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ABSTRACT 

A facilitative effect of daytime exercise on SWS has been 

cited as evidence in support of the bodily restorative theory of 

sleep. However, this effect has not been observed in studies using 

unfit individuals. It was hypothesized that the failure of earlier 

studies to find a facilitative effect of exercise on SWS in unfit 

subjects was due to a stress induced by the exercise sessions which 

disrupted sleep and counteracted the facilitative effect. 

Steps were taken to minimize stress by using afternoon 

exercise, a range of exercise levels and a number of exercise sessions 

for each subject. Thus the experiment consisted of a 4 x 4 factorial 

design with repeated measures on one factor (N = 24). The first 

variable consisted of 4 exercise levels (no exercise, 510% VO 2max 

for 45 mins., 75% VO
2max 

for 60 mins., and maximum output for 60 

mins.) while the second variable represented 4 measurement occasions 

(baseline and three nights following 1, 3 and 5 consecutive exercise 

days). It was hypothesized that a facilitative effect of exercise 

would be observed under conditions in which the stress factor was 

minimized. 

No effect of exercise on SWS was found in any condition, 

nor was there any evidence that a hypothetical stress factor 

accounted for the results. These findings are inconsistent with 

present statements of the bodily restorative theory of SWS. It is 

possible, however, that SWS levels may be responsive to long term 

rather than short term alterations in activity levels. 

(v) 
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INTRODUCTION 

The answer to the question "Why do people sleep?" has proven 

remarkably elusive, although it has dominated sleep research for 

several decades. It has become evident that the development of our 

understanding of the role of sleep requires a considerable extension 

of the descriptive and empirical data base in the area. However, 

research to develop a satisfactory data base in the area of sleep is 

most likely to be productive if it is theoretically based. Many 

theories of sleep have been proposed. A long standing, but nonetheless 

promising, theoretical notion is that sleep serves a restorative role. 

The precise specification of restorative processes affected by 

sleep varies between theorists, though there is a general agreement by 

these theorists that during sleep there is a reduction in catabolic 

processes and an increase in anabolism. Most theorists attribute 

different restorative processes to various types or stages of sleep, 

which are identified on Lhe basis of several physiological variables, 

most notably the electroencephalogram (EEG). As a consequence much 

of the data in support of a restorative theory evaluates the distri-

bution of sleep stages following manipulations which would be expected 

to vary catabolism and thus vary the need for anabolic activity dur-

ing the sleep period. In this context the effect of physical exercise 

on sleep is of considerable theoretical significance. At present, 

the results of these studies appear somewhat contradictory, but they 

do indicate a possible link between physical exercise and the distri-

bution of sleep stages. Further clarification of this relationship 

is important to the evaluation of the restorative role of sleep. The 
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present experiment investigates one aspect of this relationship - 

the effects of different levels of physical exercise on the sleep 

of individuals unused to exercising. 



CHAPTER 1. 

THE NATURE OF SLEEP 

In this chapter a general description of the nature of sleep 

is provided, including a consideration of the stages of sleep, its 

physiological concomitants, the phylogeny and ontogeny of sleep, 

and the effects of total and selective sleep deprivation. 

• EEG Sleep Stages  

Sleep is generally classified into a number of stages on the 

basis of brain activity, muscle tonus and eye movements (Rechtschaffen 

and Kales, 1968). The major distinction is between Non Rapid Eye 

Movement (NREM) and Rapid Eye Movement (REM) sleep. (These two types 

of sleep have been given a variety of labels by different authors, 

although NREM and REM will be used throughout this thesis.) 

NREM sleep is characterized by high amplitude, low frequency 

EEG activity. In primates this stage is further divided into four 

substages, identified as Stages 1 through 4. The major distinction 

is the increase in amplitude and decrease infrequency of the EEG. 

Thus Stage 1 is scored in the absence of EEG activity of an amplitude 

greater than 75 pv and a frequency of less than 2 Hz. Stage 2 con-

tains up to 20%, Stage 3 20-50%, and Stage 4 greater than 50% 

EEG activity of greater than 75 pv and less than 2 Hz. Stages 3 

and 4, when combined, are referred to as Slow Wave Sleep (SWS). 

REM sleep is characterized by relatively low amplitude, 

mixed frequency EEG activity, episodic rapid eye movements and a 

relative low tonic EMG (Rechtschaffen and Kales, 1968). 

3. 
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NREM and REM periods recur cyclically through. the night, sleep .  

always commencing with a NREM period except in certain pathological 

conditions and in the newly born (Feinberg, 1974). 	In humans, the 

NREM-REM cycle generally recurs 4 or 5 times a night, each cycle last-

ing approximately 90 mins. (Dement and Kleitman, 1957; Feinberg, 1974). 

The internal structure of the sleep cycle changes across the night, 

the length of the NREM periods decreasing, and the REM periods increas-

ing in the latter part of the night. There is also a decrease in SWS 

and an increase in minutes of Stage 2 in successive NREM periods 

(Feinberg, 1974). Thus a large proportion of SWS occurs early in a 

night's sleep and consequently SWS levels are not greatly affected by 

total sleep time (TST). 

Two slightly different scoring systems for the EEG sleep stages 

are currently in use, both based on a system described by Dement and 

Kleitman (1957). The most widely used is a standardization of the 

original system proposed by Dement and Kleitman (1957) (Rechtschaffen 

and Males, 1968). The second has been developed by two laboratories 

within the University of Florida (Williams, Karacan and Hursch, 1974). 

The systems differ in the minimum amplitude specifications for SWS 

activity, and the time constant used in recording. As a result 

direct comparison of SWS levels obtained using the different systems 

is difficult. 

•Ph1)8iOidgidcii • Cdridbtitdrit8 • of 'Sleep  • 

Before sleep, while the body is resting, oxygen consumption, 

rectal temperature, heart rate and respiratory rate become lower. 

There is no abrupt discontinuity either at sleep onset or on waking 

(Snyder, 1971). There is a progressive decrease in rectal temperature 
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during the early hours of sleep and a rise towards morning (Snyder, 

1971). This is also the case with oxygen consumption, however, super-

imposed on this curve, there are gross periodic variations which 

parallel changes in sleep stages (Brebbia and Altschuler, 1965). The 

highest rate of oxygen consumption occurs during REM sleep, the least 

in Stage 3 and 4, and intermediate levels during Stage 2 (Brebbia et 

al., 1965). Heart rate and respiratory rate decrease through the 

night, however during REM sleep there are slight increases in average 

level (Snyder, Hobson, Morrison and Goldfrantz, 1964; Aserinsky and 

Kleitman, 1953) and marked increases in short term variability 

(Snyder et al., 1964). The decrease in these functions appears to 

reflect a decrease in metabolic rate during sleep. During REM sleep 

there is also an increase in cerebral blood flow (Kety, 1967) and in 

brain temperature (Rechtschaffen, Cornwell and Zimmerman, 1965). 

As mentioned, during REM sleep there are periodic bursts of 

rapid eye-movements and a complete loss of muscle tonus in the major 

• muscle systems. During NREM sleep there is general muscle relaxation 

in humans and body mobility is low (Oswald, Berger, Jaramillo, Keddie, 

011ey and Plunkett, 1963), however, tonic muscle potentials are not 

entirely abolished (Berger, 1961). 

Of particular interest, is the secretion of humAn growth hormone 

(HGH) during SWS. Peaks of HGH secretion appear to be dependent on 

the occurrence of SWS rather than merely occurring at the same time 

in the circadian cycle (Takahashi, Kipnis and Daughaday, 1968; Parker, 

Sassin, Mace, Gotlin and Rossman, 1969; Honda, Takahashi, Takahashi, 

Azumi, Irie, Sakuma, Tsushima and Shizume, 1969; Sassin, Parker, 

Johnson, Rossman, Mace and Gotlin, 1969a, 1969b). Three other hormones 

which regulate tissue development are dependent on sleep for their 
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release; prolactin, luteinizing hormone and testosterone(Boyar, 

Finkelstein, Roffwarg, Kapen, Weitzman and Hellman, 1972; Sassin, 

Frantz, Kapen and Weitzman, 1973). 

The Phylbgeriy of Sleep  

Prolonged periods of inactivity, organized on a circadian 

basis appear to be of very old phylogenetic origin being observed in 

reptiles, amphibia, fish and insects (Meddis, 1975). 	However, clear 

electrophysiological signs of sleep, i.e., high voltage, slow wave, 

electrical activity in the cortex, did not develop phylogenetically 

until the early mammals and birds (Allison and Van Twyver, 1970). 

. The most primitive animal, phylogenetically speaking, to show 

EEG signs of sleep, is the echidna, a representative of the nontherians. 

The nontherians have both distinctive mammalian features ;  maintaining 

constant body temperature and nursing their young, and distinctive 

reptilian features, the most striking being that the young are hatched 

from eggs. EEG studies of the echidna indicate that it sleeps about 

12 hrs. a day, its sleep being entirely SWS. Thus, it appears that 

SWS was the earliest form of sleep to emerge, probably developing 

about 180 million years ago (Allison and Van Twyver, 1970). 

One of the most primitive surviving therian mammals is the 

opossum which has both SWS and REM sleep, indicating that REM sleep 

developed in the early therian mammals about 130 million years ago. 

Both SWS and REM sleep have been retained in marsupial and placental 

mammals (Allison and Van Twyver, 1970). 

There appears to be no really primitive form of bird surviving, 

so the development of sleep in birds cannot be traced. However, 

while the number of birds studied using electrophysiological techniques 
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• is small, there are clear indications of SWS in all species, although 

REM sleep appears to exist in only a primitive and transitory form. 

Since the birds developed independently of the mammals it appears 

that sleep evolved separately in the mammals and birds (Allison 

and Van Twyner, 1970). 

The Ontogeng of Sleep in Man  

NREM and REM sleep develop in the human fetus by about the 34th 

week following conception, a large proportion of sleep being REM 

sleep. At birth, REM sleep has fallen to 50% of total sleep time (TST) 

(TST being approximately 18 hours)(Dreyfus-Brisac, 1964) and by 6 

months and 1 year the REM sleep component makes up about 40% and 30% of 

TST resepctively (Hartmann, 1967). After the initial drop in REM 

levels early in life percentages of REM sleep stablize at about 25% 

of TST and remain at this level until old age when they again fall 

slightly (Williams et al, 1974). 

In neonates REM sleep precedes NREM sleep in the sleep cycle, 

however, by the age of 3 months NREM begins to precede REM sleep, 

-• • 
	 as it normally, does for the rest of life (Parmalee and Stern, 1972). 

NREM levels as a percentage of TST remain constant after childhood, 

however the proportion of SWS appears to fall consistently as a 

functi!‘n of age, Stage 4 dropping out before Stage 3 (Williams et al., 

1974). The major normative studies (Feinberg, 1974; Williams et al., 

1974) agree that there is a decrease in SWS with age, however there 

is some disagreement as to the rate of this change, Williams et al. 

(1974) finding a more rapid decline in SWS as a function of age than 

Feinberg (1974). 
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The Effects of Sleep Deprivation  

Extended periods of sleep deprivation in dogs has been reported 

to result in death (Kleiman, 1963), however, this finding may be 

confounded by procedures used to keep the animals awake. In man even 

prolonged periods of sleep deprivation result in few consistent 

psychological and physiological changes (Kollar, Pasnau, Rubin, Naitoh, 

Slater and Kales, 1969; Kuhn, Meltzer, Wyatt and Snyder, 1970; Naitoh, 

Johnson and Lubin, 1971). The main psychological effect of sleep 

deprivation in man, apart from drowsiness, appears to be a lowering 

of performance on tasks requiring focused attention and vigilance 

(Hartmann, 1973; Hockey, 1970; Wilkinson, 1965). Performances on 

cognitive, perceptual and psychomotor tasks have also been observed 

to decrease (Pasnau, Naitoh, Stier and Kollar, 1968) and after five 

days of deprivation, disorientation, misperceptions and impairment 

of reality testing have been found to become more frequent (Pasnau 

et al., 1968). However, it is important to note that during mild 

sleep deprivation (up to 48 hours) performance deficits are difficult 

to demonstrate, although, of course, subjects report being sleepy. 

Following sleep deprivation, sleep time is extended and there 

is a marked increase in levels of SWS over baseline levels. Follow-

ing extended periods of sleep deprivation, SWS remains elevated on 

the second recovery night although not to the same degree, while per-

centage of REM sleep is increased and REM latency decreased (Kales, 

Tan, Kollar, Naitoh, Preston and Malmstrom, 1970). Thus it appears 

that following sleep deprivation recovery of SWS takes priority over 

REM sleep recovery. 

Selective deprivation of Stage 4 results in an increase in 

Stage 4 during the recovey night (Agnew, Webb and Williams, 1964). 
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However, extended periods of Stage 4 deprivation have been found to 

produce no clear cut physiological or behavioural changes although 

there is a suggestion of an increase in lethargy and depression over 

the period (Agnew, Webb and Williams, 1967). 

Selective REM deprivation does not consistently result in a 

REM rebound on the recovery night (Cartwright and Monroe, 1968; Moses, 

Johnson, Naitoh and Lubin, 1975) and the observation of gross 

psychological changes as a result of REM deprivation reported by 

Dement (1960) has not been replicated in subsequent studies. There 

do appear to be minor psychological changes during REM deprivation, 

however, e.g., increased irritability (Greenberg, Pearlman, Fingar, 

Kantrowitz and Kawliche, 1970). 	Partial sleep deprivation, 

procedure which primarily limits REM and Stage 2 time, has been 

shown to result in increases in Stage 4 (Dement and Greenberg, 1966) 

and Stage 4 and REM sleep (Webb and Agnew, 1965) on recovery nights. 
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CHAPTER . 

THEORIES OF THE FUNCTION OF SLEEP 

The following description of sleep theories classifies models 

into six categories. 

1. Immobilization Theory 

2. Energy Conservation Theory 

3. Vigilance Function of REM Sleep 

4. Central Nervous System Stimulation Theories 

5. Information Processing Theories 

6. Restorative Theories. 

Before discussing each category several general points will be 

considered. Firstly, most recent theoretical approaches to sleep 

have focused on restricted aspects of the sleep process. In particu-

lar many models have proposed functions associated with either NREM 

or REM sleep, or alternatively, have ignored the distinction. As a 

consequence there are few comprehensive theories as to the functions 

•of sleep. A second consideration is that many theories have been 

primarily based on a particular set of data. For example, the im-

mobilization theory depends almost entirely on phylogenetic data for 

its support. A consequence of these first two points has been that 

many theories are compatible with each other and indeed in some 

instances are complementary. Finally, most theoretical approaches 

have been strongly influenced by evolutionary considerations. Thus, 

there has been a general acceptance of the view that sleep must have 

adaptive evolutionary significance. This approach has been influenced 

by the observation that sleep developed early phylogenetically, and 
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has been retained, and in fact intensified in most recently evolved 

species (Meddis, 1975). 

Immobilization Theory  

The main proponents of the immobilization theory are Meddis 

(1975) and Webb (1971, 1974). They propose that the prime function 

of sleep is to maintain immobility at times when immobility might be 

expected to improve an animal's chances of survival. All mammals have 

periodic immobility, or rest-activity cycles, organized on a circadian 

basis which it is assumed maximize activity levels during periods 

most favourable to the species. Thus food gathering is restricted to 

those phases of the circadian cycle when food is most available and 

when the species' physiological attributes are most effective. It 

is argued that high levels of activity at other times would both be 

less efficient and expose the organism unnecessarily to predation. 

The function of sleep is to ensure immobility and thus maintain the 

inactive periods. 

