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ABSTRACT 

Nitrogen-fixing bacteria, collectively referred to as rhizobia, are able to trigger 

the organogenesis of novel organs on legumes, called nodules. The initiation and 

development of nodules requires a complex signal exchange involving both plant and 

bacterial compounds. Phytohormones have been implicated in this process, although 

in many cases direct evidence is lacking. In the work reported here, the root and 

nodulation phenotypes of various mutant lines of Pisum sativum L. are characterized, 

including those having alterations in their phytohormone levels and/or perception, 

and a homeotic mutant. Root systems having similar or elevated GA levels compared 

with that of their wild type developed wild type numbers of nodules, whereas those 

deficient in gibberellins or brassinosteroids exhibited reduced nodulation. 

Gibberellin application or grafting to a wild type root or shoot restored the nodule 

number of a gibberellin-deficient mutant to that of its wild type. In contrast, the 

shoot controlled the number of nodules that formed in graft combinations of a 

brassinosteroid-deficient mutant and its wild type. Interestingly, a strong correlation 

between nodule and lateral root numbers was observed in all lines assessed, 

consistent with a possible overlap in the early developmental pathways of the two 

organs. 

Double mutants possessing the na mutation, which results in severe GA-

deficiency, and the sin mutation, which results in elevated seedling GA levels, 

displayed abnormal nodules and a reduced capacity to autoregulate their nodule 

numbers. Constitutive GA signalling mutants also produced significantly fewer 

nodules than their wild type. However, these nodules were normal in appearance, 



and significantly greater in number compared with that of na plants, regardless of 

whether or not they also possessed the na mutation. This indicates that intact GA 

signalling pathways are required for nodule development. Additional double mutants 

were created by crossing na with one of three independent mutations, nod3, sym28, 

and sym29Inarklhar-1, that result in a plants inability to regulate its nodule number. 

Double mutant segregates from each of these crosses formed significantly more 

nodules than na, but these structures maintained the aberrant na nodule morphology. 

A significant increase in nodule numbers was also observed on na following 

treatment with an ethylene biosynthesis inhibitor, but these nodules were also 

aberrant. These findings suggest that GAs are required for late nodule development 

and that ethylene has a role in nodule initiation. The histology of na nodules further 

supported a role for gibberellins late in nodule development as the cells of the 

infected zone failed to enlarge. 

The nodulation phenotype of the homeotic mutant, cochleata, which has 

stipules replaced by alternative leaf components, abnormal flowers and reduced 

fertility, was also investigated. Although the root system dry weight, root lengths and 

nodule numbers of cochleata were similar to those of its wild type, the nodulation 

phenotype of the mutant was unique. The nodules typically dichotomously branched 

and multiple callus and root structures emerged from their meristems. These nodule-

roots incorporated a peripheral vascular bundle of the nodule into their own central 

vascular cylinder and both the nodules and roots of the hybrid structures appeared 

functional. 
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GENERAL INTRODUCTION 

Nodulation is a symbiotic process in which specific soil bacteria of the genus 

Rhizobium invade compatible leguminous host plants. The invasion ultimately leads 

to the formation of novel structures called nodules, in which the bacteria fix 

atmospheric nitrogen to be used by the host plant. As with any developmental 

process, nodulation is multifaceted, requiring specific signalling events regulated 

temporally and spatially (Ferguson and Mathesius, 2003). However, to date, little is 

known about the roles of many of the signals involved in legume nodule 

development. 

Mutants have aided greatly in elucidating mechanisms required for nodule 

development (reviewed in Oldroyd and Downie 2004). Generally, mutants 

displaying abnormal nodulation phenotypes were created, following which various 

approaches were employed to identify their mutated genes and the role of the gene 

products in the nodulation process. A novel approach was adopted in the work 

reported here as the nodulation phenotypes of already well-characterized mutants 

were investigated. Many of the genes and gene products of the mutants investigated 

had formerly been identified, but the nodulation phenotypes had not been examined. 
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CHAPTER 1 

Signaling Interactions During Nodule Development 

The information contained in this chapter appears in part in the publication: Ferguson 

BJ, Mathesius U (2003) Signaling Interactions During Nodule Development. J Plant 

Growth Regul 22: 47-72. 

Introduction 

Nodule development involves the induction of cortical and pericycle cell 

divisions and their subsequent differentiation into a vascularized organ with a 

meristem. Concurrently, infection by the bacteria into root hairs and cortical cells in 

a so-called infection thread occurs until their eventual release into the developing 

nodule. Within the nodule, the invading bacteria differentiate into nitrogen-fixing 

bacteroids that provide reduced nitrogen to the plant in exchange for carbohydrates 

and shelter (for recent reviews see Crespi and Galves 2000; Stougaard 2001; Kistner 

and Parniske, 2002). 

Precise interactions between phytohormones and various other signalling 

compounds are imperative for plant organogenesis, and in no case is this more 

apparent than in the process of nodulation. In this symbiosis, various signalling 

molecules are exchanged between the plant and the infecting bacteria to regulate 

nodule initiation, differentiation and functioning, as well as the number of nodules 

that develop. Nodule numbers are limited by at least two pathways. One pathway is 

a local regulation of infection in the root zone susceptible for infection (Vasse et al. 

1993), while the second pathway is a negative feedback process termed 

autoregulation during which existing nodule meristems trigger a signal in the shoot 

that inhibits further nodule development on the root system (Delves et al. 1986). For 

this to occur, the timing and concentrations of hormones and other signalling 

compounds is crucial as alterations to either can result in the abortion of nodulation. 
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The following Chapter (Ferguson and Mathesius 2003) culminates much of what is 

known about the various signalling elements involved in nodulation and attempts to 

identify possible links existing between them. Due to the size of the topic, this 

chapter concentrates on the signals involved in nodule organogenesis and ignores 

many of the early signals, for example calcium, known to act in the root hair 

following Nod factor perception. However, a recent review by Lhuissier et al. (2001) 

covers this topic. 

Signalling Interactions of the Classic Hormones 

Earlier work on nodulation investigated hormones individually in an attempt 

to elucidate a role for each. For example, Thimann (1936) was one of the first to 

propose an involvement of hormones in nodule formation and implicated auxin in the 

process. Later, the finding that many soil bacteria, including rhizobia, synthesise 

plant hormones (reviewed by Costacurta and Vanderleyden 1995), initially seemed to 

suggest that rhizobia could provide the hormones that subsequently stimulate nodule 

formation (e.g. Phillips and Torrey 1972), although, this did not explain the 

specificity between legumes and their specific symbionts. Since then, nodule 

initiation has been shown to occur spontaneously in some legumes (Truchet et al. 

1989) and can be triggered by altering the hormone balance, thus illustrating that the 

hormones act independently of the bacteria. In addition, the application of Nod 

factors can induce pseudonodule structures on certain hosts (Truchet et al. 1991), 

possibly by altering hormone levels within the host tissue. However, since Nod 

factor-induced nodule primordia typically fail to develop into differentiated nodules, 

it is possible that hormones or other signals produced by the bacteria during the 

infection process are also required. 

During root nodule development, rhizobia stimulate differentiated cortex cells 

to re-enter the cell cycle, divide and differentiate. In 1973, Libbenga et al. recognised 

the need to assess hormone interactions during nodule development and suggested 

that gradients of both auxin and cytokinins are required for cortex proliferation and 

thus nodule initiation. Since the work of Libbenga et al. (1973), much has been 
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discovered about the complex signalling network required for nodule organogenesis. 

A central question in nodulation research is how changes in the hormone balance can 

affect the location (radially and longitudinally along the root), initiation, number and 

functioning of nodules on the root system. The following section discusses many of 

these findings and identifies the current knowledge of hormone signalling interactions 

in nodulation (summarised in Figure 1). 

Abscisic Acid 
The role of abscisic acid (ABA) in nodulation is poorly understood. Initially, 

ABA was thought to act as an inhibitor of nodule development, as application of the 

hormone reduced the number of nodules in Pisum sativum (pea) (Phillips 1971). 

ABA application to wild type soybean and its supernodulating mutant line NOD 1-3 

also caused a decrease in nodule numbers and dry weights in addition to isoflavonoid 

levels (Cho and Harper 1993). Moreover, Bano and Harper (2002) determined that 

nodule initiation, development and functioning were all inhibited by ABA in wild 

type and NOD 1-3. Phillips (1971) speculated that ABA might act by reducing the 

cytokinin-stimulated cortical cell divisions associated with nodule formation, thus 

suggesting a putative ABA-cytokinin signalling interaction. 

ABA and cytokinins have been shown to act in concert to affect numerous 

aspects of plant development, including root/shoot signalling (Davies and Zhang 

1991) and symbiotic photosynthetic gas exchange (Goicoechea et al. 1997). Since 

the work of Phillips (1971), the ratio of the two hormones has been positively 

correlated with nodule suppression and autoregulation (Caba et al. 2000; Bano et al. 

2002). The root ABA/zeatin riboside (ZR) ratio was found to be consistently higher 

in wild type Glycine max (soybean) relative to the supernodulating mutant nts382 

(Caba et al. 2000). Recently, Bano et al. (2002) proposed a model to explain possible 

influences of plant ABA/ZR ratios in nodule autoregulation. In this model, 

inoculation induces an initial decrease in the xylem ABA/ZR ratio. These authors 

speculated that the hormones of this ratio are then translocated to the leaves where 

they promote the synthesis of ABA. The increased ABA then moves via the phloem 

to the root where it inhibits further nodule formation, thus regulating the number of 
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Figure 1. Proposed model for the interaction of hormones and other signals regulating 
the initiation of cell divisions and nodule development. See text for details. This 
figure summarises interactions that have been analysed separately and in different 
legume species. It should therefore not be seen as an accurate or complete overview 
for any particular legume. The flow diagram does not suggest a strict temporal but 
rather a functional overlap of interactions. Dashed arrows indicate that the interaction 
might be indirect and needs to be tested; see Conclusions and Outlook for details. The 
effect of nitrate on the signalling interactions is indicated in several places, but it will 
need to be tested whether some of the observed nitrate effects are indirect. 
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nodules that form. In supernodulating mutants, this pathway is effectively non-

functional, as the initial decrease in the xylem ABA/ZR ratio does not occur and thus 

proper regulation of nodule number is not achieved (Bano et al. 2002). Caba et al. 

(2000) demonstrated that a final rise in root ABA concentration is absent in the 

mutant, consistent with the model. 

In further support of this model, Gresshoff et al. (1988) illustrated via 

extrapolation that the concentration of ABA increased in the shoot at the onset of 

autoregulation in the wild type, but not in nts382. In addition, Bano and Harper 

(2002) demonstrated that the application of partially-purified phloem ABA-extracts, 

from either wild type or the supernodulating soybean mutant NOD 1-3, inhibited 

nodule formation in the mutant. However, the phloem-ABA levels were similar in 

both lines and concluded that another signal may be present in the phloem that either 

inhibits nodule formation or counteracts the inhibitory effect of ABA in this 

autoregulatory process. 

Further evidence supporting a negative role for ABA in nodule development 

was reported by Watts et al. (1983) who analysed the endogenous ABA content in 

nodules that form on the perennial Alnus glutinosa infected by the actinomycete 

Frankia. ABA levels were higher in nodules than in the surrounding root tissue, 

particularly in dormant, compared with actively growing, nodules. However, despite 

this finding, Watts et al. (1983) were unable to determine any obvious correlations 

between nodule ABA content and growth-rate. 

The level of endogenous ABA is also reported to be higher in nodules of pea 

(Charbonneau and Newcomb 1985) and soybean (Williams and Sicardi De Mallorca 

1982; Fedorova et al. 1992) compared with that of the roots. Moreover, increased 

amounts of ABA were detected in shoots, roots and nodules of soybean plants 

bearing VA mycorrhiza associations compared with nodulated non-mycorrhizal 

plants. This suggests that these fungal associations contribute to the ABA pool of the 

host, including that of the nodule (Murakami-Mizukami et al. 1991). Because ABA 

had previously been shown to activate a carbohydrate sink during the seed fill phase 

of soybean, Murakami-Mizukami et al. (1991) speculated that increased nodule ABA 

may act as a signal to induce a similar carbohydrate sink in the nodule. Thus, as 
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opposed to acting as an inhibitory factor, ABA could play a role in allocating 

photosynthates to the nodule to be used as an energy source for growth, development, 

rhizobial respiration and nitrogen fixation. Rhizobia synthesize ABA in culture when 

supplied with ABA-precursors (Dangar and Basu 1991) so perhaps this production is 

a mechanism used by the bacteria as a means of obtaining plant-derived 

carbohydrates. In the case of nitrogen fixation however, nitrogenase activity has been 

shown to decrease with increasing endogenous ABA levels in some species (Dangar 

and Basu 1984; 1987). As well, the daily application of ABA significantly reduced 

the level of nitrogen fixation in pea (Gonzalez et al. 2001a), although this treatment 

may have exceeded an appropriate ABA concentration for optimum nodule 

functioning. This reduction in nitrogen fixation paralleled a decline in nodule 

leghemoglobin content, which the authors speculated resulted in a restriction of 

available oxygen required by the bacteroids for cellular respiration, thus inducing the 

decline in nitrogen fixation (Gonzalez et al. 2001b). 

In Phaseolus vulgaris, ABA application increased the accumulation of 

lipoxygenase (LOX, Figure 2) mRNA, which are enzymes associated with stress and 

development (Porta et al. 1999). These authors detected LOX in developing, but not 

mature, nodules suggesting a role for LOX in nodule growth. Moreover, in situ 

hybridisation revealed no exclusive LOX expression in the invasion zone of pea 

nodules; however, all LOX transcripts were expressed at the nodule apex 

(Wisniewski et al. 1999), thus further suggesting a role for the enzymes in nodule 

growth and development rather than a more direct role in the plant-microbe 

interaction or in host defence. Also in pea, Charbonneau and Newcomb (1985) noted 

an increased amount of ABA in the apical region of the nodule, possibly indicating a 

link between elevated levels of nodule ABA and LOX (Figure 3). If indeed LOX is 

required for nodule development and ABA is required to up-regulate the level of 

nodule LOX, it can therefore be argued that ABA is actually required for nodule 

growth. Furthermore, a role for LOX has been implicated in nitrogen storage and 

assimilate partitioning (Stephenson et al. 1998), which, if coupled with ABA, 

supports the hypothesis of Murakami-Mizukami et al. (1991) that ABA could have a 

role in inducing a carbohydrate sink in the nodule. 
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figure shows an idealised cross section through the root at the site of nodule 
formation, including the xylem poles (small circles) inside the stele, which is 
surrounded by the pericycle cell layer (p). A gradient of uridine (U) exists that 
emanates from the xylem. ACC oxidase (ACCO) is expressed opposite the phloem 
poles and might create local ethylene gradients that regulate possible sites for nodule 
initiation. Four developmental stages are shown in clockwise sequence: (1) initial 
infection of rhizobia at the site of root hair curling (rhc) accompanied by the 
induction of ethylene and reactive oxygen species (ROS) as well as ENOD40 
induction in pericycle cells within hours of inoculation. (2) Precursor cells of the 
cortex, which will divide to become a nodule, show increased expression of GH3, 
ENOD40 and accumulation of specific flavonoids. (3) Early cortical cell divisions 
(ccd) show enhanced AUX1, GH3 and ENOD40 expression as well as flavonoid and 
cytokinin accumulation. (4) In a differentiating nodule, increased levels of ABA, 
auxin, GA and nitric oxide have been detected. AUX1, GH3 and ENOD40 expression 
are located in peripheral (probably vascular) tissue. Cytokinin, ABA and LOX levels 
are increased in the nodule meristem. 
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Reports suggesting that ABA is required for nodulation do not necessarily 

discredit the previously mentioned work indicating that ABA has an inhibitory role in 

nodulation. Instead, ABA may have a dual role in nodule development: one in 

negatively regulating nodule numbers and one in positively regulating the growth and 

development of individual nodules. As such, an increase in ABA (for example one 

brought about by exogenous application or stress) would directly inhibit nodule 

development, whereas a deficit of the hormone would fail to induce the signalling 

elements (such as LOX) required to meet the growth requirements of the nodule. 

This hypothesis may explain why some reports of ABA application (e.g. Bano and 

Hillman 1986) describe no effects of the hormone on nodule numbers as the authors 

may have applied a level of ABA below the threshold level required to achieve 

inhibition. 

In support of this hypothesis, Charbonneau and Newcomb (1985) reported 

that pea nodule ABA levels were high in the first two weeks of nodule development 

followed by a two-week plateau and then a secondary period of elevated ABA. It is 

possible that the first rise in ABA is related to the regulation of nodule growth and 

number, the plateau corresponds to the period of nitrogen fixation and the second rise 

is associated with the onset of nodule senescence. These results suggest a putative 

third role for ABA in nodulation in which ABA increases in older nodules as part of a 

senescence-signalling pathway. In addition to pea, older nodules of Lens sp. (Dangar 

and Basu 1984), Phaseolus aureus (Dangar and Basu 1987), Samanea saman 

(Chattopadhyay and Basu 1989) and soybean (Federova et al. 1992) have elevated 

amounts of ABA when compared with younger nodules, which the authors of these 

studies also suggested was related to nodule senescence. The elevated level of ABA 

in soybean nodules led Federova et al. (1992) to speculate that ABA played a role in 

both the suppression of the formation of new nodule structures and in nodule 

senescence, which is consistent with the hypothesis reported here. 
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Auxin 

Auxin is a plant hormone with multiple roles in cell division, differentiation 

and vascular bundle formation, three processes that also occur during nodule 

formation. Auxin is synthesised mainly in the shoot and is transported to the roots by 

an active transport process involving import into the cell by an auxin import protein 

(AUX1) and active auxin export by an export protein (PIN1 and PIN2/AGR/EIR1; 

reviewed by Muday and DeLong 2001). Additional control stems from negative 

regulators of auxin export by auxin transport inhibitors that bind to proteins 

interacting with the auxin exporter (Muday and DeLong 2001). Thus, the plant has 

several targets for regulating auxin homeostasis tightly to control organogenesis. 

Compared with the roots, auxins levels have been reported to be elevated in 

the nodules of a variety of plant species (e.g. pea (Badenoch-Jones et al. 1984), P. 

vulgaris (Fedorova et al. 2000) and A. glutinosa (Wheeler et al. 1979)). Increased 

auxin levels in legume nodules, and in nodule-like structures of non-legumes, have 

also been observed after application of the synthetic auxin, 2,4-D (e.g. Ridge et al. 

1992). Early experiments suggested that the ratio of auxins to cytokinins in the root 

was responsible for the initiation of cortical cell divisions and nodule formation (e.g 

Libbenga et al. 1973). In the soybean hypernodulating mutant nts386, the 

auxin:cytokinin balance was found to be lowered compared with the wild type, 

suggesting that the auxin:cytokinin ratio could be important for regulating nodule 

numbers (Caba et al. 1998). These experiments suggested that rhizobia might 

manipulate auxin levels in the plant. In addition, sensitivity to auxin in Medicago 

sativa (alfalfa) lines correlates with the rate of spontaneous nodule formation and 

nodulation efficiency can be increased by the introduction of Agrobacterium rol 

genes, which are known to affect auxin sensitivity and plant hormone levels 

(Kondorosi et al. 1993). 

A number of experiments suggest that rhizobia manipulate auxin transport 

thus changing the auxin:cytokinin ratio in the root. For example, direct 

measurements of auxin transport using labelled auxin showed that rhizobia inhibit 

acropetal auxin transport (from the root base to the tip) capacity in Vicia sativa 

(vetch) roots (Boot et al. 1999). In addition, the expression of the auxin responsive 
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promoter GH3 fused to the GUS reporter gene was reduced towards the root tip 

between 12 and 24 h following rhizobia inoculation or ballistic microtargeting of Nod 

factors in Trifolium repens (white clover; Mathesius et al. 1998a). High GH3-GUS 

expression levels were then seen 24 to 48 h following inoculation (Mathesius et al. 

1998a) and in soybean, increased auxin levels were measured 48 h after inoculation 

(Caba et al. 2000). These results are consistent with the auxin burst hypothesis of 

nodulation which states that subsequent to the initial induction of nodule primordia, 

shoot derived auxin export into the root is stimulated, resulting in elevated auxin 

levels that inhibit further nodule primordia initiations, thus controlling nodule 

numbers (Gresshoff 1993). This auxin burst is assumed to be defective in 

supernodulation mutants, where increased auxin levels following inoculation could 

not be detected (Caba et al. 2000). Altogether, it is likely that auxin plays (at least) a 

dual role during nodulation: in the early stages, auxin transport inhibition might result 

in a reduced auxin:cytokinin ratio to allow cell division to start, and later divisions 

are inhibited by super optimal auxin levels (Figure 1). 

The application of synthetic polar auxin transport inhibitors (PATIs), which 

interfere with the hormone balance, can induce pseudo-nodule structures on the root 

and are also sufficient to induce some of the nodulin genes inside pseudo-nodules, 

including ENOD2 and ENOD12 (Hirsch et al. 1989; Scheres et al. 1992; Wu et al. 

1996). More recently, it has been shown that PATIs mimic the action on Nod factors 

on the repression of calmodulin expression in P. vulgaris (Camas et al. 2002). 

In addition to PATIs, the inhibition of auxin transport could be achieved by 

regulating the number of auxin efflux carriers in the cells transporting auxin. 

Alternatively, Nod factors or chitin oligosaccharides could affect the affinity of 

endogenous auxin transport regulators to their binding site, similar to the effect of 

ethylene (Suttle 1988), and/or Nod factors could induce the synthesis or release of an 

endogenous auxin transport inhibitor. Other plant compounds, including ethylene, 

cytokinins and flavonoids (e.g. Brown et al. 2001; Jacobs and Rubery 1988; Murphy 

et al. 2000; Stenlid 1976), can also inhibit auxin transport and can regulate various 

peroxidases and IAA oxidases, the enzymes that break down auxin (Burgh and Burgh 

1966; Lee 1971), thus leading to local shifts in the plant auxin:cytokinin ratio. 
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Peroxidase activity is elevated in P. vulgaris nodules, presumably to limit an 

auxin increase in maturing nodules (Fedorova et al. 2000). A temporal and spatial 

correlation was found between the accumulation of specific flavonoids that inhibit 

auxin breakdown by a peroxidase and the accumulation of GH3:GUS expression in 

nodule primordia (Mathesius 2001). Furthermore, the accumulation of other 

flavonoids that stimulate auxin breakdown was detected in cells that exhibit low 

GH3:GUS activity, further suggesting that a local accumulation of specific flavonoids 

could regulate auxin levels. 

The expression of flavonoid genes (e.g. PAL (phenylalanine-ammonia lyase) 

and CHS (chalcone synthase)) is enhanced in nodules (e.g. Estabrook and Sengupta-

Gopalan 1991; Djordjevic et al. 1997), and rhizobia and Nod factors can induce 

flavonoid gene expression and localised flavonoid accumulation (e.g. Djordjevic et 

al. 1997; Lawson et al. 1996; Mathesius et al. 1998b; Schmidt et al. 1994). 

Therefore, it has been suggested that Nod factors could have a role in inducing 

flavonoid accumulation at the infection site, followed by changes in the auxin balance 

(Hirsch 1992; Mathesius et al. 1998a). By micro-targeting flavonoids into roots of 

white clover carrying the GH3:GUS construct, it was shown that flavonoids had 

similar effects on auxin distribution as Nod factors and synthetic auxin transport 

inhibitors. While this suggests that flavonoids could mimic Nod factor action, it 

remains unclear if the exact flavonoids induced by rhizobia in the root would mediate 

this response in the concentration present in the tissue, and whether these flavonoids 

would be sufficiently mobile to reach their binding site. 

There is also evidence that auxin distribution is regulated locally in nodule 

primordia and mature nodules, which would allow for spatial control of cell division 

in the root (Figure 3). Direct measurements of auxin (i.e. indole acetic acid, IAA) 

contents in P. vulgaris roots and nodules showed increased IAA levels in roots 

preceding nodule formation and during the early stages of nodule emergence, 

whereas auxin levels dropped in mature nodules (Fedorova et al. 2000). In white 

clover, expression patterns of GH3:GUS indicated that auxin levels and/or sensitivity 

are increased in early dividing cortical cells (Mathesius et al. 1998a). GH3:GUS 

expression then decrease in the differentiating nodule primordium and remain only in 
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developing vascular tissue, consistent with a role of auxin in triggering cell division 

and vascular bundle formation. Recent studies by de Billy et al. (2001) have 

expanded this idea by showing that in Medicago truncatula A UX/-related genes 

(termed MtLAX) are induced in early nodule primordia and developing vascular 

tissue. These expression sites mirrored those of GH3:GUS in white clover (Figure 3), 

which suggests that auxin might increase in early nodule primordia by regulation of 

auxin import into these cells. 

The role of auxin in nodulation is tightly linked to the development of other 

root structures, including lateral roots and root galls, which require similar induction 

of new cell divisions and differentiation as nodules. Auxin transport is required for 

lateral root induction (Bhalerao et al. 2002) and auxin appears to accumulate not only 

in nodule but also lateral root primordia (Himanen et al. 2002) and root galls caused 

by nematodes (Goverse et al. 2000; Hutangura et al. 1999). Expression levels of 

GH3:GUS were very similar in developing nodule and lateral root primordia 

(Mathesius et al. 1998a). These similarities are likely due to auxin-induced activation 

of cell cycle genes that are required for the induction of new cell divisions during 

organogenesis (Doerner et al. 1996; John et al. 1993). A genetic link between 

regulation of root system architecture and nodulation has been found in the Lotus 

japonicum (lotus) har 1 (hypernodulation aberrant root formation) and the soybean nts 

mutants (Wopereis et al. 2000; Searle et al. 2002, respectively), which are both 

supernodulating mutants that show increases in the number of lateral roots in the 

uninoculated state and altered activities of the root apical meristem. Since auxin 

affects both lateral root, nodule and meristem formation, it is tempting to speculate, 

and pertinent to test, whether autoregulation exerts some of its effects via changes in 

auxin homeostasis, or whether additional, or different, signals are involved. The fact 

that lateral root frequency is not affected in the supernodulation mutant astray in 

lotus suggests the existence of nodule specific regulators in addition to regulation of 

all root meristems (Nishimura et al. 2002b). 
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Cytokin ins 
Cytokinins are a class of plant hormones having diverse roles in cell cycle 

regulation and differentiation. Re-activation of the cell cycle initiates nodule 

primordium formation (Foucher and Kondorosi 2000; Goormachtig et al. 1997; Yang 

et al. 1994) and cytokinins, together with auxin and ethylene, play a major role in cell 

cycle progression in plants (D'Agostino and Kieber 1999). Therefore, it is likely that 

cytokinins are also necessary for new cortical cell divisions initiated by Rhizobium. 

However, even though cytokinins have been reported to be synthesised by different 

bacteria, including rhizobia (Phillips and Torrey 1970; 1972), it is unlikely that 

cytokinins provided by rhizobia are the main factors necessary for nodule initiation, 

because purified Nod factors are sufficient to induce nodules in some legume species. 

Instead, it is more likely that Nod factors trigger changes in cytokinin synthesis, 

turnover or sensitivity in the roots during nodule initiation. 

Either way, several pieces of evidence suggest that rhizobia do induce 

changes in the cytokinin balance of the root. Nodule cytokinin levels are reported to 

be elevated in numerous plant species when compared with the roots (e.g. pea 

(Badenoch-Jones et al. 1987), Phaseolus mungo (Jaiswal et al. 1981), Myrica gale 

(Rodriguez-Barrueco et al. 1979), and Vicia faba (Hensen and Wheeler 1976)). In 

pea, Newcomb et al. (1976) showed that nodule cytokinin levels were highest in 

young, developing nodules and decrease with maturity. Syono et al. (1976) 

demonstrated that the highest cytokinin levels in the pea nodule were located in the 

meristem (Figure 3). This agrees with the role of cytokinin in cell division and 

differentiation and also supports the results of Newcomb et al. (1976) as young 

nodules would be the most mitotically active and thus one would expect to contain 

elevated levels of the hormone. 

The application of cytokinins induces the formation of pseudo-nodule 

structures on legumes and non-legumes, including Nicotiana tabacum (tobacco) 

(Arora et al. 1959), A. glutinosa (Rodriguez-Barrueco and Bermudez de Castro 

1973), pea (Libbenga et al. 1973), Macroptilium atropurpureum (siratro) (Relic et al. 

1994) and alfalfa (Cooper and Long 1994; Bauer et al. 1996). Cooper and Long 

(1994) transferred the Agrobacterium trans-zeatin secretion gene to either nodulation 
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deficient mutants of R. meliloti or to E. colt, and showed that synthesis of the 

cytokinin zeatin by these bacteria is sufficient to induce nodule-like structures in 

alfalfa. However, it is important to note that the concentration of externally applied 

cytokinin is important in determining whether cytokinins have stimulating or 

inhibiting effects on nodulation (Lorteau et al. 2001). 

The roles of cytokinins during nodule development include, as expected, the 

activation of the cell cycle and genes associated with it (Jelenska et al. 2000). For 

example, cytokinins induce the expression of Msgbl, which is expressed in dividing 

cells of alfalfa, including those of the nodule primordia, and may be involved in 

hormone-mediated cell division including having a putative signal transduction role 

during nodule organogenesis (McKhann et al. 1997). Cytokinins may also be 

important for activating a number of early nodulin genes. For example, ENOD2, a 

gene expressed in nodules and nodule primordia can be induced by cytokinins in 

Sesbania rostrata (Dehio and deBrujin 1992) and in alfalfa (Cooper and Long 1994; 

Bauer et al. 1996). ENOD12A, coding for a hydroxyproline-rich glycoprotein that is 

expressed during nodule organogenesis, can also be induced by cytokinins in addition 

to Nod factor treatment (Bauer et al. 1996). Another early nodulin gene that may 

have an important role in organ formation is ENOD40, which is also induced by both 

Rhizobium and cytokinins in alfalfa (Fang and Hirsch 1998; Mathesius et al. 2000; 

Sinvany et al. 2002). Screening of molecular markers in alfalfa identified seven 

nodulin genes regulated by cytokinins, four of which were also inducible by auxin, 

suggesting partial overlaps between auxin and cytokinin regulated pathways during 

nodulation (Jimenez-Zurdo et al. 2000). Cytokinins have further been shown to affect 

ethylene levels in pea roots (Lorteau et al. 2001). However, Lorteau et al. (2001) 

were unable to demonstrate a direct correlation between cytokinin-induced ethylene 

and nodule inhibition, as inhibitors of ethylene synthesis did not restore nodulation in 

plants treated with high levels of cytokinin. 

Cytokinins probably also play a role in setting up a carbohydrate sink for the 

developing nodule. Cytokinins can induce starch formation in the root cortex, similar 

to that of Rhizobium infection (Bauer et al. 1996). The use of a split root system in 

vetch has also shown that cytokinin treatment of a root can induce acidification of the 
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growth medium around a separate root of the same plant (van Brussel et al. 2002). 

These authors suggest that while cytokinins do not appear to be the autoregulation 

signal, they might create a sink in the inoculated root, which sends a signal to the 

shoot that regulates metabolism, including acid secretion, in the uninoculated roots. 

This cytokinin-induced root signal could play a role in autoregulation, in addition to 

the so far unidentified autoregulation signal from the shoot, which requires actively 

dividing cortex cells (van Brussel et al. 2002). 

The analysis of legume mutants such as R50 (pea) and MN1008 (alfalfa) 

provide valuable tools for investigating the roles of cytokinins in nodulation. R50 

develops abnormal infection threads that twist and bulge as opposed to properly 

progressing into the inner cortex (Lorteau et al. 2001). Lorteau et al. (2001) 

demonstrated that this characteristic could also be induced in wild type pea upon 

cytokinin application. Interestingly, nodulation is rescued in R50 by the application 

of inhibitors of ethylene biosynthesis or action. However, as stated above, the same 

ethylene inhibitors were unable to reverse the effects of cytokinin application on wild 

type pea. Recent work on R50 has shown that the shoot of the mutant is less sensitive 

to ethylene than its wild type and appears to overproduce the hormone in addition to 

having elevated levels of cytokinin (Ferguson et al. 2005b). 

The application of cytokinins to the Rhizobium and Nod factor resistant 

MN1008 overcomes the nodulation block in this mutant (Hirsch et al. 1997), 

suggesting that this plant has low levels of the hormone or is unable to increase its 

cytokinin levels to meet the requirements for nodule initiation. PATIs were also 

reported to induce pseudo-nodules in this mutant (Hirsch and Fang 1994), suggesting 

again that the cytokinin:auxin ratio rather than cytokinins alone might be important 

for nodulation. The mutated gene in MN 1008 was recently cloned and identified as a 

receptor kinase (Endre et al. 2002). 

Further evidence that cytokinins play a role in cell division and autoregulation 

comes from the receptor kinase mutant har I of lotus (Krussel et al. 2002; Nishimura 

et al. 2002a). The har I mutant has a short root phenotype that can be mimicked in 

the wild type by application of cytokinin. However, in the presence of the ethylene 

synthesis inhibitor aminoethoxyvinylglycine (AVG), cytokinin caused root 
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elongation in the mutant in excess of untreated wild type levels, suggesting that har 1 

has an altered response or sensitivity to cytokinin that is not mediated by ethylene 

(Wopereis et al. 2000). 

Ethylene 

Ethylene is a gas with multiple roles in plant development and defence. The 

role of ethylene in nodulation has recently been reviewed by Guinel and Geil (2002) 

and Wang et al. (2002). Ethylene might have a dual effect on nodulation, in that it 

causes a local inhibition of nodule formation in most legumes but might be required 

at certain levels for proper infection by the bacteria. The application of ethylene, or 

ethylene releasing compounds, is inhibitory to nodule organogenesis in numerous 

species including P. vulgaris (Grobbelaar et al. 1971), pea (Drennon and Norton 

1972; Lee and LaRue 1992c), white clover (Goodlass and Smith 1971), Melilotus 

alba (sweet clover) (Lee and LaRue 1992c), M truncatula (Penmetsa and Cook 

1997), lotus, and siratro (Nukui et al. 2000). Grobbelaar et al. (1971) found that 

ethylene also reduced the level of nitrogen fixation in P. vulgaris. In pea, Lee and 

LaRue (1992c) determined that ethylene concentrations as low as 0.0712L/L are able 

to inhibit nodule formation. It appears however, that soybean is less sensitive to the 

hormone as nodulation of this species is not affected by applied ethylene (Lee and 

LaRue 1992c; Schmit et al. 1999; Nukui et al. 2000). This finding suggests that 

different species display different requirements and regulatory mechanisms for 

hormones, a point that must be taken into consideration for any hormone when 

investigating its roles in processes such as nodulation. 

Inoculation of roots with rhizobia has been reported to induce increases in the 

local ethylene concentration in alfalfa (Ligero et al. 1986), vetch (van Worlcum et al. 

1995), and soybean (Suganuma et al. 1995), but this increase was not detected in pea 

(Lee and LaRue 1992b). These increases are likely due to an initial defence response 

elicited by the invading bacteria, which, interestingly, also synthesize the hormone 

(Billington et al. (1979). 

The application of inhibitors of ethylene synthesis (e.g. AVG) or perception 

(e.g. silver ions) increased the number of nodules that formed on pea (e.g. Lee and 
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LaRue 1992a), alfalfa (Peters and Crist-Estes 1989; Caba et al. 1998), lotus and 

siratro (Nukui et al. 2000). These compounds also partially restored the nodulation 

phenotype of low nodulating mutants of pea including sym5 (Fearn and LaRue 1991), 

brz (Guinel and LaRue 1992) and sym21 (Markwei and LaRue 1997) and completely 

restored that of sym16 (Guinel and Sloetjes 2000). Surprisingly, the nodulation 

phenotype of symI7, a pea mutant thought to overproduce the hormone, is not 

rescued with the application of ethylene inhibitors (Lee and LaRue 1992a). 

Interestingly, Yuhashi et al. (2000) illustrated that Bradyrhizobium e/kani-produced 

rhizobitoxine, which acts as an inhibitor of ethylene synthesis, also enhances the 

nodulation of siratro and may help the bacteria overcome ethylene's inhibitory effects 

on nodulation. Additionally, Roddam et al. (2002) recently illustrated that the role of 

ethylene in nodulation can depend on the infecting Rhizobium cultivar as the 

application of AVG to Trifolium subterraneum (subterranean clover) enhanced the 

nodulation by some, but not all, strains of R. leguminosarum. 

The mechanism of ethylene action as an inhibitor of nodulation is not known. 

One proposal is that ethylene induces plant chitinases, which subsequently destroy 

Nod factors and thereby limit the extent of nodule initiation (Mellor and Collinge 

1995; Staehelin et al. 1994). Guinel and Geil (2002) proposed a model in which the 

rhizobia would not come into contact with ethylene in the root until after the 

epidermis, as this cell layer contains no ACC oxidase (the enzyme that catalyses the 

conversion of 1-aminocyclopropane-l-carboxylic acid (ACC) to ethylene) and does 

not appear to perceive the hormone. Consistent with this model is evidence that in 

pea ethylene appears to block rhizobial entry into the root cortex, rather than the 

number of infection events (Lee and LaRue 1992c). This finding is supported by 

work with the brz mutant of pea, which has a third less infection events than its wild 

type. Although nodulation in brz is partially restored by ethylene inhibitors, the 

number of infection events is only slightly increased (Guinel and LaRue 1992). 

Contrary to these findings with pea, ethylene does appear to negatively 

regulate rhizobial colonization of M truncatula as the application of AVG increased 

the number of infection events, whereas ACC decreased them (Oldroyd et al. 2001). 

In addition, the ethylene insensitive ski mutant of M truncatula has a significantly 
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increased number of infection events compared with that of its wild type (Penmetsa 

and Cook 1997; Oldroyd et al. 2001). The ski mutant is also unable to regulate the 

number of these events that develop into fully functional nodules and as such it 

hypernodulates (Penmetsa and Cook 1997). While ethylene is unlikely to be 

involved in systemic autoregulation (Nishimura et al. 2002c; Wopereis et al. 2000), it 

is likely that ethylene plays a role in regulating infection events locally in the 

susceptible root zone as demonstrated in the ski mutant. 

Oldroyd et al. (2001) postulated that a block in nodulation induced by 

ethylene could occur very early during the signal transduction cascade. Evidence for 

this came from the finding that the sensitivity of root hair cells to Nod factors is 

significantly increased in the ski mutant, and that modulation of ethylene synthesis in 

the wild type had comparable effects on the sensitivity of Nod factor perception. 

Ethylene appears to influence a component at, or upstream of, calcium spiking in the 

Nod factor signal transduction pathway leading Oldroyd et al. (2001) to propose that, 

in addition to inhibiting the frequency of calcium spiking, the hormone determines 

the Nod factor concentration required for the root hair Ca 2+  spiking response. These 

authors also illustrated that in M truncatula ethylene regulates the expression of the 

early nodulin genes ENOD11 and RIP] and thus might effect events downstream of 

the early influence on calcium spiking. 

Ethylene may also have a positive role in infection thread development as the 

number of infection threads aborted in ski is very low (Penmetsa and Cook 1997; 

Oldroyd et al. 2001). Guinel and Geil (2002) suggested that in pea ethylene could 

affect the cytoskeleton, pre-infection thread and infection thread formation. Using 

pea and vetch, Heidstra et al. (1997) demonstrated that ethylene is also likely to be 

involved in determining the positioning of nodule primordium development around 

the stele (Figure 3). These authors showed that the expression of ACC oxidase is 

elevated in the inner cortical cells located in front of the root phloem poles. These 

locations are between the positions at which nodules preferentially arise opposite the 

root xylem poles. In addition, inoculation of vetch with R. leguminosarum induces 

ethylene-related responses including a thick and short root phenotype and abnormal 
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nodule positioning on the root system, which is restored following AVG application 

(Zaat et al. 1989; van Spronsen et al. 1995). 

Interestingly, ethylene also appears to change the phenotype of the nodules of 

Sesbania rostrata, a legume that grows in waterlogged soils and therefore is likely to 

be exposed to varying levels of the hormone (Fernandez-Lopez et al. 1998). The 

authors found that in the absence of ethylene (perception), nodules were of the 

indeterminate type, whereas in the presence of ethylene, determinate nodules with a 

terminal meristem were formed, suggesting a role for ethylene in meristem 

differentiation. 

