
A KNOWLEDGE-BASED APPROACH TO MAPPING ROADS 

FROM AERIAL IMAGERY USING A GIS DATABASE 

by 

Ali Forghani, B.Eng (UM, Iran), M.Eng (UNSW, Australia). 

A thesis submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 

in 

Surveying and Spatial Information Science 

Faculty of Engineering & Surveying 

The University of Tasmania 

November 1997 



Si ...1■4117. 

Surveying & Spatial Information Science 
Faculty of Engineering & Surveying 

University of Tasmania 
GPO Box 252-76 

Hobart Tasmania 7001 
Australia 

Fax: +61-3-62240282 
Telephone: +61-3-62262134 

DECLARATION 

Except as stated herein, this thesis does not contain any material which has been 

accepted for the award of any other degree or diploma in any university nor, to the best 

of my knowledge and belief, does it contain any copy or paraphrase of material 

previously published or written by another person, except where due reference is made in 

the text of this thesis. 

I Ali Forghani, hereby given consent that my thesis A Knowledge-Based Approach 

to Mapping Roads from Aerial Imagery Using a GIS Database to be made available for 

loan at the discretion of the Head of Department, and the University of Tasmania shall be 

authorised to allow a copy of all or part of the thesis for the purpose of study or research. 

Date: 1/6/98 
Ali Forg 
Surveying & Spatial Information Science 

11 



ABSTRACT 

Conventional image classification approaches may be inadequate for extraction of 

complex and spectrally heterogeneous land use classes from remotely sensed imagery. 

The integration of spatial data with remotely sensed data has the potential to improve 

significantly the reliability of feature classification. Thus it is informative to use 

contextual and textural information in the classification process. 

This thesis describes a methodology developed to integrate GIS and aerial imagery 

in a manner that allows it to be used in a knowledge-based analysis system. Using a trial 

site and aerial photography, the methodology was implemented and tests indicate the 

technique works well in mapping of roads when roads pass through a rural area where 

the contrast is high, but fails in urban areas where the roads are confused with man-made 

structures. 

Also, a supervised multispectral image classification of the trial site using colour 

aerial photography was carried out to compare the performance of a supervised 

multispectral image analysis with the decision tree analysis to map out roads over the 

trial site. A classification accuracy assessment shows that the overall classification 

accuracy was marginally lower than the decision tree analysis. 

The GIS data used in the knowledge-base included a DTM and land use covers. 

For this research, part of the data was already available in digital format. In practice, it 

may be that a DTM and land use classification would need to be created from aerial 

photography or satellite imagery. It is in this context that the methodology developed 

here is most likely to improve significantly attribute-based classification. 

The GIS database included geometrically rectified aerial photography, roads, land 

use, drainage pattern, field and vegetation boundaries, DTM, and edge detection data. A 

program was developed for semi-automatic linear feature detection using different edge 

detectors, in which the process is followed by morphological operations. The extracted 

edges (lines) were used as a GIS layer in a later step of the methodology. Grid raster-

based processing was undertaken to build a multi-source database in the GIS to be used 

for knowledge-based analysis. 
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The multi-layer database was interfaced with decision tree software for creation of 

a classification tree. The independent data set comprised six variables, representing the 

contextual, textural, and geometrical characteristics of the knowledge-based data. In the 

process of decision tree analysis, the input data was recursively partitioned into mutually 

clustered, exhaustive subsets which define the best response variable. The resulting 

classification tree was used to generate generic rules for implementation of an expert 

system. 

The developed expert system was used to map out the spatial distribution of the 

grid data to show areas with roads (presence) and their background (absence). The output 

of this model is encouraging when applied over homogeneous rural scenes, but there are 

difficulties over heterogeneous urban areas. The results show that a framework of roads 

in a rural site mapped by this knowledge-based technique closely concurred with visual 

interpretation. 

This research devised a general approach to solving problems of road 

identification. This approach can serve as a model for practitioners who are trying to do 

practical work in this field. By generating a hybrid system which locates many different 

databases and integrates many different sources of knowledge in attempting to identify a 

specific (man-made) geographic feature, and by utilising current artificial intelligence 

(AI) techniques to perform the classification, this research provides an early example of 

the techniques which will be in more general use in the areas of GIS and remote sensing 

in the future. 

The methodology developed here is costly and data-intensive. Since the technique 

investigated in this research requires a large number of data sets to be built, construction 

of the data is relatively expensive over large areas. The initial costs involved in 

configuring a knowledge-base, such as the methodology developed in this study, are 

high, and this may not be justifiable in a production environment. 
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Chapter 1 

INTRODUCTION 

1.1 General 

Historically, land use/cover mapping has been undertaken using aerial 

photography. Urban areas are a heterogeneous and complex environment which occupy 

less than one percent of exposed land on the earth's surface. These areas represent both 

natural and artificial human activities and contain both natural and man-made elements. 

Consequently, urban land use patterns consist of objects with regular and irregular 

shapes. Use of remote sensing (RS), in the form of aerial photography, in an historical 

sequence in urban studies, dates back to 1858 when Tournachon (later named "Nadar") 

used a camera set on a balloon to study parts of the city of Paris. Since World War II 

increased consideration has been paid to the potential role of aircraft and satellite 

remotely sensed data in the study of man-made and natural scenes. These studies have 

produced classification accuracies ranging from 50-98% (eg Coleman, 1992). 

Land cover mapping using airphoto interpretation has proven to be rapid, efficient, 

and economical. There has been considerable effort given to its application in the 

acquisition of data for resource management and civil engineering applications 

throughout the world. Despite proven advantages of employing aerial imagery in urban 

investigation, there are disadvantages in using this imagery. For example, manual 

interpretation of aerial photography for a large area may be tedious and time-consuming. 

In addition, the risk of different interpretations by various interpreters is a concern, as 

well as the infrequency of data acquisition. 

Aerial photography has been used for a wide variety of urban and rural studies, and 

it provides the most effective method for the study of urban expansion and urban growth 

analysis. The application areas include analysis of urban housing problems (Hathout, 

1988), spatial location of waste disposal sites (Mack et al 1995), town planning (Mirsa, 

1986), population estimation using 1:12,000 b/w photography (Lo, 1992), detection of 

residential areas (Oliveria, 1986), updating urban planning maps (Patmios, 1986), and 



analysis of urban spatial structure (Hsu and Wu, 1990). Using colour infrared (ClR) 

imagery (Gong and Chen, 1988) the overall discrimination accuracy for urban expansion 

is 94.6%. 

Mapping of land use and rural to urban conversions are topics of interest to both 

GIS and remote sensing communities. Specifically, mapping of road networks is a major 

research area in image and spatial data processing in order to update digital road network 

files. The problem of keeping road network files up to date is most acute in the urban 

fringe of major urban areas where development processes are most concentrated. 

Medium level image segmentation operators such as edge detectors have been 

applied widely to extract linear features from remote sensed data (eg Boggess, 1994). 

The performance of the medium level operators is satisfactory (Forghani, 1997; Forghani 

et al 1997). The interface of contextual information by means of incorporation of GIS 

data and human knowledge-base leads to better quantitative accuracy. The interface of 

GIS and remote sensing data for classification and feature extraction by machine 

learning' methods (ie decision trees and artificial neural networks) and expert systems 

(ES) is a major area of research in a knowledge-based (KB) integration of image and 

spatial data. The results obtained from any single analysis can be subjected to error and 

are imprecise. 

Multispectral image classification approaches have been shown to be inadequate 

for extraction of complex and spectrally heterogeneous land use classes from high 

resolution remotely sensed imagery (Barnsley and Barr, 1996). However, in spite of the 

large body of previous research in this area and a number of comparative studies, the 

choice of algorithms suitable for complex imagery is not clear. The way forward appears 

to be to use both contextual and textural information in the classification process (eg 

Johnsson, 1994). 

1  Machine learning is described as the study and modelling of the learning process. It attempts to develop methods that 
can automatically construct rules (or other forms of knowledge representation) from a set of examples. This field tries 
to make the knowledge acquisition paths of knowledge-based system development simpler, more productive, more 
efficient and user-friendly. 
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Integration of image understanding techniques within a GIS database have been 

modelled to govern feature extraction problems, eg Gahegan and Flack (1996). 

Integrating different analyses of feature extraction improves the results, particularly in 

complex scenes like urban areas. Little interest has been shown concerning feature 

extraction (ie roads) using non-parametric methods, eg decision trees. Extension of ES 

has been successfully presented in combining image processing techniques with a GIS 

data base for extraction of roads (eg Van Cleynenbregel et al 1990). 

Decision trees2  have been developed both by the statistical community (Hunt, 

1962) and artificial intelligence community (Quinlan, 1983, and 1986). The main 

limitation of these learning systems is that extrapolation is unreliable, but they can 

provide reasonable interpolation within the learning example (Lees, 1994). In this 

research the KnowledgeSEEKER (KS) software was used because it is a simple and 

widely used symbolic algorithm for learning examples. It has been comprehensively 

examined on a large number of data sets (De Ville, 1990) and is the basis of several 

commercial rule induction systems. Moreover, KS has been improved with methods for 

handling numerically-valued features, noisy and incomplete data, and missing 

information (ANGOSS, 1994). 

A technique has been developed to integrate the information obtained from the 

different sources. To integrate the aerial photographs into a GIS the images, were 

geometrically corrected using an affine transformation and rubber sheeting. The rectified 

images were used for identifying linear features by edge detection and mathematical 

morphology. In the development of the methodology of this research, an Interactive 

Linear Feature Detection Program (ILFDP) was developed for semi-automatic linear 

feature detection using different edge detectors, followed by morphological operations 

(Forghani et al 1997; Forghani and Osborn, 1998b). The extracted edges were used as a 

GIS layer in a later step of the methodology A knowledge-based data set which locates 

spatial and spectral attributes was created using ARC/INFO GIS software. 

2  Decision tree is one method of knowledge extraction in which knowledge is represented as a series of rules which can 
be used for the construction of expert systems. 
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Grid raster-based processing was undertaken to construct the multi-source 

database. After the gridding process, seven principal map features (layers) were created, 

namely land use/cover, DEM, grey image, roads, field boundaries, streams, and edge 

detection data. To input the data into KS it was necessary to convert multiple ASCII files 

using sources such as land use/cover hydrographic maps, aerial imagery, and digital 

elevation model (DTM) as well as the medium level image segmentation product (ie 

extracted edges) held in a GIS to be used in a knowledge-based environment to predict 

distribution of roads using decision trees. 

The data file was interfaced with a decision tree environment (KS software) for 

creation of a classification tree. The independent data set comprised six fields (variables) 

that attempt to represent contextual, textural, and geometrical characteristics of the 

knowledge-based data. The integrated multi-source database includes a priori knowledge 

of geometry of road networks (eg width), edge detection data, intensity (air photo), 

terrain type (landuse), streams, field and vegetation boundaries, and scene elevation 

(DEM). In the process of decision tree analysis, the input data was recessively partitioned 

into mutually exclusive exhaustive subsets which defined the best response variable. The 

resulting classification tree was used to generate generic rules for implementation of an 

expert system called "Decision Tree Processing Expert Systems" (DTPES). The 

knowledge-based system thus developed consisted of three major components: a 

database which stores image and spatial data, rule induction which uses decision trees 

classification and user interface, and an inference engine. In the development of this 

expert system a forward-chaining process was considered in order to evaluate all rules 

for a given pixel for mapping spatial distribution of the grid data to show areas with 

roads and their background. The computation time linearly increases as the number of 

grid cells increase. This rule-based system was applied to perform road mapping from 

aerial imagery over an urban/rural scene. After classification, the system computed the 

overall accuracy of the mapped roads based on the reference road map to maintain 

consistency and reliability of the performance of the decision trees in feature recognition. 
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1.2 Prior Work 

In the last decade there has been a rapid increase in the development and 

application of the machine learning approach. Civil engineers, mapping specialists, 

computer scientists, natural resource managers and environmental science experts are 

involved, with increased use of machine learning for data analysis, modelling and 

mapping (Moore et al 1991; Aspinall, 1991 and 1992; Skidmore et al 1996a) employing 

GIS and remote sensing imagery. 

The application of decision trees in the use of remotely sensed images and GIS data 

for environmental applications has been widely discussed. Key references are, Walker 

and Moore (1988) for mapping of wildlife distributions, Reddy and Bonham-Carter 

(1991) for mapping of spatial distribution of mineral occurrence, Lees and Ritman 

(1991), Moore et al (1991) for vegetation mapping, and recently Skidmore et al (1996b) 

for classification of kangaroo habitat distribution. 

Knowledge-based approaches to road detection and feature extraction are 

discussed, for example by Van Cleynenbreugel et al (1990), Boggess (1993, and 1994), 

Geman and Jedynak (1996), and Gaheagan and Flack (1996). It was found that detection 

of roads over built-up areas was confused with other man-made structures, but the 

approach was shown to work well for extracting major roads over homogeneous areas. 
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1.3 Hypothesis and Proposed Approach 

This thesis describes a methodology developed to integrate GIS data and aerial 

imagery in a manner that allows it to be used in a knowledge-based analysis system for 

detecting and mapping linear topographic objects, particularly road networks. The 

research uses photometry (ie spectral) or textura1 3, spatial and contextual information 

(contextual-based4  attributes) within a knowledge-based model using decision trees. 

Geometric, spectral, and spatial characteristics are applied to distinguish roads 

from other linear features (eg rivers, field boundaries). The above information is located 

in a multi-source spatial dataset (layers) which includes land use/cover, DEM, grey level 

image, roads, field and vegetation boundaries, streams, and edge detection data. 

Incorporation of this dataset into a decision tree analysis system was attempted. 

This research devised a general approach to solving problems of road 

identification. This approach can serve as a model for practitioners who are attempting to 

do practical work in this field. By creating a hybrid system which includes many 

different databases and combines many different sources of knowledge in trying to 

identify a specific (man-made) geographic feature, and by utilising current artificial 

intelligence (Al) techniques to perform the classification, this research provides an early 

example of the techniques which will be in more general use in the areas of GIS and 

remote sensing in the future. 

The methodology was implemented for a trial site that contained a mix of urban 

and rural land uses. The study site is located on the southern fringe of Hobart, Tasmania, 

Australia. The trial site has a number of settlement types including suburban fringes, 

farms, residential, and commercial areas. 

3  Textural attributes in this research include edge detection data and intensity. 

4  Contextual information for undertaken study refers to spatial attributes such as land use, DEM, drainage patterns, 
field and vegetation boundaries. 
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Experiments show the technique works well when mapping roads within rural 

areas where the contrast is high, but fails in urban areas where the roads are confused 

with man-made structures. 

In addition, a supervised multispectral image classification of the trial site using 

colour aerial photography was undertaken to compare the performance of a supervised 

multispectral image analysis with the decision tree analysis to map out roads over the 

trial site. A classification accuracy assessment shows that the overall classification 

accuracy was marginally lower than the decision tree analysis. 

During the development of the methodology, several issues have been considered. 

These are: 

Defining the dataset. 

What are the most appropriate spatial data layers to use in the dataset? 

Building the spatial dataset: 

How can a dataset that recognises knowledge-based attributes (data 

layers) such as intensity, elevation etc. be  built for a decision tree 

environment in order to distinguish roads from other linear features? 

Which geometric correction method may produce better accuracy? 

Which type of spatial data structure can be employed in order to 

manipulate and organise the vector and raster GIS data to build a dataset 

for KS software? 

What cell size should be chosen to meet the requirements of the 

knowledge-based data? 

Interfacing GIS data with the decision tree program: 

What is the best way to transfer GIS datasets into the decision tree 

software? 

Converting results of the classification tree into a classified image, since the decision 

tree software gives the results of classification tree both in generic rules and in graphic 

form: 

How can this information be applied to produce a classified image? 
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1.3.1 Stages of Research 

The following steps have been undertaken in this research: 

Definition of the goal which deals with the development of the methodology and 

its implementation for a trial site for mapping roads. 

Selection of suitable hardware and software to do the processing. 

Selection of an appropriate study area. 

Selection and acquisition of the datasets and georeferencing of the aerial imagery. 

Definition of the dataset. 

Spatial data processing and construction of a database for a knowledge-based 

analysis system. 

Transferring of the data with a decision tree environment. 

Decision tree analysis; generation of a classification tree and rules collection and 

encoding to develop an expert system. 

Expert systems construction and testing of the expert system over trial sites. 

Multispectral image analysis. 

1.4 Contribution of the Research 

Updating maps of roads in any region of the world is required for a wide range of 

civil engineering and environmental planning purposes. This research describes a 

methodology developed to integrate spatial data and aerial imagery in a manner that 

allows it to be used in a knowledge-based analysis system. 

This research contributes to the field of knowledge in this area as follows: 

It provides a clear demonstration of the problems associated with georeferencing 

aerial imagery to suit an integrated spatial data model for delineation of linear features 

in rural and urban areas. 

It provides an assessment of low-level image segmentation operators such as edge 

enhancement and edge detection methods as a means of extraction of roads edges. It 

describes the development of an interactive optimal linear feature detection program, 

which incorporates different image enhancement filters (eg median) for noise 

removal, edge detection (eg Sobel, Canny, and Deriche) for primitives extraction, and 
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morphological operations (eg dilation) to aid geometric structuring of edge segments. 

This was implemented as a first step in building data for a knowledge-based 

environment. 

It implements an integrated GIS (vector data) and RS (raster image) data model to 

construct a dataset for a decision tree environment, particularly one that recognises 

knowledge-based attributes such as spectral and spatial information in order to 

distinguish roads from other linear features. 

It describes the interfacing of GIS data with a machine learning environment to 

construct a classification tree. This phase is important in deriving knowledge from 

classification trees. Development and construction of an expert system for mapping 

road networks using generated decision rules was attempted. Evaluation of the 

decision tree performance both over urban and rural sites was undertaken. 

It provides a comparison of a standard supervised multispectral image classification 

techniques with the decision tree analysis to map out roads over a trial site. 

1.5 Organisational Outline of the Dissertation 

This thesis is organised into 10 chapters. In this first chapter, the research has been 

placed in a general context, the basic hypothesis and proposed approach have been 

demonstrated, and the original contribution of the research presented. 

Chapter 2 introduces the major concepts which form the basis for this project, and 

includes a brief review of image segmentation and classification in the context of feature 

detection with special emphasis on road extraction using machine learning and expert 

systems. 

Chapter 3 presents solutions for geometric correction errors of aerial imagery, 

image enhancement and classification methods including edge detection, thresholding, 

and morphological operations. It then provides an overview of integrated GIS and RS. 

Chapters 4 introduces the theory of expert systems construction, and the basic 

concepts involved with decision trees that are associated with this research. 
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Chapter 5 describes the study area, the available data including GIS data and aerial 

imagery, and the hardware and software which was used. 

Chapter 6 deals with digital image processing; pre-processing of the data sets such 

as georeferencing of the aerial photography, and processing of the data such as image 

segmentation via developing a computer program for primitives extraction. 

Chapter 7 describes the process used to construct a database for knowledge-based 

software. The integration of GIS data and remote sensed imagery is considered. A grid 

raster-based processing was undertaken, and then the grid data were preprocessed by 

writing a computer program to generate a tabular ASCII file. 

Chapter 8 demonstrates the decision tree analysis, and consequent rules collection 

from the generated classification tree to develop a decision tree processing expert system. 

In this chapter, two routines are implemented: (1) the first program translates the 

generated generic decision trees rules to MATLAB programming statements, and prints 

them in a file, and (2) the second program executes the rules against the datasets to map 

out the roads and their background, and finally computes the overall classification 

accuracy based on the reference data. 

Chapter 9 describes a supervised multispectral image classification of the trial site 

using colour aerial photography. The aim was to compare the performance of a standard 

technique image classification technique (supervised multispectral image analysis) with a 

decision tree analysis to map out roads over the trial site. 

Chapter 10 provides a summary of the thesis, the conclusions reached in the study, 

and recommendations for future research on this topic 
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Chapter 2 

BACKGROUND: CLASSIFICATION AND FEATURE DETECTION 

This chapter reviews image segmentation, using textural and contextual 

information, machine learning techniques and expert systems (ES) in geographic 

information systems (GIS) and remote sensing (RS) for feature extraction and 

classification. The main emphasis is on road detection incorporating decision trees. 

2.1 Image Analysis 

In the design of an image understanding system, a distinction must be made 

between different levels of image processing and their impacts. There are two major 

types of image analysis in the classification of remote sensed imagery (Moller-Jensen, 

1990). (1) Synthesizing: its aim is to retrieve overall information about the main spatial 

trends in the data such as the extension of industrial areas (eg Forghani, 1994). 

(2) Analytical: the objective is to register information about the smallest elements in the 

data set such as housing units (eg Forster, 1993). Artificial intelligence methods of 

information extraction, knowledge representation, and symbolic reasoning can be applied 

to achieve this aim (Wang and Newkirk, 1988). The spatial resolution of input image 

plays an important role in the process of feature extraction. For example SPOT data may 

be suited to the analytical approach because it shows detailed information, whereas 

Landsat TM data is more appropriate for the synthesizing approach. 

Image segmentation has been defined as "the process of partitioning or 

synthesizing an image into its constituent objects" (Rosenfeld and Kak, 1982). 

Segmentation techniques can be classified based upon the level of representation of 

resulting images. Many segmentation algorithms have been discussed in the literature (eg 

Marr, 1982; Haralick and Shapiro, 1985; Gonzalez and Wintz, 1987; Argialas and 

Harlow, 1990; Domenikiotis, 1994). There are no standard criteria for isolation of the 

levels of image segmentation. Each research project uses different strategies to assign the 

image analysis tasks into a favoured segmentation level. However, the segmentation 

techniques are divided into three levels (Figure 2.1). 
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I) Low Level; requiring no intelligence on the part of image interpretation. Low 

level image segmentation methods can be grouped into two phases: 

Image acquisition which requires two elements, namely a physical device and a 

digitizer to convert the electrical output of the physical device into digital form. 

Pre-processing; this phase can be divided into radiometric processing eg histogram 

equalization, and geometric processing eg polynomial transformation. A number of 

transformed data sets such as principle component analysis (PCA), normalized 

difference vegetation index (NDVI) have been used in multispectral image analysis eg 

for change detection (ie Fung, 1992). Since this thesis will not consider multispectral 

image analysis in depth, these techniques are not discussed here. Detailed discussion 

of these techniques is provided in (eg Richards, 1986; ERDAS 1994b; Forghani, 

1993). Geometric processing is discussed in Chapter 3. 

II) Medium Level; the intermediate level deals with extraction and characterization 

of the constituent components of an image such as scene description. The medium level 

process is described as simple aggregation of the basic primitives such as edges and 

lines. Image primitives do not have any semantic information, but can be meaningful and 

sufficiently incorporated in high level of representation by using meaningful objects to 

allow image representation in terms of the aims of the analysis. A prime example of this 

algorithm is neighbourhood operators which examine the value of a small neighbourhood 

of pixels around a given pixel and generate a resultant value that is a function of all pixel 

values in the neighbourhood (Argialas and Harlow, 1990). The image primitives (Marr, 

1980) such as edges, lines, and regions extracted by medium-level image operators are 

subject to error. In reality, the output of these medium-level operators is not perfect (Van 

Cleynenbreugel et al 1990). Therefore, higher level segmentation tools which involve the 

human expert interface have to be applied. The major drawback with the human image 

interpretation process is the lack of speed and poor quantitative accuracy. Despite the 

fact that the process works efficiently on mixed data, applying a machine-assisted 

approach may lead to better results (Sirinvinsan and Richards, 1993). Some medium-

level segmentation techniques include line and curve detection, line and edge linking, 

mathematical morphology, and image classification. Multispectral image classification 

can be classified into two main categories, based on whether they require supervision 
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(based on a priori knowledge) from the operator or not (based on similarity assumption). 

These techniques have been widely discussed in remote sensing texts (eg Richards, 

1993). 

III) High Level; involves intelligent recognition, description, and interpretation 

using whatever domain-specific knowledge is available about the class of scenes. This 

stage consists of identifying the important objects in an image and their relationships for 

subsequent description, and well-defined knowledge structures for the reasoning 

component using a knowledge-base. For example, a knowledge-based rule was used to 

link road seeds and extend them by a series of image intensity tests (Thu and Yeh, 1986). 

In the high level road processing stage, more global information such as width and length 

may be considered. In this situation expert systems play a critical role in labelling road 

segments (Ton et al 1991; Domenikiotis, 1994). Recognition assigns a label to an object 

based on the information provided by its descriptors. For example, road-like structures 

may be falsely identified as road segments. Contextual information may be used to solve 

these ambiguities. Domain specific knowledge can be in many forms such as descriptive 

definitions of entities, objects and their relationship to each other and criteria for making 

definitions. Examples of high-level techniques as a knowledge-based approach for image 

segmentation are fuzzy sets theorem, decision trees, neural networks, frames and rules, 

and expert systems. 
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Low Level 
Image Acquisition 

Satellite sensors, scanners 
Pre-Processing 

1) Radiometric Processing 
Image Enhancement 

- Histogram equalization, 
- Median filtering for noise removal 

- Multispectral (ie Landsat TM); PCA, NDVI 
2) Geometric Processing (eg polynomial transformations) 

   

} 

    

Ii 

Medium Level 
Scene Description: 

Edge Detection (eg Sobel, Marr-Hildreth, Canny) 
Thresholding 

Line Detection (eg Hough Transform) 
Curve Detection 
Point Detection 

Line/Arc/Curve/Edge Linking 
Mathematical Morphology 
Boundary/Region Detection 

Supervised Classification (based on a priori knowledge; supervised and heuristic learning: 
multispectral image, texture, context) 

Unsupervised Classification (based on Similarity Assumption: Clustering, and unsupervised 
learning; image segmenting ie contouring, regioning, labelling of image elements ie pixels, 

contours, regions) 
Region Growing 
Split and Merge 

Relaxation Labelling 
Hybrid Models 

Texture Segmentation 
Shape Detection/Identification 

4, 

High Level 
Scene Analysis Using a Knowledge-Base 

Fuzzy Sets Theorem 
Certainty Theorem 

Machine Learning (Decision Trees, Neural Net, Genetic Algorithms) 
Frames and Rules 
Production Rules 

Artificial Intelligence/Expert Systems 
Object Orientation 

Hierarc hical/Relational Databases 

Figure 2.1 Image interpretation techniques classified according to segmentation level. 
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2.1.1 Texture 

Texture describes the smoothness of an object or a part of an image. Also it can be 

described as structure composed of large numbers of more or less ordered similar objects 

or patterns without these drawing particular consideration (Van Gool et al 1985). Texture 

can be used to delineate regions, boundaries in image segmentation, object identification, 

and to characterize the tonal or grey level variation in an image (Wang and He, 1990). 

There are many approaches and models for texture analysis in image processing. 

Algorithms for texture analysis have been developed by many authors including Haralick 

(1979); Harlow et al (1986); Franklin and Peddle (1990). These include statistical 

approaches such as autocorrelation (Haralick, 1979), optical transforms, digital 

transforms, textural edge operators, structural elements (eg Haralick and Shapiro, 1985; 

Franldine and Peddle, 1990), grey tone occurrence (eg Gong et al 1992), run lengths, and 

autoregressive models (Haralick, 1979). Reed and Du-Buf (1993) provide a 

comprehensive review of the literature in this field. 

2.1.2 Context 

Context utilizes a variety of information types such as tone, size, shape and 

geometry, shadow, patterns, and association (spatial) characteristics. In general it 

considers interrelationship between objects or their spatial relationships with pixels in 

the remainder of the scene. Contextual information is important in human visual 

interpretation and human decision making and in those conditions where a classifier is 

used to emulate human abilities (Harris 1985). The application of a contextual model, 

such as the probabilistic relaxation model has been widely discussed eg by Gurney and 

Townshend (1983), Harris (1985). Human analysts in interpretation and classification of 

visual images consider the contextual information (Avery and Berlin, 1992), whereas, 

these spatial attributes are not entirely considered in conventional per-pixel procedures 

for pattern recognition (Civco, 1993). Contextual image analysis does not simply 

consider discrete pixels during classification, but rather interprets whole regions based 

upon consideration of a variety of characteristics. 
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The main objective of using context in linear feature extraction is to improve the 

accuracy of image classification results. Considerable efforts have been made by Wang 

and He (1990), Johnsson (1994) and Ko (1995) to develop and improve classification of 

image data using contextual information. 

2.2 Machine Learning in Remote Sensing and GIS 

Machine learning methods such as non-parametric methods have been used to 

integrate analysis of GIS and remote sensing data. They can be grouped into three 

distinct areas: 

artificial neural networks, 

genetic algorithms, and 

decision trees. 

This research will deal with decision trees. Neural networks are used to recreate 

biological information processing methods in software. The paradigm of artificial neural 

systems is based on the way the brain processes information. A simple model of a neural 

network consists of (i) input layer where values are applied to the inputs, changed, based 

on some mathematical rule and then accumulated at the nodes; (ii) output layer where the 

inputs are processed and classified. The sum can then be functioned mathematically 

again before it is applied to the output. Each dendrite in the brain acts as an input to the 

neuron; and a hidden layer. The nodes (neurons) are connected with weights that are 

adjustable during the learning process, and adjustment takes place to improve the 

performance of the neural network. The neurons and weighted links between these 

neurons simulate synaptic activities. One of the most common neural network models is 

the back-propagation that has been under experiment in land cover classification 

problems. The model neurons can be connected into networks in widely varied ways. 

Michie et al (1994) provide a detailed discussion of the theoretical viewpoints on this 

technique. 

Artificial neural networks have been applied to a wide range of image 

classifications such as the classification of multispectral imagery (Turner, 1994; Foody et 

al 1995), feature identification (Ryan et al 1991; Wolfer et al 1994; Cote and Tatnall, 
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1995), signalized point recognition in aerial photographs (Kepuska and Mason, 1995). 

More importantly, Boggess (1993, 1994) and Ko (1995) applied artificial neural 

networks for identification of roads from Landsat TM imagery. Artificial neural 

networks have drawbacks in the slow learning process that is initially related to a back-

propagation training scheme. However, solutions can be found by developing a dynamic 

learning neural network to perform classification (Chen et al 1995). 

Decision trees use a contextually-based approach which incorporates decision rules 

and spatial relationships of attributes (if they are input to the process) to classify objects 

(Walker and Belbin, 1990). The authors conclude that incorporating more spatial 

relationships into a GIS is more effective using clustering methods. The decision tree 

facilitates grouping large numbers of observations and subsequently translates group 

membership into classification rules which provides effective analytical tools for the GIS 

user. 

A number of authors have developed algorithms to generate decision trees 

including Classification And Regression Trees (CART by Breiman et al. 1984), 

Interactive Dichotomizer (1D3 by Quinlan, 1986), and KnowledgeSEEKER (KS by 

ANGOSS, 1994). Decision trees have been applied for land cover classification by prime 

researchers, for example, Walker and Moore (1988), Lees and Ritman (1991), Reddy and 

Bonham-Carter (1991), Evans et al (1996) and Skidmore et al (1996b). Induction is most 

suitable for analysis of problems where knowledge of the underlying process is either 

non-existent or incomplete (Walker and Moore, 1988). The major component of a GIS 

required to enable inductive modelling is a technique for systematically identifying 

relationships between spatial objects. GIS is the beginning point for developing the 

spatial objects. GIS contains data definition patterns such as distribution of roads and 

location attributes. Classification trees can describe these relationships by assigning a set 

of rules (eg Quinlan, 1986; Williams, 1987). 
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Decision tree analysis has been applied for mapping mineralisation based on a GIS 

multi-map overlay using cluster and exhaustive partitioning'. It was reported that the 

exhaustive method provided better results over the cluster model (Reddy and Bonham-

Carter, 1991). Also, Moore et al (1991) have applied decision trees with a GIS data base 

for prediction of vegetation distribution. They confirmed the value of decision tree 

analysis and cartographic modelling for environmental mapping. 

An inductive modelling technique has been applied for analysis of wildlife patterns 

in spatial data (Landsat TM data and DTM) and employs a Bayesian statistical approach 

to develop a GIS for habitat mapping (Aspinall, 1991). The research used a spatial 

modelling procedure operating within GIS and introduced a significant learning capacity. 

Aspinall (1992) concluded that this modelling technique offers significant potential in 

mapping and management of the environment. Also Stockwell (1993) developed a 

learning base system (LBS) classifier for the purpose of automatic mapping in a GIS 

such as automatic mapping of wildlife distribution, and diagnosis of diseases by 

acquisition of knowledge from an expert. The Bayesian algorithm proved to be a flexible 

method for conducting an extensive variety of knowledge-based tasks (Stockwell, 1993). 

In addition, two techniques of machine learning including decision trees (ID3 and 

CART) and genetic algorittuns 2  were conducted for analysis of natural resource data in 

terms of investigation of lake acidification. The result_ of the survey showed that both the 

decision tree and genetic algorithm approach seemed to be appropriate methods for 

identification of lake acidification (Liepins et al 1990). Recently, Skidmore et al (1996) 

attempted to compare three methods for mapping wildlife, so-called BIOCLIM, CART 

(decision trees) and a non-parametric classification technique employing a GIS dataset. 

1  Cluster method refers to two-way partitioning or pair-wise merging (binary tree) which clusters values of partitioning 
variables together and finds the maximum similarity within the groups and dissimilarity between the groups. 
Exhaustive method refers to a multi-branch technique which identifies the codes that form the nodes and branches of 
the classification tree. These choices generate a split for each potential partitioning variable. Further details can be 
found in De Ville (1990). 

2  A genetic algorithm is a computational method that transforms a set (population) of individual mathematical objects 
which are usually fixed length character or binary strings, each with an associated fitness value, into a new population 
(next generation) applying operations patterned after Darwinian theory of reproduction and survival of the fittest and 
after naturally occurring genetic operations [sexual recombination, mutation] (Koza, 1992). 
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Among these techniques, the decision tree provided the most accurate result, but was 

costly to implement. 

Apart from the above discussed areas, fuzzy set theory to image classification and 

accuracy assessment of thematic maps (eg Gopal and Woodcock, 1994) have been 

applied. An algebraic approximation to the generating appropriate classification with 

fuzzy attributes has been provided in Gisolfi and Nunez (1993). The fuzzy set theory 

emerged in the 1960s to describe the imprecision that is characteristic of much human 

reasoning, particularly in domains such as pattern recognition and information 

abstraction. It has been successfully applied to pixel or subpixel classification 

(Wilkinson and Megier, 1990). In addition, applying the theory of evidence is reported 

by (Shafer, 1976) for classification purposes. The theory of evidence relies on a 

numerical integration function to add to the evidence and has been performed in some 

problems of mixed spatial data. However, due to its numerical basis, it has limitations for 

use in some situations which would not themselves simply to the incorporation of non-

numerical map-like data in terms of being subjective and inconsistent in generating the 

prerequisite evidence (Sirinvinsan and Richards, 1993; Peddle, 1995). This problem can 

be overcome by applying a more subjective approach for deriving evidence from 

histogram bin transformations of supervised training data frequency distributions 

(Peddle, 1995). 

23 Approaches in Linear Feature Detection 

Linear features in remote sensing imagery include roads, rivers, bridges, vegetation 

alignments, field boundaries, shorelines, and geologically significant features such as 

faults and joints. Fundamentally, there are two techniques used to detect these linear 

features. 

1) Line detection and line tracking algorithms have been used to identify road 

networks directly rather than identify boundaries of road features. Line detection 

algorithms incorporate a method that takes into account the size of the kernel that can be 

used to filter the data, then adjusts the size of the kernel in the template in order to match 

the width of the roads. The idea is based on applying a model in the form of a mask 
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which is shifted over a region and compared to the corresponding grey levels (eg 

Domenikiotis, 1994). The Hough Transform is a line detection method used by various 

researchers (Wang and Liu, 1994; Aghajan and Kailath, 1994) to detect roads and lines. 

Line tracking algorithms track roads by using seeds from an image. Papers dealing with 

road tracking models include those by Fischler et al (1981); McKeown and Zlotnick 

(1990); Geman and Jedynak (1996). Although these models vary in their detail, all 

assume prior knowledge of the location of linear structures and are based on that domain 

knowledge, and generate more information on the road networks. 

2) An edge detection approach may be fruitful if the user is concerned with 

representing the exact size of the road. If roads have significant width (ie 2 or more 

pixels width), it may well be more useful to employ an edge detector in order to derive 

edges of roads rather than the centre line (Domenikiotis et al 1995). Edge detection and 

filtering (eg Nevatia and Babu, 1980; Schanzer et al 1990), contextual filtering (eg 

Vanderbrug and Rosenfeld, 1978; Gurney and Townshend, 1983) and mathematical 

morphology (eg Destival, 1986) have been discussed and applied for feature extraction 

(eg Destival, 1986). 

The use of GIS and knowledge-based rule (ICBR) algorithms (eg Van 

Cleynenbreugel et al 1990; Stilla, 1995), and dynamic programming (Grune and Li 

1995) are other approaches for delineation of linear features. Knowledge-based 

interpretation of remote sensed data constitutes an active research area. Examples 

include the analysis of aerial photos (McKeown, 1987), radar imagery (Pai et al 1986), 

Landsat data (Boggess 1993, and 1994; Wolfer et al 1994), and SPOT images (Geman 

and Jedynak, 1996) to road network extraction. Different sorts of knowledge sources 

have been used: domain knowledge (about features and their structural and geometrical 

relationship); respective relationships (eg tangential direction at the end of a line, 

collinearity, adjacency, parallelism, anti-parallelism, orthogonality); incidence, 

proximity, relation, and position of features. Shorter reports and reviews include those 

by McKeown (1987), Ton (1989), Zelek (1990), Schanzer et al (1990), Zlotnick, and 

Carnine (1993), and others. 
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Employing knowledge sources such as photometry and perceptual grouping (eg 

Tavakoli and Bajcy, 1976; Van Cleynenbreugel et al 1990; Domenilciotis, 1994), global 

land cover classification (ie Ehlers et al 1990; Stadeimam and Lodwick, 1993), existing 

roadmaps, drainage networks maps and a digital terrain model (ie D'Agostino et al 1993; 

Skidmore et al 1996) can be expected to improve the reliability of road detection and 

classification routines. Two main types of knowledge sources have been used: 

photometry and perceptual grouping rules (eg. Pai et al 1986; Wang and Newkirk, 1988; 

McKeown and Zlotnick, 1990; Van Cleynenbreugel et al 1990). 

To delineate a road, an image interpreter may apply structural, spectral, and 

contextual knowledge (Swain et al 1980). Structural knowledge of roads has been 

examined with incorporation of computer systems, and by a GIS-guided technique (Van 

Cleynenbreugel et al 1990). Researchers are using the following properties to aid road 

detection: 

spectral characteristics, 

geometric shape, and 

spatial properties. 

Previous attempts have been made to find roads from remote sensing imagery 

using machine learning and expert systems. For example, Boggess (1993) used a back-

propagation artificial neural network technique for the identification of roads. It was 

pointed out that this analysis technique is insufficient for an accurate classification of 

whether or not a pixel represents road, and that a back-propagation neural network may 

not be able to provide a complete solution. This uses low level image segmentation, 

which relies perceptually on the spectral reflectance properties of land cover types. The 

use of context or other domain-specific data for successful classification was 

recommended. Furthermore, Ko (1995) followed a hybrid road detection method using 

edge detection in a back-propagation neural network. The hybrid road detection 

technique in this context refers to employing both spectral and spatial information in a 

back-propagation neural network. The technique was found to be superior to previous 

techniques due in part to its ability to incorporate not only spectral information but also 

contextual information which applies domain-specific knowledge of spectral and spatial 
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information as an intermediate image segmentation level. It would appear that this 

method has difficulties in accurate detection of roads over a mixture of man-made 

structures. A more comprehensive discussion of road detection applying neural networks 

for combining multi-source evidence is provided by Boggess (1993 and 1994) and Ko 

(1995). In addition, genetic algorithms have been applied to classify roads in satellite 

imagery, and the results have been compared with a neural network technique (Boggess, 

1990). 

Recently, Geman and Jedynak (1996) presented a new method for tracking roads 

from SPOT images. The approach was related to the recent work in active vision on 

where to look next and associated with the divide and conquer method of parlour games. 

The general methodology dealt with decision trees and the role of entropy in pattern 

recognition. In this approach intensity and geometry are considered in the process of road 

detection. Implicit in Geman and Jedynak's approach (1996) was the concept of the 

decision trees. The approach was shown to work well for tracking major highways, but it 

had difficulty tracking the smaller roads due to the fact that roads were confused with 

other man-made structures. 

2.4 Expert Systems in Remote Sensing and GIS 

In remote sensing, image processing and spatial data manipulation, expert systems 

(ES) are playing a critical role in development of automated knowledge-based systems. 

The application of ES and Knowledge-Based-Systems (KBS) has been mainly made in 

four areas: geographic feature extraction (McKeown et al 1985; Taib and Trinder, 1992; 

Stadelmann and Lodwick, 1993), geographic database systems (Frank, 1988), geographic 

decision making (Karimi et al 1987), and map design or production (Muller, 1991; 

Hartog et al 1996). Feature extraction is the main emphasis of this research. Low level 

image segmentation techniques have some shortcomings due to the huge amount of 

information in each image, ambiguous and contradictory information present in the 

images, object scale and resolution, geometric and radiometric effects (Robinson et al 

1987). These shortcomings lead to building ES for feature detection. Several papers 

reported that automatic methods have been developed in the area of feature recognition 

(eg Gruen and Li, 1995; Stilla, 1995). 
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A number of applications of Knowledge-Based Systems (KBS) are concerned with 

analysis and processing to develop rule-based techniques. Several systems have been 

designed in artificial intelligence (Al) and ES to provide support for integration of GIS 

and remotely sensed data (eg Pal et al 1986; Stadelmann and Lodwick, 1993; Skidmore 

et al 1996a). Application of ES techniques in the domain dealing with spatial data has 

been widespread. For example, Skidmore et al (1996) conducted an expert system 

approach for mapping forest soils by utilizing a DTM, vegetation map, and knowledge 

provided by a soil scientist. This technique provides an accuracy of 70% which competes 

with a map drawn by the soil scientist. 

The use of knowledge-based methods in current applications of GIS seems a little 

more than ad-hoc application of strategies initiated in the area of Al (Smith and Yiang, 

1991). There is a wide variety of contemporary literature that deals with knowledge-

based approaches such as the theory of evidence, machine learning methods, fuzzy logic 

for GIS and RS applications. An idea of how the scope of GIS can be developed by 

employing techniques from an AT context that can resolve the constraints and problems 

in user interfaces mainly by data representation and its visualization in the process of 

integration of remotely sensed imagery and GIS data, has been illustrated in many 

articles (McKeown, 1987). Image processing techniques alone are inadequate if in a 

situation where specific information or prior knowledge about the scene in question is 

required. 

The KBS applications did not concentrate on the promotion of the computational 

efficiency of GIS. Current application of knowledge-based approaches is typically 

associated with employing rules in relation to GIS modelling. Loose coupling between 

the rule based ES and the geographic database (Smith and Yiang, 1991), in particular the 

construction of applications of KBS, provides a user-friendly interface to GIS. Most KBS 

applications associated with analysis and processing have dealt with ES approaches to 

provide an environment for a system loosely coupled to the spatial database component 

of a GIS. The use of KBS is involved in many sub-components and components of GIS. 

The major application areas are acquisition, storage, access, analyzing and processing, 

conversion, and interfaces. The adoption of applications of KBS in GIS components has 
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been identified as a facilitative tool which enhances the power of GIS. These parameters 

are related to the following areas (Smith and Yiang, 1991): 

ICBS, defined in terms of languages that support knowledge representation and 

deduction, will not add any new expressive or computation power to the current 

languages employed in GIS. 