The major evidence in support of the model is derived from phylo-

genetic data which indicates that there is both a positive corre-

lation between sleep time and the security of the species' sleeping 

arrangements and a significant negative relationship between sleep 

time and the amount of time required for food gathering (Allison and 

Van Twyver, 1970) . . 

The model maintains an interesting distinction between the 

function of sleep and the physiological mechanisms responsible for 

inducing it. (The mechanisms are assumed to be central nervous system 

structures located primarily in the brain stem.) There are two im-

portant implications of this distinction. Firstly, sleep is viewed 
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as instinctive, a concept supported by Tinbergen (1951) and Moruzzi 

(1969, 1972). Secondly, the deleterious effects of experimental 

manipulations of sleep, such as sleep deprivation, are considered 

to be due to the disruption of the mechanism rather than the function. 

As a result sleep disruption experiments are not viewed as highly 

significant evidence of function. Indeed, Meddis (1975), in parti- 

cular, does not consider sleep to have any physiological function 

or unique physiological advantage other than that gained from peri- 

odic immobilization. 	As evidence for this view he points to species 

such as the shrew and Dall's Porpoise, presumably animals with much 

the same physiological requirements as other mammals, which do not 

appear to have clearly defined sleep. 

This model in its most extreme form appears a plausible, if 

not testable, account of the appearance of sleep in early phylogene-

tic species. It becomes less convincing in explaining why sleep 

should have been retained by more recent species, particularly in 

predators such as carnivores. Carnivores have particularly high 

total sleep levels despite the fact that they appear to have little 

need for prolonged immobility (ZepelinandRechtschaffen, 1974). It 

is possible that the adaptive implications of sleep have changed with 

phylogenetic development. Thus Webb (1974), in particular, is sym-

pathetic to the view that sleep may have acquired other functions, 

such as energy conservation,which may not have been present in more 

primitive species. 

One final difficulty with the immobilization hypothesis is its 

sterility with respect to experimental verification. It depends 

almost entirely upon phylogenetic considerations and predicts nega- 

tive effects with respect to the particular importance of physiological 
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processes during sleep. As such it cannot be proven and presumably 

can only gain acceptance by default. 

Enero Conservation Theory 

The energy conservation model proposes that the main function 

of sleep is to lower metabolic requirements and thus conserve energy 

supplies (Allison and Ciccetti, 1976; Berger, 1975; Snyder, 1966; 

Zepelin and Rechtschaffen, 1974). This view has received considerable 

support from phylogenetic data though it is not entirely dependent 

upon such evidence. For example, Zepelin and Rechtschaffen (1974) 

have correlated a number of physiological and sleep variables over 

53 species and found that metabolic rate estimated from body weight 

correlated .65 with TST and .73 with SWS. They concluded that the 

main function of sleep is to enforce a state of rest and so adaptively 

regulate energy expenditure. Thus those species whose waking acti-

vity is relatively expensive in terms of metabolic rate spend a 

greater proportion of the day asleep and have, as a consequence, less 

time to engage in metabolically expensive activity. 

In support of the 'energy conservation model Berger (1975) points 

to the observation that the complete physiological and behavioural 

manifestations of sleep are unique to homeotherms and possibly evolv-

ed in parallel to homeothermy and the resulting need for energy con-

servation. The ontogenetic development of SWS and homeothermy also 

appear closely correlated (Berger, 1975). 

A number of other studies relating sleep to metabolic rate 

support the energy conservation model. 

1. In humans thyroid function (which influences metabolic rate) 

seems to influence the amount of SWS, as suggested by high levels of 
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SWS in cases of hyperthyroidism (Dunleavy, Oswald, Brown and Strong, 

1974) and. low levels in hypothyroid patients (Kales, Heuser, Jacobson, 

Kales, Hanley, Zweizig and Paulson, 1967). 

2. An increase in SWS has been observed in adult humans after 

fasting (McFadyen, Oswald and Lewis, 1973; Karacan, Rosenbloom, 

Londono, Salis, Thornby and Williams, 1973) which is interpreted as 

reflecting a response to the need for energy conservation when food 

is limited. 

3. In humans, there is a decrease in SWS (the stage during which 

energy conservation is at a minimum) with increasing age, and it is 

suggested that this occurs due to the parallel decrease in metabolic 

rate with age, and thus a decreased need for energy conservation 

(Berger, 1975). 

Most of the theorists in favour of an energy conservation model 

of sleep have attributed this function primarily to NREM (as opposed 

to REM) sleep. Thus Allison and Ciccetti (1976) argue, on the basis 

of phylogenetic correlations, that energy conservation relates to 

NREM sleep while predator vs. prey and the security of sleeping 

arrangements is more closely associated with REM sleep. Similarly 

Zepelin and Rechtschaffen (1974) did not find a significant relation-

ship betweenmetabolic rate and REM sleep after NREM sleep had been 

partialed out. In contrast, Horne '1977) suggests that REM sleep 

may also serve an energy conservation function. He presents evi-

dence to indicate that thermoregulation, particularly heat dissi-

pating mechanisms, are suspended during REM sleep thus conserving 

energy. 

It is generally recognized that there are several problems 

facing the energy conservation model of sleep. 
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1. Negative correlations between metabolic rate and sleep time have 

been found. within several orders (Zepelin and Rechtschaffen, 1974). 

2. Sleep quotas among some animals, .g., the carnivores, are 

. greater than would be predicted, while among others, e.g., small 

insectivores, they are lower than would be predicted by the 

conservation hypothesis (Zepelin and Rechtschaffen, 1974). 

3. The occurrence of relaxed wakefulness in species with greater 

cortical development may require .a modification of the energy conser-

vation model of sleep as it suggests that energy conservation may be 

achieved in states other than sleep (Horne, 1977). 

Vigilance Functions of Sleep  

While Snyder (1966) suggested an energy conservation role for 

SWS, the role he proposes for REM sleep is that of a "sentinel". He 

notes that the major problem with sleep is that it renders animals 

helpless. (It is interesting to note that the immobilization model 

argues that sleep has virtually the opposite effect of making the 

_animal safe.) The function of REM sleep is to combat this helpless-

ness by periodically restoring responsiveness to the external world, 

and preparing the animal physiologically for possible defensive 

action. To add to the efficiency of this mechanism there is a brief 

period of arousal following REM in many species which serves a 

vigilance or "sentinel" function. It is further proposed that, in 

the case of animals under severe environmental threat, even this 

mechanism is insufficient. Thus REM sleep is replaced by longer and 

more frequent wake time (Snyder, 1966). This accounts for the find-

ing that animals with insecure sleeping arrangements have low levels 

of REM sleep (Allison and Van Twyver, 1970). 



16. 

Freemon (1970) also proposes an environmental surveillance 

model of sleep, but it applies both to REM and NREM sleep, and 

assumes other overriding functions of sleep. He proposes that the 

main function of sleep is CNS restoration and this restoration cannot 

take place in neurons at the same time as they are involved in analyz-

ing ongoing environmental events. Yet some environmental surveillance 

is required continually, for the safety of the animal, even if it is 

at a low level. Thus during REM one set of neurons undergoes renewal 

while another provides a low level of environmental surveillance, 

while during NREM the roles of the groups of neurons are reversed. 

Central Nervous System StimulatiOn Theories 

One group of theories of REM sleep proposes that REM provides 

endogenous CNS stimulation during sleep either to establish and 

maintain neural pathways or to maintain an adaptive level of cortical 

activity (Roffwarg, Muzio and Dement, 1966; Berger, 1969; Ephron 

and Carrington, 1966). 	Roffwarg et al. (1966) hypothesize that a 

certain amount of afferent stimulation above that provided by external 

stimulation is necessary for the proper development of neural cir-

cuits in the mammalian cortex and this is supplied by REM sleep. The 

main evidence used to support this theory is the very high level of 

REM sleep found in the mammalian fetus and newborn. It is argued • 

that since young mammals sleep a great deal they need more stimulation 

to the cortex than can be provided by external stimulation while 

awake. This situation is exaggerated in the womb when external 

sensory stimulation is minimal. Thus REM sleep levels are at their 

highest during these periods as most CNS stimulation must be attained 

through this source. As the animal grows older and remains awake 

longer, less endogenous stimulation is required, thus REM levels drop. 
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Berger (1969) proposes that the internal stimulation provided 

by REM sleep enables the establishment and maintenance of neuro-

muscular pathways serving binocular co-ordinated eye movements. In 

support of this hypothesis Berger (1969) cites the positive correla-

tion between the percentage of total sleep time spent in REM and the 

amount of partial decussation at the optic chiasma in various species, 

particularly mammals. Another piece of evidence is the finding that 

performance on tasks requiring binocular co-ordination is higher 

immediately following a REM rather than a NREM period (Berger and 

Scott, 1971; Berger and Walker, 1972). 

Finally, Ephron and Carrington (1966) suggest that during NREM 

sleep there is a progressive loss of cerebral vigilance and cortical 

deafferentation which must be maintained within adaptively appropri-

ate limits. When a critical level of deafferentation is. reached, REM 

is triggered and it supplies the necessary endogenous stimulation to 

raise cortical excitation, or cortical i tonus' to a necessary level. 

Ephron and Carrington (1966) use the following evidence to support 

their theory. 

. 'Sleep is cyclic in nature, NREMprecedingREM sleep. 

2. During NREM sleep animals are relatively unresponsive 

to external stimuli. 

3. During REM sleep most areas of the neocortex are at least 

as active as during the waking state. 

The CNS stimulation models are not necessarily incompatible 

with each other. •The various arousal functions of the REM state 

may represent both the different requirements of the organism at 

different stages in ontogenetic development and the various require-

ments of different subsystems. As such, these theories support 
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Hartmann's (1973) argument that it is probably inappropriate to be 

looking for the function of sleep as opposed to identifying its 

functions. 

infOr5niatiOn . PrioCeSSin0 •Theories  

Information processing theories of REM sleep propose that during 

REM new material, both factual and emotional, may be integrated into 

existing or new cognitive structures or programmes, and old informa-

tion may be reprocessed and integrated into these structures or dis-

carded. Thus, it is suggested that REM sleep is involved in memory, 

learning, and information and emotion organizing processes 	(Breger, 

1967; Dewan, 1970; Greenberg, Pearlman, Fingar, Kantrowitz and 

Kawliche, 1970; Hawkins, 1966; Feinberg and Carlson, 1968; Fein-

berg and Evarts, 1969; Newman and Evans, 1965). 

Computer analogue models have been used to describe the function 

of REM (Dewan, 1970; Newman and Evans,1965). 	It has been proposed 

that the dream process might be likened in function to the system-

atic programme clearance which is necessary where computer programmes 

are being continually e volved to meet changing circumstances. The 

greater the change in circumstances being programmed for, the greater 

must be the amount of programme evolution and the more urgent the 

programme clear-out. 	REM sleep allows such a clearing process to 

get underway without interference from external information (Newman 

and Evans, 1965). Dewan (1970) proposes that during sleep and 

especially REM, reprogramming itself takes place. 

Feinberg and Carlson (1968) and Feinberg and Evarts (1969) pro-

pose that REM sleep is involved specifically in cognitive processing 

such as learning and memory, while SWS provides the necessary 
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substrates for the processes occurring during REM. The main lines 

of evidence presented to support this theory are: 

1. In normal older subjects the absolute amount of REM, and 

% REM of TST, are negatively correlated with age and positively cor-

related with scores on the Performance Scale of the WAIS (Feinberg, 

Koresco and Heller, 1967). 

2. The total amount of REM sleep and eye movement activity is 

lower when intellectual functioning or ability is low (Feinberg, 

1968). 

3. SWS almost always precedes REM. 

Other theories have emphasized the processing of emotional 

material during REM (Breger, 1967; Hawkins, 1966; Greenberg et ca., 

1970). These theories emphasize the relationship between REM sleep 

and reports of dreaming. They suggest that during the day some 

events recall past emotionally arousing material to the preconscious, 

or are in themselves emotionally arousing. Dreaming serves to inte-

grate affectively aroused material and unconscious impulses, into 

structures which have previously proved satisfactory in dealing with 

similar material. Breger (1967) proposes that dreams are uniquely . 

adaptive insofar as they provide the conditions allowing for the 

integration of aroused material that is not so readily integrated 

during the waking state. These conditions consist of the greater 

availability of stored information, the greater fluidity of associ-

ational processes, the freedom from 'critical' processing for social 

acceptability, and a greater variety of means of manipulating symbols 

or processing and transforming stored information. The availability 

of these means would allow creative integration of material. 
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Restorative Theories of Sleep  

One major problem for restorative theories has been the diffi-

culty in specifying the precise nature of the hypothesized restora-

tive processes occurring during sleep. These processes have typi-

cally been described in very general terms. Thus, it has been pro-

posed that sleep is a particularly important time for anabolism and 

biosynthetic processes such as the maintenance and growth of cells. 

It has also been argued that the function of sleep is the replacement 

of a depleted substance or the depletion of a noxious substance 

(Feinberg, 1974; Hartmann, 1973; Oswald, 1974). 

Restorative theories differ as to the proposed site of restora-

tidn during SWS and REM sleep. Feinberg (1974) maintains that both 

stages of sleep, but especially NREM, are involved in CNS restoration, 

while Oswald (1974) suggests that CNS repair is restricted to REM 

sleep and during SWS restoration takes place primarily in the peri-

phery. Hartmann (1973) supports a CNS restorative role for REM and 

proposes that both CNS and peripheral repair take place during SWS. 

Feinberg (1974) proposes that sleep serves to reverse a yet 

- 

	

	 unknown neuronal-metabolic consequence of waking. He postulates two 

neuronal-metabolic states; State 1 is present at the completion 

of sleep but this state is reduced by waking to a depleted or other-

wise altered state, State 2. During NREM sleep State 2 is conve--ted 

to State.  1. This process is most intense during SWS. 

  

Waking  

NREM 

   

State 1 

   

State 2 

     

REM sleep functions to maximize the occurrence of NREM, and 

NREM  
thus to maximize the process, State 2 	4- State 1, by producing 
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a cofactor or other substrate required for the transformation of 

State 2 to State 1. 	REM is •supposed to produce a substrate similar 

to that produced by waking but to differ from waking in that State 1 

is not depleted. It is hypothesized that perhaps the consumption of 

State 1 is associated with formation of new memory traces, a process 

which does not occur during sleep, despite periods of intense 

neuronal activity. 

The first NREM period makes a substantial conversion of State 2 

to State 1 but does not achieve optimal levels of the latter. REM 

sleep then occurs producing a cofactor or substrate which permits 

further NREM, again raising the level of State 1. This process is 

repeated untll optional levels of State 1 are achieved. Completion 

of the transformation is indicated by NREM consisting entirely. of 

Stage 2 and by a lessened duration of the later NREM periods. 

This model is consistent with a number of observations. 

1. NREM and REM periods occur cyclicly throughout sleep 

(Feinberg, 1974). 

2. Greater amounts of NREM sleep, and especially SWS, occur 

early in the night (Feinberg, 1974). 

3. Following total and partial sleep deprivation there are 

greater increases in SWS than REM sleep (Webb and Agnew, 1965). 

4. Late afternoon naps contain a large SWS component (Karacan, 

Williams, Finley and Hursch, 1970). 

5. Finally, Feinberg (1974) argues that both CNS activity, such 

as information acquisition and processing, and SWS, decrease with 

increasing age. 

Feinberg's (1974) model which argues for a relationship 

between SWS and CNS restorative processes, while denying any similar 
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role for sleep in peripheral restoration, faces two major contrary 

findings. The first is a positive correlation between REM, not SWS, 

and level of cognitive functioning in aged normal and senile subjects 

reported by Feinberg (Feinberg et ca., 1967). The second is that 

manipulations of a number of factors which most certainly effect 

peripheral functions, have been shown to influence SWS. These findings 

will be discussed later in this chapter, the most relevant to the 

present study being the possible effect of physical exercise on SWS. 

