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ABSTRACT 

Water samples from several southern Australian locations (Tasmania, 

Victoria, New South Wales, South Australia and Western Australia) have 

revealed a range of previously undescribed gymnodinioid dinoflagellates. 

Five new species are described in this study, from field samples and 

laboratory cultures, with the use of light microscopy, scanning and 

transmission electron microscopy, pigment analysis and sequencing of the 

large subunit ribosomal gene (LSU rDNA). 

Karenia umbella de Salas, Bolch & Hallegraeff sp. nov., has a straight apical 

groove typical of the genus. This species is morphologically similar to K. 

longicanalis but has an asymmetrically shaped hypocone, irregularly shaped 

chloroplasts, and is ornamented by 8 radial furrows on the epicone surface. 

Karenia asterichroma de Salas, Bolch & Hallegraeff sp. nov. is a dorso-

ventrally flattened unarmoured dinoflagellate resembling K. brevis. Unlike 

other known Karenia species, the chloroplasts of K asterichroma radiate 

from a central pyrenoid, and its nucleus is located in the centre of the epicone. 

While the ichthyotoxicity of K asterichroma is yet to be confirmed, it was 

associated, together with K. umbella and further undescribed Karenia species, 

with the recent mass mortality in May 2003 of over 100,000 salmonoids in an 

aquaculture facility in southern Tasmania. 

A new, potentially ichthyotoxic genus, Takayama de Salas, Bolch, Botes et 

Hallegraeff gen. nov. is described with two new species: T. tasmanica de 

Salas, Bolch et Hallegraeff, sp. nov., and T helix, de Salas, Bolch, Botes et 

Hallegraeff, sp. nov., isolated from Tasmanian (Australia) and South African 

coastal waters. The new Takayama species have sigmoid apical grooves and 

close affinities to the other fucoxanthin-containing genera Karenia and 

Karlodinium. 

A new mixotrophic species in the toxigenic genus Karlodinium, K. australe 

de Salas, Bolch & Hallegraeff sp. nov., is morphologically similar to 

Gyrodinium corsicum and Karenia digitata but has an anteriorly located 

nucleus and a different amphiesmal pattern. K. australe lacks the hexagonal 

arrays of plug-like structures below the amphiesma that define the genus, and 
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its chloroplasts contain pyramidal rather than lenticular pyrenoids. Thus the 

definition of Karlodinium needs to be emended, as it is too narrow, and 

currently excludes K australe. 

Pigment analyses of these species, all from previously well studied fish-

killing groups, have determined that they contain fucoxanthin and its 

derivatives as the main accessory pigments. The pigment gyroxanthin-diester, 

was present in all Karenia species tested, but its presence was variable in 

Karlodinium and Takayama. Furthermore, phylogenetic analysis of these and 

other gymnodinioid species show that all the fucoxanthin-containing, fish-

killing species in the genera Karenia, Karlodinium and Takayama form a 

well-defined, monophyletic clade within the Gymnodiniales. 

The description and detailed characterisation of these five new species will 

help design more effective monitoring tools, such as molecular probes, for the 

early detection of these potentially fish killing dinoflagellates. 
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Five novel Australian lish-killing dinollagellates — Background and context 

1.1. INTRODUCTION 

This chapter introduces the traditional approach to unarmoured dinoflagellate 

taxonomy, following the classification of Kofoid & Swezy (1921), as well as 

its apparent problems. A review of morphological characters of taxonomic 

importance as well as other tools used for taxonomy is provided in the context 

of our current understanding of this group. New toxic genera arising from a 

recent revision of unarmoured dinoflagellate taxonomy (Daugbjerg et al. 2000) 

are explained, in addition to examples of their fish-killing capabilities, in 

particular in the Australian situation. This discussion leads to the development 

of the context and scope of this study, as well as the aims of this dissertation. 

1.2. BACKGROUND TO THIS STUDY 

1.2.1. Use of morphology in the identification of unarmoured dinoflagellate 

species 

Morphology remains the primary means of identifying and describing species 

of unarmoured dinoflagellates. Gymnodinioid dinoflagellates have been 

traditionally assigned to one of two main genera, following the classification of 

Kofoid & Swezy (1921): Gymnodinium (type species G. fuscum F. Stein), if 

the degree of cingulum displacement is less than 20% or 1/5 of the total cell 

length (Fig. 1.1), and Gyrodinium (type species G. spirale (Berg) Kofoid & 

Swezy), if the degree of cingulum displacement is more than 20% (Fig. 1.2). 

Other morphological characters, such as the pigment profiles, internal structure 

of the cells, and surface features such as apical grooves, have traditionally been 

used to discriminate only between species within these genera. This 

classification system using the girdle displacement as the main criterion to 

discriminate between the two genera has been maintained until quite recently' 

(Dodge 1982; Larsen 1994; 1996). 

One common problem with this classification has been that many unarmoured 

dinoflagellate species have cingular displacements that are borderline, and in 

some species a clonal culture can exhibit a variation of morphotypes belonging 

to different genera (Kimball & Wood 1965). 
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Figures 1.1-1.2: Schematic representations of unarmoured dinoflagellate genera following the 

traditional classifications of Kofoid and Swezy (1921). Arrows mark extent of girdle 

displacement: 

Fig. 1.1: Genus Gymnodinium (G. chlorophorum). Girdle displacement < 20%. 

Fig. 1.2: Genus Gyrodinium (G. instriatum). Girdle displacement >20%. 

1.2.2. Methods other than morphology 

1.2.2.1. Pigments 

Pigment analysis has been used in the past as a complementary taxonomic tool, 

to differentiate between groups of dinoflagellates (Jeffrey et al. 1975). It is now 

generally accepted that pigment profiles are useful for discrimination of 

dinoflagellates at the generic level (Daugbjerg et al. 2000). As an example, 

while most photosynthetic dinoflagellates have chlorophyll a and c, as well as 

peridinin as the major carotenoid, some, such as Lepidodinium viride Watanabe 

et al. (1987), instead contain chlorophylls a and b, as well as violaxanthin and 

zeaxanthin, giving the cells a bright green, instead of reddish-brown colour. 

Furthermore, the genera Karenia G. Hansen & Moestrup and Karlodinium J. 

Larsen have been defined for species whose major carotenoids are fucoxanthin, 

and fucoxanthin derivatives instead of peridinin (Daugbjerg et al. 2000). 

Recently a new pigment has been characterised, gyroxanthin diester (Bjornland 

et al. 2000), from cultures of Karlodinium micrum (Leadbeater & Dodge) J. 

Larsen. It has since been shown that this pigment also occurs in several 

Karenia species (Hansen et al. 2000a; Haywood 2001; Botes et al. 2003) and 
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proposals have been made to use it as a marker for Karenia in routine 

monitoring of surface waters (Schofield et al. 1999; Ornolfsdottir et al. 2003; 

Staehr & Cullen 2003). 

It has also recently been shown that most of the species in the genera Karenia 

and Karlodinium, which form a clade based on their pigment composition, also 

cluster together in phylogenetic analyses of partial rDNA sequences 

(Daugbjerg et al. 2000; Botes et al. 2003). Furthermore, the support for the 

fircoxanthin-containing clade within the dinoflagellates is very high, when 

tested with bootstrap (Daugbjerg et al. 2000; Haywood et al. 2004). 

1.2.2.2. Lectins  

Lectins are proteins on the cell surface which bind to specific glycolipids, 

glycoproteins and polysaccharides (Sharon & Lis 1989). They have been used 

to identify dinoflagellates, as they bind to sugars in cell membranes and 

flagellar systems (Costas & Lopez-Rodas 1994; Costas et al. 1996). 

Lectins have been used to discriminate between a range of organisms without 

distinct morphological characters (Rhodes et al. 1995; Rhodes 1998). 

However, Haywood (2001) found lectin binding patterns inconsistent with 

results obtained through ultrastructure, rDNA sequencing, pigment analysis 

and external morphology, and also that stages of the cell-cycle and growth 

phase had an important effect in lectin-binding, and that replication of results 

wasn't always possible. 

1.2.2.3. Sterols  

Karenia brevis (Davis) G. Hansen & Moestrup, K. mikimotoi (Miyake & 

Kominami ex Oda) G. Hansen & Moestrup and Karlodinium micrum have been 

shown to be closely related in their sterol composition (Leblond & Chapman 

2002), which is represented by a simple profile combining primarily (24S)-4a-

methy1-5a-ergosta-8(14),22-dien-313-ol (ED) and its 27-nor isomer (NED). 

They have very different sterol profiles to species of other unarmoured and 

armoured dinoflagellate genera, and it is possible that sterols could be used as 

an extra tool to discriminate between dinoflagellate genera in routing 

monitoring. However, at present, the sterols of Karenia species other than K. 

brevis and K. mikimotoi have not been examined. 
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1.2.2.4. Sequencing of ribosomal genes  

Since the discovery of thermostable polymerases for use in the polymerase 

chain reaction (PCR, Saiki et al. 1988), the amount of sequences available for 

genetic comparisons has been increasing exponentially. The genes most 

commonly amplified in dinoflagellates have historically been ribosomal genes 

because, being present as multiple copies in each cell, amplification is 

generally easy (Fensome et al. 1999). Use of the gene coding for the small 

subunit RNA (SSU rDNA), which is approximately 1800 bases long, is 

restricted to comparison in a larger scale, such as between different species, 

genera and families (Hillis & Dixon 1991), as this gene is fairly conserved. The 

small amount of variability present in this gene is offset by the ease of 

alignment of its sequences, which allows the comparison of distantly related 

taxa (Saunders etal. 1997). 

In contrast to the SSU rDNA, the large subunit ribosomal gene (LSU rDNA) is 

nearly twice as long, approximately 3400 bases. As in the SSU rDNA, the LSU 

is composed of core conserved regions interspersed with more variable 

domains (Michot et al. 1984). The variable regions in the LSU rDNA are far 

more variable than even the entire SSU gene, so that as little as 700-1000 bases 

from the domains D1, D2 and D3, at the beginning of the gene, provide 

sufficient information for the construction of meaningful phylogenetic trees 

(Fensome et al. 1999). Because of the need to sequence shorter fragments to 

obtain as much usable information, many authors, such as Scholin et al. 

(Scholin et al. 1994a; Scholin et al. 1994b; Scholin & Anderson 1996), Bolch 

et al. (1999), Botes et al. (2003), Daugbjerg et al. (2000), Hansen et al. 

(2000a), Haywood et al. (2004), Judge et al. (1993), Lenaers et al. (1989), 

MacKenzie et al. (2004), Walsh et al. (1998), Wilcox (1998), Yeung et al. 

(1996) and Zardoya et al. (1995), have used the LSU ribosomal gene in 

preference to the small subunit. 

Sequences of the 5.8S gene and flanking internal transcribed spacer (ITS 

regions have been used by authors in the past (Adachi etal. 1994; 1996; Penna 

& Magnani 1999; . de Salas etal. 2001), as the high variability of this fragment 

makes it possible to determine relationships between closely related taxa and 

even within species (Fensome et al. 1999). In comparison to both the SSU and 
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LSU genes sequences of this fragment are not as common in GeneBank, and 

therefore not easily obtainable for comparisons. 

1.2.3. Recent revisions and new genera 

A recent revision of the major genera of unarmoured dinoflagellates 

(Daugbjerg et al. 2000) has redefined the genera Gymnodinium and 

Gyrodinium in an attempt to make them monophyletic. This revision has also 

erected three new genera for several groups previously not separated from the 

main cluster of Gymnodinium I Gyrodinium: 

• Akashiwo G. Hansen & Moestrup, for the species previously known as 

Gymnodinium sanguineum Hirasaka, which has peridinin as the main 

carotenoid and an apical groove that is a clockwise spiral, 

• Karenia G. Hansen & Moestrup (type species Karenia brevis (Davis) 

G. Hansen & Moestrup), for species whose major carotenoids are 

fucoxanthin or its derivatives, and which have a straight apical groove 

(Fig. 1.3), 

• Karlodinium J. Larsen (type species Karlodinium micrum (Leadbeater 

& Dodge) J. Larsen), for species containing fucoxanthin or fucoxanthin 

derivatives as the main accessory pigments, a straight apical groove, a 

ventral pore, and an amphiesma with arrays of plug-like structures in a 

hexagonal pattern (Fig. 1.4). 

1.2.4. Morphology revisited 

Daugbjerg et al.'s (2000) revision has encompassed a redefinition of which 

morphological characters are of taxonomic importance, and which ones are not. 

When examined in conjunction with characters such as rDNA sequences, 

pigment profiles and ultrastructure, the degree of girdle displacement is shown 

to be of little or no taxonomic value, as it is highly variable even within clonal 

strains. However, other external features like the apical groove have proven to 

be of taxonomic importance at the generic level. Ultrastructural characters such 

as the flagellar root system, the pusule and the nuclear envelope, and 

biochemical characters, such as the photosynthetic pigment profire and rDNA 
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sequences have also shown they can be of help in resolving gymnodinioid 

dinoflagellates at the generic level (Haywood 2001). 

Characters considered of taxonomic importance in this group at the generic 

level at present include: 

• surface features such as: 

o apical grooves (Takayama 1985), 

o ventral pores (Daugbjerg et al. 2000) 

o amphiesmal vesicle patterns 

• Ultrastructural features such as: 

o Flagellar root system (Hansen 2001) 

o Pusule (Hansen et al. 2000b) 

o Nuclear envelope 

• Presence or absence of chloroplasts, 

1.2.5. Fish -killing gymnodinioids 

As a result of Daugbj erg et al.'s (2000) revision it became apparent that the 

main fish-killing unarmoured dinoflagellates clustered into a defined group of 

closely related species, with fucoxanthin (or its derivatives) as the main 

carotenoid and being genetically close. 

Figures 1.3 — 1.4: New fish-killing dinoflagellate genera erected by Daugbjerg etal. (2000). 

Fig. 1.3: New genus Karenia (K brevis). Note linear apical groove (arrow). 

Fig. 1.4: New genus Karlodinium (K. micrum, adapted from Daugbjerg etal. 2000). Note 

linear apical groove (arrow) and ventral pore (arrowhead). 
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The best studied of these species, Karenia brevis, has been known to be 

responsible for recurrent blooms in the Gulf of Mexico since it was first 

described (Davis 1948). Its close relative K. mikimotoi has been reported 

[under several different names: Gyrodinium cf. aureolum (Partensky et al. 

1988), Gymnodinium nagasakiense (Takayama & Adachi 1984)] as a fish killer 

from northern Europe (Tangen 1977) and Japan (Takayama & Adachi 1984), 

for a period spanning several decades. A third species transferred to Karenia 

based on its morphology is K. brevisulcata (Chang) G. Hansen & Moestrup, 

which was responsible for a massive bloom in Wellington Harbour, N.Z 

(Chang 1999; Chang et al. 2001), that killed most other marine life, ranging 

from fish to invertebrates and even seaweeds and seagrasses. This bloom also 

produced respiratory irritation symptoms in people exposed to toxins carried by 

the wind in the form of aerosols. The closely related genus Karlodinium has 

recently been described (Daugbj erg et al. 2000) for one well known and two 

poorly studied species: K. micrum, K. veneficum (Ballantine) J. Larsen and K 

vitiligo (Ballantine) J. Larsen, respectively. These species have been known to 

cause marine life mortalities since the 1950s (Ballantine 1956; Braarud & 

Heimdal 1970). 

Although three species of Karenia were known at the time of Daugbjerg et 

al.'s (2000) revision of unarmoured dinoflagellate taxonomy, only two had 

been widely studied, K. brevis and K. mikimotoi. Since then awareness of this 

fish-killing genus has expanded, and the appearance of papers describing new 

species in this genus is accelerating: 

• Karenia digitata Yang, Takayama, Matsuoka & Hodgkiss killed wild and 

cultured fish in Hong Kong and Japan, and fishing boats coming into 

Hong Kong harbour reported their live catch was killed before they 

entered the high cell-density area (Yang et al. 2000). 

• Shortly after the K. digitata bloom, another Karenia species bloomed in 

Hong Kong harbour, without causing fish-kills: K. longicanalis Yang, 

Hodgkiss & Hansen (Yang et al. 2001). 
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• Blooms of two species caused marine life mortalities and human health 

problems in South Africa: K. bicuneiformis Botes, Sym & Pitcher, and K. 

cristata Botes, Sym & Pitcher (Botes et al. 2003). 

• Toxicity of shellfish in New Zealand in 1993, which contained brevetoxin 

and new brevetoxin analogues, resulted in the isolation and description of 

three new species: Karenia papilionacea Haywood & Steidinger., K. 

bidigitata Haywood & Steidinger, and K selliformis Haywood, 

Steidinger & Mackenzie. (Haywood et al. 2004). The latter species also 

caused massive fish kills in Chile (Clement et al. 2001; Haywood et al. 

2004). 

Finally a group of ichthyotoxic species of distinct morphology but uncertain 

taxonomic status, composed of Gymnodinium pukhellum Larsen and the 

closely related Gyrodinium acrotrochum Larsen and Gyrodinium cladochroma 

Larsen (Larsen 1994; 1996) have been blamed for fish kills in Australia 

(Hallegraeff 2002), Japan (Takayama 1985), and north America (Steidinger et 

al. 1998). 

1.2.5.1. Fish kills in Australia 

In Australia, unarmoured dinofiagellates are thought responsible for a number 

of marine life mortality events both in natural situations and artificial, 

aquaculture enterprises. 

Port Phillip Bay blooms of G. pulchellum-like species in the 1950s caused 

massive marine life mortalities (Hallegraeff 2002). This species has also been 

reported from Tasmanian waters (Hallegraeff 2002). 

In Murdunna, Tasmania, a bloom of Karenia cf mikimotoi is thought to have 

caused the mortality of approximately 1,000 aquacultured rainbow trout 

(Oncorhynchus mykiss Walbaum) in December 1989 (Hallegraeff 2002). 

Several Karenia species bloomed again in south-eastern Tasmania in May 

2003, this time killing approximately 100,000 aquacultured Atlantic salmon 

(Salmo salar L.) 

Natural fish kill events caused by Karlodinium micrum (Leadbeater & Dodge) 

G. Hansen & Moestrup occur almost annually in the Swan River, Western 
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Australia (2001-2003), and have also been recorded in the Murray River 

(W.A., 1999), in Lake Illawarra (1991 & 2000, Hallegraeff 2002) and Sydney 

Harbour, New South Wales (this study). Because of its similarity to much 

publicised and worked-on Pfiesteria, awareness of Karlodinium blooms and 

associated fish-kills is expanding, and blooms of this species have now been 

reported all over the world. 

Karenia brevis- like species have been reported from southern Australia, 

including Western Australian coastal waters, Port Lincoln (South Australia) 

and Gippsland Lakes (Victoria) (Hallegraeff 2002). However, they have so far 

not been reported in association with fish-kills. K. mikimotoi has been reported 

by Larsen (1994) as common during the austral summer in Hobson's Bay, 

Victoria. 

Throughout this study some taxa are referred to as 'fish-killing' and 

'ichthyotoxic', where their toxicity to marine life is generally accepted and 

usually has been replicated in the lab. Most species of Karenia as well as 

Karlodinium micrum and Gymnodinium pulchellum fall in this group. Other 

species where taxonomic confusion exists, or their fish-killing capability has 

not been confirmed in the laboratory are referred to as 'potentially 

ichthyotoxic' and 'potentially fish-killing'. An example of this would be 

species newly isolated from natural fish kills, or others, like Gyrodinium 

acrotrochum or G. cladochroma, where taxonomic confusion with 

Gymnodinium pulchellum may cause uncertainty. 

1.3. SCOPE AND CONTEXT OF THIS STUDY 

This study arose when water samples collected from various southern 

Australian locations, especially during fish kills or visible blooms or 'red tides' 

were found to contain a range of unusual and undescribed gymnodinioid 

dinoflagellates. In particular several species were isolated from the recently 

erected genus Karenia, one new species in the new genus Karlodinium, and 

two new species, clearly congeneric and morphologically similar to Larsen's 

(1994; 1996) species Gymnodinium pulchellum, Gyrodinium acrotrochum and 

G. cladochroma. There is a consistent trait of fish killing ability associated 

with species in the genera, Karenia, Karlodinium, and also the group of species 
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related to Gymnodinium pulchellum (Steidinger et al. 1998; Chang 1999; Yang 

et al. 2000; Deeds et al. 2002; Hallegraeff 2002). As such the definitive 

identification of Australian species in these genera, and the clear and 

unambiguous characterisation of novel taxa is a clear necessity for effective 

monitoring. 

1.4. AIMS OF THIS STUDY 

• To characterise as fully as possible several unusual or new species 

belonging to unarmoured, fish-killing dinoflagellate genera. 

• To determine whether the recently erected genera Karenia and 

Karlodinium are valid and can be separated on the basis of 

morphological and biochemical characters. 

• To identify if fish killing dinoflagellates of the fucoxanthin-containing 

genera Karenia and Karlodinium form a monophyletic clade within the 

gymnodinioid dinoflagellates. 

1.5. STRUCTURE OF THIS THESIS 

This dissertation is composed of several stand-alone papers that are presented 

in chapters 2 to 5, linked by a common introduction, a recapitulation of the 

main ichthyotoxic and potentially ichthyotoxic unarmoured dinoflagellate 

species found in Australia (Chapter 6), and their genetic relationships, and a 

common conclusion (Chapter 7). 

1.6. PUBLICATIONS ARISING FROM THIS THESIS 

Chapter 2. 

DE SALAS, M. F., BOLCH, C. J. S., AND HALLEGRAEFF, G. M. 2004. Karenia 

umbella sp. nov. (Gymnodiniales, Dinophyceae), a new, potentially 

ichthyotoxic dinoflagellate species from Tasmania, Australia. Phycologia 43: 

166-175. 

Chapter 3. 

DE SALAS, M. F., BOLCH, C. J. S., AND HALLEGRAEFF, G. M. 2004. Karenia 

asterichroma sp. nov. (Gymnodiniales, Dinophyceae), a new dinoflagellate 
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39: 1233-1246. 
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CHAPTER 2: 

KARENIA UMBELLA SP. NOV. (GYMNODINIALES, 

DINOPHYCEAE), A NEW, POTENTIALLY ICHTHYOTOXIC 

DINOFLAGELLATE FROM SOUTHERN AUSTRALIA 

Miguel Felix de Salas 

Christopher J. S. Bolch 

and 

Gustaaf M. Hallegraeff 

ABSTRACT: A new, potentially ichthyotoxic gymnodinioid dinoflagellate, Karerila umbella 

de Salas, Botch & Hallegraeff, is described from southern Australian coastal waters. This 

species is characterised by light and electron microscopy of field samples and laboratory 

cultures, as well as large subunit ribosomal DNA sequences and HPLC pigment analyses of 

two cultured strains. This new Karenia species has a straight apical groove and contains 

fucoxanthin derivative carotenoid pigments, typical of the genus. Karenia umbella differs from 

its closest relative K. longicanalis in its larger size, its longer epicone with a finger like sulcal 

intrusion, asymmetrically shaped hypocone, irregularly shaped chloroplasts, and the presence 

of 8 radial furrows on the epicone surface. It differs from K digitata in its significantly larger 

size and the shape of the epicone and hypocone. Genetically, this species is distinct from the 

dorsoventrally flattened Karenia species K mikimotoi, K brevis and K. brevisulcata. 

de Salas, M. F., Bolch, C. J. S. & Hallegraeff, G. M. (2004) Karenia umbella sp. nov. 

(Gymnodiniales, Dinophyceae), a new, potentially ichthyotoxic dinoflagellate species from 

Tasmania, Australia. Phycologia 43: 166-175. 
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2.1. INTRODUCTION 

Fish kills caused by difficult to identify, small (10-30 tm size) gymnodinioid 

dinoflagellates were first reported from Florida in 1844 (as Gymnodinium 
breve Davis 1948). However, in the past three decades such events have 

increasingly impacted on fisheries and aquaculture operations, for example 

Norway [Karenia mikimotoi (Miyake & Kominami ex Oda) G. Hansen & 

Moestrup as Gyrodinium aureolum Hulburt (Braarud & Heimdal 1970; Hansen 

et al. 2000)], Japan [Gymnodinium nagasakiense, Takayama & Adachi 

(Takayama & Adachi 1984)], New Zealand [G. brevisulcatum Chang (Chang 

1999) and three other Gymnodinium breve look-alikes (Haywood et al. 1996)], 

Chile (Carreto et al. 2001), and Hong Kong [K. digitata Yang et al (Yang et al. 

2000) and K longicanalis Yang et al (Yang et al. 2001)]. It has long been 

recognised that these species constitute a well-defined taxonomic grouping 

within the polyphyletic gymnodinioid dinoflagellates, because they possess 

fucoxanthin- derived carotenoid pigments rather than the typical dinoflagellate 

carotenoid peridinin (Bjornland & Tangen 1979; Tangen & Bjornland 1981; 

Steidinger 1990). Based on molecular sequencing of the large subunit 

ribosomal RNA gene (LSU rDNA), combined with evidence from 

ultrastructure, details of the flagellar apparatus and morphology of the apical 

groove, Daugbj erg et al. (2000) created the new genus Karenia G. Hansen & 

Moestrup [type species: Karenia brevis (Davis) G. Hansen & Moestrup] to 

include these ichthyotoxic dinoflagellates with straight apical grooves. Other 

small ichthyotoxic, fucoxanthin derivative-containing species were moved to 

the new genus Karlodinium J. Larsen [e.g. for Gymnodinium galatheanum 

Braarud sensu Kite & Dodge (1988), with a short, straight apical groove, 

amphiesmal plugs and a ventral pore). The generic affinities and taxonomic 

revision of Gymnodinium pulchellum Larsen (with sigmoid apical groove) and 

other species with sigmoid apical grooves has been resolved and will be 

detailed by us in a separate communication (de Salas et al. 2003). 

In the present work we describe a new, medium-sized gymnodinioid 

dinoflagellate, Karenia umbella de Salas, Bolch & Hallegraeff sp. nov., which 

was first associated with the mortality of approximately 1000 caged rainbow 

trout (Oncorhynchus mykiss) at a salmonid fish farm in Murdunna, on the 

20 



Five novel Australian 	 — Karenia umbello 

Tasman Peninsula (Fig. 2.1), south — eastern Tasmania, in December 1989. A 

further more serious mortality event involving 100,000 Atlantic salmon (Salmo 

salar L.) recurred at a neighbouring Tasmanian site in May 2003. Earlier 

scanning electron micrographs of field material of the causative organism were 

reproduced in Hallegraeff (1991, Fig.10C, D) as a species related to 

Gymnodinium mikimotoi Miyake & Kominami ex Oda, and a LSU rDNA 

sequence of an earlier culture was reported by Bolch (1999, as Gyrodinium sp. 