Gibberellin 

Little is known about the signalling involvement of gibberellins (GAs) in 

nodulation. Early work focused on applying the hormone (generally GA3) to the 

plant, which resulted in a decline in nodule formation (Thurber et al. 1958; Galston, 

1959; Fletcher et al. 1959; Mes, 1959). In 1952, Nutman demonstrated that the 

removal of root tips and mature nodules from various red clover sp. promoted the 

formation of new nodules, presumably by removing the source of a compound 

inhibitory to nodulation. Based on the results of Nutman (1952), and evidence that 

nodules of pea and P. vulgaris contain elevated levels of GAs, Radley (1961) 

speculated that GAs regulate nodule formation. Since then, nodules of Lupinus lute us 

(Dullaart and Duba 1970), A. glutinosa (Henson and Wheeler 1977), Phaseolus 

lunatus (Evensen and Blevins 1981), soybean (Williams and Sicardi de Mallorca 

1982), Lens sp. (Dangar and Basu 1984), Phaseolus aureus (Dangar and Basu 1987), 

P. vulgaris (Atzorn et al. 1988), S. saman (Chattopadhyay and Basu 1989) and Vigna 

unguiculata (cowpea) (Dobert et al. 1992b and c) have all been reported to contain 

higher levels of GAs than adjacent root tissue, yet to date no direct evidence implies a 

signalling role for GAs in the regulation of nodule formation. 

In 1970, Dullaart and Duba reported in L. luteus that, in addition to having 

increased GA levels in nodule extracts compared with those of the surrounding root 

tissue, the application of GA 3  to nodule extracts stimulated IAA production from L-

tryptophan. These authors speculated that a signalling interaction existed between the 
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two hormones in which GA3  was able to either increase the bioproduction, or 

decrease the metabolism, of IAA (Figure 1), but the mechanism underlying this 

interaction has still not been demonstrated. However the reverse interaction has since 

been confirmed in stems, where the biosynthesis of GA 1  requires the presence of IAA 

(Ross et al. 2000). In addition, the application of PATIs to the stem reduces GA1 

levels below the site of PATI application, corresponding with the IAA level at these 

locations (Ross 1998). PATIs can induce the formation of pseudonodules on the root 

systems of various species, and as such it will be interesting to investigate what 

role(s) GAs, and possibly more importantly GA/IAA ratios, play in the formation of 

these outgrowths. Recently, IAA was shown to promote root growth in Arabidopsis 

by modulating cellular responses to GAs (Fu and Harberd 2003) and it seems 

possible that a similar interaction might exist between the two hormones in regulating 

nodule development. 

Nodule GA levels appear to be influenced by the infecting Rhizobium strain in 

P. lunatus (Tripplett et al. 1981; Dobert et al. 1992a and c), contrary to a report on P. 

vulgaris nodules (Atzorn et al. 1988). Many reports have demonstrated that various 

Rhizobium strains are capable of synthesizing GAs in culture (e.g. Katznelson and 

Cole 1965; Rademacher 1994). Recently, putative GA biosynthetic enzymes were 

identified in Bradyrhizobium japonicum that function anaerobically, including under 

the symbiotic conditions bacteroids are subjected to in the symbiosome (Tully et al. 

1998) suggesting that rhizobia might be capable of regulating GA levels both before 

and after bacteroid differentiation. However, whether or not the elevated GA levels 

of P. lunatus nodules stem directly from rhizobial synthesis, or if the bacteria induce 

the plant to increase GA production, is unknown (Dobert et al. 1992c). Dobert et al. 

(1992c) hypothesized that, in addition to the bacterial strain, nitrogen, ABA and even 

the host plant species may have a role in regulating nodule GA concentrations. 

The application of GA3, and to a lesser extent GA 4, induced the formation of 

nodule-like structures on the roots of lotus (Kawaguchi et al. 1996). These structures 

initiated from divisions of the pericycle and could be suppressed with the addition of 

nitrate. Thus, it appears that an interaction exists in lotus whereby GAs positively 

regulate the division of pericycle cells necessary for nodule organogenesis and that 
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nitrate modulates this process by acting as signalling elements that suppress these 

GA-induced divisions. 

Nonetheless, it has been argued that an increased concentration of GAs might 

not be a requirement for nodule formation in some species, such as P. vulgaris 

(Atzorn et al. 1988). If elevated GA levels are not required for nodulation, then based 

on the previously mentioned work demonstrating that GAs are influenced by IAA, 

the increased GA levels detected in nodules may be no more than a consequence of 

the high IAA levels also present there. 

As an alternative to having a role in nodule formation, GAs may act as signals 

for the hydrolysis of nodule starch to provide a substrate for rhizobial respiration 

requirements. GAs promote the production of a-amylase (e.g. Gubler et al. 1995), an 

enzyme involved in the metabolism of starch, and it may be worth investigating 

whether or not the activities of the hormone and the enzyme are interacting within the 

nodule. Evidence for a link between GAs and a-amylase in starch hydrolysis exists 

for various fungal species (reviewed in Rademacher 1994), but to the best of my 

knowledge, the idea that GAs might have a similar role in nodulation has not been 

proposed previously. If a correlation is established between GAs, a-amylase and 

starch in nodulation, it is possible that the bacteria are responsible for regulating 

nodule GA levels as a means of obtaining nutrients. As I hypothesized for ABA, this 

alludes to multiple roles for GAs in nodulation, including aiding in cell division and 

elongation and providing the energy requirements for the nitrogen-fixing bacteria. 

Elevated nodule GA levels have also been correlated with increased internode 

number and length and increased petiole length in P. lunatus (Tripplett et al. 1981; 

Dobert et al. 1992a and c) and cowpea (Dobert et al. 1992b and c). Thus, GAs may 

benefit both symbionts by increasing the plants size, thereby increasing the 

photosynthetic capability of the plant, resulting in more photosynthates for plant and 

nodule growth and functioning. 
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Signalling Peptides 

Apart from the classical plant hormones, peptides have recently emerged as 

potential regulators of nodulation. Compared with animal peptide hormones, only a 

few plant signalling peptides have been discovered so far. However, this number is 

likely to rise because more and more receptor kinases are being identified as playing 

a role in plant development and nodulation, many of which could be activated by 

peptide ligands. For example, recent discoveries of receptor kinases responsible for 

early Nod factor perception/signal transduction ("NORK", Endre et al. 2002; Stracke 

et al. 2002) and for the autoregulation of nodulation ("NARK", Krusell et al. 2002; 

Nishimura et al. 2002a; Searle et al. 2002) indicate that peptides or proteins could be 

ligands for these nodulation related receptor kinases. 

One putative peptide that plays an important role in nodulation is the early 

nodulin ENOD40. There has been some debate on whether or not ENOD40 is 

actually translated. Several ORFs have been identified with stable predicted 

secondary structure, and it was initially suggested that ENOD40 acts in the form of a 

stable RNA, a so-called "riboregulator" (Asad et al. 1994; Crespi et al. 1994). 

However, Sousa et al. (2001) found that translation of two small ENOD40 ORFs is 

necessary for biological function (induction of cortical cell division) and Rohrig et al. 

(2002) reported detection of one of the ENOD40 peptides by immunoprecipitation 

and Western blotting. Mutational analysis suggests that the translated products might 

have a role in stabilising a biologically active ENOD40 mRNA structure (Sousa et al. 

2001). It is therefore possible that both the peptide and the mRNA are necessary for 

biological function as a ribonucleoprotein (Sousa et al. 2001), although no target or 

receptor has so far been found. 

ENOD40 appears to play an important role in cell cycle control because over-

expression (Charon et al. 1997) and microtargeting (Sousa et al. 2001) of ENOD40 

induces cortical cell divisions in alfalfa roots in the absence of rhizobia and causes 

teratomas in Medicago embryos. In the presence of rhizobia, overexpression of 

ENOD40 was shown to accelerate nodulation (Charon et al. 1999). In contrast, 

silencing of ENOD40 leads to arrest of callus growth in Medicago (Crespi et al. 

24 



1994). Recent evidence suggests that ENOD40 might play a role in sucrose 

partitioning or unloading from the phloem in the nodule (and/or the whole plant), 

because synthetic ENOD40 peptides bind to nodulin 100, a sucrose synthase (Riihrig 

et al. 2002). A role in sucrose partitioning might be related to a role for ENOD40 in 

promotion of (cortical) cell division because incipient meristems are strong 

carbohydrate sinks. The expression of ENOD40 in vascular tissue in roots and 

mature nodules (Kouchi and Hata 1993) supports a role in sucrose unloading. 

ENOD40 has been identified in many legumes as well as the non-legume rice 

(Kouchi et al. 1999). In all legumes examined, ENOD40 mRNA has been localised 

in dividing and meristematic cells (Figure 3; e.g. Asad et al. 1994; Conch et al. 1998; 

Crespi et al. 1994; Fang and Hirsch 1998; Mathesius et al. 2000; Yang et al. 1993), 

consistent with the hypothesis that ENOD40 plays a role in cell division. ENOD40 is 

thought to be involved in the earliest stages of nodule initiation because it is 

expressed within hours of inoculation with nodulating rhizobia (Conch et al. 1998; 

Fang and Hirsch, 1998) and its expression in the pericycle precedes nodule initiation 

(Figure 3; Compaan et al. 2001). In addition, ENOD40 expression is induced by 

signal molecules that can initiate cortical cell divisions, including Nod factors (Fang 

and Hirsch 1998; Minami et al. 1996), cytokinins (Fang and Hirsch 1998; Mathesius 

et al. 2000), and auxin transport inhibitors (Fang and Hirsch 1998). ENOD40 is also 

induced in the nodule primordium by Rhizobium strains that induce cell divisions but 

do not infect and invade the nodules (Yang et al. 1993), which is a further indication 

that ENOD40 is involved in nodule morphogenesis, rather than the infection process. 

However, ENOD40 is not specific to the nodulation process, and is also induced 

during the establishment of lateral root primordia (Mathesius et al. 2000) nematode-

induced galls (Favery et al. 2002; Koltai et al. 2001) and mycrorrhizal interactions 

(Staehelin et al. 2001; Sinvany et al. 2002). 
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Defence-Related Signalling Compounds 

In addition to its previously mentioned roles in nodulation, ethylene is 

involved in pathogenic defence as part of a signalling process termed systemic 

acquired resistance (SAR). Other components of SAR include salicylic acid (SA), 

nitric oxide (NO), reactive oxygen species (ROS), jasmonic acid (JA) and its methyl 

ester (MeJA) (reviewed in RyaIs et al. 1996; Rojo et al. 2003). Although the 

mechanism is not fully understood, symbiotic organisms invade the host plant 

without fully inducing the SAR response. However, Vasse et al. (1993) demonstrated 

that some plant defence compounds do accumulate following the establishment of the 

first nodule primordia, resulting in increased abortion of infection threads and 

localized hypersensitivity response (HR) including necrosis. These authors suggested 

that this response is part of the autoregulatory mechanism used by plants to control 

the level of nodulation. Despite this and much work involving ethylene (described 

above), little is known about the signalling involvement of other SAR components in 

regards to nodulation; major-findings involving these compounds are addressed in the 

following section (see also Figure 2). 

Salicylic Acid 

Pre-soaking seeds with SA prior to sowing decreased the nodule number and 

protein content and root nitrogenase activity of Vigna mungo plants (Ramanujan et al. 

1998). SA application prior to inoculation with rhizobia or purified Nod factor also 

decreased the number and dry weight, and delayed the emergence, of alfalfa nodules 

(Martinez-Abarca et al. 1998). van Spronsen et al. (2003) found that 0.1 mM SA 

application completely inhibited indeterminant nodule formation, including the 

mitogenic effect induced by Nod factors, in vetch, pea (including the hypernodulating 

mutant P88), alfalfa and white clover but did not affect determinant nodule formation 

in P. vulgaris, lotus and Glycine soya. In contrast to these findings, in soybean, 5 and 

1 mM SA did decreased the nodule number and dry weight and suppressed 

photosynthesis and nitrogen uptake (Lian et al. 2000). Also in soybean, Sato et al. 

(2002) found that concentrations of SA as low as 0.1 mM applied 5 days prior to 

bacterial inoculation decreased the nodule number and dry weight in addition to the 
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level of nitrogen fixation. SA also reduced the nodule number and dry weight in 

supernodulating soybean mutants, but the decreases were less pronounced than in the 

wild type. Sato et al. (2002) proposed that SA, or SAR induced by SA, might be 

involved in an autoregulatory signalling pathway of nodulation. 

Upon symbiont recognition, the root-SA level of alfalfa did not increase (as 

occurs upon plant-pathogen recognition), although it did increase in plants inoculated 

with either an incompatible or a compatible but Nod factor-deficient mutant of 

Rhizobium (Martinez-Abarca et al. 1998; Blilou et al. 1999). Thus, it was concluded 

that a function of Nod factors is to inhibit host SA-mediated defences. Interestingly, 

upon inoculation with a compatible rhizobial strain the root-SA level of the pea 

sym30 mutant did increase, whereas upon inoculation with plant pathogens an 

increase was not detected (Blilou et al. 1999). Thus the SYM30 gene product appears 

to function specifically with symbiotic microorganisms leading Blilou et al. (1999) to 

conclude that the SYM30 gene product is likely required for symbiosis, as a 

suppressor of a SA-dependent defence response. 

In Rhizobium etli, multi-drug resistance genes have been identified that act as 

bacterial efflux pumps that confer resistance to the accumulation of toxic compounds. 

Mutations to two of these genes, termed rmrA and rmrB, enhanced the sensitivity of 

the bacteria to plant toxins including phytoalexins, flavonoids and SA (Gonzalez-

Pasayo et al. 2000). These mutants displayed diminished growth on SA or 

naringenin, and the rmrA mutant formed 40 % fewer nodules on P. vulgaris than its 

wild type (Gonzalez-Pasayo et al. 2000). It was concluded that by preventing the 

accumulation of toxic compounds, R. etli have established an advantage that 

improves their chances of nodulating the host. In addition, SA was found to promote 

isoflavonoid (e.g. genistein) synthesis and secretion from L. lute us roots (Kneer et al. 

1999). Genistein can function as a phytoalexin due to its slight antimicrobial and 

fungistatic activity and thus rhizobia containing resistance genes to such a toxin 

should have an infectious advantage over bacteria lacking the efflux pump. 
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Nitric Oxide 

In nitrogen-fixing rhizobia, heme-based sensors have been detected, such as 

the oxygen-regulated FixL protein lcinase in R. meliloti (Gilles-Gonzalez et al. 1994). 

When active, the deoxy-FixL protein induces a gene expression cascade required for 

nitrogen fixation. This process is inhibited by the presence of 02, and possibly also 

by NO and CO, thus halting nitrogen fixation (Gilles-Gonzalez et al. 1994). 

Therefore, NO may have a role in regulating gene expression required for nitrogen 

fixation within the nodule. 

NO has been identified as an inhibitor of bacteroid nitrogenase (e.g. Trinchant 

and Rigaud 1982). Maskell et al. (1977) illustrated that NO tightly binds to 

leghemoglobin (Lb) in soybean and cowpea nodules forming nitrosyleghemoglobin 

complexes (NO-Lb) and suggested that Lb may actually have a higher affinity for NO 

than it does for 02. Thus, the NO-Lb complex may act as a protective mechanism 

used by the nodule to prevent the inhibiting NO from reaching the NO-sensitive 

nitrogenase of the bacteroid. Alternatively, the accumulation of NO-Lb may result in 

the inhibition of nitrogenase activity (Kanayama and Yamamoto 1990) as the binding 

of NO to Lb may competitively inhibit the binding of oxygen, subsequently 

diminishing the oxygen supply available to bacteroids, thereby reducing nitrogen 

fixation (Mathieu et al. 1998). 

Soybean nodules on roots exposed to high concentrations of nitrate mainly 

contained NO-Lb (Kanayama and Yamamoto 1990) and declines in nitrogen fixation 

rates paralleled the increase in NO-Lb in these nodules. Thus, the plant may induce 

NO synthase (NOS) in response to excess exogenous nitrate as a means of regulating 

nitrogen fixation activity. However, Mathieu et al. (1998) found that even in the 

absence of applied nitrate, some NO-Lb exists in soybean nodules. These authors 

found that the amount of NO-Lb was highest in young nodules, decreased with 

nodule age, and was nearly absent in senescent or H202-treated nodules. Moreover, 

in soybean plants grown in controlled-environmental conditions, NO-Lb was shown 

to comprise almost a third of the total nodule Lb content (Maskell et al. 1977), but to 

date no definitive evidence exists to explain this occurrence. 
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NOS activity has been detected in nodules of Lupinus albus (Cueto et al. 

1996). Two putative NOS sites were detected: one in the vascular bundles and the 

other in the inner cells of the infected zone (Cueto et al. 1996). In contrast to root 

preparations, the synthesis of nodule NO was found to be Ca 2÷  independent and the 

authors speculated that nodule NOS could possibly be induced by compounds such as 

lipopolysaccharides of compatible Rhizobia sp. 

Reactive Oxygen Species 

To prevent pathogen invasion, reactive oxygen species (ROS) or active 

oxygen species (AOS), including hydrogen peroxide (H202), superoxide radicals (02) 

and the hydroxide radical (.0H), are upregulated in the plant upon pathogen 

recognition. Together, these compounds reinforce plant cell walls and trigger a 

localized hypersensitive response (HR) involving defence gene expression, the 

induction of SAR and programmed cell death (reviewed in Ryals et al. 1996). ROS 

are also induced in host plants upon inoculation with Rhizobium (e.g. Bueno et al. 

2001; Santos et al. 2001) and thus it is imperative that the bacteria compensate for 

these defence molecules in order to achieve nodule organogenesis. Both plant and 

bacterial compounds exist that help protect against the harmful effects of ROS, 

including peroxidases, catalases and superoxide dismutase (SOD) among others, and 

Sinorhizobium meliloti genes induced upon host infection include those that protect 

against ROS (Oke and Long 1999). However, aside from having negative effects, 

ROS can also positively regulate the nodulation process. 

Peroxidase activity increases shortly after inoculation at the site of root hair 

deformation (Salzwedel and Dazzo 1993). The activity appears to have a role in 

oxidative cross-linking of cell wall polymers at the site of rhizobial penetration 

resulting in a hardening of the cell wall structure. H202 can act as a substrate for 

peroxidase in this process, thus illustrating a potential role for low levels of certain 

ROS during nodulation. Salzwedel and Dazzo (1993) speculated that for successful 

infection to occur, the rhizobia must first suppress root hair peroxidase activity, 

therefore allowing the bacteria to penetrate the cell wall of the host. The authors 

suggested a rapid and transient decrease in peroxidase activity could be evoked by 
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rhizobial exopolysaccharides (EPS) which rapidly bind to root hairs, increase 

infection frequency and may aid the bacteria in avoiding the elucidation of SAR 

during invasion. Following penetration, highly localized peroxidase activity might be 

required to repair the eroded root hair cell wall at the site of rhizobial entry and 

infection thread initiation. Salzwedel and Dazzo (1993) also speculated that the 

plants might resist non-host bacteria and pathogens by rapidly increasing localized 

peroxidase levels to harden the root cell walls and prevent their invasion. 

Prior to rhizobial infection of M truncatula, Nod factors trigger a rapid and 

localized expression of the putative peroxidase-encoding RIP] early nodulin gene 

(Cook et al. 1995), as does ethylene (Olroyd et al. 2001). As a peroxidase, RIP1 

could have a role in metabolising H202 and/or in peroxidase-mediated cross-linking 

of cell wall polymers. The RIP] transcript was localized to epidermal cells that 

subsequently were infected by the Rhizobium and were expressed for the duration of 

pre-infection (Cook et al. 1995) suggesting a possible involvement in cell wall repair 

at the site of infection. Recently, Ramu et al. (2002) demonstrated that RIP1 

transcripts and ROS share a similar pattern of localization in M truncatula and that 

Nod factor application elicits a rapid induction of each. Neither ROS nor RIP] 

expression was detected using a Nod factor-deficient mutant of Sinorhizobium 

meliloti or a mutant of M truncatula impaired in Nod factor signal transduction. 

Moreover, Ramu et al. (2002) found that H202 specifically induced RIP1 expression, 

leading the authors to speculate that Nod factor perception by the plant induces H202 

production, which then mediates the Nod factor-induced expression of RIP]. This 

finding seems logical since H202 can act as a substrate for peroxidases, such as the 

putative RIP 1. 

In pea, Wisnewski et al. (2000) found that the insolublisation of matrix 

glycoproteins creates a barrier inhibiting the continued ingress of invading bacteria. 

These authors speculated that diamine oxidase activity could locally produce H202 

that can be used by peroxidase to induce the insolublisation of the glycoproteins 

thereby modulating cell wall plasticity. Within the infection thread, the matrix 

glycoproteins are found to be insoluble at the tip and hardened elsewhere (Wisnewski 

et al. 2000). This allows invading rhizobia to progress towards the infection zone of 
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the nodule in the infection thread as long as the peroxidase level at the tip remains at 

a low enough level to avoid hardening of the infection thread tip walls. 

In addition, actin monoubiquitylation is induced in developing nodules of P. 

vulgaris (Dantan-Gonzalez et al. 2001). These actin modifications are likely part of a 

defence response against invading organisms and appear to provide microfilament 

stability against proteolytic degradation. This response can be mimicked in 

suspension cell culture by H202 application (Dantan-Gonzalez et al. 2001), thus 

further suggesting that H202 has a role in modifying cell wall structures. 

Salzar et al. (1999) demonstrated that H202 accumulates in M truncatula 

cortical cells in the region occupied by arbuscular mycorrhiza. More specifically, 

H202 was concentrated around hyphal tips attempting to penetrate a host cell, similar 

to phenomenon described by Salzwedel and Dazzo (1993) following root hair 

penetration and infection thread formation by rhizobia. This was suggested to be 

indicative of an oxidative burst involved in the control of intracellular colonization of 

the host (Salzar et al. 1999). 

In agreement with the above findings, Santos et al. (2001) detected an 

oxidative burst of H202 and Oi in the curled region of the root hair immediately 

following inoculation of M truncatula. Interestingly, these elevated levels of ROS 

were also found in infected cells suggesting that this burst is prolonged and could 

have a role in regulating the infection process (Santos et al. 2001). van Spronsen et 

al. (2003) suggested that an oxidative burst could be prolonged by SA, which could 

bind to, and therefore inactivate, peroxidases such as RIP 1. 

In addition to modulating cell wall repair and plasticity, ROS can be 

detrimental to nodulation as they can damage and degenerate the proteins, DNA and 

lipids of both symbionts and their levels are often elevated in senescent nodule tissue. 

ROS such as 02-  and .0H inhibit nitrogen fixation and it has been suggested that the 

inhibition by 02-  may be due to its breakdown into the highly reactive and damaging 

.0H (Puppo and Halliwell 1988). To compensate for the stress of ROS, rhizobia are 

equipped with enzymes such as SOD, which detoxifies 02 - . M truncatula inoculated 

with Sinorhizobia meliloti defective in SOD nodulate poorly and display abnormal 

infection (Santos et al. 2000). In addition, most of the bacteria failed to differentiate 
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into nitrogen fixing bacteroids and senesced rapidly. This lead Santos et al. (2000) to 

speculate that oxidative stress interferes at numerous stages of the symbiosis and not 

simply at the level of nitrogen fixation. Thus rhizobial SOD is a requirement for 

nodule development as well as functioning. 

As mentioned, in addition to rhizobial SOD, plants contain antioxidant 

defence enzymes that also can breakdown ROS. In leaves of Zea mays, treatment 

with 10 to 1001.IM ABA induced the production of 02 -  and H202 followed by 

increases in the activities of antioxidant enzymes at levels sufficient enough to 

scavenge the elevated levels of 02-  and H202 (Figure 1; Jiang and Zhang 2001). The 

authors of this report concluded that ROS have a dual role in plants depending on 

their quantity: acting as toxins inducing oxidative stress when abundant or as triggers 

eliciting the upregulation of antioxidant enzymes when elevated only slightly. It 

seems plausible that the invading Rhizobium could positively regulate the plants 

antioxidant enzymes, possibly via elevated ABA levels, to avoid the damaging ROS 

and thereby promoting nodulation. 

Like ABA, Bueno et al. (2001) showed that inoculation of alfalfa plants with 

Rhizobium elevates both antioxidant enzyme activities and H202 generation. These 

elevated levels of scavenging antioxidant enzymes likely have a role in controlling 

the oxidative burst. Interestingly, among the enzymes elevated is LOX, which was 

earlier described as being influenced by ABA (Figure 2). Taken together with the 

previous paragraph, the complexity of signalling in nodulation becomes increasingly 

apparent. 

Jasmonic Acid 
JA both induces LOX mRNA accumulation (Figure 2; Porta et al. 1999) and 

is produced by the action of LOX upon polyunsaturated fatty acids (Gundlach et al. 

1992). In addition, MeJA induces the transcription PAL (Gundlach et al. 1992), an 

enzyme that catalyses the first step in SA biosynthesis, and in L. luteus roots, its 

application promotes the synthesis and rhizosecretion of the isoflavonoid genistein 

(Kneer et al. 1999). 
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JA also appears to promote the colonization and development of mycorrhizal 

structures in Allium sativum (Regvar et al. 1996) and mycorrhizal colonization has 

been reported to elevate JA biosynthesis in Horde urn vulgare (barley) (Hause et al. 

2002). It is possible that JA has similar roles in nodule formation and mutants 

impaired in JA synthesis or response would greatly aid in the understanding of this 

signalling molecule in nodulation. 

Other Signalling Compounds 

Brassinosteroids 

Foliar application of epibrassinolide to Arachis hypogaea (groundnut) 

substantially increased the number and weight of nodules and promoted root 

nitrogenase activity (Vardhini and Rao 1999). In contrast, application of 

epibrassinolide to the roots of soybean (Hunter 2001) decreased the number of 

nodules and amount of nitrogen fixation. These differences between studies may be 

attributed to variation in methods or species used. 

Endogenous BRs also appear to influence nodule formation. Recent evidence 

has shown that BR deficient mutants of pea form significantly fewer nodules than 

their wild type (Chapter 2; Ferguson et al. 2005a). Using grafting techniques, 

Ferguson et al. (2005a; Chapter 2) demonstrated that BRs appear to influence nodule 

formation via a mechanism of the shoot. However, precise roles of BRs in nodulation 

are unclear as no molecular evidence or signalling interactions pertaining to the roles 

of BRs in nodule organogenesis exist to date. 

Flavonoids 

Flavonoids have multiple roles in plant development, defence and nodulation 

(reviewed in Dakora 1995; SpainIc 1999); they constitute a large class of compounds 

of the phenylpropanoid pathway, and their exact structure is important for their varied 

functions, including concomitantly inducing the chemotaxis of the Rhizobium to the 

root and elevating the production of Nod factors (e.g. Redmond et al. 1986; Stafford 
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1997). Flavonoid production is also induced by rhizobia in roots and nodules (e.g. 

Cooper and Rao 1992; Recourt et al. 1992) and different flavonoids are synthesised in 

response to rhizobia that up- and down-regulate Nod factor production, both before 

and during infection (e.g. Zuanazzi et al. 1998). 

Flavonoids are distributed in a strictly tissue-specific pattern in many species. 

In particular, flavonoids are often located in dividing and meristematic tissues, 

including dividing cortical cells of nodules (Mathesius et al. 1998b). It is possible 

that flavonoids merely protect dividing cells from oxidative damage because of their 

activity as antioxidants (Rice-Evans 2001). However, as discussed above it could 

also be possible that flavonoids affect cell division either by regulating auxin 

transport or turnover (Figure 1), thereby regulating auxin accumulation (Figure 3), or 

by directly regulating cell cycle regulators. In animals, much evidence has been 

found that flavonoids regulate cell cycle activity, but in plants this evidence has so far 

been very tentative (e.g. Logemann et al. 1995; Jinsart et al. 1991). The existence of 

a flavonoid deficient mutant in Arabidopsis has shown that flavonoids are not 

essential for plant survival, although interestingly the mutant showed alterations in 

lateral root formation, root growth and plant height, which could be result of 

increased auxin transport due to the absence of flavonoids acting as PATI (Brown et 

al. 2001). At this stage, flavonoid-deficient mutants have not been isolated in 

legumes. 

Uridine 

The position of a nodule is not only determined by the initiation of cell 

divisions in either the inner or the outer cortex of indeterminate and determinate 

legumes, respectively, but also in respect to the protoxylem poles (Figure 3). In most 

legume species, the majority of nodule primordia are initiated in front of one of the 

protoxylem poles and it has been suggested that a signal (the "stele factor") diffuses 

out of the xylem and acts together with auxin and cytokinins to induce cell divisions 

comprising the nodule primordia (Libbenga and Harkes 1973). 

The stele factor has been identified as uridine (Smit et al. 1995). In the 

presence of very low uridine concentrations, cell divisions can be induced in every 
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cortical cell by cytokinins in pea (Libbenga and Harkes 1973) and in inner cortical 

cells by chitin oligosaccharides following ballistic micro-targeting in vetch 

(Schlaman et al. 1997). Differences between the concentrations of uridine in front of 

xylem versus phloem poles could explain the preference for nodules to initiate 

opposite xylem poles. The fact that nodules are initiated in the outer cortex in 

determinate legumes and in the inner cortex in indeterminate ones could be explained 

by the fact that determinate and indeterminate species have different sensitivities for 

uridine, although definitive evidence is lacking so far. 

Nitrate 

Nitrate interacts with plant hormones to regulate nodule formation (Figure 1). 

The presence of nitrate in the soil at concentrations above 1-5 mM suppresses 

nodulation locally at several levels, including infection, nodule primordium initiation 

and nitrogen fixation (reviewed by Streeter 1988). How nitrate inhibits nodulation is 

not exactly known, although its purpose may be to limit the formation of nodules 

under conditions that provide sufficient nitrate. 

The existence of mutants that hypernodulate even in the presence of nitrate 

shows that nitrate is not the inhibiting factor itself, but that it leads to secondary 

signals that suppress nodulation (Carroll et al. 1985). According to the auxin burst 

hypothesis (Gresshoff 1993), high auxin levels inhibit nodule formation, and it is 

hypothesised that nitrate increases the sensitivity of the root to auxin, thus reducing 

nodule formation. In the supernodulation nts mutants, the auxin burst control is 

altered and therefore these mutants can still nodulate in the presence of nitrate 

because not as much auxin is available in the root to suppress further nodule 

initiation. In support of that hypothesis, Caba et al. (2000) found that nitrate 

decreased auxin levels in inoculated and uninoculated roots of wild type and nts 

mutants, whereas root growth was not altered. The authors hypothesised that this 

represented an increased sensitivity to auxin in the presence of nitrate, which would 

be consistent with the auxin burst hypothesis; however, auxin sensitivity will need to 

be assessed by more direct means. An effect of nitrate on the auxin response pathway 
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has been found in Arabidopsis (Zhang et al. 1999) and it is possible that, in legumes, 

at least some of the effects of nitrate are also mediated by auxin. 

The regulation of nodulation by nitrate could be imposed via an effect on 

flavonoid accumulation in the root, which can alter auxin transport or Nod gene 

activity (Coronado et al. 1995). There is also evidence for the involvement of 

ethylene in mediating the inhibitory effect of nitrate. The findings that inhibitors of 

ethylene synthesis or action (e.g. AVG and Ag+, respectively) restore nodulation in 

the presence of nitrate suggest that nitrate induces the production of ethylene which 

then inhibits nodulation (Caba et al. 1998; Ligero et al. 1991). Since ethylene can 

regulate auxin transport (Burg and Burg 1966; Suttle 1988) and turnover (Ke and 

Saltveit 1988), the effect of nitrate via alterations in auxin levels could be mediated 

by nitrate-induced ethylene. Caba et al. (1999) found that the tolerance of the nts 

mutant to nitrate in respect to nodulation is paralleled by a tolerance for ethylene, 

which supports an involvement of ethylene in nitrate regulation. Unlike the nts 

mutants, in lotus, the nodulation phenotype of the recently characterized early- and 

hyper-nodulating mutant astray displayed normal sensitivity to ethylene and nitrate as 

its nodule number declined in the presence of both (Nishimura et al. 2002c). 

Interestingly, the mutated gene of astray was found to be the homologue of the 

Arabidopsis HY5 gene (Nishimura et al. 2002b), which is involved in 

photomorphogenesis. 

Nitrate also inhibits ENOD40 induction by rhizobia, but not by cytokinins 

(Mathesius et al. 2000), suggesting two possibilities for the action of nitrate (see 

Figure 1): (1) if rhizobia induce ENOD40 independently of cytokinins, nitrate would 

act between Nod factor perception and ENOD40 induction, or (2) if rhizobia change 

cytokinin levels, which subsequently stimulate ENOD40, nitrate would inhibit the 

cytokinin changes induced by rhizobia. 

Mutants are valuable to test the interactions between nitrate and hormone 

signalling. For example, the nitrate reductase deficient mutant ANR1 and the auxin 

response mutant axr4 were used in Arabidopsis to establish a role for the auxin 

response pathways during nitrate regulation of lateral root development (Zhang et al. 

1999). Assuming that lateral root and nodule development share aspects of their 

36 



regulation by nitrate, it is possible that nitrate also acts via the auxin response 

pathway during nodulation. If this is the case, the effects of nitrate on cytokinin, 

ENOD40 expression and ethylene could be indirectly caused by changes in auxin 

response. 

Nod factors and other chitin derivatives 

Nod factors are Rhizobium-produced lipochitin oligosaccharides and represent 

the major morphogenic molecule regulating nodule organogenesis. In addition to 

determining host specificity, Nod factors elicit root hair curling and deformation and 

cortical cell divisions in alfalfa (Truchet et al. 1991). There has been some debate 

about whether Nod factors are hormone-like signals per se or act indirectly, for 

example via changing the plant hormone balance as discussed above. While specific 

Nod factor action during nodulation has been extensively reviewed elsewhere (e.g. 

Cullimore etal. 2001; D'Haeze and Holsters 2002; Miklashevichs etal. 2001), the 

focus here is on the hormone-like roles of chitin oligosaccharides in general. 

Whereas Nod factors are specific in their morphogenetic effect for certain host 

plants, Nod factor-related molecules have been suggested to play a more general role 

in plant development (Spaink et al. 1993; van der Hoist et al. 2001). Chitin 

oligosaccharides play a role in animal development and have been detected in plants 

(Benhamou and Asselin 1989; Spaink et al. 1993), can be recognised by receptors for 

chitin oligosaccharides (Stacey and Shibuya 1997), and are substrates for chitinases, 

which have been shown to play a role in different aspects of plant development 

(Collinge et al. 1993). Expression of a chitinase was shown to rescue an embryonic 

mutant of carrot (de Jong et al. 1992) and modifying chitin structures by expression 

of the bacterial nodA and nodB genes, which modify Nod factors in rhizobia, led to 

changes in plant development (Schmidt et al. 1993). 

Directed microtargeting of chitin oligosaccharides induced cortical cell 

divisions in vetch roots (Schlaman et al. 1997). Dyachok et al. (2000) found that Nod 

factors could stimulate embryogenesis in cell cultures of Norway spruce, a non-

nodulating plant, and more recently isolated a lipochitin oligosaccharide like 

compound from these cultures which stimulated embryogenesis (Dyachok et al. 
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2002). Collectively, these experiments suggest that chitin perception could be 

widespread in both plants and animals and that chitin related molecules play a role in 

development. However, the mode of action of chitin derivatives remains elusive and 

identification of receptors and downstream response elements will be necessary to 

establish whether chitin oligosaccharides act via classical hormones or directly on 

target genes. 

Conclusions and Outlook 

This Chapter (Ferguson and Mathesius 2003) demonstrates the manifold 

effects of classical plant hormones and other compounds on nodule initiation, 

differentiation and numbers. Additional factors, such as soil nutrients, light, 

polyunsaturated fatty acids, CO 2 , Ca2+, PAL, CHS and Rhizobium EPS and LPS, etc. 

are all probably required for proper nodule development and functioning, but could 

not be fully discussed here. 

Reports on classical plant hormones in nodulation are often ambiguous and 

contradictory because (1) nodulation is a fine balance between induction and 

repression of new nodule formation; (2) hormone requirements change with the 

varying stages of nodulation; (3) hormone levels and requirements change in different 

places in the shoot, root and nodule; (4) hormones interact leading to complex 

negative and positive feedback loops; (5) hormone requirements differ in different 

legume species, and (6) nodulation is regulated by both local and long distance 

signalling interactions involving varying actions of the same hormone in each 

regulatory pathway. 

The search for homologues for many of the recently discovered Arabidopsis 

hormone response genes in legumes and their silencing or overexpression should help 

pinpoint the action of hormones during nodulation. For example, it should be tested 

whether Rhizobium directly affect cytokinin levels or whether cytokinin-related 

responses are the result of changing the auxin:cytokinin ratio due to changes in auxin 

transport or levels (see Figure 1). This could be tested in an inducible mutant for 
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cytolcinin synthesis. Inducible or temperature sensitive mutants in polar auxin 

transport could be used to test whether auxin transport inhibition is necessary for 

nodule induction. Moreover, such mutants could help identify whether changes in 

auxin occur in the absence of PATI, for example via flavonoid-regulated changes in 

peroxidase activity as indicated in Figure 1. Accordingly, it could be tested whether 

auxin transport inhibition is a result of changes in ethylene induction in an ethylene 

synthesis deficient mutant. A mutant in ABA synthesis would also be useful for 

testing the functional relationships indicated in Figure 2. If elevated ABA levels are 

necessary for changes in phytoalexins, LOX, ROS and therefore indirectly for 

changes in peroxidase levels, JA and regulation of defence responses, these responses 

should be reduced in an ABA synthesis mutant. 

There are challenging questions to address in future research. First, how does 

Nod factor perception lead to downstream events that could affect the plant hormone 

balance? Not much is known about how the early events in the root hair are linked to 

the events in the cortex, but the analysis of nodulation mutants is beginning to 

address that problem (Kistner and Parniske 2002). Secondly, there is a need for more 

large-scale experiments to discover the broad response pathways for plant hormones 

during nodulation, because each hormone usually has many targets and interacts with 

other hormones, which also have multiple effects. The use of mutants with hormone 

insensitivity, overproduction, or underproduction, the use of accurate reporters for 

different hormones, concentrating on model species for different types of analyses, as 

well as keeping an open mind about possible interactions should help to unravel the 

complex interactions of hormone-regulated signalling during nodulation. In addition, 

the recent identification of ESTs in M truncatula has opened the door for expression 

analyses on the transcript (Federova et al. 2002) and proteome level (Mathesius et al. 

2001). Thirdly, it is almost certain that new signalling compounds will be discovered 

apart from those presently known. Among them will be peptide hormones that might 

regulate receptor kinase activity. But other long-range signals are also likely to be 

discovered, including the autoregulatory signal from the shoot (Searle et al. 2002). 

The molecular and physiological characterization of these novel compounds should 
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help further the understanding of the intricate nodulation process that is just 

beginning to be understood. 
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CHAPTER 2 

Nodulation Phenotypes of Gibberellin and Brassinosteroid Mutants 

of Pisum sativum 

The information contained in this chapter appears in part in the publication: Ferguson 

BJ, Ross JJ, Reid JB (2005) Nodulation Phenotypes of Gibberellin and 

Brassinosteroid Mutants of Pisum sativum. Plant Physiol 138: 2396-2405. 

INTRODUCTION 

Beginning in the 1980s, mutagenesis experiments using Pisum sativum (pea) 

produced abnormal nodulation phenotypes including non-nodulating (nod-), poorly 

nodulating (nod+/-) and hypernodulating (nod++) mutants, as well as those that fix 

nitrogen poorly or not at all (fix-) (see references in Borisov et al. 2000). At present, 

over 200 nodulation mutants exist in pea (Borisov et al. 2000). Nodulation mutants 

have also been selected for in the model legume species Medicago truncatula and 

Lotus japonicus, which have smaller genomes than pea, making them more desirable 

tools for molecular studies. Mutants in these species have since been used to identify 

genes and gene products involved in nodule formation and functioning. This 

approach has been successful, and the orthologs of many nodulation genes discovered 

in M truncatula or L. japonicus have subsequently been identified in important crop 

species such as pea (see references in Oldroyd and Downie 2004). 

Here, a reverse approach to investigating nodulation is reported. In contrast to 

selecting for nodulation mutants and identifying their mutated genes, I identified the 

root and nodulation phenotypes of previously characterized mutants (Table I). The 

mutants examined here are all affected in their biosynthesis of, or responses to, the 

phytohormones gibberellin (GA) or brassinosteroid (BR). Moreover, the genes and 

gene products of these lines have all formerly been identified (reviewed in Reid et al. 

