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ABSTRACT

Various authors have dealt with problems relating to
permutation polynomials over finite systems.([4], (81, [101, [181,
[20]-[251,[291-[33]1, etc.). In this thesis various known results

are extended and several questions are resolved.

Chapter 2 begins by considering the prob]eh of finding those
permutation polynomials in a single variable amongst some given classes
of polynomials. Previously, this question was settled only for cyclic
pq]ynomia1s and Chebyshev polynomials of the first kind. Here we
consider the Chebyshev polynomials of the second kind and polynomials
of the form (x" - 1)/(x - 1). Certain questions 6n multivariable

polynomials are then considered.

Chapter 3 deals with questions involving polynomials whose
coefficients lie in a subfield of the given field, and considers

some combinatorial questions.

Chapter 4 resolves the structure of the group of maps of
Fg -> Fg induced by the extended Chebyshev polynomials of Lidl and
Wells [26]. Chapter 5 extends this further to finite rings'l/(pe),
thus generalising results of Lausch-Mi11er-Ngbauer [18].
Chapter 6 settles some questions concerning_the conjecture

of Schur on polynomials f(x) e Z[x] which permute infinitely many
residue fields Fp. It is known ([10]) that these are compositions
of cyclic and Chebyshev polynomials of the first kind. In chapter
6 it is determined which of these polynomials have the required

- property.
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(vi)
INTRODUCTION

This thesis deals with various properties of polynomials in

one or several variables over a finite field or a finite ring.

Chapter 1 introduces finite fields and Galois rings, which
are used in subsequent chapters. This is followed by a brief
discussion of algebraic number theory, and some results on circulant

matrices are noted.

Chapter 2 gives the fundamental concepts of a permutation
polynomial and an orthogonal system.The cyclic and Dickson polynomials
are defined and permutation properties of Chebyshev polynomials of the

second kind are discussed.

Polynomials in sevefa] variables are then considered. The
classical Konig-Rados theorem is given in a multivariable form, and
a result of Horakova and Schwarz [16] is generalised to yield inform-
ation on the distribution of the zeros of a mu]tivariéb]e polynomial
by degree. Circulant matrices are used to obtain a criterion for a
multivariable polynomial to be a permutation polynomial. A detailed
discussion of sums of polynomials in severai variables is presented
in theorem 2.8. This question was previously settled only in the
prime field case. Similarly, theorem 2.9 extends a criterion of'

Niederreiter [31] from the prime case.

We then consider x-polynomials, which distribute their values
uniformly over Fa. The question is considered of deciding when a

product of polynomials in disjoint sets of variables is a x-polynomial,
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in analogy with the corresponding sums of permutation polynomials.
The criteria turn out, however, to be quite different. Thus, over
Fp, f + g is a permutation polynomial if and only if either f or g
is one, but fg may be a x-polynomial even though neither f nor g is.

A character sum criterion for x-polynomials is given.

Finally, permutation properties of the e]ementéry symmetric
functions over!Fq are considered. Certain of these are shown to
be permutation polynomials. These have the property that they remain
permutation polynomials over all extension fields of Fp. Other

polynomials with this property are also presented.

'Niederreiter [30] has shown that any orthogonal system
(fl""’fr) in n variables,r < n,may be completed to an orthogonal
- system (fl,...,fn). Carlitz and Hayes [41, considered the question
of elucidating the structure of the group of permutations of fF ¢
‘induced by single-variable polynomials which actually belong t:
Fq[x]. We extend this result to orthogonal systems in chapter 3,
then consider Niederreiter's extension problem, where (fl""’fr) is
an orthogonal system over!th,'with fi e Fq[xl,,,,,xn], and ask
whether this may be extended to (fl,...,fn), with . « Fq[xl,...,xn]

and (fl,...,fn) an orthogonal system over th. Such extensions are

enumerated in this chapter.

In the last three chapters we deal with properties of cyclic
and Chebyshev polynomials. Chapters 4 and 5 deal with the multi-
variable Chebyshev polynomials introduced by Lidl and Wells [26].
Chapter 4 begins by placing these in a more general setting, where

we derive a multivariable polynomial vector from a single-variable
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polynomial. We then relate the properties of these two objects,

the key result being theorem 4.1. The structure of all permutations
obtained in this way is obtained, then the group of maps induced by
the generalised Chebyshev polynomials over Fq is determined. This
extends results of Lidl ([20] and [21]) from the two-variable case.
We conclude chapter 4 with a short proof of a result of Brawley,
Carlitz and Levine [3] on matrix permutation polynomials, which uses

the construction of this chapter.

Chapter 5 extends the results of chapter 4 from finite fields
to the ring of integers mod m. These results were known previously
only for one variable ([18]). The chapter begins with an evaluation
of the Jacobians of the polynomials defined in chapter 4, and the
generalised Chebyshev polynomials. Regular po]yndmia] vectors are
discussed, and a regularity criterion for multivariable Chebyshev
polyndmia]s is given. The determination of the structure of the
permutation group induced on (ZZ/(pe))n by the.Chebyéhev polynomials
makes use of Galois rings and results of Ward [44] and [45] on

linear recurring sequences.

In chapter 6 we consider a property of the sihg]e-variab]e
cyclic and'Chebyshev polynomials. Namely that these are permutation
polynomials over infinitely many prime fields Fp. Schur conjectured
that they are essentially the only such po]ynomia]s, and Fried [10]
proved this for residue class fields of an algebraic number field.
This chapter completes the converse problem of deciding which cyclic
or Chebyshev polynomials have this property for a given algebraic
number field K. Previously [32] only the quadratic and cyclotomic

fields had been settled, and a few general results were also known.



CHAPTER 1

BASIC RESULTS



In this chapter we introduce various results needed in later
chapters and define some basic concepts. Proofs are omitted if

references to the literature are available.

1. FINITE FIELDS AND GALOIS RINGS

For each prime p ¢ Z, and prime power q(= pe) there exists,
up to isomorphism, a unique finite field of order q, denoted Fq.

The following properties of Wq are well-known.

*
. , q
of Wq is called a primitive element of Fq.

1. The multiplicative group F_ of Fq is cyclic. A generator

2. Fq is the unique algebraic extension of Fp (=Z/(p)) of

degree e.

If the ring Z/(p") is denoted by R, then one may seek
extension rings of R which relate to R as Fq does to Fp. Such
rings are the Galois rings. They are considered in chapter XVI of
McDonald [27]. Let u denote the canonical homomorphism
u: Z/(p") +Z/(p). Then f(x) e E/(pn)[x] is called a basic
irreducible if pf(x) is irreducible over Z/(p). If this is the
case then f(x) is irreducible inZ/(p"). If f(x) is any basic
irreducible of degree r, then all rings of the type Z/(pn)[x]/(f)
are isomorphic, and are called Galois rings, denoted GR(p",r).
Further, GR(p",r) =Zrx1/(p",f), if f(x) ¢ Z[x], and f is irreducible
mod p. There is a natural projection o: GR(pn,r) > GR(pn_l,r) with
kernel (p"'l). Also, GR(p",1) =2Z/(p"), and GR(p,r) :IFpr. f
splits uniquely into linear factors in GR(pn,r). We use the

following results. Let n: GR(p",r) »err.



LEMMA 1.1. (Hensel's lemma). Let h ¢ GR(p",r)(x] and
ph = §1 .e- §t, where §1,...,§t are paitr-wise coprime. Then there

exist 9ys...,9y» 95 ¢ OR(P",r)IX] such that

(z) 91s--+59, are pair-wise coprime;

IA

(i1) wg; = §i, 1< <t

(i4d) h=g) ... gy

PROOF. McDonald [27], page 256 proves this result for local

rings. GR(p",r) is a local ring.

If f is not a zero divisor in GR(p",r)(x1, then f is called

regular.
LEMMA 1.2. Let f ¢ GR(p",r) be regular. Then

(1) If uf is irreducible in I r, then f is irreducible.

(i) If f is irveducible then uf = 6g°, where § ¢ IF r,

p

and g is a monic irreducible in F_r[x].

P

PROOF. McDonald [271, p. 260.

A local ring is a ring with exactly one maximal right (or

left) ideal.

LEMMA 1.3. et R be a commutative local ring of character-
istic p" with maximal ideal 1 and residue field k. Let
Ck: Z/(p)] =r and {ul""’ut} be a minimal R-generating set of 1.

Then there exists a subring S of R such that

(i) S = GR(p",r) where S is unique;

(i2) R is the ring homomorphic image of S[xl"”’x 1.

t



PROOF. McDonald (271, p. 337.

LEMMA 1.4. et T = GR(p",t), and let T* be the group of

units of T. Then T* = G1 X GZ’ where

(@) Gy is a ecyelic group of order pt -1

(n-1)t

(b) G, is a group of order p > such that

(i) if pis odd, or p =2 and n < 2, then G2 is a

direct product of t cyclic groups of order pn—l.

(i1) If p=2andn 2 3, then 62 ig a direct product

of a eyelic group of order 2, a cyclic group of

2“'2 2n-1.

order and t - 1.eyelic groups of order

PROOF. McDonald (271, p. 322.

2. NUMBER THEORETICAL RESULTS

We will need, particularly in chapter 6, some basic results
from algebraic number theory. Here we establish some notation and
describe the fundamental results on ideals in number fields.

Hasse [15], Narkiewicz [28] and Weil [46] are standard works in

this area.

Let K be a finite extension of . Whereas classical number
theory deals with properties of Z, algebraic number theory deals
with similar questions over a certain subring'A of K. A is the
ring of algebraic intégers in K where a ¢ K is an algebraic integer
(over Q) if it satisfies a monic equation with coefficients in Z.

The first major obstacle in extending number theoretical results



to A is the lack of unique factorisation in A. This is restored by
considering the ideals of A. The ideals of A have unique decom-
position into productsvof powers of prime ideals. If P is a prime.

ideal of A, then P nZ is a prime ideal of Z, and so P nZ = pZ,
t e,

for some prime p ¢ Z. - Fﬁrther pA = T~I'Pi1, where Pi are prime

i= :
ideals of A, and Pi nZ=pZ. The ideals Pi are said to lie over
p. For all but finitely many primes p ¢ Z, the powers e, occurring
in the decomposition of pA arelunity. ‘If this is not the case,
then p is said to be ramified in A (or in K). If t =1, and e = 1,
then p is said to remain inert in K. If [K:Q) = t, then p is said
to split completely in K. The integer e; is called the ramification
index of P; over p, and f, (= CA/Ps3 Z/(p)] is called the inertia
degree of Pi' If K is a normal extension of § then the ei's are

equal, as are the f;'s. In any case Je.f; =(K:Q) and in the normal

case, if e,=e, f.=f, then tef = [K:Q]. Further eiln and fiTn.”f is also
written f(P|p).
Now suppose K is a normal extension of Q. Let P be a prime ideal

‘of A lying over p ¢ Z, with P unramified in K! Then corresponding
to P there is a unique ¢ ¢ Gal(K: Q) such that ¢{(a) = up}mod P,

for all a e A. ¢ is called the Frobehius automorphism of P. If

K is abelian over @, ¢ depends only on p. The order of ¢ equals
f(P|p). Thus one obtains a map from the set of unramified prime
ideals of A to Ga](K{Q) obtained by mapping an ideal to its
Frobenius automorphism. This may be extended multiplicatively to
the set of all unramified ideals of A. The resulting map is called
the Artin map of A over Q. The detailed properties of this map

Tead into class field theory. Finally we introduce some notation.



If I is an ideal of A, then the norm of I, NK/Q(I) is defined to be
|A/1}. This is always finite.

We will use the following result in chapter 5. The case

e =1 is well-known.

LEMMA 1.5. There is a finite algebraic extension K of Q,
with ring of integers A, and a prime ideal P with P = pA, such
that

A/PE = GR(p®,t) .

PROOF. Let f(x) be an irreducible monic polynomial of degree
t over Z such that uf(x) is irreducible over Z/(p). 1If o is a root

of uf in Wpt, then pf'(a) # 0. Thus disc (uf) # O irllp, and so

p/ disc f overZ. By the Kummer-Dedekind theorem on ideal

factorisation (see [28] p. 161) p remains inert in K = Q[x1/(f(x)).

If A is the ring of integers of K, let S = A/Pe, where P = pA.
Then char S = p%, or else pe-l'e Pe, and so P&l c PS, é |
contradiction. Thus S is ah extension ring on/(pe). S is
clearly a commutative local ring, [A/P: Z/(p)] =t, and so S
contains a subring T = GR(p%,t), by lemma 1.3. Since

IS| = pet = |T|, S = T completes the proof of Lemma 1.5. [

We also use the Mobius inversion formula.
LEMMA 1.6. If f,9 are functions froml+ to € then

f = d. <= = LI
(n) d}ﬂ g(d) < g(n) d%n f(d) n(g)



where u is defined as follows:

O Q

u(l) = 1 If n = pll pkk,a]- x 1,p, prime, then
u(n) = (- if o =ooo= oy = 1
= 0 otherwise.

PROOF. Apostol [11, p. 32.

LEMMA 1.7f The number of monic irreducible polynomials of

degree k over Fq is given by

m(k) = k1 ] u(%) qd, where
d[k

p is the MObius function of Lemma 1.6.
PROOF. Blake and Mullin [2], p. 33.

3. BLOCK CIRCULANT MATRICES

We now consider block circulant matrices, which appear in

various contexts in chapter 2.

An ordinary circulant is a matrix of the form

n

a an ... a
n °0 n-1 | _ ¢?
, . - (ao,...,an) -

raoal ce. a \

Lal a2 “ s ao )

where each a; be]ongs to a field F.



DEFINITION 1.8. An (n,k)-block circulant is ann x n

circulant whose entries are (n,k - 1)-block circulants. An

(n,1)-block circulant is an ordinary circulant.

A block circulant is usually defined in a wider sense
(Davis [6]1, p. 176). dur definition corresponds to that of a
circulant of level k ([6], p. 188) where the blocks have

restrictions on their dimensions.

DEFINITION 1.9. The polynomial fp(x;s... %) assbciated
with the (n,k)-b]ock circulant A is given by fA(xl,...,xk) Z fJxk,

where fj(xl,.{.,xk_l) is the polynomial associated with fhe (n,k - 1)
block circulant Aj’ where A = t‘(AO”"’An-l)' If k =1, then

n-1 i
fA(x) = -Z a5x-.

j=0 .

For an ordinary circulant, the determinant was found by Ore [34],
when char F =0, or for char F= p, (n,p)= 1, and by Silva. [40], when (n,p)#1.

The block case has been considered by Frriedman [12], Chao [5], Smith [41]
and Trapp [42].

THEOREM 1.1. The eigenvalues of the block circulant A
assoctiated with fA(xl,.. .,xk) are the values of fA on all k-tuples

of n'th roots of unity )‘i in a suitable extension field of F.

PROOF. Consider first the case char F = 0, or (n,p) = 1.
We consider A as an element of the group ring FG, where G is the

direct sum of k copies of C_, the cyclic group of order n. By

n’
Maschke's theorem, FG is semisimple, and the regular representation

is equivalent to a direct sum of irreducible represencations. If



F' is an extension field of F containing the n'th roots of unity,

over F' the irreducible representations of G are one-dimensional,

as G is abelian, and are the irreducible characters of G, defined

by x(gi) = A, where g. is a generator of a copy of C, and X is

any n'th root of unity. Since A = fA(Tl,...,Tk), where T, is
associated with X5 by linearity of the characters A is equivalent
under linear transformations over F' to the matrix diag {fA(Al,...,Ak)},

and so the eigenvalues are given by {fA(Al,...,An)}. 0

This equivalence also yields

COROLLARY 1. The determinant of A is HfA()‘l""’)‘k)’ where

A

5» 1 <1 <k, ranges over all k-tuples of n'th roots of unity.

COROLLARY 2. A is invertible < fl-\()‘l"" ,Ak) # 0 for any

k-tuple of n'th roots of unity.

We now assume (n,p) # 1. We use the-

following theorem of Silva [40], also proved in Chao [5].

THEOREM 1.2. Let A = J (Ag,...,A ), where the A; are

square matrices of order n 2 1. Let n = ptm, pfm. Then

pt-1

SZO Asm+r’

"

. |
det A = (det D)P mod p where D = £ (Dg,....D, ;) and D,. =

O<rsm-1.

Applying this result, we see that Theorem 1.1 still holds,

where éach.root'is taken with multiplicity pt.

The proof of Theorem 1.1 also provides the following result.



THEOREM 1.3. I1f (n,p) = 1, then the rank of the block

eirculant matrix A is the number of non-zero eigenvalues of A.



CHAPTER 2

PROPERTIES OF POLYNOMIALS OVER FINITE FIELDS



10

In this chapter we deal with various results concerning
polynomials in one or several variables, defined over a finite field
Fq. Most of the results concern the distribution of the values taken
| by the polynomials. Of particular interest are polynomials whose

value sets are uniformly distributed.

In the single-variable case the classical examples of such
polynomials are the power polynomials and the Dickson polynomials.
We consider polynomials of the form (x" -1)/(x - 1) and Chebyshév
polynomials of the second kind. We then consider various results
on multivariable polynomials. These oftgn extend known results or
generalise reﬁults_from the single variable case. We conclude with
some results on the elementary symmetric fﬁnctions ovef a finite

field.

1. PERMUTATION POLYNOMIALS AND ORTHOGONAL SYSTEMS

DEFINITION 2.1. A polynomial f(x) ¢ F.[x] is called a

q

if the mapping a » f(a), a « fF., is

permutation polynomial over ¥ g

q
a permutation of Fq.

DEFINITION 2.2. A polynomial vector (fl(xl”“’xk)’

...,fk(xl,...,xk)), fi € quxl,...,xk], is called a permutation

polynomial vector over fF_ if the corresponding mapping

q
(ags...53)) » (fl(al,...,ak),.--,fk(al,...,ak)) is a permutation

' k
. of qu.

Permutation polynomial vectors have been studied in [8],

(241, (291, [30], [31], and [33]. They are also discussed in [191.
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DEFINITION 2.3. A polynomial vector (fl(xl,...,xk),

"fr(xl""’xk))’ f equ[xl,...,xk], r < k, is called an
orthogonal system overlFq if the equation (fl(xl,...,xk),

k-r

"fr(xl""’xk)) = (al,...,ar) has precisely g solutions for

' r
each (al,...,ar) equ.

An orthogonal system consisting of one polynomial in k
'variables, (r = 1) is also called a permutation polynomial in k
variables, and clearly a permutation polynomial vector is an
orthogonal system. It was shown by Niederreiter [30] that any

o orthogona] system fi, .;fr, in k var1ab]es, k may be extended

e

S

_for each s with r<¢s<k, to an orthogonal system fT”"’f in k variables.

- 2. SINGLE VARIABLE POLYNOMIALS

We consider firstly sing]e—variab]e polynomials. Many
results on permutation po]ynomia]s'appear in chapter 5 6f Dickson
[8], where a 1ist is given of aT] permutation polynomials of a
degree less than 6. Dickson introduced an important class 6f
permutation polynomials, now known as Dickson polynomials, which
are fe]ated to the classical Chebyshev po]ynomia1s.of the first

kind.

DEFINITION 2.4. The po]ynomia]_gk(x,a) defined by

tk/23
g, (x,a) = ) +—=(
k> t)=’0 k-t

k - t) t k 2t

(-a)

is called a Dickson polynomial.

i
1
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If tk(x) is the Chebyshev polynomial of the first kind, then
g, (x,a) = 2(/a)* t, (x/2/2).

THEOREM 2.1. gk(x,a) is a permutation polynomial over
if and only if (k,q2 -1) = 1.

PROOF. Lausch and Nobauer [191, p. 209.

Later in this chapter, we will consider multivariable
ana]ogues of Dickson polynomials. An important property of the
polynomials gk(x;l) relates to composition o of polynomials

(for a proof see [19] p. 211).
THEOREM 2.2. g, (x,1) o g,(x,1) = g, (x,1).

This property will also generalise to the multivariable case.

It ensures that the set of selfmaps of fF_ induced by'{gk(x,l): k eZ}

q
forms a group. This and similar groups will be considered in later

chapters.

The only classes of singIe-variab]e'polynomials whose
permutation behaviour is fully determined are the Dickson polynomials

and the cyclic polynomials defined below.

DEFINITION 2.5. A cyclic polynomial is a polynomial of the
form axk +b,a# 0, ke zt. |

THEOREM 2.3. axX + b, a,b « Fg» @ # 0 45 a permitation
polynomial over FFq if and only if (k,q - 1) = 1.
*
PROOF. From the fact that Fq is cyclic of order g-1.
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We now give a full analysis of the permutation behaviour of
another class of po]ynomia]s. To do so we use the criterion of

Hermite ([191, p. 191).

