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SUMMARY

In this thesis, a storage model with infinite capacity,
additive stochastic input and unit release per unit time is
investigated. 'Th- content of the store in the deterministic
case is defined as the unique solution of an integral equation.
Properties of non—nega%ive additive stochastic processes are
obtainea. These properties are used to study the distribution
of the time of first emptiness when the input is stationary, and
the distribution of the content. Applications to dams and queues
with specific input laws are given. In particular, the waiting
time for the queues M/M/1 and M/G/1, and the content of the dam
with Gamma input are studied in detsil. The dam with Inverse
Gaussian input is introduced and its transient solution obtained
explicitly, |

Finally, in the case of a Compound Poisson input, the con~-
tinuity and differentiability of the distribution of the content
are investigated. |

A non-stationary Compound Poisson input is considered, and
it is shown that the probability of the store being empty and the
Laplace trangform of the content can be expanded in a power series.
When the parameter of the input is periodic, it is shown thet all
terms of the series expansion are asymptotically periodic, and

explicit expressions for the leading terms are obtained.
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INTRODUCTION

"AND SURVEY OF THE LITERATURE

1, _Qeneral'dﬁﬂiihe of the thesis

The tﬁeofy»of storage has attracted much atténﬁion in
recent years, Although the impetus was first given by economic
problems of inventory and provisioning and enginegring problems
in dam design, it soon appeared that storége models had an
intrinsic mathematical interest. Storage models with stochastic
input are analogous to models in queueing and renewal theory, and
provide interesting examples of Markov processes having unusual
properties. |

In this fhesis, the following model is investigated: an
input §% (t) , which is a stochastic process with independent
increments, is fed into a store, over an interval of time t .
The output from the store is of one unit per unit time, except
when the store is empty. The two main proceéses investigated
are the time of first emptiness and the content of the store at
any time t .

This abstract model contains, as special cases, the follow-
ing models which have been extensivély studied

(a) the single-server queue with Poisson arrivals'and

exponential service times (NU@L/i).

(b) the single-server queue with Poisson arrivals ahd

general service times (M/G/1).

(c¢) the single-server queue with bulk arrivals at poiﬁts

bf time which follow a Poisson distribution and either

exponential or general service times.
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(d) the infinite dam with Poisson input 2nd constant-

rate release.

(e) the infinite dam_with constant inputs at equidistant

points of time and releases following the negative expon-

ential distribution.

(f) the infinite dam with a Gamma-distributed input, and

constant-rate release.

The advantage of using a single abstract model for these
various situations is, of course, that of being able to use a
unified technique to obtain results which have been established
yreviously by widely varying methods, and then only for special
cases. By using the general method, we are also able to
obtain new results not previously published.

Another feature of this thesis is the emphasis on contin-
uous parameter methods. Mény of the important results in the
field under investigation have bheen obtained by limiting methods
e.g. Moran [5?], Gani and Prabhu [Zé], However, it seems
simpler to study the continuous-time model directly, and it turns
out in fact that the required results can be obtained just as
easily in this way as with limiting methods.

It should be emphasised that only results relating to the
waiting time can be obtained by our technique, when it is applied
to queueing models. The queue length cannot be studied by this
method.

The main contents of this thesis are as follows:

Chapter 1 deals with the deterministic version of the model
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under investigation. It is interesting to note that the problem
of the definition of the content of a store with completely
general inputs and outputs, though a natural one, has not been
given attention until quite recently. In Chapter 1, we show
that the content of a store can be defined in two equivalent ways:

(a) as the unique non-negative measurable solution of an

integral equation,

(b) by a formula involving the maximum and the suprem:m

functionals,

The relevance of the deterministic model to the stochastic
cne is due to the fact that almost all sample functions of the
stochastic model obey the formulae derived in Chapter 1. From
these formulae, we can obtain immediately all the basic prob-
abilistic formulae required in the succeeding chapters. The
results of this chapter were given by Kingman in a paper [41]
submitted ﬁo.the Journal of the Australian Mathematical Society.
in July 1963. Identical results were obtained independently
by the author in June 1963, and a paper embodying these results
was submitted in September 1953 to the Proceedings of the Cam-
bridge Pbilosophical Society. The Editor of the Proceedings,
however, pointed out that the author's main result was identical
with Kingman's result.

There is, nevertheless, a substantial part of this chapter,
giving a detailed motivation for the form of the result, which
is original, It is the author’s view that the form of the

integral equation defining the content of the store can be best
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motivated when input functions having continuous derivatives are
considered, even though in the application to stochastic models,
only inputs whose sample functions are almost surely step func-
tions are encountered. The case of an input having a continuous
derivative is considered in detail in Chapter 1.

Chapter 2 is an exposition of some results in the theory of
non-negative processes with independent increments. The general
theory of such processes has been investigated at length by Lévy
[}4], [45}. A restatement of his results is to be found in
Doob [17], However, the special case of non-negative processes
coes not seem to have been studied on its own merits.

The spur to try special techniques for stuﬁying non-negative
random variables was given to the author at the beginning of 1962,
in a private communication from D. G, Kendall., Professor Kendall
pointed out, in commenting on some work of the author which used
characteristic functions, that it was “always a mistake to use
characteristic functions when dealing with non-negative random
variables, and that Laplace-Stieltjes trénsforms should be used
instead. Laplace transforms are used throughout this thesis and
their use ﬁas made many results much more easy to obtain than
with other techniques. This is true in particular for the
results of Chapter 2. New methods include the use of the notion
of complete monotonicity of Laplace-Stieltjes transforms and the
expansion of the distribution function of the Compound Poisson
process as a power series in the time parameter t

A detailed investigation of the Compound Poisson process
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is carried out. Specigl attention, however, is given to a type
of process whicﬁ is specific to dam theory, namely, stochastic
processes which are almost surely increasing in every time
interval. The prototype of such processes is Moran's CSZ]
Gamma input, which is investigated in detail. It is shown by
an elementary method that almost all sample fﬁnctions of such
processes have zero derivative almost everywhere, although their
discontinuities form an everywhere dense set.

Finally a new process with independent increments, the
Inverse Gaussian process, is introduced. This process was
constructed by the author [?5] so that a store with such an
input would have a time—dependent'cdntent distribution which
could be expressed in closed form. If was pointed out by P.A.
P, Moran, in a private cOmmunicatién, that the process distrib-
ubtion was identical with a distribution introduced by Tweedie
[73], who had not, however, poinfed out its infinitely divisible
character. |

In Chapter 3, the first passage'time for the content of the
store is investigated. 'Thé basic method is that devised by
Kendall [39] p. 209. However, Kendall made it clear in his
paper that he was only sketching his results. In particular, as
pointed out by Lloyd, [46}p.»133, Kendall's main formula giving
the density function of the first passage time in terms of the
density function of the input was only conjectured, and has
since been used repeatedlyhin the literature on dams without

proof.
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Chapter 3 gives in detail a rigorous treatment of the
first passage time distribution in the case of a stationary input
which was firsf given by the authqr [34}. It is first proved,
using the results of Chapter 1, that the first passage time is
in fact a random variable (pbssibly defective), Then Kendall's :
main formula is proved under very weak coﬁditions._ A general
formula is obtained for the first passage time distribution in
the case of a Conpouﬁd Poisson input, and this is shown to
specialise to the formula obtained bvalgyd‘[46] and Mott [543
by inductive and combinatorial methodsiresPectively.

Finally, the asymptotic behaviour of the distribution of
the time of first emptine_.sis, for large values of the initial
content is investigated and some explicit expressions for special
tyges of inputs are obtained.

In Chapter-4, the distribution of the content of the store
is investigated. First a formula for the Laplace-Stieltjes
transform of the time-dependent distribution of the store content
in terms of the distribution of the input and the probability of
emptiness is obtained. The formula is inverted and special
forms investigated in the case of discrete and absolutely con-
tinuous inputs.

Specializing to a stationary input, the Laplace transform
of the probability of emptiness is obtained and the formula is
inverted, expressing the probability of emptiness as an integral
of the probability of first emptiness.

Next, it is proved by probability methods that, with a
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stationary input, the store céntent distribution tends, as €
tends to infinity, to 2 stationary distribution, which is in=
dependent of initi=l conditions, provided the mean value of the
input per unit time is less than one. The behaviour of the
content distribution in other cases is also investigated. The
celebrated Pollaczek -Khintchine formula for the Laplace trans-
form of the limiting distribution is obtained for a general form
of input, and is inverted in two different ways. Finally,
various asymptotic formulae for the behaviour of the limiting
distribution are obtained.

The work in this chapter is based on results by various
authors scattered in the literature. The proof of existence of
a limiting distributioh is, however, original in its use for a
general input, although based on an idea of Takacs [71] p. 52.
Various proofs of known results are also original.

Chapter 5 is a collection of results obtained by applying
the formulae of Chapters 3 and 4 to special types of inputs.

The following médels are considered:

(a) the queue M/W/1,

(b)  the queue with Poisson input and fixed service time,

(c) the dam with Gamma input;'

(d) - the dam with ipverse.Gaugsian'input.

The results for ﬁhe first two models are well-known and
have been obtained many times by a wide variety of methods in
recent literature, Those for the fourth model have been obtained

by the author [35], while most of those for the third have not so
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far been published. The interest of this chapter lies mainly in
the fact that all the various results, with applications to very
different situations, can all be obtained by one and the same
method.

Chapter 6 investigates the continuity and differentiability
properties of the distribution function W (t,X> = ,\jig(t) £ X% >
where ?(t:) is the store content, as a function of the two var-
iables € and % . | The main result is that if the input
distribution is of Compound Poisson type, and if the jump
distribution has a bounded derivative, then V\/(t,xj is a differ-
entiable function of both T and =x , and satisfies an integro-
differential equation. This chapter is an amplified exposition
of a paper by the author [323.

Finally Chapter 7 investigates the case of a storage model
with a Compound Poisson input, when the arrival density varies
periodically with time. It is shown that the probability of
emptiness can be represented as a power series in a suitable
parameter whose coefficients can be calculated by recurrence as
the solutions of convolution-type integral equations.

The asymptotic behaviour of the probability of emptiness is
then investigated, using Abelian theorems for the Laplace trans-
form inversion formula. It is shown that the érobability of
cmptiness is asymptotically periodic and can be represented by a
Fourier series.

Finally it is shown that the Laplace transform of the wait-

ing time is also asymptotically periodic and .can be represented
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by a Fourier series.
Various mathematical results which are required for cstab-
lishing the results of this chapter are also proved,

2. A survey of recent literature on storage

The following survey of the literature on storage does not
clainm to be exhaustive, but only to outline the main stages of
the development of the theory of storage with additive stochastic
input when the store has infinite capacity.

Moreover, it should be noted that many of the important
formulae in the theory of storage were actually developed within
the framework of queueing theory, so that a large part of this
survey will deal with papers on queueing theory which do not
contain any mention of a more general interpretation.

The first important formuln in the theory of storage was -
given by Pollaczek (55) in 1930 and Khintchine [40] in 1932, who
gave a formula for the Laplace transform of the limiting distrib-
ution of the waiting time ih the queue M/G/1. In 1933, the first
investigotion of the transient behaviour of the queue MM/1 was
made by Kolmogorov][4é].

Little work of importance in the field was done until 1951,
when Kendall’[ﬁé], recognizing the fact that the length of the
queue at time € in the queue M/G/1 was not a Markovian
'process, introduced the method of the imbedded Markov chain, and
was the first to prove that when the mean rate of arrival is less
than the mean rate of service, the waiting-time distribution tends

to a limit distribution as T tends to infinity.
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The next step in the development of the transient theory
of storage was ﬁhe work of Lederman and Reuter {}i} in 1954,
Lederman and Reuter stucicd the queue MM/ by fhe method of the
biffh and death equations, and, using the spectfal theory of
differential equations, obtained explicit expressions for the
time-dependent queue size in terms of modified Bessel functiohs.
Soon after, their results were obtained by a number of different
methodss

In 1954, Bailey [1] obtained Lederman and Reuter's
results by using generating functions. He also obtained
further results in 1957'{2], Further refineménts of the
technique are to be found in Cox and Smith [}2].

In 1955, Champernowne ﬂS] used random-walk methods to
solve the queue MM/1,

Also in 1958, Clarke [10} studied the queue with non-
stationary Poisson arrivals and exponential service times, using
generating functions. A similar problem was investigated by
Luchak [48] in 1956, using spectral theory.

