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ABSTRACT 

The E26 porphyry copper-gold deposit is the largest of several copper-gold deposits 

discovered to date in the Goonumbla region of central west N.S.W. Cu and Au 

mineralisation occurs in areas of strong pervasive potassic alteration and quartz veining, 

associated with a small pipe-like quartz monzonite porphyry (QMP1). The mineralisation 

occurs both within the porphyry and the covolcanic late Ordovician trachyte-latite lavas 

and volcanic breccias that it has intruded. The deposit is bounded at depth and to the east 

by a biotite quartz monzonite, while to the immediate north, is another younger QMP 

(QMP2) which has stoped out the Cu-Au mineralisation. Several other QMP's occur to 

the northwest and at deeper levels in the E26 deposit. 

Copper mineralisation occurs principally as bornite with lesser chalcopyrite and chalcocite-

digentite. Two bornite phases have been identified based on colour and mineral 

associations. Gold occurs principally as fine inclusions in bornite. The sulphides are 

zoned from a bornite-rich core, through a chalcopyrite zone to an outer pyrite halo 

associated with propylitic alteration. A weak base metal/gold association occurs in thin 

structurally controlled zones of quartz-sericite-pyrite alteration, away from the main E26 

mineralisation. Within E26 itself, the bulk of the Au is confined to the central and deeper 

parts of the system and immediately around QMP 1. Cu however, continues to shallower 

depths and laterally further away from QMP 1 . This pattern is reflected in the Cu/Au 

ratios, and has led to the definition of two distinct vertical domains within the higher 

grade areas of E26. The upper domain is characterised by high copper grades but low 

gold grades; the lower domain contains similar copper grades but much higher gold 

grades. 

Sulphide composition, timing and alteration are similar within the Cu/Au domains defined. 

A geochemical model developed shows that the Cu/Au relationships observed at E26 can 

be explained by coprecipitation of Cu and Au, but at different rates due to differing 

changes in saturation levels between the two metals. Deposition of both metals from 

chloride complexes in high temperature, saline fluids was in response to a decrease in T, 

and changes in f02  and pH associated with hematisation of secondary magnetite associated 

with earlier biotite (potassic) alteration. The deposits at E22, E27 and E31N do not show 

the same degree of magnetite destruction as E26 and E48, are more deeply eroded, and 

therefore not as enriched in copper. 
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1. INTRODUCTION 

Porphyry-related Cu/Au mineralisation occurs near Goonumbla approximately 28km 

northwest of Parkes in central west New South Wales (Figure 1.1). The Endeavour 26 

deposit (E26, formerly Endeavour 26 North) is the largest of several porphyry-related 

Cu-Au deposits discovered in the region to date. 

1.1 	AIMS 

This study focuses on the distribution and controls of Au mineralisation at E26. To do 

this, it is necessary to update the current geological knowledge of the deposit. The large 

E26 assay database that has been compiled over 15 years of drilling is used to establish 

the Au distribution, which is compared to the known geology, alteration, mineralisation 

and distribution of other metals (eg. Cu, Ag). Petrographic and electron microprobe 

studies are used to help establish the chemistry, timing and evolution of the mineralising 

system. A comparison of Au and Cu distributions with the other deposits in the area 

(E22, E27, E31N & E48) is also provided. 

1.2 EXPLORATION AND MINING HISTORY 

Disseminated Cu mineralisation associated with potassic alteration was intersected in the 

Goonumbla district by 1 km spaced scout auger holes in 1976 (Jones 1985). Further 

drilling outlined the Endeavour 22 (E22) deposit, and with it, the recognition of a major 

new porphyry Cu-Au province. Subsequent drilling also led to the discovery of other 

major mineralised centres, including E26, E27, E31N and, more recently, E48. 

In November 1992, the board of North Broken Hill Peko Ltd. approved the development 

of the Northparkes project to mine and process Cu and Au ore from the E26, E22 and 

E27 deposits (Figure 1.2). Project development would start with open cut mining and 

processing of oxide Au and oxide Cu-Au ore from the E22 and E27 deposits, before 

proceeding onto sulphide Cu-Au ore from the open cuts at E22 and E27 and underground 

mine at E26. The recent approval of an expansion plan will allow 5M tonnes of sulphide 

ore to be treated per year, of which 3.9M tonnes will be mined from E26. Total capital 
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Figure 1.1 Locality map of the Endeavour 26 deposit (From Heithersay, 1991). 
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expenditure is estimated at $255 million. A mine life of up to 20 years is expected with 

the first gold pour having already occurred in May 1994. Resource and reserve estimates 

as at December 1993 are given in Table 1.1. E26 contains approximately 70% of the 

Cu resource and 50% of the Au resource at Northparkes. 

1.3 PREVIOUS WORK 

The first, detailed published account of the Goonumbla deposits is by Jones (1985). This 

summarises much of Geopeko's work in the area, giving a description of the regional 

geology and a detailed account of the three main Goonumbla deposits (E22, E27 and 

E26). A detailed description of E26 is described in Heithersay (1986), and in his PhD 

thesis (Heithersay, 1991). An update on the three main deposits is given in Heithersay 

et al. (1990). Recent Honours theses include Squires (1992) on E27, Hall (1993) on the 

Goonumbla Volcanics, and Wolfe (1994) on E48. Numerous, unpublished Geopeko 

reports on the Goonumbla region, and the mineralised centres, have also been written. 

1.4 DATA COLLECTION AND HANDLING METHODS 

Because elemental assays are used extensively in this study, a brief description of 

sampling and assaying procedures, and data storage and manipulation is given. 

1.4.1 Grid 

All data is stored and handled in the standard ISG 55/3 grid co-ordinate system. The 

vertical grid is calculated by adding 10 000 to the Australian Standard Datum. The land 

surface is approximately 10280mRL - i.e. 280m above sea level plus 10 000m. The 

mineralisation at E26 is reasonably well defined to 9400mRL, i.e. 880m below the 

topographic surface. 

1.4.2 Drilling Methods 

As outcrop is poor to non existent, nearly all assay data and geological information has 

been obtained from drill core. Minor assay and additional geological information has 

been obtained from exposures in the E26 ramp development. Typical drilling techniques 
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1.0 	Identified Mineral Resources 
1.1 	Measured Resource 

Mineralisation 	(Deposit 	 Nominal 
Type 	 Cutoff Grad 

Gecember 1993 June 1992 	• 
Tonnes Grade 

copper 
% 

gold 
_git 

Tonnes 	Grade 
copper 	gold 

% 	9/1 
Oxide Gold 

E22 0.75gAu/t 586,000 - 1.6 586,000 - 1.6 
E27 0.75gAtdt 1.314.000 - 1.9 1,314,000 - 1.9 
total 1,900,000 1-.8 1.900,000 1.8 

Oxide Copper-Gold 
E22 1.0%eCu 764.000 1.0 0.9 764,000 1.0 0.9 
E27 1.0%eCu 2,598.000 0.9 1.0 2.598.000 0.9 1.0 
Total 3,362.000 0.9-  f.0-.  3,362,000 0.9 1.0 

1.2 Indicated Resource 
Sulphide Copper-Gold 

E22 0.6%eCu 18,153,000 0.7 0.6 18,153,000 0.7 0.6 
E27 0.6%eCu 13.696,000 0.7 0.7 13,696,000 0.7 0.7 
E26N (above 9450m 1.2%eCu 38,533,000 1.8 0.6 38.533,000 1.8 0.6 
E48 (10200-9800mR 1.2%eCu 8.000,000 1.4 0.6 
i otal 78,382.000 1.3 0.6 70,382,000 1.3 0.6 

1.3 Inferred Resource 
Sulphide Copper-Gold 

E26N (below 9600m 1.2%eCu 3,000,000 1.4 0.5 3,000,000 1.4 0.5 
E48 (9800-9400mRL 1.2%eCu 10.900.000 1.0 0.7 
total 13,900,000 1.1 0.7 3,000,000 1.4 0.5 

2.0 
	

Ore Reserves 
2.1 	Proved Reserve 

Ore Type 	 Mine 
• 

- 

Nominal 
Cutoff Grad 

June 1993 June 1992 
Tonnes 	Grade 

copper 	gold 
% 	9/t 

Tonnes 	Grade 
copper 	gold 

% 	SA 
Oxide Gold 

Oxide Copper-Gold 

E22 Open Pit 
E27 Open Pit 

0.75gAu/t 
0.75gAu/t 

500,000 
1,180,000 

- 
- 

1.7 
2.1 

Total 

E22 Open Pit 
E27 Open Pit 

1.5%eCu 
1.5%eCu 

1,680.000 

380,000 
1.280.000 

1.2 
1.1 

ZO 

1.1 
1.4 

1.580.000 - 2.0 

Total 1,6-60,000 1.1 1.3 1,660,000 1.1 1.4 

2.2 Probable Reserve 
Sulphide Copper-Gold 

E22 Open Pit 
E27 Open Pit 
E26N Underground 

0.6%eCu 
0.6%eCu 
1.2%eCu 

11.160,000 
10,648,000 
42.350,000 

0.7 
0.7 
1.6 

0.6 
0.8 
0.6 

u•tota 	• 	it :I: 	011 I I .: i 0 	01 i • • I 

Subtotal- 1SG 42,350.000 1.6 0.6 
Total 64,158,000 1.3 0.6 

Table 1.1 Northparkes Mines, Mineral Resources and Ore Reserves at 31 December 1993. 

AREA 	 N/S  VERTICAL 

Main above 9700mRL 	60 m 	60-100 m 

Main below 9700mRL 	80 m 	100-150 m 

North above 9700mRL 	100 m 	130 m 

North below 9700mRL 	No drilling 

Table 1.2 Average drilling densities at E26 
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involved precollars of 4" to 6" rotary blade RC aircore in the weathered zone, 

4.5" reverse circulation percussion in the hard oxide zone and HQ, NQ and (especially 

with earlier exploration drilling) BQ diamond core in the primary zone. Directional 

drilling with wedging of daughter holes was used during the 1991 drilling program. 

Most drillholes are drilled from east to west, only a few have been drilled in other 

directions. Drilling densities vary for different regions of the deposit, and are given in 

Table 1.2. 

1.4.3 Sample Preparation and Assaying Methods 

All holes are sampled on a 1m interval. Half core samples are prepared for assay by 

crushing, disc pulverising, and ring grinding. Sample splitting between processes gives 

a final 50-70g sub-sample. All Cu and Ag assays have been by AAS, differing only in 

digestion reagents and sample mass. Some caution should be given to the Ag assays as 

many samples are near the detection limit. No drillholes after E26P79 (drilled in 1984) 

have been assayed for Ag. Prior to 1985, most Au assays were by AAS with an aqua 

regia digest. Any Au analysis greater than 0.5g/t was routinely checked by classical 

(gravimetric) or AAS finish fire assay. Since 1985, all Au assays have been by fire 

assay. 

1.4.4 Geotechnical & Magnetic Data Collection 

Interval and oriented geotechnical data has been collected from drillcore. Interval data 

is collected for each 3m core interval, and includes RQD, core recovery and fracture 

counts. Of interest for this study is the number of weakly healed and strongly healed 

fractures per 3m interval. Weakly healed fractures are defined as those containing vein 

fill that can be scratched with a knife, and at E26, mostly correspond to gypsum or 

anhydrite veins. Strongly healed fractures are those containing vein fill that cannot be 

scratched with a knife - typically quartz. 

Magnetic susceptibilities of drillcore using hand held magnetometer readings, forms the 

basis for the analysis of magnetite. It is assumed that most of the magnetic response is 

due to the presence of magnetite, as no other magnetic phases such as pyrrhotite 
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occur at E26. With this consideration a conversion factor of 3.47 can be used to 

approximate magnetite content from susceptibility units (cgs) (M Hannington, pers. corn., 

1994). 

1.4.5 Data Storage and Handling 

Assay data is stored as DATAMINE desurveyed drill hole files. The E26 database 

contains approximately 36 000 Cu, 36 000 Au and 21 000 Ag assays. Geotechnical 

interval, magnetic susceptibility and lithology data is also stored as DATAMINE 

desurveyed files. These desurveyed files can be plotted in section or plan, viewed 

graphically in two or three dimensions, or used for statistical and geostatistical analysis. 

Plotting and viewing of data allows grade and geology outlines or contours to be 

interpreted. These contours of Au and Cu grade, and outlines of geology, have been 

digitised into DATAMINE and wireframed using the datamine graphical interface, 

GUIDE, to give a three dimensional image. 
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2. REGIONAL GEOLOGY 

2.1 REGIONAL TECTONICS 

The Cu-Au deposits of the Goonumbla region are hosted by a belt of Ordovician 

volcanics in the Paleozoic Lachlan Fold Belt (LFB) of Eastern Australia. The LFB has 

been divided into four structural belts by Glenn (1992). The Eastern Belt in which the 

Northparkes deposits occur, contains six separate belts of Ordovician Volcanics and arc-

derived volcaniclastics (Figure 2.1). The volcanics are mainly shoshonitic in composition 

and Late Ordovician in age (Wybom, 1992). 

Most workers have suggested that the shoshonitic volcanics are related to Ordovician 

island arc volcanism associated with a west-dipping subduction zone to the east. Several 

tectonic models have been put forward for the Ordovician of the LFB, including: 

i) single meridional island arc complex and marginal sea to the west 

(e.g. Oversby, 1971) 

ii) extensional splitting of a single meridional arc (Molong Rise) by eastward 

migration of the subduction zone (e.g. Scheibner, 1973) 

iii) extensional splitting of a single meridional arc by left-lateral strike-slip 

movement associated with the subduction of an oblique SE-trending spreading 

ridge (e.g. Packham, 1987) 

iv) a single NW-trending arc characterised by a discontinuous arcuate line of 

volcanoes, rather than a single volcanic arc (e.g. Cas et al., 1980). 

Glenn (1992) poses the following as problems with the simple island arc interpretation: 

i) the extreme width of the Ordovician volcanics 

ii) lack of volcanic detritus in coeval turbidites 

iii) recognition that volcanism was coeval with two major periods of quiescence 

during elastic sedimentation. 

Wybom (1992) suggested that subduction-related magmatism is absent in the Ordovician 

of Central New South Wales. Instead, the source of the high-K Ordovician shoshonites 

was a metasomatised lithospheric mantle. Mantle metasomatism could have been 

induced during thermal perturbation, lithospheric delamination or pressure reduction 
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associated with a rearrangement of plate geometry (Wyborn, 1994). The importance of 

this process in relation to the formation of porphyry Cu-Au deposits will be discussed 

in the next chapter. 

2.2 GEOLOGY OF THE GOONUMBLA AREA 

The Goonumbla Volcanic Complex (GVC) (Figure 2.2) is part of the Bogan Gate 

Synclinorial Zone of Scheibner (1973). The Late Ordovician Goonumbla Volcanics 

(approximately 440Ma; Perkins et al., 1990) were erupted from shallow water to partly 

emergent(?) volcanic centres, and show a broad range in composition from shoshonite 

through latite to trachyte (Heithersay, 1991). Minor volcaniclastic rocks and limestones 

are interdigitated with the volcanics on the flanks of these centres. A pronounced 

circular feature approximately 22km in diameter can be seen in magnetic and gravity 

images of the Goonumbla region and is interpreted by Jones (1985) to be a collapsed 

caldera formed by explosive mechanisms. More recent work by Hall (1993) suggests 

that the caldera formed by block subsidence and downsagging. The lack of pyroclastic 

deposits in the area suggests that effusive rather than explosive mechanisms were 

important in caldera formation, supporting Hall's (1993) model. The Wombin Volcanics 

of Jones (1985) are now considered part of the Goonumbla Volcanics (Hall, 1993). 

The thickness of individual flows in the Goonumbla Volcanics range from metres to tens 

of metres. Hall (1993) has documented several lava varieties, including: 

i) subaerial, porphyritic, blocky lavas 

ii) sparsely porphyritic, diffusely flow banded lavas 

iii) sparsely porphyritic hyaloclastite lavas 

iv) flow-layered lava sequences characterised by angular phenocrysts. 

Occurrences of latite lavas within latite debris have been interpreted by Hall (1993) to 

be a megaclast breccia facies derived from a volcanic debris avalanche. Recent mapping 

in the E26 decline and hoisting shaft supports this interpretation, recognising variably 

sized clasts of fine aphanitic orange-pink latite set in a polymictic matrix containing 

crystal debris and lithic fragments of flow banded lavas, coherent latite lavas and felsic 

to mafic porphyritic lavas and/or subvolcanic intrusives. The latite clasts vary from 0.1m 

to 50m in diameter. Clast boundaries can be sharp and well defined, or irregular and 
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marked by increased internal fracturing on the margin of the clast. This increased 

fracturing results in a jigsaw-fit texture which is increasingly matrix-supported away 

from the parent clast. 

Coeval monzonite porphyries have intruded the volcanics within the GVC. The 

monzonite porphyries are transitional to monzodiorite, diorite and gabbro, and are 

interpreted by Jones (1985) to form a large truncated ring dyke. The Endeavour 31 stock 

which crops out in the northeast corner of the GVC is a porphyritic mafic monzonite 

stock distinguished by biotite and lesser hornblende phenocrysts, and is 1.5km by lkm 

in plan dimension at the surface (Heithersay, 1991; Figure 2.2). The E31 stock is 

interpreted to be the parent for the mineralised porphyritie pipes such as at E26, E28 

and E48 which occur around its margins (Heithersay, 1991). These quartz monzonite 

porphyries (QMP) crosscut the E31 stock, and represent late-stage focused release of 

magma and volatiles which had collected on the shoulders of the stock (Heithersay, 

1991). Subvolcanic emplacement of the intrusives is suggested by their fine grained 

nature, breccia pipes, and pebble dykes (Heithersay, 1994). The deposits show varying 

degrees of preservation. At E26, mineralisation contracts quickly near the base of 

oxidation, suggesting that a full profile of a porphyry system is preserved. The deposits 

at E22 and E27, however contain high grade mineralisation to the base of oxidation and 

are capped by a residual oxide gold deposit, suggesting that these deposits are eroded, 
, 

with only the middle and deeper parts of the system preserved. Late, post-mineralisation 

quartz monzonite dykes, locally termed zero porphyries, crosscut the mineralisation. 