PROPOSITION 2.1. 4 polynomial f ¢ F_[x3, q = p%, is a

q
permutation polynomial overEFq if and only if

(i) f has exactly one root in Fq;

(17) the reduction of ft mod (xq -x),0<t<qg-t,t20
mod p, has degree less than or equal to (q - 2).

k

THEOREM 2.4. The polynomial hy(x) = 1 + x + x% +...+ xK is

a permuitation polynomial over g if and only if k = 1 mod p(q - 1).

EBQQE. SuppOSe k =1 mod p(q - 1). :Then k=aplq-1) +1,
for some a € Z, « 2 0. If x # 1, h(x) = (kP12 gy o1y
= (¢ - D/(x - 1) = (x+1). Ifx=1,h(x)=(k+1)=2. Thus
hk(x) = x + 1, for all x ¢ Fd, and so hk(x) is a permutation
polynomial over FFq.

We now consider the problem of showing that the given
condition is a necessary one. We note that if k = & mod p(q - 1)
then h (x) = h(x) for all X e Fq. Thus it suffices to consider

k <plg-1). If k= (g~ 1) then in the reduction of hk(x) mod |

(x9 - x) the coefficient of x3°1 is {-a¥73:1 which is not zero

mod p, and so hk(x) is not a permutation polynomial by Proposition

2.1. Thus we may assume that k < (q - 1).
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We begin with the case q = p. We consider [hk(x)]t, where
t = [}EiQLJ + 1, k > 2. The terms which reduce to P are those

‘of the form xa(p'l), 0 elZ, a>0. The degree of [fk(x)]t is kt.

We may suppose that k does not divide (p - 1). Let (p - 1) = ok + B,
0O<B<k,a=21l. Thent=oa+1and kt = (a+ 1)k = (p - 1) + (k - B).
Since (k - B) <_(p - 1), kt < 2(p - 1). Thus we need only consider

the term xp'l. Since'[hk(x)]t is symmetric, the coefficient of xp'1
equals the coefficient of xkt'(p'l), and kt - (b - 1) = (k - B) <k

r+t-1)

We show that if r < k, the coefficient of x" in h (x)1* is ("} F>

This is established by induction on t. If t = 1 the result holds.

t k o
If it holds for t = t,, then [h (x)] 0. ¥ (r-+t0-1) x' + terms
0 k r.=0 tO - 1 .
. t0+1 tO
of higher degree. Then [hk(x)] =-hk(x) [hk(x)] and the

r _
coefficient of x" is ) (2.+t0 '1) = (r-+t0). If n>s and n < p,

2=0 to - 1 to
s < p, then (2) # 0 mod p, (from the exp]icit form of (2)). We

r+t-1

to1 ) 20 mod p when r = kt - (p - 1). Clearly

show that (
(t -1) = [EH%};J < p so we need only show that (r +t - 1) < p or

that (k + 1)t -1 < (2p-1). (k+1D)t-1=(k+1(a+1)-1
= ok +a+ k. Since ok = (p-1) - B < (p-1), the result holds
unless (a + k) > p. Then ok < (p - 1) and (a + k) > p. As a,k ¢ Z,

graphical considerations show that no such a,k can exist.

We now consider the case where q = pe > p. We proceed by

induction on e. If hk(x) is a permutation polynomial over'Fpe then

it is over Fpe-l'. Thus k = 1 mod p(pa'1 -1). Let k = ap(pe'l)v+ 1,
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aelZ, a 21. We may assume that k < (q - 1), or that

ap(p€l - 1) + 1 < p® - 1. This implies a < 2, so in fact a = 1.

We consider [hk(x)]z, with k = p(pe'1 - 1) +1.

If p=2, then k =g -1, and so hk(x) is not a permutation
polynomial. Thus assume p > 2. Then k < (g - 1) and

deg [(h.k(x)]2 = 2{p(pe'1 - 1)+ 1} > (pe - 1). The coefficient of

(-1 2k-(q-1)

equals the coefficient of x , which is 2k - q + 2 -

= 2p(pe_1 - 1)‘- pe + 4. Since p > 2, this is non-zero qu p, and

'S0 hk(x) is not a permutation polynomial over fF ]

q°

If we define the polynomial h(1,1,k)(x) =x(1 + x + X2+, Xk), B

then h(1,1,k) is a permutation polynomial if and only if k +1=1 mod

p(q - 1). _As a generalisation of this we propose the following

conjecture. Let h(&,j,k)(x) = xz(l +x3 4.4 (xj)k). Then if
((2,d),q - 1) > 1, h(2,j,k) is not a permutation polynomial over F

Assume (2,j) = 1. Let Jd = {x « Fq: xJ = 1}. Then we have

q°

CONJECTURE. h(%2,j,k), £ >0, >0, is a permutation

polynomial over Fﬁ if and only if

k+1=1mod T%—if;Ty and (2,9 -1) =1

. and (k +1) ¢ d

or k +1= -1 nod J.(']_ll and (¢ - j,q-1)=1

and (k + 1) ¢ -J.

v P o i(k+l)
In the first case, if x? # 1, h(&,j,k)(x) = xz{ﬁ_j___l_l.} = x%.
‘ oxY <1
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If xJ = 1, h(2,j,k)(x) = (k + 1)x*. Since (2,9 - 1) = 1, the
polynomial x* permutes Fq. Since (%,j) = 1,x2 mapleq\{J} to
jtself, as x© permutes J. Since (k + 1) ¢ J, the polynomial

(k + 1)x* permutes J, and so hk(x) permutes Fq.

. -j s
In the second case, if x ¢ J, hk(x) = x% xj '1_= x4,

XY -1
If x ¢ J,hk(x) = (k + 1)x2. The image of J under x¥d is -Jd.

Thus hk(x) maps Fq\d —>I'Fq\(—J),x2 permutes J, and (k + 1)x£:J > =J

since (k + 1) ¢ -J.

- The question as to whether these are the only permutatioﬁ
polynomials of this type remains open unless % = j=1. If
(2,9 - 1) = (§jo,qg - 1) = 1, this conjecture would imply that
k+1=1mod p(q - 1) is a necessary condition. For g prime,

q < 17, the conjecture has been verified by computation.

DEFINITION 2.6. The Chebyshev polynomial of the second

’ [k/21 . . .
kind, fk(x) is defined by fk(x) = § (k ;1)(-1)1xk'21.
. 1=0
For these Chebyshev po]yndmia]s of the second kind,
fk(x), k ¢« Z, we can find conditions sufficient to ensure that .

f (x) is a permutation polynomial when q is odd.

If the transformation x = u + u'1 is made, then we have

f 0 = W oyt i u g e, f(2) = (e 1)
mod p, fk(- 2) = (- l)k(k + 1) mod p. |

The polynomials which we describe below induce permutations

of Fq of a special type.
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DEFINITION 2.7. A map m: Fq a—ﬁq is called an X-—permutation

if
(i) m(-a) = -w(a), for each a ¢ Fq

and (ii) w(a) = a or -a, for each a ¢ Fq.

We have the'following immediate consequences of the definition.

1. Every 3 -permutation of'EFq is a permutation of'Fq.
2. The identity map is an .4 -permutation.
3. Every ﬂ-permutation fixes 0.

4. The set of ,Q-permutations of F_ is closed under composition.

q
5. There are 2%(q'1) distinct £-permutations of’Fq.

6. If m is an X-permutation then mo 7 = MF .
q
Example. In FS’ the map
0+0,151, -1>-1,2+-2,-2>2,

defines an J{-permutation.

THEOREM 2.5. If k satisfies the three congruences

k+1=+2modp
k+ 1=+ 2 mod 5(q - 1)
k+1=+2mod%(q+1)

and q Zs odd then fk(x) induces an .Z—permutation oleq.

PROOF. We note firstly that if M is the subset of F 5
S q

2 rx + 1 =0,

consisting of all solutions of equations of the form x

roe Fq, then
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M={uefF X uq'l =1 or uq+1 =1} .
q

(This result may be found in the proof of theorem 9.43 in Lausch
and Nobauer [19], page 210). Since one of L(q - 1), %(q + 1) is
even, k must be odd. Thus fk(x) consists of terms of odd degree.
Thus fk(-x) = -fk(x) and condition (i) of definition 2.6 is
satisfied. To establish condition (ii), let u ¢ qu with
Zooxu+1=0. 1F 680 = 1, then o2(0°1) < a1 1 ElaD) o)
then since k +.1 = +2 mod %(q - 1), uk+1 = u2 or uk+1 = u'2. Thus
fi (x) = (u? - u'2)/(u ey susul=x, or fi (x) = (u'2 Y
Y

(u - u'l) = -(u+u ") =-x. The case u%(q'l) = -1 is similtar, as

is the case where u9*! = 1. If u = +1, then fk(2) =2 or -2. Thus

g

fk(x) induces an zg-permutation on Fq.

COROLLARY. 1If k satisfies the conditions of theorem 2.4,

then fk o fk = X, where the Zef% hand side is reduced mod (x9 - x).v

We may expresleq as the digjoint union of five sets A = {2,-2},

g X =ut u'l; ui-1/2 - ;}\A, By = {x e Fﬁ: X =u+ u'lg

wd-1/2 = 134, Cp=x eFgoxsu+ ul; W32 2 s, Cr = {x Equ‘.

B]_:{XG'F

X=u+t u'l; Oq+1/2 = -11\A. Suppose q large (we consider small q

later). The distinct maps ofFFq are given by the conditions k +1 =+2(p),

k+1:2,951 2,950+ 2, 2 mod (q-1), k+1z2, L.z, L2,

_ 2
eight of the sixteen possible combinations are consistent. This

-2 mod (q + 1). Since preéise]y one of (q - 1,g°+ 1) is even, only
Z

yields sixteen distinct maps. Suppose g—%——l-is odd. Then the

conditions which are. inconsistent are k + 1 = 9¥§~l-i.2. The maps
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induced on Fq may be calculated explicitly in both cases, the set
of maps is closed under composition and the resulting group G is

isomorphic to Cg.

For small q, the conditions may not all be distinct.

- Computer calculations yield the following special cases.

PROPOSITION 2.2. Let G be the group of maps ofWFq induced

by the Chebyshev polynomials of the second kind deseribed in theorem

2.5. Then
G = C2 ifq=3
~ 2 - =

G—Cz’bfq"s
3. _ _

G = Cifq-= 7orgq=29
4 .

G = C2 1f q =2 11.

3. POLYNOMIALS IN SEVERAL VARIABLES

We now consider various results on polynomials in several

variables over Fq. If p(xl,...,xk) is a polynomial overlFq it may

be reduced mod'{x?'l-- L...,xﬁ'1 - 1} to yield a polynomial of
degree less than (q - 1) in each variable. The reduced polynomial
induces the same map of F;k e-Fq as p(xl,...,xk) does. In theorem

1.1, we take n = q - 1 to yield

THEOREM 2.5. The number of zeros of f(xl,...,xk) which are
such that X; #0forls<ic<k, is given by (q - l)k -r, where r

is the rank of C¢, the (q - 1,k)-block circulant associated with f

reduced mod'{xcli-1 - 1,...,XE_1 - 1}
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PROOF. The (q - 1)st roots of unity in Fq are precisely the
non-zero elements of Fq, and by theorem 1.3 the rank of Cf is the
number of non-zero eigenvalues of Cf. Thus the number of zeros of

f is (q - 1)k - r, since the dimension of Ce is (q - l)k! 0

The case of k = 1 of theorem 2.5 is the classical Konig-Rados
theorem, a proof of which may be found in McDonald [27] or Rédeij [371.
Horakova and Schwarz [16], [38] and [£39] have generalised the one-
variable KSnig-Radds theorem to obtain results on the factorisation

of f(x).

PROPOSITION 2.3. (Horakova and Schwarz). Let f(x) e FFq[x]

be of degree less than q - 1. Then the number of different

irreducible factors of f(x) of degree d is given by
L7 uak -1 - ), wh
a-k|d u k) q - 1-r/), where

U s the Mobius function, and r, is the rank of the (qk - 1)-
. k

eirculant associated with f, considered as a polynomial over quk.

This generalises as follows:

THEOREM 2.6. Let Ly be the subset of ng defined by
(al,...,an) € Ly if and only if gecd (deg ays---sdeg o) = d and
o # 0, for 1 < j < n. Then the number of zeros of
p(xl,...,xn) eFFq[xl,...,xn] which lie in Ly is given by
) u(%)(qk" -1-7),
k|d
where e 18 the rank of the block circulant associated with p ae a

polynomial inff .
q
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PROOF. The number of zeros of p which lie inF*, is given
T q
by qnk -1- rk; If o5 is the number of such zeros lying inly,
then

nk
-1- e -

o= q
i%k !

- By Mobius inversion, o = z e )(q -1-r). (lemma 1.6). O

Circulant matrices can be used to provide a necessary and
sufficient condition for a polynomial to be a permutation polynomial.

The one-variable case, due to Raussnitz [36] is as follows:

PROPOSITION 2.4. The polynomial f(x) of degree less than

(g - 1) s a permutation polynomial ovver Fq if and ohly if the
characteristic polynomial X(A) of the (q - 1) x (q - 1)-circulant

associated with f is given by

w00 = 09 - /0 - F1(0))

PROOF. The eigenvalues of A are the set of f(a), a'equ\{O},

and since 1’1’ A - B) = A9 - A, the result follows. O
q

(See also [7] vol. 3, page 290 and [431, page 191).

Ih the general case, it is not sufficient to éonsider the
block circulant associated with f, since the variables must be
allowed to take zero values. We construct a new matrix as follows:
given f(xl,...,xk), form the block circulant associated with f,
denoted AO' Now substituting each vafiab]e in turh by zero, we

obtain k polynomials in (k - 1) variables, with associated block
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circulants Agl),...,A§k), and so on, next_taking pairs of variables

to be zero, etc. We then form the diagonal block matrix
k-1 .
A= @ ZAU).
- §=0

The dimension of A is (q - 1)k + (i)(q - 1)k-1 +..

c=gf -1
"THEOREM 2.7. The polynomial f(xl,.. .sXy ) is a permutation

polynomial if and only if the matrix A defined above satisfies the

k-1
condition (A - £(0,...,0))x(A) = (A9 - )4 where X(R) is the

characteristic polynomial of A.

PROOF. As in the one-variable case, using the fact that the
characteristic polynomial of the direct sum is the product of the

characteristic polynomials of its components. [

4. PERMUTATION POLYNOMIALS IN SEVERAL VARIABLES

The following result appears in Lidl and Niederreiter [24].

PROPOSITION 2.5. The polynomial f(xy,....x,) = g(xqs... %)

+ h(xm+1,...,xn), 1 <m < n, <8 a permutation polynomial over pr,
p prime, if and only if at least one of g and h is a permutation

polynomial.

It is shown in [24] that there are polynomials g and h in
disjoint sets of variables overqu, g not prime, such that neither

g nor h are permutation polynomials when g + h is a permutation
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polynomial. The next result describes when this can occur. Let G

denote the additive group of $q.

THEQREM 2.8. ILet f15+..sf, be polynomials in disjoint sets
of variables, where fi is a polynomial in Vs vartables. Then -
fl +...+ ft 1s a permutation polynomial over ¥ , q = pe, if and
1

q

only if, for any subgroup H of G of order p®™*, there is an fs

. v,
which distributes (Fq) 1 wniformly over the cosets of H in G.

PROOF. We consider the group ring €G. For each g ¢ G,

let Mg(f) = Card {(xl,...,xk) € F:: f(xl,...,xk) = g}, where

f e Fq[xl,...,xk]. Define a mapping ¢ from Fq[xl,...,xk] to G

by ¢ = f > ) Mg(f)g € CG. Lete= ) g. Then f is a permutation
geG

polynomial over ¥, if and only if o(f) = ke for some k ¢ Z. Further,

if f,h are polynomials in disjoint sets of variables, then

o(f + h) = ¢(f).4(h).

Let H be a subgroup of G of index p and Tet 6 = G » G/H = Cp,

where Cp is the cyclic group of order p. Then 6 extends to a

homomorphism 6 = €G -~ €C, and y = 6 o ¢ maps Fq[xl,...,xk] into

P
CCp. Then the condition of the theorem may be stated as follows. For
each subgroup H of G of index p there is an_fi with p(fi) = ké, for

some k ¢ Z, where 8 =] g e CCp and the summation is over all

elements of Cp.

Now suppose'that f1 +...4 ft is a permutation polynomial
then ¢(f1 +,..+ ft)= ke, k ¢ Z. Let H be a subgroup of G of index

p, and let p,6 be the corresponding maps defined above. Then
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u(fl) e u(ft) = ko(e) = klé. If g is a generator of Cp,‘and
X: Cp > € is the character defined by x{p) = ¢, ¢ a primitive

p'th root of unity, then x(e) = 0. Thus x(u(f;)) = 0 for some i.

p-]- t p_l t
‘If u(f;) = tZO a.g-» where o, € Z, then x(u(fs)) = ) a,g- = 0.

Since the minimal polynomial of ¢ is the cyclotomic polynomial
p-1

¢ (x); which has degree p - 1, ¢ (x) divides Y atxt in €[ xJ.
P P t=0

As the degrees of these polynomials are equal, they differ only
by a constant multiple, and so u(fi) = k2¢p(g) = k2é for some

52 «Z, and so f, satisfies the condition of the theorém. Conversely,
any irreducible character x of G(= CS) may be represented in the form
G »9 Cp Y ¢ where_w maps g e Cp to ¢, and ® is a homomorphism. Thus

if x is a non-principal character of G, then

x(o(fy +.oot F1)) = x(o(f)) ... x(6(fy))

(o u)(fl).., (v o u)(ft) = 0, since w(ké) = 0.

So in the representation of €G as a direct sum of one-dimensional
subspaces, the only non-zero component of ¢(f1 ...t ft) is the one
corresponding to the principal character. Hence ¢(f1 +...+ ft) belongs
to the subspace of ¢G corresponding to the principal character. Since
x(e) = 0 if x # X1 > and xl(e) 7 0, it follows that ¢(f; +...+ ft) = ke,

g 0

k eZ, and so (fl +"'+ft) is a permutation polynomial over fF
If q = p, then we obtain proposition 2.5, since then H = {1},
G/H = G, and the condition on fi reduces to fi being a permutation

polynomial over Fq.

The following result generalises a theorem of Niederreiter

[31] from the prime case. Let 6: GR(qk'l,r) - GR(p,r)(=’Fq,q =p"),
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be the canonical map with kernel (p), where GR(qt,r) is a Galois
ring as defined in chapter 1. Let A be a set of representatives of

the inverse images of 0, and let 0(a') = a, a ¢ Eq, a' ¢ A.

THEOREM 2.9. ILet f e Fq[xl,...,xk]. Then f is a permutation

polynomial over Fq if and only if f(xq,....x) = a, aeff, has a

qb

t (T(k-l)-l)
solution and z K [f(al,...,ak)] P =0 in
(al,...,ak)eA :

GR(qk-l,r) for t = 1,...,q9 - 1, where A and GR(qk'l,r) are given
above.
- : k. -
PROOF. Let k, = card {(xy,...,%,) € Fo f(x)s.05%)) = al

q
k-1

for a e F_. If 6(x) = 6(y).for X,y e GR(qk'l,r), then x = y + pa,

a e GR(g" “,r), so

p(r(k-l)-l) i p(r(k-l)-l)

X Y

t (r(k-l)—l)
Thus ) L [F(ag,.. 201

(al,...,ak)eA

k-1)-1
- z ka(a')tp(r( ) ).
aefq

k'l, this sum is zero in GR(qk'l,r). Conversely, if

' tplr(k-1)-1).
the conditions of the theorem hold, then § k_(a')"P : =0

aefq a

Since ka =q

in GR(qk'l,r), for t = 1,..., - 1. This also holds for t = O.

Regarding the'{ka} as variables, we obtain a system of equations in
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{ka]. The coefficient matrix has determinant

pirik-1)-1) plrlk-1)-1)
D= TT «(a}) - (a})

a%,aieA
i#j

).

k-1

6(D) # 0 in Fq so D ¢ (p) in GR(qk'l,r). Thus ka = 0 in GR(q" ",r),

and since ka €Z, ky =0 mod qk'1 for all a ¢ Fq. But ky = 1 for

k-1 since e ky =9, k, =q °,and
aef : ,

- all a e Fq, and so ka > q
‘ q

so f is a permutation polynomial over ff 0

q°

5. k-POLYNOMIALS

We now consider a more general class of polynomials, known as

k-polynomials.

DEFINITION 2.8. A polynomial f(xl,...,xk) is called a

k-polynomial over F_ if k, = card {(xl,...,xk)  FK. f(xi;...,xk) = al,.

q q

a e Fq, is independent of a for a # 0.