These effects would not be predicted by Feinberg's model but rather 

lend support for a peripheral restorative function for SWS as proposed 

by Oswald (1974) and Hartmann (1973). 

The restorative theories of sleep proposed by Oswald (1974) 

and Hartmann (1973) have stressed the bodily restorative role of 

SWS. Oswald (1974) suggests that SWS is important for the growth and 

repair of bodily tissues while the main function of REM sleep is the 

restoration of the brain. Similarly, Hartmann (1973) proposes that 

SWS can be considered an anabolic phase of sleep in which macromole-

cules, such as proteins and RNA, are synthesized. 	Hartmann (1973) 

also emphasizes the role of REM sleep in the restoration and formation 

of connexions in the cortex involved in learning, focused attention 

and emotional functions. 

The bodily restorative theory of SWS predicts increases in SWS 

following increased catabolism and heavy demands on body tissues, 

and decreases in SWS when catabolism is reduced. In addition, SWS .  

should provide an optimal environment for anabolic processes. On 

the basis of these predictions the following evidence has been cited 

in support of the bodily restorative theory of SWS (Adam and Oswald, 

1977; Hartmann, 1973; Oswald, 1974). 
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1. Higher levels of SWS have been found following daytime exercise, 

and presumably higher levels of catabolism, than following no day-

time exercise, in athletes (Baekeland, and Lasky, 1966) in cats 

(Hobson, 1968) and rats (Matsumoto, Nishisho, Suto, Sadahiro and 

Miyoshi, 1968). 

2. Nocturnal peaks of human.  growth hormone (HGH) secretion depend 

upon the presence of SWS (Sassin et al., 1969ab; Schure, Raskin 

and Lipman, 1971; Takahashi et al., 1968; Honda et al., 1969). 

Since HGH is an anabolic hormone, its secretion during SWS would 

ensure a suitable environment for restorative processes. Growth 

hormone stimulates amino acid uptake into tissues, promotes protein 

and RNA synthesis (Korner, 1965) and has wide interactions such as 

stimulating red blood cell formation indirectly through erythro-

poietin (Peschle, Rappaport, Sasso, Gordon and Condorelli, 1972). 

It also raises blood free fatty acid levels, whose subsequent 

degradation is a source of cellular energy, thereby saving amino 

acids from catabolism and increasing their availability for protein 

synthesis during sleep (Adam and Oswald, 1977). 

3. Corticosteroids, hormones which stimulate catabolism (Fried-

man and Strang, 1966),are lowest at the time when HGH secretion 

is highest. Consequently there is even greater net protein 

synthesis during human sleep. 

4. Three other anabolic human hormones are sleep dependent; 

prolactin (Sassin et al., 1973), luteinizing hormone and testo-

sterone (Rubin, Poland and Tower, 1976; Boyar, Finkelstein, 

Roffwarg, Kaper, Weitzman and Hellman, 1972). 

5. Daytime exercise, as opposed to no daytime exercise, results 
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in increased levels of sleep associated HGH and decreased levels of•

corticosteroids (Adamson, Hunter, Ogunremi, Oswald and Percy-Robb, 

1974). These hormonal changes would appear to provide ideal cir-

cumstances for the enhanced reparative processes required following 

increased catabolism. 

6. High SWS levels and sleep associated HGH secretion are found 

in hyperthyroid patients (Dunleavy, Oswald, Brown and Strong, 1974) 

in whom catabolism takes place at high levels. Thus the need for 

anabolic processes would be correspondingly high. Conversely, low 

levels of SWS are found in hypothyroid patients (Kales et al., 1967) 

in whom catabolism takes place at a low level. After days when 

normal men have had higher thyroxine secretion they also get more 

SWS (Johns, Masterton, Paddle-Ledinek, Patel, Winikoff, Malinek, 

1975). 

7. Acute starvation increases both SWS (McFadyen et al., 1973) 

and HGH secretion (Parker, Rossran and Vanderlaan, 1972; Karacan 

et aZ., 1973) at a time when protein-sparing processes would be 

especially important. Weight loss in patients using femfluramine 

(an amphetamine derivative) is also associated with increased SWS 

(Lewis, Oswald and Dunleavy, 1971). 

In contrast to the effects of acute starvation, chronic starva-

tion results in a decrease in SWS levels in humans (Crisp and Stone-

hill, 1976). It is unclear as to why the duration of the deprivation 

period should have this effect, though it is noteworthy that during 

ref eeding following long term deprivation periods SWS levels increase 

over the deprivation period (Lacey, Crisp, Kalucy, Hartmann and 

Chen, 1975). This increase is possibly related to tissue rebuilding. 



25. 

8. Longer periods awake produce both increased levels of SWS and 

sleep associated HGH (Berger and Oswald, 1962; Williams, Hammack, 

Daly, Dement and Lubin, 1964; Jacoby, Smith, Sassin, Greenstein and 

Weitzman, 1975; 	Karacan, Rosenbloom, Londono, Williams and Salis, 

1975; Beck, B .fezinovA, Hunter and Oswald, 1974). 

9. Selective deprivation of SWS produces in subjects feelings of 

physical discomfort (Agnew, Webb and Williams, 1967). 

10. Periods of rapid physical growth are accompanied by high levels 

of SWS and HGH, while both fall in old age when growth and regenera-

tion of cells decreases (Hartmann, 1967; Williams et ca., 1974). 

11. There is a relationship between basal metabolic rate and sleep 

duration. Across species total sleep duration and NREM sleep time 

are positively correlated with basal metabolic rate (Zepelin and 

Rechtschaffen, 1974). In man, individual differences in sleep duration 

correlate positively with waking body temperature and thus possibly 

with waking metabolic rate (Taub and Berger, 1976). It has been sug-

gested that the higher day time metabolism produces greater levels of 

. degradation requiring higher levels of compensatory synthesis and 

thus longer sleep (Adam and Oswald, 1977). 

12. Finally, Adam and Oswald (1977) argue that an optimal environ-

ment for protein synthesis is created during SWS by the lowered energy 

requirements of other physiological systems. Synthetic processes, 

like protein building, require energy. When the general demands for 

energy are high the energy charge (EC)
1 of cells falls and biosynthesis 

• 1. Atkinson (1968) has quantified the energy level of cells in 
terms of the relative levels of adenosine triphosphate (ATP), 
adenosine diphosphate (ADP) and adenosine monophosphate (AMP). 
The resulting value, which has a range of 0 to 1, is referred 
to as the energy charge (EC) of the cell. Thus 

EC = 
ATP + ADP/2  
ATP + ADP + AMP . 
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is inhibited. In contrast, when energy supplies within cells are 

high biosynthesis is stimulated. During SWS, when overall energy 

requirements are particularly low, as indicated by decreased meta-

bolic rate, EC is maintained at a high level and thus increased 

energy is diverted to synthetic cellular processes, which then occur 

at a greater rate. 

Oswald (1974) and Hartmann (1973) propose that REM sleep is 

involved in CNS restoration, particularly in the form of protein syn-

thesis in the brain. These proteins may be used to restore, reorganize 

or form connections in the cortex required for focused attention and 

possibly learning and memory associated with focused attention. REM 

sleep may also provide recuperation for the catecholamine-dependent 

neuronal systems involved in learning, memory, attention, emotional 

integrity and social adaption, during the day. This aspect of Hart-

mann's (1973) and Oswald's (1974) restorative models is similar in 

many ways to the information processing theories described above. 

Evidence presented in favour of this view includes the following points. 

1. REM sleep levels are elevated for up to 2 months following 

. drug overdoses or periods of amphetamine administration. This time 

period corresponds with the length of time required to replace neur-

onal proteins and it is argued that REM sleep is enhanced during the 

recovery period to provide optimum conditions for the extra protein 

replacement required following such an insult to the brain (Haider 

and Oswald, 1970; Oswald, 1970). 

2. During REM sleep blood flow in the brain rises above waking 

levels (Kety, 1967) and there is an accompanying rise in brain temp-

erature (Rechtschaffen, Cornwell and Zimmerman, 1965). This may 

reflect increased protein, synthesis. 
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3. Just before and after birth, when rates of brain development 

are high, levels of REM sleep are likewise high (Hartmann, 1967). 

In senility, when brain renewal becomes less, there is an accompany-

ing reduction in REM sleep time (Feinberg et ca., 1967). 

4. Mentally retarded infants have less REM sleep than normal infants 

(Oswald, 1974) and in older people there is a positive correlation 

between amounts of REM sleep and performance scores (Feinberg et al., 

1967). 

5. Performance on tasks requiring focused attention deteriorates 

with sleep deprivation (Wilkinson, 1965). 	Irritability, poor social 

presence and lowered self-confidence are often observed following REM 

deprivation (Hartmann, 1973; Greenberg et al., 1970). 

6. Within individuals more REM sleep occurs in times of stress and 

change in environment. Also studies of short and long sleepers-sug-

gest that long sleepers, who presumably have more REM sleep, have more 

stressful lifestyles (Hartmann, Baekeland and Zwilling, 1972; Hart-

mann, Baekeland, Zwilling and Hay, 1971). 

7.. When catecholamine levels are low, high levels of REM sleep 

are observed, however, when they are high, low levels of REM sleep 

occur (Hartmann, 1973). 

While the weight of evidence currently available appears to 

suggest that sleep has a restorative function a number of the experi-

mental results listed by both Oswald (Oswald, 1974; Adam and Oswald, 

1977) and Hartmann (1973) have not been replicated. Possibly the most 

controversial finding has been the relationship between physical 

exercise and SWS. This relationship is an important component of the 

evidence in support of the bodily restorative role of SWS as it is 
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the manipulation which most clearly has peripheral, as opposed to 

CNS effects. As such it is important evidence for Oswald's and 

Hartmann's theories and is possibly crucial evidence in evaluating 

these models as opposed to Feinberg's. The literature on the effects 

of physical exercise on sleep is reviewed in Chapter 4. 
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CHAPTER 3. 

PHYSIOLOGICAL EFFECTS OF EXERCISE 

While some restorative theories predict that physical exercise 

will have consequences for sleep, the mechanisms by which this ef-

fect is brought about have not been elucidated. However, the effects 

of exercise on a wide range of other physiological systems have been 

extensively studied. The purpose of this chapter is not to speculate 

on the nature of the mechanisms relating sleep to exercise, but 

rather to provide background information as to the general physio-

logical effects of exercise. 

Immediate Responses to Exercise  

As soon as a person starts exercising, changes take place in 

his body, primarily to enable him to meet the increased energy re-

quirements of the active muscle cells. The only direct source of 

. energy within the cell is adenosine triphosphate (ATP) which releases 

energy when it splits into adenosine diphosphate (ADP) and phosphoric 

acid (Pi) (Margaria, 1976). However, there is insufficient ATP 

stored within a cell to support contraction for more than a fraction 

of a Fecond. Consequently ATP must constantly be resynthesized in 

the cell if contraction is to continue (Karpovich and Sinning, 1971). 

The most immediate process is the cleavage of creatine phos-

phate (CP) into creatine (C) and Pi. These two reactions are in 

series and thus the term phosphagen is used to refer to the energy 

supplied by ATP and its continual resynthesis by CP. However, as 

the supply of CP in muscles is only about three times as great as 
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ATP, the phosphagen process is not sufficient to provide for prolonged 

activity. If muscular activity is to continue energy must be 

supplied in the system so that ATP can be continually resynthesized. 

The main fuel source for the resynthesis of ATP is glucose. 

When exercise begins glucose is released from the liver into the blood 

to be carried to active muscle cells where it is broken down, releasing 

energy for ATP synthesis. There are two ways in which the glucose 

can be broken down, one requiring oxygen (.02)  - aerobic metabolism, 

and one which does not require 0 2  - anaerobic metabolism. 	In aero- 

bic metabolism glucose is converted to pyruvic acid. During this 

process two molecules of ATP are formed from the metabolism of each 

molecule of glucose. The pyruvic acid then enters the mitochondria 

where it undergoes oxidation to carbon dioxide (CO 2) and water (H 20) 

with the formation of 36 molecules of ATP per molecule of glucose 

metabolized. Fats and protein can likewise be .oxidized in the mito-

chondria with the production of ATP (Karpovich and Sinning, 1971). 

Under submaximal exercise conditions the amount of 0 2 
will be 

sufficient to maintain the phosphagen of muscles in equilibrium. How-

ever, when the level of activity is such that the 0 2  supply is inade-

quate to provide all the energy needed by the cell from aerobic meta-

bolism, the balance of the energy required is derived from anaerobic 

metabolism. In this case the pyruvic acid formed by glycolysis is 

broken down with the formation of lactic acid, and two molecules of 

ATP per molecule of glucose. The formation of lactic acid enables 

H2 
to be removed from the energy releasing cycle, which is necessary 

for the cycle to continue (Astrand and Rodahl, 1970). There are a 

number of disadvantages of anaerobic metabolism: 

1. The yield of ATP is low. 
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2. Only carbohydrate, which is in limited supply, can be used 

as fuel. : 

3. Lactic acid is formed in the process. Since it is only slowly 

resynthesized to glycogen it accumulates within the cells and limits 

their capacity for contraction. 

These factors limit the time cells can rely on anaerobic metabolism 

to about 30 secs. depending upon the actual level of exercise. Despite 

these drawbacks, it is a very important process since it is used to 

provide energy at the beginning of exercise before the supply of 0
2 

has been increased and also when 0 2 
 is insufficient to provide all 

the energy required for exercise (Morehouse and Miller, 1971). 

. As mentioned, for sustained exercise the 0 2  supply to the 

active cells must be increased to enable increased aerobic metabolism. 

This is accomplished by an increased respiratory rate, and, as 02  is 

transported via the blood, there is an increase in heart rate and 

stroke volume and consequent blood flow through the body. Systolic 

blood pressure is increased and blood flow redistributed so that an 

adequate amount of blood reaches active areas (Brouha and Radford, 

1960). These physiological changes also allow waste products, prim-

arily CO
2' 

heat and to some extent lactic acid, to be removed from 

the cells. CO
2 

is breathed out while heat is dissipated from 

capillaries near the surface of the skin. Lactic acid stays in the 

blood and when exercise finishes it is broken down in the liver 

(Istrandand Rodahl, 1970). 

Each individual has a maximum oxygen intake (VO 2max
) or 

aerobic power, which is limited by such factors as maximum HR and 

maximum speed of 0
2 
uptake mechanisms at a cellular level (Kreuzer, 

1964). 	If a person exercises at a submaximal level 0 2  supply to 
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cells can meet 0
2 
demands and a 'steady state' is said to exist 

(Astrand and Rodahl, 1970). Submaximal work can continue until ter-

minated by some other factor like exhaustion of glycogen stores 

(Morehouse and Miller, 1971). 

Metabolites in the blood, like lactate, pyruvate, glycerol, 

free-fatty-acids (FFA) and ketone bodies increase during exercise 

(Johnson, Walton, Krebbs and Williamson, 1974), while some hormones, 

such as thyroxine, decrease (Irvine, 1974). 

During severe exercise changes may take place in muscle cells. 