Conolly [1{], in 1958,s0lved the birth and death equations
by Laplace transforms and difference-equation methods.

Finally Karlin and McGregor {37] in the same year, applied
an orthogonal polynomial method, reducing the solution of the
queue M/M/1 to the finding of a suitable measure that would make
a giﬁen sequence of polynomials orthogonal.

While the investigation of fhe gueue M/M/1. was being

carried out, the queue M/G/1 was also given much attention.
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Pollaczek [56] studied in 1952 the transient behaviour of the
gueue M/G/i, using complex-varisble methods. His results are
available in expanded form in [5{].

The turning point, however, in the study of the queue
M/G/i, waS'Takécs“ paper [76] in 1955, where the notion of Virﬁ—
wal waiting time was first introduced. Takacs remarked that,
although the length of the queue at time T was not a Markov
process, the time required to complete the service of all cust-
omers in the queue at time € had the Markov prbperty.
However, the coﬁsi&ered process was not of a type which had been
previously studied in detail. The introduction of the virtual
waiting time concept also heralded the combination of queueing
and storage theories in one abstract model,

The virtual waiting time process was further investigated
by Benes [ 3} in 1957 and Reich Lei], [62), while Descamps (1]
in Francc seems to have rediscovered the idea independently (see
Saaty [65] p. 198).

Further results, concerning the analytical properties of
the waiting-time distribution, and the queue with non-stationary
Poisson arrivals and general service times were obtained by the
author in 1963 [32], {33].

Other developments related to the queue M/G/1 were the
use of Spitzer's identity (see Spitzer {67], [ﬁé]) in 1957 to
prove the Pollaczek - Khintchine formula by combinatorial methods,
and the use of Bantzig's method of "marks'” by Runnenberg in 1.960

to obtain by probabilistic methods Takacs' time-dependent formula
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for the Laplace—Stielﬁjés'ﬁransform of the waiting-time distrib-
ution kﬂJ . ’

Cbmbinatofialwméﬁhéas were also used by Benss C4], Ls),
[6], and Reich [sx]lto obtain various formilae related to the
virtusl time in the queue M/éyi.

A1l the methods just qubted'ére of course of much wider
applicability but are mentioned here only in so far as they can
be applied to our storage model.

The great development of'queuéing theory in the 1950's can
be gnuged by the fact that Miss Doié's bibliography {}6] (1957)
lists about seven hundred papers on queueing theory, while the
author's own bibliography lists several hundred subsequent papers.

While the queueing aspects of storage were being developed
at such a rate, the theory of dams was making'its appearance on
the stage.

Smith [66] had described in 1953 an analogy between the
single-server queue and an infinite dam model.

Moran [Sd), [5{] in 1954 and 1955 gave 2 simple and pract-
ical formulation of the finite dam problem, as well as several
solutions, in which extensive use was made of Markov chain methods.
Gani [22] obtained an exact solution of the finite dam when the
input is of Poisson'typé and the release is at a constant rate.

The most ihterésting probleﬁ in the theory of storage,
however, with no direct analogue in queueing theory was formulated
by Moran {52] in 1956, This was the infinite dsm with an input

following the infinitely divisible Gamma distribution, and a
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constant-rate release, whose solution Moran obtained by using a
discrete approximation, and then passing to the limit.

The great turqing point in dam theory was the meeting of
the Research Section of the Royal Statistical Society on 6th
Ma%ch, 1957,~wher¢ a review paper on storage systems by Gani [23]
and a paper by 'Kendall [39} entitled ''Some problems in the theory
of dams' were read,'and a lively discussion ensued, with many
note&orthy contributions to dam theory, including in particular
those of Foster, Lindley, Downton, Smith, Thatcher and Deniels,
Not only was Méran's Gamma input dam investigated, but dams with
general additive inputs were considered there for the first time.
At the end of the discussion, Keﬁdall gave a summary of the main
results, and concluded: "This is a most satisfactory state of
affairs. There is still a great deal that we do not know about
the Moran process, but there are very few processes about which
we know so much',

Another imporﬁant development in 1957 was the reslisation
of the close relatiénship between the content of a dam and Takacs'
virtual waiting time mentioned earlier (see e.g. Downton [18]).
The following is a qudtation from Gani and Prabhu {27] P. 114:V

”Thelapplication of‘limitingumethods to Markov chain models
has in some ..... cases led to solutions of the storage problem
in continuous time. However, the ﬁrocedure has proved cumbersome
and has partly obscured the simplicity of the underlying Markov
processes., Surprisingly enough, it escaped poth Moran and Gani

that the problems they first considered, formulated as they were
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in widely different” terms and with apparently distinct solutions,
‘were identical, and closely connected with Takécs' [70) elegant
work on analogous queueing processes". The reference to Gani's
and Moran's models which are the duals of each other is to Gani
[gz] and Moran [si]. A systematic exposition of storage theory
up to 1959 was given by Moran [53}.

Using Takacs' integro~differential equation, Gani and Prabhu,
who had already published a joint paper on dam theory EZS}, ob-
tained a large number of new results for the dam with a simple
Poisson input and constant-rate release in 1958 and 1959 (26,
[Zi), [28]. Prabhu, who had done some previous work on discrete
dams [58}, now used the new formulae in queueing theory iﬁé‘, (s0}.

However, in applying the Takacs technique to dam models,
especially those with a Gamma-type input, it soon became apparent
that the intuitive definition of the content of the dam led to
difficulties. This led Gani and Pyke [ 30) to redefine the
content of a dam, using the supremum and maximum functionals. A
review of the known results, in the light of the new definition,
using limits of discrete approximations to obtain the T akacs
integro-differential equation, was presented by Gani and Prabhu
(29], and the results extended by Gani {24] to dams with non-
stationary Compound Poisson inputs.

The return to the method of discrete approximations was not,
however, fully satisfactory,and Kingman {41} in 1963, showed that
a direct treatment was possible in the general case also., The
following is a.quotation from his-paper:

"The problem of storage in an infinite dam with a continuous
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release- has been studied by a number of authors ..., who have
formulated it in probabilistic terms by supposing the input to be

a continuous-time stochastic process. These authors have encount-
ered difficulties which they have overcome by regarding the con-
tinuous—timé problem as a limit of discrete-time analogues. The
purpose of this paper is to suggest that these difficulties are

the result-of an unfortunate specification of the problem, and to
show that the adoption of a slightly different (and more realistic)
formulation avoids the difficulties and allows a treatmeﬁt which
does not have recourse to discrete time analogues,”

As mentioned esrlier, the author obtained the same results
as Kingman independently in 1963,

The problem of the distribution of the time to first empti-
ness, for which Kendall [19] had conjectured a solution, still
remained to be solved. A complete solution for the discrete case
was given by Lloyd [46] and Mott [54] in 1963, while a solution
for the absolutely continuous case and the general case of a Com-

pound Poisson input was given by the author {34].




CHAPTER 1
A DETERMINISTIC INVESTIGATION OF THE STORAGE

MODEL WITH INFINITE CAPACITY

1. Definition and elementary properties of the input and

output functions.

In this chapter, we shall be concerned with the following
deterministic model: we have a 'store with an infinite capac-
ity.

The ''input’’ in the interval (o, t] 1is given by the
function § (t) We shall make the following assumptions:

(a) §(o)=o0 s

() %(¢) is non-decresasing,

(c) §(t) is continuous to the right,

. (4) ¢ (t) =00 as T-—>o0 .
From these assumptions, we can deduce that §(t) has the foll-
owing properties:

(a) The discontinuities of §(¢) are all of the

first kind, ‘i.e. §(tro)= Rg(&m S(t+R) =% (),
o
§(t-o) = f’m?(t - ﬁ) both exist, and E(t-0)<§(¢).
vo

(b) The discontinuities of §(t) are denumerable.

(c) z ( t) is the sum of three non-decreasing
functions % (+) , %’2 (t), 53 (t) , where
§‘ (‘t) is a step-function, ?2 (t) is absolutely

continuous, i.e.

t
g (t) = [ Flu)ela,
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and §3(t) is a singular function, i.e. a con-
tinuous function whose derivative vanishes almost
everyvwhere,

(4) 3 (f) is differentiable almost everywhere.

(e) ; (t} determines a measure over the ¢ -field
of Borel sets of the non-negative axis (0O, o=).

We shall say that the point € is a point of stationarity of

3 (t) if there exists a one-sided neighbourhood [t} t +E.
of € where E(‘t) is constant. Otherwise we shall say

that t is a point of increase.

The measure of any Borel set (3 induced by §(t) will

be called the input over the set B .

We now introduce the notion of output. This is not as
straight forward as the notion of input, because, while the
input is independent of what is happening in the store, the
possibility of realizing an output depends on the peribds of
emptiness of the store in [O, t] . Moreover, we must lay down
a rule for determining to what extent a desired output rate will
be realized when th‘e store is empty and the input rate is lower
than the desired output rate.

As a first step, we shall introduce a "planned output
function’ ry(t) . This wiil have the same properties as f(‘f),
i.e., it will also be a non-decreasing, right-continuous func-
tion with = (c) =0 , /7(00) = o0, We shall call the

content of the store 3 (t). It is clear thet 3(t) is not
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.equal to E(t)- ~7 (f) , because of the fact that the planned
output ,,7( i-.) cannot be fully realized if the store becomes
empty,A i.e., if E(.,L) = O for a sufficiently large set of
values of w € (O, t] . However, the function f(t) - (¢t)
will play an important part in the determination of § (f) .
We shall denote it by V(¢) , and call it the "net planned
input'. The function v (t) has the following properties:
(a) V(t) is a function of bounded variation, and its
total variation |V| (t) in (0, t] is certainly
smaller than % (t) + ™ (f> .
(b) v(t) can be decomposed into its positive var-
iation V, (t ) and its negative variation V. (t) .

These are defined as follows: We put

g ¢ if x>0 3
(XL:
1_ Ie) otherwise
and - if x<O,
(IQ_:{
O otherwise .
Then

¢ =(x), - ().

le:(x)f +(x)_ .
Let o= t,<t, <t, ... <t =1 be any

dissection of the interval (O) t] .
We define !
o (8 =sup 25 [vltg,) -0 (2],

v_(t):: Sup ; [V (té,,) -V(tg)}_

2
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where the supremum is taken over all possible dissections of
(o,t]. We then have
w(t) = V() - v.({t)
WiE)=v,(8) +v.(¢).

It will be shown in the sequel that the key to a correct
definition of the content function, 3 (¢) , lies in finding
the difference between the two functions ?('6) and 77 ”),
thus obtaining the function of bouhded variation V (f) y and
then representing the latter as the difference of two non-dec-
reasing functions. The new decomposition, V (t) = V+(t) -V (t))
however, has a very important property. The function of
bounded variation V(%) Qdefines a éigned measure AL on the
Borel sets of the positive ¥ -axis. It can be shown (see
Loeve [47] p.86, theorem A) that there exists a Borel subset

D of the real axis, having the following property:

v, (¢) = (AND),
- V_(#) = m (AN D),

where A is the interval (O, t] and :DC is the comple-
ment of D .

We shall now introduce a general restriction on the form
of (t). We shall assume that ” (¢) has no discontinuit-
ies, and that € =0 4is not a point of stationarity of /7(1‘-).
Let us remark that the last restriction does not affect the
generality of the argument. For suppose that the first point
of increase of -~ (t) is €, . Then in the interval

(O/ to_] , there is no planned output, and therefore the
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content of the store is exactly 3 (o) + & (t‘)) at t,.
Thus, by changing the origin to to and taking the initial
content of the store to be 5(0) + E(to) instead of ;(o),
we have reduced the problem to one where the point € =o is
not a point of stationarity of ~ (t) .

| We shall show that,if we make the two preceding assump-~
tions then by changing the way of measuring time, we can
reduce the function [t} to the form 7 (t)=F. 1n
fact, the assumption of no discontinuities ensures that there
is at least one value of & for which n7['6) = 2¢, where X
is any non-negative number, Whenever there is more ’fihan one
value of € corresponding to x , we take the supremum of
these values as ,7"(,() .

'We next take as our new measure of time w = 7 (t),
Then ?(ﬂ = §[/7—’(u)] is the new imput function, which
has obviously all three properties required at the beginning of
the section. For the above reason, we shall consider in the
remainder of this chapter -only planned output functions of the
form (¢+)=t

2, The case of an input function which is a step function.

