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ABSTRACT 

The histories of Great Lake and Arthurs Lake are 

outlined In terms of geology, geomorphology, discovery,. 

previous biological collections and drainage alterations. 

Collections of the benthic fauna were made from six 

sites in each lake every two months for a period of 

twelve months in Great Lake and fourteen months in Arthurs 

Lake. A total of 1.560 grab samples in 20 sample series 

were examined. The number of individuals in each species 

was counted and total wet weights for each sample series 

were estimated. Physical data collected included sediment 

particle size distribution and organic content as well as 

temperature readings. 

An accurate and comparatively complete species list for 

each lake has been compiled and affinities are discussed. 

Approximately 15 species collected during the survey have 

been recognised as new to science and taxonomic descriptions 

have been made, or are pending. 

The data were briefly examined for variation within 

sample series at each site and for seasonal variation 

within a site. Some data on life histories of certain 

species are presented. 

Detailed analyses of faunal variation between sites, 

within and between lakes were made. This was done using 

both qualitative and quantitative (numbers of individuals) 

data. Cluster analysis, using various sorting strategies, 

generally grouped sites from the original lake areas of 

both lakes before grouping sites from different levels of 
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the same lake. Principal coordinates analysis gave similar 

results. 

Biomass levels are presented and discussed in terms 

of component species groups. Instantaneous growth rates 

of some species are briefly examined. 

The species diversity and benthic biomass of the two 

lakes are discussed in relation to other Tasmanian, 

Australian and overseas lakes. The topics of lake typology 

and lake classification are examined both in relation to 

Australian lakes and in general. The question of prediction 

of lacustrine production levels is also briefly examined. 
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CHAPTER 1 INTRODUCTION 

The benthic fauna of Tasmanian lakes as a unit has 

received little detailed study. This could also be said 

of much of the freshwater invertebrate fauna of the state. 

Timms (1978) has briefly examined the benthic fauna of 

Lakes St. Clair, Dove, Dobson, Sorell, Crescent, Leake 

and Tooms in Tasmania. However these studies were the 

result of small numbers of samples at a single point in 

time. Weatherley and Nicholls (1955) collected some 

benthic samples from Lake Dobson but did not identify the 

species in any detail. They did calculate biomass for 

this lake. A few other brief studies have been made of 

the littoral fauna of a few Tasmanian lakes (see Knott & 

Lake 1974; Leonard & Timms 1974; Knott et al.  1978). 

All of these studies suffer, to some degree, from a 

lack of previous taxonomic work on the Tasmanian freshwater 

fauna. Species lists contain many unidentified taxa, 

which makes later comparative work more difficult. 

•.1 	AIMS 

The objective of the project reported in this thesis 

was to examine the fauna of Great Lake and Arthurs Lake 

in sufficient detail to gain a reliable knowledge of that 

fauna both qualitatively and quantitatively, and to 

examine the variation in both of these characters throughout 



the lakes, and over a complete cycle of the seasons. 

Considerable attention was given to the taxonomy of the 

various groups, with the invaluable co-operation of many 

specialists (see Acknowledgements), so that more meaningful 

species lists could be compiled. The study was not 

intended as an examination of methods, nor of species 

distribution on a small scale. Therefore, once the 

sampling procedure was established by analysis of the 

variation present within a series of samples, little 

further attention was to be given to such variation. 

As both the lakes to be studied are subject to large 

and often unseasonal fluctuations in water level (see 

Figs. 1.1 - 1.2) due to their useage for hydro-electric 

purposes the littoral fauna is in a state of flux to the 

extent that it is virtually non-existent in some years. 

Hence the benthic fauna only was studied. The effects of 

fluctuating water levels on the littoral fauna of lakes 

has been the subject of several studies in various parts 

of the world (Hynes 1961; Grimas 1962, 1965; Paterson & 

Fernando 1969; Hunt & Jones 1972a). 

The Great Lake in particular has undergone one major 

change in water level resulting in two areas which can be 

categorised as level 1 (original lake bottom) and level 2 

(post flooding bottom). These areas were to be examined 

in order to investigate any apparent effects of the water 

level changes on the benthic fauna. Maps showing original 

levels and contours of both lakes are given in Figs. 1.3 - 1.4. 

1.2 HISTORY 

According to Maude (1965) Great Lake was discovered 
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Fig. 1.2: Water level fluctuations, Arthurs Lake, 1964-1979. 

(Values for February and September of each year from 

HEC data). 



Fig. 1.3: 	Map of Great Lake showing • 

present and past water levels and 

approximate depth contours. 

(Map based on detailed contour map 

supplied by Hydro Electric Commission, 

Tasmania). 
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Fig. 1.4: Map of Arthurs Lake showing 

present and past water levels and 

approximate depth contours. 

(Map based on detailed contour map 

supplied by Hydro Electric Commission, 

Tasmania). 
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in 1815 by a kangaroo hunter named Toombs. A little 

later in 1817 a party led by a naval officer, John Beaumont, 

and a settler from the Jordon River, Robert Jones, travelled 

from the Jordon River to Great Lake and from there proceeded 

further west across the plateau (Shepherd 1974). The 

valleys of the Clyde, Shannon and Ouse Rivers were explored 

for most of their length by this time (Maude 1965) and 

graziers were beginning to run stock in the Bothwell 

district. By 1830 there were large numbers of cattle, many 

of them wild, grazing in the plateau area (Plomley 1966). 

Stock grazing was the principal use of the central 

plateau area until about 1900 when trout were introduced 

into the area. This use continued but the area also 

became a popular recreational fishery. The waters of 

Great Lake, and to a lesser extent Arthurs Lake (then 

consisting of two separate lakes), received considerable 

attention after this time and successful stockings were 

made with brown trout, Salmo trutta L. and later with 

rainbow trout, S. gairdneri  Richardson. Atlantic salmon, 

Salmo salar L., were also released in both lakes but they 

did not establish naturally reproducing populations. 

Further details of the acclimatisation of trout and salmon 

in these lakes are given by Gilmour (1973) along with 

interesting notes on the early days of fishing in these 

waters. 

1.3 DRAINAGE ALTERATIONS 

The first permanent dam on Great Lake was built 

across the Shannon River by the Hydro Electric Power 

and Metallurgical Company - the forerunner of the present 

1Th 
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Hydro-Electric Commission of Tasmania. This was a 

gravity dam built for the purpose of maintaining a 

constant flow in the Shannon River and was completed in 

1916. It increased the depth of Great Lake by about 3m 

to a supply level of 1022m. Prior to this anglers had 

placed a loose rock barrier across the Shannon River in 

order to keep the water level up in Swan Bay (Legge 1904). 

The Miena dam, completed in 1922,was built downstream from 

this. It was a multiple arch concrete structure built to 

supply the Waddamana power station. It increased the 

level of the lake to 1030m. 

A third dam was completed in 1967 further downstream 

from the multiple arch dam. It was about 550m long and 

of rockfill construction. It increased the depth of Great 
(FsL) 

Lake by a further 3.4m to a full supply levelXof 1033.5m. 

A further increase of about 6m has been proposed for 

sometime in the early 1980 1 s. Water levels already fluctuate 

considerably and have only been up to the FSL in 3 out of 

the 15 years since the completion of the last dam (see 

Fig. 1.1). 

A rockfill dam was completed on the Lake River draining 

the two lakes originally known as Arthur Lakes in 1961. 

The lower, or west lake began to fill above its normal level 

of 942.5m in winter of 1963 and the two lakes began to 

rise as one (from 946m) in early 1964. The new FSL of 

Arthurs Lake became 952.5m,a rise of 10m over the 

original lower lakes/ FSL. The water level of Arthurs 

Lake is also subject to considerable fluctuation (see Fig. 

1.2). 
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There have been several other changes to the catchment 

of these lakes since the first dam construction. Liawenee 

Canal was constructed in 1921 to divert waters from the 

Ouse River drainage into Great Lake. This was originally 

a 12.6 cumec capacity canal but it was enlarged in 1940 to 

carry 18.2 cumecs. The canal was concreted over a period of 

years with the majority of the work being done in 1950-51. 

The mean flow rate of the canal is about 9.7 cumecs. 

Small diversions were constructed on the upper Liffey 

River and on Westons Rivulet - Brumbys Creek. These 

commenced operation in 1963-64 and 1966 respectively. 

The two diversions convey on average 	about 0.7 cumecs 

to Great Laket64outthe year. 

Pumping of water from Arthurs Lake into Tods Corner, 

Great Lake, commenced in May 1966. Water is pumped uphill 

from Arthurs Lake, then via approximately 6 km of fluming 

to Great Lake. The fall into Great Lake is used to power 

a small turbine which is in turn used to operate the pump 

at Arthurs Lake. The average rate of Flow' to Great Lake 

from this source is about 3.7 cumecs. 

Since 1968 Shannon Lagoon has also supplied water to 

Great Lake via a pump at Miena. Water is pumped from the 

lagoon in winter when there is an excess. It supplies an 
rate 

approximate 	L, average x of 0.3 cumecs. 

Originally the major outlet from Great Lake was down 

the Shannon River. However, since the commencement of 

operation of the Poatina Power Station in 1964 and the 

closure of Shannon and Waddamana stations this outlet has 

only been used to supply riparian rights in summer. 

Poatina is now the major user of Great Lake (and Arthurs 
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Lake) water using a mean flow of about 18.7 cumecs. This 

water discharges via Brumbys Creek into the South Esk 

system. 

Some water may be discharged from Arthurs Lake via 

the Lake River, again for riparian useage, but the majority 

is diverted into Great Lake via the pump on the western 

shore of Arthurs Lake. 

1.4 GEOLOGY 

Banks (1973a) considered the Plateau as "consisting of 

two main, nearly horizontal, layers of rock resting on a 

basement of older, steeply tilted rocks". The surface 

layer of rocks around Great Lake and Arthurs Lake is now 

predominantly dolerite having been originally injected 

into a layer of sedimentary rocks the uppermost layer of 

which has since eroded away. More detailed geological maps 

of the area around Great Lake and Arthurs Lake are given 

by Voisey (1949e, b). 

The dolerite layer is generally between 60 and 300 m 

thick (Sutherland 1973) and appears to have intruded 

about 165 million years ago (McDougall 1961) about the 

time of the beginning of the Gondwanaland break up. 

There is a much thicker area of dolerite below Great 

Lake where a circular plug-like sheet between 1160 and 

1280 m deep occurs (Jones et al.  1966). This is thought 

to have been the feeder from which the major Central 

Plateau dolerite intrusion arose. McDougall (1958) 

considered that the temperature of the dolerite would have 
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been close to 1100°0 on intrusion. A very long cooling 

period would then have followed. 

The overlying sedimentary rocks were gradually 

removed by erosion leaving a surface layer predominantly 

of dolerite. At this stage the area was probably an 

extensive plain (Banks 1973a). 

As Antarctica began to move away from the Australian 

continent about 65 million years ago the plateau began to 

rise generally along northerly and north-westerly trending 

lines (Griffiths 1971). This left the plateau as a major 

horst with a relatively unbroken northern boundary but a 

series of broken levels to the south. Some time later, 

probably about 26 million years ago, tilting of the whole 

area occurred towards the south-east and fluvial deposits 

formed in ancestors to the Nile, Ouse and Shannon Rivers 

draining the plateau to the south (Banks 1973a). 

The tilting was followed by a further period of 

volcanism 23.6 to 21.8 million years ago (Sutherland 1973). 

This was in the form of basaltic larva eruptions emanating 

from various points largely concentrated under and around 

the present site of Great Lake. The larva,on flowing into 

or down the river valleys caused some changes to the 

drainage structure of the plateau (Banks 1973a). 

1.5 GEOMORPHOLOGY 

Great Lake and Arthur's Lake both lie on the Lower 

Plateau Surface, the middle of the three main erosion 

surfaces described by Davies (1959) for the Central Plateau 

area. This surface lies between 900 and 1050 m. Davies 
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(1959) suggested that the three surfaces represent 

successive erosion levels separated by phases of uplift. 

Natural drainage of Great Lake is to the south via 

the Shannon River. Arthurs Lake drains towards the 

southeast initially, but then north via the Lake River 

from Woods Lake. 

Sometime within the last 25,000 years most of the 

Upper Plateau Surface was covered by ice (Banks 19731)). 

Glacial remnants are evident in the region of Lake Augusta 

but the ice sheet did not reach as far east as Great Lake. 

Banks (1973b) records that there is evidence for an 

earlier cold period in the central plateau area (see 

Derbyshire 1968; Paterson 1965) but the extent of its 

effect is not known. Periglacial activity was much more 

extensive and both Great Lake and Arthurs Lake were within 

the area of its influence (fficolls & Dimmock 1965; Davies 

1967). The results of this activity are apparent in the 

extensive block streams to the north and east of Great Lake 

and Arthurs Lake. 

The origin,  of the larger central plateau lakes has 

given rise to some conjecture. Early opinion was that the 

Great Lake at least was formed by glacial overdeepening 

during the Pleistocene (Lewis 1933, 1945; Voisey 1949a). 

More recent opinion is that the lake is of tectonic 

origin and probably has not been glaciated (Jennings & 

Banks 1958; Davies 1959, 1974). 

Davies (1965) considered that the origins of the 

shallow lakes of the eastern part of the plateau were best 

explained "by invoking some slight tilting or subsidence 

to the north". The tilting would need to be a relatively 
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recent occurrence otherwise the shallow lakes would have 

filled with sediment (Banks 1973b). If this were the case 

and the tilting was gradual rather than sudden then 

emergent shorelines should be evident at the southern end 

of the lakes. Arthurs Lake and Woods Lake at least show 

some evidence of this. 

Another theory suggested by Banks (1973b) is that some 

tilting of the plateau may have occurred as an iso-static 

response to the melting of the central plateau ice-sheets. 

This would have resulted in emergent shorelines on the 

western side of the lakes affected. Extensive areas 

probably attributable to this cause may be found an the 

western sides of Lake Sorell and Woods Lake as well as in 

Arthurs Lake (Banks 1973b). Alteration of the lakes as 

a glacio-isostatic response would mean that the lakes 

were already present before the ice melted. 

Derbyshire and Peterson (1965) suggested that the 

lakes may have resulted from differential erosion during 

an earlier glaciation. However the occurrence of an 

earlier glaciation covering that area has yet to be 

established. 

It appears that Great Lake is quite old and predates 

the Pleistocene glaciation, although not necessarily in 

its present form. The lakes to the east may be of more 

recent origin. Since glaciation there has been a dry 

period which allowed the formation of sand dunes to the 

east of Lakes Sorell and Crescent and Lagoon of Islands 

(Banks 1973b), but no major evidence of this is present 

at Great Lake or Arthur's Lake. 
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Seismic records since about 1960 show epicentres on 

or near the Plateau (Banks 1973b). Hence the area is still 

seismically active but evidence of deformation has not been 

seen on the ground. 

1.6 BIOLOGICAL HISTORY 

The Great Lake area was the centre of interest for 

many early collectors. Its vast area of cool shallow water 

contained many species formerly unknown to science. The 

crustacean fauna in particular was found to be rich in 

species variety and abundance (Smith 1908). This fauna 

was studied to varying levels by numerous later authors 

(e.g. Smith 1909a, b, c; Shepherd 1917; Manton 1929, 1930; 

Nicholls 1929, 1943, 1944, 1947; Williams 1965, 1974; 

Lake & Knott 1973). Many of these works concentrate on 

the unique syncarid Paranaspides lacustris, particularly 

those of Smith (1908, 1909b) and Williams (1965). 

The abundance of fauna, particularly Crustacea, in the 

littoral zone of Great Lake was remarked upon by Smith 

(1908, 1909a), but by 1933 the shore fauna of the lake 

had been drastically reduced as a result of wide fluctuations 

in the water level (Tillyard 1933). Tillyard considered 

that P. lacustris was in danger of extinction and that 

the may-fly, caddis-fly, stone-fly and dragon-fly populations 

were low in diversity and generally few in number. Tillyard 

found two species of phreatoicids to be common both marginally 

and in deeper water. Only two years later, however, Cramp 

(1935) reports that P. lacustris was apparently quite easily 

collected in Great Lake. 
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The invertebrate fauna of Great Lake received further 

attention during the "fish food investigations" of J. W. 

Evans from 1936 to 1941. The results of these investigations 

were published in the reports of the Salmon and Freshwater 

Fisheries Commissioners. In one of these reports (Evans 

1939e) brief details of the contents of dredge samples from 

Great Lake are given. P. lacustris was found to be common 

at all sites along with small galaxias, phreatoicids and 

caddis larvae. The large freshwater planorbid Ancylastrum  

cumingianus, which is not a true limpet as originally 

thought (Hubendick 1964), the snail Ameria sp., small 

bivalves and amphipods were also recorded from some sites. 

No mention was made of any chironomid larvae in the 

collections and they are only occassionally listed in the 

trout gut details from Great Lake (Evans 1937, 1939a, b). 

In a summary of his findings from trout gut analyses, 

Evans (1942) concluded that the benthic fauna appeared to 

be in no immediate danger. The major benthic invertebrates 

eaten by trout were phreatoicids, caddis larvae and 

'limpets'. Evans also found that P. lacustris was far 

more abundant in the lake than trout gut contents suggested. 

A further study of gut contents of Great Lake trout 

was carried out during the years 1961-1963 (Wilson 1966). 

Variations were shown from the findings of Evans (1942). 

There was a considerable increase in the percentage 

occurrence of plankton from 5% (Evans 1942) to 29% Nilson 

1966), P. lacustris 2-20, trichopteran larvae 48-69 and 

dipteran larvae 1-33. However of these the dipteran 

larvae and P.  lacustris did not constitute a significant 

proportion of the total food volume but were merely more 
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widespread in their occurrence The plankton content 

could merely be an artifact of the collection time or a 

particular seasonal abundance. Wilson (1966) made the 

observation that P.  lacustris "now appears to be much 

more abundant". This conclusion is difficult to follow 

as such a large animal as P. lacustris, if it was abundant 

in the 20% of stomachs in which it occurred, should 

contribute more than 1% by volume to the stomach contents. 

No thorough investigation of the benthic fauna of 

Great Lake or Arthurs Lake has been undertaken until the 

present survey and most of the early interest centred on 

P. lacustris. However many other workers made collections 

of specific groups from Great Lake in particular. For 

example many caddis fly types were collected from the 

Miena area (see Mosely 1933, 1936; Mosely & Kimmins 1953; 

Neboiss 19774 and large collections of phreatoicids were 

made by Nicholls (see Nicholls 1943, 1944). 

The Great Lake area has proved to be of particular 

scientific interest in the past with many new species being 

first recorded there. Some species, particularly 

crustaceans are confined to the area. The region is also 

of particular value as a sport fishery and it was therefore 

considered necessary to examine the present day status 

of the benthic fauna of the larger lakes on the plateau. 

The surveys were to serve as a basis for future management 

of the lakes as well as providing qualitative and 

quantitative estimates of the present fauna. 
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CHAPTER 2 METHODS  

In his paper on the analysis of quantitative benthic 

methods Kajak (1963) stated that the "number of samples 

should depend on the abundance of organisms, on the 

spatial differentiation and the amount of time available". 

In first starting on benthic survey work one could also 

add "the sampling device available" to this statement. 

As there was no prior knowledge of the abundance of 

organisms or their spatial differentiation, preliminary 

reconnaisance was necessary. This was done with the 

sampling devices available at the time so that a program 

of study could be formulated. 

2.1 SAMPLING DEVICE 

The choice of the sampling method was largely 

governed by the availability of equipment. Many types of 

samplers, of varied design and efficiency, have been 

invented and most of these are covered in the reviews by 

Welch (1948), Zadin (1960), Southwood (1966), Holme (1964), 

Holme & McIntyre (1971), and Edmondson and Winberg (1971). 

The only two readily availabie for use were the Petersen 

grab and the Ekman (or Birge-Ekman) grab,both of which 

were in the form described by Welch (1948). The first of 

these relies on its own weight to close its jaws whilst 

the Ekman grab has a spring loaded closing mechanism. 

In preliminary sampling in Great Lake both devices 



22 

retained similar sediment samples when used in soft 

substrates but the Petersen grab was unable to penetrate 

the substrate encountered at some of the shallower sites 

to the same extent as the Ekman grab. At these sites 

sticks often prevented the Petersen grab from closing but 

the spring-loaded jaws of the Ekman grab cut through 

sticks in most cases. Hence the Ekman grab was selected 

for use in the survey with the only modification being 

to place a compression spring across the existing jaw-springs 

to increase the closing pressure of the jaws. 

Many authors have compared the efficiency of various 

types of sampling devices (see Brinkhurst 1974). The Ekman 

grab has been found to give comparable results to the 

other mechanical devices under normal lacustrine conditions. 

2.2 SAMPLING PROGRAM 

Sampling programs have received considerable coverage 

in the literature particularly in relation to the number 

of samples to be taken (see Lundbeck 1926; Berg 1938; 

Deevey 1941; Welch 1948; Lenz 1955; Kajak 1963; Elliott 

1971). The statistical principles associated with 

sampling have been covered by several authors and benthic 

invertebrates have received particular attention from 

Elliott (1971). 

In the absence of previous detailed studies on 

the benthos of Great Lake or Arthurs Lake it was necessary 

to determine the number of samples that had to be taken 

before a stable mean number of organisms per sample was 

obtained. Preliminary sampling using the Ekman grab was 
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carried out at one site in Brandum Bay, Great Lake on 

14 September 1973. This site was later used as site 

SGL2 in the sampling program. The total number of 

organisms present in ea:ch sample was determined and a 

cumulative mean with each additional sample was calculated 

and expressed graphically (Fig. 2.1). Similar graphs 

were plotted for chironomid and trichopteran species 

(Fig. 2.1). 

From each of these graphs it can be seen that the 

mean number of organisms in each sample became relatively 

stable after about 14 samples had been taken. After 

this stage there was a fluctuation of less than 5% of 

the mean for all organisms from 20 samples and less than 

8% of the mean when individual species were considered. 

Hence a series consisting of at least 14 samples was 

desirable to give an accurate picture of the fauna. 

Elliott (1971) gives the formula for calculating 

the number of sampling units in a random sample to an 

accurracy of 20% standard error of the mean as 

n = 21_a
2
_ 

R4 

where s2'
= variance 

= mean 

Elliott considered that this was a reasonable sampling 

error in most bottom samples. 

Using the same data used for Fig. 2.1 in Elliott's 

formula the number of sampling units required is 8 when 

all organisms are considered. If the chironomid and 

trichopteran data are considered separately from the 

other organisms the value of n becomes 11 and 32 respectively. 
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From these results a sample series consisting of 

20 sampling units was selected. Other proposed sample 

sites were examined and the required number of sample 

units for these sites determined by similar means. The 

results were similar to those for Brandum Bay, therefore 

20 sampling units were to be taken at this and the other 

stations selected. 

Brief preliminary collections were later (14 January 

1977) made at several sites in Arthurs Lake. Numbers of 

organisms encountered in this lake were of the same order 

as those of Great Lake hence, for uniformity, the number 

of samples in a series was maintained at 20 for the 

1977-78 Arthurs Lake sampling program as well. 

Later analysis of within sample variation (i.e. plots 

of number of species against number of samples) also 

supports this sample number (see Section 4.2.1.1). 

2.2.1 	Collection and Sorting of Samples 

Each sample series was collected from a boat at 

anchor over the pre-determined site. The Ekman grab does 

not function satisfactorily unless its jaws are released 

with the grab in a vertical position. Movement of the 

grab sometimes occurred as release by messenger is 

obviously not instantaneous. Therefore some discretion 

was used in deciding when a satisfactory sample had been 

taken. 

Once taken, each sample was placed in a separate 

container for transport and storage until sorting. The 

samples were kept at 10°C until they could be sorted. 
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Manual methods of sorting were extremely time 

consuming and greatly restricted the number of samples 

that could be hand/ed. Various alternative sorting 

aids were therefore investigated. These included flotation 

techniques and the use of dyes such as rose bengal (see 

Lackey & May 1971). 

The method eventually chosen involved the use of an 

elutriation apparatus as described by Lauff et al. (1961) 

(with minor modifications). This device is illustrated 

in Fig. 2.2. The efficient use of the device requires 

that the animals to be sorted be generally larger than 

the individual sediment particles collected with them. 

The raw sample is placed in a cylindrical column along with 

a quantity of water. Compressed air is then bubbled up 

from underneath, thus suspending the sediment and animals. 

The suspended mixture is then drained through a fine meshed 

sieve so that the fine materials pass through and the 

animals are retained. 

The mesh size of the sieve was chosen by trial and 

error with an aperture size of 700,pm being selected for 

use throughout the program. On close examination of the 

material which passed through this sieve there was not 

found to be a significant number of any particular 

organism with the possible exception of nematodes. Because 

of the size of these animals they would have been extremely 

difficult to separate from the additional extraneous 

material which would also have been retained had a smaller 

meshed sieve been used. 

The material retained by the sieve was washed into 

a white tray and sorted macroscopically into major taxonomic 



Fig. 2.2: Diagram of elutriation apparatus for 

sorting benthic fauna from fine substrates 

(after Lauff et a/. 1961). 

The unsorted sample is placed in the 

cylindrical column, water is added and compressed 

air is bubbled through it. The plunger In 

the side arm is then pushed in allowing the sample 

to pass out and through a fine sieve. More water 

can be added and the process repeated on the 

remainder of the sample. The stand supporting 

the apparatus (see Lauff et al. 1961) pivots to 

allow the remainder of the material below the 

outlet to be poured out the top of the tube. 

The apparatus was constructed in perspex. 

Base piece 1 provides attachment to the column 

whilst the holes in base piece 2 provide for 

spreading of the air. Base piece 3 has the water 

and air inlet attachments and a cut away section 

for spreading of the compressed air. Rubber 

gaskets are inserted between each adjoining base 

piece to provide a water tight seal when bolted 

together. A piece of fine silk mesh is placed 

between base pieces 1 and 2 to prevent animals 

from moving out of the bottom of the column. 

Further details of dimensions and construction 

are given by Lauff et al. 1961. 

27 
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groupings. Each group was preserved at this stage, the 

usual preservative being 70% ethanol with about 2% 

glycerine. Some groups were given special preservation, 

and some stages of certain species were retained live for 

further taxonomic study. 

Final consideration of the limitations imposed by 

boat space, transport space and storage space as well as 

the mechanics of sorting indicated that about six series 

of twenty samples could be collected and processed within 

a period that could reasonably be regarded as one point 

in time for comparative purposes. The choice of sample 

sites was therefore governed by these limitations. 

2.2.2 	Sample Sites 

There has been some discussion in the literature as 

to the choice of sites for a sampling program. Brinkhurst 

(1974) considered that the transect line should be 

abandoned for most purposes as depth is not always the 

dominant variable. He considered that random patterns 

of samples should be taken or else random samples within 

an identifiable zone. 

Sampling in a random pattern would have required 

more 20 sample series than could have been handled. 

Therefore, rather than sacrifice quantitative accuracy 

six sites were selected in each lake based on their location, 

depth and sediment type. Conditions were rarely calm at 

either lake and the movement of the boat at anchor during 

sampling tended to give a randomising effect to the samples 

within each site, i.e. the choice was for random samples 

within an identifiable zone. 
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As outlined in Chapter 1, the level of Great Lake 

was raised by about 10 metres in 1922, thus inundating a 

large additional area of land. Thus there were two 

distinct levels in the lake, the original level (designated 

level 1) and the post 1922 level (designated level 2). 

A third level was infrequently inundated during the study 

periods and was therefore not sampled. 

The Great Lake sample sites were chosen in three pairs 

in separate parts of the lake with one site in each pair 

being in level 1 and the other in level 2 (Fig. 2.3). 

Thus there is a depth difference in the sample site as 

well as a difference in age of sites. The three pairs of 

sites are also representative of distinct basins at the 

original lake levels (see Fig. 1.1). 

In Arthurs Lake the newly flooded areas resulting 

from artificial water level changes are not as well defined 

as those of Great Lake hence the sample sites were chosen 

primarily because of their substrate type and position 

in the lake relative to each other (Fig. 2.4). Two of 

these sites are in the newly flooded area whilst the other 

four sites are in the original lake areas. Two of the 

latter four sites are in each of the two original lake 

basins (see Fig. 1.2). 

To monitor seasonal variation, 20 samples were 

collected from each of the six sites at two monthly 

intervals throughout 1975 in Great Lake. This resulted 

in a total of 120 samples being taken from each site. 

Since this procedure had been established in Great Lake 

a similar program was followed in Arthurs Lake in 1977-78 

except that a further 20 samples were taken from each of 
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Fig. 2.3: 	Sample sites in Great Lake. 

SGL1, SGL2 etc. refer to sites for 

routine sampling as given in Table 2.1. 

Numbers 1, 2 etc. refer to additional 

sites sampled in Great Lake. Data from 

these sites is included in Appendix 2, 

Part 2. 

(Map based on contour map A11603 supplied 

by Hydro Electric Commission, Tasmania). 
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Fig. 2.4: 	Sample sites in Arthurs Lake. 

SAL1, SAL2 etc. refer to sites for routine 

sampling as given in Table 2.1. 

(Map based on detailed map supplied by EEC. 

Approximate contours from map A4067 also 

supplied by HEC). 
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the six sites so as to provide an overlap in the seasonal 

samples. 

The routine sites were located by compass bearing 

in Great Lake as it was thought that marker buoys would 

either be moved or cut loose by vandals. This decision 

was vindicated when marker buoys were later used in 

Arthurs Lake. All except one of these buoys was removed 

at least once during the 14 month sampling period. One 

of the sites had to be remarked four times during this 

time. The marking procedure used meant that the exact 

sample sites were not strictly consistent throughout the 

sampling time, but it was found that the sediment types 

were quite consistent over quite a large area in the 

vicinity of each sample site (with the possible exception 

of site WLN in Arthurs Lake). 

2.2.3 Summary of Sampling Program 

In summary the entire sampling program consisted of: 

20 Ekman grab samples from each of six sites in Great Lake 

and Arthurs Lake. This procedure was repeated at two 

monthly intervals over 12 months in Great Lake during 1975 

and over 14 months in Arthurs Lake during 1977-78. 

Sample sites are listed in Table 2.1 and sampling dates 

for each site are given in Appendix 1. 

The limitation of the number of sites in each lake 

may mean that the species diversity of each lake was not 

fully investigated. However it was felt that it was better 

to have reliable data from the sites that were sampled. 

Several small series consisting of 3 samples each were 

taken from 10 other sites in Great Lake on 7 November, 1975 
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(see Fig. 2.3). Unfortunately this survey was curtailed 

by rough weather and was not extended over all the lake. 

2.3 SITE DESCRIPTIONS, PHYSICAL AND CHEMICAL DATA 

The location of the sampling sites in Great Lake are 

shown in Fig. 2.3 and those in Arthurs Lake are shown in 

Fig. 2.4. The names used for each sample site, depths 

from normal full supply level (NFSL), site abbreviations 

as used throughout the text and grid references for each 

site are given in Table 2.1. The grid references refer 

to the Tasmanian Lands Department 1:100,000 map series. 

Physical and chemical data on both lakes are also given 

in Tables2.2 and 2.3 and Figs. 2.5 - 2.7. 

Swan Bay level 1, Great Lake (DIGL1) 

This site was situated in the original lake level in 

Swan Bay in the southeastern corner of Great Lake. The 

depth of the site was 15 m at NFSL and it was about 0.5 km 

from the nearest shore. 

The sediment was predominantly a blue clay with a thin 

layer of dark brown silt on the surface. 

Particle size analysis of the sediment (see Fig. 2.8) 

showed that there was usually more than 75% of the total 

weight of the sediment below 4 0 units (i.e. sub-sieve 

material). This was the finest sediment found from the 

Great Lake sites. Organic content l at 18.5%,was quite high 

compared to the other deeper sites (Table 2.4). 



Table 2.1: 	Sample site data 

Site 	Grid ref. 
Site 	 Depth from NFSL 	Abbreviation 	1:100,000 Tasmap 

Great Lake NFSL 1033.5 m 

Swan Bay level 1 15.5 DGL1 8214-744522 

Brandum Bay level 1 17.5 DGL2 8214-742533 

Cramps Bay level 1 16.5 DGL3 8214L842647 

Swan Bay level 2 10 SGL1 8214-849639 

Brandum Bay level 2 11.5 SGL2 8214-762701 

Cramps Bay level 2 11 SGL3 8214-737696 

Arthurs Lake NFSL. 952.2 m 

Cowpaddock Bay 3 SAL1 8214-922567 

Morass 6.5 SAL2 8213-943487 

East Lake North 9.5 DAL1 8214-951562 

East Lake South 9.5 DAL2 8214-964511 

Ti Tree Bay 14 DAL3 8213-921479 

West Lake North 11.5 DAL4 8214-903511 



38 

Table 2.2: Morphometric data for Great Lake and Arthurs 

Lake (principally from Peterson & Missen 1979) 

GREAT LAKE ARTHURS LAKE 

Catchment area (ha) 39600 26600 

Maximum depth (m) 20 14 

Mean depth (m) 15 7.9 

Length (km) 27.8 12.8 

Mean breadth (km) 5.7 5.1 

Volume (km?) 2.4 0.5 

Area (ha) 15804 6459 

Shoreline development 2.5 1.5 

Volume development 2.3 1.7 



Table 2.3: Water properties of Great Lake and Arthurs Lake (from published data) 

Lake TDS 
ppm 

TFS 
ppm 

K18 
uscm 

_ 1 	ph Colour 
pt units 

Na
+ 

K
+ 

Ca
2+ Mg 2+ 

peq/1 
Cl NCO- 

 3 
S0  Ca2+ Mg2+ 

ppm 
NCO- 	Source 

3 , 

Great Lake 20.1 9 20.1 6.3 <5 57 8 69 60 73 110 11 1.2 Buckney & Tyler 1973 

Arthurs Lake 27.9 15.7 26.6 6.5 <5 78 17 131 80 177 68 10 2.6 Buckney & Tyler 1973 

Great Lake 22-23 6.6-6.9 1.6 0.5 4.9 Williams 1964 

Great Lake 23 6.2 1.6 2.9 2.4 Williams 1964 

Great Lake 24 6.3 1.2 0.2 4.9 Williams 1964 

Great Lake 25 6.3 1.6 1.7 4.8 Williams 1964 

Arthurs Lake > 22 3.4 1.2 8.0 Williams 1964 

If 27 6.1 2.4 4.4 9.8 Williams 1964 
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Table 2.4: 	Organic content of sediments In Great Lake 

and Arthurs Lake (by percentage loss on ignition at 500 °0 

Site Range 	(%) Mean (%) 

DGL1 17.1 	- 20.8 18.5 

DGL2 7.1 	- 	9.4 8.4 

DGL3 5.1 	- 	12.4 8.4 

SGL1 20.2 - 31.0 26.1 

SGL2 33.5 - 41.1 37.8 

smi3 14.1 	- 	15.7 15.2 

SAL1 39.1 	- 39.9 39.5 

DAL2 12.5 - 	14.4 13.5 

DAL1 5.1 	- 	6.5 5.6 

SAL2 15.1 	- 36.3 28.0 

DAL3 9.1 	- 	10.4 9.7 

DAL4 13.1 	- 27.7 19.8 



46 

Brandum Bay level 1, Great Lake (DGL2) 

This site was also in the original lake level but 

in the northern part of the lake. The site was out in 

the large northern basin of the original lake approximately 

three kilometres off-shore from Brandum Bay. Site depth 

was 17 m at NFSL and was the deepest site sampled in 

either lake. 