Fat droplets are deposited in the cells, probably due to the in-

creased fat utilization in prolonged exercise,and focal areas of 

inflammation andnecrosis of skeletal muscle cells develop. Other 

muscle changes observed after exercise include fragmentation and 

atrophy of scattered muscle fibres, indistinct striation, marked pro-

liferation of muscle nuclei, formation of multinucleated giant cells 

and infiltration by various types of inflammatory cells. 	Exhaustive 

exercise also causes an increase of granulae in myocardial sacro-

plasma and mitochondria of muscle cells. It seems likely that histo-

logical and histochemical changes also take place in CNS cells. Mod-

erate exercise probably causes milder cellular changes of this kind 

(Simonson, 1971). 

Recovery from Effects of Exercise  

The speed of recovery from exercise naturally depends on the 

degree of severity of the work performed. However, different changes 

due to exercise require different time periods to be reversed. In-

direct evidence suggests that ATP, ADP and AMP ratios (the energy 

charge of a cell (Atkinson, 1968)), remains low for longer than 
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6 hours after strenuous exercise (Adam and Oswald, 1977). Basal 

metabolic rate is increased the day after strenuous exercise and may 

remain high up to 72 hours following severe exercise, probably as the 

result of some metabolic stimulation produced by sympathetic nervous 

system arousal (Simonson, 1971). 

The term of 'oxygen debt' is used to describe the amount of 0
2 

required in the post exercise recovery period, above basal levels, 

0 
to restore the body to its pre-exercise condition (Astrand and Rodahl, 

1970). A number of factors contribute to the delayed return of 0 2 

uptake levels following exercise (the payment of the 0 2  debt). 02  

is required 

• 1. to refill the 02 
content of the body, 

2. to support an elevated metabolic rate due to an increase 

in tissue temperature and a possible increased output of 

adrenalin, 

3. to supply increased oxygen demand to activated 

respiratory muscles, 

4. to remove anaerobic metabolites. 

The former three factors contribute to an 'alactacid' oxygen debt, 

while the last contributes to a 'lactacid' oxygen debt (Istrand and 

Rodahl, 1970). The payment of the debt follows a logarithmic form 

(Simonson, 1971). The alactacid portion takes only about three minutes 

to pay while the lactacid debt may take up to an hour and a half 

depending on the severity of the exercise (Karpovich and Sinning, 1971). 

As 0 demand increases,respiratory rate, HR and circulation rate 

decrease. After moderate work these functions return to basal levels 

following several minutes while after severe exercise this process 

takes longer and in fact these functions may remain slightly elevated 
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above basal levels for many hours due to increased sympathetic nervous 

system activation. The restoration of the normal phase-coupling 

between HR and respiration is much slower than the recovery of either 

of these functions separately (Simonson, 1971). 

Blood lactate, pyruvate and glycerol levels return to pre-

exercise levels within three hours after terminating exercise, while 

FFA and blood-ketone-body levels may remain elevated for longer than 

this (Johnson et al., 1974). 

The reversible histological changes in muscle, heart and CNS 

after work may require a period of up to several days to recover, 

depending on the severity of change (Simonson, 1971). 

In summary, most of the effects of moderate exercise are revers-

ed within a few hours, however if work is severe recovery processes 

take longer, metabolic rate being elevated for up to three days and 

histological recovery also requiring several days to complete. 

Responses to Exercise in Fit and Unfit Individuals  

There are marked differences in the responses to, and recovery 

from exercise between fit and unfit individuals. At the cellular level, 

the level of enzymes essential for aerobic reactions and the size 

and number of mitrochrondria increase with increasing fitness. This 

enable- ATP, and therefore energy, to be supplied in working cells 

at a greater rate (Karpovich and Sinning, 1971; Thomas 1975). 

Oxygen transport systems also become more efficient with train-

ing; depth of breathing, coronary capacity and muscle tissue capil-

liarization being increased (Karpovich and Sinning, 1971; Thomas, 

1975). These factors contribute to an increased VO2max 
in fit people 

which is reflected in lower HRs on the same exercise task than that 
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ofunfitPeoPleandagreatercaPacitYforworkat 1/02max .For this 

reason work capacity at a specific HR and derived estimates of 

VO
2max 

are used as indications of degree of fitness (Xstrand and 

Rodahl, 1970). 

In unfit people the 0 2  debt after exercise is repaid more slow-

ly than in the fit. Recovery of basal HR, blood pressure, and basal 

metabolic rate is also slower in the unfit (Kreuzer, 1964). 

Removal of wastes is less efficient in unfit people after 

exercise. In particular, lactate is disposed of more slowly, probab-

ly as a result of slower oxidation in the muscle or in the liver 

(Johnson et al., 1974). 

Training causes hypertrophy of latent muscle cells and an in-

crease in the number of myofybrils in skeletal and respiratory 

muscles thus producing an increase in muscle strength and endurance 

(Karpovich and Sinning, 1971). Training also decreases the likeli-

hood of muscle damage, lesions or inflammation as a consequence of 

exercise (Simonson, 1971). 

In conclusion, it is evident that, by comparison with fit indivi-

duals, untrained individuals can do less work at a particular HR. • 

This is primarily due to the facts that their ATP resynthesis, oxygen 

uptake and waste removal systems are less efficient, and their muscles 

not as strong. Not only can they do less work but their recovery 

rates for most functions affected by exercise are slower. 
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CHAPTER 4. 

EFFECTS OF EXERCISE ON SLEEP 

The effects of exercise on sleep have been cited in support of 

Oswald's(1974) andHartmann's (1973) version of the restorative theory 

of SWS. 	The predicted relationship is an increase in SWS levels 

following exercise, due to the increased catabolism in muscle tissue 

and the consequent increased need for anabolism. However, a complete 

review of the literature indicates that many reports are contradictory 

and in some instances results appear to be inconsistent with the 

model. To some extent the contradictory nature of the literature is 

due to a failure to recognize the existence of two separate effects 

of exercise (Griffin and Trinder, 1978). One is the effect of habi-

tual exercise (physical fitness), and the other is due to the immed-

iate effects of a particular exercise session. The former appears 

to result in a sustained increase in SWS levels while the latter may 

produce a transitory increase on the immediately succeeding night. 

The foll6wing review of this literature evaluates the evidence for 

each of these effects. 

Physical Fitness and Sustained' - ST1115 -Levels  

Three studies have evaluated the effects of habitual exercise on 

human sleep, independently of immediately preceding exercise. All 

three found higher levels of SWS in fit subjects though only one 

1. 	The term "sustained increase in SWS" is used to indicate 
an increase in SWS on nights following •days in which no specific 
exercise is administered. As such it is assumed to represent 
an effect of physical fitness or habitual exercise, rather 
than the immediate effects of exercise itself (though see 
point 2, page 38). 
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(Griffin and Trinder, 1978) included a non-fit control group, while 

the other two (Baekeland and Lasky, 1966; Zloty, Birdick and Adamson, 

1973) compared their data with other published studies. Two studies 

have compared the relationship between chronically high activity 

levels and sleep in animals, one of which found positive effects on 

SWS levels (Reite, Stynes, Vaughn, Pauley and Short, 1976), while the 

other (Webb and Friedman, 1969) found no effect on total sleep time (TST). 

A comparison of SWS levels of fit and unfit subjects by Griffin 

and Trinder (1978) indicated that fit subjects had significantly more 

SWS, due to increased Stage 3, than unfit subjects, independent of 

a particular day's exercise. The mean levels of SWS for fit and unfit 

subjects were 119.7 and 94.0 mins., respectively. 

Baekeland and Lasky (1966) reported that, following a day of no 

exercise, the mean SWS level of trained athletes (117 mins.) was con-

siderably higher than that (87.6 mins.) obtained by Williams, Agnew 

and Webb (1964) with their largely sedentary and nonathletic subjects. 

Zloty et al. (1973) reported a mean SWS level of 104.7 mins. 

• (23% of sleep period time (SPT)) in long distance runners. This level 

was compared with a mean control night level of SWS of 13.5% SPT found 

by Scott (1972) and a mean SWS level of regular exercisers following 

daytime exercise of 59.5 mins. reported by Baekeland (1970). Zloty 

et al. (1973) concluded that distance runners have significantly re 

SWS than other regular exercisers or non exercisers. 

A significant positive correlation between amount of locomotor 

behaviour and SWS in infant monkeys was reported by Reite et al.(1976). 

Finally, Webb and Friedmann (1969) compared the sleep of habitually 

exercised and sedentary rats and found no difference in total sleep time 

or diurnal distribution of sleep, however NREM and REM levels were 
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not reported. 

The failure of Baekeland and Lasky (1966) and Zloty et al. (1973) 

to run the appropriate unfit control groups limits the usefulness 

of their data. However, the general trend of the studies is consist-

ent with the hypothesis that habitual exercise produces a sustained 

increase in SWS. Griffin and Trinder (1978) suggest four possible 

explanations for this finding. 

1. Physical fitness could be correlated with SWS levels because 

of a physiological adaptation to the habitual exercise. 

2. The differences in SWS levels between fit and unfit individuals 

may represent a residual effect of exercise and not a chronic differ-

ence between the groups, i.e., anabolic processes initiated by 

exercise may persist for several days with the result that SWS levels 

would not return to baseline levels until these processes were 

completed. 

3. SWS levels may be correlated with a group of physiological 

factors, -  e.g., VO2max , which are largely genetically determined, and 

Which are known to be related to physical fitness. 

4. Different dietary practices may exist between fit and unfit 

individuals which could affect their sleep patterns. 

Exer6-L3 and Immediately Succeeding *Sleep  

Ten studies have reported the effects of exercise on human sleep 

during the immediately succeeding night. Three studies have investi-

gated the same effect in animals. Four of the experiments using human 

subjects (Baekeland and Lasky, 1966; Griffin and Trinder, 1978; 

Maloletnev, Telia and Tchatchanashvili, 1977; Shapiro, Griesel, Bartel 
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and Jooste, 1975) and all three animal studies (Boland and Dewsbury, 

1971; Hobson, 1968; Matsumoto, Nishisho, Suto, Sadahiro and 

Miyoshi, 1968) reported facilitative effects of exercise on SWS. 

Seven studies failed to find this effect in humans (Adamson, Hunter, 

Ogunremi, Oswald, and Percy-Robb, 1974; Baekeland, 1970; Desjardins, 

Healey andBroughton, 1974; Griffin and Trinder, 1978; Hauri, 1968; 

Horne and Porter, 1975; Zir, Smith and Parker, 1971). With one 

exception (Baekeland, 1970) the discrepancy in the human literature 

can be accounted for by the probable level of physical fitness of the 

subjects used. Thus four of the five studies which used physically 

fit subjects found the facilitative effect. In contrast, six of the 

seven studies reporting negative effects used unfit subjects, subjects 

of average fitness or subjects whose physical fitness was not speci-

fied. 	It is likely that the typical level of fitness in the latter 

group of studies was relatively low. 	The following review of this 

literature categorizes studies according to whether humans or animals 

were used and as to the physical fitness of the human subjects. 

• Studies on Fit Human Subjects:  Baekeland and Lasky (1966) studied 

the sleep of 10 athletes. An analysis of the first 6 hours of sleep 

indicated that the mean level of SWS was significantly higher on 

nights following afternoon exercise (40.1%, 144.4 mins.) than on 

nights following no exercise (32.5%, 117 mins.). 	SWS levels were 

intermediate following evening exercise (35.4%, 127.4 mins.) and not 

significantly different from SWS levels following either of the other 

exercise conditions. The mean level of Stage 1 was significantly 

greater on no exercise nights (7.3%) and on evening exercise nights 

(6.1%) than following afternoon exercise (4.1%) and time awake was 

significantly greater following evening exercise (.78%) than following 
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afternoon exercise (.14%). It was suggested (Baekeland and Lasky, 

1966) that following evening exercise there is more disturbed sleep, 

possibly due to CNS activation, opposing a more general (perhaps meta-

bolic) effect of exercise increasing SWS requirements. Thus evening 

exercise may act as a I stressor'. 

Shapiro et al. (1975) assessed the sleep of two highly trained 

young men following six morning exercise sessions of increasing 

severity. 	The absolute level of SWS increased in both subjects with 

increasing severity of exercise sessions, Subject A having 80 and 220 

mins. of SWS and Subject B having 110 and 160 mins. of WS following 

the no exercise condition and the fifth exercise condition (160 mins. 

at 7'5% 
V02max) 

respectively. 	SWS increased at the expense of both 

REM sleep and Stage 2. Following the most severe exercise session 

(3 hours at 50% 
VO2max 

in a hot box) there were slight decreases in 

the amount of SWS as compared with the fifth experimental night. Total 

sleep time (TST) increased with increasing severity of the exercise 

condition and in the two most severe conditions Subject A had increased 

. levels of wake time. The decrease in SWS in both subjects and the 

increased wake time in Subject A, following the most strenuous work 

load, may reflect a stress response to the unusually severe exercise. 

The effect of intensive afternoon exercise on the sleep of 15 

athletes was studied by Naloletnev et al. (1977) and a significan: 

increase in Stage 4 was reported. This study was published in Russian, 

however, so further details are difficult to ascertain. 

Griffin and Trinder (1978) compared the sleep of eight fit and 

unfit subjects following late afternoon exercise and a day of minimal 

exercise. They found that Stage 3 increased in fit (53.9 to 66.8 mins.) 

and decreased in unfit (42.6 to 32.9 mins.) subjects following 
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exercise, the interaction being significant. A similar trend for 

total SWS . was found, however this did not reach significance, fit 

subjects having a mean of 114.2 mins. and 125.1 mins., and unfit 

subjects having a mean of 97.2 and 90.7 mins. SWS, following no 

exercise and exercise respectively. 	The facilitative influence of 

exercise on SWS in fit subjects and the negative effect in unfit 

subjects were also reflected in a decreased SWS onset latency (latency 

to Stage 3) in fit and an increased SWS onset latency in unfit sub- 

jects as a function of exercise. 	Finally, a measure of disturbed 

sleep indicated a significant interaction between fitness level and 

exercise. Disturbed sleep increased in the unfit and decreased in 

the fit subjects as a function of exercise. This effect was inter-

preted as a stress response to the unaccustomed exercise in the 

unfit subjects. 

In an experiment investigating the effects of exercise depriv-

ation on subjects who exercised three or four times a week, 

Baekeland (1970) failed to find a facilitative effect of 

exercise on SWS. A non-significant trend towards higher levels of 

SWS (due to higher Stage 4 levels) on the second night following day-

time exercise (59.5 mins. SWS) as compared to the first exercise 

deprivation night (46.2 mins. SWS), was found. Over the one month 

exercise deprivation period, however, SWS rose to predeprivation 

levels. Baekeland (1970) suggests that the failure to obtain a 

significant effect of exercise,as in his previous study (Baekeland 

and Lasky, 1966), could have been due to one or both of two factors. 

Firstly, the subjects in this experiment exercised less strenuously 

and frequently than in the earlier study. Secondly, the sequential 

design of the experiment made it impossible to control for possible 
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increase in SWS due to adaptation to laboratory conditions. 

Studies on Unfit Human Subjects:  Those experiments which have used 

subjects who have been identified as unfit, of average fitness, or' 

when samples have been selected without consideration of the fitness 

of subjects, have uniformly failed to find a facilitative effect of 

exercise on SWS. 

Horne and Porter (1975) assessed the sleep of eight young adult 

subjects, described as healthy and of average build and fitness, fol-

lowing two no exercise control days, a morning and evening exercise 

condition and the morning and evening exercise carryover nights. 