These are subvertical and tend to follow structural trends. 

A large complex Cu anomaly ranging from 1000ppm to >4000ppm blankets the E31 

stock (Heithersay, 1991). Local highs are associated with the quartz monzonite 

porphyries. The QMP's disrupt an annular Zn geochemical pattern centred on the E31 

stock. It appears that these Cu and Zn halos are associated with the E31 stock and have 

been overprinted by the quartz monzonite porphyries (Heithersay, 1991). 

The volcanics at E22, E26, E27 and E48 dip gently to the southeast, and lie on the 

western limb of Jones' (1985) Milpose Syncline. The vertical to sub-vertical attitude of 

the quartz monzonite pipes suggests little post-mineralising deformation (Jones, 1985). 
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Few major faults or shears have been mapped, although lineaments have been defined 

from aerial magnetics, along which many of the major deposits lie, suggesting some 

structural control to QMP emplacement. The E48 and E28 deposits are intersected by 

a major shallow east dipping fault known as the Altona Thrust. Small shears, faults and 

post-mineralisation dykes tend to be subvertical to steeply dipping with strikes of NW-SE 

and NNE-SSW. 



13 

3. PORPHYRY COPPER-GOLD DEPOSITS 

3.1 INTRODUCTION 

A brief overview of porphyry Cu-Au deposits from around the world provides a 

comparative basis for this study of E26. Salient comparative aspects are the geometry 

and size of the porphyritic stocks, the distribution of mineralisation, alteration 

(particularly K-feldspar-biotite-magnetite) and stockwork quartz veining, and the 

associations of bomite-Au, and distal Pb-Zn-Ag-Au. It is important to note that the 

majority of porphyry Cu-Au deposits do not fit the classic porphyry Cu deposit model 

of Lowell and Guilbert (1970). The 'type' models for porphyry Cu-Au deposits are taken 

from deposits in the South west Pacific (eg. Sillitoe and Gappe, 1984; Sillitoe, 1990; 

Figure 3.1). 

Au-rich porphyry deposits were classified by Sillitoe (1979) as those deposits with 

>0.4g/t Au. Given that the reported resource grade of a deposit is an economic rather 

than natural indication of the mineralised system, the validity of such a definition must 

be questioned. Despite E26 containing the same amount of Au as E22 and E27 

combined, Sillitoe (1990) excluded E26 but included E22 and E27 in his Au-rich 

porphyry category. This was because of the low cut-off grade used to report the E26 

deposit by Jones (1985) which Sillitoe (1990) used as a source. Similarly, Bingham 

Canyon, with a Au production in excess of 15 million ounces, but at a grade of only 

0.2g/t Au, would not be classified as a Cu-Au porphyry based on Sillitoe's criteria. 

Based on the current resources (using a higher cut-off grade), E26 would be included in 

Sillitoe's (1990) classification. 

The principal porphyry Cu-Au deposits of the world occur in the circum-Pacific region. 

The deposits are confined mostly to the Philippines, Indonesia, New Guinea and British 

Columbia. The porphyry Cu deposits of the western U.S.A. and South America tend to 

be Au-poor, although there are numerous exceptions. While there is still considerable 

debate on the influence of tectonics on metallogenesis and on the metal components of 

porphyry systems, Jones and Thompson (1991) note that Au-enriched deposits tend to 

be emplaced in island arc and oceanic crust settings. Major element and isotopic 
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compositions require that the magmas that generate porphyry Cu-Au deposits contain a 

mantle-rich source. Mantle metasomatism could be the result of a thermal perturbation, 

lithospheric delamination or pressure reduction due to plate rearrangements (Wybom, 

1994). Solomon (1990) presented a model in which metasomatism and the generation of 

gold enriched magma occurs during an arc reversal, such as the Philippines. Au-poor 

and Mo-enriched porphyry systems tend to occur in thick continental arc settings with 

magmas derived from partial melting of continental crust. Recent discoveries of 

porphyry Au deposits in Chile (eg. Marte) demonstrates that there are exceptions to this 

association (Sillitoe, 1990). 

3.2 CHARACTERISTICS 

3.2.1 Geometry and Composition 

Porphyry Cu-Au deposits are characteristically related to shallowly emplaced stocks that 

have intruded coeval volcanic sequences. The stocks are commonly pipe-like in 

structure, having a small plan area but extenuated vertical extent. Mineralisation can 

occur both within the intrusive stock and surrounding volcanics. Of the Philippine 

deposits, over half are less than 0.5km2  in plan at surface (Sillitoe and Gappe, 1984). 

Vertical extents of 700-1100m and a widening with depth is typical for many of the 

Philippine stocks (Sillitoe and Gappe, 1984). At Batu Hijau in Indonesia, the 

mineralising tonalite stock is 500m in diameter at 600m depth and tapers upward 

(Meldrum et al., 1994). The main Grasberg Intrusive at Grasberg, Irian Jaya, is a 

subcircular stock 300m in diameter that extends for at least 1500m vertically 

(Kavalieris, 1994). 

The stocks and host volcanics range in composition from low-K calc-alkaline through 

high-K calc-alkaline to potassic-alkaline (Sillitoe, 1990). Most of the stocks in the 

Philippines (Sillitoe and Gappe, 1984) and at Panguna (Clark, 1990) have diorite to 

quartz diorite compositions. Other compositions are also important: tonalites occur at 

Batu Hijau (Meldrum et al., 1994); monzonites and quartz monzonites occur at Grasberg 

(MacDonald and Arnold, 1994); while deposits in British Columbia are hosted by silica-

saturated to undersaturated alkalic monzonite-syenite stocks (Thompson, 1994). 
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3.2.2 Alteration and Mineralisation 

Five distinctive types of alteration are recognised in Au-rich porphyry deposits:- 

K-silicate (potassic); propylitic; intermediate argillic; sericitic (phyllic); and advanced 

argillic (Sillitoe, 1990). Cu and Au mineralisation is nearly always associated with 

potassic alteration. This alteration is characterised by biotite ± K-felspar. Magnetite is 

a common accessary phase, comprising up to 8vol% at Santo Tomas II (Sillitoe and 

Gappe, 1984) and up to 15wt% at Grasberg where it is associated with auriferous quartz-

magnetite-biotite-sulphide veins (MacDonald and Arnold, 1994). The Au-magnetite 

relationship is a common and important association in Philippine deposits (Sillitoe and 

Gappe, 1984). However, as Titley (1990) has cautioned, K-silicate related magnetite 

alteration can also occur in systems where little or no Au occurs. 

Stockwork quartz veining is intimately associated with mineralisation in potassically 

altered zones, comprising up to 25% of the rock volume in some deposits (Sillitoe and 

Gappe, 1984). Dense quartz stockworks can coalesce to give massive bodies of 

mineralised quartz. The main sulphide phases are chalcopyrite and bomite, with lesser 

pyrite. Au and Cu grades generally correlate closely. Au or electrum occurs as fine 

inclusions in Cu sulphides. In pyrite-poor deposits there is a strong bomite-Au 

association (eg San Antonio and Santo Tomas II; Sillitoe and Gappe, 1984). 

Chalcopyrite is more abundant than bomite at many deposits (eg. Grasberg and 

Panguna). Some deposits show vertical Cu/Au zonation (eg. Batu Hijau, where Au 

content increases at a greater rate than Cu with depth, Meldrum et al., 1994), and vertical 

Cu sulphide zonation (eg. Grasberg, where bomite increases with depth in the Dalam 

stage, MacDonald and Arnold, 1994). 

The other alteration types in Philippine porphyries (SCC, sericitic, advanced argillic, 

propylitic) vary in their occurrence and intensity and typically have overprinted potassic 

alteration. A summary of the typical mineral assemblages for each alteration type is 

given in Table 3.1. Of interest, anhydrite (and/or gypsum) occurs in nearly all Philippine 

deposits in all alteration types including potassic (Sillitoe and Gappe, 1984). Most 

Philippine deposits are also encircled by well-developed pyrite halos. 
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K-Silicate 	SCC 	Sericitic 	Advanced Argillic 	Propylitic 

Biotite 	 Sericite 	Quartz 	 Alunite 	Chlorite 
K-feldspar 	Clay 	 Sericite 	Kaolinite 	Epidote 

Albite 	 Chlorite 	 Pyrite 	 Dickite 	 Calcite 
Magnetite 	Quartz 	 Chalcedony 

Quartz 	Anhydrite 	 Pyrophyllite 
Amphibole 	Calcite 	 Sericite 
Anhydrite 	(Hematite) 	 Pyrite 
(Chlorite) 	(Pyrite) 
(Epidote) 

Table 3.1 - Typical alteration assemblages - Philippine porphyry copper deposits 
(Compiled from Sillitoe and Gappe, 1984) 
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3.2.3 Fluid Chemistry 

Fluid inclusion and isotope studies have shown that Cu and Au were transported in high 

temperature (400-700°C) saline (>20wt% NaC1) hydrothermal brines, released during 

second boiling from a crystallising magma (Sillitoe, 1990). At these conditions, Au and 

Cu are likely to be transported as chloride complexes. Pb, Zn and Ag however, are 

highly soluble under these conditions, and will be transported through the main 

mineralised environment, and precipitated on the peripheries of the porphyry system 

(Cooke, pers. comm., 1994). While Au is probably transported as a chloride complex 

in the hotter porphyry fluids, in more distal cooler fluids, bisulphide is a more efficient 

ligand for Au transport. The significance of remobilisation and redeposition of Au late 

in the cooling history of the porphyry system is still a matter of some debate. 

3.3 METAL ZONATION 

A model of metal zonation around porphyry systems proposed by Sillitoe (1989) is 

shown in Figure 3.1. Gold occurs in the central quartz-vein stockwork associated with 

K-silicate alteration. Gold can also occur with Ag in distal settings where it is most 

likely precipitated from later, cooler (meteoric?) fluids. Jones (1992) notes that Au can 

occur in the pyrite halo of a porphyry system in shear zones, quartz-sericite-pyrite 

stockworks and distal skams. Distal Au may also partly overlap with a Pb-Zn-Ag zone 

(Figure 3.2). In shallow crustal settings (<1km), epithermal Au deposits may occur in 

association with porphyry mineralisation. 
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4. GEOLOGY OF E26 

4.1 INTRODUCTION 

Significant increases in collected data and data display methods has occurred in the last 

four years including: 

i) drilling in 1991 

ii) site drilling in 1993 

iii) underground development mapping in 1993 and 1994 

iv) fully computerised database 

v) 3-dimensional graphical viewing of data. 

This review of the geology of E26 is intended to build on the work of Heithersay (1991) 

using this new information and computer-assisted analysis of it, and is based on the 

Geopeko drill logs, re-examination of drill core, and mapping of underground exposures. 

A plan of the current underground development and the orebody location is given in 

Figure 4.1. 

Cu-Au mineralisation at E26 occurs in stockwork quartz veins and disseminations 

associated with potassic alteration which is intimately associated spatially and temporally 

with small finger-like quartz monzonite porphyries that have intruded the Goonumbla 

Volcanics. Mineralisation is concentrically zoned around the intrusive stocks and extends 

for at least 1 000m vertically. The dominant sulphide phase is bornite, and Au occurs 

principally as small inclusions in bornite. The mineralisation halo thins upwards to 50m 

x 50m below the base of surface oxidation, and as a result, only a small part of the 

system has suffered supergene alteration. Due to the lack of erosion/weathering and the 

low Au contents of the upper areas, no oxide Au enrichment (as seen at E22 and E27) 

occurs. A small zone of oxide Cu mineralisation occurs immediately above the base of 

oxidation. Chalcocite, malachite and atacamite are the main copper minerals in this 

zone. 
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4.2 INTRUSIONS 

4.2.1 Biotite Quartz Monzonite (E31 stock) 

To the immediate east and beneath the E26 deposit is the E31 stock (Figure 4.2), locally 

termed a biotite quartz monzonite. Monzodiorites, monzonites and syenites were 

intersected in the outer 350m of the E31 stock in hole E26D46 indicating that stock is 

a composite body, containing considerable intrusive activity in the outer margins 

(Heithersay, 1991). 

4.2.2 QMP 1 

Two main quartz monzonite porphyry (QMP) intrusions were described at E26 by 

Heithersay (1991; Figures 4.2 and 4.3). Most of the Cu and Au mineralisation is 

associated with QMPl. This intrusion is oval in plan view with dimensions of 

approximately 20m by 70m, and a vertical extent of at least 600m. QMP1, was 

previously known as the 'mosaic porphyry' and is characterised by K-feldspar and 

plagioclase phenocrysts set in a fine K-feldspar and quartz groundmass (Heithersay, 

1991). Intense potassic alteration, stockwork quartz veining, and Cu mineralisation are 

common. The porphyry can contain angular to rounded fragments of quartz monzonite 

porphyry, biotite monzonite, quartz veins and sulphide clots in a porphyritic monzonite 

matrix (Figure 4.4). These fragments (xenoliths?) suggest that the porphyry intruded in 

several episodes, each episode marked by brecciation of the pre-existing phases. A lower 

grade (<2.0% eCu) core marked by a more massive finer grained monzonite and by the 

lack of stockwork quartz veining occurs in the porphyry, particularly at depth. Cu 

mineralisation is most abundant (>2% Cu) on the margins of QMP1 and in the 

immediately adjacent volcanics. The simple boundaries of the QMPs shown on the 

geological interpretations (Figures 4.2 and 4.3) do not accurately reflect the complex and 

jagged margins that will only be fully understood when underground exposures become 

available. 
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Figure 4.4 Fragments (xenoliths?) within  QMP1  (Hole E26D126W2, 550m). 
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4.2.3 QMP2 

The second main quartz monzonite porphyry (QMP2) occurs to the north of QMP1 and 

is thought to partly intrude QMP1 and its associated mineralisation (Heithersay, 1991). 

QMP2 (also known as the 'square' porphyry) reaches maximum dimensions of 40m by 

130m in plan, with a vertical extent of at least 700m (Figure 4.5). The porphyry 

contains pale euhedral square to rectangular zoned and/or twinned plagioclase 

phenocrysts, euhedral rectangular deep red-brown Fe-oxide-stained K-feldspar 

phenocrysts and minor partially altered biotite and hornblende phenocrysts set in a fine 

grained K-feldspar-quartz groundmass (Heithersay, 1991). The core of QMP2 is 

particularly lower grade (<0.4% Cu) than its margins. The weak mineralised envelope 

that surrounds QMP2 is interpreted to be the remnants of pre-existing QMP1-associated 

mineralisation (Heithersay, 1991). 

4.2.4 Deep Porphyritic Intrusions 

The relatively simple intrusive sequence of QMP1 and QMP2 becomes more complex 

below approximately 9650mRL (Figure 4.6). This complexity, highlighted by drilling 

in 1991, is still not well understood due to the sparse drillhole spacing. Below 

9650mRL, numerous small quartz monzonite porphyry stocks have characteristics of both 

QMP1 and QMP2. These intrusions occur within and on the immediate edge of the 

biotite quartz monzonite. There is no well-defined high grade Cu zone associated with 

QMP1, which appears to die out within the biotite quartz monzonite. Instead, the 

mineralised centre occurs approximately 100m north and is focused on another QMP1- 

type porphyry. Stockwork quartz veining occurs in and around this porphyry which 

contains xenoliths of biotite quartz monzonite. Several small, low grade QMP2-type 

stocks occur to the east and north of the mineralised porphyry and clearly postdate 

stockwork quartz veining. A QMP2-type 'square' porphyry intercepted in drillhole 

E26D130W3 immediately adjacent and to the west of the mineralised QMP1 -type 

porphyry, contains moderate stockwork quartz veining and mineralisation, suggesting it 

may predate or be contemporaneous with mineralised QMP 1-type porphyry. Stockwork 

quartz veining is intense within the biotite quartz monzonite and volcanics surrounding 

the QMP1-type porphyry (eg. drillhole E26D132W2). A three dimensional model of the 

intrusive geology was made in DATAMINE, and shown in Figure 4.7. 
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Figure 4.6 Geological plan of E26 - 9500mRL. 
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Figure 4.7 Wireframe model of the intrusive geology at E26 - looking to the Southeast. 

The light brown at rear is the BQM; the purple at right is QMPl; the green is QMP2; 

the grey is the Northwest Porphyry; while at the base are numerous small porphyries. 

Figure 4.8 Alteration zones at E26  -  53450N (From Heithersay, 1991). 
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4.2.5 Other Porphyries 

To the northwest of the main QMP's at E26 is a smaller satellite quartz monzonite 

porphyry. Locally termed the 'northwest porphyry' it appears be 20-30m across and 

500m in vertical extent. Mineralisation associated with the northwest porphyry is weakly 

developed and discontinuous. 

A quartz monzonite porphyry protruding from the upper regions of the E31 stock into 

the surrounding volcanics on section 53350N is weakly mineralised. The porphyry 

contains abundant plagioclase phenocrysts and chloritised mafic phenocrysts set in a fine 

grained K-feldspar-rich groundmass. Quartz and magnetite blebs are common. Potassic 

alteration is only weakly developed, with minor quartz veining and weak phyllic 

alteration. Weak anomalous Cu mineralisation (up to 0.8% Cu) is associated with this 

porphyry. 

A later stage of barren porphyry dykes crosscut the E26 mineralising system. Locally 

termed 'zero porphyries', the dykes are up to 10m thick and trend NW, subparallel to 

quartz-sericite-pyrite shears. Pebble dykes, which are strongly healed breccias up to 2m 

thick, have a similar orientation. 