The simplest case that we shall consider is that of an in-
put & (f) which is a step function having only a finite number
of jumps in every finite interval of time. Let &, Ty, .-, Co e
be the points of discontinuity of §(¢t) , and X, X,, ...l’fm’...

be the magnitude of the jumps. Then €(Jc\ —‘-th 7<m o
<
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In this case, it is not difficult to define 3 () by

recurrence in a natural way. We shall assume that the initial

content of the store is } . Then
(a) If Z:IQ} , then, for 0g t< £, , §(£) =3- t,
and for tzv,, s(¢) :3—2&/1‘-7(1, .

(b) If, on the other hand, ¢, > 3, we have

J’}—t for O0gt< 3,
()= © for s<t<t,,
LT for t: tl

In the same wdy, we can define E(t) recursively as

follows: given 3(¥)=3(¢t.) > ¢ at. t = t.. , we have:

(a) 1r ¢, -t <3(¢,), then,for ¢, < t<t .,
3(6):"(1& )—(t—f_,and for € = tm+,>
3(£)=3(t )~ (¢, \+7(M“.

(b) r ¢, -t > 3\'&&) , we have

jS(tm)-(t—ﬁM) for t_ <t < tm + K(tm) ,

5(t):\ 0 for £+ .?('l‘m)s t < tos, s
L'X‘%_#/ for t = t’\'\f' ‘

The situation is depicted in Figure 1.1,

We shall now show that 3 (+) satisfies the following

integral equation:
t
s(¢)=y ¢ 5(6) -t +[UL) e,

where U(x) is the Heaviside unit function, defined by



! for x 20,
U(‘a():
-O

otherwise.
We first note that

o if 3(t}> o0, i.e. if the store is not empty,
U[‘g(t)_}:g

L/ if '§<i> =0 , i.e. if the store is empty.
Consider first the interval [O, t’v] . We have two cases:
(a) t, s‘} . Then for o0gt < t, R 3(¢)>o0 s
ef-3e))=0 , E¥)=0 , ad 3()=3-t,
as required by the formula,
it t=¢t, , §(+)=%,, so thst
5<t):(’3“t4 + K, as required,
(b) f“>3, . Then for Oé‘c’:<} ,
3(t) = g——t > 0 , and 'U[‘Z(ﬁ’)] =0, so that
jtu [-3(«)]dec = © ,  On the other hand, if

o]

}ét<t, 3(t)=o0 , 8o that

E

R '
j U[—?(u)}O(M. =t -2 . Therefore

°

(3-F for o0zt <7g,
g(t}:)1<é-t)+(t_-3>:0 for 4 < t<t,
?,~L)-+?(,f(t-§):x' for t=t,.

suppose that
ml,)[—K(u)_]Ob*-
Then it suffices to show that, for T <t < tas,

() = 3t ) #[Ele)-(e )] (£ -2 ) +ﬁ/[»z(u)]ow.
¢

”o

Turning now to the interval [:tM (=5

)
7 +
$(t) satisfies §(tm)=}+§(f~\) - ,t'm + j

o -



We must consider two cases
(@) &, ,-E < 3(¢, ) . Then, for ¢ <t<t
3(¢)> o0 , Ul-3te)=0 , Ele)-F(t)=0,
and 3 () = 3(E)-(¢-t), |
Moreover, §(t,,)-¥(t )=X_,, , so that
st ,)=3)+X  -(¢ -t as required.
(o t, -t > 5(t_ ) .  Then, for
tet<t +3(t ), 3()=3(t)-(t-t), an
U[-3(6)] =0 | 5o that J:U[‘?(“gd*uQ On the
other hand, if t. + ;(tmys t< t ., ,
3(t)§o , so that Jtl'u[-g(u)JcLu s t-[t 43 ).

It follows that

4+ 7

SS(tm)—(t—fM) for t,st<t, +3(t ),
S0 ) =(et 4t [ 3t )frotor  tr3(t et <t

{\f (t)- (&t 1 [ 2K tor =t

Thus the values of 3(t) =as defined at the beginning of
the section satisfy equation (1.1) for all values of ¢t>0 .
Let us now consider what the expressions for v _(t) and
y_(t) are in the case under consideration. By inspectiqn, it
is easy to see that in this case we simply have v, (t)= Z(¢)
and v_(t)=€ , The set D described at the end of
section 1 is simply the denumerable set 2"%.} , Wwhere the
£ arc the points of discontimuity of ¥(t) . Ve thus

gsee that equation (1.1) can be rewritten as



t ~
3(8) = g +w(t) | U[St))dvtu) (1.2)

e

We shall show later that this integral equation has a
unique non-negative measurable solution., From the above con-
siderations, we conclude that this solutioﬁ coincides with the
natural definition given at the beginning of this section.

Equation (1.2) has a simple intuitive meaning. Thé
conterit of the store is equal to the initisl conte'nt, plus the
net planned inéut, plus a correction term. The corre’ction'
term rgpresents that part of the planned output which could not
be realised, due to the store being empty. If M _ is the
measure induced by _(#) on the positive axis, and B the
set of points in (O,t] for which 3(t)=0, the correction
term is /«A_(B) . In the case of a step input function, the
set 3 is the union of a finite number of disjoint intervals.

3. The case of an input function which has a continuous

[

derivative.

The case of an input function which has a continuous der-
ivative already e;hibits all the difficulties of the general
case, However, these difficulties can be easily overcome in
that case.‘

It is natural to assume that the rate of change of 3(t)
will be given .by the following equations:

(a) 1r s(t)>o , 3(t)=E(t)~I =Vv'(¢).

(b) If 3(t)=o0, there are two possibilities:
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(i) i E'(t) 2!, i.e. if the rate of input
is larger than or equal to the plannedlrate

of output, then the store will start filling

at the rate of El(t) - , i.e.
3(#)= FE)-1 =v' ().
(ii) it E(t)</, i.e. if the rate of input

is smaller than the planned rate of output,
then the store will remain empty, i.e.
3'({:):0.
The formulae for § '( £) in both cases (i) and (ii) can
be summarised as
' '
s'(e)=[T0)-1] =[], .
We shall need the following lemma.
Lemma: For every function y (t:) having a continuous der-
ivative, t
v, (&) = g[v'(u)] du,
> +

Proof':

~m o~

V,(£) = sup f: [v(te,,)-v(&)]

+
t

But St "
| (?t o) (t7 = '(bL)&L%] < i '(LL) C{LL)
b)) [ :&}V -

so that tﬁ
E bl [T e o

On the other hand, because of the continuity of vy (tt)

“inverse image of the set (0 ,00) under the mapping v‘(lk) s
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w e ( 0, t) , is an open set, which is the union of =
denumerable number of disjoint open intervals IM' . Let

/
t tm, be the end points of these intervals, Then

j[v(u)J clu Z.f '(u)o(u-Z[(t) v (¢ )}
Z[Vct ) -v(t))],

The last equality follows from the fact that on the intervals
IM', Y (t) is positive, Finally, because t \)(t)] is

bounded on [O, 'tJ , We can choose a finite subset of the
I, 's such that, if the summation is extended to that subset

only, +t

N ! - '

l [\) (tm) - v(im)] >ﬂ:\) ((,L)] du - 13
~ o +

where € 1is arbitrarily small. For the dissection of

/
(0, t) determined by the ¢ t s, We obviously have

~ . M
Z[ (t,) - v (%) l >£[v'<u)]+du~a‘ (1.4)
Using equatlons (1.3 and (1.4), we conclude that

This completes the proof of the lemma.

Corollary? Under the same conditions, \)_(t) I[V'(‘*)] duw.

Using the above lemma, we can summarize all the equatlons giving

3 (t) as follows:

3'(t) = V'O - -3 ] o] ufsw] o
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Remembering that ¥ (%) :{\) '(‘t)} - [v’(-t)] s We can re-
+ -

write(1.6) as
3'(e) = V() U[-3@)] '] (1.7)

Ecuation(1.7) can be easily integrated, using the corollary to
the lemma, We find
t
s() =3 +v(t) « [U[3)]dy (W), (e

o
which is the same equation as equation (1.2).

The formation of B(f)' in the case of an input function
having a continuous derivative is depicted in Fig, 1.2

*
4~ _The function ¥ (t) and its use in the definition of

3 (),

We shall now return to the case of a gensral input funct-
*
ion, and we shall introduce a function V (t) defined by the

fornula

V%('f>:= - in# \)(u,)
0L ué
This function has the following properties:

(a) It is non-decreasing.
» i
(b) 1% (O) =0.
(c) It is continuous. This property follows from the

fact that V(¥) has no downward jumps.
To gain some insight into the relationship between S(t)
and \)*(t) , We shall consider a special case depicted in
Figure 1.3 . In this figure, v(t) has two minima at T,

and ‘33 , and we assume that O > V(tl) > v(t3). The
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initial content of the store, 3 , 1s assumed to be smaller
than \ v (¢, )[ .

Let us draw the function - y *( +) . It remains zero
as long as  (t) remains above the ¥ -axis, i.e. until
the point & . At £ it starts decreessing, remaining equal
to v(t) aslong as v(t) is decreasing. Then at ¢,
when ])(f) starts increasing, it remains constant, until

V(t) has reached again the value of the first minima,
)/‘._/t') , at fi , and then decreases, remaining equal to
v (+) , until €5 , the second minimum.

Let us now consider the content of the. store. is long
as the store has never become empty, we have S\(f)zz'i—})(f).
However, it is clear that the store will become empty for the
first time when v () has reached for the first time the value

-3 . This will happen at the sm=llest value of & for
which i f w{u) = -7 , in other words when V) () =7

ceustt g

for the first time. This happens at %o . The store will
then remain empty as long as \)'(t) e s 1l.e. as long as

vi(t) =-p () . Hethus see that for ¢, <t < ¢, ,

3(t) = = vt} w*(t) . After T, , (¢ will
increase from zero at the same rate as ) (t) , and then
decrease at the same rate as v (t), until ¢, , when v (t)
reaches a negative value equal to that at t, . During
the time interval (f, t,) , ¥ “(t) has remained constant, so

that again we can write 3(¢) = v(t) +» ™ (t) . 1In gener-

al, v *(t) will remain constant after ¢ in all those

(&)
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periods where the store is not empty, and will be equal to

- \)('b) for all periods where the store is empty, so that,
in general, for ¢ > ¢, we heve S(t)= vit)ty (¢
We thus have

V(f\f; for t <ty

(t) = .
; ) p (Ve v *(¢) for t > Lo

However, for € < ¢, , we have 3 > y *(+) , and for

t >t

os We have 3 < v (¢), so that we can combine

the two formulae for 3 (+¢/) into the one formula
. . - e
3(t) = p{t) + Ao ]_3)\) (H] (1,9)

Let us also note here that &, , the "time of first empfi—
ness of the store, is the smallest value of & for which
vE(t) =1 .
We have thus obtained intuitively for the special case
under consideration, an explicit formula for 3 (-H in terms of
w*(+) and v(+) . It remains to establish formally the
equivalence of the two formulae (1.8) and (1.9) in the general
case, This will be done in the hext section.

5, The formal definition of the content of the store.

We shall now show that equation (1.8) can be used to define
the content of a store in a unique way; We shall need the fol~
lowing theorem:

Theorem 1.%: Let } be an arbitrary positive number, v (f)

a function of bounded variation which has only upward jumps,

that is, v ( ‘t\l - v( t-0\>, O , and is continuous to the
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right., Let y_(+) be the negative variation of v (tl .

Then the integral equation
o t .
g(.(-)-_—fé + v (t) +gu[-§(u)JdV_(u) (1.8)

has a unique non-negative measurable solution, given by the

formula
T(t) = 1)(1‘7) 1-”/\40««[3/1)*(‘6]:) (1.9)

where V *{t):-imi{) v(u).
ozu¢t
Proof:  We recall that V) “(o)=o , and that v¥(t)is a
non-decressing, right-continuous function of t . It is
therefore measurable and non-negative, snd it follows that
$(t) , as defined by equation (1.9), is measurable.

Further, as v (¢} has only upward jumps, v (¢t} is
continuous.

We shall first show that < (+) , as defined by equat-
ion (1.9) satisfies the integral equation (1.8).

