]eméntary'p-group we can write
. P
where K_ is some index set and (A )k Z(p) for each k € I(p Thus for

P
(p)

each iel, a can be uniquely expr'essed as

(P) = v (alp)
ai kz (a.i )k ’
_ P
where the sum is finite and (a(p)) € (A )k for each k e K.. For i and
J in I we say that a(p) and agp) overlap if for some k € K s (a(p))k 70

and (atg':'))k 7 0.' If j and jI are in I we now define
| o - - {0 . plalP) (P o,
Pj,j]({aih e I1) ._{p € P|aj and aj]_ overlap} .

Finally we say that the set {a;|i < I} satisfies the finiteness condition

if for distinct j and j, in I, [P, ; (fa;]i € 1})] < w.
, - RUNME s

THEOREM 4.14. Suppose A = B@ C where B is torsion-fx'ee and
divisible, and C is reduced such that '
@A < CcTTA
p P p P
where each 'Ah is an elementary p-group and C/ @ Ap i8 torsion-frée and
p
divisible. If {a [ieI}isa countable maximal independent set of

elements of mfzmte order in C 3attsfy'mg the finiteness condition then

A supports a comtatzve regular ring.
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Proof; We need only prove the case when C contains a countably
1nffnite maximal iﬁdependent set of elements of infinite order; tﬁe
proof when C containé a finite maximal independent sét-of elements of
infinite order is virtually identical.

By takinﬁ the direct sum of a fie1d on B and a regular ring on
C we obtain a regular ring on A. Thus we restrict our attention to
defining a regular ring on a reducéd group A that embeds pdre]y in
'|;T Ap, where each Ap is an e'leme'njl_:a‘i'y p-group, Af_é?np is a torsion-
free divisiblé_ghoup and“{anln cZ'lis a countably infinite maximal
independent set of elements of infinite ordér in A'satisﬁfinglfhe
finiteness condition. - | ' |

For each relevant prime p, write
A = (A, >
0T @ (Bl
' P

as we have done above, and consider k € K If there does not exist an

p*
ne 2 ,such.that (aép)h(f 0 then let ((Ap)k, +) be a field on (Bp)k, |
defined arbitrarily. If, however, there is an n e'Z+ such that
(aép))k # 0 then select n minimal with respect to this property. Now

e Y - (P)y . (aP)y - 7a(P)y
define the field ((Ap)k, ) on (Ap)k by letting (an )k (an )k = (an_ )k'
Taking the ring direct sum of these fields over k e_Kp we obtain associative
and commutative rings (Ap, «) on Ap, for every relevant prime p. Now.

define (TT'AP, *) to be the ring direct product of the rings (Ap, ).

Clearly (]1'Ap,_-) is an associative and commutative ring on TT'AP. We
Y ‘ p

show (A, +) is a subring of (11'Ap, .).
.

p
For'any positive integer k, and for each positive integer 2 < k,

ng k({an]n € Z+})| < », so the definitions of (Ap, +) for each prime p -

involved in a, shows Ek . Ek = Ek.' Also for distinct positive integers



_ k and £, |P£’k3({an|n' € Z+})|. < ©  shows Ek - q, = 0. Ifnowb and c
- are elements of infinite order in A then there are integers n # 0,
m # 0 and sets of integers {nk|k € Z*},“ {mk_lk ¢ %} such that

. ﬂb=l'l] a]+ﬂzaz+... +nk H_k"' -u .
and

mc = m'] ay *m, a, + + mk a +

wher‘e almost all _of the nk's and_ mk's are zero. Thus

nm(F-_') -n] mea iy mya, . tmon 3t
where again almost all of the ng m, are zero. Proposition 4.13 now

o y'i‘e]ds-b «ceA. It follows therefor'e that (A, *} is a subring of

(1_FA

.

As mentloned earher AMN@A = @ _'<Fn>*. From the definition
: P n=1 _
of (A, ) it is clear that (A/ @Ap +) is a ring direct sum of the

P _ _
fields_(<an>*, ) so_(A/@Ap, ) is a regular ring.  Thus (A, ) is

‘an extension of the regular ring ((-BA *) by the regu1ar ring
p

(A/ @Ap, ). A refer‘ence to Kaplansky [2], p. 112 now shows (A, )
is regular. //

COROLLQRY 4.15. Let ﬂc = B@® C where B ig torswn-free cmd

d’bmszble and C is reduced such that
®A cC g_ITA ,
p p p p

where each Ap is an elementary p-group and C/ @ A_ is torsion-free
" Tp. . | b _

divisible and of rank one. Then A supports a commutative- regular ring.' / / _

p

It is not true in general ‘that a group with the structure -

described in (4.12) is the additive group-of a regular ring. To provide
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counter examples we need the following general result.

PROPOSITION 4.16.  If A =TT A, where each A, is a reduced
p "

p-group, then every ring (A, ?) on R is the direct product of the rings

(Ap’ ')-‘

Proof:. Let A and (A, +) be as stated in the Proposition. For

each prime p, A is p-reduced, so [ A is the maximal p-divisible
o q#p . | |
subgroup of A. As such T Aq is an absolute ideal of A.  Hence

| qFp -
(A9 ')'= (A ’ ')@(TI_ A_, ') s '
' PP e O

P

where the direct sum is the ring direct sum. The proof is now completed
by observing that if a and b are elements of A with p components ap and

bp respectively, then the p-component of a * b is ap . bp. !/

We also require

LEMMA 4.17. Suppose A is a reduced group such that A/T(A) is

divisible and Ap 18 bounded, for each prime p. Then A is a pure

 subgroup of —H_Abfwith~the property that every ring on A extends uniquely
P , , ,

to a ring On_ﬂ_Ap.
p .
Proof: The first claim follows from the proof of Proposition 4.3.

To prove the second assertion of the Lemma we use the proof of Theorem

119.3 of Fuchs [4]. A1l that we need verify is that 7rrAp is a reduced

N
algebraically compact group for which 'rrA /A is divisible. This is
immediate from the fact that each Ap is bounded and TT A /@Ap is divisible.//
: . p P

" Consider now TW'Ap,'where for each prime p; A

is a p-group.
P ‘

p
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If a_e'rrAp then as usual write

p | .
as= (3(2)’ a(3), cees a(p), ved)

where a(p) € Ap for each prime p. For elements a], a5 «nvs ap Of A,
define, for each i ¢ {1, 2, ..., n}

= p e PlalP) £ 0}
and

= {p < PlalP) # 0 and a{P) = 0 for j # 1)

EXAMPLE 4.18.  For each integer n greater than 1 we give
examples of reduced greupsﬂwith structures as described in (4.12) that
- cannot support a regular ring. | o

Cons1der ‘the group W_F'Z(p) and elements as az, cees @ in

TT'IZ(p).such that”IP] n P2| = » and, for each i ¢ {1, 2, ..., n},
peP ' - :

|P%| = o, It is readily checked that for each integer'h_> 1 such a
choice of a},iaz,-...,'an is possible.. Next define A to be the inverse
image of <5}, Eé; cees Eh> under the natural map

'TT'Z(p) 'TT Z(p)/eB Z(p) It is c]ear that A iS'reduced containing
peP . - peP -

@ Z(p) as tors1on subgroup, A has torsion free rank n, and A/T(A) is
peP

dlvis1b1e, S0 A “indeed has the structure described in (4 12).
Suppose-now (A ) is a regular ring on A.  Lemma 4.17 shows

thet (A, +) extends to a ring (1'r Z(p), ) on TT Z(p). From
peP eP

Proposit1on 4.16 we see- that (11" Z(p), ) is the ring direct product

. peP S _ _
of the rings (Z(p), *), p e P. -Now for each prime p ¢ P, (Z(p), *)
is an ideal of (A, ), so (Z(p), *) must also be a regular ring. Thus
(Z(p), +) is a field, s0 |P] n P2| = o implies ay a2 is an element of
infinite order in A.  Hence there are 1ntegers L # 0, E 2 cers En

such that
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Z(a] . az) =LAt L, At +~!Ln‘an .
or equivé]ently, for each prime p,

(%) z(a%p) . aép)) = 4 a%p) t % aép) LAETEEL A aép) .

If now p € Pi for sofe k « {1, 2, ..., n}, then (%) redices to

- (p)
0 gk ak .

Since for each kje {1,2, ..., n}, IP&I = o, it is clear that for each
k e {1, eees N}, %4 = 0.  Therefore a; * 8, € T(A); contradicting
the fact that it has 1nf1n1te order in A We conclude therefore thot

A can never support a regu]ar ring. //

Another'class of.groups $ome of whose members resemble those

~ of the class A is the class of associative-closed groups. A group A
is associative-closed if the set .of associative multiplications ‘in Mult
A is a subgroup of Mult A. These groups have beenvextensively studied
by Hardy [1J,'and as usual the torsion case has beeh”we11 described.
Hardy has shown that a torsion group A is associative-closed if and

only if A_ has cyclic reduced component for each pr1me p. If now A

p
is a mixed assoc1at1ve closed group then for each prlme P the reduced

D must be cyclic. Indeed if p is a prime for which the reduced

part of Ap is not cyclic, then A decomposes-as

part of A

A = <a;> ® <a,> @.A]

‘where <ay> and <a,> are cyc]ic‘p-groups and A] is some subgroup of A.
Evidently <ai>(9,§a2> is not associative-c]osed,'so-A itself cannot be

associative-closed. A partial converse is contained in the next result.

PROPOSITION 4.19.  Suppose A is a reduced group such that

' A/T(A) i8 dwcszble Then A is associative-closed if and only if Ap

18 cyclie for each prime p.
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Proof: From the above comments we need only show that ivap is
cyclic for each prime p then A is associative-ciosed, Consider an
associative ring (A, «) on A. It follows from Lemma 4.17 that A is a

pure subgroup-of_TT'Ap with the property that (A, ) extends to a ring
. p ' . )
(11‘Ap, ‘) on~'rrAp. From Proposition 4.16 we know that (1T’Ap, .) is
p : o p

the direct product of the associative rings (Ap, <), p e P.

Consequently (T;FAp, ) is an associative ring. The proof is now
. P ' ’

completed by observing that A_ associative-closed for each prime p

Y
imp]ies,T—FAp“is associative-closed. //
Y ' .

Hardy [1] has also investigated the Lie-closed groups; those
groups whose set of L1e-mu]t1p11cat1ons in Mult A form a subgroup of

Mult A. S1m11ar arguments to the ones above ver1fy

PROPOSITION 8.20. Lt A be a reduced group such that MT(A) is
divisible. Then A is Lie-closed if and only if A has rank less than

or equal to two; for all primes p. //

Finally we consider groups that support only commutative rings.
If A_is such a group then clearly, for each prime p, the reduced part

of Ap must be cyclic. Indeed we can prove

.PROPOSITION 4.21. Suppose A is a reduced gréup,such that
A/T(A) is divisible. =~ Then A supports only commutative rings if and

only if Ap is cyelic for each prime p.

Proof!_ The proof is very similar to the proof of Proposition
4.19.  Again we need only verify that if Ap is cyclic for each prime p

then A supports only commutative rings. Let (A, ) be a ring on A.
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. From Proposition 4.16 and Lemma 4._17., (A, *) can be considered as a

subring of the ring T|'(Ap, ) on ']TAP.' Since for each prime p, Ap
' P

P

is cyclic, T['(Ap, +) is a commutative ring. Thus (A, ) will also
p .
be a commutative ring. //

3. COTORSION GROUPS, ALGEBRAICALLY COMPACT GROUPS

We commence this section with a discussion of the structures of
the absolute annihilator of a cotorsion group and thé ébso'l ute annihi lator
of a reduced a]gebraica‘ﬂy compact‘gr.oup. For the elementary propérfi‘es
of cotorsion groups and é]gebraicaﬂy .com'pact groups we refer the reader
to the appropriate sections of Fuchs [3].

A similarity exists between the above mentioned groups and _groups
| in the class A ; namely, if A is a reduced cotorsion grdup then A may be .

~written uniquely in the form A = TI'A(p}\Where; for each prime p; A(p) is a
p | )

reduced cotorsioh' group which is a p-adic module. In the special case
that A is a reduced algebraicaﬂy compact group, each A(p)is a reduced

algebraically compact group that is also complete in its p-adic topoIogy.

THEOREM 4.22. I A is a cotorsion group then A(x) < Al@)(x) ¢ AT,

If, further, A is an adjusted cotorsion group then A(*) = A(a)(*).' = al.

Proof: If A is a cotorsion group, write A = D_@R where D is -
divisible and R is reduced. From Lemma 1.14, A(2)(x) < p(®) (x) @ R(2) (4).
Now since D(a)(-*) c D= D']', it is clear that to pfove the first assertion
of the Theorem it suffices to show R(_a)(*) < R'.  Thus assume A is a

reduced group. ' Now A may be written uniquely in the form A = TTA_(p),'
p

where, for each prime p,_ﬁ(-{p)is a reduced cotorsion group which is a

p-adic module. Since for every prime p, || A,'(q_) is a p-divisible
' ' ' - gfp T '



87.

subgroup of A, an argument similar to the one above shows that we may
further restrict-OUr attention to cotorsion groups-A fhat are also
p-adic modu]es; for some prime p. |

Let a be an element of A tﬁat has finite p-height, say
hp(a) =n. We show a ¢ A(a)(*). If B is a p-basié submodule of A
then A =B + pn+]A, soa=>b+ p"+]a' where b € B, b # 0 and a' ¢ A.
Now B is a direct sum of cyclic p-adic modules, so it is possible to
choose a cyclfc submodule (and-summand) B, of B for which b has a non-
zero component b] in B]. Since B].is a cyclic p-adic module, B] is
' either_a cyc1ic p-gfbupvor the pead{c.integers. In either case B]
is a pure subgrOUp Ova thatbis a]gebraica]]y compact, so B] is a
direct summand of A Suppose A = B] @A] for some. subgroup A] of A.