2005; Table I). 
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Table I. Overview of the various P. sativwn lines investi ated 

Genotype Line 
Number 

Gene 
Product 

Hormone 
Level Phenotype References 

Torsdag 107 wild type 

lk 212- BR 5a- 
reductase 

reduced total 
plant BRs 

dwarf
'  thickened . intemodes 

Reid, 1986; 
Ross and Reid 1986; 
Nomura et al. 2004 

lka 5865 BR receptor 
increased 
total plant 

BRs 

dwarf, 
thickened 
internodes 

Reid and Ross 1989; 
Nomura et al. 1997; 
Nomura et al. 1999; 
Nomura et al. 2003 

lkb 5862 BR C-24 
reductase 

reduced total 
plant BRs 

dwarf, 
thickened 
internodes 

Reid and Ross 1989; 
Nomura et al. 1997; 
Nomura et al. 1999; 
Schultz et al. 2001 

is-/ 181 
copalyl 

diphosphate 
synthase 

reduced total 
plant GAs dwarf Ait-Ali et al. 1997; 

Yaxley et al. 2001a 

lh-2 5843 ent-kaurene 
oxidase 

reduced total 
plant GAs dwarf  Davidson et al. 2004; 

Yaxley et al. 2001a 

le-3 5839 GA 3- 
oxidase 

reduced shoot 
GAs, wild 
type root 

GAs 

dwarf Ingram et al. 1984; 
Yaxley et al. 2001a 

NA 1766x1769 wild type 

na 1766x1769 ent-kaurenoic 
acid acid oxidase 

reduced total 
plant GAs 

extreme 
dwarf 

Davidson et al. 2003; 
Yaxley et al. 2001a 

SLN 250+ wild type 

sin 250- GA 2- 
oxidase 

elevated seed 
GAs leading 
to elevated 
total plant 

GAs 

i
elongated 
nternodes 

Reid et al. 1992; 
Ross et al. 1993; 
Lester et al. 1999; 
Yaxley et al. 2001a 
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This study is, to the best of my knowledge, the first to investigate the 

nodulation phenotypes of previously characterized mutants. Unlike dwarf (le) 

cultivars used in many previous nodulation studies (e.g. Finale, Frisson, Rondo, 

Solara, Sparkle), the wild types studied here are all on a tall (LE) background. 

Interestingly, many pea lines used for agricultural purposes are on le backgrounds, 

and are therefore deficient in shoot GA 1  (Reid et al. 2005), as are many of the lines 

used for the selection of nodulation mutants. However, the effects of shoot dwarfism 

and reduced shoot GA 1  levels on nodulation have not been described previously. 

This thesis is also the first to investigate the role(s) of endogenous BRs in nodulation. 

As with GA deficiencies, reductions in BR levels cause shoot dwarfism, thus 

allowing for the use of two distinct hormone-mediated mechanisms to investigate the 

effects of shoot stature on nodulation and root development. 

RESULTS AND DISCUSSION 

Nodulation Phenotypes of Gibberellin Mutants 

In the collection of GA-deficient mutants used here, na-1 causes the greatest 

reduction in bioactive GA 1  levels in the root, followed by is-/ and lh-2 (Yaxley et al. 

2001a). In the current study, all three of these mutants developed significantly fewer 

nodules and significantly reduced root systems (fewer and shorter secondary and 

tertiary lateral roots; Fig. 1; Table II) than their wild types. The reductions in total 

nodule numbers were observed on a per plant (Fig. 2) and also on a per mg root DW 

basis (Table III). The severity of these reductions closely parallelled the reductions in 

the root GA 1  levels of the mutants (Yaxley et al. 2001a) and strongly indicates a 

requirement for GAs in root and nodule formation. Reduced root GA1 levels may 

affect nodule formation directly by reducing successful Rhizobium infections and 

nodule development. Alternatively, reductions in root GA 1  levels may act indirectly 

by increasing the level of nodulation inhibitors, such as ethylene, and/or limiting root 

numbers and lengths, thereby reducing available Rhizobium infection sites. 
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Figure 1. Detached secondary lateral roots of 17 day-old plants of (A) wild type 
(Torsdag) and (B) the BR-deficient lk, (C) the BR-receptor mutant lka, (D) the BR-
deficient Ikb, (E) the GArdeficient na-1, (F) the GAI-deficient 	(G) and the shoot 
GAI-deficient le-3. The roots were collected from the most mature region of the 
plants, closest to the crown. The far right hand side of the secondary lateral root is 
the point at which it was detached form the primary root. Bar = 1 cm. 
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Genotype Number 	 Length (cm) 
Secondary Roots 	Tertiary Roots Shoot I Secondary Roots Tertiary Roots 

Torsdag 89 ± 3.6 20± 1.1 12.5 ± 0.3 19.7 ± 0.1 4.3 ± 0.2 
lk 50 ± 3.6* 4 ± 0.4* 3.0 ± 0.2* 10.4 ± 0.3* 22 ± 0.1* 

lka 82 ± 2.5 9 ± 0.8* 5.9 ± 0.4* 14.8 ± 0.8* 3.5 ± 0.2* 
lkb 82 ± 4.1 13 ± 0.9* 5.9 ± 0.3* 16.9 ± 0.4* 3.7 ± 0.3 
ls-1 63 ± 4.8* 7 ± 0.6* 2.9 ± 0.1* 16.7 ± 0.7* 2.2 ± 0.3* 
lh-2 63 ± 4.7* 12± 1.0* 5.7 ± 0.2* 17.2 ± 0.7* 2.5 ± 0.2* 
le-3 100± 1.7 20± 1.1 4.2 ± 0.2* 18.5± 1.2 3.8 ± 0.3 
NA 107 ± 5.2 21 ± 1.1 21.4 ± 0.5 18.2 ± 0.7 5.9 ± 0.3 
na 50 ± 2.4* 5 ± 0.4* 2.9 ± 0.2* 6.1 ± 0.3* 1.1 ± 0.1* 

SLN 93 ± 5.4 13± 1.0 28.6 ± 0.7 19.0± 1.2 3.2 ± 0.4 
sin 98 ± 1.4 13 ± 0.9 50.0 ± 3.8* 18.6± 1.2 2.9 ± 0.3 

Results are means ± SE (n = 6). Values for each mutant trait followed by an * are significantly different from 
that of their respective wild type at the 0.01 level. 

Table II. Root numbers and lengths of 17 day-old GA and BR mutants and their wild types 
Indicated are the number of secondary lateral roots per plant in addition to the number of tertiary lateral roots 
per secondary lateral root, based on the average number located on the six uppermost secondary lateral roots. 
Also shown are the lengths of the shoot and the longest secondary and tertiary lateral roots per plant. 



450 

400 - 

350 - 

No
du

le
  N

um
be

r  

•• 
300 - 

250 - 

200 

150 

100 

t•fr e t 
• t 

*** 

50 

  

GB  25  Day-Old 
• 40 Day-Old 

107 	lk 	Ika 	Ikb 	is-1 	Ih-2 	le-3 	NA 	na 	SIN 	sin 

Genotype 

Figure 2. Nodule numbers of 25 and 40 day-old plants inoculated with  R. 
leguminosarum. Results are means ± SE (n = 8). Dashed bars represent wild types of 
the mutants (solid bars) situated to their right. Mutant values denoted with an *, ** or 
*** are significantly different from that of their wild type at the 0.05, 0.01 and 0.001 
level, respectively. 
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Table III. Root, shoot and nodule dry weights and nodule numbers per root and shoot dry weight of 25 day-old GA 

Genotype 
Dry Weight 	 Number o f Nodules 

Shoot (mg) Root (mg) 
Nodule 

Total (mg) 
Nodule 

Average (mg) 
Per mg Shoot 
Dry Weight 

Per mg Root 
Dry Weight 

Torsdag 208 ± 12 158 ± 12 33.4 ± 3.8 0.11 ± 0.012 1.44 ± 0.12 1.95 ± 0.23 
lk 142± 15* 115 ± 13 23.5 ± 3.5 0.29 ± 0.030* 0.62 ± 0.07* 0.77 ± 0.10* 
lka 172 ± 13 173 ± 15 30.5 ± 2.3 0.21 ± 0.015* 0.87 ± 0.04* 0.87 ± 0.04* 
lkb 236 ± 11 202± 16 42.6 ± 4.1 0.24 ± 0.012* 0.74 ± 0.03* 0.88 ± 0•04* 
ls-1 111 ±7 132 ± 9 22.4 ± 2.1 0.18 ± 0.016* 1.17 ± 0.08 1.03 ± 0.13* 
lh-2 162 ± 7* 159 ± 8 29.0 ± 3.7 0.19 ± 0.016* 0.94 ± 0.07* 0.99 ± 0.12* 
le-3 203 ± 19 170± 15 39.7 ± 4.1 0.15 ± 0.013 1.41 ± 0.13 1.66 ± 0.14 
NA 396 ± 24 197 ± 10 62.6 ± 4.1 0.25 ± 0.016 0.64 ± 0.04 1.28 ± 0.08 
na 184± 12* 175 ± 14 1.3 ± 0.7* 0.06 ± 0.025* 0.08 ± 0.05* 0.09 ± 0.05* 

SLN 357 ± 21 158 ± 9 63.6 ± 0.4 0.33 ± 0.017 0.55 ± 0.03 1.27 ± 0.11 
sin 392 ± 28 142 ± 11 58.1 ± 5.1 0.37 ± 0.023 0.42 ± 0.04 1.20 ± 0.17 

Plants were inoculated with R. leguminosarum five days following the time of sowing. Results are means ± SE (n = 
8). Values for each mutant trait followed by an * are significantly different from that of their respective wild type at 
the 0.01 level. 

and BR mutants and their wild types 



Reductions in nodule numbers were observed in both 25 and 40 day-old plants (Fig. 

2), indicating that the reduced root GA1 levels are not simply delaying nodule 

development. 

The na-1 mutant exhibited the most dramatic nodulation phenotype as few to 

no nodules formed (Figs. 2 and 3). Those that did form were aberrant, being small 

and white and resembling emerged meristems that fail to develop further (Fig. 3). 

Unlike the nodules observed on the other lines investigated, the few aberrant nodules 

of na-1 were often detected on the tertiary lateral roots of the mutant (Fig. 2b). As a 

consequence of their reduced size, the total DW, and average DW, of na- I nodules 

were significantly reduced compared with those of its wild type (Table III). Less 

dramatic reductions were detected in the total nodule DWs of /s-/ and lh-2 mutant 

plants (Table III) compared with that of their wild type. However, although the 

average nodule DW was reduced in na- 1, it was actually significantly elevated in /s-/ 

and lh-2 (Table III). Thus, it appears that GAs may also influence nodule size with 

slight reductions being stimulatory (/s-/ and lh-2) and large reductions inhibitory (na-

1). 

In an attempt to restore nodule numbers to that of the wild type, various 

concentrations of the bioactive GA3 were applied to the roots of na-1 mutants. Using 

this technique, concentrations of 10 -6  M GA3 were found to completely restore the 

na-1 nodule appearance and numbers to that observed on the wild type control (Fig. 

4). This finding lends further support to my evidence that GAs are required for 

nodule development. Low concentrations of the hormone also stimulated nodule 

formation in the wild type, but became inhibitory to both the wild type and the mutant 

as the applied concentration increased (Fig. 4). This finding is similar to that reported 

by Lorteau et al. (2001) for cytokinin, who found that the application of low 

concentrations of the phytohormone were stimulatory to pea nodule formation, but 

became inhibitory when increased beyond a threshold level. 

Grafting studies were performed using various combinations of lh-2 and its 

wild type (LH), Torsdag, in order to determine whether or not an LH shoot or root 

system could restore the reduced nodule number of the GA-deficient line (Table IV). 

This study revealed that either an LH root or shoot system was sufficient to restore 
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Figure 3. Nodulated lateral roots of 25 day-old (A) wild type and (B,C) na-1 plants. 
Wild type nodules are large and display a white meristematic tip and a red center that 
represents the zone of nitrogen fixation. The few aberrant nodules that do develop 
on the na-1 mutant are small and white and resemble an emergent nodule meristem 
that failed to develop further. Bar = 1 cm. 
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Figure 4. Nodule numbers of 20 day-old wild type and na-1 plants inoculated with R. 
leguminosarum and treated with various concentrations of the bioactive GA3. Results 
are means ± SE (n = 6). Mutant values denoted with an * are significantly different 
from that of the wild type control at the 0.01 level. 
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Table IV. Root, shoot and nodule dry weights, and nodule numbers per plant and root and shoot dry weight of 30 day-old graft 
combinations ofLH and lh-2 mutants  

Number of Nodul es Graft 
Type Root (mg) 

Dry Weight 
Nodule 

Total (mg) 
Per mg Shoot 
Dry Weight 

Nodule 
Average (mg) 

Per mg Root 
Dry Weight Shoot (mg) Per Plant 

LHILH 259 ± 12 81 ± 5 34.4 ± 2.8 0.42 ± 0.053 87 ± 9 0.34 ± 0.03 1.07 ± 0.07 
LHIlh-2 249 ± 12 93 ± 6 31.3 ± 1.9 0.46 ± 0.066 78 ± 11 0.32 ± 0.05 0.87 ± 0.14 
lh-2ILH 165 ± 17* 81 ± 8 23.7 ± 3.3* 0.32 ± 0.047 75 ± 6 0.49 ± 0.07 0.99 ± 0.12 
lh-2llh-2 151 ± 12* 62 ± 7 23.1 ± 2.6* 0.53 ± 0.062 44 ± 4* 0.30 ± 0.02 0.76 ± 0.07* 
Plants were grafted six days after sowing and inoculated with R. leguminosarum at ten days. Results are means ± SE (n = 8). 
Values for each trait followed by an * are significantly different from the LHILH graft combination at the 0.01 level.  



the reduced nodule number of the mutant, both on a per plant, and a per mg root DW, 

basis. This finding implies that GAs are required for nodulation. Furthermore, the 

root system GA level appears to play a role in nodule development, as more nodules 

formed on lh-2ILH grafts than on those of lh-211h-2 (P <0.001), even though the 

shoots remained short, with a low DW (Table IV). LHIlh-2 grafts also produced 

more nodules than lh-211h-2 grafts, but it cannot be excluded that GAs were 

transported basipetally from the LH shoot into the mutant root system. Consistent 

with this suggestion is the significant promontory effect of LH shoots on the lh-2 root 

DW, which increased compared with that of the lh-211h-2 grafts (P <0.01). Graft 

transmissibility of GA1 precursors (but not of GA 1  itself) has been demonstrated 

previously (Reid et al. 1983). Interestingly, the total nodule DW was significantly 

reduced in grafted plants possessing an lh-2 shoot, whereas the average nodule DW 

was slightly increased in grafts having lh-2 roots (Table IV). 

The le -3 mutant, which has decreased shoot GA1 levels, but wild type root 

GAilevels (Yaxley et al. 2001a), and the sin mutant, which has elevated root and 

shoot GA1 levels early in development (Reid et al. 1992; Yaxley et al. 2001a), both 

had a similar number, and size, of lateral roots, and nodules, as their wild types (Figs. 

1 and 2; Tables II and III). Importantly, the normal root and nodule phenotypes of 

the le-3 mutant indicate that the effects of GA1 deficiency on these characteristics, as 

observed in na-1, is- ] and lh-2, are not mediated by dwarfism of the shoot. 

Furthermore, the results with le-3 are consistent with those of the grafting experiment 

with lh-2 (Table IV), as neither dwarfism, nor a reduced shoot GA, level, impaired 

the root system DW, or the nodule number, of a root system having a normal level of 

GA1. Moreover, the wild type level of GA 1  in the le-3 root system is insufficient to 

rescue the shoot dwarfism of the mutant. This finding is consistent with that 

observed using the lh-2 grafts (Table IV). 

The elevated GA 1  levels of sin do not appear to influence the root system or 

the overall number of nodules that form per plant (Figs. 1 and 2; Tables II and III). 

Despite these findings, high GA 1  levels may actually be inhibitory to nodule 

organogenesis. The source of the elevated GAs of sin is the seed (Ross et al. 1993). 

As the sin seedling develops, this excess GA is mobilized throughout the plant until it 
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is eventually metabolized and maintained at near SLN levels (Ross et al. 1993). By 

this time, the primary roots of both SLN and sin are well established and appear 

similar. However, although numerous nodules formed on the primary roots of SLN 

plants, no nodules developed on the primary roots of sin mutants (Fig. 5). This may 

suggest that the elevated GA levels of the mutant prevented nodules from 

establishing, which is consistent with the finding that treatment with high 

concentrations of GA3  reduced the number of nodule that formed on wild type plants 

(Fig. 4). This inhibition in sin is temporary, as nodulation was not prevented on 

lateral roots, of which many formed following the metabolizm of the majority of the 

excess GA1. Elevated GA 1  levels might act directly to inhibit the infection process or 

nodule development, or indirectly, by affecting assimilate distribution. 

Nodulation Phenotypes of Brassinosteroid Mutants 

In the collection of BR mutants used here, lk has the most severe reduction in 

bioactive BRs in the shoot (Nomura et al. 2004), followed by lkb (Nomura et al. 

1997). A reduction in BR levels in the roots has also been confirmed for lkb (Symons 

and Reid 2004). Here I demonstrate that, in addition to shoot dwarfism, the BR 

synthesis mutants lk and lkb, and the BR response mutant, lka, also have fewer and 

shorter lateral roots (Fig. 1; Table II). These findings support recent reports that BRs 

have a role in lateral root formation (Bao et al. 2004). Interestingly, despite all three 

BR mutants producing fewer and shorter lateral roots (Fig. 1; Table II), only the lk 

root system DW was significantly reduced compared with that of Torsdag (Table III). 

Nodule numbers were reduced in all three BR mutants compared with that of 

Torsdag. These reductions occurred in both 25 and 40 day-old plants, indicating that 

nodule development was not delayed, but rather diminished, as was observed with the 

GAI-deficient mutants (Fig. 2). The nodule numbers were also reduced on a per mg 

root DW basis (Table III), indicating that the reductions were not simply correlated 

with the size of the root systems. Instead, these diminished nodule numbers might be 

caused by reduced BR levels, or perception, directly or indirectly effecting nodule 

development, as is discussed above for mutants having reduced root GA, levels. 
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Figure 5. Nodulated root systems of the 25 day-old (A) wild type, SLN, and (B) the 
GAI-overproducing, sin. SLN, like the other wild type lines investigated here, formed 
many nodules on both primary and secondary roots, whereas sin only developed 
nodules on secondary roots. Bar = 1 cm. 
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The average nodule DW was significantly increased for all of the BR mutants, 

compared with that of Torsdag (Table III). Thus, in the case of lk, although the root 

system DW decreased, the average nodule DW increased. This finding illustrates that 

nodule size is not simply a reflection of root system DW. Interestingly, with the 

exception of the severely reduced na- 1, reductions in root GA1 levels also resulted in 

increased nodule DWs. Producing large nodules may be a compensatory mechanism 

to increase nitrogen fixation in response to reduced nodule numbers. 

Recently, BRs were shown to be relatively immobile within pea (Symons and 

Reid 2004). For this reason, BR application studies similar to that performed using 

GA3 and na- 1 were not considered to be the best method to investigate nodulation 

here. In addition, a BR mutant similar to that of le -3 having normal BR levels in the 

root, but decreased levels in the shoot, is not available. As a result, grafting studies 

involving lkb and its wild type (LKB), Torsdag, were the only method available to 

examine the effects of decreased root and shoot BR levels on nodulation. Results 

from these studies illustrate that the shoot controlled the number of nodules that 

formed in these graft combinations (Table V). This finding contrasted with that 

observed with the lh-2 graft combinations (Table IV). Grafted plants having an Ikb 

shoot developed fewer nodules than those having an LKB shoot on a per plant, as well 

as per mg root DW basis (Table V). In addition, the root and shoot DWs of grafted 

plants with an lkb shoot were not significantly reduced from those with an LKB shoot 

(Table V). This indicates that the reduced nodule numbers on grafted plants having 

an lkb shoot were not simply the result of a smaller root or shoot system. Instead, 

these findings suggest that BRs may be influencing a nodulation mechanism of the 

shoot that is involved in regulating the nodule numbers of the root. One such 

mechanism known to exist in the shoot involves the receptor kinase HAR-

11SYM291NARK (e.g. Wopereis et al. 2000; reviewed in Oldroyd and Downie 2004). 

To date, it is unknown what effects, if any, BRs have on this receptor; however, the 

mutants examined in this report appear to be excellent candidates for investigating 

this potential relationship. 

Recently, Symons and Reid (2004) demonstrated that BRs are not graft-

transmissible. Thus, the level of BRs in an lkb root system would be reduced 
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Table V. Root, shoot and nodule dry weights, nodule numbers per plant and root and shoot dry weight and root levels of IAA and GA 
of 30 day-old graft combinations ofLICB and lkb mutants. 

Number of Nodules Horm Dry Weight one Level 
GA Graft 

Type Per plant 

IAA 
(ng g -1  
Fresh 

Weight) 

Root 
(mg) 

Shoot 
(mg) 

(ng g-1  
Fresh 

Weight) 

Per mg 
Root Dry 
Weight 

Per mg 
Shoot Dry 

Weight 

Nodule 
Average 

(mg) 

Nodule 
Total 
(mg) 

LKBILKB 410± 35 130 ± 15 65± 9.5 0.57 ± 0.085 136 ± 26 0.35 ± 0.03 1.09 ± 0.20 3.93 ± 0.69 0.022 ± 0.0005 
LKBIlkb 420 ± 25 180 ± 23 75± 11.5 0.83 ± 0.252 129 ± 26 0.34 ± 0.09 0.94 ± 0.36 3.23 ± 0.32 0.020 ± 0.0020 
lkbILKB 310± 39 120 ± 12 48± 9.5 0.98 ± 0.239 56 ± 5* 0.20 ± 0.03 0.48 ± 0.06* 3.08 ± 0.06 0.020 ± 0.0025 
lkbllkb 430± 43 200± 15* 69± 10.6 1.58 ± 0.236* 46± 7* 0.11 ± 0.01* 0.23 ± 0.03* 3.16 ± 0.19 0.024 ± 0.0005 
Plants were grafted six days after sowing and inoculated with R. leguminosarum at ten days. Results are means ± SE (n = 8) for 
physiological traits and means ± SE of two replicates, each consisting of six root systems, for hormone analysis. Values for each trait 
followed by an * are significantly different from the LKBILKB graft combination at the 0.01 level. 



compared with that of LKB, even if grafted to an LKB shoot. Therefore, the increased 

number of nodules observed on lkb roots grafted to an LKB shoot, cannot be 

explained by an increase in root BRs. In addition, despite having normal levels of 

BRs, LKB root systems grafted to an lkb shoot produced fewer nodules compared 

with those grafted to an LKB shoot. Together, these findings indicate that the root 

level of BRs does not have a direct effect on nodule numbers. Based on these results, 

I investigated whether or not shoot BRs regulate root and nodule development by 

altering the levels of other hormones in the roots. For example, the findings with the 

GA mutants indicate a role for GA in the development of roots and nodules. In 

addition, the phytohormone auxin is known to have a prominent role in both root and 

nodule development (Chapter 1; Ferguson and Mathesius 2003) and is produced at 

high levels in the shoot, followed by a reported acropetal transport to the root system. 

Thus, I measured the levels of GA 1  and the auxin, indole acetic acid (IAA), in the 

root systems of the various Torsdag and lkb graft combinations. This revealed that 

the levels of both GA1 and IAA were similar amongst all of the graft combinations 

(Table V), demonstrating that the reduced BR levels of lkb do not alter the root GA1 

or IAA levels. Therefore, the reductions in root and nodule numbers of the BR 

mutants do not appear to be attributed to changes in the root levels of GA1 or IAA. 

Correlations Between Root and Nodule Formation 

A correlation between the number of nodules and the number of lateral roots 

was detected across all of the mutant and wild type lines examined (Fig. 6). 

Correlations between nodule and lateral root numbers were first described by Nutman 

(1948) who noted that the more lateral roots a line of red clover developed, the more 

nodules it formed. These findings indicate that a strong correlation between nodule 

and root formation exists and may suggest that roots utilize an autoregulatory 

mechanism similar to that identified in nodulation (e.g. Caetano-Anolles and 

Greshoff 1991). Consistent with this suggestion is the observation that the 

hypernodulating mutant of L. japonicus, har - 1, exhibits stimulated root initiation 

when grown in the absence of Mesorhizobium loti (Wopereis et al. 2000). 
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Figure 6. The correlation between the average number of tertiary lateral roots 
observed on the oldest six secondary lateral roots of 17 day-old plants and the number 
of nodules of 25 day-old plants inoculated with R. leguminosarum. Results are 
means ± SE for the nodule number (n = 6 to 8). 
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It has been postulated that nodulation evolved from pre-existing mechanisms 

of early lateral root development (Hirsch and LaRue 1997; Mathesius 2003). This 

theory is supported by root-nodule hybrids that have been observed on roots of M 

sativa (Dudley et al. 1987) and T. repens (McIver et al. 1997) following inoculation 

with specific Rhizobium strains. Roots also emerge from apical meristems of 

actinorhizal nodules of Casuarina cunninghamiana (Torrey 1976) and Myrica gale 

(Torrey and Callaham 1978). The nodule apex can also be converted into a root apex 

by adjusting growing temperatures from low to high (see references in Dart 1977). 

Moreover, mycorrhizal nodules develop on Podocarpaceae species, even in sterile 

soil free of the fungus (Russell et al. 2002). These structures are not simply lateral 

roots modified by the endosymbiont, but rather novel outgrowths that have diverged 

from the root developmental pathway prior to their emergence. 

Lateral roots and nodules share many aspects of their development. For 

example, they are both derived via post-embryonic mechanisms involving de-

differentiating and dividing cells adjacent to xylem poles (Mathesius 2003). One 

proposed difference in their development is the site of initial cellular divisions; the 

pericycle for roots and the cortex for nodules. However, peanut nodules originate 

predominately form the pericycle (Allen and Allen 1940), and pericycle divisions do 

occur during nodule development of pea (Bond 1948) and Trifolium repens (McIver 

et al. 1997). In addition, non-leguminous Actinorhizal nodules, myconodules and 

Parasponia nodules are all derived from the pericycle (see references in Hirsch and 

LaRue 1997). Moreover, ENOD40, a signal thought to be involved in cell division, is 

expressed in the pericycle of Medicago sativa prior to nodule primordium initiation 

(Compaan et al. 2001). Furthermore, Kawaguchi et al. (1996) demonstrated that 

bioactive GAs induce pericycle divisions leading to nodule-like structures in L. 

japonicus. These structures were free of central vascular cells and were therefore not 

simply deformed lateral roots. Collectively, these findings point to a role for the 

pericycle in nodulation, possibly including cell divisions as are known to occur in 

lateral root development (e.g. Dubrovsky et al. 2000). The involvement of the 

pericycle may be mediated by hormones, which may explain why parallel declines in 

nodule and root numbers were observed in the mutants that have hormone-deficient 
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root systems. Transcript profiling of early lateral root initiation in Arabidopsis has 

detected numerous genes expressed in the pericycle (Himanen et al. 2004). Perhaps a 

similar investigation into the pericycle using a legume species, with and without 

Rhizobium inoculation, would help discriminate between gene products shared by, 

and unique to, root and nodule initiation. 

Correlations between nodulation and the remaining characteristics measured 

were not observed. For example, there was no correlation between shoot stature and 

nodulation as sin was taller than its wild type, and le-3 was shorter, but they both 

produced wild type numbers of nodules (Fig. 2). Also, there is no correlation 

between the rate of leaf expansion and nodulation because, when compared with their 

wild types, GA deficient mutants had fewer leaves, whereas BR mutants had more 

(data not shown), yet both formed fewer nodules (Fig. 2). Shoot and root DW also 

did not form a correlation with nodulation. The DW of lh-2 shoots was similar to that 

of le-3 (Table III), but lh-2 formed significantly fewer nodules than le-3 (Fig. 2). In 

addition, the BR mutants all formed significantly fewer nodules than Torsdag (Fig. 

2), despite having differences in their root system DWs (Table III). Furthermore, the 

length of secondary lateral roots does not appear to be the limiting factor of the 

development of tertiary lateral roots and nodules. For example, lkb and /s-/ 

secondary lateral roots are similar in length (Fig. 1; Table II), but /s-/ developed 

fewer tertiary lateral roots (Fig. 1; Table II) and nodules (Fig. 2) than lkb. 

CONCLUSIONS 

The results presented here illustrate that reduced root levels of GAs 

significantly decrease the number of nodules in pea (Fig. 2). These decreases in 

nodule numbers were observed at both 25 and 40 days, indicating that they were not 

simply the result of a delay in nodule formation. The application of GA3 restored the 

nodule number of na-1, suggesting a direct role for GAs in nodule development. In 

addition, grafting experiments illustrated that normal GA 1  levels in the root are 

sufficient to elicit the formation of a normal number of nodules. In contrast, BRs do 
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not have a direct effect on nodule numbers, but act to influence a shoot mechanism 

involved in regulating nodule numbers. Interestingly, with the exception of the 

severely inhibited na- 1, significant increases in the average nodule DW were found 

on all GA and BR mutants having reduced nodule numbers (Table III). This might 

suggest the existence of a mechanism that compensates for changes in nodule 

numbers by regulating the size of individual nodules. Taken together, my findings 

support the theory proposed by Libbenga et al. (1973) that a delicate balance in 

hormone levels is required to achieve optimum nodule development. This theory is 

further supported by my finding that GAs, in addition to cytokinins (Lorteau et al. 

2001), are stimulatory to pea nodule formation at low concentrations, but inhibitory 

when increased beyond a threshold level. 

Reductions in root GA and BR levels also diminished lateral root numbers 

and lengths (Yaxley et al. 2001a; Table II). Interestingly, this appears to be opposite 

to the effects of cytokinins, which reportedly inhibit nodulation, but stimulate lateral 

root development (Lohar et al. 2004). It is likely that hormones have multiple roles 

in root and nodule development (Chapter 1; Ferguson and Mathesius 2003) and are 

required to different degrees at various stages of development. Overall, mutants have 

proven to be valuable tools for understanding the processes of root and nodule 

development, and for isolating genes relating to these processes. In pea, an extensive 

collection of nodulation mutants has been assembled (Borisov et al. 2000), but there 

remains a need for additional root mutants, which would aid in determining the 

developmental aspects that are shared in, and are unique to, the root-nodule 

relationship. 

MATERIALS AND METHODS 

Plant Growing Conditions 

An overview of the various plant lines used in this report, including any 

mutated genes and their resulting effects on the plant, is provided in Table I. For 
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nodulation studies, plants were sown one per pot in 100 mm "Space Saver" pots 

(Reko, Australia) and for root analysis experiments, seeds were sown seven per pot in 

200 mm "Plastamatic" pots (Melbourne, Australia). All pots contained a 1:1 mixture 

of grade 3 vermiculite (Australian Vermiculite and Perlite Co., Fairfield, Victoria, 

Australia) and 10 mm dolerite aggregate (HBMI, Kingston, Tasmania). This mixture 

was topped with approximately two cm of a pasteurized peat/sand potting mix 

composed of a 1:1 mixture of peat moss (Te - Em, New Brunswick, Canada) and 

coarse river sand (Island Resources, Scottsdale, Tasmania, Australia). Pasteurisation 

was achieved using a steam/air mix at 70 °C for 45 min. The pH was adjusted to 7.0 

with dolomite lime and limestone. 

Plants were grown in a controlled environment glasshouse with temperatures 

maintained at 20 °C day (18 h) and 15 °C night (6 h) +/- 1 °C. Relative humidity was 

maintained at a minimum of 40%. The photoperiod of 18 h consisted of natural 

daylight supplemented and extended morning and evening by 4 GE (Hungary) 

Lucagrow LU400/HO High Pressure Sodium 400 W globes and 2 incandescent 

globes (60 W Pearl, Thorn, Australia) delivering an additional approximately 150 

limo' photons 111-2  s-1  at the pot surface. 

Plants were placed on capillary mats (Bottom Up Irrigation, Fertool 

Distributors, Hallam, Victoria, Australia) and watered using an automated overhead 

sprinkling system (70 lph @ 150 kPa) for 2 min each morning and evening. For 

nodule count studies, each pot was provided with 25 mL of Rhizobium 

leguminosarum by. viciae 128C53K (Nitragin®  Inoculants, Liphatech Inc., 

Milwaukee, WI) grown in yeast-mannitol broth and diluted with water to 

approximately 0D600 0.01, which represents 5 x 10 6  cells mL-1 . Based on a previous 

experiment, inoculation was delayed in these studies until 5 days after planting to 

maximize nodulation. For root characterization experiments, at the time of sowing 

150 mL of the bacterial solution was applied. Plants grown in excess of 25 days were 

also provided with a modified Hoaglands solution containing only 1 mM NO3 -, to 

prevent the inhibition of nodulation. 
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Nodule Count Studies 

Investigation of mutant and wild type lines 

Plants were harvested 25 days after planting. This timing allowed nodules to 

develop to a stage where they could be clearly distinguished and their appearance 

accurately assessed. For each plant, the number of nodes was recorded, counting the 

cotyledon as node zero. The roots and shoots were separated at the cotyledon, which 

was excised and discarded. The root system was gently rinsed clean of potting 

substrates and placed in a tray of water. Nodules were counted, removed with 

forceps and, together with the roots and shoots, placed in a 60°C oven for a minimum 

of three days to obtain their dry weights (DWs). 

Additional plants were allowed to persist until 40 days after planting, 

coinciding with the flowering time of many of the lines, including wild types. The 

same traits examined using 25-day-old plants were then assessed. By 40 days, the 

formation of new nodule structures should be minimal due to the plants' 

autoregulation of nodulation (Caetano-Anolles and Gresshoff 1991). Thus, assessing 

the number of nodules at this age confirms that the numbers determined at 25 days 

have remained relatively stable and are not increasing indefinitely with age. This 

approach helps verify that autoregulation of nodulation is functional and provides 

confirmation of a reduction, as opposed to a delay, in nodule development. 

Gibberellin treatments 

The effect of gibberellin on nodule formation was examined using the 

gibberellin-deficient na-1 and its wild type (Table I). Seeds of the two lines were 

sown according to the methods used for the root characterization experiments 

(described above). The roots of the seedlings were treated with 150 ml of either 

water (control) or various concentrations (10 -9 , 10-6  or 10-3  M) of the bioactive GA3. 

These treatments commenced three days after planting and continuing twice per week 

until harvest. The plants were harvested 20 days after planting, rinsed clean of soil 

substrates and their nodules counted. 

, 
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Grafting experiments 

For grafting experiments, seeds of Torsdag and lkb, or lh-2 (Table I) were 

sown as detailed above for the nodule count investigation. At six days after planting, 

the seedlings were grafted using the methods of Reid et al. (1983). These mutants 

were chosen because of their common background (i.e. Torsdag; Table I) and their 

relative similarity in terms of both shoot stature and nodule numbers (Table III). At 

ten days after planting, the plants were inoculated with 25 ml of the bacteria, thus 

allowing the grafts to establish prior to inoculation. The graft combinations were 

then scored 30 days after planting. 

Analysis of Root Characteristics 

Plants were harvested 17 day after planting, allowing for the development of 

secondary and tertiary lateral roots. The plants were uprooted, gently cleaned in 

water, and placed in a tray of water. The length of the shoot and the longest 

secondary and tertiary lateral root was measured. The total number of nodes and 

secondary lateral roots were recorded. In addition, the number of tertiary lateral roots 

located on each of the upper (i.e. closest to the crown) six secondary lateral roots was 

counted. 

Hormone Analysis 

The roots of 30 day-old grafted plants were cleaned of soil, separated from 

their shoots and cotyledons and weighed. Indole acetic acid (IAA) and GA1 were 

then extracted from these root systems, and their levels quantified, using the methods 

outlined in Ross (1998). Two replicates, consisting of 6 root systems per replicate, 

were analyzed. 

Statistical Analysis 

All statistics were determined using Student's t -tests. 
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CHAPTER 3 

Further Characterizing the Nodulation Phenotypes of Gibberellin 

Mutants of Pisum sativum 

INTRODUCTION 

As shown in Chapter 2 (Ferguson et al. 2005a), GAs appear to have a role in 

nodule development. To investigate this role further, the nodulation phenotypes of 

additional GA mutants of Pisum sativum (see overview in Table I) were examined. 

This included investigating a number of both GA response mutants and GA 

biosynthesis mutants, including a variety of double mutants. In addition, the nodule 

histology of the severely GA-deficient na-I was investigated. Sections of the mutant 

and its wild type were examined using bright field microscopy to determine the effect 

of GA-deficiency on nodule development. 

The roots and shoot of the GA-deficient na-1 mutant are short and thick 

(Yaxley et al. 2001a; Davidson et al. 2003; Chapter 2; Ferguson et al. 2005a). These 

phenotypes are similar to those previously described for pea plants treated with 

ethylene (Ferguson et al. 2005b). Thus, the roles of ethylene in the na-I phenotype 

were also examined. To investigate these roles, precursors of ethylene, or inhibitors 

of ethylene biosynthesis, were applied to na-1 plants, following which the phenotypes 

of the plants were assessed. Roles for both ethylene and GAs in nodule development 

are discussed. 
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Table I. Overview of the various P. sativum lines investigated 

Genotype 
Line 

Number or 
Cross 

Mutated 
Gene 

Product 

Effect of 
Mutation Phenotype References 

NA 1766x1769 wild type 

na-1 
1766x1769; 

6074x 
(1766x1769) 

ent-kaurenoic 
acid oxidase 

reduced 
bioactive GAs 

extreme 
dwarf with 

short, 
thick roots 

Yaxley et al. 2001a; 
Davidson et al. 2003; 
Ferguson et al. 2005a; 
Chapter 2 

sin 6074x 
(1766x1769) 

GA 2- 
oxidase 

elevated seed 
GAs leading 
to elevated 
bioactive 

seedling GAs 

elongated 
internodes 

Reid etal. 1992; 
Ross et al. 1993; 
Lester et al. 1999; 
Yaxley et al., 2001a; 
Ferguson et al. 2005a; 
Chapter 2 

na-1 sin 6074x 
(1766x1769) 

GA 2- 
oxidase; em'- 

kaurenoic 
acid oxidase 

elevated, 
followed by 

reduced, 
bioactive GAs 

elongated, 
followed 
by short 

internodes 

Ross et al. 1995; 
Yaxley et al., 2001a 

NA LA CRY' 187 wild type 

NA la cry' 197 
probably 
DELLA 
protein 

constitutive 
GA response 

elongated 
internodes 

Reid et al. 1983; 
Potts et al. 1985 

na-1 la cry' 188 

ent-kaurenoic 
acid oxidase; 

probably 
DELLA 
protein 

reduced 
bioactive GAs 

and 
constitutive 
GA response 

elongated 
internodes 

Reid et al. 1983;  Potts et al. 1985 

na-2 LA cry' 81 ent-kaurenoic 
acid oxidase 

reduced 
bioactive GAs 

extreme 
dwarf 

Davidson et al. 2003; 
Reid et al. 1983; 
Potts et al. 1985 

LH LE 511x5839 wild type 	 , 

lh-1 LE 511x5839 ent-kaurene 
oxidase 

reduced 
bioactive GAs dwarf 

Reid 1986; 
Davidson et al., 2004; 
Yaxley et al., 2001a; 
Ferguson et al. 2005a; 
Chapter 2 

LH le-3 511x5839 GA 3- 
oxidase 

bioactive GAs 
reduced in 

shoot, normal 
in root 

dwarf  

Ingram et al., 1984; 
Yaxley et al., 2001a; 
Ferguson et al. 2005a; 
Chapter 2 

lh-1 le-3 511x5839 
ent-kaurene 
oxidase; GA 

3-oxidase 
unknown extreme 

dwarf None available 
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Table I. Overview of the various P. sativum lines investigated Continue 

Genotype 
Line 

Number or 
Cross 

Mutated 
Gene 

Product 

Effect of
Mutation  

Phenotype References 

Frisson wild type 

sym28 P64 unknown 
unable to 

autoregulate 
nodulation 

hyper- 
nodulation 

Duc and Messager 1986; 
Sagan and Duc 1996 

nod3 P79 unknown 
unable to 

autoregulate 
nodulation 

hyper- 
nodulation 

Duc and Messager 1986; 
Sagan and Duc 1992 

sym29 P88 receptor 
kinase 

unable to 
autoregulate 
nodulation 

hyper- 
 nodulation 

Sagan and Duc 1996; 
Kruse11 et al. 2002 
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RESULTS 

Nodulation Phenotypes of GA Mutants 

The na-1 and sin mutations 

Plants possessing the na-1 mutation produced few to no nodules (Table II). 

