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Abstract 

Abstract 
Wastewaters and leachates from mining and mineral processing are often 

characterised by low pH and high metal and sulfate concentrations. These can 

affect water catchment ecosystems and impact food webs deleteriously. In north-

west Tasmania a titanium-processing plant operated between 1948 and 1996 on 

the Blythe River catchment. The sulfate extraction process was used to 

manufacture titanium dioxide pigment. This produced large quantities of acidic 

(pH 3 - 5), metalliferous (Fe 800 - 1200mg L -1 , Mn 15 - 45mg L -1 ) and sulfurous 

(SO42-  500 - 1700mg L -1 ) wastewater. The wastewater was pumped into sludge 

dams, which leaked into the local catchment, and eventually Bass Strait. This 

resulted in elevated metal concentrations and a highly visible red plume along the 

coastline, locally suppressing the marine benthic biota and altering biodiversity. 

A novel in situ bioremediation system was built in 2001 and managed 

subsequently by ESD (Environmental Services and Design) Pty. Ltd. The system 

comprised anaerobic processing sections that incorporated waste agricultural 

products; including potatoes, spent mushroom compost and straw, to remove the 

metals and increase the pH. A subsequent artificial wetland system was utilised to 

reduce effluent BOD (Biological Oxygen Demand) and COD (Chemical Oxygen 

Demand) to drinking water quality levels. 

Using 16S rRNA gene based approaches microbial diversity and community 

structure was determined over 18 months from different stages of the treatment 

system. This included untreated sludge dam leachate, pre-treated effluent from an 

anoxic potato-containing section intended to increase alkalinity and prevent iron 

precipitation; and effluent from a series of mushroom compost and straw-based 
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iron-reduction cells. 16S rRNA gene clone libraries revealed a community shift 

from a mixed iron- and sulfide-oxidising and iron- sulfate-reducing community in 

the sludge dam leachate to a community dominated by Acidithiobacillus spp. and 

anaerobic fermenters (related to the genera Bacteroides and Paludibacter) in the 

potato cell effluent. The reduction cell effluents proved to have higher microbial 

diversity and greater heterogeneity, including iron-and sulfate reducers, iron-

oxidisers, anaerobic fermenters and in one sampled effluent a high proportion of 

clones clustering with previously uncultured organisms of candidate division 0P3. 

Multivariate statistical analysis of 16S rRNA gene-based TRFLP (Terminal 

Restriction Fragment Length Polymorphism) data revealed community 

differences had occurred between treated/post-treated samples and untreated/pre-

treated samples. TRFLP analysis also indicated temporal shifts in the bacterial 

community composition occurred in the reduction cells. Although after 11 months 

of treatment, microbial communities in three of four reduction cells showed 

evidence of stabilisation probably due to exhaustion of an available carbon source 

and layered design of the system. There was no evidence of a seasonal effect on 

the microbial community. 

A series of laboratory-scale microcosm experiments were conducted to evaluate 

temperature, bicarbonate and various carbon amendments (ethanol, molasses and 

vegetable oil emulsion) for bioremediation of an acidic, metal- and sulfate-rich 

titanium processing leachate with the goal of optimising an existing field-based 

system (described above). In all microcosms pH increased from 4 to 6.5-8 for the 

length of the experiment due to the high organic matter input but had no effect on 

other geochemical processes which was similar to the field-scale reduction cells 

in their first year of operation. The oxidation-reduction potential decreased in all 
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microcosms but was most stable in the oil emulsion microcosms. Alkalinity 

production was more substantial in the ethanol, molasses and oil emulsion 

microcosms (-2500mg L -I ) compared to the temperature and bicarbonate 

- microcosms (-600 - 1800mg L 1 ). The addition of bicarbonate did not increase pH 

or alkalinity. Iron and sulfate were initially removed but the effect could not be 

sustained in the unamended and bicarbonate microcosms. Liquid amendments 

such as ethanol, molasses and vegetable oil emulsion were found to support 

greater iron removal. However, sulfate removal only reached a maximum of 80% 

removal and was found to have a lag phase of approximately 80 days, and hence 

an acclimatisation stage may be needed for enhanced sulfate removal in field-

scale bioremediation systems. 16S rRNA gene sequence-based TRFLP profiles 

revealed all the microcosms had similar bacterial communities but the amended 

microcosms were more successful in promoting the growth of a select bacterial 

consortia needed for enhanced sulfate and iron removal. This included a 

combination of anaerobic fermenters, iron- and sulfate-reducers as well as 

iron/sulfur/sulfide oxidisers. 

Based on the experimental data and the literature a number of recommendations 

were developed to improve the operational efficiency and longevity of the field-

based leachate remediation system. 

vi 
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Chapter 1 Introduction 

Introduction 

Microbial sulfur and metal bioremediation 

The contamination of water, soil and air by toxic compounds is a serious and 

escalating problem all over the world due to activities such as processing, surface 

treatment, mining, burning of fossil fuels and land filling of waste. Metal 

contaminants persist and accumulate in the food chain; hence, humans are at great 

risk as we consume many resources. The threat of metal pollutants has 

encouraged an interest in developing systems for their remediation, removal or 

neutralisation. Most contaminated sites contain a mixture of pollutants as 

atomically similar metals, such as iron and manganese, as they usually occur 

together in rock deposits. Metals, by their very nature cannot be destroyed; 

however, they can be transformed into less soluble forms by modification of their 

chemical/physical characteristics. A serious metal-containing pollutant is acid 

mine drainage. Furthermore, polluted groundwater systems are one of the most 

difficult environments to remediate. 

When Fe2+  is oxidised it forms ferric iron that produces a red deposit of iron 

oxides/hydroxides (Fe(OH) 3) and in water a red plume that can pollute waterways 

and coastal regions; as was the case at Heybridge, Tasmania in the 1980s and 

1990s. The idea of passive metal bioremediation is to precipitate the metals, such 

as iron, as insoluble Fe2+  while increasing the pH, removing sulfate anaerobically, 

and depositing the metals as oxides or carbonates out of the system (Johnson and 

Hallberg 2005a). Hence, reduction of Fe 3+  to Fe2+  is an important section in a 

multi-step remediation process and will be the focus of the research. Moreover, 
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Chapter 1 Introduction 

sulfate-reducing bacteria increase the pH by producing sulfides and this induces 

metals with a low metal-sulfide solubility to precipitate as metal sulfides or metal 

hydroxides depending on their valency and pH (Drury 1999). Researchers have 

also found that some iron-reducing bacteria, such as Shewanella putrefaciens can 

utilise aromatic hydrocarbons (Lovley et al. 1994), chlorinated organic 

compounds such as chlorinated phenols and benzoates (Geobacter 

metallireducens) (Kazumi et al. 1995), heavy metals (Shewanella alga, 

Shewanella putrefaciens, Shewanella oneidensis , and Geobacter metallireducens) 

(Liu et al. 2002) (Lovley 1995a, 1995b) and uranium (Shewanella putrefaciens 

and Geobacter spp.) (Lovley et al. 1991). 

Acid mine drainage is produced by oxidation/deposition of pyritic compounds 

when mine ore is exposed to the air, oxidises and acidifies and ends up in water 

systems; that is Fe2+  oxidises to Fe 3+  producing the characteristic red deposit. 

Acid mine drainage affects thousands of kilometres of rivers throughout the world. 

Researchers have stated the amount of oxidation cannot be by abiotic processes 

alone, indigenous bacteria can produce acid mine drainage problems as well 

(Johnson 2003). Conversely passive remediation technology of acid mine 

drainage relies on the activities of indigenous populations of iron- and sulfate-

reducing bacteria (Johnson and Hallberg 2005a). 

Treatment of acidic metal-rich waters and acid mine drainage was originally 

chemical. Most techniques involved the application of chemical precipitators such 

as carbonate compounds (Patterson et al 1977). Precipitation of heavy metals by 

lime or limestone is one of the oldest and cheapest methods for removal of metals 

from acid drainage waters. However, such measures have proven inadequate 
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(James and Mrost 1965). Research has shown (Dean et al. 1972) that copper (Cu), 

lead (Pb), cadmium (Cd) and zinc (Zn) will begin to precipitate from dilute 

solutions at pH values exceeding 5.3, 6.0, 6.7, and 7.0, respectively. However, 

lime addition was found unsatisfactory for highly pyritic materials, as they soon 

tend to form clay pans and restrict water movement. Hore-Lacy (1978) observed 

in one United States case where 2500tonnetha of lime were added to the tailings 

at the Bingham Canyon Mine, Utah, that the pH was dropped to a value of 3.5 

after 3 months. 

The role of sulfate-reducing bacteria in acid mine waters was first studied 

extensively by Colmer and Hinkle (1947); but Tuttle and colleagues (1969) first 

published examples of microbial remediation of high acid, metal and sulfur rich 

waters. Sulfate-reducing bacteria have been widely studied and their metabolism 

is well known and is indirectly used to precipitate metals. The sulfate is reduced 

to dissolved sulfide (HS) which binds to metals (Me) to form insoluble metal 

sulfides (MeS) eg. 

HS" + Me2+  —> MeS + H+ 	 (Rabus et al. 2000) 

However, iron and metal-reducing bacteria used in a bioremediation context is a 

recent innovation (Lovley 2000). A lack of information about the factors 

controlling growth and metabolism of microorganisms in polluted environments 

often limits their implementation (Lovley 2003). 

Ideally, bioremediation strategies would be designed based on knowledge of: the 

microorganisms that are present in the contaminated area; their metabolic 

capabilities; and how they respond to changes in environmental conditions 

(Lovely 2003). Unfortunately, in practice, much of the required information is not 
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readily available. 16S rRNA clone libraries can inform what bacteria are there as 

long as there are known sequences in GenBank or other databases and many are 

unknown in terms of their metabolism as it is difficult to culture them. The 

indigenous microorganisms living in the contaminated area are the best targets for 

bioremediation strategies as they are well adapted to survival in the prescence of 

the existing contaminants and to the local temperature, pH and redox conditions 

(Johnson and Hallberg 2005a). 

Conversely, many treatment studies advocate the introduction of a known 

bacterium, for example, Dehalococcoides sp., used in reductive dechlorination 

treatments, as its metabolism is known (McKinsey et al. 2004). Furthermore, it 

was marketed as an almost compulsory addition to all contaminated sites 

(Suthersan and Horst 2007) without thought of site-specific needs. However, 

some in the industry still swing towards biostimulation (stimulation of broad 

native microbial populations) for remediation purposes. The challenges with 

growing and injecting non-native species into sites and the uncertainty in their 

ability to overcome the stress of changing environments and competition with the 

native microbial flora have focused studies on increasing the population of native 

bacteria through substrate addition (Suthersan and Horst 2007). 

Treatment technology for mining and industrial wastewaters 

Most of the current technologies are based on the method of raising pH and 

utilising metal and/or sulfate-reducing microorganisms for treatment of acidic, 

metal-rich mining and industrial wastewaters (Johnson and Hallberg 2005). These 

technologies range from basic limestone drains to Permeable Reactive Barriers 

(PRB) including bioreactors, constructed wetlands and Successive Alkalinity 
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Producing Systems (SAPS) (Costello 2003) and up flow anaerobic bioreactors 

(UAB) (Elliott et al. 1998). These technologies have been designed on broad 

knowledge of the biogeochemical cycles involved including, bacterial metabolism, 

metal mobility, mineral precipitation, pH and redox potential (Lee and Saunders 

2003). 

As molecular methods improve and the genomic sequences of these bacteria 

become available, the genetic and biochemical basis of their activities on metals 

will be revealed and bioremediation technologies can be vastly improved (Lovley 

2003). The advantages of biological approaches include a higher specificity than 

physical and chemical methods, as well as their suitability to in situ 

methodologies and the potential for improvement by genetic engineering (Valls 

and de Lorenzo 2002). Although, these technologies may work at the laboratory 

scale, there are inherent difficulties of reproducing these processes on a large 

scale due to site-specific hydrology and biogeochemical interactions, and 

consequently pilot-scale field studies should be carried out before full 

implementation (Blackburn 1998). Bioreactors, anaerobic wetlands and designed 

in situ systems go some way to alleviate site-specific problems, as they are a form 

of a controlled environment. 

Another technology that has been tested for bioremediation at the laboratory-scale 

is the fluidised bed reactor (FBR) (Kaksonen et al. 2003). The biomass is retained 

on an inert carrier material, which is fluidised with water. The advantage of FBRs 

over packed bed reactors is enhanced mass-transfer of both substrates and toxic 

products such as H2S (Kaksonen et al. 2003). For acidic, metal containing 

wastewaters, the high recycle ratio of substrate to pollutant dilutes the metal 
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concentrations and the acidity to a manageable level for the bioreactor (Kaksonen 

et al. 2003). Furthermore, because of intensive mixing, the FBRs are less likely to 

clog compared to fixed-bed bioreactors (Kaksonen et al. 2004b, 2006). However, 

FBRs have only been used in field-scale operations for the removal of organic 

contaminants (Kaksonen et al. 2006). 

One of the main problems in bioremediation of acidic waste is raising the pH 

because pH affects other factors including the solubility of metals and the kinetics 

of their oxidation and hydrolysis. Drury (1999) found that adding an external 

source of alkalinity, such as cheese whey, increased the pH, which increased the 

removal of metals and sulfate. James and Mrost (1965) and Hore-Lacy (1978) 

found the addition of lime proved unsuccessful on its own. Other commonly used 

alkaline agents include calcium hydroxide (hydrated lime), soda ash (sodium 

carbonate), caustic soda (sodium hydroxide) and ammonia (Costello 2003). 

Combining a bioreactor with addition of an alkalising agent or pre-treatment may 

prove more effective than either on its own. 

Addition of substrates to enhance bioremediation 

In situ bioremediation has been found to be more cost effective than containing 

and shipping contaminated waste for treatment. However, passive in situ 

bioremediation can be slow and affected by climate and rainfall. Hence, in situ 

systems that can be enhanced to minimise these affects are most desirable. In 

metal-polluted wastewater Fe 3+  is generally the most abundant electron acceptor 

for dissimilatory metal-reducing microorganisms in soils and sediments. Most 

Fe3+-reducing microorganisms can also reduce Mn4+  (Lovley 1991). Stimulation 

of Fe3+  and Mn4±-reducing microorganisms in a bioremediation setting can also 
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help the removal of other contaminants as the Fe 2+  and Mn2+  produced acts as a 

redox buffer to help prevent reoxidation of reduced metal contaminants (Lovley 

1991). Furthermore, some of these organisms may also be capable of reducing 

other metals as well, such as U 6÷  (Snoeyenbos-West et al. 2000). 

Snoeyenbos-West et al. (2000) identified three mechanisms for stimulating iron 

reduction in sedimentary - environments. First, the addition of compounds or 

organic matter for the bacteria to use as electron donors and carbon sources: for 

example, acetate, propionate, butyrate, benzoate, ethanol, toluene, H2 or various 

composts (Anderson et al. 2003; Lonergan et al. 1997), as well as molasses, 

cheese whey, ethanol and soybean oil (Sturman 2001; Kaksonen et al. 2004a; 

Geets et al. 2005; Lindow and Borden 2005a, b), woodchips and paper pulp waste 

(Hulshof et al. 2006) and fly ash (Gitari et al. 2006). Secondly, the addition of 

iron chelating compounds. Lovley and Woodward (1996) demonstrated in 

laboratory studies, in which Nitrilotriacetic acid (NTA) was added, that Fe3+  

reduction increased. They also showed NTA enhanced reduction of both poorly 

crystalline and crystalline Fe 3+  oxide. However, whether this could be applied to 

an in situ bioremediation site is debatable. Large and probably costly amounts 

would have to be used, and worse the MSDS for Nitilotriacetic acid states it as 

hazardous and possibly carcinogenic, although, there has been limited 

investigation of the long-term effects. Lovely and Woodward (1996) speculated 

that naturally occurring organic acids may also be iron chelators but no one had 

investigated these properties. Lastly, the addition of electron-shuttling organic 

compounds such as humic acids or other extracellular quinones could stimulate 

iron reduction (Lovley et al. 1998; Nevin and Lovley 2000). These compounds 
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can greatly accelerate iron reduction by alleviating the need for metal reducers to 

have direct contact to insoluble metals (Lovley 1993). 

In summary, additions of a variety of substances can greatly improve 

bioremediation; however, systems with a flow through set up and involving 

continual addition of compounds could prove expensive. Organic matter can be 

added as a solid form, such as compost, which stays stationary in the system, can 

be topped up periodically, and is relatively cheap if it is a by product of 

agriculture. Many commercial liquid amendments have been designed, such as 

HRC®  (Hydrogen Release Compound) (Regenesis PL), E0S ®  (Emulsified Oil 

Substrate) (EOS Remediation PL) and SRS ®  (Slow Release Substrate) (Terra 

Systems Inc.). These products are designed to provide an anaerobic and reducing 

environment, and were mainly developed for reducing recalcitrant chlorinated 

compounds; but can be applied to any remediation that requires a reducing 

environment (Lindow and Borden 2005b). These substances are fast- and slow-

release, providing an immediate carbon source and nutrients for bacterial growth 

in the first few days, as well as slow release degradation products for sustained 

long-term bacterial respiration (up to 3 years) (EOS Remediation PL). 

Many bioremediation systems use cheap cellulosic organic substrates as long-

term sources of carbon. Only a small fraction of the organic matter placed in 

bioremediation systems would be available to iron- and sulfate-reducing bacteria 

as they typically require simpler molecules (organic acids, alcohols or H2) for 

energy (Lovley 2000; Rabus et al. 2000). Anaerobic degradation of complex 

organic matter to simpler molecules by cellulolytic and fermentative 

microorganisms is required, and may limit the rate at which substrates become 
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available for iron- and sulfate-reducers (Hallberg and Johnson 2003). Logan et al. 

(2005) investigated the interactions between cellulolytic microbes, anaerobic 

respirers and fermenters, sulfate-reducers and methanogens using a variety of 

substrates. They found all metabolic activities, except methanogenesis, were 

limited by cellulose hydrolysis and declined substantially by day 99 in lab-scale 

permeable reactive barriers. Hulshof and colleagues (2006) found that woodchips 

did not promote bacterial activity as well as paper pulp waste did. They concluded 

the woodchips contained an insufficient concentration of labile carbon or 

nutrients such as phosphorus and nitrogen. 

The long-term sustainability of passive treatment systems appears more 

complicated and less passive than previously thought. More research has to be 

carried out on the depletion rates of different organic substrates to assess their 

ability to promote sulfate- and iron-reducing bacterial growth. More work 

mustalso be conducted to understand and differentiate the fundamental 

biochemical and microbiological reactions that occur in anaerobic bioreactors 

amended with complex organic substrates (Neculita et al. 2007). 

Research in the laboratory and in the field have revealed examples where excess 

organic matter was present and attempts to keep the bioremediation system 

anaerobic have worked for the first 4 months and then declined in metal reduction 

rates (Wendt-Potthoff et al. 2002). They showed Fe 2+  oxidation rates surpassed 

Fe3+  reduction rates after 5 months and found that adding hay bales to the surface 

provided an excess of organic carbon and decreased mixing of the fluid beneath 

them, promoting anoxic conditions. However, at the Heybridge site, hay bales 

were used and the reduction cells were still not reducing iron adequately. Johnson 
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and Bridge (2002) also found, in acid environments where aerobic and anaerobic 

zones are juxtaposed, the cycling of iron between ferrous and ferric is highly 

dynamic. This may have a serious impact on the overall efficiencies of the 

systems. Willow and Cohen (2003) found dissolved oxygen had little effect on the 

Fe3+  reduction rate, although, lower pH influents reduced the Fe 3+  reduction rate 

but they concluded this was because the pH was inhibiting sulfate-reducing 

bacteria. However, their experiments were conducted with laboratory simulated 

acid mine drainage waters. Conversely, Johnson and Bridge (2002) found iron 

reduction rates were higher in experiments using actual bioreactor samples 

compared to artificial wastewater. Therefore, using the contaminated 

leachate/groundwater from the study site in laboratory experiments is probably 

the best approach, as is conducting the experiment for an extended time to 

determine long-term reduction rates (Kaksonen et al. 2003). 

Improving the efficiency of long-term passive bioremediation 

Researchers have experimented with many factors to improve the efficiency of 

bioreactors and while their specific sites were improved, their methods may not 

be applicable to other sites (Anderson et al. 2003; Batty and Younger 2004; 

Bilgin et al. 2005). However, it is possible bioremediation strategies need to be 

assessed on a site-by-site basis. Gibert et al. (2004) found hydraulic retention time 

a key factor in the performance of bioremediation systems. Their studies showed 

high flux rates led to incomplete sulfate reduction and therefore incomplete 

removal of metals and therefore by extending the residence time from 0.73 days 

to 2.4 and 9 days increased sulfate removal by 18% and 27% respectively. 

Johnson and Hallberg (2005) inadvertently found a compost bioreactor that had 
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not been used for several months worked better than the others that had been used 

continuously. They concluded the time where no leachate was going into the 

bioreactor allowed critical microorganisms to proliferate. Furthermore, a retention 

time as short as 6.5 hours has been found to remove 99.9% of metal contaminants 

(Kaksonen et al. 2004a).They used a starting retention time of 20 hours and 

reduced it to 6.5 hours over 160 days with the addition of ethanol in a laboratory-

scale fluidised bed reactor. 

In situ passive bioremediation systems will always be affected by climatic 

conditions that will affect their efficiencies, for example, Batty and Younger 

(2004) found a compost wetland in Durham, UK fluctuated in its metal removal 

and pH increased during the year. Substrates may be diluted in heavy rainfall in 

temperate regions where bioremediation is needed and may require different 

strategies, hence solid organic matter for a carbon source may work better in these 

regions. Hulshof et al. (2006) predicted long-term metal removal efficiency on a 

pilot remediation system to last ten years, based on sulfate reduction rates, 

however, the calculations were based on the first year reduction rates. They did 

concede that the model represented more the maximum amount of sulfate 

reduction and metal removal that would potentially occur. Because there are no 

projects that have operated for more than 5 years, there is a lack of long-term data. 

Eger (2005) showed from data in both the field and laboratory that the rate of 

sulfate reduction decreased with time and that after several years' metal reduction 

was inefficient. 

The longevity of passive bioremediation has been reviewed (Eger and Wagner 

2003; Sjoblom 2003; Ziemkiewicz et al. 2003). Ziemkiewicz et al (2003) assessed 
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the projected long-term performance and cost-effectiveness of 137 passive 

systems in the eastern United States and predicted most would fail or at best 

perform poorly after approximately 3 years due to exhaustion of degradable 

carbon sources and required periodical top-ups of organic matter. Kahn et al. 

(2006) concluded research was needed into rates of bio-mineralization, exchange 

processes, carbon utilisation and the population dynamics of microbial consortia 

within bioremediation systems to make long-term predictions. 

New technologies are being trialled to address different problems of passive 

remediation systems. For example, compost-free bioreactors have been designed 

for treatment of acid mine drainage (EPA. 2006; Tsukamoto and Vasquez 2006). 

These bioreactors use a continuous liquid carbon source and a rock matrix rather 

than a compost or woodchip matrix, that collapses over time, is difficult to replace 

and can clog the system (Tsukamoto and Vasquez 2006). The benefits include 

better control of biological activity and improved hydraulic conductivity and 

precipitate flushing. This technology could improve the longevity of 

bioremediation systems as the matrix does not have to be replaced and the 

bioreactor does not clog up with precipitates (Tsukamoto and Vasquez 2006). 

Site characterisation 

The ICI Tioxide titanium-processing plant operated between 1948 and 1996 in 

Heybridge, located on the north coast of Tasmania on the Blythe River catchment 

(Figure 1.2 and 1.3). During the plant's operation iron oxide waste was 

discharged directly into Bass Strait, and later sludge ponds, resulting in elevated 

metal concentrations and a highly visible red plume along the coastline locally 

suppressing the marine benthic biota and altering biodiversity (Cooper 2004). 
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Figure 1.1. Tip Creek before the remediation project, Heybridge, Tasmania. 
Photo courtesy of Environmental Services and Design, 2005. 

A less-recognised impact of the operation was the groundwater contamination and 

surface runoff, which also entered the Blythe River estuary directly or via Minna 

Creek. The main sources contributing to the groundwater contamination were an 

industrial rubbish disposal site and the three large sludge ponds (155,000m 3) 

within the Minna Creek catchment, including the Tip Creek tributary, (Figure 1.1) 

which contained metalliferous waste products from the pigment process, 

primarily iron (12,400t) and manganese as well as smaller quantities of lead, 

copper and zinc (Cooper 2004). The leachate entered Minna Creek tributary 

raising the contaminant concentrations, 75ppm Fe, 2ppm Mn and pH 3.5. The 

creek was effectively lifeless eliminating a valuable habitat for indigenous 

wildlife including the endemic burrowing crayfish Parastercoides (Waight et al 

1997). Moreover, the Minna Creek fed into Blythe River carrying the 

contamination further downstream. In addition, an average of 140m3/day of 
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leachate with levels in excess of 1000ppm Fe and 30ppm Mn at  a  pH 3.5 was 

entering Bass Strait (Cooper 2004). 

Figure 1.2. General map of the area and position of the remediation project 
components and former factory site (ES&D, 2005). 
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Figure 1.3. Blythe Estuary catchment, showing the Minna Creek and Tip 
Creek sub-catchments affected by Tioxide operations (ES&D 2005). 
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Titanium dioxide treatment process 

Titanium dioxide pigment can be manufactured by either the sulfate or the 

chlorine process (Millennium Chemicals 2005). ICI Tioxide used the sulfate 

process (Figure 1.4) that produces large quantities of waste iron sulfate using 

ilmenite (FeTiO3) shipped from Western Australia and local sulfuric acid from 

metal smelting operations (Tioxide Australia 1980). The sulfate process produces 

a form of pigment called anatase, which is preferred over chloride-derived 

pigment for use on papers, ceramics and inks. The ore is first dried, ground, and 

sulfated by agitation with concentrated sulfuric acid in a batch or continuous 

exothermic digestion reaction. Controlled conditions maximize conversion of 

TiO2  to water-soluble titanyl sulfate using the least amount of acid. The resultant 

dry, green-brown cakes of metal sulfates are dissolved in water or weak acid, and 

the solution treated to ensure that only ferrous-state iron is present. The clear 

solution is then further cooled to crystallize coarse ferrous sulfate heptahydrate 

(FeSO4 .7H20) which is separated from the process and dumped (Millennium 

Chemicals 2005). Hence, the waste is highly acidic, metal and sulfate rich, and 

very similar to acid mine drainage except that acid mine drainage typically has 

iron concentrations of 160 — 500 mg L -1  (Ledin and Pedersen 1996) whereas the 

Heybridge site has 800 - 1200 mg L -1 . 
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Figure 1.4. Sulfate extraction process of titanium oxide from ilmenite ore 
(FeTiO3) (Millennium Chemicals PL). 