If B] is a cyclié p-group then it is possib]gfto define an
associative and commutative ring (B], «) on B] for which b] . b] #.0.
On the other hand if B] is a copy of the p-adic integers then define
(B], +) to be the ring of p-adic integérs. In efther case (B], .)
is an associative and commutative rjng on B] such-that-b] . b]'f 0.
Letting (A], ) be the trivial ring on A define'(A,--)_to be the ring
direct sum of (B], ) and (A], .). AC]ear]y, (A, *) iﬁ'an associative
~and commutative ring on A such that

a«by=by b #0,

so a ¢ (03 (A, f)). Thus a ¢ A(a)(*), whence A(x) g;A(a)(*)=g A1.

Suppose now A is an adjusted cotorsion group. - Then A is
reduced and A/T(A) is divisible, so the second assertidh'of the Thebrém

follows immediately from Coroilary 1.13. //

COROLLARY 4.23. If A is a reduced algebraically compact group
‘then A(*x) = A(a)(*) =0. . . | |
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1

~ Proof: For a reduced algebraically compacf group A, A° = 0. //

With méthods of proof similar to those used aboVe we can give
the corresponding description of the absolute radical of a cotorsion
group.

THEOREM 4.24. If A is a cotorsion group then J(A) < n pA.
p

Proof: As in the proof of Theorem 4.22, Lemmé 1.19 allows us
to restrict our attention to cotorsion groups A that are also p-adic
modules, for some prime p. In this case we need to prove J(A) c pA.
We proceed as fnvthe proof of Theorem 4.22. ' |

Suppose'aié pA. Again let B be a p-Basic submodﬁ]e of A.

Then A = B +va, so a must have a non-zero component in some direct
summand B, of B.  Furthermore we can assume that B, is either a cyclic
p-group or a copy of the p-adic integers, and.fhat the component of a
in B, is not in PB;.  As before B is a direct summand,of A. From
(1.10) and the fact that J(Q;) . pQ; , (@

P o
integers),-no’matter what form B] takes, it is possible to define an

being the ring of p-adic-

associative and tommutative ring (B], ) on B] such that J(B], °) = pB].
If we extend this ring in the usual manner to an aséociétive and
commutative ring (A, <) on A, it is clear that a ¢ J(A, *). Consequently

J(A) < pA. //

COROLLARY 4.25. IfA is a reduced adebraicaZZy'compact group

then J(A) =N pA.
p

Proof: If A is a reduced algebraically compact group then A

can be written as A.=*rrA(p)where each Aoﬁ'ﬁsa p-adic module complete

in its p-adic topology. For each prime p, Aﬁ”is'p-reduced and A(q)
. . o : q#p
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is b-divisib]e, so the proof of Proposition 4.16 shows ;hat every
associative ringI(A, «) on A is the direct product of the associative.
rings(Auﬂ,-). Thus it suffices to prove pA c J(A) when A is a p-adic
module complete in its p-adic topology, for some prime p.

Since A is complete, A = 1im AlpkA. If now (A, <) is any

associative ring on A, (1.10) yields p(A/p*A) £ 3(A/p¥A, +), for all
positive infegers k. It is now readily checked that'sincé the natural
mabs A/pkA +.A)p£A, k and 2 positive integers, i < Kk, ére epimofphisms,
A = {p(A/pkA)lk ¢ 2'} and A, ='{J(A/pkﬁ, )|k € 7} together with the
maps of the 1hvérse-system'{A/pkA|k € Z+} form two inverse systems for
which there is a moﬁomorphism_¢ : A]'+ Az. -Theorem ié.a of Fuchs [3]
now shows | |

1im p(A/p*A) € 1im J(A/DRA, -)
k k

and Theorem 1 of Ion [1] yields
1in J(A/0*A, <) = 9(Tim (A7pKA, 4) -
k k
A trivial calculation proves
p(1im A/p¥A) < Tim p(AZp%A) ,
-k k
S0 o

p(1im AZpMA) < a(1im(Azp¥a, -)) .
k k

Thus pA < J(A, +), and since this is true for every associative

ring (A, +) on A, pA c J(A), as required. //

COROLLARY 4.26. If A i¢ a reduced algebraicaily compact group
then J(A/I(R)) = 0. // |
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It should also be noted that if A is an adjusted cotorsion
group_then‘J(A/J(A)) = 0. This is an immediate conséduence of
Propos1t10n 1.22.

Our knowledge of the absolute radical of a reduced a]gebra1ca11y
compact_groUp_al]oWs us to answer in the negative a_qUestion raised by
Rotmaﬁ»[zj. First however, notice that Theorem 119.5 of'FuchS-[4]
shows that every ring on a reduced group A can be extehded uniquely to
a ring on Ext(Q/Z, A). Rotman now asks the fo]]owing Questibn. If
(A, +) is a semisimple ring on a. reduced group A theh is the induced
ring (Ext(Q/Z, A), *) on Ext(Q/Z, A) a1so sem1s1mp1e7 " We close this

chapter with the following propos1t1on

PROPOSITION 4.27. Suppose (A, *) is.a semisimple ring on the
reduced group Ah If A is torszon-f?ee then J(Ext(Q/Z A), «) #0.
However, if A is a torsion group or A is a mized group such that A/T(A)

is divisible then J(Ext(Q/Z, A), ) = 0.
Proof:  first suppose A is torsion-free, in which case = -
Ext(Q/Z, A)'fs a reduced a]gebrai;él]y compact gkoup7  Write
Ext(WZ, &) <TT (B2, W) p) - |
where each (Ext(Q/Z, A))(p) fs a redUCéd algebraicaily Compact groub

complete in its-p-adic topo]ogy. Since each (Ext(Q/Z A))(p) is also a
p-ad1c modu]e Coro]]ary 4 25 yields

I(Ext(Q/Z, A)) =TT p(Ext(0/2, Ay -
_ L :
Thus

TTR(EXE/Z, A) () = IEXE(QZ, A); +)
P : ' '

Now p(Ext(Q/Z, A))(p) # 0 for at least one prime p, so
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J(Ext(Q/Z, A), +) # 0.

Next suppoSg A is a torsiQﬁ group, or A is Q'mixed group.such,
that A/T(A) is divisible. In either base Fuéhs [3], p. 234.shows that
Ext(Q/Z, A) cah be written uniquely in the form

Ext(Q/Z, A) ;TTExt(Z(Pw), A) .
P

Consider a fixed prime p. It is readily checked that

n

EXt(Z(p7), T(A))

Ext(Z(p™), A)
| Ext(Z(p"), A) .

m

Since J(A, *) =0 it’follows that J(Ap, ) = 0. Hence (1.10) shows
that Ap'is én-elemehtary.p-group. Cohsequent]y Ext(Z(pm), A) is a
subgroup of the p-component (Ext(Q/Z, A))p of Ext(Q/Z, A). | Since

 TTExt(Z(q™), A) is p-divisible, Ext(Z(p™), A) = (Ext(Q/Z, R),- Now
qfp ‘ - | v ’
((EXt(Q/Z3 A))ps ') = (Aps ') ’ |
so Proposition 4.16 shows that (Ext(Q/Z,.A), *) is the ring direct
product of the semisimple rings ((Ext(Q/Z, A))p, ). Cdnsequently
J(Ext(Q/Z, A), *) = 0, as reduired.;// |
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CHAPTER FIVE

| .ﬁe return once again to our study of rings on torsion-free

groups. g For the majority of this chapter we will be concerned with
strongTy indecomposable torsion-free groups of finite rank. ' Reid.[l]
has given afpartia] survey of rings on such groups, and we combine his
resu]ts-withtSeVEral of Beaumont and Pierce [1, 2] to obtain a-bori&ﬂi:
description’Of the absolute radical of a strongly indecomposable torsion-
free group of f1n1te rank This description extends Theorem 1.21 of
Chapter One. Our d1seuss1on of-theSe groups then continues by re]ating
several so far'unrelated concepts;_the almost nilpotent rings of van
_Leeuwan and Heyman [1] with the uneguivocal rings of.Gardner [2], and
the rings with the f1n1te norm property of Levitz and Mott [1] with the
‘r1ngs with the restricted m1n1mum cond1t1on

| We then exp1ore associative rings on a torsion-free group of
rank two. A result of Freedman [1] is generalisedlzand a complete
descr1pt1on of the absolute assoc1at1ve ann1h11ator of a tors1on free
group of rank two is g1ven Our knowledge of the structure of the
absolute radical of a completely decomposab]e group together with
'.Theorem 5.8 also enab]e us to give a part1a1 character1sat1on of the

~absolute radjca] of a tors1on-free.group of rank two.

1. STRONGLY INDECOMPOSABLE TORSION'FREE GROUPS OF FINITE RANK

We commence th1s section w1th a survey of the known results

~ concerning the assoc1at1ve r1ngs supported by a strong]y 1ndecomposab1e
tors1on7free group of f1n1te rank. For the sake of convenlence let S
denote the class of-a]l.strong1y'1ndecomposab1e torsionjfree groups of
finite rank. We begin with the fo]]owing_definittons;:first introduced

by Reid [1].
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A group A is faithful if there is some associative ring on A
with trivial left annihilator. A group A is fully faithful if A is
non-nil and every associative ring on A has trivial left annihilator.

An associative ring (A, ) on A is called a faithful fing if the left
annihilator of (A, +) is trivial. _'

Reid has Shown that fu11y faithful groups cannot be miXed, a
tonsion group is fuliy faithful exactiy if it is p-elementary and cyclic
for some prime Ps and tor51on-free fu}ly'faithful'groups are strong]y-

indecomposable.  He has also shown

(5.1) (Reid [1]). Let A be a group in the:claes.s._ Tﬁen
exactly one of the following conditions holds - |

(i) A is fully faithful;

(ii) A is nil;

(ii1) A is non-nil and every associative ring on A is n£1potent..//_

For a group A in S satisfying (ii) on (iii) above, it is clear
‘that J(A) = A. Thns in our attempt to describe J(A) for a grouo'A_in
S we néy_confine our attention to'thelcase,when A is fh]ly faiinfuI.
Later, in Chepcer”sfx; ne will give bounds for the nil-degnee of A in
Case (iii) above; _ _ .I |

Reid has also given a complete description of the folly faithful
_groups in ﬂ;.. “His description involves full subrings of algebraic
number fields A1l the 1nformat1on we require in this regard is
contained in. Beaumont and Pierce [2] |

Suppose J is. the ring of 1ntegers in an a1gebra1c number field
K. Beaumont and Pierce have shown that there is a one- to -one |
correspondence between the quasi-equaiity cIasses of ful] subr1ngs of

K and the’ sets of prxme 1dea15 of J : This correspondence may be stated
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as follows. For a prime ideal Py of J define

Jbp = {x/y|x, y e J and y ¢ Py}, and for a set Il of prime ideals of J
J . . |

define JH = n JP . Then each quasi-equality class of full subrings

of K contains a unique 1ntegra11y c1osed ring J wh1ch is the largest
ring in the quas1-equa1ity class. _
| Beaumont and Pierce say that a set H'of.prime_ideals of J
satisfies condition U if _ _

(i) 'for:EVery rational pfime P, Hp ='{PJ € HIp € PJ} contains
at most one prime ideal, and | o

(ii). jf_PJ_e n,then PJ is unramified and of degree one.

We will need the following paraphrase of several'of Beaumont and

Pierce's result.

(5.2) ‘(Beaumont and Pierce [2]). Let J be the ring of integers
in an algebraic number field K, and suppose T is a set of prime ideals of
J.. Then | | ' - |

(i) <f 0l satisfies conalition U then every subgroup of finite
index in 'JI[ Iis- of the form nJﬁ,_ where n is a rational integer,

(1) if J" is strongly indecomposablle and T does not satisfy
condition U then t_he quasi-e_quality class of JII in K contains infinitely

many rings with identity no two of which are group isomorphic. [/

Notice that for any set I of prime ideals of J, J; denotes an
assOciative ring on'the group'J+ Consequently J(J ) 1s the radical
of the associative ring JH’ and not the absolute radical of J As
usua], the latter radical is denoted by J(J“).

We are now in a position to state Refd's results on fully
faithful groups 1n the class S. rPart of th1s contains the maJor

result of Beaumont and Lawver [1]
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(5.3) -_(Re1'd (1]). Suppbse A is a faithfui group in the class
S.  Then A is fully faithful and '

(i) K Q® E(A) is an algebraic nwnber fLeZd whose degree is
the rank of A,

(1'1') if J 18 the ‘integraZZy closed subring of K corresponding .
to E(A) then A is quasi-isomorphic to J |

guasi-squality
(ii1)  the,class of non-tmmal associative. rings on A cmnmdes ‘

with the quasi-equality class of‘ JII in K,

('i.v)' A is (strongly) éerﬁ;zlsimple exactly when Il is either an

empty or infinite set. s

For the remainder of th1s chapter whenever A is a fully fa1thfu1
group 1n.S K, J and IT will respect1ve1y denote the a]gebra1c number
field Q@ E(A), the ring of integers in K, and the set of prime ideals
of J corresponding to the.quaﬁi-edua1ity class of E(A) in K. In this
case we say that I is the set of prime ideals of J correspond1ng to the
group A. See boge 35A.