In the single variable case, a k-polynomial is a permutation

polynomial or induces the zero map on FF We shall later give

q
examples of k-polynomials in several variables which are not
permutation polynomials. Suppose that f,g are polynomials in
disjoint sets of variables. Suppose further that f is a x-polynomial
and f(xl,...,xk) = a has m solutions for a # 0. Let g be a .

polynomial in g variables with t zeros. Then fg = a has m(q2 - t)

solutions if a # 0. Thus fg is a k-polynomial.
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If fl,f are k-polynomials in disjoint sets of variables, and

2

if the equation f.= a has me solutions for a # 0, then mf1f2 = mflmfz.

An analogue of theorem 2.8 may be obtained as follows. Let g be a

q-2
fixed generator of F_\{0}. Let 6: f» § ¢ xt, where
q t=0 t

c, = card {f = g%}, and o(f) « zrx1/(x971 - 1). Then if f,,f, are

t
polynomials in disjoint sets of variables, e(f1 f2) = e(fl) (fz).
If fl,...,ft are polynomials in disjoint sets of variables then

fl,...,ft is a k-polynomial over fF_ if and only if

q

' ( xa-1_
e(fl,...,ft) =m k 577:—Ti'] for some m ¢ Z. For example, suppose

. q=5,f =a,a # 0, has m; solutions if a =1 or a =g, and no
solutions otherwisé; Suppose f2 = a has m, solutions for a = i,
a-= 92, and no solutions otherwise. Then

_1'
x-1

6(f1f,) = mm,(1 + x)(1 + x%) = m, [ X
1fp) = mpmp (1 + x){1 + x 1M |

]; and so‘fl'f2 is a
k-polynomial, even though q is prime, in contrast to theorem 2.4.

The following result is an analogue of a criterion of
Niederreiter [29]. Let x be a character of the multiplicative

group Fa and define x(0) = 0.

THEOREM 2.10. f(xl,...,xk) is a k~-polynomial over Fq if

and only if ) K x(f(al,...,ak)) = 0 for all non-principal
(al,...,ak)sﬂ:q

characters X of'Fa.
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PROOF . (f(ay,...,a,) = k_x(a)
- (al,...gak)érgx bk aZFFq 2
=k ) xa)
aqu
=0.

Conversely, if a # 0,

Flag,....a,)
1 S
ka = TooTY ) L X ]
@ la-t (ags-..53) X ( a
where y runs over all characters ofin.
Thus ky = 2oy L Dx(fap. a0 M)
9 (alsi -sak) X
. .
:——-Z X X(f(a seecesd ))
T (gt T
= ) (flag,....a,))
X%l X (al,-§:-,ak) X 1 k

Let T = card {(a},...,8,): f(a;,...,a,) # 0}.

Then k_ = "%Tf (1.7 ——g;f, and so f is a K—po1ynOMia1. 0

q

6. ELEMENTARY SYMMETRIC FUNCTIONS

To conclude this chapter we consider the elementary symhetric
functions over Eq. We shall prove that some of these are k-polynomials,
and even permutation polynomials. We denote the elementary symmetric
functibn_of degree r in n variables by S?. We begin with the follow-

ing result on homogeneous polynomials.
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THEOREM 2.11. If f(xl""’xk) is homogeneous of degree r,

and (r,q - 1) = 1, then f is a k-polynomial over qu.

k
PROOF. If f(xl,...,xk) = 0 for all (Xl"°"xk) € Fq then
f is a k-polynomial. Suppose that f(xl,...,xk) = a(#0) for some
(xl,...,xk) € Fg. Let B € Fq, B # 0. Then since x' is a permutation
polynomial over'Fq, there exists a unique A ¢ Fq with AT = a'ls.
Then f(xxl,..,,xxk) =‘B, and the map (xl,...,xk) »-(Axl,...,xxk)
is a bijection of the sets {(xl,...,xk): f(xI,...,xk) = a} and

'{(xl,...,xk): f(xl,...,xk) = B}.Thus f is a x-polynomial. [

We note that the condition of theorem 2.11 is not a necessary
condition, since f(xl,...,xk) =Xy oeee Xy is a x-polynomial, where k

is arbitrary.
However, we do have

PROPOSITION 2.6. 1f f(xl,...,xn) is homogeneous of degree Y

then a necessary condition for f to be a permutation polynomial

over H:q is that (r,q - 1) = 1.

PROOF. If t = (r,q - 1), then there are t solutions to .

ot =1, Then f(axl,...,qxn) = f(xl,...,xn). Thus if f(xl,...,xn) =1,

S0 is f(axl,...,axn). Thus the cardinality of the solution set of

k

f(xl,;..,xn) =1 is divisible by t, and sot =p". Thus t = 1. O

We use the following lemma to locate some permutation poly-

nomials among the elementary symmetric functions. Define

fgii,...,xn): H:q *'Fq by £{s) () = S(X7+ A ,...,X

(xl,...,Xn)- + }\)’

n
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for any polynomial S in n variables over Fq, and any
n

(Xl,...,xn) € Fq.

LEMMA 2.1. IF fgi) « (V) is @ permitation polynomial

— 17+ +%n

in A over'Fq for any choice of (xl,...,xn) € Fg, then S is a

permutation polynomial in (Xl""’xn) over F

q°

PROOF. Define an equivalence relation p on Fg by (Xi"“’xn)

p(xi,...,xa) if and only if there exists a ¢ Fq such that x% = X; ta,
for 1 < i < n. Each equivalence class contains q elements and there
are q"'1 classes. For each (Xl""’xn)’ S(x1+>\,...,xn +X) =8,

B e Fq, has a unique solution A. Thus there is a unique solution in

n-1

each p-class. Since there are q classes, S(Xi,...,xn) is a

permutation polynomial. [J

The converse of this lemma does not hold,.even for homogeneous

symmetric functions. For example, S(xl,xz,x3) = x% + xg + xg is a
. . (s) =3 3 3
permutation polynomial over F3, but f(xl,xz,x3)(x) x‘1 x5t X3

is a constant function in A,

In order to prove some permutation polynomial properties for
elementary symmetric functions we need some results on certain

binomial coefficients mod p, where p is prime.

LEMiA 2.2. (2) | P [ =(a-1)mdpifaz21zo0.
.. A A , .
(i2) Ifr=p°, n=ap -1, 0a>1, x20.
(n-k).
thenlr_k =0mod p for 1 <k < r.
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PROOF. These results may be proved from Lucas' formula for

binomial coefficients mod p.

(i) Induction on
(

If A = 1, l“px'l

A
P

If the result holds

(

Antl
ap . |

+1

Ao

P

(ii) Let k = p*

Then [ n-
Y‘-

1

N—

] .

We give proofs which are sel

A.

(ap-1)...{ap-p)
1 ... p

ap-1
p

-

(-1)P1 [ gﬂé;ﬂ-] mod p

(o - 1) mod p.

for X = 1y, then

f-contained.

Agtl Agtl A+l
C(op 0o (op O p
A0+1
1...p
Antl Antl Antl An o
0 3
= aﬂo -pJ(ap -ZPJ"'[apok-pop]modp
p 2p p O.p J
A A A
0 0 0
- fop ~ - 1) .(apA P ) 1od b
1 ...p 0
A
:[apo'l
- A
e
= (o - 1) mod p, by induction.
t.
A
(o - l)pt tt-1l ] where 1 < t < px
_ Lo - DpMre - 1)p* + 13,000 - 1)p* + £ - 1]

t 1

(t-1)
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To show that this is zero mod p, we only consider factors divisible
. by p. These are

({a - l)pAJ[(a - l)px + pl...[{a - 1)pA +.E%?ﬂ pl
t.p...([%}] p)

=(_a_;_llp_§{(a"1)p)‘-1+[%} if(t-1)>p
Sl B
A P J

0 otherwise.

In each case, the result is zero mod p. O

THEOREM 2.12. If S: denotes the elementary symmetric

polynomial of degree v in n variables over ¥ _, q = p

t, then Sn
r
is a permutation polynomial over ¥_ if
(i) r=p%ecll
and (i) n =

or -1, where a ¢ Z, o ¥ 1 mod p.

PROOF. By lemma 2.1 it suffices to show that

fla) = Sg(x1 ta,..ox t a) is a permutation polynomial in o for

any choice of (xl,...,xn).

A typical term of f(a) is
r terms

(x1 + a)...(xn + a), where not all x

j occur in each term
r terms

(E) terms

=a o+ (x) ot xn)ar' + (§ix2 +...+ xlxg)ar'z

Foot Xp e X (»)

Sh has (M) terms. Consider the coefficient of o™k in f(a). This

is a multiple m of S:(xl,.. ,xn) Since the coefficient of ok
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in (*) has (E) terms, and Sz has (2) terms, m(E) = (E)(?). thus

m = (D()/(R), and so

v o(n-«k r-k
f(a) kzo[: ] Sp(Xqse X Do

We show that, under the conditions of the theorem, the coefficient

of ar is non-zero, and the coefficient is at is zero for 1 <t < r.

e
The coefficient of o is (2) = [ ap . 1 }

p .

(o - 1) mod p, and this

- ( -
is non-zero since a'§ 1 mod p. The coefficient of ar,k isl : _ t ] =

for 0 < k < r. Thus f(a) is a permutation polynomial in o and so

n
Sr(x

1,...,xn) is a permutation polynomial. 0O

COROLLARY. r1f SC(XI,.. .,xn) is the elemeﬁtary symmetric
polynomial of degree v in n variables, and r,n satisfy the conditions
of theorem 2.12, then S?, 18 a permutation polynomial over all

extension fields of H:p'

This is in contrast to the single variable case, where the

only permutation polynomials having this property are those of the

. J :
form axP + b, Jel, a,b e $p'

Recalling the definition of p in lemma 2.1, we cé]] a
polynomial f p-constant if the identity f(x1 + o s oo Xy + q)

= f(xl,..,xn) holds. Thus, amongst the elementary symmetric
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functions, S: is p-constant over Fq if (n-r)=-1mod pt, where

t t-1 <

p*>r, p r. The set of all p-constant functions (not

necessarily in the same variables) is closed under addition and
multiplication. If n =1, then a p-constant functién is a constant
function. If f(xl,...,xn) permutes each p-class (e.q. the'S:-of
theorem 2.12) and g(yl,...,yt) is p-constant, where {x;} n {yj}

may be non-empty, then f + g permutes each p-class and so is a

permutation polynomial. For example, over E3, Sg is a permutation

polynomial , and S? is a p-constant (and a permutation polynomial).

Thus Sg(xl,...,x5) + A(x1 t Xy t x3) is a permutation polynomial
over FF, (and, in fact over all Fq, q = 3%), for A £ O0mod 3. In

general, if, over F_, f(xl,,..,xn) permutes each p-class and

p

g(xl,...,xt) is p-constant, then (f-+Ag)(x1,... A #0,

’Xmax(n,t))’

is-a permutation polynomial over all extension fields of F .



CHAPTER 3

ORTHOGONAL SYSTEMS OF POLYNOMIALS OVER A FINITE FIELD

WITH COEFFICIENTS IN A SUBFIELD

\ 4
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It was noted in Chapter 2 that any orthogonal system
(fl,...,fr) in k variables, r < k, may be}extended to an orthogonal
system fl,...,fk (Niéederreiter [30]). Suppose now that fl,...,fr
have coefficients in Fq, and that (fl""?fr) is an orthogonal
system over an extension fig]d Fq" of Fq. The question arises
whether it is possible to extend (fl;...,fr) to an orthogonal
system over Fqn, with coefficients in Fq. We answer this question

in the affirmative, and calculate the number of ways in which this

can be done.

Carlitz and Hayes (4] have investigated the structure of the
group A(qn) of permutatiohs p oleqn induced by polynomials with
coefficients inin. We extend these results to multivariable
polynomial vectors. We begin by detemining the structure of the
group Ak(q") of permutations of Fkn induced by permutation poly-

q

ﬁomia] vectors with coefficients in Fq. We then consider the

problem outlined in the preceeding paragraph.

1. THE Group AK(q")

n _ ~
Since the polynomial (x% - x) induces the zero map on F |,
we may suppose that all polynomials have degree less than qn in

each variable.

LEMMA 3.1. P(X{s...%;) e F’n[xl,...,xk] has coefficients
inFo if and only if p(ajs....aQ) = tplays...,a )19, for att

- R | EH:n-



PROOF. If p(xl,...,xk) has coefficients in F_, the condition

qQ’ i
is evident from the fact that the Frobenius automorphism ¢:x - x93 of

Fon fixes!Fql Conversely, if

q
p=1 i FUVORNR 1y Xll X;k ’
where ail""’ik € Fqn, then
[p(xl,...,xk)]q - p(x?, ,xﬁ) =) b11, .,ikxﬁil x:ik s
where b. = a9 . - a,

11,oo'a1k 11,...,1k 11,...,ik :
Since the map ¢:x x3 is an automorphism of ¥ ,, the polynomial
q

)b xi1 xi
il,...,ik 1 " %k

-

induces the zero map on F , and since its degree in each variable
q B
is less than q", each coefficient is 0. Thus bjl’.'.,ik = 0, which

implies that

peﬁ:[xl,...,xk] . O

q

s s
Let a = (al,...,ak), a; e Fqn. A k-tuple (a? ,...,aﬁ ) »seZy will
be called a conjugate of a. By the degree of a, we meah 1lcm (deg ai)"
' 1sizk

Clearly deg a divides n. Further, define

' : S S
Ks = {a e an : deg a = d}, and ¢S:(x1,...,xk) -> (x? ,...,xz ).
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LEMMA 3.2. If a ¢ Kg, then the orbit of o under Ak(qn) is

k _ )
PROOF. Let Hd = {(al,...,ak) Day e qu}. Then
K= #K\ U HX. Since each HK is mapped into itself by AK(q"),
d d t]d t d
t#d
it follows that KE is mapped into itself by Ak(qn). Hence orbit

k( n

(@) < Kﬁ, To show the reverse inclusion, we need to find an f ¢ A"(q )

such that if g = (B],...,Bk) ¢ KZ, then £{B8) = a. Such an f may be

. S
defined as follows. If B = q9 , then f = ¢s. Otherwise define

x , if x is not a conjugate of ¢ or 8

f(x) = 1 °(8) , if
$°(a) , if

= ¢>(a)
= ¢°(8) .

1<

(9

f is a permutation polynomial since o,B both have d conjugates.

Further f¢ = ¢f, and so f ¢ Ak(qn). Hence orbit (a) = Kd' 0

For each divisor d of n, we denote the group of permutations

k . _ k k,.n . k
of Kd with g¢ = ¢g by dGn’ A®(q') may be mapped into dGn by ed,

where ed(f) = f| K Thus there is a homomorphism 6:Ak(qn) + X dGﬁ’
K

d din
from Ak(q") to the direct product of the th.

THEOREM 3.1. The homomorphism © is an isomorphism.

PROOF. We define an inverse homomorphism { as follows.

Given (fd)dl ’fd € dGE’ w(fd): = f, where f is the orthogonal
n
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system which induces the same map on F:n as each fd. Since f

commutes with ¢, f ¢ Ak(q"). 0

Let Y4 be the number of conjugacy classes of KE. Then
|K§l = dy4. Let C4 be the cyclic group of order d, and S the
A\
symmetric group on n objects. Define 'n:SYd > Aut (Cdd) by letting
Y
SYd permute the yd-fold product Cdd.

THEOREM 3.2. dGE 18 isomorphic to the semidirect product

Yd
C4% X sYd.
™

PROOF. The proof is essentially the same as that of theorem
2 of Carlitz and Hayes [4], with the conjugacy classes of a replaced

by the generalized classes of g, and y4 replacing n(d). O

| | v
COROLLARY. The order of A“(q") is T (y4!)d ©.
djn

It remains only to evaluate Yq-

THEOREM 3.3. vy, = =

PROOF. dyq = q", and so, by the MObius inversion
d|n

formula (Lemma 1.6)

ny = 1 qdku(%). 0

din

n
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2. ORTHOGONAL g-MAPS AND g-SYSTEMS

By'1emma 3.1, a permutation polynomial p in k variables over
Fqn has coefficients in Fq if and only if p commutes with ¢, the
Frobenius automorphism of Fqn.. Any-such polynomial may be extended
to a permutation polynomial vector over Fqn, but this vector will
in general not have its coefficients in Fq. We now find necessary
and sufficient conditions for a polynomial to be a component of a
permutatfon polynomial vector over an, with coefficients in Fq.
We shall call an orthogonal system (fl,.;.,fr) in k variables, over
Fqn, r < k, with coéfficiénts in Fq, an orthogonal g-system if it
can be extended to an orthogonal system (fl,...,fk) with coefficients

in Fq. We aim to characterise the maps of Fqn induced by such systems.

To this end we introduce the fo]lowing,definition.

DEFINITION 3.1. Amap o : Fk »-Frn, r < k, is called an
' q q
orthogonal q-map.if the two following conditions hold:

n

(i) if c(ai,...,ak) = (al,...,ar) and o(a?,...,aﬁ) = (81,..},Br),

then a? = Bi’ 1<i<r.

k r
» then o maps ¥°, onto F _,
q" ot qt

t(k-r)

(ii) if# 4, t|n, is a subfield of F
q o '

and the equation o(xl,...,xk) = a has q solutions for

each a ¢ Frt.
q

LEMMA 3.3. 4ny orthogonal q-map © may be represented as the
map an_%-ﬁxh induced by a polynomial vector with coefficients in

F
.q.
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PROOF. Any map o : Fkn + F' may be represented as a poly-
q q
nomial vector over F . Condition (i) and lemma 3.1 show that the

q
coefficients of such a vector lie in Fq. 0

We denote the set of orthogonal g-maps an > F;n by

S(n,k,r,q). Then S(n,k,k,q) = Ak(qn). By section one, there

exists an orthogonal system f over Fq" in k variables with
coefficients in Fﬁ, which we call an orthogonal g-system, and so

the vector of the first r components of f is an element of
S(n,k,r,q), which is therefore non-empty. In Section 1 we regarded
Ak(qn) as a permutation group over an. We now consider Ak(q") as

a permutation group over S(n,k,r,q), r < k. Where no cdnfusion can
arise, we denote S(n,k,r,q) by Sr' If fesS, and Ve Ak(qn), define

w(f) by
W(F)(upsee oy ) = Fldlup,..oou))
THEOREM 3.4. The group Ak(qn) acts as a transitive permutation

group on S, where the action of Ak(qn) is defined by Y(f) = f(y),
with f ¢ Sr, Y e Ak(qn)-

PROOF. We show Firstly that if f e S, v e AK(q"), then
P(f) e Sr. |

() Wdse o) = Flug s oud), Ly (o] u))
= TPy (Uys...ru )1l (Ugy..su, ) 19)
wl( 19 H k) bl ? lpk 13 H] k

where wi is the map of an »—Fqn formed by taking the i'th
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projection of ¢. Since

w(f)(ul’....,uk) = f(\P'l(_Ul',---,Uk),...,l])k(ul,...,uk)) and f ¢ Sr,
p(f) satisfies condition (i) of definition 3.1. Now let F t cF n:

_ . q q
Then y(f) : Fkt »-Frt. Consider the equation w(f)(xl,...,xk) = a,
q q ‘ ,
a € Frt. Since ¢ induces a bijection of Fﬁt’ the number of solutions
q )

of this equation is the same as the number of solutions of

f(Xl,---,Xk) = o and so w(f)'e S We now show that y induces a

P
permutation of S.. Suppose w(fl) = w(fz). If (Vl”"’vk) € F:n,

then there exists (ul,...,uk)

w(ul,...,uk) = (Vl”ﬂ"vk)' Then

€ Fkn such that
q

WF ) (upseesuy) = W) (ug, ) 2 (vsev) = fHlvyseov),

and so f, = f,. To show that AK(q") acts transitively on S we
firstly extend the notation introduced in section 1.
Kg = {v e F:n : deg v = d}, where deg (vl,...,vs) =

= lcm {deg vq,..., deg v.}. ThenF'p = U K% If t|d, d|n,
1 s q“ dIn d

f ¢ Sr’ define

ac(t,d) = {x ¢ Fkn DX e KK

r
q d and f(x) e Kt} .

din
t|d

k . .
Then an = U oglt,d), if fes. If fl’fZ e S,., we construct

b « A(a") with y(f,) = f| as follows. Corresponding to fy,f,,

k
5 oleqn. Choose a set Rt of

representatives of the conjugacy classes of'Ftn, for t = k and
' q

there are partitions Ofy 5 Of

t = r. Since af(t,d) is closed under conjugation by (i) of
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definftion 3.1, ﬁf(t,d) = Rk n af(t,d) is a set of representatives
of the conjugacy classes of elements of ac(t,d). Fory e R n KE

define

¥(t) = v(fy,t,d) = £ 1(y) n 8(t,d) .