The remediation project overview 

After the demolition and disposal of the tioxide pigment plant Echo Remediation 

(now Environmental Services and Design (ES&D)) was formed to remediate the 

whole site. The main aims were to contain and treat the leachate on site and 

minimise further generation of pollutants (Cooper 2004). The long term goal was 

to establish a passive, low-maintenance, efficient water treatment system in situ 

that could purify leachate generated from the contaminated materials over a thirty 

year period. The treated water had to be of a standard that could be discharged 

into the Blythe River, containing specifically 0.3mg L -1  and 0.1mg L -1  soluble 

iron and manganese concentration respectively and 250mg L sulfate (Australian 

Drinking Water Guideline ADWG 6). 
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The remediation began with the industrial waste material being deposited in the 

sludge dams, which were then clay-capped, uncontaminated surface waters were 

diverted away from the dams so all leachate was collected at a central site. A 

combined anaerobic and aerobic wetland system was developed in consultation 

with Syrinx Environmental PL (Cooper 2004). 

Overview of the treatment components 

The system has five main components each of which have sub-components. The 

system has a design flow capacity of 110m 3  day-1  of leachate containing up to 

95kg day -1  iron. The components are: 

• Collection: drains at the end of each sludge dam were isolated from 

the air to diminish precipitation of metals and drained into one central 

pump. Waste streams were classified on iron content and low content 

streams were diverted around the pre-treatment into the aeration race. 

• Pre-treatment: Initial trials showed that iron precipitation made 

handling of material difficult and blocked pipes. Experiments showed 

pre-treatment of the leachate using potatoes in an enclosed "cell" 

prevented precipitation of iron by increasing the pH to approximately 

4 — 5 and provided a carbon source for the reduction process. 

• Anaerobic reduction: An enclosed cell or "compost bioreactor", 

filled with mushroom compost and covered with straw bales 

encouraged the growth of sulfate- and metal-reducing bacteria, which 

reduced the sulfate and metals to their insoluble form. 

18 
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• Aeration and settling ponds: a series of races and settling ponds 

(Figure 1.2) to rapidly aerate the water to precipitate ferric iron into 

the settling ponds. The second settling pond is lined with limestone to 

increase the pH to over 7 and further precipitate ions. 

• Aerobic wetlands: A series of 4-5 clay-lined wetland areas densely 

planted with a succession of rushes, sedges, aquatic and emergent 

macrophytes and swamp forest. Phosphorus, nitrogen and residual 

metals are removed by plant uptake. Water flow is through a series of 

weirs to promote flow to a final polishing pond, which allows removal 

of any residual oxidation products. 

Figure 1.5. Photo of the location of the potato and reduction cells in the 
Minna Creek Valley, north-west Tasmania. Photo courtesy of ES&D. 
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Figure 1.6. First aeration race and settling pond after the reduction cells, 
Heybridge, Tasmania. Photo courtesy of ES&D 2005. 

Figure 1.7. Wetland system planted with native plants to remove organic 
matter and residual metals, Heybridge, Tasmania. Photo courtesy of ES&D, 
2005. 
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Components of the bioremediation system 

The sludge dams 

The leachate was pumped to the existing ocean outfall between 1996 and 2003 

until the downstream water biological treatment system was established. The 

leachate pumped into this outfall contained 80 kg day -1  of Fe, and 10 kg day-1  Mn. 

During the earth works, all materials (140,000 m 3) from the industrial rubbish 

disposal site in the Tip Creek catchment were removed and placed within the 

existing sludge ponds prior to clay capping. The three sludge dams were 

consolidated, clay-capped and fenced. Table 1.1 shows the composition of the 

three dams on the Heybridge site. 

Table 1.1. Sludge dam effluent chemical composition, Heybridge (Cooper, 
ES&D Technical Re ort 2004). 
Chemical 
parameter (mg/l) 

Sludge Dam 1 Sludge Dam 2 Sludge Dam 3 

Acidity 1200 1400 2800-4900 
Alkalinity <0.05 <0.05 - 42 <0.05 
Aluminium 29-48 93-220 310-320 
Arsenic nda  <0.001 nd 
Cadmium 0.004 0.003-0.095 <0.006 
Chromium (III) nd 0.093 nd 
Copper nd 0.26 nd 
Iron 810-980 620-1100 890-1200 
Lead 0.018 0.024-0.16 0.19 
Manganese 23-44 15-44 26-32 
Zinc nd 1.6 nd 
Sulfate 540-810 600-1200 1300-1700 
Ammonia <0.05-1.2 <0.05-1 <0.05-0.9 
Total nitrogen 0.11-1.6 0.96-3.4 0.15-1.9 
Total phosphate <0.05-0.14 <0.05-0.13 <0.05-0.1 
nd, not determined 
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The potato cell 

Figure 1.8. Potato pre-treatment cell Heybridge remediation  site,  Tasmania. 
Photo courtesy of ES&D, 2005. 

The collected leachate was found to be unstable and reacted with the air 

producing a thick heavy iron precipitate, which quickly restricts and blocks the 

feed lines (Cooper pers. comm.). Pre-treatment with potatoes allowed flow of the 

leachate to the next stages of the treatment system. The leachate is directed into a 

treatment cell containing potatoes (Figure 1.7), located on the downstream end of 

Sludge Dam 3. The purpose of the potato cell is to create anoxic conditions in the 

leachate stream, and introduce alkalinity into the anoxic water. The creation and 

maintenance of anoxic conditions in the leachate stream is essential to prevent the 

precipitation of iron within the potato cell or piping, which would lead to a 

decrease in the efficiency of overall the metal removal due to coating and/or 

restriction of the flow of water through the system (Cooper 2004). 
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A small-scale potato reactor was tested on site at a number of flow and iron 

loading rates for a period of 1 — 3 months. It was found to enhance the removal of 

iron in the subsequent reduction cells compared to cells not receiving the pre-

treated leachate. There was also a reduction in the amount of hydroxide build-up 

in the pipe work. Two large-scale potato cells were then constructed such that one 

can be taken off line for maintenance during the dry summer months without 

disrupting water treatment (Cooper 2005 pers.comm.). 

The potato cell is a new technology that has not been implemented at a large scale 

at any other site in Australia or the world. The advantage of using potatoes is that 

they are relatively inexpensive and easily obtainable and provide an alkalinity 

addition to the water in a relatively passive manner, and prevent pipe clogging 

(Cooper pers. comm. 2005). The decomposition of potatoes also provides 

carbohydrate and protein necessary for sulfate and iron reduction to occur in the 

reduction cell. 
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The reduction cells 

Figure 1.9. Inside reduction cell; mushroom compost and straw bales being 
added, Hevbridge, Tasmania Photo courtesy of ES&D, 2005. 

Figure 1.10. Finished reduction cell packed with straw and the black plastic 
cover, Heybridge, Tasmania. Photo courtesy of ES&D, 2005. 

The main function of the reduction cells is to promote microbial sulfate and metal 

reduction. The cells consist of a base of bluestone overlaid by mushroom compost 
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and capped with straw bales (Figure 1.8) and then black plastic to create an 

anaerobic environment (Figure 1.9). This environment encourages sulfate- and 

metal-reducing bacteria to produce alkalinity and hydrogen sulfide, which 

precipitates metals from the water as sulfides. Sulfate-reducing bacteria reduce 

sulfate to sulfide using organic substrates resulting in the removal of metals from 

solution via three main processes: precipitation as metal sulfides, chemical 

reduction of metals by the sulfide and raising the pH (Rabus et al. 2000). Iron- or 

metal-reducing bacteria directly metabolise the metals by dissimilatory or 

assimilatory reduction (Lovley 2000). The sulfidogenic processes have some 

advantages over chemical treatment methods, such as better thickening properties 

of the metal sludge and lower solubility products as compared to hydroxide 

precipitation (Kaksonen et al. 2004b). Little is known regarding the microbiology 

of these compost bioreactors and in particular, how the species composition 

changes over time. How the reduction cells perform in the long term and what has 

to be done to keep the metal removal rates high is not well understood. ES&D 

identified low temperatures and fluctuating pH as the main problems with the 

reduction cells. Furthermore, as the site is in a high rainfall and low temperature 

valley (Figure 1.10), any improvements should aim to overcome related 

performance problems. 
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Figure 1.11. Mean monthly rainfall and temperature (1944 — 2007) for 
Burnie, Tasmania, nearest measuring station to Heybridge (Bureau of 
Meteorology, 2005). 
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Physiochemical properties of the Heybridge bioremediation system 

pH 

Initial measurements showed a near-neutral pH was maintained in the reduction 

cells in the first year and the potato cells slightly raised the pH by the addition of 

starch (Figure 1.12). 

Figure 1.12. pH measurements from July 2002 to July 2003 from the sludge 
dam (potato cell feed), potato cell discharge and reduction  cells  6, 7, and 8 
discharges (Data from ES&D Technical Report 2005). 

Iron and sulfate removal 

Bioremediation cells were effective at removing iron (60-80%), sulfate (70-95%) 

and some manganese (6-17%) in the first year (Figure 1.13, 1.14). Reduction cells 

that had leachate pretreated through the potato cell, performed best when 

temperatures exceed 15°C at the inlet. The critical redox level (-100mV) needed 

for reduction of sulfate was achieved providing temperature is adequate and 

loading rate is adequate. The iron loading target was 15g -1 m3 -1  day' based on the 

mushroom compost volume. However, after the first year of operation iron and 

sulfate removal started to decline. Over the last 4 years, the reduction cells were 
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running at 20 - 60% iron removal efficiency (Figure 1. 15) and appear to have 

seasonal variation, where decline in iron removal efficiency is greatest in August 

to September at the end of winter. 

Figure 1.13. Percent iron removal efficiency of the reduction cells in the first 
year of operation (ES&D 2005). 

Figure 1.14. Percent sulfate removal efficiency of the reduction cells in the 
first year of operation (ES&D 2005). 
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Figure 1.15. Monthly % iron removal efficiency of the reduction cells over 
time (2003 — 2006), Heybridge, Tasmania. Data from ES&D Technical 
Report 2005. 

Research objectives 

To characterise and optimise a novel remediation strategy for treatment of 

industrial mildly acidic, metal rich leachate to drinking water quality specifically 

by; 

• 16S rRNA gene clone libraries and terminal restriction fragment length 

polymorphisms (TRFLP) to identify and monitor bacteria responsible for 

reducing iron and removing acidity from leachate in the compost system, 

• optimise the reduction cell by manipulating the compost parameters as 

well as trialling cheap, non-toxic carbon sources such as ethanol, molasses, 

sodium bicarbonate and vegetable oil, 

• apply the modifications to pilot scale reduction cells at an industrial site, 
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• improve the treatment system and permit for a more rapid and economical 

bioremediation system which can be applied to other contaminated sites in 

Australia. 
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Chapter 2 Literature Review 

Microbial iron reduction and its role in bioremediation— a 
review 

Microbial iron reduction evolution 

Iron is the second most common element on the Earth and the fourth most 

common in the Earth's crust. It is not surprising that bacteria have evolved to 

utilise iron and many other metallic elements found in nature in their metabolism. 

Microbial respiration with ferric iron as the electron acceptor may be the least 

studied of all the quantitatively important biogeochemical processes, with only 

sulfate providing a greater potential for the oxidation of organic matter than Fe3+  

(Lovley 1987). Lovley (1991) further speculated that the reduction of ferric iron 

might have been the first globally important mechanism for microbial oxidation 

of organic matter to carbon dioxide. 

The discovery that Geobacter metallireducens could completely oxidise multi-

carbon organic compounds to carbon dioxide coupled to reduction of Fe 3+  to Fe2+  

provided a microbial model for this process (Lovley et al. 1987). This process is 

probably necessary to account for the oxidation of organic matter to carbon 

dioxide coupled to Fe 3+  reduction in the banded iron formations. The suggestion 

that Fe3+  reduction may have been the first globally significant process for 

completely oxidising organic matter back to CO 2  is consistent with the deep-

branching phylogenetic clades that Fe 3+  reduction may have been an early form of 

respiration (Figure 2.1) (Lovley et al. 1997; Lovley 2002). Vargas et al. (1998) 

speculated Archaea and Bacteria that are the closely related to the hypothesised 

last common ancestor could reduce Fe 3+  to Fe2+  and conserve energy for growth. 
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Iron reduction has also been demonstrated in hyperthermophiles, which have been 

isolated from several hot microbial ecosystems (Lovley et al. 2000). These 

populations were found to conserve energy to support growth by oxidising 

organic matter coupled to Fe3+  reduction, and included the archaeon Pyrobaculum 

islandicum and bacterium Thermotoga maritima. The finding that all of the extant 

microorganisms believed to be most closely related to the hypothesised last 

common ancestor of modern organisms have the ability to couple hydrogen 

oxidation to Fe 3+  reduction suggests that the last common ancestor had the ability 

to use Fe3+  as an electron acceptor (Figure 2.1). 

Hydrogen Oxidation Coupled to Fe(111) 
Reduction on Early Biotic Earth 

UV 
	 Anaerobic atmosphere 

with no Ozone Shield 

Fe 11)-Rich Sediment 
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Progenote Fe(III)- 
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Subsurface H7 

Figure 2.1. Model for microbial iron metabolism on early Earth. From 
Lovley, 2002. 
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In many present day sedimentary environments, ferric iron continues to be an 

important electron sink, even though there is a wide range of other electron 

acceptors available for organic matter oxidation. Walker (1985) emphasised that 

under the anaerobic conditions of the first 2 billion years of Earth's history, there 

was abundant dissolved Fe2+  but little dissolved sulfur, oxygen or nitrate. When 

photosynthesis emerged, a concurrent oxidation of Fe 2+  to Fe3+  occurred as 

inorganic carbon was reduced to organic carbon. 

Microbial biotransformations of metals and metalloid elements are an important 

step in biogeochemical cycles (Lovley 1993b). Two groups of organisms, 

dissimilatory and assimilatory (or non-dissimilatory) mainly carry out metal 

reduction. Dissimilatory reductive processes are carried out under anaerobic 

conditions, the organisms involved are almost entirely obligate anaerobes, and the 

metal serves as a terminal electron acceptor for respiration. Non-dissimilatory 

reductive processes are carried out by aerobic microorganisms, which assimilate 

metals into cellular components (Lovley 1993b; White and Gadd 1998). However, 

the dissimilatory iron reducers are the most abundant and include genera such as 

Geobacter, Shewanella, Desulfuromonas, Pelobacter, Ferrimonas, Geovibrio and 

Geothrix. These organisms have a broad spectrum of other metabolic capabilities 

as well, for example, many dissimilatory metal reducers can reduce soluble U 6+  to 

insoluble U4+  (Lovley 2000). Iron-reducing microorganisms have been divided 

into groups by the processes they use to couple with iron reduction. There are four 

main groups, fermenters, organic acid oxidisers, aromatic compound oxidisers 

and hydrogen oxidisers (Lovley 1992). 
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Organisms also previously thought of as obligate anaerobes and sulfate reducers 

will reduce iron and other metals under anaerobic and aerobic conditions, and 

include Desulfovibrio spp. and Thiobacillus spp. (Rabus et al 2000). In 1993, the 

mechanisms for electron transport in anaerobic dissimilatory metal reducers were 

largely unknown as the sites are outside the cell (Lovley 1993a). However, these 

processes, and their significance to larger biogeochemical cycles were beginning 

to interest many researchers (Lovley 1995a; White et al. 1995; Roane et al. 1996). 

At this point however, research had not shown whether the metal-reducing 

microorganisms available in pure cultures were representative of soil/sediment 

microbiota. The ability to reduce iron appears to be widespread amongst 

acidophilic bacteria, presumably because many extremely acidic environments 

(pH <3) contained elevated concentrations of soluble iron. The redox potential of 

the ferrous/ferric iron couple is related to pH and is most positive in extremely 

acidic environments (Eh = +770mV at pH 2). This value is close to that of the 

oxygen/water couple (+840mV), implying that ferric iron is an attractive 

alternative electron acceptor to oxygen in low pH environments (Johnson and 

Bridge 2002). 

Research history of microbial iron reduction 

Starkey and Halvorsen (1927), using Clostridium sp. and E. coil, first determined 

that microbial metabolism was required for the reduction of Fe 3+  with glucose. 

However, they thought Fe 3+  reduction resulted from the organisms lowering the 

oxygen concentration and producing fermentation acids, which was considered to 

chemically shift the Fe3±/Fe2+  equilibrium towards Fe2+ . Bromfield (1954) 

provided evidence that reduction of Fe 3+  was more directly related to the 
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metabolism of microorganisms. Bromfield (1954) found that aerobically grown 

cultures of soil bacteria reduced Fe3+  when incubated anaerobically. Fe3+  was not 

reduced if chloroform was added, if the cultures were autoclaved, or if the cells 

were removed by centrifugation. De Castro and Ehrlich (1970) demonstrated that 

Bacillus sp enzymatically reduced Fe 3+, which did not occur if the glucose 

medium was not inoculated with the organism or if glucose was omitted. 

Furthermore, Fe 3+  was not reduced when the pH of the uninoculated medium was 

reduced, demonstrating that a decrease in pH did not induce chemical Fe 3+  

reduction. 

Research subsequently concentrated on how microorganisms reduced iron. For 

example, Munch and Ottow (1983) demonstrated that the reduction of Fe 3+  during 

glucose metabolism by Clostridium butyricum or Bacillus polymyxa was not due 

to synthesis of fermentation products or a low redox potential. Reduction of Fe 203  

was inhibited if the Fe203 in the culture was enclosed in dialysis tubing, even 

though pH and redox potential were as low as in cultures where the Fe 203  was not 

separated. These results indicated a direct contact between the microorganism and 

Fe3+  was required, and the authors suggested that microbial enzymes were 

necessary to catalyse the reaction. 

Ottow and von Klopotek (1969) proposed that two enzymes catalysing Fe 3+  

reduction, and they were linked to electron transport. One proposed pathway was 

electron transport with nitrate reductase. Experiments revealed reduction of Fe 3+  

was decreased in nitrate reductase negative (nit-) bacteria compared to nitrate 

reductase positive (nit+) strains. Furthermore, less Fe 2+  accumulated in cultures of 

nit+ cultures when nitrate was included in the medium. This was interpreted as a 
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preference for nitrate reduction (Ottow 1970; Munch and Ottow 1983), but this 

interpretation was criticised since nitrite is produced from nitrate reduction and 

nitrite can chemically oxidise Fe 2+  (Obuekwe et al. 1981). The other proposed 

pathway was electron transport with ferrireductase, which could reduce Fe 3+  or 

Mn4+  but not nitrate. Evidence for a ferrireductase pathway that was distinct from 

nitrate reductase pathway was reduction of Fe3+  in organisms such as Clostridium, 

which do not reduce nitrate, and the continued Fe 3+  reduction in nit- cultures 

(Ottow and von Klopotek 1969). Once bacterial iron reduction had been proven, 

research moved into what electron donors could be coupled to iron reduction. 

Lascelles and Burke (1978) first demonstrated that bacterial iron reduction linked 

to organic matter oxidation. Their experiments showed that Fe3+  citrate was 

reduced with nicotinamide adenine dinucleotide (NADH) or succinate as electron 

donors. Rotenone inhibited Fe 3+  reduction with NADH as the electron donor, 

indicating a need for a functional primary dehydrogenase for Fe 3+  reduction. 

Lascelles et al. (1978) experimented with a variety of electron donors using a 

membrane preparation of Staphylococcus aureus; and showed that the nitrate 

reductase inhibitor azide did not affect iron reduction. This suggested a 

component in the electron transport chain other than a nitrate reductase reduced 

Fe3± . 

Arnold et al. (1986) conducted experiments with Pseudomonas ferrireductans and 

suggested the organism contained both a constitutive (an enzyme produced in 

constant amounts regardless of conditions) and an inducible (enzyme produced in 

response to conditions) Fe3+  reductase. Under anaerobic conditions, cells that had 

been grown under low oxygen conditions had rates of iron reduction 6-8 fold 
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higher than the rates in cells grown at higher oxygen concentrations. Furthermore, 

the addition of an inhibitor (Rotenone, Dicumarol, NaCN or NaN3) did not seem 

to affect cells under low oxygen conditions. These results were interpreted as 

demonstrating the presence of a constitutive Fe 3+  reductase and a second Fe 3+  

reductase that was induced at low oxygen concentrations. This raised questions as 

to whether or not bacteria just obtained energy but also increased biomass directly 

from iron reduction. Later work (Johnson and Bridge 2002) found that two 

species of the same genus had different enzymatic systems. Acidiphilium 

acidophilum had an inducible iron reductase system while that in Acidiphilium 

SJH it was constitutive. 

Balashova and Zavarzin (1980) found that a Pseudomonas sp. consumed 

hydrogen with the reduction of Fe 3+  with approximately two Fe3+  ions reduced per 

hydrogen ion consumed. After ten days of growth the number of viable cells in 

media with hydrogen and Fe 3+  was 4 x 106  cells m1 -1  compared to media without 

Fe3+, which was 3 x 10 3  cells m1 -1 . Jones et al. (1983) also found an increase in 

ATP yields in the presence of Fe 3+  with hydrogen as an electron donor in lake 

samples but only under certain redox conditions. Further studies reported more or 

less growth depending on the electron donor available. Jones et al. (1984) found 

Fe3+  reduction did not result in a detectable increase in growth of a glucose-

fermenting Vibrio sp., although the growth yield of a malate-fermenting Vibrio sp. 

increased nearly 30% when Fe 3+  was added. Knowledge of the mechanisms for 

energy generation coupled to Fe 3+  reduction at this point was in its early stages. 

Hence, further research explored into different electron donors linked to Fe 3+  

reduction. 
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Microorganisms involved in bioremediation of metalliferous pollution 

In 1987 Dr Derek Lovley and his team at the Environmental Biotechnology 

Center, University of Massachusetts isolated Geobacter metallireducens, a 

bacterium found to couple iron reduction with oxidation of organic matter 

(Lovley et al. 1987). However, it was first used for the in situ bioremediation of 

organic contaminants coupled to iron reduction not the bioremediation of metals 

promoted by organic matter addition (Lovley et al. 1993). Therefore, up until this 

point most strategies for bioremediation for metal contamination have focused on 

ex situ methods using above ground reactors. However, many instances arose 

where pumping costs were expensive or other considerations have favoured an in 

situ approach (Anderson and Lovley 1997; Anderson et al. 1998). Lovley et al. 

(1991) suggested iron-reducing bacteria could reduce soluble uranium (U 6+) to 

insoluble uranium (U4+), the first mention of iron-reducing bacteria being used for 

bioremediation of recalcitrant molecules. 

Many early engineering studies into bioremediation of acid mine drainage and 

acidic, metal-rich mine wastewaters attributed metal reduction to the action of 

sulfate-reducing organisms (Czekalla et al. 1985; Gyure et al. 1990; Barnes et al. 

1991; Barnes et al. 1992; Dvorak et al. 1992; Scheeren et al. 1992). These 

bacteria were found to reduce sulfate to sulfide, which bind metals and precipitate 

as metal sulfides. However, it was more likely a consortium of sulfate-and iron-

reducers as well as iron-oxidisers, such as Acidithiobacillus spp. as these bacteria 

were found to be metabolically important (Brock and Gustafson 1976; Ohmura et 

al. 2002; Duquesne et al. 2003). Furthermore, Acidithiobacillus spp. were found 

to be capable of both oxidation and reduction of iron under varying redox 
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conditions (Ohmura et al. 2002). Johnson and Bridge (2002) also found 

Acidiphilium spp could reduce Fe 3+  under microaerophilic conditions; these 

bacteria are normally obligate aerobes. However, researchers did not clearly 

understand the mechanisms of microbial metal reduction and how it could be 

employed for environmental restoration. These versatile bacteria would be the 

most likely candidates for bioremediation as they do not require strict anaerobic 

conditions like Geobacter spp. and can survive in acidic conditions, which most if 

not all, mine leachates have. However, the amount of oxygen in the 

bioremediation system has to be closely monitored, if it becomes too high the 

acidophiles will start oxidising iron (Johnson and Hallberg 2005). 

Despite the environmental significance of dissimilatory Fe 3+  reduction, little is 

known about the diversity of microorganisms responsible for this process. Until 

recently, the only two studied microorganisms were Geobacter metallireducens 

(Deltaproteobacteria) and Shewanella putrefaciens (previously Alteromonas) 

(Gammaproteobacteria) (Lovley 1991). However, other organisms from these 

groups have been isolated from a diversity of environments, for example, 

Desulfuromonas spp. and Geothrix sp. (Lonergan et al. 1996, 1997; Lovley 2002) 

(Figure 2.2; Figure 2.3). A greater awareness of the biodiversity and the metabolic 

capabilities of these microorganisms will have a major impact on bioremediation 

systems and increase the options available for controlled and directed 

bioremediation of polluted waters (Johnson et al. 2002). 

Lonergan et al. (1996) found a diverse range of bacteria that could reduce iron 

coupled to the oxidation of organic carbon (Figure 2.2). However, they raised the 

question whether these organisms all reduced Fe 3+  via similar electron transport 
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chains or whether the capacity for electron transport to Fe 3+  had evolved 

independently in different groups. For example, earlier studies suggested that 

more than one c-type cytochromes were involved in electron transport of Fe 3+  in 

iron-reducing Gammaproteobacteria and Deltaproteobacteria (Lovley 1995a). 