4.3 ALTERATION 

Heithersay (1991) gives a detailed description of the alteration types, zonation and 

paragenesis at E26. All of the economic mineralisation is associated with potassic 

alteration. The earliest stages of potassic alteration include pervasive and fracture-

controlled biotite alteration with minor alkali-feldspar and magnetite (Heithersay, 1991). 

This is overprinted by several generations of pervasive and vein controlled K-feldspar 

and quartz alteration, with associated sericite, anhydrite, biotite, albite, hematite, calcite, 

rutile ± apatite, ± sphene ± fluorite. Hematite occurs as fine dustings in K-feldspar, and 

as a replacement phase of early magnetite. 

Three subzones of potassic alteration have been defined by Heithersay (1991 ;Figure 4.8). 

An inner subzone of K-feldspar occurs in QMP2 and is associated with minor veining 

and mineralisation. An outer subzone of K- feldspar alteration occurs in QMP1, the 
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volcanics and the biotite quartz monzonite. The outer subzone is characterised by intense, 

texturally destructive alteration and intense quartz stockwork veining and related sulphide 

mineralisation. The outer K-feldspar subzone has overprinted a biotite K-feldspar 

subzone, remnants of which are preserved outside the K-feldspar subzones. 

Outside the potassic alteration zone (approximately 150-200m from the QMP stocks) is 

a large envelope of propylitic alteration. This alteration style is characterised by epidote, 

chlorite, carbonate and pyrite. Propylitic alteration in the E26 ramp development 

comprises:- fracture controlled epidote and chlorite; selective replacement of phenocrysts 

by epidote and carbonate; and disseminated and fracture controlled pyrite. Locally, 

pyrite can comprise up to 5% of the rock volume in propylitically altered samples. 

Propylitic alteration is moderate to strong in the lower E26 ramp access, even though it 

is.----500m from the QMP's, possibly indicating that this alteration style is associated with 

the E31 stock. 

Structurally controlled quartz-sericite-pyrite alteration crosscuts propylitic alteration in 

the E26 ramp development and are locally termed 'qsp shears'. Quartz and pyrite veins 

are typically associated with the shears, and carbonate and lesser sphalerite, galena and 

chalcopyrite may also occur in these zones (Figure 4.9). Strong pervasive sericite 

alteration haloes up to 2m wide surround the shear zones. The qsp shears strike WNW 

and dip steeply to the north. Due to the absence of definitive markers and intensity of 

sericitic alteration, no sense of movement has been demonstrated on the shear zones, 

although shearing is indicated by the pervasive foliation and occasional puggy infill. As 

with the propylitic alteration, the distal location of this alteration style from the E26 

quartz monzonite porphyries, may indicate a relationship to a larger system, such as the 

E31 stock. Similar qsp faults crosscut E48 and alternatively may relate to a regional 

structural system. 



Figure 4.9 Mineralisation associated  with  structurally controlled qsp alteration from the E26 

ramp - the bands at the top of each piece are galena, sphalerite, chalcopyrite and carbonate. 
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4.4 VEINING 

4.4.1 Stockwork Quartz Veining 

Stockwork quartz veining is localised around QMP1 (Figure 4.10). Measurements from 

diillcore suggest two principal vein sets, one striking to the NNE and dipping steeply to 

the west and east, the other to the NW with a steep northeasterly dip. In areas of 

intermediate Cu grade, the veins are typically sheeted. In higher grade areas, complex 

conjugate and splayed veins are dominant. A vertical zonation is apparent in the number 

of quartz veins per interval (Figure 4.11), with the greatest concentration of quartz veins 

occurring at 9700-9800mRL, decreasing abruptly below this level. Above 9800mRL, 

veining decreases irregularly, with local maxima at 9950mRL and 10150mRL. 

The stockwork veins locally coalesce to form massive quartz veins and intense wall rock 

silicification up to 7m thick and 60m long. The silica zones are confined to the margins 

of QMP1 and the adjacent volcanics, are discontinuous vertically and are restricted to 

between 9600mRL and 10170mRL. The silica zone is very strongly developed in the 

carapace of QMP1, between 10100mRL and 10170mRL. Intensely sericitised QMP and 

wallrock rock fragments are often found within the silica zone (Figure 4.12). In contrast 

to QMP1, quartz veining is absent to weakly developed in QMP2. With depth, the core 

of QMP1 is also only weakly veined. 

The vertical and horizontal zonation of quartz vein counts per 3m interval is summarised 

in Table 4.1. The number of quartz veins increases with increasing Cu mineralisation. 

Unfortunately, information on vein thicknesses is not available. This is clearly an 

important consideration in areas of massive quartz veining, where high grades are 

correlated with the thickness of veining rather than the number of veins. 

4.4.2 Gypsum/Anhydrite veins 

Gypsum and anhydrite veining at E26 postdates quartz stockwork veining and Cu 

mineralisation. The vein frequencies are strongly zoned vertically, decreasing in 

abundance with depth (Table 4.1). At about 10000mRL, gypsum veins comprise 

approximately 2-3% of the rock volume, decreasing to less than 0.25% below 9800mRL. 
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Figure 4.12 (a) Silica flooding at E26 - Hole E26D126W2, 570m . 

Figure 4.12 (b) Close up of the contact between silica flooded zone and QMPl. 
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>2.0% Cu 1.0-2.0% Cu 0.5-1.0% Cu <0.5% Cu 
10080-BOX 

No. Samples 132 332 513 1987 

Av. No. Quartz veins/3m 53 38 17 7 
Av. No. Gypsum/anhydrite veins/3m 14 16 20 21 

9950-10080 

No. Samples 116 169 308 1156 

Av. No. Quartz veins/3m 43 37 26 12 
Av. No. Gypsum/anhydrite veins/3m 28 29 35 36 

9800-9950 

No. Samples 161 237 370 859 

Av. No. Quartz veins/3m 65 52 41 21 
Av. No. Gypsum/anhydrite veins/3m 14 22 20 19 

9600-9800 

No. Samples 166 352 364 838 

Av. No. Quartz veins/3m 93 53 40 32 
Av. No. Gypsum/anhydrite veins/3m 19 24 20 16 

<9600 

No. Samples 14 195 225 187 

Av. No. Quartz veins/3m 64 34 29 21 
Av. No. Gypsum/anhydrite veins/3m 53 31 21 14 

Total 

No. Samples 589 1285 1780 5027 

Av. No. Quartz veins/3m 66 44 30 15 
Av. No. Gypsum/anhydrite veins/3m 19 23 22 23 

Table 4.1 Vein counts showing zonation with Cu grade and depth 
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The veins extend 300m to the west and north from the centre of the orebody on the 

10030m Level Access. Vein frequencies lessen within the higher grade core of E26. 

Underground exposures in the access drive shows the veins to be stockwork in nature, 

with steep to shallow-dipping sets of varying directions, though diamond drilling 

suggests that the veins are dominantly shallowly dipping within the orebody. Some of 

the veins are composite with anhydrite in the core and gypsum on the margins. 

Anhydrite increases with depth at the expense of gypsum. 

Above 10080mRL (locally termed the 'Gypsum Line') the gypsum veins have been 

leached out, leaving open fractures. Approximately 20m above the Gypsum Line, a 

10-25m thick zone of highly fractured rock has been re-cemented by carbonate 

(Carbonate Impregnate Zone). 

4.5 MINERALISATION 

Copper mineralisation occurs mainly as bomite, with lesser chalcopyrite and chalcocite, 

and minor tetrahedrite and covellite. The Cu sulphides occur as grains and clots within 

quartz veins, and as disseminations in the vein wall rocks. Many of the disseminated 

grains lie along thin fractures and hence are really fracture controlled rather than truly 

disseminated. As discussed above, there is a strong correlation between quartz vein 

densities and grade, with the highest grades associated with high quartz vein density, 

particularly in the silica zone. Pyrite is absent from the bomite-rich areas. 

Sulphides are zoned laterally from the centre of mineralisation (Figures 4.13 and 4.14). 

The central portions are bomite-rich with minor chalcopyrite, zoning outward through 

equal proportions of bomite+chalcopyrite, to a chalcopyrite-rich zone 50-100m out from 

the core. Pyrite increases outward at the expense of bomite. Beyond the chalcopyrite 

zone at approximately 300m, pyrite is the main sulphide, and Cu-sulphides are minor to 

absent. 

Au occurs principally within bomite as free Au, and occasionally as tellurides. The 

nature of the gold distribution is discussed in detail below. 
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5. METAL ZONATION AT E26 

5.1 SPATIAL DISTRIBUTION OF GOLD. 

5.1.1 Introduction 

The spatial distribution of Au has been investigated through plotting and on-screen 

graphical representation of Au assays. The highest Au grades at E26 show a strong 

association with potassic alteration, Cu mineralisation and stockwork quartz veining. A 

weak distal association with minor Pb and Zn mineralisation along thin structurally 

controlled quartz-sericite-pyrite alteration zones has also been recognised in the E26 

ramp access. 

5.1.2 Summary Statistics 

The Au assays at E26 show a positively skewed log normal distribution (Figure 5.1) with 

a mean of 0.16g/t. The change in slope of the log-probability plot at approximately 1g/t 

Au suggests that high grade Au occurrences form a different population group from the 

majority of the mineralisation, which is uniformly low grade. The highest Au assay 

(10.5g/t) occurs in QMP1 on the margin with the silica zone at 9940mRL. Only about 

3% of the Au samples are above 1g/t, while 50% are below 0.02g/t. For comparison, 

Cu has a negatively skewed log normal distribution and mean of 0.71% (Figure 5.2), 

with 50% of the assays below 0.35% and 20% greater than 1% Cu. This is a direct 

manifestation of the tightly constrained Au distribution around QMP1 and will be 

discussed in more detail below. 

5.1.3 Geometry and Spatial Distribution 

Using 0.5g/t as an arbitrary cut-off, the zone of Au mineralisation at E26 is 100m long, 

60m wide and 500m in vertical extent (Figures 5.3 & 5.4). Higher grades, particularly 

greater than 2.0g/t Au, are considerably more restricted and discontinuous. Cu 

mineralisation at a 0.5% cut-off is up to 400m long, 200m wide and >1000m in vertical 
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Figure 5.2 Frequency histograms and log probability plot of Cu assays. 
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Figure 5.4 Plan of the Au and Cu distribution at E26 -  9800mRL. 



43 

extent (Figures 5.3 and 5.4). At a 2% cutoff, Cu forms a coherent zone 50m x 90m x 

800m (Figure 5.3). Despite these differences, the aspect ratios (i.e. width/height) of 

equivalent (Au g/t = Cu %) grade areas are identical for higher grades. The aspect ratio 

for the area defined for Au g/t >0.5 and Cu % >0.5 is 0.12 and 0.20 respectively. 

For Au g/t >2.0 and Cu % >2.0, the aspect ratio is 0.06 for both. Au is concentrically 

distributed about QMP1 (Figure 5.3) as is the bulk of Cu mineralisation. Significant 

(>0.5g/t) Au grades do not occur with Cu mineralisation around QMP2. The core of 

QMP2 is anomalously low in both Au and Cu (Figure 5.4). 

In cross-section, a vertical zonation in Au distribution is also apparent (Figure 5.5). The 

highest Au grades are between 900mRL and 9950mRL (Figures 5.3 and 5.5). Above 

9950mRL Au grades decrease abruptly. A slight increase in Au grades between 

10100mRL and 10180mRL corresponds to a zone of significant Cu enrichment (compare 

Figures 5.5 and 5.6) but does not reach the high Au grades obtained below 9950mRL 

(Figure 5.5). A local high above 10230mRL is related to oxide mineralisation to the 

south of the main E26 orebody. 

Cu grades also show a vertical zonation, though somewhat different from Au 

(Figure 5.6). The highest Cu grades occur near the top of the deposit between 

10100mRL and 10200mRL. The value of maximum Cu grades decreases with depth. 

As for Au, a zone of depletion occurs between 9950mRL and 10100mRL. High Cu 

grades between 10230mRL and 10260mRL relates to the supergene chalcocite blanket. 

5.1.4 Au and Cu Resource 

Cu and Au grades at E26 have been block modelled using the inverse distance squared 

method (House and Bischoff, 1994). Metal content and resource grade above a 

0.8% eCu cut off (equivalent copper unit, defined as eCu% = Cu% + k*Au g/t, where 

'k' takes into consideration gold price, recoveries, etc., and approximates 0.5) by 40m 

vertical slices is shown in Figures 5.7 and 5.8. There is one clear maximum for Au with 

respect to contained metal and average grade, which occurs at 9750-9950mRL. Cu 

shows a more complex pattern, with the maximum value for contained metal occurring 

at approximately 9900mRL, with local maxima at 9650mRL and 10100mRL. Average 



0 
0 

0 
44 

0 
7 
•,/ 
D 	 • 0  

0 

3 Sir 	,.... 	fl 	( I ) 

09. ._...Q.• --- 4!r---  

•••,•,' 	fi;) 	-Tr-.,, 

---- - - - 	
. .- 

i 

- 1:::44.21.v.. -..•.:.:14 	nsAd. 
C.) 

0 

)) 	• 44 
) 	' 
1  

) 	:'•.'5.  , 	• • q414:A.,,, 
o 

''''. 	'i 41:i4rtiij 
".",4t.ht-  4  '. 

24X1 	' 	)i 

‘ 0  

	

l'IV,;)Y 	• ) 	-;...”-/-.. 
., 	,.„.%•?`-'. r vir;"•JA , 	, 

. 	0:2'4..2:2,,L.:-.....12,1:..4.7.' 
" 	. 	. 	' i• 	I 	2  

CI'  ''i I. 	;'..C),;•.", 	' 
). f,f,iiI*0.i: ■:iW.'11;' 

;‘• 

„..., 
-;-,---•••_....:.' 	, -1 . • ... 

!? 	C, 	•)•' 	• • 	1 
' • C7-.'"'411•7"1---'  • , 	. 
,•,•, 	. 
; 	 ' ../F.'.  

•,
''
, 
,....)!! 	‘ 	..1. •1'.. 

'.-.....:, 	,.... 	• 	f --:,- 	. 	„, 

• • •••,... .. 	„ .. 

', , • 	. , 	' 'N.-------' ! • 
'''•', 	

• 	, 	. 	, 	,,...•• , 

.4......... 	. 

.=---- r 	•'!1• 10N•4. 	;;3.1)57 
' 	Irat0 i14-11111 1 4/ r  11)7 4. -1, ltol....5.5 ,. 	• • 

. •A'I'''.*:'!'  I. 	'''•'%..: .--1,'•••;/•,;(:,' ,..  
' 	I ql:e. 	i g'. 	• 

' , ..., •,- e• 	,  
-. 	t. 

.• 
, 
;1
2 	

1 .1; 	,!, 	....r.1!: •• • , 1 

..  

. 	. 

. :-.,--'---" 'I, Pit !r... I., , 	.... 	-7i , j, 
.....)49 . 	a j.1,.., , 

,Z, 
•-• 1:2,.17...ii_Ot ' 	' ,,, 

E- 4Vii•Vi--i'll' , .:7,.., - 	.. 	• 

rit.....1-..,. 
7.:"-.4PIA 	1 

, 	;, 	.., •./.1
g  

	

'',,q, 	r, 	lt ,1  a ri 
 ill 	,‘; ,:i..1, , -,..1 ., 	,.., 

‘-' 	• 	_..r....:._2— 

; '.ill 	r r ). 	• 	, 	' 	' 	.. 	, 
.. 

0 

41 

. 0 
	

4 . 0 
	

5 . 0 
	

6 . 0 
AU I 

Figure 5.5 Vertical zonation of Au grade. 
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Figure 5.6 Vertical zonation of Cu grade. 
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Figure 5.7 Vertical variation in the gold resource at E26 

Figure 5.8 Vertical variation in the copper resource at E26. 
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Cu grade maxima occur at 10150mRL, 9950mRL and 9700mRL, with the 10150mRL 

peak being the highest. In comparison with Figure 5.6, although the highest Cu assays 

are in the vicinity of 10150mRL, the highest metal content is approximately 300m lower. 

However, the highest Au assays correspond closely to the highest Au metal content 

(approximately 9850mRL; compare Figures 5.5 and 5.7). Approximately 30% of the 

total copper resource at E26 (>0.8% eCu) lies above 9950mRL, compared to only 10% 

of the total gold resource. 

5.2 PERIPHERAL GOLD 

An outer Au association has been defined from mapping of the E26 decline access. 

Weak Au grades are associated with some structurally controlled quartz-sericite-pyrite 

(qsp) alteration zones described earlier. Au is associated with sphalerite, galena and 

lesser chalcopyrite, which are largely confined to the shear zones. Selective replacement 

of clasts in the volcanic mass flow deposit by carbonate and sphalerite away from the 

shears has been observed. Au assays of up to 1.6g/t over 0.5m and 0.9g/t over 1 m have 

been obtained from wall chip sampling of these zones. Interestingly, qsp shears in the 

orebody do not show any Au enrichment. 

5.3 CU/AU RATIOS 

Scatter plots of Cu and Au and Cu/Au ratios are useful for defining population domains 

which can be used to define and map spatial domains. The Cu/Au ratio is defined in 

terms of Cu(%)/Au(g/t). 

