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SUMMARY

Projective planes of finite free rank are planes freely
generated by openly finite configurations (see Hughes and Piper, 1972,
Chapter XI)o We use the concept of a hyperfree extension process to
obtain some properties of the finite collineation groups and polarities

of such planes.

We first oblain some basic properties of projective planes, free

completions, hyperfree extension processes and free rank planes, together

with some properties useful for our investigation.

The main work of the thesis is concerned with finite collineation
groups which fix elementwise the confined core of a plane of finite
free raﬁk. Most of the known properties of such groups are obiained,
ag well as some which, as far as is known to the author, have not
previously been obtained. If G is such a group, we determine lG [
when G is cyclic, we obtain upper bounds for both | G [ and the number of
conjugacy classes to which G can belong, and we invesiigate the subplane
of elements fixed by G. As our basic tool; we use the existence of a
hyperfree completion process Q for the plane from its confined core,

such that each configuration of - @ is invariant under G.

We then use similar methods to prove most known results aboﬁt
polarities of planes of finite free rank. Finally, we consider planes
not having free rank, such as open, non-free planes. We give a

generalization of a theorem of Kopejkina and use it to prove a theorem

about some collineation groups. of such planes,
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NOTES ON THE EXPOSITION

Tﬁe first three chapters are divided into sections, wﬁich are
numbered serially and prefixed with the chapter number. . For
example, the third section of chapter 2 is denoted by 2.3. Within
a section, the results are numbered serially and prefixed by the
section and the chapter number. For example, the fourth result
of section 1.7 is denoted by 1eTo4d. Chapter 4 contains only one

section and two results, which are denoted by 4.1 and 4.2.

We use multiplication on the right to dencte the action of a
permitation or automorphism  on an element x § i.e, the image of x
under ¢ is denoted by x¢ » For ths most part, we use multiplication
on the right to denote the action of other mappings too. However, for
convenience, we have in a few instances used o~{x) to denote the image

of x under a mapping ¢

Most of the notation we use is explained in the text. Elenments
of configurations or sets are denoted by lower case Latin letters, and
sets, groups and extension processes by upper case Latin letters.
Lower case Greek letters are used for mappings and configurations.

The following notation is used in the text without explanationd

{x & X 3 x satisfies P} the subset of elements of a set X

which satisfy condition P.

o ¢t XY, o 7r—>f) o~ maps set X into set ¥, or

configuration 7T into configuration(b .



‘ X ,’ le‘

VY, XnY

N
MeNn O I

11 n
i=1 i=1
S

T
G1 X'GZ

the cardinality of a set X or

configuration 7T

the union and intersection,

respectively, of sets X and Y,
the set of non-negative integers.

the preduct of numbers m and n.

the sum and product, respectively,

of numbers X5y 1£ 1< no

,the symmetric group of degree r.

the direct product of groups G1

and G2.

the empty set or configuration.

the integral part of a (real)

number n.



INTRODUCTICON

In this thesis, we define a projective plane to be a

free ravnk plane if it is the union of a hyperfree extension

process from its confined core, Its rank is defined as the
number of hyperfree elements plus twice the number of isolated
elements in such a process. COur aim is to investigate certain
finite collineation groups and polarities of free rank planes of
finite rank. As our main tool, we use the existence of a
hyperfree exfensioﬁzprocesé for the plane-canonically assoclated
with the collineétion group or polarity. Although both
degenerate planes and projective planes equal to their core are
free rank planes, we are not interested in such planes. For the

remainder of the introcduction, we use "free rank plane" o mean

"non—-degenerate free rank plane not equal to its core'.

We first give an outline of the literature of free rank planes
and their automorphisms. The first free rank planes to be defined
and studied were those having empty core. They are called free
planes and were defined by Hall (10) in 1943, Iuch of the literature
of free rank planes is written for free planes only. For an integex
r > 8, Hall defined a free plane of rank r to be the free completion of
a line, two points off the line, and r—6 points on the line. He
proved that the free completion of any finite configuration having
empty core is a free plane, provided it is non-degenerate. He also
showed that free planes have empty core, that finitely generated
subplanes of free planes are free, and that free planes are isomorphic

if and only if they have the same rank.
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Hall®s work was contimied by Kopejkina (17) and Dembowski (5).
Kopejkina extended Hall's definition by defining free planes of
infinite rank. He then showed that all subplanes are free.
Dembowski proved that a free plane of rank r has free subplanes of

all possible ranks up to, and including, re. /Vgo These theorems

are analagous to theorems about free groups. Kopejkina also gave

a construction for a plane having empity core but which is not free.

Collineztions and correlations of free planes were first
investigated by Dembowski (5). He proved that the orbits of the full
collineation group of a free plane are all infinite, and that there
are infinitely many distinct such orbits. The full collineation
group of the free plane of rank 8 has been determined by Sandler
(24, 25), but the full collineation groups of free planes of higher

rank are not known.

The non-trivial finite collineation groups of free planes have
been investigated by Iippi (18,19), Alltop (2), Iden (13,14,15,16)
and Sandler (27). The first three of the authors, independently,
proved that for any finite collineation group G of a free plane 7~
of finite rank, 7 has a finite subconfiguration invariant under G
end freely generating 7. This result has been the basic tool in
the study of such groups. In (19), Lippi considered the subplane
7v" of elements fixed by a collineation of prime power order pk of
a free plane 7U » He proved the following ¢ If p = 2, then o *
has infinite rank. If p > 2 and 7 has finite rank r,; then

either 77 ¢ has finite rank r' = r(modp), or 7' is degenerate and
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finite. Alltop (2) proved that m, is an upper bound for the orders

of finite collineation groups of a free plane of finite rank r, where
m8'=m9==4£‘,, m1o==5§,andmr=2[(1-6)g V r>1ic He also
showed that mr is the least upper tound when r<#.9, and conjected

that 12 is the lead upper bound when r = 9, This conjecture was
proved by Sandler (27). Alltop's result implies that free planes of
finite rank have maximal finite collineation groups. No characteriz-
ation of these has been obtained, but Iden (16) has shown that the
number of isomorphism classes of them increases rapidly with rank.

In another paper, Iden (15) obtained strong results about the

normalizers of certain finite collineations groups of free planes.

Polarities of free planes have been studied by Abbiw-Jackson (1)
and Glock (8,9)s Let T be a fres plane of finite rank r. Abbiw-
Jackson proved the following ¢ If « is a pelarity of 77 with j
absolute points, the j = r(mod2) and 0£ j<& r - 6. When r > 8,

T has a polarity with j absolute points for each such jo When

r = 8, all polarities of 7t have iwo points and are of the same type
(i.e. conjugate by a collineation of 7). In (8), Glock extended these
results by classifying all types of polarity of 7 with J absolute
points, for all possible r and jo To do thisy, he developed a theory
of symmetric incidence structures. With each such structure is
associzated a unique polarity of a free plane and, for each polarity

of a free plans, there is at least one symmetric incidence structure
associated with it. For r > 9, he concluded that thexe is only one
type of polarity when either j =0, or r =9 and j = 1, and infinitely

many types otherwise. In (9), he obtained similar results for
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polarities of free planes of infinite rank.

Most of the above results about free planes were obtained
using Hall's original definition. 4n alternative has been given
by Siebenmann (29), who proved that a plane is free exactly when
it is the union of a hyperfree completion process from the empty
configuration. He also gave a simple proof, using this characteriz—
gtion, that subplanes of free planes are free. Although Siebenmann
was the first author to define a hyperfree extension processy; a type
of hypeifree éxténsibn proéess'had been coﬁsidered earlier by
Ditor (6). Further results about such processes have been obtained
by Ellers and Row (7). They showed that any hyperfree extension
process for a configuration 7T can be replaced by another indexed by
the n;tural numbers. They then proved that if n is the union of a
hyperfree completion process from ‘9 g then 71 is the free completion
of a configuration obtained from f> in a2 natural way. Hence
W"hyperfree completions" are not essentially distinet from "free

completions".

The first authors to investigate free rank planes having non-empty
cors were Hughes and Piper (12, chapter XI). Their "openly finitely
generated planes" are our "free rank planes of finite rank". They
showed that two such planes are isomorphic if and only if they have
isomorphic cores and the same rank, thereby generalizing Hall's
result for free planes. They also proved that the full collineation
group G of such a plane 7T is the semi-direct product of the full
collineation group of the core of 7 and the normal subgroup of G

consisting of all collineations of 7 which fix the core elementwise.



Many results for free planes have analogues for free rank planes
with non-empty core. For example, if n is a free raﬁk plane with
non—-empty cors, then an& subplane of 7" containing the core of rt is
a free rank plane. We note, however, that there exist free rank
planes having subplanes which are not free rank planes. As another
example, it was shown by OfGorman (22) that if a free rank plane 7~
has non-empty core K and finite rank ry and K 1is a polarity of 7T
with j absclute points cutside K , then j = r(mod2) and 0 £ j< x.
Phis is eimilar to Abbiw-Jackson’s result (i) for polarities of

free planes (stated above).

Just as any free plane has non-trivial finite collineation
groups; so does any free rank plane 7 with rank r > 2 and non-empty
core K. For r finite, the finite collineati.on groups of 4+ which
fix K elementwise have been studied by Hughes and Piper (12,
chapter XI) and O°Gorman (21). FHughes and Piper proved that; for
any line 4/ of K, such a group acts faithfully on a set X of r points,
each ineident with {7, such that K U X freely generates 77T . This
result has the corollary that all maximal finite collineation groups
of m fixing K eleﬁentwise have order r! and are conjugate (within
the full collineation group of T )e These maximal finite collineation
groups were investigated further by O°Gorman (21)o She determined the
stabilizers of all elements of the plane with respect to such a groups
and used this to obtain results about.their orbit lengths and
subplanes generated by their orbitse. Because the proofs of all
results mentioned in this paragraph rely on the existence of elements

in the core fixed by G, similar results do not hold for finite
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collineation groups of free planes.

The main work in this thesis is concerned wiéh the finite
collineation groups which fix elementwise the core of a free rank
plane of finite rank. Many of the known properties of such groups
%re obtained; together with some which, so far as is known to the
;;thor, are new., We also generalize results of Abbiw-Jackson (1)
and Glock (8) to results about polarities of all free rank planes of
finite rank. Perhaps our most important achievement lies not in our
new results, but in that most of our results and arguments hold for
all free rank planes, rather than just for free planes or just those
having non—empty core. We are therefore able to present a unified
account of much of the literature on finite collineation groups and
polarities of free rank planes.

We no% exarine the contents of the thesis in more detail.
Sections 1.1, 1.2 and 1.3 are preliminary and consist mainly of
definitions. In 1.4, we define a free completion of a configuration,
and show that it always exists and is unique up to isomorphism. We
also prove the well known result that any automorphism group G of a
configuration extends uniquely to an automorphism group G! of its

free completion such that G = GY. This is useful in giving examples of

automorphisms and automorphism groups of free rank planes.

In 1.5, we define hyperfree extension processes (henceforth
abbreviated to "HF processes") and obtain some of their elementary
properties. We prove a result due to Ellers and Row (7, theorem 2)

vhich implies that we may, without loss of generality, work only with



those HF processes indexed by @he non-negative integers. We give
methods of obtaining one HF process from another (or others). One

of these (19508) involves obtaining a HF process from the intersection
of a given set of such processes. Finally, we define the rank of a
HF process as the number of BF elements plus twice the number of
isolated elements in the process, and we show that it depends only on
the union and intersection of the configurations of the process.

This implies that the rank of a free rank plane (defined above) is

well defined.

In 1.6, we define a free rank plane and its rank and show that
our definitions are equivalent to the ususl ones (see, for example,
(12, chapter XI)), The main theorem of the section states that two
free raﬁk planes are isomorphic ify; and only if, they have isomorphic
cores and the same rank. Because this result includes free rank
planes of infinite rank, it is more general than the corresponding
result in (12, chapter XI), We conclude the section by proving an

existence theorem for free rank planes.

Section 1.7 is devoted to proving properties of free rank
planes needed in later chapters. We first show that if a subplane
of a free rank plane 77 either contains, or has empty intersection
with, the core of /T, then it is a free rank plans. We than prové a
result due to Dembowski (5, theorem 1.1) that if a subplane of a free
plane is generated by a four-point or four-line 77 s then it is freely
generated by‘? o After this, we consider the Baer subplanes of free
rank planes. Two of the results we prove are well known. The third,

which is new, states that if a8 is a point incident with two lines
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x and y of a free rank plane 77, then 77 has a Baer subplane
containing a and x, but not y. The proof uses s variation of a
method due to Row (23). TFinally, we define almost-confined
configurations and use them to prove that the full colline;tion group
of a free rank plane 7 has infinitely many orbits ouiside the core

J

of ™, This is a generalization of a result of Dembowski (5),

In chapter 2, we investigate the collineation groups G which
have finite orbits and fix elementwise the core K of a free rank
plane 17U ef finite rank . In 2,1 we prove, using the intersection
theorem 1.5.8 mentioned above, that to each such G there is a HF
process @ for U from K such that each configuration of Q is
invariant under G, This result is basic and is used throughout the
chapter. We show that G acts faithfully as a permutation group of the
isclated and hyperfree elements in Q; i.e. as & permutation group of

gt most r elements. Hence such a @ is finite and bas order at most »i.

The representation of G/as a permuiation group is used both in
20,2 and 2.3, In 2.2 we use it, together with a lemms characterizing
orders of permutations of a finite set, to characterize |G| when G is
cyclic. fhe proof contains an examination ¢f certain specizgl cases.
Most of 2.3 is devoted to obtaining least upper bounds for |G|, These
have been obtained by other authors (Alltop (2), Sandler (27), and
Bughes and Piper (12, chapter XI)), but our proof for them is new.
Again, an examination of special cases ié necessary, but the number in
our proof is much smaller than the number considered by Alltop and

Sandler in their proofs.
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In 2,4, we consider the subplane of elements fixed by such a G
(denoted vy i7(1,G))s We show that it is a free rank plane, determine
its possible ranks, and show that it has infinjte rank exactly when G
has infinitely many orbits of length 2. We algo generalize the results
of Lippi (19) mentioned above. Necessary and sufficient conditions are
obtained for a finitely generated subplane of 7+ to be rr(1,G) for some
such G, an_,d we give an example of a- Baer subplane which is not ® (1,G)
for any such G. Finally, we show that when /77(1,G) is degenerate,.
there is no relationship between the numbers of points and lines fixed
by Gy provided r is sufficiently large. This result is motivated by an
example of Lippil (19) of a collineation of a free plane with two fixed

lines and one fixed point.

In 2.5 we investigate the conjugacy, within the full coliineation
group of T, of finite collineation groups of 7T fixing K elewmentwise.
We first give an example which shows that conditions both necessary and
sufficient for conjugacy of such groups may be difficult to obtain.
Most of the section is devoted to obtaining a finite upper bound for
the number of conjugacy classes of such groups.: For this, it is
necessary tc consider separately the cases K empty and K non-empty.

A number of other results are proved, including the result of Hughes
and Piper (12, chapter XI) that when K ?9( 5 any two maximal finite

collineation groups of 7 fixing K elementwise are conjugate.

In chapter 3, we investigate the polarities of free rank planes
of finite rank. ~In 3.1, we prove first that to each polarity x of
such a plane T, there is a HF process for 77 canonically associated

with X . We then prove the results of Abbiw-Jackson (1) and
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O0'Gorman (22) about the number of absolute points a polarity of 7T

may have outside the core of "o In 3.2, we consider the possible
types of polarities of 7 (i.e. the conjugacy classes of such polarities,
within the full automorphism group of 7f)o We obtain the results of
Abbiw-Jackson ( 1) and Glock ( 8) for free planes of finite rank (stated
above), and analogous results for polarities of free rank planes having

non-empty core.

In chapter 4, we first prove that if m is an integer and 7r the
union of a strictly increasing sequence of free rank planes, each having
rank < m and the same core, then 7 is not a free rank plane. This is
a generalization of Kopejkina's construction (17) for a non-free plane
with empty core. We then prove that any free rank plane 77' of finite rank
can be.embedded in a non-free rank plane v such that any collineation

group of 7r' extends to a collineation group of 7T,

We now consider the originality of ouxr work.
Secticns 1.1 to 1.6 contain no results obtained by the author, but some
are unpublished and the treatment of much of the material is new.
Proposition 1.7.7 and its corollary 1.7.8 are new. Corollary 1.7.11
generalizes to free rank planes a result proved by Dembowski (5) for
free planes. In chapters 2 and 3, we use HF processes as a tool to
. investigate the finite collineation groups and polarities of free rank-
planes. No previous author has used HF processes for this.
Consequently, many of our proofs for known results are new. The method
of obtaining the (known) least upper bounds of 2.3 is new. In 2.4, new
proofs are given for some theorems of Lippi (19). The proofs of all

the results of chapter 3, with the exception of 3.2.1 and partial
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exception of 3.1.1, are new,

"Chapters 2,3 and 4 also contain some new results and generalizations
of results of other authors, Theoren 2.1.1 is new. Tﬁeorem 2.1.3
generélizes to all free rank planes a result dvue to Hughes and Piper
(12, chapter XI) for those having non~empty core. Corollary 2.1.4 and
theorem 2.2.3 are new. Theorems 2.4.71s 2.4.6 and 2.4.11 are
generalizations of results of Lippi(19), and 2.4.8, 2.4,.9 and 2.,4.10 are
new. The example given after 2.5.1 is new; as is all of 2.5 after the
proof of 2.5.6. Results 3.2.5, 3.2.6, and 3.2,10 are new, and 3.2.11
generalizes 10 all free rank planes of finite rank a result of Glock
(8 ) for free planes of finite rank. Theorem 4.1 is a generalization of

a result due to Kopejkina (17). The proof given here is due to the

author and not based on Kopejkina's proof. Thecren 4.2 is new,.

Except for some elementary resulis about projective planes and
groups, for which we refer the reader to (12) and (11) respeciively, the
thesis is self-contained. The references at the back contain only those

works referred to in the thesis.

I would like to thank the Commonwealth Government for their
financial support during the course of my project. Thanks are also
. gue to Chris Turner for the many houré of her spare time spent typing
this thesis. Finally, I would like te¢ thank my supervisor,

Dr. D.H. Row, whose help and encourageﬁent have been invaluable.o



...1....
CHAPTER 1

HYPERFREE EXTENSION PROCESSES AND FREE RANK PLANES.

In this chapter, we define hyperfree extension processes and free
rank planess We prove some of their elementary properties, together

with some which are used in later chapters.

Sections 1.1, 1.2 and 1.3 are preliminary and consist mainly of
definitions. In 1.4, we define a free completion and prove some
properties of the free completion p;ocess. We prove that any
automorphism group of a configuration extends uniquely to an automorphism
group of its free completion. In 1.5 we define a hyperfres extension
process, prove some of its propertiés, and show how new hyperfree
extension processes can be obtained from given ones. We also define the
rank of such a process, and show that it depends only on the union and
intersection of +the configurations of the process. In 1.6, we define
a free rank plane and show that two such planes.are isomorphic if and
only if they have the same rank and isomorphic cores. Finally, in 1.7s
we prove properties of free rank planes useful in later chapiers. Many
of these are generalizations of well known properiies of non-degenerate

free planes.

1.1 Configurations and Planes

A confizuration Pl is a set of points and lines together with a
symmetric incidence relation between the points and lines such that
(2) the sets of points and lines are disjoint;

(b) for any two points of P s there is at most one line of’p

incident wita both.
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It follows that for any two lines of Ps there is at most one point

incident with both. The points and lines of f’ are called the
elements of (7 and we write xé‘e for x is an element of P o ther

conventional set notation and terminology are also used for

configurations.

Let e be a configuration. If Xy J & (3‘ s we write x I y if x is

incident with y, and x f ¥ otherwise. If X, and x, are points of P

and there is a line y of f’ incident with both, then y is uuniquely

determined by x, and x, (by (b)), so we denote it by X eZgo We say y

1

joins X, and Xje Analagously, if X, and X, are lines of P and there

is & point y o ? incident with bofh X, and Xoy then we denote it by

X,0.X, and we say that X, and %, intersect in ye.

172

A subconfiguration \o' of a configuration (3 ig g subset of\o ’
together with the restriction of the incidence relation of (~> o We say
that (’ contains (o' and write f" EPo Clearly, P' is itself a
configuration. Any set of elements of (3 is the set of elements of a

unique subconfiguration of e. It e ] and (’2 are subconfigurations

of f’ s lot ﬂ - PZ be the subconfiguration of e with elements

{x €p,sx & Pz} o  The inter;ection m p' and union I\, =

pec ple C
of a family C of subconfigurations of F are the subconfigurations of e

v.vi'bh elements u {x 3 X & e'} and I"\ {5: ; Te 9'3

prec p'c C
respectively. We also need to define the union of certain families C

of configurations for which there is no configuration containing all of
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them. If no two configurations of C have elements in common and there

are no incidences hetween elements of distinct configurations of C, then

define O = \_J (" to have elements U/ {x s XeE P '} y and

prec ftec
define two elements x and y of e to be incident if there is a P'C/’ c
for which x;, y € @' and x is incident with y in ©@'s If C is linearly
ordered by the subconfiguration reia‘tion, then we define the union of C
in the same way. If the union of C is defined then so is the
intersection of C, because C is a family of subconfigurations of its

union.

A set of points (resp. lines) of a configuration ‘o is c¢ollinear
(concurrent) if every point (line) of the set is incident with the same
line (point). 4 subconfiguration of o consisting of four points
(resp. lines), nc three of which are collinear (concurrent); is a

four-point (four-line).

A plape is a configuration T satisfying

(1) Any two distinct points of 7 are both incident with exactly

one line of 7T »

(2) Any two distinct lines of 7 are both incident with exactly

one point of 7T .

A plane is non-—degenerate if it contains a four—-point. Othexrwise it

is degenerate.
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We assume that the reader is familiar with both the principle of

duality for planes and

Theorem 1.1.1 If 77 is a non-degenerate plane then there is a

cardinal n 2> 2 for which 7t has n~2 + n + 1 points and n2 + n + 1 lines;

and every element of 7T is incident with n + 1 elements of @ ,

The cardinal n is the order of the plane. If & non~degenerate

plane 7T ie infinite, then it has order f T ‘ °

For both the principle of duality and the proof of 1.1.1; we refer
the reader to (12, chapter 3). We note that the "projective planes" of

(i2) are our "non-degenerate planes',

Degenerate pisnes are completely classified by

Theorem 1.1.2 ¢ A plane 7T is degenerate if, and only if, one of

(2) 7r is empbys
(b) +the points of 7r are collinear and the linesconcurrent;
(¢) ™ has a point p and 2 line { for which p z Y s and all other

points and lines of 7 are incident with 4 and p respectively.

This classification is based upon that of (30).

1.2 Meppings of Configurations

An isomorphism (resp. duali‘t_,j,:) rx from a configuration (3 onto a

v
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configuration p' is a bijection of the points of e onto the points
(1ines) of o' and the lines of ¢ onto the lines (points)
of p' such that, for any x; y €p 5 We have x I yc_:;,, TN I yoe
Wle write P' =P Two configurations are isomorphic if there is an
isomorphism between them. Isomorphism is an equivalence relation on any
set of configurations. We cften consider isomorphic configurations to

be equale.

4 collineation (resp. correlation) of a configuration ¢ is an

isomorphism (duality) from e onto itself. Under cofnposition, the

collineations c;f (o form & group, the full collineation group of (D o

Any subgroup of this group is a collineation group of g o The
composition of a collineation and a correlation of F is a correlation
off’ s and the composition of two correlations is a collineation ofp °
Hence the set of all collineations and correlations of (-’ form a group

under composition, the full automorphism group of f o Elements of this

group are automorphisms of e and any subgroup ls an guvomorphism group

of () o The full collineation group is a normal sul‘ogr-oup of index two of
the full automorphism group of p o  Group notation and terminology are

used when referring to automorphisms of @ . For examples the identity
automorphism of e is denoted by 1, and L« ) denotes the automorphism

group generated by an automorphism <. If G is a collineation group of
¢ and xef s then the set {xa( $ L € G} is the G-orbit of x, or

the orbit of x under G, and is denoted by xG. When G =< > for some

K 3 the G-orbits are referred to as »{ —orbits.

Suppose that P is a configurastion and P' is a subconfiguration of
e If grp— 7 is an isomorphism (duality), then p'@ is a

subconfiguration of ’«2 , and {:5 induces an isomorphism (duality) of P'
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onto '@ , denoted by e [P,o If G is an automorphism group of

? s then we denote O(\JGPL{ by (o'Gg It e’G = (3', then P' is
€

inveriant under G. If (>'G = (>', then f'a{ = (?' for each A4 & Gy

BO D(, P' is an automorphism of (>'o Thus G induces an automorphism

group of F" denoted by G ‘(3"

Suppose that fi ig a subconfiguration of ’/'('i, i=1,2, and

that G s ()1f9€2_:1:s an i‘somo?phisme Iii ol 3 7T1 —>T(2 is an
isomorphism for which €1°< = f,and o 1(91 = (3 , then £ is an
extengion of B We also say that (fj» extends to x . If G and G!' are
automor‘phism groups of f> 1 and 7T 1 respectively for which (3 4 G! = (~31
and G°f = @, then @' is an extension of G, and G exiends to G'.

C1

1.3 Extension Processes

An extension process E is a set E = {EW 3 WE W} of configurations,

where W is well-ordered by some partial order < , and u v implies

E CE, We say thet W indexes E. We write B = (_J B and B = Mz,
u v weW we W

and say that E is an extension process for B from E. Ve denote the least

element of W by O, so E = Eo° If xé-’Eu, then the E-stage of x is the
least element of {w =8 XG’EWEQ We denote it by s’sE(x). If
X, y& By, x Iy and stE(x) < stE(y), then x 38 an E-bearer of y. We

write < y (8)o The relation «(E) is the besrer relstion of E.
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If {E(i) H = I} is a family of extension processes, each

indexed by the same W, then the extension process E' = { M Ew(i); we Wj
iel .

is ths intersection of the family. If E and F are extension processes

for which E = F, then E + P denotes the extension process with
configurations EJ F., It is indexed by a well-ordered set having ordinal

equal to the sum of the ordinals of the indexing sets of & and F.

Let E be an extension process indexed by W, If ¢ < -ﬁ, then the

extension processes with configurations {GHEW s W& W} and
): e (S Ew st WE W'} are denoted by P M E and e U E respectively.

They are also indexed by W.

1.4 Generation of Plsnes and Free Completions

& subplane of a plane 77 is a subconfiguration of 7t which is also
a plane. The intersection of any family of subplanes of 7 is also a

subplane of =+ Thus, if is any subconfiguration of 7ry we may
» 2P

define the subplane of % generated by P to be the intersection of all

subplanes of W~ containing e o It is denoted by E@j ¢ Ve note

that there is zlways at least one subplane of 7T containing (_:. g namely

7 itself.

One can construct I f?],‘? from P in the following way ¢
Let €O=Pn For n > 0, define Pn+1= (Dn\){xc—.'n 3 X is

oo
incident with at least two elements of ()n g o Clearly U en is a
n=0
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. o
subplane of 7r containing P s so [ Pjn— C | O) ()n' For any subplane
n=

' of 7T containing p s one shows by induction on n that Pni 7v? for

ol
each n. Hence n% Fn = [' (’—jn’ o The extension process

E= { (’i 5 i=0’1’°"z i called the generation orocess for [ijr

from . FPor x € [_(’]a— s the E-stage and E-bearers of x are called

the P-gtage and —-bearers of x respectively.

X3

Let 7¢ be a plane and p a subconfiguration of 77 . If n2 O, then

each element of O - F is incident with at least two elements of
U n+1 n

ks . . -~ .
()n+1 (by definition)o  We say that e freely generates L- 2 e it

each element of - ‘Dn is incident with exactly two elements of

(On'l- 1

Coiqs for cach n 20, Note that if @ freely generates [()jrr s

then each x & - Pn is incident with two elements of Pn and no

[o)
L nt1

elements of @ ., = P, for each n > 0. We therefore have

Lemma .4.1 ¢ If 47 is a plane and p a subconfiguration of7v 4 then
[-an, is freely generated by (@ if, and only if, both
(a) every element of LF:L': - (0 has at most twe p—bearers;

(b) no two elements of equal non-zero @ —stage are incident .

If m is a plane freely generated by e then 7z is a free

comnletion of P s and the generation process for 7r from @ is a

free completion process. These concepts were first defined by M. Hall

(10) in 1943,
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Our next result is well known,

Proposition 1.4.2 3 Suppose that 7+ and 4 ' ave free completions

of e and p' respectively. If o< (D_-a p' is an isomorphism
(duality), then o¢ extends uniquely to an isomorphism (duality) of 7T

" onto 47' for which (?io( = Pi" i= 0515060 o

Proof : ﬁ is obtained from e by adding elements x.y to P s where

x and y are distinct points or distinct lines of e and X.y é‘P .
Since « is an isomorphism (duality), we have x.y 4:';(: if, and only if,

(zx )y ) & P'o We extend o( to an isomorphism of o, onto e,

by defining (xe¥)oz & (xx )o(yoc ) for each such pair of points or lines.
This extension of o« is well defined, because x.y (resp. (X )e(yor)) is

incident in ©, (respo (>1') only with x and y {resp. X o and yoc Jo
Similarly, we extend « to an isomorphism of Co onto e 2', etce Thus «
extends to an isomorphism of 72" onto 4r'for which () iOK = Pi.’

i=0,1ycoo .

It remains to show that this extension is unique. Suppose of ]

and o, are two such extensions of o( and that Xy #o(z. Choose

2

" an x € 7T of minimal @ =stage for which xoL1a‘: T ge Then x g,f(o s

because o< =K o Therefore x = y.2 where y and z are

= o
1 ‘(2 2 / ol
the two @ -bearers of x. By the minimality of StP(X)’ we have

¥ X =Xy 2 contradiction.

= y°<2 and zo(1 = 2o o This implies X x

2 1

1

Thus the extension of ¢ is unique.
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Suppose that e is any configuration. We demonstrate that a

free completion of e exists. Define an extension process F = {Fn((?) 5
ne N} as follows Let Fo( e) =F o Assume Fn(ca) has been defined.
Obtain Fn+1( (9) from Fn((z) by adding new elements x.y for each pair of
points x,y not joined by a line of Fn( f) and each pair of lines x,y

not intersecting in a point of Fn( f’)o The new elements x.y are defined
to be incident with x and y and no other element of F 1( (9). Define

F(()) =T, Clearly F is a free completion process and F( (3) is a free

completion of (> o

By 1.4.2, there is, up to isomo;'phism, at most one free completion
of (0 and free completion process from C - Because these always
exist, we refer to the free completion of @, denoted by F((D )}y and of
the free completion process for F(e ) from (.> s the configurations of

which we denote by Fn( (:»), n=041yesey as defined above. Soms

elementary properties of the free completion process gre combined in

Proposition 14,3 : Let F be any configuration.
(8) Fo(p) =7 m () YV nxo
(») F(E(P)) =F(e) N n2o0,
y .2
@ |rle)| < lel -
(a) 1If @ is not a plane and F((o) is non-degenerate, then F( (D) -P
isg infinite.
Proof (a) It suffices to show F1(Fn( (a)) = Fn+1( pP)e  This

is an immediate consequence of the definition of F‘i(P) for each i.

(v) This follows from (a).
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(c). Let I(‘” = n. Elements of F,]((n) ~ p are of the
3 AL n
form x.y vhere x, ¥ &P and x _7{- Te Thus ‘ F1(,<>) -P ‘ < (2),

and lF1(€)I =IF1((>)—(J/+I(,>/5 (g).;.na_!l_ﬁ%l). £n2=h912°

(d) Because @ is not a plane, there is a pair of points or lines
x,y €@ for which x.y ¢F + Hence jF(P) -(:]g 1. r Flp) -P
is finite, there is an x & F( ()) of maximal { -stage m > O. This

implies F(e ) = Fm( F), and x is incident with only two elements of

F( P o  But F( P) is non-degenerate, and every element of a non-degenerate
plane is incident with at least three other elements of the plane (by 1¢1.1)e

Hence F(p )= P is infiniteo
s

Our next result, which is well known (see, for example, ( 13, lemma
3)), provides a tool for obitaining examples of automorphism groups of

planes which gre free completions.

Theorem 1.4.4 ¢ If '&{ is any automorphism of a configuration e then

o extends uniquely to an automorphism of F( @) for which Fn( (9) < = Fn((o)

v n2 0. If G is any automorphism group of (7 ;s then G extends to a
- unique automorphism group G' of F( P) which is isomorphic to G and

satisfies Fn( (3) G' = Fn( (>) Y n> Oo‘

Proof The first statement is an immediate consequence of 1.4.2.
Suppose now that G is any automorphism group of (o . For each < & Gy

there is a unique extension of o< to an automorphism o¢! of F((J) for
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Wbicth(e)og'=Fn(P)V n>0o. Let @? ={,>4' ;odé'G}o By

the uniqueness of ' for each w & G, we have p' 2r' = (ﬁb’)' and
( @-1)' = ( (3’)_1 for any ¢ s ¥ E€ G. Thus G* is a group and the map

of G onto G' defined by <-—=K"' is a group isomorphism,

1.5 Hyperfree Extension Processes

An extension process P is erfree if
(a) no two elements of P of equal non-zero P-stage are incident, and
(b) no element of P has more than two P-bearers.
We abbreviate "hyperfree'" to"HF" and "hyperfree extension process" to

"IF process". By 1.4.1; free completion processes are HF processes.