However, Pelobacter spp. (which lack c-type cytochromes) can also grow with 

3+  as the electron acceptor, i Fe 	 ndicating that c-type cytochromes are not necessary 

for Fe3+  reduction (Lovley 1995a). The close phylogenetic relationship between 

the genera Pelobacter, Geobacter and Desufluromonas makes it likely that these 

organisms all have a common mechanism for electron transport to Fe 3+  and thus 

the role of c-type cytochromes must be further researched. In addition, the 

discovery that some hyperthermophiles can also reduce iron raised the question of 

whether mechanisms for dissimilatory iron reduction have been conserved 

throughout microbial evolution (Lovley 2000). Pyrobaculum islandicum, the 

hyperthermophile most studied, does not contain c-type cytochromes (Lovley 

2000). Hence, it is unlikely that a single strategy for electron transport to Fe 3+  is 

present in all iron reducing microorganisms (Childers and Lovley 2001). 
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Figure 2.2. Phylogenetic tree inferred from 16S rRNA sequences showing the 
lineages of Fe3+-reducing bacteria (bold lines). Bar represents a 0.025% 
sequence difference. From Lonergan et aL 1996. 

Studies have demonstrated that ferric iron-reducing microorganisms contain 

membrane bound electron transport components that are necessary for electron 

transport to Fe3+  oxides, but the protein responsible for the final transfer has not 

yet been identified (Lovley and Coates 2000) and electron shuttling or chelating 

between the cell and the iron is probably unlikely in all cases (Lloyd et al. 1999). 

However, Shewanella sp. and Geobacter metallireducens have been found to 

produce pilin-like filaments that function as "nanowires" to transfer electrons 

outside the cell onto insoluble electron acceptors, such as iron minerals (Leys, et 

al. 2002; Kus et al. 2005). The filaments, which are only 3-5nm in width, can 

extend more than 20[Im in length. Elucidation of this novel form of electron 

transfer will provide insight into the mechanisms by which Geobacter can 

contribute to bioremediation of groundwater contaminated with organic and metal 

contaminants. The ability to mass-produce these long conductive filaments may 

have application in the development of nanoelectronic devices, sensors, and 

microbial-based fuel cells (Reguera et al. 2005). 
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Iron reduction and organic matter metabolism 

The ability of some microorganisms to reduce Fe3+  has been known since the 19 th  

century. However, it was thought that the known iron-reducers only reduced iron 

as a trivial side reaction in their metabolism (Lovley 1987). This process was 

thought to not yield energy to support growth. It was not until the 1980s that 

Lovley and Phillips (1986) found iron-reducing bacteria were shown to 

metabolise fermentable substrates to produce energy. The ability of some 

microorganisms to couple the oxidation of fermentation products to the reduction 

of ferric iron means that is it possible for a community of microorganisms to 

completely metabolise organic matter with ferric iron as the sole electron acceptor 

(Lovley 1987). 

Researchers at this stage had been unable to isolate an organism capable of 

completely oxidising glucose with Fe3+  as an electron acceptor. This was puzzling 

as such a metabolic capability would be competitive in a substrate-limited 

anaerobic environment over organisms that ferment glucose, as complete 

oxidation of glucose to carbon dioxide (CO2) yields more ATP than fermentation 

(Lovley 1987). However, other fermentation products such as acetate, butyrate, 

propionate, ethanol and methanol were metabolised with Fe 3+  reduction in 

enrichment cultures (Lovley and Phillips 1986). Experiments using sediment 

samples instead of laboratory cultures also demonstrated Fe3+  reduction coupled 

to fermentation products. Acetate additions were found to stimulate Fe 3+  

reduction in rice paddy soils (Kamura et al. 1963) and freshwater sediments from 

the Potomac River (Lovley and Phillips 1986). Since fermentation products can 

be metabolised with Fe 3+  reduction, the complete anaerobic mineralisation of 
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fermentable organic matter with Fe 3+  reduction is possible (Lovley 2000). This 

potential had not yet been recognised as important in some environments such as 

metal-rich mine wastes where this metabolism could be exploited for passive, low 

cost remediation. 

Figure 2.3. Bacteria known to conserve energy to support growth by either 
oxidising hydrogen or organic compounds with the reduction of Fe 3±. From 
Lovley (2002). 

43 



Chapter 2 Literature Review 

Modern research techniques for determining bacterial communities as 
applied to acidic, metal-rich wastewaters and acid mine drainage 

Molecular biology techniques, using targeted 16S rRNA gene primers on 

sediment or soils samples, are powerful tools for determining the structure of 

microbial communities, however are not without their limitations. Lonergan et al. 

(1996) used these techniques on members of the Geobacter, Desulfuromonas, 

Pelobacter and Desulfuromusa branch of the delta subdivision of the 

Proteobacteria. They found that these bacteria were linked physiologically as 

well as phylogenetically but were diverse enough to be grouped into a single 

family Geobacteraceae, rather than as a single genus as suggested by Devereux et 

al. (1990). The Lonergan et al. (1996) study investigated 16S rRNA gene 

oligonucleotide probes for in situ identification of sulfate-reducing bacteria and 

found the probes also worked on iron-reducing bacteria such as Geobacter sp. and 

Pelobacter sp. as they only had a single base mismatch to the target site of the 

probe. Although it would be nice to have specific oligonucleotide probes for 

studying bacterial populations, caution must be applied in using these probes. 

The use of 16S rRNA gene-directed probes for studying the distribution of 

dissimilatory Fe3+ reducers is also complicated by the fact that the ability of 

bacteria to use Fe3+  as a terminal electron acceptor is not limited to 

Deltaproteobacteria. Iron reduction has been found in members of 

Gammaproteobacteria including Shewanella and Pseudomonas (Balashova and 

Zavarzin 1980; Balashova 1985; MacDonell and Colwell 1985) and 

Betaproteobacteria such as Ferribacterium limneticum (Cummings et al. 1999). 

Cultured iron-reducing bacteria such as Geothrix fermentans (Coates et al. 1999) 

a member of the phylum Acidobacteria, and Geovibrio ferrireducens (Caccavo et 
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al. 1996) a member of the phylum Deferribacteres have been found to be 

unrelated to any other iron-reducing bacteria. The wide phylogenetic dispersion of 

dissimilatory Fe 3+  reducers suggest that either Fe 3+  reduction evolved multiple 

times was a widespread early form of respiration or lateral gene transfer occurred 

similar to examples in sulfate-reducing bacteria (Meyer and Kuever 2007). 

This diversity indicates that using many different 16S rRNA gene-targeted probes 

would be required to determine the structure of an Fe3+-reducing community and 

this would not be feasible. Lonergan et al. (1996) suggested using 16S rRNA 

clone libraries and DGGE (Denaturing Gradient Gel Electrophoresis) instead of 

probes for elucidating the bacterial community composition. However, DGGE is 

now a common method and no one has come up with a quick and easy diagnostic 

tool for evaluating iron-reducing bacterial diversity. Techniques such as TRFLP 

(Terminal Restriction Fragment Length Polymorphism) and ARISA (Automated 

Ribosomal Intergenic Spacer Analysis) are popular as quick molecular methods 

for estimating population diversity (Danovaro et al. 2006), especially for 

industrial applications that do not want expensive and complicated testing 

methods. TRFLP provides a generalised appraisal of the diversity of bacterial 

communities by assessing phylogenetic differences of fragments lengths in a 

given sample (Liu et al. 1997), in contrast, ARISA targets the intergenic 16S-23S 

internally transcribed spacer sequences (ITS I) which can be variable in length 

and nucleotide sequence between and within bacterial species. ARISA does not 

require enzymatic digestion of PCR products and is faster and lower in cost. 
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Sources of bias in molecular methods 

Molecular methods have revolutionised the study of all living things, however, 

they do not come without their faults. Pitfalls arising from PCR amplification 

include inhibition of the reaction by co-extracted contaminants, differential 

amplification (Lueders and Friedrich 2003), formation of PCR artifacts (Suzuki 

and Giovannoni 1996; Osborne et al. 2005), and biases associated with 16S rRNA 

sequence variations due to rrn operon heterogeneity (Farrelly et al. 1995; 

Klappenbach et al. 2001). All of these have the potential to influence subsequent 

measures of the extant microbial diversity (Thies 2007). 

Inaccuracies during sizing of TRFs due to differences in purine content of the 

amplicons have also been reported (Kaplan and Kitts 2003). Despite running the 

size marker in every lane of the sizing gel, which is meant to increase accuracy in 

sizing, errors in sizing calls are still common. Marsh (2005) reported that 

fragments labeled with different fluorophores may have altered mobility in DNA 

sizing gels or capillaries. Thus, when sample TRFs are compared with the size 

marker, each labeled with a different fluorophore, base pair lengths are 

inaccurately calculated. This may lead to miscalls in TRF length of up to 7 base 

pairs (bp) (Marsh 2005). This would further exacerbate the process of matching 

TRFs to phylogenetic groups. In silico digests of clone libraries from the same 

DNA extraction would go some way to alleviate this problem. 

Despite these limitations TRFLP is still a highly discriminatory, high-throughput 

method that has been used successfully to characterize microbial communities 

from a wide range of environments. Any gene for which appropriate primers can 

be designed can be analysed by this method. The number of publications in which 

46 



Chapter 2 Literature Review 

T-RFLP has been used to characterize microbial communities continues to grow. 

The technique is robust, highly reproducible, and the ability to resolve a greater 

number of OTUs, coupled with clone libraries, makes the T-RFLP method an 

excellent choice for community comparisons, particularly in survey-based studies 

(Thies 2007). 

An alternative solution to overcome these limitations is to use genomic DNA 

(gDNA) as target that does not need prior amplification. Genomic microarrays are 

a recently developed, powerful genomic technology and are used to study gene 

expression in pure cultures, but have been found challenging in their application 

to environmental samples as many of these samples contain unknown bacteria 

(Avarre et al. 2007). Chandler et al. (2006) developed a 16S rRNA gene-targeted 

tuneable bead array for uranium-contaminated sediments undergoing 

bioremediation. The array used probes targeting bacterial species known to occur 

in contaminated sites and whose entire 16S rRNA gene sequences were in the 

GenBank sequence database. The probes were first validated against strains of the 

targeted bacterial species. This high-throughput method is an effective tool for 

determining microbial community structure and dynamics. However, the authors 

are quick to point out the method has limitations in not providing quantitative 

outcomes and needs further validation against many more bacterial species. 

The next logical step is sequencing genomes of the bacteria that are involved in 

the creation and remediation of acid mine drainage and wastewater. Genome 

sequencing from environmental samples, or metagenomics, has proven 

challenging because of the immense diversity of natural samples, with the 

exception of environments such as the acid mine habitat which have been found 
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to have relatively low population diversity (Tyson et al. 2004; Abulencia et al. 

2006; Ward 2006). Analysis of the functional genes in an environmental sample 

makes much more sense. Determining which genes are functioning in a sample, 

especially metabolic genes would provide more insights into the biogeochemical 

cycles. Microarray technology has proved to be a valuable tool for determining 

the biogeochemical processes and the bacteria involved (Avarre et al. 2007). 

Functional gene arrays (FGAs) have been employed in bioremediation studies, for 

example GeoChip (He et al. 2007). The GeoChip contains 24,000 probes for all 

the known genes involved in various biogeochemical, ecological and 

environmental processes, including C, N and S cycling, phosphorus utilisation, 

organic contaminant degradation and metal resistance and reduction. 

Proteomics is an emerging technology that may also be applied to bioremediation. 

It is the large-scale study of proteins, particularly their structure and functions. 

Proteins are vital parts of living organisms, as they are the main components of 

the physiological metabolic pathways of cells. Hence, proteomics may help 

understand how bacteria react to the presence of toxic substances and provide 

insights into the mechanisms involved in adaptive responses to chemicals. The 

identification of the expressed proteins might help to reveal mechanisms of 

defence, detoxification and adaptation. This information would expand the 

knowledge of the degradative capability of microorganisms for bioremediation of 

pollutants by understanding how to modify the regulatory and catabolic genes by 

providing suitable growth conditions (Zhao and Poh 2008). 
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Microbial diversity and community dynamics within a 
novel in situ acidic, sulfate- and metal- rich titanium 

processing leachate treatment system 

Abstract 

The microbial diversity and dynamics of a novel in situ bioremediation system, 

utilising agricultural waste and composted material was assessed. The system was 

developed to treat acidic (pH 3 — 5), sulfate (540 — 1700mg U 1 ) - and iron (800 —

1200mg L5-rich  titanium-processing leachate. Diversity and community structure 

was determined over 18 months from different stages of the treatment system 

including untreated sludge dam leachate, pre-treated effluent from an anoxic 

potato-containing section intended to increase alkalinity and prevent iron 

precipitation; and effluent from a series of mushroom compost and straw-based 

iron-reduction cells. 16S rRNA gene clone libraries revealed a community shift 

from a mixed iron- and sulfate-oxidising and reducing community in the sludge 

dam leachate to a community dominated by Acidithiobacillus spp. and anaerobic 

fermenters (related to the genera Bacteroides and Paludibacter) in the potato cell 

effluent. The reduction cell effluents proved to have higher microbial diversity and 

greater heterogeneity, including iron-and sulfate reducers, iron-oxidisers, 

anaerobic ferrnenters and in one sampled effluent a high proportion of clone 

clustering within candidate division 0P3. Multivariate statistical analysis of 16S 

rRNA gene-based TRFLP data revealed significant community differences 

occurred between treated/post-treated samples with untreated/pre-treated samples. 

TRFLP also indicated temporal shifts in the bacterial community composition 

occurred in the reduction cells although after 11 months of treatment microbial 

communities in three of four reduction cells showed evidence of community 

49 



Chapter 3 Microbial Diversity 

stabilisation probably due to exhaustion of an available carbon source and layered 

design of the system. There was no evidence of any seasonal effect on the 

microbial community. The GenBank accession numbers for the 16S rRNA gene 

clones are EU921150 — EU921224 and PopSet identification number is 

197203276. 

Introduction 

The role of sulfate-reducing bacteria in acid mine waters was first studied 

extensively by Colmer and Hinkle (1947), but Tuttle and colleagues (1969) first 

published about microbial remediation of high acid, metal and sulfur rich waters. 

Sulfate-reducing bacteria have been widely studied and their metabolism is well 

known and is indirectly used to precipitate metals (Rabus et al. 2000). However, 

there is still a lack of information about the microorganisms involved and factors 

controlling their growth and metabolism in polluted environments which often 

limits bioremediation implementation and/or long term remediation strategies 

(Lovley 2003). Ideally, bioremediation systems would be designed based on 

knowledge of: the microorganisms that are present in the contaminated area, their 

metabolic capabilities, how they respond to changes in environmental conditions 

and whether they can be used to an advantage in remediation. 

Molecular biology methods, such as 16S rRNA gene clone libraries and 

taxonomic specific 16S rRNA gene primers on sediment or soils samples are 

powerful tools for determining the structure of microbial communities. 

Furthermore, many of the bacteria found in compost-based bioremediation 

systems are difficult to culture. Hence, culture-independent techniques are 

indispensable when characterising the bacterial populations (Alleman et al. 2005; 
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Geets et al. 2005; Akob et al. 2008). The use of 16S rRNA gene-directed 

oligonucleotide probes for studying the distribution of dissimilatory Fe 3+  reducers 

is complicated by the fact that the ability of bacteria to use Fe 3+  as a terminal 

electron acceptor is not limited to one group. Iron reduction not only been found 

amongst the Deltaproteobacteria but also the Gammaproteobacteria such as 

Shewanella and Pseudomonas (Balashova and Zavarzin 1980; Balashova 1985; 

MacDonell and Colwell 1985) and more phylogenetically distinct bacteria such as 

Geothrix fermentans (Coates et al. 1999) and Geovibrio ferrireducens (Caccavo et 

al. 1996). 

16S rRNA gene-based techniques such as TRFLP are now well-accepted 

molecular methods for microbial community analysis (Liu et al. 1997). They 

provide a generalised profile of the microbial community in a complex 

environmental sample that would otherwise be difficult and laborious to obtain 

via cultivation or expensive by developing and analysing all the primer target 

sequences (eg. microarray analysis) or creating and sequencing large 16S rRNA 

gene clone libraries. TRFLP, in combination with representative 16S rRNA gene 

clone libraries, can provide a comprehensive microbial diversity profile. TRFLP 

analysis has been found to be more sensitive to DGGE analysis of complex soil 

microbial communities because it can produce a higher number of operational 

taxonomic units (OTUs) and can be analysed overnight using capillary 

electrophoresis for a larger number of samples (Thies 2007). Furthermore, 

TRFLP data can be analysed with multivariate statistical methods such as those 

employed in ecological community structure analysis (Rees et al. 2004; Clarke 

and Gorley 2006) and thus can provide simple and effective means to interpret 

data. Several studies have used these techniques in the study of microbial 
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communities in bioreactors (Johnson and Hallberg, 2005), creosote contaminated 

soil (Grant et al. 2007), sewage sludge (Macdonald et al. 2007), acid mine 

drainage (Benner et al. 2000; Bruneel et al. 2006; Nicomrat et al. 2008) and creek 

sediments (Edmonds et al. 2008). 

The ICI Tioxide titanium pigment production plant operated between 1948 and 

1996 in Heybridge, located on the north coast of Tasmania on the Blythe River 

catchment. During its operation iron oxide waste was discharged directly into 

Bass Strait. The titanium pigment was manufactured by the sulfate process that 

used large volumes of sulfuric acid to extract titanium from ilmenite ore. This 

process created large amounts of acidic (pH 3 — 5) metalliferous waste that was 

separated from the process and stored in clay-lined sludge dams, but which 

eventually leaked into the water catchment. The leachate is chemically similar to 

acid mine drainage with high iron (800 - 1200 mg L -I ) and sulfate (540 — 1700 mg 

L-I ) concentrations and smaller quantities of manganese lead, copper and zinc 

(Cooper 2004). 

The goal of the remediation project was to establish a passive, low-maintenance, 

efficient water treatment system in situ that could purify leachate generated from 

the contaminated materials over a thirty year period. A combined anaerobic and 

aerobic wetland system (Figure 3.1) was developed and operated by 

Environmental Services and Design PL (ES&D) in order to remove the metals, 

increase the pH and reduce the biological oxygen demand (BOD) and the 

chemical oxygen demand) COD. The anaerobic section comprised two "potato 

cells", a pre-treatment step to keep the metals mobile until the next step, introduce 

starch as a source of organic carbon for the bacteria, and four anaerobic compost 
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bioreactors or "reduction cells." The cells consist of a base of bluestone overlaid 

by mushroom compost and capped with straw bales and then black plastic to 

create an anaerobic environment (Figure 1.8). This environment encourages 

sulfate- and metal-reducing bacteria to produce alkalinity and hydrogen sulfide, 

which precipitates metals from the water as sulfides. However, the reduction cells 

have slowly decreased in iron removal efficiency from 2002 (Figure 1.11) and 

were shut down in 2007 (Cooper 2007 pers. comm). 

The aim of this study was to determine the bacterial diversity associated processes 

of this novel in situ treatment system using 16S rRNA gene clone libraries and 

employ TRFLP analysis to track bacterial community changes over time and 

space within the system. 

53 



Minna Creek 

Reduction Cells 

Aeration Pond 

Limestone drain 1 

Limestone drain 2 

Blythe River 
and Bass 

trait 

1 

Sludge Dams 

Potato Cells 

Chapter 3 Microbial Diversity 

Figure 3.1. Schematic diagram of the remediation system, not to scale. 
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Materials and Methods 

Sampling procedure 

Samples were collected from the Minna Creek Valley remediation site north-west 

Tasmania (41°05.05'S, 145°98.46'E). Triplicate samples were aseptically taken 

from the potato cell feed (sludge dam leachate) (PCF1-3), reduction cell feed 

(potato cell) (RCF1-3), reduction cell 7 base water (RC7BW1-3), reduction cell 5 

discharge (RC5D1-3) reduction cell 6 discharge (RC6D1-3), reduction cell 7 

discharge (RC7D1-3), reduction cell 8 discharge (RC8D1-3) and reduction cell 8 

core (RC8C1-3). Triplicate samples were taken from Minna Creek, downstream 

of the remediation project as a control (SW91 — 3). The discharge pipes were run 

for 60 seconds to obtain representative samples from the cells and avoid liquid 

that had been sitting in the pipes. Samples were collected in sterile 50m1 Falcon 

tubes. Larger samples were collected in autoclaved 1L Schott or Nalgene plastic 

bottles. The samples were stored on ice in a cool bag for transport. 

DNA isolation 

To establish a clone library from the samples DNA was extracted from PCF1, 

RCF1, RC7BW1 and RC8C1. The DNA was extracted using the Mobio 

PowerSoil kit (Mobio Laboratories, Solana Beach California, USA) as stated in 

the manufacturers' protocol with the exception of the samples were bead-beaten 

for 10mins at 5000rpm in a Retsch MM300 shaker (Retsch Inc. Newtown 

Pennsylvania USA). This kit was found to give a higher level of DNA purity and 

quality than from phenol chloroform extraction or Qiagen DNeasy kit as it 

contains a humic substance removal step and was developed for difficult 

environmental samples such as compost, soil and manure. DNA extractions were 
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examined by agarose gel electrophoresis at 110V for 30mins using 2.0% w/v 

agarose in 1xTAE buffer (20mM Tris, 20mM glacial acetic acid, 10mM 

Na2EDTA, pH 7.0) with 5pg m1 1  ethidium bromide as the nucleic acid stain. 51.11 

of a DNA ladder (Bioline, London, UK) was used as a molecular size marker. The 

gels were photographed using a Kodak EDAS imaging system and Kodak IDLE 

v3.5.4 software (Kodak molecular imaging systems, New Haven, Connecticut, 

USA). 

16S rRNA gene sequencing and cloning 

To amplify the 16S rRNA genes a polymerase chain reaction (PCR) was 

performed using the primer set 519F (5 'CAGCMGCCGCGGTAATAC) 1492R 

(5 '-TACGGYTACCTTGTTACGACTT) (Amann et al. 1995). The PCR reactions 

were performed in duplicate as per the protocol for the Qiagen HotStarTaq Master 

Mix kit (Qiagen Inc. Valencia, California, USA) using 2411 HotStarTaq master 

mix, 1111 of 1 Opmol 519F and 1492R primers each, 5p1 of template and filter 

sterile, autoclaved Milli-Q purified water (MQH 20) to a final volume of 50111. The 

PCR amplification program was as recommended in the Qiagen HotStarTaq 

Master Mix protocol; 15mins, 95°C; 35 cycles of lmin, 94°C; lmin, 52°C; 2mins, 

72°C and a final elongation step of 10mins at 72°C and hold at 11°C. The PCRs 

were conducted on a PTC 200 Peltier Thermal Cycler (MJ Research Inc. Waltam, 

Massachusetts, USA). PCR products were examined by agarose gel 

electrophoresis as above. 

The PCR products were purified using the Mobio Ultraclean PCR cleanup kit and 

stored at -20°C. The PCR products were ligated in the Invitrogen pCR 4-TOPO 

vector (Invitrogen Corp. Carisbad, California, USA). The ligation reaction 
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included 3111 PCR product, 411 buffer, 1111 pCR 4-TOPO vector and 1111 sterile 

purified water to a final volume of 411 and was incubated at room temperature for 

45 to 60mins. Transformation was performed using Invitrogen One-Shot TOP 10 

chemically competent E. coil cells and following the Invitrogen TOPO TA 

cloning kit protocol. The E. coil cells were thawed on ice and 2p1 of the ligation 

reaction was added, mixed gently and incubated on ice for 30min. The mixture 

was then heat shocked at 42°C for 30secs and put straight back on ice. 250111 of 

room temperature Invitrogen SOC medium (2% Tryptone, 0.5% Yeast extract, 

10mM NaC1, 2.5mM KC1, 10mM MgC12, 10mM MgSO4, 20 mM glucose) was 

added and the mixture incubated for 1 hr at 37°C, shaken at 200rpm. 501.11 and 

100[11 aliquots were spread on pre-warmed Luria agar plates (10g NaC1, lOg 

Tryptone, 5g Yeast extract, 20g agar L -1  MQ H20) containing 1001.1g m1 -1  

ampicillin. The plates were incubated at 37°C overnight and 120 well-formed 

colonies picked. The picked colonies were suspended in 501A1 filter-sterilised 

MQH20 and stored at -20°C. The plasmid inserts in the suspended colonies was 

directly amplified in a PCR with the same conditions as the 16S rRNA gene PCR 

except with plasmid primers M13F (5 ' .-  

TGTGAAACGACGGCCAGTAGAGTGATCCTGGCTCAG and M13 R (5 "- 

CAGGAAACAGCTATGAC). 

The PCR products were purified using the Mobio Ultraclean PCR cleanup kit and 

were then sequenced using the GenomeLab DTCS Quick Start kit and protocol 

(Beckman Coulter, Fullerton California, USA); 4.0111 DTCS Quick Start Master 

Mix, 1.00 of 1.6pmol M13F or Ml3R, 10Ong template DNA and made up to a 

total volume of 10111 with MQH20. The thermocycler program used was as 

recommended for the kit (96°C for 20secs, 50°C for 20secs, 60°C for 4mins for 30 

57 



Chapter 3 Microbial Diversity 

cycles and then kept at 10°C). The product was then precipitated following the 

CEQ2000 Sample Plate protocol available online at 

http://www.beckmancoulter.comiliterature/Bioresearch1A-1903A.pdf.  

The amplicon inserts were fully sequenced from the forward primer and the 

reverse primer separately using a Beckman Coulter CEQ8000 Genetic Analysis 

System. Consensus sequences for each insert were compiled using ChromasPro 

v1.32 (Technelysium Pty Ltd 2003 — 2005) and BioEdit v7.0.9.0 (Hall 1999) and 

compared to GenBank database sequences using the National Center for 

Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/)  Basic Local 

Alignment Tool (BLAST) (Altschul et al. 1997) available online at 

http://www.ncbi.nlm.nih.gov/BLAST/ .  Insert sequences ranged from 932 to 

996bp in length and were deposited under GenBank accession numbers 

EU921150 to EU921224. 

Phylogenetic analysis of 16S rRNA sequences 

The 16S rRNA gene sequences were aligned with sequences from the GenBank 

database using the BioEdit ClustalW alignment application and checked manually. 

Phylogenetic trees were created by the Neighbour-Joining algorithm with 1000 

bootstraps using the program CLC Free Workbench Version 3.0.3 (Knudsen et al. 