In connection to the acquisition, ICBS enhances the construction of applications in the 

context of automization of procedural knowledge capture. 

ICBS techniques for storage of GIS databases have been employed. 

KBS made an easy mechanism to use GIS in the process of access such as query 

optimization and the use of metadata. The query optimization is extremely significant 

for large-scale GIS modelling involving complex multi-component and nested spatial 

objects in which features may be implicitly represented in a multi-layer data model. 

KBS facilitate the building of natural language interfaces, and these languages provide 

an easy way to use GIS in the process of interfaces. 

The topics of data acquisition, data structures, and problems of data conversion 

will be discussed in Chapters 3 and 7. The interface of GIS and RS in a ICBS model for 

methodology developed in this research will be elaborated in Chapter 8. 

The rule-based expert systems approach is another attractive method of road extraction. Pal 

et al (1986) contributed to rule-based approaches using a real-world model which was 

generated from a road network map of the terrain. The starting point for searching roads is a 

key road technique. Once the key road is selected, the rest of the roads in the network are 

represented relative to the key road, and relationships between the model roads are indicated by 

properties (ie branch of, branched from, cross, and others) in accordance to defining x and y 

coordinates. Furthermore, a low level image segmentation technique (line detection) is 

incorporated into building a backward chaining expert system for extraction of road networks in 

a forested area. This study used brightness values, length, and shape characteristics to refine the 

image using moment invariants. Overall, the research shows that effective road reconstruction 

is possible even though preliminary results from edge detection algorithms are poor 

(Domenikiotis, 1994). 
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2.5 Summary and Remarks 

A number of image segmentation approaches have been discussed, starting with 

image analysis, segmentation methods, using textural and contextual information, 

extension of machine learning and ES into feature extraction, and knowledge-based 

approaches to road detection. Consequently a review of classification (segmentation) 

methods leads to identification of four basic operations: 

Incorporating radiometric and geometric enhancement for image interpretation 

Applying contextual information 

Incorporating textural information 

Employing semi-automatic and automatic approaches using artificial intelligence and 

machine learning techniques, particularly artificial neural networks, decision trees, 

genetic algorithms, fuzzy logic, theory of evidence, and expert systems. 

A number of reviews have supported this conclusion (eg Richards, 1993; Lees, 

1994). Many systems using different levels and methods of segmentation have been used 

for aerial and satellite scenes analysis. There is a common reliance based on medium 

level segmentation and low level image cues which are extractable, eg by edge detectors 

and thresholding. It is crucial to have intermediate operators which do not have to 

depend only on medium-level image cues. It is appropriate to use this information to 

reflect perceptual similarity in order not to have too severe errors in labelling classes. 
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Chapter 3 

DIGITAL IMAGE AND GIS DATA PROCESSING 

This chapter provides a review on integration GIS datasets and RS imagery, giving 

emphasis to data conversion problems, particularly the problems associated with 

geometric distortions of digital aerial photographs. These later problems are discussed 

and standard methods for their geometrical correction are presented. The subject of 

image enhancement using edge detection and mathematical morphology is reviewed. 

3.1 Image Rectification and Registration 

Image registration is the process of spatially best aligning two views of a scene 

captured using similar or dissimilar sensors (Pratt, 1978; Kanal et al 1981; Ton, 1989). 

Georeferencing is the process of establishing a best fit between an image (row, column) 

coordinate system and a map (x,y) coordinate system (ERSI, 1992d). This involves 

warping the geometry of the image in order to establish the same relationship between 

the image and map coordinates. 

Image rectification is the process of geometrically correcting systematic and 

random distortions in an image to fit ground control (Lillesand and Kiefer, 1987; 

Goshtasby, 1987 and 1988). Image rectification is a common problem arising in digital 

image processing and GIS applications whenever the image and the ancillary data of the 

same scene have to be compared pixel by pixel. 

Distortions in aerial photographs are caused by changes in ground elevation, 

camera (sensor) position and orientation, lens distortion, earth curvature, film distortions, 

and atmospheric refraction (Wolf, 1988; Zhizhuo, 1990; Frost, 1995). These distortions 

need to be corrected before an image can be used for remote sensing and GIS 

applications. The aim is to provide a photo as free from errors as possible. 

Image rectification and image registration are crucial when undertaking the 

following: 

(a) mapping and map revision (eg Coloveoresses, 1990; Torlegard, 1992; Mather, 1995) 
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change detection (eg Milne, 1988; Forghani, 1993; ERDAS 1994a) 

scene classification and analysis (eg Silfer, 1988; Della Ventura et al 1990) 

image or feature enhancement (eg Ford et al 1983; Goshtasby, 1987; Ehlers et al 

1990) 

depth perception (Goshtasby, 1987) 

GIS data entry (eg Johnson, 1989; ESRI, 1992d). 

For topographic map production, reliable spatial data is produced from aerial 

photographs using stereo-photogrammetric techniques. For GIS applications there are 

three common types of geometric rectification applied to digital images: 

Geometric (polynomial) transformations are applied when image 

distortions are highly systematic and relief displacement is not significant. 

Digital orthophotography, which is applied when there is significant relief 

displacement. A Digital Elevation Model (DEM) is used to resample an image 

and produce an orthographic projection of the terrain. 

Affine transformation and rubber sheeting which is based on point matching of 

the two sets of points by applying a rubber sheeting process. 

3.1.1 Geometric transformations 

(i)Ground Control Points Selection 

Image features commonly used as GCP include points on roads, rivers, field 

boundaries, shorelines, and power lines sometimes, using a visual fit of curved tracings 

to sections of the physical features in the image and referenced map. The use of GCP's to 

register remote sensed images to a georeferenced map is described by, for example, 

Welch and Usery, (1984); Labovtiz and Marvin, (1986); Marvin et al (1987). 

Polynomial transformations use a set of GCP's to establish the relationship between 

a map and an image based on interpolation techniques. The principal considerations 

when applying polynomial transformation methods are the choice of ground control 

points (GCP) and the order of the polynomial. There are two common methods of control 

point selection: 
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Manual selection of GCP which depends on the visibility of invariant physical 

features such as line intersections and points. Numerous researchers have addressed the 

problem of control point selection (eg Welch, 1985; Marvin et al 1987; Mather, 1995). 

Semi-automatic and automatic methods such as point and line matching, relaxation 

labelling schemes (eg Goshtasby, 1988; Ton, 1989; Li et al 1993) 

The number of GCP's used and their position in the image depends upon the type 

of terrain and a variety of other factors. It has been shown elsewhere that polynomials are 

an effective way of correcting different types of image geometric distortions in digital 

images (Van Wie and Stein, 1977; Usery and Welch, 1989). There is a relational formula 

for the number of required GCP and the order of transformation (Labovtiz and Marvin, 

1986). A minimum practical number of GCP's is required to calculate a transformation 

(Welch, 1985). A useful formulation is shown below (ERDAS, 1994b): 

GCP = (t
1  +1)(t  + 2) 	 (3.1) 

2 
where t is the order of transformation. 

Provided that sufficient accuracy is obtained, a low order transformation is 

preferable due to the fact that few GCP are required to register the image on to a map. 

The number of GCP required is dependent on terrain type, scale, and the required level of 

accuracy. 

An image with low spatial variation, often a low order bivariate polynomial (m = 2 

or 3) is a good approximation to the actual situation. Larger geometric variations need 

higher order polynomials to gain a given error tolerance. Generally, the coefficients 

associated with higher order in the polynomial are sensitive to the location of the GCP, 

which has to be uniformly distributed throughout the image. This problem can be 

avoided by employing orthogonal polynomials ie Legendre or Hermit polynomials. 

Coordinate transformations are an approximation of the true values. 

Root Mean Square (RMS) errors can be used to evaluate the performance of least 

squares fitting routines. The root-mean-square error (RMS) is a measure of accuracy for 

each GCP in the image and can be written (Domenikiotis, 1994): 

RMS =.11(x — x ofigino ) 2  + (3' — y.figinal ) 2 
	

(3.2) 
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Once the transformation for a given GCP is performed, the suspect points from the 

total RMS error, the X and Y residual, and contribution table can be examined and errors 

detected and eliminated. The pair point distances 1  are then computed and the RMS 

difference values identified. The RMS errors reflect the reliability of GCP's, and are an 

index of the internal geometric fidelity of the image data. 

Lincolne (1995) and Forster (1995) report if the GCP come from a 1:25,000 scale 

map, it can be expected that the GCP will be accurate to 0.5 mm (obtaining error values 

of about ±12.5 m on a 1:25,000 scale topographic map). Della Ventura et al (1990) 

gained an accuracy of 2.57 RMS error pixel and 2.68 RMS error pixel using 8 

automatically detected GCP and 11 manually detected GCP's respectively. 

(ii) Resampling 

Resampling can be described as the process of adjusting the location of pixel 

centres for generating an image (grid) at a predetermined scale and with attribute values 

derived from the original data. Three common methods of polynomial transformation are 

cited in the literature, and these techniques have been applied in image (grid) data which 

are available in GIS (eg ARC/INFO) and remote image processing software (eg ERDAS 

IMAGINE): 

Nearest-neighbour 

Bilinear-interpolation 

Cubic-convolution 

In addition, interpolation techniques such as bilinear interpolation and weighted 

Brownian interpolation 2  have been extended to digital elevation models (DEM) (eg 

Ungar et al 1988; Polidori and Chorowicz, 1993). 

Pair point distances are a comparison of map and scaled photo distance between all alternative combinations of point-
pairs. 

2  Brownian interpolation refers to a Random Midpoint Displacement algorithm, described by Polidori and Chorowicz 
(1993). 
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A nearest-neighbour assignment is computationally the fastest and easiest method 

to use of the three methods of interpolation. Primarily it is applied for categorical data 

such as land use classification, since it preserves the exact value of pixels in the original 

dataset values without averaging them, and therefore does not introduce new grey values. 

This is an important issue when discriminating between vegetation classes, locating an 

edge associated with lineament, or identifying different levels of turbidity or 

temperatures in a lake (Jensen, 1986). It suffers from some disadvantages as follows: 

it introduces spatial shift errors such that local geometry can be inaccurate by up to 

— of ground grid size (Lodwick and Pain, 1986), so that the maximum spatial error 
2 

will be one half the cellsize of the grid. 

in resampling a larger to smaller grid size, there is usually a "stair stepped" effect 

around diagonal lines and curves. 

also some data values may fall, while other values may be duplicated. 

in addition, on linear thematic data (ie roads, streams) gaps or breaks in a network of 

the linear features may result. 

A bilinear-interpolation determines the new value of a cell based on a weighted 

distance average of the four nearest input cell centres. This method tends to give more 

natural looking images, without the blockiness of nearest-neighbour or the over 

smoothing of the cubic convolution option, although there is a risk of information loss 

for high frequency data (Mather, 1987). It is useful for continuous data or thematic files, 

which may have data file values according to a qualitative (nominal or ordinal) system or 

a quantitative (interval or ratio) system. The bilinear-interpolation is not appropriate for a 

qualitative class value system. When using this method for continuous data, it will cause 

some smoothing of the data.(ERDAS, 1994b). 

A cubic convolution calculates the new pixel value employing third degree 

polynomials and the 16 nearest pixel values from the original data. It increases the high 

frequency component of data and has poor frequency characteristics. This type of 

tranformation also distorts the original data significantly. Cubic convolution is not 

appropriate for image processing calculations (ER Mapper, 1993). Further information 
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can be found in ESRI (1992e), ERDAS (1994b) and other photogranunetry and GIS 

texts. 

Using Global Positioning Systems (GPS) to obtain GCP coordinates rather than 

scaling coordinates from a map will increase the reliability of the GCP's (eg Clavet et al 

1993; Adkins and Merry, 1994; August et al 1994). If GPS is used then planimetric 

accuracy to centimetre level can be obtained. In general, DTM are within 5 to 10 m of 

surveyed ground control (Tudor and Sugarbalcer, 1993; Jensen, 1995), and an accuracy of 

about 5.5 I- 3 metres can be gained. This degree of accuracy is well suited to some 

planimetric applications. 

3.1.2 Orthophotography 

Historically, errors in aerial photography have been corrected using 

photogrammetric stereo plotters. Tall buildings, hills and valleys can be displaced from 

their true position depending upon whether these objects are below or above a given 

datum, sea level being the usual datum for mapping. The relief displacement is a 

function of the change in height and the distance away from the centre of the photo. 

Further information on this topic can be found in Wolf (1988). 

It has also been shown that polynomial methods may not efficiently remove relief 

displacement in areas of gentle relief (smooth terrain) and rugged terrain (eg Steiner, 

1992). Recent developments in vector-based spatial data technology have enhanced 

efficiency in managing terrain information and facilitated high accuracy mathematical 

computations and analysis in 3-dimensional surface (3D) modelling (Burrough, 1986). 

The Triangular Irregular Network (TIN) surface representation is a clear example of how 

a surface may be stored, manipulated, and displayed. TINs are applicable for continuous 

surface data such as elevation. Basically, these data can be represented as a continuous 

surface; commonly the transition between possible values on a continuous surface is 

without sharp changes. The attribute of this data is stored as a Z value, a single variable 

in the vertical direction associated with an X, Y position. Continous data are described in 

a large body of literature (eg Burrough, 1986; ESRI, 1992e). Continuous surface data can 

be divided into two categories; one represents features where each location is measured 
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from a conformed registration point such as elevation and aspect, and another includes 

phenomena which progressively vary with their movement across a surface from a source 

such as contamination of water from a nuclear reactor. 

The DTM derived from existing topographic maps by digitizing will not be as 

accurate as a map, since some errors can occur in processing data. Moreover, human map 

compilation and the process of capturing the elevation data is subject to errors. In the 

process of capturing the elevation data in the field, using high quality and quantity 

instruments, and a well skilled crew, the risk of occurrence of errors can also be taken 

into consideration. Surveyors may ensure that DT'M created from surveying fieldwork 

sufficiently represents the surface observed. The accuracy of an orthophoto is affected by 

the quality of a DEM, and the distribution and accuracy of the GCP's. GPS technology 

makes it possible to capture accurate ground control points (GCP) information X, Y, Z 

root-mean-square-error of about 15cm when the data are differentially correct (Jensen, 

1995). It depends on many parameters such as the type of instruments and required 

accuracy. 

Continuous data are described in a large body of literature (eg Burrough, 1986; 

ESRI, 1992e) and in Section 3.4.2. Comparisons of continuous field data and the vector 

and raster data models are widely discussed in the literature. Continuous surface data can 

be divided into two categories; one represents features where each location is measured 

from a fixed registration point such as elevation and aspect, and the other includes 

phenomena which progressively vary with their movement across a surface from a source 

eg contamination of water from a nuclear reactor. 

The DTM has been used extensively in a large number of diverse applications in 

GIS (Tsai, 1993). Prime examples are land use change detection (Forghani, 1994 and 

1995), feature extraction (Forghani and Zwart, 1995; Forghani and Osborn, 1996), digital 

analysis of viewshed inclusion and topographic features (Lee, 1994), hydrological 

applications (Skidmore, 1990), and others. Application of DTM's to create orthophoto 

rectification (Numan et al 1992; Forghani and Zwart, 1997; Forghani and Osborn, 1998a) 

is another area, described later in this study. 
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Surface elevation information can be obtained in five common ways: from map 

contours (Forghani and Osborn, 1996), a TINT (Skidmore, 1990), stereo-correlated aerial 

photos or other images and x,y,z photogrammetric ASCII files, (ESRI, 1992e), field 

surveys and GPS or global positioning systems (Clavet, 1993; Adkins and Merry, 1994), 

and from gridded matrices of elevations (Skidmore, 1990). It is not within the scope of 

this research to deal with the above-mentioned methods in full. The principal 

consideration is extracting DTM from digital contours by building a TIN model. 

Conventional methods produce sufficiently accurate results; however, there are 

some disadvantages with using the photographic methods of orthophoto production 

(Steiner, 1992). 

the produced ortho-negative is at one scale, 

the image produced cannot be enhanced and manipulated further for a particular 

application, 

the orthophoto has to be converted to digital form for use with a GIS. 

3.1.3 Affine Transformation and Rubber Sheeting 

Affine transformation, and polynomials of two and three degrees, and image 

matching3  have been used to correct image distortions (eg Ton, 1989; Goshtasby, 1987). 

A rubber sheeting process is one solution to the precise determination of correspondence 

between man-made features (roads) in an image and the GIS data (digital roads). A 

number of researchers have tried to overlay images with relief distortions. Prime 

examples are Bajcy and Briot (1982), and Goshtasby and Stockman (1986) who applied 

a rubber sheeting approach to register and overlay two sets of images. This approach 

attempts to overlay images with local geometric distortions with an elastic sheet and then 

to apply external forces to the image to be overlaid with the GIS data. When applying 

this force which deforms the digital image, the required corresponding points in the 

image and the map overlay can be obtained. 

3  Matching is one of the basic processes in pattern recognition. The aim is to find the mapping between a proposed 
model and a set of data. It requires two steps to execute the process; (1) a model and the data have to be in the same 
representational form, (2) a similarity relationship has to exist between the model and the data. Further details can be 
found in Della Ventura et al (1990), Li et al (1993). 
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Rubber sheeting removes the flaws through the geometric adjustment of 

coordinates. The surface is literally stretched, moving other features using a piece-wise 

transformation4  that maintains the straightness of lines (ESRI, 1992b). To do rubber 

sheeting, a series of deformation vectors, so-called links, are required in which every link 

indicates where the coordinates have to be shifted (Figure 3.1). 

Before ADJUST After ADJUST 

--■ Link 0 Identity link 

Figure 3.1 Illustrates a rubber sheeting by using links and adjusting position (ES RI, 1992b). 

The rubber sheeting process often consists of a series of repetitive steps of adding 

links, modifying links and adjusting the coverage. It is important to have the links spread 

systematically over the whole coverage or grid including the outer edges in order to set 

the adjustment systematically with distribution of equal weight to the adjustment of all 

parts of the grid or coverage. The adjustment may have to be modified by deletion and 

addition of links (Figure 3.1). 

4  This is described in ESRI (1992c). 
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3.2 Image Enhancement 

(i ) Filtering 

Spatial filtering is a context-dependent operation in which the digital value of a 

pixel is changed, based on its relationship with the digital values of other pixels in the 

neighbourhood. Image enhancement techniques suppress or emphasise selected elements 

of an image to make the image more acceptable and more efficient for its users. For a 

linear feature which is wider than one pixel, a modal filter (template) may be 

implemented and linear features can be delineated but the results interpreted in a 

different way (Domenikiotis, 1994; Ko, 1995; Domenilciotis et al 1995). The extraction 

of different objects needs to apply different filtering functions with different kernel sizes. 

For instance, a 3x3 pixel sized filter will result in less blurring of the boundaries, while a 

5x5 filter will reduce the amount of variance and therefore smooth out more scene noise 

and class boundaries. Care should be taken when the window size is larger than 5x5 

(Cushnie and Atkinson, 1985). According to practical experiments (eg Cushnie, 1987; 

Walsh et al 1990), a 3x3 sized filter is more generally applicable than the larger 

neighbourhood windows for edge enhancement. Jazouli et al (1994) found that a 3x3 

kernel size is the best filter for image enhancement in order to detect roads compared 

with testing 5 x 5 and 7 x 7 kernels. 

Median filtering of 3x3 is commonly used to reduce the noise and remove outlying 

noise in order to get a smoother image for edge detection (Solberg et al 1990). This filter 

replaces the digital number (DN) of each pixel by the median of DN in the 

neighbourhood of that pixel. It uses sliding neighbourhoods to process an image to 

determine the value for each output pixel by testing an m x n neighbourhood around the 

corresponding original pixel input (Mathworks, 1995). 

3.2.1 Edge Detection 

Edge detection refers to the identification of edges in an image such as object 

boundaries, abrupt changes in surface orientation and material characteristics (Van Der 

Heijden, 1995). Trade-offs between edge detectability, noise sensitivity and 

computational efficiency are often involved in selecting a suitable edge detector for a 
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given application. Edge detectors generally suffer from weaknesses not only in 

sensitivity to noise, but also in poor performance near comers of structures (McKeown 

and Zlotnick, 1990). A successful edge detector for image segmentation depends upon a 

number of criteria. These include edge continuity, minimal width (sharpness), accurate 

location, and completeness in terms of discriminating all relevant edges. The literature 

describes many edge detectors. Typical examples are Sobel, Roberts, Canny, and Deriche 

edge detectors. There is, of course, no shortage of literature dealing with the edge 

detection problem. Numerous authors, among them Pratt (1978); Fischler et al (1981); 

Canny (1986); Deriche (1987 and 1990); Gonzalez and Wintz (1987); Argialas and 

Harlow (1990); Monga et al (1991); Mason and Wong (1992); Faugeras (1993); 

Abramson and Schowengredt (1993); Petrou (1993); Domenikiotis (1994); Aghajan and 

Kailath (1994); Forghani (1995 and 1997) have surveyed and applied edge operators. 

Classically, there are two types of edge enhancement technique: 

i) First Derivative Operators or Gradient Enhancement 
Operators(ie Sobel, Roberts Cross, Kirsch, Prewitt) 

These operators are limited to a particular edge orientation, and for linear features 

with higher and lower values on both sides, the gradient will be negative for one side and 

negative on the other. These shortcomings prevent the discrimination of edges by a 

simple amplitude thresholding technique. Thus these characteristics are not consistent 

with an ideal segmentation criterion. Most edge detection filters such as Sobel look for 

the edge of line in one direction at a time (Schanzer et al 1990). Roberts and Sobel filters 

have been widely used to suppress low frequency information in the image data and 

highlight high-frequency objects like roads. Due to the fact that roads are generally 

lighter or darker than immediately adjacent terrain, the Sobel edge operator can compute 

a direction which is aligned with the direction of maximal intensity change and a 

magnitude defining the amount of this change. 
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ii) Second Derivative Operators or High pass Spatial 

Frequent Enhancement Filters (eg Laplacian, Canny, Deriche, 

Marr Bildreth etc.) 

Using this approach, the Laplacian of a two-dimensional Gaussian distribution can 

be convolved with the image for detection of edges. Convolution with Laplacian filters 

approximates calculation of the second derivative only if the inflection points of the grey 

levels are aligned with non zero values (Rosenfeld and Kak, 1982). Whereas directional 

filters enhance digital number gradients with particular orientations, maximum output 

values can be generated by convolution over grey level variations in the associated 

direction (Pratt, 1978). 

Two -Dimensional Edge Detection 

In two-dimensional edge detection, an edge is defined by the maxima (its position) 

and the gradient magnitude (its direction) in which the image intensity is constant. In 

directions 0°  and 90 0 , the edge map can be detected more precisely than other directions. 

In 450  and 35 0  directions edges will be more smooth in comparison to the directions of 

00 and 900 . Thus maximum confusion will occur in 450  and 1350.  It has been shown 

(Faugeras, 1993) that if one-dimensional edge detectors are used, an edge may not be 

detected by convolution of the intensity distribution perpendicular to its direction. In this 

situation, the error propagation will be distributed systematically. Thus, the two 

dimensional (2D) case seems to be more useful. Using 2D edge detectors can also give a 

misleading response for ramp-like variations (Domenikiotis, 1994). 

(a) 2D Canny Edge Detector 

The Canny edge detector reduces noise, locates the edge points, and minimises 

false response to edges in an image. It uses two thresholding values called hysteresis to 

avoid streaking. The threshold can be tuned based on the image content. It has been 

reported that there are three basic problems associated with identification of an edge 

location, namely, missing true edge points, the lack of complete ability to localise edge 

points and discrimination of noise signals from real edge points (Pratt, 1978). Most early 

edge detectors tried to handle the problems of computing some derivatives of the image 
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intensity and to find an ideal threshold to make the distinction between edge and no-edge 

(Faugeras, 1993). Canny's algorithm improved these errors by establishing three basic 

criteria for an ideal convolution filter: 

Good signal to noise ratio 

Good localization 

Single response to one edge or minimal false response (uniqueness of response). 

Like other edge detection algorithms based on the step-edge assumption, the Canny 

edge algorithm cannot perform well at non-step-edges, edge corners, and edge junctions 

(Mason and Wong, 1992). Petrou (1993) claims that "It is impossible to choose a 

convolution filter which will maximize all three of these quantities". However, he 

combined them to maximize this measure. The implementation of feature extraction by 

Canny in conjunction with the use of optimal filters from remote sensing images, 

applying knowledge-based systems to identify roads, canals, hedges, and rivers is 

reported by Petrou (1993). A number of modifications to Canny's work are given (eg 

Deriche, 1987; Petrou, 1993). 

(b) 2D Deriche's Approach 

Deriche developed an optimal edge detection algorithm that can preserve Canny's 

criteria. Deriche reports that Canny's algorithm was implemented for an antisymmetric 

filter5. The size of the edge detector of the Deriche can control the amount of noise 

suppression without repetition of the iterations per output. To get rid of the false edge 

points, it is possible to perform some thresholding by applying a gradient magnitude. 

Canny's hysteresis 6  thresholding uses two thresholds Ti and T2 where the T2( Ti. 

Suppose a chain of connected edge points is characterised by the topological property of 

a contour, then if for one point (pixel) in the chain the gradient norm is higher than the 

5  An antisymmetric (odd) filter has been designed to detect antisyininetric features such as step edges, whereas a 
symmetric filter has been implemented for symmetric features such as line edges. Further information can be found in 
Nalwa and Binford (1986), Petrou (1993). 

6  Hysteresis thresholding refers to the identification of edges of all extremes whose magnitude is higher than a low 
threshold. Hysteresis tluesholding allows local gradient extrema with low gradient magnitude to be removed (Monga et 
al 1991). 

38 



Ti, a connected path of extremes must be maintained where the gradient magnitude is 

higher than T2 by selecting the local maxima. 

Two important parameters defined in the Deriche operators are local maxima a 
(controls the width of the impulse response), and T (threshold). The value of Deriche's 

approach is that by adjusting the local maxima a,  the size of the kernel can be 

effectively controlled, and the amount of noise is suppressed without repeating the 

number of iterations per output. Deriche (1990) convolved an image in three step edges 

recessively to detect a noise by applying a =1,a = 0.5,a = 0.25. It was pointed out by 

Faugeras (1993) that to tackle the thresholding at the right level, only the edge pixels 

whose gradient norm is higher than some T can be kept. The hysteresis thresholding of 

Canny (1986) attempts to keep the edge pixels continuous as much as possible. Full 

algorithmic details of Deriche's and Canny's approaches can be found in Deriche (1990) 

and Faugeras (1993). 

3.2.2 Thresholding 

After applying an edge detector, the result produced is noisy. Thresholding is one 

of the most frequently encountered processes for classifying a pixel as an edge or non-

edge (background) pixel from filtered images. 'Thresholding is based on the selection of a 

gradient percentage, which ideally could discard noise and keep the true edges. Fine 

tuning of the threshold is crucial in order to optimise the display of edge features. 

However, it is a tedious task. The basic question remains as to what is the best threshold. 

Faugeras (1993) says "there is no good answer to this question, and the [threshold value] 

must be guided by application and the lighting conditions of the scene". The threshold 

(T) value depends mostly on image content, image quality, image geometry, and the 

amount of noise present in the data (Rosenfeld and Kak, 1982). 

Hysteresis thresholding of Canny's edge detector provides one solution to this 

problem. As mentioned, if the threshold is set too low, there would be many dominant 

edges, points, and lines; while if the threshold is set too high, there would be some 

dominant features from which much useful information is removed. For example, the 

optimal threshold for Canny's operator has been reported as 70 to 80 percent (eg Canny, 
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1986; Gustari, 1996) using hysteresis thresholding. Experience has shown that the output 

of edge and line algorithms decreases significantly if the line or edge detectors are 

applied to imagery of urban scenes in comparison to rural areas (eg Forghani, 1995 and 

1997; Geman and Jedynak, 1996; Forghani and Osborn, 1998b). 

3.2.3 Mathematical Morphology 

Geometric shape detection is an especially significant aspect of pattern recognition, 

finding many applications in machine vision, medicine, etc. Furthermore, the rule-based 

knowledge of shapes present in an image is a useful parameter as contextual information. 

In mathematical morphology, images are tested applying a structural element which is a 

small set. The points of the structuring element can be compared to the region 

surrounding a pixel in an image. A modification in pixels can be implemented in order to 

see how the points match and what operation was conducted. The structuring element is 

performed for every pixel of the whole area of the image. The traditional approach of 

mask convolution was combined with mathematical morphology by Destival (1986). It 

has been reported that the result of this approach is fragmentary and error-prone (Wang 

and Liu, 1994). 

A considerable effort has been made to examine mathematical morphology as a 

tool for delineating linear structures from remotely sensed data (Asana and Yokoya, 

1981; Destival, 1986; O'Brein, 1987). Destival (1986) pointed out that difficulties may 

arise when applying mathematical morphology due to the number of human 

interpretations required for rejoining and reconstructing line segments. As mentioned 

earlier, the linear features and urban area are very complex, and the use of mathematical 

morphology can be affected by the complexity of scene because of noise in the data. To 

overcome these ambiguities, the use of domain knowledge, and global information about 

roads and surrounding areas, improves the accuracy of the output. Noise edge responses 

may be mainly removed by discarding all responses that do not rely on either near or 

edge borders. Simultaneously, gaps in the lines can be filled by joining line pixels into 

continuous features to discard redundant information applying morphological 

transformations. Edge linking is a well known technique. The basic hypothesis is to find 
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local edge pixels using some low-level process, and to join them into contours on the 

basis of proximity and orientation. 

The transformation of a binary image by mathematical morphology introduces the 

geometric structure and texture of line features using the concept of structuring elements. 

Possible tools for morphological operation (hit and miss transformations) are: bottom 

hatting, bridging, cleaning, closing, diagonal filling, dilation, erosion, gating, filling, 

horizontal breaking, majority, opening, removing, shrinking, skeletonization, spurring, 

thickening, thinning, and top hatting (Mathworks, 1995). Further details on the principles 

of mathematical morphology are presented by Serra (1988 and 1996). 
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3.4 Integration of GIS and Remote Sensing 

3.4.1 Data Acquisition for GIS 

Data capture refers to a digitizing or scanning process from existing maps, field 

surveys, direct input from digital cartographic database, CADs, photograrnmetric 

records, aerial photographs and manual interpretations data from sensors into GIS 

compatible form. Remotely sensed imagery is a common data source for GIS. The RS 

data can be categorised into two major groups: 

/. 	Raw data (eg satellite and airborne imagery) 

2. 	Classified images 

Classified images and existing maps are the major sources of data for GIS. There 

are many methods to meet this aim. Some of the important ones are listed below 

(Burrough, 1986; Stadelmann and Lodwick, 1993): 

manual input to a vector-based system 

manual input to a grid-based system 

digitization 

automated and semi-automated electromechanical scanning including raster scanners, 

vector scanners, video digitizers, and analytical stereo plotters. 

Hardcopy maps and images must be scanned for use in a GIS environment. 

Researchers agree that to scan an image, 300-600 DPI (42-84 mm/pixel) is sufficient for 

many mapping applications (eg Steiner, 1992). A 300-500 DPI is a common range of 

resolution of raster images which can be binary (B/W) or full grey level image of 256 

DN (digital number) or more. The achievable level of accuracy, detail, and production 

costs, depends largely on the type of scanner. The utilisation of low-cost desktop 

scanners is more common, and high resolution images need substantially more resources 

for data processing and storage (Pries, 1995). The relationship between digitizer 

instantaneous-field-of-view (IFOV) both in dots per inches and metres, and the pixel 

ground resolution at different scales of photography is provided in Cowen et al (1995). 

The application, funds, and type of data being input will mainly determine the 

choice of data input. These data are existing maps, field sheets and hand-drawn maps, 
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aerial and radar images, satellite scanner images, point sample data (eg geological 

profile), census data, and other spatial surveys. To digitize the maps, they can be 

classified into two categories: 

types of map (point, line, area) and 

complexity (very simple, eg a map containing few lines; intermediate maps eg 

polygon maps and drainage maps, dense maps, eg dense road maps). 

There are two basic manual digitizing methods; using tablet digitzing, and using 

interactive (vector over raster digitizing) editing. There are two common techniques for 

digitizing vector data from existing maps into a computer format. 

spaghetti digitizing, digitizing predominant straight lines such as roads and land use 

discrete digitizing, eg digitizing contour lines. 

A hybrid vector and raster GIS software allows the user to capture the data 

manually by "overlay digitizing" for vector editing (drafting). The map data acts as a 

passive background frame of reference, to proceed in the establishing of vector map data 

(Jackson and Woodsford, 1991). The accuracy of this method of data capture is largely 

dependent on the skill of the operator and the availability of high magnification or 

resolution. A high speed graphics work station is critical in using interactive editing. This 

approach is superior to the first in respect of accuracy and speed. 

3.4.2 Data Structure for GIS 

The data structures can be classified into three major categories (Ehlers et al 1991): 

(a) Raster Data 

Satellite data and Digital Elevation Models (DEMs) are general forms of raster 

(grid) format. The raster input for GIS includes provision of remote sensing image 

analysis-maps, rasterized versions of cartographic data, interpreted point and profile 

measurements, and scanned maps (Ehlers et at 1991). Fidelity and accuracy of the output 

from employing the exiting representations of spatial data sources has mainly related 

directly to the quality of the course, geometric and radiometric accuracy of the scanner, 
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and the capabilities of the associated software. In a raster model an object can be given 

locations and attributes in an object model (Ehlers et al 1989). 

(b) Vector Data 

Vector data models differ in the level of topological information inherent in the 

data system, ranging from a simple data structure (eg spaghetti), in which there is no 

topological information except for the coordinates of points which form a polygon, to the 

more sophisticated models where topological information (eg the left and right polygons 

adjacent to a line) is recorded. For representation of geographic data in a raster-based 

system, the ability to specify a location in space will be limited by the size of the 

elements, due to the fact that the analyst will not know anything about the different 

locations within the raster cell. In contrast to the raster data systems, vector data models 

are constructed based on elemental points whose locations are defined to arbitrary 

precision. With geographic data in most GISs the coordinate data is encoded, and after 

processing, it will be stored as points, lines, and polygons or as a series of these 

combinations (Pequet, 1979). Burrough (1986) has provided a full definition and 

comparison of the forms of vector data structures such as whole polygon structure, arc-

node structure, relational structure, and digital line graph. 

The GIS data type can be classified as raster and non-raster dichotomy (Ehler et al 

1991). Flowerdew (1991) classified the spatial data into five major types: 

Dichotomous; this type is useful when the analyst is dealing with presence or 

absence of an interest object, eg presence or absence of kangaroos. 

Categorical; this class scale is used when a region is classified into one or more 

classes, eg soil type, forest type, and national park. 

Ranked; these data can be either naturally ordered eg suitability of agricultural 

lands for crops; or artificially ranked, eg the price of urban land in an urban area. 

Count; eg population of a country, the number of male workers in a factory. 

Continuous; eg average annual temperature. 

Continuous surface data can be divided into two categories; one which represents 

features where each location is measured from a conform registration point such as 

elevation and aspect, and another which includes phenomena which progressively vary 
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with their movement across a surface from a source such as contamination of water from 

a nuclear reactor. Continuous data (eg slope, contour interpolations) in a grid are 

represented as a matrix of evenly spaced points called a lattice. 

Jackson and Woodsford (1991) believe that vector graphics-based cartography and 

mapping data required for GIS applications based on data formats can be classified into 

three major categories: 

vector data in layers, 

vector data in feature coded form, and 

structured data. 

For GIS and RS data to be stored in a simple access form, they should be allocated 

in specific data structures (Ehlers et al 1991). Specific data structures for GIS and RS 

may include (Frank and Barrea, 1990): 

Kinds of geographic phenomena (point vs area) 

Object handling (non-fragmenting vs fragmenting) 

Division of space vs data determined, and 

Retrieval'(direct vs hierarchical) 

(c) Hybrid Structure 

Hybrid models of spatial data structure may provide an explicit integration between 

raster and vector data for many GIS applications. A classification based on a hybrid 

model may consist of location-based and attribute-based data models (Vanzuella and 

Cabay, 1988). The strength of a hybrid spatial data structure is that the model allows 

classification of most existing spatial data. This data model corresponds to the two major 

spatial data representations of vector and tessellation models. These authors pointed out 

that this model can be a superior empirical alternative choice for representation of very 

large thematic data in GIS applications. The CGIS (Canada Geographic Information 

System) which partitions the vector data (chaincode) represents a theme by applying tiles 

of fixed area. However, it is in spirit similar to a HMSDS (Hybrid Model of Spatial Data 

Structure). Ehlers et al (1991) provided a detailed discussion on the hybrid topic. 
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Current GIS deals mainly with digital map data, which are two-dimensional (2D), 

and which are static in time. Much environmental modelling requires data with 

additional dimensions, normally the vertical spatial dimension and the time dimension. 

For example, to predict the movement of ocean water masses in 3D space, and time 

under different forcing agencies of ocean currents and tidal flows, wind and pressure, 4- 

dimensional capabilities are required to satisfy the model in question. The need for 

handling four-dimensional (4D) georeferenced datasets has been addressed and 

implemented (Mason et al 1994). 

3.4.3 Data Conversion 

Processing of spatial data in image processing and GIS generally contains some 

types of data conversion. Geographic data may be represented in three varied formats, 

vectors, raster, and mathematical modeling. The last format has proved to be not 

significantly efficient in GIS applications (Thou, 1991). Conversion of vector to raster 

formats (and vice versa) has been widely discussed in the computer literature, and the 

data conversion problem has been addressed (eg Peuquet, 1981a and 1981 b, Piwowar et 

al 1990). 

The task of vector to raster conversion is not as difficult as conversion of raster to 

vector (Lunetta et al 1991). For this reason, a grid format is used as the major data 

structure of the incorporated GIS vector-based data (Wang and Newkirk, 1988). The 

difficulty in transferring vector to raster lies in the large number of polygons generated if 

the data are directly transferred to vector format. In the worst case condition, each pixel 

in the image becomes a polygon which requires a huge disk space for storage. 

Furthermore, in many situations the required result of image classification may not be a 

pixel map and tends to be a polygon map of areas of similar characteristics. In these 

situations, it is a good idea to resize (reduce) the pixel by pixel classification to some 

smaller number of polygons such as simplifying the image. 

Two common approaches have been reported: the Image Strip Frame Buffer 

algorithms, and the Scan Line technique (Piwowar et al 1990). The first method will 

keep a feature by representing it with at least one pixel without considering the size of 
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feature. The latter approach will eliminate the features which are smaller than the cell 

size. 

Grid is an implementation of a generic raster data structure. According to ESRI 

(1992e) "the term raster data structure refers to a matrix composed of distinct units 

called pixels or cells. Each pixel stores a numeric value. The pixel in a raster image 

usually consists of continuous brightness values represented as digital numbers. A raster 

image may be converted into a raster map by using image processing techniques to label 

each pixel with a numeric value indicating its category or surface type. ...It [GRID] uses 

blocks and tiles for spatial indexing and an adaptive run-length compression technique 

for reducing storage. Hence, both raster images and raster maps can be stored in 

GRID". 

(i) Choice of Cell Size 

The cell size is a parameter that can be determined by its usage. Deciding what cell 

size is to be applied is a crucial decision to be taken when using cell-based GIS 

modelling. Important parameters influence the decision regarding raster cell size such as 

the resolution of the input (original) data eg vector database, the disk space requirements 

or storage overheads, the processing speeds or time, precision and positional accuracy 

requirements of the analysis, and the application and type of analysis to be implemented 

(Burrough, 1986; ESRI, 1992e; Carver and Brunsdon, 1994). It should be kept in mind 

that a cell size finer than the input resolution will not produce more accurate data than 

the original data. As a general rule, the cell size of a grid should be equal to or coarser 

than the input data. Cell sizes vary from square kilometres to a centimetre. The selection 

of the cell size of a grid can have a critical effect on the results of the conversion. If the 

cell size of the pixels is large in regard to the dimensions of the objects in an image, 

some generalisations have to be made. Storing vector-based GIS data in a raster form 

demands significantly more storage space, otherwise very fine resolution (pixels sizes) is 

in place. If it is, there is a loss of accuracy in sampling to coarser resolution raster grid 

(Aronoff et al 1987). It was noted that raster size is the major obvious control on 

rasterizing error (Carver and Brundson, 1994), and several empirical pieces of research 

have shown that increased raster size has an extensive effect in reducing map accuracy. 
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(ii) Raster-to-Vector and Vector-to-Raster Conversion 

There are two types of conversion algorithms: 

1) Vector to Raster 

Two basic steps are involved. Firstly, the polygon boundaries in the form of vector 

files have to be transferred to the raster image by establishing the correspondence pixels 

to the value of the polygon. Secondly, the interior of the pixel outline is then filled with 

the classification value. The task of converting vector-based cartographic data into raster-

based formatted images may be categorised into major components, namely rasterization 

or scan conversion, and line thickening. These components have been widely described 

in mathematical morphology in image processing literature (eg Serra, 1996) and GIS 

papers (eg Pequet, 1981). 

(a) Advantages of Data Encoding and Handling in Raster 
Format: 

The raster structure is suitable for a very large database. A large proportion of the 

data required for a GIS are being collected directly from aerial and satellite imagery. 

Experience has shown that there is a number of advantages if the data are encoded and 

managed in raster format: 

there is a highly accurate interpretational element on the image, 

partitioning is easier in multi-tasking aims, 

it is useful in resource management applications such as forestry, soils inventory, 

most image processing software being developed for the RS field is cheap and 

developing rapidly, 

storing data in raster (eg a classified image) is easy, 

many input and output hardware devices are compatible with the raster data 

structures, 

it is a simpler and cheaper data structure for establishing GIS data, 

handling raster data is suited to some programming languages eg FORTRAN because 

of the ease with which arrays can be stored and manipulated. 
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(b) Disadvantages of Data Encoding and Handling in 
Raster Format 

There are a number of disadvantages: 

it requires extensive knowledge of photointerpretation, 

the risk of losing information within the data is high, for example, to detect 

boundaries of regions in terms of edges, 

the lack of high spatial accuracy, 

the lack of radial symmetry in grids, resulting in network analysis being hard to 

perform (Peuquet, 1983), 

most operational GIS software is designed for vector-based methods, 

in the case of using compaction methods such as quadtrees, chain, run-length codes, 

and block codes the risk of loss of implicit topological information is a concern; due to 

the limitation of hardware memory; thus more processing overhead is needed as 

compensation (Burrough, 1986). 

a major drawback is the need for large memory space because of data redundancy 

(Burrough, 1986). However, to remedy this problem, compact forms of data storage and 

data structure such as quatrees have been adopted in raster-based GIS. 

conversion of data from raster data (eg classified satellite data) to vector is difficult. 

2) Raster to Vector 

This refers to both the batch process and the interactive process of extracting pixels 

which represent lines or graphics, and isolating these pixels from the background to be 

converted into a connected vector representation. An adequate resolution must be 

provided by the source of raster image for the geometry in order to be accurately 

delineated by vectorization algorithms (Jackson and Woodsford, 1991). Generally, a 

minimum of 2-3 pixels is required in the finest lines to maintain a cartographically 

acceptable vector representation. In contrast, an optimal number of points is required to 

prevent cluttering up the GIS databases. There are three major steps involved; boundary 

extraction, topology reconstruction, and boundary smoothing. Also, to convert a raster-

formatted map into vector format, three basic operations have been reported, namely 

skeletonization or line thinning, line extraction or vectorization, and topology 
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reconstruction. These topics have been widely discussed in mathematical morphology in 

image processing texts (eg Serra, 1996) and GIS papers (eg Pequet, 1981). 