Then frcm definition 3.1, the cardinality of y(f,y,t,d) depends
only on t and d. Take any bijection from Y(f;) to v(f,). By
preserving conjugates, this extends uniquely to a bijection of

ae (t,d) to ap (t,d) and hence from FK to itself. From the

construction, this bijection y commutes with ¢k and so ¢ « Ak(q").

Further w(fz) = (fi), and so Ak(q") acts transitivelyon S .. O
The connection between orthogonal g-maps and orthogonal
q-systems is given by

THEOREM 3.5. A polynomial vector f = (f "fr) in Kk

17"

varitables over F'n 18 an orthogonal q-system if and only i1f the
: q

mapping which f induces on Fkn-is an orthogonal q-map.
q

PROOF. If f is part of an orthogonal system

then f(k) commutes with ¢k, and so f

(k)

k .
f( ) = (fl,..-sfk) n ’Fq,
satisfies condition (1) of definition 3.1. Since f induces a

permutation of Fkt, t|n, f is an orthogonal system over £ and
q q

so condition (ii) holds.

Conversely, consider any orthdgona] g-map f, and any

orthogonal g-system g = (gl,...,gk). Let g(r) = (91,---,9r)-
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(r) k

Then g induces an orthogonal g-map on F",,. By theorem 3.4,
q

there exists ¥ ¢ Ak(q") with w:g(r) + f. This gives a represent-

ation of f by polynomials over F_, and as such is part of y(g).

q
Thus f is induced by an orthogonal g-system. [

3. EXTENSIONS OF g-SYSTEMS

In section 2 we showed that orthogonal g-maps are precisely

those maps of Fkn tofFrn induced by orthogonal g-systems. We now
q q

consider the question of extending a given orthogonal g-system on
: Frn to one on Ftn, 1 <rc<ts<sn. Weuse the following results

q q : .
on permutation groups, which may be found in Passmann [35] p. 12.

If G is a permutation group on a set A, let G, = {geG:ag=a}l.

LEMMA 3.4. {g ¢ G : ag = b} = Gah, where b ¢ A, and

h:a>b, heGB. Further if G is transitive, then [6:6,] = |A].

THEOREM 3.6. The number of ways of extending an orthogonal
q-system f over Wrn to one over!an, 1 <r<sc<n, is independent

q
of f.

PROOF. f is extendable to ¥ ¢ AK(q") if and only if
Pp(u) = f, where u(xl,...,xn) = (xl,...,xr). In lemma 3.4, take

G = Ak(qn), A=S.,a=u,b

f. Then the set of all y with

Pp(u) = f is a coset of Ga’ a = u, and so the number of ¢ which

extend f is given by |Ak(q")l/|5r|. Any extension of f to

Ve Ak(q") may be obtained by extending it to some g ¢ SS, and
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then extending g to y. If the number of extensions of f to SS is
A(r,s), then |G|A(r,s)/|S ]| = IGI/ISr" and so A(r,s) = |S.|/|S.],

and this is independent of f. [

Thus the extension question is reduced to evaluating [S.|.

We introduce some new notation. Define = )(t) = %— ) qd(k'r)u(%),

din
t|d

where the summation is taken over all divisors d of n such that t|d.

(n,r

Note that if t/n then M(n r)(t) = 0 and the number of conjugacy

. r .
classes in Kq is "(d,k-r)(l)'

THEOREM 3.7. The number of ways of extending an orthogonal

q-system f overfFrn to one over an, l1<sr<s <n, s given by
q q :

Tt k-r)(l)
|S.1/1S,.], where |S.| = T ] IN(d) T T M(d,t)t *™° 1, N(d) s
sUr " din t|d

the multinomial céefficient (“(d,O)(l) : “(l,k—r)(l) W(d’r)(l) N

LICIEY

, t”(t,k-r)(l)"(d,r)(t) seens dn(d,k—r)(l)"(d,r)(d)) s where t ranges

over the divisors of d, and~

(7, O o) (1)

M(d,t) =
(1)
ry(t)! ) (ko)

(tn(d

PROOF. To evaluate |S.| we begin by evaluating

———

A(n) = #{f'l(y) n Kﬁ, where f is a g-orthogonal map and y « K;}.

We regard r,t,q and k as fixed, and n as variable. Further, define

s§(t,n) = {0 if tfn . Then A(n) is a well defined function from
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v/ .7l+, and A(n) = 0 if t/n. % A(d) is the total number of
din .

elements ole:n mapped onto y ¢ W;n by f, if tin, and 0 if t)n.

Thus L A(d) = q"(k'r)d(t,n). By Mobius inversion
~dn

I gk, (@
d|n

A(n)

= nﬂ(n,r)(t) .
Thus the total number of elements of KE mapped into K: is

dt“(d,r)(t)"(t,k_r)(l)- Furthermore, the action of a g-orthogonal

map on a conjugacy class of KS is determined by its action on a
single element, and the images of elements of a conjugacy class
are themselves conjugate. Select a set of representatives of the
conjugacyAclasses of Ks. Then K;, r < k, must receive

t"(d,r)(t)"(t,k-r)(l) such representatives under an element S .

To construct a g-orthogonal map on Ks, firstly distribute the
representatives into lots of size t“(d r)(t)“(t k-r)(l)' This may
be done in N(d) ways, where N(d) is defined in the statement of

the theorem.

Now consider the t"(d,r)(t)“(t,k-r)(l) representatives which

are distributed over K{, This distribution may be effected by

choosing a set of representatives of conjugacy classes of KE (in

T(t k-r)(l)
’! ways), and distributing the t"(d r)(t)“(t k-r)(l)

t
elements uniformly over the n(f k_1)(1) classes. There are M(d,t)

ways of doing this, where M(d,t) is defined in the statement of



the theorem. Thus the total number of elements of Sr is given by

1
Is.| =TT (N(d) TT M(d,t) £tkn)! )). O
d|n t]d
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CHAPTER 4

SOME GENERALISATIONS OF CHEBYSHEV POLYNOMIALS

AND THEIR INDUCED GROUP STRUCTURE OVER A FINITE FIELD
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If u,b are rational integers then the polynomial
f(z) = 22 - uz + b has roots 01,0, in the complex field, such that
u=o0;+o0, and b = 0,0,. The polynomial g, (u;b) may be defined by

k

requiring fk(z) = 22 - gk(u;b)z + bk.to have roots ol,og. Thus

gk(u;b) = g§-+0§ = o? + bkoik and bk = 050; and Waring's formula
(see Lausch-Nobauer [197 page 297) allows the expression of gy (u3b)
as a polynomial in u and b. These polynomials gk(u;b)'are known as
Dickson po]ynomia]s-([lgl page 209), the case b = 1 being,up to a
linear transformation, the classical Chebyshev polynomials of the
first kind. The explicit form of such a polynomial is given in
definition 2.4. When these polynomials are considered as being
~defined over a finite field Fq (i.e. the coefficients are reduced
modulo the field characteristic) it eventuates that some of them are
permutation polynomials. The necessary and sufficient condition for
gk(u;b) to be a permutation polynomial is that (k,qz-l) = lswhere

q is the order of the field (see [19] page 209). N&bauer [33] showed
that the set {gk(u;b), b fixed} is cloéed under composition of poly-
nomials if and only if b = 0, 1, or -1, and determined the strucfure
of the groups of permutations induced by pq]ynomia]s of fhis type‘in

these cases.

Lid] [23] extended this definition to an n-variable form of
the Chebyshev polynomials and their algebraic properties were
considered by Lid] and Wells [261. In this formulation the quadratic

f(z) is replaced by a polynomial

r(ul,...,un,z) = zn+1 - ulzn +.o..+ (-0 u.z + (-1)"+1b

= (Z - 01) cee (Z - On+1) s
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where us e z, o5 « €. When taken over Fq, r has (n+1) not

necessarily distinct roots in F (n+1)t"
q "

If k is a positive integer, set
r(k) k ) .

k
(ul,...,un,z) = (z - 01) vo. (z - sl

The coefficients gﬁk) (ul”"’“n) of r

functions of o%,..., ot+1 , and so are symmetric functions of

(k)

(k)

are elementary symmetric

Opsees0piq - Thus the coefficients of r are all polynomials
in (ul,...,un) by the fundamental theorem on symmetric functions.
In this way we obtain a polynomial vector g(n,k,b) = (g{k)(ul,
..,un,b),...,ggk)(ul,...,un,b)). The explicit forms, recurrence
relations, and generating functions of these polynomials are
contained in [[23]. Here we deal only with their algebraic properties.
When considered as a polynomial vector over Fq, g{n,k,b) induces a
permutation of (W:q)n if and only if (k,q°> - 1) =1, s = 1,...,n + 1,
for b # 0, s =1,...,n for b = 0 (see [26] page 106). In the two
variable case the corresponding group of permutations has been
determined by Lid1 ([20] and [21]1). Here we begin by considering

a more general construction. We take

. I n-1 _13\n
r(ul,...,un,z) =z Uz +...+ (-1) u,

(z - ol) . (z - on) .

If f(z) is a fixed polynomial, define

(f)

(u1 seeeslnyz) = {2z = flo)) ... (z -.f(on))

=z - 9§’C)(u1,...,un)z"'1 LI (71)"g§f)(u1,...,un).
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(f)

n

When f(z) = zk, this essentially corresponds to g(n,k,0)

Then, as before, each g may be written as a polynomial in

Upse-oslp.
as given above. In the first section of this chapter we examine the
properties of the polynomials defined in this way. Then we consider
the groups of permutations induced by Chebyshev polynomials in n

- variables over Fq and determine which of these groups afe cyclic.
(This generalises the results in [211, [23] and [(26] to the n-
dimensional case.) The general results are fhen applied to obtain

a result of Brawley, Carlitz and Levine [3] on bo]ynomials which

permute the set of nxn matrices over Fq.

1. THE GENERAL CONSTRUCTION

The construction outlined in the introduction to this
chapter defines a polynomial vector (ggf),...,gif)) which induces

n . . . .
a map Fq -+ It is more convenient to consider this process as

n
g
an operation on the set of monic polynomials of degree n overqu,

denoted by P(q,n). Thus if f ¢ Fq[x] is a fixed polynomial over

Fq, define the operator Ag: P(q,n) - P(q,n) as follows: If

n I

h(x) ¢ P(g,n) and h(x) = T T (x - ai), a; e Fz', js the factor-
i=1

jization of h(x) into linear factors in a suitable extension field

of Fq then Afh(x) = T{x - f(ai));

(f) (f) n oo
1 “se--s9y ) oON Fq is a

permutation if and only if Af induces a permutation on P(g,n).

Clearly the map induced by (g

The following properties follow immediately from the definition:
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LEMMA 4.1. Ag(hg) = Ach Acg,

LEMMA 4.2. Afogh = Af(Agh).

We will need the following three elementary lemmas. For

each divisor d of n, put

Ky = {o =F :deg a =d over Fq}.

d q

LEMMA 4.3. f(x) € Fq[x] 18 a permutation polynomial over
Fpnnel, if and only if f(x) induces a permutation of Kgo for
q

each d|n.

PROOF. Let f(x) permute Fqn- Then f(x) permutes Fq = Kl’

Let r be the smallest integer such that f(k) dogs not permute Kr’
r[ﬁ. If o ¢ Kr’ suppose that f(a) ¢ Ke. Then f(a) € K. for some
r'|r, r' # r. Since f(x) permutes K there exists B ¢ K., with
f(a) = f(B). But Kr n Kr' = ¢, so a # B. The reverse implication

is trivial, as Fqn is the disjoint union of the Kd’ din. 0

LEMMA 4.4, If f(x) € Fq(x) and f(a) = f(b) implies that
a,b are conjugate over Fq when a,b ¢ an, then f(X) induces a

permutation of K., for r{n.

PROOF. By induction on r.

Ifr=1, et f(a) = f(b), a,b ¢ Fq. a,b conjugate implies
a equals b. Hence f(x) induces a permutation of Fq = K;.  Now
assume the proposition true for r < k. If f(a) ¢ Kr’ r < k, where
a e Kk, then since f(x) induces a permutation of Kr’ there exists

b e K., with f(a) = f(b). Thus a and b are conjugate over Fq.
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But all conjugates of a lie in K, and Kk n Kr = ¢, Thus f(a) e Kk'

If f(a) = f(b) with a # b, a,b ¢ K, then a,b conjugate implies
ql L
f(a) = f(@¥) = [f(a)19, 2 < k. Thus f(a) ¢ F 4 and so f(a) K1
q

2' < k, and we have already shown that f(a) ¢ Kk, a contradiction. 0O

LEMMA 4.5. [Let f(X) ¢ Fq[x]. The following conditions are
equivalent.
(1) f(a) = f(b), a,b e F p, implies a,b are conjugate
q
»F .
over F_

(ii) If a,b ¢ ¥ ,, and f(a), f(b) are conjugate over*Fq,
q

then a,b are conjugate over Fq.

(111) f(x) is a permutation polynomial over F .
q

PROOF. (ii) - (i) and (iii) - (i) are trivial.
(i) » (ii) Let f(a), f(b) be conjugate over Fq.
Then f(b) = [f(a))" = f(a% ), k < n. Thus b and a9 are

conjugate over Fq and so a and b are conjugate over Wq.

(i) » (ii1) by Lemmas 4.3 and 4.4. [
We are now in a position to prove our main result.

THEOREM 4.1. Ae induces a permutation of P(q,n) if and only

if f(x) is a permutation polynomial over [F ps for each r < n.

PROOF. (i) Sufficiency

We note that if h(x) is irreducible of degree r < n then Bgh

r-1 J
is irreducible, for if h =TT (x - 67 ), o < F , then Ach has as
‘ 0 q



conjugates over fq of f{g), and these are all distinct since f is a

permutation polynomial over P
q

If h = Hfj',géngj are the factorizations of h and g into products

r

of irreducibles overﬂfq, and if Afh = Afg, @hen HAfhj, HAfgj are

factorizations of Afh into a product of irreducibles over Fq, and so for

each i there is a j with Afhi = Afgj, degree hi= degree gy = 1. if hi

q° qt K
, and 95 has roots 1' , then f(o) = f(1% ), for some k < n.
k

Since f(x). is a permutation polynomial over Eqr, o=t} . Thus the

has roots ¢

conjugatesof ¢ and t coincide and fi = gj. Hence h = ¢,
(i1) Necessity.

If f(x) is not a permutation polynomial over qu. then by Lemma 4.5
there exist non-conjugate o,t € fqr with p(o) = p(t). The field

polynomials of o and T , hl’ h2 respectively, are distinct of degree r,

n-r

n-r -
h],g2 = X

but A = Afh2' Let g](x) = X h2. Then g](k) # gz(x) '

fl

but A = Afgz, and degree g, = degree g, = n.

£ 2

°

n
Lenma 4.6 Let A(x) = LM (x = x,..oox? = x).IF £(x) = r(x) mod A(x)

then Afh'= s.h, for all h(x) e P(a,r), k < n.
K

1 proof. If f(x) = f(x) mod A(x) then p(x) = r(x) mod (xq - x), for

Ll

"k < n. Any root ¢ of h(x) lies in F  for some k < n, and so f(o) = r(o).

q

Thus Ach = Arh'

f
Lemma 4.7 The set Gn’of polynomials f(x) e Fq[x] such that

(1) ; degree f(x) < degree A(x)
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(iz) f(x) induces a permutation of F , for each k < n,
forms a group under composition mod A(X).

PROOF. If f(x) * r(x) is defined to be
(for)(x) = f(r(x)) mod A(x) then f er -f+r = tx, for some t,qu[x].
Since A{o) = 0 if o e F |, {f o r)(o) = (f » r)o. But f or
q

induces a permutation of F j, and thus so does f x r. The identity
q

of Gn is x and inverses exist since that system is finite and

cancellative. 0O

We now proceed to determine the group Pn of permutations of
P(q,n) induced by this process. By Lemma 4.6 it is sufficient to

consider the action of Af for f ¢ Gn.

The structure of G, was determined by Car]itz and Hayes [4].

- We now investigate the structure of Po-

LEMMA 4.8. The map 6: f » Ag 18 a homomorphism from G onto

PROOF. By Lemmas 4.2 and 4.7 and Theorem 4.1. 0O

LEMMA 4.9. Ker 6 = {f ¢ G: f(o) s a conjugate of o, for
all 0 e F g, k s n.}
q
PROOF. If 8(f) induces the identity map on P(q,n) then

Ach = h, for all h of degree <n. let o ¢ F g, and h be the minimal
: q .

polynomial of o. Then Agh = h implies f(o) is a conjugate of o.

Conversely, if h ¢ P(g,n), then h = Hhi,.where the hi are irreducible

k-1

over F_. h; has roots Gyrnnyol » k = deg h;, and so f(o)

q
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L L L
is a conjugate of o. Since f(o¥ ) = [f(o)]q ,.f(oq ) runs through

_ om
the set {09 }. Hence Afhi = hi’ and Afh =h. 0O

We denote by A the group of permutations of Kq which induce

permutations on the set of equivalence classes of conjugate elements.

LEMMA 4.10. I1f f ¢ G _, then f induces a permutation of Kd’

n’

for each d < n. Denote this permutation by py- Define

l’): Gn")Al X Az X,eoX An by
Y p > (Ppse-ssPy) -
Then Y is a group isomorphism.

PROOF. To show that y is surjective, let Tys...,m  be

arbitrary elements of A,,...,A . Consider F  ,. Choose on each
. q .

Kd, n <d < n!, any permutation e of Kd which induces a permutation

on the conjugacy classes in Kd' Now consider the map 7 which is s

on each Ki’ 1 <13 <nl. Since m commutes with the Frobenius

automorphism of nl? there is a polynomial f(x) of degree less
At .

' .
than q"° with coefficients in Fq which induces m onfF 4. The
! g

reduction of f(x) mod A(x) induces ™ on each A;, since each fF j
' q

is a subfield of F 1, and so f(x) ¢ G . If f e Ker y, then f(x)
q

d
induces the identity on Kg for all d < n. Hence f(x) = x mod (xq -X)

for all d < n., and so f(x) = x mod A{x). The other properties of ¥

are obvious. [

Each 7 € Ai induces a permutation of the set of conjugacy

classes of Ky. If there are m(d) classes in Kq then this gives rise
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to a homomorphism from Ad to Sn(d)’ the symmetric group on m(d)
elements. Thus there is a homomorphism ¢: A1 Xoo. X Ay = Sn(l) X

Pl X Sn(n)’ Define p = ¢ o Y Gn > Sn(l) X,,.X% Sn(n)‘
LEMMA 4.11. Ker u = Ker 6.

PROOF. If f ¢ Ker u, then f induces the identity map on the
set of conjugacy classes of Ky, d < n. This means that f(o) is a

conjugate of o, for all o e F |, k < n. Thus f ¢ Ker 6. Conversely,
q

if f ¢ Ker 6, then y(f) induces the identity on the set of conjugacy

classes and so f ¢ Ker p. O

THEOREM 4.12. The group P of maps of P(q,n) » P(q,n)

induced by elements of Gn is isomorphic to the product of n symmetric

groups of‘brders m(k), k < n, where

-1 ) u(%)qd, where u is the Mobius u-function.

d|k

n(k) = k
PROOF.  From Lemmas 4.8 and 4.11. The number of conjugacy
classes in Kk is the number of monic irreducible polynomials of

degree k in Fq[x], given by w(k) above (lemma 1.7). D

2. CHEBYSHEV POLYNOMIALS IN SEVERAL VARIABLES

As stated in section 1, the Chebyshev polynomial vector
g(n,k,b) is a permutation polynomial vector if and only if
(k,qr -1)=1,1<r<n, forb=0, and (k,q" - 1) =1,
1<srs<n+1, forb# 0. The case b = 0 in fact follows directly

k

from Theorem 4.1, as the polynomial x" is a permutation polynomial
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over Finf and only if (k,q - 1) = 1. It was shown by Lid1 and
‘Wells 12671 that the set {g(n,k,b)}, for b fixed, is closed under
composition if and only if b = 0,1, or -1, and for n = 2 the
sxructurerf the group of permutations induced by the g(n,k,b) was

determined in [20] and [21]. We now extend this to arbitrary n.

The case b = 0 is treated first, then b = 1 and -1 are dealt with
together.
The case b = 0,

. THEOREM 4.3. The group G of mappings of‘Fg +-Fg induced by

the permutation polynomial vectors among the vectors ¢(n,k,0), is
isomorphic to the group R of reduced residues mod N = LCM(q - 1,
..,qn - 1) factored by the cyclic subgroup C of order LCM(1,...,n),

generated by q.