2006). 16S rRNA sequences for Thermotoga maritimum and Coprothermobacter 

platensis were used as outgroups in the Neighbor-Joining analysis as they are 

deeply rooted to most bacteria (Bowman, 2005 pers. comm). The null hypothesis 

that the clone libraries from the sludge dam, potato cell and reduction cells would 

not be significantly different was tested with the LIBSHUFF v1.22 method 

(Henriksen. 2004) at http://libshuff.mib.uga.edu . LIBSHUFF uses the Cramer-von 
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Mises test statistic to answer the question, "are two libraries drawn from the same 

population and is one a subset of the other?" In order to compare two libraries, the 

LIBSHUFF analysis determines the coverage of one library (X) by a second 

library (Y). To accomplish this, each sequence in X is individually compared to 

all of the sequences in Y, and it is determined whether or not that sequence would 

be considered unique were it a part of Y. The resulting coverage values from this 

analysis are referred to as "heterologous coverage values", or "Cxy" and the 

resulting curve of Cxy vs D (distance) is called a "heterologous coverage curve", 

or "Cxy(D)". The equation for heterologous coverage is, Cxy = 1 - (Nxy/n) where 

Nxy is the number of sequences in the sample X that are not found in sample Y 

and n is the number of sequences in X . Similarly to the homologous coverage, 

Cxy will vary based on the value of D selected because Nxy will change based on 

the criterion for what determines a "unique" sequence. The homologous and 

heterologous coverage curves can then be compared to determine the extent of 

differences between the two libraries (AC). The difference between the two 

curves may be quantified by the Cramer-von Mises test statistic: 

0.5 

AC A,y = E Ic A  (.1) )-(7AT (1) )1 2  
D=0 .00 

where D increases in increments of 0.01. 

A Monte Carlo resampling approach is used to infer statistic significance. To 

perform this resampling, LIBSHUFF shuffles the sequences of the two libraries 

together and randomly divides them into new libraries containing the same 

number of sequences as the originals, but with a different randomized distribution 

of the sequences. These shuffled libraries are then analyzed identically to the 
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originals and a AC value is recorded. The libraries are shuffled an additional 998 

times, resulting in a total of 1000 AC values; one from the original libraries and 

999 from randomly shuffled libraries. When all of the AC values are ordered from 

the highest to the lowest, the rank of the AC for the original libraries determines 

the probability of the two libraries being significantly different. A p-value 

(probability) for the null hypothesis that the two libraries are sampled from the 

same population is estimated by r/1000, where r denotes the rank of AC for the 

original libraries (Singleton et al. 2001). Clone library percent coverage (C) was 

calculated by the following equation: C = (1-(n/N)) x 100, where n = number of 

unique phylotypes and N = total number of phylotypes. 

Terminal Restriction Fragment Length Polymorphism 

Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis, 

employing 16S rRNA gene primers 519F and 1492R (sequence as above), was 

used to determine the changes in the bacterial communities between the sludge 

dam, potato cells, reduction cells and Minna Creek (Liu et al. 1997). The forward 

primer 519F was labelled with Beckman Coulter WeIIRED TM  fluorescent dye D3 

(green) and 1492R was labelled with Beckman Coulter WeIIRED TM  fluorescent 

dye D4 (blue). The PCR amplification mixture contained 12.5111 HotStarTaq 

master mix, 1.01A1 of each primer (20pM) and approximately lOng DNA template 

and MQH20 used to make final volume of 254 The PCR amplification program 

was as follows; 94°C, 15mins; 35 cycles of 94°C, lmin; 55°C, 1 min; 72°C, 1 min 

with a final elongation of 72°C ,10mins on a PTC 200 Peltier Thermal Cycler (MJ 

Research Inc.). The PCR products were visualised by agarose gel electrophoresis 

as above. Four identical PCRs, as above, were run separately and the products 

pooled and purified using the Mobio Ultraclean PCR cleanup kit and stored at - 
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20°C. This was to minimise the effects of amplification bias in individual PCRs 

and more accurately represent the bacterial community and reduce method-

associated noise (Clement et al. 1998). 

The purified PCR products were digested with 10U of the enzymes HaeIII, Hhal, 

Hinfl, Mspl and RsaI (New England Biolabs) the most commonly used 4 base 

pair cutters found in the literature, in a 96 well plate. Five enzymes were chosen 

to mitigate the effect of different bacterial groups having similar profiles with the 

same enzymes. The digests were then desalted and purified using the ethanol 

precipitation method. To each plate well 1111 3M Na acetate and 0.51x1 of glycogen 

was added and mixed. 30p1 of ice-cold absolute ethanol was added, mixed and the 

plates were covered with an aluminium sealing mat and incubated at -20°C for 

20mins. Plates were spun down in a Sorvall Super T21 centrifuge (Thermo 

Electron Corp. Waltham, USA) at 4°C for 30mins at 4300 rpm. To remove the 

ethanol, paper towel was cut to fit the size of the plate and the plate flipped 

straight over on to the paper and spun gently in a Sigma 2-5 centrifuge (Quantum 

Scientific, Murarrie, Australia) for 30secs at 300rpm. Two washes comprising 

200iil ice-cold 70% ethanol/centrifuged for 5mins. The plate was then air-dried in 

a laminar flow cabinet. The PCR products and digests were wrapped in 

aluminium foil to minimise light exposure and loss of fluorescence. 

Digested products (1 - 511I) were mixed with 30111 Sample Loading Solution 

(Beckman Coulter) and 0.24t1 of 600bp DNA size standard (Beckman Coulter) 

and analysed on the Beckman Coulter CEQ8000 Genetic Analysis System using 

the Frag-4 method (injection 2.0kV/30secs, run at capillary temperature 

50°C/4.8kV for 60 minutes). Results were analysed using the Beckman Coulter 
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CEQ8000 Genetic Analysis System software. The digests were carried out in 

duplicate and each run separately on the Beckman Coulter CEQ8000 Genetic 

Analysis System. 

Enrichment sample preparation for scanning electron microscopy 

A freshwater medium and 1.5% w/v agar was made according to Lovley (2000). 

The composition of the medium was: NaHCO3  2.5g, NH4C1 0.25g, NaH2PO4.H20 

0.6g, KC1 0.1g, U 1 . The solution was autoclaved and 10m1 of vitamin solution 

and 10m1 mineral solution were added after it had cooled. The vitamin solution 

was made according to Lovley (2000) and composed of: biotin 2.0mg, folic acid 

2.0mg, pyridoxine HC1 10.0mg, riboflavin 5.0mg, thiamine 5.0mg, nicotinic acid 

5.0mg, pantothenic acid 5.0mg, B-12 0.1mg, p-aminobenzoic acid 5.0mg and 

thioctic acid 5.0mg U 1 . The mineral solution was made according to (Lovley 

2000) and composed of: trisodium nitrilotriacetic acid 1.5g, MgSO 4 .6H20 0.5g, 

NaCl 1.0g, FeSO47H20 0.1g, CaC12.2H20 0.1g, CoC12.6H20 0.1g, ZnC12 0.13g, 

CuSO4 .5H20 0.01g, AIK(SO4)2 .12H20 0.01g, H3 B03  0.01g, Na2Mo04  0.025g, 

NiC12.6H20 0.024g and Na2Wo4.2H20 0.025g U 1 . Both the vitamin and mineral 

solutions were filter sterilised. 

Poorly crystalline iron oxide was made according to Lovley (2000) for use as the 

electron acceptor. 32.45g of FeC13.6H20 was weighed into MilliO double distilled 

water (MQH20) (final concentration 0.4M). This solution was stirred 

continuously while the pH was adjusted to 7.0 with 10M NaOH solution. The 

solution was stirred for a further 30mins and the pH checked to make sure it had 

stabilised. To remove the dissolved chloride the suspension was centrifuged at 

5000rpm for 15mins and the pellet resuspended with MQH20 six times. Solutions 
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of 100mM acetate, 100mM lactate and 100mM D-glucose were made and 

autoclaved for use as carbon sources in the enrichments. 

All enrichments were set up in MacCartney bottles as follows; 20m1 freshwater 

medium, 4m1 carbon source, 6m1 of iron oxide and the pH adjusted to 5 — 5.5. The 

bottles were filled to the top and autoclaved to remove as much oxygen as 

possible. Two ml of the RCF sample (potato cell effluent) were added to three 

bottles, each containing one of the three carbon sources. The necks were flamed 

with a Bunsen burner and sealed with a rubber-sealing lid. The bottles were 

placed in a black garbage bag inside a black plastic container and incubated at 

20°C for 2-3 months. 

Enrichment samples were prepared for Scanning Electron Microscopy (SEM) as 

follows: samples were filtered through sterile polycarbonate 0.211m filter papers 

(Poretics, Livermore, USA) in sterile filter housing units (Millipore, Billerica, 

USA). All steps were conducted through the filter units. The samples were then 

fixed with 2.5% glutaraldehyde in distilled water (dH 20) for 30mins and rinsed 3 

times in dH20. A secondary fixation was carried out by adding 1% osmium 

tetroxide in dH20 for 20mins at room temperature and rinsed 5 times with dH 20. 

The slides were then put through a gradient of ethanol from 100% to 25% for 

5mins to dehydrate. It was found in preceding experiments the more decreasing 

ethanol concentration steps the fewer bacteria cells collapsed so the steps used 

were 100%, 75%, 50% and 25% ethanol. Immediately after the final wash the 

samples were frozen using liquid nitrogen, placed in 50m1 Falcon tubes and dried 

using a freeze dryer (Dynavac, Sydney, Australia) for 24hrs. The samples were 

then sputter coated with gold (BalTec SCD 050) before visualisation on the 
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scanning electron microscope (SEM) (FEI Quanta 600 MLA) at the Central 

Science Laboratory (CSL) University of Tasmania, Hobart (Twin 2008 pers. 

comm.). To determine precipitate chemical composition the SEM is equipped 

with Electron Probe Microanalysis (EPMA) instrumentation. 

Analysis of TRFLP data 

Profile peak data were analysed using the Beckman Coulter CEQ8000 Genetic 

Analysis System Fragment Analysis software. The lower threshold for peak 

height was set at 5% of the peak height range and results were filtered for peak 

areas less than 2000 DFU (dye fluorescent units), peaks less than 6Ont 

(nucleotides) and more than 600nt were eliminated as this is the limitation of the 

size standard (http://www.beckman.com/literature/Bioresearch1A16039ab.pdf.).  

Results from the duplicate runs were combined into a Microsoft Excel 2003 

spreadsheet for each enzyme used for each sample. Percent relative peak area was 

calculated and the peaks that contributed less than 2% of the total peak area were 

removed to minimise the effect of baseline noise from variable amounts of DNA 

loaded (Osborne et al. 2006). Forward (fragments from the 5' end of the sequence) 

or reverse (fragments from the 3' end of the sequence) peaks within 0.5 basepairs 

(bp), which contributed the least to the total peak area, were removed so they 

were not classed as the same peak. There were no more than two peaks in this 

category in any one sample and these were removed consistently across duplicates, 

so did not affect the total profile peak data analysis. 

The results were run through T-align (Smith et al. 2005) accessed at 

http://inismor.ucd.ie/—talign/index.html for comparison with a confidence interval 

of 0.5bp. Replicate profiles were compared and used to generate a single sample 
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• profile containing only Terminal Restriction Fragments (TRFs) that occurred in 

all replicate profiles. Subsequently sample profiles representing different 

communities were compared to produce a list showing whether a TRF was 

present in a particular sample profile and its relative fluorescence intensity (peak 

area) to total peak area. A comparison file was generated which listed all TRFs in 

all consensus profiles. If a TRF was present in a consensus profile of a sample 

then the average fluorescence intensity is given. If a TRF is absent in a particular 

consensus profile, a zero value is listed. The TRF size values were rounded up or 

down to the nearest whole number (<0.49 rounded down, > 0.5 rounded up). 

The results for all the enzymes for each sample were then combined and analysed 

in PRIMER v6 (Clarke and Gorley 2006). A similarity matrix using the Bray-

Curtis coefficient was calculated. The Bray-Curtis coefficient was chosen because 

of its ability to deal with data sets containing many zeros, and a zero value is 

selected when two samples have no TRFs in common. The inclusion or exclusion 

of TRFs jointly absent in two samples does not change the similarity value, and 

inclusion or exclusion of further samples does not change the similarity between 

other sample comparisons (Clarke and Warwick 2001). 

The similarity matrix was analysed using MDS (Multi-Dimensional Scaling). 

MDS ordination uses an iterative algorithm that involves a "goodness of fit" 

estimate, (i.e. stress). Stress value greater than 0.2 indicates the plot is close to 

random, stress less than 0.2 indicates a useful 2 dimensional picture, and if less 

than 0.1 corresponds to an ideal ordination with no prospect of misinterpretation 

(Clarke and Warwick 2001). Therefore, an interpretation of a MDS plot is 

straightforward; points that are close together represent samples that are similar in 

65 



Chapter 3 Microbial Diversity 

community assemblage, and points far apart correspond to different values of the 

data variables. The ordinations in this analysis were all computed using 50 and 

100 random restarts and there was no difference in the minimum stress, 50 

random restarts were sufficient. 

Analysis of similarities (ANOSIM) was used to test the statistical significance 

between samples over time, site and treatment factors. ANOSIM tests the null 

hypothesis that similarities between and within groups will be the same. The test 

statistic is R, the difference of ranked similarities between samples/sites to ranked 

similarities among replicates within samples/sites. Global R is between all 

replicates of all samples and the R statistic is between the replicates of two 

samples. R approaches 1 if all replicates within samples/sites are more similar to 

each other than any replicates from different samples/sites. The significance level 

(p) is a measure of the probability the observed R is by chance in 1000 

permutations. Dispersion indices (MVDISP) were also calculated in PRIMER v6 

to examine variation between treatment and time heterogeneity. 

The dispersion index (IMD) compares the average rank among one set of samples 

with the average range derived from another, ignoring between treatment 

similarities in the similarity matrix. A large dispersion index (maximum = 1) 

means all similarities in one sample are less than any similarities in another and 

the converse is the case for dispersion index = -1. This gives a description of 

relative multivariate variability, meaning multiple samples from a highly 

"unstable" environment will have more population variability than samples from 

a "stable" environment. 
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Percent similarity contributions of TRFs within treatments were calculated with 

SIMPER, and compared to the associated clone library produced from the same 

samples with the same primer set and to the restriction maps of clones digested in 

silico with the same enzymes used in the TRFLP analysis. The in silico digests, 

with these enzymes, were performed using the ISPaR (In Silico PCR and 

Restriction) program on the MiCA (Microbial Community Analysis) web site 

http://mica.ibest.uidaho.edu  (Shyu et al. 2007). 

Results and Discussion 

Clone library analysis 

16S rRNA clone libraries were constructed for samples from the sludge dam 

(PCF) (44 clones), potato cell (RCF) (36 clones) and reduction cell 7 effluent 

(RC7BW) (43 clones) and reduction cell 8 core (RC8C) (36 clones). The 

percentages of clones assigned to major bacterial taxonomic groups are 

summarised in Figure 3.2. Total number of clones for each section of the 

treatment system, the number of unique clones or operational taxonomic units 

(OTUs) and percent coverage for each clone library is summarised in Table 3.1. 

Representative phylogenetic groups inferred from the 16S rRNA gene clone 

libraries, the number of clones, percent of the total, closest match within a 

phylogenetic group and % similarity for each section of the treatment system 

sampled are summarised in Table 3.2. No members of the Archaea were detected. 

Neighbor-joining phylogenetic trees were constructed for the major bacterial 

groups (Figures 3.3 — 3.10). 

67 



Chapter 3 Microbial Diversity 

Sludge dam 

The majority of clones from the sludge dam leachate were similar to beta- (18%), 

delta-(18%) and gammaproteobacterial (22%) iron- and sulfur-oxidising bacteria, 

such as Gallionella spp. and "Ferribacter" sp. (Figure 3.4), Acidithiobacillus spp. 

(Figure 3.5) as well a sulfur-respiring Desulfurella spp., a member of the class 

Deltaproteobacteria (Figure 3.6). Nearly half the clones (4%) were similar to 

anaerobic, carbohydrate fermenters of the phylum Bacteroidetes (Figure 3.8) 

related to the genus Bacteroides spp. and acid-tolerant, anaerobic fermenter 

Paludibacter propionicigenes (Ueki et al. 2006) (Figure 3.8). The sludge dam is 

clay-lined and capped. Hence, the fermenters may have access to organic matter 

attached to the clay and stratification in oxygen levels may be occurring. Clone 

library percent coverage was 73%. 

Potato cell 

In the potato cell, 33% of the clones matched Deltaproteobacteria (mainly 

Desulfurella spp.) and 55% of the clones matched Bacteroidetes (mainly clones 

related to Bacteroides spp. and P. propionicigenes). None of the Desulfurella type 

strains characterised to date is known to be capable of growth in the acidic (pH 4 - 

5) conditions present in potato cell (Miroshnichenko et al. 1998). Thus, the 

microorganisms yielding the 16S rRNA gene sequences recovered from the 

potato cell effluent may represent the first acidophilic taxon within the 

Desulfurella genus. Furthmore, similar sequences have been found in acid sulfate 

springs in Yellowstone National Park (Boyd 2007). Betaproteobacteria were not 

detected. 11% of the clones matched Acidithiobacillus spp. a similar proportion to 

those from the sludge dam (16%) leachate. The presence of potato starch and a 
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largely anoxic environment may have allowed the fermentative bacteria to out-

compete the Betaproteobacteria. Clone library percent coverage was 67%. 

Reduction cells 

The reduction cell effluent (RC7W) and core samples (RC8C), exhibited a much 

more diverse bacterial community to each other, possibly due to the presence of 

the high levels of organic matter in the core sample from reduction cell 8 that 

were not present in the effluent sample from reduction cell 7. 

Core sample clones clustered with beta- and deltaproteobacterial iron-reducers 

such as Ferribacterium limnieticum, Geobacter spp. and Anaeromyxobacter, 

where members of the latter genus have been found to use Fe 3+  as an electron 

acceptor (Cardenas et al. 2008). Potential sulfate-reducers present were mainly 

related to members of the genus Desulfotalea, one clone was 99% related to 

denitrifying bacterium Acidovorax delafieldii. A core clone was found to be 94% 

related to the gammaproteobacterium Dokdonella koreensis, associated with 

aerobic soil samples (Yoon et al. 2006) and eight clones grouped with an 

epsilonproteobacterium clone found in rice rhizospheres (unpublished) (Figure 

3.6). One clone was 95% related to the alphaproteobacterial species Acidisphaera 

rubrifaciens, an acid-tolerant, aerobic phototrophic bacterium (Figure 3.3). The 

core samples also contained clones which matched to Firmicutes and comprised 

mainly anaerobic heterotrophs some of which are related to bacteria found in 

compost (Weon et al. 2007) (Figure 3.9) and one clone was related to the genus 

Desulfotomaculum a known sulfate reducer (Stackenbrandt et al. 1997). 

Reduction cell 7 effluent sample clones clustered in the classes Beta-, and 

Deltaproteobacteria, and included presumed iron-and sulfur-oxidisers such as 
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Thiomonas spp. and Gallionella ferruginea. A clone 93% related to the genus 

Desulfobacterium may also be involved in sulfate reduction. A high proportion of 

clones (35%), particularly from reduction cell 7 effluent, grouped among 

uncultured representatives from the candidate division 0P3 and Termite Group 1 

(Figure 3.10), which have been previously detected in contaminated aquifers, 

sulfidic hot springs or bioreactors treating chlorinated solvents (Hugenholtz et al. 

1998). 

Both effluent and core samples have clones that matched to phyla Bacteroidetes. 

Effluent sample clones clustered with anaerobic fermenters such as Bacteroides, 

Porphyromonas and Dysgonomonas (Figure 3.8); the core sample clones 

clustered with the genus Cytophaga, which is known to include anaerobic 

cellulose degrading bacteria (Ghema and Woese 1992). Core sample clones 

clustered with candidate division OP 10, soil and contaminated aquifer clones. 

Acidithiobacillus spp. and Desulfurella spp. common in the potato cell effluent 

were not detected in the reduction cell effluent clone libraries possibly due to 

higher pH and competition with organic matter fermenters. Clone library percent 

coverage for reduction cell 7 and 8 was 40% and 28% respectively. 

LIBSHUFF comparisons of the clone libraries are summarised in Table 3.3. The 

AC values, indicating clone library divergence were highest between the potato 

cell and the reduction cell effluent samples. In heterologous Libshuff comparisons 

the potato cell effluent library was very similar to the sludge dam leachate library 

(AC = 0.026, p>0.05) indicating the potato cell community is a subset of the 

source leachate community. The clone library comparisons were otherwise 

significantly different between the samples (p<0.001), indicating different 

70 



Chapter 3 Microbial Diversity 

communities exist in different stages of the remediation system, especially in the 

downstream reduction cells. 

Clone libraries from the different stages of a novel in situ bioremediation system 

treating acidic, metal- and sulfate-rich leachate illustrate the complex nature of 

microbial communities. Further analysis of clone libraries of core samples or 

from a range of depths within these sites may have illuminated this diversity even 

more. Blothe et al. (2008) found, in sediments impacted by acid mine drainage, a 

gradual change in microbial community from the acidic, oxic and ferric iron-rich 

upper sediments to the mildly acidic, anoxic ferrous iron-rich lower sediments. 

Furthermore, an in-depth study of > 2000 16S rRNA gene clones from acid-

impacted lakes (Percent et al. 2008) found diversity changes were strongly 

correlated to depth, hydraulic retention time, dissolved inorganic carbon and 

metal concentration. Changes in bacterial community in complex environmental 

samples over site and time can be tracked with simpler methods such as TRFLP 

instead of creating clone libraries at each sampling point, which are much slower 

and more expensive. 
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Table 3.1. The number of clones found from each section of the treatment 
system, Heybridge, Tasmania, percent number of unique operational 
taxonomic units (OTUs) and percent clone library coverage. ( = (1-(# unique 
clones/# total clones)x100). 

Phylogenetic match Sludge Dam Potato Cell Reduction Cell 7 effluent Reduction Cell 8 Core 

Alphaproteobacteria 0 0 0 1 
Betaproteobacteria 7 0 2 4 

Gammaproteobacteria 9 4 0 1 
Deltaproteobacteria 8 12 3 3 

Epsilonproteobacteria 0 0 0 8 
Bacteroidetes 20 20 8 4 

Firmicutes 0 0 0 11 
Other 0 0 30 4 

Total # clones 44 36 43 36 
# unique OTUs 12 12 26 26 

°A, Coverage 72.7 66.7 39.5 27.8 
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Figure 3.2. Percentages of 16S rRNA gene sequence phylogenetic match 
cloned from Sludge Dam, Potato Cell and Reduction Cell 7 and 8 samples. 
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Table 3.2. Representative phylogenetic groups inferred from the 16S rRNA gene clone libraries, the number of clones, percent of the 
° 0 similarity for each section of the treatment system at He brid e Tasmania. 

