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Abstract 

This study focuses on the functional analysis and genetic mapping of a number of the 

centromere-associated protein genes. 

The mammalian centromere is the pinched region on metaphase chromosomes and is 

made up of an inner heterochromatin core coated with a protein complex known as 

the kinetochore. Numerous constitutive and transient proteins assemble at the 

centromere-kinetochore complex during mitosis and meiosis facilitating microtubule 

attachment and accurate separation of sister chromatids. Aberrations in cell division 

may lead to chromosome missegregation and a range of pathologies including cancer 

and miscarriage. The function of many centromere-associated proteins has been 

studied in yeasts, fungi, invertebrates and mammalian cell culture systems however 

their roles are undefined in whole animals. 

To determine the requirement for six centromere-associated proteins during mitosis, 

meiosis and development, gene targeting experiments in mice were undertaken. 

Heterozygous mice carrying disrupted Cenpa, Cenpb, Cenpc, Incenp, survivin (Api4) 

and Bub3 genes were healthy and fertile however, with the exception of Cenpb, their 

null offspring were embryonic lethal. The Cenpc-, Incenp- and Api4-deficient 

embryos failed to hatch from their zona pellucida and implant, whereas the Cenpa 

and Bub3 knockout embryos were able to hatch and form trophectoderm and inner 

cell mass outgrowths before mitosis halted at day-5.5 to -6.5 post conceptus. 

Morphological examination revealed affected embryos with severe mitotic problems 

including formation of micro- and macronuclei, nuclear bridging and lagging 

chromosomes. Surprisingly the Incenp- and Api4- disrupted embryos displayed 

bundling of microtubules and giant nuclei suggesting that these proteins act in 

concert in the regulation of microtubule dynamics and/or cell cleavage. In contrast, 

Cenpc appears to be essential at the metaphase stage of mitosis; and in an absence of 

Cenpa, immunofluorescence stainings demonstrated that Cenpb and Cenpc 

DNA-binding proteins were unable to form functional kinetochores. Finally Bub3- 

disrupted embryos failed to arrest following treatment with the microtubule-poison 

nocadazole indicating a vital role in the mitotic spindle checkpoint pathway. 



xiv 

In comparison, assessment of Cenpb-null mice demonstrated that Cenpb is not 

required for mitosis and meiosis. However Cenpb-null mice are smaller in size and 

display significantly smaller testis (>14 %) and uteri (>30%) in adulthood. The 

observed body-weight reduction is dependent on the genetic background (R1, W9.5 

and C57) as well as the sex of the mice. Likewise Cenpb-deficient female mice 

exhibit age-related uterine dysfunction that is more severe in the C57 background. 

Histological analysis of the uterus points to defective luminal and glandular 

epithelium as the likely primary cause. 

In a complementary study the chromosomal position of six of the centromere-

associated protein genes was determined with a view to identifying possible 

candidate mouse mutants in the mouse database. The genetic mapping of the Cenpa, 

Cenph, Cenpe, Cenpf, Incenp and Bub3 loci to chromosomes 5, 13, 6, 1, 19 and 7 

respectively, was achieved by linkage analysis using specific probes to analyse sets 

of recombinant inbred mouse strains and Mus spretus-based interspecific backcross 

panels. The mapping of these loci failed to reveal any pre-existing mouse mutants for 

further study however the mapping of Cenpa and Cenpe did extend or identify novel 

regions of mouse-human homology. 

Overall, the discoveries made in these studies have provided new insight into the 

functional intricacy of the centromere-kinetochore complex. Furthermore the 

observed phenotypes in mice bearing disrupted centromere protein genes provide 

fresh genetic clues to understanding the pathogenesis of mammalian pregnancy 

disorders such as miscarriage and pyometra. 
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Aims of Studies and Structure of Thesis 

a) Setting the scene 

My research on the 'Functional Analysis and Genetic Mapping of Mouse Centromere 

Protein Genes' started in late 1994 when I returned to The Murdoch Childrens 

Research Institute to Head the Disease Model Unit and began working with a number 

of groups including Prof Andy Choo's Chromosome Research Group. One of the 

major interests of Prof Choo's group is to understand the structural and functional 

properties of the centromere. In this study I have used my skills in cell biology, 

transgenesis, functional mouse genomics and genetic mapping to complement and 

broaden the field of knowledge of the mammalian centromere-associated proteins 

and genes that encode them. 

The cloning and sequencing the DNA of the human centromere to find the minimal 

sequence that is required for centromere function, has been achieved by Prof Choo's 

group (du Sart et al, 1997; Barry et al, 1999). To compliment these studies members 

of Prof Choo's group and I have undertaken the functional analysis of six mouse 

centromere-associated proteins using gene targeting in mouse embryonic stem cells 

(ES cells) and transgenic mice. At the same time I have determined the chromosomal 

localisation of five centromere protein genes and supervised the mapping of another, 

with a view to identifying whether any candidate mouse mutants bearing a mutation 

in one of the these genes already exist in databases. 

b) Aims of studies 

The aim of these studies was to generate and analyse mouse mutants bearing 

germline loss-of-function mutations in Cenpa, Cenpb, Cenpc, Incenp, Bub3 and Api4 

centromere-associated proteins and to map the chromosomal positions of Cenpa, 

Cenph, Cenpe, Cenpf, Incenp and Bub3 genes. 
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c) Animal ethics approval 

All studies were conducted under approval of the Royal Children's Hospital Animal 

Ethics Committee (RCH AEC). 

Please note the RCH AEC reference numbers: 

- A191, A282, A306, A375 and A388 covers the generation and characterisation of 

mice with targeted mutations in centromere protein genes. 

- A263, covers the genetic mapping of centromere protein genes to mouse 

chromosomes. 

- A269, A314, A338 and A345 covers the production of monoclonal antibody in 

mice and polyclonal antibodies in rabbits that were used to characterise the mice 

carrying specific mutations in centromere protein genes. 

d) Contribution to Joint Publications by the Candidate 

As part of the University of Tasmania requirements for enrolment the candidate was 

required to provide signed declarations from co-authors as to their contribution to 

each of the submitted publications. In addition the candidate was required to describe 

the development of research relevant to the publications describing: 

i) functional analysis of cell lines and mouse bearing targeted loss-of-function 

mutations in centromere protein genes: Cenpa, Cenpb, Cenpc, Incenp, Api4 and 

Bub3 

Generation of mice with disrupted Cenpa, Cenpb, Cenpc, Incenp and Bub3 genes 

The successful production of mice bearing precise targeted mutations depends on 

many steps being optimal (Mansour et al, 1988). To generate mice with disrupted 

Cenpa, Cenpb, Cenpc, Incenp and Bub3 genes I worked closely with Prof Choo's 

team to improve the homologous recombination frequency in parental ES cells 

(derived from 129 mouse substrains) by ensuring isogenic genomic DNA libraries 

• were used for gene isolation and subsequent generation of the replacement targeting 

constructs. The incorporation of sufficient homology was optimised in the constructs 

(Hasty and Bradley, 1993). Despite these efforts no recombinants were obtained with 

the first 750 colonies analysed for Cenpc and the initial 1250 colonies screened for 

Cenpb. 
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This led to my inviting Dr Peter Mountford to the Murdoch Childrens Research 

Institute. Dr Mountford had recently returned from Edinburgh where he had refined a 

genetrap method that makes use of a picornavirus internal ribosomal entry site 

(IRES) and had achieved recombinants in up to 70-86% of screened colonies 

(Mountford et al, 1994). This method was subsequently adopted in our own 

laboratory and used successfully to generate ES cell lines with disrupted Cenpa 

(Newson, 1997; Redward, 1998; Howman, 2000), Cenpb (Hudson, 1998), Cenpc 

(Kalitsis, 1998), Incenp (Kile, 1997) and Bub3 (Dr Paul Kalitsis, personal 

communication) genes with much improved targeting frequencies. 

I then microinjected these cell lines into C57BL/6 mouse blastocysts and transferred 

them to pseudopregnant recipient mice to generate mouse chimaeras. Unfortunately 

the first batch of Cenpc high grade chimaeras were infertile despite the parental E14 

ES cells (which I had received from Dr Martin Hooper, University of Edinburgh) 

having been proven germline while under my care at The Ludwig Institute (Mann 

et al 1993, Leischke et al, 1994). This led me to review and improve the tissue 

culture facilities at The Murdoch Childrens Research Institute. Major steps included' 

the implementation of rigorous quality control of the ES cells and media, 

karyotyping of targeted lines, and improved freezing and storage conditions for 

potential targeted cell colonies that were undergoing screening. I also obtained a 

number of new parental ES cell lines from external sources for this work. Of these 

the R1 (from Dr Steve Delaney, University of Queensland), W9.5, W9.8 (from Dr 

Jeff Maim, Beckman Institute) and 129/1 cell lines (from Dr Graham Kay, QIMR), 

grown on STOneoR mouse feeder cells (from Dr Liz Robertson, Columbia 

University), were successful in giving high grade germline transmitting mouse 

chimaeras in my hands. Additionally I established drug tolerance titration curves for 

G418 (neomycin) and hygromycin (the selection markers used in conjunction with 

the IRES cassette) and determined the minimal dosage of these chemicals required to 

select against non-targeted parental ES cells following electroporation of gene 

targeting constructs. 

Once targeted ES cell lines were identified by Southern analysis using an external 

probe I facilitated members of Prof Choo's team to develop efficient PCR screening 

strategies for the rapid detection of wildtype, heterozygous and nullizygous 

(knockout) offspring postnatally and prenatally. The ability to perform PCR 
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genotyping on the latter was particularly critical if the gene disruption resulted in 

embryonic lethality. I was also very active along with Prof Choo in helping group 

members to develop essential analytical tools such as morphological and 

immunofluorescence techniques especially for the embryos that may be required for 

phenotypic analysis of the mouse mutants. 

The successful generation of the many transgenic mouse strains at The Murdoch 

Childrens Research Institute stretched existing resources at the RCH and it was 

necessary for me to arrange offsite housing of these mice under the care of my staff 

(Sophie Gazeas, Anick Sylvain and Jodi Ladhams). This required organising health 

care and testing, rederiving mouse strains by Caesarean section, giving clear 

instruction as to how the mouse colonies were to be bred and maintained, planning 

and designing breeding experiments and ensuring that the relevant RCH AEC 

approvals had been obtained prior to experimentation. 

In addition to generating and breeding the mice I have been heavily involved with the 

phenotypic characterisation of the Cenpb-null and Cenpb targeted revertant control 

mice and the embryonic lethality observed in the Cenpa-, Cenpc-, Incenp-, Api4- and 

Bub3-nullizygous mice. The Api4 knockout mice were generated by Dr David 

Vaux's laboratory, WEHI. Initially Api4 (survivin) was described as an inhibitor of 

apoptosis (reviewed by Deveraux and Reed, 1999) however Dr Vaux's team has 

recently identified survivin as a centromere-associated protein. Subsequently Dr 

Vaux contacted Prof Choo to collaborate with the analysis of the Api4-disrupted 

mice. 

Phenotypic characterisation of the embryonically lethal Cenpa, Cenpc, Incenp, 

Api4 and Bub3 knockout mice 

My contribution to the phenotypic analysis of the Cenpa-, Cenpc-, Incenp-, Api4- 

and Bub3-deficient mouse strains comprised of: 

- identification of embryonic lethality at specific timepoints in embryogenesis for 

each gene by dissecting out pre- and postimplantation mouse embryos from 

heterozygous breeding pairs for morphological studies and PCR analysis with Prof 

Choo's group and Dr Vaux's team. 
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- design and execution of in vitro experiments to further refine the in vivo 

observations by dissecting out preimplantation mouse embryos from heterozygous 

breeding pairs and testing their ability to form an inner cell mass and trophectoderm 

in cell culture systems. 

- breeding and genetic backcross experiments of Cenpa and Cenpc heterozygous 

mice onto different inbred backgrounds, accompanied by PCR analysis with a view 

to modifying the phenotype ie rescuing the lethality or hastening the lethality. 

- an extensive literature review of known mouse strains that display embryonic 

lethality. The key contribution of this survey was locating a publication that 

describes a mitosis defective embryonic lethal mouse strain that displays 

oliogosyndactaly known as Os (Magnuson and Epstein, 1984). This publication has 

been invaluable for suggestions on analysis of preimplantation embryos that were 

likely to display chromosomal abnormalities and has assisted Prof Choo's group to 

examine the centromeres and chromosomes of the Cenpa-, Cenpc-, Incenp-, Api4- 

and Bub3- disrupted embryos by mitotic index and staining with anti-centromere 

protein antibodies. 

Phenotypic assessment of the non-lethal Cenpb knockout mice 

My contribution to the phenotypic study of the Cenpb-deficient mice, cell lines and 

Cenpb revertant mice has been extensive in experimental design and execution. In 

order to follow up my observations Prof Choo and I set up of a number of external 

collaborations to understand the pathology and physiology of these mice. 

These collaborations included: 

- histopathological analysis of 20 organs from individual mice with Dr CW Chow, 

Department of Pathology, RCH. 

- specific examination of the pathology of the testis with Prof David de Kretser, 

Institute of Reproduction and Development and Dr Nigel Wreford, Department of 

Anatomy, Monash University. 

- pathological examination of the uterus with Dr Lois Salamonsen, Prince Henry's 

Institute. 

- examination of uteri for the presence of opportunistic or pathogenic bacteria with 

the Department of Microbiology, RCH. 

- in situ hybridisation of mouse tissues with Stephanie Edmondson, Centre for 

Hormone Research, RCH. 
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- FACS analysis to check for possible aneuploidy in specific mouse tissues with 

Andrew Fryga and Dianne Tucker, Department of Haematology, RCH. 

- measurement of testosterone, 17P-estradiol and progesterone levels in the mice with 

Department of Biochemistry, RCH. 

- whole body composition analysis of mice with Dr Brian Leury, Institute of Land 

and Food Resources, University of Melbourne. 

- measurement of leptin levels to exclude hypophagia (suppressed food intake) with 

Dr Anne Thorbum, Department of Medicine, University of Melbourne. 

- analysis of mouse longevity using Kaplan Meier survival plots with Dr Rory Wolfe, 

Department of Statistics, RCH. 

- I also sought instruction in techniques such as: TUNEL staining to test for 

apoptosis from Pam Farmer, Department of Surgical Research, RCH as well as 

BUdR labeling of mouse tissues in vivo with Dr Cris Print, WEHI. 

ii) the genetic mapping of centromere protein genes: Cenpa, Cenph, Cenpe, 

Cenpf, Incenp and Bub3 

I initiated these studies using Recombinant Inbred mouse strains (RI strains) to map 

Cenpa and Incenp genes similar to my previous mapping studies that were used to 

determine the chromosomal localisation of relaxin and TGFa genes (Fowler et al, 

1991; Fowler et al, 1993). My initial mapping of Cenpa using RI strains lead to an 

unexpected result. Subsequently I sought a collaboration with with Dr Christine 

Kozak (Chair of International Mammalian Genome Society Mouse Chromosome 5 

Subcommittee) to independently confirm my mapping of Cenpa using her Backcross 

mouse DNA panel. I also worked with Prof Choo's group to verify the assignment of 

human CENPA using somatic cell hybrids (Newson, 1997). 

After presenting my work at the Mouse Genome conference in Florida, 1997, I learnt 

of the recent availability of commercial Backcross panels (purchased from Dr Mary 

Barter and Dr Lucy Rowe, The Jackson Laboratory). These panels enabled the 

refined mapping of the Cenph, Cenpe, Cenpf, Incenp and Bub3 centromere protein 

genes using probes provided by Prof Choo's group (MacDonald, 1996; Kile, 1997; 

Dr Paul Kalitsis and Dr Richard Saffery). Dr Anthony Lo was supervised by me to 

determine the genetic mapping of Cenph. 
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d) Structure of thesis 

Chapter 1 is an introductory chapter that encompasses a review of the centromere 

literature with emphasis on the centromere-associated proteins. Chapters 2 and 3 

describe the findings and summaries of the enclosed publications. These two chapters 

do not attempt to present the work in complete detail as it is included in the enclosed 

publications, rather they deliver it in the context of a thematic overview describing 

the function and chromosomal localisation of the centromere protein genes. The final 

Chapter 4 features the impact, future directions and implications of these studies. 

Please note that a copy of each publication and general references are included in this 

thesis in accordance with the University of Tasmania PhD by previous publication 

guidelines. In addition all referenced publications resulting from the work relating to 

the present thesis are in bold and numbered by a superscript (eg Fowler et al, 19971). 
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1.1 Background 

The centromere is the primary constriction in the dividing chromosome and the 

origin from which genetic recombination distances are measured (reviewed by Craig 

et al, 1999). It holds newly replicated sister chromatids together and allows the 

attachment of 15 to 30 microtubules that originate from centrosomes (Maney et al, 

1999). These in turn facilitate sister chromatid separation to daughter cells during 

mitosis and meiosis by manoeuvring the chromosomes to opposite poles of the 

bipolar spindle prior to nuclear envelope reformation and completion of mitosis (for 

review see Alberts et al, 1994a). Problems in sister chromatid separation during cell 

division can lead to aneuploidy (ie abnormal chromosome number eg patients with 

Downs syndrome cells carry an extra chromosome 21), aging, cancer and cell death. 

Human aneuploidies, collectively, represent the most common cause of genetic 

abnormalities and are thought to be a major factor for patients with spontaneous 

abortion and recurrent miscarriage (Pellicer et al, 1998; Lomax et al, 2000). The 

possibility that some non-disjunction of chromosomes may be genetically determined 

is tantalising because if proven, it would allow the genetic diagnosis of patients and a 

better understanding of the aetiology of certain conditions which result from 

aneuploidy. 

1.2 Centromere structure 

The mammalian centromere is usually made up of highly repetitive, transcriptionally 

inactive DNA enveloped by a specialised proteinaceous structure known as the 

kinetochore (reviewed by the following: Rattner, 1991; Brinkley et al, 1992; 

Eamshaw and Tomkiel, 1992; Pluta et al, 1995; Choo, 1997a; Craig et al, 1999; 

Maney et al, 1999). A number of these reviews have identified the centromere of 

fully condensed metaphase chromosomes as having three major components: the 

pairing domain at the inner surface of the centromere where the sister chromatids are 

in intimate contact; the central domain representing the majority of the centromeric 

DNA, and the two kinetochore domains along each outer surface of the centromere 

(Figurel; Rattner, 1991; Choo, 1997a; Craig et al, 1999). Electron microscopy has 

identified the kinetochore domain of each sister chromatid as having three layers 
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Figure 1 Schematic representation of structural domains (shown on right) and 
centromere-associated proteins (shown on left) of the centromere-
lcinetochore complex on human metaphase chromosome (figure based on 
Choo 1997a). 

Note: CENP-B and INCENP broadly localise to the central domain 
which contains a-satellite DNA; API4 colocalises with INCENP; BUB3 
with a-satellite DNA; CENP-A, CENP-C and CENP-G localise to the inner 
plate of the ldnetochore domain; CENP-E and CENP-F to the outer plate of 
the ldnetochore domain. CENP-E has also been localised to the fibrous 
corona which extends from the outer plate. The precise localisation of 
CENP-H at the kinetochore domain is unknown at present. The positioning 
of several constitutive and facultative proteins throughout the cell cycle and 
at the centromere-lcinetochore complex has been further defined by confocal 
irrununofluorescence microscopy (Martineau-Thuillier et al, 1998; Uren 
et al, 200012) and immunoelectron microscopy using antibodies (reviewed 
by Craig et al, 1999). 
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known as the inner plate, middle layer or interzone and outer plate with a distinct 

/corona (fibrous coat) on the outer plate (Figure 1). The inner plate contains the 

outermost centromeric DNA and several centromere-associated proteins known as 

CENPs a . Whereas the outer plate is the site of microtubule attachment and cell cycle 

checkpoint control ie a cellular control mechanism that ensures cell cycle progression 

proceeds only after the microtubules are properly attached to the centromeres of all 

chromosomes (Pluta et al, 1995; Choo, 1997a; Craig et al, 1999). 

1.3 Centromeric DNA 

The role of the block of tandemly-repeated, late-replicating DNA that underlies the 

kinetochore protein structure of centromeres and how it separates during mitosis is 

unclear (reviewed by the following: Holm, 1994; Choo, 1998a; Craig et al, 1999). 

Besides human and mouse, centromeric DNA has been cloned from many organisms 

including Schizosaccharomyces pombe (a fission yeast with 40 to 100 kb size 

centromeres), Saccharomyces cerevisiae (budding yeast with <0.2 kb size 'point' 

centromeres), Drosophila melanogaster (fly), fish, Muntiacus muntjac (Indian 

muntjac deer), cow and pig (reviewed by Choo, 1998a) as well as Neurospora crassa 

(filamentous fungus; Cambareri et al, 1998), water buffalo (Tanaka et al, 1999), 

Arabidopsis thaliana (small herb plant; Copenhaver et al, 1999) and Plasmodium 

falciparum (mosquito; Bowman et al, 1999). With the exception of S. cerevisiae, all 

eukaryotic centromeres have a large amount of repetitive DNA sequences (Choo, 

1998a). These repeat DNA sequences constitute up to 5% of the human genome and 

10% of the mouse genome (Brinkley et al, 1992). However unlike the telomere 

(Figure 1) which consists of tandem repeats of the sequence TTAGGG (Blackburn 

a  The nomenclature for the centromere proteins and genes in species other than mouse are 

written in capital letters with a hyphen (eg CENP-A) for protein and CENPA for gene 

symbol in keeping with the current literature and Genome Database (GDB). The symbol for 

the mouse centromere proteins is written in small letters with no hyphen (eg Cenpa) for 

protein and Cenpa for gene symbol as approved by International Committee on 

Standardised Genetic Nomenclature for Mice which restricts the use of capital letters and 

hyphens in mouse genes or loci. 



5 

and Greider, 1995), little or no DNA sequence homology has been observed in the 

cloned centromeres from the above species, which range in size from 40 to 5000 kb. 

This suggested that the DNA sequences which form the structural backbone of the 

centromere are not crucial for conserved centromere function (Choo, 1998a; Baum 

and Clarke, 2000). 

Furthermore, there is a scarcity of expressed genes in the centromeric regions of most 

species and genetic recombination is dramatically reduced in the region (for 

commentary see Choo, 1998b). Indeed many human and Drosophila genes become 

inactive when inserted near the centromere. However there are several organisms 

such as S. cerevisiae, S. pombe, Drosophila and Arabidopsis that have expressed 

genes residing very close to, or within defined centromeric regions (Copenhaver 

et al, 1999) adding to the complexity of understanding the primary role of DNA in 

centromere formation. 

1.3.1 Human centromeric DNA 

In humans, the central domain of centromeres is made up of large arrays (2-4 Mb 

on each chromosome) of highly repetitive 171-bp A+T rich DNA alphoid satellite 

DNA monomers (also known as a-satellite DNA) which contain 17-bp box motifs 

that have the ability to bind one of the centromere proteins, CENP-B (Rattner, 1991; 

Choo, 1997b). Although a-satellite DNA has been shown experimentally to display 

functional centromeric activity, evidence exists that this sequence may be redundant 

because of the ability of the human genome to form functional, analphoid (a-satellite 

DNA-deficient) new centromeres (neocentromeres) in noncentromeric regions of the 

genome (reviewed by Choo, 1997b). 

Approximately 40 neocentromeres have been described in humans as well as one in 

Drosophila (reviewed by Choo, 1998a; Williams et al, 1998; Slater et al, 1999; 

Voullaire et al, 1999a; Tyler-Smith and Floridia, 2000). The best characterised of 

these is the human chromosome 10-derived neocentromere known as mardel (10). 

This mitotically stable neocentromere has been cloned and sequenced from a 80-kb 

region on 10q25 with only minor similarity to known centromeric DNA sequences 

being detected (Voullaire et al, 1993; du Sart et al, 1997; Barry et al, 1999). Despite 
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this, the mardel (10) neocentromere has been shown to display identical binding of 

more than 20 different centromere-associated proteins except for the lack of 

CENP-B binding, when compared to normal a-satellite-based centromeres (Saffery 

et al, 2000). The paucity of detectable CENP-B binding complements the DNA 

sequence study, which identified only one copy of a CENP-B box-like motif in 

mardel (10) DNA (Barry et al, 1999). 

These recent studies highlight that although a-satellite-rich DNA may be the 

preferred site of human centromere formation in its absence other latent genomic 

regions may become activated presumably by an epigenetic event (ie a sequence-

independent mechanism) or a particular DNA conformation that results in a cascade 

of centromere-associated protein binding and the creation of functional new 

centromeres (du Sail et al, 1997; Barry et al, 1999; Saffery et al, 2000). Moreover it 

adds support to the notion that specific centromeric DNA sequences are not required 

for centromere activity, although the sequencing of other neocentromeres may yet 

identify a common predetermining feature in centromeric DNA such as islands of 

A+T-rich sequence (Choo, 1998a; Barry et al, 1999). 

1.3.2 Mouse centromeric DNA 

In the mouse, Mus muscu/us there are two main subclasses of satellite DNA known 

as major (an A+T-rich 234-bp monomer) and minor (a 125-bp monomer) with 

colocalisation of the centromere-associated proteins and the 17-bp Cenpb box being 

present only in the minor satellite DNA (Brinkley et al, 1992). Mouse centromeres 

are acrocentric with the minor satellite present at the X chromosome and autosomes 

being flanked by telomeric DNA on one side and major satellite on the other 

(Tyler-Smith and Willard, 1993). The mouse Y chromosome contains no detectable 

minor or major satellite DNA and like the human Y chromosome Cenpb binding 

sites are absent (Rattner, 1991). In the male, the necessary pairing off of the sex 

chromosomes in meiosis is unlike the homologous chromosomes that undergo sister 

centromere pairing. Instead it is achieved via the pseudoautosomal regions on the 

X and Y chromosome uniting and partitioning into two daughter nuclei (Alberts 

et al, 1994b). 
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Besides Mus muscu/us (M muscu/us), the distribution of centromeric DNA has been 

examined in two other Mus genus members, Mus spretus (M spretus) and 

Mus caroli (M. caroli). Both these species have been shown to contain major satellite 

DNA at the centromere as well as along the chromosomal arm regions. The minor 

satellite DNA, which was only found at the kinetochore region of 

M. muscu/us, has been found distributed throughout the centromere in M. spretus. In 

the case of M caroli the minor satellite centromeric DNA is made up of 79-bp repeat 

monomers with minimal (9 of 17-bp conserved) Cenpb binding sequences (Brinkley 

et al, 1992; Kipling et al, 1995; Pluta et al, 1995; Sunkel and Coelho, 1995). Apart 

from Cenpb little is known about the profile of the centromere-associated proteins in 

M spretus and M caroli. 

1.4 Centromere-associated proteins 

There are five constitutive centromere proteins known as: CENP-A, CENP-B, 

CENP-C (reviewed by Money et al, 1999), CENP-G (Figure 1; He et al, 1998) and 

CENP-H (Sugata et al, 1999) that are constantly present at the mammalian 

centromere throughout the cell cycle including during interphase. Several of these 

constitutive proteins (eg CENP-A, CENP-B, CENP-C) were identified initially 

through the use of autoimmune sera from patients with calcinosis, Raynaud 

phenomenon, esophageal dismotility, sclerodactyly, telangiectasia (CREST) 

syndrome (Moroi et al, 1980; Earnshaw and Rothfield, 1985) or 'Watermelon 

syndrome' (CENP-G; He et al, 1998) b . 

b Another centromere protein known as CENP-D was identified as a 47-IcDa protein that 

localised to the lcinetochore domain of both human and Indian muntjac deer cells (reviewed 

by Maney et al, 1999). CENP-D has been omitted from this present study as subsequent 

work has shown CENP-D to be homologous with another 45-1cDa mammalian protein 

known as RCC1 (Regulator of Chromosome Condensation 1). RCC1 is a cellular guanine 

exchange factor and an unlikely centromere protein (Choo, 1997a). 
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As well, there are approximately 20 known facultative or chromosome passenger 

proteins, that briefly associate with the centromere for a certain portion of the cell 

cycle. These include proteins such as CENP-E, CENP-F or mitosin, INCENP, API4 

or survivin, cytoplasmic dynein intermediate chains and many other proteins 

(reviewed by the following: Craig et al, 1999; Maney et al, 1999; Saffery et al, 2000). 

These proteins appear to use the centromere during metaphase as a marshalling area 

before transferring from the chromosome to the mitotic spindle in early anaphase and 

performing cytoskeletal functions toward the end of mitosis (Craig et al, 1999). 

A subgroup of these transiently associated centromeric proteins are involved in cell 

cycle regulation via a feedback control mechanism known as a mitotic spindle 

checkpoint. This group of proteins include members of the BUB (Budding 

Uninhibited by Benzimidazole)-family such as BUB1, BUB3 and BUBR1 (BUB1- 

related protein kinase) as well as other proteins including the MAD (Mitotic Arrest 

Deficient)-family members known as MAD 1-3 (for reviews see: Craig et al, 1999; 

Maney et al, 1999; Saffery et al, 2000). These proteins control metaphase to anaphase 

transition by inhibiting the onset of anaphase until all the chromosomes achieve 

bipolar microtubule attachments and are correctly aligned on the mitotic spindle. 

Unattached kineto chores generate an inhibitory transduction signal or 'checkpoint', 

whereas secured kinetochores experience tension due to opposing spindle forces. 

Subsequently tension-sensitive proteins located at the kinetochore have been 

postulated to lose activity thus allowing anaphase to proceed (Taylor et al, 1998). 

However evidence also exists to suggest that the onset of anaphase is initiated by 

cleavage of specific sister chromatid cohesion proteins rather than the sole activity of 

tension-generating spindle fibres (reviewed by Nasmyth et al, 2000). Degradation of 

these cohesion proteins is believed to be linked to the BUB and MAD checkpoint 

pathways via MAD2 kinetochore complexes diffusing throughout the cell and 

inactivating a structure known as the anaphase promoting complex (APC)/cyclosome 

ubiquitin ligase which marks proteins for degradation by tagging with ubiquitin. 

When inactivate, the APC is unable to ubiquinate the cohesion proteins and initiate 

anaphase (Maney et al, 1999; Dobles et al, 2000). 

Understanding the role of Cenpa, Cenpb, Cenpc, Incenp, Api4 and Bub3 proteins in 

centromere formation and function together with determining the chromosomal 
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positions of Cenpa, Cenph, Cenpe, Cenpf, Incenp and Bub3 genes is the major focus 

of the presented publications (Fowler et al, 1997 1 ; Kalitsis et al, 1998a 2 ; Hudson 

et al, 19983 ; Fowler et al, 19984 Fowler et al, 1998b 5 ; Cutts et al, 1999 6; Fowler 

et al, 19997; Fowler et al, 2000 8 ; Howman et al, 20009 ; Lo et al, 20001° ; Kalitsis et 

al, 2000 11 ; Uren et al, 2000 12). It was not necessary to localise Cenpb, Cenpc and 

Api4 loci as these have already been described (Carlson et al, 1993; McKay et al, 

1994; Li and Altieri, 1999). Also, Cenph, Cenpe and Cenpf were cloned in Prof 

Choo's laboratory and mapped in this study with the view to generate knockout mice 

in the future. Subsequently the remainder of this Chapter has concentrated on 

introducing: CENP-A, CENP-B, CENP-C and CENP-H constitutive centromere 

proteins as well as CENP-E, CENP-F, INCENP, API4 and BUB3 facultative 

centromere proteins. 

1.4.1 Constitutive centromere proteins 

1.4.1.1 CENP-A 

CENP-A is a 17-1cDa protein that was first identified using CREST antisera on 

human centromeres during mitosis and interphase (reviewed by the following: Choo, 

1997a; Maney et al, 1999). This protein, like CENP-C has been localised to the inner 

kinetochore plate (Figure 1; Warburton et al, 1997). Also, it has been detected at 

mammalian and chicken centromeres (reviewed by Choo, 1997a; Saffery et al, 

1999b) as well as S. cerevisiae (Stoler et al, 1995), Caenorhabditis elegans 

(nematode worm; Buchwitz et al, 1999); S. pombe and Drosophila (Pidoux and 

Allshire, 2000) where CENP-A protein homologs are known as CSE4p (chromosome 

segregation protein) and HCP-3 (holocentric protein-3), Cnpl and Cidl respectively. 

Furthermore CENP-A has been has been detected at neocentromeres (Saffery et al, 

2000) and is not present at inactive centromeres on dicentric chromosomes 

(Warburton et al, 1997). 

CENP-A protein was originally purified from bull sperm and a partial cDNA 

sequence, as well as cDNA sequences for mouse and human CENP-A have been 

reported (Sullivan et al, 1994; Kalitsis et al, 1998b). Sequence analysis has revealed 

the carboxyl-terminus (C-terminus) of CENP-A to have significant regions of 
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homology with histone H3 (Sullivan et al, 1994; Kalitsis et al, 1998b). Besides H3 

there are three other specialised histone proteins (H2A, H2B and H4) that are 

responsible for packing or condensing very long eukaryotic DNA into the nucleus. 

DNA that is associated with histones is known as chromatin and the fundamental 

DNA-histone packing unit is known as the nucleosome (reviewed by Alberts et al, 

1994c). The acetylated state of histones H3 and H4 has been implicated in 

centromere structure and function as have other post-translational changes such as 

phosphorylation and ribosylation (Pidoux and Allshire, 2000). 

Further CENP-A analyses suggest that the inner kinetochore plate consist partly of 

CENP-A/DNA nucleosomes that have been formed by the C-terminal end of 

CENP-A binding to a certain DNA conformation rather than a particular DNA 

sequence (reviewed by Marley et al, 1999). Collectively a number of studies indicate 

that CENP-A may have an important role in the packaging of centromere chromatin. 

Additionally mammalian CENP-A is expressed in late S-phase coinciding with the 

late timing of kinetochore DNA replication, possibly providing an early epigenetic 

marker for centromere formation on chromosomes (reviewed by the following: 

Karpen and Allshire, 1997; Csink and Henikoff, 1998; Van Hooser et al, 1999, 

Pidoux and Allshire, 2000). 

Evidence for the functional role of CENP-A comes from anti-CENP-A antibody 

microinjection experiments in human HeLa cells (Figueroa et al, 1998) and gene 

disruption experiments in the S. cerevisiae CSE4 gene (Stoler et al, 1995). HeLa cells 

injected into the nucleus during early replication stages of the cell cycle with 

antibody raised against the amino-terminus (N-terminus) of CENP-A, arrested in 

interphase and lost viability. Whereas cells injected during different stages of mitosis 

progressed through the cell cycle at a slower rate suggesting that once CENP-A has 

organised the centromeric chromatin during interphase the cell is protected from any 

adverse effects of the anti-CENP-A antibody (Figueroa et al, 1998). 

Earlier studies on the cse4-1 temperature-sensitive yeast mutant revealed arrest and 

inviability at higher temperatures however the arrest occurred after DNA replication 

and spindle assembly but before the onset of sister chromatid separation during 

anaphase suggesting that CSE4 protein functions in chromosome segregation as 

opposed to DNA replication (Stoler et al, 1995). Exploring the purpose of Cenpa in 
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centromere biology and determining the genetic mapping of the mouse Cenpa locus 

forms the basis of experiments that are presented in Chapters 2 and 3, respectively. 

1.4.1.2 CENP-B 

Human CENP-B has been identified as an 80-kDa protein, which is distributed 

throughout the centromeric heterochromatin beneath the inner plate of the 

kinetochore (Figure 1; Cooke et al, 1990). This protein is encoded by a single intron-

less gene and has 96% cDNA sequence homology with the cloned mouse Cenpb 

gene (Earnshaw et al, 1987; Sullivan and Glass, 1991). The human and mouse genes 

have been localised to a homologous region on human chromosome 20p13 (Seiki 

et al, 1994) and mouse chromosome 2 (Carlson et al, 1993; 74.2 cM region, MGD). 

Besides human and mouse, the CENP-B amino acid sequence is highly conserved in 

hamster, African green monkey, great ape, tupaia (tree shrew), calf, Indian muntjac 

deer and sheep (reviewed by the following: Kipling and Warburton, 1997; Maney 

et al, 1999) as well as in the higher plant known as Phaseolus vulgaris (Barbosa-

Cisneros et al, 1997). Furthermore immunofluorescent staining with antisera to 

human CENP-B has revealed the conservation of this protein in chicken, mouse and 

human centromeres (Saffery et al, 1999b). 

Sequence analysis has shown that the N-terminus of CENP-B encodes a DNA-

binding domain whereas the C-terminus houses the CENP-B dimerisation domain 

(reviewed by Maney et al, 1999). CENP-B binds to a-satellite DNA in human or 

minor satellite DNA in mouse via a 17-bp sequence known as the CENP-B box 

motif. This motif has been found in the centromeric DNA of a wide variety of 

vertebrates (Maney et al, 1999) and plants (Aragon-Alcaide et al, 1996; Nagaki et al, 

1998; Weide et al, 1998). The dual DNA-binding and dimerisation properties of 

CENP-B suggest that this protein organises the assembly of repetitive DNA at the 

primary constriction facilitating centromere/kinetochore formation (Yoda et al, 

1992). 

A second CENP-B related protein known as jerky has been identified in an 

insertional mouse mutant as have three human jerky gene products (Toth et al, 1995; 

Baum and Clarke, 2000). The jerky mouse suffers epileptic seizures and its locus has 
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been mapped to the 42.8 region on chromosome 15 (MGD). The role of the 58-kDa 

jerky protein on chromosomes and centromeres is at present unknown (Toth et al, 

1996; reviewed by Craig et al, 1999). Also, mammalian CENP-B has sequence 

similarity with two centromere-binding proteins in S. pombe known as Abplp and 

Cbhlp which are believed to bind DNA via N-terminal domains, as well as with the 

Tiggerl , 2 and pogo transposases which have the ability to cause single-stranded 

DNA breaks that may facilitate evolution (Kipling and Warburton, 1997; Baum and 

Clarke, 2000). 

The role of CENP-B in centromere biology has been controversial for many years 

with its extraordinarily conserved sequence and anti-CENP-B antibody 

microinjection experiments suggesting that it is an indispensable protein (Bemat et 

al, 1990, 1991). This is further supported by a yeast strain carrying deletions in both 

CENP-B homologs Abplp and Cbhlp, having a profound effect on chromosome 

segregation and growth (Baum and Clarke, 2000). 

On the other hand there are many lines of evidence to suggest that CENP-B is non-

essential. These include the presence of CENP-B binding on both active and inactive 

centromeres of dicentric human chromosomes (Eamshaw et al, 1989). Additionally 

the amount of CENP-B varies considerably on chromosomes and there is a lack of 

CENP-B boxes or bound protein on human or mouse Y chromosomes (Sunkel and 

Coelho, 1995). Likewise CENP-B is absent from human analphoid neocentromeres 

(Choo, 1998a) and is virtually undetectable on African green monkey centromeres 

which are composed of a-satellite DNA (Goldberg et al, 1996). This plethora of 

observations marked Cenpb as an ideal protein for further functional studies 

discussed in Chapter 2. 

1.4.1.3 CENP-C 

CENP-C was identified by CREST antisera as a 140-kDa protein and has been 

localised to the inner kinetochore plate near the centromeric chromatin (Figure 1; 

reviewed by the following: Craig et al, 1999; Maney et al, 1999). Antisera to mouse 

or human CENP-C has revealed the conservation of this protein in chicken, mouse, 

human and Xenopus (Lanini and McKeon, 1995; Saffery et al, 1999b). Human, sheep 
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and mouse cDNAs have been cloned with sequence similarity being observed with 

the chromosome segregation protein Mif2p in S. cerevisiae, Cnp3 in S. pombe, 

TO3F1.9 in C. elegans, AtCENP-C in A. thaliana and three maize homologs known 

as CenpcA, CenpcB and CenpcC (reviewed by Kalitsis et al, 1998b; Pidoux and 

Allshire, 2000; Tyler-Smith and Flordia, 2000). Furthermore the genomic structure 

of the mouse gene has been determined (Kalitsis et al, 1998b) and mapped to 

chromosome 5E2-E5 in a region of homology with human chromosome 4q12-q13.3 

(McKay et al, 1994). A non-functional mouse and human CENP-C pseudogene has 

also been localised on chromosomes 2B and 12q21.2-q21.33 respectively (McKay 

et al, 1994). 

CENP-C has been shown to interact with: DNA (Yang et al, 1996); the nucleolar 

transcription factor UBF/NOR90 (Pluta and Earnshaw, 1996); and Hdaxx, a protein 

involved in apoptosis (programmed cell death; Pluta et al, 1998). It has been shown 

to be present on active centromeres of dicentric chromosomes (Earnshaw et al, 1989; 

Page et al, 1995) and on neocentromeres (reviewed by Choo, 1997b) suggesting that 

CENP-C has an essential role in centromere function. 

The biological role of CENP-C has been explored in vitro by microinjection of 

CENP-C antisera into porcine and human cells (Tomkiel et al, 1994). Anti-CENP-C 

microinjection experiments resulted in cells arresting in metaphase and the formation 

of kinetochores with a significantly smaller diameter (Tomkiel et al, 1994). However, 

antibody injection experiments can be fraught with limitations such as lack of 

efficiency and specificity that may restrict their interpretation (Alberts et al, 1994d; 

Maney et al, 1999). The functional role of Cenpc in vitro and in vivo is investigated 

further in Chapter 2. 

1.4.1.4 CENP-H 

CENP-H, or perhaps more correctly Cenph was identified as a 33-kDa novel mouse 

kinetochore protein during the course of isolating erythropoietin-inducible transcripts 

by differential display in mouse SKT6 cells (Sugata et al, 1999). Antibody raised to 

mouse Cenph recognised mouse and human CENP-H in immunofluorescence 

stainings. The observed paired CENP-H stainings were also shown to colocalise with 

human anti-centromere specific antibody. However, no indication was given as to 
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whether the staining was uniform on the centromere/kinetochore complex of all 

chromosomes or whether some variation was observed similar to the pattern 

observed with CENP-B in human, mouse and chicken cells (Saffery et al, 1999b). 

Surprisingly, unlike other centromere proteins such as Cenpa, Cenpb, Cenpc or 

Incenp that have detectable mRNA levels in non-haemopoietic mouse tissues by 

Northern blot analyses (Redward, Fowler and Kalitsis, unpublished observations; 

Saffery et al, 1999a) Cenph RNA expression levels were too low to detect using this 

method (Sugata et al, 1999). Being a relatively new centromere protein the precise 

localisation of CENP-H at the kinetochore domain remains to be elucidated. In 

addition, insight into the function of this protein in mitosis and meiosis could be 

gained by targeting the Cenph gene to produce a deficient mouse. As an initial step, 

however Cenph genetic mapping studies described in Chapter 3 were performed to 

find out whether Cenph shows concordance with any pre-existing mouse mutant. 

1.4.2 Facultative centromere proteins 

1.4.2.1 CENP-E 

CENP-E belongs to a second much larger group of facultative centromere proteins 

that are only transiently associated with the centromere during the cell cycle. 

CENP-E was originally identified using a monoclonal antibody raised against a 

chromosomal scaffold fraction prepared from mitotic chromosomes (Yen et al, 

1991). This 312-1cDa kinesin-related motor protein localises on the outer lcinetochore 

plate including the fibrous corona, of the mammalian centromeres throughout 

prometaphase, during metaphase (Figure 1; Cooke et al, 1997) and anaphase when 

cells were undergoing chromatid movement. CENP-E starts to diminish from the 

centromeres at anaphase but remains at detectable levels at kinetochores of 

decondensing chromosomes in telophase (Yen et al, 1991, 1992; Lombillo et al, 

1995; Cooke et al, 1997). In late anaphase and during telophase the bulk of CENP-E 

concentrates in the midbody on the stem body material that coats the overlapping 
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antiparallel microtubules of the central spindle c. Following the completion of mitosis 

CENP-E is largely destroyed by proteolysis (Cooke et al, 1997). 

CENP-E appears to be conserved in multicellular organisms with human, Xenopus 

and 2 Drosophila homologs known as CENP-meta and CENP-ana being cloned 

(reviewed by Maney et al, 1999; Yucel et al, 2000). Also, CENP-E antisera 

(antihuman) has been used to detect CENP-E at the centromeres of human, Indian 

muntjac deer, rat kangaroo, mouse and chicken chromosomes (Cooke et al, 1997; 

Saffery et al, 1999b). 

Recently it has been shown that the kinetochore localisation domain of CENP-E 

interacts with CENP-F and the spindle checkpoint protein BUBR1 (Chan et al, 

1998). Additional analysis has revealed that CENP-F localises to the kinetochore, 

prior to BUBR1 which is followed by CENP-E suggesting that the association 

between CENP-F and BUBR1 with the kinetochore produces a CENP-E/kinetochore 

binding site (reviewed by Maney et al, 1999). In vitro studies using antibodies or 

antisense oligonucleotides to CENP-E have shown that this protein was essential for 

monopolar chromosomes to establish bipolar connections and for chromosomes with 

connections to both spindle poles to congress (move) and align at the spindle equator 

(Thrower et al, 1995; Schaar et al, 1997; Wood et al, 1997; Yao et al, 2000). To 

further understand CENP-E and to test the hypothesis that the Os mouse mutant 

could be a candidate carrying a mutated Cenpe gene, genetic mapping experiments 

were carried out as described in Chapter 3. 

c  The midbody forms during cytokinesis when cleavage furrowing of cellular cytoplasm is 

near completion. The midbody is constructed from the remaining overlapping microtubules 
from the two opposing spindle poles and is tightly packed together with dense matrix 
material. Cytokinesis begins after a cell has duplicated its genetic material and is completed 
by the destruction of the midbody and restoration of an intact cell membrane around each of 
the daughter cells (Alberts et al, 1994a; Bischoff and Plowman, 1999). 
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1.4.2.2 CENP-F 

CENP-F is also known as mitosin. Human CENP-F was identified through screening 

cells with sera from patients with nonsclerodermal rheumatic disease whereas 

mitosin was isolated by others screening human cells for proteins that interact with 

the retinoblastoma protein (for review, see Maney at al, 1999). CENP-F is a 367-IcDa 

nuclear matrix-associated chromosome passenger protein predicted to contain 

putative kinase phosphorylation sites (Rattner et al, 1993; Liao et al, 1995). CENP-F 

has been shown to be present at the centromeres of human, mouse and chicken 

chromosomes (Saffery et al, 1999b) and two CENP-F homologs known as HCP-1 

and HCP-2 have been identified in C. elegans (Pidoux and Allshire, 2000). 

Moreover this protein has been shown to be uniformly distributed in the cell nucleus 

during S-phase, localising onto the outer kinetochore plate from late G 2/M-phase to 

metaphase (Figure 1; Rattner et al, 1993) where it has been shown to physically 

interact or precipitate with CENP-E (see above) (Chan et al, 1998; Yao et al, 2000). 

In anaphase CENP-F relocates to the spindle midzone region where the metaphase 

plate once was. By telophase CENP-F concentrates either side of the midbody before 

being degraded following completion of mitosis (Rattner et al, 1993; Liao et al, 

1995; Mancini et al, 1996). 

The functional role of CENP-F is not well understood however the localisation of 

CENP-F/mitosin during kinetochore formation has been accompanied by an increase 

in chromatin condensation. This and some of CENP-F sequence properties suggest 

that it may have an active role in chromatin condensation prior to mitosis (reviewed 

by Maney et al, 1999). In addition, CENP-F has been shown to be a valuable 

proliferation marker for various brain tumours (Landberg et al, 1996). To gain further 

insight into CENP-F, the chromosomal position of mouse Cenpf was determined as 

described in Chapter 3. 
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1.4.2.3 INCENP 

Two proteins known as INCENP I and II (INner CENtromere Proteins) were the first 

of the chromosome passenger group of centromere proteins to be described. These 

were originally identified in chicken with a monoclonal antibody raised against the 

bulk proteins of a mitotic chromosome scaffold fraction (Cooke et al, 1987). 

Subsequently INCENPs I and II were shown to be 96-10a and 101-1cDa respectively, 

and to be encoded by the same single gene (Mackay et al, 1993). Both Xenopus 

(130-1cDa) and mouse (101-kDa) homologs of chicken INCENP have been identified 

and protein analysis has revealed the presence of many putative kinase 

phosphorylation sites (Stukenburg et al, 1997; Saffery et al, 1999a). Furthermore this 

protein has been shown to be conserved in chicken, mouse and human cells 

(Ainsztein et al, 1998; Saffery et al, 1999b) and the single-copy mouse Incenp gene 

has been cloned (Saffery et al, 1999a). 

During prophase INCENP protein has been found along the chromosomal arms, 

progressively accumulating in the central domain of the centromere during 

prometaphase and early metaphase (Ainsztein et al, 1998). At metaphase INCENP is 

broadly distributed throughout the heterochromatin beneath the kinetochore similar 

to CENP-B (Figure 1; Eckley et al, 1997). At late metaphase, INCENP starts to leave 

the centromeres and during metaphase-anaphase transition becomes associated with 

the stem body material which coats the overlapping microtubules of the central 

spindle. By mid anaphase some INCENP staining appears at the cell cortex in the 

region of the actin-mediated contractile ring where the cleavage furrow will later 

form. During telophase INCENP staining concentrates in the midbody in the 

intercellular bridge where it disappears following cytokinesis (Eamshaw and Cooke, 

1991). 

Recent in vitro studies have used different mutant forms of INCENP to study its 

functional role. The first assayed the effects of a CENP-B:INCENP 43 _839  

overexpression construct in HeLa cells within 24-48 hour after transfection. This 

chimaeric transgene tethered the INCENP43 _839  protein to the heterochromatic 

domain of the centromere throughout the mitosis producing a dominant-negative 

effect on endogenous INCENP that disrupted cytokinesis. Without the CENP-B to 
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secure it to the centromere the INCENP43 _839  truncation mutant lacked the ability to 

concentrate at centromeres during metaphase and to transfer to the spindle at the 

metaphase-anaphase transition (Eckley et al, 1997). 

The second study used transient transfection of HeLa cells with a series of truncated 

molecules to map INCENP regions that are essential for centromere targeting and 

transfer to the spindle during anaphase. One of these mutants, INCENP 1 _405  targets 

centromeres but lacks the microtubule association region. This dominant-negative 

mutant interferes with chromosomal congression during prometaphase and 

completion of cytokinesis by displacing wildtype INCENP (Mackay et al, 1998). 

However one possible disadvantage with these dominant-negative approaches is the 

presence of endogenous INCENP protein that may interfere with the observed 

phenotypes. To overcome this, the functional role of Incenp is examined further 

using knockout mouse technology in Chapter 2. The genetic mapping of the Incenp 

locus is described in Chapter 3. 

1.4.2.4 API4 

Apoptosis inhibitor 4 protein (API4) or survivin encodes a 16.5-kDa protein 

(Li et al, 1998) and belongs to the Inhibitor of Apoptosis (TAP) family of proteins 

that contain a baculoviral TAP repeat (BIR) of approximately 70 amino acids. IAPs 

were originally discovered in baculoviruses and have been shown to block apoptosis 

in response to viral infection of host insect cells. Qualification for TAP membership is 

generally restricted to proteins encompassing BIR domains that suppress apoptosis. 

However survivin and several other BIR-bearing proteins have been implicated in 

cell division rather than purely anti-apoptotic activities. To date, survivin-related 

proteins have been identified in S. pombe (Bin), S. cerevisiae (Birlp), C. elegans 

(BIR-1), human (API4) and mouse known as Api4 (for review, see Deveraux and 

Reed, 1999). The human API4 gene has been localised to 17q25 whereas the mouse 

locus, Api4 has been assigned to the distal region of chromosome 11E2 (Li and 

Altieri, 1999; Mouse Genome Database, 2000). 

Recent studies using independently derived, affinity-purified polyclonal antibodies to 

a unique N-terminal peptide of human survivin have localised survivin in HeLa cells. 
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The first study has identified survivin as a non-centromeric G 2/M mitotic checkpoint 

protein that closely associates with microtubules, midbodies, centrosomes (organelles 

from which the mitotic spindle develops) and the apoptosis effector caspase-3 during 

the cell cycle (Li et al, 1998; Li et al, 1999). Whereas a subsequent study has found 

survivin to be a transient centromere-associated protein with an immunostaining 

profile resembling that of the chromosome passenger protein INCENP (Figure 1; 

Uren et al, 200012). Furthermore, INCENP has been shown to colocalise with 

another passenger protein known as Telophase Disc 60 (TD-60; Martineau-Thuillier 

et al, 1998). This protein has been shown to localise with the serine/threonine kinase 

Auroral which is required for the successful completion of cytokinesis (Martineau-

Thuillier et al, 1998; Bischoff and Plowman, 1999). 

The expression of survivin during the cell cycle and in development as well as in 

human cancers has lead to the proposal of survivin having a direct role in 

oncogenesis (LaCasse et al, 1998). Survivin rnRNA has been found to be 

upregulated approximately 40 fold at the G 2/M-phase of the mammalian cell cycle 

(Li et al, 1998). Northern analysis has detected survivin in many tissues derived from 

day 11.5pc (post conceptus) mouse embryos but expression became restricted to a 

few locations by late gestation and was rare in normal adult mouse or human tissues 

(Adida et al, 1998). In contrast survivin was overexpressed in many transformed cell 

lines and human cancers. Interestingly survivin levels in colorectal cancer inversely 

correlated with five year survival rates suggesting that this protein may be of 

prognostic value for patients with certain tumours (LaCasse et al, 1998; Deveraux 

and Reed, 1999). Further support for survivin having a role in tumour progression 

has been attributed to the continuous expression of survivin abnormally prolonging 

cell survival by preventing apoptosis via binding to and inhibiting caspase-3 and 

caspase-7 thus protecting the mitotic spindle from caspase damage and allowing 

transformed cells to multiply unchecked (LaCasse et al, 1998; Miller, 1999). 

The functional role for survivin in cell division and death is debatable. Studies in 

some organisms such as C. elegans and yeast that lack caspase-inhibiting IAPs 

suggest that survivin are involved in cell division. C. elegans embryos that were 

rendered 
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BIR-1-deficient using RNA interference strategy were unable to undergo cytokinesis 

and became polyploid, whereas S. pombe Bin- and S. cerevisiae Birlp- null mutants 

failed to accurately transmit chromosomes (Fraser et al, 1999; Uren et al, 1999). 