A

PROOF. If k = k' mod N, then k = k' mod (¢" - 1), 1 < r < n,

and so the maps fk: X > xk, fk.: X > xkl coincide on qu, l<r

A

n,

and so the maps Afk, Af are identical dn P(g,n). Thus the map
k' _ :

g(n,k,0) + k*, where k' is the residue of k mod N, is a homomorphism of

the semigroup of permutation vectors amongst the g(n,k,0) onto R.

The map ¢ which sends k to the map which g(n,k,0) induces on Fg is

then a homomorphism of R onto G. It remains to determine the kernel

of this homomorphism. Suppose k = qt mod N.

If f(x) = Hf{(x) is the decomposition of f(x) into

n-1 op
irreducible factors over Eq, and fi(x) =TT (x - 0% ) is the
r=0 :

factorization of fi (where fi has degree n), over its splitting

field, then

\ 4
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p-l qr+r
by fi(x) =T ] (x-o0 ) = fi(x). Thus & § = f.

k

Now suppose k ¢ Ker ¢. Then o 1is a conjugate of ¢ for all

celF ., 1<r=<n,bylemad4. 9. Ifoisa primitive element of
q
L
F s then ok = o4 , since 0 < 2 < r.
. q '
Thus k = q2 mod (q" - 1) and k is a solution of the system

of congruences

k=1 (g - 1)

k =1,q (q2 - 1)
(1) : :
k = laqs---aqn-z (qn-l - 1)

k=1,0,...,a"1 (" - 1)
We now show that this system is equivalent to the single condition
(2) k=1,q,...,q° mod N, where t = LCM(1,...,n) .

Firstly it is clear that any solution to (2) is also a solution to
(1). We now wish to determine the order m of q mod N. If .

s = LCM(1,...,n), then q° = 1 mod N, since (qt - l)l(qS - 1) for
all t with 1 <t <n. Thus m|s. Since q" =1 mod N, N|(q" - 1),
and so (qt - 1)|(qm - 1), 1 <t <n. This holds only if tjm."

Thus s|m, and so s = m, implying that the number of solutions of
(2) is s = LCM(1,...,n). We next show that the number of solutions
of (1) is also s, thus proving that every solution of (1) is a
solution of (2). We do this by induction on n. When n = 1 there
is nothing to prove, as N = q - 1. By the induction hypothesis,

the number of solutions of the first (n - 1) congruences is
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LCM(1,...,n - 1), and by the earlier arguments this system is

1LCM(1,...,n-1)

equivalent to k = 1, q,...,9 mod LCM(q - 1,...,q"°1 - 1).

t S

Let N' = LCM(q - 1,...,q"'1 - 1). Suppose k = q mod N', k =g
mod (q" - 1). Then k = qt +aoN' = g>mod (q" - 1), for some a € Z.

oN' = qt (qs-t - 1) mod (q" - 1), where (s - t) is taken mod n.
This has a solution if and only if ged (N',q" - 1)]qt(q5't - 1).
Now suppose that n is not of the form p%, p a prime. Then

a

m oo, . t ¢
n = T_T'pil, m=> 2, and pi1v< n. Thus k = g- mod N' > k = g
i=1 :

. Qo
a'l 1

Ps pPs _ O
mod (g ' - 1) and so (q T 1)|(qS t

- 1) for each p; .

Q.
Thus s = t mod pi], and so s =t mod n. Hence the choice of

s is already determined and so the number of solutions remains the
same, namely LCM(1,...,n - 1) = LCM(1,...,n). If n =p, then the
condition for a solution is (q - l)l(qs't - 1), which always holds,

and so s is arbitrary, and for each choice of s there is a unique

solution mod LCM(N',q" - 1) N. Thus the number of solutions is

n LCM(1,...,n - 1) = LCM(1,...,n). Now suppose n = p*, o > 1.

The condition reduces to s = t mod p® !

, Wwhich has p solutions
modulo pa, each giving a unique solution mod N. Thus the number

of solutions is p LCM(1,..., n - 1) = LCM(1,...,n). O

The cases b =1 or -1,

In this section, let f(x) = xk and let b = 1 for character-

istic 2, otherwise k odd, b = + 1. We use the notation of sections

1 and 2.
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LEMMA 4.12. If Ap induces the identity map on the set Pp

n
of polynomials of degree nowilh constant term (-1) b, then f

induces the identity map on ¥ _, and Ag induces the identity map on

q.)
all polynomials of degree less than n, for n > 2.

PROOF. Let w be a primitive element of Wq-and let

hix) = (x - D" 3(x - wl(x - w?), b=1;
h(x) = (x - D" 3(x - w)2x + w?), b =-1.
Then 8= (x - D™3(x - W2x - w2, b= 1

beh = (x - D3 x - WH2(x + w7 BK), b =

since k is assumed to be odd. If the characteristic is 2, consider

only the case b = 1.

In each case, h ¢ Pg, and so Afh = h by hypothesis. Thus
w = wk, by unique factorizétion, and o primitive implied k = 1 (q - 1).
‘Hence f(x) induces the identity map on Fq. (Note that if n = 2,
w=uwX is also possible, and we can only deduce k = +1 (g - 1)).
Now Tet g(x) e Fq[x], with degree g(x) = m < n. Let g(x) have |

constant term B. Clearly we may assume B # 0. Define

h(x) = (x - ii%gTEO(x - 1)"'m'lg(x). h{x) has degree n, and has
constant term (-1)nb, and so Afh = h. But

Ach = (x - i:l%TE)(X - l)n'm'lAfg, since B ¢ Fq, and Bk = B. Thus
bgg = g. O

LEMMA 4.13. Let w be a primitive element of F ,, and put
R q

- L{qg-
A=l 1, q even or odd, p = wZ(q 1), q odd. Then A, ¢ Kp-



61

n
PROOF. X has order %f_:i% . If A cF v <n, then
q- "

" -1
q-1

ord A <q" - 1. But >q -1, r<n, and so X ¢ K. If

U e Fﬁr, r<n, then A = uZ € qu. Since Kn n qu = ¢, this is

impossible. 0O

THEOREM 4.4. Ag <nduces the identity map on Py t, b= + 1

if and only if K satisfies the system

k=1 (g - 1)
k = lsq,~--:qn-1 (qn - 1)
(3) n+l _
kK =1,q,...,q" q _'11 in case b =1
' n n+l _ 1 v
or k z 1,95...59 2(g—q—_—1—) in case b = -1,

PROOF. Assume firstly that k satisfies the system. Then

if g(x) is irreducible over Fq, and degree g(x) < n, heg = g. If

g is irreducible of degree (n + 1) and has constant tem (-1)n+1b,
then
q" |
9(x) = (x -0) ... (x-0" ), 0¢F .,
' q
n
where (_1)n+1 c1+q+...+q - (_1)n+1b ,
+
or CLEINE VVIC IS D

In the case b = 1, this implies that
t
ck=cq for some 1 <t <n,

and so beg =g .
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n n+l
If b = -1, then o(q -D/{a-1) -1, and OZ(q ‘-1)/(q—1) =1, and

(3) again gives Beg = g.

Conversely, if beg = g for all g « Pg+1, then by Lemma 4.12,

Af induces the idenfity map on all polynomials of degree < n. Hence
k satisfies the first n equations of the system, as in the case

b = 0.

, and take ) = wq-l,

Now let w be a primitive element of F n+1
' q

u = w%(q'l) for g odd. If g is even consider just the first case,
since 1 = -1. By Lemma 4.13, PRI K,» and so their minimal

polynomials h,g respectively, have degree (n + 1).

The constant terms of h,g are

n+l

(q

and u '1)/(Q'1) s

A(q"+1-1)/(q-1)

- which equal 1 and -1 respectively.

In the case b = 1, it follows that Afh = h and so

-t
Ak = 24 ,0cstsn.

t
Then ola-1k o (g-1)q

nt+1

(g - 1)k = (q - 1)* mod (g™ - 1)

n+l

q% mod (EL———JL;L) .

k -1

In the case b = -1, Afg = g implies
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Then wl/z(q"l)k = wl/z(Q"l)qt

4(q - 1)k = %(q - l)qt mod (qm'1

k qt mod 2(qn+1 -1)/(q-1). O

- 1)

COROLLARY. The group G of mappings Fg +~Fg induced by

permutation polynomial vectors g{(n,k,b), where b = 1 [resp. b = -1],.

18 isomorphic to the group of reduced residues

n+l -
mod LCM(q - 1,...,q" - 1, 9_6-:;119 [resp. mod LCM(q - 1,...,q" - 1,
2(qn+1 - 1)/(q - 1))1 factored by the cyclic subgroup generated by

q of order LCM(1,...,n + 1).

'PROOF. The proof is essentially. the same as for Theorem 4.3,

with the following modification. We treat the case b = 1, the case

n+l
b = -1 is similar. Let N = LCM(q - 1,...,q" - 1, g—a—?:Tl)' We

' n+l
note firstly that the order of q mod (g—a—:iilo is (n + 1), since

1 ' n+l

clearly qn+ = 1 mod -1

ST and if q has order t|(n + 1), then

(@™ - 1)|(qt - 1)(q - 1).

But (-1t -1)= (g™ -1)-(qt+q-2).

Sinceq=22,andasn+12>2,1tc«x ﬂ%l < n, and so

n+l _

(q 1) > (q - 1)(qt - 1), a contradiction.

We now determine the order of q mod N. Let s = LCM(1,...,n + 1).
Then q> = 1 mod N. If q" = 1 mod N, then tjm, 1 <t <n. To show

(n + 1)|m, we have
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™o ym
(SLT;f:-f-)I(q -1) .

Let v = gcd (qn+1 -1,q" - 1) = qgcd(n+1,m) - 1.

n+l . m'
Then 9 =1li(q-1a=2L,
- | Y Y
n+l
Thus ' EL-—;F-;LI (9 =1),
or (™ - 1) | (g - 1)(gfcd(mLm) _ gy

As before, this is impossible unless n + 1 = gcd (n +1,m) i.e.

(n +1)|m. Now suppose k = qt mod N', N' = LCM(q - 1,...,qn -1),

n+l. 1
k = qS mod (EL?f777r_)' Then
ntl

k = qt-+ o' .=..qS mod (B_q__._'_l.l_) ,

- : . n+l.
hence aN' =-qt(qs't { 1)(£L?r:5310 .

m_ s-t
Thus (%r:—TQI(q -1), formjn + 1,

As before this implies m|(s - t), or s = t mod (m). The
rest of the proof goes through as before, noting that we already
know the nature and number of the solutions to the first n

congruences. [

Lid1 and Miller [25] examined the question of when the group
induced by the pefmutation po1ynomia1'vectors g(n,k,b) is cyclic
for n = 2. The case n = 1 was settled earlier by Hule and Miller

[17]. We now extend this to the general case.
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THEOREM 4.5. The group G induced by the permulation polynomial
veetors amongst the g{n,k,b) is eyclic if =2, n=2and b =1, or

if q=2o0r 3, n=2and b =0. G is not eyclic if n> 2.

EBQQE.- The fact that G is cyclic in the cases given was
established in [25]. The following argument was suggested, in the
case n = 2, by W. Narkiewicz. If an Abelian group A contains a
subgroup isomorphic to the direct sum of three or more copies of
C2, then, when A is factored by a cyclic group, the resulting group
cannot be cyclic. If N is the appropriate modulus,

(LCM(q = 1,...,q" - 1) for b = 0, etc.), and q is odd then
- 1), and (q3 - 1)(resp (%;1}1;)) is divisible by an odd

prime. Thus the prime decomposition of N is of the form

g % o i :

N =2"p; ...pnn, P; 2,823, o; = 1. The group G of reduced
residues mod N is isomorphié to the direct sum of the groups

a. .
E/(ZB), Z/(p1-1).' Z/(ZB) = C2 ® C28-1’ where C']. denotes a cyclic

group of order i.

7/(p.}) =
/(pl)-c ® C

al-l

p;-1°
P1 1

Thus G contains a subgroup isomorphic to Cg.

If q is even, q # 2, then gcd(q2 - l,q3 -1)=(g-1), and

so there are prime factors of (q2 - 1) not dividing (q3 -1). If
2

g-1,9°+q+ 1 have a common prime factor k, then g = 1 mod (k),
and so q2 + g+ 1 =3 mod k. Thus unless 3 is the only prime

dividing (q - 1), there is a prime dividing q - 1 and not
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(2 + q+1). Ifg-1-=3% then

2

Z+q+1=(q-12+3(qg-1)+3=3r3t1s3t4q

and the second factor is not divisible by 3. Thus there are at
least three odd primes dividing N, and so G contains Cg. If q =2,
n>3, N=gcd(1,3,7,15,...) and so N is divisible by at least

three odd primes as before. [

3. MATRIX PERMUTATION POLYNOMIALS

Brawley, Carlitz, and Levine [3] have determined the

polynomials f(x) e F_[x] which permute the set of nxn matrices

q
over Fq under substitution. In this section we give a different

proof of their result using Theorem 4.1,

THEOREM 4.6. (Brawley, Carlitz and Levine). Let

f(x) e Fq[X]. Then f(x) is a permutation polynomial on Frxp: the

set of nxn matrices with entries in Fq if and only if

(1) f(x) is a permutation polynomial over qu, 1<rcsn.

and (i1) f'(x) does not vanish on any of the fields

Fq,...;F [n/21°
q
We first prove the following Lemma.

LEMMA 4.14. f(x) « Fq[x] is a permutation polynomial on

Foxq if and only if f(x) permutes the similarity classes of Fox

b

n

‘where the similarity class of B ¢ F . is Cy = (ATIBAJA ¢ F A

nxn?

invertible}.
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PROOF. Suppose f(x) is a permutation polynomial on ann'

Then f acts on the similarity classes, by defining

F(Cg) = Ce(p) -

1

If Y e Co, then Y = ALBA, and F(¥) = AL £(B)A « Ce(g)- The map

BS
CB > cf(B) is surjective on the set of similarity classes, as

otherwise there would be a class with no preimage, and any matrix
Y in this class would have no preimage under f, contradicting the

fact that f is a permutation polynomial on F Thus f permutes

nxn’
the similarity classes, as there are a finite numbér of them.

Now suppose f permutes the similarity classes in ann' Then
since |Cf(B)| < ICBI for all B ¢ F_ ., each Cg can only be mapped
to a class whose order is less than or equal to that of CB‘ If
|CB| = ICf(B)I then f induces a one-to-one map of Cp onto Cf(B)‘
Thus f can fail to permute F__ only if 1CB| > |Cf(B)l for some Cp.

Let M be the set of classes which are of maximal order n with

respect to this property.

Then since all the classes of order greater than n are
mapped onto classes of their own cardinality, the set of preimages

of the'c]asses of M must be M itself,

Thus f(x) preserves the cardinality of the classes of M, a
contradiction. Thus f(x) preserves the cardinality of all classes

and so is a permutation polynomial over ann' 0

PROOF OF THEOREM. Suppose f(x) permutes Frn- Let

A(x) e Fq[x], and let C, be its companion matrix. The minimal
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polynomial of CA is A(y). Hence the algebra J(A) generated by CA
over Fq is isomorphic to Wq[y]/(A(y)). Since f(x) is a permutation

polynomial on ann’ it is so on J(A), and via the isomorphism is so
_ ..
on Folyl/(A(y)).  Now if A(y) = Tip;' (y), then
o.
qu[yJ/(A(y)) = @ ZH—'qu]/(p]-I(y)), and f(x) permutes each of the

a. .
Fq[y]/(pi1(y)). Taking A(y) to have an irreducible factor of

degree r and multiplicity one, we see that f(x) permutes F . Now
q

if A(y) has a factor of multiplicity greater than one, (and the

degree of any such must be less than or equal to [%J), f(x) must

a

permute!Fq[y]/(pii(y)), a; > 1, deg pi(y) > r. 'Such an f(x) is
called regular over Fq, and it is known that regularity of f is
equivalent to f'(u) # 0 for u e F .. [See Lausch and N8bauer [19]
prop. 4.31 page 1631. v '

Now assume f(x) satisfies the given conditions. The
similarity classes are determined by their invariant factors,

which are polynomials in F_[x].

q

A result from Gantmacher ([13], page 158, note 2,) ensures
that the invariant factors of f(A) are 8¢9, where g are the invariant
factors of A, and Af is the mapping defined in section1l. If
f(A) = f(B), where A,B are in different similarity classes, then
1f'{gi} are the invariant factors of A, {hj} of B, the invariant
factors of f(A), f(B) are {Afgi},'{Afhj} respectively. Since the
degrees of 9i’hj are < n, and as by Theorem'l‘Af bérmutes the
polynomials in Fq of each degree < n,'{gi} =:{hj} and so A is
similar to B, a contradiction. Thus f permutes the similarity

classes, and so permutes F by Lemma 4.14. [

nxn



CHAPTER 5

THE STRUCTURE OF THE GROUP OF PERMUTATIONS INDUCED BY
CHEBYSHEV POLYNOMIAL VECTORS

OVER THE RING OF INTEGERS MOD M
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In this chapter we extend some of the results of chapter 4 -
to rings of the typeZ/(m). Since the general case reduces to'that
of m = pe, we shall study the case m = pe, whére p is prime, in
detail. The structure of the group of permutations of Z/(m) induced
by {g{n,k,1)} was determined by Lausch, Mlil1ler and Nobauer [18] for
n=1. The main result of this chapter is to extend this to an
érbifrary number n of variables. Thé single variable case may be

described as follows:

Let G(p®) denote the group of permutations of (Z/p®) induced
by the set {g(n,k,1)}. Then G(p®) = A/K, where

= @/ (2%71.3)%,
= (Z/(2872.3))%,

(i) ifp
(ii) if p

u ]
N N
- “
o 1]
v A
w ~N
» -
> =
I l

C(ii) ifp>2, A

R

-2 *
@/t Byt

and K

{1,-1} if e>1orp =2,

2
K= {1,-1,p,-p mod 2513 if e = 1, p > 2.

The multivariable case may be stated more simply, although
the proof is rather more complicated. We begin with a consideration .
of the Jacobian of the transformations involved, as this is related
to their permutation properties mod pE.

1. THE JACOBIAN OF q'f)

The following result reduces the study of polynomials over
. R =17/(p®) to questions concerning finite fields. (See Lausch and
Nobauer, (191, prop 4.34, page 165). Let T be the ring of integers

of an algebraic number field.
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PROPOSITION 5.1. Let Q be a primary ideal of T with

associated prime ideal P, P # Q, and T/Q finite. Then a polynomial
vector h = (hl""’hn)’ hi € T[xl,...,xn], is a permutation poly-

nomial vector over T/Q 2f and only if

(1) h is a permutation polynomial vector over T/P, and

(11) the Jacobian of h, dh, is non-zero on T/P.

A polynomial vector h over'Fq(z T/P) satisfying (i) and (ii) is
called a regular polynomial vector over F_. We proceed to determine

q
the regular polynomial vectors amongst the vectors g(f)

g(n,k,b).

, and the

If Ops--+50, € ﬂ:'q? where Fq is an algebraic closure of }Fq,

define

'S: (01,...,0n) - (Sl(ol,...,én),---,Sn(ol,.-.,cn)) -(1)

where Sj is the j'th elementary symmetric function in 0)sens 0y

The map

o' Sogse.000,) > (S1(F(oy) s aFlo))se oS, (Floy), ., (,)))

js a well defined map of BN > F". If 35 denotes the Jacobian of S

q q 90
with respect too = (ol,...,on):and if Jg(f) is the Jacobian of
g(f), then
f
339 = 2 (sie(o)) (2)

where f(o) = (f(0;),...,f(q.)), since g(f)(S(G)) = S(f(0)), and

d g(f)( )Y
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The composition law for Jacobians yields

2 (s(flo) = & (f(o)) . &L,

: . S . .
where gg'(f(o)) is the vector %5-, with f(o;) replacingo;. An

explicit calculation shows that

2 I_nT (0, - o;) (3)
30 i< i J
i,j=1

35 n
TT (o) - flo)) . ()

1

1,§=

|
~~
=
Q
S
Nt

]

PROPOSITION 5.2. The value of the Jacobian Jg'T) at

(ul,...,un) is given by

n f(o,)-f(o.) n
36 (g ) = [T o ] Pl s
i,j=1

where O1s. 50, are the roots of

‘ - n
r(ul,...,un,z) =7 - ulzn 1 +...+ (-1) u, -

If 05 = 95 i # j, then the term (f(oi) - f(oj))/(oi - Oj) is to be

interpreted as f'(ci).