Important‘for this section and for others following (and -
interesting in ifseff) is the struéture-of the ideals of a faithful
ring onla group in f;%A To specify this we require the fo]]owing well
known definitions and results.

Beaumont and Pierce [1] have called an associative ring (A; .)
on a torsion-free gfoup A bf‘simple or of semisimple algebra type if the
associative ring (Q®A, +) on the diviéib]e hu]] Q® A of A is a simple

or semisimple Q-algebra.

(5.4) (Beaumont and Pierce [1]). et (A, *) be an associative
ring on a torsion-free group A of finite rank. Then as a. group A is

quasi-equal to the giﬂoup dire‘ct‘ sum of ‘its. maximal ninotent ideal -
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Define S* to be the subclasglof S cdnsisfing’of those groups A
in- S which satjsfy the following property ' - ‘

(*) either A is ﬁot a faithful group or, if A is a faithfuj
group (and i is the set of prime ideajs of J corresponding to A)  then
fhe additive grdup of any king in the quasi-equality class of Jn in K
~ is isomorphic to A. '

A reference to Corollary 4 of Murely [1]vverifies that 81 (for
the definition of S]'see pagé 107) is a subclass of‘S*,-so §* is a
‘non-trivial class of groups} VA]SO'it is evident from (5.2) (i) that

if A is a faithful group in S* then I satisfies condition U.
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and a subring of semisimple algebrl’a type. [/

(5.5) (Beaumont and Pierce [1]). ~Suppose A is a torsion-free
group of finife _'rank. If (A, ) 18 an assoc'iativé ring on A of
semisimple algebra type then (A, *) contains a subring (C, +) of finite

index such that
(c, -) = (S'I" ) ® (52, D ... D (S *) (ring direct sum)

where each (51, *) is a ring of sinpl_e algebra type. [/
We can now prove

PROPOSITION 5.6. If A is a fully faithful group in S then A
ig homogeneous with idempotent type. If Aisin 8, the non-zero ideals of

any non-trivial assoctiative ring (A, ) are of the form (nA, +), n an integer.

Proof: Let (A, +) be a faithful rihg on A.  Since A is strongly
indecomposable, (5.4) and (5.5) imply that (A, *) qohfains a_subring of
finite index and of simple algebra type. Clearly (A, :) will also have
Simple algebra type, so a reference to Lemma 121.6 of Fuchs [4] now shows
that A is homoqénepus.with-idempotent type and that tﬁe non-zero ideals |
of (A, ) are of finite index in A.  (Reid [1] ha§ also noticed that
the non-zero ideals of (A, +) are of finite index in A). -

Suppose (A, -) is defined by the-map ¢ ¢ Hom(A, Hom(A, A)).

If now (I, +) is a non-zero ideal of (A, ), ¢(I) is a-non-zero ideal of
o(A). Furthérmore, since_(I, -) has finite index in (A, +), ¢(I) has
finite index in ¢(A). Let I bé-the set-of prime ideal; of J corresponding
to A,andler AES™. From pavious, tomments it is evident that 1 satisties
condition U.  Thus, since ¢(A) has finite index in J, (5;2) (i) yields

¢(h) = mp for some integer m.  Now J; = mﬂﬁ, so (5.2) (i) also shows
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that every subgroup of finite index in mJ]I is of the form n(mdn), for
some integer n. Consequently, ¢(A) = mJ; and the fact that ¢(I) has
finite index in ¢(A) imply ¢(I) = n¢(A), for some integer n. Finally,

since ker¢ = 0, I = nA, as required. //

It follows from Proposition 5.6 that.sinceAa fuily_faithful'
group A‘in S fs necessarily homogéneous with idempotent type, we are
“justified to use the ﬁotation P? of Chapter One. There is now a strong
connection between'the rationa].prfmes in Pq andAthg'prime ideals in the

set I correspohding to A. This may be stated as f§11ows.

LEMMA 5.7. Let A be a fully faithful group inS . Then the
rational prime p is in-P?-if and only if there is a prime ideal PJ in

1l containing p.

Proof:'_Suppose (A,n-) is a faithful ring defined on the group
AinS.  From (5.3)_(11) we know that A is quasi-isomorphic to J;.
Thds J; is homogeneous with the same idempotent type as t(A). A direct
prdof (or reference to the proof of Theorem 5.5 of Beaumont and Lawver
[1]) now shows‘that p-e P? ‘if and only if there ‘s a‘brime ideal PJ e Il

containing p. //
We are now in a pdsition to prove the 'main result of this section.

' : L o
THEOREM 5.8.  Suppose A is. a group in the cZass.S.‘ Then

exactly one of the following qonditions holds:

(i) J(A) = A;
(i1) J(A) = 0 |
(iii) J(A) =nA (nA # 0, nA # A), for a suitable integer n.

(i) holds exaétZy'if-évery'aésociative ring on A is nilpotent,
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(i1) holds ewactly if A is fully faithful and |P?[ = 0 or |P?| = o,
‘and (111) holds exactly if A is fully faithful and 0 # |P¢| < o, in

whwh case N = -ITPA P. Moreover there is an associative and commutative
ring (A, *) on A for which J(A, +) = J(A).

Proof: Let A bé a group in S~ From (5.1) we need only
consider the caée_when A is fully faithful. Let Il be the set of prime
ideaiS'of J correspohding to A. _We ponsidgr two distinct cases.
~ Case (i). [P?l =0 or'jP?l = >, From Lemmd 5.7 and the fact
that tﬁefe i§ at host.one rational prime in each prime ideal in I it is
clear that I is either aﬁ empty of infinife set. Sihcé Jﬁ-is commutative,
(5.3) (iii) and (5.3) (iv) now show that every non-tri&fa] associative ring
on A (and such rings do ex1st) is commutative and has zero radical.
Case (ii). 0 # IPAI < o, J;,f:}_ll_ o ffli,f_;;);.l.ﬁ”';7 S
Slnce A S 'n'-

hecessardg .satisfies condition U.  Lemma 5.7
now yields |H] = |PA|, so 0 # |I] < =,

F1rst we prove the inclusion N A PA < < J(A).  From Proposition
p€ P'I . '

1.20 and Propos1t1on 5.6 this amounts to showing that any associative
ring (A, -) on A has non-zero radical. But this is immediate from _
(5.3) (iv) and the fact that OIf'|H| <o

" To prove the reverse 1nclus1on J(A) ¢ nPA pA, %mﬂwrﬁ (¥). and

the fact that 1somorph1c rings have 1somorph1c rad1cals show that it

suffices to prove the inclusion J(J e n A pdy- (Aga1n notice that
peP 1 :

' J(Jn) is the radical of the associative ring J } Since the non-zero prime
ideals of Jj are preC1se1y the ideals PJ I where PJ e 1, and the non-zero
prime 1deals of'J are maxima], it follows that J(J Y= n I'-‘.J JII

Now 0 # IHI < w'y1e1ds J(J ) # 0, so (5 2) (i) shows J(J ) = ndy for
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some integer n.

Suppose:how P e P? is such that (n, p) = 1. " From Lemma 5.7 it
is possible to ohoose a phime ideal PJ e I such that p € PJ. But then
pd; < Py Jh, so 0 # JH/PJ J is an elemenfary'p-group;’ Alternatively,
since nJ; = J(JH) < Py Ips Ip/Py JH- is a bounded group with trivial
p-compohent; We conc]dde therefore that every p ehP? divides n.

Since J((JH/J(JH))f) = 0, it is clear from (1.10) that n is the product
A

of the distinct primes in Py Consequent]y J(JH) = = N p Py
‘ peP]
Ev1dent1y we have now shown that J(A) = n A PA = nA, and that
peP1

there is an associative and commutative ring (A, ) on A for which
J(A, +) = nA. | |

The proof of the Theorem fs oompleted by obsérving ﬁhat the
three conditions mentioned in the Theorem are mutually exclusive and. - -

exhaustive conditions for A. //
'COROLLARY 5.9. If A is a group in S then J(A/J(A)) = 0. //

COROLLARY 5.10. If A is a fully faithful group in S such that
0# |P?| < w, then the proper subgroups of A that can oceur as the radical
‘of some non-trivial associative ring on A are preciéély the éubgroups mA,

where m is a square-free product of primes from P?.

Proof: .Suppose n is the product of all the distinot primes from

P?. " If (A, -) is a non-trivial associative ring on A'then Theorem 5.8

yields nA c J(A, +). Thus Proposition 5.6 shows J(A, *) = mA, where m

A
1°

Converse]y, suppose m is a square-free product of pr1mes from P?.

is some square-free product of primes from P

Since n/m is a well defined integer, (n/m)J]T is the quas1—equa11ty c]ass '

of Jn’ ahd |
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©3((n/m)ag) = (n/m)dy N IQIy)
Now J(Jﬁ) = nJ“, SO |
J((n/m)dn) =--n.JH = m((n}m)JH) .

From ‘bro%ﬂ4&f@d,we conclude that there is an associative ring (A, ) on

A for which J(A, +) = mA. //

Haimo [1] has déscribed thg-radical and antiradicaI rational
groups. In our terminology he has shown that a rational group A is
radical if and only if t(A) is idempotent and 0 # [P}| <=, and A is
antiradical and non-nil if and only if t(A) is idempﬁtént aﬁd lP?l =0
or IP?l = ». Furthermore, Haimo:has shown that if A is a rational
radical group’then.ﬂ supports a non-radical ring (A, -) such that
J(A, -)+ = A. If we now defiﬁe énlarbitrary group A to be radical if
A supports a non-nilpotent radical fing, and A to be antiradiba] if it |

is not radical, then we can extend Haimo's results to groups A in S .

| COROLLARY 5.11. et A bé_ a_"graup in _S'. I,Then A is a radical
Igroup if and aﬁly if-A 18 - fully fdit&fhz dnd 0# |P?I <o, Ais an

| antiradical group.that supports a ndn-nilpotent ring if and onZQ if.A

18 fully f&ifhfhl_and |P?l_= 0 or |P¢| =, IfAisa radical'group

then Aléupports.dt Zeast-oge nonfradiéal ring (A, ) such that

JA, ) = A

Proof: If A is a radical group then the proof of Theorem 5.8
shows A is fully faithfhi and 0 # IP?l < . Conversely, if A is fully
faithful such_thaf 0 # |P?] < ® then Coﬁo]lary 5.10 shdws that A supports
an associative ring (A, ) such that J(A, ;) = nA, where n = T[, p. Now

g

nA ,

3A, ) = (A, ) N I(A, ¢

n

so (nA, +) is a radical rihg. Since nA A,'it'is now possible to define
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R

an associative ring (A, x) on A such that (A, x) = (nA, ¢). Clearly
(A, x) is not nilpotent and J(A, x) = A, so A is a radical group.
The Second assertion of the Coro]]ary now follows from,ihe proof

of Theorem 5.8, while Corollary 5.10 implies the finéﬂ Statement. //

2. SOME CLASSES OF RINGS ON STRONGLY INDECOMPOSABLE TORSION-FREE
GROUPS OF FINITE RANK R

We begin Qith some definitibns.

A class R of rings is called a radiéaZ class of rings if the
following thkée.conditions hold: |

| v(i) a hohbmbkphic image of an R-ring ié an R-ring;
(ii) every fing-(A; ;) contains an-lZ-idea]lji(A, ?)'which~ '
‘contains every other R-ideal of (A, -);'and | - | |
(i) -fhe factor ring (A/ R(A, +), *) is }i-sémisiMple N
| Evidentiy the tlasé of right quasi-regular fings is a radical
class of rings. " | ,

A ring (A, +) is a prime ring if 1 «J =.0 impligs,l =0 or
J = 0, where (I;.;) and (J, ) are ideals of (A, -). _. |

The first class of rings we wish to investigafe were first
-introduced by van Leeuwen and Heyman [1]. An associative ring (A; .)
js said tb_be almost hinotént if evéry'prOper hohomorphic'image of
(A, ) is:nflpotent; " The prime simple rings are assumed not to be -

' é]most nilpotent.

A major result in vén Leeuwenvand Heyman [1] is that an almost
nilpotent ring is either g-radical or B-semisfmp]e, where B denotes the
Baer radical class. It is this result we wish to extend for assocjativé
fings on a grdﬁp'A in J;*.

_ Ne'reqUiré_the.following Temma.
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LEMMA 5.12. Let A be a group in SIf If (A, *) is a faithful
ring on A such that (A, L [ PA pA for some posit‘rfﬁe integer n, then
_ _ pe o '
(A, )2 e N, ph.
[.’!eP.I
Proof: Suppose ¢ « Hom(A, E(A)) defines the faithful ring (A, ).
Since (A, ) is assoc1at1ve and ker ¢ =0, it is c]ear that

¢ : (A, =) > ¢(A) is a .ring 1somorphism. Thus (¢(A)) PA p(¢(A))

Let Il be the set of prime 1dea15 of the r1ng of 1ntegers J of -the
a]ggbra1c number field K = quEIA)Icorrespondlng-to_A,_ o(A) is then a
full subring of Jp, so as in the prq&f of Proposftiqn 5.6, ¢(A) = kJH_'
for some rational 1nteger.k. CIf 1 is the identity element of K then |

k.1 € ¢(A). But then

k"= pnP'A p(o(A)) .