However investigations in cultured mammalian cells suggest that survivin has a dual 

role in cell cycle regulation and control of cell death (reviewed by Reed and Reed, 

1999). Disruption of survivin-microtubule interactions in HeLa cells using various 

microtubule-depolymerising chemicals (eg nocadozole or colchcine) and the 

microtubule-stabilising agent taxol; antisense oligonucleotides and a dominant-

negative survivin mutant resulted in a loss of survivin-microtubule interaction and 

apoptosis inhibition (Li et al, 1998; Li et al, 1999). Cells with depleted survivin were 

characterised by supernumerary centrosomes, multipolar mitotic spindles, 

multinucleation and polyploidy suggestive of failed centrosome function and/or 

cytokinesis (Li et al, 1999). 

To help resolve the important question as to whether mammalian survivin is a unique 

checkpoint protein that has a double act in cell division and caspase-mediated cell 

death versus being a chromosomal passenger protein that has little to do with being a 

caspase inhibitor, analysis of survivin-depleted mice was undertaken as described in 

Chapter 2. 

1.4.2.5 BUB3 

BUB3 is a member of the BUB-family of mitotic spindle checkpoint proteins first 

identified in a genetic screen of S. cerevisiae. The BUB mutants, unlike normal cells, 

failed to arrest in anaphase following exposure to benzimidazole-related, spindle-

damaging agents (Hyot et al, 1991). Subsequently homologs of budding yeast BUB3 

(ScBUB3) have been reported in Xenopus, Drosophila, human (BUB3) and mouse 

known as Bub3 (Basu et al, 1998; Efimov and Morris, 1998; Taylor et al, 1998; Goto 
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and Kinoshita, 1999; Martinez-Exposito et al, 1999) d . The human BUB3 gene 

encodes a 37-kDa protein that is 69% similar to S. cerevisiae BUB3 (Taylor et al, 

1998). Like the yeast and human genes, mouse Bub3 contains a Bub 1 binding 

domain and four WD40-repeats that are postulated as having a role in protein-protein 

interactions (Martinez-Exposito et al, 1999). Note: WD40-motifs are comprised of 40 

amino acids that end with the sequence Trp-Asp (WD; Neer et al, 1994). 

The BUB3 locus has been assigned to human chromosome in the region of 10q24-26 

(Cahill et al, 1999; Seeley et al, 1999; Kwon et al, 2000). Chromosome deletions in 

this location appear in cancers from a number of tissues suggesting that BUB3 may 

function as a tumour suppressor gene (Seeley et al, 1999). Moreover mutations of the 

RUB] kinase gene have been identified in colon cancer cell lines that display an 

altered mitotic checkpoint status as well as chromosome instability phenotype (Cahill 

et al, 1998). 

Similar to human BUB1 and BUB3, mouse Bub3 cytosolic protein localises to the 

kinetochore during early mitosis (Taylor et al, 1998; Martinez-Exposito et al, 1999). 

Anti-kinetochore staining of human HeLa and mouse 3T3 cells with CREST antisera 

and a-satellite probes revealed colocalisation with Bub3 antisera during prophase, 

prometaphase and metaphase (Figure 1; Martinez-Exposito et al, 1999). However at 

metaphase the amount of Bub3 at the kinetochores of spindle-aligned chromosomes 

decreased dramatically. Indeed it has been estimated to reduce 3- to 5-fold on the 

centromeres of HeLa chromosomes and stay that way until the end of anaphase 

(Martinez-Exposito et al, 1999). 

To further explore this phenomenon, HeLa cells were treated with nocodazole and 

taxol at concentrations that did not affect the gross structure of the mitotic spindle 

The nomenclature for the family of BUB proteins appears in the literature as eg hBUB3, 

hBub3, HBUB3 or BUB3 for the human homolog; mBUB3, mBub3, MBUB3 or Bub3, for 

the mouse homolog. I have elected to use BUB3 for human and Bub3 for mouse proteins 

respectively as well as BUB3 and Bub3 for the human and mouse gene symbols, 

respectively in keeping with International Committee on Standardised Genetic 

Nomenclature for Mice. 
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but increased the number of non-aligned chromosomes. Significantly these lagging 

metaphase-like chromosomes selectively retained high levels of BUB3 and low 

levels of tubulin suggesting that BUB3 levels on kinetochores varies with the number 

of attached microtubules and that the binding of microtubules to kinetochores may 

displace BUB3-related checkpoint complexes (Martinez-Exposito et al, 1999). 

Earlier studies have shown that BUB3 interacts with BUB1 to form a protein kinase 

complex that is capable of sequestering other proteins such as BUBR1 kinase to form 

additional complexes (Roberts et al, 1994; Taylor et al, 1998; Martinez-Exposito 

et al, 1999). As discussed previously, BUBR1 has been shown to associate with 

CENP-E thus linking the checkpoint role of BUB family members on centromeres to 

microtubule activity via the CENP-E motor protein (Chan et al, 1998; Yao et al, 

2000). 

Studies in S. cerevisiae bearing mutations at the ScBUB1 and ScBUB3 loci suggested 

that in the absence of ScBUB3, ScBUB1 is unable to localise at the centromere and 

hence the checkpoint remains non-responsive to unattached kinetochores. This 

cumulates in an early onset of anaphase, mitotic errors and subsequent laggard 

growth (Roberts et al, 1994; Taylor et al, 1998). In addition, a similar slow-growth 

phenotype was observed in Aspergillus nidulans (filamentous fungus) transformants 

bearing mutations in BUB1 and BUB3 genes known as sldA and sldB, respectively 

(Efimov and Morris, 1998). To further explore the functional requirement of BUB3 

in mammalian cells and to consider the possibility that defective BUB3 may 

contribute to aneuploidy, Bub3-null mice were generated and the genetic mapping of 

the Bub3 gene was determined as described in Chapters 2 and 3, respectively. 
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2.1 Background 

One of the strategies for studying the functional role of a particular protein of interest 

has been to inactivate it by microinjecting somatic cells with a specific antibody 

(Alberts et al, 1994d). This method has been employed to study the role of a range of 

proteins including some of the centromere-associated proteins eg CENP-A, CENP-B, 

CENP-C and CENP-E (Bernat et al, 1990,1991; Tomkiel et al, 1994; Schaar et al, 

1997; Figueroa et al, 1998). However this approach has some limitations. For 

instance, some antigenic sites may be inaccessible to the antibody and antibody-

binding may not necessarily inactivate protein function (Alberts et al, 1994d). 

Genetic approaches may circumvent these problems. Proteins are synthesised gene 

products and can be altered by replacing the normal gene with a cloned mutant gene. 

Mutants that lack or over-express a specific protein, or generate an aberrant form of 

protein may quickly reveal the function of the normal molecule (Alberts et al, 

1994d). Consequently, many experimental approaches such as mutagenesis and 

transgenesis including antisense RNA, ribozyme and dominant-negative strategies 

have been widely used to study gene (and protein) function in a variety of cell lines 

and model organisms such as yeast, Drosophila, C. elegans, Rattus norvegicus (rat) 

and mouse. Of these, transgenic mouse technology offers one of the most powerful 

tools for studying mammalian gene regulation and function (Hammes and Schedl, 

2000). 

2.1.1 Transgenic mice 

Transgenic animals are those that have foreign DNA sequences integrated into their 

genome as a consequence of the introduction of DNA. Foreign genes may be 

introduced into the genome by microinjection into the pronucleus of a fertilised 

embryo, or by viral infection of an embryo, or by manipulation of mouse embryo 

stem cells (ES cells). The development of ES cells, homologous recombination with 

embryo manipulation and chimaera formation in the 1980's has provided a 

remarkable means for examining gene function. At its simplest, gene targeting ES 

cells allows disrupting or knocking out the endogenous allele of interest in vitro, 

returning the mutant cells to mouse blastocysts and generating transgenic mice 
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bearing a precise null mutation for in vivo experimental study (reviewed by Joyner, 

1993; Silver, 1995). 

Since the first knockout mice were described in 1988 (Mansour et al, 1988), targeting 

vectors have been refined to greatly improve the frequency of homologous 

recombination. This has been achieved by the use of isogenic vector DNA, increasing 

the length of homologous DNA in the targeting construct (Hasty and Bradley, 1993) 

and making use of efficient selectable marker cassettes such as one that employs an 

internal ribosomal entry site (IRES) to generate bicistronic mRNA (Mountford et al, 

1994). 

In addition new types of gene targeting strategies have been described. These include 

Cre/loxP and Flp/frt site-specific recombination-based methods. These approaches 

enable subtle or point mutations to be introduced in any gene as well as providing a 

means for deleting up to several centiMorgans (cM) of genomic DNA. These 

recombinase systems can be also utilised to study conditional mutations in mice at a 

certain time during development or in a particular cell lineage where the constitutive 

null mutation is lethal (for reviews see Muller, 1999; Plagge et al, 2000). 

2.2 Rationale 

In order to gain insight into the role of Cenpa, Cenpb, Cenpc, Incenp, Api4 and Bub3 

centromere-associated proteins we chose to generate and analyse mouse mutants 

bearing targeted loss-of-function germline mutations in the specific loci that encode 

these proteins (Kalitsis et al, 1998a2 ; Hudson et al, 19983 ; Cutts et al, 1999 6 ; 

Fowler et al, 20008; Howman et al, 20009; Kalitsis et al, 2000 11 ; Uren et al, 

2000 12). This strategy has several advantages. First, it permits not only the mitotic 

function of the centromere proteins to be studied in vitro and in vivo, but also the role 

of these proteins in meiosis and embryogenesis. Second, it allows for the possible 

identification of candidate disease-causing loci in humans and other mammals as 

studies in other fields have shown (Epping and Nadeau, 1995; Paigen, 1995). Third, 

it offers an alternative and more elegant system than the conventional strategy of 

microinjecting polyclonal antibodies against centromere-associated proteins into cells 

and studying their effects on centromere function and cell division since the side- 
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effects of injected antibodies are difficult to ascertain (Kalitsis et al, 1998a 2 ; Maney 

et al, 1999). Fourth, it makes for a more precise system than dominant-negative 

genetic approaches that may be complicated by residual endogenous CENP protein 

(Cutts et al, 1999 6). Fifth, the mouse centromere shares many common features with 

the human centromere. For example both centromeres contain repetitive DNA (a-

satellite DNA in the human and minor satellite DNA in mouse) that carry the CENP-

B box motif to which CENP-B protein binds (for reviews see: Choo, 1997a; Pluta et 

al, 1995). Additionally it has been shown that both mouse and human centromeres 

bind antibodies to CENP-A, CENP-B, CENP-C, CENP-E, CENP-F, CENP-G, 

CENP-H, INCENP and BUB3 proteins (Choo, 1997a; He et al, 1998; Maney et al, 

1999; Sugata et al, 1999; Saffery et al, 1999b, Martinez-Exposito et al, 1999). Sixth, 

the gene structure or molecular sequence of mouse Cenpa, Cenpb, Cenpc, Cenpe, 

Cenpf, Cenph, Incenp, Api4 and Bub3 genes have been determined (Kalitsis et al, 

1998b; Hudson et al, 19983; Fowler et al, 19984 Fowler et al, 1998b 5 ; Martinez-

Exposito et al, 1999; Saffery et al, 1999a; Sugata 

et al, 1999; Uren et al, 2000 12). 

2.3 Generation of mice carrying Cenpa, Cenpb, Cenpc, Incenp, Api4 and Bub3 

targeted mutations 

Mice bearing disrupted Cenpa, Cenpb, Cenpc, Incenp and Bub3 genes were 

generated by gene targeting mouse ES cells (R1, W9.5 and 129/1) derived from 129 

mouse substrains with promoterless targeting vectors that incorporated an IRES-

neomycin or IRES-hygromycin marker (Mountford et al, 1994). The Api4-null 

mouse model was created at WEHI, by gene targeting C57BL/6 ES cells (BRUCE4) 

with a replacement targeting construct containing a neomycin selectable marker 

(Uren et al, 200012). 

Heterozygous cell lines for each gene were identified by Southern blot using specific 

external probes. The IRES-neomycin vectors were instrumental in achieving efficient 

homologous recombination frequencies of: 54% (129/1) for Cenpa (Howman et al, 

20009); 2% (R1), 3.5% (W9.5) and 1.3% (W9.8) for Cenpb (Hudson et al, 19983); 

74% (R1) for Cenpc (Kalitsis et al, 1998a 2); 3.7% (129/1) and 4.6% (W9.5) for 
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Incenp (Cutts et al, 19996); 10% (129/1) and 30% (W9.5) for Bub3 (Dr Paul 

Kalitsis, personal communication). This was accomplished by selecting for 

homologous recombination events downstream of the endogenous promoters and 

translation of the neomycin or hygromycin gene products via the lRES (Cutts et al, 

19996). 

Targeted cell lines were then injected into C57BL/6 blastocysts and transferred to 

pseudopregnant recipient female mice to produce germline chimaeras. The chimaeras 

were mated to C57BL/6 mice to generate heterozygous progeny. The heterozygous 

offspring were intermated to obtain wildtype, heterozygous and homozygous 

progeny. Individual mice were initially genotyped by Southern analysis, followed by 

PCR screening. Nested PCR strategies were used for genotyping mouse embryos 

(Kalitsis et al, 1998a2 ; Hudson et al, 19983 ; Cutts et al, 19996; Fowler 

et al, 20008; Howman et al, 20009; Kalitsis et al, 2000 11 ; Uren et al, 2000 12). 

2.4 Analysis of mice bearing loss-of-function mutations in centromere protein 

genes 

2.4.1 Cenpa 

Clues to the essential requirement for Cenpa during mouse development were 

evident from the reduced average litter size of 6.0 ± 2.4 (n=23 litters) for Cenpa 

heterozygous mouse crosses as compared to 9.1 ± 2.6 (n=31 litters) for wildtype 

crosses. Furthermore no null offspring were observed in 186 live born progeny from 

heterozygous matings. To further investigate the timepoint of Cenpa-null lethality, 

embryos from heterozygous crosses were genotyped at day-2.5 and -8.5 post 

conceptus. Analysis revealed that Cenpa-null embryos were morphologically healthy 

at day-2.5 but presented as resorptive implantation sites at day-8.5 and were unable 

to be dissected. This indicated that the point of lethality was likely to be somewhere 

in the postimplantation period between day 3.5 and 8.5-day gestation (Howman 

et al, 20009). 

To explore the postimplantation development, day-3.5 embryos from heterozygous 

crosses were collected and cultured individually. These embryos were photographed 
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daily or stained with Giemsa stain. At 5.5-day pc (ie 3.5 days in utero plus 2 days in 

culture), a number of embryos displayed degeneration of the inner cell mass (ICM) 

and the trophectoderme . By day-6.5, a defined ICM was no longer visible, while the 

number of trophectoderm cells was also in decline. These sick embryos were 

collected for PCR analysis while the remaining healthy embryos were cultured to 

day-8.5 before collection. The results indicated that all the healthy day-8.5 embryos 

were either wildtype or heterozygous whereas the 6.5-day degenerating embryos 

were Cenpa-null (Howman et al, 2000 9). 

Giemsa staining and chromosomal analysis of cultured null embryos at day-5.5 and 

6.5 revealed severe mitotic problems including mitotic delay, highly condensed 

metaphase chromosomes, micro- and macronuclei formation, nuclear bridging ie 

joined nuclei, and chromatin blebbing. Not surprisingly the 6.5-day null embryos 

displayed an increase in the degree of severity with most cells being macronucleated, 

suggesting that cell division had come to a halt. Indeed no discernible mitotic 

chromosomes were observed in these embryos whereas mitotic indices of 5.5-day 

cultured embryos were 1.1% for Cenpa-null embryos and 4.7% for normal embryos 

(Howman et al, 20009). The mitotic index is calculated by counting the number of 

mitotic spreads over the total number of cells for each embryo (Kalitsis et al, 

1998a2 ). 

To investigate the cause of the observed mitotic disarray and verify the completeness 

of the Cenpa gene targeting strategy, immunofluorescence studies were performed. 

Analyses demonstrated an absence of Cenpa protein, and an abnormal dispersion of 

Cenpb and Cenpc proteins throughout the nuclei of interphase cells, instead of the 

usual discrete and compact signals. This indicated that Cenpb and Cenpc are 

e  In normal healthy embryos the ICM gives rise to the embryo proper and the trophectoderm 

forms the extra-embryonic tissues (Robertson, 1987). Mouse trophectoderm is comprised of 

trophoblasts that arise from day-4.5 embryonic cells that stop dividing and undergo many 

cycles of S-phase generating giant cells with polypoid nuclei (Dobles et al, 2000). 
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incapable of kinetochore formation in the absence of Cenpa and that this failure is 

likely to explain the progressive deterioration of mitosis and eventual cell death 

observed in the Cenpa-null embryos (Howman et al, 2000 9). 

Overall the results suggest that Cenpa plays an early role in organising centromeric 

chromatin in interphase in preparation for subsequent kinetochore/centromere 

assembly. These findings are consistent with the proposal that CENP-A is a good 

candidate epigenetic marker that stamps a chromosomal region for centromere 

formation (Howman et al, 2000 9). 

2.4.2 Cenpb 

To better understand the role of Cenpb, gene targeting of R1, W9.5 and W9.8 ES cell 

lines was used to generate cell lines and mice (R1 and W9.5 only) with a null 

mutation at the Cenpb locus. The null status of the double targeted ES cell lines was 

verified by an absence of Cenpb binding on centromeres by direct 

immunofluorescence using anti-Cenpb monoclonal antibody (Hudson et al, 1998 3). 

Breeding pairs of heterozygous mice gave birth to normal-sized litters with the 

expected Mendelian ratio of offspring indicating that the Cenpb-null progeny were 

viable. 

The R1 Cenpb knockout mice appeared mitotically and meiotically normal but 

developed lower body-weight with the difference reaching significance (p <0.05) 

after 22 weeks in males and 12 weeks in females (Hudson et al, 1998 3). This 

difference in weight was explored by analysing the body composition of 

20-week-old mice in terms of their dry weight, ash weight, moisture, protein and fat. 

When the results were expressed as a percentage of fresh body weight, no significant 

difference was observed suggesting that Cenpb-null mice were proportionally smaller 

than control mice (Fowler et al, 20008). In addition, plasma leptin levels were 

measured and found to be similar between Cenpb-null and wildtype mice suggesting 

that hypophagia (suppressed food intake) was unlikely to be responsible for the 

reduced body weight in the knockout mice (Fowler et al, 20008). 
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To further examine the reduced size of R1 Cenpb-null mice a large number of organs 

were dissected and weighed from age- and sex-matched mice. Surprisingly the testis, 

uterus and epididymis weights of 10-week-old R1 null mice were significantly 

smaller (29%, p<0.001 for testis, Hudson et al, 19983 ; 31%, p = 0.032 for uterus, 

Fowler et al, 20008 ; 18%, p = 0.039 for epididymis, Fowler, unpublished 

observations) when compared to wildtype mice. Cytogenetics and FACS analysis of 

testis, bone marrow and spleen revealed no abnormality. A closer look at male 

meiosis using histology, advanced sperm counting and stereology detected no 

substantial difference in the efficiency of mitotic or meiotic division (Hudson et al, 

19983). Furthermore, a long term breeding study over two years with R1 Cenpb-null 

male mice failed to demonstrate any effect on fertility and longevity as compared to 

wildtype males (Fowler et al, 20008). 

To further explore these early observations, R1 heterozygous mice were backcrossed 

to generate C57 Cenpb-null congenic and C57 control mice. Also the W9.5 

heterozygotes were intercrossed to produce W9.5 Cenpb-null and control offspring. 

Follow-up studies demonstrated that the significant testis- and uterus-weight 

reduction was seen in Cenpb-null mice on all three different genetic backgrounds 

(denoted R1, C57 and W9.5) whereas body weight was dependent on genetic 

background as well as the sex of the mice. 

In a concurrent study to determine whether cell lines deficient in Cenpb had an 

altered growth rate, the population doubling times of three null ES cell lines were 

compared to wildtype and heterozygous cell lines. No significant difference was 

observed between the cell lines over 400 cell divisions. Karyotyping of the late 

passage cell lines revealed no increase in aneuploidy compared to the control lines. 

This suggested that the Cenpb-null cell lines grew normally, unlike telomerase-

deficient ES cells that deteriorated in doubling times over a similar test period (Niida 

et al, 1998). 

To examine whether the Cenpb construct had unintendedly interfered with 

expression of a neighbouring gene, 'revertant' mice were generated. These mice 

lacked the targeted Cenpb frameshift mutation but not the other components of the 

targeting construct. This mutation was shown to have no noticeable effect on Cenpb 
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protein expression of fibroblast cell lines derived from revertant mice (Front cover, 

Fowler et al, 20008). Moreover it corrected the phenotype seen in the Cenpb-null 

mice indicating that the observed features were not caused by the targeting cassette 

inadvertently affecting a closely located gene (Fowler et al, 2000 8) as described in 

other studies (Olson et al, 1996; Muller, 1999). 

Besides displaying a small uterus, Cenpb knockout female mice demonstrated an 

age-dependent reproductive dysfunction that was more severe in the C57 

background. Breeding studies with 8- to 15-week-old C57-null female mice 

demonstrated slow or difficult delivery of pups whereas the R1 and W9.5 Cenpb-null 

females bred normally for the first three to four litters. However these females 

displayed pregnancy problems by age 9-month. In many cases pregnant females 

sickened because of being overdue by up to 10 days. Autopsy of these mice revealed 

dead intact or resorbing foeti and pyometra (uterine infection; Fowler et al, 20008). 

To further investigate the causes for the female reproductive phenotype, progesterone 

and B-estradiol levels were measured in non-mated females in all three backgrounds. 

In addition, fertilised eggs and ovaries from day-0.5 pc females were collected. No 

difference in hormone levels or embryo number was detected when compared to age-

matched wildtype female mice. Also histology and weigh analyses of ovarian tissues 

failed to reveal any abnormality. However, histological analysis of uterine tissue 

from 10-week-old C57 and 6- to 9-month-old R1 females revealed abnormal luminal 

and glandular epithelium, fewer endometrial glands, increased leucocyte infiltration, 

haemorrhage and infection in the Cenpb-null mice. Close examination of the 

abnormal uterine epithelial layer revealed the presence of 'clear' apoptotic cells that 

were positive on TUNEL assay (Fowler et al, 2000 8). 

In situ hybridisation was used to determine the Cenpb mRNA expression pattern in 

normal uterus. A specific Cenpb-antisense probe detected high levels of Cenpb 

expression in the epithelial lining of the uterine lumen and endometrial glands of 

normal mice. Collectively these results suggested that Cenpb protein may have an 

important functional role in maintaining the epithelial layer of the uterus and 

subsequent reproductive performance (Fowler et al, 20008). 
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2.4.3 Cenpc 

To study the biological role of Cenpc protein, mice bearing a disrupted Cenpc allele 

were generated and intermated. PCR analysis of 276 progeny identified 85 wildtype, 

191 heterozygotes and no livebom nullizygous pups. Male and female heterozygotes 

were normal-sized, healthy and fertile. To determine the stage of embryonic lethality 

30 embryos were dissected for genotyping from heterozygous crosses at 13.5-, 10.5- 

and 8.5-day post conceptus. No Cenpc-null postimplantation embryos were identified 

prompting the investigation of day-3.5 embryos. Morphological and PCR analysis of 

50 embryos revealed 17 wildtype, 18 heterozygous and 10 null embryos. 80% of 

these Cenpc-disrupted embryos were significantly delayed in development when 

compared to the heterozygous and wildtype embryos. Instead of being at the 

blastocyst stage the majority of the null embryos were classified as morula, 

degenerating morula and less than 16-cell stage of development (Kalitsis et al, 

1998a2). 

To further examine the morphology and mitotic index of the aberrant embryos, 155 

day-3.5 embryos from heterozygous crosses as well as 64 day-3.5 control embryos 

from wildtype intermatings or wildtype x heterozygous matings were analysed using 

phase contrast microscopy followed by Giemsa staining. Overall 75% of the 

unstained embryos in the 3.5-day control group reached the blastocyst stage as 

compared to 56.8% of the heterozygous-cross cohort. Examination of the Giemsa-

stained embryos revealed 25.2% to have irregular-sized interphase nuclei, scattered 

and highly condensed chromosomes as well as an abundance of micronuclei whereas 

none of the control embryos showed any micronuclei formation. The mitotic indices 

measured an average of 6.9% for the morphologically abnormal embryos 3.6% for 

the normal embryos indicating that mitotic arrest had taken place (Kalitsis et al, 

1998a2). 

To explore whether day-2.5 preimplantation embryos displayed a similar or milder 

phenotype at an earlier age, 52 embryos from heterozygous matings and 32 wildtype 

embryos were morphologically assessed, incubated in colcemid and Giemsa-stained 

to examine chromosomes for aneuploidy. The results indicated that there was no 

difference in embryonic development or chromosome number. Furthermore no 
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micronuclei were observed suggesting that day-2.5 Cenpc-deficient embryos 

underwent normal mitosis for the first 3 division cycles before the maternal pool of 

Cenpc was depleted (Kalitsis et al, 1998a2). 

As shown with the Cenpb-disrupted mice and in other unrelated mutant mouse 

strains, the phenotypic characteristics of mice can be modified by backcrossing mice 

onto different genetic backgrounds (Moser et al, 1992; Banbury, 1997; Fowler et al, 

20008). Indeed an earlier study has shown that the embryonic lethality observed in 

Egfr nullizygous mutants could be rescued by crossing onto CD-1 or MF1 Swiss 

backgrounds (Sibilia and Wagner, 1995; Threadgill et al, 1995). However the 

subsequent breeding of the Cenpc-null allele on C57BL16 and FVB Swiss congenic 

mouse backgrounds failed to rescue the phenotype as the early lethality of Cenpc-

deficient embryos persisted (Fowler and Kalitsis, unpublished observations). 

As a group these observations suggested that progression of Cenpc-null embryos 

through mitosis was severely impeded at day-3.5 in utero with most chromosomes 

failing to align onto the metaphase plate. Despite this, some chromosomes were still 

able to undergo post-metaphase steps and form micronuclei structures (Kalitsis et al, 

1998a2). Overall the Cenpc knockout mouse model provides in vivo evidence that 

Cenpc is a functionally essential protein for correct segregation during mitotic cell 

division. 

2.4.4 Incenp 

The function of Incenp was studied in vivo and in vitro via the generation of a 

knockout Incenp mouse model. Mice heterozygous for the targeted Incenp mutation 

were phenotypically indistinguishable from their wildtype littermates. The 

intercrossing of heterozygotes resulted in 102 progeny of which 73 were 

heterozygotes and 29 were wildtype. This suggested that the null offspring were 

embryonic lethal which was further supported by the smaller litter size (7.5 ± 1.0) for 

heterozygous intercrosses compared to 9.6 ± 2.4 for wildtype crosses (Cutts et al, 

19996). 
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To define the point of lethality, 23 day-8.5 postimplantation embryos were harvested 

from heterozygous matings, 16 were heterozygotes and 7 were wildtype. A further 35 

preimplantation day-3.5 pc embryos were flushed from uteri and individually 

cultured for 6 days. Of these, 31 embryos hatched from their zona pellucida, attached 

and formed characteristic trophectoderm and ICM layers. Genotyping of these 

revealed 23 heterozygotes and 8 wildtype embryos. Three of the remaining 4 

embryos were unable to hatch from their zona and showed signs of degeneration 

whereas the last embryo eventually attached but did not progress in its development. 

These 4 putative null embryos represented 11% of the total embryos and lead to the 

experiment being repeated by harvesting and culturing 21 embryos flushed from the 

oviducts and uteri of 3.5-day pc mice. Of these, 24% (5 of 21) were nullizygous, 

suggesting that affected embryos may have an increased stay in the oviduct. At the 

same time 44 control embryos developed healthy ICM and trophectoderm layers 

in vitro (Cutts et al, 19996). 

The phenotype of 39 day-3.5 embryos from heterozygous crosses was correlated with 

genotype by photographing the embryos examined with phase contrast microscopy 

prior to PCR analysis. Of these, 8 (21%) were null and contained large abnormal 

cells without any distinct blastocoel cavity, ICM or trophectoderm layers when 

compared to the 22 (56%) heterozygous and 9 (23%) wildtype embryos. Further 

analysis of Giemsa-stained day-3.5 embryos revealed the incenp-disrupted embryos 

to have approximately 7 large nuclei as compared to normal blastocysts, which 

contained an average of 40-50 uniform nuclei. These embryos displayed a 

significantly increased mitotic index of 20% compared to 3.9% for the unaffected 

embryos indicating a severe delay or arrest in mitosis (Cutts et al, 1999 6). 

The nuclear morphology of day-3.5 affected embryos displayed a plethora of defects 

including micronuclei and giant nuclei with an increased number of nucleoli and 

chromosomes. The mitotic chromosomes of the null embryos were condensed, 

scattered and did not represent any specific stage of mitosis. To investigate earlier 

events related to this phenotype day-2.5 embryos were harvested from heterozygous 

crosses and analysed. Similarly the day-2.5 null embryos displayed nuclei of varying 

sizes ranging from micro- to macronuclei (up to 10x normal size) with an increased 

number of nucleoli and chromosomes. One unusual feature of these nuclei was the 
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presence of internuclear bridges and binucleation indicating a problem with nuclear 

reformation. 

The integrity of the mitotic spindle of day-2.5 and -3.5 incenp-disrupted embryos 

was examined by anti-tubulin antibody staining. This antibody was selected to 

evaluate the mitotic spindle because microtubules are formed from molecules of 

a- and P-tubulin heterodimers (Alberts et al, 1994e). Anti-tubulin staining revealed a 

complete absence of midbodies that normally form during telophase/cytokinesis. 

Moreover severely affected embryos exhibited aberrant bundling of microtubule 

spindle fibres into gigantic spindle 'cords' as demonstrated by anti-tubulin antibody 

staining (front cover, Cutts et al, 1999 6). The findings of this study suggest that 

Incenp has a vital role in mitosis, at the level of microtubule function and/or 

cytokinesis. 

2.4.5 Api4 

To study the requirement for survivin during the mammalian cell cycle and 

development, Api4-targeted mice were generated. Heterozygous breeding pairs were 

healthy and fertile but failed to generate live born survivin-null offspring (Uren et al, 

200012). Dissection of day-6.5 and day-8.5 implantation sites from heterozygous 

crosses revealed an absence of nullizygous embryos suggesting that the deletion of 

mouse survivin gene caused embryonic lethality. 

Further analyses using phase contrast microscopy and PCR of 96 explanted day-2.5 

and -3.5 embryos revealed 23 phenotypically abnormal null embryos and 73 normal 

wildtype or heterozygous embryos after 3-4 days culture. By day-5.5 and -6.5 all of 

the survivin-disrupted embryos had failed to hatch their zona pellucida and implant 

in vitro in contrast with the remaining embryos which had hatched and formed 

healthy ICM and trophectoderm layers. Some degeneration was apparent in the 

depleted embryos at day-2.5 however a small number of embryos were no different 

from wildtype or heterozygous progeny up until day-4.5. By day-5.5 to -6.5 all null 

embryos were grossly abnormal with an absence of distinct ICM, blastocoel cavity or 

trophoblasts. Notably these embryos contained giant cells reminiscent of the 
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phenotype observed in the incenp-disrupted embryos (Cutts et al, 19996; Uren et al, 

2000 12). 

To further examine the phenotypic features of these embryos a series of day-2.5 

embryos were cultured for 1-3 days and stained daily with DAPI or Giemsa as well 

as with anti-tubulin immunofluorescence for nuclear and microtubule morphologies, 

respectively. Signs of early mitotic deterioration included micronuclei formation, 

nuclear sizes and appearance, and multinucleation. As the embryos progressed, cells 

failed to complete mitosis and the decreasing pool of normal cells were replaced with 

an average of 13 giant cells with bizarre nuclei, bridging and blebbing compared to 

>200 nuclei in the control embryos at day-5.5. Like Incenp-null embryos, tubulin 

staining demonstrated a lack of normal mitotic spindle structures, intercellular 

midbodies and bundling of microtubules indicating a defect affecting microtubule 

dynamics and/or cytokinesis (Uren et al, 2000 12). 

These results, when taken with other findings described in this study such as the 

failure of centromere proteins to colocalise with caspase-3 during the cell cycle 

(Dr Lee Wong, unpublished observations) and the centromeric association of 

survivin with INCENP along a novel para-polar axis during mitosis, suggest that 

survivin's expression pattern in cancer maybe due to the cell cycle role of survivin, 

rather than survivin contributing to tumorigenesis through inhibition of apoptosis 

(Uren et al, 2000 12). 

2.4.6 Bub3 

Early studies in S. cerevisiae and A. nidulans that suggested BUB3 might be 

dispensable in mammalian cells were quickly refuted when healthy heterozygous 

mice bearing a targeted Bub3 allele were intermated. No live nullizygous progeny 

were observed among the first 91 weanlings, instead a wildtype to heterozygous 

offspring ratio of 1:2 was noted. Backtracking through pregnancies revealed that the 

Bub3-null embryos were unable to survive the early postimplantation period. The 

timepoint of embryonic lethality was refined by placing 32 day-3.5 embryos from 

heterozygous crosses into culture, photographing them daily for 4 days followed by 

molecular analysis. PCR genotyping and photomicroscopy revealed that there were 
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25 phenotypically normal embryos (10 wildtype and 15 heterozygous) and 7 Bub3- 

disrupted embryos that had noticeably smaller ICMs on day-6.5. The following day, 

the ICM of day-7.5 Bub3-null embryos displayed significant degeneration while the 

trophectoderm which undergoes endoreduplication was normal-sized (Kalitsis et al, 

2000"). 

To further explore these observations day-3.5 to day-6.5 cultured embryos from 

heterozygous crosses were stained each day with DAPI. No apparent nuclear defects 

were observed in day-3.5 embryos however close examination of day-4.5 embryos 

revealed a significant increase in the number of micronuclei per affected embryo 

from 7.4 ± 4.2, as compared to 1.1 ± 1.3 micronuclei per normal embryo. At day-5.5, 

12 out of 42 embryos displayed a 35% decrease in cell number from 200 ± 82 per 

non-affected embryo to 130 ± 32 cells in the embryos that contained micronuclei. 

These putative null embryos also had a significantly lower mitotic index of 3.2 ± 

2.6% as compared to 7.0 ± 2.1% (p <0.001) for the normal embryos, indicating a 

slowing down in mitosis. The next day, 10 out of 37 day-6.5 embryos were even 

more affected showing ICMs that were down to 50-100 cells compared to 300-500 

cells in the non-affected embryos. These embryos contained a number of nuclear and 

chromosomal abnormalities that included macro- and micronuclei formation, nuclear 

bridging and lagging chromosomes that had failed to attach to microtubules (Kalitsis 

et al, 2000"). 

The role of Bub3-mediated checkpoint activity was further assessed in Bub3- 

disrupted embryos by culturing embryos from wildtype and heterozygous crosses in 

the presence of the antimicrotubule chemical nocodazole at a level that deterred 

attachment of kinetochores with the mitotic spindle. Exposure to nocodazole induced 

a more pronounced phenotype in day-4.5 presumed null embryos. Six affected 

embryos out of 27 embryos from heterozygous parentage displayed an increase in the 

number of micronuclei from approximately 7.4 ± 4.2 per embryo in the untreated 

cohort to 17± 10 (p = 0.039) in the treated embryos. In comparison the number of 

micronuclei in normal progeny from heterozygous or wildtype crosses averaged 

approximately one micronucleus per embryo irrespective of treatment with 

nocodazole. Additionally the affected embryos showed no real difference in their 

mitotic index from 1.6 ± 1.3% for the untreated group to 3 ± 1.2% (p = 0.071) for the 
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nocodazole-treated embryos. On the other hand, the mitotic index for untreated 

normal embryos from heterozygous crosses dramatically increased approximately 

9-fold from 2.1 ± 2.2% to 19 ± 6.6% indicating that normal embryos arrest when 

their lcinetochore-spindle connection is disrupted. Whereas Bub3-deficient embryos 

were able to escape the checkpoint and proceed through the final stages of mitosis in 

a manner that resulted in aneuploidy and eventual cell death (Kalitsis et al, 2000 11 ). 

In conclusion, this study has found that Bub3 is an essential requirement for normal 

activation of the mitotic spindle checkpoint pathway in mammalian development. In 

the absence of Bub3, unchecked cell division results in rapid accumulation of mitotic 

errors and embryonic death. 

2.5 Summary 

This chapter describes a series of publications where gene targeting has been used to 

analyse the role of Cenpa, Cenpb, Cenpc, Incenp, Api4 and Bub3 centromere 

proteins. With the exception of Cenpb, the mouse knockouts resulted in early 

embryonic lethality. These studies demonstrated that Cenpa, Cenpc, Incenp, Api4 

and Bub3 proteins are vital for mitosis during mouse development. Embryos bearing 

a disruption of both alleles displayed severe nuclear morphological degeneration, 

mitotic arrest and death. However, heterozygous mice were healthy, fertile, normal-

sized and showed no sign of tumorigenesis or shortened lifespan when compared to 

wildtype littermates suggesting that inactivation of one allele does not produce a 

dominant-negative effect or haploinsufficiency. The timing of embryonic lethality 

varied over several days with the Cenpc-, Incenp-, and Api4-disrupted embryos 

failing to hatch and implant, whereas the Cenpa- and Bub3-deficient strains 

progressed further forming trophectoderm and ICM outgrowths before cessation of 

cell division. The observed window of viability for each mutant may have been a 

reflection of the essential nature of each protein however the Cenpa- and Bub3-null 

embryos may have survived longer due to a greater stability of residual maternal 

Cenpa or Bub3 mRNA and/or protein. 

In contrast, Cenpb-null mice appear mitotically and meiotically normal despite 

displaying a mild reduction affecting body weight that is dependent on genetic 
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background. In addition Cenpb-deficient mice have smaller testis, epididymis and 

uteri with uterine function being severely compromised in 10-week-old females on a 

C57 background due to defective luminal epithelium. The finding that genetic 

background affects the phenotype of Cenpb-disrupted mice is important as two other 

groups have reported targeted-Cenpb mice with no obvious phenotype using different 

ES cell lines (Kapoor et al, 1998; Perez-Castro et al, 1998) and a third mouse strain 

for chimaera matings (Perez-Castro et al, 1998). 

In summary the key findings of each of the individual targeted mouse mutant studies 

are: 

- in the absence of Cenpa, centromere chromatin organisation is severely 

compromised; 

- Cenpb is not necessary for mitosis or meiosis but nonetheless it has a key role in 

uterine morphogenesis that is subject to gene modifiers; 

- Cenpc has a non-replaceable function at the metaphase stage during mitosis 

presumably due to its direct involvement in the maintenance of proper kinetochore 

structure and function; 

- Incenp and Api4 have crucial roles in the regulation of microtubule dynamics 

and/or the final stages of mitosis such as cytokinesis; 

- Bub3 is an essential component of the mitotic spindle checkpoint pathway that 

functions during mammalian cell division. 

Furthermore, these mouse mutants provide a valuable resource for future centromere 

studies that are discussed in Chapter 4. 
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3.1 Background 

The mapping of mouse genes on chromosomes provides a powerful means of 

progressing from genetic disease to the causative DNA sequence. In the reverse 

sense, mapping can generate new valuable clues for gene function by showing 

correlation of novel DNA sequences (clones) with phenotypic variation (Silver, 

1995). Knowing where one gene or disease-causing locus maps in one species can be 

a great resource for identifying its location in another. The mapping of mouse genes 

has been a particularly useful strategy for identifying new human and animal disease 

loci (Epping and Nadeau, 1995; Bedell et al, 1997). It also allows the dissection of 

genetic versus environmental components of complex traits such as body-weight 

(Silver, 1995; Taylor, 2000) and the examination of genes which may be subject to 

parental imprinting, as was found in heterozygous mice bearing a disrupted 1gf2 gene 

(Dechiara et al, 1991). 

3.1.1 Genetic Map 

At present approximately 7,000 genes of the estimated 50 to 150,000 genes that make 

up the mammalian genome have been mapped in the mouse (Silver, 1995; Mouse 

Facts, 2000). The genetic map of the mouse is a composite map that includes linkage, 

chromosomal and physical mapping data with the linkage or recombination map 

generating much of the genetic mapping information. A locus is placed on the map 

whenever it is found to have linkage with a previously assigned gene or 

microsatellite marker. The genetic distance between loci is measured in 

centiMorgan(s) (cM) with one cM being equivalent to a recombination or crossover 

rate of 1%. Given that the mouse haploid genome has been estimated to contain 

approximately 3x 109  basepairs (bp) and to be 1575 cM in size, one cM equates to an 

average physical distance of two megabases (Mb; Taylor, 2000). Individual mouse 

chromosomes vary in size with the longest being chromosome 1 at 111.1 cM down to 

the shortest, the Y chromosome at 3.0 cM (Mouse Facts, 2000). 

The chromosomal map is based on the karyotype of the mouse genome. The mouse 

has 20 pairs of acrocentric chromosomes including 19 pairs of autosomes as well as 

X and Y sex chromosomes. Crude chromosomal assignments can be made by the use 

of somatic cell hybrids that contain a specific mouse chromosome in a genetic 
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background from another species. More precise chromosomal mapping can be 

achieved by in situ hybridisation methods that demonstrate localisation of the gene of 

interest with a specific chromosomal band (Silver, 1995). However, this technique is 

not as accurate as linkage or physical mapping strategies. 

The physical mapping of the mouse genome has begun in earnest with the private 

company Celera Genomics having sequenced about one-third of the 129/SvJ mouse 

strain (Abbott, 2000). At the same time the National Institutes of Health (NIB) has 

began to sequence the C57BL/6 mouse strain. Celera Genomics plan to have the full 

genome sequenced by the end of this year whereas NIH has a projected completion 

date of 2003 (Abbott, 2000; Golden and Lemonick, 2000). At present, the C57BL/6 

map consists of overlapping DNA clones that cover specific chromosomal regions of 

0.65% of the mouse genome (Mouse Genome Sequencing, 2000). As the physical 

map increases in density it has been claimed that the Mb will replace the cM as the 

reference unit for gene assignments and mapping distances on chromosomes (Silver, 

1995). 

3.1.2 Mapping genes by linkage analysis 

Commercially available Recombinant Inbred strains (RI strains) and interspecific 

backcross panels (The Jackson Laboratory, Maine USA) with a good representation 

of previously assigned markers and gene loci provide a means of mapping genes by 

linkage analysis (reviewed by Silver, 1995; Taylor, 2000). Crossing two parental 

inbred strains then selecting pairs at random and brother-sister mating for 20 

generations derives RI strains. Whereas interspecific backcross panels are generated 

by crossing an inbred M musculus strain with one of the inbred M spretus strains 

followed by backcrossing the first generation female progeny with one of the parental 

strains. 

In both scenarios the genomes of the founder strains are randomly mixed and each 

genetic marker that is polymorphic between these strains has a characteristic 

blueprint known as the strain distribution pattern (SDP) for the RI strains or 

haplotype for the backcross panels. The founder genes that are closely linked tend to 

be inherited together and the closer this is, the more likely it is that their SDP or 

haplotype will be similar. The backcross panels have a clear advantage over the RI 
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strains because the evolutionary genetic distance between the founder strains is likely 

to facilitate finding a polymorphism. Furthermore the backcross panels have a 

considerably larger number of set members for calculating recombination frequencies 

and confidence limits (Green, 1981; Silver, 1985; Manly, 1993). Subsequently these 

panels eg BSS and BSB Panels (The Jackson Laboratory) have provided a detailed 

map of proven locus order to a maximum resolution of 0.5 to 1.0 cM (The Jackson 

Backcross map; Rowe et al, 1999). 

Recently the recombination-based Jackson Backcross map has been cross-referenced 

to mapping data generated by the analysis of whole genome radiation hybrids (Rowe 

et al, 1999). The T31 radiation hybrid panel (RH panel; Research Genetics, Inc) 

consists of a random smattering of very small fragments of the 129/aa mouse genome 

in a A23 hamster background and has a map resolution of 0.2 to 0.5 cM (McCarthy 

et al, 1997). However the gathering and interpreting of RH data may be fraught with 

difficulty and therefore it may be necessary to verify gene assignments by repeating 

the RH panel analysis as well as mapping by other means (Rowe et al, 1999). 

3.2 Chromosomal assignment of mouse centromere protein genes 

Mindful that it is sometimes a redundant exercise to generate a mouse model using 

transgenesis because in some instances nature or earlier mutagenesis experiments 

have already provided these for us (Fowler et al, 1993; Mann et al, 1993; Fowler et 

al, 1995; Bedell et al, 1997), the genetic mapping of Cenpa, Cenph, Cenpe, Cenpf, 

Incenp and Bub3 genes to specific subregions of mouse chromosomes was 

determined (Fowler et al, 1997 1 ; Fowler et al, 19984 Fowler et al, 1998b 5 ; 

Fowler et al, 19997; Lo et al, 2000 10). This exercise has explored the possibility that 

formerly described aberrant mouse strains may carry mutations in these genes. The 

other centromere protein genes of interest: Cenpb, Cenpc and Api4 genes have been 

previously mapped in the mouse (Carlson et al, 1993; McKay et al, 1994; Li and 

Altieri, 1999) and there appeared to be no pre-existing mouse mutants for these 

genes. 
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3.2.1 Cenpa 

The chromosomal assignment of the mouse Cenpa gene has been determined by two 

independent means (Fowler et al, 1997 1). In the first instance an informative 

restriction fragment length polymorphism (RFLP) was identified around the Cenpa 

gene of the AKR/J (AK) and C57L/J (L) progenitor RI mouse strains using a specific 

Cenpa cDNA probe. This polymorphism was used to genotype DNA from the AKXL 

set of RI strains. The resulting SDP demonstrated that Cenpa localises to the 

proximal region of mouse chromosome 5 near Adra2c, D5H4S43E and Qdpr 

markers. This result was unexpected as the Genome Database (GDB) had previously 

reported human CENPA to localise to chromosome 2p24-p21 and there was no prior 

known area of homology with proximal mouse chromosome 5 and human 

chromosome 2. 

Further experiments were performed to independently confirm the mapping of Cenpa 

to mouse chromosome 5 using a M.spretus-based backcross panel as well as CENPA 

to human chromosome 2 using somatic cell hybrids. The M spretus-based linkage 

analysis refined the position of Cenpa to the proximal region of chromosome 5, 

between 116 and Yes] loci near [Adra2c-D5H4S43E-Hdh] markers. Interestingly the 

116 mouse locus (17 cM region; MGD) marks the end of a region of homology with 

human chromosome 7, whereas the [Adra2c-D5H4S43E-Hdh] loci (20 cM region; 

MGD) signal the beginning of a larger stretch of homology with chromosome 4p. In 

between these two regions there are two small subregions of homology between 

proximal mouse chromosome 5 and human chromosomes 18 encompassing Yes] and 

Tyms loci, and 2p24-p21 where Fos12 and Cenpa loci reside (Fowler et al, 1997 1). 

3.2.2 Cenph 

The mouse Cenph locus has been localised to chromosome 13D1 by fluorescence 

in situ hybridisation (FISH) using a BAC-derived genomic probe specific to the 5' 

end of the Cenph gene on normal mouse metaphase chromosomes. The identity of 

chromosome 13 was verified by colocalisation with a commercially available 

chromosome 13 probe (Lo et al, 200010). 
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Additionally, the chromosomal positioning of Cenph was confirmed and refined by 

linkage analysis of The Jackson BSS and BSB Panels using a polymorphic 

microsatellite marker (CA) n  in the intronic region of the 3' end of the Cenph gene of 

the progenitor strains. No recombinants in a total of 188 informants were observed 

with the microtubule-associated protein 5 gene (Mtap-5; 0.0-1.6 cM, 95% limits; 

Dr Mary Barter, personal communication) and many microsatellite markers on distal 

region of chromosome 13 in both panels (Lo et al, 2000 10). The assignment of Cenph 

on mouse chromosome 13 (51.0 region, MGD) is consistent with the presence of a 

BAC containing the human homolog (CENPH) on chromosome 5q (Dr Paul Kalitsis, 

personal communication). This well-established region of mouse-human homology 

encompasses approximately 50 genes spanning the mid- to distal region on mouse 

chromosome 13 and human chromosome 5q (MGD). 

3.2.3 Cenpe 

The genetic mapping of the mouse Cenpe gene was carried out with a specific 

hypothesis in mind. Previously, the human CENPE gene has been assigned to 

chromosome region 4q24-q25 (Testa et al, 1994) in a region of homology with 

mouse chromosome 8 (42 cM region; MGD). This area encodes the mouse Os 

mutant that displays embryonic lethality due to a mitotic arrest defect phenotype 

(Magnuson and Epstein, 1984). Besides CENPE, 15 other genes on human 

chromosome 4q23-q35 have been shown to share homology with mouse 

chromosome 8 (MGD). This initially suggested the possibility that the Os mouse 

mutant could be a candidate for carrying a mutated Cenpe gene (Fowler et al, 

1998a4). However the localisation of Cenpe near the centromere region on 

chromosome 6 by linkage analysis of the AXB set of RI strains and The Jackson BSS 

Panel has excluded the possibility that the Os locus may encode a Cenpe mutation. 

The mapping position of Cenpe was somewhat unexpected, given that there has been 

only one other prior report of homology between mouse chromosome 6 and human 

chromosome 4. The human homolog of the Drosophila atonal homolog 1 gene 

(ATOH1) has been assigned to 4q22 (Ben-Arie et al, 1996) whereas mouse Atohl 

gene was mapped to the 30.5 cM region on chromosome 6. The Atohl gene is 

separated from Cenpe (0.1 cM region, MGD) by a large segment of approximately 
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30 cM on chromosome 6 that has extensive homology to human chromosome 7, 

encompassing more than 40 genes (MGD). This segment includes six genes 

(Cappa2, D1x6, Ggc, Met, Ptn, Tcrb) that have linkage to Cenpe as well as a smaller 

region that has homology with human chromosome 2. The results of the present 

analysis have therefore established a new region of homology on mouse proximal 

chromosome 6 and the human 4q24-q25 region (Fowler et al, 1998a4). 

3.2.4 Cenpf 

The mouse Cenpf gene was mapped by identifying a polymorphism around the Cenpf 

locus and using it to genotype DNA from The Jackson BSS Panel (Fowler et al, 

1998b 5). The resulting haplotype indicated linkage to a large bin of genes and 

markers on the distal region of mouse chromosome 1. This assignment conformed 

with the expected mouse-human mapping region, since human CENPF has been 

localised to human chromosome 1q32-1q41 (Testa et al, 1994). Beside CENPF there 

are in excess of 50 genes that have homology with human lq and the distal region of 

mouse chromosome 1 including Apoa2 gene (92.6 region, MGD) that was shown to 

have linkage with Cenpf (Fowler et al, 1998b 5). 

3.2.5 Incenp 

The mouse Incenp gene was assigned to the proximal region of mouse chromosome 

19 by two different methods of linkage analysis (Fowler et al, 1998a4). In the first 

instance Incenp was mapped using the AKXL set of RI strains. No recombinants 

were observed between Incenp, Fosl 1 , D19Mit59, Ltbpp2, Cd98, or Xmmv42 (0.0-6.9 

cM, 95% limits). To further refine the chromosomal location of Incenp, the locus was 

also mapped by analysis of The Jackson BSS Panel. The observed haplotype 

indicated linkage to Chk, D19Mit32, D10Mit93, and Nofl markers (0.0-3.8 cM, 95% 

limits). This linkage was consistent with the RI strain data and extended the data by 

placing Incenp closer markers assigned to the centromere region of chromosome 19 

(3 cM region, MGD) in a popular region of homology with human chromosome 

11q11-q13. This suggested that human INCENP, whose present chromosomal 

location remains unknown, may be in that particular region on chromosome 11 

(Fowler et al, 1998a4). 
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3.2.6 Bub3 

The chromosomal position of the mouse mitotic spindle checkpoint gene Bub3 was 

mapped by analysis of The Jackson BSS Panel (Fowler et al, 1999 7). The observed 

haplotype indicated linkage to several genes and markers on the distal region of 

mouse chromosome 7, including the Cyp2e1 gene (68.4 cM region, MGD). The 

mapping of Bub3 to this region conformed with the expected mouse-human region of 

homology, since BUB3 has been mapped to human chromosome 10q24 (Seeley et al, 

1999), 10q24-q26 by radiation hybrid mapping (Cahill et al, 1999) and to 10q26 by 

in situ hybridisation (Kwon et al, 2000). Beside Bub3, there are ten genes that have 

homology with human chromosome 10q24-q26 and the distal region of mouse 

chromosome 7 including Cyp2e1 (Fowler et al, 19997). 

3.3 Summary 

The genetic mapping of Cenpa, Cenph, Cenpe, Cenpf, Incenp and Bub3 loci to 

mouse chromosomes 5, 13, 6, 1, 19 and 7 respectively, did not highlight any existing 

morphological mouse mutants. However the mapping of Cenpa and Cenpe to mouse 

chromosomes 5 and 6 respectively, has extended or identified novel regions of 

mouse-human homology. These findings were quite unexpected given the extensive 

amount of mapping data that exists for the mouse and human genomes (MGD; 

GDB). Since completing the mapping of Cenpa, the relevant mouse-human region of 

homology has been extended to encompass many more loci (MGD) whereas the 

mapping of Cenpe has stimulated a collaborative study. This collaboration and the 

impact of these genetic mapping studies are discussed further in Chapter 4.1 - Impact 

of Centromere Studies. 
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4.1 Impact of centromere protein studies 

When assessing the impact of the publications presented in this thesis in advancing 

the field of study, it is important to take into consideration the quality of the journal, 

the time elapsed since publication and the outcome of concurrent and subsequent 

studies by our laboratory and other groups. 