Let us consider the various possible cases:

(a) VX(t) < 3 -

Then (1.9) gives us
(W= 3+ v( W) for all w such that © € wet,

and this value satisfies equation (1.8) as the
integrén_d vanishes at every point of (o, t] s
for, as ;V*(.(:') <15 is follows that

} {.023 u(_u) > © , and in particular,

v(w) > o , from which we deduce
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that U[-3(uw)=o.

. Let [ be the first

) v*(+) > 3
t

value of for which \l)*(fJ = 3 . The
existence of &, is ensured by the h;}pothese;
on w(t) ,» in particular by the restrict’ion to
upward jumps only, which make ) y('él continuous
as well as non-decreasing. It is this step in
the proof which makes it imperative to assume
that the planned output function has no jumps.

Returning to the proof of the theorem, we now .see that,
for t =z t, ,
() = v (¢) + v X*(¢) =v(t)-inlula) >0 (1.10)
Otust
Now, at all points Z such that ?(1‘] =0 ,(and this implies

that t 2 £o , by the definition of ¢_), we have
v (€)= - (E) .

If, on the other hand , $(¢) is positive, we have
))(’{:) > —\)*('[“) = ind V(u).
ceuct

A

As ¥ (t) is continuous to the right, and v*(t) is con~

tinuous, there exists § > o such that v(*+e\) > inf i)
_ ccus bk
for all positive A « & . It follows that &  is not a
point of increase of v “(t) . We bave thus established
three important facts:
(1) The first point at which  3(¢} = o is the

smallest solution of the equation y¥(¢) = } .
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(ii) Every point for which 3(t) > ¢ 1is a point of
stationarity of V *({- ) .

(iii)  All points at which $(t)=o are points for
which v (t) = —p*(t].

Let now E‘—‘—{LL; tocuw <t , vt = -v”‘(t»)},
and let D  be the (denumersble) set of discontinuities of
vi{+) . I teD
vi(t) > »(t-o) s-v¥(t-0) =-v*),

and so ¢ § £ , sothat D and E  are disjoint.
Let now . E, :gu. ; t,cu<l , y(t-o) :'-V*(H}.

Then £, =E U D, where D, is & subset of D .
If t4¢ £, , then vt sv(t-0) >=-v*(t) | ang
hence there exists an open interval [ containing t  in
which v(t) > -V *(¢). Tt follows that,in I , v *(t)

is constant., Hence, since ¢_. £ E, , the complement E,

of £, in [‘{0, 'é) is open, and every point of E:C has
a neighbourhood in which V¥(¢t) is constant. Thus v ¥(+!

[
is constant on every connected component of E‘ . But the

C
connected components of E' form an at most countable

family f L f of open intervals. It follows that

f O(Vx(u/\ = ZIIO[V*(&A) =0 .
. £c ~ I

But

[ v = [av(w) + [dv7()

and as \)*(f) is continuous and D, is denumerable,
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* s
. }r d v (“) =G | We conclude that
D, ,

J cf))*(u) = ff{l)*[u.)
E

E!

Now as,on & , v(t)=-p*(t) , we have

J’Av*(u) =—)( Ay ().

= E

Finally,

MO S :fed w(u),

which can be written

~

t
vo(t) ~ »)*(fJ:(U{-E(d}AV(w) (1.10)
to
We now notice that as v " (‘L') is non~decreasing, the restric-
tion to &  of the Stieltjes measure st  determined by
v (t) 1is negative. Hence we must have S ‘_{ j) =0, for

every meesurable subset S of E' . -~ Therefore
. t .
A4 —v¥(e) = S U[-?(u)]()(\)_ («]) .
t

6]

Using now the relation ) *(f‘d] =3, we conclude that in
case (b) also

$(t) = wlt) 4+ v X(¢)

)

(6] [.* I(u\] doar

J

€ 1

= g+ v(t) + g'uf—i(uljou‘-)
to

:3+ V(f)-\» )t

since 3({)=o for o0& t < ty
This completes the proof that S {t) , as defined by equation

(1.9) satisfies the integrsl equation (1.8).
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We shall now show that if 3(#) is non-negative and sat-
isfies equation (1.8), it must be of the form given by
equation (1.9), and equation (1.8) can therefore have at most
one non-negative solution.

We obviously have, for every w such that 0 u g ¢
)

S(u) > 74w (u)

‘and also

t
$(¢) = 3(u) 4 v(t) = () ¢ V[N (o) 2 viE) -v(w)

“

so that

)z vt -iwd vl = vl vl &),

c&w s t
Suppose now that 3(w) > o for all w & [o,t] . Then
U[*?(VJJ::O for all \Aﬁ[olfj s and ?(‘t): 3.*,\)(‘6) .
On the other hand, if Z(u)=0 for some w € [e, t] , and
~if we denote Supg w g(w) :o} by y_ s, then there exists
!

a non-decreasing sequence ?umj tending to 9 such

that 3(uw_ Y=o , For every W__ , we have

~a

o ot
s(¢)= 3w ) +vlth=plu )+ [ vl-3t)]dv ()
¥ o
- v(t)_y(um) ‘ff U[~§(u.)] dV_(u&J
> vithovluw ), (1.11)

mn

Finally, letting ~ tend to infinity, we find that

o< r(ﬂ—[v(f)-w(um\] =j}u[-x(u;jalv_(u)é voly)-v(w),

u

~
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and as V_(w) has no discontinuities, it follows that

2(t) = v(t) - G via ),

A —) O

From this result and (1.11), we conclude that

S(E) =v(t) = 1wt vlu)= VI (EH > 40 (4.
ocucst
This formula holds if t > #. , the first zero of I (t).
For € < t. , we have seen that

3(t) = 3+v(ﬂ > vit)+v ).

Combining the two formulae, we find that

T(t) = v (t) + avwax [3 ) u*(f)j.

This completes the proof of unigueness.

Using the theorem, we can now give a formal definition of the
content of a store.

Definition: Let E(‘é) be the input function to a store ,
satisfying the following conditions: '

(a) Elo)=o,

(b) % (t) is non-decreasing,

(¢) ¥ (+)  is continuous to the right,

(@) F(t)—> oo as .t —> oo,

Let ~ () ve the planned output function, satisfying
conditions (&) to (d), and satisfying in addition the following
condition

(e) () is continuous.

Pt VI(t)= F(f) - (H, and let V. (*) be the negative
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variation of ))(i‘> .

Finally put

V*(f‘): ~nf \)(f).

0fuct

Then the content of the store, 3 (%) , is the unique meas-
urable, non-negative solution of the equation

t
(t)= g +v(t) e [Of3(a] dv(e) o

[~

where } is the initial content of the store.

This solution can be expressed in the form

?(t\:\)(f) +N»\M[3’\)*('t)] (1.9)

To complete this section, we state and prove a formula initially
obtained by Benes [5] for step-function inputs, and proved in
its general form by Kingman ]:41} .

Theorem 1.2: For any value of 4 , we have

-43(t) e av ()

e

T Al (8) =p(ul]
[

U[- g(u]:} 2 V_(u.)_(i.l())

(o]

Proof’: This is based on the obvious identity

At (¢) SN
E_‘ -:/,,4f€./i d )

o

where ¥ (t) is a non-decreasing function.

If we put
t v
He)= [ uf-sta] dv ()

[}

we can write
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~A(E) —43 -8 v(¢t) -4 F(t)
e e . e

—

H

A7 J- -t_ M
o 43 Au[t[L%IGJ.()UﬁﬂLJJR(uJ (1.12)

We now note that the integrand vanishes unless 3(w)=0.

But when 3(w)=0 , it follows from equation (1.8) that
'f(‘*) :/U[~§‘(vl]dl)_(v) :-——} -U(u),

Thus (1.12) can be written

t -
e—-,d}[é}: Q_,‘g _A\)(f) -Af e-—/i[l’(‘(’)‘ v(UlJU[‘r(u)]OlV.(\L).

This completes the proof of the theorem.

6o Various interpretations of the model.

The model outlined in section 1 of this chapter can have
various interpretations. We shall give here one interpretation
in queueing theory and three interpretations in the. theory of
dams..

(a) An interpretation in queueing theory.

Let customers arrive at times ? Lt ...,t;\,...} at
Vi

-
'

a service point with a single server. Let 7Cu 7Ch s Ky o
be the service times of these customers. Let us write
£(e)= 2 X,
ﬁhs;t
e define the "virtual waiting time'" at any time € as
the time that a customer arriving =t time t would have to
waif until he began to be served. This is equal to the total

time required to complete the service of all customers in the
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queue at time € , including the customer being served. It
is clear that if we put n7[fJ.: t , the virtual waiting time
is equal to 3‘(t) . Let us note that, as the input function
is a step function, Y (¢)=7* ,sé that $(¢) satisfies the

.integral equation

/‘t -
$lt)=q + §(t) -t +j Ul-5(ulfoec . (1.ay

(b) A dam of infinite capacity with steady release.

We consider a dam having infinite capacity, i.e. a dam
such that no overflow ever occurs. Let § (¥) be the amount
of water flowing into the dam in the interval (ol'tj . Let the
release rule be as follows:

If the dam is not empty, the release is at a rate of one
unit of water per unit time,

Then 3 (t) represents the amount of water in the dam at
time T

(e) A dam with infinite depth with steady input.

Let us consider a dam with infinite depth, i.e. a dam
such that it is never empty. Overflow, however, can occur,

In other words, the dam under consideration operates in a near-
ly full condition, while the dam in (b) operated in a nearly
empty condition. Let the input to the dam be steady, while
the output in (o/f] is given by &(¢) . Then 3(#) rep-
resents the amount of water required to fill the dam completely.
Thus model (c) is the exact dual of model (b).

(a) Let the inputs and releases to the dam occur at
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fixed points of time, which we shall denote by z 0,1,23 ... }

Let the input at time ~»vi be Xé» and the amount of water

in the dam at time ~ after the input has flowd in beZ, .

(This assumption corrééponds to the right-continuity of the
input function in the continuous time model).

Let the releases occur at the times . before the in-

puts, and let T

[a e

be the planned release, i.e. the release
at time ~v is equal to Pt ( ZM_,) ):\) .

To reduce this problem to the preceding one, we change
ourvmethod of measuring time. In our new scale of measure~
ment, the time elapsed up to instant ~  is the total amount
of planned release up to and including instant ~v , i,e.

t,_\:ZM Tg . Put E(t)=2_ X_ . Then the
k=o t st

content of the dam at time ~ , Z , 1is given by 3(‘[‘6‘) .
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CHAPTER 2

THE STRUCTURE OF NON-NEG\TIVE ADDITIVE FROCESSES

1, Definitions and elementary properties.

In the following chépters, we shall be concerned with non-
negative, additive, stationafy stochastic processes. Let ?(1)
be such a process. It will haﬁé the following properties:

(1) EF(t) >0 - a.s. (Non-negativity).

(2) If t<ty,< .. <t (= '3) , the differences

f(t2> ‘5(1‘,),,.., E({:M)-?(th-,> are mutually
independent (Additivity) .

(3) For every set of points gt,,fz) o, f~hj , and

every value of « , the joint distribution of

the random wariables

§E0t), TlE), ..., B
is the same as that of

{§(t—,+“), f(tzw‘u), ey E(tm—ku) ? (Stationarity) .
It follows from non-negativity and stationarity that al-

most all sample functions of the process are non-decreasing.

We shall write K (t x)zﬂﬂt\é@ .

K(t>) is the distribution function of E(¥) , and ve
have K(t+es) = | |, K(to-)=0 |

We shall also write

_ 400 .
&t »)= E'[e_'AE(fﬂ - S e‘udx«(t, x)} (2.1)

where A = 0+« W is a complex number.
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®(t,4) is the Laplvace-Stieltjes transform of K(t x)
with respect to > .. It has the following properties:
(1) The integral (2.1) converges for every A such
that Re(a) s o

This follows immediately from the relation

4 o0

' -0 N
sge d}K(f,x\é\ , 62 0.

O -

(2) For every fixed value of € , ®(t, A) is an

o doe
He’“‘d,‘«(t,u

o -

analytic function of 4  in the region Re(4) >0,
This follows immediately from well-known properties
of the Laplace-Stieltjes transform (see Widder
.[74] p. 57, Theorem 5a).
(3) ®(t+w, 4) = @(t,4) ©lu,4) . (2.2)
This follows from the additivity and stationarity
of the process ?(t) .