The scatter plot of Cu versus Au (Figure 5.9) allows the interpretation of five population 

groupings. Domains 1 (coloured purple) and 2 (blue) contain the bulk of low grade Au 

samples. Domain 2 is essentially the low grade tail of Domain 3 (green). Domain 3 

shows a steady increase in Au with increasing Cu. Domain 4 (red) also shows increasing 

Au with increasing Cu but at lower Cu/Au ratios. Domain 5 (orange) contains samples 

that are low in Cu but relatively high in Au. 
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The Cu/Au ratio is a broad log normal distribution with values ranging from 0.01 to 600 

and a mean of 22 (Figure 5.10). The plot of Cu/Au ratio versus Au grade (Figure 5.11) 

contains the same data points colour coded by domains as defined in Figure 5.9. Cu/Au 

ratios for Domains 1 and 2 display large variations even though the Au grade is low 

(<0.25g/t). Domain 3 shows a strong relationship between Cu/Au ratios and Au content; 

as the Au grade increases, the Cu/Au ratio approaches unity. Domain 4 shows a similar 

trend of decreasing Cu/Au ratio with increasing Au grade. However, unlike Domain 3, 

the Cu/Au ratio plateaus well above one. Domain 5 shows a Cu/Au ratio tending to 

below one with higher Au grades. 

Cu/Au ratios at E26 are strongly zoned horizontally and vertically, increasing 

concentrically away from QMP1. The plan section through the orebody at 9800mRL 

(Figure 5.12) and the scatterplot of Cu/Au versus easting (Figure 5.13) illustrates the 

strong horizontal zonation of Cu/Au ratios, while Figure 5.14 illustrates the vertical 

zonation in Cu/Au ratios. Cu/Au ratios only approach unity between 9600-9950mRL, 

and are tightly constrained about QMP1 (Figure 5.14). 

The five domains of Cu/Au ratio defined in Figures 5.9 and 5.11 are well defined 

spatially and show little overlap ( Figure 5.15 and 5.16). The higher grade core 

(i.e. >1.2% eCu) is contained within Domains 3 and 4 (Figure 5.15). The two domains 

are clearly separate from the each other. Domain 3 occurs below 9950-10000mRL and 

is localised around QMPl. Domain 4 lies above Domain 3, and also occurs in 

association with mineralisation (>1.2% eCu) to the east of QMP2 (i.e. 'northeast 

extension'). Domain 2 encloses Domains 3 and 4 (out to approximately the 0.4% eCu 

outline) and is itself enclosed by Domain 1 (Figure 5.15). Domain 5 shows no strong 

spatial controls. 

Sample data from within Domains 3 and 4 are given in Table 5.1. The differences 

between the two domains are highlighted in the high grade core. For a constant Cu 

grade (e.g. 4.0% Cu), Au grades in Domain 3 are similar, but are significantly lower in 

Domain 4 (<1.50 ). 
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Figure 5.10 Frequency histOgrams and log probability plots ot .  Cu/Au ratio. 
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Figure 5.11 Bivariate scatterplot of Cu/Au ratio versus Au grade. 
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Figure 5.12 Plan at 9800mRL, showing lateral zonation in Cu/Au ratios. 
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Figure 5.14 Cross-section at 53350N, showing vertical zonation in Cu/Au ratios. 
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No. Samples Av. Cu % Av. Au g/t 

TOTAL Domain4 759 2.86 0.50 
Domain3 3649 1.79 0.84 

Cu > 1.5% Domain4 742 2.89 0.50 
Domain3 2101 2.26 1.17 

Cu > 2.5% Domain4 372 3.78 0.72 
Domain3 623 3.09 1.92 

Cu > 3.5% Domain4 188 4.64 0.94 
Domain3 118 3.94 2.74 

Cu >4.5% Domain4 95 5.30 1.11 
Domain3 16 4.81 3.57 

Table 5.1 Comparison of Cu and Au assays within Cu/Au domains 
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5.4 SILVER DISTRIBUTION 

Silver is also part of the mineralised system at E26, and its distribution will be briefly 

examined, particularly its metal ratios with Au and Cu. This analysis of Ag grades and 

distribution is based on assay data obtained from a range of assaying methods that have 

varied detection limits. The detection limits are relatively high with respect to the 

population data, which introduces bias and inaccuracies, particularly at lower assays. 

These biases are apparent in the histograms and probability plots (Figure 5.17) and data 

below about lg/t (which comprises 70% of the Ag data) therefore should not be taken 

as accurate. 

Removing the assay bias shows the Ag distribution to be log normal (Figure 5.17). The 

highest grade is 116g/t from an anomalously Ag-enriched zone in the biotite quartz 

monzonite that was intercepted by hole E26D46 at depths of 900-1000m. The origin of 

this anomalous zone, which is two orders of magnitude greater than the mean E26 Ag 

value (1.13g/t) is not known. 

Ag is concentrically zoned about QMP1 (Figure 5.18) with the highest grades occurring 

in and immediately around the porphyry. A coherent zone of >5g/t Ag occurs in QMP1 

and the adjacent volcanics to the east between 9700mRL and 10000mRL (Figure 5.18). 

Grades between 5 and 1 g/t Ag form a broad coherent zone that encloses QMP1 and 

QMP2, whereas Ag grades are below 1 g/t in QMP2. 

5.5 AG/AU AND AG/CU RATIOS 

Ag/Au and Ag/Cu ratios are defined as Ag(g/t)/Au(g/t) and Ag(g/t)/Cu(%) respectively. 

The scatterplot of Ag versus Au grades (Figure 5.19) shows poor correlation between the 

two. Some of the highest Ag grades are accompanied by low Au grades. The frequency 

histograms (Figure 5.20) show a broad log normal distribution with a mean of 

approximately 50. A spatial zonality is observed with a zone of Ag/Au below 10 tightly 

constrained about QMP1 (Figure 5.21) indicating that Au is enriched relative to Ag in 

the core of the system. 
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Figure 5.17 Frequency histograms and log probability plot for Ag grade. 
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Figure 5.18 Cross-section at 53350N, showing silver grades. 
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Figure 5.21 Cross-section at 53350N, showing the spatial zonation of Ag/Au ratios. 
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For Ag versus Cu a more coherent trend is apparent (Figure 5.22). The frequency 

histogram shows a tight log normal distribution in the Ag/Cu ratio (Figure 5.23). The 

Ag/Cu relationship is uniform spatially with no strong zonality. 

5.6 OTHER METALS 

Limited data is available for molybdenum, lead and zinc. Molybdenum assays vary from 

0.5-250ppm with a mean of 7ppm. Highest assays (>20ppm) tend to associated with 

the main mineralised area. Pb and Zn data is available from peripheral near-surface 

drilling. Pb and Zn assays are uniformly below 1 000ppm with means of 9Oppm and 

280ppm respectively. Wall chip sampling along the E26 ramp development >600m to 

the north west of E26 has yielded assays of up to 4.6% Zn, 0.26% Pb, 0.79% Cu, 

34g/t Ag and 0.90g/t Au over 1 m in structurally controlled quartz-sericite-pyrite-

carbonate alteration zones. 

5.7 SUMMARY OF GOLD DISTRIBUTION 

Au and Cu at E26 are localised around QMPl. Although most Au occurs below 

9950mRL, high grade Cu continues up to the base of oxidation at approximately 

10240mRL (i.e. >300m above the high grade Au zone). This vertical zonation is 

apparent in the analysis of Cu/Au ratios, which has defined two domains in the main 

zone of mineralisation. The upper zone (Domain 4) corresponds to a zone of relative Au 

depletion with respect to Cu. The lower zone (Domain 3) has Cu/Au ratios that tend 

towards unity with increasing grade. The highest Au grades (>2.0g/t) are concentrated 

on the eastern and western margins of QMP1 and in the immediately adjacent volcanics. 

The zone of enriched Cu and moderately enriched Au between 10100mRL and 

10200mRL is related to quartz flooding in the carapace of QMPl. The analysis of 

Ag/Au ratios shows a dispersion of Ag away from the main Au zone, suggesting greater 

solubility of Ag. 
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6. MINERALISATION AND ALTERATION 

PETROGRAPHY 

6.1 INTRODUCTION 

Twelve polished thin sections were prepared from drillcore. These samples were selected 

on the basis of the Cu/Au domains defined in Chapter 5, specifically to investigate the 

textural relationships that may explain the dramatic Au variations with depth. Detailed 

descriptions are given in Appendix 1. 

6.2 ALTERATION AND VEINING PARAGENESIS 

From a detailed examination of veins and vein envelopes in drill core, Heithersay (1991) 

has defined 11 stages of veining and alteration at E26 (Figure 6.1). Stages 1-3 represents 

veins and alteration assemblages that were the precursors to the main mineralising stages 

in QMP 1 . Biotite and magnetite alteration and veining occurred during Stage 3 

associated with anhydrite and alkali feldspar. Stage 3 was overprinted by Stage 4 

veinlets (quartz-K-feldspar-albite) with associated sulphides and hematisation of 

magnetite. This stage of veining is interpreted by Heithersay (1991) as the peak 

depositional stage for sulphides. Stage 5 is composed of multistage stockwork quartz 

veins and associated sulphides. Stage 6 breccias and vein dykes pre- and post-dates 

emplacement of QMP2. Stage 7 and 8 vein and veinlets (dominantly quartz) are 

confined to QMP2. Sulphide mineralisation is comprised mainly of chalcopyrite, with 

lesser bornite. Quartz-sericite alteration (usually structurally and fracture controlled) 

containing pyrite ± chalcopyrite is classified as Stage 9. Stages 10 and 11 gypsum and 

anhydrite veins overprint all other stages at E26. Sulphur isotope and fluid inclusion 

studies by Heithersay (1991) demonstrate high temperature and high salinity fluid 

conditions during formation of Stages 3 to 6 (peak hydrothermal conditions) related to 

the emplacement of QMP1 and QMP2. Decreasing temperatures and a waning of the 

hydrothermal system is recorded by Stages 7 to 11. 
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As this work has focused on Au mineralisation, only samples from within and around 

QMP1 have been examined. Stages 1-2 and 6-8 of Heithersay's (1991) paragenetic 

sequence have therefore not been examined. 

6.3 CU-BEARING SULPHIDE PHASES 

6.3.1 Stages 4 & 5 Cu-bearing Sulphides 

Bornite is the principal Cu-bearing sulphide at E26, with lesser chalcopyrite, chalCocite, 

and minor tetrahedrite and covellite. Bomite occurs in quartz veins and as 

disseminations in the potasically-altered wallrocks, associated with Stages 4 and 5 of 

Heithersay's (1991) paragenetic sequence. Bomite grains are generally lmm in size, 

but can range up to >5mm. Bomite crystals in quartz veins tend to have smooth, well-

defined margins and infill cavities between growth-zoned or massive quartz crystals 

(Figure 6.2). In contrast, bomite grains occurring as disseminations in the groundmass 

typically have an irregular and pitted outline; and may contain small acicular and bladed 

grains of sericite in intensely sericitised zones (Figure 6.3). 

Two distinct bornite phases have been recognised based on colour when viewed under 

reflected light; orange-brown, and mauve varieties (Figure 6.4). Both phases occur 

within Stage 5 quartz veins and as disseminations in the potassically-altered groundmass. 

Orange-brown bornite is typically the most abundant variety. Chalcopyrite tends to be 

associated with the orange-brown bomite, while chalcocite tends to be associated with 

mauve bomite. In sample 128591.5, the orange-brown variety clearly predates the mauve 

variety (Figure 6.5). This is the only sample to provide a clear timing relationship 

between the two bomite varieties, as mutual contacts are extremely rare. 

Both chalcopyrite and chalcocite can occur as discrete grains in contact with bornite, or 

as complex intergrowths with bomite (Figures 6.6 and 6.7). The exact timing 

relationships between bornite and chalcopyrite are also often hard to discern in many 

samples, as contradictory replacement textures are observed (Figure 6.8). These 

relationships suggest coprecipitation of chalcopyrite and chalcocite with the orange-

brown and mauve bomites respectively. 
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Figure 6.2 Growth zoned quartz crystal surrounded by interstitial bornite in a stage 

5 quartz vein. Black is bornite. (sample 126W2571.4 transmitted light, crossed polars. 

Field of View 2.2mm). 

Figure 6.3 Disseminated bornite with small acicular and bladed grains of sericite, in 

strongly sericitised area within silica flooded zone. (Sample 126W2571.4, Reflected 

light FOV=2.2mm). 
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Figure 6.4 Two bornite phases in a stage 5 quartz vein: orange-brown bornite; and 

mauve bornite with light-grey chalcocite (sample 126W2571.4, Reflected light, 

FOV=2.2mm). 

Figure 6.5 Two bornite phases in a stage 5 quartz vein. The orange brown phase 

predates the encompassing mauve phase which contains intergrown chalcocite (light 

grey). (Sample 128591.5, Reflected light, FOV=0.7mm). 
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Figure 6.6 Complex intergrowth of bornite and chalcopyrite in stage 5 quartz vein 

(Sample 128591.5, Reflected light, FOV=0.25mm). 

Figure 6.7 Complex intergrowth of mauve bornite and chalcocite (light grey) in stage 

5 quartz vein. (Sample 39503, Reflected light, FOV=0.7mm). 



Figure 6.8 Composite grain containing chalcopyrite (yellow) and bornite (brown) that 

appear to have precipitated at the same time within a stage 5 quartz  vein.  Small light 

grey area just above centre is tetrahedrite (Sample 91175.4, Reflected light, 

FOV=2.2mm). 

Figure 6.9 Myrmekitic intergrowth of bornite (brown) and tetrahedrite (grey). The 

chalcopyrite (yellow) appears to be replacing bornite. The grain  is  disseminated in 

stage 4 K-feldspar alteration which has a sericite overprint associated with stage 5. 

Note also inclusions of sericite needles in the sulphides. (Sample 91175.4, Reflected 

light, FOV=0.7mm) 
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Myrmekitic intergrowths of zincian (Appendix 2) tetrahedrite with bomite are present in 

a sample 91175.4 (Figure 6.9). In this sample, chalcopyrite appears to be replacing 

bomite. This sample also contains a coarse (2cm) Cu-sulphide aggregate of bomite, 

chalcopyrite and tetrahedrite in a Stage 5 quartz vein. 

Rutile occurs as small inclusions in bomite (Figure 6.10). These inclusions range in size 

from 5 micron to 200 microns and are usually globular in shape. 

6.3.2 Gold 

Au occurs as <25 micron inclusions within bomite, typically associated with a fracture 

within bomite, and near the bomite grain edge (Figure 6.11). Some grains have also 

been observed in the silicate groundmass next to a bomite grain, but most occurrences 

are in coarse bomite grains hosted by Stage 5 quartz veins. Small Au grains have also 

been noted within chalcocite (Anon. Petrological report for Geopeko). Selenides and 

tellurides have been reported as small white inclusions within bomite (Anon. Petrological 

work for Geopeko). These were identified by scanning electron microscopy (SEM) as 

clausthalite (PbSe), calavarite (AuTe 2) and hessite (Ag 2Te). It is thought that a mineral 

optically similar to galena occurring within a bomite grain in sample 75153.3 is 

clausthalite (Figure 6.12). 

6.3.3 Post Stage 5 Cu-bearing Phases. 

Although veins associated with stages 6-8 of Heithersay's (1991) paragenetic sequence 

were not examined as part of this work, some of the replacement phases observed are 

thought to be related to these events. Chalcopyrite can occur as discrete grains unrelated 

to bomite in Stages 4 and 5 veins and alteration, or as a replacement phase after bomite. 

The most easily recognised replacement forms are as a rim around bomite, fine needles 

and fracture-fillings within bomite (Figure 6.13). The chalcopyrite 'needle' replacement 

is characterised by needles up to 50 microns long, that typically emanate from a 

chalcopyrite-filled fracture or replacement rim. In sample 126571.4 a chalcopyrite vein 

encloses shattered pyrite grains (Figure 6.14). This is probably a late stage vein 

(Stage 7 or 8) which cuts pre-existing mineralisation and quartz veins. 
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Figure 6.10 Globular rutile grains (grey) in bornite, disseminated within stage 4 K-

feldspar altered ground mass. Note also replacement of bornite by chalcopyrite 

(yellow). (Sample 123138.3, Reflected light, FOV=0.7mm) 

Figure 6.11 Gold inclusion in bornite within a stage 5 quartz vein (Sample 

126W2513.4, Reflected light, FOV=0.13mm). 
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Figure 6.12 Disseminated bornite grain in sericitised groundmass adjacent to stage 

5 quartz vein, with core of ?clausthalite - bright cream colour - optically similar to 

galena. (Sample 75153.3, Reflected light, FOV=1.2mm) 

Figure 6.13 Chalcopyrite replacing bornite disseminated in K-feldspar altered 

groundmass. Replacement is along the grain rim, along fractures within the grain, and 

as small ?crystallographically controlled needles. Blue/grey mineral along fracture is 

covellite. (Sample 123138.3, Reflected light, FOV=0.25mm). 
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Figure 6.14 Chalcopyrite veinlet (yellow, stage 7 or 8) containing shattered grains of 

pyrite (pale white-yellow).Same veinlet crosscuts stage 5 quartz veins and causes 

replacement of bornite by chalcopyrite (Sample 75153.3, Reflected light FOV=0.7mm) 

Figure 6.15 Replacement of bornite by covellite (blue), giving a 'diseased' texture. 

Chalcopyrite (pale yellow) also occurs within bornite but is not replaced by covellite. 

(Sample 123138.3, Reflected light, FOV=1.2mm). 
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Covellite is another common phase that has replaced bornite. The principal style is as 

a 'disease' replacement texture, where aggregates of fine radiating covellite needles occur 

within bornite typically near grain margins or fracture fillings (Figure 6.15). Fracture-

related replacement is less common and postdates chalcopyrite replacement. In some of 

the samples, covellite has replaced chalcocite, but covellite has not replaced chalcopyrite 

in any of the samples studied. Chalcocite has replaced bornite in one sample studied 

(12382.8), where it occurs as a thin rim around bornite (Figure 6.16). 