Sample site # of clones % of total clones I Representative clone Phylogenetic group Closest match % similarity ,  

Sludge Dam 4.5 PCFI8 Betaproteobacteria Gallionella ferruginea (iron oxidation) . 
97 

9.1 PCF50 Betaproteobacteria Ferrovum myxofaciens (iron oxidation) 98 

20.5 PC F61 Gammaproteobacteria Acidithiobacillus ferrooxidans (sulfate/iron oxidation and iron reduction) 99 

0
0
 18.2 PCF22 Dehaproteobacteria Desulfurella spp. (sulfur respiration) 98 

22.7 PCF33 Bacteroidetes Bacteroides spp. (complex carbohydrate fermentation) 92 

22.7 Pc F36 Bacteroidetes Paludibacter propionicigenes (complex carbohydrate fermentation) 92 

Potato Cell 4 11.1 RCF30 Gammaproteobacteria Acidithiobacillus ferrooxidans (sulfate/iron oxidation and iron reduction) 99 

12 33.3 RCF39 Deltaproteobacteria Desulfurella spp. (sulfur respiration) 98 

20 _ 55.6 RC F91 Bacteroidetes Paludibacter propionicigenes (complex carbohydrate fermentation) 92 

Reduction Cell 7 Effluent 2.3 RC7BW49 Deltaproteobacteria Desulfobacterium indolicum ( sulfate reduction/indole degradation) 93 

4.7 RC7BW28 Deltaproteobacteria Syntrophus spp. (fatty acid utilisation) 95 

sO
  14.0 RC7BW93 Bacteroidetes Bacteroides spp. (complex carbohydrate fermentation) 92 

37.2 RC7BW50 Candidate division 0P3 Uncultured bacterium TAN B84 (dechlorinating community) 93 

Reduction Cell 8 core 
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2.8 RC8C34 Alphaproteobacteria Acidisphaera rubrifaciens (acidophile) 95 

8.3 RC8C16 Betaproteobacteria Ferribacterium limneticum (iron reduction) 98 

2.8 RC8C20 Deltaproteobacteria Geobacter spp. (iron reduction) 91 

22.2 RC8C8 Epsilonproteobacteria Uncultured bacterium SRRIO5 (rhizosphere) 99 

11.1 RC8C64 Bacteroidetes Cytophaga fermentans (complex carbohydrate fermentation) 97 

8.3 RC8CI7 Firmicutes Clostridium spp. (fermentation) 93 

5.6 RC8C57 Firmicutes "Ureibacillus rudaensis" (Compost/soil organism) 98 

2.8 RC8C67 Firmicutes Virgilbacillus halophilus (soil organism) 93 

8.3 RC8CI8 Candidate division OP I O_Uncultured bacterium HDBW-WB58 (contaminated aquifer) 94 
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	 D86511 Acid/phi/urn acidophilum ATCC 27807 

D30770 Acidomonas methanol/ca MET 10945 

100 
AJ007698 Acetobacter aceti subsp. xylinus BPR2001 

100 

Y15289 Acetobacter europaeus J K2 

AY180960 Gluconacetobacter swingsii DST GLO1T 

100 

	 D86513 Rhodopila globiformis DSM 161 

48 

	 RC8C34 (EU921150) 

77 

D86512 Acidisphaera rubrifaciens HS-AP3 
0.1 

Figure 3.3. Phylogenetic tree of 16S rRNA gene clones from environmental 
samples from bioremediation system, Heybridge, Tasmania, affiliated with 
class Alphaproteobacteria using the Neighbor-Joining algorithm in BioEdit 
v7.09. Red type = reduction Cell. Outgroups used were Coprothermobacter 
platensis and Thermotoga maritima (not included). 
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AY950676 Thiomonas arsenivorans b6T 

	 U67162 Thiomonas cupnna DSM 5495 

	 U27839 Thiomonas thermosulfata ATCC 51520 

00j  AY455809 Thiomonas intermedia ATCC 15466T 

1 	 RC7BW88 (EU921162) 

loor-  AJ251577 Comamonas nitravorans 23310 

L AF233876 Comamonas denitrificans 110 
AF435948 Rhodovorax ferrireducens 118' 

Y18616 Acidovorax defluvii BSB411 

F  RC8C10 (EU921163) 
iooL AJ420323 Acidovorax delafieldii DSM 50263" 

AF047462 Dechloromonas agitatus CKB 

AJ318917 Dechloromonas denitrificans EDIT 99  
— Y17060 Fetribacterium limneticum cda-1 

100 
AY133076 Uncultured bacterium ccs272 TCE contaminated soil 

98L-  RC8C16 (3 clones) (EU921164) 

100 - AJ582038 Uncultured bacterium JG36-GS-54 metal contaminated soil 

—  PCF26 (EU921165) 

	  L35505 Nitrosospira briensis C-128 

44 	  X92555 Paucimonas lemoignei LMG 2207' 

27 69- D0480476 Uncultured bacterium S15B-MN57 sulfur spring 

—  PCF50 (2 clones) (EU921166) 
100  

39    PCF44 (EU921152) 
95  

- EF133508 Ferrovum myxofaciens PSTRT AMD from copper mine 
82--  EF409840 Uncultured bacterium SLS-18-06 AMD from copper mine 

100 	 
DO 145973 Uncultured bacterium ML2-25 sulfur spring 

1—  PCF32 (EU921168) 

— D0241393 Uncultured bacterium LOP-83 mine drainage water 
44  	  RC7BW56 (EU921167) 

F L07897 Gallionella ferruginea 

6DQ386262 	ferruginea subsp. capsiferriformans 

loo r  PCF18 (EU921151) 

L  PCF27 (EU921169) 
0. 1 

Figure 3.4. Phylogenetic tree of 16S rRNA gene clones from environmental 
samples from a bioremediation system, Heybridge, Tasmania affiliated with 
class Betaproteobacteria using the Neighbor-Joining algorithm in BioEdit 
v7.09. Red type = Reduction cell, blue type = Sludge dam. Outgroups used 
were Coprothermobacter platensis and Thermotoga maritima (not included). 
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X82133 Shewanella putrefaciens ATCC 8071 

	 AB118236 Thiovirga sulfuroxydans SOOT' 

71 
L76222 Rhodanobacter lindaniclasticus LMG 18385 1  

98 

	 AY987369 Dokdonella koreensis DS-140 
91 

	RC8C66 (EU921170) 

AF137369 Acidithiobacillus caldus TC 1 

	 RCF44 (EU921171) 

	 RCF14 (EU921172) 

RCF33 (EU921173) 

	 AF329205 Acidithiobacillus ferrooxidans ATCC 23270 

63 39 
AJ459804 Acidithiobacillus albertensis DSM 14366 

100  

AY552087 Acidithiobacillus thiooxidans ATCC 19377 1  
20 

PCF12 (EU921174) 

3 

PCF61 (8 clones) (EU921153) 

76 

RCF30 (EU921175) 

0. 1 
Figure 3.5. Phylogenetic tree of 16S rRNA gene clones from environmental 
samples from a bioremediation system, Heybridge, Tasmania affiliated with 
class Gammaproteobacteria using the Neighbor-Joining algorithm in BioEdit 
v7.09. Red type = Reduction cell, blue type = Sludge dam., green = Potato cell. 
Outgroups used were Coprothermobacter platensis and Thermotoga 
maritima (not included). 
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94
—  U41562 Pelobacter venetianus GraPEG1 
— X79413 Pelobacter carbinolicus DSM 2380 

100
— X70955 Pelobacter acetylenicus DSM 2348 

X77216 Pelobacteracidigallici DSM 237T 
AY187308 Pelobacter massehensis HHQ7 

	 AJ237601 Desulfobacterium anilini DSM 4660 
	 U45990 Desulfonema limicola DSM 2076 
U45989 Desulfonema magnum DSM 2077 

74 — AF418173 Desulfococcus multivorans DSM 2059 
100— AJ277887 Desulfococcus biacutus DSM 5651' 

AJ237607 Desulfobacterium indolicum DSM 3383 
	 RC7BW49 (EU921176) 

100  AY493562 Desuffatibacillum alkenivorans PF 2803" 
100 	

I  AY184360 Desulfatibacillum aliphaticivorans CV2803" 
	  RC7BW13 (EU921177) 
	 RC7BW28 (EU921178) 

oor  X85132 Syntrophus gentianae HQgoe1 
L X85131 Syntrophus buswelhi DSM 2612 
	  RC8C40 (EU921180) 
88 	 AF099062 Desulfotalea psychrophilia LSV54 
	 AY274450 Desulfobactenum corrodens 154' 
	 AF382396 Anaeromyxobacter dehalogenans ATCC BAA-258 
	  DQ646301 Uncultured bacterium clone 10-75 soil 
	  RC8C41 (EU921179) 
	  RC8C20 (EU921156) 
67 	 AY187306 "Geobacter humireducens" 

33 	 X70954 Pelobacter propionicus DSM 2379 
	 U13928 Geobacter sulfurreducens PCA 
63 L07834 Geobacter metallireducens GS-15 

U46860 Geobacter hydrogenophilus H4 
	  PCF98 (EU921181) 

loo 	RCF39 (8 clones) (EU921155) 
PCF22 (7 clones) (EU921154) 
iRCF12 (EU921182) 

100
20

RCF77 (EU921183) 
48 	  RCF7 (EU921184) 41 
	 RCF84 (EU921185) 

Y16941 Desulfurella kamchatkensts DSM 10409 
84 X72768 Desulfurella acetivorans DSM 5264 
65 Y16943 Desulfurella multipotens DSM 8415 
90L Y16942 Desulfurella propionica DSM 10410 

0.1  

Figure 3.6. Phylogenetic tree of 16S rRNA gene clones from environmental 
samples from a bioremediation system, Heybridge, Tasmania affiliated with 
class Deltaproteobacteria using the Neighbor-Joining algorithm in BioEdit 
v7.09. Red type = Reduction cell, blue type = Sludge dam., green = Potato cell. 
Outgroups used were Coprothermobacter platensis and Thermotoga maritima 
(not included). 
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AB080643 Sulfuricurvum kujiense YK-2 

62 

AF218076 Sulfurospirillum halorespirans PCE-M2T 

U85964 Sulfurospirillum arsenophilus MIT-13 

DQ295694 Uncultured bacterium MC1-bact-C192 sulfidic spring 

AY261819 Uncultured bacterium PD-USAB-61 UASB reactor treating phenol 

AB240460 Uncultured bacterium SRIRT05 grass rhizosphere 

RC8C8 (8 clones) (EU921157) 

0.1 
Figure 3.7. Phylogenetic tree of 16S rRNA gene clones from environmental 
samples from a bioremediation system, Heybridge, Tasmania, affiliated with 
class Epsilonproteobacteria using the Neighbor-Joining algorithm in BioEdit 
v7.09. Red type = Reduction cell. Outgroups used were Coprothermobacter 
platensis and Thermotoga maritima (not included). 
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AB288294 Flexibacter aggregans IAM 14894 1  
AY787820 Sphingobacterium multivorum CR11 
	 AJ318907 Flavobacterium denitrificans ED5 -  
L16498 Rikenella microfusus ATCC 29728 1  
	 RC7BW19 (EU921186) 
	AJ319867 Dysgonomonas mossii CCUG 434571  
	 AF319778 Bacteroides coprosuis PC 1391 
	 DQ677004 Uncultured bacterium CI-Al2 iron-reducing sediment 
	 AB200229 Bacteroides pyo genes JCM 6294 
	 AB021156 Bacteroides acidofaciens JCM 10556 1  

961— M58763 Bacteroides thetaiotaomicron ATCC 29148 

78 
 RC7BW93 (4 clones) (EU921158) 
	 RC7BW86 (EU921187) 100 

PCF33 (10 clones) (EU921159) 
AB078842 Paludibacter propionicigenes WB4' 
AY947939 Uncultured bacterium IRD18E01 river sediment 
	 AY510259 Uncultured bacterium LKC3 156 56 sulfidic spring 
DQ205192 Uncultured bacterium MB6A-bac2 acid peat bog 

	

1  	

RCF91 (18 clones) (EU921160) "g, 
00   

PCF36 (10 clones) (EU921161) 
69  RCF49 (EU921188) 
1135—  RCF19 (EU921189) 
	AB053947 Tannerella forsythensis TR6 

	

100 	AY570514 Porphyromonas uenonis ATCC BAA-906' 
	 AY253728 Porphyromonas endodontalis ATCC 35406 
locif AB175367 Uncultured bacterium BSA1B-13 anaerobic digester 

100 I—  RC7BW51 (EU921190) 
:T21 CT574054 Uncultured bacterium 054F07 B DI P58 anaerobic sludge digester 

L  RC7BW43 (EU921191) 
	 AJ784993 Alkaliflexus imshenetskii Z - 701 01 

70 
	 M58766 Cytophaga fermentans ATCC 19072 
	RC8C64 (EU921193) 
	 RC8C35 (EU921194) 

100 
	 RC8C2 (EU921192) 

AF050539 Uncultured bacterium WCHB1-53 contaminated aquifer 

AB186814 Uncultured bacterium TSAH11 dechlorinating microcosm 
72 	  RC8C19 (EU921195) 

0.1  
Figure 3.8. Phylogenetic tree of 16S rRNA gene clones from environmental 
samples from a bioremediation system, Heybridge, Tasmania, affiliated with 
phylum Bacteroidetes using the Neighbor-Joining algorithm in BioEdit v7.09. 
Red type = Reduction cell, blue type = Sludge dam, green = Potato cell. 
Outgroups used were Coprothermobacter platensis and Thermotoga maritima 
(not included). 
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AY959944 Clostridium alkalicellurn Z-7026 T  

1(716T EF680276 Clostridium thermocellum JN4 
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97 

100 

AB088361 Planifilum fulgidum 700375 

	  RC8C49 (EU921206) 

A82 10995 Ureibacillus thermosphaericus SSC544 

RC8C57 (EU921205) 

0Q348071 "Ureibacillus rudaensis" HC145 1  

63  	  RC8C67 (EU921204) 
53 

AB243853 Virgibacillus halophilus 5B1 33E 

AF547209 Bacillus acidicola 105-2-  

100 AJ542508 Bacillus bataviensis LMG 218331  

	RC8C4 (EU921203) 

	 AB254031 Thermobacillus compost, KWC4 T  

8 1Iiof 
AB271057 Paenibacillus ginsengaryi gsoil 139 1  

AB179866 Paenibacillus hodogayensis SG 

	 Y11566 Desulfotomaculum acetoxidans DSM 771 1  
100 
	  RC8C70 (EU921199) 

83 	 U88891 Desulfotomaculum halophilum strain SEBR 3139 

67 	 AF097024 Desulfotomaculum 	DSM 12257' 

	 RC8C37 (EU921202) 

	 RC8C56 (EU921201) 
loo  

	

100 	AY949857 Uncultured bacterium P6 UASB bioreactor 

41 	RC8C17 (EU921200) 
98 

	

55 	AJ278163 Uncultured bacterium SHD -209 anaerobic dechlonnating bioreactor 

40 

50 
98 

	 RC8C45 (EU921198) 

	 RC8C3 (EU921196) 

	 RC8C65 (EU921197) 

	 AF343566 Therrnaerobacter subterraneus 021' 
41 

DQ079638 Uncultured bacterium EV818FW062101BH4MD48 fluid-filled fracture 
0.1 

Figure 3.9. Phylogenetic tree of 16S rRNA gene clones from environmental 
samples from a bioremediation system, Heybridge, Tasmania ,affiliated with 
phylum Firmicutes using the Neighbor-Joining algorithm in BioEdit v7.09. 
Red type = Reduction cell. Outgroups used were Coprothermobacter platensis 
and Thermotoga maritima (not included). 
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	AJ308501 Chloroflexus aurantiacus DSM 637 
mar  AY921707 Uncultured bacterium AKYG1138 farm soil 

L  RC8C38 (EU921207) 
	 AF027092 Candidate division OP 10 clone OPB50 hot spring 
AF418169 Thermodesulfobactenum commune DSM 2178 
	 AB086060 Deferribacter desuffuhcans DSM 47831  
	 AF146526 Denitrovibho acetophilus N2460' 

93 	 X95744 Geovibrio ferrireducens PAL-1 
	 RC8C50 (EU921208) 

icor  AB237721 Uncultured bacterium HDBW-WB58 aquifer 
RC8C18 (2 clones) (EU921209) 

	X86776 Leptospirillum ferrooxidans DSM 2705 
	 X71838 "Magnefobacterium bavaricum - 

ioor  AB231858 Thermodesulfovibrio yellowstonii ATCC 51303 
'X96726 Thermosulfovibrio islandicus R1ha3 
	AF027088 Candidate division 0P3 clone OPB2 hot spring 
	 RC7BW25 (EU921210) 
	 RC7BW80 (EU921211) 
67  
	AY013695 Uncultured bacterium BVC56 landfill loo  
	 AY792313 Uncultured bacterium CrystalBog2KAl2 humic lake 

AY792312 Uncultured bacterium CrystalBog021B9 humic lake 
	 AY050598 Uncultured bacterium GOUTB15 bioreactor treating monochlorobenzene 

AF224825 Uncultured bacterium Car30c anoxic basin sediment 
98 AY661975 Uncultured bacterium 300E2-009 acidic uranium-contaminated waste 
	 AF407207 Uncultured bacterium GIF19 bioreactor treating monochlorobenzene 

44 1 969 	  RC7BW96 (EU9121222) 
7 	RC7BW1 (EU921223) 

war  AB232821 Uncultured bacterium PHBO7 propionate degrading 
97 	I AB248652 Uncultured bacterium BHB23 anaerobic butyrate degrading 
	 RC7BW17 (EU921218) 

loon-  RC7BW33 (EU921213) 
RC7BW27 (EU921214) 

	 RC7BW26 (EU921215) 
72  	  RC7BW50 (6 clones) (EU921225) 
4s 1IjZ AY667264 Uncultured bacteriumTANB84 dechlorinating community 
	 RC7BW14 (4 clones) (EU921217) 
RC7BW32 (2 clones) (EU921220) 

2 D0404728 Uncultured bacterium 655066 heavy metal-contaminated sediment 
12  RC7BW89 (EU921221) 
491 r  RC7BW74 (2 clones) (EU921216) 
lj AF407201 Uncultured bacterium GIF10 bioreactor treating monochlorobenzene 

RC7BW23 (EU921212) 
	 AF050555 Uncultured bacterium WFeA1-59 0P8 contaminated aquifer 
	  X90515 Verrucomicrobium spinosum DSM 4136 1  
7 	  

100 	AF050556 Uncultured bacterium WCHA1-89 contaminated aquifer 
4  

	AY622271 Termite group 1 clone S-J147 acidic uranium-contaminated aquifer 
	 RC7BW61 (EU921224) 

100 	D26171 Acidobacterium capsulatum ATCC 51196 
	 AY673303 Acidobacteria bacterium E1lin7137 

0.1  

Figure 3.10. Phylogenetic tree of 16S rRNA gene clones from environmental 
samples from a bioremediation system, Heybridge, Tasmania, affiliated with 
Candidate Division 0P3 using the Neighbor-Joining algorithm in BioEdit 
v7.09. Red type = Reduction cell. Outgroups used were Coprothermobacter 
platensis and Thermotoga maritima (not included). 
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Table 3.3. LIBSHUFF comparisons of the sludge dam, potato cell and 
reduction cells clone libraries. AC = difference between the clone libraries 
and p = probability of the difference being significant. Bonferroni corrected 
a = 0.0085 
Comparison AC P 
Sludge Dam/Potato Cell (X/Y) 1.710 0.001 
Potato Cell/Sludge Dam (Y/X) 0.026 0.097 
Sludge Dam/Reduction Cell (X/Y) 6.318 0.001 
Reduction Cell/Sludge Dam Y/X) 7.645 0.001 
Potato Cell/Reduction Cell (X/Y) 11.877 0.001 
Reduction Cell/Potato Cell (Y/X) 8.859 0.001 

82 



Chapter 3 Microbial Diversity 

TRFLP analysis of treatment and site variability of bacterial communities 

A total of 128 TRFs (Sludge Dam = 37, Potato Cell = 36, Reduction Cells — 74, 

Minna Creek = 43) were used for further analyses. The sludge dam, potato cell, 

reduction cells and Minna Creek were divided into groups by the level of 

treatment for statistical analysis. Hence, samples will be classed as, sludge dam = 

untreated, potato cell = pre-treatment, reduction cells = treated and Minna Creek 

= post-treatment. The ANOSIM pairwise comparisons for the sites are 

summarised in Table 3.4 and the MDS plot of pairwise comparisons between sites 

illustrated in Figure 3.11. To better illustrate differences between the reduction 

cells a MDS plot was also created that included reduction cells and Minna Creek 

cluster data (Figure 3.12). The Global R statistic was 0.26 with a p<0.01, hence 

there are some significant differences between TRFLP profiles from the different 

stages of the treatment system. Reduction cell 5 effluent compared to effluent 

from reduction cells 7 and 8, the sludge dam and the potato cell effluent, was the 

most significantly different. Reduction cell 6, 7 and 8 effluent samples were not 

significantly different. The potato cell effluent and sludge dam leachate were the 

most significantly different from all other sites and were found to be not 

significantly different from each other. 

Analysis of similarity (ANOSIM) pairwise comparison between treatment levels 

(Table 3.5) showed that there were differences indicated by a global R statistic of 

0.242 (p<0.03). However, some of the permuted R values were negative. 

Chapman and Underwood (1999) point out some situations in which negative R 

values may occur in practice, as for example, when the community is species-

poor and individuals have a heavily clustered spatial distribution, so that 
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variability within a group is more extreme than between groups. This example 

supports the notion that the bioremediation system is highly heterogeneous within 

sites with respect to microbial community composition. The MDS plotted 

ANOSIM TRFLP peak area data and the corresponding ANOSIM pairwise 

comparisons (Figure 3.13) showed a large community shift from the untreated 

sludge dam leachate to Minna Creek water samples (post-treatment), for example 

the loss of Betaproteobacteria and the increase in compost-associated bacteria 

such as Firm icutes and uncultured groups. However, the reduction cell (treated) 

communities were not significantly different to Minna Creek. The potato cell 

(pre-treated) community was not significantly different to the sludge dam, as they 

both contain large proportions of Bacteroidetes, Deltaproteobacteria and 

Gammaproteobacteria, supporting the clone library analysis. 

The dispersion indices (IMD) between treatments (Table 3.5) show that all the 

community similarities within the sludge dam leachate samples and potato cell 

effluent samples are different to the Minna Creek samples (IMD = 1.0). This 

indicates that the sludge darn and potato cell communities are less variable than 

the other sections of the system. However, the IMD within Mina Creek 

communities and the reduction cell communities are close to one (0.977) 

indicating the reduction cells communities are more heterogenous. Furthermore, 

the reduction cell communities are more diverse than the sludge dam (0.27) and 

potato cell (0.206) communities are. Warwick and Clarke (1993) noted that in a 

variety of environmental impact studies, the variability among samples from 

impacted areas was much greater than that from control areas. To date, dispersion 

analysis has not been widely used on microbial data; however, Rees et al. (2004) 

noted that it might be useful in contamination/pollution studies involving 
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microbial populations. The reduction cells are probably the most "disturbed" 

because of the constant influx of leachate forming a complex environment with 

compost and straw, whereas, the sludge dam and potato cell, are by comparison 

more homogenous environments. The potato cell only has a single source of 

organic matter. Minna Creek community also has low variability, likely due to it 

being a stable, less disturbed environment. 

Similarity percentage (SIMPER) analysis was used to determine the TRFs that 

contributed to the top 60% to 90% average similarity within samples between 

treatment sites (Table 3.6). The sludge dam leachate TRFs matched 

Acidthiobacillus spp. (-16.5%), and Desulfurella spp. (-15%) of which were in 

similar proportions in the clone libraries. Other TRF matches not found in the 

clone library include Desulfosporosinus sp. (16%) (a mesophilic sulfate reducer) 

and Thermoanaerobacter sp. (15.5%) (a thermophilic and anaerobic genus found 

to reduce iron and sulfate and ferment sugars). The potato cell effluent also had 

TRFs matching the clone library, with members of the genera Acidithiobacillus 

(5.5%), Paludibacter (15%) Bacteroides (13%) and Desulfurella (5%). The 

potato cell effluent also had matches to Acidocella sp., Desulfosporosinus sp and 

Dechloromonas sp. The change in percent similarities between community 

profiles from the different sites of the remediation system (Table 3.5) are 

supported by the change in TRFs contributing to the similarity (Table 3.6). This 

indicates a shift in community composition from a few dominant species in the 

sludge dam and potato cell to a more diverse community in the reduction cells 

and Minna Creek. The reduction cell profiles had the highest number of TRFs 

contributing to the similarity between samples indicating it was the most diverse 

which is supported by the clone library. It also appears the TRFLP profiles for the 
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reduction cells covered more of the diversity than the clone libraries. A relative 

measure of diversity based on number of TRFs found in each site sample; also 

indicate an increase in diversity from the sludge dam to the reduction cells (Figure 

3.14). 

The reduction cells most likely have a high degree of heterogeneity in bacterial 

communities because of complex organic matter and layered design, with possible 

aerobic, microaerophilic and anaerobic environments being present 

simultaneously. Clone libraries and TIZFLP profile analysis indicate three to four 

metabolic bacterial groups were found in the reduction cells i.e. iron and sulfate 

reduction, complex carbohydrate fermentation and organic acid utilisation. These 

microbial metabolic processes have been previously reported in similar systems 

(Bechard et al. 1994; Logan et al. 2005). The four reduction cells appeared to 

have similar microbial communities, which are different to the other sections of 

the remediation system. The broader comparison of treatment level better 

illustrates the progressive change in bacterial communities from untreated to post-

treatment. The bacterial diversity changes are also reflected in the significant 

differences between the clone libraries and the increasing number of TRFs found 

in samples from each successive treatment stage. 

A possible influence on the decline of the reduction cell efficiency is most likely 

the exhaustion of the organic matter in the mushroom compost over time and the 

straw unable to break down to simpler molecules fast enough for the bacteria to 

use. Logan et al. (2005) found sulfate-reducing bacteria showed growth 

limitations through all but the early establishment phase of a permeable reactive 

barrier filled with wood shaving, manure and limestone rock. The sulfate- and 
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iron-reducing bacteria cannot directly oxidise complex organic carbon 

compounds, relying on a complex community of anaerobic fermenters for 

substrates. Furthermore, many of the phylogenetic matches from the TRFLP 

analysis are related to acidophiles, indicating the pH has probably dropped in the 

reductions cells, which was indicated as a problem contributing to their decline 

(Cooper 2005 pers. comm.). For a long-term solution, for the remediation of acid 

mine drainage and mineral processing wastes would have to take into account the 

interactions of different bacterial metabolic groups. Neculita et al. (2007) 

concluded emphasis on bacteria other than sulfate- and iron-reducers is required 

so that anaerobic degradation of complex organic matter is not the limiting factor 

for these bacteria to grow. 

Another influence, which may be responsible for the decline in iron and sulfate 

removal efficiency, is the design of the reduction cells; the layers of compost and 

straw do not provide a uniform environment. Biogeochemical stratification would 

occur quickly and availability of organic matter would not be consistent 

throughout the cell. Bioreactors where the filler substrate is uniform and is porous, 

and with a high degree of surface area, such as a mixture of sand/gravel, 

woodchips and compost, have performed better than compost-based systems 

(Tsukamoto et al. 2004). Gagliano (2004) also found the major concentrations of 

metals, sulfate and bicarbonate at the interface between compost and the 

overlaying clay, indicating the metabolic activities of target sulfate- and iron-

reducing bacteria occur in a thin zone of optimal conditions indicating thick 

layers of compost were not utilised by a large proportion of the target bacteria. 
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Table 3.4. Analysis of similarity (ANOSIM) pairwise comparisons computed 
from the Bray-Curtis similarity matrix of TRFLP relative peak abundance 
data from treatment site samples and % average similarity (SIMPER) 
analysis between site samples calculated in PRIMER v6. Bold = significant 
differences. 
Group Comparisons R Statistic P % Average Similarity 
RC5, Minna Creek 0.352 <0.143 34.03 
RC5, Potato Cell 0.556 0.029 25.14 
RC5, RC6 0.063 0.338 30.95 
RC5, RC7 0.321 0.043 33.02 
RC5, RC8 0.321 0.033 27.47 
RC5, Sludge Dam 0.648 0.029 22.99 
RC6, Minna Creek 0.074 0.31 33.13 
RC6, Potato Cell 0.451 0.012 21.35 
RC6, RC7 0.128 0.119 33.15 
RC6, RC8 -0.05 0.641 32.54 

RC6, Sludge Dam 0.512 0.012 23.33 
RC7, Minna Creek 0.296 0.107 38.29 
RC7, Potato Cell 0.636 0.012 30.18 
RC7, RC8 0.039 0.32 3 5 .67 

RC7, Sludge Dam 0.753 0.012 26.79 
RC8, Minna Creek -0.247 0.893 38.94 
RC8, Potato Cell 0.352 0.048 25.81 
RC8, Sludge Dam 0.438 0.036 25.9 
Potato Cell, Minna Creek 0.704 <ill 29.82 
Sludge Dam, Minna Creek 1 <o.1 23.12 
Sludge Dam, Potato Cell -0.111 0.8 38.33 
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V  RC7 
• RC8 
• RC5 
• Potato Cell 
• Sludge Dam 
0  Minna Creek 

Figure 3.11. MDS (Mutli-dimensional Scaling) plot of the ANOSIM pairwise 
comparisons (Table 3.3) on relative peak abundance data from treatment site 
samples, calculated in PRIMER v6. RC = reduction cell. 
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Figure 3.12. MDS plot subset from Figure 3.12 of the reduction cells (RC) 
and Minna Creek ANOSIM pairwise comparisons (Table 3.3) on relative 
peak abundance data, calculated in PRIMER v6. 
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Table 3.5. Analysis of similarity (ANOSIM) pairwise comparisons of 
treatment level from the Bray-Curtis similarity matrix of TFtFLP relative 
peak abundance data and % average similarity by SIMPER analysis and 
dispersion indices (MVDISP) calculated in PRIMER v6. Bold is significant 
difference. 