Theorem 2,1 > (t//i) is of the form
®(t,4) = exp §-x(AE].
Proof: Iect A  take a fixed real value such that 432 O .-

For every value of t-, we have O % ®@(t )< | . Put
F(t) =e°3 @(t,4) . Then €(t)40 and we have

fleru) = £LE) + £(L)

We now prove the following lemma:

Lemma: Let ¢(t) satisfy the equation

flteu) = £Le) « £
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for every £ and . . Moreover let  (t) be bounded,
either from above or from below in O < € £ ¢ for some
C . Then f (‘f") =€ for some fixed o .

Proof of the lemma: We first prove that if A is a

rational number, then +F(2)= A£(t). 1In fact let 2 :.m‘/m .
Thon # (omfa) = € (20 1m) = om £4fu).  But
SO D) = m ), e #() =€)
We conclude that  F ([~} =(m ]~} £(1).
Consider now kf)('f)z f(+) - [-C(r_)/g]t .
Then ¢ () =£(c) - [#(c)/c_]c =o,
and {f('h—cx :L,o(-&\«-ug(c.) =q¢(t) , i.e. (fa(t) is period-
ic of period ¢ ., It follows that Lf)(f) is bounded either
from above or from below over the entire t -axis.

Suppose now that there exists f,  such that Q.i)(to)i:O.
We have (p(mt,) = ~ (p(t,) , and this is bounded neither
from above nor from below, Tt follows that ¢ (t) is identic-
ally zero and .p(f) = [{(C)/C] t . Put now £=1 . Then

f(c))e = £(1) , so that rinally £ (¢)=t (1),

This completes the proof of the lemma.

Returning to the main theorem, we conclude from (2.2)
that &9 (t ) = i‘-“(/i\}t , where N(A):-%E@(J,A}.
As this formula is true for all real values of .4 , it must be |
true for all complex values as well, because of the uniqueness

of the Laplace transform.

This completes the proof of the theorem.
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2. Complete monotonicity of ® (¢ A) in A .

We shall start by recalling certéiﬂ definitions and
theorems relating to absolute and complete monotoniéity. For
proofs of the theorems stated, see Widder [743 .

Definition 2.1: A function 1(‘(4) is absolutelx_mondtonic

in the interval @ € x < &  if it has non-negative der-
ivatives of all orders for & <« x < a .
(k) :
f (A>>,O (a</£<@v3eezollljl,.,)’
and is continuous at a .

Definition 2.2: A function €(4) is completely monotonic

in'[a,@) if and only if £(- A) is absolutely monotonic
in (-— 6’ -—a—] i,e, 1if

(-I)f€ \C(é}(/s) o (la<A<6; f=o,1g ),

and (:(A) is continuous at &
Theorem 2.2: A necessary and sufficient condition that \C'(A)

should be completely monotonic in © € A < oo  is that

(0 = g:-“d;(x),

QS —
where F(x) is bounded and non-decreasing and the integral

converges for 0. £ »x < o0,

By using the concépt of comp},ét,e monotonicity, we solve
below, for the case of non-negative random variables, a problem
as yet unsolved in the general case. This is the specificat-
ion of a criterion for a function of a complex vériable to be

the characteristic function of a random variable, which is
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easily applicable to a large class of functions. For a dis-~
cussion of the general problem,. see Lﬁkécs [’4’9]" p. 59.

From Theorem 2.2, we can deduce immediately the following
Theorem 2.3: Necessary and sufficient conditions for the
function f(A) to be the Laplace-Stieltjes transform of the
distribution function of a non-negative random variable are:

(a) Fley=1

(b) (4) is completely monotonic in 0 £ AL oo .
Proof': It follows from theorem 2.2 and condition (b) that:

£(A) can be represented in the form

o0

£(4) = fe-/ix cl!:(J("),

O -

where F'(_r_) is bounded and non-decreasing. It then follows
from condition (a) that -

foccl l—_(x) = 1.

O -
This ensures that #(x) is the distribution function of

a non-negative random variable,

We shall restrict ourselves in the sequol to additive pro-
cesses for which ~(4) admits, for Re (4) > o , the represent-

ation

«w= [ (=) dmlx) (2.3)

where M(X) is a non-decreasing function such that
M(c0) =0 , and b xm{xizo0.
X — 0 :

Let us show that, in this case, @(t,_/s) is the Laplace-

Stieltjes transform of a distribution function.
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We have
-x(4AY € O

(- 1‘,[:—«'(,53} = j x e—ax dM(x)y z 0 5

[ald

(—\)M[—a(”’\(/s)} = f

O -

> —Ax :
x:“ Q db«(X) =2 C
Because -« (4} 20, - °<(A) is not completely monotonic, On
the other hand, we have, writing @ (¢, A) for

N At 4 N N oLy } ’

DU TE®(t,4)/dt" 3 47,

~«(At
(£,4) = ,
VAR =
®, (e =-te < (4) <O |
2 -.odfs\t ' -ot(s)t
©ggl(ta) = [« /,«\] ~te «'(4) >0,

Continuing in this way, we see that @t 4) is completely
monotonic.,  Moreover x{o) =6, so that @(t/ox =] . It
follows from theorem 2.7 that (D(t,/’) is the Laplace-Stieltjes
transform of a distribution function, and the representation

S(t )= e

~-L(A) T
(4) ensures that the underlying stoch-

astic process is additive.
Let us note at this stage that the conditions imposed on
P\(%ﬂ enable us to integrate (2.3) by parts.
In fact, we have
o< .

°<(/5)' (‘- /,x> M(X)} —./Sj o 4 M,_(x)oba)

C
[o]
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(o]
—A
o((A) = —/Sge. * (\"\(X)O{X. (2.4
S
We thus see that, given any function M(x) satisfying the
conditions
(a) ™M (x) is non-decreasing ,
(b) (% (+~t>q) =C 5
(e) e x M(x) =0,
X =20
we obtain an additive, non-negative, stationary stochastic
process t(¢) by taking as the Laplace-Stieltjes transform

- (A) t
of its distribution function e ( , where

x (A) = -—/SSOOQ‘AX M(x) dx .

Let us note that the semi-invariants I .. of Z(‘t) are all

linear functions of the time., In fact, we have

In particular, the mean and standard deviation of F(f) are

E[E(H} = ' (o)t )

1

\/ay[f(i’\] ‘°<"(°)t .

In the sequel; we shall denote the mean value of f(t) per

unit time by (.0 and its standard deviation per unit time by
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oo and we shall frequently make use of the representation
(which follows from the Darboux expansion st = ((A) )
w(a) = ph-S A4+ O 4°) .
2.
3, The relationship between. M(XJ and the derivatives of

< (t x) .

—

Consider the relationship
oo
A )r o™ K(tx)dx =€ O((AW:, (2.5)
o
and denote o K(t,x)/é\t by K 'vo.(f/x) . Suppose that
K. . (t, ‘)c) is dominated for 0<% £ £ T by a function
T)(X)ZOWhose Laplace transform converges for some A ', We

then have

- A X

, Py - (At
!'\'O(O,x) CLX :;E e

/s)f e
o tE=o
T Ax (
= A1 77 M) da .

o
I, follows that, for almost all ¢,

Ko (o, x) = Mx). (2.6)

This can also be written, using the fact that (o, x)=1( ,
9+ 1= K(Et, -
(\’I(X):—Q,Qw\ -__,_\<_(___l_)—() (297)
+ {o t
More generally, if we can differentiate the left-hand

side of (2.5) ~+ times under the integral sign, we find that

OO

AJ{ e K, (0 ) du :[-- «(A\]M: (2.8)

o

= —°<(A) ,
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where ™
KMO (tlx) = S K(t/")'
, S
4, The Poisson Process as the simplest type of stationary

additive process.

We shall now assume that the state space of £ (t) is
the set of positive integers fo} - S % . This implies
that almost all sample functions of the process are step func-

tions. We shall write

o ()= PIT(=m] | m=02 .

RS

Gn (t) = >, P, (¥). (2.9)

Br et
Moreover, we shall assume that, as € — o , 9,(t) is o (t).
This means that, in a small interval of time, the probability
of an increase in 3(2") of more than one is o(t) . Ve

first notice that p, (¢) satisfies the functiomal equation

~

b (Eru) = polt) puls),

because in two consecutive intervals ('E} T +t) , (Z.' +tlt+i—+u>,
the probability of having no change of state 1s the product of
the probabilities of having no change of state in each of the
intervals, Aswe have C £ P, (t) < | , we con-
clude, using a reasoning similar to that of Theorem 2.1, that
-At .
po(f) is of the form & , where A is some non-negative

number.

We now notice that, by the theorem of total probability,
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P. ('&+Q):IDM(6) ple)vp (Hplu) + .00+ p.(t) p ()
(~51)

As uw—» o , we have

-~ A

polu) = € = (=2 + ofu)

polw) = 1= plu) =g, () = Xu+old,

A

S g (g )€ 2l < g0e) = o),

f; =2
It follows that

F’,K(t—""“): F,“(f,)(/‘AU--) ‘f‘lbm_'(f)).u -/—-o/u))
and
F’m({.ﬁ-ui F,.L(’['):”}I-P ('lf)—- (u)] +U(u

so that finally

p. (t)= -2 [PM(f)—FM_,(’é)-_] , w2l

We can solve this differential-difference equation by generating

functions. Putting

—a2

Z P (t) 4" = T’(f/A))

we find that

2P _a(4-0U P

>t
Integrating and remembering that

T—.D(O//S): ,Go(o> :")

we find \(4 Y

Pt A =&
_\tz()t e~

~mMEO
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so that P-M (f) = e—}f (}t)’v\. , (2'10)

{
(4.2 SN

We thus see that, for an additive stationary process with
state space {0/ 2 - } , the unique condition
%,_ ({-): O(f) ensures that the numbe_r of changes of state
in an interval (O,f) follows a Poisson law with parameter N € 5
where A = - gcrg P(1) .
Let us also note that in the case of the Poisson process,
the Laplace-Stieltjes transform of the distribution of § (f),

@(t,/s) , is given by

o

e = 5t —A4\™
@(,‘(I,A>:>___. QA PM(t)-:Z e_) ()te)

M EO0 MmO M‘.

at(1-e7?)
= >
_,4>
so that o« (4) =X (1-e
Remembering that
J e~ l[_ M(z)} dx = B ,
o A
We see that we can obtain - ™ (7() by finding the inverse

Laplace transform of ,\(I—Q-A)//S- . We find

-2 o< %< ]
M(X):{ (2.11)

{ o x> |
We note that 1 + I:M(z)/)\] is the distribution function of

a random variable whiqh'takes the value one almost surely., We

- -
thus see that | + LM(X) /XJ can be taken to represent the
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distribution of the length of jumps. We Shall see in the
sequel that such an intefpretation can be extended to a wide
class of additive stochastic processes.

5, The compound Poisson process.

We shall now relax the assumption thet the state space is
discrete, but we shall continue to assume that almost all sample
functions are step functions having a finite num'b'er of discontin-
uities in any finite interval of time.

To. analyse such a process, we associate with it a couhting
process, N (t) , which is equal to the number of jumps.in

(o, ) . This process is additive and stationary. Ve
shall assume that it satisfies, for small t , the additional
condition T 2 N(t) > !_,2 = o(t) . Tt follows that N(%)
is a Poisson process. Let us assume that its parameter is

A . Moreover, let K represent the length of a jump.
Because f('é) is stationary and additive, jump lengths are
independent random varisbles having all the seme distribution.

Let us write
'PZX‘ S)(%v = B(x)

Moreover; let us derote the nth convolution of B (X )
with itself by B_ (%) . Using the theorem of total
probability,, we find

>0 —}t ~
K“’,k):Z e <_}_§'l B (x) . (2.12)

' -t
Expanding €. in powers of T  and multiplying out the
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two series, we find

O
Ktx)=2_a. (x) £ , 30 (2.17%)

4

~ o = te
where - a,“(x):-‘ (-1} A ;(Q)(—” B&('X) ;
Differentiating (2.13) m. times and putting =0 , we find

K. (o,x)= a (x)=(-) X" g:(z)(-f\éBg(x).

and in particular

Mx) = K o (e,x) = =X X Bla))

so that  B(x) = (+ [M(x) /2] .