Those that did form were aberrant, being small, white, and probably not functional. 

In contrast, a healthy population of nodules was observed on mutants possessing the 

sin mutation (Table II), although few to no nodules were observed on the primary 

root of this mutant. These findings are consistent with those of Chapter 2 (Ferguson 

et al. 2005a) using different mutant lines of na-1 and sin. Moreover, the nodule 

number observed on both sin and na-1 mutants at 40 days was not significantly 

increased from that detected at 25 days (Table II), which is also consistent with the 

findings of Chapter 2 (Ferguson et al. 2005a). In addition, the total, and average, 

nodule DW of na-1 was significantly reduced compared with that of sin at both 25 

and 40 days. 

Double mutants possessing both the na-I and sin mutations produced 

significantly fewer nodules at 25 days than mutants possessing the sin mutation only 

(Table II). However, the double mutant formed significantly more nodules than 

observed on plants possessing the na-1 mutation only (Table II). The nodule number 
observed on na-1 sin double mutants at 40 days was significantly increased from that 

observed on the mutant at 25 days (Table II). This finding was in contrast to that 

observed on na-1 and sin single mutants, whose nodule numbers were not 

significantly increased at 40 days from that observed at 25 days. In fact, the nodule 

number of na-1 sin mutants was actually significantly greater than that of sin at 40 

days, despite having been significantly reduced compared to that of sin at 25 days 
(Table II). 

The appearance of the na-1 sin nodules was abnormal, being pale and round, 

as opposed to the typical pink and cylindrical nodules of wild type and sin mutants 

(Fig. 1) or the small, white nodules of na-1 (Chapter 2; Ferguson et al. 2005a). In 

addition, whereas the total nodule DW of na-1 sin mutants increased at 40 days 

68 



Table II. Root, shoot and nodule dry weights and nodule numbers per root and shoot dry weight of 25 and 40 day-old na-
1, sin and na-1 sin mutants 

Age Genotype 
Dry Weight Number of Nodu les 

Shoot (mg) Root (mg) Nodule 
Total (mg) 

Nodule 
Average (mg) Per Plant Per mg Shoot 

Dry Weight 
Per mg Root 
Dry Weight 

25 

40 

na-1 	134 ± 9 
sln 	429 ± 25 

na-1 sin 	449 ± 37 
na-1 	221 ± 16 
sin 	1297 ± 84* 

na-1 sin 	996 ± 72* 

121 ± 15 
171 ± 21 
264 ± 29 
202± 13 
310 ± 28* 
420± 19* 

0.8 ± 0.3 
41.9 ± 4.5 
39.1 ± 7.3 

0.5 ± 0.2 
74.0 ± 6.5* 

115.4 ± 8.3* 

	

0.15 ± 0.10 	4 ± 3 

	

0.31 ± 0.02 	138 ± 18 

	

0.43 ± 0.06 	88 ± 5 

	

0.02 ± 0.01 	17 ± 7 

	

0.65 ± 0.08* 	118 ± 7 

	

0.47 ± 0.05 	263 ± 31* 

0.02 ± 0.02 
0.32 ± 0.04 
0.21 ± 0.02 
0.09 ± 0.04* 
0.09 ± 0.01* 
0.27 ± 0.04 

0.02 ± 0.02 
0.93 ± 0.18 
0.37 ± 0.06 
0.10± 0.04 
0.41 ± 0.06* 
0.64 ± 0.09* 

Plants were inoculated with R. leguminosarum five days following the time of sowing. Results are means ± SE (n = 8). 
Values for each mutant trait followed by an * are significantly different from that of their respective 25 day-old value at 
the 0.05 level. 



D 

0 1 • 1 
10. 	0 

Figure 1. Root phenotypes of 25 day-old A) sin, B) na-I sin and C) na-1. D) Red, 
cylindrical nodules of (top) sin compared with the more pale, round nodules of 
(bottom) na-1 sin at 25 days. A-C) Bar = 2 cm. D) Bar = 0.5 cm. 
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compared to that at 25 days, both the total, and the average, nodule DWs of sin plants 

increased. Similar to the trend in nodule numbers, the lateral roots of na-1 sin 

displayed an intermediate phenotype, being shorter and thicker than that of sin, but 

longer and thinner than that of na-1 at 25 days (Fig. 1), consistent with the findings of 

Yaxley et al. (2001a). 

The lh-1 and le-3 Mutations 

Plants possessing the lh-1 mutation formed fewer nodules, whereas those 

having the le-3 mutation produced a similar number of nodules, compared with that 

of their respective wild types (Table III). These findings occurred on both a per 

plant, and a per mg root DW, basis, which is consistent with previous results reported 

in Chapter 2 (Ferguson et al. 2005a) obtained using a different allele of lh (lh-2) and a 

different mutation of LE. Also consistent with the findings reported in Chapter 2 

(Ferguson et al. 2005a) was the similar appearance, location on the root system and 

DW (Table III) of the nodules of both le-3 and lh-1 mutants, compared with that of 

the wild type. 

The le-3 population examined segregated for the lh-1 mutation, allowing for the 

selection of lh-1 le-3 double mutants (Fig. 2). These double mutants formed 

significantly fewer nodules than any of the LH LE, LH le-3 or lh-1 LE lines (Table 

III). Although lh-1 le-3 is likely severely reduced in its shoot GA level, and its shoot 

resembled that of the extremely dwarf na-I mutant (Fig. 3), other phenotypes of this 

double mutant did not resemble those of na-1. For example, compared with that of 

their wild types, the reduction in nodule numbers oflh-1 le-3 was not nearly as severe 

as that of na-1 mutants (Tables II, III; Chapter 2; Ferguson et al. 2005a). However, 

differences in phenotypes may be attributed to differences in the genetic backgrounds 

of the mutants. In either event, the roots of lh-1 le-3 were not as severely reduced in 

number, or increased in thickness (Fig. 3) and the nodules were not aberrant in 

appearance, compared with those of na-1. Furthermore, the nodule DW of lh-1 le-3 

was not significantly different from that of its wild type, or the LH le-3 or lh-1 LE 

mutants (Table III), whereas that of na-I is significantly different from that of its wild 

type (Chapter 2; Ferguson et al. 2005a). 
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Table III. Root, shoot and nodule dry weights and nodule numbers per root and shoot dry weight of 25 day-old wild 
IYP e and lh-1, le-3 and lh-1 le-3 mutants 

Genotype 
Dry Weight Number of Nodul 

Shoot (mg) Root (mg) 
Nodule 

Total (mg) 
Nodule 

Average (mg) Per Plant Per mg Shoot 
Dry Weight 

Per mg Root 
Dry Weight 

LH LE 	417 ± 34 	184± 10 	113 ± 7.5 	0.24 ± 0.016 	482 ± 23 	1.19 ± 0.09 	2.64 ± 0.13 
LH le-3 	397 ± 19 	192 ± 12 	106 ± 4.6 	0.22 ± 0.013 	492 ± 18 	1.26 ± 0.08 	2.62 ± 0.20 
lh-1 LE 	289 ± 26* 	182 ± 11 	83 ± 5.9* 	0.24 ± 0.018 	356± 17* 	1.27 ± 0.08 	1.97 ± 0.08* 
lh-1 le-3 	235 ± 38* 	141 ± 7* 	48 ± 8.6* 	0.24 ± 0.014 	196 ± 24* 	0.84 ± 0.03* 	1.38 ± 0.10* 

Plants were inoculated with R. leguminosarum five days following the time of sowing. Results are means ± SE (n = 8; n 
= 2 for le-3 lh-1). Values for each mutant trait followed by an * are significantly different from that of their respective 
wild type at the 0.05 level. 



Figure 2. Root and shoot phenotypes of 25 day-old seedlings of (left to right) LH 
le-3, lh-1 LE, LH LE and 1h-1 le-3. Bar = 5 cm. 
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Figure 3. Root and shoot phenotypes of 25 day-old seedlings of A) na-I LA CRY LH 
LE, B) NA LA CRY/h-i le-3 and C) na-2 LA crys .LH LE. Differences in root 
phenotypes are apparent despite similar, extreme-dwarf shoot phenotypes, although 
direct comparisons cannot be made between the three lines due to differences in their 
genetic backgrounds. Bar = 2 cm. 
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The la cry' mutations 

The la cry' genotype, which results in constitutive GA signalling, formed 

significantly fewer nodules than the corresponding wild type at 25 days (Table IV). 

This reduction was on a per plant, and a per mg root or shoot DW, basis (Table IV). 

As a result of the fewer nodules formed, the total nodule DW per plant of the la cry' 

mutant was also reduced compared with that of the wild type. However, the average 

nodule DWs of this mutant was similar to that of the wild type, indicating that its 

individual nodules were not reduced in size. In addition, the appearance of the la cry' 

nodules, and their location on the root system, was similar to that of the wild type. 

The root system DWs of la cry' was also similar to that of their wild type (Table IV). 

This mutant also exhibited an increased shoot length (Fig. 4) and a greater shoot DW 

(Table IV) than their wild type. Interestingly, the addition of the na-I mutation did 

not appear to affect any of the traits assessed, as there were no significant differences 

detected between na-I la cry' and NA la cry' mutants (Table IV; Fig. 4), consistent 

with previous characterization of their shoot phenotypes (Reid et al. 1983; Potts et al. 

1985). 

In addition to the la cry double mutants, the na-2 LA cry' mutant was 

investigated (Figs. 3,4; Table IV). Comparisons between this mutant and a wild type 

cannot be made because na-2 LA cry' does not have an isogenic parent line. 

Moreover, na-2 LA cry' is on a different genetic background from the other mutants 

reported here. These differences may contribute to the phenotypes of the mutants and 

need to be taken into consideration when making comparisons between the lines. 

Keeping this in mind, it was observed that the root system of na-2 LA cry' was much 

more developed than that of na-1 mutant lines (Table II; Chapter 2; Ferguson et al. 

2005a), and it was phenotypically similar to those of NA la cry' and na-1 la cry' 

mutants (Figs. 3,4). Moreover, the na-2 LA cry' mutant developed numerous nodules 

in comparison to any of the na-I mutant lines (Tables II, IV; Chapter 2; Ferguson et 

al. 2005a), despite exhibiting the extremely dwarf shoot system typical of these lines 

(Figs. 3). Thus, the combined shoot, root and nodule phenotypes of the na-2 LA cry' 

mutant were more similar in appearance to that of the le-3 lh-1 double mutant, than to 
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Table IV. Root, shoot and nodule dry weights and nodule numbers per root and shoot dry weight of 25 day-old na-1, la 
and cry' mutants and their wild type 

Genotype 
Dry Weight Number of Nodu les 

Shoot (mg) Root (mg) 
Nodule 

Total (mg) 
Nodule 

Average (mg) Per Plant Per mg Shoot 
Dry Weight 

Per mg Root 
D 	Wei ht Dry 	g 

NA LA CRY 	192 ± 10 	76 ± 6 	20.0 ± 0.8 	0.16 ± 0.008 	127 ± 9 	0.66 ± 0.04 	1.73 ± 0.13 
NA la crys 	276± 19* 	93 ± 9 	9.1 ± 2.4* 	0.12 ± 0.020 	68 ± 12* 	0.25 ± 0.04* 	0.76 ± 0:12* 
na-1 la crys 	284± 13* 	106 ± 9* 	8.3 ± 1.4* 	0.13 ± 0.009* 	61 ± 9* 	0.22 ± 0.04* 	0.63 ± 0.13* 
na-2 LA crys 	132 ± 8* 	119 ± 7* 	7.0 ± 2.4* 	0.04 ± 0.008* 	150 ± 30 	1.10± 0.18* 	1.28 ± 0.24 
Plants were inoculated with R. leguminosarum five days following the time of sowing. Results are means ± SE (n = 8). 
Values for each mutant trait followed by an * are significantly different from that of their respective wild type at the 
0.05 level. Note that the na-2 LA cry/ mutant has no respective wild type and one cannot exclude the fact that 
differences between this mutant and the other genotypes are background related. 



Figure 4. Root and shoot phenotypes of 25 day-old seedlings of (left to right) NA LA 
CRY, NA la ctyc  , na-1 la ays  , and na-2 LA cry 3 . The na-2 LA ays  mutant is on a 
different genetic background from the other lines, which may contribute  to  its 
phenotype. Bar = 5 cm. 
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that of the na-1 mutants (Fig. 3). However, the average nodule DW of the na-2 LA 

crys  mutant was greatly reduced compared to that of the majority of other pea lines 

(Table IV), which is typical of the na-1 mutants (Table II; Chapter 2; Ferguson et al. 

2005a), but unlike that of the lh-1 le-3 double mutant (Table III). 

Nodulation Phenotypes of na Lines Unable to Autoregulate Their Nodule 

Numbers 

Mutants exhibiting both severe GA-deficiency and an inability to autoregulate 

their nodule numbers were created by crossing a na-1 mutant line with each of three 

hypernodulating mutant lines, sym28, sym29 or nod3. As a result, double mutants 

exhibiting both severe GA-deficiency and hypernodulating phenotypes were isolated 

in the resulting F2 populations of each of the three crosses (Table V; Fig. 5). 

Typically, the root and shoot systems of the sym28 na-1, sym29 na-1 or nod3 

na-1 double mutants appeared similar in size, thickness and stature to that of their na-

1 parent (Fig 5). However, the root systems of each of these double mutants 

exhibited numerous nodule structures, which is uncharacteristic of na-I, but typical 

of the hypernodulating lines, sym28, sym29 and nod3. However, the phenotypes of 

the individual nodules formed on these double mutants were similar to those of the 

aberrant nodules of na-1 (Fig. 5; Chapter 2; Ferguson et al. 2005a). Thus, phenotypes 

induced by both parent mutations were expressed in each of the three double mutant 

combinations identified. Probability tests revealed that the SYM28, SYM29 and 

NOD3 genes assorted independently from the NA gene (Table V), indicating that 

none of the autoregulation genes examined are linked to NA. 

Since the genetic background of the three hypernodulating lines differed from 

that of the na-1 line, additional phenotypes also segregated in the F2 generation of all 

three crosses. For example, the hypernodulating mutant lines originated from the 

wild type, Frisson, which has a naturally occurring dwarf le background. In contrast, 

the na-1 mutant line was derived from the tall LE background of its wild type, NA. 

As a result, in addition to extremely dwarf shoot phenotypes caused by the na-1 
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Cross 	Shoot Genotype Nodulation Phenotype 	
X

2 	Probability 
nod++ 	total nod+ 

sym28 x na-1 NA 44 10 54 0.258 >0.50 
na-1 12 4 16 
total 56 14 70 

nod3 x na-1 NA 69 4 73 3.540 >0.05 
na-1 12 3 15 
total 81 7 88 

sym29 x na-1 NA 31 5 36 0.179 >0.50 
na-1 10 1 11 
total 41 6 47 

Plants were inoculated with R. leguminosarum at the time of sowing. Note that plants possessing the na-I 
mutation are considered as Nod+, despite the fact that they produced few to no nodules. 

Table V. Shoot and nodulation phenotypes of F2 segregates from crosses between the hypernodulating mutants, 
sym28, sym29 and nod3 and the severely GA-deficient mutant, na-1. 
Shoot phenotypes include wild type (NA) and extreme dwarf (na-1) shoots. Nodulation phenotypes include the 
ability to regulate nodule numbers, nod+ (5YM28, SYM29 and NOD3), and the inability to regulate nodule 
numbers, nod++ (sym28, sym29 and nod3), resulting in an excessive number of nodules formed. Phenotypes 
were based on comparisons between the F2 segregates, their single mutant parents and the wild types lines of 
these single mutant parents at 25 days. Contingency X2  (df = 1) testing for independence of the shoot elongation 
and nodulation phenotypes is shown. 



Figure 5. Root phenotypes of A) sym29, B)sym29 na-1 and C) na-I at 25 days 
following inoculation with Rhizobium leguminosarum. D) Close up of lateral roots of 
sym29 na-I exhibiting numerous aberrant nodule structures. A-C) Bar =  2  cm. D) 
Bar = 1 cm. 
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Figure 6. Shoot systems of 60 day-old plants exhibiting (left to right)  tall,  dwarf and 
nana phenotypes. 
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mutation, dwarf (le) and tall (LE) shoot phenotypes segregated in the F2 populations 

of the three crosses (Fig. 6). Interestingly, despite the fact that sym28, sym29, nod3 

and na-1 all yield a reasonable number of seeds, the double mutants reported here 

produced very few seeds, often as little as one per plant. Due to this extremely poor 

yield, plants could not be sacrificed to obtain their root and nodule numbers and 

DWs, because they were required to perpetuate the line. 

Effects of ACC and AVG Treatments on the na Mutant 

Previously, it was demonstrated that GA application could restore the nodule, 

root and shoot phenotypes of the na-1 mutant to that of its wild type, NA (Chapter 2; 

Ferguson et al. 2005a). These findings clearly indicated a requirement for GAs in the 

growth and development of this GA-deficient mutant. However, many of the 

phenotypes of untreated na-1 plants, such as thick and short roots and a reduced 

capacity to form nodules, actually resemble those of pea plants exposed to high levels 

of ethylene (e.g. Ferguson et al 2005b). Thus, it was decided to continue the 

investigations into na-1 by examining the role of ethylene in the phenotype of the 

mutant. 

The application of the ethylene precursor, ACC, significantly reduced the 

nodule numbers of the wild type, NA (Table VI). In addition, moderate to significant 

reductions were also observed in the root numbers and lengths, shoot length and root 

and shoot DWs of ACC-treated NA plants (Fig. 7; Table VI). These findings are 

consistent with previous reports investigating the effects of ethylene in pea (Lee and 

LaRue, 1992c; Ferguson et al. 2005b). A significant reduction in nodule and root 

numbers was also observed on na-1 following ACC treatments (Table VI). This 

indicates that the mutant is able to respond to elevated levels of ethylene. Thus, even 

if some of the phenotypes of na-1 can be attributed to increased ethylene production, 

the ethylene receptors of the mutant are not fully saturated, allowing it to respond to 

increased levels of the hormone. Relatively unaffected by the elevated ethylene were 

the shoot length and shoot and root DWs of ACC-treated na-1, which were similar to 
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Table VI. Nodule and root numbers, and root and shoot lengths and dry weights, of 20 day-old NA and na-1 lines treated 
with the ethylene biosynthesis precursor (ACC) or an inhibitor of ethylene biosynthesis (A VG). 
Indicated are the number of nodules and secondary lateral roots per plant, the average number of tertiary lateral roots located 
on the six uppermost secondary lateral roots, the lengths of the shoot and the longest secondary and tertiary lateral roots per 
plant, and the  root and shoot system dry weights of NA and na p lants treated with either water control ACC or AVG. 

Line Treatment 
Number Length (cm) 

Tertiary 
Root 

Dry Weight 

Root 

(mg) 

Shoot Nodules Secondary 
Roots 

Tertiary 
Roots Shoot Secondary 

Root 
NA Control 116± 11.3 100 ± 4 20± 1.5 32.8 ± 0.9 24± 1.0 6± 0.6 246 ± 15 366 ± 28 

ACC 29 ± 4.1* 92 ± 5 11 ± 0.7* 22.5 ± 0.7* 21 ± 0.4* 4 ± 0.2* 223 ± 19 284± 13* 
AVG 124 ± 8.2 103 ± 1 15± 1.2* 33.9± 1.0 28 ± 0.5* 4 ± 0.4* 222 ± 6 371 ± 14 

na-1 Control 1 ± 0.7 57 ± 1 6± 0.5 3.5 ± 0.2 7 ± 0.3 1 ± 0.1 140 ± 6 143 ± 10 
ACC 0 ± 0.0* 48 ± 2* 5 ± 0.5* 3.2 ± 0.1 9 ± 0.5* 2 ± 0.2* 147 ± 6 122 ± 6 
AVG 36 ± 4.7* 66 ± 3* 5 ± 0.4* 4.0 ± 0.1* 8 ± 0.4 1 ± 0.1 137 ±4 194 ± 15* 

Results are means ± SE (n = 6). Values for each trait followed by an * are significantly different from that of their respective 
control treatment at the 0.05 level. 
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Figure 7. Seedlings of A) NA and B)na-1 treated with (left to right) water (control), 
AVG or ACC. Excised secondary roots of C,E) NA and D,F) na-1 treated with C,D) 
water or E,F) AVG. A,B) Bar = 5 cm. C-F) Bar = 1 cm. 
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those of untreated na-1 plants, while significant increases were observed in the 

secondary and tertiary root lengths (Fig. 7; Table VI). 

In contrast to ACC-treatments, the application of the ethylene biosynthesis 

inhibitor, AVG, resulted in a moderate increase in nodule formation on NA, and a 

significant, 36-fold increase on na-1 (Table VI). This was likely a direct result of the 

AVG lowering the level of endogenous ethylene in the plant, thereby alleviating the 

inhibitory effect of the hormone on nodule formation, as detailed in Chapter 1, 

Ferguson and Mathesius (2003) and Ferguson et al. (2005b). This significant 

increase in nodule formation on na-1 would therefore suggest that the mutant is 

indeed overproducing ethylene. 

Interestingly, although AVG treatment increased the number of nodules on 

na-1, those that formed maintained the aberrant morphology characteristic of the few 

nodule structures observed on na-1 control plants (Fig. 7; Chapter 2; Ferguson et al. 

2005a). This indicates that reducing the ethylene level of the mutant is not sufficient 

to promote proper nodule growth and development, despite being able to increase the 

number of nodules that initiate. Thus, although ethylene appears to play a role in 

nodule initiation, GAs appear to be required for late stages of nodule development. 

The application of AVG also significantly increased the number of na-1 

secondary roots, in addition to increasing the shoot length and DW compared with 

that of control-treated na-1 plants (Fig. 7; Table VI). In contrast, none of these traits 

were found to be significantly different between control and AVG-treated NA plants 

(Fig. 7; Table VI). These findings suggest that ethylene may also has a partial role in 

the root and shoot phenotype of the na-1 mutant. 

Nodule Histology of the GA-Deficient nana 

The nodule histology of the wild type, NA (Fig. 8), was similar to that 

reported for other wild type lines of pea (e.g. Bond 1948; Newcomb et al. 1979; 

Chapter 4; Ferguson and Reid 2005). The outer cortex of the nodule enclosed the 

three nodule histological zones: the meristematic, invasion and infected zones, in 
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addition to the nodule peripheral vasculature (Fig. 8). The cells of the infected zone 

were enlarged and appear to have been invaded by the bacteria. 

In contrast, the nodule histology of na-1 was uncharacteristic (Fig. 8). The 

vasculature of the mutant was generally absent. The meristem was also reduced in 

size, often not extending across the entire width of the top of the nodule. In addition, 

the infected zone was greatly reduced in size. The cells of the infected zone were 

reduced in number, were not enlarged and did not appear to contain the bacteria, 

compared to those of NA (Fig. 8). As a result, the overall size of na-1 nodules was 

significantly reduced in size compared to those of NA, despite the roots of the mutant 

appearing thicker than those of NA. These findings confirm previous reports 

regarding the size and thickness of na-1 roots and nodules (Yaxley et al. 2001a; 

Chapter 2; Ferguson et al. 2005a). 

DISCUSSION 

Further Characterizing the Nodulation Phenotypes of GA mutants 

The nodulation phenotypes reported here for lh, le, na and sin pea mutants 

were consistent with those reported in Chapter 2 (Ferguson et al. 2005a) using 

different lines, and in the case of /h, a different mutant allele. This supports the 

hypothesis that GA deficiency (lh and na) results in reduced nodule formation, 

whereas wild type root GA levels (le) or elevated total plant GA levels (sin) results in 

wild type numbers of nodules being formed. 

The use of double mutants also provided considerable insight into the roles of 

GAs in nodule development. For example, although the lines are unrelated, the lh-1 
le-3 double mutant, like the na-I mutants, formed significantly fewer nodules than its 

wild type. Moreover, lh-2 le-3 double mutants exhibited an extremely dwarf shoot 

phenotype, which is also similar to that of the na-I mutants and is consistent with 

recent findings by Davidson et al. (2005) using this double mutant. However, unlike 

the na-1 mutants, which form few to no nodules, the lh-1 le-3 double mutant 
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produced many nodules that were similar in size and appearance to those of the wild 

type. In fact, the lh-1 le-3 double mutant formed approximately 50 fold more nodules 

per plant, and almost 70 fold more nodules per mg root DW, than observed on the na-

1 mutants reported here and in Chapter 2 (Ferguson et al. 2005a). This demonstrates 

that numerous nodules of normal appearance are able to develop on plants having an 

extreme-dwarf shoot. Instead, the differences between na-1 and the lh-I le-3 double 

mutant may be directly related to the GA levels in the roots. Reductions in GAs 

caused by the na-1 mutation are much more severe than those caused by either the lh 

or le mutations (Ingram et al. 1984; Reid 1986; Yaxley et al. 2001a; Davidson et al. 

2003, 2004). In fact, the le mutations only affect the GA levels of the shoot (Ingram 

et al. 1984; Yaxley et al. 2001a). Thus, although the GA level of the lh-1 le-3 double 

mutant shoot is likely severely reduced (perhaps even in the range of that detected in 

na-1 as has been recently identified in the is-1 lh-2 double mutant shoot (Davidson et 

al. 2005)), the level of this hormone in the root may not be as severely reduced as that 

reported in na-I mutants. This could explain the longer, thinner roots and normal 

appearance of, and numerous nodules of, the lh-1 le-3 double mutant compared with 

that of the na-1 mutant. Further studies using a larger number of the lh-1 le-3 double 

mutant are required to verify the nodulation phenotype reported here. In addition, 

quantifying the levels of GAs in lh-1 le-3 double mutant roots and shoots, as has been 

done using 1s-1 lh-2 double mutant shoots (Davidson et al. 2005), will greatly aid in 

the understanding of the hormone in the shoot, root and nodule phenotypes of pea. 

The na-1 sin double mutant also indicated a role for GAs in nodule and root 

development. The shoot, root and nodule phenotypes of this mutant appeared as 

intermediates of its na-1 and sin mutant parents. For example, these structures appear 

to have grown and elongated, as occurs in wild type and sin mutants (Yaxley et al. 

2001a; Chapter 2; Ferguson et al. 2005a), but as they mature, they become stunted, as 

has been described for na-1 (Yaxley et al. 2001a; Chapter 2; Ferguson et al. 2005a). 

Similar to what was described above for the le-3 lh-1 double mutant, the phenotypes 

of the na-1 sin double mutant are likely directly related to its GA level. For example, 

the elongated internodes of young seedlings are likely the result of elevated GA 

levels caused by the sin mutation (Reid et al. 1992), whereas the reduced lengths of 
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internodes developing on mature plants are likely due to reduced GA levels caused by 

the na-1 mutation (Davidson et al. 2003). The same theory can be applied to the 

phenotypes of the nodules and roots. Further investigations into the histology of the 

nodules and roots, in addition to application studies using GAs and their inhibitors 

would help provide more insight into the phenotypes of the na-I sin double mutant. 

GAs Are Required Late in Nodule Development 

The excessive number of nodules observed on sym28 na-I, nod3 na-1 and 

sym29 na-1 double mutants demonstrates that numerous nodules can indeed be 

initiated on the severely GA-deficient, and usually poorly-nodulating, na-I 

background. This indicates that GAs may not be required for bacterial recognition or 

infection or other early developmental aspects of nodule development. However, 

despite being numerous in number, the nodules observed on all three of these double 

mutants developed the aberrant phenotype that is characteristic of na-I. These 

findings could be a direct result of GA-deficiency on nodulation, or alternatively, 

they could be an indirect result of GA-deficiency causing severe shoot dwarfism, 

resulting in reduced resources available for nodule growth. The fact that numerous 

nodule structures of normal appearance were observed on lh-1 le-3 double mutants, 

which have a similar extreme dwarf shoot stature to that of na-I, indicates that the 

former hypothesis is likely correct. The findings using sym28 na-1, nod3 na-1 and 

sym29 na-1 double mutants further suggest that GAs are required for proper nodule 

formation, specifically in the late growth and elongation stages of development. 

Interestingly, the hypernodulation phenotype was observed on all three double mutant 

combinations, indicating that each of SYM28, NOD3 and SYM29 affect the 

autorgulation pathway upstream of where GAs are required for nodule development. 

Based on this evidence, it appears that GAs do not influence any one of these gene 

products, nor the autoregulation pathway that they are apart of. 

Further evidence that GAs have a role in late, but not early, nodule 

development emerged from the investigations into the effects of the ethylene 

biosynthesis inhibitor, AVG, on na-1. AVG treatment significantly increased the 

89 



number of nodules on na-1 by 36 times that observed on untreated na-I control 

plants. This indicates that ethylene is inhibiting the initiation of nodules on the 

mutant. However, the nodules of these AVG-treated plants exhibited the aberrant 

phenotype characteristic of na-I control plants. This indicates that excess ethylene is 

not the cause of the aberrant nodule phenotype, but rather it is the reduction in 

bioactive GAs of the na-1 mutant that is preventing the growth and elongation of the 

nodules. Thus, although ethylene is inhibitory to early stages of nodule development, 

as has been previously demonstrated using pea (Lee and LaRue, 1992c), GAs appear 

to be required late in nodule development for proper growth and elongation. This 

finding indicating a requirement for GAs in nodule development is consistent with 

that derived from the investigations into the nodulation phenotypes ofsym28 na-1, 

nod3 na-1 and sym29 na-I double mutants, in addition to that described for the GA 

mutants investigated in Chapter 2 (Ferguson et al. 2005a). Using microscopy 

techniques to examine the exact stage(s) in development where na-1 nodules are 

blocked would help delineate between the roles for ethylene and GAs in na-1 nodule 

development. 

To the best of my knowledge, this is the first report suggesting a relationship 

between reduced GA levels and ethylene overproduction. Elevated ethylene levels 

may also have a partial role in the formation of other na-1 phenotypes. For example, 

the shoot length and DW of AVG-treated na-1 plants were both significantly 

increased compared to those of na-1 control plants. Interestingly, like the number of 

nodules, AVG-treated na-1 plants also developed significantly more secondary lateral 

roots compared to na-1 control plants. This indicates that ethylene has a role in the 

inhibition of both nodules and roots of na-1, and is consistent with the theory that 

nodules and roots share aspects of their early developmental pathways (Nutman 1948, 

Hirsch and LaRue 1997; Mathesius 2003; Chapter 2; Ferguson et al. 2005a). 

The histology of na-1 nodules confirmed the morphological observations 

reported in Chapter 2 (Ferguson et al. 2005a) that these nodules are aberrant. The 

absence of a developed vascular system and the stunted cells of the infected zone, 

indicate that GAs are required for these tissues to develop properly. These findings 

lend further support to the theory that GAs are required late in nodule development, 
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as the majority of the affected cells are located in a region of the nodule that forms 

when the nodule emerges from the lateral root. It is possible that GAs are required 

for the persistence of the meristem, the extension of the vasculature, and the 

formation, and subsequent elongation, of the cells of the infected zone. In addition, 

GAs, or GA signalling, may be required for the release of the bacteria from the 

nodule infection threads into the cells of the nodule infected zone. Further 

investigations are required to confirm the exact roles of GAs in nodule development, 

including using SEM techniques to identify the existence of the bacteria in the 

infection threads and nodule infected zone. 

Delineating The Roles of GA Signalling In Nodule Development 

Mutants possessing la cry' mutations, and thus exhibiting constitutive GA 

signalling, developed shoots that were slender and nodules that were normal in size 

and appearance. This was observed regardless of whether or not the la cry' mutant 

also possessed the na-1 mutation. This demonstrates that elongated shoots and 

normal nodules can form on the severely GA-deficient na-1 background. More 

importantly, these findings indicate that the perceived GA 1  level is most important for 

internode elongation and nodule development, regardless of the actual GA 1  level of 

the plant. Thus these results further imply that GAs are required for nodule 

development, consistent with the findings reported previously in this thesis. 

Histological analysis of the nodules of the la cry' mutants could also help to identify 

the importance of GAs in the nodulation process. 

Despite the na-2 LA cry mutant lacking a comparable wild type at this stage, 

it still provided compelling insight into the roles of GAs in nodule development. 

Although on different genetic backgrounds, the na-2 LA cry' mutant formed many 

more nodules than single mutant na-1 lines (approximately 38 times more nodules 

per plant), similar to what was observed when comparing the nodule number of the la 
cry' or the lh-1 le-3 double mutants with that of na-I . However, unlike the la cry' 
mutants or the lh-1 le-3 double mutant, the na-2 LA cry' mutant displayed the 

aberrant nodule phenotype that is characteristic of na-1. 
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The na-2 LA cry mutant also exhibited an extremely dwarf shoot phenotype, 

which is similar to the lh-1 le-3 and na-1 mutants, but unlike the la cry' mutants. 

Together, these findings suggest that the cry' mutation itself is not sufficient to result 

in slender shoot growth or normal-appearing nodule structures, although it may be 

sufficient to allow for the production of a large nodule population. This indicates that 

both of the la and cry' mutations are required for a full impact on the aforementioned 

phenotypes, but not for nodule initiation. Alternatively, the na-2 mutation might not 

reduce GA levels as severely as the na-1 mutation, but genetic evidence does not 

support this view. 

CONCLUSIONS 

The work reported here lends further support to the findings of Chapter 2 

(Ferguson et al. 2005a), that GAs are required for nodule formation. It appears that 

GAs are necessary for late nodule development, and that ethylene may have a role in 

limiting the initiation of nodules on GA-deficient plants. What remains to be 

unequivocally determined is the importance of GA signalling, as opposed to the GA 

level, on shoot, nodule and root development. Moreover, the signalling pathways in 

nodule development that GAs influence need to be identified at the molecular level. 

MATERIALS AND METHODS 

Plant Growing Conditions 

An overview of the various plant lines used in this report, including their 

mutated genes, gene products and phenotypes, is provided in Table I. Plants were 

grown as outlined in Chapter 2 (Ferguson et al. 2005a). For nodulation studies, seeds 

were sown in 100 mm "Space Saver" pots (Reko, Australia) and for AVG and ACC 

treatment experiments, seeds were sown in 200 mm "Plastamatic" pots (Melbourne, 
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Australia). At the time of sowing, each pot was provided with either 25 mL 

(nodulation studies) or 150 mL (AVG and ACC treatment experiments) of Rhizobium 

leguminosarum by. viciae 128C53K (Nitragin®  Inoculants, Liphatech Inc., 

Milwaukee, WI) grown in yeast-mannitol broth and diluted with water to 

approximately 0D600 0.01, which represents 5 x 10 6  cells mU l . 

Creating Double Mutant Lines 

Pollen of sym28, nod3 and sym29 (lines P64, P79 and P88 respectively) was 

collected and transferred to individual flowers of na-1 (line 1766x1769). The 

resulting F1 seed of these three crosses were sown and the subsequent F2 seed was 

then also collected and sown. Using this F2 generation of these crosses, sym28 na-1, 

nod3 na-1 and sym29 na-1 double mutants were selected based on the combined 

identification of extremely dwarf shoots and hypernodulating phenotypes at 25 days. 

Following thier identification, the seed of the double mutant isolates was collected 

and sown to confirm the existence of the double mutant phenotype in the subsequent 

F3 to F5 generations. 

Identifying Nodulation Phenotypes 

Plants were harvested at 25 days, allowing the nodules to develop to a stage 

where they could be accurately assessed. For studies using na-I sin double mutants, 

additional plants were harvested at 40 days. This allowed for the assessment of their 

nodules at the time of flowering, when the autoregulation of nodulation should be 

preventing the formation of new nodule structures from forming (Caetano-Anolles 

and Gresshoff, 1991). Double mutant lines consisting of na-1 and a hypernodulating 

mutation yielded very few seeds. Thus, seedlings of these lines could not be 

sacrificed and instead their nodulation phenotypes were determined by gently pulling 

back the soil and examining their roots. 

Harvested plants were severed at the cotyledon. The root system was rinsed 

in water and the nodules assessed, counted and removed. The cotyledon was 
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discarded and the roots, shoots and nodules of each plant were placed in an oven at 

60°C for a minimum of three days in order to obtain their dry weights (DWs). 

Assessing the Roles of Ethylene in na 

The roles of ethylene in the phenotypes of the na-1 mutant and its wild type 

were investigated by treating plants with 100 ml of either water (control), 0.1 mg•m1 

of the ethylene precursor, 1-amino-cyclopropane 1-carboxylic acid (ACC; Sigma-

Aldrich®, St. Louis, MO), or 0.03 mg•ml of the ethylene biosynthesis inhibitor, 

aminoethoxyvinyl glycine (AVG; i.e. 0.2 mg•ml Retaine ©  containing 15 % AVG, 

Sigma-Aldrich®, St. Louis, MO). Treatments were initially administered three days 

after planting, following which they were repeated twice per week until harvest at 20 

days. Upon harvest, the plants were rinsed of soil substrates and their nodules 

assessed as outlined above. The shoot length, in addition to the length of the longest 

secondary and tertiary lateral root was measured. The total number of secondary 

lateral roots was recorded, as was the number of tertiary lateral roots located on each 

of the upper (i.e. closest to the crown) six secondary lateral roots. 

Histological Analysis 

Nodules of na-I and its wild type, NA, were excised, serially sliced into 3 um 

longitudinal sections, stained with Toluidine blue, viewed and photographed as 

outlined in Ferguson and Reid 2005 (Chapter 4). 

Statistical Analysis 

All statistics were determined using Student's t-tests. 
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CHAPTER 4 

Cochleata: Getting to the Root of Legume Nodules 

The information contained in this chapter appears in part in the publication: Ferguson 

BJ, Reid JB (2005) cochleata: Getting to the Root of Nodules. Plant and Cell Physiol 

46: (in press). 

INTRODUCTION 

The cochleata (coch) mutant of Pisum sativum @ea) was first reported by 

Wellensiek (1959) as having altered flower and leaf phenotypes. The flowers of coch 

exhibit supernumerary and mosaic organs, in addition to abnormally fused parts and 

reduced fertility. The stipules of the mutant are replaced by alternative leaf parts. At 

some nodes, this involves the production of leaf-like structures consisting of petioles, 

leaflets and tendrils in place of the stipules. For this reason, coch can be described as 

a homeotic mutant. More recently, it was established that the stipule primordia of 

coch are reduced in size and retarded in their development (Gourlay et al. 2000; 

Yaxley et al. 2001b), which might explain the abnormal stipule phenotype. Gourlay 

et al. (2000) demonstrated that a gene involved in leaf complexity, UNIFOLL4TA, is 

expressed in the stipule primordia of coch at a time when compound stipule 

architecture is predicted to form. This was not observed in wild type plants, 

suggesting that the COCH gene product might act to inhibit UNIFOLIATA 

expression, thereby preventing the formation of compound leaf structures. Thus, 

COCH may act as a signaling element for organ identity. 

As a homeotic mutant with altered primordia, coch represents an excellent 

tool for investigating plant developmental processes, such as nodulation. Recently, a 

new nodulation mutant, SGEamp, was described as having a shoot phenotype similar 

to that of coch (Voroshilova et al. 2004). Based on this, I continued with the line of 
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investigation used in Chapter 2 (Ferguson et al. 2005a) and describe here the 

nodulation and root phenotypes of the homeotic mutant, coch. 

RESULTS 

Nodule and Root Morphology of coch Plants During Vegetative Growth 

The coch mutant and its wild type, Torsdag, had formed a similar number of 

nodules by 25 days (Table I). However, the morphology of the nodules on coch 

plants was uncharacteristic. Typically, these nodules were dichotomously branched 

and displayed small emerging root structures, thus creating root-nodule hybrid 

structures (Fig. 1). The roots of these structures emerged from the meristems, 

generally protruding from the sides of the nodule lobes and displaying agravitropism 

(Fig 1). In addition, many of the nodule lobe meristems became swollen, resembling 

calli (Fig. 1D-F). The central zone of the nodule lobes appeared normal and 

characteristically exhibited a pink hue, representing the leghaemoglobin required for 

nitrogen fixation. The location of these hybrid structures on the root system was also 

normal, being dispersed throughout the mature portion of the root system, similar to 

those of Torsdag. This nodule phenotype was observed on three independently 

derived coch mutants, indicating that it is specific to the coch mutation. 

The total, and average, nodule DW values of 25 day-old coch were similar to 

those of Torsdag (Table I), suggesting that the nodules of both lines were developing 

at similar rates. The lateral root lengths (Table II) and root system DW (Table I) of 

coch were also not significantly different from those of Torsdag, although there were 

moderate differences in the number of lateral roots formed (Table II). 