The sediment had a brown mud layer on the surface 

with some yellow clayey nodules in it. The nodules ranged 

in size from very small up to about 2 cm in diameter in 

some samples. The substrate below was a fine yellow or 

occasionally blue clay. 

Analysis of the sediment showed that it was slightly 

coarser than that of Swan Bay level 1 with about 40% 

between 3 and 4 0 units and about 40% below 4. Organic 

content was low at around 8%. 

Cramps Bay level 1 Great Lake (DGL3) 

The third site in the original lake level was near 

the eastern side of the northern basin of the lake t out 

from Cramps Bay and about 0.5 km off-shore. It was exposed 

to the maximum fetch available in Great Lake to the 

prevailing west to north westerly winds - a distance of 

about 12 km. 

The sediment at this site was usually a yellow sandy 

clay with numerous small hard clayey particles. The 

brown mud layer, evident in the other two level 1 sites 

on Great Lake, was not noticeable at this site. 

Analysis of the sediment for particle size gave a 

similar result to that of DGL2. The organic content was 
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also similar at 8.4% although slightly less variable. 

Swan Bay level 2, Great Lake (SGL1) 

This site was situated in a part of Great Lake which 

was artificially created by the raising of the water 

level in 1922. It is in a corner of the Swan Bay area 

known as Dud Bay at a depth of 10 m from NFSL. 

The sediment was a dark sandy material with many 

small clayey nodules. There was usually considerable 

amounts of fine organic matter on the surface as well as 

numerous twigs and sticks. An alga' (gitella sp.) 

was also present in some samples throughout the year. 

The analysis of sediment from this site revealed 

a tri-modal distribution of particle size. The first of 

these represents about 15-20% of the material. This was 

retained by the largest sieve (-10 units) and contained 

organic material such as sticks and aquatic plants as well 

as the larger clay particles. A further 45% of the 

sediment was between 0 and 3 0 units representing the 

sandy part of the sediment. A further 15-25% of the 

sediment was in the sub-sieve range. Organic content at 

about 26% was higher than any of the deeper sites in Great 

Lake, but, as with SGL2,the weed and sticks etc. would 

give rise to considerable variations in this value. 

Brandum Bay level 2, Great Lake (SGL2) 

Another site in the artificial part of Great Lake, it 

was about 0.75 km from the Brandum Bay shoreline and 

about 100 m to the west of a small island. The depth was 

12 m from NFSL. Small sticks and twigs and remains of 
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rushes as well as the alga (Nitella sp.) were common 

at this site. The sediment was largely a coarse black 

granular material similar to the soils around the western 

shore of the lake. Although the texture of the substrate 

was quite coarse it appeared to be largely due to 

aggregation of fine particles. 

On analysis there was found to be a spread of 

material between 0 and 3 0 units. About 50-60% of 

material was retained by sieves in this range. A further 

20-30% was in the sub-sieve range. The organic content 

was higher at this site than any other site in Great 

Lake. Again the large amount of debris from flooded 

vegetation would contribute significantly to this. 

Cramps Bay level 2, Great Lake (SGLO) 

The third of the three sites in the new level was 

situated at the edge of the dead tree line about 100 metres 

from shore in Cramps Bay at a depth of 10 m from NFSL. 

From the nature of the substrate at this site and a similar 

area further south in Elizabeth Bay compared to SG-L1 

and SGL2, it appears that there is considerable deposition 

of lighter material on the windward shores of Great Lake. 

The sediment at SGL3 was a brown sandy material, 

quite uniform in appearance with a layer of fine organic 

detritus on the surface. Sediment analysis, as shown in 

Fig. 2.8, shows the uniformity of the sediment, as does the 

small range in the organic content of 14.1 - 15.7%. 

Cowpaddock Bay, Arthurs Lake (SAL1) 

The site selected in Cowpaddock Bay was the shallowest 



of all the sites in either lake at only 3 m from NFSL. 

The site was about 100 m from the nearest shore which was 

to the northeast. The substrate was generally similar in 

appearance to that of SGL2 except that it was much finer. 

The sediment was black in colour with numerous sticks 

and twigs. Also present were large amounts of Canadian 

pondweed, Elodea canadensis and lesser amounts of 

Potamogeton tricarinatus and Nitella sp. The amount of 

weed present varied considerably throughout the year at 

this site. Further detail of this variation is given in 

Fig. 2.9. 

On analysis the Cowpaddock Bay sediment was found to 

be quite fine with 60-75% in the sub-sieve grade. It did 

not appear to be so fine in practice probably due to the 

formation of aggregates of many small particles. The 

organic content (39.5%) was the highest for any site in 

either lake. The seasonal dieback of E. canadensis was 

probably a major contributor to this. 

East Lake North, Arthurs Lake (audi) 

This site was located in the northern part of what 

was originally known as /East Lake or Sand Lake. It 

was approximately 1 on from the northern shore at a depth 

of 9.5 m from NFSL. The substrate at this site was a 

fine blue clay similar to that encountered at SGIA. There 

were numerous larger yellow-brown clayey particles 

scattered through it. 

Analysis of the sediment showed that once the large 

clay particles were removed almost all the sediment was 

below 4 0 units in particle size. Organic content was 
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moderately high for a deep site at 19.8%. 

East Lake South, Arthurs Lake (DAL2) 

The second of the two sites in the original East Lake 

was at the southern end approximately 1 km eastwards from 

the westernmost point on Neil Island. The depth of the 

site, 9.5 m was similar to the northern site. 

The substrate was sandy in texture with fine brown 

silt intermixed. Analysis showed that 35 to 45% of 

material was in the 3-4 0 range and only about 25% in 

the sub-sieve range. There were very few large particles 

at this site but there were occasionally some small 

pieces of the alga_ Nitella sp. present. Organic content, 

(5.6%) was lower at this site than any other site in 

either lake. 

Morass, Axthurs Lake (SAL2) 

Before the level of Arthurs Lake was raised the 

southeastern part of the present lake was dotted with 

lagoons and the rest was marshland. The Morass site was 

over this area now at a depth of 6.5 m from NFSL. 

The sediment was very fine brown silt usually 

intermingled with decaying roots and stems of grasses, 

probably the remains of the original vegetation. During 

sampling, perhaps three samples in twenty would strike 

an area virtually devoid of vegetation remains. One of 

these such samples was used in the sediment analysis hence 

the wide variation in the organic content from 15.1 t 

36.3%. Particle size analysis showed that 80 to 90% of 

the sediment was sub-sieve size. 



The large amounts of organic matter present in 

these samples made them very tedious to sort as most of 

this material was retained by the 700 )u sieve used 

during sorting. 

Ti Tree Bay, Arthurs Lake (OAL3) 

This site was located in the southern part of the 

western basin of Arthurs Lake about 1 km from the southern 

shore. It was the deepest of the Arthurs Lake sites at 

14 m from NPSL. It was in part of the original Western 

Lake. 

The substrate contained numerous clayey particles 

up to about 1 cm in diameter with the remainder of the 

substrate being blue clay. 

Analysis showed that up to about 15% of the sediment 

was retained by the first sieve with from 50-70% of the 

material being finer than 4 0 units. A considerable 

portion (15 to 25%) was also between 3 and 4 0 units. 

Organic content at about 10% was roughly comparable with 

the two deep northern Great Lake sites DGL2 and DGL3. 

West Lake North, Arthurs Lake (DAL4) 

In the preliminary survey of Arthurs Lake some 

difficulty was encountered establishing a sample site 

in the northern part of the western basin. This was due 

to the hard surface caused by iron and clay concretions 

which either prevented the penetration of the grabl or 

jammed the jaws open so that the sample was lost. A 

reasonable site was eventually found but within this site 

the problem still arose occasionally. However, once 
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the initial marker buoy was removed there was some doubt 

about the continuity of the position of this site. 

The substrate was usually a fine yellow clay below 

with small to large clay and iron concretions on the 

surface. These ranged in size up to about 7 cm in 

diameter and were of irregular shape. There was usually 

a considerable amount of decayed plant material present. 

The samples for particle size analysis were 

comparatively free of large concretions. They showed 

that 80 to 90% of the material was below 4 0 units in size 
whilst the organic content was the highest of any of the 

deep sites at about 20%. 

2.3.1 Discussion: Site Physical and Chemical Relationships 

There are only minor differences between the two 

lakes in relation to water properties and temperature 

regimes. The general geology of the catchments of the two 

lakes is also similar. The waters of both lakes are low 

in dissolved solids and ionic concentrations with Great 

Lake slightly more so than Arthurs Lake (Table 2.2). 

Being at a lower altitude and less exposed Arthurs Lake 

may be slightly warmer than Great Lake overall although 

no major differences were noted during the surveys. 

Both lake systems were originally quite shallow and 

consisted of several basins or separate lakes which were 

united when the water levels were raised (Figs. 1.1 & 1.2 

The maximum depth of Great Lake was just over six metres 

whilst Arthurs Lake was no deeper than four metres. The SedmeraS from 

Aethree sites in Great Lake and four sites in Arthurs Lake 

which were located in the original lake basins were all 



•54 
found to be quite similar in appearance with the possible 

exception of the sandy DAL2 site in Arthurs Lake. 

Sediment analysis was not comprehensive but these areas 

were generally characterised by high levels of silt and 

relatively low organic levels. (Fig. 2.8, Table 2.4). 

Large particles were present to varying degrees at some 

of the deep sites. 

The substrates at the two shallow sites in the 

flooded western side of Great Lake were very similar in 

appearance consisting of a granular black sediment 

composed of aggregates of fine particles. Some algal 

growth (Nitella sp.) was also present. The shallow 

site in Arthurs Lake (SAI1) was very similar in appearance 

to these two Great Lake sites with the introduced weed 

Elodea canadensis probably contributing to the higher 

organic content, whilst break up of soil aggregates during 

sieving could have accounted for the observed higher silt 

content at this site. High organic contents at sites 

SGL1, SGL2 and SAL2 were probably largely derived from 

drowned terrestrial vegetation whilst deposition of 

allocthonous organic matter by wave action could account 

for the material found at SGL3. Site SAL1 derives a 

certain amount of its organic matter from drowned vegetation 

but additional material results from the seasonal dieback 

of E. canadensis (Fig. 2.9). All northern Arthurs Lake 

sites may have an additional input of organic material 

from streams entering the lake in this area. 

The Morass site in Arthurs Lake was formerly a grassy 

marsh at about the same level as the original lakes and it 

was subject to periodic flooding. The substrate still 

contains large amounts of decaying roots and grass stems. 
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2.4 TREATMENT OF DATA 

All specimens were identified as far as possible and 

the number of Individuals of each species in each sample 

at each site and collection date were tabulated. The 

resulting tables are too bulky to include in full, however 

a summary table giving the total numbers of each species 

for each 20 sample series taken from both lakes is given 

in Appendix 2. 

All animals from each sample, (or a reliable sub-

sample of them), were weighed for the purpose of estimating 

total biomass. Excess liquid was removed from these by 

draining them on filter paper. The wet biomass of the 

preserved material was used as there was insufficient time 

available during the initial sorting to calculate live 

weights. Molluscs and caddis flies were removed from their 

shells or cases before weighing. 

The effects of preservatives on the length and weight 

of animals have often been documented, particularly the 

effect of formalin on fish (Parker 1963; Cadwallader 1974). 

Alcohol also decreases the weight of various invertebrates 

(see Jonasson 1972; Wiederholm & Ericksson 1977 also 

Appendix 3). Biomass correction factors calculated from 

data in Appendix 3 were therefore used in this study. 

Jonasson (1972) increased the weight of preserved specimens 

by 33% in his biomass estimates. Where changes due to 

preservation have occurred the correction factor used has 

been conservative to avoid any overestimates of total 

biomass. The biomass estimate method itself is open to 

considerable error when extrapolating from small samples to 
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a large surface area. The conversion factors used are 

therefore considered to be quite within the accuracy 

limits of such methods. After an initial weight loss in 

some groups there was a steady, but small weight loss. 

This may have been due to handling rather than a result 

of preservation. The adjusted biomass data for each 20 

sample series were tabulated and results are given in 

Appendix 8. 

The species diversity data were further analysed using 

programs for calculating Shannon-Weiner and Pielous evenness 

indices on the Hewlett-Packard HP 9825A Desktop Computer 

System, (after Southwood 1971, Pielou 1969 respectively) 

at the Zoology Department of the University of Tasmania 

(see Sections 4.2.1.2; 4.2.1.3.1). 

Species presence and abundance data for both lakes 

were punched onto cards and analysed on the CSIRO Cyber 76 

computer using a Genstat program after Belder (1975). 

This program calculates matrices of similarity between 

pairs of sites using the Jaccard coefficient of similarity 

(ignoring 0-0 associations). The Jaccard coefficient, J, 

is given by: 

J = 

a+b - . c 

where 	a = number of species in community A 

number of species in community B 

number of species common to both communities 

The seventh series of samples at Arthurs Lake was not 

included in the data set to avoid any seasonal bias which 

may have occurred had these overlapping samples been used. 

The data for the remaining dates were then grouped into 
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sites to give presence - absence for each species at each 

site. A matrix giving the coefficient of similarity 

between each pair of sites (or communities) was computed. 

Three hierarchical clustering strategies, the average 

linkage, furthest neighbour and nearest neighbour 

techniques were then performed on this data. Principal 

coordinates analysis was then performed on this data. 

The program was then re-run on the presence - absence 

data with an instruction to treat any species that had 

two or less occurrences at a site as being absent from 

that site. This was an attempt to place emphasis on the 

dominant species at each site. A similarity, matrix was 

calculated, the same three clustering strategies were 

used and principal coordinates analysis was also performed. 

The data on abundance of each species were then 

considered. A total number for each species for the 

first six sample dates at each site was taken. It was 

transformed into its natural logarithm and this value was 

used to weigh each species in the Jaccard coefficient 

calculation. 

One was added to each species record to avoid zeroes 

arising from the Lnl = 0 situation. A similarity 

matrix was again calculated and cluster analysis as well 

as principal coordinates analysis were computed as above. 
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CHAPTER 3 

FAUNAL COMPOSITION OF GREAT LAKE AND ARTHURS LAKE 

3.1 INTRODUCTION 

The fauna of Great Lake and Arthurs Lake has been 

examined both qualitatively and quantitatively. The state 

of taxonomic knowledge of various freshwater invertebrate 

groups was such that specialist help was required for 

identifications. Fifteen new species have so far been 

recognised from various taxa collected during the survey. 

In this chapter the qualitative faunal differences 

between the two lakes are examined and discussed in 

relation to other lakes in Tasmania and south-eastern 

Australia. 

3.2 RESULTS 

A list of all species recorded from Great Lake and 

Arthurs Lake during the survey as well as those obtained 

from Great Lake in supplementary collections is contained 

in Table 3.1. This table also gives details of the 

relative abundance of each species at each of the 12 sites 

regularly sampled. 

The table does not list copepod, ostracod and nematode 

species which were also occarionally present in the samples. 

These species were too small to be consistently retained 

by the sieve used hence they were regarded as microbenthos 
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Table 3.1 
	

Abundance key x 	1-10/m2  

xx 	11-100/m2  

Species list for Great Lake and Arthurs Lake 	
XXX 100-1000/m2  

xxxx >1000/m2  

EGLI 1XL2 DGL3 SGL1 SGL2 SGL3 DAL1 DAL2 DAL3 DAL4 SAL1 SAL2 

CRUSTACEA 

Isopoda 

Mesacanthotelson setosus  Nicholls 	 x 	xx 

Onchotelson brevicaudatus  (Smith) 	xxx x 	xxx xx 

* Onchotelson spatulatus  Nicholls 

Uramphisopus pearsoni  Nicholls 	xx 

Colubotelson  sp. 	 xxx xxx xx xxx x 	xxxx 

Heterias  sp. 	 x 	x 	x 	x 	x 	xx xx x 

Syncarida 

Paranaspides lacustris  Smith 	 x 	x 

Amphipoda 

* Austrochiltonia australis  (Sayce) 	 x 	XXX 

Neoniphargus ? tasmanicus  Smith 	xx 	 xx xxx 	xxx 

Neoniphargus  sp. 	 x 	x 	xxx xxxx xxx xxx 

INSECTA 

Dipt era 

Chironomus oppositus  Walker 	 x 	x 	xx xxx 	X 	xxx x 

Criochironomus griseidorsum  (Kieffer) 	x 	x 	x 	xx xx x 	x 	x 	x 	x- x 

• Tanytarsus  sp. 	 xx xx x 	x 	xx xx 	x 	x 	x 	xx x 

Polypedilum  nr. tonnoiri 	x 	xx X 	XXX X 	 X 	X 	XX 

• Harnischia  sp. 

nr. Harnischia  

Dicrotendipes  sp. 	 x 	xx 

Cladopelma curtivalva 	 xxx 

parachironomus  sp. 
Parachironomus 7 delinificus  

Riethia  sp. 	 xx xx xx xxx xxx xxx xx xx xx xx XXXX xxx 

Coelopynia ? pruinosa  Freeman 	xx x 	xx xx x 	x 	xxx xxx xxx xx x 	xxx 

Paramerina  sp. 	 x 	xxxx 	xxxx 

Procladius 7 villosimanus  Kieffer 	x 	x 	xxx x 	xxx x 	x 	x 	xxxx x 

Ablabesmia 7 notabilis  Skuse 	 xxxx 	xx x 	x 	x 	x 	x 

Orthocladiinae Sp.1 
(nr. Smittia  or Cricotopus)  

Orthocladiinae Sp.2 	 x 	x 	x 	x 	x 	x 

Orthocladiinae Sp.2 	 x 	x 	x 	xxxx 

Orthocladiinae Sp .3 
(7 Cricotopus  sp.) 	 x 	x 	x 

Orthocladiinae Sp.4 
(nr. Eurycnemus)  
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Table 3.1 continued 

DGL1 DGL2 DGL3 SGL1 SGL2 SGL3 DALi DAL2 DAL3 DAL4 SAL .; SAL2 

Ephemeroptera 

Atalophlebia superba Tillyard 	 x 	xx 

Plecoptera 

also * Leptoperla beroe Newman 	 x 	x 

Trichoptera 

Atriplectides dubius Mosely 	xx x 	xx xxx xx xx 	xx xx 	x 	x xx 	x 

Ecnomus tillyardi Mosely 	 x 	x 	x 	 x 

Notalina parkeri Mosely 	 x 	x 	x 	x 	xx x 

Oecetis sp. 	 x 

ACARINA 

Australiobates linden i Lundb/ad 	 x 

Australiobates longipalpus Lundblad 	 x 

Oxus meridianus Lundblad 	 x 	x 	x 	 x 

Piona uncatiformis Lundblad 	 x 	x 	x 	x 	xx x 

Arrenurus  sp. 	 x 

Unionicola longiseta Walter 	 x 	x 	x 

OLIGOCHAETA 

Haplotaxis ornamentus Brinkhurst & Fulton 	xxx xx xxx x 	xxx xxx xxx xxx 

Haplotaxis heterogyne Benham 	 x 	x 	x 	x 	x 

Phreodrilus magnaseta Brinkhurst & Fulton 	x 	x 	x 	 x 

Phreodrilus plumaseta Brinkhurst & Fulton 	x 	x 	x 

Phreodrilus palustris Brinkhurst & Fulton 	x 	xxx xxx 	x 	xx xxx xx 

Phreodrilus breviatria Brinkhurst & Fulton 	xx x 	 x 	x 

Phreodrilus branchiatus (Beddard) 	 xx 	 xx 

Phreodri/us proboscidea Brinkhurst & Fulton 	x 	xx xxx 	xx 

Antipodrilus plectilus Brinkhurst & Fulton 	X_X X-7C7C X 	 X.7C_7C XXX XX X 

Antipodrilus multiseta Brinkhurst & Fulton 	xxx xx 	 x 

Telmatodrilus papillatus Brinkhurst & Fulton 	x 	x 	 XX 	 x 

Te/matodrilus bifidus'Brinkhurst & Fu/ton 	xxx xxx xx 	xx xx xxx xxx 

Limnodrilus hoffmeisteri C/aparede 	xx 	x 	xx xxx 	 xx xx 

BIVALV/A 

Sphaerium lacusedes Ireda/e 	x 	x 	x 	xx xx 

Sphaerium .  tasmanicum  (Tenison-Woods) 

Pisidium tasmanicum 	Tenison -Woods i 
xx x 	x 	X 	XXX X-7C 	 X 	X 	X 

Pisidium  sp. 
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Table 3.1 continued 

DGL1 DGL2 DGL3 SGL1 SGL2 SGL3 DALI DAL2 DAL3 DALA SALI SAL2 

GASTROPODA 

Beddomeia  sp. 

Glacidorbis pawpela Smith 

Physastra cf. gibbosa  

TURBELLARIA 

Romankenkius bilineatus Ball & Ti-an 	x 	x 	xx xx x 

Spathu/a ochyra Ball & Ti-an 	 XX 

unidentified prorhynchid 	 x 	x 	x 	x 

NEMERTEA 

Potamonemertes sp. 	 x 	x 	x 	x 	x 	x 	x 

PORIFERA 

unidentified sponge 	 x 	x 	xxxx 

HYDROZOA 

unidentified hydroid 	 x 	x 

Indicates species collected only in additional 

samples in Great Lake 
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and therefore outside the scope of the survey. 

Small forms of some other groups such as the early 

instar chironomid larvae also may have passed through the 

sieve but they were not noticed in any large numbers. 

Small fish of the genus Paragalaxias were caught on 

several occassions in both lakes but they were not recorded 

with the invertebrate fauna. 

A total of 51• separatespecies of invertebrates was 

collected from Great Lake during the main survey whilst 

another 3 species were added to the list in additional 

sampling (see Appendix 2). The oligochaetes (13 species) 

and chironomids (15 species) alone accounted for over half 

this number. Crustaceans were represented by five species 

of isopods, three species of amphipods and one species of 

syncarid. 

Five species of molluscs, four species of mites, 
-two 

three species of 	trichopterans and turbellerrians 

were also found. The remaining groups, the plecopterans, 

nemerteans and poriferans were represented by single 

species only. 

The Arthurs Lake fauna was of basically similar 

composition with a slightly greater diversity. A total 

of 56 species was recorded. The same 13 species of 

oligochaetes as found in Great Lake were also present 

in Arthurs Lake and 16 species of chironomids were also 

found, the majority of which were common to Great Lake. 

In Arthurs Lake, the crustacean group was slightly 

different in composition and far more abundant than that 

of Great Lake with two species of isopods, one species 

of syncarid. and three species of amphipods. There were 
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only slight variations in the occurrence In Arthurs Lake 

of species of the remaining groups recorded from Great 

Lake. However, one species each of Ephemeroptera and 

Hydrozoa were additional records for Arthurs Lake. 

The numbers of each species collected at each date 

at each site in both lakes are given in Appendix 2. These 

figures are for each 20 sample series and should be 

multiplied by 2.15 to convert to numbers per square metre 

, of lake bed. The total number of individuals/m 2  for 

each date at each site in both lakes is given in Table 3.2. 

The contents of the additional samples from Great Lake are 

listed in Appendix 2. 

CHIRONOMIDAE: In total numbers present, the chironomid 

group was the dominant element of the fauna of Great Lake 

but took second place to the Crustacea in Arthurs Lake. 

Riethia sp. was the single most abundant species of 

chironomid in both lakes. This was most marked in Great 

Lake where it was also the most widespread species. The 

dominance of this species in Arthurs Lake was largely due 

to its abundance at the Cowpaddock Bay site. Two other 

of the more abundant species of chironomid in Arthurs Lake 

were largely concentrated at the Cowpaddock Bay site also. 

These were the large species Procladius villosimenus and 

Chironomus OPPOSitUS,  both of which were among the more 

common species in Great Lake as well. Another very common 

and widespread species in both lakes was Coelopynia  

pruinosa. This species displayed a regular distribution 

for several sample series in Arthurs Lake and closely 

approached such a distribution many times in both lakes. 



Table 3.2: Number of animals per square metre of bottom for each sample date at each 

site in Great Lake and Arthurs Lake. (Samples taken at end of month indicated). 

\Site 
Month\ DGL1 DGL2 DGL3 SGL1 SGL2 SGL3 SAL1 SAL2 DAL1 DAL2 DAL3 DAL4 

1 464 1017 768 931 432 1916 2047 1974 1926 1817 847 1260 

3 1453 1357 581 899 563 2313 2924 1656 2290 2146 1441 860 

5 641 1662 611 750 1023 2866 3029 1952 2279 2578 1563 1163 

7 890 1318 576 1888 753 2509 6478 1269 2090 2511 2384 1307 

9 836 1548 572 2208 890 3367 2814 1140 2101 1782 1204 1604 

11 744 1002 660 1640 839 2363 2662 1322 1187 3335 1281 2253 

1 2939 1357 1933 2853 1015 916 

Mean no. 

/m2 839 1318 628 1387 750 2556 3328 1552 1978 2361 1453 1408 
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Other species of chironomids which were common to varying 

degrees were Tanytarsus sp. and Polypedilum tonnoiri in 

Great Lake and Cladopelma curtivalva at Cowpaddock Bay 

in Arthurs Lake. All of these were small species, the 

first two of which were also present in Arthurs Lake 

whilst C. curtivalva  was not found outside Cowpaddock Bay. 

The remaining chironomid species varied in their abundance 

from a couple of hundred specimens down to one or two 

only from all samples. 

Ten species of chironomids were common to both lakes 

whilst only one of the more abundant species, C. curtivalva, 

was confined to one lake on/y. 

OLIGOCHAETA: The oligochaetes were clearly the second 

most abundant group in Great Lake but were a close third 

in Arthurs Lake in terms of individual numbers. In 

number of species the group took second place in both lakes. 

Four species were especially common in Arthurs Lake 

whilst the same four along with another three species 

were also common in Great Lake with over 500 individuals 

of each species being collected during the survey. 

Only one of the more abundant oligochaete species, 

Limnodrilus hoffmeisteri (Great Lake only) was previously 

known to science whilst only two other species had 

previously been recorded elsewhere. In al1,10 new species 

were found, five in the family Phreodrilidae, four in the 

family Tubificidae and one in the family Haplotaxidae 

(see Brinkhurst & Fulton 1979, 1980). The largest of the 

common species was Haplotaxis ornamentus. It was 

extremely abundant at the deeper sites especially in 
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Arthurs Lake where it was the major contributor to the 

biomass of that lake. 

Two other large species, Phreodrilus palustris and 

Antipodrilus multiseta were common in Great Lake with the 

latter species only also common in Arthurs Lake. Another 

very common species in some parts of both lakes was the 

tubificid, Antipodrilus plectilus. This species was 

sometimes found clustered In tangled knots of more than 

fifty specimens, especially at Brandum Bay level 1. A 

further tubificid species Telmatodrilus bifidus was 

particularly common at all of the deep Great Lake sites 

and four of the Arthurs Lake sites. A small phreodrilid, 

Phreodrilus proboscidea was abundant at the shallow sites 

only in both lakes. 

Although most of the oligochaete species found in 

Great Lake and Arthurs Lake were previously undescribed 

it is probably a result of taxonomic neglect of this 

important faunal group rather than their own scarcity. 

Oligochaetes have usually been lumped together in faunal 

surveys in Australia (e.g. Timms 1974b,1978 in part; 

Knott et al. 1978; King 1979) both in consideration of 

actual numbers and in biomass estimates. Many of the 

species found are of particular interest both taxonomically 

and zoogeographically. 

CRUSTACEA: The next most important component of the fauna 

in terms of numbers in Great Lake was the crustacean group. 

In Arthurs Lake two species of crustaceans were the two 

most abundant species. In Arthurs Lake, crustacean fauna 

was dominated by the phreatoicid Colubotelson sp. which 
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from one site in Arthurs Lake. This species may be capable 

of actively avoiding the grab thus resulting in an 

underestimate of its abundance or else it may only be 

present in low numbers as has been reported in the 

literature (see Williams 1965). 

TRICHOPTERA: The only other groups present in any quantity 

were the trichopterans and the bivalves. Four species of 

trichopterans were found in Arthurs Lake, three of which 

were also present in Great Lake. Only one of these species, 

Atriplectides dubius was at all common. It was collected 

in varying quantities from all sites in both lakes and 

was one of only three species found with such a 

distribution during the survey (the others both being 

chironomids). A. dubius was most abundant at the shallower 

sites in both lakes. 

OTHER I•SECTA: Atalophlebia superba was the only mayfly 

species recorded during the survey. It was only found in 

Arthurs Lake and was only common at Cowpaddock Bay. The 

stonefly species, Leptoperla beroe was not common at any 

site and only a few specimens were recorded from Arthurs 

Lake during the main survey. 

MOLLUSCA: The bivalves were most frequent in Arthurs Lake 

where Sphaerium lacusedes,  S. tasmanicum and two species of 

Pisidium, one of which is an undescribed species (J. Kuiper 

pers. comm.), was collected. The known species is 

P. tasmanicum Tenison-Woods. Great Lake contained 

S. lacusedes and two species of Pisidium, but they were less 

abundant there than in Arthurs Lake. 
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Gastropod molluscs were rare in both lakes. However 

a new species, Glacidorbis pawpela, was recognised by 

Smith (1979) from two specimens only collected from Cramps 

Bay level 1 during the routine sampling. Further specimens 

were collected during the grid survey and at a later date 

from Elizabeth Bay for the taxonomic description (Smith 1979). 

ACARINA: A total of six species of mites were recorded, four 

from each lake with two species common to both lakes. Only 

one of these, Piona uncatiformis, occurred with any 

regularity. 

TURBELLARIA: Three species of turbellarians (two triclads 

and one alloeocoel) were found, three from Arthurs Lake 

and two of the same species in Great Lake. All three species 

were previously unknown but the two triclads have since 

been described by Ball and Tran (1979). One of the 

planarians was reasonably common in Arthurs Lake but was 

only found at one site in Great Lake. The second species, 

Spathula ochyra, was found in Cowpaddock Bay only. The 

alloeocoel (family Prorhynchidae) was found at two deep sites 

in Great Lake and four in Arthurs Lake but was not abundant 

at any of them. 

NEMERTEA: A new species of nemertean (Hickman pers. comm.) 

was found sporadically at four sites in both lakes. It 

may have been more abundant than noted but could have been 

missed due to their habit of disintegrating when disturbed. 
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PORIFERA: Colonies of sponges were recorded from two sites 

in Great Lake and four sites in Arthurs Lake. Numbers 

recorded are for separate colonies. They occurred at 

all sample dates at Morass Bay and most times at the West 

Lake North site in Arthurs Lake. 

HYDROZOA: Isolated colonies of a species of hydroid were 

also collected from three sites in Arthurs Lake with the 

major concentration being at the sandy East Lake South site. 

3.3 DISCUSSION 

CHIRONOMIDAE: The dominant chironomid species in Great 

Lake and Arthurs Lake, Riethia sp., Procladius vil/osimanus  

and Coelopynia pruinosa are also major components of the 

benthos of seven other Tasmanian lakes (Timms 1978) whilst 

most other common species found in Great Lake and Arthurs 

Lake were also recorded by Timms in at least some of the 

lakes he studied. Riethia (probably the species R. plumosa  

Freeman and/or R. strictoptera Kieffer) appears to be a 

widespread genus in larger freshwater lakes in Tasmania 

and it is also abundant in Lake Tali Karng, the only deep 

highland lake in Victoria, (Timms 1974a) and Lake Eucumbene 

in New South Wales (R. Farragher pers. comm.). 

P. villosimanus is also abundant in Lake Tali Karng (Timms 

1974a) and in three volcanic lakes in South Australia. 

(Timms 19741p) as well as in some of the Kosciusko glacial 

lakes (Timms 1980b). The large species Chironomus oppositus  

also shows a similar distribution to the latter species. 



7 1 

TRICHOPTERA: Atriplectides dubius, a trichopteran, was 

particularly widespread and at times common in both lakes 

and occurred at all sites. This species appears at home 

in a benthic habitat or in streams and occurs throughout 

Tasmania and in Victoria (Neboiss 1977a). It was recently 

placed in a separate family, the Atriplectididae (Neboiss 

1977b), of which it is presently the only member. It 

is not known if this species or the other less common 

species found in Great Lake and Arthurs Lake are present 

in the benthos of other Tasmanian lakes as Timms (1978) 

did not identify his species past the family level. 

However Neboiss (1977) recorded Ecnomus tillyardi from 

many areas around the state and Notalina parkeri from 

several other central plateau areas. 

OTHER INSECTA: Plecoptera were not common in either lake 

whilst Ephemeroptera were numerous only at one site in 

Arthurs Lake. Only one species, Atalophlebia superba, was 

found. This species was not recorded by Timms (1978) but 

he did record other species of the genus. This was also 

the case with the stonefly genus Leptoperla. Tillyard (1936) 

found A. superba in abundance around the Great Lake area 

and he also dredged it from the bottom. 

OLIGOCHAETA: From what is presently known 10 of the 13 

species of oligochaetes collected are endemic to the two 

lake systems. As indicated earlier this may well merely 

reflect a neglect of this group elsewhere in the state 

as well as on the mainland. However of the 13 species 

collected, only one (Limnodrilus hoffmeisteri) is at 

all widespread being common throughout the world (Brinkhurst & 



72 

Jamieson 1971). Phreodrilus branchiatus  has only been 

recorded outside Tasmania from southern Chile (Beddard 1891) 

and a further species which, if it proves to be Haplotaxis  

heterogyne  as suspected by Brinkhurst (pers. comm.), has 

not previously been collected since its original 

description by Benham (1903) from New Zealand material. 