2, strain Gy2DE, since lost from culture). Regular sampling in waters off 

eastern Tasmania have shown the species to be present in a number of other 

locations (Fig. 2.1), and here we characterise the organism based on field 

samples and unialgal cultures, by light and scanning electron microscopy, 

sequencing of the LSU rDNA gene and HPLC pigment analysis. We compare 

our new species with authentic culture material of K. brevis, K. mikimotoi and 

K. brevisulcata (Chang) G. Hansen & Moestrup. Karenia umbella is similar to 

the poorly characterised K. longicanalis (Yang, et al. 2001), whose description 

is based on preserved field samples only, and we discuss the differences that 

support the separation of the two species. 

Figure 2.1. Localities in Tasmania, Australia, where K. umbella has been collected. 
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2.2. MATERIALS AND METHODS 

2.2.1. Culture conditions 

Cells of Karenia umbella were isolated from 20 tm plankton net samples 

collected from Murdunna, Taranna, and Triabunna, in south eastern Tasmania 

(see Fig. 2.1). Single cells were isolated with a micropipette into 28°/00 GSe 

medium (Blackburn et al. 2001). Cultures were maintained in this medium, at 

17°C, with a 12:12 L:D photoperiod of 100 imnol photosynthetically active 

radiation 111-2  supplied by cool white fluorescent lights. Karenia mikimotoi 

(strain CCMP429) and K. brevis (strain CCMP718) were obtained from the 

Provasoli-Guillard Center for Culture of Marine Phytoplankton, Bigelow 

Laboratory for Ocean Sciences, Maine, USA. Karenia brevisulcata was 

obtained from Cawthron Institute, Nelson, New Zealand. These and other 

cultures used in this study are detailed in Table 2.1. 

2.2.2. Light microscopy 

Live cells of Karenia umbella were examined and photographed using a Zeiss 

Axioskop 2 Plus microscope (Carl Zeiss, Gottingen, Germany) equipped with 

bright field and differential interference contrast illumination, and both a 

Canon Powershot GI digital camera (Canon, Tokyo, Japan) and a Carl Zeiss 

Table 2.1. Strains and samples used in this study 

Species Locality Date Isolator Strain code 

Field samples 

K. umbella Murdunna 4.12.1989 

K. umbella Georges Bay 15.3.2002 

K. umbella Port Arthur 17.10.2001 

K. umbella River Derwent 27.2.2002 

Cultures: 

K. umbella River Derwent 04.1997 C.J. Bolch GY2DE 

K. umbella Triabunna 15.3.2002 M. de Salas KULVOI 

K. umbella Taranna 17.10.2001 M. de Salas KUTNO5 

K. brevisukata New Zealand Lincoln Mackenzie 

Karlodinium 
micrum 

Perth, WA, 
Australia 

11.03.2001 M. de Salas KDMSROI 

G. aureolum Adelaide, SA 1.02.2000 M. de Salas GAADO1 
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Axiocam Hr digital camera. Cell length, width, and degree of girdle 

displacement were measured on 50 individual live cells in mid-logarithmic 

growth phase. 

2.2.3. Scanning electron microscopy 

One millilitre of Karenia umbella culture or field sample was fixed by adding 

an equal volume of 4% 0s04 solution prepared at the same salinity as the 

sample. Fixed cells were concentrated by gentle centrifugation (Bolch et al. 

1999). Cells were rinsed in culture medium, followed by deionised water, after 

which they were allowed to settle on glass coverslips coated with 1 mg m1 -1  

poly-L-lysine hydrochloride (Marchant & Thomas 1983). Dehydration was 

accomplished using a graded ethanol/acetone series (10%, 30%, 50%, 70%, 

90% and 100% ethanol in water, followed by two 100% dry acetone steps), 

after which samples were critical-point dried with liquid carbon dioxide and 

sputter-coated with gold. Samples were observed using a JEOL 35C scanning 

electron microscope (JEOL, Tokyo, Japan). 

2.2.4. DNA extraction, PCR amplification and sequencing 

Cultures were grown to mid-logarithmic phase and approximately 10 ml 

pelleted by gentle centrifugation. Total DNA was extracted by the gentle lysis 

method (Bolch et al. 1998). Extracted DNA was used as a template to amplify 

a fragment of the large subunit ribosomal gene approximately 1400 bp long, 

using the primers D IR (Scholin etal. 1994a) and 28:1483R (Daugbjerg, etal. 

2000). PCR amplifications Were performed in volumes of 50111, as described in 

Bolch (2001), but with an annealing temperature of 60°C for the first 10 cycles 

and 56°C for a further 25. Amplification products were checked by 

electrophoresing through 1% agarose gels stained with ethidium bromide and 

visualised under ultraviolet light. Successful reactions were purified using 

QIAquick PCR purification columns (Qiagen, Hilden, Germany), according to 

the manufacturer's instructions, and sequenced in both directions using a 

Beckman-Coulter Dye Terminator Sequencing Kit (Beckman-Coulter, 

Fullerton, CA, USA), according to the manufacturers instructions. Sequencing 

reactions were electrophoresed on a Beckman-Coulter CEQ2000 capillary 

electrophoresis sequencer. Primers D1R, D2C and D3Ca (Scholin et al. 1994b) 
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were used to determine the nucleotide sequence of approximately 900 bp of the 

amplified fragment. All sequence electropherograms were examined visually 

and base-calling errors corrected manually. Both forward and reverse 

sequences were aligned and conflicts resolved by manual inspection. 

2.2.5. Sequence alignment and phylogenetic analyses 

Sequences were aligned using ClustaIX (Thompson et al. 1997), and 

alignments were refined by hand. Inserts and deletions were coded by 

construction of a character matrix in which gaps were coded as single insertion 

or deletion events regardless of length. Phylogenetic analysis was carried out 

using PAUP 4.0* (Swofford 1999). An outgroup consisting of Akashiwo -

sanguinea (Hirasaka) G. Hansen & Moestrup, Gymnodinium aureolum 

(Hulbut) G. Hansen & Moestrup, G. chlorophorum Elbrachter & Schnepf, G. 

impudicum (Fraga & Bravo) G. Hansen & Moestrup, G. cf placidum Herdman, 

G. palustre Schilling, G. fuscum F. Stein, G. catenatum Graham, G. nolleri 

Ellegaard & Moestrup and G. microreticulatum Bolch was used in the analysis, 

representing the major gymnodinioid groups for which sequences are available. 

Distance, parsimony and likelihood were all used as criteria to construct trees, 

with no significant difference in the arrangement of ingroup species. Bases 

were treated either as equal, unweighted characters, or with transitions having 

twice the weight of transversions, with no noticeable difference in the result. 

Bootstrap analyses were carried out (1000 replicates) with all three criteria. 

2.2.6. Pigment analysis 

Approximately 10 ml of culture in mid-logarithmic phase was filtered gently 

onto 45-mm Whatman GF/F glass fibre filters (Whatman, Maidstone, U.K.) 

and snap frozen in liquid nitrogen for storage. For extraction of pigments the 

filters were cut into approximately 4 mm2  sections and placed in 10 ml syringes 

containing 6 ml of methanol, sonicated for 30 seconds and filtered (0.45 pm) 

into HPLC vials. Pigments were analysed by the method of Zapata etal. (2000) 

using a Waters 626 pump (Waters, Milford, MA, USA), a Gilson 232 

autoinjector (with the sample stage refrigerated at -10°C; Gilson, Midleton, 

WI, USA), a Waters Symmetry C8 column (150 x 4.6mm, 3.5 pm packing, at 

30.0°C) and a Waters 996 diode array detector. Peaks were integrated using 
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Waters Millennium software and identified by comparison of their retention 

times and spectra with those of mixed standards obtained from known cultures 

(Jeffrey & Wright 1997), coinjected with each batch of samples. In addition, 

gyroxanthin-diester (DHI Bioproducts, Denmark) was also co-injected, as this 

pigment is known from Karenia species (Hansen et al. 2000). 

2.3. OBSERVATIONS 

Karenia umbella de Salas, BoIch & Hallegraeff, sp. nov. 

Figures 2.2 — 2.14 

DIAGNOSIS: Cellulae ovatae, dorsiventraliter parum complanatae, 29-42 1.1M longae, 

21-32 p.m latae. Epiconus conicus vel hemisphericus, 8 striis superficiebus radiantibus 

omatus. Hypoconis lobus dexter lobo sinistro longior. Extrema cingulo mediano a 

cellulae longitudine 20% semota. Sulcus ut parva projectura digitiformis in epiconum 

invadens. Canalis apicalis rectus latus e positione parum dextrorsum sub apicem sulcii 

supra apicem epiconi ad dimidum lateris dorsalis epiconi extensus. Nucleus sphaericus 

vel ellipsoidus, centralis, capsula circumcinctus. Chloroplasti peripherales circa 20, 

flavovirentes, multilobati pyrenoide praediti. 

Cells ovate, slightly dorsoventrally flattened, 29-42 inn long (average 35.85 

3.37 pm), 21-32 lam wide (average 26.61 ± 2.90 pm). Epicone conical or 

hemispherical, adorned with 8 radiating furrows. Hypocone truncated and 

uneven, with the right lobe longer than the left lobe. Cingulum deeply incised 

and wide, displaced approximately 20 % of total cell length (average 20.3 ± 

1.36 %). Sulcus wide, extending as a finger-like protrusion into the epicone at a 

45 0  angle. A straight, broad apical groove extends from slightly to the right and 

below the sulcal apex, over the apex of the epicone, and approximately halfway 

down the dorsal epicone. A large round or ellipsoidal nucleus is central, 

surrounded by a capsule, and is closer to the dorsal surface. The cell contains 

approximately 20 peripherally located, irregular, shallow, multi-lobed and 

strap- shaped chloroplasts. 

HOLOTYPE: Figure 2.7, from strain KUTNO5 isolated from Taranna, Tasmania, 

Australia, in October 2001. Culture deposited in the University of Tasmania 

Harmful Algae Culture Collection. 
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ETYMOLOGY: named from the Latin umbella, meaning parasol, after the radial 

furrows in the epicone which resemble the radial spokes in a parasol. 

DISTRIBUTION: East coast of Tasmania, from George's Bay in the north east to 

Hastings Bay in the far south (Fig. 2.1). Also observed in field samples in 

Western Australia (Swan River) and cultured from South Australia (Port 

Lincoln). 

DESCRIPTION: Karenia umbella is a medium sized dinoflagellate known from 

both field samples and laboratory cultures. Average measurements are 

provided in Table 2.2, in comparison with its close relatives K. longicanalis, K. 

digitata and K. mikimotoi. Under the light microscope K. umbella cells have a 

distinctive shape, shown in Figures 2.2 — 2.4. The epicone is conical and 

tapering, with a blunt apex (Fig. 2.2), shrinking to hemispherical in stressed 

cells (Fig. 2.4). The hypocone is truncated, but asymmetrical, and the right lobe 

is always longer than the left lobe (Fig. 2.4). An intrusion of the sulcus into the 

epicone is obvious as a finger-like projection angled approximately 45° relative 

to the sulcus (Fig. 2.2). A straight apical groove extends from slightly below 

and to the right of the sulcal intrusion into the epicone, through the cell apex, to 

approximately halfway down the dorsal epicone (Fig. 2.2). The sulcus is broad 

and deep towards the antapex, but narrow and shallow between the two 

terminal ends of the cingulum (Fig. 2.2). Chloroplasts are irregular and multi-

lobed, situated around the periphery of healthy cells (Fig. 2.5). Chloroplasts of 

stressed cells, such as cells that have spent some time under a coverslip, 

become disc-shaped. Chloroplasts possess single, lenticular pyrenoids (Fig. 

2.6). A spherical pusule (not shown) surrounded by sac shaped vesicles has 

been observed under high magnification. The nucleus can be spherical or 

ellipsoidal in shape. It is normally located close to the center of the cell, but 

closer to the dorsal surface. It is surrounded by a thick bilayered envelope (Fig. 

2.4). Cultured cells of this species spend much of their time on the bottom of 

the culture vessel swimming slowly; only a small proportion of cells actively 

swim through the medium. 

Under the SEM, the cell surface appears composed of numerous, small 

amphiesmal vesicles (Figs 2.7, 2.11). The apical groove is clearly displayed, 

being shallow and wide (Fig. 2.7, 2.8). The bend at the ventral end can be seen 
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in Figures (Figs 2.7, 2.9). Eight shallow furrows extend radially around the 

apex, and almost touch the cingulum. The six furrows in the dorsal surface are 

deeper and more easily seen than the two in the ventral surface. The sulcal 

intrusion can be seen as a cleft or furrow extending from the junction of the 

sulcus and the cingulum (Figs 2.7, 2.9). A clustered pattern of pores is 

sometimes present on the ventral epicone, hypocone, or both (Figs 2.9, 2.10, 

2.12). 

A schematic representation of K. umbella in comparison with K. longicanalis, 

K. digitata and K. mikimotoi drawn to the same scale (Figs 2.13-2.20) provides 

a comparison of the relative average size of these species. 

PIGMENTS: The photosynthetic and accessory pigments of K. umbella include 

chlorophylls a, c2 and c3 . No chlorophyll c i  was detected. The following caro-

tenoids were identified, reported here as a percentage of chlorophyll a: 

fucoxanthin (38.4%), 4-keto-19'-hexanoyloxyfucoxanthin (16.6%), 19'-hexa-

noyloxyfucoxanthin (17.1%), a 19'- hexanoyloxyfucoxanthin- like pigment 

(14.9%), diadinoxanthin (13.9%), diatoxanthin (4.5%), gyroxanthin diester 

(8.9%). A pigment chromatogram of Karenia umbella is provided in Figure 

2.21. 

MOLECULAR SYSTEMATICS: The LSU rDNA sequences of K. umbella diverge 

approximately 7.4% from those of K. mikimotoi, 6.4 % from K brevis, and 6.3 

% from K. brevisulcata. Trees resulting from bootstrap analyses of distance, 

likelihood and parsimony criteria presented minor differences in the 

arrangement of some outgroup species with respect to others, but in all cases K. 

umbella formed a distinct group, clearly within the genus Karenia. A 

parsimony analysis of K. umbella, related species of Karenia and other 

gymnodinioids produced the tree shown in Figure 2.22. Based on LSU rDNA 

sequences, the genus Karenia is monophyletic, with K. umbella somewhat 

divergent from the dorsoventrally flattened species K. mikimotoi, K. brevis, and 

K. brevisulcata. 
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Figures 2.2 —2.4: Light micrographs of Karenia umbella. Scale bars = 10 gm. 

Fig. 2.2: Ventral view of a cultured cell of K umbella with a surface focus, showing the 

apical groove (arrow). 

Fig. 2.3: Surface focus of another cultured cell of K. umbella showing an intrusion of the 

sulcus into the epicone at an angle of 45° (arrow). 

Fig. 2.4: Cross section view of a cultured cell of K. umbella, showing the spherical nucleus 

(n). Note the thick bilayered envelope surrounding the nucleus. 

Figures 2.5, 2.6: Light micrographs of chloroplasts of Karenia umbella. Scale bars = 10gm. 

Fig. 2.5: Subsurface dorsal view of a healthy cell showing chloroplast shape and peripheral 

arrangement. 

Fig. 2.6: Stressed cell showing pyrenoids inside the chloroplasts (arrows). 
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Figures 2.7 — 2.12: Karenia umbella, SEMs. Scale bars = 10 um. 

Fig. 2.7: Ventral view of a cultured cell (strain KUTN05) showing the sulcal intrusion into 

the epicone (si). 

Fig. 2.8: Apical-dorsal view of a, showing the straight apical groove (ag) only descending 

about V2 the length of the dorsal epicone, and at least six of the shallow furrows (0 radiating 

from the apex after which the species is named. Please note that the angle of the specimen 

makes the apical groove appear to descend further than it does (see Fig. 2.14). 

Fig. 2.9: Ventral view of  a  field-collected cell (from Murdunna) showing the sulcal intrusion 

(si) into the epicone and pores (p) on the left ventral hypocone. Note the right lobe of the 

hypocone is longer than the left lobe. 

Fig. 2.10: Ventral view of another field-collected cell (from Murdunna) showing the pores 

(p) in the left ventral epicone. 

Fig. 2.11: Detail of another field-collected cell (from Murdunna) showing the pattern of 

amphiesmal vesicles that compose the cell membrane. 

Fig. 2.12: Detail of pores on the cell shown in Figure 10. 
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2.4. DISCUSSION 

Karenia umbella is morphologically similar to K longicanalis, but differs in 

size, the shape of the epicone and hypocone, its finger-like sulcal intrusion, and 

the presence of epiconal furrows. The shape of the epicone in K. longicanalis is 

described as hemispherical (Yang, et al. 2001), whereas K. umbella has an 

epicone that is conical and truncated (Figs 2.2, 2.7, 2.13), and only appears 

hemispherical if cells are stressed (Figs 2.4, 2.8-2.10). Karenia umbella has a 

clear, shallow finger-like extension of the sulcus into the epicone at an angle of 

approximately 45° (Figs 2.3, 2.7, 2.9), whereas the sulcus of K. longicanalis 

does not continue beyond the epicingular border (Yang, et al. 2001). A finger — 

Figures 2.13 — 2.20: Schematic representations (to same scale) of four different but closely 

related Karenia species. The upper drawing of each pair (Figs 13, 15, 17 and 19) represents the 

ventral surface, and the lower drawing (Figs 14, 16, 18 and 20) the corresponding dorsal 

surface. Scale bars = 10 l.tm. Figures 2.15-2.20 adopted from Yang et al. (2001). 

Figs 2.13, 2.14: K. umbella. 

Figs 2.15, 2.16: K. longicanalis. 

Figs 2.17, 2.18: K. digitata. 

Figs 2.19, 2.20: K. milcimotoi. 
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like extension of the sulcus into the epicone is described in K. digitata (Yang, 

et al. 2000), but the smaller size, overall rounded shape, and rounded hypocone 

of this species clearly separate it from K umbella (compare Figures 2.13 and 

2.14 to 2.17 and 2.18). A consistent character in K. umbella is the asymmetrical 

shape of the hypocone, with the left lobe shorter than the right lobe (Figs 2.4, 

2.7, 2.9). 

Yang et al. (2001) described K. longicanalis as having approximately 30 

globular chloroplasts, whereas K. umbella possesses only about 20 and they are 

irregularly shaped, long, shallow and multi-lobed (Fig. 2.5). The shape of these 

varies in K. umbella from distinctly strap shaped (but with lobes) in healthy 

cells, to shallow, irregular discs in stressed cells. However, the number of 

chloroplasts in a clonal culture was found to be highly variable, from as few as 

one per cell for aberrant, small cells (possibly gametes) to as many as 20 in 

large, healthy motile cells. The photosynthetic pigments of K. umbella, notably 

the possession of fucoxanthin derivatives and gyroxanthin- diester, classify this 

species with K. mikimotoi and K. brevis (Tangen & Bjornland 1981; Bjornland 

et al. 1984; Steidinger 1990). The nucleus of K. umbella is not large compared 

to the overall size of the cell (Fig. 2.4, 2.5), and can be spherical or elongated 
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Figure 2.21: Pigment chromatogram of Karenia umbella strain KUTN05, from Taranna, 

Tasmania, Australia. 
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along the longitudinal axis. Its location is normally near the center of the cell, 

or sometimes slightly displaced towards the epicone or hypocone. It is situated 

closer to the dorsal surface of the cell. In comparison, the nucleus of K. 

longicanalis is described as being large and round, and located in the center of 

the cell. This is stated to be a constant character in this species when compared 

to the variable shape and position in species such as K. mikimotoi and K. 

brevisukata. Karenia longicanalis is also claimed to have a 'nuclear capsule' 

(sensu Hansen 1993), a feature apparent under the light microscope also in K 

umbella (Fig. 2.4). However, other Karenia species such as K. brevis, which 

have a spherical nucleus surrounded by an apparent capsule have been shown 

by TEM to possess a normal nuclear envelope as present in the generic•

description of Karenia (Steidinger 1990). 

Although cell size is an important taxonomic character in dinoflagellates, it can 

be variable, both in field populations and laboratory cultures. For example, 

both K mikimotoi and K. brevisulcata are known to produce subpopulations of 

both small and large cells, in which the length - width ratio changes (Partensky, 

et al. 1988; Chang 1999). Karenia longicanalis cells range from 17 to 35 1.1M 

long (average 26 im), and 10 to 22.5 i.tm wide (average 21 ptm, Yang, et al. 

2001). This is significantly smaller than K. umbella, which ranges from 29 to 

42 tm long (35.85 ± 3.37 lAm) and 21 to 32 iirrl wide (26.61 ± 2.90 1.1,m). Full 

measurements are provided in Table 2.2. Figures 2.13-2.20 show the 

comparative shapes and sizes of K. umbella, K. longicanalis, K. digitata, and 

K. mikimotoi. 

A puzzling feature of K. umbella is the occasional presence of several deep 

pores in the left ventral hypocone, or epicone, or both (Figs 2.9, 2.10, 2.12). 

Similar pores, numbering 4 to 6, have been reported in the left lateral hypocone 

of K brevis (Steidinger 1990), and K. mikimotoi (as Gymnodinium 

nagasakiense, Takayama & Adachi 1984, Plate II, Fig. 4). A ventral pore in the 

epicone is also noted as a defining feature of the genus Karlodinium Larsen 

(Daugbjerg, et al. 2000). However, in Karenia umbella, this feature is not 

easily preserved upon fixation for SEM, and its taxonomic value is uncertain. 

We are confident, however, that these pores are not a fixation artefact, because 

they occur consistently in the same _location on the cell surface, though their 
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numbers are variable. The overall outline of K. umbella can be reminiscent of 

K. mikimotoi, but K. umbella has a longer epicone, and a clearly uneven 

hypocone, and is only slightly dorsoventrally flattened, unlike K. mikimotoi.At 

the time of writing of this paper, LSU rDNA sequences were only available for 

K. mikimotoi and K. brevis; no sequences were published with the description 

of either K. longicanalis or K. digitata. With the increasing availability of LSU 

rDNA sequences of gymnodinioid dinoflagellates that are difficult to identify, 

descriptions of new species should ideally be based on a combination of 

morphotaxonomy (LM and SEM), ultrastructure (transmission electron 

microscopy), molecular characters (e.g. DNA sequences), and biochemical 

features, such as chloroplast pigments, toxins (e.g. brevetoxin) and fatty acid 

characterisation. Without such additional data, the descriptions of the Hong 

Kong species K. longicanalis and K. digitata are incomplete and hamper 

further studies of gymnodinioid dinoflagellates. On the basis of available data, 

K. umbella and the poorly characterised K. longicanalis seem to be different 

species. However, it remains possible that DNA sequencing data and 

reexamination of live material of K longicanalis may demonstrate synonymy 

with K. umbella and require amendment of the description of K. longicanalis. 

Further work needs to be undertaken in order to ascertain whether K. umbella 

produces brevetoxins or other toxic chemicals that might account for its 

implication in fish kills in Tasmania. 
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U.K. Karenia mikimotoi 	AF200678 

96 K. mikimotoi Japan AF200681 

100 K. brevis Florida AF200677 

K. brevisulcata Wellington, New Zealand AY243032 
100 

K. umbella, Taranna, Tasmania AY263963 

100 K. umbella, Triabunna, Tasmania AY263962 
100 

K. umbella, River Derwent AY266329 

Karlodinium micrum AF200675 
100 

K. micrum Swan River, Western Australia AY263964 

Akashiwo sanguinea AF260397 

impudicum AF200674 Gymnodinium 

72 G. chlorophorum AF200669 

66 G. aureolum Adelaide, South Australia AY263965 

G. fuscum AF200676 
63 

G. catenatum AF200672 
100 

94 G. nolleri AF200673 
99 

G.microreticulatum, N.S.W. AY036078 

G. cf. placidum AF260383 
100 

G. palustre AF260382 

Figure 2.22: Bootstrap consensus tree maximum parsimony searches of Karenia umbella (in 

bold type) and closely related species. Akashiwo sanguinea and the true Gymnodinium spp. 

were all used as the outgroup. GeneBank Accession numbers are given for all sequences. 

Bootstrap values are shown for all branches. 
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Table 2.2: A comparison of cell parameters of Karenia umbella with other Karenia species. 

Parameter Karenia umbella Karenia longicanalis l  Karenia digitata 2  Karenia mikimotoi 3  

Cell length (gm) 29-42 (35.85 ± 3.37, 
n = 50) 

28.85 ± 5.51 	(n = 50) 21.46 ± 2.96 	(n = 50) 18 — 37 

Cell width (um) 21-32 (26.61 ± 2.90, 
n = 50) 

21.07 ± 4.31 	(n = 50) 18.25 ± 2.54 	(n = 50) 14 — 35 

Length/Width ratio 1.03-1.53 1.23 ± 0.11 	(n = 50) 1.18 ± 0.082 	(n = 50) 1.2 ± 0.1 4  
(1.35 ± 0.10, n = 50) 

Thickness 4/5 of cell width slightly flattened slightly flattened 1/3 — 3/4 of width 
Girdle displacement 20.3 ± 1.36 22.06± 1.6 % (n = 6) 24.87± 1.9 	(n = 9) 11 — 25% but mostly 14 — 20% 
(% of cell length) (n = 20) 

Sulcus extension short, finger-like, 45° 
angle 

no extension short, finger-like small, wedge-shaped 

Apical groove linear, wide & linear, long, thick about linear, short, thin 1/3- 1/2 linear, short, thick, 1/3 down 
shallow, about 'A 
down dorsal side 

2/3 down dorsal side down dorsal side dorsal side 

Nucleus round, to ellipsoidal, 
anterior to subcentral. 

round, central round, subcentral ellipsoidal or reniform, left 

Chloroplasts multilobed and 
flattened; peripheral, 

up to 20 

round, up to 30 shapeless, numerous shapeless, 10-20 
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CHAPTER 3: 

KARENIA ASTERICHROMA SP. NOV. (GYMNODINIALES, 

DINOPHYCEAE), A NEW DINOFLAGELLATE SPECIES 

ASSOCIATED WITH FINFISH AQUACULTURE MORTALITIES IN 

TASMANIA, AUSTRALIA 1  

Miguel Felix de Salas 

Christopher J. S. Bolch 

and 

Gustaaf M. Hallegraeff 

ABSTRACT: A new species of unarmoured dinoflagellate is described from Tasmanian field 

samples and laboratory cultures: Karenia asterichroma de Salas, Bolch & Hallegraeff sp. nov. 