(a) Advantages of Data Encoding and Handling in Vector 

Format: 

Experience has shown that there are a number of advantages if data is encoded and 

managed in vector format including: 

in representation of a contiguous area it is very difficult to locate the vector polygon 

which best represents it, 

vectors well work in accurate representation of real world spatial conditions such as 

lines, edges, 

capturing important topological information is problematic if a raster approach is 

undertaken, 

vectorization is highly effective in some application areas such as property and 

utilities mapping, 

the CPU processing burden for image processing is sufficiently high that grid data 

structures are the only possible alternative on low speed systems, 

it seems that raster processing is more natural due to the fact that detectors operate to 

capture raster digital information directly, although vector processing has been used in 

some applications, 

a great deal of information on the earth's surface has already been captured; almost all 

of the generated maps, as well as photointerpretation maps are available in vector format, 

vector data keep the real geometry of a polygon using a series of vertices linked by 

straight lines, 

generally vector data are a preferable method of display and visulalization for the 

majority of GIS thematic maps, due to the fact that lines and edges will appear smoother. 

(b) Disadvantages of Data Encoding and Handling in 

Vector Format: 

In spite of the elaborated advantages of data encoding and handling in vector 

format, there are a number of key disadvantages: 
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transforming highly accurate interpretative pixels into data is sometimes misleading. 

Suppose that there is an image of an area, many phenomena can be seen without sharp 

boundaries, If one wishes to impose lines (vectors) on the image to aggregate such 

phenomena, then a problem of false conception occurs. 

it is difficult to implement for multiple attributes. 

data structures in vector data systems are complex and the technology is expensive to 

establish (Skidmore, 1990), Also for polygon overlay, the vector approach is difficult and 

tedious. 
Drawing of the transitional spatial phenomena by different image interpreters in 

different seasons is subjective due to overhanging and overlapping of trees and their 

canopies in a wooded area. 

Boolean and overlay operations on different layers are relatively difficult. 

3.4.4 Error Sources from Integration of RS and GIS Data 

To perform spatial analysis in a vector GIS, boundaries of relevant feature maps eg 

land use, forests, are effectively imposed on a base map of common scale. In the same 

manner, in a raster based GIS analysis, cell to cell correspondence has to be identified 

and the output cell has to be labelled according to corresponding cells of each feature 

map (Lowell, 1994). 

GIS analysts should consider the accuracy of produced maps before decision 

making. Error is a major issue in any integration of RS and GIS data when using 

integrated ancillary and collateral datasets (Estes, 1992). 

Errors come from many sources, for example Lowell (1994) noted that (1) Errors 

in map registration, especially in a vector GIS, may cause an excessive number of 

seemingly aberrant silver polygons. Since remote sensed images are increasingly being 

employed as a data source in GIS, georeferencing of these images may introduce errors 

as well. (2) Errors associated with each map layer can be so serious as to invalidate the 

results entirely. (3) Spatial distribution of such errors cannot be random leading to high 

variability over a variety of locations. 
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Chapter 4 

BACKGROUND: EXPERT SYSTEMS CONSTRUCTION AND KNOWLEDGE- 

BASED INDUCTION 

Expert systems are composed of a knowledge base, knowledge representation, and 

inference engine. Since the decision tree is one way of knowledge representation, 

knowledge in the form of rules can be formulated for development of expert systems. In 

this chapter the main components of an expert system will be described. The chapter will 

also provide an introduction to decision tree algorithms. Construction of an ideal 

decision tree in the context of tree growing, tree pruning, and methods of accuracy 

estimation is discussed. 

4.1 Artificial Intelligence and Expert Systems Implementation 

4.1.1 Definition and Background 

An Expert System (ES) is defined as "a system of software or combined software 

and hardware capable of competently executing a specific task usually performed by a 

human expert. ES are highly specialised computer systems capable of simulating the 

element of a human specialist's knowledge and reasoning that can be formulated into 

knowledge chunks characterised by a set of facts and heuristic rules" (Bowerman and 

Glover, 1988). "Better" can mean more accuracy, more speed, more economy, and more 

consistency. There are several definitions for ES in the basic texts. 

The implementation side of artificial intelligence (Al) is the use of expert systems 

(eg Domenikiotis, 1994). Al can be grouped into three major categories, namely robotics, 

ES, and natural language processing. Al began in earnest with the emergence of modem 

computers during the 1940s and 1950s with one of its goals being to make machines 

more intelligent and thus useful. ES represent by far the most mature area of AT research 

and development. The science of Al from the early 1950s has focused into two main 

streams consisting of 1) psychological or cognitive modelling and 2) search methods. 

Following the incremental progress in the Al field, ES were initiated from the Al 

community in the late 1960s involving a shift in focus from formal reasoning techniques 
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to a focus on knowledge itself, and interacted with many applications in engineering and 

medical science disciplines. Likewise many Al terms, ES is loaded with extensively 

more implied intelligence than is warranted by their real level of complexity (Mason, 

1995). The AT community has devoted considerable effort towards development of 

highly complex search strategies and inference engines. An example of typical problem 

solving is the development of ES in computer chess games (Bielawski and Lewand, 

1988). Apart from the Al community challenges, many contributions have been made 

from non-specialists of the Al in other groups who developed extremely robust ES 

interfaces. 

In the early 1970s the knowledge base was separated from the inference engine. 

This isolation was an indication of the successful maturing of ES. By 1980, however, it 

became clear to many Al developers that ES architecture is built on structured 

knowledge. Thus, knowledge-based-systems became an apt definition for many ES 

designers. The new knowledge-based-systems (ICBS) terminology is often used rather 

than the more popular term ES (Bielawski and Lewand, 1988). Since the 1970s 

production systems and knowledge representation emerged into a well-organised 

structure. 

ES are computer systems that use knowledge and inference procedures for solving 

problems that are difficult enough to require significant human expertise for their 

solution (Karimi and Lodwick, 1987). In comparison with conventional computer 

programming methods, ES are designed to associate a large amount of fragmentary, 

judgemental interpretation, and heuristic knowledge. This assists experts in decision-

making, even if human expertise may not be available at the given time, and will speed 

up the operation of problem solving (Stadelmann and Lodwick, 1993). 

Computers require human reasoning for decision making. Such decision making 

may be made by applying probabilistic rules that reflect a given knowledge-base 

corresponding to a specific condition or conditions. Every rule depending on its degree 

of correlation to the given circumstance, is given a different weight when finding a 

conclusion to a problem. Rule-based systems are currently used in image analysis tasks 

such as road detection from remote sensed imagery (eg Pai et al 1986; Ton et al 1991; 
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Domenikiotis et al 1995). Al provides an alternative to human expert interpretation by 

associating a degree of intelligence into the image analysis system to enhance the human 

interpretation of an image (Domenikiotis, 1994). 

There are two principle approaches to build an ES. One may employ a 

programming language and write original code from the beginning for the system. There 

are specialised languages for development of ES such as LISP and PROLOG. The other 

approach relies on the tools developed (shells) to assist in building of ES. The shells 

facilitate the development of ES and require only minimal knowledge of any high level 

programming. 

An ES may be composed of three knowledge levels, namely facts, rules and 

inference engine. There are three major operations involved in construction of ES. 

4.1.2 Components of an Expert System 

4.1.2.1 Knowledge Acquisition 

Knowledge acquisition is the process of collection and formation of knowledge 

content of ES. This step is associated with the entire life cycle of the system from design 

to maintenance. It deals with transfer and transformation of problem solving expertise 

from knowledge source to software systems. Knowledge acquisition is the extraction of 

rules to solve problems from an expert and human expertise in an area and its 

representation, in a form commensurate for machine intelligence processing. The process 

of transferring knowledge for example from teachers to students, and from parents to 

children is a knowledge transfer form which is a natural process, whereas in transferring 

knowledge from an expert to a computer, the naturalness disappears. 

Computers have a limited ability to handle the information held. There are several 

phases in the knowledge acquisition process including knowledge elicitationi. knowledge 

extraction from the knowledge sources, knowledge encoding into symbolic form, 

1  The term knowledge elicitation refers to the process of extracting and capturing knowledge from an expert 
or other sources in such a manner that it is comprehensible to people. It compasses the collection of all 
information that knowledge engineers need to build an ES. 
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knowledge based organising, and modifying to gain the best performance (Marshall 

1990). 

Primary sources of knowledge for an ES can be books or manuals, case studies or 

test cases, human experts, technical articles, learning from examples, discovery, and the 

like. Rules may be produced from the knowledge base. The process of knowledge rule 

extraction may occur through an interviewing mechanism with the expert, where he or 

she attempts to find the basis on which the decisions can be made. Alternatively it can be 

done through testing of a quite large and different set of primary input states, and 

decisions can be made by the expert. Machine Learning is an area that deals with the 

automation of this process of knowledge acquisition. 

The process of building knowledge in the ES is defined as knowledge engineering. 

It is the process where knowledge from the expert can be captured with all the elements 

of heuristic experience. To structure the ES, the knowledge has to be collected from 

appropriate knowledge sources either manually or automatically. In the Al field the 

manual method is often used as a standard technique in which knowledge from a domain 

expert and other ancillary sources is acquired, and more specifically, people are the 

source of gaining knowledge. 

A major bottleneck in developing knowledge-intensive Al systems is the derivation 

of knowledge (Bielawski and Lewand, 1988; 1993; Al-Garni, 1995). In interpretation of 

an image the key elements such as shape, shadow, pattern, size, association and tone, are 

the major attributes in the system. A more advanced interpretation of elements such as 

landuse, geology, etc. can provide knowledge for building a system. Often, the 

knowledge is not organised in a proper form, and experts use knowledge which is clear 

to them, but not to others, and the expert has to compile the knowledge. In designing an 

ES, it is critical to assign the number of subjects required to assist the problem solving 

capabilities of a given system. In addition, it is important to gauge the depth of 

knowledge in order to determine an ideal amount of required knowledge. Decision trees 

are examples of the induction method for generating knowledge or rules from a set of 

examples. To make the ES more powerful, the expert may add some learning abilities to 

the system. 
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4.1.2.2 Knowledge Representation 

In the early 1970s knowledge representation was recognised as a critical step and a 

unique research area (Lucas and Van Der Gaag, 1991). Acquired knowledge may be 

encoded to solve problems. The result of collected knowledge has to be presented in 

forms suitable for the approaches of AT problem solving. Up to now, many diverse 

algorithms have been developed to derive information. Broadly speaking, these methods 

are not only different in the actual algorithms but also different in the form of knowledge 

representation that they apply. For example, De Ville (1990) has developed an algorithm 

(KnowledgeSEEICER) that produces the knowledge from example data and represents it 

in decision trees. 

Several knowledge representation schemes exist and more are being developed as 

research becomes more sophisticated. Decision trees and rules are the most common 

methods in this context, although it is possible to extract the rules from a decision tree. 

Some machine learning software can represent the knowledge in a decision tree form, 

and then if the user wishes to have the knowledge in rules, the software can 

automatically generate rules as both generic rules and programming statements (eg 

PROLOG). For example KS which is a decision tree based software offers this 

capability. ES tools such as KS, and 1st-Class offer induction learning by which they 

accept sets of examples and automatically generate rules. 

To design an ES, development shell tools (eg inductive shells) are required. 

Inductive shells use the concept of machine induction to facilitate the process of 

knowledge acquisition. Some ES development tools may provide an alternative to clearly 

formulating and entering IF ... THEN rules or IF-AND-THEN statements into a 

knowledge base. Thus, rules in the knowledge base contain separate CONDMON and 

ACTION parts. The CONDMON may contain Boolean operators such as AND, OR, 

and inequalities such as >, <, =. The conditional part is taken into account as a pattern, 

and the statement part may characterise an action to be carried out on a successful match 

with the pattern. The ACTION part of the rule represents: IF the condition is satisfied, 

THEN the relevant rule is invoked. Rules consist of premise-action pairs, for example: 

IF R1 & & Rn, 
THEN Cl & & Cn. 
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with reading IF premises R1 and ... and Rn are true, then actions C 1_ and ... Cn, are 

performed. The Ri and Ci are "condition", and" conclusions" respectively. 

Neural networks are another form of knowledge extraction and representation. The 

neural net represents their knowledge at the lower level, while knowledge-based systems 

use higher knowledge representations. 

4.1.2.2.1 Inference Methods 

The approaches to knowledge representation were discussed in earlier sections. 

There is a wide range of approaches employed in AI for information extraction from 

knowledge. These approaches of so-called methods of inference include deduction, 

induction, intuition, heuristic, generate and test, abduction, default, autoepistemic, 

nonmonotonic, and analogy (Giarrantano and Riley, 1989). Expert knowledge, or 

commonsense knowledge, may be an association of all mentioned inference methods. 

Explicitly, the method of inference for ES is based on the method undertaken to 

represent knowledge. Since this research is more interested in the induction approach 

which will be discussed later, the other methods are not discussed. 

4.1.2.3 Inference Engine 

The inference mechanism can be divided into two chaining methods: 

1) Forward chaining or data-driven chaining to reach a conclusion (bottom-up 

reasoning) where reasoning starts as the original state of problems from the evidence, 

facts, to the top-level conclusions that are based on facts. In forward processing, the 

inference mechanism will compare the information in the goal data base not with the 

THEN part of a rule in the knowledge base, but rather with its IF part (Bielawslci and 

Lewand, 1988). In the forward method if all the premises are satisfied, then the 

conclusion is gained, a fact is changed, a new rule can be examined and so forth. A group 

of inferences joined to give a solution to a problem is a so-called chain (Giarrantano and 

Riley, 1989). The elementary technique of forward chaining arbitrarily begins with the 

first rule in the knowledge base and an attempt to use it. This rule or any other rule, 

requires all of its premises to be known to be true ahead of time. The process is called 
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"true list" on which are stored all the things found to be true. The true list will be 

employed at the beginning of every decision, and filled in as the decision process 

progresses. The forward approach can be used in maintenance circumstances with all 

required information existing at the starting point (Wang and Newkirk, 1987). 

2) Backward chaining or goal-driven chaining or sub-goaling (top-down inference) 

is where processing starts from the higher level evidence (hypotheses) down to the lower 

level facts that can support the hypotheses. The processing starts with a conclusion and 

proves that conclusion by providing the truth of each premise in a left to right, or top to 

bottom, order. It differs from forward chaining in that the operator begins by assuming a 

conclusion to be true and then applies the rules to try to prove it. Backward chaining is 

often well organised (Giarrantano and Riley, 1989). In the backward strategy the 

inference guesses at a conclusion and then tries to prove that its guess is correct by 

finding a rule whose THEN part is the same as its guess, and setting up the condition (s) 

exited in the IF part of the rule. The backward technique is more applicable for 

interactive problem solving. Primarily a goal is established which should match with the 

conclusion of one of the rules. PROLOG is an explicit example of a backward chaining 

inference engine (due to backtracking functions) with considerably more power than 

most commercial shells that utilise the same method. The goal defines a hypothesis, and 

the system tries to identify evidence, as facts are named in backward inference, which 

support this conclusion. Backward processing may be a good inference approach when 

the operator is able to reasonably guess what the conclusion will be. 

The heart of the ES is often an inference engine used to decide which rules have to 

be satisfied, leaving them in a priority list, and executing those with the highest priority. 

The facts or rules are stored separately and employed by the knowledge-base for the 

firing of the conditional part of the rule. It is intended to undertake a forward chaining 

strategy to the execute the decision rules against the spatial database to perform road 

mapping, which will be implemented in Chapter 8. 
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4.2 Extracting and Representing Knowledge with Decision Trees 

4.2.1 Background 

A common approach to supervised classification and prediction among the 

Artificial Intelligence and Statistical Pattern Recognition community is the use of 

decision trees. Classification trees (decision trees) may not be the most accurate 

approach, but they are user friendly to interpret. A number of algorithms have been 

developed to build decision rules from examples of decisions made by an artificial 

intelligence system. 

In this section some aspects of decision trees will be discussed. While no attempt is 

made to provide a comprehensive survey, other relevant work will be pointed out in this 

area. Techniques for the construction of an automated decision tree have been described 

in the contemporary literature. The use of trees in regression dates back to the AID 

(Automatic Interaction Detector) program which was developed by Morgan and Sonquist 

in the early 1960s. The ancestry classification program is THAID and was developed by 

Morgan and Messenger in the early 1970s. Indeed, there have been many independent 

inventions of the decision tree methodology, which dates back to the 1960s. In particular 

Quinlan's C4.5 is a descendent of his 1979/1983 ID3 (Interactive Dichotomizer). In an 

improved AID, more information can be found in Kass (1980) for more improvements in 

the technique called CHAD, also the technique by Quinlan (1986). Standard decision 

tree algorithms are CART (Classification And Regression Tree) by Breiman et al (1984) 

and its successor C4 and ID3 (Quinlan, 1986). There have been many algorithms 

proposed since the creation of CART methodology. Others have created their own 

original algorithms eg Quinlan's C4.5. Meanwhile, other descendants of AID, CHAD, 

and THAID, are still in use. More recently, De Ville (1990) developed an AID-based 

algorithm called KS which was employed for this research. 

Quinlan et al (1986) have achieved some success in using these methods to assist 

in the induction of a knowledge base for use in knowledge-based systems. The ID3 

algorithm and its relatives are primarily designed for categorical variables. The CART 

algorithm is suited to continuous independent variables and categorical dependent 

61 



variables. In systematic classification tree construction, past experience is summarised by 

a learning sample. Historically, ordinal variables are referred to as monotonic, while 

categorical variables are free. Ratio and interval scale fields are treated as monotonic. 

KS, which is based on the AID approach, accommodates both categorical and continuous 

types of variables. 

4.2.2 Inductive Learning 

Broadly speaking, the induction task is to find general rules in order to generate, 

classify, or define a training set of particular examples and correctly predict new 

examples. Learning is the ability to perform new functions that may not have been 

performed before and is essential for any intelligent behaviour. Any system which is 

intended to be intelligent should include a learning procedure. Inductive learning 

particularly is suitable when there exists no strong background knowledge. Researchers 

have suggested a number of approaches to induction mechanisms, such as the use of 

decision trees and production rules. 

There has been considerable research on the learning concept in which objects, 

defined in terms of a fixed collection of attributes, belong to one of a small number of 

mutually conclusive and exhaustive classes. The learning function may be defined as 

given a training sample object whose classes are known, find a rule for forecasting the 

class of an unseen (underlying knowledge) object as a function of its attribute values 

(Quinlan, 1990). Learning from examples is a special case of inductive learning from 

which, given a set of examples and counter-examples of a concept, the learner induces a 

common concept definition which defines all of the positive examples and none of the 

counter-examples. This method has been widely applied and investigated in artificial 

intelligence. It has been studied since the early 1950s by many researchers. 

4.2.3 Decision Trees 

Decision trees are a sequential data analysis. They have been widely used in many 

areas for decades, for example, in pattern recognition, taxonomy, decision programming 

and switching theory, medical domains, more recently in environmental modelling and 

mapping of land use/cover using remote sensing imagery and GIS data. Industrial 

62 



applications include systems for diagnosing faults in printed circuit boards, assessing 

space shuttle engine performance, dealing with problems associated with nuclear fuels, 

and assessing credit card applications (Gray, 1990). The decision tree can be regarded as 

a type of automatic taxonomic key. 

The decision tree classifier is an important and efficient technique for separating 

samples (observations) into categories or for predicting the highest output to a given 

situation. Decision tree methodology is nowadays recognised to be a generally non-

parametric method, able to produce classifiers in order to evaluate new, unseen 

circumstances (Quinlan, 1986, Wehenkel and PaveIla, 1991). In the area of decision tree 

induction, empirical comparisons have been implemented by Breiman et al (1984), 

Quinlan (1986 and 1990), and De Ville (1990) to guide the development of these 

learning systems. The decision tree approach appears to be an alternative that allows a 

selection of techniques and also acts as a tool in describing the most appropriate 

techniques and data sets (Lees and Ritman, 1991). 

Most work has been focused on recursive partitioning with the partitioning driven 

by some optimisation procedure. Classification and segmentation is implemented 

through a series of splits (decisions) in the different fields. Thou and Dillon (1991) have 

indicated extensive research on the use of decision trees. They stated that four parameters 

are essential in a decision tree algorithm: 

a set of features, 

a feature selection criterion, 

a stop-splitting rule, and 

a central role in the quality of the decision tree as a classifier and its complexity or 

simplicity. 

(a) Advantages of Decision Trees 

There are a number of advantages with using decision trees including: 

1. 	Utilisation of contextual information; the major powerful aspect of a 

classification trees is the use of contextual information as the result of isolation of 

local interactions in relationships. Every decision rule will reflect the 

characteristics of a particular subset of all available observations of each class. 
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It is inexpensive to use; each decision rule may not need to be considered for all 

ambiguities in that particular class (Walker, 1991). 

Lack of complexity and simplicity of interpretation and understandability; it is 

easy for people with minimal knowledge of statistics to use (Walker, 1991). 

Inductive learning has some limitations which should be taken into account when using 

these algorithms. 

(b) Disadvantages of Decision Trees 

There are a number of disadvantages with employing decision trees such as: 

Lack of high sensitivity if a minor change happens in the composition of learning 

samples (Walker, 1990). 

Lack of a good extrapolation (Lees, 1994; Walker, 1988) and absence of 

justification (Khoshnevis and Parisay, 1993). For instance, it is possible to gain a 

rule which, in the context of its domain knowledge does not make sense. This 

may take place due to inappropriate control feature engineering or improper 

experiment design. 

Difficulties in selection of a "right sized" tree or "better" tree (Walker, 1988) and 

the existence of probable noises 2  (Khoshnevis and Parisay, 1993) in training 

instances. The use of neural networks is one solution to a noisy domain. A neural 

network effectively filters out noise and enables production of the correct rules 

defining the domain. 

In particular, the inductive modelling in GIS suffers from such as number of examples 

required, lack of efficient algorithms and the problem of noisiness of data. 

4.2.3.1 Induction of Decision Trees Algorithms 

( 1 ) ID3  

Induce is a common-purpose inductive program that transforms definitions of 

examples into general definitions of the concepts of which the examples are instances 

(Gemello et al 1991). Several commercial packages use ID3 algorithmic derivatives to 

2 Noise is referred to as errors such as misclassification of instances, incorrect values of control features, and unknown (missing) 
control feature values. 
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discover unseen knowledge inductively from large data sets. Most of the proposed 

inductive inference techniques have been released from the ID3 algorithm (Quinlan, 

1986), from which, however, it departs in some essential aspects. ID3 is an inductive 

learning technique for categorical data that maximises homogeneity at the leaf nodes 

through use of an information theoretics measure. It has performed well in various 

medical diagnostic and other engineering applications and has shown empirically to be 

relatively powerful in the presence of moderate amounts of noise (Liepins et al 1990). 

The ID3, originally intended to handle mostly symbolic and deterministic learning 

problems, is characterised by very large (almost complete) learning sets composed of 

objects defined by discrete (or qualitative) attributes only. Therefore it was necessarily 

designed to handle large sets of data in order to compress rather than extrapolate their 

information (Quinlan, 1983). ID3 uses the training data to construct a decision tree for 

determining the category of an example. At any step, a new node is added to the decision 

tree by partitioning the training examples. Empirical comparisons can be taken into 

account as an important part of machine learning research. 

Quinlan (1983) created a top-down induction of decision trees (TDIDT) technique 

for encoding the knowledge which is required for direct play in chess end games. The 

ID3 algorithm, which handles a principal version of TDIDT, has been widely adopted 

and extended. Most of the typical decision tree induction procedures belong to the family 

of TDIDT algorithms (Quinlan, 1986). Gray (1990) applied the TDIDT to capture 

knowledge through top-down induction of decision trees. The TDIDT approach restricts 

search by using a heuristic measure, considering combinations of attributes appearing to 

have a high information content. Evans et al (1994) followed the idea of Quinlan (1986) 

who used weather observation in order to apply the TDlDT. They categorised new 

observations by examining the tree from the top down. According to its value for the 

attribute at the root of the tree, an observation was classified into one of the three classes 

at the next lower level. 

The learning principle of the algorithm 11)3 induction of decision trees (Quinlan, 

1986) can be briefly explained as follows: Find the best attribute with the highest 

information content and locate it at the root of the tree. The set of examples can then be 
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divided into subsets. Any subset has examples belonging to one and only one class. 

Consequently make the subset a leaf of the tree and choose for it the label of the special 

class. Alternatively, find in each of the subsets the best attributes, splitting the subsets 

into subsubsets and so on until both the remaining subsets are empty and assigned a 

label, until there is no unused attribute. In other words, the process continues until a 

terminal node or leaf in reached; the class that labels the leaf is predicted as the class of 

the new observation. 

The ID3 stops splitting at a node only if the corresponding learning subset is 

entirely included in one of the classes of the goal partition. II)3s stop splitting criterion 

amounts to building decision trees which classify the learning set as correctly as possible, 

which is the best policy if the latter is almost complete. ID3 considers the best test to be 

the one providing the largest apparent information gain. It has been stated that this 

measure is biased in favour of those having the largest number of successors, particularly 

in the context of randomness (Wehenkel and Pavella, 1991). They compared the ID3 

technique and a proposed method for building a decision tree. If the training set is large 

and the data noisy, pruning can be implemented. Trees are included in a two stage 

process often referred to as growing and pruning. A great deal of effort has been made in 

developing decision trees for induction, generally in the form of pruning strategies. 

These techniques have been discussed widely (Breiman et al 1984; Quinlan, 1990; 

Walker and Moore, 1988; Lees and Ritman, 1991). 

( 2 ) CART 

CART is a method of producing a set of decision rules to explain an observed 

pattern. This technique is described in detail in Breiman et al (1984). Trees are built by 

splitting a set of observations into two partitions (Walker and Moore, 1988). Splitting 

can be continued as long as impurity can be decreased. All splits in CART are binary. 

CART offers two options: least squares and least absolute deviation from the median. 

Least squares is well suited to data that satisfy ideal circumstances and faulty outliers 

(Liepins et al 1990), while least deviation may be considered to be a more powerful 

analysis approach (Liepins, 1990). CART is an appropriate choice for real attributes with 

dependent variables (Liepins et al 1990). 
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KS is an AID-type algorithm which works on multiway partitions (k-way) as well as 

binary tree (two-way splits). A multiway partition for classification and decision tree was 

revealed to remedy the shortcomings of the cluster method. Because, in exhaustive 

splitting, all possible combinations of variable values are taken into account, this approach 

will be more costly. In KS the integration of the two methods is implemented and can be 

used for classification trees. Bonferroni adjustment in KS tries to minimise the discovery 

of chance relationships or bad effects. It also employs validation, cross-validation or tree 

pruning at every stage of the decision tree growing. Normally, this will cause the tree to 

stop growing before actual significance is exhausted. 

KS uses two methods of split search, namely cluster and exhaustive to grow the 

classification tree. If the cluster method is applied to a categorical dependent field it is 

often referred to as the CHAID approach, while if it is applied to continuous dependent 

variables, it is similar to the CART algorithm. The cluster method utilises a method of 

pair-wise merging and partitioning that was originated by Kass (1975 and 1980). 

Statistically speaking, the disadvantage of the cluster method is that it is overly 

conservative and some significant relationships may be missed (ANGOSS, 1994). Biggs 

et al (1991) described the Monte-Carlo experiments which prove that the exhaustive 

method is not overly conservative and will not generate misleading relationships. The 

exhaustive method (multiway partitioning technique) tends to produce a tree with more 

branches in comparison with the cluster (heuristic method) technique. The major 

shortcoming of the exhaustive technique is that it is a more time-consuming process, 

while in contrast the splits formed are empirically stronger than heuristically derived 

splits (ANGOSS, 1994). 

In relation to tree growing and pruning, one approach is to look at the problem 

from the opposite side of how to prune a tree to build a best set of rules. This involves 

checking the growth "at the pass". KS may generate a 4-branch split, say, below a given 

node, but semantically 3 is all that is needed. For instance, if a variable refers to a quality 

test result, the regions corresponding to "pass", "too low", and "too high" are all that are 

really relevant. Without knowing this, KS may find an apparent sub-distinction in the 
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too-high region. If this happens, the operator can "force" a split, specify the three ranges 

and see if the threshold (p) value remains acceptable. Clearly, removing a branch near the 

top of the tree can save dozens of nodes below. It may be possible to use an integrated 

pruning algorithm that links the two approaches. 

4.2.3.2 Decision Tree-Pruning and Accuracy of the Classification Tree 

The question remains as to what is the best way to prune a decision tree in order to 

construct a "better" tree and to end up with a proper number of rules for the available 

learning examples. The major difficulty researchers have encountered, is how to choose 

the size of the tree. Researchers believe that it is complex and difficult (and may be 

impossible) to define a theoretically "best" tree for a set of data. This is a real problem, 

with no satisfactory answer. In general, the best tree is the one that makes most sense 

from a theory, and theory development. 

Two leading authors of decision tree algorithms have used different strategies to 

generate an ideal decision tree. Use of purity measures to stop the tree from growing is 

sometimes called forward pruning (Quinlan, 1986). Alternatively, a tree that is much too 

large is pruned upward, so called backward pruning (Breiman et al 1984). In general, the 

accuracy of the classification tree increases with the number of terminal nodes. However, 

a bushy tree may contain splits consisting of just one object, and may present a false 

impression of the accuracy of the tree. On the other hand, a tree with few partitions may 

result in unacceptably high impurity. It should be stated that tree pruning results in a 

progressive decrease in prediction accuracy, because there is really no "right" way to 

prune or remove decisions in the tree. Different proposals may differ significantly and 

dramatically in the right size of the tree. The induction methods are limited to splitting 

the original number of categories of the predictor variable for partitioning. Thus, the 

resultant decision trees contain redundant rules which cause the result to be less 

comprehensible (Quinlan, 1986). 

Generally there is no explicit way of telling if the error rate of a decision tree is 

near optimal. Indeed the entire question of what is to be optimised is a very open one 

(Michie et al 1994). In reality, balance should be struck between conflicting criteria. One 
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way of handling the tree is the use of cost-complexity as a criterion, as suggested by 

Breiman et al (1984). As a rule of thumb, if a tree is over-pruned, it has too high an error 

rate due to that fact that the decision tree will not represent the full structure of the 

database, and the tree is biased. In contrast, a bushy tree which is not pruned will have 

too much random variation in the allocation of examples. Thus in extremes, there is an 

optimal pruning in between. This can be achieved by trying different values of the 

pruning factor, and the error rate is examined against an independent test set. By plotting 

the error rate against a pruning parameter the optimal amount of pruning can be gained. 

Accordingly, the error rate can be plotted against the number of end nodes. Generally the 

error rate falls dramatically to its minimum value as the number of nodes is increased, 

increasing slowly as the nodes increase beyond the optimal value (Brazdil and Henery, 

1994). It is a time consuming process. 

The concept of a "better" tree or right size means a tree with smallest error in the 

classification of previously unknown objects. Breiman et al (1984) declared that a better 

misclassification rate is often obtained if the decision tree used is incomplete and smaller 

than a tree that fully classifies all known objects. A heuristic approach that minimises the 

error of new object classification can be undertaken. The approach is a TDDT 

construction that is complete for given examples followed by erasing of branches up to a 

selected measure. This is utilised in order to minimise errors of the classification tree. 

Quinlan (1986) stated that empirically a pruned tree or a set of production rules is 

expected to be more comprehensible than the original classification tree although it must 

not be comprehensibly less accurate for classification of unseen cases. 

1. Validation methods 

A major problem with decision trees is the accurate identification of unreliable 

rules or nodes. However, the problem can be handled in the following ways (De Ville, 

1990): 

i. 	By validating and pruning of the classification tree methods that may verify the 

classification tree. The benefit of this method is that it relies on empirical characteristics, 

although it is tedious to perform and presents difficulties to non-specialists. 
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The cross-validation procedure gives the human expert a test and guides the 

accuracy and realism of the structure and the size of the decision tree. Using 

classification tree-pruning, the expert has the option to grow a larger tree than is justified 

by the data but may remove it back to a more realistic or conservative size by testing the 

performance of predictions on the different splits of the decision tree (De Ville, 1990). 

This approach is preferable when the sample size is not large (eg less than 1000). Further 

information on this topic can be found in Walker and Moore (1988). 

By using hypothesis experimentation techniques based on statistical theory and 

experience. Where the branch falls below a desired level of significance it may be 

rejected. 

2. Test sample estimate 

With the test case method, normally 33% of all data is chosen randomly as a test 

sample and the remainder will form the new learning sample (Walker and Moore, 1988). 

The use of test sample estimates may comprehensively underestimate the accuracy of 

samples and the variance of the measure can be high. Growing the tree has a direct 

relation with the increment of observation and the computation time. Further insights on 

the theory of this topic are provided in Stone (1974), Breiman et al (1984), Walker and 

Moore (1988). 
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4.3 Summary 

The principles of expert systems, namely knowledge acquisition, knowledge 

representation, and inference engine were described. Knowledge acquisition is the most 

difficult task in expert systems development. This and the inference engine are the main 

components of an expert system. The use of decision trees is a typical method of 

knowledge extraction and it represents knowledge in order to construct expert systems. 

Undertaking inference strategy is mainly determined by the application. In this research a 

system that will uses the induction method with a forward chaining inference engine has 

been constructed. 

Decision tree induction algorithms have achieved some success and widespread 

popularity. These algorithms produce decision trees by first setting the root node to be 

the set for all training sets and then partitioning the samples in the root node. This 

generates child nodes that are then recursively partitioned to obtain the nodes of the next 

levels in the trees which specify attributes be used to partition the samples of a node. It 

will be used as an information entropy measure to choose the best attribute with the least 

randomness in the distribution of classes. In a decision tree, the nodes correspond to 

selected object attributes, and the edges correspond to predetermined alternative values 

for these attributes. Leaves of the tree correspond to sets of objects with a particular 

categorisation. Among different probability-based induction systems, the KS seems to be 

more user-friendly and handles more sophisticated models. 

The induction methods are limited to splitting the original number of categories of 

the predictor variable for partitioning. Thus, the resultant decision trees contain 

redundant rules which cause the result to be less comprehensible. The KS software 

handles both these approaches. Its potential is concentrating on the speed of data 

analysis, comprehensiveness, user-friendliness and the ability of summarisation. These 

are offered by the concept of statistical knowledge that is implemented by virtue of a 

statistical significance hypothesis experimentation circle. Inductive deviation of rules 

from an expert supplied set of examples is one of the most attractive applications of 

machine learning to knowledge acquisition as implemented by such programs as KS. The 

inductive method is especially helpful when the developer is not experienced in building 
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an ES or when the knowledge that is being collected resists simple expression as a 

collection of IF ... THEN rules, and where knowledge of underlying processes is either 

unavailable or incomplete. 

In previous chapters, aspects of image (spatial data) processing and expert systems 

were shown. Upon this theoretical knowledge, it is now appropriate to shift into 

implementation of the methods mentioned for identification, classification and mapping 

of a road network from aerial photography, aided by spatial data. 
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Chapter 5 

STUDY AREA AND DATA SETS 

This chapter covers the description of the study area and the available data. The 

study site measuring 3 km x 2 km contains urban and rural areas and is located on the 

southern fringe of Hobart, Tasmania, Australia (Figures 5.1a and 5.1b). The study site 

was chosen because it provided a mix of rural and urban land use, and urban 

development has been relatively rapid over the past 10 years. In particular, one would 

want to detect roads in the area. This chapter describes the study area and the data sets 

employed. The chapter also indicates the hardware and software utilized in this research, 

consequently outlining the implemented computer program for the development and 

testing of the developed methodology. Special emphasis has been placed on the 

resolution of the data that are associated with the choosing B/W aerial photography for 

this research. 

5.1 Study Area 

5.1.1 Location 

The selection of the area to be studied in this project was an important task, given 

that it was considered important to experiment with the model over a mixed urban and 

rural area, since characteristics of each of these scenes are different. 

The municipality of Kingborough is one of the fastest growing municipalities in 

Tasmania and is typical of many expanding suburban communities in terms of dwelling 

characteristics and land cover mix. The community is characterised by a small core of 

older residential neighbourhoods with houses of 35 years or more in age, aligned in a 

modified grid road pattern. These are in the middle of the study site. Two commercial 

locations exist along the north west and middle thoroughfares. Surrounding the 

established core are more recent residential subdivisions composed mainly of detached 

single family houses and pastoral land uses. The recent residential subdivisions, built 

within the last 15 years, are typified by curvilinear roads and rural land uses. Large areas 

of new development are located in the southern and mid-western portion of the study 
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area. Mature trees are generally located along the local roads. The site provides a 

complex mix of rural land uses and residential, commercial buildings. 

Figure 5.1a Topographic map of the study area (approximately 1:25,000). 
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Figure 5.1b Location of the study area in Hobart (Scale approximately 1:500,000). 
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The following reasons indicate why the site was chosen for this research. 

A mix of urban and rural land use: 

The site contains a wide range of land uses. The selected area incorporates a range 

of features, from natural to man-made. Based on the field visitation and manual land use 

classification, there are 12 land use classes which will be shown later. A high density of 

residential roads is suited within the site, most of these roads are more than 20 years old, 

but some are less than 10 years old. 

Significant land uses conversion: 

Land use and land cover changes are occurring in this region because of outward 

migration from the city. As a result, farmland and natural land at the fringe are being 

changed to residential, commercial, and industrial uses. The site is representative of the 

changing environment within the region and has undergone significant changes over the 

11 years of the multidate imagery from vegetation in 1982 image to man-made features 

in 1991, such as new residential land in the southern and eastern parts of the site which 

can be easily observed when comparing the two images (Figure 5.2). 
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(b) 1982 imagery (1:42000) 

(b) 1991 imagery (1:420(X)) 

Figure 5.2 Aerial photographs of the study area. 
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5.1.2 Land cover 

The landscape is typical for the region around Hobart. The study area is composed 

of urban and rural land uses. The test area is close to Hobart and therefore it is subject to 

intensive development. Approximately 35% of the area is built-up land. Most parts are 

residential. Correspondence between the land use categories used by the author based on 

Anderson et al (1976) land use classification scheme, shows there are 12 major land 

cover/use types include residential, commercial, industrial, recreational, educational, 

utilities, clearing and developing areas, forest, grassland, rivers, lakes. 

The predominant natural vegetation of the rural area is native Eucalyptus. 

Extensive recent forest degradation has been undertaken for urban development. Figure 

5.3 illustrates native Eucalyptus. Figure 5.4 shows the lake which consists of an expanse 

of water and natural shrubland. It is placed near to recreational land use categories. 

Figures 5.5, 5.6, and 5.7 demonstrate the land use for pasture and different recreational 

purposes. Figures 5.8 demonstrates the type of semi-rural and urban development which 

has taken place on the edge of the study area. The rapid transition from pastoral land use 

to urban development can be seen when Figures 5.8 and 5.5 are compared. Figures 5.9, 

5.10, and 5.11 show the urban development for residential housing, commercial and 

industrial purposes. 

Roads in the study area have varying width. Four major road classes can be 

distinguished. Major roads (eg highways) are located in the northern and southern of the 

study area. The width of these roads are 10 to 16 metres. Local roads (eg urban main 

roads) can be seen extending in two directions, starting from north to south east to south 

west. The width of these is between 6 to 10 metres. Urban streets are concentrated 

mainly in the central part of the study area. The width of these streets is 3 to 6 metres. 

Minor roads which are located mostly in the rural areas. These roads include rural roads, 

access roads, unpaved tracks. The width of these roads is 2 to 3 metres. Figures 5.12, 

5.13, 5.14, and 5.15 illustrate the different roads in the study area. As can be seen in 

Figure 5.16 the extent of shadow overhanging the roads varies significantly due to the 

time of data capture, season and orientation of the roads. It is interesting to evaluate the 

technique for detection of these line features from the given imagery. 
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Figure 5.3 Native Eucalyptus within the study area. 

Figure 5.4 Lake in the study area 



, 

Figure 5.5 Land used for pasture in the study area. 

Figure 5.6 Golf course in the study area. 
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Figure 5.7 Beach and ocean nearby the study area. 



Figure 5.8 Urban land use enclosed by rural land use. 

Figure 5.9 Semi-rural and urban development. 
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(b) 

Figure 5.10 Urban development for residential housing. 
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(b) 

Figure 5.11 Development of (a) industrial and (b) commercial areas in the study area. 

84 



Figure 5.12 Major access road in a rural area. 

Figure 5.13 Major access road in a semi-rural area. 
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Figure 5.14 Major road in an urban area. 

Figure 5.15 Local road in an urban area. 
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Figure 5.16 Asphalt road in a rural area with shadow from overhanging trees. 
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5.2 Available Data 

The following digital and hardcopy data was provided by the Land Information 

Bureau, Department of Environment and Land Management, Tasmania (More details are 

included in Table 1; Appendix A): 

Digital coverage of road networks 

Digital coverage of drainage networks 

Digital coverage of contours 

Two sets of B/W aerial photographs at 1:42,000 scale for 1982 and 1991 

Two sets of colour aerial photographs at 1:22,500 scale and 12,500 for 1984 and 

1995 respectively 

Hard-copy topographic map of the area at 1:25,000 scale 

The main raster data source was B/W airphotos acquired over the study area in 

1982 and 1991 (Figure 5.2). The nominal area coverage of the geocoded aerial imagery 

encompasses eastern and northern ranges 5,240,000 inN to 5,242,000 tnN and 523,000 

mE to 526,000 mE respectively of Zone 55 Australian Map Grid (AMG) coordinates. 

5.2.1 Imagery Comparison - 1982 vs 1991 

A comparison of the 1982 aerial photograph and 1991 aerial images was 

conducted. Aerial photography at the given scale and resolution is the most suitable 

imagery for the task of road mapping in this research. Visual examination of the aerial 

images indicated that delineation of residential roads within subdivisions would not be 

possible for many urban neighbourhoods. On both images roads, buildings, and clearing 

area from vegetation to urban were clearly visible on cursory examination. 

Due to the high spatial resolution of the images, buildings are the most prominent 

man-made features with a similar contrast to roads. This makes the image analysis more 

difficult. Line features in aerial photography are very complex as their spectral and 

spatial characteristics often vary along their extent. For example, the contrast between 

the roads and natural land cover (background) in the rural scene is significant. Whereas, 

the contrast along roads against their background in an urban area generally is not as high 

as the rural area. Experiments have shown that detection of roads over this area would be 
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more easy than an urban scene due to the spectral characteristics of the roads and 

vegetation. 

5.2.2 Criteria for Selecting Aerial Imagery 

One of the major reasons for selecting aerial photography for a particular 

application is the high resolution and low cost of the data compared with alternative 

satellite data. Since the spatial resolution of high resolution satellite imagery may be 

insufficient for detection of road and track networks, it was decided to use medium scale 

aerial photography (1:42000) combined with spatial information data through a GIS for 

the purpose of this research. Associated with roads are point and line features such as 

overpasses, underpasses, bridges, and tunnels which are important for many road 

networks mapping applications. As discussed earlier, within the study area the road and 

track network varies from 2 to 16 m in width. The feature of prime importance is roads 

in the images. The mapping of roads in urban areas and the urban fringe necessitates the 

use of high spatial resolution imagery in order to resolve the component objects in this 

landscape. 

Spatial resolution may be especially important in the scene analysis of urban-

suburban features because of the inordinate amount of dependence on geometric and 

spatial relationships and on detailed shapes of features as well as on convergent and 

associated evidence for discrimination of features in urban industrial settings (Colwell 

and Poulton, 1985). For example, road delineation depends heavily on resolution of the 

image data. Generally a resolution of 10 m or less may satisfy undertaking most urban , 
monitoring programs (Welch 1982, and 1985). 