JH : - : A .
For each p € P?, hp (1) = 0, so every p ¢ Py divides k. Also, since
1e Jdps (kdp )2 = k(kJp), so (¢(A))2-= k(¢(A)) Hence
(¢(A))2 PA p(4(A)), so (A, .)? PA pA, as requ1red //

‘We can now describe the almost nilpotent rings”on a strongly

indecomposable torsion-free groupzh;fSt”"

THEOREM 5.13. suppbée (A, +) is an associative ring on the
group A in tﬁe class S”. Then (A, *) is almost nilpbtenf if’and only
(i) (A, ) is nzZpotent, of

(11')_-(-3 °) w fazthfuz 0 # |PA| < o and (A, - 2_“

perl "
- Proof: -SUppose (A ) is a faithful almost n11potent r1ng on

the groﬁp A in J;‘.- For each p ¢ PA (A/pA, +) is a nilpotent ring on
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| A/pA. Since A is torsion-free of finite rank n say, A/pA will have

rank at most n.  Hence (A, Q)"+] < n A PA, so Lemma 5.12 shows

peP]
n, oA, If P{] = 0 then A
. peP1 _ _

2 Q, so (A, '), as a field,

114

(Aa ’)

In

8

cannot be almost nilpotent. If |P?| = w then (A, +) will be the
trivial ring on A.  Indeed, if (A, '-)2 # 0 then PropositionZS 6 yields

(A, ')2 = mA for some integer m. But then mA c' N a pA wh1ch c]early

cannot be thevease. Ne'eonclude therefore that 0 # |P1| < o,

.For the cooverse’we need‘only consider the case when (A, ¢) is
as described.in (i1). PropositioﬁAS 6'shows that if (i ?) is a non-
, zero ideal of (A, *) then there is an 1nteger m such that I =mA. Since
m w111 be a product of powers of prlmes from P?, the cond1t1on » o
(A, ~)2 pnPA pA yields (A ‘)m] < mA, for some’nnteger.ml. Consequently '
_ ePy . ‘ : ,

(A, ) is an almost nilpotent ring. //

Consider an almost nilpotent riog on a group A in S* 1t (A, *)
is nilpotent then J(A, +) = A. On the other hand if (A, +) is faithful

" then Theorem 5.13 and Theorem 5.8 show 0 £ N A pA < J(A ). Thus
, peP 1

(A/J(A; e), *) is.e ni]potent ringﬂ But then (A, ) 1s an extension of
the (right)'quasi-regu1ar ring (J(A, ), ‘) by the quas1 regu]ar ring
(A/J(A, <), ). Consequently (A, ) is itself a quas1-regu1ar ring.
It fo]]ows therefore that an almost n11potent r1ng on a group A in AS is
radical.

- We are naturally led to the class of rings we wish to-relate to
‘the a]most nilboteot rinQS' the so called unequivocal rings. They were
introduced in Gardner [2], and Tater studied in D1v1nsky [2] An
essoc1at1ve ring (A, -) is unequzvocal if for every rad1ca1 c]assrR R

(A, ) is e1ther 12 rad1ca1 or R- sem1s1mp1e
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The following definition is required. A subring (B, +) of a
‘ring (A, +) is a subideal (accessible subring) of (A, -) if there is a

finite chain

(B, "_)‘= (A]’ ') c (Aza ') ... & (A ’ ') =.(A’ ')

n

of subrings of (A, -) such that (A +) is an 1dea1 of (A]+], .) for all
i=1,2, ...,n-1. o ’
Divinsky‘has shown that unequivocality can be'eharacterised by
the re]at1onsh1p between a ring and its sub1dea1s rather than by the
family of all radical classes. We g1ve this relat1onsh1p in the next
proposition, and we provide a proofAs1nce the exact statement of the

proposition'haslnot appeared in the literature.

PROPOSITiON 5.14.  Suppose (A, *) is an associative ring on the
group A,  Then (A, *) is unequivocal 1f and onZy if for every proper
ideal (1, +) of (A, ) there 18 a non-zero ring homomorphism ﬁrom (I .)

onto a subzdeal of (A/I )

Proof:; Theorem 1 6f Divinsky [2] shows that a proper ideal (I, -)
of anunequivocal ring (A, <) can be homomorphical]y mapped onfo a non-
zero subideal of (A/I, +).. To verify the converse assertion suppbse
that for every proper ideal (I, ) of (A, ) there is a non-zero
homomorphism from (I,}-) onto a subideai of (A/I, ).  If now the
proper ideal (I, -) can.be represented as R (A, *) fof'some radical
class R, then Lemma 2 of Divinéky [1] shows that (I, -) cannot be
' homomorph1ca11y mapped onto a non-zero R - sem1s1mp]e r1ng This cannot
be the case - however, s1nce any non-zero subideal of the R sem1s1mp1e

ring (A/I,v-)Hw111=1tse1f be Ii-sem1s1mp]e. /-
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Divinsky»[z] easily estab]fshes that there aréAfour kinds of
uﬁequivoca] rings;'divisible torsion-free rings, reduced torsion-free
rings, divisible p-rings, and reduﬁed p-rihgs. Since é divisible p-ring
is necessarily the trivial ring, Proposition 5.14 showé‘that a divisib]e,
p-ring is both uneﬁuivoca] and almost nilpotent. Lemma 1 of Divinsky
[2] provides examples of arbitrary rank divisible torsion-free rings and
arbitrary rank elementary p-rings that are unequivocé] but not almost
niipotent. Turning our'attentibh tO'thebunequiVoca1 fiﬁgs on groups

. ¥ :
~1n S we can prove

THEOREM 5.15: Suppose (R, *) is an assoéiativé ring on the |
group A in the class AS*. If (A, *) is unequivocal then either
(i) (A, ¢) s ninotent, or |
(11). (A, ) is faithful, |P?{ < w éﬁdv(A,--)z-g:'n A pA.
ST : »» T peP)
Conversely, if (A, *) satisfies condition (i1) then (A, *) is

unequivoeal.

Proof: Let (A, +) be an unequivocal ring on'the‘group A 1in f;*.
If (A, +) is not nilpotent then obviously (A, -) is féithfu]. Suppose
the.rank of A}is n, and consider a prime p ¢ P?. Sincé A/pA is a
torsion'groﬁpvof rank at most n, (A/pA, +) is an Artinian ring. Thus
(1.4) imp]ieS'J(A/pA, ) is nilpotent. Suppose nbw,J(A/pA, *) # A/pA.
Then since (A/pA)/J(A/pA, =) is Finite, it follows from (1.3) (ii) that
(A/pA)/J(A/pPA, -)’ié a finite direct sum of full matrix rings over |
division rings, each of characteristic p. Hence A can be mapped
homomorphicaf1y onto a simple ring of characteristic p. If now M is
the upper radical class defined by the class of all simp1e rings with

identity and charéctefistic p, it is clear fhat(As'f) is not M-radical.
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Hence (A, -) is M-semisimple, end as such it is a shbdifect product of
simple rings of characteristic p, (see Theorem 46 of D1v1nsky 1],
Consequently A w11] have character1st1c P, wh1ch cannot be the case
since A is torsion-free. Therefore J(A/pA, *) = A/pA, so (A/pA, +)

will be ni]poﬁent. As in the proof of_Theorem 5.13, (A, e)z c N, pA
SR - _ o A "zpdﬁ-
and |P¢| < w,

Conversely, suppose (A, +) satisfies (ii);-_ Lei (I, .) be a
proper idea1 of (A, ¢). From Proposition 5.14 we need only show that
there is a non-zero ring ﬁomemorphism from (I, ;).onto,a-subideal of
AL ). |

Proposition 5.6 yields I = mA for some non-zero integer m,

m# 1. fSuppdse:m ='pkq where p e'PA (p,*q) =1 and k 5 1. Consider
m].= pk'1q. Clearly (m]A/mA, -) is an ideal of (A{mA ‘). Also

the condition_(A, )2 A pA shows (m1A/mA .) 1s-the trivial ring
Pé] _ '

on m1A/mA, and (mA/pmA, ) is the trivial ring on mA/pmA Now, as.
groups, mA/pmA 31m1A/mA, since'they are both e1ementary_p-group5'such
that |

~r(mA/pmA) = r(A/pA) = r(mA/mA) .
By taking the composition of the natura1 map mA »> mA/pmA with the

isomorphism mA/pmA = m,A/mA, we obtain a non-zero ring hemomorphism from

mA onto m1A/mA,uas requifed. !/l

COROLLARY 5.16.  For a faithful ring (A, *) on a reduced group
A in S"the following conditions are equévazent:_ i |

(i) (A,I-)Iis almost nilpotent;

(ii) (A, ) is uﬁequivocal;

(111) A is homogencous with idempotent type, 0 # IP?-I < @ and



107.

(A, )% N, pA. 7/
DeP.I

It is not known in genera1 whether a ni1potent r1ng on a group
in S¥is unequ1vocal However we can answer this in the affirmative
for a suitable subclass of'f;’ | _

homoqeacovs

Define S to be the set of groups A in S mth the property
‘that r(A/pA) <1 for all p ¢ P. These groups be]qng.to a larger class
of groups that have been studied extehsive]y by Murley [1]. We will

'not, however, need to draw on any resu]ts from Mur]ey s work

It fol]ows from Theorem 2.5 of Gardner [4] that a nilpotent ring
_Ion a group A is unequivoca] if and only if the trivial ring on A is
unequivocai. Also, Propositionl2.9 of Gardner [4] shows that if R is
any radieal class and (A, -) is a nilpotent ring on A then R (A, -)+ is
a pure subgroub_of A.  Consequently, to prove a'ui1potent ring on the
group A in :;T is unequivocal we need to show the trivial ring on A is
" unequivocal, and to do this, when-we'appIy Prohesitiou-5.14, we need
only COneiderlpure subgroups (that is, ideals) of A;:"Ihese observetions

form the basis for the proof of our next result.

PROPOSITION 5.17. 4 nilpotent ring on a group A in S is

unequivocal.

Proof: From the remarks above we need only verify that every
proper pure subgroup B of A has a non-zero homomorph1sm into A/B. - But
this is 1mmed1ate since r(A/pA) < 1 for all p < P implies that A is a

cohesive group (seeChaptereS1xL and so A/B is torsion-free and divisible.//

Divinsky [2] has shown that the set of all 2m7(2n +1), where m
"aud n are integers, and the usual multiplication operatiou form an

unequivocal ring. The proof of this follows from Theorem 5.15.
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More generall y-we can ask the following question. Given a faithful
ring (A, ) on the gro-ulp A in S*, which ideals of (A, .) are unequivocal?
To facilitate a complete answer to this question we make the |
foll'owing definition. For a faithful' ring (A, *) on the group A in
S et |
-P§:= {p e Pl(A, '_I)z; pA} .

We can now prove

PROPOSITION 5.18. et (A, *) be a faithful ring on a group A
in S".  Then (nA, +) s unequivocal if and only if P < Py and

(n, p) =1 imply p e Pg -

Proof: '~ Suppose (nA, +) is unequivocal and p ¢ P’:k is such that
(n, p)=1. Ifpi Pé-then (A, -]2 $ pA, so there_;r‘e'elements a and
b in A for which hp.(-:-n «b) =0. Since (n, p) =1, hp(na « nb) = 0, so
(nA, _'-)2 $ p(nA). But this contradicts Theorem 5.15 since (nA, «) is
~a faithful 'r'i_ng on nA, and.nA' is strongly indecomposéb]e with the same
rank and type as A. | _ |

‘Conversely, suppose n is an integer such thét ifpe P:lA. with
(n, p) =1 then p ¢ Pg It is clear that (nA, ')2 ; n(nA). Also ff
P e P# is such that (n, p) =1 ther_ll (nA, -)2 < p(nA). Thus |

(nA, ~)2 < nI;A p(hA). As before, (nA, +) is a faithful ring on nA,
PePy o |

“pA is in S and t(nA) = t(A), so itnow follows from the proof of Theorem

5.13. thatllP']‘Al < o,  Thus Theorem 5.15 shows (nA, *) 1s unequivocal. //

There is another question that naturall y arises from our
discussion of unequivocal rings. Given a faithful ring (A, *) on a
group A in S%, which proper subroups of A can occur as R(A, +) for some

r‘adical class R ? A partial answer can be provided when A is in S‘”,
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and a complete answer when A‘is in 1;1.

PROPOSITION 5.19. Let (A, +) be a faithful ring on a group Ain

* N
S If nA = R(A, *) for some radical class R and n # 1, then n is a
square-free prbdﬁct of primes from Pl]\\Plé\.’ Conversely, if A is in S'I

and n is a square-free product of primes from 'P}]\\PIZ\ then nA = R (A, -*)

for some radical class R .