The Laplace-Stieltjes transform of the distribution of
Z(¢), @(t//i) , will be given by
o<l

®t,5) =, w(t) =f & Q_QMJ et AR () |

o~ ~ o -

o0

:; e”}t(g_j‘:fw(,,s]m: \%«m‘:-)tit— Le(a)ﬂ

where \{/(A) ig the Laplace-Stieltjes transform of B(’f) s

o

w(A) = S e dB()

(=]
The term-by-term integratioh is easily justified by the fact

that the total varistion of B_ (%) is unity. Tt follows
thatt @ (£,8)=2 €)™ /nl | t2c uhere

A

e (4)=x [wlg)-] =1 > 2(’5)(— VW), so that
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e (A) = 4 S ek (ox) da.

M O
o

In this case, of (A) is given by the formula

ol (4 = ’A[l« L()(A)] ,
= %SZ?— e'“).ok’e‘(.i). (2.1.4)

[

Let us note at this juncture that if B(x) is absolutely con-
timious, then so is M (%) , and if Blx) is a step function,
so is ™M ( x) .

Looking now at the shape of K ( T x) , we note that

U K (£, 2) = bone @ (2 4).

X - O A~ 00

We shall assume that

Uo B(x) = PiX =of =0
Then »

b win) = o,

4~ oo

so that we finally have

7 » _Ai‘
Cine W (t,x) = &
K= S

Thus W {t,x) will always have a jump at the origin, in the
case of the Compound Poisson input.

Suppose finally that the service time distribution B(’() has

a continuous derivative 6—(71) . Then BM( X) has a contip-
uous derivative & (x) . It follows immediately that K (&, x)
has a continuous partial derivative in 2« for all x> O
given by

f?_ i< ('t/ x) = & (t,X) :.f‘ 8_)“69_?;)% 5’“ (x))

3 x ~=f "
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-At
and, for fixed ¢ , has a jump of magnitude K(to)= &

at x = 0O , so that we can write

K(t/x>: K(tlo) +§x'%<‘t/})0{'}.

G. The _input process of the gqueue M/M/1.

Let us examine the input process of the queueing model
given in section 6 of Chapter 1, in the special case when the
arrival process is of Poisson type with parameter A , and the
service time X is exponentially distributed. We then

have .
e

-

B(x) = /\DiXé,x%': \ -

X
In this case, X has a density function given by a e./“ s

and LJJ( A) s given by
x®

™ ax M
A) = e . e d ’-:._._/_u___.
v (1) i S * =L

This queueing model is known as the queue MM/

We have in this case

2 e Wt ) dn =O(§A):axp§\-it£\— f::s“

o

Let us write

" ax ot 2
Se, Kt x)dw =€ . L e )
’ A
¢ - 7fft Apt
At 7 FA fa A
- € € +_& =
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Using Erdelyi [19] p. 245, No. 35, we see that the Inverse
Laplace Transform of "e)ﬁtm//i is I, (2 A-/u.tz)
so that the Inverse Laplace Tr’ansfor;m of ekﬁt/(ﬁ’“)/’(/s{/u)
is 771 (2 .57«?{1) . We conclude that K (t,x)
is given by

ot
K{t,x)=¢€

[ L) e [ 7 T, (a5 ) 4]

o

From this:formula, we o‘btéin, as expected

. -2
bon. k (t x) =€ t
N A0 / )
as lo(o) = |
Also, for >0 , >0 , K(t/X) has a continuous
derivative, given by
A St SH*AT Gk
eq(t,x)—_:b% \/\(tlx)—@_ 1{_7‘6 1, +e 5%1-#9. IA)
B N — :
= e ' %L lo(-?ﬁ)u K).

Using f(;(g) = I'(S) , we find

B R ' —_—
R(t, =)= € \/W*‘f I,(QV/A/@X))

o
: ' -t
and we note that R (to)=>ml e 7

7. Bunched arrivals.

Let us return to the process €(¢) with state space
ZG, L2« § , but let us now replace the condition

9 ()= o(t) by the conditions

p, (1) = 1=t +o(t),
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7/

P"“(‘t)zkmt .{._.o(‘tll M:llﬂ e (2,15)

We again use the equation

~.

Pm(f+w;:;, ‘am‘%(t) Pﬁ(u)) ~ 2

~C

which becomes

~

Rearranging the terms and letting w tend to zero, we finally

obtain

~A

p;(f) = — X \om(f) +%Z_. FM-Q(H ’\f’e'

=t

Putting, as before

P(t,4) = f;o FM(*)AM)

and solving the differential-difference equation by generating

functions, we find

3P _ 2" +(f )\MA~\>P. (2.15)
>t ' e

oo
Let us now write L. (A) = A - L >\M A7
o=

The solution of equation (2.16) becomes, using the fact that
?( é’/ /3'} = | ’
, - LAt
P(t,4) = @
We now note that for the p. (t)  to form a probability dis-

tribution, we must have V(t NN , so that
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N=S N (2.17)

~~
M

The Laplace-Stieltjes transform of the distribution of E'(t)
can be obtained in this case by replacing A in 73(154) by

A
e . Thus we have

®@(t,4) = eryp ux +i>\mém} I

™~ Ty

and

w(s)=X=9 2 &,

«(A) =2 j (1- ") da(x)
o
where " B(x) = {:‘;)‘—k/A

Because.of the relation (2.17), EB(IX) is a genuine probability
distribution.
We thus see that the process defined by condition (2.15)
can be described as follows:
(a) the points at which there is a change of state form
a Poisson process of parameter A,
() the probability that, given that a change of state
has occurred, the magnitude of the jump‘is Mo,
is 'wa/ 2.
If we regard the value of'.g (f?) as representing the

number of arrivals in (o/f ) , then the process described by

equation (2.15) is a process of bunched arrivals.
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8. Processes where the sample functions are not a.s. step

functions with isolated discontinuities.
We have seen in section 5 that, in the case of a Compound

Poisson process, .
Y

Pla(t)=el = Klts)= e
We conclude that i ’PSL?(t):C% =1 , i,e. for almost all
t—o

sample functions, there is an interval to the right of any
point of increase where ¥( (’) is constant.

Thus, in the case of the Compound Poisson process, almost
all sample functions will have isolated points of increase.

Let us now consider the general form of the process where

o((/s): gZ—e_Ax) cl\\’\(x) .

S

If j AM{x) is finite and equals X , then the process is

a compound Poisson process, with Blx)i= 1+ ‘_M(")/)} .
o

If, however, LAM(X\ = o  then Ae:‘:lo((ﬂ = +9% | 80

that P{Z(t) =elzo t>o0 , and in this case points of

‘increase will not be isolated for almost all sample functions.
The question now arises whether a non-negative, stationary

additive process can have continuous sample functions.” The

answer is given by a theorem of Doob [1'7] p. 420, which we

quote here,

Theorerﬁ 2.4: Let 3\5(“-‘:) sast g €»§ be a centered

process with independent increments and no fixed points of dis-

continuity. Then the following conditions are equivalent:
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(a) 5(6) —~ ¥(a) is Gaussian,

(b) every difference g({t+u) -§(t) is Gaussian

(c) if the process is separable, almost all sample

functions are continuous on ian @j .

Thus processes having almost all sample functions con-
tinuous are necessarily Gaussian in character, i.e. they can-
not be non-negative.

oo

Tt follows that processes for which 5 d M(x) = 400

have sample functions with an infinite numbé; of discontinuities

in any finite interval.

9. The derivative of the sample functions of non-negative

processes.
We shall now show that, in spite of the fact that the set

of discontinuities of the sample functions of the process is
dense, the sample functions still have zero derivatives almost

everywhere. To show this, we write

g(‘—e ’“)dm( ) =

5 j (1-e") dmlx)

‘V\."

™M O

Now &f(>[-§(;-2’fx).in4(x)i is the Laplace-Stieltjes transform

~o

of a Compound Poisson process. It follows that

o
%(t\:z gm(t))
M=o
where the Laplace Stieltjes transform of %;‘(t3 is

2x f{_J (1..a_Al)ch4(x’1, and the series converges in

g
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probabilify. It follows that there exists a subsequence of

partial sums which converges to g (‘t) a.s., and because all the

terms of the series aré non;negati,ve,, the series itself must
converge almost sur.ely.‘ Finally, we use the fact that the
sample func.t.iéns of the process are non-decreasing functions and
apply Fubini's_theorem on series of monotonic functions, (see

Boas [8] p.139) which yields

E'(f):z E,I“ (t) for almost all t .

But as «f; (t>= O for almost all € , the required result
follows. Thus we can state

Theorem 2,5 For almost all sample functions of non-negative
additive processes satisfying equation (2.3), the following

property holds:

t'(t)=o for almost a11 T .

We shall now discuss in detail two non-Poisson processess

(a)' the Gamma process,

(b) - the Inverse Gaussian process.
For both processes, the distribution function Vﬂ(t,x) is absol-
utely continuous. We shell denote the density function of the
process by % (t x) . This is related to the distribution
function by the relation _

rx
e, =) =) felt,g)dy .

[&]
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1n, The Gamma process.

Th_é density function of this process is given by
- Xl t-1
o ()= 7Y ®) e (xle) . (2.19)
The Laplace-Stieltjes transform of the distribution of the

process is given by

(‘t A) = ET_(; [GMAX e (;_) dx .

Let us put q= x(A +€—') . Then

- \ to _
@(’EA):(‘?)t(ugz—,) rmi Ty

\t
1.6 (t A) (——-——————-‘ +[) / . (2.20)
It follows that
— e ® . = eﬂ IR A\ 29
= (’A> _’ "‘? / A> 3 ( E / ( 21)

We can obtain —M(x) by finding the inverse Laplace transform
of x{(4)/4A i.e. - [Qc—g (14 CA)]/A

Write
?‘; &3 (H—(’A)'—’—Al— eagf +j;— pcg (EL +A>

From Erdelyi [19._\ p. 251, item (5), we find
~m(x) = s bog ~ — E;(— = ]
Mie) = Gge v by :

M () = Eg(— —’(—) (2.22)



where Ex (x) is defined by
Eql-x)=\ &
- AL"X) = it Ay .
x G

We can note immediately that

(Tl = o (- 2) - g by = oo,

=20
c

so that the Gamma process 1is not a Compound Poisson process.

We can also obtain M () directly from the formula

o 1= okt )
t—o t

M(x)

I

=l J
t-auLa‘(:l"(f)

We note that e * M(€) =t M(t+)=0()=1, so that

t~o t o
. Lo %’ q _ld
o=y e E ) g
>

Putting % = } , we finally find

MG =- [ &7y = Ei- %),
x 3 e
as before. ?

We can easily calculate the mean and variance of the process

per unit time, We have

(2.23)

\
o

Loefs]= )=

]+()A Azo

(2.24)

. = o) = £
Van € ()] ( aor

i
T




48, 2.11

11, The Inverse Gaussian process.

This process has only recently attracted the attention of
statisticians, Its properties have been extensively studied by
Tweedie [73:’ . However, the additive character of the process
has not been pointed out explicitly by Tweedie.

The density function of the Inverse Gaussian process is

given by 3

M= '(e)z“r[‘ C o~ (x-et)')

/2w x 20 %

-

2
We shall show in the sequel that P and o are respectively

the mean and the variance per unit time of the process. This
shows that the Inverse Gaussian process is muéh more flexible
than the Gamma process, as it has two parameters as against one
fgr the Gamma process.

