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Abstract 

This thesis examined the effects of short-term, acute copper poisoning on the metal 

concentrations in the gills of rainbow trout (Oncorhynchus mykiss) with the aim of 

developing possible biomarkers under such exposure regimes. The experiments were 

designed principally to mimic the spillage of high copper contaminants such as 

industrial or mining wastes into an environment which would flush the contaminant 

quickly through the water system, resulting in a brief, but acute exposure to copper for 

the inhabitants of the environment. A variety of water quality conditions were 

investigated including in fresh and brackish waters, in conjunction with elevated zinc 

levels in fresh waters and in brackish waters high in dissolved organic carbons. 

The use of the gill copper concentrations in a ratio to other metals in the gills was 

investigated for their potential role as biomarkers for acute copper exposure and in 

fish kills. The depuration rates of metals from the gills were also examined in the 

carcasses of animals killed through exposure to elevated levels of dissolved copper in 

fresh and brackish waters. Data from fish kills in Macquarie Harbour, a large, 

brackish inlet on the western coast of Tasmania, Australia, historically known for its 

copper contamination, were included in the thesis. 

It was demonstrated that in short-term, acute exposure to copper, hepatic copper 

levels will not reflect the exposure whereas copper/metal ratios in the gills of rainbow 

trout may do so. Circulating copper levels in the animal's blood plasma were 

unaffected. When exposed to mixtures of copper and zinc, the ratios may still be 

effective indicators, particularly the copper/sodium ratio. Copper residues in the gills 



were elevated while sodium levels in the gills and calcium levels in the plasma also 

decreased significantly indicating an interruption to the animal's ability to iono-

regulate. 

However in brackish waters copper ratios appear less viable as biomarkers. Altered 

physiological requirements between the animals in a hypotonic, isotonic and 

hypertonic ionic environment affected copper accumulation at the gills and the 

concentrations of other metal in the gills. Metal concentrations in the gills equilibrated 

to environmental levels in 6 to 45 hours post-mortem. It was observed the post-

mortem depuration of sodium from gill tissue in both fresh and brackish water may 

provide a means of quantifying the time since death of animals in fish kills. Copper 

loads in the gills of animals from fish kills in Macquarie Harbour were as high as 

those of animals killed by copper exposure in laboratory trials in waters of the same 

salinity, yet the copper/zinc ratios did not indicate that copper exposure was the cause 

of mortality. 

Data was also presented indicating high levels of naturally occurring dissolved 

organic carbon in brackish waters can have an ameliorative effect on the toxicity of 

copper to rainbow trout. The concentrations of copper that accumulated in the gills of 

the exposed rainbow trout decreased as the levels of dissolved organic carbons 

increased. The concentrations of copper correlated better with the total measured 

copper in the water column than with the ASV-labile measurements of copper. This 

indicated ASV-labile copper does not provide a good indicator of the bioavailable 

fraction of the total measured copper. 
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Chapter 1 — General Introduction 
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Copper in biological systems 

Copper is an essential element for all biota. It is a co-factor in more than 30 enzymes 

(Harris, 1991) including important metallo-enzymes involved in the electron-chain 

transfer in the mitochondria, scavenging free radicals, bone and connective tissue 

development and regular cardiac function (Cousins, 1985; Linder and Hazegh - Azam 

1996). Two genetically linked diseases related to copper have been identified in 

mammals, Menke's disease and Wilson's disease, which has sponsored considerable 

research of copper metabolism in mammals. There is now a considerable body of 

literature concerning copper uptake, transport and regulation in mammals (for 

reviews see Camakaris et al., 1999; Cousins, 1985; Harris, 1991). 

Copper metabolism is less well understood in fish, although copper toxicity in 

freshwater systems has been researched for many years (reviewed in Sorensen, 1991). 

In normal copper metabolism in teleosts the liver is the primary storage organ of the 

metal and biliary excretion of copper is stimulated when copper uptake increases 

(Grosell et al., 2001; Westerlund et al., 1998). Copper uptake occurs via the intestine, 

as in mammals, and via the gills (Grosell and Wood, 2002; Kamunde et al., 2002; 

Miller et al., 1993). Copper plasma levels generally appear to be tightly regulated. 

While this thesis is primarily related to elevated levels of copper in water systems and 

pollution episodes, it is necessary to recognise copper is a naturally occurring 

component of fresh and sea water. Ambient concentrations of copper in freshwater 

systems may range from 0.5 — 5.0 jig 1; 1 , concentrations sufficient to provide a 
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substantial contribution to the uptake and regulation of copper in its normal 

homeostasis (Grosell and Wood, 2002). Copper levels in seawater are typically less 

than 1.0 ug L -1  (Turner, 1995). 

Copper in society 

Copper, as a refined metal, has been used for a variety of purposes in societies for 

centuries. Its characteristics include high electrical and thermal conductivity, strength 

and malleability and resistance to corrosion, qualities which make it extremely useful 

for a broad range of applications. In the modern world copper is used extensively for 

the production of conductors, electrical cables and transformers, electronic circuitry, 

computers, water pipes, roofing, heat exchange equipment, plumbing fittings, ship 

and boat hulls, in automotive and marine motors and fitting, as a basis for coins and 

also for decorative brassware. 

Copper mining and production  

Due to the use of copper in industry and society, copper mining and processing has 

also been widespread. Copper is mined worldwide, major producers being Chile, the 

U.S.A., China and Australasia. Copper deposits occur primarily as oxides and also as 

sulphides. The ores are processed into metal either by leaching and electrowinning or 

by smelting and refining after extraction of the ore deposits. 

Since 1900 worldwide production of refined copper has increased from 494 000 

tonnes to more than 13 000 000 tonnes in 1997. The demand for copper has increased 
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steadily throughout this time increasing at a rate of 4.5% between 1945 and 1973 and 

at an average rate of 2.9% throughout the 1990s (URL: http://rnmsdl.nrcans.gc.ca  — 

The International Copper Study Group — 10/01/2004). Prior to the increasing 

environmental concerns of the last few decades, copper wastes were dumped with 

little concern for their disposal. For example, the Mt Lyell Copper Mine in south west 

Tasmania is estimated to have discharged over 90 million tonnes of tailings into the 

King and Queen River systems over the course of nearly a century of mining 

(Koehnken, 1996). This has resulted in an enormous copper-rich alluvial fan at the 

river's discharge point into Macquarie Harbour. Even today copper discharges in 

river systems may be substantial. In Papua New Guinea, due to the local climatic, 

geochemical and hydrological conditions, the Ok Tedi copper mine on the upper 

reaches of the Fly River system has been unable to build suitable retention facilities 

for the mine tailings. The Government of Papua New Guinea has agreed the mine 

may discharge fine grain tailings and overburden directly into the river system, the 

copper concentrations of which are typically 10001.1g g (Apte et al., 1995). 

Copper partitioning and speciation in the water column. 

Copper in aquatic systems may exist in particulate, colloidal and soluble forms, the 

soluble forms of copper being the most available to non-vegetative aquatic biota 

(Stiff, 1971b). Solubility was defined as that fraction of total copper which passed 

through a 0.45 1.1M filter, representing a practical compromise between the smallest 

possible pore size and flow rates. This pore size is now an accepted standard for 

defining the soluble portion of dissolved metals in toxicological studies (Paquin et al., 
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2002) although it is acknowledged some very fine particulate matter may be included 

in the soluble fraction (Stiff, 1971b). 

The major factors affecting copper speciation are pH and complexing ligands 

(Pagenkopf, 1983; SyIva, 1976; Turner, 1995). At normal pH ranges for aquatic 

systems the majority of the copper in natural waters is associated with suspended 

solids. The soluble copper is almost entirely complexed with amino acids, other 

polypeptides, carbonates and bicarbonates (Stiff, 1971b) or may be removed from the 

water column by precipitation (Sylva, 1976). Even when the concentration of total 

copper is high, the processes of hydrolysis, precipitation, complexation and 

adsorption reduce the free copper concentrations to extremely low values (Sylva, 

1976). As pH decreases the levels of free copper increase, until at pH below 5.0 the 

majority of soluble copper is in the ionic form (Sylva, 1976). 

The modelling of metal speciation has developed greatly in the last 20 years. A 

variety of programs are now available to determine the levels of free and complexed 

copper in aquatic systems including MINTEQ, MINEQL and WHAM. These 

programs are dependent on accurate measurements of the water quality parameters 

and conditional stability constants of the various organic and inorganic ligands within 

the system. Assuming the system to be in equilibrium an accurate evaluation of the 

concentrations of the various species of any metal can be determined by 

simultaneously solving the various equilibrium equations of the reactive species. 
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Work by Apte et al. (1995) has described the effects of the release of particulate 

copper from a mine site into a river system. It has been shown that there may be 

exchanges between the particulate, suspended solid and dissolved phases of copper 

when high copper loads are released into a river system in the particulate form. These 

exchange processes have a dual nature: copper may bind to weak ligands within 

hours, but also to strong ligands at a much slower rate of up to weeks. This 

demonstrated that under certain conditions of copper release into the environment, the 

different phases of copper may be in disequilibrium for extended periods of time 

(Apte et al. 1995). 

Effects of copper poisoning on finfish 

Copper accumulation in tissues and organs  

The liver is considered the primary organ of metal metabolism in teleosts and the 

primary site of metal accumulation during normal metabolism (Sorensen, 1991). 

However, hepatic copper levels in unexposed animals may be highly variable 

between species. For example, Frazier (1984) reported a one-thousand-fold greater 

concentrations of copper in the livers of white perch, Morone Americana, compared 

to striped bass, Morone saxatilis, collected from the same, uncontaminated areas. The 

concentrations recorded for the white perch were considered an example of 

'abnormal' copper metabolism. Table 1.1 shows copper levels in the livers of various 

fish species at either environmental levels or from control treatments (no added 

copper) under experimental conditions. Although these data are not directly 
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comparable because of varying conditions, they indicate the range of copper levels 

found amongst teleosts. 

Table 1.1  Copper levels in the livers of various fish species from uncontaminated 

sites or unexposed under experimental conditions. (adapted from (Sorensen 1991) 

Species Exposure time Exposure level Liver Cu Reference 

(Ftg 1: 1 ) (tig  g-i )  

Brook trout 24 mths 3 239 McKim & Benoit, 

(1974) 

Bluegill 24 mths 3 7 Benoit, (1975) 

Coho salmon 28 — 30 days 0 70 dw Buckley eta!, (1982) 

Brown bulhead 20 mths -V 0 29 dw Brungs eta!, (1973) 

30 days —0 23 dw 

Striped bass Envir. 3 ww Frazier, (1984) 

White perch Envir. 2795 ww Frazier, (1984) 

dw = dry weight, ww = wet weight, Envir. = Environmentally exposed. 
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When animals are exposed to elevated waterborne copper accumulation in the gills is 

rapid compared to accumulation in the liver (McGeer et al. 2000b). However this 

accumulation may be followed by a subsequent decrease and then stabilisation of the 

gill copper burden, indicative of the damage-repair model of acclimation proposed by 

McDonald and Wood (1993). The binding of copper to the gills is affected by other 

water quality parameters, particularly pH, hardness and the concentration of dissolved 

organic carbon (Chakoumakos et al. 1979; Erickson et al. 1996; Playle et al. 1993a). 

This will be discussed further in the section on copper toxicity. 

Miller et al. (1993) found waterborne copper increased accumulation in the livers 

and kidneys of exposed rainbow trout but not in gills or digesta while dietary copper 

was found to increase copper accumulation in liver, gill, kidney and digesta. Buckley 

et al. (1982) found copper accumulation occurred in liver, kidney and gills of coho 

salmon exposed to waterborne copper with the most significant accumulations 

occurring in the liver. While some studies have observed copper accumulation in the 

kidneys, renal copper accumulation and clearance does not appear to be significant 

compared to hepatic copper accumulation and biliary clearance (Grosell et al. 1998). 

In exposures conducted in brackish water, Nowak and Duda (1996) found significant 

differences in hepatic copper accumulation in rainbow trout between treatments but 

not all treatments varied from controls. Accumulation may also occur in the kidneys 

and muscle of seawater adapted flounder (Stagg and Shuttleworth 1982a). 
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Neither Griffin et al. (1997) nor Perkins et al. (1997) found any accumulation of 

copper in the muscle of channel catfish exposed to copper. At the intracellular level 

the majority of copper is found in the cytosol, bound to the metallo-protein 

metallothionein (Hogstrand and Haux 1991). Table 1.2 summarises copper 

accumulation in various organs. 
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Table 1.2  Accumulation of copper in various organs of teleosts after experimental exposures to 

elevated waterborne copper levels. 

Species 	[Cu] 	Liver 	Gill 	Kidney 	Muscle 	Blood 	Digesta 	Whole 	Reference 

	

ug L-1 	 Plasma 	 body  
Bluegill 	12 	- 	 + 	 Benoit 

	

40 	 + 
(1975) 

	

162 	+ 	+ 	+ 

Coho 	70 	 Buckley et 
salmon 	140 al. (1982) 

Rainbow 	30 	 Dixon and 
trout 	94 Sprague 

194 
(1981a) 

Channel 	220 	 Griffin et al. 
catfish 	354 (1997) 

465 

Rainbow 	1.2 	 Mari.  et al. 
trout 	4.6 	 (1996) 

9.0 

Rainbow 	Dietary 	 Miller et al. 
trout 	Water- (1993) 

borne 

Rainbow 	2.8 a, b 	 Nowak and 
trout 	8.2 a, b Duda (1996) 

19.5 a, 

Tilapia 	50 	 Pelgrom et 
200 al. (1995b) 

Channel 	326-9.4 	 Schlenk et 
catfish 

al. (1999) 

Flounder 	170 s 	+ 	+ 	+ 	+ 	+ 	+ 	 Stagg and 

	

15 	+ 	+ 	+ 	+ 	+ 	+ 
Shuttleworth 

(1982a) 

All experiments conducted in fresh water unless otherwise noted. a = ASV-labile copper, b = brackish 

water, s = seawater, + = sig. cliff. to control (P<0.05), - = not sig. cliff, to control. Control 

concentrations were all between 0 and 5 p.g L-l. 
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Histopathologv  

Sub-lethal copper exposure may cause damage to numerous tissues and organs, 

including liver, gills, kidneys, hematopoietic tissues and chemo- and 

mechanoreceptors. Secondary behavioural effects arising from structural damage to 

organs and tissues may impair the animal's ability to locate prey, predators or mates, 

to follow migratory routes or avoid contaminated waters. Histopathological damage 

arising from copper exposure has been reviewed in Sorensen (1991). 

Histological examinations of the gills of fish exposed to acute copper concentrations 

have shown the collapse and fusing of lamellae, lifting of the epithelial lamellae from 

pillar cells and the swelling of epithelial cells (Taylor et al. 1996). An increase the 

number of chloride cells in the gills and a reduction in mucous cells has been 

recorded (Pelgrom et al. 1995b) as well as the smoothing of apical membranes, 

swelling of the tubular system and destruction of mitochondria (Sola et al. 1995). 

Studies of milkfish fry exposed to 20 and 100 m U i  for 27 days demonstrated an 

increase in the number and size of hepatic lysosomes and an enlargement of liver 

glycogen fields although pathologic alterations were not observed in the study 

(Segner and Braunbeck 1990). The authors believed the lysosomal response to be 

specific to increased copper burdens and the glycogen increase to be a general stress 

response. Other work has shown histopathological alterations in the olfactory 

epithelium at copper concentration of 40 gg U l  resulting in a loss of olfactory 

discrimination to odours (Saucier and Astic 1995). Later work demonstrated 
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morphological changes in the olfactory system that was characteristic of apoptosis 

(Juiliard et al. 1996). 

Physiology 

Branchial copper transport involves two main processes. Copper is transported across 

the apical membrane by both the apical sodium channel and a specific copper 

transporter (putatively a p-type Cu-ATPase) (Grosell and Wood 2002). Copper 

within the gill is then transported into the plasma via a Na + /K+  - ATPase embedded 

in the baso-lateral membrane (Grose!l et al. 2002). Whereas the baso-lateral transport 

processes have been recognised for some time, the understanding of the apical 

transport process is a recent development. Campbell et al. (1999) demonstrated the 

inhibition of copper uptake by vanadate, a known blocker of p-type ATPases. Copper 

transport in the mammalian gut is known to be mediated by a p-type ATPase (Linder 

and Hazegh - Azam 1996). Additionally a putative Cu2+-ATPase has been isolated 

from fish gills (Grose]] and Wood 2002). 

Copper disrupts Na+  transport in freshwater teleosts and is considered the cause of 

copper toxicity (Lauren and McDonald 1985). Lauren and McDonald (1987b) found 

55 lig L-1  of total waterborne copper decreased Na +  /Kt ATPase in rainbow trout by 

approximately 33% within 24 hours of exposure. The inhibition was constant 

throughout the 28 days of exposure until the animals were transferred to clean water 

initiating a subsequent recovery of enzyme levels. Na÷  /Kt ATPase activity also was 

inhibited in crude branchial homogenates of tilapia exposed to waterborne copper for 
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6 days (Pelgrom et al. 1995b). Although all exposure concentrations (50, 100 and 200 

lig L -1  Cu) showed a decrease in Na+  /K+- ATPase activity, results were significant 

only in the highest treatment concentration. Another study by Beckman and Zaugg 

(1988) also demonstrated the inhibition of Na +  /Kt ATPase activity in Chinook 

salmon smolt after 18 hours exposure to natural spring waters with elevated levels of 

copper (48 jig L 1  Cu) but not in parr. The authors hypothesised only the enzyme 

associated with the chloride cells of the smolts was susceptible to inhibition. 

Although the inhibition of Na +  /K+- ATPase activity has been clearly demonstrated, 

McGeer et al. (2000a) found a 2.5 fold increase in Na+  /K+- ATPase activity in 

rainbow trout after two months exposure to 75 lig L -1  Cu. This indicates the recovery 

of animals as part of the acclimation process described by McDonald and Wood 

(1993) and also agreed with the work of Lauren and McDonald (1987b) and Pelgrom 

et al. (1995b). 

The effect of copper on ionoregulation varies between fresh water and brackish or salt 

water environments. Stagg and Shuttleworth (1982a) exposed flounder to copper in 

fresh and saltwater conditions. While K 	concentrations did not vary under 

either regime, Na+  and a-  increased in freshwater treatments and decreased in 

saltwater treatments. Similar to Stagg and Shuttleworth (1982a) and in contrast to 

work on rainbow trout in freshwater Nowak and Duda (1996) found an apparent but 

not significant increase in Na+  levels of rainbow trout exposed to copper under 

brackish conditions. 
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Several studies have indicated exposure to elevated copper levels in the water column 

alters the demands for oxygen resulting in physiological adjustments of exposed 

animals. Such adjustments include increased coughing rates, higher ventilation rates, 

increased opercular/buccal amplitudes and increased oxygen consumption (Sorensen 

1991). However these results are not always consistent. Sellers et al. (1975) found 

rainbow trout exposed to copper did not show significant changes to the coughing 

rate, however, ventilation frequency, ventilation amplitude and buccal amplitude 

were greater than in control fish. The changes in these parameters were greater at 

intermediate concentrations than higher concentrations of copper. Variations between 

individual animals were large. Sellers et al. (1975) also noted up to a 25% reduction 

-1 in arterial oxygen tension at 290 	L after 86 hours exposure. Wilson and Taylor 

(1993a) recorded more severe losses of oxygen tension in rainbow trout exposed to 

copper concentrations of 3111.1g L -1  Cu, leading to mortality. 

• Growth reproduction and larval survival  

The effect of copper on the growth, reproduction and survival of fish is variable with 

species, size, age and water quality. Benoit (1975) found bluegills exposed to 162 jig 

Li  Cu for 22 months had reduced survival, retarded growth and inhibited spawning. 

These parameters were unaffected in fish exposed to 3 (control group), 12, 21, 40 or 

77 pig U' orless, although larval survival was significantly lower at the lower 

exposure levels than in controls. No larvae survived at 162 jig 
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Seim et al. (1984) exposed steelhead trout embryo and alevin to both intermittent and 

1 - continuous regimes of copper at a range of concentrations from 3 — 121 jig L (water 

hardness 120 mg U 1 ). At day 85 post-fertilisation survival of larvae continuously 

exposed to copper concentrations of 3 —30 jig L -1  was 90% or greater. Survival was 

74% at 57 i.tg L -1  while animals exposed continuously to concentrations of 121 jig U 1  

had all died by the day 70 of the trials. Growth of larvae, measured as mean dry 

1 - weight, was significantly less for animals exposed to 121 jig L from day 31 onwards 

than in the control group. The decrease in weight was accompanied by a reduced 

feeding by the fish (observational evidence). Significant decreases in weight were 

recorded after day 45 at 57 jig L -1  and after day 63 at 31 jig L -1 . No significant 

differences were found at the lower exposure levels through out the experiment. 

In contrast, Marr et al. (1996) found significantly reduced growth of rainbow trout fry 

exposed to copper levels as low as 4.6 i.tg L -1  in soft water after 20 days. Fish did not 

recover or return to control growth rates for the duration of the experiment. It was 

found that whole body copper levels were significantly higher at 4.6 and 9.0 jig L -1  

than at control (<0.9 jig L -1 ) and lower exposure levels (1.1 and 2.2 i.tg U 1 ). 

Work by Buckley et al. (1982)also found coho salmon fry exposed continuously to 

copper levels of 70 and 140 jig L -1  reduced their feed intake and growth subsequently 

declined in comparison to control groups (no added copper). The affected groups 

regained appetite and recovered weight gain after 2 and 4 weeks after returning to 
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uncontaminated waters respectively, although they remained significantly smaller 

than control animals throughout the experiment. 

The majority of studies of the effects of copper on growth and mortality have 

examined freshwater fish. Nowak and Duda (1996) examined the effects of sub-lethal 

copper exposure on the growth and health of sea farmed rainbow trout in brackish 

water (salinity 14.6 and 19.6 ppt). Measurements of wet weight gain, white muscle 

protein concentration, RNA concentration and RNA:protein ratio showed a general 

trend towards decreased growth at higher exposure levels. 

Sexual differences in mortality and growth were demonstrated in the channel catfish 

(ktalarus punctatus) exposed to copper levels of 220, 354 and 4651.tg L -1  (Perkins et 

al. 1997). Males suffered higher levels of mortality and reduced growth in 

comparison to female fish. Although the data were not always significantly different 

the authors concluded a "decreasing tendency" was apparent. In other studies of 

differential mortality from to metal toxicity between sexes, the differences may have 

been due to sexual size dimorphism rather than differences in susceptibility to metal 

exposure (Tsai and Chang, 1981, cited in. Perkins et al. 1997) While the authors 

suggest female catfish may have a potential defensive mechanism other than 

metal lothionein expression, they do not expand on this topic. Olsson et al. (1987) 

noted hepatic metallothionein content increases at the onset of vitellogenesis in 

female rainbow trout and Fletcher and Fletcher (1980) found zinc bound by vitell in in 
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female winter flounder. Further studies may provide more information on the sexual 

differences related to metal exposures. 

Copper toxicity in finfish. 

