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SUMMARY 

In this thesis, a storage model with infinite capacity, 

additive stochastic input and unit release per unit time is 

investigated. 	Th content of the store in the deterministic 

case is defined as the unique solution of an integral equation. 

Properties of non-negative additive stochastic processes are 

obtained. 	These properties are used to study the distribution 

of the time of first emptiness when the input is stationary, and 

the distribution of the content. Applications to dams and queues 

with specific input laws are given. 	In particular, the waiting 

time for the queues M/M/1 and M/G/1, and the content of the dam 

with Gamma input are studied in detail. 	The dam with Inverse 

Gaussian input is introduced and its transient solution obtained 

explicitly. 

Finally, in the case of a Compound Poisson input, the con-

tinuity and differentiability of the distribution of the content 

are investigated. 

A non-stationary Compound Poisson input is considered, and 

it is shown that the probability of the store being empty and the 

Laplace transform of the content can be expanded in a power series. 

When the parameter of the input is periodic, it is shown that all 

terms of the series expansion are asymptotically periodic, and 

explicit expressions for the leading terms are obtained. 
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INTRODUCTION  

AND SURVEY OF THE LITERATURE  

1. 	General outline of the thesis  

The theory of storage has attracted much attention in 

recent years. Although the impetus was first given by economic 

problems of inventory and provisioning and engineering problems 

in dam design, it soon appeared that storage models had an 

intrinsic mathematical interest. 	Storage models with stochastic 

input are analogous to models in queueing and renewal theory, and 

provide interesting examples of Markov processes having unusual 

properties. 

In this thesis, the following model is investigated z an 

input 	(t ) 
	

which is a stochastic process with independent 

increments, is fed into a store, over an interval of time t 

The output from the store is of one unit per unit time, except - 

when the store is empty. 	The two main processes investigated 

are the time of first emptiness and the content of the store at 

any time t 

This abstract model contains, as special cases, the follow-

ing models which have been extensively studied 

(a) the single-server queue with Poisson arrivals and 

exponential service times (M/M/1). 

(b) the single-server queue with Poisson arrivals and 

general service times (M/G/1). 

(c) the single-server queue with bulk arrivals at points 

of time which follow a Poisson distribution and either 

exponential or general service times. 



(d) the infinite dam with Poisson input and constant-

rate release. 

(e) the infinite dam with constant inputs at equidistant 

points of time and releases following the negative expon-

ential distribution. 

(f) the infinite dam with a Gamma-distributed input, and 

constant-rate release. 

The advantage of using a single abstract model for these 

various situations is, of course, that of being able to use a 

unified technique to obtain results which have been established 

previously by widely varying methods, and then only for special 

cases. 	By using the general method, we are also able to 

obtain new results not previously published. 

Another feature of this thesis is the emphasis on contin-

uous parameter methods. Many of the important results in the 

field under investigation have been obtained by limiting methods 

e.g. Moran [521], Gani and Prabhu [29]. 	However, it seems 

simpler to study the continuous-time model directly, and it turns 

out in fact that the required results can be obtained just as 

easily in this way as with limiting methods. 

It should be emphasised that only results relating to the 

waiting time can be obtained by our technique, when it is applied 

to queueing models. The queue length cannot be studied by this 

method. 

The main contents of this thesis are as follows: 

Chapter 1 deals with the deterministic version of the mOdel 



under investigation. 	It is interesting to note that the problem 

of the definition of the content of a store with completely 

general inputs and outputs, though a natural one, has not been 

given attention until quite recently. In Chapter 1, we show 

that the content of a store can be defined in two equivalent ways: 

(a) as the unique non-negative measurable solution of an 

integral equation, 

(b) by a formula involving the maximum and the suprem7:m 

functionals. 

The relevance of the deterministic model to the stochastic 

one is due to the fact that almost all sample functions of the 

stochastic model obey the formulae derived in Chapter 1. From 

these formulae, we can obtain immediately all the basic prob-

abilistic formulae required in the succeeding chapters. The 

results of this chapter were given by Kingman in a paper [. 41] 

submitted to the Journal of the Australian Mathematical Society 

in July 1963. 	Identical results were obtained independently 

by the author in June 1963, and a paper embodying these results 

was submitted in September 1963 to the Proceedings of the Cam- 

bridge Philosophical Society. 	The Editor of the Proceedings, 

however, pointed out that the author's main result was identical 

with Kingman's result. 

There is, nevertheless, a substantial part of this chapter, 

giving a detailed motivation for the form of the result, which 

is original. 	It is the author's view that the form of the 

integral equation defining the content of the store can be best 



motivated wheninput functions having continuous derivatives are 

considered, even though in the application to stochastic models, 

only inputs whose sample functions are almost surely step func-

tions are encountered. The case of an input having a continuous 

derivative is considered in detail in Chapter 1. 

Chapter 2 is an exposition of some results in the theory of 

non-negative processes with independent increments. The general 

theory of such processes has been investigated at length by Levy 

1_451. 	A restatement of his results is to be found in 

Doob [17]. 	However, the special case of non-negative processes 

c:oes not seem to have been studied on its own merits. 

The spur to try special techniques for studying non-negative 

random variables was given to the author at the beginning of 1962, 

in a private communication from D. G. Kendall, 	Professor Kendall 

pointed out, in commenting on some work of the author which used 

characteristic functions, that it was always a mistake to use 

characteristic functions when dealing with non-negative random 

variables, and that Laplace-Stieltjes transforms should be used 

instead. Laplace transforms are used throughout this thesis and 

their use has made many results much more easy to obtain than 

with other techniques. 	This is true in particular for the 

results of Chapter 2. New methods include the use of the notion 

of complete monotonicity of Laplace-Stieltjes transforms and the 

expansion of the distribution function of the Compound Poisson 

process as a power series in the time parameter /7 . 

A detailed investigation of the Compound Poisson process 



(x ) 

is carried out. 	Special attention, however, is given to a type 

of process which is specific to dam theory, namely, stochastic 

processes which are almost surely increasing in every time 

interval. 	The prototype of such processes is Moran's C.523 

Gamma input, which is investigated in detail. 	It is shown by 

an elementary method that almost all sample functions of such 

processes have zero derivative almost everywhere, although their 

discontinuities form an everywhere dense set. 

Finally a new process with independent increments, the 

Inverse Gaussian process, is introduced. 	This process was 

constructed by the author Egs1 so that a store with such an 

input would have a time-dependent content distribution which 

could be expressed in closed form. 	It was pointed out by P.A. 

P. Moran, in a private communication, that the process distrib-

ution was identical with a distribution introduced by Tweedie 

[
731 who had not 9 	 9 however pointed out its infinitely divisible J  

character. 

In Chapter 3, the first passage time for the content of the 

store is investigated. 	The basic method is that devised by 

Kendall [39] p. 209.  However, Kendall made it clear in his 

paper that he was only sketching his results. 	In particular, as 

pointed out by Lloyd, [46]p. 133, Kendall's main formula giving 

the density function of the first passage time in terms of the 

density function of the input was only conjectured, and has 

since been used repeatedly in the literature on dams without 

proof. 



Chapter 7gives in detail a rigorous treatment of the 

first passage time distribution in the case of a stationary input 

which was first given by the author [34]. 	It is first proved, 

using the results of Chapter 1, that the first passage time is 

in fact a random variable (possibly defective). Then Kendall's 

main formula is proved under very weak conditions. A general . 

formula is obtained for the first passage time distribution in 

the case of a Compound Poisson input, and this is shown to 

specialise to the formula obtained by Lloyd .  [4(il and Mott [51] 

by inductive and combinatorial methods respectively. 

Finally, the asymptotic behaviour of the distribution of 

the time of first emptiness for large values of the initial 

content is investigated and some explicit expressions for special 

types of inputs are obtained. 

In Chapter 4, the distribution of the content of the store 

is investigated. First a formula for the Laplace-Stieltjes 

transform of the time-dependent distribution of the store content 

in terms of the distribution of the input and the probability of 

emptiness is obtained. The formula is inverted and special 

forms investigated in.  the case of discrete and.absolu,tely con-

tinuous inputs. 

Specializing to a stationary input, the Laplace transform 

of the probability of emptiness is obtained and the formula is 

inverted, expressing the probability of emptiness as an integral 

of the probability of first emptiness. 

Next, it is proved by probability methods that, with a 



stationary input, the store content distribution tends, as 1: 

tends to infinity, to a stationary distribution, which is in 

dependent of initial conditions, provided the mean value of the 

input per unit time is less than one. The behaviour of the 

content distribution in other cases is also investigated. 	The 

celebrated Pollaczek-Khintchine formula for the Laplace trans-

form of the limiting distribution is obtained for a general form 

of input, and is inverted in two different ways. 	Finally, 

various asymptotic formulae for the behaviour of the limiting 

distribution are obtained. 

The work in this chapter is based on results by various 

authors scattered in the literature. 	The proof of existence of 

a limiting distribution is, however, original in its use for a 

general input, although based on an idea of Takcs [71] p. 52 •  

Various proofs of known results are also original. 

Chapter 5 is a collection of results obtained by applying 

the formulae of Chapters 3 and 4 to special types of inputs. 

The following models are considered: 

(a) the queue M/M/1, 

(b) the queue with Poisson input and fixed service time, 

(c) the dam with Gamma input, 

(d) the dam with inverse Gaussian input. 

The results for the first two models are well-known and 

have been obtained many times by a Wide variety of methods in 

recent literature. Those for the fourth model have been obtained 

by the author [36], while most of those for the third have not so 



far been published. The interest of this chapter lies mainly in 

the fact that all the various results, with applications to very 

different situations, can all be obtained by one and the same 

method. 

Chapter 6 investigates the continuity and differentiability 

properties of the distribution function \N ( t, x) 1-D 	(t) x 

where 	(t) is the store content, as a function of the two var- 

iables t 	and x. . 	The main result is that if the input 

distribution is of Compound Poisson type, and if the jump 

distribution has a bounded derivative, then VV (t, )c) is a differ- 

entiable function of both t and 	, and satisfies an integro- 

differential equation. 	This chapter is an amplified exposition 

of a paper by the author C323. 

Finally Chapter 7 investigates the case of a storage model 

with a Compound Poisson input, when the arrival density varies 

periodically with time. 	It is shown that the probability of 

emptiness can be represented as a power series in a suitable 

parameter whose coefficients can be calculated by recurrence as 

the solutions of convolution-type integral equations. 

The asymptotic behaviour of the probability of emptiness is 

then investigated, using Abelian theorems for the Laplace trans-

form inversion formula. 	It is shown that the probability of 

emptiness is asymptotically periodic and can be represented by a 

Fourier series. 

Finally it is shown that the Laplace transform of the wait-

ing time is also asymptotically periodic and can be represented 



by a Fourier series. 

Various mathematical results which are required for oatab-

lishing the results of this chapter are also proved. 

2, 	A survey of recent literature on storage 

The following survey of the literature on storage does not 

claim to be exhaustive, but only to outline the main stages of 

the development of the theory of storage with additive stochastic 

input when the store has infinite capacity. 

Moreover, it should be noted that many of the important 

formulae in the theory of storage were actually developed within 

the framework of queueing theory, so that a large part of this 

survey will deal with papers on queueing theory which do not 

contain any mention of a more general interpretation. 

The first important formula in the theory of storage was 

given by Pollaczek [55] in 1930 and Khintchine [40] in 1932, who 

gave a formula for the Laplace transform of the limiting distrib-

ution of the waiting time in the queue M/G/1. 	In 1933, the first 

investigation of the transient behaviour of the queue MA1/1 was 

made by Kolmogorovi01. 

Little work of importance in the field was done until 1951, 

when Kendallf36, recognizing the fact that the length of the 

queue at time t in the queue M/V1 was not a Markovian 

process, introduced the method of the imbedded Markov chain, and 

was the first to prove that when the mean rate of arrival is less 

than the mean rate of service, the waiting-time distribution tends 

to a limit distribution as t tends to infinity. 



The next step in the development of the transient theory 

of storage was the work of Lederman and Reuter D711.1  in 1954. 

Lederman and Reuter stueied the queue MA/1 by the method of the 

birth and death equations, and, using the spectral theory of 

differential equations, obtained explicit expressions for the 

time-dependent queue size in terms of modified Bessel functiohs. 

Soon after, their results were obtained by a number of different 

methods: 

In 1954, Bailey [1] obtained Lederman and Reuter's 

results by using generating functions. He also obtained 

further results in 12:::7 t.2]. Further refinements of the 

technique are to be found in Cox and Smith U2]. 

In 1956, Champernowme [9] used random-walk methods to 

solve the queue M/M/1. 

Also in 1955, Clarke [10] studied the queue with non-

stationary Poisson arrivals and exponential service times . , using 

generating functions. A similar problem was investigated by 

Luchak [48] in 1955, using spectral theory. 

Conolly E113, in 1958, solved the birth and death equations 

by Laplace transforms and difference-equation methods. 

Finally Karlin and McGregor 1371in the same year, applied 

an orthogonal polynomial method, reducing the solution of the 

queue M/M/1 to the finding of a suitable measure that would make 

a given sequence of polynomials orthogonal. . 

While the investigation of the queue M/M/1 was being 

carried out, the queue M,/G/1 was also given much attention 



r 
Pollaczek L56] studied in 1952 the transient behaviour of the 

queue M/G/1, using complex-variable methods. His results are 

available in expanded form in 

The turning point, however, in the study of the queue 

M/G/1, was . Takacs' .  paper [70] in 1955, where the notion of virt-

ual waiting time was first introduced. TakAcs remarked that, 

although the length of the queue at time t was not a Markov 

process, the time required to complete the service of all cust-

omers in the queue at time t: had the Markov property. 

However, the considered process was not of a type which had been 

previously studied in detail. The introduction of the virtual 

waiting time concept also heralded the combination of queueing 

and storage theories in one abstract model. 

The virtual waiting time process was further investigated 

by Bens [7] in 1957 and Reich [611, [62], while Descamps c.131 

in Franco seems to have rediscovered the idea independently (see 

Saaty 55] p. 190. 

Further results, concerning the analytical properties of 

the waiting-time distribution, and the queue with non-stationary 

Poisson arrivals and general service times were obtained by the 

author in 1963 [321 2  [133. 
Other developments related to the queue M/G/1 were the 

use of Spitzer's identity (see Spitzer 67], [66]) in 1.957 to 

prove the Pollaczek-Khintchine formula by combinatorial methods, 

and the use of Dantzig's method of marks by Runnenberg in 1960 

to obtain by probabilistic methods Takeics' time-dependent formula 



for the Laplace-Sti.cltjes transform of the waiting-time distrib- 

ution M . 
„ 

Combinatorial methods were also used by Ben's Lelj„ L5j, 

Di and Reich [53] to obtain various formulae related to the 

virtual time in the queue MiG/1. 

All the methods just quoted are of course of much wider 

applicability but are mentioned here only in so far as they can 

be applied to our storage model. 

The great development of queueing theory in the 1950's can 

be gluged by the fact that Miss Doig's bibliography D6] (1957) 

lists about seven hundred papers on queueing theory, while the 

author's own bibliography lists several hundred subsequent papers. 

While the queueing aspects of storage were being developed 

at such a rate, the theory of dams was making its appearance on 

the stage. 

Smith [65] had described in 195 an analogy between the 

single-server queue and an infinite dam model. 

Moran [5n), [51] in 1954 and 1955 gave a simple and pract-

ical formulation of the finite dam problem, as well as several 

solutionsl in which extensive use was made of Markov chain methods. 

Gani [22] obtained an exact solution of the finite dam when the 

input is of Poisson type and the release is at a constnnt rate. 

The most interesting problem in the theory of storage, 

however, with no direct analogue in queueing theory was formulated 

by Moran52.:1, in 1956. 	This was the infinite dam with an input 

following the infinitely divisible Gamma distribution, and a 



constant-rate release, whose Solution Moran obtained' by using a 

discrete approximation, and then passing to the limit. 

The great turning point in dam theory was the meeting of 

the Research Section of the Royal Statistical Society on 6th 

March, 1957 where a review paper on storage systeMs by Gani [27] 

and a paper by Kendall P91 entitled "Some problems in the theory 

of dams" were read, and a lively discussion ensued, with many 

noteworthy contributions to dam theory, including in particular 

those of Foster, Lindley, Downton, Smith, Thatcher and Dniels. 

Not only was Moran's Gamma input dam investigated, but dams with 

general additive inputs were considered there for the first time. 

At the end of the discussion, Kendall gave a summary of the main 

results, and concluded: "This is a most satisfactory state of 

affairs. 	There is still a great deal that we do not know about 

the Moran process, but there are very few processes about which 

we know so much". 

Another important development in 1957 was the realisation 

• of the close relationship between the content of a der and Takcs' 

virtual waiting time mentioned earlier (see e.g. Downton [18]). 

The following is a quotation from Gad and Prabhu D73 p. 114: 

"The application of limiting methods to Markov chain models 

has in some 	 cases led to solutions of the storage problem 

in continuous time. However, the procedure has proved cumbersome 

and has partly obscured the simplicity of the underlying Markov 

processes. 	Surprisingly enough, it escaped both Moran and Geni 

that the problems they first considered, formulated as they were 



(xix) 

in widely different terms and with apparently distinct solutions, 

were identical and closely connected with Takacs' [70] elegant 

work on analogous queueing processes". The reference to Gani's 

and Moran's models which are the duals of each other is to Gani 

[22] and Moran [51]. A systematic exposition of storage theory 

up to 1959 was given by Moran 

Using Takcs' integro-differential equation, Gani and Prabhu, 

who had already published a joint paper on dam theory V25, ob-

tained a large number of new results for the dam with a simple 

Poisson input and constant-rate release in 1958 and 1959 25\ 9  

[27], [28]. 	Prabhu, who had done some previous work on discrete 

dams [58], now used the new formulae in queueing theory 	, 

However, in applying the TakEics technique to dam models, 

especially those with a Gamma-type input, it soon became apparent 

that the intuitive definition of the content of the dam led to 

difficulties. This led Gani and pyke [30 to redefine the 

content of a dam, using the gupremum and maximum functionals. A 

review of the known results, in the light of the new definition, 

using limits of discrete approximations to obtain the Takacs 

integro-differential equation, was presented by Gani and Prabhu 

- 1 
09j, and the results extended by Gani p41 to dams with non-

stationary Compound Poisson inputs. 

The return to the method of discrete approximations was not, 

however, fully satisfactory,and Kingman [41] in 1963, showed that 

a direct treatment was possible in the general case also. 	The 

following is a quotation from his paper: 

The problem of storage in an infinite dam with a continuous 



release-has been studied by a number of authors ..., who have 

formulated it in probabilistic terms by supposing the input to be 

a continuous-time stochastic process. 	These authors have encount- 

ered difficulties which they have overcome by regarding the con- 

tinuous-time problem as a limit of discrete-time analogues. 	The 

purpose of this paper is to suggest that these difficulties are 

the result of an unfortunate specification of the problem, and to 

show that the adoption of a slightly different (and more realistic) 

formulation avoids the difficulties and allows a treatment which 

does not have recourse to discrete time analogues." 

As mentioned earlier, the author obtained the same results 

as Kingman independently in 1967. 

The problem of the distribution of the time to first empti-

ness, for which Kendall [79] had conjectured a solution, still 

remained to be solved. 	A complete solution for the discrete case 

was given by Lloyd [46] and Mott [64] in 1963, while a solution 

for the absolutely continuous case and the general case of a Com-

pound Poisson input was given by the author [34]. 



CHAPTER 1  

A DETERMINISTIC INVESTIGATION OF THE STORAGE 

MODEL WITH INFINITE CAPACITY 

1. 	Definition and elementary properties of the input and  

output functions. 

In this chapter, we shall be concerned with the following 

deterministic model: we have a store" with an infinite capac-

ity. 

The "input". in the interval (0, t . ..} 	is given by the 

function 	(t)*. 	We shall make the following assumptions! 

(a) (0)1-- 0 	y  

(b) (t- ) 	is non-decreasing, 

(c) (.) 	is continuous to the right, 

(d)f (t) 	00 as t 	odo 

From these assumptions, we can deduce that f(t) has the foll-

owing properties: 

(a) The discontinuities of f(f) are all of the 

first kind, i.e. i(t*0)= tro- g- (t*g) = (0) 

- 0 both exist, and  

-4 ,to 

(b) The discontinuities of g7(t) are denumerable. 

(- c) 	is the sum of three non-decreasing 

functions f,(t) 	(i 	(t) 	where 2 	3  

(i) is a step7function, 2 ( .0 is absolutely 

continuous, i.e. 

S -r (u) 



2 . 

and 	isis a singular function, i.e. a con- 

tinuous function whose derivative vanishes almost 

everywhere. 

(d) CO is differentiable almost everywhere. 

(e) E (t) determines a measure over the cr -field 

of Borel sets of the non-negative axis (0,t).-0). 

We shall say that the point t is a point of stationarity of 

(t.) if there exists a one-sided neighbourhood E tj t +E :  

of t where 	CO is constant. Otherwise we shall say 

that t is a point of increase. 

The measure of any Borel set 8 induced by E('t) will 

be called the input over the set 8  

We now introduce the notion of output. This is not as 

straight forward as the notion of input, because, while the 

input is independent of what is happening in the store, the 

possibility of realizing an output depends on the periods of 

emptiness of the store in [C...), /7] . 	Moreover, we must lay down 

a rule for determining to what extent a desired output rate will 

be realized when the store is empty and the input rate is lower 

than the desired output rate. 

As a first step, we shall introduce a "planned output 

function", 1?(t) . This will have the same properties as Pi), 

i.e., it will also be a non-decreasing, right-continuous func-

tion with 17(0)=0 	,17(001D) F:000. 	We shall call the 

content of the store 	(t) . 	It is clear that . (t) is not 



equal 'to 	(A) - 	It) , because of the fact that the planned 

output 	CO cannot be fully realized if the store becomes 

empty, i.e., if 	-_-_- 0 for a .sufficiently large set of 

values of LA_ E (0, t] • However, the function 	(&) 	(&) 

will play an important part in the determination of  

We shall denote it by 1- ) 	, and call it the "net planned 

input". 	The function ) (t- ) has the following properties: 

(a) (0 is a function of bounded variation, and its 

total variation IV ( t ) in (0, t 	is certainly 

smaller than 	(t) + 1? ) 

(b) (t ) can be decomposed into its positive var- 

iation 1)4_ (t ) and its negative variation V_ ( ) . 

These are defined as follows! We put 

and 

(x),_—_ 
( 

= 

.0c 	if 	> 

0 	otherwise 

- x 	if 	x < 0 , 

otherwise . 

Then 
DC = (x) i_ - (x- )- 

I =(x) .1_ 	. 
Let o to  < t, < t2  „ .< t = t be any 

dissection of the interval (0 )  t] . 

We define 

(t)z S u 	 _v(t4),L 
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where the supremum is taken over all possible dissections of 

(od it] . 	We then have 

v(t) = »(-6) - 

	

1),(t) 	(,t , 

It will be shown in the sequel that the key to a correct 

definition of the content function, 	(&) 	lies in finding 

the difference between the two functions E' ( -0 and 	0-) 9  

thus obtaining the function of bounded variation 1 ,)() 1  and 

then representing the latter as the difference of two non-dec-

reasing functions. The new decomposition,  

however, has a very important property. The function of 

bounded variation OW defines a signed measure " on the 

Borel sets of the positive t: -axis. 	It can be shown (see 

Love [47] p.86, theorem A) that there exists a Borel subset 

I) of the real axis, having the following property: 

	

(t) 	if) n 	, 

	

- ‘)_ (t) 	itk (A n DC) , 

where A is the interval (0, t) and DC is the comple-

ment of 1) 

We shall now introduce a general restriction on the form 

of e7 	. We shall assume that r-yi  (f) has no discontinuit- 

ies, and that t = 0 is not a point of stationarity of /17(f). 

Let us remark that the last restriction does not affect the 

generality of the argument. For suppose that the first point 

of increase of ,7 (t) is t • 	Then in the interval o  

(0,  t o ] , there is no planned output, and therefore the 



5 . 

content of the store is exactly ,)). (o) 	(to ) at t o  . 

Thus, by changing the origin to t o  and taking the initial 

content of the store to be 	(4.)) 	("L.) instead of 	(0), 

we have reduced the problem to one where the point t = 0 is 

not a point of stationarity of /7 (t) . 

We shall show that l if we make the two preceding assump-

tions -then by changing the way of measuring time, we can 

reduce the function PI (t ) to the form -7 (t) t. 	In 

fact, the assumption of no discontinuities ensures that there 

is at least one value of t for which .17  /÷) = .7C where 

is any non—negative number. Whenever there is more than one 

value of t corresponding to 	we take the supremum of 

these values as  

We next take as our new measure of time L ----7 (t). 

Then 	F(t) = 	[,->? - '((_k)] is the new imput function, which 

has obviously all three properties required at the beginning of 

the section. 	For the above reason, we shall consider in the 

remainder of this chapter only planned output functions of the 

form r7  

2. 	The case of an' input function which is a step function. 

The simplest case that we shall consider is that of an in-

put 5 (t) which is a step function having only a finite number 

of jumps in every finite interval of time. Let to  t2 

be the points of discontinuity of 	( t), and 7C 

be the magnitude of the jumps. Then 	(k)-= t f 
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In this case., it is not difficult to define 	(t) by 

recurrence in a natural way. We shall assume that the initial 

content of the store is 5.. 	 Then 

(a) If t, < 	, then, for 0 	< t, , 

and for t = LLI   

(b) If, on the other hand, IL  ,"--> 3 	we have 

12r - t 	for 	t< 

for  

for  

In the same way, we can define 3 . (t) recursively as 

follows: given 3.  (.6 = 	>0 at t = 	we have: 

(a) If t„..0,. , - L .... 3(t,), then,for 	t,„ < t <6 
71.+1 ,  

for te = 

-\ + .X.  ,.„.. 

(b) If k- t„..s.  >3. ■/..f,) , we have 

(3(c) - (-6,,,,) for t_ < t 	t,..,. -f- 3 Ct \ ,-.,./ ) 

0 	 for  
, 

÷t 	for  

The situation is depicted in Figure 

We shall now show that 	(t) satisfies the following 

integral equation: 
6 

3(6) = 	+ 	t- 	f Ur- 3(u)) otc, 

where ()(x) is the Heaviside unit function, defined by 



for c. (1, 

otherwise. 
u(x) = I  

1L 0  
We first note that 

7. 	 1.2 

ço 	if 	0 1  i.e. if the store is not empty, 

Li 	if 	= 0 , i.e. if the store is empty. 