This species is characterised by the use of light and scanning electron microscopy and 

sequencing of the large subunit ribosomal gene. Karenia asterichroma is a dorso-ventrally 

flattened cell resembling K. brevis, although it differs from this species by 4.5% in the DI-D3 

regions of its LSU rDNA sequence. Unlike other Karenia species, the epicone of K. 

asterichroma has concave sides and its chloroplasts radiate from a central, putative pyrenoid. 

The nucleus is located in the centre of the epicone and the apical groove is long, extending 

ventrally to near a broad sulcal extension into the epicone. Partial LSU rDNA sequences 

indicate a relationship with K. bicuneiformis. While the ichthyotoxicity of K. asterichroma is 

yet to be confirmed, it was associated (with three other Karenia species) with a recent mass 

mortality of over 100,000 caged salmonids at an aquaculture operation in southern Tasmania, 

Australia. 

1  de Salas, M.F., Bolch, C.J.S., and Hallegraeff, G.M. (2004) Karenia asterichroma sp. nov. 

(Gymnodiniales, Dinophyceae), a new dinoflagellate species associated with finfish 

aquaculture mortalities in Tasmania, Australia. Phycologia 43: 624-631 
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3.1. INTRODUCTION 

At the time of Daugbjerg et al.'s (2000) revision of unarmoured dinoflagellate 

genera, only three species of Karenia G. Hansen & Moestrup had been 

formally described, Since then, the study of potentially ichthyotoxic 

gymnodinioids has intensified, several new species have been described [such 

as Karenia digitata Yang et al. (Yang et al. 2000), K. longicanalis Yang et al. 

(Yang et al. 2001), K. cristata Botes et al. and K. bicuneiformis Botes et al. 

(Botes et al. 2003), K. umbella de Salas et al. (de Salas et al. 2004), K. 

bidigitata Haywood et al., K. papilionacea Haywood et al., K. selliformis 

Haywood et al. (Haywood et al. 2004)], and it is clear that the genus harbours 

numerous undescribed species. While many are morphologically similar to 

already-described species [e.g. K. umbella to K. longicanalis (de Salas et al. 

2004); K. papilionacea to K brevis (Davis) G. Hansen et Moestrup (Haywood 

et al. 2004)], some are also clearly distinct from anything previously described 

[e.g. K. brevisulcata (Chang) G. Hansen et Moestrup (Chang 1999) and K. 

digitata Yang et al. (Yang et al. 2000)] 

In May 2003, the death of 100,000 caged mature Atlantic salmon (Salmo salar 

L.) at aquaculture facilities at Parsons Bay and Port Arthur, Tasmania, 

Australia (Fig. 3.1), coincided with a dense mixed bloom of five distinct 

dinoflagellates belonging to the genus Karenia. Of the five morphotypes 

present, only one could be assigned to a known species, K. umbella (de Salas et 

al. 2004; see also Chapter 2), that had been associated with previous fish kills 

at a nearby location (Murdunna, Fig. 3.1). Despite intensive effort, most of the 

Karenia morphotypes in this bloom could not be cultured and properly 

characterised, including two non-flattened, Karenia morphotypes similar to K. 

umbella and K. longicanalis. Those that could be cultured could only be 

maintained in tissue culture vessels at very low cell densities with periodic re-

isolation needed. 

Despite the culturing difficulties, we were able to grow enough material to 

undertake a detailed morphological and genetic analysis of some morphotypes. 

Here we present a description of a new, potentially ichthyotoxic dinoflagellate, 

Karenia asterichroma sp. nov., supported by LM and SEM analysis and 
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Figure 3.1: Map of Tasmanian (Australia) locations mentioned in this study. 

comparison of partial LSU rDNA sequences with other existing Karenia 

species. 

3.2. MATERIALS AND METHODS 

3.2.1. Strain isolation and culture maintenance 

Clonal cultures of Karenia asterichroma were established by isolation of 

vegetative cells from seawater samples using micropipette manipulation and 

cell washing. Cultures were maintained in GSe medium (Blackburn et al. 

2001) of 28°Ao salinity at 17° C under 100 Knol rn -2  s-1  PAR illumination, 

supplied by cool white fluorescent lights, with a photoperiod of 12:12 L:D. 

Cultures used for morphological and genetic comparisons were from the 

authors' collections (University of Tasmania). Karenia brevis (Davis) G. 

Hansen & Moestrup (CCMP718) was obtained from the Provasoli-Guillard 

Center for Culture of Marine Phytoplankton, Bigelow Laboratory for Ocean 

Sciences, Maine, USA. Karenia brevisulcata (CAWD82) was obtained from 

Cawthron Institute, Nelson, New Zealand. 

3.2.2. Light and Scanning electron microscopy 

Live cells of laboratory cultures and field samples were examined and 

photographed using a Zeiss Axioskop 2+ microscope equipped with bright 

field and differential interference contrast illumination, and Zeiss Axiocam 

HRc digital camera (Carl Zeiss, Gottingen, Germany). Cell length and width 

were measured on 20 individual live cells in mid-logarithmic growth phase. 

For scanning electron microscopy, cells were fixed with equal volumes of 4% 

osmium tetroxide made up in culture medium, processed and mounted as 
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described in Chapter 2 and examined in a JEOL JSM 840 scanning electron 

microscope (JEOL, Tokyo, Japan). 

3.2.3. DNA extraction, PCR amplification and cycle sequencing 

Total DNA was extracted from approximately 5 ml of culture by a modified 

gentle lysis, phenol/chloroform method (Bolch et al. 1998) This was used as a 

template to amplify a fragment of the large subunit (LSU) ribosomal RNA 

gene approximately 900 bases long, using the primers D1R and D3Ca (Scholin 

et al. 1994). Reagent concentrations and PCR reaction conditions are detailed 

in Chapter 2. Completed reactions were checked for successful amplification 

by electrophoresis of 5 ill aliquots through a 1% agarose gel followed by 

staining with ethidium bromide and examination under UV light. Reaction 

products were purified using a QIAquick PCR purification kit (Qiagen, 

Hilden, Germany) according to the manufacturers instructions and product 

concentration measured using a Bio-Rad SmartSpec tm  3000 spectrophotometer 

(Bio-Rad, Hercules, CA, U.S.A.). Alternatively with field samples, two to four 

single cells were placed into a 200 ill PCR tube, and PCR was carried out as 

explained above. 

Approximately 50 frnol of PCR product was sequenced in both directions using 

either the forward or reverse amplification primer and a Beckman-Coulter Dye 

Terminator Sequencing Kit according to the manufacturers instructions 

(Beckman-Coulter, Fullerton, CA. U.S.A.). Sequencing reactions were 

electrophoresed on a Beckman-Coulter CEQ2000 capillary electrophoresis 

sequencer. A consensus DNA sequence was determined by alignment of the 

forward and reverse sequences and correction of automated base-call errors by 

visual inspection of the electropherograms. 

3.2.4. Sequence alignment and phylogenetic analysis 

Corrected partial LSU-rDNA sequences were aligned to comparable existing 

Karenia species sequences held by the authors or obtained from GenBank, and 

those from the related genera, Karlodinium J. Larsen and Takayama de Salas et 

al., using ClustalX (Thompson et al. 1997). A range of taxa (Table 3.1) 

representing the gymnodinioid, peridinioid, prorocentroid and gonyaulacoid 
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Table 3.1: Origin (where known) and GenBank accession numbers of sequences used in 

phylogenetic analyses. 

Sequence name 	 Origin 	 Accession number 

Japan 

U.S.A. 

South Australia 

South Australia 

Eastern Australia 

Tasmania 

New Zealand 

U.S.A 

New Zealand 

U.K. 

Japan 

Tasmania 

New Zealand 

Triabunna, Tasmania 

Taranna, Tasmania 

Norway 

Western Australia 

Tasmania 

New Zealand 

Tasmania 

Akashiwo sanguinea 

Alexandrium catenella 

Ceratium fusus 

Gymnodinium aureolum 

G. catenatum 

G. chlorophorum 

G. falcatum 

G. fuscum 

G. impudicum 

G. microreticulatum 

G. nolleri 

G. palustre 

G. cf placidum 

Heterocapsa rotundata 

H. triquetra 

Karenia asterichroma 

K. bidigitata 

K brevis 

K. brevisulcata 

K. mikimotoi 

K. mikimotoi 

K papilionacea 

K. papilionacea 

K umbella 

K. umbella 

Karlodinium micrum 

K. micrum 

Peridinium cinctum 

P. pseudolaeve 

Prorocentrum micans 

P. rhathymum 

Scrippsiella h-ochoidea 

Takayama helix 

Takayama sp. 

T. tasmanica 

Woloszynskia pseudopalustris 

AF260397 

AF200667 

AF260390 

AY263965 

AF200672 

AF200669 

AY320049 

AF200676 

AF200674 

AY036078 

AF200673 

AF260382 

AF260383 

AF260400 

AF260401 

AY590123 

U92251 

AF200677 

AY243032 

AF200678 

AF200681 

AY590124 

U92252 

AY263962 

AY263963 

AF200675 

AY263964 

AF260394 

AF260395 

AF260377 

AF260378 

AF260393 

AY284950 

U92254 

AY284948 

AF260402 
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lineages were also included in the alignments, with Alexandrium catenella, A. 

tamarense, Ceratium fusus and C. tripos as the outgroup. Phylogenetic 

analyses using minimum evolution, maximum parsimony and likelihood 

approaches were carried out using PAUP 4•0* (Swofford 1999) and MrBayes 

(Huelsenbeck & Ronquist 2001). Bases were treated either as equal, 

unweighted characters, or with transitions having twice the weight of 

transversions. Analyses were carried out both with and without the addition of 

a binary character matrix coding for inserts and deletions, and including or 

excluding the variable domains (equivalent to bases 387-492 and 556-675 of 

the K. asterichroma sequence, accession number AY590123). Assessment of 

support for branches in trees from distance and parsimony analyses was 

estimated with bootstrap using 1000 replicates. For MP analysis, starting trees 

were obtained via simple stepwise addition, and a tree-bisection-reconnection 

branch swapping algorithm was used. Alternatively Bayesian analysis was 

carried out using MrBayes (Huelsenbeck & Ronquist 2001), with the following 

parameters: 2.5 million generations, 4by4 nucleotide substitution, general time-

reversible model, with gamma distributed among-site rate variation, sampled 

every 1000 generations, with the consensus tree drawn using the last 2000 

trees. 

3.3. OBSERVATIONS AND RESULTS 

Karenia asterichroma de Salas, Bolch & Hallegraeff sp. nov. 

Figures 3.2 — 3.11 

DIAGNOSIS: Cellulae dorsiventraliter complanatae, 30-40 p.m longae, 23-42 pm latae, 

17-25 1.tm crassae. Epiconus acutus vel truncatus, lateribus concavis sed interdum 

rotundatis. Hypoconus saepe truncatus et sulco incisus, sed interdum semicircularis. 

Cingulum profunde incisum marginibus elevatis, per circiter 1/6 longitudinis cellulae 

dislocatum. Sulcus latus, in epiconum profunde extendens sub forma incisura 

truncatae. Canalis apicalis rectus, per circiter 'A longitudinis epiconi dorsalis 

descendens. Nucleus parvus sphaericus in centro epiconi. Chloroplasti 10-20, 

elongati, stellatim radiantes e corpore rotundato in hypocono. 
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Dorsoventrally flattened cells, 30 — 40 gm long (average 34.7 ± 2.8 gm), 32 — 

42 gm wide (average 35.2 ± 3.9 gm), 17-25 gm thick (average 21.6 ± 2.3 gm). 

Epicone acute to truncated, with concave sides but sometimes rounded. 

Hypocone often truncated and incised by the sulcus, but sometimes 

semicircular in outline. Cingulum deeply incised, with raised margins, 

displaced approximately 1/6 of the cell length. Sulcus wide, extending deeply 

into the epicone as a truncated indentation. Apical groove straight, and 

extending approximately 1/2 of the way down the dorsal epicone. Nucleus 

small and spherical, in the center of the epicone. Chloroplasts 10 — 20, 

elongated, radiating in a star shape from a round body in the hypocone. 

HOLOTYPE: Figure 3.11, a schematic representation of typical cell shapes from 

laboratory cultures and field samples. 

ETYMOLOGY: named asterichroma (Greek asteris — star and chroma — colour) 

after the distinctive radiating chloroplast arrangement evident in live cells. 

DISTRIBUTION: Cells have been observed in field samples from the Tasman 

Peninsula, Tasmania, Australia (Fig. 3.1), off Eaglehawk Neck, Port Arthur 

and Parsons Bay. 

DESCRIPTION: Karenia asterichroma is a medium to large unarmoured 

dinoflagellate (see comparison with other morphologically similar Karenia 

species, Table 3.2). Under the light microscope, cells of K. asterichroma 

appear large and approximately pentagonal or sometimes hexagonal. They are 

clearly dorsoventrally flattened, and have a deeply incised cingulum that often 

has prominently raised margins (Fig. 3.2). The epicone is normally truncated 

and notched at the apex, with concave sides (Fig. 3.2). In stressed cells it can 

assume a more rounded shape. A linear apical groove extends from the right of 

the intercingular region of the sulcus (Fig. 3.3) to approximately half way 

down the dorsal epicone (Fig. 3.4). A wide but shallow swelling or carina is 

apparent in the ventral epicone surface (Fig. 3.3). The sulcus is narrow in the 

intercingular region, invading the epicone as a shallow, wide extension (Fig. 

3.3). It is wider in the hypocone than in the intercingular region. The hypocone 

is normally truncated and incised by the sulcus (Figs 3.2, 3.5-3.7), but can 

become rounded when cells are under stress. The right hypocone lobe is often 
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longer than the left (Figs 3.2, 3.5-3.7), but not always so. A variable number 

(10-20) of elongated, tear-drop or sometimes wedge-shaped chloroplasts 

radiate from a putative pyrenoid near the center of the cell (Figs 3.5-3.7). The 

spherical nucleus is surrounded by a bi-layered envelope, is situated near the 

centre of the epicone, and is small-relative to the overall cell size (Figs 3.2 and 

3.5). 

Under the scanning electron microscope, the epicone can be acute or rounded, 

and an amphiesmal vesicle pattern can be discerned, as can the shallow wide 

sulcal extension into the epicone. The deeply incised apical groove (Figs 3.8 

and 3.9) is long and positioned on a raised area or carina (Fig. 3.9). It extends 

from a point approximately level with the top of the sulcal extension (Fig. 3.8), 

passes directly over the cell apex, and extends approximately half-way down 

the dorsal epicone (Fig. 3.10). The deeply incised cingulum with raised edges 

can be seen in Figs 3.8-3.10, and an amphiesmal vesicle pattern can be seen in 

Fig. 3.10. 

A diagrammatic representation of a typical cell of K. asterichroma, in 

comparison to morphologically similar K. bicuneiformis, K brevis, and K 

mikimotoi (Miyake & Kominami ex Oda) G. Hansen & Moestrup, is provided 

in Figs 3.11-3.14. Non-flattened species like K umbella, K. longicanalis and 

K. digitata, as well as very small species (K. brevisukata) were not included in 

this comparison as there is little potential for confusion with K. asterichroma. 

K. bidigitata was not included as its morphology and size are indistinguishable 

from K. bicuneiformis. 

MOLECULAR SYSTEMATICS: The LSU rDNA sequence of K. asterichroma 

differs by 3.9% from K. bidigitata, by 4.5% from K. brevis and 5.5%, from K. 

mikimotoi. Divergence from the other fucoxanthin-containing dinoflagellate 

genera is much higher, differing by 17.4% from Karlodinium micrum 

(Leadbeater & Dodge) J. Larsen, and 13.1% from Takayama tasmanica de 

Salas et al. Maximum parsimony (MP) heuristic analysis comparing K 

asterichroma with fucoxanthin- and peridinin- containing gymnodinioids and, 

using an outgroup composed of Alexandrium and Ceratium, resulted in 5 

equally parsimonious trees of length 2243. These trees differed in the 
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Table 3.2: Comparisons between Karenia asterichroma, and other Karenia species of similar morphology. 

Parameters \ Species Karenia asterichroma K. bicuneiformis I  K. brevis H  K. mikimotoi m  

Cell length tim 30 — 40 (34.77, n = 20) 34 —39 (36.25) 18 — 40 18 — 37 

Cell width i.tm 30 — 42 (35.23, n = 20) 31 — 36 (33.83) 15 — 70 14 — 35 

Cell thickness pm 17 — 25 (21.59, n = 20) —'5 flattened — no data 1/3 — 3/4 of width 

Sulcus extension long & wide, truncated present shallow and short small, wedge-shaped 

Apical groove long, 1/2 down dorsal side extending briefly onto dorsal 
surface 

short on dorsal side linear, short, thick, 1/3 down dorsal 
side 

Carina wide and shallow absent pronounced, nose-like absent 

Nucleus spherical, near cell apex oval, in left hypocone round, in left hypocone ellipsoidal or reniform, left sided 

Chloroplasts 10-20, elongated, radiating 
from central body. 

variable, disc-shaped when fixed. peripheral shapeless, 10-20 

I  Botes et al. (2003) 

H  Takayama (1990) 

Takayama (1984) 
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Figures 3.2-3.4: Light micrographs of Karenia asterichroma from Parsons Bay, Tasmania. 

Fig. 3.2: Central focus of cell in ventral view. Note notch made by the apical groove 

(arrow), spherical anterior nucleus (n) bordered by thick bilayered envelope (arrowhead), 

and longer right hypocone lobe. 

Fig. 3.3: Ventral view of cell in surface focus. Note apical groove (arrowhead), groove at 

the edge of the shallow swelling or carina (c) and sulcal extension into epicone (se). 

Fig. 3.4: Dorsal view of cell in surface focus. Note dorsal extent of apical groove (arrow). 

Scale bars = 20 pm. 

Figures 3.5-3.7: Light micrographs of Karenia asterichroma taken with a blue filter to 

enhance chloroplast contrast. 

Fig. 3.5: Ventral view of cell in central focus. Note spherical putative pyrenoid (arrow), at 

the centre of chloroplast radiation. 

Fig. 3.6: Dorsal view of cell in subsurface focus. Note apical groove (arrowhead), and 

chloroplast arrangement. 

Fig. 3.7: Dorsal view of another cell in subsurface focus. Note recurring radial 

arrangement, but different chloroplast shape with wider distal ends. Scale bars = 20 pm. 
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Figures 3.8-3.10: Scanning electron micrographs of Karenia asterichroma. 

Fig. 3.8: ventral view of cell with a straight and deeply incised apical groove (arrow), and a 

well developed, wide extension of the sulcus into the epicone (arrowhead). 

Fig. 3.9: ventral view of another cell showing a swelling on the ventral epicone. 

Fig. 3.10: Dorsal view of cell showing extent of apical groove on dorsal epicone (arrow), 

and deeply incised cingulum with raised margins (arrowheads). Scale bars = 10 pm. 

placement of taxa in the basal position within Karenia: three placed K 

papilionacea as the most basal Karenia, whereas the remaining two placed K 

umbella in this position. As bootstrap analysis showed slightly higher support 

for trees with K papilionacea in the basal position, the MP tree with this 

topology is shown in Fig. 3.15. Bootstrap values from 1000 MP replicates are 

shown at the branch points of those branches not collapsed in the bootstrap 

consensus tree. MP analysis excluding the variable domains in D2 and D3 

adequately resolved the major groups, but produced lower bootstrap support 

values within genera. Using equal weights for all characters produced the 

same branch order as analyses using different weights for transitions and 

transversions. Similarly, the addition of a binary character matrix to represent 

insertions and deletions did not change tree topology, and only slightly altered 

branch lengths. The results of these analysis are not shown, as they are not 

significantly different to Figure 3.15. Phylogenetic analyses using minimum 

evolution (distance), maximum likelihood (ML) and maximum parsimony 

(MP) criteria, consistently placed Karenia asterichroma within the Karenia 

clade, always paired with K bidigitata, although bootstrap support for the K 

asterichroma / bidigitata clade was low (54%). The genus Karenia was 

maintained as a monophyletic group with high bootstrap support (100%) in all 

analyses. The log-likelihood of the trees produced by Bayesian analysis 

stabilised after 15000 generations. A majority-rule consensus tree generated 

from the final 2000 trees showed the same branch order and topology to the 
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MP bootstrap consensus tree (Fig. 3.15), therefore the results of the Bayesian 

analysis are not shown. 

3.4. DISCUSSION 

Karenia asterichroma is morphologically somewhat similar to both K. brevis 

and K. mikimotoi in the degree of flattening of the cells, colour, and general 

cell shape, however, K. brevis and K mikimotoi both have a nucleus located 

in the left hypocone (Steidinger et al. 1978; Takayama & Adachi 1984) 

compared to the anterior-central, nucleus of K asterichroma (Fig. 3.2). 

K. bidigitata is the most closely related species in terms of LSU-rDNA 

sequences, however it has a nucleus located in the lower left hypocone and is 

dorsoventrally flattened to a much greater extent than K asterichroma (Botes 

Figures 3.11 —3.14: Diagrammatic comparisons of Karenia asterichroma with other Karenia 

species. 

Fig. 3.11: Ventral and dorsal surface detail of K. asterichroma. Note chloroplast 

arrangement typical of this species. 

Fig. 3.12: K. bicuneiformis (from Botes etal. 2003). Note position of the nucleus in 

comparison with K. asterichroma. 

Fig. 3.13: K. brevis CCMP718. Note apical carina and position of the nucleus. 

Fig. 3.14: K. mikimotoi (from Takayama & Adachi 1984). Note average size differences. 

Scale bars = 20 p.m. 
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et al. 2003). Both K. brevis and K. mikimotoi contain numerous peripheral 

chloroplasts with individual pyrenoids (Steidinger et al. 1978; Takayama & 

Adachi 1984), which are clearly different from the radiating chloroplasts of K 

asterichroma (Figs 3.5-3.7). The chloroplasts of K. asterichroma radiate from 

a small body located just posterior to the nucleus (Fig. 3.5), which appears to 

be a centrally located pyrenoid. Such an arrangement has not been described 

before in the genus Karenia, or the closely related Karlodinium (Daugbjerg et 

al. 2000), however, at least one species from a closely related genus, 

Takayama tasmanica, has a similar arrangement (Chapter 4; de Salas et al. 

2003). The chloroplast morphology of K bicuneiformis is not detailed in its 

description (Botes et al. 2003), however, the description of K. bidigitata 

(Haywood et al. 2004) refers to chloroplasts that are peripheral or evenly 

distributed throughout the cell. 

K. asterichroma, K. bicuneiformis and K. bidigitata all have a distinctive 

hypocone (rounded in K. asterichroma, Fig. 3.11, but W-shaped in K. 

bicuneiformis, and K. bidigitata, Fig. 3.12) and epicone (rounded and 

concave-sided in K. asterichroma, Fig. 3.11, and conical in K. bicuneiformis, 

and K. bidigitata, Fig. 3.12), features that make them easily identifiable. The 

size of K. asterichroma is significantly larger than the average sizes of K. 

brevis or K. mikimotoi (Takayama & Adachi 1984; Takayama 1990). 

However, the average size of K. asterichroma falls within the range of sizes 

exhibited by these species. In comparison, K. bicuneiformis, and K. bidigitata 

are slightly larger than K. asterichroma (Botes et al. 2003). Given the wide 

variation in size of dinoflagellates within wild populations (Chang 1999; 

Hansen et al. 2000) and even within our clonal cultures, small variations in 

size alone are of little taxonomic value. We are confident, however, that the 

much larger average size of K. asterichroma in comparison with flattened K. 

brevis, K. brevisukata and K mikimotoi is of help when trying to discriminate 

between these species. The cingulum of K. asterichroma is distinctive, very 

deeply incised, and often has raised edges (Fig. 3.2). The shallow, wide 

swelling on the ventral epicone of K. asterichroma (Fig. 3.3) may be 

homologous to the carina that is present in a much more pronounced form in 

K. brevis (Steidinger & Joyce 1973; Takayama 1981), and to an lesser extent 
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in K. papilionacea (Haywood et al. 2004). This structure has not been 

described in other species of the genus Karenia, although the apical crest of 

K cristata (Botes et al. 2003) may also be homologous to the carina of K. 

brevis. 

The wide sulcal extension of K. asterichroma (Fig. 3.3) resembles that of K. 

brevis (Takayama 1981), and K papilionacea (Haywood et al. 2004) but is 

more pronounced. By comparison, K bicuneiformis and K bidigitat, both 

have a narrow, pointed sulcal extension (Botes et al. 2003). The apical groove 

of K. asterichroma, which extends on the epicone along most of the length of 

the ventral side (Fig. 3.3) to approximately half of the length of the dorsal 

side (Figs 3.4, 3.10, 3.11) is longer than in K bicuneiformis and K. bidigitata 

(Fig. 3.12), K brevis (Fig. 3.13), K mikimotoi (Fig. 3.14), K. brevisulcata, 

(Chang 1999), K. digitata (Yang et al. 2000) and K. papilionacea (Haywood 

et al. 2004), all of which have grooves that only extend a short distance down 

the dorsal epicone. However, the apical groove is shorter than in species such 

as K. longicanalis (Yang et al. 2001) and K. umbella (Chapter 2; de Salas et 

al. 2004), in which the dorsal extension is closer to two thirds of the epicone 

surface. 

The two recently described species K. bicuneiformis Botes et al. and K 

bidigitata Haywood et al. are morphologically indistinguishable from each 

other and distinct from other Karenia species (Botes et al. 2003; Haywood et 

al. 2004), strongly suggesting their synonymity. However, deffinitive data 

demonstrating that the New Zealand K. bidigitata sequence (GenBank 

U92251) was derived from a species synonymous with South African K. 

bicuneiformis is not yet available, Until the synonymy of these two species 

can be clarified, we refer to the New Zealand sequence used in genetic 

comparisons as K. bidigitata. 