The concentration of a substance that will cause 50% mortality to a population of 

animals over a given time is termed as the LC50 for that period of time. LC5Os 

conventionally have been used to determine the toxicity of a given substance. Age, 

sex, species, size and water quality may all affect the determination of an LC50 

(Sorensen, 1991) limiting the applicability of the parameter across different 

environmental conditions. However, it has provided a useful guide for the broad 

determination of the toxic range of a substance. The use of LC5Os has declined over 

time, due to its limitations between different studies, the changing emphasis of 

research toward sublethal exposures, the advent of modelling of gill/metal 

interactions and the increase of ethical and animal welfare considerations in research. 

Table 1.3 lists the 96-hr LC5Os for a variety of fish species. 

That copper is toxic to aquatic organisms has been recognised for many years. In an 

early work on aspects of water quality affecting copper toxicity in rainbow trout 

Brown et al. (1974) cites work by Kellerman, published in 1905 that proposed copper 

was more toxic in soft, rather than in hard water. Since the late 1960s when water 

quality criteria was developing as a topical area of environmental regulation and 

scientific investigation (Sprague 1969) there has been a considerable body of 

literature produced on aquatic copper toxicity. 
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Table 1.3 Copper toxicity for total measured copper of various fish species given as 96 hr LC5Os 

Hardness, temperature and pH are given where possible (adapted from Sorensen, 1991) 

Common Name 
Species 

Cu 96 hr LC50 
(jig L4 ) 

Hard 
(mg L"' 
CaCO3) 

Temp. 
(°C) 

pH 

Coho salmon 60 — 74 88 — 89 10— 12 6.8 — 7.5 
Oncorhynchus kisutch 

Blue gourami 90 26 -28 
Trichogaster trichopterus 

Brook trout 100 45 10.6 7.5 
Salvelinus fontinalis 

Atlantic salmon 125 8-10  18 — 21 6.5 —6.7 
Salmo salar 

Brown bullhead 
ktalurus nebulosus 

170 — 190 202 5 —25 7.6 

Rainbow trout 330 374 15 7.7 
Oncorhynchus mykiss 250 - 680 365 10 8 

Fantail darter 330 — 392 20 
Etheostomaflabellare 

Fathead minnow 430 198 16-25 7.9 
Pimephales promelas 460 — 490 200 20 — 26 7.5 — 8.2 

Johnny darter 483 — 602 20 
Etheostoma nigrum 

Pompano 1970 5468 20 — 25 8.2 
Trachinotus carolinus 

Bluegill 1100 45 13 — 28 7 — 8 
Lepomis macrochirus 2400 35 25 7.7 
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Lauren and McDonald (1985) first proposed copper toxicity to fish in aquatic 

environments occurred through the inhibition of Na +  influx, and at higher 

concentrations the stimulation of Na +  efflux. Branchial disruption of sodium 

regulation is now accepted as the toxic mechanism by which copper causes mortality 

(Grose11 et al. 2002; Hollis et al. 1997). Additionally, it is generally accepted that the 

free ionic form, Cu2+, in the water column is the most toxic species (Campbell 1995), 

although hydroxide and carbonate complexes may also be toxic (Chakoumakos et al. 

1979; Howarth and Sprague 1978; Shaw and Brown 1974). 

As water chemistry will affect metal speciation in the water column there have been 

numerous studies investigating factors modifying copper toxicity. Water hardness, 

pH and the concentration of dissolved organic carbons have all been demonstrated to 

affect copper toxicity in aquatic environments (Chakoumakos et al. 1979; Cusimano 

et al. 1986; Erickson et al. 1996; Lauren and McDonald 1986; McGeer et al. 2002; 

Meador 1991; Playle et al. 1993a; Playle et al. 1992; Welsh et al. 1993; Zitko et al. 

1973). The influence of pH is to increase the concentration of the free copper ion as 

pH decreases thereby increasing toxicity. Water hardness is known to ameliorate 

copper toxicity as hardness increases. This is through the competitive interaction of 

cations for binding sites at the gill epithelium as first indicated by Pagenkopf (1983) 

in his Gill Surface Interaction Model and later incorporated in the Biotic Ligand 

Model (Di Toro et al. 2001; Santore et al. 2001). Dissolved organic carbons, 

composed primarily of tannic and humic acids released from riparian vegetation are 

long chain acids with numerous cationic binding sites. These acid chains are therefore 
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able to complex waterborne copper thereby rendering it unavailable to aquatic life 

forms 

As the understanding of the effects of water chemistry on the availability and toxicity 

of copper to aquatic organisms has increased there has been a shift in the emphasis of 

toxicity research. Early research attempted to evaluate toxicity on the basis of total 

measured copper concentrations whereas the focus has now moved to site-specific 

water quality criteria (reviewed in Paquin et al. 2002). This has led to the 

development of the Biotic Ligand Model (Di Toro et al. 2001; Santore et al. 2001). 

The BLM has extended the work of Morel (1983) who first proposed the Free Ion 

Activity Model (FIAM) which was subsequently reviewed by Campbell (1995) and 

the GISM of Pagenkopf (1983). The FIAM developed the concept of toxicity being 

based on the interactions of the free copper ion with cell membranes. The GISM 

introduced the concept of copper binding to the gills as a function of competitive 

interactions between cationic species in the water column for binding sites at the gills 

as well as competition between the gills and various anionic ligands within the water 

column. Significant work preliminary to the BLM was also produced by MacRae et 

al. (1999) and Playle et al. (1993b) in deriving conditional stability constants for 

metal binding to fish gills. The final leg of the BLM is to incorporate chemical 

speciation modelling developed by Tipping (1994). The BLM is thus able to unify the 

chemical factors affecting copper availability and toxicity with interaction of the 

metal at the site of biological activity in aquatic organisms. The model is then able to 

predict mortality or biological impairment through the proposal of a threshold limit at 
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which this occurs (Di Toro et al. 2001; Meyer et al. 1999; Paquin et al. 2002; Santore 

et al. 2001). 

Acclimation  

Several researchers have noticed that prior exposure to copper will increase a fish's 

ability to withstand later exposures. McDonald and Wood (1993) defined acclimation 

as 'an increased tolerance of an elevated, usually lethal, concentration of a toxicant 

arising from chronic exposure to a sublethal concentration of that toxicant'. 

Acclimation to a toxicant is thus identified by a decrease in the disturbance of the 

physiological processes of an animal when challenged at a higher level of toxicant 

and a corresponding increase in the LC50 of the animal and may be characterised by 

a damage - repair model (McDonald and Wood 1993). Acclimation to copper has 

been demonstrated in rainbow trout both in naïve animals in laboratory studies 

(Dixon and Sprague 1981 b; McCarter and Roch 1983; McGeer et al. 2000a) and in 

animals taken from contaminated sites (Benson and Birge 1985). It would appear, 

however, that the acclimation is not a permanent effect, and decreases when animals 

are no longer exposed to sub-lethal chronic level of copper (Benson and Birge 1985; 

Dixon and Sprague 1981b). 

Although an understanding of the mechanism of acclimation is necessary to studies of 

chronic, sub-lethal exposures of copper, this work deals with short-term, acute 

exposures. An assumption of the thesis is that animals are naïve to metal exposure at 
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the time of exposure and acclimation was not included as a factor in these 

experiments. 

Biomarkers 

A useful definition of a biomarker is biochemical, physiological, or pathological 

responses measured in individual organisms which provide information concerning 

exposures to environmental contaminants and/or sub-lethal effects arising from such 

exposures (Benson and Di Giulio 1992). While the effects of pollutants may be 

studied at all levels of biological organisation, from the sub-cellular to the ecosystem 

(Stegeman et al. 1992), individual responses will precede population or community 

responses and therefore enable the identification of disturbances at an early stage 

(Cairns et al. 1987). 

To date there is still no reliable biomarker for copper exposure in finfish, either 

chronic or acute. Gill copper burdens are still considered the most relevant indicator 

of chronic exposure in freshwater, superior to liver burdens, ion loss, swimming 

performance or growth indicators (Taylor et al. 2000). However the requisite for 

control animals makes it difficult to evaluate populations of animals that may have 

been exposed. Surrogate animals from other areas or laboratories may be used but the 

complex interactions between water chemistry, metal speciation and gill/metal 

accumulation make comparisons extremely hazardous. 
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The use of metal ratios as biomarkers.  

Although the use of ratios have the disadvantage of requiring two sets of 

measurements, and therefore additional time and cost than if a single equivalent assay 

is performed, ratios have been used previously as biomarkers for pollutant exposure. 

Mount (1964) found zinc-caused mortality in fish could be identified under 

laboratory and field conditions by the ratio of the metal in the gill to the operculum, 

due to the different rates of accumulation of zinc between the two tissues. Nowak et 

al. (1995) used the ratio of two isomers of the organic pesticide, endosulfan, to 

demonstrate exposure to the pesticide in the carp, Cyprinus carpio. The use of metal 

ratios in the gills of fish as a means of detecting exposure to elevated waterborne 

copper was first proposed by Carbonell and Tarazona (1993). 

Carbonell and Tarazona (1993) suggested the use of such metal ratios in the gills 

would be able to detect copper exposure without the use of control animals. Access to 

control animals may be problematic in fish kill scenarios and in natural waters due to 

the difficulty of obtaining suitable controls, or surrogate control animals. Carbonell 

and Tarazona (1991) initially examined farmed rainbow trout, half of which were 

treated regularly with copper sulphate introduced into the water column as a 

prophylactic parasite treatment, while the other half of the animals had not been 

exposed to the copper treatments, to determine if the treatment affected the 

distribution of metal in various tissues and organs of the animals (Carbonell and 

Tarazona 1991). The fins, operculum, gill, liver, kidney muscle and bone were all 

examined for copper, iron and zinc levels. While copper levels were not altered in the 
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different tissues between treated and non-treated animals, iron and zinc distributions 

did change between the two groups for all the tissues other than the fins and the 

operculums. Carbonell and Tarazona (1991) believed these results were due to 

changes in the production of the metal binding protein metallothionein which would 

lead to an increase in the iron and zinc levels while copper concentrations would 

remain unchanged due to increased clearance rates of the metal to maintain 

homeostasis. In a later publication it was proposed copper/zinc ratios may be a 

predictor of copper exposure (Carbonell and Tarazona 1993). All unexposed animals 

had Zn/Cu ratios in the gills of greater than 0.5 while 90% of the animals had ratios 

higher than 1.5. For exposed animals the ratios were lower than 1.5 for 93% of the 

animals and lower than 0.5 for 84% of the animals. This suggests that the use of 

metal ratios in the gills tissue may be worthy of further consideration as biomarkers 

of copper exposure. 

However, both of the cited publications are scarce on details of the experimental 

procedures and their arguments for metal lothionein induction are also weak based on 

the evidence supplied. No water quality data were provided for the farms from which 

the animals were taken although it was stated the water quality was checked to ensure 

that it was free of heavy metal contamination (Carbonell and Tarazona 1991). Only 

the results of the statistical analyses were presented rather than the levels of the 

various metals in the tissues and organs (Carbonell and Tarazona 1991; Carbonell and 

Tarazona 1993). Finally, the dosage and frequency of the treatments was not given 

other than 'habitually using copper sulphate treatments.. .at appropriate doses' 
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(Carbonell and Tarazona 1993). Short-term immersions of between 150 and 500 pg 

L -1 , depending on water hardness, are normal recommended doses (Cross and 

Needham 1988; Roberts and Shepherd 1986). It was therefore difficult to assess the 

claims of the authors. However, the concluding comments provided sufficient cause 

to examine further the use of metal ratios in the gills as biomarkers. 

Biomarker research frequently focuses on chronic sublethal exposures, which is a 

necessary due to the introduction of many anthropogenic stressors into our 

environment. However, biomarkers for acute exposures are also required, especially 

in the case of fish kill scenarios. While the responsible toxin for an acute exposure 

event and consequent fish kill may be identified through a known accident or 

incident, numerous fish kills regularly arise where no known cause is established 

(URL: wvvw.epa.q1d.gov.au  Queensland Government Environmental Protection 

Agency, 10/01/2004). When fish kills occur there are additional complications in the 

selection and use of a suitable biomarker due to depuration of the toxin, and the 

degradation of the carcass, after mortality. 

Metallothionein  

Numerous studies have demonstrated copper exposure will induce the production of 

metallothionein, which in turn sequesters copper from other metabolic activities 

(Dang et al. 1999; Fletcher and Fletcher 1980; Hogstrand and Haux 1990; Hogstrand 

et al. 1991; Kille et al. 1992). Metallothionein is able to bind copper due to its high 

frequency of the sulphydryl rich amino acid, cysteine. Metallothionein may have a 
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potential role as a biomarker of copper exposure. However, large natural variance 

within populations and the need to know a populations previous history of exposure 

to metal pollutants limit its applicability (Schlenk 1996). 

Mixed metal exposures 

Compared to the extensive body of literature and experimental work on single metal 

exposures, there is a great paucity of studies concerning mixed metal exposures. This 

may be seen in publications reviewing metal toxicity studies such as Sorensen (1991) 

where less than 10 papers reviewed laboratory studies of the toxic effects of metal 

mixtures on teleosts, while nearly 50 papers concerning copper exposure alone were 

considered. The scarcity of studies on exposures to mixed metals may be considered 

as surprising given the production of industrial effluents seldom occurs as the release 

of a single contaminant (Dethloff et al. 1999), and pollution generally is attributable 

to a combination of toxicants (Cairns et al. 1987). 

Studying and assessing the effects of mixtures is complicated by factors additional to 

those for studies of a single toxicant. The partitioning and persistence of the toxicants 

in the environment and study animal are likely to be dissimilar, as are the toxic 

effects upon, and the target organs of the study animal. Interactions between the 

different toxicants can occur through competition for ligands, binding sites and 

receptors which in turn can result in complex interactions between biochemical and 

metabolic pathways. Effects may therefore be additive, synergistic or antagonistic 

and the ability to discriminate between these interactions may be impossible. 
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Furthermore, replicating field conditions or comparisons between different sites may 

be equally difficult (Cairns et al. 1987; Eisler and Gardner 1973; Neal 1987; Sorensen 

1991). However, the need for more studies of mixtures of pollutants and toxins is 

requisite for a better understanding of the impact of our society on the environment. 

Studies of mixtures of metal in the environment thus far have looked at either the 

accumulation of metals in animals from polluted sites (Marr et al. 1995; Woodward et 

al. 1995), the accumulation of metals from animals in laboratory studies of metal 

mixtures (Pelgrom et al. 1994; Pelgrom et al. 1995a; Wepener et al. 2001) or 

physiological effects of mixed metal exposures (Dethloff et al. 1999; Dhanapakiam 

and Ramasamy 2001; Pelgrom et al. 1997). To the knowledge of the author, there 

have been no studies to determine possible biomarkers for finfish exposed to mixtures 

of metals in the environment. This is therefore an area where investigation is 

required. 

Aims 

The primary aim of this thesis is to investigate the use of metal ratios in the gills of 

fish exposed to elevated levels of waterborne copper as potential biomarkers. It was 

our intention to mimic scenarios where animals are exposed to brief episodes of acute 

copper poisoning such as may occur through accidents at a mine site or the accidental 

spillage of industrial wastes or copper-based agricultural treatments. As well as being 

specific to copper exposure and accurate it was also intended that the method be 
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simple and utilisable at mine sites in remote areas or by people who are not 

necessarily biologists or biologically trained. 
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Chapter 2 Rainbow trout gills are a sensitive biomarker of 

short-term exposure to waterborne copper 

Published as Daglish, R. W. and B. F. Nowak, (2002) 'Rainbow trout gills are a 

sensitive biomarker of short-term exposure to waterborne copper.' Archives of 

Environmental Contamination and Toxicology 43, 98— 102. 
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Abstract 

Hepatic copper levels may not indicate short-term exposure to waterborne copper in 

teleosts. Significantly higher copper loads were found in the gills of rainbow trout 

exposed to 105 lig•1: 1  total measured copper for a period of 24 hours than in control 

animals whereas no differences were recorded in hepatic copper levels. A second 

experiment exposing trout to 153.pg.U I  total measured copper also demonstrated 

significant differences in branchial copper levels between control and exposed 

animals after 3 hours exposure. The ratio of the copper load in the gills to the liver, 

and copper/zinc ratios of the gills were also examined. After exposure to 105 lig-L 1  

for 24 hours both gill/liver copper ratios and Cu/Zn ratios in exposed animals were 

significantly greater than in control animals. After 12 hours exposure to 153 lAg.1_, -1  

total measured copper the gill Cu/Zn ratio was significantly greater than in control 

animals. These data indicate the gills may be a better indicator of short-term exposure 

than the liver. 
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Introduction 

While copper is an essential element of biological systems it is toxic at levels not far 

above those required for normal metabolic activity. In aquatic systems chronic or 

acute exposure to copper can overcome regular copper homeostasis and cause 

mortalities in fish populations (Sorensen, 1991). Contamination of aquatic systems 

may occur as the result of mining activity, acidification of waterways or through the 

application of therapeutic or remedial agents in agri- and aquaculture industries (e.g. 

fungicides or parasiticides). Many freshwater systems around the world have elevated 

copper levels. Correspondingly, there is considerable interest in determining a 

reliable and robust biomarker for copper exposure in freshwater teleosts, both for 

monitoring aquatic systems and as an analytical tool for the investigation of fish kills. 

When exposed to elevated levels of waterborne copper fish accumulate the metal 

residues primarily in the liver and also in the gills (Sorensen, 1991). The metal 

binding protein, metallothionein (MT), is thought to act as a defense mechanism 

against copper toxicity by sequestering excess copper in the liver. Most recent 

investigations of copper biomarkers for freshwater teleosts have focused on hepatic 

copper residues and direct or indirect assays of hepatic MT. These studies have 

emphasised the role of the liver as the primary site for accumulation of copper and 

the induction of metallothionein. Previous laboratory studies have shown significant 

correlation between hepatic copper levels and copper exposure levels (Griffin et al., 

1997; Perkins et al., 1997). However, the gills are the primary sites of toxicity, copper 
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induced mortality in freshwater fish occurring through the disruption of branchial 

iono-regulation (Lauren and McDonald, 1987a, 1987b). 

MT induction may occur in the gills and to a lesser degree, the gut and the kidneys 

(Hamilton and Mehrle, 1986). However, gill MT induction is highly variable and 

considered unreliable as a potential bioindicator of copper exposure (Grosell et al., 

1997). Metallothionein may be induced by exposure to cadmium, zinc and mercury as 

well as organic chemicals and other endogenous stress responses. It is therefore 

necessary to understand an animal's history of exposure to toxicants and other 

stresses, and caution needs to be exercised in interpreting the significance of MT 

levels (Schlenk, 1996). 

To date few reports have examined copper accumulation after short-term exposure. In 

short term exposures, accumulation and sequestration of copper by hepatic tissue may 

not be sufficiently rapid or reliable to indicate exposure. A significant increase in 

branchial copper, but no difference in hepatic copper levels, was observed in rainbow 

trout (Oncorhynchus mykiss) after two days of exposure to low levels of waterborne 

copper (14 110; 1 ; 0.22 ilmol•L .1 ) (Dethloff et al., 1999). Copper levels in the gills of 

brown bullheads (lctalurus nebulosus) increased by 88% after exposure to total 

copper concentrations of 27 lig-L -1  (0.42 innol.L -1 ) for 6 days whereas hepatic copper 

levels rose by 37.5% in the same animals (Brungs et al., 1973). Additionally, after a 

24 hour period, hepatic copper levels were greater in channel catfish (ktalurus 

punctatus) initially subjected to 1 hour of confinement stress than in animals exposed 
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to total copper concentrations of 326 pg-L 1  (5.131..trno1.1: 1 ) (Schlenk et al., 1999). It 

therefore appears as though hepatic copper levels may not provide a sufficiently 

rigorous test for short term copper exposure. 

Furthermore, the impact of circulating copper levels on metal residues in target 

organs has not been previously examined. Grosell et al., (1997,) found elevated levels 

of copper in the plasma of rainbow trout after 3 hours exposure but after 24 hours 

plasma copper levels returned to control values. Significantly, Grose!l et al., (1997) 

determined through the use of radio-tracers, that the elevated plasma copper levels 

were not explained by newly accumulated copper but were probably due to the rapid 

mobilization of available and exchangeable pools of internal copper. These 

temporarily elevated levels of copper in the plasma may be sufficient to impact upon 

measured residue levels in highly vascularised organs such as the gills and liver. 

Further work by the authors using single bolus injections of Cu or an infusion method 

of delivering the toxicant directly to the circulatory system also demonstrated that 

plasma copper levels are tightly regulated in teleosts and that copper is cleared 

rapidly and primarily via the liver (Grosell et al., 2001). 

An inherent concern when examining fish kill episodes is the lack of control to 

evaluate analyses of residual toxicants. This is especially relevant to metal studies 

where large natural variation may occur. Carbonell and Tarazona (1993) have 

indicated that the use of copper/zinc ratios in the gills may provide evidence for 

copper exposure without established controls. Both these metals are essential 
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elements yet are toxic in excess. In an uncontaminated environment animals will 

regulate copper and zinc levels within a specific range of values and therefore a 

predictable copper/zinc ratio may be experimentally determined. Under conditions of 

increased waterborne copper, the accumulation of the excess metal may shift the ratio 

significantly in favour of the copper, thereby providing evidence of metal 

intoxication, provided copper accumulation does not affect zinc levels in the gills. 

An alternative means to determine recent copper exposure in freshwater fishes may 

be to analyse the ratio of gill [c ] to livencul . As copper accumulates more rapidly in 

the gill than the liver, the ratio between these organs should shift significantly to the 

gill in the first 2 to 3 days; the period between the initial exposure and the transport of 

copper to the liver. 

The aims of this study were threefold. Firstly to determine if the levels of copper in 

the gills and livers of rainbow trout show significant differences after short-term 

exposures (24 hours) to sub-lethal copper levels and to determine thereby if the ratio 

of gill ico:liver[c] would shift significantly towards the gill after short-term exposure. 

Secondly, to determine if short-term copper exposure will affect the levels of zinc in 

the gills of rainbow trout and then to verify that copper/zinc ratios may be able to 

indicate recent exposure to elevated levels of waterborne copper in the absence of 

controls. The final aim of the experiment was to determine if circulating levels of 

copper in the blood affect copper levels in the gills or liver of rainbow trout. 
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The gills and liver were chosen because of their importance as the sites of toxicity 

and accumulation of copper and their highly vascularised nature. The higher level of 

exposure was chosen to reflect a spillage event in a pristine environment rather than 

continual exposure through agricultural run-off or the acidification of waterways. The 

null hypotheses were that there would be no differences in copper residues and 

copper/zinc ratios of the gills and livers between the treated and control animals. 
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Methods and Materials 

Two experiments were conducted, both of which examined copper /zinc ratios in the 

gills of control and exposed fish. The first experiment examined gill and hepatic 

copper accumulation after 24 hours and the effects of perfusion upon the levels of 

metal residues. The second experiments considered the rate of accumulation in the 

gills of rainbow trout after 0, 3, 6 and 12 hours. 

Experiment I  

Rainbow trout (mean weight 494.9 g, sd 96 g, n = 41) were obtained from the 

Tasmanian Key Centre for Aquaculture where they were held in 4 000 L re-

circulating tanks (pH 6.27, sd = 0.16; T = 17.75 °C, sd = 0.71; Alkalinity 17.29 mg•L" 

I 

 

Ca, sd 2.19, total hardness 38.01 Ca ++, sd 10.07; DO 9.2 mg L -1 , sd 0.08; n = 10). 