Exercise was standardized for all subjects at 45% VO
2max 

for two 42 

min. periods with a 15 min. break in between. No significant differ-

ences in whole night percentages of each sleep stage were found be-

tween exercise and no exercise conditions. There were some half night 

differences however. After evening exercise there was a significant 

increase in Stage 3 for the first half of the night, although there 

was a non-significant decrease in Stage 3 during the last half of 

the night.. Combined :State 2ii (10-20% SW activity), 3 and 4 increased 

significantly prior to the first REM period. After morning exercise 

there was a significant decrease in Stage 211 in the first half of 

the night and before the first REM period. Horne and Porter (1976) 

concluded that if exercise is taken late in the day ensuing wakeful-

ness may not be sufficient for complete recovery, thus recovery pro-

cesses may intrude into the earlier part of sleep. The temporal dis-

placement of sleep stages following evening exercise may represent 

some sleep disruption, possibly due to disturbance of various physio-

logical processs like basal metabolism (Horne and Porter, 1976). 
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Hauri (1968) investigated the effects of three presleep activi-

ties on a variety of physiological variables during the first 31/2 

hours of subsequent sleep. Fifteen subjects of unspecified age and 

fitness were used. Sleep was assessed following 6 hours physical and 

mental relaxation, 6 hours intense studyingand 6 hours of strenuous 

exercise (bicycle riding and weight lifting). None of the presleep 

conditions significantly influenced the amount of time spent in any 

sleep stage. Exercise increased HR throughout the 31/2 hour assessment 

period, and the elevation was significant for all stages except REM. 

The number of rapid fluctuations of skin potential was also increased 

after exercise, but only during SWS and only during the first 2 hours 

of sleep. 

Hauri (1968) suggests that waking activities could have a delayed 

effect on the sleep cycle rather than an immediate one and the physio-

logical imbalance after heavy physical exercise might have to subside 

before the sleep cycle can be influenced. Since only the first 31/2 

hours of sleep were recorded such an effect may have been missed. 

These results have been interpreted by other investigators (Baekeland 

and Lasky, 1966) as being due to a stress effect caused by evening exer-

cise, as opposed to afternoon exercise. The data could also be viewed as 

a result of stress caused by prolonged exercise in a largely unfit 

population. 

Desjardins et ca. (1974) studied the sleep of six males, whose 

fitness levels were not reported, after a no exercise control day and 

after early evening high (HR = 185-205 bpm) and low (HR = 140-148 bpm) 

intensity treadmill exercise. No significant increase in SWS levels 

was found following exercise, although there was a significant de-

crease in REM after both levels of exercise which Desjardins et ca. 
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(1974) hypothesize may represent a stress effect. 	In addition, HR 

was significantly elevated up to 60 mins. after going to bed. 

The effect of exercise on EEG sleep variables and daytime 

secretion of HGH and corticosteroids in twelve males subjects, was 

investigated by Adamson et al. (1974). Five of the subjects parti-

cipated regularly in sports but were not trained athletes while the 

remaining seven took little exercise. Following strenuous but not 

exhausting afternoon exercise, subjects fell asleep slightly more 

quickly, had slightly less SWS, less REM,and sleep was more broken, 

than following a no exercise control day, but none of these differences 

were significant. 	However, after exercise there was a significant 

increase in HGH and a significant decrease in corticosteroids. 

Adamson et al. (1974) comment that it is possible that after exer-

cise some increase in intrasleep restlessness opposes any exercise 

induced tendency to increase SWS. 

Zir et al. (1971) investigated the effects of exercise on HGH 

secretion and SWS levels in 10 male subjects, "in good condition". 

No consistent pattern of SWS or HGH augmentation was found following 

light or moderate afternoon exercise. There was, however, an overall 

increase in mean sleep time following exercise conditions. 

Finally, as mentioned in the previous section, Griffin and 

Trinder (1978) compared the sleep of unfit subjects following no exer-

cise and afternoon exercise conditions. They found a decrease in 

Stage 3 and SWS levels, an increase in SWS latency and an increase 

in combined MT, wake time and Stage 1, following exercise. 

• Animal Studies:  A number of animal studies have provided support 

for a facilitative effect of exercise on SWS. Hobson (1968) made continuou! 
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EEG recordings from cats following 2 hours subtotal sleep deprivation 

and 2 hours moderate treadmill exercise. Following exercise the 

cats went almost immediately to sleep, while after sleep deprivation 

they engaged in waking activities for about an hour before sleeping. 

In the first five hours of recording there was a significantly higher 

level of SWS and later REM sleep onset following the exercise condi-

tion. 

Pilot studies on 6 cats indicated that 2 hours of very severe 

exercise resulted in exhaustion and subsequent restless inactivity, 

hypervigilance and EEG desynchronization (Hobson, 1968). Hobson 

(1968) proposes that exercise within critical limits produces somno-

lence, however when the critical level is exceeded sleep disturbance 

results. It is suggested that there is probably an intermediate level 

of exercise which causes the two effects to be in balanced opposition, 

producing no changes in sleep patterns. The arousing effect might be 

due to the activation of emergency or stress mechanisms, such as 

the pituitary-adrenocortical system. 

.Matsumoto et ca. (1968) compared sleep recordings from eight 

rats for 24 hours after 4 hours of food, water and sleep deprivation; 

and 4 hours of treadmill exercise. SWS was accentuated by the exer-

cise: it appeared earlier and there was significantly more of it. 

REM sl p levels were within the normal range although they appeared 

significantly , later after exercise. These effects were not observed 

in four younger rats after similar experimental procedures, however 

they did not appear as tired as the older rats. 

In a comparable study, Boland and Dewsbury (1971) recorded the 

EEG of 12 rats for 4 hours following fast wheelrunning for 12 secs. in 
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every minute for 21/2 hours and following 21/2 hours of being undisturbed. 

They found that the rats had significantly higher levels of SWS, 

shorter latency to SWS and shorter meanlength of awake episodes follow-

ing exercise. 

Two other studies (Ryback and Lewis, 1971; Webb and Agnew, 1973) 

have adopted somewhat different approaches to investigating the re-

lationship between physical activity and sleep, and thus are difficult 

to integrate with the studies described above. Webb and Agnew (1973) 

assessed the effects of two sleep deprivation conditions on recovery 

night sleep in eight subjects in good physical health. In a bedrest 

condition subjects remained in bed but awake for three days and two 

nights while in an exercise condition subjects exercised for 15 mins. 

every other hour and were awake an equivalent period. During the 

recovery nights there was a significant increase in Stage 4 over base-

line levels, however there were no significant differences in sleep 

variables between the two conditions. 

Ryback and Lewis (1971) analyzed the sleep of two groups of 

subjects before, during, and after five weeks bed-rest. One group 

received no exercise while the other exercised on a total body ergo-

meter while confined to bedrest. In the combined group there were 

significant increases in SWS and Stage 4 and decreases in Stages 1 and 

2 during the bedrest period when compared with baseline levels. The 

increase in SWS and Stage 4 levels remained in the recovery phase but 

this was not significant in the case of SWS. When the levels of SWS 

during bedrest of the exercise and nonexercise groups were compared 

separately with baseline levels, only the nonexercise group showed a 

significant increase, although there was a progressive increase in SWS 
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in the exercise group over the bedrest period. Ryback and Lewis 

(1971) proposed that physiological restoration is needed when muscles 

are being used considerably less than usual to combat disuse atrophy, 

and that SWS may increase during bedrest to aid this reparative pro-

cess, especially in the no exercise condition. The continued high 

levels of Stage 4 during recovery may be due to stress on muscles 

as they recover from "atrophied" to "normal". 

Conclusions  

A review of the literature indicates that there are possibly two 

distinct effects of exercise on sleep. Firstly, fit subjects have 

higher levels of SWS than unfit subjects independent of daytime exer-

cise. Secondly, daytime exercise facilitates subsequent SWS levels 

in fit but not unfit subjects. The findings that habitual exercise 

results in a sustained elevation of SWS levels and that fit subjects 

show an increase in SWS following daytime exercise, are compatible 

with . a bodily restorative theory of SWS. In contrast, however, the 

failure of unfit subjects to show an increase in SWS levels follow-

ing exercise does not appear compatible with the restorative model 

since it would be predicted that all subjects, independent of physical 

fitness, would require increased anabolism following exercise, and 

thus increased levels of SWS. However, an explanation for the 

failure of exercise to increase SWS in unfit subjects, which is compat-

ible with the bodily restorative theory of SWS has been hypothesized. 

This explanation of the data argues that unfit subjects when 

subjected to unaccustomed exercise, experience a physiological 
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stress' effect which results in sleep disturbance and a counteraction 

of the facilitative effect of exercise on SWS levels. The possibility 

that physiological stress may offset the effect of exercise has been 

suggested by a number of other writers (Adamson et al., 1974; Baeke-

land and Lasky, 1966; Desjardins et al., 1974; Griffin and Trinder, 

1978; Hauri, 1968; Hobson, 1968; Horne and Porter, 1975). Both 

those studies concerned with the relationship between exercise and 

sleep and those concerned with the effect of exercise on physiological 

systems offer evidence in support of the stress effect hypothesis. 

The former will be discussed first. 

A number of studies have reported results that may be interpreted 

as indicative of a stress effect in unfit subjects in response to 

exercise. 	Two studies report increases in levels of combined wake- 

time, movement time (MT) and Stage 1 (Adamson et al., 1974; Griffin 

and Trinder, 1978). Sleep disturbance, as indicated by temporal dis-

placement of sleep stages, has been reported by Griffin and Trinder 

(1978) who found increases in SWS latency. Reduced levels of SWS and 

REM sleep in response to exercise are also consistent with the stress 

hypothesis. Thus slight decreases in SWS have been reported in unfit 

subjects by Adamson et al. (1974) and Griffin and Trinder (1978). 

Decreases in REM sleep have been shown by Adamson et al. (1974) and 

Desjardins et al. (1974). 

1. The term "stress" is one which has a large number of contro-
versial interpretations in the psychological literature. The 
term is used in the present context in a rather general sense 
to summarize a number of diverse observations in this literature. 
While it is highly likely that the phenomenon involves a large 
physiological arousal component (possibly, as suggested by 
Hobson (1968), it is a response of the sympathetic-adrenal 
system), it is believed that it is too early to specify the 
exact nature of the physiological or psychological process 
involved. 
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Indications of physiological arousal during sleep In studies 

which failed to observe facilitative effects of exercise Are also 

relevant. 	Two studies have reported heart rate increases (Desjardins 

et al., 1974; Hauri, 1968) and one rapid fluctuations in skin 

potential (Hauri, 1968). However, it should be noted that none of 

the studies reporting positive effects measured this type of variable 

in fit subjects. 

It would be predicted by the stress effect hypothesis that fit 

people would also show a stress response if they performed unusually 

severe exercise or exercise from which they had no time to recover 

before sleep. Two studies of fit subjects support this prediction. 

Shapiro et al. (1975) reported lower levels of SWS after extreme as 

opposed to moderate levels of exercise. Baekeland and Lasky (1966) 

reported lower levels of SWS and increased levels of wake time and 

Stage 1 following evening exercise rather than afternoon exercise. 

Finally, one study from the animal literature provides support 

for the stress effect hypothesis. Hobson (1968) reports that while 

- - moderate.  exercise facilitates sleep in cats, severe exercise results 

in hypervigilance and restlessness. 

Consistent with the stress effect hypothesis is the fact that 

strenuous exercise, such as that performed by unfit subjects in many 

of the studies described, has been reported to result in physiologi-

cal arousal. For example, as discussed in Chapter 3, following 

exhausting exercise, HR and metabolic rate take several hours to 

return to basal levels due to sustained sympathetic nervous system 

arousal (Simonson, 1971). This recovery process is prolonged in unfit 

individuals (Kreuzer, 1964), and thus is more likely to impinge into 
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sleep time and act as a stressor in unfit than in fit individuals. 

Both the available evidence and general opinion strongly support 

the view that the failure to find a facilitative effect of exercise 

on SWS in unfit subjects is due to a stress response induced by the 

exercise programmes used in earlier studies. This hypothesis would 

predict that the possibility of observing an exercise effect in an 

unfit population would be maximized if the physiological stress of 

exercise were minimized while still maintaining a sufficiently high 

level of catabolism. The present study was designed to test this 

hypothesis by providing the appropriate conditions to minimize stress. 

The previous review of the literature suggests that three 

factors are relevant in minimizing stress effects present during 

sleep following exercise. 

1. There is considerable argument in favour of late afternoon as 

opposed to evening exercise (Baekeland and Lasky, 1966; Desjardins 

et al., 1974; Hauri, 1968; Horne and Porter, 1976). Thus to mini-

mize stress and maximize the facilitative effect of exercise on SWS, 

. exercise should be conducted during the afternoon. 

2. It has been suggested that there may be an inverted U-shaped . 

relationship between exercise level and subsequent SWS, such that 

a level of exercise insufficient to cause a change in catabolism 

results in no increase in SWS, a level of exercise sufficient to 

cause catabolism but insufficient to cause sleep disturbance results 

in an increase in SWS and a level of exercise severe enough to cause 

both catabolism and sleep disturbance results in no increase in SWS 

(Hobson, 1968). Thus, an appropriate level of exercise relative to 

fitness level may be required to produce a facilitative effect on 

SWS (Griffin and Trinder, 1978). 	In order to identify a level of 
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exercise sufficient to produce the necessary catabolism but at the 

same time insufficient to produce disturbance of sleep, it would be 

necessary to parametrically vary exercise level. 

3. Three of the six studies which have evaluated the effects of 

exercise on sleep in unfit subjects have used only a single exercise 

session (Griffin and Trinder, 1978; Hauri, 1968; Zir et al., 1971) 

and the remaining three used only two exercise sessions a number of 

days apart (Adamson et al., 1974; Desjardins et al., 1974; Horne 

and Porter, 1976). It seems likely that this sudden introduction of 

exercise would be stressful to subjects. In contrast, after a number 

of consecutive days of exercise subjects would adapt to the exercise 

level and experience less stress. 	Therefore, to minimize stress, 

subjects should exercise on a number of consecutive days. 

Two previous studies, Desjardins et al. (1974) and .Zir et al. 

(1971) have varied the level of exercise performed by unfit subjects. 

However, Desjardins et al. (1974) used evening exercise and only one 

testing occasion at each exercise level. Zir et al. (1971) used two 

exercise levels described as light and moderate exercise, on one 

•occasion at each level. In the moderate exercise condition subjects 

performed a variety of exercises for 6 hours while in the light exer-

cise condition subjects exercised for 2 hours. While it is difficult 

to determine the exercise levels in terms of percentage of VO 2max' 

both these exercise levels appear quite demanding and may have been 

sufficient to cause physiological stress. Thus, neither study used 

appropriate conditions to minimize the hypothesized stress effects of 

exercise. 

The hypothesis tested in the present study was that the failure 

of earlier studies.to  find a-facilitative effect of exercise on SWS 
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in unfit subjects was due to stress induced by the exercise sessions 

which disrupted sleep and counteracted the facilitative effect of 

exercise on SWS levels. It was predicted that following mild or 

moderate exercise levels, as compared to no exercise or severe exer-

cise, SWS levels in unfit subjects would be facilitated and the stress 

effect would be minimized. This effect would be particularly evident 

after a number of consecutive days of exercise. 
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CHAPTER 	5. 

.METHO D. 

Subjects  

Twenty four unfit subjects (10 female and 14 male) were recruited, 

largely from the university community. Eight subjects were paid for 

their participation. The mean age was 21.67 years (SD = 3.27). The 

physical fitness of subjects, defined in terns of predicted maximal 

oxygen uptake (V02 m ) was assessed using a submaximal exercise 

nomogram method described by Istrand and Rodahl (1970). Subjects were 

considered unfit if they had a VO 2max  of equal to or less than 2.1 litres 

for females and 2.8 1. for males in accordance with data published 

by Astrand (1960). The mean V0 2max levels were 1.65 1. (SD = .25) 

and 2.22 1. (SD = .30) for females and males respectively. Ih addi-

tion it was required that subjects did not engage in any regular 

physical exercise. 