Let P be a HF process. An element of P is P—free if it has two
P-bearers and P=HF if it has only one. If it has none, and is not
incident with any element of the same P~stage, then it is P-isolated.

We also say that P has free, HF and isolated elements.

If P is a HF process and x c—-l-';, then a P—chain of x is a set

{xo,o..,,xn} of elements of P for which X, =X and, if n> O, X is a
_ P=bearer: of X419 0£€£ i< n-1, The number n is the length of the

P-chain. for each x & -i;, we define the P—@ocle of x %o be the subcon-
figuration of P having as its elements the union of all P~chains of x.

We denote it by P(x).

The prefix "P-" is somestimes dropped from the above definitions if
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it is clear to which HF process we are referring.
We combine some elementary properties of HF processes together in
the following proposition. Part (b) v}as first proved by Ellers and

Row ( 7 , theorem 1).

Proposition 1.5.1 Let P be a HPF process.

(a) If x,yc P and x Iy, then either x< y (P) or y< x(P) or
stplx) = stp(y) = 0. i
(vb) P(x) is finite ¥ x & P,

(¢) If x ¢ P, then P(y) € P(x) ¥ ye P(x)o

Let X be the set of P-isolated and P-HF elements. If P is a plane, then
(a) P, \J X generates P ;

(e) if o, and X, are collineations of P for which

X ,'bheno(1=0<.

= ot
1 2, 2
POUX POUX

Proof ¢ (a) We cannot have stP(x) = stP(y)'} 0, because no two

elements of equal non-zero P-stage are incident. Thus either

stp(x) = sty(y) = 0 or 1L 3(2) o y.< x(P).

() We proceed by transfinite induction on stP(x).
If stP(x) = 0, then P(x) ={x3 s Which is finite. Suppose now that
stP(x) > 0 and that P(y) is finite for all y having P-stage < stp(x).

For any P~chain C of x of length > O, C—f x3 is a P-chain of a

P-bearer of x. Thus P(x) =Zx3 U( U P(y)), where B is the set
ye¢ B
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of P-bearers of xo DBecause |B|[L 2 and P(y) is finite V y¢ B
(by the induction assumption), P(x) is finite. By induction, P(x) is

finite ¥ x & P.

(¢) If ye P(x), then there is a P-chain C = {xo,o..,xn}

with y = x 4 x = X andy if n> 0, X, a P-bearer of X, 0< i< no

xo +1’

If ¢! is any P-chain of y, then C U C? is a P-chain of x. This implies

¢' C P(x). Hence P(y) € P(x)»

(d) Suppose [POU }_{:} 3 # P. Choose anxg P - [ POU XJ-I-;
of minimal P-stage. Because x gé X and x qé—PO, x is P=free and has

two P-bearers y and z. By the minimality of ot,(x), both y,z e[?ou x:(_ .
3

This implies x = yo2 & [:Pou Xj P2 contradiction. Hence

[POU X]'i; =P,

(e) Let @ be the maximal subconfiguration of P for which

oL ‘ o = 0(2 ,\O ( (>is the union of all subconflglmatlons with this

property). As in the proof of (d)s one shows p= P. Hence o<, = o¢ 5o

Let P be a HF process and x € P. Because P(x) is finite (by
1¢5¢1 (b)), there is a P-chain of x having maximezl length n. Define

n to be the P-length of x. We denote it by /P(x). A HPF process P

is gstandard if it is indexed by the non-negative integers and

fP(x) = stP(x) for all x € P.
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Two HF processes P and Q are similar if P = 5,. and they have the
same bearer relation. If P and Q are similar, then P(x) = Q(x) and

[P(x) = (7Q(x) V e P. Similarity is an equivalence relation on any

set of HF processes.

Our next theorem is due to Ellers and Row ( 7 , theorem 2)

Theorem feHe2 ¢ For any HF process P, there exists a unique standard

HF process similar to P.

Proof s Define the extension process @ = { Qn 3 ne NS by

Q’n ={x c?P; [P(x) < n’} s n €N, Then P = Qo We first show that
Q is a HF process similar to P. We have y< =(P) ‘—'—>«/P(y)< ./P(x) =
sto(n) < s8(x) 3 7 < 2(Q), and y< 2(@) 2 )< fplx) ama

yIxDy< x(P)o Thus P and Q have the same bearer relation. Thus
each x 66 has at most two Q=bearers. To show that Q is HF, it remains
%o show that no two incident elements of a have equal non-zero Q-stage.
Suppose X,y & @ and x T yo By 1.5.1 (a), either xz < y(P) or y< =(P)

or stP(x) N stP(y) = 0, These imply, respectively, x < y(Q), y< x(Q);
and (P(X) = /P(Y) = 03 i.eo stQ(x) <stQ(y), stQ(x) >stQ(y) and
) stQ(x) = stQ(y) = 0, Thus X and y do not have equal non-zero Q-stage.

@ is therefore a HF process. It is similar to P, because they have

the same bearer relation.

Because P and Q are similar, /P(x) = /Q(x) V xE€Q. By

definition, stQ(x) = /P(x) V X ¢ Qo Hence sto(x) = /Q,(X) Y xe'@,
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so Q is standard. @Q is unique, because if R is any standard HF process

similar to Py we have stR(x) = (R(x) = /P(x) V x¢ R, and hence

Rn=€xC/R 3 s*bR(x)f_nS= {xe-ﬁ-; (P(x)é_ng = Q  for each n.

Corollary 1.503 ¢ Por any HF process P, there exists a HF process Q

similar to P for which P = @, P = 6, and § is indexed by the non—

negative integers.

Proof @ The extension process P? with configurations P -~ { PO} is

HFs Let P'" be the unique standard HF process similar to P: Then the

extension process Q with configurations {PO-} U P" can be indexed by

the non-negative integers, and has the required properties.

By 1503, we may, without loss of generality, adopt the following

Convention 3 Henceforth, unless stated otherwise, all HF processes are

indexed by the non—-negative integers,

For later use, we now state two trivially proved properties of

P-length (for a EF process P).

Lemms 1.5.4 3 If P is a HF process and x & P, then P(x) < stP(x)o

If B is the set of P-bearers of x, then /(P(x) = max {{P(y) +13y5 €& Bj .
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Our next result characterizes standard HF processes.

Proposition 1.5.5 ¢ A HF process P is standard if, and only if,

Pn = F1(Pn—1) U{P—HF elements of P-length n] 5 N = 1325000 o

Proof s Suppose first that P is standard. A P-isolated element

x has no P-bearers, so /P(x) =0 = s'l’P(;‘::)n Therefore Pn - Pn-1 has

only P-HF and P-free elements V n>1. The HF elements of Pn-Pn_ 1

are exactly those which have P-stage ny; and hence P-length n. The
free slements are of the form X.y, where x and y are points (1lines) of

P not both incident with a line (point) of P

=1 s and Xy is

1
incident in Pn only with x and y. Hence in 1 \J? P-HF elements of
length ng C Png F1(Pn-1) U{P-’HF elements of length n} s N = 1425000 o

It remains to show that z eF,l (Pn-‘l) and z ;-é Pn—‘l imply z & Pno

Such a 2 has P~bezrers x and y in Pn—-= 1° which implies
£ (2)
st (z)

max{,(P(x) + 1, ZP(y) + 13 £ n (using 1.504) Hence

]

jP(z) < n, and z € P o

Conversely, assume that P = F, (Pn—-1) u{ P-HF elements of length n}
V n2 i, We show stP(x) = /P(x) by induction on Stp(}:)o If
st (x) = 0, then / (x) =0 =5t (x)e Assume st (x) = / (x) V x for
P P P ) ? P

which stP(x) Zn-13 i Vx & P_ Let z ¢ P, — P

1° n-1°
is P-HF, then /P(z) =n = stP(z) (by assumption). Suppose z is

P-free with P-bearers x, y & Pn_‘1e By 1.5.4, [P(z) < stP(z) = ne
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Suppose /P(z) < No Theny by 1+504, n>max{1 + /P(x), 1 + ZP(y)} ¢

which implies both fp(y)< n-1and /P(z)< n=- 1. Thus bothx; y& P _,

(by the induction assumption). But this implies z = x.y & P, (Pn—z) <

P (by assumption), a contradiction. Hence /P(z) =n-= st?(z)a

By induction, stP(x) = /P(x) Y x & 7, Thus P is standard.

It follows from 1.5.5 that a free completion process is a standard

HF process (because it has no HP elements and Fn( (:>) =7, (r _1( ‘o)), by

1e4:3 (a))e

We now prove a series of results which give methods of obtaining

new HF processes f{rom given ones.

Lemma 1.5.6 @ If P and Q are HF processes for which P = Q, then

P + Q is a HF process.

Proof Suppose X,y € P + Q and stP+Q(x) = stP_l_Q(y)) Oo

Then either both x, y& P and stP(x) = S’GP(Y)> 0, or both

%, yEQ-P=¢q=0, and stQ(x) = stQ(y) >0, Thus x £ y. Hence

no two elements of equal non-zero (P+Q)-stage are incident. If
x € P + Qy then the (P + §)~bearers of x are the P= or Q~bearers of x
according as x enr; or X @a - Go Hence no elements of P + @ have more

than two (P+Q)-bearers. Thus P + Q is a HF process.
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The following observation was first made by Siebenmann (29,

proof of Theorem I).

Lemma 1.5.7 ¢ If P is a HF process and (s-g_.i;, then e MPis

a HF process for P °

Proof Let R = e N P, Clearly R = @ o We have

stR(x) = stP(x) Y xe C o Hence no two elements of © of equal
non-zero R-stage are-incident. We also have z< y(R) = x< y(P).
Thus no element of e has more than two R-bearers. Hence R is a HAF

Processe

The intersection of a family of HF processes is not necessarily a

HF process, as the following example shows : Define

PO = {a1,.oo,a4} s Where 3.1,300’614 are P-isclated
points,
P1 = Po\){\aioa_]_%(i mod 4), i= 1,0.09.4}, where

a’i°a1+(i mod 4)are lines incident in ]P1 only with

& and 84+(1 mod 4)’5' = Tyosesdo _

Pn=Fn_1(P1)9 n > 1. .

Define Qy = P, =Py, end Q =P VY n>0, Clearly P and Q are HF
processes. However (P N Q)o = /65 and (P n Q,)1 = P,o Thus

elements of (P N Q)-stage one are incident. Therefore P N Q is not

a HF process,



20~
Although the intersection of HF processes is not necessarily HFy

we do have

Propogition 1.5.8 Let {P(l); ie Ihs be a family of HF

processes for which P(i = P::jj and Po(i) = Po(j) for any i,je To

Let the extension processes R and Q be defined by

g = N 2@ yueq,

on = B2 Vnen,

Qgq = R,V fpoints o R .., Ve

2n+1

Then Q is a HF process and Q‘O = RO = Po(i) \q/ iel,

Proof ¢ let n& XN and x € Rn+1 - Rno There is a j € I for which

xe Pniflj ) - Pn('j)o Since x is not incident with any elements of the
(3) (3)

same P‘Y/~stzge and has at most two P

(3)
1

most two elements of P
n+

~bearers, x is incident with at

. Hence x is incident with at most two

- \)
elements of Rn+1’ for each x & Rn+ Rn and n& N, It follows that

1

elements of Q )} are incident with at most two

J\ -
onk 1 %on (?esm oo~ Rop

elements of Q,, (resp. @ ), for each n € N. Hence elements of @ have

2n+1
at most two Q-bearers. From the definition of Q, elements of equal

non-zero Q-stage are either all points or all lines. Thus no two of

them are incident. Hence @ is a Hf process. Because Po(l) = PO(J)

- N Po(i) - Po(3) Vi1,

for each i,j & I, we have Q‘O = R
iel

0



T

e now give a method of ol;taining a new HF process R from a given
HF process P by changing the sets of isclated and HF elements. Let P
be a HF process; k a positive integer, and V a set of P-HF and
P-isolated elements, each of P-stage > ko Suppose that

N V->P maps points and lines of V into the points and lines

k-1

respectively of P such that VA 'is not incident with the P-bearer

k=1
of v (if it exists), for each v& V. Define W ={vov)\ s vVE V3 and

define the extension process Rby

R = Py Ozngk-1,

P,4UW, nZ2ke
For Py k, V, A and W defined as above, we denote R by [(k,V, A ,W)(P).

Propogition 1e5.9 ¢ If R = ["(k, Vs A ,W)(P), then

(a) v ver A(P) and vov < v(R) Ny ve V;

(b) except for the relations of (a), P and R have the same
bearer relstiong

(¢) R is a HF process and Ry = Pys R = Pj

(d) the sets of R~isolated and R-HF elements are I-V and
(B=v) v (VY NI)U W respectively, where I and H are the
sets of P-isolated and P-HF elements respectivelys;

(e) if G is a collineation group of P for which P G=P

¥V ne€Nand®W =V, thenRG=R \J nc N

Proof : During the proof, we make observations (1), (ii), etco,

4o which we refer later in the proof.
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(a) Let ve V. Either v.o vevA(P), vovX < v(P), or

stP(v) = stP(v,v/\) = 0 (by 1.501(a))e The last two are not possible,
because v\ is not incident with the P-bearer of v, and stP(v) 2k >0,

Hence v £ vov\ (P), as required. It now follows that

() stP(vA) <k < stP(v)<.stP(vovA) Y ve V.
From (i), we have

(i1) vov is P=free with P-bearers v and vi for all ve& V.
Hence v°v>; = vi,v' ) implies v = v', so the mapping of V onto W given
by v-> vovA is a bijection. Furthermore, because elements of W are
P-free (by (ii)) and elements of V are either P-HF or P-isolated; we
have

(i13) vnu=¢.

For each v ¢ V, =& have v;{-:Pk_1 (as stP(v) > k), and v & W (by (iii)).
Thus v & PoqV ¥ =R and stR(v) >k Because v.v A\ & VI, s‘bR(vov)\) = ko

Thus stR(v.v)\) —k< stR(v)o Hence v.vA & v{(R) as required.

(v) From the definition of R, we have

(iv) z <y (R)ex< y(B) ¥ x &, y&.
We now show

(v) there are no incidences between elements of W.
Suppose, on the contrary,; that there exist v,v' e« V for which vev A I vievid .
Then one of vev A or v'.v'A is a P-bearer of the other, because

stP(vov A) >0 (vy (1)) Ve may assume vev) < viev' A (P). By (ii),

either vov )\ = v'y oF VoVA = VAo Neither is possible, because

vNnv = 515 and stp(v')\ )< k< stP(v.vA) (by (1)) Thus (v) is

proved.
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From (i), (ii) and (v), it follows that

(vi) v.vA is incident in R, only with vA , end stB(v)\)<:k w stR(vov)\)

Suppose that x ei and v& V. We have the equivalences
(vii) x< vovA(R)Dz = v\ &x # v and x < vov A (P) (by (ii));
(viii) vevA < x(P)Svev\ I x and x#£ v, x £ v\ (by (ii)
and 1.5.1(a)),
& vevh x(R) and x# v (by (vi)).
From (iv), (vii) and (viii), it follows that the bearer relation of

R and P is the same,. except for the relations of (a).

(¢) Clearly R = P and Ry = Py  Elements of R of equal non-zero

R-gtage either have equal non-zero P-gtage, or are both in¥W. 1In
neither case are they incident (by (v)). Thus it remains to show that
any x €R has at most two R-bearers. If x é VU W then the P~ and
R-bearers of x coincide (by (b)), so x has at most two P=bearers.
Suppose ncw that xe V. Then x has at most one P-bearer. From (a)
and (b), x.xX is the only R-bearer of x which is not a P~bearer.

Thus x has at most two R~bearers. Finally, suppose x & W. Then

x = vov\ for some v & V, sox has at most one R-bearer (by (vi)).
Hence every element of R has at most two R-bearers. R is therefore

a HF process.

(d) Let I' be the set of R-isolated elements. Bach v ¢ V has vov )\
as an R-bearer (by (a)), and elements v.v\ of W have v\ as an
R-bearer (by (vi)). Thus I*N (VU W) = ¢ o Elements not in

VU W are R-isolated exactly when they are P-isolated (by (b)).

Hence I* = I - VUW = I = V (as elements of W are P~free, by (ii)).



Y-
Let H' be the set of R—HF-elementso By (vi), each vevAE W

is R-HF with R-bearer v ) o Hence W C B'. By (a) and (b), the

R-bearers of each v & V are v.v}\ and the P=bearer of v (if it exists).

Thus v & V is B-HF exactly when v is P-isolated. Therefore VN H? =

vni. By (b), elements not in VU W are R-HF exactly when they are

P-HF (i.e. in H=V), Hence H' = (H-V)U (Y NI)U W.

(e) is an immediate consequence of the definition of R.
Example ¢ Let P be & HP process and (7 a line of PO. Let V be

the pot of P-HF lines having P-bearer not incident with Z . Define

X:V>P by v ={ for cachveV. Let¥ -.={v.,[/' s ve v}.

Then R = {7(1,V, A W)(P) is defined. From 1.5.3(d), the B-HF elements
are WV (VN I)U (B~ V). Because W has only points and VA I =¢ ,
all R-HF' lines sre contained in H-V; i.e, they are P-HF. By 10509(b),
the R- and P~bearers of these R~HF lines are the same. All P-HF
1lines ir E-V have P~bearer incident with-g o Thus we have obtained a

new HF process R for P from PO such that all R-HF lines have R-bearer

incident with // o

" Proposition 1.5.10 ¢ Suppose R = [T (k,V, A\ ,%)(P) and that there are
only finitely many P-HF elements of P-length > k. If V consists
entirely of such elements, then R has strictly fewer HF elements of

length > k than Po

Proof @ Iet I and H be the sets of P~isolated and P-HF elenments
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respectively. Because V has no P~isolated elements, VNI = sls °
Thus, by 1.5.9(d), the set of R-HF elements is (H-V)U W. It therefore

suffices to show

1) Axe L=V xen-v
(i1) IR(VOV)\) Lk L (P(v) ¥ve V.

We first show (ii)s By assumption, k<« /P(v) YV v ¢ Ve By
16504, we have [R(vov%)é stR(vov)\) Y ve V. But stR(vov/\) =k
¥ v ¢ V (by the definition of R)o  Hence /(R(VovA)_é_ st (vev\) =

k< £5(v) ¥ vev, and (1) is proved.

We now show (i). We show [R(x) < /P(x) \7( x e—“_ﬁ. Suppose,
on the contrary, that there is a y ¢ R for which

(i11) L) < L(n)e
Choose such a y of minimal R-stage. If y has no R-bearer, then it has
no P=bearer (by 1.5.9(a) and (b)) This implies /R(y) = (P(y) = 0,

contradicting (iii)s Thus y has an R-bearer. Let u be an R-bearer

of y of maximal R-length. Then [R(y) = /R(u) + 1 (by 1+5.4)0
By the minimality of stR(y) ,‘ ZR(u) < [P(u)o If u is also a P-~bearer
of y, then 4 (3) = Ap(u) + 15 45) + 1< £o(5) (o 1.5.4),

contradicting (iii); Thus u is an R~bearer of y but not a P-bearer.
By 105.9(2) and (b), y = v and u = vevA for some ve V. Hence

(}R(u)é_ ¥ (by (ii)). This implies /R(y) = /R(u) 1Lkt 1.

Because y ¢ V, /P(y) 2k +1 (as all elements of V have P~length > k).
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Hence [R(y) Lk+ 1< /P(y), again contradicting (iii). Hence

ER(X) < [P(x) ¥ xeR and (i) is proved.

Our next proposition containsy; in a general form, some technical
results of previous autihors gbout HF processes and free completions.

Some of these are proved as corollaries.

If p' is a subconfiguration of a configuration p , then P" is
closed in F ify, for any x; y < ’P' for which x.y ¢ P s we have

Xy gp'.

Proposition 1.5.11 3 Suppose that P is a HF process for a plane and
e is a subconfiguration of P satisfying
1) ) gpeVxep
(i) e M\ P, is cl'osed in Pgo
Then [P]-r; is freely generated by F and

(a) the o - and P~bearers of each X € [ (3]-1; - e
coincide 3

(v) P(x) & k]}s Vzxe [P];

(¢) if Q= [ﬁ]}; NP, then @ is a HF process and
Ax) = 2(x) Vxelpls s

(a) if R = ff’]-f; \/ P, then R is a HF process and the

»e

R- and P-bearers of each xéﬁ - Ro coincide 3
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(¢) it P £ Py then Q + R is defined, satisfies Q + R = P,

Q+R=F s and is similar to Po

Proof s Each element of fp]-r; ~p has at least two Q- bearers and
\

at most two P-bearers. Thus to show that > freely generates

[(9]?; s it suffices (by 104.1) to show (a) and that no two elements

of equal ‘O—stage are incident,

We first show (a). Suppose that x & [ioj‘l'; -fP -

We consider itwo cases.

(1) stP(x) >0 Suppose that {he P- and p ~bearers of x are not

the same. Ve may assums st F(x) is minimal with respect to this
property. Because x has at least twe p-—bearers and at most two
P~bearers, it has a e ~bearer y which is not a P=bearer., Because
neither y< x(P) nor stP(x) = 0, we have x < y(P) (ty 1.5.1(a)). 1If
yep s thenx ¢®(y) S £ (vy (1)), contradicting x & [ f’——(—ﬁ' -po
Hence y & [p ] $-fe By the minimality of sty (x), the P— and

@ -bearers of y coincide.  Because x<_y(P), this implies that x is a

@ —bearer of y, a contradiction. Hence the p= and P=bearers of each

- such x coincide.

”

(2) stP(x) =0 We have x¢& [f:l-l; Nne, - pMPye

Suppose x is of minimal Q -stage with respect to this property. Let

X have e-—bearers y and z. If both y; 2 € e (\Po, then x = y.z éeﬂPo

(since e hPo is closed in Po), a contradiction. Hence one of y,zq—éFnPoo
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Suppose ¥y & @ MNPy By the minimality of st P(x), we have
y& [(?]-1; NPy = p NPy, and hence vy Py Thus x< y(P). By

case (1), the P~ and (3 ~bearers of y coincide. This implies x is a
P—bearer of ¥y, a contradiction. Hence no such x can exist. This

completes both case (2) and the proof of (a)

§
We next show that elements of equal non-zero P—stage are not
incident. Suppose that x,y € LFJ_I; s St P(X) = st(,(y) > 0, and

x Xy Then x is not a p—bearer of ¥y, and vice-versa, and x,yé(bo

By (a), = is not a P=bearer of y, and vice-versa. Hence stP(x) =
sty(y) = 0 (by 1.5.1(a)). This implies both X,y € [(3]-1-; N By = @ Ny

But this set is empty (by case (2) of the previous paragra,ph).
Hence no two elements of equal non-zero P-stage are incident. This

completes the proof that [(s_]-l'; = F((J).

We prove (b) by induction on stP(x). If st E:,(x) =0, thenx &€p

‘and P(x) < (:‘ C [F]F (by (ii)). Assume now that ste(x) =n >0,

and that P(y) < L(JJ;; for’all y € [(’j-r; of p-stage< n. If x has
(J—bearers u and v, then P(u) & [Pj'i; and P(v) C [\@j-r; o By (a),

u and v are also the P~bearers of x. Thus P(x) =§x3 U Pu)yurp(v) L[‘*J‘lg.

By induction, (b) is proved.

(¢) is an imnmediate consequence of 1.5.7 and (b).

- < -
We now show (d)s For n >0, R -R _,SP -P .o

Hence no two elements of equal non-zero R-stage are incident. To show
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that R is a HPF process, it now suffices to prove that the R- and P~bearers

of each x € R — RO coincide. Suppose that thers exist x,5y & R - RO such

that x < y(P) and y< x(R)., There is an m for vhich x & P end yé P e
Thus x € R = PV [F]T’- y which implies y& R (since y « x(R)).
Because yqf— Pm, we have y& [FJE; o Thus P(y) < L(OJ-P; , by (b)e

s contradicting x & R = R.. Thus no such

Hence x € P(y) C [f’]i; CR .

o]
X,y exist, and (d) is proved.

Pinally, suppose PO < P e Then @ = [P]'i; and RO = [:(3:(-1; U PO =

[(’ ]'I-; « Hence .(-Q,' = Rys and @ + R is defined., We have @ + R = [:Pj-f;ﬂ PO =

Py, and Q + R =R=P. B (c), P(x) =qlx) ¥ x¢ [\p]-}-; , 5o the P- and

Q=bearers of each x & -CS coincide. By (d), the R~ and P-bearers of

each xéf{' - Ro coincide. Thus @ + R is similar to P, and (e) is
proved. .
Corollary 1.5.12 ¢ Let P be a HF process for a plane. If X is a

d

set of elements of P and e = PO U(\ ) P(x) s then (i) and (ii) of
.xeX

165011 are satisfied. Hence [(Jj-l’; = F(p)‘and (a) to (e) of 1.5.11 are
\

satisfied. I? X contains all the P-isolated and P-HF elements; then

§=F((o)o

Proo?f @ We have () N PO = PO’ which is closed in Po.

Ity GP » then either y & Py, which implies P(y) =%~y3 C fsoryeE P(x)
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for some x ¢ X, which implies P{y) & P(x) € P (by 1.5.1(e))e  Thus (i)

and (1i) of 1.5.11 are satisfied. Hence [(’j-l; = F(f’) and (a) to

(e) of 105-11 are saticfied. If X contains the P-isolated and P~HF

elements, then P .U X generates P (by 105.1(d))o Hence P generates

0

P, 50 P = [("]"I?= F((J)o

Corollary 1.5.13 (Siebenmann ( 29, lemma 2)) ¢ If P is any HF process

for a plane, then [Pn]_i; =F(P) ¥ nc N IfP_contains all the

P-isolated end P-HF elements, then P = F(Pn)o

Proof +  Let O=P_and apply 1.5.11 to obtais [ Pl_=me). If
~ TP

Pn contains all the P-isolated and P-HF elements; then Pn generates P.

(ty 1.501(d)), so0 F =[Pn]_§ = 7(2 ).

Corollary 1.5.14 (Hall ( 10,- theorem 4.3)) : If O is a subconfiguration
of a configuration ()' and e is closed in P‘, then (l" freely generates

[GJF( (J,)o If € is a proper subconfiguration of (o', then F((J) is

" a proper subplane of F((O')o

Proof s Let P ={Fn( F') s neE N.j . By 105011, !f(’]F( )
equals F((D) and the P- and © ~bearers of each x & F((.>) coincideo
Thus, if x ¢ F( p) = then x has P~bearers, so x & (_3'0 Hence
e'NnF(p) =@ and (,' -p ¢ (>') - F((J)o Thus F(()) is proper

when F is proper.
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Corollary 1.5.15 : Suppose that P is a standard HF process for a

plane and that P. has only P-isolated elements. Then [P(v)] P F(p(v))

o
for each v P. If R = [P(v)j 'Ij NP, then R is also a standard HF

process and /(R(x) = /P(x) V xR

Proof +  Let P=R(v)e By 1.5.11, [(z]-i; = ®()
By 1.5.11(c), R is a HF process for which R(x) = P{x) Vx e [é(“i; o

7 - —
Hence /(R(:c) = ﬂP(x) Vxc® . We aleo have stR(x) = stP(x) ¥Yxze?R
(by the definition of R), and stP(x) = [P(x) Vxc R (as P is standard).

Therefore stR(x) = /R(x) Vzc¢cR, and R is standard.

ILet P be any HF process (not necessarily indexed by the non-
negative integers). If there are i P-isolated elements not in P and.
h P-HF elements, define the rank of P to be 2i + h. Ve dencte it by

r(P). Our next two resulis are elementary.

Lemma 1.5.16 ¢ Let P and-Q be similar HF processes, not necessarily

indexed by the non—negative integers. If P =Q and P = E, ‘then

r(P) = r(Q).

fal

Lerma 1.5.17 ¢ If P and Q are HF processes for which P = § , then

r(P+Q) = z(P) + »(Q).
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Lemma 1.5.18 If P is a HF process for which P ~- PO
then
r(P) = Q(P—Pof-f(Po,P), eoee (1)

is finite,

where f(PO,-§) is the number of point-line pairs (p, /) for which p I¢

and at least one of p,/ € 7P - PO.

Proof ¢ The proof is by induction on {? - PO i o If (P - P

then f(Po,i?) = 0 and r{P) = 0, satisfying (i),

Suppose now that IT" - Po, = j >0, and that (1) is true

for HF

processes Q satisfying [a - Q’O ( < Jo Because P — P. is finite and

0
non—empty, there exists an x¢ P of maximal P-stage > 0.

is a HF process, where P' = (P -{X}) N P. We have Py
Fzﬁf—ix;o Thus \-P_"-Po‘l = j -1, s0

r(P?) = 2(j=1) - f(Po',iS"’) oees (ii).

Let x be incident with k elements of _P.o Ve have

‘ f(PO,'i"') = f(PO',-f) + k7 ceee (i)

By 1.5.Ty P!

= PO and

Because x has maximal P-gtage, it is incident in P only with its

P-bearers. Thus k = 0, 1 or 2, according as x is P-isolated, P-HF

or P=free. From the definition of P', and because x has maximal

P-stage, the P-isolated (resp. P-HF) elements in P- § x} are exactly

the P'-isolated (P'-HF) elementso Thus
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n

r(P) = »(P?) + 0 if x is P-free,
1 if x is P-HF,

2 if x is P-isolated,

r(P') + (2=k)

2(3=1) = £(P*,P") + 2 =~k (by (i1))

2§ + f(PO,'§) (vy (iii))

2 f':? -2y | * f(PO,?)o

Hence (i) has been proved, by induction.

It follows from the above lemma that the wank of a HF process P

for which P - P, is finite depends only on P, and P,  We use this

observation in the proof of

Proposition 1.5.19 ¢ If P and § are HP processes for which

P, = Q, and P = @ , then »(P) = »(q).

Proof We assume first that P is a plane, and prove the propesition
for that case. We may assume r(P) < r{Q). Iet X be the set of

P-isolated and P~HF elements not in PO, and Y be the set of Qrisolatéd

and Q-HPF elements not in Qoo

Suppose first that both r(P) and r(Q) are finite. Then X and Y

are finite. Define 7T =( ./ P(x))UPO and P' = 1N\ Py, Q% = 7 Qo
xe XUY .
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Then P' and Q' are HF processés (by 1.5.7) and PO = Po' = Q,O',
P'=Q' =7r o Because XU Y is finite

and all P-socles are finite (by 1.5.1(b)), 7 = P, is finite.

Therefore P — P,’ and Q- Q,' are finite, and r(P*) = »(Q")

(by 1.50.18)s We have P(x) S ¥V xemc , 50 P(x) =P (x) V¥ = €77 &
Thus elements of 7r are P-isolated or P-HF exactly when they are
P'-isolated or P'-HF respectively. Because X € %, this implies

r(P) = »(P')e For x, yerr 5 we have x& v(Q') » x <« y(Q). Thus
Q-isolated elements in ;- are Q'-isolated, and Q-HF elements in 7T are
either Q'~HF or Q'-isolated. Since Y < 7, this implies r(Q') > »(Q).
Hence r(Q') > r(Q) > »(P) = »(P'). * Because r(P') = »(Q'), we have

r(P) = »(Q).

Suppose now that r(Q) is infinite. Then Y is infinite, | Y |= »(Q),
and |X]< JY|o Define p = ) P(x) and o= "\ Q(y))u Qe
o xeX \yepr

Because all P— and Q-socles are finite, we have X is finite=> e is

finite<c=> U Qy) is finite, and if X is infinite,; then
yee

[x1=|el- {ykc% A |- B 1°5°129[€'J5 =F(p")s

and the f)‘“” and Q~bearers of each x ¢ F{ (3') - P' coincide. Thus

elements of P( (3‘) - p' are Q-free.  But Pou xc ()', s0 (3‘ generates

P (by 1.5.1(d))e Thus F( e') =P =Q, and all elements of Q - P! are

Q-free. Therefore Yc_,fa', Furthermore, Y f\Q,O = 7[) s 80 Y& LJ ).

ye e
Since Y is infinite, U a(y) is infinite. Thus X is infinite and
. yey
’X ’ = ! U Q(y)/ 4 fY {o Therefore {X {= [Y ‘, which implies
1yef :

r(?) = r(Q).
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We have now proved the proposition for the case P is a plane.