The re-circulating systems are supplemented by the town water supply and de-

chlorinated by open-air exposure in holding ponds. Animals were fed dry trout pellets 

(Pivot) at a rate of 1% of their body weight 5 times a week. Fish were randomly 

allocated to one of four treatments: unexposed and non-perfused, unexposed and 

perfused, exposed and non-perfused or exposed and perfused. 

Exposures to copper were conducted in static 200 1 tanks of water from the Key 

Centre. Four fish were exposed in each trial. Copper was added as CuSO4 and total 

measured copper concentration was 105 	(sd = 18, n = 10; 1.65 Rrnol.L -1 ). 

Background copper levels in the control tanks were 0.0761.1e: 1  (n = 5, s.d. = 0.005; 

0.001 ptrnol L -1 ). Each trial lasted for 24 hours. Animals were not fed during the 
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trials. Nitrate and nitrite levels were monitored before and after experiments. Levels 

prior to the experiments were undetectable and rose to 0.40 mg•U 1  (sd 0.08, n = 5; 

8.6 pmol L-1) and to 0.42 mg.U 1  (sd 0.08, n = 5; 6.7 iimol U 1 ) respectively by the 

completion of the experiments. 

After exposure animals were transferred to a 10 I tank and anaesthetised by the 

addition of 2 —4 mL of 10% w/v benzocaine in ethanol. The animals for the 

perfusion treatments were injected with 0.5 ml of ammonium heparin (235 units per 

ml) and allowed to recover for 5 minutes prior to sacrifice. A catheter was inserted 

between the second gill bars into the dorsal aorta and a second catheter was inserted 

into the bulbus arteriosus. The fish were perfused with a copper-free physiologically 

isotonic salt solution (Wolf, 1963) until the liver colour changed from red to yellow 

and the gills paled from rich red to a whitish-pink, indicating the loss of blood. 

Perfusions were performed until no further colour change was noted. After perfusion 

the animals were dissected, the gills and livers removed and stored at -20°C. Non- 

perfused animals were sacrificed and the gills and livers removed and stored at -20°C. 

All metal analyses were performed within a month of the fish being sacrificed. 

Experiment 2  

Rainbow trout were obtained from Sevrup Trout Hatchery, Bridport, Tasmania and 

maintained at the National Key Centre in a 4 000 L re-circulating tank Water quality 

and diet were as for experiment I. Twenty animals (mean weight =218.2 g, sd = 44.9 

g, n = 20) were used in the experiment. 
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Twenty animals were transferred to a 400 L flow-through tank (flow rate 360 —480 L 

hr-I ) and acclimated for 5 days before the experiment. Animals were fed on day 2 and 

4 of the acclimation period but not after day 4 or during the exposures. At the 

commencement of the experiment copper sulphate solution was supplied at a constant 

rate via peristaltic pumps. Animals were exposed to 153 1.1g-L -I  (2.41 [Imo! L-I ) of 

total measured copper. Background copper levels were as for experiment 1. Five 

animals were sampled at 0, 3, 6 and 12 hours. Gills were dissected and placed on ice 

prior to being stored at -20°C. 

Metals Analysis  

Copper and zinc analyses were performed by a GBC 932 Oxyacetylene Flame 

Atomic Absorption Spectrometer. Copper and zinc standards were run prior and after 

each set of analyses to prevent errors due to drift while analysing samples. Samples 

of gill, liver and feed were spiked with 1 mg.1 -1  of Cu2+  and recovery rates were 

determined. These ranged from 105 to 113%. Gill samples were also spiked with 2 

mg•1 -1  of Zn2+  and recovery rates were found to be between 100 and 102%. 

Livers were homogenised by hand with a glass mortar and pestle. Approximately 

200 mg of each liver was digested for 1 hour 20 minutes with 5.0 ml of HNO3 in a 

MDS-2000 microwave digester (CEM) and made up to 10 ml total volume with 

deionised water. The anterior gill filaments were dissected from the gill arch and 
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digested and prepared in the same manner as the liver samples. Gill filament weights 

were between 50 and 200 mg. 

All data presented are for wet weight of tissue (w.w). 

Statistical Analysis  

Results were analysed by the software package SPSS. A 2-factor orthogonal ANOVA 

was used in experiment 1, the factors analysed being copper exposure and perfusion. 

A single factor ANOVA for exposure time was employed in experiment 2. Results 

were considered significant if p 0.05. Homogeneity of variance between groups 

were verified using Levene's Test. Data were normally distributed as indicated by 

residual plots other than for the gill[cu]:liver[c u] ratios where data were normally 

distributed only following log transformation. Post hoc comparisons of means were 

performed using Tukey's test. 
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Results. 

Experiment 1.  

After twenty-four hours of exposure to sub-lethal copper levels, significant 

differences were found between the levels of copper in the gills of exposed and non-

exposed rainbow trout (Table 1: F = 7.904, d.f. 1, 40, p = 0.008). 

Mean residual copper levels in the liver were higher in unexposed animals, but the 

difference was not statistically significant (Table 1: F = 3.945, d.f. 1, 40, p = 0.054). 

The ratio between gillEc ui and liver[c] demonstrated a significant difference between 

copper exposed and unexposed animals (Table 1: F = 6.964, d.f 3, p < 0.001). 

Although some values for the ratios were outside the normal distribution of values, all 

data points were seen to be real values and indicative of the high variability seen in 

tissue metal accumulation. 

No difference was found in zinc levels between Cu exposed and unexposed animals 

for either gill or liver tissue (Table 1: gill: F = 0.041, d.f 1, p = 0.840; liver F = 0.022, 

d.f. 1, p = 0.884). Variations in all groups of animals were large. The lack of 

significant changes in zinc levels and the increase in copper levels in the gills was 

reflected in the Cu/Zn ratios of the gills. These were significantly higher in exposed 

fish than in unexposed fish (Table 1: F = 7.012, d.f. 1, 40, p = 0.012). No significant 

differences were observed for the Cu/Zn ratios of the livers (Table 1: F = 0.922, d.f. 

1, p = 0.343). 
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Copper levels did not differ between the gills or livers of perfused and non-perfused 

animals. Although the mean value for both gills and livers were lower in the perfused 

animals the results were not significant (gills, F = 0.303, d.f. 1, p = 0.585; liver, F = 

0.062, d.f. 1, p = 0.804: Table 1). Results were also non-significant between perfused 

and non-perfused animals for gill and liver zinc levels (gill, F -= 0.282, d.f. 1, p = 

0.599; liver, F = 0.115, d.f. 1, p = 0.737). No similar trend towards lower values in 

perfused animals was observed (Table 1). 

Experiment 2.  

The copper levels in the gills of exposed fish increased significantly from the basal 

level after 3 hours exposure (Table 2). A further increase was observed after 6 hours 

exposure, although this was not significantly different from the 3 hour value. No 

further increase was observed after 12 hours. 

Zinc levels of the gills displayed a continual decrease over time, although, none of the 

observed changes were significant (Table 2). 

Mean copper/zinc ratios in the gills were significantly different between groups (F = 

4.882, df 3, p = 0.013) (Table 2). 
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Table 1.1  Experiment 1; Means and standard deviations for copper and zinc residues, 

gill[co/liverro ratios and copper/zinc ratios in the gills and livers of rainbow trout 

exposed to 105 p.gU i  total copper for 24 hours and perfused with physiologically 

isotonic saline, plus controls. Values other than gill[C]/liver[C] ratios and Cu/Zn 

- ratios are expressed as lisg 1  wet weight of tissue. Significant differences re indicated 

by *. 

Control 

Control 

(n = 10) 

Treatment 

Control 	Cu exposed 

Perfused 	Control 

(n = 10) 	(n =11) 

Cu exposed 

Perfused 

(n = 10) 

[Cu] Gills 2.22 (2.38) 1.64 (1.26) 4.18* (3.40) 3.92* (1.95) 

[Zn] Gills 134.05 144.35 (29.20) 140.55 (61.36) 131.48 (71.45) 

(34.06) 

[Cu] Liver 69.40 (25.10) 62.62 (29.38) 48.30 (31.94) 48.16 (42.21) 

[Zn] Liver 25.02 (8.64) 25.87 (15.64) 17.38 (5.53) 16.47 (7.40) 

Gillic u i/Liver 0.032 (0.030) 0.033 (0.025) 0.178* (0.270) 0.153* (0.154) 

!oil 

[CulaZn] Gill 0.020 (0.024) 0.011 (0.020) 0.030* (0.020) 0.048* (0.048) 

[Cul/[Zn] Liver 2.852 (0.64) 2.731 (1.12) 2.755 (1.57) 2.712 (1.44) 
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Table 1.2 Experiment 2; Mean copper and zinc residues, and ratios of copper to zinc 

in the gills of rainbow trout exposed to 1531.ig1: 1  total copper for 0, 3, 6 and 12 

-1 hours. All values other than Cu/Zn ratios are expressed as ligg wet weight of tissue. 

Standard deviations and the range of values are given. Significant differences re 

indicated by *. 

Treatment 

0 hours 3 hours 6 hours 12 hours 

[Cu] Gills 1.23 (0.29) 9.11* (2.15) 12.72* (6.49) 12.65* (4.70) 

[Zn] Gills 136.58 (45.67) 122.07 (53.03) 107.10 (48.83) 74.24 (37.50) 

[CuF[Zn] Gill 0.011 (0.006) 0.096 (0.063) 0.133 (0.062) 0.228* (0.160) 
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Discussion 

This study demonstrates that copper levels in the gills of freshwater fish may more 

accurately reflect short-term exposure to elevated copper levels in the water column 

than metal residues in the liver. These results correspond with two previous 

investigations that compared branchial and hepatic copper uptake. Dethloff et al. 

(1999), found copper levels in the gill changed significantly in rainbow trout exposed 

to 14 pg•L -I  of copper after 2 days whereas hepatic copper levels were unchanged. 

Brungs et al. (1973), noted a two and a half fold greater increase in branchial copper 

residues than in hepatic copper residues after 6 days exposure to 27 j.tg L copper. 

As may be expected from the different copper accumulation rates of the gills and 

livers, the ratio of gill[co:liver[c u i between exposed and unexposed animals was 

highly significant. This ratio shows strong potential as a biomarker for short-term 

copper exposure but is dependent on the high capacity of the gills for the 

accumulation of copper. If the gill copper load should decrease quickly in the short 

term after copper exposure, the ratio would no longer be biased towards the gills. 

Recent work has demonstrated that the copper load in gills may be cleared rapidly 

once waterborne exposure is terminated although it was not clear if the copper that 

depurated from the gills had been adsorbed to the epithelial membrane and moved 

back into the water column, or whether it had been transported across the gill baso-

lateral membrane and was cleared via the hepatic copper pool (Grosell et al., 2001). 

Therefore the depuration rate of copper from the gills requires investigation before 

copper residues in the gills can be utilised as an indicator of exposure. Similarly 
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further work must be done on the copper accumulation in the liver to determine the 

veracity of this method in chronic exposure situations. 

The data presented from both experiment 1 & 2 demonstrated a significant difference 

between Cu/Zn ratios in the gills of exposed and unexposed fish. This difference was 

- detectable after 12 hours of exposure to 153 [ig.L 1  of total waterbome copper. While 

no statistically significant differences were seen in the gill zinc levels a declining 

trend was clearly evident. This may be a consequence of copper-zinc interactions 

whereby copper is able to displace Zn from biologically active molecules such as 

metallothionein. Evidence for such a displacement is seen in the hierarchy of metal 

binding affinities for metallothionein, where copper has a greater affinity for 

metallothioneins than Zn (Hamilton and Merle, 1986). However, data from these 

experiments are insufficient for further speculation and more research will be 

required to substantiate or disprove the occurrence of preferential metal binding and 

displacement within the gills. 

Therefore, as zinc levels were apparently unaffected by the short-term exposure to 

copper, the shift in the ratio is solely due to the increase in copper residues at the 

gills. However, as copper and zinc are frequently mined in conjunction it will be 

necessary to elucidate the effect of copper/zinc mixtures on the patterns of tissue 

accumulation. 
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That zinc levels were unaffected by the treatments contrasts with Carbonell and 

Tarazona (1991), who found changes in the zinc levels of gills of farmed rainbow 

trout that were habitually treated with copper sulfate for remedial purposes. As the 

frequency and concentrations of farm treatments were not presented by Carbonell and 

Tarazona (1991), direct comparisons of data were not possible. Neither were copper 

residue values for the gills given. However remedial treatments are frequently at high 

dosages of copper and may be repeated over time rather than as a single acute 

exposure. Further investigations into the gill ratios of copper and zinc under range of 

exposure concentrations and conditions (e.g. various water hardness and pH) will 

clarify whether this technique will be applicable as a control method in the absence of 

experimental controls. 

Circulating levels of copper did not have a significant effect upon the copper load of 

the highly vascularised organs, the gills and liver. While the mean values for perfused 

animals were lower than in non-perfused animals the large variances of the data were 

sufficient to obscure any significant findings. As high variability is common in metal 

residue studies it may be safe to conclude that circulating copper levels do not need to 

be considered in future studies of copper tissue residues. 

This experiment also underlines the importance of sampling gills as a standard 

procedure when investigating fish kills or monitoring aquatic pollutants. The use of 

appropriate and relevant sampling is essential in both toxicological studies and 

environmental monitoring to obtain meaningful data (Nowak, 1997). The gills are the 
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primary interface between the environment and the animals internal milieu and are an 

important site of accumulation for many transition metals (Sorensen, 1991) and also 

many organic pollutants (Landrum et al., 1996). For example, endosulfan exposure in 

Cyprinus carpio in cotton growing regions of New South Wales was detected by 

examining gill residues (Nowak et al. 1995). In Heteropneustes fossilis exposed to 

sub-lethal levels of malathion for 10 days greater residual accumulation was found in 

the gills than in the ovaries, kidneys, liver or muscle (Dutta et al., 1994). Trifluralin 

was found to cause more severe changes to the biochemical function and histology of 

the gills than the liver (Poleksic and Karan, 1999). Finally, a significant accumulation 

of organophosphates was found in the gills of juvenile Leiostomus xanthurus that had 

been exposed to contaminated sediments whereas no residues were found in the livers 

(DiPinto, 1996). 

In conclusion, the gills appear to be a sensitive indicator of short-term copper 

exposure and a more robust indicator of copper exposure than the liver under such 

conditions. Both gill[c]/liver[c] ratios and gill copper/zinc ratios demonstrated 

significant differences between exposed and control animals and may provide a 

biomarker for copper exposure. However these hypotheses require further 

investigation under a broad range of environmental conditions and require validation 

in field studies. Additionally, circulating copper levels in exposed fish did not impact 

on the residual metal levels of the target organs examined and need not be considered 

in subsequent bio-marker research. 
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Abstract 

Previous work has suggested the ratio of copper residues to zinc in the gills of 

rainbow trout may indicate short-term exposure to elevated levels of waterborne 

copper. However the effect of exposure to a combination of elevated copper and zinc 

concentrates in the water column was unknown. Rainbow trout were exposed to 8 ± 2 

1gL -1 , 40 ± 2 1.1gL -1  and 90 ± 9 iagL - 1 of waterborne copper and 21 ± 3 1.1gU I , 129 ± 

40 ptgL -I  and 202 ± 40 ligU l of waterborne zinc in a two-factor experiment and gill 

copper and zinc residues were examined. Other gill parameters analysed included the 

concentrations of calcium, magnesium, sodium and potassium while liver copper and 

zinc concentrations and plasma copper, calcium, sodium and potassium were also 

reported. 

Copper residues in the gill filaments were significantly higher in the highest level of 

copper exposure (High Cu, 4.06 lige; Low Cu 2.41 lige; Bkgmd Cu 2.011.1ge; p = 

0.001) whereas no differences were seen in zinc concentrations at any treatment level. 

Gill sodium and plasma calcium concentrations were also depressed at the highest 

waterborne copper concentrations. 

While copper/zinc ratios in the gills were significantly different between the highest 

and lowest copper treatments (p = 0.002, F = 6.59), copper/sodium and 

copper/magnesium ratios were more sensitive to waterborne copper exposure (p = 

0.001, F = 17.91 and p = 0.002, F = 15.45 respectively). These copper/metal ratios 

may be better indicators of copper loading in the water column. 
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Introduction 

While an essential element for all biota, dissolved copper in the water column reach 

concentrations that are toxic to aquatic organisms (Eisler, 1997; Sorensen, 1991; 

Taylor et al., 1996). Copper pollution in freshwater systems, due to mining activities, 

industrial effluents, agricultural and aquacultural practices and acidification of 

freshwater systems is now a ubiquitous problem (Carbonell and Tarazona, 1991; 

Eisler, 1997; Eriksen et al., 2001; Shen et al., 1998; Wepener et al., 2001; Woodward 

et al. 1995). Despite the extensive research of piscine metal toxicology in freshwater 

systems (see (Paquin et al., 2002)), a simple and reliable biomarker for copper 

exposure in fish is yet to be found either for the investigation of fish kills or to 

monitor.metal pollution in aquatic waterways (Taylor et al., 2000). 

Mining activity may occur in remote areas and developing nations. Examples are the 

Marcopper copper mine in the province of Marinduque, in the southern Philippines 

and the Ok Tedi mine in western Papua New Guinea. At such sites technology may 

be available for mineral, but not biological, analyses. Also, in such remote regions 

there are additional complications and costs in the preservation of biological 

specimens for transport to laboratories suitable for further analysis. As such, a simple 

and reliable method for assessing the possible exposure of aquatic animals to 

waterborne contaminants using the facilities available on site is required. Metal ratios 

in gill tissue are a simple assay method using equipment that is normally available at 

a large mining site. 
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A problem facing investigators of fish kills and the effects of pollution events such as 

mine spills is a lack of controls for the evaluation of animals suspected of being 

exposed to elevated ambient levels of toxicants. This problem is exacerbated in the 

case of metals such as copper where naturally occurring levels of variation may be 

high. Carbonell and Tarazona (1993) and Daglish and Nowak (2002) have suggested 

a ratio of metal concentration in the gills may circumvent this problem. As the levels 

of these metals are regulated for normal homeostasis it was proposed that a 

predictable ratio of metals in the gill tissue may be determined under non-

contaminated conditions. When a pollution events occurs the concentration of the 

toxicant may increase in the gill tissue without a concurrent increase in the secondary 

element. The ratio will then shift to favour the toxicant, indicating recent exposure to 

the toxicant. Earlier work validated the premise that copper/zinc ratios in the gill 

tissues of rainbow trout can indicate a recent exposure to waterborne copper (Daglish 

and Nowak, 2002). 

Copper may also affect the levels of other metals in gill tissue (Carbonell 1993). 

Metal ratios between gill and opercular tissue have been shown to indicate exposure 

to zinc in freshwater fish (Mount 1964). However, copper and zinc are often mined in 

conjunction and spillage from mines or seepage from a tailings dam may contain a 

mixture of copper, zinc and other metals. It was therefore decided to investigate the 

effect of mixed metal exposure on the copper/zinc ratios of the gills as well as the 

ratios of metals other than zinc to copper in the gills as possible biomarkers for 

copper exposure. 
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Other than zinc, candidate metals chosen for analysis of ratios against copper as 

potential biomarkers were sodium, calcium, magnesium and potassium. These metals 

are all essential elements and their levels within teleosts are tightly regulated. 

Calcium and magnesium are also important ions in freshwater systems in determining 

water hardness. Increased water hardness has long been known to ameliorate the 

effects of metal toxicity in aquatic systems, (Lauren and McDonald, 1986; Miller and 

Mackay, 1980; Playle et al., 1992) although recent research has discriminated 

between the importance of the different ions (Welsh et al., 2000). 

In freshwater fish the mechanism of copper toxicity is through the disruption of 

branchial iono-regulation (Lauren and McDonald, 1987a; Lauren and McDonald, 

1987b). Lauren and McDonald (1985) demonstrated copper toxicity occurs in 

freshwater fish through two processes. Firstly, there is the inhibition of sodium influx 

due to copper's affinity for transport enzymes in the gills epithelium, particularly Na +  

KtATPase. The secondary mechanism by which copper toxicity occurs is through an 

increase in the passive efflux of sodium, presumably due to a loss of integrity of the 

intercellular tight junctions and increase in permeability of the branchial epithelium. 

Potassium efflux was also shown to be stimulated by copper exposure although the 

copper-dependent potassium losses were independent of the sodium as shown by the 

plasma K+/Na+  ratio. In control fish potassium losses closely equated with the 

predicted ratio. A possible synergistic effect between copper and low pH was also 
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implied by the authors. Sodium and potassium were thus seen as potential candidate 

metals in the investigation of copper metal ratios as biomarkers of exposure. 

Calcium is well documented as ameliorating the toxic effects of dissolved metals, 

predominantly via competitive inhibition at the available cation-binding sites on the 

gills (Pagenkopf, 1983). Calcium also helps maintain the integrity of the intercellular 

tight junctions within the cells preserving cellular integrity in freshwater. Some 

metals, notably zinc, cadmium, manganese and lead, behave as metabolic analogues 

of calcium and their uptake occurs via the calcium channels in the gill epithelium 

(Markich and Jeffree,1994). Copper does not share the 'metabolic analogue' 

characteristics of these transition metals (Wood, 1992). However in the light of 

Pagenkopf s work on competitive equilibrium at the gill surface, and the Biotic 

Ligand Model of gill-metal interaction (Di Toro etal., 2001; Santore et al., 2001) 

copper potentially may displace calcium from biological ligands at the gill surface 

and thus compromise the epithelial integrity and ion regulation at the gill/water 

interface. 

Magnesium apparently does not have the same level of ameliorative effect upon 

metal toxicity as calcium (Welsh et al., 2000). In aquatic vertebrates magnesium 

uptake occurs primarily through the gut while the gills provide a secondary uptake 

pathway and internal regulation occurs primarily at the kidneys (Bijvelds et al., 

1998). However, as an essential element and one of the constituents of water 

hardness, gill magnesium was considered as a potential biomarker for copper toxicity. 
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The main aims of this work were; to confirm that the Cu/Zn ratios in the gills of 

rainbow trout would be an effective predictor of short-term copper exposure in a 

mixture of waterborne copper and zinc under laboratory conditions, to determine if 

the ratios of copper to the other essential elements (Ca, Mg, Na and K) could also be 

used as predictors of copper exposure under the same conditions and to examine the 

effects of the waterborne metal mixture on metal concentrations in the gill tissue and 

plasma of freshwater teleosts. 
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Methods and materials 

Animals  

Rainbow trout (n= 88; mean wt 241.4g; SD = 50.3g) were obtained from the 

Aquaculture Centre, University of Tasmania. The animals were held in a 4 000 L 

recirculation tank supplied with town water supplemented by the addition of CaCl2 

and MgSO4 to increase the total hardness. Animals were transferred to 300 L tanks of 

the same water quality for the experiments. Water quality parameters, given as mean 

and standard deviation, were T = 13.2 ± 0.2 C°, pH = 7.6 ± 0.1, D.O. = 8.9 ± 0.4 

mgL -1 , total NH3 (before) = 0.4 ± 0.4 mgL -1 , total NH3 (after) = 1.4± 1.4 mgL -1 , Ca = 

18.1 ± 0.1 mgL -1 , Mg = 14.4 ± 5.4 mgL 1  and total hardness = 102.7± 2.5 mgL -1  as 

CaCO3; n = 27. 