PROOF. Only the last statement remains to be proved. There
exists an algebraic number fie]d'K, with ring of integers A, and a
prime ideal Q, with A/Q :[Fq. Continuity in € shows that the
formula of Proposition 5.2 should be interpreted as indicated

- when o; = 0j- 0
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2. THE JACOBIAN OF g{(n,k,b)

When b = 0, taking f(z) = 2K in Proposition 5.2 yields the

Jacobian of g(n,k,0). We now assume that b # 0.

PROPOSITION 5.3. Let Jl be the Jacobian of the map

S: (01""’On41) +‘(51(01"'“’°n+1)""’sn+1(61""’°n+1)) .

regarded as a form in Opse-+2%41 and let JZ be the Jacobian of the

map
Sp: (01,...,on) > (Sl(ol,...,on+1),...,Sn(ol,...,on+1))
o] o n+l
_ ntl n+l
where 01 eoe O'n+1=babf0. Then Jz“-?rl]l:—b—g(ci'o‘j).
i,j=1
PROOF. Consider the determinant
BSi
bd; = det (oj 55;)(n+1)X(n+1)
Every entry of the last row of this determinant is b.
asi aSi
Thus J; =det (0, — - 0o —) .
, 1 j Boj n+1 30, .1 MXN
30 0
. _ n+l _ n+1
Since . Op «-- °n+1 = b, o - T oo -
J J
3S. 30, . 9S.
1 i b
Thus  J; = 0y ... o, det (=— + —1 ) = Jo . D
-1 1 n 90, acj 3§n+1 041 2

J

PROPOSITION 5.4. The Jacobian J of g(n,k,b), b # 0, s given

n n+l . 05-.05
byd =k TT ( ) where J is evaluated at (ul,...,un) with
g 7%

i,J=1
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r(ul,...,un,z) = (z - 01)...(2 - °n+1) .

If o5 = 0> then the corresponding term in the expression
k-1

for J is koi

' .35 . _ 35 of
PROOF.  Since == 55-(f(0)) =
on+p T °r'§+i ik P T
we have [T (o; -0;)d= [ 1 (o5 - o3)k TT o
b 4] T b iy 7 3T ap
,3%1 ,3°1

n+l ok - og

or J:kn-'_‘- *6'1—-_—~0-_-J—- O
i< i J
i,j=1

3. REGULAR POLYNOMIAL VECTORS OVER FINITE FIELDS

THEOREM 5.1. g(f) 18 a regular polynomial vector over.Fq

if and only if f(z) is a regular polynomial over F pr L srsn.
' q
PROOF. It was shown in chapter 4 that the condition of the -
theorem is equivalent to g(f) being a permutation polynomial
vector overIFq, with the regularity condition omitted. If f(z)

" is regular over fF pr 1S <, then f'(oi) # 0, and f(ci)-f(oj)f(J,
q .

as f is a permutation polynomial over .., 1 < r <n. If 0; = 04>
q
the remark following Proposition 5.2 shows that in all cases

Jg(f) # 0. If f(z) is not regular over FF 1 <r < n, then either

q"
f'(c) = 0 for some o ¢ F ps OF f(z) is not a permutation polynomial
q .
over‘F'r. In the first case take r(z) « Fq[z] to be monic of degree

q . _ .
n with o a root of r(z) and take ul,...,uh to be the coefficients of
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g(z) with appropriate signs. Then from Proposition 5.2,

(f)

Jé(f)(ul,...,un) = 0. In the second case, g is not a bermutation

polynomial vector over Fq by theorem 4.1. O

COROLLARY. g(f) is regular over Fq if and only if f is a
permutation polyromial over f y; 1 < v <n, and f' has no irreducible

factor of degree =<n.

PROOF. If f' has an irreducible factor of degree <n, then

P l1<rc<n, and so f is not regular over F
q q"

is not regular. 0O

it has a zero in I

Thus g(f)

4. REGULAR CHEBYSHEV POLYNOMIAL VECTORS

The following theorem may be found in Lausch and N8bauer

(191, p. 209), and Lidl ([221), for the cases n = 1,2 respectively.

THEOREM 5.2. g(n,k,b) Zs a regular polynomial vector over
F q=p% ifand only if b=0, k=1 orb # 0 and (k,p(g°-1)) = 1,

s=1,...,n+ 1,

. PROOF. For b = 0, the theorem follows from the Corollary

to Theorem 5.1. If bv# 0, and g(n,k,b) is regular, then Proposition -
5.4 shows that (k,p) = 1. Lidl and Wells [26] showed that g(n,k,b),
'5 # 0 is a permutation polynomial vector over Fq if and on]ylif

(k,q°> - 1) =1 for s = 1,...,n + 1. Thus we need only show that

the conditions given ensure that the Jacobian of g(n,k,b) is non-

zero. Since 0; #0, kc;'i('1 # 0. Further, the conditions given
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imply that xk is a permutation polynomial oVer fF S lcs<n+1.
: n+1 q
Thus xK permutes the set U Eqs, which shows that J # 0. 0O
s=1

5. THE STRUCTURE OF THE GROUP OF PERMUTATIONS OF ng(pe))n INDUCED

BY THE SET {g{n,k,b), k ¢ Z}.

Theorem 5.2 immediately shows that the group'G(n,b,pe) of
permutations of R" = (Z/p®)" induced by polynomial vectors g(n,k,b)
with b = 0 is the one-element group. Henceforth, we assume b = 1.

We proceed to find an integer 2 such that the maps induced on

RM by a(n,k,1) and.g(n,k + 2,1) are identical. We denote g(n,k,1)

by g(n,k) for convenience, and similarly G{(n,b,p®) by G(n) or

G(n,p®). We have then a homomorphism y: Z* - G(n), where z% is

the group of reduced residues.mod 2, whose kernel is to be determined.
Since each polynomial of degree (n + 1) is a product of irreducible
polynomials of degree at most (n + 1), it is sufficient to show that
Axkr =r (Af aé defined in chapter 4), where r is an irreducible
polynomial of degree n + 1, which has conﬁtant term (-1)n+1 if
degree r = n +}1. Recalling that R = Z/(p%®), e > 1, there is a

canonical homomorphism u: R -Z/(p). We use various properties of

Galois -rings, which are given in chapter 1.

| THEOREM 5.3. Iet 8 ¢ Z be defined by p5 1 <n + 1 < pb.
CIfy=Tem (p - 1oooup” - 1,00" - 1)/(p - 1)), and g = p&+B-2,,
then g(n,k) and g(n,k + L) induce the same map on R".

PROOF. Let f(x) be a monic irreducible polynomial over R.

If f(x) is a basic irreducible, (chapter 1) with dég f(x) = r,
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“then f(x) splits into linear factors over GR(p®,r). Each root is

(p"-1)pe-1

a unit, and so, if a is such a root, then a = 1, by lTemma

1.4. If deg f(x) is (n + 1), then f(x) has constant term (-1)n+1. In

ntl
F n+1’ pf has roots of order E—B:flu From the structure of
P .

GR(pe,n + 1) in Temma 1.4, o is a product of én element of order

pe—l and an element of Gy, and p induces an jsomorphism of G,.

e-1, n+l
Hence o satisfies oP (p7-1)/(p-1) _ 1.

If f(x) is irreducible over R, but uf is reducible, we
construct a ring extension of R in which f(x) splits into lineaf
factors f(x) = n(x - ai), with a% = 1. InZ/(p), uf is of the
form (h(x))k, where h(x) is irreducible over Z/(p) (lemma 1.2).

If deg h(x) = s, then h(x) splits into linear factors over F .
' p

k. By

v s
Over ¥ ., uf splits into factors of the form (x -3
p° | 1 1

a form of Hensel's lemma (lemma 1.1), over GR(p%,s) f(x) splits

into factors, say f(x) = fl(x)...fs(x), where fi(x) = (X-ai)k

+m;(x)
with fi(x) ¢ GR(p®,s)[x], and where mi(x) has coefficients in the
méxima] ideal M of GR(pe,s). Using Temma 1.5, let K be an algebraic
number field with ringvof integers A, and P be a prime ideal in A,

P = pA, with 6: A/P® ~ GR(pS,s). M is the image of P under 6. Let
F(x) e ACx] be mapped onto fi(x) by 6, where F(x) is of the form

(x - a)k

+ n(x), with 6: n(x) » mi(x), e::a + a;, and define S as
the splitting field of F(x) over K, T the ring of integers of S.
Let ny,....n, be the roots of F(x) in S. Let I be the ideal
(PP (ny - @)T,....P8 L (n, - o)T), and define W, = T/I. We

show that I n A = P®, and so there is a canonical embedding of R
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into W,. For certainly P€ ¢ I 1 A, while if I n A > P® then there

is a proper ideal J in A with P€ = (I n A)J. Thus I oA = P,

t <e, sop! < I.nA, and

' Pe-lT c{InA)T=1-= PeT + Pe-l(nl - a)T +...4 Pe_l(nk - a)T .

Hence T PT + (nl-- a)T +...+ (nk - a)T ()

In

But (n; - )X = -n(n;) € PT, s0 ((n; - )T)¥ < PT. 1f Q is a prime
jdeal of T dividing PT, then Ql(ni - a)T, so Q divides the RHS of

(x), and so Q|T, a contradiction.

Thus W, is an extension ring of R. If ﬁi is the image of

k
n; in W, then ﬁ} is a root of fi(x) and fi(x) = }:I'(x - nj).
We show that ﬁ? = 1. Firstly assume e = 2. Then
(n; - @)X = -n(n;) € PT, and
N J
PT(nj - a) E.I
Thus (ﬁj - ai)k+1 = 0. Now pB'z k+ 1, unless k=n+1-= pB and
- B
so, except in this case, (nj - ai)p = 0. Thus
B B B B B
_-p = N - p = h - p p - p
nJ- (TIJ 0‘1 + O".i) (T]J O'--i) + ai O‘.i .

‘ 8 8
Since o, « GR(pZ,s), of Y= 1, and so ﬁg Y1, (Ifk=n+1, the

same argument as used previously may be employed to show that v

suffices). Thus in T, for e = 2,

B+e-2Y .
ni =1 f A+ (ni - u)ul +...+ (nk - a)uk Iy

where A ¢ PeT, My € pe-lr
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Arguing inductively, we raise this to the p'th power, to obtain

p8+e-1

i

Y. 1ep®lry PET(ny - @) +...+ Pe'T(nk - a) .

pB+e-1Y
In we+1 we have then, nj = 1.
Now suppose k = n + 1 = pB. The roots E& have order p8+e’ly, .

Rte-2

by the above argument. In fact p y suffices. Let Sg again

denote the r'th elementary symmetric function in n variables. Then

, B _ 4
A=7,P=pZ and f(x) = (x - a)P + pg(x). Assume firstly that

‘e =2. Then in Ne,

_ B
(m; - )P = -pg(n;)
since p(n; -a) = 0, pg(n;) = pgla) .

B _ B _ B B
Hence nf = (m; - a+ )P = (n; - o) +

B
oP - pgla).

For e > 2, 1ift to T, and raise to p'th powers successively to

obtain
_ﬁ?g+e-2 : OLp8+e~2 . pe'lh(a)
ﬁ%+k _ —?B+e-2Y+k _ (ap8+e—2 . pe_lh(a)jy?ﬁ
='(mp8+e-2Y . pe-lhl(G)YHE
Since a ¢ l/(pe), ap6+e-2Y =1, and so
ﬁf+k = (1 + pe'lhl(a))ﬁ?"
S, = 1 g (o) ST, L)
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Modulo p, f(x) has the form (x - a)P , and so the transformed

B
polynomial is (x - ak)P , whose coefficients are zero mod p,

except for the final and initial terms. Thus

2+1(5§, "’”n+1) = 0 mod p, and so

n+1(—2+k —£+k) - Sn+1(—k =

e
Sr Ny seeesTiyg "’”n+1) mod p- . 0O

6. DETERMINATION OF THE KERNEL OF y

As shown in 8§85, there is a homomorphism : Zz + G(n), where
722 is the multiplicative group of reduced residues mod 2, where 2

is defined in theorem 5.3 and ¢ is defined by

¥: k » {permutation induced on R" by g(n,k,1), where (k,2) = 1}.

We asume e 2 2, and since the case n = 1 was solved in (18], we
assume n > 2. In the case e = 1, the kernel of ¥ is non-trivial
(see chapter 4) and if e = 2, n = 1, the kerné] is {#1}, as shown
in [18]. For n =2, e = 2, we shall show in this section that

ker v = {1}, and so ¢ is an isomorphism.

LEMMA 5.1. If k € Ker ¢, then k = 1 mod vy, where

n !
= 1cm(p - 1,...,p - I,BB—:-]-_.—) .

PROOF. Suppose k ¢ ker y. Then

g(n,k)(ul,...,un) = (ul,...,un) for all u; e Z/(pe) .
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From Taylor's formula (1191, p. 268), if 94 denotes the t'th

component of g{n,k), then

e-1
gt(ul""’uj-l’“j +p ,uj+1,...,un)
. .9g
- e-1-"°t
= gt(ul""’un) +p 533-(u1,...,un) .
s ot = d H. if J is the Jacobi
Thus 533 (”1""’”n) = 6tj mod p. Hence, i is e' acobian

matrix of g(n,k), then

J{ugs...ou ) = I mod p for all u; e zZ/(p) .

n)

Replacing J by In in the identity

ou & 99, = '
J . [__J@] = L~—J&J, we obtain
aoi 801
o0. 30i
Taking £ = 1, 0: - © = k(ok - ok }, so that kok - 0. takes the
9 » O3 7 %41 i~ %n+1’ i~ %

same value for i = 1,...,n+ 1, If Opsee-s0pyy are chosen not all

equal, then p f k. If p =2, this shows k =1 mod p. If p# 2,

choose 0; = -0p = ol# 0, 0 eZ/(p)). Then ko = 0. If o= 1,

then k =1 mod p. If 0 = w, a primitive root mod p, then k = 1 mod

k

(p-1). Thus (Gi - Ui) takes the same value, for i = 1,...,n + 1.

Now let w be a primitive element of F ., 2 < r < n, and let g(x) be

its minimal polynomial over F If the constant term of g(x) is

P
(-1)"x, define f(x) = g(x)(x - A'l)(x - D)™ Take Ope1 = a1
Then o€ -"w = ("H% - (A1) < 0, since 7! Fo- Thus k = 1 mod
(pr -1),1<r<n. Ifr=n+1, take o= wp-l, to obtain



81

n+l
k = 1 mod E—E—::Tl

Combining the congruences, we obtain

k=z=1lmody. O

Recall that B ¢ Z is defined by pﬂ'1 <n+1c< pB.
LEMMA 5.2. If =1, then k ¢ ker ¢ only if k = 1 mod p& 1,

PROOF. Let f(x) have degree two, and constant term 1. We

assume n > 2. Then g(x) = (x - l)n'lf(x) has degree (n + 1). If

2. '
k e Ker y, then k = + 1 mod p® % (E21y, by (181, Th. 3.6, p. o1,
since p is odd (n + 1 < p). Since k = 1 mod (p2 - 1) by Lemma 5.1,

the positive sign holds, and so k = 1 mod pe'l. O

" LEMMA 5.3. IfB>2 and e = 2 then k ¢ Ker ¢ only if

k =1 mod pB.

PROOF. We construct a sequehce Ugs. .ol for which
g(n,k) (up,...uy) # g(n,1)(up, .0 ) for 1<k < pf a1 It is
sufficient to do this for the first components of the vectors
g(n,k), which we denote by 9y - We show that Upse..sU, may be

chosen so that gk(ul,...,un) = gl(ul,.;.,un) >k = 1 mod pB.

Consider f(x) = (x - 1)"+1

+ pg(x), where deg g(x) < n,
and where g(x) has zero constant term. We choose the coefficients
of g(x) to give us the required sequence. When reduced mod p, the

corresponding sequence of g,'s is constant (gk =n+1). If
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= ("1
= 05

+ pA;, then mod p2 we obtain

(n+k'2)

ntk-1
n )Al - n

9y = (n+1) + pk{( Ay ...t (-1)k+lxk},

for k < n.. This follows from the recurrence for the gk's given in

Lidl [23], p. 183, namely
9p=n+l
91 7 U9 - MYy

n-1

- n.
9 = U195 - U9, *eo.t (-1) U9y * (-1) U, -

Choose Al # 0 mod p, and A2"'f?kn-1 in turn such that

g, {ugs...5u) = n + 1 mod pz, 2<ksn-1. Since pB'l <n+1,

n > pB'l, If n> pB'l, choose A in the same fashion. In this case,
g, # 97 if k < n. In particular, this holds for k = 1+ pB_l. If
n= pB'l, then g, =n + 1, independent of Ay- The coefficient of

Ap in In+k is (-1)"+1(n + k)(n;k). With k = 1, this gives
(-1)n+1(n + 1)2 = (-1)n+1 mod p .

Thus A, may be chosen to give gn+1(u1,...,un) =n+ 1, and so if

k=1+pPL, then k ¢ Ker v.

Now consider f(x) of the form
’ B-1 _ B-1
f(x) = [(x - 1P+ ph(x)1(x - 1)™1P" " (Note that g > 2).
The sequence corresponding to f(x) repeats with a period pB'1 and
by the argument above applied to the bracketed expression, h(x)

may'be chosen so that

gk(ul,...,un) # 91(”1""’“n)’ for k < pB'1 .
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-1 B

Thus k = 1 mod pB'1 is a necessary condition. If k =1 + tp mod p~,

1 <t<p, let ts =1 mod p. Then

kS 8"1

1+p mod pB (B=2).

Since Ker y is a subgroup of'l;, if k ¢ Ker ¢ then kS ¢ Ker ¢, which

B

is false. Thus the condition k = 1 mod p~ is necessary if e = 2. [

We note that lemma 5.3 immediately implies that the power of

B when e = 2. To extend

p occurring in the period of {g(n,k)} is p
this to e > 2 we need to look at the case e = 2 more closely. For

this purpose, define f(x) as follows: If p } (n + 1), then

)n+1

f(x) = (x -1 + pg(x), where (x - 1)Jg(x) mod p,'deg gs<n, g(0)=0.

If pl(n + 1), take

f(x) = (x - 1)n+1 + pg(x), where (x - 1)19'(x)nbd p, deg g <n, g(0)=0.

LEMMA 5.4. 1f (Ul,...,un) is the vector of coefficients of
f(x) defined above, then the period éf the sequence {gk(ui,...,un)}

ig pB over’l/(pz).

PROOF. For a fixed (ul,...,un), {gk} is a linear recurring
sequence. We apply results from Ward}[45] to {g,}. It should be
noted that theorem 7.1 of WArd's earlier paper t44]_on sequences
of length three, and theorem 11.1 of [45], imply that the period

N is pbA, where X is the period mod p, and

of such a sequence mod p
where b < N. However, this is false, as shown by the sequences
with which we are dealing. One must assume the sequence to be non-

singular for these results to apply. We use Ward's fundamental
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theorem [45], p. 606, which states that the period of a linear

recurring sequence mod p® is the least integer t such that
(xt - 1) U(x) = 0 mod (p®,F(x)), where F(x)

is the polynomial corresponding to the recufrence relation, and
U(x) depends on the initial terms. In the case of'{gk}, F(x) is
the generating polynomial f(x) and U(x) is f'(x). The theorem also
shows that the sequence is purely periodic. We show that {gk} has
the required power of p as a period for suitable choice of Upseneslp .

n
Take f(x) as defined above. Then

(x = 1)F'(x) - (n + 1)f(x) = pl({x - 1)g'(x) - (n + 1)g(x)] .

Let 2 € Z. Then

L L

L P p
(P -1)F (x) - (n+ 1) ESDF(x) = pEHI(x- 1)g (x) - (n+ 1)g(x)]

pk(x)

')
Modulo p, (x - 1)P 1 divides k(x) if pf(n + 1), and no higher power
2
of (x - 1) does so, and if p{{(n +1), k(x) is divisible by (x - 1)P

and no higher power. Thus pk(x) = 0 mod (pz,f(x)) if and only if

Y- 12n+1,0orpt=n+2, if pf(n+1), or p¥ = n+ 1 if

pl|{n + 1). Thus the period of'{gk(ul,...,un)} mod p2 is

B

p~, where pB'l <n+1cx pB .

0

LEMMA 5.5. The sequence {gk}of'lemma 5.4 has period pe+6'2

over Z/(p?).
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PROOF. It s known that p®*! is a period for {g,} with ¢ = 3.
B . . . . _ xp -1
- Assume p~ is likewise. Since B 2 2, pk(x) = p[ & I kl(x),
p .
X -1 )

where k(x) is as in the proof of lemma 5.5, and where kl(x) is

B-1_,

- B-1
divisible by (x - 1)P

mod p if pf(n + 1) and by (x - 1)P
if pl(n + 1).