6.4 SILICATE AND OXIDE ALTERATION PHASES 

6.4.1 Stage 3 Alteration 

Stage 3 pervasive biotite/magnetite/albite/feldspar alteration is partially to completely 

overprinted by pervasive K-spar/quartz/sericite/hematite alteration. The Stage 3 pervasive 

biotite alteration has an erratic distribution which imparts a mottled appearance to the 

rock. Biotite alteration may be associated with albite and white K-feldpsar (which is not 

dusted by hematite). Coarser grained clusters of biotite also occur. Some areas of 

biotite alteration appear to be related to partial albitisation of plagioclase phenocrysts 

(Figure 6.17). 

Magnetite occurs in Stage 3 alteration as grains in association with biotite or as discrete 

veins. In most of the samples studied, magnetite is absent due to its destruction by 

Stages 4 and 5 veins and pervasive potassic alteration. Where it has been observed in 

the polished sections, magnetite is commonly disseminated as euhedral crystals in biotite 

alteration, and is replaced to varying degrees by hematite and bornite. Magnetite veins 

are often observed in the lower grade areas on the western side of the orebody, but are 

rare in the main ore zone. Hole E26D126W2 is somewhat anomalous in this regard, as 

it contains magnetite veins in an area of strong copper and gold mineralisation. The 

veins contain coarse magnetite grains up to 3mm across which have been fractured and 

partially replaced by hematite along cleavage planes (Figure 6.18). Bornite and 

chalcopyrite commonly occur as partial replacements of magnetite, always in association 

with hematite (Figure 6.19). Unlike hematite, there is no strong crystallographic control 

on sulphide replacement of magnetite. Chalcopyrite may have been precipitated as a 



Figure 6.16 Thin rim of chalcocite (blue/grey) after bornite (brown). Hematite (white) 

and rutile (grey) occur on the right hand side of the sample. The grain occurs as a 

dissemination in K-feldspar altered groundmass. (Sample 12382.8, reflected light, 

FOV=0.7mm). 

Figure 6.17 Pervasive fine grained biotite alteration (bottom left, stage 3) extending 

into remnant plagioclase phenocryst (now biotite, sericite, albite). Groundmass to left 

and immediately below phenocryst is K-feldspar and quartz (stage 4). (Sample 

12382.8, Transmitted light, crossed polars, FOV=2.2mm) 



Figure 6.18 	Coarse fractured magnetite crystal (brown. stage 3) with 

crystallographically controlled replacement by hematite (grey) and bornite, which has 

been partially replaced by chalcopyrite (Sample 126W2596.2, Reflected light, 

FOV=2.2mm). 

Figure 6.19 Coexisting hematite (grey) and bornite (orange-brown). Magnetite grain 

(light brown, stage 3) at right (Sample 126W2596.2, Reflected light, FOV=2.2mm). 
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primary phase with bornite or as a replacement of bornite. Chalcopyrite can be the 

dominant Cu-sulphide locally, although bornite is typically the most abundant sulphide 

proximal to magnetite. Hematite-dusted K-feldspar crystals are an accessory phase 

associated with the magnetite veins. Quartz and carbonate veins crosscut magnetite 

veins. Thin (10-15 microns thick) halos of sericite enclose aggregates of magnetite 

crystals in the sample studied. 

6.4.2 Stages 4 & 5 Alteration 

The overprinting potassic alteration (Stages 4 and 5), which is associated with the bulk 

of the disseminated mineralisation, is characterised by intense pervasive K-feldspar 

alteration of the groundmass. K-feldspar is typically dusted by fine hematite which 

imparts the characteristic pink colouration to the rock. Locally, fine grained quartz 

occurs with K-feldspar in the groundmass. Sericite, anhydrite and minor albite are also 

associated with pervasive potassic alteration. Plagioclase phenocrysts and crystals are 

altered to hematite-dusted K-feldspar and sericite. Coarser biotite associated with 

Stage 3 alteration is typically altered to sericite and rutile. Anhydrite occurs as irregular 

grains poikilitically enclosing quartz and K-feldspar. Rutile, apatite, sphene and fluorite 

are minor secondary phases. Within QMP1, bands of sericitic alteration overprint the 

Stage 4 potassic alteration but predate the intense quartz veining of Stage 5 

(Figure 6.20). 

6.4.3 Stage 5 Quartz Veining and Sericitisation 

Most of the quartz veining appears to post-date the main K-feldspar alteration. Hematite 

dusting of the K-feldspar groundmass is most strongly developed adjacent to quartz veins 

(Figure 6.21). The veins vary in thickness, generally have sharp boundaries with the 

groundmass, and can contain coarse (up to lcm) quartz grains that are growth zoned 

(Figure 6.2) and in some cases show strain lamellae and undulose extinction. Coarse 

anhydrite grains occupy the centre of some veins (Figure 6.22). 
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Figure 6.20 Drill core showing stage 5 quartz vein with core of bornite, crosscutting 

quartz and sericite alteration in QMP1 (Hole E26D126W2, Scale 1:1). 

Figure 6.21 Hematite dusting of fine K-feldpsar adjacent to a stage  5  quartz vein 

(Sample 39503, Transmitted light, FOV=2.2mm). 
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Figure 6.22 Coarse anhydrite in stage 5 quartz vein. Black area is bornite (Sample 

67528, Transmitted light, crossed polars FOV=2.2mm). 

Figure 6.23 Sericitic alteration adjacent to and corroding a stage 5 quartz vein. 

(Sample 126W2571.4, Transmitted polarised light, FOV=2.2mm). 
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Many quartz veins are associated with intense sericite alteration. It appears that this 

sericite at least partly postdates the veins, as it has partly corroded the quartz 

(Figure 6.23). In the so-called 'silica zone', quartz veins have annealed resulting in 

poorly defined vein boundaries marked by a change in quartz grainsize. Rock fragments 

within these zones are totally altered to a pervasive groundmass of quartz and sericite. 

Even in these zones, it appears that sericite alteration at least partly overprints the silica 

flooding event. Sericitic alteration may shatter and vein the quartz veins. 

6.4.4 Post Stage 5 Alteration 

Sericite, chlorite, epidote, carbonate, anhydrite and gypsum overprint the potassic 

alteration and quartz veining of Stages 4 and 5. These occur in varying styles and 

degrees within the samples examined, including pervasive and selective replacement, and 

cross-cutting veins. The late alteration minerals usually occur as accessories in the 

samples studied, but can be locally abundant. Carbonate and anhydrite alteration locally 

comprises up to 15% of the rock volume. Whereas part of the anhydrite is related to 

potassic alteration and quartz veining (Stages 4 and 5), the majority is related to 

overprinting gypsum veining (Stage 11), and vein and pervasive carbonate alteration 

(Stage 10?). 

Late chlorite alteration has in some cases caused partial replacement of bornite grains 

(Figures 6.24 and 6.25). Shattered grains of bornite in quartz veins have been infilled 

by late carbonate veinlets, gypsum veins and sericite veins (Figure 6.26). 

These late alteration phases best fit into stages 9 and 10 of Heithersay's (1991) 

paragenesis. Their occurrence within the main mineralised areas indicates that the 

distribution lines on Stages 9 and 10 in Figure 6.1 need to be extended well into the 

Potassic Zone. 
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Figure 6.26 Broken bornite and quartz grains infilled by sericite veinlets (Sample 

12382.8, Reflected light, FOV=1.2mm) 
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6.5 ELECTRON MICROPROBE ANALYSES 

6.5.1 Introduction 

Several samples were sent to the University of Tasmania for electron microprobe 

analysis. The aim was to determine bornite compositions, particularly looking for any 

compositional differences between the orange and mauve phase, and map any changes 

in bornite composition which may help explain the gold distributions described above. 

The compositions of other copper-sulphide phases and some silicates, were also 

determined by microprobe analysis. 

The samples were analysed using a fully automated, three spectrometers Cameca SX 50 

electron microprobe calibrated with natural mineral standards (PAP data reduction). The 

standards were analysed at least twice during each probe session. Analytical conditions 

were 15kV accelerating voltage, 20 nA beam current, and 1-2 pm beam size. 

Approximately 40 grains were analysed for a total of 87 analysis. Totals for some 

analyses are 2-3 wt% low and appear to have lead to an underestimation of the Cu 

content of the Cu-sulphide phases. 

6.5.2 Results 

All electron microprobe analyses are listed in Appendix 2. 

6.5.2.1 Cu-Sulphides 

The compositions of minerals in the Cu-Fe-S system from E26 are plotted on a ternary 

phase diagram (Figure 6.27). Both bornite and chalcopyrite show tightly constrained 

compositions. Chalcocite shows more compositional variations, grading to digenite. 

The orange-brown and mauve bornite phases are compositionally identical, and have the 

stoichiometry Cu 4.8.4.9Fe0.9_ 1.0S4. The composition of bomite is constant, even though the 

four samples were taken from different areas of E26 (Appendix 1) and from 

Domains 3 and 4 defined in Chapter 5. Trace elements do not vary between the orange- 
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Figure 6.27 Ternary phase diagram for the system Cu-Fe-S, with electron microprobe results 
(Data provided Appendix 2). 
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Figure 6.28 K/Na+K ratio versus silica for sericites at E26 (Data provided Appendix 2). 
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brown and mauve bornites, and remain constant independent of location within the 

orebody. The silver content within the bornite structure is enough to account for the 

observed silver grades at the E26 deposit. One chalcopyrite grain was analysed and 

found to have a constant composition of Cu 1.0Fe0.9_ 1.0S 2 . Tetrahedrite (composite grains 

and myrmekitic intergrowths) from sample 91175.4 (Figure 6.9) is zincian, contains 

minor As, and has the composition (Cu 9.9 _ 10.0Zn 1.8_ 1.9)(AS0 .2417S b3 .4_33)S 13. Ag and Bi 

contents within tetrahedrite are insignificant (Appendix 2). Chalcocite grains show some 

compositional variation (Appendix 2), approximating Cu 9.4 _9.9S 5 . This composition is 

intermediate between chalcocite (Cu 2S) and digenite (Cu9S 5). Fe contents in chalcocite 

are generally low, except for one analysis with anomalous Fe and low Cu (Cu 2.8Fe06S5 , 

Appendix 2). 

The phase occurring with bornite in sample 75153.3 (Figure 6.12) was not confidently 

identified. The probe analysis shows unusual high As with S and a low wt% total. 

The phase is optically similar to galena, and may be the Pb selenide, clausthalite. As a 

sphalerite standard was used, the Pb spectra could be mistaken for S, and the Se spectra 

mistaken for As. A similar high As and S analysis was returned from bornite in sample 

91175.4 and is also interpreted to be clausthalite. Gold was confirmed from spectra in 

sample 128591.5. 

6.5.2.2 Sericite 

Nine analyses of sericite showed that compositions were close to muscovite, with slightly 

less K and more Si (Appendix 2). Figure 6.28 is a plot of alkali ratios against silica for 

sericite. The sericites show only minor substitution of Na for K. The analyses for 

sample 91175.4 show some substitution of Na for K, in contrast to the other samples 

(Appendix 2). There is little substitution of Mg or Fe for Al in the octahedral sites. 

6.5.2.3 Biotite 

Biotites in sample 12382.8 were analysed and found to plot at a relatively low Mg 

number compared to analysis reported by Heithersay (1991, Figure 6.29). The analyses 

of Heithersay (1991) showed a clear separation between primary and secondary biotites 
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Figure 6.29 Comparison of biotite compositions with those obtained by Heithersay (1991). 
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based on Si (tetrahedral site), Ti (octahedral site) and Mg number. The primary biotites 

cluster tightly, whereas the secondary biotites show more spread. The biotites analysed 

in this study are secondary, coming from altered volcanics, but plot closer to the primary 

biotites of Heithersay (1991). 

6.6 DISCUSSION ON SULPHIDE PHASE RELATIONSHIPS 

Cabri (1973) and Barnes (1979) noted that both bornite and chalcopyrite exhibit 

extensive solid solution of Cu, Fe and S at high temperatures (>600 °C) and probably also 

of gold (Cuddy and Kesler, 1982). These solid solution fields shrink with decreasing 

temperature such that below 547 °C, chalcopyrite is ordered (Barnes, 1979; Ramdohr, 

1969). If any of these high temperature Cu-sulphide solid solutions contain appreciable 

amounts of gold, then gold will exsolve with cooling ( Cuddy and Kesler, 1982). 

Bornite forms solid solutions with chalcocite and digenite to lower temperatures (<300 °C; 

Barnes, 1979). Chalcocite forms a solid solution with digenite (Ramdohr, 1969) though 

digenite is mainly formed at high temperatures (Ramdohr, 1969) and can contain 

appreciable amounts of Fe (Barnes, 1979). Chalcocite (hexagonal) is stable only below 

435°C (Barnes, 1979). 

The petrographic and microprobe analysis at E26 (especially the lack of gold in 

chalcopyrite) suggests that chalcopyrite separated from a high temperature solid solution, 

leaving an intermediate high temperature bornite solid solution that contained gold. With 

further cooling, gold exsolved from bornite. The occurrence of gold in coexisting bomite 

and digenite/chalcocite grains suggests that gold exsolved before or during separation of 

the bornite-digenite solid solution. 

Ramdohr (1969) notes that bornite is usually pinkish-brown to brown in colour, but 

tarnishes quickly to a violet-blue colour, particularly if intergrown with chalcocite. 

Cabri (1973) similarly notes that some bornite compositions tarnish quickly, resulting in 

three distinct colours (purple, blue & brown), two of which show significant 

compositional differences of the coloured surfaces. One might argue that the two bornite 

colour phases noted at E26 are simply the result of tarnishing, particularly given no 
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indication of major compositional differences. However, the following observations 

suggest that the colour distinction is a primary texture and not due to tarnishing; 

i) the colours are constant even after repolishing 

ii) the orange bomite/chalcopyrite and mauve bomite/chalcocite associations 

iii) the two colour varieties occur together 

iv) the varieties are spatially zoned, with the mauve variety occurring in high 

grade areas (ie. >1.5% Cu) in the deeper and middle parts of the system. 

The compositions of the two bomite phases are constant throughout the orebody. This 

constant stoichiometry is probably achieved by the incorporation of excess Fe and S into 

chalcopyrite during cooling, and excess Cu into chalcocite. 

6.7 SUMMARY 

The current study has focused on veining and alteration associated with Stages 4 and 5 

of Heithersay (1991) with which most of the copper mineralisation at E26 occurs. The 

pervasive and fracture-controlled potassic alteration and mineralisation of Stages 4 and 

5 has led to the hematisation of Stage 3 magnetite. Stage 5 quartz veining is preceded 

by local sericitisation of QMPl. The mineralisation associated with Stage 5 veining can 

be subdivided into an early bomite-chalcopyrite phase (Stage 5A) and a latter bomite-

chalcocite phase (Stage 5B). The sulphides of Stage 5A are similar to those associated 

with Stage 4 veins, however a distinction is made on the basis that the 5A sulphides are 

clearly associated with stockwork quartz veining and silica flooding. 

There is a strong Au-bomite association at E26, with visible gold principally occurring 

in coarser bomite crystals in Stage 5 quartz veins. However, some areas of bomite 

mineralisation (e.g. above 9950mRL) contain little Au in comparison to deeper level 

bomite mineralisation. The bornite-chalcocite association (Stage 5B) which appears to 

be confined to the core of the mineralising system (i.e. within and immediately adjacent 

to QMP1) and to the middle and deeper parts of the system, has a similar pattern to the 

higher Au grades, although Au has been observed in both the orange-brown and mauve 

bomite phases. Electron microprobe analysis has shown no compositional variation 

between the bomite phases, or vertical zonation in compositions, which would explain 
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the distribution of Au at E26. No Au has been observed within chalcopyrite, suggesting 

Au remained in a high temperature bornite and/or bornite-chalcocite solid solution when 

chalcopyrite separated, exsolving later with further cooling. The occurrence of tellurides 

and selenides suggests that locally Te and Se saturation occurred. 

Sericite alteration occurring with Stage 5 quartz veining at least partly postdates the 

veining. Replacement of bornite by chalcopyrite is probably related to the emplacement 

of QMP2 and slightly higher temperatures. Covellite replacement of bornite postdates 

the chalcopyrite replacement and indicates cooler, oxidised conditions, possibly related 

to carbonate, anhydrite/gypsum, sericite, epidote and chlorite associated with Stages 9 

and 10 alteration and veining. 
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7. DISCUSSION ON THE CONTROLS OF GOLD 

DISTRIBUTION AT E26 

7.1 RELATIONSHIP OF GOLD TO QUARTZ VEINING 

There is a good correlation with depth between maximum Au assay values and the 

maximum number of quartz veins per interval (Figure 7.1). There is also a clear 

decrease in Au assay values with decreasing number of quartz veins out from QMP1 

(Figure 7.2). Cu shows a similar lateral correlation with quartz veins abundances, but 

there are slight discrepancies vertically in the location of the peaks in the maximum Cu 

assays and the maximum number of quartz veins (Compare Figure 5.6 and Figure 7.2). 

Scatterplots of Au versus number of quartz veins per interval are not as well structured. 

This is thought to be because vein width is not incorporated into the veins per interval 

data. Unfortunately, vein thickness data is not available to the author. The correlation 

of the maximum Au peaks and the maximum number of quartz vein peaks (Figure 7.2) 

suggests that vein intensity (measured in terms of vein number and thickness) is an 

important consideration. Dense quartz veining in the so called 'silica zone' in the lower 

and middle levels of the system, is Au-rich with an almost 1:1 Cu/Au ratio (Figure 5.14). 

However in the upper levels, the 'silica zone' is relatively low in Au (5-10:1 Cu/Au ratio; 

Figure 5.14) despite no obvious differences in vein density, style or composition. 