Nodule and Root Morphology of coch Plants at Flowering 

The hybrid roots of coch had markedly elongated by 40 days compared with 

those observed at 25 days (Fig. 2). They possessed root hairs and, in some instances, 
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Table I. Root and nodule dry wei g hts, and nodule numbers of 25 day-old Torsda and cochleata g 
Number Dry Weight (mg 

Genotype Per Plant Nodule 
Average 

Nodule 
Total Root 

Age 
(d) 

25 

40 

f Nodules 
Per mg Root 
Dry Weight 
0.74 ± 0.07 
0.80 ± 0.11  
0.59 ± 0.03 
0.47 ± 0.09 

125 ± 8 
148 ± 10 
137 ± 12 
141 ± 11 

51.7 ± 8.2 
62.1 ± 6.1 
85.6± 17.3 

149.4± 19.4* 

177 ± 16 
198 ± 18 
236 ± 17 
273 ± 28 

Torsdag 
coch  

Torsdag 
coch 

0.41 ± 0.053 
0.43 ± 0.058 
0.60 ± 0.078 
1.09 ± 0.153* 

Plants were inoculated with R. leguminosarum at the the time of sowing. Results are means ± SE (n 
= 7). Values for each coch trait followed by an * are significantly different from those of similarily 
aged Torsdag traits at the 0.05 level. 



Figure 1. Lateral root nodules of 25 day-old A) wild type and B-F) coch plants 
inoculated with R. leguminosarum. White meristems and pink central infected zones 
were apparent in the nodules of both genotypes. The nodules of coch dichotomously 
branched and typically exhibited callus-like structures and agravitropic roots 
emerging from their meristems. M=meristem, I=infected zone, AG=agravitropic 
roots, arrowheads=callus. Bars = 1 mm. 
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Genotype Number Length (cm) 
Secondary Roots Tertiary Roots Shoot Secondary Root 	I Tertiary Root 

Torsdag 	89 ± 3.6 20± 1.1 	12.5 ± 0.3 19.7 ± 0.1 4.3 ± 0.2 
coch 	78 ± 2.7* 26 ± 0.8* 	12.1 ±0.8 20.2 ± 0.6 4.3 ± 0.1 

Results are means ± SE (n = 6). Values for each mutant trait followed by an * are significantly different from 
that of Torsdag  at the 0.05 level.  

Table II. Root numbers and lengths of 17 day-old Torsdag and cochleata 
Indicated are the number of secondary lateral roots per plant in addition to the average number of tertiary 
lateral roots located on the six uppermost secondary lateral roots per plant. Also shown are the lengths of the 
shoot and the longest secondary and tertiary lateral roots per plant. 



Figure 2. Nodules of 40 day-old A) wild type and B-G) coch plants inoculated with 
R. leguminosarum. As observed at 25 days (Fig. 1), the nodules of both lines 
possessed white meristems and pink infected zones, and those of coch typically 
branched and possessed root and callus-like structures. These structures were more 
numerous and markedly larger, compared with those observed at 25 days. D, E) The 
roots of these hybrids also exhibited callus-like structures, which tended to form in 
close proximity to the attachment site of the hybrid root on the nodule. F) Hybrid 
roots also occasionally gave rise to their own root and nodule structures. G) The 
complex root-nodule hybrids often engulfed the roots from which they arose. 
M=meristem, I=infected zone, AG=agravitropic roots, R=emerging root, N=emerging 
nodule, arrowheads=callus, PR=primary root. Bars = 1 mm. 
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even gave rise to new root and nodule structures (Fig. 2F). The nodule portion of the 

hybrids also continued to grow, often further branching and continuing to develop 

new root and callus-like structures. These findings illustrate that both the roots and 

nodules of the hybrids have their own, distinct meristems, allowing them to elongate 

at their own rates. Taken together, extremely complex hybrid structures consisting of 

a multitude of roots, nodules and calli, developed from a single initiation point (i.e. 

infection site) on the lateral roots of coch. In many cases, these hybrid structures 

grew until they engulfed the root from which they arose (Fig. 2G). 

The nodule number of 40 day-old coch and Torsdag root systems remained 

similar to their respective values observed at 25 days (Table I), indicating that the 

autoregulation of nodulation was functioning properly in both genotypes. In addition, 

the mutant root system DW remained similar to that of Torsdag (Table I). However, 

due to the additional root and nodule structures, the total and average nodule DWs of 

coch were significantly greater than those of Torsdag at 40 days (Table I). 

Effects of coch on Nodule Histology 

Torsdag nodules were histologically similar to those previously described for 

wild type pea (e.g. Newcomb et al. 1979). Those of 25 day-old plants possessed an 

outer cortex, a peripheral vasculature connected to the central vasculature of the 

lateral root and three distinct histological zones: the meristematic, invasion, and 

infected zones (Fig. 3A). The majority of cells in the infected zone appeared to have 

been invaded by the bacteria and contained nitrogen-fixing bacteroids. 

The nodules of 25 day-old coch plants also exhibited an outer cortex, and, 

although bifuricated, each lobe typically displayed the three histological zones 

observed in Torsdag (Fig. 3B-F). Meristematic tissue was not observed in the 

invaginated region between the nodule lobes of coch, although, the cells of the entire 

infected zone did appear to contain bacteroids. At least one vascular strand was 

observed in each nodule lobe of coch. Generally, the vasculature appeared thicker 

than that observed in Torsdag nodules, often branching and veering over the various 
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Figure 3. Light micrographs of 25 day-old A) wild type and B-K) coch nodules. A-
E) The meristems, invasion zones, and infected zones (which include cells harbouring 
the bacteria) are clearly distinguishable in the nodules of both lines. B-F) 
Meristematic tissue was not observed in the invaginated regions occurring between 
the mutant nodule lobes. The nodule vasculature of both lines is connected to that of 
the lateral root, however, the A) wild type vasculature is thin and peripheral, whereas 
that of B-D) coch is markedly thicker and frequently oriented away from the nodule 
periphery. B,E) Serial sections of the same nodule depicting thick vasculature 
extending from the lateral root through to a hybrid root emerging from the nodule 
meristem. C) A swelling developing from the meristem of a coch nodule lobe. D) 
Hybrid roots emerging from the meristems of nodule lobes. F-K) Hand sections of 
coch nodules and roots. F) Cross section of a coch nodule with vasculature extending 
towards the infection threads. G) Hybrid root exhibiting a root cap, meristem, root 
hairs and zones of elongation and maturation. Cross section of coch H) lateral and I) 
hybrid roots illustrating the endodermis, cortex, epidermis and similar triarch 
distribution patterns of xylem and phloem. The reduced size of the hybrid root is 
probably due to it being younger than the lateral root. J,K) Cross sections 
demonstrating the vascular connections existing between the nodule and hybrid roots 
of coch. M=meristem, IZ=invasion zone, I=infected Zone, V=vasculature, 
LR=lateral root, S=swelling, HR=hybrid root, IT=infection threads, RC=root cap, 
EZ=elongation zone, MZ=maturation zone, RH=root hairs, X=xylem, P=phloem, 
EN=endodermis, EP=epidermis, C=cortex. Bars = 200 [tm (A-F,J,K), 25 vim (H,I). 
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histological zones. Collectively, the normal infected zone histology (Fig. 3) and the 

pink hue (Fig. 1,2) of the nodule, in addition to the healthy green shoots produced in 

the absence of applied nitrogen (data not shown), suggest that the process of nitrogen 

fixation is probably functional in coch. 

The roots of coch hybrid structures also appeared functional. They consisted 

of a root cap, meristem, cortex, central vasculature and root hairs, similar to that of a 

lateral root (Fig. 3H-K). The vasculature was incorporated into the hybrid root from 

a vasculature strand of the nodule (Fig. 3J,K). The xylem and phloem of the hybrid 

roots was arranged in a triarch pattern of distribution, typical of a lateral root (Fig. 

3H,I). 

DISCUSSION 

The homeotic pea mutant, coch, displays a highly unique nodulation 

phenotype. Typically, the nodules branch and develop roots, thus creating root-

nodule hybrids. The roots of these hybrids emerge from the meristems of the nodule. 

They possess a central vasculature that is incorporated into the root from a peripheral 

vascular bundle of the nodule. Both components of the hybrid have their own 

meristems and are therefore able to elongate at distinct rates. Hence, the hybrid roots 

are slender and elongate well past the shorter, thicker, nodule. The nodule itself often 

becomes highly branched and forms a multitude of root, nodule and callus-like 

structures. 

The fact that coch formed a similar number of nodules to that of its wild type, 

Torsdag, indicates that the coch mutation does not prevent bacterial recognition or 

infection, nor does it prevent the autoregulation of nodule formation. In addition, 

coch nodules appeared functional and its root system DW and lateral root lengths 

were similar to those of Torsdag, demonstrating that these parameters are also not 

affected by the mutation. Furthermore, coch does not affect the development of the 

shoot, other than the stipule and flower (Wellensiek 1959; Yaxley et al. 2001b), 

suggesting that the role of the COCH gene product in development is organ specific. 
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Alternatively, there may be redundancy of COCH in organs of the mutant that display 

a wild type phenotype. The fact that the coch mutation results in ectopic roots 

developing from the nodules and alternative leaf components replacing the stipules 

suggests that COCH may normally function to inhibit the development of these 

structures. 

Root structures emerging from branching nodules have also been reported on 

Sesbania grandifolia Pior. (Harris et al. 1949). Moreover, root-nodule hybrids have 

been observed on M sativa (Dudley et al. 1987), T repens (McIver et al. 1997) and 

Phaseolus vulgaris (VandenBosch et al. 1985; Ferraioli et al. 2004) following 

inoculation with specific Rhizobium strains. However, these hybrids differed 

morphologically from those of coch, as the nodule zonation pattern, and multiple 

root, nodule and callus structures characteristic of coch hybrids, were not observed. 

It has also been reported that increasing the temperature can convert the nodule apex 

of Medicago sativa and various Trifolium sp. into roots and calli structures (Dart 

1977; Day and Dart 1975), possibly suggesting that high temperatures interfere with 

the activity of the COCH gene product. 

Nodules and roots share many aspects of their development, consistent with 

the theory that nodulation may have evolved from pre-existing mechanisms of early 

lateral root development (Hirsch and LaRue 1997; Mathesius et al. 2000; Mathesius 

2003; Chapter 2; Ferguson et al. 2005a). The root-nodule hybrids of coch further 

support this theory, as do the nodule-like structures of many non-legumes, which are 

clearly derived from modified lateral roots (Hirsch and LaRue 1997). Although these 

structures are distinctly different from legume nodules, some aspects resemble those 

of coch, such as the agravitropic roots that emerge from the actinorhizal nodule 

meristems of Casuarina cunninghamiana (Torrey 1976) and Myrica gale (Torrey and 

Callaham 1978). In addition, mycorhizal nodules of Podocarpaceae species, which 

form even in the absence of the fungus, appear to be novel outgrowths that have 

diverged from the root developmental pathway (Russell et al. 2002). 

Although the stipules of coch are replaced by alternative leaf structures, the 

nodules are not actually replaced by roots, but rather form concomitantly with them. 

This phenotype is analogous to that of ufolfim homeotic mutants of Arabidopsis and 
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Antirrhinum, which mediate floral meristem and organ identity (Ingram et al. 1995). 

Yaxley et al. (2001b) hypothesized that there may be homology existing between 

certain meristems of pea because the primordia base of the petals and leaves is altered 

in coch. The meristems of coch nodules are also altered, giving rise to root and 

callus structures, possibly indicating common developmental abnormalities among 

these meristems. Yaxley et al. (2001b) proposed that coch stipule meristems might 

remain meristematic for a prolonged period of time, leading to greater meristematic 

flexibility and retarded stipule development. If this is true for coch nodule 

meristems, it may explain why they appear like swollen calli and why both nodule 

and root structures form. 

The phytohormone auxin has been reported to induce the formation of 

meristems on the roots of rice (Ridge et al. 1993). These meristems consisted of 

nodule-like, modified root outgrowths that displayed a callus-like surface, but ,a 

differentiated internal anatomy, as observed in coch nodules. Auxin also regulates 

root gravitropism (Marchant et al. 1999), which is dysfunctional in coch and 

actinorhizal nodule-roots. Thus, altered levels or perception of auxin may have a role 

in the development of the root-nodule hybrids of coch. Temporally and spatially 

determining the auxin content of coch root-nodule hybrids would advance the 

understanding of this hormone in the development of these organs. 

CONCLUSIONS 

Unlike other meristematic processes, the initiation and location of nodule 

development can be tightly controlled in the laboratory, making nodulation an 

excellent process to study meristems. The coch mutant represents an exciting tool for 

such studies, particularly since its mutation appears to affect certain organs, but not 

others. In addition, coch could provide insight into nodule branching and could help 

delineate between which aspects of nodule development are shared with, and which 

are unique to, lateral root formation. The fact that coch nodules, stipules and flowers 

are abnormal, but the remainder of the root and shoot systems are not, suggests that 
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COCH may have been recruited into the process of nodule development from the 

flower and/or stipule developmental program(s). Of utmost importance will be to 

identify the initial cells from which the hybrid roots develop and to clone the COCH 

gene. Once the gene is available, the roles of COCH in organ identity, including its 

affects on organ initiation, hormone manipulation and development, can be 

ascertained. 

MATERIALS AND METHODS 

Plant Growing Conditions 

The coch allele (Hobart line AF99) was produced by EMS mutagenesis by Dr. 

J Weller from its wild type, Torsdag (Hobart line 107) (Yaxley et al. 2001b). 

Additional, independently derived coch mutants, JI 2757 and JI 2165, were 

investigated to ensure that the nodule phenotype observed is due to the coch 

mutation. Plants were grown as outlined in Chapter 2 (Ferguson et al. 2005a). For 

nodulation studies, seeds were sown in 100 mm "Space Saver" pots (Reko, Australia) 

and for root analysis experiments, seeds were sown in 200 mm "Plastamatic" pots 

(Melbourne, Australia). At the time of sowing, each pot was provided with either 25 

ml (nodulation studies) or 150 ml (root characterization experiments) of Rhizobium 

leguminosarum by. viciae 128C53K (Nitragin®  Inoculants, Liphatech Inc., 

Milwaukee, WI) grown in yeast-mannitol broth and diluted with water to 

approximately OD600 0.01, which represents 5 x 106  cellsm1-1 . 

Nodule Count Studies 

For nodule studies, plants were harvested 25 and 40 days after planting. 

Analysis at 25 days allowed for the development of the nodules to a stage where they 

could be clearly distinguished and accurately assessed. Delays in nodule 

development can be identified at 40 days, when the plants initiate flowers and the 
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formation of new nodule structures should be minimal due to the autoregulation of 

nodulation (e.g. Searle et al. 2002). 

Upon harvesting, the roots and shoots were separated at the cotyledon, which 

was excised and discarded. The root system was rinsed and placed in water. The 

nodules were then characterized, counted and removed with forceps. The complex 

nodules of coch (which were comprised of multiple lobes, roots and calli) were 

counted as one nodule because they arose from a single initiation point (i.e. infection 

site) on the lateral root. The roots, shoots and nodules of each plant were then placed 

in a 60°C oven for a minimum of three days to obtain their dry weights (DWs). 

Analysis of Root Characteristics 

For root studies, plants were harvested 17 day after planting, allowing for the 

development of secondary and tertiary lateral roots. The plants were uprooted, 

rinsed, and placed in water. The length of the shoot and longest secondary and 

tertiary lateral root was measured. In addition, the total number of secondary lateral 

roots, and the number of tertiary lateral roots located on each of the upper (i.e. closest 

to the crown) six secondary lateral roots were recorded. 

Histological Analysis 

For histological examinations, portions of lateral roots bearing nodules were 

excised from 25 day-old plants. The specimens were fixed in 3.7 % (v/v) 

formaldehyde for 3 h, dehydrated in a graduated ethanol series for 5 h, followed by 

xylene treatment for 2 h, and embedded in Paraffin (Paraplast®, melting point 56°C; 

VWR Scientific, West Chester, PA, U.S.A.) using a vacuum infiltration processor 

(Tissue Tek® VIPTM,  Sakura Finetek, Japan). Longitudinal serial sections 3 um thick 

were cut using a Leitz 1512 microtome (Ernst Leitz Westlar GmBH, Austria) and 

transferred to slides. Paraffin was removed by soaking the slides in xylene. The 

slides were then rinsed in ethanol, followed by water. All microtome and hand 

sections were stained with Toluidine blue, observed under an Axioskop 2 Plus 
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microscope (Carl Zeiss, Gottingen, Germany) using differential interference contrast 

illumination and photographed with an AxioCam HRc digital camera (Carl Zeiss, 

Gottingen, Germany). 

Statistical Analysis 

All statistics were determined using Student's t-tests. 
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OVERALL CONCLUSIONS 

This thesis describes the nodulation phenotypes of previously characterized 

mutants of pea. Specifically, GA and BR mutants were assessed, in addition to the 

homeotic mutant, cochleata. Mutants have been useful in identifying genes involved 

in developmental processes such as nodulation. Previously, plants exhibiting 

impaired, or unusual, nodulation phenotypes were selected from mutagenesis 

experiments, following which an array of experiments were performed to identify the 

mutated gene, and the role of the gene product, in nodulation. This approach has 

been successful, yielding a number of genes involved in nodulation (e.g. see 

references in Oldroyd and Downie 2004). 

However, the work reported here adopted a novel approach to using mutants 

to investigate nodulation. Well-characterized mutants were investigated, whose 

nodulation phenotypes had not been examined, but in many cases, whose genes and 

gene products were formerly identified. By investigating the nodulation phenotypes 

of well characterized mutants, it was anticipated that the effects, if any, of the 

mutation on nodulation would be revealed. 

Investigating GA and BR mutants revealed that these hormones are required 

for nodule development. Mutants deficient in either of these hormones exhibited a 

reduced capacity to form nodules. The application of GAs, or the grafting of a wild 

type root or shoot, to a GA-deficient mutant was sufficient to fully restore the nodule 

number of the mutant. These findings indicated that there may be a direct 

requirement for GAs in nodule development. In contrast, grafting studies using a 

BR-deficient mutant indicated that BRs are indirectly affecting nodule numbers via a 

mechanism that operates in the shoot. A shoot mechanism involved in the 

autoregulation of nodule numbers has previously been identified, but the impact of 

BRs on this mechanism remains to be addressed. Further studies are required to 

identify precisely how BRs are influencing the nodulation process. 

Additional studies using the severely GA-deficient mutant, na, indicated that 

ethylene might also have a role in some of the phenotypes of the mutant. Following 

treatment with an inhibitor of ethylene biosynthesis, the nodule number of the mutant 
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significantly increased. However, the nodules that formed were still aberrant, 

indicating that although ethylene may have a role in the initiation of nodules, GAs are 

likely required for their proper growth and development. Plants possessing mutations 

resulting in both GA-deficiency and hypernodulation also supported a role for GAs in 

late nodule development. Numerous nodules formed on these lines, indicating that 

GA-deficiency does not prevent bacterial recognition or infection, nor does it prevent 

early nodule development. However, these nodules were also aberrant in appearance, 

indicating that, in the absence of GAs, these nodules were unable to form properly in 

their late stages of development. The histology of nodules on na plants also supports 

a role of GAs in late nodule development. The meristem of these structures 

deteriorated and the vasculature and infected zone of the nodule failed to establish. 

These events should have occurred at the time when the nodule is emerging from the 

lateral root late in nodule development. The use of molecular markers and SEM will 

help identify where and when GAs are required in nodulation, and what impact this 

hormone has on the release and functioning of the bacteria in the infected zone of the 

nodule. 

Mutants exhibiting constitutive GA signalling also provided exciting new 

insight into the roles of GAs in nodulation. These mutants formed nodules that were 

normal in appearance, even in lines that also possessed the na mutation. This 

suggests that the perceived GA level, rather than the actual level of GAs, may be 

most important for nodule formation. Further studies, using a variety of grafting 

techniques and the application of GAs and their inhibitors, are required to fully 

understand this process. 

Upon examining the nodule and root phenotypes of the various mutants 

reported here, it became apparent that a correlation existed between the number of 

nodules and roots that developed per plant. This finding suggests that nodules and 

roots share aspects of their early developmental pathways, which is consistent with 

the theory that nodulation may have evolved from the root developmental process. 

Mutants will be useful for delineating which aspects of nodulation are shared with, 

and which are unique to, root development. In addition, identifying molecular 

mechanisms involved in nodule and root development will greatly advance the 
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understanding of the formation of these structures and allow for the optimization of 

these processes. 

Further indicating that nodules and roots share aspects of their early 

developmental pathways was the nodule morphology of coch. The nodules of this 

mutant typically branched and exhibited callus and ectopic root structures emerging 

from their meristems. Histological examinations indicated that both the nodule and 

root portions of these hybrid structures appeared functional, with a vascular strand of 

the nodule being incorporated into the central region of the root. The coch mutation 

also affects the development of stipules and flowers, suggesting that coch may have a 

role in organ identity. Identifying the initial cells of the nodule that give rise to these 

roots, in addition to molecularly characterizing the COCH gene, and gene product, 

will also help advance nodule and meristem research. 

In summary, using previously characterized mutants for the purpose of 

investigating the nodulation process proved to be successful. The work reported here 

has provided insight into the poorly understood roles of GAs and BRs in nodule 

development and has revealed putative overlaps in nodule and root development. 

However, a great deal more remains to be determined in order to establish the direct 

versus indirect effects of the mutations on nodulation, including identifying 

interactions that occur at the molecular level. Based on this, the present work can be 

regarded as the essential groundwork for a number of future studies in the field of 

signalling interactions in nodule development. 
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ABSTRACT 

Nitrogen fixing bacteria, collectively referred to as 
rhizobia, are able to trigger the organogenesis of a 
new organ on legumes, the nodule. The morpho-
genetic trigger is a Rhizobium -produced lipochitin-
oligosaccharide called the Nod factor, which is 
necessary, and in some legumes sufficient, for trig-
gering nodule development in the absence of the 
bacterium. Because plant development is substan-
tially influenced by plant hormones, it has been 
hypothesized that plant hormones (mainly the 
classical hormones abscisic acid, auxin, cytokinins, 
ethylene and gibberellic acid) regulate nodule de-
velopment. In recent years, evidence has shown 
that Nod factors might act in legumes by changing 
the internal plant hormone balance, thereby or-
chestrating the nodule developmental program. In 
addition, many nonclassical hormonal signals have 
been found to play a role in nodule development, 

some of them similar to signals involved in animal 
development. These compounds include peptide 
hormones, nitric oxide, reactive oxygen species, 
jasmonic acid, salicylic acid, uridine, flavonoids and 
Nod factors themselves. Environmental factors, in 
particular nitrate, also influence nodule develop-
ment by affecting the plant hormone status. This 
review summarizes recent findings on the involve-
ment of classical and nonclassical signals during 
nodule development with the aim of illustrating the 
multiple interactions existing between these com-
pounds that have made this area so complicated to 
analyze. 

Key words: Cell division; Defence response; 
Meristem; Nod factors; Nodulation; Organogenesis; 
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INTRODUCTION 

Bacteria of the genus Rhizobium are capable of in-
fecting the roots of host plants, resulting in the de-
velopment of novel organs called nodules. Nodule 
development involves the induction of cortical and 
pericycle cell divisions and their subsequent differ-
entiation into a vascularized organ with a meristem. 
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Concurrently, infection by the bacteria into root 
hairs and cortical cells in a so-called infection thread 
occurs until their eventual release into the devel-
oping nodule. Within the nodule, the invading 
bacteria differentiate into nitrogen-fixing bacteroids 
that provide reduced nitrogen to the plant in ex-
change for carbohydrates and shelter (for recent 
reviews see Crespi and Galves 2000; Stougaard 
2001; Kistner and Parniske 2002). 

Precise interactions between phytohormones and 
various other signalling compounds are imperative 
for plant organogenesis, and in no case is this more 
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apparent than in the process of nodulation. In this 
symbiosis, various signalling molecules are ex-
changed between the plant and the infecting bac-
teria to regulate nodule initiation, differentiation 
and functioning, as well as the number of nodules 
that develop. Nodule numbers are limited by at least 
two pathways. One pathway is a local regulation of 
infection in the root zone susceptible for infection 
(Vasse and others 1993), while the second pathway 
is a negative feedback process termed "autoregula-
tion" during which existing nodule meristems trig-
ger a signal in the shoot that inhibits further nodule 
development on the root system (Delves and others 
1986). For this to occur, the timing and concentra-
tions of hormones and other signalling compounds 
is crucial, as alterations to either can result in the 
abortion of nodulation. The following review cul-
minates much of what is known about the various 
signalling elements involved in nodulation and at-
tempts to identify possible links between them. Due 
to the size of the topic, we have concentrated on the 
signals involved in nodule organogenesis and have 
had to ignore many of the early signals, for example 
calcium, known to act in the root hair following 
Nod factor perception. However, a recent review by 
Lhuissier and others (2001) covers this topic. 

SIGNALLING INTERACTIONS OF 
THE CLASSIC HORMONES 

Earlier work on nodulation investigated hormones 
individually in an attempt to elucidate a role for 
each. For example, Thimann (1936) was one of the 
first to propose involvement of hormones in nodule 
formation and implicated auxin in the process. 
Later, the finding that many soil bacteria, including 
rhizobia, synthesize plant hormones (reviewed by 
Costacurta and Vanderleyden 1995), initially 
seemed to suggest that rhizobia could provide the 
hormones that subsequently stimulate nodule for-
mation (for example, Phillips and Torrey 1972), al-
though, this did not explain the specificity between 
legumes and their specific symbionts. Since then, 
nodule initiation has been shown to occur sponta-
neously in some legumes (Truchet and others 1989) 
and can be triggered by altering the hormone bal-
ance, thus illustrating that the hormones act inde-
pendently of the bacteria. In addition, the 
application of Nod factors can induce pseudonodule 
structures on certain hosts (Truchet and others 
1991), possibly by altering hormone levels within 
the host tissue. However, because Nod factor-in-
duced nodule primordia typically fail to develop 

into differentiated nodules, it is possible that hor-
mones or other signals produced by the bacteria 
during the infection process are also required. 

During root nodule development, rhizobia stim-
ulate differentiated cortex cells to re-enter the cell 
cycle, divide and differentiate. In 1973, Libbenga 
and others recognized the need to assess hormone 
interactions during nodule development and sug-
gested that gradients of both auxin and cytokinins 
are required for cortex proliferation and thus nod-
ule initiation. Since the work of Libbenga and oth-
ers (1973), much has been discovered about the 
complex signalling network required for nodule 
organogenesis. A central question in nodulation 
research is how changes in the hormone balance 
can affect the location (radially and longitudinally 
along the root), initiation, number and functioning 
of nodules on the root system. The following section 
discusses many of these findings and identifies the 
current knowledge of hormone signalling interac-
tions in nodulation (summarized in Figure 1). 

Abscisic Acid 
The role of abscisic acid (ABA) in nodulation is 
poorly understood. Initially, ABA was thought to 
act as an inhibitor of nodule development, as ap-
plication of the hormone reduced the number of 
nodules in Pisum sativum (pea) (Phillips 1971). ABA 
application to wild type Glycine max (soybean) and 
its supernodulating mutant line NOD 1-3 also caused 
a decrease in nodule numbers and dry weights in 
addition to isoflavonoid levels (Cho and Harper, 
1993). Moreover, Bano and Harper (2002) deter-
mined that nodule initiation, development and 
functioning were all inhibited by ABA in wild type 
and NOD1-3. Phillips (1971) speculated that ABA 
might act by reducing the cytokinin-stimulated 
cortical cell divisions associated with nodule for-
mation, thus suggesting a putative ABA-cytokinin 
signalling interaction. 

ABA and cytokinins have been shown to act in 
concert to affect numerous aspects of plant devel-
opment, including root/shoot signalling (Davies and 
Zhang 1991) and symbiotic photosynthetic gas ex-
change (Goicoechea and others 1997). Since the 
work of Phillips (1971), the ratio of the two hor-
mones has been positively correlated with nodule 
suppression and autoregulation (Caba and others 
2000; Bano and others 2002). The root ABA/zeatin 
riboside (ZR) ratio was found to be consistently 
higher in wild type soybean relative to the super-
nodulating mutant nts382 (Caba and others 2000). 
Recently, Bano and others (2002) proposed a model 
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Figure 1. Proposed model for the interaction of hormones and other signals regulating the initiation of cell divisions and 
nodule development. See text for details. This figure summarizes interactions that have been analyzed separately and in 
different legume species. It should therefore not be seen as an accurate or complete overview for any particular legume. 
The flow diagram does not suggest a strict temporal but rather a functional overlap of interactions. Dashed arrows indicate 
that the interaction might be indirect and needs to be tested; see Conclusions and Outlook for details. The effect of nitrate 
on the signalling interactions is indicated in several places, but it will need to be tested as to whether some of the observed 
nitrate effects are indirect. 

to explain possible influences of plant ABA/ZR ra-
tios in nodule autoregulation. In this model, inoc-
ulation induces an initial decrease in the xylem 
ABA/ZR ratio. These authors speculated that the 
hormones of this ratio are then translocated to the 
leaves where they promote the synthesis of ABA. 
The increased ABA then moves via the phloem to 
the root where it inhibits further nodule formation, 
thus regulating the number of nodules that form. In 
supernodulating mutants, this pathway is effec-
tively non-functional, as the initial decrease in the 
xylem ABA/ZR ratio does not occur and thus proper 
regulation of nodule number is not achieved (Bano 

and others 2002). Caba and others (2000) demon-
strated that a final rise in root ABA concentration is 
absent in the mutant, consistent with the model. 

In further support of this model, Gresshoff and 
others (1988) illustrated via extrapolation that the 
concentration of ABA increased in the shoot at the 
onset of autoregulation in the wild type, but not in 
nts382. In addition, Bano and Harper (2002) dem-
onstrated that the application of partially-purified 
phloem ABA-extracts, from either wild type or the 
supernodulating soybean mutant NOD 1-3, inhibited 
nodule formation in the mutant. However, they 
found that phloem-ABA levels were similar in both 
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lines and concluded that another signal may be 
present in the phloem that either inhibits nodule 
formation or counteracts the inhibitory effect of 
ABA in this autoregulatory process. 

Further evidence supporting a negative role for 
ABA in nodule development was reported by Watts 
and others (1983) who analyzed the endogenous 
ABA content in nodules that form on the perennial 
Alnus glutinosa infected by the actinomycete Frankia. 
ABA levels were higher in nodules than in the 
surrounding root tissue, particularly in dormant 
compared with actively growing nodules. However, 
despite this finding, Watts and others (1983) were 
unable to determine any obvious correlations be-
tween nodule ABA content and growth rate. 

The level of endogenous ABA is also reported to 
be higher in nodules of pea (Charbonneau and 
Newcomb 1985) and soybean (Williams and Sicardi 
De Mallorca 1982; Fedorova and others 1992) 
compared with that of the roots. Moreover, in-
creased amounts of ABA are detected in shoots, 
roots and nodules of soybean plants bearing VA 
mycorrhiza associations when compared with no-
dulated nonmycorrhizal plants, suggesting that 
these fungal associations contribute to the ABA pool 
of the host, including the nodule (Murakami-
Mizukami and others 1991). Because ABA had 
previously been shown to activate a carbohydrate 
sink during the seed fill phase of soybean, Mura-
kami-Mizukami and others (1991) speculated that 
increased nodule ABA may act as a signal to induce 
a similar carbohydrate sink in the nodule. Thus, as 
opposed to acting as an inhibitory factor, ABA could 
play a role in allocating photosynthates to the 
nodule to be used as a source of energy for growth 
and development, rhizobial respiration and nitrogen 
fixation. Rhizobia synthesize ABA in culture when 
supplied with ABA-precursors (Dangar and Basu 
1991) so perhaps this production is a mechanism 
used by the bacteria as a means of obtaining plant-
derived carbohydrates. In the case of nitrogen fix-
ation, however, nitrogenase activity has been 
shown to decrease with increasing endogenous 
ABA levels in some species (Dangar and Basu 1984, 
1987). As well, the daily application of ABA signif-
icantly reduced the level of nitrogen fixation in pea 
(Gonzalez and others 2001a), although this treat-
ment may have exceeded an appropriate ABA 
concentration for optimum nodule functioning. 
This reduction in nitrogen fixation paralleled a de-
cline in nodule leghemoglobin content, which the 
authors speculated resulted in a restriction of 
available oxygen required by the bacteroids for 
cellular respiration, thus inducing the decline in 
nitrogen fixation (Gonzalez and others 2001b). 

In Phaseolus vulgaris, ABA application increased 
the accumulation of lipoxygenase (LOX, Figure 2) 
mRNAS, which are enzymes associated with stress 
and development (Porta and others 1999). These 
authors detected LOX in developing, but not ma-
ture, nodules suggesting a role for LOX in nodule 
growth. Moreover, in situ hybridization revealed no 
exclusive LOX expression in the invasion zone of 
pea nodules; however, all LOX transcripts were 
expressed at the nodule apex (Wisniewski and 
others 1999), thus further suggesting a role for the 
enzymes in nodule growth and development rather 
than a more direct role in the plant-microbe inter-
action or in host defense. Also in pea, Charbonneau 
and Newcomb (1985) noted an increased amount of 
ABA in the apical region of the nodule, possibly 
indicating a link between elevated levels of nodule 
ABA and LOX (Figure 3). If indeed LOX is required 
for nodule development and ABA is required to up-
regulate the level of nodule LOX, it can therefore be 
argued that ABA is actually required for nodule 
growth. Furthermore, a role for LOX has been im-
plicated in nitrogen storage and assimilate parti-
tioning (Stephenson and others 1998), which, if 
coupled with ABA, supports the hypothesis of 
Murakami-Mizukami and others (1991) that ABA 
could have a role in inducing a carbohydrate sink in 
the nodule. 

Additional evidence supporting a requirement of 
ABA in nodule development is the significantly re-
duced number of nodules that form on the ABA-
deficient wilty mutant of pea (BJ Ferguson, JB Reid 
and JJ Ross unpublished). lithe role of ABA in 
nodulation were of a strictly inhibitory nature, it 
would be expected that wilty would develop more 
nodules than its wild type. These findings, however, 
do not necessarily discredit the previously men-
tioned work regarding an inhibitory role for ABA in 
nodulation and it is possible that ABA has a dual 
role in nodule development: one in negatively 
regulating nodule numbers and one in positively 
regulating the growth and development of individ-
ual nodules. As such, an increase in ABA (for ex-
ample, one brought about by exogenous application 
or stress) would directly inhibit nodule develop-
ment, whereas a deficit of the hormone (as in wilty) 
would fail to induce signalling elements (such as 
LOX) required to meet the growth requirements of 
the nodule, thereby also inhibiting nodule forma-
tion. This hypothesis may explain why some reports 
of ABA application (for example, Bano and Hillman 
1986) illustrate no effects of the hormone on nodule 
numbers. 

In support of this hypothesis, Charbonneau and 
Newcomb (1985) reported that pea nodule ABA 



Nitrogen 
fixation Infection/ 

invasion 

Rhizobium 

.- . - 

	

_ 	I 	 \ - 

	

.- 	 , 	
............. 	......... 

.- 	 , 	
, 

	

,
, 	\ 	............. 	_____,....... 

_ „ 	-__ -- 

	

, 	-a.  , , 
	• ROS 	 Ethylene 	NO 

Root 
ABA 

LOX 

Phytoalexins 

Regulation of 
defence 
response 

Peroxidase 

•  
Successful 

nodule invasion 
and functioning 

Signaling Interactions and Nodule Development 	51 
Figure 2. Proposed model for the interaction 
of signals regulating defense responses and 
nodule functioning. As in Figure 1, 
interactions that have been analyzed 
separately and in different legume species are 
integrated in one diagram and should not be 
seen as an accurate or complete overview for 
any particular legume. The flow diagram does 
not suggest a strict temporal but rather a 
functional overlap of interactions. Dashed 
arrows indicate that it is unknown whether 
Rhizobium independently activates these 
responses via different signals (for example, 
Nod factors, exopolysaccharides, and so on) or 
whether Rhizobium induces one initial 
response that triggers further secondary 
events. This could be tested in mutants for 
ABA, SA, ethylene or NO. 

levels were high in the first 2 weeks of nodule de-
velopment followed by a 2-week plateau and then a 
secondary period of elevated ABA. It is possible that 
the first rise in ABA is related to the regulation of 
nodule growth and number, the plateau corre-
sponds to the period of nitrogen fixation and the 
second rise is associated with the onset of nodule 
senescence. These results suggest a putative third 
role for ABA in nodulation in which ABA increases 
in older nodules as part of a senescence-signalling 
pathway. In addition to pea, older nodules of Lens 
sp. (Dangar and Basu 1984), Phaseolus aureus 
(Dangar and Basu 1987), Samanea saman (Chatto-
padhyay and Basu 1989) and soybean (Fedorova 
and others 1992) have elevated amounts of ABA 
when compared with younger nodules, which the 
authors of these studies also suggested was related 
to nodule senescence. The elevated level of ABA in 
soybean nodules led Fedorova and others (1992) to 
speculate that ABA played a role in both the sup- 

pression of the formation of new nodule structures 
and in nodule senescence, which is consistent with 
our hypothesis. 

Auxin 

Auxin is a plant hormone with multiple roles in cell 
division, differentiation and vascular bundle for-
mation, three processes that also occur during 
nodule formation. Auxin is synthesized mainly in 
the shoot and is transported to the roots by an active 
transport process involving import into the cell by 
an auxin import protein (AUX1) and active auxin 
export by an export protein (PIN1 and PIN2/AGR/ 
EIR1; reviewed by Muday and DeLong 2001). Ad-
ditional control stems from negative regulators of 
auxin export by auxin transport inhibitors that bind 
to proteins interacting with the auxin exporter 
(Muday and DeLong 2001). Thus, the plant has 
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Figure 3. Spatial changes in hormone signals in relation to nodule development. The figure shows an idealized cross-
section through the root at the site of nodule formation, including the xylem poles (small circles) inside the stele, which is 
surrounded by the pericycle cell layer (p). A gradient of uridine (U) exists that emanates from the xylem. ACC oxidase 
(ACCO) is expressed opposite the phloem poles and might create local ethylene gradients that regulate possible sites for 
nodule initiation. Four developmental stages are shown in clockwise sequence: (1) initial infection of rhizobia at the site of 
root hair curling (rhc) accompanied by the induction of ethylene and reactive oxygen species (ROS) as well as ENOD40 
induction in pericycle cells within hours of inoculation. (2) Precursor cells of the cortex, which will divide to become a 
nodule, show increased expression of GH3, ENOD40 and accumulation of specific flavonoids. (3) Early cortical cell divi-
sions (ccd) show enhanced AUX1. GH3 and ENOD40 expression as well as flavonoid and cytokinin accumulation. (4) In a 
differentiating nodule, increased levels of ABA, auxin, GA and nitric oxide have been detected. AUX1, GH3 and ENOD40 
expression are located in peripheral (probably vascular) tissue. Cytokinin, ABA and LOX levels are increased in the nodule 
meristem. 

several targets for regulating auxin homeostasis 
tightly to control organogenesis. 

Compared with the roots, auxins levels have been 
reported to be elevated in the nodules of a variety of 
plant species (for example, pea (Badenoch-Jones 
and others 1984), P. vulgaris (Fedorova and others 
2000) and A. glutinosa (Wheeler and others 1979)). 
Increased auxin levels in legume nodules, and in 
nodule-like structures of non-legumes, have also  

been observed after application of the synthetic 
auxin, 2,4-dichlorophenoxyacetic acid (2,4-D) (for 
example, Ridge and others 1992). Early experi-
ments suggested that the ratio of auxins to cytoki-
nins in the root was responsible for the initiation of 
cortical cell divisions and nodule formation (for 
example, Libbenga and others 1973). In the soy-
bean hypemodulating mutant nts386, the aux-
in:cytokinin balance was found to be lowered 
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compared with the wild type, suggesting that the 
auxin:cytokinin ratio could be important for regu-
lating nodule numbers (Caba and others 1998). 
These experiments suggested that rhizobia might 
manipulate auxin levels in the plant. In addition, 
sensitivity to auxin in Medicago saliva (alfalfa) lines 
correlates with the rate of pontaneous nodule 
formation, and nodulation efficiency can be in-
creased by the introduction of Agrobacterium rol 
genes, which are known to affect auxin sensitivity 
and plant hormone levels (Kondorosi and others 
1993). 