Different urban applications will require different spatial resolution. For instance, 

experience has shown that a resolution of 5 m or better is necessary to carry out urban 

mapping in developing countries (Welch, 1982) due to the fact that cities in developing 

countries are intensely populated and the housing sizes are often smaller than developed 

countries. Fundamentally, both cartographic and thematic mapping requires different 

resolution levels. Landsat MSS imagery is sufficient to extract class I (urban: eg 

residential, commercial) whereas to extract classes 11 (urban: eg low density residential), 

HI (eg medium/high density residential), and IV (eg single family housing) requires the 
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use of high, medium, and low altitude aerial imagery (Welch, 1982). Welch (1982) also 

indicates that a spatial resolution ranging from 0.5 to 3 m is required for urban land use 

mapping for levels II and la of the classification theme of Anderson et al (1976). This 

idea was supported by Konecny et al (1982 cited by Welch, 1982) who illustrated that a 

ground resolution of 5 m or less is required for urban cartographic mapping, whereas for 

these types of resolution perhaps it is not necessary for thematic mapping, due to the fact 

that change detection is more important than feature identification (Forster, 1985). This 

may require a sensor system with an instantaneous field of view (IFOV) of nearly 20 m. 

SPOT and Landsat imagery provide the ability to resolve rural based problems. It should 

be kept in mind that it is not often necessary, however, to obtain this level of spatial 

resolution for thematic mapping which is associated with cartographic/GIS mapping such 

as extraction of roads, streams, and so on where change detection is more critical than 

identification. In the urban environment, road pattern provides a degree of complexity to 

the scene in context of occurring change. The claim has been made that "experience has 

indicated that use areas with dimension of less than 2 mm x 2 mm at the map scale 

should not be included on the final product. For 1:50.000 scale mapping this represents 

a dimension of 100 x 100 m, requiring a sensor with an IFOV of 50 m, assuming a 

minimum of 4 pixels are required for identification" (Forster, 1985). In the meantime, 

the classification accuracy result may improve urban classification up to a limit, owing to 

the reduction of noise at a given scene which may be considered as the land cover 

variation within a land type. The larger IFOV is proven to average the noise effects out, 

thus reducing between pixel variance. The different mapping purpose will determine the 

spatial resolution levels (Forster, 1986; Barr, 1992). 

Based on practical exercise, some have asserted that SPOT Pan and large format 

camera (LFC) can be applied in topographic mapping at 1:50,000 scale due to its stereo 

capability (Torlegard, 1992). Torlegard examinations show that for detectibility the 

required size of the pixels can be 2 m for buildings and footpaths, 5 m for local roads and 

finer hydrography, and 10 m for major roads and building blocks. Using SPOT Pan and 

XS data was problematic to delineate older subdivisions with well treed streets and 

industrial-commercial developments (Li et al 1989). On the other hand, arterial roads and 

subdivisional collectors have been successfully delineated. Similarly, at a ground 
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resolution of 3 m to 4m of an aerial photograph, the road surface has high contrast with 

the background (Thu and Yeh, 1986). Road segments commonly maintain high contrast 

as they pass through urban infrastructures and mountainous terrain. Roads in agricultural 

land have commonly lower contrast than roads elsewhere (Thirlwall et al 1988). 

According to these statements, Landsat MSS, TM, and SPOT XS may not be 

adequate for an analytical classification in urban scenes, and these data are more 

applicable to urban monitoring (Treitz et al 1992). However, improved spatial resolution 

satellite data may not lead to improvements in classification accuracy (Gurney and 

Townshend, 1983). Cushnie (1987) stated that the greater the proportion of scene noise 

to begin with, the greater the reduction afforded by coarsening the resolution. But, in 

general, higher spatial resolution data provide details that aid detection, identification 

and image positioning of objects (Thirlwall et al 1988). However, it should be clarified 

that it does not always provide the best detection and identification of all elements. It 

should be kept in mind that in spite of high performance of high resolution satellite 

images, researchers (Gurney and Townshend, 1983) believe that the highly resolved data 

may be problematic in terms of information extraction. 

At ground resolution of 2 m to 5 m for the scanned aerial photography, the road 

surface can be distinguished by human eye with the background. The 1:42,000 

photograph, was scanned at 500 DPI, providing a resolution of 2.1. At this resolution 

delineation of features from 1.5 to 4.5 m should be possible. On the B/W imagery all 

major access road and tracks are clearly visible, although the occurrence of vegetation 

within some access roads results in them appearing as non-contiguous lines of pixels. 

Minor access tracks are mainly obscured by overhanging vegetation. The pixel size for 

the captured data mode is small enough to discriminate the smaller tracks. 

The two sets of B/W air photos were used in the knowledge-based database. These 

include a summer data set acquired on 10 February 1982, and a spring data set acquired 

on 2 December 1991 (Table 1 in Appendix A). The visual interpretation of B/W aerial 

photos was supported by two sets of colour air photographs, which cover the study area. 

They were acquired on 1st November 1984, 2 years after the first B/W photo was taken, 

and 3rd November 1995, 4 years after the second B/W air photo was taken. The original 
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colour photo was acquired in 1984 at 1:22,500, and it was used for a supervised 

classification in order to compare with the decision tree analysis. The colour photography 

of the study site was used to provide ground truth data. 

5.2.3 Base Maps 

Image registration and rectification was accomplished using ARC/INFO rubber 

sheeting and an affine transformation (Chapter 6). Ground control points were selected 

from hardcopy maps produced by the Department of Lands, Division of Mapping, 

Hobart, Tasmania (dated July 1987). The horizontal accuracy of the maps is such that not 

less than 90% of well defined points fall within 12.5 metres of their true positions at map 

scale. The vertical map accuracy is such that not less than 90% of elevations fall within 5 

metres of their true elevation. All of the GIS and RS data was registered onto a Universal 

Transver Mercator (UTM) projection, Australian Map Grid Zone 55. The topographic 

maps for Kingston served as reference bases for creation of georeferenced images for 

image interpretation and mapping of roads. 
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5.3 Computer Facilities 

The computer facilities are available in the Surveying and Spatial Information 

Science and Centre for Spatial Information Science, University of Tasmania. Major 

software included ERDAS IMAGNE 1 , MATLAB 2, ARC/INF03 , PhotoGIS4  and Ortho-

PhotoGIS, and KnowlegeSEEICER (KS) 5 . 

5.3.1 KS Software 

Machine Learning Software KnowledgeSEEKER (KS) version 3.0 was used for 

decision tree analysis. KS is an automatic data analysis software package using decision 

trees. It is a well-known decision tree algorithm which explores contextual information, 

and displays the information in a decision tree form, as well as generating rules to allow 

construction of an expert system. This software was used to construct decision rules from 

the GIS database. The generated rules (knowledge) were employed for the construction 

of an expert system to map out the road distribution. 

5.3.2 Computer programs 

Columns.f pre-process the constructed GIS database to be imported into 

KS software. 

Expert Systems Implementation: The MATLAB software forms one 

component of a developed expert system called "Decision Tree Processing Expert 

Systems" (DTPES) to interface KS with GIS data. The DTPES was programmed in 

1 The ERDAS IMAGINE software is manufactured by ERDAS, Inc. 2801 Buford Highway, NE, Suite 300, Atlanta, 
Georgia 30329-2137 USA. 

2  The MATLAB software is a product of the MathWorks, Inc. 24 Prime Park Way, Nattic, Mass. 01760-1500, USA. 

3 The ARC/INFO software is manufactured by Environmental Systems Research Institute, Inc. (ESRI) 380 New York 
St. Redlands, CA 92373, USA. 

4 The PhotoGIS software and the Ortho-PhotoGIS addendum were developed by Salamanca Software Pty Ltd, PO Box 
844, Sandy Bay, Tasmania 7006, Australia. 

5 The KnowledgeSEEKER algorithm is the property of ANGOSS Software International Limited, Suite 201, 430 King 
Street West, Toronto, Canada M5V 1J5. 
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MATLAB language under the MATLAB environment. The DTPES consists of two 

subroutines, namely ks2mat.m, and dtpes.m. The ks2mat.m converter converts the 

generated rules (knowledge) from KS into MATLAB rules form, and stores results in a 

file called matrules.m. The dtpes.m program maps the roads distribution from the rules 

through dataset, and then calculates the overall classification accuracy based on the roads 

data. 

The MATLAB software was selected for its user-friendliness, flexibility, interface 

capabilities, high level programming language, and the familiarity of the author with this 

language. 

FTP was used for transferring the required files from a PC to the UNIX machines 

and vice versa. 
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Computer Facilities Type Name and Model Comments 

Hardware Unix Workstation SUN 

All spatial and image processing was 
primarily undertaken using SUN SPARC 
workstation with 32 Mbytes RAM, 
SUNOS 4.1, a SUN SPARC workstation 
with 64 Mbytes RAM, SUNOS 4.1, and 
recently SUN ULTRA SPARC 
workstation with 64 Mbytes RAM, 
SOLARIS 2.5. 

IBM PC 486 
An IBM compatible PC with 812 Mbytes 
disk space was used mainly for decision 
tree analysis, and writing the documents. 

Software 

- 

Image Processing 

ERDAS IMAGINE 
Version 8.1 

This software was used for part of the 
image processing for this project. 

MATLAB Version 
4.0 

MATLAB image processing toolbox was 
used mainly for implementation of an 
edge detection program. 

PaintShopPro 
Version 3.01 

This software was run on a PC. It was 
used mainly for image format conversion 
purposes. 

GIS 

ARC/INFO Version 
7.0.2 

ARC/INFO was used to create, 
manipulate, and display GIS data in 
digital format. This software was 
principally used for construction of a 
database for a knowledge-based 
environment. ARC/INFO is a well-
known GIS produced by ESRI that 
organizes geographic data using a 
relational DBMS (INFO) and topological 
model (ARC). 

PhotoGIS version 2.2 PhotoGIS is fully integrated with 
ARC/INFO software. It was used for 
image rectification. 

Ortho-PhotoGIS Ortho-PhotoGIS is associated with 
PhotoGIS version 2.2. Ortho-PhotoGIS 
is a raster-based software, and PhotoGIS 
is a vector-based algorithm. 

ICBS KS Version 3.0 Refer to Section 5.3.1. 
Developed Computer 
codes and an Expert 
System (DTPES) 

MATLAB Version 
4.0, and Fortran 77 

MATLAB environment was used for 
construction of a rule-based expert 
system program as part of decision tree 
implementation. Also refer to Section 
5.3.2, Chapter 7. 

Table 5.1 Computer facilities information. 
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5.4 Summary 

This chapter described the study area and the data sets employed. A study site in 

the urban fringe of Hobart was chosen because of its mix of rural and urban land use, and 

urban development. The spatial data sets assembled for the project included digital 

coverage of road networks, digital coverage of drainage networks, digital coverage of 

contours, two sets of B/W aerial photographs at 1:42,000 scale (for 1982 and 1991), a 

colour aerial photograph at 1:22,500 scale (for 1984), and hard-copy topographic map of 

the area (at 1:25,000 scale). 
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Chapter 6 

IMAGE REGISTRATION AND LINEAR FEATURE DETECTION 

To integrate the aerial photographs into the GIS, it was necessary for the images to 

be geometrically corrected. It was necessary to overlay the road coverage to an accuracy 

of about 2 pixels (4 metres). Standard image rectification techniques were adopted to 

correct the data geometrically: (1) polynomial transformations, (2) digital 

orthophotography, (3) affine transformations and rubber sheeting. Neither the polynomial 

transformations nor the digital orthophotography provided the required accuracy. Affine 

transformation and rubber sheeting using a series of links produced a result which was 

satisfactory for the aim of this project. 

The rectified images were used for identifying linear features by edge detection and 

mathematical morphology. The Interactive Linear Feature Detection Program (ILFDP) 

was developed for semi-automatic linear feature detection using different edge detectors, 

followed by morphological operations. The main aim of this program was to build data 

for a GIS database. By specifying different edge enhancement, noise removing filters, 

edge detectors and filters, and morphological tools it is possible to produce a variety of 

different results. The aerial images were processed using ILFDP implemented in the 

MATLAB program. The extracted edges were used as a GIS layer in a later step for 

delineation of roads by implementation of decision tree analysis. 

6.1 Geocoding of Images 

Standard software, ERDAS IMAGINE, PhotoGIS and ARC/INFO were used to 

correct the imagery. 

Two black and white images from different dates (1982 and 1991) were used. Both 

were 1:42,000 photoscale (9" format, 6" lens). The photographs were scanned at 500 DPI 

and stored in a 25MB 'DI+ File. 
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A sub-region for each image was selected and rectified using each of the following 

methods: polynomial rectification, digital orthophotography, affine transformation and 

rubber sheeting. The methods employed are explained in the following sections. 

6.1.1 Polynomial Transformations 

This section describes the application of manual GCP selection, a polynomial 

transformation and image-to-image registration. 

(i) Technique Adopted 

Relief displacement was calculated (Wolf, 1988). The effects of terrain were 

estimated by plotting relief displacement in the two aerial photographs. For example, for 

the 1982 imagery, height variation in the terrain resulted in a maximum relief 

displacement of 6.3 pixels (13.2 m). The relief displacement at the closest point to the 

principal point (height = 120 m) on the ground pixels was 0.55 pixels. The relief 

displacement on the furthest point (height = 125 m) from the principal point of the image 

on the ground was 6.3 pixels. The photo scale used 1 pixel equal to 2.1 m on the ground. 

Relief displacement is therefore significant. 

The effect of relief displacement at the edge of the image, near to the principal 

point, and at the furthest point from the principle point of the image, was 37 m, 4 m, and 

38 m respectively. The amount of relief displacement in pixels from the principal point 

of the photo in both X and Y directions was calculated (refer to Equation 6.1, and Figure 

6.1), and the dx and dy components of the relief displacement plotted. Equation 6.1 was 

used to calculate dy and dx of components of the relief displacement in order to present 

the effects of terrain relief displacement for 1982 imagery. Further information can be 

found in Appendix B. The results are presented in diagrammatic form in Figure 6.2. 

0 = arctan(I) 
X 

dx = dx cos 0, and dy = dx sin 0 
where 
d is the relief displacement in pixels 
X is the x displacement from principal components (P. P) 
Y is the y displacement from P. P, and 
Ax, Ay are components of relief displacement measured in pixels. 

(6.1) 
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Figure 6.1 Components of relief displacement. 

Figure 6.2 The vectors representing relief displacement for the 1982 image plotted. These were 
shown only for a portion (subset) of the aerial photograph where the study site is located. 

The first photograph (1982) was registered to the digital road and drainage pattern 

maps using ground control points identified on the digital data and the second 
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photograph (1991) was registered to the georeferenced photograph (1982) using points 

appearing in both images. For the registration of the 1982 photography 8 GCP and for 

the registration of 1991 imagery 10 GCP were used. The distribution of GCP throughout 

the scene, and having an adequate control point near the edges, are very crucial 

functions. The choice of GCP has been elaborated by Welch (1985); Labovtiz and 

Marvin (1986); ERDAS (1994b). In this work a second order transformation using 

bilinear interpolation was used. 

(ii) Experimental Results 

Table 6.1 summarises the experimental results of image rectification and 

registration using two polynomial transformation functions (first order and second 

order). The selection and matching of control points was implemented manually. Both 

water path regions and road networks were used as ground control, with coordinates 

derived from 1:25,000 topographic maps. 

The total RMS error for the 1982 image and 1991 image was found to be 6.3 and 

1.88 pixels respectively. The photo registered image (1991) has a much lower RMS error 

than the map rectified image (1982) in this study. 

First Order 
Transformation 

GCP # 0 X RMS Error in 
Pixel 

Y RMS Error in 
Pixel 

Total RMS in  
Pixel 

Subset_1982  8 5.27 3.44 6.30 
Subset_1991  10 0.76 0.94 1.21 
Second Order 

Transformation  
GCP # X RMS Error in 

Pixel 
Y RMS Error in 

Pixel 
Total RMS in 

Pixel 
Subset_1982  8 3.40 1.67 6.30 
Subset_1991 10 0.98 1.61 1.88 

Table 6.1 A summary of results of rectification and registration of the aerial images using 
polynomial transformations. 

Three major sources of error placed limits on the accuracy to which the 1982 aerial 

photo could be fitted to map coordinates using a polynomial rectification: 

(1) the principal limitation is the process itself. A second order polynomial 

transformation cannot match the complexity of the relief displacement which was shown 

in Figure 6.2. 
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location errors due to the scale of aerial photographs (1:42,000) because of 

inadequate resolution. 

map errors attributable to the scale and quality. 

A vector overlay for both corrected images was performed in order to provide a 

comparison between the geometric quality of the polynomial methods used. Visual 

inspection confirmed that the polynomial methods failed to provide adequate accuracy. 

The range of error was about 4 to 13 metres (2 to 6.5 pixels). For the purpose of this 

research this accuracy is not satisfactory, since about 2-2.5 pixel accuracy is required. 

6.1.2 Orthophotograhpy 

Recently, researchers (eg Abramson and Schowengredt, 1993; Forghani and 

Osborn, 1998a) have used digital orthoimagery and digital elevation models in the 

integration of remotely sensed data and a GIS database. As mentioned earlier, 

polynomial methods may not efficiently remove relief displacement in areas of gentle 

relief (smooth terrain) and rugged terrain. Photograinmetric approaches for differential 

rectification to eliminate the effects caused by terrain have led to orthophotography 

algorithms which are now well accepted for GIS applications (Jensen, 1995). 

The PhotoGIS orthophotography software used in this research requires at least 

four GCP on a given image in order that the camera position and orientation at the 

moment of exposure can be determined. These points should surround the area that needs 

to be corrected. The accuracy of the DEM affects the accuracy of the orthophoto. 

The likely error in planimetric coordinates based on residual DEM errors and photo 

scale is shown in Table 6.2. Maximum error in X and Y coordinates of a point at the 

edge of the useable area of a standard photo for different scales for eight values from r1  

to r2  is represented in Figure 6.3. An optimum mapping range appropriate for 

topographic mapping is highlighted. 
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Photo Scale 1:3000 1:5000 1:10000 1:25000 1:50000 
Flying height (metres) 450 750 1500 3750 7500 
Residual DEM Error 
0.2m 0.04 mm 0.02 0.01 
0.5 0.10 0.06 0.03 0.01 
1.0 0.20 0.12 0.06 0.02 0.01 
2.0 0.41 0.25 0.12 0.05 0.02 
5.0 1.03 0.62 0.31 0.12 0.06 
10.0 1.24 0.62 0.25 0.12 
20.0 1.24 0.50 0.25 
30.0m 0.74 0.37 mm 

Table 6.2 Representations of the DEMs and the maximum error in X and Y coordinates due to 
DEM discrepancies in mm at photo scale (PhotoGIS, 1994). 

Figure 6.3 Illustration of differences between the actual terrain and the maximum error in Z 
coordinates (DEM) (PhotoGIS, 1994). PhotoGIS uses the DEM to map the geometry of the 
terrain accurately. However, there are two differences between the real world and the DEM. 
These are differences due to the heights used to construct the DEM (r,), and the separation 
between the actual terrain and its representations because of the resolution of the DEM (r 1 ). The 
effects of these residual errors on PhotoGIS corrected points are the same, eg they cause a 
residual relief displacement error which has been presented in the above table (PhotoGIS, 1994). 
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Figure 6.4 Illustrates the DEM of the area as a grey scale image which  was  produced by 
applying ARC/INFO TOPOGRID tool. Digital contours with a 10 metres interval, and stream 
networks were used to construct a DEM for the study area. 

(a) Technique Adopted 

In order to produce an orthophoto, the following steps were taken. 

Examining the Image 

Due to the fact the fiducial marks were not clear in the digitised photos, the 

histogram equalisation algorithm of IMAGINE ERDAS was used for contrast 

enhancement of the aerial photographs. 

Creating a Photo Coverage and Registering the 
Image 

The photo coverage contains the fiducial tics (marks) to establish the photo 

coordinate system for the photo coverage. Fiducial marks establish the relationship 

between the photo and the camera lens. The camera calibration report was available to 
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set up the photo template coverage. The digitising of fiducial marks was performed. The 

magnification facility assists digitisation of the tics directly off the screen more 

accurately. The images are registered on the photo coverages by using ARC/INFO' s 

REGISTER module to link the four fiducial tics in the template photo coverage with 

their corresponding image points. The camera calibration report of the captured 

photographs was used to create the template ARC/INFO coverage based on these 

coordinates (Figure 6.5). This information was also required for performing resection 

which will be discussed later. 
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Visual Goniometer Camera Calibration 

Camera Tasmania Lands Zeiss RMKA 	No. 118418 	Date: 19/4/1988 	Photo: 1982 

No filter used during calibration 

Coordinates of Principal Point of Autocollimation (PPA) with respect to Fiducial Centre in 
millimeters 

X = 0.01, Y = 0.00 

The uncertainty associated with these values does not exceed 0.010 millimeters 

coordinates of fiducial marks 

N S 	E 	W 

Xrnm -79.85 79.88 79.89 -79.98 

Ymm -79.85 79.88 -79.88 79.87 

The coordinates of fiducial marks are in millimeters 

The uncertainty associated with these values does not exceed 0.020 millimeters 

Calibrated Focal Length in mm 152.963 

The uncertainty associated with these values does not exceed 0.010 millimeters 

The calibrated Focal Length has been determined such that the sum of squares of the distortions is 
a minimum 

The temperature at the time of calibration was approximately 20 C. 

Figure 6.5 The camera calibration report for the 1982 and 1991 photography. 
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The results of registering fiducial marks (82.img) to the photo coverage. 

a 
Link Id Calculated 

X in mm 
Calculated 
Yin mm 

True X 
in mm 

True Y 
in mm 

Distance 
in mm 

1 -79.821 -79.906 -79.850 -79.850 0.063 
2 79.909 79.824 79.880 79.880 0.063 
3 79.861 -79.824 79.890 79.880 0.063 
4 -79.919 79.926 -79.890 79.870 0.063 

Scale (X,Y) = (0.052,0.052) Rotation = 44.707 degrees, RMS error (image, cover) = (1.225 pixels, 0.063 
mm) 

The results of registering fiducial marks (91.img) on the photo coverage. 

(b) 

Link Id Calculated 
X in mm 

Calculated 
Yin mm 

True X 
in mm 

True Y 
in mm 

Distance 
in mm 

1 -79.810 -79.908 -79.850 -79.850 0.070 
2 79.920 79.822 79.880 79.880 0.070 
3 79.850 -79.822 79.890 -79.880 0.070 
4 -79.930 79.928 -79.890 79.870 0.070 

Scale (X,Y) = (0.052,0.052) Rotation = 45.282 degrees, RMS error (image, cover) = (1.359 pixels, 0.070 
mm) 

Table 6.3 Results of registering fiducial marks on the photo coverage. ARC/INFO 
TRANSFORM tool generates and displays the above report. This represents comparisons 
between the input and output coverage tics, the parameters applied for the transformation, and 
measures how accurately the photo coverage and the photo coordinate system from the camera 
lens fit together. The RMS error describes the deviation between the tic location in the input 
coverage and those in the output coverage. However, it never occurs with real-world data, perfect 
transformation should produce an RMS error of 0.000. 
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3) 	Building a TIN in ARC/INFO 

Surface feature type (SFTYPE) information including mass points (eg from 

contours), hard replace (eg lake and ocean) polygon, and hardclip (eg shoreline) 

associated with each feature are applied to create a TIN model. Interpolation methods 

within a GIS can be used to estimate values for other points and to build a surface. For 

this research, contours with an interval of 10 metre were available in digital form (Figure 

6.6). Finally, the TIN coverage was generated by using the ARCTIN tool in ARC/INFO 

package. 

Figure 6.6 Contour plot of the test area superimposed with streams coverage. The interval of the 
contours is 10 metres. The contours are shown in green and streams represented  in  blue. 
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Figure 6.7 Represents generated TIN boundaries of the study area. The contour data file was 
converted to a regular grid or elevations (DEM) at 2-m spacing using the ARC/INFO 
TOPOGRID command. 

4) 	Identifying GCP and Interpolation of Z 

Coordinates of the GCP 

The X and Y coordinates were derived from the digital data in ARC/INFO. As was 

cited earlier, the distribution of GCP throughout the scene and the presence of control 

points near the edges was crucial. A total of 6 unambiguous GCP for correction of the 

1991 and 1982 images were determined from the digital topographic data based on the 

1:25,000 topographic map sheets. The Z value was interpolated from a DTM using the 

coordinates and a TIN coverage. As has been discussed, the X, Y and Z coordinates of 

the GCP should be at least twice as accurate as those achieved from digitising at the scale 

of photography (eg: 1:20,000 map data is appropriate for 1:42,000 photography). 
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5) 	Performing the Resection 

The resection determines the position and orientation (X,Y,Z, Omega, Phi, Kappa) 

of the camera in space (X,Y and Z) at the time the photo was captured and the camera's 

orientation in context of rotation about the axes (Omega, Phi, and Kappa). The resection 

process was repeated until the residual values were within the tolerance. Given that the 

control points came from a 1:25,000 digital map it can be expected (given best 

circumstances) that those points are accurate to 0.5 mm on the map (PhotoGIS, 1994). 

Thus, in units of the map database this is about 12 meters. Consequently, a tolerance of 

10 m was determined. This tolerance (10 m) was the largest residual that can be 

accepted. For example, the maximum residual error for the 1982 and 1991 images was 

0.05 m (Xdiff), -9.90 m (Ydiff), and 7.96 m (Xdiff), -3.98 (Ydiff) respectively. Also, the 

minimum residual error for the 1982 and 1991 images was 1.19 m (Xdiff), 1.19 m 

(Ydiff), and -0.22 m (Xdiff), -0.48 (Ydiff) respectively (Table 6.4). 

As soon as a satisfactory resection result was obtained the photo was then corrected 

to remove the tilt and relief distortion, using the orientation parameters (X,Y, Z, Omega, 

Phi, Kappa) determined in the resection and a TIN. 
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Resection results for 1982 image (a) 

TicED  Xgcp Ygcp Xcalc Ycalc Xdiff Ydiff 

1  526015.70 5240272.68 526014.44 5240274.90 1.26 -2.23 

2  522373.33 5240264.24 522376.66 5240261.25 -3.33 3.00 

3  523358.40 5237952.80 523349.58 5237948.86 8.82 3.95 

4  524849.12 5242669.61 524847.93 5242670.12 1.19 1.19 

5 526216.64 5241048.48 526216.59 5242670.12 0.05 -9.90 

6 523607.27 5242493.93 523615.44  5242488.79 -8.17 5.14 
Resection successful because the most recent differences between actual control coordinates (per GCP file) and 

the calculated coordinates (per this resection) are within the resection tolerance of 10.0000 terrain units. 
Final Estimates: 

XL  YL ZI., Omega Phi Kappa 

522375.596 5240240.583 6706.766 0.0288338 -3.1605873 2.3469597 

Resection Results for 1991 image (b) 

TicID  Xgcp Ygcp Xcalc Ycalc Xdiff Ydiff 

1  524849.05 5242669.48 524855.53 5242663.87 -6.48 5.61 

2  522386.74 5238272.51 525971.35 5238270.92 -3.32 1.59 

3  522372.93 5240264.41 522364.97 5242797.91 7.96 -3.98 

4  522386.74 5238679.89 522390.79 5238678.57 -4.06 1.32 

5  526492.35 5241188.23 526486.23 5238270.92 6.12 -4.06 

6 523168.84 5242797.43 524855.53  5242797.91 -0.22 -0.48 
Resection successful because the most recent differences between actual control coordinates (per GCP file) and 

the calculated coordinates (per this resection) are within the resection tolerance of 10.0000 terrain units. 
Final Estimates: 

XL  YL Z:L Omega Phi Kappa 
522611.278 5252547.465 6704.840 -0.0347410 0.0101401 -0.0489147 

Table 6.4 Resection results 
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(b) Examining the Corrections 

To provide a comparison between the numeric results of resection and visual 

inspection of the corrected data, the digital roads were overlaid on the corrected data in 

order to quantitatively assess the accuracy for different parts of the image. There were 

significant discrepancies on the precise overlaying of the digital roads to the roads of the 

images. An error of approximately 2.5 pixels (4.2 m) is acceptable for this study. The 

range of error was from 3 to 10 metres. Because higher accuracy was required, it was 

necessary to try an alternative method to solve this problem (gain required accuracy). 

6.1.3 Affine Transformation and Rubber Sheeting 

Affine transformation and polynomials attempt to overlay images with local 

geometric distortions using a network of relative displacement or links. The affine 

transformation uses an interpolation algorithm, and rubber sheeting applies a 

triangulation method to divide the adjustment region into transformation segments. A 

digital georeferenced image with ±4.2 m accuracy must be produced. A minimum of 60 

links was defined for each image. This image correction approach has been successful on 

restricted relief distortions (eg Goshtasby, 1987; Forghani and Osborn, 1998a) and also 

for the purpose of this work. As a general rule of thumb, the more links, or GCP's, the 

better the fit. This approach was implemented using ARC/INFO software and consists of 

three stages: 

An initial affine transformation was applied, using ARCANFO REGISTER RECTIFY 

commands to register the image approximately into map coordinates. Links between 

the image and the digital road network were created interactively to define the local 

geometric distortion. 

In theory the program works on three GCP (links), and up to sixty links can be added. 

In fact, for the purpose of this research these links were not sufficient to accurately 

overlay the digital road coverage on the roads in the photographs. To add more than 

sixty links, the rectified image was converted to a grid through the IMAGEGRID tool. 

Then, a link coverage was created which contained the added links. 

Rubber sheeting of the image was then accomplished using the ARC/INFO ADJUST 

command. The ADJUST command applies a triangulation method to divide the 
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adjustment region into transformation segments. It is important to have the links 

spread systematically over the whole coverage or grid including the outer edges in 

order to set the adjustment systematically with distribution of equal weight to the 

adjustment of all parts of the grid or coverage. The adjustment was modified by 

deletion and adding of links. The corrected image with digital road network 

superimposed is shown in Figure 6.8. 

Figure 6.8 The geometrically corrected image using the affine transformations and a rubber 
sheeting. The road networks (yellow) were overlaid onto the georeferenced image. 

A qualitative (visual inspection) assessment of the results of image rectification 

was undertaken. The digital road networks were overlaid on the corrected images. There 

was good correlation between overlaid digital roads and the roads of the corrected image. 

In addition, a quantitative evaluation of the results of image rectification was attempted. 

The errors were measured in map unit (metres) on different sections of the image. The 

range of errors was 2 to 4.2 metres. 
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6.1.4 Discussion 

The digital road networks were overlaid onto the corrected images to quantitatively 

assess the residuals (eg Figure 6.8). In order to compare three methods, the errors were 

measured in map unit (metres) on different parts of the image. An error of approximately 

2.5 pixels (4.2 m) is acceptable for this study. 

The polynomial transformations provided the lowest accuracy. The major sources 

of error include the complexity of the relief displacement, location errors due to the scale 

of aerial photographs and consequently inadequate resolution, map errors attributable to 

the scale and quality. 

The errors in the orthoimage were attributed to uncertainty in the DEM as digital 

topographic data was based on the 1:25,000 topographic Map sheets. 

An affine transformation and rubber sheeting provided the highest accuracy. An 

accuracy of 2.5 pixels or about 4.2 meters was gained. The corrected images will be used 

for mapping roads using a GIS database and knowledge-based approach. 
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6.2 Remarks for Image Registration 

When registering images on to a GIS using topographic map data at 1:25,000, more 

precise image rectification may be obtained from a rubber sheeting procedure than can be 

obtained from a polynomial adjustment or orthophotography algorithm. 

For a typical data set (eg 1:42,000 photography), typical software (eg ARC/INFO), 

and an available topographic map (1:25,000), an affine transformation and rubber 

sheeting method may be the best approach to carry out image registration. This method 

is very useful when relief displacement is significant. This is particularly productive 

when there is a large amount of detail available from a map which provides more GCPs 

to fit image on the map features. 

In the case of orthophotography, the reliability of the DTM is the key 

consideration. 
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6.3 Linear Feature Detection and Analysis 

Image processing techniques include certain types of image segmentation such as 

edge detection (eg Sobel filter), edge enhancement (eg median filter) and mathematical 

morphology (eg dilation). As mentioned in Chapter 3, principally there are two linear 

feature detection approaches: 

line detection or tracking, and 

edge detection. 

The edge detection process was considered the most fruitful approach for the 

purposes of this study since the roads appear as multiple pixels when using edge 

enhancement. Hence the concern is to define (extract) both sides, and to delineate other 

linear features (eg field boundaries, rivers). It may well be more useful to use an edge 

detector in order to obtain the edges of roads and other line features. 

Three different spatial filters were employed in the ILFDP program: 

noise removal filters 

edge detectors (Canny and Deriche) and thresholding, and 

mathematical morphologic transformations. 

The routines of ILFDA program are listed in Appendix C. 

A 180 by 160 pixel window of a rural site, and 185 by 235 pixel window of a built-

up site was selected from the study area for image segmentation analysis (Figure 6.10). 

The processing chain to extract edges of linear features from the original image is as 

illustrated in Figure 6.9. 
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Figure 6.9 Schematic of interactive linear feature interpretation of test area. 
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(a) 180x160 pixel window of a rural site 

(b) 185 by 235 pixel window of a built-up area 

Figure 6.10 Test images; sub-sections of the 1982 image. 

6.3.1 Pre-Processing of Images 

6.3.1.1 Image Stretching 

Primary processing of the data was undertaken including standard image histogram 

stretching (Imadjust tool) and median filtering techniques. The image histogram 

stretching function in the 1LFDP transforms the values in intensity image (I) to values in 

output image (J) by mapping values between low and high to values between bottom and 

top using the stretching function. Values below the lower limit of the range map to 0 and 

values above the upper limit of the range map to 1 (256). 
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6.3.1.2 Median Filtering 

The effects of noise on the responses of different operators can  be  suppressed by 

smoothing the image with a low pass filter before applying an edge operator. Median 

filtering with a 3x3 nonlinear kernel was used to reduce "salt and  pepper"  type noise, 

remove outlying extreme pixel values (Figure 6.11). Thus it minimised  the  influence of 

noise, and produced a smoother image. Too large a filter eg bigger than  7x7  may cause 

fuzzy images which are not appropriate for edge detection. This especially occurs where 

edge density is high and complex such as urban areas. Using median filtering the digital 

number (DN) of each pixel was replaced by the median of DN in the neighbourhood of 

that pixel. If image smoothing and noise removal is not employed  on  the image, 

problems may occur in edge detection. 

 

 

Figure 6.11 Application of a median filtering. 
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6.3.2 Image Segmentation 

6.3.2.1 Edge Detection 

An edge may be defined as any extended edge in an image which can be 

approximated by short linear segments characterised by a position and angle. The grey 

value of one linear feature against its background may differ from one location to 

another. Edges correspond to local discontinuities of various order in the intensity 

surface of a scene. Thus, edges are those places in an image where the intensity changes 

rapidly. Since roads are line features which have narrow grey level plateaus of constant 

width, after edge detection they appeared as closely-spaced, parallel chains of edge 

pixels. Edge detection enhances the presence of edges in the original intensity image, 

thus generating a new image where edges are more conspicuous. 

Edge detection is the best way to tackle the problem of edge feature detection. 

1LFDP offers several standard edge detectors including, Sobel, Canny, and Deriche. 

Directional edge detection is not a new concept. If the presence of noise in images is 

ignored, the edge detection is primarily based on intensity gradient and subsequent 

thresholding of its magnitude. 

6.3.2.2 Thresholding 

Thresholding makes an edge/no-edge decision by transforming a gray level 

representation of an image, yielding a binary edge map (binary representation of the 

image). By thresholding, some information loss may occur. The response of image 

features (pixels) to edge detection filters depends primarily on the contrast of linear 

features with the background, and the orientation of features relative to the edge mask 

operator. 

To decide how much information to lose in order to retain useful information is a 

difficult task in image edge or line filtering. Indeed, it is very difficult to set a threshold 

so that there is small probability of enhancing noise while retaining high sensitivity. If 

the threshold is set too low, portions of edges or lines are removed. In contrast, if the 

threshold is set too high, some false information or edges/points are presented. The best 

compromise was found by experimentation. To facilitate the thresholding task a colorbar 
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was added to the program to select an approximate threshold. This tool appends a 

vertical bar to the current axes, resizing the axes to make room for the color bar which 

can be used with both 2D and 3D plots. An ad hoc procedure has to be taken to find an 

optimal threshold level. 

The Sobel, Canny, and Deriche filters were compared at different threshold values. 

Using the Canny and Deriche edge detectors requires higher threshold values for built-up 

areas in comparison to rural areas. To satisfy this objective, three thresholds 

T1 , T2  and T3  were used. The performance of different thresholds is compared in Figures 

6.12-6.15. By increasing the threshold values, it can be seen that the roads begin to 

disconnect, and significant aggregation of distinct features (eg adjacent houses) remains. 

A greedy (low) threshold causes better road connectivity but blurs houses into roads. 

More conservative thresholds produce neater road segments, but leave gaps, eliminate 

small roads, and still some building and driveways are attached. It was found that the 

Canny edge detector (with a filter size of 7) and Deriche operator (with an a filter size 

of a = 2) using a threshold value of 40% yielded more road boundaries, and tended to 

trace closed contours around houses. 

The very clear edges on both sides of major roads, and many edges of agricultural 

field boundaries and vegetation alignments, streams, buildings, and other terrain features 

may be observed (Figures 6.19 and 6.21). A road is composed of two edges, one on 

either side. Additionally, an edge may not be the edge of a road; any sharp change in the 

grey value of adjacent pixels can be judged to be an edge. Even if all the edges in an 

image are extracted, it is difficult to interpret the result. In a complex scene like urban 

areas which are full of man-made features, many parallel edges can be detected. 

Consequently it is unclear which two edges can be considered to form a road. This shows 

the limit of low level image analysis techniques. They can only use brightness values in 

the image rather than spatial and contextual information available from both from 

humans and GIS data. 
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6.3.2.3 Mathematical Morphology 

Morphological transformation was considered for extraction of boundaries, 

connected components, and the thinning of the line features by skeletonisation. Dilation 

and erosion tools may be described as neighbourhood transformations. To clarify the 

functions of mathematical tools, the results of these operations are illustrated in a subset 

of the extracted line features in Figures 6.13, 6.15, and 6.18. The mathematical 

morphology tools are exploited after edge detection and thresholding to improve the edge 

detection output. 

The ILFDP allows the user to apply the mathematical operations for the binary data 

using the "bwmorph" function. This function (filter) has 512 possible results, one for 

each possible configuration in a 3x3 neighbourhood. It uses the white pixels for hit and 

black pixels for miss configurations respectively. The morphological operators applied to 

the Sobel, Canny, and Deriche filtered output images are shown (Figures 6.13, 6.15, and 

6.18) 

Five basic transformations of binary image are used in this process, namely 

dilation, skeletonisation, bridge, fill, and close. The order of operations and parameters 

used for each operation are as follows: bridge, fill, close, dilation, and skeletonization. A 

single tolerance was used for each operation. Bridge was used to bridge previously 

unconnected pixels. Fill, isolated interior pixels, that is, black pixels that are surrounded 

by white pixels. Close, performed binary closure in the data. Dilation was used to add 8- 

connected pixels to the boundary of binary objects. It helps to join edge segments within 

the binary image. A thinning (eg skeletonization) algorithm keeps the connectivity of the 

lines on an image. These operations help increase accuracy of linear feature detection. 

Application of the morphological operations (MO) over the produced Sobel filter, 

Canny, and Deriche edges with three different thresholds (10%, 20%, 30%) over a rural 

test area, and (30%, 40%, 50%) over a built-up is represented (Figures 6.13, 6.15, and 

6.18). The performance of morphological transformation on the enhanced edges from the 

Canny and Deriche filters over the entire 1982 image of the study area is presented in 

Figures 6.20 and 6.22. 
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6.3.3 Analysis 

(a) Sobel Filtering 

Non-linear edge enhancement algorithms are based on gradient operators. A 

conventional technique is then to estimate two components of the intensity gradient 

vector using the Sobel edge masks. Sobel filtering is one of the better edge detection 

algorithms which represent the spatial derivative edge detectors. The Sobel operator is a 

non-linear edge detection operator, which can be applied to separately estimate the 

discrete gradient both in vertical and horizontal directions in the following matrix form: 

—1 
+2 

0 
0 

1 	—1 —2 
21 H=[ o o 

1 	2 

— 1] 
o 
1 

where H. and H y  are obtained by convoluting the 3 by 3 neighbourhoods in both 

vertical and horizontal directions respectively. The combination of kernels is shown 

below. 

These masks were used to detect the horizontal and vertical edges within the 

image. The Sobel operator allows the user to define edges as places where the first 

derivative of the intensity is larger in magnitude than some thresholds, and places where 

the second derivative of the intensity has a zero crossing. The Sobel edge finding method 

in the ILFDP uses a default estimator that produces consistently good results. The 

regions obtained at 3 threshold values were shown in Figures 6.12. 
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Figures 6.12 Represents application of Sobel filter with different threshold over  a  rural site (a, b, 
c) and an urban site (d, e, f). 
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Figure 6.13 Mathematical morphology operations applied to  the  Sobel filtered  data  over a rural 
site (a, b,  c)  and an urban site (d, e, f). 
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(b) Canny Edge Detector 

Canny's model distributes the edge and non-edge response with a Gaussian 

distribution in order to separate the signal and noise amplitude distribution of the filter 

response from noise and real edges. The optimal threshold for a Canny's operator was 

reported to be 70 to 80 percent by other researchers using hysteresis thresholding; 

however, this may be too high for the imagery used in this research. The hysteresis 

thresholding of Canny tries to keep the edge pixels as continuous as possible. The above 

threshold (70% to 80%) may lead to unconnected edges and may remove very useful 

information. It was necessary to try different threshold values for a homogeneous test site 

(eg the rural site), and a heterogeneous area (eg the built-up area). 

After empirical testing, it was found that thresholding of between 20 to 30 percent 

over a rural site, and 40-50 percent over a built-up area produce edges which most 

closely correspond to real road boundaries. Based upon qualitative and quantitative 

assessment of edge detection results, a threshold value of 40% was chosen to apply over 

the entire image of the study area. 
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Figures 6.14 The result of Canny filtering for different threshold values with a filter of 7 by 7 
over a rural site (a, b, c) and an urban site (d, e, f). 
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Morphological operations over the rural site eg using T = 40% decreased the 

commission errors significantly (Table 6.5). The classification accuracy before and after 

morphologic transformation (at T = 40%) was 81% and 71% respectively, and the 

commission errors before and after morphologic transformation (at T = 40%) were 58% 

and 21% respectively. In the same manner, morphological operations over the urban site 

eg using T = 40% decreased the commission errors moderately when compared with the 

rural site. The classification accuracy before and after morphologic transformation (at T 

= 40%) was 63% and 37% respectively, and the commission errors before and after 

morphologic transformation (at T = 40%) were 78% and 54% respectively. This occurs 

because there are two land cover classes in the rural site, roads and vegetation where the 

contrast is high, while in the urban site there are more than two classes such as buildings, 

cleared land, and construction. Thus, the commission errors after morphological 

transformation was decreased rapidly, and the classification accuracy after morphological 

transformation decreased slightly. 

(c) Deriche's Approach 

In the ILFDA program, the user has three options for the size of the filter or local 

maxima (a) in which a = 2 has the best performance over images here. The Deriche 

operator applied to variety of images with different values of the parameter a 
controlling the width of the impulse response. It is evident that too many edge points are 

being detected, particularly in regions where the contrast is low. Lower threshold values 

present too many pixels which are not true edges. Higher threshold values cause breaking 

connected chains of edge pixels into chains, which is not highly desirable. 

Based upon the study of the literature in this field, the Deriche filter has not yet 

been experimented with for remote sensing imagery. Therefore, there is no evidence that 

benefit can be gained from those filters which were applied with different thresholds. 