4.1.1 Impact factor of journals 

The quality of the international, peer-reviewed journal in which the papers were 

published can be assessed by the impact factor rating of the journal (Online Journals 

and Impact Factors, 2000). The papers describing the Cenpa, Cenpb, Cenpc, Incenp, 

Bub3 and Api4 gene knockout studies (Kalitsis et al, 1998a 2 ; Hudson et al, 19983 ; 

Cutts et al, 1999 6 ; Fowler et al, 2000 8 ; Howman et al, 20009; Kalitsis et al, 

2000 11 ; Uren et al, 2000 12) were published in the following: Proceedings of the 

National Academy of Sciences USA, Journal of Cell Biology, Human Molecular 

Genetics, Genome Research, Genes and Development and Current Biology which 

have impact factors of: 9.82, 12.79, 9.31, 7.71, 19.07 and 7.86 respectively (Online 

Journals and Impact Factors, 2000). Two of these publications were featured as first 

articles in Journal of Cell Biology (Hudson et al, 19983) and Human Molecular 

Genetics (Cutts et al, 19996). The latter was also featured on the front cover of 

Human Molecular Genetics as was the recent follow-up Cenpb knockout mouse 

study (Fowler et al, 2000 8) in Genome Research. The above cited journals all fall 

within the top 90 of the 1123 bioscience-related journals listed in PubMed (Online 

Journals and Impact Factors, 2000; PubMed, 2000) reflecting a clear 

acknowledgment of the significance of these studies by our peer group. 

The brief reports describing the chromosomal assignment of human CENPA and 

mouse Cenpa, Cenph, Cenpe, Cenpf, Incenp and Bub3 genes (Fowler et al, 1997 1 ; 

Fowler et al, 19984 Fowler et al, 1998b 5; Fowler et al, 19997; Lo et al, 2000 19) 

were published in the Animal Cytogenetics and Comparative Mapping section in 

Cytogenetics and Cell Genetics. Despite being a specialist journal for publishing the 
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chromosomal localisation of genes this periodical is ranked in the top 200 bioscience 

journals and has an impact factor of 1.88 (Online Journals and Impact Factors, 2000). 

4.1.2 Time elapsed since publication 

Another factor for consideration is whether scientific community has been able to 

build further on the published studies. With this particular point one needs to keep in 

mind whether enough time has elapsed since publication for the work to mature. This 

is quite important when assessing the impact of these publications as these studies 

are contemporary with the first paper being published in December 1997 (Fowler et 

al, 1997 1 ) and the most recent being accepted in September 2000 (Uren et al, 

2000 12). Nonetheless these publications are already well cited in the literature by 

other workers. 

4.1.3 Concurrent and subsequent publications 

The significance of these studies was mirrored in the number of competitive studies 

being done by independent major international groups. In every instance the 

submitted publications were the first to describe a knockout mouse model for the 

protein studied. Besides being competitive, these publications were also 

complementary in the centromere protein gene field. For example: prior to 

commencing the targeted mutation of the mouse Cenpa gene there were limited 

functional studies available for CENP-A. Previously, gene disruption experiments 

had been described for the CSE4 gene, a S. cerevisiae homolog of CENPA (Stoler et 

al, 1995). However during the course of our analysis an important study was 

published describing anti-CENP-A antibody microinjection experiments in human 

HeLa cells (Figueroa et al, 1998). Furthermore less than a week after the manuscript 

describing the Cenpa-null mice (Howman et al, 20009) was submitted, a publication 

appeared in Nature describing comparable phenotypic effects by disrupting a CENPA 

homolog in C. elegans using RNA-mediated interference experiments (Buchwitz et 

al, 1999). Similarly, a few days after the Bub3 knockout mouse paper (Kalitsis et al, 

2000 11 ) was sent claiming to be the first mammalian spindle checkpoint gene to be 

disrupted, a publication appeared in Cell describing an analogous phenotype in 

Mad2-deficient mice for a different spindle checkpoint protein (Dobles et al, 2000). 
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Likewise, while the manuscript describing the Cenpc knockout mice (Kalitsis et al, 

1998a2) was under review another CENPC knockout mutation was reported in 

cultured DT-40 chicken cells as having matching phenotypic effects in vitro 

(Fukagawa and Brown, 1997). 

With regard to the first publication describing the Cenpb knockout mouse (Hudson 

et al, 19983) two other groups have subsequently described in lesser detail the 

phenotypic effects in independently derived Cenpb knockout mice (Kapoor et al, 

1998; Perez-Castro et al, 1998). Neither group has reported any abnormality in their 

mice whereas I have built further on my initial observations (Hudson et al, 19983) 

which has resulted in another publication (Fowler et al, 2000 8). 

The recent publication describing the generation and phenotypic characterisation of 

the Incenp knockout mice (Cutts et al, 1999 6) drew the attention of Dr David Vaux, 

WEHI. Subsequently a collaboration was embarked upon characterising the mice 

bearing a null mutation in the survivin or Api4 centromere protein gene (Uren et al, 

2000 12). At present the structure and function of survivin continue to be extensively 

studied by many international groups. Just prior to the survivin studies being 

accepted for publication the crystal structure for survivin was determined by several 

laboratories (Chantalat et al, 2000; Muchmore et al, 2000; Shi, 2000; Verdecia et al, 

2000). Moreover gene interference studies with survivin and Aurora-like kinase 

homologs in C. elegans were published last month that revealed similar defects in 

cytokinesis (Speliotes et al, 2000). At the same time, others have shown in Xenopus 

that INCENP and Aurora-related kinase bind one another in vitro and that INCENP 

was required to correctly target this kinase to the centromere and central spindle in 

HeLa cells (Adams et al, 2000). These studies support the signal pathway model 

linking survivin, INCENP and Aurora 1 kinase described in section 4.2.4 (Uren et al, 

200012). 

Like a number of the gene knockout publications, the publication describing an 

uncommon region of mouse-human homology around the Cenpa locus (Fowler et al, 

19971 ) coincided with another relevant publication. While the Cenpa manuscript was 

in preparation, the Fos12 gene was reported as mapping to a similar homologous 
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region (Poirier et al, 1997). Dr Poirier kindly forwarded details of his data which I 

subsequently incorporated in our paper (Fowler et al, 19971 ). Furthermore while 

under review, two more loci, Gar and Khk were shown to have analogous 

homology. At present the MGD reports 6 genes (including Cenpa) in this region of 

homology (MGD; July, 2000). 

The mapping of Cenpe to the proximal region of chromosome 6 and the 

identification of a novel mouse-human region of homology (Fowler et al, 1998a4) 

has stimulated a collaboration with Dr Rosemary Elliott, Chair of International 

Mammalian Genome Society Mouse Chromosome 6 Subcommittee. Dr Elliott has 

used PCR analysis of the T31 RH panel with Cenpe primers to verify the 

chromosomal localisation of Cenpe close to the centromere on mouse chromosome 6 

(0.1 cM region, MGD). Subsequently another group has identified 2 CENP-E 

homologs in Drosophila as well as 2 Cenpe-related loci on mouse chromosomes 3 

and 6 suggesting that there may be 2 CENPE-like proteins in mammals (Yucel et al, 

2000). Genetic sequencing of the mouse genome promises to confirm whether 

another homolog of Cenpe exists on chromosome 3 as well as revealing whether or 

not other expressed gene loci reside between Cenpe and the centromere on 

chromosome 6. 

The assignment of the mouse Ce.  npf and Bub3 loci in well-established regions of 

mouse-human homology (Fowler et al, 1998b 5; Fowler et al, 19997) has helped 

expand these regions. With respect to Cenpf and CENPF loci there were in excess of 

50 genes that shared similar homology (MGD; April, 1998) whereas at present the 

MGD reports this region of homology as encompassing more than 90 genes (MGD; 

September, 2000). In the case of Bub3 and BUB3 the homologous region on mouse 

chromosome 7 and human chromosome 10 respectively, has been expanded from 10 

to 12 genes (MGD; September, 2000). 
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4.2 Future studies with mouse mutants 

The mouse mutants described in this study provide a valuable resource for future 

investigations such as immuno-electron and -confocal microscopy analyses to 

determine the effect of the absence of a particular centromere protein on lcinetochore 

formation and structure (Martineau-Thuillier et al, 1998; Craig et al, 1999). Time 

lapse photography of dividing nuclei from Cenpa-, Cenpc-, Incenp-, Api4- and Bub3- 

defective embryos and Cenpb-null uterine epithelial cells also offers an elegant 

means for examining possible aberrant chromosomal movements during mitosis 

(Reider and Cole, 1998). 

4.2.1 Cenpa-, Cenpc-, Incenp-, Api4- and Bub3-null mice 

Apparent healthy heterozygous mice bearing one targeted allele continue to be 

studied for tumorigenesis and longevity. The most recently generated mice are the 

Bub3 mutants (Kalitsis et al, 2000"). These mice are of particular interest given that 

some human intestine and lung tumours have been shown to encode mutations in 

BUB1 and MAD1 mitotic spindle checkpoint genes, respectively (Cahill et al, 1998; 

Nomoto et al, 1999). Moreover heterozygous Mad2 mice were observed to have 

subtle differences in morbidity and a possible increase in tumour incidence when 

compared to age-matched wildtype offspring (Dobles et al, 2000). Tumour 

susceptibility in the Cenp-depleted mice could be explored further by exposing 

heterozygous mice to tumour-inducing agents (Sivak, 1982) or by backcrossing the 

mice onto genetically conducive backgrounds (Kozak, 1996). 

The observed embryonic lethality in the Cenpa-, Cenpc-, Incenp-, Api4- and Bub3- 

null mice paves the way for examining the role of these proteins via conditional 

mutants that allow a gene product to be expressed in a tissue-specific or temporal 

manner. Systems such as Cre/LoxP permit a targeting construct flanked by LoxP 

sites to be inserted into mice via homologous recombination in ES cells. The 

transgene is then deleted in cells or tissues following the mating of LoxP mice with 

mice expressing Cre recombinase under the control of a specific promoter (Plagge, 

2000). The challenge in this approach is to choose a tissue- or cell-specific promoter 

eg spleen- or testis-specific that would allow the centromere protein of interest to be 
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studied in a particular cell or tissue without necessarily causing death to the animal. 

An additional advantage with this design is that it allows removal of antibiotic 

selection cassettes that may cause sporadic effects on neighbouring genes as 

observed in other studies (Olson et al, 1996; Muller, 1999). 

Another strategy for studying patterns of gene expression has been the use of 

targeting constructs that contain reporter genes such as lacZP-galactosidase (lacZ) of 

Escherichia coli (bacteria; Gossler and Zachgo, 1993) or the green fluorescent 

protein (GFP) of Aequorea victoria (jellyfish; Kanda et al, 1998). The IRES cassettes 

used in the Cenpa, Cenpc and Bub3 targeting constructs have a /acZ-neomycin or 

-hygromycin fusion gene (Kalitsis et al, 1998a2 ; Howman et al, 20009; Kalitsis 

et al, 2000") however initial analysis of the Cenpc-targeted cells detected the lacZ 

transcript as an uninformative cytoplasmic product rather than a precise nuclear 

signal (Dr Paul Kalitsis, unpublished observations). Previously, GFP has been 

successfully used to fluorescently tag specific chromosomal regions including 

histone protein H2B (Kanda et al, 1998). Subsequently ES cell lines with 

incorporated Cenpa-GFP have been generated in our laboratory (Redward, 1998). At 

present these cell lines are being used to generate mice that promise to allow visual 

analysis of Cenpa-GFP during mitosis, meiosis and trophectoderm formation via 

endoreduplication. 

Interestingly, Cenpa-null trophectoderm cells deteriorated in vitro whereas Bub3-, 

like Mad2-deficient trophectoderm layers remained healthy despite the mitotically 

active ICMs dramatically diminishing in cell number by day-5.5 to-6.5 post 

conceptus (Dobles et al, 2000; Howman et al, 20009 ; Kalitsis et al, 2000"). These 

observations support a role for Cenpa in S-phase and invite extra study by labeling 

Cenpa-null blastocyst outgrowths in vitro or implantation sites in vivo with the 

thymidine analogue, 5-bromo-2'-deoxyuridine (BUdR) which labels replicating DNA 

of newly formed sister chromatids during S-phase. Likewise the observed cell death 

in Cenpa-null and other knockout embryos warrants additional examination given 

that Giemsa staining of Cenpa-null embryos revealed nuclear blebbing indicative of 

apoptosis (Howman et al, 2000 9). In addition, other studies have demonstrated an 

interaction of Cenpc with the apoptotic protein known as Hdaxx (Pluta et al, 1998) 

and programmed cell death has been observed in Mad2-deficient embryos (Dobles 
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et al, 2000) suggesting that Cenpc- and Bub3-null embryos also deserve further 

analysis using an assay for apoptosis such as TUNEL (Gavrieli et al, 1992). 

4.2.2 Cenpb-null mice 

Studies continue with the Cenpb-disrupted mice to determine whether Cenpb 

deficiency subtly affects some aspect of centromere function in a tissue-specific 

manner that results in a slower rate of progression through the cell cycle or whether 

Cenpb has another biological role that may be unrelated to centromere function 

per se (Kipling and Warburton, 1997). Clues to this maybe elucidated by studying 

the mechanism that leads to the degeneration of the uterine epithelium in Cenpb-null 

mice (Fowler et al, 2000 8). In vitro separation of this layer from Cenpb-deficient and 

control mice using various enzymes (eg dispase, trypsin, pancreatin and collagenase) 

and cell culture conditions (Glasser and McCormack, 1981; Glasser and Julian, 1986; 

Jacobs et al, 1990) has failed to yield enough metaphases for assessment. Likewise, 

examination of fresh single cell suspensions from dissected uterine epithelial tissue 

has generated inconsistent cell cycle profiles by FACS analysis or too few mitotic 

figures for karyotyping. 

Instead of pursuing an in vitro analytical approach, studies have begun to examine 

the role of Cenpb by labeling uteri from ovariectomised, estrogen-stimulated, age-

matched Cenpb-null and wildtype control mice with BUdR in vivo as described in 

other studies (Orimo et al, 1999). This procedure is designed to maximise the number 

of uterine epithelial cells undergoing mitosis (personal communication; 

Dr Robert Bigsby, Indiana University School of Medicine, USA). Besides providing 

a source of material for examining S-phase and mitotic indices, transverse sections of 

uteri can also be used to assess the fraction of cells in mitosis by immunostaining for 

phosphorylated-histone H3 or for other cell cycle stages using specific antibodies 

(Sher, 1996; Dobles et al, 2000; Liu et al, 2000; Takai et al, 2000). 

The observed small testis and uteri of Cenpb-null mice is reminiscent of telomerse-

deficient mice following intermating of telomerase-depleted mice for up to 6 

generations (Lee et al, 1998). Generation 4 telomerase knockout mice were found to 

have significantly smaller litters whereas generation 6 intercrosses exhibited 



56 

infertility due to defective spermatogenesis and apoptosis as well as a decrease in 

oocytes following ovulation and a possible compromise in uterine structure and 

function. The worsening phenotype of the telomerase-null mice was linked to a 

reduction in telomere-length and chromosomal abnormalities (Lee et al, 1998). These 

observations together with a possible role for CENP-B in genome evolution (Kipling 

and Warburton, 1997) has stimulated a similar ongoing breeding program in my own 

study for Cenpb-null mice examining testis-, uterus-, ovary- and litter-size over a 

number of generations. 

The variation in bodyweight and female reproductive performance of Cenpb-null 

mice on different genetic backgrounds can be explored further by linkage analysis of 

backcross breeding programs that are designed to identify candidate genetic 

modifiers or quantitative trait loci (QTL; Taylor, 2000). Such breeding programs in 

mice have provided the basis for identifying many modifier loci including a specific 

cystic fibrosis (CF) modifier locus for meconium ileus (severe intestinal obstruction 

in a subset of CF patients at birth) on mouse chromosome 7 (Rozmahel et al, 1996). 

Subsequently its human homolog has been discovered on human chromosome 19q13 

(Zielenski 

et al, 1999). 

4.2.3 Os and jerky mice 

The sequencing and genetic mapping of the centromere-associated genes to locations 

other than mouse chromosomes 8 and 15 has excluded Cenpa, Cenph, Cenpe, Cenpf, 

Incenp and Bub3 as being responsible for the phenotypes observed in the Os and 

jerky mouse mutants (Fowler et al, 1997 1 ; Fowler et al, 19984 Fowler et al, 

1998b5 ; Fowler et al, 19997 ; Lo et al, 2000 10). However this does not discount the 

possibility of causative mutations existing in the dozen or more unsequenced and/or 

unmapped known centromere proteins including CENP-G or ZW10 (for review, see 

Saffery et al, 2000; MGD), or yet to be identified centromere proteins. At present one 

of the cytoplasmic dynein intermediate chain genes, known as Dnclic2 has been 

assigned to the 50 cM region of chromosome 8 (MGD) making it a possible 

contender for the mitotic phenotype observed in the Os mouse mutant (Magnuson 

and Epstein, 1984). Previously, cytoplasmic dynein intermediate chains have been 



57 

shown to transiently bind kinetochores and have a role in mitotic spindle organisation 

(Pfarr et al, 1990; Steuer et al, 1990; Purohit et al, 1999). 

4.2.4 Redundancy and signal pathway models 

Two of the centromere protein knockout projects have led to proposed redundancy 

and signal pathway models for CENP-B and API4 proteins, respectively. With regard 

to CENP-B, Prof Andy Choo has hypothesised that a lower affinity protein 

designated CENP-Z can organise the large amount of repetitive centromeric DNA in 

the absence of CENP-B protein or CENP-B binding sites (Hudson et al, 1998 3). 

This is supported by functional studies in S. pombe that demonstrate more than one 

CENP-B-related protein family member is required for proper chromosome 

segregation and growth (Baum and Clarke, 2000). At present, 2 proteins (pJa and 

CENP-G) that bind the centromeres of CENP-B-deficient Y chromosomes have been 

suggested as likely candidates for functional redundancy with CENP-B (Hudson 

et al, 19983 ; Baum and Clarke, 2000) however the gene sequence and knockout 

status of these proteins are yet to be determined. Nevertheless, the Cenpb-null mice 

and cell lines generated in this study provide a resource for identifying and 

confirming the existence of these proposed or other unknown Cenpb-related proteins. 

The observed phenotypic similarities between Api4- and /ncenp-deficient mouse 

homologs has prompted Dr David Vaux to explore the likelihood of a possible 

common signaling pathway between these 2 proteins (Uren et al, 200012). Besides 

the phenotypic knockout data, INCENP, API4 and the kinase known as Auroral 

share comparable cell cycle and centromere localisation patterns. Furthermore, 

studies in S. cerevisiae have linked Birlp (API4 homolog), IpIlp (Auroral homolog) 

with an `INCENP-box' bearing protein known as S1i15, suggesting that a similar 

liaison may exist in other organisms (Uren et al, 2000 12). The Incenp- and Api4- 

knockout models characterised in this study supply a helpful tool for addressing this 

hypothesis in mammals. 
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4.3 Implications of centromere studies 

Understanding the molecular mechanism of how centromere proteins participate in 

the formation of centromeres as well as how they take part in the regulation of 

mitotic steps is critical for areas of research that aim to: 1) generate mammalian 

artificial chromosomes for gene therapy purposes; 2) comprehend the wide spectrum 

of aneuploid-related clinical conditions in human and veterinary medicine. 

4.3.1 Mammalian artificial chromosomes 

Mammalian artificial chromosomes or MACs, which approximate 2-5 Mb in size, are 

miniaturised versions of normal chromosomes. Originally, artificial chromosomes 

were constructed in yeasts and consisted of specific cloned DNA sequences that 

include telomeres, origin(s) of replication and a centromere (reviewed by Brown et 

al, 2000). In mammals there have been 2 major approaches employed to generate 

MACs with limited success. One way has been to assemble mini-chromosomes from 

the basic chromosome components in vitro whereas another has been to reduce the 

size of an existing chromosome by site-specific recombinases such as Cre/loxP and 

seeding with telomeric DNA. The Cre/loxP recombinase system has been also 

utilised to introduce large arrays of DNA into MACs for future delivery into host 

cells (reviewed by Willard, 1998; and Brown et al, 2000). Besides being an 

invaluable vector for transfer of therapeutic genes, MACs can be used for studying 

chromosome function and large-scale transgenesis (Choo, 1997b; Brown et al, 2000). 

Indeed, recent studies in mice have demonstrated the feasibility of introducing mini-

chromosomes into the mouse germline via ES cells or microinjection into the 

pronuclei of fertilised eggs (Shen et al, 1999; Co et al, 2000). 

One stumbling block to the efficient construction of mammalian artificial 

chromosomes has been defining, manipulating and activating the minimal 

centromeric DNA sequences that are required for centromere function. The recent 

cloning of novel DNA sequences from the human neocentromere known as mardel 

(10) offers an alternative centromeric DNA base for chromosome construction 

however further structure-function studies are required to elucidate the mechanism 

which activates centromere function (Choo, 1997b). 



59 

4.3.2 Clinical conditions 

Like Cenpa-, Cenpc-, Incenp- and Api4- it is probable that Bub3-null mutations in 

humans would lead to early lethality and pregnancy wastage. As such, similar 

mutations in humans could be partly responsible for the high rate of implantation 

failure and spontaneous loss in early pregnancies due to aneuploidy (Wilcox, 1988; 

Qumsiyeh et al, 2000). FISH analysis or comparative genome hybridisation (CGH) 

in combination with flow cytometry on blastomere biopsies taken from 

preimplantation embryos obtained from women undergoing in vitro fertilisation 

(IVF) have detected numeric chromosomal abnormalities (Penicer et al, 1998; 

Lomax et al; 2000). Furthermore, whole genome amplification in concert with CGH 

has demonstrated not only diagnosis of chromosomal aneuploidy in single cells and 

blastomeres (Voullaire et al, 1999b, 2000) but allows analysis of numerous specific 

gene loci (Wells et al, 1999). Together, these techniques offer a means for testing 

IVF embryos at risk for mutation in centromere protein genes or other genes that may 

be essential for embryonic survival. 

Similarly, the Cenpb mouse studies may help shed light on the high rate of 

unsuccessful pregnancies in women (Wilcox et al, 1988; Qumsiyeh et al, 2000) as 

well as conditions like pyometra which is a considerable problem in veterinary 

medicine (Santschi et al, 1995; Lawler, 1998; Dhaliwal et al, 1998). At present, Prof 

Andy Choo's group (Andrew MacDonald and KJF) in collaboration with Helen 

Norse (Royal Women's Hospital) and Dr Kate Stern (Mercy Maternity Hospital) are 

currently undertaking a study to determine whether abnormal reproductive 

performance in certain women is associated with mutations in CENPB. Several 

methods for mutation screening including DNA sequencing (Barry et al, 1999), 

mutation-specific cleavage detection (Babon et al, 1999), immunophenotyping 

(Hudson et al, 19983 ; Fowler et al, 2000 8) and microarray (DNA-chip)-based 

hybridisation (reviewed by Hacia, 2000) are being explored. Given the power and 

efficiency of the chip technology (for reviews see: The Chipping Forecast, 1999) the 

microarray DNA templates have been expanded to include other candidate genes 

such as leukaemia inhibitory factor, interleukin 11 and estrogen receptor a. These 

genes have been chosen because knockout studies in mice have resulted in reduced 

uterus size and function (Stewart et al, 1992; Robb et al, 1998; Orimo et al, 1999). 
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The recent discovery that genes involved in mitosis (eg CENPA, CENPE and 

CENPF) and extracellular remodeling, are down-regulated in early passage 

fibroblasts from 90-year-old individuals when compared to young- and middle-age 

individuals using high-density oligonucleotide microarrays has emphasised the 

power of this technique (Cristofalo, 2000; Ly et al, 2000). Besides being used to 

study centromere protein gene expression profiles in aging and CENPB-mutation 

detection, microarrays can be diagnostic tools for examining centromere protein 

genes in relation to a broad variety of aneuploid-related conditions including cancer 

and embryonic lethality. Overall the studies presented in this thesis have identified 

vital roles for centromere protein genes in whole animals thus providing insight into 

the genetic basis of chromosomal pathologies that lead to reproductive failure in 

humans and animals. 
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The centromere is a highly differentiated structure of the 
mammalian chromosome that plays a key role in the proper 
segregation of replicated chromosomes during mitosis and 
meiosis. On metaphase chromosomes, an active centromere 
forms a primary constriction that is usually, but not always 
(e.g., Voullaire et al., 1993; du Sart et al., 1997), associated with 
heterochromatin and C-banding. The centromere binds three 
constitutive proteins (CENPA, CENPB, and CENPC) and a 
host of other proteins that are transiently present during spe-
cific stages of the mitotic cell division cycle (reviewed by Brink-
ley et al., 1992; Earnshaw and MacKay, 1994; Choo, 1997). 

CENPA has been found to be associated with histone H4 
and the other core histones in particles that co-purify with the 
nucleosome core (Palmer and Margolis, 1985; Palmer et al., 
1987). Direct sequence analysis of cloned human and bovine 
CENPA cDNA demonstrated a high degree of homology with 
mammalian histone H3 and led to the suggestion that CENPA 
acts as a histone H3 homolog to replace one or both copies of 
histone H3 in centromeric nucleosomes (Sullivan et al., 1994). 
In addition, CENPA shares a significant homology with the 
yeast (Saccharomyces cerevisiae) protein Cse4p, another mem-
ber of the histone H3-like class of proteins (Sullivan et al., 1994; 
Wilson et al., 1994; Stoler et al., 1995) that has been shown to 
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Abstract. Using a previously isolated mouse centromere 
protein A (Cenpa) probe, we have localized the gene to the 
proximal region of mouse Chromosome 5, between the known 
116 and Yes 1 loci near [Adra2C-D5H4S43-Hdh]. Comparison  

of this localization with that of human CENPA, which maps to 
chromosome 2, is consistent with the presence of a new region 
of conserved synteny between the two species. 

be required for proper chromosome segregation (Stoler et al., 
1995). 

In a recent study, we have isolated and determined the full-
length cDNA sequence and complete genomic structure of 
mouse Cenpa (Kalitsis et al., 1998). Here, we describe the use 
of a mouse Cenpa probe to localize this gene on the mouse link-
age map. We compared this localization with the map position 
of human CENPA and confirm a new region of conserved syn-
teny between the two species. 

Materials and methods 

Mouse genetic mapping 
Genomic DNA from inbred mouse strains AKR/J and C57L/J and the 

AKXL recombinant inbred (RI) mouse sets were purchased from Mouse 
DNA Resource, The Jackson Laboratory, Bar Harbor, ME. Aliquots (10 or 
201.1g) of genomic DNA were digested to completion with Pvull (Boehringer 
Mannheim), resolved on 1 % agarose gels, transferred in 0.4% NaOH onto 
Hybond N+ membrane filters (Amersham), and hybridized with a 32P-
labeled 5' Cenpa cDNA fragment (nucleotide positions 1-274, GenBank 
accession No. AF012709). Posthybridization washes were carried out in 
0.1% SDS, 1 x SSC at 65°C. 

Data for mouse chromosome maps and all known strain distribution pat-
terns (SDPs) of AKXL recombinant inbred mice were obtained from the 
Mouse Genome Database (MGD), Mouse Genome Informatics, The Jack-
son Laboratory (http://www.infonnatics.jax.org ) and date from July 1997. 
Recombination frequencies (r) were calculated using the formula r = R1(4 - 
6R), where R is the proportion of discordant strains in the RI set (Green, 
1981). The 95% confidence intervals (Table 1) for linkage analysis with RI 
mice are those tabulated by Silver (1985). 

Cenpa was also mapped by analysis of the cross (NFS/N x M. spretus)x 
M. spretus or C5 8/J (Adamson et al., 1991). Progeny of this cross have been 
typed for about 800 markers, including the Chromosome 5 markers En2 (en-
grailed-2), 116 (interleukin 6), Yes] (yesl oncogene), Hdh (Huntington dis-
ease homolog), and Msx/ (homeobox msh-like 1). En2, 116, and Msx/ were 
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typed as previously described (Wada et al., 1993; Yamanaka et al., 1994). 
Yes! was typed as an EcoRI polymorphism using as probe the 500-bp insert 
of pXEyes (Sukegawa et al., 1987), obtained from the American Type Cul-
ture Collection (Rockville, MD). Hdh was typed as an EcoRI polymorphism 
using as probe ITI5, which was kindly provided by Dr. T. Vo (Wayne State 
University, Detroit, MI). 

Human chromosome localization 
Two primers, hcenpa-I (5'-GCT GTT GTG AAG AAT GCC G-3') and 

hcenpa-2 (5'-GGC CAA TG A GAG TAT GCA CC-3'), were generated from 
the 5' sequence of the human CENPA gene (GenBank accession No. U82609 
[Shelby et al., 1997]). PCR was performed with AmpliTaq DNA polymerase 
(Perkin Elmer) on a somatic cell hybrid panel containing the 22 human 
autosomes and two sex chromosomes in a Chinese hamster or mouse cell 
background (Coriell Cell Repositories, NIGMS Mapping Panel #2 DNA). 
Each 50-gl reaction contained 50 ng of hybrid genomic DNA, 250 ng of each 
primer, and 1.5 mM Mg++ buffer (Perkin Elmer). PCR began with a "hot 
start" at 95°C, followed by 35 cycles of denaturation at 95°C for I min, 
annealing at 60°C for I min, and extension at 72°C for 90 s. In the final 
cycle, the extension time was increased to 5 min at 72°C. 

Data for the human chromosome maps were obtained from the Genome 
Database (GDB) and date from July 1997 (http://gdbwww.gdb.org ). 

Results 

Mouse genetic mapping 
Using a 5' fragment of the mouse Cenpa cDNA, an informa-

tive polymorphism was identified with Pvull between the pro-
genitor RI mouse strains. The enzyme revealed two bands at 
5.2 kb and 1.3 kb in AKR/J, and two bands at 5.6 kb and 1.3 kb 
in C57L/J. This polymorphism was used to genotype DNA 
from the AKXL set of RI mouse strains. The resulting SDP is 
summarized in Table 1. Comparison of the SDP for Cenpa 
with those of other markers mapped using these strains indi-
cated that Cenpa localizes to the proximal region of Chromo-
some 5. No recombinants (0.0-6.9 cM; 95% limits) were 
observed between Cenpa and D5H4S43E, Adra2c, or Qdpr (Ta-
ble 1). 

Southern blot analysis also identified BamHI fragments of 
5.9 kb in M. spretus, as well as 4.3 kb and 2.9 kb in C58/J and 
NFS/N. Inheritance of the variant fragment was typed in proge-
ny DNA, and the observed pattern indicated linkage to markers 
on proximal Chromosome 5 (Fig. la). This linkage analysis  

a Backcross map 
	 b Composite map 

1- En2 

i- 116 

5/100 (5.0 ± 2.2) 

2192 (2.2± 1.5) 

708 

7,06 

7p21 

15 

113 

17 

- En2, Gbxl, Htr5a 

- Shh 

- 116 

2p22-23 Fos12, Gckr, Khk 
2 Cenpa 

18p11 18 1- Tyms 
218612.3 ± 16) 4p18 I\ Ltpap1 

1801 Vest Hdh 
4p18 10 - D5H4S115E 

6172  (6. 3 	2. 7 ) 4p18 20 - /40U1 

1- MSX/ 4p18 21 - MSX/ 

4p15 30 I- Qdpr 

Fig. 1. (a) Genetic map location of Cenpa on mouse chromosome 5 by 
analysis of the cross (NFS x M. spretus) x M spretus or C58/1 Recombina-
tion fractions for adjacent loci are shown to the right of the map, with the 
recombination distance (cM) (95% limits) given in brackets. No recombi-
nants were found between Yes! and Hdh in 78 mice. The map locations of 
the human homologs for each of the mouse genes are indicated to the left of 
the map. (b) An abbreviated composite map of the proximal mouse Chromo-
some 5 loci (15-30 cM region; Kozak and Stephenson, 1997), highlighting 
the four regions of conserved synteny between proximal Chromosome 5 and 
human chromosomes 2, 4, 7, and 18. The localization of Gckr and Kith is 
based on Wightman et al. (1997). 

Table!. Strain distribution patterns for the AKXL set of RI mouse strains for Cenpa 

Percent recombination (cM) 
(95% limits) with Cenpa 17 	19 21 24 25 28 	29 	37 38 

AL A AL ALL A 8.3 (1.8-41.7) 

A A A A A 0.0 (0.0-6.9) 
A A A A A 0.0 (0.0-6.4) 
A A A A A 
A A A A A 0.0 (0.0-6.4) 
A A A A A 5.6 (1-27.3) 
A A A A A 5.6(1-27.3) 

AKJCL strain distribution patterns 
5 	6 	7 	8 	9 	12 13 14 16 

kfpnrvI3 (modified polytrophic murine 	LLLL AL AAL 
leukemia virus 13) 

Adra2c (adrenergic receptor alpha 2c) 	AL ALL L 
D5H4S43 (DNA segment) 	 AL ALL L AL 
Cenpa 	 AL ALL L AL 
Qdpr (quinoid dillydropteridine reductase) 	AL AL L L AL 
D5BIr3 (DNA segment) 	 AL ALL L AA 
Mpmv7 (modified polytrophic murine 	AL ALL L AA 

leukemia virus 7) 
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thus positioned Cenpa between 116 and Yes' and is therefore 
consistent with the RI strain data. The human homologs of 116 
and Yes! have been mapped to 7p21 p15 (Ferguson-Smith et 
al., 1988) and 18p11.3 (Silverman et al., 1993), respectively, 
suggesting that the human CENPA gene could map to either of 
these chromosomes. 

Human chromosome localization 
A database search for the chromosomal localization of 

human CENPA has identified an entry on chromosome 
2p24 p21 between the markers D2S174 and D2S390 (GDB; 
Whitehead Transcript Map WI-7987). Since our mapping data 
has placed mouse Cenpa in a region that was not previously 
known to be homologous with this human CENPA entry, we 
decided to confirm the human gene localization independently. 
This was achieved by PCR analysis of a somatic cell hybrid 
panel using a human CENPA-specific set of primers. The 
results indicated that only the hybrid cell line containing 
human chromosome 2 gave the expected PCR product (data 
not shown), thus confirming the localization of CENPA on 
human chromosome 2. 

Discussion 

Genetic mapping of mouse Cenpa to Chromosome 5, be-
tween the 116 and Yes! loci and near [Adra2c-D5H4S43-Hdh], 
and the assignment of human CENPA to chromosome 2 has 
confirmed the existence of a small region of mouse-human con-
served synteny. The mouse 116 locus (17 cM; MGD) marks the 
end of a region of homology with human chromosome 7, 
whereas the [Adra2c-D5H4S43-Hdh] loci (20 cM; MGD) signal 
the beginning of a relatively large stretch of homology with 
human chromosome 4p (Kozak and Stephenson, 1997; Searle  

and Selley, 1997), which, as recently demonstrated by Poirier et 
al. (1997), is disrupted by the Fos12 (Fos-like antigen 2) locus at 
Chromosome 5 (18 cM; MGD). Furthermore, within the 116 
and pdra2c-D5H4S43-Hdh] segment of Chromosome 5, Yes/ 
and Tyms (thymidylate synthase) constitute a small region of 
homology with human chromosome 18p11.3 (Silverman etal., 
1993; Fig. 1b). 

In addition to Cenpa and Fos12, the earlier finding of anoth-
er human chromosome 2 homolog, MpvI7 (nephrotic syn-
drome associated with retroviral insertion), on Chromosome 5 
(Karasawa et al., 1993) is of interest. However, because this 
assignment was based on an analysis of somatic cell hybrids, 
specific localization of this homology region on the mouse link-
age map could not be established. Given that MPV17 has been 
localized to human chromosome 2p23—> p21 (Karasawa et al., 
1993), FOSL2 to 2p23 2p22 (MGD), and CENPA to 2p24 
p21 (GDB), our data thus confirmed this region of homology 
on proximal mouse Chromosome 5 and also predicted a more 
refined location for Mpvl 7 on Chromosome 5. 

In a previous study, another human centromere protein, 
CENPC, was localize4 to 4q12 q13.3, while its mouse homo-
log (Cenpc) was mapped to Chromosome 5E2-E5 (McKay et al, 
1994). Thus, whereas mouse Cenpa and Cenpc demonstrated 
co-localization on Chromosome 5, albeit some distance apart, 
this linkage was absent in humans. At present, the significance, 
if any, of the chromosomal linkage of two constitutively 
expressed but structurally unrelated centromere proteins on 
mouse Chromosome 5 is not known. 
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While this manuscript was under review, two 
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mosome 2 (Wightman et al., 1997) and were add-
ed to the composite map (MGD; November 
1997). 
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Targeted disruption of mouse centromere protein C gene leads to 
mitotic disarray and early embryo death 
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ABSTRACT 	Centromere protein C (CENPC) is a key 
protein that has been localized to the inner kinetochore plate 
of active mammalian centromeres. Using gene targeting tech-
niques, we have disrupted the mouse Cenpc gene and shown 
that the gene is essential for normal mouse embryonic devel-
opment. Heterozygous mice carrying one functional copy of 
the gene are healthy and fertile, whereas homozygous embryos 
fail to thrive. In these embryos, mitotic arrest and gross 
morphological degeneration become apparent as early as the 
niorula stage of development. The degenerating embryos 
demonstrate highly irregular cell and nuclear morphologies, 
including the presence of a large number of micronuclei. 
Mitotic chromosomes of these embryos display a scattered and 
often highly condensed configuration and do not segregate in 
an ordered fashion. These results describing the phenotype of 
the mutant mouse embryos indicate that CENPC has a direct 
role in the mitotic progression from metaphase to anaphase. 

The centromere is a functional chromosomal domain that is 
responsible for the accurate segregation of eukaryotic chro-
mosomes during mitotic and meiotic cell divisions. It is in-
volved in sister chromatid cohesion and is the attachment site 
for spindle microtubules. Through its interaction with molec-
ular motors, the centromere assists in the alignment of the 
replicated chromosomes onto the metaphase plate and the 
poleward movement of chromosomes during anaphase. Prob-
lems in sister chromatid separation can lead to aneuploidy, 
cancer, and cell death. 

The centromere of the budding yeast Saccharomyces cerevi-
siae has been extensively characterized at the structural, bio-
chemical, and genetic levels (1). It is made up of a 125-bp 
cis-acting CEN DNA unit that is known to associate with a 
number of proteins in forming a functional structure. Muta-
tions in the CEN DNA and the centromere proteins have been 
shown to result in chromosome missegregation and mitotic 
arrest (2, 3). In comparison with the centromere of S. cerevi-
siae, the centromeres of the fission yeast Schizosaccharomyces 
pombe are significantly larger. They range in size from 35 to 
110 kb and are made up of both repeated and unique DNA 
(4-6). 

Mammalian centromeres, like those of Sch. pombe, are 
typically made up of long tracts of tandemly, repeated satellite 
DNA. For example, human centromeric DNA primarily con-
sists of a 171-bp a-satellite DNA that spans several megabases 
on each chromosome (reviewed in ref. 7), whereas the mouse 
centromere is composed of a 120-bp tandem repeat known as 
minor satellite (8). Interestingly, a number of functional 
human centromeres that are devoid of normal centromeric 
repeats have recently been described on mitotically stable 
marker chromosomes (9-11). 

The publication costs of this article were defrayed in part by page charge 
payment. This article must therefore be hereby marked "advertisement" in 
accordance with 18 U.S.C. §1734 solely to indicate this fact. 
C 1998 by The National Academy of Sciences 0027-8424/98/951136-6$2.00/0 
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To date, several mammalian centromere proteins have been 
isolated and characterized. These proteins can be subdivided 
into two categories, those that are present throughout the cell 
cycle and those that appear at specific stages of the cell cycle. 
Three proteins that are known to be present throughout the 
cell cycle include CENPA, CENPB, and CENPC (12). CENPA 
is a histone H3-like protein that is thought to be associated 
with the formation of centromere-specific chromatin (13). 
CENPB is a DNA-binding protein that interacts with a 17-bp 
CENPB box motif found on a satellite and mouse minor 
satellite DNA (14, 15) and it has been proposed to have a role 
in the specific packaging of centromeric heterochromatin (16). 
CENPC is a highly basic protein with DNA-binding properties 
and is located at the inner kinetochore plate (17, 18). All three 
proteins are presumed to form the kinetochore precursor onto 
which the transient proteins associate to form a functionally 
active kinetochore. The transient group of proteins includes 
the motor proteins CENPE and MCAK, CENPF, and the 
inner centromere protein, INCENP (reviewed in refs. 19 and 
20). 

Studies of human dicentric chromosomes (21, 22) and 
marker chromosomes containing neocentromeres (10, 11) 
have shown that CENPC is present on active but not inactive 
centromeres, suggesting that CENPC has an essential role in 
centromere function. In agreement with this idea, cells micro-
injected with anti-CENPC antibodies exhibit mitotic delay and 
formation of shortened and disrupted kinetochores (23). Tran-
sient expression studies of truncated forms of CENPC have 
revealed two functional regions of the protein. The first is an 
instability domain located at the amino terminus and is 
thought to be involved in the regulation of the temporal 
destruction of the protein at specific stages of the cell cycle. 
The second functional region is a DNA-binding and centro-
mere-targeting domain located in the central portion of the 
protein (18, 24). Furthermore, CENPC shares a region of 
homology with the S. cerevisiae protein Mif2p (25, 26). Mu-
tations in the MIF2 gene have been shown to result in defective 
chromosome segregation and delayed progression through 
mitosis (25). Recent evidence suggests that MIF2 is located at 
the centromere (26). 

To directly investigate the role and biological significance of 
CENPC in mouse, we have disrupted the gene by homologous 
recombination. We describe here the phenotype and the 
consequence of such a gene disruption. 

METHODS 
Construction of Cenpc Targeting Construct. Using a mouse 

Cenpc cDNA fragment as a probe, we isolated a clone from a 
mouse genomic 129/Sv phage library (Stratagene). The clone 
contained exons 5-11 of the mouse Cenpc gene (27). From the 
clone, a 6.3-kb Xbal fragment containing exons 8 and 9 was 

Abbreviations: CENP, centromere protein; ES, embryonic stem; pc, 
post coitus; IRES, internal ribosome-entry site. 
To whom reprint requests should be addressed. e-mail: choog 
cryptic.rch.unimelb.edu.au . 
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used to construct the targeting vector. A 700-bp Xhol—Sall 
fragment covering the junction between intron 7 and exon 8 
was deleted and replaced by a 6.7-kb splice acceptor-IRES-
Pgeo selectable marker. This construct, when homologously 
recombined into the mouse Cenpc locus, causes premature 
protein truncation that leads to the loss of the centromere-
targeting domain, resulting in the abolition of CENPC func-
tion. 

Transfection and Screening for Targeted Cell Lines. Mouse 
embryonic stem (ES) cell lines E14, R1, and W9.8 were used 
in transfection experiments to generate homologous recom-
binants. Cells (5 x 10) were electroporated with 40 Ag of 
linearized construct DNA at 0.8 kV, 3 /IF, and ci (Bio-Rad 
Gene Pulser) and grown on STO-nee feeder cells (28) plus 
103  units/ml leukemia inhibitory factor (LIF) (Amrad-
Pharmacia). After 24 hours, G418 (GIBCO/BRL) selection 
was applied at an active concentration of 200 peml. Resistant 
colonies were picked 7 to 10 days later and cell lines were 
established. Cells were grown up in 3-cm-diameter culture 
dishes to confluency, and genornic DNA was extracted, di-
gested with EcoRI (Boehringer Mannheim), electrophoresed, 
and blotted onto Hybond N+ (Amersham)  by  using standard 
procedures. The filters were probed with  a  3' XbaI 1.2-kb 
probe (see Fig. 1A). 

Blastocyst Injection and Chimeric Mouse Production. Tar-
geted ES cell lines were injected into C57BL/6 blastocysts by 
standard methods (29). The injected blastocysts were then 
transferred into recipient pseudopregnant HSD Ola (Gpi-lbb) 
mice. Chimeric mice were selected by coat color and were 
mated with C57BL/6 mice to generate heterozygotes. Progeny 
from chimeric and heterozygous crosses were genotyped as 
described below. The heterozygous mice were crossed to 
obtain homozygotes. 

Genotyping of Mice and Southern and PCR Analyses. DNA 
for Southern or PCR analysis was extracted from mouse tail by 
using the QIAamp Tissue Kit (Qiagen). Southern blotting and  

hybridization were carried out by standard methods. Mouse 
tail PCR was performed using a semiduplex strategy with the 
following primers: S. 5'-TTACCTTGAAGCAGTGCAGTG-
3'; W, 5 ' -AACTGAGTACATGCAAGTATGG-3'; and neol, 
5'-CTTCCTCGTGCTTTACGGTATC-3' (see Fig. 1A). PCR 
was performed with  Tad?  DNA polymerase (Perkin—Elmer) 
with 1.5 mM MgC12, 0.2 mM dNTPs, and 100 ng of primers in 
a final volume of 20 d. The cycling conditions were 95°C for 
2 min, 58°C for 1 min,  and  72°C for 90 sec, over 35 cycles. The 
predicted PCR products for S-W (wild-type allele) and neol-S 
(targeted allele) are 995 bp and 580 bp, respectively. 

Genotyping of Preimplantation Embryos. For mouse em-
bryos up to the blastocyst stage, the limited amount of DNA 
template had necessitated the use of two rounds of nested 
PCR. Embryos were rinsed in M2 medium (Sigma) several 
times to remove any contaminating maternal cells, before they 
were taken up in 2 /./1 of medium and added to 23 Al of 
deionized H20. Prior to PCR, the samples were denatured at 
95°C for 15 min to lyse the cells and denature any proteins. 
First round PCR used  the  Cenpc primers AK, 5'-AAGATG-
AAGCTTCCGTCTCTC-3'; AL, 5'-TTCGTAGTCCTTTC-
CCATGC-3'; and the flgeo primers GF1, 5'-AGTATCGGC-
GGAATTCCAG-3';  GR1,  5' -GATGTTTCGCTTGGTGG-
TC-3') under the following cycling conditions: first cycle 95°C 
for 2 min, 55°C for 3 min, and 72°C for 90 sec, and second to 
thirtieth cycles 95°C for 60 sec, 55°C for 60 sec, and 72°C for 
90 sec. The reaction mixture included 250 ng of primers AK, 
AL, GF1, GR1, 1.5  mM  MgCl2, 1.2 units of Taq DNA 
polymerase, and 0.2  mM  dNTPs, in a final volume of 50  Al. 

Second-round PCR involved two separate reactions using 
100 ng of nested Cenpc primers: AM, 5'-CCGTCTCTCTAA-
AGTGTTGCAG-3'; and AN, 5'-CTTCCTCTATTGGGTG-
AGCC-3'; and flgeo primers, GF2, 5'-CCATTACCAGTTG-
GTCTGGTG-3'; and GR2, 5'-CCTCGTCCTGCAGTTCAT-
TC-3'; 1.5 mM MgC12, 0.5 unit of Taq DNA polymerase, and 
1 Al of the first-round PCR product, in a final volume of 20 Al. 
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FIG. 1. Targeted disruption of the mouse Cenpc gene. (A) Gene replacement constructs and restriction maps. (i) Mouse CENPC protein, 
showing the amino acid positions of the minimum centromere-targeting domain (18) and the location of this domain downstream of the 
gene-disruption site. (ii-iv) Restriction maps for the Cenpc locus covering exons 8 to 12 (ii), the gene replacement construct and the Cenpc 
locus after targeted disruption (iv). Black boxes represent exons. The selectable marker cassette contained in the targeting construct consists of 
a splice acceptor site (SA), a picomaviral internal ribosome-entry site (IRES), a /acZ-neomycin-resistance fusion gene (iitgeo), and a simian virus 
40 polyadenylation sequence (pA) (27). A 1.2-kb Xbal fragment (designated 3' probe) located downstream of the targeted region was used in the 
Southern screening strategy and detected a 6.1-kb wild-type EcoRI fragment in the untargeted locus  or  a 6.8-kb EcoRI fragment in the targeted 
locus. Arrows indicate positions of primers used  in  mouse tail and embryo PCR. Crosses denote expected sites of homologous recombination. 
Abbreviations for restriction enzymes are E, EcoRl; S, Sall; Xb,XbaI; and Xh,Xhol. (B) Southern blot analysis of wild-type and correctly targeted 
ES cell lines. The sizes of wild-type 6.1-kb and homologous recombinant 6.8-kb bands are shown on the right. (C) PCR genotyping of mouse tail 
DNA or postimplantation embryos. The primer set S-W gives a 995-bp wild-type Cenpc product, whereas the neomycin-Cenpc primer set, neol-S, 
gives a 580-bp targeted product. 
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The cycling conditions were as follows: first cycle 95°C for 2 
min, 57°C for 60 sec, and 72°C for 90 sec, and second to 
thirtieth cycles 95°C for 60 sec, 57°C for 60 sec, and 72°C for 
90 sec. 

Embryo Staining and Determination of Mitotic Index. 
Day-3.5 post coitus (pc) preimplantation embryos were placed 
in a droplet of M16 medium (Sigma) under mineral oil 
(Sigma), photographed, and kept at 37°C until fixation. These 
embryos were not treated with any microtubule inhibitor at any 
stage. Each embryo was placed into a microwell containing 
0.6% trisodium citrate for 4-8 mm, then taken up in a minimal 
volume and placed onto a glass slide. A microdrop of meth-
anol/acetic acid (3:1) was immediately placed over the em-
bryo, allowing it to spread and dry. After two rinses in fixative, 
the slides were stained in Giemsa stain, pH 6.8 (Gurr), air 
dried, and mounted in DPX (BDH) for analysis. 

A similar procedure was followed for the chromosome 
analysis of 2.5-day embryos except for the addition of 0.1 
mg/ml Colcemid and incubation for up to 6 hr prior to 
harvesting. This allowed most cells to become arrested in 
mitosis so that chromosome numbers per cell could be 
counted. 

The mitotic index of the day-3.5 embryos was determined by 
scoring the number of mitotic events over the total number of 
stained nuclei (which should correspond to the total number 
of cells, although individual cells were not recognizable as a 
result of membrane rupture during the hypotonic treatment). 
Because severely affected embryos expressing the - /- phe-
notype display a wide variation in nuclear morphology, includ-
ing the formation of micronuclei, a nucleus was scored to 
represent a cell unit if it was at least half the size of a 
normal-looking nucleus. 

RESULTS 
Targeted Disruption of the Mouse Cenpc Gene. For the 

disruption of the mouse Cenpc gene in ES cells, we constructed 
a promoterless targeting construct that has included exons 8 
and 9 of the mouse Cenpc gene (27) (Fig. 1A). In this construct, 
portions of intron 7 and exon 8 were deleted and replaced with 
a splice-acceptor-IR ES-,8-galactosidase-neomycin-resist ance 
fusion marker (30). This disruption is expected to abolish any 
translation of the centromere-targeting region of Cenpc and 
render any truncated protein functionally inactive (18, 24). 
Following transfection of the construct into three different ES 
cell lines, Southern blot analysis (see Fig. 1B for typical results) 
revealed targeting frequencies of 11% (10 of 93 G418-resistant 
colonies), 74% (17 of 23), and 55% (11 of 20) for the cell lines 
E14, R1, and W9.8, respectively. A total of 18 cell lines carrying 
a targeted Cenpc allele were randomly picked from the three 
different cell lines and independently injected into C57BL/6 
blastocysts for chimeric animal production. This resulted in the 
identification of three germ-line chimeras from an R1 cell line. 
These animals were used to generate the heterozygous (Fig. 
1C) and homozygous (see below) progeny for further studies. 

Disruption of Cenpc Causes Embryonic Lethality. Heterozy-
gous male and female mice were phenotypically normal and 
showed no discernible impairment of growth and fertility. 
Intercrossing of the heterozygous mice produced 276 progeny, 
85 of which were +1+  and 191, +/-. This result clearly 
indicated embryonic lethality of the homozygous mutant state. 
To determine the stage at which embryonic death occurred, we 
looked at postimplantation stages of development. Embryos at 
days 13.5, 10.5, and 8.5 pc were dissected out for genotyping. 
In the 30 embryos analyzed the homozygous mutant genotype 
was again absent, thus suggesting that lethality had occurred at 
an earlier stage. 

We next looked for the presence of the -I-  genotype in 
day-3.5 preimplantation embryos. Because of the limited 
amount of DNA in these early embryos, a two-round nested 
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FIG. 2. PCR analysis of preimplantation embryos from +/— x 
+ /— crosses. (A) Nested PCR strategy for genotyping embryos up to 
the blastocyst stage. Cerzpc primer pairs include AK—AL for first-
round synthesis and AM—AN for second-round synthesis, giving a final 
product of 322 bp for the untargeted allele. /3-geo primer pairs include 
GF1—GR1 for first-round synthesis and GF2—GR2 for second-round 
synthesis, giving a final product of 248 bp for the targeted allele. 
Abbreviations for restriction enzyme sites are (Xh) Xhol and (S) Sall. 
The black box indicates exon 8 of the mouse Cenpc gene (see Fig. 1A). 
(B) Nested PCR genotyping of day-3.5 embryos. 

PCR strategy was developed for this study (Fig. 2). Fifty 
embryos were generated from multiple +/- x + /- crosses. 
As shown in Table 1, 10 -I-  embryos were detected. When 
the stages of development of the different embryos were 
determined, it was apparent that the -I-  embryos were, as a 
group, morphologically less healthy and/or delayed in their 
development, with 80% of embryos falling into this category 
(that is, morula, degenerating morula, and s16-cell stages; 
Tablel) compared with 12% and 28% for the +/± and +/ - 
groups of embryos, respectively. These results suggested that 
developmental problems in the -/- embryos manifested as 
early as 3.5 days pc. This suggestion was further addressed by 
a closer examination of the individual cell morphology of the 
embryos. 

Aberrant Mitosis and Micronuclei Formation in Day-3.5 
Embryos. One-hundred and fifty-five embryos at day 3.5 pc 
were collected from +/-  x  +/- matings and  subdivided  into 

Table 1. Frequency of the different genotypes in day-3.5 
preimplantation embryos of +/— x +/— matings 

Developmental 
stage 

No.  of embryos (% of total) with genotype 

Total +/+ +/— —/— 
No 

result 
Blastocyst 30(60%) 15 (88%) 13 (72%) 2 (20%) 0 
Morula 5(10%) 1(6%) 2(11%) 2(20%) 0 
Degenerate 

morula 8 (16%) 1(6%) 3(17%) 3 (30%) 1 
5.16 cells 7(14%) 0 0 3 (30%) 4 
Total 50 17 18 10 5 
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the different developmental stages by their morphology (Table 
2). As controls, 64 embryos at day 3.5 pc were obtained from 
either +1+ X +/+ or +/+ X +/- matings. Comparison of 
the average litter sizes in the experimental and control groups 
indicated these to be 8.2 and 8.0, respectively, suggesting that 
fertilization was normal in both groups. Overall, the experi-
mental group showed only 56.8% of embryos reaching the 
blastocyst stage compared with the control group value of 
75%, indicating that the experimental group has a higher 
proportion of embryos that were developmentally delayed 
and/or unhealthy compared with the control group. Such a 
difference was consistent with the results shown in Table 1, in 
that it could be best explained by the developmental problems 
associated with the -7-  embryos generated in the +/- 
+/- matings. 