Suppose P is not a plane. Let F be the free completion process for

F(P) from P Then P + F is a plane, P+ F = @ + Fy; and P + F = Q + Fe

Hence r(P+F)

]

r(Q+F)s By 1.5017, this implies r(P) = r(Q).

The above theorem is proved under the assumption that P and § are
indexed by the non-necgative integers. However, by 1.5016 and 1.5.3,

the theorem is true without this assumption.

1,6 PFree Rank Planes

A configuration p' is confined if it is finite and each element
of (>' is incident with at least three other elements of 's  The
union of finitely many confined configurations is also confined. For
any configuration (> 9 fhe core of f> , denoted by < ( f’)9 is the-union
of all confined subconfigurations of @ o Our first result is a
generalization of Theorem'4a8 of ( 10).

g

Lemma 1.6.1 s If P is any HF process and P' any confined

subconfiguration of P, then p' S Pye Hemce K (®) < Pye For any

configuration £ , K(F(F)) = K('O)o

Proof 3 Suppose (>'$ POo As lo' is finite, there is an x ép'

of maximal P-stage >00 There are at least three elements of P '

incident with x, all of P-stage < stP(x). But x is not incident with

any element of equal P-stage und has at most two P-bearers. This
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contradiction implies ()' <P Thus the first assertion is proved.

The last two assertions follow immediately from the first,

Lemma 1.6.2 If A @~>(J' is an isomorphisn or duality of
configurations; then K ( e)o( = K( P‘) In particular, K ( P Yo, =

< (D) for any automorphism £ of P o

Proof The result follows from the observation that7 is a
confined subconfiguration of P if and only if 72X is a confined

subconfiguration of I 's

k]

By 1.6.1; if we wish to comstruct a confisuration using a HF process,
we canh at best construct it from its core. A configuration P

has free rank if there is a HF process for e from < ( P)° The

free rank (or just rank) of p is the rank of any HF process for e from
K ( P). By 1.5.19, the free rank of € is well defined. A plane which

has free rank is called a free rank vlane. Trivially, any plane equal

to its core has free rank. In the next proposition, we prove some
elementary and well known results about free rank planes. Part (a)
. was first proved by Schleiermacher and Strambach ( 28 ¢ theorem 1(11)).

They proved that (a) holds in any plane.

Proposition 1.6.3 3 If F is a configuration having free rank, then
F((D) is a frse rank plane having the same core and rank as e o If 7

is a free rank plane with core K and rank r, then
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(a) [;{Lﬁ P()

(b) if P is a HP process for— from K, then R

Mrk)u P

"is a HF process for 7 from F(i), and r(R) = r 3

(¢) if £ ko and 7 is non-degenerate, then 7 - K is

infinite.

Proof s By 10601, K(F(f)) = i( (.>). Let Q be a HF process

for (J from I(( ()) and F be the free completion process for F((>)

from O . Then @ + F is a HF process for F((.’) from K(F(P)); =0

7 (o) has free rank., Because there are no F-isolated or F-HF elements
outside ©, we have »(F) = 0. Hence F( e) has rank r(Q+F) =

r(Q) + r(F) = r(Q), which is the rank of © o

(a) Let P be a HF process for 7 from <o Then

LK:L; [P0]m= F(P,) (by 15013)s

(b) We have KNPy =< and P(x) = Zx'ig N Vx c Ko
Hence (i) and (ii) of 1.5.11 are satisfied (with e = K)e Let
S=Fp)nPamdR="K)UPs By 1.5.11, R and S are HPF processes
and the (-, P~ and S-bearers of each element of F(x ) — kK coincide.
Thus each elsment of F( k)= K has two S-bearers, which implies r(S) = Q.

By 1.5.11(e), P is similar to S+ R, and 2 = S + R, P = S + Ro Thus

r = o(P) = r(5+R) = r(5) + r(R) = r(R).

(¢) Let P be a HF process for 7 from K. If 7w -k is
finite, then there is an x € = of maximal P-stage >0, and x is
incident only with its P-bearers; i.e. with at most two elements of 7v .

This contradicts 1.1.1. Hence 77 — K 1is infinite.



Our next theorem shows that our definition of rank coincides

with the usual definition (see for example ( 12, page 220)).

Theorem 1.6.4 ¢ If p is a configuration for which @ - K((a)
is finite, then (O has free rank. Its rank is 2 [ p- K< ( P)l - f(K(P),(—\),
where £(k ( ()),(3) is the number of incident point-line pairs (p, {) for

which p I ¢ and at least one of p,iépn i p)o

Proof ¢+ If % =K(e), then € has free rank O and the theorem holds.
Assume Q- KK ( p);ﬁ 5;’» ° - We first show there exists on x& (@ = k( (D)
incident with £ 2 elements of P Suppose, on the contrary, that

each element of - K ( (3) is incident with 23 elements of 0 o  For

each y& O -k ( (-‘), define a configuration Qy as follows @

(y) Z (r) z (y) of @ incident with ye.

choose three elements z g e 2y 7y 2y

If i é{1,2,3‘5 and zi(y)é < ([3), choose a confined configuration Fi(y)

containing zi(y). I zi(y)é- (—’ - K (@), let @i(y) = {zi(yl7.

3 .
Define (= u .(Y). Then (~==K((>)) \J( \_J )j_sa
. €y i=1 3 it ye (>--i<(())Py

confined configuartion contzining ¢ - K((-’), a contradiction. Hence

there is an x € P - K( (‘) incident with £ 2 elements of G o

Suppose l (’-K(f?)‘ = n. lLet P= (, and choose an x & [> = K(f’)
. . PRrRY a - = (- - i o
incident with £ 2 elements of Q. Define G’n_ 1 (”n g xnj Then
<( Pn—1) = K( \On)° If n>1, then by the argument of the previous

. é - . . . tw
paragraph, there is anx (Jn-1 K ( (Jn-1) incident with only two
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elements of Fn—-‘l' Define én-—z = (Jn-‘l - g xn__;} ° Continuing
in this way, we define xn_z,oo.,xb and GLF2,°°“’ f%. We have

FO = K(P )‘o The extension process P = %ﬁel ;3 0£ 1< n} is

a HF process for 67 from K ( e)o Thus (3 has free rank. By 10518,

its rank is r(P) = 2 | - P, | - £(p,sP) = 2 [Q-K(p)/ - 2((p)s )

A question which naturally arises is ¢ do all planes have free
rank? This question was answered in the negative by Kopejkina (17 )s
who proved that the union of a strictly increasing chain of non-~
degencrate free rank planes, each haéing rank 8 and empty core, is not
o free rank plane. Such a chain exists., We give a generalisation

of Kopejkina's result in Chapter 4.

A free plane is a free rank plane with empty core. Pree planes
were first defined by Hall and they were the first free rank planes to
be studied. The definition of a free plane as the union of a HF
process from 9b is due to Siebenmann ( 29). We prove some elementary
and well known results about free planes in the following proposition.
Parts (2) and (e) were first proved by Kopejkinz ( 17) and Hall (10 )
respectively. Our proof for (a) ié due to Siebenmann (29 ).

r

Proposition 1.6.5 ¢ (a) Subplanes of free plares are free.

(b) Degenerate planes are free.

(¢) A degenerate plane is finite if and only if it has finite rank.
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(4) A subplane of rank r, of a finite degenerate plane of rank

r1 is proper if, and only if, ro< r1.
(e) A non-degenerate free plane has rank > 8.

Proof s (a) Let 77, be a subplane of a free plane 7 .

0]

If P is a HF process for @ from 315 s then 7('0 MNP is a HF process

for 7 from 7‘5 (by 1.507)e Hence 7?'0 is free.

(b)s (c) and (4) are trivially proved using 1.1.2.
(e) This is shown by an inspection of possible types of HF

processes P with r(P) < T and P, = ;j o One shows that F(P) is

degenerate in each case. This suffices, because F(-f) =P for a
plane. We omit the inspection of cu:ases because the result is well

known {see for exomple (10, Theorem 4011)).
We note that any plane having non-empty core is not free and
hence is non—degenerate.
Ve now work towards proving our main theorem of this section,
A
which gives necessary and sufficient conditions for two non-degenerate

free rank planes ito be isomorphic.

Proposition 1.6.6 Let = be a free rank plane and R’o be a

proper non~-degenerate subplane of 7T such that there exists a HF process

P for 7T from ’7?’0. Then, for any line 7 of 72’0, there is a HPF

process Q for 7 from 7T6 for which there are no Q-isolated elements,
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and all Q-HF elements are points with Q-bearer —? o

Proof ¢ We define HF processes R,S,T,Q such that R, = 859 = Tp = Q = 770,
R=S=T=Q=7C, and
(i) R has no isolated elements,

(ii) S has no isolated elements and no HF lines,
(iii) T has no isolated elements, no HF points having

T-bearer other than / s and no HF lines having

T-bearer incident with { ,

(iv) Q has the required property.

R is obtained from P, S from R, etc. using 1.5.9. For this prcof,

we refer to 1.5.9(a), (b) etc. simply as (a), (b) etco

*

Let VP be the set of P-isolated elements. PO has no isolated

elements as it is a non-degenerate plane. Thus st,(x) 2 1 ¥xe Vpe
Choose a point s and a line 1 pf poo Define )\1 : VP-9 PO by

x)\1 = g if x is a point and x>\1 = 4% if x is a line. As elements of

VP have no P-bearers, x )\ ] is not incident with the P=bearer of x for .
any x € Voo  Define Wy =P{Xox>\1 1 X ¢ VP’S o Then R =/[7 (1,VP, >\1,WR)(P)
is defined and R = P =7r , Ry = By =7, (by (o). By (a), the set of

of R—-isolated elements is VP - VP = 75 o Thus (i) is satisfied.

——
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¥ie now define S. Choose distinet lines m and n of ’n'o for

which m % 47 5 n;(/} and m.n x ,(7 o Such lines exist as 716 is a

non-degenerate plane. Let VR be the set of R-HF lines. Because

each x & VR has an R~bearer, s'bR(x) 21 forallxe VRo Defire

>\2 H VR~9 RO by

x X, = A, if the R-bearer of x is not incident with .,

my if the R-bearer of x is incident with 4 and

is not fom,

n, if the R-bearer of x is [om.

Then x )\9 is not incident with the R-bearer of x \V/x &€ Vg Define

WS = {x.x%z 35 X eVR} and S = [—1(1,VR, AZ,WS)(R). By (c),

S=R=m and SO = RO = ’Tcoo By (d), S has no isolated elements

PR

(as R has none) and 3 has HF elements (HR-VR) U Ws, where HR is the ses

of B~-HF elements. WS has only points and, by the definition of VR’

H.~V, has only points. Thus S has no HF lines, and (ii) is satisfied.

We now define T. Choose distinct non~collinear points p,q,r of 7TO,

none incident with »(7 o Such points exist as rro is a non-degenerste

[

plane. ILet VS be the set of S-IF points not having f as S-bearer.

Define )\3 s VS—>SO by
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<A, = Dy if the S-bearer of x is not incident with p,
qs if the S-bearer of x is incident with p and is
not pogq,

ry if the S-bearer of x is p.q.

u

Define W, = {x XNy 5 XE VSS and T

[ (1,Vgs 2Wp)(8)e

By (o), Ty = 8y = T and T =8 =7, By (d), T has no isolated

elements and heas HF elements (HS—VS) U WT’ where HS is the set of

S~HP points. To show that T satisfies (iii), we need to show that the

points of HS-VS have T-bearer & s @nd the lines of W, have T-bearer

not incident with / o By the definition of VS’ points of HS—V'S have

S-bearer ( . Hence they have T-bearer .{ (by(b))e Because

is incident with one of these points,

{‘pgq,rg C TO ard each line of WT

each line of WT has pyq or r as T-bearer. None of py;q or r is

incident with £. Hence (1ii) is satisfied.

Finally, we define Q. Let V‘I‘ be the set of T~EF lines. Define

)Z 2 V> T, by x>\4 =4 v X & Vpo Because T satisfies (iii),

x\, is not incident with the T-bearer of x. Define ¥, = { EINEY: ng

and @ = [ (1,7, MM By (e)sa=T=w end g = To T Tyt

By (d), Q has no isolated elements and has HF elements (HT-VT)U WQ,

where HT is the set of T-HF elements. All elements of H.T—VT and WQ, are

points. It remains to show they have Q-bearer ,( o All T-HPF points

have T-bearer £ (bvy (iii)), so the points of B~V have T-bearer [ °
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By (b), they also have Q~beaver £ » ALl points in Wy are incident
with ’( € Q’O’ so they 1tco have Q-bearer /( ° Hence all Q-HF

elements are points with Q-bearer ! .

The following corollary is a generalization of lemms 11,10 of (12 ).

Gorollary 1.6.7 Let 7 be a free rank plane with rank r and

non-empty core Ko For any line fe&PF(K), 7 is the free completion
of a configuration © consisting of F(K) and r other points, each

incident with ﬂ and no cther line of f .

Procf s Because F( k) has non—empty core K, it is non-degenerate.
By 1.6.3(b), there is a HF process @ for 7 from F(k) with »(Q) = rs
By 1.60.6, we may assume that Q@ has no isolated elements, and all Q-EF
elements are points with Q~bearer / o Let X be the set of Q-HF poinis.
Because (@) = ry we have [X |= r. Let e= Mk )uZXs Then

[€]W= 7c (by 1.5.1(d))e PFurthermore, @(z) € e \—/ z¢ P and

0N\ Q= Hence, by 1.5.11, T = [(a]?ﬁ (p).

The above corollary is the main tool in proving our isomorphism
theorem for non—-degenerate free rank planes for the case when the core
is non—~empty. We now prove a series of lemmas leading to an

enzlagous result for free planes.
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Lemma, 1.6.8 Suppose that {5’1,“0, (Jn\S is a set of configurations
for which Fi = E’i\){x;} s Where x, is incident wit‘fl exactly

two elements of f’i, 1= 1yeeegn-1. Then F(¢1) = F(Gz) = e = F(@n)°

Proof s We need only show F( (D1) = 7( C>2)o There exists a HF

S P (O el ) P = = =
process P for 1«(("2) from 6‘1 defined by Py (-)1, P_| ()1U{x13 P os
P, = Fk_1((32), k >4, Then P = F( ?2)0 Every element of P - P, is

P~Pree, Hence the standard HF process P! similar to P is the free

completion process from 91 (by 1+5+5)0 Thus F( ?1) =P' =P = K Pz)o

Lemma 1.6.9 ¢ Let © be a degenerate plane and xép be incident
with at most one element of @ . If F(eu {x]) is non-degenerate
then there exists a HF process P for F( e u[xl,) from 9{ having at

least four isolated points or four isolated lines.

Proof 3 Because F(f v { x}) is non-degenerate, e is non—-empty and
contains a peint and a line. \Hence, by 1012, C> has a point p and a
line 1 for which all lines (resp. points), except possibly F (resp p),
are incident with p (resp. £ Yo

We assume first that x is a point and x is incident with exactly
one line y of Qo Because F( e ulx 3) is non-degenerate, we have
v £ 4 . 1In addition, @ has at least three points q,r,s (possibly

including p) incident with { and three 1ines myn,0 (possibly including
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¥y or {/) incident with po We consider two cases. These correspond

to Figs. (a) and (b) below.

(a) QI,F $ We may assume n = y, o={ and s = pe Let
o' = pu{m e (xea)emfe By 1:6:8, F(p7) = F p v { =)
Define Py = $ s P, = {x,r,p,mo(xoq)}, P, =P, u{(,xeq},

Pn = Fn_3( fb'), n_}_ 3.

(b) QZF H Wemyassumen=y,q=n°/,r=m,/, s=oo[ .

Define PO = 55 ; P1 -—-{x,p,r,s}, P2 = P1 U{lines oflp},

P = Fn—3(€u):x3)’ n2> 3

/ / "\\\.\‘\,\
‘i/ -’/ s \j\\\ \\ N {
T/ e AN

fey Fig. (b)

Hence the required HF process P exists in both cases.

~

Suppose now that x is a point incident with no line of P .

Define a configuration \OO by 630 = (3 ) {xop} ifpl 17 s and
™ 7 . .
630 =e U{ KeDy(Xop) o £ } st pXA. Then (30 is a degenerate

plane, x is incident with one line of PO’ and F( (Jougx}) = F( (J U x])
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(by 1.6.8), From the previous paragraph, there is a HF process P for

F( o v i x]) fron ;b with at least four isolated points.
Finally, if x is a line, one uses the dual of the above arguments

to obtain a HF process P for F(F>L){Tx'5) fronlff having at least four

isolated lines.

TLemma 1.6.10 3 For any non-degenerate free plane 7', there

exists a HF process for ' from ;i having at least four isolated

points or four isolated lines.

Proof 3 Let 7' have rank r'. To prove the lemma, it suffices to

show that for any non-degenerate free plane 7t of rank r £ r'; there
exists a HPF process for 7C from )5 having at least four isolated points
or four isolated lines. We prove this by induction on r. Assume first
that 70 has rank r £ r' and that, for any non-degenerate free plane

7Tb of rank  ry there exists a HF process for 7To fron175 with the

required property. Let P be a HF process for 7r from ;50 We consider

2

two cases.

(1) r is infinite : Let ?? be a four-point of 7 and define
Co () 2(3)e By 1.5.12, [Po] =P P)e (@) is
ye7y ™

non-degenerate because it contains'7 e Because all P-socles are

finite, so is (L. Hence has finite free rank r. (by 1.6.4).
e 0 0

Thus F( Pb) is a non-degenerate free plane of rank ro<<;r (vy 16603).
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Hence there is a HF process R for F( f’o) from 77’ having at least
four isolated points or four isolated lines. ILet @ = F( (_Do)u Po
Then Q is a HF process ;‘or 7~ from F( FO) (by 1.5.11(a))o Hence

R + Q is a HF process for 7 from ;5’ having the required property.

(2) r is finite ¢ In this case, there are only finitely many
P-HF and P-isolated elements. Choose oney; x, of maximal P-stage.
Let Y be the set of P-isolated and P=HF elements other than x,

together with the P=bearer of x(if x is P-HF), Define ﬂ = ;\QJYP(;,-)Q

By 1.5.12; we have

|
(i) [?1 -”?T= » F1)9 the f’1— and P=bearers of each
element of F( P1 )= (31 coincide, and P(z) € F( P1)
V z C F( p,‘)o
Because the P{‘and P-bearers of each x & F( f’,‘) - 631 coincide,
a - (> - 3 4 D V- o
2ll elements of F( ()1) (, are P-free. Hence xE F(EC 1) P‘i

Because x & Y, and by the maximality of stP(x), we have xqéﬁo

Therefore
(1) =¢&r(p,).
r 3 ° o] . .
Now F( 61) U,\ x_j contains Y Uf\x} ¢ ie., all P-isolated and P-HF
elements. Hence [F( (’1) U Zx} =T (by 1.5.1(d)). Because Y
e
contains the P-bearer of x (if it exists), P(x) € 61 UZX}_S 7 P1) U éx’}o

Therefore P(z) & F( €,) u{x—} Y ze R e,) ng\ﬂ (using the third
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statement of (1)) By 105011, this implies

(1ii) 7= [F( P uix ﬂ,; UG RVIED

We now consider two subcases.

(a) ¥ 91) is non-degenerate ¢ Let Q@ = F( ?1) MNP and

R = F( 91) U P, By 105011y Q and R are HF processes, Q + R is

similar to Py @ + R = PO = 97) s and @ +R= P=7, Therefore

r = r(P) = r(Q+R) = r(Q) + r(R). Because x is P-isolated or P-HF,
x is (Q+R)~isolated or (Q+R) ~HF. Since x & F( 4\31) =q (vy (ii)),
x is R-isolated or R-HF. Therefore r (R) > 0. Hence r(Q) =

r -~ »(R) < r. Thus F( (—’1) is a free plane of rank r(Q)< T
Because F( (-’1) is non-degenerate, there is a HF process S for F( ?1)

from 5“5 having at least four isolated points or four isolated lines
(by the induction assumption). Hence S + R is a HF process for 77
having the required propei'ty.

~

(b)‘ F( FL) is degenerate @ Because x & F( 61) (by (i1)), x is

incident with at most one element of F( ﬂ)o By (iii),
T = F(F( (:'1) u(x'})e Hence, by 1.6.9, a HF process exists for 7r

having the required properties.

I+t now only remains to prove that when 77 is a non-degenerate

free plane of rank 8 (the minimum possible rank, by 1.6.5(e)), there
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exists a HF process for 7T from }zj having the required property.

Let P be a HF process for 77 from }5’ . Define P‘l a8 in case (2)
above. Then F( P1) is a free plane of rank < 8 (this is shown in
subcase (a) above), Hence F( P1) is degenerate. By the argument

of subcase (b) above, a HF process for 7T from 52) exists which has the

required property.

Lomma 1.6.11 ¢ Any two non-degenerate free planes of rank 8 are
isomorphice.
Proof 3 Since any two four-points are isomorphic, so are their

free completions (by 1.4.2). Hence it suffices to show that any
free plane 7v of rank 8 is the free completion of a four-point. Let
P be a HPF process for 7~ from ,ﬁo Let 72 be ‘the set of P-isoclated -oz-

P )
P s L0 B G =Ty

elements. By 106,10, we may assume 7 contains a four-point
or a four-line. But because 7T has rank 8, '7 is a four-point or
four-line, and there are no P-HF elements.  Thus [‘7 ]'rc= 7w (by 1.5.1(d)).
Because P(x) = F) < ” YV x €77 5 we have T = [‘7 ]rr= F(’?)(by 105011) 0
If “?2 is a four-point, there is nothing further o prove. Suppose 7?

is a four-line with lines a;byc and d. Then Q is a HF process for 7+ ,

Where Qo = {a’obg b-C, Cnd, doa] 9 Q1 = Qo U? 9 Q2 = F1( ?)’

Q, = Fn_q(ﬂz), n> 3. By 105013, 7= F(Qo); ie. 7r is the free

completion of a four point,.
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We now prove a result for free planes analagous to 1,6.7.

Lemma 1,6.12 3 Any non-degenerate free plane 7r of rank r has a

non~-degenerate subplane ’r(o of rank 8 such that, for any line / of

T

0 70 is the free completion of a configuration consisting of 7'[’0 and

a set Xf of r ~ 8 points, each incident with j and no other line of

Al

’n’oo
Proof @ Let P be a HF process for 7T from }fe By 106010, we may
assume that the set of P-isolated elements contains a four-point or

four-line "? o  Because P(z) = ¢ <7 YV ze % 5 we bave [;71; F(?Z)

(by 105.11)0 Let 7 = F(‘? Y. Then T, is a non-degenerate

subplane of 7v of rank 8, ILet @ = T NP and R = Ty UPse By 1.5.11,

Q and R are HF processes, Q + R is similar to P, Q + R = ¢ = PO, and

Q+R=P =7, Wehave r = »(P) = r(@+R) = »(@) + r(R). Since

I‘V"‘ 80

Qg = ¢ and Q = 736, we have r(Q) = 8. Therefors r(R)

Choose any line 7 ot 7?“0.“ By 1.6.6, we may

assume that R has no isolated elements and that all R-HF elements are
points with R-bearer f . lLet X ;Yo the set of R-HF points.

Because r(R) = r - 8, we have lXj{ =r-8. Iet P = TUXy .

Then ] = ® (by 1.5.1(a)). Purthermore, R(z) P Y z¢ P, and

@ NRy =Ry Hence, by 105011y X =[(>jﬂ, = F((>)o
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We now state and prove our isomorphism theorem for non-degenerate

free rank planes. The theorem is well known {see, for example, ( 12,

chapter XI)). It was first proved by Hall (10) for free ‘pla.nes of

finite rank.

Theorem 1.6.13 ¢ Two non—degenerate free rank planes are isomorphic

if, and only if, their cores are isomorphic and they have the same rank.

Proof 3 Suppose first that two free rank planes 77~ and 7' are
isomorphic. Let & :7=>7' be an isomorphism. By 4.6.2,

K{7') = K{1w)et ¥ K(1r)s Let P be a HF process for 7r from (7)o

Define the HF process P! by Pi‘ = Pio(, i=0415000 o Then x is

P-isolated (resp. P-HF) if and only if x is P¥-isolated (resp. P'~EF).

Therefore r(P) = r(P'), and 7 and 7' have the same rank.

Conversely, assume 7t and 7' sre free rank planes for which

K('n’) ¥ K (') and both 7 and 7' have rank r. We consider two cases.

(1) K(r)Z @+ since k(n) ¥ K(7"), we have P(k(m)) ¥ F(x ("))
(by 1.4.2)s Let : P(K(7))>P(K(m")) be an isomorphism. Choose
a line £ of < (rr))o By 1.6.7, T = F(lo)’ where O comsists of

" Pk (1)) together with r points {xi s i< 1L r} incident only with

L. Also by 1.6.7, 1 = F( P'), where p! consists of PF((+?)) and

r points { '3 1<1g r} incident only with Aol . Extend of to an
isomorphism of e onto f" by defining xio( = xi', 1£igLre By 1.4.2

< extends to an isomorphism of 7T onto T'.
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(2) K(m) = One shows that 77 = 7' in the same way as

case (1), using 1.6.11 and 1.6.12 instead of 1.6.7.

Because of the above theorem, we refer to the non-degenerate free
rank plane having a given core K and rank r. When r is finite, we

denote it by nf ° Thus T(f can be regarded as a representative

from the non-degenerate free rank planes having core isomorphic to K

and finite rank r. We denote 7l’r¢ by ’/'Z;_o Because non~degenerate
free planes have rank 2 8, we use the notation TC, only when r > 8

We denote the non-degenerate free rank plane having core K and

K
countably infinite rank by 71:‘/ (or 72/{/ if K= fé)o
0

0
Theorem 1.6.14 For any non—empty configuration K equal to its
core, T(:f exists for all non-negative integers r. 77; exists for

all non-negative integers r > 8.

Proof @ Suppose first that K is a non-empty configuration equal
to its core. Choose a line / of K+ The free completion of K X,
where X is a set of r points incident only with [ s is a free rank

plane having core K and rank (by 1.604 and 1.6.3)s Thus ﬁrK

exists for all non-negative integers r. For r >8, let @ be a
configuration having a line / s two points not incident with / y and
r - 6 points incident with ]o Then F(f) is a non-degenerate free

plane of rank r. Hence ’/’(/r exists for all integers r > 8..
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1.7 Some Properties of Free Rank Planes

In this section we prove a number of properties of free rank
planes which are used in later chapters. Many of these are

generalizations of well-known propertiss of free planes.

We first consider the subplanes of free rank planes. We have
shown; in 1.6.5(3,), that subplanes of free planes are free. Ve now

generalize this to --

Theorem 1.7.1 @ Subplanes of a free rank plane 7 which contain

K (17) are free rank planes with core K (7). Subplanes of 7 having

empty intersection with K (7-) are free planes.

Proof s Let P be a HF process for 7 from k(). For any
subplane 7' of @, we have K ( ') CHa'n K (T )o Suppose first
that 7' contains K(m ). Then k(') = K(m), and ' NP is a
HF process for 7' from K (') (by 1.5.7)e Hence 77 ' is a free rank
plane with core K{ 7). Suppose now that 7' N K(m) = 75 o Then
K‘(‘ 7') = SD/ and 7' N\ P is a HF process for ¢’ from }a'o Hence 74°

is free.

Ve note that, in general, subplanes of free rank planes are not
necessarily free rank planes. It is possibley, for example; for a free
rank plane 7r to have a subplane 7r! for which 7' € k(7w ) and 7' does

not have free rank.
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We now consider subplanes. of free planes generated by four~points
or four-lines. Our next result was proved by Dembowski ( 5 , theorem
101) for any non-degenerate plane having empty core. Our proof is that

of Dembowski.

Theorem Jo7.2 ¢ I '? is a four-point or four-line of a free plane

Tr 4 then [’Z]fr is freely generated by ? o

O
Proof & Consider the generation process (’Z} for ["2] from ? o
—— 1 3=0 T
Each 71 is a finite configuration with empty core. By 1.6.4; it has
free rank T, = 2/"2 [ - f., where £, is the number of incidences is
i i i

’71. Because each element of 7i+1 - ’Zi is incident with at least
> . -
two elements of 71_”, we have £, . Z T, +2 l {541 71 l .
Equality holds if, and only if, each element of ?i 1" 71 is incident

with exgetly two elements of 7i+1 ;3 ie. when 721_” = F1(7i)° Hence

Ty = 2 | 7 | = fi4q -
2 ,71, - (3012 | paq 2:])
42 ’°7i / - £, (equality holding if, and only if,

a1 = F.1(75.))

]

Hence (ri) is a decreasing sequence of integers, and Tegg = T3
i=0

if and only if 7., = F,‘( 71) Vienw
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By 10643, ( 721) is a free plane of rank r,. Because 25

contains 77 o ¥( 721) is non-degenerate. Therefore r; >8 Yi &N

(
A
(by 1.6.5(e))o Thug (I‘i) is bounded below by 8, which implies
i=0
B_ériﬁro\f i& W But 7 =77, has rank 8, Hence :c-o=8and
r, = 8 Vie V. fThus Tibg =Ty Y i€ VW, implying ('Zl

¥ i €N  Therefore 75 = (%) V 1 &N, Hence 72]_@}.5

freely generated by "'Z’ 0

We next prove a technical result useful in chapter 2.

Proposition 1o7.3 If P is a HF process for a free plane 7r s and

7 is a four—-point or four-line of 7T, then v(*//a(x) < s‘bz (x) +m

Vz € [71(, where m = max{/P(y); yE )Z}o

Proof @ Ve proceed by induction on st (x). st .. (x) 0, then

K4

x € and ,/P(x) < m (by the definition of m). Suppose now that
2 . ~ |~
st ,l(x) = n >0 and that ,(P(u) {?s’cP(u) + m for a1l u CL Z]Wof

~ste. o oTo2y [ =F(»)e T ha, 1y 4w
7 -stege <L n By 1.7 ’£7jn’ (7) hus x has exactly two
Jz—beaw:*ers vy and z. Both y and z have lower i -stage than x, and-

thus

(1) st. (y) £ st,z(x) -1, s‘b,z(z) < st?(x) - 1.

i

By the induction assumption, we have
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(1) S Lmsst,(r) 4 gm+ st

?(z).

We consider two cases 3

(a) y and z are the P-bearers of x @ By 10504, we have

lo(x) = max [ (s}, (=) ] + 1

£ max {m + st,?(y), m+ st, (z)} + 1 (py (ii))
< (whet ‘7(x) - 1) +1 (vy (i)

=m+ st, (x)o

0

(b) At least one of y,zs say y, is not a P-bearer of x @
By 1.5.1(a), either x is a P-bearer of y or stP(x) = stP(y) = 0o
In either case,

) £ 5 £ot,,() +n (oy (1))

< ,o#,Z(X) to o (vy (1))

In both cases (a) and (b), we have /P(x) < st7(x) + me By

induction, the propositicn has been proved.

If K is a collineation of a plane 7—, then the subconfiguration
of 7r with elements {zé T XK= x} is a subplane of T It is

called the subplane of fixed elements of ¢ o We denote it by

7 (1, K).



_58_

A Bazer subplane ZZ‘O of a plazne 777 is a proper subplane of 7 for

which every element of (- 7TO is incident with an element of 4t‘o

(note that, for any subplans r' of &t . every element of 7- ¢t is
incident with at mcst one element of 7¢'), Subplanes of fixed
elements of collineations of order 2 are Baer subplanes.

We first prove the well known

Lemme 1.7.4 ¢ Suppose T is a non-degenerate plane for which
=+ K (), and « is a collineation of m fixing K( ) elementwise.

If (1, %) is a Baer subplane of 7, then 77‘(1, ) is non-degenerate.

Proof @ Because r\“( 72*) is fixed elementwise by o/ 5 We have
R(m) S r(i,0¢)s Thus 7r(154) has core K (=)o If R{7) is
non~empty, then 77 (1, %) is not free and hence is non-degenerate (by

1.6.5(b))s  Thus we assume K(m) = 55‘; ie. 7T is free.

Suppose (1, ) is degenerate. By 1.1.2, and beceause 7 (1, <)
is o Baer subplane, vr (1, x) contains a point p, a line { , all points
of qr incident with «( s and 21l lines of -7t Zincident with po Choose
lines x,y and z incident with p, none equal to (ﬂ ° Choose points
asbyc such that a T x, b I y, ¢ I 2, none of a, b, ¢ are incident
with ,([, s and as by c are not collinéaro Because x, yy z are incident
with p, they are in 7 (1,x)s Hence axX I x, bX I y; cxX I 2
Because a, by ¢ are not incident with /, they are not in iT(1,o()e
Hence ao # 8, bor zband cu % co Lot 4 = (acb)ed; & = (bec)o £
£ = (a.c)o £ Then 4, e,f ¢ T (1, x), as they are incident with l.

Since d ] a.b, we have d I (a.b). Similarly e I (bec)x and £ I (a.¢)xX «
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Define a subconfiguration P of T by

E = {Ps (,x,y,z,z,b,c,ax ’

b gcot ydse Lyadbybecycaa,

(20b) X 4 (Boc)o ,(c.a)cxj.

f is 1llustrated opposite.

