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ABSTRACT 

Various authors have dealt with problems relating to 

permutation polynomials over finite systems ([4], [8], [10], [18], 

[20]-[25],[29]433], etc.). In this thesis various known results 

are extended and several questions are resolved. 

Chapter 2 begins by considering the problem of finding those 

permutation polynomials in a single variable amongst some given classes 

of polynomials. Previously, this question was settled only for cyclic 

polynomials and Chebyshev polynomials of the first kind. Here we 

consider the Chebyshev polynomials of the second kind and polynomials 

of the form (x n  - 1)/(x - I). Certain questions on multivariable 

polynomials are then considered. 

Chapter 3 deals with questions involving polynomials whose 

coefficients lie in a subfield of the given field, and considers 

some combinatorial questions. 

Chapter 4 resolves the structure of the group of maps of 

F n  F
n 

induced by the extended Chebyshev polynomials of Lidl and 
9 

Wells 126]. Chapter 5 extends this further to finite rings -E/(pe ), 

thus generalising results of Lausch-Maller-Nobauer [18]. 

Chapter 6 settles some questions concerning the conjecture 

of Schur on polynomials f(x) e 1L[x] which permute infinitely many 

residue fields IF.  It is known ([1O]) that these are compositions 

of cyclic and Chebyshev polynomials of the first kind. In chapter 

6 it is determined which of these polynomials have the required 

property. 
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INTRODUCTION 

This thesis deals with various properties of polynomials in 

one or several variables over a finite field or a finite ring. 

Chapter 1 introduces finite fields and Galois rings, which 

are used in subsequent chapters. This is followed by a brief 

discussion of algebraic number theory, and some results on circulant 

matrices are noted. 

Chapter 2 gives the fundamental concepts of a permutation 

polynomial and an orthogonal system.The cyclic and Dickson polynomials 

are defined and permutation properties of Chebyshev polynomials of the 

second kind are discussed. 

Polynomials in several variables are then considered. The 

classical anig-Rados theorem is given in a multivariable form, and 

a result of Horakova and Schwarz [16] is generalised to yield inform-

ation on the distribution of the zeros of a multivariable polynomial 

by degree. Circulant matrices are used to obtain a criterion for a 

multivariable polynomial to be a permutation polynomial. A detailed 

discussion of sums of polynomials in several variables is presented 

in theorem 2.8. This question was previously settled only in the 

prime field case. Similarly, theorem 2.9 extends a criterion of 

Niederreiter [31] from the prime case. 

We then consider K-polynomials, which distribute their values 

uniformly over F* . The question is considered of deciding when a q  

product of polynomials in disjoint sets of variables is a K-polynomial, 



in analogy with the corresponding sums of permutation polynomials. 

The criteria turn out, however, to be quite different. Thus, over 

F. f + g is a permutation polynomial if and only if either f or g 
P 

is one, but fg may be a K-polynomial even though neither f nor g is. 

A character sum criterion for K-polynomials is given. 

Finally, permutation properties of the elementary symmetric 

functions over F are considered. Certain of these are shown to 

be permutation polynomials. These have the property that they remain 

permutation polynomials over all extension fields of F. Other 
P 

polynomials with this property are also presented. 

Niederreiter [30] has shown that any orthogonal system 

(f l ,...,f
r
) in n variables,r < n,may be completed to an orthogonal 

system (f 1 ,... ,f). Carlitz and Hayes [4], considered the question 

of elucidating the structure of the group of permutations of IF t 

induced by single-variable polynomials which actually belong to 

W [x]. We extend this result to orthogonal systems in chapter 3, 

then consider Niederreiter's extension problem, where (f 1 ,...,f r ) is 

an orthogonal system over IF qt with f i  E F q [x l ,...,xn ], and ask 

whether this may be extended to (f 1 ,...,fn ), with f i  E 

and (f 1 ,.. ,f) an orthogonal system over F t. Such extensions are 

enumerated in this chapter. 

In the last three chapters we deal with properties of cyclic 

and Chebyshev polynomials. Chapters 4 and 5 deal with the multi-

variable Chebyshev polynomials introduced by Lidl and Wells [26]. 

Chapter 4 begins by placing these in a more general setting, where 

we derive a multivariable polynomial vector from a single-variable 



polynomial. We then relate the properties of these two objects, 

the key result being theorem 4.1. The structure of all permutations 

obtained in this way is obtained, then the group of maps induced by 

the generalised Chebyshev polynomials over F q  is determined. This 

extends results of Lidl ([20] and [21]) from the two-variable case. 

We conclude chapter 4 with a short proof of a result of Brawley, 

Carlitz and Levine [3] on matrix permutation polynomials, which uses 

the construction of this chapter. 

Chapter 5 extends the results of chapter 4 from finite fields 

to the ring of integers mod m. These results were known previously 

only for one variable ([18]). The chapter begins with an evaluation 

of the Jacobians of the polynomials defined in chapter 4, and the 

generalised Chebyshev polynomials. Regular polynomial vectors are 

discussed, and a regularity criterion for multivariable Chebyshev 

polynomials is given. The determination of the structure of the 

permutation group induced on OZ/(p e )) n  by the Chebyshev polynomials 

makes use of Galois rings and results of Ward [44] and [45] on 

linear recurring sequences. 

In chapter 6 we consider a property of the single-variable 

cyclic and Chebyshev polynomials. Namely that these are permutation 

polynomials over infinitely many prime fields F p . Schur conjectured 

that they are essentially the only such polynomials, and Fried [10] 

proved this for residue class fields of an algebraic number field. 

This chapter completes the converse problem of deciding which cyclic 

or Chebyshev polynomials have this property for a given algebraic 

number field K. Previously [32] only the quadratic and cyclotomic 

fields had been settled, and a few general results were also known. 



CHAPTER 1 

BASIC RESULTS 
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In this chapter we introduce various results needed in later 

chapters and define some basic concepts. Proofs are omitted if 

references to the literature are available. 

I. FINITE FIELDS AND GALOIS RINGS  

For each prime p E 1, and prime power q(= pe ) there exists, 

up to isomorphism, a unique finite field of order q, denoted fF . 

The following properties of fF are well-known. 

I. The multiplicative group F of F is cyclic. A generator 

of IF is called a primitive element of F . 

2. F is the unique algebraic extension of F (=Z/(p)) of 

degree e. 

If the ringir/(pn ) is denoted by R, then one may seek 

extension rings of R which relate to R as F does to F
. 

Such 
P 

rings are the Galois rings. They are considered in chapter XVI of 

McDonald [27]. Let p denote the canonical homomorphism 

p: 7/(P fl ) .4. 1/(P). Then f(x) EZE,/(Pn)[x]  is called a basic 

irreducible if pf(x) is irreducible over,E/(p). If this is the 

case then f(x) is irreducible in/(p). If f(x) is any basic 

irreducible of degree r, then all rings of the type :FJ(pn )[x]/(f) 

are isomorphic, and are called Galois rings, denoted GR(pn ,r). 

Further, GR(p n ,r) =1[x]/(Pn ,f), if f(x) E -4[x], and f is irreducible 

mod p. There is a natural projection 0: GR(pn ,r) 	GR(pn-1 ,r) with 

kernel (Pn-1 )• Also, GR(p n ,l) = -AZ/(pn ), and GR(p,r) =IF pr. f 

splits uniquely into linear factors in GR(p n ,r). We use the 

following results. Let p: GR(pn ,r) 	fFpr. 



LEMMA 1.1.  (Hensel's lemma). Let h E GR(pn ,r)ix1 and 

ph = § 1 	5t , where § 1 ,...,§t  are pair-wise coprime. Then there 

exist g l ,...,g t , g i  E GR(pn ,r)[x] such that 

(i) g l ,...,g t  are pair-wise coprime; 

(ii) pg i  = g i , 1 	i 	t; 

(iii) h = g i  g t . 

PROOF.  McDonald [27], page 256 proves this result for local 

rings. GR(pn ,r) is a local ring. 

If f is not a zero divisor in GR(p n ,r)[x], then f is called 

regular. 

LEMMA 1.2.  Let f E GR(P,r) be regular. Then 

(i) If pf is irreducible inIF r,then f is irreducible. 

(ii) If f is irreducible then pf = 6gt, where 6 E IF r 
P 

and g is a manic irreducible in F r[x]. 

PROOF.  McDonald [27], p. 260. 

A local ring is a ring with exactly one maximal right (or 

left) ideal. 

LEMMA 1.3.  Let R be a commutative local ring of character-

istic pn  with maximal ideal I and residue field k. Let 

[k: 7/(p)] = r and {u1,...,u t} be a minimal R-generating set of I. 

Then there exists a subring S of R such that 

(i) S = GR(p n ,r) where S is unique; 

(ii) R is the ring homomorphic image of S1)( 1 ,—, J. 

2 



PROOF.  McDonald 1 - 271, p. 337. 

LEMMA 1.4.  Let T = GR(pn ,t), and let T* be the group of 

units of T. Then T* = G i  x G 2 , where 

(a) G i  is a cyclic group of order pt  - 1; 

(b) G2  is a group of order (n-1)t
, such that 

(i) if p is odd, or p 2 and n 2, then G 2  is a 

direct product of t cyclic groups of order p. 

(ii)(ii) If p = 2 and n 3, then G2  is a direct product 

of a cyclic group of order 2, a cyclic group Of 

order 2 n-2  and t - 1.cyclic groups of order 2 n-1 . 

PROOF.  McDonald [27], p. 322. 

2. NUMBER THEORETICAL RESULTS  

We will need, particularly in chapter 6, some basic results 

from algebraic number theory. Here we establish some notation and 

describe the fundamental results on ideals in number fields. 

Hasse [15], Narkiewicz [28] and Weil [46] are standard works in 

this area. 

Let K be a finite extension of Q. Whereas classical number 

theory deals with properties oft, algebraic number theory deals 

with similar questions over a certain subring A of K. A is the 

ring of algebraic integers in K where a E K is an algebraic integer 

(over 1)) if it satisfies a monic equation with coefficients in Z. 

The first major obstacle in extending number theoretical results 
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to A is the lack of unique factorisation in A. This is restored by 

considering the ideals of A. The ideals of A have unique decom-

position into products of powers of prime ideals. If P is a prime 

ideal of A, then P n7 is a prime ideal ofZ, and so P n7 = OE, 

e i  
for some prime p E Z. Further pA = TTPi , where P i  are prime 

i=1 

ideals of A, and P i  n Z = pZ. The ideals P i  are said to lie over 

p. For all but finitely many primes p E 4 the powers e i  occurring 

in the decomposition of pA are unity. If this is not the case, 

then p is said to be ramified in A (or in K). If t = I, and e l  = 1, 

then p is said to remain inert in K. If [K:Q] = t, then p is said 

to split completely in K. The integer e i  is called the ramification 

index of P i  over p, and f i  (= [A/P i ; Z/(p)] is called the inertia 

degree of P i . If K is a normal extension of Q then the e i 's are 

equal, as are the f i 's. In any case Ye i f i  =EK:Q1 and in the normal 

case, if e=ef.=f, then tef = [K:Q]. Further e.ln and  is also 

written f(P1p). 

Now suppose K is a normal extension of Q. Let P be a prime ideal 

of A lying over p E 1, with P unramified in K. Then corresponding 

to P there is a unique cp E Gal(K: Q) such that iga) E aP mod P, 

for all a E A. (I) is called the Frobenius automorphism of P. If 

K is abelian over Q, (1) depends only on p. The order of (I) equals 

f(PIP). Thus one obtains a map from the set of unramified prime 

ideals of A to Gal(K:Q) obtained by mapping an ideal to its 

Frobenius automorphism. This may be extended multiplicatively to 

the set of all unramified ideals of A. The resulting map is called 

the Artin map of A over Q. The detailed properties of this map 

lead into class field theory. Finally we introduce some notation. 
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If I is an ideal of A, then the norm of I, N K/Q (I) is defined to be 

IA/II. This is always finite. 

We will use the following result in chapter 5. The case 

e = 1 is well-known. 

LEMMA 1.5.  There is a finite algebraic extension K of (1), 

with ring of integers A, and a prime ideal P with P = pA, such 

that 

A/P e  = GR(pe ,t) . 

PROOF.  Let f(x) be an irreducible monic polynomial of degree 

t over Z such that pf(x) is irreducible over /(p). If a is a root 

of pf in F t , then pf 1 (a) 0. Thus disc (pf) # 0 in 
p
, and so 

p,f disc f over -L. By the Kummer-Dedekind theorem on ideal 

factorisation (see [28] p. 161) p remains inert in K =  

If A is the ring of integers of K, let S = A/P e , where P = pA. 

Then char S = p e , or else pe-1  c Pe , and so Pe-1  c Pe  a _ 

contradiction. Thus S is an extension ring 0f -4E/(pe )• S is 

clearly a commutative local ring, [A/P: 7/(p)] = t, and so S 

contains a subring T = GR(p e ,t), by lemma 1.3. Since 

I s' 	p
et . ITI, S = T completes the proof of Lemma 1.5. 0 

We also use the MObius inversion formula. 

LEMMA 1.6.  If f,g are functions from 	to e then 

f(n) = X g(d)  g(n) = X f(d) p( -13) , 
din  din 



where p is defined as follows: 

"1  ak 
p(1) = L If n = p i  p k  ,a i  1,p i  prime, then 

p(n) = (-1) k  if al  =...= ak  

= 0 otherwise. 

PROOF.  Apostol [1], p. 32. 

LEMMA 1.7.  The number ofmonic irreducible polynomials of 

degree k over F is given by 

n(k) = k-1  p(r) gd , where 

dik 

p is the MObius function of Lemma 1.6. 

PROOF.  Blake and Mullin [2], p. 33. 

3. BLOCK CIRCULANT MATRICES  

We now consider block circulant matrices, which appear in 

various contexts in chapter 2. 

An ordinary circulant is a matrix of the form 

a0  a 1  ... 

an  ao  

an  

a n _ i  
.-1''::::) (a09,04,09a n ) • 

• 

a l  a2  ao  

6 

where each a. belongs to a field F. 
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DEFINITION 1.8.  An (n,k)-block circulant is an n x n 

circulant whose entries are (n,k - 1)-block circulants. An 

(n,1)-block circulant is an ordinary circulant. 

A block circulant is usually defined in a wider sense 

(Davis [6], p. 176). Our definition corresponds to that of a 

circulant of level k ([6], p. 188) where the blocks have 

restrictions on their dimensions. 

DEFINITION 1.9.  The polynomial fA (x l ,...,x k ) associated 

n-1  . 
with the (n,k)-block circulant A is given by fA (x l ,...,x,) = X f.x13(  

K  j=0 

where fi (x l ,...,x k_ i ) is the polynomial associated with the (n,k - 1) 

block circulant 
Ai' 

where A =  (A0 ,...,An _ i ). If k = 1, then 

n-1  . 
f
A
(x) =  a i xJ. 

j=0 

For an ordinary circulant, the determinant was found by Ore [34], 

when char F=0, or for char F= p, (n,p). 1, and by Silva [40], when (n,p)#1. 

The block case has been considered by Friedman [12], Chao [5], Smith [41] 

and Trapp [42]. 

THEOREM 1.1.  The eigenvalues of the block circulant A 

associated with fA (x l ,...,x k ) are the values of fA  on all k-tuples 

of n'th roots of unity Xi  in a suitable extension field of F. 

PROOF.  Consider first the case char F = 0, or (n,p) = 1. 

We consider A as an element of the group ring FG, where G is the 

direct sum of k copies of Cn , the cyclic group of order n. By 

Maschke's theorem, FG is semisimple, and the regular representation 

is equivalent to a direct sum of irreducible represencations. If 
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F' is an extension field of F containing the n'th roots of unity, 

over F' the irreducible representations of G are one-dimensional, 

as G is abelian, and are the irreducible characters of G, defined 

by x(g1) = x, where g i  is a generator of a copy of C n , and A is 

any n'th root of unity. Since A = f A (T 1 ,...,T k ), where T i  is 

associated with x i , by linearity of the characters A is equivalent 

under linear transformations over F' to the matrix diag ff A (X 1 ,...,A ) 

and so the eigenvalues are given by {f A (A 1 ,...,An )}. 

This equivalence also yields 

COROLLARY 1.  The determinant of A is HfA (x l ,...,x k ), where 

i 5 k, ranges over all k-tuples of n'th roots of unity. Al , 

COROLLARY 2.  A is invertible
, 

4=> f (A  A
k 
 ) 0 for any A 1"" 

k-tuple of n'th roots of unity. 

We now assume (n,p)  1. We use the 

following theorem of Silva [40], also proved in Chao [5]. 

THEOREM 1.2.  Let A =p(A0 ,...,An..1 ), where the A i  are 

square matrices of order n 1. Let n = p tm, p/m. Then 

t  p
t
-1 , 

det A -2 (det D)" mod p where D = j (D0 ,...,Dm_ i ) and D r  = X Asm+r , 
s=0 

0 < r  m - 1. 

Applying this result, we see that Theorem 1.1 still holds, 

where each root is taken with multiplicity p t . 

The proof of Theorem 1.1 also provides the following result. 



THEOREM 1.3.  If (n,p) . 1, then the rank of the block 

circulant matrix A is the number of non-zero eigenvalues of A. 

9 



CHAPTER 2 

PROPERTIES OF POLYNOMIALS OVER FINITE FIELDS 
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In this chapter we deal with various results concerning 

polynomials in one or several variables, defined over a finite field 

Wq • Most of the results concern the distribution of the values taken 

by the polynomials. Of particular interest are polynomials whose 

value sets are uniformly distributed. 

In the single-variable case the classical examples of such 

polynomials are the power polynomials and the Dickson polynomials. 

We consider polynomials of the form (x n  -1)/(x - 1) and Chebyshev 

polynomials of the second kind. We then consider various results 

on multivariable polynomials. These often extend known results or 

generalise results from the single variable case. We conclude with 

some results on the elementary symmetric functions over a finite 

field. 

1. PERMUTATION POLYNOMIALS AND ORTHOGONAL SYSTEMS  

DEFINITION 2.1.  A polynomial f(x) E W q [x] is called a 

permutation polynomial over F q  if the mapping a .+ f(a), a E F q , is 

a permutation of Fq • 

DEFINITION 2.2.  A polynomial vector (f i (x l ,...,x k ), 

...,fk (x 1 ,...,x k )), f i  E Wcpi ,...sy s  is called a permutation 
polynomial vector over ff.  if the corresponding mapping 

(a 1 ,...,a k )  (fl(al,...,a k ),...,f k (a l ,...,a k )) is a permutation 

of Wk . 

Permutation polynomial vectors have been studied in [8], 

[24], [29], [30], [31], and [33]. They are also discussed in [19]. 
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DEFINITION 2.3.  A polynomial vector (f i (x l ,...,x k ), 

...,f r (x l ,...,x k )), f i  E r k, is called an 

orthogonal system over if q  if the equation (f i (x l ,...,x k ), 

a
r
) has precisely q k-r solutions for 

each (a 1 ,...,a r  )  q 

An orthogonal system consisting of one polynomial in k 

variables, (r = 1) is also called a permutation polynomial in k 

variables, and clearly a permutation polynomial vector is an 

orthogonal system. It was shown by Niederreiter [30] that any 

orthogonal system 1 ,...,fr , in k variables, r  k, may be extended 

for each s withr..4 s k, to an orthogonal system f 
 ..,f

s 
in k variables. 

2. SINGLE VARIABLE POLYNOMIALS  

We consider firstly single-variable polynomials. Many 

results on permutation polynomials appear in chapter 5 of Dickson 

[.8], where a list is given of all permutation polynomials of a 

degree less than 6. Dickson introduced an important class of 

permutation polynomials, now known as Dickson polynomials, which 

are related to the classical Chebyshev polynomials of the first 

kind. 

DEFINITION 2.4.  The polynomial g (x,a) defined by 

g k (x ' a)  =  17:7 ( t ) (-a) x  

[k/2] 

t=0 

 k  k-t  t k-2t 

is called a Dickson polynomial. 
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If t
k
(x) is the Chebyshev polynomial of the first kind, then 

g k (x,a) = 2(14) k  tk (x/2)/i). 

THEOREM 2.1.  gk (x,a) is a permutation polynomial over If o  

if and only if (k,q2  - 1) = 1. 

PROOF.  Lausch and NObauer [19], P.  209. 

Later in this chapter, we will consider multivariable 

analogues of Dickson polynomials. An important property of the 

polynomials g k (x;1) relates to composition o of polynomials 

(for a proof see [19] p. 211). 

THEOREM 2.2.  g(x1) o yx,1) =  

This property will also generalise to the multivariable case. 

It ensures that the set of selfmaps of F q  induced by {g k (x,1): k EZ} 

forms a group. This and similar groups will be considered in later 

chapters. 

The only classes of single-variable polynomials whose 

permutation behaviour is fully determined are the Dickson polynomials 

and the cyclic polynomials defined below. 