The increasing number of Karenia species and LSU-rDNA data available for 

comparison make it possible to better understand the taxonomy and 

phylogeny of this genus. The phylogeny of Karenia species illustrated in Fig. 

3.15 includes several sequences not previously analysed together and supports 

the monophyletic status of Karenia and the fucoxanthin-containing genera. 

The close relationship of the genera Karenia, Karlodinium and Takayama is 
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evidenced not only by their close LSU rDNA sequences, but also their similar 

pigment profiles, as all species so far analysed contain fucoxanthin and its 

derivatives as their main carotenoids (BjOrnland & Tangen 1979; Hansen et 

al. 2000; Botes et al. 2003; de Salas et al. 2003; de Salas et al. 2004). The 

genus Karenia is restricted to species whose major carotenoid is fucoxanthin 

or its derivatives, rather than peridinin (Daugbjerg et al. 2000). Due to the 

slow growth rate and low cell maximum density of K. asterichroma cultures 

we have not yet been able to obtain enough material for pigment analysis and 

therefore have relied on the clear morphological affinities with others in the 

genus, such as K. brevis, K mikimotoi (Takayama 1981; Takayama & Adachi 

1984; Takayama 1985), K. bidigitata (Haywood et al. 2004) and K. 

bicuneiformis (Botes etal. 2003). Our generic assignment of this new species 

is strongly supported by phylogenetic analysis of partial sequences of the 

LSU gene, therefore we feel that our decision to place K. asterichroma within 

Karenia is well justified. 

While molecular data is of increasing importance in dinoflagellate 

systematics, we believe that calls for taxonomy of all organisms to be based 

exclusively on molecular data (Tautz et al. 2003) are highly premature. Such 

an approach is likely to be misleading and prone to over- or under-estimation 

of the taxonomic complexity, especially within groups of organisms where 

the level of molecular divergence and diversity is poorly characterised. The 

value of morphological, pigment, toxin composition and ultrastructural data 

should not be discounted and we support the retention of morphological 

characters (Dunn 2003) as part of a polyphasic approach to taxonomy of 

dinoflagellates. 

The on-site recognition of Karenia species by aquaculture staff is important 

for the management and mitigation of impacts of blooms on caged 

aquaculture stock. In addition, Karenia species are typically fragile and field 

samples often do not survive transport to specialist laboratories, or survive 

standard fixatives without significant loss of cells or changes to cell shape and 

structure. Aquaculture facilities must therefore continue to rely on 

microscopic examination for routine detection and monitoring. For these 

reasons alone, we feel that characterisation of species should still include 
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morphology, but ideally be supported by other data such as sequencing of 

ribosomal RNA genes. Such detailed characterisation then forms an ideal base 

for the development of additional detection an differentiation techniques 

based on biochemical or molecular techniques. 
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CHAPTER 4: 

TAKAYAMA GEN. NOV. (GYMNODINIALES, DINOPHYCEAE), A 

NEW GENUS OF UNARMOURED DINOFLAGELLATES WITH 

SIGMOID APICAL GROOVES, INCLUDING THE DESCRIPTION 

OF TWO NEW SPECIES' 

Miguel Felix de Salas, Christopher J. S. Botch, Lizeth Botes, Geraldine Nash, 

Simon W. Wright, and Gustaaf M. Hallegraeff 2  

ABSTRACT: A new, potentially ichthyotoxic genus, Takayama de Salas, Bolch, Botes & 

Hallegraeff gen. nov. is described with two new species isolated from Tasmanian (Australia) 

and South African coastal waters: T. tasmanica de Salas, Bolch & Hallegraeff, sp. nov., and 

T. helix, de Salas, Bolch, Botes & Hallegraeff, sp. nov. The genus and two species are 

characterised by light and electron microscopy of field samples and laboratory cultures, as 

well as large subunit ribosomal rDNA sequences and HPLC pigment analyses of several 

cultured strains. The new Takayama species have sigmoid apical grooves and contain 

fucoxanthin and its derivatives as the main accessory pigments. T. tasmanica is similar to the 

previously described species Gymnodinium pulchellum Larsen, Gyrodinium acrotrochum 

Larsen and G. cladochroma Larsen in its external morphology, but differs from these in 

having two ventral pores, a large, horseshoe-shaped nucleus and a central pyrenoid with 

radiating chloroplasts that pass through the nucleus. It contains gyroxanthin-diester and a 

gyroxanthin- like accessory pigment, both of which are missing in T. helix. Takayama helix 

has an apical groove that is nearly straight while still being clearly inflected. A ventral pore or 

slit is present. It has numerous peripheral, strap-shaped, and spiralling chloroplasts with 

individual pyrenoids, and a solid ellipsoidal nucleus. The genus Takayama has close affinities 

to the genera Karenia and Karlodinium. 

de Salas M.F., Botch C.J.S., Botes L., Nash G., Wright S.W. & Hallegraeff G.M. 

(2004) Takayama (Gymnodiniales, Dinophyceae) gen. nov., a new genus of unarmoured 

dinoflagellates with sigmoid apical grooves, including the description of two new species. 

Journal of Phycology 39: 1233-1246. 
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4.1. INTRODUCTION 

Fish-killing, unarmoured, gymnodinioid dinoflagellates with sigmoid apical 

grooves have been reported since the 1980s, as Gymnodinium type-'84 K 

(Onoue et al. 1985) and as Gymnodinium sp. 1 (Takayama 1985). The first 

species described with this character was Gymnodinium pukhellum Larsen 

(1994), from a Port Phillip Bay field sample, which was considered to be 

most likely identical to the ichthyotoxic taxa of Takayama's (1985), and 

Onoue et al. (1985). Fish mortalities have been attributed to Gymnodinium 

pulchellum —like species in Australia (Larsen 1994; Hallegraeff 2002), Japan 

(Onoue etal. 1985), and the U.S.A. (Steidinger et al. 1998). Two new species 

morphologically similar to G. pulchellum were also described by Larsen in 

1996 from field samples collected in Port Phillip Bay as Gyrodinium 

acrotrochum Larsen and Gyrodinium cladochroma Larsen. 

Until recently, unarmoured dinoflagellate taxonomy was based exclusively on 

morphological and cytological features, such as set out by Kofoid and Swezy 

(1921). However, a revision by Daugbjerg et al. (2000) combined large 

subunit (LSU) ribosomal DNA (rDNA) sequences, ultrastructural characters 

and chloroplast pigment composition to divide the large heterogeneous genus 

Gymnodinium (sensu lato) into four genera: Gymnodinium sensu stricto, with 

a horseshoe shaped apical groove and peridinin as the main carotenoid; 

Akashiwo, with a clockwise spiral apical groove and peridinin; Karenia, with 

a straight apical groove and fucoxanthin; and Karlodinium, with a short, 

straight apical groove, a ventral pore, and fucoxanthin. However, the status of 

gymnodinioids with sigmoid grooves such as Gymnodinium pulchellum was 

not resolved, as no cultures of G. pulchellum -like organisms were available 

at the time. 

We have recently isolated G. pukhellum-like species from several locations 

in southern Australia and South Africa (Fig. 4.1) and established cultures of 

two species with sigmoid grooves. Based on morphological, ultrastructural 

and pigment analyses and LSU rDNA sequences we create a new genus: 

Takayama de Salas, Bolch, Botes & Hallegraeff gen. nov. for these two new 

species: Takayama tasmanica de Salas, Bolch & Hallegraeff sp. nov., and 

Takayama helix de Salas, Bolch, Botes & Hallegraeff sp. nov. We also 
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transfer Gymnodinium pukhellum, Gyrodinium acrotrochum and G. 

cladochroma to the genus Takayama. 

4.2. MATERIALS AND METHODS 

4.2.1. Culture conditions 

Australian cells of T tasmanica and T helix were isolated from plankton net 

(20 p.m mesh) samples collected in the Derwent estuary and in North West 

Bay, in south-eastern Tasmania (Fig. 4.1). Single cells were isolated with a 

micropipette into 28°/00 GSe medium (Blackburn et al. 1989). Cultures were 

maintained in this medium, at 17°C, with a 12:12 L:D photoperiod of 100 

pmol m -2  supplied by cool white fluorescent lights. Cultures used in this 

study are detailed in Table 4.1. South African T helix was isolated from False 

Bay at Gordon's Bay, in south-western South Africa. (Fig 4.1) in the same 

manner as the Australian isolates but were maintained in F2 medium (Guillard 

and Ryther 1962) at 18°C. 

4.2.2. Light microscopy 

Live cells of T tasmanica and T helix were examined and photographed with 

bright field and differential interference contrast using a Zeiss Axioskop 2 

Plus microscope (Zeiss, Gottingen, Germany) connected to a Canon 

Powershot G1 digital camera (Canon, Tokyo, Japan). Cell length, width, and 

degree of girdle displacement were measured on 50 individual cells in mid-

logarithmic phase. 

Fig. 4.1: Map of Australia and South Africa showing locations where T. tasmanica and T. 

helix have been isolated. 

62 



Five novel Australian fish-killing dinotlagellates — Tokayama tasmanica & I helix 

Table 4.1: Cultures and field samples used in this study. 

Field Samples 

Species 	Locality 	 Date 

T tasmanica 	Port Arthur, Tasmania, Australia 	 17.10.2001 

T. tasmanica 	St. Helens, Tasmania 	 24.5.2002 

T. tasmanica 	Tuggerah Lakes, New South Wales, 	 12.10.2002 
Australia 

T. helix 	River Derwent, Tasmania 	 19.3.2002 

T. helix 	Port Arthur, Tasmania 	 17.10.2001 

T. helix 	Port Lincoln, South Australia 	 5.4.2002 

Cultures 

Species 	Locality 	 Date 	Isolated by 	Strain code 

T. tasmanica 	River Derwent 	7.2.2001 	M. de Salas 	TTDWO1 

T. tasmanica 	River Derwent 	3.5.2001 	M. de Salas 	TTDWO3 

T. helix 	North West Bay, 	14.5.2001 M. de Salas 	THNWBO1 
Tasmania 

T. helix 	North West Bay 	14.5.2001 M. de Salas 	THNWBO2 

T. helix 	False Bay, Western 	1998 	L. Botes 	 CTCC19 
Cape, South Africa 

4.2.3. Scanning electron microscopy 

Cells of the Australian isolates of T. tasmanica and T helix were fixed by 

addition of equal volumes of 4% osmium tetroxide (0s0 4) solution prepared 

in culture medium. Samples were mounted, critical point dried and sputter-

coated as described in Chapter 2. Cells were observed using a JEOL 35C and 

a JSM 840 scanning electron microscope. Scanning electron micrographs of 

the South African isolate of 7'. helix were obtained according to Botes et al. 

(2002). 

4.2.4. Transmission electron microscopy 

Cells of T tasmanica and T. helix were fixed for 1 hour in a solution 

containing 2% Osat  and 2.5% glutaraldehyde made in GSe culture medium. 

After rinsing twice in culture medium and twice in distilled water, cells were 

dehydrated in an ethanol-acetone series (10 %, 30%, 50%, 70%, 80%, 90%, 

95% ethanol in double distilled water, 100% ethanol, and 2 steps in 100% dry 

acetone) and embedded in Spurr's resin. Sections of 60 nm thickness were 

taken using a Reichert Ultracut E microtome, mounted on Formvar coated 
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grids, stained with uranyl acetate (Hansen et al. 2000) and observed using an 

Phillips CM 100 transmission electron microscope. 

4.2.5. DNA extraction, PCR amplification and sequencing 

Cultures were grown to mid-logarithmic phase and approximately 10 ml 

pelleted by gentle centrifugation. Total DNA was extracted by the gentle 

lysis, phenol/chloroform method (Bolch et al., 1998). Extracted DNA was 

used as a template to amplify a fragment of the large subunit ribosomal gene 

approximately 1400 base pairs long, using the primers D1R (Scholin et al. 

1994) and 28:1483R (Daugbjerg et al. 2000). Details of reaction conditions 

and post-treatment can be found in Chapter 2. Primers D1R and D3Ca 

(Scholin et al. 1994) were used to determine the nucleotide sequence of 

approximately 900 bp of the amplified fragment. All sequence 

electropherograms were examined visually and base-calling errors corrected 

manually. Both forward and reverse sequences were aligned and conflicts 

resolved by manual inspection. 

4.2.6. Sequence alignment and phylogenetic analyses 

Sequences were aligned using ClustaIX (Thompson et al. 1997), and 

alignments were refined by hand. Inserts and deletions were coded by 

construction of a character matrix in which gaps were coded as single 

insertion or deletion events regardless of length. Phylogenetic analysis was 

carried out using PAUP 4•0* (Swofford, 1999). An outgroup consisting of 

Alexandrium catenella, A. tamarense, Ceratium fusus and C. tripos was used 

in the analysis. Additionally, sequences of all main gymnodinioid genera 

previously dealt with in Daugbjerg et al. (2000), such as Karenia, 

Karlodinium, Akashiwo, Woloszynskia, as well as a cross section through 

freshwater and marine gymnodinioids and closely related genera such as 

Heterocapsa, Scripps iella, Peridinium, and Prorocentrum were used in the 

analysis, to provide a thorough comparative framework. Distance, parsimony 

and likelihood were all used as criteria to construct trees, with no significant 

difference in the arrangement of ingroup species. Bases were treated either as 

equal, unweighted characters, or with transitions having twice the weight of 
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transversions, with no noticeable difference in the result. Bootstrap analyses 

were carried out (1000 replicates) with all three criteria. 

4.2.7. Pigment composition 

Approximately 10 ml of culture in mid-logarithmic phase were filtered gently 

onto 45-mm Gelman GF/F glass fibre filters and snap frozen in liquid 

nitrogen for storage. Pigments were extracted as described in Chapter 2, and 

analysed by the modified HPLC method of Zapata et al. (2000). Peaks were 

integrated using Waters Millennium software and identified by comparison of 

their retention times and spectra with those of mixed standards obtained from 

known cultures. A standard of gyroxanthin- diester (DHI Bioproducts, 

Denmark) was also compared, as this pigment is known from Karenia and 

Karlodinium species (Hansen etal., 2000). 

4.3. RESULTS 

Takayama de Salas, Bolch, Botes & Hallegraeff gen. nov. 

Dinoflagellata inarmata cum fucoxanthin aut oriundis ex fucoxanthin pro pigmentis 

principalibus accessoriisque. Canalis apicalis sigmoides. 

Unarmoured dinoflagellates with fucoxanthin or its derivatives as the major 

accessory pigments. Sigmoid apical groove. 

ETYMOLOGY: Named after Dr. Haruyoshi Takayama, whose work first drew 

attention to the importance of apical grooves in unarmoured dinoflagellate 

taxonomy. 

TYPE SPECIES: Takayama tasmanica de Salas, Bolch & Hallegraeff, sp. nov. 

OTHER SPECIES IN GENUS: 

Takayama helix de Salas, Bolch, Botes & Hallegraeff sp. nov. 
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Takayama pukhella (Larsen) de Salas, Bolch & Hallegraeff comb. nov., 

[Basionym: Gymnodinium pulchellum (Larsen, 1994, Fig 58, page 32)] 

Takayama acrotrocha (Larsen) de Salas, Bolch & Hallegraeff comb. nov., 

[Basionym: Gyrodinium acrotrochum (Larsen, 1996, Fig. 35, page 342)] 

Takayama cladochroma (Larsen) de Salas, Bolch & Hallegraeff comb. 

nov. 

[Basionym: Gyrodinium cladochroma (Larsen, 1996, Fig. 37, page 343)] 

Takayama tasmanica de Salas, Bolch & Hallegraeff sp. nov. 

Figs 4.2 —4.15, 4.38, 4.39. 

Cellulae obovatae, leniter dorsiventraliter complanatae, 16-27 pm longae, 14-26 pm 

latae, 10-20 pm crassae. Epiconus hemisphaericus. Hypoconus truncatus incisus. 

Cingulum profunde incisum, latum, per 1/4 longitudinis cellulae totius dislocatum. 

Sulcus in hypocono latior quam in regione intercingulari, in epiconum breviter 

invasus. Canalis apicalis sigmoideus, e puncto infra dexteram extensionis sulcalis 

ascendens, epiconum transcendens, apicem cellulae circumiens, et per quasi 2/3 

longitudinis epiconi dorsalis descendens. Partem tubiformem regio intercingularis 

sulci exhibens. Chloroplasti 7-10, e pyrenoide centrali per nucleum radiantes et in 

peripherio ramificantes. Nucleus sine capsula, maximam pat-tern epiconi implens, 

latera dorsum apicemque pyrenoidis cingens. 

Cells obovate in outline, slightly dorsoventrally flattened, 16 — 27 pm long, 

14 — 26 pm wide, 10 — 20 gm thick. Epicone hemispherical. Hypocone 

truncated and incised. Cingulum deeply excavated and wide, displaced about 

25 % of total cell length. Sulcus wider in the hypocone than the intercingular 

region, extending shortly into the epicone. Apical groove sigmoid, extending 

from below and to the right of the sulcal extension, across the epicone and 

around the cell apex, to approximately 2/3 of the way down the dorsal 
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epicone. Tube like structure in the intercingular region of the sulcus. 

Chloroplasts 7 — 10, radiating from a central pyrenoid and through the 

nucleus, branching peripherally. Nucleus without a capsule, filling most of the 

epicone, surrounding the pyrenoid laterally, dorsally and apically. 

HOLOTYPE: Figs 38, 39 of culture TTDE01, isolated from the River Derwent, 

Tasmania, Australia. Culture deposited into the University of Tasmania 

Harmful Algae Culture Collection. 

TYPE LOCALITY: Estuary of the River Derwent, Tasmania, Australia (Fig. 4.1) 

ETYMOLOGY: named after the island of Tasmania, in south eastern Australia, 

where the species was first isolated. 

DISTRIBUTION: North- and south-eastern Tasmania. 

DESCRIPTION: T tasmanica is a medium sized dinoflagellate. Measurements 

of 50 cells, compared with T. helix, T. pulchella, T acrotrocha and T. 

cladochroma are given in Table 4.2. Under the light microscope the cell 

outline appears obovate to almost spherical (Figs 4.3, 4.6). The epicone is 

hemispherical, and comprises approximately 1/3 of the cell length. The 

hypocone is truncated and deeply incised by the sulcus. The sulcus itself is 

wide, but narrows in the intercingular region, and extends shortly into the 

epicone as a finger-like projection (Fig. 4.2). The cingulum is displaced 

approximately 1/4 of the total cell length. A sigmoid apical groove skirts 

around the apex of the cell (Figs 4.4, 4.5) and descends 2/3 of the length of 

the dorsal epicone, angled towards the right side of the cell (Fig. 4.5). A pore 

is visible below the ventral termination of the apical groove (Fig. 4.6). A 

tube-shaped structure is evident inside and along the sulcus (Fig. 4.7) 

Chloroplasts radiate from a central pyrenoid, through the nucleus, branching 

irregularly underneath the cell surface (Figs 4.3, 4.8). In stressed cells the 

chloroplasts become rod shaped and their number is more obvious. A 

spherical pusule is surrounded by sac or tear-drop shaped vesicles (Fig. 4.8). 

The nucleus is large and cup shaped (Fig. 4.9), and occupies most of the 

epicone. Chloroplasts pass through it as they radiate out of the central 

pyrenoid, which surrounds the nucleus apically, dorsally and laterally. 
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Figures 4.2-4.9: Light micrographs of Takayama tasmanica. Scale bars = 10 tan. 

Fig. 4.2: Ventral surface view of cell showing sulcal extension into epicone (arrow) and 

indistinct origin of apical groove (arrowhead). 

Fig. 4.3: Cross section focus of the same cell showing central pyrenoid (py) surrounded by 

nucleus (n), and irregular chloroplasts branching under the surface (arrows). 

Fig. 4.4: Apical view showing shape and extent of sigtnoid apical groove (arrows). 

Fig. 4.5: Dorsally tilted apical view showing dorsal extent of apical groove (arrow) 

Fig. 4.6: Ventral view of cell showing ventral pore or slit adjacent to the ventral 

termination of the apical groove (arrow). 
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Fig. 4.7: Ventral view of cell tilted towards antapex. Note tube-shaped structure within the 

sulcus (arrow). 

Fig. 4.8: Subsurface view of same cell showing spherical pusule (arrow) with tear-drop 

shaped vesicles. 

Fig. 4.9: Subsurface apical view of cell showing dorsal distribution of the nucleus (n) 

around central pyrenoid. 

Using SEM, the sigmoid apical groove can be seen to skirt around the cell 

apex, but does not pass directly over it (Figs 4.10, 4.11). The ventral 

termination of the apical groove becomes shallower (Fig. 4.10) and has no 

clearly defined starting point. The area that lies between the apical groove and 

the sulcus is swollen and rod-like (Figs 4.10-4.14). Often a slit, also visible as 

a pore, is present in the lower part of the apical groove (Figs 4.10, 4.12, 4.14). 

Another pore, situated in the left ventral epicone just above the sulcus (Figs 

4.12, 4.13), is visible in some (but not all) cells. In well preserved samples, 

the apical groove appears as a cleft shaped incision into the cell surface (Figs 

4.10-4.12). The cell surface itself is composed of amphiesmal vesicles that are 

rectangular in the sulcus and areas adjacent to the apical groove,, but 

polygonal elsewhere (Figs 4.10, 4.11). The sulcus can be seen to intrude into 

the epicone at an angle (Figs 4.10, 4.14), but this is not obvious in all cells, as 

the intrusion is short and shallow. A tube-like appendage that occupies the 

intercingular region is visible in Figs 4.10 - 4.14. 

Using TEM of ultra-thin sections, the central pyrenoid is revealed to be 

surrounded by a starch cap (Fig. 4.15). The shape of the nucleus, which lacks 

a nuclear capsule or envelope chambers, is illustrated in Fig 4. It surrounds 

the central pyrenoid anteriorly and laterally. The chloroplasts appear to be 

engulfed by the nucleus as they radiate to the cell surface. 

PIGMENT COMPOSITION: The photosynthetic and accessory pigments of T 

tasmanica (Fig 4.16) include chlorophyll a and chlorophylls c2 and c3; no 

chlorophyll c 1  was detected. The following carotenoids were identified, 

quantified as a percentage of chlorophyll a: 19'-butanoyloxyfucoxanthin 

(5.7%), fucoxanthin (75.8%), violaxanthin (1.8%), diadinoxanthin (20.9%), 

diatoxanthin (4.5%), a gyroxanthin— like pigment (11.5%), and gyroxanthin-

diester (0.5%). 
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Figures 4.10-4.14. Scanning electron micrographs of Takayama tasmanica. Scale bars: 10 

p.m. 

Fig. 4.10: Ventral view of cell showing sigmoid apical groove, sulcal intrusion into 

epicone (arrowhead), and pore or slit on cingular end of apical groove (arrow). 

Fig. 4.11: Ventral view of another cell showing transverse flagellum (arrowhead), tube like 

structure in sulcus (arrow), and arrangement of amphiesmal vesicles in parallel rows to 

apical groove (a). 

Fig. 4.12: Ventral view of cell showing slit in cingular end of apical groove (arrowhead) 

and ventral pore in epicone (arrow). 

Fig. 4.13: View of pair of cells showing tube like structure in sulcus (arrowhead) and pair 

of ventral pores in same position as C (arrows). 

Fig. 4.14 Ventral view of hypocone showing swollen flap between apical groove and 

sulcus, pore in cingular end of apical groove (arrow pointing to both), and tube-like 

structure located between the two flagellar insertion points (arrowhead). 
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Fig. 4.15. TEM cross section of Takayama tasmanica (clonal culture TTDW01), showing 

central pyrenoid (p), enveloping nucleus (n), and chloroplasts passing through openings in the 

nucleus on their way to the cell periphery (c). 
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Figure 4.16: HPLC pigment chromatogram of Takayama tasmanica strain TTDE01, from the 

River Derwent, Tasmania, Australia. Note the presence of large amounts of a gyroxanthin-

like pigment and trace amounts of gyroxanthin-diester. 
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94 
6 

100 Karenia mikimotoi AF200681 
K. mikimotoi AF200678 
K. brevis AF200677 

100 K. brevisukata AY243032 
70 Karenia sp. NZ U92250 

Karenia 	NZ sp. 	U92251 
100 100 K. umbella AY263963 

K. umbella AY263962 
Karenia 	NZ sp. 	U92252 

93 
100 Karlodinium micrum AY263964 

K. 	AF200675 micrum 
93 100 Takayama tasmanica AY284948 

95 T. tasmanica AY284949 
100 Takayama sp. New Zealand U92254 

99 T. helix AY284950 
T. helix AY284951 
Akashiwo sanguinea AF260397 
Gymnodinium 	AY320049 falcatum 

100 G. palustre AF260382 
80 G. cl 	AF260383 placidum 

82 71 G. fuscum AF200676 
G. impudicum AF200674 

66 C. aureolum AY263965 
100 G. chlorophorum AF200669 

100 G. catenatum AF200672 
75 G. nolleri AF200673 

AY036078 G. microreticulatum 

100 100 Peridinium pseudolaeve AF260395 
P. cinctum AF260394 

100 Prorocentrum rathymum AF260378 
P. 	AF260377 micans 

100 Heterocapsa triquetra AF260401 
H. rotundata AF260400 
Scrippsiella trochoidea AF260393 

AF260402 Woloszynskia pseudopalustris 

100 Alexandrium tamarense AF200668 
A. catenella AF200667 

100 Ceratium fusus AF260390 
C. tripos AF260389 

Fig. 4.17. Bootstrap analysis of 1000 heuristic searches using maximum parsimony search 

criterion. Tree shows phylogeny of Takayama, compared with Karenia and Karlodinium, 

with all other gymnodinioid groups, and an outgroup composed of Alexandrium and 

Ceratium. Numbers next to branching points indicate bootstrap support for groups. 
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Takayama pukhella* Takayama acrotrocha* Takayama cladochroma* 

16-25 

11-16 

1.45 — 1.56 

—23 % 
(from published figures) 

short, finger-like 

sigmoid, counter- 
clockwise, encircling the 

cell apex 

large, located on the left 
part of the cell 

several, irregularly 
shaped, with pyrenoids 

22-27 

18-22 

1.22 

25 - 80 

none 

sigmoid, curves around 
the apex 

Large, fills up most of 
the epicone 

mostly in hypocone, 
disc shaped, with 

pyrenoids 

18-22 

17-19 

1.06 — 1.16 

25 

small- blunt 

sigmoid, curving around 
apex, and extending shortly 

on dorsal side 

on left side of the cell 

few, large and branched, 
with conspicuous pyrenoids 

Table 4.2: Comparison of measurements and morphological characteristics the two new species of Takayama with I pulchella, T. acrotrocha and T. cladochroma 

Takayama tasmanica Takayama helix 

16-27 (mean 22.8 ± 2.8 n = 17-45 (mean 28.2 ± 4.6 
50) n = 50) 

14-26 (mean 19.8 ± 2.7 n = 11-31 (mean 22.3 ± 3.9 
50) n = 50) 

1.00-1.37 (1.15 ± 0.08 n= 0.98 -1.74 (1.28 ± 0.15 n 
50) = 50) 

21-33 (mean 25.8 ± 2.4) 
	

21-28 (mean 24.62 ± 
2.75) 

finger-like, angled 45° to 	finger-like, angled 45° to 
the rest of the sulcus 	the rest of the sulcus 

sigmoid, curving around 	shallowly sigmoid, but 
the cell apex. Descending 	passing through the cell 
sideways 2/3 down dorsal 	apex. Descending 1/3 

side 	 down the dorsal epicone 

large and multi-lobed, 	ellipsoidal or round, 
enveloping the central 	centred in dorsal epicone 

pyrenoid 	 or slightly to the left 

7-10, radiating though the 	numerous, peripheral, 
nucleus and branching 	arranged in spiralling 

under the surface. 	 bands 
Pyrenoids centrally located 

inside the nucleus 

Parameter 

Cell length (vim) 

Cell width (gm) 

Length / width ratio 

Girdle displacement 
% total cell length 

Sulcal extension 

Apical groove 

Nucleus 

Chloroplasts 

(*Larsen 1994, 1996) 
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MOLECULAR DATA: The large subunit ribosomal DNA (LSU rDNA) sequence 

of 7'. tasmanica diverges approximately 3.79%. from T helix from both 

Australia and South Africa, 3.4% from a Takayama species from Kawau Is., 

New Zealand, and also diverges from other close relatives such as 

Karlodinium micrum and Karenia umbella by 11.5% and 14.9%, respectively. 