Groups 
R 

Statistic p % Average similarity IMD 
treated, pre-treated 0.408 0.017 25.66 0.206 

treated, untreated 0.474 0.007 24.91 0.27 

treated, post treatment -0.151 0.781 36.29 0.977 

pre-treated, untreated -0.111 0.8 38.33 0.111 
pre-treated, post treatment 0.704 <0.1 29.82 1 

untreated, post treatment 1 <0.1 23.12 1 
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Figure 3.13. MDS plot of the ANOSIM pairwise comparisons of TRFLP peak 
abundance data from site samples divided into treatment stage of the 
bioremediation system, calculated in PRIMER v6. Untreated = sludge dam, 
pre-treated = potato cells, treated = reduction cells combined and post 
treatment = Minna Creek. 
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Table 3.6. TRFs contributing to 60 - 90% similarity within site samples, 
calculated in SIMPER analysis of the TRFLP peak abundance data, in the 
reduction cells (treated), potato cell (pre-treated), sludge dam (untreated) 
and Minna Creek (post treatment) and their possible phylogenetic matches. 
TRF = size base airs + enzyme + forward/reverse. 

Untreated Pre-treated Treated Post-treatment 
TRF Contrib% Contrib% Contrib% Contrib% Phylogenetic match 

130 msp R 0 4.7 8.61 5.31 Acidovorax sp./Fen-ovum myxofaciens 
124 hae R 5.04 15.12 8.1 5.83 Paludibacter propionicigenes 
119 rsa R o 4.44 6.44 6.67 Dechloromonas sp. 
127 hae R 6.29 5.46 5.5 6.13 Acidithiobacillus ferrooxidans 
121 rsa R o o 4.78 6.04 Acidocella sp.IDesulfitobacterium spiDesulfovibrio sp. 
80 rsa R o 5.04 3.97 1.49 Bacteroidetes clone AY792299 humic lake 

171 hinf It 0 0 3.69 1.74 Desulfomicrobium sp. 
132 msp R o o 3.64 4.97 Acidiphilium sp. 
94 Insp F o o 3.48 0 Syntrophus spp. 
153 hinf R 16.49 o 3.22 0 Acidithiobacillus spp. 
80 hha F 15.24 o 2.97 0 Desufurella spp. 
73 hha ft o 0 2.69 4.65 Nitrospira sp./Sulfitobacter sp 
77 hha R o 0 2.59 4.4 Paludibacter propionicigenes 
98 hae F o o 2.34 0 Desulfuromonas sp. 
152 hha R o 13.07 2.06 5.11 Bacteroides sp./Pmphyromonas sp. 
116 hae F o o 1.82 o Bacteroides spiDeferribacter sp. 
80 hae R o o 1.76 1.7 Rhodobacter sp.ISulfitobacter sp. 

201 msp F o o 1.68 0 Acidosphaera rubrifaciens 
75 rsa F o 5.08 1.67 0 Acidosphaera rubrifaciens 

306 hae R o 0 1.22 o Ferribacterium limnetimm 
91 hinf R o 4.91 1.2 0 Gallionella ferruginea 
65 rsa R o o 1.19 0 Bacteroides sp. 
368 rsa F 0 0 1.14 1.47 Desulfovibrio sp. 
69 hha R 0 o 1.04 1.77 Acidiphilium sp.lAcidocella sp.ISulfitobacter sp. 
75 hha F 0 0 1.01 0 Candidate division 0P8 bacterium 
71 hha R o 0 0.96 4.14 Nnrospira sp. 
80 hinf R 15.59 o 0.8 o Thermoanaerobacter sp. 
71 hae R o o 0.59 0 Geovibrio ferrireducens 
80 msp R 15.89 14.73 o o Desulfosporosinus sp. 
82 hinf R 0 5.58 o o Bacteroides sp. 
70 hae F o 5.54 0 o Bacteroidetes 

156 hinf R 16.58 4.66 0 o Desufurella spp. 
Total % similarity 91.12 88.33 80.16 61.42 
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Figure 3.14. Graph of the number of TRFs found in the samples from the 
different treatment stages of the bioremediation system, Heybridge, 
Tasmania. Untreated = sludge dam, pre-treated = potato cells, treated = 
reduction cells combined and post treatment = Minna Creek. 
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TRFLP analysis of temporal variability of bacterial communities 

A typical TRFLP chromatogram demonstrates changes occurring in the microbial 

community in samples over 18 months (May 2005, April 2006 and November 

2006) (Figure 3.15). The global R statistic from the ANOSEM analysis of site 

samples grouped by time of sampling was 0.545 (p<0.01) demonstrating that the 

overall differences in bacterial communities between sites over time were 

statistically significant. The pairwise comparisons (ANOSIM) and percent 

average similarity calculated with SIMPER, between all reduction cells at the 

three time points (May 2005, April 2006, November 2006) are summarised in 

Table 3.7. The MDS plot of the ANOSIM pairwise comparisons between these 

points shows substantial variability also existed within the treatment stages during 

the survey period (Figure 3.16). 
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Figure 3.15. Fragment chromatograms of Reduction Cell (RC) 8 samples 
from May 2005, April 2006 and November 2006 with the restriction enzyme 
Haelll. Red peaks = size standard, blue peaks = reverse fragments, green 
peaks = forward peaks. 
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Reduction cell 5 effluent sample bacterial community appears to shift the most in 

similarity between April and November (R statisitic = 1) (RC5 was not 

operational in 2005) and is most different in bacterial communities to the other 

reduction cell samples over time. Reduction cell 5 is smaller and more exposed to 

sunlight and the delay in operation may be the cause of the difference. However, 

the iron removal efficiency for this cell also declined over time indicating it 

would eventually become similar to the other reduction cells (Cooper 2007, pers. 

comm.). 

The TRFLP peak data show the similarity in the bacterial community of reduction 

cell 6 and 8 did not change over the three time points (Figure 3.16). The percent 

average similarity in TRFLP profiles decreased slightly over time for reduction 

cell 6 (31% for May 2005/April 2006 to 27% for April 2006/November 2006) and 

increased slightly over time for reduction cell 8 (28% to 32%). The iron removal 

efficiency for these reduction cells declined from 44% to <10% from 2002 to 

2006 and the cells were shut down in 2007. The Reduction cell 7 bacterial 

community appeared to stabilise over time as the ANOSIM analysis of the 

TRFLP profiles from May 2005 and April 2006 were significantly different (R = 

0.5, p<0.33, 28% similarity). However, the April 2006 and November 2006 

TRFLP profiles were not significantly different and the percent average similarity 

increased to 45%. Hence, as the reduction cells declined in efficiency the bacterial 

population in reduction cells 6, 7 and 8 became similar to one another and plateau. 

ANOSIM analysis of the TRFLP peak area data from all reduction cells over all 

time points (Global R = 0.359, p<0.001) indicate an overall stabilisation in the 
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bacterial community from May 2005 to November 2006. The ANOSIM analysis 

showed that the samples became less significantly different over time (R=0.272 to 

0.206, p<0.02; Table 3.8, Figure 3.17). Furthermore, the bacterial community 

from all the reduction cells appeared to become more similar to that of Minna 

Creek from May 2005 to April 2006 and then shift away again in November 2006 

(R = 0.241 — 0.108 — 0.234, p<0.25). Dispersion indices (Table 3.8) indicate most 

of the similarities in April 2006 were lower than any of the similarities in the 

other time samples. Furthermore, the MDS plot of the ANOSIM pairwise 

comparisons (Figure 3.16) showed reduction cell 5 (April 2006) appears to be the 

most different in bacterial community from all the other sites, which probably 

contributed to this overall difference for April 2006. Reduction cell 5 is different 

in size and position to the other cells and its operation started later than the other 

reduction cells. 

SIMPER analysis was used to calculate the TRFs that contributed to >80% 

average similarity within samples of the reduction cells between time points and 

the possible phylogenetic inference determined from in silico restriction digests of 

16S rRNA gene clones (Table 3.9). The phylogenetic groups give an indication 

that the bacterial community is similar between reduction cell samples over time, 

as the same TRFs occurred in all reduction cell time profiles such as 124haeR 

(Paludibacter propionicigenes). However, the percent similarity contribution 

(SIMPER) of these common groups are different between the time points which 

may indicate the diversity does not change significantly but the relative 

abundances of these common groups do. The relative diversity, based on the 

number of TRFs tallied for each reduction cell at each time point, indicate 

bacterial diversity increased from May 2005 to November 2006 for reduction 
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cells 7 and 8 but is probably not statistically significant (Figure 3.18). The higher 

percent contributions (SIMPER) of TRFs in May 2005 indicate matches to iron-

and sulfate-reducers were more prevalent, whereas in November 2006 the higher 

TRF percent contributions match anaerobic fermenters indicating a shift in 

bacterial communities over time. However, this cannot be correlated to absolute 

quantitative changes in community structure. There was no evidence of seasonal 

variation, as May and April are similar seasonally; the bacterial communities 

were still significantly different. 

Though the system may have a high degree of heterogeneity, some bacterial clone 

matches appeared to be ubiquitous across sites and over time, including 

Acidithiobacillus spp. and Paludibacter propionicigenes. The genus 

Acidithiobacillus is capable of switching metabolic processes from iron- and 

sulfur-oxidation in aerobic environments to sulfate- and iron-reduction in 

anaerobic environments (Brock and Gustafson 1976; Johnson and Bridge, 2002; 

Ohmura et al. 2002) and is commonly encountered in acid mine drainage 

(Duquesne et al. 2003; Nicomrat, et al. 2008). P. propionicigenes an acidophile, 

has been found to utilise various sugars (Ueki et al. 2006), and a high proportion 

of clones similar to members of this genus were found in the sludge dam and 

potato cell effluent samples. Propionate-producing bacteria might be beneficial as 

propionate can be utilised by sulfate- and iron-reducing bacteria as an electron 

donor; however, the fermenters may compete with other bacteria for carbon 

sources (Lovley 2000). 

Exacerbating the lack of accessible organic matter are probably the low annual 

temperatures of the local climate; the reduction cells are sited in a shaded valley 
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where mean summer temperatures do not reach much above 20°C. Once the 

temperature inside the reduction cells drop, it would be hard to increase again 

without expensive artificial heating. Temperature also affects organic substrate 

decomposition, and oxygen and hydrogen sulfide solubility. Potential 

amendments and improved system design to promote growth of indigenous 

microorganisms still have to overcome low temperatures for bioremediation in 

temperate, alpine, and high latitude areas. 

Hot composting is ideal for raising temperatures. However, if left passive, it does 

not last for long periods of time. However, column experiments (Tsukamoto et al. 

2004) have shown that if the bacteria have been allowed to acclimatise, iron and 

sulfate reduction were not affected by lower temperatures. Furthermore, low 

temperatures negatively affect the methanogens, which compete with SRB and 

IRB for organic substrates, so lower temperatures may benefit these systems. In a 

similar bioremediation system Gagliano (2004) found no consistent variation in 

metal and sulfate removal with sampling date of compost wetlands in southern 

Ohio (temperature range: 17 - 27°C in summer to "5 - 4°C in winter) the major 

correlation was with wetland stratigraphy. Temperature decreases may magnify 

other factors already affecting bioreactor efficiency. 
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Table 3.7. ANOSIM pairwise comparison analysis and SIMPER % average 
similarity of the Bray-Curtis similarity matrix for reduction cells over time. 
Groups R Statistic P % Average similarity 
RC5April 06, RC5November 06 1 0.333 30.3 
RC5April 06, RC6April 06 0.75 0.333 26.46 
RC5April 06, RC6November 06 0.75 0.333 28.22 
RC5April 06, RC7April 06 0.25 0.667 27.5 
RC5April 06, RC7November 06 1 0.333 35.11 
RC5April 06, RC8Apr1l 06 1 0.333 22.92 
RC5April 06, RC8November 06 1 0.333 31.42 
RC5November 06, RC6November 06 1 0.333 22.88 
RC5November 06, RC7November 06 1 0.333 33.53 
RC5November 06, RC8November 06 1 0.333 27.54 
RC6April 06, RC5November 06 0.25 0.667 36.11 
RC6April 06, RC6November 06 0.25 0.333 27.36 
RC6April 06, RC7April 06 -0.5 1 36.28 
RC6April 06, RC7November 06 0.5 0.333 32.4 
RC6April 06, RC8April 06 -0.25 1 44.29 
RC6April 06, RC8November 06 0.5 0.333 27.87 
RC6May 05, RC5April 06 1 0.333 29.31 
RC6May 05, RC5November 06 0.75 0.333 42.71 
RC6May 05, RC6April 06 0.25 0.667 30.95 
RC6May 05, RC6November 06 0.75 0.333 25.74 
RC6May 05, RC7April 06 0.75 0.333 26.76 
RC6May 05, RC7May 05 1 0.333 38.03 
RC6May 05, RC7November 06 1 0.333 40.62 
RC6May 05, RC8April 06 1 0.333 22.9 
RC6May 05, RC8May 05 0.5 0.333 35.25 
RC6May 05, RC8November 06 1 0.333 34.31 
RC6November 06, RC7November 06 0.5 0.333 44.64 
RC6November 06, RC8November 06 -0.25 1 44.57 
RC7April 06, RC5November 06 1 0.333 26.42 
RC7April 06, RC6November 06 0 1 28.1 
RC7April 06, RC7November 06 0 1 44.8 
RC7April 06, RC8April 06 -0.25 1 35.97 
RC7Apr1l 06, RC8November 06 0.25 0.333 35.01 
RC7May 05, RC5April 06 0.75 0.333 38.73 
RC7May 05, RC5November 06 0.5 0.667 36.83 
RC7May 05, RC6Apr1l 06 0.5 0.333 26.68 
RC7May 05, RC6November 06 1 0.333 24.84 
RC7May 05, RC7April 06 0.5 0.333 28.08 
RC7May 05, RC7November 06 1 0.333 38.28 
RC7May 05, RC8April 06 1 0.333 26.13 
RC7May 05, RC8May 05 0.25 0.667 37.68 
RC7May 05, RC8November 06 1 0.333 34.61 
RC7November 06, RC8November 06 0 1 55.91 
RC8Apr1l 06, RC5November 06 1 0.333 19.56 
RC8April 06, RC6November 06 0.5 0.333 30.17 
RC8April 06, RC7November 06 0.75 0.333 36.9 
RC8April 06, RC8November 06 0.75 0.333 32.49 
RC8May 05, RC5April 06 0.75 0.333 27.29 
RC8May 05, RC5November 06 0.5 0.333 36.1 
RC8May 05, RC6April 06 0 0.667 28.79 
RC8May 05, RC6November 06 1 0.333 24.72 
RC8May 05, RC7April 06 0.5 0.333 25.66 
RC8May 05, RC7November 06 0.75 0.333 33.18 
RC8May 05, RC8April 06 0.75 0.333 28.05 
RC8May 05, RC8November 06 0.5 0.333 29.92 

100 



Chapter 3  Microbial Diversity 

RC8 • 

Minna Ceek 
II 

RC6 
• 

RT • 

RC6 • 
RC8 • 

RC5 
• 

Fly • RC5 20 Stress: 0.11 

RC7 
A 

Time 
• May  05 
• April 06 
• November 06 
• Potato Cell 
• Sludge Dam 
• Minna Creek 

PKWERPP m  
•1 

Figure 3.16. MDS plot of pairwise comparison analysis (ANOSIM Table 3.6) 
of TRFLP peak area data between sites of the bioremediation system over 
time of sampling. RC = reduction cell and reduction cell number. 
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Table 3 :8. ANOSIM pairwise comparison analysis and SIMPER % average 
similarity and dispersion indices (MVDISP) of the Bray-Curtis similarity 
matrix for reduction cell samples combined over time compared to the other 
treatment levels. Bold is significant difference. 
Groups R Statistic p % Average similarity IMD 
May 05, April 06 0.272 0.018 28.28 -0.481 
May 05, November 06 0.309 0.015 33.49 0.043 
May 05, Potato Cell 0.543 0.024 30.88 -0.111 
May 05, Sludge Dam 0.691 0.012 30.49 -0.289 
May 05, Minna Creek 0.241 0.119 38.78 1 
April 06,November 06 0.206 0.011 31.39 0.403 
April 06,Potato Cell 0.669 0.006 20.34 0.333 
April 06, Sludge Dam 0.661 0.006 19.77 0.405 
April 06, Minna Creek 0.108 0.248 33.47 0.952 
November 06, Potato Cell 0.591 0.012 27.08 -0.214 
November 06, Sludge Dam 0.661 0.006 25.87 -0.19 
November 06, Minna Creek 0.234 0.133 37.23 0.857 
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Figure 3.17. MDS plot of the ANOSIM pairwise comparisons of TRFLP peak 
area data from reduction cells (treated) combined over time compared to the 
sludge dam (untreated), potato cell (Pre-treatment) and Minna Creek (Post-
treatment) samples. 
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Table 3.9. TRFs contributing to >80% similarity, calculated in SIMPER 
analysis (PRIMER v6) of the TRFLP peak abundance data of the reduction 
cells over time and their phylogenetic inference, TRF = size (base pairs) + 
enzyme + forward/reverse. The five TRFs contributing the highest % 
similarity for each time point are bold. 

May-05 Apr-06 Nov-06 

TRF Contrib% Contrib% Contrib% Phylogenetic match 

306 hae R 10.43 0 0 Ferribacterium limneticum 
124 hae R 8.25 2.56 11.86 Paludibacter propionicigenes 
130 msp R 7.63 11.41 4.44 Acidovorax spJFerrovum myxofaciens 
119 rsa R 7.56 4.49 5.03 Dechloromonas sp. 
80 hha R 6.58 0 2.92 Firmicutes 
152 hha R 6.35 0 1.65 Bacteroides sp./Porphyromonas sp. 
128 hae R 6.34 2.77 5.27 Acidithiobacillus ferrooxidans 
120 rsa R 4.11 4.18 0 Acidovorax sp.IDesulfotomaculum sp. 
75 rsa F 4.04 1 0 Acidosphaera rubrifaciens 
121 rsa R 3.8 2.69 5.35 Acidocella spiDesulfitobacterium spiDesulfovibrio sp. 

400 hha R 3.67 0 0 Sulfurospirillum sp. 
75 hha F 3.57 0 0 Candidate division 0P8 bacterium 
69 hha R 2.34 1.14 0 Acidiphilium sp.lAcidocella sp.ISulfitobacter sp. 
94 msp F 2.17 1.23 5.26 Synirophus spp. 
132 msp R 2.11 3.15 3.47 Acichphilium sp. 
80 hae R 1.61 0 1.6 Rhodobacter sp./Sulfitobacter sp. 
71 hha R 0.91 3.05 0 Nitrospira sp. 
77 hha R 0.78 2.24 3.04 Paludibacter propionicigenes 
171 hinf R 0.69 6.66 2.47 Desulfomicrobium sp. 
201 msp F 0 7.96 0 Acidosphaera rubrifaciens 
153 hinf F 0 5.2 2.49 Firmicutes/Ferribacterium sp./Dechloromonas sp. 

98 hae F 0 4.76 2.08 Desulfuromonas sp. 
368 rsa F 0 4.61 0 Destdfovibrio sp. 
372 hae R 0 4.42 0 Acidovorcvc sp.1Comamonas sp.IRhodovorax sp. 
73 hha R 0 4.36 1.81 Nitrospira sp./Sulfitobacter sp 
80 rsa R 0 3.47 6.41 Bacteroidetes clone AY792299 humic lake 

91 hinf R 0 2.42 0 Gal lionella ferruginea 
65 rsa R 0 2.41 1.52 Bacteroides sp. 
116 hae F 0 0 5.29 Bacteroides spiDeferribacter sp. 
137 hha R 0 0 3.44 Bacteroides sp. 
88 rsa R 0 0 3.42 Desulfobacterium sp. 
110 rsa F 0 0 3.09 Termite Group I 

163 hinf R 0 0 2.49 Syntrophus spp. 
Total % Similarity 82.94 86.18 84.4 
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Figure 3.18. Graph of the total number of TRFs for the reduction cells from 
the different time point samples of the bioremediation system, Heybridge, 
Tasmania. RC = reduction cell. Reduction cell 5 was not included. 

105 



Chapter 3 Microbial Diversity 

Scanning electron microscopy and electron probe microanalysis 

The reduction cell enrichment broths prepared for seaming electron microscopy 

photography (Figure 3.19a-e) show a mixed culture of short and long rods, vibrio-

shaped as well as cells with similar morphology to the twisted and stalked 

bacteria Gallionella ferruginea (Figure 3.19b). Similar cells to the polygonal-

shaped cells (Figure 3.19b) have previously been found in diesel sludge (Vrdoljak 

et al. 2005) and their 16S rRNA gene sequence matched with Paenibacillus sp., 

which a reduction cell clone (RC8C4, EU921203) grouped. The electron probe 

analyses revealed the precipitates present on the SEM samples were iron 

oxyhydroxides and iron oxyhydroxysulfates, and have morphology similar to 

goethite and schwertmannite. Cells were either disassociated with the precipitates 

(Figure 3.19b) or associated with the precipitates (Figure 3.19c-e). 
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Figure 3.19. Scanning electron micrographs of the reduction cell enrichment. 
(a) - Iron oxyhydroxide precipitate, disassociated cells, (b) - twisted and 
stalked similar to Gallionella spp. and polygonal-shaped cells similar to 
Paenibacillus spp., (c-c) - rod-shaped cells (indicated by red circles) 
associated with the precipitates. 
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Conclusion 

The 16S rRNA gene clone libraries and TRFLP analysis has shown the microbial 

communities in a novel and passive bioremediation system can be very complex 

and heterogeneous within and between treatment stages. Microbial community 

composition was observed to change over time as which may have been 

influenced by organic matter availability due to system design, pH decrease, 

seasonal temperatures, rainfall, leachate flow rates and hydraulic retention time. 

This complex nature will have effects in the design and management of these 

systems, keeping the system homogeneous with respect to organic matter addition, 

acclimation period and delivery of the fluid to be remediated. Frequent 

monitoring of changes in the microbial community, using methods like TRFLP, 

as well as the chemical analysis and alternative organic biomass amendments 

could improve management and efficiency of these systems. Laboratory-scale 

microcosms or pilot studies set up to determine the best amendments for 

increasing the efficiency of the reduction cells and their possible applications to 

other remediation systems would be beneficial. 
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Chapter 4 Microcosms 

Laboratory-scale experimental microcosm assessment of 
microbiological remediation of acidic, metal-rich 

industrial waste water using a compost-based reduction 
system 

Abstract 

A series of laboratory-scale microcosm experiments were conducted to evaluate 

the influence of temperature, bicarbonate and various carbon amendments 

(ethanol, molasses and vegetable oil emulsion) on bioremediation of an acidic, 

metal- and sulfate-rich titanium processing leachate. In all microcosms, pH 

increased from 4 to 6.5-8 over the length of the experiment due to the organic 

matter input but this had no affect on other geochemical processes measured. The 

oxidation-reduction potential (ORP) decreased in all microcosms (700mV to - 

100mV) but was the most stable in the oil emulsion amended microcosms. 

Alkalinity production was more substantial in the ethanol, molasses and oil 

emulsion amended microcosms (-2500mg L -1 ) compared to the different 

temperature and bicarbonate amended microcosms (-600 — 1800mg L-1). The 

weekly addition of 15 mg L -1  bicarbonate did not increase pH or alkalinity. Iron 

and sulfate were initially removed in all microcosms but removal could not be 

sustained in the low temperature and bicarbonate microcosms. The ethanol, 

molasses and vegetable oil emulsion amendments were found to sustain 99% iron 

removal for the length of the experiment. In all the microcosms sulfate removal 

only reached a maximum of 80% removal and was found to have a lag phase of 

approximately 80 days, and hence an acclimatisation stage may be needed for 

enhanced sulfate removal. 16S rRNA gene sequence based on terminal restriction 

fragment length polymorphism (TRFLP) profiles revealed that all the microcosms 

had similar bacterial communities but the amended microcosms were more 
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successful than the unamended microcosms in promoting the growth of a select 

bacterial consortia needed for enhanced sulfate and iron removal. Major 

populations detected included a combination of anaerobic fermenters, iron- and 

sulfate-reducers as well as iron/sulfur/sulfide oxidising bacteria. 

Introduction 

Mining and mineral processing wastewaters and leachates are often characterised 

by low pH and high concentration of metals and sulfate. These can be highly toxic 

to organisms in affected waterways and catchments and traditionally these have 

been neutralised with lime and other alkalising agents (Costello 2003). Passive 

and semi-passive bioremediation systems are attractive technologies as they can 

be cost effective and can incorporate both site remediation and overall ecosystem 

reclamation by using indigenous microbiota and flora (Johnson and Hallberg, 

2005; Whitehead et al. 2005). Furthermore, they allow supplementation with 

simple and cost effective carbon sources such as molasses, cheese whey, ethanol 

and soybean oil (Sturman 2001; Kaksonen et al. 2004b; Geets et al. 2005; Lindow 

and Borden 2005a; 2005b), woodchips, paper pulp waste (Hulshof et al. 2006) 

and fly ash (Gitari et al. 2006). 