DEFINITION 2.5.  A cyclic polynomial is a polynomial of the 

form ax
k 
+ b, a  0, k +

. 

THEOREM 2.3.  axk 
+ b, a,b E IF 	a  0 is a permutation 

polynomial over FF if and only if (k,q - 1) = 1. 

PROOF.  From the fact that F is cyclic of order q-1. 
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We now give a full analysis of the permutation behaviour of 

another class of polynomials. To do so we use the criterion of 

Hermite ([19], p. 191). 

. PROPOSITION 2.1.  A polynomial f Fq [x], 	= e p , is a 

permutation polynomial over FFq  if and only if 

(i) f has exactly one root in Fq ; 

(ii) the reduction of ft  mod (xq - x), 0 < t < q - t, t / 0 

mod p, has degree less than or equal to (q - 2). 

THEOREM 2.4.  The polynomial h k (x) = 1 + x + x 2  +...+ xk  is 

a permutation polynomial over lfq  if and only if k E 1 mod p(q - 1). 

PROOF.  Suppose k E 1 mod p(q - 1). Then k = ap(q - 1) + 1, 

for some a Z, a 	O. If x  1, h k (x) = (x
ap(q-1)+2 

- 1)/(x - 1) 

= (x 2  - 1)/(x - 1) = (x + 1). If x = 1, h k (x) = (k + 1) = 2. Thus 

h k (x) = x + 1, for all x E Fq , and so h k (x) is a permutation 

polynomial overiF q . 

We now consider the problem of showing that the given 

condition is a necessary one. We note that if k E t mod p(q - 1) 

then h
k
(x) = h(x) for all x E Fq • Thus it suffices to consider 

k < p(q - 1). If k  (q - 1) then in the reduction of h k (x) mod 

(xq - x) the coefficient of xq -1  is r 
q 1 
k 	which is not zero 

_ - _ 

mod p, and so h k (x) is not a permutation polynomial by Proposition 

2.1. Thus we may assume that k < (q - 1). 
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We begin with the case q = p. We consider Eh k (x)1 t , where 

t = [ 11 14] + 1, k 2. The terms which reduce to xP-1  are those 

•of the form 
xa(p-1), 

 a E E, a >0. The degree of [f k (x)] t is kt. 

We may suppose that k does not divide (p - I). Let (p - 1) = ak + 0, 

0 < 0 < k, a  I. Then t = a + 1 and kt = (a + 1)k = (p - I) 4-  (k - a). 
Since (k - 0) < (p - I), kt < 2(p - 1). Thus we need only consider 

the term xP-1 . Since Ch k (x)l t  is symmetric, the coefficient of xP -1  

equals the coefficient of x kt-( P-1) , and kt - (p - I) = (k - 0) < k. 

We show that if r  k, the coefficient of x
r 

in Ch k (x)l
t 

is (
r+ t 

1
-1) 

t-  

This is established by induction on t. If t = 1 the result holds. 

tn  k 
v , 

If it holds for t = t
0' 

then [h k (x)]  - rL
0 

f r +to - 1
) to  _  xr + terms 

= 
to+1  to  

of higher degree. Then [h k (x)]  = h k (x) Ch k (x)]  and the 

2,  - . 
coefficient of xr  is  

( +to 1 )  . t r+to, 
i  )  If n  s and n < p, 

to k=0  t0 - 1  

s < p, then ( r ) 1 0 mod p, (from the explicit form of ()). We 

show that ( r  t+t  1-1 ) ;E.--  0 mod p when r = kt - (p - I). Clearly 

(t - 1) - [IP ; 1  I < p so we need only show that Cr + t - I) < p or 
that (k + 1)t - 1 < (2p - 1). (k + 1)t - 1 = (k + 1)(a + I) - I 

= ak + a + k. Since ak = (p - 1) - B < (p - I), the result holds 

unless (a + k) > p. Then ak < (p - I) and (a + k) > p. As a,k El, 

graphical considerations show that no such a,k can exist. 

We now consider the case where q = pe  > p. We proceed by 

induction on e. If h
k (x) is a permutation polynomial over F e  then 

it is over F e_i. Thus k E 1 mod p(p e-1  - 1). Let k = 
ap(pe-1 )  1, 



and (k + 1) € J 

or  I k + 1 E -1 mod _ 

and (k + 1) 
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a E Z, a 	1. We may assume that k < (q - 1), or that 

ap(pe-1 
1) + 1 < pe  - 1. This implies a < 2, so in fact a = 1. 

We consider Eh k (x)7 2 , with k = 
p(pe-1 _ 1) 4. 1.  

If p = 2, then k = q - 1, and so h k (x) is not a permutation 

polynomial. Thus assume p > 2. Then k < (q - 1) and 

p  
deg C(hk(x)  

= 2{(pe-1  
1) + 1} > (pe  - 1). The coefficient of 

x
q-1 

equals the coefficient of 
x2k-(q-1), 

which is 2k - q + 2 

= 2p(p
e-1 

- 1) - p
e 
+ 4. Since p > 2, this is non-zero mod p, and 

so h
k
(x) is not a permutation polynomial over F• 0 q . 

If we define the polynomial h(1,1,k)(x)  
x 4 x2 4...4 x k ), 

 

then h(1,1,k) is a permutation polynomial if and only if k + I E I mod 

p(q - 1). As a generalisation of this we propose the following 

conjecture. Let h(t,j,k)(x) = x(1 + x j  +...+ (xj) k ). Then if 

((t,j),q - I) > 1, h(t,j,k) is not a permutation polynomial over F 

Assume (t,j) = 1. Let J = Ix EFFq '
•  xj = 11. Then we have 

CONJECTURE.  h(t,j,k), t > 0,j > 0, is a permutation 

polynomial over If if and only if 

{ k+1Elmod j , ci  _ and (k,q - 1) = 1 

and (R. - j,q -1) = 1 

.fx3(k+1 ) _ 
J  

xx. 

xj - 1  
In the first case, if xj  1, h(t,j,k)(x) = 



If xj = 1, h(t,j,k)(x) = (k + 1)x t . Since (t,q - 1) = 1, the 

polynomial x t  permutes IT . Since (R.,j) = 1,x mapsIF \(J) to 

itself, as x t  permutes J. Since (k + 1) E J, the polynomial 

(k + 1)x2' permutes J, and so h k (x) permutesiF . 

t x-j  -1 
In the second case, if x  J, h

k
(x) = x  

j  
= -x /1  . 

x - 1 

If x E J1 h(x) = (k + 1)xk . The image of J under -x i?  is -J. 

Thus h
k
(x) maps W \J -+ q\(-J) ' xk  permutes J, and (k + 1)x t :J  -J 

since (k + 1) E -J. 

The question as to whether these are the only permutation 

polynomials of this type remains open unless it = j = 1. If 

(2.,q - 1) = (j,q - 1) = 1, this conjecture would imply that 

k + 1 E 1 mod p(q - 1) is a necessary condition. For q prime, 

q 5. 17, the conjecture has been verified by computation. 

DEFINITION 2.6.  The Chebyshev polynomial of the second 

[kg] k  
kind, f (x) is defined by f k (x) =  (  1 )(-1) 1 x

k-21 
. 

1=0  1  

For these Chebyshev polynomials of the second kind, 

fk (x), k ET, we can find conditions sufficient to ensure that 

f k(x) is a permutation polynomial when q is odd. 

If the transformation x = u + u  made, then we have 

-1 
f
k
(x) = (uk+1  - u -(k+1) )/(u - u 1 ) if u  +1, f

k
(2) = (k + 1) 

mod p, f k (- 2) = (- 1) k (k + 1) mod p. 

16 

The polynomials which we describe below induce permutations 

of iF of a special type. 
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DEFINITION 2.7.  A map ff: F q  4-Fq  is called an s -permutation 
if 

(i) Tr(-a) = -ff(a), for each a EFF 

and  (ii) Tr(a) = a or -a, for each a E F . 

We have the following immediate consequences of the definition. 

I. Every S-permutation offF q  is a permutation ofF q . 

2. The identity map is an .g-permutation. 

3. Every 2-permutation fixes O. 

4. The set of .Y-permutations ofF q  is closed under composition. 

5. There are 2 1/2( q-1)  distinct 2-permutations of 

6. If 71' is an 4g-permutation then Tr 0  q  

Example. In F 5 , the map 

0  0, 1  1, -I 4- -1, 2 4 -2, -2  2, 

defines an 4'-permutation. 

THEOREM 2.5.  If k satisfies the three congruences 

k + I + 2 mod p 

k + 1 E + 2 mod 1/2(q - I) 

k + I E + 2 mod 1/2(q + 

and q is odd then fk (X) induces an ..2-permutation  oPfq . 

PROOF.  We note firstly that if M is the subset of FF 2 

consisting of all solutions of equations of the form x 2  - rx + I = 0, 

r E FF 	then 
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M =  EfF 2 : U  = 1 or 0+1  = 1} . 

(This result may be found in the proof of theorem 9.43 in Lausch 

and NObauer [19], page 210). •Since one of 1/2(q - 1), k(q + 1) is 

even, k must be odd. Thus fk (x) consists of terms of odd degree. 

Thus f
k (-x) = -fk

(x) and condition (i) of definition 2.6 is 

satisfied. To establish condition (ii), let u EFF 2 with 

u2  - xu + 1 = O.  If uq -1  = 1, then u 1/2( q -1)  = +1.  If u1/2( q -1)  = 1, 

then since k + 1 = +2 mod 1/2(q - 1), u I(+1  = u 2  or u l(+1  = u -2 . Thus 

f
k
(x) = (u 2  - u -2 )/(u - u4 ) = u + u x ' 

or f
k (x) = (u

-2  - u2 )/ 

(u - u -1 ) = -(u + u -1 ) = -x. The case uk ( q -1)  = -1 is similar, as 

is the case where u 1. If u = +1, then f k (2) = 2 or -2. Thus 

fk (x) induces an A-permutation on F q . 0 

COROLLARY.  If k satisfies the conditions of theorem 2.4, 

then f k  0 fk  = x, where the left hand side is reduced mod (xq - x). 

We may expressiFq  as the disjoint union of five sets A = {2,-2}, 

-1. B l  = (x E Fq : x=u+u , uq-1/2 = 11\A, B2  = {x  x = u + u
-1 

u cl -1 /2 =-1}\A,C 1 ={xE q .W. , )( = u + u -1 ;  = 1}\A, C 2  = {x E Fq : 

x = u + u -1 ; 0+1/2  = -1}\A. Suppose q large (we consider small q 

later). The distinct maps offF q  are given by the conditions k +1 E+2(p), 

k + 1 71 2, (1-2  1  2,  2, -2 mod (q -1), k +1 E2, 9:1-21  2, 2141 +2, 

-2 mod (q + 1). Since precisely one of (q -  1,q + 1) is even, only 
2 	2. 

eight of the sixteen possible combinations are consistent. This 

yields sixteen distinct maps. Suppose q i  1  is odd. Then the 

conditions which are, inconsistent are k + 1 : q - 1  + 2. The maps 2 
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induced on F may be calculated explicitly in both cases, the set 

of maps is closed under composition and the resulting group G is 

4 
isomorphic to C. 

For small q, the conditions may not all be distinct. 

Computer calculations yield the following special cases. 

PROPOSITION 2.2.  Let G be the group of maps ofFq  induced 

by the Chebyshev polynomials of the second kind described in theorem 

2.5. Then 

G C2 if q = 3 

2 . G C2 sf q = 5 

3 . G C2 sf q = 7 or q = 9 

4 . G = C2 if q 	11. 

3. POLYNOMIALS IN SEVERAL VARIABLES  

We now consider various results on polynomials in several 

variables overFF q . If p(x l ,...,x k ) is a polynomial over FF q it may 

be reduced mod fx11-1  -  - 1} to yield a polynomial of 

degree less than (q - 1) in each variable. The reduced polynomial 

induces the same map of eq k  4.If q  as p(x l ,...,x k ) does. In theorem 

1.1, we take n = q - 1 to yield 

THEOREM 2.5.  The number of zeros of f(x l ,...,x k ) which are 

such that x. 0 for 1 5 i 5 k, is given by (q - 1) k 
- r, where r 

is the rank of Cf, the (q - 1,k)-block circulant associated with f 

reduced mod {x11-1  -  - 1}. 
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PROOF.  The (q - 1)st roots of unity in W q  are precisely the 

non-zero elements of fF q , and by theorem 1.3 the rank of C f  is the 

number of non-zero eigenvalues of C f . Thus the number of zeros of 

f is (q - 1) k  - r, since the dimension of Cf is (q -  

The case of k = 1 of theorem 2.5 is the classical gnig-Rados 

theorem, a proof of which may be found in McDonald C277 or Redei [37]. 

Horakova and Schwarz [16], [38] and [39] have generalised the one-

variable anig-Rados theorem to obtain results on the factorisation 

of f(x). 

PROPOSITION 2.3.  (Horakova and Schwarz). Let f(X) E F cl [X] 

be of degree less than q - 1. Then the number of different 

irreducible factors of f(x) of degree d is given by 

)a-  1.14-Xq k  - I - rk ), where 
kid 

11  is the Mgbius function, and r k  is the rank of the (q k  - 1)- 

circulant associated with f, considered as a polynomial overfF k. 

This generalises as follows: 

THEOREM 2.6.  Let Ld  be the subset of felq  defined by 

(al,... ,an ) E Ld  if and only if gcd (deg a l ,... ,deg an ) = d and 

• j 10, for 1 j n. Then the number of zeros of aj  

p(x l ,•••,xn ) EFr c [X i ,••.,xn ] which lie in Ld  is given by 

dn 
p(Td(q

k 
 - 1 - 

kid 

where r
k 
is the rank of the block circulant associated with p as a 

polynomial in IF k. 
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PROOF.  The number of zeros of p which lie in F * 1, is given 

by q
nk - 1 - r k . If  is the number of such zeros lying in L i , 

then 

ik 
a.

1 
 = qnk  - 1 - rk . 

• By MObius inversion, cyd  =  1.()(cink _ 1 - r k ).  (lemma 1.6). 0 
kid 

Circulant matrices can be used to provide a necessary and 

sufficient condition for a polynomial to be a permutation polynomial. 

The one-variable case, due to Raussnitz [36] is as follows: 

PROPOSITION 2.4.  The polynomial f(x) of degree less than 

(q - 1) is a permutation polynomial over F q  if and only if the 

characteristic polynomial X(A) of the (q - 1) x (q - 1)-circulant 

associated with f is given by 

X(A) = 	- AMA - f(o)) . 

PROOF.  The eigenvalues of A are the set of f(a), a EIN\f0), 

and since IT (A - 	Aq - A, the result follows. 0 
13EFq 

(See also [7] vol. 3, page 290 and [43], page 191). 

In the general case, it is not sufficient to consider the 

block circulant associated with f, since the variables must be 

allowed to take zero values. We construct a new matrix as follows: 

given f(x l ,...,x k ), form the block circulant associated with f, 

denoted A
0 ' Now substituting each variable in turn by zero, we 

obtain k polynomials in (k - I) variables, •with associated block 
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circulants A i  ,...,A 1  , and so on, next taking pairs of variables 

to be zero, etc. We then form the diagonal block matrix 

k-1 
= 	AP )  . i=o 1  

The dimension of A is (q - 1) k  + ()(q - 1) k-1  +... = q k  - 1. 

THEOREM 2.7.  The polynomial f(x l ,...,xk ) is a permutation 

polynomial if and only if the matrix A defined above satisfies the 

k-1 

	

condition (X - f(0,...,0))X(A) = (A-X)q 	where x(A) is the 

characteristic polynomial of A. 

PROOF.  As in the one-variable case, using the fact that the 

characteristic polynomial of the direct sum is the product of the 

characteristic polynomials of its components. fl 

4. PERMUTATION POLYNOMIALS IN SEVERAL VARIABLES  

The following result appears in Lidl and Niederreiter E241. 

PROPOSITION 2.5.  The polynomial f(x l ,...,xn ) 	g(x l ,...,xm ) 

+ h(x 11141 ,...,x n ), 1 s m s n, is a permutation polynomial over IFp , 

p prime, if and only if at least one of g and h is a permutation 

polynomial. 

It is shown in [24] that there are polynomials g and h in 

disjoint sets of variables overfF q , q not prime, such that neither 

g nor h are permutation polynomials when g + h is a permutation 
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polynomial. The next result describes when this can occur. Let G 

denote the additive group of F q • 

THEOREM 2.8.  Let f1". .,f t 
be polynomials in disjoint sets 

of variables, where f i  is a polynomial in v i  variables. Then • 

f 1 +...+ f t is a permutation polynomial over F q = p
e
, if and 

only if, for any subgroup H of G of order pe-1 , there is an f. 

v. 
which distributes OF ) 1  uniformly over the cosets of H in G. 

PROOF.  We consider the group ring TG. For each g E G, 

let M (f) = Card f(x  .,x ) E W
k 

f(x  x ) = 0, where 
1" .  k  q'  l'"* ,  k 

f e yx 1 ,...,x0. Define a mapping (I) from F cl Ex 1 ,...,x0 to eG 

by (1) = f 4- X M(f)g E TG. Let e =  g. Then f is a permutation 
g EG 

polynomial over F if and only if cp(f) = ke for some k El_ Further, 

if f,h are polynomials in disjoint sets of variables, then 

(1)(f + h) =  

Let H be a subgroup of G of index p and let 0 = G -4- G/H = C p , 

where C is the cyclic group of order p. Then e extends to a 

homomorphism 0 = TG 4- CC p , and p = e 0 (I) maps Fq[x 1 ,...,x] into 

CC. Then the condition of the theorem may be stated as follows. For 

each subgroup H of G of index p there is an f i  with p(f 1 ) = k6, for 

some k El, where 6 =  g E CC and the summation is over all 

elements of C . 

Now suppose that fl  +...+ f t  is a permutation polynomial 

then 4)(f 1  +...+ ft) = ke, k E7. Let H be a subgroup of G of index 

p, and let p,0 be the corresponding maps defined above. Then 
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p(f i )  p(ft ) = ko(e) = k l e. If g is a generator of C p , and 

X: C  C is the character defined PY X(P) =t,  a primitive 

p'th root of unity, then x(e) = 0. Thus x(p(f i )) = 0 for some i. 

p-1  „  p-1 
If p(f 1 ) = X ai.g", where a i  E /, then x(P(fi)) =

t 
= 0. 

t=0  t=0 

Since the minimal polynomial of c is the cyclotomic polynomial 

p-1 
(Pp ( ); which has degree p - 1, (P p  (x) divides X oto(' in T[x]. 

t=0 

As the degrees of these polynomials are equal, they differ only 

by a constant multiple, and so p(fi ) = k2 (g) = k2i for some 

k
2  El, and so f. satisfies the condition of the theorem. Conversely, 

any irreducible character x of G(= C) may be represented in the form 

0 G .÷C ttwhere i mapsg E C to c, andOisahomomorphism. Thus 

if x is a non-principal character of G, then 

X(Cfl  ft)) = X(gfi))  X(Cft )) 

=  o p)(fl )  o p)(ft ) = 0, since Ip(ke) = 0. 

So in the representation of TG as a direct sum of one-dimensional 

subspaces, the only non-zero component of 4(f 1  +...+ ft ) is the one 

corresponding to the principal character. Hence (1)(f 1  +...+ f t ) belongs 

to the subspace of TG corresponding to the principal character. Since 

X(e) = 0 if x  X1, and x i (e) # 0, it follows that (1)(f i  +...+ ft ) = ke, 

k E /, and so (f 1  +...+ft ) is a permutation polynomial over Wq . 0 

If q = p, then we obtain proposition 2.5, since then H = {1}, 

G/H = G, and the condition on f i  reduces to f i  being a permutation 

polynomial over F . 

The following result generalises a theorem of Niederreiter 

[31] from the prime case. Let 6: GR(q k-1 ,r)  GR(p,r)(=FF q = pr), 
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be the canonical map with kernel (p), where GR(q t ,r) is a Galois 

ring as defined in chapter 1. Let A be a set of representatives of 

the inverse images of 0, and let 0(a') = a, a c fF q , a' E A. 

THEOREM 2.9.  Let f E Fq[x 1 ,...,x0. Then f is a permutation 

polynomial over F q  if and only if f(x l ,...,x k ) = a, a EFF q , has a 

tp (r(k-1)-1) solution and 	, [f(a l ,...,ak)] 	= 0 in 
(a 1 ,...,a k )EA' 

GR(q k-1 ,r) for t = 1,...,q - 1, where A and GR(qk-1 ,r) are given 

above. 