The results of the Deriche approach have been applied to the test area with a range of 

threshold (T) (Figures 6.17 and 6.18). It was found that lower thresholds will produce 

too many edges, particularly in the eastern and central portions of image where the 

contrast is fairly low. For example, the best threshold values for the rural site was 20-40 

percent, and for the urban site was 30-50 percent using Deriche filter. It was pointed out 
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by Faugeras (1993) that to tackle the thresholding at the right level, one can keep only 

the edge pixels whose gradient norm is higher than T. Threshold values of 35, 40, 45 

percent were applied to evaluate the edge detection result for the whole image (Table 

6.8). Consequently a 40% threshold obtained reasonable results to carry out 

morphological transformation in order to a generate final classification edge detection 

map. 
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Figure 6.16 The result of the Deriche filtering approach for different threshold values and a = 

0.5, a = 1, a = 2, over a rural site (a, b, c). 
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The classification accuracy assessment showed that the Deriche filter using a = 2 

produced the best result among the above filter sizes (a = 0.5, a =la = 2) for the rural 

site. 
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Figure 6.17 The result of the Deriche filtering approach for different threshold values and a = 
a = 1,a = 2, over an urban site (a, b, c). 

The classification accuracy assessment showed that the Deriche filter using a = 2 

produced the best result from the above filter sizes (a = 0.5, a = 1 a = 2) for both rural 

and urban sites (Tables 6.5 and 6.6). It can be seen that the classification accuracy 
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increases directly if a increases. The a = 2 produced neater edges in respect to noise 

compared with other values of a. For example, if a = 0.5 and the threshold value is 30 

percent, the classification accuracy is 64 percent, and commission error is 46 percent 

whereas if a = 2 and the threshold value is 30 percent, the classification accuracy is 83 

percent, and commission error is 50 percent. In addition, by increasing the threshold 

values, it can be observed that the commission errors increase. This trend is similar in 

both urban and rural test sites. In short, classification accuracy evaluation demonstrated 

that the Deriche filter using an a = 2 produced the most accurate result from the above 

filter sizes (a = 0.5, a = la = 2) for the built-up site. 
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Figure 6.18 Morphological operations over the produced Deriche filter edges over a rural site (a, 
b, c) and an urban site (d, e, f). 
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As with Canny, using Deriche filter edges, the morphological operations over the 

rural site (eg using T = 30%, and a = 2) decreased the commission errors (Table 6.1). 

The classification accuracy and commission errors before morphologic transformation (at 

T = 30%, a = 2) were 83% and 50% respectively, and the classification accuracy and 

commission errors after morphologic transformation (at T = 30%, a = 2) were 64% and 

17% respectively. Similarly, morphological operations over the urban site (at T = 30%, a 
2) decreased the commission errors. The classification accuracy and commission errors 

before morphologic transformation were 45% and 65% respectively, and the 

classification accuracy and commission errors after morphologic transformation were 

19% and 32% respectively. This happens because the rural site contains two classes, 

namely roads and vegetation where the contrast is high, while in the urban site there are 

more than two classes such as buildings, cleared land, and construction. Therefore, the 

commission errors after morphological transformation decreased significantly. 

Classification accuracy evaluation demonstrated that the Deriche filter using a = 2 

produced the most accurate result from the above filter sizes (a = 0.5, a = la = 2) for 

the built-up site. 

The traditional approach of mask convolution has been combined with 

mathematical morphology operations (eg Destival, 1986). The result of this approach is 

fragmentary and error-prone. To overcome these ambiguities, domain knowledge and 

global information about roads and surrounding areas should be used. A qualitative 

(visual assessment/inspection) of the results of image segmentation is presented in Table 

6.7, and a quantitative summary of the results is given in Table 6.8. 
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Figure 6.19 The result of Canny filtering for different threshold values with a filter of 7 by 7. 

Figure 6.20 Morphological operation on detected edges from Canny filtering. 
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Figure 6.21 The result of the Deriche filtering approach for a threshold value of 40% and, a = 2. 

Figure 6.22 Morphological operations over the produced Deriche filter edges. 
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6.3.4 Discussion 

Three edge detectors namely Sobel, Canny, and Deriche were tested on subsets of 

the aerial image. The performance of the Sobel filter was generally lower than the Canny 

and Deriche filters. Based upon this, the analysis over the entire image was undertaken 

on the Canny and Deriche edge detectors. Results showed that Canny was marginally 

better than the Deriche operator. In respect to thresholding values, if threshold = 10% is 

used, many isolated spots are also picked out, because the threshold is too low. However 

when a higher threshold (eg threshold = 20), was chosen, there was much less noise, but 

similar roads are missing too. 

In order to demonstrate the quantitative assessment of image segmentation, the 

classification accuracy for each edge detector, threshold value, and morphological 

operations for both rural and urban test sites were computed (Table 6.5-6.8). This type of 

approach for image segmentation accuracy evaluation is widely used (eg O'Brien, 1991; 

Ton et al 1991; Treitz et al 1992; Harris and Ventura, 1995). The omission error of a 

land-cover type is described as the number of omitted pixels (labelled as the land-cover 

type by the ground truth data but not by the algorithm) divided by the total number of 

pixels in the land-cover type. The commission error of a land-cover type is described as 

the number of commission pixels (labelled as the land-cover type by the algorithm but 

not by the ground truth data) divided by the total number of pixels in the land-cover type. 

The classification accuracy of a land cover type is described as the number of correctly 

classified pixels divided by the total number of pixels in the land-cover type (Ton et al 

1991). Therefore, classification accuracy plus the omission error will sum to 100%. The 

commission error is a separate statistic. 

136 



Edge Detectors 
Data Type 

Classified 	Edge of 	Road 	Networks 
Overall 

Classification 
Accuracy 

Omission 
Errors 

Commission 
Errors 

Sobel, T =10% 0.84 0.16 0.75 
Sobel, T = 10% and MO 0.55 0.45 0.18 
Sobel, T = 20% 0.86 0.14 0.83 
Sobel, T= 20% and MO 0.72 0.28 0.19 
Sobel, T = 30% 0.92 0.08 0.89 
Sobel, T= 30% and MO 0.86 0.14 0.37 
Canny, T = 20% 0.64 0.36 0.35 
Canny, T = 20% and MO 0.45 0.55 0.05 
Canny, T = 30% 0.76 0.24 0.44 
Canny, T = 30% and MO 0.56 0.44 0.14 
Canny, T = 40% 0.81 0.19 0.58 
Canny, T = 40% and MO 0.70 0.30 0.21 
Deriche, T = 20, a = 0.5 0.53 0.47 0.31 
Deriche, T = 30, a = 0.5 0.64 0.36 0.46 
Deriche, T = 40, a = 0.5 0.73 0.27 0.54 
Deriche, T = 20, a = 1 0.67 0.33 0.28 
Deriche, T = 30, a = 1 0.72 0.28 0.45 
Deriche, T = 40, a = 1 0.77 0.13 0.61 
Deriche, T = 20, a = 2 0.71 0.29 0.42 
Deriche, T = 30, a = 2 0.83 0.17 0.50 
Deriche, T = 40, a = 2 0.85 0.15 0.65 
Deriche, T = 20, a = 2, and MO 0.45 0.56 0.08 
Deriche, T = 30, a = 2, and MO 0.64 0.36 0.17 
Deriche, T = 40, a = 2, and MO 0.76 0.24 0.22 

Table 6.5 Accuracy evaluation based on coincidence computations between the existing road 
map and the classified edge detection map for the rural site. 
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Edge Detectors 
Data Type 

Classified 	Edge of 	Road 	Networks 
Overall 

Classification 
Accuracy 

Omission 
Errors 

Commission 
Errors 

Sobel, T=10% 0.75 0.25 0.80 
Sobel, T = 10% and MO 0.21 0.79 0.25 
Sobel, T = 20% 0.81 0.19 0.87 
Sobel, T= 20% and MO 0.42 0.58 0.55 
Sobel, T = 30% 0.94 0.06 0.92 
Sobel, T= 30% and MO 0.72 0.28 0.85 
Canny, T = 30% 0.52 0.48 0.66 
Canny, T = 30% and MO 0.21 0.79 0.36 
Canny, T = 40% 0.63 0.37 0.78 
Canny, T = 40% and MO 0.37 0.63 0.54 
Canny, T = 50% 0.71 0.29 0.84 
Canny, T = 50% and MO 0.40 0.60 0.63 
Deriche, T = 30, a = 0.5 0.34 0.66 0.46 
Deriche, T = 40, a = 0.5 0.50 0.50 0.61 
Deriche, T = 50, a = 0.5 0.62 0.38 0.71 
Deriche, T = 30, a = 1 0.39 0.61 0.55 
Deriche, T = 40, a = 1 0.52 0.48 0.68 
Deriche, T = 50, a = 1 0.63 0.37 0.79 
Deriche, T = 30, a = 2 0.45 0.55 0.65 
Deriche, T = 40, a = 2 0.59 0.41 0.77 
Deriche, T = 50, a = 2 0.71 0.29 0.81 
Deriche, T= 30, a = 2, and MO 0.19 0.81 0.32 
Deriche, T = 40, a = 2, and MO 0.31 0.69 0.43 
Deriche, T = 50, a = 2, and MO 0.41 0.59 0.54 

Table 6.6 Accuracy evaluation based on coincidence computations between the existing road 
map and the classified edge detection map for the urban site. 
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Thresholding (%) Canny 	filter Deriche 	filter 

30 n + + rl+ + r2++ n + + rl+ + r2++ 
C++ d - - c+ + d - - 

40 n+ rl+ + r2++ n+ rl+ 	r2- - 
c+ d - - c+ d+ 

45 n - - rl+ 	r2- - n - - rl- r2 - 
c+ d+ + c - - d + + 

Table 6.7 A summary of the results of edge detection. The +, ++, -, - -, mean high, very high, 
low, and very low respectively. 

Three basic criteria are considered to test the success of each edge detector viz, in this 

approach and are reported in the above table: 

The amount of noise present (n) 

Which types of roads are well presented (r): 

roads (rl) 

tracks (r2) 

3) Capacity of morphological operation 

to connect the unconnected edges or lines (c) 

to remove or connect isolated pixels or dots (d) 

Edge Detectors 
Data Type 

Classified 	Edge of 	Road 	Networks 
Overall 

Classification 
Accuracy (%) 

Omission Errors 
(%) 

Commission Errors 
(%) 

Canny, T = 35% 74 26 67 
Canny, T = 40% 78 22 70 
Canny, T = 45% 80 20 76 
Canny, T = 40% and MO 86 34 35 
Deriche, T = 35%, a = 2 70 30 61 
Deriche, T = 40%, a = 2 75 25 69 
Deriche, T = 45%, a = 2 73 27 75 
Deriche, T = 40% and MO 77 33 43 

Table 6.8 Accuracy evaluation based on coincidence computations between the existing road 
map and the classified edge detection map for 1982 imagery. 

Classification accuracy evaluation helped to choose the best edge detection filter, 

and threshold parameters. According to the previous experimentation with the test sites, 

it became possible to optimise the process of linear feature detection by means of edge 
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detection filter and thresholding. Using Deriche edge detection filter ( a = 2) and Canny 

operator employing three different threshold values based on the introductory experiment 

demonstrated that a threshold of 40% would the most subjective threshold to be applied 

for the whole image. 

Using Canny and Deriche filers, significant confusion occurred between cleared 

land, construction, buildings, and other natural line features (eg field boundaries), as 

evidenced by high classification commission errors (eg if T = 40% for both Canny and 

Deriche filters, then the commission errors were 70% and 69% respectively) (Table 6.8). 

This is not surprising because cleared areas, man-made features and natural line features 

occur within the spectral make-up of road edges. Both Canny and Deriche filters 

generated very similar results. However, it is clear that the Canny edge filter has higher 

classification accuracy compared with the Deriche operator. 

Morphological operations over the Canny and Deriche edges (at T = 40%) 

optimised classification accuracy (Table 6.8). The classification accuracy before 

morphologic transformation (using Canny with a T = 40%) was 78%, and the 

classification accuracy after morphologic transformation (using Canny with a T = 40%) 

was 86%. Similarly, the classification accuracy before and after morphologic 

transformation (using Deriche with a T = 40% a = 2) was 75% and 77% respectively. 

Despite the fact that the classification accuracy after morphological operation for Canny 

and Deriche edges was increased by 12% and 2% respectively, the commission errors 

after morphological operation for Canny and Deriche edges decreased dramatically (by 

45% and 33% respectively). The overall classification accuracy after and before 

morphological transformation was 86% and 78% respectively (with Canny, and a T = 

40%), and 77% and 75% respectively (with Deriche, and T = 40%, a = 2). This 

indicates that the classification accuracy was optimised. The Canny edge detector 

provided better results in comparison to the Deriche edge detector. 
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6.4 Remarks for Image Segmentation 

It has to be acknowledged that remote sensing images particularly in urban scenes 

are very complex. The use of spatial filtering can be affected by the complexity of the 

scene because of noise in the data. Materials along the road with the same intensity as the 

road are problematic where there are objects with similar intensity as roads. This 

problem also occurs at intersections where two roads with similar material meet. If the 

area is a mixture of urban and residential, then the problem of feature detection becomes 

much more difficult. Edge detection and mathematical morphology have been used; 

however the output is noisy and incomplete in high density residential areas. The noise 

effect is a common problem in road detection. Noise causes small isolated blobs of 

pixels to be recognised as roadlike segments. In the process of removing noise, small 

segments or real roadlike structures might be missed. 

A number of edge detection techniques and morphological operations were 

examined. The ILFDP algorithm presented here is the first step of a more complex 

process of pattern recognition in road networks and linear features mapping. A major 

limitation of line and edge filters is the need for optimal selection of thresholds for 

feature extraction. The size of filter (in Deriche and the Canny) and the threshold levels 

play the most important roles in the edge detection process. This program is able to 

detect edges of roads, field boundaries, and rivers. The processed data (after 

morphological operations) has been used as an additional GIS layer for decision tree 

implementation. 
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Chapter 7 

SPATIAL DATA PROCESSING: CONSTRUCTION OF A DATABASE FOR A 

KNOWLEDGE BASED ENVIRONMENT 

Detecting features on remotely sensed imagery is highly dependent upon the type 

of object, size, association, shape, tone and intensity. This chapter describes the 

procedures used to construct the knowledge-based data set using a grid raster-based 

processing approach. It covers the process of data capture, manipulating, integrating, 

converting, and generating ASCII data files. A cell size of 2 metres was used for the 

output raster layers to enable integration of this data with the georeferenced air photo 

data. The multiple ASCII files were converted into a single formatted ASCII file to be 

interfaced with decision tree software. 

7.1 Spatial Data Construction 

The process used to prepare data is depicted in Figure 7.1. 
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Figure 7.1 Schematic of the data preparation. 
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The spatial data processing and manipulation can be categorized into the following 

steps: 

7.1.1 Data Entry 

The first step in a GIS project is data capture. This phase (data entry in both raster 

and vector) is one of the most costly, time-consuming and tedious tasks in the 

development of GIS in any project. 

Two sets of aerial images (1982 and 1991) were acquired at a scale of 1:42000. 

The B/W air photos were scanned with 500 DPI and stored in a 25 MB TIFF format. 

The digital vector data was provided by TASMAP in Integraph Design Files 

(DGN) format, and all available vector data layers were converted into ARC/INFO files. 

7.1.2 Database Development 

A sub-region for each image was separately created for the process of polynomial 

rectification, affine transformation and rubber sheeting. The test area measured 3 km by 

2 km. 

Figure 7.2 The study area. 
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The final geocoded product from the process of rectification and registration in 

ARC/INFO, was in ARC/INFO grid format files (Chapter 6). All data were registered to 

a Universal Transverse Mercator (UTM) projection (zone 55). 

Additional data was acquired by digitizing from geocoded imagery. All vector and 

grid processing was undertaken using ARC/INFO software. The following coverages 

were generated by screen digitizing: 

field and vegetation boundaries 

land use boundaries based on the 1982 image. 

An edge matching technique was used to join the map sheets. A rubber sheeting 

algorithm was used to align features on the edge of coverage (eg Flowerdew, 1991). The 

coverage was joined by using the EDGEMATCH tool in ARCEDIT. Ultimately each 

network coverage including road network, streams, and contours maps was precisely 

edge-matched to form a single output coverage (layer) where these maps were required 

for creating an orthophoto (Chapter 6). 

All digitized data was carefully verified and topologically corrected. This process 

ensured there was no missing data, no extra data, accurate data, connecting features, each 

polygon had single label point, and all features were within the outer boundary. BUILD 

and CLEAN commands were used to create topology of the coverages. Error detection 

included node errors, unclosed polygons, label errors (missing label and too many 

labels), dangling nodes (overshoot and undershoot) and pseudo nodes. 

7.1.2.1 Editing Road and Stream Coverages 

The roads coverage provided by TASMAP was updated based on 1984 map 

compilation. Since existing digital roads did not correspond with the 1982 imagery, the 

roads from the roads vector data that were not on the 1982 image, were eliminated. Also, 

the road segments that did not appear on the available digital data, were digitized and 

edited into the roads coverage. This step was critical for implementation of decision trees 

in this research since the roads coverage was used as the training data set. The supplied 

digital drainage network coverage was not complete. It was updated from the 1982 image 

and verified by the control points from the topographic map. 
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Figure 7.3 Road networks in a line form overlaid on the georeferenced image for a subset of the 
study area. 

Figure 7.4 Road networks in a buffer form overlaid on the georeferenced image for a subset of 
the study area. 
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Because roads in the study area have different width, the roads vector coverage was 

overlaid on the geocoded 1982 image, and every road segment was labelled with a 

specific distance for its width based on visual assessment. The road networks in a line form 

superimposed on the georeferenced image for a subset of the study area can be seen in 

Fogure 7.3. The roads were classified into eight categories with buffer distances ranging 

from 1 to 8 metres as shown in Table 7.1. The buffer zones created using this technique 

are shown superimposed on the subset of georeferenced 1982 image in Figure 7.4. 

Record # Class of roads Distance for buffering in 
metres 

1 1 8 
2 2 7 
3 3 6 
4 4 5 
5 5 4 
6 6 3 
7 7 2 
8 8 1 

Table 7.1 Buffer distances and road class. 

A constant buffer distance of 1.5 m was used for the stream coverage to provide 

polygons of the same width. The field boundaries were also buffered with a distance of 

1.5 metres. 

7.1.2.2 Land Use Delineation 

The map of land use/cover was developed from the B/W aerial photographs 

recorded in 1982, and a topographic map released in 1987 by screen digitizing (Figure 

7.5). A supplementary colour air photograph (1984) was used to aid visual interpretation. 

The photographs were interpreted under high magnification, and each polygon was 

manually classified based on the type of land use. A vector land use map coverage was 

produced and digitized from the interpretation of aerial photographs. The following 

classes were extracted from the 1982 image (Table 7.2). 
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Class 	 Abbreviation (the attribute in the PAT table) 

Urban land 
I-1 Residential 
	

U re 
1-2 Commercial 
	

U co 
1-3 Industrial 
	

U in 
1-4 Recreational 
	

U rec 
1-5 Educational 
	

U ed 
1-6 Utilities 
	

U ut 
Clearing and Developing areas 

	
Cl/De 

Agricultural land 
2-1 Forest (timber lands) 
	

Ag fo 
2-2 Grasslands 	 Ag gr 

Water 
3-1 Rivers 
	

W ri 
3-2 Lakes 
	

W la 

Table 7.2 Land use/cover classification scheme for visual classification of B/W photography. 
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Figure 7.5 Map of land use/cover of the area generated by manual interpretation of the 1982 air photo. 
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7.1.2.3 Rasterization and Resampling 

All the processed vector data layers were converted into raster form (ARC/INFO 

GRID Format) for incorporation into the KBS. Deciding what cell size should be used, is 

one of the crucial decisions to be made when using cell based GIS processing. Applying 

RESAMPL function in GRID prompt, all data were resampled into 2 pixels, which is 

compatible with the scale and the resolution of the aerial images in order to provide 

integrity for the database. The categorical data (eg buffered roads, land use/cover) were 

resampled by the nearest-neighbour technique. The continuous (surface) data (ie DEM) 

were resampled by bilinear-interpolation. 

7.1.2.4 Creation of Surface Data 

The TIN coverage was converted into TINLATTICE (DEM) with a 2-metre grid 

cell resolution. The quality of DEM was not satisfactory. Thus, a second technique which 

involves using an interpolation method was applied. The TOPOGRlD tool was used to 

generate DEM using stream networks and the contour coverage. Three dimensional (3D) 

perspective views of terrain were created with ARC/INFO and the area displayed as a 

viewframe display. A Z-exaggeration factor of one was used to portray subtle change in 

landscape elevations (Figure 7.6). 

Figure 7.6 A perspective view of the synthetic surface of the area. 
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After the gridding process, seven principal map features were created, namely land 

use/cover, DEM, grey level image, roads, field and vegetation boundaries, streams, edge 

detection data. 

7.1.2.5 Processing and Manipulating Raster Grid Data 

To reduce the amount of data for later processing by KS, the DEM data was 

filtered (rounded) through by INT function which converts input floating-point values to 

integer values through truncation on a cell-by-cell basis within the analysis window. 

Initial grid processing included reclassifying (eg land use), and subsetting (eg 

creating subsets of the data). 

7.1.2.6 Conversion of Raster Grid Data to ASCII Files 

KnowledgeSEEKER (KS) provides users with an import format file to predefine 

the field names and field locations when importing many similar data files, or processing 

data with many fields. KS software reads dBase (dbf) compatible files, Lotus 1-2-3 

(wk 1), Lotus compatible files, Paradox files in their native format, and Delimited ASCII 

files. In addition, SPSS files stored in binary format can be imported into KS. 

All of the remote sensing and geographic information systems data should be in the 

same format files in order to make the process of data conversion to knowledge based 

system practical. Accordingly, a database was constructed to be employed for feature 

recognition. The database was composed of seven fields or variables. 
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7.1.2.6.1 Pre-Processing of ARC/INFO ASCII Data for KS 

Software 

The mechanism of data importation from ARC/INFO to KS is not straightforward. 

Since ARC/INFO ASCII files are not compatible with KS, a program was written to 

create a tabular ASCII file for direct input to KS. One way of structuring this data for KS 

is to import files as tabular ASCII format. Thus, the data must be in attribute tabular 

format to be imported into KS. The data from ARC/INFO was in the form: 

layer1 pixelsl, pixels2, pixe13, ...pixelm 

layer2 pixels1, pixels2, pixe13, ...pixelm 

layerm pixels1, pixels2, pixe13, ...pixelm 

Those layers must be structured to look like this: 
Index_No field1 field2 field3, ...fieldn 

Where Index_No refers to the sequential location of the observation in the original table 

(data). 

In order to load the grid ASCII data from ARC/INFO into KS, a FORTRAN 77 

program was written (Appendix D) to independently generate tabular ASCII data (eg 

Table 7.3) from the input files. 

Roads Edge Photo Streams Fieldb Land use DEM 
-9999.00 -9999.00 23.0000 -9999.00 -9999.00 7.00000 8.00000 
-9999.00 -9999.00 23.0000 -9999.00 -9999.00 3.00000 8.00000 
1.00000 1.00000 56.0000 -9999.00 -9999.00 6.00000 27.0000 
1.00000 1.00000 56.0000 -9999.00 -9999.00 6.00000 27.0000 
1.00000 -9999.00 64.0000 -9999.00 -9999.00 4.00000 31.0000 
-9999.00 -9999.00 12.0000 1.00000 -9999.00 11.0000 1.00000 

Table 7.3 Subset of a sample database for input into KS. 
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7.2 Summary 

This chapter described the procedures used to prepare GIS data for input into the 

KnowledgeSEEKER program for decision tree analysis. 
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Chapter 8 

EXPERT SYSTEMS DEVELOPMENT: DECISION TREES 

The Decision Tree Processing Expert System (DTPES) was used to map out road 

distributions over an urban to rural area. A multi-source database was employed using 

Geographic Information System (GIS) data and remote sensing imagery. The 

independent data set comprised six fields (variables) which attempted to represent 

contextual, textural and geometrical characteristics of the knowledge-based data. A 

tabular ASCII data file was interfaced with a knowledge-based environment for creation 

of a classification tree. In the process of decision tree analysis, the input data was 

recursively partitioned into mutually exclusive exhaustive subsets which would define 

the best response variable. The resulting classification tree was used to generate generic 

rules for implementation of DTPES. Each rule is a representation of each node in the tree 

that describes a class (the presence and absence road pixels) or pixels of the grid data. 

The spatial distribution of these pixels was mapped out to show areas with roads and 

their background. The program computes the overall classification accuracy based on the 

reference data. Finally, the produced image was imported into a GIS environment for 

overlaying the road reference map on the predicted roads for visual interpretation. 

8.1 Introduction 

Currently, researchers are using knowledge-based rule image analysis techniques to 

encode rules used by human interpreters which can be used by a computer for feature 

extraction. To solve a spatial image recognition problem such as the detection of linear 

features and extraction of roads from image data, human analysts rely on their expertise 

in combining external data sets such as topographic maps and land-cover classification. 

Such data are currently stored in GIS. A specific rule-relation such as KS reveals would 

usually show up as IF AND THEN or two in-contexts determined by the field of 

interest. The rules can have some measure of uncertainty associated with them. It is 

necessary to filter out of the knowledge base biases that are imparted by the unique views 

and values of the experts who are the resource of the knowledge that constitutes 

knowledge bases. 
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This chapter explores the role and capability of an integrated GIS approach using a 

decision tree method for recognition of roads from aerial photography. The input for the 

decision tree is a set of data from remote sensing imagery and a database from spatial 

information systems. A decision tree was generated and processed by KS software. The 

GIS layer is used as the knowledge source to map out roads, using an inductive approach. 

Predicted values are required for each of the observations in the dataset. These are then 

converted into an image format. The simplified KS-generated rules which are the key 

rules for implementation of a "rule-based expert system", namely the DTPES program 

which derives prediction of roads distribution over an urban to rural area. Decision rules 

from the output files were programmed, and the program was run through the database to 

obtain predicted values. MATLAB environment was used as a shell tool for constructing 

the DTPES program. The DTPES consists of two subroutines, namely ks2mat.m and 

dtpes.m which can be seen in Appendix E. 

Previous research on road delineation, including detection and tracking using non-

machine and machine learning techniques was reviewed in Chapter 2. The technique of 

this research works well in prediction and mapping of roads when roads pass through a 

rural area where the contrast is high, but fails in urban areas where the roads are confused 

with man-made structures. 

8.2 Developing a Knowledge-Based System 

8.2.1 Basic methodology 

A database was created using GIS and RS datasets employing ARC/INFO 

software. The knowledge-based system uses a decision tree approach and involves 

developing an expert system to predict roads from the database. The methodology for the 

use of decision trees for this study involves several steps: 

Geometric correction of the aerial images (Chapter 6), 

Construction of a data set for a knowledge-based software (Chapter 7), 

Spatial data interfacing with a decision tree environment, 

Generation of decision tree or a learning set, 
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GIS Layers 

DATABASE 

Tree-pruning procedure; a test case is performed down through the tree and the rules 

simplified, 

Rules collection and encoding in MATLAB language to construct an expert system, 

The expert-rule-based system is tested over any set of new examples, 

Displaying of the output of rules induction, 

Computing the overall classification accuracy, 

Overlaying the output of DTPES on - the referenced roads map. 

A model of a knowledge based system approach (an expert system development) 

undertaken in relation to remote sensing and GIS is shown in Figure 8.1. 

RULE INDUCTION 
Decision Trees _} 

(USER INTERFACE 

EKS2MAT Filter 

             

             

             

             

             

KNOWLEDGE BASE 
obtained from GIS 

analyst 

          

   

MATRULES 

  

             

             

r‘ 	 DTPES 

/Predicted Roads 

Figure 8.1 Flow diagram of the expert system construction in this study. 

In the above model, the interface of GIS and remote sensing data was conducted to 

develop feature recognition using rule-based techniques and a decision structure. The 

model consists of three main functions namely, spatial attributes data, rule induction and 

inferencing. 
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1. Spatial Attributes Data (Data Layers) 

The first component is a database composed of GIS and remotely sensed data both 

in raster and vector form. The GIS analyst interacts with structuring of this data based on 

his/her knowledge and experience. This phase of knowledge acquisition was a major 

issue in the development of the methodology. Gathering information from an expert is a 

means by which knowledge is to be acquired and represented. The GIS analyst collected 

evidence from the image and spatial data was inferred from the principal elements of 

interpretation. To maintain high identification of features, the interpreter relies on the 

information and the experience obtained from the image, familiarity with the site and 

field visitation, and any supportive spatial data. To avoid error and inconsistency from 

the visual based methods caused by differences in the interpreter's knowledge and 

experience, rigorous procedures and guides can be set out. However, these types of keys 

may not be available for all land cover types. 

Clearly, GIS analysts use their knowledge concerning roads, particularly the 

relationships of roads to other features such as buildings, parks, rivers, lakes, field 

boundaries etc to help with the identification of roads. Discrimination of roads between 

urban and rural areas is also important. Prior knowledge of the topology of road networks 

(ie width), approximate location, direction, terrain type, and scene elevation was used in 

this study to assist discrimination of roads from other linear feature. 

The knowledge-based attributes data were used in the development of the 

methodology of this thesis. The GIS data and remote sensing imagery were applied to 

build a database. The database locates seven attributes (layers) which include: aerial 

imagery (intensity/contrast), roads, land use/cover, field and vegetation boundaries, edge 

detection data, streams (drainage patterns), DEM. Geometric, spectral, and spatial 

characteristics were taken into consideration when building attributes for the knowledge-

based analysis. The major knowledge-context data (layers) are as follows: 

1. Contrast or intensity (lightness and darkness) and strength (average contrast). To 

support this, spectral data (aerial imagery) was incorporated into the database. Roads 

against a background (eg vegetation) with high reflectance were easily detectable but 

became indistinct when they passed areas of similar or low reflectance. For example, 
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roads between two rows of houses in a dense urban area have a similar grey level. 

Thus, it was more difficult to recognise the roads in an urban region than a rural area. 

Other examples are old roads which have high reflectance values and no vegetation 

cover. New roads in general have less reflectance and are normally partly covered by 

vegetation. Visibility of roads can be affected by a number of parameters such as sun 

angle, look angle and surrounding vegetation. The optimal time of year, and optimum 

look angle for street visibility is a concern. Low sun angle or a large off-nadir view 

angle can affect the amount of shadow of buildings and trees. 

Geometry or topology of roads (eg width, connectivity). The geometric shape of roads 

is an important factor for a contextual classification. Functional requirements, 

ecological and engineering limitations affect the geometrical and physical form of a 

road. For example, slope, width, and the local curvature of a road all contain an upper 

bound. Intersection of roads is another example, as rivers do not intersect one another, 

rather they join. The existing road-map was added to the knowledge-based data. 

Referenced road maps contain clues as a guide for the image analyst to recognise 

analogous roads according to photometry and structural characteristics and other 

parameters. To maintain a better topology of the roads, it was necessary to use a 

multi-distance buffer technique in the process of spatial data construction (Section 

7.1.2.1). As discussed earlier, road segments were buffered into 8 distances (1-8 

metres). Based on the visual interpretation of the image and existing road map, there 

are three major road classes which can be identified:(1) major roads such as highways 

or railtracks that are usually long, straight and wide (about 10-16 m wide), (2) local 

roads: two lane paved roads (about 5-10 m wide) that may have smooth curves and 

are also long; (3) minor roads; access roads, commonly unpaved and short, 

(approximately 2-5 m wide). ARC/INFO provides two commands that create topology 

of a coverage. For example, undershoot errors can be rectified using these functions. 

This maintains connectivity of road segments in the road coverage (layer). 

Land use (location and density). An overall land cover classification using visual 

interpretation was undertaken and the developed data was incorporated into the 

database. The area was divided into 11 classes on the basis of land cover/use. These 

heuristic rules imply typical ways to substantiate road network delineation. But this 

model may not be sufficient for roads which do not exist on maps and extend over 
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more than one region. Generally, the density of roads is related to the type of land use. 

For example in a high density urban area, roads are likely to be more complex and 

dense, while in rural areas and in steep terrain the number of built roads is less than 

in urban areas. Fundamentally, three dimensions of complexity are involved in road 

extraction on remote sensing data: 

Image quality: this varies in terms of visibility, resolution, contrast. 

Road density: depending upon the area under investigation (rural, urban, 

rigorous terrain), different densities exist. 

Road complexity: roads may have very different outlines, from straight 

lines such as highways and railtracks to sinuous, partially occluded line 

structures such as mountain roads. 

Land-cover/use may be associated with given types of land cover, and to the position 

and shape of the real world. Different types of land cover can be associated with 

different types of road network topology. As an example, a road network in an urban 

area and a network in a rural environment are likely to be structured differently: many 

crossroads connected to many road segments; one central lane and many branches 

respectively. This contextual information assists to distinguish roads from other 

detected features. 

Field and vegetation boundaries. Field and vegetation boundaries in remote sensing 

imagery appear as line features. When using an edge detector, these features can be 

misclassified as roads because of their sharp contrast with the background. Thus, it is 

useful to include field boundaries in the database. 

Drainage pattern (streams). The drainage pattern was also incorporated, and has an 

effect on the appearance of road structures. Roads normally follow contour lines in 

valleys and are less curved than channels and rivers. These fundamentals are essential 

to apply in road construction in order to minimise the number of bridges to be built on 

road-river crossings. Collinearity and connectivity were considered, and drainage 

networks were used to avoid confusion of water and bridges as a road segment may be 

bounded by water. 

Edge detection data. Image segmentation techniques were employed via developing a 

computer program for primitives extraction (road edges) to generate an additional GIS 
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layer. Linear structures are made up of two parallel edges and usually represent 

highways, channels and large rivers using edge detection data. 

7. Digital elevation model (DEM). Topography has an effect on the appearance of road 

structures. As mentioned, roads normally follow contour lines in valleys and are less 

curved than channels and rivers. The DEM can be used to indicate plausible road 

tracks in an image. In a mountainous area, a road between locations eg towns and 

countryside having almost the same altitude commonly follows a line of the same 

altitude. In an area with high slope (very close contours), a line is unlikely to be a road 

unless it is approximately parallel to the contours. However, there are exceptions. For 

example, line elements, like fire lanes in forestry, are known for their slopes 

perpendicular to the relief. Therefore, a DEM was employed to direct the photometric 

extraction of a road. Lines can have slope values in a limited interval to be 

characterised as road candidates. 

Table 8.1 summarises the key points made in the above discussion of spatial 

attributes data (data layers). 
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Variables (Fields) Characteristics 

Aerial Photography The image contains grey level information including contrast and 
strength characteristics. 

Road Networks The roads in the database locate geometric (topology) characteristics 
such as width and connectivity. For example, to maintain width of 
the roads, a multi-distance buffer technique which buffered the road 
segments into 8 distances (1-8 metres) was used. This provides the 
width characteristic in the database. When using Build and Clean 
functions in ARC/INFO, connectivity of line (road) segments can be 
maintained by rectifying undershoot errors. 

Edge Detection Data Roads are made up of two parallel edges. In edge detection data, the 
characteristic of parallelism partially exists (refer to Section 6.3). 

Land Use/Cover Different types of land cover can be associated with different types 
of road network topology. As an example, a road network in an 
urban area and a network in a rural environment are likely to be 
structured differently: many crossroads connected to many road 
segments; one central lane and many branches respectively. 

Field and Vegetation Boundaries Field and vegetation boundaries in remote sensing imagery appear as 
line features. When using an edge detector, these features can be 
misclassified as roads because of their sharp contrast with the 
background. Thus, it is useful to include field boundaries in the 
database. 

Drainage Pattern (Streams) Drainage pattern has an effect on the appearance of road structures. 
For example, roads normally follow contour lines in valleys and are 
less curved than channels and rivers. Drainage networks help to 
avoid confusion of water and bridges as a road segment may be 
bounded by water. 

DEM Topography has an effect on the appearance of road structures. As 
mentioned, roads normally follow contour lines in valleys and are 
less curved than channels and rivers. The DEM can be used to 
indicate plausible road tracks in an image. In a mountainous area, a 
road between locations eg towns and countryside having almost the 
same altitude, commonly follows a line of the same altitude. In an 
area with high slope (very close contours), a line is unlikely to be a 
road unless it is approximately parallel to the contours. Therefore, a 
DEM was employed to direct the photometric extraction of a road. 
Lines can have slope values in a limited interval to be characterised 
as road candidates. 

Table 8.1 The seven variables or attributes (layers) existing in the database. 
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Rule Induction 

The second part is rule induction, which will be explained in Section 8.2.3. This part 

is concerned with knowledge representation and display production which are driven by 

decision trees using the spatial database. To date, GIS has generally been deductive 

rather than inductive. Deductive structures are those in which a known general 

relationship is employed for particular observations. This allows the users to ask 

questions requiring the identification of all areas in which a known relationship or 

desired set of premises are satisfied. On the other hand,. inductive structures deal with 

finding general rules based on the training examples, and then correctly predict or 

classify new examples. 

Inferencing 

The third component dealing with knowledge inferencing is called the inference 

mechanism, and uses rules of inference. In this phase, the information generated and 

collected from the prior phases was aggregated in a rule-based view to maintain 

consistency and reliability of use of multi-source data in feature recognition. 

A forward-chaining process was considered in order to evaluate all rules for a given 

pixel. The computation time linearly increases as the number of grid cells increases. The 

forward chaining (bottom-up) search was time consuming since it led to a large number 

of hypotheses. This is particularly important, if the database is large in terms of number 

of pixels and the number of rules is great. For example, if there are 7 data files, and the 

size of every file (grid) is 1000 by 1000 cells or pixels, then a total of 7000,000 pixels 

has to be processed. In addition, the more rules there are, the more computation time is 

required. In practice, it is tedious and time-consuming to use such a database since it 

requires a powerful computer with enough RAM, enough hard drive space, and 

considerable processing time. Thus, it was necessary to experiment with a small subset 

of the data. 
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8.2.2 Input Data for Decision Tree Analysis 

A total of seven variables was held in the database. The variables constructed as the 

raster database that were used in the analysis are as follows: 

road networks from a topographic map 

the georeferenced 1982 and 1991 images 

land use/cover, terrain, digitized from the 1982 aerial photo 

drainage pattern built from the digital streams, and a topographic map 

digital terrain model (DTM), built from the digital contour map with 10 m intervals 

field (vegetation) boundaries and vegetation digitized from the 1982 image. 

Two sets of detected linear features (from 1991 and 1982 photos) were made, and 

stored in GIS. Edges were detected by implementation of the ILFDA program under 

MATLAB environment. 

Initially two additional variables, namely slope and aspect, were applied in the 

analysis. However using these two particular variables caused the classification tree to 

become very bushy, and made the analysis more difficult. Experience showed that by 

excluding these two variables the classification accuracy was not increased significantly 

(only 1%). Therefore, it was decided to exclude slope and aspect from the analysis. 
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8.2.3 Decision Tree Environment and Interfacing a GIS Database 

The input for the KS is a tabular ASCII data file which is defined to KS by the 

width of each column. In the following example, the field widths of the seven fields are 

12, 11, 11, 11, 11, 11, and 11(78 characters in each record). Once the data is imported 

into KS, dependent variables can be selected to begin the analysis. 

Dependent field 
(I) 

Independent fields (J) 

roads photo edge streams fieldb landuse DEM 

1.00000  1.00000 1.00000 -9999.00 -9.0000 8.00000 125.000 
1.00000  1.00000 1.00000 -9999.00 -9.0000 8.00000 125.000 

1.00000 1.00000 -9999.00 -9999.00 -9.0000 8.00000 125.000 

Table 8.2 Sample of GIS data used for Decision Tree Analysis 

8.2.4 Generation of Decision Tree: Tree Growing and Analysing 

Most decision tree analyses are supplied with a dataset consisting of an I dependent 

(response) variable or field (eg roads) and N independent (predictor) variables or fields, 

J1, J2, J3, ...Jn. Decision tree algorithms may produce a binary tree (two-way splits) or 

multiway partitions (k-way). For example, CART generates only two-way partitioning, 

while classic AID-type (eg KS) algorithms work on k-way splits. The statistical 

significance testing employed in the KS algorithm allows the users to gain the clustering 

method to cluster values of partitioning variables together. In this correspondence, splits 

in the classification tree establish groups of values in partitioning variables that are 

statistically the same yet are statistically different from other groups of codes that build 

the branches of the partition (refer to Section 4.2.3.1). Thus, this effect can be referred to 

as "k-way" partitioning of the decision tree. 

The building of a decision tree is based on training data, composed of a large 

number of positions together with their corresponding known classification. KS performs 

the classification in a similar way to other heuristic rule generators such as top-down 

induction of decision trees (TDIDT) algorithms, which are a more successful form of 

attribute-based learning. Using KS the spatial data were analysed and classified by 

finding the best attribute with the highest information content and locating it at the root 

of the tree. The building procedure in KS was begun at the top node of a tree with a 
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whole training set, and progressed by recursively creating successor nodes through 

splitting the training set into subsets of increasing classification purity. The mechanism 

was terminated when all the newly created nodes were terminal ones, contained 

sufficiently pure learning subsets. 

In the course of this work, a number of classification trees were generated from 

each learning sample for the analysis sites. Figure 8.2 shows the part of a decision tree 

that represents the presence (roads) and absence (road background) of road pixels. This is 

included for illustrative objectives only. 
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Figure 8.2 Part of a 65-rule model shows as a simple decision tree. 
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In this example of classification tree, the first rule determines the absence of roads 

(background) and presence of roads as 79.7% and 20.3% respectively; if the intensity 

(grey value of photo) is between 12 and 20, and the edge is 1 and -9999, then out of 59 

pixels, there is a chance of 79.7% absence of roads and 20.3% presence of roads. By 

looking at the other branches of the tree, it can be seen that the intensity is the strongest 

way of characterising roads: the more intensity increases, the more likely roads can be 

mapped. In the second split from the first level of the tree, the association of elevation 

appears: if the intensity is between 20 and 22, and the edge is 1 and -9999, and the DEM 

is 1 to 91, then 97.7% of pixels are classified as non-roads and 4.3% are classified as 

roads. 

It appears that the number of observations in some of the rules are not sufficiently 

high. It is due to the nature of the dataset used in the decision tree analysis. For example, 

on the lower part of the classification tree (the third subsets), the DEM is broken down 

into three branches; in the second branch (rule_4); if DEM is between 91 and 110, there 

are four pixels in this rule. Among these pixels, 25% of the observations are classified as 

absence of roads and 75% as presence of roads. 

In this research, the classification trees were grown from GIS data using a recursive 

partitioning algorithm to create decision tree models which give a good prediction of 

classes on some of the new data. The dependent field was treated as a categorical data 

type and the independent fields are either ordinal or categorical. Construction and 

application of the decision tree is separated into two major steps: 

initially all the available records are randomly broken down into learning 

examples and test examples. A learning set may be applied with heuristic rules to 

achieve a decision tree. Then a test set is performed through the tree and the rules 

simplified. 

the tree is employed to classify any new samples. 

Tree growing involved applying training sets to build a tree. This stage was over-

grown, in the sense that the induced trees were too large. Such trees can be named to 

track noise in the data. Tree induction performance on training data was found to be a 

misleading induction of true predictive accuracy. As a complex tree achieves high 
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accuracy on training data, it often fares worse on fresh data than an uncomplicated tree 

which performs less spectacularly. This is due to the complicated tree reflecting true 

underlying relationships and patterns which arise purely by chance. 

The next step was a pruning procedure used to avoid overspecialised definition and 

to remove noise. Pruning includes cutting off those branches that are not statistically 

grounded. In most applications, the existing mapping data represents a small portion of 

all possible observations. As a result, input from experts is necessary to ignore over-

generalised or over-specialised induction rules. Noise is an essential parameter that was 

taken into account where attribute and class values were subjected to misclassification. 