To further investigate the embryos, they were fixed onto 
slides and stained with Giemsa stain. The results indicated that 
a substantial number of embryos in the experimental group 
showed irregular-sized nuclei and a high level of micronuclei 
(Fig. 3C-F). In total, 39 of the 155 embryos (or 25.2%) were 
shown to have this phenotype—a value that closely approxi-
mated the 25% expected frequency for the -/- genotype in 
+7- x +/- crosses. In contrast, none of the 64 control 
embryos showed any sign of micronuclei formation. When the 
relative number of embryos with irregular nuclei and micro-
nucleated cells was ascertained in terms of developmental 
stage, a grossly disproportionate number (89.7%) was shown 
to be associated with embryos that demonstrated developmen-
tal delay or embryonic degeneration (Table 2). This result 
provided evidence that expression of the abnormal nuclear and 
micronuclear phenotype was directly responsible for the ob-
served developmental problems in the -/- progeny. 

The mitotic indices for the micronucleated and control 
group of embryos were determined. This involved counting the 
number of mitotic spreads over the total number of cells for 
each embryo. When the results for all the embryos within each 
group were pooled, an average mitotic index of 6.9% was 
obtained for the micronucleated embryos, whereas the value 
was 3.6% for their normal littermates, suggesting that some 
mitotic delay or arrest has occurred in the affected embryos. 
Furthermore, analysis of the mitotic stages of these embryos 
has indicated that metaphase chromosomes were not correctly 
aligning onto the metaphase plate and then not proceeding 
through an ordered anaphase, in contrast to the control group 
in which a significant proportion of cells showed normal 
progression through these stages. As shown in Fig. 3, the 
chromosomes of the affected embryos displayed a scattered 
configuration, with a substantial proportion of these chromo-
somes showing a highly condensed morphology. 

To look for evidence of chromosome missegregation and 
aneuploidy at an earlier developmental stage, we have ana-
lyzed 25-day-old preimplantation embryos. Fifty-two embryos  

were obtained from +/- x +/- matings, and 32 embryos 
from +/+ x +/+ matings. The embryos were treated simi-
larly to the 3.5-day embryos, except for a 3- to 6 hr-incubation •  
in Colcemid to arrest mitosis to determine the chromosome 
number. The results indicated that 78.9% of embryos from the 
experimental group were at the expected eight- (or occasion-
ally slightly more) cell stage compared with 78.1% in the 
control group, suggesting that embryonic development was not 
delayed at this stage. No micronuclei were observed in any of 
the embryos. When the number of chromosomes of the 
individual cells were counted, no aneuploidy was detected. 
These results therefore established that mitosis and embryonic 
development proceeded normally during the first three cell 
division cycles. 

DISCUSSION 
In a previous study, Tomkiel et al. (23) microinjected anti-
human CENPC antibodies into cultured HeLa cells and dem-
onstrated a transient arrest of cell division at metaphase. The 
arrested cells exhibited poor kinetochore structure and defec-
tive microtubule binding. The use of such a strategy, whilst 
offering useful preliminary insights into possible roles of 
centromere proteins, has a number of limitations. For exam-
ple, the CENPC-antibody-antigen complex may interfere with 
other centromere or chromosomal proteins ,obscuring the real 
phenotype, or the anti-CENPC antibody may cross-react with 
other nuclear proteins to create a more complex effect. The 
question of whether the antibody used can completely inhibit 
the function of CENPC is also difficult to resolve completely. 
The production of specific null mutations of the Cenpc gene by 
homologous recombination in transgenic mice circumvents 
these uncertainties and provides a useful model system for the 
understanding of the functions of this protein. We report here 
the production of such a model for Cenpc, and describe the 
phenotype of this targeted transgenic mouse mutant. 

Both human and mouse CENPC genes have previously been 
shown to be single-copy genes (17, 31). Our results demon-
strate that disruption of this gene has no apparent effect on the 
growth and fertility of the heterozygous mice, suggesting that 
one functional copy of this gene is sufficient for full centromere 
activity. However, disruption of both the Cenpc alleles results 
in embryo lethality, as evident from our failure to detect the 
-/- genotype in any liveborns and in embryos at days 13.5, 
10.5, and 8.5 pc. Clues to the observed lethality have come 
from direct examination of preimplantation embryos. When 
3.5-day old embryos from +/- X +/- crosses were analyzed, 
approximately 25% of embryos displayed poor nuclear mor-
phology and an abundance of micronuclei, which corresponds 
well with the expected frequency for the homozygous geno-
type. As a group, these embryos show slight to severe devel-
opmental delay or morphological degeneration. Although we 

Table 2. 	Phenotypes of day 3.5 preimplantation embryos 

Developmental 
stage 

+7 —   x  +7 — +/+ x +/+ or +/— x +/+ 

No. of 
embryos 

(% of total) 

No. of embryos 
with micronuclei 

(% of total) 

No. of 	No. of embryos 
embryos 	with 

(% of total) 	micronuclei 
Blastocyst 88 (56.8%) 4 (10.3%) 48(75%) 
Morula 38 (24.5%) 13 (33.3%) 8(12.5%) 
Degenerate morula 26 (16.8%) 22 (56.4%) 0 
s16 cells 2 (1.3%) 0 3 (4.5%) 
Dead 1(0.6%) 0 5(8%) 

Total no. of embryos 155 39 64 
No. of litters 19 8 
Avg. no. of 

embryos/litter 8.2 8.0 
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display a scattered configuration and are often more con-
densed than chromosomes in the control embryos. These 
features, together with the observed failure of the chromo-
somes to congress at the spindle midzone, are similar to those 
of mitotic spreads from control embryos that have been treated 
with a microtubule inhibitor such as Colcemid. 

Despite our failure to detect any proper congression of 
metaphase chromosomes and progression of the cells through 
anaphase, the metaphase arrest phenotype appears to be 
eventually lifted to allow the cells to proceed further along 
mitosis. These post-metaphase steps presumably involve highly 
disordered chromosomal segregation, as evident from the 
extensive number of micronuclei that are detected in the 
affected embryos; these micronuclei structures, which encap-
sulate missegregating or lagging chromosomes, are formed 
during nuclear membrane reformation at telophase, prior to 
cell cleavage. The finding of some nuclei that are significantly 
larger (occasionally doubling) in size compared with normal 
nuclei (e.g., Fig. 3 C and E) further suggests that in some cells, 
most or all replicated chromosomes may have failed to segre-
gate, leading to a nuclear membrane being reformed around a 
presumed near-tetraploid genome. 

The above observations provide in vivo evidence that 
CENPC is essential for proper mitotic cell division. Absence of 
this protein may prevent the ability of the other components 
of the centromere to form a mature kinetochore. This in turn 
could affect spindle morphology, or the function of kineto-
chores in segregating chromosomes. The severe phenotype of 
the -/- embryos indicates that Cenpc is functionally nonre-
dundant; recently, a number of other proteins that are involved 
in mitosis, including the S. cerevisiae centromere motor protein 
Kar3p, have been reported to show functional redundancy 
(33-35). On the basis of the severity of the observed phenotype 
in our mouse mutant, it may be extrapolated that null muta-
tions of CENPC in humans will similarly lead to very early 
embryonic degeneration and spontaneous loss. 

Earlier studies have shown that the phenotypes of some mouse 
mutants can be altered by genetic modifiers when crossed onto 
different mouse strains, as seen in the Egfr - I - and the Min1+ 
mice (36-38). At present, it is not known whether any genetic 
modifiers exist for the Cenpc locus that may elicit a mitotic or 
meiotic phenotype in our heterozygous mice or partially correct 
the severe phenotype in the homozygous null mutants. We are 
currently determining this by breeding the targeted Cenpc allele 
onto mouse strains of different genetic background. In further 
studies, it would also be important to use targeted gene disruption 
in mice to determine the phenotype of null mutations for other 
known centromere proteins. Two of these proteins, CENPB and 

- CENPE, are particularly interesting for this approach, because 
indirect evidence suggests that the former may be dispensable for 
function (9-11, 14, 39) whereas the latter, which is a motor 
protein (40), may be functionally redundant, as is the case for 
Kar3p (33-35). Judging from the amount of useful information 
that has come from the study of chromosome segregation mu-
tants identified in S. cerevisiae and Sch. pombe, it would be feasible 
that the creation of a collection of mouse mutants would assist in 
the understanding of mitosis and meiosis in higher eukaryotes. 
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Abstract. CENP-B is a constitutive centromere DNA-
binding protein that is conserved in a number of mam-
malian species and in yeast. Despite this conservation, 
earlier cytological and indirect experimental studies 
have provided conflicting evidence concerning the role 
of this protein in mitosis. The requirement of this pro-
tein in meiosis has also not previously been described. 
To resolve these uncertainties, we used targeted disrup-
tion of the Cenpb gene in mouse to study the functional 
significance of this protein in mitosis and meiosis. Male 
and female Cenpb null mice have normal body weights 
at birth and at weaning, but these subsequently lag be-
hind those of the heterozygous and wild-type animals. 
The weight and sperm content of the testes of Cenpb 

null mice are also significantly decreased. Otherwise, 
the animals appear developmentally and reproduc-
tively normal. Cytogenetic fluorescence-activated cell 
sorting and histolofgical analyses of somatic and germ-
line tissues revealed no abnormality. These results indi-
cate that Cenpb is not essential for mitosis or meiosis, 
although the observed weight reduction raises the pos-
sibility that Cenpb deficiency may subtly affect some 
aspects of centromere assembly and function, and re-
sult in reduced rate of cell cycle progression, efficiency 
of microtubule capture, and/or chromosome move-
ment. A model for a functional redundancy of this pro-
tein is presented. 

T HIE protein components of the mammalian cen-
tromere can be broadly classified into two groups. 
Proteins from the first group are constitutively 

present on the centromere throughout the cell cycle, and 
include CENP-A, CENP-B, and CENP-C. The second 
group of proteins has been referred to as passenger pro-
teins, since these proteins undergo complex relocations to 
other cellular organelles during the cell cycle, appearing 
on the centromere only during specific stages of the cycle 
(Brinkley et al., 1992; Earnshaw and Mackay, 1994). Ex-
amples of passenger proteins are INCENPs, MCAK, 
CENP-E, CENP-F, 3F3/2 antigens, and cytoplasmic dy-
nein (reviewed by Earnshaw and Mackay, 1994; Pluta et al., 
1995; Choo, 1997a). The proposed biological roles for 
these passenger proteins have included centromere forma-
tion and maturation, motor movement of chromosomes, 
sister chromatid cohesion and release, modulation of spin-
dle dynamics, nuclear organization, intercellular bridge 
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structure and function, and cytokinesis (reviewed by 
Choo, 1997a). 

Amongst the constitutive centromere proteins, CENP-A 
has been localized to the outer kinetochore domain, and is 
a member of a growing class of proteins referred to as his-
tone H3-like proteins whose members also include the S. 
cerevisiae homologue of CENP-A, CSE4p (Sullivan et al., 
1994; Wilson et al., 1994; Stoler et al., 1995). Since CENP-A 
is found in association with histone H4 and the other core 
histones in particles that copurify with nucleosome core 
particles (Palmer and Margolis, 1985; Palmer et al., 1987), 
the protein is thought to act as a histone H3 homologue, 
replacing one or both copies of histone H3 in a certain set 
of centromeric nucleosomes, and is thought to serve to dif-
ferentiate the centromere from the rest of the chromo-
some at the most fundamental level of chromatin struc-
ture: the nucleosome (Sullivan et al., 1994). CENP-C is 
located at the inner kinetochore plate, and has been shown 
to have an essential although yet undetermined cen-
tromere function as seen from its association with the ac-
tive, but not the inactive centromeres of human dicentric 
chromosomes (Earnshaw et al., 1989; Page et al., 1995; 
Sullivan and Schwartz, 1995), arrest of mitotic progression 
after microinjection of anti-CENP-C antibodies into cul- 
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tured mammalian cells (Bemat et al., 1990; Tomkiel et al., 
1994) or gene knockout (Fukagawa and Brown, 1997; Kal-
itsis et al., 1998), and the significant sequence homology it 
shares with Mif2, a protein involved in budding yeast chro-
mosome segregation and believed to have a role in kineto-
chore function (Brown et al., 1993; Brown, 1995; Meluh 
and Koshland, 1995). 

Human CENP-B is an 80-kD polypeptide that has been 
localized throughout the heterochromatin or central do-
main of the centromere (Eamshaw and Rothfield, 1985; 
Eamshaw et al., 1987; Cooke et al., 1990; Sullivan and 
Glass, 1991; Saitoh et al., 1992). The protein is encoded by 
an intronless gene present in a single copy within the ge-
nome (Sugimoto et al., 1993; Seki et al., 1994). The num-
ber of CENP-B protein molecules has been estimated to 
be ,---,20,000 per diploid genome in HeLa cells (Cooke et 
al., 1990; Muro et al., 1992). On different human chromo-
somes, variable but generally detectable levels of the pro-
tein have been observed (Eamshaw et al., 1987). A nota-
ble exception is the Y chromosome, which has been shown 
to consistently lack this protein (Earnshaw et al., 1987). 
Through the recognition of a 17-bp PyTTCGTTGGAA-
PuCGGGA sequence known as the CENP-B box motif, 
CENP-B protein has been demonstrated to bind human 
centromeric a-satellite DNA directly (Masumoto et al., 
1989; Muro et al., 1992; Pluta et al., 1992; Yoda et al., 
1992). 

Comparison of cloned human and mouse CENP-B gene 
sequences (Earnshaw et al., 1987; Sullivan and Glass, 
1991) reveals a high degree of homology between the two 
species, with the coding regions showing an overall 96% 
sequence similarity and substantial stretches demonstrat-
ing 100% nucleotide identity between the two species 
(Sullivan and Glass, 1991). Of particular importance, both 
the NH2-terminal DNA-binding and COOH-terminal dimer-
ization domains are totally conserved. Surprisingly, even 
the 5' and 3' untranslated sequences demonstrate an un-
usually high level (95% and 83%, respectively) of homol-
ogy that is suggestive of possible posttranscriptional regu-
latory mechanisms (Mullner and Kuhn, 1988; Caput et al., 
1986). Like its human counterpart, the mouse gene is sin-
gle-copy and intronless. Although the mouse genome does 
not contain recognizable a-satellite DNA, CENP-B bind-
ing occurs through the 17-bp consensus CENP-B box mo-
tif that is found in the mouse centromeric minor satellite 
DNA (Pietras et al., 1983; Rattner, 1991). In addition to 
mouse and humans, the CENP-B gene is conserved in 
hamster, African green monkey, great ape, tupaias, calf, 
Indian muntjac, and sheep (Sullivan and Glass, 1991; Haaf 
and Ward, 1995; Yoda et al., 1996; Bejarano and Valdivia, 
1996; EMBL accession no. U35655). Significant homology 
is also found between CENP-B and two S. pombe cen-
tromere DNA-binding proteins Cbh+ and Abp1p, where 
cbh+ has been shown to be an essential gene (Lee et al., 
1997), while abp/-deleted strains exhibit slower growth 
and a pronounced meiotic defect (Halverson et al., 1997). 
The CENP-B box motif has been found in the centromeric 
satellite DNA of species as diverse as primates, Mos mus-
cu/us, Mus caroli, tree shrews, giant panda, gerbils, and 
ferrets (Pietras et al., 1983; Masumoto et al., 1989; Rattner, 
1991; Muro et al., 1992; Pluta et al., 1992; Yoda et al., 1992; 
Haaf and Ward, 1995; Kipling et al., 1995; Kipling et al.,  

1994; Wu et al., 1990; Volobouev et al., 1995; Choo et al., 
1991; Laursen et al., 1992; Haaf et al., 1995). Based on this 
observed conservation of CENP-B and its DNA-binding 
motif, it may be speculated that CENP-B is a functionally 
important component of the mammalian centromere. 

Through its CENP-B box-binding and dimerization prop-
erties, the protein has the hallmark of a cross-linking pro-
tein that is involved in assembly of the large arrays of cen-
tromeric a-satellite or minor satellite DNA (Yoda et al., 
1992; Muro et al., 1992). However, the absence of this pro-
tein on the Y chromosome in humans and mouse (Earn-
shaw et al., 1987), and on the centromeres of African green 
monkeys, which are known to be composed largely of 
a-satellite DNA containing little or no binding sites for 
CENP-B (Goldberg et al., 1996), suggests that this role 
may not be universal. In other studies, the protein has 
been shown to be present on both the active and inactive 
centromeres of mitotically stable pseudodicentric human 
chromosomes (Eamshaw et al., 1989; Page et al., 1995; 
Sullivan and Schwartz, 1995), suggesting that CENP-B 
binding does not immediately translate into centromere 
activity. Furthermore, an increasing number of stable hu-
man neocentromerip marker chromosomes (Voullaire et al., 
1993; Ohashi et al., 1994; Choo, 19976; Depinet et al., 
1997; du Sart et al., 1997) have now been described that 
are capable of normal mitotic division in the absence of 
CENP-B binding, indicating that CENP-B is nonessential 
for mitotic chromosome segregation, at least for these 
marker chromosomes. Earlier attempts at defining the 
role of CENP-B in mammals have yielded conflicting re-
sults. Microinjection of polyclonal anti-CENP-B antibod-
ies into human and mouse cells resulted in disruption of 
centromere assembly during interphase, and led to inhibi-
tion of kinetochore morphogenesis and function in mitosis 
(Bemat et al., 1990; Simerly et al., 1990; Bernat et al., 
1991). However, a different study has indicated that ex-
pression of truncated versions of CENP-B in HeLa cells 
does not lead to a mitotic or cell cycle arrest phenotype 
(Pluta et al., 1992). To date, the role of CENP-B in meiosis 
has not been investigated. 

To better understand the role of CENP-B in centromere 
function, we used gene targeting in mouse embryonic stem 
cells to derive animals with a null mutation in the CENP-B 
gene. A major advantage of such mouse mutants is that it 
enables us to study CENP-B functions not only in mitosis, 
but also in meiosis. We report that CENP-B—deficient 
mice appear to be mitotically and meiotically normal, but 
develop lower body and testis weights. We discuss the im-
plications of these results and propose a model in favor of 
a redundancy of CENP-B in centromere function. 

Materials and Methods 

Construction of Targeting Vectors 
A hybridization probe spanning the coding region of Cenpb was prepared 
from genomic DNA of mouse embryonic stem (ES) 1  cell line E14 by PCR 
using primers Bprot-1 (5'-GCGCAGATCTATGGGCCCCAAGCGGC-
GGCAGC-3') and Bprot-3 (5'-TCAGAATTCAGCTTTGATGTCCA-
AGACCC-3'). Screening of mouse genomic phage libraries with this 

1. Abbreviations used in this paper ASC, advanced sperm count; ES, em-
bryonic stem; RT, reverse transcription. 
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probe resulted in the identification of a positive clone (designated El) 
from a 12910LA library (gift of M. Kennedy) of E14 cells, and a second 
clone (designated D1) from a 129/SV library (Stratagene) of R1 mouse ES 
cells. An El-derived fragment spanning nucleotides 920-2676 of mouse 
Cenpb gene (Sullivan and Glass, 1991, EMBL accession no. X55038) was 
ligated with a Dl-derived fragment spanning 2676-5800 and cloned into a 
modified pSP72 vector (Promega Corp., Madison, WI). An oligonucle-
°tide linker sequence designated D/TAA (5'-GTACCTAGGTATACT-
1TIAAACTGAC-3') was inserted at position 1207, which is 72 amino 
acids downstream of the ATG start site of the 1.8 kb-coding sequence of 
Cenpb (Fig. lb). This linker introduced a DraI site, a frameshift mutation, 
and three stop codons in all three reading frames, of which TAA was in 
frame with Cenpb translation, disrupting not only the critical NH2-termi-
nal 125-amino acid centromere DNA-binding domain (Yoda et al., 1992; 
Kitagawa at at, 1995), but also removing all remaining COOH-terminal 
regions including the dimerization domain (Yoda et al., 1992; Kitagawa et 
al., 1995). The IRES-neomycin (Mountford et al., 1994) and IRES-hygro-
mycin (A. Smith, personal communication) markers were separately 
cloned into an AvrI1 site at position 3202 in the 3' untranslated region be-
fore the polyadenylation signal to produce the targeting constructs 
IRES(neo) and IRES(hygro), respectively. 

Southern Blot and PCR Analyses of Targeting Events 
Correct gene targeting in ES cells and mouse tail genomic DNA was de-
termined by Southern analysis using a 5' genomic probe generated from 
the El phage clone with NheI (position 564) and Sad Il (position 920) situ-
ated outside the targeting construct sequence (see Fig. 1 d). For PCR 
genotyping, the following primers flanking the D/TAA linker were used: 
Fd-1 (5'-ACCATCCTGAAGAGAACAACGG-3') and Rev-2 (TGGAA-
CCAAGCATGAGAGAAG), which gave 128-bp and 154-bp products 
for wild-type and targeted alleles, respectively; or Fd-1 and Rev-3 (3'-TGG-
AACCAAGCATGAGAAG-5'), which gave a 173-bp and 199-bp prod-
uct for wild-type and targeted alleles, respectively (see Fig. 1, d and g). 
PCR conditions were as follows: 95°C for 30 s, 55°C for 1 min, and 72°C 
for 1.5 min for a total of 35 cycles using a 50-111 vol containing 50-200 ng 
genomic tail DNA, 1 U Taq polymerase, 200 p.M dNTPs, and 300 ng of 
each primer in 1 X Taq PCR buffer (Perkin-Elmer Corp., Norwalk, CT). 

Generation of Targeted ES Cells and Mouse Chimeras 
For transfection, 50 jig of the IRES(neo) construct was linearized at the 3' 
end with Aatll or Sspl, or at the 5' end with Sad, and electroporated into 
approximately 10 ES cells in 800 ill vol using a single pulse from a Bio-
Rad Gene Pulser at 800 V, 3 pFD, 13S1. The ES cell lines used in this study 
were R1 (Nagy et al., 1993), W9.5, and W9.8 (Buzin et al., 1994). Trans-
fected cells were plated onto mitomycin C-treated, neomycin-resistant, 
STO-neoR  (Robertson, 1987) plus 103U/ml LW (Amrad-Pharamacia) and 
selected in G418 (Gibco-BRL) active at 300 ji.g/ml. One R1-derived G418- 
resistant colony, designated R1-26, demonstrated correct targeted disrup-
tion at the Cenpb allele, and was used for blastocyst injection to produce 
germline chimeric mice and for a second round of gene targeting to pro-
duce double-targeted, Cenpb-null cell lines in culture. 

For chimeric mouse production, R1-26 cells were microinjected into 
host (C57 bla/6) blastocysts, followed by breeding of the resulting germ-
line transmitting chimeras to generate heterozygous and homozygous 
Cenpb-null mice. For the second targeting event, the R1-26 cells were 
electroporated with 50 j.cg of the IRES(hygro) construct that has been lin-
earized at the 3' end with SspI. Transfected cells were grown in the ab-
sence of STO fibroblast feeder layer, and were selected in 300 ji.g/m1 G418 
and 110-140 jig,/m1 .hygromycin. This resulted in a Cenpb-null cell line, 
designated R1-189N1H, in which both the Cenpb alleles were disrupted. 
This cell line was injected into C57 bla/6 blastocysts, and the resulting ger-
mline chimeras were used in a back-cross with C57 black mice to allow 
segregation of the two targeted alleles and the derivation of heterozygous 
and homozygous mouse strains carrying only the ERES(hygro)-targeted 
allele. In this way, mice with two independently targeted Cenpb alleles 
were generated. 

Reverse Transcription (RT)-PCR Analysis 
and Sequencing 
Total genomic RNA was extracted from wild-type R1 cells (+/+), the 
IRES(neo)-targeted cell line R1-26 (+/-), and the double-targeted cell 
line R1-189N1H (-I-). 0.5-1.0 p.g total RNA was reverse-transcribed us- 

ing a first-strand RT kit (Boehringer Mannheim Corp., Indianapolis, IN) 
and oligo-d(T) as primer. Annealing was carried out at room temperature 
for 10 min, followed by transcription at 42°C for 60 min and cooling at 4°C 
for 5 min. PCR was then performed on +/+, +/-, and -/- cell lines using 
conditions described for primers Fd-1 and Rev-2/Rev-3. For sequencing, 
the 199-bp Fd-1/Rev-3 PCR product from the -/- cell line was gel-iso-
lated and cloned into the pGEM-T vector (Promega Corp., Madison, WI). 
Sequencing was performed on both strands in two separate clones using 
M13 Rev and 17 primers. Reactions were carried out using fluorescent 
dye terminator cycle sequencing (ABI PRISM; Perkin-Elmer Corp., 
Norwalk, CT). 

Immunohistochemistry 
Autoimmune serum CREST no. 6 (gift of S. Wittingham and T. Kaye) 
was from a patient with calcinosis, Raynaud's phenomenon, esophageal 
dysmotility, sclerodactyly, and telangiectasia (Fritzler et al., 1980; Moroi 
et al., 1981; Brenner et al., 1981) and detects CENP-A and CENP-B (du 
Sart et at, 1997). Anti-CENP-B monoclonal antibody 2D-7 (Earnshaw et at, 
1987) was purchased as hybridoma cells from American Type Culture 
Collection (Rockville, MD) and prepared as asc-ites fluid in pristane 
primed mice. Anti-Cenpc polyclonal antibody, Am-C1, was produced in a 
rabbit against a mouse Cenpc/GST-fusion product expressed in Escheri-
chia coli (du Sail et al., 1997). Antihuman CENP-E antibody, FiX1, was a 
gift from T. Yen (Yen et al.,1991; Yen et al., 1992). Cultured cells were ar-
rested in mitosis with 10 ng/rril colcemid for 2 h. Immunofluorescence 
staining was performed as previously described (Jeppeson et al.,1992; du 
Sail et al., 1997). After he antibody binding, the cells were postfuced in 
10% formalin, washed, and counterstained with DAPI and DABCO 
mountant. Images were analyzed using an Axioskop fluorescence micro-
scope equipped with a 100x objective (Carl Zeiss, Inc., Thornwood, NY) 
and a cooled CCD camera (Photometrics Image Point) linked to a Power-
Mac computer. 

Histology, Advanced Sperm Count (ASC), 
and Stereology 
The organs analyzed for histology were dissected from 10-wk-old and 6 
mo-old mice using standard techniques. Testicular determination of ho-
mogenization-resistant ASC was performed as previously described 
(Robb et al., 1978) on 10-wk-old animals. Stereological analysis was per-
formed on testicular materials from 10-wk-old mice using the optical dis-
sector (sic) technique (Wreford et al., 1995) to investigate the efficiency of 
meiosis by determining the ratio of pachytene spermatocytes to round 
spermatids associated with stages I-V111 of spermatogenesis. This ratio 
has an expected value of 4:1 if the efficiency of division through meiosis 
and 11 is 100% and there is no loss of round spermatids after meiosis. 

Cytogenetics and Flow Sorting 
For karyotyping, -/- R1-189 N/H cell line as well as spleen and bone 
marrow cell cultures (with and without phytohaemagglutinin) were iso-
lated from -/- mice and compared with the +/+ cell line and +/+ ani-
mal. Cells were treated with colcemid and GTL-stained using standard cy-
togenetic techniques. For flow sorting, 50,000 cells from spleen, bone 
marrow, or testis were isolated from 30-wk-old mice. These were analyzed 
by two-parameter analysis of DNA content vs. cell diameter using a FAC-
Scanrm (Becton Dickinson & Co., Sparks, MD) cell sorter equipped with 
an argon laser at 488 nm. Signals were collected by a FL2 detector with a 
585-nm band pass filter. Testis cells were profiled into five main regions 
corresponding to the different steps in maturation from elongated and 
round haploid spermatids to diploid, S-phase, and tetraploid cells. 

Results 

Generation of Cenpb-null ES Cells and Mice 
For disruption of the mouse Cenpb gene in ES cells, a pro-
moterless targeting vector was constructed that incorpo-
rated a translation frame-shift linker, designated D/TAA, 
containing stop codons in all three reading frames, and the 
IRES-neomycin or IRES-hygromycin marker (Fig. 1 b and 
Methods). The D/TAA linker inserted 72 amino acids 
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downstream of the translation start site not only disrupted 
the critical NH2-terminal 125—amino acid centromere DNA-
binding domain (Kitagawa et al., 1995; Yoda et al., 1992), 
but also removed all remaining COOH-terminal regions 
including the dimerization domain (Kitagawa et al., 1995; 
Yoda et al., 1992). The IRES-neo and IRES-hygro select-
able markers were placed in the 3' untranslated region be-
fore the polyadenylation signal. For correct targeting and 
gene disruption, two homologous recombination events 
external to the linker and IRES(neo/hygro) regions were 
required (Fig. 1 b, solid-cross regions). When the IRES(neo) 
construct was linearized at the 3' end with AatII or SspI 
and transfected into R1 and W9.5 cells, 2% (or 2 out of 
103 neomycin resistant colonies) of R1 cells, 1.3% (1 out 
of 72 colonies) of W9.8, and 3.5% (12 out of 344 colonies) 
of W9.5 cells gave the desired targeted gene disruption 
(Fig. 1 e, lane 5). Interestingly, a significantly higher fre-
quency (90% for R1, 67% for W9.8, and 92% for W9.5) of 
an undesired targeting event was detected (Fig. 1 e, lanes 2, 
4, 6, and 7) where incorporation of the IRES-neo element 
at the Cenpb locus had not been accompanied by the 
D/TAA linker. This result was due to recombinations oc-
curring within the region between the IRES-neo cassette 
and the D/TAA linker (Fig. 1 b, broken-cross region) in-
stead of in the region 5' of the linker. The observation of a 
higher recombination frequency in this region was perhaps 
not surprising in view of the fact that 1995 bp of homolo-
gous DNA was present in this region compared with only 
287 bp of homologous DNA between the D/TAA linker 
and the 5' end of the construct. In subsequent experi-
ments, it was further demonstrated that use of construct 
DNA linearized at the 5' end using KspI to expose the 
Cenpb DNA end, as distinct from the plasmid vector DNA 
end using 3' AatII or SspI, gave a 2.5-fold increase in the 
frequency of the desired targeting in R1 cells and a 3.8- 
fold increase in W9.5 cells (data not shown). 

From the above screening, 21 heterozygous ES cell colo-
nies with a disrupted Cenpb allele were obtained from the 
R1, W9.5, and W9.8 cell lines. Two of these colonies, R1-26 
from the R1 line and W-190 from the W9.8 cell line, were 
retransfected with the IRES(hygro) construct to obtain a 
Cenpb null cell line. Selection of the transfected cells in 
neomycin and hygromycin gave rise to one double-tar-
geted colony (out of five resistant colonies screened) des-
ignated R1-189N/H from R1-26, and two double-targeted 
colonies (out of 76 colonies screened) from W-190. All 
three colonies showed normal cell morphology and appar-
ently normal growth rates. No desired double-targeted 
event (0 out of 81 colonies) were seen for both W9.8 and 
R1 when the transfected cells were selected in hygromycin 
alone, due presumably to a direct replacement of the 
1RES(neo)-targeted allele with the IRES(hygro) cassette. 
Furthermore, as with the IRES(neo) construct, a much 
higher frequency (three out of five colonies for R1-26, and 
57 out of 76 colonies for W-190) of the undesired targeting 
event involving the loss of the D/TAA linker was ob-
served. 

The heterozygous R1-26 cell line was injected into C57 
bla/6 blastocysts to produce germline chimeras, from which 
heterozygous (+/— neo) and homozygous (—/— neo) mice 
carrying the IRES(neo)-targeted allele were produced 
(Fig. 1 f). The double-targeted R1-189N1H cell line was  

similarly injected into C57 bla/6 blastocysts and, through 
selective breeding, heterozygous (+/— hygro) and ho-
mozygous (—/— hygro) mice carrying the IRES (hygro) al-
lele were generated (data not shown). These mice, to-
gether with the various cell lines created above, were 
subjected to further detailed studies. 

Abolition of Cenpb Gene Expression in the Targeted 
Cell Lines 
Cenpb gene disruption was determined by RNA analysis 
using PCR performed with primers designed across the 
D/TAA linker region. The results (Fig. 1 g) indicated the 
presence of normal Cenpb transcripts in the wild-type 
(Fig. 1 g; lanes I and 4) and heterozygous cell lines (lanes 2 
and 5), but not in the double-targeted R1-189N1H cell line 
(lanes 3 and 6). This result suggested that transcription of 
both copies of the wild-type Cenpb alleles in the —/— cell 
line had been abolished and replaced by that of the tar-
geted alleles. In addition, we wished to determine whether 
the D/TAA linker had incorporated correctly into the 
NH2-terminal centromere DNA-binding domain of the 
targeted Cenpb gene, and that no unforeseen sequence re-
arrangement undetected by the Southern or RT-PCR 
analyses had occurred. This was done by purifying and 
cloning the 199-bp fragment corresponding to the targeted 
allele (Fig. 1 g, lane 6) and direct sequencing analysis. The 
results (not shown) confirmed the correct insertion of the 
D/TAA linker and therefore the stop codons. 

Absence of Cenpb Binding on Centromeres by Direct 
Immunofluorescence Staining 
Immunofluorescence staining of metaphase chromosomes 
was used to detect specific centromere-binding proteins. 
Fig. 2 shows results obtained with the +/+ R1 and —/— 
R1-189N/H cell lines; the results for the +/— R1-26 cell 
line were similar to those of the +/+ R1 cell line, and are 
not shown. The anti-Cenpb monoclonal antibody clearly 
demonstrated the presence of Cenpb on the centromeres 
of the +/+ cell line, but not on those of the —/— cell line. 
The intensity of the Cenpb signals in the +/+ cells varied 
considerably on different chromosomes, reflecting the in-
trinsic quantitative variation in the amount of Cenpb 
boxes and Cenpb binding on different centromeres (Earn-
shaw et al., 1987). When these cell lines were tested with a 
CREST antibody and antibodies for Cenpc and CENP-E, 
uniform staining of the centromere was observed (Fig. 2). 
Similar results (not shown) were obtained with cells estab-
lished from the +/+, +/—, and —/— IRES(neo) and 
IRES(hygro) mice. These data therefore provided direct 
evidence that the Cenpb gene has been disrupted in the —/— 
neo and —/— hygro knockout mice. They also demon-
strated that Cenpb is not essential for centromeric binding 
of Cenpc and Cenpe and for CREST antibody binding on 
active centromeres. 

Cenpb Null Mice Have Lower Body Weight and Testis 
Size, but Are Otherwise Developmentally Normal 
Cenpb null mice appeared phenotypically normal, and 
routinely gave normal litter size and the expected Mende- 
lian ratios of offspring, suggesting that Cenpb deficiency 
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Figure 1. Cenpb targeting construct and screening strate-
gies. (a) Intronless  wild-type  Cenpb locus showing the start 
and stop codons of  the  1.8-kb coding region (solid box). 
The positions  of the  NH2-terminal 125-amino acid cen-
tromere DNA-binding domain and the COOH-terminal 59- 
amino acid dimerization domain are indicated (stippled 
boxes). Numbers below the line indicate nucleotide posi-
tions of the Cenpb sequence (EMBL accession  no. 
X55038). (b) The IRES(neo) and ERES(hygro) targeting 
constructs, showing  a  5480-bp contiguous KspUHindIII 
Cenpb fragment that is interrupted by a frame shift-linker 
(D/TAA) containing stop codons and a new DraI site 
within the centromere DNA-binding domain, and an 
IRES(neo or hygro) cassette within the 3' untranslated re-
gion. The H-A-S region on the right is vector DNA. Solid 
crosses denote  the  preferred regions of homologous re- 

Fd-1 Rev-2 Fd-1 / Rev 3 	combination  that result  in the desired gene disruption • - 700 bp 	 event shown in c, whereas the broken cross indicates an 
t 	2 	3 4 	5 	6 7 

undesired  alternative  region of recombination which, to- 
gether with that at  the  solid-cross region to the right, re- -199 by 

15411p- 	 -173 bp 	salts in incorporation of the ERES(neo or hygro) cassette, 12g  

but not the D/TAA  linker,  generating a targeted event that 
is not accompanied  by  a gene disruption. p(A), polyadeny-

lotion signal; D, DraI; K, KspI; H, HindIII; A, AatII; S. SspI. (c) Correctly targeted Cenpb  allele.  (d) Screening strategies for targeted 
events. In Southern analysis of DraI digests, the 5'-probe (open box) detects a wild-type  allele  (+) of 5,300 bp, a desired targeted gene 
disruption allele (-) of 700 bp, and an undesired targeted but undisrupted allele (o) of 7,000 bp.  Pd-1  and Rev-2/Rev-3 are PCR prim-
ers flanking the D/TAA linker region used for mouse tail DNA genotyping and RT-PCR.  (e) Southern  blot screening of transfected ES 
cells digested with Dral using the 5'-probe. Lane 5 shows a heterozygous colony with the  desired  gene disruption event. (f) Southern 
blot screening of tail DNA from mouse progeny of a +/- X +/- cross, digested with DraI  and probed  with the 5'-probe, showing the 
detection of homozygous Cenpb disruption (lane 1), heterozygous mice (lanes 2 and 3),  and  wild-type animals (lanes 4 and 5). (g) 
RT-PCR of total RNA from +1+ R1, +/- IRES(neo)-targeted R1-26, and -/- IRES(neo)  and  IRES(hygro) double-targeted R1- 
189N/H cells using the Fd-1/Rev-2 (lanes 1-3) and Fd-1/Rev-3 (lanes 4-7) primer sets. Incorporation of the DfTAA linker  in  the targeted 
allele increases the PCR products for both primer sets by 26 bp compared with the wild-type  allele.  Only the larger band containing the 
DfTAA linker was detected in the -/- cells (lanes 3 and 6). Lane 7, PCR control with no RNA. 
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did not drastically affect cell division, development, and 
reproduction of the mice. This phenotype is in stark con-
trast to that of another mouse model we have recently cre-
ated with a disruption of Cenpc, where null mutants display 
severe mitotic disarray and die during early embryogene-
sis (Kalitsis et al., 1998). To determine if Cenpb gene dis- 

ruption has a more subtle effect on growth, we measured 
the body weight of  the  IRES(neo) animals over an 8-mo 
period (Fig. 3). The —/— mice as a group appeared uni-
form in size at birth, and presented with normal weights at 
weaning (3 wk), but subsequent weight gain in this group 
lagged behind those  of  sex-matched +/+ and +/— animals, 
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Figure 2. Immunostaining of 
centromere proteins (yellow 
signals) in +I+ R1 and —/— 
R1-189N/H cell lines using 
anticentromere  antibodies. 
Results for the +/ — R1-26 
cell line were similar to those 
for the +/+ cell line and are 
not shown. Uniform signals 
were observed in all  the  cen-
tromeres in both  cell  lines 
when stained with  CREST, 
anti-Cenpc, and anti-CENP-E 
antibodies. Note differences in 
the intensity of anti-CENP-B 
staining on different  chromo-
somes in the +/+  cell  line, 
with some centromeres  (ar-
rows) showing little or  no de-
tectable signals. No Cenpb 
signal was seen on the cen-
tromeres of the —/—  cell  line, 
even after maximal  enhance-
ment of fluorescence signal 
(thus the paler background) 
using computer imaging fa-
cility. 

with the difference reaching a level of significance (P < 
0.05) after 22 wk in males and 12 wk in females (see Table 
I for representative weight data for 26-wk-old animals). 
When the weight data were collected from the IRES(hy-
gro) animals, similar trends as those obtained for the 
IRES(neo) mice were seen for the different genotypes in 
the two sexes (data not shown). 

Histological Analysis Reveals No Gross Abnormality 
To investigate the reasons for the observed weight differ-
ence, various organs from the IRES(neo)-targeted animals 
were subjected to histological examination. The organs an-
alyzed were stomach, duodenum, descending colon, liver, 
hairy skin, ear flap, salivary gland, spleen, pancreas, kidney, 
thymus, brain, lung, adrenal, seminal vesicle, ovary, uterus, 

and pituitary. When  organs  from 10-wk- and  6-mo-old 
male and female —/—  mice  were directly compared  with 
those derived from age-  and  sex-matched +/+ and +/—  ani-
mals, the results  indicated  no obvious abnormality  in  any 
of these organs. During  this  analysis, the testes of —/— 
mice were found to be  markedly  smaller (29%; P <  0.01) 
than those of the  wild-type  mice (Table I). Follicle-stimu-
lating hormone (FSH)  and  luteinizing hormone  (LH)  lev-
els were measured and  found  to be normal. When  the  tes-
tes of 10-wk-old animals were assessed for sperm content 
(ASC), a 39.5% reduction  (P  = 0.0007) was seen in the —I—
animals (N = 9) compared with the +/+ animals (N = 12). 
When the efficiency of  meiosis  was determined using the 
more comprehensive  stereological  analysis on  sectioned 
testicular materials from  +1+  (N = 5), +/— (N = 6), and —I—
(N= 4) mice, values of 3.9 ± 0.2 (mean ± SEM), 3.8 ± 0.1, 
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Figure 3. Total body weight of male (a) and female (b) IRES(neo) 
mice. The male data were collected from an average of 33, 46, 
and 19 animals, whereas the female data were from an average of 
24, 39, and 17 animals for each time point for the +/+, +/—, and 
—/— genotypes, respectively. Individual weight value, measured 
weekly or fortnightly, represents the means of the weights for the 
total number of animals used at that time point. 

and 3.6 -± 0.2, respectively, were obtained, which were not 
significantly different from the expected 4:1 ratio. Thus, al-
though it appears that reduction in germ cell content is 
correlated with testicular weight reduction, results of the 
stereological analysis have revealed no substantial differ-
ence in the efficiency of either mitotic or meiotic division. 

Table I. Total Body Weight of IRES(neo) Mice at 26 wk(b) 
Total Testis Weight of IRES(neo) Mice at 10 wk 

No. Weight -± SD t test 

(a) Male (body) 
+/+ 34 32.86 -± 3.58 +1+ vs. +I— (P = 0.2469) 
+/— 54 33.75 -± 3.45 +/— vs. —/— (P = 0.0002) 
—/— 19 30.25 -± 3.29 +/+ vs. — / — (P = 0.0114) 

Female (body) 
+/+ 22 27.36 -± 3.79 +I+ vs. +I— (P = 0.7786) 
+/— 37 27.62 -± 3.16 +/— vs. —/— (P = 0.0005) 
—/— 

(b) Male (testis) 
+/+ 

17 

15 

24.45 ± 2.06 

0.208 ± 0.029 

+/+ vs. — / — (P = 0.0079) 

+I+ vs. +I— (P = 0.27743) 
+/— 18 0.195 ± 0.036 -1-1— vs. —/— (P = 0.00255) 
—/— 16 0A54 ± 0.038 +/+ vs. —/— (P = 0.00012) 

Karyotyping and Flow Sorting of Cenpb— I— Cells 
Indicate Normal Meiosis and Mitosis 
The chromosomes of the Cenpb-disrupted cells were in-
vestigated by cytogenetic analysis and flow sorting. For cy-
togenetic analysis, ES-derived R1-189 N/H —/— cells in 
culture and spleen and bone marrow cells from 30-wk-old 
—/— mice (N = 4) were analyzed and compared with the 
wild-type ES cells and animal. The results indicated a nor-
mal karyotype in each case. For flow sorting, 50,000 cells 
from the spleen, bone marrow, or mitotically and meioti-
cally dividing testis cells were isolated from +/+ (N = 8), 
+1— (N= 13), and —/— (N= 7) 10-wk-old mice, and +/+ 
(N = 3), +/— (N= 1), and —/— (N =- 8) 30-wk-old mice. 
Again, no detectable aberration was observed. These re-
sults, together with those obtained using the stereological 
techniques, provide further evidence that Cenpb is not es-
sential for mitosis or meiosis. 

Discussion 
The question of whether CENP-B is essential for chromo-
some segregation has been intensely debated in recent 
years. Conservation of the protein in different mammalian 
species and in lower eukaryotes and its demonstrated cen-
tromere DNA-binding property attest to a significant func-
tional role. However, various cytological observations have 
hinted at CENP-B not being critical for mitosis, although 
such evidence are often indirect and open to interpreta-
tion. For example, detection of CENP-B on both the active 
and inactive centromeres of mitotically stable pseudodi-
centric human chromosomes (Earnshaw et al., 1989; Page 
et al., 1995; Sullivan and Schwartz, 1995), rather than indi-
cating a lack of functional importance for CENP-B, can be 
interpreted to mean that additional centromere proteins 
are necessary to make the inactive centromere fully active. 
Similarly, the finding that the protein is absent on the Y 
chromosome in both humans and mouse (Earnshaw et al., 
1987) is intriguing but needs to be interpreted in light of 
the unresolved peculiarity that this observed absence is as-
sociated with the only centromere in these genomes that 
does not undergo sister centromere pairing in meiosis. The 
absence of CENP-B on various analphoid neocentromeres 
(Choo, 19976) also does not per se exclude functions for 
CENP-B (or a-satellite DNA) on normal centromeres 
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since these neocentromeres may have gained centromere 
function through some epigenetic modifications (Karpen 
and Allshire, 1997). Finally, the observation that the a-sat-
ellite DNA-containing centromeres of African green mon-
key lacks binding sites for CENP-B (Goldberg et al., 1996) 
could be because monkeys have evolved a different and 
functionally equally important way to compensate for their 
CENP-B deficiency. 

In addition to the uncertainty on mitotic functions, the 
requirement of CENP-B in meiosis has also not previously 
been investigated. Such an investigation is especially im-
portant in light of recent evidence indicating a specific role 
of centromeric heterochromatin in meiotic chromosome 
segregation in Drosophila (Dernburg et al., 1996; Karpen 
et al., 1996), and in view of the fact that CENP-B binds di-
rectly to centromeric heterochromatic DNA and is thought 
to be involved in the higher order organization of this 
DNA (Yoda et al., 1992; Muro et al., 1992). The produc-
tion and characterization of Cenpb null mice allows sev-
eral conclusions regarding the functional significance of 
this protein in mitosis and meiosis to be drawn. The appar-
ently normal growth and reproductive characteristics of 
these mice indicate that Cenpb is not essential for either of 
these cell division processes. This result is confirmed by di-
rect cytogenetic and FACS analyses of chromosomes, 
which have not detected any karyotypic abnormality in the 
—/— mice. A closer look at the different stages of male 
meiosis in these animals has similarly not revealed any ob-
vious defect. The protein also appears not to be required 
for the structural integrity of the centromere—kinetochore 
complex since the centromeres of Cenpb-deficient cells 
continue to show clear association with at least two of the 
functionally important centromere proteins: Cenpc and 
Cenpe. The observation that Cenpb is not essential for mi-
tosis or meiosis therefore drastically contrasts the severe 
phenotypes previously reported for the cbh+ and abpl 
null yeast strains (Halverson et al., 1997; Lee et al., 1997), 
suggesting that the functions of these homologues have di-
verged significantly. 

Despite the lack of any detectable mitotic and meiotic 
phenotype, adult Cenpb null mice are significantly smaller 
in body weight compared with age- and sex-matched wild-
type or heterozygous mice. In addition, the —/— male tes-
tes show a pronounced reduction both in weight (by 30%) 
and in total sperm count (by 39.5%) compared with wild-
type animals. Extensive histological analysis of many dif-
ferent organs and direct measurement of FSH and LH 
hormones have not revealed any abnormality. It is possi-
ble that the absence of CENP-B may have a subtle effect 
on centromere assembly and function, and result in a slight 
reduction in the rate of progression through one or more 
phases of the cell cycle, in the efficiency of chromosome 
capture by microtubules, and/or chromosome movement. 
Alternatively, a small number of cells beyond our detec-
tion ability may not enter mitosis at all, or carry severe 
chromosomal abnormality, resulting in loss of valuable 
cells from the cycling cell population sufficiently to cause a 
significant weight reduction over time. The possibility that 
the weight phenotype is caused by some as yet unidenti-
fied hormonal or metabolic factors cannot be discounted 
at present. 

In formulating any model on the role of CENP-B, the 

following observations need to be taken into consider-
ation: (a) the protein is highly conserved in divergent 
mammals; (b) the protein binds centromeric repetitive 
DNA via the CENP-B-box motif and possesses dimeriza-
tion properties that allow the protein to cross-link centro-.. 
meric repeats (Yoda et al., 1992; Muro et al., 1992); (c) 
CENP-B box and CENP-B protein are not detected on 
human and mouse Y chromosomes, and are poorly repre-
sented on centromeric subdomains of certain human chro-
mosomes (e.g. a13-II, a14-II, and a21-II domains of chro-
mosomes 13, 14, and 21; Trowell et al., 1993; Ikeno et al., 
1994; Choo, 1997a); (d) the centromeres of African green 
monkey are composed largely of a-satellite DNA contain-
ing few if any binding sites for CENP-B (Goldberg et al., 
1996); (e) the protein is found on both active and inactive 
centromeres of dicentric chromosomes (Earnshaw et al., 
1989); (f) despite the lack of CENP-B binding, human 
neocentromeres derived from noncentromeric chromo-
somal regions display full mitotic functions (Voullaire et al., 
1993; Depinet et al., 1997; du Sart et al., 1997; Choo, 
1997b); and (g) the protein is neither essential for mitosis 
nor meiosis in Cenpb knockout mice. 

Based on the seqyence similarity between CENP-B and 
certain transposases, Kipling and Warburton (1997) sug-
gested that CENP-B may share the DNA strand cleavage 
function of transposases and promote nicks adjacent to 
CENP-B boxes to facilitate the evolution and maintenance 
of satellite DNA. This model does not, however, take into 
consideration the dimerization property of CENP-B, of-
fers no direct evidence for the proposed strand cleavage 
function, and cannot explain the absence of CENP-B on 
human and mouse Y chromosomes or the paucity of this 
protein on the a-satellite—containing centromeres of Afri-
can green monkey and centromeric subdomains of at least 
some human chromosomes. Here we present a different 
model that satisfies all the reported observations. Simply 
stated, we propose that the role of CENP-B is to organize 
structurally the great abundance of repetitive DNA found 
in the centromere, with this role neither being exclusive to 
CENP-B nor directly essential or sufficient for centromere 
function. Our model further implicates the existence of a 
functionally related but perhaps lower-affinity protein, ar-
bitrarily designated CENP-Z, that can perform a similar 
function to CENP-B in its absence (Fig. 4). The proposal 
of a role for CENP-B in organizing centromeric repeats is 
based on the biochemical (observation b above), cytoge-
netic (observation e above), and, indirectly, evolutionary 
(observation a above) properties of the protein. The sug-
gestion that this role is not exclusive to CENP-B is based 
on the fact that centromeric repetitive DNAs with little or 
no CENP-B binding (observations c, d and g above) are 
nonetheless organized in a way that is compatible with 
centromere function. The suggestion that CENP-B is nei-
ther essential nor sufficient for centromere function is evi-
dent from the fact that the protein can be totally absent on 
centromeres without detrimental effects on chromosome 
segregation (observations c, d, f, and g above), and that its 
mere presence on some centromeres does not immediately 
lead to centromere activity (observation e above). 

A nuclear protein, pJa (Gaff et al., 1994), has previously 
been described that binds a 9-bp sequence motif, GTG(G/ 
A)AAAAG, that is present as an alternative nucleotide 
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a 
MO MI 111111■ 111111 111111.11111 Eli III NI IN! MO NM" IMP Figure 4. Model depicting 

the role of CENP-B and its 
0 	 0 	0 	putative functional homolog 

0   
CENP-Z. (a) A centromeric 

CENP-0 	 CENP-7' 	0 	 satellite DNA array, showing 0  bitufing 	 bind ng 	 individual monomers con- 
• 	0 	 0 	0 	 taming either a CENP-B-box 

(red bar) or a CENP-Z-box 
motif (blue bar). (b) CENP-B 
proteins (red circles)  bind to 
CENP-B-box motifs and un- 
dergo dimerization to cross- 
link the array into a more sta- 
ble higher order configuration. 
This mode of organization is 
presumably found  on  chro- 
mosomes where  CENP-B 
boxes are prevalent, includ- 
ing the human and mouse au- 

tosomes and X chromosomes. (c) In the absence of CENP-B-binding, a functionally related protein CENP-Z (blue circle) assumes the 
role of CENP-B to cross-link CENP-Z box-containing monomers. This mode of organization is suggested for the human and mouse Y 
chromosomes, various CENP-B box-poor centromeric subdomains, and the centromeres of African  green  monkey and Cenpb null  mice. 

configuration to the CENP-B-box motif on a significant 
proportion ( --14%) of a-satellite monomers, including 
those that constitute the centromere of the human Y chro-
mosome and the various CENP-B box-poor human cen-
tromeric subdomains (Tyler-Smith and Brown, 1987; Al-
exandrov et al., 1993; Vissel and Choo,  1992;  Romanova 
et al., 1996). A recent study has further demonstrated that 
pJa box-containing a-satellite monomers are the primor-
dial DNA from which the CENP-B box-containing mono-
mers arose (Romanova et al., 1996). In preliminary stud-
ies, we have detected pJa proteins in the nuclear 'extracts 
of the +/+, +/-, and -/- Cenpb knockout mice, and in 
that of the African green monkey (D.F. Hudson and 
K.H.A. Choo, unpublished data). In addition, the consen-
sus sequence for the CENP-B box-poor a-satellite DNA 
of African green monkey has been shown to contain a per-
fectly conserved pJa-box motif GTGAAAAAG (Yoda et 
al., 1996). These analyses therefore suggest that pJa may be 
a suitable candidate for the proposed CENP-Z protein. The 
availability of the Cenpb null mice should provide an ame-
nable system to allow  the  further study of the role of Cenpb, 
as well as investigation of the proposed CENP-Z protein. 
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. Abstract. Inner centromere protein (INCENP) and cen-
tromere protein E (CENPE) are two functionally important 
proteins of the higher eukaryotic centromere. Using a mouse 
Incenp genomic DNA and a mouse Cenpe cDNA to analyze 
recombinant inbred mouse sets, as well as interspecific back- 

cross panels, we have mapped these genes to the proximal 
regions of mouse Chrormosomes 19 and 6, respectively. Com-
parison of Cenpe and human CENPE, which maps to chromo-
some region 4q24—>q25, has further identified a new region of 
homology between the two species. 