	

Consider first the interval [0, t . 	We have two cases: 

) 	t, 	 Then for 	.0 	< 	> o , 

	

a , F (-0 = 0 , and 	= 3_ t 

as required by the formula. 

At t = 	, E(*) = r\ki 	so that 

-1c, 	as required. 

Then for O< .  

0and UL-W).-=0, 2 	 so that 

t  UE- 	_-_-_ 	On the other hand, if• 

< 6 1 	,•(t) = C-1 	so that 

j = t 	Therefore 

(b) 

( 

lt-3), X', 

for  

for 
	

t < t 

for 	= t , . 

Turning now to theinterval t t suppose that 
t,,„ r  

(t.) satisfies 	(t ) = 	
( 

3_ + (t,) - 	 UL-  3(a) 	- 

Then it suffices to show that, for t,„ < t t 
r 	) t 

+[E(i) 	- 	-t,) 4- j UZI (t.AJJ C,L(. 
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We must consider two cases 

(a) • Then, for  

3(&) >  

and 

Moreover, 	
- () ='X', 1  so that 

(t 	) = 3'(t, ) + 	(6-tb,), as required. 
,K+1 

(b) > 	) 	• 	Then, for 

t < 	( t 	, 	(t) = (t ) - - 	and 

UE3(t)] 	, so that j tui-r(L9 ctm 
t„ 

other hand, if t, + t )t < t 

	

so that I I  U E-3(u) .] du. t - 	3( kJ) 
t, 

It follows that 

	

3(t„)-(t-e,) 
	

for 

3(t) \ 	 3((„).11=ofor 	t,-(t. ) 

t,)+1 t.‘tift„ 30,„gi+x,T)cri  for t t,,, 

Thus the values of 3'(t) as defined at the beginning of 

the section satisfy equation (1.1) for all values of t o . 

Let us now consider what the expressions for V+  (t) and 

V (t) are in the case under consideration. By inspection, it 

is easy to see that in this case we simply have 

and v_ ( t = t •  The set D described at the end of 

section 1 is simply the denumerable set /t I 	where the 

t arc the points of discontinuity of 	- (t- ) 	We thus 

pee that equation (1.1) can be rewritten as 

On the 
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t 	
ci v. ( LA ) 	

( 	2 ) 

We shall show later that this integral equation has a 

unique non-negative measurable solution. From the above con-

siderations, we conclude that this solution coincides with the 

natural definition given at the beginning of this section. 

Equation (1.2) has a simple intuitive meaning. The 

content of the store is equal to the initial content, plus the 

net planned input, plus a correction term. The correction 

term represents that part of the planned output which could not 

be realised, due to the store being empty. 	If /A_ is the 

measure induced by It)_(t) on the positive axis, and 3 the 

set of points in (0, L.] for which 3' (±)o , the correction 

term is /A (0) . 	In the case of a step input function, the 

set a is the union of a finite number of disjoint intervals. 

The case of an input function which has  a  continuous  

derivative. 

The case of an input function which has a continuous der-

ivative already exhibits all the difficulties of the general 

case. However, these difficulties can be easily overcome in 

that case. 

It is natural to assume that the rate of change of .(t) 

will be given by the following equations: 

(a) If 3'0- 1>d 	t'(t)-/ 	v'(t). 

(b) If 	(t)=.0, there are two possibilities : 
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(1) 
	

if I i(t) 	I  1  i.e. if the rate of input 

is larger than or equal to the planned rate 

of output, then the store will start filling 

at the rate of 	(t) — 	i.e. 
I() 
	 i(t) . 

	

(ii) 	if 	Z -t) < 	i.e. if the rate of input 

is smaller than the planned rate of output, 

then the store will remain empty, i.e. 

1 (6 0 • 

	

The formulae for 	 in both cases (i) and (ii) can 

be summarised as 

= 	i(±) 1 1 ÷ 	[) i (*)] 	. 

We shall need the following lemma. 

Lemma: 	For every function 	(t- ) having a continuous der- 

ivative 

	

( 	=  

Proof:  

—(t-k )7 4- 

But 

v(to )j 
	t,,, 

so that 

L5)(t&÷,)--v(t4)] 	E».(toi ± ct ‘-‘ • + a  
(1. ; 3) 

On the other hand, because of the continuity of 	I  CO 1  the 
I/ inverse image of the set (0 1 00) under the mapping 	14-) 
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E (01 -6) ) is an open set, which is the union of a 

denumerable number of disjoint open intervals .4 	. Let 

t-,,t..  , tt 	be the end points of these intervals. 	Then  

-v 
0 	 -6, 

t 

The last equality follows from the fact that on the intervals 

I
ell 

1  V 1(t) is positive. 	Finally, because 1 1)(t)i is 
—. 

bounded on [0,1:j 1  we can choose a finite subset of the 

I s such that if the summation is extended to that subset 

only, 

[ 	) - 1)(til › f5)°(LA eit"` 	E  
where E. is arbitrarily small. For the dissection of 

t) determined by the t 	e 1  we obviously have 

E[v(t, -> 	du L E.. 
Using equations(1.1 and (1.4), we conclude that 

s L4. e  E[v(tict )- v(±)] = .r[,f(u.)] 	. 

g 	 0 
This completes the proof of the lemma. 

(1. 4) 

(1 .5) 

Corollary .: 	Under the same conditions, DJ:0 -•=1 [1) 1 0-4-)] d-LL. 

0 
Using the above lemma we can summarize all the equations giving 

1 (t) as follows: 

(1.6) 
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Remembering that 	V I CO =[')'(t]_ ['( -t)], , we can re- 

write(1.6) as 

1 ( ,E) = \At) 	u1-(t)] p'()7_ 	(1.7) 
Equatio n (1.7) can be easily integrated, using the corollary to 

the lemma. We find 
t- 

(t) 	i-1(:t) 4- 	UP(t.01 0( V_ 	) 	(1 .8) 

which is the same equation as equation (1.2). 

The formation of ( -6) in the case of an input function 

having a continuous derivative is depicted in Fig. 1.2. 

4 ,  The function V *  (t) and its use in the definition of 

( t) 

We shall now return to the case of a general input funct-

ion, and we shall introduce a function 9 ( t) defined by the 

formula 

V 	 ( (A-) • 
0 4 U 4 

This function has the following properties: 

(a) It is non,decreasing. 

(b)  

(c) It is continuous. This property follows from the 

fact that v(t) has no downward jtuups. 

To gain some insight into the relationship between s (t) 

and 	(t) wo shall consider a special case depicted in 

FiF, -ure 1.3 • In this figure, v(t) has two minim at t 

and 	3 9  and we assume that 0 > v ( t > v ( t3 ) . The 
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initial content of the store, 3._ 	is assumed to be smaller 

than  

Let us draw the function — ).) -(f) . 	It remains zero 

as long as 	1) (t) 	remains above the t —axis, i.e. until 

the point LE . 	At E..' it starts decreasing, remaining equal 

to 	v(t) as long as v(t) is decreasing. 	Then at Y7 1 

when p(t) starts increasing, it remains constant, until 

(f) has reached again the value of the first minima, 

t i ) , at t 	and then decreases, remaining equal to .2. 

	

(IL ) , until t3 	the second minimum. 

Let us now consider the content of the store. As long 

as the store has never become empty, we have (t) -.7. -3 + P(f) • 

However, it is clear that the store will become empty for the 

first time when V (t) has reached for the first time the value 

. This will happen at the smallest value of t for 

/ 	• which 	1 . 1,, 	1)(,) 
/).  

in other words when V / (f) — 
s. 

for the first time. 	This happens at 	. 	The store will 

then remain empty as long as 	V I (t) 4. 0 	, i.e. as long as 

	

_ 1"*('H . 	We thus see that for 	6. 	t 	t, , 

, 	( I ) 	p *- (t 	. 	After t, 	(f. ) will 

increase from zero at the same rate as 	() , and then 

decrease at the same rate as 	V (t) , until t2 , when 

reaches Et negative value equal to that at 	t, . 	During 

the time interval (i 1 2 	 ) * (t) has remained constant, so 

that again we can write 	3 ( ) = v (t) f P ‘4 (t) . 	In gener- 

al, v 4 (f) will remain constant after 	in all those 



3 (t) 	
for 	t < t o  

for  
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periods where the store is not empty, and will be equal to 

- v() for all periods where the store is empty, so that, 

in general, for IT > 	, we have 	3" }.7._ 	(t )1- 1) 

We thus have 

. 
However, for t < 	, we have 3  > 	, and for 

	

to  , we have 	3  4 v•g(6), so that we can combine 

the two formulae for 3 tj into the one formula 

	

3 () 	 t 
	

(1.9) 

Let us also note here that t„, , the time of first empti-

ness" of the store, is the smallest value of t for which 

We have thus obtained intuitively for the special case 

under consideration, an explicit formula for 	( -1- ) in terms of 

y g(tj and 	V ( ) 	It remains to establish formally the 

equivalence of the two formulae (1.8) and (1 . 9) in the general 

case. This will be done in the next section. 

5. 	The formal definition of the content of the store. 

We shall now show that equation (1.8) can be used to define 

the content of a store in a unique way. We shall need the fol-

lowing theorem: 

Theorem 1.1: 	Let -z 	be an arbitrary positive number, ■, ( -f) 

a function of bounded variation which has only upward jumps, 

that is, 	( 	 , and is continuous to the 
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right. 	Let 	v_(-i) be the negative variation of v (t ) . 

Then the integral equation 

= 	+ 	(t) + 	u 	1-(,)] d 	 ( L.,) 	(1.8) 

has a unique non-negative measurable solution, given by the 

formula 

(t) =--- 	1-- ,-,1".amc. 	) 1) 14 ( .0] 	( 1 . 9 ) 

where 0 (-f7) =- iv 	W. 
os.o 

Proof: 	We recall that 	O * (u\ = c 	and that V *(f) is a 

non-decreasing, right-continuous function of t • 	It is 

therefore measurable and non-negative, and it follows that 

3:(t) , as defined by equation (1.9), is measurable. 

Further ;  as 0( 	has only upward jumps, li Nc (t) is 

continuous. 

We shall first show that 	(1E) 	, as defined by equat- 

ion (1.9) satisfies the integral equation (1.8). 

Let us consider the various possible cases: 

(a) 	I) 	(f-- ) 

Then (1.9) gives us 

( 	) for all u. such that 	u t )  

and this value satisfies equation (1.8) as the 

integrand vanishes at every point of ( o t] 

for, as 	is follows that 
a 

(  0 , and in particular, 
A- t 

) = -3 4 ( ,k ) >o , from which we deduce 
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that 	4- (L.L)jr.: 0 

	

(b) 	v (1- ) 	 Let 	to  be the first 

value of t 	for which v * (t) 	• 	The 

existence of to  is ensured by the hypotheses 

on 	V (± , in particular by the restriction to 

upward jumps only, which make 	continuous  

as well as non-decreasing. 	It is this step in 

the proof which makes it imperative to assume 

that the planned output function has no jumps. 

Returning to the proof of the theorem, we now see that, 

for 	?,.. t c, 	2  

( 	v 	-e ) =  
0 f.-. u 

Now, at all points t such that t(tj=o ,(and this implies 

that 	t 	, by the definition of t. ), we have 

\) (t 

If, on the other hand 	CO is positive, we have 

v (.€) > _ (&  
t c t 

A s v ( t ) is continuous to the right, and v ( t ) is con-

tinuous, there exists S -7 0 	such that v (IL + 	> i  

for all positive k 	. It follows that 	t is not a 

point of increase of V ( ) 	We have thus established 

three important facts: 

	

(i) 	The first point at which 	3. 	= 0 is the 

smallest solution of the equation V 'I. (f) =- 	. 
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(ii) Every point for which 	) >0 is a point of 

stationarity of 	( f ) • 

(iii) All points at which 	( -6) 	are points for 

which 	(t) - 	. 

Let now E 	LA- ; 	 L.k < 	y V(t-1  =  
and let :0 be the (denumerable) set of discontinuities of 

. 	If 	t 

-t-) > 	-  

and so t 	E 	so that D 	and E are disjoint. 

Let now . E t = 	 v(6-- -0) = 

Then E l 	U D, where D, 	is a subset of .1) 

If 	E, , then 	(f 	v (t -0) > - * 	, and 

hence there exists an open interval E containing t in 

which 	V( t) 	- 	(--t- • 	It follows that,in I , 4'(f) 

is constant.' Hence, since c a E l , the complement 

of E, in [t o , t) is open, and every point of E t c. 
has 

a neighbourhood in which 0 * (6- ) is constant. Thus 1) * (f 

is constant oji every connected component of E c_ • But the 

connected components of E 	form an at most countable 

family 11:, 	of open intervals. It follows that 

rE, c-  d 	= ) 	 f dV*(1.4i  
But 	

ot1) * (y.) 	c 4. (L, ) 	 dY * 6-4 

and as V I` (f) is continuous and 
	

is denumerable, 
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We conclude that 

d 1)() =  
E l  

Now as ) on 
E 	= 	, we have 

Finally, 

f c1L94 (LA) 	—1 

V(t) 

(u) . 

which can be written 

	

(t) — 	 (1,1o) 

/ 
We now notice that as 1- )  (t) 	is non-decreasing, the restric- 

tion to E 	of the Stieltjes measure //-,k 	det.ermined by 

yq-.6) 	is negative. 	Hence we must have itA. +.( 	= 0, for 

every measurable subset 5 of EE 	. Therefore 

t 

\) * (f 	( 	S 	3-(t.di 	\)_. (a). 

0 

Using now the relation \ -.., (t) )=. 	we conclude that in 

case (b) also 

:“ -t) =-  

-Z)  4--  
t o  

= 3f  V (f) 	uf  
0 

since 	(i) =c-) for 0  

This completes the proof that 	, as defined by equation 

(1.9) satisfies the integral equation (1.8). 
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We shall now show that if 3' ( t-) is non-negative and sat-

isfies equation (1.8), it must be of the form given by 

equation (1.9), and equation (1.8) can therefore have at most 

one non-negative solution. 

We obviously have, for every Lk_ such that 0 Lk c. 

and also 

(t ) 	+ v (t\ — 	+ 1u1-(13-)lci v_ (,) 	v 1.0 —v(, ) 

so that 

v(,) = v 	f--). 

Suppose now that 	( 	> 0 for all u E 	t3 . Then 

L.) 1-r( ■-13 = 0 for all tA. E. to, t 	, and  

On the other hand, if 	r(,)=-0 for some it E 10 , t-3 , and 

if we denote 	s 	 by 	then there exists 

a non-decreasing sequence 	(.4. 	tending to V 	such 

. For every LA, y  we have 

t 
1(.)= () +v()-() +1 ui-.av)jd 	 ) 

= v(t) 	+ 	 4 

v 	v lu 

Finally, letting 	tend to infinity, we find that 

that 
	

( 

0 	r(f)-Ev(-0-1)((A,13=f 
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and as V_ (t.,.) has no discontinuities, it follows that 

	

))(f) - 	V (U, ) 

From this result and (1.11), we conclude that 

= v(f) , = 	 3  +v (f). 
Sz L 	t 

This formula holds if t > t. , the first zero of 	). 

For .E< t o  , we have seen that 

Combining the two formulae, we find that 

-t- 	) 	. 

This completes the proof of uniqueness. 

Using the theorem, we can now give a formal definition of the 

content of a store. 

Definition: 	Let 	CO be the input function to a store pi 

satisfying the following conditions: 

(a) ( cD) 	) 

(b) CO 	is non-decreasing, 

(c) ( -0 	is continuous to the right, 

( d) 	(t- ) -. .- cx) 	as 	=.0 

Let -7 ( -I- ) be the planned output function, satisfying 

conditions (a) to (d), and satisfying in addition the following 

condition 

(e) 	(ti 	is continuous. 

Put 	1) (fl 	- 	CO, and let V__ ( -6 ) be the negative 
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variation of L'01 . 

Finally put 

* (f) 	- 	v(f). 
0„ct 

Then the content of the store, 	is the unique meas- 

urable, non-negative solution of the equation 

(.6 .) -= 3  -1- (t ) 	f u 	( 	ct v_ „) 	(1.8) 

where 	is the initial content of the store. 

This solution can be expressed in the form 

,( 1- ) 	v 'To). 	( 1.9 ) 

To complete this section, we state and prove a formula initially 

obtained by Benes [5] for step-function inputs, and proved in 

its general form by Kingman [41] . 

Theorem 1.2 	For any value of /S , we have 

o(,.1 .1 	- 
e 	- e  A e 

0 

Proof! 	This is based on the obvious identity 

where -I)  (t) is a non-decreasing function. 

If we put 

we can write 
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e-4;cti 	-A() 	- c (f) e 	. 

= e-,43 -4 ott)r f t 	
r 

i-A e 	vi9(-11)_(,)] (1.12) 

We now note that the integrand vanishes unless 	3'(,) = 0 . 

But when 	3" ,A) -=- o , it follows from equation (1.8) that 

= f 4-3.(.1] v_(u-) 	— 1)(4 

Thus (1.12) can be written 

f t  -4[(t)- 

	

V(uji 	r e_ 	 e  

This completes the proof of the theorem. 

6.  Various interpretations of the model. 

The model outlined in section 1 of this chapter can have 

various interpretations. We shall give here one interpretation 

in queueing theory and three interpretations in the theory of 

dams. 

(a) 	An interpretation in queueing theory. 

Let customers arrive at times 	f a, "• 
	 at 

a service point with a single server. 	Let 2C,, -)c i  

be the service times of these customers. Let us write 

(E) 

We define the virtual waiting time" at any time t as 

the time that a customer arriving at time t would have to 

wait until he began to be served. This is equal to the total 

time required to complete the service of all customers in the 
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queue at time t , including the customer being served. 	It 

is clear that if we put ,..7( -6)=- & 1  the virtual waiting time 

is equal to 	. Let us note that, as the input function 

is a step function, )) ( t -) = 	,so that .r(t) satisfies the 

integral equation 

5  + w -t  

(b) A darn of infinite capacity with steady release. 

We consider a dam having infinite capacity, i.e. a dam 

such that no overflow ever occurs. Let 	(t) be the amount 

of water flowing into the dam in the interval (0, j . Let the 

release rule be as follows: 

If the dam is not empty, the release is at a rate of one 

unit of water per unit time. 

Then 3 (t) represents the amount of water in the dam at 

time t 

(c) A darn with infinite depth with steady input. 

Let us consider a dam with infinite depth, i.e. a darn 

such that it is never empty. 	Overflow, however, can occur. 

In other words, the dam under consideration operates in a near-

ly full condition, while the darn in (b) operated in a nearly 

empty condition. Let the input to the dam be steady, while 

the output in (c.), tj is given by 	(-f-) . 	Then 3 CO rep- 

resents the amount of water required to fill the dam completely. 

Thus model (c) is the exact dual of model (b). 

(d) Let the inputs and releases to the dam occur at 
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fixed points Of time, which we shall denote by 	... 

Let the input at tune nwk- be X 	and the amount of water 

in the dam at time Ael- after the input has flowed in beZ„. 

(This assumption corresponds to the right-continuity of the 

input function in the continuous time model). 

Let the releases occur at the times m-t_ before the in- 

puts, and let 	be the planned release, i.e. the release 

at time "In- is equal to 	Z _ ) 	• 

To reduce this problem to the preceding one, we change 

our method of measuring time. In our new scale of measure 

merit, the time elapsed up to instant 	is the total amount 

of planned release up to and including instant ewIL- 	i.e. ^, 
t = E L 	Put 	(t) = 	X 	. Then the p 

fe,.0 t t 
content of the dam at time 9 	is given by 11. (tio 

^, 
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CHAPTER 2  

THE STRUCTURE OF NON-NEGATIVE ADDITIVE PROCESSES 

i. 	Definitions and elementary properties. 

In the following chapters, we shall be concerned with non-

negative, additive, stationary stochastic processes. 	Let i7Ct) 

be such a process. 	It will have the following properties: 

(1) . (t) 	• 	a.s. (Non-negativity) . 

(2) If L,< 1 2  < 	< 	3) 9  the differences 

()- are mutually 

independent (Additivity) . 

(3) For every set of points 	1  and 

every value of LA- , the joint distribution of 

the random variables 

(t, ),W j 	Tit,) 

is the same as that of 

, 	 2 	J • ''  ) •(tev's- -fru)} 

	
(Stationarity) 

It follows from non-negativity and stationarity that -al-

most all sample functions of the process are non-decreasing. 

We shall write IK(t / x).-.=1) 1Vt)4.x.i. 

is the distribution function of t(*) 1  and we 

have 	K(t,"1- ') 	I 	k;(t,c)-) 

We shall also write 
4 ova 

a( 	Eical = 	k<et 
0 _ 

where 	-4 	Cr+ 4: LA-) 	is a complex number. 

(2.1) 
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is the Laplace-Stieltjes transform of  

with respect to x 	It has the following properties: 

(1) The integral (2.1) converges for every 4 such 

that "Re (4\ 

This follows immediately from the relation 

4o0  r A 

0-  
o- 

(2) For every fixed value of t 	(t, A) is an 

analytic function of 4 in the region 'RetA>0. 

This follows immediately from well-known properties 

of the Laplace-Stieltjes transform (see Widder 

[74] p. 57, Theorem 58). 

(3) 0 (-E + 	A 	ct,,$) o u-„a) • 	(2.2) 

This follows from the additivity and stationarity 

of the process 	. 

Theorem 2.1: 	(t A) 	is of the form 

cD(t,= 	jô 

Proof: 	Lot A, take a fixed real value such that 	. 

Fox, every value of t 	we have 0 0 (t, h) 	Put 

Then -e (t) 	and we have 

We now prove the following lemma: 

Lemma: 	Let 	(t satisfy the equation 

(t I 	-c (L.,) 
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for every t and 	. Moreover let 4 (t) be bounded, 

either from above or from below in 0 	t 	for some 

C- • Then f 	t for some fixed 0& . 

Proof of the lemma: 	We first prove that if it is a 

rational number, then 4(2) A -al ). In fact let 	. 

Then f (ry„,/,) = 	f, 1/4 =, 4. 6/ ,--). But 

, 	i.e. 	C (( fr.-) 	. 

We conclude that 	f ('1^") = ("""i'")'e (I)  • 
Consider now 	(f, t -6) = 	— [.((c..)/c_] t . 

Then 	 cp(c) =4(c) - 	 = o )  

and 1) (t.  1-0 	y(-E -t-Lt, (() = (.{:(+) , i.e. (f, (-0 is period- 

ic of period C • It follows that Le(t) is bounded either 

from above or from below over the entire t -axis. 

	

Suppose now that there exists t o 	such that  

We have te (", to  .) 	Li) ( to ) , and this is bounded neither 

from above nor from below. It follows that (f CO is identic- 

ally zero and 4 CO = (c)/cj t 	. Put now t= I 	Then 

= c(i) 	, so that finally _r(t)„.t-r(i). 

This completes the proof of the lemma. 

Returning to the main theorem, we conclude from (2.2) 

that 	A,- 	() 	= 	c)4  ( 	t 	where o<(4) = ecrj 1. 01 

As this formula is true for all real values of 	) it must be 

true for all complex values as well, because of the uniqueness 

of the Laplace transform. 

This completes the proof of the theorem. 
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2, 	Complete monotonicity of O(t, 4) in A  . 

We shall start by recalling certain definitions and 

theorems relating to absolute and complete monotonicity. For 

proofs of the theorems stated, see Widder [74] 

Definition 2.1: 	A function “A) is absolutely monotonic 

in the interval C. 	x <.er 	if it has non-negative der- 

ivatives of all orders for a < 	: 

( a< A < e • 	 3 ) 
2 

and is continuous at tok. . 

Definition 2.2: 	A function 4:(4) is completely monotonic 

in [c,) if and only if -c(- 4) 	is absolutely monotonic 

in (-- 	i.e, if 

p ( ) 
* 04  (G.<  

and C (A) is continuous at a 

Theorem 2.2: 	A necessary and sufficient condition that 	(A) 

should be completely monotonic in 0 	c.,:p 	is that 
.DC) 

= 

- 

where F(7c) is bounded and non-decreasing and the integral 

converges for 0 	co . 

By using the concept of complete monotonicity, we solve 

below, for the case of non-negative random variables, a problem 

as yet unsolved in the general case. This is the specificat-

ion of a criterion for a function of a complex variable to be 

the characteristic function of a random variable, which is 
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easily applicable to a large class of functions. For a dis-

cussion of the general problem, see LUIccs E493 p. 59. 

From Theorem 2.2, we can deduce immediately the following 

Theorem 2.3: 	Necessary and sufficient conditions for the 

function f (A) to be the Laplace-Stieltjes transform of the 

distribution function of a non-negative random variable are: 

(a) ( 	3 

(b) 'C (A 	is completely monotonic in 0 A. c>40 

Proof: 	It follows from theorem 2.2 and condition (b) that . 

-c(A) can be represented. in the form 

= f e -AX  CtF( 

where r ( x) is bounded and non-decrensing. It then follows 

from condition (n) that 

0. 
et Jr( >c) 	. 

This ensures ensures that F(x) is the distribution function of 

a non-negative random variable. 

We shell restrict ourselves in the secluol to additive pro-

cesses for which 04(4) admits, for Re(A) 0 	the represent- 

ation 
4-0 4  

(1— e-4z ) ct- M(x) 

where M(x) is a non-decreasing function such that 

M 	0 and et40-- X. NI x = 0 . 
k —> 0 

Let us show that, in this case, Oet.A) is the Laplace-

Stioltjes transform of a distribution function. 

(2.3) 



-04/0 4 0 ) 

L- 0,1(4 
o- 

30 ;  

We have 

(--1q-oe (—\(A 	-4x dm(x) 
_ 

Because -0e ()5) o , - 	is not completely monotonic. 	On 

the other hand, we have, writing ®, (L, A) for t 
3 41+ 	t' 3. 

(A) t 
ETD t A ) e 	> 0 

001( t,A ) 	_ 	e. 0<" ( A) < cD  

2 - 0d6It 	 -0e(A)t „ 
00 2 is) 	e 	Ea'(A).] - e 	(A) >0}  

Continuing in this way, we see that 0 (t, A) is completely 

monotonic. 	Moreover 0(.(0) =0 1  so that Gee, c.) = 

follows from theorem 2.7, that(-4,) (t, ,4) is the Laplace-Stieltjes 

transform of a distribution function, and the representation 

0 ( 	e. -°4(n)t 
ensures that the underlying stoch- 

astic process is additive. 