PROOF.  Let ka  = card {(x 1 ,...,x k ) E  f(x l ,...,x k ) = a} 

for a E IF . If e(x) = e(Y) for x,y E GR(q
k

), then x = y + pa, q  

a E GR(q k-1 ,r), so 

(r(k-1)-1)  (r(k-1)-1) 
xP  - YP  

Thus 
(a 1 ,...,a k )EA 

k [f(a l' — ' a k )1 
 tp )-1) 

y 	k,(a') P 
aEF " 

Since ka = q
k-1

, this sum is zero in GR(q k-1
,r). Conversely, if 

(r(k-1)-1) 
the conditions of the theorem hold, then X  k a (e)' 13  = 0 

aEF 

in GR(q k-1 ,r), for t = 1,...,q - 1. This also holds for t = 0. 

Regarding the {k a } as variables, we obtain a system of equations in 
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fk a ). The coefficient matrix has determinant 

	

,(r(k-1)-1) 	(r(k-1)-1) 
D =f 	((ai)P 	- (e)P 	). 

e.EA j 
i#j 

e(D) # 0 in F so D 	(p) in GR(qk-1 ,r). Thus ka = 0 in GR(qk-1 ,r), 

and since ka CZ, ka = 0 mod qk-1 for all a E F 	But ka ?_1 for q . 

all a E Fq , and so ka 	q k-1 . Since X 	ka  = q k , ka  = q k-1 , and 
aEFq  

so f is a permutation polynomial overfFq . 0 

5. K-POLYNOMIALS  

We now consider a more general class of polynomials, known as 

K-polynomials. 

DEFINITION 2.8. A polynomial f(x l ,...,x k ) is called a 

K-polynomial overfF q  if k a  = card f(x 1 ,...,x k ) EFF: f(x l ,...,xk ) = a), 

a E Fq, is independent of a for a # O. 

In the single variable case, a K-polynomial is a permutation 

polynomial or induces the zero map onfF q . We shall later give 

examples of K-polynomials in several variables which are not 

permutation polynomials. Suppose that f,g are polynomials in 

disjoint sets of variables. Suppose further that f is a K-polynomial 

and f(x l ,...,x k ) = a has m solutions for a 	O. Let g be a 

polynomial in Q variables with t zeros. Then fg = a has m(q i  - 

solutions if a # O. Thus fg is a K-polynomial. 
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If f f are K-polynomials in disjoint sets of variables, and 
l' 2 

if the equation f = a has mf  solutions for a # 0, then m f1f2  = mflmf2 . 

An analogue of theorem 2.8 may be obtained as follows. Let g be a 

q-2 
fixed generator ofiF0{0}. Let 0: f  c+x

t
, where 

t=0 

ct  = card {f = gt l, and 0(f) E Z[X]l(XCI-1  - 1). Then if f 1 ,f2  are 

polynomials in disjoint sets of variables, 0(f 1  f2 ) = e(f 1 ) (f2 ). 

If f
1" ..,ft 

are polynomials in disjoint sets of variables then 

is a K-polynomial over F q  if and only if 

 
0(f l ,...,ft ) =m  

) 
1 x _  jfor somemEZ. For example, suppose 

q = 5, f l  = a, a # 0, has m l  solutions if a = 1 or a = g, and no 

solutions otherwise. Suppose f 2  = a has m 2  solutions for a = 1, 

a = g
2
, and no solutions otherwise. Then 

4 
. x -  

e(f 1 f2 ) = m 1m2 (1 + x)(1 + x2 ) =  1 x- 1 ), and so f
1 2 is a 

K-polynomial, even though q is prime, in contrast to theorem 2.4. 

The following result is an analogue of a criterion of 

Niederreiter [29]. Let x be a character of the multiplicative 

group F* and define x(0) = 0. 

THEOREM 2.10.  f(x i ,...,x k ) is a tcpolynomial over Fq  if 

and only if 	y 	k  x(f(a l ,...,a k )) = 0 for all non-principal 
(a1,...,a k )dfq  

characters x of 5. 
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PROOF. 	k   
(a1,...ak)dFq x(f(a

l ,...,a k
) = adi- 

4. 
q 
 kax(a) 

,  

/  X(a) 
adF 

= 0 . 

Conversely, if a # 0, 

X   I ka = (q- 1)  

f(al,...,ak) 1  

(a 1 ,...,a k ) X  a  

where x runs over all characters of IF *  q . 

Thus k -
a  (q- 1) 	 / X(f(a 1 ,...,a k ))x-1 (a) 

1 
q-1 / X-

1 
 (a )  x(f(a l ,...,a )) 

X  (a l ,...,a k ) 

. 1 
q_ 1 Y X-1(a)  X(f(al'—' a k )) 

X=1  (a
1'.a k ) 

Let T = card f(a 1 ,...,a k ): f(a l ,...,a k ) # 9). 

Then k - — (1.T) =  and so f is a K-polynomial. 0 a  q- 1  q- 1' 

6. ELEMENTARY SYMMETRIC FUNCTIONS  

To conclude this chapter we consider the elementary symmetric 

functions over F q • We shall prove that some of these are K-polynomials, 

and even permutation polynomials. We denote the elementary symmetric 

function of degree r in n variables by S 11,1,. We begin with the follow-

ing result on homogeneous polynomials. 

(a l ,...,ak) x 
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THEOREM 2.11.  If f(x l ,...,x k ) is homogeneous of degree r, 

and (r,q - 1) = 1, then f is a K-polynomial over Wq • 

PROOF.  If f(x l ,...,x k ) = 0 for all (x 1 ,...,x k ) E Fq  then 

f is a K-polynomial. Suppose that f(xl ,...,xk ) = a(t0) for some 

(x 1 ,...,x k ) E Fq . Let 0 E Fq , a O. Then since x r  is a permutation 

polynomial over if  there exists a unique A E F with Ar  = 

Then f(Xx l ,...,Ax k ) = a, and the map (x 1 ,...,x k )  (Ax i ,...,Ax k ) 

is a bijection of the sets f(x 1 ,...,x k ): f(x l ,...,xk )  a} and 

f(x l ,...,x k ) = B}.Thus f is a K-polynomial. 0 

We note that the condition of theorem 2.11 is not a necessary 

condition, since f(x i ,...,x k ) = x l  x k  is a K-polynomial, where k 

is arbitrary. 

However, we do have 

PROPOSITION 2.6.  If f(x l ,...,x ) is homogeneous of degree r 

then a necessary condition for f to be a permutation polynomial 

over IF is that (r,q - 1) = 1. 

PROOF.  If t = (r,q - 1), then there are t solutions to 

t _ a - 	, Then f(ax i ,...,axn ) = f(x l ,...,x n ). Thus if f(x l ,...,xn ) = 1, 

so is f(axax
n ). Thus the cardinality of the solution set of 

f(x ,...,xn ) = 1 is divisible by t, and so t = p k. Thus t = 1. 0 

We use the following lemma to locate some permutation poly-

nomials among the elementary symmetric functions. Define 

f (s) 
• If -0- FF by f (5)  (x i ,...,x n ) • 	q 	 (x i, 	)(A) 	S(X1 ÷ X 	 A), 
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for any polynomial S in n variables over W , and any 

(X1,...,X ) E IF. 
n  q 

(s) LEMMA 2.1.  If f  (X) is a permutation polynomial 
,x1 ,...,xn) 

in X over FFq  for any choice of (x l ,...,xn ) E eq., then S is a 

permutation polynomial in (x 1 ,...,xn ) over Fq • 

PROOF.  Define an equivalence relation p on Fqn  by (x 1 ,...,xn ) 

p(xi,...,c if and only if there exists a E fFq  such that xi = x i  + a, 

for 1 < i  n. Each equivalence class contains q elements and there 

are q
n-1 

classes. For each (x
1n

), S(x
1  + "" 

A,  x + A) = 
 n 

E rr 	has a unique solution A. Thus there is a unique solution in 

each p-class. Since there are q
n-1 

classes, S(x l ,...,x n ) is a 

permutation polynomial. 

The converse of this lemma does not hold, even for homogeneous 

3  3  3 
symmetric functions. For example, S(x 1 ,x2 ,x3 ) = x i  + x 2  + x3  is a 

(s)  3  3 
permutation polynomial over F 3 , but f,  ,(A) = x i  + x2  + x3 3  

kx l ,x2 ,x3 ) 

is a constant function in A. 

In order to prove some permutation polynomial properties for 

elementary symmetric functions we need some results on certain 

binomial coefficients mod p, where p is prime. 

•( ID A - 1 ) LEMMA 2.2.  (i)  a.  p x  I E (a - 1) mod p if a  ,  0. 

(ii) If r = pA , n =ap
x
- 1, a > 1, A  O. 

then [ n -  k  )E0 mod p for 1 k < r. r  k 
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_ (ap 	- 1)...(ap u  - P U)  mod p 

X 0 1...p 
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PROOF.  These results may be proved from Lucas' formula for 

  

binomial coefficients mod p. We give proofs which are self-contained. 

 

(i) Induction on A. 

If A = 1, [ 

 

ap
A
-11  - 1 	(ctp - 1) . . . (ctp - p )  

	

X j 	1 	P  p 

 

= (-1) P-1  I    P 1 mod p 

 

t  ) 

E (a - 1) mod p. 

If the result holds for A = A 0'  then 

 

( A +1  Ael 0  A +1  0 A +1 
ap  - 1  . (ap 	- 1)...(a 0p 	- p 	)  

 

o
+1  A0+I 1...p 

apA0+1  p  I ap0+1  
+1  A 

_ 2p  1 . 1 ap  0 
-POP  

 

2p o 
P .P 

  

 

mod p 

  

A
0  I 

_ ap  - I 

I  AO 

E (a - 1) mod p, by induction. 

(ii) Let k = p- t. 

Then f n  k 1 

 

 
r - k J = ( (a - 1)P A  + t - 1 ) where 1 

 t < p x 

[ ( a -. 1 )px ][( a - 1)px  + 1].. .[(a - 1)p x 
+ t•- 1]  

1 	.00 	 (t - 1) 
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To show that this is zero mod p, we only consider factors divisible 

by p. These are 

[(a - 1)p X ][(a - 1)p A  + p1.. •[( - 1)p A  + [1111 

(a 	1)9A 	(a 	1)13A-1 	rt-p 11 

L 	-I 1 if (t - 1) 	p 

= 0 otherwise. 

In each case, the result is zero mod p. 

THEOREM 2.12.  If S ilr  denotes the elementary symmetric 

polynomial of degree r in n variables over Fq  q = p
t

, then S
n 

, 

is a permutation polynomial over F if 

(i) r = pe , e Eli 

and 	(ii) fl = ar -1, where a e Z, a t 1 mod p. 

PROOF.  By lemma 2.1 it suffices to show that 

f(a) = S fl (x 1  + a,...,x n + a) is a permutation polynomial in a for r  

any choice of (x 1 ,...,xn ). A typical term of f(a) is 

r terms 
(x1+0)—(( ri i- a),Aerenotall.occur in each term 

r terms  () terms 
r  r-1 

	

a + (x i  +...+ xn )a 	+ (x 1x2  +...+ x 1xn )ar- 2 +...+ x i  ... xn  (*) 

Sn  has ( n ) terms. Consider the coefficient of a r-k  in f(a). This 

is a multiple m of Sryl(x l ,...,xn ). Since the coefficient of ar-k 



33 

in ( ) has () terms, and S  terms, m(Z) = (kIrd ir1,12.  thus 

m = ()q)/t, k ) and so 

m. {n-k} 
, or 

r- k 

f(a)  in - k 1 sn (x  

k=0 tr  k  k 
ar-k 

We show that, under the conditions of the theorem, the coefficient 

of a
r 

is non-zero, and the coefficient is at is zero for 1  t < r. 

The coefficient of ar is ( n ) =  ane  - 1 1  E (a - 1) mod p, and this pe  j 

 

n  k 
is non-zero since a t 1 mod p. The coefficient of a r-k  is( 

-  l . 
r - k j 

for 0 < k < r. Thus f(a) is a permutation polynomial in a and so 

Sr (x l ,...,x p ) is a permutation polynomial. 111 

COROLLARY.  If Sr (X1,...,xn ) is the elementary symmetric 

polynomial of degree r in n variables, and r,n satisfy the conditions 

of theorem 2.12, then S
n is a permutation polynomial over all 

extension fields 

This is in contrast to the single variable case, where the 

only permutation polynomials having this property are those of the 

form ax P + b, j 612, a,b E 
FP. 

Recalling the definition of p in lemma 2.1, we call a 

polynomial f p-constant if the identity f(x l  + a ,...,x n  a) 

= f(x l ,..,xn ) holds. Thus, amongst the elementary symmetric 
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functions, S
r 

is p-constant over If if (n -  E -1 mod p
t
, where 

Pt > r, pt-1 
	

r. The set of all p-constant functions (not 

necessarily in the same variables) is closed under addition and 

multiplication. If n = 1, then a p-constant function is a constant 

function. If f(x l ,...,xp ) permutes each p-class (e.g. the S rlys  of 

theorem 2.12) and g(y i ,...,yt ) is p-constant, where {x i } n {yi } 

may be non-empty, then f + g permutes each p-class and so is a 

5  
permutation polynomial. For example, over F 3 , S i 3  s a permutation 

polynomial , and S  a p-constant (and a permutation polynomial). 

5 Thus S3 (x 1 ,...,x 5 ) + X(x l  + x 2  + x3 ) is a permutation polynomial 

overFF3  (and, in fact over all • q , q = 3e ), for X  0 mod 3. In 

general, if, over IF. f(x l ,...,xp ) permutes each p-class and 

g(x l ,...,x t ) is p-constant, then (f +Xg )(x l ,...,xmax
(n,t) ) ' A 	0 ' 

is a permutation polynomial over all extension fields of F . 



CHAPTER 3 

ORTHOGONAL SYSTEMS OF POLYNOMIALS OVER A FINITE FIELD 

WITH COEFFICIENTS IN A SUBFIELD 
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It was noted in Chapter 2 that any orthogonal system 

(f...,f
r
) in k variables, r 5 k, may be extended to an orthogonal 

system f1,... 'k (Niederreiter [30]). Suppose now that f l ,...,fr  

have coefficients in Fq , and that (f 1 ,.  f) is an orthogonal 

system over an extension field F n  of Fq • The question arises 

whether it is possible to extend (f 1 ,...,fr ) to an orthogonal 

system over F n , with coefficients in Fq . We answer this question 

in the affirmative, and calculate the number of ways in which this 

can be done. 

Carlitz and Hayes [4] have investigated the structure of the 

group A(qn ) of permutations p of IF n  induced by polynomials with q. 

coefficients inifq . We extend these results to multivariable 

polynomial vectors. We begin by determining the structure of the 

group A
k
(q n ) of permutations of F

k
, induced by permutation poly- 

q . 

nomial vectors with coefficients in F q • We then consider the 

problem outlined in the preceeding paragraph. 

1. THE GROUP A k (qn )  

,n 
Since the polynomial (x 4  - x) induces the zero map on F n , 

we may suppose that all polynomials have degree less than q n  in 

each variable. 

LEMMA 3.1.  p(x l ,...,x k ) EfF nEx„...,x k ] has coefficients 

q  
in W q  if and only if p(all,...,a) =  for all 

a / ,...,ab C IF n. q 
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PROOF.  If p(x l ,...,x k ) has coefficients in F q , the condition 

is evident from the fact that the Frobenius automorphism (p:x xq of 

F n  fixes Wq . Conversely, if 

i
I 	

i k 
p = X a.  •  A, 	... xk  , 

1 1,""lk 

where a.  . E FF n , then 
1  k 

q i l  q i k 
-  =  b4  

" k
x i  x k  

where b. = a
i 	i

k - a 
1  .  

k 
.. 1

'
i
k 

• 1"  '  

Since the map (1):x  xq is an autamorphism of F n , the polynomial 

bi.
•k 

x
I  •'• 

x
k 

induces the zero map on IF n , and since its degree in each variable 

is less than qn , each coefficient is O. Thus bi l,..., i k  = 0, which 

implies that 

p  . 0 

	

n s  n s 
Let a = (a 1 ,...,a k ), a i  E F n . A k-tuple (a,..  ,sEZ.1  will 

be called a conjugate of a. By the degree of a, we mean lcm (deg a.). 
ls.kk  1 

Clearly deg a divides n. Further, define 

I, - {a E k  
s  q s 

: d  - d1  d s.(  
)  ( q  

K  F  
) 
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LEMMA  3.2. If a E Kk 
, 

then the orbit of a under Ak (q n ) is 
d 

Kk 
d• 

PROOF.  Let Hd  = (a1 ,...,ak ) : a i  If cidl. Then 

" 
vk = n 
 

H 
 H . Since each H k  is mapped into itself by A k (q n ), d  d 

tid 
t#d 

it follows that K
d is mapped into itself by A

k
(q

n
). Hence orbit 

(0 5_ K. To show the reverse inclusion, we need to find an f E A
k
(q

n
) 

such that if 6 .  =  Kd , then f(6 .) = a. Such an f may be 
n S 

defined as follows. If  = a , then f = cp s . Otherwise define 

x  , if x is not a conjugate of a or 6 

f(x)  = 	(ps (§)  , 	if 	= (1) s (20  

	

(Ps (g) , 	if x = 

f is a permutation polynomial since a,e both have d conjugates. 

Further fq) = (pf, and so f E Ak (q n ). Hence orbit (a) = K. 0 

For each divisor d of n, we denote the group of permutations 

 

of Kk  with 0 = (pg by dunn 
 n

k
k. Ak,oln, 

) may be mapped into dG ir(1  by e d , 

where ed (f) = fi I,• Thus there is a homomorphism e:A k (q n ) -* X dG I , 
K"  din 

from Ak (q n ) to the direct product of the dGly(1. 

THEOREM 3.1.  The homomorphism 8 is an isomorphism. 

PROOF. We define an inverse homomorphism tp as follows. 

Given  d)  ' ddGn , Cfd ): = f, where f is the orthogonal 
din ' 
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system which induces the same map on irk n  as each f
d
. Since f 

commutes with (I), f E A k(e). 0 

Let yd  be the number of conjugacy classes of K. Then 

IKi = did. Let Cd  be the cyclic group of order d, and S n  the 

Yd winetricgrouporinobjects.wineir:S.,
d 
 ÷Aut (Cd  ) by letting 

' 

Syd  permute the yd-fold product edd. 

THEOREM 3.2. 
 d  Gk 

n is isomorphic to the semidirect product 

Yd 

 

CA  X S.N, 

	

u 	rA .  u 

PROOF.  The proof is essentially the same as that of theorem 

2 of Carlitz and Hayes [4], with the conjugacy classes of a replaced 

by the generalized classes of a, and yd  replacing ff(d). 0 

COROLLARY.  The order of A
k
(q

n 
is II (yd !)d. 

din 

It remains only to evaluate yd . 

THEOREM 3.3.  y 1  r  dk  n 
=  L 
— 

din 
q p4 ) . n  n 

PROOF. 	Y did = q nk , and so, by the MObius inversion 

din 

formula (Lemma 1.6) 

nyn  = 	cidk p(  q)  

di n 
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2. ORTHOGONAL q-MAPS AND q-SYSTEMS  

By lemma 3.1, a permutation polynomial p in k variables over 

W n  has coefficients in IF if and only if p commutes with 0, the qn 

Frobenius automorphism of Fn.  Any such polynomial may be extended 

to a permutation polynomial vector over F n , but this vector will 

in general not have its coefficients in F q • We now find necessary 

and sufficient conditions for a polynomial to be a component of a 

permutation polynomial vector over F n , with coefficients in Fq . 

We shall call an orthogonal system (f 1 ,.  f) in k variables, over 

W n , r  k, with coefficients in If , an orthogonal q-system if it 

can be extended to an orthogonal system (f l ,...,fk ) with coefficients 

in F . We aim to characterise the maps of F n  induced by such systems. 

To this end we introduce the following definition. 

DEFINITION 3.1.  A map a  : wkn .Fr, r  k, is called an 
9 

orthogonal q-map if the two following conditions hold: 

(i) if a(a l ,...,a k ) = (a l ,...,ar ) and a(a (11 ,...,41( ) = 

then (19 = B. 1 < i < r 1 ,  _  _  . 

(ii) if FF t , tin, is a subfield of IF ,, then a maps T k, onto F r., 
9 

q u q t. q t. 

and the equation a(x l ,...,x k ) = a has 
qt(k-r) 

solutions for 

each a E F r,. q t, 

LEMMA 3.3.  Any orthogonal q-map a may be represented as the 
r. map W n  +FF n  induced by a polynomial 	vector with 	coefficients 	in q  . 	q 
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PROOF. Any map a : Fk n  irrn  may be represented as a poly-

nomial vector over FF ' n 	Condition (i ) and lemnia 3.1 show that the 
q . 

coefficients of such a vector lie in FF . 0 

We denote the set of orthogonal q-maps F k n  +IF rn  by 
9 

S(n,k,r,q). Then S(n,k,k,q) = A k (q n ). By section one, there 

exists an orthogonal system f over F n  in k variables with 

coefficients in ifq  which we call an orthogonal q-system, and so , 

the vector of the first r components of f is an element of 

S(n,k,r,q), which is therefore non-empty. In Section 1 we regarded 

Ak (q n ) as a permutation group over IF kn . We now consider A k (qn ) as 

a permutation group over S(n,k,r,q), r s k. Where no confusion can 

arise, we denote S(n,k,r,q) by S r . If f E S r and tp E A k (q n ), define 

ip(f) by 

ip(f )( u1 ,.. .,u k ) = f (Ig u i ,..., u k ) ) • 

THEOREM 3.4. The group Ak (qn ) acts as a transitive permutation 

group on S r, where the action of A k (q n ) is defined by Ip(f) = f(1), 

with f C S r 	E Ak (q n ). 