The chicken inner centromere protein (INCENP) is a chro-
mosomal "passenger" protein (Eamshaw and Bemat, 1990) 
that was originally identified with a monoclonal antibody 
raised against the bulk proteins of a mitotic chromosome scaf-
fold fraction (Cooke et al., 1987). Due to its observed localiza-
tion at the inner domain of the centromere during metaphase, 
the protein was thought to have a role in sister chromatid cohe-
sion. At anaphase, the protein leaves the chromosomes and 
becomes associated with the overlapping microtubules of the 
central spindle and with the cell cortex at the contractile ring 
(Eamshaw and Cooke, 1991). Recently, INCENP has been 
demonstrated to play a major role in the assembly or function 
of the cleavage furrow during cytokinesis and to be essential for 
chromosomal congression (Eckley et al., 1997; Mackay et al., 
1998). 
. Like INCENP, centromere protein E (CENPE) was origi-

nally identified using a monoclonal antibody raised against a 
chromosome scaffold fraction (Yen et al., 1991). The protein 
localizes on mammalian centromeres during prometaphase 
and throughout metaphase, but diminishes from the chromo- 

somes at anaphase (Yen et al., 1991, 1992; Lombillo et al., 
1995). It is the first member of the kinesin-related motor pro-
teins that has been localized to the mammalian centromere, 
where it has been shown to be present on the surface of the 
kinetochore that forms part of the Fibrous corona (Cooke et al., 
1997). The protein is essential for monopolar chromosomes to 
establish bipolar connections and for chromosomes with con-
nections to both spindle poles to congress and align at the spin-
dle equator (Thrower et al., 1995; Schaar et al., 1997; Wood et 
al., 1997). 

Here, we report the isolation and use of an Incenp genomic 
DNA fragment and Cenpe cDNA to map the chromosome 
positions of the mouse Incenp and Cenpe genes. 

Materials and methods 

Incenp probe 
To obtain a mouse Incenp probe, a chicken cDNA sequence for INCENP 

(GenBank accession No. Z25420) was used to scan an expressed sequence tag 
(EST) database using the Basic Local Alignment Search Tool (Blast). Thirty.
two EST clones were identified and assembled into two contiguous stretches 
of DNA representing the 5' and 3' end regions of the mouse Incenp cDNA, 
respectively. Confirmation that these two regions were derived from the 
same cDNA for mouse lncenp came from reverse transcriptase PCR (RT-
PCR) analysis. Using a pair of oligonucleotides (5'-AAG AAG AGO COG 
GTG TCT AAC-3' derived from EST clone 439746 [GenBank accession No. 
AA014535] and 5'-GAA GCC TAG ATA AGA GGG TGA-3' derived from 
EST clone 354031 [GenBank accession No. W434911) as primers and total 
cDNA prepared from mouse embryonic stem cell line (129/1) as template, a 
single 2.2-kb product (designated RTIN.1) spanning the region between the 
two clones was obtained. Direct DNA sequencing of this product allowed 
assembly of a single contiguous mouse lncenp cDNA sequence with signifi-
cant homology to chicken and Xenopus laevis (GenBank accession No. 
U95094; Stukenburg et al., 1997) INCENPs, including a central region of 
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Table 1. Strain distribution pattern for Incenp in AKXL RI mice 

Progenitor DNA patterns 	Series No. 

A 	 5 6 7 9 	12 14 24 25 28 29 37 
8 	13 16 17 19 21 38 

A and L designate the Pvu11 allelic fragments that are recognized by the Incenp 
probe in the AICR/J and C57L/J progenitor mouse strains, respectively. 

Table 2. Linkage of Incenp to chromosome 19 markers in AKXL RI 
mice 

Piewalant RI 
	

Petcentage 	-95%tanfidence 
strains/Wulf 
	

recombinatioa (04) 	hnut (al) 
analYz4d 
	

(Grect, 1981) 	(Sitre4-  1985) 

-.D6Rplik 	1/18 	 1.„5  

:1.319Alit,50 	0118 	OA 
-F'ci.III 	0117 	 0,0 

0.044 
0.0-6.9 
1.5-11.6 

. _ 
Lthp2 	0/18 	0,0 	 0,0-6.4 
Ccf98 	0,18 	0,0 
'Xagniv42 	0118 	00 
015 	Illii 	 33 
Fcer lb. 	3/18 	 5,6 	 1.0-27 3 

202 amino acids that shares 73% identity and 80% amino acid similarity 
between mouse and chicken INCENP. Within this region lies a 22 amino 
acid stretch (corresponding to chicken residues 781-802) that shows 96% 
identity between mouse, chicken, and X. laevis INCENPs. No homology to 
any other GenBank entries was detected with the mouse Incenp sequences. A 
5' Incenp EST clone (439746) was purchased from Genome Systems and 
used as a probe to screen a mouse 129/Sv genomic library (Stratagene). This 
resulted in the isolation of a positive phage clone, PIN06. A 2.5-kb &Kill 
Hindfil fragment upstream of the ATG transcription start codon was sub-
cloned from this phage clone into Bluescript 11 KS+ phagemid (Stratagene) 
and used as a probe in this study. 

Cenpe probe 
To obtain a mouse Cenpe probe, a BLAST search using the carboxy ter-

minal portion of human CENPE cDNA sequence (GenBank accession No. 
Z15005) was performed against the EST database. This identified eight 
mouse cDNA clones that aligned to form two distinct DNA stretches with 
significant homology to human CENPE (Yen et al., 1992). The first or these 
regions shows 80% nucleotide identity to human CENPE over 756 bp of 
DNA, with an internal stretch encoding 25 amino acids that demonstrate 
76% identity and 96% similarity to human CENPE (residues 2,261-2,285). 
The second region (950 bp in size) shows 81% nucleotide identity with 
human CENPE and contains an internal region of 41 amino acids with 85% 
identity and 98% similarity (residues 2,591-2,631). Further confirmation 
that these two regions were derived from a single RNA transcript came from 
RT-PCR analysis with two oligonucleotides primers (5'-GGA AAG AAG 
TGC TAC CAG ATC C-3' and 5'-ATC ATT GAG GTA TCC TGG GC-3') 
obtained from the first and second regions, respectively. A single 313-bp 
product was obtained, confirming the presence of a single cDNA containing 
the two regions. This internal region shows 77% nucleotide identity with 
human CENPE, with a random match probability to human CENPE of 1.6 x 
10-39  using BLASTN (nucleotide search using BLAST). No significant 

.homology to any other GenBank entries was detected with any of the derived 
mouse Cenpe sequences. One EST clone, designated 570691 (GenBank 
accession No. AA108598), was purchased from Genome Systems, and a 381- 
bp EcoRl fragment was subcloned from it for use in genomic mapping exper-
iments. Direct sequencing of this subclone shows 80% DNA sequence identi-
ty (base pairs 7,403-7,784) and 66% and 81 % amino acid identity and simi-
larity, respectively, with human cenpE (residues 2,438-2,564). This region is 
outside the kinesin-like domains of human cenpE and shows no significant 
homology to any other mouse cDNA. 

Genetic snapping of Incenp and Cenpe 
Genomic DNA from progenitor mouse strains, the recombinant inbred 

(RI) AKXL and AXB mouse sets, as well as Southern blot filters with DNA 
from The Jackson Laboratory interspecific backcross panel (C57BL/6JEi x 
SPRET/Ei)F, x SPRET/Ei (known as The Jackson BSS; Rowe et al., 1994)- 
were purchased from The Jackson Laboratory, Bar Harbor, ME. Genomic 
DNA and Southern blots were analyzed as described previously (Fowler et 
al., 1997). 

Data for all known strain distribution patterns (SDPs) of AKXL and 
AXB RI mouse strains, which date from February 1998, were obtained from 
the Mouse Genome Database (MGD), Mouse Genome Informatics, The 
Jackson Laboratory (http://www.informatics.jax.org ). Recombination fre-
quencies (r) were calculated using the formula r = RI(4 - 6R), where R is the 
proportion of discordant strains in the RI set (Green, 1981). The 95% confi-
dence intervals for linkage analysis with RI mice are those tabulated by Silver 
(1985). 

Raw data for The Jackson BSS Panel SDPs were obtained from The Jack-
son Laboratory (http://www.jax.org/resources/documents/cmdata)  and date 
from March 1998. The Jackson BSS Panel SDP was analyzed using the Map 
Manager Program (Manly, 1993). 

Results 

Genetic mapping of Incenp 
The 2.5-kb SacH/HinclIII 5' mouse Incenp fragment was 

used as probe on Southern blots to identify an informative 
PvuII polymorphism for the Incenp locus of AKR/J and C57L/J 
progenitor RI mouse strains, as well as a Bg111 RFLP around 
the Incenp of the C57BL/6J and Spret/Ei mouse strains. The 
enzyme PvliII revealed two bands at 2.2 and 5.7 kb in the AKR/ 
J mouse strain (designated A) and two bands at 2.2 and 8.6 kb 
in the C57L/J strain (designated L), whereas BelI identified 
fragments of 6.6, 5.0, and 3.5 kb in the Spret/Ei strain and 5.0 
and 3.5 kb in the C57BL/6J strain. The Pvull polymorphism 
was used to genotype DNA from the AKXL mouse set, whereas 
the Bg111 RFLP was used to analyze The Jackson BSS Panel. 

The resulting AKXL SDP for Incenp is summarized in 
Table 1. Comparison of the SDP for Incenp with those of other 
markers mapped using these strains indicated that Incenp local-
izes to the proximal region of Chromosome 19. No recombi-
nants (0.0-6.9 cM, 95% limits) were observed between Fosll , 
D I9Mit59, Ltbp2, Cd98, or Xmmv42 (Table 2). 

To further refine the chromosomal position of Incenp, the 
locus was also mapped by the analysis of (C57BL/6JEi x 
SPRET/Ei)F i  x SPRET/Ei cross. Inheritance of the homozy-
gous or heterozygous SPRET/Ei 6.6-kb fragment was typed in 
94 progeny DNA, and the observed pattern indicated linkage to 
a large bin of markers on proximal chromosome 19, including 
Chk, D19Mit32, D19Mi193, and Nofl (0.0-3.8 cM, 95% limits; 
Fig. la, c). This linkage is consistent with data obtained using 
the RI mouse strains and extends the data by placing Incenp 
closer to the centromere region of Chromosome 19. 

Genetic mapping of Cenpe 
The 381-bp EcoRI Cenpe probe identified BamHI frag-

ments of 4.2 and 3.8 kb in the A/J mouse strain (designated A) 
and 7.1, 4.2, and 3.8 kb in the C57BL/6J mouse strain (desig-
nated B). This probe also identified informative Bg111 frag-
ments of 2.8 and 1.8 kb in the SPRET/Ei mouse strain, as well 
as 8.5, 7.1, and 1.8 kb fragments in the C57BL/6J strain. 
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b Jackson BSS Chromosome 6 
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Fig. 1 . Map figures (a, b) and haplotype fig-
ures (c, d) from The Jackson BSS backcross show-
ing the proximal end of mouse Chromosome 19 
with loci linked to Incenp (a) and the proximal 
end of Chromosome 6 with loci linked to Cenpe 
(b). The map is depicted with the centromere 
toward the top. A 3-cM scale bar is shown to the 
right of the figure. Loci mapping to the same posi-
tion are listed in alphabetical order, and not all 
BSS markers linked to Incenp and Cenpe are 
shown in these figures. Missing typings were in-
ferred from the surrounding data where assign-
ment was unambiguous. (c, d) Haplotype fig-
ure from The Jackson BSS backcross showing the 
proximal end of Chromosome 19 with loci linked 
to Incenp (c) and the proximal end of Chromo-
some 6 with loci linked to Cenpe(d). Loci in c and 
d are listed in order, with the most proximal at the 
top. The solid boxes represent the C57BL6/Ei 
allele, and the open boxes the SPRET/Ei allele. 
The number of animals with each haplotype is 
given at the bottom of each column of boxes. The 
percent recombination (R) between adjacent loci 
is given to the right of the figure, with the stan-
dard error (SE) for each R. 

The BamHI fragments were used to genotype the AXB RI 
set (Table 3). No recombinants (0.0-5.0 cM, 95% limits) were 
observed between Cenpe, D6Mi186, or D6Rp2 on proximal 
Chromosome 6. However, Cenpe also displayed linkage (95% 
limits) to 19 other markers on Chromosome 6 (Table 4). 
Because some of these markers were quite distal to D6Mit86 
and D6Rp2 (up to 56 cM, MGD composite map), an indepen-
dent mapping analysis was performed using The Jackson BSS 
Panel with the aid of the BglIl polymorphism. The observed 
SDP for the BSS cross indicated linkage to several markers, 
including Cappa2, DIx6, D6Mitl, and D6M1186 (0.0-3.8 cM, 
95% limits), therefore consolidating the mapping of Cenpe to 
the proximal region on Chromosome 6 (Fig. lb, d). 

Discussion 

In comparison with humans, there are at least 14 known loci 
in the proximal region on mouse Chromosome 19, including 
genes that display linkage to Incenp (Fosll, Cd5, and Fcerlb; 
2-8 cM region, MGD) (Table 1), that have synteny with human 
chromosome region 11q11 q13 (MGD). This suggests that 
the human INCENP gene may localize to this region on human 
chromosome 11; however, the human chromosome positions of 
the most closely linked genes to Incenp (Chk, Nof I, and Zpl; 
0.0-0.2 cM region, MGD) (Fig. la, c), using The Jackson BSS 
Panel in this study, are presently unknown. 

The mapping of Cenpe to mouse Chromosome 6 was some-
what unexpected, given that the human homolog, CENPE, 
maps to chromosome region 4q24 q25 (Testa etal., 1994). To 
date, there has been only one other report of homology between 
mouse Chromosome 6 and human chromosome 4. The human 
homolog of the Drosophila atonal homolog 1 (ATOH1) gene 
has been assigned to 4q22 (Ben-Arie et al., 1996), whereas 

Table 3. Strain distribution pattern for Cenpe in AXB RI mice 

Progenitor DNA 
	

Series No. 
pattern' 

A 
	

3 4 	6 7 	8 9 	10 12 15 17 21 23 
1 	2 	5 	11 13 14 18 19 20 24 

° A and B designate the &mar allelic fragments that are recognized by the Cenpe 
probe in the All and C578L/61 progenitor mouse strains, respectively. 

Table 4. Linkage of Cenpe to chromosome 6 markers in AXB RI mice 

Locus Discordant RI Percentage 95% Confidence 
strains/total recombination (cM) limits (cM) 
analyzed (Green, 1981) (Silver, 1985) 

D6M1t86 0/22 0.0 0.0-5.0 
D6Rp2 0/22 0.0 0.0-5.0 
D61'Icfs5 0/9 0.0 0.0-17.0 
D6M1t50 2/22 2.6 0.3-13.0 
D6Mit8 3/22 4.3 0.8-18.3 
Met 3/21 4.6 0.8-20.0 
D6M1129 4/22 6.3 1.4-25.4 
06M1154 4/22 6.3 1.4-25.4 
D6Ad1125 4/22 6.3 1.4-25.4 
Ifoxa3 4/21 6.7 1.5-28.2 
D6Strl 3/15 7.1 1.2-43.2 
D6M1133 5/22 8.6 2.2-36.0 
D6Mit36 5/22 8.6 2.2-36.0 
D6Mit65 5/22 8.6 2.2-36.0 
lapts2.25 5/22 8.6 2.2-36.0 
D61141152 5/22 8.6 2.2-36.0 
D6Ad1r61 5/22 8.6 2.2-36.0 
D6M1159 5/22 8.6 2.2-36.0 
D6Mit57 5/22 8.6 2.2-36.0 
D6M1t14 5/22 8.6 2.2-36.0 
Ggc 5/20 10.0 2.5-47.0 
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Atohl maps to the 30.5 cM region on Chromosome 6. The 
Atohl gene is separated from Cove by a large segment of 
approximately 30 cM on Chromosome 6 that has extensive 
homology to human chromosome 7, encompassing more than 
40 genes (MGD). This segment includes six genes that have 
linkage to Cenpe (Cappa2, DIx6, Ggc, Met, Pin, and Tcrb), as 
well as a smaller region that has homology with human chromo-
some 2. The results of the present analysis have therefore estab-
lished a new region of homology on mouse proximal Chromo-
some 6 and the human 4q24 ---)q25 region. 

In a previous study, Magnuson and Epstein (1984) reported 
an embryonic lethal phenotype in Os mouse mutants due to a 
mitotic arrest defect and localized the Os locus to Chromosome 
8 (42 cM region, MGD). These observations, together with the  

fact that in the region of CENPE, 15 other genes on human 
chromosome region 4q23-4 g35.1 have been shown to share 
homology with mouse Chromosome 8 (MGD), initially sug-
gested to us the possibility that the Os mouse mutant could be a-
candidate for carrying a mutated Cenpe gene. However, the 
mapping of Cenpe to Chromosome 6 in this study has excluded 
this possibility. 
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Mouse centromere protein F (Cenpf)gene maps to 
the distal region of Chromosome 1 by interspecific 
backcross analysis 
K.J. Fowler, R. Saffery, D.V. Irvine, H.E. Trowell and K.H.A. Choo 
The Murdoch Institute, Royal Children's Hospital, Parkville, Victoria (Australia) 

same, single-copy, genomic region. DNA sequencing analysis in combination 
with BLAST (Basic Local Alignment Search Tool) searches of these phage 
clones revealed the presence of four mouse Cenpf exons with high homology 
to human CENPF sequence. Two of these exons showed 77% and 80% iden-
tity at the nucleotide sequence level with human CENPF at positions 163- 
330 and 331-523, respectively. The other two exons were contained within a 
1.4-kb HindIll fragment and showed homologies of 80% and 85% corre-
sponding to nucleotides 524-648 and 649-737, respectively, with human 
CENPF. Random match probability of these results was calculated as 5.4 x 
l0-42  using BLASTN (nucleotide search using BLAST), indicating the 
authenticity of the cloned sequences as mouse Cenpf 

Method of mapping:The 1.4-kb HindlIl fragment was used as a probe on 
Southern blots to identify an informative Mspl polymorphism around the 
Cenpf locus of C57BL/6J and Spret/Ei mouse strains. The analysis revealed 
bands of 4 kb in Spret/Ei and 3.4 kb in the C57BL/6J strain. This polymor-
phism was used to genotype Southern blot filters with DNA from interspe-
cific backcross panel (C57BL/6JEi a SPRET/Ei) Fl x SPRET/Ei (known as 
The Jackson BSS panel; Rowe etal., 1994). Progenitor DNA and filters were 
purchased from The Jackson Laboratory, Bar Harbor, Maine. Genomic 
DNA and Southern blots were analysed as described previously (Fowler et 
al., 1997). 

Results 

Inheritance of the homozygous or heterozygous SPRET/Ei 
4-kb fragment was typed in 94 progeny DNA and analysed. The 
observed pattern indicated linkage to a large bin of markers on 
the distal region of Chromosome 1, including D1Bir26 and 
D1Mit17 (0.00-3.8 cM, 95% limits; Fig. 1). The mapping of 
Cenpfto the distal region on Chromosome 1 conforms with the 
expected mouse-human syntenic region, since human CENPF 
has been localized to chromosome 1q32 —>q41 (Testa et al., 
1994). Beside CENPF, there are in excess of 50 genes that have 
homology with human chromosome lq and the distal region of 
mouse Chromosome 1 (MGD), including the Apoa2 gene (92.6 
cM region, MGD composite map) that was shown to have link-
age with Cenpfin this study (Fig. 1). 
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Rationale and significance 

Human centromere binding protein F (CENPF) is a 367- 
kDa nuclear matrix-associated chromosome passenger (Ratt-
ner et al., 1993; Liao et al., 1995; Mancini et al., 1996). The 
protein is uniformly distributed in the cell nucleus during S 
phase, localizes onto the kinetochore from late G2/M to meta-
phase, relocates onto the spindle equator and intracellular 
bridge during late anaphase and cleavage furrow formation and 
then is degraded following completion of mitosis. CENPF has 
been shown to be a valuable proliferation marker for various 
human tumours (Landberg et al., 1996) and has been mapped 
to human chromosome 1q32 —3q41 (Testa et al., 1994). Here 
we report the use of a mouse genomic fragment to map the 
chromosome position of mouse Cenpf 

Materials and methods 

Probe type: 1.4-kb HindIII genomic fragment of mouse Cenpf 
Proof of Authenticity: A 758-bp PCR product corresponding to nucleo-

tides 185 to 942 of the human CENPF sequence (Genbank accession number 
U19769; Liao et al., 1995) was amplified from human cDNA using primer 
pairs A (5'-GGA AGA ATG GAA AGA AGG GC-3') and B (5'-TTG ATC 
GAC TTG GAG TCA CC-3'). Use of this mouse product as a hybridization 
probe against 129Sv mouse genomic library (Stratagene) allowed the identifi-
cation of 4 positive phage clones. Restriction enzyme digestion and Southern 
hybridization analysis of these clones indicated that all were derived from the 
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Fig. 1 . Map figure (a) and Haplotype figure (b) from The Jackson BSS 
backcross. (a) The distal end of Chromosome 1 with loci linked to Cenpf The 
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INCENP is a chromosomal passenger protein which relocates from the centromere to thel spindle midzone 
during the metaphase-anaphase transition, ultimately being discarded in the cell midbody at the completion 
of cytokinesis. Using homologous recombination, we have generated lncenp gene-targeted heterozygous 
mice that are phenotypically indistinguishable from their wild-type littermates. lntercrossing the hetero-
zygotes results in no live-born homozygous /ncenp-disrupted progeny, indicating an early lethality. Day 3.5 
affected pre-implantation embryos contain large, morphologically abnormal cells that fail to fully develop a 
blastocoel cavity or thrive in utero and in culture. Chromatin and tubulin immunocytochemical stainings of 
these and day 2.5 affected embryos reveal a high mitotic index, no discernible metaphase or anaphase stages, 
complete absence of midbodies, micronuclei formation, morphologically irregular macronuclei with large 
chromosome complements, multipolar mitotic configurations, binucleated cells, internuclear bridges and 
abnormal spindle bundling. The phenotype is consistent with a defect in the modulation of microtubule 
dynamics, severely affecting chromosome segregation and resulting in poorly resolved chromatin masses, 
aberrant karyokinesis and internuclear bridge formation. These latter occurrences could pose a physical bar-
rier blocking cytokinesis. 

INTRODUCTION 

The centromere is a highly specialized chromosomal structure 
that is functionally conserved amongst eukaryotes and is 
essential for accurate meiotic and mitotic segregation of 
chromosomes. In mammalian cells, two broad groups of 
centromere-interacting proteins have been described: constitu-
tively binding centromere proteins and passenger or transiently 
interacting proteins (reviewed in ref. l). The constitutive pro-
teins include: centromere protein A (CENP-A), which is a his-
tone H3-like structural protein that may function to distinguish 
centromeric nucleosomes from other chromosomal nucleo-
somes (2,3); centromere protein B (CENP-B), which interacts 
directly with a-satellite DNA (4,5); and centromere protein C 
(CENP-C), which is a component of the inner kinetochore 
plate that shares homology with the yeast chromosome segre-
gation protein Mif2 (6,7) and appears to be an important and 
integral structural component of the kinetochore (8). 

The term 'passenger proteins' encompasses a broad collec-
tion of proteins that localize to the centromere during specific 
stages of the cell cycle (9). This association may relate to a 
direct role of the proteins at the centromere or, alternatively, it 
may simply reflect the role of the centromere as a delivery 

organelle from which the passenger proteins are distributed to 
the various final cellular sites of action. Some examples of 
passenger proteins are: CENP-E, MCAK, Kid and cytoplasmic 
dynein, which are intimately involved in kinetochore motor 
function (10-13); CENP-F/mitosin, which associates tran-
siently with the kinetochore, playing an apparent role in kine-
tochore maturation and signalling pathways for cell division 
(14-16); and CLiPs, which localize to the inner surface of 
sister chromatids between kinetochores and are implicated in 
sister chromatid pairing (17). 

The inner centromere proteins (INCENPs) were the founder 
members of the passenger group of proteins (18). These pro-
teins display a broad localization along chromosomes in the 
early stages of mitosis but gradually become concentrated at 
centromeres as the cell cycle progresses into mid metaphase 
(19). During the metaphase—anaphase transition, INCENPs 
remain confined to the metaphase plate, associating with stem 
body material which coats the overlapping antiparallel micro-
tubules of the central spindle, while sister chromatids migrate 
to the poles. In mid anaphase, a portion of the INCENPs also 
appears at the cell cortex where the cleavage furrow will later 
form. During telophase, the proteins are located within the 
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midbody in the intercellular bridge, where they are discarded 
after cytokinesis (18,19). 

The INCENP proteins were originally identified in chicken 
cells as a doublet consisting of a shorter 96 kDa INCENP 1  and a 
101 lcDa INCENP ll  polypeptide containing a 38 amino acid 
insertion that arises through differential splicing of a single pri-
mary RNA transcript (20,21). Homologs of INCENP have been 
isolated in Xenopus (22) and mouse (23,24). Analysis of these 
and the chicken 1NCENPs (20,21) have revealed complex pro-
tein structures containing multiple putative targets for Cdc2 
lcinase, MAP Icinase, N-glycosylation, nuclear localization sig-
nals and numerous other potential phosphorylation sites. A 
chicken INCENP cDNA, when expressed in mammalian cells, 
shows an identical cell cycle distribution to the endogenous 
protein, suggesting conservation of functional domains between 
interclass species (21). More recently, overexpression of a 
truncation mutant of chicken INCENP and a chimeric 
CENP-B:INCENP protein in mammalian cell culture resulted in 
dominant-negative characteristics, suggestive of interference 
with both prometaphase chromosome alignment and completion 
of cytokinesis (25,26). In the present study, we have investigated 
the biological importance and functional role of Incenp in 
mouse. Using homologous recombination, we have specifically 
disrupted the Incenp gene. We describe here the phenotype of 
such a gene disruption, which provides the first reported knock-
out of a mammalian chromosomal passenger protein. 

RESULTS 

Generation of Incenp null embryonic stem (ES) cells and 
mice 
The genornic copy number of the mouse Incenp gene was 
determined previously using Southern blot analysis and mouse 
lncenp probes (24). The results indicated a single copy gene 
with no closely related homologs. Further analysis of Incenp 
tuRNA, either by RT—PCR across the differentially spliced 
region observed in chicken INCENP I  and INCENPH  or by 
northern blot analysis of total RNA from ES cells and a wide 
range of mouse tissues, has failed to detect alternative forms of 
Incenp mRNA (24). These results suggested that heterozygous 
gene knockout could be achieved in a single homologous 
recombination event with our construct. In addition, in sepa-
rate experiments, we have studied the chromosomal localiza-
tion of the mouse Incenp protein in 129/1 mouse ES cells by 
irrununocytochemistry using a well-characterized anti-chicken 
INCENP antibody provided by Dr W.C. Earnshaw (Institute of 
Cell and Molecular Biology, University of Edinburgh, UK) 
and obtained a pattern similar to that described previously for 
chicken cells (data not shown). 

For gene targeting, a promoterless IRES/neoR element was 
incorporated into the targeting vector to enhance both targeting 
frequency (by selecting for homologous recombination down-
stream of the endogenous Incetzp promoter) and translation of 
the neomycin gene product (via the internal ribosomal entry 
site) (27). The construct was further designed to disrupt Incenp 
mRNA translation at amino acid 47, which effectively 
removed critical downstream regions containing nuclear local-
izing signals and the chromosome- and microtubule-binding 
domains (Fig. la) (26). That the 47 amino acid N-terminus 
truncated peptide neither elicited a dominant-negative effect  

nor was directly functional was clearly demonstrated by the 
observed phenotypes of the heterozygous and homozygous 
mice generated (see below). 

Upon transfection of the linearized construct, 163 G418- 
resistant 129/1 ES colonies were analysed. Of these, six dem-
onstrated the correct targeting event (Fig. lb), corresponding 
to a frequency of 3.7%. When the construct was electroporated 
into W9.5 ES cells, 87 G418-resistant colonies were screened, 
of which four were correctly targeted, yielding a frequency of 
4.6%. These targeting frequencies were low compared with the 
70-86% seen at the 0c14 locus (27) and 74% achieved for 
Cenpc gene disruption (28) using a similar strategy. However, 
the frequencies compared favourably with those obtained with 
the Cenpb (29) and cytokitze DWLIF loci (27). The lower 
frequency in this case may be due to a lower rate of transcrip-
tion at the lncenp locus, lower accessibility of the chromatin 
structure at this locus to homologous recombination mecha-
nisms and/or omission of a 600 bp stretch of homology in our 
targeting vector. 

The heterozygous cell lines exhibited nonnal morphology and 
growth rates. Injection of these cell lines into C57 BU6 blastocysts 
resulted in two gennline chimeras originating from the 129/1- 
derived ES cells. On mating the chimeras with C57 BU6 mice, het-
erozygous mice were obtained. Intercrossing these heterozygotes 
produced 102 phenotypically indistinguishable progeny, of which 
73 were found to be heterozygotes and 29 were wild-type (Fig. 1c). 
The absence of-4— animals indicated embryonic lethality. This was 
further indicated by the smaller litter size (7.5 ± 1) observed for the 
+/— x +/—crosses compared with those for +/+ x +/+ (9.6 ± 2.4) and 
+/+ x +1— (9.5 ± 1.7). 

Embryonic lethality occurs before day 8.5 
Females from +/— x +/— crosses were killed at day 8.5 post-
virginal plug formation and embryos were removed from the 
uterine implantation sites for genotyping. A total of 23 
embryos were obtained, 16 of which were +/— and seven were 
+/+. This result suggested that lethality of —/— embryos 
occurred earlier than 8.5 days. 

We further investigated the ability of —1— embryos to develop 
under in vitro conditions. Embryos were harvested from the uteri 
of mothers of +/— x +/— crosses at day 3.5 and placed individually 
into tissue culture wells. These were observed for 6 days, after 
which they were harvested for PCR genotyping. Of 35 samples 
monitored, 31 hatched from the zona pellucida, attached to the 
culture wells, established two distinct cell types after 3 days of 
culture (Fig. 2a) and remained healthy throughout the study. 
Genotyping of these 31 hatched embryos indicated eight to be +/+ 
and 23 to be +/—. Of the four remaining embryos, three were 
unable to attach after 3 days of culture; one of these embryos was 
obviously dead, displaying a dense debri of degraded material, 
whereas the other two embryos failed to hatch out of the zona pel-
lucida and showed spatial contraction and signs of degeneration 
within the zona (Fig. 2b). The last embryo (Fig. 2c) had attached 
after 3 days of culture but was unable to thrive or form the two dis-
tinct cell types in comparison with the well-advanced healthy 
embryos at this stage. These four embryos represented the pre-
sumed —1— genotype (see below) and constituted 11% of total 
embryos. When the experiment was repeated by harvesting 
embryos from the oviduct as well as the uterus, this frequency 
increased to 24% (5 of 21), which was closer to the expected 
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Figure 2. Morphology of day 3.5 and cultured embryos from heterozygous crosses. (a-c) Day 3.5 embryos following 3  days  of in vitro culture, where (a) depicts an 
embryo which has undergone normal development showing spreading trophoblast cells and inner cell mass, while (b) and  (c)  depict -/- embryos which have failed to 
hatch from the zona pellucida or have undergone very rudimentary development, respectively. (d) Day 3.5 uncultured normal blastocyst showing formation of the inner 
cell mass and blastocoel cavity. (e) Day 3.5 uncultured -/- embryo showing giant cells and absence of the blastocoel  cavity.  Magnification x200. 

value, suggesting that affected embryos displayed an increased 
residence time in the oviduct. In control +/+ x +/+ or +/+ x +1—
crosses, of 44 day 3.5 embryos examined, all attached and devel-
oped well in culture, although after 6 days some sign of reduced 
proliferation was observed in five samples. However, as this 
occurred at a much later stage and clearly differed morphologi-
cally from that of presumed —/— embryos, it was assumed to be due 
to a culturing effect unrelated to the phenotype observed with the 
presumed —/— embryos. 

Cell morphology of day 3.5 embryos 
To further ascertain and correlate the phenotype and genotype 
of day 3.5 —I— embryos, samples were harvested from the uteri 
and oviducts of heterozygous females from +/— x +/— crosses, 
individually photographed and subjected to PCR. Due to the 
low amounts of DNA in these embryos, a modified PCR strat-
egy (Fig. 3a) involving a random preamplification step of the 
whole genome was employed to enhance the level of template 
DNA in a linear unbiased manner (30), followed by allele-
specific PCR to determine genotype. From a total of 39 
embryos, 22 were +/— (56%), nine were +A- (23%) and eight 
were —/— (21%) (Fig. 3b). When these genotypes were corre-
lated with the photographic results, the —/— embryos were 
noticeably the only ones that exhibited abnormal morphology. 
These embryos consisted of large and non-uniformly sized 
cells which had failed to develop into inner cell masses and 
blastocoel cavities (Fig. 2e) compared with their healthy +/+ 
and +/— counterparts (Fig. 2d). These results clearly establish 
the presence of —/— embryos at day 3.5 as well as provide evi-
dence for cellular abnormality at this early developmental 
stage. 

Nuclear and chromosomal morphologies of day 3.5 and 
day 2.5 embryos 
To examine the nuclear  and  chromosomal morphologies of 
affected embryos, samples  from  heterozygous crosses were 
fixed on slides, stained with Giemsa and analysed. Initial studies 
concentrated on day 3.5  embryos.  At this stage, the normal 
embryos developed into blastocysts, each containing an average 
of 40-50 cells (inferred from  the  number of nuclei stained by 
Giemsa) that exhibited relatively uniform size and healthy 
morphology. Interphase  nuclei  were generally also uniform in 
size and contained 1-3 nucleoli/nucleus (Fig. 4a). Abnormal 
looking embryos, presumed  to  be /ncenp-disrupted, contained 
nuclei that were both smaller  in  number (averaging seven per 
embryo) and much bigger in  size  (Fig. 4b—d). These embryos 
contained occasional micronuclei (e.g. Fig. 44), but the majority 
of nuclei were significantly (5-10 times) larger than normal. 
These giant nuclei were  often  irregular and lobular in morph-
ology and individually carried up to 20 nucleoli. The abnormal 
embryos comprised 14% (4 of  28)  of the embryos studied, which 
was lower than the expected  value  since only mouse uteri were 
flushed for these experiments (see above). When the mitotic 
index (i.e. percentage of total cells in mitosis) of the affected 
embryos was determined, this  was  shown to be 20%, which, as a 
group, was significantly higher than the 3.9% value obtained for 
the unaffected embryos, suggesting that mitosis was severely 
delayed or arrested in the affected embryos. 

The mitotic chromosomes  of  the affected embryos also 
showed a number of distinct abnormalities (Fig. 4b—d). Most of 
the chromosomes were  highly  condensed compared with 
metaphases of control embryos, although some appeared to be 
undergoing decondensation  or  deterioration, as evident from 
their elongated and/or fragmented morphology (Fig. 4c). A dis- 
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Figure 3. Pre-amplification embryo PCR screening. (a) Allele-specific PCR 
strategy. Lysed embryos were first subjected to whole genome pre-amplifica-
tion before allele-specific PCR was performed using the primer pair Int8/Int9, 
which produces a fragment of 168 bp corresponding to the wild-type allele, or 
the primer pair neol/neo2, which produces a fragment of 175 bp to depict the 
targeted allele. (b) (i) Whole genome pre-amplification showing DNA prod-
ucts with a size range of -150-800 bp; (ii) the 168 bp wild-type allele-specific 
product of Int8/1nt9 primers; (iii) the 175 bp targeted allele-specific product of 
the neol/neo2 primers. Sample 1, control PCR with buffer only; samples 2-12, 
different 3.5 day embryos. M. 1 kb DNA ladder (Gibco BRL). 

tinct characteristic of these mitotic chromosomes was their 
highly disorganized or scattered nature, a feature so predominant 
that no specific stages of the normal mitosis could be ascribed to 
most of the affected mitoses. Another outstanding feature was 
the high prevalence of cells with giant chromosome comple-
ments several times that of the normal diploid mouse genome. 

The above results indicate that a severe manifestation of 
Incenp deficiency has occurred in the day 3.5 embryos. To 
investigate earlier events related to this deficiency, day 2.5 
embryos were harvested from heterozygote crosses and ana-
lysed. The results clearly indicated expression of the Incenp 
gene-disrupted phenotype in these earlier embryos. Normal 
embryos contained an average of 16 uniformly sized nuclei 
(Fig. 5a). Examination of affected embryos, which comprised 
21% (9 of 43) of the total embryos analysed, indicated a 
smaller number of cells per embryo and the presence of nuclei 
of varying sizes (Fig. 5b—f), including micronuclei, apparently 
normal sized nuclei and greatly enlarged (up to 10x normal) 
nuclei that also contained a drastically increased number of 

Figure 4. Chromosome and  nuclear  morphology of Giemsa-stained day 3.5 
embryos from +/- x +/- crosses. (a) Normal embryo showing relatively uni-
form nuclear sizes and a normal metaphase. (b-d) Individual -/- embryos. 
Note the presence  of  micro-  and  macronuclei, lobular nuclei, mitotic cells with 
greatly higher than normal chromosome complements (examples are indicated 
by boxed insets) and macronuclei with large numbers of nucleoli (dark staining 
nuclear organelles). Magnification x400. 

nucleoli (see Fig. 5b for some representative examples of each 
of these events). An  unusual  feature of these nuclei was the 
appearance of 'nuclear bridges' in a substantial proportion of 
the cells (arrows in Fig. 5). Such bridges ranged from  a  thin 
band  to  a  much  broader  region  connecting two nuclei, corre-
sponding presumably to  different  degrees of manifestation of 
an abnormal process of nuclear reformation. No nuclear 
bridges were ever observed in the normal embryos, where 
complete segregation of  sister  chromatids to the two poles has 
ensured resolute nuclear reformation around each of the two 
fully separated sister chromatid complements. As with the day 
3.5 embryos, the  mitotic  chromosomes of day 2.5 embryos 
were often more condensed, disorganized and present in num-
bers greater than the usual diploid complement (Fig. 5e). 

Tubulin immunocytochemistry of day 2.5 and day 3.5 
embryos 
Figure 6a shows results for the Mununostaining of a normal day 
2.5 embryo with anti-13-tubulin antibody. The eight cell embryo 
contained regular midbodies reminiscent of completed mitotic 
divisions. In contrast, such midbodies were undetected in nine of 
nine similarly stained  day  2.5 morphologically abnormal, 
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Figure 5. Chromosome and nuclear morphology of Giemsa-stained day 2.5 
embryos from +/— x -0— crosses. (a) A normal 16 cell embryo showing uniform 
nuclear structures. (64) Affected embryos showing micronuclei and nuclei of 
varying sizes. Arrows point to nuclei with 'bridges'. Open arrowheads show 
selected examples of micronuclei. Solid arrowheads point to the dark staining 
polar bodies before they become degraded in subsequent cell divisions. Mag-
nification x400. 

presumed Incenp null embryos, suggesting that mitosis failed to 
reach telophase/cytolcinesis, during which spindle midbodies 
would normally form. Other abnormalities observed in these 
affected embryos included binucleated cells, irregular cell mor-
phology, reduced cell number, micronuclei and nuclear bridging 
(Fig. 6b and c). A network of 13-tubulin formed around the cells 
in both the normal and affected embryos. 

Figure 7a shows immunostaining results for a normal day 3.5 
embryo. The expected midbodies, spindle structures for 
metaphase/anaphase and cellular microtubule network were 
detected. Affected embryos at the same developmental stage 
showed severe abnormalities, including a total absence of mid-
bodies (in 13 of 13 embryos), giant cells with irregular nuclei, 
micronuclei, multiple (up to 10) spindle poles, large vacuoles 
and highly abnormal bundling of spindle fibres into giant 
strands (Fig. 7b—d). 

DISCUSSION 

Previous studies involving overexpression of truncation 
mutant proteins in cell culture have suggested roles for 
DICENP in prometaphase chromosome congression and cyto-
lcinesis (26). A significant drawback of these earlier studies is 

the presence of the endogenous INCENP protein whose effect 
cannot be unequivocally dissociated from the range of pheno-
types observed. Other studies involving microinjection of anti-
centromere antibodies into cultured cells (31) suffer similar 
limitations in that the specificity of antibodies and potential 
steric effects of the antibody—antigen complex may be difficult 
to ascertain. To minimize these difficulties, we have employed 
homologous recombination to create an lncenp gene knockout 
in a mouse. Our knockout strategy was designed to produce 
premature termination of the Incenp protein which, because of 
the removal of all the putative nuclear localization motifs and 
essential domains for chromosome and microtubule binding 
(26), should neither be able to enter the nucleus to interact with 
the chromosomes and centromeres nor evoke any significant 
Incenp function. The apparently normal phenotype seen in the 
heterozygous ES cell lines and mice demonstrates directly that 
the targeted mutation does not exert a dominant-negative 
effect. We infer that the severe phenotype seen in the 
homozygous knockouts must arise from null mutations specif-
ically related to the depletion of Incenp proteins. 

Cellular effect of Incenp mutation 
Analysis of the nuclear details of lncenp null embryos enables 
the likely progression of events underlying the phenotype to be 
formulated. Incenp deficiency manifests initially in the day 2.5 
embryos as a mitotic missegregation problem that results in the 
lagging of a small number of chromosomes (leading to a few 
micronuclei), with the bulk of the chromosomes still able to 

.migrate to the poles in anaphase, although aberrant migration 
will begin to cause an uneven distribution of chromatin at the 
poles and result in nuclei of varying sizes. During these early 
events, mitosis proceeds essentially to completion, albeit 
imperfectly, and results in unambiguous nuclear membrane 
reformation around each of  the two fully separated chromatin 
masses during telophase, before cytokinesis ensues to achieve 
cell cleavage. As any potential maternal cytoplasmic protein 
and/or Incenp mRNA and its immediately transcribed products 
rapidly dwindle after one to two cell divisions (evident from 
manifestation of a severe phenotype in day 2.5 embryos), chro-
mosomal segregation becomes increasingly aberrant. Sister 
chromatid masses may still enter into initial polar separation 
but complete separation to the poles is not achieved. As the 
chromosomes tether around the spindle midzone, presumably 
in an unorganized manner (evident from failure to observe 
metaphase congression or distinct anaphases), progression of 
mitosis falters and becomes significantly delayed or arrested 
(evident from increased mitotic index). Eventually, a default 
telophase (evident from failure of midbody formation) occurs 
leading to aberrant karyokinesis during which a nuclear mem-
brane reforms around the full chromatin complement and 
extends across the two poorly or non-separated chromatin 
masses. Subsequently, cytolcinetic furrow formation may be 
initiated into the extended nuclei or nuclear bridges. Such an 
attempt becomes increasingly unsuccessful (evident from the 
giant chromosome complement; discussed below) and leads to 
large cells with greatly increased nuclear contents. 

Two possible explanations may account for a failure in 
cytolcinesis in the incenp-disrupted embryos: the first implicates 
an underlying direct biochemical cause, while the second involves 
a physical barrier that prevents cytolcinesis. The first possibility 



410 

a 

Human Molecular Genetics, 1999, Vol. 8, No. 7 1151 

Figure 6. Tubulin immunocytochemistry of day 2.5 embryos from +/— x +1— crosses. (a) A normal eight cell  embryo  showing four midbodies (arrows). (b) An 
affected embryo showing five cells of which the three larger cells were either binucleated or contained nuclear  bridges  (arrows). (c) An affected embryo showing 
binucleated cells or cells with nuclear bridging (arrows) and micronuclei (arrowheads). (Left) Composite images;  (middle)  DAP1 staining of DNA; (right)13-tubulin 
staining. PB, polar body. Magnification x630. 

was suggested by Cook et al. (19), who proposed a direct involve-
ment of INCENP in cytolcinesis. These investigators have demon-
strated that the protein is one of the earliest known polypeptides to 
be present in the presumptive cleavage furrow and that, in addition 
to the stem body matrix, the protein is closely associated with the 
cytoplasmic face of the plasma membrane within the cleavage fur-
row (18). Molecular analysis has demonstrated that INCENP 
associates with the centromere during metaphase and with the 
central spindle during anaphase, while overexpressed INCENP 
binds cytoplasmic microtubules (21). Overexpression of an 
1NCENP truncation mutant that targets to centromeres but lacks 
the microtubule association region and other C-terminal elements 
interferes with both prometaphase chromosome alignment and the 
completion of cytokinesis (26). In addition, cells expressing an 
artificial chimeric protein in which a truncated ENCENP contain-
ing the spindle midzone targeting and microtubule-binding 
domains is tethered to the centromem through a fusion with the 
centromere-binding motif of the centromere protein CENP-B 
results in a block in cytokinesis (25). Interestingly, cells express-
ing such a chimeric protein show no evidence of prometaphase 
disruption or lagging chromosomes. 

In contrast to these  studies,  our data, unencumbered by the 
persistence of endogenous normal INCENP or any side-effects 
that overexpression of  mutant  or artificial heterologous proteins 
may have, point to an over-riding primary role of Incenp in 
proper chromosome segregation. We have demonstrated that 
deficiency of this protein  leads  promptly to segregation errors 
that manifest initially in chromosome lagging (micronuclei for-
mation) but rapidly deteriorates into a catastrophic breakdown in 
the polar movement of chromatin. This leads to the tethering or 
stalling of chromatin at  the  spindle midzone, followed by 
untimely reformation of an extended nuclear membrane around 
the full complement of non-separated or poorly separated chro-
matin, resulting in enlarged nuclei. We propose that these 
enlarged nuclei and the excessive chromatin material that accu-
mulate across the presumptive cleavage furrow create a physical 
barrier preventing cytolcinesis from proceeding to completion. 
Using a careful light and  electron  microscopy study, Mullins and 
Biesele (32) have reported  that  where lagging chromatin is 
trapped in the midbody  in the  intercellular bridge, cytolcinesis 
proceeds normally until  it  encounters the chromatin-containing 
midbody, at which point  cytolcinesis  fails, followed by regres- 
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Figure 7. Tubulm immunocytochemistry of day 3.5 embryos from +/— x +/— crosses. (a) A normal 32-64 cell embryo showing regular nuclei, metaphase/anaphase 
spindle structures (arrows) and midbodies (arrowheads). (b) An affected embryo with three giant nuclei. Two of the nuclei were in interphase. with one of these 
nuclei showing an unusually high level of spindle aggregation or bundling around the chromatin material. The third nucleus was in mitosis and showed 8-16 
spindle poles with interconnecting fibres; such multiple spindle poles have originated through repeated rounds of  failure  of the divided centzioles to be distributed 
to daughter cells due to defective cytokinesis. (c and d) Two affected embryos showing vacuolation and four highly irregular giant nuclei in (c) and a single 'fused' 
giant cell/nucleus in (d). A striking feature of these embryos  is  the presence of a highly extended and continuous tubulin cord (arrow) formed presumably by exten-
sive microtubule bundling and/or elongation; compare the enormous (>20x) size of these giant  tubulin  cords with  the  spindle midbody structures shown in (a). 
Some of the features described for the different embryos in this figure and in Figure 6 may not be immediately apparent  from  the two-dimensional pictures captured 
with our CCD camera system but the described features were based  on  direct microscopic assessment  of  three-dimensional images. Magnification x630. 

sion of the furrow and the persistence of the  midbody.  Our 
observation of a high prevalence of nuclear bridges is consistent 
with failed and regressed cytokinesis. Furthermore, it appears 
likely that in our /ncenp-disrupted cells, a combination of the 
vast amount of chromatin tethering at the spindle midzone and 
the reformation of a highly unusual intercellular nuclear struc-
ture will constitute a significantly greater barrier to block cyto-
lcinesis than that described by Mullins and Biesele (32). 

Comparison with Cenpc knockout 

It is of interest to compare and contrast the phenotype observed 
for the Incenp knockout with that previously described for the 
embryonically lethal Cenpc knockout (28). This comparison 
highlights a more severe phenotype for the lncenp gene knock-
out, since mitotic problems are already well advanced  by  day 

2.5, while  similar  staged  Cenpc  knockout embryos still appear 
relatively normal. Such a phenotypic difference may in part be 
due to the fact that in addition to the maternal mRNA  pool  pro-
vided by the  egg cytoplasm,  both the maternal and  paternal 
kinetochores are also likely  to  contribute to the recycling of the 
constitutive Cenpc protein through the different cell division 
cycles. In contrast, the chromosomal passenger Incenp protein 
is known to be discarded in the cell midbody at the end of cyto-
kinesis during each division cycle (19) and would therefore be 
rapidly depleted from either the maternal and paternal kineto-
chores as well as during  successive  embryonic cell divisions. 

In both Incenp and  Cenpc  gene disruptions, early mitotic 
problems result in the formation of micronuclei and provide 
evidence for errors in  anaphase  chromosomal segregation in 
which missegregated or  lagging  chromosomes become encap- 
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sulated during the nuclear reformation step in telophase, prior 
to cytokinesis. The increased mitotic indices in the day 3.5 
embryos of lncenp and Cenpc gene disruptions compared with 
those of normal embryos indicate that mitotic progression has 
been delayed or arrested. Again, the delay/arrest phenotype is 
significantly more severe for Incenp deficiency (mitotic index 
20% compared with 3.9% in unaffected embryos) than for a 
defect in Cenpc (mitotic index 6.9% compared with 3.6% in 
normal embryos; 28). Mitotic delay or arrest can result from a 
metaphase checkpoint that serves to delay anaphase onset by 
monitoring a phosphorylation-dependent signal-generating 
mechanism at the kinetochore for proper bipolar microtubule 
attachment and metaphase congression (33). The observed 
higher mitotic index suggests that incenp-disrupted cells may 
have a greater difficulty in overcoming this checkpoint control 
compared with the Cenpc mutants and/or that additional 
mitotic blocks may be in place. Whilst we cannot rule out the 
possibility of an extended checkpoint arrest in our Incenp-
disrupted cells, the observed appearance of a high prevalence 
of cells with large chromosome complements, giant nuclei and 
highly abnormal nuclear bridges that are not seen in the Cenpc 
knockouts provides a compelling suggestion that additional 
mitotic blocks may operate (see below). It is also interesting 
that a noticeably lower prevalence of micronuclei is seen in the 
/ncenp-disrupted cells compared with the Cenpc-disrupted 
cells, suggesting that missegregation that results in the lagging 
of only a small number of chromosomes occurs less frequently 
in the lncenp knockout cells. In addition, the incenp-disrupted 
embryos show relatively more micronuclei at day 2.5 com-
pared with day 3.5, with the day 3.5 embryos giving a dispro-
portionally higher representation of macronuclei and cells with 
larger than normal chromosome complements. 

Implications for Mcenp function 
It is useful to speculate on the mechanisms responsible for the 
observed segregation failure in the incenp-disrupted mice. Early 
manifestation of the mutation in the form of chromosome lagging 
can result from a possible defect in the lcinetochore complex or 
spindle integrity and function. The former will likely be the case 
for the Cenpc-disrupted mice, since this protein is a constitutive 
component of the kinetochore, a defect in which is expected to 
lead to defective microtubule capture or binding, causing 
improper chromosomal segregation, chromosome lagging and 
micronuclei formation. The observed distinct differences in the 
subsequent manifestation of the Incenp knockout, on the other 
hand, suggest that an Incenp defect could specifically affect 
microtubule dynamics rather than the centromere itself. This sug-
gestion is consistent with the absence of spindle midbody struc-
tures and, in particular, the highly aberrant bundling of spindle 
fibres into gigantic spindle 'cords' in a significant proportion of 
the severely affected embryos (Fig. 7c and d). Previous studies 
have also demonstrated the spindle microtubule-binding property 
of this protein and the relocation of the protein from the centro-
mere onto microtubules at the metaphase plate where spindle 
fibres overlap during late metaphase/early anaphase (18,19). A 
defect in microtubule function would not only have an immediate 
effect on prometaphase movements as proposed previously (26), 
but could lead to impaired chromatid separation and polar migra-
tion of chromosomes during anaphase A. Such a defect could 
have an even more severe effect on the subsequent step of spindle 

elongation in anaphase B, during which the distance between the 
poles is increased. Finally, in addition to our proposed primary 
role of Incenp in modulating spindle dynamics and chromosomal 
segregation, the possibility that the protein may have a further 
downstream biochemical effect on cytolcinesis as suggested by 
earlier dominant-negative mutant studies cannot be ruled out. 
Alternatively, the observed final relocation of INCENP to the pre-
sumptive cleavage furrow structures and the midbody may not 
reflect any active functional role of INCENP in cytokinesis but 
rather simply reflect a mode of delivery to a destination for 
destruction or clearance at the end of each cell cycle. Further stud-
ies using our knockout system and other approaches should shed 
more light on these possibilities. 

MATERIALS AND METHODS 

Restriction mapping of mouse Incenp and construction of 
targeting vector 
A chicken INCENP cDNA sequence (GenBank accession no. 
Z25420) was used to identify a mouse INCENP cDNA clone 
(GenBank accession no. AA014535) (23). A fragment from this 
clone was used to screen a 129/Sv mouse genomic phage library 
from which a 14 kb clone designated PIN06 was isolated. Map-
ping revealed that the clone contained four exons corresponding to 
the mouse cDNA sequence with the start site for protein transla-
tion located within exon 2 [Fig. la(i)J. For the construction of a 
gene targeting vector, a 25 kb KspI—Hindffi fragment containing 
a portion of exon 1 was cloned into Bluescript II KS (+). A 
3.8 kb HindlII—Xhol fragment containing exons 2-4 was fur-
ther cloned into the HindlIl site of this construct to form a 
genomic contig of 6.3 kb. An internal 600 bp HindIfl fragment 
within intron 2 was deleted from the construct to facilitate sub-
sequent screening. An IRES/neoR element [obtained from 
pGT1.8Zin; a gift of Peter Mountford, Monash Medical Cen-
tre, Melbourne, Australia (27)] was cloned into the EcoRI site 
present within exon 3 [Fig. la(ii)1 at a site that was expected to 
cause a premature termination of Incenp protein synthesis at 
amino acid 47 following replacement of the wild-type allele. 