Sulfate- and iron-reducing bacteria (SRB and IRB) are known for their capacity to 

precipitate or reduce metals to metal sulfides or metal oxides/hydroxides (Lovley 

2000). SRB reduce sulfate to hydrogen sulfide with organic electron donors or 

hydrogen. Hydrogen sulfide precipitates metals as metal sulfides and oxidation of 

organic matter produces alkalinity (Rabus et al. 2000). IRB use ferric iron (Fe 3+) 

as a terminal electron acceptor in anaerobic respiration. The ferric iron is reduced 

to ferrous iron (Fe 2+), which is insoluble at low pH, and organic matter is oxidised 
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to CO2 (Lovley 2000). The activity of these bacteria has been exploited for the 

removal of metals from contaminated wastewater, acid mine drainage or 

contaminated groundwater in on-site bioreactors and reactive barriers (Sierra-

Alvarez et al. 2006; Da Silva et al. 2007; Hiibel et al. 2008; Rowe and Johnson 

2008; Touze et al. 2008). 

Before active implementation of in situ bioremediation systems their feasibility, 

efficiency and optimisation are best investigated via batch or continual flow-

through experimental systems; for example, laboratory-scale microcosms can be 

used for this purpose (Geets et al. 2005; Geets et al. 2006). Since successful 

passive in situ bioremediation relies on the management of indigenous microbial 

populations, the leachate and material from the site of interest should be used with 

these. To optimise metal reduction processes, an insight into the bacterial 

community is also useful as this information can be used to determine what is the 

best strategy to increase the growth of target organisms. Efficiencies obtained in 

laboratory bioreactors are generally better than in pilot or full-scale bioreactors, 

none of which have remained operational for more than four years (present study 

site included) (Neculita and Zagury, 2008). However, careful selection of a 

suitable carbon source is of great importance to ensure high performance and 

longevity, and rigorous and methodical testing of these must occur in the 

laboratory. 

This study involves analysis of iron reduction and sulfate removal from pre-

treated leachates obtained from a remediation scheme developed for reclamation 

of a titanium processing plant site that operated for more than 50 years on the 

Tasmanian north-west coast. The titanium was extracted using sulfuric acid and 

111 



Chapter 4 Microcosms 

this process created acidic, metal-rich wastewater that was pumped into holding 

dams. After the plant was closed down, the dams leaked into the local river 

catchment and coastal waters (see Chapter 1 for site characterisation). Batch-type 

microcosm experiments were conducted to determine factors that would improve 

the efficiency of microbial sulfate- and iron-reduction in pre-treated titanium 

processing leachates. Factors included temperature, alkalinity addition and 

electron-donors such as ethanol, molasses and vegetable oil. 

Materials and Methods 

Pre-treated leachate samples were collected from the ES&D Heybridge 

remediation site near Burnie, north-west Tasmania (41°05.05'S, 145°98.46'E). To 

collect enough material for microcosm experiments, leachate was collected in a 

plastic 50L brewers drum fitted with an outlet at the base. Mushroom compost 

and straw were also collected from the remediation site in bags. 

Microcosm experiments 

To determine if amendments could improve the iron and sulfate removal 

efficiency of the Heybridge site as the design currently stands, laboratory-scale 

microcosms were set up with the same basic design using untreated mushroom 

compost, straw, bluestone and potato cell effluent. Five treatments were trialled in 

the microcosms; temperature (10, 20 and 25°C); recirculating and non-

recirculating bicarbonate additions; ethanol; molasses; and vegetable oil emulsion 

addition. Because of space restrictions, the temperature microcosm experiments 

were set up using 3L glass containers with a plastic outlet in a stopper inserted 

into the base (Figure 4.1a-c). The other microcosm experiments were set up in 

30L brewing barrels, which had an outlet at the base for sampling and were 
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incubated at 20°C in a temperature-controlled room (Figure 4.1d). All 

microcosms had a 5cm bluestone gravel layer, and then were half filled with 

mushroom compost followed by straw, analogous to the Heybridge field site 

reduction cells (Chapter 3). 150m1 of potato cell effluent (designated RCF in 

Chapter 3) was added to the 3L microcosms per day and 1500m1 was added to the 

30L microcosms per day, equivalent to the volumetric rate of potato cell effluent 

added to the Heybridge site reduction cells per day. Amendments were chosen 

based on literature reports and their ready availability, cost and lack of toxicity, in 

keeping with the policy of the operation at Heybridge. Geets et al. (2005) tested 

six carbon sources and found them to enhance the efficiency of metal reduction 

from best to worst in the following order; HRC ®  (Hydrogen Release 

Compound) > molasses > methanol > lactate > ethanol > acetate. Consequently, 

molasses and ethanol were chosen for utilisation in this study. Sodium 

bicarbonate was also identified by ES&D as a possible amendment as there were 

problems with keeping the pH high enough for iron- and sulfate-reduction 

(Cooper pers. comm). Edible oil emulsion amendments were also examined. 

These oil emulsions have been used for enhanced anaerobic bioremediation of 

chlorinated solvents (Anon 2007; Borden 2003, 2006) and evaluated for anaerobic 

bioremediation of acid mine drainage in laboratory column experiments (Lindow 

and Borden 2005a; 2005b). Furthermore, selection of locally available substrates 

is preferred because they are more cost effective than commercial additives and 

mixtures of substrates seem to perform better than a single source (Neculita and 

Zagury 2008). Therefore, the continued use of the mushroom compost and straw 

as a substrate was required. Two controls were set up under the same conditions 

as the temperature microcosms; a sterile control (sterile compost and influent, 
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autoclaved for 30 mins at 121°C) and a compost control (compost and sterile 

influent) incubated at 20°C. The other microcosms were set up as follows: 

• Bicarbonate microcosms: 100m1 of a 5g L -1  solution of sodium 

bicarbonate (Sigma Aldrich) was added to both recirculating and non-

recirculating microcosms twice a week to get a final concentration of 

15mg L -1 . However, when the recirculating microcosm was sampled, half 

of the discharge was kept and mixed with the same volume of leachate and 

added back into the microcosm. The sodium bicarbonate was added 

separate since when mixed with the leachate the iron precipitated, 

• Ethanol microcosm: 100m1 of 15% ethanol was added once a week for a 

final concentration of 0.5mg L -1  (Kaksonen et al. 2004b). 

• Molasses microcosm: 40m1 of a 200g L -1  solution of molasses was added 

once a week to a final concentration of 200mg L -1  (Sturman 2001). 

• Vegetable oil emulsion microcosms: Oil in water emulsion was made 

using 5g L -1  soy lecithin as the emulsifier. 200m1 of water, 400m1 edible 

vegetable oil and 400m1 of the lecithin solution were blended in a kitchen 

blender (Sunbeam Co Ltd, Botany, NSW) for 5mins, 100m1 of this was 

added to the initial 10L of leachate, mixed again, and added to the 

microcosm. The microcosm was allowed to sit for 5 days; after which the 

oil droplets adhere to the soil particles. After 56 days, molasses was also 

added to the vegetable oil emulsion (100mg L -1 ) before being added to the 

microcosm (Lindow and Borden 2005a; 2005b). 
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Measurement of pH and Oxidation Reduction Potential (ORP) 

The microcosm effluent pH was measured with an Orion 250A pH meter 

(Thermo Fisher Scientific, Waltham, Massachusetts). The pH meter was 

calibrated with pH 4.0 and pH 7.0 calibration solutions as specified in the 

manufacturer's protocol. The effluent ORP was measured using a Hanna ORP 

electrode (HI3230B) with a Hanna Microcomputer (HI9025C) (Hanna 

Instruments, Ann Arbor, Michigan). The ORP probe was calibrated and treated as 

specified in the manufacturer's protocol. In short, the probe was tested with a 

standard redox solution (HI7020) (200 — 275mV) and pre-treated with an 

oxidising solution (HI7091) and reducing solution (HI7092). Samples were 

measured for ORP as soon as they were taken to minimise the effect of oxygen 

introduction during the sampling process. 

Measurement of bicarbonate (HCO3") alkalinity production 

Microcosm effluent alkalinity was measured as bicarbonate (HCO 3 ') following 

the bicarbonate alkalinity acidimetric titration protocol in the Australian Standard 

for Waters (AS3550.3-1992). 10m1 to 25m1 of sample was titrated with 0.02M 

HC1 to an endpoint of pH 4.5 using a Metrohm 702 SM Tritrino autotitrator (MEP 

Instruments, Herisau, Switzerland). The alkalinity was calculated from the 

following equation: 

Alkalinity (mg L' i  CaCO3) = V I  x C x 50040 
V 

Where V I  = volume of HC1 to pH 4.5 (ml), C = molarity of HC1, V = volume of 

test sample (m1). To convert mg U i  CaCO3 into 1; 1  HCO3  results were multiplied 

by 1.219. Samples were analysed in duplicate. 
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Measurement of iron removal using the ferrozine/Fe 2±method 

The method for the measurement of microcosm effluent Fe 2+  was that used by 

Lovley and Phillips (1986) and Viollier et al. (2000). Fe 24-  was determined by 

adding lml or 1 g of sample to 5m1 of 0.5M HC1, and incubated at room 

temperature for 1 hour. lml of the sample/HC1 was then added to 5m1 of ferrozine 

(1g L-1 ) in 50mM HEPES (N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid) 

buffer, mixed for 15sec and incubated at room temperature for 30min. The 

mixture was passed through a 0.2pm filter (Advantec MFS Inc. Dublin, USA) and 

the absorbance (562nm) was determined using a GBC UVNIS 916 

spectrophotometer (GBC Scientific Equipment, Dandenong, Australia). Fe 2+  

standards (0, 10, 50, 100 250 and 500 mg L -1 ) were prepared from ferrous 

ethylenediammonium sulfate and a standard curve was plotted to determine the 

equation for calculating Fe 2+  concentrations. A trial was carried out to determine 

the minimum amount of ferrozine/HEPES buffer needed to form the ferrozine-

iron complex to be accurately measured on the spectrophotometer. This was done 

by adding the sample/HCI mix to different volumes of ferrozine/HEPES buffer (5, 

10 and 20m1); 5m1 was found to be sufficient. Samples and standards were 

measured in duplicate. 

Measurement of SO42" anion removal 

Microcosm effluent sulfate (SO42-) was measured following the turbidimetric 

method of Rayment (1992), which involves precipitation of SO4 2-  in the sample 

by BaC1 2  in the presence of HC1. The precipitation of BaSO4  was performed 

under precise conditions in order to produce suspended crystals of uniform size. 
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The turbidity or absorbance of the suspension is then measured 

spectrophotometrically and compared with known standards. 

Each sample was filtered through a 0.21.1m filter to remove debris. 1 ml of sample 

was added to 0.5m1 of "conditioning reagent" (75g NaC1 in 300m1 of deionised 

water(dH20), 30m1 of 10M HC1, 100m1 of 95% ethanol and 50m1 glycerol) and 

mixed. This mix was made up to 5m1 with 200111 of "seed solution" and dH20 and 

left to precipitate for lh, and the absorbance measured at 420nm on the GBC 

UVNIS 916 spectrophotometer. The "seed solution" consisted of 23g BaCI, 4m1 

K2SO4  solution (0.544g in 1L dH20), 46m1 dH20, heated to dissolve the BaCI; 

then left to precipitate for 1 h after which the supernatant being retained and the 

residues discarded. Another 4m1 of K2SO4 solution was added to the supernatant 

and the above steps repeated three times. The solution was then diluted to 50m1 

with dH20 and stored away from light. A stock sulfate standard (300mg SO4 2—S) 

was prepared by dissolving 1.6306g K2SO4 in IL dH20 stored in the dark. 

Working sulfate standards of 0, 1.5, 6.0, 15, 30, 60 and 90 mg SO4 2-  were 

prepared from the stock sulfate standard and their absorbance measured at 420nm 

and a standard curve was plotted to determine the equation for calculating sulfate 

concentrations. Samples and standards were measured in duplicate. 

Terminal Restriction Fragment Length Polymorphism analysis 

The TRFLP analysis on the microcosm samples was the same protocol used in 
Chapter 3, page 55 and 59. 
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Results and Discussion 

Microcosm observations 

The temperature and control microcosms set up in glass jars (Figure 4.1a-c) 

illustrate the gradation of iron deposition with red ferric hydroxide deposited at 

the water/air interface in the straw, while the black ferrous silfide deposited in the 

mushroom compost. The other microcosms, set up in the beer barrels, also had the 

same layering of iron deposition. A black material was occasionally found in the 

effluent when the microcosms were sampled. This resulted in higher recorded 

concentrations of iron in the effluent, indicating an occasional flushing out of iron 

precipitates. 
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Figure 4.1. Photos of microcosms set up at 10°C (a), 20°C(b), 25°C(c) in glass 
jars with a tap at the bottom (not in view) and the ethanol (right) and 
molasses (left) microcosms (d) in brewing barrels incubated at  20°C  and all 
filled with mushroom compost, straw and leachate from the Heybridge 
remediation site. 
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pH and oxidation reduction potential (ORP) 

The pH for the controls and all the temperature and carbon amendment 

microcosms (Figure 4.2a - e) increased from 4 to 6.5 — 8 within the first 2 to 6 

days and stayed between 6.5 to 7.5 for the remainder of the experiments similar to 

the first year of operation of the reduction cells (Figure 1.12). The leachate pH 

remained at pH 3.5 to 4.5. Temperature or treatment did not affect the pH value, 

the high organic matter kept it at near neutral and the pH appeared to have no 

effect on the other measured biogeochemical processes. 

The effluent ORP (Figure 4.3) dropped from initial 763mV to between 350 to 

120mV after 130 days (the ORP for the first 129 days of the controls, temperature 

and bicarbonate microcosms were not measured due to a faulty probe). However, 

for the ethanol, molasses and oil emulsion supplemented microcosms, which 

showed a similar pattern in regards to a change in pH to the other microcosms, the 

ORP dropped within the first 4 days. The ethanol and molasses supplemented 

microcosms (Figure 4.3d) initially dropped to approx. 350mV and then slowly 

dropped over the next 200 days to around 150mV and stayed at that ORP value. 

The 10°C and 20°C oil emulsion microcosms (Figure 4.3e) both dropped to - 

48mV in the first 3 days and remained between -50 and -100mV for 180 days. 

The sterile control ORP (Figure 4.3a) did decrease but with a large fluctuation of 

around 100mV at approximately 250 days from the start. This result suggests 

temperature and bicarbonate addition had no effect on maintaining oxidising or 

reducing conditions as these microcosms had a similar result to the sterile control. 

The ORP of the ethanol, molasses and vegetable oil emulsion microcosms stayed 

120 



Chapter 4 Microcosms 

low and relatively stable for the duration of the experiment. Furthermore, 

temperature had no effect on the redox conditions in the vegetable oil emulsion 

microcosms, as the ORP in the 10°C oil emulsion microcosm was similar to that 

of the 20 ° C oil emulsion microcosm. 

Generally SRB and IRB require an anoxic and reduced environment with a redox 

potential lower than -100mV (Postgate 1984; Lovley 1991). However, 

measurements of ORP at outlets may not reflect the ORP values inside the 

microcosms, so some studies have included multiple replicate microcosms and 

sacrificed a replicate at various times to measure internal physio-chemical 

characteristics (Logan et al. 2005). Hence, at the end of the microcosm 

experiments ORP values were taken from the centre of the mushroom compost 

(Table 4.1). This illustrated the ORP was much lower inside the microcosms 

especially the carbon amended microcosms, low enough for iron and sulfate 

reduction. Furthermore, where the ORP values have been found to be higher 

inside full-scale bioreactors it was thought to be due to concurrent formation of 

anoxic microenvironments, microaerophilic and aerobic environments (Lyew and 

Sheppard 1997). 
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Figure 4.2a-e. pH of the microcosm effluents over time compared to the 
influent (leachate) (pink line). % relative standard deviation  (SD)  <  1%. 
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Figure 4.3a-e. Oxidation reduction potential (ORP) measurements for 
microcosm effluents over time compared to the influent (leachate) (pink 
line). % relative standard deviation SD < 5%. 
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Table 4.1. ORP measurement of the centre of the microcosm at the end of the 
experiment. 

Microcosm ORP (mV) 
Sterile Control -21 

Compost -22.8 
10C -40 
20C -63 
25C -81 

Bicarbonate recirculating -108.2 
Bicarbonate non-recirculating -216 

Ethanol -130.8 
Molasses -213 

0E10 -226 
0E20 -234 
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Alkalinity production 

Influent alkalinity was not detectable hence; any production is most likely to be 

from HCO3 -  production from microbial sulfate- and iron-reduction and oxidation 

of organic matter by: 

SO42-  + CH3COOH + 2H+  —> HS -  + 2HCO3 -  + 3H+  (Rabus et al. 2000). 

- Substantial alkalinity production (-- 2500mg L) occurred in the molasses, 

ethanol and vegetable oil emulsion microcosms (Figure 4.4d, e) compared to the 

sterile and compost control microcosms (-- 600mg L -1 ) indicating microbial 

metabolic activities were greater in the amended microcosms and excess organic 

acid production was not a problem. This alkalinity production corresponds to the 

increased iron and sulfate removal in the amended microcosms compared to the 

control and temperature microcosms. 

The temperature-based microcosms all had an initial increase in alkalinity 

production but then this decreased. Alkalinity in the vegetable oil emulsion 

microcosms appeared to continue to increase after 180 days and was not affected 

by temperature. The ethanol microcosm appeared to drop in alkalinity production 

after 272 days. Even with bicarbonate added the bicarbonate amended 

microcosms (Figure 4.4c) did not have the highest alkalinity production (1800mg 

L-1 ), suggesting the addition of bicarbonate to buffer the system is not required 

and endogenous bicarbonate production is sufficient. 
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Figure 4.4. Alkalinity production levels (Bicarbonate) in microcosm effluents 
over time. The influent alkalinity was not detected. % relative standard 
deviation (SD) < 5%. 
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Iron removal 

All the microcosms showed a similar pattern of iron removal (Figure 4.5). There 

was an initial increase followed by a slight decline and then an increase again. 

This is probably because, initially iron adsorbed to the compost, there was a lag 

and then the biomass levels of sulfate- and iron-reducing reducing bacteria 

increased. After approximately 100 days, the more complex carbon sources have 

probably begun to break down, allowing more carbon to be utilised by both iron-

and sulfate-reducing bacteria. The reduction cells also fluctuated between 80 to 

100% iron removals for the first year of operation (Figure 1.13) but some of the 

microcosms were not as stable. 

The sterile control (sterile compost and sterile leachate) (Figure 4.5a) had some 

degree of iron removal > 90% ferrous Fe 2+  was retained in the microcosm in the 

first 50 days. After this, the iron removal cycled between 30 - 80% with a decline 

over time and the Fe2+  levels in the effluent increased. The organic matter appears 

to bind some of the iron, which is retained in the microcosm. Autoclaving 

probably broke down the compost. However, iron removal appears unstable in the 

control and after some accumulation was iron was released from the microcosm. 

The compost control (compost and sterile leachate) also removed iron between 60 

— 90% of initial levels, with the exception of the sample from day 150. 

All the temperature-based microcosms (Figure 4.5b-e) retain >90% of the ferrous 

iron in the first 50 days with cycling between 30 - 80% for the remaining time. 

The 10°C microcosm had the largest range of fluctuation in iron retention. The 

higher temperature microcosms had some iron retention stability, the 25 ° C 

microcosm levelled to 60% iron removal, and the concentration in the effluent 

127 



Chapter 4 Microcosms 

remained constant. This indicates higher temperature promoted microbial iron 

reduction or indirect precipitation from sulfate reduction with the oxidation of 

organic matter, which levels out. 

The bicarbonate microcosms (Figure 4.5f-g) also retained >90% of the ferrous 

iron for the first 50 days and cycled between 50 — 80% iron retained in the 

microcosm. These microcosms also appeared unstable in iron retention, with the 

non-recirculated bicarbonate microcosm being less stable than the recirculating 

microcosm. The addition of bicarbonate appeared not to promote stable iron 

precipitation. The large decreases in iron retention coincided with black 

precipitates in the effluent samples indicating iron was periodically washed out. 

The ethanol microcosm (Figure 4.5h) retained between 55 — 70% of Fe 2+  in the 

first 200 days, increased to 99%, and maintained low Fe 2+  concentrations in the 

effluent for the remaining time. The possible explanations for this could be 

ethanol was incompletely oxidised to acetate and hydrogen coupled to sulfate 

(Equation 1) and iron (Equation 2) reduction The former is then coupled to sulfate 

(Equation 3) and iron (Equation 4) reduction and oxidised to CO 2  producing 

bicarbonate, hydrogen sulfide and metal sulfides (Equation 5) as follows: 

2CH3CH2OH + SO42 " 	2CH3C00-  + HS -  + 1-14-  + 2H20 (1) 

2CH3CH2OH + 12Fe 3+  + 5H20 	2HCO3 -  + 12Fe2+  + 14H+  (2) 

CH3C00-  + SO42--■ 2HCO 3 -  + HS -  (3) 

CH3C00-  + 8Fe3+  + 4H20 	2HCO3 -  + 8Fe2+  + 9H+  (4) 

HS-  + Fe2+ 	FeS 2  + H+  (5) 
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However, acetate oxidation is a slower process than the other processes 

(Kaksonen et al. 2003) so a delay in increased iron reduction could be expected as 

sulfides are produced and simpler carbon molecules accumulate. 

The redox potential for the ethanol microcosm also took approximately 200 days 

to reach equilibrium; this may have been required for increased iron reduction. In 

addition, acetate and hydrogen are widely used by sulfate- and iron-reducers. 

Hence, the by-products of ethanol utilisation may support a higher diversity of 

sulfate- and iron-reducing bacteria and continue to retain iron and buffer the 

redox and pH conditions (Dar et al. 2007). 

The molasses microcosm (Figure 4.5i) retained 50 to 99% iron over 366 days. 

Many iron-reducers can use complex sugars as electron donors (Lovley, 2000) but 

not sulfate-reducers, as they prefer simple organic acids (Rabus et al. 2000). This 

may explain why the iron reduction increased and the sulfate reduction decreased 

in the first 50 days of the molasses microcosm experiment. However, sulfate 

retention increased to —70% at day 78 (Figure 4.6i) and the iron retention declined 

to 50% as the sulfate removal rate levelled out the iron removal rate started to 

increase again to >80%. This may indicate that even though sulfate reduction 

indirectly precipitates iron, iron-reducers play a large role in the removal of iron. 

Furthermore, in effluent samples from days 164 and 194 black precipitates were 

observed. These may have been iron sulfides since an increase in the 

concentrations of Fe 2+  and SO42-  were observed in both these days effluent 

samples indicating iron precipitates may occasionally become mobile. 

The vegetable oil emulsion microcosms began later than the other microcosms 

and were not run for as long. However, both the 10°C and 20°C oil emulsion 
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microcosm retained up to 80% iron in the first 80 day, s and this increased to 99% 

for the remainder of the experiment (Figure 4.5j and k). At day 82 molasses was 

added to the oil emulsion, at half the concentration added to the molasses 

microcosm (100mg L -1 ) which may account for the increase in iron retention after 

this time. Iron reducers use complex sugars as electron donors in dissimilatory 

iron reduction and as the oil breaks down into low molecular weight fatty acids 

and hydrogen (Borden 2006). This produces a reduced environment very quickly 

as observed in the redox potential for both oil emulsion microcosms, -48mV after 

three days (Figure 4.3e). 
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Chapter 4 Microcosms 

Figure 4.5. Iron removal over time, (measured as Fe2+) percent difference 
from total in the influents (blue line) and iron mg L -1  per day (red line) in 
microcosm effluents. % relative standard deviation (SD) < 0.8%. Control 
microcosms (a,b), temperature microcosms (c-c), bicarbonate amended 
microcosms (f,g), liquid carbon amended microcosms (h-k). Time was 
measured in days (d). 
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Sulfate removal 

The sterile and compost control, temperature and bicarbonate microcosms (Figure 

4.5a-g) all behaved similarly and cycled between 10 - 80% sulfate removal but 

after 365 days removal decreased to —60%. Hence, changing temperature and 

bicarbonate addition did not enhance sulfate reduction. The concentration of 

sulfate in the microcosm influent did become lower over time possibly due to H2S 

forming in the feed container. 

The ethanol microcosm (Figure 4.6h) only removed 10 — 40% sulfate in the first 

100 days, possibly due to the redox potential not being low enough during this 

time (200 — 100mV) as the ORP for sulfate reduction (-1 to -300mV) is lower 

than that for iron reduction (0 to -100mV). Competitive exclusion by iron-

reducing bacteria is also a possibility, as they have been found to out compete 

sulfate-reducers for electron donors (Lovley 2000). After 100 days, the sulfate 

reduction increased to 60 to 80% for the remaining time, which coincides with the 

microcosm being left static unintentionally for 29 days. This may indicate that for 

improved sulfate removal bioreactors need to be filled and left static for a time for 

the organic matter to break down into simpler molecules for terminal electron 

donors and the microorganism community to accumulate. 

The molasses microcosm (Figure 4.6i) had low sulfate removal (10— 20%) in the 

first 50 days, but when this microcosm was also left static at the same time as the 

ethanol microcosm, sulfate removal rates increased to 50 to 80% for the 

remaining time. This may be due to the same reasons as the ethanol microcosm as 

this microcosm ORP dropped at a similar time. Neculita and Zagury (2008) also 
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observed a lag period of about 80 days before sulfate reduction occurred and 

speculated it was because the higher initial ORP values retarded the start of 

sulfate reduction. 

The vegetable oil emulsion microcosms (Figure 4.6j-k) were filled with the 

compost, straw and amended leachate and left for a week before being tested and 

this is reflected in the immediate increase in iron and sulfate removal rates. 

Sulfate removal was up to 60% for both the 10°C and 20°C incubated microcosms 

initially and was sustained at 60 to 80% removal for the remaining time. The oil is 

slowly broken down to hydrogen and organic acids to complement the compost 

present in the microcosms and these compounds can be used by a variety of 

sulfate reducers (Borden and Rodriguez 2006). However, the maximum sulfate 

removal achieved was 80%. This is the same as the sulfate removal efficiency of 

the full-scale reduction cells (Figure 1.14). If the microcosms were run for a 

longer time sulfate removal may have been higher as the removal rate had 

increased at the last sampling time point. The slow increase in sulfate-reducing 

bacteria biomass is also indicated in the gradual increase of bicarbonate 

production. Geets et al. (2006) also found sulfate reduction took eight weeks to 

reach 80% removal and furthermore, the metal and sulfate removal rates 

fluctuated similarly to what was seen in the present study and speculated it was 

fluctuations in sulfate-reducing bacteria (SRB) activity. 