A phylogenetic reconstruction of Takayama, Karenia and Karlodinium (Fig. 

4.17) shows that the genus Takayama forms a distinct lineage related to 

Karenia and Karlodinium. These genera are, in turn, clearly defined taxa, 

with Takayama positioned closer to Karlodinium than Karenia. 

Takayama helix de Salas, Bolch, Botes & Hallegraeff sp. nov. 

Figs 4.18-4.33, 4.40, 4.41. 

Cellulae rhomboideae ad fere circulares, 17-45 1.tm longae, 11-31 tm latae, 9-25 um 

crassae. Epiconus late conicus ad hemisphaericus. Hypoconus truncatus incisus. 

Cingulum profunde incisum, latum, per quasi 1/4 longitudinis cellulae totius 

dislocatum. Sulcus latus sed in regione intercingulari latior quam in hypocono, in 

hypoconum breviter invasus. Canalis apicalis leniter sigmoideus, e puncto infra 

sinistram extensionis sulcalis ascendens, apicem cellulae transcendens, et per quasi 

1/3-1/2 longitudinis epiconi dorsalis descendens. Partem tubiformem regio 

intercingularis sulci exhibens. Chloroplasti multi, peripherales, elongati, in zonis 

spiralibus dispositi, pyrenoides discretas continentes. Nucleus grandis solidusque, 

plerumque ellipsoideus sed forma locoque varius. 

Cells rhomboidal to almost circular in outline, 17 — 45 pm long, 11 — 31 pm 

wide, 9 — 25 pm thick. Epicone broadly conical to hemispherical. Hypocone 

truncated and incised. Cingulum deeply excavated and wide, displaced about 

25 % of total cell length. Sulcus wide, but narrower in the intercingular region 

than in the hypocone, extending shortly into the epicone. Apical groove 

shallowly sigmoidal, extending from below and to the left of the sulcal 

extension, over the cell apex, to approximately 1/3 to 1/2 of the way down the 

dorsal epicone. Tube- like structure present in the intercingular region of the 
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sulcus. Chloroplasts numerous, peripheral, elongated and shallow, arranged in 

spiralling bands and containing individual pyrenoids. Nucleus large and solid, 

normally ellipsoidal, but with variable shape and position. 

HOLOTYPE: Figs 40, 41 of culture THNWB01, isolated from North West Bay, 

Tasmania, Australia. Culture deposited into the University of Tasmania 

Harmful Algae Culture Collection. 

TYPE LOCALITY: 'North West Bay, Tasmania, Australia (Fig. 4.1) 

SYNONYMS: Gymnodinium sp. 6; (Takayama, 1998, Plate 6, Figs 8, 9) 

ETYMOLOGY: named after the Greek helix, spiral, after the spiralling 

arrangement of chloroplasts and surface furrows in the epicone. 

DISTRIBUTION: East coast of Tasmania from the North East to the far south, 

Port Lincoln (South Australia — Fig. 4.1), South Africa (Fig. 4.1), and Japan. 

DESCRIPTION: Takayama helix is a small to medium sized dinoflagellate 

known from field samples and laboratory cultures. Average dimensions in 

comparison with close relatives T. tasmanica, G. pulchellum, G. acrotrochum 

and G. cladochroma are given in Table 4.2. 

Cells of T. helix have a distinctive appearance under the light microscope. 

The cell outline is elliptical or rhomboidal, with the epicone conical or 

hemispherical and the hypocone truncated and incised (Figs 4.24, 4.25). The 

cingulum and sulcus are deeply excavated. The sulcus is broad posteriorly but 

narrow between the two terminal ends of the cingulum, and extends into the 

epicone as a finger-like protrusion at a variable angle (Fig. 4.18). The apical 

groove extends from below and to the right of the sulcal extension (Fig. 4.18), 

and passes near and to the left of the apex (Figs 4.20, 4.22), and extends 

approximately 1/3 to 1/2 way down the dorsal side (Figs 4.19, 4.22). The 

groove is sigmoid, shaped like a shallow, open `S' (Figs 4.20, 4.22), but 

clearly inflected and never straight. Chloroplasts are thin, shallow and 

elongated, and are arranged in spiralling bands, especially in the epicone (Figs 

4.19, 4.21). The nucleus is of variable shape and size, but usually large and 

elongated, located in the epicone or almost centrally, being sometimes longer 

in the left part of the cell (Fig. 4.24). A spherical pusule (Fig. 4.25), 
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surrounded by sac-shaped vesicles is present below the sulcal surface on the 

right central hypocone. 

Scanning electron microscopy of the apical groove shows clearly its sigmoid 

shape from the ventral side across the apex to the dorsal side (Figs 4.26-4.30). 

Spiralling surface impressions are often visible that parallel the spiralling 

chloroplasts (Figs 4.26, 4.28, 4.30). The apical groove almost connects with 

the cingulum, and the epicone surface between it and the sulcus is swollen 

(Figs 4.26, 4.27, 4.30). A slit, at times also appearing as a pore, is found in the 

shallow ventral end of the groove (Fig. 4.26, 4.30). This feature is also 

visible in light micrographs of live material (Fig. 4.18). The region of epicone 

between this pore and the sulcus is swollen (Fig. 4.26, 4.30). 

Transmission electron microscope images provide the best detail of the 

location and shape of the peripherally located chloroplasts (Fig. 4.31). 

Chloroplasts are arranged in bands and located peripherally, with individual 

pyrenoids (Figs 4.31, 4.32). The pusule, in Figure 4.33 damaged due to 

fixation, is located adjacent to the sulcus. 

Cultures of this species form a mucus matrix within which they spend most of 

their time. 

PIGMENT COMPOSITION: Both Tasmanian and South African T. helix were 

extracted for pigment analysis. As the results were identical, only Tasmanian 

results are shown. The photosynthetic and accessory pigments of T. helix 

(Fig. 4.34) include chlorophyll a and chlorophylls c2 and c3. No chlorophyll c 1  

was detected. The following carotenoids were identified, quantified as a 

percentage of chlorophyll a: 19'-butanoyloxyfucoxanthin (13.7%), fucoxan-

thin (109.1%), 19'-hexanoyloxyfucoxanthin (5.7%), diadinoxanthin (42.8%), 

and diatoxanthin (28.6%). 

MOLECULAR DATA: LSU rDNA sequences of Tasmanian and South African 

T. helix were identical. Both of them diverge approximately 3.79%. from T. 

tasmanica, 2.14% from Takayama sp. from Kawau Is., New Zealand 

(Genebank Accession No. U92254), and 11.34% and 12.99% from 

Karlodinium micrum and Karenia umbella, respectively. The phylogenetic 
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Figures 4.18-4.25. Light micrographs of Takayama helix. Scale bars = 10 pm. 

Fig. 4.18: Ventral view of cell in surface focus showing sulcal intrusion into epicone 

(arrow), apical groove (arrowhead), and pore in cingular end of apical groove (line). 
Fig. 4.19: Dorsal view showing spiralling arrangement of chloroplasts that give the species 

its name, and apical groove extending approximately 1/3 down dorsal surface (arrow). 

Fig. 4.20: Apical view of cell in surface focus showing shape of apical groove. 

Fig. 4.21: Subsurface focus of cell in apical view. Arrows mark spiralling chloroplasts. 

Fig. 4.22: Dorsal view of cell tilted apically showing apical groove (arrow) 

Fig. 4.23: Ventral view of cell showing tube-shaped structure in the sulcus (arrowhead). 

Fig. 4.24: Central focus of cell showing shape and size of a typical nucleus (n). 

Fig. 4.25: Subsurface ventral view of cell showing spherical pusule (arrowhead). 
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Figures 4.31-4.33: Transmission electron micrographs of Takayama helix (clonal culture 

TTNWB01). 

Fig. 4.31: Cross section through cell showing ellipsoidal, anteriorly located nucleus (n) with 

nucleolus, and peripheral chloroplasts. 

Fig. 4.32: Chloroplast detail showing individual lenticular pyrenoid. 

Fig. 4.33: Detail of pusule adjacent to sulcus. 

reconstruction (using the LSU rDNA sequences) of Takayama, Karenia, 

Karlodinium and other gymnodinioids displayed in Fig. 4.17 shows that T 

helix is closely related to T. tasmanica, and forms part of a well defined group 

within the Karenia — Karlodinium generic complex. However, the group 

formed by T helix and T. tasmanica is clearly separated from Karenia and 

Karlodinium. 

4.4. DISCUSSION 

The taxonomic affinities of the three species with sigmoid grooves described 

by Larsen (1994; 1996): Takayama pulchella, T. acrotrocha and T 

cladochroma were left unresolved in Daugbjerg et al's (2000) revision of 

gymnodinioid dinoflagellates. The other fucoxanthin containing 

gymnodinioids were given separate generic status (Karenia, Karlodinium); 

however, determination of the genetic affinities of T pukhella (and related 

species) had not been attempted in the absence of ultrastructure and LSU 

rDNA sequences. 

From the new data presented here, comprising cell morphology, chloroplast 

pigment composition and LSU rDNA sequences, the creation of a new genus 

for species with sigmoid grooves that contain fucoxanthin (and its 

derivatives) as its main carotenoids is justified. Pigment analysis confirms 

that the genus Takayama is closely related to the fucoxanthin-containing 
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genera Karenia and Karlodinium. This is corroborated by LSU rDNA 

sequences, which show that dinoflagellates with sigmoid grooves, including 

Takayama tasmanica, T helix (from Australia and South Africa), and a 

GeneBanlc sequence (Accession number U92254) referred to here as 

Takayama sp, from Kawau Island, New Zealand, form monophyletic clade 

that clusters close to Karlodinium while remaining distinct. 

Two species of Takayama examined in detail in this study, T. tasmanica and 

T helix, exhibit morphological features that indicate their close taxonomic 

relationship. One of these is the sigmoid or clearly inflected apical groove 

intermediate between the straight grooved genera (Karenia, Karlodinium), 

and the loop shaped species in Gymnodinium sensu stricto (Daugbjerg, et al., 

2000). Another recurring feature is a tube shaped structure which lies along 

the sulcus in the intercingular region, and is also documented by Steidinger et 

al. (1998). This structure may be homologous with the putative peduncle of 

Karlodinium (Taylor, 1992). There is also a swollen structure which occurs 

between the proximal extreme of the apical groove and the sulcus, and a pore 

or slit exists in the proximal extreme of the apical groove. Both of these 

characters occur both in T tasmanica and T. helix. 
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Figure 4.34: HPLC pigment chromatogram of Takayama helix strain THNWBOI, from North 

West Bay, Tasmania. Note the absence of gyroxanthin- diester or gyroxanthin- like pigments. 
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Despite the range of similarities between T. tasmanica and 7'. helix, the 

following differences justify their discrimination as separate species: T 

tasmanica has a clear 'S' shaped apical groove, like that previously described 

in T pulchella, T. acrotrocha and T. cladochroma (Onoue, et al., 1985; 

Takayama, 1985; Larsen, 1994; 1996; Steidinger, et al., 1998), while T helix 

has a shallowly sigmoid groove, unlike any previously described species. 

However, apical grooves like the one present in T helix have been illustrated 

before from samples in Japan (Takayama, 1998, Plate 6, Figs 8, 9). T 

tasmanica has a central pyrenoid surrounded by starch, whereas T. helix has 

individual pyrenoids inside peripherally located chloroplasts. The chloroplasts 

of T. tasmanica radiate out from the central pyrenoid and penetrate through 

the nucleus, which occupies much of the cell and surrounds the pyrenoid 

laterally and anteriorly. The nucleus of T helix is also large, ellipsoidal in 

shape in some cells, longitudinally elongated and displaced towards the left 

side of the cell in others, but always solid (spherical or ovoid) rather than cup-

shaped. LSU rDNA sequences of T. tasmanica and T helix differ by a larger 

amount (3.79%) to widely accepted separate species within other genera, such 

as Karenia brevis — K. mikimotoi (2.81%), and Gymnodinium catenatum — G. 

nolleri (2.46%). Additionally, T tasmanica produces small amounts of 

gyroxanthin —diester (Fig. 5), a pigment typical of Karenia and Karlodinium 

species (Bjornland et al. 2000; Ornolfsdottir et al. 2003). As well as 

gyroxanthin- diester, T tasmanica produces large amounts of a gyroxanthin-

like pigment distinct from the former. Neither Tasmanian nor South African 

T. helix produce gyroxanthin-diester or the gyroxanthin-like pigment present 

in T. tasmanica. 

Takayama tasmanica is morphologically similar to T. pulchella (as described 

by Larsen, 1994), T acrotrocha and T cladochroma (Larsen, 1996), three 

Port Phillip Bay (Victoria, Australia) species illustrated for comparison in 

Figures 4.35-4.37. The sulcal intrusion into the epicone of T. tasmanica (Figs 

4.2, 4.10) is similar to T. pulchella and T cladochroma (Figs 4.35, 4.37), 

however, both these species have a solid nucleus in the left side of the cell, 

unlike the centrally located, cup-shaped nucleus of T tasmanica (Figs 4.3, 

4.9, 4.15). Like 7'. tasmanica, T acrotrocha (Fig. 4.36) has a nucleus that 
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occupies most of the epicone (Larsen, 1994), but the chloroplasts are disc-

shaped and possess individual pyrenoids, and there is no sulcal intrusion into 

the epicone like that of T tasmanica. 

Previously published accounts of species with sigmoid grooves include 

Takayama's (1985) `Gymnodinium sp. 1', which appears to have a sulcal 

intrusion, and as such is probably either T pulchellum or T. cladochroma, and 

Onoue's (1985, Fig. 1) Gymnodinium type-'84 K', which is not described in 

sufficient detail to assess its precise identity. However, Fukuyo's (1990) 

description of this organism does not include a sulcal intrusion and illustrates 

a centrally located nucleus, which makes it closest to T. acrotrocha. Canada 

et al. (1991) illustrate an organism with a sigmoid groove and a short sulcal 

intrusion, likely to be either T. pulchella or T. cladochroma. Since many of 

the features that identify species in the genus relate to nucleus and chloroplast 

details, scanning electron micrographs alone are not sufficient to distinguish 

between species of Takayama. For example Steidinger et al.'s (1998) report 

of fish kills in Florida (U.S.A) caused by T pulchella could instead refer to T. 

cladochroma, as both species have a left-sided nucleus, which is reported (but 

35 

Figures. 4.35-4.37. Previously described sigmoid-grooved gymnodinioid species, represented 

at the same scale (after Larsen 1994; 1996). Scale bar 10 um. 

Fig. 4.35: Holotype of T. pulchella. Note sharp sulcal intrusion into epicone, chloroplasts 

with individual pyrenoids and left sided nucleus. 

Fig. 4.36: Holotype of T. acrotrocha. Note lack of sulcal intrusion, anterior nucleus, and 

disc-shaped chloroplasts with individual pyrenoids. 

Fig. 4.37: Holotype of T. cladochroma. Note truncated sulcal intrusion into epicone, 

peripheral chloroplasts with individual pyrenoids, and left sided nucleus. 
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not illustrated) in their paper. Steidinger et al.'s (1998, p. 434, Figs 2, 5, 6) 

SEMs show cells that have a distinct inflection of the sulcus at the point of 

-origin of the longitudinal flagellum, and a truncated sulcal intrusion, 

characters which are represented in T. cladochroma (Larsen, 1996 p. 348 Fig. 

37), but not T pulchella (Larsen, 1994 p. 32, Fig. 58). A common feature of 

these illustrations is the presence of an apical groove that occupies less of the 

epicone surface than T tasmanica. The presence of a tube-like structure lying 

along the intercingular region of the sulcus has also been mentioned by 

Steidinger et al. (1998) for US material. Such a structure is present both in T. 

tasmanica and T. helix (Figs 4.7, 4.11, 4.23, 4.26), and may be a feature of all 

species in the genus. While easily visible by SEM, its recognition can be 

difficult under a light microscope, and as such we prefer not to include this 

feature in the generic diagnosis. The presence of a ventral pore above and to 

the left of the sulcal intrusion in T. tasmanica (Figs 4.12, 4.13), though 

difficult to preserve for electron microscopy, has also been shown by Canada 

et al. (1991). This character has not been seen in T helix, but appears to be 

easily obscured or overgrown, and 7'. helix produces copious amounts of 

mucus. As its presence is difficult to verify, and almost impossible to see 

under the light microscope, we have not included it in the species or genus 

diagnoses. However, it should be noted that its position is almost identical to 

the ventral pore that is a diagnostic character of Karlodinium micrum 

(Daugbjerg et al., 2000). Features such as the tube- like structure present in T 

tasmanica, T helix, and documented by Steidinger et al. (1998), and the 

Karlodinium-like ventral pore (Figs 4.12, 4.13), support the findings of the 

sequencing work (Fig. 4.17) that show Takayama to be the closest genus to 

Karlodinium. 

In conclusion, the exact identity of the species described by Larsen (1994; 

1996), T acrotrocha, T cladochroma and T pukhella, will remain 

unresolved until new material or cultures of all morphotypes from the type 

locality (Port Phillip Bay) are available. Re-description of these species is 

essential, as the level of detail present in the Latin (and English) diagnoses is 

insufficient. For example, features essential for the discrimination between 

species in the genus, such as sulcal intrusions into the epicone, and relative 
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shape, size and position of chloroplasts and pyrenoids are excluded from the 

diagnosis, and only mentioned in the discussion. The only major difference 

between T. cladochroma and T. pukhella is the presence of branched 

chloroplasts in the former species, which are described simply as 'irregular' 

in the latter. This character can be misleading, since cells placed under a 

microscope can change the shape of their chloroplasts, which tend to shrink 

and assume a globular or disc-shaped form. 

Figures 4.38 - 4.41: Schematic representations of Takayama. Scale bar 10 ti.m. 

Fig. 4.38: Ventral view of T. tasmanica. 

Fig. 4.39: Arrangement of nucleus (n — bounded by dashed line), pyrenoids (py — bounded 

by solid line) and chloroplasts (stippled) in T. tasmanica. 

Fig. 4.40: Ventral view of T. helix. 

Fig. 4.41: Chloroplast arrangement and nucleus (n) position in T. helix. 
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Morphological examination and sequencing of the LSU rDNA from cultures 

isolated from Port Phillip Bay should provide a clear understanding of the 

genetic affinities of all formally described species with sigmoid apical 

grooves. The close morphological affinity of Larsen's (1994, 1996) species 

justifies their transfer to the genus Takayama. 
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CHAPTER 5: 

KARLODINIUM AUSTRALE SP. INEDIT. (GYMNODINIALES, 

DINOPHYCEAE), A NEW POTENTIALLY ICHTHYOTOXIC 

UNARMOURED DINOFLAGELLATE FROM LAGOONAL 

HABITATS OF SOUTH-EASTERN AUSTRALIA 

Miguel Felix de Salas 

Christopher J. S. Bolch 

and 

Gustaaf M. Hallegraeff 

ABSTRACT: A new species in the toxigenic genus Karlodinium, K. australe de Salas, Bolch 

& Hallegraeff sp. nov., is described from coastal lagoons and enclosed bay habitats in 

Tasmania and south-eastern Australia. This mixotrophic species is characterised with the use 

of light and electron microscopy, pigment analysis and sequencing of the large subunit 

ribosomal gene from field samples and laboratory cultures. Karlodinium australe has a 

straight, short apical groove and a ventral pore typical of the genus, but is almost twice the 

size (18-20 urn long) of other species in the genus. It is morphologically similar to 

Gyrodinium corsicum and Karenia digitata but has an anteriorly located nucleus and a 

different amphiesmal pattern. Karlodinium australe has a partial LSU sequence that differs 

by 7.2% from that of K micrum, and its pigment profile does not include gyroxanthin-diester. 

Unlike the type species of the genus, K. micrum, K australe has no hexagonal array of plug-

like structures below the amphiesma, and its chloroplasts contain pyramidal rather than 

lenticular pyrenoids. 

1  de Salas, M. F., Botch, C. J. S. & Hallegraeff, G. M. Karlodinium australe sp. nov. 

(Gymnodiniales, Dinophyceae), a new potentially ichthyotoxic unarmoured dinoflagellate 

from lagoonal habitats of south-eastern Australia. Phycologia (submitted July 04) 
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5.1. INTRODUCTION 

The dinoflagellate genus Karlodinium J. Larsen was erected by Daugbjerg et 

al. (2000) based on a combination of morphological (linear apical groove, 

ventral pore), ultrastructural (internal lenticular pyrenoids, hexagonal arrays 

of plug-like structures in the amphiesma), genetic and pigment (fucoxanthin 

and its derivatives) characteristics. 

The first description of a Karlodinium-like species was by Ballantine (1956), 

who described two cultures isolated from the Plymouth region of southern 

England as Gymnodinium vitiligo and G. veneficum. Independently Braarud 

(1957) described Gymnodinium galatheanum based on formalin-preserved 

material from Walvis Bay, Namibia. However, the original sketch is believed 

to be optically reversed (Daugbjerg et al. 2000), and the quality of the 

micrographs and diagrams is insufficient to resolve the identity of this 

organism. A decade later Woloszynskia micra Leadbeater & Dodge (1966) 

was described in detail from cultures established from the English Channel 

near Plymouth, which Daugbjerg et al. (2000) used as the interim basionym 

of their new genus Karlodinium, as K. micrum. Ballantine's (1956) species 

were also transferred to this genus as K. vitiligo and K. veneficum. The close 

morphological similarity between K. veneficum, K. vitiligo (culture now lost) 

and K. micrum (Ballantine 1956; Daugbjerg et al. 2000; Leadbeater and 

Dodge 1966), render the status of K. micrum uncertain until sequences of K. 

veneficum can be produced. An ultrastructural examination of this species 

from the Plymouth culture collection suggests that it is indistinguishable from 

K. micrum (J. Larsen & Moestrup, pers. comm.). If this is the case, the name 

K. veneficum will take precedence over K. micrum [Gymnodinium veneficum 

(Ballantine 1956) was described earlier than Woloszynskia micra (Leadbeater 

and Dodge 1966)]. However, as the synonymy between these two species has 

not been formally established at the time of writing, we use the name 

Karlodinium micrum throughout this study. 

Bjornland and Tangen (1979) characterised the fucoxanthin derivative 

accessory pigments of an Oslofjord culture, initially referred to as 

Gyrodinium sp. 'A', that they later interpreted to be Gymnodinium 

galatheanum. This culture was subsequently synonymised to Karlodinium 
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micrum by Daugbjerg et al. (2000). The name Gyrodinium galatheanum has 

also been used for this species (Taylor 1992). 

Gyrodinium corsicum, a species described by Paulmier et al. (1995) from 

waters in Corsica, France, closely resembles Karlodinium micrum in its apical 

groove and identically located ventral pore, but details of its amphiesma are 

not clear, and neither cultures nor DNA sequences exist, therefore its status 

remains uncertain. 

Karlodinium micrum is most likely a widespread species, though probably 

often overlooked because of its size. It has been reported in Australia 

(Hallegraeff 2002), North America (Deeds et al. 2002), southern Africa 

(Tengs et al. 2001) and Europe (Bjornland and Tangen 1979). In Australian 

waters it is widespread from cool temperate waters (River Derwent), to 

subtropical Sydney Harbour (Fig. 5.1), and Western Australia (Hallegraeff 

2002). 

Many occurrences of K. micrum have been associated with fish mortalities 

(Deeds et al. 2002; Kempton et al. 2002), and at least two such blooms have 

been recorded in Australia. Fish mortalities in Lake Illawarra, N.S.W., in 

1991, and more recently in the Swan River estuary, in 2001, are recorded by 

Hallegraeff (2002). Of the two other species in the genus, K. veneficum is 

toxic to fish, whereas K. vitiligo is described as non-toxic (Ballantine 1956), 

however, this may represent physiological variations within the same taxon. 

G. corsicum has been responsible for natural fish-kills in both the Spanish and 

French Mediterranean coasts (Delgado and Alcaraz 1999; Garces et al. 1999; 

Paulmier et al. 1995), where winter and early spring blooms of this species 

recurred every winter between 1994 and 1999 (Garces et al. 1999). A number 

of species in closely related genera are also known fish-killers, such as 

Karenia brevis (Davis) G. Hansen & Moestrup, K. brevisulcata (Chang) G. 