This study agrees with the findings of Heithersay (1991) who found that Au is closely 

associated with Stage 5 veins (i.e. quartz stockwork veins). However Heithersay's 

observation that areas of low Au with high Cu are due to the absence of Stage 5 veins 

and presence of Stage 4 veins, is contradicted by the current study, which has shown that 

the zones of high Cu but low Au (Domain 4) do contain Stage 5 veins. The presence 

of Stage 5 veins may give hope of good Au grades but is not definitive. 
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7.2 RELATIONSHIP OF GOLD TO MAGNETITE 

One of the characteristics of many Au-rich porphyry Cu deposits from around the world 

is a Au-magnetite association (Sillitoe and Gappe, 1984; Sillitoe 1990). Magnetite is 

commonly associated with biotite and forms during potassic alteration (e.g. Sillitoe and 

Gappe, 1984). 

At E26, early potassic alteration is characterised by a biotite-magnetite assemblage 

(Stage 3). However, the main potassic alteration event (K-feldspar alteration) is 

magnetite destructive and is associated with most of the Cu and Au mineralisation 

(Stages 4 and 5). An annular pattern of magnetite occurs at E26, with a magnetic high 

around the orebody corresponding to Stage 3 alteration, and a magnetic low within the 

orebody corresponding to Stages 4 and 5 (Figure 7.3). The strongest zone of magnetite 

development is to the west of E26. Mapping of underground development has shown 

this magnetite alteration to extend at least 300m west of QMP1 as fracture controlled 

veinlets and disseminations. In cross-section, the area of greatest magnetite destruction 

is above 9600mRL (Figure 7.4). 

The frequency histogram of magnetite (Figure 7.5) shows a classic bimodal log normal 

distribution. The higher population is related to Stage 3 biotite-magnetite alteration, 

while the lower population is related to the overprinting, magnetite-destructive Stages 4 

and 5 potassic alteration. This relationship is reflected in the scatterplot of Au versus 

magnetite, where higher Au grades are associated with low magnetite, and high 

magnetite content is accompanied by low Au grades (Figure 7.6). Below 9600mRL, 

however, the scatterplot of magnetite versus Au (Figure 7.7) shows no evidence of this 

relationship. 

7.3 RELATIONSHIP OF GOLD TO OTHER ALTERATION 

High grade Au and Cu mineralisation is strongly correlated with K-feldspar alteration. 

Au contents of 0.2-0.25g/t correspond closely to the limits of the 'Outer K-feldspar 

Subzone' around QMP1 as defined by Heithersay (1991). In contrast, there is no 

relationship between Au distribution and the limits of the 'Outer Biotite K-feldspar 

S ubzone'. 
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Figure 7.4 Cross section of E26 showing drill hole traces coloured by magnetic susceptibilities. 
Pink traces to the west of E26 reflect magnetite enrichment due to stage 3 alteration, while black 
traces near QMP1 reflect magnetite destruction by stage 4 & 5 alteration and veining. 
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Figure 7.5 Frequency histograms and log probability plot of percentage magnetite in the rock. 



0 

;-L 

vc. 

7) . 
- 	  0 

r. 
...e 	i 

• - 
.. 
-  	 ( : 

0 
• _ _ 	0 
) .... 
• 

. 	_ 
) 	 - 

• 

• 0 	:0-  . 	r.'.  i 

•  0 0  - • -.. 	'.-I . 	. 	o 

. 
i 	;') 	0 C  0 	, )  0 

0 	0  
0 co 

.-) 	2--)  r• r) 	n  o 

•-• 	- 
-, 

	
Cc, 	- 0 - 	_ 

a0 	_ r.:.., 7. 
(1 	r , s 

....' 	(../ 	Q.7 . 	(., 

,_-, 0 	'-' 	u 	- 
- 0 rs • 0 

■ r.:..7,-;:. 	n .....) -, 	0 :  
( 

) 	c: 	.0 0r.,) 	0 0 

63c°c:?-'-'•s--- , 	0 , 
-:,00 

 ,--, 0 (-1:=. e, 	 8 8 	0 

	

):".•: ...;.f..,:rlt".", 1.10 0 a 	- 
•.);!. ....-...i..4? 'elob 	0._ 	o 	(, • • 	..- 	- 	,, 

L. 	,-, 	,=, 	n 	v 
() 	tl 	llo 	' 0 	%.3 • 

	

cr.) 	. 	' ,--•• 	Ct., 	.,1 	0 	,C) 
I") 	

,, 

r• ' 	0 	0 	0 ") 	0 	cr. 3 	0 	0 , 	0 	C ) 

. ',.(:'-i-d_.:-..1.1',----..--:'..: 	-N-■ °  ., .-  f 
''.'" 	' -°. •(Z: '''.)7) 	(•••■•'-‘, .,_!-J ()'' - °,_‘-) 	0 	00 	

':)
u DO u 	0  

. 	 0  
' '''' 	q 	. 	0 	n, 	(-7; 

' 	'-' 	'" 	o 	.,::,.=-2)-•:- 
.--.., 	",....)  

(-1'5) 	0 	 .... 

-- 	- f--n 	Co 
).`-''-?. 1   .) 01 ;',24 ')-,  0 I.- ).) cre, : -, 'd •:-. ,....) f•V,!..V;'. 1- .  i-''''...')4).%•• ra),•=!;_1 ('-.:t.'7,` ! 

..-..;:.•T(..!,!,)=' . .,, ':',?;;:".3-1e.' 	r•';. , :.)if.7 -.0'.--, 	, 	0  `-%P.:f ' " 	'-',-- '', - -0....,1L1_,:i.:4 5) 	••• ') - 'N -.,' 	' - • •.'..)! , •:;-.7-; .: ,),2r.' ,1tiv.Ifillr.. ,;,) ,-sy!.,-.. -) 	1.."..1 ...;,..,% - .-.......,. 	- ,';'.. -:7-s")/;-/,',1,5 ,1y.I; Q,' tip:  • ,..t.;!;);!• •••'J ,:'''' '..1 	-tm-KF '`'t 
0 . 5 

      

1 . 0 

MAC 
1 . 5 2 . 0 2 . 5 3 . 0 

Figure 7.6 Bivariate scatterplot of Au versus percentage magnetite. 
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No obvious spatial or petrographic relationship between Au distribution and sericite 

alteration can be discerned at E26. Sericite alteration is most strongly developed within 

and adjacent to the 'silica zone', which contains high Au grades (>2g/t) in the middle 

parts of the system, or low grades in the upper part of the system. In the upper Au-poor 

zone (Cu/Au Domain 4; Figure 5.15) Au grades are generally highest within the 'silica 

zone', where sericite alteration is strongly developed. 

7.4 SPATIAL DISTRIBUTION OF GOLD AROUND QMP1 

Another consideration on the controls of Au distribution at E26 is its spatial distribution 

about QMP1 . This is highlighted particularly by the scatterplots of Au and Cu/Au ratio 

with easting (Figure 7.1 and 5.13 respectively). In section, Au deposition is seen to have 

been concentrated immediately above the level at which QMP1 breaks out from the 

confines of the biotite quartz monzonite (Figure 5.3). In contrast, Cu is not so tightly 

constrained about QMP1, or within the lower and central parts of the system. It is 

interesting to note that aspect ratios between zones defined by the same values of Au(g/t) 

and Cu(%) are similar, suggesting similar lateral and vertical controls on the Cu/Au 

relationship. 

7.5 SUMMARY 

The distribution of Au at E26 is tightly confined about QMP1, and the middle and 

deeper parts of orebody. Gold principally occurs in bornite and shows a strong lateral 

and vertical correlation with Stage 5 quartz veining. A negative correlation occurs 

between Au and magnetite, indicating that Au is also associated with the hematisation 

of Stage 3 magnetite, which occurred during Stages 4 and 5 potassic alteration and 

veining. A weak Au association occurs with distal, structurally controlled quartz-sericite-

pyrite alteration. 
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8. COMPARISON WITH OTHER DEPOSITS AT 

GOONUMBLA 

8.1 GEOLOGY AND CU/AU RELATIONSHIPS AT E22 AND E27 

8.1.1 Summary Geology of E22 and E27 

Detailed accounts of the geology, alteration and mineralisation of E22 and E27 are 

provided in Jones (1985) and Heithersay et al. (1990). Squires (1992) also described 

E27. E22 is located approximately 4km NW of E26 and 1 km west of E27 (Figure 1.2). 

Mineralisation at E27 is associated with multiple intrusions of quartz monzonite 

porphyries, which have combined to form a pipe-like intrusive body (Figure 8.1) which 

is significantly larger in plan dimensions (100m x 250m) than the finger-like intrusions 

at E22, E26 and E48. At E22, mineralisation clusters around several small finger-like 

intrusions which are structurally controlled (Figure 8.2). 

The volcanic rocks at E27 are interpreted by Squires (1992) to have been andesite-

basaltic andesite flows and lesser volcaniclastics prior to K-silicate alteration. At E22 

pyroclastics and volcaniclastics are interbedded within the trachyandesitic flows. 

Potassic alteration at E22 and E27 is dominantly fracture-controlled and is characterised 

by K-feldspar and lesser biotite and albite. Pervasive alteration is only developed in 

spatially restricted zones, in contrast to E26 (Heithersay et al., 1990). Quartz and (in 

contrast to E26) calcite veins are strongly developed whereas gypsum and anhydrite 

veins and alteration do not occur. An outer zone of propylitic alteration around E22 and 

E27 contains carbonate, epidote and chlorite but only minor pyrite (in contrast to E26). 

A distinct magnetic high encircles E27 in the intermediate mineralised areas 

(i.e. <1% Cu), with a low 50-70m to the east of the main mineralised area (Figure 8.3). 

This low corresponds to peripheral low grade mineralisation in one of the monzonite 

phases. Although magnetite destruction does occur at E27 (fracture-controlled) the 

location of the magnetic low suggests that it is largely attributable to the intrusion of 

magnetite-poor QMPs, than destruction of magnetite by hydrothermal fluids. 
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Volumetrically small breccia pipes occur at both E22 and E27. The breccia pipe at E27 

contains monzonite fragments healed by quartz, carbonates and accessory minerals 

including Cu sulphides (Heithersay et al., 1990). 

Mineralisation is dominantly vein and fracture controlled with lesser disseminations. 

Bomite dominates in higher grade areas, while chalcopyrite is dominant in the marginal 

and lower grade peripheral areas (Heithersay et al., 1990). Two or three varieties of 

bomite at E22 and E27 have been noted based on colour in unpublished petrological 

work for Geopeko. As at E26, a purple (mauve) phase is associated with chalcocite and 

the more-abundant orange-brown phase tends to be associated with chalcopyrite. Both 

chalcopyrite and chalcocite can occur as exsolution lamellae in bomite. Au occurs as 

fine blebs <5 microns in size within and rimming bomite grains (Heithersay et al., 1990). 

There is a strong Au/bomite association, with Au grades decreasing rapidly where 

chalcopyrite becomes dominant. 

Plan dimensions at the 0.4% eCu contour are 270m x 200m at E22 and 240m x 180m 

at E27. Higher grade zones (i.e. >1.6% eCu) within both deposits are small and poddy 

in nature. 

8.1.2 Cu/Au relationships at E22 and E27 

Summary statistics for both Au and Cu in E22 and E27 are given in Table 8.1. Average 

Au grades for both E22 and E27 are significantly higher (2-3 times) than E26, whereas 

the average Cu grade is nearly half that at E26. 

Bivariate Cu/Au scatterplots for E22 and E27 (Figures 8.4 and 8.5) are similar to each 

other, but distinct from the scatterplot for E26 (Figure 5.9). The Cu/Au ratio for both 

E22 and E27 deposits is approximately 1:1. The Cu/Au ratio, however, varies from low 

Au grade areas (ratio 5-10) to <1 in areas of high Au grades (>2.5g/t). Only a weak 

spatial zonation of Cu/Au ratios is apparent, with the highest values occurring on the 

peripheries of the mineralising systems. There is no clear vertical zonation in Cu/Au 

ratios. 



Gold g/t E26 E22 E27 E31N E48 

Max. 10.5 32.86 34.9 5.63 23.8 

Mean 0.16 0.37 0.46 0.46 0.24 

Variance 0.41 0.66 0.77 0.63 0.44 

Copper % E26 E22 E27 E31N E48 

Max. 8.1 6.35 13.5 1.55 7.46 

Mean 0.71 0.49 0.48 0.19 0.57 

Variance 0.81 0.44 0.49 0.18 0.65 

Table 8.1 Summary Statistics for the major Goonumbla deposits 

Similarities to E26 E27 E22 E48 

Intrusions 	Type - QMP - QMP - QMP 

Shape - Finger-like - Finger-like 

Alteration - Early biotite/magnetite - Early biotite/magnetite 
- Later hematisation of 

magnetite 
- Later hematisation of 

magnetite 

Mineralisation - Bornite dominant - Bornite dominant - Bornite dominant 
- 2 bornite phases - 2 (3) bornite phases - Sulphide Zonation 
- Sulphide zonation - Sulphide Zonation 

Cu/Au ratio - Decreasing Cu/Au with 
increasing grade 

- Vertical zonation. 

Differences from E26 E27 E22 E48 

Host Lithologies - Basaltic Andesites - Basaltic Andesites - Includes volcanic sandstones 

Intrusions - Multiple, Overprinting 

AlterationNeining - K-feldspar alteration weaker - K-feldspar alteration weaker - Strong late sericite- 
and fracture controlled and fracture controlled carbonate-albite in QMP's 

- No gypsum/anhydrite - No Gypsum/Anhydrite - Little K-feldspar 
- Carbonate Veining - Breccia Pipe - No gypsum veining 
- Breccia Pipe 
- More magnetite 

- Composite quartz/ 
carbonate veins 

Mineralisation - Weak Pyrite Halo - Weak Pyrite Halo - Late tetrahedrite/tennantite 

Cu/Au Ratio - Approx 1:1 Cu/Au ratio - Approx 1:1 Cu/Au ratio - Lacks high copper / low 
gold association 
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Table 8.2 Comparison of major Goonumbla deposits with E26 
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8.2 GEOLOGY AND CU/AU RELATIONSHIPS AT E48 

8.2.1 Summary Geology 

The geology of E48 has been updated by Wolfe (1994), but is not available to the 

author at the time of writing. This geological summary is taken from Hooper et al. 

(1994). The Endeavour 48 (E48) deposit is located approximately 2km north of E26. 

The top of the deposit is truncated by a shallow ESE-dipping fault and hence 'blind' at 

surface. Quartz monzonite porphyries have intruded a mixed sequence of lava flows, 

breccias and mass flows with interbedded thick (up to 120m) volcanic sandstone units. 

At least four quartz monzonite porphyry pipes with plan dimensions of 10m x 15m to 

20m x 70m have been identified. These are thought to coalesce and broaden with depth 

(Figure 8.6). The largest QMP pipe is continuous for at least 740m vertically. The 

deposit is bounded below by a biotite quartz monzonite thought to be equivalent to the 

E31 stock. 

Alteration is centred on the QMP's. An early pervasive biotite-magnetite ± K-feldspar 

alteration assemblage is overprinted by a patchy biotite-carbonate-sericite-albite-hematite 

± K-feldspar assemblage and stockwork quartz veining with which the highest Cu 

mineralisation occurs. In some areas of the QMPs, this assemblage is overprinted by 

pervasive sericite-carbonate-albite alteration with associated disseminated Cu 

mineralisation which is high in arsenic. No intense K-feldspar alteration occurs at E48. 

Structurally controlled sericite-carbonate-quartz ± pyrite zones are common. 

Mineralisation is zoned from an outer pyrite halo through a chalcopyrite zone to a 

bomite-rich core. Mineralisation associated with quartz veining and fractures is 

dominantly bomite with lesser chalcopyrite, chalcocite, covellite and digenite. Late 

disseminated mineralisation related to sericite alteration is dominated by bomite and 

tennantite/tetrahedrite. 



107 
-1) 

• 
1020011R1‘ ., .. ort.40,,L7 • „„, ,„ 

• VVV 	 V  
11. 

AAAAAAA 	A A A Arai& A A 

1111 	•••• 	AA 	A• 

A  • 

54.. 
Id To 	 • --, 

1j 	• ••• • t 	• 

• • • 
 • 	• 	• 	• 	• 	.... i•. 

... . • • 
• 

• 

m 
• • • -41 

...... . l0000.res.. 
... 	• 	• 	•• 	•• 	•• 	• 
..... 	• 	..... 	•• 	• 	••• 

..... %. 
.. 	..... . ....A. 

1  

••• • 

✓ V V 
9800,41- • •• • • 

t 	" •• • • • • • • 
+ • • 

•••• 
• . . * . 

• 

. 
• • • • ..... . . it• 	• An • • • • • .• • • • • 

V 

V Ti V V 

••• 

V • • • 

X X 

9600•Rt. 

X X wX X X X X X X 

• • 
X X X X X X 

V V • 

X X X 

Australian Mop Grid Zone 55 Shown 

9400relL 

LEGEND 

EWA 	1.6 111 1•••••••■•• • Twattve.• I*.• I •11.1•• 

1w1•11C ear*. weIca•wdds•Wc• • U... %we. 

1•111.e 1••••• •••••C••••■,a•IC• (ma •• n•-•• 	b•- •ct•a• 

••••••••••••1 Wt. lave 11.•••. 

VoIca.we 	 ve, •••••••• 

Intruslv•• 

PARK ES 
II .11 

C•rl• 

•....•••• C.E.R. 

A DIVISION Or 
PERO.NALLIENO OPERATIONS 1.10. 

ACM 000 041 434 

	 • .6000 

	

150 	1 //m1/ •• 110 	100 	30  

•■ •1•91/ 	 Endeavour 48 

Schematic Section 597950E 
• 0 

GEOPEKO 

1•0 No. 110_93 

004 	 .0011 I • .  	 H. •11■••30• 	O., 5s.4515 IEli A 

1•••■••••••• P••••■••r y 

O. VI. 	•••.•.•••• 
11.111.4. C••••••••-• 

X X X X X X 

Figure 8.6 Geological cross-section of the E48 deposit (From Hooper et al., 1994). 