Experimental Design  

A two-factor orthogonal design was used with three copper concentrations (8 ± 2 

ggL -1 , 40 ± 2ggL -1  and 90 ± 9 ttgL -1 ; n = 18) and three zinc concentrations (21 ± 3 

110; 1 , 129 ± 40 ggL -1  and 202 ± 40 RL -1 ; n = 18) giving a total of nine treatments. 

Copper and zinc were added as sulphate salts. Total additions for low and high 

copper and low and high zinc were approximately 80 mg and 160 mg of CuSO4.5H20 

in 300L and 87 mg and 174 mg of ZnSO4.7H20 in 300L respectively. Water from 

each treatment was sampled in triplicate before and after the experiment. The 

experiment was replicated three times. Three to four fish were used in each replicate. 

Fish were randomly assigned to tanks and tanks were randomly assigned a treatment 
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in each replicate of the experiment. All tanks were washed with 5% HNO 3  and rinsed 

with freshwater prior to the start of the trials. 

After 12 hours exposure animals were transferred to a 10 L tank and anaesthetised by 

the addition of 2 -4 mL of 10% w/v benzocaine in ethanol. A 1- 3 mL blood sample 

was taken by caudal puncture before the animals were sacrificed by further exposure 

to the benzocaine solution. Animals were then weighed and sampled. Samples of gill 

and liver tissue were also taken and kept on ice prior to being stored at -20°C. 

Metals Analysis  

Anterior gill filaments (50 — 200mg) were dissected from the gill arch and digested in 

5 mL of concentrated HNO3 in Teflon digest vessels in a CEM MDS-2000 

microwave digester (2.5 minutes 630 W; 15 minutes 500 W; 15 minutes 500 W). 

Approximately 200 mg of liver tissue were homogenised by hand using a glass 

mortar and pestle and digested in a mixture of 4.5 ml of concentrated HNO3 and 1.5 

ml of concentrated H2SO4 under the same microwave conditions as gill samples. 

Digest vessels and glassware were washed in 10% 1-INO3 prior to use. Plasma 

samples were diluted with deionised water at a ratio of 1:100 for calcium and 

potassium analysis and 1:500 for sodium analysis. Plasma samples for copper and 

zinc analysis were diluted at a ratio of 1:1 with a 10% v/v solution of Triton X-100 in 

deionised water and digested overnight at 35°C. 
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Metal analysis was performed using a Varian Spectra AA 300 Atomic Absorption 

Spectrometer (AAS). Calcium analysis was performed using a nitrous 

oxide/acetylene flame. Gill and liver copper, gill and liver zinc and magnesium and 

potassium samples were analysed using an air/acetylene flame. Sodium analysis was 

performed by emission spectrometry. Plasma copper and zinc were analysed by 

Varian GTA —96 graphite furnace AAS. National Institute of Standards and 

Technology bovine liver samples (NIST 1577b) were run to verify the laboratory 

methods. Standards were run prior and after each set of analyses to prevent errors due 

to drift while analysing samples. Samples of gill and liver were spiked with 1 mgL 1  

of Cu2+  and recovery rates were determined. These ranged from 100% to 110%. Gill 

samples were also spiked with 2 mgL -1  of Zn 2+  and recovery rates were between 

103% and 108%. 

All data presented are for wet weight (w/w) of tissue. 

Statistical Analysis  

Statistical analyses were performed using the software SPSS v.10.0. Normality of all 

variables was confirmed using P-P plots, whereby the cumulative proportion for the 

variable is plotted against the expected cumulative proportion if the data is normally 

distributed, and histograms. 

All the metal levels in the gill tissue were transformed into a ratio using the formula 

Logio((Cu/M)*1000), where M is the metal of interest other than copper. The 
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multiplier of 1000 is used to increase the magnitudes of the ratios to simplify further 

analysis. The ratios were log transformed to satisfy the assumption of equality of 

variance between groups. 

Univariate ANOVAs were performed on gill metal residues with treatment as the 

fixed factor and the various Cu/M ratios as the dependent variable. A second two 

factor, univariate ANOVA was also performed, the factors being Cu treatment and Zn 

treatment. Tukey's test was used for post hoc comparisons of groups. 

The gill data from the three experiments were pooled and analysed using MANOVA. 

For the plasma analysis, only data from the third experiment were used due to 

incomplete data sets in the first two trials. The independent variables for all 

multivariate analyses were Cu treatment and Zn treatment. For the gill data set the 

dependent variables were: gill Cu, gill Zn, gill Ca, gill Mg, gill Na and gill K. For the 

plasma data set the dependent variables were: plasma Cu, plasma Ca, plasma Na and 

plasma K. Differences between treatments were considered significant at the level a = 

0.05 using Pillai's Trace. Correlations between dependent variables were checked 

. prior to the analyses being performed. Post hoc tests were performed using Scheffe's 

method. 

Liver data were analysed using a two factor ANOVA, the independent variables 

being Cu treatment and Zn treatment. The dependent variables were liver Cu and 

liver Zn. 
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Results 

Fish 

All animals survived all treatments. For plasma analysis a complete data set was 

obtained only for the last replicate of the experiment giving a final sample size of n = 

36 with 4 replicates from each treatment. 

Gill Metal Levels  

Using MANOVA, a significant difference was found between Cu treatments for the 

gill data set (Pillai's Trace = 0.375, F = 2.888, d.f. = 12, p = 0.001, n = 88). Using 

Scheffe's Method for post hoc comparisons, gill Cu concentrations were significantly 

higher in the high copper treatment than either the low or background groups (Fig. 

3.1, Table 3.1) and Na levels of the gill tissue were significantly depressed in the high 
	

0 

copper treatment when compared to the control group (Fig 3.2, Table 3.1). No other 
ts) 

metals demonstrated a significant shift in their levels in the gill tissue. Multivariate 

analysis did not discriminate between any groups for the zinc treatments. 

Plasma Metal Levels  

Plasma Ca levels of animals in the high copper treatment were significantly depressed 

(Pillai's Trace = 0.267, F = 3.392, d.f. = 6, p = 0.004, n = 36) compared to both the 

low and background copper groups (Table 3.2). No significant differences were 

recorded for any plasma ions in the Zn treatments. 
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Liver Metal Levels  

No significant differences were recorded for either hepatic copper or zinc at any 

treatment level. 
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Table 3.1.  Means and standard deviations for metal levels in the gills of rainbow trout 

exposed to waterborne Cu/Zn mixtures. Significantly different results between the 

low, high and background copper treatments, according to Pillai's Trace are indicated 

by a 0 b  

Treatment 

Bkgrnd Cu (n = 29) Low Cu (n = 28) High Cu (n = 31) 

Gill Cu (me) 2.01 a  ± 0.80 2.41 a  ± 0.99 4.06b  ± 3.63 

Gill Zn (figg -1 ) 261 ± 175 201 ± 125 210 ± 100 

Gill Ca (lige) 2080± 1060 2162± 1340 2288 ± 1190 

Gill Mg (figg 1 ) 351 ± 111 344± 130 356± 138 

Gill K (ptge) 1513± 736 1705 ± 560 1516± 750 

Gill Na (mg') 1122.9' ± 247.1 1020.3 ab  ± 257.5 908•6b  ± 266.3 
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Table 3.2  Means and standard deviations for metal ion concentrations in the plasma 

of rainbow trout exposed to waterborne Cu/Zn mixtures. Significantly different 

results between the low, high and background copper treatments, according to Pillai's 

Trace are indicated by a  or b .  

Treatment 

Bkgrnd Cu (n = 11) Low Cu (n = 12) High Cu (n = 12) 

Plasma Cu (ngmL-1 ) 691.0 ± 90.7 756.0 ± 61.1 699.9 ± 94.3 

Plasma Ca (ggm1: 1 ) 76.67a  ± 14.69 73.16a  ± 8.88 61.05 b  ± 9.01 

Plasma Na (ggmL -1 ) 2457.0 ± 211.0 2498.5 ± 290.3 2438.4 ± 283.9 

Plasma K (ggmU l ) 117.1 ± 36.9 115.1 ± 21.4 120.3 ± 27.7 
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Fig 3.1 Mean gill Cu concentrations and standard errors of rainbow trout exposed to 

waterborne mixtures of copper and zinc. Data were analysed by univariate ANOVA 

of both Cu treatment and Zn treatment. Bars not sharing the same letter are 

significantly different. 

67 



Gill Cu/metal ratios  

Two different methods of analysing the Cu/M ratios were employed. Firstly, the 

transformed ratios were analysed by a two-factor, univariate ANOVA with Cu 

treatment and Zn treatment as the fixed factors. For the copper treatment, significant 

differences (p <0.05) were found for all the Cu/M ratios. While Cu/Zn ratios were 

significantly different (F = 6.593, p = 0.002, d.f. = 2, n = 88), the most sensitive 

descriptors were Cu/Na (F = 6.593, p = 0.002, d.f. = 2, n = 88) and Cu/Mg (F = 

6.593, p = 0.002, d.f. = 2, n = 88), as can be seen by the high F-values and 

corresponding low p-values (Table 3.3). The Cu/Na and Cu/Mg ratios were also 

significantly different between treatment levels for Zn treatments (n= 88; Cu/Na F= 

4.024, p = 0.22, d.f. = 2; Cu/Mg, F = 6.505, p = 0.002, d.f. = 2). There were no 

significant effects for interactions between the Cu and Zn treatments. 

Secondly, the transformed ratios were analysed by a single factor univariate 

ANOVA, where 'treatment' was the fixed factor. In this analysis Cu/Na ratios (Fig 2) 

and Cu/Mg ratios were significantly affected (n = 88; Cu/Na; F = 3.550, p <0.001, 

d.f.= 8, Fig 3.2: Cu/Mg F = 3.342, p = 0.002, d.f. = 8, Fig 3.3) however, no other 

ratios showed significant differences. 
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Table 3.3  Unvariate two-factor ANOVA of gill Cu/M ratios of rainbow trout exposed 

to waterborne mixtures of copper and zinc with copper and zinc as the fixed factors. 

All results are for the 'copper' treatment. 

Cu/M d.f. F value p-value 

Cu/Zn 2 6.593 0.002 

Cu/Ca 2 3.906 0.024 

Cu/Mg 2 15.451 <0.001 

Cu/Na 2 17.909 <0.001 

Cu/K 2 4.623 0.1313 

69 



Fig 3.2 Mean gill Cu/Na ratios and standard errors of rainbow trout exposed to 

waterborne mixtures of copper and zinc. Bars not sharing the same letter are 

significantly different. The treatments, from the left, are; Bkgnd Cu/Bkgnd Zn, 

Bkgnd Cu/Low Zn, Bkgnd Cu/High Zn, Low Cu! Bkgnd Zn, Low Cu/Low Zn, Low 

Cu/High Zn, High Cu! Bkgnd Zn, High Cu/Low Zn, High Cu/High Zn. 
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Fig 3.3 Mean and standard errors of gill Cu/Mg ratios in rainbow trout exposed to 

waterborne mixtures of copper and zinc. Significant differences between treatments 

are indicated by 'a' or 'b'. The treatments, from the left, are; Bkgnd Cu! Bkgnd Zn, 

Bkgnd Cu/Low Zn, Bkgnd Cu/High Zn, Low Cu/ Bkgnd Zn, Low Cu/Low Zn, Low 

Cu/High Zn, High Cu/ Bkgnd Zn, High Cu/Low Zn, High Cu/High Zn. 
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Discussion 

This work demonstrates that the concentrations of copper in the gills of rainbow trout 

increase for animals exposed to a waterborne mixture of copper and zinc while the 

concentrations of zinc, calcium, magnesium and potassium were not significantly 

altered. Gill sodium concentrations decreased under these exposure conditions. 

Plasma concentrations of copper, sodium, and potassium were not significantly 

different between treatments while plasma calcium levels were seen to decrease 

significantly. There was no effect upon copper or zinc concentrations in the liver. 

The lack of change in patterns of total measured zinc in the gills is in accordance with 

previously published works (Alsop and Wood, 2000; Alsop et al., 1999). However, 

Alsop and Wood, (2000) and Alsop et al., (1999) were able to determine changes in 

newly accumulated Zn by using radio-isotope tracers, which was beyond the scope of 

this work. 

The depression of gill sodium levels is not surprising as copper is known to inhibit 

bronchial sodium uptake (Grosell and Wood, 2002). However, the authors believe 

this is the first documented evidence of the disruption of bronchial iono-regulation 

affecting the levels of sodium in the gill filament tissue rather than the plasma sodium 

levels. In this experiment plasma sodium was not affected by either copper or zinc 

treatments (Table 3.2). As plasma sodium levels were not significantly different 

between treatments, it would seem unlikely the change in tissue levels is a result of 

residual blood within the gills but is a true indication of tissue sodium levels. Lauren 
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and McDonald, (1985) suggested the disruption of branchial sodium may be due to a 

loss of integrity at the inter-cellular tight junctions and a consequent loss of ions 

down the concentration gradient. An alternative explanation is that waterborne copper 

is competing with sodium to be transported across the epithelial membrane. While the 

Cu2+  and Na+  ions have different physical and chemical characteristics, it is known 

that gill Na+- K+-ATPase activity is compromised by copper exposure. (Li et al., 

1998) It therefore appears credible that a similar mechanism may be affecting 

rainbow trout. 

Due to the depression of sodium levels in the gill tissue, and the concurrent increase 

in gill copper levels it was considered relevant to investigate the use of the Cu/Na 

ratios in the gills as a biomarker. As was expected, these ratios also showed a 

significant difference between the highest copper treatments and background 

treatments when analysed by univariate ANOVA using 'treatment' as the fixed factor 

(Fig 3.3). While the Cu/Na ratios appear to be more sensitive than the Cu/Zn ratio as 

indicated by the F- ratios (Table 3.3), there was no difference between the lower 

copper treatment and the background treatments. However, the Cu/Na ratios were 

significantly greater for all the combinations of the high copper treatment with the 

various zinc treatments. 

Cu/Mg ratios were also significantly different between Cu treatments but when 

analysed by univariate ANOVA using the different treatment regimes, only two of 

the high copper combinations were significantly different from the other treatments. 
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These data however, are encouraging for the development of copper specific 

biomarkers based on gill metal ratios and require further investigation, especially 

under field conditions 

The Cu/Zn ratios obtained for animals in the highest copper treatment were 

significantly different to the background treatments but no difference was found 

between the low copper treatment and background animals. This finding is important 

for further work investigating gill Cu/Zn ratios as a biomarker where animals may 

have been exposed to a mixture of both metals, e.g. in spillage events from mines 

where ores contain both copper and zinc. It also validates previous work by (Daglish 

and Nowak, 2002) utilising gill Cu/Zn ratios as biomarkers of copper exposure. 

However, it also demonstrates that the ratio is only effective when animals have been 

exposed to high ambient levels of copper, in this experiments 90141; of total 

measured copper. While this may be a realistic concentration in mine spills or 

industrial accidents it may be greater than the levels of exposure that are normally 

considered environmentally relevant. 

Interestingly, plasma calcium was also depressed in the high copper treatment, but 

was unaffected by the zinc treatments. Zinc is a known blocker of calcium channels 

and is considered a 'metabolic analogue' of calcium (Markich and Jeffree, 1994) 

indicating zinc is transported across the epithelium via calcium channels, and can 

therefore interfere with the normal regulation of internal calcium levels. No effect 

was found on the levels of calcium in the gill tissue for either zinc or copper 
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treatments (Table 3.1), which may suggest that intracellular calcium levels were 

unaffected. A similar depressive effect on plasma calcium has been demonstrated in 

Oreochromis mossambicus exposed to mixtures of waterborne copper and cadmium 

(Pelgrom et al., 1997). Cadmium is also a known metabolic analogue of calcium 

(Markich and Jeffree, 1994). This finding may be explained by a two-fold mechanism 

whereby a metabolic analogue of calcium (in this case, zinc) may block calcium 

channels while the additive affect of copper, in competitive equilibrium with Ca for 

binding sites at the gill epithelium, is sufficient to compromise cellular integrity when 

the levels of the calcium analogue alone are insufficient to do so. 

In conclusion, this work shows that while copper concentrations in girl tissue increase 

under conditions of mixed copper and zinc exposure, zinc, calcium, magnesium and 

potassium concentrations remain stable while sodium concentrations decrease. Also, 

there is new evidence that copper may act synergistically with metabolic analogues of 

calcium to disrupt calcium levels in the plasma of freshwater teleosts. Copper/sodium 

ratios in gill tissue are also presented as a possible biomarker for copper exposure. 
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Chapter 4- Post-mortem changes in gill metal concentrations 

in rainbow trout (Oncorhynchus mykiss) exposed to 

waterborne copper in fresh and brackish waters 
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in gill metal concentrations in rainbow trout (Oncorhynchus mykiss) exposed to 

waterborne copper in fresh and brackish waters.' 
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Abstract 

Rainbow trout in fresh, 10 ppt and 20 ppt salinity water were exposed to sufficient 

waterborne Cu to induce moribundity in the animals (262, 346 and 589 HU I  Cu 

respectively). They were then euthanased and transferred to water of the same 

salinities with no added copper and left to depurate for 45 hours. Gill filaments were 

sampled at 0, 6, 18 and 45 hours and the metal concentrations of Cu, Zn, Ca, Mg and 

Na in the gills were assayed. Metal ratios were examined for their potential as 

biomarkers of exposure. At the time of transfer, the highest gill copper loads were 

found in the animals from the 10 ppt treatment (1.07 ± 0.2 lige, 1.41 ± 0.5 psg -I , 

0.36 ± 0.1 lige for 0, 10 and 20 ppt treatments respectively, n = 6). Over time, all the 

metal concentrations in the gills equilibrated toward the environmental concentrations 

in all the treatments. This demonstrated gill metal ratios had limited application as 

biomarkers for copper exposure, post-mortem. 

Additionally, animals from six fish kill episodes in Macquarie Harbour, Tasmania, 

were examined for copper and zinc concentrations in the gills and compared to 

animals from the laboratory trials. While metal ratios in the gills did not indicate 

copper toxicity as the cause of death, copper concentrations in the gills of Macquarie 

Harbour animals were higher than the concentrations that induced moribundity in 

animals in the laboratory trials (range; 1.27 ± 0.6 to 16.2 ± 9.6 ggg -1 , mean = 5.49 ± 

5.6 ligg-1 , n = 6). This may be due to acclimation of the Macquarie Harbour animals 

to elevated waterborne copper. The levels of copper in the muscle tissue did not pose 
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-1 an apparent health risks to consumers (range; 0.32 ± 0.3 to 1.59 ± 0.4 ugg , mean = 

0.84 ± 0.6 ugg-I , n = 4). 
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Introduction 

Copper, while being an essential element, is also toxic to aquatic and marine 

organisms. Copper may enter waterways through mining activity (Apte, et al. 1995), 

from prophylactic farm treatments (Carbonell and Tarazona, 1991), from industrial 

discharges (Lewis et al., 2002) or due to the action of acid rain lowering the pH of 

waterways and thereby solubilising minerals within the substrate (Sorensen, 1991). 

Many waterways around the world now have elevated copper levels, or are 

periodically exposed to pulses of copper at elevated levels (Eisler, 1997). 

Consequently there is considerable interest in developing a simple yet reliable 

biomarker for copper exposure, both for the monitoring of local water quality and for 

the investigation of fish kill episodes. 

In freshwater systems, the ratio of copper to zinc, sodium or magnesium in the gill 

filaments of rainbow trout may demonstrate an animal has been exposed to elevated 

levels of environmental copper (Daglish and Nowak, 2002; Daglish et al., — in press). 

Cu/Mg and Cu/Na ratios were also able to indicate exposure to copper under 

conditions of mixed metal exposure (Daglish et al., in press). While ecotoxicological 

studies on the effects of copper on finfish to date have mainly investigated copper 

exposure in freshwater, elevated levels of metals, including copper, also occur in 

brackish, estuarine and marine environments (Eisler, 1997; Powell and Powell, 2001). 

The effects and toxicity of metal exposure to teleosts are widely divergent between 

fresh, brackish and marine environments. Although there have been few experimental 
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studies of the toxicological effects of copper to finfish in brackish environments, it is 

recognised that higher salinities ameliorate the effects of copper poisoning (Taylor et 

al., 1996). The higher levels of cations in brackish and marine waters increase the 

competitive interactions between cations for binding sites at the gill surface (Playle, 

1998), reducing the levels of copper bound to the gill surface. Animals are therefore 

able to withstand higher levels of dissolved copper in the water column. In an 

extensive series of tests of copper toxicity to fathead minnows (Pimephales 

promelas) in freshwater, combined data from Erickson et al., (1996) provided a mean 

96-hr LC50 of 114.7 i.i.gU i  (range = 7.0 to 425.8 ggL -I ). Chakoumakos et al., (1979) 

tested the toxicity of copper to cutthroat trout (Salmo clarki) under various regimes of 

alkalinity and hardness and found the mean 96-hr LC5Os ranged from 15.7 to 367 

psU l  with a combined mean of 134.3 ligU l . As the water quality parameters of 

freshwater bodies may be highly variable due to chemical and physical differences 

between regions and seasons, these data have been used to demonstrate a full range of 

LC50s. In contrast, seawater may be considered a more homogenous chemical 

environment. Work by Taylor et al., (1985) recorded 96-hr LC50 for dab (Limanda 

limanda) in filtered seawater of 300 p,gU I  while the 96-hr LC50 for sea-mullet was 

1400110; i . As metal ratios in the gills have indicated recent copper exposure in 

freshwater environments (Daglish and Nowak, 2002) (Daglish et al, in press), it 

would appear worthwhile to investigate their efficacy as an investigative tool for fish 

kills in higher saline environments. 
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Furthermore, there is a paucity of data relating laboratory studies of metal toxicology 

in aquatic environments to field situations and environmental conditions. 

Investigators of fish kills are frequently required to assess the cause of death of 

animals many hours or even days after mortality. Toxins in the water may be no 

longer detectable and elevated levels of metals bound to the gills of animals may 

leach into the water column. Additionally, with the cessation of homeostasis, the 

concentrations of other essential elements may be affected by diffusion processes 

across the gill epithelium. Copper concentrations of the gills are considered a 

potential biomarker for copper exposure (Taylor et al. 2000). However, if copper 

depurates from the gills prior to analysis, the effect of the exposure to copper will not 

be discernible by gill metal concentrations. It is therefore important to establish the 

effect on the concentrations of metals in the gills of animals killed by pollution 

events, to fish remaining in non-contaminated waters after death. Additionally, the 

rates of depuration and/or leaching of metals and metal residues from the gills will be 

affected by the water quality, including salinity, such that depuration and leaching 

rates will be affected differently in fresh, brackish and marine environments. It was 

therefore decided to correlate data from known, and potentially copper-related, fish 

kills in Macquarie Harbour, in south-western Tasmania, with data from the laboratory 

experiments. 