Hansen & Moestrup, K. digitata Yang et al., K. mikimotoi (Miyake & 

Kominami ex Oda) G. Hansen & Moestrup, and Takayama pulchella (Larsen) 

de Salas etal. (Chang 1999; de Salas etal. 2003; Hallegraeff 2002; Steidinger 

et al. 1998; Yang et al. 2000). 
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Figure 5.1: Distribution of Karlodinium australe in Australian waters 

Regular sampling in enclosed waterways along Australia's south-east coast 

(Tuggerah Lakes, NSW, Port Phillip Bay, VIC, Grants Lagoon and Moulting 

Bay, TAS — Fig. 5.1) has produced isolates of a new mixotrophic 

Karlodinium species. This species is morphologically similar to Gyrodinium 

corsicum and Karenia digitata, and is described in this study as Karlodinium 

australe de Salas, Bolch et Hallegraeff sp. nov. 

5.2. MATERIALS AND METHODS 

5.2.1. Strain isolation and culture maintenance 

Clonal cultures of Karlodinium australe were isolated from vegetative cells in 

seawater samples by the use of a micromanipulator. Table 5.1 lists field 

samples and cultures used in this study. Established cultures were maintained 

in GSe medium (Blackburn et al. 2001), at 28%0 salinity and 17° C. They 

were incubated at 100 innol PAR ril2  supplied by cool white fluorescent 

lights, with a photoperiod of 12:12 L:D. 

Feeding experiments were conducted in GSe culture medium, at the same 

conditions described above. Cultures of K. australe were fed with clonal 

cultures of Rhodomonas sauna obtained from the CSIRO collection of 

microalgae, Hobart, Tasmania, Australia. 
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Comparative cultures of Karlodinium micrum were isolated by the authors 

from several Australian locations, and a Norway isolate (CCMP 415) was 

obtained from the Provasoli-Guillard Centre for Culture of Marine 

Phytoplankton, Bigelow Laboratory for Ocean Sciences, Maine, USA. 

5.2.2. Light microscopy 

Live cells of laboratory cultures and field samples of K. australe were 

suspended in a drop of fluid, clear gel made with 4% w/w carrageenan in 

culture medium. Carrageenan was found to set to a clear gel, unlike agar and 

agarose, both of which solidify to an optically opaque gel. Thus it was found 

to satisfactorily immobilise the cells without interfering with microscopy. 

Samples were examined and photographed using a Zeiss Axioskop 2+ 

microscope equipped with bright field and differential interference contrast 

illumination, and Zeiss Axiocam HRc digital camera (Carl Zeiss, Gottingen, 

Germany). Cell length, width, and degree of girdle displacement were 

measured on 20 individual live cells in mid-logarithmic growth phase. 

5.2.3. Scanning and transmission electron microscopy 

Cells were fixed for SEM with equal volumes of 4% osmium tetroxide 

dissolved overnight in culture medium, and processed as outlined in Chapter 

2. Mounted samples were examined in a JEOL JSM 840 (Jeol, Tokyo, Japan) 

scanning electron microscope. 

Approximately 2 ml of culture were fixed for TEM as explained in de Chapter 

4, and observed in a Phillips CM 100 transmission electron microscope 

(Phillips, Eindhoven, Holland). 

5.2.4. DNA extraction, PCR amplification and cycle sequencing 

Approximately 5 ml of autotrophically grown culture was extracted by the 

gentle lysis, phenol/chloroform method (Bolch et al. 1998). Extracted DNA 

was used as a template to amplify approximately 900 bases of the large 

subunit ribosomal gene (LSU rDNA), encompassing the D1, D2 and D3 

domains. Primers, reaction conditions and cycle sequencing parameters are 

described in detail in Chapter 2. 
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5.2.5. Sequence alignment and phylogenetic analysis 

Corrected sequences were aligned to other Karlodinium, Karenia and 

Takayama sequences (Table 5.2) using ClustaIX (Thompson et al. 1997). 

Phylogenetic analyses using minimum evolution (ME) and maximum 

parsimony (MP) search criteria were carried out using PAUP 4.0 (Swofford 

1999), and Bayesian analysis (likelihood) was carried out using MrBayes 

(Huelsenbeck and Ronquist 2001), both as described in Chapter 3. 

5.2.6. Pigment composition 

Approximately 10 ml of autotrophically grown culture were centrifuged 

gently at 1000 rpm and the resulting pellet was transferred to a 1.5m1 

microcentrifuge tube. This was centrifuged at 2000 rpm and the supernatant 

removed. The resulting pellet was snap frozen in liquid nitrogen for storage. 

The thawed pellet was resuspended in 300d of methanol, sonicated at 50W 

for 30 seconds and centrifuged at 13,000 rpm for 4 minutes. The supernatant 

was transferred into HPLC vials. Pigments were analysed by the modified 

HPLC method of Zapata et al. (2000). Peaks were integrated using Waters 

Millennium software and identified by comparison of their retention times 

and spectra with those of mixed standards obtained from known cultures. A 

standard of gyroxanthin-diester (DHI Bioproducts, Denmark) was also 

compared, as this pigment is known from Karlodinium micrum (as 

Gyrodinium sp. 'A', Bjornland et al. 2000). 

5.3. RESULTS 

Karlodinium australe de Salas, Bolch et Hallegraeff, sp. nov. 

Figs 5.2-5.17 

DIAGNOSIS: Cellulae parvae inarmatae, ovales, 19 - 26 JAM longae 16 - 22 um latae. 

Epiconus hemisphaericus apice retusus. Hypoconus hemisphaericus. Sulcus latus 

non profundus, epiconum invadens sub forma projecturae digitiformis. Porus 

ventralis super sulci extensionem et in sinistrum ejusdem. Cingulum per circiter 

quartem partem longitudinis cellulae dislocatum. Canalis apicalis brevis rectus et 

supra latus dorsale epiconi tantum breviter extendens. Nucleus magnus anteriorque. 

Chloroplasti aliquot irregulariter dispersi per peripheriam cellulae, pyrenoideis 

pyramidalibus internis. Stnicturae amphiesmales obturamentis similes in hexagono 

dispositae nullae. 
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Table 5.1: Field samples and strains used in this study. 

Species Locality Date Collector / Isolator Strain code 

Field Samples 

Karlodinium australe Grants Lagoon, Tasmania, Australia 15-04-2002 M. de Salas 

K. australe Tuggerah Lake, N.S.W., Australia 23-10-2002 N.S.W. Fisheries 

K australe Moulting Bay, Tasmania, Australia 30-03-2003 M. de Salas 

K. australe Port Lincoln, South Australia 29-05-2003 C. Wilkinson 

K. australe Port Phillip Bay, Victoria, Australia 11-02-2004 R. Coello 

Karlodinium micrum Lake Illawarra, N.S.W. 06-1991 N.S.W. E.P.A. 

K micrum Swan River, Western Australia 11-03-2001 W. Hosja 

K micrum Canning River, Western Australia 29-04-2003 W. Hosja 

K micrum River Derwent, Tasmania, Australia 21-02-2003 M. de Salas 

K micrum Sydney Harbour, N.S.W., Australia 8-07-2003 N.S.W. E.P.A. 

Cultures 

Karlodinium australe Grants Lagoon, Tasmania, Australia 15-04-2002 M. de Salas KDAGTO3 

K australe Tuggerah Lake, N.S.W., Australia 23-10-2002 M. de Salas KDATL05 

K. australe Port Phillip Bay, Victoria, Australia 11-02-2004 M. de Salas KDAPPO1 

Karlodinium micrum Swan River, Western Australia 11-03-2001 M. de Salas KDMPO1 

K micrum River Derwent, Tasmania, Australia 21-02-2003 M. de Salas KDMDE01 

K. micrum Sydney Harbour, N.S.W., Australia 8-7-2003 M. de Salas KDMSHO1 

K. nucrum Norway 07-1976 K. Tangen CCMP415 
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Table 5.1: Field samples and strains used in this study. 

Species Locality Date Collector / Isolator Strain code 
Field Samples 

Karlodinium australe Grants Lagoon, Tasmania, Australia 15-04-2002 M. de Salas 

K australe Tuggerah Lake, N.S.W., Australia .23-10-2002 N.S.W. Fisheries 

K. australe Moulting Bay, Tasmania, Australia 30-03-2003 M. de Salas 

K australe Port Lincoln, South Australia 29-05-2003 C. Wilkinson 

K australe Port Phillip Bay, Victoria, Australia 11-02-2004 R. Coello 

Karlodinium micrum Lake Illawarra, N.S.W. 06-1991 N.S.W. E.P.A. 

K micrum Swan River, Western Australia 11-03-2001 W. Hosja 

K micrum Canning River, Western Australia 29-04-2003 W. Hosja 

K micrum River Derwent, Tasmania, Australia 21-02-2003 M. de Salas 

K micrum Sydney Harbour, N.S.W., Australia 8-07-2003 N.S.W. E.P.A. 

Cultures 

Karlodinium australe Grants Lagoon, Tasmania, Australia 15-04-2002 M. de Salas KDAGTO3 

K australe Tuggerah Lake, N.S.W., Australia 23-10-2002 M. de Salas KDATL05 
K australe Port Phillip Bay, Victoria, Australia 11-02-2004 M. de Salas KDAPPO1 

Karlodinium micrum Swan River, Western Australia 11-03-2001 M. de Salas KDMPO1 
K micrum River Derwent, Tasmania, Australia 21-02-2003 M. de Salas KDMDE01 

K micrum Sydney Harbour, N.S.W., Australia 8-7-2003 M. de Salas KDMSHO1 

K micrum Norway 07-1976 K. Tangen CCMP415 
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Table 5.2: Origin (where known) and GenBank accession numbers of sequences used in 

phylogenetic analyses. 

Species 	 Origin 	 Accession number 

Karenia mikimotoi 

K. brevis 

K. brevisulcata 

K. selliformis 

K. cristata 

K. bidigitata 

K. asterichroma 

K. papilionacea 

K. umbella 

Karlodinium micrum 

K. micrum 

K australe 

K. australe 

Gymnodinium sp. Corsica 

Takayama helix 

Takayama sp. 

T. tasmanica 

Akashiwo sanguinea 

Gymnodinium catenatum 

G. chlorophorum 

G. fuscum 

Woloszynskia pseudopalustris 

Alexandrium catenella 

English Channel 

Florida 

New Zealand 

New Zealand 

South Africa 

New Zealand 

Tasmania 

New Zealand 

Tasmania 

Norway 

Western Australia 

New South Wales 

Tasmania 

Corsica, France 

Tasmania 

New Zealand 

Tasmania 

Japan 

California 

AF200678 

AF200677 

AY243032 

U92250 

AY525907 

U92251 

AY590123 

U92252 

AY263963 

AF200675 

AY263964 

to be submitted 

to be submitted 

AF318249 

AY284950 

U92254 

AY284948 

AF260397 

AF200672 

AF200669 

AF200676 

AF260402 

AF200667 

Small unarmoured dinoflagellate cells, oval in outline, 19 - 26 gm long, and 

16 — 22 gm wide. Epicone hemispherical and notched at the apex. Hypocone 

hemispherical. Sulcus shallow and wide, invading the epicone as a finger-like 

projection. Ventral pore above and to the left of the sulcal extension. 

Cingulum displaced approximately 1/4 of the cell length. Apical groove short 

and straight, extending only briefly onto the dorsal side of the epicone. 

Nucleus large and anterior. Several chloroplasts distributed irregularly 

through the cell periphery, with individual pyramidal pyrenoids. Amphiesmal 

plug-like structures in hexagonal configuration absent. 

HOLOTYPE: Figure 5.17, schematic representation of ventral and dorsal views 

of a cell from strain KDMGTL, from Grants Lagoon, Tasmania (Fig. 5.1). 
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ETYMOLOGY: Named australe (Latin: southern) after the localities where this 

species has been found, all within south-eastern Australia. 

DISTRIBUTION: Cells have been observed in field samples from Moulting Bay 

and Grants Lagoon, (north-eastern Tasmania), Port Phillip Bay (Victoria), 

Port Lincoln (South Australia) and Tuggerah Lakes (N.S.W. — Fig. 5.1). Table 

5.1 lists sites where Karlodinium australe and K. micrum have been recorded 

in Australia. 

DESCRIPTION: Karlodinium australe is a small unarmoured dinoflagellate 

known from field samples and established cultures. Average measurements in 

comparison with Karlodinium micrum, K. veneficum and Karenia digitata are 

presented in Table 5.3. Clonal cultures of K. australe isolated from wild 

populations and grown autotrophically in GSe medium grew slowly and after 

a number of divisions cell numbers in a culture stabilised at low concentration 

(102  — 103  cells m1-1 ). Attempts to culture this species to higher cell 

concentrations have so far failed. 

Under the light microscope, cells of K. australe appear oval in shape, and 

cultured cells from aged cultures often have numerous refractive lipid bodies 

that obscure other cell contents. The epicone is hemispherical (Figs 5.2-5.7), 

and often notched at the apex by the apical groove (Figs 5.4, 5.4) The 

hypocone is rounded but not significantly truncated by the sulcus. Both the 

sulcus and cingulum are shallow in the ventral surface (Figs 5.2 , 5.3), but the 

cingulum is well excavated on the sides of the cell (Fig. 5.5). The sulcus 

invades the epicone as a finger-like protrusion and the cingulum is displaced 

approximately 1/4 of the total cell length (Fig. 5.2). A ventral pore is present in 

the epicone above and to the left of the sulcal intrusion, sometimes appearing 

reniform (Fig. 5.2), sometimes as a long slit (Fig. 5.3). An apical groove 

extends from shortly above and to the right of the sulcal extension to 

terminate a short way down the dorsal side (Figs 5.2, 5.4). The nucleus is 

anterior and occupies much of the epicone (Figs 5.5, 5.7). Refractive lipid 

bodies are distributed irregularly throughout the cell, but are generally larger 

and more abundant in the hypocone (Figs 5.3, 5.5). 
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Table 5.3: Comparison of morphological characters of Karlodinium australe, in comparison with K micrum, Gyrodinium corsicum and Karenia digitata. 

Morphological character Karlodinium australe Karlodinium micrum l  Gyrodinium corsicum 3  Karenia digitata 5  

Cell length (p.m) 19-26 (21.81 ± 1.85, 
n = 30) 

14 — 17 
9-15 2  

17-24 
15-24 4  

10-26.3 (21.5 ± 3.0) 

Cell width (um) 16-22 (18.92 ± 1.78, 
n = 30) 

10-14 
8_14 2 

 

12-16 
12-18 4  

10-22 (18.2 ± 2.5) 

Girdle displacement (% cell length) 25.1 ± 2.2 20 32-34 24.9± 1.9 
Sulcal extension in epicone Short and fold-like or long and 

finger-like 
shallow, short narrow slit long, finger-like 

Apical groove linear, wide, extending very short and linear deflected ventrally linear, short, wide at ends 
shortly onto dorsal epicone towards the sulcus, 

extending dorsally 1/3 of 
the epicone length 

but narrow in the middle; 
extends 1/3 — 1/2 of the 
length of dorsal epicone 

Nucleus round and anterior median to posterior, round 2  central, round posterior 
Chloroplasts several (6-10) ribbon-shaped 

and irregularly distributed 
peripherally, with pyramidal 

pyrenoids 

usually two, one in epicone 
and one in hypocone, with 
several lenticular pyrenoids 

approximately 15, 
peripheral 

10 — 20, irregular 

Braarud (1957) 
	 3  Paulmier etal. (1995) 

	 5  Yang et al. (2000) 
2  Leadbeater & Dodge (1966) 

	
4  Garces etal. (1999) 
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Figures 5.2-5.7: Light micrographs of Karlodinium australe. Scale bars = 10 pm. 

Fig. 5.2: Surface focus of cell in ventral view showing an extension of the sulcus into the 

epicone, visible as a fme groove (arrow). A ventral pore (arrowhead), and the apical groove 

(ag) are also visible. 

Fig. 5.3: Subsurface focus of cell showing apical groove (ag), and ventral pore shaped as a 

long slit (arrow). Arrowheads mark the position of some refractive lipid bodies within the 

hypocone. 

Fig. 5.4: Dorsal view of cell tilted towards the apex showing dorsal extension of the apical 

groove (arrow). 

Fig. 5.5: Cross section through cell showing the anterior position of the nucleus (n) and 

refractive bodies (arrowheads). 

Fig. 5.6: Subsurface ventral view of cell after feeding overnight on Rhodomonas sauna. 

Note light yellow-green chloroplasts (arrowhead) and red food vacuoles (arrow). 

Fig. 5.7: Cross section view of cell after feeding. Note unchanged position of the nucleus 

(n), chloroplasts (arrow) and anterior position of recently formed food vacuole (arrow), 

where some internal features of the Rhodomonas cell are still visible. 
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Phagotrophy was observed when autotrophically grown cultures of K. 

australe were offered live Rhodomonas sauna cells as prey. Cells exposed to 

Rhodomonas near the beginning of the light period (early morning) did not 

ingest any prey by the end of this period. However after the following dark 

period, K. australe cells possessed a variable number (1 - >10) of red food 

vacuoles (Figs. 5.6, 5.7), indicating cells of this species may only feed at 

night. When cells are grown without prey, chloroplasts normally number 6-8, 

although aberrant cells with 1 or no chloroplasts are regularly observed in 

culture. Chloroplasts are distributed throughout the cell, and their distribution 

and morphology are variable. They are irregularly shaped but often elongated 

(Figs 5.8 — 5.9). Pyramidal pyrenoids are visible as triangular pale areas by 

light microscopy (Figs 5.8 and 5.9). 

Under the scanning electron microscope (SEM), the ventral pore is readily 

apparent (Fig. 5.10), and the short, thick flagella and short, linear apical 

groove are evident (Figs 5.10-5.12). The sulcal extension into the epicone, 

which appears finger-like by light microscopy, appears like a fold under the 

SEM (Figs 5.10, 5.11). A thick tube-like structure lying along the 

intercingular region of the sulcus is visible in Fig. 5.11. The apical groove 

extends onto the dorsal surface for a short distance (Fig. 5.12). A pattern of 

hexagonal amphiesmal vesicles is evident, that elongate along the edge of the 

cingulum (Fig. 5.13). No pores are visible on the surface of the cell except the 

single, large ventral pore above and to the left of the sulcal extension into the 

epicone (Figs 5.10 and 5.11). 

Transmission electron microscopy of this species reveals an irregular nucleus 

without a nuclear capsule, containing at least two nucleoli (Fig. 5.14). 

Peripherally located chloroplasts contain individual pyrenoids that are 

pyramidal in shape (Fig. 5.14). Tangential sections taken just inside the cell 

surface show the polygonal structure of the outer layer of amphiesmal 

vesicles, directly overlying a pattern of parallel bands with no evidence of 

amphiesmal plugs (Fig. 5.15, 5.16). 

A diagrammatic representation (Figs 5.17 and 5.18) illustrates the close 

morphological affinity between, and relative size of Karlodinium australe 

compared to the types species K. micrum. 

100 



Five novel Australian fish-killing dinoflagellates — Karlodinium australe 

Figures 5.8-5.9: Extracted blue channel (from RGB file) of light micrographs of 

Karlodinium australe, highlighting chloroplast detail. Scale bars = 10 gm. 

Fig. 5.8: Subsurface focus of cell in ventral view, showing irregular, ribbon-shaped 

chloroplasts with triangular (pyramidal) pyrenoids (arrows). 

Fig. 5.9: Dorsal view of cell in subsurface focus showing dorsal distribution of chloroplasts 

(arrows mark pyramidal pyrenoids) and anterior position of the nucleus (n). 

MOLECULAR SYSTEMATICS: Karlodinium australe LSU rDNA sequences 

differ by approximately 7.2% from its closest relative, K micrum, by 8.6% 

from Takayama tasmanica, and by 12% - 15% from members of the genus 

Karenia. Phylogenetic analysis using Bayesian inference methods (Fig. 4.19) 

clearly show K australe to cluster with K micrum and a rDNA sequence 

from an unspecified Gymnodinium species isolated from Corsica (which is 

consistent with K micrum), and distinct from the other two fucoxanthin-

containing genera Karenia and Takayama included in the analysis. MP 

analysis produced several equally parsimonious trees, but its bootstrap 

consensus tree does not show branch length. Therefore the tree shown in Fig. 

4.19 is that derived by Bayesian inference, as this method allows the 

production of a phylogram showing branch lengths. 

PIGMENTS: The photosynthetic pigments of K australe (Figure 5.20) include 

chlorophylls a, cj and c2; no chlorophyll c3 was detected. The following 

diagnostic carotenoids were identified, reported here as a percentage of 

chlorophyll a: 19'-butanoylfucoxanthin (trace), fucoxanthin (29.9%), 19'- 

hexanoyloxyfucoxanthin (23%), diadinoxanthin (15%), and diatoxanthin 

(53%). No gyroxanthin diester was detected. 
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Figures 5.10-5.13: Scanning electron micrographs of Karlodinium australe. 

Fig. 5.10: Three cells in ventral view, showing thick flagella (arrow) and prominent ventral 

pores (arrowheads). Scale bar = 10 gm. 

Fig. 5.11: Ventral view of cell showing straight apical groove (ag), extension of the sulcus 

into the epicone (arrow), and tubular peduncle-like structure along the sulcus (arrowhead). 

Scale bar = 10 gm. 

Fig. 5.12: Dorsal view of cell showing extent of apical groove (arrow). Scale bar = 10 um. 

Fig. 5.13: Detail of the amphiesma of K australe composed of polygonal vesicles that 

elongate into approximate rectangles (arrows) on the edges of the cingulum. Scale bar = 1 
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Figures 5.14-5.16: Transmission electron micrographs of Karlodinium australe. 

Fig. 14: Cross section through a cell of K. australe. Note chloroplast with pyramidal 

(triangular in cross section) pyrenoid (py). Scale bar = 2 gm. 

Fig. 5.15: Tangential section through the amphiesma. Parallel bands of microtubules are 

evident but note the absence of hexagonal arrays of plug-like structures. Scale bar = 1 gm. 

Fig. 5.16: Section taken immediately under the outer layer of the amphiesma. Note 

polygonal pattern of amphiesmal vesicles and absence of plug-like structures in hexagonal 

arrays that are found in K. micrum. Scale bar = 1 gm. 

5.4. DISCUSSION 

A species found so far only in lagoons and enclosed bays (Fig. 1), 

Karlodinium australe appears at first glance very similar to Karenia digitata 

(Yang et al. 2000) and Gyrodinium corsicum (Paulmier et al. 1995). 

However, some important differences are apparent. K australe displays the 

ventral pore typical of Karlodinium (Figs 5.17, 5.18), that although present 

also in Gyrodinium corsicum and Takayama tasmanica (Paulmier et al. 1995; 

de Salas et al. 2003), has never been documented among Karenia species. K 

australe also has an anteriorly placed nucleus (Fig. 5.17), compared to the 

posterior nucleus of Karenia digitata and the central nucleus of G. corsicum. 

K australe displays a pattern of strongly developed, approximately hexagonal 
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amphiesmal vesicles, a feature not present in K. digitata (Yang et al. 2000), or 

G. corsicum (Paulmier et al. 1995). 

The type species of Karlodinium, K. micrum, is much smaller than K. 

australe, and has a sub-central nucleus (Daugbjerg et al. 2000; Leadbeater 

and Dodge 1966). K. micrum also normally has two large chloroplasts, one in 

the epicone and one in the hypocone, with internal lenticular pyrenoids 

(Daugbjerg et al. 2000). In contrast, K australe has several irregularly 

distributed, elongated chloroplasts, containing pyramidal pyrenoids. The 

taxonomic status of Gyrodinium corsicum is likely to change in the future, as 

this species is morphologically consistent with Karlodinium, though it has not 

been studied in sufficient detail (ultrastructure, pigments, or molecular 

sequences) to warrant its transfer to this genus at this time. 

LSU rDNA sequences of Gyrodinium corsicum are not yet available, but a 

sequence named Gymnodinium sp. Corsica (Fig. 5.19) is consistent with to 

Karlodinium micrum (sensu Daugbjerg et al. 2000). K. australe is genetically 

distinct from K. micrum, but clearly belongs within the genus Karlodinium 

(Fig. 5.19). 

HPLC pigment analysis of autotrophically grown cultures of K. australe 

indicate that this species contains fucoxanthin, as well as 19'- 

hexanoyloxyfucoxanthin, and 19'-butanoylfucoxanthin as the main carotenoid 

pigments (Fig. 5.20). Autotrophically grown cultures of K. Oustrale did not 

produce gyroxanthin-diester, a pigment typical of Karlodinium micrum 

(Bjornland et al. 2000) and Karenia species (Botes et al. 2003; Daugbjerg et 

al. 2000; de Salas et al. 2004). Other gyroxanthin-like pigments have been 

reported in the closely related species Takayama tasmanica (de Salas et al. 

2003), but these were not present in cultures of K australe. This suggests that 

monitoring for fish-killing dinoflagellates using gyroxanthin-diester 

(Ornolfsdottir et al. 2003; Schofield et al. 1999; Staehr and Cullen 2003) 

would not detect this and other potentially ichthyotoxic gymnodinioid 

dinoflagellates. 
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Figures 5.17-5.18: Diagrammatic comparison between Karlodinium australe and K. micrum 

drawn on the same scale. 

Fig. 5.17: Ventral and dorsal diagrams of K. australe, showing position of the nucleus and 

surface features. 

Fig. 5.18: Ventral and dorsal diagrams of K micrum (adapted from Daugbjerg et al. 2000). 

Note average size difference. Scale bar = 10um. 