Clearly e is a confined

configuration. This contradicts our assumpition that T is free.

In our next result we generalize to free rank planes a result

first proved by Lippi( 19) for free planes. The proof given here is

~

due to Row (23, proof of theorem 2).

Theorem 1.7.5 ¢ Let 77 be a non-degenerate free rank plane for which

T K (7). Any non-degenerate Baer subplane of 7~ containing K{ 7v)

has core K ( 7) and rank lrt" ,o

—

Proof @ Let 72’(') be a Baer subplane of 7t containing x(m)e. Then

7Y, has core K (=) and has free rank (by 1.7.1). It remains to show

that it has rank ’ n [ ° Let P be a HF process for -+ from k(7))

Then @ = 7Ty N P is a KF process for ny from K{m) (by 1.5.7). Ve

need to show there are f T [ elements of 77’0 which are Q-isolated or

Q,“'}IF‘ .

Choose a point p and a line A for which p 7 £ and both p, 4 & 72’OUK(

\

R’l
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Both p and / are incident with only one element of 72'0 and they both
have at most two P-bearers. Thus there are at most six lines x I p

for which any of x < p(P), x. £« £(P), x € 7T, or X. /(é72’0,

Hence there are Jm—[ lines x I p for which p«£ x (P), £ < x. 7 (P),

X ;é 7‘5’0 and xo A ¢ 7'«1'0o For each such x, either x./( < x(P) or

x < Xo /(P)o Thus either x is P~free with bearers x..£ and ps OT
%o £ is P-free with bearers x and £ o Thus each pair (x,z. /)

contains a P=free element not in 71’0 and having P=bearers not in ’/Yoo

There are /Tf“/ such pairs. Thus there is a set X of /T‘t/ elements
which contains only lines incident with p and points incident with / 3

and for which each x £ X is not in /rré and is P-free with P-bearers

not in ’nzao

Eoch x € X is incident with some A(z) € 7T,s because TX, is

a Baer subplane. Because each x &€ X ig P~free with P-bearers not in

7C >\(x) is not a P-bearer of x. Thereflore x £ >\(x) (P) Vx & Ko

09

Because each \(x) has a P-bearer not in Ty it is either Q-HF or

~

Q-isolated. Because the lines of X are concurrent and the points
collinear, the mapping A\ X —m, is one-to-one.  Hence

{\k(x) o XS has 'Ttl elements. Thus there are ITF{Q—HF or

Q-isolated elements. Hence 70y has rank | T‘t’i o

Let 7t be a non-degenerate free rank plane for which 7r# K( rr)o

Then all non-degenerate Baer subplanes which contain K (7) have core
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K(7) and the same rank ||, We therefore have

Corollary 1.7.6 ¢ Any two non-degenerate Baer subplanes of a free

rank plane 7T which contain k (sr) are isomorphic.

We next prove a result which ensures that 7?’1'& has infinitely
many distinct Baer subplanes when 7Z’rK # Ko The proof uses a

variation of a method due to Row (23, theorem 1).

Proposition 1.7.7 ¢ Suppose that T(’rK # K o If a is any point
of T'Cf and x and y are lines of 7T < incident with a, then 7'[1.}\

T

hag a non~degenerate Baer subplane containing a and x, but not y.

Proof @ Choose points b and ¢ distinct from a wkhich are

incident with x, and lines z 1 and Z, distinct from x and incident

with co Let L ={a,b,c,k,z1,22} ° Let P be a HF process for

7‘(5 from K . Choose an m such that Pm contains L ué\ y} and
) a
& b & w’
C b .
all P-isolated and P-HF elements
¥, 3 \j/ (this is possible, as r is
Z

finite). Let P=P. By 1.5.13, ws =F(p).

Vo obtain the required Baer subplare as the union of an

extension process B = {Bi $ i€ N} s Where Bi is a subconfiguration

of F,( @) and, for each i > 1,
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(a) Bi is closed in Fl( (3),
(b) Bi— Bi“‘]g'Fi(E) -F-_.l(())i

(c) each element of F, 1( (J) is incident with an

element of Bio

Define B1 to consist of elements of I, together with all lines
of F1( F) incident with ¢ and all points of F 1( F) incident with x.
Note that yé& B, because y ] c.  Define By =3, nP. Then y & B,

Clearly (a) and (b) are satisfied when i = 1. We show (c)o. Let

= . i i h 1t ° — . - " oY & .
uéFo(()) (;- If u is a point, then either w.c & (2 ; or u.c € 11({; o
In either case u.c &B, and u I u.c. If u is a line, then

1

u T uex eB1 (similarly). Thus (c) is true when i = 1.
Assume that B, has been defined and satisfies (a)s (b) and (c)
for 0« 1 £ n. In particular, if 2z & Fn(()) and z is not incident

with any element of Bn, then z ¢« Fn( (’) - Fn-‘l((’) (vy (e))o Let

B consist of elements of B , together with
n+1 n

(1) elements of T . 1( f) - Fn( e) incident with two

elements of B 3
n

(i1) elements z. A(z), waere z & Fn( (a) - Fn-1( (’) is

not incident with any element of B , and ANz) ¢ L
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is cnosen such that z. )Q(Z) & Fn+1 (;\\ ) - Fn(() Yo

The choice of \(z) is possible, because z is incident

in Fn( ()) only with its two P-bearers, and L contains

three collinear points and three concurrent lines.

Using the induction assumption and the definition of Bn+1’ it is

easily verified that (a), (b) ard (¢) are satisfied with i = n + 1.

By induction, B, is defined \/ i 2 0 such that (a), (») and (c) are
satisfied when i > 1o

4

o0
Define 1 = U Bi° Then T is a subplane of 7[1"\/ s
i=0

because B, is closed in Fi( P) Vi e ¥ (vy (2)). By (b), we have
N Fi( (o) = B, YV ie N. Hence TN P = By, which implies both

x, a € and y £7. 3By (c)y, 7r is a Baer subplane. We ensure that
TC is non-degenerate by choosing A(z) é’—{‘a,b} for at least one z

(see (ii) above).

Corollary 1.7.8 ¢ It K= 7Cr'¢ s then /’l”f has a non-degenerate

free Baer subplane 7T for which TTNK = }é .

Proof s We use the notation develoved in the above proposition

and its proof. Chocse 2, b; ¢y X, Zy and Z to be not incident with

Ef), we have

any element of Ko Then Byn K= }ﬁ o Because K C Ps
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KNntm = Kn (rcnp) = KN Bo = ?o Hence 'in has a Baer subplane

TC for which TNK = ;25 e By 1.7.1, 7 is free.

We note that the Baer subplane consiructed in the proof of 1.7.7
does not contain K when KqL?S o It is possible to show that for

certain a,;x and y, and for » >1, TT: has a Baer subplane containing

K, a and x;, but not y. The construction for this subplane is similar

to the construction used in the proof of 1.7.7T.

A finite non-empty configuration f) is almost-confined if it

has an element x incident with exactly two elements of (J s and every
other element is incident with at least three elements of (D »- The

element x is the vertex of() o

Lemma 10709 (Dembowski ( 5 5 lemma 3.3)) : If P is a HF process

and P an almost-confined configuration of P with vertex xy then

(3 < POUP(X).

Proof 3 Suppose (Dg Py U P(x)s As p is finite, there is a

Yy &P of maximal P-stage with respect to the property y é Pou P(x).
Because x & P(x), y;é X. Thus y is incident with at least three
elements of O . As y has at most two P-bearers, there is a z €£

for which 2z I y and z is not a P-bearer of y. Because y é‘PO, ¥y is a
P-bearer of z (by 1.5.1(a))o Thus y& P(z)o By the maximality of

stp(y), z € P(x).  But y €P(2) and z & P(x) imply y &B(x) (by 1.5.1(c))s

a contradiction. Hence f’ < P, U P(x).




..55_
The following propositiorl and its corollary demonstrate that
<
when fTr#K‘,— rr’f also possesses properties proved by Dembowski

( 5, section 3.3) for non-degenerate planes having empty core

(including non-degenerate free planes).

Proposition 1,7.10 Suppose rrf % KK o Then, for any integer
m, ?TS has an almost—confined configuration e for which ‘P ]7 m

and PN K =.¢ ° ;Ffu_rthermore, (3 can be chosen to have either a

point or line as vertex.

Proof 3 By 1.7.8, ﬁf has a non-degenerate free subplane 7 for

which 7fTn K = ;5 « 70 has a non-degenerate (free) subplane of rank 8

(by 1.6.12). Thus 72’5 contains a non-degenerate free subplane rr!

of rank 8 for which 7T'NK = ;5 o It therefore suffices to prove the

theorenm for R=¢ and r = 8, We prove

(a) 7Tty has an almost—confined configuration ;

e

(p) if p is any almost-confined configuration of #8

and P has as vertex the point (resp. line) x, then

’i‘t’s has an almost—~confined configuration F' having a

line (resp. point) as vertex and satisfying IF" ]= Iﬂ‘ ]+ 1.

¥

Clearly (&) and (b) suffice for the proof of the theorem.

We have ﬂ‘é = F(?), where ’Z ={a,b,c,d3 is a four point.
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Define e = (a.b).(c.d), £ = (a.c)e(bod),

4

(acd)e(vec), h = (€of).(a.d),

(aob)a(fog),‘ /= Pohe

&

D
Then () = (a,b,c,d,aab,boc,(}.d,
7

doayasCybodye;L,84eefyfegyp,h, { } is

an almost~confined configuration of

TFB with vertex /(7 o Thus (a) is

proved.

We next show (b). Let (Jbe any almost—confined configuration

hif 7?'8, and x be its vertex. We may assume that x is a point (if x

is a line, use the dual of the following argument). These are two
lines u and v of F incident with x. P has = line 1 not incident
with x. Since [ is incident with > 3 points of P s there is a

y GF for which y I,(, ¥y ,'f uy ¥ f Vo Thus Xe3 é‘ g - Define

(" = (> \){x.y} o Then ‘p' is an almost—-confined configuration with

vertex x.y, a line, and | (:.' | = |pl + 1. Thus (b) is proved.

“

Corollary 1.7.11 (Dembowski ( 5 ))s 1If 7(5;& ko 5 then the full

automorphism group of ’TTrlC has infinitely meny orbits

outside K o

7
o
A
aq

oo
It suffices to define a sequence (xi) of elements of
<=0

i - K for which, for any i £ Jjs there is no automorphism ol of

1(5 satisfying X5 ol = xj, Let P be a HF process for 7Tr< from Ko
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Define % to be the vertex of an almost—confined configuration FO

for which fo n K = ¢ ° Assume xi has been defined for 0 < i<« n.

Let x, be the vertex of an almost—~confined configuration Pn for

which @ nNK-= 775 and {Pn IZ {P(xi) [ Vi< n, Such a

Pn exists; by 1070100 By izlduétion;the sequence (xi)ao is

i=0

defined,

Assune i :/; j and K is an automorphism of 7?; for which

xix = X.» We may assume i< jo Then Pj o'\-1 is an almost-
J
confined configuration with vertex X0 Therefore (Oj o(—1 < P(xi) UK
(by 1.7-9)e  Because Pj NnK= sb and Kot = K, we have
“Tnk= ; ~1¢ H
f‘jo( n sbo Therefore Py et __P(xi). ence

|@j , = le o] { £ lP(xi) / , contradicting the definition of (Jjo

Thus no such o existse.

Finally, we consider the cardinzlity of non-degenerate free

rank planes.

Theorem 1.7.13 s Let T be a non-degenerate free rank plane having

core K and rank k. Provided mrkls Wwe have /TC( = max (k, IK{, /Vo)e

Proof s Ve have = K ()), where O is defined as follows
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If g = ;/; , then (,) has a line s two points not incident with / ’
and k = 6 points incident with[ o If i(:,'_gp s then P contains K

and k other points, each incident with exactly one line of Ko, By

n
1.4.3(c), lF‘n((o)Iﬁ ’f’/z for each n € N. Ve consider two cases 3
(1) K|, X sre finite s This implies p is finite and hence
O
i inite Vo r < o
Fn((.a) is finite ¥ n ¢ ¥ Therefore r};{) n( (0) < {\[O

But /U is infinite (by 1.6.3(c)), so [n|=> A/O. Hence

[l =G = ety I A7)

(2) Either /K [or k is infinite s We have |[P[ = max(k, Ix|)

“lp| ¥ neW.  Heme |y F(p)| & mex(i, (<)
n=0

and I Fn( (—’)

Hence ITC’I = max(k, |K|) = max(k, [}, A/O)o



=69
CHAPTER 2
FINITE COLLINEATION GROUPS
In this chapter, we investigate collination groups G of ff, which

fizx K elementwise and for which all G—-orbits are finite. Alil such
groups ave finite (+this is one of the first results we pbtain). As
our basic tool, we use the existencey for each G, of a HF process Q for
a'r" from K such that each configuaration of Q is invariant under G.
In 2.1, we prove the existence, for each G, of such a HF process Q,
and we obtain some properties of Q. We also show that there is a
faithful representation of G as a permutation group of the Q-isolated
and Q-HF elements. This representaﬁon of G is used in 2.2 to
characterize the n for which there is a collineation of rch having
order n and fixing K elementwise. It is also used in 2.3 to obtain
least upper bounds for [Gle For K = 4) , these upper bounds were

obtained by Alltop {2 ) for r # 9 and Sandler (27) for r = 9.

In 2.4, we obtain some results concerning the elements of nrr’"
fixed by G, including some theorems_ of Lippi (19). Finally, in 2.5,
we obtain upper bounds for the number of conjugacy classesy; within the
full collineation group of l'q.K s 0f certain finite collineation groups

K
Of(t—;‘ °

201 G-~invariant HF Processes

Suppose e is a configuration and G is a collineation group of P °
If Q is a HF process for () such that Q’nG = Qn for each n & Ny then Q is

G-invariant. If X is a collineation of (3 and Qno( = Q for each
n
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n £ N, then Q is X~invariant.

Theorem 2.70.1 ¢ If G is a collineation group of TZI.K- fizxing K

elementwise; and all G-orbits are finite, then there exists a

G-invariant HF process @ for I‘I‘TK from K.

Proof 3 Let P be a HF process for 1ti,’c from Ko For each
L E Gy P(°<) .—.-{P oLk & G:} is a HF process for ?L—rK from K.
n
- . ' () . .
For n¢c Ny define R_ = P o Define an extension process
n xgg B

Q by Q‘2n 2= Rn and Q’2n+1 = Rn U{points of Rn+13’ for each n &€ N,
By 1.5.8, Q is a HF process for Q from K. For @e(},
an\, - Rn€= (ol{:;\(} Pn“)@ = m (an@) = ﬂ Pnc( = Rn = an,

Aeg’ <& G
since G ‘3 = @, Thus Rn = Q”’n is invariant under G for all ne N,

4 are permuted. by G, O‘2n+ g is inveriant under G

for each n ¢ N, Therefore @ is a G—invariant HF process for n(-ﬁ,' from K .

Since the points of Rn+

+ remains to show -é- = 71:’,_’( o Clearly EQ 7'c§."" o let x ¢ 71‘;3
Because XG is finite, xG QPm for some m. Thus xG £ P X for each

A€ G. Consequently xe& xG & [ ) PX =R =Q & Qo Thus
KEG n
Q= TL’K, and @ is the required G-invariant HF process for TC;'( from K .
r

o

Tixample $ For » > 8, define a HF process Q for 7r as follows:
AXallple = -
Q’o = {’a,‘o, f‘g s where a and b are Q-isolated points and ,(7
is a Q—-isolated line.
Q,1 = Q’o 1% {x‘i""’xr-G}’ where x4 is & Q-HF point

with Q-bearer /, 1€1i<r -6,

Q, =F, ), n>1.
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Consider the full collineation group G of Qo OClearly GX¥S,XS

and Q’o G = Qoo By 1.4.45 G extends to a collineation group of
F(Q,) = 7, for which Fn(Q1)G = F (Q,) V n>0; i.e. Q¢=Q

V n% 1« Hence Q is a G-invariant HF process for ﬂ;‘ °

For later use, we combine some elementary properties of

G-invariant HF processes together in

Proposition 2.1.2 2 ' If G is a collineation group of Tt’rK fixing K
elementwise and @ is a G=invariant HF process fox 7T rK’ then

(a) stQ(x) = stQ(xo() for all x éfc’rK s oL & Go

(b) Q(XO()==Q(X)€>< 0800600 00CEO00800000OG00COO W

(C) //Q(X) = ,(/’JQ(xD() 8086000000083 0000000800

(a) sirf Q, =¢, then R = F(iK) U Q is a G-invariant HF process

for TC:’f' from F(K).

Suppose that I and H are the sets of Q-isolated and Q-HF elements
respectively. Then
(e) IG =TI and BEG = H,

(¢) ifQ, =iC orQy=T(K);, thenG=C[g ,q -

© - K‘ = e
Proof s (a) Let x ¢ mK . If stQ(x) 0 then x ¢ Q  and
thus x €Q \V«{EG.  Thus sto(xoi) =0 = stQ(x) \f A€ Go
Suppose now that stQ(x) =n >0, Because Q‘n- 4 G = Qn-=1 and

Q@ =Q, we have (Qn—an)G = Qn ~Q, (o Therefore x6<£Q -Q ,

and stQ(Xo() =n= stQ(x) \ « €C.

(b) Suppose x e‘r(r" and e G, IfC = %’xo,x‘l,.,..,xg is a Q-chain

of x, then C is a Q-chain of x X, since X pressrves Q-stage and
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incidence. Hence Q{x«) = Q(x)e¢, by the definition of a Q-socle.

(c) This also follows immediately from the result that if C is &
@-chain of x, then C is a Q-chain of T , for any xe‘—rci,’f and

X € Ge

(&) By 1.6.3 (b) R is a HF process for nﬁ( from F(K).
Because G fixes K elementwise, G fixes F( K) elementwise (by 1.4.4 ).
Therefore F( K)G = F(K); and RnG =P k)¢ UQnG =RMK)U Qn =R for

each ne. Thus R is G=invariant.

(e) Suppose x & I (resp. x € H), S'tQ(x) =nard «x & Go Then x is
incident with no(one) element of Q,na Since Q,no< = Qn, X{is also
incident with no(one) element of Qs and we have stQ(xo{) = Ne

Thus xof is also Q-isolated (Q=HF), Hence IG = I and HG = H,

(£) By (e), G permutes BU I. Define ¢t G- G, by
HVUI
Ao~ = o{’ o Clearly o is a surjective group homomorphism.
HUI

Suppose Ko = Ly Then o£1l = ol { o Since G fixes
H uI ¢(H VI

both K and F(K) elemeniwise, G fixves Qo elementwise. Hence

= of

Q 2IQ

o

od ’ o Because K {

=0(2 g We have
o v v

QOUH vl

o
oly = %, (vy 1.5-1(€)), g~ is therefore an injection. Henmce U~ is a

"group isomorphism, and G = G{ .
H VI
Suppose G is a collineation group of t‘r,'r"r fixing K elementwise.
If all G-orbits are finitey; then a G~invariant HF process Q for 7731.'(
from K existisy; by 2+¢1.1s By 2.1.2 (f), G is isomorphic to a

permuitation group of H U I; where H and I are the sets of Q-HF and
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Q-isolated elements respectively. By the definition of rank,

r=2 fI l + H. Hence (H I 1 < r. Ve have therefore proved

Theorem Z2.7.3. ¢ If G is a collineation group of T(’;f fixing K

elementwise and all G-orbits are finite, then G is isomorphic to a

permutation group of a set of at most r elements.

We note that, for K‘#gb , this theorem is proved in (12, chapter
XI), and it bas been used by O'Gorman (21) for the study of finite
collineation groups of TrrK, where K:{:c{; o In this thesis, we use it
only to prove properties possessed by collineation groups of 1t;" for

all K « The first of these is

Corollary 2.1.4. ¢ Suppose G is a collineation group of ﬂ‘rK

fixing K elementwise. Then G is finite if, and only if, every

G-orbit is finite.

Ve note that 2.1.4 does not hold for collinsation groups of plancs
bhaving infinite free rank. For example; ?’C’% is freely generated by
a configuration (O having denumerably mahy points 51,2,.,.53 and no
lines. Define a collineation o¢ of @ by (Zi-é-j) X = 21‘*‘ ( (3+1)mod 2i)9
3= 0s1500ey2 =1, 1 =0,1y000 . B 1.4e4; Of extonds uniquely to
a collineation of F((J) = T . It has infinite order, because ot IP
has infinite order. However, each element of P has a finite
4 —;arbito By induction,; one shows that each element of Fn( P) has a
finite ok=~orbit, for all n >0. The group G =L« > is therefore

infinite, but all G-orbits are finite,
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Although our next theorem is not used later in the chapter, it is
of interest because it ha,s: been the basic tool for the study, by all
previous authors, of the finite collineation groups of T(I,K e It was
first proved by Lippi (19) for K= ¢ and ¢ cyclic, and has been
generalized to the form stated here by later authors (Alltop (2 ),
Tden (14), and Hughes and Piper (12, chapter XI)). Our proof for it
uses thg existence of a G-invariant HF process for 'TCI':" from K, One
can also simply prové the existence of such a G-invariant HF process

using this theorem.

Theorem 2.1.5 ¢ If G is a finite collineation group of ?Cf fixing

K elementwise, then ﬂ.’x.K has a subconfiguration - which freely
generates YCI_K and is invariant under G. Furthermors, P -~ K may be

assunmed finite and F minimal,

Proof @ By 2.1.1, & G-invariant HF process Q for T@’rK from XK exists.

Let HE and I be the set of Q-HF and @-isolated elements respeciively.

Define O =K u( |, Q,(x)) . By 1.5.12, & =F(@), For
© xeHUI . H0

L € G, we have (>oo<= Po’ because KA=K, (HUI)el= HUI and

Rx)A = Qxt) for xe& H UI (using 2.1.2(e) and (b)), Thereforef’o

freely generates 'F'C: and is G-invariant.

Because HU I is finite and all Q-socles are finite (1.5.1(b)),
(>° - i is finite. Therefore Po satisfies all the requirements of the
theorem except (possibly) minimality. Since PO -k is finite, there is
a minimal configuration P such that K_Q{J C Co and Psatisfies the

requirements of the theorem,
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We now prove some technical results concerning the orbits of
finite collineation groups of 'i‘gf( o The following result and its

proof are due %o Dembowski ( 5, lemma 2.2).

Lemma 2.1.6 ¢ Suppose that G is a finite collineation group of
E‘t’rK, Q is a G-invariant HF process for ?’Z: s and u 1is a Q-bearer of

ve If [uG[odd or v is Q-HF, then |uG| divides |v@[. If [uG]| is

even, then Iugi divides {VG { o
Proof Suppose u is incident with J elements of vG and v is

incident with k elements of uG. Because G is transitive on both uG
and vG, every element of uG is incident with j elements of vG and severy
element of vG is incident with k elements of w@G. We may count the
incidences of the configuration uG U vG in two ways, obtaining the
equation ;j[uG |= k{vG[a Because ulvy both j, k¥ >1. All elements of
u@ have the sams Q-stage as u (by 2.1.1(a)) and therefore have lower
Q-stage than v. Thus k£ 2, as v has at most two Q-bearers. I v is

Q-HF, then k = 4. The conclusions of the lemma now follow,.

We combine the remaining results concerning orbits together in our
next proposition. Part (a) of this is an elementary result in the

theory of finite permutation groups (see Wielandt (31, theorem 3.2)).

If G is a collineation group of a configuration F, and X &P,

then we denote the subgroup <X €G3 x (= x> of G by G o

Proposition 2.1.7 ¢ Suppose G is a finite collineation group of ?’C’I‘Kr

and @ is a G-invariant HF process. Then
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(a) fo].lij =[G forallxéiti_K, '
(b) if x ¢ Q(y) and {xG{ is divisible by an odd m, then so is | G/,
(c) if G has odd order and x &Q(y), then |xG [ divides {yG|,
(d) 4if u is a Q-bearer of v, then either Gv fond Gu or v is Q-free and

its Q-bsarers form a Gv-o::-bit°

Proof (a) The G-orbit of x is{xa(1,oo.,xo(n} s Wwhere
{941,°ae,0(n} is a set of left coset representatives for Gx in Go

We therefore have (G |= n[Gx| = [xG [. fo[o

(b) There exists a Q-chain {xogeoogxn}, where X =X 5 ¥ = X5

x, Tx,,. and s‘bQ(xi)<: stQ(xi+1), i =0y 0oy n=1s By 2.1.6,
fx. G‘ .
i .
either [xi G | divides {xi'*“l Gl, or 5 . divides ‘xiﬂ G,,

1205 T5e0esnmto  Thus, if m divides {x, G ', then it divides
|=; G’, 0OZiZnw- 1. Since m divides [x G|, it divides
i+ o o

lxi G’i, i= 091gooogn‘“1o Thus m divides [yGlo

(¢) By (a), [xG [aivides |G ( and is thus odd. It now follows from (b)

that |xG | divides (yG{.

(a) Suppose either that the Q-bearers of v do not form a G -orbit, or
that v is Q-HF (with Q-bearer u)s We show G &G . Lot o( & G o
Then v = Vo Because u I v and stQ(u)< stQ(v), we have uol I v and
stQ(u A) L stQ(v)o Thus uel is a Q-bearer of v. Since we are
assuming that the Q-bearers of v do not form a Gv-»orbit, or that v has

only one Q-bearer u, we have uX = uy, iceo £ & Gu° Hence Gv < Gu.
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2.2 Minite order Collincations

8 5
Throughout this section, we let n P, L see Dy k s Where

p1,...,pk are distinct primes and 8, 2151 = 150009ke  VWe
characterize the n for which there is a collineation of K
r

having order n and fixing Kk elementwise. We first prove an

analagous result for permutations of finite sets.

Temma 2.2.9 s There is a permtation of order n of a finite set

S,
X if, and only if, [ X|> & Dy .

i=1
Proof We assume first that X has a permutation o of order n.
Tet ¥ = {.x €X 5z = xz and X' = X = Y, It suffices to show that
k s,
1X| > = P; . Let 01’°°°’0m be the =~orbits contained in X%,
i=1

Then {03. [ 2 2 for each j. Clearly | Oj] divides n, so we may

factorize IOJ_[ as follows
[ T,
[0. I": 'rr- P.- 9 Where.iér. és. 9h= 1,00.,?(.]')9 j= 19.»09m9
J° h=1 n " n
rj b
Because p, h 2 2 for each hy we may use the inequality a.b >a + b (when
h
. T,
2(3) I,
a>2,b2>2) toobtain |0, | 2= p. e Therefore
J h=1 I
m m {(3) rjh . »
[xt[= = (0|2 = = D, (1)
=1 J j=1 k=1 “h

Bascause { has order ny; n is the least common multiple of
s

i . 7 > R AR
{{oj| y J = 1,.,..,mj° Thus for each ié{“,ooo,k} s Py divides

8,
le(i) I for some j(i) & {1,0'00,111}0 Therefore Py * appears in the
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right side of (i) at least once for each i e‘{h...,k} 0 Thus
k s,
(X2 = p o
| i=1 *

8

k i
Conversely, assume iX lZ = p; » Then there is a set
i=1
K4 ) S.
{01,.”,01’} of pairwise disjoint subsets of X such that \Oi | = P; *,

Suppose O, =$x (1),..@,:{ (1)5, 1= 1500e9ke Define a
1 L 1 Si
Py

permutation ¢ of X by

. n
Io(= 2, ifxex“uoig

i=1
x 8, ifx= (1) { n} o

[ i xj e U0 .
1+(J med p, *) i=1

Clearly, ® has ordsr n.

Suppese K is a collineation of n’; having order n and fixing X

elementwise. By 2.1.2(f), x is determined by « [ xs where X is the

set of Q-isolated and Q~HF elements of any « ~invariant HF process @
for TC'; from K« We have l Xl £ r. Ve therefore expect our
characterization of n to be similar to that of 2.2.1, possibly with
[X| = r. In fact, our characterization differs from this only
because of the geometric nature of x. For example, when K = 925,
there must exist Q-isolated elements and this implies |X| < r in this
case. Furthermore, there may be incidences between the Q~isolated

and Q~-HF elements which must be preserved by ¢ o
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Before we prove our characterization theorem, we need

Lemma 2.2.2 3 Suppose K i1s a permutation of order n of a finite
set X with ¢ ~orbits O1’°"’Om° Ir lOi[ > 2 for each i, then

one of the following is true ¢

8.
J .
?

k
(1) 1x[22+ =

=13

(2) |oi| does not divide | oj | for any i< Je

Proof s Suppose (2) is not true. We show (1) holds.

We may assume IO1 | divides |0 (o Let X' =X - 0, The least

common multiple (ICM) of {ioll g 1= 1,0..9m} is n. Because }01}

- -~
givides |0, [, the LM of{(oi( » 1= 25000,m isaleon.  Tus

. k =
D(lx, is a permutation of order n of X's By 2.2.1, |X'| 2 4_1 P J,
J.’-‘:‘
' k 8,
Tus [X| = |0 | + X[ 22+ x| 22+ < Py J, Hence (1)

J=1

holds.

Theorem 2:2,3 ¢ There is a collineation of T(rK having order n and

: LN -F
fixing k elementwise if, and only ify, r> e(n) + = s 1, where
i=1

e(n) = 0 if Krf—% and, for K:?S s

e(n) = 6 if k=1, p;>5o0rk=1,p =5 8 >1
5 k=1, p =3ork=1,p =5 8 =1,

4  otherwises.
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Proof Ve assume f:LI‘S‘U that K is such a collineation of /Lf ’

and we show r > e(n) + 2 pis. °
i=1
Let Q be an ¢ ~invariant HF process for ﬂ—f from Ko Let I
and H be the sets of Q-isolated and Q-HF elements respectively. Ve
have r = 2 [I|+|H| = I\I|+ [HU I| ., By 2.1.2(f)s (RUI)x=HU I
and D(IH u T 18 a permutation of order n of HU I, There is an

s,
xié‘ HU I such that 1 1 divides Ixizog>/, i= 150005ke We note

) L ) . X
that it is possible that x, = z; for i o Let X = MU x>
i=1
Then XX = X and O(!X has order n. By 2.2.1, we have
_ k o,
|2} 2 = », " . (1)
i=1

We also have

r=]I{ + |EVI| = |I| + [HUI=X| + |X| «c0 (i1)

k 8
It follows immediately from (1) and (ii) that r > 2
8,

Thus we have proved r > e(n) + 2 1 when #1;5 ° Henceforth,

i=1

we assume K = ¢.

. s,
Because fxi<o<> , Z P * 2 2 for each iy we may apply 2.2.2.

Either (1) or (2) of 2.2.2 lS satisfied. Suppose first that (1) is
S.
satisfied, i.e. |X|2> 2+ 2 Py . If x = 1, then
i=1
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81 S

|X| = |xgu>| = b, ' 2+, T contradicting (1)e  fMhus k > 2

and e(n) = 4. From (ii), we have
k 8,

2 I} + [HUI~-X|+ 2 + gpil,
i=1

s

i

k
Thus, to show r > e(n) + < P, ~ 5 We need to show that

i=1
|T{+ {EVI=-X|{22, 1If(I|Z 2, this is soo If |[I|= 1, then the
one Q-isolated element is fixed and is therefore not in X. Hence
ICHUI=-Xand |[HUI=% 21, Ths |I|+ |[HUI=X|22, as

required.

We now suppose that (1) is not satisfied. By 2.2.2, condition (2)

is satisfied. We consider two cases (A) and (B).

(A x>2: In this case e(n) = 4. From (i) and (ii), we need to
show |I| + 'H VI-X| 2 4. This is so if JI| 2 4o Ve consider

cases |I| =1, 2 and 3.

() _IIl=3: DLetI ={u,v,w}o IfI N (HuI = X) is
non-empty, then [HU I - Xl 21 and thus [I|+ [HUI = X{>4. 1If
IN(HUI=-ZX)is empty, then I € X and thus u,v,w forms an
X =orbit. Every element of T, has one of u,v or w in its Q-socle
-and thus Ix «>/ is divisible by 3 for each x €7, (by 2.1.7(p))o
Because X satisfies (2), I =X, Since ’7'(r is non-degenerate, there
are Q=-HF elements and these are not in X. Thus (’H Ul - X[ 21

and [I| + [HVI =X >4,
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®) JTl=2: Let I =)Clu,v] . Either both ux = u and

Vg = Vv, OT {u,v} is an « -orbit. In the former case I< HU I - X,
which implies |[HU I - X| 2 2 and tmus [EUI-X| +(I|>4. 1f
{u,v} is an K -—orbit, then (U.v)x = u.v. We may redefine Q, making

u.v Q-isolated and u and v Q-HF with bearer u.v. We then have |[I] = 1.

c Li=1: let I ={'u} ¢ We may assume u is a point.
Since uy = u, uég X. Thus lHUI-—X > 1. Suppose lHUI—X,'_{_? 2
Then there exists at most one element of H -.X which, if it exists, is
fixed by of o

Let U be the set of Q-HPF lines with Q~bearer u. Because Q

4
r
is non-degenerate, there is a Q-HF point y with Q~bearer x ¢ Uo By
2.1.6, |x<«>|divides |y<«>[ o« If Xz x, then both z, y £X
(vecause any element of H = X is fixed byo¢ Yo But |x<q> | dividing

|y(«47/ would then contradict (2) of 2,2.2. Hence xx=xand x¢ H = Xo

Let V be the set of Q-;HF points with Q-bearer x and let
Vi=UU V-{x}. ThenV'C X, since both x, u¢ EU I = X and
’HUi - X[ < 2, Therefore V' contains no elements fixed by o
However, by an argument similar to that of the previous paragraph, with
V' replacing U, one shows that V' contains elements fixed by & 5 a

contradiction. Hence [HVUI-X ]2 3and |T]+|HVI-X|24.