The dominant oligochaete, Haplotaxis ornamentus  is considered 

to be most closely related to several species found in 

Europe (Brinkhurst & Fulton 1980). The remaining endemic 

species are all in either ofthe families Tubificidae or 

Phreodrilidae. The family Phreodrilidae exhibits a 

Gondwanaland distribution pattern. One of the tubificid 

genera, (Antipodrilus),  is found also on mainland Australia 

and New Zealand. The other genus, (Telmatodrilus),  is 

more widespread but poorly known. 

This group could be of considerable value 

zoogeographically as they have relatively low mobilities. 

However the state of their taxonomy makes comparisons 

with other Tasmanian or Australian works difficult. 

The named species found in other Tasmanian lakes 

by Timms (1978) (with the exception of P. branchiatus  and 

L. hoffmeisteri)  do not overlap with those found in Arthur's 

Lake or Great Lake. However his Haplo taxis  sp., 

Phreodrilus  sp. and Peloscolex  sp. may be conspecific with 

some of the new species described. It remains to be seen 

if any of these endemic species are represented in the 

fauna of other Tasmanian lakes. 

CRUSTACEA: The crustacean group is also of considerable 

interest zoogeographically but again the field is limited 
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by poor taxonomic knowledge, particularly in the amphipod 

group. The phreatoicid group has been studied by Knott 

(1975) but as yet his taxonomic revisions have not been 

published. Consequently the names used are those that 

are valid at present. Knott (pers. comm.) could not 

uphold the validity of some of the species described by 

Nicholls (1943, 1944) from Great Lake whilst some of those 

he considered to be valid (namely Mesacanthotelson tasmaniae  

(Thomson) and Colubotelson sp.) were not recollected from 

that lake during the survey. The fate of these species is 

unknown along with the amphipod Gammarus ripensis (Smith 

1909c) whose equivalent does not appear to have been 

collected during the survey. 

The major qualitative difference between the two 

lakes is in the phreatoicid faunas but the reason for this 

is unclear. The Arthurs Lake species Colubotelson sp. 

is present in shallow tarns and creeks around Great Lake 

and has been recorded around the shoreline of the lake 

but it does not occur in its deeper areas which contain 

possibly four endemic (to Great Lake) species. This high 

degree of endemicity is unparalleled by the group at a 

single location elsewhere (Knott pers. comm.). Such 

endemicity is,however, apparent in Great Lake in other 

groups e.g. paragalaxiid fishes (McDowall & Fulton 1978). 

In contrast to the Great Lake phreatoicids the 

Arthur's Lake species (Colubotelson sp.) is found over 

much of Tasmania with the exception of the west coast and 

an area extending through the midlands to the south-east 

corner of the state (Knott 1975). Within the above 

region Timms (1978) recorded Colubotelson  sp. from the 
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benthos of Lakes St. Clair, Dove and Crescent and it is 

also found in the highlands of south-eastern mainland 

Australia (Timms 1974a; Knott 1975). 

The amphipod fauna is only important in Arthurs 

Lake where the dominant form is a species of Neoniphargus. 

The genus is plentiful in Tasmania but its taxonomy is 

under review at present. Timms (1978) tentatively 

identified two other species of this genus in his study 

of seven Tasmanian lakes but only one of these (Neoniphargus  

cf exiguus  Smith) was common and this was at one site only. 

The species Neoniphargus ? tasmanicus  was formerly listed 

as common in Great Lake (Smith 1909a) but it was only 

abundant in parts of Arthurs Lake during this survey. 

Austrochi/tonia australis, a widespread species in south-

eastern Australia (Timms 1974b 1 1978; Williams 1974), was 

common at the shallow site in Arthurs Lake only. 

Other crustaceans encountered less frequently during 

the survey were an isopod of the genus Heterias and the 

syncarid Paranaspides lacustris. The isopod is similar 

to,but probably not conspecific with H. petrensis from 

Lakes Sorell and Crescent (Roberts 1975). The latter 

species was not collected from either of those lakes by 

Timms (1978). P. lacustris  was found in both lakes 

studied thus extending the known range of this species. 

It has not been recorded from any other Tasmanian lakes 

with the exception of two artificial storages downstream 

from Great Lake, and Woods Lake, (Fulton unpublished) which 

is connected via the Lake River to Arthurs Lake. 
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MOLLUSCA: Molluscs are not strongly represented 

numerically in Great Lake but some species are more 

frequent in Arthurs Lake. The bivalves Sphaerium lacusedes  

and members of the genus Pisidium were the main 

contributors. Smith and Kershaw (1979) have recognised 

only one species in each genus (S. tasmanicum and 

P. casertanum) both of which are widespread in south-

eastern Australia. However Kuiper (pers. comm.) has 

prepared a revision of the sphaeriids of Australia in which 

he records Slperium lacusedes, S. tasmanicum,  Pisidium 

tasmanicum and a new species of Pisidium  from Great Lake 

and Arthurs Lake collections. Timms (1978) recorded 

sphaeriids from all the lakes he studied. 

In Lake Leake l Timms (1978) found the gastropod 

Physastra attenuata (= Physastra gibbosa) which was present 

but rare in Arthurs Lake. I have seen specimens of this 

species from Great Lake although it was not found in this 

survey. 

A new species of gastropod, Glacidorbis pawpela, 

(Smith 1979) collected from Great Lake during this survey 

has not been recorded elsewhere. The freshwater "limpet" 

Ancylastrum cumingianus, once quite common in Great Lake 

(Evans 1939b,1942), was not recorded during the survey but 

it is not likely that its normal habitat was sampled. 

TURBELLARIA: The Tasmanian turbellarian fauna has also 

lacked detailed taxonomic study until recently (Ball 1974; 

Ball & Tran 1979). The latter paper described two of the 

three species recorded during the survey (family Dugesiidae) 
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Lake and was difficult to detect in the samples. It was 

also difficult to preserve without causing it to eject 

its proboscis and contract into a tight ball. 

ACARINA: Water mites were sporadic in occurrence and, with 

the exception of one site in Arthurs Lake where Piona 

uncatiformis was relatively common, they were not a 

significant part of the fauna. An unidentified species 

of mite was recorded from three Tasmanian lakes by Timms 

(1978), whilst several species, including two from 

Shannon Lagoon, were recorded from Tasmania by Lundblad 

(1941, 1948). Both the Shannon Lagoon species were 

recollected during the survey. Szalay (1953) lists 27 

species from Tasmania and this list included all the 

identified species from Great Lake and Arthurs Lake collected 

during the survey with the exception of Piona uncatiformis  

which was previously known from Victoria and New South 

Wales (Lundblad 1948). Viets (1975, 1976, 1978a, b) has 

recently described some new species from Australia 

including Tasmania but none of these are known from the 

Central Plateau. 

PORIFERA: A freshwater spongespecies was present in both 

lakes, being more widespread and slightly more abundant 

in Arthurs Lake than Great Lake. A number of species of 

sponges have been recorded from Australia (Racek 1969) but 

mainly from New South Wales and Queensland. Only two 

species, Heterotula nigra, and H. multidentata have been 

recorded from Tasmania (Flynn 1922; Racek 1969). The species 

collected during this survey has not been identified. 
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HYDROZOA: The remaining group, the Hydrozoa was 

represented in Arthurs Lake by one unidentified species. 

Flynn (1922) recorded specimens of the genera Cordylophora  

and Hydra from Northern Tasmania but there do not appear 

to be any other published records of hydroids from 

Tasmania. 
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'CHAPTER 4 

QUANTITATIVE FAUNAL VARIATION OF GREAT LAKE 

AND ARTHURS LAKE 

4.1 INTRODUCTION 

The benthic fauna of a lake may be examined 

quantitatively basically in two ways: in terms of numbers 

of individuals, or in terms of weight (biomass and/or 

production). • Variation in numbers can be further broken 

into various component parts. 

The species numbers and biomass of both lakes are 

examined and compared in this chapter with Special emphasis 

on the differences between sites in each lake. Analysis 

of spatial distribution within a small area would require 

many more samples than were taken in this survey, therefore 

little emphasis is placed on this topic. Considerable 

data on seasonal variation and therefore life history of 

various species were collected during the surveyand these 

aspects are briefly discussed. However, the study was 

primarily 'concerned with identification and quantification 

of the fauna, consequentlythis area is more closely 

examined. 
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4.2 	RESULTS 

4.2.1 Faunal Variation 

In the analysis of faunal variation numerous 

mathematical models and methods may be applied and the 

one selected may be chosen, to a certain extent, to give 

the "required" result. However the survey was not 

initiated for the purpose of testing models or as an 

exercise in ecological theory hence the analysis in some 

areas proceeds very little beyond direct visual appraisal 

of the tabulated results. 

The presentation of the data is a problem in itself 

as the records of occurrence of 50 taxa in each of 1560 

separate samples cannot be reproduced in an easily useable 

form. Hence a summary of each 20 sample series was used 

(see Appendix 2). Inevitably some information may have 

been lost but the data could not easily have been 

processed otherwise. 

Three main areas of faunal variation were expected 

and these are designated as: 

1. Within series variation 

2. Seasonal variation 

	

• 3. 	Inter-site variation 

The majority of the analysis was related to the 

variation between sites both within one lake, and 

between the two lakes studied, as this was where most 

of the variation was evident both in species present, 

and numbers of individuals. 



8 1 
4.2.1.1 	Within series variation 

Within series variation, i.e. the variation between 

each grab sample at a particular date and site, was not 

analysed very extensively. The main purpose of such 

analysis was firstly to establish the sampling procedure, 

and later to check that it was achieving its objective. 

The preliminary samples referred to in Section 2.2 

were briefly analysed for such variation by plotting 

a cumulative mean number of organisms against sample 

number in order to determine the required number of 

samples per series to adequately represent the population. 

Improved efficiency in grab use and sorting techniques 

during the preliminary sampling program increased the 

number of species and individuals detected. Graphs of 

mean number of animals with each successive sample 

(Figs. 4.1 & 4.2) for the first series of samples taken 

in Great Lake show similar results to those obtained from 

the preliminary sampling at SGL2 (Fig. 2.1). 

Further support to the sampling strategy as well 

as data on the uniformity of the fauna is given by 

examining the total number of different species present 

with each successive sample. This was done for the first 

sample in Great Lake (Figs. 4.3 & 4.4) but similar results 

were also obtained in Arthur's Lake. In most cases over 

95% of the total species collected occurred in the first 

15 samples. Based on variance to mean ratios the spatial 

distribution of individual animals within a site was 

generally contageous to varying degrees i.e. variance > 

mean. Some species, notably the oligochaetes 

Haplotaxis ornamentus and Telmatodrilus bifidus, the 



25 

• 

• s  • 
• 

0‘  
• 

• 
• • • 

20 

Me
an
  
no

. 
 
i
n
d
i
v

id
u
a
ls

  

15 

10 

• • 
DGL2 

DGL3 

' 	I DGL1 

10 	11 
	

12 	13 14 	15 	16 	17 	18 19 
	

20 

Number of samples 

Fig 4.1: Mean number individuals with increasing number of samples, Great Lake level 1 

(I shows 57. limits of mean). 



• • SGL3 

• 

I 	SGL1 • • 

• 
• 

• SGL2 

- 

M
e
a
n
  
n
o
.
  
i
n
d
iv

id
ua

ls
  

10 

20 

30 

40 

50 

3 	4 	5 	6 	7 	8 	9 	10 11 	12 	13 	14 	15 	16 17 	18 	19 20 

Number of samples 

Fig 4.2: mean no. individuals with increasing number of samples, Great Lake level 2 

(shows 57o limits or mean). 



20 

15 
P  DGL3 
. DGL2 

• • • 

• • •• 	• 
• • DGL1 

1 	2 	3 4 	5 6 	7 	8 9 	10 11 12 13 14 15 16 17 18 19 NJ 

number of samples 

Fig 4.3: Total number of species present with each sample taken, 

Great Lake level 2, January 1975. 

N
u
m
b
e
r
  
o
f
 
s
p
ec

ie
s  

10 

5 



85 

15 

 

• • 
• 

 

SGL2 

 

SGL3 

SGL1 

5 

    

0 	1 	2 	3 4 	5 	6 7 	8 9 10 11 12 13 14 15 16 17 18 19 20 

number of samples 
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chironomid Coelopynia pruinosa, and the trichopteran 

Atriplectides dubius displayed random distributions 

(after Elliot 1971) at various dates and sites. In a 

couple of cases only, the distribution of H. ornamentus  

was found to be regular. 

The degree to which species showed contageaus 

distributions varied considerably both within and between 

taxa. The within species variation was most noticeable 

in some chironomid species, particularly Riethia sp. 

as well as in the phreatoicids and amphipods of Arthurs 

Lake and the bivalves wherever they occurred. The 

common oligochaete species generally were random, or 

approaching same, in distribution with the possible 

exception of the tubificid Antipodrilus plectilus which 

periodically occurred in interwoven clumps of up to 

about 50 individuals. 

4.2.1.2 	Seasonal variation 

Patterns in the seasonal abundance of individual 

species were very difficult to detect. There were no 

consistent peaks in any group when various sites were 

compared. There were variations in numbers of individual 

species throughout the year at a particular site but 

these peaks were often inconsistent between sites. 

Naturally, such seasonal variations should be 

closely allied to the life history of the species 

concerned. In the case of the chironomid Riethia sp. 

which exhibits a life cycle of one years duration 

(section 4.2.2) definite abundance peaks occurred and these 

can be seen in Fig. 4.5. Another chironomid Procladius  

villosimanus also appears to show a similar peak in 
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Arthurs Lake but it was not common enough at other sites 

for comparisons to be made (Fig. 4.5). The occurrence 

of Tanytarsus sp. was markedly seasonal with peak 

occurrences usually in early March at all sites where 

it occurred (Fig. 4.5). 

In some of the species with life cycles lasting 

longer than one year there is a tendency for a masking 

of abundance peaks, caused by an influx of young of the 

year, by variations in adult numbers. Whether these 

variations are due to normal mortality or migrations of 

adults at that time, or possibly to sampling procedures, 

is unknown. Peaks in the number of phreatoicid juveniles 

and also their effects on total numbers are shown in 

Fig. 4.6. These data clearly show the rise in the number 

of juveniles in the December samples and in Arthurs Lake, 

where a late January sample was taken, a subsequent drop 

in juvenile numbers. 

The oligochaete group does not show any marked 

seasonal variations which are at all consistent throughout 

the sites. The large species H. ornamentus appears to be more 

common in the autumn-winter samples (Fig. 4.7) but this 

may be attributable to chance. 

The inconsistency of seasonal samples within sites 

is emphasised when the overlapping January 1977 and 1978 

samples from Arthurs Lake sites are examined. Shannon-

Weiner diversity indices were calculated for each site 

at each date (Table 4.1). This index has two components. 

It varies with the number of species present and also 

the abundance of each species in relation to the total 

number of individuals in the community. The maximum index 
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Table 4.1: 	Diversity indices for each site from Great 

Lake and Arthurs Lake. 
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Site Sample 	Total 
date 	individuals 

216 

	

3 	676 
DGL1 	5 	298 

	

7 	414 

	

9 	389 
11 	346 

	

1 	473 

	

3 	631 
DGL2 	5 	773 

	

7 	613 

	

9 	721 

	

11 	469 

	

1 	357 

	

3 	270 
DGL3 	5 	284 

	

7 	268 

	

9 	264 

	

11 	309 

	

1 	433 

	

3 	418 
SGL1 	5 	348 

	

7 	879 

	

9 	1027 

	

11 	763 

	

1 	201 

	

3 	262 
SGL2 	5 	476 

	

7 	350 

	

9 	414 

	

11 	390 

	

1 	891 

	

3 	1076 
sGL3 	5 	1333 

	

7 	1167 

	

9 	1566 

	

11 	1099  

Total 
sPID- 

9 
11 
12 
12 
10 
14 

14 
17 
16 
17 
18 
17 

17 
13 
17 
18 
15 
14 

10 
18 
19 
15 
17 
13 

15 
15 
19 
15 
18 
17 

11 
11 
10 
12 
11 
10 

Shannon- 
Weiner 

1.7476 
1.74 10 
1.6235 
1.9166 
1.7152 
1.6727 

1.5576 
1.8226 
1.1234 
1.6926 
1.4484 
1.9114 

2. 1 733 
2.0931 
2.0653 
2.0673 
2.1291 
1.9325 

1.3660 
2.1191 
2.0926 
1.0802 
1.1258 
1.3031 

2.0928 
2.0006 
1.6074 
1.5277 
1.1798 
0.7910 

1.5809 
1.6184 
1.4029 
1.5536 
1.3688 
1.4590 

Pielouts 
Eveness 

0.7954 
0.7261 
0.6533 
0.7713 
0.7449 
0.6338 

0.5902 
0.6433 
0.4052 
0.5974 
0.5011 
0.6746 

0.7671 
0. 8 161 
0.7289 
0.7152 
0.7862 
0.7323 

0.5932 
0.7332 
0.7107 
0.3989 
0.3974 
0.5080 

0.7728 
0.7388 
0.5459 
0.5641 
0.4082 
0.2792 

0.6866 
0.7029 
0.6385 
0.6479 
0.5944 
0.6640 
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for a given number of species is obtained when all species 

are equally represented. 

The differences between each index were tested for 

significance using a ItI test as described by Poole (1974). 

The within site analysis compared the results for each 

date at the one site (see Table 4.2 and Appendix. 4). 

A significant, difference at the 0.001 level of probability 

was recorded for three of the six sites when the January 

1977 and January 1978 samples were compared. 

The use of the Shannon-Weiner diversity index within 

each site could give some indication of the seasonal 

variation apparent, but it does not necessarily indicate 

peaks. This method may be useful in this case, as, 

within one site, the fauna present (at least the dominants) 

is relatively constant in composition throughout the 

year. Therefore, the differences in the diversity index 

for each date could be largely due to variations in 

abundance only. The number of significantly different 

comparisons (p<.001) of pairs of sample series for each 

site (from It/ test for differences between pairs within 

sites - Table 4.2 and Appendix4 ) therefore becomes a 

crude comparative measure of seasonal variation exhibited 

by each site (see Table 4.3). This table broadly 

indicates that the shallow sites are subject to the 

greatest variation in seasonal abundances. 

4.2.1.3 	Inter-site variation 

4.2.1.3.1 Diversity indices 

The Shannon-Weiner indices were used to compare 

samples taken from all the sites at the same time of year. 

Significance tests for differences between each pair of 
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Table 4.2: Tests for significance between Shannon-Weiner diversity indices 

for each sample series from DAL1 Arthurs Lake - . 

Month 	N 	S 	H 	J E(H) Var(H) 

1 	896 15 1.8626 0.6878 1.8547 0.0007 

3  1065 13 1.7756 0.6922 1.7699 0.0010 

5 	1060 14 1.6317 0.6183 1.6255 0.0009 

7 	972 13 1.6762 0.6535 1.6701 0.0008 

9  977 13 1.7730 0.6913 1.7669 0.0010 

11  552 lo 1.7295 0.7511 1.7213 0.0011 

1  899 12 1.8551 0.7466 1.8490 0.0006 

Table of , t ,  values: 

1 	2 3 4 5 6 7  month 

2.142 5.819 4.788 2.217 3.159 0.209  1 

3.332 2.338 0.058 1.014 2.012 	2 

1.071 3.290 2.193 5.791  3 

2.290 1.212 4.732  4 

0.962 2.088 	5 

3.057  6 

7 

Table of degrees of freedom: 

1743 1764 

1795 

1778 

1788 

1795 

1749 

1797 

1796 

1790 

1704 

1791 

1779 

1765 

1789 

1789 

1699 

1726 

1747 

1706 

1651 

Where: N = total number of individuals 

S = number of species 

H = S-W index 

J = Pielou, s eveness index 

E(H) = expected value of H 

Var(H) = variance of H 

Tables for all other sites are included in Appendix 4 

C r;frical I value 1-zit 	fo, f(061' rt 4 0 .001 
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indices were again made for each of the sites for all 

groups of two monthly samples. (The January 1978 Arthurs 

Lakes series were not included). Tables similar to those 

shown in Table 4.2 and Appendix 4 resulted but with 

more comparisons (Table 4.4 and Appendix 5). The pairs 

which did not show significant differences at the 0.001 

level were recorded i.e. the sites most similar. After 

the data for each of the six dates were compared a 

table showing the number of times each site was grouped 

with each other site was drawn up (Table 4.5). This 

analysis did not group any two sites on all occassions. 

Site DGL1 was linked with sites DAL1, DAL2, DAL4 and SGL3 

on five occas—sions. Further cross linkages were made at 

the next level. On the other end of the scale site SAL2 

was linked least with the other sites. 

The conclusions which can be drawn using diversity 

indices are limited largely by the absence of taxonomic 

data. Similar indices may arise irrespective of the 

composition of the fauna i.e. in a hypothetical case 

a community consisting of 10 species from the one genus 

could have the same diversity index as one consisting 

of 10 species from separate phyla. It was therefore 

considered that the diversity indices of the chironomid 

or oligochaete groups could provide useful comparisons. 

However the diversity indices were not further examined 

as a form of cluster analysis using presence and 

abundance data for each species was considered more 

appropriate. 

4.2.1.3.2 	Cluster analysis 

The results obtained from cluster analysis of the 
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Table 

site 

4.4: 	Tests for significance between Shannon-Weiner diversity indices for each 

for month 1 in Great Lake and Arthurs Lake. 

Site N 	S H J E(H) var (H) 

DGL1 216 9 1.7476 0.7954 1.7291 0.0022 
DGL2 473 14 1.5576 0.5902 1.5439 0.0021 

DGL3 357 17 2.1733 0.7671 2.1509 0.0018 

SGL1 433 10 1.3660 0.5932 1.3556 0.0023 

SGL2 201 15 2.0928 0.7728 2.0580 0.0042 

SGL3 891 11 1.7654 0.7362 1.7598 0.0007 

SAL1 952 19 1.8937 0.6431 1.8842 0.0014 

DAL1 896 15 1.8626 0.6878 1.8547 0.0007 

DAL2 845 19 1.6781 0.5699 1.6675 0.0010 
SAL2 918 13 1.3354 0.5206 1.3289 0.0010 
DAL3 394 12 1.1503 0.4629 1.1363 0.0034 

DAL4 586 17 1.9998 0.7058 1.9861 0.0015 

Table of 	, t ,  values: 

DGLI DGL2 DGL3 SGL1 SGL2 	SGL3 SAL1 DAL1 	DAL2 SAL2 DAL3 DAL4 Site 
2.891 6.720 5.725 4.311 	0.331 2.426 2.151 	1.156 7.368 8.013 4.141 DGLI 

9.760 2.885 6.701 	3.896 5.609 5.740 	2.012 3.992 5.480 7.294 DGL2 
12.604 1.033 	8.098 4.882 6.197 	8.647 15.865 14.163 2.991 DGL3 

9.014 	7.331 8.659 9.149 	5.124 0.539 2.871 10.284 SGL1 
4.660 2.642 3.285 	5.503 10.514 10.800 1.226 SGL2 

2.768 2.615 	1.885 10.571 9.627 4.960 80L3 
0.675 	4.010 11.396 10.699 1.944 SAL1 

4.004 13.047 11.178 2.918 DAL1 

6.999 7.599 5.897 DAL2 

2.813 13.328 SAL2 

12.120 DAL3 

DAL4 

Table of degrees 

1171 	1163 

1165 

of freedom: 

1171 	1062 

1171 	1058 

1159 	1013 

1073 

1052 

1057 

976 

1041 

866 

1126 

1129 

1155 

1117 

944 

1148 

919 

923 

967 

908 

769 

1113 

1036 

1125 

1128 

1155 

1117 

943 

1148 

1171 

1037 

1016 

1021 

1065 

1004 

837 

1167 

1124 

1139 

1124 

1119 

1115 

1077 

1128 

1157 

925 

1009 

812 

1009 

892 

1137 

1140 

1162 

1129 

960 

1138 

1171 

1020 

1170 

1111 

1026 

Tables for all other sample series are included in Appendix 5. 

CitHc4 	voAue 3.2q1 fo ,  pfob ,o,Ati 4  o."1 



Table 4.5: Frequency of insignificant differences 

between site pairs from comparisons of Shannon-Weiner 

diversity indices for the six sample dates (Table 4.4 

and Appendix 5). 

DGL1 DGL2 DGL3 SGL1 SGL2 SGL3 SAL1 DAL1 DAL2 SAL2 DAL3 DAL4 site 

2 1 1 5 2 5 5 2 5 DGL1 

1 1 3 3 1 3 2 1 2 2 DGL2 

2 2 1 1 2 3 DGL3 

2 3 3 1 SGL1 

3 2 4 1 2 2 3 SGL2 

2 5 3 3 1 SGL3 

3 1 1 4 SAL1 

3 3 4 DAL1 

1 4 DAL2 

SAL2 

1 DAL3 

DAL4 
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data are given in dendrogram form in Figs. 4.8 - 4.10 

whilst the similarity matrices for each arrangement of 

the data are included in Appendix 6. 

The results of these analyses are quite consistent 

for each arrangement of the data. In each case the 

nearest neighbour technique tended to hasten the 

clustering of groups whilst the furthest neighbour 

technique prolonged the groupings. The nearest neighbour 

technique also has the tendency to cluster in a single 

linkage pattern rather than form groups. The average 

linkage method appears to be slightly favourable although 

all three methods gave quite consistent results for the 

significant groupings within each set of data. 

Some differences in groupings, although minor, 

were obtained between the three arrangements of the data. 

The main change observed was that sites DAL1 and DALO 

were most closely related when species presence only 

was considered (Fig. 4.8) but when the rare species were 

excluded (Fig. 4.9) and also when species abundance was 

included (Fig. 4.10) the groupings altered to produce 

slightly different arrangements of the deep sites. 

The first cluster analysis technique which was a 

grouping based on species occurrence only (Fig. 4.8) 

highlighted the independant nature of most sites. On 

this basis the closest grouping was between two deep 

Arthurs Lake sites from separate basins in the lake. 

The first grouping between lakes was between site DAL2 

and DGL3. There was, however, a consistent split between 

the shallow sites and the deep sites with the intermediate 

SAL2 site generally grouping with the shallow sites. 
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Fig. 4.8 : Cluster analysis groupings for all sites in Great Lake and 

Arthurs. Lake using presence/absence data only. 
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Fig. 4.9 : Cluster analysis groupings for all sites in Great Lake and 

Arthurs Lake excluding rare species data. 
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Fig. 4.10 : Cluster analysis groupings for all sites in Great Lake and 

Arthurs Lake including all species and abundance data. 
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The cluster analysis excluding species with only 

two occurrences (Fig. 4.9) gave essentially similar 

primary clusters (with slightly lower levels of association) 

to that obtained when abundance data were included (Fig. 

4.10). 

The three deep Great Lake sites do not unite as a 

group above the 50% level of association with or without 

consideration of abundance data. One of these sites, DGL3, 

usually associates with DGL1 and then with the deep 

Arthurs Lake sites before the deep Brandum Bay site DGL2. 

However, of the deep Great Lake sites the greatest 

qualitative faunal similarities are probably between sites 

DGL1 and DGL2 although this is at quite a low level (see 

Fig. 4.8). 

No two sites were grouped at any greater than a 70% 

level of similarity by any arrangement of the data or 

clustering strategy. The groupings generally arrived at 

throughout by the 50% level of similarity are that the 

four deep Arthurs Lake sites (akL1, DAL2, DAL3, DAL4) have 

associated In some way either altogether or via other 

groupings. The two shallow western Great Lake sites (SGL1, 

SGL2) associate with each other at the 55% level or above 

in each case. Other groupings are usually consistent In 

direction throughout although they may be at variable 

(usually lower than 50%) levels of significance. 

Nevertheless, the unions are of interest. 

The first site to join the SGL1, SGL2 group is always 

site SGL3, the third shallow Great Lake site, whilst the 

shallow Arthurs Lake site SAL1 invariably joins this group 

before, or at the same time as it is united with the deeper 
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sites. The three deep Great Lake sites (DGL1, DGL2, DGL3) 

group in pairs, with each other, or, with the deep 

Arthurs Lake sites; but total union of these three sites 

is always at less than 45% similarity. 

The three clustering strategies always group the 

shallow sites from both lakes together and the deep 

sites from both lakes together at, or before uniting all 

sites regardless of the arrangement of the data with 

the exception of site SAL2. This site is intermediate in 

depth between the newly flooded and original lake areas 

of Arthurs Lake. It is placed in various positions by 

the sorting strategies employed usually with the deep sites 

but occassionally with the shallow sites at a low level 

of similarity. 

The grouping of the fauna of the various sites by 

cluster analysis has therefore been approached in nine 

different ways: (three data arrangements and three 

sorting strategies, Figs. 4.8, 4.9, 4.10). 

4.2.1.3.3 	Principal coordinates analysis 

Principal coordinates analysis (PCA) examines the 

variation between sites in terms of its component parts 

or latent vectors, and it is possible, if warranted, 

to label the component parts contributing most to the 

division. This analysis was performed on the same three 

arrangements of the data used In the cluster analyses. 

The contribution by the first vector in each analysis 

(Appendix 7) was only about 20% of the total variation 

and subsequent vectors only added slowly to these levels. 

The PCA grouped the fauna in a basically similar fashion 

to the cluster analyses. Once again, the shallow sites 
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Fig. 4.11 : 	Plot of first two latent vectors from PCA using species presence/ 

SGL2 "SGL1 

absence data only from all sites in Great Lake and Arthurs Lake. 
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Fig. 4.12: Plot of first two latent vectors from PCA using abundant 

species data only from all sites in Great Lake and 

Arthurs Lake. 
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Fig. 4.13 : Plot of first two latent vectors from PCA using all species 

and abundance data from all sites in Great Lake and Arthurs Lake. 
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and the deep sites form groups under the various data 

arrangements when values for the first two vectors are 

plotted against each other (Figs. 4.11, 4.12, 4.13). 

Although the variation between sites is apparently 

quite subtle it is sufficient to separate the shallow and 

deep sites in both lakes and give consistent groupings 

of these when applied to each arrangement of the data. 

4.2.1.3.4 	Site faunal relationships 

Some relationships between sites are clearly 

established from the treatment of the data. The deep 

sites of both lakes show overall similarities to each 

other whilst the two shallow Great Lake sites SGL1 and 

SGL2 are consistently closely associated. The third 

shallow Great Lake site,SGL3,is more loosely joined to the 

latter group, as in turn is the shallow Arthurs Lake site 

SAL1. The Morass Bay site in Arthurs Lake, SAL2, is 

intermediate between both groups showing tendencies 

towards each in some respects. Further examination of the 

deep sites divides them into two groups on an Arthurs Lake - 

Great Lake basis with a closer union within a group between 

the four Arthurs Lake sites than between the three Great 

Lake sites. 

Some further relationships between the deep sites 

are suggested from the analyses. The deep Arthurs Lake 

sites tend to group in pairs with an East Lake - West 

Lake distinction. There is a tendency for site DAL2 to 

show variability in some respects in the grouping. The 

three deep Great Lake sites are probably weaker in their 

association to each other or to any other site than the 

Arthurs Lake basins are to each other. 
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The major sources of variation between the shallow. 

sites (sAL1, SGL1, SGL2, SGL3) and deep sites (olui, DAL2, 

DAL3, DAL4, DGL1, DGL2, DGL3) would appear to be easily 

explained as major qualitative differences in the 

oligochaete and crustacean faunas as well as some 

qualitative and quantitative differences in the chironomids. 

The differences are readily apparent from examination of 

Table 3.1 and Appendix 2. 

The Cowpaddock Bay site (SAL1) differs from the 

shallow Great Lake sites in the crustacean group i.e. a 

different phreatoicid and the presence of Austrochiltonia  

australis. The presence and abundance at SAL1 of the 

chironomids Cladopelma curtivalva and Dicrotendipes sp. 

and the increased abundance of Procladius villosimanus  

are also important. The presence of Ephemeroptera, 

Plecoptera, increased numbers of mites and the planarian 

Spathula ochyra at this site also contribute to its 

distinction from shallow Great Lake sites. 

The Cramps Bay level 2. site (SGL3) differs in turn 

from the other two shallow Great Lake sites primarily 

by the absence of crustaceans, and generally higher 

chironomid numbers. The differences between SGL1 and SGL2 

are considerably less marked and relate more to certain 

species rather than whole groups. The phreatoicid 

Onchotelson brevicaudatus is absent from SGL2 whilst the 

oligochaete Phreodrilus branchiatus and the nemertean 

were not found at SGL1. Abundance differences are also 

apparent in the chirommid species Tanytarsus sp., 

Polypedilum  nr. tonnoiri and P. villosimanus  as well as in 

the trichopteran Atriplectides dubius and the oligochaetes 
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P. proboscidea and, to a lesser extent, Limnodrilus  

hoffmeisteri. 

The Morass Bay site (SAL2) is probably separated 

from the deep sites because of the absence of the typical 

deep water oligochaetes. It is separated from the shallow 

sites by the lack of the typical shallow water chironomids, 

the Chironominae. 

The deep Arthurs Lake and Great Lake sites may be 

distinguished by their crustacean faunas which, as 

mentioned earlier, are the major differences between the 

two lakes. Phreatoicids are common in both lakes but the 

species are different. The amphipods are very abundant 

in Arthurs Lake but are rare in Great Lake. The remainder 

of the fauna, with the exception of isolated species, does 

not show any distinct consistent differences between the 

two lakes but does serve to distinguish between individual 

sites. 

Within Great Lake the three deep sites show several 

qualitative cross linkages which are difficult to 

distinguish in order of importance. The phreatoicid 

Uramphisopus pearsoni was only found at DGL2 as was the 

oligochaete L. hoffmeisteri. The abundance of the species 

C. pruinosa, A. dubius, A. plectilus and A. multiseta is 

also at variance with sites DGL1 and DGL3. These factors 

probably set this site slightly further apart from the 

other two deep Great Lake sites. The Swan Bay site differs 

mainly in the oligochaete group in that A. multiseta  is 

absent whilst abundances of H. ornamentus, P. palustris  

and A. plecti/us are considerably different to those at 

sites DGL2 and DGL3. No amphipods were recorded from this 

site either. 
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The third deep Great Lake site, DGL3, differs from 

DGL1 and DGL2 mainly in the abundances of various species. 

There do not appear to be any major qualitative differences 

between the faunas of these sites. 