All morphological, genetic and biochemical data indicate that K australe 

clearly belongs in the genus Karlodinium, however, two ultrastructural 

features conflict with the diagnosis of this genus as circumscribed by Larsen 

in Daugbjerg et al. (2000). Firstly, the genus Karlodinium is described as 

possessing chloroplasts with lenticular pyrenoids (Daugbjerg et al. 2000), yet 

K. australe possesses pyramidal pyrenoids (Fig. 5.14) very similar to those 

described for Karenia mikimotoi and K. brevis (Hansen et al. 2000; Steidinger 

et al. 1978). Secondly, Karlodinium as currently described is has arrays of 

plug-like structures immediately below the amphiesma, as illustrated by 

Leadbeater & Dodge (1966, Figs. 19, 20 and 22), and Daugbjerg et al. (2000, 

Figs. 8 and 9). We could find no evidence of these plugs in K. australe, 

although it did possess similar parallel, tubular bands to K. micrum 

immediately under the amphiesmal vesicles (Figs. 5.15, 5.16). The genus 

Karlodinium was circumscribed from observations only one species but our 
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work indicates that the generic diagnosis is too narrow and needs to be 

emended to include species without plug-like amphiesmal structures. 
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Figure 5.19: Proposed Bayesian inferred phylogeny of fucoxanthin-containing 

dinoflagellates with an outgroup representing other unarmoured and armoured 

dinoflagellates. Support values above nodes were derived from a Bayesian analysis of 

150,000 generations (excluding first 50,000) using a general time-reversible evolution model 

with gamma distributed among-site rate variation. Support values below nodes are derived 

from MP bootstrap search using 1000 replicates. Tree length in Bayesian tree = 1163, 

consistency index = 0.672 and retention index = 0.684. Tree length in MP bootstrap tree = 

1164, CI = 0.672 and RI = 0.684. 
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Figure 5.20: HPLC pigment chromatogram of an autotrophically grown culture of 

Karlodinium australe. Note the absence of gyroxanthin-diester or gyroxanthin-like pigments. 

The clear morphological similarity between Karlodinium australe and 

Gyrodinium corsicum and between K. australe and Karenia digitata has made 

it apparent that Gyrodinium corsicum and K. digitata are morphologically 

very close to each other. Some morphological details visible in SEM are 

identical, notably the suture-like rows of pores encircling the mid hypocone 

and just below the cingulum, and the epicone just above it (Paulmier et al. 

1995, Figs 10-12; Yang et al. 2000, Figs 2 and 4). However, no ventral pore 

is visible in Yang et al.'s (2000) illustrations of K. digitata, and the dorsal 

extent of its apical groove surpasses that of both Karlodinium australe and 

Gyrodinium corsicum. Despite these apparent differences, there is a strong 

possibility that both of these species are congeneric within Karlodinium. 

Mixotrophy exhibited by Karlodinium australe is not surprising, as this 

character has been reported from other dinoflagellate species, including K. 

micrum (Legrand et al. 1998; Li et al. 2000a, b; Smalley and Coats 2002). 

However, while K. micrum is capable of growing well when kept under 

strictly autotrophic conditions (facultative mixotrophy, Li et al. 2000a), K. 

australe growth stagnates when kept in culture with no prey, and this new 

taxon may be an almost obligate mixotroph. This species has a thick, tube- 
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like structure located along the sulcus, which appears homologous with the 

putative peduncle of K. micrum (Taylor 1992), also reported from Takayama 
species (de Salas et al. 2003; Steidinger et al. 1998), and Karenia species 

(Haywood et al. 2004). 

Other species of Karlodinium, notably K. micrum (Deeds et al. 2002), K. 

veneficum (Ballantine 1956), and Gyrodinium corsicum (Delgado and Alcaraz 

1999; Garces et al. 1999; Paulmier et al. 1995) are strongly ichthyotoxic, and 

while Gyrodinium corsicum is so far confined to the Mediterranean sea 

(Delgado and Alcaraz 1999; Garces et al. 1999; Paulmier et al. 1995), K. 

micrum appears to be a cosmopolitan species, and is widespread in Australia 

(Table 5.1). The widespread distribution of K. australe in this country and its 

close affinity to problem species such as Gyrodinium corsicum, Karenia 

digitata and Karlodinium micrum mean that development of culturing 

protocols to allow assessment of its ichthyotoxicity are important research 

priorities. 
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CHAPTER 6: 

FURTHER POTENTIALLY ICHTHYOTOXIC UNARMOURED 

DINOFLAGELLATES FROM TASMANIAN AND AUSTRALIAN 
WATERS 

Miguel Felix de Salas 

ABSTRACT: In addition to the new species characterised in Chapters 2-5, several 

previously described species of fish-killing dinoflagellates in Karenia and Karlodinium were 

encountered during the course of this study. Karlodinium micrum was a common bloom 

former from subtropical to temperate waters, responsible for several fish-kills. Karenia 

papilionacea was found in high numbers in north-eastern Tasmania, South Australia and 

Western Australia. Karenia mikimotoi was found in low numbers in Port Lincoln, South 

Australia, during the late austral autumn. Four undescribed Karenia species of distinct 

morphology were isolated from field samples, but they could not be cultured or characterised 

in sufficient detail for their formal description. 
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6.1. INTRODUCTION 

Several unarmoured dinoflagellate species belonging to the known fish-

killing genera Karenia and Karlodinium were identified during this study, 

both from field samples and laboratory cultures obtained from these. Some of 

these have been formally described by other authors and are presented in this 

chapter for the sake of completeness. Several new species could not be 

cultured and characterised in enough detail to warrant their formal description 

in stand-alone papers, however enough detail was obtained to illustrate them 

in this chapter. Two previously described species of Karenia, and one of 

Karlodinium are presented here, as well as three (possibly four) undescribed 

species in the genus Karenia. 

6.2. MATERIALS AND METHODS 

6.2.1. Culture conditions 

Samples were collected from many southern Australian locations using a 20 

vim plankton net. Clonal strains were established by isolating single cells with 

a micropipette and rinsing three times in sterile GSe/2 (Blackburn etal. 2001) 

medium. Established cultures were maintained in GSe/2 medium at 35 %o 

salinity, at a constant temperature of either 17° or 20° C, with a 12:12 L:D 

photoperiod of 100 timol 111 -2  supplied by cool white fluorescent lights. 

6.2.2. Light microscopy 

Live cells from both established cultures and field samples were suspended in 

a drop of 4% fluid carrageenan gel (Chapter 5), and observed using 

differential interference contrast illumination in a Zeiss Axioskop 2 Plus 

microscope (Carl Zeiss, Gottingen, Germany). Cells were photographed using 

either a Canon Powershot GI digital camera (Canon, Tokyo, Japan) or a Zeiss 

Axiocam Hr digital camera (Carl Zeiss, Gottingen, Germany). Cell length, 

width and girdle displacement were averaged when possible from 

measurements of at least 20 cells in mid-exponential growth phase. 
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6.2.3. Scanning electron microscopy 

Cultures were fixed for SEM with equal volumes of 4% osmium tetroxide 

(0s04), mounted, dehydrated and coated as outlined in Chapter 2. The 

resulting preparations were observed in a JEOL JSM 840 scanning electron 

microscope (JEOL, Tokyo, Japan). 

6.2.4. DNA extraction, PCR amplification and cycle sequencing 

For cultured strains, approximately 5 ml of autotrophically grown culture 

were extracted by gentle lysis (Bolch et al. 1998). Extracted DNA was used 

as a template to amplify approximately 900 bases of the large subunit 

ribosomal gene (LSU rDNA), encompassing the D1, D2 and D3 domains. 

For field samples of unculturable species (Karenia sp. 'A' and Karenia sp. 

`D'), four cells were isolated with a micropipette, rinsed three times in sterile 

medium, and added to PCR tubes containing ready-to-go PCR reaction mix. 

Tubes were held in ice during the isolation process and transferred to the 

thermal cycler immediately afterwards (Bolch 2001). Primers, reaction 

conditions and cycle sequencing parameters are described in detail in Chapter 

2. 

6.2.5. Sequence alignment and phylogenetic analysis 

Corrected sequences were aligned to other gymnodinioid sequences (Table 

6.1) using ClustaIX (Thompson et al. 1997), and alignments were refined by 

eye. Sequences of some undescribed species have not been submitted to 

GenBank as work on these is still in progress. Phylogenetic analyses using 

maximum parsimony (MP) and distance search criteria were carried out using 

PAUP 4.0 (Swofford 1999), both including and excluding the hypervariable 

domain (equivalent to bases 568-675 of the Karenia brevis sequence, 

accession number AF200677). Bayesian analysis of likelihood was carried 

out using MrBayes (Huelsenbeck and Ronquist 2001), searching for 1.2 

million generations, using a general time-reversible model, with gamma 

shaped among-site rate variation; the consensus tree was drawn excluding the 

first 200,000 generations, to allow the —Ln to stabilise. 
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Table 6.1: Origin (where known) and GenBank accession numbers of sequences used in 

phylogenetic analyses. 

Sequence name 	 Origin (where known) 	 Accession number 

Akashiwo sanguinea 	 Japan 	 AF260397 

Alexandrium catenella 	U.S.A. 	 AF200667 

Gymnodinium aureolum Adel Adelaide, South Australia 	 AY263965 

G. aureolum S1 	 U.S.A. 	 AF200670 

G. catenatum 	 Vigo, Spain 	 AF200672 

G. chlorophorum 	 Sylt, Germany 	 AF200669 

G. falcatum 	 South Australia 	 AY320049 

G. fuscurn 	 La Trobe, Australia 	 AF200676 

G. impudicum 	 Naples, Italy 	 AF200674 

G. microreticulatum 	 Eastern Australia 	 AY036078 

G. nolleri 	 Oresund, Denmark 	 AF200673 

G. palustre 	 AF260382 

G. cf placidum 	 Isetjord, Denmark 	 AF260383 

G. uncatenum 	 River Derwent, Tas. 	 not submitted 

G. uncatenum 	 North West Bay, Tas. 	 not submitted 

Karenia asterichroma 	Tasmania 	 AY590123 

K bidigitata 	 New Zealand 	 U92251 

K brevis 	 U.S.A 	 AF200677 

K. brevisulcata 	 New Zealand 	 AY243032 

K. cristata 	 South Africa 	 AY525907 

K. mikimotoi 	 U.K. 	 AF200678 

K. mikimotoi 	 Australia 	 AF200679 

K. papilionacea 	 Tasmania 	 AY590124 

K papilionacea 	 New Zealand 	 U92252 

K selliformis 	 Chile 	 AF318247 

K. selliformis 	 New Zealand 	 U92250 

K. umbella 	 Triabunna, Tasmania 	 AY263962 

K. umbella 	 Taranna, Tasmania 	 AY263963 

Karenia sp. 'A' 	 Parsons Bay, Tasmania 	 not submitted 

Karenia sp. 'B' 	 Parsons Bay, Tasmania 	 not submitted 

Karenia sp. 'C' 	 Parsons Bay, Tasmania 	 not submitted 

cf. Karenia sp. 'D' 	 Perth, Western Australia 	 not submitted 

Karlodinium micrum 	Norway 	 AF200675 

K. micrum 	 New Zealand 	 U92257 

K. micrum 	 Western Australia 	 AY263964 

K. australe 	 Grants Lagoon, Tasmania 	 not submitted 
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K. australe 	 Tuggerah Lake, N.S.W. 	 not submitted 

Takayama helix 	 N.W.B., Tasmania 	 AY284950 

T. helix 	 Port Arthur, Tas. 	 AY284951 

T. tasmanica 	 River Derwent, Tasmania 	 AY284948 

T. tasmanica 	 Tuggerah Lake, N.S.W. 	 AY284949 

Takayama sp. 	 Kawau Is., New Zealand 	 U92254 

Woloszynskia pseudopalustris 	 AF260402 

6.3. RESULTS: 

6.3.1. Karlodinium micrum (Leadbeater & Dodge) J. Larsen 

Daugbj erg et al. 2000, Figs 3-10 

Morphology 

Cells of K micrum in Australia were on average 12 1-1,M long and 10 p.m wide. 

The sulcus extends into the epicone. The cingulum is displaced up to 25% of 

the total cell length. Apical groove short and straight. Ventral pore present, to 

the left of the sulcal extension. Nucleus generally central but sometimes 

slightly displaced apically or antapically. Chloroplasts normally 4 but up to 8, 

peripheral with individual pyrenoids. Figures 6.1-6.5 illustrate some of the 

typical morphological features of this species. 

1 2 

 

3 	4 

 

  

Figures 6.1-6.4: Light micrographs of Karlodinium micrum from the River Derwent, 

Tasmania. Scale bars = 10 um. 

Fig. 6.1: Ventral view in surface focus showing linear shaped apical groove (arrow) and 

ventral pore in epicone (arrowhead). 

Fig. 6.2: Subsurface focus of the same cell showing subcentral position of the nucleus (n) 

and apical notch (arrow). 

Fig. 6.3: Cross section focus through same cell showing position of the nucleus (n). 

Fig. 6.4: Dorsal view of cell showing nucleus position (n) and brief dorsal extension of the 

apical groove (arrowhead). 
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Figure 6.5: Scanning electron micrographs of Karlodinium micrum from Sydney Harbour, 

N.S.W. Scale bar = 10 gm. 

Distribution and abundance 

Karlodinium micrum has been found throughout southern Australian waters, 

from the Swan river in Western Australia to Sydney Harbour, New South 

Wales. It regularly blooms in the Swan river estuary, causing fish kills with 

widespread media attention. Blooms of this species have been recorded in 

Lake Illawarra (N.S.W.) in 1993, and Sydney Harbour in 2002. This species 

has been found in low numbers in Tasmanian, Victorian and South 

Australian waters. Table 5.1 in Chapter 5 lists Australian field samples 

containing this species and cultures isolated for this study. 

Genetic relationships 

The LSU sequence of Australian isolates of K micrum is almost identical to 

the published sequence of Norway and New Zealand isolates. It is closely 

related to Karlodinium australe, and forms a monophyletic clade with the 

other fucoxanthin-containing genera Karenia and Takayama (Figs 6.26-6.31). 

6.3.2. Karenia papilionacea Haywood et Steidinger 

Haywood et al. 2004, Fig 2 (e)-(h), Fig. 3, Fig. 6 

Morphology 

Small to medium sized, dorsoventrally flattened dinoflagellate, 18-32 pm 

long, 18-48 pm wide, and 8-15 pm thick. Cells are ventrally concave, with 

the left and right sides of the cell angled towards the ventral surface. Apical 
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carina is present, with apical groove that extends shortly into dorsal surface. 

Hypotheca strongly bibbed, with deep sulcal excavation. Cingulum is 

premedian to median and often displaced by one width. There is a broad, open 

extension of the sulcus into the epicone. Nucleus spherical in left hypotheca. 

Chloroplasts are variable in number and size, yellow-green, reniform to 

round, and located peripherally, containing individual pyrenoids. Figures 6.6 

— 6.11 show the typical morphology of cells encountered in Australia. 

Distribution and abundance  

In Australia cells of K papilionacea have been recorded from the Swan River 

(W.A.) to Port Lincoln (S.A.) and eastern Tasmania (Table 6.2). Common 

Figures 6.6-6.8: Light micrographs of a live field sample of Karenia papilionacea from 

Moulting Bay, Tasmania. Scale bars = 20 pm 

Fig. 6.6: Surface focus of cell in ventral view showing open sulcal extension (arrow) into 

the epicone and little displaced cingultun (arrowheads). 

Fig. 6.7: Same cell in subsurface focus, showing linear apical groove (arrowhead) and edge 

of the carina (arrow). 

Fig. 6.8: Cross section focus through the same cell, showing apical notch (caused by apical 

groove) in the carina (arrowhead), and shape and position of the nucleus (n). 

Table 6.2: Field samples containing Karenia papilionacea in Australian waters 

Location Date Collector Notes 

Moulting Bay, TAS 

Ansons Bay, TAS 

Port Lincoln, S.A. 

North West Bay, TAS 

Parsons Bay, TAS 

31-03-2003 

14-04-2003 

31-05-2003 

3-02-2003 

23-02-2003 

A.S.T. (Analytical 
services Tasmania 

I. Pearce 

C. Wilkinson (S.A. 
Water) 

M. de Salas 

Tassal 

9.6 -104  cells U' 

<1,000 cells 1: 1  

<100 cells 1: 1  

<100 cells 1: 1  
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reports of K. brevis in Australian waters are likely to refer to this species. In 

Tasmania a bloom of 9.6-10 4  cells 1 -1  was recorded in Moulting Bay in late 

March 2003, and was found in low numbers throughout the austral summer 

and early autumn. 

Genetic relationships 

Phylogenetic analysis of the LSU rDNA sequence of K. papilionacea (Figs 

6.26 — 6.31) show that Australian and New Zealand isolates of this species are 

genetically identical, and place this species clearly within the genus Karenia. 

However, it is not close to K. brevis, the species it most resembles 

morphologically. Different search criteria used in phylogenetic analyses 

conflict over the most basal placement within Karenia. While maximum 

parsimony and distance searches place K. umbella as the most primitive 

Karenia species (Figs. 6.26, 6.28, 6.30), some likelihood searches place K. 

papilionacea in this position (Fig. 6.31). 

6.3.3. Karenia mikimotoi (Miyake & Kominami ex Oda) G. Hansen & 

Moestrup 

Takayama 1984, Figs 1, 2 

Morphology  

Dorsoventrally flattened dinoflagellates, 20 — 30 gm long, 15-25 gm wide, 

and 12-17 gm thick. Epicone conical to hemispherical. Hypocone a truncated 

hemisphere, obviously indented by the sulcus. The cingulum is premedian, 

and displaced approximately 20% of the total cell length. The sulcus extends 

into the epicone as a wedge shaped notch. A narrow, linear apical groove 

originates to the right of the sulcal axis, and extends approximately 1/3 of the 

way down the dorsal epicone. The nucleus is rounded to elongated, often 

reniform, and situated in the left part of the cell, mostly within the left 

hypocone lobe. Chloroplast numbers are variable, but most commonly 10-15, 

elongated and irregularly shaped. Chloroplasts contain single, individual 

pyrenoids which are normally pyramidal in shape. Figures 6.12-6.14 show the 

typical morphology of culture material from the Australasian region (New 

Zealand). 
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Figures 6.9-6.11: Scanning electron micrographs of Karenia papilionacea from Moulting 

Bay, Tasmania. Scale bars = 10 pm. 

Fig. 6.9: Ventral SEM of cell showing apical carina (arrowhead). 

Fig. 6.10: Pair of cells in ventral view. Note apical path of the apical groove (arrowhead). 

Fig. 6.11: Dorsal SEM of cell showing dorsal extent of apical groove (arrow), and 

pronounced sulcal indentation (arrowhead) 

Figures 6.12 — 6.14: Light micrographs of Karenia mikimotoi strain CAWD63, from the 

Cawthron Institute, New Zealand. Scale bar = 10 Jim. 

Fig. 6.12: Surface focus of cell in ventral view. Arrow points to linear apical groove. Note 

distinctive shape of sulcal extension into epicone (arrowhead) 

Fig. 6.13: Subsurface focus of the same cell. Note position and shape of the chloroplasts 

(arrowheads). 

Fig. 6.14: Central focus of cell. Note position of the nucleus (n) in the left hypocone lobe, 

notch caused by the apical groove (arrow) and peripheral chloroplasts (arrowheads). 

Distribution and abundance  

Karenia mikimotoi is a common species in the phytoplankton flora of 

temperate southern Australia (Hallegraeff 2002), but uncommon in Tasmania. 

Larsen (1994) reports this species in Port Philip Bay, especially Hobson's 

Bay during the austral summer. Blooms of this species have been a regular 

feature in the Gippsland Lakes (G. Hallegraeff, pers. comm.), and low cell 
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numbers are regularly detected in Port Lincoln, South Australia (Clinton 

Wilkinson, SA Water, pers. comm.). 

Genetic relationships  

Australian Karenia milcimotoi is genetically identical to material from New 

Zealand, Norway, Denmark, United Kingdom, and Japan, varying by no more 

than 2 base pairs in the >900 bp sequence. long D1-D3 section of the LSU 

rDNA (Daugbjerg et al. 2000). The closest sequence in terms of pairwise 

differences to K. mikimotoi was found to be K. brevis. Trees of proposed 

phylogenies of this and related species are illustrated in Figures 6.26 — 6.31. 

6.3.4. Karenia species 'A' (antapical nucleus) 

Morphology  

Medium sized, globular unarmoured dinoflagellate, with no dorsoventral 

flattening. Length 38 I-LM, width 32 gm. Epicone hemispherical or elongated 

with a hemispherical apex. Hypocone truncated and incised deeply by the 

sulcus. Apical groove long and straight. Sulcus wide and invading the epicone 

as a finger-like projection. Cingulum displaced about 1/4 of the cell length. 

Chloroplasts numerous and irregularly shaped, mostly globular. Nucleus very 

large, occupying most of the hypocone. Figures 6.15-6.17 show the internal 

and external morphology of cells of this species from the Parsons Bay, May 

2003 fish kill. 

Distribution and abundance  

Cells of this species have only been recorded from south-eastern Tasmania 

(Table 6.3), where a bloom containing this and four other species (K umbella, 

K. asterichroma, Karenia sp. 'B' and Karenia sp. 'C') was responsible for the 

mortality of approximately 100,000 Atlantic salmon (Salmo salar L.). During 

the austral summers of 2003 and 2004, low background numbers of this 

species were present in many SE Tasmanian locations, but the bloom of May 

2003 (approximately 10 5  cells 1 -1  total Karenia concentration) occurred very 

suddenly, possibly indicating an offshore origin. Cells of this species could 

not be cultured using standard media formulations [GSe and GSe/2 

(Blackburn etal. 2001), F and F/2 (Guillard 1983) and K (Keller etal. 1987]. 
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Figures 6.15-6.17: Light micrographs of Karenia sp. 'A' from Parsons Bay, Tasmania. Scale 

bar =20 um. 

Fig. 6.15: Cross section view of cell showing position of the nucleus at the cell antapex (n), 

and apical notch in the path of the apical groove (arrowhead). 

Fig. 6.16: Ventral view of cell in surface focus showing long, linear apical groove (arrow) 

and extension of the sulcus onto the epicone surface (arrowhead). 

Fig. 6.17: Subsurface focus of same cell, showing peripheral distribution of globular 

chloroplasts with individual pyrenoids (arrows). 

Table 6.3: Distribution of Karenia sp. 'A' in Tasmanian waters 

Location Date Collector Notes 

Pirates Bay, TAS 10-05-2003 M. de Salas 

Parsons Bay, TAS 13-05-2003 TASSAL 1 -105 cells L -1  total Karenia 

Port Arthur, TAS 14-05-2003 TASSAL 

North West Bay, TAS 3-02-2004 M. de Salas <100 cells L -1  

River Derwent, TAS 5-03-2004 G. Wallace <100 cells L- ' 

Parsons Bay, TAS 16-03-2004 M. de Salas <100 cells L -1  

Pirates Bay, TAS 16-03-2004 M. de Salas <100 cells L - ' 

Genetic relationships 

The LSU rDNA sequence of this species (obtained by performing PCR on 

single cells from field samples) differs by approximately 4.8% from its 

closest relative, K umbella, Phylogenetic trees of known sequences of 

Karenia species place the K umbella and Karenia sp. 'A' together in a well-

supported clade (Figs 6.26-6.31), either basally within the genus, or with only 

K papilionacea basal to them. 
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6.3.5. Karenia sp. 'IV: (apical nucleus) 

Morphology  

Medium sized, globular unarmoured dinoflagellate, with no dorsoventral 

flattening. Length 35 pm, width 30 1.1M. Epicone hemispherical or elongated 

with a hemispherical apex. Hypocone hemispherical but sometimes truncated. 

Apical groove long and straight. Sulcus wide and invading the epicone as a 

finger-like projection. Cingulum displaced about 1/4  of the cell length. 

Chloroplasts numerous and irregularly shaped, mostly globular. Nucleus 

small, located at the apex of the cell. Figures 6.18-6.19 show the surface and 

internal morphology of cells from the May 2003 fish-kills. 

Distribution and abundance 

Karenia sp '13' cells have been discovered in water samples from south-

eastern Tasmania (Table 6.4), where it bloomed in May 2003 (see Karenia sp. 

'A' section). During the austral summers of 2003 and 2004, low background 

numbers of this species were present in many SE Tasmanian locations. In 

both years Karenia sp 'A' was more abundant, with only half to 1/4 the cell 

numbers of Karenia sp. 'W. Cells of this species could not be cultured using 

standard media formulations (GSe and GSe/2, F and F/2, and K). 

Figures 6.18-6.19: Light micrographs of Karenia sp. 'EV from Parsons Bay, Tasmania. Scale 

Bar = 20 um. 
Fig. 6.18: Surface focus of cell in ventral view. Note linear apical groove (arrow) and sulcal 

extension into epicone (arrowhead). 

Fig. 6.19: Subsurface focus of another cell in ventral view showing apical location of the 

nucleus (n). 
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Table 6.4: Distribution of Karenia sp. 'B' in Tasmanian waters 

Location Date Collector Notes 

Pirates Bay, TAS 10-05-2003 M. de Salas 

Parsons Bay, TAS 13-05-2003 Tassal 1 .105 cells L- ' total Karenia 

Port Arthur, TAS 14-05-2003 Tassal 

River Derwent, TAS 18-03-2004 M. de Salas <100 cells L- ' 

Genetic relationships  

Karenia sp. '13' could not be cultured, and attempts to sequence single cells 

from field samples failed. 

6.3.6. Karenia sp. 'C': (disc shaped) 

Morphology 

Large, disc-shaped, extremely dorsoventrally flattened cells, 50 pm long and 

50 p.m wide. Epicone with long, straight apical groove. Hypocone incised by 

the sulcus. Nucleus centrally located. Chloroplasts numerous and evenly 

distributed through the cell. Figures 6.20-6.21 show the morphology of cells 

of this species from the May 2003 fish-kill. 

Figures 6.20-6.21: Light micrographs of Karenia sp. 'C' from Parsons Bay, Tasmania. Scale 

Bar = 20 gm. 

Fig. 6.20: Surface focus of cell in ventral view. Note the displacement of the cingulum, 

indentation of the sulcus, and the linear apical groove (arrowhead). 

Fig. 6.21: Subsurface focus of same cell showing the central position of the nucleus (n), and 

the pronounced indentation of the sulcus. 
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Distribution and abundance  

Uncommon species found in southern Tasmania (Table 6.5) during the late 

austral summer and early autumn. Low numbers of cells were present during 

the May 2003 fish kill in Parsons Bay, Tasmania, and again in March 2004. 

Genetic relationships  

Karenia sp. 'C' could not be cultured and attempts to sequence single cells 

from field samples failed. 