A number of experiments suggest that rhizobia 
manipulate auxin transport thus changing the 
auxin:cytokinin ratio in the root. For example, di-
rect measurements of auxin transport using labelled 
auxin showed that rhizobia inhibit acropetal auxin 
transport (from the root base to the tip) capacity in 
Vicia saliva (vetch) roots (Boot and others 1999). In 
addition, the expression of the auxin responsive 
promoter GH3 fused to the GUS reporter gene was 
reduced towards the root tip between 12 and 24 h 
following rhizobia inoculation or ballistic microtar-
geting of Nod factors in Trifolium repens (white clo-
ver; Mathesius and others 1998a). 

High GH3-GUS expression levels were then seen 
24-48 h following inoculation (Mathesius and 
others 1998a) and in soybean, increased auxin 
levels were measured 48 h after inoculation (Caba 
and others 2000). These results are consistent 
with the auxin burst hypothesis of nodulation 
which states that subsequent to the initial induction 
of nodule primordia, shoot-derived auxin export 
into the root is stimulated, resulting in elevated 
auxin levels that inhibit further nodule primordia 
initiations, thus controlling nodule numbers 
(Gresshoff 1993). This auxin burst is assumed to be 
defective in supernodulation mutants, where in-
creased auxin levels following inoculation could not 
be detected (Caba and others 2000). Altogether, it is 
likely that auxin plays (at least) a dual role during 
nodulation: in the early stages, auxin transport in-
hibition might result in a reduced auxin:cytokinin 
ratio to allow cell division to start, and later divi-
sions are inhibited by super optimal auxin levels 
(Figure 1). 

The application of synthetic polar auxin transport 
inhibitors (PATIs), which interfere with the hor-
mone balance, can induce pseudo-nodule structures 
on the root and are also sufficient to induce some of 
the nodulin genes inside pseudo-nodules, including 
ENOD2 and ENODI2 (Hirsch and others 1989; 
Scheres and others 1992; Wu and others 1996). 
More recently, it has been shown that PATIs mimic 
the action on Nod factors on the repression of cal- 

modulin expression in P. vulgaris (Camas and others 
2002). 

In addition to PATIs, the inhibition of auxin 
transport could be achieved by regulating the 
number of auxin efflux carriers in the cells trans-
porting auxin. Alternatively, Nod factors or chitin 
oligosaccharides could affect the affinity of endog-
enous auxin transport regulators to their binding 
site, similar to the effect of ethylene (Suttle 1988), 
and/or Nod factors could induce the synthesis or 
release of an endogenous auxin transport inhibitor. 
Other plant compounds, including ethylene, cyto-
kinins and flavonoids (for example, Brown and 
others 2001; Jacobs and Rubery 1988; Murphy and 
others 2000; Stenlid 1976), can also inhibit auxin 
transport and can regulate various peroxidases and 
IAA oxidases, the enzymes that break down auxin 
(Burgh and Burgh 1966; Lee 1971), thus leading to 
local shifts in the plant auxin:cytokinin ratio. 

Peroxidase activity is elevated in P. vulgaris nod-
ules, presumably to limit an auxin increase in ma-
turing nodules (Fedorova and others 2000). A 
temporal and spatial correlation was found between 
the accumulation of specific flavonoids that inhibit 
auxin breakdown by a peroxidase and the accumu-
lation of GH3:GUS expression in nodule primordia 
(Mathesius 2001). Furthermore, the accumulation 
of other flavonoids that stimulate auxin breakdown 
was detected in cells that exhibit low GH3:GUS ac-
tivity, further suggesting that a local accumulation of 
specific flavonoids could regulate auxin levels. 

The expression of flavonoid genes (for example, 
PAL (phenylalanine-ammonia lyase) and CHS 
(chalcone synthase)) is enhanced in nodules (for 
example, Estabrook and Sengupta-Gopalan 1991; 
Djordjevic and others, 1997), and rhizobia and Nod 
factors can induce flavonoid gene expression and 
localized flavonoid accumulation (for example, 
Djordjevic and others 1997; Lawson and others 
1996; Mathesius and others 1998b; Schmidt and 
others 1994). Therefore, it has been suggested that 
Nod factors could have a role in inducing flavonoid 
accumulation at the infection site, followed by 
changes in the auxin balance (Hirsch 1992; Math-
esius and others 1998a). By micro-targeting flavo-
noids into roots of white clover carrying the 
GH3:GUS construct, it was shown that flavonoids 
had similar effects on auxin distribution as Nod 
factors and synthetic auxin transport inhibitors. 
Although this suggests that flavonoids could mimic 
Nod factor action, it remains unclear if the exact 
flavonoids induced by rhizobia in the root would 
mediate this response in the concentration present 
in the tissue, and whether these flavonoids would 
be sufficiently mobile to reach their binding site. 
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There is also evidence that auxin distribution is 
regulated locally in nodule primordia and mature 
nodules, which would allow for spatial control of 
cell division in the root (Figure 3). Direct meas-
urements of auxin (that is, indole acetic acid, IAA) 
contents in P. vulgaris roots and nodules showed 
increased IAA levels in roots preceding nodule for-
mation and during the early stages of nodule 
emergence, whereas auxin levels dropped in mature 
nodules (Fedorova and others 2000). In white clo-
ver, expression patterns of GH3:GUS indicated that 
auxin levels and/or sensitivity are increased in early 
dividing cortical cells (Mathesius and others 1998a). 
GH3:GUS expression then decrease in the differen-
tiating nodule primordium and remain only in de-
veloping vascular tissue, consistent with a role of 
auxin in triggering cell division and vascular bundle 
formation. Recent studies by de Billy and others 
(2001) have expanded this idea by showing that in 
Medicago truncatula AUX/ -related genes (termed 
MILAX) are induced in early nodule primordia and 
developing vascular tissue. These expression sites 
mirrored those of GH3:GUS in white clover (Figure 
3), which suggests that auxin might increase in 
early nodule primordia by regulation of auxin im-
port into these cells. 

The role of auxin in nodulation is tightly linked to 
the development of other root structures, including 
lateral roots and root galls, which require similar 
induction of new cell divisions and differentiation as 
nodules. Auxin transport is required for lateral root 
induction (Bhalerao and others 2002) and auxin 
appears to accumulate not only in nodule but also 
lateral root primordia (Himanen and others 2002) 
and root galls caused by nematodes (Goverse and 
others 2000; Hutangura and others 1999). Expres-
sion levels of GH3:GUS were very similar in devel-
oping nodule and lateral root primordia (Mathesius 
and others 1998a). These similarities are likely due 
to auxin-induced activation of cell cycle genes that 
are required for the induction of new cell divisions 
during organogenesis (Doerner and others 1996; 
John and others 1993). A genetic link between 
regulation of root system architecture and nodula-
tion has been found in the Lotus japonicus (lotus) 
harl (hypernodulation aberrant root formation) and 
the soybean nts mutants (Wopereis and others 2000; 
Searle and others 2003, respectively), which are 
both supernodulating mutants that show increases 
in the number of lateral roots in the uninoculated 
state and altered activities of the root apical men-
stem. Because auxin affects both lateral root, nodule 
and meristem formation, it is tempting to speculate, 
and pertinent to test, whether autoregulation exerts 
some of its effects via changes in auxin homeostasis,  

or whether additional, or different, signals are in-
volved. The fact that lateral root frequency is not 
affected in the supemodulation mutant astray in L. 
japonicus suggests the existence of nodule specific 
regulators in addition to regulation of all root 
meristems (Nishimura and others 2002b). 

Cytokinins 

Cytolcinins are a class of plant hormones having 
diverse roles in cell cycle regulation and differenti-
ation. Re-activation of the cell cycle initiates nodule 
primordium formation (Foucher and Kondorosi 
2000; Goormachtig and others 1997; Yang and 
others 1994) and cytokinins, together with auxin 
and ethylene, play a major role in cell cycle pro-
gression in plants (D'Agostino and Kieber 1999). 
Therefore, it is likely that cytokinins are also nec-
essary for new cortical cell divisions initiated by 
Rhizobium. However, even though cytokinins have 
been reported to be synthesized by different bacte-
ria, including rhizobia (Phillips and Torrey 1970, 
1972), it is unlikely that cytokinins provided by 
rhizobia are the main factors necessary for nodule 
initiation, because purified Nod factors are sufficient 
to induce nodules in some legume species. Instead, 
it is more likely that Nod factors trigger changes in 
cytokinin synthesis, turnover or sensitivity in the 
roots during nodule initiation. 

Either way, several pieces of evidence suggest 
that rhizobia do induce changes in the cytokinin 
balance of the root. Nodule cytokinin levels are re-
ported to be elevated in numerous plant species 
when compared with the roots (for example, pea 
(Badenoch-Jones and others 1987), Phaseolus mungo 
(Jaiswal and others 1981), Myrica gale (Rodriguez-
Barrueco and others 1979), and Vicia faba (Hensen 
and Wheeler 1976)). In pea, Newcomb and others 
(1976) showed that nodule cytokinin levels were 
highest in young, developing nodules and decrease 
with maturity. Syono and others (1976) demon-
strated that the highest cytokinin levels in the pea 
nodule were located in the meristem (Figure 3). 
This agrees with the role of cytokinin in cell division 
and differentiation and supports the results of 
Newcomb and others (1976) as young nodules 
would be the most mitotically active and thus one 
would expect them to contain elevated levels of the 
hormone. 

The application of cytokinins induces the forma-
tion of pseudo-nodule structures on legumes and 
non-legumes, including Nicotiana tabacum (tobacco) 
(Arora and others 1959), A. glutinosa (Rodriguez-
Barrueco and Bermudez de Castro 1973), pea 
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(Libbenga and others 1973), Macroptilium atropur-
pureum (siratro) (Relic and others 1994) and alfalfa 
(Cooper and Long 1994; Bauer and others 1996). 
Cooper and Long (1994) transferred the Agrobacte-
rium trans-zeatin secretion gene into E. coli and 
nodulation deficient mutants of R. meliloti, and 
showed that synthesis of the cytokinin zeatin of 
these bacteria is sufficient to induce nodule-like 
structures in alfalfa. However, it is important to note 
that the concentration of cytokinins is important in 
determining whether a stimulating or inhibiting 
effect on nodulation occurs (Lorteau and others 
2001). 

The roles of cytokinins during nodule develop-
ment include, as expected, the activation of the cell 
cycle and genes associated with it (Jelenska and 
others 2000). For example, cytokinins induce the 
expression of Msgbl, which is expressed in dividing 
cells of alfalfa, including those of the nodule prim-
ordia, and may be involved in hormone-mediated 
cell division including having a putative signal 
transduction role during nodule organogenesis 
(McKhann and others 1997). Cytokinins may also 
be important for activating a number of early nod-
ulin genes. For example, ENOD2, a gene expressed 
in nodules and nodule primordia, can be induced by 
cytokinins in Sesbania rostrata (Dehio and deBrujin 
1992) and in alfalfa (Cooper and Long 1994; Bauer 
and others 1996). ENOD12A, coding for a hydrox-
yproline-rich glycoprotein that is expressed during 
nodule organogenesis, can also be induced by cy-
tokinins in addition to Nod factor treatment (Bauer 
and others 1996). Another early nodulin gene that 
may have an important role in organ formation is 
ENOD40 (see Signalling Peptides section below), 
which is also induced by both Rhizobium and cyto-
kinins in alfalfa (Fang and Hirsch 1998; Mathesius 
and others 2000; Sinvany and others 2002). 
Screening of molecular markers in alfalfa identified 
seven nodulin genes regulated by cytokinins, four of 
which were also inducible by auxin, suggesting 
partial overlaps between auxin and cytokinin reg-
ulated pathways during nodulation (Jimenez-Zurdo 
and others 2000). Cytokinins have further been 
shown to affect ethylene levels in pea roots (Lorteau 
and others 2001). However, Lorteau and others 
(2001) were unable to demonstrate a direct corre-
lation between cytokinin-induced ethylene and 
nodule inhibition, as inhibitors of ethylene syn-
thesis did not restore nodulation in plants treated 
with high levels of cytokinin. 

Cytokinins probably also play a role in setting up 
a carbohydrate sink for the developing nodule as 
they can induce starch formation in the root cortex, 
similar to that of Rhizobium infection (Bauer and  

others 1996). The use of a split root system in vetch 
has shown that cytokinin treatment of a root can 
also induce acidification of the growth medium 
around a separate root of the same plant (van 
Brussel and others 2002). These authors suggest 
that while cytokinins do not appear to be the 
autoregulation signal, they might create a sink in 
the inoculated root, which sends a signal to the 
shoot that regulates metabolism, including acid se-
cretion, in the uninoculated roots. This cytolcinin-
induced root signal could play a role in autoregu-
lation, in addition to the so far unidentified auto-
regulation signal from the shoot, which requires 
actively dividing cortex cells (van Brussel and others 
2002). 

Legume mutants such as R50 (pea) and MN1008 
(alfalfa) also provide valuable tools for investigat-
ing the roles of cytokinins in nodulation. R50 de-
velops abnormal infection threads that twist and 
bulge as opposed to properly progressing into the 
inner cortex (Lorteau and others 2001). Lorteau and 
others (2001) demonstrated that this characteristic 
could also be induced in wild type pea upon cy-
tokinin application. Interestingly, nodulation is 
rescued in R50 by the application of inhibitors of 
ethylene biosynthesis or action. However, as stated 
above, the same ethylene inhibitors were unable to 
reverse the effects of cytokinin application on wild 
type pea. 

The application of cytokinins to the Rhizobium 
and Nod factor resistant MN1008 overcomes the 
nodulation block in this mutant (Hirsch and others 
1997), suggesting that this plant has low levels of 
the hormone or is unable to increase its cytokinin 
levels to meet the requirements for nodule initia-
tion. PATTs were also reported to induce pseudo-
nodules in this mutant (Hirsch and Fang 1994), 
suggesting again that the cytokinin:auxin ratio 
rather than cytokinins alone might be important for 
nodulation. The mutated gene in MNI008 was re-
cently cloned and identified as a receptor kinase 
(Endre and others 2002). 

Further evidence that cytokinins play a role in 
cell division and autoregulation comes from the 
receptor kinase mutant harl of L. japonicus (Krussel 
and others 2002; Nishimura and others 2002a). The 
harl mutant has a short root phenotype that can be 
mimicked in the wild type by application of cytok-
iMn. However, in the presence of the ethylene 
synthesis inhibitor aminoethoxyvinylglycine 
(AVG), cytokinin caused root elongation in the 
mutant in excess of untreated wild type levels, 
suggesting that harl has an altered response or 
sensitivity to cytokinin that is not mediated by 
ethylene (Wopereis and others 2000). 
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Ethylene 

Ethylene is a gas with multiple roles in plant de-
velopment and defense. Its role in nodulation has 
recently been reviewed by Guinel and Geil (2002) 
and Wang and others (2002). Ethylene might have 
a dual effect on nodulation in that it causes a local 
inhibition of nodule formation in most legumes but 
might be required at certain levels for proper in-
fection by the bacteria. The application of ethylene, 
or ethylene-releasing compounds, is inhibitory to 
nodule organogenesis in numerous species includ-
ing P. vulgaris (Grobbelaar and others 1971), pea 
(Drennon and Norton 1972; Lee and LaRue 1992c), 
white clover (Goodlass and Smith 1971), Melilotus 
alba (sweet clover) (Lee and LaRue 1992c), M. 
truncatula (Penmetsa and Cook 1997), L. japonicus, 
and siratro (Nukui and others 2000). Grobbelaar 
and others (1971) found that ethylene also reduced 
the level of nitrogen fixation in P. vulgaris. In pea, 
Lee and LaRue (1992c) determined that ethylene 
concentrations as low as 0.07 Aft are able to in-
hibit nodule formation. It appears, however, that 
soybean is less sensitive to the hormone as nodu-
lation of this species is not affected by applied eth-
ylene (Lee and LaRue 1992c; Schmit and others 
1999; Nukui and others 2000). This finding suggests 
that different species display different requirements 
and regulatory mechanisms for hormones, a point 
that must be considered for any hormone when 
investigating its roles in processes such as nodula-
tion. 

Inoculation of roots with rhizobia has been re-
ported to induce increases in the local ethylene 
concentration in alfalfa (Ligero and others 1986), 
vetch (van Workum and others 1995), and soybean 
(Suganuma and others 1995), but this increase was 
not detected in pea (Lee and LaRue 1992b). These 
increases are likely due to an initial defense re-
sponse elicited by the invading bacteria, which, in-
terestingly, also synthesize the hormone (Billington 
and others 1979). 

The application of inhibitors of ethylene synthesis 
(for example, AVG) or perception (for example, 
silver ions) increased the number of nodules that 
formed on pea (for example, Lee and LaRue 1992a), 
alfalfa (Peters and Crist-Estes 1989; Caba and others 
1998), L. japonicus and siratro (Nukui and others 
2000). These compounds also partially restored the 
nodulation phenotype of low nodulating mutants of 
pea including sym5 (Fearn and LaRue 1991), brz 
(Guinel and LaRue 1992) and sym2I (Markwei and 
LaRue 1997) and completely restored that of sym16 
(Guinel and Sloetjes 2000). Surprisingly, the no-
dulation phenotype of sym17, a pea mutant thought  

to overproduce the hormone, is not rescued with 
the application of ethylene inhibitors (Lee and La-
Rue 1992a). Interestingly, Yuhashi and others 
(2000) illustrated that Bradyrhizobium elkani-pro-
duced rhizobitoxine, which acts as an inhibitor of 
ethylene synthesis, also enhances the nodulation 
of siratro, possibly by helping the bacteria over-
come ethylene's inhibitory effects on nodulation. 
Additionally, Roddam and others (2002) recently 
illustrated that the role of ethylene in nodula-
tion can depend on the infecting Rhizobium culti-
var as the application of AVG to Trifolium 
subterraneum (subterranean clover) enhanced the 
nodulation by some, but not all, strains of R. legu-
minosarum. 

The mechanism of ethylene action as an inhibitor 
of nodulation is not known. One proposal is that 
ethylene induces plant chitinases, which subse-
quently destroy Nod factors and thereby limit the 
extent of nodule initiation (Mellor and Collinge 
1995; Staehelin and others 1994). 

Oldroyd and others (2001) postulated that a block 
in nodulation induced by ethylene could occur very 
early during the signal transduction cascade. Evi-
dence for this came from the finding that the sen-
sitivity of root hair cells to Nod factors is 
significantly increased in the ski mutant, and that 
modulation of ethylene synthesis in the wild type 
had comparable effects on the sensitivity of Nod 
factor perception. Ethylene appears to influence a 
component at, or upstream of, calcium spiking in 
the Nod factor signal transduction pathway leading 
Oldroyd and others (2001) to propose that, in ad-
dition to inhibiting the frequency of calcium spik-
ing, the hormone determines the Nod factor 
concentration required for the root hair Ca 2+  spik-
ing response. These authors also illustrated that in 
M. truncatula, ethylene regulates the expression of 
the early nodulin genes ENOD11 and RIP1 and thus 
might effect events downstream of the early influ-
ence on calcium spiking. 

Guinel and Geil (2002) proposed a model in 
which the rhizobia would not come into contact 
with ethylene in the root until after the epidermis, 
as this cell layer contains no ACC oxidase (the en-
zyme that catalyzes the conversion of 1-aminocy-
clopropane- 1 -carboxylic acid (ACC) to ethylene) 
and does not appear to perceive the hormone. 
Consistent with this model is evidence that in pea, 
ethylene appears to block rhizobial entry into the 
root cortex, rather than the number of infection 
events (Lee and LaRue 1992c). This finding is sup-
ported by work with the brz mutant of pea, which 
has a third less infection events than its wild 
type. Although nodulation in brz is partially restored 
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by ethylene inhibitors, the number of infection 
events is only slightly increased (Guinel and LaRue 
1992). 

Contrary to these findings with pea, ethylene 
does appear to negatively regulate rhizobial colo-
nization of M. truncatula as the application of AVG 
increased the number of infection events, whereas 
ACC decreased them (Oldroyd and others 2001). In 
addition, the ethylene insensitive ski mutant of M. 
truncatula has a significantly increased number of 
infection events compared with that of its wild type 
(Penmetsa and Cook 1997; Oldroyd and others 
2001). The ski mutant is also unable to regulate the 
number of these events that develop into fully 
functional nodules and as such it hypernodu-
lates (Penmetsa and Cook 1997). Although ethyl-
ene is unlikely to be involved in systemic 
autoregulation (Nishimura and others 2002c; Wo-
pereis and others 2000), it is likely that ethylene 
plays a role in regulating infection events locally in 
the susceptible root zone, as demonstrated in the ski 
mutant. 

Ethylene may positively influence infection 
thread development as the number of infection 
threads aborted in ski is very low (Penmetsa and 
Cook 1997; Oldroyd and others 2001). Guinel and 
Geil (2002) suggested that in pea, ethylene could 
affect the cytoskeleton, preinfection thread and in-
fection thread formation. Using pea and vetch, 
Heidstra and others (1997) demonstrated that eth-
ylene is also likely to be involved in determining the 
positioning of nodule primordium development 
around the stele (Figure 3). These authors showed 
that the expression of ACC oxidase is elevated in the 
inner cortical cells located in front of the root 
phloem poles. These locations are between the po-
sitions at which nodules preferentially arise oppo-
site the root xylem poles. In addition, inoculation of 
vetch with R. leguminosarum induces ethylene-re-
lated responses, including a thick and short root 
phenotype and abnormal nodule positioning on the 
root system, which is restored following AVG ap-
plication (Zaat and others 1989; van Spronsen and 
others 1995). 

Interestingly, ethylene was also discovered to 
change the phenotype of nodules of Sesbania ro-
strata, a legume that grows in waterlogged soils and 
therefore likely to be exposed to varying levels of 
ethylene (Fernaandez-Lopez and others 1998). The 
authors found that in the absence of ethylene 
(perception), nodules were of the indeterminate 
type, whereas in the presence of ethylene, deter-
minate nodules with a terminal meristem were 
formed, suggesting a role for ethylene in meristem 
differentiation. 

Gibberellins 

Little is known about the signalling involvement of 
gibberellins (GAs) in nodulation. Early work fo-
cused on applying the hormone (generally GA 3 ) to 
the plant, which resulted in a decline in nodule 
formation (Thurber and others 1958; Galston 1959; 
Fletcher and others 1959; Mes 1959). In 1952, 
Nutman demonstrated that the removal of root tips 
and mature nodules from various red clover sp. pro-
moted the formation of new nodules, presumably 
by removing the source of a compound inhibitory to 
nodulation. Based on the results of Nutman (1952), 
and evidence that nodules of pea and P. vulgaris 
contain elevated levels of GAs, Radley (1961) spec-
ulated that GAs regulate nodule formation. Since 
then, nodules of Lupinus luteus (Dullaart and Duba 
1970), A. glutinosa (Henson and Wheeler 1977), 
Phaseolus lunatus (Evensen and Blevins 1981), soy-
bean (Williams and Sicardi de Mallorca 1982), Lens 
sp. (Dangar and Basu 1984), Phaseolus aureus 
(Dangar and Basu 1987), P. vulgaris (Atzorn and 
others 1988), S. saman (Chattopadhyay and Basu 
1989) and Vigna unguiculata (covvpea) (Dobert and 
others 1992b and c) have all been reported to con-
tain higher levels of GAs than adjacent root tissue, 
yet to date no direct evidence implies a signalling 
role for GAs in the regulation of nodule formation. 

In 1970, Dullaart and Duba reported in L. luteus 
that, in addition to having increased GA levels in 
nodule extracts compared with those of the sur-
rounding root tissue, the application of GA 3  to 
nodule extracts stimulated IAA production from L-
tryptophan. These authors speculated that a sig-
nalling interaction existed between the two hor-
mones in which GA 3  was able to either increase the 
bioproduction, or decrease the metabolism, of IAA 
(Figure 1), but the mechanism underlying this in-
teraction has still not been demonstrated. However, 
the reverse interaction has since been confirmed in 
stems, where the biosynthesis of GA 1  requires the 
presence of IAA (Ross and others 2000). In addition, 
the application of PATIs to the stem reduces GA1 
levels below the site of PATI application, corre-
sponding with the IAA level at these locations (Ross 
1998). PATIs can induce the formation of pseudo-
nodules on the root systems of various species, and 
as such it will be interesting to investigate what 
role(s) GAs, and possibly more importantly GA/IAA 
ratios, play in the formation of these outgrowths. 
Recently, IAA was shown to promote root growth in 
Arabidopsis by modulating cellular responses to GAs 
(Fu and Harberd 2003) and it seems possible that a 
similar interaction might exist between the two 
hormones in regulating nodule development. 
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Nodule GA levels appear to be influenced by the 
infecting Rhizobium strain in P. lunatus (Tripplett and 
others 1981; Dobert and others 1992a, c), contrary 
to a report on P. vulgaris nodules (Atzom and others 
1988). Many reports have demonstrated that vari-
ous Rhizobium strains are capable of synthesizing 
GAs in culture (for example, Katznelson and Cole 
1965; Rademacher 1994). Recently, putative GA 
biosynthetic enzymes were identified in Bradyrhiz-
obium japonicum that function anaerobically, in-
cluding under the symbiotic conditions that 
bacteroids are subjected to in the symbiosome (Tully 
and others 1998), suggesting that rhizobia might be 
capable of regulating GA levels both before and after 
bacteroid differentiation. However, whether or not 
the elevated GA levels of P. lunatus nodules stem 
directly from rhizobial synthesis, or if the bacteria 
induce the plant to increase GA production, is un-
known (Dobert and others 1992c). Dobert and 
others (1992c) hypothesized that, in addition to the 
bacterial strain, nitrogen, ABA and even the host 
plant species may have a role in regulating nodule 
GA concentrations. 

The application of GA 3 , and to a lesser extent 
GA4, induced the formation of nodule-like struc-
tures on the roots of L. japonicus (Kawaguchi and 
others 1996). These structures initiated from divi-
sions of the pericycle and could be suppressed with 
the addition of nitrate. Thus, it appears that an in-
teraction exists in L. japonicus whereby GAs posi-
tively regulate the division of pericycle cells 
necessary for nodule organogenesis and that ni-
trates modulate this process by acting as signalling 
elements that suppress these GA-induced divisions. 

Nonetheless, it has been argued that an increased 
concentration of GAs might not be a requirement 
for nodule formation in some species, such as P. 
vulgaris (Atzorn and others 1988). If elevated GA 
levels are not required for nodulation, then based 
on the previously mentioned work demonstrating 
that GAs are influenced by IAA, the increased GA 
levels detected in nodules may be no more than a 
consequence of the high IAA levels also present 
there. 

As an alternative to having a role in nodule for-
mation, GAs may act as signals for the hydrolysis of 
nodule starch to provide a substrate for rhizobial 
respiration requirements. GAs promote the pro-
duction of a-amylase (for example, Gubler and 
others 1995), an enzyme involved in the metabo-
lism of starch, and it may be worth investigating 
whether or not the activities of the hormone and 
the enzyme are interacting within the nodule. Evi-
dence for a link between GAs and a-amylase in 
starch hydrolysis exists for various fungal species  

(reviewed in Rademacher 1994), but to the best of 
our knowledge, the idea that GAs might have a 
similar role in nodulation has not been proposed 
previously. If a correlation is established among 
GAs, a-amylase and starch in nodulation, it is pos-
sible that the bacteria are responsible for regulating 
nodule GA levels as a means of obtaining nutrients. 
As we hypothesized for ABA and ethylene, this al-
ludes to multiple roles for GAs in nodulation, in-
cluding aiding in cell division and elongation and 
providing the energy requirements for the nitrogen-
fixing bacteria. Elevated nodule GA levels have also 
been correlated with increased intemode number 
and length and increased petiole length in P. lunatus 
(Tripplett and others 1981; Dobert and others 
1992a, c) and cowpea (Dobert and others 1992b, c). 
Thus, GAs may benefit both symbionts by increas-
ing the plants size, thereby increasing the photo-
synthetic capability of the plant, resulting in more 
photosynthates for plant and nodule growth and 
functioning. 

SIGNALLING PEPTIDES 

Apart from the classical plant hormones, peptides 
have recently emerged as potential regulators of 
nodulation. Compared with animal peptide hor-
mones, only a few plant signalling peptides have 
been discovered so far. However, this number is 
likely to rise because more and more receptor kin-
ases are being identified as playing a role in plant 
development and nodulation, many of which could 
be activated by peptide ligands. For example, recent 
discoveries of receptor kinases responsible for early 
Nod factor perception/signal transduction 
("NORK"), (Endre and others 2002; Stracke and 
others 2002) and for autoregulation of nodulation 
("NARK") (Krusell and others 2002; Nishimura and 
others 2002a; Searle and others 2003) indicate that 
peptides or proteins could be ligands for these no-
dulation-related receptor kinases. 

One putative peptide that plays an important role 
in nodulation is the early nodulin ENOD40. There 
has been some debate on whether or not ENOD40 is 
actually translated. Several ORFs have been identi-
fied with stable predicted secondary structures, and 
it was initially suggested that ENOD40 acts in the 
form of a stable RNA, a so-called "riboregulator" 
(Asad and others 1994; Crespi and others 1994). 
However, Sousa and others (2001) found that 
translation of two small ENOD40 ORFs is neces-
sary for biological function (induction of cortical 
cell division) and Rohrig and others (2002) report-
ed detection of one of the ENOD40 peptides by 
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immunoprecipitation and Western blotting. Muta-
tional analysis suggests that the translated products 
might have a role in stabilizing a biologically active 
ENOD40 mRNA structure (Sousa and others 2001). 
It is therefore possible that both the peptide and the 
mRNA are necessary for biological function as a ri-
bonucleoprotein (Sousa and others 2001), although 
no target or receptor has so far been found. 

ENOD40 appears to play an important role in cell 
cycle control because over-expression (Charon and 
others 1997) and microtargeting (Sousa and others 
2001) of ENOD40 induces cortical cell divisions in 
alfalfa roots in the absence of rhizobia and causes 
teratomas in Medicago embryos. In the presence of 
rhizobia, overexpression of ENOD40 was shown to 
accelerate nodulation (Charon and others 1999). In 
contrast, silencing of ENOD40 leads to arrest of cal-
lus growth in Medicago (Crespi and others 1994). 
Recent evidence suggests that ENOD40 might play a 
role in sucrose partitioning or unloading from the 
phloem in the nodule (and/or the whole plant), 
because synthetic ENOD40 peptides bind to nodulin 
100, a sucrose synthase (Rohrig and others 2002). A 
role in sucrose partitioning might be related to 
ENOD4O's role in promotion of (cortical) cell divi-
sion because incipient meristems are strong carbo-
hydrate sinks. The expression of ENOD40 in vascular 
tissue in roots and mature nodules (Kouchi and 
Hata 1993) supports a role in sucrose unloading. 

ENOD40 has been identified in many legumes as 
well as the non-legume rice (Kouchi and others 
1999). In all legumes examined, ENOD40 mRNA has 
been localized in dividing and meristematic cells 
(Figure 3; for example, Asad and others 1994; Co-
nch and others 1998; Crespi and others 1994; Fang 
and Hirsch 1998; Mathesius and others 2000; Yang 
and others 1993), consistent with the hypothesis 
that ENOD40 plays a role in cell division. ENOD40 is 
thought to be involved in the earliest stages of 
nodule initiation because it is expressed within 
hours of inoculation with nodulating rhizobia (Co-
rich and others 1998; Fang and Hirsch 1998) and its 
expression in the pericycle precedes nodule initia-
tion (Figure 3) (Compaan and others 2001). In ad-
dition, ENOD40 expression is induced by signal 
molecules that can initiate cortical cell divisions, 
including Nod factors (Fang and Hirsch 1998; Mi-
nami and others 1996), cytokinins (Fang and Hirsch 
1998; Mathesius and others 2000), and auxin 
transport inhibitors (Fang and Hirsch 1998). 
ENOD40 is also induced in the nodule primordium 
by Rhizobium strains that induce cell divisions but do 
not infect and invade the nodules (Yang and others 
1993), which is a further indication that ENOD40 is 
involved in nodule morphogenesis, rather than the  

infection process. However, ENOD40 is not specific 
to the nodulation process, and is also induced dur-
ing the establishment of lateral root primordia 
(Mathesius and others 2000) nematode-induced 
galls (Favery and others 2002; Koltai and others 
2001) and mycrorrhizal interactions (Staehelin and 
others 2001; Sinvany and others 2002). 

DEFENCE-RELATED SIGNALLING 
COMPOUNDS 

In addition to its previously mentioned roles in 
nodulation, ethylene is involved in pathogenic 
defense as part of a signalling process termed "sys-
temic acquired resistance" (SAR). Other compo-
nents of SAR include salicylic acid (SA), nitric oxide 
(NO), reactive oxygen species (ROS), jasmonic acid 
(JA) and its methyl ester (MeJA) (reviewed in Ryals 
and others 1996; Rojo and others 2003). Although 
the mechanism is not fully understood, symbiotic 
organisms invade the host plant without fully in-
ducing the SAR response. However, Vasse and 
others (1993) demonstrated that some plant defense 
compounds do accumulate following the estab-
lishment of the first nodule primordia, resulting 
in increased abortion of infection threads and lo-
calized hypersensitivity response (HR), including 
necrosis. These authors suggested that this response 
is part of the autoregulatory mechanism used by 
plants to control the level of nodulation. Despite 
this and much work involving ethylene (described 
above), little is known about the signalling in-
volvement of other SAR components regarding 
nodulation; major findings involving these com-
pounds are addressed in the following section (see 
also Figure 2). 

Salicylic Acid 
Pre-soaking seeds with salicylic acid (SA) prior to 
sowing decreased the nodule number and protein 
content and root nitrogenase activity of Vigna mungo 
plants (Ramanujan and others 1998). SA applica-
tion prior to inoculation with rhizobia or purified 
Nod factor also decreased the number and dry 
weight, and delayed the emergence, of alfalfa nod-
ules (Martfnez-Abarca and others 1998). van 
Spronsen and others (2003) found that 0.1 mM SA 
application completely inhibited indeterminant 
nodule formation, including the mitogenic effect 
induced by Nod factors, in vetch, pea (including the 
hypernodulating mutant P88), alfalfa and white 
clover but did not affect determinant nodule for- 
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mation in P. vulgaris, L japonicus and Glycine soya. In 
contrast to these findings, in soybean, 5 and 1 mM 
SA did decrease the nodule number and dry weight 
and suppressed photosynthesis and nitrogen uptake 
(Lian and others 2000). Also in soybean, Sato and 
others (2002) found that concentrations of SA as 
low as 0.1 mM applied 5 days prior to bacterial in-
oculation decreased the nodule number and dry 
weight in addition to the level of nitrogen fixation. 
SA also reduced the nodule number and dry weight 
in supernodulating soybean mutants, but the de-
creases were less pronounced than in the wild type. 
Sato and others (2002) proposed that SA, or SAR 
induced by SA, might be involved in an autoregu-
latory signalling pathway of nodulation. 

Upon symbiont recognition, the root-SA level of 
alfalfa did not increase (as occurs upon plant-path-
ogen recognition), although it did increase in plants 
inoculated with either an incompatible or a com-
patible but Nod factor-deficient mutant of Rhizobium 
(MartInez-Abarca and others 1998; Blilou and oth-
ers 1999). Thus, it was concluded that a function of 
Nod factors is to inhibit host SA-mediated defenses. 
Interestingly, upon inoculation with a compatible 
rhizobial strain, the root-SA level of the pea sym30 
mutant did increase, whereas upon inoculation 
with plant pathogens, an increase was not detected 
(Blilou and others 1999). Thus, the gene product 
appears to function specifically with symbiotic mi-
croorganisms leading Blilou and others (1999) to 
conclude that the product is likely required for 
symbiosis, as a suppressor of a SA-dependent def-
ense response. 

In Rhizobium etli, multi-drug resistance genes 
have been identified that act as bacterial efflux 
pumps that confer resistance to the accumulation of 
toxic compounds. Mutations to two of these genes, 
termed rmrA and rmrB, enhanced the sensitivity of 
the bacteria to plant toxins including phytoalexins, 
flavonoids and SA (Gonzalez-Pasayo and others 
2000). These mutants displayed diminished growth 
on SA or naringenin, and the rmrA mutant formed 
40% fewer nodules on P. vulgaris than its wild type 
(Gonzalez-Pasayo and others 2000). It was con-
cluded that by preventing the accumulation of toxic 
compounds, R. etli have established an advantage 
that improves their chances of nodulating the host. 
In addition, SA was found to promote isoflavonoid 
(for example, genistein) synthesis and secretion 
from L. luteus roots (Kneer and others 1999). 
Genistein can function as a phytoalexin due to its 
slight antimicrobial and fungistatic activity and thus 
rhizobia containing resistance genes to such a toxin 
should have an infectious advantage over bacteria 
lacking the efflux pump. 

Nitric Oxide 

In nitrogen-fixing rhizobia, heme-based sensors 
have been detected, such as the oxygen-regulated 
FixL protein kinase in R. meliloti (Gilles-Gonzalez 
and others 1994). When active, the deoxy-FixL 
protein induces a gene expression cascade required 
for nitrogen fixation. This process is inhibited by the 
presence of 02, and possibly also by NO and CO, 
thus halting nitrogen fixation (Gilles-Gonzalez and 
others 1994). Therefore, NO may have a role in 
regulating gene expression required for nitrogen 
fixation within the nodule. 

NO has been identified as an inhibitor of bacter-
oid nitrogenase (for example, Trinchant and Rigaud 
1982). Maskell and others (1977) illustrated that 
NO tightly binds to leghemoglobin (Lb) in soybean 
and cowpea nodules forming nitrosyleghemoglobin 
complexes (NO-Lb) and suggested that Lb may ac-
tually have a higher affinity for NO than it does for 
0 2 . Thus, the NO-Lb complex may act as a protec-
tive mechanism used by the nodule to prevent the 
inhibiting NO from reaching the NO-sensitive ni-
trogenase of the bacteroid. Alternatively, the accu-
mulation of NO-Lb may result in the inhibition of 
nitrogenase activity (Kanayama and Yamamoto 
1990) as the binding of NO to Lb may competitively 
inhibit the binding of oxygen, subsequently dimin-
ishing the oxygen supply available to bacteroids, 
thereby reducing nitrogen fixation (Mathieu and 
others 1998). 

Soybean nodules on roots exposed to high con-
centrations of nitrate mainly contained NO-Lb 
(Kanayama and Yamamoto 1990) and declined in 
nitrogen fixation rates paralleled by the increase in 
NO-Lb in these nodules. Thus, the plant may induce 
NO synthase (NOS) in response to excess exogenous 
nitrate as a means of regulating nitrogen fixation 
activity. However, Mathieu and others (1998) 
found that even in the absence of applied nitrate, 
some NO-Lb exists in soybean nodules. These au-
thors found that the amount of NO-Lb was highest 
in young nodules, decreased with nodule age, and 
was nearly absent in senescent or H 20 2 -treated 
nodules. Moreover, in soybean plants grown in 
controlled environmental conditions, NO-Lb was 
shown to comprise almost a third of the total nodule 
Lb content (Maskell and others 1977), but to date, 
no definitive evidence exists to explain this occur-
rence. 

NOS activity has been detected in nodules of 
Lupinus albus (Cueto and others 1996). Two puta-
tive NOS sites were detected: one in the vascular 
bundles and the other in the inner cells of the in-
fected zone (Cueto and others 1996). In contrast to 
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root preparations, the synthesis of nodule NO was 
found to be Ca2+  independent and the authors 
speculated that nodule NOS could possibly be in-
duced by compounds such as lipopolysaccharides of 
compatible Rhizobia sp. 

Reactive Oxygen Species 
To prevent pathogen invasion, reactive oxygen 
species (ROS) or active oxygen species (AOS), in-
cluding hydrogen peroxide (H 20 2 ), superoxide 
radicals 0 2and the hydroxide radical ('OH) are 
upregulated in the plant upon pathogen recogni-
tion. Together, these compounds reinforce plant cell 
walls and trigger a localized hypersensitive response 
(HR) involving defense gene expression, the in-
duction of SAR and programmed cell death (re-
viewed in Ryals and others 1996). ROS are also 
induced in host plants upon' inoculation with Rhiz-
obium (for example, Bueno and others 2001; Santos 
and others 2001) and thus it is imperative that the 
bacteria compensate for these defense molecules in 
order to achieve nodule organogenesis. Both plant 
and bacterial compounds exist that help protect 
against the harmful effects of ROS, including per-
oxidases, catalases and superoxide dismutase (SOD) 
among others, and Sinorhizobium meliloti genes in-
duced upon host infection include those that protect 
against ROS (Oke and Long 1999). However, aside 
from having negative effects, ROS can also posi-
tively regulate the nodulation process. 