Bl k=1¢: In this case e(n) = 4, 5 or 6. X consists of one
s
o —orbit of P, 1 elements. We must show that(I |+ |HUI - X{ > e(n).

If [I| 26, this is so. We consider the cases 41 £ [I] £ 5.
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() 3£ |I| £5: Since X consists of one o ~orbit, and

Ix =3I, either X C I or XN I is emptyo I XN1Iis empty, then
I< HUI -X and thus {I] + |HVI =X >2|I|>62 e(n). . Thus we
assume X< I. This implies 3 £ p_]s‘! £ 5. We consider the possible

values of D, and s In each case, we show that eithex |I! e e(n)

10

or [I~-X| # [I] 2e(n), both of which imply [H UI - X | + [ I|2e(n).

(1) p, =2, 5 =1 l1=xl 21, |1) 23 =-2] + {1l 24 = e(n);

e

(ii) p, = 2, 5, = 2 IT1 24 = e(n)

(iii) P, =558, =13 1I| >5 = e(n) ;

(iv) Py =3, 8, =12 If [I] >4, then |I = X! >1 and
|T| + |I=X{ >25=e(u)e IfjI| = 3, then
H is non—-empty because ’rt’r is non=-degenerate.
Let y ¢ Ho Then y> € H, and x & Q(y) for
some x € I, s0 3 = |xLw> | divides |y <«>|
(by 201.7(b))o  Hence (B2 [y<£a>] 2 30
Since X € I, we have H € HUI — X.  Thus

[HUI~-X{ >3 and|I{+|[HUI=~X] >6=-e(n).

(b) [I]=2: LetI= {u,v} o Suppose first that u and v
are fixed by ! o Then I &£ HVI -~ X, It is clear that because 7l’r is
non-degenerate, there are at least two other elements of H not in X.
Therefore |HUI ~X| >4 and |HUI =X|+ [I[26 2e(n). If
{u,vj forms an K ~orbit, then we mey redefine G, making u.v

Q-isolated and u,v Q-HF with bearer u.v. We then have (I |= 1.
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(¢) [Tl =1: Iet I ={uj. Since u is fixed by « ,
ue¢ BV I=X, Thus [EUI=X| >1. Ve must show [H - X[ > 2, 3 or 4,

depending on D, and s An inspectiozi of the few possible cases

10

shows that this is so, because 7‘L’r is non-degenerate.

This completes cases (A) and (B), and hence we have shown

k s
r >e(n) + = D, -
i=1
k s,
Conversely, assume r > e(n) + < p. = We show there is a
. . i=1 B

collineation of Tt':: fixing K elementwise and having order n. We
consider cases (A) to (D). In each, we define a configuration (3
freely generating 7C§ (this can be verifisd using 1.6.4 and i.6.3).
We then define a collineation o/ of P having order n and fixing K

elementwise. By 1.4.4,< extends to the required collineation of
8,

ko, In each case, we let t = v = o(n) = < . .
T j=q 1

A) K# s In this case e(n) = 0. Define (© to consist of K
and a set X of r points, each incident with one line { of K e
k S, -
Since » > = P, * s there is a permutation L' of X having order n
i=1

(by 2.2.1). Define the collineation X of P by xol=x for x €K,

and x¢ = xx' for xe X.

(B)r=g s k221 In this case e(n) = 4. Define p to consist of

1

(a) two points x and y,

(b) Xk sets of lines L(1),..,.,L(k) which are pairwise disjoint and
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L(i) =£A‘/(-1(i)9ooog j(ii], and
. P4

1

(¢) if t >0, a set of lines L = {l:,oo., ZQ o

We define the lines of L(1) to be incident only with x; and all other

lines of e to be incident only with yo Define w bBy xu« = x,

(1) 8 '
i . i
FA =5, ﬂ-( 2}( = By ¢ J°= 19ooe,pi l, i-= 1,eoo,k,
J 1+(3 med p,” )

and if t > O, Iix= ;?3., 3= 1y00eyte

(¢) K=¢ s k=1, p1<__3 3 Wehavee(n)==4or5asp1=2or3.

Suppose first that D, = 2 and s g =1 (i.6. n=2). Define p to have four

points Xyy Xpy Iy and Xy and if r> 8, r - 8 lines ]1,“,, ,(71‘_"8,

where /i is incident with x, only. Define xzoé = Xy x3o< = Xy

1
and all other elements of P 1o be fixed by o« o Suppose now that

either Py = Jors

1'> 1o Define (a to have

(a) a point x,

(v) Py lines y19”o,yp incident with x,
» 1

S
(c) P, 1 points Zysooess o 9 where z; is incident with
p, 1
1
1+ [(i-1) mod p1_:[ s and

(d) if + >0, + lines 4°,e.o, £ incident with x.

. = = = %
Define of by x« Xy yio( y1+(i mod p1) ) Zi°< Z1+(i mod p1 1) H

and if ¢ >O, Vi'o( = [i' 9 i= 1900.,1‘:0
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(D) ,<=2;s » Py 255 k=13 ‘Wehavee(n)=5ifp1=5and.s1=1,

s
and e(n) = 6 otherwise. Purthermore r > e(n) + P, 1 >5+ 5= 10,

If r= 10, p, = 5 and 5, = 1, then let (3' have five points-x1,x2,o.e,x5

and no lines, and define w by xio< = X‘H'(i mod. 5),1 = 5066950

Suppose now that either r >10 or p1 > 5 or 8, > 1o Define %9 to

have

(a) two points x and y,

(b) +two lines u and v incident with x,

8 ) : .
(¢) P, T Yines /1,0007 17 o incident with y,
1

By

(d) if >0, % lines A, %yecoy i,; incident with y.

Define X by zX =X, y{ =y, uxX =uy, vX = v, /-"(=[ 81,0
1 1+(1 med P, )

S, ’
is= 190009P1 ' and, if ¢ >O, [ivx = ["l_" i= 190099170

This completes the proof of theorem 2.2.3.

2.3 Maximal Finite Collineation Groups

Our first and main aim in this section is to give a least upper
bound for [Gi s Where G is a collineatj:.on group of 7‘(r’< fixing K
elementwise and having finite orbits. It follows from 2.1.3 that
| 6| £ !, However, r! is not always the least possible upper bound.
For » > 8, define a sequence of numbers m,, by mg = 48, M = 58 4 and

m, =2 [(r«-6)8j otherwise. We prove
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Theorem 2.3.1 ¢ If G is a collineation group of T(f fixing <

elementwise and having finite orbits, then |G| £ (rlif Kzg .
(m,if K=f .

These numbers are the least upper bounds for [G|.

The proof of 2.3.1 is given later, after some preliminary lemmas.
The numbers m_, = > 8, were first obtained by Alltop (2 ) for r #+ 9 and
by Sandler (27) for r = 9. For their proof that (G| £ m when
K = ¢ 3 bo‘th these authers used 2.1.5; together with an extensive
case analysis of possible minimal finite configurations P for which
pG=p and T, = »( e Yo The number of cases we have to consider

is mich smaller.

Our first lemma shows that the upper bounds of 2.3.1 are best

possible.

Lemms 203.2 ¢ If < 95 s then there is a collineation group of Tf:
fixing K elementwise and having order »!. For each r > 8, there is a

collineation group of 'r"tr of order m;‘.

Proof Suppose first that K3 $. Choose a line £ of Ko Then
'7'61"( = F(Ku X), where X is gz set of r points incident with A and no
other line of Ko There is a collineation group G of K v X which
fixes K elemeniwise and such that G/x ié the full permutation group of
X. Because IX[ = r, we have (G |=1}s 3By 1.4¢4 , G extends to a

collineation g"roup of ’T‘CI'.C of order ri
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Suppose now that K =¢ o Forr2>8and r# 8, 10, the
example given after the proof of 2.1.1 is a collineation group of 7Z’r

isomorphic to S, X Szh6’ which has order 2 L(r—-G)!} =m. Suppose

2

r=8orr=10. Then 7, = F(F )5 where e has -;2'- points and no

lines. The full permutation group of these points has order (-g-)'; =t mr

and is a collineation group of e e By 1e4¢d | this extends to a

collineation group of 'R’r of order m .

Lemma 2.3.3 3 If a and b are positive integers, then al b! £ (a+b~1)!,

If, in addition, a > 2 and b > 2, then a! b} £ 2 Ba+b—2)!] .

Proof ¢ By inducltion on b for a fixed arbitrary a.
Lemmz- 2.3.4 3 If Nypoeoshy —are positive integers, then

K X
(1) TT nt < (i ni-km)s .

i=1 i=1

If, in addition, n, > 2 for each i, and k > 2, then

= =
i) TT n,¢ £ 2 =k )t
(1) i=1 %= \Kiﬂ ! )]

Proof 3 By induction on k, using the inequalities in 2.3.3.

Lemma 2.3.5 ¢ Suppose G is a permutationgroup of a finite set X. If
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(%) is a set of pairwise disjoint subsets of X such that
’ n n
X, 6=X;, 1£i<n, and iu1xi=x, 'bheanléiTi;lGleo
= = i

Proof @ The map o~ 3 G»G{x X Gfg X oo X Gl defined by
1 2 “n

g (o) = <D</X 9°“’D(IX ); X & Gy is clearly a group monomorphism.
1 n

If G is a permutation group of a set X, then a G-orbit

xG is trivial or non-trivial according as |[xG | =1 or \xG | >1

respectively,

Lemma 2.3,6 3 Suppose G is a permutation group of a finite set X
and there are J trivial and k non~trivial G-orbits, where k _o?; Te

Then

la] < ((1X]=3)%, it k=1,

2[(1x| =j-k)g_]; K > 2.

Proof ¢ Let the G-orbits in X be 01’°°"Oj+k’ where ioi'\> 1 for
1€ igkand, if >0, |0 | =1for1+kgigj+k We have

k+j Jtk
0, G=0, for each i and \J O, =X, By 2.3.5, |el<TT7]¢,]-
1 i =1 1 1=1 04

Beczause G, 0 is a subgroup of the full permutation group of Oi’ we
i

have ‘G,Oi[ < |Oil ! i
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Hence |G | < TT (IO, | )
i=1
X -
= iz=|1(; o, | ;), since |0, =1 foramy 1+k<igj +k,
< 101(;, if k = 1,

.k .
2 [(1=f1 f oi; -k) z] if k> 2, by 2.3.4(ii).

k
This is the required ineguality, because = [Oi{ = | X[= 3o
i=1
Lemme 2.3.7 ¢ Suppose that G is a finite collineation group of ﬁri\f

fixing i€ elementwise, Q is a G-invariant HF process for ﬁlfffrem K,y and

I and H are the sets of Q-isolated and Q-HF elemesnts respectively.
If 7 ] is a G—-orbit of Q~-HF elements, then the s&t B of Q-bearers of

elements of H1 also forms a G-orbit, and each element of B is

incident with the same number b > 1 of elements of H1o If, in
addition, BC T U Iy then

|| < B! (b&){B'lI—BI ! i~H-H1u B{¢ &

Proof We first show that B is a G-orbit. ILet x and y be

_ elements of B. We show that xX =y for some & G By the
definition of By, x and y are Q-bearers of some n and v respectively in
H1. ds H1 is a G-orbit, there is an o« € G such that ux = v. Since
@ is G-invariant, x being a Q-bearer of u implies xX is a Q—bearer of

ue = v. Thus both xx and y are Q-bearers of v. As v is Q-HF, it

has only one Q-bearer. Thus x™K = ¥y, as required.
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Suppose x & B. Let x pe incident with b elements of H1.

Then x ¥ is also incident with b elements of H1 for each o & Gy

since H1 is a G-orbit. As B is a G-orbit; B = xG. Hence each

element of B ig incident with the same number b of elements of H1o

Finally, we prove the inequality. By 2.1.2(£), G= G/H U I
We have IG = I, HG = H, H1G = H1 and BG = B. Consequently

(H1\J B)G = B, U B, (I-B)G¢=I-Band (H-H U B)G=H - H,\J Bo

1

By 2.3.5, we have

lel < | G[H1LIB | e lefpple [Cg. H,V B \

g[q%UB]O[ImB,z[H-muBls eee (i)

Now GIH U B is a subgroup of the full collineation group of Hj&j B,
1

a configuration in which elements of B and H1 are all points and all

lines respectively, or the duals such that each element of H1 is

incident with one element of B and each element of B is incident with
b elements of H1o The full collineation group of this configuration

is isomorphic to SB)< T, where SB is.the full permutation group of B

and T = 8 X 8 000 X8 (IB| times), where 8, is the symmetric

group on B letters. Hence (G{H UB [:g {SB { o ( lel )|B|=
4 .

(B | & (b!)lB( o Substituting in (i), we obtain the required
inequality.
Proof of 2.,3.1 ¢ It follows from 2.3.2 that the upper bounds

given are best possible, It remains to show that they are upper



-92-

bounds. It follows from 2.1,3 that {G| < r¢! Thus we only need

show that (G| £ m when kK = ¢pe Since 1£ m for each T > 8, we

assume G is non=trivial.

Let @ be a G—-invariant HF process for 7, from ¢ with sets of

isolated and HF elements I and H respectively. Since GZ ¢ HUT

(by 2¢1+2(£)), we show that (G]H'\/Ilé m. let there be j trivial

and k non-trivial G—orbits in HUI. Because G is non-trivial, k > 1.

From 2.3.6,

'[G‘HUIié (fgvz| - j) if k = 1,

2[(1EV Il -3-k)t] k22

By the definition of rank, {EUI| =1z ~|I|. Hence, using these

inequalities, we obtain [G| £ 2 [(r—6)!,] £ m  if either

(a) [I] +3 +%k 26 andk>2
or (b) [I]| +3j 26 andk=1.
If [I| > 6, then either (a) or (b) holds. We consider the

cases 1 £ [I| £ 5.

(1) [I| =5¢:¢ Ifk>2, then (a) holds. If k=1 and j >1
then (b) holds. Thus we assume k = 1 and j = O. This implies that
there are no Q-HF elements, and one G-orbit of 5 Q~isolated elements.

Therefore r = 10 and [GIHUIlanlIlgfliz = 5§ = Mene
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(2) Tl =4: If k > 2, then (a) is satisfied. Thus we
assume k = 1. If j > 2, then (b) holds. Hence we assume j< 1.
Thus the four Q-isolated elements form a G-orbit and there is at most
one Q-HF element which, if it exists, is fixed by G. Hence r = 8 or

i:

r=9. If r =8, then there is no Q-HF element and [G!
HUI

[elp[ € 1T t=41=ng

Suppose now that r = 9. There is one Q-HF element x, and
[zG [ = 1. Let x have Q-bearer u. By 2.1.6, |uG | divides [xG |

and thus |[uG| = 1. We have [G{H U1 ( = [G(I[o Suppose first

that G{II = SI, the full permutation group of I. Then G has an element

ol of order 3 and there is an x~orbit 0 £ I such that [ O [ = 3.
Bscause }uG[ =1, u é I. Hence u has at least two elements of I
in its Q-socle, at least one of which is in 0. By 2.1.T(b), [0 =3

divides |u Lor>fs  But |ugu«>| <L [uG | =1, a contradiction. Thus

it is not possible for G(I = SIo Hencse G‘I is a proper subgroup of

Sps and [G[I(properly divides | 5S¢ | = 24, ‘Therefore |G [ = !GII | £

i2 = mge N

) 1zl =3: Because'r=2lIf+{HIm>n 8, we have

[H [ 2 26 Suppose first that k = 1. Then either H or I 1s fixed
elementwise by G, since HG = Hy IG = I and HU I contains only one
'non—trivial G-orbit. If T is fixed elementwise, or if H is fixed
elementwise and [H| > 3, then j > 3 and (b) holds. The only other
possibility is thet H is fixed elementwise and | H [= 2. In this case

Glgyr =% » r=2|I|+ |H| =28, and we have (G|= [G[I) £

[T

3_3 3!(11180
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Suppose now that k > 2. If j + k >3, then (a) is satisfied.
Hence we assume k = 2 and j = O. It follows that I and H are the
two non-trivial G-orbits in HU I, Let I =f=x, ,xz,x33 . As T is
a G-orbit, I consists entirely of points or entirely of lines, and
Y = ix,l °Xps XpoXqy xsex1} is also a G-orbit. Because H is a
G-orbit, the set B of Q-bearers of H forms a G-orbit, by 2.3.7.
There is an element of H which has a Q-bearer in I or Y. Therefore

I (if B were Y, then we could

B=I, or B=7Y., We may assume B
redefine Q, making elements of Y Q-isolated and elements of I Q—free)a
Each element of H is incidént with exactly one element of I and, by
20347y each element of I is incident with the same number b > 1 of

elements of H. Therefore |H| =3b =1~ 2[I|=12~ 6, By

=6

3

20307 (with H, = H, B=T and b = ), we have

1

o143t [(BR)] £ @6 (b 2.3.400)

S m ®
; r
(4) i f I |=2: Let I ={u,v} o-  Suppose first that G fixes

both u and v« Then j 22, If k> 2, then (a) is satisfied.
Assume k = 1, i.e. there is only one non-trivial G-orbit of Q-HF
elements. In order for a to be non-degenerate, it is clear that
there exist at least two Q-HF elemer;’s-s fixed by Go Thus j > 4 and
(b) is satisfied. Suppose now that G does not £ix u and v.

Then I forms a G-orbit and u and v are either both points or both
lines. We redefine Q, making u.v isolated and u and v hyperfree

with Q-bearer u.v. We then have only one Q-isolated element.
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() [zl =1: Let T =f{ul.  Thenu is fized by G. Thus

j 2 1. Suppose first that k = 1, i.e. there is only one non-trivial
G~-orbit of Q-HF eleménts. An inspection of the few possible cases
shows that, in order for .G-i to be non-degenerate, there are at least

" four Q-HF elements fixed by G. Thus j > 5 and (b) is satisfied.

Suppose now that k > 2. If j + k> 5 then (a) is satisfied,
so we assume j + k< 4. Since j> 1y, wehave k=2o0or k=3, 1In
either case j<£ 2, and thus there is at most one Q-HF element fixed

by G. Consequently, we have either

(i) there exist non-trivial G-orbits H , end B, of Q~-HF elements

such that elements of H, have u as Q~bearer, and there is an element

1

of H, having an element of H

5 as Q~bearer, or

1
(i1) Q may be redefined such that (i) is satisfied.

We therefore assume that (i) is satisfied. By 20307 the Q~bearers

of H2 form a G—-orbit B. Since there is an element in Hz with

Q~bearer in H1, we have B = H 1° Each element of H 4 is incident with

the same number b > 1 of elements of H2, and

(1.1
(111) fe (< I8 | t (02) 1 lE-mvE] s Tl o

1

Let h= |H ’ | « As each element of H_ is incident with one element

2
of H,; wo have [Hzf = bIH_l[ = bho We also have (I| = 1,
|E|=x-2and [H1( =h D> 2 Substituting these in (iii)

we obtain
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(iv) |G ) £ h (bg)h (r~2~b-bh)f, h > 2.
Suppose first that r = 2 - h - bh > 2. Then from (iv)

|Gf<2 [(r—4—h)zj (using 2.304(11) if > 2

and the second inequality of 2.3.3. if b = 1).

Since h > 2 we have |G| £ 2 [(r—6)3:( <o in this case. Assume

now that r = 2 = h = bh< 1. Then from (iv), we have

@] <nt (p)2

< hi, ifdb =1,

2 [(ub=1)1] if b2 2 (by 2.3.4(i1))

e Do
QE“E“E )3 s D=1,

.

2 [ (3-x-h)¢], b2 2,
R . T=2=X
where x = r - 2 - h -bh. It is easily shown that (—°§— i< m,
for x£ 1o Thus [G/< m if b = 1. Ifb>2and x+ h> 3,

then [G|g 2 [(r-S)!] £mo The “only other possibility is that
. r

b>2and x+h< 2 This implies x = 0 2nd h = 2, since
h=|B| 22  HenceO=x=r-2-20-2andb= =,

) 2
- Substituting in (iv), we have {G [g 2 [(—%4) &] e One shows

that 2 (—I:Q'A) 3] 2§_ mr by inspection for r = 8, 9 and 10, and by

induction for r > 10,

This completes the proof of 2.3.1,
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In section 2.5, we show that when K¢ ;/) s @ll maximal finite

collineation groups of 7t'1'f fixing k elementwise are conjugate.

This is not true when K= ¢ o In fect, maximal finite collineation

groups of ’/‘L; do not even have the same order. For example,

”Tﬁ = F(e ), where (J has two points x and y, three lines incident

with x but not y, and four lines incident with y and not x. The full

collineation group G‘i of £ has order (31)(41) = 144. By 1.4.4 ,

G, extends to a collinsation group of ﬂjH of order 144. Assume G

i 1

is not maximal. Then G1 is a proper subgroup of a finite collineation

group G of TZ’“o

Thus |G 1 | divides |G |properly. Hence
{el >2 %144 = 288,  But from 2,3.1, |G| £ 2.5 = 240, a

contradiction. Thus G, is maximal but does not have order nm,, = 240.

1 11

By 26302, 7f1 ’ has a collireation group of order 240, Thus maximal

finite collineation groups of ’7fr do not bave the same order.

By the above example, maximal finite collineation groups of Tt;
are not necessarily isomorvhic. Iden (16) has shown that, for
r > 20, there are at least p(r—»19) isomorphism classes of such groups,

where p(r—19) is the number of unrestricted partitions of the integer
r -~ 19, Because p(k) tends asymptotically to -1 exp (71’&),
. , 43 3 /%
the number of isomorphism classes of maximal finite collineation groups

of ’7fr increases rapidly with =,

We note thaty; by 2.1.3, any finite collineation group of 7rr is a

subgroup of Sr’ the symmetric group of degree r. Thus the number of
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isomorphism classes of such subgroups (including maximal ones) is

at most the number of isomorphism classes of subgroups of S .
r

20,4 Subplanes of Fixed Elements

If x (resp.G) is a collineation (collineation group) of a
piane 70, then the set of elements of 7 fixed by « (resp.G) forms
a subplane of 7 , denoted by 7v (1,0¢) (resp.77{156))s In this
section, we consider two questions. Given g finite collineation

group G of 1U1K fixing K elementwise, what is the nature of
’7‘(5 (1,8)7? Secondly, which subplanes of T(f are ﬂf(%G) for

gsome such G?

Lippi (18,19) has shown that if K is a collineation of 7, of

. 8
prime power order p 4 where s > O, then

(a) if p # 2, then 7Tr(1, ) is a possibly degenerate free plane of

Ay
.£inite rank r', where r'= r(mod p)

(b) if p = 2, then 7rr(1,o<)¢5 r

These results, in a more general form, as well as others, are proved in

this section.

Theorem 2,401 ¢ If G is a non-trivial finite collineation group of

ﬂ: fixing K elemeniwise, then Tc':(1,G) is a free rank plane havingr

core K and rank r 47 where either
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(1) r

4 = {’F(rrc { and Itf (1,G) is non—~degenerate, or

(2) 0£r £r-3and 7-7,;""— (1,G) is possidly degenerate.

1

Before proving 2.4.1, we prove a series of lemmas, some of which

are needed in the proofs of later theorems.

Lemma 2.4.2 ¢ If ¢ is a collineation of a non-—-degenerate free rank
plane © fixing K( 77) elementwise and having order 2, then 7 (1, ) is

a non-degenerate free rank plane having core K {7r) and rank |7 / °

Proof ¢+ 7r (150¢) contains K(7), since X fizes K (7c) elementwise.
It is therefore a free rank plane (by 1.Te1 ) and has core K {7 ).
If x& 7T - 7T{1,< ) then XXX is fixed by« s since X has order
two, and x I x .x. Thus 7z(1,X) is a Baer subplane of U o 'The

result now follows from 16To 4 and 17+5

Lemma 2.4.3 s If G is a finite collineation group of WX fixing K
elementwise and having order 23, where j > 0, then -755(1;@) is a

non-degenerate free rank plane having core K and rank I ,,(ri(‘/ o

Proof ¢ Wle proceed by induction on j. If j = 1; then G = {1,“},

where o{ has order two. Thus ’7"-':(1,(}) = ’/‘Z'rK (1,¢), and the

result follows from 2.402. Suppose that the lemma has been proved

for 1€ n<j and that |G | = 2%, Then G has a normal subgroup G,

of order 297 (see, for example, (11 )}). Define 7Tr= 71’::- (1,Go).

By the induction assumption, 7T is a free rank plane having core K
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and rank [Tfi o Clearly ’l‘lr’( (1,6) &7, 1If 7'Cr’< (1,6) =7,

then we are finished. Suppose 7[1.K (1,6) % 7, From the
normality of G in G, it follows that wG =7 (because xc¢ 7 ,

L E G-,-)(xb()Go = (xGo)oL =X = XK 7). Hence

7ZrK (158) = 7(1,G{¢ )e Let B bé a coset representative for G,
inG. Then G =G \J BCG and 3°¢ G. This implies that

Gl = {1, 6’)73 and that @[, bhas order 2.  Hence

fml’f (1,8) = (1, Bl )» and it follows from 2.4.2 that "’f (1,6)

has core K and rank !/T' . By 1.Te13, iTl’]’ = l TF: [ o By

induction, the lemma is true for allojo

We note that 2.4.3 was first proved by Lippi (19) for the case
of G cyclic and K=725' o Our proof for 2.4.3 is based upon that of
Lippi, except that we prove directly in 1.7.5 +that a non-degenerate

Baer subplane of 7(: containing K has rank / Tffl (Lippi proved

AY
that a maximal proper non-degenerate subplane of 7rrr is not finitely

generated and used a result of Baer (3 ) that Baer subplanes are

maximal).

We now consider finite collineation groups G for which | G [ is

divisible by an odd number.

Lemma 2.4.4 3 Suppose that G is a finite collineation group of

W:fixing K elementwise such that [Gl is divisible by an odd number > 1.
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Let C be the set of odd order subgroups of G and »' = A 7(":(1,]?)9
PeC

Then
(a) w7 &= 7t 3
(b) if z¢ 71:;: -, then [xG] >3 ;

(¢) if @ is a G-invariant HF process for < s Tthen
T

Q(x) € 2 for each xe ' 3
(d) 7' is a free rank subplane of 7C having core K and
rank r', where 0 £ r%zr = 3 3

(e) if @' = G/n:, , then 7(5 (15G) = 7' (4,6!) and

|a¢| = 2%, for some i > O.

Proof : (a) It suffices to show that xe 7%y X € G and

pe U/ P imply xX@ = xo(; Because @ has odd order, so hag
P& C

O(PQZ10 Thus o(@é{' e U P, This implies x 04{30‘21 = Xy

PeC

ieceo XA = xx, as required.

(b) Suppose x ¢ n; - e+ Then there is a P& C of

N

odd order > 3 for which [xP | > 1. By 2.1.7(a), | xP| divides (P|.

2
Hence (xP| 2 3, and [xG| 2 {xP] 23

(¢) It suffices to show that Q(x) & TCrk (1,P) for each
PECand each x € 7 (1,B). Letuealx). By 2.1.7(c), [uP|

divides | xP[, because P has odd order. Because |xP| = 1, we have

\uPl = 1, Hence u é’l'C;‘K (1,P)s Thus q(x) < 72’3;‘~ (1,P), as

reguiredo.
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(d) ' is a subplane of Y‘Z’r': s because the intersection

of any set of subplanes is a subplane. Since K is fixed elenentwise

by Gy & 77,;( (1,P) for each P & Co Thus KC 7 and 7' has

core Ko By 1721 ;' bas free rank. It remains to show that

its rank r!' satisfies 0< r* <L r = 3,

Let @ be a G-invariant HF process for 7’5;( from Ko The

extension process S = ' N Q is a HF process for 7' from kK (by 1.5.7 ).
By (), 8(x) = Q(x) for all x ¢ x*» Thus every S isolated (resp. S-HF)
element is also Q~isolated (Q-HF), Thus r' £ r. Because (G| is
divisible by an odd prime, there is a non-trivial P &£ C (for example,

a Sylow subgroup)e Since Q is P-invariant, there is at least one
non-trivial P-orbit xP of Q-isolated and Q-HF elements {by 2.%1.2(f)).
Because | xP | divides )P[, we have ,XPI 2 3+« Because G =7r'y we

have xPn+d =¢ o Hence there are at least threce Q-isolated or

Q-HF elements which are not S-isolated or S-HF. Therefore r'< 1 < 3,

(e) Because 7(;‘_ (1,6) < 72’1.'( (1,P) for each P& C, we have
K
frcf (1,6) £z*e  Hence @' (1,0) ==-rc'(1,c;]{ti) = 7'(1,69)e It

remzins to show that [G'| = ol for some 1 >0, If X &Gy thenod

: J
- has order 29m for some odd m and integer j > 0. Thus ng has odd

J J
order m and 9(2 & P for some P & C. Hence ' & 7 (1,P) gﬁrk(h 0(2 )s
. T

J
which implies x 042 = x for all x¢ =% Therefore MITC' has order

dividing 2‘], iecee o((n, has order a power of two. This is true for
each « € G. Hence G' = GI  is a 2-group and |G* | = o' for some
T

i 0,
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Proof of 2.4.1 ¢ Because G fizes [ elementwise, we have

<< ﬁf (1,G)o Hence 7'(13( (1,8) has core K and free rank

(by 10T01) It remains to show that either (1) or (2) is
satisfied. If |G| = 23 for any j >0, then (1) is satisfied.

Thus we assume iG{ is divisible by an odd number >1. We use the
notation and results of 2.4.4. In particular, rrf (1,8) =x2(1,0¢),
i

where [G'| = 27 for some i 2 0. We consider three cases

(1) del _=1: In this case 7?;K(1,G)= 7 (1,6Y) =zt

By 2.4.4(d), (2) is satisfied.

(i1) IG“’ >1, 1! is degenerate ¢ By 1.6.5 y 7' is a free
plane and is finite, as it has rank £ r = 3 (by 2.4.4(d)). Because
. a¢% (1,6') is a proper subplane of 7;°%, it has rank Ty where

0O&r v -3 (by 1:6.5(4))s Thus (2) is satisfied.

(3i3) gt >4, ' is non-degenerate s By 2.4.4(a),
. i . i i
" 9—:7:5 s Since [G'| =27, i>0, ' (1,G') has rank] T:.“rr.{

and is non-degenerate, by 2.4.3. Because both r and r' are finite,

[ﬁr'c{ = max( K’ﬁ\/o) = l ﬁrKs (using 1.T+13). Hence

Ct(1,67) = fCrK(1,G) has rank I??:If< [, and (1) is satisfied.

This completes the proof of 20401e

We note that 2.4.1 is not a best possible result. For example,

there are no free planes of rank one, so 7Tr(1,G) does not have rank
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one for any G. By an inspection of cases one can also show, for

example, that 7T (1,8) does not have rank O for any finite

3
collineation group G of 7713., We show later that 2°4o‘i is a best

possible result for K’#gﬁ and r 2 2, and that it is also very close

to best possible when K = 515 and r is sufficiently large.

We next prove a lemma which is needed later, when we characterize

non~degenerate subplanes of ,Tf which have finite rank and are

'TC'T’< (1,G) for some finite collineation group G fixing K elementwise.