Six subjects were assigned to each of four groups, such that the 

• .groups were matched as closely as possible for age and baseline SWS 

levels. This Matching procedure was carried out to ensure equivalenc e  

of the groups with respect to initial SWS levels. The group means 

for age and baseline SWS are shown in Table 1. Because of the con-

cern 	these two variables it was not possible to have the same 

distribution of males and females in each group. 

While unfit, according to our criteria, subjects were all healthy 

and were not on medication, they were also within the normal weight 

ringe - for their physical builds, the mean weights being 56.10 kg. 

(SD = 7.80) and 68.79 kg.(SD = 8.47) for females and males respectively. 

Group and individual information as to the sex, weight, pre- and 
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TABLE 1. 

• Group means and SDs for age (in years) 
and baseline SWS levels (in mins.) 

cl5c 	ky.i., 

Mean 	SD 

1.1ciel..Lue DWO 	kmins) 

Mean 	SD 

Group 1 20.67 2.49 101.25 23.22 

Group 2 22.17 4.06 99.75 34.86 

Group 3 22.50 3.73 94.67 36.05 

Group 4 21.33 2.05 92.50 19.32 

TABLE 2. 

Mean VO
2max values before and after 

exercise as a function of exercise 
severity (means adjusted for,missingm-.- 

_ 	• values) 

Pre-Exercise Post-Exercise 

Group 1 1.90 1.72 

Group 2 1.82 1.93 

Group 3* 2.25 2.63 

Group 4 1.90 2.30 

* Mean values are higher in this group as it 
contains a higher proportion of male subjects. 



post-exercise VO
2m ax 

 levels, age and baseline SWS levels of subjects 

are recorded in Appendix I. 

Design 

A 4 x 4 factorial design with repeated measures on one factor 

was used. The first factor consisted of four experimental groups 

which differed according to the level of exercise they were required 

to perform during the experiment. Thus Gp. I did not exercise, Gp. 2 

exercised at 50% 
VO2max 

for a total of 45 mins., Gp. 3 at 75% VO
2max 

for a total of 60 mins., and Gp. 4 at as close to their maximal 

level as possible for a total of 60 mins. The exercise levels were 

selected on the basis of pilot work, as representing a gradation of 

severity from no exercise to relatively exhausting exercise. 

The second factor consisted of four assessment nights, one before 

and three during the exercise period. Thus each subject in Gps. 2, 

3 and 4 exercised in the afternoon (between 1500 and 1800 hours) 

on five consecutive days. A baseline (B) measure was recorded four 

nights prior to the first exercise session. There were then three 

recordings (El, E3, and E5) during the exercise period on nights 

following the first, third and fifth exercise session respectively. 

Two nights prior to the baseline night, subjects were given an adapt-

ation night to eliminate possible "first night" effects (Agnew, Webb 

and Williams, 1966). Subjects in Gp. 1, who did not exercise, had 

their sleep assessed on the same schedule as subjects in other groups. 

Procedure  

Physical Fitness Assessment:  Physical fitness levels were assessed 

using Astrand's (Xstrand, 1960) submaximal exercise work test. 
	Test- 

ing was typically conducted several days before the adaptation night. 
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During the test, subjects rode a bicycle ergonometer at a submaximal 

work load (one that required a heart rate (HR) between 150-175 beats/ 

min.) for 6 mins. This was sufficiently long for the HR to have 

been stable for two or three minutes. HR was continually monitored 

during the test by means of a cardiotachometer and the mean HR for 

the final minute of bicycle riding was designated the working pulse 

for the given workload. Having determined the subject's working pulse 

0 
for a specific work load, his V0 2max was calculated using Astrand's 

0 
(Astrand, 1960) nomogram method. 	The resulting predicted VO2max 

was 

used as an indication of the subject's degree of physical fitness. 

As indicated above, unfit subjects were defined as those with a 

VO2max 
of equal to or less than 2.1 litres for females and 2.8 litres 

for males. 

A marked increase in physical fitness following the.five day 

exercise period, while unlikely, would confound the interpretation 

of any increase in SWS due to the experimental manipulation, as it 

could be attributed to either fitness or to the immediate effects 

of exercise. 	Therefore, to monitor for such a change a second sub- 

maximal exercise work test was given to subjects three days following 

the final exercise session. Four post-exercise fitness scores are 

not available, however, as the subjects failed to keep their appoint-

ments for this test. 

A further fitness test was given to most subjects before and 

after the exercise period to ensure that any change in fitness recorded 

on the bicycle ergonometer submaximal work test could not be attri-

buted merely to a mechanical efficiency factor acquired during the 

five bicycle riding sessions. This test was a modified version of 

0 
the Harvard Step Test (Astrand and Rodahl, 1970). HR was recorded 
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as subjects stepped on to and down from a step 33 cm. high at a rate 

of 20 steps/min. for females and 30 steps/min. for males, for 5 mins. 

The working HR on the Step Test was used directly as a measure of 

the subject's fitness. 

VC12max 
levels and HRs on the Step Test of groups,before and after 

the exercise period, were compared by means of a 4(groups) x 2(pre-

and post-exercise scores) analysis of variance, with repeated mea-

sures on the second variable. The statistic of interest was the 

interaction effect between exercise severity and occasion of fitness 

testing. This interaction was statistically significant for both 

V02max  levels (F(3,20) = 3.27, p < .05) and HR scores (F(3,20) = 4.60, 

p < .01). Thus while VO 2max 
and HR scores of Gps. 1 and 2 remained 

relatively constant, VU2max  scores increased and HR scores decreased 

in Gps. 3 and 4 following the exercise period (V0 2max 
levels are 

recorded in Table 2). 

While the change in fitness levels was statistically significant 

it was small in magnitude. This is illustrated by the fact that 
0 

when compared• with the normative material published by Astrand (1960) 

all subjects remained in the low fitness categories. The level -of 

significance attained was most likely due to the uniformity of the 

sample which resulted from the selection procedures. As the magni-

tude of the effect is small it woul4 be unlikely that it would result 

in SWS changes as a function of physical fitness. Nevertheless, 

the change indicates the effectiveness of the exercise program in 

placing demands on the subjects in the two more severe exercise 

groups. 

The main effect of groups was not significant for VO 2max  levels 

F(3,20) = 3.00, p > .05) or for HR scores (F(3,20) = 1.73, p > .05). 
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However, the main effect of testing occasion was significant in the 

case of 
VO2max 

levels (F(1,20) = 5.76, p < .05) although not in the 

case of HR scores (F(1,20) = 2.51, p > .05). 

•Exercise Sessions:  All exercise was performed on a stationary 

bicycle ergonometer. There were a number of reasons for selecting 

this form of exercise. 

1. It enabled the work load demanded of each subject to be closely 

controlled in terms of % VO 2max* 

2. Subjects unused to exercising were less likely to sustain injuries 

while riding a stationary bicycle than while running or playing an 

unfamiliar sport. 

3. Unlike many forms of exercise, riding a bicycle ergonometer is 

not affected by inclement weather conditions. 

The second two issues were of some concern as it was necessary to 

complete all exercise sessions within a specified schedule. 

Subjects in the three exercise groups rode the bicycle ergono- 

• meter,.under supervision, between 1500 and 1800 hours, on five conse-

cutive days. Subjects in Gp. 2 exercised at 50% VO 2max . That is at 

a level maintaining aHR of 138 beats/min. for females and 128 beats/ 

min. for males (Istrand and Rhyming, 1954), for 45 mins. divided 

into 15 min. sessions by 10 min. rests. The mean work loads for the 

exercise sessions were 263 kpm/min. (SD = 75) and 450 kpm/min. (SD = 0) 

for females and males respectively. 

Subjects in Gp. 3 were required to work at 75% VO 2 x  for 60 mins. 

divided into 15 mins. sessions by 10 min. rests. This work load required 

subjects to maintain a working pulse of 160 beats/min. (Xstrand and 

Rhyming, 1954). The mean work load for this group was 725 kpm/min. 



59. 

(SD = 113). (N.B.. All subjects were male.) 

Subjects in Gp. 4 were asked to exercise at a work load as close 

to their maximal level as possible for a total of 60 mins. divided 

into 15 min. sessions by 10 min. rests. The mean work load for Cp. 4 

was 500 kpm/min. (SD = 87) for females and 875 kpm/min. (SD = 156) 

for males. None of the subjects in this group could complete their 

exercise sessions in the specified schedule on the first exercise day. 

On this day subjects required at least twice the number of scheduled 

rests. However, by the fifth day all subjects found the exercise con-

siderably easier, 4 being able to complete their exercise sessions 

according to schedule. 

Sleep Assessment:  On adaptation and sleep recording nights, subjects 

reported to the sleep laboratory an hour before their usual bedtime. 

The sleep laboratory consists of two separate, sound attenuated bed-

rooms (thus enabling two subjects to be run concurrently), with an 

adjacent room for sleep monitoring equipment. During the hour prior 

to the subject's normal bedtime, the subject prepared for bed and the 

recofding electrodes Were attached. Electroencephalogram (EEG), electro-

myogram (EMG) and electrooculogram (EOG) information was collected 

according to the standardized procedures described by Rechtschaffen 

and Kales (1968). One exception to these procedures was used in that 

a single bipolar EOG was recorded rather than two monopolar channels 

(Wells, Allen and Wagman, 1977). All recordings were made on aBechman 

411 Dynograph. EEG amplification was set at 100).1V/cm with a . time 

constant of 1 sec. 	The paper speed was set at 10 mm/sec. 

The light was turned out at approximately the subject's normal 

bedtime. Subjects were not disturbed during the night but were woken 
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at their normal rising time. 

Scoring: 	The polygraph sleep records were scored blind by 

two scorers with an inter-rater reliability of greater than 90%. Each 

30 sec. epoch was scored a particular stage according to the criteria 

described by Rechtschaffen and Kales (1968). 

Measurement of Stress:  As discussed in Chapter 4 the term 

"stress response" has been used by a number of authors in a general 

sense to account for certain effects of exercise on sleep. Its status 

has been explanatory rather than involving a specific physiological or 

psychological response. The reasons for proposing the concept have 

varied but most frequently have involved measures of sleep disturbance 

following certain experimental manipulations of exercise. While the 

aim of the present study was to explore the effects of exercise on SWS 

following experimental manipulations designed to minimize this hypothe-

tical response it would have been an advantage to measure it in some 

way. However, without knowing the exact nature of the stress reponse 

it was difficult to decide how best to measure it. Neither the sleep 

and exercise literature, nor the physiological literature on exercise 

gave any clear indication as to which physiological system to monitor. 

In this situation it seemed most appropriate to use measures of sleep 

disturbance itself as indications of the stress response. 
.. 	 • 

There were two factors suppor 4- ing this decision. Firstly, as 

mentioned, sleep disturbance measures figured prominently in the origin-

al arguments in support of the stress response hypothesis. Secondly, 

it is possible that the hypothesized effect of the stress on SWS is 

mediated by a general disturbance of sleep. Thus, a number of sleep 

variables, which are generally accepted as indicators of disturbed or 

poor sleep, were analyzed. 
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TABLE 3. 

F values and significance levels (P) 
of NREM sleep variables 

Days of 
 	Exercise 

Level of 
Exercise 

Days x Level of 
Exercise 

Stage 2 (mins) 

Stage 2(%TST) 

Stage 3 (mins) 

Stage 3(7TST) 

Stage 4 (mins) 

Stage 4 	(7,TST) 

SWS (mins) 

SWS(UST) 

Stage 2+3+4 
(mins) 

SWS latency 
(wins) 

F 

F 

F 

F 

F 

F 

F 

1./84 
(.15 

1:81 
.15 

.12 

.95 

.15 

.93 

.29 

.83 

.50 

.69 

.18 

.91 

.52 

.67 

1.12 
.35 

2.35 
.08 

(3,60)* .35(3,20) 
.79 

.36 

.78 

1.05 
.39 

1.05 
.35 

.42 

.74 

.51 

.68 

.13 

.94 

.10 

.96 

.23 

.88 

1.27 
.31 

.94 

.50 

1.65 
.12 

1.04 
.42 

1.00 
.44 

1.32 
.24 

1.38 
.22 

.47 

.88 

.36 

.95 

• 	.99 
.45 

1.79 
.09 

(9,60) 

- 

* d.f. 
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CHAPTER 6. 

RESULTS  

Each sleep variable was analyzed by means of a 4 (levels of 

exercise) x 4 (days of exercise) analysis of variance with repeated 

measures on the second factor. As baseline values for variables other 

than SWS tended to vary between groups a second analysis was also con-

ducted on each variable using a 4 (levels of exercise) x 3 (days of•

exercise) analysis of covariance in which the baseline level was used 

as the covariate for each exercise day (Winer, 1971, p.796). As the 

results were unaffected by the nature of the analysis only the former 

method is reported here. Condition means for all sleep variables 

analyzed are presented in Appendix 2. 

MEM Sleep Variables  

The F ratios and probability levels for a number of NREM sleep 

variables are reported in Table 3. The stress effect hypothesis would 

predict a significant main effect of the level of exercise for SWS 

variables, with the moderate exercise level groups (Groups 2 and 3) 

showing greater positive effects than the zero or maximal exercise . 

groups. This hypothesis would also predict an increase in SWS in 

exercise groups over days which may appear as a significant interaction 

betweeu exercise level and days or even as a main effect of days. 

As indicated in Table 3, no significant differences were found 

in any NREM variable as a function of either exercise level or exercise 

duration. Further analysis of Stage 3, 4 and SWS (3 + 4) by the 

combination of various groups, for example, Group 2 plus 3 compared 

with Group 1, and with Group 4, gave results identical to the initial 

analysis. The independence of SWS levels from the independent variables 

is clearly indicated in Table 4. Thus, there is no evidence to 
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TABLE 5. 

F values and significance levels (P) of 
sleep variables indicative of poor and 
disturbed sleep 

Days.of 	Level of 
Exercise 	Exercise 

Days.x Level 
of Exercise 

Sleep Onset Latency F .95 (3,60)* 	.21(3,20) .94(9,60) 
(nins) P .42 .89 .50 

Awake in SPT (mins) F 1.55 .32 1.1 
.21 .81 .37 

Awake in SPT (%SPT) F 1.47 .44 1.06 
.23 .73 .41 

TQtal Time Awake F .82 .27 1.11 
(nins) P .49 .84 .37 

Total Time Awake F .68 .32 1.16 
(%TiB) P .57 .81 .34 

No. of Awakenings F 1.99 1.18 1.09 
P .12 .34 .39 

Stage 1 (mins) F .37 .11 1.02 
.95 .44 

Stage 1 (%TST) F .47 .32 1.17 

• MT (mins) • 

.71 

.48 

.81 

1.01 	• 

.33 

1.28 
.70 .41 .27 

MT (%TST) F .39 :97 1.24 
:76 .43 .29 

• Awake + MT + Stage 1 F 1.18 .01 1.04 
(%SPT) P .33 .99 .42 

Awake + MT + Stage 1 F .54 .16 • 1.42 

(%TiB) P .66 .92 .20 

* d.f. 
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TABLE 4. 

Mean SWS Levels (mins) for Groups 
on each exercise day. 

Baseline 

EXERCISE DAY 

E5 	 Mean El E3 	 

Group 1 101.25 96.75 105.50 94.08 99.40 

Group 2 99.75 106.08 98.08 108.00 102.98 

Group 3 94.67 97.83 99.42 101.08 98.25 

Group 4 92.50 97.67 95.50 95.58 95.31 

Mean 97.04 99.58 99.63 99.69 98.99 

support the restorative theory, and the stress hypothesis does not 

appear to account for the failure of exercise to facilitate SWS in 

unfit subjects. 