PROOF. We show firstly that if f E Sr , lp E A k (q n ), then 

tp(f) E Sr . 

= f(14) 1 (u1"'" u k )3c1 " — "k (u1"'" u k )](1)  

where 11) i  is the map of F kn 	n  formed by taking the i'th 
9 



42 

projection of ip.  Since 

ip(f)(u 1 ,...,u k ) = f(ip 1 (u 1 ,...,u k ),...opk (u 1 „...,u k )) and f E Sr , 

ip(f) satisfies condition (i) of definition 3.1. Now let F  c q „ 

Then 110) : F
k t  -4- IF rt . Consider the equation tp(f)(x l ,...,x k ) = a, 
9  9 

a E F
r
t . Since lp induces a bijection of F kt , the number of solutions 

of this equation is the same as the number of solutions of 

f(x...,x
k ) = a and so 1P(f) E Sr . We now show that lp induces a 

permutation of S r. Suppose Cy = Cf 2 ). If (v 1 ,...,v k ) E Fqn , 

then there exists (u 1 ,...,u k ) E 	such that 

= (v 1 ,...,v k ).  Then 

Cf 1 )(u 1 ,...,u k ) = Cf2 )(u 1 ,...,u k )  = f2 (v 1 ,...,v k ), 

n and so f
1 

= f
2. 

To show that A ( q  ) acts transitively on S
r' 

we 

firstly extend the notation introduced in section 1. 

= {v E F Sn : deg v = d}, where deg (v 1 ,...,v s ) = _  q  

= lcm {deg v 1 ,..., deg v s }. Then Frn  = U K.  If td, din, 
9  din 

f E S
r
, define 

af  (t d) = {x E Fk  x € Kk  and f(x) E Kr } . -n• • -d  -  t 

Then W k = U a (t,d), if f E S r* If ff
2 

E S
r' we construct 9 n  dIn f  

tid 

E A
k
(q

n
) with ip(f2 ) = f l  as follows. Corresponding to f 1 ,f2 , 

there are partitions af i , af2 , offfe . Choose a set R t  of 

representatives of the conjugacy classes of IFtn , for t = k and 

t = r. Since af (t,d) is closed under conjugation by (i) of 



43 

definition 3.1, yt,d) = R k  n af(t,d) is a set of representatives 

of the conjugacy classes of elements of af (t,d). For y E Rr  n 

define 

y(t) = y(f,y,t,d) = f -1 (y) n Bf(td) . 

Then from definition 3.1, the cardinality of y(f,y,t,d) depends 

only on t and d. Take any bijection from y(f l ) to y(f2 ). By 

preserving conjugates, this extends uniquely to a bijection of 

afl (t,d) to af2 (t,d) and hence from F „ to itself. From the 

construction, this bijection ip  commutes with O k  and so ip E Ak (qn ). 

Further O(f 2 ) = (f 1 ), and so Ak (qn ) acts transitively on S r. 0 

The connection between orthogonal q-maps and orthogonal 

q-systems is given by 

THEOREM 3.5.  A polynomial vector f = (f 1 ,.  f) in k 

variables over F n  is an orthogonal q-system if and only if the 

. mapping which f induces on Wk 
 n  is an orthogonal q-map. 

PROOF.  If f is part of an orthogonal system 

f
(k) 

= (fl' 	'fk ) in F  then f
(k) 

commutes with 0
k , and so f 

satisfies condition (1) of definition 3.1. Since f
(k) 

induces a 

permutation of F
k  

tin, f is an orthogonal system over F 4., and q ‘ 

so condition (ii) holds. 

Conversely, consider any orthogonal q.-map f, and any 

orthogonal q-system g = (g 1 ,...,g k ). Let g  = (g 1 ,...,g r ). 



Then g
(r) 

induces an orthogonal q-map on F
k
n . By theorem 3.4, 

there exists tp E A
k
(q n ) with p:g

(r) 	
f. This gives a represent- 

ation of f by polynomials over W q , and as such is part of p(g). 

Thus f is induced by an orthogonal q-system. 0 

3. EXTENSIONS OF q-SYSTEMS  

In section 2 we showed that orthogonal q-maps are precisely 

those maps ofF
kn  toff rn  induced by orthogonal q-systems. We now 

consider the question of extending a given orthogonal q-system on 

FFqn  to one on W qn , I 5 r 5 t 5 n. We use the following results 

on permutation groups, which may be found in Passmann [35] p. 12. 

If G is a permutation group on a set A, let G a  = {g E G : ag = a}. 

LEMMA 3.4.  {g E G : ag = 13} = G a h, where b E A, and 

h : a  b, h E G. Further if G is transitive, then EG:Ga J = lAl. 

THEOREM 3.6.  The number of ways of extending an orthogonal 

q-system f over F rn  to one over 1F s n , 1 r 5 s 5 n, is independent 

off. 

PROOF.  f is extendable to lp E Ak (qn ) if and only if 

Ii(u) = f, where u(x l ,...,xn ) = (x 1 ,...,xr ).  In lemma 3.4, take 

G = A k  (q n  ), A = S r a = u, b = f. Then the set of all ip with 

tp(u) = f is a coset of G a , a = u, and so the number of ip which 

extend f is given by lA k (qn )1/IS 1,l. Any extension of f to 

11) E Ak (q n ) may be obtained by extending it to some g E S s , and 

44 
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then extending g to tp. If the number of extensions of f to S s  is 

A(r,$), then IGIA(r,$)/IS s l = IGI/IS r l, and so A(r,$) = IS s I/ISr l, 

and this is independent of f. D 

Thus the extension question is reduced to evaluating IS r l• 

We introduce some new notation. Define Tr
(n,r)(

t) = I 	qd(k-64), 

din 
tld 

where the summation is taken over all divisors d of n such that tld. 

Note that if tin then ff (n,r) (t) = 0 and the number of conjugacy 

classes in Kr is  

THEOREM 3.7.  The number of ways of extending an orthogonal 

q-system f overfF rn  to one over IF s n , 1 	r s < n, is given by 

ff (t,k-r) IS 1/1S r l, where ISr l 	TT EN(d) T-T m(d,t)t 	], N(d) is 
din 	tId 

the multinomial coefficient (n (d,o ,(1) ) 	'(1,k-r) (1)  '(d,r) (1)  

where t ranges tir( t,k_ r) (1)71- ( d,r) (t) 	dir(d ,k-r)
(1) '(d,r) (d))  ' 

over the divisors of d, and 

M(d,t) - (tff (d,r) (t)• (t,k-r) (1))!  

(tir (d,r)
(t)!)7(t,k-r)(1) 

PROOF.  To evaluate ISr l we begin by evaluating 

X(n) = #{f(y) n Kk  where f is a q-orthogonal map and y E Kr l. n' 

We regard r,t,q and k as fixed, and n as variable. Further, define 

0 i t/n 6(t,n) = 	
f 

 {1 if tin • Then A(n) is a well defined function from 
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+ 	+ , 7Z , and A(n) = 0 if tin. 	A(d) is the total number of 
din 

elements ofiFqn  mapped onto y ( F r n  by f, if tin, and 0 if t/n. 

Thus Y A(d) = q n(k-r) (5(t,n). By MObius inversion 
din 

A(n)  = 	cid(k - r) 6(t,d ) 14 
din 

= m(l,r) ( t )  

Thus the total number of elements of K k mapped into Kt is 

Furthermore, the action of a q-orthogonal 

k  map on a conjugacy class of K d  is determined by its action on a 

single element, and the images of elements of a conjugacy class 

are themselves conjugate. Select a set of representatives of the 

conjugacy classes of K. Then Krt , r 5 k, must receive 

t7 (d,r) (t)7 (t,k-r) (1) such representatives under an element S r' 

k  To construct a q-orthogonal map on Kd , firstly distribute the 

representatives into lots of size tir(d,r)(t) Tr(t,k-r)(1)'  This may 

be done in N(d) ways, where N(d) is defined in the statement of 

the theorem. 

Now consider the t7(d,r)(t)7(t,k-r)(1)  representatives which 

are distributed over Kt' This distribution may be effected by 

choosing a set of representatives of conjugacy classes of K rt  (in 

7 (t,k-r) (1)  ways), and distributing the tir(d,r)(t) Tr(t,k-r)(1) 

elements uniformly over the 7 (t,k-1) (1) classes. There are M(d,t) 

ways of doing this, where M(d,t) is defined in the statement of 



the theorem. Thus the total number of elements of S
r is given by 

Isr 1 = TT (N(d) TT M(d,t ) tir(t,k-r)(1) ). 0 
din  tid 

47 



CHAPTER 4 

SOME GENERALISATIONS OF CHEBYSHEV POLYNOMIALS 

AND THEIR INDUCED GROUP STRUCTURE OVER A FINITE FIELD 



. 48 

If u,b are rational integers then the polynomial 

f(z) = z
2 

- uz + b has roots 0 1 ,02  in the complex field, such that 

u = a l  + 02  and b = 0 102 . The polynomial g k (u;b) may be defined by 

requiring f k (z) = z2  - g k (u;b)z + b k .to  have roots 4,4. Thus 

g(u03) 
 cyki  .  b kai k and  bk  

and Waring's formula 

(see Lausch-Nlibauer [19] page 297) allows the expression of g k (u;b) 

as a polynomial in u and b. These polynomials g k (u;b) are known as 

Dickson polynomials ([19] page 209), the case b = 1 being,up to a 

linear transformation, the classical Chebyshev polynomials of the 

first kind. The explicit form of such a polynomial is given in 

definition 2.4. When these polynomials are considered as being 

defined over a finite field FF (i.e. the coefficients are reduced 

modulo the field characteristic) it eventuates that some of them are 

permutation polynomials. The necessary and sufficient condition for 

g k (u;b) to be a permutation polynomial is that (k,q 2 -1) = 1where 

q is the order of the field (see [19] page 209). Mauer [33] showed 

that the set {g k (u;b), b fixed} is closed under composition of poly-

nomials if and only if b = 0, 1, or -1, and determined the structure 

of the groups of permutations induced by polynomials of this type in 

these cases. 

Lidl [23] extended this definition to an n-variable form of 

the Chebyshev polynomials and their algebraic properties were 

considered by Lidl and Wells [26]. In this formulation the quadratic 

f(z) is replaced by a polynomial 

r(u  n+1 
,...,un ,z) = z  - Lyn  +...+ (-1) n  unz + 

( z  - al )  (z - awl ) 
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where 11. ElZ, a. E e. When taken over F q  r has (n+1) not , 

necessarily distinct roots in F ( n+1)! . 

If k is a positive integer, set 

r (k) (u
1 z) = (z - -

n+1
) • 

The coefficients g
(k)
t 
 

(u  ,u) of r
(k) 

are elementary symmetric 

functions of ak 	a
k 

' and so are symmetric functions of 
n+1  

0 1 ,...,an+1  . Thus the coefficients of r (k) 
are all polynomials 

in (u 1 ,...,u n ) by the fundamental theorem on symmetric functions. 

(k) In this way we obtain a polynomial vector g(n,k,b) = (g
1 (u 

(k) 
gn  (u 1 ,...,u n ,b)). The explicit forms, recurrence 

relations, and generating functions of these polynomials are 

contained in F231. Here we deal only with their algebraic properties. 

When considered as a polynomial vector over F q  g(n,k,b) induces a , 

permutation of OF ) n  if and only if (k,q s  - 1) = 1, s = 1,...,n + 1, 

for b  0, s = 1,...,n for b = 0 (see [26] page 106). In the two 

variable case the corresponding group of permutations has been 

determined by Lidl ([20] and [21]). Here we begin by considering 

a more general construction. We take 

r(u
' un' z) = z

n 
- 

u1zn-1 
+...+ (-1)

n 
u
n 

If f(z) is a fixed polynomial, define 

r (f) (u ,...,u n ,z) = (z 	f(a1 ))  (z - f(on )) 

= z n  - gi f) (u 1 ,...,u n )zn-1  +...+ (71)ngtV)(u1,...,un). 
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Then, as before, each g (f) may be written as a polynomial in 

u l ,...,un . When f(z) = z k , this essentially corresponds to g(n,k,O) 

as given above. In the first section of this chapter we examine the 

properties of the polynomials defined in this way. Then we consider 

the groups of permutations induced by Chebyshev polynomials in n 

variables over W and determine which of these groups are cyclic. 

(This generalises the results in [21], [23] and [26] to the n-

dimensional case.) The general results are then applied to obtain 

a result of Brawley, Carlitz and Levine [3] on polynomials which 

permute the set of nxn matrices overWq . 

I. THE GENERAL CONSTRUCTION  

The construction outlined in the introduction to this 

(f) chapter defines a polynomial vector (g (f)
' 
 ...,g

n 
) which induces 

1  
cin  

a map  
fFeln. 

It is more convenient to consider this process as 

an operation on the set of monic polynomials of degree n over W q, 

denoted by P(q,n). Thus if f E W il[x] is a fixed polynomial over 

Wq , define the operator Af : P(q,n)  P(q,n) as follows: If 

WOEPW,Oandh(x)= -17(x- al.), a. E e l , is the factor- 
i=1 

ization of h(x) into linear factors in a suitable extension field 

Of Wq  then Afh(x) = H(x - f(a i )). 

Clearly the map induced by (g (f) 
"'" g

(f) ) on Fn  is a 
1  n  q 

permutation if and only if A f  induces a permutation on P(q,n). 

The following properties follow immediately from the definition: 
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LEMMA 4.1.  A
f
(hg) =A

f
hA

f
g 

' 

LEMMA 4.2.  A
fogh = Afgh). 

We will need the following three 'elementary lemmas. For 

each divisor d of n, put 

Kd 
= {a = IF :deg a = d over IF 1. 

LEMMA 4.3.  f(x) E F [x] is a permutation polynomial over 

IF n , n E'd, if and only if f(x) induces a permutation of Kd , for 

each din. 

PROOF.  Let f(x) permute IF n. Then f(x) permutes If q  

Let r be the smallest integer such that f(x) does not permute K r , 

r1n. If a E Kr , suppose that f(a) 4 Kr . Then f(a) e Kr , for some 

r'lr, r'  r. Since f(x) permutes K r , there exists B E Kr , with 

f(a) = f(B). But K r  n K r , = cp, so a  13. The reverse implication 

is trivial, as Wq 	 DJ n is the disjoint union of the K d , din.  

LEMMA 4.4.  If f(x) E Fq (x) and f(a) = f(b) implies that 

a,b are conjugate over IF when a,b E IF n , then f(x) induces a 

permutation of Kr, for rin. 

PROOF.  By induction on r. 

If r = 1, let f(a) = f(b), a,b E JF . a,b conjugate implies 

a equals b. Hence f(x) induces a permutation of IF = K
l' Now 

assume the proposition true for r < k. If f(a) E Kr , r < k, where 

a E K k , then since f(x) induces a permutation of K r , there exists 

b  Kr with f(a) = f(b). Thus a and b are conjugate over W . 
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But all conjugates of a lie in K k  and Kk  n Kr  = (P. Thus f(a) E Kk . 

If f(a) = f(b) with a # b, a,b E K k , then a,b conjugate implies 

n 9. 
f(a) = f(sr ) = [f(a)] 1  , 9. < k. Thus f(a) E IF k and so f(a) E 

< k, and we have already shown that f(a) E K k , a contradiction. 0 

LEMMA 4.5.  Let f(x) E FF [x]. The following conditions are 

equivalent. 

(i) f(a) = f(b), a,b E FF n , implies a,b are conjugate 

over IF q . 

(ii) If a,b E IF n, and f(a), f(b) are conjugate over fF q, 

then a,b are conjugate over W q . 

(iii) f(x) is a permutation polynomial over IF n. 

PROOF. 	(ii) -> (i) and (iii) 4- (i) are trivial. 

(ii) Let f(a), f(b) be conjugate over F q • 

n k  ,k 
Then f(b) = Pf(a)r = f(a 4  ), k < n. Thus b and aq are 

conjugate over If and so a and b are conjugate over F q . 

(i)  (iii) by Lemmas 4.3 and 4.4. 0 

We are now in a position to prove our main result. 

THEOREM 4.1. A
f 
induces a permutation of P(q,n) if and only 

if f(x) is a permutation polynomial over fF r , for each r n. 

PROOF. (i) Sufficiency  

We note that if h(x) is irreducible of degree r n then A fh 

r-1  nj 
is irreducible, for if h =fl (x -  E fF ,, then Afh has as q 



conjugates over f of f(a), and these are all distinct Since f is a 

permutation polynomial over f r . 

If h = ilf. ,g=rig  are the factorizations of h and g into products 

of irreducibles over-Fq , and_if Afh = Afg, then HAfh i , HAfgj  are 

factorizations of A
f
h into a product of irreducibles over F  and so for 

each i there is a j with A fh i  = Afg•, degree h i = degree gj  = r. if h i  
,s 

has roots e , and g j  has roots T q  , then f(a) = f(Tq ), for some k < n. 

nk 
Since f(x). is a permutation polynomial over f r, a = T 9  . Thus the 

conjugates of a and T coincide and f i  = gj • Hence h = g. 

(ii) Necessity.  

If f(x) is not a permutation polynomial over F r, then by Lemma 4.5 

there exist non-conjugate ar e Fr with p(o) = p(T). The field 

polynomials of a and T , hl, 11 2  respectively, are distinct of degree r, 

1
,g

2  
n-r 

but A
f  h1  I 

A,h2' Let g 1  (x) = 
xn-rn  . x  

n2. Then g 1  (x)  g2 (x) 

but A
f
g

l  
A
f
g
2' 

and degree g i  = degree g  n. 
2 

Lemma 4.6 Let X(x) = LCM (xq -  - x),If f(x) E r(x) mod A(x) 

then A
f
h = A

r
h, for all h(x) e P(q,r), k s n. 

,k 

Proof.  If f(x) E r(x) mod X(x) then P(x) E r(x) mod (x9  - x), for 

k s n. Any root a of h(x) • lies in F k for some k  n, and so f(a) = r(a). 

Thus A
f 
 h = A h. 
 r 

Lemma  4.7 The set G n  of polynomials f(x) e F q [x] such that 

(i)  degree f(x) < degree X(x) 
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(ii) f(x) induces a permutation of F k, for each k n, 

forms a group under composition mod X(x). 

PROOF.  If f(x) * r(x) is defined to be 

(f or)(x) = f(r(x)) mod X(x) then f or - f * r = tX, for some tEFF [x]. 

Since A(a) = 0 if o€ FF-  k , tf 0 r)(a) = (f * r)a. But f 0 r 

induces a permutation of IF k, and thus so does f * r. The identity 

of G n is x and inverses exist since that system is finite and 

cancellative. 0 

We now proceed to determine the group P n  of permutations of 

P(q,n) induced by this process. By Lemma 4.6 it is sufficient to 

consider the action of A
f 

for f E G
. 

The structure of G n was determined by Carlitz and Hayes EC. 

We now investigate the structure of P n . 

LEMMA 4.8.  The map 0: f 4. Af  is a homomorphism from G n  onto 

Pn• 

PROOF.  By Lemmas 4.2 and 4.7 and Theorem 4.1. 

LEMMA 4.9.  Ker 6 = {f E G n : f(a) is a conjugate of a, for 

all a E F k, k  n.} 

PROOF.  If e(f) induces the identity map on P(q,n) then 

Afh = h, for all h of degree  Let a E F k, and h be the minimal 

polynomial of a. Then Afh = h implies f(a) is a conjugate of a. 

Conversely, if h E P(q,n), then h = Hh i , where the h i  are irreducible 

m k-1 
over Fq . h i  has roots a,...,a'  , k = deg h i , and so f(a) 
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is a conjugate of a. Since f(aq  ) = [f(a)] f(aq ) runs through 

the set fpqm}. Hence Afh i  = h i , and Afh = h. 0 

We denote by Ad  the group of permutations of K d  which induce 

permutations on the set of equivalence classes of conjugate elements. 

LEMMA 4.10.  If f E Gn , then f induces a permutation of K d , 

for each d n. Denote this permutation by p d . Define 

Gn  A i  x A2  x...x An  by 

P  (P '"" Pn )  • 

Then IP is a group isomorphism. 

PROOF.  To show that 1p is surjective, let  be 

arbitrary elements of A l ,...,An . Consider F „ I . Choose on each q ". 