Lemma 2.4.5 3 Suppose G is a non-trivial finite collineation group

of ?'Cf fixing K elementwise and that 71; K (1,G) has finite rank and
is non-degenerate. If Q is a G-invariant HF vprocess for n’rf( 5

then Q(x) < ;rz:r'c (1,G) for each x ercf(19(})o

Proof By 2.4.3, [G | + 2y for any j> 0, Hence [G|is
divisible by an cdd number > 1. We use the notation of 2,4.4.
If {G'] > 1, then it follows from cases (ii) and (iii) of the proof

of 20,401 that ﬁr}( (1,G) is either degenerate or has infinite rank,
which is not so. Hence [G' | = 1 and ','tr'/‘_ (1,8) = 7' The result

" now follows from 2.4.4(c).

e
Our next theorem gives more information about ﬂr\ (1,G) for

particular |G [o
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Theorem 2.4.6 3 Suppose that G is a finite collineation group of

Wf fixing K elementwise, and that /"CrK (14G) has rank Tye

(&) I£ [G[=2%, 5> 0, then ro= 7S
s, 8,
(v) 1 [G]= P, sce Dy, Where D, is an odd prime > 1 and

8; 215 1 = 150009ky then there exist integers t1,°oo,tk such that

k
r-r, = = % 7P

1 3= 1 i.
Proof By 2.4.3 we need only prove (b)o We use the notation and

results of 20,440 Because (¢ is an odd order subgroup of itself, we

have WTK (1,6) = 7' Let Q be 2 G-invariant EF process for ﬂ;K-

from K, and I and H be the sets of Q-isolated znd Q-HF elements

respectively. By 1¢5.7, the extension process § = rcf (1,6) N Q is
a HPF process for 71’;’ (1,G) from K. Let S have isolated elements IS

and HF elements Hy.  Because Qx) € rtf (1,6) for each x &€ TC:S (1;@)
\(by 20404(c))y, S(z) = @(x) for each x ¢ n’§ (1,6)c Thus By & H and

I g I9 and N

S
r—r1=(2(1|+lﬁl)"’(2 ’Isl+lel)

=2 |I= I |+ |8 - 5| ceceasess (i)

By 20102(e); IG = I and HG = H, Also, IG = I and HG = Hge  Thus

(H;HS)G = H = H, and (I—IS)G = I =Tgo  The sets I ~ Ig and H ~ Hy

S
may therefore be partitioned into G-orhits,; each of cardinality.>1 and
dividing { G [ (by 2.1.7(a))s Thus there exist non-negative integeors

t1 gooo 9tk for which
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k
2[1-I |+ [E=-Hy[= £ t p vesessce(ii).

5_,113'.

The result now follows from (i) and (ii)o.

Corollary 2.4,7 (Livpi (19 )) ¢ If « is a collineation of 71;

having order ps, where p is a prime and s > O, then

(a) ifp = 2, _thex} ?rr(1,e<)_¥ | n*/vo :

(b) if p £ 2, then 7‘fr(1,o<) is a (possibly degenerate) free plane

of rank T, where r, = v (mod ).

1

We next give a necessary and sufficient condition for

I‘g'((‘l,(}) to have infinite rank (i.e. for (1)of 2.4.1 to be satisfied)o

Theorem 2¢4.8 2 let G be a finite collineation group of ?75
fixing K elementwise. Then 72;_’<(1,G) has infinite rank if, and

only if, there are infinitely many G-orbits of cardinality two.

Proof @ let X = {’x e 7'(:: $| %G = 2}0 Assume first that X is
infinite. I | G |= 27, some j 3 O, then 77 (1,0) has infinite

rank (by 2.4.3). Thus we assume [G | is divisible by an odd number
>1e We use the notation and results of 2,404, By 2.4.4(b),

X< 7z% Thus 7' is infinite and G!' = G’/ﬂ is non~trivial. By
8

2.404(e), [G%] = 2%, some 1> 0.  Since 7' is infinite but has
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finite rank r' (by 2.4.4{d)), -7r' is non-degenerate (by 1.6.5(c)).
Hence r'(1,G") has infinite rank [7'[ , by 2.4.3. Since

H(1,6) = m'(1,6'); 75 (1,6) has infinite rank.

Conversely, assume ﬁf (1,G) has infinite renk. Let Q be a
G-invariant HF process for Wf from K, The extension process
S = ﬂf (1,G) N Q is a HF process for T(f (1,6) from i (by 1.5.7)
Because Tf’r( (_1,G) I;a_s infigite'rank, there?v are infinitely many S-isolated
or S-HF elements. . By 2.1..7(d), either the Q-bearers of an x & 77;- (1,G)
are also in ﬂ'r'( (1,G), or they form a G-orbit of two elements
(because G_ = G)s Thus if x is S-isolated or S-HF, then either x is

also Q-isolated or Q=HF, or x is Q-free and the Q-bearers of x form a
G~orbit of two elements. There are infinitely many S-HF or
S-isolated elements; but only finitely many Q-HF or Q~isolated elements.

Thus there are infinitely many x & ’r’(;{ (1,G) for which the Q-bearers

of x form g G=urbll of two elements. Thus there are inlinitely many

G-orbits of cardinality two. N

We note that 2.4.8 is not true for planes having infinite free
rank. For example, define as the.configuration ? a line 4 » three

points X49%, and x3 not incident with 4 s and a denumerable set of
points {y1,y29000 J, each incident with / » Clearly f has rank A/oo

Therefore F((D) = Let G = [o(), where o« is the collineation

’/'t’/vo.



=108~

of ( defined by Lot =4 ol % F(gaqineays = 152038 Yk = Typgs

Tseq® = Tgo for each j =0(mod2). By 1.4.4, G extends to a

ollineati £ order 6 of 7r for which F =
collineation group of order 6 o TLMQ or whic n(())G Fn((->)

for each n ¢ Yo Therefore P = {Fn( (D) $ ne N} is a G-invariant HF

T, TC . -
process for /% Bvery element of /VO [O has one of x 19 x, or

Xy in its F-socle.  Since 3 = ‘x1 Gf= {x1,x2,x$} ¢ |G| is

divisible by 3 for each x & ?z//‘( -p (vy 2.4.7(b))o  Thus W’N (1,G) EP o
o o
Hence 7T /\/ (1,6) = {12 } o However, there are infinitely many points
0

x incident with ,(7 for wvhich ’XG [= 2. Thus 2.4.8 is not true for

finite collineation groups of 77;(/ .
o

We now consider the second of the questions mentioned in the
introduction to this section. Firstly, we characterize non-degenerate

‘subplanes of 7rr’¢ which have finite rank, core K s and are lt'f (1,G)

for some G.

Theorem 2.4.9 ¢ Surpose 7U is a non-degenerate subplane of I’f—

containing K and having finite rank r Then TC = 7"6’;( (1,6) for

16

some non~trivial finite collineation group G of 7fr’<. if, and only if,

both 0 £ T, < v = 3 and there is a HF process P for TL’rK from 7T ,
Proof ¢ Firstly, suppose 7T = /”Cf (1,G) for some non-trivial

finite collineation group G. Then G fixes X elementwise, since
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K& o Hence 0 £ v, < r = 3, by 2.4¢1. Let Q be a G-invariant

i
HF process for TC::"C from Ko By 2.4+5, Q(x) € - for each x&7 »

We have Q= K C o EHence (1) and (ii) of 1.5.11 are satisfied

(with g = T e By 1.5.11(d), the extension process P = 7=/ Q is

a HP process for 77:1"" from 7T . Note that since 7t G =7 and Q is

G-invariant, so is Po

Conversely, assume that 0 < T, £ r - 3 and that there is a HF

process P for /T: from 7. Choose a line £ of 7. By 1.6.6,
there is a HF process @ for ’rr;( from 7t such that all Q-HF elements

are poinvs with Q-bearer ,{7 s and there are no Q-isolated elements.

Because K & 7 » thsre is a HF process R for 7C from K with T, = r(R).

Then R + Q is a HF process for TC: from K 5 and r = r(B+Q) = r(R) + »(Q) =
r, * r(Q)o Thus ¢(Q) =1 - r, and there are k = r - r, Q-HF points

'x1,“o,xk} with Q-bearer j o We may assume that

O —~——

= 3 co009X ° 05e13 K = . efi
| =T u{x1, . k} By 105.13 e F(Q,1) Define a

collineation group G of Q, by xG = {x} for each x & 7r 4 and

1

G = 8, , the symmetric group on k letters. 144 , G
i{x19°ooyxk:7) k? v group By gy
extends to a finite collineation group of T::f for which Fn(Q1)G = Fn(Q‘l)’

¥ n>o.

We now show that n:rK (1,8) =77, By definition, 7= < n-f (1,6).
Suppose there is an x & fl’r'f (1,6) =7t + Because k = r - r1 2> 34 no

element of x1,o..,xk—3 is fixed by G. Thus x ¢ Trf - Q1° The HF
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process F = { Fn (Q1) ¢ né& N} is G-inveriant and x has x5 in its

F-socle, for scme i 6{1,“0,1«:} ° Since k > 3, there are distinct

h,j e{h.o.,k} s @ach distinct from i. Becauss G{ {'x ?Z- Sk’

1gouoyxk—)

there is an o« ¢ G such that O ={xi,xj,xk} is an « ~orbit. By 2.1.7(b),

jo [ = 3 divides l x(o(>fo Hence |xG{ P Ix<o<>/2 3 >1, contradicting

x € 7‘(1"< (1,6)e Thus no such x exists, and 7(1."" (1,(}) =TT o

Note ¢ It follows from the proof of 2,4.9 that the HF process P for

7(5 from ’R’f (1,0) may be assumed G—invariante

We now use 2.4.9 to show that 2.4.1 is the best possible result

when K % (715 and T >2; ie.e. for each r, satisfying (1) or (2) of

1

2401y there is finite collineation group G of 7‘55 such that
rrK (1,G) has rank r1 and core K,  Suppose first that r/l satisfies
T

(1), i.eo T, = l 7‘[: [ o By 2.3.2, thers is a collineation group of

\

’/1‘: having order r! and fixing K elementwise. Since r > 2, this has

a subgroup G of order 2'], some j > O (for example, the 2-Sylow subgroup ).

By 2.4.3, ’/‘Ef (1,G) has core Kk and rank r

1° Suppose now that ry

satisfies (2), ieee 0< 2, <2 - 30 Because K#? 9 thf exists.

! 1

Let 7T= 755 . By 2.4.9, to show the existence of a finite G
1

-
satisfying 7C = ?Tr\ (1,G), it suffices to find a HF process P for 7‘c§

from 7T, Define Po =7, P1 = U X, where X is a set of r - r, P-HF

1
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lines with bearers in K 4 and'Pn =F (P1), n>1. Then
r(P) =1~ r,o Lot R be a HF process for 7z from K » Then

r(R) =r,, RP = P s B+P = < and r(R+P) = r(R) + r(P) = »r. Hence

1

P = RiP = 71”: s and P is the required HF process. Thus 2,401 is the

best possible result for K¢ and r > 2.

We now consider subplanes of R’f which have rank ‘ n’r‘- l and
core K and which are Tfrk: (1,G) for some finite G. No satisfactory

characterization of these subplanes has been obtained. However, we do

have

Theorem 2.4,10 ¢ For each r 2 8, v, has a non-degenerate Baer
subplane which is not TFr(1,G) for any finite collineation group of

UM (in particular, for any collineation of order 2).

Before proving this theorem, we note that such a subplane has

rank /’R’r/, by 10T+5

Proof s Choose an almost—confined configuration 'o of ’n:r with

vertex point a and bearer lines x and yo By 1.7.7; there is a Baer

subplane 7T of ’R’r containing a and x, but not y. Suppose 7T = Yfr(1,(})
for some finite collineation group G of '/Tro Let Q be a G-invariant
HF process for 7¢_ from 55 o  Since a C/TZ’r(1,G), either the

Q-bearers of a form a G-orbit, or they are both in 72;(1,G) (vy 2.107(d),
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since G = G)e By 107¢9y +the Q-bearers of a are x and y.» Thus
either xG = yG =§ x,y) or both x, y € 7 (1,6).  Neither is possible,
because x & 7T , ¥ ¢ To  This contradiction implies /(Tqé-'rlq(1,G) for

any finite collineation group G of 7Z’r.

The above theorem is proved only for free planes, because the Baer
subplane constructed in the proof of 1.7.T does not necessarily contain
K when K ;&¢ ° However, it is possible to show that for K # 525 ’

r 2> 1 and certain a, x and y, Tc'; has a Baer subplane containing kK ,

a and x, but not y (see note after {‘7‘8). Hence, it is pessible to
extend the above theorem to : provided r > 1, 77:: has a Baer subplane
TC having core K such that 7z # T(: (1,G6) for any finite G. We do

not prove this, because the above theorem suffices to provide an

example of such a subplane.

Pinally, we consider degenerate subplanes of ﬂ‘; which are

hY

/‘Z”; (1,G) for some finite collineation group G fixing K elementwise,
Note that since I is fixed elementwise, we have KK < ,‘z'I':" (1,G)

It K# ¢ s then K contains a four point and thus cannot be

contained in a degenerate plane. We therefore assume K = ;ﬁ °

If  is a collineation of a finite non-degenerate plane 7T, then
70 (1, ®¥) contains equally many points and lines, even though 7r(1;«)

may be degenerate (see ( 4, theorem 4.1.2)). This is not true if
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is a collineation of ’F(fr and TCr(1,o() is degenerate. This was

first observed by Lippl (19)y who gave an example of a collineation

of 7, with two fixed lines and one fixed point. In fact, there is

9

not much relationship between the numbers of fixed lines and fixed

points of ¢ provided ﬂ’r(1,o<) is degenerate and r sufficiently

large. This is shown by

Theorem 204,11 ¢ If m and n are integers for whichm >3, n >3

and r>m+ n + Ty then there is a collineation « of 7‘Cr with m

fixed points and n fixed lines,

Proof ¢ Iet t=r-m-n-1. Define a configuration () to

have points Uygocestly and Wig0eo ,wt, lines Visees ,vn and incidences

u Ivi,1_4_’_i_§_n,v

4 1Iui,1éi§_m,and.v21m'i,15_15.17@

Define a collineation « of p as follows ¢  the points Ujpooost and

lines v ,ooo,vn are fixed by K o If +t is odd, define wio< = W1+(i mod %)’
1€ 14t If tis even, let t = 't1 * 'b2, where t1 and t2 are odd and
P 2 3. Such a +, and t, exist, beccuse t =r = m=n-12>6,

1 2
Define ¥, o = Wy (3 nog 'b1)’1 £1ig %y, and wi;1+i°< = W1;1-:»1-%-(:‘_ rod 1‘:2)’.

12igt Thus if W = {w1,°.°,wt}, then [w<>| is odd and >2

20

for each we W.

By 1eded,  extends uniquely to a collineation of F( f>) = 72’r

for which F = {Fn((D ); ne¢ N3 is an o(—invarié:nt HF process.

If U= {u1,o°o,um3 and V = (v,',.oo,vnﬁs s then every element x of
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’:Tr « UUCUV hag g weg W in its P-socle. Since |w<=x>| is odd,

|wese> | divides [xgx>] (by 2.1.7(b)), and hence

[xLet> | 2 |w<> [>1. Thus x é 7, (4 for all x g—Tgr' - UUVv,

Hence ﬁr(1,o() =UwvV, i.e, it contains m points and n lines.

From the above theorem and its proof, it follows that for each

r, satisfying T £ r, < r - 6, ﬂ'r has a degenerate subplane of rank

1 1
Ty which is 7z’r(1,G) for some finite G, By a similar method, one can
show that for any » > 41 and r, satisfying 2 £ r, Lr -3, TC

1 r
has such a subplane. Thus 2.4.1 is almost a best possible result for

free planes.

3,5 Conjugacy classes

In this section we study the conjugacy, within the fulil

collinsation group of ﬂ’f ¢ of finite collineation groups of Tff

fixing K elementwise. Unless stated otherwise,; "“conjugacy"® will

mean "conjugacy within the full collineation group'. ,

We first give some necessary conditions for the conjugacy of two
'such groups. Define two HF processes P and § to be isomorphic if

P =@ and there is a collineation Y/ of P for which Pn y» = Qn’

né& No  An alternative definition is that P = 2 and, for each n& N,

there is an isomorphism ‘c/zn H Pﬁ—* Qn for which %, l p = ’Z//m,
m

v m < no It e is a configuration, G a collineation group of o ,
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and X a set of integers, denote the subconfiguration {ng: ;|xG[e- X}

of p by F(X,G‘)o For n € N, write ?({“n},(}‘) as P(n,G)°

Lemma 2.5.1 ¢ If G and G' are conjugate finite collineation groups

of 7rrK fixing K elementwise, then

(1) & =g,

(2) S (%,8) T 2 (%,0) Vi,

(3) there exist isomorphic HF processes Q and Q' for 72;.’? from K

which are G- and G'=invariant respectively.

Proof s Let G? = '\;1 G V o The map o-% G—>G' defined by

() = '1/710( Ys < &G, is a group isomorphism, Hence (1).

~ K - o= e =
If x€ 7T 4 then [ x@ [ = [(x¢)yf IX?/,( n cy,)} ](xy)m/,
Therefore Tt;(X,G)\f =7Z’§(X,G') for each XL No Hence (2).
Pinally, if Q is a G-invariant HPF process; then Q°f ={Qny~ s ne& I\T:}

is a G'-invariant HF process isomorphic to Q. Hence (3).

We now give an example of two finite collineation groups G and Gf

of 1(;34 for which (1) and (3) of 2.501 are satisfied, and

71”34(1,(}) = ’1‘1’34(1,(}'), but G and G¥ are not conjugate. From this

example, it would seem that conditions which are both necessary and

sufficient for conjugacy may be difficult to obtaine.
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Define a HF process Q for 72’34 by

% =‘{.8"b} s where a;b are Q-isolated lines,

Q‘1 = Q’O U {1,”0,30} s Where 1,600,18 are G~HF points

with Q~bearer a, and 195004430 are Q-HF points with

Q~bearer b,

Q, = Fné1<Q1), ?‘2 2o
Define collineations « and ' of Q1 as foliows

a= aoct =ax'y b=bx =Dbwx'y

i = io(' = 1+(i mod 9)9 i= 1,000,9’

(5#1)¢= 3 + 1 +(1 mod 3), i =1,2,3, j = 9,12,15,18,

21 + 1+ (1 mod 9)5 1 = 1500.45,

x

(21+1)s¢

(9.{.1)“! 9 + 1 + (i med. 9), i= 1,00099,

]

(j+i):.<' j+ 1+ (1 mod 3), i= 1,2,3, = 18,21,24,27.

By 1404 ; o¢ and ' extend uniquely to collineations of 7?34 for
which Q is both = and o-invariant. Define G =<« > and
Gt = Loe'> o Bocause both i and o' have order 9, 2.5.1(1) is
satisfied. Because Q is both G- and Gf-invariant, 2,5¢1(3) is

satisfied, For each x ¢ Ty —{.a,b,aob} , we have 1€ Q(x) for at
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least one 1 € {15600430} o By 2.1.7(c), |iG| divides | xG | and
[iGf| divides [xG'[o Since both {iG|, [1G®| > 1, both {xG|, (xG'|_>1.
Hence ’/2’34(1,G) = 71’34(1,G') = {a,b,aob} ° Furthermore,;GIX and.

G" x are conjugate as permtation groups of X, the set of Q-HF and

Q~isolated elements. However, all these are not sufficient for the

conjugacy of G and G's Let ¥ = {1,3} o We show 7‘(’34(Y,G) ?’é 7?:34(Y,G'),
If x € (r34-{a,b,a.b} s it follows from 2.1,7(c) that |xG | = 3 if and

only if [iG|= 3 for every i Q(x)r\{uo.o,w} , and that [xG'] = 3
if and only if [iG'] = 3 for every 1 & Q(x) m{1,oo.,303 o Hence

™, 4(Y9G) is ‘the subplane of /’734 freely generated by
’ ]
{_a,b,i; 10£i< 21}, and ’ft'34(Y,G°) =/as 0y.a.hy 19, eoey 30¢
L
Thus 7?54(1{,5) * 7['34('1',(}'). By 2.5.1(2), G aud G' are not

conjugate.

It is not knowmwhether (1 ), (2) and (3) of 2.5.1 are itogether

sufficient for the conjugacy of G and G'.

~

We now work towards obtaining upper bounds for the number of

conjugacy classes of finite collineation groups of mff which fix ,%‘

elementwise. Our best results are for certain groups G for which

< .
Tlf’r (1,G) is non-degenerate. Our investigation of these groups 1is
based on
Proposition 205.2 Let G be a finite collineation group of ﬂr‘

fixing K elementwise. Suppose that ft’rp (1,(}) has a non-degenerate

subplane "TO for which there is a G-invariant HF process P for TZ’r'(.
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from 71"0. Then, for any line j of 7?’0, there is a G-invariant HF

process Q for ’ilf from TTO for which

(a) there are no Q-isolated elements, and

(b) 2ll Q-HF elements are points with G-bearer £

Proof ¢ By 1.6.6 , there is a Q satisfying (a) and (b). We
show that the @ constructed in the proof of 1.6.6 is G-invariant, if
P ise. For this, we use 1e5.9(£). We use the notation of the

proof of 1.6.6.

~

Wle first show if P is G-invariant, then so is R. By 1.5.,9(1’)

it suffices to show WRG = WR. Because VP is the set of P-~isolated

elements, we have VoG = Vj (by 2.1.2(e)). It remains to prove that
for each x € Vp and o € G, we have (x.x )\1) K= Xl o(Xex) Xy € Vige
Because x>\1 € 7T, < ﬂrK (1,6), we have (x}\1)o( = x }\10 If x is

a point (resv. line), then x¥ is also .a point (1line) of V, and

s = x>\1
(z) A

(2ol Yol(x o) Ay € Vp, as requirsd.

(xo<)>\-1 (resp. t = xk,‘ = (xa()?\1). Hence

x,)\1 = (x?\,l)o(o This implies (x.xA1)a'= (xr)ol(x ?\1)o< =

Similarly, one useé 1.5.9(f£) and the definitions of S,T and Q to

show that S,T and Q are G—invariant.
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Temma 20503 ¢ Suppose that G is a finite collineation group

of ’f(r'< fixing K elementwise and Q is a G-invariant HF process
for 'I‘Cx'_c ° Then the (unique) standard HP process similar to Q is

also G-invariant.

Proof ¢+ By 2.1.2(2), {(xx) = £yx) Yoet xent .
0 ; ' K ;
Thus the HF process Q' defined by Q' = {x ENW, 3 /(Q(x) £ n} is

G-invariant.

Weo are now zble to prove three nhice theorems about the finite

collineation groups of 7‘(’: when K‘;&¢ o The first result is

proved in ( 12, chapter XI).

Theorem 2.5.4 ¢ Suppose K # 75 and G is a finite collineation group

of 7{;(‘ fixing K elementwise. Then, for any line / of M K ),

there is a set { x1,.o.,xr3 of points incident with / and a G-invariant

AN

HF process Q for ’17_‘5 given by
QO = F(K-— )9

Q,1 = P(K )U{x1,o.o,xr3 s Where x, is a Q-HF point with

Q-bearer /( s

Q, =F, 4(0), n> 1
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Proof s Because G fixes K . elementwise, @ fixes F( K)
elementwise (by 10404)e Thus P( £ ) is a non-degenerate

subplane of 71,’1"( (1,0). By 2.1.2(d), there is s CG-invariant HF
process Q for ﬁ: from F(K)o By 2.542y we may assume there are

no @-isolated elements and that all Q~HF elements sre points with
Q-bearer £ . We may also assume @ is standard (by 2.5.3). Hence

Q satisfies the requirements of +the theorem (by 105.5)0

4
Theorem 2.5.5 ¢ It K # ¢ s then the muber of conjugacy classes

of finite collineation groups of 7'(__5 which fix K elementwise and

have order m is at most the number of conjugacy classes of subgroups

of order mof Sr’ the symmetric group of degree r.

Proof s Choose a line { of F(iC), and define a HF process P by

Py = ™M), P, = M k) U X, where X is a set of r P=HF points with
P-bearer £ , and P, = B, (P.) Wi>1. Lot ¢ be any finite
collineation group of (/4 g fixing K elementwise and having order m.
Then there is a G-invariant HF process for ’fl’:;< from F(K) as given in

245040 There is an isomorphism Y of Q, onto P, fixing Fl)

1

elementwise. By 1¢4.2, +this extends to an isomorphism of F(Q1)
. qas . K . -
onto F(P1) (i.e. to a collineation of TCI‘, ) for which QY =P,

Vi1,  Define G' = Gy, Then?P is G'-invariant. Thus
the number of conjugacy classes of such G equals the number of

conjugacy classes of finite collineation groups G' fixing K elementwise,
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having order my and for which P is G'-invariant. Thus, to prove the

theorem, it suffices to show that for any twe such G,® and G2', the

1

¢ and G.°
1Ix 2':{

implies the conjugacy of G,' and G,'.  Suppose that G, [ = 77,, (G / )?;Lo

conjugacy of G with respect %o a permutation ‘}L of X

1 2

Then 1} extends to a collineation of P, fixing F(K ) elementwise and

1

satisfying GZ'(P = (1 lP )94 Hence, by 1.4.4, y'extends

. . K . =1 ‘
= . t = t
to a collineation of F(P1)‘ 7 for which ‘Gz Y G1 % o Thus

(}12 and G2' are conjugate.

The following theorem is also proved in ( 12, chapter XI),

Theorem 2.5.6 ¢ If K ¢, then all maximal finite collineation

groups of 7{? fixing K elementwise have order r!{ , and they are all

conjugates

Proof ¢ By 2,5.55 we only need to I;rove that any such group G has

order r§ . There is a G-invariant HPF process @ for 7‘(5 from F(i<c) as

given in 2.5+4. Define a finite collineation group GO of Q1 to fix F(»\}

elementwise and satisfy G = S.o Then G Q C Gye By 1.4.4 ,

Oli‘x1’ooogxr1 2 1

GO extends to a collineation of 7r: fixing K elementwise, having order

r! , and for which G Gqe By the maximality of G, we have G = GO.

Thus | G | =|Go[ = 1! .
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By 2.5.1(2), it is meaning;ful tc investigate the conjugacy
classes of finite collineation groups G of 7“er- foxr which Tff (1,G)
has core K and finite rank Tyo and is non-degenerate (i.e. ’/Z’rlc (1,0)
7‘[:.)0 From 2.4.9 and the note after its proof, we may also use

1 ~
2.5.2 to investigate the conjugacy of these groups. We prove

theorems analogous 0 2.5.45 2¢5.5. and 2.5.6.

Theorem 2.5.7 ¢ Suppose G is a finite collineation group of 7’5;

for which (1,6) = 7. Then, for any line £ os ©R (1,8),
T r, T

thers is a set {x1,°..,xr_r —3 of points incident with {7 and a
1

.
G—invariant HF process Q for 72’1“ given by

Q, = Qo U[x1’°'°’xr-r13 s Where x, is Q-HI" with Q-bearer / ?

&
|

Proof ¢ By 2.4.9 and the note after 2.,4.9; there is a G-invariant HF

process @ for 7TI'_< from f/t’: (1,6)s  The rank of Q is r-r,, since if

. /v}’ ‘
R is a HF process for /Lr\ (1,6) from K, we have r = r(R+Q) =

r(R) +r(Q) = r, * r(Q). By 2.5.2, we may assume that all Q-HF elements
are points with Q-bearer /(’ and that there are no Q-isolated elements.
By 20503, we may assume Q is standard. Thus Q is the required HF

process (by 1.5.5)
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Theorem 25,8 ¢ The number of conjugacy classes of finite

collineation groups G of ?TrK having order m and for which

’r’L’f (1,6) = 7(: is at most the number of conjugacy classes of

i

subgroups of ordsr m of Sr—r

s the symmetric group of degree r =~ r:Ia
1

Proof Choose a line /(7" of ’/Tf and define a HF process P by
1

K . .
= ’/(r UXy; where X is a set of r ~ r1 P-HF points with
1 1

P<hearer [‘, and Pi-1 = Fi—1(P1) \7/ i>1s ILet G be a collineation
K

group of order m of 72'1':“ for which 7, (1,6) "—ETT'I(: o Let
o 1

Y ¢ (4 5 (1,8) ->7‘('§ be an isomorphisme There is a G~invariant HF
1

process @ as given in 2,5.7, with [ = ,(’z/,—1 (note that the line 4

of 2.5«T may be auy line of 7(: (1,G)). Thus Y- extends to an

isomorphism of Q, onto P By 1.4.2 , it extends to isomorphisnm of

10
#(Q,) onto F(P,) (i.es to a collineation of 7(5 )} for which

. 2 -1 -
i = ¢ = t N
Qi‘l.l/ Fi, \{ i 2 0. Define G Y Gyo Then G' fixes Trl‘1

elementwise and P is G'-invariant. Thus the number of conjugacy
classes of such groups G is at most the number of conjugacy classes

of collineation groups G' having order m, fixing Tt’r': elementwise and for
1

which P is G'-invariant. The proof of the theorem is now completed in

an identical manner to that of 2.5.5, with " 7r§ " yeplacing "F( Kk )",
1
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Theorem 2.5.9 3 All finite collineation groups G of ng( ’

maximal with respect to the property 1T;: (1,G) = 7Tr s have order
9

(r—r1)8 s and they are all conjugate.
Proof ¢ By 2.5.8, we only need to show that any such group G has )

order (r—r1)! « There is a G-invariant HF process Q as given in 2.5¢7.

Define a finite collineation group GO of Q1 to fix Tgfc (15G) element~

wise and satisfy Go;’ TS, o Then GIQ gc;oo By
‘{X.lyooosx 1} 1 1
=T

: . K psos Ky
Toded, GO extends to a collineation group of ﬂ;‘ fixing 'ﬁ; (1,@)
elementwise, having order (r—r1)35 and for which G C G’Oo We have

~ < ~N . <
el C s s 1 Y < (
7?:’r (1,G) T (1,GO)., But G < G, implies ’r’/r (1,co) 7?‘r (1,0).

Hence 77;( (1,6) = 7?:< (1,Go). By the maximality of G, G = Goo

Thus [G | = IGb | = (r—r1)! o

\

We now consider conjugacy classes of finite collineation groups

of 7Tr for which 7?;(1,G) is either degenerate or has infinite ranks

i.eo those groups for which we cannot apply 2.5.2. We obtain an
upper bound for the number of conjugacy classes'of these groupse.
It 4g ovident from our methods that this is far from being a least

upper bound.

Suppose k is a non—-negative integer. A HF process P is
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k-stzndard if P is standard, all P-HF elements have P-length £ k,

and Po has only P—isolategi elements. The last condition ensures

that P is similar to a HF process fron ?5 y 1eee that P is a free

plane. If Q is aay HF process for 7(’r from ;D s then the standard

HF process similar to @ is k—-standard, for some k. If P is a
k—standard HF process and @ is any HF process isomorphic to P; then
G is k—standard. Furthermore, if P has t isolated elements, then
so has Q. Thus isomorphism is an equivalence relation on

k—-standard HF processes for ?fr with t isolated elements. Denote
the number of isomorphism classes of such HF processes by fr(k,t).
Let Ck be the set of finite collineation groups of ’r[; for

which there exists a k-standard G-invariant HF process. If G & Ck

and G' is conjugate to G, then 8'€ C (this follows from 2.5.1(3)).