Peroxidase activity increases shortly after inocu-
lation at the site of root hair deformation (Salzwedel 
and Dazzo 1993). The activity appears to have a role 
in oxidative cross-linking of cell wall polymers at 
the site of rhizobial penetration, resulting in a 
hardening of the cell wall structure. 11 20 2  can act as 
a substrate for peroxidase in this process, thus il-
lustrating a potential role for low levels of certain 
ROS during nodulation. Salzwedel and Dazzo 
(1993) speculated that for successful infection to 
occur, the rhizobia must first suppress root hair 
peroxidase activity, therefore allowing the bacteria 
to penetrate the cell wall of the host. The authors 
suggested that a rapid and transient decrease in 
peroxidase activity could be evoked by rhizobial 
exopolysaccharides (EPS) which rapidly bind to root 
hairs, increase infection frequency and may aid the 
bacteria in avoiding the elucidation of SAR during 
invasion. Following penetration, highly localized 
peroxidase activity might be required to repair the 
eroded root hair cell wall at the site of rhizobial 
entry and infection thread initiation. Salzwedel and 
Dazzo (1993) also speculated that the plants might 
resist non-host bacteria and pathogens by rapidly  

increasing localized peroxidase levels to harden the 
root cell walls and prevent their invasion. 

Prior to rhizobial infection of M. truncatula, Nod 
factors trigger a rapid and localized expression of the 
putative peroxidase-encoding RIP1 early nodulin 
gene (Cook and others 1995), as does ethylene 
(Olroyd and others 2001). As a peroxidase, RIP1 
could have a role in metabolizing H 2 02  and/or in 
peroxidase-mediated cross-linking of cell wall pol-
ymers. The RIP] transcript was localized to epider-
mal cells that subsequently were infected by 
Rhizobium and were expressed for the duration of 
pre-infection (Cook and others 1995), suggesting a 
possible involvement in cell wall repair at the site of 
infection. Recently, Ramu and others (2002) dem-
onstrated that RIP1 transcripts and ROS share a 
similar pattern of localization in M. truncatula and 
that Nod factor application elicits a rapid induction 
of each. Neither ROS nor RIP1 expression was de-
tected using a Nod factor-deficient mutant of Sino-
rhizobium meliloti or a mutant of M. truncatula 
impaired in Nod factor signal transduction. Moreo-
ver, Ramu and others (2002) found that 11202 
specifically induced RIP] expression, leading 
the authors to speculate that Nod factor percep-
tion by the plant induces H 20 2  production, which 
then mediates the Nod factor-induced expression of 
RIP]. This finding seems logical because 11 20 2  can 
act as a substrate for peroxidases, such as the 
putative RIP1. 

In pea, Wisnewski and others (2000) found that 
the insolubilization of matrix glycoproteins creates a 
barrier inhibiting the continued ingress of invading 
bacteria. These authors speculated that diamine 
oxidase activity could locally produce 11 20 2  that can 
be used by peroxidase to induce the insolubilization 
of the glycoproteins thereby modulating cell wall 
plasticity. Within the infection thread, the matrix 
glycoproteins are found to be insoluble at the tip 
and hardened elsewhere (Wisnewski and others 
2000). This allows invading rhizobia to progress 
towards the infection zone of the nodule in the 
infection thread as long as the peroxidase level at 
the tip remains at a low enough level to avoid 
hardening of the infection thread tip walls. 

In addition, actin monoubiquitylation is induced 
in developing nodules of P. vulgaris (Dantart-Gon-
zalez and others 2001). These actin modifications 
are likely part of a defense response against invad-
ing organisms and appear to provide rnicrofilament 
stability against proteolytic degradation. This re-
sponse can be mimicked in suspension cell culture 
by 11 20 2  application (Dantan-Gonzalez and others 
2001), thus further suggesting that H 202  has a role 
in modifying cell wall structures. 
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Salzar and others (1999) demonstrated that 11202 
accumulates in M. truncatula cortical cells in the 
region occupied by arbuscular mycorrhiza. More 
specifically, H 20 2  was concentrated around hyphal 
tips attempting to penetrate a host cell, similar to 
phenomenon described by Salzwedel and Dazzo 
(1993) following root hair penetration and infection 
thread formation by rhizobia. This was suggested to 
be indicative of an oxidative burst involved in the 
control of intracellular colonization of the host 
(Salzar and others 1999). 

In agreement with the above findings, Santos and 
others (2001) detected an oxidative burst of 11202 
and Oi in the curled region of the root hair imme-
diately following inoculation of M. truncatula. In-
terestingly, these elevated levels of ROS were also 
found in infected cells suggesting that this burst is 
prolonged and could have a role in regulating the 
infection process (Santos and others 2001). van 
Spronsen and others (2003) suggested that an oxi-
dative burst could be prolonged by SA, which could 
bind to, and therefore inactivate, peroxidases such 
as RIP!. 

In addition to modulating cell wall repair and 
plasticity, ROS can be detrimental to nodulation as 
they can damage and degenerate the proteins, DNA 
and lipids of both symbionts, and their levels are 
often elevated in senescent nodule tissue. ROS such 
as 0-2  and .011 inhibit nitrogen fixation and it has 
been suggested that the inhibition by 0 may be 
due to its breakdown into the highly reactive and 
damaging *OH (Puppo and Halliwell 1988). To 
compensate for the stress of ROS, rhizobia are 
equipped with enzymes such as SOD, which de-
toxifies 0 2-  . M. truncatula inoculated with Sinorhizo-
bia meliloti, defective in SOD, nodulate poorly and 
display abnormal infection (Santos and others 
2000). In addition, most of the bacteria failed to 
differentiate into nitrogen fixing bacteroids and se-
nesced rapidly. This led Santos and others (2000) to 
speculate that oxidative stress interferes at numer-
ous stages of the symbiosis and not simply at the 
level of nitrogen fixation. Thus, rhizobial SOD is a 
requirement for nodule development as well as 
functioning. 

As mentioned, in addition to rhizobial SOD, 
plants contain antioxidant defense enzymes that 
also can break down ROS. In leaves of Zea mays, 
treatment with 10-100 uM ABA induced the pro-
duction of Oi and 11202 followed by increases in the 
activities of antioxidant enzymes at levels sufficient 
enough to scavenge the elevated levels of 0 -2 and 
11202 (Figure 1; Jiang and Zhang 2001). The authors 
of this report concluded that ROS have a dual role 
in plants depending on their quantity: acting as  

toxins inducing oxidative stress when abundant or 
as triggers eliciting the upregulation of antioxidant 
enzymes when elevated only slightly. It seems 
plausible that the invading Rhizobium could posi-
tively regulate the plants antioxidant enzymes, 
possibly via elevated ABA levels, to avoid the 
damaging ROS and thereby promoting nodulation. 

Like ABA, Bueno and others (2001) showed that 
inoculation of alfalfa plants with Rhizobium elevates 
both antioxidant enzyme activities and H20 2  gen-
eration. These elevated levels of scavenging anti-
oxidant enzymes likely have a role in controlling 
the oxidative burst. Interestingly, among the en-
zymes elevated is LOX, which was earlier described 
as being influenced by ABA (Figure 2). Taken to-
gether with the previous paragraph, the complexity 
of signalling in nodulation becomes increasingly 
apparent. 

Jasmonic Acid 

Jasmonic acid (JA) both induces LOX mRNA accu-
mulation (Figure 2) (Porta and others 1999) and is 
produced by the action of LOX upon polyunsatu-
rated fatty acids (Gundlach and others 1992). In 
addition, methyl jasmonate (MeJA) induces the 
transcription of PAL (Gundlach and others 1992), 
an enzyme that catalyzes the first step in SA bio-
synthesis, and in L. luteus roots, its application pro-
motes the synthesis and rhizosecretion of the 
isoflavonoid genistein (Kneer and others 1999). 

JA also appears to promote the colonization and 
development of mycorrhizal structures in Allium 
sativum (Regvar and others 1996) and mycorrhizal 
colonization has been reported to elevate JA bio-
synthesis in Hordeum vulgare (barley) (Hause and 
others 2002). It is possible that JA has similar roles 
in nodule formation and mutants impaired in JA 
synthesis or response would greatly aid in under-
standing this signalling molecule in nodulation. 

OTHER SIGNALLING COMPOUNDS 

Brassinosteroids 

Foliar application of epibrassinolide to Arachis 
hypogaea (groundnut) substantially increased the 
number and weight of nodules and promoted root 
nitrogenase activity (Vardhini and Rao 1999). In 
contrast, application of epibrassinolide to the roots 
of soybean (Hunter 2001) decreased the number of 
nodules and amount of nitrogen fixation. These 
differences between studies may be attributed to 
variation in methods or species used. 
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Endogenous brassinosteriods (BRs) also appear to 
influence nodule formation as preliminary evidence 
shows that BR-deficient mutants of pea form sig-
nificantly fewer nodules than their wild type ( B.J. 
Ferguson, J. Reid and J. Ross unpublished). How-
ever, precise roles of BRs in nodulation are unclear 
and no molecular evidence or signalling interactions 
pertaining to the roles of BRs in nodule organo-
genesis exist to date. 

Flavonoids 

Flavonoids have multiple roles in plant develop-
ment, defense and nodulation (reviewed in Dakora 
1995; Spaink 1999); they constitute a large class of 
compounds of the phenylpropanoid pathway, and 
their exact structure is important for their varied 
functions, including concomitantly inducing the 
chemotaxis of the Rhizobium to the root and ele-
vating the production of Nod factors (for example, 
Redmond and others 1986; Stafford 1997). Flavo-
noid production is also induced by rhizobia in roots 
and nodules (for example, see Cooper and Rao 
1992; Recourt and others 1992) and different flav-
onoids are synthesized in response to rhizobia that 
up- and down-regulate Nod factor production, both 
before and during infection (for example, see Zu-
anazzi and others 1998). 

Flavonoids are distributed in a strictly tissue-
specific pattern in many species. In particular, 
flavonoids are often located in dividing and meris-
tematic tissues, including dividing cortical cells of 
nodules (Mathesius and others 1998b). It is possible 
that flavonoids merely protect dividing cells from 
oxidative damage because of their activity as anti-
oxidants (Rice-Evans 2001). However, as discussed 
above, it could also be possible that flavonoids affect 
cell division either by regulating auxin transport or 
turnover (Figure 1), thereby regulating auxin ac-
cumulation (Figure 3), or by directly regulating cell 
cycle regulators. In animals, much evidence has 
been found that flavonoids regulate cell cycle ac-
tivity, but in plants this evidence has so far been 
very tentative (for example, see Logemann and 
others 1995; Jinsart and others 1991). The existence 
of a flavonoid-deficient mutant in Arabidopsis has 
shown that flavonoids are not essential for plant 
survival, although interestingly the mutant showed 
alterations in lateral root formation, root growth 
and plant height, which could be the result of in-
creased auxin transport due to the absence of flav-
onoids acting as PATI (Brown and others 2001). At 
this stage, flavonoid-deficient mutants have not 
been isolated in legumes. 

Uridine 

The position of a nodule is not only determined by 
the initiation of cell divisions in either the inner or 
the outer cortex of indeterminate and determinate 
legumes, respectively, but also in respect to the 
protoxylem poles (Figure 3). In most legume spe-
cies, the majority of nodule primordia are initiated 
in front of one of the protoxylem poles and it has 
been suggested that a signal (the "stele factor") 
diffuses out of the xylem and acts together with 
auxin and cytokinins to induce cell divisions com-
prising the nodule primordia (Libbenga and Harkes 
1973). 

The stele factor has been identified as uridine 
(Smit and others 1995). In the presence of very low 
uridine concentrations, cell divisions can be induced 
in every cortical cell by cytokinins in pea (Libbenga 
and Harkes 1973) and in inner cortical cells by 
chitin oligosaccharides following ballistic micro-
targeting in vetch (Schlaman and others 1997). 
Differences between the concentrations of uridine 
in front of xylem versus phloem poles could explain 
the preference for nodules to initiate opposite xylem 
poles. The fact that nodules are initiated in the outer 
cortex in determinate legumes and in the inner 
cortex in indeterminate ones could be explained by 
the fact that determinate and indeterminate species 
have different sensitivities for uridine, although 
definitive evidence is lacking. 

Nitrate 

Nitrate interacts with plant hormones to regulate 
nodule formation (Figure 1). The presence of nitrate 
in the soil at concentrations above 1-5 niM sup-
presses nodulation locally at several levels, includ-
ing infection, nodule primordium initiation and 
nitrogen fixation (reviewed by Streeter 1988). How 
nitrate inhibits nodulation is not exactly known, 
although its purpose may be to limit the formation 
of nodules under conditions that provide sufficient 
nitrate. 

The existence of mutants that hypernodulate 
even in the presence of nitrate shows that nitrate is 
not the inhibiting factor itself, but that it leads to 
secondary signals that suppress nodulation (Carroll 
and others 1985). According to the auxin burst 
hypothesis (Gresshoff 1993), high auxin levels in-
hibit nodule formation, and it is hypothesized that 
nitrate increases the sensitivity of the root to auxin, 
thus reducing nodule formation. In the superno-
dulation nts mutants, the auxin burst control is al-
tered and therefore these mutants can still nodulate 
in the presence of nitrate because not as much 
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auxin is available in the root to suppress further 
nodule initiation. In support of that hypothesis, 
Caba and others (2000) found that nitrate decreased 
auxin levels in inoculated and uninoculated roots of 
wild type and nts mutants, whereas root growth was 
not altered. The authors hypothesized that this 
represented an increased sensitivity to auxin in the 
presence of nitrate, which would be consistent with 
the auxin burst hypothesis; however, auxin sensi-
tivity will need to be assessed by more direct means. 
An effect of nitrate on the auxin response pathway 
has been found in Arabidopsis (Zhang and others 
1999) and it is possible that, in legumes, at least 
some of the effects of nitrate are also mediated by 
auxin. 

Nitrate's regulation of nodulation could be im-
posed via an effect on flavonoid accumulation in the 
root, which can alter auxin transport or Nod gene 
activity (Coronado and other 1995). There is also 
evidence for the involvement of ethylene in medi-
ating the inhibitory effect of nitrate. The findings 
that inhibitors of ethylene synthesis or action (for 
example, AVG and Agt respectively) restore no-
dulation in the presence of nitrate suggest that ni-
trate induces the production of ethylene which 
then inhibits nodulation (Caba and others 1998; 
Ligero and others 1991). Because ethylene can 
regulate auxin transport (Burg and Burg 1966; 
Suttle 1988) and turnover (Ke and Saltveit 1988), 
nitrate's effect via alterations in auxin levels could 
be mediated by nitrate-induced ethylene. Caba and 
others (1999) found that the tolerance of the nts 
mutant to nitrate with respect to nodulation is 
paralleled by a tolerance for ethylene, which sup-
ports an involvement of ethylene in nitrate regu-
lation. Unlike the nts mutants, in L. japonicus, the 
nodulation phenotype of the recently characterized 
early- and hyper-nodulating mutant astray dis-
played normal sensitivity to ethylene and nitrate as 
its nodule number declined in the presence of both 
(Nishimura and others 2002c). Interestingly, the 
mutated gene of astray was found to be the homo-
logue of the Arabidopsis HY5 gene (Nishimura and 
others 2002b), which is involved in photomorpho-
genesis. 

Nitrate also inhibits ENOD40 induction by rhizo-
bia, but not by cytokinins (Mathesius and others 
2000), suggesting two possibilities for the action of 
nitrate (see Figure 1): (1) if rhizobia induce ENOD40 
independently of cytokinins, nitrate would act be-
tween Nod factor perception and ENOD40 induc-
tion, or (2) if rhizobia change cytokinin levels, 
which subsequently stimulate ENOD40, nitrate 
would inhibit the cytokinin changes induced by 
rhizobia. 

Mutants are valuable to test the interactions be-
tween nitrate and hormone signalling. For example, 
the nitrate reductase-deficient mutant ANR1 and 
the auxin response mutant axr4 were used in Ara-
bidopsis to establish a role for the auxin response 
pathways during nitrate regulation of lateral root 
development (Zhang and others 1999). Assuming 
that lateral root and nodule development share as-
pects of their regulation by nitrate, it is possible that 
nitrate also acts via the auxin response pathway 
during nodulation and that the effects of nitrate on 
cytokinin, ENOD40 expression and ethylene could 
indirectly be caused by changes in auxin response. 

Nod Factors and Other Chitin Derivatives 
Nod factors are Rhizobium -produced lipochitin 
oligosaccharides and represent the major morpho-
genic molecule regulating nodule organogenesis, 
bringing us back to the start of the story. In addition 
to determining host specificity, Nod factors elicit root 
hair curling and deformation and cortical cell divi-
sions in alfalfa (Truchet and others 1991). There has 
been some debate about whether Nod factors are 
hormone-like signals per se or act indirectly, for ex-
ample, via changing the plant hormone balance as 
discussed above. Although specific Nod factor action 
during nodulation has been extensively reviewed 
elsewhere (for example, Cullimore and others 2001; 
D'Haeze and Holsters 2002; Miklashevichs and oth-
ers 2001), we focus here on the hormone-like roles 
of chitin oligosaccharides in general. 

Whereas Nod factors are specific in their mor-
phogenetic effect for certain host plants, Nod factor-
related molecules have been suggested to play a 
more general role in plant development (Spaink and 
others 1993; van der Ho1st and others 2001). 
Structurally related chitin oligosaccharides play a 
role in animal development and have been detected 
in plants (Benhamou and Asselin 1989; Spaink and 
other 1993). They can be recognized by receptors 
for chitin oligosaccharides (Stacey and Shibuya 
1997), and are substrates for chitinases, which have 
been shown to play a role in different aspects of 
plant development (Collinge and others 1993). Ex-
pression of a chitinase was shown to rescue an 
embryonic mutant of carrot (de Jong and others 
1992) and modifying chitin structures by expression 
of the bacterial nodA and nodB genes, which modify 
Nod factors in rhizobia, led to changes in plant de-
velopment (Schmidt and others 1993). 

Directed rnicrotargeting of chitin oligosaccha-
rides induced cortical cell divisions in vetch roots 
(Schlaman and others 1997). Dyachok and others 
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(2000) found that Nod factors could stimulate em-
bryogenesis in cell cultures of Norway spruce, a 
non-nodulating plant, and more recently isolated a 
lipochitin oligosaccharide-like compound from 
these cultures which stimulated embryogenesis 
(Dyachok and others 2002). Collectively, these ex-
periments suggest that chitin perception could be 
widespread in both plants and animals and that 
chitin-related molecules play a role in development. 
However, the mode of action of chitin derivatives 
remains elusive and identification of receptors and 
downstream response elements will be necessary to 
establish whether chitin oligosaccharides act via 
classical hormones or directly on target genes. 

CONCLUSIONS AND OUTLOOK 

This review demonstrates the manifold effects of 
classical plant hormones and other compounds on 
nodule initiation, differentiation and numbers. Ad-
ditional factors, such as soil nutrients, light, poly-
unsaturated fatty acids, CO 2 , Ca2+, phenylalanine 
ammonia lyase, chalcone synthase, Rhizobium , ex-
opolysaccharides, lipopolysaccharides, and so on are 
all probably required for proper nodule develop-
ment and functioning, but could not be fully dis-
cussed here. 

Reports on classical plant hormones in nodula-
tion are often ambiguous and contradictory because 
(1) nodulation is a fine balance between induction 
and repression of new nodule formation; (2) hor-
mone requirements change with the varying stages 
of nodulation; (3) hormone levels and requirements 
change in different places in the shoot, root and 
nodule; (4) hormones interact with each other, 
leading to complex negative and positive feedback 
loops; (5) hormone requirements differ in different 
legume species, and (6) nodulation is regulated by 
both local and long distance signalling interactions 
involving varying actions of the same hormone in 
each regulatory pathway. 

The search for homologues for many of the re-
cently discovered Arabidopsis hormone response 
genes in legumes and their silencing or overex-
pression should help pinpoint the action of hor-
mones during nodulation. For example, it should be 
tested whether Rhizobium directly affect cytokinin 
levels or whether cytokinin-related responses are 
the result of changing the auxin:cytokinin ratio due 
to changes in auxin transport or levels (see Figure 
1). This could be tested in an inducible mutant for 
cytokinin synthesis. Inducible or temperature-sen-
sitive mutants in polar auxin transport could be 
used to test whether auxin transport inhibition is  

necessary for nodule induction and whether 
changes in auxin occur in the absence of PPM, for 
example, via flavonoid-regulated changes in per-
oxidase activity, as indicated in Figure 1. Accord-
ingly, it could be tested whether auxin transport 
inhibition is a result of changes in ethylene induc-
tion in an ethylene synthesis-deficient mutant. A 
mutant in ABA synthesis would also be useful for 
testing the functional relationships indicated in 
Figure 2. If elevated ABA levels are necessary for 
changes in phytoalexins, LOX, ROS and therefore 
indirectly for changes in peroxidase levels, JA and 
regulation of defense responses, these responses 
should be reduced in the mutant. 

There are challenging questions to address in 
future research. First, how does Nod factor percep-
tion lead to downstream events that could affect the 
plant hormone balance? Not much is known about 
how the early events in the root hair are linked to 
the events in the cortex, but the analysis of nodu-
lation mutants is beginning to address that problem 
(Kistner and Parniske 2002). Secondly, there is a 
need for more large-scale experiments to discover 
the broad response pathways for plant hormones 
during nodulation, because each hormone usually 
has many targets and interacts with other hor-
mones, which also have multiple effects. The use of 
mutants with hormone insensitivity, overproduc-
tion, or underproduction, the use of accurate re-
porters for different hormones, concentrating on 
model species for different types of analyses, as well 
as keeping an open mind about possible interactions 
should help to unravel the complex interactions of 
hormone-regulated signalling during nodulation. In 
addition, the recent identification of ESTs in M. 
truncatula has opened the door for expression anal-
yses on the transcript (Fedorova and others 2002) 
and proteome level (Mathesius and others 2001). 
Thirdly, it is almost certain that new signalling 
compounds will be discovered apart from those 
presently known. Among them will be peptide 
hormones that might regulate receptor kinase ac-
tivity. But other long-range signals are also likely to 
be discovered, including the autoregulatory signal 
from the shoot (Searle and others 2003). The mo-
lecular and physiological characterization of these 
novel compounds should help further the under-
standing of the intricate nodulation process that we 
are just beginning to understand. 
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The initiation and development of legume nodules induced by compatible Rhizobium species requires a complex signal 
exchange involving both plant and bacterial compounds. Phytohormones have been implicated in this process, although in 
many cases direct evidence is lacking. Here, we characterize the root and nodulation phenotypes of various mutant lines of pea 
(Pisum sativum) that display alterations in their phytohormone levels and/or perception. Mutants possessing root systems 
deficient in gibberellins (GAs) or brassinosteroids (BRs) exhibited a reduction in nodule organogenesis. The question of 
whether these reductions represent direct or indirect effects of the hormone deficiency is addressed. For example, the 
application of GA to the roots of a GA-deficient mutant completely restored its number of nodules to that of the wild type. 
Grafting studies revealed that a wild-type shoot or root also restored the nodule number of a GA-deficient mutant. These 
findings suggest that GAs are required for nodulation. In contrast, the shoot controlled the number of nodules that formed 
in graft combinations of a BR-deficient mutant and its wild type. The root levels of auxin and GA were similar among 
these latter graft combinations. These results suggest that BRs influence a shoot mechanism that controls nodulation and that 
the root levels of auxin and GA are not part of this process. Interestingly, a strong correlation between nodule and lateral root 
numbers was observed in all lines assessed, consistent with a possible overlap in the early developmental pathways of the two 
organs. 

Nodulation is a symbiotic process whereby bacteria 
of the genus Rhizobium invade compatible legumi-
nous host plants (Mylona et al., 1995; Mathesius, 2003). 
The invasion ultimately leads to the formation of 
structures called nodules, in which the bacteria fix 
atmospheric nitrogen to be used by the plant. As with 
any developmental process, nodulation is multifaceted, 
requiring specific signaling events regulated tempo-
rally and spatially (Ferguson and Mathesius, 2003). 

Beginning in the 1980s, mutagenesis experiments 
using pea (Pisum sativum) produced abnormal nodu-
lation phenotypes including nonnodulating (nod—), 
poorly nodulating (nod -±), and hypernodulating 
(nod+ +) mutants, as well as those that fix nitrogen 
poorly or not at all (fix-; see refs. in Borisov et al., 2000). 
At present, over 200 nodulation mutants exist in pea 
(Borisov et al., 2000). Nodulation mutants have also 
been selected for in the model legume species Medicago 
truncatula and Lotus japonicus, which have smaller 
genomes than pea, making them more desirable tools 
for molecular studies. Mutants in these species have 
since been used to identify genes and gene products 
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involved in nodule formation and functioning. This 
approach has been successful, and the orthologs of 
many nodulation genes discovered in M. truncatula or 
L. japonicus have subsequently been identified in im-
portant crop species such as pea (see refs. in Oldroyd 
and Downie, 2004). 

Here, we take the reverse approach to investigate 
nodulation. In contrast to selecting for nodulation 
mutants and identifying their mutated genes, we 
identified the root and nodulation phenotypes of 
previously characterized mutants (Table -  I). The mu-
tants examined here are all affected in their biosyn-
thesis of, or responses to, the phytohormones GA or 
brassinosteroid (BR). Moreover, the genes and gene 
products of these lines have all formerly been identi-
fied (for review, see Reid et al., 2004; Table I). Unlike 
dwarf (le) cultivars used in many previous nodulation 
studies (e.g. Finale, Frisson, Rondo, Solara, Sparkle), 
the wild types studied here are all on a tall (LE) 
background. Interestingly, many pea lines used for 
agricultural purposes are on le backgrounds and are 
therefore deficient in shoot GA 1  (Reid et al., 2004), as 
are many of the lines used for the selection of nodu-
lation mutants. However, the effects of shoot dwarfism 
and reduced shoot GA 1  levels on nodulation have not 
been described previously. This report is also the first 
to investigate the role(s) of endogenous BRs in nodu-
lation. As with GA deficiencies, reductions in BR levels 
cause shoot dwarfism, thus allowing us to use two 
distinct hormone-mediated mechanisms to investigate 
the effects of shoot stature on nodulation and root 
development. 
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Nodulation Phenotypes of Hormone Mutants of Pea 

Table I. Overview of the various pea lines investigated 

Genotype Line Number Gene Product Hormone Level 	 Phenotype References 

Torsdag 107 Wild Type 
lk 212- BR 5a-reductase Reduced total plant BRs 	Dwarf, thickened 

internodes 
Reid (1986); Ross and Reid 

(1986); Nomura et al. 
(2004) 

lka 5865 BR receptor Increased total plant BRs 	Dwarf, thickened 
internodes 

Reid and Ross (1989); 
Nomura et al. (1997, 
1999, 2003) 

Ikb 5862 BR C-24 reductase Reduced total plant BRs 	Dwarf, thickened 
internodes 

Reid and Ross (1989); 
Nomura et al. (1997, 
1999); Schultz et al. 
(2001) 

Is-1 181 Copalyl diphosphate 
synthase 

Reduced total plant GAs 	Dwarf Ait-Ali et al. (1997); 
Yaxley et al. (2001) 

Ih-2 5843 ent-Kaurene oxidase Reduced total plant GAs 	Dwarf Yaxley et al. (2001); 
Davidson et al. (2004) 

le-3 5839 GA 3-oxidase Reduced shoot GAs, 	Dwarf 
wild-type root GAs 

Ingram et al. (1984); 
Yaxley et al. (2001) 

NA 1766x1769 Wild Type 
na 1766x1769 ent-Kaurenoic acid 

oxidase 
Reduced total plant GAs 	Extreme dwarf Yaxley et al. (2001); 

Davidson et al. (2003) 
SLN 250+ Wild type 
sin 250- GA 2-oxidase Elevated seed GAs 	Elongated internodes 

leading to elevated 
total plant GAs 

Reid et al. (1992); 
Ross et al. (1993); 
Lester et al. (1999) 

RESULTS AND DISCUSSION 

Nodulation Phenotypes of GA Mutants 

In our collection of GA-deficient mutants, na-1 
causes the greatest reduction in bioactive GA 1  levels 
in the root, followed by 1s-1 and finally 1h-2 (Yaxley 
et al., 2001). In this study, all three of these mutants 
developed significantly fewer nodules and signifi-
cantly reduced root systems (fewer and shorter sec-
ondary and tertiary lateral roots; Fig. 1; Table II) than 
their wild types. The reductions in total nodule num-
bers were observed on a per-plant (Fig. 2) and also on 
a per-milligram root dry weight (DW) basis (Table III). 
The severity of these reductions closely paralleled the 
reductions in the root GA 1  levels of the mutants 
(Yaxley et al., 2001) and strongly indicates a require-
ment for GAs in root and nodule initiation. Reduced 
root GA 1  levels may affect nodule formation directly 
by reducing successful Rhizobium infections and 
nodule development. Alternatively, reductions in 
root GA 1  levels may act indirectly by increasing the 
level of nodulation inhibitors, such as ethylene, and/ 
or limiting root numbers and lengths, thereby reduc-
ing available Rhizobium infection sites. Reductions in 
nodule numbers were observed in both 25- and 40-d-
old plants (Fig. 2), indicating that the reduced root GA 1  
levels are not simply delaying nodule development. 

The na-1 mutant exhibited the most dramatic nod-
ulation phenotype as few to no nodules formed (Figs. 2 
and 3). Those that did form were aberrant, being small 
and white and resembling emerged meristems that 
failed to develop further (Fig. 3). Unlike the nodules 

observed on the other lines investigated, the few 
aberrant nodules of na-1 were often detected on the 
tertiary lateral roots of the mutant (Fig. 3B). As 
a consequence of their reduced size, the total DW, 
and average DW, of na-1 nodules were significantly 
reduced compared with those of its wild type (Table 
III). Less dramatic reductions were detected in the 
total nodule DWs of 1s-1 and 1h-2 mutant plants (Table 
III) compared with that of their wild type. However, 
although the average nodule DW was reduced in na-1, 
it was actually significantly elevated in 1s-1 and 1h-2 
(Table III). Thus, it appears that GAs may also in-
fluence nodule size with slight reductions being stim-
ulatory (/s-1 and 1h-2) and large reductions inhibitory 
(na-1). 

In an attempt to restore nodule numbers to that of 
the wild type, various concentrations of the bioactive 
GA3  were applied to the roots of na-1 mutants. Using 
this technique, concentrations of 10 -6  to GA3  were 
found to completely restore the na-1 nodule appear-
ance and numbers to that observed on the wild-type 
control (Fig. 4). This finding lends further support to 
our evidence that GAs are required for nodule de-
velopment. Low concentrations of the hormone also 
stimulated nodule formation in the wild type but 
became inhibitory to both the wild type and the 
mutant as the applied concentration increased (Fig. 
4). This finding is similar to that reported by Lorteau 
et al. (2001) for cytokinin; they found that the appli-
cation of low concentrations of the phytohormone 
were stimulatory to pea nodule formation but became 
inhibitory when increased beyond a threshold level. 
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Figure 1. Detached secondary lateral roots of 
17-d-old plants of (A) wild type (Torsdag) and (B) 
the BR-deficient lk, (C) the BR-receptor mutant 
Ika, (D) the BR-deficient Ikb, (E) the GArdeficient 
na-1, (F) the GArdeficient Is-1, (G) and the shoot 
GA,-deficient le-3. The roots were collected from 
the most mature region of the plants, closest to 
the crown. The far right-hand side of the sec-
ondary lateral root is the point at which it 
was detached form the primary root. Bar = 1 cm. 

Grafting studies were performed using various 
combinations of 1h-2 and its wild type (LH), Torsdag, 
in order to determine whether or not an LH shoot or 
root system could restore the reduced nodule number 
of the GA-deficient line (Table IV). This study revealed 
that either an LH root or shoot system was sufficient to 
restore the reduced nodule number of the mutant, 
both on a per-plant and a per-milligram root DW basis. 
This finding implies that GAs are required for nodu-
lation. Furthermore, the root system GA level appears 
to play a role in nodule development, as more nodules 
formed on Ih-2/ LH grafts than on those of Ih-2/ lh-2 (P 
< 0.001), even though the shoots remained short, with 
a low DW (Table IV). LH/ Ih-2 grafts also produced 
more nodules than Ih-2/ 1h-2 grafts, but it cannot be 
excluded that GAs were transported basipetally from 
the LH shoot into the mutant root system. Consistent 
with this suggestion is the significant promotory effect 
of LH shoots on the 1h-2 root DW, which increased 
compared with that of the Ih-2/1h-2 grafts (P < 0.01). 
Graft transmissibility of GA, precursors (but not of 
GA 1  itself) has been demonstrated previously (Reid 

et al., 1983). Interestingly, the total nodule DW was 
significantly reduced in grafted plants possessing an 
Ih-2 shoot, whereas the average nodule DW was 
slightly increased in grafts having Ih-2 roots (Table IV). 

The le-3 mutant, which has decreased shoot GA 1  
levels but wild-type root GA 1  levels (Yaxley et al., 
2001), and the sin mutant, which has elevated root and 
shoot GA 1  levels early in development (Reid et al., 
1992; Yaxley et al., 2001), both had a similar number 
and size of lateral roots and nodules as  their  wild types 
(Figs. 1 and 2; Tables II and III). Importantly, the 
normal root and nodule phenotypes of  the  le-3 mutant 
indicate that the effects of GA 1  deficiency on these 
characteristics, as observed in na-1, Is-1,  and Ih-2, are 
not mediated by dwarfism of the shoot. Furthermore, 
the results with le-3 are consistent  with  those of the 
grafting experiment with Ih-2 (Table  IV),  as neither 
dwarfism nor a reduced shoot GA,  level  impaired the 
root system DW nor the nodule number of a root 
system having a normal level of  GA 1 .  Moreover, 
the wild-type level of GA /  in the  le-3  root system 
is insufficient to rescue the shoot dwarfism of the 
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Table II. Root numbers and lengths of 17-d-old GA and BR mutants and their wild types 

Indicated is the number of secondary lateral roots per plant in addition to the number of tertiary lateral 
roots per secondary lateral root, based on the average number located on the six uppermost secondary 
lateral roots. Also shown are the lengths of the shoot and the longest secondary and tertiary lateral roots per 
plant. Results are means -± SE (n = 6). Values for each mutant trait followed by an • are significantly different 
from that of their respective wild type at the 0.01 level. 

GenOtype 
Number length 

Secondary Roots Tertiary Roots Shoot Secondary Roots Tertiary Roots 

cm 
Torsdag 89 ± 3.6 20 ± 1.1 12.5 ± 0.3 19.7 ± 0.1 4.3 5 0.2 
lk 50 ± 3.6* 4 ± 0.4' 3.0 ± 0.2' 10.4 5 0.3' 2.2 ± 0.1' 
lka 82 ± 2.5 9 ± 0.8* 5.9 ± 0.4' 14.8 ± 0.8' 3.5 5 0.2' 
Ikb 82 ± 4.1 13 ± 0.9' 5.9 ± 0.3' 16.9 5 0.4' 3.7 5 0.3 
Is-1 63 ± 4.8* 7 ± 0.6* 2.9 ± 0.1* 16.7 ± 0.7' 2.2 ± 0.3' 
Ih-2 63 ± 4.7' 12 ± 1.0' 5.7 ± 0.2' 17.2 ± 0.7* 2.5 ± 0.2' 
le-3 100 ± 1.7 20 ± 1.1 4.2 ± 0.2' 18.5 ± 1.2 3.8 ± 0.3 
NA 107 ± 5.2 21 ± 1.1 21.45 0.5 18.2 ± 0.7 5.9 5 0.3 
na 50 ± 2.4* 5 ± 0.4* 2.9 ± 0.2' 6.1 5 0.3' 1.1 5 0.1' 
SLN 93 ± 5.4 13 ± 1.0 28.6 ± 0.7 19.0 ± 1.2 3.2 ± 0.4 
sin 98 ± 1.4 13 ± 0.9 50.0 ± 3.8' 18.6 ± 1.2 2.9 ± 0.3 

mutant. This finding is consistent with that observed 
using the lh-2 grafts (Table IV). 

The elevated GA, levels of sin do not appear to 
influence the root system or the overall number of 
nodules that form per plant (Figs. 1 and 2; Tables II 
and III). Despite these findings, high GA 1  levels may 
actually be inhibitory to nodule organogenesis. The 
source of the elevated GAs of sin is the seed (Ross 
et al., 1993). As the sin seedling develops, this excess 
GA is mobilized throughout the plant until it is 
eventually metabolized and maintained at near SLN 
levels (Ross et al., 1993). By this time, the primary 
roots of both SLN and sin are well established and 

appear similar. However, although numerous nodules 
formed on the primary roots  of  SLN plants, no 
nodules developed on the primary roots of sin mu-
tants (Fig. 5). This may suggest  that  the elevated GA 
levels of the mutant prevented nodules from estab-
lishing, which is consistent with the finding that 
treatment with high concentrations of GA 3  reduced 
the number of nodules that formed on wild-type 
plants (Fig. 4). This inhibition in  sin  is temporary, as 
nodulation was not prevented  on  lateral roots, of 
which many formed following the metabolism of the 
majority of the excess GA i . Elevated GA1  levels might 
act directly to inhibit the infection process or nodule 

Figure 2. Nodule numbers of 25- and 
40-d-old plants inoculated with R. 
leguminosarum. Results are means ± 
Sr (n = 8). Dashed bars represent wild 
types of the mutants (black bars) situ-
ated to their right. Mutant values de-
noted with an ", **, or *** are 
significantly different from that of their 
wild type at the 0.05, 0.01, and 0.001 
level, respectively. 
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Table III. Root, shoot, and nodule DWs and nodule numbers per root and shoot OW of 25-d-old GA and BR mutants and their wild types 

Plants were inoculated with R. leguminosarum 5 d following the time of sowing. Results are means ± SE (n = 8). Values  for  each mutant trait 

followed by an • are significantly different from that of their respective wild type at the 0.01 level. 

Genotype 
DW Number of Nodules 

Shoot Root Nodule Total Nodule Average 
Per Milligram Shoot 

Dry Weight 
Per Milligram Root 

Dry Weight 

mg mg mg mg 
Torsdag 208 ± 12 158 -2.-  12 33.4 ± 3.8 0.11 ± 0.012 1.44 ± 0.12 1.95 ± 0.23 
lk 142 ± 15* 115 ± 13 23.5 -1-  3.5 0.29 ± 0.030* 0.62 ± 0.07* 0.77 ± 0.10' 

Ika 172 ± 13 173 -1-  15 30.5 ± 2.3 0.21 ± 0.015* 0.87 ± 0.04' 0.87 ± 0.04* 

!kb 236 ± 11 202 ± 16 42.6 ± 4.1 0.24 ± 0.012* 0.74 ± 0.03* 0.88 ± 0.04• 
Is-1 111 ± 7 132 ± 9 22.4 ± 2.1 0.18 ± 0.016* 1.17 ± 0.08 1.03 ± 0.13* 

Ih-2 162 ± 7' 159 ± 8 29.0 ± 3.7 0.19 ± 0.016* 0.94 ± 0.07' 0.99 -I-  0.12* 

le-3 203 ± 19 170 ± 15 39.7 ± 4.1 0.15 ± 0.013 1.41 ± 0.13 1.66 ± 0.14 
NA 396 -1-  24 197 ± 10 62.6 ± 4.1 0.25 -± 0.016 0.64 ± 0.04 1.28 -I-  0.08 
na 184 ± 12* 175 ± 14 1.3 ± 0.7* 0.06 ± 0.025* 0.08 ± 0.05* 0.09 ± 0.05* 

SLN 357 ± 21 158 ± 9 63.6 ± 0.4 0.33 -± 0.017 0.55 ± 0.03 1.27 ± 0.11 

sln 392 ± 28 142 -± 11 58.1 ± 5.1 0.37 1-  0.023 0.42 ± 0.04 1.20 ± 0.17 

development, or indirectly, by affecting assimilate dis-
tribution. 

Nodulation Phenotypes of BR Mutants 

In our collection of BR mutants, lk has the most 
severe reduction in bioactive BRs in the shoot 
(Nomura et al., 2004), followed by Ikb (Nomura et al., 
1997). A reduction in BR levels in the roots has also 
been confirmed for Ikb (Symons and Reid, 2004). Here, 
we demonstrate that, in addition to shoot dwarfism, 
the BR synthesis mutants lk and 1kb and the BR re-
sponse mutant Ika also have fewer and shorter lateral 
roots (Fig. 1; Table II). These findings support recent 
reports that BRs have a role in lateral root develop-
ment (Bao et al., 2004). Interestingly, despite all three 
BR mutants producing fewer and shorter lateral roots 
(Fig. 1; Table II), only the lk root system DW was 
significantly reduced compared with that of Torsdag 
(Table III). 