Kd , n < d  n!, any permutation Trd  of Kd  which induces a permutation 

on the conjugacy classes in Kd . Now consider the map 7 which is 7i 

on each K i , 1  i  n!. Since ir commutes with the Frobenius 

automorphism of F „ I , there is a polynomial f(x) of degree less q.• 

than q n  with coefficients in FF which induces 7 on F 1. The n. 

reduction of f(x) mod x(x) induces 7 i  on each A i , since each F 

is a subfield of FF n !, and so f(x)  Gn . If f E Ker p, then f(x) 

induces the identity on K d  for all d  n. Hence f(x) E X mod (x" -x) 

for all d  n., and so f(x) E X mod A(x). The other properties of lp 

are obvious. 0 

Each TI E A. induces a permutation of the set of conjugacy 

classes of K  If there are ff(d) classes in K
d then this gives rise d'  
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to a homomorphism from A d  to Sir(d) , the symmetric group on Tr(d) 

elements. Thus there is a homomorphism  Al  x.. .x An  s7(1)  X 

..•X Sn(n) •  Define p = (I) 0  Gn  S7(1)  x...x Sff(n) . 

LEMMA 4.11.  Ker p = Ker 0. 

PROOF.  If f E Ker p, then f induces the identity map on the 

set of conjugacy classes of K d , d 5 n. This means that f(a) is a 

conjugate of a, for all a E W k, k 5 n. Thus f E Ker 0. Conversely, 

if f E Ker 0, then 11)(f) induces the identity on the set of conjugacy 

classes and so f E Ker p. El 

THEOREM 4.12.  The group Pn  of maps of P(q,n)  P(q,n) 

induced by elements of G
n 
is isomorphic to the product of n symmetric 

groups of orders Tr(k) k 5 n, where 

7(k) = k 	p( 1( )qd , where p is the MObius p-function. 
dlk 

PROOF.  From Lemmas 4.8 and 4.11. The number of conjugacy 

classes in K
k is the number of monic irreducible polynomials of 

degree k in Fq[x], given by n(k) above (lemma 1.7). 0 

2. CHEBYSHEV POLYNOMIALS IN SEVERAL VARIABLES  

As stated in section 1, the Chebyshev polynomial vector 

g(n,k,b) is a permutation polynomial vector if and only if 

(k,q r  - 1) = 1, 1 5 r 5 n, for b = 0, and (k,q r  - 1) = 1, 

1 5 r 5 n + 1, for b  O. The case b = 0 in fact follows directly 

from Theorem 4.1, as the polynomial x k  is a permutation polynomial 
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over IF
9 
 if and only if (k,q - 1) = 1. It was shown by Lidl and 

Wells 1261 that the set {g(n,k,b)}, for b fixed, is closed under 

composition if and only if b = 0,1, or -1, and for n = 2 the 

structure of the group of permutations induced by the g(n,k,b) was 

determined in [20] and [21]. We now extend this to arbitrary n. 

The case b = 0 is treated first, then b = 1 and -1 are dealt with 

together. 

The case b = O. 

THEOREM 4.3.  The group G of mappings of 11 4'11 induced by 
the permutation polynomial vectors among the vectors g(n,k,0) 3  is 

isomorphic to the group R of reduced residues mod N = LCM(q - 1, 

...,q
n 

- 1) factored by the cyclic subgroup C of order LCM(1,...,n), 

generated by q. 

 

PROOF.  If , k E k' mod N, then k E k' mod (qr  - 1), 1  r 5 n, 

and so the maps f k : x  k  x  x
k' 

coincide on fF r , 1 	r 5 n, 

and so the mapsAfk , Afk.  are identical on P(q,n). Thus the map 

g(n,k,O)  kb, where k' is the residue of k mod N, is a homomorphism of 

the semigroup of permutation vectors amongst the g(n,k,O) onto R. 

The map cb which sends k to the map which g(n,k,O) induces on F q  is 

then a homomorphism of R onto G. It remains to determine the kernel 

_ of this homomorphism. Suppose k  q
t 
 mod N. 

If f(x) = llf i (x) is the decomposition of f(x) into 

 

n-1  ,r 
in-edudmefactorsoverFand f (x) =  (x - 04  ) is the i  

r=0 

factorization of f. (where f. has degree n), over its splitting 

field, then 
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n-1  ,,r+T 
A k f.(x) =  (x - 04  ) = f i (x). Thus A f = f. 
X  1  r=0  xk 

Now suppose k E Ker (I). Then
k 

is a conjugate of CI for all 

a E F r , 1  r  n, by Lemma 4.9. If a is a primitive element of 

2. 

r' r' F  then a = a
q 

, since 0  t  r. 

Thus k = q
2, 
mod (q

r 
- 1) and k is a solution of the system 

of congruences 

 

k  1 

(1) 

k  1,q, 
... ,qn-2  (qn-1 _ 1)  

E  

k E 	(qn _ 1)  

We now show that this system is equivalent to the single condition 

(2)  k E 1,q,... 
qt 

mod N, where t = LCM(1,...,n) . 

Firstly it is clear that any solution to (2) is also a solution to 

(1). We now wish to determine the order m of q mod N. If 

s = LCM(1,...,n), then q s  E 1 mod N, since (q t  - 1)I(q 5  - 1) for 

all t with 1  t  n. Thus mls. Since qm  E 1 mod N, NI(qm  - 1), 

and so (q t  - 1)I(qm  - I), 1  t s n. This holds only if tin'.• 

Thus slm, and so s = m, implying that the number of solutions of 

(2) is s = LCM(1,...,n). We next show that the number of solutions 

of (1) is also s, thus proving that every solution of (I) is a 

solution of (2). We do this by induction on n. When n = 1 there 

is nothing to prove, as N = q - 1. By the induction hypothesis, 

the number of solutions of the first (n - I) congruences is 
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LCM(1,...,n - 1), and by the earlier arguments this system is 

equivalent to k E 
 

mod LCM(q - 1,...,q n-1  - 1). 

Let N' = LCM(q - 
1,...,qn-1 _ 1). Suppose k E q t  mod N', k 

EqS

mod (q n  - 1). Then k = q + aN' 

aN' = q t  (CISt ■ 1) mod (q n  - 1), where (s - 0 is taken mod n. 

This has a solution if and only if gcd (N.  
_ 1 )1 qt (cis-t _ I).  

Now suppose that n is not of the form p a , p a prime. Then 

m 	a. 	a. 
n =  p i  , m ?. 2, and p i  < n. Thus k E q

t mod N'  k E qt 

i=1  ' 

a.  a. 
1 	i 

P-  Pi  a i  
i 

m i 

a. 
Thus s E t mod p i l , and so s E t mod n. Hence the choice of 

s is already determined and so the number of solutions remains the 

same, namely LCM(1,...,n - 1) = LCM(1,...,n).  If n = p, then the 

condition for a solution is (q - 1)I(q s-t  - 1), which always holds, 

and so s is arbitrary, and for each choice of s there is a unique 

solution mod LCM(N 1 ,q n  - 1) = N. Thus the number of solutions is 

n LCM(1,...,n - 1) = LCM(1,...,n). Now suppose n = p a , a > 1. 

The condition reduces to s E t mod pa-1 , which has p solutions 

modulo pa , each giving a unique solution mod N. Thus the number 

of solutions is p LCM(1,..., n - 1) = LCM(1,...,n). 0 

The cases b = 1 or -1. 

In this section, let f(x) = x
k 
and let b = 1 for character-

istic 2, otherwise k odd, b = + 1. We use the notation of sections 

E q s  mod (q n  - 1), for some a E Z. 

1 and 2. 
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LEMMA 4.12.  If Af  induces the identity map on the set P irl, 

of polynomials of degree n with constant tepm (-1) b, then f 

'inducet; the identity map on F and A induces the identity map on 
f " 

all polynomials of degree less than n, for n > 2. 

PROOF.  Let w be a primitive element of F q  and let 

h(x) = (x - 1) 3 (x - w) 2 (x -  b = 1; 

h(x) = (x - 1
)113(x  w)2(x  w4x, ) b = -1. 

(x 	1) n-3 (x  _ wk ) 2 (x  _ w-2k., b = 1; Then  A h =  ) f_ 
(x 	1) n-3 (x  _ wk ) 2( x 	w-2k, ,  Afh =  ) b = -1, 

since k is assumed to be odd. If the characteristic is 2, consider 

only the case b = 1. 

In each case, h E Pn , and so Afh = h by hypothesis. Thus b 

w = w
k
, by unique factorization, and w primitive implied k E 1 (q - 1). 

Hence f(x) induces the identity map on IF q . (Note that if n = 2, 

w = w
-k 

is also possible, and we can only deduce k E + 1 (q - 1)). 

Now let g(x) E IF [x], with degree g(x) = m < n. Let g(x) have 

constant term a. Clearly we may assume a O. Define 

h(x) = (x  - 1) n-m-lg(x). h(x) has degree n, and has 

constant term (_1)b, and so Afh = h. But 

=  HL-nb  (x -  )(x - 1) fl-m-l A  k  a 	fg, since  E F , and a= a. Thus 

Afg = g. 

LEMMA 4.13.  Let w be a primitive element of n , and put 

q-1 
A 	W 	q even or odd, p  w1/2(q-1), 

 q odd. Then A,p E K. 



n 
PROOF.  Ahas order „ _ 1 

 
IfXEF  r< n, then 

q - 1 '  r, 

n 
ord A 5_ q r - 1. But (1(1 -

1
1  > q r  - 1, r < n, and so A E K

. If 

P E ff 
9 r

, r < n, then A = p2 E IF 
9r

. Since K
n 

n If r  = • this is 
 9 

:impossible.  0 

THEOREM 4.4.  Af  induces the identity map on Pr, b.= + 1 

if and only if k satisfies the system 
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(3) 

kEl  

k E 1,q,...,q n-1  

k E 1,q,...,q n  in case b = 1 

or  1.9q,••••9 

,n+1 
2(4 

q -
-
1
1
) in case b = -1. 

PROOF.  Assume firstly that k satisfies the system. Then 

if g(x) is irreducible over IF 0:1  and degree g(x) s n, Afg = g. If 9 

g is irreducible of degree (n + 1) and has constant term (-1) n+l b, 

then 

g(x) = (x - a)  (x - aq  ), a E 
F n+1

• 

where 
 (_ 1 )fl+1 01+q+..n = (-1) n+1 b , 

or 
 o ( qn+1 _ 1)/(q  _ 1) 

 = b . 

In the case b = 1, this implies that 

ak = aq for some 1  t n , 

and so 
 

Afg = g . 
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If b = -1 then 0("1-1) / ((1-1)  = -1, and (52(e+1-1)/( q-1)  = 1, and 

(3) again gives A fg = g. 

Conversely, if Afg = g for all g E Pr, then by Lemma 4.12, 

A
f 

induces the identity map on all polynomials of degree  n. Hence 

k satisfies the first n equations of the system, as in the case 

b = 0. 

Now let w be a primitive element of IF n+1 , and take X = 

u = w1/2( q -1)  for q odd. If q is even consider just the first case, 

since 1 = -1. By Lemma 4.13, A,p E Kn , and so their minimal 

polynomials h,g respectively, have degree (n + 1). 

The constant terms of h,g are 

(q  -1)/(q-1) 
and 

 (q-1)/(q-1) 

which which equal 1 and -1 respectively. 

In the case b = 1, it follows that A fh = h and so 

	

k 	q t 
X = X , 0  t  n . 

Then 	w(q-1)k  (q-1)qt 

(q - 1)k E (q - 1)qt  mod 
(qn+1 _ I)  

o
n+1 

- 1 
k E qt mod ( q

- 1 

In the case b = -1, A fg = g implies 

Pk  = pqt , 0 < t < n . 
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Then  
w½(q-1)k%(q-1)q 

= w 2 

1/2(q - 1)k E 1/2(q - 1)q t  mod (q n+1  - 1) 

k E qt  mod 2(q n+1  - 1)/(q - 1) . 0 

COROLLARY.  The group G of mappings Fnq  +Fnq  induced by 

permutation polynomial vectors g(n,k,b), where b = 1 [resp. b = -1], 

is isomorphic to the group of reduced residues 

n+1 
mod LCM(q - 1,...,q n  - 1, q  - 

q  1 ' L  
1)  rresp. mod LCM(q - 1,...,qn  - 1, 

-  

2(q 114-1  1)/(q - 1))] factored by the cyclic subgroup generated by 

q of order LCM(1,...,n + 1). 

PROOF.  The proof is essentially, the same as for Theorem 4.3, 

with the following modification. We treat the case b = 1, the case 

,,n+1 
b = -1 is similar. Let N = LCM(q - 1,... ,q' - 1, 4 	

q
-
1
). We 

n+1  1  
note firstly that the order of q mod (q  

q1 
) is (n + 1), since 

n+1 
clearly qn+1  E 1 mod q  

q -1
I , and if q has order tl(n + 1), then 

(q 
 
n+1 _ 1) 1 (q

t _ 1)(q - I). 

But 
 

( q 	1)( q t 	1) = (qt+1 _ 1) 	(q t  q 	2)  . 

n+1 
Since q 2, and as n + 1  2, t <-

2 	n, and so 

(q n+1 - I) > (q - 1)(q t 
- I), a contradiction. 

We now determine the order of q mod N. Let s = LCM(1,...,n + 1). 

Then q s  E 1 mod N. If qm  E 1 mod N, then tim, 1  t  n. To show 

(n + 1)Im, we have 



aN' 
 n+1 
=  

(qs-t _ 1)(  	- 1N 
J q - 1 

m  1-t L=tns 	_ 1 

hence 

Thus for mm n + 1 . 

n+1 
_ 1) q  _ 	/ 1%4 

(qn+1 _ 1,qm 
Let y = gcd  

_ 1)  . ocd(n+1,m) _ 1  . 

an+1
• -   (q 1 )1-7--1  I 	• 

n+1 q  _  
I (q - 1) , 

or
n+1  

(q 	1) I (q  1)(0Cd(r1+1,M  1) . 

As before, this is impossible unless n + 1 = gcd (n + 1,m) i.e. 

(n + 1)Im. Now suppose k E qt  mod N', N' = LCM(q - 1,•••,qn  - 1), 

an+1 
k a qs  mod  q  Then 

nn+1  1  
k = qt 	E q 5  mod 14 	- A)  

 

q - 1  ' 
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Then 

Thus 

As before this implies ml(s - 0, or s E t mod (m). The 

rest of the proof goes through as before, noting that we already 

know the nature and number of the solutions to the first n 

congruences. 0 

Lidl and Willer [25] examined the question of when the group 

induced by the permutation polynomial vectors g(n,k,b) is cyclic 

for n = 2. The case n = 1 was settled earlier by Hule and Willer 

[17]. We now extend this to the general case. 
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THEOREM 4.5.  The group G induced by the permutation polynomial 

ocetors amongst the g(n,k,b) is cyclic if q = 2, n = 2 and b = 1, or 

if q = 2 or 3, n = 2 and b = O. G is not cyclic if n > 2. 

PROOF.  The fact that G is cyclic in the cases given was 

established in [25]. The following argument was suggested, in the 

case n = 2, by W. Narkiewicz. If an Abelian group A contains a 

subgroup isomorphic to the direct sum of three or more copies of 

C
2' 

then, when A is factored by a cyclic group, the resulting group 

cannot be cyclic. If N is the appropriate modulus, 

(LCM(q = 1,...,q n  - I) for b = 0, etc.), and q is odd then 

81(q 2  - 1), and (q 3  - 1)(resp (n---7---1)) is divisible by an odd 
q - 1 

prime. Thus the prime decomposition of N is of the form 

a  a 
N = 2

6 
p 1

1
...pn

n
, p i  # 2, a 	3, ai  1. The group G of reduced 

residues mod N is isomorphic to the direct sum of the groups 

a. 
2Z/(2),7Z/(p i l ). Z/(2 I3 ) = C2  6) C  , where C. denotes a cyclic 

2 13-1  

group of order i. 

Y/(4 1 ) = C a 

1 	

6) C 	. 
P1 -1  

p1 

3 
Thus G contains a subgroup isomorphic to C. 

If q is even, q # 2, then gcd(q
2 

- 1,q
3 

- 1) = (q - 1), and 

so there are prime factors of (q 2  - 1) not dividing (q 3  - 1). If 

q - 1,q 2 + q + 1 have a common prime factor k, then q E 1 mod (k), 

and so q 2  + q + 1 E 3 mod k. Thus unless 3 is the only prime 

dividing (q - 1), there is a prime dividing q - 1 and not 
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(q2  + q + 1). If q - 1 = 3 t , then 

(12  q 4. 1  . (q  _ 1) 2 4. 3(q  _  . 3 [32t-1  +t  
1] 

 

and the second factor is not divisible by 3. Thus there are at 

.  3 
least three odd primes dividing N, and so G contains C 2 . If q = 2, 

n  3, N = gcd(1,3,7,15,...) and so N is divisible by at least 

three odd primes as before. 0 

3. MATRIX PERMUTATION POLYNOMIALS  

Brawley, Carlitz, and Levine [3] have determined the 

polynomials f(x) E FF [x] which permute the set of nxn matrices 

over W under substitution. In this section we give a different 

proof of their result using Theorem 4.1. 

THEOREM 4.6.  (Brawley, Carlitz and Levine). Let 

f(X) E Fq [X]. Then f(x) is a permutation polynomial on Fnxn , the 

set of nxn matrices with entries in EF if and only if 

(i) f(x) is a permutation polynomial over W r, 1 _'r s n. 

and 	(ii) fl(x) does not vanish on any of the fields 

We first prove the following Lemma. 

LEMMA 4.14.  f(x) E F[X] is a permutation polynomial on 

F
nxn if and only if f(x) permutes the similarity classes of F nxn , 

where the similarity class of B E 	is CB  = {A-1BAIA E Fnxn ,A 

invertible}. 
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PROOF.  Suppose f(x) is a permutation polynomial on F nxn . 

Then f acts on the similarity classes, by defining 

f( CB) = Cf(B) • 

If Y E C
B 

then Y = A-  BA, and f(Y) = A-1  f(B)A E Cf(B)' The map 

C
B  Cf(B) 

is surjective on the set of similarity classes, as 

otherwise there would be a class with no preimage, and any matrix 

Y in this class would have no preimage under f, contradicting the 

fact that f is a permutation polynomial on Fnxn • Thus f permutes 

the similarity classes, as there are a finite number of them. 

Now suppose f permutes the similarity classes in Fnxn . Then 

since ICf(B) 1 	ICB I for all B E Fnxn , each C B  can only be mapped 

to a class whose order is less than or equal to that of C B . If 

ICBI = ICf(B) 1 then f induces a one-to-one map of C B  onto C f(B) . 

Thus f can fail to permute Fnxn  only if ICB I > ICf(B) I for some CB . 

Let M be the set of classes which are of maximal order n with 

respect to this property. 

Then since all the classes of order greater than n are 

mapped onto classes of their own cardinality, the set of preimages 

of the classes of M must be M itself. 

Thus f(x) preserves the cardinality of the classes of M, a 

contradiction. Thus f(x) preserves the cardinality of all classes 

and so is a permutation polynomial over Fnxn . 0 

PROOF OF THEOREM.  Suppose f(x) permutes Fnxn . Let 
A(x) E F [x], and let C

A be its companion matrix. The minimal 
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polynomial of CA  is A(y). Hence the algebra J(A) generated by C A  

over If is isomorphic to IF fyl/(A(y)). Since f(x) is a permutation 

polynomial on F
nxn 

it is so on J(A), and via the isomorphism is so 

a. 

on IF LYJAA(Y)).  Now if A(Y) = liPi l (Y), then 

a. 

F Ey]/(A(Y)) =  X 1FqF.y]/(P i 1 (Y)), and f(x) permutes each of the 

a. 
F [y]/(p. 1 (y)). Taking A(y) to have an irreducible factor of 

degree r and multiplicity one, we see that f(x) permutes F r . Now 

if A(y) has a factor of multiplicity greater than one, (and the 

degree of any such must be less than or equal to Cp), f(x) must 

a. 
Permute IN[y]/(P i l (Y)), di > 1, deg p i (y) > r. Such an f(x) is 

called regular over Fq  and it is known that regularity of f is , 

equivalent to P(u) # 0 for u E 	r . ['See Lausch and Fl8bauer [19] 

prop. 4.31 page 163]. 

Now assume f(x) satisfies the given conditions. The 

similarity classes are determined by their invariant factors, 

which are polynomials in F q[x]. 