In Arthurs Lake the observed differences between 

the two deep basins could be a result of the absence of 

the amphipod Neoniphargus tasmanicus and the bivalves from 

the western basin (sites SAL3 and DAL4) as well as the 

lower numbers of phreatoicids. The presence of the 

oligochaetes P. branchiatus, A. multiseta  and T. papillatus  

at site DAL4 and not at DAL3 may account for some of the 

differences within the western basin. The two deep sites 

in the eastern basin (DAL1 and DAL2) differ mainly in 

the virtual absence of P. palustris and perhaps R. bilineatus  

from DAL1 as well as differing abundances in the crustacean 

group between the two sites. 

Site SAL2 is not only intermediate in depth between 

the shallow and deep sites in Arthurs Lake, it is also 

intermediate in position between the two basins. It has 

some faunal elements not present in both basins as it 

shares the amphipod N. tasmanicus and the sponge species 

with the western basin whilst it shares high phreatoicid 

numbers with the eastern basin. 

Finally, Table 4.6 has been compiled from various 

sources throughout the results. This table further 

illustrates the independant nature of the various sample 

sites. It is shown that the fauna is spread around the 

lakes and that several sites as well as seasonal sampling 

are required to adequately evaluate that fauna. 
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Table 4.6: 	Numbers of species collected at each site 

in Great Lake and Arthurs Lake. 

Site Mean no. 
spp. 

Max no. 
at one date 

Total no. 
spp. 

Max for lake 
at one date 

DGL1 11 14 21 

DGL2 16 18 28 

DGL3 16 18 25 38 

SGL1 15 19 27 

SGL2 17 19 26 

SGL3 11 12 15 

SAL1 20 23 30 

SAL2 13 15 25 

DAL1 13 15 21 42 

DAL2 18 23 32 

DAL3 14 15 27 

DAL4 17 17 30 

Total species GL = 50 	AL = 54 
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4.2.2 Life History Data 

Although elucidation of life histories was not a 

major objective of the survey some data are naturally 

available from the samples taken. 

The phreatoicid group was one of the few groups 

which showed a more or less uniform reproductive cycle. 

In Great Lake the large species Onchotelson brevicaudatus  

exhibits a life cycle lasting at least two years. The 

young are present in samples taken at the end of 

November (Fig. 4.6). The brood pouch was evident in 

females in each of the three samples from the end of May 

until the end of September at Swan Bay level 1. Although 

large specimens were still present after , the appearance 

of the young it appears unlikely that they remain to 

reproduce a second time. They did not appear to reproduce 

in their first year. Most of the Great Lake phreatoicid 

samples were too small for size frequency analysis but 

some detail is given for 0. brevicaudatus from site DGL3 

in Fig. 4.14. 

Juveniles of another Great Lake species, 

Mesacanthotelson setosus, were present in samples taken in 

early December hence a similar breeding time is suggested 

for this species. Another species present in Great Lake, 

Uramphisopus pearsoni, may reproduce slightly earlier, 

as small juveniles of this species were first found in 

samples taken near the end of October. However, local 

conditions at the time may have been responsible for such 

variations, as only a short delay in release from the 

brood pouch could result in their non-appearance until the 

next sample time two months later. 
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The Arthurs Lake phreatoicid, Colubotelson sp., 

also appears to have a two year life cycle although, 

being a smaller species, the cohorts are more difficult 

to follow. Specimens of Colubotelson sp. were quite 

numerous in Arthurs Lake and details of their growth are 

given in Fig. 4.15. Juveniles were first found in samples 

in early December at all sites. Paired males and females 

were observed at Morass Bay at the end of July and brood 

pouches were evident in samples of females taken in late 

July and particularly in late September. Hence an 

extended breeding season is suggested. There appear to 

be considerable differences in the maximum size attained 

by Colubotelson sp. between sites in Arthurs Lake. The 

size factor appears to be inversely related to numbers 

present with the largest specimens being found at Ti Tree 

Bay whilst the maximum size of adults was much less at the 

Morass site. Specimens at other sites were intermediate 

in size between these extremes. Evidence of this may be 

seen from the modal size of adults from different sites 

in Fig. 4.15. 

Although amphipods were very numerous in Arthurs 

Lake it was not possible to produce any data on their 

life history from the samples taken. More frequent samples 

would probably help as it appears that more than one brood 

is produced each year. 

Some of the more common chironomid species were 

examined. These were Riethia sp., Procladius villosimanus, 

Chironomus oppositus, Tanytarsus sp., Po/ypedilum nu'. tonnoiri  

and Coelopynia pruinosa. 

C, 
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Riethia sp. was the most common chironomid in both 

lakes. It was found to have a life cycle of one year 

with peak numbers generally recorded in /ate winter-spring 

samples. The maximum size was generally reached after 

the end of November with a few large fourth instar larvae 

still present in January samples especially in Great Lake. 

Only a few third instar larvae of this species were 

collected and growth through the first three instars is 

apparently quite rapid. All larvae were into the fourth 

instar, although quite small, by mid-autumn. Some data 

on the frequency distribution of developmental stages are 

given in Table 4.8. Emergence is probably over a period 

from December through to late January. 

P. villosimanus was also found to have a one year 

life cycle in both lakes. Emergence in this species 

probably takes place predominantly in late spring to 

early summer in the lakes studied with a few large fourth 

instar larvae still being present in the late January 

samples. The third instar larvae appeared in large numbers 

in the late January samples i.e. the next sample after 

the major hatch (Table 4.7). This gave the effect of 

smoothing out the occurrence peaks in this species (see 

numbers for this species at SGL2, SGL3 and SAL1 in Appendix 2) 

compared with Riethia sp. which usually does not reappear 

in the following sample. 

Another large species, C. oppositus, shows a similar 

one year life cycle to the above two species (Table 4.7). 

Emergence mainly takes place in late spring, with a 

predominance of third ins tar larvae in the late January 

samples. Although data from Arthurs Lake only have been 



Table 4.7: 

one year. 

Site 

Species 

Frequency of occurrence of instars of three chironcmid species throughout 

(Samples taken near end of month indicated). 

SAL1 	SG-L3 	SAL1 

Riethia sp. 	Riethia sp. 	P. villosimanus C. 

SAL1 

oppositus 

Instar 3 	4 3 	4 3 4 2 3 4 

Jan. 3 	6 - 13 342 51 3 107 4 

Mar. 2 	53 43 370 2 465 6 106 10 

May - 	265 - 580 - - - 160 

July - 1920 - 380 12 740 - 1 14 

Sept. - 	295 - 690 3 445 - 4 247 

Nov. - 	250 - 320 45 540 - - 3 

Jan. 1 	1 220 56 5 570 ?7 
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tabulated for the above three species a similar pattern 

was observed in Great Lake. Many of the early Great Lake 

samples were used for taxonomic purposes and some others 

accidently dried out. 

The small Chironominae species Tanytarsus sp. and 

Polypedilum nr. tonnoiri  also have one generation per 

year as with the preceding large species. However, these 

species show later emergence times and apparently very 

little growth over winter. Emergence in P. tonnoiri  

takes place in late-summer whilst Tanytarsus sp. emerges 

in late autumn. Frequency distribution of developmental 

stages of these two species is given in Table 4.8. 

Seasonal fluctuations in numbers of some species are shown 

in Fig. 4.5. 

Coelopynia pruinosa did not appear in such abundance 

at any one site as did the previous species but it was 

perhaps more evenly distributed. The life cycle in this 

species is more complicated in that samples from Great 

Lake indicated that emergence took place predominantly 

in February-March whereas samples from Arthurs Lake (not 

in the same year however) indicate that emergence may also 

occur after winter (see Table 4.9). It is possible that 

this species may produce two generations per year with 

emergence in summer and again in spring. It is probably 

more likely that emergence is over an extended period with 

a consequent extended recruitment time thus staggering the 

numbers in each instar at any one time. 

Other chironomid species were rarely numerous enough 

to afford satisfactory data for life history study. 

Collection of earlier instars, particularly of C. pruinosa, 



Table 4.8: Frequency of occurrence of instars of two 

chironomid species throughout one year. (Samples 

taken near end of month indicated). 

Site 

Species 

SGL3 

P. tonnoiri 

SGL3 

Tanytarsus sp. 

Instar 3 4 3 	4 

Jan. 3 280 2 80 

Mar. 26 5 1 15 

May 73 30 1 8 

July 100 44 20 

Sept. 97 44 

Nov. 15 240 

120 



Table 4.9: Frequency of occurrence of instars of 

C. pruinosa from various sites in Great Lake and 

Arthurs Lake. (Samples taken near end of month 

indicated). 

Site SAL2 DAL1 SGL1 

Instar 2 3 4 2 3 4 3 4 

Jan. 48 111 - 43 62 8 49 

Mar. 42 60 - 69 76 - 7 

May 1 29 47 1 75 74 9 15 

July 50 16 - 57 77 55 34 

Sept. 37 14 - 71 64 14 19 

Nov. 13 64 12 2 56 51 - 20 

Jan. 34 26 - 5 78 

121 
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is also desirable to fully determine the life history of 

the species studied. 

The life cycle of the trichopteran species 

Atriplectides dubius was briefly examined. This species 

was relatively common only at Swan Bay level 2 in Great 

Lake. The samples could be grouped into two size groups 

in March samples whilst three size groups were present 

later in the year. Pupating adults were present in samples 

taken from November to January and large larvae were 

retained alive and reared to adults after approximately 

one month from samples collected in early October. When 

pupating, A. dubius larvae detach about 5 mm of the 

posterior end of their case and position this transversely 

at the other end to seal off the case. 

Only one generation per year with an extended emergence 

time is suggested by the time of appearance of the small 

larvae in the samples. Some small larvae were collected 

in the late January samples whilst others appeared in the 

late March and late May samples. 

The life histories of any of the oligochaete species 

were not closely investigated. In all species, with the 

exception of the large Haplotaxis ornamentus, juveniles 

entering the population were not easily recognisable. 

Without microscopic investigation size classes could not 

be recognised and the fragmentation which occurred in 

these species would have rendered such a task very time 

consuming. 

Cocoons containing single eggs of H. ornamentus  

were collected during the mid year samples from both Great 

Lake and Arthurs Lake. Unfortunately the identity of these 
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was not immediately recognised hence little information 

was gained from them at the time. Young H. ornamentus  

were collected in small numbers only during the latter 

half of the year but at no time did the juveniles 

constitute a major part of the fauna. It appears that 

this species may live for at least three years. 

4.2.3 	Biomass Estimates 

Applying the correction factors where applicable as 

determined in section 2.4 an estimate of the total biomass 

for each site at each date was made by summing the 

individual species components as set out in Appendix 8. 

These values are given in Table 4.10 and their variation 

with season is presented graphically in Fig. 4.16. 

There does not appear to be any definite Seasonal trend 

in the biomass levels at the deep sites but seasonal 

peaks are apparent at the shallow sites. There is also 

a tendency for the beginning and end of year samples 

to be about equal in most cases hence the last Arthurs 

Lake sample has not been included in the calculation 

of the annual mean values as this would introduce a 

seasonal bias in that lake. 

The magnitude of seasonal variation is usually less 

than three fold with only one exception and that was 

at site SAL1 (Cowpaddock Bay) where a nine fold difference 

between minimum and maximum values was observed. 

The 'variation at any one site is usually attributable 

to variation in one particular group of animals e.g. 

oligochaetes, chironomids etc. and in many cases may be 

further defined to one species only. The' percentage 



Table 4.10: Biomass totals for each site on each collection date in Great Lake 

and Arthurs Lake (Arthurs Lake mean value excludes second January sample). 

Values are in g/m2 . 

Site DGL1 Month DGL2 DGL3 SGL1 SGL2 SGL3 SAL1 	DAL1 	DAL2 SAL2 DAL3 DAL4 

1 	15.31 12.60 24.82 4.51 3.08 5.37 3.19 	70.55 	13.08 10.38 61.24 14.17 

3 	30.94 14.29 8.18 5.38 1.48 5.29 8.94 	110.25 	13.69 17.14 91.61 41.56 

5 	55.04 8.48 13.98 2.61 3.73 11.15 13.09 	90.24 	41.14 14.98 56.10 46.32 

7 	49.92 10.46 10.85 5.98 1.73 11.77 28.77 	66.80 	42.91 8.62 73.68 39.01 

9 	23.32 4.53 14.33 7.90 3.81 13.93 16.13 	84.90 	16.72 8.50 73.48 56.72 

11 	20.04 11.18 24.22 6.25 3.98 9.59 9.74 	54.13 	33.31 8.82 64.31 59.60 

1 5.17 	73.47 	37.18 13.29 61.82 45.05 

Mean 	32.43 10.26 16.06 5.44 2.97 9.52 13.31 	79.48 	26.81 11.41 70.07 42.89 

Integrated value GL 	= 13.9 g/m2  AL 	= 	35.9 g/m2 
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contribution over the year to the total biomass by each 

species group is given in Table 4.11 whilst the seasonal 

variation of the dominant species groups at each site 

is given in Fig. 4.17. The contribution by each 

individual species can be calculated from data in 

Appendix 8. 

From these tables it is seen that the oligochaete 

group accounts for by far the major part of the standing 

crop at all deep sites throughout the year. The level 

varies between about 77% and 98% of the total biomass. 

In all cases the majority of the total biomass at these 

sites is attributable to a single species (Haplotaxis  

ornamentus) and therefore the biomass of these sites 

relates closely to the fluctuations in numbers of this 

species (see Fig. 4.7). At the deep Great Lake sites 

DGL2,and to a lesser extent I DGL3, other larger 

oligochaetes,Antipodrilus multiseta and Phreodrilus  

palustris,as well as the small but numerous A. plectilus, 

assumed some importance in biomass totals at certain 

times of the year. However, taken overall the percentage 

contribution of the oligochaete group to the total biomass 

of the deep sites was quite consistent throughout the 

year and fluctuations up to only about 10% around the 

mean value for the year were observed (see Fig. 4.17). 

After the oligochaetes the crustaceans were the 

next most important contributor to biomass totals at the 

deep sites in both lakes. This contribution was almost 

entirely due to phreatoicid isopods in Great Lake with 

only very minor contributions by amphipods. In Arthurs 

Lake much larger contributions were made by amphipods, 



Table 4.11: Percentage contribution to total biomass of each species group at 

each site (mean of seasonal values, excluding second January sample in Arthurs Lake). 

LAKE 	 GREAT LAKE 	 ARTHURS LAKE 

SITE 	DGL1 	DGL2 	DGL3 	SGL1 	SGL2 	SGL3 	SAL? 	SAL2 	DAL1 	DAL2 	DALO DAL4 

Isopoda 	6.6 2.3 13.3 17.0 23.9 2.8 84.5 11.6 15.6 * 7.6 

Syncarida * 1.1 * 

Amphipoda 5.2 2.8 * 3.7 * 1.7 

Diptera 

Chironomidae 	1.6 1.6 2.7 65.8 57.4 83.3 84.2 7.3 * 2.0 * 

Ephemeroptera 1.9 * 

Plecoptera * 

Trichoptera 15.7 9.9 3.6 2.5 1.6 * * * * 

Acarina 	* * * * * * 

Oligochaeta 	90.4 95.7 83.0 * 6.9 13.1 2.4 3.4 86.5 76.7 98.3 90.0 

Mollusca 	* * * * * * * * * 1.2 * 

Turbellaria * * * * * * * 

Nemertea 	* * * * * * * * * 

Porifera * * * * 

Hydrozoa * * 

contributes less than 1% to the total 
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however the phreatoicids were still the most important 

crustacean. 

The chironomid group is of minor importance only 

at the deep sites. It represents about 2% of the total 

biomass at the three deep Great Lake sites but achieves 

this level at only one of the deep Arthurs Lake sites. 

The oligochaete, crustacean and chironomid groups, 

as well as the 1.2% level for the molluscs (principally 

the bivalve Sphaerium tasmanicum) at site DAL2, are the 

only groups to contribute more than 1% to the total 

biomass of any of the deep sites over the whole sampling 

year. Of this total a single oligochaete species 

contributes well over 60%. 

The biomass of the shallow sites of both lakes was 

usually dominated by the chironomid group (Table 4.11). 

However the phreatoicid isopods were also important and 

were the dominant group at all seasons at site SAL2. 

The trichopterans were also of some significance in Great 

Lake but at no stage were they the major biomass 

contributor. 

The chironomid group constituted 57-85% of the 

biomass of the three shallow Great Lake sites and to the 

shallow Arthurs Lake site SAL1. The majority of this 

total was made up by Riethia  sp. with other occasional major 

contributions by Procladius villosimanus and Chironomus  

oppositus at some sites. 

The chironomid biomass was subject to seasonal 

peaks and the sample most affected, particularly by 

the fluctuations in numbers of Riethia sp. was the late 

January sample. As mentioned earlier, this species has 
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a one year life cycle in which larvae at their maximum 

size emerge in summer. Hence depending on local conditions 

large Riethia larvae may or may not be present at this 

time of year. Such seasonal abundances in other chironomid 

species may be masked to a certain extent by having 

longer life cycles and extended breeding seasons, but 

last instar larvae of the larger species are usually 

of sufficient size to have some effect when weight not 

numbers is considered. Following this, chironomid biomass 

usually reaches a peak in mid year and decreases towards 

summer as mature specimens hatch (see Fig. 4.18). 

The phreatoicid biomass figures do not show any 

marked seasonal trends. At the one site where they were 

the major contributor to total biomass (SAL2) a peak 

value was observed in autumn and this peak was also 

observed at DAL1 which had the next highest phreatoicid 

biomass total. However these animals have at least a 

two year cycle with at least two generations present at 

most times. These peaks may, therefore, merely reflect 

the abundance data rather than represent actual peak 

levels for individuals of the species. 

The amphipods contributed more to the crustacean 

biomass than phreatoicids at site SAL1 only. The 

trichopteran group also becomes an important contributor 

to the biomass of the shallow sites especially in Great 

Lake whilst two other groups only, make contributions of 

more than 1% to the total on single occai-aons. These are 

the ephemeropterans (1.9%) at SAL1 and syncarid crustaceans 

(1.1%) at SGL2. The latter occurrence is of considerable 

interest and was achieved by the presence of only four 

specimens of Paranaspides lacustris. 



SGL1 

131 

SGL3 

15 

10 

5 

7 

6 

5 

4 
••••■•■ 

C\1 
3 

bi) 
2 

1 
•rt 

30 

25 

20 

15 

10 

5 

1 3 5 7 	9 11 	1 

Month 
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For the purpose of comparing biomass levels in 

Great Lake and Arthurs Lake with values calculated for 

Tasmanian and other lakes a mean weighted biomass value 

for both lakes was calculated. This was based on a mean 

yearly value for each site, taking the value for each 

site or pair of sites as the overall biomass level for 

its basin and thus calculating the value for the total 

lake at normal full supply level. 

The mean weighted biomass values for each lake 

are included in Table 4.10. 

4.2.4 Instaneous Growth Rates and Production Estimates 

Quotation of a section from Chapter 7 of Edmondson 

and Winberg (1971) is considered appropriate at this stage. 

.... before setting out to estimate the production 
of a particular species, the investigator must obtain 
information about the distribution, specific features 
characteristic for stages of development as well as the 
age structure and the generation time. It is also 
important to have information on the reproductive cycle 
of each species. The above data are essential, in order 
to determine the changes in the number of specimens 
and the standing crop of each of the age groups". 

From these requirempnts it is apparent that 

insufficient prior data were available to make valid 

estimates of benthic productivion in Great Lake and Arthurs 

Lake. Estimates usually rely upon the recognition of 

cohorts throughout the year when calculating production 

from biomass differences and estimates of the biomass 

of the eliminated individuals (see Edmondson & Winberg 1971). 

Whilst cohorts could be recognised in some of the more 

common species of chironomids and phreatoicids they 

generally did not start and end in coincidence with the 

twelve month sampling program. 
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The use of size frequency group methods such as 

proposed by Hynes and Coleman (1968) and modified by 

Hamilton (1969) were considered, particularly for the 

oligochaetes. However as this group was prone to 

fragmentation during the collection, sorting, identification 

storage process, it proved to be virtually impossible 

to use this method. 

It is possible to calculate the instantaneous growth 

rates (G) of various species using the equation. 

G = ln W2 - ln Wi 

where W2 is the mean individual weight at end of t days 

and Wi is the initial mean individual weight. The time 

period t varied between species and although there was 

considerable uniformity between species it was not 

considered justifiable to extrapolate the time period 

to give an annual production estimate (P) using the 

equation 

P = GE3 

where B is the mean annual biomass of the species (after 

Johnson & Brinkhurst 1971). However estimates of P for 

the period under consideration have been included in 

Table 4.12. 

Instantaneous growth rates were calculated for the 

chironomids Riethia sp. and Procladius villosimanus,  which 

exhibit a one yearly life cycle. The instantaneous 

growth rates of phreatoicids in Great Lake and Arthurs Lake 

were also examined. The results of all calculations of G 

are listed in Table 4.12. 
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4.3 DISCUSSION 

The major emphasis in this study has been placed 

on the faunal variation between sites rather than variation 

within a site or on a seasonal basis. In the following 

discussion, brief reference has been made to other works 

in relation to the latter two areas. However, the 

discussion of inter-site variation in this chapter is 

restricted to data from Great Lake and Arthurs Lake. 

Other Australian and overseas lacustrine benthic faunas 

are considered in the following chapter. 

4.3.1 Faunal Variation 

4.3.1.1 Within series variation 

As stated earlier (Section 4.2.1.1) the analysis 

of within-series variation was primarily to validate 

the sampling procedure. From this work it is clearly 

evident that sample series containing only one or two 

samples would not have given an adequate quantitative 

or qualitative estimate of the fauna of Great Lake or 

Arthurs Lake at any of the sites chosen. A pattern of 

samples within a defineable zone, as suggested by 

Brinkhurst (1974), was used instead of a transect line. 

The restriction of sites in this way may have resulted 

in a qualitative underestimate of the fauna of the 

lake as a whole, especially in Great Lake, which appears 

to have a number of discreet basins, each with some 

separate faunal elements. Nevertheless, the procedure 

achieved its objectives at the sites sampled, and 

13.5 
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although considerable further analysis could be performed 

on spatial distribution of the benthos within a 

site this was not attempted. It has been Investigated 

for benthic fauna by Miller (1941), Raverra (1966) and 

Alley and Anderson (1969). 

4.3.1.2 	Seasonal variation 

Predictably, the seasonal variation in abundances 

was most apparent in the more common insect groups such 

as the chironomids, and in particular those species with 

a single generation per year. It was also observed in 

other groups with a single period of population increase 

during the year, such as the phreatoicids. 

Much of this variation is covered in analysis of 

the life history of the various species (Section 4.2.2). 

It has also been shown that the influx of young of the 

year is not always apparent in total numbers as the large 

numbers of adults present tend to mask changes due to 

recruitment in those species with extended life cycles. 

The numbers of oligochaetes present were relatively 

constant throughout the sampling periods. Any peaks 

that did 	occur appeared in individual samples without 

any regular build up or decline. Deevey (1941) recorded 

stable numbers of oligochaetes in his study of seasonal 

variation in Connecticut lakes. Further, in a European 

study of the tubificid Potamothrix hammoniensis in LakeEsrom 

over four years, Jonasson and Thorhauge (1972) did not 

demonstrate any repeated abundance peaks. Jonasson (1972) 

did record peaks of abundance in summer in Lake Esrom 

for the tubificid Ilvodrilus hammoniensis (also the 

bivalve Pisidium casertanum). Timms (1973a)reported peaks 
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in abundance of oligochaetes in seasonal samples from two 

Victorian lakes but his investigation as with this survey, 

only covered one year. Table 3.2 shows that maximum total 

numbers of animals occurred at different times of the 

year, depending on the site, in Great Lake and Arthurs 

Lake, with no apparent relationship between deep and 

shallow sites or between lakes. 

In the absence of faunal data from several consecutive 

seasonal cycles it is difficult to detect the consistent 

variations in numbers of the permanent bottom dwelling 

species. The overlapping summer samples in Arthurs Lake 

have provided some valuable life history data but 

otherwise have not been totally coincident with the previous 

years levels. It is also probably pointless comparing any 

observed peaks in Great Lake and Arthurs Lake to those 

observed in most European and American works as well as 

the Victorian systems studied by Timms (1973a) because 

of the stresses imposed on most of those systems by 

stratification and consequent degrees of anoxia in the 

profundal areas. Such stresses do not occur in the 

polymictic Tasmanian central plateau lakes where the only 

major variable throughout each season is temperature. 

The use of the Shannon-Weiner diversity index in 

relation to seasonal variation (Table 4.3) suggests that 

such variation is largely due to the high, but generally 

stable oligochaete, and in Arthurs Lake, crustacean 

numbers at the deep sites. The shallow sites generally 

lack these groups and are in turn dominated by relatively 

high but seasonally variable numbers of chironomids. The 

stability of the SGL3 site is probably due to a compensatory 
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effect of the abundance peaks of different species of 

chironomids present at that site. However, the intermediate 

depth SAL2 site has very high consistent phreatoicid 

numbers and a stable chironomid fauna more akin to the 

deeper sites. 

The assumption that the diversity index is indicating 

seasonal abundances relies upon the uniformity of the 

sample site. If there is a change in the uniformity of 

the substrate between samples or series of samples then 

the number of microhabitats could change. This may be 

reflected by changes in the diversity index associated 

with the collection of a different fauna or different 

numbers. The shallow sites SGL1, SGL2 and SAL1 did show 

the greatest potential for varied microhabitats with 

the presence of Nitella sp. or Elodea canadensis as well 

as coarse and fine particulate organic matter. 

In conclusion, consistent seasonal peaks in numbers 

are not apparent when considering the fauna of either 

lakes as a whole. However, they are clearly evident when 

individual species are examined. Such variations are 

largely functions of the life histories of the species 

concerned and mortality does not appear to occur at any 

clearly defined point in time. 

4.3.1.3 	Inter-site variation 

4.3.1.3.1 Diversity indices 

The Shannon-Weiner diversity index becomes less 

useful for comparisons between sites as it cannot allow 

for differing faunal components. 
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This method nevertheless, roughly grouped the deep sites 

in both lakes and also isolated the intermediate SAL2 

site. It also grouped site DGL1 with SGLO on all but one 

occasion which is a confusing result. 

Diversity indices appear to be more usually applied 

to a riverine situation to detect changes In species 

occurrence often associated with sources of pollution 

(Hawkes 1972; Hellawell 1977). When used to compare the 

faunas of two lakes (Mason 1977) it was found that 

"Species richness alone provided a more consistent difference 

between the two sites". 

4.3.1.3.2 	Cluster analysis 

The three arrangements of the data used in the cluster 

analysis have resulted in some differences in the site 

groupings as shown in the results. The groupings achieved 

can be considered in relation to the effects of the 

particular data arrangement as well as in regard to the 

implications of the groupings. For instance, the exclusion 

of the rare species (Fig. 4.9) was, in effect, placing more 

emphasis on the more abundant species at each site 

without actually introducing abundance data. Hence it was 

observed that the clusters achieved from the exclusion 

of rare species and the inclusion of abundance data were 

basically similar. Nevertheless, to achieve a high degree 

of similarity when rare species were excluded the sites 

still required a considerable common faunal element. 

The close association of deep sites in separate 

basins of Arthurs Lake was achieved when all species were 

considered, but the basins separated when the major species 
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and abundance data were considered. The basins are 

therefore showing similar diversity in their rare species 

but differ slightly in the presence of abundant species. 

The distinction between deep and shallow sites is 

independant of data arrangement and is therefore of major 

significance. These sites also cover virtually the full 

range of total numbers found in the two lakes which 

suggests distinction largely based on qualitative faunal 

dissimilarities. 

The Arthur's Lake deep sites are generally grouped 

together with site DAL2 showing some divergence, probably 

due to the differing nature of its substrate (see Chapter 2). 

Even though the cluster analyses has given essentially 

consistent groupings of sites, it is apparent that there 

are certain fundamental differences between all sites. 

The fact that no two sites show any more than a 70% level 

of similarity by any data arrangement or sorting strategy 

supports this statement. 

4.3.1.3.3 Principal coordinates analysis 

This technique gives perhaps more distinct splits 

between the sites before the abundance data are included. 

With these data included the deep sites all tend to group 

together, as do the shallow Great Lake sites. However, 

site SAL1 is distinctly separated which is probably a 

result of the higher species abundances at this site when 

combined with the already apparent faunal differences. 

These results may indicate that the sites are distinct 

faunistically but the abundances do not always follow 

along similar lines. 
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A generalised deep water fauna in both lakes would 

include a species of phreatoicid (and in Arthurs Lake 

at least one amphipod), a chironomid fauna particularly 

consisting of Coelopynia pruinosa and Riethia sp., 

usually small numbers of the trichopteran A. ddbius  

and some turbellarias. Also a varied and numerous 
A 

oligochaete fauna dominated by the large species 

Haplotaxis ornamentus, but also usually containing 

Phreodrilus palustris, Antipodrilus plectilus and 

Telmatodrilus bifidus. 

Similarly, a generalised shallow water fauna for 

both lakes would consist of a varied and abundant 

chironominid fauna including large numbers of Riethia sp., 

substantial numbers of the trichopteran A. dubius and 

an oligochaete fauna with the species P. proboscidea and 

L. hoffmeisteri common. 

In Great Lake at least there is reason to further 

separate the shallow areas into "windward" and "leeward" 

shore elements. This effect was markedly apparent in 

the appearance of the substrate, with sites SGL1 and SGL2 

having black sediments with Nitella  sp. present and large 

pieces of decaying roots and other vegetation. Cana/ 

Bay 2 (1 & 2), Little Lake Bay 2 (2) and Elizabeth Bay 2 

(1) from the supplementary survey (Fig. 2.3 and Appendix 2) 

also showed these tendencies. In contrast, site SGL3, 

and also Elizabeth Bay 2 (2) and Little Lake Bay 2 (1) 

had brown sandy sediments with a fine organic material 

probably deposited as a result of water movements induced 

by the prevailing west to north-westerly winds. Some 

evidence of faunal differences on a similar basis are 
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present in the Great Lake data. Thus it is suggested 

that position in relation to prevailing winds may be 

having some effects on the fauna of Great Lake at least. 

The different areas have been considered when estimating 

a mean biomass figure for each lake as a whole (see 

Section 4.2.3). 

The reasons for the observed faunal differences 

are more difficult to explain. The depth factor, 

whilst it would probably be the primary reason in the 

explanation of larval insect distribution, is not 

necessarily of major importance in other groups. Most 

chironomids were more abundant at the shallow sites, the 

exception being C. pruinosa. The same was true for the 

trichopterans in both lakes and the Ephemeroptera and 

Plecoptera in Arthurs Lake. The Ephemeroptera are 

probably present at SAL1 because of the large quantity 

of Elodea canadensis present at this site. The 

chironomid C. curtivalva is usually found only in 

association with aquatic vegetation (Martin pers. comm.). 

In turn, the extent of the vegetated area is related 

to depth. 

High organic levels (Table 2.4) could account 

for the high numbers of chironomids at the shallow sites 

but this in turn is largely related to depth as indicated 

by the terrestrial origin of most of the organic matter 

(see Section 2.3). 

The oligochaete and phreatoicid faunas in particular 

are more abundant in the original lake-bed areas. This 

is not a depth preference as these species certainly 

pre-date the raising of water levels in both lakes and 
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therefore they would have originally inhabited water 

of a depth similar to that which now covers former high 

ground. There is a distinct shallow water oligochaete, 

P. proboscidea. The reason may be related to sediment 

type which varies between sites (see Chapter 2). The 

deep sediments are basically blue clays with minor 

variations in composition. Site DAL2 is an exception 

being quite sandy and similar to site SGL3. The shallow 

sites SAL1, SGL1 and SGL2 are fine black soils exhibiting 

varying degrees of aggregation. The oligochaetes may 

prefer the clay sediment, or else their restriction 

to these areas could be due to a very low mobility. The 

presence of the successful cosmopolitan species 

L. hoffmeisteri in deep and shallow areas tends to support 

the latter suggestion. 

An interesting distribution pattern is shown by 

another oligochaete P. branchiatus. In Great Lake this 

species was only found during the main survey at the 

shallow Brandum Bay site SGL2 in the northern part of the 

lake. In the supplementary survey (Appendix 2) 

P. branchiatus was quite common at sites in Little Lake 

Bay further to the north (see Fig. 2.3). It was also 

recorded in Arthurs Lake from site DAL4 which is nearest 

the main human habitated areas of that lake. It could 

be that such a distribution is the result of recent 

introductions. 

Although there are some absentees from certain 

basins of both lakes among the oligochaete fauna it is 

not possible to show that there is or ever was any 

endemicity to certain areas within a lake in this group. 
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The same 13 species are represented in both lakes and 

their absence from some basins is more likely related to 

local bottom conditions. Nevertheless, some distribution 

patterns appear to have resulted from isolation in areas 
hove 5;mee become 

that 	- confluent. Both lakes have been formed by 

the damming of water to unite several separate bodies of 

water. More widespread sampling within each basin may 

extend the known range of some species. 

Some phreatoicid species appear to be restricted to 

certain basins within Great Lake as well as to a particular 

level. 0. brevicaudatus appears to be the widespread 

species but it is not as common in the Brandum Bay basin 

(see Fig. 1.3) to which U. pearsoni appears restricted. 

O. brevicaudatus may perhaps be a recent immigrant to 

this area. Another species, M. setosus, is present at 

the similar shallow SGL1 and SGL2 sites but not at SGL3. 

A further phreatoicid, O. spatulatus, was only collected 

from Elizabeth Bay (Appendix 2), formerly Lake Elizabeth 

(Fig. 1.3), and although this area is now a part of 

Great Lake this species has not apparently expanded its 

range. The distribution of a further species, M. tasmaniae  

(not collected during the survey), could provide further 

information on this theory. 

The mollusc Glacidorbis pawpela was quite common in 

Elizabeth Bay (Appendix 2) but only two specimens were 

recorded from nearby Cramps Bay during the main survey. 

With this exception, there is little further evidence to 

support or refute such a theory. Other groups which lack 

the motility necessary to quickly colonise an area were not 

generally abundant enough to provide sufficient evidence either 

way. 
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The major differences between the two deep Arthurs 

Lake basins are not easily explained. The amphipod 

N. tasmanicus  should not lack the motility to colonise 

the western basin and conditions appear suitable. 

Similarly, the sediment and organic contents of DAL1 and 

DAL4 appear similar enough to support bivalves which at 

present are only numerous in the eastern basin. 

On the basis of sediment size-frequency and organic 

content analyses one would expect the deep sites to show 

relationships in the following ways. In Great Lake DGL2 

and DGL3 should be very similar, with DGL1 the odd one 

out. In Arthur's Lake DAL1 and DAL4 should be closely 

linked, with DAL3 also fairly similar. DAL2 should be 

quite separate due to the sandy substrate and low 

organic content. Apparently the sediment differences are 

not sufficient to result in separate faunas directly 

related to these differences. 