Macquarie Harbour 

Macquarie Harbour, located on the western coast of Tasmania, is approximately 32 

km long and 8 km wide with an area of 276 km2  and a mean depth of approximately 
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20 m. There is a narrow opening to the Southern Ocean at the north-western corner of 

the harbour. Fresh water flows into the harbour from the King River in the north-

eastern area of the harbour and the Gordon-Franklin River system in the south-eastern 

section. Tidal movements of the harbour are generally less than 1m. The water of 

Macquarie Harbour is distinctly stratified into two layers. The surface waters of the 

harbour, defined as 0 - 5 m, are characterised by highly variable salinities and high 

levels of organic carbons in the form of tannic and humic substances giving the 

surface waters a distinctive brown "tea-like" appearance. The remainder of the water 

column is saline. The variability of the surface water's salinity and organic content is 

mainly due to rainfall, changes in the flow of freshwater from the two river systems 

and mixing by wind (Carpenter et al., 1991; Koehnken, 1996). 

Macquarie Harbour has been heavily polluted by discharge from the Mt Lyell copper 

mine in South-western Tasmania since the commencement of mining operations in 

1883. The Mt Lyell copper mine is located on the Queen River approximately 15 km 

above the confluence of the King and Queen Rivers and a further 25 km to Macquarie 

Harbour. It has been estimated that the Queen River has received approximately 100 

million tonnes of mine tailings since the commencement of mining (Carpenter et al., 

1991) and a distinct alluvial 'fan' of tailings is visible at the confluence of the of the 

King River and Macquarie Harbour. Remediation works at the mine site, including 

the King River and Macquarie Harbour have been in progress since 1993. 
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The aims of this experiment were to examine: the depuration rate of Cu from the gills 

of rainbow trout, post-mortality, after exposure to lethal levels of copper in fresh and 

brackish waters; the concentrations of Zn, Ca, Mg and Na in the gills of rainbow trout 

that have remained in a non-contaminated body of water post-mortality induced by 

exposure to lethal levels of copper in fresh and brackish waters; the efficacy of metal 

ratios as biomarkers when animals have remained in a non-contaminated body of 

water post-mortality and subsequent to exposure to lethal levels of copper in fresh 

and brackish waters; and data from fish kills in a brackish environment in comparison 

to experimental laboratory data to evaluate the use of copper/metal ratios under field 

conditions. 
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Methods and materials 

Eighteen rainbow trout (275.7 ± 41.3 g) were obtained from the Aquaculture Centre, 

School of Aquaculture, University of Tasmania. They were randomly separated into 3 

groups of 6 fish and acclimated in either moderately hard freshwater, 10 ppt brackish 

water or 20 ppt brackish water for eight days. Acclimation was conducted in 300 L 

static, aerated tanks. Complete water changes were conducted every second day. 

Salinity was measured using a salinity refractometer. Concentrations for Na, Ca, and 

Mg were supplied by Mr. S. Roberts of the School of Aquaculture, University of 

Tasmania for the freshwater treatment or calculated from available literature (Bidwell 

and Spotte, 1985) for the 10 ppt and 20 ppt salinity treatments. Water quality of the 

acclimation tanks, monitored daily, were as follows: freshwater; salinity = 0 ppt, [Na] 

= 26.1 mgL -1 , [Ca] = 19.9 mgL -1 , [Mg] = 47.9 mgL-I , pH = 7.9 ± 0.1, T = 18.4 ± 1.0 

°C, D.O. = 8.0 ± .04 mgL -1 , NO2 <0.1 mgL -1 , NO3 = 0, total hardness = 107.0 ± 1.8 

mgL-I  as CaCO3, Cu < 5.01.tgL -1 : 10 ppt brackish water; salinity =10.4 ± 0.5, [Na] = 

3003 mgL -1 , [Ca] = 114.4 mgL -1 , [Mg] = 318.1 mgL -1 , ppt, pH= 7.9± 0.1, T= 18.5 ± 

0.9 °C, D.O. = 8.0 ± 0.4 mgL -1 , NO2 <0.1 mgL -1 , NO3 = 0, Cu < 5.01.tgL -1 : 20 ppt 

brackish water; salinity = 20.3 ± 0.5, [Na] = 5995.5 mgL -I , [Ca] = 228.4 mgL -1 , [Mg] 

= 770.8 mgL -1 , ppt, pH = 7.9 ± 0.1, T = 18.4 ± 0.9 °C, D.O. = 7.9 ± 0.5 mgL -1 , NO2 < 

0.1 mgL-I , NO3= 0, Cu <5.0 ptgL -1 . 

Experimental Design  

A repeated measures design was used with time and salinity as independent variables 

and gill concentrations of the metals Cu, Zn, Ca, Mg and Na as the dependent 
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variables. After acclimation the tanks were replenished with approximately 300 L of 

water of the appropriate salinity. The fish were exposed to toxic levels of copper by 

the addition of 353 mg, 530 mg and 708 mg of CuSO4.5H20 to the fresh, 10 ppt 

salinity and the 20 ppt salinity treatments respectively. Measured copper levels were 

262.0 ± 22.5 [igU I  (0 ppt, n = 3), 346.1 ± 17.3 ligL1  (10 ppt, n = 3) and 589.2 ± 7.6 

ps1: 1  (20 ppt, n = 3). Animals were exposed for 48 hours by which time they were 

moribund, as indicated by loss of balance while swimming. They were then sacrificed 

by exposure to 10 mgl: l of benzocaine. After sacrifice the first gill arch was excised 

from each animal and placed on ice prior to being stored at — 20 °C. The carcasses 

were returned to 300 L tanks of uncontaminated water of the same water quality as 

the acclimation tanks. Successive gill arches were sampled after 6, 18 and 45 hours 

by which time the animals were showing early stages of decomposition. The gills 

filaments were white, the carcasses were displaying a general loss of colour and the 

flesh was soft to touch. 

Field Data  

Field data were supplied by the Fish Health Unit, Animal Health Laboratory of the 

Department of the industry, Water and the Environment (DPI WE), Tasmania. Data 

were from fish kill episodes in Macquarie Harbour, Tasmania, between 1991 and 

1995. Cases were only considered where copper and zinc data for gill tissue was 

provided. Copper analysis of liver and muscle tissue were also supplied. To assure 

the statistical rigour of the procedure, data were used only if more than 5 or more 

mortalities were recorded from a single episode. Water quality data for the 
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corresponding time periods from Macquarie Harbour were supplied by the 

Toxicology Unit, DPI WE, Tasmania. Metal analyses of tissue and water samples 

were performed by flame and graphite furnace AAS, respectively, using standard 

laboratory procedures. 

Metals Analysis  

Gill filaments were dissected from the gill arch and digested in 5 mL of concentrated 

1-1NO3 in Teflon digest vessels in a CEM MDS-2000 microwave digester. Between 50 

and 200 mg of filamentous tissue was used for each digest. Digest vessels and 

glassware were washed in 10% HNO3 and rinsed in deionised water prior to use. 

Metal analysis was performed using a Varian Spectra AA 300 Atomic Absorption 

Spectrometer (AAS): calcium analysis was performed using a nitrous oxide/acetylene 

flame; copper, zinc and magnesium samples were analysed using an air/acetylene 

flame; sodium analysis was performed by emission spectrometry with an 

air/acetylene flame. Standards were run prior to and after each set of analyses to 

prevent errors due to drift while analysing samples. Samples of gill tissue were spiked 

with 1 mgL -1  of Cu2+  and recovery rates were determined. These ranged from 103% 

to 109%. National Institute of Standards and Technology bovine liver samples (NIST 

1577b) were run to verify the laboratory methods. All data presented are for wet 

weight of tissue and given on a wet weight (w/w) basis. 
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Statistical Analysis  

Results were analysed by the software package SPSS v10.0. Differences between 

treatments were considered significant at the level of a = 0.05, using Pillai's Trace. 

All data were tested for equality of error variance using Levene's Test. Normality of 

data were confirmed using pp plots and histograms of the variables. 

Analysis was conducted within each salinity regime by univariate ANOVA, with time 

as the independent variable and the individual metal levels as the dependent 

variables. All data were transformed using natural logarithms to satisfy the 

assumption of homogeneity of variance between groups. Post hoc analyses were 

performed using Scheffe's method. 

Comparisons of depuration rates and metal levels between the different salinities 

were conducted by using a repeated measures profile analysis where the gill arches 

were considered as the repeated units of measurement over time. A two-factor mixed 

general linear model was used where salinity was the between-subjects variable and 

time was the withi- subjects variable for the various metal levels (Ho 2000). To 

enable comparisons between salinities, all data were normalised within each animal 

by dividing the metal level of each arch by the metal level of the first arch thereby 

making the first sample (time 0) equal to one and each subsequent sample a 

proportion of the initial value (times 2, 3 & 4 each respectively 6, 18 and 45 hours 

post-mortality and transferral to clean water of the appropriate salinity). 
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The ratios of the concentrations of zinc, calcium, magnesium or sodium to copper 

concentrations in the gills of the animals were calculated. Comparisons between 

animals in the different salinities were made as well as comparisons between animals 

from Macquarie Harbour and experimental animals. All metal ratios were determined 

using the formula: 

(Cu 0.1.g.e)/M (gg.g .1 ))*1000, 

where M represents the metal of interest and a multiplier of 1000 is used to increase 

the magnitudes of the ratios to simplify further analysis. Post hoc tests were 

conducted using Tukey's test. 
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Results 

Laboratory Data 

Gill metal levels  

Trial A: Freshwater 

The concentrations of copper and sodium measured in the gills decreased 

significantly over time in the freshwater treatment while the magnesium 

concentration of the gills significantly increased. No significant change was recorded 

in the levels of zinc. A significant result was noted for calcium at the alpha = 0.05 

level, however post hoc tests did not differentiate between the mean values at the 

different times and the result was treated as non-significant. (Table 1; Figs. 1 — 5). 

The levels of copper in the gills decreased rapidly and significantly from the initial 

value of 1.07 ± 0.2 fig.g -I  of tissue at 0 hours to 0.45 ± 0.1 lig.g-I  of tissue at 6 hours, 

after which little further change was recorded. The mean values recorded for zinc 

showed little difference between 0 and 6 hours, however increased from 20.2 ± 9 

1.1g.g .1  of tissue at 6 hours to 30.2 ± 17 I.tg.g -I  of tissue at time 18 hours, before 

declining to 21.3 ± 71.1g.g-1  of tissue at 45 hours post-mortality. The mean recorded 

values for calcium in the gills of the fish held in freshwater increased steadily during 

the post-mortality period from 356.4 ± 107 mg.g -1  of tissue at 0 hours to 670.7 ± 277 

- p.g.g I  of tissue 45 hours after mortality. Magnesium levels followed a similar pattern 

to calcium, increasing steadily over time from the 41.0 ± 6 lig.g -1  at 0 hours to 74.4 ± 

29 gg.g -1  of tissue 45 hours post-mortality. The initial and final readings were 

significantly different from each other. Sodium levels decreased rapidly and 
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Table 4.1  Statistical analysis of the effects of time on the levels of Cu, Zn, Ca, Mg 

and Na in the gill filaments of rainbow trout. Animals were exposed to elevated 

copper levels in freshwater until moribund and then left in clean water post-mortality 

for 45 hours. Gill arches were removed for metal analysis at times 0, 6, 

hours. 

18 & 45 

Metal n F value p-value 

Cu 6 13.217 <0.001 

Zn 6 0.968 0.427 

Ca 6 3.106 0.05 

Mg 6 3.787 0.027 

Na 6 35.048 <0.001 

96 



1.5 

G
il

l C
u

  (
ug

g  
w

. w
. ) 

1.0 

0.5 

50 10 30 40 20 
Time 

- 

1 

Q 
- \ 

-±. \ 

- 

- 

x 
X 

X 
X 
X 

I! €1'  1. : 

. a. 
J1 . 

I 

......... "... gi-  ...... 

' .114 

--• 

C, 

■ 
..- ....... - --• .-- 

1 

••• -- -- ....-- 
- 

- 
-- 

I 

, 

i 
1 
i 

2.0 

0.0 

—e— Fresh 
- -a- - 10 ppt 
- - 	- 20 ppt 

Fig 4.1 Mean copper concentrations, with standard errors, in the gill filaments of 

rainbow trout exposed to acute waterborne copper until moribund in fresh, 10 ppt and 

20 ppt brackish waters then left in non-contaminated water for 45 hours post-mortem 

97 



40 

0 
...... 	

...... 
	

...... • 	• 	

.................... 

—4D— Fresh 

- -o- - 10 ppt 

- 20 ppt 

0 
0 	 10 	 20 	 30 	 40 	 50 

Time 

Fig 4.2 Mean zinc concentrations, with standard errors, in the gill filaments of 

rainbow trout exposed to acute waterborne copper until moribund in fresh, 10 ppt and 

20 ppt brackish waters then left in non-contaminated water for 45 hours post-mortem 

98 



500 

400 

300 	  

200 	  

100 	 

G
UI

 N
a  

(u
g/

g  
w

.w
.)  

—e— Fresh 
--0--  10 ppt 

-6- - 20 ppt 

0 	10 	20 	30 	40 	50 
Time 

Fig 4.3 Mean sodium concentrations, with standard errors, in the gill filaments of 

rainbow trout exposed to acute waterborne copper until moribund in fresh, 10 ppt and 

20 ppt brackish waters then left in non-contaminated water for 45 hours post-mortem 

99 



300 	 

250 	 

—e— Fresh 
--0--  10 ppt 

20 ppt 

	

200 	 

cs) ts) 

	

150 	 

	

Q 100 	 

20 	30 	40 	50 
Time 

Fig 4.4 Mean magnesium concentrations, with standard errors, in the gill filaments of 

rainbow trout exposed to acute waterborne copper until moribund in fresh, 10 ppt and 

20 ppt brackish waters then left in non-contaminated water for 45 hours post-mortem 

100 



co 
tn 

as 
0 

3 

1500 

1000 

CI 
E 

500 

. .. 

•• 

•■ 

Fresh —G— 

- -o- - 10 ppt 
- - 	- 	20 ppt 

I 1 0 

0 
	

10 	20 	30 	40 	50 

Time 

Fig 4.5. Mean calcium concentrations, with standard errors, in the gill filaments of 

rainbow trout exposed to acute waterborne copper until moribund in fresh, 10 ppt and 

20 ppt brackish waters then left in non-contaminated water for 45 hours post-mortem 

101 



significantly from their peak at time 0 of 124.6 ± 36 pig.g .1  of tissue to 46.2 ± 8 pg.g .1  

of tissue at 6 hours. There was a further slight decrease by the end of the trial at time 

45 hours post-mortality to 14.7 ± 5 p.g.g -1  of tissue. 

Trial B: Brackish water (10 ppt salinity) 

In the 10 ppt brackish water trial a significant decrease was recorded over time for the 

levels of copper, while calcium and magnesium in the gills of rainbow trout post-

mortality increased significantly. The concentrations of gill zinc or sodium were not 

significantly altered (Table 2; Figs 1 -5). 

The mean recorded levels of copper decreased from 1.41 ± 0.5 pg.g -I  of tissue to a 

minimum value of 0.25 ± 0.04 pig.g -1  of tissue after 18 hours in clean 10 ppt water. A 

slight recovery to 0.46 ± 0.2 lig.g -1  of tissue occurred by 45 hours. Mean zinc scores 

in the gills of the animals increased over the course of the depuration period from 

13.2 ± 10 lig.g -1  of tissue to 28.7 ± 15 pg.g -1  at time 45 hours post-mortality. Calcium 

levels in the gills of rainbow trout increased steadily from 689.4 ± 157 iig.g -1  of tissue 

to 1253.6 ± 2271.1g.g -1  of gill filament tissue 45 hours post-mortality. The initial and 

final calcium levels were significantly different from each other. Magnesium levels in 

the gills showed a similar response to calcium, increasing steadily from 107.9 ± 47 

gg.g-I  of tissue to 234.0 ± 95 lig.g-1  by 45 hours post-mortality, and the initial and 

final magnesium levels were significantly different. Sodium mean values decreased 

slightly, but not significantly, over the period of depuration from 241.2 ± 63 pg.g -1  of 

tissue to 216.9 ± 14 pig.g -1  of gill tissue. 

102 



Table 4.2  Statistical analysis of the effects of time on the levels of Cu, Zn, Na, Mg 

and Ca in the gill filaments of rainbow trout exposed to elevated copper levels in 10 

ppt brackish water until moribund and then left in clean water post-mortality for 45 

hours. Gill arches were removed for metal analysis at times 0, 6, 18 & 45 hours. 

Metal n F value p-value 

Cu 5 1.234 0.323 

Zn 5 0.908 0.455 

Ca 5 3.299 0.041 

Mg 5 3.798 0.026 

Na 5 0.382 0.767 
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Trial C: Brackish water (20 ppt salinity) 

The levels of all metals other than copper measured in the gill filaments of rainbow 

trout exposed to acute copper levels in the 20 ppt brackish water trial increased 

significantly over time after being transferred to clean water post-mortality (Table 3; 

Figs 1 — 5). No significant change was recorded for the mean gill copper 

concentrations. 

Copper mean values at time 0 were 0.365 ± 0.14 pg.g .1  of gill filament, and decreased 

slightly to 0.250 ± 0.15 1.tg.g -1  45 hours after mortality and transferral to clean water. 

Zinc levels increased steadily from an initial value 9.00 ± 2.6 lig.g -l of tissue to a 

final value of 16.8 ± 5 Rg.g .l . Zinc levels at times 0 and 6 hours were significantly 

different to the final recorded value. Calcium levels increased from their lowest result 

at time 0 of 597.6 ± 112 p.g.g 1  to 885.6 ± 143 gg.g -I  6 hours later. They then 

decreased to 706.0 ± 160 [tg.g -I  18 hours post-mortality and then increased again to 

1094.6 ± 366 1.1.g.g .1  when the experiment was terminated 45 hours after mortality and 

transferral. The levels of calcium in the gill filament tissue at times 0 and 18 hours 

were significantly lower than the final value. Magnesium levels also increased 

steadily and significantly, from 98.0 ± 10 Kg.g -I  at time 0, to 131.1 ± 40 p.g.g .1  at time 

6 hours, 171.8 ± 12 1.1g.g -1  at time 18 hours and a final value at time 45 hours of 212.3 

± 19 [tg.g-I . Magnesium levels in the gill filaments at time 0 were significantly lower 

than at time 18 or 45 hours and the result for magnesium at time 6 hours was also 

significantly lower than at 45 hours post-mortality. Sodium levels in the gills of the 

animals in this treatment increased rapidly after death from the original level at time 0 
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of 329.6 ± 40 pg.g -1  to 422.5 ± 39 pg.g -1  6 hours after mortality. The mean recorded 

values of sodium increased slightly but not significantly thereafter to a final level of 
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Table 4.3  Statistical analysis of the effects of time on the levels of Cu, Zn, Na, Mg 

and Ca in the gill filaments of rainbow trout exposed to elevated copper levels in 

20ppt brackish water until moribund and then left in clean water post-mortality for 45 

hours. Gill arches were removed for metal analysis at times 0, 6, 18 & 45 hours. 

Metal n F value p-value 

Cu 5 2.868 0.062 

Zn 5 5.333 0.007 

Ca 5 5.915 0.005 

Mg 5 26.307 <0.001 

Na 5 14.934 <0.001 
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468.0 ± 51 lig.g4  of gill filament tissue. The initial value at time 0 was significantly 

lower than all the other sodium scores. 

Profile Analysis 

A significant difference was observed between the different salinities for the 

depuration rates of copper (Pillai's Trace, 0.827; F = 3.288; p = 0.014). The 10 and 

20 ppt brackish groups were autonomous of each other while the freshwater treatment 

was not significantly different to either group (Fig 6). 

The rates of depuration for sodium also were significantly different between salinity 

treatments (Pillai's Trace, 1.364; F = 10.002; p <0.001). All three treatments were 

independent of each other (Fig 7). 

No significant differences of parallelism were recorded for any of the other metals 

measured in the gill filaments of the treated rainbow trout. 
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Gill Metal Ratios 

Results for time 0 hours are presented in table 4. 

Trial A: Freshwater 

In the 0 ppt treatment the Cu/Zn ratios decreased significantly (F =3.771, p = 0.027) 

from the highest value at time 0 of 66.42 ± 39.6 to 27.26 ± 18.4 at time 6 hours. The 

average mean values of the Cu/Zn ratios increased slightly thereafter to a final value 

of 33.53 ± 11.0 at 45 hours post-mortem, which was no longer significantly different 

to the original value at time 0. The Cu/Na ratios of the freshwater carcasses showed 

no significant change from the initial value of 9.14 ± 2.8 up to time 6 hour. However, 

a significant increase occurred between time 6 and 18 hours as the ratio increased to 

25.10 ± 12.8 and then again from time 18 to 45 hours as the ratio increased to 46.86 ± 

17.9 (F = 21.12, p <0.001). 

The highest value for the Cu/Mg ratios of 27.00 ± 8.3 was recorded at time 0 after 

which a rapid and significant decrease in the ratios occurred to 10.9± 5.9 at time 6 

hours post-mortality (F = 10.86, p < 0.001). The mean values of the ratios did not 

alter significantly thereafter. The Cu/Ca ratios also recorded the highest value of 3.47 

± 1.9 at time 0 and then declined rapidly and significantly to 1.48 ± 0.9 after which 

no further significant changes were recorded for the mean ratios (F = 4.97, p = 

0.010). 
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Table 4.4  Gill Cu/M ratios in the gills of rainbow trout moribund from waterborne 

copper exposure in waters of 3 different salinities. Mean values are presented with 

standard deviations in parentheses. 

Gill Cu/M ratio Fresh 	. 
(0 ppt) 

10 ppt 20 ppt 

Cu/Zn 66.4 (39.6) 192.81 (174.72) 41.43 (14.74) 

Cu/Ca 3.47 (1.93) 6.38 (2.71) 0.61 (0.22) 

Cu/Mg 27.00 (8.34) 15.87 (5.82) 5.40(1..31) 

Cu/Na 9.14 (2.84) 2.23 (1.07) 1.13 (0.46) 



Trial B: Brackish water (10 ppt salinity) 

Significant differences were seen over time for the Cu/Zn and Cu/Mg ratios in the 10 

ppt treatment but not for the Cu/Na or Cu/Ca ratios. 

The greatest value for Cu/Zn ratios of 192.81 ± 174.7 was recorded at time 0 hours 

after which mean values steadily declined to the minimum recorded value of 16.73 ± 

7.1 at time 45 hours post-mortem. The final Cu/Zn value was significantly different to 

the initial reading (F = 3.631, p = 0.036) although no other times were significantly 

affected according to post-hoc analysis. 

The Cu/Mg ratios also showed significant differences over time (F = 4.475, p = 

0.018). The highest reading of 15.87 ± 5.8 was recorded at time 0. This value 

declined to 8.14 ± 12 .3 by time 6 hours and then further decreased to 1.64 ± 0.4 at 

time 18 hours after which no further differences in mean values were recorded. Post 

hoc tests grouped the two final readings separately from the initial reading. 

Trial C: Brackish water (20 ppt salinity) 

The Cu/Zn ratios in the 20 ppt treatment declined significantly over time (F = 6.648, 

p = 0.003). The highest value of 41.43 ± 14.7, recorded at time 0, declined to 29.51 ± 

8.4 at time 6 hours and further declined to 16.65 ± 12.1 at 18 hours post mortality. 