Sleep Disturbance Measures  

The results of the analyses of variance performed on a number 

of measures of poor or disturbed sleep are summarized in Table 5. 

As can be seen from this table, no significant differences were found 

in any of these variables. The absence of exercise effects is i119. 

strated in Table 6 in which combined 7alues of time awake, movement 

time and Stage 1 as a percent of total time in bed, are presented. 

Sleep Length Variables  

Analyses of variance were performed on three sleep length variables, 

time in bed (TiB), sleep period time (SPT) and total sleep time (TST). 



TABLE 6. 

Mean Group levels of time awake + Stage 1 
+ movement Time expressed as a percent of 
TiB, for each exercise day. 

Baseline 

EXERCISE DAY 

E5 Mean El E3 

Group 1 16.49 15.62 12.33 17.30 15.44 

Group 2 15.55 14.81 18.89 15.71 16.24 

Group 3 13.60 17.83 13.53 12.12 14.27 

Group 4 18.10 15.28 12.65 18.33 16.09 

Mean 15.94 15.89 14.35 15.87 15.51 

These results are reported in Table 7. 	No significant differences 

were found as a result of level or days of exercise. 

TABLE 7. 

F values and significance levels (P) 
of sleep duration variables 

Days of 
Exercise 

Level of 	Days x Level 
Exercise 	of Exercise 

Time in Bed (nins) 1.41(3,60)* .48(3,20) .17(9,60) 
.25 .70 .99 

Sleep Period Time .86 .21 .50 
(mins) .47 .89 .87 

Total Sleep Time .39 .36 .44 
(mins) .76 .78 .91 

* d.f. 

65. 
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REM Sleep Variables  

The results of analyses of variance performed on REM sleep dura-

tion and REM latency are shown in Table 8. 	No significant differences 

were found in these variables, either as a function of exercise level 

or duration. 

TABLE 8. 

F values and significance levels (P) 
of REM sleep variables 

Days of 	Levels of 
Exercise 	Exercise 

Days x Level 
of Exercise 

Stage REM (mins) .50(3,60)* 1.01(3,20) 1.04(9,60) 
.69 .41 .42 

Stage REM (%TST) 1.02 .73 1.48 
.39 .54 .18 

REM Latency .(mins) .71 .60 1.16 
.56 .62 .34 
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CHAPTER 7. 

DISCUSSION 

The results of the present study offer no support for the 

bodily restorative theory of SWS since they provide no evidence that 

afternoon exercise can produce an increase in SWS in unfit subjects. 

The data further suggest that the failure of this study to demonstrate 

the effect cannot be accounted for by a stress effect counteracting 

an increase in SWS. 

The failure to find an increase in SWS under conditions designed 

to minimize the effects of stress was unexpected as there is a con-

siderable amount of evidence in the literature consistent with this 

widely argued view. Because this hypothesis is appealing, it was 

necessary to consider whether other aspects of the experiment may 

have mitigated against the effect. 

It might be argued that the sample size was insufficient to 

demonstrate a significant effect. Two factors make this improbable. 

Firstly, the sample size was comparable with other studies from this 

laboratory which have produced positive effects. Thus, Griffin and 

Trinder (1978) used two groups of eight subjects for two nights each 

(df = 31), while Bruck (1978) used four groups of six subjects for 

three nights (df = 71). Secondly, the SWS data of the present study 

did not suggest even the slightest trend or suggestion of an effect 

(see Table 3). 

It could also be argued that the failure to observe an increase 

in SWS following exercise was due either to the low intensity condi-

tions being too demanding, or the high intensity conditions being 
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insufficiently demanding, in other words, that the various exercise 

levels did not encompass a sufficient range of conditions. The former 

was viewed to be highly unlikely. To begin with, it is difficult to 

consider an exercise level of 50% VO 	for 45 mins. to be in any way 
2max 

demanding. Secondly, the absence of any indication of sleep disturbance 

in the most severe exercise group makes it unlikely that the less 

severe conditions would be stressful to subjects. Finally, it could be 

argued that if the low exercise condition, Gp. 2, was a difficult 

task for the subjects it would be unlikely that subjects in Gp. 4 

would have been able to complete the task at all. 

It was more likely that all three exercise levels were insuffici-

ently demanding. This interpretation would be consistent with the 

failure to show sleep disturbance under any conditions in the experi-

ment. However, for two reasons, this alternative was not considered 

probable.

•1. There was a small but statistically significant increase in 

fitness levels in subjects in the more severe exercise conditions 

following only five days of exercise. This, in itself, was rather 

compelling -evidence that the higher exercise levels were sufficient 

to make catabolic demands on the subjects. 

2. As mentioned in the Method, subjects in the most severe exer-

cise condition were unable to complete their exercise according to 

the usual schedule on the first three days, requiring a greater number 

of rest periods. 

If it was accepted that the range of exercise levels was indeed 

appropriate to the aims of the experiment then the failure to show 

any indication of sleep disturbance needs to be considered. While it 

was true that the aim of the experimental design was to minimize 
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stress it had been expected that on the first exercise night, particu-

larly in Gp. 4, there would have been some sleep disturbance. The 

most plausible explanation for the failure to do so, would be that 

the more intense exercise levels were sufficiently severe to produce 

changes in catabolism, as indicated by the effect on fitness levels, 

but insufficiently severe to stress the subjects and thus disturb 

sleep. This is possible as the literature reviewed in Chapter 3 

suggests that prolonged and excessive psychological arousal follow-

ing exercise occurs most prominently with very severe and exhausting 

exercise. The particular exercise levels used in this study, in 

combination with afternoon as opposed to evening exercise, could have 

meant that any stress produced would have been dissipated by bed time. 

It is also possible that the absence of effects of exercise on 

sleep disturbance measures was due to the particular nature of the 

exercise used, riding a stationary bicycle. Those studies which have 

reported increases in sleep disturbance measures used exercise such 

as running (Adamson et ca., 1974; Baekeland and Lasky, 1966; Griffin 

and Trinder, 1978) and ballgames (Adamson et al., 1974; Baekeland 

and Lasky, 1966). Moderate bicycle ergonometer exercise resulted in • 

no change in sleep diturbance measures in a study by Horne and 

Porter (1975). 

To this point the argument has assumed that the hypothetical 

stress response would be reflected in, or measured by, sleep disturb-

ance measures. As discussed in the Method this assumption has rested 

on two grounds. 

1. The stress concept itself developed mit of a number of observa-

tions relating sleep disturbance to experimental manipulations which 
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were thought likely to produce physiological stress. 

2. It is most likely that the hypothetical stress response would ef-

fect both SWS and the quality of sleep and thus sleep disturbance measures. 

However, it remains logically possible that the effect of stress could 

be to reduce SWS and leave the level of disturbed sleep unaffected. In 

this case, a stress response could be operating, undetected by sleep 

disturbance measures, counteracting the effect of exercise on SWS. 

However, if this were so there still seems no reason why the level of 

this response would not be proportional to the intensity of the exercise 

with corresponding changes in SWS. 

The preceding section indicates that there are no obvious reasons 

for the failure of the present data to support the hypothesis. . However, 

in the case of a negative result it must always be considered possible 

that unapparent factors were involved. Nevertheless, there appears to 

be no compelling reason to modify the conclusion that exercise in unfit 

individuals does not increase SWS levels and that, in this study at 

least, the failure is not due to a stress effect. 

• The failure to find an effect of exercise on SWS in unfit sub-

jects both in the present study, in which a range of exercise loads 

and an extended number of exercise sessions were used, and in a number 

of other studies, provides strong evidence that exercise does not have 

a facil.Lcative effect on SWS in this population. This conclusion is 

incompatible with present statements of the bodily restorative theory 

of SWS and thus supports those theorists who have either denied a 

restorative role for SWS or restricted its effect to the CNS. 

Two recent studies (Bruck, 1978; Walker, Floyd, Fein, Cavness, 

Lualhati and Feinberg, 1978), only available subsequent to the collection 

of the present data, have elvaluated other aspects of the relationship 
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between exercise and SWS. Both of these studies, one having been 

conducted in the same laboratory as the present study (Bruck, 1978), 

failed to replicate the exercise effect in fit subjects. 	That is, 

they found no difference in SWS levels on nights following afternoon 

exercise as opposed to nights following no exercise, in fit subjects. 

In addition, both studies tested the effect of physical fitness on 

SWS levels. Bruck (1978) replicated earlier studies which had found 

chronically higher levels of SWS in fit as compared to unfit indivi-

duals. Walker et al. (1978) failed to observe the effect in SWS 

(Stages 3 + 4) but did find differences in NREM sleep (Stages 2 + 3 + 

4). This study is the first published report which does not find 

high levels of SWS in physically fit individuals. 

It is clear that no firm conclusions can yet be reached as to 

the relationship between exercise, physical fitness and sleep in human 

subjects. 	However, a number of tentative conclusions can be drawn. 

1. In the light of results from the present study it can be 

argued with some degree of confidence that exercise does not affect 

SWS on the immediately succeeding night in unfit subjects. 

2. It is also possible that this is true for fit subjects although 

the positive effects reported in several studies (Baekeland and Lasky, 

1966; Griffin and Trinder, 1978; Shapiro et al., 1975) would suggest 

that the facilitative effect of exercise on SWS exists in fit subiects 

under particular circumstances yet to be identified. 

3. Despite the recent results of Walker et al. (1978), the most 

robust finding is the sustained elevation of SWS as a function of 

physical fitness. 
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The bodily restorative theory of SWS requires some revision in 

view of the conclusions stated above. In particular, the theory requires 

modification to account for the finding that SWS appears to be more 

closely related to chronic activity levels than day to day variations 

in activity. 

Thus it could be argued that SWS fulfils a peripherally restora-

tive function in which anabolic activity would be set according to long 

term requirements. This version of the model would predict changes in 

SWS levels only in response to sustained alterations in activity levels. 

Considering the relatively stable nature of sleep patterns and other 

biological rhythms this version of the restorative model has some 

intrinsic appeal. Such a concept would also be consistent with other 

well known physiological consequences of physical exercise. Thus 

habitual exercise causes a variety of long term physiological and 

functional changes which enhance performance of and recovery from exer-

cise (see Chapter 3). A sustained elevation of SWS may be a similar 

- adaptation enabling the more efficient restoration or maintenance of 

muscle tissues on which there are heavy demands. 

It could also be speculated, if it should be found that fitness 

is related to a facilitative effect of exercise on SWS, that increased 

fitness results in an increased flexibility of the SWS system uncle'. 

some circnmstances. This flexibility may enable an immediate facili-

tative effect of exercise on SWS to occur. 

As a final point it should be noted that the apparent relation-

ship between chronic activity levels, as defined by physical fitness, 

and SWS is open to at least two alternative interpretations, which, 
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if either were valid, would further compromise restorative theory. 

1. gWS levels may be correlated with other physiological factors, 

such as oxygen uptake and athletic ability, which are to a consid-

erable extent genetically determined, or are a relatively permanent 

result of early training and which are likely to result in physical 

fitness. Thus the selection of high activity subjects on the basis 

of physical fitness, or athletic ability, may involve the assessment 

of a genetic or early training factor, unrelated to current activity 

levels. 

2. Different dietary practices between fit and unfit individuals 

may result in different sleep patterns in the two groups as nutri-

tional 'eV-el has been shown to affect sleep (Crisp and Stonehill, 

1976). 

The role of habitual exercise or fitness on both the sustained 

elevation of SWS and the immediately facilitative effect of exercise 

on SWS would be resolved by an experiment in which sleep was npni-

tored on at least two occasions within the same subject, once before 

• arid once, after a physical fitness programme designed to make physi-

cally unfit subjects fit. Diet would need to be simultaneously 

measured. Such a study would have relevance to both the validity 

of these phenomena and the nature of the factors determining them. 
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Group 1 subject information as to sex, age, weight, baseline SWS, 
pre- and post-exercise VO 2max  and pre- and post-exercise H.R. on 
the Step Test. 

Subject Sex Age (yrs) Wt.(kga) Baseline SWS . Pre-Exercise Post-Exercise Pre-Exercise Post-Exercise. 
(mins) VO2max (1.) V02max (1) 

HR on Step HR on Step 
Test - (bPm) 

A.V. F 21 56 92.5 1.8 1.8 155 150 

W.J. F 19 60 104.5 1.5 1.5 - 177 

C.M. M 20 64 141.5 2.6 2.3 148 159 

S.E. M 17 78 70.5 1.7 1.7 180 180 

D.B. F 22 51 103.5 1.4 - 176 

T.T. M '...5 63 95.0 2.3 1.8 167 174 

Mean 	- Males 20.7 68.3 102.33 2.20 1.93 165.0 171.0 

Females 20.7 55.7 100.17 1.57 1.65 165.5 163.5 

Total 20.7 	 62.0 101.25 	 1.88 1.82 165.2 168.0 

SD - Males 4.0 8.4 36.06 .46 .32 16.1 10,8 

Females 1.5 4.5 6.66 .21 .21 14.8 19.1 

Total 2.7 9.2 23.22 .47 .29 13.6 12.g 
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Group 2 subject information as to sex, age, weight, baseline SWS, 
pre- and post-exercise VO2max and pre- and post-exercise HR. on 
the Step Test. 	. 

Subject Sex Age(yrs) Wt(Kgs) Baseline SWS. 
(mins) 

Pre-Exercise 	Post-Exercise 

"2max (1.) 	VO
2max (1.) 

Pre-Exercise 
HR On Step 
Test(bpm.) 

Post-Exercise 
HR on Step 
Test 	(bpm.) 

G.D. F 20 54 71.5 1.5 1.5 180 175 

A.B. F 29 75 79.5 2.1 - - - 

A.P. F 22 51 106.0 1.5 1.5 159 174 

G.J. M 25 81 166.0 2.2 2.1 165 165 

M.H. M 16 66 96.5 2.0 2.1 175 173 

M.V. F 21 56 79.0 2.1 2.2 - - 

Mean - Males 20.5 73.5 131.25 2.10 2.10 170.0 169.0 

Females 23.0 59.0 84.0 1.80 1.73 169.5 174.5 

Total 22.2 63.8 99.75 1.90 1.88 169.8 : 171.8 

S D 	- Males 6.36 10.6 49.14 .14 0 7.1 5.6 

Females 4.08 10.9 15.12 .35 .40 14.9 .7 

Total 4.45 12.2 34.86 .32 .35 9.5 4.6 
03 



'1
 X

IC
E

ac
LI

V
 

Group 3 subject information as to sex, age, weight, baseline SWS, 
pre- and post-exercise 

VO2max and pre- and post-exercise HR on 
the Step Test. 

Subject 	Sex Age(yrs) Wt(Kgs) Baseline SWS* Pre-Exercise 
V02 (1.) 

Post-Exercise 
VO(1.) •(mins) 	 HR on Step 

Pre-Exercise Post-Exercise 
HR on Step max 2max Test 	(bpm.) Test(bpm.) 

K.S. 	M 26 64 83.5 2.4 2.4 177 163 

M.B. 	M 19 66 114.0 2.3 2.1 133 148 

M.H. 	M 27 54 86.0 1.8 3.4 - - 

C.G. 	M 17 66 153.5 2.1 2.6 158 160 

C.W. 	M 25 87 46.0 2.3 2.5 180 166 

A.W. 	M 21 74 85.0 2.6 2.8 175 167 

Mean - Males 22.5 68.5 94.67 2.25 2.63 164.6 160.8 

Females 

Total 22.5 68.5 94.67 2.25 2.63 164.6 160.8 

S D  - Males 4.1 11.1 36.05 .27 .44 19.6 7.7 

Females 

Total 4.1 11.1 36.05 .27 .44 19.6 7.7 
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Group 4 subject information as to sex, age, weight, baseline SWS, 
pre- and post-exercise V0 2 	

and pre- and post-exercise HR on 
max 

the Step Test. 