Considering the faunas of the two lakes as a whole 

it can be seen from Table 4.6 that there is little 

difference in the mean number of species present at each 

site. However, Arthur's Lake sites individually show a 

generally greater species diversity than Great Lake sites. 

With the total number of species not greatly different 

between the two lakes this could be interpreted as 

indicating slightly stronger faunal similarities between 

the Arthurs Lake sites than those of Great Lake. 

The differences between the lakes as a whole therefore 

appear to be largely quantitative (also see Biomass 

section). Only one Great Lake site has higher mean 

annual numbers than any of the six Arthurs Lake sites 
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(Table 3.2). The deep sites of Arthurs Lake have almost 

twice as many individuals present on average than the 

deep sites in Great Lake, but it should be considered 

that the depth of the deep Arthurs Lake sites, especially 

in the eastern basin, is closer to the depth of the 

Great Lake shallow sites (Table 2.1) than to the deep 

Great Lake sites with a similar faunal composition. 

The reasons for such differences in numbers are not 

known. There are no major differences in the sediments 

or organic contents of the two lakes and the dissolved 

ion levels do not suggest that there should be two-fold 

differences in abundances. 	Some elements of the fauna, 

particularly the crustaceans and the oligochaete 

H. ornamentus, appear to be contributing most to the 

abundance differences and further study of their requirements 

could shed some light on this question. 

In concluding the discussion of faunal variation it 

is worthwhile to consider the data in Table 4.6. No more 

than 60% of the total species in either of the lakes were 

collected at any one site and the total number of species 

known from each site was never collected in any 20-sample 

series throughout the year. Hence, a number of sites 

in each lake are required as well as seasonal sampling 

(the number of samples in a series has been discussed 

earlier) in order to adequately collect a representative 

qualitative sample. The size and history of Great Lake 

and Arthurs Lake have made these requirements perhaps 

more obvious and necessary than is usual with smaller, 

unaltered lakes. 



148 

4.3.2 Life History Data 

There is no published information on the life history 

of the Great Lake phreatoicids 0. brevicaudatus,  M. setosus  

and U. pearsoni. However, the life history of these species 

briefly proposed in Section 4.2.2 of this study is 

basically similar to that of the Arthurs Lake species, 

Colubotelson sp. also recorded in that section. The latter 

species was studied by Engemann (1963) and later by Knott 

(1971) who studied coastal populations in the Hobart and 

nearby southern areas. The findings of this study 

coincide with those of Knott except that he recorded a 

slightly larger adult maximum size. As indicated in the 

results (Fig. 4.15) there was some variation in the modal 

size of Colubotelson sp. in Arthurs Lake which was possibly 

related to population density. 

Knott (1971) suggested a two year life cycle for this 

species and this appears to be supported by the Arthurs 

Lake data. Engemann (1963) had suggested a three year 

maturity time but his data were questioned by Knott (1971). 

It appears that most, if not all, animals die after 

reproducing. However, further study of the Arthurs Lake 

material is required to confirm that no specimens survive 

after two years as a few large adults which do not conform 

to the size frequency patterns were recorded. 

In the only other known study of this group, Barnard 

(1927) examined the life history of a South African 

phreatoicid, Mesamphisopus capensis. He also found that 

this species matured in two years. 

The life cycles of the chironomids Riethia sp., 

C. oppositus and P. villosimanus appear to be simply of 
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one years duration with a late spring emergence period. 

Timms (1973a) also found that P. villosimanus had one 

generation per year in Lake Purrumbete. However, Timms 

records that the emergence period was later than in 

the Tasmanian lakes studied here. 

The life cycle of a species of Tanytarsus, 

(T. barbitarsis), has been studied in Australia (Paterson & 

Walker 1974). This.study took place in the small, shallow, 

highly saline Lake Werowrap in Victoria. T. barbitarsis  

produced about seven generations per year In that 

situation with a turnover time of about 30 days in 

spring-summer. A similar life cycle was found for this 

species in nearby Lake Gnotuk by Timms (1973a). 

The Tan tarsus sp. present in Great Lake and Arthurs 

Lake produced only one generation per year. Since it 

generally emerged in autumn, slow winter growth of early 

instars of this species resulted in it not usually being 

found in the following spring or early-summer samples. 

Polypedilum nr. tonnoiri emerged later than the 

larger species but earlier than Tanytarsus sp. Early 

instars of this species showed sufficient growth before 

winter to reach the 3rd instar by which time they were of 

sufficient size to be retained by the sieve used. Very 

little growth is then shown by this species until spring. 

The life history of C. pruinosa is not quite so 

clear. Considerable numbers of third instar larvae are 

present at various times of the year, and it is possible 

that this species may have two generations per year. 

Large fourth instar larvae are present over an extended 

period. Timms (1973a)found that this species only appeared 
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to have one generation per year in Lake Purrumbete in 

Victoria. It could be that this species has a longer 

third ins tar duration than the other three large species 

studied. This could lead to the conclusion of two 

generations per year when compared to the other more clear 

cut examples. 

With the exception of P. villosimanus, in which the 

next generation is collected in the samples immediately 

following emergence, and C. pruinosa whose life cycle is 

not adequately known, the emergence time of each chironomid 

species is marked by a significant reduction in numbers 

in the following samples. This is clearly illustrated in 

Fig. 4.5. 

Caddis fly life histories have not been investigated 

in Tasmania and the profundal benthos is not usually a 

major habitat of this group elsewhere. The common species 

in the two lakes studied, Atriplectides dubius appears to 

have only one generation per year. Two generations per 

year may occur but more pupating adults would have been 

expected in the spring samples. One generation every two 

years, as is the case in some cold lakes in the Northern 

Hemisphere, appeansunlikely. 

The absence of any marked seasonal fluctuations in 

oligochaete numbers and the lack of an identifiable major 

influx of young worms of any species makes life history 

analysis of this group very difficult. The cocoons of 

Haplotaxis ornamentus found during winter and small 

specimens of this species collected later in the year are 

the only data collected on life history in this group. 



4.3.3 Biomass and Growth Rates 

The highest biomass levels in both lakes are found 

in the original lake areas. This is primarily (75% or 

more) due to oligochaetes and usually the species, 

Haplotaxis ornamentus. The life history of H. ornamentus  

does not show seasonal peaks in numbers or size which are 

consistent between sites, consequently the total biomass 

of the deep sites does not show consistent trends 

(Fig. 4.16, Table 4.10). If the oligochaete portion 

of total biomass of these sites is subtracted the 

remainder approximates the levels of the shallow Great 

Lake sites. 

The biomass levels of the shallow sites do show some 

consistent seasonal trends with peaks generally occurring 

around spring at the chironomid dominated sites. This 

is consistent with the life history of chironomids which 

tend to show greatest numbers at this stage and, 

particularly the common Riethia sp., are also approaching 

maximum size. 

The biomass at site SAL2 shows a peak in late 

summer concurrent with high phreatoicid numbers. The 

young phreatoicids first enter the population in early 

summer and show rapid early growth. The following decline 

in biomass could be a result of losses through winter 

as a drop in numbers was evident at this stage. 

The reason for the observed high numbers of 

H. ornamentus, and hence high biomass, at the deep sites 

is probably related to a combination of fine sediments 

and high organic content. In Great Lake the finest 

sediments and highest organic content occurred at site 
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SGL1 as did the highest H. ornamentus numbers and 

consequently biomass. In Arthurs Lake the greatest 

H. ornamentus biomass was found at site DAL3. However, 

individual animal weight was lower at sites DAL3 and DAL2 

than at DAL1 in particular. Organic content was also 

lower at these two sites. The high H. ornamentus  

population at site DAL3 may have resulted in a depletion 

of organic material. The more northern sites DAL1 and 

DAL4 are closer to major inflowing streams which could 

be providing them with greater quantities of organic 

material than site DAL3. 

Organic content levels may also explain the biomass 

differences at the shallow sites. There is no means 

of measuring what proportion of the organic material 

at SGL1 and SGL2 was readily useable by the benthos. 

However, it appeared that the fine particulate material 

at site SGL3 would be more easily utilised than the 

large pieces of root and other recogniseable pieces 

of decaying plants which comprised a large proportion of 

the organic matter at sites SGL1 and SGL2. In Arthurs 

Lake sites SAL1 and SAL2 had considerable amounts of 

material in both forms. 

It is not known how H. ornamentus (or any of the 

other benthic animals) utilises organic matter in 

the substrate l so further discussion would be inappropriate. 

It appears that some differences between sites within 

one lake may be related to the particle size and organic 

content of the substrate. However, the overall 

differences observed between the two lakes are not simply 

a function of these variables. The deep sites of both 



lakes show a similar range of values for these two 

variables, yet Arthurs Lake has a considerably higher 

standing crop overall. The mean weighted biomass value 

for each lake also illustrates this. 

These biomass levels (Great Lake 13.9 g/m2 , Arthurs 

Lake 35.9 g/m ) may have some inherent errors in their 

calculation. The small areas of these lakes which are 

subject to fluctuating water levels have probably 

received an inflated biomass value. However, this value 

is low compared to the lake average as it is equivalent 

to the shallow site value. In Great Lake the area 

affected is only a small proportion of the total surface 

area. A mean yearly value is used which is representative 

for the oligochaete dominated biomass of the two lakes 

as this group does not show seasonal peaks. However, 

the biomass values of the benthos of lakes with a 

chironomid dominated fauna would be distorted if samples 

were only taken in spring/early summer. 

There is a considerable difference in the standing 

crop of the two lakes which is largely due to higher 

numbers and greater biomass in the oligochaete group. 

Higher biomass levels in Arthurs Lake may be further 

related -  to greater numbers of H. ornamentus  at the 

deep sites. As there do not appear to be any consistent 

differences in sediment type or organic content other 

sources of variation must be examined. Dissolved oxygen 

content would not appear to be limiting as both lakes 

are polymictic and regular wind action maintains near 

full saturation oxygen levels. Arthurs Lake may experience 

a slightly warmer temperature regime overall but this 

•53 



should not be sufficient to account for the three fold 

standing crop difference. 

Although both lakes were not sampled in the same 

year it appears unlikely that the differences in 

climatic conditions between the two sampling periods 

would be sufficient to account for the observed 

differences in biomass. 

There are differences between the depths of water 

over the areas of highest biomass in both lakes. These 

areas, the original lake basins, were all formerly 

only from about 1.5 to 5 metres deep. But whilst there 

is now a further 14 metres of water on top of this in 

Great Lake there is only an additional 6 - 10 metres 

on the Arthurs Lake sites. However, such depth differences 

are not great and any advantage in light penetration 

to Arthurs Lake from this could easily be negated by 

this lakes slightly lower transparency. 

If depth was a major influence on the benthic 

fauna of the original lake basins then one would expect 

a wider post flooding distribution of some elements of 

the fauna. Many species have probably inhabited the 

original lakes for considerable periods of time before 

flooding took place but have continued to survive 

following the rapid change of their habitat. Of course, 

the long-term depth-history of the lakes is not known 

and it is also not known if any species have been 

exterminated by the change in water levels. 

Arthurs Lake does have higher TDS, TFS and dissolved 

ion content than Great Lake (Table 2.3) which may account 

indirectly, for part of the differences in standing crop 

between the two lakes. 
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The differences in biomass between the shallow 

sites could probably be explained by differences In organic 

content of the sediments with substrate type also having 

some effect. The deep sites appear similar between the 

two lakes but conditions which favour the oligochaete 

H. ornamentus, whatever they may be, would appear to 

hold the key to biomass differences between sites and 

between lakes. 

There do not appear to be any major conclusions 

to be drawn from the limited growth rate or productivity 

data presented. The first cohort phreatoicids in Arthurs 

Lake (Colubotelson sp.) had faster growth rates than the 

same cohort in Great Lake (Onchotelson brevicaudatus). 

It should be remembered that the Arthurs Lake and 

Great Lake samples were taken in different years and 

therefore not subject to exactly the same conditions. 

Nevertheless they may be used in a broad sense for 

comparative purposes in the absence of detailed 

production estimates. 



CHAPTER 5 

GENERAL DISCUSSION 

In the preceeding chapters, discussion has largely 

concentrated on the faunal variation shown both within, and 

between, Great Lake and Arthurs Lake. The discussion of 

faunal composition was the exception in that the fauna of 

these lakes was considered in relation to other Australian 

systems. 

The benthic fauna of lakes has not been extensively 

studied in Australia (see Timms 1980a), but considerable 

work has been carried out overseas. There is little to be 

gained by comparing the individual faunal elements of 

Tasmanian lakes with overseas systems. It is of interest, 

however, to compare their faunas as a whole, i.e. in terms 

of total number of species or total standing crop. In this 

chapter such comparisons are attempted and the problem of 

classification of lakes is also examined. 

5.1 SPECIES DIVERSITY 

The numbers of species recorded from Great Lake (54) 

and Arthurs Lake (56) are the highest yet recorded from 

any Australian Lake (Timms 1980a). The nearest to these 

are Lake Purrumbete in Victoria (Timms 1973a) and Lake 

St. Clair in Tasmania (Timms 1978), both with 38 species. 

Of all the lakes listed by Timms (1980a, Table 1) only 

Lake Purrumbete and Great Lake were studied at all 

thoroughly. Timms (1978) has clearly indicated that his 
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study of Tasmanian lakes was of a cursory nature only. 

It is likely that the number of species in some of these 

and other lakes, particularly the larger ones, would be 

considerably greater if more detailed studies were attempted. 

A recent study of Lake Sorell (Fulton unpublished) has 

recorded at least 53 benthic species from 120 Ekman grab 

samples at 8 sites, cf. 24 species from 28 Ekman samples 

at 7 sites (Timms 1978). 

Table 4.6 shows that the number of species recorded 

at one site or at one time from Great Lake or Arthur's Lake 

was much lower than the total species complement for 

each lake. An increase in the number of sample sites used, 

particularly in Great Lake, could still further increase 

the length of the species list. Nevertheless, the numbers 

of species given by Timms (1980a) and this survey suggest 

that Tasmanian lakes generally have a higher species 

diversity than their mainland counterparts. 

Some of the mainland lakes discussed by Timms are 

saline lakes or coastal dune lakes. The harsh physico-

chemical environment of these would not be expected to 

support large numbers of species, nor would it favour the 

evolution of a diverse fauna. 

It is possible that the general lack of large 

permanent freshwater lakes on mainland Australia has 

limited the opportunities for evolution of the benthic 

fauna in that region. Tasmania has an 

of various types and sizes compared to 

and these may have provided more scope 

It also appears that there is a higher 

in the Tasmanian benthic fauna than is 

mainland (Neboiss 1977a; Hynes & Hynes 

abundance of lakes 

mainland Australia 

for species evolution. 

degree of endemism 

present on the 

1980; this study). 
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The chemical composition of Tasmanian lakes given 

by Williams (1964) and Buckney & Tyler (1973) suggests 

that many of the Central Plateau lakes should be termed 

oligotrophic. Margalef (1964) has frequently been cited 

as claiming an association between oligotrophy and high 

species diversity. This may further explain the observed 

differences in species numbers between Tasmanian. and 

other Australian lakes although the classification of lakes 

needs to be treated careful/y. 

Timms (198c)  concluded that species diversity in 

Australian lakes is low when compared to that in the 

northern hemisphere. Whilst this would appear to be correct 

for mainland Australia, the Tasmanian situation requires 

:further study. Of the northern hemisphere lakes cited by 

Timms (1980a), Llyn Tegid in Wales (Hunt & Jones 1972b) has 

50 + species in the profUndal zone. This is comparable to 

the numbers in Great Lake as only the profundal region of 
n± 

that lake was sampled. It is also comparable to Great Lake 

in area. 

The other lakes cited by Timms, Great Slave Lake 

(Rawson 1953b) and Saginaw 

Hooper & Beeton 1969) have 

Bay, Lake Huron (Schneider, 

95 and about 90 species 

respectively. This greater species diversity is not 

surprising when the surface areas of those lakes are considered. 

Great Slave Lake covers an area of about 26,900 sq km whilst 

Saginaw Bay is about 3,200 sq km in area. Samples were 

collected from all over these systems. Great Lake is large 

by Australian standards but covers an area of only 156 sq km. 

It is therefore difficult to support the conclusion 

of Timms without further examination of lakes of comparable 
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size and also considering the degree of detail in the study 

concerned. Table 5.1 summarises the results of several 

other studies on lakes of varying size (above c. 10 sq km) 

and trophic status in other parts of the world. These 

studies do not appear to indicate any significant differences 

between the number of species found in this study of 

Tasmanian lakes and lakes overseas. Studies of lakes smaller 

than about 10 sq km are generally show species diversities 

similar to those found on mainland Australia (e.g. Miyadi 

1932a, b; Cole & Underhill 1965; Lindegaard et al. 1978). 

Many of the mainland lakes studied (Bensink & Burton 

1975; Paterson & Walker 1974; Timms 1969, 1972, 1973a, b, 

1976) have high salinities or other harsh physico-chemical 

characteristics from their coastal situations. Faunal 

diversity is low in these lakes throughout the world, not 

only in Australia. The small size of most of these lakes 

in Australia would also greatly limit the scope for 

diversification. 

Most of the known benthic groups are present in 

Australia •(Timms 1980a). Therefore, as Timms suggests, 

it is unlikely that zoogeographic isolation has limited 

the evolution of the benthic fauna. Similarly time does 

not appear to be of importance, but perhaps continuity or 

permanance may have been important on mainland Australia. 

Timms (1980a) also suggests that the lack of extremes 

in climatic conditions in Australia compared to the northern 

hemisphere creates a 'need' for species to be generalists 

rather than specialists, thus limiting the available 

ecological niches. There may be a Itendencyt for this 

to occur but surely the 'need' to be a generalist is less 



Table 5.1: 	Number of species present in lakes of comparable size to Tasmanian systems from 

the published literature. 	Lakes are of varying trophic status. 

'Lake Country No. of Species Approx. area 

sq. km  

Reference 

Western Lake Erie USA 48 1152 Carr & Hiltunen, 

Washington USA 24 88 Thut, 	1969 

Neusiedlersee Austria 59 180 Schiemer, 	1979 

Konnevesi Finland 3 50 201 Sarkka, 	1972 

Esrom Denmark 13 18 Jonasson, 	1972 

Loch Lomond Scotland 3 60 100 Slack, 	1965 

Sibayi South Africa <25 40 Boltt, 	1969 

Several lakes Japan <25 <100 Miyadi, 	1932a, b 

1960 

C-reak L0ie 

L ke  
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important in less severe conditions. It could be argued 

that extremes in climatic conditions are a further physico-

chemical hardship which could tend to limit species numbers 

such as occurs in saline lake systems. 

Further thorough study, particularly of Tasmanian 

lakes is required, but from the present data these lakes 

appear to have a comparable faunal diversity with similar 

overseas systems. Variations within particular groups are 

inevitable. Other Australian lakes certainly appear to 

lack the same diversity as the Tasmanian systems but this 

does not appear to be an inherent factor, rather a result 

of conditions briefly outlined above. 

5.2 BIOMASS COMPARISONS 

In terms of biomass, Arthurs Lake (35.9 g/m2) has the 

highest standing crop so far recorded for a Tasmanian lake 

(cf. Timms 1978). Great Lake (13.9 g/m2) has the next 

highest recorded value. All Biomass values in this section 

are in terms of wet weight unless stated otherwise. 

Timms (1978) recorded a range of 1.7 - 6.9 g/m2  for the 

seven Tasmanian lakes he studied. Whilst the total number 

of species present in the lakes Timms studied may well 

increase with further sampling, the biomass values should 

not. In fact, they may decrease slightly with consideration 

of other seasonal values in the chironomid dominated lakes. 

For mainland Australia, Timms has recorded biomass 

levels higher than Great Lake only. These were 16.8 and 

23.3 g/m2  in the South Australian volcanic lakes, Valley 

Lake and Lake Leake respectively (Timms 1974b) and 14.9 g/m2  

in Lake Albina, a glacial lake near Mt. Kosciusko (Timms 1980b). 
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Paterson and Walker (1974) determined the monthly 

average standing crop of Tanytarsus barbitarsis, the only 

abundant benthic species present in Lake Werowrap, a 

shallow saline lake in western Victoria. The very high 

level of 53.75 g/m2  was recorded. High year round 

temperatures in this lake apparently result in what the 

authors claim to be "perhaps the highest estimate (of 

production) recorded for an inland aquatic macrobenthos 

community". 

It is difficult to compare standing crop estimates 

for Tasmanian lakes with overseas works because of 

differences in study techniques and methods of presentation. 

This was also noted by Paterson and Walker (1974) for Lake 

Werowrap and is a frequently encountered problem elsewhere. 

Many studies, particularly those from colder regions, 

give only summer values which may show a different standing 

crop level compared to a yearly mean value. Similarly 

some estimates combine littoral, sublittoral and profUndal 

regions. The definition of these regions may also differ 

from one study to another. 

Cole and Underhill (1965) have listed the standing 

crop values for the richest known lakes in the United States. 

They have also included two Canadian and one European lake. 

That table is reproduced (Table 5.2) with values converted 

to wet weight and some comparable Australian data added. 

From this table it appears that Arthurs Lake has a 

standing crop among the highest recorded anywhere in the 

world. It should be stated that some of the values for 

European lakes (e.g. Lundbeck 1926; Berg 1938) exclude 

molluscs or include shell weight in the molluscan totals. 



Table 5.2: 	Benthic standing crop in g/m2  of various lakes. 	(In part from Cole & Underhill 1965). 

Lake Location Biomass Period Authority 
g/m2 

Last Mountain Saskatchewan 57.6 summer Rawson & Moore 	1944 

Arthurs (profundal) Tasmania 54.8 yearly mean This study 

Lake Werowrap Victoria 54.3 yearly mean Paterson & Walker 	1974 

Mendota Wisconsin 51.6 ? 
, 

Juday 	1921 

Esrom Denmark 46.2 yearly mean ? Berg 	1938 

Itasca (sublittoral) Minnesota 42.2 summer Cole & Underhill 	1965 

Echo Saskatchewan 38.9 summer Rawson & Moore 	1944 

Arthurs (overall) Tasmania 35.9 yearly mean This study 

Linsley Connecticut 34.8 yearly mean Deevey 	1941 

Itasca (overall) Minnesota 30.2 summer Cole & Underhill 	1965 

Soap Washington 29.5 ? Lauer 	1959 

Lenore Washington 28.8 ? Lauer 	1959 

Itasca (profundal) Minnesota 26.1 summer Cole & Underhill 	1965 
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Therefore, biomass values for these lakes should be examined 

carefully. Some lakes in that region have very large 

molluscan faunas and standing crops well in excess of the 

values in Table 5.2 are probable. 

Standing crop levels are generally much lower than 

values in Table 5.2, as can be seen from the work of 

Deevey (1941, Fig. 41). The terminology In that paper is 

a little confusing in that he apparently uses the term 

'productivity/ for standing crop estimates. Deevey has 

compared the standing crop values of 229 European and 

Russian lakes (see Deevey 1941 p. 440 for various authors) 

with 36 Connecticut lakes he studied. From his histogram 

it is shown that the standing crop of the majority of these 

lakes is less than 10 g/m2 . Most of the Australian lakes 

so far studied also broadly fall into this category (Timms 

1980a). There are many variables within these studies 

which suggest that comparisons should not be taken too 

seriously (Deevey 1941). Nevertheless, from the data 

available, it would appear that Australian lakes in general 

have similar benthic biomass levels to lakes in other parts 

of the world. Arthurs Lake in Tasmania has a comparatively 

high level whilst Great Lake is perhaps slightly above the 

average level. 

The reasons for these high biomass levels in what one 

would intuitavely regard as two oligotrophic lakes by 

physico-chemical and phytoplankton characteristics, 

(P. A. Tyler pers. comm.) are not at all straightforward. 

There have been some attempts to relate benthic 

standing crop to certain variables of an edaphic and/or 

morphometric nature. Rawson (1930) considered that the 
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quantity of bottom fauna was related to the volume of the 

lake. However, Deevey (1941) found little correlation 

between these factors, nor could he find a valid correlation 

between benthic standing crop and mean depth of lakes. 

Examination of correlations with other factors such as 

chorophyll levels (highest correlation coefficient) and 

chemical composition of substrates (Deevey 1941) showed that, 

if a relationship exists,it is quite complex. 

In further studies, Rawson (1942, 1952, 1953a, b, 1957, 

1959, 1960) affirmed that there was definitely a relationship 

between edaphic, morphometric and climatic factors and 

standing stocks. The quantity of bottom fauna was related 

to plankton stocks which were in turn related to the 

quantity of dissolved salts. The expression of favourable 

edaphic conditions in benthic standing stocks was sometimes 

masked by extremes in climate and morphometry. The latter 

point may well apply to Lake Crescent as suggested by 

Timms (1978). Northcote and Larkin (1956) also positively 

correlated dissolved solid concentrations and plankton levels 

in a large number of lakes in British Columbia. 

From work on the Experimental Lakes Area of northwestern 

Ontario, Schindler (1971) proposed a relationship between 

lake nutrient levels and biological differences between the 

lakes. He related nutrient levels to the morphometry of 

each lake. (Catchment area plus lake area :volume of lake). 

Whereas the above studies have shown correlations 

between various factors and benthic standing crops, there 

have also been studies which have not positively supported 

these correlations (e.g. Reimers et al. 1955; Hayes 1957 

in part; Sparrow 1966). 
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for such high values compared to other Tasmanian lakes. 

These differences may simply be a function of the species 

present in each system. Benthos production is not known 

for either lake. 

5.3 LAKE TYPOLOGY 

It appears to be human instinct to endeavour to 

provide a model or classification system into which all 

things, living or otherwise, can be placed, or forced. 

Nature does its best to resist such artificial ordering 

by providing a sufficient range of variation and 'exceptions 

to the rule' so that classification categories require 

continual bending with each new study. Ecological data 

is rarely conducive to classification. As stated by 

Brinkhurst (1974) "classifications of ecological entities 

have usually been beset by such a hugh diversity of material 

that few logical schemata have emerged". Nevertheless, 

a considerable part of the literature on lacustrine systems 

has been devoted to the classification of lakes. There 

are undoubtedly important uses for a working classification 

of lakes based on the quantity of benthic fauna. 

A review of the development of lake classification 

based on benthic fauna is given by Brinkhurst (1974). 

As with most systems of ordering, the degree of complication 

has increased considerably with time and I will not 

attempt to follow the developments fully. Following 

Brinkhursts (1974) review it appears that, basically, the 

systems commenced with single dimensional divisions into 

trophic levels(e.g. Thienemann 1920, 1925) with a gradual 
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introduction of faunal elements (e.g. Alm 1922; Berg 1938). 

Two dimensions were soon introduced with divisions of each 

trophic level in terms of edaphic factors and/or faunal 

elements (Lenz 1925; Lundbeck 1926, 1936; Valle 1927; 

Decksback 1929; Naumann 1931; Miyadi 1933; Deevey 1941; 

Brundin 1949, 1956, 1958; et al.). 

The chironomid group was usually chosen for 

characterisation of species associations, although there 

were inadequacies in the systematics of this group at the 

time (Brinkhurst 1974). A more sedentary group, less 

subject to violent seasonal population fluctuations may 

have been a more satifactory choice. 

It is quite probable that researchers may now be trying 

to use or reject a classification system that was never 

intended by its author to have any wider application than 

to the region on which it was originally imposed. Brinkhurst 

(1974), in discussing the differences of opinion between 

various factions, stated that: "It commonly happens that 

disciples codify and adhere rigidly to a formalised version 

of what had been only a working hypotheses of its creator - 

and one he would probably have modified in the light of 

later experience". 

The northern hemisphere classification systems became 

quite involved and many authors have tended to use only 

part of a system. For instance trophic status has been 

related to substrate factors; to broad taxonomic groups; 

to chironomids; to biomass depth profiles etc. The chironomid 

system was generally the most widely used. 

Following an expedition to South America during which 

benthic collections revealed Tanytarsus communities in the 

South Andean lakes, Brundin (1958) proclaimed world wide 
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applicability of the chironomid based lake typology systems. 

Although Australian lakes have not been sufficiently studied 

to be properly classified the subject has already been 

more or less opened in this country. 

Timms (1980a) has briefly examined the various 

typological systems in relation to his and other Australian 

works. He arranged the Australian lakes in ascending 

order of benthic biomass levels and examined this arrangement 

in terms of substrate organic content. No straightforward 

correlation was observed, although some elements of 

agreement with the levels for lakes of similar trophic 

status in Europe, as given by Rybak (1969), are indicated. 

Timms (1980a) did not find any significant agreement 

with northern hemisphere findings in relation to trophic 

status and taxonomic groups (i.e. amphipods - oligotrophic, 

chironomids - mesotrophic - eutrophic, oligochaetes 

eutrophic) as suggested by Carr and Hiltunen (1960) and 

Ahren and Grimas (1965). However, these two works were 

primarily concerned with the development of eutrophy as 

a result of pollution. Such faunal-trophic status 

relationships, at least the latter two categories, are 

probably applicable to some small Tasmanian systems and may 

warrant further examination. 

The main chironomid genera, (Chironomus and Tanytarsus) 

used in the northern hemisphere typologies are certainly 

present and widespread in Australia. Species of these genera 

do dominate the faunas of some lakes e.g. C. duplex in 

Lake Coragulac Minims 1980a), T. barbitarsis in Lake Werowrap 

(Paterson & Walker 1974), C. nepeanensis in Lake Barrine 

(Tiin= 1979). However, the first two systems are saline 
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to varying degrees, and could be classified as eutrophic. 

Tanytarsus is supposedly characteristic of oligotrophic 

systems, whilst Chironomus species indicate eutrophy 

(Brundin 1958). The latter association is in agreement in 

Lake Coragulac but Lake Barrine is oligotrophic (Timms 1979). 

Chironomus species, particularly C. oppositus, are very 

common in the colder south eastern Australian lakes 

(Timms 1974, 1978, 1980a, b; Fulton this study). These 

lakes are generally regarded as oligotrophic. 

Therefore, it appears that the northern hemisphere 

chironomid typologies are not directly applicable to 

Australia. However, as concluded by Timms (1980a), there 

do appear to be some broad relationships between various 

lake types in Australia and some chironomid species. These 

data may be worth further investigation but at present 

they are confused by the occurrence of several other 

ubiquitous species. 

Timms (1980a) also examined the relationship between 

trophic status and biomass:depth profiles of Australian 

lakes as was done by Lundbeck (1936) and Deevey (1941) 

in the northern hemisphere. Timms concluded that most 

deep Australian lakes show little variation in biomass: 

depth profiles irrespective of trophic status. They show- 

a large littoral peak and low profUndal levels. Timms (1980a) 

could not find agreement with the systems of Lundbeck and 

Deevey. Non-conformity in this area may be associated 

with the various effects of stratification which appears 

to be the general situation in the northern hemisphere. 

Most of the natural lakes, in Tasmania at least, are polymictic. 
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Due to this non-agreement, Timms proposed a 

classification system of his own based on biomass levels 

and distribution with depth (Timms 1980a p. 36). 

Although he indicates that caution is required in the use 

of this scheme, neither Great Lake nor Arthurs Lake could 

be squeezed into any of his categories by consideration 

of any of the possible variables. These lakes would be 

somewhere in the 'ultra' eutrophic area in Timms' system. 

His system is also in disagreement with trophic status 

designations based on primary production and nutrient 

levels for Tasmanian lakes. 

Nearby Lakes Sorell and Crescent have comparatively 

low benthic standing crops (Timms 1978) but have high 

nutrient levels. Lake Crescent has been classified as 

eutrophic on the basis of its primary production (Cheng & 

Tyler 1976a, b), whilst Lake Sorell was considered to be 

mesotrophic by the same authors. However, Timms (1978), 

on the basis of benthic standing crop levels, classified 

Lake Crescent as oligotrophic and Lake Sorell as 

oligotrophic-mesotrophic. Timms suggested that the scouring 

effect of the wind in the shallow Lake Crescent may 

restrict the development of its benthic fauna. Such wind 

effect should enhance the 'real' trophic status of a lake. 

Physico-chemical limnology as well as primary 

production estimates for Lake Leake and Tooms Lake suggest 

oligotrophy (Croome & Tyler 1972, 1973, 1975). However 

benthic standing crop estimates by Timms (1978) suggested 

eutrophic and mesotrophic-eutrophic conditions respectively 

to that author. 

Timms is either assuming that standing crop is a 
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measure of production or that standing crop is directly 

related to trophic status. The former relationship cannot 

be assumed whilst the latter is not supported by the 

literature. The system of lake typology for Australian 

lakes proposed by Timms (1980a) must therefore be rejected. 

Tasmanian lakes may be classified according to his criteria 

but the classification bears little or no resemblance to 

the trophic status of each lake in terms of nutrient levels 

or primary production. . 

As shown in Table 5.2 Lake Werowrap and Arthurs Lake 

(in part) have similar standing crops and would therefore 

be similarly classified under the Timms system as eutrophic. 

The benthic production of these two systems, however, would 

probably differ by an order of magnitude. About seven 

chironomid generations per year were recorded in the former 

lake (Paterson & Walker 1974) compared to one in Arthurs 

Lake. The benthic standing crop is high in Arthurs Lake, 

and to a lesser extent Great Lake, largely due to the 

presence of large oligochaetes. These probably have a slow 

turnover rate and consequently a low level of production 

more consistent with the trophic status suggested by their 

nutrient levels. 

It appears that the presently used systems of faunistic 

lake typology are inadequate for Australian lakes. This 

probably applies to New Zealand lakes as well (Forsyth 1976). 

Other methods of classifying lakes are available but they 

are generally objective and have little predictive value. 

Lakes are often classified geographically or geomorphologically. 

Williams (1964) classified Victorian lakes in relation to 

their total dissolved matter content. Such methods have 
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been used overseas (e.g. Northcote & Larkin 1956; Larkin 

and Northcote 1958; Pennak 1958), but their predictive 

value in terms of benthic production is limited. 

The search for a working system of lake typology 

is not merely an academic exercise. However, a system 

based on the productive ability of the lakes is required. 

It would be of enormous value to water management 

authorities, particularly in relation to fish yield, if 

easily determined characteristics of a lake, either edaphic, 

morphometric or faunistic, could enable a meaningful 

prediction of the fish production of that lake to be made. 