6.3.7. cf. Karenia sp. 'D' (flat with uneven hypocone) 

Morphology 

Cells of this species are dorsoventrally flattened, 18 um long and 181.1111 wide. 

Epicone is disc-shaped with a long, slightly curved apical groove. Hypocone 

is truncated and incised, with left lobe significantly shorter than right lobe. 

There no a long linear apical groove. The nucleus is anteriorly placed, but 

extends into the left hypocone lobe. There are approximately ten chloroplasts 

which are sausage-shaped and contain individual pyrenoids. Figures 6.22-6.25 - 

show the morphology cells in a field sample from the Swan River (W.A.). 

Distribution and abundance  

This species has been found in lagoon and estuary habitats in the Swan River 

(W.A.) Ansons Bay and Grant's Lagoon (northern Tasmania — Table 6.6). 

They are uncommon and have proven impossible to culture. They have a very 

characteristic swimming behaviour, looping around in the same space several 

times before swimming in a straight line and resuming circling, reminiscent 

of the typical swimming behaviour of Scrippsiella spp. 

Genetic relationships  

Although this species could not be cultured, PCR was successful on single 

cells from field samples. Phylogenetic analyses (Figs 6.26-6.31) place this 

Table 6.5: Distribution of Karenia sp. 'C' in Tasmanian waters 

Location Date Collector Notes 

Pirates Bay, TAS 10-05-2003 M. de Salas Very rare 

Parsons Bay, TAS 13-05-2003 Tassal Rare 

Parsons Bay, TAS 16-03-2004 M. de Salas one cell only 
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Figures 6.22-6.25: Light micrographs of cf. Karenia sp. D. Scale bars = 

Fig. 6.22: Surface focus of cell in ventral view. Note long apical groove (arrow). 

Fig. 6.23: Subsurface focus of same cell. Sulcus intrudes sideways into epicone. 

Fig. 6.24: Deeper subsurface view showing deep sulcus (arrowhead) and chloroplasts with 

individual pyrenoids (arrows). 

Fig. 6.25: Cross section through cell showing apical notch (arrow) and anterior nucleus (n). 

Nucleus extends into left hypocone (not shown) 

Table 6.6: Distribution of cl Karenia sp. 'ID' in Australian waters 

Location Date Collector Notes 

Swan River, W.A. 27-04-2003 W. Hosja Rare 

Ansons Bay, TAS 14-04-2003 1. Pearce <100 cells L - ' 

Grants Lagoon, TAS 14-04-2003 I. Pearce <100 cells L - ' 

species within the clade formed by Karenia, Karlodinium and Takayama, but 

different analyses place it either as basal to Takayama and Karlodinium 

(which form a well supported subclade), or as basal to the whole group. 

6.4. DISCUSSION 

This chapter circumscribes several species encountered during the course of 

this study, and which have proven or potential fish-killing ability. Some of 

these species had previously been described by other authors, and others 

could not be cultured, and thus were not characterised in sufficient detail for 

their formal description in this study. However, it was possible to obtain DNA 

from several of these species, which allows for their identification through 

genetic means. 

The fish-killing dinoflagellate Karlodinium micrum has been responsible for 

the largest proportion of dinoflagellate- caused fish-kill events reported in 

Australia. It is abundant in locations such as the Swan River (Western 

Australia), where they bloom almost annually, and in the New South Wales 

coast, where blooms are not uncommon. K. micrum is a widespread species 
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that is most likely cosmopolitan (Deeds et al. 2002; Hallegraeff 2002; 

Kempton et al. 2002). Because of its small size and fast swimming behaviour, 

this species is difficult to identify, and is probably often reported as 

Gymnodinium estuariale or G. simplex. It is genetically closely related to 

Karlodinium australe (though to a lesser degree than species in the ralated 

genera Karenia and Takayama are to each other), and morphologically similar 

to Gyrodinium corsicum and Karenia digitata. 

A larger, dorsoventrally flattened fish-killing dinoflagellate is Karenia 

mikimotoi, which has been reported from Hobsons Bay (Victoria) by Larsen 

(1994), and has been found in low numbers in Tasmanian and South 

Australian waters. Although genetically identical, isolates from New Zealand, 

Japan, Australia and Europe are quite variable in shape, size and physiology 

(Hansen et al. 2000). However, a high variability is shown within natural 

populations of this species, and a large proportion of the geographic 

variability may be more reflective of natural variation within populations than 

between populations. 

The recently described species Karenia papilionacea (Haywood et al. 2004) 

was found to be common in southern Australian waters, from Western 

Australia to Tasmania. The almost morphologically indistinguishable Karenia 

brevis (by its old name of Gymnodinium breve) has often been reported in 

Australian waters. However, the real Karenia brevis (Davis) G. Hansen & 

Moestrup, from Florida, has not been confirmed outside of this region and 

Japan, and Australian reports are probably misidentifications of Karenia 

papilionacea or other morphologically similar, flattened species. A natural 

bloom of 9.6 104  cells 1 -1  of this species caused no problems for marine life in 

Moulting Bay, north eastern Tasmania. No toxicity was associated with this 

bloom, and cultures grown in the laboratory tested negative for brevetoxin 2 

and 3 when analysed by liquid chromatography — mass spectroscopy (P. 

McNabb, Cawthron Institute, N.Z., pers. comm.). 

Two non-flattened Karenia species, present in high numbers during a multi-

species bloom in May 2003, could not be cultured. Karenia sp. 'A' (which is 

morphologically similar to K. umbella, but with an antapical nucleus) and 

Karenia sp. 13' (only distinguished under the light microscope by its 
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anteriorly placed nucleus) were the most abundant and second most abundant 

species during the bloom, respectively. Karenia species in this bloomed 

reached a combined density of 105  cells 1-1  (Chapter 2, Chapter 5, de Salas et 
al. 2004). Although attempts to sequence Karenia sp. '13' failed, a partial 

LSU rDNA sequence was obtained for Karenia sp. 'A' by performing PCR 

on single-cell isolates, which shows that genetically the closest relative of this 

species is the morphologically almost-indistinguishable K. umbella. It is 

likely that the group of non-flattened, elongated Karenia species formed by K 
umbella, Karenia sp. 'A', Karenia sp. '13', and K longicanalis forms a single 

monophyletic clade that diverged early on, as in most phylogenetic analyses 

the flattened species form a distinct separate clade. Moreover, the 

morphology of the non-flattened clade is closer to that of the closely related 

genera Karlodinium and Takayama. 

The sequence of Karenia sp. 'A' obtained from a field sample allows the 

design of genetic probes to distinguish this species from the virtually identical 

Karenia sp. 'B', K umbella and Karenia longicanalis, once sequences are 

obtained for all of these species. 

The last novel species identified in this chapter is Karenia sp. 'D', a flattened 

cell with a characteristic swimming behaviour. This is a species that 

according to the phylogenies proposed in figures 6.26-6.31 does not belong to 

any of the fucoxanthin-containing genera Karenia, Karlodinium and 

Takayama as currently circumscribed. This species appears to be basal in the 

group, either a close relative of Karlodinium and Takayama, or basal in the 

whole clade. It could be a link between the mostly flattened Karenia species, 

which are probably highly derived, and the non-flattened Karlodinium and 

Takayama, which are likely more primitive. Morphologically this cell is 

closer to Karen/a, with an evident linear or bow-shaped apical groove, though 

its dorsal extent is unclear. Attempts to culture this species have failed, and 

this may reflect a form of obligate mixotrophy more extreme than that shown 

by Karlodinium australe. 

The range of new and undescribed species encountered during the course of 

this study has made clear that the fucoxanthin-containing dinoflagellates are a 

highly diverse group and that we have only begun to expose its diversity. Of 
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notable importance to our understanding of the evolutionary history of this 

group is the position of cf Karenia sp. '13', which may be an ancestral species 

within the Karenia-Karlodinium-Takayama clade. 

While the economic importance and human health implications of the 

fucoxanthin-containing dinoflagellate genera are widely recognised, one sign 

of the limits of our knowledge of this group is that every location sampled for 

this study contained potentially toxic gymnodinioid species that were 

previously undescribed. The combination of our limited awareness of the 

diversity in this group (species of which were always present in low numbers 

in water samples) and our limited knowledge of their optimal growth 

conditions prevents the accurate prediction of potentially toxic gymnodinioid 

blooms. Consequently the determination of which species in this group are 

toxic, their degree of toxicity (to establish regulatory limits for aquaculture 

operations), and their physiological characterisation to establish bloom 

conditions are future research priorities. 

131 



76 

100 

100' 

88 

92 

100 

97 

100 

95 100 

100 

62 65 

81 

99 

79' 

59 98 

76 

100 

.59 ' 

Five novel Australian tish-killinti. dinoflaellates — Other Tasmanian fish killers 

too 	 Karenia miktmotoi Austrah—w 
	 K. mikimotoi 
	 K. brevis 
	 .k. ckistata 
	 K. b .reyiSidcata 
.100 	. K. ielliforniis.N ..ew.Ze4.04 
	 K.. Seib:jot:Ws Chile 

. 72 	 K.-:asti•richronta 
	 Kbidfgiaa 
	 k. papilionaceaN.. 
	 Kkezpiliotzade&Tirs. 

too 	 K umbella Taranna 
	 Kunibellá Trial:panda 
	 Karertia sp. 'A antapical 'nucleus 
'98 	 Karlottinhim rni.erum, W.A. 
	 K. .micrum N.Z. 

K. micrum Norway 
	 K:australe Tas. 
	 K. australiNew'§auth Wales 
	 Takaytunit tissnitinica:Tas. 

'92 	 T. Ite/Pc -North West Bay .  

	 ,T.,helii..Pott Arthur 
	 Takayanra sp. kawau Is„ N.Z. 
	 Karenia sp. 'D' flaruneven hypocone 
100 	 Gymnodinium catenatum 

holleri 
	 G. rgicioreticidatitm 
	 fusairn. 
100 	 G. palustre 
	 G. cf. Placidum 

100 	 G.' aureolum.S1 
aureolum Adel 

	 G. impudicum 
	 G. cltlorophornm 
	 Akaildwo-sangUinea 
	 Gyinnodiniunt uncatemgn N.W.D. 
	 G. uncatenum River Derwenr 
	 C. faicatunt 
	' Woloszynskia pseudopedustris 
	 Atethndriumecitenella 

Figure 6.26: Minimum evolution (distance) bootstrap analysis of 1000 replicates using the 

entire D 1 -D3 sequence of the LSU rDNA. Outgroup = Alexandrium catenella. Values on 

branches indicate bootstrap support for groups. Tree length = 1949, consistency index = 

0.514, retention index = 0.702. -Ln I = 10637.716. 
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Figure 6.27: Minimum evolution (distance) bootstrap analysis of 1000 replicates of the Dl-

D3 region of the LSU rDNA, excluding the hypervariable domain. Outgroup = Alexandrium 

catenella. Values on branches indicate bootstrap support for groups. Tree length = 1369, 

consistency index = 0.519, retention index = 0.699. —Ln 1= 7751.656. 
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Figure 6.28: Maximum parsimony bootstrap analysis of 1000 replicates using the entire D l-

D3 sequence of the LSU rDNA. Outgroup = Alexandrium catenella. Values on branches 

indicate bootstrap support for groups. Tree length = 1974, consistency index = 0.504, 

retention index = 0.694. —Ln I = 10655.125. 
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Figure 6.29: Maximum parsimony bootstrap analysis of 1000 replicates of the D 1 -D3 region 

of the LSU rDNA, excluding the hypervariable domain. Outgroup = Alexandrium catenella. 

Values on branches indicate bootstrap support for groups. Tree length = 1317, consistency 

index = 0.540, retention index = 0.723. —Ln I = 7541.298. 
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Figure 6.30: Proposed Bayesian inferred phylogeny of the main unarmoured dinoflagellate 

genera using the entire D 1 -D3 sequence of the LSU rDNA. Outgroup = Alexandrium 

catenella. Support values of branches were derived from a Bayesian analysis of 1.2 • 10 6  
generations (excluding first 2 • 10 5  generations) using a general time-reversible evolution 

model with gamma distributed among-site rate variation. Tree length = 1942, consistency 

index = 0.516 and retention index = 0.704. —Ln 1= 10609.237. 
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Figure 6.31: Proposed Bayesian inferred phylogeny (obtained using the D1-D3 region of the 

LSU rDNA, but excluding the hypervariable domain) of the main unarmoured dinoflagellate 

genera. Outgroup = Alexandrium catenella. Support values of branches were derived from a 

Bayesian analysis of 1.2 • 106  generations (excluding first 2 • 10 5 generations) using a general 

time-reversible evolution model with gamma distributed among-site rate variation. Tree 

length = 1947, consistency index = 0.515 and retention index = 0.703. —Ln I = 10625.359. 
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7.1. AIM: TO CHARACTERISE AS FULLY AS POSSIBLE SEVERAL 
UNUSUAL OR NEW SPECIES BELONGING TO UNARMOURED, 
FISH-KILLING DINOFLAGELLATE GENERA 

The primary aim of this study was to characterise as fully as possible several 

previously undescribed unarmoured dinoflagel late species discovered in 

Tasmanian waters. 

In fulfilling this aim, the study, as detailed in Chapters 2-5, has employed 

morphology (in the form of light and electron microscopy), sequencing of 

part of the large subunit ribosomal RNA gene (LSU rDNA) and pigment 

analysis to describe five new species which were located in the waters of 

Australia. 

The first two of these newly described species, in the recently erected, 

ichthyotoxic genus Karenia have been described from type localities in south-

eastern Tasmania. 

The first new species described during this research project, K umbella 

(described in Chapter 2), is a non-flattened species morphologically similar to 

K longicanalis (and also two new, undescribed species reported in Chapter 

6). K. umbella differs from other non-flattened Karenia species in that it has 

been found to have an approximately central nucleus, an uneven hypocone 

(the right lobe longer than the left), has 8 radial furrows on the epicone 

surface, and a sulcal extension into the epicone. K umbella (reported as K. cf 

mikimotoi) has been associated with aquaculture fish kills in 1989 and again 

in 2003 (discussed in detail in Chapter 2). 

The second new species described in this research project has been named K. 

asterichroma (described in Chapter 3). K. asterichroma is a flattened 

Karenia species morphologically resembling K. brevis and K. mikimotoi. 

While it was found to be present in the water in low numbers during a fish kill 

in 2003, its toxicity has not been established at this time. This species is 

distinct from other Karenia species in its anterior nucleus and its chloroplast 

arrangement. While other known Karenia species exhibit chloroplasts with 

internal pyrenoids, K. asterichroma has a central pyrenoid agglomeration 

from which chloroplasts radiate towards the surface. 
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A third new species belonging to the toxic genus Karlodinium, K australe, 

has been described in Chapter 5. This species has been located in Grants 

Lagoon in north-eastern Tasmania, and has also been found in several 

locations in Australia's east coast. Karlodinium australe is a large species 

when compared to K micrum, and has an anterior nucleus and an evident 

finger-like sulcal extension into the epicone. Unlike K. micrum, the 
chloroplasts of K. australe have internal pyrenoids that are pyramidal rather 

than lenticular. K. australe also lacks hexagonal arrays of plug-like structures 

in the amphiesma which are a defining feature of the genus Karlodinium. 
This research also established K australe as a mixotrophic species that can 

prey on cryptomonads, and can ingest numerous cryptomonad cells in quick 

succession, accumulating a large number (>10) of food vacuoles (as shown in 

Chapter 5). Mixotrophy may be an obligate requirement of this species, as its 

culture in the absence of prey is difficult and slow. 

Because our knowledge to date of the genus Karlodinium is limited, it is 

likely that an increase in awareness of this genus will show as much species 

diversity and morphological variability (such as chloroplast morphology) as 

in the genera Karenia and Takayama. 

An important finding of this research is the two morphological characters of 

K. australe that are inconsistent with the current generic diagnosis of the 

genus KaHodinium. Despite this apparent conflict, K. australe is clearly 

identifiable as a Karlodinium species when considering its gross morphology, 

pigment profile, and LSU sequence. Consequently, this study suggests that 

the description of the genus Karlodinium needs to be emended in light of 

differing characters in this new species. 

In addition to the three new species described from the fish-killing genera 

Karenia and Karlodinium, this study has erected a new genus of fish-killing 

dinoflagellates. The description of the new genus Takayama (in Chapter 4) 

has clarified the dubious taxonomic position of Gymnodinium pulchellum and 

other sigmoid-grooved, unarmoured dinoflagellate species. This new genus 

has been described with two new species: T tasmanica and T helix, from 

south-eastern Tasmania. In addition to the newly described species, three 

previously described, sigmoid grooved species in the unarmoured genera 
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Gymnodinium and Gyrodinium have been transferred to the new genus: 

Takayama acrotrocha (=Gyrodinium acrotrochum), T cladochroma 

(=Gyrodinium cladochroma) and T. pukhella (=Gymnodinium pulchellum). 

The new species Takayama tasmanica is morphologically similar to three 

previously described species (Takayama acrotrocha, T cladochroma, and T. 

pulchella). However, this new species differs from any previously described 

by having a central pyrenoid from which branched chloroplasts radiate to the 

periphery. The second new species in this genus, ,  Takayama helix, is 

morphologically distinct from all other species in this genus. While other 

species of Takayama have an apical groove with a pronounced inflection 

(clearly 'S' shaped), that of T helix is nearly straight. In comparison with T. 

tasmanica, T. helix has peripheral chloroplasts with internal lenticular 

pyrenoids. Despite these differences, both of these species are shown to be 

congeneric by their pigment profiles, LSU sequences, and several recurring 

morphological features (discussed in Chapter 4). 

Although the two new species of Takayama have not been implicated in fish 

kills during the course of this study, other species in this genus and most other 

fucoxanthin-containing dinoflagellate species are well-known fish killers. As 

a result, it can be assumed that any newly described species in these genera 

may exhibit the same toxicity. 

7.2. AIM: TO DETERMINE WHETHER THE RECENTLY ERECTED 
GENERA KARENIA AND KARLODINIUM ARE VALID AND CAN BE 
SEPARATED ON THE BASIS OF MORPHOLOGICAL AND BIO-
CHEMICAL CHARACTERS. 

The determination of whether the genera Karenia and Karlodinium are valid 

as currently described and can be distinguished on the basis of their 

morphological and biochemical characters is of particular relevance because 

the genus Karlodinium is described from only one well known species (K. 

micrum, because K. veneficum appears to be synonymous). Therefore 

characters considered of taxonomic importance for Karlodinium at the generic 

level may instead simply reflect variation between species. Similarly the 
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genus Karenia was described based only on two species (K. brevis and K. 

mikimotoi) and may pose similar problems. 

Our increasing awareness of the genus Karenia has grown at a faster rate than 

that of the other fucoxanthin-containing dinoflagellate genera, and at the time 

of writing contains eleven formally described species (K. asterichroma, K 

bicuneiformis I bidigitata, K. brevis, K. brevisulcata, K. cristata, K. digitata, 

K. longicanalis, K. mikimotoi, K. papilionacea, K. selliformis and K. 

umbella). Eight of these species have been described in the time since the 

genus Karenia was erected, and they all have linear apical grooves, as well as 

fucoxanthin pigments or their derivatives. Up to this point, external 

morphology alone has consistently been sufficient [both in this study 

(Chapters 2, 3) and for other authors] for discriminating Karenia species at 

the generic level. 

As a result, this study has determined that the genus Karenia is valid as 

currently described and its species can be identified on the basis of 

morphological and biochemical characters. Moreover, this genus can be 

identified exclusively on the basis of morphological characters visible under 

the light microscope. 

In comparison to Karenia, the definition of the genus Karlodinium contains 

two morphological characters (lenticular pyrenoids and amphiesmal plugs) 

which this study has shown are absent from the new species Karlodinium 

australe (Chapter 5). Although this genus was erected based on two species, 

K micrum and K veneficum, these two species now appear to be synonymous 

(J. Larsen, pers. comm.). As a result, the shared characters between K. 

micrum and K veneficum do not necessarily reflect consistent morphology at 

the generic-level, but rather at the species level. 

Some features of the genus Karlodinium as currently described have been 

shown in this study to be consistent across species (see Chapter 5), for 

example fucoxanthin or its derivatives as the principal carotenoids (but not 

necessarily gyroxanthin-diester), a short, linear apical groove and a ventral 

pore above and to the left of a finger-like sulcal extension onto the ventral 
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epicone surface. As a result, this study suggests that these characters should 

be the focus of a necessary re-description of the genus Karlodinium. 

7.3. AIM: TO IDENTIFY WHETHER FISH KILLING DINOFLAGEL-
LATES OF THE FUCOXANTHIN-CONTAINING GENERA KARENIA 
AND KARLODINIUM FORM A MONOPHYLETIC CLADE WITHIN 
THE GYMNODINIOID DINOFLAGELLATES. 

The final aim of this study was to establish whether the genera Karenia and 

Karlodinium (both of which have fucoxanthin as the main carotenoid 

pigment) form a monophyletic clade when analysed with new sequence 

information. Sequences are now available for several new Karenia and one 

new Karlodinium species, described after the two genera were first shown to 

form a clade within the Gymnodiniales. 

This study found that not only do Karenia and Karlodinium species form a 

well-supported clade within this group (Chapters 2, 3, 6), but the new genus 

Takayama, described in Chapter 4, forms a third component of this clade that 

also contains fucoxanthin as the main carotenoid. Phylogenetic analyses show 

consistently that this new genus is more closely related to Karlodinium than 

to Karenia. Perhaps the sigmoid apical grooves of the genus Takayama 

represent an intermediate morphology between the linear- grooved genera 

Karenia and Karlodinium, and the horseshoe-shaped grooves of the genus 

Gymnodinium sensu stricto. 

In conclusion, this study has shown an unexpectedly high degree of diversity 

within the monophyletic clade of dinoflagellates composed of the genera 

Karenia, Karlodinium and Takayama. These genera share some common 

characters, such as their toxicity, and a different pigment composition to other 

photosynthetic dinoflagellates (fucoxanthin and its derivatives rather than 

peridinin), while each possess a range of distinctive morphological characters 

that allow their differentiation using microscopy. While tools such as 

ultrastructure, pigment analyses and molecular sequencing are essential for 

discriminating between species within Karenia, Karlodinium and Takayama, 

they are ultimately unnecessary for assigning species to the three existing 

genera. 
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7.4. FUTURE RESEARCH 

Determination of specific toxicity:  Some species such as Karlodinium micrum 

and most Karenia are well known fish-killers. Others like Karenia brevis 

have long been recognised as the causative organisms of Neurotoxic Shellfish 

Poisoning (NSP) outbreaks, as well as killing fish. NSP has been recorded in 

many locations worldwide, including Australia and New Zealand, however, 

the real K. brevis, which is the only species so far conclusively linked to NSP 

outbreaks, has never been confirmed from outside the general area of the Gulf 

of Mexico. As many Karenia species remain to be described (see for example 

Chapter 6), there is a strong possibility that one or more of these may be 

responsible for occurrences of NSP outside the USA. As such effective 

monitoring and early warning systems for NSP will not be possible until the 

causative organisms have been identified and their toxicity assessed. 

Independently of brevetoxin production, most of the species in the genera 

Karenia, Karlodinium and Takayama are capable of killing fish. Some 

preliminary results suggest that species in these genera are capable of 

producing reactive oxygen species and ichthyotoxic free fatty acids (J.A. 

Marshall, pers. comm.). Few species in this group have bloomed in high 

concentrations without detrimentally affecting marine life, except perhaps 

Karenia longicanalis. However, its bloom in Hong Kong Harbour closely 

followed one of Karenia digitata that caused massive mortalities. 

This high occurrence of toxic species warrants the testing of the fish-killing 

ability of all species newly described in this group. An efficient monitoring 

program is indispensable for a viable aquaculture industry in locations that are 

susceptible to blooms of these species. Parameters such as optimum bloom 

conditions and minimum harmful concentration of cells in the water must be 

elucidated if such a monitoring program is to be implemented. 

Research to establish both growth optima and ichthyotoxicity is ongoing. 

Revisiting generic descriptions:  The definition of the genus Karlodinium 

explicitly excludes species that lack lenticular internal pyrenoids and 

amphiesmal plugs. It has been made evident by this study that at least one 
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species in this genus does not correspond to the current description of the 

genus, and this description needs to be emended. 

Development of RT-PCR assays:  The extreme morphological similarity of 

some of the species in this group, for example Karenia brevis and K. 

papilionacea; K. longicanalis, K. umbella, Karenia sp. 'A' and Karenia sp. 

'13'; or Takayama species except T. helix, makes their precise identification 

difficult. As such the development of straightforward assays for their presence 

or abundance is a clear priority. While rDNA targeted fluorescent probes are 

being developed for New Zealand Karenia species, their use has limitations. 

Whole-cell hybridisation, which can be used to estimate cell numbers in 

samples, suffers from problems of cell-membrane permeability or other issues 

affecting fluorescence uptake that may be cell-cycle dependent. Probes that 

work on cell extracts, while being more reliable, are not accurate at estimating 

cell concentrations, and only have a limited usefulness for detection. 

The use of real-time quantitative PCR to detect these species seems to offer 

the best prospects of successful detection, combining reliability and 

replicability with the potential to estimate cell numbers in samples once the 

assay has been calibrated. As ribosomal DNA sequences can be easily 

obtained by conducting PCR on single cells from field samples, sequences 

can be obtained for unculturable species that would otherwise be impossible 

to work with. The flexibility and ease of design of both primers and probes 

allows the specificity of probes to be customised, potentially from detecting 

single species to closely related groups of species (i.e. non-flattened Karenia 

species — K. umbella and others), a whole genus, or all fucoxanthin-

containing genera. 

7.5. CONCLUSION 

This study has made a substantial contribution to our current knowledge of 

the principal group of toxic and fish killing unarmoured dinoflagellates. This 

increased awareness must be put into practice to advance the research agenda 

developed in section 7.4. Only in this way can a comprehensive and effective 

early warning system be developed to identify species that have both 

economic and human health implications. Such an early warning system is 
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indispensable for a smoothly operating fin- and shellfish aquaculture industry, 

and is critical if human outbreaks of Neurotoxic Shellfish Poisoning are to be 

prevented. 

The description and detailed characterisation of the five new species 

presented in this work will help design more effective monitoring tools, such 

as molecular probes, for the early detection of these potentially fish killing 

dinoflagellates. 
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