Hence, various carbon sources could be added to the mushroom compost, straw to 

improve the sulfate reduction. Neculita and Zagury (2008) found with 

amendments with four different grades of carbon sources (maple wood chips, 

maple saw dust, composted poultry manure and leaf compost) sulfate 
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concentrations decreased more than in amendments with three carbon sources 

(without the woodchips). The ethanol, molasses and vegetable oil emulsion 

microcosms did not experience as many or as severe fluctuations in sulfate 

removal as the temperature or bicarbonate microcosms, so these amendments may 

provide a more steady release of readily accessible terminal electron donors for 

SRB. Measurement of dissolved organic carbon degradation rates, correlated to 

sulfate and iron reduction may have been useful. O'Reilly and Colleran (2006) 

found increasing the chemical oxygen demand (COD)/SO4 2-  ratio was detrimental 

to sulfate reduction as the increased organic compounds increased the growth of 

methanogens, syntrophs and acetogens that can compete with sulfate-reducers for 

carbon sources. Dar et al. (2008) also found that at high lactate/sulfate ratios that 

acetogens and methanogens were the dominant microbial communities. In 

addition, the compounds produced from sulfate and iron reduction can be 

deleterious to the bacterial population. 

The leachates at the Heybridge site have generally higher concentrations of metals 

and sulfate than acid mine drainage sites. Most studies work with less than half 

the concentration of metals and sulfate found at Heybridge; 50mg 	and 1000mg 

L -1  (Logan et al. 2005) , 310 to 380mg and 1100 to 2000mg (Tsukamoto et 

al. 2004), 80mg L -1  and 250mg L' 1  (Johnson and Hallberg 2005) respectively. 

High concentration of metals and sulfide have been found to be toxic and their 

build up in passive in situ bioremediation systems can be detrimental to the 

longevity of these systems (Utgikar et al. 2002; Kaksonen et al. 2004a; Neculita et 

al. 2007). Since separate unit processes for sulfate reduction and metal 

precipitation increase costs and space utilisation, a combined process is more 

desirable. Measurement of dissolved sulfide may have determined which 
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treatment is most prone to sulfide toxicity; Kaksonen et al. (2004a) found an 

ethanol amended fluidised-bed reactor was more prone to it than one amended 

with acetate. Recent compost—free bioreactor design has included a flushing 

capacity and the precipitates are moved away from the main bioreactor chamber 

(Tsukamoto and Vasquez 2006). Furthermore, compost-free bioreactors do not 

have problems with compost depleting and/or clogging the system as they use a 

matrix with large pore spaces (rocks) for the precipitates to move through to the 

base and not cause any toxicity to the sulfate- and iron-reducing bacteria. 
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Figure 4.6. Sulfate removal over time, percent difference from total (blue) in 
the influents and sulfate mg L -I  per day (red) in microcosm 
effluents. %relative standard deviation (SD) < 0.8%. Control microcosms 
(a,b), temperature microcosms (c-e), bicarbonate amended microcosms (f,g), 
liquid carbon amended microcosms (h-k). Time is measured in days (d). 
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TRFLP analysis of microbial communities in the microcosm experiments 

A combined 192 TRFs were used for analysis of microcosm microbial 

communities with TRFLP profiles obtained approximately every 60 days of the 

experiments. The ANOSIM pairwise comparisons and SIMPER (percent average 

similarity) data are summarised in Table 4.2., the global R = 0.045, (p<0.14), that 

is, analysis of similarity between all samples. This indicates there is no significant 

difference between communities for the different treatments, which is to be 

expected as all the microcosms have the same starting material. In the 

microcosms, the high amount of organic matter coupled with biogeochemical 

stratification could cause a heterogeneous microbial community structure, similar 

to the field-scale reduction cells. Furthermore, the R statistic is an absolute 

measure of ranked differences between and within groups and is not affected by 

the number of replicates, whereas p is. The TRFLP profiles have low replicates 

but are derived from five restriction enzymes so there will be more focus on the R 

statistic in this analysis and percent average similarity calculated in SIMPER. A 

MDS plot of the pairwise comparisons between treatments shows no significant 

grouping and all treatments appear different to each other (Figure 4.7). The MDS 

plots based on treatments calculated from the Bray-Curtis similarity matrix show 

clearer relationships (Figure 4.8) as indicated by the circles, which include all 

samples for a particular treatment. 

A similarity profile (SIMPROF) was used to test for evidence of real group 

structure (i.e. was not random) between samples and to test if the similarity 

profile of the TRFLP peak area data did not arise by chance using 1000 
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permutations. The real similarity profile TC = 2.57, (p<0.001) did not come from 

the null hypothesis distribution of IL That is, the clustering of the samples is 

random. Hence, the groupings of the samples on the MDS plots are most probably 

true. 

The similarities in TRFLP peak area profiles over time appear to become higher 

with increasing temperature (Figure 4.8a). This indicates that the higher 

temperature (25°C) incubation selected for a few dominant bacterial groups, 

which remained stable over time. The 25°C microcosm community had higher 

similarity to the compost and influent (22% and 29% respectively) than the other 

temperature microcosms. Hence, the microbial community composition in all the 

temperature microcosms is probably the same, but some bacterial groups are 

selected for at higher temperatures. 

There was no significant difference between the recirculating and non-

recirculating bicarbonate microcosm TRFLP peak area profiles (Figure 4.8b). 

Both of these had higher percent average similarities with the influent (25% and 

24%) than with the compost (21 and 20%). However, the non-recirculating 

bicarbonate microcosm is significantly different to that of the influent (R = 0.369, 

p<0.05) and compost (R = 0.226, p<0.02) than the recirculating microcosm. 

The ethanol and molasses microcosm TRFLP peak area profiles (Figure 4.8c) had 

some compositional overlap (28% similar), and the ethanol community grouped 

more closely to that of the compost (R = 0.161, p<0.09,) than the influent (R = 

0.407, p<0.03). However, the molasses microcosm was not significantly different 

to that of the influent (28% similar) but was different to that of the compost (R = 

0.222, p<0.04), (22% similar). 
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The vegetable oil emulsion microcosm communities had less variability in their 

TRFLP profiles over time (Figure 4.8d) than the other microcosms, indicating a 

less diverse and stable microbial community. The community seems somewhat 

different with respect to temperature that of 20 °C is more similar to the influent 

(35%) and that of 10 ° C more similar to the compost (24%). However, there is 

some overlap, and the SIMPER analysis revealed they had 31% similarity to each 

other and five of the dominant peaks in common. 

Results from the SIMPER analysis reveal the major peaks responsible for the 

community differences among the treatments (Table 4.3). Seven TRFLP peaks 

contributed 40 to 70% of the total similarity in all treatment TRFLP profiles. 

These peaks were most similar to anaerobic fermenters from the phylum 

Bacteroidetes, such as Paludibacter propionicigenes and Bacteroides spp., which 

were found in the Heybridge remediation system stages (Chapter 3). These 

bacteria appear to be important in anaerobic degradation of complex organic 

carbon compounds to simpler molecules. This could limit the rate at which 

substrates become available to sulfate- and iron-reducing bacteria and enhancing 

their biomass may be important as sulfate- and iron-reducing bacteria biomass 

(Neculita et al. 2007). More research is required to understand and differentiate 

biogeochemical cycles in anaerobic bioreactors fed with complex organic 

substrates. 

The other dominant peaks, as inferred from in silico digests of phylotypes from 

Chapter 3, match the iron- and sulfate-reducers Ferribacterium limneticum 

(Betaproteobacteria), Desulfotomaculum spp. and Desulfosporosinus spp. 

(Firmicutes), Desulfomicrobium spp. (Deltaproteobacteria). Acidithiobacillus 
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ferrooxidans (Gammaproteobacteria) which are capable of both 

iron/sulfur/sulfide oxidation and iron/sulfate reduction (Ohmura et al. 2002). This 

indicates all the microcosms had similar communities but the amended 

microcosms were more successful in promoting the growth of a stable bacterial 

consortia needed for enhanced sulfate and iron removal over time. 

The total number of TRFs found in each treatment indicated the relative diversity 

of the microcosm TRFLP profiles (Figure 4.9). The ethanol, molasses and oil 

emulsion microcosms had a lower diversity and probably selected for the few 

bacteria that enhanced iron and sulfate removal, which included anaerobic 

fermenters, sulfate/iron reducers and sulfur/sulfide/iron oxidisers. However, the 

TRFLP peak areas cannot be used for quantifying the absolute bacterial 

community. Quantitative methods such as qPCR or FISH probing of functionally 

important genes such as dsrAB and aprA (Ben-Dov et al. 2007), mtrABC 

(Fredrickson and Zachara 2008) and quantitative gene expression correlated to 

rates of sulfate and iron reduction (Chin et al. 2004, 2008) would have improved 

knowledge of the levels of metabolic important bacteria and if they differed 

between communities. 
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Figure 4.7. MDS plot of ANOSIM pairwise comparisons of combined 
microcosm TRFLP peak area analysis. R = recirculating bicarbonate, NR = 
non-recirculating bicarbonate, C = degrees Celsius. 
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Table 4.2. ANOSIM pairwise tests between microcosm TRFLP peak area 
data and `)/0 average similarity (SIMPER). R = recirculating bicarbonate, NR 
= non-recirculating bicarbonate, C = degrees Celsius, bold = significant. 

Groups R Statistic p % average similarity 

Compost, IOC -0.012 0.542 16.77 

Compost, 20C -0.002 0.474 17.91 
Compost, 25C 0.137 0.104 22.29 
Compost, R 0.16 0.052 20.76 

Compost, NR 0.226 0.019 20.4 
Compost, Molasses 0.222 0.036 21.59 
Compost, Ethanol 0.161 0.084 20.36 

Compost, Oil emulsion IOC 0.075 0.305 23.5 
Compost, Oil emulsion 20C 0.08 0.381 20.87 

Compost, Influent -0.093 0.607 25.25 
10C, 20C -0.116 0.899 17.39 
10C. 25C -0.041 0.679 21.15 
IOC, R -0.104 0.922 20.59 

IOC, NR 0.023 0.391 20 

IOC, Molasses -0.014 0.555 21.72 

10C, Ethanol 0.062 0.201 18.02 
IOC, Oil emulsion IOC -0.19 0.9 21.93 
10C, Oil emulsion 20C -0.262 0.883 22.92 

I OC, Influent -0.171 0.808 21.28 

20C, 25C 0.035 0.323 23.01 
20C, R 0.044 0.297 19.38 

20C, NR 0.126 0.168 20.34 
20C, Molasses 0.181 0.082 19.79 

20C, Ethanol 0.095 0.223 19.41 
20C, Oil emulsion IOC 0.008 0.438 21.46 

20C, Oil emulsion 20C 0.062 0.357 19.09 
20C, Influent 0.105 0.31 16.97 

25C, R 0.008 0.429 27.75 
25C, NR -0.017 0.526 28.04 

25C, Molasses -0.066 0.735 30.19 
25C, Ethanol 0.15 0.097 25.93 

25C, Oil emulsion IOC 0.091 0.229 28.76 

25C, Oil emulsion 20C 0.167 0.202 31.4 
25C, Influent 0.284 0.107 29.05 

R, NR -0.18 0.978 28.45 
R, Molasses -0.126 0.915 28.77 
R, Ethanol 0.028 0.32 26.3 

R, Oil emulsion 10C -0.175 0.897 29.69 
R, Oil emulsion 20C -0.056 0.542 29.1 

R, Influent 0.087 0.308 25.3 

NR, Molasses -0.016 0.54 27.87 

NR, Ethanol 0.016 0.424 27.15 

NR, Oil emulsion IOC -0.172 0.848 29.42 

NR, Oil emulsion 20C 0.115 0.258 27.45 
NR, Influent 0.369 0.042 24.11 

Molasses, Ethanol 0.111 0.137 27.52 

Molasses, Oil emulsion IOC -0.119 0.779 32.83 
Molasses, Oil emulsion 20C 0 0.508 30.74 

Molasses, Influent 0.095 0.35 28.38 

Ethanol, Oil emulsion IOC 0.087 0.31 28.95 

Ethanol, Oil emulsion 20C 0.389 0.036 25.47 

Ethanol, Influent 0.407 0.024 23.63 

Oil emulsion 10C, Oil emulsion 20C 0.111 0.4 31.43 

Oil emulsion 10C, Influent 0.667 0.057 24.42 

Oil emulsion 20C, Influent 0.556 0.1 34.63 
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Table 4.3. TRFs contributing to >80% similarity, calculated in SIMPER analysis of the TRFLP peak abundance data, of different 
treatments and their phylogenetic matches. TRF identity = size (base pairs) + enzyme + forward/reverse. R = recirculating, NR = non-
recirculating. The five TRFs contributing the highest % similarity for each microcosm are bold. 

Compost IOC 20C 25C Bicarb R Bicarb NR Molasses Ethanol OEIOC 0E20C Influent 
TRF Contrib% Contrib% Contrib% Contrib% Contrib% Contrib% Contrib% Contrib% Contrib% Contrib% Contrib% Phylogenetic match 

(124 hae R) 16.73 16.47 16.55 19.09 11.19 26.1 27.08 26.34 31.65 27.01 11.66 Paludibacter propionicigenes 
(119 rsa R) 12.83 11.16 5.46 8.62 8.73 12.52 12.83 8.04 2.86 15.49 7.09 Ferribacterium limneticum 
(152 hinf R) 12.61 2.46 14.17 2.25 1.87 0 3.96 0 10.8 0 5.6 Desulfotomaculum spp. 
(152 hha R) 9.98 0 0 2.27 7.33 0 0 4.89 6.67 4.79 7.75 Bacteroides/Porphyromonas spp. 
(129 msp R) 8.1 11.58 0 15.02 10.72 8.66 14.24 3.82 0 0 14.2 Acidovorax/Ferrovutn tnyxofaciens spp. 
(148 hinf F) 5.5 7.35 17.3 2.54 2.86 2.49 0 0 2.75 0 0 Bacillus/Clostriditmi spp. 
(72 hae R) 3.43 0 0 0 0 0 0 0 0 0 0 Desulfobacterium spp. 

(122 msp R) 3.03 0 0 0 0 0 0 0 0 0 0 Porphyromonas/Bacteroides spp. 
(152 hae R) 2.42 0 0 0 0 0 0 0 0 0 0 Porphyromonas/Bacteroides spp. 
(125 msp R) 1.86 0 0 0 0 0 0 0 4.37 0 0 Gammaproteobacteria 
(148 hha F) 1.33 0 2.56 0 7.35 3.68 2.31 0 0 0 0 Rumen bacteria clones 
(73 hha R) 1.3 3.28 1.75 0 0 0 0 1.5 6.26 0 0 Desulfosporosinus spp. 
(80 msp R) 0 7.94 4.63 3.47 2.28 1.79 0 0 0 6.23 18.54 Desulfosporosinus spp. 
(154 hinf R) 0 6.83 0 0 3.36 3.25 2.42 0 2.52 0 0 Desulfurella/Desulfobacterium spp. 
(77 hha F) 0 4.78 0 0 1.93 0 1.93 0 3.95 0 0 0P8 Candidate division 
(80 hinf R) 0 4.01 7.23 4.89 1.4 0 0 0 0 5.31 0 Thermoanaerobacter spp. 
(127 hae R) 0 3.87 0 2.87 6.19 8.21 6.67 14.62 3.26 0 5.38 Acidahlobacillus ferrooxidans 
(80 hha F) 0 1.65 0 8.32 0 0 0 0 0 5.31 3.49 Desulfurella spp. 
(371 rsa F) 0 0 4.21 0 0 0 0 6.01 0 0 0 Bacteroides spp. 
(85 rsa R) 0 0 4.14 0 1.25 0 2.77 0 0 0 0 Acidithiobacillus spp. 

(110 rsa R) 0 0 3.3 0 0 1.42 0 0 0 0 0 Bacieroides spp. 
(150 hinf F) 0 0 2.12 0 0 1.47 0 4.7 0 0 0 Firmicutes/Dechloromonas spp. 
(74 rsa 1) 0 0 1.66 0 0 2.54 0 0 0 0 0 Alphaproteobacteria 10P3 Candidate division 
(80 hae R) 0 0 0 5.66 0 0 6.92 0 0 12.81 6.05 Sullitobacter spp. 
(221 hae F) 0 0 0 3.49 0 0 0 0 0 0 0 Dehaproteobacteria 
(171 hinf R) 0 0 0 2.48 0 0 8.32 0 5.14 0 0 01'11 Candidate division 

(306 hae R) 0 0 0 2.34 0 0 0 0 0 0 0 Betaproteobacteria 
(121 rsa R) 0 0 0 0 10.59 7.72 0 4.25 12.18 13.44 0 Desulfomicrobium/Desulfovibrio spp. 
(75 msp R) 0 0 0 0 4.56 0 0 1.69 0 0 0 Alphaproteobacteria 
(368 rsa F) 0 0 0 0 0 0 0 6.63 0 0 0 Desulfovibrio spp./0P3 Candidate division 
(409 hha R) 0 0 0 0 0 0 0 3.48 0 0 0 Desulfurella spp. 
(122 hha R) 0 0 0 0 0 0 0 0 0 0 5.24 Paludibacter propionicigenes 
% similarity 79.12 81.38 85.08 83.31 81.61 79.85 89.45 85.97 92.41 90.39 85 
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Chapter 4 Microcosms 

Figure 4.9. Graph of total TRFs for each treatment as an indication of 
microbial diversity. 
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Chapter 4 Microcosms 

Conclusion 

The laboratory-scale microcosm experiments showed that liquid amendments to 

the microcosms, especially vegetable oil emulsion, sustained pH and redox 

conditions, alkalinity production and iron and sulfate removal for the length of the 

experiment. Coupled to this TRFLP analysis indicated, in the amended 

microcosms, a stable, low diverse microbial community was supported over time. 

This community was not affected by temperature and would readily survive the 

temperatures at the field site. This microbial community included carbohydrate 

fermenters, iron-and sulfate-reducers, combining a variety of metabolic processes 

that were required for anaerobic bioremediation of the leachate. 

Temperature increases and bicarbonate addition (with the potato starch already 

added via the influent) was not adequate in providing a suitable environment for 

the above-mentioned microbial community. This was demonstrated by these 

microcosms having erratic and fluctuating iron and sulfate removal as well as a 

diverse and changing microbial community over the length of the experiment. 

This was similar to the performance of the field-scale reduction cells in the first 

year of operation. 

The ethanol and molasses provided adequate nutrients for bacteria involved in 

carbohydrate fermentation and iron and sulfate removal but not to the extent of 

the oil emulsion amended microcosms. Hence, as the reduction cells design is 

presently the addition of vegetable oil emulsion would improve the metal and 

sulfate removal. However, re-design and pilot-scale cells to test which 

combination of design and amendment would work best should be considered. 
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Chapter 5 General Discussion and Conclusion 

General Discussion and Conclusion 

The current thesis focused on the microbial community of a novel, passive, in situ 

bioremediation system, Heybridge, Tasmania. This system was set up to 

remediation acidic, sulfate- and metal-rich wastewaters produced from titanium 

dioxide processing. The levels of microbial diversity and the community 

dynamics these types of bioremediation systems based on anaerobic reduction is 

important to be able to their influence on biogeochemical processes involved and 

how this affects efficient pollutant removal. 

The first part of this study investigated the microbial community of various stages 

of the bioremediation system including, the sludge dams holding the leachate, a 

novel pre-treatment section (potato cells) and compost-based anaerobic 

bioreactors (reduction cells). The Heybridge system was found to have a complex 

microbial community performing a variety of metabolic processes including iron 

and sulfate reduction and iron and sulfide/sulfur oxidation as well as fermentation 

of carbohydrates. A large percentage of the phylotypes found were uncultured 

clones of which there is no knowledge of their metabolism. Both the 16S rRNA 

clone libraries and TRFLP analysis illustrated very complex bacterial 

communities and dynamics within and between sites as well as over time. 

The anaerobic bioreactors (reduction cells) have decreased in efficiency of metal 

removal over time, and so the second part of this study was to set up laboratory-

scale microcosms to determine if temperature, bicarbonate addition and liquid 

amendments would be improve the efficacy of the system. The unamended 

microcosms showed a similar general trend to the reduction cells in their first year 

of operation, that is, sustained near-neutral pH but erratic sulfate and iron removal. 
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Chapter 5 General Discussion and Conclusion 

The microcosms contained a similar microbial community to the reduction cells 

however, a less diverse and stable microbial community, such as found in the oil 

emulsion microcosms, appears to support sustained alkalinity production, redox 

conditions, sulfate and iron removal. 

The anaerobic bioreactors, which are filled with mushroom compost and straw, 

were designed to encourage the growth of sulfate-reducing bacteria to indirectly 

precipitate the metals by sulfide and alkalinity production. The clone library 

analysis and TRFLP data showed that the bacteria involved were a combination 

of sulfate reducers, sulfide oxidisers and iron reducers and oxidisers and 

carbohydrate fermenters. The decline in efficiency of these bioreactors may have 

been because the mushroom compost supported bacterial growth for a number of 

years before becoming exhausted of carbon and electron donors and the straw was 

not being degraded into simpler molecules fast enough for the sulfate and iron 

reducers and iron and sulfide oxidisers to utilise. The decline was first thought to 

be because of low temperature and a decrease in pH (Cooper 2005 pers. comm.) 

as they are sited in a valley that has mean annual temperatures of 10 — 20°C. 

However, there appeared to be no climatic affect on microbial communities. 

The literature indicates the compost bioreactors' efficiency may be improved by 

making the fill more homogeneous. Such as a coarse mixture of woodchips, pulp 

waste or straw that has been mulched or turned into silage, as well as a periodic 

dosing of a liquid amendment of readily metabolised carbon compounds such as 

ethanol or molasses. Vegetable oil emulsions have proved invaluable with 

remediation systems that require highly reducing conditions (Lindow and Borden, 

2005a; 2005b). In the present study vegetable oil emulsion proved to be the best 
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Chapter 5 General Discussion and Conclusion 

at improving iron and sulfate reduction even at low temperatures (10°C) and at 

the current design. So having three different carbon sources based on their 

degradation rate, (fast, intermediate and slow) would probably extend the life of 

the passive in situ bioreactors. Neculita and Zagury (2008) used amendments with 

three and four different grades of carbon sources and they found that sulfate 

removal significantly increased with the four amendments. Hence, in the current 

experiment, as well as mushroom compost, straw and a liquid carbon source, 

addition of another medium to slow degrading carbon source like small 

woodchips may improve the sulfate reduction. Furthermore, Neculita et al. (2007) 

argued that providing means for improving cellulose hydrolysis was important in 

enhancing conditions for sulfate- and iron-reducing bacteria. 

Tsukamoto and Vasquez (2006) tested a compost-free bioreactor, based on a rock 

matrix and a liquid carbon source and proposed this would be better than a 

compost or woodchip matrix, which is consumed by bacteria, eventually collapses 

over time, is also difficult to replace and can clog the system. The benefits include 

better control of biological activity and improved hydraulic conductivity and 

precipitate flushing. This technology could improve the longevity of 

bioremediation systems as the matrix and carbon source do not have to be 

replaced and do not clog up with precipitates. 

Sulfate removal, and to a lesser extent, iron removal, appeared to have a lag phase, 

of around 80 days, which has been found in other similar studies (Geets et al. 

2006; Neculita and Zagury 2008). At the start up stage of these bioremediation 

systems, it may be beneficial to fill the bioreactors with contaminated 

leachate/sludge and delay the commencement of flow for several months to allow 
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Chapter 5 General Discussion and Conclusion 

the bacterial biomass to accumulate, and then slowly increase the inflow rate so as 

not to shock or wash out the bacterial biomass. The Wheal Jane bioremediation 

system, which is similar to Heybridge, was shut down for 10 months after which 

the metal removal levels came back up to their initial high values (Hallberg and 

Johnson 2003; Johnson and Hallberg 2005). Furthermore, Geets et al. (2006) 

found after 6 months of shutting down a laboratory-scale microcosm, which failed 

to remove sulfate and heavy metals, removal rates increased to the levels at the 

start of the experiment. They also intentionally disrupted another microcosm, 

which resulted in stagnation, and after restoration and substrate amendment found 

the removal rates increased. This may correspond to the breakdown of complex 

organic carbon compounds into simpler molecules required for SRB. Some 

complex organic compounds take up to 180 days to break down (Marschner and 

Kalbitz, 2003). 

Recommendations 

• To improve the uniform availability of substrate for sulfate- and iron-

reducing and fermentative bacteria, removing the straw bales, mulching, 

and mixing with woodchips and coarse sand/rocks is recommended. 

• To increase porosity/hydraulic conductivity for improved flows as well as 

precipitate removal to include coarse, non-reactive sand/rocks at 

approximately 20%w/w of the total volume of reduction cell volume, in 

with the straw mix. Design considerations of flow direction and space 

available at the base for precipitate retention eg a large rock base layer. 
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Chapter 5 General Discussion and Conclusion 

• To provide a slow to medium degrading carbon source for bacteria such as 

wood pulp waste/small wood chips/saw dust at approximately 10 to 

20%w/w to increase the long-term metal and sulfate removal efficiency of 

the reduction cells. 

• To provide a fast-degrading liquid carbon source for bacterial biomass 

levels to increase initially, such as ethanol/molasses/vegetable oil 

emulsion to the mushroom compost or replace the mushroom compost, as 

liquid can be added externally and never become exhausted. 

• After filling the reduction cells with compost/straw/sand/wood waste mix 

and potato cell effluent, allow the cells to sit for 1 to 3 months for the 

bacterial community to increase and become stable. Possibly add lactate 

substrate initially to increase microbial biomass and switch to a more cost 

effective alternative for later amendments. 

• After the initial static phase slowly increase flow regimes to the reduction 

cells so as not to flush out the bacterial biomass. 

• It may be practical to keep the potato cells as they provide some 

carbohydrates and protein for the bacteria as well as keeping the metals 

soluble for delivery to the reduction cells. 

• Employ methods such as TRFLP to track the changes in microbial 

diversity. 
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