Let us note at this stage that the conditions imposed on 

enable us to integrate ( a. 3) by parts. 

In fact, we have 

-Ax.1 
o4(A) = 	- 	) tv1(x)1 	

4 4X 
ivt( 	) 

0 



i.e. 
00 

o< (A) = — A S.  a t x  N1( x) ox  

0 
(2.4) 

3i. 	 2.2 

We thus see that given any function M(x) Satisfying the 

conditions 

(a) NI (c) 	is non-decreasing, 

(b) M 	) 

M (X )Q )  
0 

we obtain an additive, non-negative, stationary stochastic 

process “t) by taking as the Laplace-Stieltjes transform 

of its distribution 	wherebution function 	6? 
0. 

0( (A) = 	e:
Ax 

IOW 
0 

Let us note that the semi-invariants 1 	of 	("6) are all 

linear functions of the time. In fact, we have 

T 	E [€:" “t) ] 
4=0 

.4 =0 

In particular, the mean and standard deviation of F(+) are 

E LVE-d = 

v600011 = — oes.(0) t. 

In the sequel -, we shall denote the mean value of 	per 

unit time by to and its standard deviation per unit time by 
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cr and we shall frequently make use of the representation 
(which follows from the Darbouic expansion o,f \ 	( 4 ) ) 

« (A) ----  
-2_ 

3. 	The relationship between N1( x) and the derivatives of  

Consider the relationship 

r:e -4  x
) 

ct  _ e- 
x — 

-0 

and denote k(t1 4/e) t by K ( t, x ) 	Suppose that 

(2. 5) 

is dominated for 0 4 	T.-  by a function 

D600whose Laplace transform converges for some A . We 

then have 

-AX  

0 

--e(Art 

at 	tz-c 

./s 	m(x) a, . 
0 

It follows that, for almost all x_. )  

0 
(0 /  x). 	NA ex 

k  
(2.6) 

This can also be written, using the fact that ‘<(() x)= , 

(vi 	- 	 K  ( tix )  
t 

(2.7) 

More generally, if we can differentiate the left-hand 

side of (2.5) eY1 - times under the integral sign, we find that 

0.0 

A 1 	K, (0, x) 614c -= 	e< ( 	 (2.5) 

0 
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where 
K, 0  (t ) x) =-_ 

4. 	The Poisson Process as the simplest type of stationary  

additive process. 

We shall now assume that the state space of - (t) is 

the set of positive integers 	o i 	. 	This implies 

that almost all sample functions of the process are step func-

tions. We shall write 

( 	 ) 61- = 	 . • 

(2.9) 
Pvt. 

Moreover, we shall assume that, as t—; , 	i(t) is 0 (t). 

This means that, in a small interval of time, the probability 

of an increase in 	(e) of more than one is o(t) . We 

first notice that(6) satisfies the functional equation 
0 

po 

because in two consecutive intervals (17, T. 4-t) 	(+/L I-LA.) 

the probability of having no change of state is the product of 

the probabilities of having no change of state in each of the 

intervals. 	As we have 	0 	f), (f.) 	I 	we con- 

clude, using a reasoning similar to that of Theorem 2.1, that 

po (i) is of the form e. 	where ) is some non-negative 

number. 

We now notice that, by the theorem of total probability, 
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(6) po (u) 	 (t) p, (u)  
( 

As u 	o 	we have 

=-. e. 	I 	+ 0(u) 

po (u) 	7 	1- 04J, 

p 	(t) p (u) 	(Lk) 

	

= 

It follows that 

( -t- 	(t) 	- 	 ( 	 ) 

and 

F. (f-tL)— 	= 

so that finally 

Rs, 	 — 

	

(t 

We can solve this differential-difference equation by generating 

functions. 	Putting 

we find that 

P =  7(4-() P: 
t 

Integrating and remembering -that 

) 

Fqt A 
t 

(o, 4) = 	(o) 

we find  
a 

e 
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Figure 2.1 Graph of l\A(x) 

for the Poisson Process 

+ 

Figure 2.2 Graph of  

for the Poisson Process 

To face p. 35 
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so that (MO) 

We thus see that, for an additive stntionary process with 

state space t 0, t, 2 ,  - 	, the unique condition 

(6.= 0(") ensures that the number of changes of state 

in an interval (0,t) follows a Poisson law with parameter -X t 

where 	= - ea-3 p.(1) . 
Let us also note that in the case of the Poisson process, 

the Laplace-Stieltjes transform of the distribution of CO, 

GD( -6,.4) 	is given by 

 

= 	e 	r  (-0 = 

 

eS".. 

so that 

-),t(1 
e 

( 4 ) 	- ( t eT4 ) . 

 

Remembering that 

oG2 

 
r —2 E_  

A  ) 

we see that we can obtain - 	by finding the inverse 

-\ 
Laplace transform of -N(i-e. A  )// . 	We find 

(2.J1) 

We note that 	-4-- I M(x)h.3 	is the distribution function of 

a random variable which takes the value one almost surely. We 

e 

thus see that 	-t- 	(x.) 	can be taken to represent the 



distribution of the length of jumps. We hall see in the 

sequel that such an interpretation can be extended to a wide 

class of additive stochastic processes. 

5. 	The compound Poisson process. 

We shall now relax the assumption that the state space is 

discrete, but we shall continue to assume that almost all sample 

functions are step functions having -  a finite number of discontin-

uities in any finite interval of time. 

To analyse such a process, we associate with it a counting 

process, h4 (t) ,,which is equal to the number of jumps in 

. 	This process is additive and stationary. We 

shall assume that it satisfies, for small L , the additional•

condition ID 51. -N)(111:>11 = 0  ( -6 	. 	It follows that N(*) 

is a Poisson process. 	Let us assume that its parameter is 

Moreover, let X represent the length of a jump. 

Because ?- (t) is stationary and additive, jump lengths are 

independent random variables having all the same distribution. 

Let us write 

1) 	x == 

Moreover, let us denote the n
th 

convolution of B(x ) 

with itself by 2) (x) . Using the theorem of total 

probability ) , we find 

(2.12) 

Expanding e 	in power of t and multiplying out the 
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two series, we find 
co 

) /  a, (x ) 	 t 	 (2.1 -0 
= 

where 	a, ( x 	(- 	 (VC- 11 4  

Differentiating (2.13) nn... times and putting 	= o , we find 

o j  x) 	)  

and in particular 

-7= k< to (Cix) = 	 ,x) )  

so that 	3(x_) ------ (4 [ m(x)/.\] . 

The Laplace-Stieltjes transform of the distribution of 

( t), 0 et 4) , will be given by 

•net 
x 	, 

t(7)\tr iLr(Ai r = 

where Li-, ( A)i the Laplace-Stieltjes transform of 13((), 

o 
The term-by-term integr'atioh is easily justified by the fact 

that the total variation of B,(x.) is unity. It follows 

that 	(t,,$)=E t 0 where 
n:=0 

r 	\ --1 * e  (,$) = c[4.4( 41- 1 1 	 Lt 	 , so that 
ft:a 
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00 

Ax 	
x) AfK. 

In this case, o;(A) is given by the formula 

( 4 	[ 	(.4.) (4' ] ) 

(2.14) 

Let us note at this juncture that if B(x) is absolutely con-

tinuous, then so is M(x) , and. if -B(.x) is a step function, 

so is  

Looking now at the shape of 1.( f, x.) 	we note that 

K (-6 	(2.<.■,... 6 ( -e: 
tx) 

We shall assume that 

3(x) =  
• 

Then 

--... 
so that we finally have 

_ 7ct- 
14.(t,  

Thus 	( t, x) will always have a jump at the origin, in the 

case of the Compound Poisson input. 

Suppose finally that the service time distribution -TS(x) has 

a continuous derivative e - (x 	Then 13(x) has a contin- 

uous derivative 8-  (x) 	It follows immediately that  

has a continuous partial derivative in 2- 	for all 	> C) 

given by 

1<( -b x_ )= 



0 

This queueing model is known as the queue M/M/i. 

We have in this case 

44,6) 	e -Ax
. rt Ous'colx = 	 

+ 

39, 	 2.5 

and, for fixed L , has a jump of magnitude K (t, 0) = e-

at x = 0 , so that we can write 

K(t7 x)-= K(t 0) i- c x- f2(f4). 

S. 	The input process of the queue M/M/i. 

Let us examine the input process of the queueing model 

given in section 6 of Chapter 1, in the special case when the 

arrival process is of Poisson type with parameter 'X , and the 

service time X 	is exponentially distributed. We then 

have 	

B(t) 	? 	= 	e:- ` 

In this case, T 	has a density function given by 

and 4)( /S) is given by 

e.> 

Let us write 

oc  -  A t —Ax a 	■< (t x ) ct,,, -.=- e- • ' a ,s 	) 
. 	 - 	),,,i-: 	 **)■ is.,+ 

,_ E — 	e ' \ t 	14t-4 	
/1-' 	e.  A"-A  

	  + 

	

A +-IA_ 	A 	A -1--/u- 
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Using Erdelyi [ 19 ] 1). 245, No. 35, we see that the Inverse 
t..-tIA% 

Laplace Transform of e. 	/4 	is  

so that the Inverse Laplace Transform of  

is e:" r0(/1> 1 k-t x) 	We conclude that  

is given by 

K(t,x)"=e. 	Le'  
0 

From this.:formula, we obtain, as expected 

K (t x) e' t ) 

Also, for c > o 2 	t > a K(t x) has a continuous 

derivative, given by 

e---t  

Using 1"0 (3)=- 1- ,(,) 	, we find 

	

-)■f.  -,.. x f ),/,..i. 	_ 
) V .. 

and we note that  

7. 	Bunched arrivals. 

Let us return to the process . ('t ) with state space 

but let us now replace the condition , 

H 	0 (t) by the conditions 

01)  - t o() 

as 
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[3 (-0= 	n.". 
	 (2.15) 

We again use the equation 

10, 	(t)  

which becomes 

Rearranging the terms and letting uL tend to zero, we finally 

obtain 

= 	F,(+) 	F4,4  (*) 
Putting, as before 

C.C2 

and solving the differential-difference equation by generating 

functions, we find. 

(2.1 

0.0 

Let us now write L_ (A) z  

The solution of equation (2.16) becomes, using the fact that 

?( h) 

e 
- L (A) t 

We now note that for the c:),-..,(t) 	to form a probability dis- 

tribution, we must have 1'(t, 1) = I 	, so that 
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Cr.z 

(2.17) 

The Laplace—Stieltjes transform of the distribution of ?. 

can be obtained in this case by replacing A in i ) (ti /S) by 

-A e. 	Thus we have 

rLL 4> t\ 
0,71 

and 
- A 

Of■ ( 	 5-1  
We now notice that 	(A) can be written in the form 

e: A11) 

/ 
where 13 ( x ) 	), 

Because-of the relation (2.17), 13( ) is a genuine probability 

distribution. 

We thus see that the process defined by condition (2.15) 

can be described as follows: 

(a) the points at which there is a change of state form 

a Poisson process of parameter :\ . 

(b) the probability that, given that a change of state 

has occurred, the magnitude of the jump is 

is  

If we regard the value of 	(*) 	as representing the 

number of arrivals in (o,f) , then the process described by 

equation (2.15) is a process of bunched arrivals. 
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8. 	Processes where the sample functions are not a.s. step  

functions with isolated discontinuities. _ 

We have seen in section 5 that, in the case of a Compound 

Poisson process, 

We conclude that &w 	t) 	I 	, i.e. for almost all 
t-40 

sample functions, there is an interval to the right of any 

point of increase where }-( t ) 	is const-Int. 

Thus, in the case of the Compound Poisson process, almost 

all sample functions will have isolated points of increase. 

Let us now consider the general form of the process where 

.,( ( n)=. r(i-e- A>k) 	M( X ) 

If I ci 	) is finite and equals ), 	, then the process is 

a compound Poisson process, with 	
• 

too. 	
A 

If, however, 	I :1M (x = c.c) , then rA/v-- 04(4) 	so 
+ 

that ? 	) =ô= 	1 > c , and in this case points of 

increase will not be isolated for almost all sample functions. 

The question now arises whether a non-negative, stationary 

additive process can have continuous sample functions. The 

answer is given by a theorem of Doob [17i p. 420, which we 

quote here. 

Theorem 2.4: 	Let Cz. 	; a. 	t 	ey-1 be a centered 

process with independent increments and no fixed points of dis-

continuity. Then the following conditions are equivalent: 
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(a) is Gaussian 

(b) every difference F(ti) - - (t-) is Gaussian 
\ 

(c) if the process is separable, almost all sample 

functions are continuous on [a, ej 

Thus processes having almost all sample functions con-

tinuous are necessarily Gaussian in character, i.e. they can-

not be non-negative. 

It follows that processes for which  
0 

have sample functions with an infinite number of discontinuities 

in any finite interval. 

9. 	The derivative of the sample functions of non-negative  

processes. 

We shall now show that, in spite of the fact that the set 

of discontinuities of the sample functions of the process is 

dense, the sample functions still have zero derivatives almost 

everywhere. To show this, we write 

Now 
	 is the Laplace-Stieltjes trcnsform 

of a Compound Poisson process. 	It follows that 

where the Laplace Stieltjes transform of 	) is 

-Ax )  e„s 	_  e 	cki‘4(x) 	and the series converges in 
L 	, 

•-•,..1 I 
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probability. It follows that there exists a subsequence of 

partial sums which converges to E 	a.s., and because all the 

terms of the series are non-negative, the series itself must 

converge almost surely. Finally, we use the fact that the 

sample functions of the process are non-decreasing functions and 

apply Fubini's_theorem on series of monotonic functions, (see 

Boas [8] p.:139) which yields 

( t) 
	

for almost all t: . 

' 	■ 
) But as 	i" 	=C for almost all t , the required result 

follows. 	Thus we can state 

Theorem 2.5: 	For almost all sample functions of non-negative 

additive processes satisfying equation (2.3), the following 

property holds: 

0 	for almost nll t . 

We shall now discuss in detail two non-Poisson processes: 

(a) the Gamma process, 

(b) the Inverse Gaussian process. 

For both processes, the distribution function K(tx.) is absol-

utely continuous. We shall denote the density function of the 

process by 	(t,,,c) 	This is related to the distribution 

function by the relation 

K (t, x) 	(t,)&t)_ . 
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10. 	The Gamma process. 

The density function of this process is given by 

= [ 	xie  
(  

t_, 
%le) 	. (2.19) 

The Laplace—Stieltjes transform of the distribution of the 

process is given by 0.  

e:-(t) f e- , 	Ax 
e- 7  (31 ci x 

ke / 
•  0 

Let us put 	:: x (4 + .?",-.) . 	Then 

. 	t  

	

e ) 	' 	.1 Q---  . 	(1 a (y .(--L/  \ ( 	 cee) e 	\IS4-  2-  

I
t 

	

i 	\ 
(2.20) 

It follows that 

c.< (A) 	_ 	(:)(t / 4 =el((i e)•  (2.21) 

We can obtain _M(x) by finding the inverse Laplace transform 

of c< (A) / 	i.e. 	- 	(I+ CA)]/ A  

Write 

eo, (,,  eo )  e  ,  'H-  

From Erdelyi [191 p. 251, item (5), we find 

_ („,(), ) 	e,, c  + 	_ 
i.e. 

ecg ( 	4,$) 

(2.22) 
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where EA: ( x) is defined by 

— 

), 	LAG+ 	 • 

We can note immediately that 

so that the Gamma process is not a Compound Poisson process. 

We can also obtain Mbc.) directly from the formula 

m(x) = _ 

t  

	

= - e ca- 	ot j  . 
-E-po  fx 	e  

We note that &;-, f r (t ) = e, r(t+,) =r(i)= , / so that 
t -0  _, 

M (x . ) = - 	
_ 

-L-0  i e I  ( 1) cl J- 

Putting 	, we finally find 

as before. 

N1) = 

We can easily calculate the mean and variance of the process 

per unit time. We have 

[g (t)]= c4. (c) 	
vfee 	A 	e 

(0) 

,$)21 A , 0  

2 

(2.23 ) 

(2.24) 



	

48. 	 2.11 

ii. 	The Inverse Gaussian process. 

This process has only recently attracted the attention of 

statisticians. Its properties have been extensively studied by 

Tweedie [73] . However, the additive character of the process 

has not been pointed out explicitly by Tweedie. 

The density function of the Inverse Gaussian process is 

given by 
3 [ _ e  ?R 	 = t f C 11 el, 	2  , x  

	

( 	)

2.

) 

criirT k 	-2.cr x 

We shall show in the sequel that e 	and cr 	are respectively 

the mean and the variance per unit time of the process. This 

shows that the Inverse Gaussian process is much more flexible 

than the Gamma process, as it has two parameters as against one 

for the Gamma process. 

We first obtain the Laplace-Stieltjes transform of the 

distribution. This is the ordinary Laplace transform of 	x) 

with respect to 	. 	To calculate it we first rewrite A:tt,x) 

as follows 
3 3 

— t x 	 [ e 	e 	e t 
cr firr 	 -2 cr 2 	cr 2 cr 

We now note that the Laplace transform of 

3 

(2.25) 

is, using Erdelyi [18] p.1.48, item (28), 

	

3 , X 	;- 
e 3  T22--  

cr 2t 	e")( r 	 ( 2 e  a- 
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If we premultiply (2.25) by e,sr 	1  the Laplace 
transform of the new function will be obtained, by replacing A 

by .4 . Finally, introducing the remaining constant 

factor )  

we obtain 

r — .cc-4/2.ecr IA -Fr2 	t i 
This shows the additive character of the process, and we see 

that 

( 	(12 cr 24 	t. ) 2 	e ) . 
a- 

(2.26) 

We shall now calculate ivi(x) for this process. We must 

invert cxkji 	, i.e. find the inverse Laplace transform of 

L 	? 2  e — I 	- crz 	A 	A ) 

3 

	

tL 	 e  
I_ Cr

2t 

	

I - 	jcr .1-Frr  

We rewrite this expression as 

( 	Cr fiT 
4+- 

.2 0- 

A cra- 	lecr  

Each term of this expression can be easily inverted, using 

Erdelyi [19] p. 176, item (4) and p. 235, item (21). 	The 

result is 

—M(4= -(237 

2 

ex] 	e F 	ex. - 2  r 	 (2.27) [_ 
Cr4 	cr` 0-  

where 	Erf x) 

Er-C(x)= 
is defined by 

r"-e.-4-4.64. 

,rfr-  J 
0 
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Finally, we note that 

3 
ot 

M (x) = 	 e 
ori 	 2cr 2 / ) 

so that 0c(4) can be expressed in the form 

(2. 28) 

oo 

	

04(A) f 	e 
	x) x 

where 	is given by formula (2.28). 

We now calculate the mean and variance of 	( -6) per unit time. 

We have 

EER(4.=.40)= IL . 	(_210 0-24 2/00--2 / 	= f 

	

cr 2 	 = 

3 

	

;fa. 	 .2e 6- 4A Y..  (..2pCT-2)2/ 
= 0  

as stated. at the beginning of this section. 

12. 	The non-stationary additive process. 

If we drop assumption 7 from the assumptions of Section 1, 

we obtain a non-stationary, non-negative additive process. 	Put 

E r 	(t)- 

We then conclude from assumption 2 of Section 1 that, if 

< 	t 

o(u. t 	= e(u. .ux 
	

(2.7,0) 

The formula corresponding to (2.3) is 

00 

e(4,t ) ,A)= 	(1 e.-")[ct,m(t, 	20) ) (2.31) 

(see Doob [17] p. 418), where tA(t i x) is non-decreasing in 
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both variables t and w. 	and  

	

for x 	. 	In the case of a station- 

ary process, we have M(t, x) = t rn(1,x). 	One particular 

case is important in applicationc,namely that where 

M 	A. (t) (x), 	CO being a function of t which 

has a continuous positive derivative ) 	, and Ni (■ 

being a non-decreasing function of ,c such that  

In this particular case, the process can be made station-

ary by changing the way of measuring the time. Let us put 

= 

Then equation (2.31) reduces to 

Qicr 	 = — 7'2 - z1) 	( A 

(where 	- 	, 	= JL (1-4) , and 

(I e -A x) 
— 

	tv(-x) 
0 

as before, The process is now stationary with respect to the 

new time scale. 

One example is the non-stationary Poisson process where 

the probability of 	arrivals in (4. j) is 

- [it 	- -A( ')] LA. (-E) 	(,)] 
(2.32) 

 

EV'S- • 

 

Another is the non-stationary Compound Poisson process 

for which the condition NI ( x) _A, (t) m 60 is sat- 

isfied and hi (c)) is finite and can therefore be assumed 

without loss of generality to be equal to one. The transform- 
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ation 	will reduce the process to a stationary one. 

In that case, therefore,the Compound Poisson process can be 

analysed into a non-stationary process of arrivals, such that 

the probability of rvt_ arrivals in (Lt, f ) is given by form-

ula (2.32), and upward jumps of magnitude X at each point 

of arrival, where the )C 's are independent, identically  

distributed random variables, with distribution function given 

by 

1 

We obviously have in this case 

( -0 - .11-( p,(-0„,i/  
cvt 

_ 	-_A_(,,J{ 1- 
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CHAPTER 3 

THE TIME OF FIRST EMPTINESS AND ITS DISTRIBUTION 

1. 	Definition, measurability and elementary properties. 

In this and subsequent chapters, we shall be concerned with 

storage models where the input (1- ) is a non-negative ;  addit-

ive stochastic process of the type investigated in Chapter 2, and 

the planned output function is given by the formula 

Let us notice immediately that t7(t) can also be considered as 

a (degenerate) non-negative stationary additive stochastic 

process. 

The net planned input function, V ( -6 ) = (-t) - L7, will 

also be in this case an additive stochastic process, which 

stationary if s. (' -t) is stationary. 

Let us note 	hero 	that the time of first emptiness 

of the store is 	a variable which is not specifically related 

to the storage model under consideration. 	It does not depend 

on the assumptions made about the behaviour of the store after 

it has become empty. The time of first emptiness is simply 

the first passage time of the process 1,)(t) at the value 

where 	is the initial content of the store 	We .hall 

denote the first passage time by 7;() . 	More precisely, let 

be the sample space of all random functions N)(t 

E 	To every random function ■)( -E 1  L.)) , and every non- 

negative number 	,.we make to correspond a number (, / 

as followst 

(a) 	if v(t,t--)) > -2- for all t 	we put  
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(b) 	otherwise we put 

Let us note that the fact that v( t, w) has no downward 

discontinuities ensures the validity of the equation 

[ ( 	= 	This can be shown as follows: 

There must exist by definition a sequence 	tending 

from above to 	, and such that veb„, 	It 

then follows that we must have V( 	< 	. On the 

other hand, if we had V (Z, 	4: - 	9  there would be a 

value of t 4: Z; such that v(t,L4)‹. - 3_ 1  contradicting 
the fact that (; 	is the infimum of the t ts satisfying 

V ( -el  us) 	- 3, • 

The above rules define L7(q 	as a function on the 
d/ 

sample space _c? 	. We shall now prove that it is a measure- 

able function of 	. 	To achieve this, we must prove that 

the set 	' -27(1  f' 	is measurable for every t 
di 

Let us note to start with, that Z(3,,..$) can be redefined 

as follows: V(3, L..$) is the smallest value of t: for which 

*/ 
the equation 	07.1 L-3) 	holds, Where V * (17%....)) is defined 

as in Chapter 1 by the formula 

V .4jk 	
/ 	

-  

a 

the only difference being that now ), * is also a function of 

the sample space point 
	

We also recall that V 	is 

a non-decrea6ing function of t" 

We note that, if 	to  is the smallest value of t 
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satisfying 	(iL = 	, then -k ■-■ 	Lk 	. 	If the 

value - 	were reached by vtt,w) at a smaller value of t 

say t o  , then we would also have 	' V(u-,w) = - 
e. to  CI 

which contradicts the hypothesis that 	is the smallest 

1c/ 
value of L- --/- satisfying 	= 	. 	Thus, we must have 

> - 	for all (A. < 	. 	Moreover , because of 
1 

the fact that v 	) has no downward jumps, we have 

- 	 . Thus we must have 

as required. 

We can now show that the set 	Lo • 	 is 

measurable. We must first note that as 	f", L.)) 	is a 

function of bounded variation in t , it is separable, i.e. 

its value at any point of 	t] is a limit point of the set 

of its values on any denumerable set 	that is dense in 

0 	. 

Now the event I 	; -6*(3. 1 L.;) 	is given by 

(.0; 	L.J  

S L, 	' 	( A 
k t 



But, as each event i . Lo ; v(s-A) 	1 is measurable and the 

set IR  is denumerable, it follows that the set 

.; Z.-  (3 ,  1/4.0) 	t 	is measurable, and so C;( , k..3) is a meas- 

urable function of 

We now recall that a random variable is any measurable 

function on the sample space -5 .2 	, whose range is the real 

line (- c>.Q 	i- o‹.) (c.f. Love [471 p. 150). 	If the 

probability that the function is smaller than +0c) is less than 

one, then the random variable is said to be improper, or 

defective (see Feller [21] p. 283). - 

In our case, we have proved that (7(,(/0) is a measur-

able function on the sample space S2 .  It is therefore a 

random variable in the sense indicated above. 	However, it is 

easy to see that this random variable may well be defective. 

For instance, if 	(t 	= .2. t a_ A. , then obviously, 

? 	 C>0 = 0 g so that we have in fact 

We shall later show that a 

necessary and sufficient condition for Zs( si i..,/) to be defective 

is  

Finally, we note that the first passage time at zero, 

starting from 	, is the same as the first passage time at 

starting from 	t-4 
0 

2. 	The L.S. transform of 2:(%). in the .case of a stationary 

input process. 

We shall now consider the case when the input process 

f-(tL.0) is stationary. 	It immediately follows that 
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v(t, L.)) = 	-1; , is also stationary. We shall 

write _ A y tt Lo) 
 1E 	, 

We shall prove the following theorem: 

Theorem 3.1: 	Under the above assumptions, the Laplace- 

Stieltjes transform 

, 	C-1 	z 	r t 
G et, 

is given by 

- e(r)3, r r , 
where 6 	satisfies the equation 

F = Y( 6)  
This equation will be called the characteristic equation of the 

process 	1.0). 