Proof: Suppose nA = R(A, +) for some radical class R , and

n = ok where p < P, (p, q)

1and k> 1. It is clear that
(pk;1qA/nA, ~)'ahd (hA/pnA, ) are trfvja] rings. Thus, since

r(pk']qA/nA)

r(A/pA) = r(nA/pnA) ,

(" Vqasnn, +)

SR

“(nA/pnA, ). Also, (pk']qA/nA, *) is an idealvof'
(A/nA, +), sb-as;in‘thé prodf of Theorem 5.15 there fs:a non-zero ring
homdmorphism from (nA,'e) onto an ideal of (A/nA, ). This is |
impossible since (nA, °) is 12-radica1 and (A/nA, +) is R-semisimple.
Consequently n is.square-free. v | -

Supposeinow.p'e Pg is such that (n, p) # 1.vv Write n = pq
where (p, q) = 1. Since (A,v-)2 g;pA, the above proof with pk']qA
~replaced by qA ieads to‘the same contradiction. We cénc]ude therefore
thatln is a squére-free product of primes from P?\Pg;

To prove the converse éssertion let n be a square-free product
of primes from PQ\P?." Assume there is a non-zero Fing homomorphism f
froﬁ (nA, -) onto a subideal of (A/nA, ). Since A is in,f;], A/mA is
a finite direct sum of cyclic p-elementary groups.' Each of fhése cyclic
p-e]ementary-groubS*is'a field, since if p divides n then p ¢ Pg, and sd
(A/pA, +) is a non-trivial ring. If we denote the non-zero image of
(nA, +) under f by (A]/nA, <), for a suitable subgroup A, of A, it is
' c]éarlthaﬁ.(A1/ﬁA; .) wiT],§ontéin aﬁ id¢ntity e]emgnt‘1A1/nA.i But then
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there is an element a ¢ A for which f(na) = T /nA° We now have _
_ e ) :
]A]/nA = f(na + na) = nf(a - na) =

a contr&diction.- Conséquent1y there does not exist a non-zero
homamorphiém from (nA, <) and a subideal of (A/nA, -). If we now

let M denote the upper radical class defined by (A/nA, ;), then it
follows from Theorem 2.5 of Gardner [3] and the fact that (AlnA ) is
M-semisimple that M(A, ) = nA. // '

We now turn our attention to two other c1asses .of rings on groups
in S. The first of these that we consider are the rings with the
restricted min1mum cond1t1on |

An assoc1ative ring (A, ) on a group A satisfies the restricted
minimum condition on left 1deals 1f the minimum condition holds modulo
every non-zero_idea] of (A, ).

~Clearly our discussion of rings with the restricted minimum
condition will.ihvolve a knowledge of'the structure of the additive
~group of an Artihian_ring, ~Szele and Fuchs [1] havétbhovided a

complete description of these groups.

- (5. 20) (Szele and Fuchs [1]). 4 group A is the additive group
of an Artinian ring 1,3“ and only 1f A has the fom .
(%) A=O0D @ 1(p)) ® @z(p “9) with pJ dividing m,

m -~ finite
where m cmd n are az*bwrar'y cardtnazs, p a:nd Py are chstmct pmmes and.

mis a fwed 'mi:eger' /!

Fuchs [2] has also given a partial structure theorem for the

additive group of a'ring with the restricted minimum condition.
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(5.21) (Fuchs [2]). 4 not torsion-free group'A i i;he additive
group of a ring with the restmictéd mintmm condition if and only if it
ié I;of the form (*).of (5.20). The additive group of -a. _torsioﬁ-free .
 ring with the restricted minimm condition is homogeneous with idempotent

type. //

Fuchs asks which homdgeneous tbrsion-free gro;ps with idempotent'
-types admit rings with the restricted minimum condition. It is well knoﬁn_
that a ratioﬁa];group is the additivelgroup of a ring with the restricted
minimum coﬁditibn exattTy if its ﬁybé.is_idempotent; “More generally we- 

can prove

THEOREM 5.22. Supéosa (A, ) i8 an assoczamve mng on.a group
A in the class S . '3fhan'(ﬁ ‘) satisfies the restrzcted minimum
condition if and only if either
| (i) (A, *) 113 a-faithﬁul ring on A, or _
(fi) (AI *) is the trivial ring on A, and A i a mi:wnal group
with 'Ldempotent type sueh that IP\P-|| < w,

Proof: -Suppose (A,--) is a non-trivial assoéiative ring dn-A
with the restriéted minimum condition. It is clear-thqt (0; (A, +)) # A.
- If now (A, ) is nilpotent then (0;:(A’ <)) #0, so (A/(O; (A, ), *)
.will be a niipotént Artinian ring. Since (0; (A, -j) is a pure subgroup
of A, A/(0; (A, +)) is torsion-freé, so (5.20) shows it will be divisible.
On the other.hand'PfOposi;ionlez.l of ‘Fuchs [4] shoﬁs.Aj(O; (A, +)) must
satisfy the minimum condition on subgfoubs.' We conciude therefore that
(A, ) is a faithfui rjng.

If (A' )-15 the trivial ring-on A and (A, ) sattsfies the

restricted m1n1mum ‘condition, then it is clear that (A, »)- must have rank
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one. If t(A) is not idempotent or t(A) is idempotent and |P\P¢| =
then it is possible to find a factor group of A that is an infinite
direct sum of cocyclic groups. Itfis well known that such a group does
not satisfy the minimom‘condition'On 'subgroups. Sinte (A, -3 is the
tr1v1a1 ring on A 1t is now ev1dent that A is as stated in (i1).

' Converse]y if (A ) is a faithful ring on A then Propos1t10n’
5.6 implies (A, ) must satisfy the restricted minimum condition.
Alternatively, if (A, -)_has the form stated in (ii) then any non-zero
homomorphic image,of (A, +)will be the trivial ring on a finite direct
sum of cocyc]ic,groups. Since such a group satisfiesrthe minimum
condition on subgroups, (A, r).is_necessari]y avringohith the restricted

minimum condition. //

Levitz and Mott [1] have'studied the.properties,of rings in a
subclass of the class of rings with the_restricted minimum condition.
Fol]owing-LeyitZ’and Mott we say an associative rinQI(A ) on the'group
A has the f%nzte norm property 1f each of its proper homomorph1c 1mages
is a finite r1ng , '

It is c]ear that a ring (A, ) that has the fihite norm property
also satisfies the restr1cted m1n1mum condition. From Proposition 5.6
it is apparent that a fa1thfu] r1ng on a group A in f; a]so has the
finite norm property '

As with D1v1nsky and -the uhequivocal rings, Levitz and Mott [1]
have shown that the add1t1ve group of a r1ng with the f1n1te norm
property can have one of three poss1b1e structures d1v1s1b]e torsxon-
free group, reduced tor51on-free group, or bounded_tors1on group. | They
have also shown that if (A, *) is an infinite ring (so in particplar a

torsion-free ring) with the'fihite norm property then (A, +) is either
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a prime ring or the trivial ring on A. More generally, Hill [1] has
shown that if (A, +) is a torsion-free ring with the property that A/I
is bounded for every non-zero ideal (I, +) of (A, ), then (A, +) is
either a pr1me r1ng or the tr1v1a1 ring on the 1nf1n1te cyclic group
For tors1on free rings w1th the restricted m1n1mum cond1t1on we

can prove the fo]]ow1ng

PROPOSITION 5.23. Let (A, *) be an associative and commutative
ring on the torsionéf?ee‘group_A. .Lf (A, *) satisfies the restricted
. minimum condition then (A, ) is either a prime ring df the trivial ring

on a rational groﬁp A with idémpoféntstype for which IP\P?|L< o,

Proof: suppoéea(A, r) satisfies the restricted minimum condition
and (A, -) is not a pfime ring. .Since a commutativé;ring is a prime ring
exactly if it has no divisors of zero, there are elements a and b of A
for which a - b_%vo. Thus (0 b) # 0. - Suppose (6; b) # A. Then'since
((0; b), +) is a pure two s1ded ideal of (A, ); (A/(O; b), +) is a
torsion-free Art1n1an ring. From (5. 20) it is now clear that A/(0 3 b)
fs a torsibn-freé diVisib]e group. | If ¢ € Hom(A E(A)) def1nes the r1ng

(A, *) then ¢(b) e E(A) and ¢(b) factors through A/(O )

¢(b) : A — A

N/
A/(0 5 b)

Since A’is reduced, ¢(b)vmust be the zero‘map Thus b € (0 (A, ),
and so (0; b) ='A, a contradiction. Therefore (0; b) = A, in which
‘case (05 (A, +)) # 0. | | |

If we now assume that (0; (A, °)) # A then an argument similar
to the one abdve:easily verifies that A/(0; (A, .)) is tovsion—free and
divisible? and'ﬁonséquently that if a' is an arbitrary e}ement of A then

¢(a') is the zerd mép. We ‘therefore conclude that (A, .) is the trivial
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ring on A. '
Finally, if (A, <) is the trivial ring on A and (A, -) satisfies
the _res.trictedvminim'um condition then_, as in the proof of Theorem 5.22,

A is necessarily a réti‘ohé]_ group with idempotent type and |IP\PI]\| <w, /]

For commutatwe finite rank tors1on free r1ngs ‘with the finite

norm property we_have

THEOREM 5.24. Suppose (A, *) is an assoczatzve and commutative
ring on a finite rank torsion-free group A. Then (A *) has the finzte
norm property if and only if.(A,‘-) 18 a prime ring or the trivial ring

on the infinite eyclic group,

Proof° We need on]_y ver1f_y that a prime ring (A, ) on A has
the finite norm property S1nce. (A, -) is a commutat]ve prime ring,.
(A, +) will have no divisors o_f-zéro. .Cohsequent]y- Q ®A can be made
‘into a finite dimensional algebra (Q@A ) over Q'that will also
conta1n no d1v1sors of zero. It is well known that J(Q®A ) is oow
a nil ideal of (Q®A, *), so J(Q®_A, «) = 0. Consequent]y, (Q®A, )
is a direct sum"o'f simple suba]gebras. Since (Q ®.A, .) ha$ no divisors ‘
of zero, (Q® A, ) will 1tse1f be s1mp1e Hence (A' -) will have
simple a1gebra'type. - It now foHows from Lemma 121.6 of Fuchs [4] that
the non-zero ideals of (A, ¢) are of f1n1te index in A.  The proof is

completed by obserying that A has finite rank. //

COROLLARY 5. 25, ‘Suppose (A, <) is a'non-tribial asSociative and
commutative ring on a reduced torszon—f?ee group A of finzte rank.  Then
the beZowzng condztzons are equtvalent

(i) ,(A ) satzsfies the restrzcted minimun condttzon,

(i) A(A,_ ) has the fbnzternorm property,



115,

(iii) (A, *) is a prime ring, in vhich case (A, +) is a full

subring of a finite dimensional algebraic number field.

Proof: If (A, ) is a prime ring on A then the proof of
Theorem 5.24 shows that J(Q@A, «) =0 and - that (Q® A, +) is a sifnple
algebra over Q. Thus (Q@h, '-) is isomorphic to a ring of n x n
matrices ovef a division algebra over Q. The commutatfvity of (A, .)_'
and the fact thot (Q ®A-, ) has no divisors of zero now show that
(Q®A, ) is a field. Moreover, since Q@A has finife dimension over
Q, (Q®A, ) is an qigebraic number field. fhus Toeofom 5.24 shows
(ii) and (111)'are:equiValent. | '

_Cleor1y;(ii) implies_(i),:so froﬁ the comments above it suffices
- to show that (i) implies (A, °) is a-primo ring. This is immediate

from Proposition 5.23. //

It is obvious that any associative ring on a finite torsion group
satisfies the restricted minimum condition and has the finite norm
property. The comments prior to Proposition 5.23,,aﬁa Proposition 1.3
of Levitz and Mott,[l] show that the only other grouos that can possibly
support associative rings satisfying both the restrictod minimum
condition and the finite norm property are the infinite rank reduced
torsion-frée groups, the divisible tofsion—free grouos,'or_the infinite
rank e1emontary p?groups,-for some prime p. We conclude this section
with exampleo-to show that the equivalence of (i)-ano (i) inICoro1iary
5.25 cannot oe'oroéed for divisible torsion-free groups'of rank strictly
greatof than'ooe;'or for infinite rank elementary p-gfoups, for any prime -

p.