Benthic standing crop or biomass on its own is in no way 

a measure of production, and benthic production of an 

Australian lake has only been determined on one occasion 

(Paterson & Walker 1974). 

Valid estimates of benthic production require 

considerable time and effort and for that reason alone 

have probably not been used in lake typology. Standing 

crop of benthic fauna is undoubtedly related to benthic 

production, but in a complex manner. Brinkhurst (1974) 

concluded that although there was a fundamental relationship 

between macroinvertebrate production and lake depth, area 

and dissolved solids there was little predictive value 

in the overall model. Therefore, it may be more rewarding 

to follow other avenues such as chlorophyll content (as 

discussed in section 5.2) or direct relationships of 

morphometric factors and fish yield, which has been 

studied by Rounsefell (1946) Rawson (1952, 1955) Hayes (1957) 

and Ryder (1965) in order to arrive at a more meaningful 

and perhaps more useful classification of lacustrine systems. 
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Appendix 1: Sampling dates for each site in Great Lake 

and Arthurs Lake. 

SGL1 	SGL2 	SGL3 	DGL1 	DGL2 	DGL3 

16.1.75 16.1.75 16.1.75 27.1.75 27.1.75 27.1.75 

26.3.75 26.3.75 26.3.75 31.3.75 31.3.75 31.3.75 

24.5.75 24.5.75 24.5.75 2.6.75 2.6.75 2.6.75 

4.8.75 4.8.75 4.8.75 29.7.75 29.7.75 29.7.75 

26.9.75 26.9.75 26.9.75 3.10.75 3.10.75 3.10.75 

30.11.75 30.11.75 30.11.75 4.12.75 4.12.75 4.12.75 

SAL1 SAL2 DAL1 DAL2 DAL3 DAL4 

24.1.77 31.1.77 24.1.77 31.1.77 31.1.77 24.1.77 

29.3.77 4.4.77 29.3.77 4.4.77 29.3.77 4.4.77 

22.5.77 27.5.77 22.5.77 27.5.77 27.5.77 22.5.77 

23.7.77 28.7.77 23.7.77 28.7.77 28.7.77 23.7.77 

25.9.77 10.10.77 25.9.77 10.10.77 10.10.77 25.9.77 

28.11.77 6.12.77 6.12.77 6.12.77 28.11.77 28.11.77 

1.2.78 6.2.78 6.2.78 6.2.78 1.2.78 6.2.78 



Appendix 2: Species lists and abundance data for faunal surveys of Great Lake and Arthurs Lake. 

(Numbers may be multiplied by 2.15 to convert to individuals/m2). 

Part 1: Summary of contents of each 20 sample series taken from Great Lake during 1975 

GREAT LAKE 1975 

SWAN BAY Level 1 - 
	

BRANDUM BAY Level 1 	CRAMPS BAY Level 1 

IA 	 W\ 	 IrN 
IA 	N. 	In 	If \ 	In 	 In 	N 	In 	In 	In 	. . 	In 	N 

N 	N 	N 	In 	N 	 N 	N - N 	In 	N 	 N 	N 	N 	IA 	N 
N' .-- 	 N 	 .-- 	 N 

V .- 	; 	
InOC; 	

ON. 	 e; 	LA 	 O\. 	 el 	kr; 

	

CO. 	
0\ 

u3-4 	• 	uz; 	c; 	up* 	up 	..1- 	. 	• 	u7; 	d 	 \c; 	-4- 	 • 	up 	c; 
cu 	N 	' -.7 	N 	C•1 	,- 	N 	N 	-7 	N 	Cr 1 	.- 	N 	N 	a- 	az 	c-1 

CRUSTACEA 

Isopoda 

Mesacanthotelson setosus  

Onchotelson brevicaudatus  

..Uramphisolous pearsoni 

Heterias sp. 

Syncarida 

Paranaspides lacustris  

Amphipoda 

Neonipharmus ? tasmanicus 

    

1 	1 	3 	9 	52 	36 69 	 83 	32 	64 

2 	5 	2 	1 	42 	2 

	

42 	5 
	

1 

39 	74 	50 44 	75 109 

Neoniphargus  sp. 	 2 	 4 	2 	3 	2 	6 	2 
INSECTA 
Diptera 

Chironomus oppositus 	 2 

Cryptochlronomus ? griseidorsum 	 1 	2 	1 	2 	3 	2 	7 	1 	2 

? Tanytarsus sp. 	 226 	 1 	29 	1 	 7 	2 

Polypedilum nr. tonnoiri  

? Harnischia  sp. 	 2 	1 

Riethia sp. 	 4 	91 	33 	56 	11 	20 	102 	6 	14 	29 	52 	27 	49 	33 	1 	85 

Coelopynia ? pruinosa 	59 	7 	30 101 	35 	29 	2 	 1 . 45 	32 	11 	1 	10 	12 

Paramerina  sp. 	 2 	4 	1 	3 	2 	 1 	2 	 8 
Procladius ? villosimanus  

Ab/abesmyla notabilis  

Orthoc/adiinae  
(nr. Smittia or Cricotopus) Sp1. 	 1 

Orthocladiinae Sp2. 

(? Cricotopus  sp.) Sp3. 

(nr. Eurycnemus)  Sp4. 

1 

8 	2 

1 

2 



GREAT LAKE 1975 

SWAN BAY Level 1 
	

BRANDUM BAY Level 1 	CRAMPS BAY Level 1 

WN 	 IA 	 If \ 
111 	Ul 	IA 	 IN 	N 	U.N 	LA 	IA 	 141 	N 	IA 	tr \ 	WN 	 til 	N 
N 	N 	N 	XN 	N 	 N 	N 	N 	Ill 	N 	 N N N 	kr\ 	N 

• 	 N 	 N 	 .- • 	 N 
..- 	n 	IA cr■ 	..... 	.-- 	Cn 	IA 	 0\,.. 	,..- 	c 	■ n 	ir 	cr. 	.-. 

cc; 	 ozi  
,c) 	1/40 	-7 	 • 	1/40 	0 	1/40 	1/40 	-7 	 1/40 	0 	1/40 	1/40 	-7 	 • 	vp 	d 
- 	N 	N 	-7 	N 	n 	— 	N 	N 	-7 	N 	cn 	^ 	N 	N 	-7 	N 	Cr\ 

Trichoptera 

Atriplectides dubius 6 10 6 1 6 5 1 23 7 12 6 1 

Ecnomus tillyardi 

Notalina parkeri 

ACARMNA 

A. lengipalpus 

Oxus meridianus 1 

Pions. uncatiformis 

Arrenurus sp. 

OLIGOCHAETA 

Haplotaxis sp. 41 59 141 105 49 54 32 30 15 25 3 26 70- 10 32 29 88 75 

H. ileterogyne 4 1 7 2 1 

Phreodri/us magnaseta 1 5 1 4 1 1 1 2 1 

P. plumaseta 6 	- 4 

P. palustris 8 1 2 3 9 39 74 2 36 30 157 62 52 65 52 35 16 

P. breviatria 1 5 9 23 11 5 7 '3 3 

P. branchiatus 

P. proboscides. 

Antipodri/us plectilus 16 24 3 14 9 4 217 272 525 318 412 108 7 3 8 10 

A. multiseta 93 97 91 87 141 74 8 56 1 10 12 7 

Telmatodrilus papillatus 1 2 1 

T. bifidus 48 175 43 34 149 117 74 70 7 49 46 35 23 37 23 27 35 25 

Limnodrilus hoffmeisteri 4 18 4 4 3 4 

BIVALVIA 

Sphaerium lacusedes 12 1 

Sphaerium tasmanicum 

Pisidium spp. 11 66 1 1 1 7 8 4 
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GASTROPODA 

Beddomeia  sp.  

Glacidorbis  

0. 

0
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0
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GREAT LAKE 1975 

SWAN BAY Level 2 
	

BRANDUM BAY Level 2 	CRAMPS BAY Level 2 

CRUSTACEA 

Isopoda 

In 
N 

N 
el 

If \ 
N 

• 

r- 

t(\ 
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• 

• 
N 

If\ 
N 
ts: 

0 \ 
el 

If \ 
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cv 
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.-- 
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01 

If \ 
N 

el 
,-- 
01 

it \ 
N 

,c3 
• 

01 

In 
N 

N 

N 

In 
N 

O — 

r \ 

In 
N 

N 
.- 

-.1' 

Mesacanthotelson setosus 2 12 13 8 25 9 10 13 

Onchotelson brevicaudatus 1 54 8 3 9 

Uramphis opus pears oni 

Heterias sp. 5 24 1 2 5 2 1 1 

Syncarida 

Paranaspides lacustris 2 1 1 1 1 1 

Amphipoda 

Neoniphargus ? tasmanicus 

Neoniphargus sp. 
INSECTA 

Diptera 
Chironomus oppositus 4 6 1 42 4 4 46 159 176 261 145 42 

Cryptochironomus ? griseidorsum 16 5 10 56 36 24 1 12 7 5 11 3 1 1 

? Tanytarsus sp. 24 1 7 93 32 33 1 89 121 18 24 

Polypedilum nr. tonnoiri 30 12 44 22 27 81 7 1 1 313 41 120 112 150 287 

? Harnischia sp. 

Riethia sp. 233 125 111 624 719 470 56 40 289 206 306 329 13 320 605 398 710 331 

Coelopynia ? pruinosa 7 22 9 1 5 2 9 5 6 4 4 1 8 1 3 4 3 5 
Paramerina sp. 2 1 4 3 3 8 2 2 4 1 1 1 1 1 

Procladius ? villosimanus 66 47 33 68 101 86 3 8 4 7 177 204 218 207 295 252 

Ablabesmyia notabilis 1 1 1 1 1 1 2 1 1 1 1 

Orthocladiinae 
(2r. Smittia or Cricotopus) Spl. 1 9 
Orthocladiinae Sp2. 4 3 2 

(? Cricotopus sp.) 5p3. 2 2 

(2r. Eurycnemus)  Sp4. 	 1 
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Part 2: Summary of contents of additional samples taken from various sites in Great Lake 

on 7 November, 1975. 	Numbers are corrected to individuals/m2 . 

SITE E1.1 E2.1 E2.2 P1.1 P2.1 C1.1 C2.1 C2.2 L1.1 L2.1 1,2.2 

number of samples 3 3 3 3 3 1 3 3 2. 3 3 

CRUSTACEA 

Isopoda 

Onchotelson spatulatus 272 14 

Amphipoda 

Austrochiltonia australis 14 

INS ECTA 

Diptera 

Chironomus oppositus 29 29 14 14 244 

Cryptochironomus 7 griseidorsum 43 

Polvpedilum nr. tonnoiri ' 129 29 14 932 201 72 14 

Riethia sp. 1304 1691 1677 602 645 344 344 1218 358 

Coelopynia 7 pruinosa 158 29 

Paramerina sp. 14 

Procladius 7 villosimanus 272 1189 72 1405 401 803 301 

Ablabesmyia notabi/is 14 14 57 14 

Orthocladiinae Sp. 	1. 14 

Plecoptera 

Leptoperla beroe 14 22 

Trichoptera 

Atriplectides dubius 158 258 72 172 129 65 172 

Ecnomus tillyardi 29 43 

Notalina parkeri 115 57 72 

OL/GOCHAETA 

Haplotaxis ornamentus 115 14 22 

Phreodrilus palustris 14 

P. branchiatus 14 194 29 29 

P. proboscidea 59 14 115 14 86 129 29 

Antipodrilus plectilus 330 731 

A. multiseta 1061 

Telmatodrilus bifidus 129 186 43 

Limnodrilus hoffmeisteri 14 43 43 14 43 14 86 
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SITE 	E1.1 E2.1 E2.2 P1.1 P2.1 C1.1 02.1 C2.2 L1.1 L2.1 L2.2 

	

number of samples 
	

3 	3 	3 	3 	3 	1 	3 	3 	2 	3 	3 

BIVALVIA 

Sphaerium lacusedes 	29 
	

1 4 

Pisidium sp. 	 115 

GASTROPODA 

Glacidorbis eawpela 	57 

TURBELLARIA 

prorhynchid 
	

43 

NEMERTEA 

Potamonemertes sp. 	 22 

	

nos/m2 	1205 2151 3253 2077 1892 	688 3468 1175 	798 2796 745 

Key to sites (on Fig. 2.3) 

1 	E1.1 	Elizabeth Bay level 1 

2 	E2.1 	Elizabeth Bay level 2, site 

3 	E2.2 	Elizabeth Bay level 2, site 

1 

2 

4 P1.1 Poatina level 1 

5 P2.1 Poatina level 2 

6 .C1.1 Canal Bay level 1 

7 C2.1 Canal Bay level 2, site 1 

8 C2.2 Canal Bay level 2, site 2 

9 L1.1 Little Lake Bay level 1 

10 L2.1 Little Lake Bay level 2, site 1 

11 L2.2 Little Lake Bay level 2, site 2 



Part 3: 	Summary of contents of each 20 sample series taken from Arthurs Lake during 1977-78. 

ARTHURS LAKE 1977-78 

COWPADDOCK BAY 	 MORASS BAY 

N N 
N N N N N N N N N N N 
N • N N N N 

,-- 
OD 
c.. 

N N N N N • CO 

Crl S\ ; C.: Os.  
CV*  

.-- 
I-  — 

tr; CZ- N*  
.-- * CV 

7*  — Ø. N C.  \ UN N CO * 0 
%C.) c'm c\I c\I 0.1 N N •-• —7*  CV CV V) 

CRUSTACEA 

Isopoda 

Colubotelson sp. 14 3 6 1 432 549 538 351 354 414 452 

Heterias sp. 55 28 23 1 	- 4 7 2 4 

Syncarida 

Paranaspides lacustris 

Amphipoda 

Neoniphargus ? tasmanicus 247 37 17 88 86 46 38 

Neoniphargus sp. 	' 

Austrochiltonia australis 38 331 259 41 131 7 26 
INSECTA 
Diptera 

Dhironomus oppositus 127 229 160 15 251 3 601 1 

Cryptochironomus ? griseidorsum / / 1 

? Tanytarsus sp. 5 1  40 2 5 . 	5 128 1 

Polypedllum nr. tonnoiri 9 1 2 4 3 10 .11 

7 nr. Harnischia • 

Dicrotendipes sp. 14 77 101 18 12 19 3 
Cladopelma curtivalva 162 17 12 46 22 285 211 

? Parachironomus sp. 

Parachironomus ? delinificus 1 

Riethia sp. 
1.3 

60 271 1981 309 255 4 16 58 229 57 25 17 41 

Coelopynia ? pminosa 1 171 107 82 69 52 89 63 

Paramerina sp. 4 2 2 4 2 7 

Procladius ? villosimanus 402 478 449 757 457 591 287 1 2 4 1 2 6 2 

Ablabesmyia notabilis 1 3 4 4 1 3 3 1 9 3 

Orthocladiinae Sp2. 1 
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ARTHURS LAKE 1977 -78 

	

COWPADDOCK BAY 	 MORASS BAY 

N 	 N 
N 	N 	N 	N 	N 	N 	 N 	 N 	N 	N 	N 
N 	N 	N 	N 	N 	 M 	 N 	N 	N 	N 	 N 	M 

,- N 	 • 	N 	 (5  N 
.- 	C'N 	IA 	N. 	c r■ 	T . 	- • 	 - , - 	 tr:\ 	r": 	 C%; 

	

N • •4: 	 n.1 
4: 	ON. 	N. 	Cn 	U'.N 	CO. 	 N 	CO 

• 	 • 
	

r- 

C‘I 	CV 	01 	CV 	CV 	CV 	 -1. 	CV 	CV 	 ■C) 	'.0 

BIVALVIA 

Sphaerium lacueedes  

Sphaerium tasmanicum 	 15 

Pisidium  app. 	 22 	 1 	 1 

GASTROPODA 

Physastra cf. gibbosa 	 4 
TURBELLARIA 

Romankenkius bilineatus 	 1 	4 	2 	1 	4 
Spathula ochyra 	 3 	4 	5 	 6 	2 	23 

prorynchi..0 	 3 
NEMERTEA 

Potamonemertes  sp. 

PORIFERA 

Sponge 	 2 	20 	 2 	2 	3 	5 	5 	5 	2 

BYDROZOA 

Hydra 

Totals 	 952 1368 	1409 3013 	1309 	1238 1367 	918 	770 	908 	590 	530 	619 	631 

Mean 	 1548 	 722 
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ARTHURS LAKE 7977-78 

EAST LAKE NORTH 	EAST LAKE SOUTH 
	

TI TREE BAY 	 WEST LAKE NORTH 
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Atalophlebia superba 1" 

Plecoptera 

Leptoperla beroe 1 1 

Trichoptera 

Atriplectides dubius 3 70 5 6 4 8 6 7 5 8 27 9 3 5 1 13 2 3 2 2 14 5  2 3 1 2 1 

Ecnomus ti/lyardi 

Notalina parkeri 1 1 2 2 1 

.0ecetis sp. 

ACAR1NA 

Australiobates lindeni 

Oxus meridianus 

Pions uncatiformls 1 1 1 

Unionicola longiseta 

OLIGOCHAETA 

Haplotaxis sp. 230 235 246 184 210 151 181 98 110 170 790 101 724 143 258 400 259 374 321 328 296 69 189 188 139 278 249 158 

H. heterogline 1 1 1 1 2 1 2 6 

Phreodrilus magnaseta . 	3 
P. plumaseta 1 7 

P. palustris 6 34 43 79 11 30 25 44 2 18 78 94 43. 57 19 10 6 47 44 28 45 73 

P. breviatria 1 20 1 

P. branchiatus 75 6 2 

P. proboscidea 

Antipodrilus plectllus 71 15 22 56 41 45 62 10 9 79 115 52 35 23 43 24 42 89 32 37 15 ) 11 3 
A. multiseta 1 1 3 9 2 7 5 1 

Telmatodrilus papi/latus 1 49 

T. bifidus 77 71 28 20 21 17 4 77 41 49 97 36 14 25 28 22 41 87 55 68 27 15 62 29 61 36 38 51 

Limnodrilus hoffmeisteri 



608 746 1 048 426 

ir•
 

11••• 

0
 

r- 	
Cr1 

155 1  13 27  394 672  727  111 0  560 596 472  586 ON 
c\I 

0
3
 0

3
 \ 

0
 

03 

0
\ 

0
\ 

03 

0.1 

0
 

Cst 

•
\ 

U
I 

1060  972  977  552  899  845  99 8 

0 \ 	
CO 

‘13 
0
 

2
0
3
 

W
e
'
s

,  

L
L
•
t
v
g
e
 

a 
LL06'gz 

a 0 
GL'L'Ce 

•
LL'g'zz 

GL'frft 

LL*1.*fiz 

8L'Z'L 

GL'LL'8U 

G
L
'
o
c
o
L
 

•
GL'L'gz 

•
GZ'5 -

Gz 

GL*C*6z 

G
G
'
c
t
e
 

a
'
n
'
s
 

LL'ocot 
0 

44*L'Em 

GL*5 -
Gz 

a'frt7 

a
'
c
L
C
 

GL'6'5z 

2 	
L4•4•Ce 

LG*5 -
zz 

GL'C'
,5z 

m
 

0
 

-o 
0
 

0
 

g
 

,-1 
H
 

..1 
.0 

m 0 
,-1 

1 0 1
 E o 

0 

A
 

m
 

H
O

 

'0 

g
 

P.. 
o 

• 
0. 

0
 

A
 
A
 

A
 

0
 

0 A 
N
 

(I 
0
 
N
 

4 



Appendix 3: Graph of percentage weight loss 

with time in 70% ethanol preservative. 

Three groups show an initial significant 

weight loss and then a fairly stable weight. 

Two groups do not show any appreciable weight 

loss. 

From these findings the following correction 

factors were applied to the net weight biomass 

estimates for the various groups: 

Oligochaetes 	30% 

Bivalves 	15% 

Phreatoicids 	14% 

Chironomids 	nil 

Amphipods 	nil 
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Appendix 4: Tests for significant differences between Shannon-Weiner diversity indices 

for each sample series within each site in Great Lake and Arthurs Lake. (Site DAL1 is 

given in Table 4.2). 	Cr4i4ea 	t 	va(v.e. 	3.241 

SGL1 

Month 	N 	S 	H 	J 	E(H) 

iof 	ree6bilify  0,201 

var (H) 

1 433 10 1.3660 0.5932 1 .3556  0.0023 

3 418 18 2.1191 0.7332 2.0988 0.0026 

5 348 19 2.0926 0.7107 2.0668 0.0031 

7 879 15 1.0802 0.3989 1.0722 0.0018 

9 1027 17 1.1258 0.3974 1.1180 0.0017 

11 763 13 1.3031 0.5080 1.2952 0.0018 

Table of , t ,  values: 

1 	3 	5 
10.817 	9.944 

0.352 

7 
4.457 

15.618 
14.437 

9 
3.815 
15.187 
13.998 

0.767 

• 

11 
0.984 

12.304 
11.289 

3.683 
2.990 

Month 

1 
3 

5 
7 
9 

11 

Table of degrees of freedom: 

1519 1491 1510 1495 1507 

1514 1484 1463 1481 

1436 1408 1431 

1523 /525 
1524 

SGL2 

Month N S H J E00 var 00 

1 201 15 2.0928 0.7728 2.0580 0.0042 

3 262 15 2.0006 0.7388 1.9739 0.0041 

5 476 19 1.6074 0.5459 1.5885 0.0047 

7 350 15 1.5277 0.5641 7.5077 0.0050 

9 414 18 1.1798 0.4082 1.1592 0.0058 

11 390 17 0.7910 0.2792 0.7705 0.0057 

Table of , t ,  values: 

/ 3 5 7 9 11 Month 

1.011 5.145 5.866 9.095 13.060 1 
4.201 4.946 8.234 12.222 3 

0.808 4.171 8.017 5 
3.334 7.106 7 

3.618 9 
11 

Table of degrees of freedom: 

779 	778 	774 
776 	771 

778 

760 
756 

770 

775 

• 763 

759 
772 

777 
779 
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SGL3 

Month N S H J E(H) var (H) 
1 891 11 1.7654 0.7362 1.7598 0.0007 

3 1076 11 1.7972 0.7495 1.7926 0.0004 

5 1333 10 1.6190 0.7031 1.6156 0.0006 

7 1167 12 1.7454 0.7024 1.7407 0.0006 

9 1566 11 1.5948 0.6651 1.5916 0.0005 
11 1099 10 1.6629 0.7222 1.6588 0.0005 

Table of tt ,  values: 

1 3 
0.949 

5 
4.031 

5.524 

7 
0.563 

1.655 

3.688 

9 
4.945 

6.704 

0.726 
4.657 

11 

2.928 

4.365 
1.299 
2.510 
2.139 

Month 

1 

3 
5 
7 

9 
11 

Table of degrees of freedom: 

2070 	2189 	2169 	2130 	2153 
2122 	2157 	2186 	2172 

2191 	2168 	2183 

2188 	2196 

2195 

DGL1 

1 216 9 1.7476 0.7954 1.7291 0.0022 
3 676 11 1.7410 0.7261 1.7337 0.0010 
5 298 12 1.6235 0.6533 1.6050 0.0039 

7 414 12 1.9166 0.7713 1.9033 0.0013 

9 389 10 1.7152 0.7449 1.7036 0.0019 
11 346 14 1.6727 0.6338 1.6539 0.0029 

Table of ftt values: 

1 	3 5 7 9 11 Month 

0.177 1.598 2.854 0.510 1.050 1 
1.685 3.635 0.482 1.091 3 

4.069 1.212 0.598 5 
3.565 3.744 7 

0.615 9 
11 

Table of degrees of freedom: 

609 	642 653 687 677 

514 679 635 559 
558 617 678 

672 606 

660 
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DGL2 

Month E(H) var (H) 

1 473 14 1.5576 0.5902 1.5439 0.0021 

3 631 17 1.8226 0.6433 0.8099 0.0019 

5 773 16 1.1234 0.4052 1.1137 0.0021 

7 613 17 1.6926 0.5974 1.6796 0.0026 

9 721 18 1.4484 0.5011 1.4366 0.0023 
11 469 17 1.9114 0.6746 1.8943 0.0023 

Table of 

1 

, t ,  values: 

3 	5 	7 	9 11 Month 

4.161 	6.671 	1.966 	1.636 5.328 1 

11.048 	1.941 	5.757 1.375 3 
8.335 	4.895 11.936 5 

3.495 3.146 7 
6.843 9 

11 

Table of degrees of freedom: 

934 937 	930 	936 	937 
936 	918 	929 	931 

928 	935 	936 

935 	934 

937 

DGL3 

Month N S 	H 	J 	E(H) var (H) 

1 357 17 	2.1733 	0.7671 	2.1509 0.0018 

3 270 13 	2.0931 	0.8161 	2.0709 0.0019 

5 284 17 	2.0653 	0.7289 	2.0371 0.0032 

7 268 18 	2.0673 	0.7152 	2.0356 0.0039 
9 264 15 	2.1291 	0.7862 	2.1026 0.0036 

11 309 14 	1.9325 	0.7323 	1.9115 0.0029 

Table of , t ,  values: 

1 3 
1.313 

5 
1.525 

0.391 

7 
1.404 

0.341 
0.024 

9 
0.598 

0.483 
0.772 
0.713 

11 
3.493 
2.315 
1.699 
1.636 
2.427 

Month 

1 
3 
5 
7 
9 

11 
Table of degrees of freedom: 

617 	576 	548 
580 	553 

612 

557 
561 
615 
617 

587 
591 
616 
606 
610 
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Month N 	S 

SAL1 

H J E (H) var (H) 

1 952 	19 1.8937 0.6431 1.8842 0.0014 

3 1368 	21 1.9083 0.6268 1.9010 0.0009 

5 1409  23 1.9764 0.630 1.9686 0.0008 

7 3013  18 1.0524 0.3641 1.0496 40.0005 

9 1309  20 1.7935 0.5987 1.7862 0.0009 

11 1238  18 1.4421 0.4989 1.4352 0.0011 

1 1367  19 1.6709 0.5675 1.6643 0.0010 

Table of , t ,  values: 

1 	3 5 7 9 11 1 Month 
0.298 1.734 18.966 2.068 8.996 4.540 1 

1.615 22.323 2.669 10.366 5.430 3 

25.141 4.396 12.247 7.217 

19.646 9.758 16.060 7 

7.9406 2.839 9 

5.071 71 

1 

Table of degrees of freedom: 

2620  2547 2238 2594 2675  2627 

2721 2520 2732 2723  2733 

2598 2729 2689 	2719 

2551 2440 	2511 

2713 	2731 

2725 

SAL2 

Month N 	S H J E 00 	var (H) 
1 918 	13 1.3354 0.5206 1.3289 	0.0010 

3 770  11 0.9922 0.4138 0.9857  0.0018 

5 908  15 1.1808 0.4360 1.1731  0.0014 

7 590 	14 1.2929 0.4899 1.2819 	0.0022 
9 530 	10 1.0673 0.4635 1.0588 	0.0022 

11 619 	13 1.2273 0.4785 1.2176 	0.0029 
1 631 	13 1.0948 0.4268 1.0853  0.0028 

Table of , t ,  values: 

1  3 5 7 9  11 1 Month 
6.601 3.189 0.757 4.741  1.746 3.954 1 

3.361 4.784 1.189  3.455 1.530 3 

1.869 1.880  0.711 1.335 5 
3.384 	0.920 2.815 7 

2.235 0.389 9 

1.766 11 

1 

Table of degrees of freedom: 

1160 	1218 1091 1085 1007 	1021 

1246 1245 1243 1191 	1202 

1202 1197 1126 	1140 

1261 1239 	1246 

1242  1249 

1261 
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Month 	N 	S 

1 	845 	19 

DAL2 

H 
1.6781 

J 
0.5699 

E (H) 	var (H) 

1.6675 	0.0014 

3 	998 	15, 1.7163 0.6338 1.7093 	0.0013 

5 	1199 	14 1.7565 0.6656 1.7511 	0.0010 

7 	1168 	14 1.9877 0.7532 1.9821 	0.0006 

9 	829 	19 1.9324 0.6563 1.9215 	0.0014 

11 	1551 	21 1.6225 0.5329 1.6160 	0.0010 

1 	1327 	23 2.0136 0.6422 2.0053 	0.0008 

Table of , t ,  values: 

1 	3 5 7 9 	11 1 Month 

0.735 1.597 6.769 4.800 	1.120 7.015 1 

0.854 6.226 1.226 	1.967 6.495 3 
5.752 3.644 	3.005 6.042 5 

1.233 	8.933 0.670 7 
6.346 1.728 9 

9.054 11 

1 

Table of degrees of freedom: 

2640 	2554 2319 2651 2579 	2482 

2610 2411 2649 2627 	2556 

2554 2579 2651 	2641 

2357 2527 	2609 

2601 	2514 

2629 

DALg 

Month 	N 	S H J E (H) 	var (H) 

1 	394 	12 1.1503 0.4629 1.1363 	0.0034 

3 	672 	14 1.4427 0.5467 1.4330 	0.0024 

5 	727 	13 1.7795 0.6938 1.7713 	0.0013 

7 	1110 	15 1.7655 0.6519 1.7592 	0.0007 

9 	560 	15 1.4887 0.5497 1.4762 	0.0026 

11 	596 	15 1.5743 0.5813 1.5625 	0.0025 

1 	472 	14 1.3493 0.5113 1.3356 	0.0037 

Table of , t 1  values: 

1 	3 5 7 9 	11 1 Month 

3.847 9.216 9.640 4.381 	5.522 2.367 1 

5.555 5.809 0.652 	1.878 1.197 3 

0.317 4.678 	3.332 6.104 5 
4.836 	3.377 6.289 7 

1.198 1.760 9 
2.857 11 

1 

Table of degrees of freedom: 

917 	784 	657 

864 	723 
866 

927 
941 

847 

707 

924 

942 

853 

713 
94) 

942 

897 
764 

642 

915 
911 



Month N 	S 

DAL4 

H J E (H) var (H) 

1 586  17 1.9998 0.7058 1.9861 0.0015 

3 408  17 1.8424 0.6503 1.8228 0.0037 

5 541  17 1.8275 0.6450 1.8128 0.0019 

7 608  17 2.0591 0.7268 2.0460 0.0011 

9 746  16 1.8032 0.6504 1.7932 0.0013 

11 1048  17 1.8546 0.6546 1.8470 0.0008 

1 426  15 1.9359 0.7149 1.9195 0.0022 

Table of , t ,  values: 

1 3 5 7 9 11 1 Month 

2.168 2.931 1.161 3.687 3.023 1.046 1 

0.197 3.121 0.551 0.182 1.215 3 

4.225 0.428 0.521 1.690 5 

5.230 4.743 2.152 7 

1.125 2.243 9 

1.494 11 

1 

Table of degrees of freedom: 

724  841  827 

772  653 

790 

846 

691 

822 

844 

769 

595 

721 

829 

799 

825 

797 

848 

764 

801 

693 
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Appendix 5: Tests for significant differences between Shannon-Weiner diversity 

indices for each site in Great Lake and Arthurs Lake for each sample series taken 

in the same month. (Data for month 1 is given in Table 4.4). Cilheal 'E .  value i•vit ;of rro606.431 4o-oal 

Site N S 

Month 3 

H 	J E(H) var (H) 

DGLI 676 11 1.7410 0.7261 1.7337 0.0010 

DGL2 631 17 1.8226 0.6433 1.8099 0.0019 

DGL3 270 13 2.0931 0.8161 2.0709 0.0019 

SGL1 418 18 2.1209 0.7338 2.1006 0.0026 

SGL2 262 15 2.0006 0.7388 1.9739 0.0041 

8GL3 1076 11 1.7972 0.7 495 1.7926 0.0004 

SAL1 1368 21 1.9083 0.6268 1.9010 0.0009 

DAL1 1065 13 1.7756 0.6922 1.7699 0.0010 

DAL2 998 15 1.7163 0.6338 1.7093 0.0013 

SAL2 770 11 0.9922 0.4138 0.9857 0.0018 

DAL3 67 2 14 1.4427 0.5467 1.4330 0.0024 

DAL4 408 17 1.8424 0.6503 1.8228 0.0037 

Table of 't ,  values: 

DGL1 	DGL2 DGL3 SGL1 SGL2 	SAGL3 SAL1 DAL1 	DAL2 SAL2 DAL3 DAL4 Site 

1.509 6.539 6.358 3.634 	1.487 3.783 0.777 	0.521 14.264 5.116 1.471 DGL1 

4.386 4.459 2.297 	0.524 1.602 0.876 	1.889 13.721 5.788 0.264 DGL2 

0.389 1.196 	6.148 3.467 5.934 	6.719 18.235 9.930 3.341 DGL3 

1.474 	5.923 3.587 5.809 	6.550 17.184 9.588 3.481 SGL1 

3.026 1.300 3.162 	3.888 13.190 6.925 1.787 SGL2 

2.998 0.581 	1.978 17.268 6.677 0.700 8GL3 

3.030 	4.092 17.630 8.049 0.962 SAL1 

1 .257 15.018 5.737 0.974 DALI 

13.213 4.530 1.785 DAL2 

6.995 11.474 SAL2 

5.103 DAL3 

DAL4 

Table of degrees of freedom: 

729 	745 	671 

815 	783 

797 

585 

706 
718 

759 

685 

568 
581 

528 
481 

799 
718 
734 

660 

575 
697 

799 
722 

739 
664 

579 
692 

799 

790 
766 

783 
715 
623 
642 

785 
787 

745 
798 

814 

772 
689 
582 

735 
739 

778 

699 
805 

804 
814 

763 
547 

687 

691 

742 
796 

612 
738 

736 
789 

814 
499 

602 

606 
653 

721 
778 
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Month 5 

Site N s H J E(H) var (H) 

DGL1 298 12 1.6235 0.6533 1.6050 0.0039 

DGL2 773 16 1.1234 0.4052 1.1137 0.0021 

DGL3 284 17 2.0653 0.7289 2.0371 0.0032 

SGL1 348 19 2.0926 0.7107 2.0668 0.0031 

SGL2 476 19 1.6074 0.5459 1.5885 0.0047 

SGL3 1333 70 1.6190 0.7031 1.6156 0.0006 

sAL1 1409 23 1.9764 0.6303 1.9686 0.0008 

DAL1 1060 14 1.6317 0.6183 1.6255 0.0009 

DAL2 1199 14 1.7565 0.6656 1.7511 0.0010 

SAL2 908 15 1.1808 0.4360 1.1731 0.0074 

DAL3 727 13 1.7795 0.6938 1.7713 0.0013 

DAL4 541 17 1.8275 0.6450 1.8128 0.0019 

Table of 	, t ,  values: 