Proof: 	We use the remark, made at the end of the preceding 

chapter, that the first passage time at zero, starting from -7 ' 

is the same as the first passage time at 	starting from 

3 	. 	We shall henceforth ignore 	(.)..; -dependence, and 

write symbolically, 

) 

i.e., we can write Z . (1+3) as the sum of two independent ran-

dom variables, having the same distribution as  

respectively. 	It follows that Z:(3) is 
a/ 
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infinitely divisible with respect to the parameter 3_ and 

the Laplace-Stieltjes transform of its distribution, r(p i ), 
-e(r ) 

is of the form e 	. We now show that 2; (3) also 

satisfies the equation 

('0 	(3.1) 

In fact, if the initial content of the store is 	2  then,after 

a period of time of length a  , the initial content has been 

exhausted„_and the new content is the input in the period(o,3] 

Equation (3 0 1) is to be interpreted as follows: 	the distribut- 

ion of the random variable, 	) given 	(5 , is the same 

as that of 	)11 4- 3. 

Using the theorem of total probability, we find 

[ 	z(zn J E E{e- nr -P  zPi( s) ] s(,)]1 
= 	0:1. 1 — 0 ■ i 

- e 19) 
 

 F_ e 

_ e 

But as 

E re-Pz(3)j, 	6)3, 

we must have 

-e 	_ 	-te)j +- 	(e) ) 

i.e. 	P = 	(e) 
	

(3.2) 
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as required. This complotes the proof of the theorem. 

3. 	Some properties of e(p) and the corresponding properties  

of 	(  

We shall restrict our attention to real positive values 

of p in this section. We first notice that because of the 

relation 
-e( r ) 

e I  
0 	 t 

there must correspond to every la 0 a real value of e 
Moreover, because of the obvious relation 

0 	e_ 

we must also have e( r  
Just as r( ? , z ) can be continued analytically to the 

half-plane iRe(r) > 0 , so can e( r ) , so that t9( r) must 

be analytic in 1 .4 e,( \3) > o. 

Finally, we note that we must have 

4 

—) 	) 

for all 	.> 0 , as Z( ,;)  \/ cannot be smaller than 	. 

e(p) 

	

Thus we must have 	2. 	-.-_ -_ 0 	for all 
p 

> o 9  and this implies that 

	

6 ( p ) =__ 	, 	 ( 3.3) 
p 	cz.:a 

On the other hand, in order to determine whether "*(3 ) is a 

defective random variable or not, we consider the limit of 
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- 11 e , 3  when p tends to zero, for we have 

t aG(t4)÷:., G() = Plz(z,)<*--ai• r, 	
? -4 a  '0  

Thus, a necessary and sufficient condition for -q3) to be 

defective is 

r , $) =P 	G( 	< 	 (3.4) 

Using the representation 	(F / -3) 	e_ ( e ) 	we see that 

condition (3.4) is equivalent to 

e*  

Now, because of the continuity of.e(F) 	must satisfy the 

equation 

(6)') -0 . 
We shall write 

F -A Vt- 1 1 	-04 (A)t 
E I e_ 	a 

and we shall assume that &GI) can be expressed in the form 

+c 
c(I - 

	

= 	— - 'x)0(m(x) 

where M (X) is a non-decreasing function such that 
—Fa• 

We shall further assume that -6,v,- x N'\ L') 	. 

The possibility and implications of such a representation have 

been discussed at length in Chapter 2. 

Integrating by parts, we find that 
0.3 

e-A  1\4( x) X ----=A0(A) i  say. 



We shall also assume that oe'(0 is finite, and consequently, 

as 04 1 (0) e„),_ 44  ) 
-1 

0.0 

S e- Ax mboax., the last limit will 

exist. 

Finally, we note that in this case, the function which we 

had previously denoted by ?c (A) is now equal to A - 01(4 , so 

that equation (3.2) becomes 

p = e - .4(e) . 	 (7.6) 

Ei-uation (3.5) can then be rewritten 

e 4.= o4 ( 0 3) . 	 ( 3 . 7 ) 

Thus 6 is a fixed point of the continuous function 	( S) . 

We now note that 

oc(A) 	e 
-0 

of \ 	—,Sx 2 	, 
0: (A) =—S e 	am(x) <0 

so that 0( 1  (A )  is a decreasing function. 

Also 

()I)/A 	 m(x) dot = 0 )  
4 — 	 A cyo 

0 

	

so that, for large 4 , we must have 0.<( 	< 

Finally, we have  

We now consider two cases 

(a) 	ce( () ) > 	. 	Then 	(4) >4 in the 

neighbourhood of the origin, and as cz./ A \) < A 

for large 4 , there must be at least one root of 
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(3.7) other than zero. 	Moreover, as oc (A) is 

monotonic decreasing, there can be at most one 

extro.murn of (23)-4 in 4 > C , so that there 

can be at most one non-zero root of 	(A) -A 1,-- 0- 

Thus, if oe(0)> I , there is exactly one real pos-

itive root e 4. of (3.7), and we must have 
-e 5, 

- e 
E 	`. 

(b) 
	

Then c.< I (Ak ! for all 4 > 

and as 040=0 the only non-negative root of 

is A 0 , so that e(C)),-:-- CD 	and 

we have 
? Z(3 ) < 	= ) 

so that Z- (3 ) is not a defective variable. 

We thus have the following theorem; 

Theorem 3.2: 	Under the conditions laid down at the beginning 

of this section, a necessary and sufficient condition for 

to be a defective random variable is 

e = 2-E ELt ()J = l (°) > , 

If this condition is renlized, the equation ci(e) = has a 

unique positive solution e , and we have 

G 
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Theorem 3.2 has a simple intuitiV-e meaning. As e  is the mean 

rate of input to the store, the meaning of the theorem is that 

the store will almost surely become empty in finite time if and 

only if the mean rate of input is smaller than or equal to the 

rate of output (i.e. unity). 

We proceed to calculate the mean and variance of z - (3) when 

it is a proper random variable, i.e. when 	e(r) 5(0) = a . 
-,.., 

We then have 

E r 	e 	e'(p ) 
F 

Using now — 	- 04 ( ) 0 , we find that 

ef(p) - -ere(r4 6 1 () = 0, so that 

G l(f = 	 
- < I 16)(10)] ) 

and 

e'(0) = 

It follows that 

	

[Z. ( .3)] = 	_ e 	if 	, 

If 	I , we obviously must have 

E [ 	)] = 

as 	( 	takes the value 4. 	with finite probability. 

For the variance, we find 

Gri [z (3)1=$r( F, 3) p=0 

, 
e (0] 	- e t o () ) eb 
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But 

o(le(03 69 1 (P)  

so that 

	

(o) =  ( °)  
- E) /  

But — 0411 (0) = CS-  is the variance per unit time of 	(t) 

Thus we finally have 

cr 2  

Let us now consider the behaviour of 7;(':0 for large values of 

} • 
As 7:(5) is a stochastic process with independent 

increments as a function of 	, it follows from the strong law 

of large numbers (see Doob [17] p. 364) that, with probability 

one 

tt,„ z ( '0 _ E [ z(1 )] . 
3 — 

When C 	we have 

z( 3 ) 
- e 

and when e 	we have 

(11  

Applying the Central Limit theorem, we can also state that, if 

e 	, the random variable 

- e)1 1_0 -e)W - 31 
°IVY 

is asymptotically normally distributed as 	tends to infinity. 



 

6 ( 3141) 3 = 3 	oc, 

It follows that 

   

516 

E e-A 	- 
3 " L 

But the right-hand side of this expression is the Laplace 
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In the case where e=i, a more precise result can be obtained. 

Let us first note that the Laplace-Stieltjes transform of the 

distribution of VS3)/ :).2.  is given by 

( f2) 

Let us calculate 	f9( ç,42) 	. We have 

„(+322 ) _ [9(4. 0 
3-2  

4 
But 	 / /1 

2 
2. 

cr 

It follows that C 

_ P 	ept 	e(2!)
2 [6 	

2 
+ 0 I 0(1-1.) .3 = 

	

3 2 	2 	3 2  3 

This can be written 
.2 

e (3r4 
Finally, letting -3, 	tend to infinity, we find 

transform of 
1 2o-lt 

4:7/2171. 3  

We can thus conclude that the limiting distribution of z(3)/7,' 
as 
	tends to infinity is given by (3.8), provided that a 
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continuity theorem similar to that of Levy (see Lukacs [49] 

p. 54) for characteristic functions can be shown to hold for 

Laplace transforms. 	This we shall presently establish.• 

Lemma 	Let 	F„. (7di be the distribution functions of a sequence 

Li of non-negative random variables, f .  (A) the corres-

ponding Laplace-Stieltjes transforms. Then a necessary and. 

sufficient condition for C? F (x)i to converge (weakly) to a 

limit distribution function F(A) having -e(A) as its Laplace-

Stieltjes transform, is that f (A) converge to 44A) for a set 

of points 	A 	 on the positive real axis such that 1,  ( t/AJ 

diverges 

Proof! 	The necessity of the condition follows immediately 

from Helly's extended second theorem (see Lukcs 1491 p. 52). 

To prove its sufficiency, we first note that 	ex)/ contains 

a (weakly) convergent subsequence 	( 70  by Helly's first 

theorem (ibid. p. 49). 	This subsequence will converge to 

some non-decreasing bounded. function 	( 	. But then the 

Laplace-Stieltj es transform of - 
 -(4) 	coincides 

with 4= (A) on the set 	A. 	, and it follows from the unique- 

ness theorem for Laplace transforms given in Doetsch 	4 	p. 

7 6 , that f (A) = 1 (A) for all A> 0 , and that F(.) 	F'( x). 

The argument just used applies however to every convergent sub- - 

sequence of t F ( -)c) } and thus 	must converge (weakly) .  

to  

The preceding result can also be written as follows, by making 
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a suitable change of variable: 

2 , \ I 1 When e 7.- I 	9  the distribution of cr 2( ,3) 	is given 

asymptotically for large 	by the formula 
Or 

1 
LA 1 / 2- 

	

e  	oLL 
1-27:74.. 3  

4.  The uniqueness of the solution of the equation  

Theorem 3.1 can be only of little use unless it can be 

shown that the equation it" 	(A) has a unique solution 

= (r)) which is such that 	r  f_ E9(f).1 is the Lap- 

lace-Stieltjes transform of a distribution function. 

We shall first prove a general theorem concerning the 

uniqueness of the solution of (3..2) which satisfies the con-

ditions laid down in section 3, and we shall then proceed to 

prove stronger theorems which hold when the distribution funct-

ion of 	t. ) satisfies certain specified conditions. 

Theorem 3.3t 
	There exist two real positive numbers 

0-0  9 such that equation ( 3.6) has exactly one root 

satisfying Re (69) > 	for all real values of 	sat- 

isfying 	> po 	Moreover, if # ) is a function of 

	

A which is analytic in Re (A) > 0-0 	f(s) is given by 

+ 	p.1 (0 04( or]• 
Proof: 	Let 4= a- + 	. Then  

4c) 

Moreover, 	( Cr 1- w) < 	( iso 	for all 0" 	cr a  , and all 

. 	It follows that we can choose cro  such that 
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p(4) < ,A. < 	for all 4 such that -Re.( ..0 > 	. We 
2 

then have, in the same region, 104 (A)( < /4_ A/ . We now 

show that, if p 	is real and k - tot > tk(i _ 	) 	we 

have 14_ r i > 104 (A)1 	for all 4 	such that 

Re(A) > 0-0 	. 

In fact, we then have 

1“ 4 /-LIA1--/A1A — pfTL</-1A - r fiur 

Finally, we note that if 	p 	satisfies the inequality 

p > (1---/A)a", / - 	 , all points such that 

- 13 1 	/(1 _/,) 	will have an abscissa larger than 

cro 	. 	In fact, the point of the circle t - 	jk.A_ r  
with smallest abscissa will have an abscissa of 

p - 	 _9.r ) p 	) 	 and this will be larger 

than ao  provided p > (1 -p- ) cro /( 1-91-) , as stated above. 

Every point in -Re( /S) > cro  can then be surrounded by 

a contour C in the same region containing the circle 

IA - 	 . 	On this contour, we shall have 

1.5 -191 > to4(4){ , and by applying Rouche i s theorem (see Stewart 

	

p. 440), we conclude that the equation A- r 	has 

only one root in -Re(A) > (51.  • Moreover, any function 

which is analytic in a region containing the contour C can 

be expanded by using Lagrange's theorem, (see Stewart [69] 

p •  440), yielding the required expansion. 

We shall now assume that the input is of the Compound 

Poisson type, i.e. that we can write c..< (A) in the form 
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(see Chapter 2, Section 5), where 

C2? 

B(7-) being a distribution function. It follows that for all 

A such that -Re 	, 

1LV(A) 

The following theorem is due to Benes L 3 
_ 	7.1  

Theorem 3.4: 	If c_.:( /5) is of the above form, then the 

equation 

(3.9) 

has only one root e 	in the region 11/4Re(A) > (.3 
	for all 

p such that lqe..(r) > 0 . 	Moreover, if --c(A) is analytic 

in 1RQ ( 	> 0 2  then 

(e)= f( r  

Proof: 	Choose S such that 0 < S < 'Re ( r) and ‘R such 

that -R > 'Re( r) 	Let the contour C. be defined as 

follows: 

For IR e A) 1> 	 C coincides with the circle 

)1/4 -1-- 	 For 	IRE (A) 	 C 

coincides with the vertical line IR e. ( A ) 	. 	The contour 

C is shown in Figure 

Now on the circle we have 
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On the line )  

e 	— 	-t- 	> .>\ 	->■ Lk-) 	)( . 

It follows that on the contour C. , 1 r  -A 4"(4) ) • 

Applying Rouche's theorem, we conclude that equation (1.5) has 

only one root to the right of 'Re(A) Finally, as S.  

can be arbitrarily small, ( 1 .9) must have only one root in 

( A)> o . Equation (3.10) now follows immediately 

on using the Lagrange expansion. 

In chapter 7, we shall need a stronger result than theo-

rem 3.4, which will extend the region of uniqueness to the 

left of the origin. The required result is given in the 

following theorem. 

Theorem 3.5: 	Let 	 --)% [I - 4., (4 , and let 0-0  be 

a real number such that ?c(o)  is finite. 	Then the equation 

(A) has only one root e(r) in Re(A) > 5 for any e  
such that 	e () > ç ( cr.) . 

Moreover, let y(A) be anal3rtic at the origin, and let 

i (c)) satisfy the condition X'(0) > 0 . 	Then there 

exists c < 0 such that 	oc) < 0 

Proof: 	if Re (A) > o- 	have 
, 

1ct  -(4)1 I re --' c3(x)) 	ci(x)  
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Choose 10 such that 	> (G-0) 	_ 	D _ (4) cr.A ) 
and choose S' such that 

For 
	 take as the contour C the circle with 

centre r 	and radius X 4-) (0-0 ) -I- IR. 	1  given by the 

equation 

,s  

For 'Re_ A) = 	take the contour C to be the line 

Re (A) 	On the circle, we have the inequality 

= 	Lv(a—o) 	> 	4)(c0 ) 	->■ Li) (A)1 . 

On the line, we have 

	

.>■ Lk 6-0) 	">‘ 	(A)i 

It follows that the inequality 	ID -2 	 (A 

is satisfied on the whole contour C , and by Rouche's theo-

rem it follows that the equation 	p _ A 	-  

has one root inside the contour C , and as 1:2, is arbitrary, 

there is only one root to the right of the line -Re  

As es-  can be as near to 0-6  as we like, we finally conclude 

that the equation has only one root in  

Now, if 	(A) is analytic at the origin, then so is 

It . follows that there exists & <ü such that 

(c,<) is finite. Also the condition 	(0) >0 is 

equivalent to - -X 	< t . We now show that there 



(3.1i) 
, and therefore 	A) , are analytic 

0 
Now, as T(A) 
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exists oe< 0 such that cbz 	[ 1 - Lk) (r ck\ -] 	. In 

fact 

.).[Lv (Q6 -1 = 	a(z)-  

in the neighbourhood of the origin, and - 

we can choose 1.41 small enough to have -)\4 1 '(oc) < I 

and it follows from (3.11) that 

[ (00 - 	- -e 

i.e. 

Corollary 1: 	Under the conditions of theorem 3.5, there 

exist two negative  numbers 0.e and p 	such that the equat- 

p ç (A) has one root in "Re (4) > Qc for all p 

such that t9e( r ) > 

Proof: 	It is sufficient to take c 	as in theorem 3.5, 
• 

and 	(3  

Corollary 2: 	Under the conditions of theorem 3.4, the La- 

grange expansion (3.10) will hold for all p such that 

Re(r) > p 	, end all functions -C- ( A) analytic in 

the region Re(i) > p , where p is as in Corollary 1. 

We shall now obtain certain properties of e(r) and 

lii[e(11 which will prove useful in the sequel. 

Theorem 3.6: 	If 64(0 is finite, then 2 in the region 

'Re( 	) (0-;,) , the following properties hold 



o 

73. 	 3.4 

(a)  

(b) - 	-41+ •i.)(0'0 ] 
	

r 	when tpt 	c-c) 

(c) 'R(e) 	Re(i0) + - 

If, in addition, Re(Cro) < 0 and y‘(<3;,) 	is finite, then 

(a) [l - Lk-) (e)] /6 	is uniformly bounded. 

(a) 	I +)■ 	`((31 	— 

Proof: 	We haite, as Re_(e) 	To 	, 
00 

	

i41 (0)1 --L i ( e- G -x. a eLx) 1  ... 	
. 1 	1 .- °-- x- Gtiax.) = Ly(c) 

1 0 	 . 

and, if t'(°)  is finite, 

	

36,-) 	 ( 	(3.12) 
1 0  

Also & 	satisfies the equation 

p 	e 	- Lt)(e)-1 ---- 	. 	 (7.17) 

It follows that 	pi 	y( 	, and 

I e-rt 

 

('-(°k 	1*(e)11 . 	*(10\.1 - 

Also, it follows from — .1- 9 	+)k 	e 	0 that 

— 	4- Re( 	 .)k 	[14)(e) 	0. 
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Therefore 

( 	Re_ ( to ) 	 — Re [Lv (6)1 , 

	

( r) 4- 	- 	\y(e) 

Re(0 + -  

Finally, it follows from ( 3 .17) that if Re (cro) < 0, then if 

e 	. , p = 0 , i.e. the value of e corresponding to 

p = 0 is e o 	But it follows from the implicit 

function theorem that & ( r ) 	
is an analytic function of io 

in 'Re (e) > 	. We deduce that, as p tends to zero )  

e tendS to zero, and 

	

— LP( 	
— L-V ' ( 0) 

P 	e- 

Also, as G # 0 	for r  a because of the uniqueness of 

the solution of (7.13), it follows that [I - Lf)(4. /49 	is 

finite in Re ( r ) > 	(43-0 ) . 	But as I - 	(e) is uniformly 

bounded and 	, it follows that p - y(e)3 I G 	is 

uniformly bounded. 

Finally, it follows from (7.1.2) that 

- {-),*'((r0). 

Corollary: 	If I - 4) 1 (c01 < 	it follows that 

1 1 4- -A V ( 6)! 	>o 	. 	This will be the case if .  

cfc, • z 04 	where 0.4 	is as chosen in theorem "c. 5. - _ 
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5.  Some examples. 

(a) 	A simple type of input which leads to a quadratic 

characteristic equation is a Compound Poisson input where the 

density of the arrival process is :\ and the distribution 

function of the jumps is 66c) ( - We then have 

(see Chapter 2, section 6) 
oQ 

(A) = 	Q--)3xp 	IL  a  

+-A 

The characteristic equation of this process is 

_ 0. 

This reduces to 

_ A( 	JA- 4-  P. ) -r` P 

The equation has two roots 

()■ 	+ (1) ± 	p 2-1--  2 	-4-7u) p 	2  

For real positive p there is obviously only one positive 

root : 

6  = 	+ p) 	e a- .z 	r  

4-)y- , 	(3.14) 

which can be continued analytically to the whole plane, the 
2  2 

two points points - (45, -147„: 	and - ■/). - \IF/1) being branch 

points. 

When p 	,• we note that if A 	9 	. 
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However, if ->k 	t-A- 

(b) Let us now consider the Gamma process. 	In this 

case, the characteristic equation is 

	

- p 	-- ec- j  ( 4o 	(3.15) 

The equation is transcendental, and e cannot be 

expressed in closed form as a function of p 

Let us, however, note in passing that in order for 

0(t # A) to have an argument lying between - IT" and i-117- 1  

the imaginary part of e0-3(1-k- e A) must be between -17" and 

+ 	, i.e. the logarithm must take its principal value. 

It follows that, if p is the imaginary part of p , then 

e must be in the strip IS-TT< In---(e)< (? 

(c) In the case of the Inverse Gaussian input, the 

characteristic equation is 

2 	%. 1-- 

This can be rewritten, after squaring, as 

	

2 e 2 	e 	P 
z. ) 2 p 4 3 , 

A -2A(10-- - , -1------7,) 	
T

-1-( --1  - 13  - 
' 	r"- 	0.-  -‘• 	C 	

— = 0  ' 
c  cr 4" 

Here again, we obtain a quadratic equation, whose roots are 

P 	—e  (/- e) -±/ e4 0 -  e) 	Jo • 
cr 2 cr 	0-2 

Restricting our attention to real values of ID 	we notice 

that the two roots will have opposite signs if 

)-2 	4 
< 

ty. 4 
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i.e. if 
2 	1 e .2 

P 	2 P " . 

ec2  But this will be true if C).( p 	However, as 
2 0- 

e( r) must necessarily be positive for all positive values of 

p , it follows that 6;(r) can be only the largest of the 

two roots, namely, 

Io- 4  

Moreover, in order to eliminate the spurious roots introduced 

by squaring, we must impose the condition 

0  2. 
— r 	 0 cr  2 	 ) 

(3.17) 

i.e. 

This condition is obviously satisfied for 19(r) as given by 

equation (3.14). 	For the other root, we must have 

et 
2  e  3 	

e 2 
p - 0-2 

  

e3 
CI 2 

/ 	4 3 
i 	10-8:-(1-e)2÷ cr 

so that we must have 

P 	
1_ Or 2  

for the second root to satisfy the original equation (3.16). 

We thus see that, for real values of 	larger than 

e (1-9_?) /2 a-2- 	equation (3.16) has only one root, 

given by (3.17). 	Equation (3.17) can then be used to continue 
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e(p) analytically to the whole plane, except for the 

branch point 

Icr 

Letting f) 	, we find, as expected, that, if 	, 

then 	(p) 
If, however, 	e  > 	, we find that 

2 

-1) > 0 . 
p 

6. 	The inversion of r(,P,  ) when the input has a density 

function. 

Theorem 3.7: 	If 	("t.) has a density function 4 (t x), and 

satisfies the conditions laid down in section 3 1  and if 

tA- 	 is of bounded variation as a funct- 

ion of -h.. in some neighbourhood of a. , then 'a: ( 	has 

a density function, 5(i, X) 9  which is given for almost all 

t by the formula 

if 

otherwise. 

Proof: 	We have 

cA)t 	
for 	Re (A) 

where 'Re [a (./1)] 	0 	. We deduce that 
00  00 

- 
t 	x_ 

4.  (  4)2  R4r) 00. is) 
0 

Let us for the moment restrict "S and p 	to real pos- 

itive values, and let us change variables in (3.18) by replacing x 



79. 	 3.6 

by t — 3  We find that 

-(pt-A)ti-A 3  
ct 	elt. 

Write now 10 for p +- A . We obtain 

P t- 1 .c e_43. 	t-114 /  

Differentiate both sides with respect to 	. We have 
00 	t 

e 	 (7K.J.9) 
[10— 	oc(A9 2" 

where -Lae double integral converges absolutely. 

Integrate both sides of (3.19) with respect to p from p 

to infinity. We obtain 

-  oe(A) 

	c.c) 	
(3.20) 

t 
Let us put 

for 	t , 
a 

otherwise. 

Then we can write (3.20) as 

00 
	 =_- 	Q_ 	,? —16 	 (± * 	oft — ocI(A) 	 f 

P 
As the double integral converges absolutely, we can use 

FubinVs theorem to interchange the integrals, thus obtaining 

d 

f 00 	 °a 

I 	oe .   15 ) P e  

-0. 	0 

-00 
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As the integral converges for all positive values of I-,  r  
and all values of iS such that Re(A) > c3 , the last 

equation holds for all 4 such that Re- ( 4) > o. 

We shall now show that 

	

_ 	e—s-saA 	0 	(. 21 ) 

C . 4R 

if To  < c < 	 , where 0-0  and 	are as 

defined in theorem 3.3, I. > 	cro 	_ 	, and 9 

is the unique root of p - + 01(A) =o in iR e (A) > 

To prove this result we first show that 

LI - 	
3 	0, 

_ to, ( A ) 
C_ 

where C is a contour made up of the line Re 	= c and 

the right-hand half of the circle A - t31 =-- IR for large 

• 	(see figure 3.2). 	It follows from theorem 3.3 that 

	

f> -AS 	has only one zero inside C 9  namely 

O (p) , and the residue of the integrand is precisely 
-e- 

	

k 	It remains to show that the contribution of the 

half circle to the integral tends to zero when IR. 

But this follows immediately from the fact that in  

— c( ‘(A)1 	4-  0= ' ( 0 ) 	, and is therefore bounded, and 

> 	- P 	, so that 

the integrand is 	(I/ R) uniformly in Re L) > cro  

Having established formula (3.21) we now use the standard 

inversion theorem for the bilateral Laplace Transform, (see 

for instance Widder [74] p. 241) to obtain the result that 



81. 	 7.6 

,43 

f 	 - 
= e 

for all sufficiently large positive p 
Finally, it follows from the uniqueness theorem for 

Laplace transforms (see for instance Doetsch r14] p. 74, 

Satz 4) that 

	

t 
	2(  (t, )  for almost all t 

This completes the proof of the theorem. 

7. 

	

	The inversion of r(P13) in the case of a Compound  

Poisson input. 

In the case of a Compound Poisson input, \<(tx) admits 

the expansion (see Chapter 2, section 5) 

k 	L6c) 	to( oi 	t<2,0  ( 0, 2c)i- 	(3.22) 

	

where the K„ 0 	are given by 

-?q 
K 	( 0, 	= 1) 	(- 	Cvtd 	(x)  • 

ev.2 

It follows that 

rv 

\\<(0„oki  < 	(3) 	( 2  
k 0 

so that 
N 

ex. 7 0 rin. 