Generation of targeted ES cells and mice 
The targeting vector was linearized at the 5' end by restriction 
digestion with Kspl. The mouse ES cell lines 129/1 and W9.5 
were used to generate homologous recombination events. 
Approximately 108  cells were electroporated with 50 jig of 
linearized construct in each transfection experiment using a 
single pulse from a Bio-Rad (Hercules, CA) Gene Pulser at 
0.8 kV, 3 prFD, 0. Q. Cells were plated onto mitomycin C-
inactivated STO-neoR feeder cells (34) in the presence of 
103  U/ml LW (AMRAD-Pharmacia, Melbourne, Australia) 
and selected 24 h later in 0418 (Gibco BRL, Gaithersburg, 
MD) at an active concentration of 300 or 250 gg/m1 for 129/1 
and W9.5 cells, respectively. NeoR colonies were grown for 5— 
8 days before genomic DNA was extracted and digested with 
Acct. A 1.1 kb EcoRI—Kspl genomic DNA fragment 5' of the 
targeting region [Fig. 1 a(i)] was used as a probe in Southern 
blot hybridization to identify correct targeting events [Fig. 
la(iii)J. 

For chimeric mouse production, W9.5- and 129/1-derived 
targeted cell lines were microinjected into day 3.5 host 
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C57BL/6 blastocysts and transferred into pseudopregnant mice 
following standard methods. Chimeric mice were identified by 
their coat color and were crossed with C57BU6 mice to test for 
germline transmission by heterozygote production. Hetero-
zygous mice were intercrossed to produce homozygous 
/ncenp-disrupted mice. 

Genotyping of mouse tail DNA 

Mouse tail biopsies were taken from 3-week-old animals and 
lysed overnight in lysis buffer containing 100 tnM NaCl, 
50 rnM Tris, pH 7.5, 10 mM EDTA, 0.5% SDS and 0.2 mg/ml 
proteinase K. Insoluble materials such as hair and bone were 
pelleted and the supernatant subjected to one phenol extraction 
and one chloroform extraction before the DNA was ethanol 
precipitated and resuspended in TE buffer. An aliquot of 1 IA 
of this DNA solution was used in a serniduplex PCR strategy 
as presented in Figure la(i and iii), using 1 p.M each of the 
following three primers: TN1 (5'-CCTGGAC1TTGTCT-
GCAATG), IN2 (5'-TGTTAGACACCCGCCTCTTC) and 
IN3 (5 .-C'TTCCTCGTGCTTTACGGTATC). Primers IN I and 
IN2 gave an expected product of 532 bp for the wild-type 
allele, while IN2 and IN3 gave an expected 616 bp product for 
the targeted allele. PCR was performed using Perkin Elmer 
(Foster City, CA) PCR buffer, 0.05 U/g1 Perkin Elmer Taq 
polymerase, 200 pM dNTPs (Boehringer Mannheim, 
Mannheim, Germany), 2 mM MgCl 2, using 30 cycles at 94°C 
for 1 min, 58°C for 2 min and 72°C for 2 min. 

Genotyping of day 8.5 embryos 

Embryos from heterozygote matings were dissected out of 
their uterine implantation sites into phosphate-buffered saline 
(PBS) at day 8.5 of gestation. The embryos were rinsed in M2 
medium (Sigma, St Louis, MO) and three changes of PBS, 
incubated in mouse tail lysis buffer at 55°C for 4 h and 
extracted for DNA as described above. Glycogen was used as 
an inert carrier in ethanol precipitation to maximize DNA 
recovery. The DNA was resuspended in 20 p.1 of TE and 5 p.1 
of this solution was used in the semiduplex PCR strategy 
described for tail DNA. 

Genotyping of day 3.5 and cultured embryos 

Heterozygous mouse breeding pairs were examined daily for 
vaginal plugs. The day of plug formation was defined as day 
0.5 of embryonic development. At 3.5 days, female mice were 
killed and their uterus and oviducts were dissected and flushed 
with M2 medium. A subset of the embryos was individually 
placed in 1 ml tissue culture wells in ES cell medium for mon-
itoring development in culture. After 6 days of daily observa-
tion, the embryos were washed with PBS, trypsinized, rinsed in 
PBS and pelleted by centrifugation at 150 g. The samples were 
frozen at —20°C until use in PCR. Cells were resuspended in 
15 pl PBS to which was added 15 1.1.1 of a lysis solution of 
200 mM KOH and 50 rnM dithiothreitol. Samples were 
incubated at 65°C for 10 mm followed by addition of 15 p.1 of 
a neutralization solution (900 mM Tris, 300 mM KG, 200 rnM 
HO). To enhance PCR detection, the extracted DNA was first 
subjected to a whole genome preamplification step. An aliquot 
of 45 ill of a master PCR mix was combined with 15 pl of the 
lysed sample to give the following concentrations of the 

remaining components: 100 ig/m1 gelatin, 2.5 mM MgC1 2 , 
10mM Tris, pH 8.3, 100 p.M dNTPs and Taq polymerase. The 
preamplification PCR was performed by repeated primer 
extensions using 15 p.M of a mixture of 15 base random oligo-
nucleotides as described previously (30). 

A second subset of day 3.5 embryos was rinsed twice in M2 
medium, photographed and rinsed twice again in PBS, before the 
embryos were individually placed in thin-walled 0.2 ml PCR 
tubes (Perkin Elmer) and 5 gl of TE was added. Lysis and whole 
genome preamplification was carried out in the same reaction 
tube. 

Targeted allele-specific PCR was performed according to 
the strategy presented in Figure 3a, using 2 p.1 of preamplifica-
tion product and the primer pair neol (5'-GCAGGATCTCCT-
GTCATCTCAC) and neo2 (5'-GATCATCCTGATCGACAA-
GACC), which gave a product of 175 bp. The PCR conditions 
were 94°C for 1 min, 59°C for 2 min and 72°C for 2 min for 30 
cycles. Concentrations of reagents were the same as in the 
strategy in Figure la, except the final concentration of MgCl 2  
was 1.5 mM. Presence of the wild-type allele was investigated 
using the primer pair Int8 (5'-GCTGA'TITCACA-
GAGCTTTGG, derived from intron 2 sequence) and Int9 [5'- 
CATCAGCTCTGGCTCATTGC, derived from exon 3 at 
nucleotide position 260 of the mouse cDNA (GenBank 
accession no. AA014535)], which gave a 168 bp product. PCR 
was performed as described for the neol/neo2 primer pair 
except that MgCl2  was present at 2 mM, annealing was at 60°C 
and 35 cycles were performed. 

Embryo morphology studies 
Embryos were harvested at day 2.5 or 3.5 as described above, 
photographed, washed in 0.9% trisodium citrate and trans-
ferred to fresh trisodium citrate. After incubation for at least 
4 min, embryos were transferred by micropipettes onto clean 
slides in a minimal volume. Embryos were fixed and spread 
onto the slides using three floods of methanol:acetic acid (3:1) 
fixative. Slides were stained in Giemsa solution for 15 min and 
rinsed for 1 min in PBS. After drying, slides were mounted in 
DEPEX (Crown Scientific, Melbourne, Australia) and viewed 
under x400 magnification under a standard light microscope. 

Immunocytochemistry of embryos 
Embryos were harvested at day 2.5, rinsed in M2 medium and 
the zona pellucida was removed using acid Tyrode's solution. 
Embryos were rinsed again and transferred to —10 p.1 of M2 
medium in the wells of a Terasaki dish, after which the 
embryos were transferred to wells containing tnicrotubule sta-
bilizing buffer (buffer M) comprising 25% glycerol, 50 rnM 
imidazole HCI, pH 6.8, 50 rnM KC1, 0.5 InM MgC1 2 , 0.1 triM 
EDTA, 1 tuM EGTA, 1 mM fi-mercaptoethanol, 1% Triton X-
100 and 0.2 niM phenylmethylsulfonyl flouride (PMSF) (35) 
for 10 min. They were then removed in a minimal volume of 
buffer M and placed onto polylysine-coated slides. Attachment 
of each embryo to a slide was facilitated by gently sweeping 
the micropipette into the solution and across the surface of the 
slide to reduce the volume of liquid around the embryo. 
Embryos were overlayed with a modified buffer M (containing 
no 13-mercaptoethanol, Triton X-100 or PMSF) and were fixed 
for 10 mm at room temperature by the gentle addition of ice-
cold methanol. Slides were rinsed in PBS containing 0.1% 
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Triton X-100 (PBS-TX) and blocked using PBS-TX contain-
ing 3 mg/ml BSA (PBS-TX-BSA) for 90 min at 37°C. Mouse 
monoclonal anti-I3-tubulin (Boehringer Mannheim), diluted 
1:25 in PBS containing 3 mg/nil BSA (PBS-BSA), was applied 
and slides incubated at 37°C for 90 min. Slides were then 
washed three times in PBS-TX-BSA, Texas red-conjugated 
goat anti-mouse IgG (Jackson Laboratories, West Grove, PA) 
was applied and slides were incubated and washed as 
described above. DNA was stained by mounting in Vectashield 
antifade containing 0.2 i.tg4t1 4,6'-diamidine-2-phenylindole. 
Images were captured by a cooled CCD camera fitted to a 
Zeiss Axioskop fluorescence microscope using x63 and x100 
objectives and IPlab software. 
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maps to the distal region of Chromosome 7 by 
interspecific backcross analysis 
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Materials and methods 

Probe type: 437-bp genomic fragment of mouse Bub3 
Proof of Authenticity: A 437-bp genomic fragment was amplified from 

129Sv mouse genomic DNA using primer pairs B1 (5'-AGAAACGTTGCT-
TAGGCGG-3') and B2 (5'-CTTGAGCCTCATGGAATTGG-3'). Nucleo-
tide positions 1-26 and 282-437 of the PCR fragment are 100% homologous 
to nucleotides 24-49 and 50-205 of the mouse Bub3 cDNA sequence (Gen-
bank Accession No. U67327), respectively. The intervening sequence be-
tween nucleotide positions 27-281 of the 437-bp genomic fragment is the 
first in tron. 

Method of mapping: The 437-bp PCR fragment was used as a probe on 
Southern blots to identify an informative Mspi polymorphism around the 
Bub3 locus of C57BL/6J and Spret/Ei mouse strains. The enzyme revealed 
bands of 1.4 kb in Spret/Ei and 3.4 kb in the C57BL/6J strain. This polymor-
phism was used to genotype Southern blot filters with DNA from interspe-
cific backcross panel (C57BL/6JEi x SPRET/Ei) Fl x SPRET/Ei (known as 
The Jackson BSS panel) (Rowe et al., 1994). Progenitor DNA and filters were 
purchased from The Jackson Laboratory, Bar Harbor, Maine. Genomic 
DNA and Southern blots were analysed as described previously (Fowler et 
al., 1997). 

Results 

Inheritance of the homozygous or heterozygous SPRET/Ei 
1.4-kb fragment was typed in 94 progeny DNA and analysed. 
The observed pattern indicated linkage to the Hmx3 gene and 
several markers on the distal region of Chromosome 7, includ-
ing D7Ertd558e and D7Xrf281 (0.00-3.8 cM, 95% limits; 
Fig. I). The mapping of Bub3 to the distal region on Chromo-
some 7 conforms with the expected mouse/human syntenic 
region, since human BUB3 has been localised to chromosome 
10q24 (Seeley et al., 1999) and 10q24 q26 (Cahill et al., 
1999). Beside Bub3, there are ten genes that have homology 
with human chromosome 10q24 —> q26 and the distal region of 
mouse Chromosome 7 (MGD), including the Cyp2e1 gene 
(68.4 cM region, MGD composite map) that was shown to have 
linkage with Bub3 (Fig. 1) in this study. 

Accessible online at: 
www.karger.comijournalsiccg 

Rationale and significance 

Human mitotic spindle checkpoint BUB3 gene encodes a 
37-kDa protein (Taylor et al., 1998) and is a member of the 
BUB (budding uninhibited by benzimidazole)-family of genes, 
first identified in Saccharomyes cerevisiae (Hyot et al., 1991). 
BUB3 has been shown to interact with BUB I in mammalian 
cells and like BUB I, the protein localises to the kinetochore 
before chromosome alignment takes place on the mitotic spin-
dle during cell division (Roberts et al., 1994; Basu et al., 1998; 
Taylor et al., 1998; Martinez-Exposito et al., 1999). Mutations 
of the BUB1 gene have been identified in colon cancer cell lines 
that display an altered mitotic checkpoint status as well as chro-
mosome instability phenotype (Cahill et al., 1998). BUB3 has 
been mapped to human chromosome 10q24 (Seeley et al., 
1999) and 10q24 —> q26 (Cahill et al., 1999). Chromosome dele-
tions in the 10q24 region appear in cancers from a number of 
tissues suggesting that BUB3 may function as a tumour sup-
pressor gene (Seeley et al., 1999). Here we report the use of a 
mouse genomic fragment to map the chromosome position of 
the mouse Bub3 gene. 
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Fig. 1 . Map figure (a) and Haplotype figure (b) from The Jackson BSS 
backcross. (a) The distal end of Chromosome 7 with loci linked to Bub3. The 
map is depicted with the centromere toward the top. A 3-cM scale bar is 
shown to the right of the figure. Loci mapping to the same position are listed 
in alphabetical order and not all BSS markers linked to Bub3 are shown on 
this figure. Missing typings were inferred from the surrounding data where 
assignment was unambiguous. Raw data for The Jackson BSS panel strain 
distribution patterns (SDPs) were obtained from The Jackson Laboratory 
(http//wwwjax.org/resources/documents/cmdata)  and date from July 1999. 
(b) Haplotype figure showing the distal end of Chromosome 7 with loci 
linked to Bub3. Loci are listed in order with the most proximal at the top. The 
black boxes represent the C57BL6/Ei allele and the white boxes the SPRET/ 
Ei allele. The number of animals with each haplotype is given at the bottom 
of each column of boxes. The percent recombination (R) and the standard 
error (SE) for each R value were calculated using the Map Manager Program 
(Manly 1993) and are given to the right of the figure. Missing typings were 
inferred from surrounding data where assignment was unambiguous. 

Jackson BSS Chromosome 7 
SE 

	

2.13 
	

1.49 

	

3.19 
	

1.81 

	

1.06 
	

1.06 

	

2.13 
	

1.49 

	

3.19 
	

1.81 

References 
Basu J, Logarinho E, Herrmann S, Bousbaa H, Li Z, Chan GKT, Yen TJ, Sunkel CE, 

Goldberg ML: Localization of the Drosophila checkpoint control protein Bub3 to 
the kinetochore requires Bub 1 but not Zw10 or Rod. Chromosoma 107:376-385 
(1998). 

Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JKV, Markowitz SD, Kinzler KW, 
Vogelstein B: Mutations of mitotic checkpoint genes in human cancers. Nature 
392:300-303(1998). 

Cahill DP, da Costa LT, Carson-Walter ER, Kinzler KW, Vogelstein B, Lengauer C: 
Characterisation of MAD2B and other mitotic checkpoint spindle genes. Ge-
nomics 58:181-187 (1999). 

Fowler KJ, Newson AJ, MacDonald AC, Kalitsis P, Lyu MS, Kozak CA, Choo KHA: 
Chromosomal localization of mouse Cenpa gene. Cytogenet Cell Genet 79:298- 
301 (1997). 

Hyot MA, Totis L, Roberts BT: S. cerevisiae genes required for cell cycle arrest in 
response to loss of microtubule function. Cell 66:507-517 (199 I). 

Manly KF: A Macintosh program for all of our data management. Mammal Genome 
4:303-313(1993). 

Martinez-Exposito MJ, Kaplan KB, Copeland J, Sorger PK: Retention of the Bub3 
checkpoint protein on lagging chromosomes. Proc natl Acad Sci, USA (in press 
1999). 

Roberts BT, Farr KA, Hoyt MA: The Saccharomyces cerevisiae checkpoint gene 
BUB I encodes a novel protein lcinase. Mol Cell Biol 14:8282-8291 (1994). 

Rowe LB, Nadeau JH, Turner R, Frankel WN, Letts VA, Epping if ,Ko MSH, Thur-
ston Si, Birkenmeier EH: Maps from two interspecific backcross DNA panels 
available as a community genetic mapping resource. Mammal Genome 5:253- 
274 (1994). 

Seeley TW, Wang L, Zhen JY: Phosphorylation of human MAD1 by the RUB I lcinase 
in vitro. Biochem biophys Res Comm 257:589-595 (1999). 

Taylor SS, Ha E, McKeon F: The human homologue of Bub3 is required for kineto-
chore localization of Bubl and a Mad3/Bubl-related protein kinase. I Cell Biol 
142:1-11 (1998). 

92 	 Cytogenet Cell Genet 87:91-92 (1999) 



109 

PUBLICATION 8 

K.J. FOWLER, D.F. HUDSON, L. SALAMONSEN, S. EDMONDSON, 
E. EARLE, M.C. SEBSON AND K.H.A. CHOO (2000) 

UTERINE DYSFUNCTION AND GENETIC MODIFIERS IN CENTROMERE 
PROTEIN B-DEFICIENT MICE. 

GENOME RESEARCH, 10: 30-41 AND FRONT COVER. 



rio 

• k A 
nua 

kk, 	

ISSN 1088-9051 

i a   116 
ESEARC 

Volume 10 Number 1 

entromere Protein B-deficient Mice and Uterine Dysfunction 	Evolutio 
of Bacterial Replicative Helicase DnaB 	Polycystic Kidney Disease 

Severity Modifiers in Mice 	ACAPELLA-1K, A Submicroliter Automated 
Fluid Handling System 	BAC Libraries for Mouse Genome Sequencin 

Cold Spring Harbor 
Laboratory Press 

Cover. Immunofluorescence analysis of CENP-B binding on centromeric regions of mouse metaphase 
chromosomes in wild-type and revertant controls for Cenpb-deficient mice studies. The work shows that 
Cenpb-deficient mice have uterine dysfunction and implicates the presence of genetic reproductive 
modifiers (Fowler et al, 20008). 



Letter 	 

Uterine Dysfunction and Genetic Modifiers 
in Centromere Protein B-deficient Mice 
Kerry J. Fowler,' Damien F. Hudson,' Lois A. Salamonsen, 2  
Stephanie R. Edmondson,' Elizabeth Earle,' Mandy C. Sibson,' and 
K.H. Andy Choo" 
'The Murdoch Institute, Royal Children's Hospital, ParkviIle 3052, Australia; 'Prince Henry's Institute of Medical Research, 
Clayton 3168, Australia; 3Centre for Hormone Research, Royal Children's Hospital, Parkville 3052, Australia 

Centromere protein B (CENP-B) binds constitutively to mammalian centromere repeat DNA and is highly 
conserved between humans and mouse. Cenpb null mice appear normal but have lower body and testis weights. 
We demonstrate here that testis-weight reduction is seen in male null mice generated on three different genetic 
backgrounds (denoted RI, W9.5, and C57), whereas body-weight reduction is dependent on the genetic 
background as well as the gender of the animals. In addition, Cenpb null females show 31%, 33%, and 94% 
reduced uterine weights on the RI, W9S, and C57 backgrounds, respectively. Production of "revertant" mice 
lacking the targeted frameshift mutation but not the other components of the targeting construct corrected 
these differences, indicating that the observed phenotype is attributable to Cenpb gene disruption rather than a 
neighbouring gene effect induced by the targeting construct. The RI and W9.5 Cenpb null females are 
reproductively competent but show age-dependent reproductive deterioration leading to a complete breakdown 
at or before 9 months of age. Reproductive dysfunction is much more severe in the C57 background as Cenpb 
null females are totally incompetent or are capable of producing no more than one litter. These results 
implicate a further genetic modifier effect on female reproductive performance. Histology of the uterus reveals 
normal myometrium and endometrium but grossly disrupted luminal and glandular epithelium. Tissue in situ 
hybridization demonstrates high Cenpb expression in the uterine epithelium of wild-type animals. This study 
details the first significant phenotype of Cenpb gene disruption and suggests an important role of Cenpb in 
uterine morphogenesis and function that may have direct implications for human reproductive pathology. 

The centromere is essential for proper chromosome 
movements during mitosis and meiosis. An increasing 
number of centromere proteins have now been identi- 
fied but little is known about the precise roles of these 
proteins, especially in whole animals (Choo 1997a; 
Craig et al. 1998; Dobie et al. 1999). Recent gene dis- 
ruption studies in mice have produced null mutations 
in three different centromere proteins. Mutations in 
two of these proteins, Cenpc and Incenp, caused early 
embryonic lethality (Kalitsis et al. 1998; Cutts et al. 
1999). The third protein, Cenpb, was nonessential as 
null mice appeared healthy (Hudson et al. 1998; 
Kapoor et al. 1998; Perez-Castro et al. 1998) except for 
lower body and testis weights (Hudson et al. 1998). 

The biological role of CENP-B has intrigued re-
searchers for many years. CENP-B is a constitutive and 
abundant centromere-specific protein, and is highly 
conserved in mammals (Earnshaw et al. 1987a; Sulli-
van and Glass 1991; Haaf and Ward 1995; Bejarano 
and Valdivia 1996; Yoda et al. 1996). The protein 
shows an overall 96% nucleotide sequence similarity 
between humans and mouse, with a surprisingly high 

4CorrespondIng author. 
E-MAIL CHOOOCRYPTIC.RCH.UNIMELB.EDU.AU; FAX 61-3-9348 
1391. 

level (95% and 83%, respectively) of homology even in 
the 5' and 3' untranslated mRNA sequences (Eamshaw 
et al. 1987b; Sullivan and Glass 1991). The protein 
binds centromeric human a-satellite and mouse minor 
satellite DNA via a 17-bp consensus CENP-B box motif 
(Pietras et al. 1983; Rattner 1991). Through its dimer-
ization properties, the protein is thought to be in-
volved in the assembly of the large arrays of centro-
meric repeats (Muro et al. 1992; Yoda et al. 1992). The 
presence of this protein on both the active and inactive 
centromeres of mitotically stable pseudodicentric hu-
man chromosomes (Eamshaw et al. 1989; Page et al. 
1995; Sullivan and Schwartz 1995) indicates that 
CENP-B binding is not immediately associated with 
centromere activity. The absence of this protein on the 
Y chromosome in humans and mouse (Eamshaw et al. 
1987a), on the centromeres of African green monkey 
(known to be composed largely of a-satellite DNA con-
taining little or no binding sites for CENP-B) (Goldberg 
et al. 1996), as well as on an increasing number of 
human marker chromosomes containing analphoid 
neocentromeres (Voullaire et al. 1993; Choo 1997b; 
Depinet et al. 1997; du Sart et al. 1997), suggests that 
the role of this protein is dispensable. 

In this study, we have further investigated the 
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Figure 1 Strategies for production and screening of Cenpb disrupted and targeted 
control mice. (A) Intron less wild-type Cenpb gene showing the 1.8-kb coding region 
(solid box) and polyadenylation p(A) site. Recombination at the sites shown by the 
dotted crosses results in the incorporation of the targeting construct containing a 
translational frameshift oligonucleotide (D/TAA) at the 5' coding region and an IRES-
selectable marker cassette (shaded box) within the 3'-untranslated region (O. This 
recombination event results in the disruption of the Cenpb gene. An alternative recom-
bination event at sites indicated by the solid crosses, one of which is 3' of the 0/TM 
frameshift mutation, results in the introduction of the IRES-selectable marker cassette 
but not the frameshift mutation (u). This targeted allele served as a control for any 
positional effect the inserted IRES-selectable marker cassette may have on the pheno-
type of the mice. The Cenpb wild-type gene (+), null allele (—), and targeted control 
allele (o) allele were detected as described previously (Hudson et al. 1998) as 5.3 -, 0.7 - , 
and 7-kb bands (broken lines), respectively, by Dral (D) digestion and Southern blot 
hybridization using a 5'-probe (open box) (see Hudson et al. 1998). Once the hetero-
zygous ES cell lines carrying the + and o alleles were identified, they were used for the 
production of the targeted control (o/o) mice. Subsequent genotype screening for 
these mice was based on PCR analysis using primers B4top and Blcomp, which gave a 
281-bp product for the + allele, and primers Neal and B1comp which gave a 320-bp 
product for the o allele. (8) PCR analysis of mouse progeny from a +/o x +/o cross 
using a combination of the primers B4top, Blcomp, and Neol, showing the +/+ (lanes 
5,7), +/o (lanes 2,3,4,6), and o/o (lane 1) genotypes. 

Abnormal Uteri and Genetic Modifiers in Cenpb Mice 

Certpb null mice and present evidence that the pheno- 
type of these mice was specifically related to Cenpb 
gene disruption, excluding the possibility that the phe- 
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Blcanp 
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notype might have been due to a neighboring gene 
effect. We describe the influence of the null mutation 
on body and testis weights in different genetic back-

grounds and report a previously unrec-
ognized link between Cenpb deficiency 
and severe female reproductive dys-
function resulting from abnormality of 
the uterine epithelium. Our data fur-
ther indicate a role of genetic modifiers 
In this reproductive dysfunctional phe-
notype. 

RESULTS 
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Generation of Control Mice 
Carrying the Targeted Selectable 
Marker Cassette but not the 
Frameshift Mutation 
To confirm that the phenotype in 
Cenpb null mice was caused by Cenpb 
gene disruption, as distinct from a con-
sequence of the gene targeting event 
exerting an effect on neighboring 
genes, we generated mice (designated 
"targeted control" or o/o mice) carry-
ing the internal ribosome entry site 
(IRES)—neomycin selectable marker ele-
ment in the 3' noncoding region of the 
Cenpb gene but lacking the transla-
tional frameshift mutation caused by 
the 26-mer oligonucleotide designated 
D/TAA (5' -GTACCTAGGTATACT'TT-
TAAACTGAC-3') introduced into the 
5' coding region of the Cenpb gene in 
the null mice (Fig. 1A). This linker in-
troduced a Dral site, a frameshift mu-
tation, and three stop codons in all 
three reading frames, of which TAA 
was in-frame with Cenpb translation, 
disrupting not only the critical amino-
terminal 125-amino acid centromere 
DNA-binding domain, but also remov-
ing all remaining carboxy-terminal re-
gions including the dimerization do-
main (Hudson et al. 1998). Heterozy-
gous (+/o) embrionic stem (ES) cell 
lines carrying the targeted control al-
lele have been produced previously 
(Hudson et al. 1998). In this study, 
these cell lines were microinjected into 
C57BL/6 blastocysts to produce germ-
line chimeras. Through selective breed-
ing, wildtype (+/+), heterozygous (+/o), 
and homozygous targeted control (o/o) 
mice were generated and identified by 
PCR screening (Fig. 1B). The analysis of 
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128 offspring (generation 2) from 11 heterozygous 
breeding pairs gave the expected Mendelian ratio of 26 
+/+, 73+/0, and 29 o/o, suggesting no obvious viability 
bias among the different genotypes. 

Figure 2 shows inununofiuorescence analysis of fi-
broblast cell lines derived from +/+ and o/o littermates 
using an anti-CENP-B monoclonal antibody (Hudson 
et al. 1998). The results indicated the presence of 
Cenpb proteins on the centromeres in both the cell 
lines. The highly variable signals detected on different 
chromosomes were quite typical for this protein (Hud-
son et al. 1998). These results therefore established that 
Cenpb gene expression in the o/o animals was normal 
and had not been noticeably affected by the insertion 
of the IRES/selectable marker cassette. These animals 
therefore served as "revertant" controls for the Cenpb 
null mutation. 

Body and Testis Weights of Cenpb Null Mice 
on Different Genetic Backgrounds 
In a previous study, we generated Cenpb null mice that 
were maintained on a mixed genetic background 
(Simpson et al. 1997; Hudson et al. 1998). These mice 

Figure 2 Immunofluorescence analysis of fibroblast cell lines 
derived from +/+ (A) and o/o (8) mice. Metaphase chromosomes 
(DAPI-stained and pseudocolored red) were prepared from fibro-
blasts cultures of mouse tail tissues and stained with a mono-
clonal anti-CENP-B antibody (green). (1) Merged immunofluo-
rescence signals; (1) split image for the anti-CENP-B (green) sig-
nals. 
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were designated R1 -  -  here  to distinguish them from 
two new Cenpb null  mouse  strains, W9.5 -  /- and 
C57 -  /-, produced on  different  genetic backgrounds 
for this study. W9.5 -/-  was  on a mixed but different 
background to that of R1 -  - and represented an inde-
pendent gene-targeting  event  to R1 -/ (Hudson et al. 
1998). C57 -  / - was a congenic strain (Markel et al. 
1997; Simpson et al.  1997)  generated by backcrossing 
the R1+/ -  mice to C57BL/6 animals for eight genera-
tions. 

We previously described a significant reduction of 
between 15%-20% in the body weights of 10-week-old 
adult male and female R1 -  animals up to 33 weeks 
old (Hudson et al. 1998).  We  show here that this trend 
could be extended to  much  older R1 -  /- animals of up 
to 90 to 100 weeks of age (Fig. 3A,B). A similar body 
weight reduction was observed for the W9.5 -  - fe-
males (Fig. 3D) but was absent from the W9.5 - / - 
males (Fig. 3C) and the  C57 -  / - animals of both sexes 
(Fig. 3E,F). When testis weights were determined, a sta-
tistically significant, 14%-26% reduction was seen in 
all three genetic backgrounds (Table 1A). This reduc-
tion in testis size did not  have  any measurable effect on 
male fertility in animals  up  to 2 years old. Longevity 
for the R1 mice [100 weeks of follow-up; hazard ratio of 
1.02 (P = 1.0) for - / - versus +/+ males (n = 27 and 
n = 44, respectively); hazard ratio of 0.79 (P = 0.7) for 
- / - versus +/+ females  (n  = 26 and n = 28, respec-
tively)], W9.5, and C57  mice  (40 weeks of follow-up) 
were normal in the  different  backgrounds. 

To further investigate the reasons for the observed 
body weight reduction, various organs from 4-, 6-, 8-, 
10- and 24-week-old, age-matched R1 and R1+/+ 
males and females  (n  =  4  for each category) were 
weighed. The organs included stomach, small and 
large intestines, liver, salivary gland, spleen, pancreas, 
kidney, thymus, brain and olfactory bulb, lung, adre-
nal, heart, testes, epididymis, bulbourethral gland, 
ovary, uterus, ovarian fat pads, subcutaneous fat pad, 
and subrenal fat pad. In addition, whole-body compo-
sitions were analyzed in 20-week-old R1 - - and R1+/+ 
animals of both sexes in terms of their dry weight, ash 
weight, moisture, protein, and fat. Nose-rump length 
was also measured. When the results were expressed as 
a percentage of fresh  body  wet weight, no significant 
difference was seen between the test and control 
groups for all the measurements, except for the testes 
(Table 1A) and the uterus (see below). These results 
suggested that the organs and body composition of the 
R1 animals were overall proportionally smaller 
than those of the R1+/+ animals. Plasma leptin levels 
[3.7 ± 2.4 ng/ml for  the  - / - mice (n = 17) and 
4.6 ± 3.5 ng/ml for the  +/+  mice (n = 21); P = 0.358] 
were not significantly different between 6-month-old 
female R1 and W9.5 Cenpb null and wild-type animals, 
suggesting that hypophagia (suppressed food intake) 
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Figure 3 Total body weight of male (A, C,E) and female (B,D,F) mice in different genetic backgrounds: (A,B) RI; (C,D)W9.5; and C57 (E,F) 
C57. At least four animals were used for each time point. Age of the animals was determined from birth. (A) +/+ animals; (0) — / — 
animals. 

was unlikely to be responsible for reduced body weight 
in the — / — animals. 

To determine whether cells deficient in Cenpb 
have an altered growth rate, we compared the popula-
tion doubling times of three independently derived 
— / — ES cell lines (one in R1 and two in W9.5 back-
grounds) (Hudson et al. 1998) with those of a +/+ and 
+/ — cell line from each background. No significant 
difference was observed between the various cell lines 
over 400 cell divisions (data not shown). Karyotyping  

of the — / — cell lines at the late doubling passages also 
revealed no abnormality when compared with +/+ and 
+/ — cells. This suggested that the Cenpb null ES cell 
lines grew normally and that their growth rate, unlike 
that previously described for the telomerase-deficient 
ES cells (Niida et al. 1998), did not deteriorate with 
increasing doubling times over the period tested. 

Cenpb Null Mice Showed Reduced Uterus Weights 
The uteri of 10-week-old [day 0.5 vaginal plug (VP)] 
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previously unmated - / - animals in the R1, W9.5, 
and C57 backgrounds were weighed and respectively 
found to be 31%, 33%, and 44%, smaller than those of 
their corresponding wild-type siblings (Table 1B and 
Fig. 4A). Table 2A shows the results for the total uterus 
weights of 8-, 9-, 10-, and 24-week-old previously un-
mated female R1 mice (day 0.5 VP) as well as the total 
uterus weights of 4-, 6-, 8-, and 10 week-old C57 mice. 
No statistically significant difference was observed in 
the 8-week-old +/+ and - / - R1 animals, with a trend 
toward a difference emerging at 9 weeks and a signifi-
cant difference seen at 10 and 24 weeks. Similar trends 
were observed in the uteri of the W9.5 animals (data 
not shown). With the C57 null females, however, 
smaller uteri were observed in - / - animals compared 
with +/+ mice at a significantly earlier timepoint of 6 
weeks (Table 2A). These results indicated a dramatic 
slowdown in uterine growth during the 8- to 10-week 
postnatal period for R1 and W9.5 and the 4- to 6-week 
postnatal period for C57 null mice. 

Further Evidence that the Cenpb Null Phenotype 
was Directly Related to Cenpb Gene Disruption 
The phenotype of the targeted control (o/o) mice was 
ascertained. At the gross level, these animals were phe-
notypically indistinguishable from their +/+ wild-type 
littermates. Table 3 compares the body, testis, and 
uterus weights of (as well as the ovary weight and num-
ber of eggs produced by; see below) these animals. No 
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statistically significant difference was observed be-
tween the two genotypes. These results provided evi-
dence that the correction of the frameshift mutation 
has allowed the o/o animals to revert back to a wild-
type phenotype and that the IRES/selectable marker 
cassette (which was retained in the o/o animals) was 
not responsible for the phenotype observed in the 
- / - mice. A corollary of this was that the phenotype 
seen in our Cenpb null mice was a direct consequence 
of the disruption of the Cenpb gene itself. 

Compromised Reproduction in Cenpb Null Females 
When 10-week-old virgin R1 -  /- females (n = 10) were 
crossed with stud males in an ongoing breeding pro-
gram, little difference was observed in the first three to 
four litters compared with control R1+/+ and R1+/ -  fe-
males, indicating normal reproduction in young 
R1 -  /- females. A progressive deterioration (see below) 
in reproductive performance, however, was observed 
with increasing maternal age until this failed totally in 
all the R1 -  /- females by 9 months, when the RI.+/ - 
and R1+/+ females have continued to be reproductively 
competent at or long after this age. 

Next, we crossed a cohort of R1 	(n = 3) and 
R1+/+ (n = 4) 9-month-old virgin females with C57BL16 
normal stud males in a breeding program lasting for 7 
months. One pregnancy occurred in each of the R1 - - 
females but the animals sickened because of being 
overdue and required autopsy (see below). In compari- 
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Figure 4 Uterine and pregnancy problems in Cenpb null mice. 
(A) Size comparison of uteri from 10-week-old R1 4 /* and R1 - / - 
mice, showing the left and right uterine horns. The sizes of the 
ovaries and oviducts attached to these horns were normal in both 
animals. (B) Nine-month-old, 1-week overdue W9.5 -  - preg-
nant female (first pregnancy), showing a full-term dead fetus 
(arrowhead) attributable to placental necrosis in the right horn 
(rh) and fetal growth arrest/resorption (arrow) in the left horn (Ih; 
shown in circle). (C,D) Twelve-month-old, 10-day-overdue 
R1 - /- pregnant female (fourth pregnancy), showing external 
and internal views of a necrotic fetus in the right horn, and ab-
sence of fetuses in the left horn. (E,F) Nine-month-old, 4-day-
overdue R1 pregnant female (first pregnancy), showing ex-
ternal and internal views of decomposed fetal content in the left 
horn, and absence of fetuses in the right horn. 

son, 20 normal pregnancies occurred in the control 
group, which resulted in 87 healthy pups over the 
same period. These results, together with those de-
scribed above, indicated that the observed reproduc-
tive problems were age-related rather than a conse-
quence of prior pregnancies. 

A similar reproductive phenotype was seen in 8- to 
9-week-old - / - females in the W9.5 background. A 
cohort of 9-month-old W9.5 -  (n = 8) and W9.5 44+ 
(n = 8) virgin females was mated with C57BL/6 or ARC 
SWISS stud males over a 15-week period. Two females 
in the - /- group achieved a pregnancy but both were 
distressed because of failure of spontaneous labor at 
expected delivery date (post maturity) and required au-
topsy (discussed below). The remaining six - / - ani-
mals failed to show any visible sign of pregnancy. In 
contrast, the +/+ group of animals produced a total of 
10 pregnancies that yielded 48 healthy pups over this 
period. 

Compared with the animals in the R1 and W9.5 

backgrounds, a significantly more severe reproductive 
phenotype was apparent in the - / - animals on the 
C57 congenic background. The reproductive perfor-
mance of 8- to 15-week-old C57 -  (n = 5) females was 
assessed over a period of 5 months. Pregnancies were 
observed in all five animals. Only one of these preg-
nancies went to normal term and birth (four healthy 
pups); subsequent to this healthy litter, this female 
failed to become visibly pregnant again. Two of the 
pregnant females required autopsy because of postma-
turity in one case and complication during delivery 
(dislocated fetal torso entrapped within the birth ca-
nal) in the other case. The fourth female had a slow 
delivery (>24 hr) that resulted in four live and one dead 
pup; in her second pregnancy, this female sickened 
because of being overdue and was culled. The fifth ani-
mal produced two small litters of two and three well-
formed but dead pups at birth; this female has since 
failed to become pregnant again. Therefore, the five 
young C57-  /- females together gave rise to only eight 
healthy pups over a 5-month mating period. In stark 
contrast, 74 healthy pups resulted from a cohort of six, 
age-matched, control C57+1+ females over a shorter 
mating duration of 3 months. These results suggested 
that the reproductive fitness of the C57 Cenpb null fe-
male mice was severely compromised, and to a much 
greater extent compared with those seen in the R1 and 
W9.5 Cenpb null mice. 

Overall, pregnancy problems in the C57 
R1', W9.5 females manifested either as a 
failure of the animals to become visibly pregnant de-
spite detection of vaginal plug or, as occurred most 
frequently with mice that did achieve visible preg-
nancy, the animals sickened because of being overdue 
(by up to 10 days) or difficulty with delivery. Autopsy 
of these sickened mice revealed dead fetuses in all 
cases. Where discernible, fetal development appeared 
normal (Fig. 4B,D). Causes of fetal death in utero in-
cluded placental necrosis (Fig. 4B), fetal growth arrest 
or resorption (Fig. 4B), fetal necrosis (Fig. 4C,D) and 
decomposition (Fig. 4E,F). Because the progeny of 
crosses between the - / - females and normal stud 
males must all have a +/- genotype, the observed fetal 
problem could not have been related to any possible 
complication caused by the presence of Cenpb null em-
bryos in the litter. Microbacterial tests of necrotic or 
decomposed tissues revealed profuse growth of a vari-
ety of opportunistic bacteria including Flavobacte-
rium, Meningosepticum (water bug), Haemophilus in-
fluenzae (fecal/genital bug), Gram-negative rods in-
cluding Escherichia  coli (gut bug), and Gram-positive 
cocci. 

Normal Ovarian and Hormonal Functions in Cenpb 
Null Females 
To further investigate the causes for the compromised 
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reproductive phenotype seen in the Cenpb null mice, 
we compared the total ovary weight in previously un-
mated wild-type and Cenpb null littermates at day of 
vaginal plug. No significant difference was observed 
for the animals in the R1, W9.5 and C57 background 
(Table 1C). The ovaries of Cenpb null mice on all three 
genetic backgrounds were able to produce a normal 
number of fertilized eggs (Table 1D). Direct measure-
ment of the serum 170-estradio1 and progesterone lev-
els in nonmated animals in all three genetic back- 

grounds also indicated no significant difference be-
tween the Cenpb null and wild-type animals (Table 
2B,C; W9.5 and C57 data not shown). These results 
suggested that defective egg production or female re-
productive hormones were unlikely causes for the ob-
served reproductive problems in the Cenpb null female 
mice. 

Defective Uterine Epithelium 
We next explored the possibility that a primary defect 
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could have occurred in the uterus, affecting its ability 
to support implantation and/or fetal growth. This was 
investigated by direct histological examination of the 
uterine tissues. 

Histology of uterine sections indicated no major 
abnormality in 10-week-old R1' 	In 6- to 
9-month-old R1 -  /- and 10 week-old C57 	animals, 
the myometrium and endometrium were relatively 
normal, but gross abnormality of the epithelium was 
detected. In the wildtype animals, the tall columnar 
cells of the uterine luminal epithelium consisted of 
elongated nuclei that were primarily basally situated 
(Fig. SA), whereas the cells of the endometrial glandu-
lar epithelium consisted of nuclei that were more 
ovoid and centrally located (Fig. SC). In the Cenpb null 

v.) 	eP I 	en 	cr 

Figure 5 Histology (A-D) and in situ hybridization (EM of uter-
ine sections. (A,C) Ten-week-old, hematoxylin-and eosin-stained 
C57*/* uterus (day 0.5 VP), showing normal morphology of the 
endometrial epithelium lining the uterine lumen (A) and endo-
metrial glands (C). (B,D) ten-week-old, hematoxylin- and eosin-
stained C57 -  / uterus (day 0.5 VP), showing highly disorga-
nized and apoptotic (clear) epithelial cells lining the uterine lu-
men (B) and endometrial glands (D). Apoptosis of the clear cells 
(containing condensing chromatin) was confirmed by TUNEL as-
say (Gavrieli et al. 1992) (data not shown). Scale bar for A-D, 20 
pm. (EM Bright-field (hematoxylin-stained) and dark-field views, 
respectively, of 10-week-old R1*/* uterus hybridized with a 
labeled mouse mouse Cenpb antisense riboprobe, showing mRNA sig-
nals (dark brown grains in E and white grains in F) throughout the 
endometrium (and the myometrium; not included in picture) 
with maximal mRNA expression in the epithelial lining of the 
uterine lumen and endometrial glands (selected examples of 
which are indicated by arrows). Scale bar for E and F, 50 pm. (en) 
Endometrium; (ep) epithelium, (I) uterine lumen. 

mice, the columnar cell morphology and basal nuclear 
appearance of the luminal epithelium was severely dis-
rupted and replaced by  highly  disorganised and apop-
totic cells (Fig. SB). A similar phenotype was also ap-
parent in the epithelium of the endometrial glands 
(Fig. SD). Other abnormalities (not shown) included 
fewer endometrial glands, significantly increased  leu-
kocyte infiltration, hemorrhage, ulceration, and infec-
tion. It was also evident that the severity of these phe-
notypes was significantly greater in the C57 -  /- ani-
mals compared with  those  of the Cenpb null animals in 
the other genetic backgrounds. 

High Cenpb Expression in Uterine Epithelium 
In situ hybridization was used to determine the Cenpb 
mRNA expression  pattern  of the normal uterine tis-
sues. Using a  Cenpb-specific  antisense riboprobe, ex-
pression was observed throughout the uterine section. 
A disproportionately higher level of expression was 
seen in the epithelial lining of the uterine lumen and 
endometrial glands  compared  with the endometrial 
and myometrial layers (Fig. SE,F). No significant hy-
bridization was obtained  with  the Cenpb sense control 
probe in any of these tissues (not shown). 

DISCUSSION 
Centromere proteins  are  important components for 
the proper execution of mitosis and meiosis but rela-
tively little is known about their roles, or the conse-
quences of their defects, in whole animals. The role of 
Cenpb is particularly intriguing since despite its con-
servation, cellular  abundance,  and specificity to the 
centromere, a number of  lines  of evidence point to this 
protein being nonessential for cell division and growth 
both in tissue culture and  in  the animal (referenced in 
Introduction). In a  previous  study, we demonstrated 
that Cenpb null mice in  a  mixed (R1) genetic back-
ground have a lower body and testis weight but other-
wise appear normal  (Hudson  et al. 1998). Here, we 
have extended the  analysis  to mice on two new genetic 
backgrounds (mixed  W9.5  and congenic CS 7). The re-
sults indicate that a reduction in testis weight is also 
seen in these backgrounds. On the other hand, body-
weight reduction is apparent in the W9.5 -  /- females 
but not in the W9.5  /-  males or the C57 -  /- males 
and females. This  observation  suggests the presence of 
genetic modifiers (Banbury 1997; Threadgill et al. 
1997) that may influence body-weight development in 
a Cenpb null milieu. Furthermore, in the W9.5 genetic 
background, the modifier effect appears to be gender-
dependent. The  recognition  of these genetic modifier 
effects offers a possible explanation for the lack of 
body-weight phenotype  in  Cenpb null mice produced 
by two other groups  on  different genetic backgrounds 
(Kapoor et al. 1998; Perez-Castro et al. 1998). Further 
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studies setting up a backcross or F 1  intercross (e.g., 
MacPhee et al. 1995; Rozmahel et al. 1996) with C57 
Cenpb null mice followed by phenotypic analysis of 
offspring should enable the identification of the num-
ber and chromosomal locations of any likely genetic 
modifiers that affect Cenpb expression. 

Our data further indicate that the uteri of 10-week-
old - / - animals in all the three genetic backgrounds 
of R1, W9.5, and C57 were significantly smaller (by 
31%, 33%, and 44%, respectively) than their wild-type 
littermates. It could be argued that our gene targeting 
strategy, by introducing the IRES/selectable marker cas-
sette into the 3' noncoding region of the Cenpb gene, 
might have resulted in the observed phenotype in 
these animals attributable to an inadvertent effect of 
this cassette on neighboring genes. This possibility, 
however, now appears unlikely as the newly generated 
targeted control (o/o) animals, in which the IRES/ 
selectable marker cassette is present but not the frame-
shift mutation, do not show such a phenotype. It can 
be inferred from these control studies that the ob-
served phenotype of our Cenpb null mice is a direct 
consequence of a disruption of the Cenpb gene. 

Evidence is presented that Cenpb null females are 
compromised reproductively. The severity of this ab-
normality is subjected to the influence of genetic 
modifiers. This modifier effect is particularly stark 
when the reproductive performance of the R1 -  /- fe-
males is directly compared with their congenic 
C57 -  /- derivatives. In this comparison, although the 
R1 -  /- females are reproductively competent (but 
showing progressive age-dependent deterioration) up 
to 6-9 months of age, reproduction in the C57 -  /- fe-
males fails totally or is severely affected at an early 
postpubertal age between 8-10 weeks. At present, it is 
unclear whether the putative genetic modifiers under-
lying female reproductive competence and those con-
trolling the body weight are related. 

Although our data have indicated a failure of the 
uteri of the Cenpb null mice to reach a normal size, this 
is unlikely, on its own, to be the major cause of the 
observed severe reproductive dysfunction. This is evi-
dent from the relatively normal reproductive perfor-
mance of young R1 -  females despite their smaller 
uteri. Our data point to a disruption in the normal 
morphogenesis of the uterine epithelial tissue as the 
likely primary cause. The epithelium is a vital compo-
nent of the uterus. During pregnancy, this tissue re-
models itself to prepare the uterus to become receptive 
to the developing blastocyst. This remodelling, which 
is critically dependent on the integrity of the polarised 
epithelial cell phenotype (Denker 1990; Glasser and 
Mulholland 1993), provides the embryo with a secure 
place for nutrition, growth, and differentiation (in-
cluding the development of a functional placenta) 
(Denker 1990; Glasser et al. 1991; Giudice 1997). In the 
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reproductively dysfunctional Cenpb null mice, the epi-
thelial cells of the uterine lumen and endometrial 
glands have become grossly disorganized and apop-
totic. In particular, the columnar morphology and the 
basal nuclear positioning of the luminal epithelium 
have been seriously disrupted. These disruptions are 
expected to acutely compromise the proper function-
ing of the uterine epithelium and offer an explanation 
for the range of pregnancy problems seen in the af-
fected animals. 

The mechanism whereby Cenpb deficiency leads 
to the degeneration of the uterine epithelial cells re-
mains to be determined. It is known that during preg-
nancy or the periodic oestrus cycle-induced remodel-
ling of the uterus, active mitoses occur especially in the 
endometrial epithelial layer (Bronson et al. 1996; 
Kimura et al. 1978). The observed high-expression 
level of Cenpb in the normal uterine epithelial cells is 
consistent with an important role of this protein in the 
modulation of the mitotic activities of these cells. We 
have previously proposed a model whereby the func-
tion of Cenpb may be replaced by a functionally re-
dundant protein in the Cenpb null mice (Hudson et al. 
1998). The present investigation indicates that such a 
redundant protein if it exists is incapable of fully sub-
stituting for the role of Cenpb. Further studies should 
elucidate what this role may be. 

In humans, one-third of normal pregnancies ends 
in spontaneous abortion, with two-thirds of these oc-
curring before clinical detection of pregnancy (Wilcox 
et al. 1988). Abnormality in uterine remodelling to 
make it receptive as well as supportive of the develop-
ing blastocyst has been cited as a principal cause of 
pregnancy wastage (Glasser 1998). Because CENP-B is 
highly conserved between mouse and humans, it 
would be of clinical importance to determine whether 
CENP-B expression is altered in pathological condi-
tions associated with female infertility or aberrant fe-
male reproductive performance. In addition, these 
studies may shed light on conditions like metritis (in-
flammation of the uterus) and pyometra (uterine in-
fection), which are considerable problems in veteri-
nary medicine without known causal links (Santschi et 
al. 1995; Dhaliwal et al. 1998; Lawler 1998; Rajala and 
Grohn 1998; Smith et al. 1999). The observations de-
scribed in this study have broad implications for un-
derstanding uterine morphogenesis, centromere func-
tion, as well as human and animal reproductive pa-
thology, and warrant further detailed study. 

METHODS 
Generation and KR Screening of Cenpb Targeted 
Control Mice 
For chimeric mouse production, W9.5 + 10  FS cells (Hudson et 
al. 1998) were microinjected into C57BL/6 blastocysts, fol- 
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lowed by breeding of the resulting chimeras to C57BL,/6 mice 
to generate heterozygous progeny (generation 1). Heterozy-
gous (+/o) offspring were bred to obtain wild-type (+/+), +/o, 
and homozygous (o/o) progeny (generation 2) that were used 
for subsequent analysis. The W9.5°/° mice have incorporated 
the IRES-selectable marker cassette but not the 26-mer (D/ 
TAA) translational frameshift oligonucleotide at the 5' region 
of the Cenpb-coding sequence (Hudson et al. 1998). Targeted 
W9.5+10  ES cell lines were originally identified by Southern 
analysis (Hudson et al. 1998) (see Fig. 1). For PCR genotyping 
of cell line and mouse tail DNA, the following primers were 
used: B4top (5'-CTTTCCTCCCCATTAGTCCC-3') and 
Blcomp (5'-ACGCTGTCTTCF1 11 AGCC-3'), which gave a 
281-bp product for the wild-type (+) allele; or Neol (5'- 
CCFCGTGCTITACGGTATCG-3') and Blcomp, which gave a 
320-bp product for the targeted control (o) allele. PCR condi-
tions were 95°C for 2 min, followed by 35 cycles at 95°C for 30 
sec, 60°C for 1 min, and 72°C for 1 min, in a 20-pl volume 
containing 50-200 ng genoinic DNA, 0.66 units of Taq poly-
merase, 200 M dNTPs, and 200 ng of each primer in dH 20. 

Generation of Cenpb Null Mice on Different 
Genetic Backgrounds 
Cenpb null mice were produced previously by microinjecting 
gene-targeted ES cells derived from the R1 cell line into 
C57BL/6 blastocysts to obtain chimeras that were subse-
quently mated to C57BL/6 mice (Hudson et al. 1998). Hetero-
zygous (+1-)  offspring (generation 1) were bred to obtain 
homozygous Cenpb null (- / -) mice, +1-, and wild-type (+/ 
+) littemmtes (generation 2). These mice were maintained 
on a mixed genetic background of R1 (129/SvJ x 129/ 
Sv-+p+Tyr - C Mgfs14/+) (Simpson et al. 1997) and C57BL/6, in 
which 129/SvJ has been shown previously to be an impure 
inbred 129 strain (Threadgill et al. 1997). These animals were 
designated R1 -  - here to distinguish them from Cenpb null 
mice created on two other genetic backgrounds in this study. 
R1 progeny (generation 2 or 3) from heterozygous brother/ 
sister or cousin matings were used for subsequent analysis. 

One of the new mouse strains, denoted W9.5 - , was 
produced by microinjecting a previously Cenpb gene-targeted 
+/ - W9.5 (originally derived from a 129/Sv blastocyst; Buzin 
et al.1994) ES cell-derived line (Hudson et al. 1998) into 
C57BL/6 blastocysts to obtain chimeras from which were 
mated to C57BL/6 mice. Heterozygous progeny (generation 1) 
were bred to generate homozygous Cenpb - / +/ -' and +/+ 
littermates (generation 2). The W9.5 mouse strain was main-
tained on a mixed background of 129/Sv and C57BL/6 by 
intercrossing W9.5*/ -  progeny from generation 1 or 2 via 
brother/sister or cousin matings. The resulting W9.5 -  /- and 
W9.57/+ progeny (generation 2 and 3) were used for analysis. 
The third mouse strain, designated C57 -  was congenic on 
a CS7BL/6 genetic background. This was produced by mating 
first generation +!- progeny derived from the R1/C57BL/6 
chimeras described above to C57BL/6 mice. Heterozygous 
progeny were backcrossed to C57BL/6 for a further seven gen-
erations. At generations 8 and 9, +!- progeny were inter-
crossed to generate the C57 -  congenic and C57 +1+ control 
mice that were used for analysis in this study. 

lmmunocytochemistry 
Immunotluorescence staining using anti-CENP-B monoclonal 
antibody was performed as described previously (Hudson et 

al. 1998) on colcemid-arrested mouse fibroblastic cell lines 
grown from mouse tail biopsies using the scratch technique 
(Fowler 1984). 