We first obtain the Laplace-Stieltjes transform of the
distribution. This is the ordinary Laplace transform of fe (t/ x)
with respect to X . To calculate it we first rewrite & (t,x)
as follows

%(tnc) = te

o[22

Nty

g2 ) a? idj'x

3,2
x‘%bxro[—fx +l’2t._ gt ]

We now note that the Laplace transform of

3 tt
o 2 WP(;QU%,) (2.25)

is, using Erdelyi [19] p. 146, item (28),

3

L 3,2\~ 7 3,25 &
e e e 22

o’ a
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If we premultiply (2.25) by ex P[" _':0._:] , the Laplace

gt
transform of the new function will be obtained by replacing A
by 4 +—(€‘ﬁ201). Finally, introducing the remaining constant

factor)
3

L er[E]

we obtain

@(it,/s):exxla{- _ﬁ_{‘/zfo-%ﬂo’ -p)ti.
E
This shows the additive character of the process, and we see

that

«<(A) = ,?92 (JQFGZA +p? -g) . (2.26)

We shall now calculate P4(1J for this process. We must

invert M(A)/z& , 1.e. find the inverse Laplace transform of

(J2pa*s+ p* 5)

-f_

-

4 A

———

We rewrite this expression as 3
2

ETA
N o A

-+

\ 4 +.20' 24 ‘20

Each term of this expression can be easily inverted, using
Erdelyi [19} p. 176, item (4) and p. 235, item (21). The
result is

WEX £x ¢ F* ¢
,M(x)zc_.‘_ TT'% &x\o[— _2.;_1]4-;-2- Erff;; - = (2.27)

where ErF(z) is defined by 2
Emf(x).__z:f e ¥ Ay,



50. 2,14

Finally, we note that
3
k)

(%) ZO%M(X) =¢—~fé§‘_ (—S—) ?f%f(- §2> ; (2.28)

so that o<(/s) can be expressed in the form

o
sy = [(=e7) ) dx,
where ~ (%) is giver‘i by formula (2.28).
We now calculate the mean and variance of £ (‘t) per unit time.,

We have

(E E[§({-)]-,—.o('(o :5%" (.chrz/; f-f-?)‘z' f?fa-‘Q/A* _—_f)

L
2

o “ -3 2 2
'é’ VM[ }-(tj—]:_d (o):(.;% é(-é}(?f()‘i&{-fz) 2 (—9/00'2)/:0: S .

as stated at the beginning of this section,

12. The non-stationary additive process.

If we drop assumption ? from the assumptions of Section 1,

we obtain a non-stationary, non-negative additive process. Put

@ (w t;4) = E(Qwiﬂt)—fmq

L

We then conclude from assumption 2 of Section 1 that, if

W< w< t
O(u,t; 4) = @(u w;4) @(w,t 4). (2.30)
The formula Acorrespon_ding to (2.3) is
&3 @(q,t;,s)z—g(‘--e'“ [ol}M(’c/x‘)—D(x-M(u,x)), (2.31)

(see Doob [17] p. 418), where ™M (t,x> is non-decreasing in
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both variables € and x , and M(tl oo) zo,

M(0, ab) =0 , for x > © . In the case of a station-

ary process, we have M(t, :x.): t M(l,x) . One particular

case is important in applicationg,;namely that where

M (t, x) =/ (t) M (X) R A (‘1—’) being a function of £ which

has a -continuous positive derivative A (f) , and M(x)

being a non-decreasing function of 2¢ such that M(OO):O.
In this particular case, the process can be made station-

ary by changing the way of measuring the time, Let us put

T = A {(4),

Then equation (2,31) reduces to
log @ (u,t;4) = - (T,-2,) «(4)

where G, = A (¢), T, = A (u), 2nd

0

O((A>:g (I—Q—Ax>dl\/\(x) )

as before, The process is now stationary with respect to the
new time scale. |

One example is the non-stationary Poisson process where
the probability of m arrivals in (u t) is

[ A [ ) ol

|
[ 2

e (2.32)

Another is the non-stationary Compound Poisson process
for which the condition M (t x) = A(+) M(x) 1is sat-
isfied and M () is finite and can therefore be assumed

without loss of generality to be equal to one. The transform-
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ation'Ezdﬁ.Ct)will reduce the process to a stationary one.

In that case, therefor‘e)t.he Compound Poisson process can be
analysed into a non—stationarylpfocess of érrivals, such that
the probability of ~». arrivals in (LL/t') is ‘given by form-
ula (2,32), and upward jumps of'magnitude X" at each point
of arrival, where the X 's are independent, identically

distributed random variables, with distribution function given

oy

’P{X5;(§ = 1+ M(x).
We obviously have in this case

oo (A(d)-alw)

)1 Pt .
@(u,t;/s):z e E-“_(ﬁ)__‘_‘{ﬁ.‘:’] [wn} |

Mz Q (AW

= exp [- {JL(tv)—J\_(m)H | - W(A)g} :
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CHAPTER 3

THE TIME OF FIRST EMPTINESS AND ITS DISTRIBUTION

1, Definition, measurability and elementary properties.

In thié énd subsequent chapters, we shall be concerned with
storage models where the input §(f) is a non-negative, addit-
ive stochastic process of the type investigated in Chapter 2, and
the planned output function is given by the formula ~p (¢)=t.
Let us notice immediatgly that /y(t) can also be considerced as
a (degenerate) non-negative stationary additive stochastic
process.,

The net planned input function, ¥ (t) =%(¢) - t, will
also be in this case an additive stochastic process, whicn is
stationary if ¥(t) is stationary.

Let us note herc thet the vime of first emptiness
of the store is a variable which is not specifically related
to the storage model under consideration. It does not depend
on the assumptions made about tne behaviour of the store after
it has become empty. The time of first cmptiness is zimply
the first passage time of the process »’(t) av the value —5,
where 3% is the initial content of the storn» . We thall
denote the first passage time by '6(:;) . More preéisely, leb
lﬁi be the sample space of all random functions {v\>{f,bé>;

Lo E-f2§, Te every random functioﬁ \)(t,u)), and every non--
negative number ZV ,-we make to correspond a number Z'(%/Lu>
as follows:

(a) if v(f,uﬂj>~v}_fm?all t , we put Z(g,wQ:S*“ﬁ‘
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(b) otherwise we put
G (n ,w) = '\v\"-zt 5 v(h‘i‘/w\ < —3} .
Let us note that the fact that v( t, w) has no downward
discontinuities ensures the validity of the equation

~

1% [Z(_z/u)j' -.:\ =-=3 - This can be shown as fo}lows:

There must exist by definition a sequence f(tmg tending
from above to & , and such that v(f:M! w) £-3 . It
then follows that we must have \)(Z/ L,_,) < -3 . Onthe
other hand, if we had Vv (’E_, w) < - % there would be a
value of ¢ < & such that v(t u) < - 3 s contradicting
the fact that &  is the infimum of the € 's satisfying

v (t/ w) < - 3 -

The above rules define Z(g/ w) as a function on the
sample space _Q . We shall now prove that it is a measure-
able function of w . To achieve this, we must prove that
the set i w Z‘(zl o) st} is measurable for every T .

Let us note to start with, that (3,0 can be redefined
as follows: Z'(g, «>) is the smallest value of &€ for which
the equation V *(t/ w) = 3 holds, where y‘*(‘{; ) is defined
as in Chapter 1 by the formula

v*(’f, w) = - ind v(wlw))

ocugtelt i
the only difference being that now ¥ * is also a function of

the sample space point u.J .o. We also recell that V * is

a non-decréasing function of & .

We note that, if to is the smallest value of [
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satisfying v"(@ w) :-3', then v ¥ v(uww) =-3 . If the
- oewtt

value -3 were reached by v{t ) at a smaller value of € ,

say tol , then we would slso have in ¥ V‘(u/w) =-2

0sus t‘;

which contradicts the hypothesis that tc is the smallest
value of C satisfying \)*(f, w} = } . Thus, we must have
V(“/ w) > -3 for all w < to. Moreover, because of
the fact that v (‘c, u.;) has no downward jumps, we have

Y (t% )= - } . Thus we must have

r = '.vw()g't

[a]

5 v(f,w) £ -7 3 )
as required.

We can now show that the set E w Z‘(;,w) st} is
measurable. We must first note that as V¥ (J(“, w) is a
function of bounded variation in € , 1t is separable, i.e.
its value at any point of [0, t] is a 1limit point of the set
of its values on any denumerable set R  that is dense in

L o, t] .

Now the event § w Z‘(}/ w\) < t} is given by

W ‘\V\‘\Z \)(0})5"}}

ocust

{w,‘ Z(g,w)st} =§w 5 v“(f);g}
E

Y %w)'\)(u)é-gg

- gw;v(ds-;}.
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But, as each event {kc ; v(w) < -3 } is measursble and the
set R is denumerable, it follows that the set

zw)' Z(Srw) < t} is measurable, and so Z(Q'u) is a meas-
urable function of w ',

We now recall that a random variable is any measurable
function on the sample space 5 , whose range is the real
line (— oo |, +on> (c.f. Loeve E47} , p. 180). If the
probability that the function is smaller than +oo is less than
one, then the random variable is said to be improper, or
defective (see Feller [21] p. 283).

In our case, we have proved that TT(glcu) is a measur-
able function on the sample space 572 . It is therefore a
random variable in the sense indicated above., However, it is
easy to see that this random variable may well be defective.
For instance, if 3 (t,VJ> =2t a. 4. , then obviously,

Pi—c(é;"’) <100 % = O , so that we have in fact

PYG(3,0)=+of = | . We shall later show that a
necessary and sufficient ocondition for"3(3,t~) to be defective
is E[E(t/w)] > t

Finally, we note that the first passage time at zero,
starting from s is the same as the first passage time at

4 starting from A3-+1)

2.  The L.S. transform of (%) in the case of a stationary

input process.

We shall now consider the case when the input process

f(gco> is stationary. It immediately follows that
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v(t, o) = E(t, w) - t , is also stationary. We shall

write _ —Av(t,»)) y(4)t
g e = &

J

Pizleti=G(¢ 4).
We shall prove the following theorem:
Theorem 3.1: Under the above assumptions, the Laplace-
Stieltjes transform
i~a
"lpg) = £f & PP o e oty

I ]
is given by

Clp,q) = e-s(r)g

where ©  satisfies the equation

‘3 = X(G}.

This equation will be called the characteristic equation of the

process ?(t/ ).

Proof': We use the remark, made at the end of the preceding

chapter, that the first passage time at zero, starting from 3 s

is the same as the first passage time at \} , starting from
3 + \3' . We shall henceforth ignore  wc ~dependence, and

write symbolically,

z ( 4+3) = z(y) +Tl3),

i.e., we can write Z(“(ﬁg) as the sum of two independent ran-
dom variables, having the same distribution as < (g, u) 5

IS (3 , w\ respectively. It follows that 3(3 ) is
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"
°
n

infinitely divisible with respect to the parameter 3 and
the Laplace-Stieltjes transform of its distribution, P(F/Z) s
o o(p)y

is of the form . We now show that © (3) also

satisfies the equation

“C(’é}: 7 -\—Z[E(g):} (3.1)
In fact, if the initial content of the store is 3 s then,after
a period of time of length 3 , the initial content has been
exhausted, and the new content is the input in the period(o,g] .
Equation (3,1) is to be interpreted as follows:  the distribut-
ion of the random variable, Z(é) , given § (3) , is the same
as that of & [E(S)J + } .

Using the theorem of total probability, we find
[ —pT(q) romev-polEisd, D
t[ef’ szizft[e””’ ’ {S(g\“,

—'03—65(’5\\

3

Lpe)y ¢ eﬁf(?ﬁ-ﬂ}

:E;e

- &

en((:+8>’é + }‘6(9> ‘

—

But as
N ) S
efe PZ(‘?S’] e 0

we must have

_.E)} :—(F-&G); +~’§, \6(9>)
p = y(8), (3.2)
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as required. This compl tes the proof of the theorem.

B Some properties of Q(P) and the corresponding properties

of @
We shall restrict our attention to real positive values
of p in this section. We first notice that because of the

relation .
O

Lt 9((})3
°f
(e =f e sleg)=e
~oo
there must correspond to every P > > a real value of & .

Moreover, because of the obvious relation

- olr)3
o< & <

we must also have S(P ) > o,

Just as (\9/ 53 can be continued analytically to the
half-plane QQ(P) > O , so can G(F\ , so that B(P) must
be snalytic in  Re(p) > O .

Finally, we note that we must have

o
b () = Lo (& AGlg) =Pl )0} =0
P--»c«:. l::-aox 0._
for all g > o , as 3(“.-' cannot be smaller than 3 .
- 6(p) ’
Thus we must have Q/vw'» e r z O for all
P-—)o«:
3 > 0o , and this 1wm11es that
o 8(;4) = ) (3,3)

P—%m
On the other hand, in order to determine whether Z’(g) is a

defective random variable or not, we consider the limit of



»
.
9

60,

'I_'(\"J,z) when p tends to zero, for we have

r’
i ©(p3) = ?%g d6(tq) = elmc;@g3 ?gzm<+m}
hus a necessary and sufficient condition for Z(Z) to be

defective is

e/\:v ()g) :Qp:,v\ G(t,}j < | (3.4)

e t._, o

-6
Using the representation lﬂ(()/gj = €& (F)} , we see that

condition (3.4) is eouivalent to

= b 8(p) >

? - 0
>
Now, because of the continuity of . Q(P) , 6 must satisfy the

equation

K(E’*\)=O } ' (%.5)
We shall write
_ _LEE)) | -x(WE
Ele”t T =e

and we shall assume that o((A) can be expressed in the form

)

o (4) = f(q *)dm(x)

where N1(X) is a non—decr9351ng function such that 6A- Pl( )= o.