The consideration of noise however, makes it problematic to differentiate a large set of 

examples from correct special cases. 

Automatic tree growth was shown to generate a lot of questionable nodes or rules, 

in terms of interpretability. Since each field in the database had just one value per record, 

a rule making reference to two or more range bounds may not always be identical. As the 

accuracy of a classification tree increases with the number of terminal nodes and a bushy 

tree will clearly be more accurate than the sequence of subtrees, the tree was often 

pruned by an erase function at each node. The splits which are borderline or suspect were 

ignored and this cycle continued through 2nd and 3rd attempts for each node in order to 

end up with a rule-set that was more manageable. For building expert systems, 

dependency and simplicity are required. This suggests stopping even before running out 

of significance; ie about 3-4 levels down in the tree should be considered. This kind of 

tree is simpler, only showing the very strongest effects, and probably makes most sense 

from a theoretical point of view. The presence and absence of roads was modelled by the 

learning sample. It was preferred to grow and then test, grow then test, and so-on. This 

way growth was stopped when marginal improvements in accuracy started to occur. 

Given the input of the database for generating a classification tree for this research, 

it helped to prune the tree from one node at a time, and the meaning of the variables 

involved was kept in mind. The KS allows the user to start from a given node and 

remove the next split. In particular, in a tree generated by automatic growth it may be 

found that, for a given node, none of the suggested splits are realistic. Either noticing the 
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absence and presence of roads is getting too small for some branches, or there is no 

meaningful interpretation for splitting the data that way. This approach gives a terminus 

for that branch. 

8.2.4.1 Cluster and Exhaustive Methods 

The KS automatically looks through all variables in the database and detects those 

associated with the independent variable. It uses the methods of two-way (cluster) and k-

way partitioning. To make the analysis, ideally both cluster and exhaustive methods 

should be applied to identify the codes that form the nodes and branches of the 

classification tree. These choices generate a split for each potential partitioning variable. 

In the first phase, the exhaustive method was used since it is not overly 

conservative and explores all of the fields that have a statistically significant relationship 

with the dependent field. The exhaustive method (multi-way partitioning technique) 

tends to produce a tree with more branches in comparison with the cluster (heuristic 

method) technique. The major shortcoming of the exhaustive technique is that it is a 

more time-consuming process. In contrast, the splits formed are empirically stronger than 

heuristically derived splits. In exhaustive splitting, all possible combinations of variable 

values are taken into account, making this approach more costly. 

The cluster technique was applied to find the maximum similarity within the 

groups and dissimilarity between the groups. The cluster method utilises pair-wise 

merging and partitioning. In other words, the cluster method was used to find the most 

natural patterns of codes for the significant variables. The "prediction filter" which 

represents the relationships is valid with a 95% certainty rating, as applied to grow the 

classification tree. This significance setting produces almost no misleading results. 

However, this setting still generated a bushy tree which made the analysis, interpretation, 

and communication of the results difficult. To overcome this problem, the significant 

setting was changed to 0.01 (99%) instead of 0.05 (95%). This setting filters out any 

relationships that are not at least 99% significant, and produces a less bushy tree. In spite 

of the previous work in the area of decision trees, the cluster method provided better 
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accuracy, despite the fact that it has been reported that the cluster method is overly 

conservative and some significant relationships may be missed. 

8.2.5 Expert System Construction: Storage of Output of the Induction Rules 

8.2.5.1 Knowledge Acquisition and Representation 

• The next step in this method is to convert the classification decision tree into a 

programming set to build a rule-based expert system and develop a procedural code to 

execute instructions against a database. A rule is a combination of knowledge that 

represents an antecedent or condition and its immediate consequence or conclusion. 

Rules in the knowledge base contain separate IF and THEN parts or a more sophisticated 

form. The examples below demonstrate the representation rules which were used in 

network design knowledge in the DTPES. Examples of generic rules used in the 

construction of an expert system are shown below: 

RULE_16 IF 
photo82 = [24,26) 
edge = -9999.00 
DEM = [1,110) 
landuse = 7.00000, 9.00000, 11.0000 or 1.00000 

THEN 
road background = -9999.00 75.0% 
roads = 1.00000 25.0% 

RULE_17 IF 
photo82 = [24,26) 
edge = -9999.00 
DEM = [1,110) 
landuse = 8.00000 

THEN 
road background = -9999.00 99.6% 
roads = 1.00000 0.4% 

RULE_25 IF 
photo82 = [26,29) 
edge = 1.00000 
DEM = [131,139) 

THEN 
road background = -9999.00 0% 
roads = 1.00000 100% 
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Figure 8.3 Illustration of the end node for rule_17. 

Rule_17 indicates there are two categories including road background (-9999) and 

roads (1). In this rule there are 669 records, or observations. In the landuse analysis, 

99.6% fall into the road background category and 0.4% fall into the last category. This 

node display also tells the GIS analyst that of the 669 observations in the database, 

99.6% have road background category (666 records) and approximately 0.6% have road. 

As seen in this rule and in Figure 1 at Appendix F, the intensity attribute is the strongest 

way of characterising roads: the larger the DN, the greater the chance of roads. 

To design DTPES, MATLAB was used as a shell tool to develop a machine 

induction program. The above generic rules were clearly formulated by IF... THEN or 

IF-AND-THEN statements. Thus, the rules in the knowledge base contain separate 

CONDITION and ACTION parts, where these rules are encoded in MATLAB language 

to develop DTPES. This symbol [ means; > or =, and this] means; <. The CONDITION 
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contains Boolean operators (eg OR), and inequalities which can be seen in the above 

rules and in the encoded MATLAB rules (eg greater than [>], less than [<1, equal to [=]. 

As discussed in Chapter 4, the conditional part was taken into account as a pattern, and 

the statement part was characterised as an action or procedure to be performed on a 

successful match with the pattern. In the ACTION part of the rule, if the condition was 

satisfied, then the relevant rule was invoked. Rules consist of premise-action pairs, for 

instance: 

IF C 1 & & Cn, 

THEN T1 & & Tn. 

with reading IF premises C 1 and ... and Cn are true, then actions Ti and ... Tn, are 

performed. The Ci are so-called "conditions", and Ti are "conclusions". 

Originally, the KS rules in PROLOG rules were used due to the fact that KS can 

convert the decision tree in both generic and PROLOG rules. The PROLOG interpreter 

was very slow to interpret the KS PROLOG statements. Then the classification tree was 

converted into generic rules for the purpose of implementation of an expert system. 

Manually encoding the generic rules into MATLAB rules was error prone and tedious. 

Therefore, automatic conversion of generic rules into MATLAB rules by implementation 

of an intelligent filter ks2mat.m was used. The ks2mat.m program converts the generic 

KS rules to MATLAB rules, and puts them in matrules.m routine. For example, the 

above generic rules were encoded and generated as follows: 

%RULE_16 
if (photo82(i,j)>=24)&(ph0t082(i,j)<26) 
&(edge(i,j)==-9999) 
&(DEM(1,j)>=1)&(DEM(i,j)<110) 
&(1anduse(i,j)==7)I(1anduse(i,j)==9)1 
(1anduse(i,j)==11)I(1anduse(i,j)==1)... 
roads_probability(i,j)=roads_probability(i,j)+25; 
end; 
%RULE_17 
if (photo82(i,j)>=24)&(ph0t082(i,j)<26) 
&(edge(i,j)==-9999) 
&(DEM(i,j)>=1)&(DEM(i,j)<110) 
&(landuse(i,j)==8) 
roads_probability(i,j)=roads_probabilitY(i,j)+0. 4 ; 

end; 
%RULE_25 
if (photo82(i,j)>=26)&(ph0t082(i,j)<29) 
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&(edge(i,j)==1) 
&(DEM(i,j)>=131)&(DEM(i,j)<=139) 
roads_probability(i,j)=roads_probability(i,j)+100; 
end; 

For example, rule_16 tells the GIS analyst, if the grey scale attribute data is larger 

than or equal to 24 DN, or less than 26 DN, the edge detection attribute falls into road 

background (-9999). Consequently land use type goes from clearing and developing 

areas to man made structures, or land use is forest, or land use is urban residential. Then 

out of the total observation under these conditions, there is a 25 percent chance of 

assigning the particular pixel or pixels as roads. 

8.2.5.2 Inference Engine 

The rules that meet certain key conditions are used. Generally, the inference engine 

is the heart of the expert system which decides which of the rules are satisfied, puts them 

in a priority list, and fires those rules with the most priority. In connection to expert 

systems implementation here, if the condition is satisfied, then the relevant rule is fired 

and will assign a probability to the particular pixels as a chance of identification as roads 

or background. The prediction process is applied to each pixel separately. To form roads, 

a single label (a posteriori probability) must be assigned to each pixel. 

The conclusion of each rule is composed of two parts namely the presence (roads = 

1) and the absence (background = -9999) of road pixels. For instance, if the presence is 

100%, it means that all given pixel (s) in that rule, are identified as roads pixels. In 

contrast, if the presence is 0%, it means that all given pixel (s) in that rule, are identified 

as road background. 

The dtpes.m in the MATLAB environment predicts the road distributions from the 

ancillary data. This process was automated by writing a program to map out the decision 

tree rules and write the matrix into an image file. Once an output has been written, it can 

be retrieved and put back in image and spatial processing environments. An output of 

induction rules may be written into any specified file in the matrules.m routine. The 

combination of ks2mat.m, matrules.m, and dtpes.m sub-routines is called "Decision Tree 

Processing Expert System" (DTPES). 
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8.2.6 Analysis of Results 

The results of the trials were analysed using the cluster method. A series of 

classifications was performed to gauge the sensitivity of classification results to the 

different sites. Classification accuracy comparisons are summarised in Table 8.3. The 

classification tree over Case 1 performed better than Case 2, and Case 2 performed better 

than Case 3. 
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(a) 

[Case 1] 

Figure 8.3; (a) Displays the results from the clustering classifications for Case  1.  A 180 by 160 
pixel window of the study area. An extract showing the a posteriori probabilities of roads. The 
brighter the pixel, the greater the probability of roads, and the darker the pixel,  the  greater the 

probability of absence (background) of roads. 

(c) 

Figure 8.3; (b) Represents the road reference map of Case 1 in a grid, and (c) shows the aerial 
image of Case 1. 
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In the first Case (Case_1_1982), the land cover theme which contained vegetation 

also consists of man-made features (roads). Since the contrast of the roads and the 

background is high, the decision tree classification produced the highest accuracies. The 

accuracy obtained was 83%. As can be seen in Figure 8.3 [a, b, c], there are good 

correlations between the output of DTPES (a), the reference road map (b), and the aerial 

image (c) of the site. This site is a rural area, with three land use/cover classes, namely 

agricultural land, lakes, and cleared or developed areas characterised by man made 

features. Due to the high contrast of the roads with their background, the classification 

tree provided the better results. The association of roads with other land use classes is 

high, and roads are dominant features in the generated classification. 
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(a) 

[Case 2] 

Figure 8.4; (a) Displays the results from the clustering classifications for Case 2  (a 95 by 105 

pixel window of the study area). An extract showing the a posteriori probabilities of roads. The 
brighter the pixel, the greater the probability of roads, and the darker the pixel, the greater the 

probability of absence (background) of roads. 

(b) 
	 (c) 

Figure 8.4; (b) Represents the road reference map of Case 2 in a grid, and (c)  shows  the aerial 
image of the Case 2. 
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There are four land use/cover classes in the landuse variable in the database. These 

are urban residential, agricultural land, clearing and developing areas to man made 

features, and urban recreational. This site is relatively homogeneous. In the eastern part 

of the classification map, the mapped straight line which is a road segment, can be seen 

clearly. Confusion of roads with structural man-made features such as buildings, roofs, 

and to a lesser extent pavements prevented the mapping out of the roads in the western 

part of the test case. Errors were also partially associated with bare soil or fields; thus 

interruption of roads occurred. As can be seen in Figure 8.4 [a, b, c], there are relatively 

good correlations between the output of DTPES (a), the reference road map (b), and the 

aerial image (c) of the site. As associated classification accuracies were low, roads and 

man-made features were confused. Note that residential areas are a complicated mix of a 

variety of land cover/use classes, although there is still a measure of residential 

structures. 

(a) 

[Case 3] 

Figure 8.5; (a) Displays the results from the clustering classifications for Case  3  (a 190 by 410 
pixel window of 1991 image of the study area). An extract showing the a posteriori  probabilities 
of roads. The brighter the pixel, the greater the probability of roads, and the  darker  the pixel, the 

greater the probability of absence (background) of roads. 
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• 

 

Figure 8.5; (b) Represents the road reference map of Case 3 in a  grid. 

 

Figure 8.5; (c) Shows the aerial image of the Case 3. 

In Case 3 most errors were associated with structural man-made features such as 

buildings, roofs, and pavements. The bright parts are buildings and bare  soils  which have 

a high spectral value. With the spatial resolution of the data used here, the roofs and 

buildings become generalised and increasingly associated with roads.  The  errors are 

associated with the bare soil or fields, buildings, roofs, and pavements.  For  this site, as 

can be seen in Figure 8.5 [a, b, c], there are not strong correlations between the output of 

DTPES (a), the reference road map (b), and the aerial image (c) of the site. 
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In Cases 2 and 3, roads were interrupted by other man-made structures including 

large building outlines, shadows of buildings intruding on the roads, and parking lots. As 

in Case 1, roads were interrupted by overhanging trees, shadows and tree canopy. 

Unsealed roads in poor condition provided limited contract between the road surface and 

the surrounding terrain. Residential areas dominated the imagery especially in populated 

neighbourhoods with small yards. Conventional classifiers share the same problems as 

those associated with dissimilar features because of similar intensity characteristics 

(Benjamin and Gaydos, 1986; Barr, 1992). Road network classification was best 

accomplished in Cases 1 and 2. Resolution of the data caused problems for the texture of 

the imagery. In this regard, objects within urban sites (houses, trees, parking lots, etc.) 

were each in different pixel size. 

The primary step for inductive learning is a selection of the sample learning which 

is the set of features of a known class from which the classification rules will be induced. 

After generation of a classification tree, it is important to gauge the accuracy of the 

classification tree over the fresh data (test sample). This was done and the results were 

validated by calculation of the overall accuracy, pixel by pixel, so that the road map of 

the reference data was converted into a grid file. The certainty and uncertainty of the 

classified pixels as roads and background were validated for the area. The accuracy for 

mapping roads increases over rural areas as enough contrast between the roads and other 

elements is included in the photos. The human eye is subject to error in determination of 

accuracy of a classification pixel by pixel. Although the estimated overall accuracy of the 

DTPES's output based on the reference map (road grid coverage) agrees with the overall 

visual interpretation of the output of the DTPES, the decision rules broadly concur with 

expert opinion and classification rules (Table 8.3). 

Samples  Overall Accuracy (in percent) 
Case_1_1982 (Site 1)  83 
Case_2_1982 (Site 2)  66 
Case_1_1991 (Site 3) 53 

Table 8.3 Classification summary statistics. Overall accuracy refers to the total correctly 
classified pixels (confidence interval is at the 0.01 significance filter level of KS) compared with 

the reference data. 
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8.3 Discussion 

The main issue with decision trees in general is the lack of ability for interaction of 

variables. It was noted that decision trees seem to be useful in throwing up some 

interesting perspectives (Belbin, 1995). To simplify the presentation of the decision tree 

processing from this study, two test sites (cases) on 1982 imagery were examined. In 

addition, a test site (case) on 1991 photography was also examined. 

There are four levels in the tree (Figure 1 in Appendix F). While the first level is 

entirely associated with the intensity attribute information of the database, the second, 

third, and fourth show a mixture of contextual and environmental parameters. 

Accordingly, two classes of rules in the knowledge system were identified. The first 

category only deals with the spatial context of image. The second class is concerned 

mainly with the geographic context of the data. These rules are concerned with the 

landuse type and elevation. Cross-tabulation of the classification tree was used to 

facilitate the analysis and interpretation (Appendix G). 

In the formulation of road prediction, it is almost impossible to re-compute and 

keep the whole classification tree: the decision tree is too large with many branches from 

each node and the depth is too great. This means that significant tests are required to 

reach a decision. Too many nodes (rules) may give an impression of an accurate 

classification tree for the test data, although the classification of the original dataset may 

be poor, particularly if the rules are generated from a small sample observation dataset. 

Too few rules causes misclassification. It was found that knowledge acquisition was a 

bottleneck problem in construction of the expert systems in this study. The expert can 

control this issue by using domain knowledge. The entire tree was grown for the small 

subsets of the dataset, and the rules produced from the resulting tree were applied to 

map out the presence and absence of roads. 

Not surprisingly, the results of this GIS modelling exercise within test Case 1 were 

satisfactory. Despite the success of this exercise within Case 1, the demonstrated results 

for Cases 2 and 3 highlighted the inadequacies of this type of approach. A similar 

accuracy has been reported using a decision tree for salinity mapping (Evans et al 1996) 
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who obtained 61% to 78% over the test data. The overall accuracy of Case 1 and 2 is 

only slightly better than that of Case 3. 

It is clear from these numbers (Table 8.3) that while a good deal of roads are 

extracted eg for Case 1, the results are not good enough to claim that a complete 

mapping has been conducted eg in Case 3. Perhaps the most significant problem is the 

error of misclassification, which is typically in the 15%-45% range. Eliminating this 

error requires re-examining every extracted road segment which would be a tedious and 

costly solution. The majority of the roads which were not mapped, were well hidden by 

leaf cover, bare soils, roofs of buildings, or alongside fields with similar spectral 

characteristics, etc. 

Lower classification accuracies were also associated with the following factors: 

The optimal time of year, optimum look angle, low sun angle or a large off nadir 

view angle, surrounding vegetation and shadow of buildings and trees all affected 

the visibility of roads in the images. 

A major rate of misclassification of pixels was related to minor geometric 

misregistration of the images when compared directly with ground truth or maps. 

Even when geometric misregistration was not a problem, discrepancies were 

largely associated with classifying the man-made features which have very 

similar grey value to the roads. 

In addition, there is error associated with imprecise location and digitization of 

the road networks in the process of editing the coverage, as well as the buffering 

operation. 
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Potential users may improve decision tree classification by: 

Incorporating more independent fields as an associative key. 

For example, feature attributes such as shape and size can be used as an additional 

source of evidence. 

Applying more advanced measures of coping with feature recognition problems. 

For example, the combination of geometrical feature recognition algorithms with a 

decision tree is expected to generally enhance the success of linear feature 

identification in heterogeneous urban scenes. 

Employing topographic knowledge-based information in 2D and 3D. 

For example, a road is a ridge; generally the ridge drops off on both sides. Residential 

houses are hills, generally brighter than the road. A road pixel is commonly not a 

valley. It will cut the road as a result of shadowing or overlap from the 

neighbourhood. Topography and associated changes in lighting may result in a cut 

road. 

Using the above findings, it should be possible to build a better model for 

delineation of roads using a spatial database in the future. These knowledge-based rules 

can be integrated with other attributes such as curvature and connectivity of roads to 

characterise an individual road segment or whole road network. Collinear and 

connectivity rules can be used to join road segments. Also, proximity may be employed 

to describe spatial relationships between features. Thus, for example, the distance 

between two road intersections can be used in the process of road detection. 
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8.4 Summary 

An expanded GIS has been developed that encompasses an image interpretation 

system. A rule-based system was applied to perform road prediction from aerial imagery 

over an urban to a rural scene. The system consisted of three major components: a 

database which stores image and spatial data; rule induction which uses a decision tree 

classification and user interface, and inference engine. A multidisciplinary approach 

using integrated spatially referenced data was used to predict roads. A priori knowledge 

of geometry of road networks (eg width), terrain type, scene elevation, and the field test 

were taken into account. 

Roads against a background of low reflectance fields are easily detectable. They 

become indistinct when they pass areas with a mixture of man-made structures, since 

roads between two rows of houses in a dense urban area may have a similar grey level. It 

can be argued that classically it is more difficult to recognise the roads in an urban region 

than a rural area. The roads which pass through rural terrain have high contrast. Road 

surface contrast in urban areas is affected by different surface material and shadows from 

nearby structures. The ground resolution is an important determinant factor for feature 

detection including roads. Even though the width of the roads is less than the spatial 

resolution of the image, the road is extracted whenever its spectral contrast is 

considerable in relation to its background. 

Decision tree and rule-based classifiers, such as KS, can be used to integrate GIS 

datasets with remotely sensed imagery. The decision trees can be examined to determine 

relationships between the data, and to find out which spatial data layers are the most 

important co-operative in prediction of roads. In spite of previous research, decision tree 

modelling is costly, since this type of modelling process is data-intensive. The 

investigated technique in this research requires a large number of data sets to be built. 

Thus, construction of these data is relatively expensive when applied to large areas. 

183 



Chapter 9 

MULTISPECTRAL IMAGE CLASSIFICATION 

This chapter describes a supervised multispectral image classification of the trial 

site using colour aerial photography. This was carried out to compare  its  performance 

with a decision tree analysis to map out roads over the trial site. A classification accuracy 

assessment shows that an overall accuracy of 63% can be obtained.  This  accuracy is 

marginally lower than the decision tree analysis. 

9.1 Introduction 

The aim of spectral classification is to segment the image into spectrally 

homogeneous regions. Multispectral image classification can be classified into two main 

approaches, whether supervision from an operator is required or not. 

The image used was a colour aerial photograph, acquired at 1:22500 scale (12", 

format, 6" lens) in summer 1984. It was scanned with 600 DPI and  stored  in a 25MB 

TIFF File. It has three bands corresponding to red, green, and blue (RGB). The data was 

imported into the ERDAS IMAGINE raster data base. The 22500 scale image data was 

geometrically corrected using an affine transformation and rubber sheeting, and 

resampled to 2 m (1 pixel = 2 m) on  the  ground (Figure 9.1). 

Figure 9.1 A subset of the colour aerial photograph of the study area. 
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9.2 Supervised Classification Method 

9.2.1 Background 

Supervised classification is closely controlled by the analyst by selecting pixels that 

represent known land uses. The analyst uses ancillary sources such as ground truth data, 

and air _photos to facilitate the classification. In this process the analyst trains the 

computer system to determine the similar patterns (pixels) or homogeneous regions that 

represent each class. It is crucial to have a set of desired classes in mind. The analyst 

prepares spectral signatures of land cover/use types confirmed by reference to ground 

information (Martin et al 1988), or the user defines the classes, generally by interactive 

extraction of training areas on the screen (ERDAS, 1994b). These spectral signatures are 

used to classify all pixels comprising the study area. 

The supervised technique is the most popular classification method for the 

classification of land-cover/use employing multispectral satellite data (eg Richards, 

1986; Michaelis, 1988; Gong and Howarth, 1990; Johnsson, 1991; Forghani, 1994; 

Barnsley and Barr, 1996). 

A maximum likelihood technique estimates the likelihood of a particular pattern 

belonging to a category. Among the most common supervised classifiers are minimum 

distance, parallelepiped, and maximum likelihood. The maximum likelihood classifier 

(MLC) is easy to use and theoretically guarantees that the classification error is 

minimized. It is the most widely employed classification algorithm in digital 

classification of land cover data (Swain el al 1980; Harris, 1985; Matther, 1985; 

Michaelis, 1988; Bolstad and Lillesand, 1991; Trietz et al 1992; Forghani, 1994; 

Johnssen, 1994). 

9.2.2 Image Classification 

In this work the training areas were selected with the use of AOI tools and stored in 

a SIGNATURE EDITOR file. Initially 9 spectral classes were selected as is shown in 

Table 9.1. 
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Class # I> 	Si nature Name 
	Color 

1 > Remnant Forest 
, 

Cut Over Forest 
Riparian Vegetation 
Improved Pasture 
Unimproved Pasture 
Bare Soil/Roofs 
Main Roads 
Local Streets 
Tracks 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Initial image classification for these classes was performed using a MLC technique. 

The result of this supervised classification of the aerial image is presented in Figure 9.2. 

The assigned colours for the classified image are shown in Table 9.1. 

Table 9.1 Selected signatures from the aerial image. 

Figure 9.2 Represents the classified image with 9 classes. 

Since the concern is to map out roads, two land use classes should be kept in mind. 

The developed land use map (Chapter 7) was used as control data. The control layer is in 

raster (grid) format. The classified maps have been compared  to  the existing roads map 

to evaluate the classification accuracy. The spectral classes with similar cover types were 

merged. The two classes used were roads, and non-roads (background) which comprised 

classes that do not have any association with roads. The resulting modified signature file 
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was used to perform MLC using a standard deviation of 2 for the image. Finally, a map 

was produced with only two classes namely roads and non-roads (background) (Figure 

9.3). 

Figure 9.3 Final supervised classification after merging of similar  classes. 

9.3 Discussion 

The classification result was evaluated visually by superimposing the road layer (in 

buffer) with the classified image. In addition, the classified image was numerically 

compared to the original road map by coincidence matrices and accuracy measures. 

It should be kept in mind that mapping roads in a heterogeneous land use such as a 

built-up area can be problematic since the roads and other man-made features such as 

buildings have similar spectral characteristics. Bare soils, dirt roads/tracks, and building 

roofs have very similar spectral signatures (Figure 9.1). The confusion of these features 

with roads can be clearly observed in the classification map (Figures 9.2 and 9.3). An 

overall classification accuracy was 63%. Using an automated classifier over urban area, 

errors have been increased considerably (Gurney, 1981). 

The classification accuracy assessment was performed for the road class. The 

classification accuracy is 63 percent, whereas the commission errors are 75 percent. The 

187 



75% 37% 63% Roads 
Classified Feature Classification Accuracy Omission Errors Commission Errors 

commission errors are relatively high (Table 9.2). A similar trend was found when using 

edge detection algorithms in both urban and rural test sites (Forghani et al 1997). 

Table 9.2 Image classification accuracy 

The overall classification accuracy decreased in areas where the roofs of buildings, 

bare soils, concrete, and tracks roads have very similar spectral characteristics. This 

problem can be related to increasing noise due to the heterogeneous nature of spectral 

response of urban areas (Forghani, 1994) and cleared agricultural lands. Similar 

classification accuracy has been reported using a standard maximum likelihood 

classification with identification of six broad cover types over a rural/urban area from 

SPOT and TM data (Toll and Kennard, 1984; Welch, 1985; Nagarathinam et al 1988; 

Shimoda et al 1988; Barr, 1992). Averaging accuracies may be in the range of 55%-85%. 

To refine the supervised classification, thresholding was interactively carried out 

for each class in the thematic raster layer. It was found that the overall classification 

accuracy marginally increased, while commission errors dramatically increased. After 

thresholding (post-classification), the commission errors increased significantly (11%). 
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9.4 Concluding Remarks 

It has been shown that roads in rural portions of the trial site can be extracted with 

high accuracy using either decision tree analysis or multispectral classification. For built-

up land, the multispectral analysis produced a better result in comparison to the decision 

tree analysis. In the built-up area (central portion of the study area), the main roads and 

local streets were classified significantly better than were the rural. This is because, the 

roofs/buildings are not continuous (connected as road pixels) like bare soils (cleared 

land). The houses and roofs classified as isolated pixels which can be seen in Figures 9.2 

and 9.3. For rural land use (eastern portion of the image), multispectral classification did 

not perform well, as the confusion of roads with bare soils (cleared land and unimproved 

pasture) can clearly be seen. This is due to the similar spectral properties of these 

features (Figures 9.2 and 9.3). In areas of low housing density pixels containing mixed 

land use, or no buildings, considerable road misclassification occurred particularly 

towards the cleared lands. 

The decision tree classification over Case 1 (refer to Figure 8.3 and Section 8.2.7) 

which is a rural area performed better than Case 2 and Case 3 (refer to Figures 8.4 and 

8.5, and Section 8.2.7). The overall classification accuracy was found to be 83% over the 

rural site, for the semi-urban it was 66%, and for the built-up area it was 53%. It is not 

surprising that the classification was more accurate using a decision tree analysis over the 

rural area and decreased over built-up areas. If contextual (spatial) information has been 

incorporated into the multispectral classification, the decision tree analysis results would 

have been more comparable. The high spatial resolution of the colour aerial photograph 

resulted in low overall classification accuracy with respect to typical satellite data. The 

use of higher spatial resolution data may not always increase classification accuracy 

(Gurney and Townshend 1983; Toll, 1985; Forster, 1985; Martin et al 1988; Barnsley 

and Barr, 1996). 

It is concluded that both a standard supervised classification and decision trees 

analysis are insufficient to extract "real world objects" (roads) in a heterogenous 

environment. 

189 



Chapter 10 

SUMMARY 

10.1 Background 

A review of the current literature demonstrates that: 

Knowledge-based (KB) methods such as artificial neural networks and decision trees 

as an associative key in integration of image understanding techniques within a GIS, 

are increasingly applied. 

To delineate a road from an image, researchers are using three basic properties namely 

spectral characteristics, geometric shape, and spatial properties. Experience has shown 

that low level image segmentation methods such as edge detection are insufficient for 

an accurate classification of a road pixel. Thus, it is crucial to employ brightness 

values, length, and shape characteristics for an effective road extraction. 

There are three common types of geometric rectification applied to digital images: (1) 

polynomial transformations, (2) digital orthophotography, and (3) image matching 

using affme transformation and rubber sheeting. It has been shown that image 

matching will be more applicable if higher accuracy is required. It should be noted 

that Global Positioning Systems (GPS) can be used to obtain GCP coordinates for 

polynomial transformations and digital orthophotography if higher accuracy (to 

centimetre level) is required. 

Researchers believe that it is impossible to choose a convolution filter which will 

maximize good signal to noise ratio, good localization, and uniqueness of response 

when a linear feature has to be extracted particularly in an urban area. The main 

problem with edge (line) detectors is the association of noise, since noise presents 

false edges as true edges. In addition, thresholding is a difficult task in order to 

remove noise edge responses, and the best compromise can be gained by 

experimentation. 

To scan images and maps, researchers concur that 300-600 DPI (42-84 nun/pixel) is 

sufficient for many mapping applications. Commonly, three major types of mapping 

data are required for GIS applications based on data formats: vector data in layers, 
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vector data in feature coded form, and structured data. Geographic data is often 

represented in three varied formats, vectors, raster, and mathematical modelling. A 

hybrid model of spatial data structure is more effective if users are interested to work 

in an integrated environment since it provides an explicit integration between raster 

and vector data for many GIS applications. 

The task of vector to raster conversion is not as difficult as conversion of raster to 

vector. For this reason, a grid format is used as the major data structure of the 

incorporated GIS vector-based data. In relation to choosing of cell size for grid data, it 

has been reported that raster size is the major obvious control on rasterizing error and 

research has shown that increased raster size has an extensive effect on reducing map 

accuracy. 

To perform spatial analysis in a vector GIS, boundaries of relevant feature maps eg 

land use, forests, are effectively imposed on a base map of common scale. In the same 

manner, in a raster based GIS analysis, cell to cell correspondence has to be identified 

and the output cell has to be labelled according to corresponding cells of each feature 

map. 

The major error sources in GIS come from: errors in map registration, errors 

associated with each map layer, and spatial distribution of such errors cannot be 

random, leading to high variability over a variety of locations. 

Knowledge acquisition is the most difficult task in expert systems development. The 

decision tree is typical of knowledge extraction and it represents knowledge to 

construct expert systems. The decision tree induction technique is particularly helpful 

when the developer is not experienced in building an ES or when the knowledge that 

is being collected resists simple expression as a collection of IF ... THEN rules, and 

where knowledge of underlying processes is either unavailable or incomplete. 

10.The decision tree classifier is an important and efficient technique for separating 

samples (observations) into categories or for predicting the highest output to a given 

situation. Fundamentally, four parameters are essential in building a decision tree 

algorithm: a set of features, a feature selection criterion, a stop-splitting rule, and a 

central role in the quality of the decision tree as a classifier and its complexity or 

simplicity. Experience has shown that there are a number of advantages with using 

decision trees such as utilisation of contextual information, that it is inexpensive to 
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use, its lack of complexity and simplicity of interpretation and understandability. 

However, it suffers from a number of disadvantages, for example lack of high 

sensitivity if a minor change happens in the composition of learning samples, lack of 

good extrapolation and absence of justification, difficulties in selection of a "right 

sized" tree or "better" tree and the existence of probable noise in training samples. 

10.2 Methodology 

In respect of the methodology developed in this research, a GIS database and aerial 

imagery were integrated in a manner that allowed them to be used in a knowledge-based 

analysis system for detecting and mapping linear topographic objects, with special 

reference to road networks. The research used photometry (ie spectral), spatial and 

contextual information within a knowledge-based model using decision trees to identify 

roads from other linear features (eg rivers, field boundaries). The above information is 

located in a multi-source spatial dataset (layers) which includes land use/cover, DEM, 

grey level image, roads, field and vegetation boundaries, streams, and edge detection 

data. Incorporation of this dataset into a decision tree analysis system was attempted. 

As mentioned earlier, this research devised a general approach to solving problems 

of road detection. This approach can serve as a model for others who are trying to do 

practical work in this field. By creating a hybrid system which includes many different 

databases and combines many different sources of knowledge in trying to identify a 

specific (man-made) geographic feature, and by utilising current artificial intelligence 

(Al) techniques to perform the classification, this research provides an early example of 

the techniques which will be in more general use in the areas of GIS and remote sensing 

in the future. 

As discussed earlier, in the development of the methodology a number of issues 

emerged: 

Defining the dataset: 

What are the most appropriate and best parameters to use in the dataset? 

Building the dataset: 
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How can a dataset be built for a decision tree environment, particularly 

one that recognises knowledge-based attributes (layers) such as intensity 

(grey image), landuse, edge detection data etc. in order to distinguish 

roads from other linear features? 

Which geometric correction method produces a better accuracy? 

Which type of spatial data structure can be utilised in order to 

manipulate and organise the GIS data, such as vector processing and 

raster processing or a hybrid approach? 

What cell size should be chosen to meet the requirements of the 

knowledge-based data? 

Transferring data from a GIS environment into the decision tree system: 

What is the best way to transfer GIS datasets into the decision tree 

software? 

Converting a classification tree into a classified image, since the decision trees 

software gives the results of classification tree both in generic rules and in graphic 

form. 
How can this information be applied to produce a classified image? 

10.2.1 Phases of Research 

The following steps were undertaken in this research: 

Definition of the goal, which deals with the development of the methodology and its 

implementation for a trial site to map out roads. 

Provision of suitable hardware and software to do the processing. 

Selecting an appropriate study area. 

Selecting and providing the datasets. 

Defining the dataset. 

Georeferencing of the aerial imagery. 

Spatial data processing and construction of a database for a knowledge-based analysis 

system. 

Interfacing of the data with a decision tree environment. 
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Decision tree analysis in a knowledge-based analysis; generation of a classification 

tree and rules collection and encoding to develop an expert system. 

Expert systems construction and testing of the expert system over trial sites. 

Calculation of the overall classification accuracy and comparison of the results by 

overlaying the output of the expert system on the referenced roads data. 

Undertaking a standard supervised multispectral image classification to be compared 

with the decision tree analysis. 

The methodology was developed through a knowledge-based approach using a 

digital spatial database. A wide range of factors was associated to build a database for the 

methodology and implementation of the hypothesis. It was necessary to test the proposed 

model over a mixed urban and rural area, due to the fact that characteristics of each of 

these scenes are different. The selection of study area was an important task. In this 

situation, the selected area incorporates a range of features, from natural to man-made 

structures for developing and testing the hypothesis. Furthermore, the type of remote 

sensing imagery by means of spatial resolution, availability of imagery, and the interface 

problems of image to a machine learning software were determinant parameters when 

choosing aerial photography for this research. 

The aerial photography was geometrically corrected using three standard methods: 

(a) polynomial transformations, (b) digital orthophotography, and (c) affine 

transformations and a rubber sheeting. The required accuracy (±4m) for the purpose of 

this study was only gained by employing the affine transformation and rubber sheeting 

method. 

Edge detection as a low level image segmentation was employed to construct data 

for a GIS database. In this regard, a program for semi-automatic linear feature detection 

using different edge enhancement, noise removing filters, and edge detectors in which 

the process is followed by morphological operation, was developed under MATLAB 

software. The extracted data were used as a GIS layer in a decision tree classification. 

The use of an edge detection filter can be affected by the complexity of the scene because 

of noise in the data. For instance, materials along the road with the same intensity as the 

road are problematic where there is little texture on the road. This problem also occurs at 
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intersections where two roads with similar material meet. If the area is a mixture of urban 

and residential, then the problem of feature detection becomes much more difficult. The 

output of edge detectors is noisy. Thresholding was thus used as a typical solution to 

remove the false response and isolate the significant edges within the area by using 

gradient magnitude, since in aerial imagery, a local gradient extreme may not reflect the 

true response from the real edges. When the threshold is set too low, there are many 

dominant edges, points, and lines; while if the threshold is set too high, some 

information loss may occur. Fine tuning of the threshold was used in order to optimise 

the display of edge features. However, it is a tedious task. Faugeras (1993) says "there is 

no good answer to this question, and the choice of threshold must be guided by 

application and the lighting conditions of the scene". 

To facilitate the thresholding task a colourbar was added to the program to select 

an approximate threshold. The best compromise was found by experimentation. Later, 

morphological operations were applied to resolve part of this problem, in which for 

example skeletonization and erosion may help in using higher threshold levels, and 

dilation can assist in using lower threshold levels. Different thresholds and different edge 

detectors were compared. Researchers agree that the output of edge and line algorithms 

decreases significantly when the line/edge detectors are employed for imagery of urban 

areas. The performance of low level image segmentation may be improved by associating 

spatial and contextual information from both humans and GIS. Therefore, there is 

increasing interest in applying intelligent image interpretation techniques such as using 

ES and artificial neural networks. 

As a major part of this research, construction of a database which locates spatial 

and spectral attributes for a knowledge-based environment, using ARC/INFO GIS 

software was conducted. This involves data capture by means of importing existing data 

and generating ancillary data by digitising, manipulating in context of processing and 

analysing, integrating, converting produced data into a grid, and subsequently generating 

ASCII data files. Grid raster-based processing was undertaken to construct a multi-

source database for a decision tree classification. As a requirement of the research 

database, all the digital layers were resampled to a constant cell size to permit overlaying 

and registering the coverages to the same pixel size. Finally, the grid data was converted 
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into ASCII files which were preprocessed by a computer program to generate tabular 

ASCII data. 

The multi-layer file was interfaced with decision tree software (KS) for decision 

tree analysis. The independent data set comprised 6 variables (fields) that attempt to 

represent contextual, textural, and geometrical characteristics of the knowledge-based 

data. The integrated multi-source database included a priori knowledge of geometry of 

road networks (eg width), edge detection data, intensity (air photo), terrain type 

(landuse), streams, field boundaries and vegetation alignments and scene elevation 

(DEM). In the process of decision tree analysis, the input data was recessively partitioned 

into mutually exclusive exhaustive subsets which define the best response variable. The 

resulting classification tree was used to generate generic rules for construction of an 

expert system. The knowledge-based system thus developed comprised three main 

components: a database, rule induction and user interface, and an inference engine. In the 

development of this expert system a forward-chaining process was considered in order to 

evaluate all rules for a given pixel for mapping spatial distribution of the grid data to 

show areas with roads and their background. The computation time linearly increases as 

the number of grid cells increase. This rule-based system was used to perform road 

mapping from aerial imagery over an urban/rural scene. After classification, the system 

computes the overall accuracy of the mapped roads based on the reference road map to 

maintain consistency and reliability of the performance of the decision trees in feature 

recognition. 

10.3 Results 

Decision tree classification works well for prediction of roads in areas in which the 

roads and the background have a high contrast, since these areas contain homogeneous 

cover and the association between land cover/use is significant. On the other hand, the 

method for heterogeneous areas (urban scenes) has produced low accuracy. Ground 

resolution is an important determining factor for feature detection including roads. Even 

though the width of the roads is less than the spatial resolution of the image, the road is 

mapped whenever its spectral contrast is considerable in relation to its background. 

Discrimination of roads over urban areas was more difficult than rural areas. 
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Classification tree methods have been shown to be powerful tools for splitting data 

into homogenous groups and building and collecting sets of decision rules. The major 

problem with identification of roads seems to be to find some characteristics that 

distinguish a road from other line and man-made features that share the spectral 

characteristics of roads. In particular, feature recognition using the decision trees 

(DTPES) model over homogeneous areas was most accurate in general, although more 

time-consuming to implement. The results showed that framework of roads in a rural site 

mapped by this knowledge-based technique closely concurred with visual interpretation. 

Accuracy of the results is highly dependent upon the quality of data in terms of 

accuracy of input of GIS data eg registration and digitisation errors, and the spectral 

characteristics of the scene, that is ie in rural areas the accuracy of the output is 

acceptable since it contains spectrally homogeneous feature types. The skill of the GIS 

analyst is also of importance. It must be noted that the output from these models has 

relatively direct relationships with the quality of input GIS layers, since in situations 

where the accuracy of the overlaid maps is not high, the output from GIS modelling will 

not be great. 
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10.4 Concluding Remarks 

The findings of this research are consistent with the conclusions drawn by other 

researchers investigating spectral classification methods based on machine learning 

techniques. Using neural networks has not produced desirable results if the roads pass 

from urban areas; the man-made features are mixed with the roads (Boggess, 1993, and 

1994). Similar findings were also reported by Geman and Jedynak (1996). The accuracy 

obtained in this research is similar to that of Evans et al (1996) who applied decision tree 

classifiers in an integrated GIS for salinity mapping; also to Walker and Moore (1988), 

Lees and Ritman (1991), Aspinall (1992), and Skidmore et al (1996b) who reported an 

overall accuracy of 55% to 75% for mapping wildlife and vegetation. 

The initial costs involved in configuring a knowledge-base, such as the 

methodology developed in this study, are high, and this may not be justifiable in a 

production environment. 

The success of decision tree modelling for the application in question may be 

improved by using high quality spatial data, and incorporating more independent 

variables such as feature attributes (ie shape and size) as an additional source of 

evidence. Further research should be concentrated on employing more advanced 

measures of coping with feature recognition problems such as the combination of 

geometrical feature recognition algorithms (eg line detection) with a decision tree. This 

is expected to generally enhance the success of linear feature identification in 

heterogeneous urban scenes. 
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APPENDIX A 

APPENDIX A: Data Sets Information 

a) Air Photo Prints 1:42,000 B and W, Film No. 7176, Negative No. 62, Date: 2/12/1991 
1:42,000 B and W, Film No. 906, Negative No. 188, Date: 10/2/1982 
1:12,500 Colour, Film No. 1234, Negative No. 101, Date: 11/3/95 

	  4) 1:22,500 Colour, Film No. 934, Negative No. 183, Date:11/1/84 
b) Flat Hardcopy 
	  2) Taroona 1:25,000 

1) Blacicmans Bay 1:25,000 

c) Digital Data (Contours, Roads, 
Streams) 

5223 Blackmans Bay 1:25,000 
5224 Taroona 1:25,000 

Table 1 Data sets information 
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APPENDIX B 

Appendix B: MATLAB Code for Plotting the Components of Relief 

Displacement. 

To Afi Forghani, September 1996 
% This is the relief.m 
% This program plots the components of relief displacement. 

% Opening data file 
dirl=lgis/students/alifirelieff ; 
fidl=fopen([dirl 'relief.txt],Y); 
data=fscanf(fidl,"%f',[inf,5]); 
[m,n]=size(data); 
for i=1:m 
j=data(i,1); 
k=data(i,2); 
dX(j,k)=data(i,4); 
dY(j,k)=data(i,5); 
end; 
hold on; 
quiver(dX,dY); 
hold off; 
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Table 1 Shows the components of relief displacement for 1982 imagery. 