Organ Weighing, Body Composition, Longevity, 
Reproductive Function, and Hormonal Tests 
For organ wet-weight and body-composition determination 
(Clark and Tarttelin 1976), an average of five age-matched 
R1 -' and R1*/* animals of each sex were used. Survival/ 
longevity analysis was performed by comparing R1 -  /- males 
(n = 27) with R1+/+ males (n = 44), and R1 -  females (n = 26) 
with R1+/+ females (n = 28), using Kaplan Meier plot; hazard 
ratios and significance values were calculated by the Cox pro-
portional hazard regression method (Stata Corp 1997). Repro-
ductive performance of mice was examined by setting up ap-
propriate breeding pairs for mating and observing for vaginal 
plug (day 0.5 VP). Plugged mice were closely monitored dur-
ing pregnancy and parturition. Plasma leptin, serum proges-
terone, and 170-estractiol evels were measured using Linco 
Mouse Leptin RIA Kit, Bayer Diagnostics Progesterone Kit, and 
Sorin 170-estradiol MA Kit, respectively. 

Histology and Tissue In Situ Hybridization 
Tissue preparation, histology, and in situ hybridization were 
as described previously (Edmondson et al. 1995; Hudson et al. 
1998). For in situ hybridization, a 700-bp Psti fragment lo-
cated at nucleotide positions 1391-2095 of the Cenpb se-
quence (EMBL accession no. X55038) was cloned into Blue-
script (Stratagene) in both orientations. The resulting sense 
and antisense clones were linerized with Clat and riboprobes 
were labeled with 'S-CTP using T7 polymerase. 
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Centromere protein A (Cenpa for mouse, CENP-A for other species) 
is a histone H3-like protein that is thought to be involved in the 
nucleosomal packaging of centromeric DNA. Using gene targeting, 
we have disrupted the mouse Cenpa gene and demonstrated that 
the gene is essential. Heterozygous mice are healthy and fertile 
whereas null mutants fail to survive beyond 6.5 days postconcep-
tion. Affected embryos show severe mitotic problems, induding 
micronuclei and macronuclei formation, nuclear bridging and bleb-
bing, and chromatin fragmentation and hypercondensation. Im-
munofluorescence analysis of interphase cells at day 5.5 reveals 
complete Cenpa depletion, diffuse Cenpb foci, absence of discrete 
Cenpc signal on centromeres, and dispersion of Cenpb and Cenpc 
throughout the nucleus. These results suggest that Cenpa is es-
sential for kinetochore targeting of Cenpc and plays an early role 
in organizing centromeric chromatin at interphase. The evidence is 
consistent with the proposal of a critical epigenetic function for 
CENP-A in marking a chromosomal region for centromere forma-
tion. 

kinetochore I  epigenetic I gene targeting 

The centromere is an essential chromosomal component 
required for the faithful segregation of chromosomes during 

mitosis and meiosis. The kinetochore is a DNA-protein complex 
comprising both constitutive proteins that are present at the 
centromere throughout the cell cycle and transient proteins that 
are present at various stages (1). Three of the best-studied 
constitutive proteins are centromere proteins CENP-A, 
CENP-B, and CENP-C. CENP-A is a 17-kDa histone H3-like 
protein involved in centromeric nucleosome formation (ref. 2; 
described below). CENP-B is an 80-1cDa protein that binds a 
17-bp motif known as the CENP-B box, which is present in 
human a-satellite and mouse minor satellite DNA (3, 4). Gene 
knockout analysis of Cenpb in mice indicates that this protein is 
not essential (5-7), although a decrease in body weight and testis 
size accompanied protein deficiency (5). CENP-C is a 140-kDa 
protein that interacts with chromatin at the inner kinetochore 
plate (8). In vitro DNA binding studies suggest that CENP-C may 
bind to DNA (9). CENP-C null mutation results in embryonic 
lethality at 3.5 days postconception (pc), with a missegregation 
phenotype and metaphase arrest (10, 11). Metaphase arrest also 
is observed after microinjection of anti-CENP-C antibodies at 
interphase (12). CENP-C shares a region of homology with Mif2, 
a Saccharomyces cerevisiae protein. Mutations in the MIF2 gene 
result in defective chromosome segregation and delayed pro-
gression through mitosis (13). However, CENP-C alone is not 
sufficient to induce centromeric formation (14). 

A number of transient centromere proteins now have been 
described (1, 15-19). Of particular relevance to the present study 
involving the use of the gene targeting technique is the inner 
CENP (INCENP). This protein localizes to the centromere at 
early mitosis and is present on the metaphase plate at the 
metaphase-anaphase transition (20). Gene disruption in mice 
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reveals embryonic lethality at 2.5 days pc, accompanied by 
enlarged nuclei containing an increased number of nucleoli, 
nuclear bridging, chromosome condensation, and spindle fiber 
bundling (21). 

The role of CENP-A in centromeric function has yet to be 
elucidated. CENP-A is a histone-H3 like protein that is con-
served in mammals (22,23) and S. cerevisiae (24). The C terminal 
(residues 48-135) of CENP-A is 62% identical to that of histone 
H3 and corresponds to the histone fold domain. The histone fold 
domain consists of three a-helices (HI, HU, and Hill) separated 
by two fl-sheet structures (strand A and strand B) (25) (see Fig. 
1). This domain of histone H3 has been shown to be sufficient 
for nucleosome assembly in vitro (26) and in vivo (27). There is 
no similarity seen between the N-termini sequences (residues 
1-47) of CENP-A and normal histone H3 (2). Although this 
divergence initially was thought to provide CENP-A with the 
centromere targeting property, a histone H3 chimeric protein 
containing the N terminus of CENP-A and the histone H3 
histone fold domain failed to localize to the centromere, indi-
cating that the C-terminal end is responsible for centromere 
targeting (28). CENP-A synthesis appears to be coupled with 
centromere replication during mid-S to early G2 phase, whereas 
histone H3 expression peaks early in S phase (28). Expression of 
CENP-A under the histone H3 promoter fails to localize at the 
centromere (28). These studies suggest that CENP-A is involved 
in the packaging of centromeric chromatin and that the protein 
may provide an early epigenetic marker for centromere forma-
tion (29). 

Only limited functional data are available for CENP-A. Mi-
croinjection of antibodies raised against the N terminus of 
CENP-A into HeLa cells within 3 hr of G i /S release resulted in 
interphase arrest (30). Highly condensed nuclei, granular cyto-
plasm, and loss of cell division capability were observed. Anti-
body injection in midinterphase did not disrupt mitosis; however, 
a mitotic lag was observed possibly because of the antibody 
interfering with microtubule attachment (31). Studies on CSE4p 
(chromosome segregation protein), an S. cerevisiae homolog of 
CENP-A, have demonstrated the protein to be a component of 
the core centromere (32). Mutation in CSE4p results in misseg-
regation and cell arrest in mitosis; however, the increase in 
chromosome loss is slight (33). The arrest phenotype is consis-
tent with a specific cell division block that appears to occur after 
the mitotic spindle has formed but before the onset of anaphase 
(33). The arrested cells have a 2n DNA content, indicating that 
DNA replication has taken place before arrest. 
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Fig. 1. Targeted disruption of the mouse Cenpa gene. (a) The mouse Cenpa 
protein showing the different subdomains, in particular those at the C termi-
nus that are required for centromere targeting. Our targeting construct (see 
below) was designed to delete amino acids 29-64 (gray box), which will 
effectively remove the entire centromere-targeting domain. (b) A restriction 
map of the Cenpa gene. The exons are denoted by black boxes (23). (c) The 
gene replacement construct, where the selectable marker cassette consists of 
a splice-acceptor site (SA), a picornaviral IRES, a /acZ-neomycin-resistance 
fusion gene, and a simian virus 40 polyadenylation sequence (PA). (d) The 
Cenpa locus after gene disruption. The positions of external probes used in 
Southern analysis are shown and the expected size fragments are 7.9-kb 
wild-type allele and a 4.8-kb targeted allele. ATG and TAA are translation start 
and stop codons, respectively. Restriction enzymes used were Sad (5), Sa/l(Sa), 
EcoRI (E), Xbal (X6), Xhol (Xh), Kpnl (K), Nhel (Nh), and Spel (Sp). 

To further understand the role of CENP-A in centromere 
function, we have used the technique of gene targeting by 
homologous recombination to enable the production of Cenpa 
null mice. Our analysis of Cenpa null mutants has enabled us to 
elucidate the involvement of this protein in mitotic cell division 
and, in particular, its role in kinetochore assembly. 

Methods 
Construction of Targeting Vectors. The targeting construct contains 
6.4 kb of the Cenpa gene (23) and was used to delete exon 2 
(amino acids 29-64) and disrupt the protein through the intro-
duction of the selectable marker cassette. Exon 2 was deleted via 
the flanking Nhel and Xbal sites followed by the insertion of a 
selectable marker cassette isolated from pGT1.8IRES.Bgeo, 
where IR ES is the internal ribosome-entry site (34). This 
construct, when homologously recombined into the mouse 
Cenpa locus, will result in a truncated protein lacking the 
centromere targeting domain (Fig. 1). 

Generation of Targeted Embryonic Stem (ES) Cells and Mice. Mouse 
ES cells (129/1) were electroporated with 40 p,g of linearized 
construct DNA, grown on STO/NeoR feeders, and growth- 
selected by using G418 (21). Resistant colonies were genotyped 
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Fig. 2. Southern blotting and PCR genotyping of cell line, tail, and embryo 
DNA. (a) Southern blot analysis of putative targeted ES cell colonies after EcoRI 
digestion and probed with an external probe (see Fig. 1 b and d). (b) PCR 
analysis of mouse tail DNA showing a wild-type product of 455 bp detected by 
WT-1 and WT-2 primers, and a targeted product of 750 bp detected by N-1 and 
WT-2 primers. SA, splice-acceptor site. (c) Nested PCR of mouse embryos 
resulting in a 135-bp wild-type product when using primers MA1, MA2, MA3, 
and MA4, and a 248-bp targeted product when using primers GF1, GR1, GF2, 
and GR2. 

by Southern blot (Fig. 2a). Chimeric mice were produced as 
described (21). Mice were genotyped by PCR. DNA was ex-
tracted from mouse tails as described (21). Primers designed by 
using GENEWOR CS were:  WT-1  (5'-TCAGACACTGCGCA-
GAAGAC); WT-2 (5 '-GAGCTTAGGAACTGGCATGG); 
and N-1 (5'-TTCTATCGCCTTCTTGACGAG) (Fig. 2b). 

Genotyping of Preimplantation Embryos. Preimplantation embryos 
were obtained from  heterozygous  mice. Breeding pairs were 
examined daily for vaginal  plugs  (an indicator of 0.5 days 
gestation) and denoted as  0.5  days  pc. A nested PCR protocol 
was designed and used  for the  amplification of the 2.5-day 
embryonic DNA. Embryos  were  flushed and transferred to PCR 
tubes in 25 ILI of dH20. Nest  la:  denaturation at 95°C for 15 min. 
Nest lb: addition of lox  buffer  (containing 15 mM MgCl 2 ) 
(Perkin—Elmer), 0.2 mM  dNTP,  250 ng of wild-type primers 
MAI, MA2, and LacZ-neomycin primers GF1 and GR1,  1  unit 
of AmpliTaq DNA Polymerase (Perkin—Elmer) in a final volume 
of 50 Al. Cycle 1:95°C for 2  min;  55°C for 3 min; 72°C for 90 sec. 
Cycles 2-30: 95°C for 60 sec; 57°C for 60 sec, and 72°C for 90 sec. 
Nest 2: Using 1 pi of the Nest  lb  product, add 10 x buffer, 0.2 
mM dNTP, primers MM, MA4, GR2, GF2, 1 unit of AmpliTaq, 
in a final volume of 25 pl. Cycle  1:  95°C, 2 min; 58°C, 60 sec; 72°C, 
90 sec. Cycles 2-30: 95°C,  1  min;  58°C, 1 min; 72°C, 90 sec. 
Oligonucleotide primer  sequences  were: MAI (5'-TGGAACT-
GCAGTCTGGGA AC); MA2  (5  '-TCTGTCTTCTGCGCAGT-
GTC); G Fl (5 '-AGTATCGGCGGAATTCCAG); GR I (5' -G-
ATGTTTCGCTTGGTGGTC); MM (5'-CCCA AAGCTCA-
GAGCA A ATTC); MA4 (5'-AGTATGTGGCAGCACAG-
CAG); GR2 (5 '-CCTCGTCCTGCAGTTCATGTCTGGTG); 
and GF2 (5'-CCATTACCAGTTGGTCTGGTG) (Fig. 2c). 

	f 
012 f 4E092 
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Genotyping of Day -8.5 Embryos. Individual embryos were dissected 
from their implantation site at 8.5 days gestation, washed twice 
in PBS, and transferred to a microfuge tube. Mouse tail lysis 
buffer and proteinase K (1 Ag/m1) were added and incubated at 
50°C for 4 hr. DNA was extracted twice with phenol-chloroform 
and once with chloroform followed by ethanol precipitation 
using 1 pi of glycogen. This precipitate was resuspended in 20 Al 
of Tris-EDTA from which 5 Al was used for each PCR. 

Culturing of Mouse Embryos. A culturing protocol was introduced 
to assess embryo development between 3.5 and 8.5 days pc. 
Embryos were flushed at 3.5 days and cultured in 15-mm 
diameter dishes (Nunc) with ES media supplemented with 
leukemia inhibiting factor (AMRAD, Melbourne, Australia) at 
37°C, 5% CO2. Embryos were photographed daily and harvested 
at 8.5 days if normal in appearance or earlier if signs of 
degeneration were apparent. The embryos were rinsed in PBS 
and treated with 0.25% trypsin for 3-5 min, resulting in detach-
ment of the trophectoderm cells. Micro-glass pipettes were used 
to collect the cells. The PCR protocol was the same as that used 
for the 8.5-day embryos (see Fig. 2c). 

Giemsa Staining of Embryos. Embryos (2.5 and 3.5 days) were 
placed in M16 media (Sigma) under oil, then transferred to a 
microwell containing 0.6% trisodium citrate for 4-8 min. Indi-
vidual embryos were placed on glass slides and fixed in a droplet 
of methanol/acetic acid (3:1). After two rinses in fixative, the 
embryos were stained with 10% Giemsa in PBS, pH 6.8 (Gurr), 
for 10 min, air-dried, and mounted in DPX (BDH) for analysis. 
To enable morphological analysis of 4.5-, 5.5-, and 6.5-day 
embryos, embryos were cultured on gelatinized (0.1% gelatin in 
PBS) coverslips (22 mm X 22 mm) in 35-mm Petri dishes (Nunc). 
Embryos that failed to attach to the coverslips were harvested 
and treated in the same manner as the 2.5- and 3.5-day embryos. 
Embryos were fixed in methanol/acetic acid for 10 min, stained 
as above, and examined on an Olympus 1x70 micro-
scope/Nikon F-601 camera system. 

Mitotic Index Determination. Cultured embryos were either 
Giemsa-stained (as above) or fixed in 2% paraformaldehyde and 
mounted in Vectorshield containing 4',6-diamidino-2- 
phenylindole (DAPI). DAPI staining of embryos was used to 
enable mitotic detection in various focal planes. The number of 
cells undergoing mitosis was calculated as a percentage of the 
total cell number using both methods. 

Immunofluorescence Analysis of Embryos. Embryos were cultured 
on coverslips, rinsed twice in PBS, fixed for 5 min in 2% 
paraformaldehyde in PBS, permeabilized with 0.1% Triton 
X-100 in PBS for 2 min, and rinsed an additional two times in 
PBS (35). Antibodies were applied to coverslips for 1 hr at 37°C. 
The coverslips were washed three times for 5 min in lx KB 
buffer (10 mM Tris.HCl/15 mM NaCl/0.1% BSA), the second-
ary antibody was applied for 1 hr and washing was repeated. The 
coverslips then were rinsed in PBS and stored in PBS at 4°C. 
Embryos were mounted in 4',6-diamidino-2-phenylindole. Im-
age analysis was performed by using an Axioskop fluorescence 
microscope equipped with a 63>< objective (Zeiss), a charge-
coupled device camera (Photometrics Image Point, Tucson, AZ) 
and 1PLAB software (Signal Analytics, Vienna, VA). 

Results 
Generation of Cenpa Heterozygous Cell Lines and Mice. The Cenpa-
neoR construct (Fig. lc) was transfected into 129/1 ES cells 
grown on STO/NeoR feeder cells and placed under G418 
selection for 7-10 days. Screening of 48 resistant clones by 
Southern blot analysis gave 26 positive clones (Fig. 24), indicat-
ing a targeting efficiency of 54%. Microinjection of these 

Table 1. PCR genotyping of embryos at days 2.5 and 8.5 pc, 
showing the number of embryos and, in bracket, % of total 

Genotype Day 2.5 Day 8.5 

+/+ 3 (14%) 11(30%) 
+/- 7 (34%) 18 (49%) 
-/- 4(19%) 0 
No PCR result 7(33%) 0 
Abortive implantation sites N.R. 8(21%) 
Total no. of embryos 21 37 

N.R., not relevant because embryos have not implanted at day 2.5. 

heterozygous targeted cell lines into blastocysts resulted in four 
germ-line chimeras. These mice were crossed with C57BL/6 to 
produce heterozygous mice (Fig. 2b). 

Embryonic Lethality of Cenpa Null Offspring Occurs Postimplantation 
Between Days 3.5 and 8.5 pc. The heterozygous mice were phe-
notypically normal with no obvious impairment of growth or 
fertility. Intercrossing of heterozygous mice resulted in a total of 
186 progeny of which 63 (34%) were +/+ and 123 (66%) were 
+/-, indicating embryonic lethality of the homozygous mutant 
state. Embryonic lethality was also evident from the reduced 
average litter size of 6.0 ± 2.4 for +/- X +/- crosses (n = 23 
litters), compared with 9.1 ± 2.6 and 8.6 ± 3.3 for the +/+ 
+/+ (it = 31 litters) and +/- X +/+ (n = 13 litters) crosses, 
respectively. 

To determine the point of Cenpa null lethality, embryos at 2.5 
and 8.5 days pc were genotyped by nested PCR (Fig. 2c). Matings 
of + / - x +/- yielded 21 embryos at 2.5 days and 37 embryos 
at 8.5 days. Genotyping by PCR indicated that null mutants were 
viable (and healthy looking by Giemsa staining; not shown) at 2.5 
days (Table 1). The results indicated that the time of embryo 
death apparently had occurred before 8.5 days because no 
homozygous mutants were detected. Examination of the uteri of 
female mice for the 8.5-day embryos revealed eight (21%; Table 
1) abortive implantation sites. These abortive sites were either 
empty or contained remnants of highly degenerate and resorbing 
embryos. This analysis indicated that the point of embryonic 
lethality occurred postimplantation between 3.5 and 8.5 days. 

Morphological Degeneration of Cultured Cenpa Null Embryos at Day 
5.5 pc. To further investigate postimplantation development, 
embryos from + / - X +/ - crosses were flushed at 3.5 days and 
cultured individually. The embryos were photographed daily by 
phase contrast or stained with Giemsa, and the images were 
captured for more detailed examination. (In the following 
discussion, the age of cultured embryo continues to refer to the 
number of days pc; that is, 3.5 days in utero plus days in culture.) 
At 5.5 days pc (i.e., 2 days in culture), the inner cell mass of a 
+/+ or +/- embryo was prominent and surrounded by 
trophectoderm outgrowth after attachment to the coverslip (Fig. 
3 a and b) (the inner cell mass subsequently would give rise to 
the embryo proper whereas the trophectoderm would form the 
extra-embryonic tissue). In a number of embryos, degeneration 
of the inner cell mass and trophectoderm cells was apparent (Fig. 
3 d and e). Rapid degeneration of these embryos continued and, 
at 6.5 days, a defined inner cell mass was no longer visible, while 
the trophectoderm cell number also declined dramatically (Fig. 
3f). The remaining embryos maintained a healthy inner cell 
mass, trophectoderm growth, and morphology from day 6.5 (Fig. 
3c) to day 8.5. Healthy embryos were harvested at day 8.5 
whereas the degenerating embryos were harvested on day 6.5 for 
PCR genotyping. The results indicated that all of the day-8.5 
embryos were either +/+ or +/-, whereas all of the day-6.5 
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Fig. 3. Phase contrast and Giemsa staining images of day-5.5 and -6.5 embryos. Day-5.5 normal embryo photographed by phase (a) or stained with Giemsa (b). 
(c) Day-6.5 normal embryo stained with Giemsa. Note the compact, dark inner cell mass and the surrounding  trophectoderm  outgrowth. Day-5.5 -/ - embryo 
photographed by phase (d) or stained with Giemsa (e). (t) Day-6.5 -/- embryo stained with Giemsa. Note the  absence  of a defined inner cell mass and the 
incoherent cells in both the day-5.5 and -6.5 -/- embryos. Magnification for a-f. x150. (g and h) Close-ups of e  and (land  j) close-ups of f, showing micronuclei 
(empty-triangle arrow), macronuclei (filled-triangle arrow), nuclear bridging (open arrow), nuclear blebbing  (filled  arrowhead), and highly condensed 
chromatin bodies (empty arrowhead). 
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degenerating embryos showed a 100% coincidence with the 
- / - genotype (Table 2). 

Chromosomal Missegregation Phenotype. Close examination of the 
Giemsa-stained, degenerating cultured Cenpa null embryos at 
days 5.5 and 6.5 revealed evidence of a severe chromosomal 
missegregation phenotype. At day 5.5 (Fig. 3 e, g, and h), a 
substantial number of micronuclei, formed from lagging chro-
mosomes, was observed. Some macronuclei indicative of en-
larged genomic content caused by failure of chromosomes to 
divide properly were apparent. Chromosomal lagging or polar 
missegregation also affected normal cytokinesis, resulting in 
nuclear bridging and blebbing of the nuclear membrane. Chro-
matin fragmentation and hypercondensation were apparent. 
Similar mitotic problems were observed in the day-6.5 embryos 
except for an increased degree of severity (Fig. 3 f,i, and j). At 

Table 2. Correlation of genotype with morphology of cultured 
embryos 

Genotype 
Time of 

harvest, days 
Condition of 

embryo 
No. of embryos 

(% total) 

+/+ 8.5 Healthy 9 (26) 
+ / 8.5 Healthy 19 (54) 

/ - 6.5 Degenerating 5 (15) 
No PCR result 6.5 Degenerating 2 (5) 
Total no. of embryos 35 (100) 

Embryos were flushed from the uterus at day 3.5. Healthy embryos were 
harvested at day 8.5 (i.e., 5 days in culture), while degenerating embryos were 
harvested at day 6.5 (i.e., 3.5 days in culture) for nested PCR analysis.  

6.5 days, most of the cells  were  macronucleated, suggesting that 
chromosome segregation  and normal  cytokinesis had come to a 
halt. When the mitotic  indices of  day-5.5 cultured embryos were 
determined, a result of  4.7% for  normal embryos (n = 23) and 
1.1% for Cenpa null  embryos  (n = 14) was obtained. The 
chromosomes seen in the  null  embryos appeared morphologi-
cally more condensed  and scattered  than those of  normal 
embryos, as was previously described for the Cenpc and Incenp 
null embryos (10, 21)  (not shown).  Except for an increased 
background of highly  condensed  chromatin bodies, no discern-
ible mitotic chromosomes  were  apparent in the 6.5-day null 
embryos examined, suggesting cessation of mitosis at this point. 

Immunofluorescence Studies. Embryos were analyzed by using 
antibodies raised against  mouse  Cenpa (36) or Cenpc (10) or an 
autoimmune serum (CREST#6) that recognizes human 
CENP-A and CENP-B  (37). Fig.  4 shows typical results obtained 
on interphase cells in day-5.5 embryos. All three antisera gave 
strong, discrete signals on the interphase cells of normal embryos 
(Fig. 4 a-c). In the - / - embryos, with the exception of the 
occasional cell showing weak residual Cenpa staining, most 
interphases were negative  for  this antibody (Fig. 44), suggesting 
a complete or near complete depletion of Cenpa (from maternal 
cytoplasm) by this stage. The CREST#6 antiserum gave positive 
signals on the - / - embryos (Fig. 4e), but the signals were 
discernibly different from  those  seen in the normal embryo in 
that there was high background staining throughout the nucleus 
and the enhanced signals  on  chromatin were unusually diffuse 
through all focal planes. Because CENP-A was absent from these 
embryos, the observed  CREST#6  signals could be attributed to 
the staining of CENP-B.  When  tested with the anti-Cenpc 
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Fig. 4. I mmunofluorescence analysis of day-5.5 embryos. (a—c) Wild-type interphase cells stained with anti-Cen pa, CREST•6 autoimmune serum, and anti-Cenpc, 
respectively. (d—f)Cenpa null interphase cells stained with anti-Cenpa, CREST#6, and anti-Cenpc, respectively. Although these pictures represented the results 
taken at one focal plane of a three-dimensional interphase cell nucleus, direct microscopic analysis through all the planes indicated only variation in the total 
number of observable signals but not the morphology of the signals (e.g., the more diffuse spots in e, and the higher background signals throughout the nuclei 
in both e and f compared with their respective controls). (Left) Simultaneous staining of chromatin with 4',6-diamidino-2-phenylindole (blue) and centromere 
with anticentromere antibody (red). (Right) Split image of Left showing anticentromere antibody staining (red) only. 

antibody, the prominent and discrete signals seen in normal 
embryos were undetected in the — / — interphases (Fig. 4f). 
Instead, these interphase cells showed a profuse speckling of 
Cenpc signals throughout the entire nucleus. 

Discussion 
Our gene targeting construct was designed to cause a premature 
translational termination and deletion of the centromere tar-
geting domain of Cenpa. Evidence that complete gene knockout 
has been achieved comes from the complete absence of immuno-
fluorescence-detectable Cenpa proteins in morphologically de-
generating Cenpa null embryos. The apparently normal pheno-
type of the Cenpa -targeted heterozygous ES cell line and mice 
also indicates that our gene disruption strategy does not produce 
any observable dominant-negative effect. 

In previous studies, we reported that targeted gene disruption 
of the centromere proteins Cenpc and Incenp in mice results in 
preimplantation embryonic lethality before day 3.5 pc (10, 21). 
In comparison, expression of a severe phenotype in the Cenpa 
null embryos appears slightly delayed because these embryos are 
able to implant into the uterus. Embryonic cell division and 
development up to this stage presumably are sustained by 
residual maternal cytoplasmic Cenpa protein (the presence of 
which has been demonstrated in our immunofluorescence ex-
periments on these early embryos; data not shown). The slightly 
longer survival time for Cenpa null embryos could reflect a 
greater stability of the maternal Cenpa mRNA and/or its 
translated protein compared with those of Cenpc and Incenp. As 
the maternal Cenpa becomes depleted at day 5.5 pc, mitotic  

impairment becomes apparent. Chromosomal missegregation 
results in the formation of a large number of micronuclei 
(because of lagging chromosomes), macronuclei (because of 
nonseparated genomes), and nuclear bridging and blebbing 
(because of tethering chromosomes affecting cytokinesis). The 
detection of highly condensed, dark Giemsa-staining bodies 
reflects shrinking chromatin that prompts speculation of apo-
ptotic cell death (38). 

Immunofluorescence analysis has provided insight into the 
cause of mitotic disarray and the role of Cenpa. Depletion of 
Cenpa in day-5.5 — / — embryos is accompanied by a significant 
alteration in Cenpb binding in the interphase cells. Instead of the 
usual discrete and compact signals, Cenpb binding on interphase 
chromosomes now becomes more diffuse, suggesting that the 
local chromatin is no longer as highly condensed as that for a 
normal interphase centromere (compare Fig. 4 e with a—c). This 
disrupted chromatin structure also appears to affect the normal 
sequestration of Cenpb from the nuclear pool as evident from 
the increased Cenpb signal seen throughout the nucleus. At 
present, it is unclear what the role of Cenpb is because the 
protein appears to be nonessential for normal mitotic and 
meiotic cell divisions (5-7). 

Anti-Cenpc antibody has been used to further investigate 
whether a structurally normal interphase kinetochore is formed 
in Cenpa-deficient cells. Cenpc is a good marker for this because 
the protein is present only on active centromeres (39, 40) and is 
functionally essential (10). Our results indicate that depletion of 
Cenpa leads to an absence of discrete Cenpc binding to inter-
phase centromere. As with Cenpb, sequestration of nuclear 
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Cenpc also becomes impaired, resulting in a diffuse and speckled 
distribution of the noncentromere-targeted protein throughout 
the nucleus. The profuse interphase staining seen with both 
anti-Cenpc and anti-Cenpb antibodies in the - / - embryos also 
indicates that these proteins are not limiting but are incapable, 
in the absence of Cenpa, to precipitate kinetochore formation. 
The observed failure of a structurally normal kinetochore to be 
properly assembled during interphase provides a suitable expla-
nation for the progressive deterioration of mitotic chromosomal 
segregation in the Cenpa null embryos, leading ultimately to 
severe mitotic disarray and embryonic cell death. 

Recent data suggest that centromere formation does not 
strictly depend on DNA sequence and that epigenetic factors 
may be involved (41-43). Such epigenetic factors are assumed 
to operate at the higher-order organizational level, directly on 
chromatin structures. The histone H3-like property of 
CENP-A means that the protein can directly influence cen-
tromere-specific chromatin organization at the nucleosomal 
level, making this protein a suitable candidate for epigenetic 
regulation. The observation that CENP-A synthesis appears to 
be coupled with centromere replication (28) has prompted the 
proposal that through direct incorporation of the protein at the 
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Assignmentl of the Centromere Protein H (Cenph) 
gene to mouse chromosome band 13D1 by in situ 
hybridization and interspecific backcross analyses 
A.W.I. Lo, D.F.S. Longmuir, K.J. Fowler, P. Kalitsis and K.H.A. Choo 
The Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria (Australia) 

I To our knowledge this is the first time this gene has been mapped. 

strain W9.5 as described (DiDonato et al., I997a). A Chromosome 13—spe-
cific point probe (Applied Genetics Laboratories) located at the DI 3Mit235 
locus ( 1 cM) was cohybridized with 67A15. 

Probe name: 67A IS 
Probe type: mouse genomic DNA 
Insert size: — 170kb 
Vector: pBeloBAC I I 
Proof of authenticity: sequencing 
Gene reference: Sugata et al., 1999; GenBanIc/EBI/DDBJ AB017634 

Interspecific backeross analysis 
Proof of authenticity: Primer pair lahfl and lahr 1 (5'-AAATACAAA-

TCGAGAAGAACAAACAGAAAGAGGA-3' and 5'-TGCTAAGTAGAG-
AAGGAGAAAAGAAGACACAACC-3' corresponding to nucleotide posi-
tion 600-633 and 1147-1180 of the 3' end of the Cenph cDNA sequence, 
respectively) amplified —2.1-  and 2.15-kb fragments from the genomic DNA 
of C57BL/6J and SPRET/Ei, respectively. End-sequencing revealed that the 
first 86 nucleotides and the last 410 nucleotides of both the PCR products 
showed >98% homology to the cDNA sequence of Cenph. From the limited 
end-sequences, a polymorphic microsatellite marker consisting of (CA)„ 
repeats was identified within the intronic region and was used for genotyp-
ing. Primer pair Cenph-pA (5'-TGTGCATGTAACTATAGTCCCG-3') and 
Cenph-pB (5'-GGAGTT1'ATTATAGCCAGCCTG-3'), flanking this micro-
satellite marker, was designed for standard PCR reaction, using AmpliTaq 
DNA polymerase and the buffer provided (Perkin-Elmer Biosystems, con-
taining 1.5 mM Mg), under the conditions: 94°C 5 min; 30 cycles of 94°C 
30s, 55°C 30s, 72°C I min; 72 ° C7 min. This PCR amplified a 251-bp and 
a 294-bp fragment from C57BU6.1 and SPRET/Ei genomic DNA, respec-
tively. 

Method of mapping: Genotyping was performed by PCR using the prim-
er pairs Cenph-pA and Cenph-pB for the 3' end microsatellite marker on the 
genomic DNA from each of the 94 progenies of the interspecific backcross 
panels (C57BLJ6J x M. spretus)F1 x C57BLJ6J, called the Jackson BSB 
panel, and (C57BIJ6JEi x SPRET/Ei)F1 x SPRET/Ei, called the Jackson 
BSS panel (Rowe et al., 1994). PCR products were analysed by electrophore-
sis on a 1.2 % agarose gel stained with ethidium bromide. The inheritance 
pattern of each progeny for the C57BU6J allele and the SPRET/Ei or M. 
spretus allele was studied according to the presence of the corresponding 251- 
bp or 294-bp PCR products, respectively. The data was analysed using the 
program Map Manager QTX version 0.13 (developed by J. Meer, R.H. Cud-
more Jr and K.F. Manly, http://mcbio.med.buffalo.edu/mmQTX.html;  see 
Manly, 1993 for reference of an earlier version of the program). Missing typ-
ings were inferred from surrounding data where assignment was unambi-
guous. Raw data from The Jackson Laboratory were obtained from the 
World Wide Web (http://www.jax.org/resources/document/cmdata)  (MGD 
Accession No. J: 61750). 

Accessible online at: 
www.karger.com/journals/ccg  

Rationale and significance 

The centromere plays an important role in the accurate and 
coordinated segregation of chromosomes during mitosis and 
meiosis. In all higher eukaryotes investigated, the normal cen-
tromere consists of highly repetitive DNA complexes with pro-
teins forming the kinetochore (reviewed in Choo, 1997). The 
cDNA of a new member of the constitutive centromere pro-
teins, Cenph, was recently cloned from the mouse erythroleuke-
mia cell line SKT6 (Sugata et al., 1999). Its constitutive associa-
tion with the kinetochore throughout the whole cell cycle and 
the predicted presence of a coiled-coil region suggests its impor-
tance in kinetochore organization and possible interactions 
with other kinetochore components. Here, we report the map-
ping of the mouse Cenph gene by fluorescence in situ hybridiza-
tion (FISH) and establishing flanking markers using interspe-
cific backcross analysis. 

Materials and methods 

Fluorescence in situ hybridization 
Two BAC clones, 67A14 and 67A15, containing the 5' end of the Cenph 

gene were identified by PCR screening of a mouse strain 129/Sv genomic 
bacterial artificial chromosome (BAC) library (Incyte Genomics Inc.) using 
the primer pairs HF13 and HR ii (5'-TA 1111  CTGTGGCGTTCAAACC-
3' and 5'-AGGCTGATACGGTCCTCGATAC-3' corresponding to nucleo-
tide positions 62-83 and 183-204 of the Cenph cDNA sequence, respective-
ly). These two clones were identical by restriction analysis. The DNA 
sequence of the PCR product is 100% identical to the corresponding seg-
ments of the Cenph cDNA sequence. 67A15 was used as probe in FISH on 
normal mouse metaphase chromosomes derived from embryonal stem cell 
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Fig. 1. (A) FISH of Cenph on mouse metaphase  spread. 
67A15 signals (green) were localized to  chromosome band 
13D1.  The arrows  indicate Chromosome  13  identified by the 
characteristic DAN banding and by Chromosome 13-specific 
probe signals at  the  D13Mit235 locus (red). The inset shows the 
position of  the  Cenph signals on  an  enlarged view of a represen-
tative Chromosome 13 from a different metaphase spread 
probed with 67A15 (green) aligned with its corresponding ideo-
gram. Images were reversed to show the G-C banding. (B) Link-
age map of  the  Jackson BSB and BSS backcrosses showing the 
part of Chromosome 13 with loci linked to Cenph. The Jackson 
I3SB and BSS maps of the distal end of Chromosome 13 are  
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depicted with the centromere toward the top. A 3-cM scale bar is shown to the right of the 
figure. Loci mapping to the same position are listed in alphabetical order. (C) In the com-
bined Jackson BSB and BSS haplotype figure, loci are listed in order with the most proxi-
mal at the top. The black boxes represent the C57BL/6J allele and the white boxes  the 
SPRET/Ei allele. The number of animals with each haplotype is given at the bottom of 
each column of boxes. The percent recombination (R) between adjacent loci is given to the 
right of the figure with the standard error (SE) for each R. 

Results 

FISH mapping data (Fig. IA) 
Location: 13D1 
Number of cells examined: 100 
Number of cells with specc signals: 1(0), 2 (2), 3 (6), 4 (92) 

chromatids per cell 
Most precise assignment: 13D1 
Location of background signals  (sites  with >2 signals):  none 

observed 

Interspecific backcross analyses 
The pattern of inheritance of homozygosity and heterozy-

gosity of the C57BL/6J allele and the SPRET/Ei allele were 
analysed and compared against the known loci in the BSS and 
BSB backcross panel maps. Close linkage of  Cenph to the distal 
region of Chromosome 13 is confirmed in both panels and 
Cenph cosegregates with a number of well-described genes 
including  Mtap5  (Chalcraborti and Kozak, 1992) Naip  (DiDo-
nato et al., 1997b) and Smn (DiDonato et al., 1997a) as shown 
in Fig. 1B and C.  Cenph also cosegregates with the following 
markers,  D13Mit30,  37, 70, and many others (0.0-1.6 cM, at 
95% confidence limit). 
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Bub3 gene disruption in mice 
reveals essential mitotic 
spindle checkpoint function 
during early embryogenesis 
Paul Kalitsis, Elizabeth Earle, Kerry J.  Fowler, 
and K.H. Andy Choo l  
Murdoch Children's Research Institute, Royal Children's 
Hospital, Flemington Road, Parkville 3052, Melbourne, Australia 

Bub3 is a conserved component of the mitotic spindle 
assembly complex. The protein is essential for early de-
velopment in Bub3 gene-disrupted mice, evident from 
their failure to survive beyond day 6.5-7.5 postcoitus 
(pc). Bub3 null embryos appear normal up to day 3.5 pc 
but accumulate mitotic errors from days 4.5-6.5 pc in 
the form of micronuclei, chromatin bridging, lagging 
chromosomes, and irregular nuclear morphology. Null 
embryos treated with a spindle-depolymerising agent fail 
to arrest in metaphase and show an increase in mitotic 
disarray. The results confirm Bub3 as a component Of the 
essential spindle checkpoint pathway that operates dur-
ing early embryogenesis. 

Received June 14, 2000;  revised version accepted July 25, 
2000. 

The accurate attachment of chromosomes to the mitotic 
spindle via the kinetochore is vital for correct segrega-
tion of the genetic material into daughter cells. This 
process is overseen by a feedback-response mechanism, 
commonly known as the mitotic spindle checkpoint (for 
review, see Skibbens and Hieter 1998 ;  Amon 1999). If 
defects are detected in the spindle, mitosis is halted to 
ensure that chromosomes achieve bipolar alignment be-
fore the cell proceeds through to anaphase. 

Genetic screens in the budding yeast Saccharomyces 
cerevisiae have identified a series of genes (BUB1 , B U B2, 
BUB3, MAD 1, 1V1AD2, MAD3, and MPS1) that fail to 
arrest in response to spindle damage (Hoyt etal. 1991 ;  Li 
and Murray 1991 ;  Weiss and Winey 1996). In the pres-
ence of microtubule-depolymerising drugs, the mutants 
accumulate severe mitotic errors because of their prema-
ture exit into anaphase. Higher eukaryotes contain sev-
eral functional orthologs of these genes, including Bubl, 
Bub3, BubRl/Mad3, Madl, and Mad2 (Chen et al. 1996 ;  
Li and Benezra 1996 ;  Taylor and McKeon 1997;  Basu et 
al. 1998;  Chen et al. 1998 ;  Taylor et al. 1998;  Basu et al. 
1999). Mutations and immunodepletion experiments on 
Bub 1, BubRl/Mad3, Madl, and Mad2 have shown that 
cells are unable to block at mitosis in response to micro- 
[Key Words: Mitotic checkpoint;  kinetochore;  chromosome missegrega-
don;  mouse transgenicl 
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gad.827500. 

tubule-depolymerising agents, resulting in a premature' 
exit into anaphase before the chromosomes have prop-
erly aligned (Chen et al. 1996 ;  Li and Benezra 1996 ;  Tay-
lor and McKeon 1997;  Cahill et al. 1998 ;  Chen et al. 
1998;  Gorbsky et al. 1998 ;  Waters et al. 1998 ;  Basu et al. 
1999;  Chan et al. 1999). In humans, dominant-negative 
mutations of the Bubl gene show a chromosomal insta-
bility phenotype in colorectal cancer cell lines (Cahill et 
al. 1998). These cell lines also fail to arrest at metaphase 
when treated with microtubule-depolymerising drugs. 

Bub3 is found in most eukaryotes through evolution 
(Efimov and Morris 1998;  Taylor et al. 1998 ;  Martinez-
Exposito et al. 1999). It contains four conserved WD40 
repeats that are found in many proteins With diverse 
functions thought to be involved in protein-protein in-
teractions (Neer et al. 1994). During mitosis, Bub3 ap-
pears on kinetochores during prophase, diminishing in 
quantity by metaphase. When kinetochores are unat-
tached to the spindle, or lagging, the amount of kineto-
chore-associated Bub3 antigen increases (Martinez-Ex-
posit° et al. 1999). In higher eukaryotes, no mutation or 
depletion studies on Bub3 have been described. In this 
study, we have performed a genetic disruption of the 
Bub3 gene in mouse, using gene-targeting techniques. 
We describe a lethal phenotype for the gene-disrupted 
mice and show that Bub3 is an essential component of 
the mitotic spindle checkpoint pathway that is required 
for mitotic fidelity. 
Results 
Disruption of the Bub3 gene 
To disrupt the mouse Bub3 gene, a promoterless target-
ing construct was used to obtain A high level of homolo-
gous recombination. The selection cassette, which con-
tained the splice-acceptor/IRES/lacZ-neomycin resis-
tance gene, was used to delete exons 2 and 3 (Fig. 1A). 
Only the first 65 amino acids of the 326-amino acid 
Bub3 protein would be correctly translated following 
gene disruption with the selection cassette. This disrup-
tion would result in the loss of three of the four WD40 
repeat domains and the Bubl-interacting kinetochore 
domain and thus was expected to abolish any Bub3 ac-
tivity at the,kinetochore (Taylor et al. 1998). When thecon-
struct was transfected into two different ES cell lines,129/1 
or W9.5, 20 of 107(19%) neomycin-resistant cell lines were 
found to have the desired targeting event (Fig. 1B). 
Production of gene-disrupted mice 
For the generation of chimeric mice, heterozygous cell 
lines from the 129/1 and W9.5 embryonic stem (ES) 
background were injected into C57BL/6 blastocysts. 
This resulted in independent germ line-transmitting 
chimeric mice from the 129/1 and W9.5 substrains car-
rying the targeted allele. The chimeric mice were suc-
cessfully bred to produce heterozygous animals. 
Embryonic lethality of Bub3 gene-disrupted mice 
Bub3+/-  mice were healthy, fertile, and showed no ap- 
parent phenotype due to haplo-insufficiency. PCR geno- 
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obtained (Fig. 1C). All 7 -/- embryos, 
but not any of the +/+ and +/- em-
bryos,  showed a rapidly degenerating 

93 

Figure 1. Targeted disruption of the mouse Bub3 gene. (A) Gene disruption construct 
and restriction maps. (i) Mouse Bub3 protein showing positions of four WD40 motifs 
(WD) and the Bubl-kinetocore-interacting domain (K) (Taylor et al. 1998 ;  Martinez-
Exposito et al. 1999). The disruption site is indicated by the vertical arrow. Restriction-
enzyme maps for (ii) the Bub3 gene covering exons 1 to 8, (iii) the neomycin-resistance 
gene targeting construct, and (iv) the Bub3 locus following targeted disruption. Black 
boxes represent exons. The selectable marker cassette contained in the targeting con-
struct consists of a splice acceptor site (SA), a picomaviral internal ribosome-entry site 
(IRES), a lacZ-neomycin fusion gene (beta-geo) and a SV40 polyadenylation sequence 
(pA). A 1.2-kb Xbal-Eagl fragment (designated 5' probe) spanning exon 1 was used in the 
Southern-screening strategy and detected a 12-kb wild-type PstI fragment in the untar-
geted locus or a 9.3-kb Pstl fragment in the targeted locus. The positions of the primers 
for nested PCR genotyping of cultured embryos up to day 3.5 4-4 are shown by the 
horizontal arrows in (ii) and (iii). Wild type primer pairs include BI3H-B131 for the first 
round and BI3J-BI3K for the second round of amplification (closed horizontal arrows in 
ii), giving a final product of 161 bp for the untargeted allele. Beta-geo primer pairs include 
GFI-GR1 for first-round synthesis and GF2-GR2 for second-round synthesis (open hori-
zontal arrows in iii), giving a final product of 248 bp for the targeted allele. Crosses 
denote expected sites of homologous recombination. Abbreviations for restriction en-
zymes are (E) Eagl, (P) Pstl, (Sc) Sad, (S) Sall, and (X) Xbal. (B) Southern blot analysis of 
wild-type and gene-targeted ES cell lines. The sizes of wild-type 12-kb and homologous 
recombinant 9.3-kb bands are shown. (C) Nested PCR analysis of cultured 3.5 + 4 day 
embryos from heterozygous crosses showing the expected bands for the targeted (248 bp) 
and untargeted (161 bp) alleles. 

type analysis of 91 live-born mice from Bub3'/ -  inter-
crosses showed 32 wild-type and 59 heterozygote ani-
mals with no homozygous mutants detected. The 
observed wild type:heterozygote:mutant homozygote ra-
tio of -1:2:0, therefore, suggests an embryonic-lethal 
phenotype for the null mutant. 

To further pinpoint the time of embryonic lethality, 
day 8.5 embryos from heterozygous crosses were re-
moved from the mice and PCR genotyped. No Bub3 null 
embryos were observed out of a sample of 29 embryos, 
which consisted of eight wild types and 21 heterozy-
gotes. This result suggested that embryonic death oc-
curred prior to day 8.5 pc. 

Morphological degeneration of early embryos 
For morphological study and the further determination 
of the time of embryonic lethality, blastocysts were ob-
tained from heterozygous crosses at day 3.5 and cultured 
in ES cell media. The embryos were monitored and pho-
tographed after 2, 3, and 4 days in culture (denoted as 
days 3.5 + 2, 3.5 + 3, and 3.5 + 4, respectively). At the 
end of day 3.5 + 4, the embryos were harvested and geno-
typed using the nested PCR strategy outlined in Figure  1. 
Of the 32 embryos studied, 10 +/+, 15 +/-, and 7 -/- were 

A 

phenotype (see below), suggesting a 
complete correlation between mor-
phological deterioration and the -/- 
genotype. This result, combined with 
those for the day 8.5 embryos and the 
live-born pups, provided evidence 
that Bub3-1-  embryos were viable at 
day 3.5 in utero and persisted in cul-
ture up to day 3.5 + 4 but were com-
pletely resorbed or proceeded to de-
generate beyond experimental detec-
tion by the time they reached day 8.5 
in utero. 

By phase-contrast microscopy, no 
significant morphological difference 
was observed between the different 
genotypes at day 3.5 or 3.5 + 1 (not 
shown). In both the wild-type and 
heterozygous embryos, the transition 
from day 3.5 + 2 to 3.5 + 4 was char-
acterized by an increase in the size of 
the inner cell mass and the trophec-
toderrn (Fig. 2). This increase was due 
to the rapidly dividing inner cell mass 
population, whilst the cells of the 
outer trophectoderm simply in-
creased in size without undergoing 
many divisions. In contrast, the inner 
cell mass of all the Bub3-1-  embryos 
were significantly smaller in size and 
were obviously degenerated by day 
3.5 + 3. The ttophectoderm, however, 
appeared morphologically indistin-

guishable from those of the wild-type and heterozygous 
littermates throughout the culture period. 

Severe mitotic phenotype in null embryos 
To further examine the null phenotype, cultured em-
bryos from heterozygous crosses were fixed and then 
stained with DAPI. Since the results of genotype analysis 
has indicated a complete concordance between embryo 
deterioration and the -/- genotype, and because of diffi-
culties associated with PCR genotyping on fixed and 
stained cells, deteriorating or affected embryos were des-
ignated as presumed null mutants without further geno-
typing in the following studies. At day 3.5, no observable 
difference in nuclear morphology was detected between 
the embryos. After one day in culture, eight of 30 em-
bryos exhibited a significantly increased number of mi-
cronuclei (Fig. 3B,C), compared to the normal littermate 
(Fig. 3A). An average of 7.4 micronuclei per affected em-
bryo was scored, compared with a baseline level of 1.1 
micronuclei for the unaffected embryos (Tab.  1).  Other 
defects observed in the affected embryos included the 
occasional chromatin bridge and nuclear blebbing (not 
shown). No significant difference in the mitotic indices 
was seen between the normal and affected embryos (Tab. 1). 
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300-500 cells in an unaffected littermate, suggesting 
that while the normal embryos continued to actively 
divide in culture  at day  3.5 + 3, cells in the affected em-
bryos had stopped dividing and/or were disintegrating. In 
addition, while mitoses were clearly visible in the nor-
mal embryos, little or no metaphases were observed in 
the affected embryos by this stage. 

Failure of nocodazole to arrest mitosis 

To assess whether the observed phenotype was due to 
the breakdown of a mitotic checkpoint, day 3.5 + 1 em-
bryos from heterozygous crosses were incubated with 2 
JIM nocodazole for -5 hrs. This drug depolymerizes and 
destroys the function of the microtubules. The results 
indicated that in the presence of nocodazole, mitosis in 
the normal embryos from heterozygous or control wild-
type crosses was severely arrested, as evident from a 
great increase (by eight-ninefold) in mitotic index from 

Figure 2. Morphology of cultured blastocyst outgrowths from 
heterozygous crosses. Cultured wild-type, heterozygous and ho-
mozygous embryos were photographed using phase microscopy, 
from day 3.5 + 2 to +4. The tightly packed inner cell mass is 
found in the center of all the embryos (arrow), surrounded by the 
larger, flat cells of the trophectoderm layer (arrowhead). Scale 
bar represents 200 pm. 

At day 3.5 + 2, 12 of 42 embryos were clearly affected, 
as characterized by an increase in the number of micro-
nuclei, irregular nuclear morphology, and smaller inner 
cell mass (Fig. 3E,F). When immunofluorescence was 
performed using a previously described anti-CENP-A 
and CENP-B antisera (CREST#6) (du Sart et al. 1997) on 
these embryos, the micronuclei seen in the affected em-
bryos were shown to contain one or more chromosomes, 
providing evidence that these micronuclei represented 
lagging chromosomes due to missegregation (Fig. 3J). 
The average cell number for an affected embryo was 130, 
which was significantly lower than 200 for a normal day 
3.5 + 2 embryo (P = 0.0047) (Fig. 3D,E). Thus, while the 
normal embryos have undergone an approximate dou-
bling in cell number compared to day 3.5 + 1, only a mar-
ginal increase of <10% in cell number was seen in the 
affected embryo over the same culture period (Table 1). 
The average mitotic index for an affected embryo at day 
3.5 + 2 was also noticeably lower than that of a normal 
embryo at the same stage (3.2% vs. 7.0 %;  P - 1.5 x 10-5 ). 
These results suggest a slowing down in development at 
3.5 + 2 days in the affected group. 

At day 3.5 + 3, ten of 37 embryos were abnormal. The 
abnormalities were more pronounced than those seen in 
earlier stages and included a greatly reduced cell number, 
grossly irregular nuclear morphology, chromatin bridg-
ing, lagging chromosomes, and the presence of many mi-
cronuclei (Fig. 3H,I). At this stage, accurate scoring of the 
number of cells or mitoses became difficult because of 
the large highly compacted inner cell mass in the normal 
embryos and the grossly deteriorated nuclear morphol-
ogy of the inner cell population of the affected embryos. 
The approximate cell number for an affected embryo was 
estimated to be between 50 and 100 compared with the 

Figure 3. Nuclear morphology of cultured embryos from het-
erozygous crosses. (A)DAPI-stained day 3.5 + 1 normal embryo, 
showing regular interphase nuclei and metaphase chromosomes 
(open arrow). (B,C) Two different magnifications of a DAPI-
stained day 3.5 + 1 affected embryo, showing regular interphase 
nuclei, metaphase chromosomes (open arrow), and micronuclei 
(arrowheads). (D)  A  normal embryo at day 3.5 + 2. (E,F) Two 
different magnifications of an affected embryo at day 3.5 + 2, 
showing greatly reduced cell number, irregular nuclei with 
blebs (diamond arrows) and many micronuclei (some examples 
shown by arrowheads).  (G)  A normal day 3.5 +3 embryo con-
taining over 300 cells,  with  many metaphases (not shown). (H,I) 
Two different magnifications of a day 3.5 +3 affected embryo, 
showing a dramatic reduction in the number of cells and a wors-
ening mitotic phenotype, exhibited by micronuclei, chromatin 
bridging (closed arrows) and lagging chromosomes (open arrow-
head). (I) Anticentromere CREST immunofluorescence of day 
3.5 + 2  affected  embryos, showing positively stained micronu-
clei (arrowheads). Scale bars, (A-B) 50 pm, (D,E,G,H) 100 pm, 
(C,F,I) 20 pm, and (I) 10 pm. 
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stage (day 3.5) demonstrates a dramatic decrease in the 
size of the inner cell mass of the null embryos from +3 
days to +4 days in culture, suggesting that rapid cell di-
visions have ceased in the mutant embryos by these 
stages. Closer examination of the embryos from the +1 -
crosses at the nuclear level reveals mitotic abnormalities 
in approximately 25% of day 3.5 + 1, 2, and 3 embryos, 
with no evidence of such abnormalities in any of the 
progeny of wild-type crosses. Determination of cell num-
ber indicates that mitotic division in the null embryos 
has decreased greatly at day 3.5 + 2 and ceased com-
pletely by day 3.5 + 3. By this latter stage, the embryos 
have accumulated such abundance of mitotic errors, in 
the form of micronuclei, nuclear bridging, and abnormal 
nuclear morphology, that cessation of embryo develop-
ment becomes inevitable. These results show that Bub3 
is essential for normal mitosis and for early embryonic 
development in the mouse. Such an essential role, there-
fore, contrasts the phenotype seen in previously reported 
null mutants of the BUB3 gene in S. cerevisiae and As-
pergillus nidulans because these mutants are viable, al-
beit slower in growth relative to the wild type (Hoyt et 
al. 1991 ;  Efimov and Morris 1998). 