The ratio at time 18 hours was significantly less than at time 0 hours. No further 

changes in the mean values were seen after 18 hours. Cu/Na ratios also decreased 
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significantly over time (F = 6.461, p = 0.003) from their highest value of 1.13 ± 0.5 at 

time 0 to the lowest value recorded at time 18 hours of 0.36 ± 0.1 after which the 

mean value of the ratios increased slightly to 0.55 ± 0.3 45 hours post-mortem. Post 

hoc tests grouped the final two readings separately to the initial reading. A similar 

pattern described the Cu/Mg ratios, decreasing from their highest value of 3.69 ± 1.3 

at time 0 to their lowest value of 1.02 ± 0.5 before showing a slight increase at time 

45 hours to 1.20 ± 0.7. The differences over time were significant (F = 4.824, p = 

0.011) and post hoc tests grouped the final two readings at time 18 and 45 hours 

separately from the initial reading. This pattern was again repeated for the Cu/Ca 

ratios where the highest value, recorded at time 0, was 0.61 ± 0.2 and the lowest 

value of 0.26 ± 0.16 was recorded at time 18 hours. The differences over time were 

significant (F = 4.939. p = 0.10) and the readings at time 18 and 45 hours post-

mortality were grouped separately to the value at time 0 after post-hoc analysis. 

Field Data  

Fish Kill Episodes  

Between 19 June, 1995 and 4 January, 2001,6 fish kill episodes occurred in 

Macquarie Harbour where 5 or more animals died from unknown causes and 

sufficient data were recorded for inclusion in this report (Table 5). Due to the history 

of the Mt Lyell Copper mining operations, copper poisoning was suggested as a 

potential cause of mortality. 
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Table 4.5  Cu and Zn levels in the gills, liver and muscle of salmonids from fish kill 

episodes in Macquarie Harbour, 1995 -2001, plus gill Cu/Zn ratios. All data are 

presented as means values with standard deviations in parentheses. 

Case n Gill Cu 

(pg.g"' W.w.) 

Gill Zn 

(pg.g-1 w.w.) 

Gill Cu/Zn 

ratio 

Liver Cu 

(pg.g-1 w.w.) 

Muscle Cu 

(pg.g-1 w.w.) 

953322 18 16.2 na na 325.5 na 

(9.6) (97.0) 

960843 10 5.97 na na 1669.5 na 

(1.0) (401.0) 

012421 10 5.47 1146.8 5.75 542.7 1.59 

(1.0) (517.8) (2.8) (134.5) (0.45) 

012800 10 2.54 755.1 4.27 753.1 1.08 

(0.52) (448.2) (2.2) (159.3) (0.43) 

012802 5 1.27 340.0 4.45 1047.3 0.38 

(0.64) (185.8) • 	(3.1) (185.6) (0.35) 

012803 10 1.46 668.2 4.92 830.0 0.32 

(0.80) (549.0) (8.8) (263.0) (0.33) 
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Tissue metal levels and gill Cu/Zn ratios  

Mean gill copper levels for the various fish kill episodes ranged from 1.27 ± 0.64 

gg.g-1 to 16.2 ± 9.6 lig.g-1 while mean gill zinc levels ranged from 340.0 ± 185.8 

gg.g-1 to 1146.8 ± 517.8 Cu/Zn ratios in the gills ranged from 4.27 ± 2.2 to 

5.75 ± 2.8. Hepatic copper levels ranged from 325.5 ± 97.0 to 1669.5 ± 401.0 

pig.g-1 while copper levels in muscle tissue ranged from 0.32 ± 0.3 gg.g-1 to 1.59 ± 

0.45 
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Discussion 

Laboratory Trials  

Moribundity was chosen as the preliminary end point of these trials and the point at 

which to transfer the animals to clean waters for the depuration period for two 

reasons. The first of these was to be sure the animals were acutely affected by the 

toxic conditions of their environment thereby mimicking a fish kill scenario and 

secondly as it enabled analysis of the relevance of the results as bio-markers for 

copper induced mortality. Although different levels of additional copper were 

required in each treatment to induce moribundity within similar time periods, our 

experimental method is in accord with the principles of the Biotic Ligand Model 

(B.L.M.) (Di Toro et al., 2001; Santore et al., 2001). The BLM has emerged as a 

powerful and probable mechanism for explaining metal toxicity. It predicts 

occurrence of mortality when a metal-biotic ligand complex at the gill's surface 

reaches a critical concentration, disrupting regulation of the blood ions at the gill 

epithelium. Mortality is thereby related to the level of metal bound at the gill surface, 

rather than the level of metal in the water column (Meyer et al., 1999). The amount 

of copper bound by the gills is considered primarily as a function of competitive 

interactions between the toxic metal species and other cations in the water column, 

and the available binding sites at the gill surface. In waters of higher ionic 

composition, the greater level of competitive interactions should provide greater 

protection against the effects of the toxic metal species (Pagenkopf, 1983). 
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As the freshwater treatment had the lowest ionic composition we expected the 

freshwater animals to record the highest levels of gill copper at time 0 hours and the 

lowest amount of copper to be bound by the 20 ppt treatment. Our prediction was 

supported by (Taylor et al., 2000) who found the maximum binding capacity of the 

gills of rainbow trout (B niax) decreased as water hardness increased. However our 

data do not support our prediction as the highest level of gill copper was recorded in 

the 10 ppt treatment. 

Wilson and Taylor (1993) found rainbow trout that were acclimated to 33% seawater 

(-12 ppt salinity) and exposed to 6.3 gmo1.1: 1  (400 ggL - 5 Cu suffered from 

impairment of their branchial ionoregulatory function. This was indicated by a 

significant increase in plasma Na and Cl. However, no effect was observed in animals 

acclimated to full strength seawater. The authors suggested the results of the 33% 

trial were due to gill permeability changes after displacement of surface bound Ca, 

whereas the animals in full strength seawater were buffered from any deleterious 

changes to the permeability of the gills by the higher concentrations of calcium 

present in the full strength seawater. Taylor et al., (2000) also suggested a role for 

calcium in regulating gill membrane permeability and the stability of membrane 

proteins which may lead to alterations in the binding affinity and the B( max) of the 

gills. 

Our data also found a greater toxic effect, as indicated by the levels of copper bound 

to the gills, in animals at levels of salinity close to isotonic to the animal's internal 
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environment, i.e. approximately 33% of seawater (Wilson and Taylor, 1993). 

However, if the calcium displacement argument is the main causative factor for the 

differences in the binding of gill copper, then the highest levels of copper would be 

found in the freshwater treatment. We believe physiological factors may be more 

important in these results. While freshwater animals require the active uptake of Na 

from the environment, marine animals must extrude Na across the gill epithelium 

(Evans, 1993; Karnaky Jr, 1998). Little is known about branchial iono-regulation in 

animals in an isotonic environment. 

At time t = 0, assuming there is negligible active transport of Na under isotonic 

conditions, the gill membrane may be modelled as the ion exchange sites of an ion 

exchange resin. An alternative explanation then may be posited. If sodium is being 

actively transported across a membrane (when the surrounding water is either hypo-

or hypertonic to the fish) it will elute copper from an ion-exchange site, and the 

copper will move in the direction of the Na ion movement. However in a system in 

equilibrium, i.e. where the level of Na ions is equal on each side of the membrane, 

there will be minimal Na movement. Under these conditions, Cu remains on the 

membrane and reaches the maximum concentration on the membrane. Such a 

mechanism where acute Na ion movement through a membrane elutes Cu ions from 

an exchange site would explain the maximum concentration of Cu on the gill 

membrane in the 10 ppt salinity treatment in these experiments. 
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The authors therefore believe the mechanistic approach of BLM may not account for 

the physiological changes in ion regulation at the gills when animals are acclimated 

to brackish or saline waters. Furthermore, the current model of copper toxicology in 

freshwater, being based primarily upon the disruptive effects of Cu on branchial 

sodium regulation is not suitable for marine and brackish acclimated animals where 

the mechanism of ion-regulation is opposite to that of freshwater animals. It is also 

noted that although different levels of copper were added to the various treatments to 

induce moribundity within the same time period, the difference in the ionic strength 

of the treatments due to the additional copper is neglible when compared to the 

changes in ionic strength due to the various salinities. 

From time 0, the copper levels in all treatments declined rapidly as the gill tissue 

equilibrated with the environment. The rate of depuration was most rapid in the 

freshwater treatment, having reached its minimum value in 6 hours while the two 

brackish treatments were slower in depurating and did not appear to approach 

equilibrium until 18 hours post-mortem. 

For the metals zinc, calcium and magnesium, the gill levels increased steadily during 

the depuration period in the 10 and 20 ppt brackish water treatments. This can be 

explained simply by equilibrium reactions at the gill surface with the aqueous 

environment. All three of these metals exist in brackish waters at considerably higher 

levels than the intra-cellular requirements of fish homeostasis. Once the animals are 
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dead and the epithelial integrity is lost, there will be a movement to equilibria of all 

the cellular components. 

Sodium provides a particularly succinct example of this effect (Fig 5). While all three 

groups of animals exhibit the normal range of sodium in the gills for fresh or brackish 

water fish, once the animal is deceased the sodium levels quickly stabilise at a level 

assumed to be in equilibria with their environment. Sodium levels are stable in all 

three groups within 18 hours of the death, whereas for calcium and magnesium, it 

appeared the gill tissue was still moving toward a final equilibrium value 45 hours 

post-mortem. 

It is noteworthy that the levels of the metals in the gill tissue did not equilibrate to the 

exact values of their environment, i.e. to the concentration of the surrounding waters. 

However, this may be explained by the association of the metals with the tissue of the 

gills. While the homeostatic processes that maintain the animal's ion concentrations 

are no longer active post-mortem, the physical properties of the proteins in binding 

the metals are still effective. Therefore the final equilibrated concentration of the 

metals associated with the tissue will be dependent of the binding affinity of the metal 

with the tissue and the concentration of the metal in the surrounding environment. 

Although the concentration of the metals in the tissue move towards the concentration 

of metal in the environment, they do not equal the concentrations of the metal in the 

environment. 
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Metal Ratios  

Previous work has demonstrated the potential of metal ratios in the gill tissue to act as 

biomarkers for exposure to acute levels of copper in freshwater fish (Carbonell and 

Tarazona, 1993; Daglish and Nowak, 2002) and also under conditions of mixed 

copper and zinc exposure (Daglish et al., in press). Copper ratios to the metals zinc, 

sodium and magnesium provided the most significant descriptors of copper exposure 

in freshwater. Data from this research support the use of gill metal ratios as a means 

of determining if copper toxicity is responsible for a fish kill in the period of time 

immediately post-mortem. However, it is important to note that the final ratio of gill 

metal levels in a deceased animal will not be the same as the basal level recorded in a 

live animal after exposure to copper. The levels of metals in the carcass will reflect an 

environmental equilibrium whereas the basal level in a live animal will reflect the 

homeostatic requirements of the animal. 

The Cu/Zn ratios of the freshwater fish at time 0 were significantly higher than in 

unexposed (control) fish from earlier studies in this laboratory and comparable to the 

levels of animals exposed to elevated ambient copper. (Daglish and Nowak 2002; 

Daglish et al. in press). Copper residues declined rapidly post-mortem whereas zinc 

levels did not alter significantly across the same period. Correspondingly the Cu/Zn 

ratios of the gills declined rapidly and significantly between time 0 and 6 hours after 

which no further decrease was recorded. The levels after 6 hour did not differ 

significantly from control groups of our earlier experiments (Daglish and Nowak 

2002; Daglish et al. in press). The Cu/Zn ratio may therefore be a useful indicator of 
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copper toxicity at the time of death and shortly thereafter, but within 6 hours the 

ratios would appear to return to levels seen in unexposed animals. As a biomarker 

this ratio is therefore useful in moribund animals that have moved away from a 

contaminated water body, or have recently died, but will have limited applicability 

after death. 

In the 10 ppt and 20 ppt trials the rate of depuration is less rapid and the Cu/Zn ratios 

do not plateau until 18 hours after death, providing a larger time frame in which the 

ratios may be used for identifying a prior copper exposure. In both these treatments 

the zinc levels of the gill tissue increased over time in the carcasses as equilibrium 

was established between the tissue and environment which would contribute to the 

slower change in the ratios. There may also be a 'preservative effect' due to the 

higher saline environment (Munday and Jaisankar 1998). The ratios appear to have 

plateaued by 45 hours in both treatments. 

The Cu/Na ratios reflect clearly the effect of the environment on the tissue metal 

levels. In the freshwater treatment, the ratios are stable through the first 6-hour period 

and then increase four to five-fold over the next 39 hours as the sodium within the gill 

tissues moves into the surrounding waters. While the changes are significant, the 

utility of this ratio as a biomarker is limited by the magnitude of the change in sodium 

levels, which may be sufficient to mask the effects of the altered levels of copper in 

the gills. In context of our ion exchange theory, it is necessary to consider why Cu is 
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not also 'eluted as the sodium moves into the environment. Two plausible 

explanations may be considered. Firstly, osmosis, principally involving bulk sodium 

movement, would dominate the equilibration of the tissue with the surrounding 

environment with the displacement of copper occurring subsequent to this ionic 

movement. Secondly, the Cu and Na ions will display different binding affinities to 

the gill tissue. Copper binding to proteins may be characterised by its ability to 

chelate to multi-attachment sites and will therefore be less easily detached from the 

tissues after death than the mono-valent sodium. 

The opposite effect upon Cu/Na ratios was seen in the 20 ppt treatment to that in the 

0 salinity freshwater treatment. As the sodium levels of the tissue equilibrated with 

their higher saline environment the ratio of copper to sodium decreased significantly. 

This can again be described by the osmotic adjustment of the tissue to its 

environment. According to our ion exchange theory no alteration would occur to the 

copper levels of the gill tissue, which can be seen by the lack of significant statistical 

effect upon Cu concentrations in the gills. No significant change to the Cu/Na ratios 

occurred in carcasses from the 10 ppt treatment although a slight decrease was 

observed in the mean values as is consistent with our previous postulation. 

The ratios of copper to magnesium were previously suggested as indicators of copper 

exposure, particularly in situation mixed metal exposure (Daglish et al. in press). The 

Cu/Mg ratios in these experiments also showed significant effects over time, in all 
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three treatments. That the magnesium levels in the gill tissues of the carcasses 

increased in the two brackish treatments but were stable in the freshwater treatment is 

also reflected by the rate of change of the ratios. The freshwater treatment alters 

significantly between time 0 and 6 hours while there is no significant change until 

time 18 hours for the two brackish treatments. The Cu/Mg ratio may therefore 

provide a more useful indicator of copper induced mortality than Cu/Zn. 

Macquarie Harbour 

Muscle tissue copper levels  

The levels of copper in the muscle tissue of salmonids from fish kill episodes in 

Macquarie Harbour were comparable to studies of copper levels in the axial muscle 

tissue of cultured channel catfish, ktalurus punctuatus, from the Mississippi Delta, 

U.S.A. Mustafa and Mederios (1985) reported copper levels between 0.6 and 4.6 

lig.g 1  of muscle tissue with a mean value of 2.3 pg.g -1  in animals taken from a catfish 

processing plant in the Mississippi Delta. Nettleton et al. (1990), who also examined 

catfish from a processing plant in the Mississippi Delta, found the copper levels of 

axial muscle tissue ranged from 0.3- 1.2 jtg.g with a mean value of 0.6 gg.g -I . A 

third report of copper levels in muscle tissue of farmed and wild caught channel 

catfish, from the U.S. Department of Agriculture handbook (U.S.D.A., 1987) reported 

concentrations of 0.94 gg.g-I . In the current study the range of values was 0.32 — 1.59 

with a mean value of 0.84 gg.g-I . This compares favourably with the U.S.D.A. 

report and is intermediate to the two other studies quoted. 
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The values for copper levels in muscle tissue from our field studies were higher than 

those of Griffin et al., (1997) who exposed channel catfish to three levels of 

waterborne copper (mean levels of dissolved copper of 220, 354 and 465 lig.L -1 ) for 

ten weeks to examine the effects of remedial copper sulphate treatments in farm 

animals on the copper levels of axial muscle tissue in animals raised for human 

consumption. Their research showed no change in the recorded copper levels for any 

treatment over a 10-week period prompting the authors to conclude that remedial 

treatments of copper sulphate do not pose a health risk for consumers. Griffin et al., 

(1997) noted their treatments were at higher dosages and for longer duration than 

those normally used for remedial treatments. Given Macquarie Harbour animals may 

be exposed to continually fluctuating, but generally higher than normal, levels of 

environmental copper, and that our results compare favourably with those quoted 

above, it may be safe to assume the levels of copper present in Macquarie Harbour do 

not pose a health risk to consumers of animals farmed in the area. It is important to 

note however, that Macquarie Harbour has an unusual salinity profile and that the fish 

in the more saline environment may be expected to benefit from the ameliorative 

effects of the increased competition for binding sites at the gills. 

Gill Copper Levels  

The mean values of copper recorded in the gills of the animals from Macquarie 

Harbour were all higher than the levels recorded at time zero for the freshwater 

treatment and the 20 ppt treatment in the experimental data set. Gill copper levels for 

the 10 ppt treatment results are lower than all of the Macquarie Harbour results 
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except the lowest recorded case. While using the copper concentrations in the gills as 

indicators of exposure may be problematic due to the high levels of naturally 

occurring variation, these data demonstrate the animals from the fish kills recorded in 

Macquarie Harbour had levels of copper complexed to their gills that were 

comparable or higher than the levels of copper that induced moribundity in the 

laboratory trials. This strongly suggests that copper may have had a causative role in 

these fish kills. However, the animals from the laboratory trials were previously 

unexposed to elevated ambient copper levels. Animals from Macquarie Harbour may 

have been exposed a priori to elevated levels of copper in the water column 

throughout the period of their husbandry. The phenomenon of acclimation, where an 

animal is more tolerant of a toxicant after a previous non-lethal exposure is well 

documented for copper toxicity (Dixon and Sprague, 1981b; Grosell et al., 1997; 

McDonald and Wood, 1993). However some studies of chronic exposure did not find 

any change in copper accumulation (Dixon and Sprague, 1981a; Lauren and 

McDonald, 1987b). 

Metal Ratios  

The Cu/Zn ratios in the Macquarie Harbour animals were considerably lower than the 

values recorded for the laboratory trials and also much lower than in previous studies 

that examined Cu/Zn ratios as biomarkers in freshwater (Carbonell and Tarazona, 

1993; Daglish and Nowak, 2002; Daglish et al. in press). This is due to the high 

levels of zinc recorded in the gills of the Macquarie Harbour animals, which were 

also substantially higher than the levels recorded in any of the laboratory trials or 
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those found in the literature, for both exposed and unexposed animals (Galvez et al. 

1998; Mount 1964). 

The unusually high levels of zinc in the gills of the Macquarie Harbour animals are 

difficult to explain, as zinc does not accumulate significantly at the gill surface 

(Sorensen, 1991) in the same manner as copper, but passes through the calcium 

channels, as a calcium analogue (Markich and Jeffree, 1994). While it is well 

documented that Macquarie Harbour has suffered from chronic metal pollution 

(Carpenter et al., 1991; Koehnken, 1996; Stauber et al., 1996) there are no records of 

zinc levels covering the time period of the fish kill episodes and further investigations 

would be required to understand the causes of the levels of zinc recorded in the gills 

of the field animals. However, in contrast to the laboratory trials these data suggest 

Cu/Zn ratios may not be applicable as biomarker in animals acclimated to brackish 

waters. Alternatively, the animals may have died of other causes. However, the 

significant differences between the laboratory and the field studies demonstrate the 

need for a detailed understanding of the local environmental conditions when 

assessing the data gathered from the field. 

In conclusion, gill copper loads of rainbow trout at the time of death were greatest in 

animals in an isotonic environment and lowest in animals in a hypertonic 

environment. We proposed an 'ion exchange' model to account for this observation. 

While the BLM demonstrates mortality may be predicted from the copper load of the 

gills in freshwater animals, the current model may require revision to be suitable for 
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isotonic and hypertonic environments where different physiological mechanisms are 

involved in ion regulation. Also gill metal ratios may be useful as biomarkers in the 

few hours immediately after death in freshwater animals. However, by 6 hours post-

mortality the osmotic adjustment of the tissue to the environment limits the 

usefulness of this diagnostic tool. In waters of higher salinities the osmotic 

adjustment is slower and the metal ratios may be practical for up to 18 hours. Finally, 

examination of muscle tissue from farmed animals from fish kills which occurred in a 

brackish water body known to have regularly elevated copper levels did not pose any 

apparent heath risk to consumers. They did, however, record higher zinc levels in the 

gills than expected from the laboratory trials and other literature. This precluded the 

utility of the Cu/Zn ratios as a diagnostic tool for the cause of the deaths and 

highlighted the need for knowledge of local water quality parameters in fish kill 

episodes. 
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Chapter 5 Dissolved organic carbon in brackish waters 

reduces copper binding to the gills of rainbow trout 

(Oncorhynchus mykiss). 

Submitted for publication to Archives of Environmental Contamination and 

Toxicology as `Daglish, R. W., B. F. Nowak & T. W. Lewis, Dissolved organic 

carbon in brackish waters reduces copper binding to the gills of rainbow trout 

(Oncorhynchus mykiss).' 
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Abstract 

Rainbow trout were exposed to nominal additions of 0, 20, 40, 80, 200 and 400 

of waterborne copper in brackish waters of 14 ppt salinity containing 3 different 

levels of dissolved organic carbon (2.0, 4.7 and 22.8 mg1:5. The experiments were 

run for 12 hours. Total and ASV labile copper were measured in the treatments and 

the concentrations of Cu, Zn, Ca, Mg and Na in the gills of the animals were 

measured at the end of the trials. Gill Cu was significantly different in all treatments 

indicating the capacity for DOC to prevent Cu binding to the gill epithelium of the 

fish in brackish waters. ASV-labile copper showed a bi-phasic relationship to total 

copper measurements in the two lower DOC treatments indicating a saturation of 

binding sites prior to an increase in 'free' copper. The high DOC treatment was 

monophasic in its relationship to total copper suggesting the binding capacity of the 

DOC was not saturated. ASV-labile copper did not adequately describe the binding of 

the bioavailable portion of the copper to the fish gills. 



Introduction 

To date there has been little research examining the effects of elevated ambient 

copper concentrations on teleosts in marine or brackish waters. Most studies have 

investigated the effects of metals upon branchial ion regulation and plasma 

electrolyte concentrations (Stagg and Shuttleworth 1982a; Stagg and Shuttleworth 

1982b; Taylor etal. 1996; Wilson and Taylor 1993a; Wilson and Taylor 1993b), the 

effects of copper-treated pens in fish farms on animals produced for human 

consumption (Lewis and Metaxas 1991; Peterson etal. 1991) and levels of metals in 

the tissues of natural populations of animals that may be affected by discharges from 

industry. (Lewis et al. 2002; Powell and Powell 2001; Wong et al. 2000) Reports 

from Nowak and Duda (1996) and Stauber et al. (1996) investigating copper toxicity 

in Macquarie Harbour, in western Tasmania, and other reports from Westerlund et al. 