X Y r(cm) H(M) h(M) d(cm) d(mm) (M) ground d(pixels) dX (pixels) dY(pixels) Extra 
Points 

11.00 1 5.523 6858 15 0.012 0.121 5.073 2.537 2.526 0.230 

11  2 5.590 6858 1 0.001 0.008 0.342 0.171 0.168 0.031 

11  3 5.701 6858 2 0.002 0.017 0.698 0.349 0.337 0.092 

11  4 5.852 6858 10 0.009 0.085 3.584 1.792 1.684 0.612 

11  5 6.042 6858 80 0.070 0.705 29.600 14.800 13.473 6.124 

11  6 6.265 6858 90 0.082 0.822 34.531 17.266 15.157 8.268 

10  1 5.025 6858 55 0.040 0.403 16.926 8.463 8.421 0.842 

10  2 5.099 6858 10 0.007 0.074 3.123 1.561 1.531 0.306 

10  3 5.220 6858 3 0.002 0.023 0.959 0.480 0.459 0.138 

10  4 5.385 6858 3.5 0.003 0.027 1.154 0.577 0.536 0.214 

10  5 5.590 6858 30 0.024 0.245 10.271 5.135 4.593 2.297 

10  6 5.831 6858 60 0.051 0.510 21.426 10.713 9.186 5.512 

9 1 4.528 6858 120 0.079 0.792 33.274 16.637 16.535 1.837 

2 4.610 6858 60 0.040 0.403 16.939 8.469 8.268 1.837 

9 3 4.743 6858 30 0.021 0.207 8.715 4.357 4.134 1.378 

9 4 4.924 6858 5 0.004 0.036 1.508 0.754 0.689 0.306 

9 5 5.148 6858 20 0.015 0.150 6.305 3.153 2.756 1.531 

9  6 5.408 6858 12 0.009 0.095 3.975 1.987 1.654 1.102 

1 4.031 6858 128 0.075 0.752 31.600 15.800 15.678 1.960 

8 2 4.123 6858 50 0.030 0.301 12.625 6.313 6.124 1.531 

8 3 4.272 6858 40 0.025 0.249 10.465 5.233 4.899 1.837 

8 4 4.472 6858 10 0.007 0.065 2.739 1.369 1.225 0.612 

8 5 4.717 6858 24 0.017 0.165 6.933 3.467 2.940 1.837 

8  6 5.000 6858 40 0.029 0.292 12.248 6.124 4.899 3.675 

7 1 3.536 6858 95 0.049 0.490 20.570 10.285 10.182 1.455 

7 2 3.640 6858 70 0.037 0.372 15.605 7.802 7.502 2.143 

7 3 3.808 6858 50 0.028 0.278 11.660 5.830 5.359 2.297 

7 4 4.031 6858 15 0.009 0.088 3.703 1.852 1.608 0.919 

7 5 4.301 6858 20 0.013 0.125 5.268 2.634 2.143 1.531 

7  6 4.610 6858 45 0.030 0.302 12.704 6.352 4.823 4.134 

6 1 3.041 6858 90 0.040 0.399 16.764 8.382 8.268 1.378 

6  2 3.162 6858 80 0.037 0.369 15.493 7.747 7.349 2.450 

6 3 3.354 6858 50 0.024 0.245 10.271 5.135 4.593 2.297 

6 4 3.606 6858 15 0.008 0.079 3.312 1.656 1.378 0.919 

6  5 3.905 6858 45 0.026 0.256 10.762 5.381 4.134 3.445 

6 6 4.243 6858 50 0.031 0.309 12.991 6.496 4.593 4.593 

5  1 2.550 6858 80 0.030 0.297 12.491 6.246 6.124 1.225 

5 2 2.693 6858 75 0.029 0.294 12.368 6.184 5.741 2.297 

5 3 2.915 6858 65 0.028 0.276 11.606 5.803 4.976 2.986 

5  4 3.202 6858 40 0.019 0.187 7.843 3.921 3.062 2.450 

5 5 3.536 6858 57 0.029 0.294 12.342 6.171 4.364 4.364 

6 6 4.243 6858 64 0.040 0.396 16.629 8.315 5.879 5.879 

4 1 2.062 6858 65 0.020 0.195 8.207 4.103 3.981 0.995 

4 2 2.236 6858 70 0.023 0.228 9.586 4.793 4.287 2.143 
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4 3 2.500 6858 65 0.024 0.237 9.952 4.976 3.981 2.986 

4 4 2.828 6858 63 0.026 0.260 10.913 5.456 3.858 3.858 

4 5 3.202 6858 56 0.026 0.261 10.980 5.490 3.430 4.287 

4 6 3.606 6858 60 0.032 0.315 13.249 6.624 3.675 5.512 

3 1 1.581 6858 70 0.016 0.161 6.778 3.389 3.215 1.072 

3 2 1.803 6858 55 0.014 0.145 6.072 3.036 2.526 1.684 

3 3 2.121 6858 60 0.019 0.186 7.795 3.897 2.756 2.756 

3 4 2.500 6858 55 0.020 0.200 8.421 4.210 2.526 3.368 

3 5 2.915 6858 70 0.030 0.298 12.499 6.249 3.215 5.359 

3 6 3.354 6858 45 0.022 0.220 9.244 4.622 2.067 4.134 

2 1 1.118 6858 80 0.013 0.130 5.478 2.739 2.450 1.225 

2 2 1.414 6858 57 0.012 0.118 4.937 2.468 1.745 1.745 

2 3 1.803 6858 55 0.014 0.145 6.072 3.036 1.684 2.526 

2 4 2.236 6858 95 0.031 0.310 13.009 6.505 2.909 5.818 

2 5 2.693 6858 102 0.040 0.400 16.820 8.410 3.123 7.808 

2 6 3.162 6858 30 0.014 0.138 5.810 2.905 0.919 2.756 

1 1 0.707 6858 110 0.011 0.113 4.764 2.382 1.684 1.684 

1 2 1.118 6858 70 0.011 0.114 4.793 2.396 1.072 2.143 

1 3 1.581 6858 60 0.014 0.138 5.810 2.905 0.919 2.756 

1 4 2.062 6858 110 0.033 0.331 13.888 6.944 1.684 6.737 

1 5 2.550 6858 90 0.033 0.335 14.052 7.026 1.378 6.890 

1 6 3.041 6858 25 0.011 0.111 4.657 2.328 0.383 2.297 

Extra 
Points  

9.5 1.4 4.801 6858 130 0.091 0.910 38.226 19.113 18.909 2.787 A 

0.7 0.85 0.551 6858 120 0.010 0.096 4.046 2.023 1.286 1.562 B 

10.2 7.3 6.272 6858 125 0.114 1.143 48.011 24.005 19.521 13.971 C 
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APPENDIX C 

Appendix C: MATLAB Code for Building Data for a Knowledge-Based 

System, Using Edge Enhancement Operators, Edge Detection Filters and 

Morphological Operations Methods. 

% Interact ve Linear Feature Detection Algorithm (ILFDA) _ 

% Ali Forghani, December 1996 
%A Program for semi-automatic linear feature detection (field boundaries, rivers, roads) using different 
% edge detectors, in which the process is followed by morphological operation. The ILFDA is a Unix 
% based program that performs the concept of interactive linear feature delineation. By specifying 
% different edge enhancement, noise removing filters, edge detectors, thresholds, filters, morphological 
% tools the operator can gain different results. This program is connected to four sub programs 
% (edge_det.m, canny2d.m, fcanny2d.m, bmpwrit2.m). The program was written in MATLAB code at 
% the Department of Surveying & Spatial Information Science, University 
% of Tasmania, Australia. 

%*************************************************************************************** 

%This is the ilfda_m 

clear 
cic 
clf 
bbb = 1; 
filename = input( INPUT YOUR BITMAP IMAGE FILE (.BMP): ','s'); 
[xl,map] = bmpread(filename); 

imagesc(x1); colormap gray 
imzoom on 
NOTE=input(['You should first go to option 5, and then to the other options!'],'s'); 
while bbb = 1 
cic 
disp(' 1. Noise filtering') 
disp(' 2. Edge detection or using a M-file') 
disp(' 3. Morphological operations') 
disp(' 4. Saving the result in bmp format') 
disp(' 5. Stretching ) 
disp(' 0. quit') 
option = input('Choice'); 
if option =5 

answer = 1; 
while answer = 1 

clf 
x = ind2gray(xLmap); 
al = input('Lower graylevel'); 
bl = input('Upper graylevel'); 
x = imadjust(x,[al bl],[],[]); 
x = gray2ind(x,256); 
imagesc(x); colormap gray(256) 
answer = input('Do you want to change the graylevel ?[1/0] '); 

end; 
elseif option = 1 

cic 
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disp(' 1. Wiener') 
disp(' 2. Median') 
optionl = input(' Which filter do you want ?'); 
if optionl == 1 

cif 
x = wiener2(x); 
imshow(x,map), xlabel(Wiener noise removing filter') 
bbb = 1; 

elseif optionl =--- 2 
clf 

x = medfilt2(x); 
imshow(x,map), xlabel('Median smoothing filter') 
bbb = 1; 

end; 
elseif option =-- 2 

dc 
disp(' 1. Sobel') 
disp(' 2. Marr-Hildreth') 
disp(' 3. M-file With Many Edge Detector Options') 
disp(' 4. 2D Canny') 
disp(' 5. 2D Canny Edge with an Approximation of Canny"s Filter') 

% Option for edge detection algorithms 
option2 = input(' Which edge detector do you want 7); 
if option2 = 1, 

clf 
[bw,tol] = edge(x,'sobel'); 
fprintf('the tolerance is set to : %2.3f,tol); 
imshow(bw), xlabel('Sobel edge detection filter'), 
title('threshold level'); 

% Option for the level of thresholding 
tolerance = input('CHANGE THE TOLERANCE ?', 's'); 
if tolerance = 
while tolerance = 

ans2 = input( NEW TOLERANCE ?'); 
[bw,tol]=edge(x,ans2;sobel'); 
imshow(bw); 
tolerance = input ('CHANGE TOLERANCE ? yes/no','s'); 

end; 
elseif tolerance --= 
end; 

elseif option2 =--- 2 
cif 
[bw,tol] = edge(x,'marr'); 
fprintf('the tolerance is set to : %2.3f,tol); 
imshow(bw); xlabel('Marr edge detection filter'),title('threshold lever); 

% Option for the level of thresholding 
tolerance = input('CHANGE THE TOLERANCE ?', 's'); 
if tolerance =-- 
while tolerance = 

ans2 = input(' NEW TOLERANCE ?'); 
[bw,tol]=edge(x,ans2,emarr'); 
imshow(bw), xlabel('Marr edge detection filter'), title('threshold level'); 
tolerance = input ('CHANGE TOLERANCE ?','s'); 

end; 
elseif tolerance == 
end; 

elseif option2 == 3 
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% Option for a M-file of Edge Detection 
cif 

EdgeDetector=input(['HAVE YOU SELECTED YOUR EDGE DETECTOR FORM MODE ? '],'s'); 
% if yes (an edge detector has already been selected in the M-file) please continue, otherwise you should go 
% back the M-file to select your desired edge detector by editing of the M-file. In the edge_det.m file, there 
% are five options or modes that the user can put for the mode. These modes are Sobel edge detector, 
% Differential operator 4 masks, Nagao & differential 3 points, and the Deriche's operator 
% (alpha = 2, alpha = 1, alpha = 0.5). 

Edgeoutput = edge_det(x,'del); 
imagesc(Edgeoutput);colormap gray 
mini=rnin(Edgeoutput(:)); maxi=max(Edgeoutput(:)); 

threshold = input([INPUT THE THRESHOLD TO GET A BINARY IMAGE', mini, '->', maxi,': ']); 
imagesc(Edgeoutput); colormap gray; colorbar 

% We should have an image with 0 and 1(binary image). So the image must be thresholded. 
bw = Edgeoutput > threshold; 

imshow(bw), 
elseif option2 =4 

N = input(INPUT THE FILTER SUE IN PIXELS (7,9, 11, 13 etc): '); 
Edgeoutput = canny2d(x, N); 
imagesc(Edgeoutput);colormap gray;colorbar 
mini=num2str(min(Edgeoutput(:))); maxi=num2str(max(Edgeoutput(:))); 

threshold = input(rINPUT THE THRESHOLD TO GET A BINARY IMAGE ', mini, '->', maxi,': 1); 
bw = Edgeoutput > threshold; 

imshow(bw), xlabel(' 2D Canny Edge Detector') 
elseif option2 == 5 

N = input(INPUT THE FILTER SIZE IN PIXELS (7,9 or 13): '); 
Edgeoutput = fcanny2d(x, N); 
imagesc(Edgeoutput);colonnap gray;colorbar 
mini=num2str(min(Edgeoutput(:))); 
maxi=num2str(max(Edgeoutput(:))); 

threshold = inputaINPUT THE THRESHOLD TO GET A BINARY IMAGE', mini, '->', maxi,': ']); 
bw = Edgeoutput > threshold; 

imshow(bw), xlabel(' An Approximation of the 2D Canny Edge Detector') 
end; 

% if option2 
elseif option = 3 
% Option for types of hit and miss operations 
% If the user wishes to put some explanation or titles on the graphic, he/she has % to edit the graphic line eg 
% imshow(bw), xlabel(' 2D Canny Edge Detector), 
% ylabel('Morphological Operation'), or imshow(bw), xlabel('2D Deriche Operator % If Alpha = 0.5'), 
% ylabel('Morphological Operation'). 
clf, cic 

opt = 1; 
while opt =-- 1 
disp(' 1/close 2/bridge 3/fill 4/skeleton 5/dilation 6/erosion') 
option3 = input(' Which morphological operation do you want?'); 
if option3 == 1 

num = input(' Closing Tolerance? '); 
bw = bwmorph(bw,'close',num); 
imshow(bw), 
opt = 1; 

elseif option3 =2 
num = input(' Bridging Tolerance? '); 
bw = bwmorph(bw,'bridge',num); 
imshow(bw), 
opt = 1; 

elseif option3 = 3 
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num = input(' Filling Tolerance? '); 
bw = bwmorph(bw,'fill',num); 
imshow(bw), 
opt = 1; 

elseif option3 =4 
num = input(' Skeleton Tolerance? '); 
bw = bwmorph(bw,'skel',num); 
imshow(bw), 
opt = 1; 

elseif option3 = 5 
num = input(' Dilation Tolerance? '); 
bw = bwmorph(bw,'dilate',num); 
imshow(bw), 
opt = 1; 

elseif option3 = 6 
num = input(' Erosion Tolerance? '); 
bw = bwmorph(bw,'erode',num); 
imshow(bw), 
opt = 1; 

else opt = 0; 
end; 
bbb = 1; 
end; 

elseif option =4 
outputfile = input(INPUT YOUR IMAGE OUTPUT FILE USING EXTENSION: ','s'); 
bmpwrit2(—bw,map,outputfile) 

elseif option = 0 
bbb = 0; 

end; 
end; 
end; 

%*************************************************************************************** 

% This is the edge_detect.m 

% This M-file contains many edge detection operators including Sobel, Differential Operator 4 Masks, 
% Nagao & Differential 3 points, and 2D Deriche with different filter sizes. 
% (C) Parc, 1995 J. Devars & S. Guetari 
% Updated by A. Forghani, May 1996 
function ImGrd=edge_detect(ImSrc,Mode,Snul,Lc); 
% IG--edge_detect(IS,MODE,SO,LC) => Create an edge image IG from a source image IS, 
% images are gray level image coded on 8 bits (0...255). 
% - if threshold SO is specified then the pixels of IG < SO are equal to 
% - if LC is scpecified ad non zero, IG is the image of transition of lines 
% - MODE.'sob' : Sobel's operator 
% 'd4m' : differential operator 4 masks 
% 'ngd : Nagao & differential 3 points 
% 'de2' : Deriche's operator alpha=2 
% 'del' : 	alpha=1 
% 'de0' : 	alpha=.5 
IniDst=0; Smin=0; Cret=0; 
if nargin <2, 	error('Problem with the number of arguments), 
elseif —isstr(Mode), error('Problem with the argument mode format), 
else, 
Mode=lower(Mode); 
Sob=a11(Mode = 'sob'); 
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D4m=a11(Mode = 'd4m.); 
Ngd=a11(Mode = 'ngd'); 
De2=a11(Mode = 'de2'); 
De 1 =all (Mode = 'del'); 
Deall(Mode = 'de0'); 
if —(SoblD4mINgd1De21DellDe0), error('Pb codage mode'), 
elseif nargin >= 3, 
Smin=Snul; 
if nargin =4, Cret.(Lc , 0); end 

end; 
end; 
[Ny,Nx]=size(ImSrc); 
if Sob, % Operateur de Sobel, norme euclidienne 
MslcH=F1 0 1;-2 0 2;-1 0 1114; 
IgH=conv2(ImSrc,MslcH,'same'); 
MskV=[1 2 1;0 0 0;-1 -2 -1]/4; 
IgV=conv2(ImSrc,MskV,'same'); 
Grd=sqrt(IgV.*IgV+IgH.*IgH); 
Grd([1 Ny],:)=zeros(2,Nx); 
Grd(:,[1 Nx])=zeros(Ny,2); 

elseif D4m, % Operateur differentiel 4 masques 
MskIIMI 2 1;0 0 0;-1 -2 -11/4; 
Grd=abs(conv2(ImSrc,Msk0,'same)); 
Msk1=[0 1 2;-1 0 1;-2 -1 0]/4; 
Grd=max(Grd,abs(conv2(ImSrc,Mskl,'same'))); 
Msk2=[-1 0 1;-2 0 2;-1 0 11/4; 
Grd=max(Grd,abs(conv2(ImSrc,Msk2,'same .))); 
Msk3=[-2 -1 0;-1 0 1;0 1 21/4; 
Grd=max(Grd,abs(conv2(ImSrc,Msk3,'same))); 
Grd([1 Ny],:)=zeros(2,Nx); 
Grd(:,[1 Nx])=zeros(Ny,2); 
elseif Ngd, % Nagao puis differentiel 3 points 
Msk=[1 1 1;1 1 1;1 1 1]/9; 
Ia=conv2(ImSrc,Msk,'same'); 
Ib=conv2(ImSrc.*ImSrc,Msk,'same)-Ia.*Ia; 
for Y=2:Ny-3 
V3yV=Ib(Y:Y+2,:); V3yV=V3yV(:); 
V3yM=Ia(Y:Y+2,:); V3yM=V3yM(:); Xlin=4; 
for X=3:Nx-2 
[Vmin,Pos]=min(V3yV(Xlin:Xlin+8)); 
ImSrc(Y+1,X)=round(V3yM(Xlin-l+Pos)); 
Xlin=Xlin+3; 

end; 
end; 
Ia=abs(conv2(ImSrc,[-1 1],'same')); 
Ib=abs(conv2(ImSrc,[1;-1],'same')); 
Grd=max(max(Iajb),.75*(Ia+Ib)); 
Grd([1 2 Ny-1 Ny],:zeros(4,Nx); 
Grd(:,[1 2 Nx-1 Nx])=zeros(Ny,4); 
elseif (De2IDellDe0), % Operateur de Deriche alpha = 2, 1 ou .5 
if De2, 
F4-0.0074;-0.0411;-0.2027;-0.7488; 0; 0.7488; 0.2027; 0.0411; 0.0074]; 
H=[ 0.0085; 0.0451; 0.2000; 0.4926; 0.2000; 0.0451; 0.0085]; 

elseif Del, 
F=[-0.0070;-0.0162;-0.0368;-0.0800;-0.1630;-0.2955;-0.4016; 0;... 

0.4016; 0.2955; 0.1630; 0.0800; 0.0368; 0.0162; 0.0070]; 
H=[ 0.0044; 0.0102; 0.0230; 0.0500; 0.1020; 0.1848; 0.2512;... 
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0.1848; 0.1020; 0.0500; 0.0230; 0.0102; 0.0044]; 
else 
F=[-0.0033;-0.0050;-0.0076;-0.0115;-0.0173;-0.0257;-0.03 76;... 

-0.0543;-0.0767;-0.1054;-0.1390;-0.1719;-0.1889-0.1557; 0;... 
0.1557; 0.1889; 0.1719; 0.1390; 0.1054; 0.0767; 0.0543;... 
0.0376; 0.0257; 0.0173; 0.0115; 0.0076; 0.0050; 0.0033]; 

H=[ 0.0014; 0.0022; 0.0033; 0.0051; 0.0077; 0.0115; 0.0171;... 
0.0250; 0.0361; 0.0510; 0.0701; 0.0924; 0.1143; 0.1256;... 
0.1143; 0.0924; 0.0701; 0.0510; 0.0361; 0.0250; 0.0171;... 
0.0115; 0.0077; 0.0051; 0.0033; 0.0022; 0.0014]; 

end; 
ILco1=ImSrc; ILcol=reshape(conv2(ILcol(:),H,'same),Ny,Nx); 
ILlgn=ImSrc'; ILlgn=reshape(conv2(ELlgn(:),H,'same .),Nx,Ny); 
ILcol=1Lcol'; ILcol=reshape(conv2(ILcol(:),F;same .),Nx,Ny); 
ILcol=abs(ILcol'); 
lLign=ILlgn'; ILlgn=reshape(conv2(ILlgn(:),F;same .),Ny,Nx); 
ILlgn=abs(ILlgn); 
Grd=max(max(ILcoliLlgn),.75*(ILcol+ILlgn)); 
Grd([1 2 3 4 Ny-3 Ny-2 Ny-1 Ny],:)=zeros(8,Nx); 
Grd(:,[1 2 3 4 Nx-3 Nx-2 Nx-1 Nx])=zeros(Ny,8); 

end; 
% Image of gradient with pixels < Smin put to 0 
if Smin > 0, 
Nuls=find(Grd < Smin); Grd(Nuls)=zeros(size(Nuls)); 
end; 
if -Cret, ImGrd=round(Grd); 
% Determination of edges in 4 connectivity. 
else, 
Grd=reshape(Grd',Nx*Ny,1); 
ImGrd=zeros(Nx*Ny,1); 
V4=[1 Nx -1 -Nx]; 
Sequence=[Nx+2:Nx*(Ny-1)-1]; % Sequential Tests 
for Indx=Sequence, % of profil A or 1= 
Pix=Grd(Indx); 
if Pix, 
Sgn=sign(Grd(V4+Indx)-Pix)+1; 
Profil=Sgn(1:2)+4*Sgn(3:4); 
if any(Profil <= 1), ImGrd(Indx)=Pix; end 
end; 

end; 
ImGrd=(reshape(round(ImGrd),Nx,Ny)) . ; 
end; 

%*************************************************************************************** 

% This is the Canny2D.m 

function [out, H] = canny2D(in,N) 
% Computes Canny's edge detector 
% in is the edge input 
% N=7,9,11, 13, etc.. 
% N is the filter size 
% H is the filter coefficients 
N = 1/floor(N12);%N is the step 
x = [-1:N:0]'; 
al = 0.1486768717; 
a2 = -0.2087553476; 
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a3 = -1.244653939; 
a4 = -0.7912446531; 
alpha = 2.0522; 
w = 1.56939; 
lambda1=-2; 
sx=sin(w*x); cx=cos(w*x); 
h = exp(-alpha*x) .* (al*sx + a2*cx); 
h = h + exp( alpha*x) .* (a3*sx + a4*cx); 
h = h - lambda1/2; 
1=length(h); 
H = [h ;-flipud(h(2:1-1));h(1)]/max(h); 
out = max(abs(filter2(H,in)),abs(filter2(H',in))); 
out = floor(255*out/max(out(:))); 

%*************************************************************************************** 

% This is the fcanny2d.m 

function out=fcanny2d(in,N) 
% Performs an approximation of the Canny's filter 
% N = 7, 9 or 13 pixels 
% N is the size of the filter transfer function 
if nargin <2, 
N = 7; 

end; 
if N=7 
H =[0,0.5814,1.0000,0,-1.0000,-0.5814,0]'; 
elseif N==9 
H =[0,0.2292,0.9070,0.7276,0,-0.7276, -0.9070,-0.2292,0]'; 
elseif N=13 
H =[0,0.2292,0.5814,0.9070,1.0000,0.7276,0,-0.7276, ... 
-1.0000,-0.9070,-0.5814,-0.2292,0]' ; 
end; 
out = filter2(H,in); 
out = (abs(out) + abs(filter2(H',in)))/2; 
out = floor(255*out/max(out(:))); 

% This is the bmpwrite.m 

function bmpwrite(X,map, filename); 
% BMPWRITE Write a BMP (Microsoft Windows Bitmap) file to disk. 
% 	BMPWRITE(X,MAP,'filename) writes a BMP file containing the 
% 	indexed image X and colormap MAP to a disk file called 'filename'. 
% 	If no file extension is given with the filename, the extension 
% 	..bmp' is assumed. 
% 	See also: BMPREAD, GlFWRITE, HDFWRITE, PCXWRITE, TTFFWRITE, 
% 	XWD WRITE. 
% 	Mounil Patel 7/20/93 
% 	Copyright (c) 1993 by The MathWorks, Inc. 
% Updated 12/22/94, Jean Devars 
if (nargin—=3) 

error('Requires three arguments.); 
end; 
if (isstr(filename)—=1) 

error('Requires a string filename as the third argument.'); 
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end; 
if (isempty(findstr(filename,l) 

filenarn[filename,'.bmp']; 
end; 
fid=fopen(filename,'wbV1'); 
if (fid=---1) 

error([Error opening ',filename,' for output.']); 
end; 
% Header 54 bytes + Colormap 4*256 bytes = 1078 bytes 
fwrite(fid,[13';'1v11;char'); 
[biHeight,biWidth]=size(X); 
bfSize=biHeight*(biWidth+rem(biWidth,4))+1078; 
fwrite(fid,bfSize,'long'); 
bfReserved1=0; 
fwrite(fid,bfReserved1;shore); 
bfReserved2=0; 
fwrite(fid,bfReserved2,'short'); 
bfOffBits=1078; 
fwrite(fid,bfOffBits:long'); 
biSiz40; 
fwrite(fid,biSize,'long'); 
fwrite(fid,biWidth;long'); 
fwrite(fid,biHeight,'long'); 
biPlanes=1; 
fwrite(fid,biPlanes,'short); 
biBitCount=8; 
fwrite(fid,biBitCount,'short'); 
% Unused values : all zeros 
biCompression=0; 
fwrite(fid,biCompression;long'); 
biSizelmag0; 
fwrite(fid,biSizelmage,'long'); 
biXPels=0; 
fwrite(fid,biXPels;long'); 
biYPels=0; 
fwrite(fid,biYPels,'long'); 
biClrUsed=0; 
fwrite(fid,biClrUsed:long'); 
biClrimportant=0; 
fwrite(fid,biClrimportant,long'); 
[m,n]=size(map); 
if (m>256) 
effor('Colormap exceeds 256 colors!'); 

elseif (m—=256) 
mal[map;zeros(256-m,3)]; 

end; 
map=[fliplr(map*255),zeros(256,1)]'; 
fwrite(fid,map(:),'uchar'); 
X=(X-1); 
if (rem(biWidth,4)—=0) 

X=[X,zeros(biHeight,rem(biWidth,4))]; 
end; 
X=rot90(X,3); 
fwrite(fid,X(:),'uchar'); 
fclose(fid); 

%*************************************************************************************** 
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% Ali Forghani, Februray 1997 
% This is the accuracy.m 

% This code computes the overall classification accuracy, omission errors, and commission errors for the 
output of edge detectors and morphological operations (Chapter 6), and supervised classification (Chapter 
9). 

load!; 
% I is the output data in ASCII format. 
load roads; 
% roads are the reference road map in ASCII format. 
load roads; 
[m,n1=size(roads); 
number_correct_road=0; 
number_correct_non_road=0; 

for i=1:m 
for j=1:n 
if roads(i,j1 % if sample's pixel is in road % roads is the reference map 

if I(i,j)=--1 % if results'pixel is in road % I is edge detection 
number_correct_road=number_correct_road+1; 

end; 
else 
if I(i,j)=-0 %if results'pixel is in non-road 
number_correct_non_road=number_correct_non_road+1; 

end; 
end; 

end; 
end; 

number_total_pixel=m*n; 
acc_road=number_correct_road/number_total_pixel; 
Onunission_error_road=1-acc_road; 
Commission_error_road=1-number_correct_non_road/number_total_pixel; 

disp(Orrunission_error_road); 
disp(Conunission_error_road); 
disp(acc_road); 

%*************************************************************************************** 
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APPENDIX D 

Appendix D: FORTRAN 77 Code for Generating a Tabular ASCII File from 

the ARC/INFO Grid ASCII Files. 

Ali Forghani, March 1997 
c A FORTRAN 77 routine was written to preprocess the ARC/INFO grid ASCII files in order to 
c generate a tabular ASCII file to be interfaced with a decision tree software (KnowledgeSEEKER). 
c To use this routine: 
c Firstly, an ASCII file called eg names has to be created. It contains the names of variables. 
c Secondly, the number of variables (data files), and the number of rows and columns has to be 
c specified in the code by editing the program, eg parameter(nfiles=7,nrows=180,ncols=162). It 
c should be noted that the variables (grid ASCII files) must not contain headings or other texts. 
c Thirdly, the program must be compiled and then the compiled file can be used to generate a tabular 
c ASCII data file by using columns>data command at the UNIX prompt. 

* ************************************************** 
program columns 

parameter(nfiles=7,nrows=180,ncols=162) 
real*4 x(nfiles,nrows,ncols) 
character*8 datafile(nfiles) 

open(5,file='names',status='unknown) 
do 100 i = 1,nfiles 

read(5,1000) datafile(i) 
1000 format(A8) 
100 continue 

do 10 i = 1,nfiles 
open(5,file=datafile(i),status='unknown) 
do 20 j = 1,nrows 
read(5,*) (x(i,j,k),k=1,ncols) 

20 continue 
close(5) 

10 continue 
do 30j = 1,nrows 
do 40 k = 1,ncols 
write(*,*) (x(ij,k), i=1,nfiles) 

40 continue 
30 continue 
end 
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APPENDIX E 

Appendix E: MATLAB Code for Development of a Decision Tree 

Processing Expert System (DTPES) to Map Out the Spatial Distribution of 

Roads and their Background from the GIS Database. 

% Ali Forghani, May 1997 
% Decision Tree Processing Expert System (DTPES). 

% DTPES is a Knowledge_Based system that performs image classification using multi-source data. 
% This program is composed of three sub-routines namely lcs2mat.m, matrules.m, and dtpes.m. 

% The ks2mat.m code automatically converts generic rules into specified MATLAB rules. The 
% generic rules were generated from a classification tree which was built in knowledge-based 
% software (ICnowledgeSEEICER algorithm). 

% The matrules.m stores the MATLAB formatted rules for the dtpes.m. 

% The dtpes.m calls the multi-source data and evaluates all rules for a given pixel with a forward 
% chaining process. After execution of rules against the datasets, the output of the DTPES is plotted as 
% an image, and the overall classification accuracy based on the reference data is computed and 
% printed. 

% The DTPES is a Unix based program that was written in MATLAB code at the Department of 
% Surveying & Spatial Information Science, and the CODES Centre, University of Tasmania, 
% Australia. 

DTPES=input(['This program is a Decision Tree Processing Expert System (DTPES) that predicts the roads 
probability (presence of roads) from remote sensing imagery and a GIS dataset via using generated rules by 
a decision tree algorithm (ICnowledgeSEEICER) for the purpose of image classification in context of feature 
detection, please hit returni's'); 

clear 
cic 
clf 
% loading the datasets for execution of rules. 
load roads 
load edge 
load photo82 
load streams 
load fieldb 
load landuse 
load dem 
% The matrules function located the rules to be called by the dtpes.m. 
roads_probability=matrules(roads,edge,photo82,streams,fieldb,landuse,dem); 
% plotting the image 
I = roads_probability; 
map = gray(100); 
I = ind2gray(roads_probability, map); 
J = histeq(I,256); 
subplot(2,2,1), imshow(I, 100), title('Original'); 
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subplot(2,2,2), imshow(J,100), title('Equalized); 
subplot(2,2,3), imhist(I,100), title('Original'); 
subplot(2,2,4), imhist(J,100), title('Equalized'); 
% estimating of the overall accuracy 
[m,n1=size(roads); 
sigma=0;sweight=0; 
for i=1:m 
for j=1:n 
if roads(i,j)=-9999 
road=0;weight=0.5; 
else 
road=100;weight=1.0; 

end; 
uncertainty=abs(roads_probability(i,j)-road)/100; 
probability=(1-uncertainty)*weight; 
sigma =sigma+probability; 
sweight=sweight+weight; 

end; 
end; 
probability=sigma/sweight; 
disp(probability); 
% saving the image in a file 
outputfile = input('INPUT YOUR IMAGE OUTPUT FILE USING EXTENSION: ','s'); 
bmpwrite(roads_probability,map:outputfile'); 

%*************************************************************************************** 

% This is the Ics2mat.m. 

% The Ics2mat.m program converts a text file which contains KnowledgeSEEICER generic rules into 
% MATLAB rules for the DTPES program. The MATLAB rules are printed in a file called matrules.m. 

% Opening result file 
dirl=igis/students/alif/s2/s2oldr ; 
fidl=fopen([dirl '99rules.txtl'f); 
fid2 = fopen([dirl 'matrules.m], 'w'); 
fprintf(fid2,'%s\n',Tunction roads_probability=matrules(roads,edge,photo82,streams,fieldb,landuse,dem)); 
fprintf(fid2;%s\n','[m,n]ize(roads);'); 
fprintf(fid2,'%AnVfor i=1:m'); 
fprintf(fid2;%AnVfor j=1:n'); 
fprintf(fid2;%AnVroads_probability(i,j)=0;'); 
escape=0;str1(1)='a'; 
while 1=1 
%Passing empty lines 
while str1(1)—='R' 
strl=fgets(fid1); 
if str1=-1 
escape=1; 
break; 

end; 
end; 
if escape=-1 
break; 
end; 
% writing to the result file 
i=1; 
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while strl(i)—=T 
i=i+1; 

end; 
fprintf(fid2,'%s\n',['%' str1(1:i-1)]); 
% Getting next line 
strl=fgets(fid1); 
fprintf(fid2,'%sVif '); 
count=0; 
while str1(1)—=T 

% Passing blank characters 
i=1; 
while strl(iblanks(1) 
i=i+1; 

end; 
% Getting name of variable 1 
i=i; 
while strl(j)—='=' 
j=j+1; 
end; 
namel=strl(i+1:j-2); 
ss=size(str1); 
% Finding the kind of rule 
k=j+1;case=1; 
while k<=ss(2) 
if (strl(k).--'[.)1(strl(k)=.0 
case=2;brealc; 

end; 
if strl(k-1:k'or' 
case=3;break; 

end; 
k=k+1; 
end; 
count=count+1; 
if count—=1 
fprintf(fid2,'%s','&'); 
end; 
if case=---2 
% Getting values 
while (strl(j)—='[')&(strl(j)—='(') 
j=j+1; 
end; 
if strl(j)=T 
marker1='5='; 
else 
marker1='>'; 
end; 
i=j+1; 
while strl(i)—=',' 
i=i+1; 

end; 
va1uel=str1(j+1:i-1); 
j=i+1; 
while (strl(j)—=')')&(stri(j)—=']') 
j=j+1; 
end; 
if strl(j)=T 
marker2='<='; 
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else 
marker2='<'; 

end; 
value2=strl(i+1:j-1); 
% writing to the result file 
fprintf(fid2;%s\n',['(' namel '(i,j)' marker! value! ')&(' name! 

'(i,j)' marker2 value2 ') ...']); 
end; % case 2 
if case=-1 

% Getting value 
value=str2num(strl(j+1:ss(2)-1)); 
% Writing to result file 
fprintf(fid2;%s\n',['(' namel 	num2str(value) ) 

end; % casel 
if case=--3 

kl=j+1;1c2=j;i=0; 
% Getting value 
while (strl(k1)—='r') 
if (strl(k1)==';)1(strl(k1)=--'6) 
i=i+1; 
value3(0=str2num(str1(1:2+1:k1-1)); 
1c2=k1; 

end; 
kl=k1+1; 

end; 
i=i-i-1; 
value3(i)=str2num(strl(k1+1:ss(2))); 
% writing to the result file 
for kl=1:i 
fprintf(fid2;%s',['(' name! 	nurn2str(value3(k1)) ')']); 
if k1=---i 
fprintf(fid2,'%s\n','...'); 
else 
fprintf(fid2;%s','I'); 
end; 
end; 

end; To case3 
% Getting next line 
strl=fgets(fid1); 
end; % while 
i=1; 
strl=fgets(fid1);str2=fgets(fid1); 
str3=fgets(fid1); 
while str3(1)—='R' 
i=i+1; 
str3=fgets(fid1); 
if str3=----1 
break; 
end; 

end; 
if i----2 
str2=str 1; 

end; 
strl=str3; 
k=i-1; 
i=1; 
% Passing blank characters 
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while str2(i)==blanks(1) 
i=i+1; 

end; 
% Getting name of variable 1 
i=i; 
while str2(j)-='=' 
j=j+1; 
end; 
namel=str2(i+1:j-2); 
% Getting valuel 
i=j+3; 
while str2(i)-=blanks(1) 
i=i+1; 

end; 
valuel=str2num(str2(j+1:i)); 
ss=size(str2); 
value2=str2num(str2(i:ss(2)-2)); 

if k=--1 
if value1=-9999.00 

value=0; 
elseif valuel=1 

value=100; 
end; 
else 
value=value2; 

end; 
fprintf(fid2,'%s\n',[ namel '_probability(i,j)=' namel '_probability(ij)+ num2str(value) ';']); 
fprintf(fid2,'%AnVend;'); 
end; % While 
fprintf(fid2;%AnVend;'); 
fprintf(fid2,'%s\nVend;'); 
fclose(fid1); 
fclose(fid2); 

%*************************************************************************************** 