A result from Gantmacher ([13], page 158, note 2,) ensures 

that the invariant factors of f(A) are Afg, where g are the invariant 

factors of A, and Af  is the mapping defined in section 1. If 

f(A) = f(B), where A,B are in different similarity classes, then 

if {g.} are the invariant factors of A, {h.} of B, the invariant 

factors of f(A), f(B) are {Afg i }, {Afhi } respectively. Since the 

degrees of g i ,hj  are  n, and as by Theorem 1 A f  permutes the 

polynomials in FF of each degree  n, {g.} - [h.} and so A is 

similar to B, a contradiction. Thus f permutes the similarity 

classes, and so permutes F nxn  by Lemma 4.14. 0 



CHAPTER 5 

THE STRUCTURE OF THE GROUP OF PERMUTATIONS INDUCED BY 

CHEBYSHEV POLYNOMIAL VECTORS 

OVER THE RING OF INTEGERS MOD M 
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In this chapter we extend some of the results of chapter 4 

to rings of the type 11(m). Since the general case reduces to that 

of m = p e , we shall study the case m = p e , where p is prime, in 

detail. The structure of the group of permutations of/(m) induced 

by {g(n,k,1)} was determined by Lausch, M011er and NObauer [18] for 

n = 1. The main result of this chapter is to extend this to an 

arbitrary number n of variables. The single variable case may be 

described as follows: 

Let G(Pe)  denote the group of permutations of (E/p e ) induced 

by the set fg(n,k,1)}. Then G(Pe) = A/K, where 

(i) if p = 2, e  2, A  

(ii) if p = 2, e  3, A  

-2  * 
(iii) if p > 2, A = V(Pe-1  

and K = {1,-1} if e > 1 or p = 2, 

K = fl,-1,p,-p mod 2-2i1} if e = 1, p > 2. 

The multivariable case may be stated more simply, although 

the proof is rather more complicated. We begin with a consideration 

of the Jacobian of the transformations involved, as this is related 

to their permutation properties mod pe • 

1. THE JACOBIAN OF g (f) 

The following result reduces the study of polynomials over 

R =;Z/(pe ) to questions concerning finite fields. (See Lausch and 

NObauer, [19], prop 4.34, page 165). Let T be the ring of integers 

of an algebraic number field. 
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PROPOSITION 5.1.  Let Q be a primal?j ideal ofT with 

associated prime ideal P, P Q, and T/Q finite. Then a polynomial 

vector h = (h 1 ,...,hn ), h i  E T[X1,...0( n ], is a permutation poly-

nomial vector over T/Q if and only if 

(i) h is a permutation polynomial vector over TIP, and 

(ii) the Jacobian of h, ah, is non-zero on TIP. 

A polynomial vector h over F (= T/P) satisfying (i) and (ii) is 

called a regular polynomial vector over F . We proceed to determine 

the regular polynomial vectors amongst the vectors g (f) , and the 

g(n,k,b). 

Ifa1"' Gn  EVq , wherefris an algebraic closure offr, 
"  

define 

S. (01,... ,o) 	(Si(a1,...,on)tes.ISn(01,".fan)) 
	

(1) 

Where S . is the j'th elementary symmetric function in a
n

. j  

The map 

(f)  g  : S(al ,...,an )  (S1(f(a1),...,f(cn )),...,Sn (f(a1 ),...,f(an ))) 

is a well defined map of frnq  + F'. If t- denotes the Jacobian of S 

with respect to a = (al ,...,on ) and if Jg (f) is the Jacobian of 

g
(f) , then 

as . Jg (f) 	(S(f(o))) Dia 	Da (2) 

where f(a) = (f(0 1 ),...,f(an )), since g (f) (S(a)) = S(f(a)), and 

(g (f) (s( , ) , - TiG)  
a 
(f)  S(a))  as  (f) 

aa • Jg  . 



The composition law for Jacobians yields 

f ( ) ) = 	( 	 ci ) ) . 	 , 

aS  aS 
where -5-c7 (f(a)) is the vector TEr  , with f(a) replacinaa i . An 

explicit calculation shows that 

aS 
17 	(a. - a.) 

1 	J 1<j 
i,j=1 

aS 
Mon =  ( f(Go - flap . 

1<j 
i ,j=1 

PROPOSITION 5.2.  The value of the Jacobian Jg (f) at 

(u 1 ,...,u n ) is given by 

n  f(ai )-f(a; )  n 
,un ) = (  J 	)(TT f' (a)) 

i<j  u l ul 	i=1 
i,j=1 

where a 1 , . .. a
n 
are the roots of 

r(u...,u
n'

z) = z
n 

- u l z
n-1 

+...+ (-1)
n
un . 

If ai  = aj , i  j, then the term Mai ) - f(aj ))/(ai  - aj ) is to be 

interpreted as P(a). 

PROOF.  Only the last statement remains to be proved. There 

exists an algebraic number field K, with ring of integers A, and a 

prime ideal Q, with A/Q =fF q • Continuity in I shows that the 

formula of Proposition 5.2 should be interpreted as indicated 

•when a i  =a. 

71 

( 3 ) 

(4 ) 
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2. THE JACOBIAN OF g(n,k,b)  

When b = 0, taking f(z) = z k  in Proposition 5.2 yields the 

Jacobian of g(n,k,0). We now assume that b  O. 

PROPOSITION 5.3.  Let J l  be the Jacobian of the map 

S. ( 01 ,...,0n+ 1 ) ÷.(S1( lare...fan i_02.“ISn i_1(ape“,On+1) ) 

regarded as a form in a l ,...,a01  and let J 2  be the Jacobian of the 

map 

Sb : (01,...  a) 

a 	n+1 
an+1  n+1  

where a1  ... °n
+1 = b, b # 0. Then J 2  - --B.-- J I  = b  T–r-„ (ai  --ai)• 

i<j 
i,j=1 

PROOF.  Consider the determinant 

S. 
bJ 1 = det (a- --2), J Da. kn+ljx(n+1) 

Every entry of the last row of this determinant is b. 

Thus 
DS. DS 1  

j  aol 

. 
j = det (a — a  +1 a  ) nxn • aa .  n  

Since 
aa

n+1  
a
n+1 _ b, 

Ba.  a. 

=  
as. 	aa  S. 

 

1  al  ... an 
det (--1   n+1   ,  b 

Thus  J  
Ba. a aa . o  

an+1 
4 	0 

j  n+1  - • 

PROPOSITION 5.4.  The Jacobian J of g(n,k,b), b 0, is given 

n+1  cr i; 

	

by J = k"  ( 	 , where J is evaluated at (u 1 ,...,un ) with 
a i -aj 

i ,j=1 
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r(u 1 ,...,un ,z) = (z - a l )...(z -  

If a i  =  then the corresponding term in the expression 

for J is Icak-1. . 

3S  DS  XN Df PROOF.  Since —J = — (f(a))  , 
Da  Da 

k
,1 	n+1 

we have 
an+1  .  n

b 	TI n+1  , 

(a. - a. )  
1<  

=  - ai.)kn  TT or' JJ s) 
,j=1  

b
k 	1<3  1  J  1 = 1 i 

i,j=1 

k  k 
n+1  a. - G. 

or J = kn  

	

a. - 3  G. 	
Li 

i<j  1  J 
,j=1 

3. REGULAR POLYNOMIAL VECTORS OVER FINITE FIELDS  

THEOREM 5.1.  g (f) is a regular polynomial vector over F
9  

if and only if f(z) is a regular polynomial over F ,, 1 r n. 
q

, 

PROOF.  It was shown in chapter 4 that the condition of the 

theorem is equivalent to g (f) being a permutation polynomial 

vector over IF , with the regularity condition omitted. If f(z) 

is regular over W ,, 1  r  n, then f 1 (9)  0, and f(9) - f(ai )t 0, q , 

as f is a permutation polynomial over F r , 1  r  n. If a i  = 

the remark following Proposition 5.2 shows that in all cases 

Jg (f)  # 0. If f(z) is not regular over F r , 1  r  n, then either 

P(a) = 0 for some a E F r , or f(z) is not a permutation polynomial 

over FF r . In the first case take r(z) IF Ez] to be monic of degree 

n with a a root of r(z) and take u  un to be the coefficients of 
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g(z) with appropriate signs. Then from Proposition 5.2, 

(f) Jg  (u
1"

.,u
n ) = O. In the second case, g

(f) is not a permutation 

polynomial vector, over F by theorem 4.1. 0 

COROLLARY.  g (f)  is regular over F if and only if f is a 

permutation polynomial over IF r; 1 < r 5_ n, and f' has no irreducible 

factor of degree 1.1. 

PROOF.  If f' has an irreducible factor of degree  then 

it has a zero in W ,, 1 5_ r  n, and so f is not regular over F 
r

. 
q

. 

Thus g (f) is not regular. 0 

4. REGULAR CHEBYSHEV POLYNOMIAL VECTORS  

The following theorem may be found in Lausch and Nobauer 

([19], p. 209), and Lidl ([22]), for the cases n = 1,2 respectively. 

THEOREM 5.2.  g(n,k,b) is a regular polynomial vector over 

q
q = pe , if and only if b = 0, k = 1 or b  0 and (k,p(q s - 1)) = 1, 

, 

s = 1,...,n + 1. 

PROOF.  For b = 0, the theorem follows from the Corollary 

to Theorem 5.1. If b  0, and g(n,k,b) is regular, then Proposition 

5.4 shows that (k,p) = 1. Lidl and Wells [26] showed that g(n,k,b), 

b  0 is a permutation polynomial vector over Fq  if and only if 

(k,qs  - 1) = 1 for s = 1,...,n + 1. Thus we need only show that 

the conditions given ensure that the Jacobian of g(n,k,b) is non- 

k-1 zero. Since a. 	0, ka.  O. Further, the conditions given 
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imply that x
k is a permutation polynomial over IFcis' 

1 s s  n + 1. 

5. THE STRUCTURE OF THE GROUP OF PERMUTATIONS OF CiE/(p e )) n  INDUCED  

BY THE SET fg(n,k,b), k e  

Theorem 5.2 immediately shows that the group G(n,b,p e ) of 

permutations of R n  = (E/pe ) n  induced by polynomial vectors g(n,k,b) 

with b = 0 is the one-element group. Henceforth, we assume b = 1. 

We proceed to find an integer sz, such that the maps induced on 

R
n 
by g(n,k,l) and g(n,k + k,1) are identical. We denote g(n,k,l) 

by g(n,k) for convenience, and similarly G(n,b,pe ) by G(n) or 

G(n,pe ). We have then a homomorphism 11):2ZI G(n), where g is 

the group of reduced residues mod 2,, whose kernel is to be determined. 

Since each polynomial of degree (n + I) is a product of irreducible 

polynomials of degree at most (n + I), it is sufficient to show that 

A kr = r (Af as defined •in chapter 4), where r is an irreducible 

polynomial of degree n + I, which has constant term (-1) n+1  if 

degree r = n + I. Recalling that R = iZ/(pe ), e > I, there is a 

canonical homomorphism p: R -+Z/(p). We use various properties of 

Galois rings, which are given in chapter I. 

THEOREM 5.3.  Let a E 	be defined by pa-1  < n + I  p 13 . 

(p  _ 1,...,pn _ 1,(pn+1 _ imp  _ If y = lcm  1)), and k = 

then g(n,k) and g(n,k + 0 induce the same map on Rn . 

PROOF.  Let f(x) be a monic irreducible polynomial over 

If f(x) is a basic irreducible, (chapter I) with deg f(x) = r, 

n+1 
Thus x

k 
permutes the set U  s , which shows that J O. 

S= 1 q 
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then f(x) splits into linear factors over GR(p e ,r). Each root is 

a unit, and so, if a is such a root, then e v  = 1, by lemma 

1.4. If deg f(x) is (n + 1), then f(x) has constant term (-1)" 1 . In 

n+1 
Fpf has roots of order  From the structure of 

' 
P
n+1' 	p-1  

GR(pe ,n + 1) in lemma 1.4, a is a product of an element of order 

p
e-1 

and an element of G l , and p induces an isomorphism of G l . 

Hence a satisfies aP  
1 ‘, 	iN 

 ' 13 	= 1. 

If f(x) is irreducible over R, but pf is reducible, we 

construct a ring extension of R in which f(x) splits into linear 

factors f(x) = 11(x - a i ), with al' = 1. In /(p), pf is of the 

form (h(x)) k , where h(x) is irreducible over 11(p)  (lemma 1.2). 

If deg h(x) = s, then h(x) splits into linear factors over F s . 

Over FF s , pf splits into factors of the form  I (x -  By 
1=1 

a form of Hensel's lemma (lemma 1.1), over GR(p e ,$) f(x) splits 

into factors, say f(x) = f i (x)...f s (x), where f 1 (x) = (x-a i ) k +m i (x) 

with f(x) E GR(Pe ,$)[x], and where m(x)  has coefficients in the 

maximal ideal M of GR(pe ,$). Using lemma 1.5, let K be an algebraic 

number field with ring of integers A, and P be a prime ideal in A, 

P = pA, with e: A/P e  = GR(pe ,$). M is the image of P under e. Let 

F(x) E ADO be mapped onto f(x)  by e, where F(x) is of the form 

(x-O k +n(x),withe:n(x)÷m i (x), 0: a 4- a. and define S as 

the splitting field of F(x) over K, T the ring of integers of S. 

Let n1.  be the roots of F(x) in S. Let I be the ideal 

(peT, pe-1( n1  _ a )T,...,p e-1(nk 
 _ a)T), and define W e  = T/I. We 

show that I n A = P e , and so there is a canonical embedding of R 
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into W . For certainly p e  c I n A, while if I n A  Pe  then there 
- 

is a proper ideal J in A with P e  = (I n A)J. Thus I n A = P t , 

t < e, so P
e-1 

c I-n A, and 

P
e-1

T c (I n A)T = I = P eT + Pe-1 (fl- a)T +...+ Pe-l (nk  
1  

Hence T c PT + (1 1  - a)T +...+ (n k  - a)T 
 

(* ) 

But (Il• - a) k  = -h(n i ) E PT, so ((n i  - a)T) k  c PT. If Q is a prime 

ideal of T dividing PT, then Ql(n i  - a)T, so Q divides the RHS of 

(*), and so QT, a contradiction. 

ThusWe isanextensionringofR.If -- .is the image of n i  

n. in We  then IT. is a root of f(x) and f(x)  =J (x - 
j=1 

We show that  = 1. Firstly assume e = 2. Then 

(n. - a)
k 
= -n(n) E PT, and 

PT(n. - a) c I 

Thus  - a
i

) 1(1-1  = 0. Now p  k + 1, unless k = n + 1 = p 

_ 
so, except in this case, (n. - a.)" = 0. Thus 

J  1  

-n 13  
n%  7  = 61. - a. + a.)F 

j 

1.1(3  
- a.) 1" + ay. 

• 

Since a. E GR(p 2 ,$), at  = 1, and so nr. ' = 1. (If k = n + 1, the 

same argument as used previously may be employed to show that y 

suffices). Thus in T, for e = 2, 

P
13+e-2 

_ 
ni  - 1 + A + (r)

1  

where A E P eT, u. E Pe-1T . 
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Arguing inductively, we raise this to the p'th power, to obtain 

 

f3-1-e-1  
e+1  e  e,, P  Y- lEP  T+PT0 - a) +...+Piknk  - a) • n-  1 

(34-e-1 
In W

e+1 
we have then, 4  Y  = 1. 

fi+ 
Now suppose k = n + I = p  

e-1y 13. The roots n i  have order p  
, 

 

by the above argument. In fact p
2
y suffices. Let S

n 
again 

denote the r'th elementary symmetric function in n variables. Then 

 

A =Z, P = p1, and f(x) = (x - )P  pg(x). Assume firstly that 

e = 2. Then in We 

- 00 13  = -Pg(ni) 

since p(rii  -a) = 0, pg(n i ) = pg(a) . 

a. 	a 	a 	a 
Hence 1 =  _ a + a)I)  =  - a)P + aP 

a 
= a  - pg(a). 

For e > 2, lift to T, and raise to p'th powers successively to 

obtain 

—P  = a
p
(3+e-2 

+ p
e-1

h(a) n. 

n e.+e-2 
—1+k _ —p

OrFe-2
Y+k  

p  h(a)) 71 * fl.  - n.  = (  + ar 
1  1  1 

0+e-2, 
= . (aP  ' + p

e-1
hl(a)14 • 

Since a E Z/(p e)aP
13+e-2 

= 1, and so 

—1+k --k 

 

.  = (1 + p
e-1

h 
1
(a))n 

	

71 1 	' 

SP+1(71-19'+k  
—1+k  e- 

r  1 "'" nn+1 )  = (1  P 
(0 ) r 5n+1 —k  —4( 
"  r "1" — ' 71fl+1' • 
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Modulo p, f(x) has the form (x - a)v , and so the transformed 

k pa 
polynomial is (x - a ) , whose coefficients are zero mod p, 

except for the final and initial terms. Thus 

n+1 
S r  ( 11i.  1 +1 ) E 0 mod p, and so 

Sr
n+1 ( 1+k  71.9,+k )  = sn+1(7ik  

) Mod pe  . 
 1  '%+l  r 1" n+1 II 

6. DETERMINATION OF THE KERNEL OF ip 

As shown in §5, there is a homomorphism  G(n), where 

-21* is the multiplicative group of reduced residues mod k, where k 

is defined in theorem 5.3 and 11) is defined by 

1p: k  {permutation induced on R n  by g(n,k,1), where (k,k) = 1}. 

We asume e  2, and since the case n= 1 was solved in [18], we 

assume n ?_ 2. In the case e = 1, the kernel of tp is non-trivial 

(see chapter 4) and if e = 2, n = 1, the kernel is {+1}, as shown 

in [18]. For n  2, e  2, we shall show in this section that 

ker p = {I}, and so lp is an isomorphism. 

LEMMA 5.1.  If k  Ker ij.i, then k E I mod y, where 

,n+1 
y = lcm(p - 1,...,p - 1,v  

p - 	
) . 

PROOF.  Suppose k E ker iji. Then 

79 

g(n,k)(u 1 ,...,u n ) = (u 1 ,...,u) for all u i  E ZI(p e ) . 
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From Taylor's formula (1191, p. 268), if g t  denotes the t'th 

component of g(n,k), then 

e-1 

 

g t (u 1 ,...,,u j  p  ,u.,u n ) 

n - ' ,3gt . 

 

=gt(111"'"un) 
 e  

(" '.1 ,. "' un )  au j  

ag t Thus -5u7  (u 1 ,...,un ) = 6tj  mod p. Hence, if J is the Jacobian 

matrix  of g(n,k), then 

J(u 1 ,...,u n ) = I n  mod p for all u i  E Z/(p) . 

Replacing J by I n  in the identity 

• 
 [

au 
Tc-T = i  , we obtain 

9gk  I 

auk = 	ag 
Da.  aa.  • 

k  k 
Taking 2, = 1, a i  - an+1  = k(a i  - an+1 ), so that ka i  - a i  takes the 

same value for i , = 1,...,n + 1. If a1,•••,an+1  are chosen not all 

equal, then p / k. If p = 2, this shows k E 1 mod p. If p  2, 

choose a = °2 - 
- a(# 0, a 2/(p)). Then ka

k 
= a. If a = 1, 

1  

then k E 1 mod p. If a = w, a primitive root mod p, then k E 1 mod 

(p - 1). Thus  a.) takes the same value, for i = 1,...,n + 1. 

Now let w be a primitive element of F r , 2 s r s n, and let g(x) be 

its minimal polynomial over Fp. If the constant term of g(x) is 

(-1) rA, define f(x) = g(x)(x -  1)( x  _ 1)n-r. Take an+1  = A -1 . 

Then wk  - w = (A-1 ) k  - (A-1 ) = 0, since A-1  E F . Thus k = I mod 
P 

(pr  - 1), 1 s r s n. If r = n + 1, take a = wP -1 , to obtain 
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p
n+1 

- 1  
k E 1 mod  

p -1  • 

Combining the congruences, we obtain 

k E 1 mod y .  0 

Recall that a E7L is defined by p  n + 1  p a . 

LEMMA 5.2.  If a = 1, then k E ker ip only if k E 1 mod pe-1 . 

PROOF.  Let f(x) have degree two, and constant term 1. We 

assume n  2. Then g(x) = (x - 1)'f(x) has degree (n + I). If 

e-1 p 2  - 1 
k E Ker  then k E + 1 mod p  

(P  ), by [18], Th. 3.6, p. 91, 

since p is odd (n + 1  p). Since k E 1 mod (p 2  - I) by Lemma 5.1, 

the positive sign holds, and so k  I mod pe-1 . 0 

LEMMA 5.3.  If a 2 and e = 2 then k E Ker ip only if 

k E 1 mod pa. 

PROOF.  We construct a sequence u 1 ,.. ,u for which 

g(n,k)(u 1 ,...,u n )  g(n,1)(u 1 ,...,u n ) for 1 < k < p a  + 1.  It is 

sufficient to do this for the first components of the vectors 

g(n,k), which we denote by g k . We show that u l ,...,un  may be 

chosen so that g k (u 1 ,...,un ) = g 1 (u 1 ,...,un )  E I mod p a . 