(1998) and Kurilenko et al. (2002) are among the few investigations of copper 

toxicity to teleosts in marine and brackish environments. 

In contrast, the toxicity of copper to teleosts in freshwater has been well elucidated. 

Mortality results from the inhibition of the active transport of sodium across the gills 

caused by competitive interactions with the copper ion. The depletion of plasma 

sodium is exacerbated by losses across the inter-cellular tight junctions within the 

gills due to increased ionic permeability (Lauren and McDonald 1985). Copper 

toxicity is more closely related to the concentration of the free copper ion, Cu2+, in 

the water column than total dissolved copper (Campbell 1995). However, the Biotic 

Ligand Model (BLM) has also determined that mortality is dependent on the total 
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amount of copper bound at the gills, rather than the concentration of either total 

copper or free copper in the water column. (Di Toro et al. 2001; Paquin et al. 2002; 

Santore etal. 2001) 

Speciation of copper in natural waters, and therefore the proportion of bioavailable or 

free copper, may be affected by inorganic factors that alter chemical speciation such 

as pH, alkalinity and hardness. Alternatively, organic factors may reduce the 

bioavailable fraction of copper through complexation of the copper by dissolved 

organic matter or adsorption to suspended solids and particulate matter in the water 

column (Erickson et al. 1996; Hollis et al. 1997; Lauren and McDonald 1986; 

McGeer et al. 2002; Pagenkopf 1983; Playle etal. 1993a; Playle et al. 1992). 

Dissolved organic carbons (DOC) such as humic and tannic acids may be a 

prominent factor in reducing copper toxicity in natural water bodies and have 

received significant attention in recent laboratory based studies of copper toxicity in 

freshwater (Erickson et al. 1996; Hollis et al. 1997; Lorenzo et al. 2002; McGeer et 

al. 2002; Playle et al. 1993a). It is generally agreed that DOC has the ability to 

complex copper thereby reducing copper toxicity to teleosts by decreasing the 

concentration of the toxic Cu ion that may bind to the fish's gills. 

Metal ions in seawater are maintained in their ionic state unless modifying organic or 

inorganic factors are present to either complex or adsorb the metals. The higher ionic 

composition of seawater should result in greater competition between the different 

ions for binding sites at the gills (Pagenkopf 1983; Playle 1998). This may ameliorate 
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metal toxicity so that heavy metals are less toxic in seawater than in freshwater at the 

same concentrations. Experimentally determined LC5Os for copper in marine studies 

have been higher than in freshwater studies (Eisler and Gardner 1973; Taylor et al. 

1985). 

As copper is a disruptor of sodium branchial regulation it may still have a deleterious 

effect upon branchial ion regulation in marine and euryhaline teleosts (Taylor et al. 

1996; Wilson and Taylor 1993a; Wilson and Taylor 1993b). In a saline or brackish 

environment hyper-osmotic to the animal's internal milieu, it is necessary for teleosts 

to prevent excess sodium from the environment moving across the gill epithelium 

into the animal. Sodium regulation by the gills is principally to extrude excess 

sodium from the animal's internal environment, i.e. opposite to that of freshwater 

animals (Evans 1993; Karnaky Jr 1998). Daglish et al. (submitted for publication) 

have therefore argued the current BLM may not incorporate the different 

physiological requirements of euryhaline and marine fish. 

As it is now established that dissolved organic carbon will reduce the toxicity of 

copper in freshwater by reducing the concentration of free copper available to bind to 

the gill epithelium, it was decided to investigate if a similar effect would be found in 

brackish waters. Macquarie Harbour on the western coast of Tasmania is high in 

naturally occurring DOC and water from the harbour were used as part of this study 

to provide both brackish waters with DOC as well as a field based element to the 

study. 
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Macquarie Harbour  

Macquarie Harbour, located on the western coast of Tasmania, is approximately 32 

km long and 8 km wide with an area of 276 km 2  and a mean depth of approximately 

20 m. There is a narrow opening to the Southern Ocean at the north-western corner of 

the harbour. Fresh water high in dissolved organic carbons from the dense riparian 

vegetation flows into the harbour from the King River in the north-eastern area of the 

harbour and the Gordon-Franklin River system in the south-eastern section. Tidal 

movements of the harbour are generally less than lm. 

The water of Macquarie Harbour is distinctly stratified into two layers. The surface 

waters of the harbour, defined as 0 - 5 m, are characterised by highly variable 

salinities and high levels of organic carbons in the form of tannic and humic 

substances giving the surface waters a distinctive brown "tea-like" appearance. The 

remainder of the water column is saline. The variability of the surface water's salinity 

and organic content is mainly due to rainfall, changes in the flow of freshwater from 

the two river systems and mixing by wind (Carpenter et al. 1991; Koehnken 1996). 

Waters collected from Macquarie Harbour for this study were taken from the surface 

layer. 

The aim of this experiment was to examine the effect of different levels of dissolved 

organic carbon on the capacity of copper to bind to the gills of rainbow trout in 
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brackish waters and to determine if increased levels of DOC will reduce the amount 

of bound copper at the gill epithelium. 
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Methods and materials 

Animals  

Rainbow trout (n = 144; mean wt 42.5g; SD = 12.0 g) were obtained from the 

Aquaculture Centre, University of Tasmania. The animals were acclimated to the 

experimental water salinity in a 4 000 L recirculating tank supplied with town water 

supplemented by the addition of filtered seawater. Water quality parameters were: 

Salinity = 14 ppt, = 13.2 ± 0.2 °C, pH = 7.6 ± 0.1, D.O. = 8.9 ± 0.4 mgL -I , NO2 -  < 

0.1 mgL -I , NO3 -  < 0. 02 mgL -I . Animals were transferred to 60 L tanks for the 

experimental trials. 

Experimental Design  

Three trials were run, the first using 'clean' brackish water (CBW) prepared from a 

mixture of filtered seawater and local town water. The second trial (MH) was run 

using water from Macquarie Harbour, Tasmania, which had low levels of naturally 

occurring DOC. Water for the last trial (HHA) was prepared by soaking button grass 

(Gymnoschoenus sphaerocephalus) in water from Macquarie Harbour for 4 days by 

which time the water had turned a deep 'tea' colour from the organic carbons being 

released. Button grass was used due to mimic the creation of the tannins in the rivers 

feeding Macquarie Harbour, thereby producing organic carbons equivalent to those 

found occurring naturally in Macquarie Harbour. Six concentrations of copper, 

nominally 0, 20, 40, 80, 200 and 400 pgL -1  were run in the CBW and MH trials while 

5 treatments, nominally 0, 20, 80, 200 and 4001AgL -1 , were run in the HHA trial. 

Total measured copper and Anodic Stripping Voltammetry (ASV) copper 

142 



concentrations are given in table I. Each trial was run for 12 hours as previous work 

had shown gill binding sites for copper were saturated by this period of time 

(Daglish, unpublished data). 

The experiments were conducted in 60 L plastic tanks with 8 fish randomly assigned 

to each tank. Water samples were taken from each copper concentration before and 

after each experiment and conditions for each of the trials were as follows: Group 1 

(CBW, n = 12)); T = 17.5 ± 0.1 °C, D.O. = 9.90 ± 0.30 mgL -1 , DOC = 2.0 ± 0.0 mgL -

1 , Total NH3 <0.1 mgL -1 , NO2 <0.1 mgL 1 , NO3 <0.02; Group 2 (MH, n = 12); T = 

18.1 ± 0.3 °C, D.O. = 8.9 ± 0.3 mgL -1 , DOC = 4.7 ± 0.5 mgL -1 , Total NH3 <0.1 mg1_, -  

1  , NO2 <0.1 mgL -1 , NO3 <0.1; Group 3 (HHA, n = 10); T = 17.6 ± 0.2 °C, D.O. = 9.7 

± 0.2 mgL -1 , DOC = 22.8 ± 0.4 mgL -1 , Total NH3 <0.1 mgL -1 , NO2 <0.1 mgL -1 , NO3 

<0.02. 

At the end of the trials animals were euthanased by adding 1 mL of clove oil to 8 

litres of water from the treatment tank. The animals were then weighed and the gills 

removed. Gills were placed immediately on ice prior to being stored at -20°C until 

being prepared for metal analysis. 

DOC Analysis  

Analysis of DOC was conducted by Australian Government Analytical Laboratories 

(AGAL). Samples were collected in 200 mL HDPE containers and sent immediately 

upon collection to AGAL. The concentrations of Total Organic Carbon (TOC) and 
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Dissolved Inorganic Carbon (DIC) were determined using a High Temperature 

Dohrman DC-190 Elemental Analyser. The concentration of DOC is equal to TOC — 

TIC. 

Metals Analysis  

Total metal concentrations in the experimental treatments and the gill filaments were 

determined using a Varian Spectra AA 300 Atomic Absorption Spectrometer (AAS). 

The 'free' copper ion levels of each treatment's water were measured by Anodic 

Stripping Voltammetry (ASV copper) using a Metrohm 646 VA Processor with a 

hanging drop mercury electrode. 

Water samples were collected at the start and end of each trial in acid-washed 200 mL 

high density polyethylene containers. ASV copper analysis was performed 

immediately after the collection of the samples. Twenty millilitres of each sample 

was pipetted into a clean glass sample cell for analysis. Samples were purged with 

nitrogen for 5 seconds before deposition at -1.15 V (vs. saturated calomel) for 60 

seconds. The potential was scanned at 10mVsec -I  to 0.140 V. A standard curve of 

peak height vs. free copper was constructed for copper additions in filtered seawater 

ranging from 0 to 400 ligU I  [Cu2+] (r2  = 0.981). 

The [Cu 2 ] of the various treatments were determined by their peak height from the 

standard curve of the seawater plot. The retained portion of the water samples were 
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then acidified with a few drops of concentrated HNO3 for total copper analysis. AAS 

analysis of the samples was conducted within 24 hours of collection. 

Gill filaments were dissected from the arches and digested in 5 mL of concentrated 

HNO3 in Teflon digest vessels in a CEM MDS-2000 microwave digester (2.5 min at 

630W; 30 mins at 500 W). Between 50 and 200 mg of filamentous tissue was used 

for each digest. Digest vessels and glassware were washed in 10% HNO3 prior to use. 

Copper, zinc and magnesium were analysed by atomic absorbance using an 

air/acetylene flame. Calcium analysis was performed using a nitrous oxide/acetylene 

flame and sodium was analysed by emission spectrometry with an air/acetylene 

flame. All analyses were performed using a Varian AA 300 Atomic Absorption 

Spectrometer. Plasma samples for calcium, magnesium and sodium were diluted 1:20 

with deionised water prior to analysis. Standards were run prior to and after each set 

of analyses to monitor possible drift during analysis. Samples of the gills were spiked 

with 1 mgL-I  of Cu2+  and recovery rates were determined. These ranged from 98% to 

106%. National Institute of Standards and Technology bovine liver samples (NIST 

1577b) were run to verify the laboratory methods. All data presented are for wet 

weight (w/w) of tissue. 

Statistical Analysis  

The concentrations of the various metals in the gills were analysed in each water 

quality group by multivariate analysis to determine if there were significant 

differences between treatments. Differences between treatments were considered 
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significant at the a = 0.05 level using Pillai's Trace. All data were tested for equality 

of error variance using Levene's Test. Normality of data was confirmed using pp 

plots and histograms of the variables. 

Multivariate analysis was also conducted for the concentration of the various gill 

metals between groups, based on the concentration of total copper in the water 

column. Due to variations in the total measured levels of copper in the different water 

quality groups, a low, mid and high copper concentration was chosen for comparisons 

between each group. These were treatments 1, 3 and 5, being 29.5 110; 1 , 169.7 ggL -1  

and 295.3 ggL -1  from group CBW; treatments Ctrl, 4 and 5, being 45.7 jigL, 154.6 

ggL-I  and 271.9 ugL 1  from group MH; and treatments 1,4 and 5, being 39.7 tigU I , 

167.9 ItgL -1  and 318.6 pgU i  from group HHA (Table 1). 

The levels of ASV copper were determined as a percentage of the total copper for all 

treatments in each of the three water quality categories. Univariate analysis of the 

three groups was performed to determine if significantly different levels of free 

copper were available between the groups. 

Post hoc analyses were performed using Tukey's test. All statistical analyses were 

performed using the software package SPSS v 10.0. 
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Table 5.1  Total and ASV Cu levels and the percentage of ASV Cu against total Cu 

for all experimental treatments. 

Trial Treatment Total [Cu] ugU i  ASV [Cu] ugl.:' AS 	Cu 

CBH 

Ctrl 15.4 12.1 0.79 

1 	' 29.5 22.9 0.77 

2 83.2 35.8 0.43 

3 169.7 76.0 0.45 

4 295.3 181.3 0.61 

5 420.8 323.7 0.77 

MH 

Ctrl 45.7 13.8 0.30 

1 67.4 20.0 0.30 

2 88.7 25.2 0.28 

3 95.5 40.0 0.42 

4 154.6 53.1 0.34 

5 271.9 141.6 0.52 

HHA 

Ctrl 20.3 6.2 0.31 

1 39.7 15.2 0.38 

3 76.7 21.9 0.29 

4 167.9 37.6 0.22 

5 318.6 80.1 0.25 
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Results 

Between Subject Analysis  

Multivariate analysis with DOC levels as the fixed factor and the gill concentrations 

of copper, zinc, calcium, magnesium and sodium as the dependent variables were 

found to be significant as determined by Pillai's Trace (F = 12.025, d.f = 134, p < 

0.001). 

Post hoc analysis using Tukey's Test differentiated between all three groups for 

copper concentrations in the gills. The highest copper concentrations in the gills were 

found in the group CBW being 1.72 ± 1.17 	while the lowest concentration of 

0.34 ± 0.16 mg -I  was in the group HHA. The group MH had a median value of 0.92 

± 0.64 psg-I  of gill copper (Fig 1). 

Calcium similarly separated into three distinct subsets upon post hoc analysis. The 

highest concentration of calcium in the gill tissue, of 449.9 ± 152.7 ggg -I , was found 

in the group CBW, while the lowest concentration of 231.6 ± 65.3 ga l  was in the 

group HHA. The group MH had a median value of 359.9 ± 155.0 psg -I  of gill 

calcium 

For the metals zinc, magnesium and sodium, post hoc analysis separated the groups 

into two subsets. The highest zinc concentration of 8.50 ± 3.8 Rgg-I  were in the gills 

of the animals from the group CBW, which was significantly different to the lowest 

concentration of gill zinc of 5.54 ± 4.2 pgg -I  in the group HHA. The gill zinc 
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concentration of MH, 7.85 ± 3.1 ugg -i , was not significantly different to either of the 

other groups. 
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Fig 5.1 Mean and standard deviations of Cu concentrations in the gills of rainbow 

trout exposed to elevated ambient copper in brackish waters with three differing 

concentrations of dissolved organic carbon. DOC concentrations in the treatments 

were; CBW = 2.0 ± 0.0 mgL-1 , MH = 4.7 ± 0.5 mg1: 1 , DOC = 22.8 ± 0.4 mgU l . 

Homogenous subsets are indicated by lower case letters. 
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The highest magnesium concentration was found in the gills of the MB group; 54.67 

± 11.4 ptgg-I . This was significantly greater than the lowest concentration of 37.59 ± 

9.8 pgg-1  recorded in the gills of the animals from the group HHA. The concentration 

of magnesium in the third group, CBW, was 45.56 ± 19.3 lige which was not 

significantly different to either other group. 

The highest sodium concentration of 349.9 ± 52 lige was recorded in the gills of the 

group MH. This was significantly greater than either of the other groups, the 

concentrations being 254.5 ± 62 ggg -1  for the group CBW and 255.9 ± 38 1.1gg 1  for 

the group HHA. 

ASV Cu  

A significant difference was observed between the three groups for the fraction of 

ASV copper vs total copper (F = 13.705, d.f. = 2, p < 0.001). Post hoc analysis using 

Tukey's test separated the CBW treatment from the HHA and MH treatments. The 

mean percentage of the ASV Cu fraction for the CBW was 63.7 ± 16.6% whereas the 

fraction of ASV Cu in the MH and the HHA treatments were 36.0 ± 9.3% and 29.0 ± 

6.1% respectively (Fig 2). 
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Fig 5.2 Total measured Cu vs ASV-labile Cu in waters with 3 different levels of 

DOC: CBW, DOC = 2.0 ± 0.0 mgL -I ; MH, DOC = 4.7 ± 0.5 mgL -I ; HHA, DOC = 

22.8 ± 0.4 mgL -I . Single experimental readings only. 
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With-in Subject Analysis  

Group 1 — 'Clean' Brackish Water (CBW)  

After 12 hours exposure to 5 levels of waterborne copper in clean brackish water at 

14 ppt salinity, multivariate analysis showed significant differences in the copper 

residues of the gill filaments of the rainbow trout (F = 1.806, d.f. = 25, p = 0.014). 

The highest reading of copper residues was in treatment 5, the mean value being 3.07 

± 1.3 pg.g -1  of tissue while the lowest recorded mean value was 0.86 ± 0.5 gg.g1  of 

tissue in the control treatment. Post hoc analysis using Tukey's Test separated the gill 

copper concentrations into two groups with the control group and treatment 1 being 

autonomous of treatment 5 (Fig 3). 

No other significant differences were recorded between the different treatments for 

any of the other metal concentrations measured in the gill filaments. Mean values and 

standard deviations were as follows: Zn 8.07 ± 3.8 pg.g -1  of tissue; Ca, 422.4 ± 146 

pg.g-I  of tissue; Mg, 44.6 ± 14 pg.g -I  of tissue; and Na, 248.9 ± 61 pg.g -I  of tissue. 

Group 2 — Macquarie Harbour water (MH)  

After 12 hours exposure to 5 levels of waterborne copper in water from Macquarie 

Harbour at 14 ppt salinity and a mean level of 4.7 ± 0.5 mgL' I  of naturally occurring 

DOC, multivariate analysis showed significant differences in the copper residues of 

the gill filaments of the rainbow trout (F = 2.624, d.f. = 25, p < 0.001). The highest 

reading of copper residues was in treatment 5, the mean value being 1.53 ± 0.36 1.tg.g" 

I 	‘-• 	 - 	r of tissue while the lowest recorded mean value 0.17 ± 0.1 1.1.g.g I  of tissue was 
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recorded in treatment 1. 
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Fig 5.3 Mean and standard deviation of Cu concentrations in the gills of rainbow 

trout exposed to elevated ambient copper in 'clean' brackish water (CBW). 

Homogenous subsets are indicated by lower case letters. 
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No other significant differences were recorded between the different treatments for 

any of the other metals measured in the gill filaments. Mean values and standard 

deviations for the values of all the combined treatments were as follows: Zn 8.11 ± 

4.1 gg.g -1  of tissue; Ca, 357.7 ± 153 lig.g -1  of tissue; Mg, 53.5 ± 11 gg.g -I  of tissue; 

and Na, 341.1 ± 51 gg.g -  of tissue. 

Post hoc analysis using Tukey's Test separated the copper levels into three subsets 

with the control group and treatments 1 and 2 being autonomous of treatment 4. 

Treatment 5 also was significantly different to treatment 4 (Fig 4). 

Group 3 — High Humic Acid (HHA)  

After 12 hours exposure to 5 levels of waterborne copper in brackish water at 14 ppt 

salinity in which button grass was soaked to increase the mean level of DOC to 22.8 

± 0.4 mgL -I , multivariate analysis showed significant differences in the copper 

residues of the gill filaments of the rainbow trout (F = 1.719, d.f. = 25, p <0.036). 

The highest gill copper concentration was in treatment 5, the mean value being 0.397 

± 0.13 1.1g.g -1  of tissue while the control group of animals recorded the lowest mean 

value 0.192 ± 0.06 gg.g 1  of tissue. 

No other significant differences were recorded between the different treatments for 

any of the other metals measured in the gill filaments. Mean values and standard 

deviations for the values of all the combined treatments were as follows: Zn 5.06 ± 

3.9 lig.g 1  of tissue; Ca, 224.2 ± 61 Rg.g 1  of tissue; Mg, 36.6 ± 81.1g.g -1  of tissue; and 
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Na, 262.4 ± 39 jig.g' i  of tissue. Post hoc analysis using Tukey's Test separated the 

copper levels into two subsets with the control group being autonomous of treatment 

5 (Fig 5). 

157 



c•Mlicior 
***:+1 C.:•• ••••:, 

••; 

Fig 5.4 Mean and standard deviations of Cu concentrations in the gills of rainbow 

trout exposed to elevated ambient copper in Macquarie Harbour Water (MH). 

Homogenous subsets are indicated by lower case letters. 
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Fig 5.5 Mean and standard deviations of Cu concentrations in the gills of rainbow 

trout exposed to elevated ambient copper in brackish water with high levels of 

dissolved organic carbon (DOC). Homogenous subsets are indicated by lower case 

letters. 
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Discussion 

The results of these experiments clearly demonstrate that increased levels of 

dissolved organic carbon will reduce the amount of copper that binds to the gill 

epithelium of rainbow trout in brackish waters. This reduction may be attributed to a 

reduction in the fraction of bio-available copper i.e. free Cu 2+  ion. 

For the treatments CBW and MH it can be seen from Fig 2 that the relationship 

between the two forms of measured copper is biphasic whereas the treatment HHA is 

essentially monophasic. The biphasic shape in the first two treatments suggests the 

adsorption or binding of copper by complexing agents in the water column, prior to a 

saturation of the available binding agents. This occurs to a lesser degree in the 

treatment CBW and may be due to the presence of secreted proteins from the animals 

such as mucous, and also the formation of various copper species with in the brackish 

matrix. That the proportion of bound copper is less in the MH treatment suggests the 

complexing capacity of the naturally occurring dissolved organic carbons. The 

monophasic nature of the HHA treatment indicates the high levels of dissolved 

organic carbons are yet to reach their saturation point. 

In the treatment MH there is a sharp increase in the proportion of ASV copper from 

25 to 401.1gU l . This suggests the possibility of different complexing sites with 

differing binding affinities within the DOC. As dissolved organic carbon is a 

collective term for many different long-chain organic acids that are susceptible to 

degradation, it is feasible various binding potentials exist among the organic acid 
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components. In titrations of Cu against dissolved organic matter isolated from 

wastewaters, Ma et al. (2001) isolated three separate fractions of organic carbons, 

being humic acid, fulvic acid and a hydrophilic component. The binding 

characteristics of these fractions were based on a two-site discrete ligand model. The 

primary binding sites were less stable, interacted rapidly with copper and were 

associated with carboxylic groups in the DOC. The secondary binding sites were 

smaller and had a higher conditional stability constant. Ma et al. (2001) also found 

the hydrophilic portion of the DOC had different binding characteristics to the humic 

and fulvic acids, and proposed the predominating Cu-binding functional groups may 

be different between these portions. These findings suggest the rapid shift in the 

ASV-labile Cu in the MH treatment may be due to the copper binding to different 

sites of the dissolved organic carbon. However, no similar shift occurred in the HHA 

treatment. As there was a five-fold increase in the level of DOC in the HHA 

treatment, the binding sites may not be saturated. Also, the distance between 

measured points could easily mask such a shift. Alternatively the sudden change in 

the MH treatment may result from an anomaly within the data collected. 