% This is the matrules.m 

% The matrules.m contains the rules to be executed against the database. 
function roads_probability=matrules(roads,edge,photo82,streams,fieldb,landuse,dem) 
[m,n]=size(roads); 
for i=1:m 
for j=1:n 
roads_probability(i,j)=0; 
%RULE_1 
if (photo82(i,j)>=12)&(photo82(i,j)<20) ... 
&(edge(i,j)=--1) ... 
roads_probability(i,D=roads_probability(i,j)+20.3; 
end; 
%RULE_2 
if (photo82(i,j)>=12)&(photo82(i,j)<20) ... 
&(edge(i,j)=---9999) ... 
roads_probability(i,j)=roads_probability(i,j)+0.3; 
end; 
%RULE_3 
if (photo82(i,j)>=20)&(photo82(i,j)<22) ... 
&(edge(i,j)=1) ... 
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&(dem(i j)>=1)&(dem(i,j)<91) ... 
roads_probability(i,j)=roads_probability(i,j)+4.3; 
end; 
%RULE_4 
if (photo82(i,j)>=20)&(photo82(i,j)<22) ... 
&(edge(i,j)=---1) ... 
&(dern(i,j)>=91)&(dera(i,j)<110) ... 
roads_probability(i,D=roads_probability(i,j)+75; 
end; 
%RULE_5 
if (photo82(i,j)>=20)&(photo82(i,j)<22) ... 
&(edge(i,j)=1) ... 
&(dem(i,j)>=110)&(dem(i,j)<=139) ... 
roads_probability(i,D=roads_probability(i,j)+1.3; 
end; 
%RULE_6 
if (photo82(i,j)>=20)&(photo82(i,j)<22) ... 
&(edge(i,j)=----9999) ... 
roads_probability(i,D=roads_probability(i,j)+0.6; 
end; 
%RULE_7 
if (photo82(i,j)>=22)&(photo82(i,j)<24) ... 
&(dem(i,j)>=1)&(dem(i,j)<91) ... 
roads_probability(i,j)=roads_probability(i,j)+0; 
end; 
%RULE_8 
if (photo82(i,j)>=22)&(ph0t082(i,j)<24) ... 
&(dern(i,j)>=91)&(dern(i,j)<115) ... 
roads_probability(i,D=roads_probability(i,j)+2.6; 
end; 
%RULE_9 
if (photo82(i,j)>=22)&(photo82(i,j)<24) ... 
&(dem(i,j)>=115)&(dem(i,j)<119) ... 
roads_probability(i,j)=roads_probability(i,j)+0.9; 
end; 
%RULE_10 
if (photo82(i,j)>=22)&(photo82(i,j)<24) ... 
&(dem(i,j)>=119)&(dem(i,j)<122) ... 
roads_probability(i,j)=roads_probability(i,j)+3.3; 
end; 
%RULE_11 
if (photo82(i,j)>=22)&(photo82(i,j)<24) ... 
&(dem(i,j)>=122)&(dern(i,j)<128) ... 
&(edge(i,j)=--1) ... 
roads_probability(i,j)=roads_probability(i,j)+14.3; 
end; 
%RULE_12 
if (photo82(i,j)>=22)&(photo82(i,j)<24) ... 
&(dem(i,j)>=122)&(dem(i,j)<128) ... 
&(edge(i,j)=-9999) ... 
roads_probability(i,j)=roads_probability(i,j)+0.7; 
end; 
%RULE 13 
if (photo-82(i,j)>=22)&(photo82(i,j)<24) ... 
&(dem(i,j)>=128)&(dem(i,j)<131) ... 
roads_probability(i,j)=roads_probability(i,j)+5.5; 
end; 
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%RULE_14 
if (photo82(i,j)>=22)&(photo82(i,j)<24) ... 
&(dem(i,j)>=131)&(dem(i,j)<=139) ... 
roads_probability(i,D=roads_probability(0+0; 
end; 
%RULE_15 
if (photo82(i,j)>=24)&(photo82(ij)<26) ... 
&(edge(ij)=--1) ... 
roads_probability(0=roads_probability(0+11. 4 ; 
end; 
ToRULE_16 
if (photo82(i,j)>=24)&(photo82(i,j)<26) ... 
&(edge(i,j)==-9999) ... 
&(dem(i,j)>=1)&(dem(i,j)<110) ... 
&(landuse(i,j)=7)1(landuse(ij -9)1(landuse(i,j)=11) 1 (landuse(i,j)=--1 )... 
roads_probability(0=roads_probability(ij)+25; 
end; 
%RULE_17 
if (photo82(i,j)>=24)&(photo82(i,j)<26) ... 
&(edge(i,j)=----9999) ... 
&(dem(i,j)>=1)&(dem(i,j)<110) ... 
&(landuse(i,j)=8) ... 
roads_probability(i,j)=roads_probability(i,j)+0. 4; 
end; 
%RULE_18 
if (photo82(i,j)>=24)&(photo82(i,j)<26) ... 
&(edge(i,j)==-9999) ... 
&(dem(i,j)>=110)&(dem(i,j)<115) ... 
roads_probability(i,j)=roads_probability(i,j)+3; 
end; 
%RULE_19 
if (photo82(i,j)>=24)&(photo82(i,j)<26) ... 
&(edge(ij)=-9999) ... 
Mdem(i,j)>=115)&(dern(i,j)<119) ... 
roads_probability(i,j)=roads_probability(i,j)+0.3; 
end; 
%RULE_20 
if (photo82(i,j)>=24)&(photo82(i,j)<26) ... 
&(edge(i,j)=---9999) ... 
&(dem(i,j)>=119)&(dem(i,j)<122) ... 
roads_probability(i,j)=roads_probability(i,j)+7.1; 
end; 
%RULE_21 
if (photo82(i,j)>=24)&(photo82(i,j)<26) ... 
&(edge(i,j)==-9999) ... 
&(dem(i,j)>=122)&(dem(i,j)<128) ... 
roads_probability(i,j)=roads_probability(i,j)+2.2; 
end; 
%RULE_22 
if (photo82(i,j)>=24)&(photo82(i,j)<26) ... 
&(edge(i,j)=-----9999) ... 
&(dem(i,j)>=128)&(dem(i,j)<131) ... 
roads_probability(i,j)=roads_probability(i,j)+6.5; 
end; 
%RULE_23 
if (photo82(i,j)>=24)&(photo82(ij)<26) ... 
&(edge(i,j)=-9999) ... 
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&(dem(i,j)>=131)&(dem(i,j)<=139) ... 
roads_probability(i,j)=roads_probability(ij)÷0; 
end; 
%RULE_24 
if (photo82(i,j)>=26)&(photo82(i,j)<29) ... 
&(edge(i,j)=1) ... 
&(dem(i,j)>=1)&(dem(i,j)<131) ... 
roads_probability(i,j)=roads_probability(0+10.2; 
end; 
%RULE_25 
if (photo82(i,j)>=26)&(photo82(i,j)<29) ... 
&(edge(i,j)=1) ... 
&(dem(i,j)>=131)&(dem(ij)<=139) ... 
roads_probability(0=roads_probability(0+100; 
end; 
%RULE_26 
if (photo82(i,j)>=26)&(photo82(i,j)<29) ... 
&(edge(i,j)=---9999) ... 
&(dem(i,j)>=1)&(dem(i,j)<110) ... 
roads_probability(i,j)=roads_probability(i,j)+0.4; 
end; 
%RULE_27 
if (photo82(i,j)>=26)&(photo82(i,j)<29) ... 
&(edge(i,j)=-9999) ... 
&(dem(i,j)>=110)&(dem(i,j)<115) ... 
roads_probability(i,j)=roads_probability(i,j)+3.8; 
end; 
%RULE_28 
if (photo82(i,j)>=26)&(photo82(i,j)<29) ... 
&(edge(i,j)=-9999) ... 
&(dem(i,j)>=115)&(dern(i,j)<119) ... 
roads_probability(i,j)=roads_probability(i,j)+1.4; 
end; 
%RULE_29 
if (photo82(i,j)>=26)&(photo82(i,j)<29) ... 
&(edge(i,j)=----9999) ... 
&(dem(i,j)>=119)&(dern(i,j)<122) ... 
roads_probability(i,j)=roads_probability(i,j)+6.2; 
end; 
%RULE_30 
if (photo82(i,j)>=26)&(photo82(i,j)<29) ... 
&(edge(i,j)=---9999) ... 
&(dem(i,j)>=122)&(dem(i,j)<131) ... 
roads_probability(i,j)=roads_probability(i,j)+2.7; 
end; 
%RULE_31 
if (photo82(i,j)>=26)&(photo82(i,j)<29) ... 
&(edge(i,j)==-9999) ... 
&(dem(i,j)>=131)&(dem(i,j)<=139) ... 
roads_probability(0=roads_probability(i,j)+ 0; 
end; 
%RULE_32 
if (photo82(i,j)>=29)&(photo82(i,j)<33) ... 
&(edge(i,j)=1) ... 
roads_probability(0=roads_probability(i,j)+ 9.6; 
end; 
%RULE_33 
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if (photo82(i,j)>=29)&(photo82(i,j)<33) 
&(edge(ij)==-9999) 
&(dern(i,j)>=1)&(dem(i,j)<115) 
&(landuse(i,j)=--7)I(landuse(i,j)=1)1(landuse(i,j)=11)... 
roads_probability(i,j)=roads_probability(i,j)+9.7; 
end; 
%RULE_34 
if (photo82(i,j)>=29)&(photo82(i,j)<33) 
&(edge(i,j)=-9999) 
&(dem(i,j)>=1)&(dern(i,j)<115) 
&(1anduse(i,j)=--8)I(1anduse(i,j)=--9)... 
roads_probability(i,D=roads_probability(i,j)+0.8; 
end; 
%RULE_35 
if (photo82(i,j)>=29)&(photo82(i,j)<33) 
&(edge(i,j)=-9999) 
&(dem(i,j)>=115)&(dem(i,j)<119) 
roads_probability(i,D=roads_probability(i,j)+8.1; 
end; 
%RULE_36 
if (photo82(i,j)>=29)&(photo82(i,j)<33) 
&(edge(i,j)=-9999) 
&(dem(i,j)>=119)&(dem(i,j)<125) 
roads_probability(i,j)=roads_probability(i,j)+5.6; 
end; 
%RULE_37 
if (photo82(i,j)>=29)&(photo82(ij)<33) 
&(edge(i,j)=-9999) 
&(dem(i,j)>=125)&(dem(i,j)<=139) 
roads_probability(i,j)=roads_probability(i,j)+1.1; 
end; 
%RULE_38 
if (photo82(i,j)>=33)&(photo82(i,j)<38) 
&(edge(i,j)=1) 
roads_probability(i,j)=roads_probability(i,j)+10.9; 
end; 
%RULE_39 
if (photo82(i,j)>=33)&(photo82(i,j)<38) 
&(edge(i,j)=-9999) 
&(dem(i,j)>=1)&(dem(i,j)<128) 
roads_probability(i,j)=roads_probability(i,j)+7.7; 
end; 
%RULE_40 
if (photo82(i,j)>=33)&(photo82(i,j)<38) 
&(edge(i,j)=---9999) 
&(dem(i,j)>=128)&(dem(i,j)<=139) 
roads_probability(i,j)=roads_probability(i,j)+2.4; 
end; 
%RLTLE_41 
if (photo82(i,j)>=38)&(photo82(i,j)<51) 
&(landuse(i,j)=8)I(landuse(i,j)=7)... 
&(edge(i,j)=1) 
roads_probability(i,j)=roads_probability(i,j)+17.5; 
end; 
%RULE_42 
if (photo82(i,j)>=38)&(photo82(i,j)<51) 
&(landuse(i,j)=8)I(landuse(i,j)=7)... 
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&(edge(ij)--=-9999) 
&(dem(i,j)>=1)&(dem(i,j)<91) 
roads_probabi1ity(ij)=roads_probabi1ity(i,j)+5; 
end; 
%RULE_43 
if (photo82(i,j)>=38)&(photo82(i,j)<51) 
&(landuse(i,j)=--8)I(landuse(ij)=--7)... 
&(edge(i,j)=---9999) 
Mdem(i,j)>=91)&(dem(i,j)<115) 
roads_probability(0=roads_probability(i,j)+11.7; 
end; 
%RULE_44 
if (photo82(i,j)>=38)&(photo82(i,j)<51) 
&(landuse(i,j)=8)I(landuse(i,j)=7)... 
&(edge(i,j)=-9999) 
&(dem(ij)>=115)&(dern(i,j)<122) 
roads_probability(0=roads_probability(0+17.4; 
end; 
%RULE_45 
if (photo82(i,j)>=38)&(photo82(i,j)<51) 
&(landuse(ij)=--8)I(landuse(i,j)==7)... 
&(edge(i,j)=-9999) 
&(dem(i,j)>=122)&(dem(i,j)<131) 
roads_probability(i,D=roads_probability(0+9.3; 
end; 
%RULE_46 
if (photo82(i,j)>=38)&(photo82(i,j)<51) 
&(landuse(i,j)=8)I(landuse(i,j)=7)... 
kedge(i,j)=-9999) 
&(dem(i,j)>=131)&(dem(i,j)<=139) 
roads_probability(i,j)=roads_probability(0+4.7; 
end; 
%RULE_47 
if (photo82(i,j)>=38)&(photo82(i,j)<51) 
&(landuse(i,j)=9)1(landuse(i,j)=--11)1(landuse(i,j)=1)... 
roads_probability(i,j)=roads_probability(i,j)+0; 
end; 
%RULE_48 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)=--8) 
&(dem(i,j)>=1)&(dem(i,j)<110) 
roads_probability(i,j)=roads_probability(i,j)+53.4; 
end; 
%RULE_49 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)=---8) 
kdem(i,j)>=110)&(dern(i,j)<115) 
&(edge(i,j)=--1) 
roads_probability(i,j)=roads_probability(i,j)+52.6; 
end; 
%RULE_50 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)=--8) 
&(dem(i,j)>=110)&(dern(i,j)<115) 
&(edge(i,j)=---9999) 
roads_probability(i,j)=roads_probability(i,j)+22.2; 
end; 
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%RULE_51 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)=8) 
&(dem(i,j)>=115)&(dem(i,j)<119) 
roads_probability(i,j)=roads_probability(i,j)+31.5; 
end; 
%RULE_52 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)----8) 
&(dem(i,j)>=119)&(dem(i,j)<128) 
roads_probability(0=roads_probability(i,j)+25.4; 
end; 
%RULE_53 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)==8) 
&(dem(i,j)>=128)&(dem(i,j)<131) 
&(edge(i,j)--=1) 
roads_probability(0=roads_probability(i,j)+45.8; 
end; 
%RULE_54 
if (photo82(ij)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)=8) 
&(dem(i,j)>=128)&(dem(i,j)<131) 
&(edge(i,j)=----9999) 
roads_probability(i,j)=roads_probability(i,j)+18.8; 
end; 
%RULE_55 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)=--8) 
&(dem(i,j)>=131)&(dem(i,j)<=139) 
&(edge(i,j)=1) 
roads_probability(i,j)=roads_probability(i,j)+48.6; 
end; 
%RULE_56 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)==8) 
&(dem(i,j)>=131)&(dem(i,j)<=139) 
&(edge(i,j)=---9999) 
roads_probability(i,D=roads_probability(i,j)+13.9; 
end; 
%RULE_57 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)=--- 1) 
roads_probability(0=roads_probability(i,j)+33.3; 
end; 
%RULE_58 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)=7) 
roads_probability(i,j)=roads_probability(i,j)+28; 
end; 
%RULE_59 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
&(landuse(i,j)=--- 11) 
roads_probability(i,j)=roads_probability(i,j)+18.8; 
end; 
%RULE_60 
if (photo82(i,j)>=51)&(photo82(i,j)<102) 
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&(landuse(i,j)=9) 
roads_probability(i,j)=roads_probability(i,j)+0.5; 
end; 
%RULE_61 
if (photo82(i,j)>=102)&(photo82(i,j)<=157) 
&(landuse(i,j)==1)I(landuse(i,j)=11)... 
roads_probability(i,D=roads_probability(0+100; 
end; 
%RULE_62 
if (photo82(i,j)>=102)&(photo82(ij)<=157) 
&(landuse(ij)==8) 
&(dem(i,j)>=1)&(dem(i,j)<115) 
roads_probability(i,D=roads_probability(i,j)+71.2; 
end; 
%RULE_63 
if (photo82(i,j)>=102)&(photo82(i,j)<=157) 
&(landuse(i,j)=--8) 
&(dern(i,j)>=115)&(dem(i,j)<125) 
roads_probability(0=roads_probability(i,j)+56.8; 
end; 
%RULE_64 
if (photo82(i,j)>=102)&(photo82(i,j)<=157) 
&(landuse(i,j)=--8) 
&(dem(i,j)>=125)&(dem(i,j)<=139) 
roads_probability(0=roads_probability(i,j)+95.5; 
end; 
%RULE_65 
if (photo82(i,j)>=102)&(photo82(i,j)<=157) 
&(landuse(i,j)=7) 
&(dem(i,j)>=1)&(dern(i,j)<128) 
roads_probability(i,j)=roads_probability(i,j)+19.5; 
end; 
%RULE_66 
if (photo82(i,j)>=102)&(photo82(i,j)<=157) 
&(landuse(i,j)==7) 
&(dem(i,j)>=128)&(dem(i,j)<=139) 
roads_probability(ij).roads_probability(i,j)+68.5; 
end; 
%RULE_67 
if (photo82(i,j)>=102)&(photo82(i,j)<=157) 
&(landuse(i,j)=--9) 
roads_probability(i,D=roads_probability(i,j)+0; 
end; 
end; 
end; 

%*************************************************************************************** 
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APPENDIC F 

Appendix F: Cross-Tabulation of the Classification Trees 

Cross-Tabulation shows the generated decision trees as a table. It allows the user to view the contents of the 
nodes of a decision tree (Case 1) in as follows: 

******************************* SNIT TABLE ********************************** 

photo82 split below root node. 

Independent Var: photo82 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
[12,20) 
[20,22) 

3)122,24) 
[24,26) 
[26,29) 
[29,33) 
[33,38) 
[38,51) 
[51,102) 

[102,157] 

Cross Tabulation +- 	 photo82 	 + 
1 2 3 4 5 6 7 8 9 10 Row 

roads 	[12,20) [20,22) [22,24) [24,26) [26,29) [29,33) [33,38) [38,51) [51,102) [102,157 photo82 Total 
---- 	- -- --- ----- --- ------ --- ----- 
-9999.00 	3246 3134 2926 2934 3678 3438 2760 2561 2108 339 27124 

12.0 11.6 10.8 10.8 13.6 12.7 10.2 9.4 7.8 1.2 92.5 
99.4 99.2 97.8 96.7 96.8 96.0 92.4 86.5 71.2 58.5 

1.00000 	21 25 66 100 123 145 226 399 853 240 2198 
1.0 1.1 3.0 4.5 5.6 6.6 10.3 18.2 38.8 10.9 7.5 
0.6 0.8 2.2 3.3 3.2 4.0 7.6 13.5 28.8 41.5 

Total 	3267 3159 2992 3034 3801 3583 2986 2960 2961 579 29322 
11.1 10.8 10.2 10.3 13.0 12.2 10.2 10.1 10.1 2.0 100.0 

CHI: 3839.99 (df =9) 
P: 0.000000 

******************************* SPLIT TABLE ********************************** 
edge split below photo82 - [12,20). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
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Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000 
-9999.00 

	

Cross Tabulation 	+---- edge ----+ 
1 	2 Row 

roads 	1.00000 -9999.00 edge Total 

-9999.00 	47 	3199 3246 
1.4 	98.6 	99.4 
79.7 	99.7 

1.00000 	12 	9 	21 
57.1 	42.9 	0.6 
20.3 	0.3 

Total 	59 3208 3267 
1.8 98.2 100.0 

CHI: 364.97 (df = 1) 
P: 0.000000 

******************************* SPLIT TABLE ********************************** 
Leaf edge - 1.00000 below photo82 - [12,20). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge Total 

-9999.00 	47 
79.7 

1.00000 	12 
20.3 

Total 	59 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf edge - -9999.00 below photo82 - [12,20). 
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Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge Total 

-9999.00 	3199 
99.7 

1.00000 	9 
0.3 

Total 	3208 
100.0 

******************************* spLIT TABLE ********************************** 
edge split below photo82 - [20,22). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000 
-9999.00 

Cross Tabulation +---- edge 	+ 
1 2 Row 

roads 	1.00000 -9999.00 edge Total 

-9999.00 	120 3014 3134 
3.8 96.2 99.2 
95.2 99.4 

1.00000 	6 19 25 
24.0 76.0 0.8 
4.8 0.6 

Total 	126 3033 3159 
4.0 96.0 100.0 

CHI: 26.35 (df = 1) 
P: 0.000015 
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******************************* SPLIT TABLE ********************************** 
dem split below edge - 1.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
[1,91) 
[91,110) 
[110,139] 

Cross Tabulation +------ dem 	 
1 2 3 Row 

roads 	[1,91) [91,110) [110,139 dem Total 

-9999.00 
37.5 
95.7 

45 
0.8 
25.0 

1 	74 	120 
61.7 	95.2 

98.7 

1.00000 	2 3 1 6 
33.3 50.0 16.7 4.8 
4.3 75.0 1.3 

Total 	47 4 75 126 
37.3 3.2 59.5 100.0 

CHI: 45.48 (df = 2) 
P: 0.000010 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [1,91) below edge - 1.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	45 
95.7 

1.00000 	2 
4.3 
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Total 	47 
100.0 

******************************* spin TABLE ********************************** 
Leaf dem - [91,110) below edge - 1.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	1 
25.0 

1.00000 	3 
75.0 

Total 	4 
100.0 

******************************* SKIT TABLE ********************************** 
Leaf dem - [110,139] below edge - 1.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster sign& 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	74 
98.7 

1.00000 	1 
1.3 

Total 	75 
_ 	'100.0 
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******************************* SPLIT TABLE ********************************** 
Leaf edge - -9999.00 below photo82 - [20,22). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge Total 

-9999.00 	3014 
99.4 

1.00000 	19 
0.6 

Total 	3033 
100.0 

******************************* SPLIT TABLE ********************************** 
dem split below photo82 - [22,24). 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1 )1 1 ,91 ) 

[91,115) 
[115,119) 
[119,122) 
[122,128) 
[128,131) 
[131,139] 

Cross Tabulation +------------------------ dem 	 -+ 
1 	2 	3 	4 	5 	6 	7 Row 

roads 	[1,91) [91,115) [115,119 [119,122 [122,128 [128,131 [131,139 	dem Total 

-9999.00 	289 787 421 	323 688 	358 60 2926 
9.9 	26.9 14.4 11.0 	23.5 	12.2 2.1 97.8 
100.0 97.4 99.1 96.7 	98.7 	94.5 100.0 

1.00000 	0 	21 	4 11 	9 	21 	0 66 
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0.0 31.8 6.1 16.7 13.6 31.8 0.0 2.2 
0.0 2.6 0.9 3.3 1.3 5.5 0.0 

Total 	289 808 425 334 697 379 60 2992 
9.7 27.0 14.2 11.2 23.3 12.7 2.0 100.0 

CHI: 35.68 (df = 6) 
P: 0.000090 

******************************* spur TABLE ********************************** 
Leaf dem - [1,91) below photo82 - [22,24). 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	289 
100.0 

1.00000 	0 
0.0 

Total 	289 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [91,115) below photo82 - [22,24). 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	787 
97.4 

1.00000 	21 
2.6 
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Total 	808 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [115,119) below photo82 - [22,24). 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	421 
99.1 

1.00000 	4 
0.9 

Total 	425 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [119,122) below photo82 - [22,24). 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster sign& 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	323 
96.7 

1.00000 	11 
3.3 

Total 	334 
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100.0 

******************************* spuT TAB LE ********************************** 
edge split below dem - [122,128). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000 
-9999.00 

Cross Tabulation 	+---- edge ----+ 
1 	2 Row 

roads 	1.00000-9999.00 edge Total 
-------- 
-9999.00 	24 664 688 

3.5 	96.5 	98.7 
85.7 	99.3 

1.00000 	4 	5 	9 
44.4 	55.6 	1.3 
14.3 	0.7 

Total 	28 669 697 
4.0 96.0 100.0 

CHI: 38.65 (df = 1) 
P: 0.000002 

******************************* spuT TABLE ********************************** 
Leaf edge - 1.00000 below dem - [122,128). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge Total 
----- ------- 
.-9999.00 	24 

85.7 

1.00000 	4 
14.3 
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Total 	28 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf edge - -9999.00 below dem - [122,128). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge Total 

-9999.00 	664 
99.3 

1.00000 	5 
0.7 

Total 	669 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [128,131) below photo82 - [22,24). 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	358 
94.5 

1.00000 	21 
5.5 

Total 	379 
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100.0 

******************************* spur TAB!  F.  ********************************** 
Leaf dem - [131,139] below photo82 - [22,24). 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	60 
100.0 

1.00000 	0 
0.0 

Total 	60 
100.0 

******************************* SPLIT TABLE * ********************************* 

edge split below photo82 - [24,26). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000 
-9999.00 

Cross Tabulation +---- edge ---+ 
1 2 Row 

roads 	1.00000 -9999.00 edge Total 

2934 

100 

-9999.00 
6.6 
88.6 

1.00000 
25.0 
11.4 

195 
93.4 

97.3 

25 
75.0 
2.7 

2739 
96.7 

75 
3.3 
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Total 	220 2814 3034 
7.3 92.7 100.0 

CHI: 48.44 (df = 1) 
P: 0.000000 

******************************* spur TABLE ********************************** 
Leaf edge - 1.00000 below photo82 - [24,26). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge Total 
------ — 

-9999.00 	195 
88.6 

1.00000 	25 
11.4 

Total 	220 
100.0 

******************************* spur TABLE ********************************** 
dem split below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
[1,110) 
[110,115) 
[115,119) 
[119,122) 
[122,128) 
[128,131) 
[131,139] 

Cross Tabulation 
1 	2 	3 

roads 	[1,110) 

+-- 
4 	5 	6 

[110,115 

	dem 	 
7 Row 

[115,119 [119,122 [122,128 [128,131 

--+ 

[131,139 dem Total 
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-9999.00 	669 350 377 286 669 314 74 2739 
24.4 12.8 13.8 10.4 24.4 11.5 2.7 97.3 
99.4 97.0 99.7 92.9 97.8 93.5 100.0 

1.00000 	4 11 1 22 15 22 0 75 
5.3 14.7 1.3 29.3 20.0 29.3 0.0 2.7 
0.6 3.0 0.3 7.1 2.2 6.5 0.0 

Total 	673 361 378 308 684 336 74 2814 
23.9 12.8 13.4 10.9 24.3 11.9 2.6 100.0 

CHI: 65.67 (df = 6) 
P: 0.000000 

******************************* SPLIT TABLE * ******** *********************** 

landuse split below dem - [1,110). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
7.00000, 9.00000, 11.0000, 1.00000 
8.00000 

Cross Tabulation +--- landuse ---+ 
1 2 Row 

roads 7.00000. 8.00000 landuse Total 

-9999.00 	3 666 669 
0.4 99.6 99.4 
75.0 99.6 

1.00000 	1 3 4 
25.0 75.0 0.6 
25.0 0.4 

Total 	4 669 673 
0.6 99.4 100.0 

CHI: 40.57 (df = 1) 
P: 0.000004 

******************************* SPLIT TABLE ********************************** 
Leaf incluse - 7.00000... below dem - [1,110). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster sign& 0.050000 
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Cross Tabulation 
Row 

roads 	landuse Total 

-9999.00 	3 
75.0 

1.00000 _ 	1 
25.0 

Total 	4 
100.0 

******************************* spin. TABLE ********************************** 
Leaf landuse - 8.00000 below dem - [1,110). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	landuse Total 

-9999.00 	666 
99.6 

1.00000 	3 
0.4 

Total 	669 
100.0 

******************************* SHIT TABLE ********************************** 
Leaf dem - [110,115) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 
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roads 	dem Total 

-9999.00 	350 
97.0 

1.00000 	11 
3.0 

Total 	361 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [115,119) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	377 
99.7 

1.00000 	1 
0.3 

Total 	378 
100.0 

******************************* SNIT TABLE ********************************** 
Leaf dem - [119,122) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	286 
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92.9 

1.00000 	22 
7.1 

Total 	308 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [122,128) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	669 
97.8 

1.00000 	15 
2.2 

Total 	684 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [128,131) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	314 
93.5 
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1.00000 	22 
6.5 

Total 	336 
100.0 

******************************* SKIT TABLE ********************************** 
Leaf dem - [131,139] below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	74 
100.0 

1.00000 	0 
0.0 

Total 	74 
100.0 

******************************* SKIT TABLE ********************************** 
edge split below photo82 - [26,29). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000 
-9999.00 

Cross Tabulation +---- edge ----+ 
1 2 Row 

roads 	1.00000 -9999.00 edge Total 

-9999.00 	326 3352 3678 
8.9 91.1 96.8 
89.1 97.6 
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1.00000 
32.5 
10.9 

40 
67.5 
2.4 

83 
3.2 

123 

Total 	366 3435 3801 
9.6 90.4 100.0 

CHI: 76.55 (df = 1) 
P: 0.000000 

******************************* spur TABLE ********************************** 
dem split below edge - 1.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
[1,131) 	' 
[131,139] 

Cross Tabulation +----- dem 	+ 
1 2 Row 

roads 	[1,131) [131,139 dem Total 

-9999.00 	326 0 326 
100.0 0.0 89.1 
89.8 0.0 

1.00000 	37 3 40 
92.5 7.5 10.9 
10.2 100.0 

Total 	363 3 366 
99.2 0.8 100.0 

CHI: 24.65 (df = 1) 
P: 0.000790 

******************************* spur TABLE ********************************** 
Leaf dem - [1,131) below edge - 1.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 
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roads 	dem Total 

-9999.00 	326 
89.8 

1.00000 	37 
10.2 

Total 	363 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [131,139] below edge - 1.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	0 
0.0 

1.00000 	3 
100.0 

Total 	3 
100.0 

******************************* spur TABLE ********************************** 
dem split below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
[1,110) 
[110,115) 
[115,119) 
[119,122) 
[122,131) 
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6) [131,139] 

Cross Tabulation +----------------- dem 	-+ 
1 2 3 4 5 6 Row 

roads 	[1,110) [110,115 [115,119 [119,122 [122,131 [131,139 dem Total 
------- 
-9999.00 

22.7 
99.6 

760 
9.8 
96.2 

329 
12.8 
98.6 

430 320 	1415 	98 
9.5 	42.2 	2.9 	97.6 

93.8 	97.3 100.0 

3352 

1.00000 3 13 6 	21 	40 	0 83 
3.6 15.7 7.2 25.3 	48.2 	0.0 2.4 
0.4 3.8 1.4 6.2 	2.7 	0.0 

Total 763 342 436 	341 	1455 98 3435 
22.2 10.0 12.7 9.9 42.4 2.9 100.0 

CHI: 41.39 (df = 5) 
P: 0.000023 

******************************* spill ,  TABLE ********************************** 

Leaf dem - [1,110) below edge --9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	760 
99.6 

1.00000 	3 
0.4 

Total 	763 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [110,115) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 
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Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	329 
96.2 

1.00000 	13 
3.8 

Total 	342 
100.0 

******************************* spur TABLE ********************************** 
Leaf dem - [115,119) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	430 
98.6 

1.00000 	6 
1.4 

Total 	436 
100.0 

******************************* spur TABLE ********************************** 
Leaf dem - [119,122) below edge --9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
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Row 
roads 	dem Total 

-9999.00 	320 
93.8 

1.00000 	21 
6.2 

Total 	341 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [122,131) below edge --9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	1415 
97.3 

1.00000 	40 
2.7 

Total 	1455 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [131,1391 below edge --9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 
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-9999.00 	98 
100.0 

1.00000 	0 
0.0 

Total 	98 
100.0 

******************************* SPLIT TABLE ********************************** 
edge split below photo82 - [29,33). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000 
-9999.00 

Cross Tabulation 	+---- edge 	+ 
1 	2 Row 

roads 	1.00000-9999.00 edge Total 

-9999.00 	546 2892 	3438 
15.9 	84.1 	96.0 
90.4 	97.1 

1.00000 	58 	87 	145 
40.0 	60.0 4.0 
9.6 	2.9 

Total 	604 2979 3583 
16.9 83.1 100.0 

CHI: 57.75 (df = 1) 
P: 0.000000 

******************************* SPLIT TABLE ********************************** 
Leaf edge - 1.00000 below photo82 - [29,33). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
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Row 
roads 	edge Total 

-9999.00 	546 
90.4 

1.00000 	58 
9.6 

Total 	604 
100.0 

******************************* sal-T. TABLE ********************************** 

dem split below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
[1,115) 
[115,119) 
[119,125) 
[125,139] 

Cross Tabulation +- 	dem ----------+ 
1 2 3 4 Row 

roads 	[1,115) [115,119 [119,125 [125,139 dem Total 
- 

-9999.00 	771 307 646 1168 2892 
26.7 10.6 22.3 40.4 97.1 
98.8 91.9 94.4 98.9 

1.00000 	9 27 38 13 87 
10.3 31.0 43.7 14.9 2.9 
1.2 8.1 5.6 1.1 

Total 	780 334 684 1181 2979 
26.2 11.2 23.0 39.6 100.0 

CHI: 70.54 (df = 3) 
P: 0.000000 

******************************* SPLIT TABLE ********************************** 
landuse split below dem - [1,115). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
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Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
7.00000, 1.00000, 11.0000 
8.00000, 9.00000 

Cross Tabulation +--- landuse ---+ 
1 2 Row 

roads 7.00000. 8.00000. landuse Total 

-9999.00 	28 743 771 
3.6 96.4 98.8 
90.3 99.2 

1.00000 	3 6 9 
33.3 66.7 1.2 
9.7 0.8 

Total 	31 749 780 
4.0 96.0 100.0 

CHI: 20.56 (df = 1) 
P: 0.000678 

******************************* SPLIT TABLE ********* ************************ 
Leaf landuse - 7.00000... below dem - [1,115). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	landuse Total 

-9999.00 	28 
90.3 

1.00000 	3 
9.7 

Total 	31 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf landuse - 8.00000... below dem - [1,115). 

Independent Var: landuse 
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Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	landuse Total 

-9999.00 	743 
99.2 

1.00000 	6 
0.8 

Total 	749 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [115,119) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	307 
91.9 

1.00000 	27 
8.1 

Total 	334 
100.0 

******************************* spur TABLE ********************************** 

Leaf dem - [119,125) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
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Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	646 
94.4 

1.00000 	38 
5.6 

Total 	684 
100.0 

******************************* spur TABLE ********************************** 
Leaf dem - [125,139] below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	1168 
98.9 

1.00000 	13 
1.1 

Total 	1181 
100.0 

******************************* spur TABLE ********************************** 
edge split below photo82 - [33,38). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 
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Clusters: 
1.00000 
-9999.00 

Cross Tabulation 	+---- edge 	+ 
1 	2 Row 

roads 	1.00000 -9999.00 edge Total 

-9999.00 
30.0 
89.1 

1.00000 
44.7 
10.9 

829 
70.0 
93.9 

101 
55.3 
6.1 

1931 
92.4 

125 
7.6 

2760 

226 

Total 	930 2056 2986 
31.1 68.9 100.0 

CHI: 20.92 (df = 1) 
P: 0.000054 

******************************* spin TABLE ********************************** 
Leaf edge - 1.00000 below photo82 - [33,38). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge Total 
--------- 
-9999.00 	829 

89.1 

1.00000 	101 
10.9 

Total 	930 
100.0 

******************************* SPLIT TABLE ********************************** 
dem split below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
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Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
[1,128) 
[128,139] 

Cross Tabulation 	+----- dem ----+ 
1 	2 Row 

roads 	[1,128) [128,139 	dem Total 

-9999.00 1317 614 1931 
68.2 31.8 93.9 
92.3 97.6 

1.00000 110 15 125 
88.0 12.0 6.1 
7.7 2.4 

Total 	1427 629 2056 
69.4 30.6 100.0 

CHI: 21.67 (df = 1) 
P: 0.001607 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [1,128) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	1317 
92.3 

1.00000 	110 
7.7 

Total 	1427 
100.0 

******************************* SHIT TABLE ** ******************************** 
Leaf dem - [128,139] below edge - -9999.00. 

Independent Var: dem 
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Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	614 
97.6 

1.00000 	15 
2.4 

Total 	629 
100.0 

******************************* SPLIT TABLE ********************************** 

landuse split below photo82 - [38,51). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
8.00000, 7.00000 
9.00000, 11.0000, 1.00000 

Cross Tabulation +-- landuse ---+ 
1 2 Row 

roads 8.00000. 9.00000. landuse Total 

-9999.00 	2377 184 2561 
92.8 7.2 86.5 
85.6 100.0 

1.00000 	399 0 399 
100.0 0.0 13.5 
14.4 0.0 

Total 	2776 184 2960 
93.8 6.2 100.0 

CHI: 30.57 (df = 1) 
P: 0.000037 

******************************* SHIT TABLE ********************************** 
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edge split below landuse - 8.00000.... 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000 
-9999.00 

Cross Tabulation +---- edge 	+ 
1 2 Row 

roads 	1.00000 -9999.00 edge Total 

-9999.00 	1224 1153 2377 
51.5 48.5 85.6 
82.5 89.2 

1.00000 	259 140 399 
64.9 35.1 14.4 
17.5 10.8 

Total 	1483 1293 2776 
53.4 46.6 100.0 

CHI: 24.72 (df = 1) 
P: 0.000022 

******************************* SPLIT TABLE ********************************** 
Leaf edge - 1.00000 below landuse - 8.00000.... 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge Total 
- 

-9999.00 	1224 
82.5 

1.00000 	259 
17.5 

Total 	1483 
100.0 
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******************************* spur TABLE ********************************** 
dem split below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
[1,91) 
[91,115) 
[115,122) 
[122,131) 
[131,139] 

Cross Tabulation +- 	dem -----------------+ 
1 2 3 4 5 Row 

roads 	[1,91) [91,115) [115,122 [122,131 [131,139 dem Total 

-9999.00 	114 128 289 480 142 1153 
9.9 11.1 25.1 41.6 12.3 89.2 
95.0 88.3 82.6 90.7 95.3 

1.00000 	6 17 61 49 7 140 
4.3 12.1 43.6 35.0 5.0 10.8 
5.0 11.7 17.4 9.3 4.7 

Total 	120 145 350 529 149 1293 
9.3 11.2 27.1 40.9 11.5 100.0 

CHI: 27.28 (df = 4) 
P: 0.000980 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [1,91) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	114 
95.0 
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1.00000 	6 
5.0 

Total 	120 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [91,115) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	128 
88.3 

1.00000 	17 
11.7 

Total 	145 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [115,122) below edge --9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	289 
82.6 

1.00000 	61 
17.4 
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Total 	350 
100.0 

******************************* spuT TABLE ********************************** 
Leaf dem - [122,131) below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	480 
90.7 

1.00000 	49 
9.3 

Total 	529 
100.0 

******************************* spur TABLE ********************************** 
Leaf dem - [131,139] below edge - -9999.00. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	142 
95.3 

1.00000 	7 
4.7 

Total 	149 
100.0 
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******************************* SPLIT TABLE ********************************** 
Leaf landuse - 9.00000... below photo82 - [38,51). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	landuse Total 

-9999.00 	184 
100.0 

1.00000 	0 
0.0 

Total 	184 
100.0 

******************************* SPLIT TABLE ********************************** 
landuse split below photo82 - [51,102). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
8.00000 
1.00000 
7.00000 
11.0000 
9.00000 

Cross Tabulation +--------- landuse ----------+ 
1 2 3 4 5 Row 

roads 	8.00000 1.00000 7.00000 11.00009.00000 landuse Total 

-9999.00 	1157 2 508 13 428 2108 
54.9 0.1 24.1 0.6 20.3 71.2 
64.1 66.7 72.0 81.2 99.5 

1.00000 	649 1 198 3 2 853 
76.1 0.1 23.2 0.4 0.2 28.8 
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35.9 33.3 28.0 18.8 0.5 

  

       

       

Total 	1806 3 706 16 430 2961 
61.0 0.1 23.8 0.5 14.5 100.0 

CHI: 214.19 (df = 4) 
P: 0.000000 

******************************* SPLIT TABLE ********************************** 
dem split below landuse - 8.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
[1,110) 
[110,115) 
[115,119) 
[119,128) 
[128,131) 
[131,139] 

Cross Tabulation +- 	dem 	 -+ 
1 2 3 4 5 6 Row 

roads 	[1,110) [110,115 [115,119 [119,128 [128,131 [131,139 dem Total 

-9999.00 	75 165 178 424 266 49 1157 
6.5 14.3 15.4 36.6 23.0 4.2 64.1 
46.6 59.1 68.5 74.6 57.0 69.0 

1.00000 	86 114 82 144 201 22 649 
13.3 17.6 12.6 22.2 31.0 3.4 35.9 
53.4 40.9 31.5 25.4 43.0 31.0 

Total 	161 279 260 568 467 71 1806 
8.9 15.4 14.4 31.5 25.9 3.9 100.0 

CHI: 65.12 (df = 5) 
P: 0.000000 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [1,110) below landuse - 8.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
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Row 
roads 	dem Total 

-9999.00 	75 
46.6 

- 

1.00000 	86 
53.4 

Total 	161 
100.0 

******************************* spur TABLE ********************************** 
edge split below dem - [110,115). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000 
-9999.00 

Cross Tabulation +--- edge ----+ 
1 2 Row 

roads 	1.00000 -9999.00 edge Total 

-9999.00 	81 84 165 
49.1 50.9 59.1 
47.4 77.8 

1.00000 	90 24 114 
78.9 21.1 40.9 
52.6 22.2 

Total 	171 108 279 
61.3 38.7 100.0 

CHI: 25.33 (df = 1) 
P: 0.000019 

******************************* SPLIT TABLE ********************************** 
Leaf edge - 1.00000 below dem - [110,115). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster sign& 0.050000 
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Cross Tabulation 
Row 

roads 	edge Total 

-9999.00 	81 
47.4 

1.00000 	90 
52.6 

Total 	171 
100.0 

******************************* spLIT TABLE ********************************** 
Leaf edge - -9999.00 below dem - [110,115). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge 	Total 

-9999.00 	84 
77.8 

1.00000 	24 
22.2 

Total 	108 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [115,119) below landuse - 8.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster sign& 0.050000 

Cross Tabulation 
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Row 
roads 	dem Total 

-9999.00 	178 
68.5 

1.00000 	82 
31.5 

Total 	260 
100.0 

******************************* spur TABLE ********************************** 
Leaf dem - [119,128) below landuse - 8.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	424 
74.6 

1.00000 	144 
25.4 

Total 	568 
100.0 

******************************* spur TABLE ********************************** 
edge split below dem - [128,131). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000 
-9999.00 
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Cross Tabulation 	+--- edge ---+ 
1 	2 Row 

roads 	1.00000 -9999.00 edge Total 

-9999.00 	227 	39 266 
85.3 	14.7 	57.0 
54.2 	81.2 

1.00000 	192 	9 	201 
95.5 	4.5 	43.0 
45.8 	18.8 

Total 	419 48 467 
89.7 10.3 100.0 

CHI: 12.88 (df = 1) 
P: 0.000645 

******************************* SPLIT TABLE ********************************** 
Leaf edge - 1.00000 below dem - [128,131). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge Total 

-9999.00 	227 
54.2 

1.00000 	192 
45.8 

Total 	419 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf edge - -9999.00 below dem - [128,131). 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
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Row 
roads 	edge Total 

-9999.00 	39 
81.2 

1.00000 	9 
18.8 

Total 	48 
100.0 

******************************* SHIT TABLE ********************************** 

edge split below dem - [131,139]. 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000 
-9999.00 

Cross Tabulation +--- edge ---+ 
1 2 Row 

roads 	1.00000 -9999.00 edge Total 

-9999.00 	18 31 49 
36.7 63.3 69.0 
51.4 86.1 

1.00000 	17 5 22 
77.3 22.7 31.0 
48.6 13.9 

Total 	35 36 71 
49.3 50.7 100.0 

CHI: 9.98 (df = 1) 
P: 0.002040 

******************************* spuT TABLE ********************************** 

Leaf edge - 1.00000 below dem - [131,139]. 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 
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Cross Tabulation 
Row 

roads 	edge Total 

-9999.00 	18 
51.4 

1.00000 	17 
48.6 

Total 	35 
100.0 

******************************* spur TABLE ********************************** 
Leaf edge - -9999.00 below dem - [131,139]. 

Independent Var: edge 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	edge Total 

-9999.00 	31 
86.1 

1.00000 	5 
13.9 

Total 	36 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf landuse - 1.00000 below photo82 - [51,102). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster sign& 0.050000 

Cross Tabulation 
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Row 
roads 	landuse Total 

-9999.00 	2 
66.7 

1.00000 	1 
33.3 

Total 	3 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf landuse - 7.00000 below photo82 - [51,102). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	landuse Total 

-9999.00 	508 
72.0 

1.00000 	198 
28.0 

Total 	706 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf landuse - 11.0000 below photo82 - [51,102). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	landuse Total 
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-9999.00 	13 
81.2 

1.00000 	3 
18.8 

Total 	16 
100.0 

******************************* spur TABLE ********************************** 
Leaf landuse - 9.00000 below photo82 - [51,102). 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	landuse Total 
-- -------- ---- 
-9999.00 	428 

99.5 

1.00000 	2 
0.5 

Total 	430 
100.0 

******************************* SPLIT TABLE ********************************** 
landuse split below photo82 - [102,157]. 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1.00000, 11.0000 
8.00000 
7.00000 
9.00000 

Cross Tabulation 4------------ landuse ---------+ 
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1 	2 	3 	4 Row 
roads 	1.00000. 8.00000 7.00000 9.00000 landuse Total 

-9999.00 	0 	86 	120 	133 	339 
0.0 25.4 35.4 39.2 58.5 
0.0 32.7 65.9 100.0 

1.00000 1 177 62 	0 240 
0.4 73.8 25.8 0.0 41.5 

100.0 67.3 34.1 	0.0 

Total 	1 	263 	182 	133 	579 
0.2 45.4 31.4 23.0 100.0 

CHI: 172.07 (df = 3) 
P: 0.000000 

******************************* SPLIT TABLE ********************************** 
Leaf landuse - 1.00000... below photo82 - [102,157]. 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	landuse Total 

-9999.00 	0 
0.0 

1.00000 
100.0 

Total 
	

1 
100.0 

******************************* SPLIT TABLE ********************************** 

dem split below landuse - 8.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
[1,115) 
[115,125) 
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3) [125,139] 

Cross Tabulation 
1 

roads 	[1,115) 

+------ 
2 
[115,125 

dem 
3 	Row 

[125,139 

-------+ 

dem 	Total 

-9999.00 21 63 2 86 
24.4 73.3 2.3 32.7 
28.8 43.2 4.5 

1.00000 52 83 42 177 
29.4 46.9 23.7 67.3 
71.2 56.8 95.5 

Total 73 146 44 263 
27.8 55.5 16.7 100.0 

CHI: 23.61 (df = 2) 
P: 0.002158 

******************************* SKIT TABLE ********************************** 
Leaf dem - [1,115) below landuse - 8.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	21 
28.8 

1.00000 	52 
71.2 

Total 	73 
100.0 

******************************* spur TABLE ********************************** 
Leaf dem - [115,125) below landuse - 8.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 
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Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	63 
43.2 

1.00000 	83 
56.8 

Total 
	

146 
100.0 

******************************* spin TABLE ********************************** 
Leaf dem - [125,139] below landuse - 8.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem 	Total 

-9999.00 	2 
4.5 

1.00000 	42 
95.5 

Total 	44 
100.0 

******************************* spur TABLE ********************************** 
dem split below landuse - 7.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Clusters: 
1) [1,128) 
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2) [128,139] 

Cross Tabulation 
1 

roads 	[1,128) 

-9999.00 	103 

+----- dem ---+ 
2 	Row 
[128,139 	dem 	Total 

17 	120 
85.8 14.2 65.9 
80.5 31.5 

1.00000 25 37 62 
40.3 59.7 34.1 
19.5 68.5 

Total 128 54 182 
70.3 29.7 100.0 

CHI: 40.58 (df = 1) 
P: 0.000027 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [1,128) below landuse - 7.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	103 
80.5 

1.00000 	25 
19.5 

Total 	128 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf dem - [128,139] below landuse - 7.00000. 

Independent Var: dem 
Variable Type: Continuous 
Cluster Type: Monotonic 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 
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Cross Tabulation 
Row 

roads 	dem Total 

-9999.00 	17 
31.5 

1.00000 	37 
68.5 

Total 	54 
100.0 

******************************* SPLIT TABLE ********************************** 
Leaf landuse - 9.00000 below photo82 - [102,157]. 

Independent Var: landuse 
Variable Type: Categorical 
Cluster Type: Free 
Missing Values: OFF 
Nulls Included: ON 
Cluster signif: 0.050000 

Cross Tabulation 
Row 

roads 	landuse 	Total 
---------- 
-9999.00 	133 

100.0 

1.00000 	o 
0.0 

Total 	133 
100.0 

%*************************************************************************************** 
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APPENDIX G 

Appendix G: Generated Classification Decision Tree 

Figure 1 Shows a generated classification decision tree using clustering method. 
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