 

Consider f(x) = (x - 1)" 1  + pg(x), where deg g(x)  n, 

and where g(x) has zero constant term. We choose the coefficients 

of g(x) to give us the required sequence. When reduced mod p, the 

corresponding sequence of g's is constant (g k  = n + I). If 
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u. = ( n+1 ) + pA 	then mod p2 we obtain 

gk 	(n 4. 1) 4. pkt( n1-1 )A1 	(n1-2 )A2 	(-1) k+1 Akl,  

for k 	n. This follows from the recurrence for the g k 's given in 

Lidl [23], p. 183, namely 

•g0  = n + 1 

g 1  = u l g o  - nu i  

• • 

gn = u 1gn-1 	u2gn-2 +"'+ (-1)°1-1u 1g0 	(-1)u 	' 

Choose A l 	0 mod p, and A 2 ,... A_ 1  in turn such that 

g k (u 1 ,...,u n ) = n + 1 mod p2 , 2 	k 	n - 1. Since p' 	n + 1, 

-1 n 	p 	. If n > 	, choose A in the same fashion. In this case, 

g k 	g /  if k 	n. In particular, this holds for k = 1 + 0 -1 . If 
-1 n = 	, then g n  = n + 1, independent of A. The coefficient of 

An  in gn+k  is (-1)" 1 (n + k)("n k ). With k = 1, this gives 

(-1)" 1 (n + 1) 2  = (-1)" 1  mod p . 

Thus An  may be chosen to give g n .1. 1 (u 1 ,...,un ) = n + 1, and so if 
-1 k = 1 + p,  then k 	Ker 

Now consider f(x) of the form 

,J3-1 	,J3- 1 
f(x) = [(x - 1) 	+ ph(x)1(x - 	. (Note that 13 	2). 

The sequence corresponding to f(x) repeats with a period 0 -1  and 

by the argument above applied to the bracketed expression, h(x) 

may be chosen so that 

,un ) 	g 1 (u 1 ,...,un ), for k 	e-1  . 
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Thus k E 1 mod p 13-1  is a necessary condition. If k E 1 + tp f3-1  mod p f3 , 

1  t < p, let ts E 1 mod p. Then 

k
s 

E 1 	p
6-1 

mod IP (a 	2) . 

Since Ker tp is a subgroup of -Et, if k E Ker 11) then k s  c Ker tp, which 

is false. Thus the condition k E 1 mod p  necessary if e = 2. 0 

We note that lemma 5.3 immediately implies that the power of 

p occurring in the period of {g(n,k)} is )34 when e = 2. To extend 

this to e > 2 we need to look at the case e = 2 more closely. For 

this purpose, define f(x) as follows: If p (n + 1), then 

f(x) = (x - 1)" 1  + pg(x), where (x - 1)/g(x) mod p, deg gn, g(0) = O. 

If pl(n + 1), take 

f(x) = (x - 1)" 1  + pg(x), where (x - 1)/g 1 (x) mod p, deg g  g(0)= O. 

LEMMA 5.4.  If (u 1 ,...,u n ) is the vector of coefficients of 

f(x) defined above, then the period of the sequence {g k (u 1 ,...,u n )} 

is p  over;E/(p
2
). 

PROOF.  For a fixed (u
1"'" u n ), fg k } is a linear recurring 

sequence. We apply results from Ward [45] to {g k}. It should be 

noted that theorem 7.1 of Ward's earlier paper [44] on sequences 

of length three, and theorem 11.1 of [45], imply that the period 

N  
of such a sequence mod p is p 

b 
 X, where A is the period mod p, and 

where b  N. However, this is false, as shown by the sequences 

with which we are dealing. One must assume the sequence to be non-

singular for these results to apply. We use Ward's fundamental 
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theorem 145], p. 606, which states that the period of a linear 

recurring sequence mod p e  is the least integer t such that 

(Xt  - I) U(X) E 0 mod (pe ,F(x)), where F(x) 

is the polynomial corresponding to the recurrence relation, and 

U(x) depends on the initial terms. In the case of tg kl. F(x) is 

the generating polynomial f(x) and U(x) is P(x). The theorem also 

shows that the sequence is purely periodic. We show that Ig k l has 

the required power of p as a period for suitable choice of u l ,...,un . 

Take f(x) as defined above. Then 

(x - 1) -1 1 (x) - (n + 1)f(x) = PC(x - 1)g'(x) - (n + 1)g(x)] . 

Let t  Z. Then 

k  vPZ 
(x 13  - 1) -r(x) - (n+1)( xx _-11 )f(x) - p()[(x- 1)gi(x)- (n+l)g(x)] 

= pk(x) 

k 
Modulo p, (x - 1)P -' divides k(x) if p/(n + I), and no higher power 

of (x - 1) does so, and if pl(n +1), k(x) is divisible by (x - 

and no higher power. Thus pk(x) E 0 mod (p 2 ,f(x)) if and only if 

- 1  n + 1, or p k  n + 2, if p/(n + 1), or p k  n + 1 if 

pl(n + 1). Thus the period of Ig k (u 1 ,...,u n )1 mod p 2  is 

0, where 0-1  < n + 1 < p . 

LEMMA 5.5.  The sequence {gk} of lemma 5.4 has period 

over  
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PROOF.  It is known that 
p13+1 

is a period for fg } with 

Assume p a is likewise. Since  2, pk(x) = p
x

Pa 

1 	ki(x), -  

xP 	-1 ) 

where k(x) is as in the proof of lemma 5.5, and where k 1 (x) is 

,J3-1 	 a-1 
divisible by (x - 1)P  mod p if p/(n + 1) and by (x - 1)P 

if pl(n + 1). 

nI3  
Case 1.  Let n + 1 < p a  - p  

- 1
f3-1 . Then• 	13-1 	= (x -1) sf(x)+ pA(x), 

xP -1 

where s  I. If x = 1, p = px(1), so x(1) E I mod p, and so 

x 1313  -  (x - 1)  I/A(x) mod p. p  k 1 (x) = p2A(x)k 1 (x) mod (p 3 ,f(x)). 

xF - 

If this is zero, then X(x)k i (x) E 0 mod (p,f( )). But A(x)k 1 (x) is 

a-1 	(„-11, 
divisible by (x - 1)P  or (x - 1)""  -II  and no higher power, and 

f(x) = (x - 1)" 1  mod p, where n + 1 > p a-1 . Thus A(x)k 1 (x)  0 mod 

(p,f(x)), and so {g k l does not have period pa. 

a Case 2.  Let n + 1 > p - p a-1  . Then 

n i3  
e -i  ,a-1 
8-1 
	 = (x - 	-P  mod p , 

nf3. 

	

xF -1 	13 r,a-1 

13-  
so 	- (x - 1)P -P 	+ pX(x), A(x) E -24x], and (x- 1 )1A(x)mod p. 

r1 
X v 	-1 

If s = (n + I) - (p a  - p a-1 ), then s  1, and 

= 3. 

x P 	- 1 

xPa  ()(1) S  P 

( 

k 1  (x) = p(-pg(x)+p(x- ) sX(x))k i (x) mod(p3,f(x)). 
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If p,t(n + I), then mod p, this is divisible precisely by 

-1 1 
(x - 1)P  . If pl(n + 1), then s > 1, and since the greatest 

power of (x - 1) dividing g(x) is one, as (x - 1)4 1 (x), the 

highest power of (x - 1) occurring is (x - 1)P  . Thus in each 

case, the expression is not zero mod (p
3
,f(x)). 

-1 Case 3.  n + I = p a  - pa  . Choose g(x) with (x - 1)(g(x) - 

where A(x) is defined as in Case 2, and (x - 1)4 1 (x). Thus 

(x - 1)Ig(x), but (x - 1) 2/g(x) would suffice if deg g(x)  2, or 

n + 1  3, which is assumed. Thus the highest power of (x - 1) 

,a-1 
occurring is (x - 1)P  , and p a-1  < n + 1. 

To extend e > 3, multiply in turn by expressions of the form 

i+1 
xP 	-1 

 , where 2,  a. As in case 1, this is equal to pA(x) mod f(x) 

where (x - 1)/A(x) mod p. Thus for each higher power p e  of p, the 

power of p occurring in the order of G(n) increases by one. If 

n + 1 = p a+1  - p a, which can occur only if p = 2, n + 1 = 2, since 

n + 1 5_ pa, then choose g(x) as in case 3. The corresponding 

expression is 

a-1 
p3 (-g(x) + X(x))(-g(x) + (x - 1)P  A(x))k i (x) , 

and by the choice of g(x), (p a-1  + I) is the highest power of (x - 1) 

occurring. Subsequent powers are dealt with as in case 1. 
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THEOREM 5.4.  If e 2 and n > 1 then the group G(n,p e ) of 

permutations of ( .4Z1(pe )) n  induced by polynomial vectors of the form 

g(n,k) is isomorphic to the multiplicative group of reduced residues 

mod 2., where 2. = pe"-21, 134 -1  < n + 1 < p B , and 

n+1 
y = lcm(p -  - 1 P -1 ) 

PROOF.  By theorem 5.3, the mapping  G(n,pe ) is a 

surjective homomorphism. We show that Ker i4 = {11. By lemma 5.1, 

if k E Ker p, then k E 1 mod y. Thus it suffices to show that 

k E 1 mod pe+13-2. 
 If a = 1 this follows from lemma 5.2 and from 

lemma 5.3 if B  2 and e = 2. If  2, e > 2, proceed by induction 

on e. If k E 1 mod 
pe+B-2 

is a necessary condition for k E Ker 4, mod p
e 

then mod pe+1 , the same condition is necessary for k E Ker tp', where 

tp' corresponds to ip mod pe+1 . Thus k = 1 + tpe-1-°-2  mod pe-113-1 . We 

show that t E 0 mod p. If there exists k E Ker  with t t 0 mod p, 

and if st E 1 mod p, then k s  = 1 + pe"-2  mod pe"-1 . Thus 

k' = 1 + pe+0-2 E Ker 1p', and so 

ki t E Ker 1p' for all t E Z. 

Thus Ker 4, 1  = {1 + tpe+a-2 } = {k: k E 1 mod p e+13-2 }. Thus 

G(n,pe ) = G(n,pe+1 ). By assumption G(n,p e ) =Z, and so there 

exists an isomorphism 4):  +  Thus if a,0 EZ, 

a E 0 mod t, then g(n,a) and g(n,a) induce the same map. By 

lemma 5.5, there is a sequence {4} with period 
pe+B-1 

over 

Thus the assumption t t 0 mod p has led to a contradiction, 

+a- 
and so t E 0 mod p. Thus k E 1 mod pe  1  is a necessary condition, 

completing the induction. 
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7. THE GENERAL CASE: R =Z/(m)  

We assume n  2. For n = 1 see [18], section 6. Let 

r  a. 
m =fl p ;  be the prime decomposition of m over -2, and let G(n,m) 

i=1 

be the group of permutations of R induced by 1g(n,k): k E7L1. Let 

n+1 
1  

A i  = lcm(p i  -  -1,  ). If a i  = 1, set p i  = 

If a. > 1, set 

a i -  O i  
P i = p i  

where p.'  < n + 1  p. . 

Let L = lcm {pd. 

LEMMA 5.6.  If k E k mod L, then the maps of Rn  induced by 

g(n,k) and g(n,t) are equal. 

PROOF.  If k E k mod L then k E 2, mod p i , 1 5_ i  r. Thus by 

theorem 5.3 (in the case a. ?_ 2) and by the corollary to theorem 4.4 (in 

the case a. = 1), g(n,k) and g(n,k) induce the same map on R i' 
where 

a i  
Ri = 2/(p. ). By the Chinese remainder theorem, R= T-1- R., and so 

i=1 1  

g(n,k) and g(n,k) induce the same map on R n . 

LEMMA 5.7.  The map 	G(n,m) defined by 11)(k) -÷ {map of 

n . 
R induced by g(n,k)} is a homomorphism. 

PROOF.  g(n,k) is a permutation polynomial vector over/(m) 

if and only if (k,L) = 1. The rest follows from lemma 5.6. 0 
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LEMMA 5.8.  The kernel of 44 where tp is defined in lemma 

5.7, is a subgroup of the direct product of t copies of the cyclic 

group C 4.1  of order n + 1, where t is the number of different prime 

factors of m with ai  = 1. 

PROOF.  If k E Ker tp, then g(n,k) induces the identity map on 

a4  
Z/(Pil, 1 5 i < r. If a i  2, then k E 1 mod pi. If ai  = 1, then 

k is an element of the cyclic subgroup of order (n + 1) generated 

by .p and p i , as shown in the corollary to theorem 4.4. The map 

k mod L  (k mod p 1 ,... ,k mod p r ) is the monomorphism of Ker lp into 

a- 
T-T Ker i., where iP j  =IN D.  and R i  = 1/(p i 1 ), and the result follows. D 
i=1  

ni 

In general the structure of G(n,m) depends on the inter-

relation of its prime factors. However, if all a i  2 then we have 

r  a. 
THEOREM 5.5.  If m 

=p 
 1 	 l  i l  and a 1  ?. 2 for 1 5 i 5 r, and 
1=1 

n 2 then G(n,m), the group of permutations of Rn  =  

induced by {g(n,k)} is isomorphic to the multiplicative group of 

reduced residues mod L, where 

L 7 

n+1 
1  -1 

-= lcm(p. - 1,.. .,p i  - 1,  ) , P-  P- 
p i  1 

and 
 

pi  < n + 1  pi  . 



CHAPTER 6 

THE SCHUR PROBLEM OVER ALGEBRAIC NUMBER FIELDS 
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One may ask which integral polynomials are permutation 

polynomials mod p for all primes p. Such a polynomial must be a 

linear polynomial ax + b, with a # O. However, there are non-trivial 

polynomials f(x) which satisfy the condition that f is a permutation 

polynomial modulo infinitely many primes p E Z. The cyclic and 

Dickson polynomials defined in chapter2 have this property. I. Schur 

conjectured that any polynomial satisfying this condition is a 

composition of polynomials of this special type, and proved a 

number of results in support of this conjecture. In [10] M. Fried 

confirmed Schur's conjecture in a more general form. 

Let K be an algebraic number field with ring of integers A. 

If I is an ideal of A then a polynomial f(x) E A[x] induces a map 

f: A/I 4- A/I defined by f( a + I ) = f(a) + I, for a e A. 

DEFINITION 6.1. The polynomial f(x) E A[x] is called a 

permutation polynomial modulo I if f is a bijection of A/I. 

Fried proved that any polynomial f(x) E A[x] which is a 

permutation polynomial mod P for infinitely many prime ideals P 

of A is a composition of cyclic and Chebyshev polynomials. The 

case K = Q is Schur's conjecture. Fried ([ll]) has also considered 

the problem of determining all rational functions over Q which 

satisfy the Schur condition. This resulted in a classification 

of rational functions of prime degree which satisfy the Schur 

conjecture into five classes, one being the polynomial functions. 

The aim of this chapter is to describe, for a given algebraic 

number field K, precisely which compositions of cyclic and Chebyshev 

polynomials have the Schur property and, conversely, for which 
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fields a given polynomial has the Schur property.The problem may 

be reduced to that of polynomials of the form x s og t (x), where s,ta. 

If K = Q, then x s og t (x) has the Schur property if and only if 2. / s 

and (6,t) = 1. Niederreiter and Lo ([32]) determined all polynomials 

of the form x s  or g(x)  which satisfy the Schur condition when K is 

a quadratic or cyclotomic field, and also solved the cyclic case 

for normal extensions of Q of odd degree. Since "most" polynomials 

of the form x
s
og

t
(x) satisfy the Schur condition for K, it is more 

convenient to describe those that do not. We call such a polynomial 

a finite Schur polynomial for K. All such polynomials can be constructed 

from certain polynomials which we call primitive Schur polynomials. 

Thus for K = Q, the primitive Schur polynomials are x 2 , g 2 (x), and 

g 3 (x). f(x) is a finite Schur polynomial over Q if and only if f(x) 

has one of these polynomials as a composition factor. 

We begin by reducing the general case to that of an Abelian 

extension of Q. To do this we use a theorem of Fried which depends 

ultimately on the Riemann hypothesis for curves over a finite field. 

The theorem may be used to deal with the case of polynomials of 

prime degree. We also give a proof of this case which uses only 

results from algebraic number theory. Similarly, the remainder of 

the chapter depends only on algebraic number theory and class field 

theory over Q. We then consider the case of Abelian extensions of 

Q, and finally some examples. 

1. BASIC RESULTS.  

Throughout the remainder of this chapter, K denotes an algebraic 

number field with ring of integers A. Capital letters P, Q, etc. 



92 

will denote prime ideals in A, small p, q, etc., primes of 2. N(P) 

denotes the norm of P over Q, sometimes written as N
K/Q

(P).
n 

denotes the multiplicative group of reduced residues mod n. 

PROPOSITION 6.1  If f(x) = axm  + a, where a,0 E K, then f 

is a permutation polynomial mod P if and only if (m, N(P)-1) = 1, 

and a is a unit mod P. 

PROOF. Theorem 2.3.  0 

PROPOSITION  6.2 The Dickson polynomial g m(x,y),y 	P; is 

a permutation polynomial mod P if and only if (m, (N(P)) 

PROOF. Theorem 2.1. 0 

We will need the following result from algebraic number 

theory. A proof may be found in Weil [46], p. 158, Prop. 15. 

PROPOSITION 6.3.Let k, k', be two extension fields of Q, 

both contained in a separable extension L of finite degree over Q. 

Let X be the set of primes p of Q such that IA/PI = p, for at 

least one prime P of k lying over p, where A is the ring of integers 

of k. If almost all the primes pEX split completely in k', then 

k' c k. 

PROPOSITION 6.4.  Let K = Q( 12, ) be the p'th cyclotomic 

field, where p is an odd prime. Then there exists a unique subfield 

H of K of degree (p-1)/2 over Q, and the primes q of Q which split 

completely in K are those q = 1 mod p. 

PROOF.  The existence and uniqueness of H follows from the 
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fact that the Galois group of K is cyclic of order (p-1). If a prime 

q splits completely in K then it does so in H. If q has inertia 

degree 2 in K and is unramified then its inertia field is of degree 

(p-1)/2 and so is H. Thus q splits completely in H. Further, if 

q splits completely in H , then its inertia degree in K must be 

either 1 or 2. Hence the primes q which split completely in H are 

those which have inertia degree 1 or 2 in K. These are the primes 

q such that q has order 1 or 2 mod p. Thus q 2E 1 mod p, or qE+1 mod p. D 

We may assume that a = y = 1,  = 0 in definitions 2.5 and 2.6. 

DEFINITION 6.2.  The polynomial f(x) E K[xJ is a finite Schur 

polynomial for K if f(x) is a permutation polynomial over only 

finitely many residue class fields of K. 

We are concerned with finding the finite Schur polynomials 

amongst those polynomials which are compositions of cyclic and 

Chebyshev polynomials. 

PROPOSITION  6.5. Let h = f 1  0 g 1  o f2  0 g 2  0... ofk  0 g k  

be a composition of cyclic polynomials f i  and Chebyshey polynomials 

gi . Let h' = (f l o....fk )o (g i o...og k ). Then h is a finite Schur 

polynomial if and only if h' is a finite Schur polynomial. 

PROOF. A composition of polynomials p i  is a permutation 

polynomial mod P if and only if each p i  is a permutation polynomial 

mod P. If P f  = {primes P: f is a p.p. mod P }, then P h  = n P f  = P h , ,  

where f ranges over the set If l ,..,fk ,g 1 ,...,g k }. Thus h[W] is a 

finite Schur polynomial if and only if P h [Ph i is finite. 0 
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Thus we may restrict ourselves to polynomials of the form 

x s  gt (x). 

PROPOSITION 6.6.  The polynomial x s .g t (x) is a finite Schur 

polynomial if and only if there are only finitely many primes 4) 

with (s, N(P) —1) = (t, (N(P) 2  —1) = 1. 

The following two lemmas are clear from the definitions. 

•  LEMMA 6.1  . If sas', tat' and X S .g t (x) is a finite Schur 

s' polynomial for K,then so is x o  g t ,(x). 

LEMMA  6.2.  IfQcKc Land xs o g(x) isafinite Schur 

polynomial for K then x s o g(x) is a finite Schur polynomial 

for L. 

DEFINITION 6.3. A finite Schur polynomial for K, x s  o  

is called a primitive Schur polynomial for K if there is no pair 

(sl,t 1 ) with sls , tit , s i t' < st and xsi o g t ,(x) a finite Schur 

polynomial for K. 

1,0141_1,1 If XS  0 g(x) is a primitive Schur polynomial 

for K then st has distinct prime factors. 

a  a. 
= Hcli J . Then if s' = Ep i , t' = Hoy  

polynomial if x s  o g(x) is a finite 

,t) > 1, then x s/k  o g / (x) is a 

x
s  

gt (x) is primitive, then k = 1. 