Regression analysis of total copper to gill copper provided a better indication of gill 

binding capacity than ASV-labile copper to gill copper in all three treatments. This is 

a surprising result given the obvious decrease in the proportion of 'free' copper as 

measured by ASV methods. A potentially confounding aspect of these experiments is 

the use of a static experimental system. As fish are continually producing and 

sloughing off mucus there is the potential for the glyco-protein mucus matrix in the 
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water column to affect the copper speciation in the experimental system. We may 

conjecture that mucus production would bind some fraction of the total copper 

present in the water column but it is difficult to predict the exact effect of the mucus 

upon the dynamic interchanges between species of copper in a brackish environment. 

It is, however, notable that there are numerous potential interactions between the 

DOC, the gill epithelium, mucus in the water column, the fish's bodies and the sides 

of the containers, all of which will adsorb some fraction of the waterborne copper and 

act as a pool of potentially exchangeable copper within the system. A more simple 

solution would be to use a flow-through system for experiments requiring the 

measurement of the subtle chemical states of copper speciation, thereby removing 

excess mucous as from the system as it is produced. This may not always be possible, 

as in these experiments, due to the logistics of transporting large volumes of natural 

waters. 

Stauber et al. (1996) and Eriksen et al. (2001) both found ASV copper overestimated 

the toxicity of copper to the algae Nitzschia closterium in experiments conducted in 

Macquarie Harbour waters. Stauber et al. (1996) discussed the probability that the 

ASV-labile proportion of copper also includes inorganic and organic complexes that 

can disassociate at the ASV electrode and states that the ASV-labile portion of the 

copper is not necessarily comparable to the bio-available fraction of copper in the 

water column. This argument also highlights the ambiguity of the term tioavailable'. 

The binding constants for different biotic forms are not likely to be comparable; for 

example, the binding constant for copper to the external wall of an algal cell and the 
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epithelium of fish gills. While ionic copper is assumed to be bioavailable due to its 

unbound or 'free' status other copper species may also be available to marine life. 

However, our results demonstrate that ASV-labile copper is not a suitable indicator of 

the bioavailable fraction of water-borne copper for rainbow trout in brackish waters. 

Of the other metals measured in the gills of the rainbow trout, calcium and zinc both 

followed the same pattern as copper. Their concentrations were highest in the 

treatment CBW and lowest in the treatment HHA. The zinc concentrations were 

significantly different only between the HHA treatment and the CBW treatment while 

the calcium levels were significantly different between all three groups. This may be 

a reflection of a reduced availability of the metals due to binding to the organic 

carbons within the system. While this is attributing an enormous capacity for 

complexation to these dissolved organic carbons, the work by Ma et al. (2001) 

indicated such levels of complexing are not unfeasible. It should also be noted the 

level of dissolved organic carbons in the treatment HHA, (22.8 mg1; 1 ) is substantial. 

The effects upon sodium and magnesium also appear anti-intuitive and this argues 

against a generalised diminution of metal ions due to complexing by high DOC 

levels. An alternative explanation is that competitive interactions between the various 

ions for DOC binding sites follow a hierarchical pattern where Cu, Ca and Zn bind 

with greater affinities than do Na and Mg. As Na is a mono-valent ion it is most 

likely to behave differently to the other ions. Also, the term, 'dissolved organic 

carbon' is a catch-all phrase that does not differentiate between various components 
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of the material, it is therefore difficult to make any generalisations about the binding 

capacity of the DOC, other than it has a strong complexing capacity. 

In conclusion, this work demonstrated that high levels of DOC will reduce the 

binding of copper to the gills of fish in brackish waters. This will reduce the toxicity 

of copper to brackish fish although further work is needed to quantify the 

physiological and toxicological effects of copper under various DOC regimes. While 

the reduction of the bound copper may be attributable to a reduction of free copper in 

the water column, measurements of ASV-labile copper do not adequately describe the 

fraction of copper that is bio-available to the fish. Additionally, the MH treatment 

suggests the DOC may bind copper at multiple sites although this was not 

substantiated in the HHA treatment. The lack of corroborating evidence in the HHA 

treatment may be due to the primary binding site having yet to be saturated with the 

copper. 
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Chapter 6 General Discussion 
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The first set of experiments examined copper accumulation in the gills, liver and 

plasma of rainbow trout exposed to acute concentrations of waterbome copper. We 

also examined the ratios of copper to zinc in the gills and liver and the ratio of 

gills[co to liveric u i. These experiments provided the starting point of our 

investigations into biomarkers for teleosts exposed to acute, short-term copper 

exposure. 

The main findings were: the gills provided a better indication of copper exposure 

under acute short-term exposures than the liver, copper/zinc ratios in the gills 

indicated short-term exposure to elevated waterborne concentrations of copper, and 

circulating levels of copper in the plasma did not affect gill or liver copper 

concentrations in exposed animals. 

In the light of the current literature the first of the findings would now appear to be 

well substantiated. The development of the BLM has increased the understanding of 

the gills as the target of toxicity for metal, notably copper, and focused research on 

gill-metal interactions. The proposal and demonstration of a threshold limit of copper 

binding at the gills by which it is possible to predict toxicity (Meyer et al. 1999) is, 

perhaps, the most telling indication of this concept. While my research does not 

include the sophisticated approach of the BLM, it contributes to the literature 

detailing the accumulation of copper at the gills as a primary means by which to 

recognise metal intoxication or exposure has occurred. 
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Additionally, a recent evaluation of chronic indicators of copper exposure rated gill 

accumulation of copper on the gills as a better indicator of exposure than growth, 

sprint performance, plasma electrolyte loss or acclimation (Taylor et al. 2000). The 

binding characteristics of the gills were considered a better chronic indicator than gill 

accumulation. At low levels of exposure this method required the use of Cu 64  radio-

tracers which may not be feasible in remote areas or in many analytical laboratories. 

However for my experiments under acute exposure regimes, the more coarse measure 

of total gill copper compared against gill zinc was sufficient to indicate exposure. 

Although it is difficult to compare chronic and acute exposure regimes, it is 

worthwhile to note that gill accumulation is a potential indicator of exposure under 

either of these conditions. 

The second finding, that gill copper/zinc ratios may be an indicator of copper 

exposure, gave an initial validation to the proposal of Carbonell and Tarazona (1993) 

that such a ratio may be suitable when control animals are unavailable. This provided 

sufficient impetus to continue this line of research as was seen from chapters 3 and 4. 

The principle advantages of using the ratios was their ease of use for chemists or 

technicians at mine sites in remote areas to monitor local fish populations without the 

need to use complex biological assays. 

The last significant result of chapter two, that circulating plasma levels did not affect 

the highly vascularised organs of the gills or the liver has also been validated, albeit 

indirectly, in recent publications. The role of the liver as the principle organ of copper 
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regulation has been clearly demonstrated (Grose11 2001; Grose11 et al. 1998) as has 

the interaction between the gills and the liver in regulating copper uptake and 

clearance (Kamunde et al. 2002). The overall picture to emerge is one of tight 

regulation of plasma copper levels which supports the finding of plasma copper not 

affecting either gill or liver total copper concentrations. 

This is in contrast to work by Pelgrom et al. (1995b) where exposure to 

concentrations of 50, 100 and 200 jig 1_, -1  of total measured copper all increased 

copper concentrations in the plasma of tilapia. This may be due to species differences 

as the work of Grosell et al. (1998), Grosell (2001) and Kamunde etal. (2002) was 

performed with rainbow trout. Salmonoids are generally considered as 'metal-

sensitive' and it would therefore be of interest to conduct experiments on copper 

metabolism on an alternative and more robust species to verify the results garnered 

thus far. 

The second set of experiments, detailed in chapter 3, exposed rainbow trout to 

various concentrations of waterborne copper and zinc for 12 hours. The 

concentrations of Cu. Zn, Ca, Mg and Na in the gills of the animals were determined 

by AAS. It was deemed necessary to test the putative biomarker under conditions of 

copper and zinc exposure to determine if this would affect the zinc concentrations in 

the gills. These experiments highlighted the potential of Cu/Na ratios as a more 

effective biomarker than Cu/Zn ratios. The ratio of Cu/Mg also was noted as being 

significantly different under the exposure regimes used. A final finding documented 
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in the experiments was the intriguing reduction of plasma calcium in the high copper 

treatment. This reduction of plasma calcium and a possible cause has been discussed 

earlier in chapter 3. 

The differences in Cu/Na ratios was due to both an increase in the gill copper 

concentrations and a reduction in the concentration of sodium in the gill tissue 

although sodium levels in the plasma were not significantly affected. Copper 

transport across the gill epithelium is now known to have a 'sodium-sensitive' 

component that correlates to the apical sodium channel (Grosell and Wood 2002). 

Historically, copper disruption of sodium regulation at the gills has been attributed to 

an inhibition of the Na+/K+- ATPase transport enzyme embedded in the baso-lateral 

membrane of the gills (Lauren and McDonald 1985). Consequently, concentrations of 

sodium in the plasma are also affected. However in this study the concentration of 

sodium in the tissue decreased whereas no effect was seen on plasma sodium levels. 

This finding would be consistent with disruption at the apical membrane of the gills 

occurring prior to any subsequent interruption of sodium transport at the baso-lateral 

membrane. As Grosell and Wood (2002) noted, there is a time dependent component 

to the effects of copper upon the disruption of sodium transport, as well as a 

relationship to ambient sodium concentrations. Sodium concentrations of the water 

column were not measured in this study and as such no comment can be made upon 

this aspect of the study. However the 12 hour exposure period is well below the 24 

hours at which Lauren and McDonald (1985) observed the disruption to the activity 
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of Na+/K+- ATPase. Grosell and Wood (2002) found the effects upon the apical 

transport of sodium to occur after 2 hours exposure to copper. It would then appear 

plausible that in this study the apical transport of sodium has been interrupted causing 

a depression of tissue levels of sodium whereas the baso-lateral component of sodium 

transport was not inhibited, and there was no consequent affect upon plasma sodium 

concentrations. 

Aside from these physiological considerations the second set of experiments provides 

a body of data in well defined conditions cataloguing the gill metal interactions after 

exposure to waterborne copper and zinc. As noted earlier, mixed metal exposures are 

an area where data are lacking. Even the simple observations that there was no effect 

upon the concentrations of zinc, calcium, magnesium and potassium in the gill tissue 

contributes to the current low level of knowledge in this field of research as well as 

providing data of competitive interactions of metals at the gill epithelium. While 

computer modelling was beyond the scope of this study, there is a potential to use 

these data in future models of metal gill interactions and hopefully contribute further 

to the scientific investigations in this field. 

The third series of experiments, recorded in chapter 4, examined depuration rates of 

metals from fish gills post-mortem. This was necessary to the development of my 

proposal of metal ratios as biomarkers for fish kills. The decision to include two 

levels of brackish water broadened the scope of the study and was also pertinent to 

the involvement of the Department of Primary Industry, Water and the Environment, 
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Tasmania (DPI WE). Fish farming in Macquarie Harbour has been receiving support 

from DPI WE since the early 1990s and my involvement provided an opportunity to 

examine metal ratios in an environmental context and in an area where fish kills had 

been recorded. 

The ratios did not provide definitive evidence of copper induced mortality in the 

historical fish kills at Macquarie Harbour in south-west Tasmania. Although copper 

was implicated in the fish kills due to Macquarie Harbour's history of elevated 

copper concentrations, it is not known that the mortalities were copper induced. 

Alternatively, the ratios could be influenced by the animal's history of exposure to 

water of varying quality. However, there is strong evidence these animals were 

acclimated to copper exposure. As described in chapters 1, 4 and 5, Macquarie 

Harbour has received copper rich discharge from the Mt Lyell Copper Mine for over a 

century. This has resulted in a copper rich alluvial fan of tailings where the King 

River discharges into Macquarie Harbour. The harbour consequently has 

concentrations of copper greater than those normally found in unpolluted water 

bodies. In the laboratory trials conducted naïve animals were used. Further studies 

with copper acclimated animals will allow for comparisons between the laboratory 

data and the fish kill data from areas like Macquarie Harbour. Additionally, the high 

concentration of zinc found in the gills of the animals from Macquarie Harbour 

highlighted the need to understand water quality parameters and local conditions. 
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The two most significant observations from these experiments were firstly, that the 

metal concentrations of the gill tissue will equilibrate to the ambient concentrations 

post-mortem, and secondly, that animals in isotonic, hypotonic and hypertonic 

environments will accumulate copper at different rates, although the rate of 

accumulation is not related to the ionic composition of the ambient environment. 

The equilibration of the metal concentrations on the gills to ambient ionic 

concentrations was more rapid in freshwater than in brackish waters. This was true 

for all metals examined in the gills and was especially conspicuous for sodium. This 

observation appears obvious in hindsight but is a necessary piece of information in 

the broader context of examining fish kills. 

That the movement of sodium toward ambient concentrations was particularly 

pronounced was not surprising given the difference between the cellular sodium 

levels and those of the ambient environment. These results may be useful to 

determine the time of the occurrence of fish kills, especially in marine environments. 

Currently, the time of death is qualitatively assessed by the loss of colour of the gill 

filaments. The rate of loss or uptake of sodium from the gills will be dependent on the 

ionic strength of the surrounding waters. In freshwaters this will be variable whereas 

the water quality of marine environments is more homogenous and the rate of uptake 

will therefore be more uniform. In freshwaters it would be a simple procedure to run 

similar experiments to the depuration experiments of chapter 4, in waters of various 
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hardness and sodium concentrations, to determine the rate of loss of sodium from the 

gills under different water quality conditions. 

The second observation that may warrant further examination is that of the 

differences in copper accumulation between animals in isotonic, hypotonic and 

hypertonic environments. As noted in the earlier text, little work has been done on 

metal toxicity in isotonic environments. The isotonic environment represents the 

transition from a hypo- to a hypertonic environment and therefore, the transition from 

the uptake to the extrusion of sodium at the gills of teleosts (Karnaky Jr 1998; Wilson 

and Taylor 1993b). This is a pronounced alteration of the physiological function of 

the gills and according to my research also showed a significant alteration in 

gill/metal interactions at these organs. Further research into these phenomena would 

certainly be of interest to understanding the functioning of the gills in eUryhaline 

species and the consequences of metal pollution in estuaries. 

The potential of metal ratios as biomarkers was again indicated in freshwater trials 

although the window of opportunity for sampling was less than 6 hours post-mortem. 

Although this is a brief period of time it does provide some sampling opportunity. 

Metal ratios have an advantage over enzymatic analysis as the metals will not 

deteriorate, although the possible sampling/collection time is limited by the 

deterioration of the tissue. Enzyme assays require animals to be still alive during 

sampling. Thus, these results are a significant contribution to the investigations of 

mass fish mortalities where copper toxicity was implicated as a causal factor. 
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The final set of experiments, reported in chapter 5, examined the effects of dissolved 

organic carbon on copper accumulation at the gills of rainbow trout in brackish 

waters. This was done in conjunction with measurements of ASV-labile copper to 

attempt to quantify the bioavai fable fraction of the dissolved copper. Waters from 

Macquarie Harbour were used as this provided important information for the 

investigation of fish kills and copper toxicity in this fish farming region. 

While we could satisfactorily demonstrate the reduction of copper accumulation at 

the gills as the level DOC increased, the ASV measurements did not correspond well 

with the reduction in gill binding. In fact, gill binding correlated more strongly with 

the concentrations of total measured copper. As copper toxicity has been equated 

with the free ion content of copper in the water column, this suggested ASV copper 

may not be a good descriptor of the bioavailable fraction of copper in the water 

column. This finding was in agreement with earlier research by Eriksen et al. (2001) 

and Stauber et al. (2000). 

Limitations of the study 

The impetus of this study was to explore the possibilities of finding a biomarker for 

copper exposure that could be used in remote areas, putatively at mine sites in 

developing countries. It was also hypothesised that such a biomarker could be utilised 

by staff at the hypothetical mine site who probably would be technicians or perhaps 

inorganic chemists, but essentially people without biological training or facilities for 
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sophisticated biological assays. Therefore the précis of the thesis may be stated as 

"Can a biomarker for copper exposure be developed using only an atomic absorption 

spectrometer?" While this may be considered a limitation upon the research 

conducted, I believe it was also a worthwhile endeavour as, if successful, such a 

biomarker would be of immediate benefit to the many copper mines located in 

inaccessible areas and in developing countries. 

Although it is not possible to claim unqualified success in the search for such a 

biomarker, there have been positive developments. Probably the most significant is 

the potential for Cu/Na ratios to indicate recent acute exposure to copper. As 

described above, the tissue concentrations of sodium declined within 12 hours of 

exposure to acute waterborne copper while copper concentrations in the gills 

increased. Although this is a coarse measurement of gill-metal interactions and is 

difficult to relate to either the chronic exposures many animals experience through 

anthropogenic-related copper pollution or normal copper homeostasis, it is precisely 

such a measurement that is required to satisfy the starting point of this research. 

The analyses in this work present the metal binding as the sum of various different 

compartments and binding sites and may be considered a coarse measurement. The 

use of gill filaments does not discriminate between intra-cellular and extra-cellular 

metal. The epithelia have specific binding sites and non-specific binding sites. 

However, as stated in the précis, the challenge of this research project was to 
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determine if such a broad determination of metals at the gills could lead to the 

development of an effective biomarker and I believe some success has been achieved. 

Several studies have now been published using Cu 64  radio-tracers to monitor newly 

accumulated copper and to differentiate between the different copper pools within 

teleosts. This has led to some exciting new developments in the understanding of 

coper metabolism in fish (Grose11 2001; Grose11 et al. 1997; Grose11 et al. 1998; 

Taylor et al. 2000; Wood 1992). Again, such subtle and complex experiments were 

beyond the scope of my research. 

Future research needs 

Evidence has steadily accumulated in the last decade of the importance of site-

specific water quality criteria in determining copper toxicity in freshwater fish. While 

the copper/metal ratios, and particularly Cu/Na ratios, in the gills have shown some 

qualified potential as biomarkers of copper exposure, it will be necessary to validate 

their use in a broad range of conditions. These would include waters of various pH, 

hardness and DOC levels. 

Additionally, the depuration rates of copper from animals exposed to acute but sub-

lethal concentration of copper would need to be examined i.e transferring fish that are 

not moribund from contaminated to clean water. While the rates of clearance of 

copper may be similar between moribund and 'live' animals, it is not safe to assume 

this will be so. Recent evidence of copper specific transporters in the gills have 
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provided strong evidence for active copper transport at the gills of freshwater fish. In 

the moribund animals, once homeostasis was no longer controlled, all the metals 

bound with or to the gill tissue started moving toward equilibrium with the 

environmental levels. 

The ratios between copper in the gills and liver also provided some indication of 

recent acute copper exposure in chapter 2. This is an area that may warrant further 

attention. Numerous studies have now highlighted the gills as rapidly accumulating 

copper yet liver copper concentrations require days before being affected by copper 

exposure. The work focused on the gills and gill/metal interactions so further work on 

the gill[c]/liver[c] ratios was not included. Yet even in the second set of experiments 

(chapter 3) it was apparent the copper concentrations of the gills were elevated within 

12 hours while copper levels in the liver were unchanged. Although these analyses 

were not included in this thesis, it is an area that may yield more useful results in the 

search for to biomarkers of short-term acute copper exposure. 

In conclusion, this thesis has produced a body of data on the subject of short-term, 

acute copper exposure of rainbow trout covering a variety of exposure conditions 

including mixed metal exposures, exposure at different salinities and also at different 

concentrations of DOC in brackish conditions. The initial impetus for the study, to 

examine Cu/Zn ratios in the gills of fish provided some indications that metal ratios 

of the gills can be used in this capacity. Further work under mixed metal exposure 

regimes indicated that Cu/Na ratios may be more sensitive to, and a better indicator 
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of, copper exposure than other metal ratios in the gills. This observation is due to 

copper's inhibiting branchial sodium transport such that that gill copper increases and 

gill sodium decreases. Further studies demonstrated the gill metal ratios may be used 

post mortem, which is advantageous over enzymatic analyses. It was also noted that 

the sodium concentrations of the gills may be able to quantify the time since death in 

fish kills. The experiments in brackish waters recorded different accumulation rates 

of copper in the gills of animals in hypo, iso and hypertonic environments. An 'ion 

exchange' model of copper elution at the gills was proposed to account for these 

differences. It was also considered as an indication that the changing physiological 

function of species in waters of different ionic strengths may be an important 

consideration for studies of copper toxicity in these different environments. Finally, 

the effect of DOC on copper's bioavailability and consequent binding to the gill 

epithelium of rainbow trout was examined in brackish water. While DOC reduced the 

binding of copper to the gills, it was found that ASV-labile copper did not accurately 

assess the bioavailable fraction of the copper in the water column. 

These findings will contribute both to the database of knowledge concerning copper 

exposure, particularly in the field of mixed metal exposure where more data is needed 

and also in brackish waters. The use of metal ratios in the gills as biomarkers 

deserves further attention, particularly the Cu/Na ratio as it fulfils the criteria stated at 

the beginning of this thesis. It is a simple method which can be used routinely with 

equipment available at mine sites and in remote areas by people without biological 

training. It is also specific to copper exposure. Therefore, although further work and 
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refinement will be necessary, this work provides a basis to pursue such a biomarker 

and to provide a tool for the analysis of both fish kills and fish exposed to short-term 

acute copper exposure. 

It is the recommendation of the author that in the event of a fish kill scenario the 

following procedures should be adopted by investigators for the sampling and 

analysis of the gills for metal concentrations. 

I. The gills be immediately excised from the animal and placed in zip-lock 

sample bags before being placed on ice. The sample number, date, location 

and type of fish should be recorded both with the sample and on a record 

sheet, along with any relevant comments. The gills should be frozen at - 20° C 

as soon as possible. 

2. Filaments are to be dissected from the arches prior to digestion. Between 50 — 

200 g of filaments are required. In animals of 200 g and above the filaments 

of a single arch will normally provide sufficient material for the digestion 

process. For animals of lesser weights it may be necessary to remove the 

filaments from more arches. 

3. Digest the filaments in 5 mL of concentrated nitric acid in a microwave 

digester. After digestion the solute should be transferred to a 10 mL 

volumetric flask and made up to volume using deionised water. Blanks of 
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deionised water must be included with each batch of digestions. In analytical 

labs were many different analytical processes are conducted it is important to 

wash benches and equipment, including all glassware, with dilute nitric acid 

(5 — 10%) followed by rinsing with deionised water to prevent contamination 

of samples occurring. 

4. Analysis of the various metals of interest may be conducted using flame 

atomic absorption spectrometry. Copper, zinc, and magnesium were analysed 

in this thesis using an acetylene/air flame while calcium was analysed using a 

nitrogen oxide/air flame. Sodium analyses were conducted by emission 

spectroscopy. Standard methods for the operations of AAS are described by 

manufacturers, including the preparation of standard curves. 

5. For some metals it may be necessary to dilute the samples to match the range 

of the standard curve. A series of preliminary dilutions with 3 — 5 samples at 

1:10, 1:50, 1:100, 1:500 and 1:1000 should indicate which dilution is most 

appropriate for a specific analysis. 

6. Where possible, animals from unaffected waterways within the same system 

should be sampled following the same procedures to provide baseline data of 

the metal ratios in the gills of fish. 
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