Nodule numbers were reduced in all three BR 
mutants compared with that of Torsdag. These reduc-
tions occurred in both 25- and 40-d-old plants, in-
dicating that nodule development was not delayed, 
but rather diminished, as was observed with the GA i -
deficient mutants (Fig. 2). The nodule numbers were 
also reduced on a per-milligram root DW basis (Table 
III), indicating that the reductions were not simply 
correlated with the size of the root systems. Instead, 
these diminished nodule numbers might be caused by 
reduced BR levels, or perception, directly or indirectly 
effecting nodule development, as is discussed above 
for mutants having reduced root GA 1  levels. 

The average nodule DW was significantly increased 
for all of the BR mutants, compared with that of 
Torsdag (Table III). Thus, in the case of lk, although the 
root system DW decreased, the average nodule DW 
increased. This finding illustrates that nodule size is 
not simply a reflection of root system DW. Interest-
ingly, with the exception of the severely reduced na-1,  

reductions in root GA 1  levels also resulted in increased 
nodule DWs. Producing large nodules may be a com-
pensatory mechanism to increase nitrogen fixation in 
response to reduced nodule numbers. 

Recently, BRs were shown to be relatively immobile 
within pea (Symons and Reid, 2004).  For  this reason, 
BR application studies similar to that performed using 
GA3  and na-1 were not considered  to  be the best 
method to investigate nodulation  here.  In addition, 

Figure 3. Nodulated lateral roots of 25-d-old (A) wild-type and (B and 
C) na-1 plants. Wild-type nodules are large  and  display a white 
meristematic tip and a red center that represents  the  zone of nitrogen 
fixation. The few aberrant nodules that do develop  on  the na-1 mutant 
are small and white and resemble an emergent nodule meristem that 
failed to develop further. Bar = 1 cm. 
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a BR mutant similar to that of le-3 having normal BR 
levels in the root, but decreased levels in the shoot, is 
not available. As a result, grafting studies involving 
1kb and its wild type (LKB), Torsdag, were the only 
method available to examine the effects of decreased 
root and shoot BR levels on nodulation. Results from 
these studies illustrate that the shoot controlled the 
number of nodules that formed in these graft combi-
nations (Table V). This finding contrasted with that 
observed with the Ih-2 graft combinations (Table IV). 
Grafted plants having an Ikb shoot developed fewer 
nodules than those having an LKB shoot on a per-
plant, as well as per-milligram root DW basis (Table 
V). In addition, the root and shoot DWs of grafted 
plants with an Ikb shoot were not significantly reduced 
from those with an LKB shoot (Table V). This indicates 
that the reduced nodule numbers on grafted plants 
having an Ikb shoot were not simply the result of a 
smaller root or shoot system. Instead, our findings 
suggest that BRs may be influencing a nodulation 
mechanism of the shoot that is involved in regulating 
the nodule numbers of the root. One such mechanism 
known to exist in the shoot involves the receptor 
kinase HAR-1/ SYM29/NARK (e.g. Wopereis et al., 
2000; for review, see Oldroyd and Downie, 2004). To 
date, it is unknown what effects, if any, BRs have on 

this receptor; however, the mutants examined in this 
report appear to be excellent candidates for investi-
gating this potential relationship. 

Recently, Symons and Reid (2004) demonstrated 
that BRs are not graft-transmissible. Thus, the level 
of BRs in an Ikb root system would be reduced com-
pared with that of LKB, even if grafted to an LKB shoot. 
Therefore, the increased number  of  nodules observed 
on Ikb roots grafted to an LKB shoot cannot be ex-
plained by an increase in root BRs.  In  addition, despite 
having normal levels of BRs, LKB  root  systems grafted 
to an lkb shoot produced fewer nodules compared 
with those grafted to an LKB shoot. Together, these 
findings indicate that the root level of BRs does not 
have a direct effect on nodule numbers. Based on these 
results, we investigated whether  or  not shoot BRs 
regulate root and nodule development by altering the 
levels of other hormones in the roots. For example, our 
findings with the GA mutants indicate a role for GA in 
the development of roots and nodules. In addition, the 
phytohormone auxin is known to have a prominent 
role in both root and nodule development (Ferguson 
and Mathesius, 2003) and is produced at high levels in 
the shoot, followed by a reported acropetal transport 
to the root system. Thus, we measured the levels of 
GA 1  and the auxin, indole acetic acid (IAA), in the root 

Table IV. Root, shoot, and nodule OWs, and nodule numbers per plant and root and shoot OW of 30-d-old graft combinations of 
LH and Ih-2 mutants 

Plants were grafted 6 d after sowing and inoculated with R. leguminosarum at 10 d. Results are means ± SE (n  =  8). Values  for  each trait followed by 
an • are significantly different from the LH/LH graft combination at the 0.01 level. 

Graft Type 

DW Number of Nodules 

Shoot Root Nodule Total Nodule Average Per Plant 
Per Milligram 

Shoot OW 
Per Milligram 

Root OW 

mg mg mg mg 
LHILH 259 ± 12 81 ± 5 34.4 ± 2.8 0.42 ± 0.053 87 ± 9 0.34 ± 0.03 1.07 ± 0.07 
LH/lh-2 249 ± 12 93 ± 6 31.3 ± 1.9 0.46 ± 0.066 78 ± 11 0.32 ± 0.05 0.87 ± 0.14 
Ih-2/LH 165 ± 17' 81 ± 8 23.7 _t 3.3' 0.32 ± 0.047 75 ± 6 0.49 ± 0.07 0.99 ± 0.12 
Ih-211h-2 151 ± 12' 62 ± 7 23.1 ± 2.6* 0.53 ± 0.062 44 ± 4' 0.30 ± 0.02 0.76 ± 0.07• 
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Figure 5. Nodulated root systems of the 25-d-old 
(A) wild type, SLN, and (B) the GA,-overproduc-
ing, sin. SLN, like the other wild-type lines 
investigated here, formed many nodules on 
both primary and secondary roots, whereas sin 
only developed nodules on secondary roots. 
Bar = 1 cm. 

systems of the various Torsdag and 1kb graft combina-
tions. This revealed that the levels of both GA 1  and 
IAA were similar among all of the graft combinations 
(Table V), demonstrating that the reduced BR levels of 
lkb do not alter the root GA 1  or IAA levels. Therefore, 
the reductions in root and nodule numbers of the BR 
mutants do not appear to be attributed to changes in 
the root levels of GA, or IAA. 

Correlation between Root and Nodule Formation 

A correlation between the number of nodules and 
the number of lateral roots was detected across all of 
the mutant and wild-type lines examined (Fig. 6). 
Correlations between nodule and lateral root numbers 
were first described by Nutman (1948) who noted that 
the more lateral roots a line of red clover developed the 
more nodules it formed. These findings indicate that 
a strong correlation between nodule and root forma-
tion exists and may suggest that roots utilize an 
autoregulatory mechanism similar to that identified 
in nodulation (e.g. Caetano-Anolles and Gresshoff, 
1991). Consistent with this suggestion is the observa-
tion that the hypernodulating mutant of L. japonicus, 
har-1, exhibits stimulated root initiation when grown 
in the absence of Mesorhizobium loti (Wopereis et al., 
2000). 

It has been postulated that nodulation evolved from 
preexisting mechanisms of early lateral root develop- 

ment (Hirsch and LaRue, 1997; Mathesius, 2003). This 
theory is supported by root-nodule hybrids that have 
been observed on roots of Medicago sativa (Dudley 
et al., 1987) and Trifolium repens (McIver et al., 1997) 
following inoculation with specific Rhizobium strains. 
Roots also emerge from apical meristems of actino-
rhizal nodules of Casuarina cunninghamiana (Torrey, 
1976) and Myrica gale (Torrey and Callaham, 1978). The 
nodule apex can also be converted  into  a root apex by 
adjusting growing temperatures from  low  to high (see 
refs. in Dart, 1977). Moreover, mycorrhizal nodules 
develop on Podocarpaceae species, even in sterile soil 
free of the fungus (Russell et al., 2002). These struc-
tures are not simply lateral roots modified by the 
endosymbiont, but rather novel outgrowths that have 
diverged from the root developmental pathway prior 
to their emergence. 

Lateral roots and nodules share many aspects of 
their development. For example, they are both derived 
via postembryonic mechanisms involving dediffer-
entiating and dividing cells adjacent  to  xylem poles 
(Mathesius, 2003). One proposed difference in their 
development is the site of initial cellular divisions; the 
pericycle for roots and the cortex for nodules. How-
ever, peanut nodules originate predominately from the 
pericycle (Allen and Allen, 1940),  and  pericycle divi-
sions do occur during nodule development of pea (Bond, 
1948) and T. repens (McIver et al., 1997). In addition, 
nonleguminous Actinorhizal nodules, myconodules, 

Table V. Root, shoot, and nodule DWs, nodule numbers per plant, and root and shoot DW and root levels of IM and GA,  of  30-d-old graft 
combinations of LKB and Ikb mutants. 

Plants were grafted 6 d after sowing and inoculated with R. leguminosarum at 10 d. Results are means ± SE (n = 8) for physiological traits and 
means ± s€ of two replicates, each consisting of six root systems, for hormone analysis. Values for each trait followed by an • are significantly different 
from the LKB/LKB graft combination at the 0.01 level. 

Graft Type 
DW Number of Nodules Hormone Level 

Shoot Root Nodule Total Nodule Average Per Plant 
Per Milligram 
Shoot DW 

Per Milligram 
 

Root DW 
IAA GA, 

LKB/LKB 
LK/3//kb 
Ikb/LKB 
ikbilkb 

mg 
410 ± 35 
420 ± 25 
310 ± 39 
430 ± 43 

mg 
130 ± 15 
180 ± 23 
120 ± 12 
200 ± 15• 

mg 
65 ± 9.5 
75 -I-  11.5 
48 ± 9.5 
69 ± 10.6 

mg 
0.57 ± 0.085 
0.83 ± 0.252 
0.98 ± 0.239 
1.58 2: 0.236* 

136 ± 26 
129 ± 26 
56 ± 5* 
46 ± 7• 

0.35 ± 0.03 
0.34 ± 0.09 
0.20 ± 0.03 
0.11 ± 0.01* 

1.09 ± 0.20 
0.94 ± 0.36 
0.48 ± 0.06* 
0.23 ± 0.03• 

ng 	'fresh weight  ng  g-  'fresh weight 

	

3.93 ± 0.69 	0.022 ± 0.0005 

	

3.23 ± 0.32 	0.020 ± 0.0020 

	

3.08 ± 0.06 	0.020 ± 0.0025 

	

3.16 ± 0.19 	0.024 ± 0.0005 
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and Parasponia nodules are all derived from the 
pericycle (see refs. in Hirsch and LaRue, 1997). More-
over, ENOD40, a signal thought to be involved in cell 
division, is expressed in the pericycle of M. sativa prior 
to nodule primordium initiation (Compaan et al., 
2001). Furthermore, Kawaguchi et al. (1996) demon-
strated that bioactive GAs induce pericycle divisions 
leading to nodule-like structures in L. japonicus. These 
structures were free of central vascular cells and were 
therefore not simply deformed lateral roots. Collec-
tively, these findings point to a role for the pericycle in 
nodulation, possibly including cell divisions as are 
known to occur in lateral root development (e.g. 
Dubrovsky et al., 2000). The involvement of the 
pericycle may be mediated by hormones, which may 
explain why parallel declines in nodule and root 
numbers were observed in our mutants that have 
hormone-deficient root systems. Transcript profiling 
of early lateral root initiation in Arabidopsis (Arabi-
dopsis thaliana) has detected numerous genes ex-
pressed in the pericycle (Himanen et al., 2004). 
Perhaps a similar investigation into the pericycle using 
a legume species, with and without Rhizobium in-
oculation, would help discriminate between gene 
products shared by, and unique to, root and nodule 
initiation. 

Correlations between nodulation and the remaining 
characteristics measured were not observed. For ex-
ample, there was no correlation between shoot stature 
and nodulation, as sin was taller than its wild type and 
le-3 was shorter, but they both produced wild-type 
numbers of nodules (Fig. 2). Also, there is no correla-
tion between the rate of leaf expansion and nodulation 
because, when compared with their wild types, GA 
deficient mutants had fewer leaves, whereas BR mu-
tants had more (data not shown), yet both formed 
fewer nodules (Fig. 2). Shoot and root DW also did not 
form a correlation with nodulation. The DW of lh-2 
shoots was similar to that of le-3 (Table III), but 1h-2 
formed significantly fewer nodules than le-3 (Fig. 2). In 
addition, the BR mutants all formed significantly 
fewer nodules than Torsdag (Fig. 2), despite of no 
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consistent differences in their root system DWs com-
pared with Torsdag (Table III). Furthermore, the length 
of secondary lateral roots does not appear to be the 
limiting factor of the development of tertiary lateral 
roots and nodules. For example, 1kb and 1s-1 secondary 
lateral roots are similar in length (Fig. 1; Table II), but 
1s-1 developed fewer tertiary lateral roots (Fig. 1; Table 
II) and nodules (Fig. 2) than 1kb. 

CONCLUSIONS 

The results presented here illustrate that reduced 
root levels of GAs significantly decrease the number of 
nodules in pea (Fig. 2). These decreases in nodule 
numbers were observed at both 25 and 40 d, indicating 
that they were not simply the result of a delay in 
nodule formation. The application of GA 3  restored the 
nodule number of na-1, suggesting a direct role for 
GAs in nodule development. hi addition, grafting 
experiments illustrated that normal GA, levels in the 
root are sufficient to elicit the formation of a normal 
number of nodules. In contrast, BRs do not have 
a direct effect on nodule numbers, but act to influence 
a shoot mechanism involved in regulating nodule 
numbers. Interestingly, with the exception of the 
severely inhibited na-1, significant increases in the 
average nodule DW were found on all GA and BR 
mutants having reduced nodule numbers (Table III). 
This might suggest the existence of a mechanism that 
compensates for changes in nodule numbers by reg-
ulating the size of individual nodules. Taken together, 
our findings support the theory proposed by Libbenga 
et al. (1973) that a delicate balance in hormone levels is 
required to achieve optimum nodule development. 
This theory is further supported by our finding that 
GAs, in addition to cytokinins (Lorteau et al., 2001), 
are stimulatory to pea nodule formation at low con-
centrations but inhibitory when increased beyond a 
threshold level. 

Reductions in root GA and BR levels also dimin-
ished lateral root numbers and lengths (Yaxley et al., 
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2001; Table II). Interestingly, this appears to be oppo-
site to the effects of cytokinins, which reportedly 
inhibit nodulation but stimulate lateral root develop-
ment (Lohar et al., 2004). It is likely that hormones 
have multiple roles in root and nodule development 
(Ferguson and Mathesius, 2003) and are required to 
different degrees at various stages of development. 
Overall, mutants have proven to be valuable tools for 
understanding the processes of root and nodule de-
velopment and for isolating genes relating to these 
processes. In pea, an extensive collection of nodulation 
mutants has been assembled (Borisov et al., 2000), but 
there remains a need for additional root mutants, 
which would aid in determining the developmental 
aspects that are shared in, and are unique to, the root-
nodule relationship. 

MATERIALS AND METHODS 

Plant Growing Conditions 

An overview of the various plant lines used in this report, including any 
mutated genes and their resulting effects on the plant, is provided in Table I. 
For nodulation studies, plants were sown one per pot in 100-mm Space Saver 
pots (Reko, Australia) and for root analysis experiments, seeds were sown 
seven per pot in 200-mm Plastamatic pots (Melbourne, Australia). All pots 
contained a 1:1 mixture of grade 3 vermiculite (Australian Vermiculite and 
Perlite, Fairfield, Australia) and 10 mm dolerite aggregate (HBMI, Kingston, 
Australia). This mixture was topped with approximately 2 cm of a pasteurized 
peat/sand potting mix composed of a 1:1 mixture of peat moss (Te - Em, New 
Brunswick, Canada) and coarse river sand (Island Resources, Scottsdale, 
Australia). Pasteurization was achieved using a steam/air mix at 70°C for 
45 mm. The pH was adjusted to 7.0 with dolomite lime and limestone. 

Plants were grown in a controlled environment glasshouse with temper-
atures maintained at 20°C day (18 h) and 15°C night (6 h) ±- 1°C. Relative 
humidity was maintained at a minimum of 40%. The photoperiod of 18 h 
consisted of natural daylight supplemented and extended morning and 
evening by 4 GE (Hungary) Lucagrow LU400/HO High Pressure Sodium 
400 W globes and 2 incandescent globes (60 W Pearl, Thom, Australia) 
delivering an additional approximately 150 /Imol photons m -2  s the pot 
surface. 

Plants were placed on capillary mats (Bottom Up Irrigation, Fertool 
Distributors, Hallam, Australia) and watered using an automated overhead 
sprinkling system (70 lines per hour at 150 kPa) for 2 min each morning and 
evening. For nodule count studies, each pot was provided with 25 mL of 
Rhizobium leguminosarum by viciae 128C53K (Nitragin lnoculants, Liphatech, 
Milwaukee, WI) grown in yeast-mannitol broth and diluted with water to 
approximately OD600  0.01, which represents 5 x 106  cells mL -1 . Based on 
a previous experiment, inoculation was delayed in these studies until 5 d after 
planting to maximize nod ulation. For root characterization experiments, at the 
time of sowing, 150 mL of the bacterial solution was applied. Plants grown in 
excess of 25 d were also provided with a modified Hoagland solution 
containing only 1 mm NO; to prevent the inhibition of nodulation. 

Nodule Count Studies 

Investigation of Mutant and Wild-Type Lines 

Plants were harvested 25 d after planting. This timing allowed nodules to 
develop to a stage where they could be clearly distinguished and their 
appearance accurately assessed. For each plant, the number of nodes was 
recorded, counting the cotyledon as node zero. The roots and shoots were 
separated at the cotyledon, which was excised and discarded. The root system 
was gently rinsed clean of potting substrates and placed in a tray of water. 
Nodules were counted, removed with forceps and, together with the roots and 
shoots, placed in a 60°C oven for a minimum of 3 d to obtain their DWs. 

Additional plants were allowed to persist until 40 d after planting, 
coinciding with the flowering time of many of the lines, including wild types. 

The same traits examined using 25-d-old plants were then assessed. By 40 d, 
the formation of new nodule structures should be minimal due to the plants' 
autoregulation of nodulation (Caetano-Anolles and Gresshoff, 1991). Thus, 
assessing the number of nodules at this age confirms that the numbers 
determined at 25 d have remained relatively stable and are not increasing 
indefinitely with age. This approach helps verify that autoregulation of 
nodulation is functional and provides confirmation of a reduction, as opposed 
to a delay, in nodule development. 

GA Treatments 
The effect of GA on nodule formation was examined using the GA-

deficient na-1 and its wild type (Table I). Seeds of the two lines were sown 
according to the methods used for the root characterization experiments 
(described above). The roots of the seedlings were treated with 150 mL of 
either water (control) or various concentrations (1F °, 10 -6, or 10 -3  M) of the 
bioactive GA 3 . These treatments commenced 3d after planting and continuing 
twice per week until harvest. The plants were harvested 20 d after planting, 
rinsed clean of soil substrates and their nodules counted. 

Grafting Experiments 
For grafting experiments, seeds of Torsdag and Ikb, or 1h-2 (Table I) were 

sown as detailed above for the nodule count investigation. At 6 d after planting, 
the seedlings were grafted using the methods of Reid et al. (1983). These 
mutants were chosen because of their common background (i.e. Torsdag; Table 
I) and their relative similarity in terms of both shoot stature and nodule 
numbers (Table III). At 10 d after planting, the plants were inoculated with 
25 mL of the bacteria, thus allowing the grafts to establish prior to inoculation. 
The graft combinations were then scored 30 d after planting. 

Analysis of Root Characteristics 

Plants were harvested 17 d after planting, allowing for the development of 
secondary and tertiary lateral roots. The plants were uprooted, gently cleaned 
in water, and placed in a tray of water. The length of the shoot and the longest 
secondary and tertiary lateral root was measured. The total number of nodes 
and secondary lateral roots were recorded. In addition, the number of tertiary 
lateral roots located on each of the upper (i.e. closest to the crown) six 
secondary lateral roots was counted. 

Hormone Analysis 

The roots of 30-d-old grafted plants were cleaned of soil, separated from 
their shoots and cotyledons, and weighed. IAA and GA 1  were then extracted 
from these root systems, and their levels quantified, using the methods 
outlined in Ross (1998). Two replicates, consisting of six root systems per 
replicate, were analyzed. 
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Abstract: 

The homeotic mutant of Pisum sativum, cochleata, has stipules replaced by alternative 

leaf components, abnormal flowers and reduced fertility. Although the root system dry 

weight, root lengths and nodule numbers of cochleata are similar to those of its wild type, 

the nodulation phenotype of the mutant is unique. The nodules typically dichotomously 

branch and multiple callus and root structures emerge from their meristems. These 

nodule-roots incorporate a peripheral vascular bundle of the nodule into their own central 

vascular cylinder. Both the nodules and roots of the hybrid structures appear functional. 

Roles for COCHLEA TA in development are discussed. 

Key words: 

cochleata, homeotic, meristem, mutant, nodulation, Pisum sativum 
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Text: 

The cochleata (coch) mutant of Pisum sativum (pea) was first reported by 

Wellensiek (1959) as having altered flower and leaf phenotypes. The flowers of coch 

exhibit supernumerary and mosaic organs, in addition to abnormally fused parts and 

reduced fertility. The stipules of the mutant are replaced by alternative leaf parts. At 

some nodes, this involves the production of leaf-like structures consisting of petioles, 

leaflets and tendrils in place of the stipules. For this reason, coch can be described as a 

homeotic mutant. More recently, it was established that the stipule primordia of coch are 

reduced in size and retarded in their development (Gourlay et al. 2000; Yaxley et al. 

2001), which might explain the abnormal stipule phenotype. Gourlay et al. (2000) 

demonstrated that a gene involved in leaf complexity, UNIFOLIATA, is expressed in the 

stipule primordia of coch at a time when compound stipule architecture is predicted to 

form. This was not observed in wild type plants, suggesting that the COCH gene product 

might act to inhibit UNIFOLIATA expression, thereby preventing the formation of 

compound leaf structures. Thus, COCK may act as a signaling element for organ identity. 

As a homeotic mutant with altered primordia, coch represents an excellent tool for 

investigating plant developmental processes. Nodulation is a symbiotic process in which 

specific soil bacteria of the genus Rhizobium invade compatible host plants. This process 

is complex, requiring multiple, tightly regulated, signalling interactions (Ferguson and 

Mathesius 2003) that lead to the formation of novel structures called nodules (e.g. 

Mathesius 2003). Within these nodules, the bacteria fix atmospheric nitrogen for the host 

plant in exchange for shelter and carbohydrates. 
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Legume mutants exhibiting abnormal nodulation characteristics have aided 

greatly in elucidating mechanisms required for nodule development (reviewed in Oldroyd 

and Downie 2004). Recently, a novel approach was undertaken by Ferguson et al. (2005), 

in which previously characterized mutants, whose nodulation phenotypes were unknown, 

were investigated. In addition, a new nodulation mutant, SGEamp, was described as 

having a shoot phenotype similar to that of coch (Voroshilova et al. 2004). Based on this, 

we continued with the line of investigation used by Ferguson et al. (2005) and describe 

here the nodulation and root phenotypes of the homeotic mutant, coch. 

The coch mutant and its wild type, Torsdag, had formed a similar number of 

nodules by 25 days (Table I). However, the morphology of the nodules on coch plants 

was uncharacteristic. Typically, these nodules were dichotomously branched and 

possessed small, emerging root structures, thus creating root-nodule hybrid structures 

(Fig. 1). The roots of these structures emerged from the meristems, generally protruding 

from the sides of the nodule lobes and displaying agravitropism (Fig 1). In addition, 

many of the nodule lobe meristems became swollen, resembling calli (Fig. 1D-F). The 

central zone of the nodule lobes appeared normal and characteristically exhibited a pink 

hue, representing the leghaemoglobin required for nitrogen fixation. The location of 

these hybrid structures on the root system was also normal, being dispersed throughout 

the mature portion of the root system, similar to those of Torsdag. This nodule 

phenotype was observed on three independently derived coch mutants, indicating that it 

is specfic to the coch mutation. 

See Table I 

See Fig. 1 
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The total, and average, nodule DW values of 25 day-old coch were similar to 

those of Torsdag (Table I), suggesting that the nodules of both lines were developing at 

similar rates. The lateral root lengths (Table II) and root system DW (Table I) of coch 

were also not significantly different from those of Torsdag, although there were moderate 

differences in the number of lateral roots formed (Table II). 

See Table H 

The hybrid roots of coch had markedly elongated by 40 days compared with those 

observed at 25 days (Fig. 2). They possessed root hairs and, in some instances, even gave 

rise to new root and nodule structures (Fig. 2F). The nodule portion of the hybrids also 

continued to grow, often further branching and continuing to develop new root and 

callus-like structures. These findings illustrate that both the roots and nodules of the 

hybrids have their own, distinct meristems, allowing them to elongate at their own rates. 

Taken together, extremely complex hybrid structures consisting of a multitude of roots, 

nodules and calli, developed from a single initiation point (i.e. infection site) on the 

lateral roots of coch. In many cases, these hybrid structures grew until they engulfed the 

root from which they arose (Fig. 2G). 

See Fig. 2 

The nodule number of 40 day-old coch and Torsdag root systems remained 

similar to their respective values observed at 25 days (Table I), indicating that the 

autoregulation of nodulation was functioning properly in both genotypes. In addition, the 

mutant root system DW remained similar to that of Torsdag (Table I). However, due to 

the additional root and nodule structures, the total and average nodule DWs of coch were 

significantly greater than those of Torsdag at 40 days (Table I). 
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Torsdag nodules were histologically similar to those previously described for wild 

type pea (e.g. Newcomb et al. 1979). Those of 25 day-old plants possessed an outer 

cortex, a peripheral vasculature connected to the central vasculature of the lateral root and 

three distinct histological zones: the meristematic, invasion, and infected zones (Fig. 3A). 

The majority of cells in the infected zone appeared to have been invaded by the bacteria 

and contained nitrogen-fixing bacteroids. 

See Fig. 3 

The nodules of 25 day-old coch plants also exhibited an outer cortex, and, 

although bifuricated, each lobe typically displayed the three histological zones observed 

in Torsdag (Fig. 3B-F). Meristematic tissue was not observed in the invaginated region 

between the nodule lobes of coch, although, the cells of the entire infected zone did 

appear to contain bacteroids. At least one vascular strand was observed in each nodule 

lobe of coch. Generally, the vasculature appeared thicker than that observed in Torsdag 

nodules, often branching and veering over the various histological zones. Collectively, 

the normal infected zone histology (Fig. 3) and the pink hue (Fig. 1,2) of the nodule, in 

addition to the healthy green shoots produced in the absence of applied nitrogen (data not 

shown), suggest that the process of nitrogen fixation is probably functional in coch. 

The roots of coch hybrid structures also appeared functional. They consisted of a 

root cap, meristem, cortex, central vasculature and root hairs, similar to that of a lateral 

root (Fig. 3H-K). The vasculature was incorporated into the hybrid root from a 

vasculature strand of the nodule (Fig. 3J,K). The xylem and phloem of the hybrid roots 

was arranged in a triarch pattern of distribution, typical of a lateral root (Fig. 3H,I). 
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The fact that coch formed a similar number of nodules to that of Torsdag indicates 

that the coch mutation does not prevent bacterial recognition or infection, nor does it 

prevent the autoregulation of nodule formation. In addition, coch nodules appeared 

functional and its root system DW and lateral root lengths were similar to those of 

Torsdag, demonstrating that these parameters are also not affected by the mutation. 

Furthermore, coch does not affect the development of the shoot, other than the stipule and 

flower (Wellensiek 1959; Yaxley et al. 2001), suggesting that the role of the COCK gene 

product in development is organ specific. Alternatively, there may be redundancy of 

COCH in organs of the mutant that display a wild type phenotype. The fact that the coch 

mutation results in ectopic roots developing from the nodules and alternative leaf 

components replacing the stipules suggests that COCH may normally function to inhibit 

the development of these structures. 

Root structures emerging from branching nodules have also been reported on 

Sesbania grandifolia Pior. (Harris et al. 1949). Moreover, root-nodule hybrids have been 

observed on M sativa (Dudley et al. 1987), T repens (McIver et al. 1997) and Phaseolus 

vulgaris (VandenBosch et al. 1985; Ferraioli et al. 2004) following inoculation with 

specific Rhizobium strains. However, these hybrids differed morphologically from those 

of coch, as the nodule zonation pattern, and multiple root, nodule and callus structures 

characteristic of coch hybrids, were not observed. It has also been reported that 

increasing the temperature can convert the nodule apex of Medicago saliva and various 

Trifolium sp. into roots and calli structures (Dart 1977; Day and Dart 1975), possibly 

suggesting that high temperatures interfere with the activity of the COCH gene product. 
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Nodules and roots share many aspects of their development, consistent with the 

theory that nodulation may have evolved from pre-existing mechanisms of early lateral 

root development (Hirsch and LaRue 1997; Mathesius et al. 2000; Mathesius 2003; 

Ferguson et al. 2005). The root-nodule hybrids of coch further support this theory, as do 

the nodule-like structures of many non-legumes, which are clearly derived from modified 

lateral roots (Hirsch and LaRue 1997). Although these structures are distinctly different 

from legume nodules, some aspects resemble those of coch, such as the agravitropic roots 

that emerge from the actinorhizal nodule meristems of Casuarina cunninghamiana 

(Torrey 1976) and Myrica gale (Torrey and Callaham 1978). In addition, mycorhizal 

nodules of Podocarpaceae species, which form even in the absence of the fungus, appear 

to be novel outgrowths that have diverged from the root developmental pathway (Russell 

et al. 2002). 

Although the stipules of coch are replaced by alternative leaf structures, the 

nodules are not actually replaced by roots, but rather form concomitantly with them. This 

phenotype is analogous to that of ufolfim homeotic mutants of Arabidopsis and 

Antirrhinum, which mediate floral meristem and organ identity (Ingram et al. 1995). 

Yaxley et al. (2001) hypothesized that there may be homology existing between certain 

meristems of pea because the primordia base of the petals and leaves is altered in coch. 

The meristems of coch nodules are also altered, giving rise to root and callus structures, 

possibly indicating common developmental abnormalities among these meristems. 

Yaxley et al. (2001) proposed that coch stipule meristems might remain meristematic for 

a prolonged period of time, leading to greater meristematic flexibility and retarded stipule 
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development. If this is true for coch nodule meristems, it may explain why they appear 

like swollen calli and why both nodule and root structures form. 

The phytohormone auxin has been reported to induce the formation of meristems 

on the roots of rice (Ridge et al. 1993). These meristems consisted of nodule-like, 

modified root outgrowths that displayed a callus-like surface, but a differentiated internal 

anatomy, as observed in coch nodules. Auxin also regulates root gravitropism (Marchant 

et al. 1999), which is dysfunctional in coch and actinorhizal nodule-roots. Thus, altered 

levels or perception of auxin may have a role in the development of the root-nodule 

hybrids of coch. Temporally and spatially determining the auxin content of coch root-

nodule hybrids would advance the understanding of this hormone in the development of 

these organs. 

Unlike other meristematic processes, the initiation and location of nodule 

development can be tightly controlled in the laboratory, making nodulation an excellent 

process to study meristems. The coch mutant represents an exciting tool for such studies, 

particularly since its mutation appears to affect certain organs, but not others. In addition, 

coch could provide insight into nodule branching and could help delineate between which 

aspects of nodule development are shared with, and which are unique to, lateral root 

formation. The fact that coch nodules, stipules and flowers are abnormal, but the 

remainder of the root and shoot systems are not, suggests that COCH may have been 

recruited into the process of nodule development from the flower and/or stipule 

developmental program(s). Of utmost importance will be to identify the initial cells from 

which the hybrid roots develop and to clone the COCH gene. Once the gene is available, 
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the roles of COCH in organ identity, including its affects on organ initiation, hormone 

manipulation and development, can be ascertained. 

Materials and Methods 

The coch allele (Hobart line AF99) was produced by EMS mutagenesis by Dr. J 

Weller from its wild type, Torsdag (Hobart line 107) (Yaxley et al. 2001). Additional, 

independently derived coch mutants, JI 2757 and JI 2165, were obtained form the John 

limes Centre, UK, to ensure that the nodule phenotype observed is due to the coch 

mutation. Plants were gown as outlined in Ferguson et al. (2005). For nodulation 

studies, seeds were sown in 100 mm "Space Saver" pots (Reko, Australia) and for root 

analysis experiments, seeds were sown in 200 mm "Plastamatic" pots (Melbourne, 

Australia). At the time of sowing, each pot was provided with either 25 ml (nodulation 

studies) or 150 ml (root characterization experiments) of Rhizobium leguminosarum by. 

viciae 128C53K (Nitragin Inoculants, Liphatech Inc., Milwaukee, WI) grown in yeast-

mannitol broth and diluted with water to approximately 0D600 0.01, which represents 5 x 

106 cellsml-I. 

For nodule studies, plants were harvested 25 and 40 days after planting. Analysis 

at 25 days allowed for the development of the nodules to a stage where they could be 

clearly distinguished and accurately assessed. Delays in nodule development can be 

identified at 40 days, when the plants initiate flowers and the formation of new nodule 
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structures should be minimal due to the autoregulation of nodulation (e.g. Searle et al. 

2002). 

Upon harvesting, the roots and shoots were separated at the cotyledon, which was 

excised and discarded. The root system was rinsed and placed in water. The nodules 

were then characterized, counted and removed with forceps. The complex nodules of 

coch (which were comprised of multiple lobes, roots and calli) were counted as one 

nodule because they arose from a single initiation point (i.e. infection site) on the lateral 

root. The roots, shoots and nodules of each plant were then placed in a 60°C oven for a 

minimum of three days to obtain their dry weights (DWs). 

For root studies, plants were harvested 17 day after planting, allowing for the 

development of secondary and tertiary lateral roots. The plants were uprooted, rinsed, 

and placed in water. The length of the shoot and longest secondary and tertiary lateral 

root was measured. In addition, the total number of secondary lateral roots, and the 

number of tertiary lateral roots located on each of the upper (i.e. closest to the crown) six 

secondary lateral roots were recorded. 

For histological examinations, portions of lateral roots bearing nodules were 

excised from 25 day-old plants. The specimens were fixed in 3.7 % (v/v) formaldehyde 

for 3 h, dehydrated in a graduated ethanol series for 5 h, followed by xylene treatment for 

2 h, and embedded in Paraffin (Paraplast ®, melting point 56°C; VWR Scientific, West 

Chester, PA, U.S.A.) using a vacuum infiltration processor (Tissue Tek ® VIPTM,  Salcura 

Finetek, Japan). Longitudinal serial sections 3 um thick were cut using a Leitz 1512 

microtome (Ernst Leitz Westlar GmBH, Austria) and transferred to slides. Paraffin was 

removed by soaking the slides in xylene. The slides were then rinsed in ethanol, 
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followed by water. All microtome and hand sections were stained with Toluidine blue, 

observed under an Axioskop 2 Plus microscope (Carl Zeiss, Gottingen, Germany) using 

differential interference contrast illumination and photographed with an AxioCam HRc 

digital camera (Carl Zeiss, Gottingen, Germany). 
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Genotype 

Torsdag 	177± 16 
coch 	198± 18 

Torsdag 	236± 17 
coch 	273 ±28 

Dry Weight (mg) 
Nodule 
Total 

51.7 ± 8.2 
62.1 ±6.1 
85.6 ±17.3 

149.4± 19.4* 

Nodule 
Average 

0.41 ± 0.053 
0.43 ± 0.058 
0.60 ± 0.078 
1.09 ± 0.153* 

Per Plant 

125 ± 8 
148 ± 10 
137 ± 12 
141 ± 11 

and cochleata 
f Nodules 
Per mg Root 
Dry Weight 
0.74 ± 0.07 
0.80 ± 0.11  
0.59 ± 0.03 
0.47 ± 0.09 

Table 	I. Root and nodule dry weights, and nodule numbers of 25 day-old Torsdag 
Number o Age 

(d) 

25 

40 

Root 

Plants were inoculated with R. leguminosarum at the the time of sowing. Results are means ± SE (n 
= 7). Values for each coch trait followed by an * are significantly different from those of similarily 
aged Torsdag traits at the 0.05 level. 
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Genotype Number Length (cm) 
Secondary Roots I Tertiary Roots Shoot Secondary Root I Tertiary Root 

Torsdag 	89 ± 3.6 20 ± 1.1 	12.5 ± 0.3 19.7 ± 0.1 4.3 ± 0.2 
coch 	78 ± 2.7* 26 ± 0.8* 	12.1 ± 0.8 20.2 ± 0.6 4.3 ± 0.1 

Results are means ± SE (n = 6). Values for each mutant trait followed by an * are significantly different from 
that of Torsdag at the 0.05 level. 

Table II. Root numbers and lengths of 17 day-old Torsdag and cochleata 
Indicated are the number of secondary lateral roots per plant in addition to the average number of tertiary 
lateral roots located on the six uppermost secondary lateral roots per plant. Also shown are the lengths of the 
shoot and the longest secondary and tertiary lateral roots per plant. 
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Figure Legends: 

Figure 1. Lateral root nodules of 25 day-old A) wild type and B-F) coch plants 

inoculated with R. leguminosarum. White meristems and pink central infected zones were 

apparent in the nodules of both genotypes. The nodules of coch dichotomously branched 

and typically exhibited callus-like structures and agravitropic roots emerging from their 

meristems. M=meristem, I=infected zone, AG=agravitropic roots, arrowheads=callus. 

Bars = 1 mm. 

Figure 2. Nodules of 40 day-old A) wild type and B-G) coch plants inoculated with R. 

leguminosarum. As observed at 25 days (Fig. 1), the nodules of both lines possessed 

white meristems and pink infected zones, and those of coch typically branched and 

possessed root and callus-like structures. These structures were more numerous and 

markedly larger, compared with those observed at 25 days. D, E) The roots of these 

hybrids also exhibited callus-like structures, which tended to form in close proximity to 

the attachment site of the hybrid root on the nodule. F) Hybrid roots also occasionally 

gave rise to their own root and nodule structures. G) The complex root-nodule hybrids 

often engulfed the roots from which they arose. M=meristem, I=infected zone, 

AG=agravitropic roots, R=emerging root, N=emerging nodule, arrowheads=callus, 

PR=primary root. Bars = 1 mm. 

Figure 3. Light micrographs of 25 day-old A) wild type and B-K) coch nodules. A-E) 

The meristems, invasion zones, and infected zones (which include cells harbouring the 
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bacteria) are clearly distinguishable in the nodules of both lines. B-F) Meristematic 

tissue was not observed in the invaginated regions occurring between the mutant nodule 

lobes. The nodule vasculature of both lines is connected to that of the lateral root, 

however, the A) wild type vasculature is thin and peripheral, whereas that of B-D) coch is 

markedly thicker and frequently oriented away from the nodule periphery. B,E) Serial 

sections of the same nodule depicting thick vasculature extending from the lateral root 

through to a hybrid root beginning to emerge from the nodule meristem. C) A swelling 

developing from the meristem of a coch nodule lobe. D) Hybrid roots emerging from the 

meristems of nodule lobes. F-K) Hand sections of coch nodules and roots. F) Cross 

section of a coch nodule with vasculature extending towards the infection threads and 

meristem, which is swollen and appears to be initiating an ectopic root. G) Hybrid root 

exhibiting a root cap, meristem, root hairs and zones of elongation and maturation. Cross 

section of coch H) lateral and I) hybrid roots illustrating the endodermis, cortex, 

epidermis and similar triarch distribution patterns of xylem and phloem. The reduced 

size of the hybrid root is probably due to it being younger than the lateral root. J,K) 

Cross sections demonstrating the vascular connections existing between the nodule and 

hybrid roots of coch. M=meristem, IZ=invasion zone, I=infected Zone, V=vasculature, 

LR=lateral root, S=swelling, HR=hybrid root, IT=infection threads, RC=root cap, 

EZ=elongation zone, MZ=maturation zone, RH=root hairs, X=xylem, P=phloem, 

EN=endodermis, EP=epidermis, C=cortex. Bars = 200 wn (A-F,J,K), 25 p.m (H,I). 
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