 

.AC) 
_27xt 

a lt  0 
t< 	(0  X) ev.., 0 	• 

   

Thus the partial sums of expansion (3.22) are uniformly dom- 
Q ;\ -t: 

mated by (1 

Theorem 3.8: 	If - (t) is a Compound Poisson input, the 

distribution function 6;(t,5) 	of 2.7"(e3') is given by the 

) 3 > 
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formula 

t ') 	 (U. ll-/) 	 du- 	if 	t?„- 

G 	t 
/eV - ) 

otherwise. 

Proof: 	Taking the Laplace-Stieltjes transform of( 3022)term 

by term, and equating the coefficients of the powers of t 

we find, as in section 3 of chapter 2, (formula 2.8), that 
6.0 

P „, 0 
	uboa4 	1.040] 

	
0 2 

1 - 

0 

From this we deduce, using the usual rules for change of 

variable in Laplace transforms 

,t 
[(40) 	 u(t-- 2) t, 

0 

and, denoting the Laplcce-Stieltje J transform of c.  ( -6) by 

[(€")) , we can write 

	

e- ' ° Hon. _ 	 ci.t 

+ 	 \<,.(o,±-1) u(€1at ) 	) 

	

'L 	jC) 

P PL-tr--. 	 3 / 

j() 
(-1 

-h 	
—1 	c 

, p 
— 

nd,  0 

0 

^ r 
Li.,  K 	) 

- 

nn.-( J- 
t AL 	1,--; 	(C 	 ( 3024) 

/loft 1, 
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We now use the inequalities 

	 -c" 
1 

2),t 

Z-/ ('‘A. 	f U:7  
Z.- 	iv, ' 0 

-2"K 	(0 LA. 

.2 	, 
L 	U 

which follow easily from (3.23). 	It follows that the sums 

involved in the inequalities are uniformly dominated by 

-2)t 
a 	(.) ( -6  , and this function in turn has a converg-

ent Laplace-Stieltjes transform for all p 	p 

Using now Lebesgue's dominated convergence theorem (see 

Loeve [47] p. 125) we can sum eauation (7.24) from 

to 	= 2  and we obtain 

7 1 	re-P1 H(orl. Z[3:4 (kr - 	 t 

K 

+- 	K(tA 
J 	 1 	I 

- 	

0 
0 uz 

Finally, we use the two identities 

-- , 

Li- ) 

LI(LL- 3 ) 

and we find, using the Lagrange expansion of r(t.),) given in 

theorem 3.3) 
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‘4_t,t - 3 	(t 	-  
° 	0 

K(tA,Lk-24 ) U(L-2,) 	. 

But as the Lagrange expansion holds for all p > 0 I  (see 

theorem 3.4), it follows from the uniqueness property of the 

Laplace-Stieltjes transform (see Widder [741 p. 670 that if 

,77 (t i 	is the distribution function of Z(2,) we have 
r -e 

G-et 	k(t t-3)U(t - s) - 1__K to Ckk,u--3) 0  
/ 0  

	

uty.t.-3.) 	(LL '1\ (L`-`- • 
o 

This can be rewritten more simply 

1- K(tt-2,) - 	■<,$u,t,-3) - Y( L LL if t 	) 

otherwise • 

Corollary 1: 	For fixed 	Ct./ TO vanishes for  

and has a jump of magnitude V(5 1 o) at t = 

Proof: 	The first assertion is obvious and the second 

follows immediately by letting -t 	•-b_. from above in (3.24). 

Corollary 2:  If, for fixed 	k(t,x) has continuous der- 

ivatives in both t-  and -x_ at the point (-6, t- 5.) , and 

if we write 

(t  

then at the point (t,3 ) 	G (t 3) has a continuous partial 
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derivative in t , given by 

3 G(t.,3)= g (t, 	t 	1 	a  

Proof: Differentiating both sides of (3.24), we obtain 

6(t, j ) = _ T k(t,t ) 	k, o (t,t-j fir c(t,t - j ) 
t2  

- 	1<, (t,t- j ) #-  
t 	° 

, 

Corollaries 1 and 2 enable us to visualise the general shape 

of C---(t,$) in the case of a compound Poisson input, when the 

service time distribution 13(x) has a continuous derivative., 

In that case, as discussed in Chapter 2, section 

5, K ( t, x) satisfies the conditions of Corollary 2 for all 

The shape of 6-(t.,/ ) for fixed 3  will then 

be as follows: 

(a) For t <3 , G-(t_,;) vanishes . 

(b) At t 	there is a jump of magnitude K (3 , 0) = e 

(c) For t 	0 	G(1. , ) is a differentiable curve whose  a  

derivative is given by 
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In particular 

° 
(-E l 	=  

so that the tangent to G (t, 	at t. = 3 is horizontal. 

Moreover, it follows from the results of section 7 that 

	

(scz 
G(t /1 ) = 	1. • (3) < 	e: e  

where & 	the largest real root of c.<(6) 	t9 

The general shape of G( t,7j, 	in this case is shown in figure 

( -4 .3). 	Finally, we note that we can write in this case 
,t 

+- 	.(t.4_,71 ) 	, 	 fort 	(.25) 

0 

where 	cd,, ( 	=.-  

We then have 

0 -Orley- vv is e. 

r( 	e.. - P" 	G(.t) k 

0 

8. 	The case of a discrete input  

Let us now assume that the input 	t) 	takes only 

integral values. 	It is then clear that emptiness can occur 

only at times 	 , where --v. = 0 ,  1, 2 " 
We shall write, as in Chapter 2, section 7, 

'Et€ 	 (0 
and we shall introduce the notation 

We shall shall assume that the p (t) have .continuous derivatives. 

We then have 
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Equation (3.24) now takes the form 
eVL — =1=-74 r 	 P J ?-J 

T , p)et, . 
=. 

Write Al.- 	for ■,,N_ and subtract. 	We find 

r (1 +-,) 	 
0 IL 

I -b- 
J 	 (u-) 

It is easily checked that the last two terms of the right-hand-

side of this equation cancel out, for the last term can be 

	

written 	i -i--- 
.-1  

4,-...1 	4. -, - I ) 

	

T 	L. [ L e  (,\1 ct,, , _ , E {  pe.e(76, 	p k c. 	_1 ----, 	.,_,, 5 	(..„.. 1_0.. . fe 	j 	,   -..? +........_.; 	j 
-1-- ,vs —I 	 6 

and so we are left with 

(3.26) 

9. 	Some expressions for the time of  first emptiness  

We shall now use the results of the preceding section to 

obtain the distribution function of the time of first emptiness 

for specific kinds of input. 

(a) 	Consider a simple Poisson input. 	In this case 
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1D, Le-) 

So we have 

and, in particular 

(3...27) 
evoL. 

(7.. 28) 

as shown before in the general case. 	This will also hold for 

(b). Equation (3.27) is, as expected, the Borel-Tanner distribution. 

(b) 	In the case of the queue M/M/1 (see section s of 

C 	 / 	has a 

continuous derivative in 1: for all t > 	, and we have 

	 r 
i.e. 

_ ( -Aft..)t-ty„. 

e 	r,(Q,b(t-z) ) ( 4.29) 

- 	 Coy  

(c) In the case of the queue M/G/1, when the service 

time distribution 5(70 has a density function e(x) , we 

have 

( t, 	-----  	
e 

where .er (x) is the nth convolution of er-(7..) with itself. 

(d) In the case of the Gamma input 
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- 	e P (-L 
F r(tt) ) 	r ./ 

In that case 

(3;30) 

QAJ 

t 	ci  

(e) In the case of the inverse Gaussian input 

3 

e > 

ITT; 	 2.0.1 (t-b) j 	'
(3•31) 

 

and here also we can check that 	(t,$)=. 

In cases (b) and (e) we have explicit expressions for 

kr), and so we can check the correctness of expressions 

(3.29) and (3.31). 

However in cases (a), (c) and (d), the characteristic 

equation of the process has no explicit solution, so that 

equations (3.27) and (7.';0) can be established only as special 

cases of general theorems. 

If we now consider the asymptotic behaviour of  

as t- 	c>.= for the various distributions considered, we 

obtain the following results: 

(a) 	for the simple Poisson input, using Sterlin I s form- 

ula, we find that 

so that c, (3) 	
INAT1 

	when E 	= 1  



[ >c 	when 

0 when 

	

HTTE3 
	 * eve) t 

while for e = 	the formula reduces to 

( ti 	
27.  t 3  

9n. 	 7%9 

i.e., when )■ 	• Ue note that, in this case 

---> tact 
	= 
	in all cases, 

as 	t -log3N is never negative, and vanishes only for 

I 

(b) For the queue M/M/1 

s  	 )■/*'` ei)(  rg 	1/46  r  j 4- Tr-  t3  

which reduces to 

ti 
\J4-Wt 3  

feY' E[(03 	 . 

(c) For the Gamma input, using again Sterling's form-

ula, we find 

(ti 	vEC e 
4i-27‘777-D 	C 

Let us now note that 

Then, for e  4= I we can write 

with the exponential term approaching one as 

that the formula can be written equivalently 

‘,/ii-T7C3  
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(d) For the Inverse Gaussian input, we find 

t ) ,7 a 	-211  
/ 6  

6-121-1-± 3 	 la 2 

which reduces to 

r 	r  
vriT t 3  

in. The uniqueness of the solution of Kendall's integral equat-

ion. 

As mentioned in the introduction, the formula 

Was first given by Kendall [39] . But, as pointed out by 

Lloyd [46], Kendall only showed that j.(t, 	satisfied the 

integral equation 

= 

which follows immediately from equation (7.1) by using the 

theorem of total probability. 

This equation, however, has a general solution depending 

on an arbitrary function. 	In fact, we have the following 

theorem_ 

Theorem 3.9: 	The integral equation ( 7 .32) has the general 

solution 	t- 
( t 	 t 	ci 	x) 

where TD (x) is an arbitrary function of bounded variation. 

The particular solution 



ct, 
0 	 otherwise II 

	
( 14) 

is obtained by taking ?( , where 

is Heaviside's unit function and 

K (0) x) = 	 . 
It= 0 

Ptobf 	Put Lk,- t -3 and write 	(t 1 ) = et. (t, t-3). 

Equation (7.32) becomes 

We shall solve the more general equation 

x) 	Soe,-(k-,r ) 	.CQ (I 	GLJ. 

which reduces to (3.36) by putting x_=. 

Take the Laplace Transform of ( 3 .76) and put 
00 

C(LL, A) = e: 	( 	ot-x . 

Let us also recall that 

I 00-A 7, 	• a 
 

Equation (3.36) then becomes 

, 

Putting uo- = 0 , we find 

(o1  )e 	. 
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We now note that -g-tr4( ( 0, 4) 	can be taken as an arbitrary 

function of A , 	(A) , which is the Laplace-Stieltjes 

transform of some function ?( X) , i.e. 

—4)i. 	ep( 

We see that in fact the solution 

(f 	Lt 	e..-cc(4)i 	(7,-q3) 

does satisfy equation (.T7). 

Inverting (:3,8) we find 
, 

et. (t, ?c) =":  (t, ›C-) d -P( j_) 

0- 

or, reverting to 	( t4. 	, 

-= e,(t, 
0- 

We can check directly that this solution satisfies. 

In fact, replacing in the right-hand side of (7.7), we find 

t - x 
( 31 .(i ) cua  

0_ 

gt,t —x) A P(x) 
E„) A _ 

as required. We have used in the proof the equation 

k(€,±1 - k)-- 

which is a consequence of the property of the process *g(t) 



having independent increments. 

It remains to _obtain the form of F(x) which will yield 

Kendall's formula  

We must solve the equation 
t-3 

•f (t, t 	— ?c) Pbc t_--. 	k(t,t- j ), 

0- 

 

We first first change variables, putting t_-3,  LA. . 	We obtain 
U- 

( 	- 	OL T3  (X)  

jo - 

Put 	P(X) =-- L.)  (X.)  , where (..)(X.) is Heaviside 's 

unit function. The equation reduces to 

0 

Take Laplace transforms with respect to tA_ . 	This yields 

e_odA)t 	
ac)(.x) I 	-14L' 

e- 	(k(t 	ca& 
t 

0 

7E- 
 3  ( 

• - 

	 3 
	-04A\ 

i.e. the Laplace-Stieltjes transform of Q( -,4) is  

Finally, differentiating the relation 

e
-Ax

L  
0 
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first with respect to I: and then with respect to A 	and 

putting t: ==C , we find 

0. 

'(A ) = • 	e 	x- 	ct x 	( 	k< ko (01 X )
) I o 

( so that we can take ,-)( ■_)(-) to be k< (0 X) 

Our final result is therefore 

P(x)= u (x) — k 0  

This completes the proof of the theorem. 

11. The distribution of the busy period:  

In the queueing interpretation of our storage model, the 

notion of length of busy period is important. 	This random 

variable will be denoted by IX and is defined as follows: 

Suppose that at an instant t when the store is empty there is 

an instantaneous input of magnitude X . It follows that the 

store will not be empty for a length of time of at least X 

Let t '  be the first point of time when the store is again empty. 

Then 	is defined by 

/"... 
- t . 

In queueing terminology, 	is the length of time that the server 

remains continuously busy, between two idle periods. 

Let us note, however, that the notion of busy period is not 

n well defined one in the case of inputs where the sample funct-

ions are not a.s. step functions. 

We shall first calculate the Laplace-Stieltjes trensform of 

the distribution of ;\ • Let the distribution function of a 
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jump 2C 	in the input be 13(x) • Then, using the theorem 

of total probability -, we obtain, using the fact that 
 

if  

a [e.- P3  ] =  

0 

= 	J 

o 	 . 

D 

= 

where Lv CA) is the Laplace—Stieltjas transform of 

Let us now assume that C-3(x_) 	has a continuous 

derivative .er(t) . Then G(ty0 has the form given at the 

end of section 7. Using again the theorem of total probabil- 

ity, we find 

ciAl ) e_( 3)ci  of,v, 



c'c:1 e()1 —( t ) 
e- 

= 0 	(reL*0! 
As an example, let us calculate e ( -6) in the case of the queue 

97. 

Here we have used the identity 

I. 
0 

This can be most easily proved by taking Laplace transforms, for 

we have 

e,( 3 )0( 1 	
e-vv 

Y° t t 
Pc(t 

-0 	Jo 

)cL er,(i-L)d,  - 
C 

[ 	 y(01 
p 

I 	--, 	t 

6 p [ nn. 

e 	 • 
t 

From equation (3.39) we can conclude that A has in the case 

considered an absolutely continuous distribution whose density 

function, which we shall denote by e(t), is given by 

M/M/A. The Laplace transform of e(t) will be given by 

1-(-  1 	e (t-mt 	EG(01.1  = 
2 

.2 frt. 

+J(p+ 	)2. - zi*t, 
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Inverting the Laplace transform, by using Erdelyi [193 p. 237, 

formula No, 49, we find 

_().+1..)t 
rt 	51/47:  
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CHAPTER 4 

THE DISTRIBUTION OF THE CONTENT • 

1. 	The . fundamental equation for the Laplace transform of  

the content distribution. 

In this chapter, we shall at first deal with a slightly 

more general model than the onediscussed in the preceding 

chapter. We shall assume thet the input 	() is a 

homogeneous additive additive process of the type discussed in section 

12 of Chapter 2, and we shall write 

E. e 	- - A E.  Lt)  V.L01 1 (4. 1) 

We now note that 

-vt4 	_ACT(t) -t -  ELe:AVE) 	[e 

-044) 	-"") 

In the homogeneous case, when Ckt.k,t;A)= 	y  we 

shall just write 0;)(: ; ,6) for (Li)(0;  I: ; /I) 	, and 

we shall then have 

. 

We shall assume, as in Chapter 3 9  that the initial content of 

the store is 5, , and we shall introduce the notations 

vv (t, )) = 	(t) x 

- CO
) 	

c+

e°_°- xvv(t x-) -Re  
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= 	W (t ( tz) >. 	) 

'Re 

 

>0 . 

We note that the transforms with respect to - x  are Laplace-

Stieltjes, while the transforms with respect to * are 

ordinary Laplace transforms. The integrals necessarily all 

converge in the regions given because the total variation of 

V\i (t , 	 in 	is unity, and we have \A/ (I., ;(U. 

(ti 	• 

We also note that since 	(t\ 	0 1  we must have 

o for 	a although \IV Lt , 74.) may have a jump 

for -x_ = 	, of magnitude \M 	o) , so that 

0 =  

The fundamental equation satisfied by SL ( t, A i s 

readily obtained by using formula (1.10) of Chapter 1, namely 

t. _A  (t.) -_AV L±' 	r -Arty(t)- v (--\) r - 	1 — is 1 a 	uL-tt,..1 a v. (4.2) 
J 0 

We first note that for the process 	V (4:) 	, we must have 

for almost all sample functions 

= t 

This follows from the fact that *E l  ( -E) -::_- 0 for almost all 



t , (see Theorem 2.5), so that the Stieltjes measure deter-

mined by 	(t) is singular with respect to the measure 

determined by /-,-/ (-t-) = t 	9 which is of course the usual 

Lebesgue measure. Secondly, we note that the random variables 

	

9 
	U 	 are independ- 

ent, in view of the additivity of the process  

Finally, we note that 

-p 	(1,, 

for 	(-o] 	takes value 1 when 	=0 with 

probability 	(-E,o) 	and value 0 otherwise. 

Taking now expectetions on both sides of (4.2), we obtain 

-A + q At 
SZ 	e. 	 cL. (4.3) , 

0 

This is the fundamental equation for 2 (t ,S) . From it 

we deduce immediately 
t- 

E (-E-q 	_ 	IL (.-E.„s) 	=-_ 	—t -  e (t) 	vv(LL, 0) 
= 	 0 

where e  (-0 = E [ (-03 • 

Let us note that, if et 	; A) 	is of the form 

e.
_ ( [

A-
- (t) 

the n aLt /) is given by 

t 

e , 	
- (IS) Att) 	SA(t-t-)-d(A)P1/4-et) -11- LL )] 

-A e 	 \N(u,  0) a,., 



j 

CA7(  k(c, 

J 

and, in particular, if the input process is stationary, i.e. 

if —A-- CO TXt , we have 

fl  (:t: 	
c414)3ct—,„_) 

(t.L, 0) 01-LA_. 
0 

2. 	The inversion of the fundamental formula  

Let us write 

? 	 Jx 

Then 

x+t-L, 

We also find, on integrating by parts, that 

/32 S e--Ax 	w 
— pa 

and 4c.3  

—4( 

0 
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Finally, 

" e 	3-AIL 

	

CD OA C A ) A e- 	Q_  

-00 
4.0.0 

= A 	k<(% , 	 -1-t 	a X . 

Replacing in equation (4.3) we find 

A e  a -x -A-% 	 - 

-00 

	

t- 	 -0. 

- 
0 

If we restrict A to the positive real axis, the integrand 

of the double integral is positive so that, by Fubini e s theorem, 

we can interchange the order of integration. Finally, using the 

uniqueness theorem for the bilateral Laplace transform (see 

Widder [74] p. 24), we conclude that, for almost all -x 
x_ 

(0, t ; 	- I 
But as each term of the equality is non-decreasing and contin-

uous to the right, the equality holds for all 

Finally, using the right-continuity of 	I  ) and 

in X , we obt,ain 

W 	(o; 	"X+t 	-(5'1-) K( 	x4t_4 w(u.,0)01.4.k, 

0 	 ( 4.4) 

where 	denotes a right-hand partial derivative with 
X 

respect to 74. 
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This ià the general form of the formula for \A/(Tt I )0 

We shall now obtain various other forms of the formula by 

imposing restrictions on 

Firstly, suppose that 	x.) can be written in 

the form 

V<G4• 1 	X) 	KGA,t;0) .0(X) .  1R4aLL,t;%11) 

Te then have 

_ K(Lk.,t)0) U(x+t•-‘4)W 

jo 
t 

eQ(L.L.,t) kaft- 	- u_)olAdv.i(Lt i o)cL,L)  

• •-oo 

so that )  for "c•- 	0  , 

and finally 

t) xft 	)- 	± • x4-t-- ,..)v\)(Lk_j 0).4_,-. (4.0 
- 3 	) 	/ 

Secondly, we shall write the last term of (4.3) in the form 
, 

0(-u-  ..t • A)kAl (v. 0)(LL - 

00 4: 

0 

where 0 = Lie < 	< u=t is a suitable dissection of 

the interval (0 / 0, and U 	LL ;,:#1 	‘1)-4:  _4_ 	L441 . 

But, by the mean value theorem, we can choose 	y. so that  
-A L& CU, - Lk. e 	e 	

a 
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It follows that we have 

0 

Atttt .) 	 24t 	# I) 

7217, w(-u-: .4 	-̀0(t;4-e G(t±•:!), . 	, =0 

Using now the relations 

- 	
oo 

/ 

) 	) 
x —Lk) 

ist,f - 	 +00 

K Gr i  t: • x. 
:14-1 e_ 	ct x 

we find that 

4(t - 
a 	)0 

0 

+0.3 
—4)( 

A e_ 	Ax 
- 0C> 

provided the interchange of the integration sign and the limit 

can be justified. This will be so if, for instance, the sum 

is uniformly bounded for all X. 
• 

We shall write, for short 

fA,vv,  	 ,t ; -x+t- 
0.3 

 
rvt-t 	

- 	t x+t 
) 	 + 

17 

= W  ( (") euL  ((tit ) 

We can then deduce froM (4.3) the formula 

t-) .cw(k.k,o)ceL,KGA,f) 2(i-t--). (4.7) 

We shbuld, however; bear in mind that the integral does not 

have its usual meaning, but must be interpreted according to 

(4.6 ) 



C) 
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formula (4.0 1  the dash on the d. expressing the fact that 

the variation of K(Lc , 	 -x tt - ) 
	

in LA... is only in 

the last argument. The path along which the approximating .  

sum is taken is shown in figure (4.1). 

Formulae(4.8), (4.7) can also be written, writing t: 

for 	, in the form 

■A) 	 t 	— ■A) 	- L„o) 	x i„)6(v. (4.8) 

0 

w (ti  = 	0, -E) +t - 	— 	- 	ce k 	-L x + 	. (-1.9) 
0 

Formula (4•9) is useful )  in particular, when 	can take 

only integral values. 	Let us write in this case, generalising 

the notation of Chapter 3, section 8, 
c 

tA.k<(Lt. 	7c) 	77 , 	"E) 

.T.-> evaluate the integral, we write 

Vv(t-L,1 0) ax(t- 	t • x+„..) 
0 

. 	_ ex.,„„ 
 

/v. 	 = 0 	 4.1- 1 
— 	 t 

We now note that in this case K(u. 	• 
	increases only at 

integral values of x_ 1  irrespeCtive .  of the values of (.4.. and 

t . So we have 



rv.L.  - X ) , 
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and the approximating sums are clearly uniformly bounded in 

this case. 

Replacing in (4.7), we find 

cx+t)-cx3 

w(t,x).21", (0,t) 	W t AY] - 	x,o)E(t-[743-Aki- x.,t). (4.10) 
= 0 	= 	 rUx3 

This can also be written writing in. for [x.1 + 

[xi_t_3 1 	c.x+t) 

w(E, p(oit) 	vv(t- +x,o)t) 	t). 	(4.11) 

To conclude this section, we note thqt in the stationary case 

formulae(4.8) and (4.11) become 

\<(t x+t-1) 	W(t-Lk,o)Q.21%-k 

411-1 	CX 4 tl °  
(t dL)   to, (t) - 	 vv(#),,o) 

= 0 	 CX) 

3. 	The calculation of \N(t.,o) 	in the stationary case. 

In the stationary case, i.e. when 	,S) = ED(t:-LciA), 

the integral in equation (4.3) becomes a convolution integral. 

In that case, if we take the Laplace transform of both sides 

with respect to 	we find 

% 	—4 /  * 
(4.12) 

where 

e p, 

	

	
_ Pt 	_pt -cet,$)t 

(h)_, ce 	e e 	At 

0 

  

-1-04  (A) 



(c.f. equation (.3.18)), the equation holding for  

	

Re_ ( 	0 . 

Replacing in (4.12), we obtain 

c'l 	 ■A/ (p,o) 
( Pi 4 	

- A  
) -= 	

(4.13) 
-A• (A) 

We now note that in the given region \ SAi 3,4) 	and 
)1er 

for every fixed 
rTh cf,A) is an analytic function of 

Let now po and a-  be as in theorem 3.3, and let us 0 

restrict p to real values such that p > 	Then, in 

	

Re 	> o 	, the equation ID. --A 	.4(A) 
	

has 

exactly one root e( p) 	(Theorem %3). 	It follows that, 

for lo > ro  , the numerator of (417) must vanish for 

4= 8(p) , so that we must have 

- 6  (0 

vv)ie,(:)= 	. 
e(0 

( 4.14) 

We can then calculate W(t, 0) by inverting ( 4.14) 	Let us 

note that (4.14) can be written, putting as before  

Vi* (p , o =e e( f)  

3 

(4. 15) 

But we have shown in chapter 7 (theorem 3.1) that 

Pt . — 	1 ,. /,_ \ 	. c -7-T3 G ( ±  \ ck.t- 
r( P, )---7- (pt   

..._ 	. 
where the lower limit of integration can be taken as zero, as 

G(± 	o 	for f; 	Also,we have 
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pt 
1A1( -co)cit=v, e 

- p 
	

0 0 

so that (4.15) becomes 

-C ( 	 t( 	-P j  e  wiGA,00  e_  ci.(-t4 ) Qi 	cut ;  (4.16) 

(0  
- 

the interchange of the integrals being again justified by the 

use of Fubiiii's theorem. 	Thus, we must have 

0 

	 =cc-(t )c( 
	

(4.17) 

as 	0 	for 	> 

It follows from the well-known differentiation properties 

of the Lebesgue integral, that, for almdst we have 

 

kNR,o) - _3_ I  
'- 

 

(4.18) 

This is the general formula for 

Let us now, as in section 2, put some restrictions on 

the form of C;(ti ld  ) and obtain various other forms of the 

formula. 

Firstly, let us assume that (r(t, ) 	is of the form 

given in equation (3.25), namely 

K (A  
Jo 

for 	t 	, 

otherwise , 



Then, as shown in Chapter 7c section 7, we have 

°'43  - t e_. 

and equation ( 4 J. 5) becomes 
* o0 	 to° 

k(,0) 	(t„a ) 4-1 c), 
L  

so that, for almost all t again 

\A) (t )  0) = 	(t,o) u(. 
	

u( t-- 1 ) oft . 