EXAMPLE 5.26. Suppose A is a torsion-free divisibIe_ group of

rank greater t__hon one. Then we can write A = A, ®A2 where A, and A,
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are both non-zerO-tbrsionéfree divisible groups. Lémha'lzz.z of
Fuchs [4] shows that we can define fields (A, +) and (A, *) on A, and
A, respectively. By taking the ring direct sum of'(AI; *) and (Az,--)
-we obtain an associative and commutative ring (A, -)‘bn-A.- Since the
only proper ideals of (A, *) are (Al’ +) and (Az, :), it is clear that _
(A, +) satisfies the restricted minimum'pondition but does not have the
finite norm property. (Notice thét if the rank of A above is one then
any non-trivial fing (A, -)Ion ﬁ satisfies the restricted minimum
condition and has the finite norm property, while the trivial ring on A
does not satisfy the réétricted'mihimum Cphditidn and does not have the
~ finite norm property). | | ‘

If A 15 an infihité rank'elementary p-group for some prime p,

then we can write A = A_i @Az where Ai =@® Z(p) and Az- 3@2(]:) fd_r ‘
| % S om

some fnfinite cardinal m. _Frdm_Lemma.122.3 of-Fuché'[4] we can define.
associative and cqﬁmutative rings (A]; *) and (Az, .) with identities

on A, and_A2 respectively, such that-(Al! .) and (Az; «) both. have no
proper ideals; (Notice that (A1,--) and (AZ’ i) are now both fields).
Again let (R, +) be the ring direct sum of (A;, +) and (A,, °). As in
the torsion-ffee dfvisible case (A, -) satfsfies the restricted-minimum

condition but does not have the finite norm property; //

3. TORSION-FREE GROUPS OF RANK TWO

Freedman'[l] has shown that a torsion-free grohp A of rank two
supporting an associativg ring with identity has the prdperty that its
type set, Jf(ﬁ),, @ohtains at most three'elemenfs. -Thé major part of
Freedman's proqf consisfs in showing that, for such'a gqup A,-7‘(A)

contains at most two maximal elements. More generally we can prove
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PROPOSiTION 5.27. Let A be a torsion-free group of rank N with
the property that every pure subgroup of A of rank greater than one tis

non-nil. Then T(I-\) contcnns at most n maximal eZements

-ProoT' We use an induction argument. C]éarTy the Pkdposfffoh
is true for a rational group, SO assume that every non- n1l ‘group of" rank.
k (k < n) sat1sfy1ng the cond1t1ons of the Propos1t1on has ‘the property
that its type set contains at most k max1ma1 elements. Suppose A is as
stated in the Proposition, and Iet Ays Bps wees A4y ben + 1 distinct
elements of A such that t(ai) # t(aj) for i #vj,'and=t(ai) is maximal
fnv_T'(A) for eachi=1,2, ..., n+1, |

FirSthe'show that any subset'of n distinct e]éménts from

{a], Ays <. @ } is a maximal 1ndependent set of e]ements of A.

n+1
Clearly th1s amounts to show1ng that {al, 8oy weus a-} 1s an-1ndepen&ent
set of elements of A. If {a], Bps eees @ } is not 1ndependent then

there exists a k < n for which {a1, a2, ey ak‘]} is Jndependent but

_ N _ k=1 : _
{a], Ays +ees ak} is not. If A1 = <:E% <a1>> then ak € A] and, since
A, is pure in A, T (A)) < T(A). But then A, is a rarik (k - 1)

tors1on free group sat1sfy1ng the conditions of the Propos1t1on for
which 7'(A]) contains the k max1ma1 elements t(a ) t(az), cees t(ak).
Consequently {a], P ,..,,ah} is a maximal independent set qf eieménts
Qf A. | |

‘4we‘caﬁ now choose a non-zero integer m, and integers

Mys My, e m such’that

=m]a1+‘m2a2+...+m a

- ma n %

Ifie{1,2, rees n},then the set'{aj, 855 «ees an¥i}\{ai} ig

independent, so mi,f 0.
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Consider now any ring (A, ») on A. For distinct i and J in
{1, 2, ..., n + 1}, the maximality of t(a;) and t(a;) in T (A) shows

a; + 3y = 0. In particular for any i ¢ {1, 2, ..., n}

0 =m(a . ai) =m, at .

n+l i i

Thus m; # 0 yields a% 0. Hence (A, J)Zmust be the trivial ring on
A. Since A is non-nil it now follows that T (A) contains at most n

maximal elements. //

Beaumont and Wisner [1] have studied associative rings on
torsion-free groups of rank two. Fd]]dwing Bgéumpnt and Hisher we
make the foilowing definitions for the torsion-free group A of rank two.
If a # 0 is an element of A then let

| Q = {ace Qlaa e A} .
Now define the nucleus D of A to be the subgroup D = n Q of Q.
o . - aeA 7

The following results were obtained by examihihg ihe.possible

multiplication tables for a distinguishéd pair of indépendént elements

uin a torsion-free group of rank two.

(5.28) (Beaumont and Wisner [1]). Suppose A is a torsion-free
group of rank two.  Then (A, *) is a non-commutative :asso_ciative ring
_on A if and only if (A, *) is defined by a; + a, = ¢(a;)a, or
ayp + 3, = ¢(aé}a] for all a}, a, in A, bherfe ¢ 18 a non-trivial

homomorphism of A into the nucleus D of A. //

(5.29) (Beaumont and Wisner [1]). Let A be a torsion-free
group of rank two. If (R, *) is an associative and commtative ring on
A and A contains an element a such that a® # 0, then there exists an |

element b in A 3ucﬁ that b and b2 are independent eiein_énts '_of A. /]
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With the aid of (5.28) and (5.29) the major result of Freedman.

[1] can now be generalised.

THEOREM 5.30.  Suppose A is a torsion-free group of rank two
that supports a neﬁ-trivial associative ring (A, +). ' Then 7’(A) |

containe at most three elements.

Preqf:-_we consider two eeses separately.

Case (i). (A, ) is non—commutative. (5.28) now gives the
structure of (A,.-); suppose a] -, = ¢{a])a2 for all e]. a, in A,
where 0 # ¢ « Hom(A, D). It is clear that D = <p™ |pA =A>" and also
‘that Im ¢ is a rank:ohe torsion;free group with the_seme type as t(D).

Thus Im ¢

A H

D{ ~ Hence there is a non-zero 6 ¢ Hom(A, D) such that 6

maps A onto D{' We can now define a non-commutat1ve assoc1at1ve ring

(A, X) on A by letting ay x a, = B(al)az_for a11 a1, a2 in A. Since

1 € D there is an element a « A for which 8(a) = 1. But then a will

be a left 1dent1ty of (A, x) so for every a' ¢ A, t(a) < t(a') (Notice
that if (A, ) has the alternate descr1pt1on in (5. 28) then we can argue

as above to aga1n obtain t(a) < t(a')).

_ Case_(ii); (A, ¢) is commutative. It is readily checked that

(A, ) non-trivial and commufative implies the existence of an element

a c A such that a® # 0.  Thus (5.29) shows that we can choose an element
a € A sucﬁ that e] and-a% are independent. If ay is a non-zero element
of A then there are integers m # 0, my and m2 such that ' |

ma, = m] a; + m2 a] Consequently
t(aT) t(a]) n t(a]) < t(a2)

In either case T (A) contains a sma]1est element. We now
argue as in Freedman . S1nce A has rank two, each chain in T (A)

is of length at most two. Prop031t1on 5.27 shows _Tﬂ(A) conta1ns at
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most two maximal elements.. Consequently | 7;(A)|'§£3; //‘

A consequence of the proof of Case (i)»aboVe is the following

observation.

‘PROPOSITION 5.3] - Suppose (A, *) is a non-commutative
assoczatzve ring on . a tors¢on—f¥ee group A of rank two ;Theh»A i8.

completely decomposable

Proof It is clear that D can be made into a rank one module
over 1tse1f that is D is a projective D-modu]e As in the proof of"
Theorem 5 30 there is a non-zero B e Hom(A D) such that 6 maps A onto
D. It is readily checked that A is a D-module and 6 €. HomD(A D)
Consequent]y, A will. conta1n a D- dlrect summand lsomorphlc to D.

Thus A is comp]ete]y decomposab]e //

Turn{hg our»attention to‘the absolute (associative)-annihilator
,qf'a'torsioanrée groﬁp A 6f rank two,‘(1.9) provides us with a complete
description wﬁen A is completely decomposable. The‘héxt result shows

us that this-knowledge'is a]SO‘sufficiént to describe the abSo]uté'

- (associative) annihilator when A has a quasi-direct décbmpositidh.

,.'PROPOSITION 5.32. Suppose A and B are two torsion-free groups
of finite rdnk such that A is quasi-equai to B. . van is a non-zero
znteger for whtch nA c B and nB c A then | |

A(*) = <nB(*)>.*ﬁ,
and

A(a)(*) ='<n(B(a)?*))>£
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Proof: We will prove
A(a)(*) e <n(B(a)(*))>f ;

"the proof for the absolute annihilator being identical.

F1rst suppose de A(a)(*) If (B, *) is an assoc1at1ve ring
on B, then we can define an associative ring (A, x) on A by letting
a; X a, = n(na] . naz) for a]j a]f a2 jn A. For_ahy é1¢ment b'e?Bf'

_n3(na « b) = n(na - an) =axnb=0,

Thus na + b = 0 for a]] b e B. Since this is true for every associative

ring (B, *) on B, na e B(a)(*) - Therefore nZ

ae nB(a)(*), andvso
ae <nB(a)(*)>

Converse1y, suppose a ¢ <nB(a)(*)> .Then:thefe is an integer
_m such that ma = nb where b e B(a)(*) If (A, ) is an}assocﬂative
r1ng on A then we can def1ne an assoc1at1ve ring (B, x) on B by letting

by x b2 = n(nb1 . nbz) for all bl’ pz in B. Clear]y‘for:all a' € A,
_n4m(a «a') =maxna'=nbxna'=0

As before we conclude that a e A(a)(*). //

‘Evidently we need now only consider strohg1yfindecomposab1e_
torsion-free groups of rank two. If A is such a group then it is
clear from the lack of-a non-associative analogue of'(é.l) that we
Can really on1y,hbpe to describe the abso1ute asso¢iaf1ve.annihilator

.of'A. ' The foi]owihg result from Wick1e$s~[]] will be required.

" (5.33) (Wickless [1]). Suppose A is a torsion-free group df |
rank two. -Thén A Zs non-nil and every aséoéiative ring on A is
ninoteﬁt if and only if there exist independent elehents a and b in
A such that if Qa,,Qé;:Qb an& Qé are the rational groups belonging to

a and b respectively, - then
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(i) . Qa’ Qb and Qg all have non-idempotent fypés,
(i1) Q= 0Q, Q) cQy and
(111) t(0,)% < t(Q)).
Furthermore, if (A, *) is a non-trivial associative ring on A then the

muZtipZiéatibn tabZe fbr (A, *) is

(*) o ‘a | ab b
- bl 0

where o, B and Y are suitable rationals. [/

THEOREM 5'34f'_ Let A be a stfongly indacémposablé‘toréion-f?ee
Agroup of rank two.  Then exactly one of the beZowintholdg: |
- 0) A(a)(*) 0; ‘
(i) A@ ) =

A;

| .(ii{) A(a)(*).is the pﬁre é;bgroup'of A generdfed byiény element
with maximal type | . _ .  . o
(i) hotlds exactly when A is fuZZy faithful, (i1) host exactly when A
is nil, and (111) host exactly when A is non-nil and every assoczatzve

ring on A ts;nzlpotent.

Proof: Clearly we need on]y consider the case when A is non- n11,,
and every aséoc1at1ve ring on A is n11potentv Choose 1ndependent
elements a and b in A sat1sfy1ng (1), (11) and (111) of (5. 33) 'If
(A, -). is a non- tr1v1a1 assoc1at1ve ring on A then (A .) w111 have .
the‘mu]t1p11qat1on tab]e (%) of (5 33), for su1tab]e rat1ona1s<a, ]
dndty.. Since (av"a) b= 0, the assoc1at1ve law y1e]ds ‘

a - (a . b)5=.sz = 0; ‘Thus Bw—_ . S1m11ar1y y=0, -and so o f 0.

"It is now clear that (0; (A, +)) = <b>4. This is trUQ for every
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non-trivia] asso(:‘fative ring (A, +) on A, so A(a)(*) = <b>,.
From (i), (ii) and (iii) of (5.33) it is clear that

t(a) 3 t(b), so if a' is any element of A with maximal type, <a'>, = <b>,.

Consequently A(a)(*) is the pure subgroup of A generated by any e]ement

with maximal type. // -

Cons1der now the absolute rad1ca1 of a torsion-free group ‘A of
rank two. In the cases that A is comp]ete]y decomposab]e or ~A s
"‘S ’L: ~7 % the f1na1 remarks of Chapter Three and Theorem 5.8
o a\wr* Srom Some  SYrovgh 1ndecomntoxable 3«»;‘?:
respectwe]y prov1de comp]ete descr1pt1ons of J(A) Thus ,we need only
consider the case__when A has a quasi-direct decompos1t1'on A= A] @Az,
vihere ‘A] and AZ are_ rational groups. A]though'J(A @A') has been
complete]y descr1bed ‘the shortage of a result similar to Proposition

" 5.32 for the abso]ute rad1ca1 1imits the 1nformat1on about the structure

of J(A) that can be deduced from our know]edge of J(A (-DA ).
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CHAPTER SIX

In this final chapter we provide a bound for the nil-degree
(if it is finite) of a torsion-free groﬁp A, not necessari]y of finite.
rank, but with certain finftehess conditions on the rank of A/bA for
each prime p:. We also prove that an associative ring on such a group 
is nilbotent exactly if it is nil. These resuTtsvextend'some similar
results obtaihed quité recently'byAwebb []] for toh§i§n;free groups of
finite rahk. | A' |

The methods of proof employed in this chapter involve a
discussion of the embédding of a torsidn-free grouh A in its p-adic

completion A =1im A/pkA, for each prime p. In the case that A/pA
) - | . |

has finite fank we exhibit a strohg reTationship between K(p) and any. .
p-basic subgroup of A. It is this connection, and an analogue of a
result of Fuchs [4] concerning the Z-adic completions of certain rings,
that enable us to prove 6ur main result. |

v Evidently, it is hatura] fo begiﬁ this chapter by exploring the
rings supported by p-pure subgroups of the p-édic infegers J_ for each

P
prime p, and consequently the rings supported by cohgsivé groups.

1. COHESIVE. GROUPS

Dubois [1] has introduced and investigated the class of coheéive
groups. . Following Dubois we call a torsion-free grbup A cohesive if,
for every nohfzero_pure'subgroup S of A,‘A/S is divisib1e..

It is clear that a cohesive group is either divisible or reduced.
Consequeht]y, in.pur attempt to describe the absolute annihilator and
the'absolute-hadical of a cohesive group we arevpermitted to restrict

our attention to reduced cohesive groups. | The following result is
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vital for our discussion of rings on such groups.

(6.1) (Dubois [1]).. 4 torsion-free group A‘is cohesive if
and only if for every prime p either A/pA is zero or A is isomorphic

to a p-pure subgfoué of the p-adic integefs Jp. //
It is c]éar from (6.1) that we need to consider:the rings

supported by p-pure subgroups of the p-adic integers J.,‘for each prime

_ _ p
p. A complete description of these rings can be given.