Subject 	Sex Age(yrs) Wt(kgs) Baseline SWS Pre-Exercise Post-Exercise Pre-Exercise Post-Exercise 
(mins) V°2max (1.)  2 	(1.) max 

HR on Step 
Test (bpm.) 

HR on Step 
Test 	(bpm.)  

H.M. 	F 23 60 73.0 1.4 1.8 165 157 

J.R. 	F 23 48 111.0 1.5 1.5 158 158 

A.D. 	M 21 68 63.5 2.0 2.6 182 

N.H. 	M 17 67 101.0 2.0 - 180 

S.M. 	M )1 _,_ 65 103.5 2.8 - 159 

G.B. 	F 22 50 103.0 1.7 2.3 150 120 

Mean - Males 20.0 66.7 89.33 2.27 2.60 173.7 

Females 22.6 52.7 95.67 1.53 1.87 157.7. 145.0 

Total 21.3 59.7 92.50 1.90 2.05 165.7 145.0 

S.D. - Males 2.7 1.5 22.41 .46 0.00 12.7 - 

Females .6 6.4 20.03 .15 .40 7.5 21.7 

Total 2.3 8.7 19.32 .51 .49 12.8 21.7 
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APPENDIX 2. 

Mean Stage 2 levels (mins) for Groups on each exercise day. 

EXERCISE DAY 

E5 Mean Baseline El 

Group 1 210.92 214.75 210.67 206.92 210.82 

Group 2 211.58 192.42 186.36 193.67 196.01 

Group 3 213.08 212.92 193.67 191.33 202.75 

Group 4 199.58 214.58 215.25 188.92 204.58 

Mean 208.79 208.67 201.49 195.21 

Mean Stage 2 levels as a percent of TST for Groups on 
• each exercise day. 

EXERCISE DAY 

90. 

Baseline El 	E3 	E5 Mean 

Group 1 

Group 2 

Group 3 

Group 4 

	

45.93 	46.96 	46.79 	47.55 

	

47.35 	43.61 	44.62 	44.18 

	

49.89 	48.34 	44.94 	43.62 

	

46.60 	49.70 	49.16 	44.98 

46.81 

44.94 

46.70 

47.61 

47.15 	46.38 	45.08 Mean 47.44 



APPENDIX 2 

Mean Stage 3 levels (mins) for Groups on each exercise day. 

EXERCISE DAY 

E3 E5 Mean Baseline El 

Group 1 33.00 35.75 32.67 32.42 33.46 

Group 2 37.83 40.25 38.21 49.83 41.53 

Group 3 49.33 40.33 44.92 47.00 45.40 

Group 4 34.92 37.00 41.92 31.33 36.29 

.Mean 38.77 38.33 39.43 40.15 

Mean Stage 3 levels as a percent of TST for Groups on 
each exercise day. 

91. 

Group 1 

Group 2 

Group 3 

Group 4 

Mean 

Baseline 

EXERCISE DAY 

E3 E5 Mtan El 

7.45 8.07 7.42 7.55 7.62 

8.29 9.26 9.22 11.22 9.50 

11.35 9.31 10.40 70.72 10.45 

8.33 8.64 9.61 7.29 8.47 

8.86 8.82 9.16 9.20 



APPENDIX 2. 

Mean Stage 4 levels (mins) for Groups on each exercise day. 

EXERCISE DAY 

E3 E5 Mean Baseline El 

Group 1 68.25 61.00 72.83 61.67 65.94 

Group 2 61.92 65.83 59.88 58.08 61.43 

Group 3 45.33 57.50 54.50 54.00 52.83 

Group 4 57.58 60.58 53.58 64.25 59.00 

Mean 58.27 61.23 60.20. 59.50 

Mean levels of Stage 4 as a percent of TST for Groups on 
each exercise day. 

Baseline 

EXERCISE DAY 

E3 E5 Mean El 

Group 1 14.96 13.62 16.11 14.08 14.69 

Group 2 13.62 15.07 14.00 13.16 13.96 

Group 3 10.11 12.91 12.24 12.21 11.87 

Group 4 13.77 14.28 12.50 15.92 14.12 

Mean 13.12 13.97 13.71 13.84 

92. 



APPENDIX 2 

Mean levels of SWS (Stage 3 + 4) as a percent of TST 
for Groups on each exercise day. 

93. 

EXERCISE DAY 

Baseline 	El 	E3 	E5  Mean 

Group 1 

Group 2 

Group 3 

Group 4 

	

22.35 	21.70 	23.53 	21.63 

	

21.92 	24.33 	23.22 	24.38 

	

21.46 	22.22 	22.63 	22.12 

	

22.10 	22.91 	22.12 	23.21 

22.30 

23.46 

22.11 

22.59 

Mean 21.96 	22.79 	22.88 	22.84 

Mean Stage 2 + 3 + 4 levels (mins) for Groups on each 
exercise day. 

EXERCiSE DAY 

Baseline El 	E3 	E5 Mean 

310.17 

297.89 

301.00 

299.81 

Group 1 

Group 2 

Group 3 

Group 4 

Mean 

	

312.17 	311.50 	316.08 300.92

• 

	

311.25 	294.00 	284.74 301.58 

	

307.75 	310.75 	293.08 292.42 

	

292.08 	311.92 	310.75 284.50 

	

305.81 	307.04 	301.16 294.86 



APPENDIX 2. 

Mean SWS latency (mins) for Groups on each exercise day. 

94. 

Group 1 

Group 2 

Group 3 

Group 4 

EXERCISE DAY 

	

Baseline 	El 	E3 

	

10.33 	13.08 	10.92 	11.83 

	

13.58 	8.33 	12.74 	8.41 

	

12.17 	9.75 	8.83 	9.75 

	

16.67 	13.00 	10.75 	13.50 

11.54 

10.77 

10.13 

13.48 

E5 	Meaa 

Mean 13.19 	11.04 	10.81 	10.87 

•••• 

Mean sleep onset latency (Mins) for Groups on each exercise 
day. 

Baseline 

EXERCISE DAY 

E3 E5 Mean El 

Group 1 30.75 20.25 16.33 32.75 25.02 

Group 2 19.33 22.42 26.09 16.92 21.19 

Group 3 24.92 20.75 21.83 10.25 19.44 

Group 4 35.50 22.00 18.17 24.09 24.94 

Mean 27.63 21.36 20.61 21.00 



APPENDIX 2. 

Mean time awake during sleep period time (SPT)(mins) for 
Groups on each exercise day. 

EXERCISE DAY 

E3 E5 Mean Baseline El 

Group 1 7.83 9.67 6.75 4.25 7.13 

Group 2. 12.25 5.67 7.70 10.08 8.93 

Group 3 2.83 13.83 1.00 5.25 5.73 

Group 4 8.83 11.42 1.42 15.67 9.34 

Mean • 7.94 10.15 4.22 8.81 

Mean time awake during SPT as a percent of SPT for Groups 
on each exercise day. 

EXERCISE DAY 

. Baseline 	El 	E3 	E5 	Mean 

95. 

• .. 

Group 1 

Group 2 

Group 3 ' 

Group A 

	

1.57 	2.14 	1.44 	.91 

	

2.86 	1.37 	1.77 	2.33 

	

.65 	3.08 	.20 	1.17 

	

2.18 	2.45 	.32 	3.71 

1.52 

2.08 

1.28 

2.17 

Mean 	1.82 	2.26 	.93 	2.03 



APPENDIX 2.  

Mean total time awake (mins) for Groups on each exercise 
day. 

EXERCISE DAY 

E3 E5 Mean 

• 

Baseline El 

Group 1 34.83 24.58 18.42 37.83 28.92 

Group 2 27.67 27.17 38.18 22.92 28.99 

Group 3 24.25 30.58 18.42 11.17 21.11 

Group 4 37.83 • 26.17 11.92 30.00 26.48 

Mean • 31.15 27.11 21.74 25. 4 P 

Mean total time awake as a percent of time in bed (TiB) 
for Groups on each exercise day. 

. 	Baseline 

EXERCISE DAY 

E3 E5 Mean El 

Group 1 7.09 5.22 3.88 8.26 6.11 

Group 2 5.85 5.82 8.16 5.04 6.22 

Group 3 5.02 6.22 4.02 2.44 4.43 

Group La 7.91 5.58 2.61 6.64 5.69 

Mean 6.47 5.71 4.67 5.60 

96. 



97. 

APPENDIX 2.  

Mean number of awakenings for Groups on each exercise day. 

EXERCISE DAY 

E3 E5 Mean Baseline El 

Group 1 5.50 6.33 4.50 4.00 5.08 

Group 2 5.33 4.83 6.74 5.67 5.64 

Group 3 2.50 6.00 1.00 2.50 3.00 

Group 4 3.50 5.17 2.33 3.83 3.71 

Mean • 4.21 5.58 3.64 4.00 

Mean level of Stage 1 (mins) for Groups on each exercise day. 

EXERCISE DAY 

Baseline 	El 	E3 	E5 .Mean 

37.21 

• 41.30 

40.40 

42.13 

Group 1 

Group 2 

Group 3 

Group 4 

Mean 

	

38.58 	41.17 	32.83 	36.25 

	

40.75 	36.42 	44.84 	43.17 

	

35.67 	49.42 	39.17 	37.33 

	

41.92 	41.50 	40.50 	44.58 

39.23 	42.13 	39.34 	40.33 



APPENDIX 2. 

Mean Stage 1 levels as a percent of TST for Groups on 
each exercise day. 

EXERCISE DAY. 

Baseline El E3 E5 Mean 

Group 1 8.38 8.94 7.25 8.33 8.23 

Group 2 9.15 8.39 10.89 10.04 9.62 

Group 3 8.02 11.15 8.69 8.33 9.05 

Group 4 9.86 9.51 9.04 11.99 10.10 

Mean • 8.85 9.50 8.97 9.67 

Mean levels of Movement Time (MT)(mins) for Groups on 
each exercise day. 

98. 

E5 Mean 

6.33 7.10 

5.58 5.08 

7.25 6.06 

4.00 4.71 

5.79 

  

EXERCISE DAY 

  

     

 

Baseline 	El 	E3 

Group 1 

Group 2 

Group 3 

Group 4 

	

5.75 	9.08 	7.25 

	

5.33 	5.67 	3.73 

	

5.08 	6.17 	5.75 

	

5.33 	3.92 	5.58 

 

 

Mean 5.37 	6.21 	5.58 

     



APPENDIX 2.. 

Mean levels of MT as a percent of TST for Groups on 
each exercise day. 

EXERCISE DAY 

E3 	• E5 	I Mean Baseline El 

Group 1 1.25 1.98 1.60 1.44 1.57 

Group 2 1.19 1.25 .90 1.28 1.16 

Group 3 1.15 1.38 1.28 1.60 1.35 

Group 4 1.25 .90 1.29 .86 1.08 

Mean • 1.21 1.38 1.27 1.30 

Mean levels of time awake + MT + Stage 1 as a percent of 
SPT for Groups on each exercise day. 

Baseline 

EXERCISE DAY 

E3 E5 Mean El 

Group 1 9.90 11.70 9.18 10.62 10.35 

Group 2 10.69 9.40 11.52 11.84 • 	10.86 

Group 3 8.62 14.40 9.18 9.93 10.53 

Group 4 11.18 10.85 8.99 11.84 10.72 

Mean 10.10 11.59 9.72 11.06 

99. 



EXERCISE DAY 

3aseline 	El 	E3 	E5 	Mean 

Group 1 

Group 2 

Group 3 

Group A 

Mean 

	

491.50 	479.75 	468.17 472.17 	477.90 

	

476.67 	466.08 	457.38 461.58 	465.43 

	

457.42 	472.42 	453.83 451.17 	458.71 

	

462.42 	456.67 	447.83 447.00 	453.48 

472.00 	468.73 	456.80 457.98 

APPENDIX 2.  

Mean levels of time awake + MT + Stage 1 as a percent of 
TiB for Groups on each exercise day. 

EXERCISE DAY 

100. 

Baseline El 	E3 	E5 Mean 

Group 1 

Group 2 

Group 3 

Group 4 

	

16.49 	15.62 	12.33 	17.30 

	

15.55 	14.81 	18.89 	15.71 

	

13.60 	17.83 	13.53 	12.12 

	

18.10 	15.28 	12.65 	18.33 

15.44 

16.24 

14.27 

16.09 

Mean • 15.94 	15.89 	14.35 	15.87 

Mean Time in Bed (TiB)(mins) for Groups On-each'exercise day. 



    

 

.Baseline 	• 	El 	E3 	. 

Group 1 

Group 2 

Group 3 

Group 4 • 

	

456.67 	455.17 	449.75 

	

449.00 	438.92 	419.20 

	

433.17 	441.83 	435.42 

	

424.58 	430.50 	435.92 

   

Mean 	440.86 	441.61 	435.07 

APPENDIX 2.  

Mean Sleep Period Time (SPT)(mins) for Groups on each 
exercise day. 

101. 

EXERCISE DAY 

Baseline 	El 	E3 	E5 Mean 

Group 1 

Group 2 

Croup 3 

Group 4 

	

453.67 	459.17 	451.83 427.67 

	

451.65 	437.08 	418.58 442.00 

	

430.58 	451.67 	432.08 440.92 

	

442.08 	434.67 	427.75 419.50 

448.09 

437.33 

438.81 

431.00 

444.50 	445.65 	432.56 432.52 

Mean Total Sleep Time (TST)(mins) for Groups on each 
exercise day. 

EXERCISE DAY 

Mean 

Mean 

434.33 448.98 

438.67 • 	436.45 

440.00 437.61 

417.00 427.00 

432.50 



APPENDIX 2. 

Mean levels of Stage REM (mins) for Groups on each exercise 
day. 

EXERCISE DAY 

102. 

Baseline El 	E3 	E5 Mean 

Group 1 

Group 2 

Group 3 

Group 4 

	

100.17 	93.42 	93.50 	90.75 

	

91.67 	98.33 	86.18 	88.33 

	

84.67 	75.50 	97.42 103.00 

	

85.25 	73.17 	79.08 	83.92  

94.46 

91.13 

90.15 

80.36 

Mean • 90.44 	85.11 	89.05 	91.50 

Mean levels of Stage REM as a percent of TST for Groups on 
each exercise day. 

EXERCISE DAY 

Baseline 	El 	E3 	E5 Mean 

Group 1 

Group 2 

Group 3 

Group 4 

	

22.04 	20.42 	20.84 	21.06 

	

20.39 	22.42 	20.37 	20.13 

	

19.48 	16.90 	22.46 	23.53 

	

20.20 	16.98 	18.39 	18.96 

21.09 

20.83 

20.59 

18.63 

Mean 	20.53 	19.18 	20.52 	20.92 



103. 

APPENDIX 2.  

Mean REM latencies (mins) for Groups on each exercise day. 

EXERCISE DAY 

E3 	E5 Mean Baseline El 

Group 1 102.08 100.75 101.92 88.20 98.24 

Group 2 96.33 86.17 73.44 100.30 89.06 

Group 3 79.08 97.42 125.83 99.20 100.38 

Group 4 98.33 152.42 104.33 94.90 112.50 

Mean 93.96 109.19 101.38 95.65 