Proposition 2.5,10 The number of conjugacy classes of

collineation groups of T contained in C_is at most
&L

) |

1;2=; a_y i’r(k,t), where d__, is the number of subgroups of S,
the symmetric group of degree r -.%.
Proof For 1£ t < [—%] s choose a set Er(k,t) of representatives

from the isomorphism classes of k-standard HF processes for 72; with

t isolated elements. Then lg;(k,t)l = fr(k,t).
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Suppose Q° ¢ Er(k,t)o Let Q! have isolated elements I' and
HF elements H', Let G! be a finite collineation group of G for
which Q' is G'-invariant. By 2.1.2(f), G'= G‘\HE J Tre ‘ Hence the

number of such groups G¥ is at most le'u 1Y) = dr P

Let G& C Then there is a k-standard G-invariant HF process

kﬁ

Q for ’?Zro Suppose Q has t isolated elements. Then there is a
Q,'é\ Er(k,t) which is isomorphic to @ and a collineation ¥ of T,
. . =1
. = - i = t
for which Q n Q,n'L‘, ,Vn & No  Define G 1 Gype Then Q! is

G'~invariant. Thus, for each G & C,» there is a G'& €, which is

A\J
conjugate to G and for which Q' is G!-invariant, for some

T
£J

Qe UJ gr(k,t)g Hence the number of conjugacy classes of
=1

[31

is at most = d_. ‘fr(k,t)/ 5

collineation groups contained in C e
i=1

v
3
which equals = d_. fr(k,t) o

=1 T

k

From the above proposition, we must find an integer kr such
that, for any finite collineation group G of 77,”1_, there is a
_ kr—standard G—-invariant HF process. We first obtain an upper bound

for fr(k,t) when k > 1.
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. - k_1
Proposition 2.5.11 ¢+ £ (it) g (w+1)2" 2tk gy (2002 oy,
Proof s Suppose (h:.L)l:.:“=1 is a sequence of integers for which
. . k
h, D205 i = 150005k and = h, =r ~ 2t We first determine an
=1

upper bound B for the number of isomorphism classes of k—standard HF

processes with ¥ isolated elements and hi HF elements of length i,

i= 1’.5"1{0

Let P be such a HF process and [Pi] =n, 0L iL k-1, We
obtain an upper bound for nje By 1¢5.5; ,we have

.
P, =P (R )V {-P—HF elements of length if, i = 1,2500e ose (1)

From this and 1.4.3(c) , nié_, nif + hi, 1= 150e09k-1s Since P

1 0
has only P-isolated elements, n, = ts We show by induction that
i ot
n, s; (t + :gi h_) ? i = 1goos,k?1s ooo(ii)
i T
3—1 T
. ’ 2 2 2
For i = 1, n1§_ o * h‘i < (no+h1) = (t+h1) « Suppose now that
-1 2
n,_, £ {t+ < hj) g for some i 2> 2. Then
. =1 '
i i
i-1 2 i 2

n <n’ +h < [t+<=_ n, +h.<(‘b+£_h. .
l-‘ 1“1 l‘m j=1 J l - j=1 J

Thus, by induction, (i1) is true. From (i1), we obtain

1 ot B k1
‘P.If(t+£h.> < [t+ <= n,
L j=1 J 3=1 3)

We note that (iii) is also true for i = 0

= (I"'t)g 9i=1,oo’k‘°1u oo(iii)
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Ve now determine B, Let PO bhave m isolated points and t+ = m

isolated lines. There are t + 1 possibilities for m, so there are

%+ + 1 isomorphism classes for the configuration Poo Define

wo =% + 1, For each i > 1, we now determine an upper bound w, for

the number of possible isomorphism classes of Pi’ for a given isomorphism
class of Pi 4° Because w, is independent of the isomorphism class of
- i

o0
Pi-1’ we may let B = TT Wio Suppose i > 1 and the isomorphism
i=0

»

class of P, . is given. Ir 1> k, then P, = F1(Pj_1) (vy (i)); and

bence the isomorphism class of Pi is uniquely determined. Let wi = 1

for i > k. Suppose now that 1< i&£ ke It follows from (i) that

the isomorphism class of Pi depends upon the choice of bearers in
h,

P, 4 for the h. HF elements of length i. There are at most le_..q, i

-]
ways of choosing the bearers. Because {Pi—1 / < (I‘—'t)z (from (iii)),
] 2k-1h
we let w, = (r=t) 1, 1<i<k, We therefore have

=0 k 2k_1h. . 21("1( 21;)’
[ | w, = (t+1) 77 (r=t) = (t+1)(r=t) ™= , because

i=0 i=1

=)
n

o\
B
"
L
8
o,__'\_E

k

The upper bound B is independent of the particular sequence (hi) .
i=1

Hence fr(k,t) < B.W, where W is the mumber of ways of choosing such a

sequence. We need to show W& 2r-2t+k. It ¢ =-:§- o then there are no

4
HF olements. This implies h, = O, i = Tyeecpk and W = 1< oK o pT2tHk
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Suppose now that t‘<.r/2o Let T1 and.T2 be the power sets of

{?196..,k } and {jyoe.,r—2tj§ respectively. Let H be the set of

d .
sequences (hi) under consideration. Define g ¢ H-> T1}< T2
i=1

X -i

by(TBh.) ] =({i 5 b+ o}, §£ h, 3 1< 1< k'}) Clearly g~
il._ i e J

1_1 3—1 )
is one-to-one. Hence W= [H /fi jT1 ,o ‘T2 ]= 2k°2r-2t, as
required.

We note that the inequalities used in the proof of 2¢5.11 are

quite crude. One can obtain a better upper bound for fr(k,t) than

that of 2:5.11 by using more precise inequalities. However, the
proof and the eventual upper bound obtained become so complicated thatv

it is not worthwaile.

We now work towards obtaining an integer k} such thats; for any
finite collineation group G of Ty & kr-standard G=invariant HF

process exists. A

Proposition 2.5,12 ¢ Suppose that G is a finite collineation group

of 'W; and that k is an integer with the following property s for each
standard G—invariant HF process @ for '?g such that QO has only

isolated elements, and for each Q-HF péint (resp. line) v of Q-length

>k, there is a point (line) fQ(v) of ‘ﬁ; such that

(2) Aleg()) < 3
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(v) fQ(v) is not incident with the Q-bearer of w3

~ - ! T = . o = i '
(o) fQ(v) € ?‘Z’r(‘i,GV)9 where G {o\é Gy vt V}o
Then there exists z k-standard G-invariant HF process for 7T're

Proof s Tet @ be a standard G~invariant HF process for 77; such

that QO has only isolated elements. Such a Q exists, as we may take

it to be the standard HF process similar to a G-invariant HF process

for T > from ?.{o If there are no @Q~HF elements of Q—length> k,

then Q is k—standard there is nothing to prove. Suppose now that

there is a Q-HF element v of Q-length > ko Let {‘D(,igooo;(:(nz be

a set of coset representatives for Gv in G, L2t V = vG ={VOZi;1_g_i_in}

and U = {fQ(v)xi; 1_:_1_@} ° Define At V->U by (vxi),\= fQ(v)o(i.
For each i, we have stQ(fQ(v) o(i) = stQ(fQ(v)) = ?Q(fQ(v))d k (by (a)), and
fQ(v) O(i is not a Q-bearer of vol; (by (b)) Thus we may define

Qt = [1(k,Vy A W), where W ={(w RECACOEE 1.<_i;1,n} o By 1.5.9(c),

Q' is a HF process for ‘?Yr satisfying Qoi = Qqe

We now show that Q' is G=invariant. By 1.5.9(6), it suffices
to show WG = W, We show that x€ W and <X & G imply xX &€ W,

Suppose x = vxion(v)o(io Then vol o = Ve for some j. Thus

, -1 . s \ e .
o(io(o(j & G’vo By (c), this implies fQ(v; ofio((xj fQ(v) $ loeo

fQ(v) b(io< = fQ(V)O(j° Hence xof = (vdio()onQ(v)o( iD() = vo(jon(v)a(j eV,
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Thus WG = W, and Q' is G-invariant. Let Q" be the standard HF

process similar to Q' By 2.5.3, Q" is also G-invariant.

Because ,ﬂQ(v) >k and V = vG; all elements of V have Q-length

>k (by 2.1.2(c))o Thus, by 1¢5.10 » Q% has fewer HF elements of
length > k than Q. Hence Q" has fewer HF elements of length > k than

Qe Because QO' = Q’O’ both QO' and Q,o“ have only isolated elements. .

If Q" has no HF elements of length > k, then it is k-standard, and
there is nothing further to prove. If there are QV-HF slements of
length >k, then we repeat the above argument to obtain a standard

G—invariant HF process Q"' such that Q,O"‘ has only isolated elements

and Q"' has fewer HF elements of length > k than QY. Because there
are only finitely many Q-HF elements of length > k, the required HF

process is obltained after finitely many steps.

Lomma 2.5.13 ¢ If P is any HF process, x & P and /ep(x)?_: 9

then P(x) contains a four-point and four-line.

Proof It suffices to prove the lemma for the case [p(x) = g,
I’
because if [p(x) > 9, then P(x) has an element y of P-length 9, and

P(y) € p(x). We may assume that x is a line. There is a P-chain

C = {X09X190009X9‘} for which inXi+1, and /P(xi)ai’i = 0’190430589

and X, = x. We show that C contains a four-point and a four-line.

9

Because x_ is a line, Xy 5%

S 2

lines. Because xoox2 = x1¢ Xy = x20x4, Xy9%, and x4 are not

sooe9Xg BT points and x1,x3',o.o,x are

9
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i 1
collinear. Similsrly :\:2,x4 and X are not collinear and X59%XnyXgyXg are

not collinear. Hence there is a four-point contained in .{xo,xz,o..‘,xs-i .

Similarly, { X 1,x3,°¢.,x9/5 contains a four-line,
L

Lemma 2.5.14 Suppose G is a collineation group of order 2d of &

non—-degenerate free plane 77 , For any G-invariant HF process @ for °
T, there is a four-point 7 <7t (1,0) for which each element of >

has Q-length £ 9 + 63,

Proof @ We proceed by induction on j. Suppose j = O. Then
G = {1} o Chcose an element x of Q-length 9. Then Q(x) contains
a four-point 7 (by 2.5.13)o Each element of 'L( has Q=length £ 9

and g < 2 (1,6) (trivially).

Assume that the lemma is true for j satisfying 0 £ j< n and that
G has order 2°. Then G has a normal subgroup G' of order 2%, Let =
be a coset representative for G' in G Then G = GV G"@. o Lot
T8 = T0(1,G%). If x €', then ei ther x €7 (1,6) or

%G = {x,xp} Sa'e Tus 76 =7 and 6| _, = {1,@}‘,{?,} , where

&6!'&")2

Then Q is also G'—invariant. By the inductior assumption, there is

1o Let Q be any G-invariant HF process for 77 o

a four-point ')7' < 7 such that /Q(x).é 9 + 6(n-1) for each x é‘—‘?'o

We now consider two cases. In each, we obtain a four-point

7z<_3 7v(1,G) for which QQ(Z) £9+én Nz €7 o
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(1) There is an {'x,y]c:»z' for which {xg ;y(a ;x,y} is a
four-point ¢ let @ = {x¢ Y@ »%,¥ o  Then pcw'e By 1.7.2,
Ledus [PTs = 7p)e Bocause £(xg) = L)< 3 + 6n ana

[Q(yé) = /[Q(y) £ 3 + 6n, it follows from 1¢T¢3 that
iQ(z)éste(z)+3+6n\QLgéF(€) eee (1)

Because QG = and @l(’ has order two, F((a)G = F(p) and e 7(p)
has order two (by Teded)o Let = = {’a,b,o,e} ,where

a = (xoy)o(zoy@)y b= (xey@)olyexg)s ¢ = (zxp)e(yoyp),

d = (boe)o(xoy) and & = (xodg )o(x@ od). Then 7 & F'((o) C ' and
each point of . is fixed by £ and has Q- stage & 6. From (i)
zQ(z)é9+6n "‘;‘Zzeizo Because G|7t’°= {1,@]71_.} and 2

is fixed elementwise by (? s we have 2 < (1,6).

(2) No such {x,y} c " exists s Bither ,,' is fired elementwiss
by @ s in which case we let n = 7‘, or there is an {’x,y,z%co«z'
for which x,y € 7r (1,G) and {x,y,z,z@] is a four point. In this case
I{x,y,z,zfg} freely generates a subplane of 7' (by 1+Te2);  and we
let n = {a,x,y,f} s where a = (Xoy)o(z.2¢ )s b= (2.x)o(yo2@ )
c = (2.3)e(2.28)y d = (2.2@ )o(boc)y e = (aob)o(xezp )y £ = (z.z@ do(eoeg ).

By the same argument as case (1), 7 satisfies our requirements,

By induction, the lemma is true for all J.

We note that 2.5.14 is true with "four—point" replaced by "four-line"
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(by the dual argument and the duals of 1+7.2 and 1.T.3 ),

For each r > 8, let 'jr = max {j s J divides r!}

a.l'ldk=1o+6jo
xr r

Propogition 2.5.15 ¢ I'or any finite collineation group G of 7(;9

there exists a k”—standard G-invariant HF process for ’n:’ro

Proof ¢ By 2.5.124 it suffices to show thatjfor any standard

G-invariant HP process @ for Wr such that Q,O has only isolated
elements, and any Q-HF point (line) v of Q-length > kr, there is a
point (1line) fQ(v) satisfying 2.5.12 (a),(b) and (c) (with k = kr)°

We assume v is a pcinte For the case v is a line, the dual of the

following argument, and the dual of 2.5.14, are used.

: _ - ol
Wo first show that Q(V)GV = Q(v) and ‘ GVI Q(v)l = 2Y, for
some j 2 0. Choose any «(€G . By 2.1.2(b), v)¢ = Qvt) = Q(v)o

Thus Q(V)Gv = Q(v). Let x have order 2°m, for some odd m and

8
integer s > 0. Then % has order m. By 2.1.7(c),

s s
\ X <p<2> I divides ‘v <o(2 > l for each x & Q(v). Because
l 2S 28 )
v<°< >| =1, we have xX =X Vx ¢Q(v). Thus O(IQ(V) has
order a power of two, for each X € Gvo Thus Gv l alv) is a 2~group and
has order 2‘j, for some j > 0o We note that j £ jr, since 2"j divides

lel and le' | aivides r! (by 2.1.3)
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Let 7 = EQ(V)? 7'(1-. By 1.5¢15, 7r = (Q(v))s Because
Q(V)GrV =Q(v) and |G ‘Q(v) l 23 s some j, we have 7G =77 and

[ Gv{n' I = 2’ (by 1.4.4). By 1.5.15 , the extension process

R= 7N Q is a2 standard HF process for » for which

R(x) = é)Q(x) VxcT. Because TG, =7 and Q is G -invariant,
R is (Gv/_qr,)--invariantc 7C is non-degenerate, because .
ég(v)j>igr;;10, and thus Q(v) contains a four-~point {by 2.5.13). By
2.5014, there is a four-point ( < 7 (1,6 ol ), each element of which
has B-length < 9 + 6 < 9 + 6jr< kro Because IQ(X) = /R(x)
Vxe—’iz’ , each element of 7 has Q-length < kro Because
77(1’GW]7?) < 7Z’r(1,Gv); we have Wi < ’R’r(1;Gv)o Since % contains

3 non—~collinear points, at least one point of 7 is not incident with

the Q-bearer of Vo Let this point be :t‘Q,(v)° Then fQ(v) satisfies

20.5012(a)s (b) and (c), with k = kro

Combining 2.5.10; 2.5.11 and 2.5.15, we obtain

Theorem 2.5.16 ¢ The number of conjugacy classes of finite

collineation groups of 7(1' is at most

1£] k -1

r
= (++1) d__ r“2t+k1‘ (r-t)F22 7 e a
=1

is the number of
r-t

= i = H j ivi '}
subgroups of Sr—t’ and kr 10 + 6jr9 where Jr ma.x{j, 2¥ divides rij.
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From 2.5.5 and 2.5.16, it follows that for any r and K for which

'71';' ~exists; there are only finitely many conjugacy classes of finite
collineation groups of frrx'f fixing 1€ elementwise. In conclusion,

we note that, although they occur in only finitely many conjugacy classes,
there are infinitely many such groupsy unless K ¢ 75 and r = 1 (in
which case the only such group is the identity, by 2.1.3). To show this,

it suffices {0 find an x & 7r’§ which has infinitely many distinct images
under finite order collineations of ’il’: fixing K elementwise. The

existence of such an x follows from thsorem 11 of (26) when either

< ¥ 75 and r >2, or K= ;5 and r > 9 (because in these cases 77; is

the free extension of rank one of 12";_ - using the terminology of

1

(26 ). The only other possibility is K=¢ and » = 8, 7(’8 is

freely generated by a four-point {x,y,z,u} o In (24 , section 3), a

method is given for obtaining all four-points whkich freely generate 7‘(’8o

It is possible to show that; for fixed x,y and z, there are infinitely
many possibilities for u. Since each such u is the image of x under a

finite order collineation of 7Zé, TC’é has infinitely many distinct

finite collineation groups.
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CﬁAPTE.R 3
POLARITIES
A polarity is a correlation of order two. Abbiw-Jackson ( 1)
first showed that Ffr has polarities for each » > 8, and OfGorman (22)
showed that, for K:f ?( g any polarity of K extends to a polarity of Tc;“
for each r >0, In this chapter; we obtain some properties of !
polarities of free rank planes which have either previously been
obtained by other authors, or which follow immediately from their work.
In 3,1, we prove first that to eachlpolari'by ol of 7t‘r'( there is a
HF process for Tf§ canonically associated with ¢, We then
investigate the possible numbers of absolute points outside K that a
polarity of ng may have. In 3.2, we investigate the conjugacy
classes of polarities of 7t: ¢ Within the full automorphism group of

’It";o

Throughout this chapter, we assume that the empty configura tion has

a trivial polarity.

3,1 Absolute Points of Polarities

Suppose that W is a polarity of a configuration f’ and that
b4 6(9 o If xI xa, then x is X-absolute (or just absolute, if it is

clear to which polarity we are referring), If x}.’ xX , then x is

non-of =absolute (or just non-absolute) « We also say that ¢ has

absolute or non- &L -absolute elements. Clearly, x is {—-absolute if,
and only if, XX is o(-absolute, and each «~absolute element x is

incident with exactly one X~absolute element, namely =xol.
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If ¢ is a polarity of n;K ., then there does not necessarily exist
a HF process Q for /Zl’f- from K such that each configuration of @ is
invariant under o{ . If such a HF process existed, and x were an
of —absolute point outside K.; then x and xX would have equal non-zero
Q-stage and be incident, contradicting the definition of a HF processj;.
Although such an "« ~invariant" HF process Q does not always exist, we

do have

Proposition 3.1.1 ¢ ~ For each polarity o¢ .of 12’1'.( there exists an

integer m 2 O and a HF process @ for o satisfying
T
(a) @, =K 3
K == -
(b) rmp =, )and Q= Van>on j
{(c) If m >0, then there is a sequence 8 500058, Of points for which

Qpq = an__zugangg Unp = Wyt V {anx} s 1£nLn 3

(d) A1l Q-isolated and Q-HF points are contained in Qe

Proof We first define a subconfiguration P of Tt’rK for which
- < ]
K<Sps» @=K is finite, Tt’r=F-(P)and €m=(9° Let P be a

HF process for TK; from K , and let X be the set of P-isolated and

x & X UZX(
finite and all P=socles are finite (by 1.5.1(b)), @~ is finite.

*

P-HF "‘elements. Define P =K u( J P(x) ). Because X is

Because X £ p 5 we have from 105¢12  that Tt: =P = F( P) and

(=) P(X)Ef Vxzep .

It remains to show thatpl =0 o Because K =K (vy 1.6.2),
it suffices to show that (P-—k;)o( [ P Suppose, on the contrary, that
there is an x€ ¢ ~K for which x ¢ P Let s'bP (x4 ) be maximal with

respect to these properties. Because X U X« fP sy X ¢ XUV i,
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Hence x is P-free with two P-bearers u and v, which are both in P

(by (%)) Also, x € P(y) for some y & X U Xy and hence x is in

a P-chain of ye. Therefore x is incident with some w & P(y) of

higher P-stage than x. Thus x is incident with at least three ,
elements uy v and w of P e Thus x{ is with uots vo¢ and wocy at

least one of which, say u«, is of higher P-stage than xx. FEither

U ¢ £y contradicting the maximality of stP(Xo(), or u& G-(D,

implying x¢ € Pux) £ @ (by (3)) and thus contradicting T & o

In either case, we obtain a contradiction. Hence f’o( = F .

We now define m and Q. Let P =K have m points. Since (30( = (C.’
and K4 =K s we have (f-K)o(= = Ke Hence (_9=-K has m lines.

For n > 2m, define Q’n = F

n—2m( E)a Suppose m >-0. Then there is an

element x of g ~K of maximal P-stage and x is incident with at most
two elements of P" K o Hence x¢¢ is also incident with at most two
elements of f- Ko If x is a point, define a = X If x is a line;
define a = XxX. Define Q, , = Q, - {’amo{} and Q, o = Q. m{'ampi .
Continuing in this way, we define &t? szm.g,? Q’2nr-=49 eceg a.1,Q,1 yQ,Oo

We have Q, = K, since p ~K hasm points. Hence Q satisfies (a).

Q clearly satisfies (c). Because 7(I'f= F([O\ = F(sz) and

=R
Qnoa

n—zm( F)D( = an,gm( P) =Q, (using 1.4.4 ), Q satisfies (b).

Q satisfies (d), since all elements of Q-stage > 2m are Q~free.

We note that the configuration e obtained in the proof of 3.1e1
isy in the terminclogy of (22), an "openly finite self-polar (under & )
free generating configuration". The existence of such configurations
when K =?S was first proved by Abbiw-Jackson (1 ). For K # 9‘ , their

existence was shown by O'Gorman (22), e investigation by all
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previous authors of the polarif.ies of free rank planes has been based
upon the existence of such configurations.
If X is a polarity of 1(? and Q@ is a HF process sa.tisfy:.lng (a),
(b), (c¢) and (d) of 3.1.1, then Q is an o{-canonical HF process for
11':'; o Vle show by example that an.o —canonical HF process for X

r
is not uniquely determined by o o Define the configuration p to equal

/bi b3 {a1,a2,a3,b1,b2,b3} g where ag is a
point and ‘pi is a liney; 1 = 142,3, and
aia 3, I 'b2, 2y I b3° Clearly F( 9) =TC’10°
%2 RE Define a polarity of P by ay X = bi’
[)ﬂ_ i=1,243."

By d.4.4, o extends uniquely to a polarity of F(p) = 71’100

Define two HF processes P and Q as follows s

Py s Py = P Ufals Bpy =Py (UiBE 121523

and P, = F, ¢ (P,); 1 >6;

- = jﬁ = I

Q = ¢» Q= {bpeds by Q=0 ufaya, s

Qyq = s p Vg T Qo = Qg v {b 1 1=2,3,4, and
Q, = F, 5(qg)s 12>80

Then P and Q are distinct o{—-canonical HF processes for TCQIO.
Lemma 3.1.2 ¢ If « is a polarity of the free plane 7t'r, then there

exists an o ~canonical HF process Q for which there is at least one

non= ol ~absolute Q-isolated pecint.
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Proof 3 By 3e1e1g an o —canonical HF process @ for T, exists.
Suppose there are no non-p{—-absolute Q-isolated points. Since Q,o= 6;5,

there is at least one ¢(-absolute Q-isolated point. If there are t“;o
such points a and b, then we redefine Q, making (a.b)x and a.b
Q-isolated, and asb,ax b Q~HF with Q~bearers a.b and (a.b)x . If
there is only one «(-absolute Q-isolated point a, then Q2 = é—é,atx}

and Q,4 = Q’2 U {'b,'bo(] s Where b and b are Q-HF with bearers aw~ and a
respectively. We redefine Q, letting Q,2 = Sb,b oc'} and Q4 = eﬂa, ao(} Uon

Thus redefined, @ has b as a non-=absolute isolated point.

Lemma 30703 3 If « is a polarity of 7@" and Q is an ¢ ~canonical
HF process for 'i?:’r'< s then all o —absolute points outside K are either

Q-HF or Q-isolated.

Proof Suppose a is an « -absolute point outside K + Since no
two elements of equel non-zero Q-stage are incident, we have

stQ(a,) %stQ(ao( )e By (b) and (c) of 3.1.1, there is an n >0 for
which stQ(a) = 2n + {1 and stQ(a,o() = 2n + 2, Suppose a is Q-free.
Then its Q-bearers x and y have Q-stage £ 2n. Thus stQ(Xo() < 2n and
stQ(yoc ) £ 2n; because Q2n<>< = Q2no Ti:is implies aw isg incident with
three elements of lower Q~stage, namely Xoy yX and a, This

contradicts the definition of a HF process. Hence a is either Q-HF or

Q-isolated.

Since any ot —canonical HF process for 'I'CrK has at most r isolated
or HPF elements, i{ follows from 3.1.3 that any polarity of ’/Zi,K has at
most r absolute points outside K . The main result of this section,
which we now prove, specifies more closely the possible number of

P

\ n
absolute points outside K that a polarity of @ ! may have. It was



-{42~

first proved by Abbiw-Jackson ( 1) for free planes and was extended

to the case K#?é by O°Gorman (22). ' .

Theorem 3.1.4 2 If ¢ is a polarity of ‘{(EK with j absolute points

outside K, then

(a) 3§ = r(mod 2)

(b) 0£jzr;

(¢c) if K=¢ s then j £ » = 6.

Unless j =0, » = 8 and K =95, there exists, for each polarity o« of K
and for each j satisfying (a), (b) and (c), an extension of o to 7rrK‘

with j absolute points outside K,

Proof ¢ Ist @ be an g¢ =canonical HPF process for TrrK and let

number of & -absolute, Q-isolated points,

=3
it

number of o ~absolute, Q-BF points,

i
N
1

mber of non-—absolute; Q-isolated points,

e
"

h number of non—-K -absolute, Q-HF points.

By 3.1ei1, there is an integer m such that all Q~-HF and Q-isolated
points are contained in Q, , and, if m> O, then Ut = Yoo & fani,
Q2n = Q’2n-1 u{anofj, 1< n<&mg where Bysec058 is a sequence of
points. Hence Q2n°( = Q2n for 1£n<£me It follows that a line x«
is Q-isolated if, and only if, x is a Q-isolated non-x=absolute point,
and that a line x¢ is Q-HF ify, and only if, x is either Q-isoclated
and K-absolute or Q-HF and non—-« -absolute. Thus there are 1

Q-isolated lines and n, + h Q-HF lines. Altogether, there are n, + 2i

1 1

Q-isolated elements and n, + n, + 2h Q~HF elements. Hence r = 3n1 + n, +

4i + 2h, By 3.1.3; § = n +n. Ve therefore have r = j + 2(n1+2i+h).

Thus © = j (mod 2) and 0 £ j £T. I% remains to show (c). Suppose
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K=§ﬁ. To show j& r - 6, we need to shown1-*-25_-4-11_%'3° By
306102y We may assums 1 > 1. It is easily verified that if i = 1,
n=0 and h = 0y then 5 is degenerate, contradicting Zi = 77;.
Therefore n, + 2i + h >3, and (¢) is proved.

The second part of the theorem is proved by giving examples.
Let o« be any polarity of K and assume ] satisfies (a), (b) ana (c)
and we do not have r = 8, j = 0 and K=¢fo We first define a
configuration P containing K and freely generating n’zf( o We

consider two cases.

(1) K= : ILet t = 2‘:‘_,%:@ * 2. Let @ have points x; and lines

Yi9 1= 150cesjtt, with the following incidences s x, I vy and

1
y1Ixi92$i£j+t"19xi:tyi’2£i$1+j9xt+jly2’

Tty I xyp0 It is quickly verified that F(()) = ?rr (using 1.6.3

and 1°6°4) ¢ JCj,

x; +J\ . %‘

Y. e
. 1¢-1
%fz yz—‘fj j.Z-I-J J

(2) K. # é s let t = _rgj . Choose a non-x-absolute line ¢

of £ o Define P to consist of K together with points X and lines
Yis i = 152500053+t where x, I 7, yy I 5 4= 152,000, 4%, and

. . K
x, Iyys 1= 152500053, Then F(F) = Tfr .
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In both cases (1) and (2),' we extend & from K to F by
defining X, X = Yo is= 1.,.,..,j+"b. By 104:4 of extends to a
polarity of F(¢e) = 'R’; » Define an X -canonical HF process Q for

X  as follows 3

H

U =K Qg = UipV %]y Q= QiU {F, ] 1= 1heeusitts
Qn=Fn~2(j+t)(Qﬂj+'t)>’ n>2(j+t). Thg oL=—absolute points not in K are
either Q-HF or Q-~isolated (by 3.1.3) and are therefore contained in
Q’Z(j+‘b) gwhich equals O ,  There are j absolute points in p-k (namely
x1gooeng if K+¢y0r xzyooegx‘i‘}“_j if;’(=¢)o Hence D{ has j

absolute points cutside K, as required.

We note that if, in the second part of 3.1.4, we allowed the
possibility of j = O, r = 8 and K= ¢ , then the configuration P
defined in the above proof would be such that F( {)) is degenerate and
not equal to Tt8° This exceptional case is considered more fully in the

next section.

3.2 Conijugacy Classes of Polarities

Two polarities o« and &« ' of a configuration @ are conjugate if
there is an automorphism & of p for which ' = 3—101 S o Ve say that

~q
- o, and of® are conjugate with respect to §o If &' = § «§ , then

-1 -
we also have 0(' = (O(S') oL (%8)s Therefore, if § is a
t
correlation, then K and « are also conjugate with respect to the
collineation £ $ Thus we need only consider conjugacy with respect to

a collineation.

]
Suppose x and  are polarities of T(rK and L/fis a collineation of
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Wf for which D(n = 1/:1o< 1/;0. It [f:x‘l,o.o,xj}is the set of

L ~absolute points outside K, then the set of o(n-»absolute points
outside K is {‘x"y ,”.,xj ‘Lf], since Ky = K . Thus conjugate
polarities of TT;; have the same number of absolute points outside K .
Hence, for a given Jj, conjugacy is an equivalence relation on tHhe
polarities of ft’g with j absolute points outside K. Its equivalence

classes are called conjugzacy classes.

The problem of determining conjugacy classes of polarities of free
planes was first considered by Abbiw-Jackson (1). He solved the
problem completely for the case of rank 8. Glock (8 ) extended this
work by determining the number of conjugacy classes of polarities of TTI;
with j absolute points, for each r > 8 and j satisfying 0 < j Ly - 6
and j =r (mod 2). These results, and similar ones for K;:yS,_ are
obtained in this section. We also give a necessary and sufficient
condition for the conjugacy of two polarities of fz-I‘f having no absolute

points outside K .

The foliowing useful sufficient condiition for the conjugacy of two
polarities of ’H’TK is based upon theorem 4.1 of (1).
]
Temma 3.2.1 ¢ Suppose K and o< are polarities of T(r’( and lo
)
and F are subconfigurationsof TT: which freely generate WTK and
] L ] t
for which Fo = f) and e X = ‘o . If there is an isomorphism
- | ¥
\1&3 ()_”)F' for which Tf»1(°(lP )1/, = of l P', then of and K are

conjugate.

8
Proof ¢ By 1.4.2, the isomorphism ')7; of (:a onto p extends uniquely

] .
to an isomorphism of F(()) onto F( F )y i.e. to a collineation of TE’; o



=146~

-~ t '
By assumption, (\_',11771,) FE = {P|o Since amny polarity of e extends .

K

L . - []
uniquely to a polarity of F(P ) = TL; (by 1.4.4), we have -}L&SL=°< .

We now consider conjugacy classes of polarities of r[;.< which have
no absolute points outside K, To determine these conjugacy classes
we show that, for each such polarity oy there is an o(-canonical HF
process satisfying certain conditions. This is done in 3.2.3 for the
case f\/-}‘;(f and in 3.2.4 for Kcyf . For the proof of these, we need
the methods of obtaining a new ¢¢-—canonical IIF process from a given one

provided in

Lemma 3.2.2 Suppose & 1is a polarity of T(f and P is an
o(—can‘onical HF prucess for 7T'If .

(a) If x is a non-&-absolute P-HF point with P-bearer u, and a is a
point of lower P-stage than x for which a ;f u, then there is an

oK ~canonical HF process Q for which x is Q-free with Q-bearers v and
Xea, (2.x)0¢ is Q-HF with Q-bearer x«x , and the P~ and Q-bearers of all
other points of ?l”rKcoincidee !

(b) If x is a non- x~absolute P-isolated point and a is a point of
lower P~stage than x, then there is an ¢ ~canonical HF process qQ for

which x is Q~HF with Q-bearer a.x; (aox) ¢ is Q-HF with Q-bearer a®l; and

the P= and Q-bearers of all other points of l’c’rK coincide.

Proof ¢ Suppose P_ = K and m is an integer for which rrf = F(sz),
all P-isolated and P~HF points are contained in sz, and P2n-—1 =

- ‘p &
P2n_2u{an1 s Py =P ufa «f, for1<ndm
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(a) Because x is P-HF with P-bearer u and is non-x -absolute, x o is
P-HF with P-=bearer uw an‘d both x5 = ¢ szo Suppose x and x X
have P-stages 2k + 1 and 2k + 2 respectively. Define Q by
Q‘i = Pi’ 0<£ig 2k
Py u{(a.x)o(f, 1=2k+1,

L U{(aox)u, aox] s 1D 2K+ 2,

2

Tt is easily verified that Q is an o{—-canonical HF process satisfying

the given conditions,

(b) Because x is P-isolated and non- x=-absclute,; T« is also

P-isolatedy; and both xy =l P Suppose ¥ and x  have P=-stages

om’
2k + 1 and 2k + 2 respectively. Define Q as in part (a). Again

it is easily verified that Q satisfies the requirements of the lemma,

We denote the HF process defined in the proof 6f parts (a) and (b)
of 3.2.2 by A1(P,x,a) and Az(P,x,a) respectively. Thuév[l,l(P,x,a)\

and AZ(P,x,a) satisfy (a) and (b) respectively of 3.2.2.

Lemma 3.2.3 3 Suppose K# ¢ and « is a polarity of ﬂ.’f with no
absolute points outside K. Then, for any line / of Ky there is an
ot~canonical HF process Q for which

(a) there are no Q-isolated pointss

(v) all Q-HF points have Q-bearver £ 3

(e) TL;K is the free completion of A U{Q—EF elements} o
Proof : Let P be an o —-canonical HF process for n’rK o We first
obtain an of-canonical HF process R having no isolated points. If

there are no P-isolated points, let R = P, Suvpose now that x is a
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P-isolated point. Then stj ({s) < sty (z)e Let P(1) =A2(P,x,io<).
It follows from 3.2.2 (b) that P(1) has one less isolated point than P.
Continuing in this way, we obtain the required HF process R after

finitely many steps (as there are only finitely many P-isolated poinis).