This can be written 

for 

(4.9) 

for 

0 

Thus, for fixed Qe 	v■1(t1. 0) coincides, for almost all t 

with a function which vanishes for t < 3  , and has a jump 

of height K 	at t 3  

Equation ( 4.9) can be written, for 

(±, 	= k( t, 0.) 

( 

 



i.e. t - 0 
(±, 3  — 	cq (t4 44 for t ?,3„ 

 

(4. 10 ) 

for t <7 
' 

Further, integrating by parts, we obtain,for t ..... 21  , 

— 	b_ k:(tA 	•-4- .± 	\<(.t) )44-j 
0 	r 

0 

t- 

0 	t 
5  k(t -f-t) 	( -t.,)cL-s 	for 

for 't 

We can obtain a more precise definition of \iv Cei o) if 

we assume that E(-e) has a density function, 	(t /  

which is a continuous function of both t and x_ . 	In that 

case, the conditions of theorem 74.7 will be obviously satisfied, 

and we shall have 

for almost all t,  • 

Let now be defined by  

By enumeration of the paths, we obtain the relation 

( Li 0 ) c,L,, 	 (4.11 ) 

0 

Thus 
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where 	(tI la ) is continuous for almost all 1: 

The continuity of W(170) follows immediately from the 

form of (4.11). 

It then follows that for all t 1  krq (f-, 0 ) 	is given 

for t 

for ±9 . 
 

We now turn to the case where 	(-0 takes only integral 

values. 	Then '6W takes only integral values, and, as 

shown in Chapter 3, section 8 1  equation (3.28) 

by 

In that case, we have 

We then have 

t 	t  L-I 	t -lt - 13 

I G (t /  S (1/0 ( ) cisj # S  ±1  

3 	7 
0 	 1 	 le 

It follows that, for almost all t, 
t 

O 

/ 	a 	° 

This can be written 
1E- 7) f 

(t,o) 	 (4.12) 

C 

i .e. 	1N (t, 	 (4.13) 
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To conclude this section let us note that sections 2 

and 3 provide a complete solution, at least in theory, for the 

problem of the determination of 1/\/ (t,x) in the stationary 

case, in terms of k tt, 4 , whenever G 	1) can be 

calculated, i.e. as shown in Chapter 3, whenever "(t) 	is a 

Compound Poisson process, and whenever 	(-0 has a density 

function satisfying the conditions of theorem 3.7. Then, by 

combining equations ( 4. 4) and ( 4.18) , we can obtain  

The asymptotic behaviour of the content in the stationary 

case  

In section 3 of Chapter 3, we have considered the behaviour 

of 7-() 	as t tends to c.c) 	In this section, we shall 

use the results obtained there to investigate the asymptotic 

behaviour of the distribution of 	(±) as t tends to 

infinity. 	We first prove 

Theorem 4.1: 	Let E 	t and V0-1([1 . ( -0] =a-i t 	where 
2- 

Then 

(a) if e < I , 	(t, x) tends to a stationary 

distribution which is independent of -6 as 

(b) If, on the other hand, e  >1 , we have, for 

every -)4- 

W (t /  = 0 , 
--o G-:) 

Proof: 
	We shall use the representation 

which was obtained in Chapter 1 (formula 1.9). 	This can be 
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written 

cv1". 1, [ + ( -t 	( 0 1-  V( )1 ) 

so that 

	

w (t, ) 

	

{c6,x1=-pb,_,(t).,...; Pet)  

Let us first consider case (a). 

It then follows from Chebyshev's inequality that 

peo _ (r  - t- .E)S 	 . 

	

Take t > 	- e) and put E (k e) t- 	x: • 	It follows 

that 

„ 

24_ 
0- 

— x. 	e  ±-1 2-  

and letting t tend to infinity, we find that 

This implies 

P

- 

cls 1, (04 xi 	I 	 (4.44) 
Jr_ 

Consider now the distribution of \At) i P 4TIE) 

▪ 

Let 

us first note that we have 

(t)i- V lic (t) ' == ■)(t 	V(u.) 

SLAT [V(t1 

But as v(t- 1 is a stationary process, the distribution of 
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os t.. t 
is the same as that of su—y 	( 

c< k 

We conclude that 

t 	0.,...t 

This is possibly not a proper distribution function. 

Let now 

= 	Lti • •+ v(-0 

; 

 

Then 

so that 

L, w x) 	1-)/f4  
t 

•-) 	 C -E oo 

But 

PH- v(t) >x 	O. 
t 	 t 	 ° 

It follows that 

(f- 	1 = 0-r ( 4.16) 

This completes the proof .  of case (a). 

Let us now turn to case (b). We can then write 

- 	 < Cri  
2 

	 (4.17) 
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Put €_ 	(e -1)t +- , 	Then (4.17) becomes 

0-2e e _ot _v(±1 
RY) t  

This can be written 

v(-0 
2±.  

4_ 	Cr  

[(LI') t 	2  
Take t- large enough to have (e -)t/2 	 , where x. 

is an arbitrarily large number. Then 

x 

so that 

It follows that 

This completes the proof of case (b). 

Corollary: 	(a) 	If e 	.e4..,„ 	(_ -E 4) exists and is 

the  
t 

Laplace-Stieltjes transform of a (possibly defective) prob- 

ability distribution. 

(b) If e > I 9  tW-  S2 ( -6 A) =0 for all A 

such that Re ( A) > 0 • 

Proof: 	Part (a) follows. immed5Ately from a theorem of 

Gnedenko and Kolmogorov [31] p. 37;, while part (b) follows 

immediately from case (b) of theorem (4.1). 
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We are now in a position to obtain a formula for the Laplace 

transform of the asymptotic distribution of 	(IL ) in the case 

where •f < 	. This is the generalised form of the celebrated 

Pollacze k- Khint chine formula. 

Theorem 4.2: 	The Laplace transform of the asymptotic distrib- 

ution of 	(÷) 1  when e  < „ is given by 

_(2 	A) 	(1- e )  

A —c(A) 

Proof:  To obtain S2 ( A ) , we shall use the well-known Abelian 

theorem for Laplace transforms (c.f. Doetsch[14] , p. 458) which 

states that if eA-- 1  (*-) 	exists and if f(p) is the 

Laplace transform of F(t) , then 

F- CI7) 	 -P(p) 
° 

Now the Laplace transform of ...a( -6, 4) with respect to t is 

given by formula (4.13) as 
e—A / 	VV (p,o) 

p — 

It follows that 

(1°1°)  

A  -e,<;vs.-- p VV 14 (p, 0  
p--bo 	 ( 4.18) 

It remains to calculate 	p k/V 4K(pi  o) . But, from section 
p-4  

3, we know that 

IN 4  ( f.), 0) 	e
- 6-4 3 

6  (P) 
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and from the results of section 3 of Chapter 3 1  we know that in 

this case 	6(0 = 0 . It follows that 
P -40  

6(  P ) 	- 	  
• - 	 - e  

Thus we have 

r _t.0 

p kA/ ( 0 — 	
E[e( 4 /j:]

=  
P' 

Replacing in (4.18), we finally obtain 

(A) 	
A(i) 

- 

Corollary 1:  When e  < , the asymptotic distribution of 

CO is not defective. 

Proof: 	Let W (x) be the asymptotic distribution of 	(t) 

Then it suffices to prove that 
400 

/ 
4 , 0 

- 	 -00 

But 

1 - 	 _ I - 
A-so 	 A  

Corollnry 2:  W (0) = - e . 
Proof: Here we shall use the Abelian theorem for Laplace 

transforms (c.f. Doetsch [14) p. 475) which states that if 

F(x) exists, and if -C (A) is the Laplace transform of 

F(x) I  then e:"-v,  Ft( ) = &A- 	 . 	application of 

the theorem is valid here, as 
 7v  

	

(0) 	(x 	, by 
A ---) 

the right-continuity of distribution functions. Using the 
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formula 
4 

( A) 	A 	11') 1A-7 (X) °L)t 

we conclude that 

(c) 	' - e 	= 	- e • _ 0C(A) A 

	

as \-4 (Aq is bounded for IRe(A\ 	o 

It remains to consider the case e 	In that case we have 

the following result 

Theorem 4.3: 	If e  = , then, as when e  > 

ZnA.•.• 1A1 	= 
	 for every 	• 

Proof: We obviously have 

iD iv(t)+V * 60-4--  xi 

so that, for all values of e  
w 	ei;. 	v(tli ,*(+  4.19) 

Let us put 

= (-0 

,,(f) is the content of the store when 	cr:1 

Using the same argument as in theorem 4,1, we see that 

the distribution of 	(4\ tends to a limit \N o  (7.) , whose 

Laplace transform _52. jA) will be given by 

PC 1-  A VV't (r)°\1. 
0 

— A -t-oc(A\ 
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When e 	, we have still, as shown in Chapter 3, Section -5 2  

ELw 6.(0 = 0 1  so that here again 

t 
p t4.1 (p l c) = 1— C. 

But, as e  = ( , we have 

5-2 0  (A) = 0 	for all 	. 

It follows from the unicj„ty of the Laplace-Stieltjes transform 

that 

Finally, we conclude, from (4.19) that for any 3  , if e 	, 
Q__.__ w(t 	0 

I 
t ->oc. 

for all 2c 

This completes the proof of the theorem. 

We can now summarize the asymptotic behaviour of r(t) as t 
tends to infinity in the case of a stationary input in the follow-

ing way: 

(a) If e <  ,(€, x) tends (weakly) to a limit 

distribution W 	) 2  which is independent of 	1  and 

whose LaPlace-Stieltjes transform is given by 

(b) If e 	, vv(t,x) tends to zero for all x. . 

However, if e  2  the first passage time 7:(/) is a 
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proper random variable, so that the store becomes empty with 

probability one in finite time, although the mean vfllue of 

is infinite.. If e, , z( 2,) is a defective random 

variable, and there is a probability of I -- QL 	of the 

store not becoming empty,.where e 	is the positive root of 

0<(e1= e 
From the Pollaczek-Khintchine formula, we can easily 

obtain the moments of the limiting distribution W(20. Here 

— / , 
we shall only give the formula for the mean of WOO . We 

use the fact that 

2 
A -I-  72-  

so that 

0(A) 	A) 	
2. 

2 

Now 

Z2.--  (A) e  

 

so that 

= 	(i-e0 1(0) 
CI— 
(1-- e)07-2. 

2(17e) g- : 

It follows that 

c 	c(7■1(x) 	_:—Q1(0) 	
2 -e) 
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5. 	The inversion of the Pollaczek-Khintchine formula. 

4-ec'A X 
Let us assume that e etv.ix) converges for some negative 

value of A 	This will be so if ..c?.(,44) 	is analytic 

at the origin, by Theorem 5b of Widder [743 p. 58. Equivalently 
OKI 

(3 (4= e_ 	m (x)- 6(x_ must be analytic at the origin. 	In 
a 

the case of the Compound Poisson process, it suffices to assume 

that (IAA) is analytic at the origin. We then note that if 

it 	\ 
2 there is a real 

-CiS <c),wehave 	aq,A) > 

converges. 	It follows that, for 	A 

so that 

- h x 

01.---w 

 

Q- 	

r 	

v‘j (z 
 

0,C+ 

Thus 	W (-0 is o 	e:c 79 	as 

—> 0° 

Integrating by parts we find 

4ao  4-0°  -k 

- Ax r e 	■-4-7(xi]i 	- 	e-Ax• -v--c) (x)-1 
A 	A 

-00 

•C
AX

L. 	 (4.19) 

-40.0 

Integrating again by parts, we find 

c- > 	1  such that for 

,and the above integral 

in the given range, 

x—>o4D . Similarly, using 

the analyticity of e)(iy) 	r
[ 	

t] 	for 
 

C. , we find that 1 - 	(1:-/  )() is 0 ( .e: c X) as  
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4.0 
e-4 1[‘-cclwjci„,i i-A 	 ct 

4e43 	4oa r sAlc.{ ax, 

4-00 	 00  

e 
as 

-  e 	f L i- \--/-v-CA 	e- c__ x_ 
which tends to zero as x tends to infinity. Thus 

+00 	+0,z, 	4-00 

A 
—cpc. 
	 -00 

On the other hand, in a similar way to (4.19), 

A_De(A) 	 J 
I - e 	— _ - 

_ 	c
0., 

 (- e)I  

0 ( 

o 	+00 

	
,Lfr 
	

ctx. 	eit , 

Interchanging the order of integration, we find 

- 	 () 	e-A x{i[1- K (t,t +x.)] 	a.„ 

Writing now the Pollazcek-Khintchine formula in the form 
4 0.0  

e:Ax.. --v\--7( x ) 	I - e 

We obtain, using the above results and the uniqueness theorem for 

Laplace transforms, 
+0- -

‘'1(•)1°11 	- 	[I — 	(t t 
	 (4.20) 

Applying right-hand differentiation to both sides, we obtain 

- e)( 61xy .c  K (f i t +0] clt 

0 



• 
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so that finally 

(I -e)GLx)  [1- Ket, t-4--x)] fit . (4,21) 

c 

In this form, the formula can be easily seen to be the limiting 

form of equation (4.4) as t tends to infinity. However, it 

does not seem possible to obtain it directly from (4.4) without 

Using the argument of section 5. 

Following a procedure similar to that of section 5, we can 

also obtain two special forms of equation (4.21). 

t4hk-.:n 	k(.ti x) is of the form 

L) 	. _ 	) 

equation (4.21) becomes 
0,3 

w Cx ) 	— 	- 	t4 x ) cte 	(4.22) 

0 

On the other hand, when E(.0 is discrete, we obtain 

v= - - e) 	 r  
bci+ 

(4.23) 

Finally we can obtain the result corresponding to equation (4.7) 

as follows: We use again the identity 

A 	+ 	t-,,7 	A -L s  e 	= A e, 	t 

where 	t, < t '.4„ -C. •  We then have 4...4-(  

+DG 
_ A I e-A-xi i_(.x.)).6t  _. i_  

—go 	 0 

	

tt;,---- 	 e 	e .'(-E. 	--6...) 
- 	.,..t., 	... 	, 

...._, 

r.s-ov.,  ....,.., 
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(A)= (1-e)A 	 ;› , (I -e) r[odAl . 
PA 

(4.25) 
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JI no, - c 	— 4E4;  

- 

A Se_-A  (i_ e ) 	. t 
A:+4 

x 
4-0.3 

We deduce that 

(4.24) 

where the integral is to be interpreted as 
oo 	 evy — I 

J.+ 
	 •L' 	4.4 

Another inversion formula can be obtained as follows: 

Let us write 

Now 

= 	 p!ILL.di cbc .c(A) 

and 

( 1\4(x) 	= 	ot(A)  

e 	e A 

Thus N4 GO/ e  is the density function of a non-negative 

random variable Le , the Laplace-Stieltjes transform of whose 

distribution is 	(A)I e  A . It follows that Lo4 (Av e  A] 

is the Laplace-Stieltjes transform of the distribution of the 

sum of 	independent random variables, each distributed like 

Formula (4.25) can then be interpreted as follows: 

The limiting distribution W -X-) is the distribution of 

the sum of a random number N of independent, identically 



distributed random variables (19 , with density function 

, where Ni has a geometric distribution of 

parameter e  , i.e. 

	

? 	= (1 e) e - 
• 

6. 	The asymptotic behaviour of W ("x). 
---/ 

Let 	be the random variable corresponding to \N/(x). 

The Pollaczek—Khintchine formula can be written 

	

cl 	,6 (1 _ e ) 

It follows that 
2 

_ .4E6 6_ 0 )] 
	( 4. 2 6) 

Let us again use the result, quoted in section 7 of Chapter 3, 

04 (A) 	e A — 
z 	z. 
iJ 	/ 	\ 

) 

2 

as 4 tends to zero. 

Formula (4.20 now becomes 	
2 

ti(f-e) 
- e('-e)A ir-z(i-e)24 2  + ogi -e)Lej 

, 2 

so that, letting e  _„I , we find 

	 - 

_ -x4 2 cr  

" 	
I 1-

2
4 

We now use again the Lemma which was proved in section 3 of 

Chapter 3, and conclude that the distribution of the random 

variable (l- e ) tends, as c tends to one to a limit 
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distribution. Thus we have 

Theorem 4.4:  The distribution of the random variable 

tends, as e  tends to one, to an absolutely continuous 
_ 2 x 

2 
limit distribution whose density function is 2 e 	a- • 

We shall now obtain an asymptotic result relating to the 

behaviour of W (c-) for large x. which holds for all e < • 
We shall assume that 1N ( x i ) can be written in the form 

(x) = 	e ) 4-f 

Then 

l' e-4)c atni(x) ==(1- 

0- 

It follows that 

oc) 
) 	Q.7 4x  Czr-  

(1-e) 	(t-e) 	04 (A )  

We now note that the equation A- 04(4)=0 has no roots in 

	

TRe(A) > 0 	. 	The root with largest real part is zero. 

However we have 

o. (A ')oc' Co) 

	

A o 	- oc( 6)  

so that oe(A)/E4 - ,I.e(Aq 	is analytic in 'ReCis) >C 9  and 

is regular at A = 0 • To obtain the asymptotic behaviour of 

x , we shall make use of a theorem of Doetsch [14] p. 488, 

which reads as follows: 

Let c (A) be analytic in the strip 6 	Re...(A) c except 
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at the point Ao 	+- LA.), , where the function -c(4) has 

an isolated singularity. Let the principal part of the Laurent 

expansion of VA) about A 	be 

a, 	 Qq 
±-A- 

- 4„) 

Let 	cr.  4--t:L.J) 	uniformly with respect to <3.- 	in the 

strip when LA-) 	 . 	Let the integral 
i—zbo . 

e:<-  

be uniformly convergent for 	 > 0 • Then the 

integral 	
C.+ t 00 

‘c.  a-4A  “A) 4.4 

is uniformly convergent for -2c- 	X , and we have the 

asymptotic formula 
Ao x  

F(x) = e. ( a + 	+. 	6:93- ,C CQ 	+ oLe 

as 

We can make use of this theorem as follows: 

First we note that if ur 	) is continuous at 	and of 

bounded variation in some neighbourhood of 	, then 
c4A- 0.0 x A 4.A4br cO. 

C 00 

If we now assume that the equPtion 	(A) = ,0 has, in the 

half plane "Re (A) > — a- 	, only the simple root — cro  G. 0 

apart from the obvious root 4 = 0 2  and if 0-0.4(4/[4- 4,0] 

A 
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on other side of page. . 
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To face p. 129 
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satisfies the conditions laid down in the theorem quoted above, 

we shall have the asymptotic relation 

where C.,c 	is the residue of (I - e) 04(4) I E A - 04 (. A)] 	at 

G-0 a  But this residue is obviously equal to 

Ct - e) 
	

-(5.) 	
2 

so that finally, remembering that cls 	6-0) 	- S Ø , we have the 

formula 
— (ra  x 

— e  ) 	cr-0 e 	 (4.26) 

- 

It remains to make plausible the assumption that 2 - (A) has, 

apart from zero, a negative root in some interval to the left of 

the origin. 

	

We first note that, as e  <1 , the slope of 	(A) at the 

origin is less than one. 	Also c.4(A) 	is of the form 

(1/4A(1) 

so that it is plausible that for some negative value of A I  

say - cr , ( A ) will tend to - c<3 . 	Then there must be 

a root of 4 — 	in the interval (- cr, 	 as 

shown in figure (4.1). 
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CHLFTER  

SCW EXiZiPLES 

1. The content distribution for various initial contents.  

Let us denote by Vyt i x) the distribution of the 

content 	CO at tine t when the initial content 

is'-b. , i.e. 

	

/ 

	 t1 	x i 	 (5. 1 ) 

We shall only consider the case of a stationary input. 

By enumeration of the paths, we get the relation 

	

W3  ti c)) 	(t- o) 	G(). 

2 - 
Thus, it is necessary to calculate only W o (ti o) 2 as 

■A/ tt 0\ can then be calculated by a quadrature if 2 
G Lt 	is known, and we know that explicit expressions )0 

f or G(t.1 -0 are in fact available, as shown in 

Chapter 3. 

Having calculated W (t, o)„ we can easily calculate 

VV/ RI X) by using the formula 

(5.2) 

(.t x 	K t x 4- t -  
0 

(5.3) 
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2. The wait in 	for theliel 

	

We shall obtain Wo 	o) for the queue .'1/1/1/1 in this 

section by inverting Wo  (ri o) . As was shown in Chapter 49 

	

vv:(P) 4))=-- 	 
(p) 	e(P) 

and 

-4 

We shall shall write e-- 	2 jr3v.t. 	er  

Then we can write 

where 

R 	r 	+ - j(f> 	— 2-  
Using Erdelyi [191 p. 237, formula 49, we see that 

the inverse Laplace transform of R 	is 

_ ct 	, 
-E -- ( r (+). 



or 
0.0 

_ )2 '

a. 
(5. 5 ) Cti  4.) =  

132. 	 5.2 

Now 
2 

- 
aerV't  ae-r -1  

R 
1.• 

Inverting, we find 

c_t 
/ 	 I (84)7 . 	(5.4) 

ert 

We now use the formula 

- + I 

Then (5.4) becomes 

vv,(t,o) - [II I   - 	( e--0] 
= I 

 

cI 

'There I 	stands for I ( €) 	We shall write this 

in the form 
cs:) 

R, 0)   cc„ 	( 

where 	I 	 An_ > 1 
42  

We can now caloulate Wo  (t/  ) 9 using the formula ( see 



-a- • 
- -() t 	e 

0 

f 
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Section 2 of Chapter 4 ) 

Wolt, = (1.1, +t) w. 

Replacing k (t, ) 	 a ( 

we find 

VV.  tt,  -_-_-e-±frV" Qe_j Eo, 4- 0] 

(i÷q r 1 _0, 	-A- 

gt  

(5.6) 

t X) by their values, 

0 

	to  

(5.7) 

A simpler formula is that for the mean value of the waiting 

time. We have 

Ei.(€)] (e - i)L 	10/00.-, 	, 

Finally, the Laplace-Stieltjes transform of the limit distribution, 

when ')N </1-1  9 is 

• - 
04 ( 4 ) 	/u:(4 fik-)%) 

This can be written 

(1-21■ 	C"- / 	\ 	) 
) t (I 

Inverting _ca (A) 9 we find 

it( 
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Thus the limit distribution of the waiting time, given 

that it is not zero, is of negative exponential type. 

3. The content of the dam with simple Poisson input. 

This model, like the preceding one„has both a queueing 

interpretation, namely the queue with Poisson arrivals and 

unit service time, and a dam interpretation, namely a dam with 

unit inputs which are fed in at instants of time which are 

Poisson distributed, and a release of one unit per unit time. 

We shall first calculate Wo(ti o). We have 
It 3 

kA/0  ( 	
( 

It] , 	 
This can can be written 

Ct 	 - 
vv,( € 0) = 	( XL) / 	 0,-0 

'' =0  eNn. 
or, if we write LE3 NI )  

N-1 

\Alo ft/ C.) 	[(1-))Z (-Xt 	(--)‘ thi 	• 	( 508) 

We can now calculate We.  ( .E., X) • We find, writing [ -E. +x3 --z 

= m 

1.4 

r 
ct) —T, P 

'4 = N1  

= NI 	r /N. 

fv--0 	f‘k! 
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that is, rJ 

V\I° (t/L) 7". 	 e7-xt2 ,1  

t,4 	— 
- MI  

g,z 

(5.9) 

Let us now calculate the mean value of the content. We have 

Ek(o) (e 
t cu-1 

- p(L.) au. 

ct 7 	t 
( E  - 	

dk-k 

t_ 
t - I e .."...  

so that Ct 
[ ( 

— 	

- 	

(ev% + 	->“•■•■_ 

0  

rtAAy(,, -A) - 	 (5.10) 

where )/ (a.,x) is the incomplete Gamma function, given by 

0 
Finally, the steady-state distribution .  is given by 

W (X ) = 	( 1  - e)  	r  
i.e. 

I- 	> , e. 	L>, (— - 	( 5.11 ) , 

	

Noting that w()-) --,-. 0 for x < 	9 we can rewrite (5.11) as 
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4.  The_content. of the dam with Gamma input. 

In Chapter-3, we have already obtained the distribution 

of the time- of first emptiness for the darn with Gamma input. 

We found that Z(/) had a density function given by 
t  

(t,/) - 	 ( 	e 
et') 	e 

We shall now calculate W. Ctio), using the formula (Chapter 4, 

Section 3) 

We obtain 

E- e 
e 	 (5.12) 

r (t) 	r (t 1) 
where ),(t, x) is the Incomplete Gamma function defined in 

Section 3. 

Using now the recurrence formula 

= t )'(t, X) - ?Ct.  
we find 

(t,  
Wd (t/ o)=-_(1-e) Y 	e  _ 	 

r(t) 	r(t+4) 	■. e / 
From this we deduce the formula for W. (t, x.) : 

t + x 	 t  
x) 

( 	 ( , — ) 	- e 	...4..-. 
vvo (, = _i_ _ 1 e:e 0 \ ct_ +.(1- e ) . - 	e 	e 	tu_f_i--)f) 

er(fd 	i ce- 	 \ e . e  r(t-,...) r(,..) 
° t t.+x 	 t-. 	Lk-, 

1 e r(±-.+.) r(.) \ e 	e 	 ( E 	(`-'12-̀ ) 	(5.14) 

The mean value of the content is given by 

t / 	t --LL 
LA- 

Eiy4.:-(t-e)t +.(1 - el .S.,,  tr-,L(L,' -e-) )  cL" — 1*  r---- 	E--(,+ ,) I\ 'Le ) 	
( 5.15) 

0 

(5. 13 ) 
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Finally, the limiting distribution of the content is given by 

, 	t's (-e )  

e 	 e 
0 

5.  The content of the dam with Inverse Gaussian input. 

As mentioned in the introduction, this process was constructed 

by the author so as to have the following two properties: 

(1)The characteristic equation of a store with this 

type of input should be a quadratic. 

(2)The Laplace transform of VV 0 (t io)„ _L. , should 
e (p) 

be invertible in closed form. 