B

_ - Pr_ 1
Case 1. Letn+ 1 <pB- pPl ypen X = Lo (x-1)%F(x) + pAlx),

xP -1

where s > 1. If x =1, p = pa(1), so A(1) = 1 mod p, and so
. N: . '
-1 - 2 3
(x = 1)/ A(x) mod p. p g1 | kg {(¥) = pTAx)k (x) mod (p”,f(x)).
. p ’
X -1

If this is zero, then A(x)kl(x) = 0 mod (p,f(x)). But A(x)kl(x) is

B-l (pB_l_l)
divisible by (x - 1)P or (x - 1) and no higher power, and
£(x) = (x - 1)™! mod p, where n + 1 > pB'l. Thus A(x)k; (x) ¥ 0 mod

(p,f(x)), and so {gk} does not have period pB.

Case 2. letn+1> p8 - pB'l. Then

B
P- g g B-1 ‘
XB_l 1 = (x - l)p -P mod p ,
xP .1
PPy o pB-1 |
S0 —1— = (x - 1) + pa(x), A(x) e Zrx3, and (x - 1)JA(x)mod p.
p
X -1

If s=(n+1) - (pB - pB'l), then s =1, and

(x-1)° p | XB-l kl(x) = p(epg(x)-+p(x-1)5A(x))k1(x) mod(p3,f(x)).
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If p/(n+ 1), then mod p, this is divisible precisely by

B'l_l

(x - 1)P If p|/{n + 1), then s > 1, and since the greatest

power of (x - 1) dividing g(x) is one, as (x - 1)Jg'(x), the

highest power of (x - 1) occurring is (x - 1)P . Thus in each

case, the expression is not zero mod (p3,f(x)).

Case 3. n+1 = pB - pB’l. Choose g{(x) with (x - 1)J(g(x) - A(x)),
where A(x) is defined as in Case 2, and (x - 1)fg'(x). Thus

(x - 1)|g(x), but (x - l)zlg(x) would suffice if deg g(x) > 2, or

n+ 1> 3, which is assumed. Thus the highest power of (x - 1)

B-1 n+1.

B-1
occurring is (x - 1)P , and p
To extend e > 3, multiply in turn by expressions of the form '

pSL+1 o '
5-———52-, where £ > B. As in case 1, this is equal to pA(x) mod f(x)
xP 1
where (x - 1)}/A(x) mod p. Thus for each higher power pe of p, the
power of p occurring in the order of G(n) increases by one. If
n+1-= pB+1 - pB, which can occur only if p = 2, n+1-= 28, since

pB, then choose g{(x) as in case 3. The corresponding

3
+
—
A

expression is
3 pB'1
p~(-g(x) + A(x))(-g(x) + (x - 1) Ax))k (x) ,

and by the choice of g(x), (pB'1 + 1) is the highest power of {(x - 1)

oécurring. Subsequent powers are dealt with as in case 1. 0
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THEOREM 5.4. If e = 2 and n > 1 then the group G{n,p°) of
permutations of @/(p®))" induced by polynomial vectors of the form
g(n,k) Zs isomorphic to the multiplicative group of reduced residues

mod &, where & = p8+8'zy, pB-1 <n+1c< pB, and
n+l

_1).

-~ n-
y=Tlem(p - 1,...,p 1, 5T

PROOF. By theorem 5.3, the mapping y: Z; -+ G(n,pe) is a
surjective homomorphism. We show that Ker y = {1}. By lemma 5.1,

if k ¢ Ker ¢, then k =1 mod y. Thus it suffices to show that

e+B-2

k =1mod p If g =1 this follows from lemma 5.2 and from

~lemma 5.3 if =22 ande =2. If B=2, e > 2, proceed by induction

e+p-2

one. Ifkz=1modp is a necessary condition for k ¢ Ker y mod pe,

+ ces '
€1 the same condition is necessary for k ¢ Ker y', where

e+l et+p-2

then mod p

e+g-1

Y' corresponds to  mod p Thus k =1 + tp mod p We

show that t = 0 mod p. If there exists k ¢ Ker y' with t ¥ 0 mod p;
e+p-2 etg-1

and if st =1 mod p, then k> =1 + p mod p Thus
k' =1+ pe+8'2 e Ker y', and so

k' e Ker y' foralltez.
Thus Ker ¢' = {1 + tpe+8'2} = {k: k =1 mod pe+8'2}. Thus

G(n,p%) = G(n,pE+1). By assumption G(n,p®) = ZE, and so there
exists an isomorphism ¢: ZE -~ G(n,pe+1).' Thus if o,B ¢Z,

a = g mod 2, then g(n,o) and g(n,B) induce the same map. By

e+p-1

lemma 5.5, there is a sequence}{gk} with period p over

Z/(pe+1). Thus the assumption t ¥ O mod p has led to a contradiction,

e+p-1

and sot = 0mod p. Thus k =1 mod p is ‘a necessary condition,

completing the induction. [
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7. THE GENERAL CASE: R =Z/(m)

We assume n = 2. For n = 1 see [18], section 6. Let

r o
m = T_{ pi] be the prime decomposition of m over Z, and let G(n,m)
]:

be the group of permutations of R induced by {g{(n,k): k e Z}. Let

n+l
. = lem(p; - 1 n_1 Ei——illd If a, = 1, set = A
1 c p-i ’---:pi' s p-i-]' . i s U.i -y
If a, > 1, set
M5 = Py Ay where P; <n+1c¢ Py -

Let L = lem {u.l.
1<isr !

LEMMA 5.6. If k = 2 mod L, then the maps of R" induced by
g(n,k) and g(n,%) are equal. ‘

PROOF. If k = 2 mod L then k :

2 mod Mo 1 <i<r. Thus by

theorem 5.3 (in the case s 2 2) and by the corollary to theorem 4.4 (in

the case a, = 1), g(n,k) and g(n,q) induce the same map on R?, where
o r ‘
Ri = Z/(pi]). By the Chinese remainder theorem, R'= T Ri’ and so
‘ =1
g{(n,k) and g(n,%) induce the same map on R". O

*
LEMMA 5.7. The map V: ZL + G(n,m) defined by ¥(k) » {map of
R" induced by 9{n,k)} is a homomorphism.

PROOF. g(n,k) is a permutation polynomial vector over Z/{m)

if and only if (k,L) = 1. The rest follows from lemma 5.6. [0
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LEMMA 5.8. The kernel of Y, where Y is defined in lemma
5.7, is a subgroup of the direct product of t copies of the cyclic

group C of order n + 1, where t is the number of different prime

n+l

factors of m with a, = 1.

PROOF. If k ¢ Ker y, then g(n,k) induces the identity map on

Ol .

Z/(p;")s 1 i <r. If q; >2, then k =1mod ;. If o = 1, then
k is an element of the cyclic subgroup of order (n + 1) generated
by p and ;s as shown in the corollary to theorem 4.4. The map

k mod L -+ (k mod pl,...,k mod pr)_is the monomorphism of Ker ¢ into

[ )
_ _ i
I:I Ker y., where y; —qﬂRi and R; =Z/(p; ), and the result follows. 0O

-

In general the structure of G(n,m) depends on the inter-

Vv

relation of its prime factors. However, if all a; = 2 then we have

r G '
THEOREM 5.5. If m = T‘{ p;' and a; 22 for 1 <4 < r, and
]:

@/ (m))"

induced by {g(n,k)} is isomorphic to the multiplicative group of

n > 2 then G(n,m), the group of permutations of R"

reduced residues mod L, where

L = ]cmb{ui}
a;th-2 n | pgii:;i
u; = ps lem(p, - 1,...,p5 - 1, 1 )
i

B:
and pi1 <n+1< p?



CHAPTER 6

THE SCHUR PROBLEM OVER ALGEBRAIC NUMBER FIELDS
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One may ask which integral polynomials are permutation
polynomials mod p for all primes p. Such a poiynomia] must be a
linear polynomial ax + b, with a # 0. However, there are non-trivial
polynomials f(x) which satisfy the condition that f is a permutation
polynomial modulo infinitely many primes p ¢ Z. The cyclic and
Dickson polynomials defined in chapter 2 have this property. I. Schur
conjectured that any polynomial satisfying this condition is a
composition of polynomials of this special type, and proved a
number of results in support of this conjecture. In [10] M. Fried
confirmed Schur's conjecture in a more general form.

Let K be an algebraic number field with ring of integers A.
If I is an ideal of A then a polynomial'f(x) e A[x] induces a map

f: A/T > A/1 defined by f(a +1 ) = f(a) + I, fora ¢ A.

DEFINITION 6.1. The nolynomial f(x) e A[x] is called a

permutation polynomial modulo I if f 1is a bijection of A/I.

Fried proved that any polynomial f(x) e A[x] which is a
permutdtion polynomial mod P for infinitely many prime ideals P
of A is a composition of cyclic and Chebyshev polynomials. The
case K = Q is Schur's conjecture. Fried ([11]) has also considered
the pfob]em of determining all rational functions over @ which
satisfy the Schur condition. This resulted in a classification
of rational functions of prime degree which satisfy the Schur
conjecture into five classes, one being the polynomial functions.
The aim of this chapter is to describe, for a given algebraic
number field K, precisely which compositions of cyclic and Chebyshev

polynomials have the Schur property and, conversely, for which
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fields a given polynomial has the Schur property.The prob]em may

be reduced to that of polynomials of the form xsogt(x), where s,teZ.
If K=Q, then xsogt(x) has the Schur property if and only if 2,] s
and (6,t) = 1. Niederreitér and Lo ([32]) determined all polynomials
of the form x° or gt(x) which satisfy the Schur condition when K is
a quadratic or cyclotomic field, and also solved the cyclic case

for normal extensions of Q of odd degree. Since "most" polynomials
of the form xsogt(x)_satisfy the Schur condition for K, it is more
convenient to describe those that do not. We call such a polynomial

a finite Sehur polynomial for K. All such polynomials can be constructed

from certain polynomials which we call primitive Schur polynomials.
Thus for K = Q, the primitive Schur pblynomials are xz, gz(x), and
g3(x). f(x) is a finite Schur polynomial over Q if and only if f(x)
has one of these polynomials as a composition factor.

We begin by reducing the general case to that of an Abelian
extension of Q. To do this we use a theorem of Fried which depends
ultimately on the Riemann hypothesis for curves over a finite field.
The theorem may be used to deal with the case of polynomials of
prime degree. We also give a proof of this case whichluses only
results from algebraic number theory. Similarly, the remainder of
the chapter depends only on algebraic number theory and class field
theory over Q. We then consider the case of Abelian extensions of

Q, and finally some examples.

1. BASIC RESULTS.

Throughout the remainder of this chapter, K denotes an algebraic

number field with ring of integers A. Capital letters P, Q, etc.
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will denote prime ideals in A, small p, q, etc., primes of Z. N(P)
*
‘denotes the norm of P over Q, sometimes written as NK/Q(P)‘ Zn

denotes the multiplicative group of reduced residues mod n.

PROPOSITION 6.1 If f(x) = ax™ + 8, where a,8 ¢ K, then f

is a permutation polynomial mod P if and only if (m, N(P)-1) =1,

and o. 18 a unit mod P.

PROOF. Theorem 2.3. g

o,

PROPOSITION 6.2 The Dickson polynomial gm(x,y), Yy ¢ P, is

{]
-—
B

a permutation polynomial mod P if and only <if (m, (N(P))2 -1)
PROOF. Theorem 2.1. 0O

We will need the following result from algebraic number

theory. A proof may be found in Weil [46], p. 158, Prop. 15.

PROPOSITION 6.3.Let k, k', be two extension fields of Q,

both contained in a separable extension L of finite degree over Q.
Let X be the set of primes p of Q such that |A/P| = p, for at
least one prime P of k lying over p, where A is the ring of integers

of k. If almost all the primes peX split completely in k', then

k! < k.

PROPOSITION 6.4. Let K = Q( c,) be the p'th cyclotomic
field, where p is an odd prime. Then there exists a unique subfield
Hp of K of degree (p-1)/2 over Q, and the primes q of Q.which split

completely in K are those q = + 1 mod p.

PROOF. The existence and uniqueness of Hp follows from the
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fact that the Galois group of K is cyclic of order (p-1). If a prime
q splits completely in K then it does so in Hp. If q has inertia
degree 2 in K and is unramified then its inertia field is of degree
(p-1)/2 and so is Hp. Thus q splits completely in Hp. Further, if

q splits completely in Hp, then its inertia degree in K must be
either 1 or 2. Hence the primes g which split completely in Hp are
those which have inertia degree 1 or 2 in K. These are the primes

q such that q has order 1 or 2 mod p. Thus qzs 1 mod p, or q=+1 mod p.

We may assume that o = y =1, B =0 in definitions 2.5 and 2.6.

DEFINITION 6.2. The polynomial f(x) e K[x] -is a finite Schur

polynomial for K if f(x) is a permutation polynomial over only

finitely many residue class fields of K.

We are concerned with finding the finite Schur polynomials
amongst those polynomials which are compositions of cyclic and

Chebyshev polynomials.

PROPOSITION 6.5. Let h = fy o g o fy 0 gy 0. of, o g

be a composition of cyeclic polynomials fi and Chebyshev polynomials

gJ

polynomial if and only if h' is a finite Schur polynomial.

Let h' = (f]o...ofk) 0 (g]o...ogk). Then h is a finite Schur

PROOF. A composition of po]ynomia]s P; is a permutation
polynomial mod P if and only if each P, is a permutation polynomial
mod P. If P, = {primes P: f is a p.p. mod P }, then Py =nPe =P
where f ranges over the set {f],..,fk,g],...,gk}. Thus h[h'] is a
finite Schur’polynomia] if and only if Ph[Ph.] is finite. O
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Thus we may restrict ourselves to polynomials of the form

xS o gt(x).

PROPOSITION 6.6. The polynomial xsogt(x) is a finite Schur
polynomial if and only if there are only finitely many primes P :

2

with (s, N(P) - 1) = (t, (N(P)" = 1) = 1.

The following two Temmas are clear from the definitions.
LEMMA 6.1 . If s|s', t|t' and qugt(x) is a finite Schur

polynomial for Ksthen so is x>0 gt.(x).

LEMMA 6.2. IfQ cKc L and x> o g£(x) 18 a fintte Schur
polynomial for K then x5 o gt(x) 18 a finite Schur polynomial

for L.

DEFINITION 6.3. 4 finite Schur polynomial for K, X° o g, (x) s
is called a primitive Schur polynomial for K if there ig no pair
(s'st') with ss , tt , s't' <stand x° o g, (X) a finite Schur

polynomial for K.

LEMMA 6.3 If x> o gt(x) 18 a primitive Schur polynomial
for K then st has distinct prime factors.

[0 o .
PROOF. Let s = Hpi1 , t = quJ. Then if s' = Tp;, t' = Mg,

x> o gt.(x) is a finite Schur polynomial if x° o g
s/k

t(x) is a finite

Schur polynomial. If k = gcd(s,t) > 1, then x ° gt/k(x) is a

finite Schur polynomial, so if x> o gt(x) is primitive, then k = 1.
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2. REDUCTION TO THE ABELIAN CASE

We need some results of Fried [11]. ‘Let K(x) be a rational

function field over K, and K(x,y) an extension of K(x) by f(y) - x.

P : a ,
Let K(x,y) be a Galois closure of K(x,y). Let K be the algebraic

— ~ (1)
closure of K in K(x,y). If T ¢ Gal(K:K) let K*"’ be the fixed

N A
field of 1. Define G(1) = Gal(K(x,y): K(x,y)), and G(1,7) = Gal

, /\ "(T) —_—— .
(K(x,y): K*/(x,y)). Then Gal(K(x,y): K(x)) acts as a permutation

group on the roots y = Yys+++sY, Of (f(y) - x). Thus G(1) and
G(1,7) act as permutation groups on‘{yz,...,yn}. Then (Fried [111,
proposition 2.1) f(x) induces a permutation of infinitely many
residue class fields of K if and only if there exists 1 ¢ Ga](E:K)
such that each orbit of G(1,t) on {yz,...,yn} splits into strictly
- smaller orbits under the action of G(l). (This result depends
u]timate1y on the Riemann hypothesis for finite fié]ds). If f(x)
is a composition of cyclic and Chebyshev polynomials, then f has
rational integral coefficients, and so the construction above may
vbe performed over Q. Then @ S_Q(zh), where Zh is a primitive n'th

root of unity. Consider the diagram

> Rx,
P 7 K(x,y)

g(1)
/‘ TS ]
,R ———

K—> K(x)—> K(x,y) —3K(x,y)

X,Y)

If ¢ ¢ Gal(K(x,y): K(x)), and K' < K, then the map rest:

¢ >~ (¢ restricted to K'(x,y)) induces an isomorphism of
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Gal(K'(x,y): K'(x)) to Gal(K(x,y): K(x)), and also of the subgroups

occurring in the diagram. "If we now take K' = K n Q, then K n Q = Q,
and the restriction map induces an isomorphism of Ga](ﬁ:K) to

Ga](@: K n @). Further, these isomorphisms preserve the permutation
group action on {yz,...,y }. Thus we have shown

n

PROPOSITION 6.7. The polynomial f(x) is a finite Schur

polynomial over K if and only if it is a finite Schur polynomial

over K n Q, where @ is a subfield of Q(cn).

PROPOSITION 6.8. The polynomial f(x) is a finite Sehur

polynomial over K if .and only if f(Xx) ie a finite Schur polynomial

over the maximal Abelian subfield A of K.

PROOF. If f is a finite Schur polynomial over A, then it is
so over K. Conversely, if f is a finite Schur polynomial over K,
then it is over K n @. But K n @ is Abelian over Q, and so is

contained in A. Thus f is a finite Schur polynomial over A. (O

3. FINITE SCHUR POLYNOMIALS OF PRIME DEGREE

We now obtain criteria which effectively yield all finite

Schur polynomials of prime degree over K.

THEOREM 6.1. The cyclic polynomial xP, p prime inZ, is a

),

finite Schur polynomial over K if and only if K contains Q(Cp

where ¢ is a primitive p'th root of unity.

P
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"PROOF. Suppose Q(Cp) cK. InL= Q(Cp), NL/Q(Q) = 1 mod p,
for all primes Q not lying over p. Since NK/Q (Q) is a power of
NL/Q(Q nl), it follows thét NL/Q(Q) =1 moq p, for all Q not lying

over p.

Conversely, if xP is a finite Schur polynomial, then we apply
Proposition 6.3 with k = K, k' = Q(cp) and L = Kk' (the compositum
of k' and K). Then L is separable of finite degree, and X consists
of those primes q e'l for which there exists Q with NK/Q(Q) = q.

For almost all such Q, pl(q - 1), since xP is a finite Schur
po]ynomia]. Hence q = 1 mod p for a]most all g ¢ X. Thus q splits
completely in Q(tp) for almost all q ¢ X and so m(gp) < K by
Proposition 6.3. 0O

THEOREM 6.2. The Chebyshev polynomial gp(x), p prime inl,

18 a finite Schur polynomial for K if -and only if Hp < K, where Hp

18 defined in Proposition 6.4.

"PROOF. . Suppose Hp < K. Since Hp cl = Q(Qp), ahd is of

index 2,
- 2
NL/Q(Q) = (NHP/Q(Q n Hp)) .
Thus. A
| (NHP/Q(Q'))2 = 1 mod p, for all q' not lying over p.

Since NL/Q(Q) is a power °f'NHP/Q(Q n Hp), it follows that

(NL/Q(Q))2 = 1 mod p, and so gp(x) is a finite Schur polynomial.
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Sufficiency is proved in the same way as in Theorem 6.1,
taking k' = H- Then for almost all Q with NK/Q(Q) =q, pl(q2 - 1),
since gp(x) is a finite Schur polynomial. Thus q splits completely

in Hp for almost all q ¢ X and so Hb < K by proposition 6.3. [

We note that the results given above can also be deduced
from Fried's theorem (§3). Thus in the cyclic case, § = Q(Cp),
G(1) = {1}, and since Gal(Q: K n ) is cyclic, take K(T) =K qn Q(;p),

where T is a generator of Ga](@: K n @). If xP is a finite Schur

A /A\
polynomial over K n Q, there is an orbit of G = Gal{K n Q(x,y):

K n Q(x,y)) which does not split further under the action of G(1).

i-1

Thus G fixes some y; = r "y, and so fixes yj, for 1 <j < p. Thus

K n @(cp) = Q(z,.) .

p

4. THE COMPOSITE CASE FOR ABELIAN EXTENSIONS OF @

Throughout this section, we assume that K is an Abelian
extension of Q. We recall the following We]]-known facts from
class field theory over @ ([(141). By the Kronecker-Weber theorem,
K< Q(cn), where n is the conductor of K. Ga](Q(cn): Q) :‘Z;, and
if G is the subgroup of Z; which fixes K, the primes of Z which
split completely in K are the ones lying in fhose congruence
classes mod n which are elements of Gy.