108 

8.2.2 Cu/Au relationships 

Summary statistics for E48 are given in Table 8.1. The means for both Cu and Au are 

similar to E26. The Cu and Au distributions at E48 are similar to the middle and deeper 

parts of E26 (Figure 8.7). Cu/Au ratios approach unity with increasing Au grade 

(Figure 8.8). Unlike E26 however, there is no strong domainality in the Cu/Au ratios. 

A clear spatial zonation occurs in the Cu/Au ratio with increasing values laterally away 

from the orebody (Figure 8.9). Like E26 there is also a clear vertical zonation in Cu/Au 

ratios, with the lowest Cu/Au ratios below 9900mRL (Figure 8.9). 

8.3 GEOLOGY AND CU/AU RELATIONSHIPS AT E31N 

The Endeavour 31 North deposit is located on the northern margin of the E31 stock. It 

is hosted by a sequence of porphyritic lavas which are intruded by narrow quartz 

monzonite dykes (Harbon and Dunn, 1994). The mineralisation is related to the QMP 

dykes, and is dominantly chalcopyrite with lesser bornite, occurring on fractures and in 

fine quartz veins associated with potassic alteration, dominantly biotite. The 

mineralisation is anomalously Au-rich, with Au grades significantly exceeding Cu grades 

(Table 8.1). Cu and Au grades do show a positive correlation (Figure 8.10) but the 

Cu/Au ratios are very low when compared to other deposits in the area. 

8.4 DISCUSSION 

8.4.1 Comparison with other Goonumbla Deposits 

Compared to E22, E27 and E31N, E26 and E48 are copper-enriched, and gold-depleted. 

The summary comparison of the deposits ( Table 8.2 ) shows that K-feldspar 

alteration (plus quartz, hematite and sulphides) at E22, E27 and E31N is dominantly 

fracture controlled, and not pervasive as at E26. Magnetite destruction occurs at E22 and 

E27, however due to the fracture-controlled nature of the alteration, it is not as strongly 

developed as at E26 and E48. The magnetic low to the immediate east of E27 is related 

more to the presence of magnetite-poor QMPs, than magnetite destruction associated with 
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Figure 8.7 Bivariate scattcrplot of Au versus Cu at E48. 
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Figure 8.9 Long-section at E48 showing drill hole paths colour coded by  Cu/Au  ratios. A vertical 
and lateral zonation in the Cu/Au ratio occurs. 
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hydrothermal alteration. Furthermore, there is no documented magnetite destruction at 

the Au-rich E3 1N deposit. The fracture-controlled alteration at E22 and E27 suggests 

limited interaction between the wall rocks and the fluids. This comparison on the 

extent of magnetite-destructive potassic alteration suggests that Cu-enrichment within 

a particular deposit in the Goonumbla region is favoured by hematisation of magnetite. 

Differing changes in the Au and Cu solubilities may have also contributed to Au-

enrichment at E22 and E27. 

The exposure levels of the Goonumbla deposits are different. Both E22 and E27 are 

eroded orebodies, with only the deeper parts of the original mineralised system now 

preserved. Gold occurrences at E26 and E48 are greatest (and hence Cu/Au ratios 

lowest) in the middle and deeper parts of the system; while magnetite destruction is 

weakest in the deeper parts of E26. This is consistent with the magnetite destruction and 

gold concentrations at E22 and E27, suggesting a correlation with the level of exposure. 

Cu/Au ratios of the parent fluids may also have been a controlling factor on the differing 

metal proportions between the Goonumbla deposits. The Cu/Au ratio in the parental 

fluids can be changed by sulphur saturation, resulting in the incorporation of Cu into 

early-formed Mg-Fe silicates, and decreasing the Cu/Au ratios of the remaining fluids. 

This early removal of copper may also have led to relative gold enrichment in the 

mineralising fluids responsible for the deposits of E22, E27 and E31N. 

8.4.2 Comparison with other Porphyry Cu -Au Deposits 

Gold and copper correlate closely in the potassic alteration zones of many porphyry Cu 

deposits: e.g. Granisle and Bell (Cuddy and Kesler, 1982); Panguna (Clark, 1990); Batu 

Hijau (Meldrum et al., 1994); and Grasberg (Kavalieris, 1994). Au often occurs in 

association with bomite (Sillitoe, 1990) and usually in potassic assemblages dominated 

by biotite and magnetite (Sillitoe, 1979; Sillitoe and Gappe, 1984; Clark, 1990). Cu/Au 

ratios vary between, and within deposits, but are usually constant within mineralised 

zones, reflecting coprecipitation (Thompson, 1994). Au and Cu contents decrease with 

depth at Panguna, but a constant Cu/Au ratio is maintained (Clark, 1990). Of the alkalic 

7-) 

	 porphyry Cu-Au deposits in British Columbia, Galore Creek and 66 Zone at Mount 
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Milligan, show a strong zonation in Cu/Au ratios, suggested to be the result of variations 

in physiochemical conditions within a single episode of hydrothermal alteration (Galore 

Creek), or due to a second Au-enriched episode of hydrothermal alteration (Mount 

Milligan, Lang et al. in Thompson, 1994). Within the highest grade zones at Grasberg 

Cu/Au ratios are <1. The 1% Cu limit extends about 100m laterally beyond the 1 g/t Au 

limit (Kavalieris, 1994) suggesting Cu/Au ratios >1 and a lateral zonation in Cu/Au 

ratios. At Batu Hijau, both metals increase with depth, but Au more markedly than Cu, 

such that a Cu/Au ratio of 2:1 250m below the surface decreases to 1:2 below 550m 

depth (Meldrum et al., 1994). A similar increase of bornite content relative to 

chalcopyrite in the deeper parts of the orebody noted by Meldrum et al. (1994) would 

appear to mimic the increasing gold content. 

In comparison to the deposits mentioned above, E26 is anomalous, as Au and Cu 

mineralisation is associated with K-feldspar alteration which is destructive of biotite and 

magnetite associated with earlier potassic alteration. Similarly the strong zonation in 

Cu/Au ratios at E26 is also anomalous, except possibly in comparison with Batu Hijau. 

The comparison with other porphyry Cu-Au deposits, shows that Cu and Au deposition 

usually occurs without hematisation of magnetite. The model presented for E26 does not 

suggest that hematisation of magnetite is the only mechanism of Cu deposition, but 

rather causes Cu deposition to be enhanced. 
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9 FLUID CHEMISTRY AS A CONTROL ON GOLD 
DISTRIBUTION 

9.1 FLUID CHEMISTRY 

Fluid inclusion and sulphur isotope studies by Heithersay (1991) have shown that the 

chemistry of the fluids changed as the E26 system evolved. Fluids associated with 

Stages 4 and 5 have been shown from fluid inclusion analyses to range from 470-1090°C 

and 430-610°C respectively, with salinities varying from 50-80wt% NaCI+KC1 

(Heithersay 1991). At these conditions Au and Cu would be transported as chloride 

complexes (Seward 1983). 

Heithersay (1991) noted a spatial zonation of sulphur isotope values for bornite at E26. 

Sms values for bornite vary from -8%0 to -2.9%0 and generally become more negative 

laterally away from, and vertically above, the centre of the mineralised system. 

Temperature determinations from fluid inclusions in the same samples give an 

approximate linear relationship between 8 345 and temperature, due to isotope 

fractionation, showing that temperatures decreased away from the centre of the system. 

The magnitude of the decrease for the Stage 5 veins was from >500°C in the deeper and 

central parts of the system to near 400°C in the upper and distal regions. 

Activity-activity diagrams show that the mineral assemblages at E26 represent an 

evolving system that in general became more oxidised with time (Figure 9.1) although 

several exceptions and complications of this general trend exist. The initial biotite-

magnetite assemblage formed under relatively reduced conditions. Bornite and hematite 

are typical of more oxidised conditions (Figure 9.1) and/or lower ES concentrations. The 

coexistence of bornite, chalcopyrite and hematite constrains the fluid conditions to a 

univariant line representing high sulphur and oxygen fugacities. The bomite+ 

chalcocite+hematite assemblage indicates more oxidised conditions, lower temperatures 

and/or lower ES concentrations. The replacement of bornite by chalcopyrite suggests 

higher temperatures, higher ES concentrations, or more reduced conditions. The 
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Figure 9.1 Activity diagram for sulphide and silicate phases as a function of a(S 2) and a(0 2) 

at 550°C ( From Beane and Titley, 1981). Path A shows fluid evolution during stages 3 to 5. 
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Figure 9.2 10 2  - pH diagrams constructed at 350°C (From Huston et al., 1993). Fluid 

evolution similar to path A would lead to a greater rate of change in Au saturation compared 

to Cu saturation. 
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replacement of bomite by covellite suggests low temperatures, and/or higher sulphur and 

oxygen fugacities. The presence of anhydrite in most alteration assemblages indicates 

oxidised, sulphate-stable conditions throughout much of the lifetime of the system. 

9.2 GOLD AND COPPER DEPOSITION 

Stage 3 potassic alteration, characterised by biotite and magnetite and precipitated by 

relatively reduced fluids, was followed by the more oxidised hematite-stable and 

sulphate-stable, hotter ( initially ) Stage 4 and 5 fluids responsible for the main pink 

K-feldspar alteration and sulphide mineralisation at E26. Hematisation of magnetite 

occurred by the reaction: 

4Fe304 + 02 <=> 6Fe203 	 (1) 

The consumption of 0 2  caused the fluids to become more reduced, resulting in the 

reduction of sulphate to sulphide by the reaction: 

SO42-  + 2HC1 <=> H2S + 202  +2C1 - 	 (2) 

These reactions led to a decrease in oxygen fugacities, and increase in pH of the fluids, 

prompting gold deposition by the reaction: 

4AuC12-  + 2H20 .4.> 4Au + 4H+ + 8C1 -  + 02 	(3) 

02  is consumed by the hematisation of magnetite (Reaction 1). In response to the 

increasing H 2S content, copper deposition is promoted, also increasing the consumption 

of magnetite by the reaction: 

16H2S + 4Fe304  + 20CuC12-  + 02  <=> 4Cu 5FeS 4  + 4Fe203  + 20H+ + 40 Cl -  + 6H20 (4) 

The absence of pyrite from potassic alteration assemblages, indicates that conditions were 

more oxidised than the pyrite field, and that Fe must come from Fe-oxides (and/or 

biotite?). According to Reaction 4, the greater the hematisation of magnetite, the more 

copper is produced. The presence of anhydrite with the copper sulphides would suggest 

that the fluids remained saturated in SO 42-  despite also being consumed by the reaction 

above. 

Huston et al. (1993) use 102  - pH diagrams to explain gold and copper deposition and 

variances in their relative proportions of distribution at Tennant Creek (Figure 9.2). 

While Figure 9.2 has been constructed for the Tennant Creek deposits at temperatures 
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of 350°C and salinities of 20wt% NaCl, compared to temperatures of >500 °C and 

salinities of >50wt% NaCI+KCI at E26 (Heithersay 1991), this diagram does help to 

illustrate the effects of changes in oxygen fugacity and hydrogen ion activities on the 

precipitation of gold and copper from chloride complexes. If the Cu/Au ratio in the 

mineralising fluid is 10:1 (the ratio of the whole mineralising system) then for Cu/Au 

ratios to be as high as 1:1 in the centre of the orebody, Au deposition has to be enhanced 

relative to Cu. This relative enrichment can be explained if the fluids evolved obliquely 

to the copper solubility contours, but at a high angle to the gold solubility contours 

(Path A; Figure 9.2) in response to decreasing /0 2  and increasing pH. As the fluid rose, 

copper precipitation remained relatively constant; but by 9950mRL, the gold budget of 

the fluids had been spent, resulting in a gold-depleted zone (Domain 4) in the upper part 

of the copper mineralisation. 

While the above discussion has focused on changing saturation levels of Au and Cu due 

to changing 102 and pH, the effect of temperature changes on saturation levels is equally, 

if not more, important. As well as by decreasing f02, Au deposition by Reaction 3 is 

favoured by decreasing temperature and dilution of the chloride complex by water. 

Decreasing temperatures are indicated by the sulphur isotope zonation. Precipitation of 

Cu could have occurred at a relatively slower rate than Au, provided a path similar to 

Path A was followed by the fluid during cooling (Figure 9.2). The greater changes in 

saturation level for Au promoted rapid deposition of Au relative to Cu in the deeper and 

central parts of the E26 system. This resulted in Cu deposition being partly decoupled 

from Au deposition, with Cu precipitating further out from, and above the core of the 

system. Rapid Cu deposition due to a steeper temperature gradient may have occurred 

in the carapace of QMP1, where Cu grades are highest. By this stage, the fluids had 

become spent in Au. 

9.3 SUMMARY 

It seems likely that throughout the main mineralisation stages of the E26 system, gold 

and copper were co-precipitated, but at different rates due to variations in physiochemical 

conditions of the fluids, principally T, f02  and pH. The changing fluid conditions 

resulted in different rates of change of saturation levels for Au and Cu, leading to a 

lower and middle zone of relative gold-enrichment, and an upper zone of gold-depletion 
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at E26. Similar changes in fluid conditions and resulting zonation in Cu/Au ratios has 

occurred at Galore Creek in British Columbia (Thompson 1994). While gold-enrichment 

occurred locally in the core of the E26 deposit, the continued deposition of Cu laterally 

away from QMP1, and into the upper levels of the system, was aided by the hematisation 

of magnetite. Gold was incorporated into high temperature copper sulphide solid 

solutions, from which chalcopyrite separated at temperatures of approximately 550 °C. 

Gold remained in the high temperature bornite, and bornite-digenite solid solutions, until 

exsolving with further cooling. 

Gold also occurs in structurally controlled quartz-sericite-pyrite alteration, peripheral to 

E26. The alteration assemblage and accompanying sulphides (galena and sphalerite) 

would indicate deposition from bi-sulphide complexes in lower temperature and lower 

salinity fluids, than those associated with potassic alteration (Jones 1992). 

The relative enrichment in Cu at E26 compared to E22, E27 and E3 1N, may be due to 

the stronger hematisation of magnetite, favouring Cu-sulphide deposition by Reaction 4. 

In comparison to E26, the enrichment of Au at E22, E27 and E31N is probably due to 

more Au-rich hydrothermal fluids, and greater rates of change in Au saturation than Cu 

saturation. The Cu/Au relationships at E22 and E27 are also consistent with the deep 

level of exposure at these deposits. If the mineralising systems were fully preserved at 

E22 and E27, then the Cu/Au relationships of E26 would be expected. 
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10 CONCLUSIONS 

The distribution of gold at E26 is tightly constrained around the central and lower parts 

of QMP1 . By comparison, Cu which is similarly distributed about QMP1, extends 

laterally beyond, and vertically above the main Au zone. The vertical zonation in the 

relationship between Cu and Au grades is highlighted in the analysis of Cu/Au ratios, 

where two distinct vertical domains within the ore grade mineralisation have been 

defined. Despite the continuity of Cu beyond the main Au zone, the strong structure in 

the lateral Cu/Au ratios suggests there is still a strong relationship between the two. 

Gold shows a positive correlation with Stage 5 quartz veins, and a negative correlation 

with magnetite. The analysis of Ag/Au ratios has shown dispersion of Ag beyond the 

main Au zone of mineralisation. Gold can also occur in association with Pb and Zn 

mineralisation in distal, structurally controlled zones of quartz-sericite-pyrite alteration. 

The two bomite phases defined on colour and accompanying Cu-sulphide minerals are 

compositionally similar. The mauve bomite/chalcocite association tends to be restricted 

to higher grade areas in the middle and lower parts of the system. An orange-brown 

bomite/chalcopyrite association is the 'normal' association, occurring throughout most of 

the deposit. The mauve bomite is younger than the orange-brown bomite. Au occurs 

as small inclusions in both bomite phases and in chalcocite. The petrographic work and 

microprobe analyses has shown no compositional or timing variation between the 

sulphide and alteration/veining phases that could explain the zonation in Au observed at 

E26. 

A geochemical model has been presented in which deposition of Au and Cu during 

Stages 4 and 5 resulted from metal saturation caused by changes in T, f02 and pH. 

Decreasing temperatures, and hematisation of secondary magnetite which formed during 

early potassic alteration in association with biotite, resulted in deposition of Au and Cu. 

Gold solubility decreased more quickly than Cu solubility, and as a result, Au deposition 

occurred relatively more quickly than Cu, resulting in relative gold enrichment in the 

core of the system. As the fluids moved up, they became spent in Au, resulting in a 

zone of gold depletion with respect to copper (high Cu/Au ratios) in the top of the 

system. Continued temperature decreases and hematisation of magnetite favoured Cu 

o 
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deposition laterally away from QMP1, and to shallower depths. Au remained in high 

temperature bornite and/or bomite/chalcocite solid solution with chalcopyrite separation. 

Au exsolved from the intermediate solid solutions with further cooling. 

Cu/Au ratios at E22 and E27 are relatively uniform at 1:1; E48 more closely resembles 

the Cu/Au relationships in the middle parts of E26; while E31N contains relatively high 

Au with Cu/Au ratios of less than one. The differences in metal contents between the 

Goonumbla deposits can be explained by differing fluid compositions, differing changes 

in physiochemical conditions during time of metal deposition, differing degrees of 

hematisation of magnetite, and level of exposure. Relative Cu-enrichment (E26 and E48) 

is favoured by hematisation of magnetite. Au-enrichment (E22, E27, E31N) is favoured 

by greater rates of change in the saturation levels of Au than Cu at the time of metal 

deposition, and higher Au content of the parental fluids. Higher Au contents and low 

Cu/Au ratios are also typical of deeper levels in the deposits. 
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APPENDIX I 

POLISHED SECTION 

DESCRIPTIONS 



Sample No. 