PROPOSITION 6.2. Suppose A is a p-pure sﬁbgroup of the p-adic

integers J., for some prime p. If (A, x) is any ring on A then either

p
(A, x) is the,tribial rings or (A, X) i8 a subring of a suitable ring on

Jp, in which.éase

ay X a2 = j.- a; az.

_fbf every a,, az_invA, where j is some element of J, and * is the

P
multiplication operation in the rinngp of p-adic integers.

Proof: Let.(A,iX) be a non-trivial ring on A and suppose
o « Hom(A, E(A)) is the map defining (A, x). Then for any a ¢ A,
¢(a) ¢ Hom(A, A) g:Hom(A,»Jp). Armstrong [1] has shown that every

homomorphism from A into J_  is the restriction of an endomorphism of

p
o o *
Jp- Since every endomorphism of Jp,is multiplication in Qp by a
suitable element of Jp,vthere is a unique ja € Jp such that -

¢(a)a' = jé - a' for all a' ¢ A. Considervnow'the map 01 € Hom(A, Jp)
defined by ¢](a) =Jy-  Again ¢, is the restriction,bf some'endomorphism'

of J_, and as'such ¢1(a) =j-a fdr some element j ¢ J., for each a ¢ A.

P

p’
But then for'a],:va2 in»A we have = o

ay % a2'='¢(a])a2;?‘ja1A- a, = ¢](a]) . az = j»#ia] . 32'}
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It is evident'that (A, x) is now a subring of a suitable ringon J_. //

p*
The structure of the absolute.annihilator of a cohesive group is

now 1mmed1ate

- THEOREM 63 For a reduced cohesive group A, A(*) = A(a_)(*) = A
exactly when A fs nﬁ, otherwise A(*) = A(a)(*) =0. //

- Dubois [1] has shown that in a reduced cohesive group all the
non-zero elements have types with the same set of infinity places.

?'to denote the set of primes

Thus we are justified to use the'nota;ion P
p for which the p-component of the type of every non-zero element of A
is not infinity (). Propositioﬁ 6.2 now enables us ip exhibit a

relationship between J(A) and r|PA pA.

PROPOSITION 6.4. Let A be a reduced cohesive group. If A ie
non-nil then J(A) 3 nPA pA. | | '

Proof; For each p ¢ P?, (G.i) shows that A = A(p) where A(p)
is a p-pure subgroup of the p-adip integers Jp. From Lemma 1.17 it
suffices to prove the inclusion J(A(p)) g=pA(p) for each P e P?.

Since A is non-nil, each A(p) is a non-nil shbgroup of Jp.
~Consider now a fixed but arbitrary prime p e PA Propositioﬁ 6.2 shows
the extstence of a r1ng (A(p) x) ‘on A(p) defined in the fo]]ow1ng

| manner: for all a1, Ay in A(p)
a xa, = J f'al -.a2 . | |
where j ¢ Jp and - is the multiplication oberation of-Q;. Writing
3= 5P+ syt

with So £0,
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a X-aé.= pk((s0 tspt .. -a d - a,) € A(p)

for all ays 2, in A(p); Since A(p) is p pure in Jp
v(éd tspt cel) o ai T A, e A(p)

for all ay, a, in A(p);' Thus we can define an associative ring
(A(p),‘o) on A(P) by letting

ai ° a2 = (s0 + s1p +...) . a * a2
for all a3y, 3, in A(p)

Now A(p) is p- pure inJ_, so it is possible to select a0 € A(p)

P
such that a5 is a p-adic unit. Then since A(p)/pA(p) 2 1(p),
i ag ° 4, ¢ pA(p) shows (A(p)/pA(p) o) is a field. Therefore

J(A(p)/pA(p) °).- 0, and so J(A(p) o) c. oAlP) as requ1red //

Dubois [1] has shown that a reduced cohesive group is Strongly
indecomposab]e. Cohsequently, Theorem 5.8 is an improvement on
Proposition 6.4 in the case that A is a reduced cohesive group of fiﬁite.
rank. It is an open question whether the corresponding statemenf of
Theorem 5.8:holds.for reduced cohesive groups of infinite rank.

| Every group A considered thus far for which some information
about the'structufe ofHJ(A) has been given also has the propérty that
J(A/J(A))_¥ 0.. Thg next proposition shows that cohesive groups are no

exception to the cohjeéture that J(A/J(A)) = 0 for all groups A.
PROPOSITION 6.5. - If A is a cohesive group then J(A/J(A)) =

| Proof; Clearly we mayAaséume that A is a non-nil reduced
cohesive group for which J(A) # 0.  From Proposition 1.22 we may also
»assdme A/J(A)'f T(A/J(A)). Now, since [A/J(A)]/T(A/J(A)) is torsion-
free and A isjcbhesive, [A/J(A)1/T(A/J(A)) is divisible. If we now
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proceed as in the proof of Proposition 1.22 we obtain the required

result. //

2.'- THE NIL-DEGREE OF TORSION-FREE GROUPS

Fe1ge1stock [1] has introduced a concept very similar to the
:ktrong~n11-degree of a tors1on-free group. Fo1low1ng Fe1ge1stock we
define the extra strong niZ-degree (strong nilstufé)'of a toroion;free.
group A to be the 1argest pos1t1ve integer n such that there is a ring
on A with a non-zero product of length n (all poss1b1e bracket1ngs
considered), but no ring on A with non-zero products of length greater
than n. If no such n exists then the extra strong n11 -degree is
defined to be . 'For a tors1on-free group A we let N(A) N (A) and
N (A) respect1ve1y denote the nil- degree the strong n11-degree and the
extra strong nil- degree of A. , | | ‘

Fe1gelstock [2] has.claimed that if A is a torsion-free group
of rank two then N:(A) is'1, 2 or =, but appears to haVe only shown that
N(A) is 1, 2 or «; h1s proof re11es on Lemma 1 of Beaumont and Wisner
[1] that‘requ1res_cons1derat1on of associative rings. Feigelstock has
also conjeetured that if A is a torsion-free~group of finite rank n then'
Ne(R) s 1, 2, _.{t, n or .

Recently: Webb [1] has shown that 1f A is a tors1on free group
}of rank n then N(A) is 1,2, ...onorw and N (A) is 1, 2, , 2" -1
or . A]so, he has provided an example of a tors1on free group A of
rank three for which Ne(R) = 4. .Thus Feigelstock's conjecture is not
true. Hdwever,)ifIWé'repIaceuNE(A) with-NS(A), the'conjeotUré can be
proved. | _ | | |

Recall that for a ring (A, -) on the group A and a positive
integer k, (A, ?)k is the subring of (A )»generated by all products
'ot the form ( ((a .a o) s ag)ii.) ¢ ak. - |
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THEOREM 6.6.  Let (A, +) be a ring on a torsion-free group A of

finite rank n. If (A, *)™ = 0 for some positive integer m then (A, °)n+] =0,

Proof: Suppose (A, -)m = 0 for some'bositive 1ntégéf.m, and k

is a positive integer for which (A, -)**1 # 0. we show (A, )¥/(a, ¥
is not a torsion group. | '

+
)k 1

Indeed, suppose (A, -)k/(A; . is torsion. If we choose a

non-zero element a « (A, -)k then there is an integer ny # 0 such that

noae (A, ) Thus

+ ai ca, + ...+ a

Ofn a=al-a +al ' .
LI 3 13 7 ) e

*a
'2. 1

- 2 .

where a; and a; are in A, and 3 and ay are in (A, -)k, for each
- A | :

ie {2, 3, cees h(])}. Without loss of generality we can assume

aj +a; # 0.

Since ai'e.(A, v)k it is p0551ble to choose a non-zero integer
)k 1

n, such that n, aj e (A, Hence

'

= A -
*+a, F...4a) a2 ). aps

3 %2 T %20 “n(2)
)k

0# nz(aio a]) = (aé- a, +a, - a,

“2 2

where a, and 32 are in A, and aé and aé are in (A, -)", for each

i

ie {2, 35 ..., n(2)} Again we can assume (a, - az) ©a; #0.
If we repeat this procedure we can obtain e1ements

)k

31; 3y -ees cm_k“inlA, apd an element ay_, in (A, +)" such that

@y )t apy) t ) e A0
Clearly | | |
| (oo * 2o * Bggeen) o) - aye b )"
contradicting the fact that (A, <)M = 0. We conclude that

(A, +) /(A )k+1 cannot be a torsion group
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Consequently, for each positive integer k for-which
(A, -)k+] #0, (A, -)k/(A, -)k+] has torsion-free rank greater than
zero. ~ That is, r((A, -)k) is strictly greatef than r((A, -)k+]),

Since A has finite rank.n, (A, SULLISN WY,

_COROLLARY 6.7. If A is a torsion-free group of rank n then
N(A) is 1,2, ...snopw. /) | | |

The following example shows that for each positive-integer n

the bound of n for NS(A) in Corollary 6.7 is actually attained.

EXAMPLE 6.8. - For.each i ¢ {1, 2, ..., n} Tet A% be a rational"

group with type (21;_21, cees 21,....). Consider the rank n completely
decomposab1e gfoup A = () A : C]ear]y there exists a chain'of length

n but no chain of 1ength n+ l in T(A) with respect to. the re]at1on <'

Thus (3.1) y1e1ds Ng(R) = n. 7/

The remainder of this chapter'is concerned with extending the
associative case of Corollary 6.7 to other classes of‘toréfon-free groupe.
Our aim is two¥f01d: we wish to find some infinite rank torsion-free |
groups whose nil- degrees, if f1n1te, are bounded, and we would also
like under certain c1rcumstances to Tower the bound on-the f1n1te nil-
degrees ment1oned in the Corollary.

A method of aehieviﬁg these ends has already been suggested in
our previous djscussion of p-pure‘subgroups of the p-adic integers. It
is evident tﬁat if A(p) is such aigroup then N(A(p)), NS(A(p)) and
NE(A(p)) are all either 1 or ». We therefore concentrate our attention
on torsion-freefgreups-A with the property that for eéeh prime p,

r(A/pA) is bounded by some positive integer n (not'debehdihg on p).
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This amounts to considering torsion-free groups whose p-basic subgroups
all have rank < n.

Recal] that for a group A and a prime p, A(p) = 11m (A/p A)
- . k

denotes the p—adic completion of A. 'If A is tors1on5free and p-reduced
then clearlygA(b) is torsjon-free._ Also, A(p)\cen be made into a
module over'the ring»of-p-adic integers Q* by defining;Vfor"
Jj= s0 + s] p + . o sk pk + ... 1n Q and -

2 k
(a a; + PA, a, + PA, ooes @y * p‘A, . ) in A(p),

J(a1 tPA, a, + p2A e B +_p$A, cee)

- (30 )(a +pn), 32 )(a2 +92), vy i (ay + bkA‘), )
(k)

where J = s0 + 51 P ...+ Sk-1 pk -1 for each pos1t1ve 1nteger k.
) The next resu]t enables us to extend r1ngs on certa1n groups to o

'rlngs on the1r p ad1c comp]etlons

PROPOSITION 6 9 " Suppose A is a gfoup wiih’ﬁo.éleﬁents of

- znfznzte p—hecght fbr some prtme p, ‘and (A ) ig a rzng on. A | Thenv
there is exactly one ring structure (A(p)’ *) on A(p’ whzch extends that:
of (A *), and thcs preserves associativity and commutatzvcty in (A ).

Furthermore (A( ), *) becomes a Q -adebra

Proof:A'The proof of the Proposition is ana]ogous to the proof
of Corol]ary1119.4 ofiFuchs [4]. The only statements'chat require
verification‘are-that the extension (A( );_-) of (A, ,.)fis unique, -and
’that (A( )? -) becomes a Q -algebra, Since A can be regarded as a p-pure
" and p-dense subgroup of the p- reduced group A(p)the proof of Lemma 119 2
of Fuchs [4] app11es to show that (A( ), ) is un1que ,' That (A(p),.-) is
a Q -a]gebra fo]]ows at once from the def1n1t1on of the Q -modu]e A(

p)
given pr1or to: the Propos1t1on /] |
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The following well known result is required.

a B
(6.10) (Fuchs [3], p. 166). Let 0 B > A+ C -+ 0 be a p-pure

exact sequence. Then the sequence

”~

~ -ai
0~ Bp) > Ap)

: c 0
> 4
(p)

is splitting exact. [/

LEMMA 6.11. Suppose A 1,3 a torsion-free groupimei B is a

p-basic subgroup 'of A, Then ﬁ(p) and ﬁ (p) are isom’orphic p-adic
| modules. szthemore, A( ) has fzmte rank. over Q zf a:nd only 1f B
has finite rank over 7, ‘and in thw case the Q -rank of A(p) and the

I-rank of B coincide.

Proof: Censider the p-pufe exact seqeence _
0+B+A+A/B+0

where o 15 the 1nc]us1on map. (6 10) shows that the sequence
_ a A
'U*B(p)* ()~ (A7B)(p) > 0
is sp11tt1ng exact, so A( ) hnchD(A/B)(p) .Sihce.AJB is p-divisible,
(A/B)( )~ 0, whence A(p) 2 B(p) (as groups) .
k

Next let (b, + pB, b, + p2 B, vees b + DK B, 1.1 e an

arbitrary element'of ﬁ(p), and let j be alp-ad1c 1nteger; Then

a(i(by + pB, by + p°B, ..., b+ pkB, ...))
K

a(j(l)b + pB, J( )b + sz vees j(k)bk + p B, ;..)