DGL1 DGL2 DGL3 SGL1 SGL2 	SGL3 SAL1 DAL1 	DAL2 SAL2 DAL3 oAL4 Site 

6.481 5.263 5.634 0.175 	0.068 5.153 0.118 	1.914 6.105 2.177 2.684 DGL1 

12.964 13.484 5.886 	9.515 15.777 9.297 	11.444 0.971 11.296 11.115 ooL2 

0.346 5.167 	7.236 1.403 ,=;.788 	4.792 13.064 4.275 3.327 DGL3 

5.516 	7.795 1.861 7.318 	5.288 13.635 4.745 3.751 SGL1 

0.159 4.977 0.326 	1.987 5.477 2.233 2.713 SGL2 

9.390 0.326 	3.454 9.754 3.685 4.139 soL3 

8.300 	5.187 16.853 4.285 2.838 SAL1 

2.893 9.413 3.170 3.692 DAL1 

11.836 0.486 1.322 DAL2 
11.567 11.226 SAL2 

0.848 oAL3 
DAL4 

Table of degrees of freedom: 

994 	1072 	1068 

1037 	1044 

1081 

1072 
944 

1044 
1037 

710 

835 
743 

750 
682 

763 
911 

804 
813 
727 

1059 

779 
932 

822 
831 
741 

1047 
1080 

796 
953 

841 
850 
755 

1032 

1075 
1080 

887 
1040 

939 
948 
838 
941 

1015 
1032 
1047 

864 
1022 

915 
925 
817 
964 

1034 
1049 
1061 

1079 

972 

1079 
1019 
1027 

921 
856 
934 

955 
975 

1055 
1040 



214 

Site N S 

Month 7 

11 	J 	E (H) var (H) 

DGL1 414 12 1.9166 0.7713 	1.9033 0.0013 

DGL2 613 17 1.6926 0.5974 	1.6796 0.0026 

DGL3 268 18 2.0673 0.7152 	2.0356 0.0039 

SGL1 879 15 1:0802 0.3989 	1.0722 0.0018 

SGL2 350 15 1.5277 0.5641 	1.5077 0.0050 

800 1167 12 1.7454 0.7024 	1.7407 0.0006 

SAL1 3013 18 1.0524 0.3641 	1.0496 0.0005 

DAL1 972 13 1.6762 0.6535 	1.6701 0.0008 

DAL2 1168 14 1.9877 0.7532 	1.9821 0.0006 

SAL2 590 14 1.2929 0.4899 	1.2819 0.0022 

DAL3 1110 15 1.7655 0.6519 	1.7592 000007 

DAL4 608 17 2.0591 0.7268 	2.0460 0.0011 

Table of 	, t ,  values: 

DGL1 80L2 DGL3 801,1 SGL2 	SGL3 	SAL1 DAL1 DAL2 SAL2 DAL3 0AL4 Site 

3.587 2.1091 14.851 4.871 	3.943 	20.102 5.169 1.600 10.501 3.364 2.90 DGL1 

4.669 9.217 1.890 	0.944 	11.514 0.281 5.201 5.787 1.276 6.062 DGL2 

13.059 5.714 	4.838 	15.318 5.702 1.184 9.940 4.470 0.116 DGL3 

5.390 	13.575 	0.571 11.513 18.174 3.345 13.609 18.087 SGL1 

2.909 	6.369 1.936 6.095 2.758 3.139 6.787 SGL2 

21.109 1.855 6.978 8.618 0.567 7.743 SGL3 

16.937 27.348 4.610 20.485 25.125 SAL1 

8.085 6.957 2.285 8.739 DAL, 

13.018 6.072 1.716 DAL2 

8.789 13.369 SAL2 

6.970 DAL3 
DAL4 

Table of degrees 

110  931 

1168 

of freedom: 

1184 

1184 

loso 

907 
1099 

1195 
l000 

1041 

859 

779 
944 
740 

1021 
844 

768 
926 
732 

1214 

1156 
965 

858 
1065 
803 

1169 
1153 

1087 
896 

806 
988 
761 

1208 
1201 

1197 

1145 
1208 

1130 
1206 
1053 

897 
880 

loll 

937 

1106 

912 
818 
1007 

771 
1202 
1192 
1205 
1214 

955 

1203 
1043 

924 
1139 
857 

1102 
1082 

1195 
1143 

1090 

1158 
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Site N S 

Month 9 

H 	J 	E (H) var (H) 

DGL1 389 10 1.7152 0.7449 	1.7036 0.0019 

DGL2 721 18 1.4484 0.5011 	1.4366 0.0023 

DGL3 264 15 2.1291 0.7862 	2.1026 0.0036 

SGL1 1027 17 1.1258 0.3974 	1.1180 0.0017 

SGL2 414 18 1.1798 0.4082 	1.1592 0.0058 
sow 1566 11 1.5948 0.6651 	1.5916 0.0005 
sAL1 1309 20 1.7935 0.5987 	1.7862 0.0009 

DIAL1 977 13 1.7730 0.6913 	1.7669 0.0010 
DAL2 829 19 1.9324 0.6563 	1.9215 0.0014 

SAL2 530 10 1.0673 0.4635 	1.0588 0.0022 

DAL3 560 15 1.4887 0.5497 	1.4762 0.0026 

DAL4 746 16 1.8032 0.6504 	1.7932 0.0013 

Table of , t ,  values: 

DGL1 DGL2 1YGL3 SGL1 SGL2 	801,3 	SAL1 DAL1 DAL2 SAL2 DAL3 oAL4 Site 

4.128 5.578 9.876 6.099 	2.482 	1.488 1.090 3.823 10.107 3.395 7.562 DGL1 

8.821 5.093 2.974 	2.765 	6.086 5.682 7.983 5.644 0.576 5.895 DoL2 

13.731 9.748 	8.313 	4.979 5.253 2.780 13.839 8.715 4.631 DGL3 

0.621 	10.028 	13.096 12.575 14.582 0.932 5.545 12.353 soLl 

5.215 	7.473 7.197 8.867 1.250 3.365 7.372 801,2 

5.326 4.695 7.845 10.087 1.913 4.914 SGL3 

0.475 2.920 12.945 5.761 0.208 SAL1 

3.313 12.483 4.787 0.635 DAL1 

14.404 7.062 2.499 DAL2 

6.063 12.343 SAL2 
5.039 DAL3 

DAL4 

Table of degrees of freedom: 

1474 1351 
1421 

1488 
1457 
1317 

1178 

1256 
1415 

1145 

1112 

1048 
943 

1143 

870 

1330 
1250 
1094 

1364 

970 

1371 

1350 
1270 
1110 

1382 

982 
1352 
1490 

1456 
1398 
1235 

1474 
1075 
1220 

1432 
1446 

1479 
1491 
1412 

1463 
1245 
1056 
1262 
1282 
1407 

1453 

1487 
1450 

1430 
1298 

1018 
1209 
1229 
1361 
1484 

1447 

1385 
1221 

1467 
1064 

1235 
1442 
1455 
1491 
7395 
1347 
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Appendix 6: Similarity matrices for cluster analysis on each of three arrangements of data from all sites in Great Lake and Arthurs Lake. 

Part 1: Similarity matrix using species presence/absence data only. 

DGL1 1.0000 

DGL2 0.4118 1.0000 

DGL3 0.4516 0.5000 1.0000 

SGL1 0.4118 0.2558 0.2750 1.0000 

SGL2 0.3056 0.2927 0.2500 1.6061 1.0000 

SGL3 0.2593 0.2121 0.2759 0.4286 0.4444 1.0000 

SAL1 0.2564 0.1702 0.1556 0.4474 0.3846 0.3226 1.0000 

DAL1 0.4000 0.3333 0.5000 0.3333 0.2703 0.2143 0.2564 1.0000 

DAL2 0.3784 0.4250 0.5882 0.2955 0.3023 0.1622 0.3488 0.5000 1.0000 

SAL2 0.2941 0.3514 0.3056 0.3889 0.4412 0.3333 0.3784 0.3750 0.3590 1.0000 

DAL3 0.4063 0.3784 0.4545 0.3421 0.2821 0.2333 0.2683 0.6667 0.5000 0.4242 1.0000 

DAL4 0.3784 0.4250 0.5000 0.3256 0.3659 0.2286 0.2889 0.5938 0.5000 0.5143 0.6364 1.0000 

DGL1 DGL2 DGL3 SGL1 SGL2 SGL3 SAL1 DAL1 DAL2 SAL2 DAL3 DAL4 



Part 2: 

DGL1 

Similarity matrix 

1.0000 

from data excluding rare species. 

DGL2 0.3333 1.0000 

DGL3 0.5455 0.4815 1.0000 

SGL1 0.2500 0.2424 0.2647 1.0000 

SGL2 0.1852 0.2258 0.2500 0.5769 1.0000 

SGL3 0.2500 0.1481 0.2222 0.4783 0.4762 1.0000 

sAL1 0.1613 0.1053 0.1579 0.3636 0.3125 0.2963 1.0000 

DAM 0.5263 0.2500 0.5417 0.2258 0.1667 0.2174 0.1818 1.0000 

DAL2 0.4348 0.3448 0.5185 0.2000 0.1471 0.1034 0.1944 0.6364 1.0000 

SAL2 0.1739 0.2222 0.2500 0.2414 0.3200 0.3000 0.2333 0.3636 0.2593 1.0000 

DAL3 0.3478 0.3214 0.3929 0.2500 0.2759 0.2000 0.2059 0.5455 0.5200 0.4545 1.0000 

DAL4 0.4167 0.3793 0.4000 0.2286 0.2903 0.1786 0.1982 0.4800 0.4138 0.2963 0.5600 1.0000 

DGL1 DGL2 DGLO SGL1 SGL2 SGL3 SAL1 DAL1 DAL2 SAL2 DAL3 DAL4 



Part 3: Similarity matrix using all species and abundance data. 

DGL1 

DGL2 

DGL3 

SGL1 

SGL2 

SGL3 

SAL/ 

DAL1 

DAL2 

SAL2 

DAL3 

DAL4 

1.0000 

0.4696 

0.6388 

0.3992 

0.3949 

0.3800 

0.3118 

0.5774 

0.5650 

0.4655 

0.5772 

0.4988 

1.0000 

0.5641 

0.3626 

0.3684 

0.3130 

0.2738 

0.4179 

0.4994 

0.3935 

0.5241 

0.4841 

1.0000 

0.4310 

0.4165 

0.4012 

0.3305 

0.5805 

0.6246 

0.5146 

0.6041 

0.5238 

1.0000 

0.5916 

0.4476 

0.3947 

0.3531 

0.3807 

0.4204 

0.4146 

0.3806 

1.0000 

0.4524 

0.3707 

0.3516 

0.3813 

0.4242 

0.4297 

0.4202 

1.0000 

0.3702 

0.3239 

0.3570 

0.4120 

0.3806 

0.3440 

1.0000 

0.2805 

0.3040 

0.3381 

0.3086 

0.3329 

1.0000 

0.7014 

0.5401 

0.6446 

0.5609 

1.0000 

0.4915 

0.6719 

0.5836 

1.0000 

0.5946 

0.5571 

1.0000 

0.6768 1.0000 

DGL1 	DGL2 	DGL3 	SGL1 	SGL2 	SGLO 	SAL1 	DAL1 	DAL2 	SAL2 	DAL3 	DAL4 



Appendix 7: Latent vectors and percentage variance for principal coordinates analysis on each of three arrangements 

of data from all sites in Great Lake and Arthurs Lake. 

Part 1: 

Latent 

Species presence/absence data only. 

vectors (coordinates) 

1  2  3  4 5 6 7 8 

DoLl 0.0844 -0.3727 -0.2458 -0.3019 0.3208 -0.3367 0.2268 -0.1411 

DGL1 0.2373 -0.4463 0.1173 0.3943 0.1571 -0.1025 -0.1981 0:0834 

DaL3 0.3870 -0.3286 -0.0178 0.0056 -0.2601 0.1748 0.2044 0.0475 

scLi -0.4622 -0.0284 -0.1080 -0.2311 0.2414 0.2231 -0.0500 0.2901 

sal.,2 -0.4858 -0.0296 0.1389 0.0384 0.2088 0.4041 -0.0120 -0.2335 

SGL3 -0.4965 -0.2258 0.3139 -0.1874 -0.5034 -0.1638 -0.0247 -0.0415 

sAL1 -0.4251 0.2878 -0.5142 0.2162 -0.1628 -0.2276 -0.1426 -0.0786 

DAL1 0.3555 0.2761 0.0266 -0.3162 -0.0541 0.0243 -0.1144 0.1581 

DAL2 0.3186 0.0159 -0.3312 0.2111 -0.1956 0.2825 0.1529 0.0239 

SAL2 -0.1384 0.2724 0.3124 0.3589 0.1430 -0.2142 0.3519 0.2183 

DAL3 0.3346 0.3045 0.1006 -0.2302 0.0241 -0.0735 -0.1944 0.0372 

DAL4 0.2906 0.2748 0.2073 0.0423 0.0806 0.0094 0.0005 -0.3639 

Percentage variance 

1 2 3 4 5 6 7 	8 

22.0988 	12.9776 10.5110 10.2542 9.3053 8.3279 6.8254  5.5156 



Part 2: 	Rare species data excluded. 

Latent vectors (coordinates) 

/ 	2 3 4 5 6 7 8 

DGL1 -0.2936 -0.3501 -0.2610 -0.1889 -0.0073 -0.3267 0.2462 0.2345 

DGL2 -0.1717 -0.3872 0.5264 0.3485 -0.2127 -0.0178 -0.1705 0.1111 

DGLO -0.3241 -0.3435 -0.0166 -0.0416 -0.2021 0.0941 0.1643 -0.3159 

SGL1 0.5232 -0.1994 -0.0301 -0.0454 0.1864 0.5074 0.0595 0.3720 

SGL2 0.5519 -0.0618 0.1973 -0.1041 0.2384 0.1753 0.2403 -0.2852 

SGL3 0.5431 -0.0975 -0.0854 -0 .3773 -0.1499 -0.2220 -0.4332 -0.1022 

SAL1 0.4183 0.1550 -0.4491 0.6059 -0.0818 -0.1471 0.0229 -0.0614 

DAL1 -0.4091 0.1460 -0.2756 -0.2146 -0.0093 0.0987 -0.0209 -0.0034 

DAL2 -0.4456 0.0585 -0.2111 0.0744 -0.0071 0.3850 -0.1909 -0.0435 

SAL2 0.1164 0.5575 0.2605 -0.1252 -0.4376 -0.0540 0.2303 0.0881 

DAL3 -0.2549 0.4006 0./420 -0.0145 0.2086 0.0474 -0.1384 0.0931 

DAL4 -0.2539 0.1219 0.2025 0.0807 0.4745 -0.03402 -0.0097 -0.0872 

Percentage variance 

1 2 3 4 5 6 	7 8 

23.5610 	12.9667 11.1842 10.0015 8.8420 7.8307 	6.2998 5.6593 



Part 3:  All species and abundance data. 

Latent vectors (coordinates) 

1 2 3 4 5 6 7 8 

DGL1 -0.1911 -0.0326 -0.1766 -0.2722 -0.2433 -0.2587 0 .337 1  0.0992 

DGL2 -0.1331 -0.1515 -0.5465 0.2093 0.3336 0.0122 -0.1368 -0.0649 

DGL3 -0.1999 -0.0667 -0.2425 -0.1573 -0.0757 -0.1892 -0.0446 -0.0498 

SGL1 0.4537 -0.2781 0.0290 0.1386 -0.2603 -0.0466 -0.2538 0.3610 

SGL2 0.4203 -0.3672 0.1026 0.1851 -0.1293 0.0910 0.2240 -0.3683 

SGL3 0.4293 -0.0289 0.0858 -0.5298 0.3543 0.1786 0.0097 0.0553 

SAL1 0.4707 0.6681 -0.1660 0.1390 -0.1100 0.0047 0.0206 -0.0520 

DAL1 -0.3607 0.0914 0.1792 -0.1098 -0.2249 0.1385 -0.1680 -0.1254 

DAL2 -0.3372 0.0406 0.0165 -0.0625 -0.1479 0.3073 -0.1658 -0.0651 

SAL2 -0.0478 0.0672 0.3896 0.0658 0.2246 -0.4402 -0.1795 -0.1314 

DAL3 -0.2918 -0.0108 0.1431 0.1030 0.0785 0.0777 0.0614 0.1120 

DALA -0.2123 0.0686 0.1857 0.2909 0.2002 0.1245 0.2957 0.2294 

Percentage variance 

1 2 3 4 5 6  7 8 

20.9073 	11.7439 11.1957 10.1 593 9.4242 7.8759 	7.1180  6.4878 



Appendix 8: Estimates of biomass for each species at each site in Great Lake and Arthurs Lake. Values have been corrected 

to g/m2 . An asterisk indicates a level below 0.01 g/m 2 . 

Part 1: Great Lake 

SWAN BAY LEVEL 1 
	

BRANDUM BAY LEVEL 1 	CRAMPS BAY LEVEL 1 

CRUSTACEA 

Isopoda 	- 

Mesacanthotelson setosus 
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1.1\ 

Onchotelson brevicaudatus 1.39 2.19 2.11 2.30 2.37 0.05 0.05 0.05 0.16 0.40 1.69 1.55 3.01 3.20 1.36 2.04 

Uramphisopus pearsoni 0.09 0.27 0.21 0.03 0.03 0.08 

Heterias sp. 

Syncarida 

Paranaspides lacustris 

Amphipoda 

Neoniphargus ? tasmanlcus 0.13 0.02 

Neoniphargus sp. 0.01 0.01 * 0.01 0.02 

INSECTA 

Dipt era 

Chironomus oppositus 0.02 

Cryptochironomus ? griseidorsum 0.01 0.02 0.01 0.01 0.01 0.01 0.06 0.01 

7•T.say_Lamaua SP. 0.44 * 0.04 0.02 

Polypedilum nr. tonnoiri 

? Harnishia sp. 

Riethia sp. 0.02 0.12 0.18 0.18 0.03 0.55 0.02 0.06 0.21 0.66 0.05 0.13 0.28 0.01 0.91 

Coelopynia pruinosa 0.68 0.09 0.14 0.46 0.29 0.36 0.04 0.03 0.31 0.08 0.06 0.02 0.06 0.05 

Paramerina sp. 0.01 0.01 * 0.01 0.01 * 0.01 0.02 

Procladius ? villosimanus 0.05 0.02 

Ablabesmvia notabilis 0.01 
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Orthocladiinae Sp. 	/. 

Orthocladiinae Sp. 2. 

Orthocladiinae Sp. 3. 

Orthocladiinae Sp. 4. 

Trichoptera 

Atriplectides dubius 0.12 0.15 0.12 0.01 0.26 0.02 0.31 0.04 0.14 0.08 0.01 

Ecnomus tillyardi 

Notalina parkeri 

ACARINA 

Australiobates longipalpus 

Oxus meridianus 

Piona uncatiformis 

Arrenurus sp. 

OLIGOCHAETA 

Haplotaxis ornamentus 11.46 27.42 52.49 46.57 19.89 16.60 8.48 9.84 4.26 6.73 0.84 7.27 19.96 3.35 9.07 5.79 12.10 20.76 

H. heterogyne 0.07 0.03 0.05 0.07 0.05 

Phreodrilus magnaseta 

P. plumaseta 0.01 

P. palustris 0.13 0.01 0.03 0.07 0.13 0.34 0.97 0.03 0.23 0.38 1.76 1.51 1.80 1.45 1.09 0.44 0.22 

P. breviatria * 0.01 0.02 0.04 0.02 0.01 0.01 0.01 0.01 

P. branchiatus 

P. proboscidea 

Antipodrilus plectilus 0.03 0.05 0.03 0.03 0.01 0.42 0.53 1.03 0.71 1.38 0.27 0.01 0.01 0.02 0.03 

A. multiseta 2.94 2.09 2.16 2.26 1.50 1.16 0.25 1.21 0.02 0.26 0.13 0.11 

Telmatodrilus papillatus 0.01 

T. bifidus 0.09 0.34 0.07 0.25 0.20 0.14 0.14 0.01 0.10 0.08 0.07 0.04 0.07 0.04 0.05 0.07 0.05 

Limnodrilus hoffmeisteri 0.06 0.25 0.06 0.06 0.03 0.06 
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Part 2: Arthurs Lake 

COWPADDOCK BAY 	 MORASS BAY 
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Colubotelson sp. 1.14 0.36 0.55 0.13 6.99 15.81 12.21 7,67 7.83 7.44 12.27 

Heterias sp. 0.08 0.05 0.03 0.02 0.01 * * * 

Syncarida 

' 	Paranaspides lacustris 

Amphipoda 

Neoniphargus ? tasmanicus 0.85 0.21 0.10 0.30 0.29 0.18 0.22 

Neoniphargus sp. 

Austrochi/tonia australls 0.20 1.49 1.50 0.19 0.76 0.03 0.15 

INSECTA 

Diptera 

Chironomus oppositus 0.35 1.32 2.87 0.22 6.02 0.01 1.58 * 

Cryptochironomus ? griseidorsum * * * 

? Tanytarsus sp. 0.05 0.09 * 0.01 0.37 * 

Polypedilum nr. tonnoiri 0.02 * * * * 0.01 0.01 

? nr. Harnischia 

Dicrotendipes sp. 0.03 0.17 0.40 0.08 0.05 0.03 * 

Cladopelma curtivalva 0.52 0.01 0.01 0.04 0.01 0.37 0.67 

? Parachironomus sp. 

Parachiromomus delinificus 

Riethia sp. 0.11 0.19 2.82 18.23 3.25 2.80 0.02 0.13 0.13 1.12 0.27 0.15 0.12 0.02 

Coelopynia ? pruinosa 0.03 1.26 0.64 0.47 0.19 0.17 0.22 0.22 

Paramerina sp. 0.01 * * .* 0.01 

Procladius ? villosimanus 1.30 4.70 3.85 7.44 4.69 5.12 0.96 * * 0.01 0.04 * 

Ablabesmyia notabilis 0.01 0.01 0.02 0.02 0.01 0.01 * 0.02 * 

Orthocladilnae Sp. 2. * 



- o 
cr) 
0
 

0
 	

0
 

N
 

..- 

6
 

Co 
0
 

6
 

1-- 
(1/41 

CO 
CA 

CV 
CV 

0
 

LL*1.1.'sz 
0
 

0
 

c•-■ 

0
 

0
 

0
 

L
L
'6

•5
z 

0
 

0
 

0
 

6
 

Ch 
0'1 

0
 

0
 

0
 

01/4 
0
 

LL
.

14
.
C

Z
 

0
 

0
 

0
 

0
 

e
l 

0
 

N
 	

) 
-7 
 

0
 

01 
0
 0

 
1.1.*5-ez 

6
 

d
 

0
 
0
 
0
 

H
 

C•N 
CV 

0
 

N
 
*
 
0
 

Lz.c.6
z 

6
 

0
 

0
 

0
 

0
 

LL
.L. f/Z 

Atalonhlebia  s  

Plecoptera  

tillyardi 

2 0 0 
0
 

0
 

0
 

p. 

Australiobates  lindeni 

O
0

 

O
6
  

6
 

co 

6
  

0
 

CO 
0
 	

0
 

d 	
0
 

O
* 	

0
 	

1/40 

0
 	

0
 

0
•  

0
 	

0
 

co 

COWPADDOCK BAY 

lectilus  

T.  bifidus  

P.  proboscides  

Telmatodri 

.4,  

0
 

0
 

* 0
 

0
 

0
 

2 0 

* * 43 U) U) 
41 

0
1
 

H
I 

0
 

H
 

0
 

C) 
..1 

5 -ri 

0
 

M
 

P
 g 0 14 

0
 

N
 

H
 

44  
g
 

4-' 
0
 

H
 

0
 

01 

0
 

0
 m 

0
 

P
 

0
 

E
 

0 0 
H

 
41 S., 
qi 

0 O
H

 0 
4,  
0
 

M
 

d
 
g
 

P
 

a
 

o
 
x
 
a
 
a
 

o N
 
0
 

0
 

0
 

P.  palustris  

sz-z-9 

N
 

CV 

• 	

0
0
 	

*
 

O
d
c
  

0
 

-
 

o
 

	

L
L
'o

c
o
i 	

0
  

6
 

	

1.1.*L'ez 	
.
0
 

O
0

 
0

 

irN 	
trN 

1/40 

	

LL*5 -
Z
z 	

0
 

0
 

CV 

	

LL•trt, 	
0
 

LZ
.L.I.0 

230 

0
 



9
G

*V
9

 
C OWPADDOCK 

G
L
•
a
t'9

 

• 4
4
*
o
v
o
t 

L
L
•
L
'e

z
 

L
L
'5

-
Le 

L
L
'fr1

7
 

L
L

'I.*L
C

 

8
L

*2
-

1. 

L
L
'w

g
z
 

L4
•6

0ce 

LL*
G

*
C
z 

1.4•5 -
22 

I.L'E
*
6
e
 

1.4*L*1 .7e 

0
 0
 

0
 

H
 

.0 

0
 

001 

0
0
 

M
 

.0 
0
 

P
.
 

.0 o
 

04 
04 

 

0. 
U) 

U) 
0
 

4,  
f 4 
0
 

e 0 0
 
0
 

g
 

O. 
o 

Y
 0 
M
 

C
H

 
H
 

-f, 
0
 
o
 

-,4 	
o
 

0
U
)
 

14 
0
 

. 
0. 
o
 

r0 
0
 

•.4 
44 
M
 

.P 

o
 

.ri 

0 

0
 

04 

 

GASTROPODA 

0
•  

oa 

0
 

6
 

0
 

0
 

0
 

0
 

0
•  

0
 

0
 

0
 

\ 
0

 
0

 

0
 

0
 

• 

cs. 

co 

0
 

4
 

0
 

0
  

6
 

0
 

4
 

0
 

6
 

0
 

2
3
1
 



EAST LAKE NORTH 	 EAST LAKE SOUTH 

N 
N 	 N 	 N 	 N 	 N 	, N 	 N 	 N 	 N 	 N 	 N 
N 	 N 	 N 	 N 	 N 	 N 	 CO 	 N 	 N . 	N 	 N N 	03 

N 	 N 	 0* 	 N 
.- 	 itN* 	C.- 	 Ch. 	N 	 tr‘• 	 . 	 N 

.-- 	 N* 	
N 

-1-*
* 	

...- 	 O*1 
-1" 	 ON 	 CV 	 ("N 	 11-‘ 	 N 	00 	 0 
N 	 N 	 N 	 N • 	N 

 
\3. 	

r•- 
-.7. 	VD 	 ,0 

CRUSTACEA 

Isopoda 

Colubotelson  sp. 	 4.66 12.78 	13.17 10.41 	9.21 	5.18 	6.43 	3.08 	2.67 	6.05 	3.99  2.93  6.46  5.36 

Heterias  sp. 

Syncarida 

Paranaspides lacustris 	 0.11 

Amphipoda 

Neoniphargus ? tasmanicus  

Neoniphargus  sp. 	 0.63 	0.24  o.54  0.62  0.43  0.09  0.16  0.60  1.00  1.50  1.10  0.76  1.07  0.97 

Austrochiltonia australls  

INSECTA 

Diptera 

Chironomus oppositus  

Cryptochironomus ? griseidorsum  

ZIEYIE.EEUE sP. 
Polvpedilum nr. tonnoiri  

? nr. Harnischia  

Dicrotendipes  sp. 

Cladopelma curtivalva  

? Parachironomus  sp. 

Parachironomus delinificus  

Riethia  sp. 	 0.07 	0.05 	0.02 	0.07 	* 	0.04  0.16 .  0.34  0.02 	0.04  0.04 

Coelopynia ? pruinosa 	0.50 	0.61  0.64  0.57  0.57  0.73  0.55  0.33  0.56  0.37  0.41  0.60  0.29  0.52 

Paramerina  sp. 	 0.01 

Procladius 7 vil/osimanus  

Ablabesmyia notabilis 	0.03 	0.08 	0.05 0.05 	0.02 0.01 	 0.01 

Orthocladiinae  Sp. 2. 	 0.01 
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Ephemeroptera 

Atalophelbia superba  

Plecoptera 

Leptoperla beroe  

Trichoptera 

Atriplectides dubius  

Ecnomus tillyardi  

Notalina parkeri  

Oecetis sp. 

ACARINA 

Australiobates lindeni 

Oxus meridianus  

Piona uncatiformis  

Unionlcola longiseta  

OLIGOCHAETA 

0.02 	0.12 0.05 	0.01 	0.01  0.01 	0.39  0.04  0.04  0.04 

Haplo taxis ornamentus 60.09 89.47 51.26 67.53 70.43 60.85 58.72 9.92 38.49 38.29 33.06 51.04 50.03 41.20 

H. heterogyne 0.04 0.02 0.05 0.08 0.02 0.02 0.25 

Phreodri/us magnaseta 

P. plumaseta 

P. palustris 0.07 0.65 2.99 3.63 1.68 2.23 0.64 0.37 0.25 1.01 1.30 1.10 1.76 0.44 

P. breviatria 

P. branchiatus 0.23 0.01 0.01 

P. proboscidea 

Antipodrilus plectilus 0.10 , 	0.05 0.06 0.20 0.04 0.07 0.02 * 0.03 0.01 

A. multiseta 0.23 1.68 0.50 0.20 0.49 0.20 

Telmatodrilus papillatus 0.02 0.23 

T. bifidus 0.16 0.12 0.26 0.53 0.26 0.30 0.16 0.08 0.28 0.19 0.38 0.17 0.17 0.30 

Limnodrilus hoffmeisteri 
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• Correction - Page 5 - 

Phreodrilus (Thsulodrilus) 
nudas sp. nov. - should read 
Phreodrilus (Insulodrilus) 
nuds !p. nov. 



SOME AQUATIC OLIGOCHAETA FROM TASMANIA 
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ABSTRACT 

Ten new species of aquatic oligochaetes are described from Tasmania. The species 
are all in the families Tubificidae (four species), or Phreodrilidae (six species). Nine other 
species already described are shown to be present in the State thus bringing to nineteen 
the total number of oligochaete species positively identified from Tasmania. 

INTRODUCTION 

The aquatic oligochaete fauna of Tasmania was unknown prior to the discovery of the 
three tubificids Telmatodrilus multiprostatus, T. pectinatus and Antipodrilus davidis and the 
cosmopolitan Lumbriculus variegatus by Brinkhurst (1971). More recently Timms (1978) 
has established the presence of five other species (Phreodrilus branchiatus, P. mauienensis, 
Tubifex tubifex, Limnodrilus hoffmeisteri and L. udekemianus). Material now available from 
the South Esk River, Great Lake, and some other lakes, collected by the junior author, Mr. 
R. H. Norris and Dr. B. V. Timms, has confirmed the presence of two of these and uncovered 
ten species new to science, giving a total of nineteen known Tasmanian forms. This new 
material has made possible the identification of some of the forms previously recorded 
from Tasmania but not described for lack of adequate material (Brinkhurst, 1971, p. 110), 
but several species remain to be described. 

The descriptions are brief but are adequate for the identification of the species con-
cerned. In some instances, there was enough material to permit serial sections to be made 
as noted in the text, sometimes there was not. More detailed studies should be made but 
are beyond the scope of this initial report. 

All specimens used in the study were collected by the junior author (unless otherwise 
stated in the text) from Great Lake, Tasmania, at various dates throughout 1975. Type 
material of the new species as well as specimens of some of the other species discussed 
has been deposited in the Quen Victoria Musum, Launceston (QVM). This abbreviation 
appears in the text with the type or deposit number for the material. 

Family TUBIFICIDAE 
Genus Limnodrilus Claparede, 1862 

Limnodrilus hoffmeisteri Claparede, 1862 

This cosmopolitan species was found in small numbers in Brandum Bay, Great Lake. 
It was first recorded, along with L. udekemianus, by Timms (1978) who also reported the 
cosmopolitan Tubifex tubifex. 

Records of the Queen Victoria Museum No. 64 



2 	 Some Aquatic Oligochaeta from Tasmania 

Genus Antipodrilus Brinkhurst, 1971 

Antipodrilus plectilus sp. nov. 

Figures 1-5 

Description : Small thin red worms up to 40 mm extended. Dorsal and ventral anterior 
bundles of setae with 7 to 8 or 9 setae, reducing in number to 3 per bundle and eventually 
to only 4 per segment posteriorly. Setae of ll with upper tooth shorter and thinner than 
the lower, setae of other pre-clitellar bundles with teeth equally long, upper slightly thinner 
if not equal in width; posteriorly upper teeth shorter and thinner. Spermathecal setae 
single, thin, hollovrtipped, lying in glandular sacs. Atria elongate, distended where vasa 
deferentia and prostate glands are attached; ejaculatory ducts moderately long, penes 
simple without cuticular sheaths. Spermatozeugmata elongate, one end thin. Other charac-
teristics as for the family. 

Material : Collected from Swan Bay, Cramps Bay and Brandum Bay in Great Lake. Seven 
specimens examined, four mature. 

Holotype, 1977/14/6 — QVM type 242. 

Paratypes, 1977/14/1-5, 7 — QVM types 258-263. 

Discussion : A. plectilus is found in clusters of up to about fifty specimens where abundant, 
most often in fine silts with more than 50% by weight below 4.0 ch units. 

The distinction between this and other species in the genus will be discussed below. 

Antipodrilus multiseta sp. nov. 

Figures 6-8 

Description : Large worms, up to 50 mm long. Red-pink in colour, covered by a sheath of 
small sand grains. Anterior end tapering to coiled tail. Dorsal and ventral anterior bundles 
of II with 12-15 setae, gradually diminishing in number to 3-4 posteriorly. Anterior setae 
bifid with blunt teeth of equal thickness, the upper slightly longer. Posterior setae with 
upper teeth shorter than the lower. Spermathecal setae single, thin, hollow-tipped, appar-
ently in glandular sacs. Atria small, vase deferentia moderately long, ejaculatory ducts 
long and thin, prostate glands small, penes simple, no cuticular sheaths. Spermathecae 
voluminous, spermatozeugmata elongate. Other characteristics as for the family. 

Material : Collected from Cramps Bay and Brandum Bay in Great Lake.--Five specimens 
examined. 

Holotype, 1977/14/8 — QVM type 243. 

Paratypes, 1977/14/9-10, 110— QVM types 264-265, 354. 

Discussion : The type species A. davidis (Benham) and the only other species A. timmsi 
Br., have hair-setae which are lacking in both new species. Otherwise the new species 
share many of the characteristics of the genus, but differ from each ether in the number 
and form of the setae and the length of the ejaculatory ducts. 