39503 

67528 

75150 

75153.3 

91175.4 

12382.8 

123138.3 

126W2513.4 

126W2571.4 

126W2596.2 

128591.5 

128657.9 

Hole No. 

E26D39 

E26D67 

E26075 

E26D75 

E26D91 

E26D123 

E26D123 

E26D126W2 

E26D126W2 

E26D126W2 

E26D128 

E26D128 

Depth 

503 

528 

150 

153.3 

175.4 

82.8 

138.3 

513.4 

571.4 

596.2 

591.5 

. 657.9 

Cu °A, 

2.20 

2.57 

4.10 

5.30 

5.80 

0.85 

4.40 

4.60 

2.65 

4.64 

4.80 

2.03 

Au g/t 

0.09 

0.43 

0.83 

0.38 

1.27 

0.04 

0.67 

5.17 

2.54 

3.40 

5.10 

1.64 

Cu/Au domain 

4 

4 

4 

4 

4 

2 

4 

3 

3 

3 

3 

3 

Rocktype 

Volcanic NE Ext. 

Volcanic NE Ext. 

Volcanic 

OMP1 
Silica Flooded 

Volcanic 

Volcanic 

Volcanic 

Volcanic 

Volcanic 
Silica Flooded 

Volcanic 

Volcanic 

Volcanic 

Alteration 

Biot. (Stage 3) variably altered to ser. & rut. 
K-spar altered groundmass and plag phenoaysts, minor anhy. 
Weak overprinting ser./carb. & chlor. 

Biot. (stage 3) altered to K-spar & Ser. (stage 4) 
K-spar altered groundmass and plag. phenocrysts, anhy. 
Minor alb. (stage 4), Rut. Late Gyp. (stage 10) 

Relict Plag. phenocrysts. 
K-spar & alb. (stage 4) altered groundmass 
Rut. common in bn. 

Strong silic.,and ser. alteration adjacent to qtz. veins 
Groundmass of K-spar. Otz., and Ser. 

Stage 4 & 5 K-spar, qtz., ser. and anhy. altered groundmass 
Rut. 

Pervasive biot., + magn., + apatite (stage3), altered to ser. & hem. 
Plag. phenocrysts altered to K-sparJalb./hem. 
Very fine groundmass of K-spar., qtz., alb., and ser. & monir anhy. 

Strong Silic. and ser. alteration. Minor alb. and K-spar. 

Otz. vein, minor carb., anhy. and ser. 

Qtz. veined & sericitised 
Minor rutile 

Stage 3 magn. partly replaced by hem. and bn. 
Stage 4 K-spar in groundmass. Stage 5 qtz & ser. 
Late carb./ anhyiserichlor. 

Plag. phenocrysts now K-spar. & ser. Bn. & hem. after Magn. 
K-spar., qtz.,?biot. and minor alb. alteration of groundmass 
Minor late epidote 

Stage 3 Biot. and Magn. (replaced by hem.) 
Pervasive K-spar./albJhem. (minor rut.) alteration (stage 4). 
Ser. overprint. 	Minor late chlor.,carb.,anhy. 

Veining 

Stage 5 Qtz veins 

Stage 5 Otz veins 

Stage 5 Otz Veins 

Stage 5 Otz veins 
Silica Flooding 

Stage 5 qtz veins 

Stage 5 qtz veins 

Stockwork stage 5 
qtz veins 

Stage 5 Qtz vein 
Stage 10/11 gypsum 

Stage 5 qtz vein 
Silica flooded 

Stage 3 magn. vein 
Stage 5 qtz. vein 
Late Carb. vein 

Stage 5 qtz. vein 

Stage 5 qtz vein 

Sulphides 

Bn 
Some cpy replacing bn 
Coy, replacing bn. 

Bn 
Most Cpy. replacing Bn. 
Covellite replacing bn. 

Bn, Cpy. 
Some Bn. replaced by cpy 
and coy. 

Bn., Clausthalite 
Cpy. and Coy. after Bn. 
Cpy veinlet (stage7 or 8) with py. 

Bn./cpyJtetra. intergrown 
Some cpy. after Bn. 
Coy. after Bn. 

Bn./Hem. association 
Later CpyJhem. association 
Cc. after Bn. in one grain 

Bn. 
Cpy. and coy, after bn. 

2 bn. colour phases 
Minor cpy. after Bn. 
Au in bn. 

2 bn. phases, Au 
Cc. with mauve Bn. 
minor Coy. after Bn. 

Bn.(orange)/ cpy. 
Bn. dominant near magn. 
Cpy. dominant away 

2 bn. phases. Au 
mauve bnicc., orange bn./cpy. 
some cpy./cov. after bn. 

Bn./cc., 
Minor cpy. coexisting with bn. 

List of abbreviations: K-spar= K-feldspar; alb.=albite; biot.=biotite; magn.=magnetite; anhy.=anhydrite; qtz.=quartz; ser.=sericite; carb.=carbonate; chlor=chlorite; epi=epidote; gyp=gypsum; plag=plagioclase; 
hem.=hematite; bn=bomite; cpy.=chalcopyrite; cc.=chalcocite; tetra=tetrahedrite; cov=covellite; rut=rulite; Au=gold; py=pyrite 

Appendix 1 - polished section descriptions 



ifatidiod oxrz 

ot!ucauoY1/  74-0r10 N9093 

Bur0914 =IRS 

Adafebod amuozuow wont) 
111 OCV6 

uozuoy Jol.sotu eilsopuy 

.1.00-1030 

G*L< 
c*L r I 
r•  8*0 
8*0 - 9*0 

apcue Jeddoo 4uelcumnb3 

eio ^V-no aPticilnS 

0N30]1 

dsoo° 

6:r_D 

III 
IS 009 6 

1 

/ 

1110086 

-1114XRZT 

curl tunsciA0 

11100Z0 
_usysypro owe 

404 1 ta Atet1 lk&AA k k ‘A 6..4k 9Z109Z3 

8  9Z la9Z3 

14811411:16M °We 
CZ 109Z3 eocyns 6 0 9 Z 3 SLO9Z3 	L 9 0 9 Z 3 

SNOI1D3S a3HS110d AO NOLLVD01 
N COSECS NOI1D3S SSOND 1\01001030 9Z3 



APPENDIX 2 

ELECTRON MICROPROBE ANALYSES 



The samples were analysed using a fully automated, three spectrometers Cameca SX 50 
electron microprobe callibrated with natural mineral standards (PAP data reduction). 
The standards were analysed at least twice during each probe session. Analytical 
conditions were 15kV accelerating voltage, 20 nA beam current, and 1-2 pm beam size. 
Approximately 40 grains were analysed for a total of 87 analyses. Totals for some analyses 
are 2-3 wt% low and appear to have lead to an under estimation of the Cu content of the 
Cu-sulphide phases. 

TABLE 1: ELECTRON MICROPROBE ANALYSES - SULPHIDE MINERALS 

Sample No Ring No. Point No. Mineral s Fe Cu Zn As Aq Sb BI Wt % Total 
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A
 4

3
  
C

r
t
 C

.3
  
-
-
 V
+
 A

 4
3
 n.
)
 5

  c
o
  c

o  
A

 4
.1

 CD
 CO

 ...
I
 u
l 
A

  
4
3
 
C

O
 ...

I  
CO

  C
O

 A
  C

.)
 N

) 
•
-
•
 C

o
 A

 C
a
 k
l
 
4
)
 IV

 -
3  

CA
  A

 4
3
 1
0
 
0
)
 co

  A
 C

O
 N

) 
- 3

  0
1
 V

I A
 4
3
 h

a
 -

3  
C.
3
 &
I
 G

3
 fs.
) 

Bornite 40.46 9.78 49.71 0 0.01 0.01 0 0.05 98.217 
75153.3 Bomite 40.98 9.33 49.61 0 0.05 0.01 0.01 0.02 95.109 
75153.3 Bornite 41.14 9.32 49.51 0 0 0 0.02 0.01 97.631 
12382.8 Bornite 40.54 9.79 49.64 0 0 0.01 0 0.02 98.227 
12382.8 Bornite 40.72 9.88 49.33 0 0 0 0.02 0.05 97.895 
75153.3 ?Claushalite 39.15 (Se?) 0 0.51 0.03 60.29 (Pb?) 0.02 0 0 57.537 
91175.4 Bornite 40.54 9.82 49.63 0 0 0 0 0.01 97.905 
91175.4 ?Claushalite 37.32 (Se?) 0.21 0.53 0 61.93 (Pb?) 0 0.01 0 56.495 
91175.4 Bomite 40.47 9.76 49.75 0 0.02 0 0 0 98.804 
91175.4 Bornite 40.81 9.21 49.81 0 0.13 0.02 0.01 0 97.41 
91175.4 Chalcopyrite 50.9 23.86 25.18 0.01 0.04 0 0 0 95.381 
91175.4 Chalcopyrite 50.8 24.08 25.06 0 0.05 0 0 0 97.205 
91175.4 Tetrahedrite 44.99 0.09 34.4 6.43 2.3 0 11.78 0 99.271 
91175.4 Tetrahedrite 44.78 0.12 34.4 6.36 0.54 0.05 13.75 0 100.221 
91175.4 Tetrahedrite 45.06 0.08 34.36 6.33 1.15 0.04 12.98 0 99.248 
91175.4 Bomite 40.7 9.6 49.64 0.02 0.01 0.02 0 0 97.961 
91175.4 Bornite 40.47 9.72 49.79 0 0 0 0.01 0.02 98.377 
91175.4 Chalcopyrite 50.72 24.16 25.09 0 0.02 0 0 0 96.994 
91175.4 Chalcopyrite 50.64 24.13 25.23 0 0 0 0 0 97.37 
128591.5 Purple Bornite 40.53 9.64 49.82 0 0 0 0.01 0 98.052 
128591.5 Chalcocite 37.35 4.24 58.38 0 0 0.02 0 0.01 98.558 
128591.5 Chalcocite 34.76 1.27 63.93 0 0 0.03 0.01 0 98.736 
128591.5 Orange Bornite 40.52 9.61 49.85 0 0 0.02 0 0 98.282 
128591.5 Orange Borhite 40.68 9.59 49.72 0 0 0 0.01 0 98.108 
128591.5 Chalcocite 34.16 0.05 65.74 0.01 0 0.05 0 0 99.24 
128591.5 Chalcocite - 34.58 0.13 65.23 0 0 0.01 0 0.06 98.754 
128591.5 Purple Bornite 40.87 9.36 49.75 0 0 0.01 0 0 96.34 
128591.5 Orange Bomite 40.45 9.78 49.71 0.01 0 0.01 0.01 0.04 98.157 
128591.5 Orange Bornite 40.4 9.66 49.93 0 0 0.02 0 0 98.663 
128591.5 Chalcocite 34.61 0.13 65.25 0 . 0 0 0 0.01 97.275 
128591.5 Chalcocite 34.67 0.17 65.12 0 0 0.01 0 0.03 98.567 
128591.5 Purple Bornite 40.46 9.52 49.93 0 0 0.04 0 0.05 98.171 
128591.5 Purple Bornite 40.56 9.63 49.75 0 0 0.02 0 0.04 97.093 
128591.5 Chalcocite 33.57 0.1 66.32 0 0 0.02 0 0 99.144 
128591.5 Chalcocite 33.68 0.11 66.17 0 0 0.01 0 0.03 99.157 
128591.5 Chalcocite 34.33 0.17 65.41 0.01 0 0.02 0 0.05 98.675 
128591.5 Purple Bomite 40.3 9.7 49.87 0 0.09 0.04 0 0 98.112 
128591.5 43

.  Purple Bornite 40.43 9.68 49.86 0 0 0.03 0 0 97.484 
128591.5 Chalcocite 33.96 0.12 65.89 0 0 0.02 0 0.01 98.605 
128591.5 Orange Bornite 40.81 9.45 49.67 0 0.03 0.03 0 0.02 97.541 
128591.5 Orange Bornite 40.21 9.65 50.1 0 0.01 0.01 0.01 0 98.972 
128591.5 Chalcocite 33.78 0.12 66.01 0 0.05 0 0.01 0.03 98.734 

128591.5 Orange Bornite 41.32 9.78 48.86 0 0 0.04 0 0 96.106 
128591.5 Orange Bornite 39.86 6.65 53.44 0 0 0.05 0 0.01 93.451 
128591.5 Purple Bornite 41.2 9.8 48.97 0 0 0.01 0.01 0.02 96.421 
128591.5 Chalcocite 34.95 0.11 64.82 0 0 0.03 0.03 0.06 94.757 
128591.5 Purple Bornite 41.17 9.89 48.86 0 0 0.02 0.01 0.05 96.459 
128591.5 Chalcocite 34.95 0.02 64.91 0 0 0.01 0 0.11 96.106 
128591.5 Chalcocite 34.94 0.09 64.94 0 0 0.04 0 0 95.781 
128591.5 Purple Bornite 41.36 9.59 48.99 0 0 0.02 0 0.03 95.918 
128591.5 Orange Bornite 41.55 9.67 48.6 0 0.06 0.04 0.01 0.07 95.888 
128591.5 Purple Bornite 41.11 9.19 49.69 0 0 0.01 0 0 96.678 
128591.5 Purple Bornite 41.28 9.68 49.01 0 0 0.03 0 0 96.923 
128591.5 Chalcocite 35.89 0.47 63.4 0 0 0.03 0.01 0.19 96.264 
128591.5 Chalcocite 35.88 0.1 63.96 0 0 0.03 0 0.02 95.665 
128591.5 Bornite 41.63 9.75 48.37 0 0 0.03 0 0.03 95.815 
128591.5 Orange Bornite 42.01 9.84 48.04 0 0 0 0.02 0.09 96.532 
128591.5 Orange Bornite 41.89 9.69 48.33 0 0.06 0.03 0.01 0 96.043 
128591.5 Bomite 40.96 9.73 49.31 0 0 0 0 0 97.426 
128591.5 Purple Bornite 41.02 9.73 49.23 0 0 0.01 0 0.01 96.761 
128591.5 Chalcocite 35.11 0.26 64.62 0 0 0.02 0 0 98.369 
128591.5 Purple Bornite 41.93 9.75 48.23 0 0.01 0 0.01 0.06 95.218 
128591.5 Chalcocite 35.85 0.24 63.9 0 0 0.02 0 0 95.996 
128591.5 Orange Bornite 41.64 9.84 48.5 0.01 0 0 0.02 0 96.61 
128591.5 Orange Bornite 41.41 9.95 48.55 0 0.02 0.04 0 0.03 96.45 
128591.5 Purple Bornite 41.87 9.69 48.4 0 0 0.03 0 0 96.261 
128591.5 Purple Bornite 41.34 9.98 48.64 0 0 0.03 0.01 0 96.541 
128591.5 Chalcocite 34.58 0.24 65.07 0 0.04 0.03 0 0.04 96.458 
128591.5 Chalcocite 35.02 0.76 64.17 0 0 0.03 0.01 0.01 95.222 
128591.5 Orange Bornite 41.27 9.85 48.76 0 0 0 0 0.11 97.043 
128591.5 Orange Bornite 41.47 9.85 48.63 0.01 0 0 0 0.04 96.417 
91175.4 Tetrahedrite 46.3 0.11 33.1 6.48 0.96 0.01 13.04 0 96.887 
91175.4 Tetrahedrite 46.05 0.1 33.18 6.57 1.16 0.01 12.94 0 96.869 
91175.4 Bornite 41.69 9.88 48.35 0 0 0.03 0 0.04 96.458 
91175.4 Tetrahedrite 46.05 0.36 32.92 6.48 1.44 0.03 12.71 0.01 97.13 



TABLE 2: ELECTRON MICROPROBE ANALYSES - SILICATE MINERALS 

Sample No Ring No. 	I Point No. Mineral 503 P205 Si02 TiO2 Al203 Cr203 Mq0 CaO MnO FeO NiO Na20 K20 

75153.3 

N
C
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 N

 	
N
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Sericite 0 0.0045 7.0239 0.0287 5.607 0.0013 0.345 0.0047 0.0003 0.1715 0 0.1131 1.7795 
75153.3 Sericite 0.0045 0.0013 6.8671 0.0203 5.9629 0.0033 0:1515 0 0 0.1378 0 0.1259 1.7571 
75153.3 Sericite 0.0023 0.0008 6.8865 0.0408 5.6289 0.0018 0.4881 0 0 0.2102 0.0011 0.1148 1.8655 
12382.8 Sericite 0.0023 0.0072 7.101 0 5.3643 0 0.542 0.0027 0 0.3134 0.0032 0.0959 1.6351 
12382.8 Sericite 0 0.0108 7.0008 0 5.3576 ' 0.0049 0.6488 0 0.0007 0.3732 0.0008 0.0984 1.7077 

128591.5 Sericite 0 0.0019 6.7692 0.0459 5.537 0.0005 0.6596 0 0 0.4027 0.0011 0.1186 1.8657 
128591.5 Sericite 0 0.0024 6.8443 0.0502 5.6211 .  0.0008 0.424 0 0 0.3614 0 0.1008 1.8641 
91175.4 Sericite 0 0.0066 7.0848 0.0119 5.542 0 0.3483 0 0.001 0.1862 0.0023 . 0.1521 1.7266 
91175.4 Sericite 0.0201 0.0023 6.7944 0.0144 5.9187 0.0013 0.3043 0.0003 0 0.1913 0.0027 . 0.1709 1.705 

_ 
12382.8 Biotite 0 0 5.7553 0.3326 3.4201 0 3.672 0 0.0448 1.9956 0 0.0946 1.838 
12382.8 Biotite 0.0074 0.0042 5.9211 0.3649 3.1162 0.0057 3.83 0 0.0497 1.8323 0 0.1113 1.8501 
12382.8 Biotite 0 0.0013 5.8289 0.3629 3.2759 0 3.7817 0 0.0367 1.8791 0.0005 0.1096 1.8714 