When compared to a number of other essential centro- 

Figure 4. Nocodazole-treated day 3.5+ 1 embryos from hetero-
zygous crosses. (A) A normal embryo, showing regular-sized nu-
clei and many arrested metaphases (some examples indicated by 
arrows). (B) A similarly treated null embryo, showing irregularly 
sized nuclei, very few metaphases (arrow), and a large number of 
micronuclei (selected examples shown by arrowheads). Scale 
bars represent 50 um. 
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Table 1. Analysis of mitotic phenotype in day 3.5 + 1 untreated or nocodazole-treated embryos from heterozygous crosses 

+/— Cross 

 

444- cross ... 

    

Untreated 

 

Nocodazole 	 + Nocodazole 

     

Normal 	Null 
	

P value 	Normal 
	

Null 
	P value 	Normal 

No. of embryos 
No. of cells' 
Mitotic indexLb  
No. of micronuclei' 

23(74%) 
110 

2.1 
1.1 

8(26%) 
120 

1.6' 
7Ad 

0.12 
0.55 
3.6 x 10 -7  

21(78%) 
98 
19 

1.2 

6(22%) 
100 

3' 
17d  

0.56 
6.1 R 10 -6  
3.6 x 10' 

21(100%) 
80 
17 
0.65 

In addition to the normal litter mates from the heterozygous crosses, normal embryos from 444- crosses were used as further controls 
to ascertain the effects of nocodazole. 
'Average value per embryo. 
'Expressed as a percentage of cells in mitosis over total cell number. 

= 0.071 for the mitotic indices of untreated versus nocodazole-treated null embryos. 
dP = 0.039 for the number of micronuclei in untreated versus nocodazole-treated null embryos. 
P values were derived using the student's t test. 

an untreated value of 2.1% to treated values of 19% and 
17%, respectively (Table 1 ;  also cf. Fig. 4A with Fig. 3A). 
In stark contrast to this increase in mitotic index, noco-
dazole treatment did not result in a significant alteration 
in the mitotic index of the null embryos (3%) compared 
to the untreated null embryos (1.6%) (Table 1). However, 
following the drug treatment, a noticeable deterioration 
of the mitotic missegregation phenotype was evident 
from the greatly increased number of micronuclei in the 
null embryos (from 7.4 micronuclei to 17 micronuclei 
per embryo before and after treatment) (Table 1 ;  also cf. 
Fig. 4B with Fig. 3B). Other defects observed were an 
increase in irregular nuclear morphology, nuclear bridg-
ing, and blebbing in the treated null embryos. Control 
experiments using nocodazole-treated day 3.5 + 1 em-
bryos from wild-type crosses did not result in embryos 
with a phenotype corresponding to that found in the null 
embryos (Table 1). This suggests that the effects of this 
drug seen in the null embryos from the heterozygous 
crosses were specifically related to the Bub3-1-  genotype. 

Discussion 

In order to understand the role of mitotic checkpoint 
control in mouse development, we have created Bub3 
gene-disrupted mice. Bub3 is part of a protein complex 
that interacts with the kinetochore before all chromo-
somes have achieved bipolar attachment to the mitotic 
spindle. By deleting exons 2 and 3 of the Bub3 gene, we 
have interrupted the protein at amino acid No. 65, caus-
ing the loss of the Bubl interaction domain and three of 
the four WD40 repeat regions (Taylor et al. 1998 ;  Mar-
tinez-Exposito et al. 1999). Success in generating a rela-
tively large number of heterozygous knockout ES cell 
lines indicates that the gene-targeting strategy is effi-
cient and that the growth of heterozygous cells in cul-
ture has not been compromised. 

Heterozygous Bub3 mice show no apparent abnormali-
ties in development or fertility, showing that one func-
tional copy of the gene is sufficient for normal develop-
ment. Genotyping of the progeny of heterozygous 
crosses indicates the absence of Bub3 - I - pups and sug-
gests an embryonic lethal phenotype. Morphological 
analysis of embryos grown in culture from the blastocyst 

2280 	GENES & DEVELOPMENT 



Bub3 gene knockout 

mere proteins that have recently been disrupted in the 
mouse, such as Cenpc, Incenp and Cenpa, the Bub3-I-
mice show a similar phenotype in that the accumulation 
of severe mitotic errors contribute directly to early le-
thality (Kalitsis et al. 1998;  Cutts et al. 1999;  Howman et 
al. 2000). Closer examination reveals that the Bub3 -I 
embryos appear to survive slightly longer, by two to 
three days in culture. This may be explained by the fact 
that a defect in the constitutive centromere proteins 
Cenpa and Cenpc is expected to immediately disrupt 
centromere function, leading to a rapid breakdown in 
lcinetochore-microtubule binding and mitotic arrest. 
Similarly, perturbation of the Incenp protein results in a 
gross dysfunction in cytokinesis that is expected to have 
an immediate detrimental effect on mitotic progression. 
In comparison, a defect in a protein such as Bub3 that 
plays a checkpoint role (discussed below) may allow mi-
tosis to proceed aberrantly for a slightly greater number 
of cycles before the accumulation of excessive errors 
eventually brings it to a halt. 

In previous studies on the BUB and MAD genes in 
yeast and higher eukaryotes, spindle-depolymerizing 
drugs have been used to assess whether the mutants 
have a compromised spindle assembly checkpoint. 
These mutants characteristically fail to arrest An re-
sponse to mitotic spindle damage, leading to chromo-
some missegregation. We have used a similar strategy to 
investigate whether Bub3 functions as a component of a 
mitotic spindle checkpoint in the developing mouse em-
bryo. Examination of the effect of the spindle-disrupting 
drug nocodazole on normal embryos indicates that, in 
the presence of this drug, normal embryos are severely 
blocked in mitosis, as evident from a large increase in 
mitotic index, compared to untreated normal embryos. 
This result suggests that early mouse embryos utilize a 
mitotic spindle checkpoint mechanism that is sensitive 
to spindle-depolymerizing drugs, similar to those that 
have been described in other organisms and somatic cell 
lines. 

To investigate the specific role of Bub3, we studied the 
effect nocodazole has on the Bub3 null embryos at day 
3.5 + 1, when the total cell number and the extent of 
mitotic disarray are still sufficiently moderate to allow 
accurate ascertainment of mitotic indices and micronu-
clei numbers. At this time point, null embryos that have 
not been drug treated show clear signs of mitotic errors, 
as indicated by an approximately sevenfold increase in 
the number of micronuclei per embryo compared to an 
untreated normal embryo. However, the relatively unal-
tered mitotic index in the untreated null embryos com-
pared to the normal embryos indicates that cell division 
appears to proceed at a normal rate. This mitotic index 
remains unaffected when the null embryos are chal-
lenged with nocodazole, which drastically contrasts 
with the situation in the normal embryos, in which 
treatment with the drug precipitates a large rise in mi-
totic index. This observation indicates that the Bub3 
null embryos are able to escape the block imposed by the 
mitotic spindle checkpoint pathway that operates upon 
the normal embryos. A predicted consequence of an es- 

cape from such a checkpoint, especially when the mi-
totic process is seriously compromised by a potent 
spindle-disrupting drug, is an elevation in the level of 
mitotic errors. This prediction is supported by the ob-
served significant increase in the number of micronuclei, 
from 7.4 per untreated null embryo to 17 per nococlazole-
treated null embryo. These results are characteristic of 
mutants that are defective in mitotic spindle checkpoint 
mechanisms (Hoyt et al. 1991 ;  Li and Murray 1991 ;  Tay-
lor and McKeon 1997 ;  Cahill et al. 1998 ;  Basu et al. 
1999), thus lending strong support that mouse Bub3 par-
ticipates directly in such a checkpoint system. 

Genetic and biochemical evidence indicates that Bub3 
interacts with other proteins, including Bub 1, to form a 
checkpoint kinase complex (Hoyt et al. 1991 ;  Roberts et 
al. 1994;  Basu et al. 1998;  Fan and Hoyt 1998;  Taylor et 
at. 1998;  Brady and Hardwick 2000). Since the presence 
of both Bub3 and Bubl is required for localization to the 
kinetochores that have not completely attached to the 
mitotic spindle, mutations in these two proteins are ex-
pected to share a common phenotype. Consistent with 
this, genetic disruption of the Drosophila bubl gene, 
which also leads to the depletion of Bub3 at the kineto-
chore (Basu et al. 1998, 1999), results in embryonic le-
thality at the larval/pupal transition stage. Cells from 
these null embryos fail to block in mitosis in response to 
microtubule-depolymerizing drugs and contain severe 
mitotic abnormalities (lower mitotic index, premature 
chromatid separation, lagging chromosomes, and chro-
matin bridging). Recently, Mad2, another essential com-
ponent of the MAD/BUB checkpoint complex has been 
disrupted in the mouse (Dobles et al. 2000). The pheno-
type of the Mad2 I and Bub3-I --  embryos share many 
features. Both mutants show few cells in mitosis beyond 
day 6.5, contain chromosome segregation errors in the 
form of lagging chromosomes, and fail to arrest in the 
presence of nocodazole. Taken together, the results of 
the above studies in mouse and Drosophila clearly indi-
cate that the MAD/BUB complex constitutes a crucial 
mitotic checkpoint for early embryonic development, 
and that the mitotic checkpoint pathway is not only con-
served at a molecular level but also at the functional 
level within metazoans. 

Materials and methods 
Targeting construct 
Three BAC clones-195c21, 177c15, and 24e04—were identified in a 
mouse ES 129 BAC library (Incyte Genomics). DNA pools were screened 
using PCR with primers, B1 (5'-AGAAACGTTGC1TAGGCGG-3 1, and 
B2 (5'-GAACTCGGAGTACCTTAACC-3' ), which spanned exon 1 and 2 
of the mouse Bub3 gene, generating a PCR product size of 437 bp. 
BAC#I 77c15 was used for further subcloning. A 12-kb Pstl genomic frag-
ment containing exons 1 to 7 was cloned into the Pstl site of pAlter 
(Promega;  Fig. IA). A 3.1-kb Sad/Sall fragment spanning exons 3 and 4 
was removed and then replaced by a splice-acceptor/IRES/lacZ-neomycin 
cassette. 

Transfections and chimera production 
Mouse ES cell culture and manipulations were carried out using standard 
procedures (Ralitsis et al. 1998). For the creation of heterozygous cell 
lines, 50 pg of linearized DNA was electroporated at 0.8 kV, 3 tff, Q. 0 

into 5 x 10' mouse 129/1 or W9.5 ES cells and selected with 200 lig/nil of 
G4 18 (GIBCO BRL). Correctly targeted events were detected using South-
ern hybridization. A XballEagE 1.2-kb fragment containing exon 1 was 
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used as a 5' external probe in the hybridization assay (Fig. IA). Genomic 
DNA was digested with Pstl, generating a 12-kb wild-type or 9.3-kb tar-
geted band. Targeted ES cell Lines were used in the generation of chimeric 
and heterozygous mice using standard methods (Kalitsis et al. 1998). 

Genotyping of mice 
Mouse tail DNA was extracted using standard techniques. For PCR geno-
typing, a duplex strategy was employed using the following primers: 
BI3G (5'-AGTGAATGACCAAACCTGGG-3') and BI4F (5'-CAACAG-
CACACTCTCCAACC-3') for the wild-type allele (407 bp), and GF2(5'- 
CCATTACCAGTTGGTCTGGTG-3') and GR2 (5'-CCTCGTCCTG-
CAGTTCATTC-3') for the targeted allele (248 bp). 

Culturing and genotyping of mouse embryos 
Embryos were dissected out at day 3.5 and cultured in ES media at 37°C 
5% CO2  for the required duration. After culturing, the DNA was ex-
tracted and resuspended in 10 pl of TE. Three p1 of the embryo DNA was 
used in the first round of a nested PCR strategy. The first-round primers 
BI3H (5'-GATGCCTTTGCG1TCTTAGC-3') and 13131 (5'-GATTCCAG-
GAGCAGCATCA-3') (for the wild-type allele) and GF1 (5'-AGTATCG-
GCGGAATTCCAG-3') and GR1 (5'-GATG=CGCTTGGTGGTC-3') 
(for the targeted allele) were used in a duplex reaction, using the follow-
ing conditions: first cycle at 95°C for 2 min, 55°C for 3 mm, 72°C for 90 
sec, and cycles 2-30 at 95°C for 60 sec, 55°C for 60 sec, 72°C for 90 sec, 
in a final reaction volume of 25 pl. For the second round, 1 pi of the 
first-round amplified product was used in separate wild-type BI3J (5'- 
TGTGGCAGGATITGGAATG-3') and I313K (5'-TGTGCTTCTCAG-
TCCACTCG-3') and targeted (GF2 and GR2) reactions, producing 161-
and 248-bp bands, respectively. The conditions for the second-round am-
plification were first cycle at 95°C for 2 min, 57°C for 60 sec, 72°C for 90 
sec, and cycles 2-30 at 95°C for 60 sec, 59°C for 60 sec, 72°C for 90 sec, 
in a final reaction volume of 20 pl. 

Nuclear staining, immunofluorescence, and statistical analysis 
Day 3.5 and 3.5 + 1 embryos were fixed and stained in DAM as previ-
ously described (Kalitsis et al. 1998). Embryos cultured on coverslips 
were washed three times in PBS and fixed in 4% paraformaldehyde/PBS 
for 15 min, followed by 0.1% Triton X-100/PBS for 10 min. The embryos 
were then rinsed twice in PBS and stained in DAPI and Vectashield 
(Vector Laboratories). For immunostaining of the kinetochore using the 
CREST#6 autoimmune serum, day 33 + 2 embryos were treated as de-
scribed previously (Howman et al. 2000). Images were captured using an 
Axioplan2 microscope (Zeiss), with a Sensys-cooled CCD camera (Pho-
tometrics) and processed with fP Lab software (Scanalytics). Statistical 
analyses were performed using the Student's t-test. 
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Survivin and the inner centromere protein INCENP show similar 
cell-cycle localization and gene knockout phenotype 
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Background: Survivin is a mammalian protein that carries a motif typical of the 
inhibitor of apoptosis (lAP) proteins, first identified in baculoviruses. Although 
baculoviral IAP proteins regulate cell death, the yeast Survivin homolog Bin 1 is 
involved in cell division. To determine the function of Survivin in mammals, we 
analyzed the pattern of localization of Survivin protein during the cell cycle, and 
deleted its gene by homologous recombination in mice. 

Results: In human cells, Survivin appeared first on centromeres bound to a 
novel para-polar axis during prophase/metaphase, relocated to the spindle 
midzone during anaphase/telophase, and disappeared at the end of telophase. 
In the mouse, Survivin was required for mitosis during development. Null 
embryos showed disrupted microtubule formation, became polyploid, and failed 
to survive beyond 4.5 days post coitum. This phenotype, and the cell-cycle 
localization of Survivin, resembled closely those of INCENP. Because the yeast 
homolog of INCENP, Sli15, regulates the Aurora kinase homolog Ipl1p, and the 
yeast Survivin homolog Bin 1 binds to Ndc10p, a substrate of Ipl1p, yeast 
Survivin, INCENP and Aurora homologs function in concert during cell division. 

Conclusions: In vertebrates, Survivin and INCENP have related roles in mitosis, 
coordinating events such as microtubule organization, cleavage-furrow 
formation and cytokinesis. Like their yeast homologs Bin 1 and Sli15, they may 
also act together with the Aurora kinase. 
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Background 
Inhibitor of apoptosis (IAP) proteins were first identified 
as baculoviral products that could inhibit the defensive 
apoptotic response of infected insect cells. Subsequently, 
a number of cellular IAP homologs were found in diverse 
organisms including vertebrates, insects, nematodes and 
yeasts. All of these proteins bear one to three zinc-binding 
motifs termed baculoviral IAP repeats (BIRs) [1-3]. 
Biochemical and genetic evidence indicates that some 
IAPs — such as MIHA/XIAP/hILP, MIHB/c-IAP-1/hIAP2, 
MIHC/cIAP-2/hIAP1 [4-7] and Drosophila DIAP1 [8,9] — 
are able to inhibit caspase-mediated apoptosis directly or 
indirectly (reviewed in [10]). In contrast, IAPs from 
Caenorhabditis ekgans and the yeasts Schizosaccharomyces 
pombe and Sacchatvmyces cerevisiae do not appear to be 
caspase inhibitors, but seem to function during cell divi-
sion. For example, C. elegans zygotes lacking BIR-1 fail to 
undergo cytokinesis, S. pombe bid mutants have defects in 
spindle elongation, and Birlp from S. cerevisiae associates 
with kinetochore proteins [11-15]. 

The kinetochore is a DNA–protein complex that assembles 
on the centromere and is required for attachment of micro-
tubules during mitosis. Some mammalian centromere-inter-
acting proteins (such as CENP-A, CENP-B and CENP-C) 

associate constitutively, whereas others (such as CENP-E, 
CENP-F and the inner centromere protein INCENP), 
collectively known as chromosome passenger proteins, 
localize transiently to the centromere during specific stages 
of the cell cycle (reviewed in [16]). As the cell cycle pro-
gresses into metaphase, INCENP becomes concentrated 
at centromeres. During the metaphase–anaphase transi-
tion, INCENP remains confined to the equator while the 
sister chromatids migrate to the poles. During telophase, it 
is located in the midbodies at the intercellular bridge, and 
is degraded after cytokinesis [17,18]. The timing of 
expression and distribution of INCENP resembles that of 
Auroral, a member of the Aurora/Ipllp family of serine 
threonine kinases ([19], reviewed in [20]). Furthermore, 
overexpression of kinase-inactivated Auroral disrupts 
cleavage-furrow formation, resulting in a failure of cytoki-
nesis similar to that caused by deletion or expression of a 
dominant-negative INCENP [21-23]. Therefore, INCENP 
and Auroral may have related roles during mitosis. 

Survivin is a mammalian protein that has a single BIR 
[24]. Structurally, it resembles more closely the BIR-con-
taining proteins from yeasts and C. ekgans [2] than it does 
the IAPs that control apoptosis. Survivin expression is 
regulated during the cell cycle [25,26], and inhibition of 
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Survivin has been associated with cell-cycle defects [27]. 
Because the BIR-containing proteins from  S.  pombe, 
S. eerevisiae and C. ekgans all have roles in cell division 
[11,12,15], Survivin may have a similar function. Here, we 
raised antibodies against Survivin and analyzed its pattern 
of expression during the cell cycle. To determine the 
requirement for Survivin in normal cells, we deleted its 
gene by homologous recombination in mice. The pheno-
type of the sutvivin null mouse embryos, and the pattern 
of Survivin staining, are consistent with a role as a chromo-
some passenger protein that functions during mitosis. 

Results 
Localization of Survivin during the cell cycle 
We determined the distribution of Survivin during the cell 
cycle using cultured HeLa cells. Initial immunofluores-
cence staining using the anti-Survivin antibody T065 
revealed strong punctate signals on condensed chromatin 
that were suggestive of specific association of Survivin 
with chromosomal structures (data not shown). This 
prompted us to compare the localization of Survivin with 
that of the centromeric a-satellite DNA-binding protein 
CENP-B, using the monoclonal antibody 2D-7. As 
expected for a constitutive centromere protein, CENP-B 
was detected as discrete spots on centromeres throughout 
the cell cycle (Figure la). No Survivin was detectable in 
the interphase cells. A low level was detected at early 

Figure 1  

prophase, during which no specific localization to the  cen-
tromere was apparent.  In  late prophase, nuclear staining 
became intense, with foci of Survivin now colocalizing 
with CENP-B. As the  cells  progressed into  metaphase, 
Survivin became  prominently  concentrated on  centro-
meres, as shown by  strong  colocalization with CENP-B. At 
anaphase, while  CENP-B  moved with the separating 
sister chromatin masses to the poles, Survivin remained at 
the midzone where the  metaphase  plate once was.  During 
telophase, Survivin was  found  on the midbody  between 
the daughter cells, and after telophase it was degraded. 

In  view  of previous studies indicating the close  association 
of Survivin with the  microtubules  [26,27], we compared 
the cell-cycle distribution profiles of Survivin and  micro-
tubules, using a  monoclonal  anti-I3-tubulin  antibody 
(Figure lb). No significant colocalization was  observed 
between interphase  and metaphase.  During early  anaphase, 
some Survivin began  to  relocate onto the microtubules at 
the spindle midzone. By  late  anaphase and  telophase, 
Survivin colocalized  with  the concentrated  intercellular 
microtubule bundles  that  formed the midbody.  This  dis-
tribution profile is  characteristic  of the chromosome pas-
senger class of proteins. 

We were also interested to know whether disrupting the 
integrity of microtubules had any effect on the localization 

Cell-cycle distribution of Survivin,  CENP-B 
and I3-tubulin. (a) Simultaneous 
immunofluorescence staining for Survivin 
(green) and CENP-B (red) in HeLa cells 
grown on coverslips and analyzed at  different 
cell-cycle stages. Two different views  of 
metaphase cells are shown, one from the pole 
(presenting a 'rosette' configuration), the 
other from the side (showing chromosomal 
congression on the equatorial plate). Left 
panels, combined CENP-B and Survivin 
immunofluorescence; the chromatin was 
stained with 4,6-diamidino-2-phenylindole 
(DAPI, blue). Middle and right panels, 
CENP-B and Survivin staining, respectively. 
(b) Simultaneous immunofluorescence 
staining for Survivin (green) and P-tubulin 
(red)  during different cell-cycle stages of 
HeLa  cells grown on coverslips. 
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of Survivin at the centromere. For this analysis, HeLa 
cells were cultured in the presence of taxol (a micro-
tubule-stabilizing agent), or nocodazole or colcemid 
(microtubule-destabilizing agents). We also compared 
cells that had been grown directly on coverslips with cells 
that were spread onto slides by cytocentrifugation, a pro-
cedure that disrupts microtubules mechanically. In each 
case, strong colocalization of Survivin with the CREST#6 
antibodies (anti-CENP-A and anti-CENP-B antibodies) 
on metaphase chromosomes was observed (Figure 2a—d). 
Therefore, binding of Survivin to the centromere did not 
depend on the integrity of the microtubules. 

Survivin binds to the centromere on a different axis to the 

kinetochore axis 

Earlier studies have described the binding patterns of 
more than 20 different proteins on the metaphase cen-
tromere (for example, [28,291). Although the distance 
between the paired signals for these proteins on the two 
chromatids varies slightly depending on whether binding 
is at the inner centromere region, on the kinetochore, or at 

Figure 2 

Immunofluorescence analysis of Survivin and various centromere-
binding proteins. (a—d) Dual-color immunofluorescence analysis using 
CREST#6 (green) and anti-Survivin antibody (red). Metaphase 
chromosomes were prepared from HeLa cells treated with 
(a) nocodazole, (b,d) taxol, or  (c)  colcemid. The cells in (a,b) were 
cultured on coverslips directly, whereas the cells in (c,d) were spun 
onto a slide by cytocentrifugation (which gave better spreading  of 
metaphases). First column, combined immunofluorescence images in 
which the chromatin was stained with DAPI (blue). The green and red 
signals are shown individually in the second and third columns, 
respectively. Note that CREST#6 and Survivin both bound to the 
centromere to give doublet signals. Nevertheless, whereas the paired 
signals for CREST#6 were generally similar in intensity when viewed on 
the same focal plane, the Survivin doublet signals (some examples 
shown by arrowheads) were apparent only when viewed on different 
focal planes (not shown). Fourth column, multi-color scanning of the 
centromere (arrowed) along the trans-polar axis. 'Length indicates 
position along the trans-polar axis, and 'intensity' indicates the 
fluorescence signal. Both are in arbitrary units. The colors of the 
different curves correspond to those of the images shown in the first 
three columns. (e,f) Dual-color immunofluorescence analysis using 
(e) CREST#6 (red) and anti-CENP-E antibody (green), or (f) CREST#6 
(red) and anti-INCENP antibody (green). Metaphase chromosomes 
were prepared from HeLa cells grown on a coverslip in normal culture 
media. The arrows and arrowheads point to examples of centromeres 
showing trans-polar binding of the CENP-E signal in (e), or para-polar 
association of the INCENP signal in (0. The examples indicated by the 
arrows were used to derive the multi-color scanning profile shown in the 
fourth column. (g) Models for the different subregional topographic 
distribution of centromere proteins along three possible axes: the x- or 
trans-polar axis, which connects the midpoints of the two opposite-
facing kinetochore discs; the y- or longitudinal axis, which runs parallel 
to the long axis of the chromosome, between the kinetochore discs; 
and the z- or para-polar axis, which bisects between the kinetochore 
discs perpendicular to both the x and y axes. Left panel, alignment of 
CREST#6 antigen doublet signal at the kinetochore discs (green, 
CENP-A binding) and inner centromere heterochromatin (red, CENP-B 
binding) along the trans-polar (x) axis, and the Survivin and INCENP 
doublet signals (gray) at a midpoint between the sister chromatids 
along the para-polar (z) axis. Sister chromatids are shown in blue. 
Middle panel, as in the left panel except yellow signals represent 
binding of CENP-E and CENP-F to the outer edges of the kinetochore 
discs or corona regions along a common trans-polar (x) axis. Right 
panel, previously described binding of INCENP (pink) along the y axis 
1411 or throughout the heterochromatic region (red) beneath the 
kinetochore discs (green) along the x axis [42,43] (see Discussion). 

the outer kinetochore region, the evenness of the doublet 
signal intensity indicates that antigen binding occurs along 
the same axis (designated as the trans-polar or x axis) joining 
the two kinetochore discs. This pattern was typical for stain-
ing with the CREST#6 antiserum, shown in Figure 2a—f. 

Even though Survivin also bound to the metaphase cen-
tromeres to give doublet signals, the two Survivin spots 
were not in the same focal plane. Furthermore, Survivin 
was generally present at the midpoint of the CREST#6 
doublet signals, as evident from direct immunofluores-
cence visualization and from multi-color electronic scan-
ning of centromere staining (Figure 2a—d). Survivin  was 
located along an axis (denoted here as the para-polar or z 
axis) that perpendicularly bisects both the trans-polar x axis 
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and the longitudinal y axis that runs parallel to the long 
axis of the chromosome, between the kinetochore discs 
(see Figure 2g). Similar results were obtained in cells that 
had not been drug-treated, and in cells grown directly on 
coverslips or centrifuged onto slides, suggesting that the 
observed para-polar alignment was not an artifact of micro-
tubule inhibition or cytocentrifugation (Figure 2 and data 
not shown). For comparison, we examined the staining 
patterns for three other chromosomal passenger proteins 
(CENP-E, CENP-F and INCENP). The results indicated 
that CENP-E bound typically as a doublet of even intensity 
along the same trans-polar axis as that for the CREST#6 
signals, although the distance between the doublet spots for 
CENP-E was noticeably greater than that for CREST#6, 
suggesting that CENP-E binding occurred external to the 
regions occupied by CENP-A and CENP-B (Figure 2e). 
The results for CENP-F (previously shown to interact 
with CENP-E [30]) were identical to those for CENP-E 
(data not shown), whereas INCENP binding was detected 
along the same para-polar axis as that seen for Survivin 
(Figure 20. The relative subregional centromeric distribu-
tion profiles for CENP-A/CENP-B, Survivin, INCENP, 
CENP-E and CENP-F are illustrated in Figure 2g. 

Cloning and characterization of the mouse survivin locus 
and deletion of the gene 
To determine the requirement for Survivin in mouse 
embryos, we deleted the gene by homologous recombina-
tion. The human and mouse survivin transcripts encode 
proteins of 142 and 140 amino acids, respectively [24,25]. 
We obtained both human and mouse survivin cDNA 

Figure 3 

Deletion of the survivin gene by homologous recombination. (a) The 
gene targeting construct replaced a genornic fragment bearing all four 
exons (labeled 1-4) of survivin with a cassette encoding 13-galactosidase 
in-frame after the ATG. A probe 3' to the region recombined was used to 
type mutated embryonic stem (ES) cells by Southern blot analysis. 
(b) The same probe was hybridized to BamHI-digested tail DNA from 
adult mice and detected a 23 kb wild-type allele and a 13 kb targeted 
allele. (c) Day 3.5-6.5 embryos from heterozygous intercrosses were 
typed by PCR using nested primers (denoted a, b and c), which 
generated a 0.8 kb wild-type product and a 0.5 kb targeted product. The 
positive controls were tail DNA from heterozygous and wild-type mice, 
and the negative controls contained no DNA. 

clones from the IMAGE consortium [31] and sequenced 
them (accession numbers AF077349 and AF077350). The 
human survivin gene has previously been reported to have 
significant similarity to the EPR-1 cDNA in its antisense 
orientation, suggesting a common origin for both loci 
[32,33]. There is, however, no similarity to the EPR-1 
open reading frame or any other protein in the opposite 
orientation of the mouse survivin transcript. Thus, it 
appeared that deletion of the mouse survivin locus should 
not affect expression of EPR-1, if indeed it exists [34]. A 
mouse sutvivin cDNA was used to screen a mouse 
genomic library. Multiple independent lambda phage 
clones were isolated and mapped by restriction enzyme 
digestion, and 9 kb of the longest clone was sequenced, 
spanning the region encoding the whole of the mouse sur-
vivin transcript (accession number AF077351; Figure 3). 

A vector for targeted disruption of survivin was designed 
that replaced all sequences except those encoding the first 
four amino acids of the sutvivin open reading frame with 
the lacZ gene. The 5' and 3' arms of the vector were 2 and 
6.5 kb in length, respectively, and the selectable marker 
was a neomycin cassette flanked by loxP sites. This con-
struct was electroporated into the C57B1/6-derived Bruce 
4 ES cell line. Clones with homologous integrations of the 
vector were identified by Southern hybridization with a 
probe external to the vector (Figure 3) and used to gener-
ate chimeras that passed the mutation through the germ 
line. Of the first 39 pups born from mating of hetero-
zygous parents, Southern analysis of tail DNA revealed 13 
were wild type and 26 were heterozygous. No homozy-
gous survivin mutant mice were found, or have been iden-
tified to date, demonstrating that loss of the survivin gene 
caused embryonic lethality. The ratio of wild-type to het-
erozygous mice indicated that loss of one copy of the sur-
vivin gene was unlikely to cause developmental defects. 

Developmental lethality of survivin null embryos 

Embryos from heterozygous intercrosses were flushed on 
day 2.5 post coitum and their development observed in 
culture. Of a total of 96 embryos collected, 73 showed 
normal development, whereas 23 developed abnormally. 
When the embryos were collected for genotyping by PCR 
on day 6.5, a complete correlation between embryos 
showing a deteriorating phenotype and the survivitrl-
genotype was observed, indicating that 24% of the total 
embryos were homozygous mutants. This suggests that 
there were no significant losses of the survivin-/-  embryos 
before day 2.5. 

The onset of morphological deterioration was variable 
amongst the survivin÷ embryos. In most of the embryos, 
degeneration was apparent at day 2.5 (Figure 4b). Of the 
remaining survivitr1-  embryos, the morphology was indis-
tinguishable from the survivin+1+ and survivin+1-  embryos 
up to day 4.5, during which blastocysts containing an inner 
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Figure 4 

Morphology of normal and survivin null embryos. Embryos were 
collected at day 2.5 post coitum and cultured in vitro up to day 6.5. 
(a) The normal embryo, subsequently confirmed by PCR genotyping to 
be survivin4-, developed an inner cell mass, a blastocoel cavity, and 
hatched out of the zona pellucida by day 4.5, forming an expanded 
inner cell mass and surrounding trophoblast cells by day 6.5. The 
survivirri-  embryo in (b) showed deterioration of a number of the 
blastomeres at day 2.5, but managed to continue developing further, 
albeit aberrantly. The survivirri-  embryo in (c) showed a seemingly 
healthy morphology up till 4.5 days. By day 5.5, both survivirri-
embryos showed gross cellular degeneration, absence of distinct inner 
cell mass, blastocoel cavity, or trophoblasts, and the formation of giant 
cells. Magnification x200, phase contrast microscopy. 

cell mass and blastocoel cavity were formed (Figure 4c). 
However, by days 5.5 and 6.5, all survivitr-1-  embryos were 
grossly abnormal and showed deteriorated cell masses and 
giant cells, whereas the sutvivin+1+ and survivin+1-  embryos 
had gone on to form a compact inner cell mass and spread-
ing trophoblast cells. Furthermore, the sutvivin-1-  embryos 
never hatched out of their zona pellucida over the study 
period, whereas hatching occurred around day 4.5 for all of 
the wild-type and heterozygous embryos. 

Table 1 

Number of nuclei. 

Days +/+ or +/- p value 

2.5 11.2 ± 3.2 (n=  11) 8.0 ± 2.4 (n= 7) 0.051 
3.5 40.4 ± 3.3  (n=18) 19.6± 6.1 (n=9) <0.001 
4.5 76.2 ± 9.7 (n = 6) 23.25 ± 9.9 (n = 8) <0.001 
5.5 232.5 ± 22.3  (n  =  6) 13.4 * 2.7 (n = 9) <0.001 

The number of nuclei were determined in embryos from heterozygous 
intercrosses at day 2.5 of development  in utero or following culture 
(days 3.5-5.5); n, number of embryos analyzed. `Micronuclei were 
not included. 

Formation of giant nuclei in  survivin null embryos 
Day 2.5 post coitum  embryos from heterozygous inter-
crosses were collected and either analyzed immediately or 
cultured for up to 3 days before fixing on slides and stain-
ing with DAPI so that the number of nuclei and their mor-
phology could be ascertained. At day 2.5, the number of 
nuclei in the survivin-1-  embryos was marginally fewer 
than those in the survivin+1+ or surviviel-  embryos 
(Table 1). Nuclear morphology appeared normal in some 
of the survivitrl-  embryos, but in most the nuclei were 
irregular and varied in size (Figure 5). At day 3.5, the sur-
vivitr-1-  embryos contained only about half as many nuclei 
as the survivin+1-  and  survivin+1+  embryos, and micronuclei, 
irregular nuclei, and some large nuclei were apparent. 
Day 4.5 sutvivin-1-  embryos contained on average less than 
a third of the number of nuclei found in the corresponding 
survivin+1+ or survivin+1-  embryos. Micronuclei and irregu-
lar macronuclei with bridging or lobular morphology 
indicative of incomplete nuclear fission occurred. By 
day 5.5, an average of only 13 nuclei were present in each 
survivitt-1-  embryo, compared with more than 200 in the 
survivin+1+ or survivin+1-  embryos. Most of these nuclei 
were much bigger than normal, and had highly irregular 
morphology, with pronounced bridging and blebbing. 

Sunrivin deficiency leads to altered microtubule 
organization 
Embryos at different stages of development were stained 
with anti-B-tubulin antibody to visualize the integrity of 
the microtubules (Figure 6). Normal embryos showed the 
expected mitotic spindle structures, midbodies and exten-
sive network of cellular microtubules at all stages. From 
day 2.5 onwards, survivin÷ embryos consistently showed 
very little or no detectable mitotic spindle organization 
and midbodies. As the survivin-1-  phenotype developed, 
an increasing number of binucleated and multinucleated 
cells, as well as cells with grossly enlarged and morpholog-
ically irregular nuclei were observed. The extensive and 
fibrous network of tubulin staining seen in normal 
embryos was progressively replaced by a more diffuse and 
patchy staining, with an increasing propensity for the 
tubulin molecules to bundle into highly concentrated 
strands in the later stages of development. 
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Figure 5 

Nuclear morphology of DAPI-stained embryos cultured at day 2.5 post 
coitum. Examples of micronuclei (arrows), macronuclei (open 
arrowheads) and nuclei showing bridging or blebbing (filled 
arrowheads) are shown. The numbers in brackets indicate the different 
magnifications used. 

Discussion 
Survivin is a new member of the family of centromere-

binding passenger proteins 

In agreement with earlier studies showing expression of 
this gene in the G2/M phase of the cell cycle [25,26], 
immunofluorescence analysis showed that Survivin is 
undetectable at interphase but first appears  in  the nucleus 
in early prophase. Maximal expression was seen in late 
prophase, during which the protein was present through-
out the nucleus. Binding to the centromere first occurred 
at this stage and strengthened into metaphase, with a con-
comitant reduction in the intensity of the nuclear staining, 
suggesting a relocation of Survivin onto the maturing cen-
tromere. As the sister chromatids moved apart during 
anaphase, Survivin dissociated from the centromere and 
tethered at the spindle midzone, where it subsequently 
formed a midbody to be degraded at telophase. Thus, the 
cell-cycle distribution pattern for Survivin corresponded to 

Figure 6 

Immunofluorescence analysis of  tubulin  localization in embryos at 
different developmental stages.  In  the normal embryo at day 2.5, a 
dividing cell (denoted i) is seen  at  the telophase stage, showing a well-
organized midbody, whereas no discernible midbodies were detected 
in the survivin-/-  embryos at day  2.5  (denoted ii). At day 3.5, the 
normal dividing cell (denoted by  iii)  shows a proper microtubule 
spindle, but this was not seen in survivin-/-  embryos at day 3.5. 
Examples are shown of midbodies in the day 2.5 and 3.5 normal 
embryos (solid arrowheads; not shown for the day 4.5 mutant embryo 
as most of the nuclei were large), and binucleated or multinucleated 
cells (solid arrow), and highly bundled microtubule spindle cords in  the 
day 4.5 mutant embryo (open arrows). Magnification x630. 

those of the chromosome passenger proteins (reviewed  in 
[16,351). Previous studies  have  suggested that the  distrib-
ution of Survivin is closely associated  with  microtubules 
[26,36]. Treatment of cells  with three  different micro-
tubule-inhibiting agents (taxol, nocodazole  and  colcemid), 
or  mechanical disruption of  microtubules by cytocentrifu-
gation,  had no major effect on  the  centromere localization 
of  Survivin. This observation  suggests that the  cell-cycle 
distribution of Survivin, in particular its relocation to the 
centromere during metaphase,  is not  dependent on the 
integrity of the mitotic microtubules. 

Survivin and INCENP bind to the centromere on a novel 

para-polar axis 

Immunofluorescence showed  the two constitutive  cen- 
tromere  proteins CENP-A and  CENP-B, as well as two of 
the chromosome passenger  proteins  CENP-E and  CENP-F, 
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to bind along the trans-polar axis containing the kineto-
chore plates. Along this axis, CENP-E and CENP-F 
bound external to the positions occupied by CENP-A and 
CENP-B. These results are consistent with those of 
previous studies demonstrating localization of CENP-A, 
CENP-B, and CENP-E/CENP-F at the kinetochore 
domain, inner centromere domain, and fibrous corona 
domain, respectively [37-40]. 

In chicken cells INCENP has been localized either as a 
doublet between the sister chromatids on an axis parallel 
to the longitudinal axis of the chromosome (y-axis; 
Figure 2g) [41], or throughout the heterochromatin 
beneath the kinetochore (Figure 2g) [42,43]. In contrast, 
in human HeLa cells we found both INCENP and Sur-
vivin bound along a para-polar z-axis that perpendicularly 
bisects the longitudinal y-axis and the trans-polar x-axis. 
The reason for the discrepancy is unclear, but could be 
related to differences between vertebrate classes, or the 
sensitivity and resolution of the techniques used. 

The pattern of localization we observed suggests that the 
chromosome passenger class of centromere proteins can 
be subdivided into two subgroups depending on whether 
they reside along the trans-polar axis or the para-polar axis. 
The trans-polar orientation would allow the organization 
of the structural proteins (and their interacting DNA) into 
configurations (the kinetochore discs) such that their 
active faces will point toward the spindle poles to provide 
opposite attachment sites for microtubules. This orienta-
tion would also facilitate the functioning of proteins, such 
as the molecular motor CENP-E [44,45], whose activity 
may depend on direct, end-on interactions with the kine-
tochore-associated microtubules to effect chromosome 
movement [46]. The para-polar orientation would favor 
roles such as sister chromatid cohesion, side-on cen-
tromere interaction with microtubules, or provides a depot 
to facilitate the relocation of proteins onto microtubules 
for downstream functions, such as regulation of micro-
tubule activity and cell cleavage. 

Survivin disruption results in microtubule bundling and 

impaired cytokinesis resembling that of INCENP null mice 

The onset of an abnormal phenotype with survivin gene 
disruption varied slightly amongst the embryos, with some 
embryos exhibiting normal morphology until day 4.5 post 
caitum, while others showed deterioration as early as 
day 2.5. Irrespective of the time of onset, all null 
embryos became grossly affected by day 5.5. Early signs 
of embryo deterioration included degenerating blas-
tomeres, micronuclei formation, variable nuclear sizes, 
irregular nuclear morphology and multinucleation. These 
aberrations were characteristic of an underlying defect in 
mitosis. As the phenotype progressed, cells ceased to com-
plete mitosis, with the decreasing number of normal cells 
rapidly replaced by a small number of giant cells with 

Figure 7 

Like Survivin and Bin, INCENP and S1i15 appear to be homologs 
with conserved functions. (a) Proteins bearing an INCENP box (light 
gray box) can be found in organisms ranging from yeasts to 
vertebrates. Asterisks, putative nuclear localization signals; dark gray 
ovals, regions resembling neurofilaments; white box, a region of 
INCENP shared by vertebrate homologs and required for centromere 
targeting [23]; white ovals, predicted coiled-coil domains of INCENP 
and Slil 5. The respective sequence database accession numbers 
are indicated in parentheses. (b) Comparison of INCENP box 
sequences, with universally conserved residues highlighted in blue 
and less well-conserved residues in shades of gray. (c) Relationship 
of a BIR-containing protein (Birl p), INCENP protein (S1i15) and 
Aurora homolog (Ipllp) to the centromere-binding protein Ndcl Op in 
S. cerevisiae is shown on the left. Birl p binds to Ndcl Op through its 
carboxy-terminal half, rather than through its BIRs, which are in the 
amino-terminal region. Hypothetical relationship of the 
corresponding homologous mammalian proteins (Survivin, INCENP 
and Auroral) is shown on the right. (d) Survivin, INCENP and 
Auroral and their homologs have been observed to interact with 
each other directly or indirectly in a hierarchy that often determines 
their localization. Arrows with reference numbers indicate 
interactions that have been shown to be direct (solid arrows) or may 
be indirect (dashed arrows). 

large and morphologically unusual nuclei. Tubulin stain-
ing revealed the absence of normal mitotic spindle 
structures and intercellular midbodies, with reduced 
microtubule networks around the cells, and bundling of 
microtubules. Thus, the observed phenotype was very 
similar to that previously described for the INCENP null 
mouse embryos [22]. In both cases, the phenotype was 
consistent with a defect affecting microtubule organiza-
tion and/or cytokinesis. 
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Relationship between Survivin, INCENP, Aurora kinase 
and NdclOp 
A number of observations suggest that Survivin and 
INCENP may have related roles in mitotic cell division. 
Both are members of the chromosome passenger class of 
proteins with very similar cell-cycle expression, distribu-
tion pattern and gene knockout phenotype ([22,42] and 
this study). On metaphase chromosomes, Survivin and 
INCENP both bind to the para-polar axis of the cen-
tromere, as distinct from binding along the trans-polar axis 
that typifies most of the other centromere proteins. Fur-
thermore, the functions of these proteins appear to be 
highly conserved, because yeasts have homologs of both 
Survivin [2] and INCENP (Figure 7a,b) that are also 
involved in chromosome segregation. Mutation of Bir 1 p, 
the closest homolog of Survivin in S. cerevisiae, causes a 
chromosome-loss phenotype [13] and, although homologs 
of INCENP have not yet been described in invertebrates, 
proteins that share a similar carboxy-terminal motif to that 
of INCENP, here dubbed the 'INCENP box', can be 
found in the mouse, Drosophila, C. ekgans, S. pombe and 
S. cereviciae (Figure 7a,b). Significantly, there is a single 
INCENP-box-bearing protein in S. cerevisiae, termed 
Sli15, which, like INCENP, associates with the spindle 
and is required for proper chromosome segregation [47]. 

It is interesting to note that the S. cerevisiae homologs of both 
proteins interact directly or indirectly with the same protein, 
the serine threonine kinase Ipllp. Thus, Sli15 binds and 
may regulate Ipllp in yeast [47], and Birlp binds the Ipllp 
substrate NdclOp, a key component of the S. cerevisMe kine-
tochore [13,48,49]. Furthermore, there is also a functional 
correlation, because mutation of IPL1, like SLI15 and BIR1, 
causes chromosome missegregation [50]. The association of 
these proteins is likely to be evolutionarily conserved 
because interference with bir-1 in C. ekgans causes defects in 
cytokinesis similar to those in which air-2, the gene for an 
Ipllp-like kinase, is inhibited [11,51], and AIR-2 does not 
localize to centromeres in the absence of BIR-1 [15]. 

The mammalian homologs of Ipl 1 p are the Aurora kinases 
(reviewed in [20]). Intriguingly, expression of mutant pro-
teins and immunohistochemistry has shown that, in mam-
malian cells, Auroral and INCENP demonstrate similar 
cell-cycle distribution profiles and have related roles in 
mitosis [19,21-23]. Thus, it appears that Survivin, 
INCENP and Auroral are part of a mechanism governing 
chromosome segregation and cytokinesis that has been 
conserved from the yeasts to mammals (Figure 7c). This 
model is strongly supported by evidence in papers made 
available to us after submission of this manuscript showing 
that INCENP and Auroral bind to each other directly, 
and INCENP is required for Auroral localization to cen-
tromeres and the central spindle [52]. Furthermore, in 
C. elegans, the INCENP homolog ICP-1 is able to bind the 
Auroral homolog AIR-2 [53]. AIR-2 is in turn required for 

localization of the kinesin-like protein ZEN-4/CeMKLP1 
to the spindle midzone [54]. In C. ekgans, AIR-2 requires 
the Survivin homolog BIR-1 for its localization [15], but it 
remains to be seen whether in mammals (or C. elegans) 
Survivin interacts directly with INCENP or Auroral, or 
indirectly, as in the yeast S. cerevisiae (Figure 7d). 

Two groups of BIR -bearing proteins 
Structural and functional considerations suggest that there 
are two classes of BIR-bearing proteins. Members of one 
class, which includes Survivin, are primarily involved in 
cell division, and members of the other are primarily 
involved in the control of apoptosis. The yeasts and 
C. elegans appear to encode only the former class, whereas 
other organisms such as Drosophila and mammals have 
proteins of both classes. Perhaps, during metazoan evolu-
tion, there was duplication of the gene encoding the pri-
mordial BIR-containing protein, which functions in cell 
division, and because this protein had an intrinsic affinity 
for caspases the second class of specifically anti-apoptotic 
BIR-containing proteins developed. 

It has previously been shown that expression of Survivin is 
higher in cancers than in normal tissues [24]. Expression 
of Survivin during mitosis may explain this correlation as 
tumor cells have a higher mitotic index than cells in 
normal adult tissues. It has been proposed that Survivin 
may contribute to oncogenesis through inhibition of apop-
tosis, but the cell-cycle role of Survivin raises several addi-
tional possibilities. Inappropriate Survivin expression may 
induce chromosome instability, leading to oncogenic 
changes in ploidy. Alternatively, Survivin expression may 
induce inappropriate proliferation in cancer cells, or may 
simply be required for quiescent cells to escape their 
normal proliferative restraints. Whatever the function of 
Survivin in tumor cells, the absence of its expression in 
most normal adult tissues warrants further investigation of 
this protein as a target for novel anti-cancer therapeutics. 

Conclusions 
In S. cereviriae, the proteins Bin, Sli15 and Ipllp interact 
with each other either directly or through the kinetochore 
protein NdclOp. Furthermore, yeast mutant for these genes 
display similar defects in chromosome segregation and 
cytokinesis. The mammalian homologs of these proteins — 
Survivin, INCENP and Auroral — have similar expression 
patterns and localization. These observations, and the similar 
phenotypes of mouse embryos lacking Survivin or INCENP, 
suggest that the primary role of these proteins is to regulate 
chromosome segregation and cytokinesis, and they are likely 
to function in concert with the kinase Auroral. 

Materials and methods 
Gene targeting and genotyping of mice 
A mouse survivin cDNA clone was used to screen a mouse genomic 
library (strain 129Sv). Multiple independent lambda phage clones 
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were isolated and mapped by restriction-enzyme digestion; 9 kb of the 
longest clone was sequenced, encompassing the region encoding the 
entirety of the mouse survivin cDNAs. The targeting vector for survivin 
was electroporated into Bruce 4 (C57BI16) ES cells [55], which were 
then selected in G418-containing medium. Genomic DNA isolated 
from G418-resistant colonies was digested with BamHI and analyzed 
by Southern hybridization using a PCR-generated 250 bp fragment 3' 
of the homologous regions as a probe. Chimeric mice were generated 
from a correctly targeted mutant ES cell line (as described in [56]), 
and high-percentage chimeras were bred to C57BI/6, and offspring 
from these crosses were genotyped by Southern hybridization to 
confirm germ-line transmission of the targeted allele. Mice were main-
tained on a C57BI/6 background. Subsequent genotyping of mice 
was performed by PCR using the following primers: 5' wild-type 
primer, 5f-GCAAAGGAGACCAACAACAAGC-3'; 5' knockout primer, 
5'-GGATTAGATAAATGCCTGCTCT-3'; 3' primer, 5'-CAGCTCTG-
CATCA1TfAGTGCA-3'. These primers gave products of 0.9 kb for 
the wild-type allele and 0.6 kb for the mutant allele. Embryos were 
genotyped by a nested PCR strategy using the above primers for first 
round reactions and the following primers in the second round of 
PCR: 5' wild-type primer, 5'-GGACCTGAGTGACATGCCAC-3'; 
5' knockout primer, 5'-GGCCAGCTCATTCCTCCCA-3'; 3' primer, 
5'-GGTCCTCCTCAATGCAATCAA-3'. The second-round primers gave 
products of 0.8 kb for the wild-type allele and 0.5 kb for the mutant 
allele. The reactions contained lx PCR reaction buffer with MgC1 2  
(Boehringer Mannheim), 800 j.tM dNTPs, 800 nM each primer and Taq 
polymerase (Boehringer Mannheim). 

Embryo harvesting, culturing and morphological studies 
Mouse breeding pairs were monitored daily for vaginal plugs (day 0.5 
of embryonic development). Plugged mice were culled at day 2.5 or 
day 3.5 post coitum. The uterus and oviducts were dissected and 
flushed with M2 media. The embryos obtained were used for direct 
morphological studies, culturing and/or PCR genotyping. For direct 
morphological studies, day 2.5 and day 3.5 embryos were placed in 
M16 media (Sigma) under oil, transferred to microwells containing 
PHEM buffer (45 mM Pipes, 45 mM Hepes, both adjusted to pH 6.7, 
10 mM EGTA, 5 mM MgC12, 1 mM PMSF, 0.7% Triton X-100) for 
4-8 min at 37°C, before the embryos were placed individually on glass 
slides and fixed in a droplet of methanol. After two rinses in fixative, the 
embryos were stained and mounted in Vectashield antifade mounting 
medium (Vector Laboratories) containing 2013g/m1 DAPI. For the mor-
phological study of days 4.5, 5.5 and 6.5 embryos, embryos were cul-
tured on gelatinized (0.1% gelatin in PBS) coverslips (22 mm x 22 mm) 
in 35 mm Petri dishes (Nunc) with ES cell media supplemented with 
LIF and p-mercaptoethanol at 37°C, 5% CO2  and photographed daily. 
The embryos were harvested by rinsing in PBS and treating with 
0.25% trypsin for 3-5 min to detach the trophectoderm cells. Micro-
glass pipettes were used to collect the cells. Harvested embryos were 
used for PCR genotyping or fixed in methanol/acetic acid for 10 min 
followed by staining as above and analysis on an Olympus 1X70 micro-
scope/Nikon F-601 camera. 

lmmunofluorescence analysis 
HeLa cells used for immunofluorescence analysis were either har-
vested and cytospun onto a slide or were cultured directly on a cover-
slip. Cytospun cells or cells grown on coverslips were fixed and 
processed for immunocytochemistry as described previously [57]. In 
some experiments, cells were treated with microtubule-inhibiting drugs 
before harvesting as follows: Taxol (PacliTaxel; Sigma) or nocodazole 
(Sigma) was added to the culture at 10 ILM concentration for 2 h at 
37°C. Colcemid (Gibco) was used at 0.1 p,M for 1 h at 37°C. Immuno-
histochemistry was performed essentially as described previously [22]. 
The rabbit anti-Survivin antibody T065 was raised against a peptide 
(sequence APTLPPAWQPFLKDHRI) derived from residues 3-19 at 
the amino terminus of human Survivin. The peptide was derivatized with 
an amino-terminal cysteine residue, coupled to keyhole limpet hemo-
cyanin and rabbits were immunized five times (Alpha Diagnostics). The 
anti-Survivin antibody was affinity purified on the immunizing peptide on 

a SulfoLink column (Pierce) with elution in 100 mM glycine pH 2.5, 
according to manufacturer's instructions. The titer and specificity of the 
antibody was determined and confirmed by ELISA against the immuniz-
ing peptide and western blotting of Survivin-transfected cells, which 
clearly demonstrated specific immunostaining of the Survivin band 
(data not shown). CREST#6 was an autoimmune serum that detected 
CENP-A and CENP-B [57]. CENP-B detection used a monoclonal 
antibody 2D-7 [58]. Rabbit anti-chicken INCENP antibody was the 
generous gift of W.C. Earnshaw (University of Edinburgh, UK), and 
rabbit anti-CENP-E and anti-CENP-F antibodies were kindly provided 
by T.J. Yen (Fox Chase Cancer Center, Philadelphia). Mouse mono-
clonal anti-P-tubulin antibody (Boehringer) was used diluted 1:25 in 
PBS containing 3 mg/ml BSA (PBS-BSA). 
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