(])b +pA J(z)b .|.p2A ”,,.j('k_)lbk-l'pkﬂ, ...)

2 .
J(b] + PA, b, +p 5,...f, by + pkAf T")
j Ct(b] + pB, b, + pr, s by + ple., ee)

) A(p) end B(p)lere jsomoephtc Qp-@odyjes.
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Suppose now the rank of B. is finite. A trivial induction
argqment together with (6.10) show that the rank of ﬁ(p) 0ver.Q; is
precisely the rank of B. Thus the Q;-rank of ﬁ(p)fis the rank of B.

A % :
To prove the converse suppose A(p),has finite rank n over Qp, and B has
rank strictly greater than n. Then B contains a pfpure free summand of
rank (n +_1),:so (6.10) showsjthaf ﬁ(p)_s ﬁ(b)_containé:a summand
isomorphic to the direct sum of (n + 1) copies of oo This is clearly

impossible. //

Suppose A is a torsion-free group and o : A » ﬁ(ﬁ) is the
canonical map from A into its p-adic completion. If a is an arbitrary
element of A then let a denote the image of a under the map o. 'SimilarIy
if B is a p-basic subgroup of A and 8 : B » B(p) is the canon1cal map

from B into its p ad1c camplet1on, then let b denote the 1mage of be B -

" under the map B He can now lmprove the f1na1 assert1on in Lemma 6.11.

Lemn 6;12.- , 'Let- A be a fopeion-free group with finite rank

p-basic subgroup B'= <b> @ by @ .. ... @<b>. Then tk_e elements

b1, b2’ cees b of A(p) form a basis of A(p) over Q

Proof: From Lemma 6.11 it suffices to show that the set
. *
S =bys Bé, “ees bn}-of elements of B(p) form a baSjs of B(p) over Qp.

First we show that S is independent over Q;; - Indeed suppose

(*) . j]E +j25+...+jn-bhn=o-_

for some p-ad1c lntegers J], jz, ...; jn. With jgk)J&éfined ae usual
for i e (1,2, ..., _n}_.. and k € {1, 2, ...}, (+) becomes
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K, ...) +

{Vb, +pB, 388+ %8, .., 5{Kb, +p
(Jél)bz + pBa J£2)b2 + PZB. ceey Jék)bz + PkB. -..) MRS

i)y +(2) (k) 4 oke
(Jn b, +:pB. ip byt P %, ..., Jp by +PB, ..l)

= (sz sza ey pkB, oo.) .
Thus T - o
:_.j{k)b] +'j£k)b2 .ot jﬁk)bn c p¥B
for each k ¢ {1, ...}. _Hence for every k ¢ {1, 2, ...} there are

integers oK), n(k) s 28 such that
(k)b = z(k) k by + E(k)p Byt z(k) b,

+

iy g
(k)

(k) k

Consequent]y 33 for each"i.e 1, 2, .;. n}. But then

i By = (J(})b

-+

B, 32 + o7, ..., ﬁ”m+p% )
= (zgl)p bi + pB,-z(z)p by +p 2g, .. (k)p by +p kg, ...)
=0, ‘ |
for.each ie {1,” w..» N}. Since B(p) is torsion-free as a Q -module,

we conclude that S is independent over Q

Next we show that S generates B(p) Let |
(b(1) ¢ o b2 4 28, .. ) T

be an aeb{trery e]ementlof:B(p).e .Then.for;eaCh-k e {1, 2, ...} there
are suitable integers mgk),'i e {1, 2, ..., n}, such that o

'b(k)-+ pkB - (m%k)b1'4'm£k)b2 + ... +'m£k)ba)-+ pkB
and 0 §=m$k)'§ K. Now for each ke dl, 2, ...) |

| | b(k+1) + pkB - B(k) + pkB R

s0 b(k+1) b(k) It fo]lows that for each i € {1, 2, ..., n}

_and each k e {1, 2, .auly (m(k+1) (k))b € pk <bi>. _ Thus for each

ie{l,2 ., N}y the sequence m(I), m§2)’ cees mgk),e... has the
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(k+ 1) -

property that m; (k) (mod pk) for each k ¢ {1, .}. Hence

(]) (2) (k) . determines a p-adic 1nteger J for which
(k) = m(k) for each k e {1, 2, ...}. But then o
Jy by * 3y by *dp b

= (m(T)b + pB, m(z)b + sz s ml(k)b1 + pkEi vee) +
B, ..., mék)bé.+ B, ...y + ...+
(m(])b + pB, m (z)b + p ves m&k?bh'+ pkB, ...)

= ((m“)b1 + m‘%])b2 + ...+ mél)bn).+ pB,

(m§23b1' + n{2)p, + - + 2y + 28

(m§k)bl + m(k)b + ..: + (k)bh).+;pk§§ .ee)
- (b(]) + pBI b(z) +p28, ..., bk 4 pke, Ly,

so S indeed generates B(p). //
A consequence of Lemma 6.12 and Proposition-ﬁ(@.is the'following.

PROPOSITfUN 6;13. ~ Suppose A is a torsion-f?ee group with no
.Ielements of infinité ﬁ—heiéht for some prime p, and r(A{pA) is finite.
Then any ring (A, *) on A is completely &eterminediby_its effect upon
-any p-basic subgrohé'of A. IfA has finite rank and r(A) = r(A/pA),
then it is pdseiele to choose a p-basic sebgroup of Alfhet ig also a
subring of (A;:-). - | '

Proof: Let B = <by>@<b)>@® ... @ <b > be a p-basic subgroup
of A. If ﬁ( )-is the p-adic compTetioh of A then Propdcition 6.9 show‘,
that (A, *) may be viewed as a subring of (A( ) ). - Lemma 6.12 now
shows that the ring (A(p), +),and hence the ring (A, - ), is determ1ned by _
the effect of (A ) on the set {bl’ os +ees b}
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\- To prove the final assertion of the.Proposition we use an
argument similar to the proof of Lemma 4.3 of Beaumont and Pierce [1].
- Suppose r(A) = r(A/pA) = n. Then'{b], b2, cees bn} is a maximal
independent set of elements of A, so for all i and j « {i, 2, ..., n}
there exists. an integer m with (m, p) = 1, and integers s Mys ouvs Mo
such that ' |

| f_lﬂ(bi‘-hj)=m] by +my by + ... +m b . -
Consequently (mB, -) é‘(<mb], mb2 . mb ‘) is a subring of (A, ).
Finaliy since B is p- pure in A and (m, p) = 1 1t follows that mB is a

p- ba51c subgroup of A //

Fuchs [1]'has demonstrated a strong connection between the ring
structures supported by a torsion group A and the partial multiplioations
on a basic subgroup B of A. ~ Fuchs has shown that aring (A, -) on A is
completely determined by its effect on B, and conversely that any partial_
multiplication structure on B extends uniquely to a ring on A,

| It is not.difficult to find examp]es to show that the partial
51m11ar1ty of Proposition 6. 13 with Fuch's result cannot be strengthened
Indeed 51mp1y iet A be a rational group with non- 1dempotent type It
is c]ear that there is a prime p for which A satisfies the_conditions of
Proposition 6.i3.g' howeyer, since A is a nil group and any p-basic
subgroup- of A is{tyciio, not every partial multiplication on a p-basic
subgroup of A will extend to a_ring‘on A. |

Returning once again to our main discussion, suppose A is a
torsionffree group with no elements of infinite p-height; for some prime
“p, and (A, -)'is an associative ring on A. Proposition 6.9 shows that
(R, +) can be viewed as a subring of an assoc1at1ve ring (A( ) +) on

A(

p)* If we let K denote the quotient field of Q s then K®* A(p) can

p
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be made into an associative algebra (K@® 4 ﬁ(p), -) over K by defining, |
) _
for k], k2 'in K and a], a2 in A(p),

(k] ® a ) . (kz ® az) (k] kz) ® (a .. az) _
and _ -
k(ky ®@3)) = (ky ky) @ g .+

It is c'lear' that if A( ) has f1mte rank over Q then K®* (p)

. : P
will have f1n1te d1mens1on over K. Also the map a > @a for each

a ¢ Ap) 1s an embedding of (_A(p)" *) in (;K-®Q*'A(p),°-)'i.so_ (A, +) can
be viewed as a subring of the algebra (K® , A?(‘p)’- ).
o - q |

_These"cenunents ;_for'm- t;ﬁé basis for the pr‘oof- of our next result.

PROPOSITION 6 14 et A be a torseon-free group with no ezements‘

~of infinite. p-hetght f'or some pmme p, and suppose r‘(A/ pA) If

(A, *) is a ml ring then (A, )n-l-'l 0.

Proof: (A, -) can be embedded_ in the associetiv'e algebra -
(K® « E(p)}_ .) o_vei'fthe field K. If B is a p-basie:.'ei]bgreup_ of A then
there exist elements by, b,, ..., b, of A such that

~

B = <b1>®<b2>® @<y Lenma 6.12 shows that {b], By, .eus B}

is now a bas1s of A(p) over' Q s so {l®b], 1®b2, cees l®bn} is a

basislof K®*_ A(p) over K. - For each i ¢ {1, 2, ..';-n}, by is a

nilpotent element of (A, °), so”l-®b is a ni]potent'element of

(K®* A( ), ) Smce (K®* A(p), ) has finite d1mens1on n over K, a
p _ Do -Qp .

reference to Abian [1], p. 155, nowr shows (K®* A(p),

. )_ﬂ"’] 0..
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Thus (A, -)™! = 0, as desired. //
Now for the main results of this section.

THEOREM -6.15. Suppose R = D@ R <& a torsion-free group, where
D s a divisible group and R is a reduced group.  Suppose further that
D has finite rank d a.nd the rank of A/pA is bounded by the *mteger* n,

for every prime p. If (A, *) is a nil ring on A then (A )(d+1)(n+l)

Proof: Let (A, +) be a nil'fing on A. If there is a prime p
for which A has no elements of infinite'p—height,lthen Proposition 6.14

shows (A, -)"+1 = 0.

- Hence we can assume that A hus_eleméhts of infinite
p-height for every prime p. | |
| ~ Consider a fixed prime p. It is readily checked thut A/pmA'is o
a torsion-free group w1th no e]ements of infinite p-height such that
r([A/pr]/p(A/p A)) §=n. A]so, since P “A is a fully 1nvar1ant subgroup
of A, the nil ring (A, *) on A yields a nil ring (A/p “A, +) on A/p“A.

Thus Propqsffidn_ﬁ.ld imp]ies.(A}pQA;:k)ﬁ+] = 0. Sihcé:this.is true .

for every prime p, (A, ~)""-"'1 cn ﬁmA'= D..
o P N
~ Now (D; -) is an ideal of (A, +), so (D, +) is also a nil ring.
Since (D, +) can be made into a finite dimenSiona1 algebra over the field
)d'l']

Q, (D, +) is a nilpotént fing | Theorem 6.6 now shows (D, * =0, so

(A, )(n+l)(d+]) = 0, as requ1red f/

COROLLARY 6.16. et A be a reduced torsion-free group with the
property that r(A/pA) is bounded by the positive integér;n, for every pﬁime
P Then N(A) ié'l, 2, ..smorw. /] o

We conc1ude this final chapter by not1ng that certa1n results in

Webb [1] enable us to g1ve the non-associative ana]ogues of the previous
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Theorem and its Corollary' The proofs are omitted since they are direct
consequences of the non-assoc1at1ve results in Webb's work and the

arguments u5ed to prove Theorem 6.15.

THEOREM 6. 'l? Let A = D @ R be a torszon-free group where D is
a dzmszble gwup cmd R is a reduced group Suppose. D has finite rank
d crnd the rank af A/ pA 18 bounded by the tnteger n, f'or every prime p.
If (A, *) is a mng on A for whwh there is a posztwe mteger m such
 that every product of Zength mis zero, then ever’y product of length -
(2n -1y 1)(2d ]_ + 1) is zero. //

COROLLARY 6. ]8 Suppose A is a redueed torswn-free group with

the property that r(A/pA) is bounded by the posttwe mteger n, for every "

prime p. = Then Ng(A) is 1, 2, ..., 2?]--'_] or =, [/
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" TABLE OF NOTATION

We generally follow the notation of Fuchs [3, 4] or Divinsky [1].
For the i'eaders_'cdnven'iencé we I'i st the unusual notation used in this
thesis. | |
’ S TRN7Y) S5 B 5
(A" T 10
A, Ay 2
Ala) | | 16 -
A S 64
(0; (A, ) 6
- BY S e
@y s
BRSNS . %
IR BRI 13
K(B;) o | 48
N(A), Ne(A), Ng(A) o 128
A | o
| _'P](a)_ | 68
o I T
R T
S 2

'T_'_(A) 3 .35
< 35
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INDE X

We Tist the important new or uncommon terms on1y,

absolute annihilator 12
absolute radical 13
almost nilpotent | E | 101
‘chain (of length n) | 35

~ condition U . - 94
extra strong'nil-degree - . 128
faithful ring 93
finite norm property 112
fully faithful group 93
h-decomposition » : 42
nil-degree ' 10
ni],gfoup , A 10
radical group 9
rational groups belonging to 3
reasonable (very) matrix 69
regular ring . o 77
restricted minimum condition 110
'semisimple (strongly) group 9

- stroﬁg nil-degree - 10
T-nilpotent ' ‘ 39.

unequivocal .' A 103