We next obtain an o(-canonical HF process S for which there are no
S—~isolated points, and no S-HF points having an S-bearer incident with
/o(. If R satisfies these propert_ies, let S = R, Suppose now that y
is an R~HF point with R-bearer u, where u I 106, There exists a point
a €K for which & £ u and & f{. Define R(1) '—=A1(R,y,a,). From
3.2.2 (a), R(1) has no isolated points and has one less HF point, the
bearer of which is incident with {o s than R.  Continuing in this way,

we obtain the required HF process S after finitely many steps.

We now obtain Q. If all S-HF points have _¢ as S-bearer, let
Q = S. Suppose now that z is an S-HF point with S-bearer v, where
v+4+4{. Since there are no S-HF points having S-bearer incident with
./K, we have v ¥ I« . Define S(1) = A_I(Soz, fa).  Trom 3.2.2 (a),

(1) (1)

there are no 8% ‘~isolated points and S has one less HF point, not
having !9( as bearer, than S. After finitely many steps, we obtain an

o{ —canonical HF process @ satisfying (a) and (b). The configuration

(J =K U{Q—-HF‘ elemen‘cs} generates n;’( (by 1.5.1(d)). From (a) and (b),-
it satisfies Q(x) SF for all x €p . Hence [EJTTI-K = F((o) (by 1.5.14)

Thus rtf = P(P) and (c) is satisfied

We now prove a similar type of result for the case K= ¢. For

later use, we also allow the possibility of X having one absolute point.
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Lemmg 3.2.4 ¢ If K is a polarity of 7, with at mest one absolute
point, then there is an e-canonical HF process Q for 7‘5;‘ satisfying :
(a) There are exactly two Q-isolated,; non-—«-absolute points

3.1 and 3,2 o

(b) A1l non-x -absolute Q-HF points have Q-bearer a, ¢ .

1
(c) 1If thereare no x-absolute points, then

P ={ Q-isolated and Q-HF elements} fresly generates 7‘(1_.

Proof ¢ Let P be an ol~-canonical HP process for Tz;o Then
P = L)Q and there is an integer m for which 7T = F(P_ ), all
o r 2m

-3 - tal : = U
,P isolated and P-HF elements are contained in P, , and Popet = Popn fan}

P2n - P2n—1u{an°(3 » 1£&nZm.

We first show that we may assume the existeuce of at least two

non- {-absolute P-isolated elements. By 3.1.2. we may assume ay is

non- ¢k =absolute, Suppose that a ] is the only non-y —absolute P-isolated
point. Let there be k non-xX~-absolute P-HF points with P-bearer a 4X e
If kX > 1, then we may assume that Bp9eeesdy s have this property. If

k > 2, then we may redefine P, making 855 25K 2 and a,~ P=isolated,

3 3

and a, and aq% P-free with P=bearers a2<x,a3o< and EPILE!

If k = 1, and there is a non- -absolute P-HF point with P-bearer a20<,

2

respectively.

has this property. We redefine Py, making a, and

3 3

8, P-isolated, and a, and a K P=-free with P-bearers a_ e, a30< and a

then we may assume a

2 2 1 1?

a3 respectively. Suppose now that either k¥ = 1 and there is no
non- X ~absolute P-HF point with P-bearer 8y 9 OT k=0, Then an
inspection of the few possible cases, using the existence of at most one

o{ —absolute point, shows that P can always be redefined to have at least

two non- X —absolute isolated points.
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From the previous paragraph, we may assume that a 1 and a, are
non- X -absolute P-isolated points. If x is another non-¢-absolute
P-isolated point, then define P(1) = Az(P,x,a1)e From 3oé.2 (v),
P(1) has one fewer non--absolute isolated point than P. We contimue
in this way. After finitely many steps; we obtain an  ~canonical HF
process R for which there are exactly two non—o{-absolute R-isolated
points a1 and age

We next obtain an «~canonical HF process S for which there are
exactly two non— (~absolute S—-isolated points a1 and 209 and a2ll S-HF
points have either a,o{ or a,.a, as S-bearer. If all non- ¢-absolute

1 1772
R~HF points have either a1<>< or a1.a2 as S-bezrer, let S = R. Suppose
now that there is a non—-¢(f —-absolute R-EF point x with R-bearer u, where
u # a,% and uag.a,. Foru )4 a,, define R\t") =A1(R9x,a.1)e I
ul a,s then u i a, (as u:iéa1.a.2). Thus, for u I a,, we may define
R(1)' = A1(R,x,a2) and R(1) =A1(R(1)‘,(a2.x)c€ ,a1). In either case,
it follows from 3.2.2 (a) that R(1) has one fewer HF point, not having
either a, ¢ or a @, as bearer, than R. Continuing in this way, we

1 1
obtain the required HF process S after finitely many steps (as there are

Y

only finitely many R-HF elements).

Finally, we obtain the required HF process Qe If there are no
non~ ¢ ~absolute S-HF points with S-bearer a1°a2, let Q = 8. Suppose
now there is a non- ¢{—absolute S-HF point y with S-bearer a 1.a2. Ve
consider three cases. In each, we define an«-—-canonical HF process

S(1) for which there are no 5(1)-isolated points, all non-«—absolute

S(1)—HF points have either &,+8, OT 8,% a8 8(1)—bearer, and 8(1) has
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o&, than has S.

one fewer non~¢l —absolute HF point with bearer a, 5

Case (1) ¢ There exists an S5~HF point a with S-bearer a, s

1

In this case a X a4.a, and We may assume sts(a) < sts(y). We may

2
therefore define T =A1(S,y,a), T(1) =A1(T,(a<,y)0§ a2), and

s = 8 @, (aup)ea, ), 2y

Case (2) ¢ There are no S-HF points with S-bearer 2y &X'y but there
is an ({ -absolute point b for which b il aqelps b i ys bk agel e
It is easily verified that we may assume sts(b).< stg(y)e  Since

b z a,rioa:

ps We may define T =A1(S,y,b) and 5(1) =A1(T,(y.b)o(, a1)o

In both cases (1) and (2), one uses 3.2.2 (a) to verify that
S(1) has the required properties. If neither case (1) nor (2) is
satisfied, then the following case (3) holds, because otherwise S would

be degeneratey contradicting S = )7;. .

Case (3) @ There is an g —absolute point ¢ with yo as S-bearer

In this case sts(y) < stS(c)o Let sts(y) =2n + 1, Define s“) by
s. (V. (s
i 17

Son u{c] , i=2n+1,

Si—2 v {c,co(}, i>2n+ 1.

s(1)_ (1)

0£1i

N

2n,

With this definition, c is isolated, y is S ‘~free with bearers
ajoa, and c o, and the S(1)— and S-bearers of all other elements of 72;
coincicde. Thus S(1) satisfies ths required conditions in this case.

If there are no non- X -absolute S(1)-HF elements with a1.a2 as
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(1)

S(1)-—bearer, define @ = S o 'Otherwise, we repeat the above process,
and after finitely many steps we obtain an w~canonical HF process Q
satisfying (a) and (b). We show Q satisfies {c). Suppose there is no
e ~absolute point. Then all Q-HF and Q-isclated elements are
non- o4 =~absolute. Let F be the configuration consisting of these
elements, Since QO = 75, we have [_-Ejn,r = !Tr (vy 105.9(d))e It
follows from (a) and (b) that Q(x) £ p for all xef . Thus

= 1.5, C = | 3
[()]T‘r F((>) (by 1:5.11)¢ Hence 7 =TF(P)s end (c) is

satisfied.

The major consequence of 3.2.3 and 3.2.4 is

Theorem 3.2.5H ¢ Two polarities x and ' cof T(If‘/, both having no

absolute points outside K, are conjugate with respect to a collineation

K
r

of 7T if, and only if, °<II< and m'lr ars conjugate with respect

to a collineation of Ko

Proof @ First assume &« and ' are ‘conjugate with respect to a
collineation 7z of. rt’f_ » Since Ket= Ka' = K’f= k (by 1.6.2), «

and or R/K are conjugate with respect to the collineation 7‘{’//< of Ko
Conversely, assume o{/ K and d'/}/ are conjugate with respect to
\
. -1
. K. 9 = °(
the collineation Y of Ko Supposeo(/K y /K) Yo We

consider two cases.

(1) ’\’zé : Because there are no « -absolute points, r = O(mod 2)

(by 3.1.4 (a))e Choose a line Zof K. By 302.3, there is an
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< =cancnical HF process @ for which ’h’rk = F(Qr) and, if » > 0, then
Qg = Uy o U[an] 3 Q= Q4 U {and], where a_ (resp. ano<) is a
Q-HF point (line) with Q-bearer ¢ (éx), 1< né-’% . Also by 3.2.3,
there is an ¢'-canonical HF process Q' for which Qo' =K s TN = F(Q,r')
T
. t = ¢ USag t t - t a

and, if ¥ >0, then Q0 , =@ § ,V{a '/, Q! onV [ 2y oz/,
where an° (resp. an‘,;( ') is a Q'=HP point (line) with Q'~bearer

[ LI Z 4-1-: ° i K = = ¢ =
Ly (lyst)s 1€ng% . Wehave D =F(Q ) = F(Q ') and Qec = Q
Qr'(,( ' = Qr'e The collineation y of K extends to an isomorphism of

L] . i3 = ] = t H *
Q, onto Q ' by defining a y a ' and (anoc )174 2 'o(ts From this

. sas i -1 -1
. t = LY ¢ ; o t =
definition, we obtain a_ ( Y ;L) a '«’and (an o) 34) 8
-1 .
(an‘o(')o('o We therefore have n (:x/Qr) 72 =O('/Q'r° (using the
assumption 77’:-1(9/[K ) 5L=o<'l’,\, ). By 3.2.1; ¢ and ' are conjugate

with respect t0 a collineation of /’Ur'(n

(2) K = Q s In this case p(l' and (X'IK are both the trivial polarity.
<
One proves that of and ' are conjugate in the same way as case (1),

except that one uses 3.2.4 instead of 3.2.3.

—EE TR TR e kel 18

A

Corollary 3.2,6 @ If r = O(mod 2) and Ky ¢, then the yumber of
conjugacy classes of polarities of r'rf having no absolute points

outside X equals the number of conjugacy classes of polarities of K «

Proof s By the previous theorem,; it suffices to show that any
polarity of i extends to a2 polarity of ﬁxfc having no absolute points

outside K . This is shown in 3c1ede
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Corollary 3.2.7 (Glock (8)) ¢ If v >8 and r = O(mod 2), then

the polarities of n’r with no absolute points form one conjugacy class.

Proof By the second part of 3.1.4; there exists a polarity of 7r

mm——— T
with no absolute point. Thus there is at least one conjugacy class of
such polarities. By 3.2.5, there is at most one conjugacy class, since

any two polarities of the empty configuaration are conjugats (trivially).

We now use 3.2.4 to help prove two theorems concerning polarities

of'fl’s and 7?'99 In the first of these, we consider o pogsibility

excluded from the second part of 3.1.4 (namely kK = ¢b, r = 8 and j = 0).

Theorem 3.2.8 (Abbiw-Jackson (1)) ¢+ All polarities of 71'8 have two

‘absolute points and they form one conjugacy class.

Proof ¢ By 3.1.4 (a), (b) and (c), a polarity of R‘a has either two

absolute points or none. Suppose £ is a polarity of 'ffé with no
absolute points. By 3.2.4, there is an o(~canonical HF process Q for

which there are two non-o{-agbsolute @Q-isolated points a_ 6 and a,.; and for

1 2°
which 7T8 is the free completion of the Q-isolated and Q-HF elements.

Since there are four Q-isolated elements (a19a2,a ~ and a_ot )s there

1
are no Q-HF elements, as r = 8. Hence ﬂ'8 = F( F)’ where

2

= A -
e {a1 9255847 585 o<} But F( P) is degenerate and 7ty is
non-degenerate, a contradiction. Thus no such polarity o exisis.

All polarities of 7T8 therefore have two absolute points.

By the second vart of 3.1.4, there is a polarity of 7’(’8 with two
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absolute points. Thus there is at least one conjugacy class of
polarities of 'rt'8. It remains to show that any two polarities « and

o{ of ’/"(E3 are conjugate. Suppose Q is an KX ~canonical HF process foxr

G i = =
@y for which Q=cf 5 Q4 = oV s Q =0y Ufac],

0<£Ln<m, and ﬂ’r = F‘(Q2m). We may assume m is minimal with respect
to the property ?fr = F(QQm)' By 3.1.2, we may assume that the

Q-isolated point a, is non-«-absolute. An inspection of possible cases,

" uzing 1.5.13 , shows that m £ 5 and that sz is one of the configurations
illustrated (see figs. (1) to (4); a relabelling of the a,'s, 121<£ 5,
may be necessary for Q’2m to equal one of these four configurations)o

In each of figs. (1) to (4), there ic a relabelling of the ai's (and a
consequent redefinition of Q) such that a, and a.2 are ¢{-absolutse
Q~isolated points, 33 is a non-{~absolute Q-HF point with Q-=bearer

ay s and TC8 = F(QG)‘ Similarly, one proves the existence of an

1
= i=-canonical HF process Q' satisfying 7’?’8 = F(Q6 ) and
e

Qg = {‘a.', e.i",(‘;, 1< 1L 33 s Where a1' and a2° are '-absolute
i

Qt=isolated points, and a.! is a non- oc*=-absolute Q¥-HF point with

3

t
fo [N | 3 s < s = ]
Q'=bsarer 2y’ otle The isomorphism 1]L s %—9 Q’6 defined by anlf’ a,

. o -1
and an°<11l«= anso(‘ satisfies 1{, (g(jQ6) = N'(Qét o By 3.2»1,!)(

and (' are conjugate.

a, A
2 " &K
Q)
s Ol I
F
' aZ
Ay
3
a1~><
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Theoren 3.2,9 (Glock (8)) ¢+  The polarities of 7‘(’9 having one

absolute point form one conjugacy class.

Proof ¢ By the second part of 3.1.4; there exists a polarity

of r_ with one ¢ -~ absolute point. Thus there is at least one

9

conjugacy class of such polarities. It remains to show that any two

polarities X and ! of 7, both having one absclute point, are

9

conjugaie. Lot @ and Q' be K- and ol-canonical HF processes
respectively. Suppose Q2n—1 = an.,g U{ a,ng 9 an = Q’2n~1u S;anozz N
1<ngm and 70y, = F(Q,2 )o By 3.2.4, we may assume a, and a, are
S ) m . 1 2

Q-isolated and non-«~-absolute. Since a 1,a2,a1 o and a,ot  are 21l

Q=isolated, there is only one Q-HF point b, which is g =-absolute

(vy 39103)0 Because TU, = 6 is non-degenerate, b does not have

9
Q-bearer ayedpe Thus b has either ay o or a2v< ag Q-bearer. We
mz2y assume that 8, is the Q-bearer and that b = aéc Thus 779 = F(Q6),
by 105613 Similarly, we may assume that 77'9 = F(QG') and

Q6' = {ai‘,ai&'; 12ig 3}, where a1',a2' are non- «¢'=absolute
Q'—isolated points, and a3' is an o-ahsolute Q-HRF point with Q¥~bearer
| B S 3 © g 1 = H
a, 0( o The isomorphism 'lf H Q6-.->Q6 defined by as i = a; and
. . os -1 )
= P, = . = ¢ e
a o Y azfot 'y 1 1,2,3, satisfies 17,,(0([ Q6) Y= lQ5e

Thus « and «' are conjugate, by 3.2.1.

We note that although there is only one conjugacy class of

polarities of 7, having one absolute point, there are infinitely many

S
such polarities. To show this, we note that if such a polarity o« has
x as its absolute point, and ¥ is any collineation of ’R"9, then x ¥

is an absolute point of 1,:10( ¥ o If xY # x, then ’77;1()( Y Xy
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since they have different absolute points. Thus, if G_ is the full

9

collineation group of ’rt‘9, then to each yo xG, there is at least one

9

polaritly of '1‘(’9 having y as its absolute point. By theorem 2.3 of

(5 ); xG, is infinite. Hence there are infinitely many polarities

9

of ’)7’9 having one absolute point. Similarly., it follows that C is

infinite for any conjugacy class C of polarities of ’n’r having at least

one absolute point.

Theorem 3.2.10 ¢ If K is a non-empty subplane of 'nf’( s then there

n‘KI
2

is the number of conjugacy classes of polarities of K.

conjugacy classes of polarities of rr“, where n

are at most ]

Proof: If n = Oy then K has no polarities and therefore 1t1'<

has no polarities (as if « is a polarity of TL’,'I(, then o(/K is a
polarity of K ). Thus the theorem is true for n = 0. Henceforth
we assume n > O,

LY
2

representatives o(,l,..., o(n from the conjugacy classes of polarities

We now define a set X of polarities of "'Cf ° Choose

of . TFor each line { of K and i G{‘l,...,n}, define a

configuration Fi(g) as follows ¢
P(Q) - K U {a.(p),b,('q)z , whero a.(f) is a point incident
i i i i

. - 7 4
only with () s and bi(() is a line incident with ai(") and [o(i only.

Clearly F( _Pi(z)) = 7Z';<o Define a polarity O(i(g) of (’(‘?) by

1
ro (D mxe, forx ey ant O o (O 3yttt & @

i

¢ <
extends uniquely to a polarity of F( Pi( )) = 7(: .
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Let X = {Mi(f) s 1<£1i<ny {a line of K]. Since K is
I

2

a non-degenerate plane, K has lines (by f.1e1 ). Thus

n, [/

[x|=B50

i<
1

polarity in X. Let Q be a f-canonical HF process for 71’1(. We

have F(Qo) = F(K) g %’f o Hence there is an m > O for which"

We next show that any volarity 5 of T, 1is conjugate to a

Qg = Upp Kl s U = Qe ViaPf » 0O< kg m; and

F(sz) = ’N;( o If a, is Q-free, then a, = %.y for some lines

1 1
X5y € K o Since K is a plane, X,y £k 4 contradicting za.1 5@1( .
Thus a1 ds either Q-HF or Q-isolated. As r» = 1, there are no

Q-isclated elements and one Q-HF element. Thus a 4 is the only
Q-HEF' element. Suppose it has line fe = as Q-bearer. Then a 1@

ig Q-free with Q-bearers {8 and a s and Trf = F(Q,) (by 1.5.13 Yo

By tho dofinition of 041,..., N‘n’ *-’-i and p"K are oonjugate with
respect to some collineation I of K, for some i. Let

F— Then extends to an isomorphism of 2 ( 11;1)
Ol™ o ea¥ e 't P f1

. Lty S0 N
onto Q2 by defining ay = aja-zz;l bi (/2 a1 § .
This isomorphism satisfies ~,’Z1(o<i( ¥ )I (11’-1))21L= P’Q .
. 2
i
-1
Hence 0(.(1\{’ ) and @ are conjugate (by 3+2¢1),

\

K

’ is conjugate to a polarity in X,

Since every polarity of Tt

n. <l
2

there are at most |X|= conjugacy classes of polarities of

<
71“10
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n. | r<|
2

possible for two polarities in X to be conjugate. In fact, o(i(l?)

Ve note that is only an upper bound because it is
() . . . ,
and o(i are conjugate if and only if there is a collineation W of
4
Y such that»@l; = [ and [o(il/— = ,('Ozi. Such a Yy may, but does

not necessarily, exist,

In our final theorem, we consider the conjugacy of polarities of
7‘(: having J absolute points ouiside K, for all possible r.j and K
satisfying (a); (b) and (c) of 3.1.4 but not dealt with in theorems

3.2.5 to 3.2.10.

Theorem 3.2.11 ¢ Suppose that J and r are positive integers for

which 1 < j < r and j = r(mod2), and that %: satisfies @

(a) If K£¢gand r = 1, then K is not a planes

(v) If K24, then j< r~6and x + j > 12,

Then, to each conjugacy class C of polarities of K, there are
infinitely many conjugacy classes of polarities K of n;‘— satisfying

mlme C and having j absolute points outside K .

Proof's Let C! be a conjugacy class of polarities o of 7t1':<

satisfying 01/,(6 C and having j absolute points outside K. If ¢

and ' are two polarities in C', then ' = 1;%(1/, for some

Yy € G:, the full collineation group of ’II"( o« If o« has absolute
points a,l,...,aj outside Ky then ! has absolute points a11‘L ,e..,ajlr
outside K . Thus the set X = {.a; a is an « —-absolute point outside &
for some o € C’j is contained in at most j G:—orbits. Suppose

there were only finitely many conjugacy classes of polarities «(
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satisfying o iKé C and having j absolute points outside K. Then
T = {a; ‘a is an o¢ —absolute point outside K of such an N} would be
contained in only finitely many GI"( -orbits. Thus, to prove the

theorem, it suffices to find a sequence (c(i) of polarities of Wf

i=0
such that

(1) each o(i has j absclute points outside K and O(i }’é Cs

o K
(2) there is a sequence (a,i) of points of 7@ for which a,
i=0

is an «( —absolute point Vie N, and if i # k, there is no
i

collineation '?71— of f satisfying aiy/ = 8.

We first show that 7. . exists and W Fk . If Kz ¢ ,

1 1

then 71’1";1 exists because r 2> 1 and by 1.6014. If K=¢ 4 then

from assumption (b) we have 2r — 6 = v + (r<6) X r + j 2 12. Hence

. tat s Ay
r> 9 and 72}_1 exists. The possibility of T[r-1
when r = 1 and 72‘(;C =FK) =K ¢, But Kk is not a plane when r = 1

K occurs only

(by assumption (2)); so F(k)y & (by 1-4.3(d) ). Thes 7 #K .

1

Let P be a HF process for 77151 from K . Suppose z € 7t’I’.‘:1

and P is an almost-confined configuration with vertex z such that

"~ .
en K=c¢ . Then (‘rg_f—P(z), by 1eT¢9 . Because T ER it
'S o
follows from 10710 that 77 _, has 5 gequence of lines (z.) and
%) b i=0
almost confined configurations ( Pl) such that Pi has vertex Z:s
i=

0
PN K = and {(31 ]> |2z | Y k<, 1=1,250..

We next show that 72’;1 has a polarity « such that cxl,fec and

has j - 1 absolute points outside X', Choose a polarity «' of K
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such that ' & C. Because O << j<£ v and j = r(mod2), we have
04 j=-1<r~-1and (j~1) = (r-1) mod2, Thus, by 3.1.4, "

extends to a polarity « of T‘t‘r': with J - 1 absolute points cutside

1
K,unlessr-—1=8,}<=¢andj._1=oo Butr—1=8,i'<==(]$and

j=1=014dmply r + j = 10 < 12, contradicting (b). Thus, in all cases,

o' extends to the required polarity of 7z ..

We next show that ﬁr’i is a subplane of 7(’5 s and we define a

1

o0
sequence of polarities ()
' 1=0

each i. Suppose i€ N. Then fi0< is an almost-confined

of ™K such that oc.l = = for
T LN

configuration with vertex zie( o If Q@ is an x—=canonical HF process
K + [ o o9 1 z 3
for 7 ", from K, then Pix & Q(zio() (by 1eTe2 ) and thus z, X is
incident with two lines of its Q-socle. Hence zix ig Q~free, By
301034 2, is non~«-absolute. Hence N 4 Z.X o Define a HF

(1)

process @ by

N
ot 9

o

(1) _ < . (1) :
Q, = Ty ug_aiz > vhere &, is.Q'"’-HF with bearer z.,

Qz(i) - Q1(i)u>:big , where b, is a a{%)_ree 1ine witn
Q(i)—bearers 2. X and a; (this is well defined
because 7, 4 2. )y

o, =r @), n> 2

clearly (@) = 1. Derine B = p 4 {3}, e

r(R(i)) = r(P) + r(Q,(i)) = (r~1) + 1 = ro Hence R(i) is a HF process

P
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for rt‘: from K » Thus Qm 8 F(Qz(l)) = 75:. We extend « to a

s on (1) -
polarity o<i of Q2 by d'eflmng ay ¢ bio By 1.4.4 , o(i

(1)

i

extends uniquely to a polarity of 7‘(1"\" such that Qn(i)oc 3= Qn
¥V n 2 2.
)
We now show that (o(i) satisfy (1) and (2). We have

™

] - e Boamseq My -q @ :
O(i{ft !K x! &€ C Because Q /o Q‘n ¥V n 2> 2, we have

sté(i) (u) = StQ(i) (ux i) V u¢Q2(i)° Hence u ¢ uo{i Y u ¢ Q2(1)9

and sll o(i-absolu'be points are contained in Q,z(l), Thus K, has J

i

absolute points outside K, since a,i is an O(i-absolu'be point and there

are j —= 1 o ~absolute points in T _ outside K . Hence (1) is

r=1

satisfied. We show (2). By definition, a; is an o<i=-absolute point
outside Kk for each i € N,  Suppose that izt k and there is a
collineation Y of 7t§ for which 8l = By fie may assume i7 k.

We first show that zilll, = 2 Because ay I Zss WO have a, I Z, o

k.
Thus either & is an R(k)—abearer of zi‘f’ s or vice-versa., Assume the
former. Then 8y & Flz’u s since Pi'q— is an ?lmost—confined
. i . k)
o C
configuration with vertex z,7, ; and P.%4 SR (ziy, Yure (vy

107:9). But ay & Pl implies akq,’.,"=1 =a; & Pi’ a contradiction

< < . k
(because = n:;__i and a, ¢ 7(';_1)0 Hence z,3f is an R( )—bearer

‘of 2, But a, has only one R(k)—bearer, namsly z Therefors

k k k*
Ziq‘f = Zp. Hence 911’, has vertex Zy e By 1.7¢9 5 ()ilf'Q-R(k)(zk)UK;

Because piNK = ¢ and K'lf =K 4 we have (:'iq' n K =5b e« In

s (x) - = _ »R o Hence
addition, R (zk) P(Zk)9 because z, € P = 7 7,

f;y S P(z). Therefore '{ail = ,\piﬂ < }P(zk)}o But i > k implies
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’f)il :>IP(zk)£ (by definition of Fh for each n & N)o This is a
contradiction, so there is no collineation Y- satisfying aiy- = 8.

Thus (2) is satisfied.

This completes the proof of the thseorem.

Corollary 3.2.12 (Glock (8)) s If r = (mod2), 1< j<r -6,

and r + j > 12, then there are infinitely many conjugacy classes of

polarities of 7?5 having J absolute pointse.

Hence; in 3.2.11, we have extended Glock's result to all planes

having finite free rank.
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CHAPTER 4

NON-FREE RANK PLANES

In this chapter, we consider planes 7 for which 7r 3 k()
and which do not have free ranke The existence of such planes was
first proved by Kopejkina (17), who gave a construction for a plane
having empty core and not having free rank (such plangs, along with
free planes; are called _gp_eg). We show that any ﬁlf- can be
embedded in s plane 777 not having free rank in such a way that any

collineation group G of ’h’r K extends to a. collineation group of 7 .
We first give a generalization of Kopejkina's construction.

(i)y2 . . .
Theorem 4.1 ¢ Suppose that (7“: )i=0 is a strictly increasing
sequence of non-degenerate free rank planes for which K =o<(7;;(1)) =
K (7f(2)) e vee o 12 7 has vamx r, and there is a finite m

] .
for which Ty < m for all iy then 7U = U ’/T(l) is a plane having core
i=0

K and not having free rank.

Proof: We first show that 7T is a pl'ane having core Ko lLet x

(1)

and y be distinct points of 7 Then both x5y & @ for some i.

As n—(i) is a plane, there is a unique line Le k(i) incident with both
X and y. Since ,{7€7~¢:('j) \/ j 2 1 and each 71"(3) is a plane, ,(7 is
the only line of 7~ incident with both x and y. Similarly, any two
lines of 7v intersect in exactly one point. Thus 7r is a plane.
Clearly K & K (). If P is any confined configuration of 7w 4 then
()

P is finite and is therefore contained in 7T for some i.. Hence

(—‘__C_ Ko This implies K () € ko Hence kK (7) =K .
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We now show 7T does not have free rank. Assume, on the
contrary, thatsr has free rank. Then there is a HF process P for

TC from Ko Let X be the set of P-isolated and P-HF elements. By

1.5.1(&),E$x;x:17t =7 . If7 has finite rank, then X is finite,

and hence K UX< TL“(J“) for some i, This implies U= [lf uﬂTr g7‘((1)9
a contradiction. Thus 7¢ has infinite rank k. Hence we may assume

P is given by Po = K3 P, =k X, where X is a set of k P-isolated

1
pointsy; and Pn = Fn—‘l(P’i)’ n>1io By 1:5.7; Q(1)= mn P is a

(i) (1)

HF' process for ¢ from £ o For each i, X N is a set of

Q,(l)-isolated points. Since r, £ m, vie have lX,, r((l)[ {;% for each
©d
i. Hence the increasing sequence (X r\rr(i)) 350 of sets satisfies

2] . .
( U xn ’I‘C(l)) é% o But we also have U (X n’/t(l)) =
i=0 i::o

©d .
Xn (U ’rc(l)) =XnNTW =X, and |X|= ke Since k is infinite and

i=0
% is finite, this is a contradiction. Thus 70 does not have free
rank,

We note that Xopejkina proved the above theorem for K = c;J and

r, = 8 for each i.

If, in the above theorem, all ri's are equal to some r, then the

plane 7T is r-uniform.

Theorem 4.2 $ For each r and Kk for which Ttx"\' exists, there is an

(r+8)-uniform plane 7T which contains TC"]‘; s has core K, and has the

<
T

proverty that any collineation group of 7> extends {0 a collineation

group of T o
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. . P (1) 2
Proof : We first define an infinite sequence (¢ )i=0 of
free rank planes, each having core K and rank r + 8 and containing 7t§ .

Let P be a HF process for 711'_( fromK . For each i > O, define a HF

(1)

process Q

Qo(l) =T

Qﬁi)

:s;r(§ u{ai,bi,ci,diz s Where

Gysace ,di are isolated points,

Q(g')= Q1(ii)/ {ai.b

.58.0C, sa, od,
1794°71994° 40

b.ec.,b.ed.,c.od.z $
i 211 171 1

Qéigz Qél&{ai',bi',ci°} s Where a, ' = (ai'bi)°(ci°di)’

= (ai.di)o(bi.oi), c;® = (aioci)o(biodi),
Qrfian_a(Q_%(i)) n > 3

We observe that Q{lj = F(Q1(i))o There are four Q(i)misolated elements

(ai’bi9°5_ and ) and no Q(i)~HF elements.  Therefore r(Q,( )) = 8,

=iy Pratt Q) ana 2 + @) = x(p) + 2(a{¥) -

[OTI

We have P _+ G

£

r + 8, Hence is a free rank plane having core K and rank r + 8.

It contains 7cC

B A

and so is non—-degenerate., 1Let 7‘6(1) = Qzlj, 1= 0y%gcee «

(3-1)

We next show that we may assume 7r

(1)

Ty 1 = 1425040 o For each such i, define

is a proper subplane of

p. =l u{a Pyb,tso, Ted; tya, ted, Ty, ted, Yy, Tl j, where d.' = b,.
-1

Then Pi is a proper closed subconfiguration of Q3(i)., Hence
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= [ - P/ (1) .
[.Pijw(i) [.PiYF(Q3(i)) Pfy) & (by 1.5.44 )o  Let
77:‘1)' = F(Fi)o Then n(i)“ is the free completion of

K [ 0 [ l} . ° . (i"1)
7{1' u{ai ’bi 5Cs ,di s which is isomorphic to Q,1 « Hencey

by 1.4.2 r,—L(l)‘:‘-—;’ F(Q1(1"1)) = w(i"1), the isomorphism being

uniquely determined by the mapping a,' >a

3P89 B>

i=1?
. i i=1
ci'__) Csq? di'.,—p di-=’|° Thus we may identify 71'( s and 72:( ),

! = ‘  J—- ‘ (1‘1)
and assume ay ai;-1’ bi bi—- 19 etc, Hence we may assume 77

o0 y
is a proper subplane of «nﬁi)o Define Tr = UJ E(i)o By 4.1
i=0

7t has core k and is an (r+8)-uniform plane not having frese rank and

containing Tere

Finally, we show that any collineation group G of ;T'; extends to
a collineation group of 7 o For each iy G extends to & collineation

group c-(i) of Q1(1) y Where {‘ai’bi’ci’di} is fixed elementwise by
G(l)o By 1.4.4 , G(l) extends to a collineation group of F(Q,i(l)) =7((i)o
(1)

9

Suppose i 2> 1. Because {a’i"“’di} is fixed elementwise by G

so is F({ai,o.o,d:J ) (by 1e4.4 ) Hemce &, rsecesd; , are fixed
vy 6{1), It foliows that b1 o) L (1) 4o G(i){m(j) = ¢ld),

0£ j <iand i>1e Hence G extends to a collineation group G*® of 7r

defined by G°,'7r(i) = G(i), i> 0.
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We have used a generalization of Kopejkina'a construction to

prove the abovs theorem. . Bowever, if one lets 7T = F(rtg'b,rt'),

where TK' is an open non-free plane obtained from Kbpejkiné's
construction, then 7" also satisfies the requirements of the above
theorem (one shows that 7C does not have free rank using a lemma

. due to OfGorman (20)), Thus our generalization is not strictly

necessary for the above proof.
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