TRoof. Let s = Up i i  , t 

x
s' 

 g(x) is a finite Schur 

Schur polynomial. If k = gcd(s 

finite Schur polynomial, so if 



2. REDUCTION TO THE ABELIAN CASE  

We need some results of Fried [11]. •Let K(x) be a rational 

function field over K, and K(x,y) an extension of K(x) by f(y) - x. 

Let K(x,y) be a Galois closure of K(x,y). Let k be the algebraic 

() closure of K in K(x,y). If T E Gal(R:K) let  be the fixed 

field of T. Define G(1) = Gal(K(x,y): K(x,y)), and G(1,T) = Gal 

-( ) 
(K(x,y): K 

T
(x,y)). Then Gal(K(x,y): K(x)) acts as a permutation 

group on the roots y = y l ,...,yn  of (f(y) - x). Thus G(1) and 

G(1,T) act as permutation groups on Ly 2 ,...,41. Then (Fried [11], 

proposition 2.1) f(x) induces a permutation of infinitely many 

residue class fields of K if and only if there exists T E Gal(K:K) 

such that each orbit of G(1,T) on Ly2,...,Y n } splits into strictly 

smaller orbits under the action of G(1). (This result depends 

ultimately on the Riemann hypothesis for finite fields). If f(x) 

is a composition of cyclic and Chebyshev polynomials, then f has 

rational integral coefficients, and so the construction above may 

be performed over Q. Then Q c Q(c n ), where c n  is a primitive n'th 

root of unity. Consider the diagram 

 —>k(x,y) 

, , ,////)1  
R (T) (x,y) 

--->K(x) -- K(x,y)---=>K(x,y) 

If (1) E 	K(x)), and K' c K, then the map rest: 

(cp restricted to M(x,y)) induces an isomorphism of 

95 
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Gal(K'(x,y): KI(x)) to Gal(K(x,y): K(x)), and also of the subgroups 

occurring in the diagram. If we now take K' = K n Q, then K n = Q, 
^ 

and the restriction map induces an isomorphism of Gal(K:K) to 

Gal(: K n Q). Further, these isomorphisms preserve the permutation 

group action on {y2 ,.. ,y}. Thus we have shown 

PROPOSITION 6.7.  The polynomial f(x) is a finite Schur 

polynomial over K if and only if it is a finite Schur polynomial 
A 

over K n t1, where Q is a subfield of Q(c ri ). 

PROPOSITION 6.8.  The polynomial f(x) is a finite Schur 

polynomial over K if and only if f(x) is a finite Schur polynomial 

over the maximal Abelian subfield A of K. 

PROOF.  If f is a finite Schur polynomial over A, then it is 

so over K. Conversely, if f is a finite Schur polynomial over K, 
A 

then it is over K n Q. But K n Q is Abelian over Q, and so is 

contained in A. Thus f is a finite Schur polynomial over A. 0 

3. FINITE SCHUR POLYNOMIALS OF PRIME DEGREE  

We now obtain criteria which effectively yield all finite 

Schur polynomials of prime degree over K. 

THEOREM 6.1.  The cyclic polynomial xP, p prime inZ, is a 

finite Schur polynomial over K if and only if K contains 

where c is a primitive p'th root of unity. 
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PROOF.  Suppose Q(ç) _ K. In L = Q(C), N IA (Q) E 1 mod p, 

for all primes Q not lying over p. Since N ol  (Q) is a power of 

NLIQ (Q n 0, it follows that N L/Q (Q) E 1 mod p, for all Q not lying 

over p. 

Conversely, if xP is a finite Schur polynomial, then we apply 

Proposition 6.3 with k = K, k' = Q( p ) and L = Kk' (the compositum 

of k' and K). Then L is separable of finite degree, and X consists 

of those primes q Ell for which there exists Q with N K/Q (Q) = q. 

For almost all such Q, pl(q - 1), since xP is a finite Schur 

polynomial. Hence q E 1 mod p for almost all q E X. Thus q splits 

completely in Q(r, p ) for almost all q E X and so (1)( p ) c K by 

Proposition 6.3. 0 

THEOREM 6.2.  The Chebyshev polynomial g p (x), p prime in -E, 

is a finite Schur polynomial for K if and only if Hp  c K, where Hp  

is defined in Proposition 6.4. 

PROOF.  Suppose Hp  c K. Since Hp  c L = Q(Cp ), and is of 

index 2, 

NL/Q (Q) = ( 
 

/Q
(Q n H

P
))2 

• 

Thus 

( lipm (W)) 2  E 1 mod p,lor all q' not lying over p. 

Since NL/Q(Q)  is a power of.N
H /Q

(Q n H ), it follows that 

(NL/Q (Q)) 2  E 1 mod p, and so g p (x) is a finite Schur polynomial. 
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Sufficiency is proved in the same way as in Theorem 6.1, 

taking k' = H. Then for almost all Q with N K/r4 (Q) = q, pl(q 2  - 1), 

since g (x) is a finite Schur polynomial. Thus q splits completely 

in H for almost all q  X and so H c K by proposition 6.3. 0 
P — 

We note that the results given above can also be deduced 

from Fried's theorem (0). Thus in the cyclic case, di = 

G(1) = {1}, and since Gal(: K n &) is cyclic, take K (T)  = K  

where T is a generator of Gal(: K n  If xP is a finite Schur 

polynomial over K n (11, there is an orbit of G = Gal(K n 

K n a)(x,y)) which does not split further under the action of G(1). 

Thus G fixes some y. =
i-1

y, and so fixes 
yi, 

for 1  j  p. Thus 

K n Q( p ) = Q(C p ) 

4. THE COMPOSITE CASE FOR ABELIAN EXTENSIONS OF Q  

Throughout this section, we assume that K is an Abelian 

extension of Q. We recall the following well-known facts from 

class field theory over Q (U140). By the Kronecker-Weber theorem, 

K 	0(c 1.1 ), where n is the conductor of K. Gal(Q(c p ): Q) = -4E tl, and 

if G k is the subgroup of  which fixes K, the primes of  which 

split completely in K are the ones lying in those congruence 

classes mod n which are elements of G K. 

LEMMA 6.4.  If sin and tin and if, for each k 

mod p for some p dividing s, or k 2 +1 mod q, for some q dividing 

t, the xs  g(x) is a finite Schu rolynomial over K. 
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PROOF.  The Galois group of K over Q is isomorphic to I/GK. 

If P is a prime ideal of K lying over p, where p is unramified in 

K, then N(P) = p t , where f is the order of the Frobenius automorphism 

of P. Thus the Artin map takes p f  to the identity element of V/GK. 

Hence N(P) E G K , and so either (s,N(P) - 1) >1 or (t,n(P) 2  - I) >1. 

Thus x
s 	

g
t
(x) is a finite Schur polynomial by Proposition 6.6. 0 

LEMMA 6.5.  If 21s, (6,t) = 1 and xs o  g(x) is a primitive 

Schur polynomial over K then stln, where n is the conductor of K. 

PROOF.  Let s =  POCT—T  t = ( F-T P.)CF—T 
iEI

s 	jEJ s
. 	J i E I t  JEJ t  

where . p i ln, qjitn, and J = J s  U J t  0. Since q j  2 if  

q j  # 2 or 3 if j E J t , there exists u E E with u not congruent to 

0 or I mod q j , j E J s , u not congruent to 0 or +I mod q j , j E J t . 

If I = I
s 	

I
t 	

0
' 
by lemma 6.4 there exists 2. E G

K such that 

9. t I mod p i , for all i E I s , t t +I mod p i  for all i e I t , since 

otherwise x a o  g f3(x), with a =1fl  p i ,  =J p i , would be a 
iEI s 	leI t  

finite Schur polynomial, contradicting J  0 and x s  gt (x) 

primitive. Any prime congruent to k mod n splits completely in K. 

If I = 0 choose t = I. By Dirichlet's theorem there exist infinitely 

many primes p E 	with p E k mod n and p E u mod (TT q 4 ). All such 
jEJ 

p have N(P) = p, where P lies over p. Thus there are infinitely many 

p with (s,p - I) = I or (t,p 2  - I) = 1, a contradiction. 0 

THEOREM 6:3.  Let K be an Abelian extension of Q with conductor 

n, and let G K  be the subgroup of 7L which fixes K. If s .# 2, t 2 
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or 3, thcn x s  ^ g(x) is a primitive Schur polynomial for K if and 

only if 

(i) S = TT q4, t = TT q., where qj  are distinct primes 

j Ej s j 	jejt j  

dividing n, and J
s 

n J
t 

= (1). 

(ii) If X E G K  then A E 1 mod qj , j E J s  or X E +1 mod qj , 

j E J t , for some j E J — J s  u J t . 

(iii) If IJI ?_ 2, then for each a E J there exists A E GK  

with A 7 1 mod qa  if a E J s  or X E +1 mod qa  if a E J t , 

and X E 1 mod qj  for j E J s , j 	a, A t +1 mod qj , 

for j E 	# a. 

PROOF.  Suppose (i) - (iii) hold. As in the proof of lemma 

6.4, if P lies over p EZ, and p is unramified then N(P) E G K . 

Thus (t,N(P) -1) >1 or (s,N(P) 2  -1) >1 for almost all p. If 

x s' 	g(x) is exceptional, with s't' dividing st, then there are 

s/q 
two cases to consider. Either x  a  g

t
(x) or xs  

gt/qa(x) 
 is 

exceptional, for some a E J. In the first case, by (iii) there 

exists A E G K  with A t 1 mod qj  for all q j  dividing (s/qa) and 

A t +1 mod q j , for all q j  dividing t. There exist infinitely 

many rational primes congruent to A mod n. These split completely, 

and so there are infinitely many prime ideals P with (s/q, N(P)-1) =1 

s/q 
and (t,N(P) 2  - 1) = 1. Thus x  a  . g(x) is not a finite Schur 

polynomial. The other case is similar. Thus x
s  

g
t
(x) is primitive. 

Suppose xs  o g(x) is a primitive Schur polynomial, with s  2, 

t # 2 or 3. By lemmas 6.3 and 6.5, stin and St has distinct prime 
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factors, proving (1). Since x s o  g(x) is a finite Schur polynomial, 

(s,p - 1) = 1 or (t,p 2  - 1) > 1 for almost all primes p which split 

completely in K. Since the primes which split completely in K are 

uniformly distributed over G K , (ii) holds. Suppose (iii) does not 

hold for a E J. Let (s 1 ,t 1 ) be defined by s' = s/q a  if 

S I  = s otherwise, t' = t/q a  if a E J t , t' = t otherwise. Then (i) 

and (ii) hold for xsi o gt ,(x), and so this is a finite Schur 

polynomial. Thus xs og(x)  is not primitive. 0 

5. EXAMPLES  

We now apply the results of §2, 3 and 4 to various special 

cases. 

PROPOSITION 6.9.  For any algebraic number field K, 

x
2
, g (x) and g 3 (x) are finite Schur polynomials. 

PROOF.  We have Q(c2 ) = Q c K, and H3  = Q, since 

[Q(c3 ): Q] = 2. Theorems 6.1 and 6.2 then give the result. 0 

PROPOSITION 6.10.  If K = Q, then x2 , g2 (x) and g 3 (x) are 

the only primitive Schur polynomials for K. 

PROOF.  If p > 2 then Q(Cp ) 4 Q, and Hp  Q if p > 

Since the conductor of Q is 1, theorem 6.3 shows that there 

are no composite primitive Schur polynomials. 0 

0 
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PROPOSITION 6.11.  The polynomial x s  o g (x) is a primitive 

Schur polynomial only if all the prime factors of s other than 2 

and of t other than 2 or 3 are ramified. 

PROOF.  If xs  g t (x) is of prime degree p, then H p  c K, 

and p is ramified in H if p # 2 or 3. If t = 1, then Q(c ) c K, 
P — 

and p is ramified if p  2. The composite case follows by reducing 

to the Abelian case and applying theorem 6.3 (i). 0 

We now examine the question of the existence of composite 

primitive Schur polynomials. 

PROPOSITION 6.12.  If K is an Abelian extension of Q and xm  

is a composite primitive Schur polynomial for K then m has at 

least three distinct prime factors. 

a 
PROOF.  Let n =  p 4

i 
 , m = p i p 2 , where n is the conductor 

i E I 	l a.  
of K. Then Z* = e) 1-1- Z/(P. 1 ). If m is primitive exceptional 

iEI 

then by theorem 6.3 (iii) G K  contains elements of the form (a,1,...) 

and (1,13,...) with a,13 1. Thus G K  contains (a,,...), contradict-

ing theorem 6.3 (ii). 0 

COROLLARY.  If less than three primes ramify in K, where K 

is Abelian, then there are no composite primitive cyclic Schur 

polynomials for K. 

That composite primitive Schur polynomials exist is shown by 

the next two propositions. 
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PROPOSITION 6.13.  Let n = p 1p 2 p3 , with p i  # 2. In Q(cn ) 

there exists a unique subfield K such that x n  is a primitive Schur 

polynomial for K. K has index 4 in Ccd. 

PROOF.  Elementary considerations show that the only suitable 

subgroup GK  of IA is {(1,1,1), ( 1 ,,y), (a,l,y), (a,0,1)} where 

a,a,y E -1 mod p 1 ,p2 ,p3 , respectively. The corresponding subfield 

K of index 4 in Q(cn ) has n as a primitive Schur polynomial. 0 

We note that the smallest degree of an example constructed 

above is 12. 

4 
PROPOSITION 6.14.  If m = IT p

1
., with p i  E 1 mod 3, then 

1=1  

there is a subfield of Ogc n ) of index 9 in which X"is a finite 

Schur polynomial. 

PROOF.  In 1* there is an element of order 3. If a,13,y,6, 
pi 

are such elements mod p1,... 'p4. then G = {(1,1,1,1), (1,a,y,6), 

(1,e,y2 ,62 ), (a,1,Y2 ,6), (a2 ,1,Y,e), (a,a,1,6 2 ), (a2 ,62 ,1,6), 

(a, 2 ,y,1 ) , (a2 , -2 0 ,y2 ,1)} is a suitable subgroup. 0 

We now consider the cyclotomic and quadratic fields in the 

light of the general results of §2 and §3. These results have 

been obtained previously by Niederreiter and Lo [32]. 

PROPOSITION 6.15.  The polynomial xP(resp. gp (x)), p prime, 

is a finite Schur polynomial for igc n ) if and only if pl2n(resp. 

pl6n). There are no composite primitive Schur polynomials. 



PROOF.  We have Q(c p
) EQ(c

n
) if and only if pin or p = 2. 

Similarly H p  c Q(C p ) if and only if p n, p = 2 or p = 3. The 

conductor of Q(Cp ) is n. Thus G K  = {1}, and theorem 6.3 (iii) 

cannot hold for composite st. 0 

PROPOSITION 6.16.  The only cyclic Schur polynomial of 

prime degree for a quadratic field is x 2  unless K = Q(1'), when 

x
3 is a finite Schur polynomial. The only Chebyshev Schur poly-

nomials of prime degree are g 2 (x) and g 3 (x) unless K = Q(A-) in 

which case g 5 (x) is a finite Schur polynomial. There are no 

composite primitive Schur polynomials. 

PROOF.  Since 0)(c 3 ):  = 2, and [Q(c p ): Q] > 2 if p > 3, 

the largest p with xP a finite Schur polynomial is 3, and this can 

only occur if K = Q(c3 ) = Q(/-3). Similarly the largest possible 

Hp  is H 5 , and if this has degree two over 11), then K = H 5  = 

We now consider the composite case. Let K = d squarefree, 

have conductor n, and suppose x s  g(x) is a finite Schur poly- 

nomial over K where St has at least two prime factors, 24's, 

(6,t) = 1. By [5], page 504, GK=  ft mod n: (1) = 11. If d E 1 

mod 4 then n = ldl, if d = 2 or 3 mod 4 then n = 41d1. Let 

d = (-1) 61 262d*, with E i  = 0 or I. Then 

d=  ( 
-1 

E1,2 6
2 d* 

(T)  )  t) (T)  • 

•
Let s =  p i , t.=  p i , I n J = 0, with p i ld*, pj  3, j E J. 

id  jEJ 

104 
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We construct A c G
K 
with A f 1 mod p. for i E 1, A t +1 mod 

pi , j c J, by the Chinese remainder theorem. If qid*, q/st, let 

a 1 mod q. We choose A t 1 mod p i , A t +1 mod pi , for i E 1, 

jEJ. We further require (1-) = 1,iEIuJ. This is possible 
Pi 

unless 3 E {p}i  or 5 E {pj }. If p l  = 3, choose A E 2 mod 3, 

and (---L) = -1, A t +1 mod p2 , if 2 E J, A t 1 mod p2  if 2 E I. If 
P2 

fpj liej  5  E fPi} jEJ , we take p2  = 5.. 
If 3  5  E 	

we choose 
 

A E 2 mod5 and= -1, for some p
2 

# 5; with A t 1 mod p
2 

or 
F2 

A t +1 mod p2 , as appropriate. An extra condition is imposed on A 

as follows. 

Case 1.  61  = 62  = 0, d* E 1 mod 4. 

No extra condition. A = 1, A is chosen mod d* = n. 

Case 2.  El  = c2  = 0, d* a 3 mod 4. 

Choose A E 1 mod 4, then 4) = 1, Ais chosen mod 4d* = n. 

Case 3.  61  = 1, 62  = 0, d*  1 mod 4. 

Choose A E 1 mod 4, then CO =(- 11(c) = 1, and A is chosen 

mod 4d* = n. 

Case 4.  61  = 1, 62  = 0, d* E 3 mod 4. 

Choose A E 3 mod 4, (.) = (4)(1*-) =  =  = 1, A is 
chosen mod 4d* = n. 

Case 5. 2 = 1. Choose A E 1 mod 8, then A E 1 mod 4. 

d  -1 61 2 d* 
Then (-) =  (T)(70 = 1. Here A is chosen mod 8d* = n. 0 
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Niederreiter and Lo [32] proved the next result for normal 

extensions of Q and cyclic or Chebyshev polynomials. By reducing 

to the Abelian case we may dispense with normality. The proof 

given by Niederreiter and Lo may be easily extended to yield 

PROPOSITION 6.17.  If [K:Q] = k, a necessary condition for 

X S  0 g t (x) to be a finite Schur polynomial is that (p i  - 1)1k for 

some p i  dividing S, or (qj  - 1)12k, for some qj  dividing t. 

PROPOSITION 6.18.  Suppose [K:Q] is odd. Then X S  0 g(x) 

is a finite Schur polynomial only if S is even or t is divisible 

by a prime p, with p E 3 mod 4. 

PROOF.  (p - 1) is even if p # 2.  If 1/2(p -1) is odd, 

then p E 3 mod 4.. 0 

PROPOSITION 6.19.  If [K:Q] = 4, then X 2  is the only prime 

degree cyclic finite Schur polynomial unless i:SE K, when x 3  is a 

finite Schur polynomial, or K = Q(c5 ) when X 5  is a finite Schur 

polynomial. g 2 (x) and g 3 (x) are the only Chebyshev Schur polynomials 

of prime degree unless 15 E K, when g 5 (x) is a finite Schur polynomial. 
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CONCLUSION 

Here we discuss certain unsolved problems and directions for 

further research. 

In general it appears to be difficult to determine the permutation 

polynomials amongst polynomials of a given class. Such classes are usually 

defined by some analytic property, such as orthogonality, and not 

primarily by their coefficients. The criterion of Hermite, however, 

deals with the coefficients of a polynomial. Thus it would be of 

interest to relate the permutation properties of classes of polynomials 

to other properties, such as differential equations which may define 

them, etc. One approach may be to consider the polynomials p-adicly, 

and investigate the connection between polynomials which are p-adicly 

univalent and permutation polynomials of each type. 

A further problem appears at the end of chapter 2. Classify 

all polynomials f(x l ,...,xn ), n > 1, which are permutation polynomials 

over T q , for all q = p e , e  1. Does every elementary symmetric 

function which is a permutation polynomial over W have this property? 

All such polynomials have the same c-function, and so their behaviour 

over C may be relevant, through the Weil conjectures. 

If, in the definitions beginning chapter 4, we take 

r(z) = g k (z), we obtain a class of multivariable polynomial vectors 

hk (z) whose permutation properties are similar to the {g(n,k,b)}. 

Do these polynomials have any nice analytic properties? What is 

the structure of the group of permutations they induce (they are 

closed under composition)? One could also pose these problems for 

rings 7L/(pe)• 
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If one considers multivariable analogues of the Schur 

conjecture one may ask (1261): which polynomial vectors overt 

induce permutations of IF for infinitely many primes p? The poly- 

nomial vectors (z 1
,  , z n ), the g(n,k,b)(z), and the h k (z) have 

this property. Are they compositionally independent and do they 

generate all such vectors? The problem concerning the elementary 

symmetric functions may be considered as an analogue of this problem. 
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