As shown in Section 5 of Chapter 3, formula (3.17), 

we have 

0 2  
€4.p) 	p 	( f-e) i-1 	(I  

cr ' cr 	 a- 4  
Let us write 

e 	e ) e, 
0-2 

Then 

-e(P)'y 
We shall first obtain (t4) by inverting r(p i  3)= e 2  

using formula (1) p.245 of Erdelyi [19]. We find 
3 

62 	t 2 

	  elqe[e. 5 -  zr'-(h 1) 	1-I JU(t-3).( 5 . 17 ) 
Nri 

 
AZ 

Replacing ›, and e- by their values and rearranging, 

(5.16) 

(p) 	_ er 	\jer-2 	)0 2  

we obtain 
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3 

0 ,3)1 
	r 
	

2 cs e2  (t - s. 
t 

0 
	

if 

thus establishing directly in this case the correctness 

of Kendall's formula 	(t/ 3) 	?ez et, -L. 3. ) 

We shall now obtain W0 (::1ôby  inverting 
6(P) 

We first write 

 

r - g 

where 	(2. 1°J- 4-).4 )/2)■ = TE- / 

Then 

Jr i-ca- 	t Jr 44  

'1)2  
(  - 1)s 	CA_ 1- r 

	

.)■ 	20- 

This expression can now be inverted term by term, and rearranging 

the results, we find, using formula (22) /ID. 235 of Erdelyi 

[19] , 

/ 

4_(-2a+X\ e  

J 	

2c'" er c cifia4.\ j-t-] 

I 	■ 	/ 	 ) ) 

where Erfc (x) is defined by 

Reverting to 

Er cc (x) 

and 

I a- 
9 we find 

( 5. 18) wo (tio):__6_0_± E v t(i(L.$)Tel 	Ey c-cfp)Tel 4- 2 	 a 	2 
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From this expression, we can see immediately that, if e  <, 

Qv.- kivo (-E , 0 ) 	- 	but that, if e t 

\No  (t, 0) =. 0 . 
t 	Qtz. 

There is little point in writing out the formula for 

W(±,x) for this model, as no simplifications ensue, but 

we can find explicit expressions for Ef“4-11 and Q. (t, 

We need the two formulae 

—od 	 —44t _  1 _ E r c c irs  4+.4 ) t ) 4.- i(i - e_ Erfc (3 r)c
t
e_ `4  Erf-,F, a,  P 	( 

Jo 	 aj fl 4 +Q., 	 04. 

Eff,piji dc, = _I_ _ L 1 i e: ('It.  +(t --' )prfc_pi 
o 	

i: 
.2.04 	V 17-  

which can easily be established by replacing Er-ccOrti-  by 

its integral representation and interchanging integrals. 

Using thzi formula 

(e. --t}t  
0 

and rearranging terms, we obtain 

E 	— 
 2 

2 (‘-e) 
r (1-e)

2e .  rt.  

[(
2 4- 	— 	r 

11-)t 7 (1  
4.ee 3(i_ e ) I.: r Cc-  [(1-1cr 

2 
(I+e)  op es

t] E y 	e 7 .] - 	(5.19) 1.. \ (5-  I.2 s1 
Here again we see immediately that, if e < 2 then 

o- E 	= 
£(1--e) 

while if e 	9  z-_ 2 as expected 
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from the general theory. 

Using now the formula 

p (t/S) = a 
C — 	— A ( CA— 0L(Arj Lt 	

wc, (LA) of, o. 
a 

and writing 

we find 

A fr 

	

= 
	+ 

A 

	

A(1—e) 	A t 

	

..... 	 EL [  CS 	t )4-1.(1 _ i At  erfc. 31 (1- ErCcjw+A) 
/ 	 i A \ . A 4TPTTA 

	

e..!4.'[ c-   	(t_ eyf( 174---- 	-A+ iii  (1- i At  Ercc.cl. 
.2. 	A/e-+ A \ 

(5.20) 

It is easy to sec that, for sufficiently small 

	

purely imaginary values of 	Re..( A) is negative. 

In fact, as 

1. 
ok(A)-= e/S  

we have 

2 2 
CY LA-)  + 	( 	) • 

2 

Letting now t tend to infinity in . (5.20), we see that, 

	

for all q 	such that fRe(A)40, if e 	k 

A ( e) __C2 0  (t .6) — 

the Pollaczek-Khintchins formula. 
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Finally, we shall obtain an explicit formula for the 

density function (2,-- (x ) of the limiting distribution, by 

inverting the Pollaczok-Khintchine formula. We note that 

	

_ 	_ e  )[, 	,$)  
 

Now 	oc( A) )% 	+ al — 	) 

whore .)% 	and a aro as defined above. Then 

= 	= 	 

	

C).1 /244)1-  I 	[(, ,r)h] -1   
	- - - > c't  

=._ ). 	 
A + (2a). - ), 2 ) 	A 4- ( 2a.". - -X 2 ) 	j  

and the last expression can be readily inverted, using 

Erdelyi [19] p. 235, formula (22), giving 

->, (a - )t) e- (2 	-.)‘4)  
-a x_ 

Evr - 
11V-77(.. 

,\ 	- (2a. -).1 ) x 
- (c- -V") a 

Replacing -A and 0_ by their values and rearranging terms, 

we finally find 

where 

- e) 	e   
-e--(

- e)(1-2 e). 

cr 

-2e L ( 1 -e)x. 
a 2 	 c c.111-2e1 
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CHAPTER _6 
THE INTEGROZIFFERENTIAL EQUATION CU TAKAOS 

I. Preliminary. remarks. 

The investigation of the store content distribution, 

IA/a/ 9 2 was first performed by TakLs who wrote down an 

integro-differential equation for the process of the same 

general type as those obtained by Feller[20] 	However, 

the derivation of the integro-differential equation 

necessitated certain assumptions about the continuity 

and differentiability of VV(t,k) as a function of both 

variabIos 1: and 	• TakZ.cs himself [70] p. 108, 

hinted at a method for showing the continuity of VV(t,x),. 

but did not pursue the matter further. In the subsequent 

literature„the integro-differential equation technique 

has been used repeatedly, and the assumptions made 

justified by appeal to the general theory of herkov 

processes in continuous time as given e.g. by Doob 

C173 p. 261. 

Unfortunately, the general theory cannot be applied 

to the case under Consideration, because Doobls condition 

(2.1) p. 257 is not satisfied. in this case, In fact, the 

processes to which the general theory applies have sample 

functions which are alMost surely step functions, .while 

the process 3- (t) has a slope of -T whenever (t) o. 

-kioreover, it is easy- to show that\N(E,k) need not 
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be a continuous function of x . for x.>.0, as stated by 

some authors. In fact, we have seen in Chapter 5 that, 

for a stationary input, 

W (t,)c< (-L-1  t x - )- 
	

K(u,74) d. 

If < 	2 we have kNet 
	

for all Gc. such that 

S.- (4_ s_ t 	so that 

(6.1) 

Thus, if the input has a discrete distribution, w(t )  9 will 

also have a discrete distribution, at least for some values 

of ±- . 4:11so, depending on the properties of K(t i  x) LA-1  

may not exist for some values of the pair (t-, x) 

To overcome these difficulties, the simplest way 

is to proceed as in Chapter 4, where an equation for the 

Laplace-Stieltjes transform S2.(t,,6) of Vv("E,x) was obtained 

directly from the properties of the sample functions. 

However, the problem of the continuity and differentiability 

of W(t,x) still remains to be solved. 

In this Chapter, we shall confine ourselves to 

Compound Poisson inputs 2 stationary or not. Lle shall 

obtain sufficient conditions for the continuity and 

differentiability of Wet, 	and we shall show that, 

when these conditions are satisfied, W(t,x) does in fact 

satisfy the Talce/.cs integro-differential equation. 
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2. Coriditiona for iiter-C-ontinuity and differentiability of W(t,x), 

We shall first obtain a difference equation for W (t, x) . 

We shall assume that the ihinit ?•( .E) is a Compound Poisson 

process with density of arrivals >\ et-) , and jumps 	of 

distribution 13(x) ,- Then 

Theorem 6.1 . W (t, x) satisfies, for t 0 	x?. 0 9 

the difference equation 

(6.2) 

where 

• 

0_ 
Proof: Let Let Ft,:.  be the event of Ai arrivals in  

0,1,1, - 

Then 	
= I -x eo 	+ 0 

( ,) 	), ( t) e, 	
( 

- 

( 	- 	A 1) = 	 . 

We first consider the case of no arrivals in ( t + eL) 

Then 	
=. Vv(t /  x+e,) 
	

x >,, o 

since 	x if and only if et) x+e, in this case. 

Consider now the case of the event A 9 and let 

Ct-) 	• Then, using the obvious inequality 

e, 	0 
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we find 

From this we deduce, using the theorem of total 

probability, 

	

V (€,X) 	 :jr e.) I A, 	V 	x 	. 

This can be written, using the right continuity of V (t, x) 

in 	9 

	

x A, = V (t, x) 4- (.9 	• 

Finally, using again the theorem of total probability, 

we find 

0 ( 	. 
Rearranging, we obtain (6.2) . This completes the proof 

of the theorem. 

	

Writing now t e_ for 	and x - e_ for 	we 

obtain 

	

This formula is valid for eL > 	p t4 	• 

Lemma 6. 
= Vv ( t., x) 	 (6.4) 

(6.5) 

Proof: lot e_ tend to zero in formulae (6.2) and (6.3), 

and use the right continuity of W(t) in X_ • 
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Lemma 6.2  : 	ti  x) is Riemannintegrable in t 

Proof: It follows from Lemma 61 that all the discontinuities 

of W(tix) as a function of t ore ordinary, and this 

implies Riemann integrability (see Hobson [36] p. 439 ). 

Lemma 6.3  : 	.xi-LA.) is a continuous function of 

for x o 2 	(-)  

Proof: In formula (6.2), replace t by t- Lk- and x by 

We obtain 

(e-,_) 	 x+ 	-I- 0( 0, 
for 	 . 

Similarly, writing t 	for t-  and X+- for -x. 

in (6.2), we obtain 

_(-,) eL.[,/ 	- 	74 + LA-) - V■I (_€ 	- es- X + L.-)] 	0 ( 

for  

The result follows by letting 	tend to zero. 

Lemma 6.4  : V(t -LA)  xi- 4-0 is a continuous function of U-  

Proof:  This follows from the continuity of W ("e 	f 

in u.- by using the formula 

v () =  

We note that this can be written 
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00  

v(-E-I x) 
- 00 

as VV 	() for 	>lc and (1( ) 	fer 	. 

We then have 

cic3()• 	(6.6) 
-00 

Using now 12besguels Dominated Convergence theorem, 

(see Loe've [473 p. 125 ) we obtain the result. 

Lenuaa 6.5  : W(±, )c-) 	satisfies the equation 

 A. 
e- “:1  

-E- 

	

f e 	v 	L'L- 	LA. CLL 

J 
 t 

where _./t_ (e) 7.: )■ (u.) L , U 	) is the Heaviside unit 

(6.7) 

function, and j is the initial content of the store. 

Proof:  We note that the event 3(t4x. can occur in two 

exhaustive and mutually exclusive ways: 

(a) There is no arrival in ((3, -E) and 
) 

The probability of this event is e_ 	u (x- + -E) - 

(b) The last arrival occurs at 	and 

T-- 	x. 	. The probability of this event is 

tA-( -E-LA-) 

.r 	 Q 	 . 
0 

lidding these two probabilities, we obtain the result. 

Corollary:  W(t,x) vanishes for x+-1: < 5_ and has a 
-.4() 

discontinuity of height, E 	as a function of either 

-x or t at each point of the line  
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We are now in a position to discuss the continuity and 

differentiability of W (t/  x) 

Theorem 6.2.  If 13(x) is absolutely continuous, then 

(t,x) is a continuous function of both t and x in 

the region X_ ft 

Proof:  We first notice that if "e)(x) is absolutely 

continuous, 	x) is continuous in x for all 	and 

• This follows from standard properties of the convolution 

operation (see Lu.k.(4.cs [49] p. 45 )• 

Let now 	-E  

Then, for xi-t 

—AC+) ■A/ (t-l x) 	 [ 4-- I ( y()3 	(6.8) 

and  

0 
The integrand obviously satisfies the conditions of 

1  
continuous in X • The continuity of VV(t/ x) in ---x. 

follows from (6.8), and its continuity in t from 

Lemma 6.1. 

Theorem 6.3.  If 5(x.) has a bounded derivative for all 

then Mt/  x) has a bounded derivative in both t and x 

for t* x 	and satisfies the integro-differential 

Lebesgue Is Dominated Convergence theorem, and we conclude 

that tt,;.-- I (t 	= 	x) 	x) is therefore • 
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equation 

e 
Proof: Lpplying Lebesgue's Dominated Convergence theorem 

successively to 

49°  
V (td(-1- ei V (ti  X)  ,f 	c) ( X.4- ex-) - 	w  

e, _m 	e, 	a 	/ 
and 

X4-C  -  I 	 ),(t--)Q 

we conclude that first V(L,x) and then r(ti x) have 
1/k) 

bounded derivatives in 	• The existence of 3 x 

in t -f- x. 	then follows from (6.8). 

From formulae (6.2) and (603) we now deduce, for 

wct.   - . 	kAi (+i x)] + 	( 

	

e._ 	e, 

	

w(t-e,,x)- 	i (t, 	w1,
(- es.) 	 (- 

Letting e_ t 	, we finally find 

0;„„_.  
- 	4,0 	(— 

y-1 
	(-0 [v 	) _ ■,v 	41 

the continuity of Vet;X) in 	following from the application 
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of Lebesguels Dominated Convergence theorem to 

v (-t 

This completes the proof of the theorem. 



CHAPTER 7 

THE CASE OF A NONSTi:TIONARY COLPOUND POISSON INPUT 

1.  Introduction.  

In Chapter 4, a complete solution was given to the 

problem of the determination of the store content distribution 

VV(ti x.) in terms of the input distribution k;(t,x), when the 

input is stationary. It was also shown that, in that case, 

VVItyxj tends weakly, when t 	cxa,  , to a limit distribution. 

Such a complete solution is not available for the case 

of a non-stationary input. In this case, the probability of 

emptiness 2 VV(t7,0) satisfies a Volterra integral equation 

of the second kind. This equation can be obtained by putting 

in equation (4.5) of Chapter 40 We find that 

(7.1) 

0 
However, this equation is not suitable for obtaining 

an explicit method of solution for W(to). Instead, We shall 

obtain a Volterra integral equation of the first kind directly 

from equation (4.3) of Chapter 4 1 which We shall solve by 

Laplace transforms. Because of analytic difficulties, We 

shall confine ourselves to Compound Poisson inputs, and 

we shall put restrictions on )t(-E) and the jump distribution 

eS(x) . Particular attention will be given to the case 

where the density of arrivals -X(. ) is a periodic function 

of time. The main result of the investigation is that the 
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probability of emptiness \AJ (-ti c)) and the Laplace transform 

of the content distribution _a(-E,A) are then both 
asymptotically periodic in 17 . We shall assume that 

(t) is a continuous function of t and we shall write 

= .c),(L,) 	= 	 e, (E) 

where 131...(f) is a periodic function of time whose mean 

value is zero. It will then be shown that both Vi(tA and 

S2(f A) can be expanded in a power series in LAX-  and 

a method for calculating explicitly the asymptotic values 

of the leading terms will be obtained. Various mathematical 

results needed in the investigation will be proved in 

Section 4, 

Throughout this Chapter, we shall say that a function 

4: (-€) 9 t7 0 9 is an L2 function, or belongs to the 
Do 

L.1  class, if f 	I-F(0 clt: 	converges for some 
0 

real value p of 	, It is well known that this implies [ 0 

the absolute convergence of e r 4. (t) 	, 	e, 
0 

for all 13 	such that ?tie) >, p c, . 

We shall assume that the jump distribution 

6(x) = 	X 
	

is absolutely continuous and 

has a density function 4;0 . Moreover, we shall assume 

that -6(x) is an L2  function, and we shall write 

0,0 

Q =  
J O 

(c)) will be assumed to be finite, i.e., we shall 
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00 	2  

assume that S.  [aboi 	<• We shall also assume 
0 

that the Laplace-Stieltjes transform of B(x) 	(P( A) 9 

is analytic in Re ( 	> cro  2 where 0; is some negative 

number, and is (9(i/1A1) in that region. Finally, let us 

note that, when the mean value of g_ CO is zero, the mean 

density of arrivals is unity, so that the mean input per 
1„ 

unit time will be e  _ (.1) ( 0 ) . It is intuitively clear 

that in this case the content will tend to infinity when 

unless we assume e 	I . This is the 

assumption that we shall make throughout this chapter. 

If tAr- = 0 $ then -A.(E) =± )■(-E) = 1 $ and the 

input process is stationary. In this case, the characteristic 

equation of the process will be p 	I — 	C. 

We shall write y(.1)=-. A — 	4)(4), so that the charac- 

teristic equation will be p - 	0 • As we have 

assumed that 1/44)(A) is analytic at the origin, and that 

E < 	, it follows from Theorem 305 of Chapter 3 that 

there exists a real number oc <0 such that (01 ) 0 

and moreover that , (4) — 	has only one zero, e(P) 
in Re(n) > 04 for any p 	such that "Re (p) 	. 

We shall make an extensive use of this result in the sequel. 

2., Remarks on the Poisson process withzriodic parameter.  

In many practical storage problems, it is expected that 

the probability of arrivals will vary periodically. For 

example, in the queueing realisation of the storage model, 
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e.g. in restaurants or at service stations, arrivals are 

more probable at rush hours than at slack periods, and 

rush hours are repeated day after day. In the dam realisation, 

it is expected that the rate of flow of the water into the 

dam will vary periodically. 

theoretical model for Poisson arrivals with periodic 

density of arrivals can be constructed as follows: 

Suppose that arrivals come from a large number ("4 of 

independent sources, each having a Poisson output with 

parameter )% . The arrivals will be of Poisson type with 

parameter "X N • If we assume that the number of sources is 

a function of time, NW 2 the resulting arrival process 

will be a non-stationary Poisson process with parameter 

) NI ("E • Finally, if we assume that the number of sources 

varies periodically, we obtain a Poisson process with 

periodic parameter. Such a process has been used as a 

model, for instance by Bliss [17] p. 25 to represent 

births in a hospital. In this Chapter, only functions 

v-e) which can be expanded into a Fourier series with a 

finite number of terms are considered, as this simplifies 

the treatment considerably. This imposes only a mild 

restriction on the practical applicability of the model, 

while excluding discontinuous functions -)40 2 which seem 

to fall outside the scope of the approach of this Chapter. 
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3. Ln outline of the approach. We shall start with the 

equation 

+.6t 
2(± 	e 	0(0,1: .4) 	e(s)(u 1E..,y■t4(u, 0) ALL  , 	, 	, 

0 

which was proved in Section 1 of Chapter 4. 

Ls shown in Chapter 2 2  Section 12 2  we shall have 

in the case of a Compound Poisson input 

We shall now make use of the fact that DeEA) is an 

analytic function of 4 in Re(4)>O 2  and that in that 

region 1.9.(t/ /*:I 	Let us apply on both sides of equation 

(7.2) the operator 

2(4-t'vca 

?. V, t .c a A 
21T,.. 	AL 

7 -.4200 

"> 0 

It then follows from an immediate application of Cauchy's 

theorem that 

X-FA.' 00  
F.  V _L__  

..2Tr 	 A  2 
% . 'nea0 

If we can justify the interchange of the integrals 2equation 

(702) will then reduce to the Volterra equation of the first 

kind 

c (t-0)Wk,o) c= A( 	; 	(7.3) 
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where 
1 	Aet 	 \ A A . A j  >  (74) , 	4 	, 

- 00 

e--A/fAL-G(c)f.A) cUS 
'-fT 4: 	 AL 

. (7. 5) 

We note that AL(t) is not a principal value, as the integral 

converges absolutely. 

Equation (7.3) can be transformed into a Volterra 

equation of the second kind by differentiation with respect 

to t 

It follows immediately from equation (7.4) that 

R(t, .e)  = v.  1 r a = 

Thus we must have 

+- 	w(t.t., 0) au, 	 (7.6) 
0 

where 

1)  ( 	R(t, (,) 
	

(7. 7) 

te (t) = fL tat), 	 (7.8) 
cAt 

In the two integral equations (7.3) and (7.6), we shall 

put A (t) = t - 	e-,_(zE), where LA-r-  is a complex number, 

and we shall attempt to show that the functions (7.4), (7.5)2 

(7.7) and (7.8) all become analytic functions of (Ai- 9 and 

can therefore be expanded into power series in LA.)-- 

We are thus led to consider various analytical properties of 

the above-mentionA functions. These properties are studied in 
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the next section. 

To emphasise functional dependence on LA.,- 5, we 

shall write 
R = 	t 

t CAI-) 

= 

/2.. 1 %-../t:(t; 
t-r) 

Finally, let us note that 	and 	need be 

defined only for 0 LL 

40  Some analytical properties of the functions F R 	& 
9 	9 	•  

Theorem 7.1 . 

x+4.:1,4 
t4 

cos 
A 

x-Zm 

 

tx.\ 
4  1 -F(I 4- 2 	) for all real. xt 0  

 

and all real t 

Proof: 'de first note that we may assume t.‘?..00 3 for if 

t < 0 we can change the variable to — A s, and the 

integral becomes Stec-t)4/A-1  a  4  

Let now r denote the contour which bounds the 

region Re(A) < x. 2 	< r—v,..(A) 4 AIM It is easily• 

verified that 

edis 	
tir 

Lo 



x 	 x 
IT 

J 	
+ (7.9) 

Q_ 

- c6, 
Using now the elementary inequality 
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1 r  e...t.,, aA1
ir 

.4.  
2 

1  i  0 so that 

	 a i-s 
e..z1,4) 	..t....m .1. LA t(- 	 1 viz  ?... 1 ( et 4ctis i j 	( X  et(V-4:fri) 	X 

r.....0 	....0c. 	 A 

>1 
 et 4  JA  

1 A  
7L-et-LNi) 

(

ci 

-j oo 

  

  

We conclude that 

  

In both cases 

where 	is real, we see that 

But 

r-4 

e"- A AH te 	Mt .
tx 

A 
-M 

(7.10) 

 

(xt-A:t-t) < 2. Tr- 	 (7.11) 

 

  

It follows from (7.10) and (7.11) that 

(7.12) 

Comparing now (7.9) and (7.12), we obtain 

t 
Pri" 	 Tr t-A 

Ht 

 

It is, howeverpeasy to see that  
)4- ) 

The theorem follows. 
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Theorera 	.  

  

0 

  

Proof: 

 

tis 
ti)(A) 	ou 	•• er(„4 

A 

  

  

  

   

   

Qrr e,(„)[ + 2 e x  

tx 
e- 

Theorem7 f,..1 t' 	Let y 	= A - - 4)(4 Then, for x> 0 2 

M>° 2  we have 

.4-It 	x-)  
A 

(. /S1 

+ 9Tr-  e_ 	4)(24111 ■-ii( -x) 	( 7 .13) 
Proof: 

i,c4)( 4 	 er(,.) 	{feAr[4(t-,) -t tw(A)] 

t4A4  - - ti.) fl 
-I A I o 

Y.}1. • M 

1 Q t \ -.  A cl A  

4 
7t. 

X 5.  4. ISA 

• ti Lv(A) e 
:t 

 

, 
A 

  

But from, Parsevalts identity, we see that 

\L 	4-t. ,3 )\ 	= 	12- 	[e,-(4 cLu_ 	Ga)c) 



.idso 
( )(eC :t.4-",-4-14112 1 Z- 

and 
xAr- 

) 
2 Tr 5 I 	e_ 

21-Z-p 	
X 

+ 
A - 
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It follows that 

x4,1--t 
( ett --11,[ et- ylis1 

.3 	
-1 - 	

4.. 
€ ,v(Ajl dA<Li t - e,̀ -) x t 2 ( 

2 tt w(). 4.:4  )\ 

	

( W(xt,j)lie. 	a 	ci ,d 
-x.. -Q. 

	

t 2 a(t---ox +t-4-3(x) (1-0° 	/ 
114.(7"-A c..t. 

.2., 

(t.-....)x tm-(c) 
Q(x) e 

2x. 

Replacing in the original inequality and integrating, 

we obtain the result. 

Corollary: 

x4 4:M 
— (A 	C(A4  1 K. Tr(+,) (itt) e:tit  C3 0t ) 	{ K  (A) 

t(z-.) (  
4- 	Q- 	tt+ 4)(xt I 4-) (x .1 • (7.14) 

Proof: We expand [k - 	(4\] by the Binomial Theorem 

and note that 	is the Laplace transform of the n-th 

convolution of t Ct) with itself. The result follows from 

an application of Theorem 7.3. 

Theorem 7.4  . 

(7.15) 

X-421.4 

x-.(2M 
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Proof: On the line Re_GO 	, we have 

Re_ 1. 	t 	CRetLA - tt - y(4)11 t 	- 1/4+ ReA 

It follows that 

tl'A 	a  

41 ( 	e/)`r b/(s) -q 	``.1  

 

and the last integral is smaller than 

oo 

Corollary:  

1.2-. 4 [1-WIA11 r 	clA__\4.1r-eix/F y(xil 	1,e),)t 
A l 

Proof:  This follows from Theorem 4 by expanding 

as in the Corollary of Theorem 703 . 

Theorem 7.5. 	Let 

.).k...:,... 
R (t, u... ;  Us) 	e,i. r  1(t_,,.), _[(t-) „..‘: 	. 

_ 

(7.1 6) 

X s) 

a- Al elLr  cL tA-[-t- 
4 3- 

 



(t) — e,(,) 	(+- 	— 	(t, 

Cr(t) - e 

R 	) =  
4:D. 

- 	(A)] 6(4  A ) 

= 	B (01 ). 

where 

Then 

where 

and X44: o 

4_  
xQ 

(,:<,)= --L 27,t: 

, (1 ) = -L- 1) . \L 213-4: 

ealieW(4  - 
X-4,:t•A 

= 2. (likAn) 
— 44/01 4_1 	[4, (A\3 e 

  7 I 
'X 4- 1v1 
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Then F(t 
I    and 

6 t 
exist and are analytic functions of 

functions of 	t- • 

Proof: Put 
04,  

7.4. 

(t, w-) 	

t 
and continuous 

that 3 ' -P 2 -  3 t exists. It is sufficient to show 

We note however that 

R 	 R = cc, (ti  
3Ly- 3 t 	C330,, 

	

R 	9. 