The genus is limited to Australia and New Zealand. 

Genus Telmatodrilus Eisen, 1879 

Telmatodrilus (Alexandrovia) papillatus sp. nov. 

Figures 9-14 

Description : Worms encrusted with foreign particles. Pharynx eversible. Body wall 
papillate, large papillae in rings halfway between successive seta bundles, rings of 
smaller papillae halfway between each seta series and the ring of larger papillae. 
Anterior setae bifid, 5-7 per bundle with each tooth broad, shovel-shaped, gradually 
becoming hair-like until post-clitellar segments with 5-9 hair setae in dorsal and ventral 
bundles. Penial setae 3-4 per bundle, with bifid tips. Male pore median, two short 
atria enter median chamber close together. At least 2 or 3 prostate glands on atria apically. 
Prominent tubercle on IX. 
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Material : Collected from Brandum Bay in Great Lake and also from Lake Sorel! (B. V. 
Timms). Seven specimens examined, one mature. 

Holotype, 1977/14/11-12 — OVM types 244-245. 

Paratypes, 1977/14/94-99 — QVM types 338-343. 

Discussicn : The genus Telmatodrilus originally consisted of the two poorly doscribed 
Californian species, T. vejdovskyi and T. mcgregori. Fresh specimens were obtained by 
the senior author in 1966 and were identified as T. veidovskyi, the second species having 
early been regarded as a synonym of this species (Brinkhurst, 1965). Two multi-prostate 
species were described from Lake Pedder, Tasmania, as T. pectinatus and T. multi-
prostatus by Brinkhurst (1971). The former has since been recorded from Lake Tali Karng, 
Victoria, Australia (Timms, 1974) and the latter has been identified by the senior author 
from material collected in the South Esk River, Lake Sorell and Lake Crescent in Tas-
mania. Telmatodrilus pectinatus was thought to be the only tubificid having the pectinate 
setae limited to posterior segments rather than the anterior dorsal segments, but Holmquist 
(1974) recognised an oversight in the earlier descriptions of the Californian species, which 
also proves to have pectinate (or rather brush-tipped) posterior setae. That author, how-
ever, recognised the rediscovered Californian material as T. mcgregori rather than T. 
vejdovskyi, and considered the Tasmanian species to be excluded from Telmatodrilus but 
did not assign them to a taxon other than the (monogeneric) subfamily Telmatodrilinae. 
She also preferred to see the other multiprostate species T. onegensis and T. ringulatus 
remain in the genus Alexandrovia, proposed by Hrabe (1962) for the former, which he found 
in Onega Lake (located between the Gulf of Finland and the White Sea in European Russia). 
Holmquist expanded the description of this genotype from Alaskan material. These two 
species are papillate, as is the new species found in Tasmania, and hence this new form 
is assigned to Alexandrovia, but that taxon is regarded as a subgenus pending clarification 
of the various points of difference between it and Telmatodrilus. Spermatozeugmata have 
been recorded in both Alexandrovia species, but the newly described specimen seems to 
lack spermathecae. There are no spermatozeugmata in T. vejdovskyi (as mcgregori acc. 
Holmquist). 

The latest member of the assemblage T. papillatus is instantly recognisable by its 
extraordinary setae, in which bifid setae with shovel-like teeth become transformed into 
hair-like setae in all bundles. This characteristic alone might be regarded by some as 
sufficient grounds for the erection of a new genus, but the senior author prefers the con-
servative position of retaining one generic name for all these multi-prostate species in 
order to signal this unique similarity, at least until they are all subject to more detailed 
examination. 

Telmatodrilus (Telmatodrilus) multiprostatus Brinkhurst 1971 

Two mature specimens from the South Esk River (R. H. Norris coll.). Also Lake Sorel! 
and Lake Crescent (B. V. Timms). 

1977/14/100-101. 

Telmatodrilus? (Telmatodrilus?) bifidus sp. nov. 

Figures 15-19 

Small pink worms, up to 25 mm long, generally uniform in thickness but narrowing 
posteriorly. Setae bifid, anteriorly up to 13 per bundle with upper tooth longer than but 
thinner than the broad lower. Posteriorly setae progressively fewer in number, upper tooth 
thinner and shorter than lower from VIII or X, setae strongly sigmoid posteriorly. Some 
of the setae appear to be ornamented (figure 15). Spermathecal setae single straight, thin, 
hollow-tipped, varying in length from shorter than to three times longer than the normal 
ventrals. Penial setae bifid, straight, twice as long and thick as ventral setae, 6-7 per 
bundle. Spermathecae small, bibbed with short duct-like extension; pores lateral. Sperma-
tozeugmata short. Atria small, spherical bodies on short, straight stems; vase deferentia 
short. No cuticular penis sheaths. Prostate glands bibbed, extending around the vase 
deferentia anteriorly but with a posterior lobe, precise attachment to atria not discerned. 
Male pores and penial setae open into large median depression. 
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Material : Collected from a depth of about 15 m in Swan Bay, Brandum Bay and Cramps 
Bay in Great Lake. Five mature specimens dissected, two sectioned, three immature 
sectioned. 

Holotype, 1977/14/13 — QVM type 246. 

Paratypes, 1977/14/14-24 — QVM types 266-276. 

Discussion : This species is assigned to Telmatodrilus with some degree of uncertainty, 
which will only be clarified by examining the precise association between the prostate 
glands and atria. The prostates are at least bibbed, but whether they connect to the atria 
by one broad connection or two or more connections, cannot be discerned from dissections 
or sections of the first series of specimens. 

The relatively large number of setae, presence of both modified spermathecal and 
moderately modified penial setae, presence of an eversible pseudopenis and absence of 
coelomocytes together with the short, rounded atrial form agree quite closely with another 
Tasmanian species, Telmatodrilus pectinatus, described from Lake Pedder (Brinkhurst, 
1971). The prostates were quite clearly seen in that species, and the setae were assigned 
to their appropriate locations. Holmquist (1974) found the specimens to be in a poor 
condition, and the same is true of those still in the senior author's possession. For some 
reason, the mounting medium beneath the sealed-on cover glass has disappeared, forming 
large bubbles. The gut of those specimens was full of large coarse sand grains, so much 
so that the preparations are unusually thick, and sections could not be prepared without 
obtaining live material and starving them which was not feasible. Holmquist pointed out 
that the number of prostates, their position on the atria, and the form of atria in the Tas-
manian species are quite different to those found in T. vejdovskyi/mcgregori, as is the lack 
of a true penis. She proposed to exclude them from both Telmatodrilus and Alexandrovia 
to retain them in the subfamily, but declined to erect a new genus until more adequate 
material is available. Her proposals are supported by the similarities between members 
of this assemblage including the primary character, numerous prostates, and some other 
minor points, such as a rather large number of setae. There are differences, just as there 
are within the monogeneric family Phreodrilidae (genus Phreodrilus) as described below, 
but it would seem more convenient, given our state of knowledge, to emphasise the simi-
larity rather than the differences until more is known. The only decision to make is the 
level at which the similarity is recognised. 

However, this latest form quite clearly has spermatozeugmata in the spermathecae, 
which are absent in T. veidovskyi, but present in T. (A.) onegensis and T. (A.) ringulatus. 
Holmquist (1974) seemed certain that the sperm are in bundles in T. multiprostatus and 
T. pectinatus after examining the poorly preserved slides of the senior author's dissections. 
The senior author is less certain as to the presence or absence of spermatozeugmata in 
them. 

Family PHREODRILIDAE 

Genus Phreodrilus Beddard, 1891 

Phreodrilus (Phreodriloides?) plumaseta sp. nov. 

Figures 23-27 

Description : Dimensions unknown. Ventral setae two per bundle, bifid with upper tooth 
shorter and thinner than lower, those of XII missing, those of XIII paired spermathecal 
setae, one long and one short, hollow-ended. Dorsal setae from III single brush-tipped 
broad setae with paired short needles. Atria elongate, tubular vasa deferentia joining 
basally, apparently no penes. 

Material : Collected from a depth of about 15 m from Cramps Bay and Brandum Bay in 
Great Lake. 

Holotype, 1977/14/36 — QVM type 249. 

Paratypes, 1977/14/37, 107-109 — QVM types 286-293, 351-353. 
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Discussion : Insufficient details are available to place this species in a subgenus, though 
the choice is clearly between the group Pheodriloides (without penes, without ampullae on 
spermathecal pores), and Insulodrilus (with ampullae, with penes), both of which have 
ventral genital openings. However the species is quite distinct from the members of both 
subgenera. Only P. magnaseta (below) has similar dorsal setae, but it has very distinctive 
ventral setae. P. nudus (below) has similar ventral setae but lacks the plumed hair setae, 
and is clearly an Insulodrilus. The limited amount of material avallablo has prevented 
further investigation of the genital pores, the presumption at present being that they are 
simple, lacking ampullae or penes. 

Phreodrilus (Insulodrilus) nudas sp. nov. 

Figures 20-22 

Description : Dorsal setae from III single, broad based and narrowing abruptly, nonserrate. 
Ventral setae paired, bifid, lower tooth broader than the upper, both teeth short and blunt. 
Spermathecal setae long, paired, with hollow tips. Genital pore in line ventro-laterally, 
spermathecal pores with Well-developed vestibulae, penis sacs with elongate penes. Sper-
mathecal setae enclosed in glandular sacs. Spermathecal ampullae at the end of elongate 
ducts. Atria long, cylindrical. 

Material : Collected from the South Esk River (R. H. Norris coll.), Lake Pedder, March 1966 
(W. D. Williams coll.). Five specimens examined. 

Holotype, 1977/14/90 — QVM type 252. 

Paratypes, 1977/14/91-93 — QVM types 335-337. 

Discussion : This species is very similar to the following species, but differs primarily in 
the absence of serrations on the hair setae. Of the other species in the subgenus, P. 
lacustris has rudimentary vestibulae, P. campbellianus has no spermathecal setae, P. 
litoralis has one, and all three have dissimilar ventral setae (one simple pointed, one bifid 
in each pair). 

Phreodrilus (Insulodrilus) magnaseta sp. nov. 

Figures 28-32 

Description : Dimensions unknown. Ventral setae two per bundle, simple pointed, becoming 
progressively larger from II to VIII, smaller from VII on, simple pointed or with reduced 
upper tooth. No ventral setae on XII. Spermathecal setae on XIII two per bundle, one very 
much longer and thinner than the other, both hollow-tipped. Dorsal setae from III, hair-like 
with brush tips, becoming hairy in succeeding segments, but becoming shorter and blunter 
behind the clitellum, one per bundle with two short lateral needles. Vasa deferentia enter 
long cylindrical atria basally, penes in cuticularised sacs, spermathecal pores with small 
vestibulae and setal sacs in line with penis sacs. Other characters as for the family. 

Material : Collected from a depth of about 15 m from Swan Bay and Cramps Bay in Great 
Lake. Seven specimens examined. 

Holotype, 1977/14/31-32 — QVM type 247-8. 

Paratypes, 1977/14/25-30, 33-35 — QVM types 277-285. 

Discussion : The ventral setae of this species are unique in the family, being reminiscent 
only of those described for Haplotaxis gastrochaetus (Yam.) from Japan (Yamaguchi, 1953), 
but in the latter the setae become larger up to the twentieth segment rather than the 
seventh. The dorsal setae resemble those of P. plumaseta (q.v.). 
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Phreodrilus (Insulodrilus) breviatria sp. nov. 

Figures 33-36 

Description : Dimensions unknown. Ventral setae clearly bifid with thin, short upper teeth. 
No spermathecal setae. Hair setae with needles dorsally, (3) 4-5 (6) per bundle, distinct 
and thick from Ill on, bent, tapering beyond the bend, 13-16 setae medially, Vasa deferentia 
join atria submedially, atria short thick cylinders, penes small in large penis sacs. Sperma-
theca, pores close to male pores, with small vestibulae. 

Material : Collected from a depth of about 15m from Cramps Bay and -Brandum Bay in 
Great Lake. Four mature, six immature specimens examined. 

Holotype, 1977/14/45 — QVM type 250. 

Paratypes, 1977/14/46-49 — QVM types 294-297. 

Discussion : The atria are short and thick in this species, and consequently the near-basal 
position of the vasa deferentia appears to be more medial than in other species in the 
sub-genus. The species has bifid ventral setae in each pair, no spermathecal setae, and 
small vestibulae on the spermathecal pores. It does not have plumed setae nor enlarged 
ventrals, and so is distinguishable from the other species in the sub-genus. 

Phreodrilus (Phreodrilus) branchiatus Beddard, 1891 

Figures 37-38 

Description : Dorsal setae from III, 1-3 long thin straight hair setae, two short needles on 
each side of each hair basally, often a third short hair seta. Ventral setae one thin simple 
pointed seta and one broad bifid seta with short, thin upper tooth in each bundle. Sixteen 
to fifty pairs of dorso-lateral gills posteriorly. 

Material : Collected from Brandum Bay in Great Lake and from the South Esk River (R. H. 
Norris coll.). 

Five specimens examined. 1977/14/102-106. 

Discussion : The original locality for this species is in Southern Chile. It was only briefly 
described, but the Tasmanian material fits the description apart from a larger number of 
gills (from 16 in the smallest to 50 in largest specimen as opposed to 13 in the type 
material). Timms (1978) recorded the species from Tasmania. 

Phreodrilus (Phreodrilus) palustris sp. nov. 

Figures 39-43 

Description : Length 10-40 mm, up to 2 mm thick. Light brown worms, in two size classes 
in the collection. Ventral setae 2 per bundle, both more or less blunt with a rudimentary 
upper tooth. Dorsal setae anteriorly thin hair-setae, progressively increasing in number 
and size posteriorly from 1 or 2 to 5-8 and eventually up to 19 setae a bundle, with short 
needles between the hairs, the setae bent, narrowing abruptly beyond the bend, dorsal 
setae diminish in size and number at posterior end. No modified genital setae. Vasa 
deferentia strongly coiled, long with thin portion proximally, thicker portion distally, joining 
atria at or near elaborate eversible pseudopenes. Atria moderately long, thick. Sperma-
thecae with sperm traps in ducts, reach to 7 segments behind pores, which are dorsal with 
muscular vestibulae. Swims quite rapidly with a spiral motion. 

Material : Collected from Swan Bay, Cramps Bay and Brandum Bay in Great Lake. Six 
mature specimens, three sectioned, seven immature examined. 

Holotype, 1977/14/54 — QVM type 251. 

Paratypes, 1977/14/51-53, 55-79 — QVM types 298-325. 
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Discussion : This species is, at first sight, rather similar to P. breviatria. In all specimens 
examined to date the anterior end of P. palustris has few, thin hair-setae and each segment 
has about the same diameter as the next. In P. breviatria the hair-setae are larger, more 
obvious right from III, there are more setae in III, and the anterior end is tapering because 
the segments increase in diameter quite abruptly. The male ducts are quite clearly different 
also, with true penes in P. breviatria, the two species therefore belonging to separate sub 
genera. The two ventral setae of each bundle are alike in P. palustris, whereas in the 
other species in the same subgenus they ar dissimilar. Also, there are more hair-setae per 
bundle in this species than in others in the subgenus, especially in the median segments. 

Phreodrilus proboscides sp. nov. 
Figures 44-46 

Description : Prostomium with a proboscis. Dorsal setae from III, 2-4 serrate hair-setae, 
long, thin and straight, numerous shorter needles, usually one each side of each hair-seta. 
Ventral setae of III and IV simple pointed, one thicker than the other, from V on one bifid 
with short thin upper tooth, one thinner simple pointed. 
Material : Collected from Cramps Bay in Great Lake and also from Lake Pedder, March 
1966 (W. D. Williams). Ten whole mounts. 
Holotype, 1977/14/80 — QVM type 253. 
Paratypes, 1977/14/81-89 — QVM types 326-334. 
Discussion : Some fragmentary specimens of a phreodrilid with a proboscis and serrate 
hair-setae were found in the Lake Pedder collection (Brinkhurst, 1971, p. 110) but no name 
had been given to the species. The above description is clearly provisional, but will suffice 
to distinguish this species from all others unless further research turns up two with this 
combination of characters. The species cannot be assigned to a subgenus pending descrip-
tion of the reproductive system. The definition of the family requires changing as a result 
of these descriptions. 

Similar specimens with a proboscis and the bamboo-like serrate hair setae were sent 
to the senior author from a trickle beside Guthries Creek, Mt. Kosciusko, New South Wales, 
collected 9.1.74 by H. B. N. Hynes. 

Family HAPLOTAXIDAE 

Several specimens, apparently assignable to at least two species in this family, were 
found in Great Lake but could not be described for lack of mature specimens. 

Family LUMBRICULIDAE 

One immature form resembling Lumbriculus variegatus was observed in the South Esk 
River. This species has been recorded in Tasmania, and is the only cosmopolitan form 
in the holarctic family. 

DISCUSSION 

According to earlier records (Brinkhurst, 1971) the only aquatic oligochaete species 
known from Tasmania were Lumbriculus variegatus, Antipodrilus davidis and two new 
species of Telmatodrilus from Lake Pedder (T. multiprostatus and T. pectinatus). A pre-
liminary inspection of a collection on loan from B. V. Timms established the presence of 
one of these (T. multiprostatus) in two Tasmanian lakes, together with the cosmopolitan 
Limnodrilus hoffmeisteri in a third. This collection was subsequently investigated in more 
detail by Dr. K. V. Naidu who found Tubifex tubifex, Limnodrilus udekemianus, both the 
new Telmatodrilus species and Phreodrilus branchiatus together with some unnamed species 
(Timms, 1978). 

The present collection contains ten new species plus P. branchiatus and Limnodrilus 
hoffmeisteri. The absence of other known Australian species and the presence of so many 
new species further emphasises the unique nature of the Tasmanian aquatic oligochaete 
fauna. Of the known Tasmanian species P. branchiatus is known only from Chile, L. hoff-
meisteri, L. udekemianus and L. variegatus are cosmopolitan, T. pectinatus is known from 
the Australian mainland and A. davidis from the Australian mainland and New Zealand, 
leaving eleven species which may be endemic to the island. 
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Likewise a difference •between Tasmanian and Australian mainland faunas has been 
noted in the stonefly group. Hynes (1976) found that only six out of a total of sixty-six 
stonefly species can be found on both sides of Bass Strait according to the most con-
servative count. However, the genera are often shared, both in the oligochaetes and stone-
flies. 

The generic limits in the oligochaeta may yet be revised, especially in the mono-
typic "Gondwanaland" family Phreodrilidae. 
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FIGURES 1-12 11 12 

Figures 1-5 Antipodrilus plectilus sp. nov. 
1. Setae of II. 
2. Setae of VII. 
3. Spermathecal seta in sac with glands. 
4. Two spermatozeugmata. 
5. Atria, prostates, vase deferentia and ejaculatory ducts. 

Figures 6-8 	Antipodrilus multiseta sp. nov. 
6. Spermathecal setae. 
7. Spermatheca and spermathecal seta. 
8. Male efferent duct — sperm funnel at top, penis on lower right. 

• Figures 9-12 • 	Telmatodrilus papillatus sp. nov. 
9. Ventral setae of IV. 

10. Setae of VIII. 
11. Setae of XI-XIII. 
12. Posterior seta. 
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FIGURES 13-19 

Figures 13-14 	Telmatodrilus papillatus sp. nov. (cont.) 

13. Body wall showing papillae. 
14. Male efferent ducts — two atria with prostates (attachment not 

certain) entering common median sac(s) to median pore (p) with 
penial setae. 

Figures 15-19 	.Telmatodrilus bifidus sp. nov. 
15. Setae, anterior and median. 
16. Spermathecal setae (note two sizes). 
17. Penial setae. 
18. Spermatheca with spermatozeugmata. 
19. Vas deferens, ovary, prostate (attachment uncertain), atrium and 

median sac(s). 	• 
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FIGURES 20-31 

Figures 20-22 

Figures 23-27 

31 
Phreodrilus nudus sp. nov. 
20. Ventral setae of Ill, VII. 
21. Dorsal seta. 
22. Reproductive system: spermathecal ampulla (sp) with long duct, 

vestibulae anterior to spermathecal seta; penis (p) and coiled atrium. 

Phreodrilus plumaseta sp nov. 
23. Anterior ventral setae. 
24. Anterior dorsal seta. 
25. Median dorsal seta. 
26. Spermathecal seta. 
27. Male duct. 

Figures 28-31 	Phreodrilus magnaseta sp. nov. 
28. Anterior end showing progressive enlargement of ventral setae. 
29. Ventral setae of II, V, VI (from left to right). 
30. Spermathecal setae in sac, detail of tip. 
31. Dorsal seta of II, VIII, XV (from left to right). 
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Figure 32 	Phreodrilus magnaseta sp. nov. (cont.) 
32. Male efferent duct. 

Figures 33-36 	Phreodrilus breviatria sp. nov. 
33. Ventral seta. 
34. Dorsal setae. 
35. Prostomium and conical anterior end. 
36. Male efferent ducts and spermathecae. 

Figures 37-38 	Phreodrilus branchiatus 
37. Ventral setae. 
38. Posterior end with gills. 

Figures 39-43 	Phreodrilus palustris sp. nov. 
39. Ventral setae. 
40. Anterior end — not tapering, conical (c.f. 35). 
41. Male efferent duct: male pore (p), sperm funnel (s), and atrium (a). 
42. Spermathecal pore (p), sperm trap, spermathecal duct leading to 

ampulla. 
43. Dorsal setae. 
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FIGURES 44-46 

Figures 44-46 	Phreodrilus proboscidea sp. nov. 
44. Ventral setae of II. 
45. Ventral setae of V. 
46. Anterior end with proboscis. 
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ABSTRACT 
Haplotaxis ornamentus sp. nov. is described from Tasmania. It is a hologynous 

species with ornamented setae resembling those of species known from the Cordillera 
CantAbrica, Spain, the Pyrenees-orientales, and Pyrenees centrales, France, and caves in 
Bulgaria-Roumania-Yugoslavia. 

INTRODUCTION 
The family Haplotaxidae is discontinuously distributed around the world, but the species 

have limited distributional ranges apart from the various forms of H. gordioides, which 
seem to be at least holartctic, possibly cosmopolitan although mature specimens have yet 
to be described from various localities. 

A new species has been found in Great Lake and Arthurs Lake, Tasmania, in large 
numbers, by the junior author. 
, 	Both of these lakes have had their levels raised for hydro-electric purposes but the 
new species has only been found in the original level of either lake. The depth of this 
part of Arthurs Lake is from about 8 to 12 m whilst in Great Lake it varies from about 
12 to 18 m. Abundance varied considerably between sites and throughout the season 
with a maximum mean number per Ekman grab sample (232 sq. cm  version) at any sample 
site of 7 in Great Lake and 20 in Arthurs Lake. Biomass estimates for this species varied 
with season and between sites up to a maximum of 90 g/sq.m at one site in Arthurs Lake. 

Sediment analysis at the sites occupied by the new species showed that there was 
usually in excess of 50% by weight (often more than 75%) of the sediments below 63 
in size. Organic content of these sediments ranged from about 5 to 20% as determined 
by weight loss on ignition. 

Family HAPLOTAXIDAE 
Genus Haplotaxis Hoffmeister, 1843 

Haplotaxis ornamentus sp. nov. 

Figures 1 -5 

Description : Large irridescent worms c. 120 mm long, 2-3 mm broad (preserved) purple-
red in life. Prostomium prolobous, bluntly conical. Double annulation from V to about 
XIV, the anterior, non-setate ring just less than half the width of the larger setate ring, 
setae about two-thirds back from the front edge of the larger ring, a slight annular groove 
at the setal line of XIV. Setae closely paired, setal formula (at V) 8 : 1: 5 : 1: 8. Setae of 
a pair of different lengths, ventral anterior setae longer than the dorsals, reaching a 
maximum length in IX-X. Setae ornamented, with broad semi-lunar depressions scattered 
irregularly along the exposed parts, most abundant just below the curved, blunt tips. Geni-
tal pores (observable on detached cuticle) present, spermathecal pores in 6/7 and 7/8 
ventro-lateral, median in the line b-c. Anterior male pores beside setae b in XI, those in 
XII behind 11/12 lateral to line b. Female pores in 12/13 and 13/14 in setal line ab. 

Records of the Queen Victoria Museum No. 72 
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Vascular systems prominant anteriorly, with long commissural vessels. The commissural 
vessels visible externally in II arise from the division of the dorsal vessel by the brain, 
those of III arise from behind that segment such that the dorsal vessel has a long, un-
branched anterior portion. These commissurals unite to form a median ventral vessel in 
about V, beyond which the vessels are less prominant. 

Intestine without crop or gizzard, roof of pharynx somewhat thickened. Pharangeal 
glands present, ? in IV-VI!. Intestine narrows from X to XV or XVI, widening to largely fill 
posterior segments. 

Reproductive system with testes and large male funnels in X and XI, male ducts simple, 
more or less elongate but difficult to discern. Ovaries and female funnels in XII and XIII. 
Spermathecae somewhat cylindrical, ducts not much narrower than ampullae, which are 
filled with balls of sperm, paired in VII and VIII. Sperm sacs extensive, reaching from X 
to about XIII or more. Eggs sacs to XV. 

Cocoons somewhat egg-shaped with elongate processes, single eggs. 
Material : 	Collected from Great Lake, Arthurs Lake, Tasmania (W. Fulton coll.) at various 

dates. 
Type series : fourteen mature specimens, grid reference DP 951 562 (Tas-
manian Lands Dept. Tasmap series), Arthurs Lake, Tasmania, 25.9.77, cocoons 
Tea-tree Bay, Arthurs Lake, 28.7.77. 

Holotype : QVM type 372, 1980/14/1, specimen in fluid. 

Paratypes : (i) QVM : QVM types 373-386, 1980/14/2-15, 13 specimens in fluid, 1 
specimen, serial sections on 77 slides. 
(ii) Brinkhurst Collection : Serial sections of two other specimens totalling 
79 slides, and five slides from three other specimens. 

DISCUSSION 

Many of the species of the family Haplotaxidae are hologynous, as is the present 
species. Few of them have ornamented setae, however. The oldest known species with this 
characteristic is H. bureschi (Michaelsen) from the Balkan states. In the description of this 
species cited by Brinkhurst (1966) and Brinkhurst and Jamieson (1971) the two-ringed 
segments are said to have the shorter, non-setate ring behind the larger setate ring, but 
this is clearly an error as the reverse situation is now suggested in recent accounts by 
Delay (1972, 1973) who described two species from the Pyrenees of France and Spain 
which are close to H. bureschi (and a third, H. navarrensis, which has setae both orna-
mented, like the above, and keeled like H. leruthi from France). Of these' two species. 
H. corbarensis is smaller than H. bureschi, the setal ornamentation is more variable com-
pared with what must be a new drawing from the type of that species, and there are dif-
ferences in the setal formula (U = 13aa as in Delay (1972), not 3aa as quoted in Delay 
(1973) for H. corbarensis). The second species, H. cantabronensis, has simple ornamen-
tation which seems to be as helically arranged on the setae as that of H. bureschi. It has 
the same setal formula as the latter. The sexual setal glands are said to be on IX - XI in 
the new species but to occupy six segments in the older taxon, but various literature 
accounts described these glands as either single or paired in from one to six segments. 

The separation of all three forms is based on quite slim differences. 
The new species is immediately dinstinguishable by having only two pairs of sper-

mathecae (a character liable to some variation in other species), a very different setal 
formula, more segments in a similar length, and some differences in setal shape and orna-
mentation. Its zoogeographic separation suggests the need for this ranking in this dis-
continuously distributed family, but is not regarded as a taxonomic character of course. 

The Haplotaxidae, and also the southern hemisphere Phreodrilidae, are regarded as 
monog•neric families by the senior author, partly for convenience as there are so few 
species, partly as an expression of a lack of knowledge of the relative importance of, and 
intraspecific variation in, morphological characters commonly described. These are practical 
rather than systematic decisions. Righi of al. (1978) have recently described a new haplo-
taxid genus (Tiguassu) from the Brazilian Amazon. The prostomium has a proboscis, the 
anterior male funnels are non-functional and there is a single pair of ovaries and female 
funnels in XII, the female pore being in XIII. Spermathecae open laterally (as do the other 
genital pores) in 8/9 and 9/10. The absence of the anterior pair of testes is unique to 
this and the doubtful Pelodrilus falcifer Omodeo (from Africa), the proboscis is unique, 
but the absence of posterior ovaries is not. The ovaries of P. falcifer are in XIII while the 
testes are in XI, so the union of this with the genus Tiguassu seems unlikely. P. falcifer 
remains a sp. dub. Haplotaxis brinkhursti has testes in X - XI but ovaries only in XIII 
(Cook 1975). 

The position of the Haplotaxidae as a stem family for the Haplotaxina, as suggested 
by Brinkhurst and Jamieson (1971), is clearly at odds with the traditional phylogeny, as 
illustrated by Knox (1972) after Pickford's account in Encyclopaedia Britannica 1962. In 
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these traditional versions the small Aeolosomatidae are thought to be primitive annelids 
that gave rise to the Naididae and Tubificidae, all of these with multiple setae derived 
from some polychaete-like ancestral form. The radiation of families from the Tubificidae 
shown by Pickford may not be generally accepted, but the derivation of the more terrestial 
earthworms from the Haplotaxidae via some earlier aquatic forms is more soundly based, 
largely because earlier studies paid far more attention to the better-known larger worms. 

If we accept the concepts outlined by Clark (1964) in his penetrating analysis of the 
origins and functions of the coelom and septa, we may envisage a very different sequence 
of events. The Aeolosomatidae have been shown by Brinkhurst (in Brinkhurst and Jamieson, 
1971) to bear no anatomical similarities to Oligochaeta beyond their shared annelidan 
characteristics. Their reproductive system cannot be derived from the simple hologynous 
array of the Haplotaxida, and they must be regarded as a separate higher taxon containing 
from one to three families depending on the classification adopted. The Haplotaxidae fulfill 
the requirements for an ancestral form for the Oligochaeta, but most living species have 
already established the characteristic four setal pairs of their terrestrial descendants. Only 
H. gordioides, the one widely distributed species, has odd setae which may echo an an-
cestral form with few setae derived from some earlier non-segmented coelomate that may 
well have been ancestral to the few surviving taxa with such a structure. In H. smithii 
the male and female genital ducts are more or less the same, again a trace of a condition 
that would likely have been present in a primitive oligochaete. While most of the modern 
species may be thought to be most closely associated with the Lumbricina of Brinkhurst 
and Jamieson (1971) the senior author cannot agree with the most recent rearrangement of 
the classification by Jamieson (1978). In his most interesting study following Hennig's 
principals, Jamieson confirms an earlier change in position of the Moniligastrida from an 
Order to a Suborder of the Lumbricina, and this has been supported by the senior author 
elsewhere. The other change is to elevate the Tubificina from a Suborder to a full Order, 
shifting them outside the Haplotaxida. My objections to this are based on the fact that no 
representative of either the Order Lumbriculida or the Suborder Tubificina were involved 
in the computerised study, and Haplotaxina were represented by a single "characteristic" 
species, H. violaceus. The latter is closely allied to the terrestrial forms and other more 
advanced Lumbricina in that the male pores both lie on XII, anticipating the general rear-
ward tendency in male pore position, the only species in the Suborder where this is re-
ported. This, together with the non-representation of the aquatic groups, would inevitably 
skew the analysis towards the conclusion reached. The complaint, then is not with the con-
sistency or logic of the result obtained, but its relevance to any consideration of the 
position of the Tubificina viz a vis the Haplotaxina. It is unfortunate that the state of so 
many species descriptions and the labour involved in entering all of them into the pro-
gramme prchibits a complete analysis, but the clues available from a study of the frag-
mentary living remnants of a truly ancient family are such that they may readily be lost in 
computer systems no matter how carefully set up. 

One significant feature of the Tubificina which causes many biologists to balk at this 
concept of their position is their multiple setae. It seems to be dogma that these setae 
are held-over from some previous polychaetine ancestor, largely because Polychaetes are 
marine and are therefore thought to be ancestral to terrestrial and freshwater oligochaetes 
Again, I rely on Clark (1964) for the basis for rejecting this. 

It so happens that more and more marine oligochaetes are now being discovered, some 
with quite elaborate adaptions, but most with very simple bifid setae. These do not seem 
to be primitive tubificids, (although the variation in prostate glands is becoming interesting). 
Many are members of the distinct subfamily Phallodrilinae. No relict oligochaete with 
polychaetine setae has been found. The complex hair and pectinate setae of many Tubifi-
cidae and Naididae are restricted to dorsal bundles but are not especially like those of 
polychaetes, and seem to the senior author to be an analogous development, like the 
simple eyes of the Naididae, a development for a swimming existence, since, abandoned 
by the tubificids. The Enchytraeidae have an enlarged setal number (though not often 
very many per bundle) and seem to have had bifid setae in their aquatic phase of evol-
ution, now largely abandoned for a terrestrial existence (note Propappus the aquatic genus 
with bifid setae, said to be primitive). The Tubificidae may be showing a strong tendency 
to lose their elaborate setae, which seem hard to visualise as an adaptation to burrowing. 
Experiments with setal number are found in perichaetine earthworms, of course, and there 
seems no need to believe that multiplication of the setae has arisen only once in annelid 
evolution. In this sense the tubificine oligochaetes can be seen as an evolutionary line 
penetrating acquatic habitats after developing sexual reproduction and hermaphroditism at 
the earliest phase of oligochaete evolution. The functional basis of the former is generally 
held to be the needs for reproduction in a terrestrial environment, perhaps even an osmoti-
cally threatening freshwater environment that seems to be the ancestral home of most 
oligocnaetes. 
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The functional basis of hermaphroditism seems to this author to require a breakthrough 
in understanding as significant as that brought to bear on the functions of the coelom by 
Clark (1964), as much of the received truth seems inadequate to explain its significance for 
the often astronomically abundant tubificids and its general widespread occurrence in 
"lower" phyla. 
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FIGURE LEGENDS 
Figure 1. Disposition of male pores (M) and female pores (F) on ventral side of segments 

XI - XIII (diagramatic). 
Figure 2. Anterior blood vascular system A-- ventral view, B dorsal view. 
Figure 3. Scanning electron micrograph of seta to show ornamentation (x 4800). 
Figure 4. Setae (scale = 0.05 mm). 
Figure 5. Spermatheca with sperm balls (scale = 0.1 mm). 
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Figure 2A and 2B 
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Figure 3 
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Figure 4 

Figure 5 
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