LEMMA 6.4. If s|n and t|n and if, for each & ¢ G, % = 1

K.’
mod p for some p dividing s, or L = +1 mod q, for some q dividing

t, then x> o gt(x) 8 a finite Schur rolynomial over K.
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PROOF. The Galois group of K over Q is isomorphic to Z;/GK.
If P is a prime ideal of K lying over p, where p is unramified in
K, then N(P) = pf, whé}e f is the order of the Frobenius automorphism
of P. Thus the Artin map takes pf to the identity element of Z;/GK.
Hence N(P) ¢ Gy, and so either (s,N(P) - 1) > 1or (t,n(P)2 -1) > 1,

Thus x5 o gt(x) is a finite Schur polynomial by Proposition 6.6. 0

LEMMA 6.5. If 2]s, (6,t) = 1 and x> o g,(x) is a primitive

Schur polynomial over K then st|n, where n is the conductor of K.

PROOF. Let s = (TT p)(TT q =(TT p)TT a;)>

'leI TeIt JeJt

whereﬁpi|n, qjln, and J = J. v Jy # 0. Since gj #2if j ¢ JS,
qj F2or3if je Jt’ there exists u ¢ Z with u not congruent to

.0 or 1 mod 955 J e JS, u not congruent to 0 or +1 mod 9> J e Jt.

If 1 I.wv It # P, by Temma 6.4 there exists 2 ¢ G

S such that

K
) ¥ 1 mod Pis for all i ¢ IS, L3 +1 mod P; for all i ¢ It’ since

otherwise x% o gg(x), with a =TT py» 8=TT py» would be a
ielg iely

finite Schur polynomial, contradicting J # @ and xS o gt(x)
primitive. Any prime congruent to £ mod n splits completely in K.

If T = § choose 2 = 1. By Dirichlet's theorem there exist infinitely

many primes p ¢ Z withp = 2 mod n and p = u mod ( T—T'q ). A1l such

jed
p have N(P) = p, where P 1ies over p. Thus there are infinitely many
p with (s,p -1)=1o0r (t,p2 - 1) = 1, a contradiction. [

THEOREM 6.3. Let K be an Abelian extension of Q with conductor

n, and let Gy be the subgroup of Z¥ which fixes Ko Ifs#2, t#2
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or 3, then x> o gt(x) is a primitive Schur polynomial for K if and
only i1f
() s=11] Qs, t= TT q.» where Q. are distinct primes
jedo Y jedy J
dividing n, and JS n Jt = ¢.
(i) If X e GK
jeJt, for some j € J = JS th.

then A = 1 mod qj, J e JS or X = +1 mod qj,
(iii) If |J| = 2, then for each a € J there exists A ¢ GK'
withA‘;’lmodqaifaeJSorAEj_lmodqaifaedt,

and A

1 mod a5 for Jedes J#a, A ¥ +1 mod a3

fOI’jf Jt, J # a.

PROOF. Suppose (i) - (iii) hold. As in the proof of lemma
6.4, if P 1ies over p ¢ Z, and p is unramified then N(P) ¢ G-
Thus (t,N(P) - 1) > 1 or (s,N(P)2 - 1) > 1 for almost all p. If

x> o gt,(x) is exceptional, with s't' dividing st, then there are

s/

q
two cases to consider. Either x ¢

S .
° gt(X) or x> o gt/qa(x) is

exceptional, for some o e J. 1In the first case, by (iii) there
exists A ¢ Gy with A ¥ 1 mod aj for all aj dividing (s/qa) and

N ilvmod 95> for all 93 dividing t. There exist infinitely

many rational primes congruent to A mod n. These split completely,

and so there are infinitely many prime ideals P with (s/qa, N(P)-1) =1

s/q
and (t,N(P)2 -1)=1. Thus x %o gt(x) is not a finite Schur

polynomial. The other case is similar. Thus x> o gt(x) is primitive.

Suppose x> o gt(x) is a primitive Schur polynomial, with s # 2,

t#2or3. By lemmas 6.3 and 6.5, st|n and st has distinct prime
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factors, proving (i). Since x° o 9¢(x) is a finite Schur polynomial,
(s,p-1)>1or (t,p2 - 1) > 1 for almost all primes p which split

completely in K. Since the primes which split completely in K are

~uniformly distributed over GK, (i) holds. Suppose (iii) does not

hold for o e« J. Let (s',t') be defined by s' ='s/q, if ae Jes
s' = s otherwise, t' = t/qa if a e Jt, t =t otherwise. Then (i)
and (ii) hold for x5 o gt.(x), and so this is a finite Schur’

polynomial. Thus x5 o,gt(x) is not primitive. O

5. EXAMPLES

We now apply the resu]ts.of §2, 3 and 4 to various special

cases.

PROPOSITION 6.9. For any algebraic number field K,

xz, gZ(X) and 93(x) are finite Schur polynomials.

3 " Q, since

[Q(c3): @1 = 2. Theorems 6.1 and 6.2 then give the result. [

- PROOF. We have (zy) = Q < K, and H

PROPOSITION 6.10. If K = Q, then x°, g,(x) and g3(x) are

~ the only primitive Schur polynomials for K.

PROOF. If p > 2 then Q(cp) ¢ Q, and Hp ¢ Qifp> 3.

Since the conductor of @ is 1, theorem 6.3 shows that there

are no composite primitive Schur polynomials. 0O
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PROPOSITION 6.11. The polynomial x> o g,(X) is a primitive
Schur polynomial only if all the prime factors of s other than 2

and of t other than 2 or 3 are ram fied.

PROOF. If x5 o gt(x) is of prime degree p, then Hp < K,
and p is ramified in Hp ifp#2o0r3. Ift=1, then Q(;p) < K,
and p is ramified if p # 2. The composite case follows by reducing

to the Abelian case and applying theorem 6.3 (i). O

We now examine the question of the existence of composite

primitive Schur polynomials.

PROPOSITION 6.12. If K is an Abelian extension of Q and X

i1s a composite primitive Schur polynomial for K then m has at

least three distinct prime factors.

- a.
PROOF. Let n = T—¥-p11’ m = pyp,, where n is the conductor
Te ‘
Q.
of K. Then k= ® T_T'Z/(pi1). If mis primitive exceptional
jel
then by theorem 6.3 (iii) GK contains elements of the form (a,l1,...)

and (l,B,...) witho,8 # 1. Thus GK contains (a,B,...), contradict-

ing theorem 6.3 (ii). O

COROLLARY. If less than three primes ramify in K, where K
is Abelian, then there are no composite primitive cyclic Schur

polynomials for K.

That composite primitive Schur polynomials exist is shown by

the next two propositions.
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PROPOSITION 6.13. Let n = P1P2P3> with P £2..In Q(cn)

there exists a unique subfield K such that x" is a primitive Schur

polynomial for K. K has index 4 in Q(cn).

PROOF. Elementary considerations show that the only suitable
subgroup 6, of Z} is {(1,1,1), (1,8,y), (a,1,y), (,B8,1)} where
a,B8,y = -1 mod py,py,p3, respectively. The corresponding subfield

K of index 4 in Q(cn) has n as a primitive Schur polynomial. 0O

We note that the smallest degree of an example constructed

above is 12.

4
PROPOSITION 6.14. If m = T“I pis with p; = 1 mod 3, then
":

there is a subfield of Q(cn) of index.9 in which X is a finite

Schur polynomial.

PROOF . In'Zg' there is an element of order 3. If a,B,Y,S,
i

are such elements mod Pys---sPys then G = {(1,1,1,1), (1,B,Y,8),
(1,62,2,6%), (0,1,¥2,8), (a?,1,7,8), (.8,1,82), (a?,6%,1,6),

(a,BZ,y,l), (aZ,Bz,yz,l)} is a suitable subgroup. 0O

We now consider the cyclotomic and quadratic fields in the
light of the general results of §2 and §3. These results have

been obtained previously by Niederreiter and Lo [32].

PROPOSITION 6.15. The polynomial xP(resp. g,(x))s p prime,
18 a finite Schur polynomial for Q(;n) if and only if p|2n(resp.

pl6n). There are no composite primitive Schur polynomials.
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PROOF. We have Q(cp) E_Q(cn) if and only if p|n or p = 2.
Similarly Hj < (c,) if and only if pn, p=2orp=3. The
conductor of Q(Cn) is n. Thus Gy = {1}, and theorem 6.3 (iii)

cannot hold for composite st. [

PROPOSITION 6.16. The only cyclic Schur polynomial of

prime degree for a quadratic field is x2 unless K = Q(v/-3), when
x3 ts a finite Schur polynomial. The only Chebyshev Schur poly-
nomials of prime degree are gz(x) and g3(x) unless K = Q(V/5) in
which case gs(x) is a finite Schur polynomial. There are no

~ composite primitive Schur polynomials.

PROOF.  Since [@(z3): @3 = 2, and [Q(z,): Q1 >2 if p > 3,
the largest p with xP a finite Schur polynomial is 3, and ‘this can
only occur if K = Q(c3) = Q(/~3). Similarly the largest possible
Hp is H5, and if this has degree two over Q, then K = H5 = Q(/5).
We now consider the composite case. Let K = Q(/d), d squarefree,
have conductor n, and suppose x5 e gt(x) is a finite Schur poly-

nomial over K where st has at least two prime factors, 2/s,

(6,t) = 1. By [51, page 504, Gy = {t mod n: (%) =1}, Ifd=1

mod 4 then n = |d|, if d =2 or 3 mod 4 then n = 4|d|. Let

1,52
d = (-1) “2 “d*, with €; 0or 1. Then

dy _ ,-1,%1,2.%2,d*

(f) = C};) (f) 07;) )

Let s=TTps, t=TT Pj» I nd =P, with p,|d*, p; #3, j e J.
jel jed J
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We construct A ¢ Gy with A § 1 mod p, for i ¢ I, A § +1 mod
P;» j ¢ J, by the Chinese remainder theorem. If q|d*, qfst, let
A

1 mod q. We choose X # 1 mod ps, A  +1 mod py» for i e I,

j e J. We further require (é@) =1, ie I'vJ. This-is possible
: i

1l

unless 3 ¢ {pi}iel or 5 ¢ {pj}jed' If Py = 3, choose A = 2 mod 3,

and (E)L)=-1,A>\$ilmodp2, ifZeJ,vA$1modp21fZeI. If
2

5 ¢ {pj}j ge we take p, = 5. If 3 % {p ). 5 e'{pj}jEJ we choose

jel?

A =2 mod5 and (——J = -1, for some p, # 5; with A £ 1 mod p, Or
P2

A § +1 mod Pys as appropriate. An extra condition is imposed on A

as follows.

Case 1. €] = g = 0, d* = 1 mod 4.

No extra condition. (%) 1, X is chosen mod d* = n

Case 2- 81 = €2 : 0, d*

3 mod 4.

Choose A = 1 mod 4, then (%&

1, Xis chosen mod 4d* = n

Case 3. € = 1, € = 0, d* = 1 mod 4.

Choose A = 1 mod 4, then (%) (- 1)( A) = 1, and A is chosen

mod 4d* = n
Case 4. € = 1, €y = 0, d* = 3 mod 4.
Choose 1 = 3 mod 4, (§) = () = () = () = 1, A is

chosen mod 4d* = n

Case 5. e, = 1. Choose A =1 mod 8, then A =1 mod 4.

d -1 d* .
Then () = ( ) (—-( ) = 1. Here A is chosen mod 8d* = n. [
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Niederreiter and Lo [32] proved the next result for normal
extensions of Q and cyclic or Chebyshev polynomials. By reducing
to the Abelian case we may dispense with normality. The proof

given by Niederreiter and Lo may be easily extended to yield

"PROPOSITION 6.17. If [K:Q] = k; a necessary condition for

xS o gt(x) to be a finite Schur polynomial is that (pi - 1)|k for

some p; dividing s, or (qj - 1)|2k, for some 9; dividing t.

PROPOSITION 6.18. Suppose [K:Q] is odd. Then x5 o g, (x)

is a finite Schur polynomial only if S is even or t is divisible

by a prime p, with p = 3 mod 4.

PROOF. (p - 1) is even if p # 2. If %(p - 1) is odd,
then p =3 mod 4.. 0O

PROPOSITION 6.19. If [K:Q1 = 4, then X° is the only prime

degree cyclic finite Schur polynomial unless V-3 ¢ K, when x3 i8 a
finite Schur polynomial, or K = Q(;s) when x> is a finite Schur
polynomial. gz(x) and g3(x) are the only Chebyshev Schur polynomials

of prime degree unless V5 e K, when gg(x) is a finite Schur polynomial.
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CONCLUSION

Here we discuss certain unsolved problems and directions for

further research.

In general it appears to be difficult to determine the permutation
polynomials amongst polynomials of a given class. Such classes are usually
defined by some analytic property, such as orthogonality, and not
primarily by their coefficients. Thelcriterion of Hermite, however,
deals with the coefficients of a polynomial. Thus it would be of
interest to relate the permutation properties of classes of polynomials
to other properties, such as differential equations which may define
them, etc. One approach may be to consider the polynomials p-adicly,
and investigate the connection between polynomials which are p-adicly

univalent and permutation polynomials of each type.

A further problem appears at the end of chapter 2. Classify
all polynomials f(xl,...,xn), n > 1, which are permutation polynomials
over Fq, for all q = pe, e > 1. Does every elementary symmetric
function which is a permutation polynomial over Fp have this propefty?
A11 such polynomials have thé same c-functibn, and so their behaviour

over € may be relevant, through the Weil conjectures.

If, in the definitions beginning chapter 4, we take
r(z) = g,(z), we obtain a class of multivariable polynomial vectors
hk(z) whose permutation prbperties are similar to the {g(n,k,b)}.
Do these polynomials have any nice analytic properties? What is
the structure of the group of permutations they induce (they are
closed under composition)? One could also pose these probliems for

rings Z/(p%).
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If one considers multivariable analogues of the Schur
conjecture one may ask (1261): which polynomial vectors over @
induceApermutations of F" for infinitely many primes p2? The poly-
nomial vectors (za], e z“"), the g(n,k,b)(z), and the hk(z) have
this property. Are they compositionally independent and do they
generate all such vectors? The problem concerning the elementary

symmetric functions may be considered as an analogue of this problem.



BIBLIOGRAPHY



10.

11.

-

—

109

. APOSTOL, Introduction to Analytic-Number Theory, Springer,

New York, 1976.

. BLAKE and C. MULLIN, The Mathematical Theory of Coding,

Academic Press, New York, 1975.

. BRAWLEY, L. CARLITZ and J. LEVINE, Scalar polynomial functions
on the n x n matrices over a finite field; Linear

Algebra Appl. 10 (1975), pp. 199-217.

. CARLITZ and J. HAYES, Permutations with coefficients in a
subfield, Acta Arith. 21 (1972), pp. 131-135.

.Y. CHAO, A note on block circulant matrices, Kyungpook Math.
J. 14 (1) (1974), pp. 97-100.

.J. DAVIS, Circulant Matrices, Wiley, New York, 1979.

.E. DICKSON, History of the Theory of Numbers, Carnegie
Institute, Washington, 1919.

.E. DICKSON, Linear Groups, Dover Publications, New York, 1958.

. EIER and R. LIDL, Tschebyscheffpolynome in einer und zwei
Variablen. Abh. Math. Sem. Univ. Hamburg, 41 (1973),
pp. 17-27.

. FRIED, On a conjecture of Schur, Michigan Math. J. 17 (1980),
pp. 41-55,

. FRIED, Galois groups and complex multiplication, Trans. Amer.

Math. Soc. 235 (1978), pp. 141-162.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

110

. FRIEDMAN, Eigenvalues of composite matrices, Proc. Cambridge

Philos. Soc. 57 (1961), pp. 37-49.

. GANTMACHER, The Theory of Matrices, Chelsea, New York, 1959.

. GARBANATI, Class field theory summarized, Rocky Mountain J.

Math. 11 No. 2 (1981), 195-225.

. HASSE, Number Theory, Springer, Berlin, 1980.

. HORAKOVA and S. SCHWARZ, Cyclic matrices and algebraic

equations over finite fields, Mat.-Fyz. Cas. Sav. 12

(1) (1962), pp. 36-46.

. HULE and W.B. MﬁLLER, Grupos ciclicos de permutaciones

inducidas por polinomios sobre campos de Galois,

Anais da Academia Brasileira de Ciencias 44.

. LAUSCH, W. MﬁLLER, and W. NaBAUER, ﬁber die Struktur einer

durch DicksonpOTynome dargestellten Permutationsgruppe
des Restklassenringes modulo n, J. reine angew. Math.

261 (1973), pp. 88-99.

. LAUSCH and W. NOBAUER, Algebra of polynomials, North-Holland,

Amsterdam, 1973.

. LIDL, Tschebyscheffpolynome und die dadurch dargestellten

Gruppen, Monatsh. Math. 77 (1973), pp. 132-147.

. LIDL, ﬁber die Struktur einer durch Tschebyscheffpolynome in

2 Variablen dargestellten Permutationsgruppe, Beitrsge

Algebra Geometrie 3 (1974), pp. 41-48.



22.

- 23.

24.

25.

26.

27.

28.

29.

30.

31.

111

. LIDL, Reguldre Polynome uber endlichen Korpern, Beitrage

Algebra Geometrie 2 (1974), pp. 58-59.

. LIDL, Tschebyscheffpolynome in mehreren Variablen, J. reine

angew. Math. 273 (1975), pp. 178-198.

. LIDL and H. NIEDERREITER, On orthogonal systems and permutation

polynomials in several variables, Acta. Arith. 22 (1972),
pp. 257-265.

. LIDL and W. MﬂLLER, Uber Permutationsgruppen die durch

Tschebyscheffpolynome erzeugt werden, Acta Arith. 30
(1976), pp. 19-25.

. LIDL and C. WELLS, Chebyshev po]ynomié]s in sevefa]-variab]es,

J. reine angew, Math. 273 (1972), pp. 178-198.

. McDONALD, Finite Rings with Identity, Dekker, New York, 1974.

. NARKIEWICZ, Elementary and Analytic Theory of Algebraic

Numbers, Polish Scientific Publishers, Warsaw, 1974.

. NIEDERREITER, Permutation polynomials in several variables

over finite fields, Proc. Japan Acad. 46 (1970), pp.
1001-1005.

. NIEDERREITER, Orthogonal systems of polynomials in finite

fields, Proc. Amer. Math. Soc. 28 (1971), pp. 415-422.

. NIEDERREITER, Permutation polynomials in several variables,

Acta Sci. Math. Szeged 33 (1972), pp. 53-58.



32.

33.

34.

35.

36.

37.

38.

39.

40.

a1,

112

. NIEDERREITER, and S. LO, Permutation polynomials over rings

of algebraic integers, Abh. Math. Sem. Univ. Hamburg

49 (1979), 126-139.

. NUBAUER, Uber eine Klasse von Permutationspolynomen und die

dadurch dargestellten Gruppen, J. reine angew. Math.

231 (1968), pp. 215-219.

. ORE, Some studies on cyclic determinants, Duke Math. J. 18

(1951), pp. 343-354.

. PASSMAN, Permutation Groups, Benjamin, New York, 1968.

. RAUSSNITZ, Math. und Naturw. Berichte aus Ungarn. 1 (1882),

pp. 275-278.

. RéDEI, Algebra, Pergamon, London, 1967.

. SCHWARZ, On the number of irreducible factors of a polynomial

over a finite field, Czechoslovak Math. J. 11 (1961),
pp. 213-225 (Russian).

. SCHWARZ, Note on algebraic equations over finite fields, Mat.-

Fyz. Cas. Sav. 12 (3) (1962), pp. 224-229 (Russian).

.A. SILVA, A theorem on cyclic matrices, Duke Math. J. 18 (1951),
pp. 821-825.

.L. SMITH, Mbore-Penrose inverses of block circulant and block

k-circulant matrices, Linear Algebra and Appl. 16 (1977),

pp. 237-245,



42.

43.

a4.

45.

46.

113

G.E. TRAPP, Inverses of circulant matrices and block circulant

matrices, Kyungpook Math. J. 13 (1) (1973), pp. 11-20.

T.P. VAUGHAN, Polynomials and linear transformations over finite

fields, J. reine angew. Math. 267 (1974), pp. 179-206.

M. WARD, The characteristic number of a sequence of integers
satisfying a linear recursion relation, Trans. Amer.

Math. Soc. 33 (1931), pp. 153-165.

M. WARD, The arithmetical theory of linear recurring series,

Trans.- Amer. Math. Soc. 35 (1933), pp. 600-628.

A. WEIL, Basic Number Theory, Springer, New York, 1967.