	

a (1 	at 

It is therefore sufficient to show that 

p 2  exist. s 	c4 i  (0 has 

9 

obviously all the 

required derivatives, we must show that the sane applies 

to /vv.. ( 	(3) . But we have 

aOLIC +1(1 



I 	C A/[1-- 41 ()i 6),pb, ( A)t. V1—'6 	3(-, 0 , ( 7.18) 
girt: 	 I A L- 

1C -A: U0 

X eo 

163. 	7.4 

and 
• 

	'1 

 LH (A [  .2_(..(e."9,(4)e ' - 	ct A I 
2nt .r=k* 	 27 4: J 

It follows from a standard application of uniform 

1.  
convergence theolems that ,) 'Y., / 0 p  and 	eck 

both exist and are continuous in a y  (1 0 We conclude 

/ 
that 0 1-< / Lir dt exists, and is continuous in 	uL w- . 

L completely similar proof yields the result for 4- (t) L.0- ) 

Corollary: The functions 

-1-t2oo 

-> 0  (7.17) 
A ) 

X -.2 M 

I 
have continuous derivatives CZ (-0 and 'IL (t) , and 

2 
all four functions belong to the , 

	
class e 

Proof:  The proof of differentiability follows exactly 

the same lines as those of Theorem 705 . 

Llso the inequalities of Theorem 705, suitably 

transformed, show that R.,,(0, A(±) , R (*1 2 71—  
are dominated by functions of which belong to the 

, 2 L- class. The last part of the Corollary follows. 

5. Derivation of a or series for W(E 41111). The results 

of the preceding section enable us to justify easily the 

interchange of integrals performed in Section 3. Thus we 
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have the following theorem, under the assumptions made 

in Section 1, namely: 

(a) --X 	) is a continuous function of -E 

(b) the service time distribution has a density function 
2.  

which fulfills the condition j[e(xli 	< 	) 

(c) (A ) is analytic in -Re (A) > Cro  9 where a-0 .G o 

and is (9(1 /01) in that region. 

Theorem 7.6  . 1N(t / o) is the unique continuous solution of the 

Volterra equation of the first kind 

(7.3) 
0 

	

where Rte, LAI and je(t) are defined by (7.4) and (7.5) 	• 

Proof: That lA/ (to) satisfies (703) follows from the results 

of Sections 3 and 4 The uniqueness follows from the fact 

that differentiation reduces (7.3) to the Volterra equation 

of the second kind 

w (t, c))+- P(ti v.) w( uk,o) a,, 	 (7.6) 
0 

where P(t i  v.) and /1... (±) are defined by (7.7) and (7.8), 

and the well-known results ( see for instance Tricomi D23 

p. 12 ) on the uniqueness of the solution of the Volterra 

equation of the second kind. 

Ls foreshadowed. in Section 2 we now put 

cir & (t, where t_Ar is a parameter: It follows 

that l(e) is a differentiable function of t , and that 



where 

= 

X -4,-1:141 
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its derivative is continuous. Only values of LA.r such that 

is real and, uses f (E)‘.. I for all t_ 	have relevance 

to the storage problem, as -A- (t) must be real and 

non-decreasing. However 2  we shall allow ukc to take complex 

values in the process of obtaining an explicit solutien 

for W(t,(2) . With the introduction of the parameter LA.p. 2 

the functions IR 9 AL p 	AL all become, as mentioned 

before, functions of the complex variable u-r 

Lemma 7.1: For all complex LA.r. 9  

(a) 
ca(71 

R kuk; 	=  	[9/ (€/-41 

where 

 

(7 . 1 9) 

 

( 7 . 20 ) 

jt1..:c43 

R, 	P.V. 	[t - 

(b) 
t ; ,) 

A 
"X 0 

( 7 . 21 ) 

X -.2'00  

Proof: vie can write 

X +- 

  

R (t 	=v. (t 

  

),.......:. 
, 	 ,v.. 

La— c 	1 
L. „...=_. 0 ..,. — Lk) Gs 11 



166. 	7.5 

Now for fixed u)- 2  t: y  LL y  the series converges 

uniformly on the line Re_GO=.-- x>o, for there 

	

2_ 	. If we first consider the integral 

with the limits x--c N4  2 we can interchange 

the integration and summation signs. The general term of the 

series will now become 

w-  [q, 	 L 

	

2_ 	- 

	

ri4: 	

(Ai) 41„ bp) 	01A 

x m 

• But it has been shown in Section 4 ( Corollary to 
Theorem 7.3 ) that the integral is dominated by an expression 

which is independent of M . Moreover, if we replace the 

integral in each term of the series by the corresponding 

dominating expression, the resulting series is absolutely 

convergent. It follows from Lebesguets Dominated Convergence 

theorem that We can let N.4 tend to infinity under the 

summation sign, and part (a) of the theorem follows. 

Part (b) is proved in a similar way, using the Corollary 

to Theorem 7.4. 

The introduction of ur makes V&E,c0,the unique continuous 

solution of the integral equation (7.3) 2 a function of Lo-

We shall also Write henceforth Vq(t I o ;u,r) for Vo("e 1 0) 

Lemma 	W(t,o;w1 is an analytic function of ux-- . 

Proof:  From Theorem 7.5 9 it follows immediately that 

7- 7- 

,11 iLf 	; "r)i d- Lk at < 
o 



	

167. 	 7.5 

[ 	et. ; (-u)]ot-b• .< oca 
6 

for arbitrary finite I > 0 

We shall now use the fact that the solution of the 

integral equation (7.6) can be written down in the form 

0 

	

where the resolvent kernel H (t, 	is given by 

(7.22) 

The iterated kernels 	are defined recursively by 

cp(t 	LAT) ? 	) tr I  

	

".• 	 / 

V-- 

	

(tu. ) 4X ) is an analytic function of 	9 the ? 
are all analytic functions of Lur-  . ids°, for arbitrary 

tV\ 	the series for the resolvent kernel (7.22) is 

majorized inside L.A.d < tvl by an absolutely convergent 

series whose convergence is independent of uo- .(see 

Tricomi C72] p. 12 ) It is therefore uniformly convergent 

in 4.1I 	, and N 	utp.) is therefore itself an 

analytic function of ua- 	and is continuous in f: 
and 	(..4_ 
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It follows that 14/(to) k.r) is an analytic function 

of W-  9 and is continuous in t 
C>C3  

Lemma 7.3:  VV Lt, 4); w-)  	F ( t) 2  the series 
= 

converging for all ur-  uniformly in o 

Moreover, each F (-E is a continuous function of t. 

Proof: This follows immediately from the boundedness of 

VV(t,c2, (Ar) in O 	t 	T t I K... s4 9 and the 

form of the remainder in the Taylor expansion of \AI (t, 0) (AT) , 

Theorem 7.7  • The functions 	CO can be calculated by 

recurrence as the solutions of the convolution-type 

integral equations 

,) a ,L = 	(To] 	(t ) 
6 

t 

i.C1) 	 GA-1 cLu_ , (7.23) 

Proof: Replace 'R (t.; ii-) 	O./ (t, 	Li.r) y 	 LAI ) by 

their power expansions in the integral equation 

1A,/ 0.77 1  0; LAr) a 	= 
0 

and equate the coefficients. This gives us 

t „ 	
-\I Rf4(t-)4 	e,c i\} IL, (0 . 

Finally, we transfer all the terms of the left-hand side 

except the first to the right-hand side. 
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6.  Some theorems on Laplace transforms. In Section 7 , we 

shF)11 proceed to solve the integral equations (7.23) by 

means of Laplace transforms. For this purpose, we shall 

need some theorems on integral equations of the convolution 

type and their solution by Laplace -transforms. 

hal the functions we shall use will belong to the 
2 , 

class 	defined in Section 1 $ i.e. for any function 
, 

will converge for some p >° . 

,Theorem 7.8  • If F(-0 E LI- and G ( .t.) is uniformly 

bounded in t > o $ then F(EIG(ti E 

Proof: Let la COI M ,Then 
0.4 	 2 _2 t 	2 

m 	e_ 	att. 

Theorem 7.9  • If F- (-e) and GM belong to L4  $ then 

C-0= F 	F 	(1/4- 	 belongs to L 

Proof: By the Schwartz inequality 

—2 et 	2 	t 	 -eLk 	 2 
— 	 Q  

t.  2 	2- ed-v- 
. 
30 	 00 

IFC—)I 	. C Irr IG( 	L d 
Jo 

-2pt „2 
It follows that e 	 is uniformly bounded for 

sufficiently large f) 	so that the integral 

I 1-1(0( 2ot-t- 
o 
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will converge for any cfr > O. 

This completes the proof. 

Theorem 7.10  • Let K() $ G(t-) have continuous derivatives 

k (-0 G- LE) $ which are L2  functions. Let G(0) =- (3 and 
K(0)* 0 -. Then the Volterra equation of the first kind 

in F 	: 
-6 

F(u-) a 	 (7.24) 
0 

has a unique continuous solution which is an L- function. 

Moreover, its Laplace transform 

is given by 

N GA 0  

'( p) 
St) 	 t 

where 
	At-  

a 

Proof: The first part follows immediately from the usual 

differentiation technique of transforming a Volterra 

integral equation of the first kind into an integral 

equation of the second kind, and then applying a theorem 

of Doetsch [15] ID. 143 Satz 7 

The second part follows by taking Laplace transforms 

on both sides of equation 7.24 and using the convolution 

theorem of Doetsch [14] p..  123. 
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7.  The Laplace transforms of the coefficients in the  

power series for Of (t, 0)  . We shall now solve equations (7.23) 

by raeans of Laplace transforms. To do this, we require the 

Laplace transforms of the TR,(-e) and the ft__(.&). The 

required expressions are given in the following theorem. 

Theorem 7.11  • Let IR *  (e) 1?-1 (e) be the Laplace 

transforms of IR, (-E 9 )1,, ("61 • Then, if a is 

as defined at the end of Section 1 9  we have 

R:(e ) = I [(— 4)(ejr-  ) Re( > 	°() 	(7.25) 
9 [H- k.f)'(e)] 

(7.26) 

[ L4) 1 W] 

where 9 is the unique root in Re_(A)> 0( of  

Proof: The uniqueness of 	in Re.(A)0( for 't(p)>'(o) has 

already been discussed at the end of Section 1 • 

also, it has been shown in Section 4 that the functions 

r 2Tr41. \ [I- Lv (A] e-y1,3 	cl(AA 	> 

	

- (A e-ArY( 4F-1 	) x >0) Leir 
2TrA: 

I\  

are dominated by functions of -L" and x_ which are 

independent of NI and are of the class L2 It follows 

from standard theorems on the inversion of the order of 
±- 

integration that the integrals S cl A 	and S 
0 

can be interchanged. n application of Lebesgue fs  Dominated 

Convergence theorem then justifies the interchange of the 



172. 	 707 

x.44:00 
integrals j ot A 	and 	 provided that the 

x-441,0 
integral in b converges absolutely. We therefore have 

00 

d(A 	e-Y- r[t I (A\ Pi] °(-& 
0 -x 

For the integral in 	to converge absolutely, the 

coefficient of t 	in the exponential must have a 

negative real part on the line 1ReLA = 	. Putting 

A 	f 	we have 

cc 

e 6(. ,$) — 	= 	[A- t + 	( 	 — 	 (p1A- 7,- -1- 	-t) 6.-(t )a. 
This will be negative if t  

ReCF) > —  
Jo  

and a fortiori if t 
Re(p) > 	+f e-x  

If this is satisfied, we shall have 
x+A:00 

P.V. 	\ 	 —4)(A)f  
„ TrA_ 

3 	•Clx- 0/10  [ r 	(41 
To calculate this integral, we consider the integral around 

the closed contour consisting of the arc of the circle 

C 1A1 = 'g for -Re(4) > x and the line  

We note that for "Re(4)> 0 $ 14(4){ 	9 and therefore 

P — e(A)H r 	+1- Lv(A)I> IA( 	— —\Lv(A)t tAk 

where M is some constant. It follows that the contribution 

of the circle to the integral tends to zero when "R tends 
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to infinity, for 

D 44ACc.th < 

11  E.P — (A )1 	IRCR - M) 

Tr R 

On the other hand, it follows from Theorem 3.5 of Chapter 3 

that p — (A) will have only one zero in 1Re.(4) > x s> 0 

if Re-CP) > (X ) namely A =0 It follows that 

[L-4)(eir 

for 

We now use the fact that 0(p) is defined for all p 

such that 'Re(p) > z((c(). Thus 'R *" (ID) 2  which was defined 

till now only in (?e(p)> x> 0, and is an analytic function 

of r 	in that region, can be continued analytically 

to the region TRe(p)> z(..4). This completes the proof of 

(7.25). it similar proof yields ( 7.26). 

Corollary:  The functions 

e [4. y'03)3 
	

(ID) 	82 	L.)'(&] 

have have one simple pole in ReCp)> )5(p(), namely at 13 	0 

The functions .R 1( (p),(-., > o) and 11_, , 
	

> I) are 

analytic and uniformly bounded in the same region. Moreover, 

for all r■, ?..0 	(p) is 19( It f>0 and )L 	is 

C9(1/ 1101 2 ) in the region: 

Proof: The Corollary follows immediately from the theorem 

and the results of Theorem 3.6 of Chapter 3 



iS 

	 (- Olt ( Q1\ 	&*.& (P /1-).21TA: 	--A.. 	-A  
7( -42 4,4 

A: DO 

trcA: 	
* -9.; (A -cr) 

"1. 
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Theorem 7.12  • Suppose that P-L.(-E), et:(t) are uniformly 

bounded for all t 	2  and define PL„,„. (p) by 

e 	= 
	Ee(t)3 es-tott . 	(7.27) 

Then 

t 	 l'043  

(7.28) 
o  x 

for some x > 0 and all p such that le(p) > x. 
Proof: The result follows from a theorem of Doetsch [14] 

p. 258 Satz 2 2 because it (-E) is an L function 

(soe the Corollary to Theorem 7.5 ). 

Theorem 7.13  . Under the same assumptions for e-(+) as in 

Theorem 7.12 the Laplace transform of 

?? 	 , 

	 (7.29) 

where F (p) is the Laplace transform of  

> "x- and X is sufficiently large. 

Proof: Replacing cgt,tx) by its value 	e.,(u-) in (7.29), 

we find that 

(7.30) 

3- 	= 
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We now apply repeatedly the theorem of Doetsch quoted 

in the proof of Theorem 7.12 and Sat s 4 of Doetsch L143 

p. 123 . The result will follow, provided we can justify 

the use of the theorems. 

This justifi ,lation follows easily from the fact that 

both quoted theorems hold for L functions and from the 

results of Section 6 • In fact, assuming that the 

(4: = 0, 1, 	) 2 are L.:2  functions, it follows easily 

from the fact that e. (f) 2  -e,  '() 9  IRA ( -0, 	(t) are 

functions that the derivative of the right-hand 

side of the n-th equation (7.23) is an L function. 

is also an L 2  function, it follows from 

Theorem 7.10 of Section 6 that 	is an L -2  function. 

Ln induction argument then shows that all the functions 

involved in the system of equations (7.23) are 

/.._! functions. 

Corollary: Under the assumptions of Theorem 7.12 9 

the Laplace transforms 11-1 (1)) of the F (+) are given 

by the recurrence formulae 

X 4-,bo 
Cv (p) 	 tr) JO 40* 

X -.... -oo 

4 	X4.:oo 

 
:o 	11-- .213r. 	0 - k( r -4 1 IR  (42711 g": (A  - a-) F̂.1‘-iz (cr cicri rjk 's  

x-....to 	 x-2.00 
-E Ze I) ( CR  ) 2- 9! 

4 
(7.31) 

for sufficiently large 	,Re(  

8.  The asymptotic behaviour of the LC+ when R.(t) is periodic. 

We shall now consider in detail the special case when 



Lk),  

-0•14- PA) 
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ka) can be expanded in a Fourier series with a finite 

number of non-zero coefficients. We shall write 

A 	( 	1-
) 

In this case, e(& ) obviously satisfies the conditions 

of Theorem 7.12 • In this case, the f..)) are given 

for Re( p) sufficiently large by equation (7.31). We 

ccntinue them analytically wherever this is possible and 

denote in the sequel by F * (p) the analytic functions 

thus defined. 

Lemma 7.4:  Let F, (p) 	(ID) be meromorphic functions 

which can be written in the form 

+ 
( P) 

ID — 4 L.4.3 
rot: - INS 

where the (.1-) (p) are analytic functions which are 

uniformly bounded in Ve(p) > 0- 9  where c o  <0 • Then 0 

+ -4: oo 

-400 

exists and can be written in the form 

where the r L p) are analytic functions which are 

uniformly bounded in Re(r).> Co . Further, if the y (p) are 

(9(1/ I p( 4 ) as 1 p 	c.c. in Reip)> , then so are 
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the ,(p)- 

P.roof:•We have 

x4-'00 

	

G(P)  = 	[ 	
, 	 Cr — 

(T)  

4. 00 

The poles of the integrand to the right of  

are at a-  p - 	The residue of the (n,m)th term 

is 	 c, 

P - 	( 	evs., 

We notice that the integrand is C9(1/i0 - 1 2 ) to the right 

of 1Re. cr) and therefore the integral is equal to 

minus the sum of the residues to the right of Re(cil= 24- • 

Put now 	 and collect all terms whose 

denominator is r  _ 	The result is 

r;,(101 

where 

Ter2 _, . 	( 7..32) 

We note that as all l),  ( p) are uniformly bounded 

in Re(p)> Cro  9 it follows that all the 5j 1:)) ere 

uniformly bounded in Re (p) > To . 

Finally, 
r,J+m 

G(p) --7. 	p 
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This proves the first part of the theorem. The second part 

follows immediately from equation (7.32). 

Corollary: The residue of G(p) at p=i 4,,,,) is 

=  

Lemma 7.5: The Laplace transform of 9,-Ct) = 	 

is of the form 

 

  

Proof: It is easily seen that 9, ( -E) can be written in 

the form R. (f)  	e-- 	9 and it follows that 

0.3 

e: P t  r 
0 

=-- 1Re(p) > 0  

Corollary: The Laplace transform of ['eLet)] is of the form 

Proof: This follows by induction, using 

I ft" kl 4 M t. 
7 e ,1 	. 7 	

) 
: c‘ e 

e .= = - 

We are now in a position to prove the following theorem: 
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Theorem 7.3_14  . If 	(t) 

not :41 

the functions  

the form of the finite sum: 

can be written in 

F  (13) 	
%,(e)  

where the y 	are analytic functions which are uniformly 

bounded in Re(p)> c(oc) and are C9(I itk) as 	pl tends 

to infinity in that region. 

Proof: We proceed by induction. 

The first equation of' the set of equations (7.31) reads 

F: 	j)-:(P)  

-o(P) 

Replacing 	and 	(P) by their values from 

Theorem 7.11 y we obtain 

-8(13) 

r-*:,`(r)= 
0(p) 

This is identical with equation (4.14) of Chapter 4. 

We continue 	D u)) analytically to the half-plane 
- etp)/ 

(00 . In that region s, e_ 	is uniformly 

bounded, t4e conclude that the only pole in this region 

is where 61 (0=o 2 i.e. at p = C.3 • As 

e i( c)— 	 
P 	 \ V4(3) 	1—  e 
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this pole is simple. It is also clear that as (p t  

is  

Suppose now that the F: (p) , 	0, 1,  

satisfy the conditions of the theorem. We first note that 

_8(<6x4, 00  

I G.) 	A:v  Ca) acs- 	 e Lt-wV4(cr).11  1 cta_ 
2TrZ 	F".  • 	

( P 	ILW) 	113(C63 	Yit e(C) .1) • A: 00 

°CC)/ 7 cp,,A e_ 	, 

where cr iL  =-- p - A- LA-)  2 and this expression has all its 

poles at the points p A:A.t...o and can be written in the 

(IPA_Cp)  form 	 9  where the(t),L (k.) 	are 

0(1 	t in Re 	> (_ot) ( because of the factor 

I ce(,)32 ) • pplying now Lemmas 7.4 

and 7.5 to the second term of the right-hand side of (7.31) 

and using the results of the Corollary to Theorem 7.11 

(Section 7 ) 2  we conclude that this term satisfies the 

conditions of the theorem and is (9(k h H2) in Re(e) >)S(01 )• 

Finally, we notice that == e 	[ I +- 	Cl_9(13)1) 
has no poles in Re.(p) > Loll and is 0 	) in that 

region. 

We can now conclude from equations (7.31) that (=LI'  ( p) 
satisfies the conditions of the theorem. 

We shall now prove the key theorem of this chapter, 

which gives the asymptotic behaviour of the 	t-- ) 

as t tends to infinity. 
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Theorem 7.15  • The functions F 	admit the asyraptotic 

expansion 

F.,(±)-,_->--1 ,(g 	64 

Proof:  .is the Laplace transform of F (t) converges absolutely 

for all F) > 0 2  and as E (€) is continuous for all >0 ; 

we have 

p) ago =7,-1-1 et 	 JO e  F 	= .2i-r:  •S et F Ic t 
- 	tA) 

We first show that the integral converges uniformly 

in t 	o for any fixed x. such that either x > 

or x(06.4. x < 	• In fact, we tin 
as \Lii-(F)1 

in  

x4-.04) 
et  Li-)(1))  

1-27  
x 4.:00 

  

D. 
= 	( ext- e± gt 

\ 8 gTz- )  
cir 

 

  

   

ext 
( 
t 

M cz- 
TV 

?-00 (00 4100v-I + -c2wi) ) 

and the latter integral converges absolutely and independently 

of t 
We shall now use the 14belian theorem for the complex 

inversion integral given in Doetsch D4] p. 488, which has 

already been used in restricted form in Section 6 of 

Chapter 4 We note that the poles of F(p) are at the 

points 4—  it-Kw and occur in pairs. lso all the conditions 
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of the theorem are clearly satisfied. It follows that 

z 
F (-6-) - 	 

where the C 	am constants. This can obviously be rewritten 

as 

9. The asymptotic behaviour of the Laplace transform 

of the content distribution. • We shall now investigate 

 

the asymptotic behaviour of the Laplace transform of the 

content distribution, using formula (7.2), which now reads 

_Q 	A ur) 
	

5-7  (Jr's' S (f) 
0 

‘r r 	147 	t'Lq L eJt—k'L)]  

where 

(t) _ D — w(A)-]  R 	a-A3 	riA\ 
„( 

(t) = 	D Lv  Ls)'s 	ecA\ 

L11 the series being uniformly and absolutely convergent 

for 0 u. € , we can multiply out and integrate term by 

term, obtaining 

LA-r- 
	

(€ 	LAX' 



xi—oo 

	 e. c{ 	 rv, p-cr -1-(61][ij  

")(4 A.00 

k ) 	H 	( 
?Z -dit` 

	

x 	ac. 

P2 
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where 

t 	f•R 
Q,(t, 	 E [- t 	r=„ 4z  (,) ou„. 

O j 
„

t 

s 	- A TEH\ (c7L)F,(til 

Theorem 7.16  . LS t tends to infinity, we have 

for A 	$1 where -ty-  is a real number such 
	that 

1-tri 	for some S>0. 
Proof: The Laplace transforms of S (-E- 1 and 

are given respectively by 

D_y( ,C e_- Aes  E 

. 	LVCA)3 —  
(A\ 

  

The Laplace transform of _C2 C A is 

a-. 

)4. - "30  

We now use the fact that the F",:  

are of the form 
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FA, CO 

that the 
	

(p) are of the forra 

p - 	) 

that T: ( p ) has 
f 
(p) has poles 

Now from the 

only one pole at 	= y (A) and that 

at  

representation 

Lv (A) t e  A 	 (9 (A3) 

we conclude that 

2-i Lt)(A) (1 -0 A 4-- 1-4 A 2-  

so that if 	A: -tr , and -u" is sufficiently small, we 

shall have, for 0 < N-r  

Lpplying again the L.belian theorem for the complex inversion 

integral given by Doetsch [14] p. 488 we deduce that 

5, (-0 tends to zero exponentially as t tends to 

infinity, and that the ,second term is asymptotic to an 

expression of the form 
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Corollary: The Laplace transform of the content distribution, 

LA-r) 9 is asymptotically periodic for A = 

Proof: For the values of A considered, the series 

s2,(t, 4 ur converges uniformly in tc.) • It 

follows that 

0.0 

This shows that ..e(p, A LA-0 as a function of p , has 

all its poles with largest real parts on the imaginary axis. 

The Corollary follows immediately by using a slight extension 

of Doetschls ( [14] p. 488 ) belian theorem. 

10. Explicit expressions for the leading terms in the case 

of a simple harmonic input. Consider the special case 

(.0 	uot In this case, g-- * (P) =  
LJ 

and we find, for 	n 0 9 

P:(?) = )2AP) _ a-leP  

where E 	the unique solution in 	of the 

equation 

119- 	i  

For 	n = 1 we find, after some cancellation, 

00 

F,'A( e ) 

,Ruvt c  ) 	Tk 

X - 

F",,*(A)dA 



(L) , at 

p 

ei(01 	L  

° 2 
 and the residue there is 

± L ) F,*(p) has two poles, at 
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x4-4.:00 	_e4 3 i.e. 
e-- 	CkiS ( F k  )((p = 

- 

	wL3 64  

where 04  is the root of A - w 09) =-- 0 . 

Evaluating the contour integral ard witing p+ ..: L.) 
p - A: (---, — re- 2 we find 

_195,1 
e_ e. 

6 , 	89' 
( = 	 

Op  -  - 
a' 	el/}  1 

j 

TR,(14> 

 

The function F:(p) has only one simple pole in 

and the residues are 

4- A: t. 

.2 Al 

at 	 . 

Using Doetschis asymptotic theorem., we find that 
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Put  

Then it is easy to check that e  or 
Replacing in the expression for F, (t) 2  we find 

_ 

The asymptotic expression for Fo (-E) is, of course, the 

limiting value of V\) (t tz , ) for stationary input previously 

obtained in Chapter 4. 
Consider now the first terms of the expansion for 

. We find 

e r  
e - () 	-- zr(Aq 	) 

	

S2 114  (p i 	- eis[1-44A)] 
 L It -  (A) 	y(A) 

_  (2_  
CP -YOU PL ( a 	en. 3 1 

- 

	

4_    	
el, 	x(4)\ 	G A_ 

- 	 e.-9q  

EF - YLA\11_ 2 "4:  L e 	8, 	° 

From this expression, we can deduce, putting as before 

& (A .  1,J) = 

(t A 	A L I-  e) 	L1- e)A  

	

0 	, 
yGO —  



188. 	 7.10 
which is the Pollaczok-Khintchine fornula previously 

obtained in Chapter 4 9 and 

 

2 e W  

y 2. w2 

where 4.) = Ur)(A) 	 A - -t- L.)(4). 
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