X = o0

We shall further assume that _f—l/vw x M(ﬁ‘) =0 -

]
The possibility and imnlications of such a representation have
been discussed at length in Chapter 2.

Integrating by parts, we find that
. oo
ot {(A)= A ( e

J
o

~Ax

M(x)dx =A=p-(/_8>} say.
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We shall also assume that o¢'(©) is finite, and consequently,

as o '(0) = lonn :'.‘jgf)z &»;se"“ M(x) dlx, the last limit will

4-0 As0 d
exist.
Finally, we note that in this case, the function which we
had previously denoted by X(A) is now equal to A -o((ﬂ, so

that equation (3.2) becomes

p = B -o(0). (3.6)
Er~uation (3.5) can then be rewritten

9#’:0((@*) . (3.7)

L8
Trus © is a fixed point of the contimuous function « ( 8) .

We now note that

o'(A) = (Q—Ax x dM (%) >0

-

o
o'(4) :-J e dAmM(x) < o ;
[

so that ' (/5) is a decreasing function.

Also

|

b ()] 5 = limm g?“ M{x)dx = o,

A->o0 A—>>o0e
o

so that, for large A , we must have o((-A} < A,
Finally, we have d(O) =0,
We now consider two cases .
(a) '(0) > i . Then = (A) >4 in the
neighbourhood of the origin, and as ¢ (/5\) <4

for large A4 , there must be at least one root of
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(3.7) other than zero. Moreover, as o<'(/5) is
monotonic decreasing, there can be at most one
oxtromum of «<(A)-A in A > O , so that there
can be at most one non-zero root of o (4) -4 = O-
Thus, if «‘(c)>!,there is exactly one real pos-
itive root 6~ of (2.7), and we must have
P 3 Z'(;l) < +~>0} = e_—e })

*

PZZ(Z)): +oe}: - e—e}.

() o'(0) gt . Then «'(4)<\ for all 4> |,
and as of(O):O , the only non-negative root of
ot(A)=4 is A=0, so that 8(0)= G , and

we have

’P{Z(3>< -+ao}:: \)

so that Z(g) is not a defective variable,

We thus have the following theorem.
Theorem 3.2: Under the conditions laid down at the beginning

of this section, a necessary and sufficient condition for Z(g)

to be a defective random variable is
P=t E[s(t)) = '(0) > 1

If this condition is realized, the equation (@) =6 has a

. - - 3 *
unique positive solution © °, and we have

/P%“C(g)=+o<>§= |- €&
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Theorem 3.2 has a simpie intuitive meaning. As £ is the mean
rate of input to the stoi'e, the meaning of the theorem is that
the store will almost su'fely become empty in finite time if and
only if the mean rate of >'1r1put ig smaller than or equal to the
rate of output (i.e. unity).

We proceed to calculate the mean and variance of '5(3) when -
it is a proper random variable, i.e. when Qr Q(f’) =6(c)= 0.

F) - O
We then have

elz(z)=-2 (pg)

ap‘

"8( \ 1
= & Ps 9'(50)3‘ = 8(0)3 .
P:o P“-‘O

Using now -p + 6 - «t(8) =0, we find that

- fe'({o) - o(‘[@(r:}] 8‘(&4) = O, so that

. |
&(F)-— "‘"“"—‘\ ~ M,[?(“;‘)} )

' | _ \
8(())_ (—o{‘(0§_ \'f

and

It follows that

E[Z‘(g)}:%_ if f<l.

If P 2> | , we obviously must have

Flz (3 )] = +oo
as Z(g} takesthe value 4+ oo with finite probability.
For the variance, we find

b4
)

— [6!(0} = - é“(O)B .

20 o '
zh)] = —, T {p,
L) = )|
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But
“ o(u{Q(P\] GI(F)
e ): - p)
(P i - o(.(:e('?))}z _
so that
el

(r-p)°®
But - «'{(0) = & ig the variance per unit time of § (t) .
Thus we finally have
i[ 3 2 fb
o 2(g)] =~ .
3
(-¢)

Let us now consider the behaviour of 'C(}) for large values of
SO As 25(}) is a stochastic process with independent
increments as a function of 3. , it follows from the strong law
of large numbers (see Doob [17] p. 364) that, with probability
one
Lo EEQ—.E[?ﬁQ}-
3= 3 3

When fp < | , we have

Lo, Tly)
3o 3 1€

and when p > |, we have

b TB)_ 4 om
17 5

Applying the Central Limit theorem, we can also state that, if

p=< { , the random variable

o-p%[oﬁﬂzc)—g]

G\i}

is asymptotically normally distributed as 3’ tends to infinity.
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In the case where £=", amore precise result can be obtained.
Let us first note that the Laplace-Stieltjes transform of the

distribution of €(3) / 2% ig given by
e[ exp{- sz }]_ wxpf- e(%ﬂ)zg.

Let us calculate &,w. S(F/32> % We have

3= -
F +9<22>—°‘[9(§:Z>J:O .
But d(A\ f/i-—ié +o(/$)-—/$__ o_';/;ja-[-O[,Az).

It follows that 7]
e olf)-ol) £ ) -] -

This can be written

[o(2) -~ 2 + <[ (o2 ]

Finally, letting } tend to infinity, we find

e{/m 9( » } = 2|9
3 —_
It follows that

z( )
U E}{-?/x!og }.&)fze

7 —» 00
2

a

But the right-hand side of this expression is the Laplace

transform of

/ .
' o 't | (.8)

o lawt?

2
We can thus conclude that the limiting distribution of 3(3)/3

as 3 tends to infinity is given by (3.8), provided that a
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continuity theorem similar to that of Lévy (see Lukéés [49]

p. 54) for characteristic functions can be shown to hold for

Laplace transforms. This we shall presently establish.:

Lemma: Let {‘E;(l]§ be the distribution functions of a sequence
% §~\§ of non-negative random variables, F;\(A) the corres-

ponding Laplace-Stieltjes transforms. Then a necessary and.

sufficient condition for {ffa(x)§ to converge (weakly) to é

1imit distribution function F:(A) having #(A) as its Laplace-

Stieltjes trzansform, is that {“(A) convergé to-€(A) fo?“? set

of points { /&;} on the positive real axis such that EZ;(}/A;)

diverges :

Proof: The necessity of the condition follows immediately

from Hélly‘s.extended second theorem (see Lukacs [49] p. 52).

To prove its sufficiency, we first note that §E“(¥\} contains

a (weakly) convergent subsequence {Fin&Fwﬂ } by Helly's first

theorem (ibid. p. 49). This subsequégce will converge to

some non-decreasing bounded function tf'(xj o But then the

Laplace-Stieltjes transform of F'iCX), 'F'(A) , coincides

with £ (4) on the set { A} , and it follows from the unique-

neés theorem fof Laplace transforms given in Doetsch [14\ p.

76, that £(4)= £'(4) for all A> O , and that F(x)= F'(x).

The argument just used applies however to every convergent sub- -

seguence of {FM(K\} and thus %_'\—:\(k)} must converge (weakly)

to F(X) .

The preceding result can also be written as follows, by making
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a suitable change of variable:
- . . 2 2 o
When & { , the distribution ofO"Z(g)/} - is given

asymptotically for large ~ by the formula
d

Pl [t w
' s VAT W

4, The uniqueness of the solution of the equation p = 2{(/5>.

Theorem 3.1 can be only of little use unless it can be

shown that the equation fo = X(/j) has a unique solution
A = S(F) which is such that ex P {- 9(‘,9) }} is the Lap-
lace-Stieltjes transform of a distribution function.

We shall first prove a general theorem concerning the
uniqueness of the solution of (3.2) which satisfies the con-
ditions lald down in section 3, and we shall then proceed to
prove stronger theorems which hold when the distribution funct-
ion of E(‘t) satisfies certain specified conditions.

Theorem 3,3 There exist two real positive numbers Po s
o, , such that equation (3.5) has exactly one root , O,
satisfying Re(@) > G, , for all real values of »  sat-
isfying lb > Po - Moreover, if f (/5) is a function of

A which is analytic in Re(4) > o, , f(&) is given by

) <o)+ D5 0 [ o))

Proof's Let A= orcw . Then Liwe (5(0’+4w>:0'
’ ) 'G'-v-:)o
Moreover, ‘(2;(0‘”“&(»)‘ < (}(Go> for ell ¢ » o, , and all

[ It follows that we can choose o, such that
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Bl4)< pm< 5 forall 4 such that Re(4) > o, . Ve

then have, in the same region, |o¢(A)| < e ! A/ .  We now
show that, if P is real and {4 - pl| > M F/(“/‘*> , We
have {4 -p| > e (4)| forall 4  such that

Re(4) > G, .

In fact, we then have

[« (M) € pulal=pla-prel < pla-pl vpp <A-pl.
Finally, we note that if p  satisfies the inequality

P>(“‘/*> o, /(._ 2/,,>_ , all points such that

A-plg m P /U - po) il have an abscissa larger than
o, . [In fact, the point of the circle |4-p|& u P/(“/*)

[+

with smallest abscissa will have an abscissa of

F-/«‘o/(\-/*\ = (1-2m)p /(,_( - ), and this will be larger

than 0, provided P > (l-/~~) 0‘,,/(I~i/~) , as stated above,
Every point in Qe( /S> > o, can then be surrounded by

a contour C  in the same region containing the circle

|4 - \p[ =p P /U —/U.B . On this contour, we shall have

|4 —PI > \o((A)l , and by apolying Rouché's theorem (see Stewart

[69] p. 440), we conclude that the equation 4-p = o(4) has

only one root in Re.(/s) > &, . Moreover, any function

which is analytic in a region containing the contour C ~can

be expanded by using Lagrange's theorem, (see Stewart [69]

p. 4%40), yielding the required expansion.

We shali now assume that the input is of the Compound

Poisson type, i.e. that we can write c.<(/s) in the form
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() =2 [ =),

(see Chapter 2, Section 5), where

x{/(/s> = g:_“'éx ’o('\-ﬁﬁx),

(o]
B(—;:_) being a distribution function. It follows that for all

/4  such that T\)e(.A) > O,

lw(s)] <
The following theorem is due to Benés }:3]
Theorem 3.4: If 04(/3) is of the above form, then the
equation
P-4 +3\[|*W(A)]:o (3.9)

has only one root ©  in the region QQ(/S) > o for all
p such that '\Qe_(r_\) > O . Moreover, if {(4) is analytic

in Re(s) > 0 , then

L ) 4
+‘(9§=4(¢+>3+Z“ ‘i?“‘l (prf (M}JV%W

- M

Proof:  Choose & ‘suchthat O < § <Re(p)and R such
that R > Re (J) . Let the contour C be defined as
follows:

For Re»(/.&) > zC 5 C coincides with the circle
(P—A-&—')\‘ = A +'R T For Qe(/ﬂ = g 5 C
coincides with the vertical line Qe‘()‘;) =& . The contour
C is shown in Figure 3.1,

Now on the circle we have
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[p-A+X =2+R > > %1%(/33‘.
On the line
(p- 223> Re(p) =8 +2 5% 2 xlwial.

It follows that on the contour C ,|p -4 o> 2w ().
Applying Rouche's theorem, we conclude that equation (3.5) has
only one root to the right of Re(A) > S . TFinally, as $
can be arbitrarily small, (3%.9) must have only one root in
'Rc(/s‘) -~ O . Equation (3.1n) now follows immediately

on using the Lagrange expansion.

_In chapter 7, we shall need a stronger result than théo—
rem 3.4, which will extend the region of uniqueness to the
left of the origin. The required result is given in the
following theorem.,

Theorem 3.5: Let Z(A\) :)3—}\[\— \.\J(/}\] , and let G, be
a real number such that 5(0‘°> is finite. Then the equation
P:x(/&} has only one root 9(P> in ’R(’.(AB > O, for any P

such that RQ(P) > X ( O'Q\) .

Moreover, let Y(A) be analytic at the origin, and let
0/,(0) satisfy the condition b’l(O> > O ., Then there
exists o < O such that X(ok) < 0
Proof': It Re(r) > o , we have

(e dael)e [ 466 = (o).

[o] .0

I (») =
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Choose p such that 1 e(‘a) > X(G‘o) =G, - A [\— qz(qo\] 5
and choose & such thgt '

o, <8 < Re(p) +X -1 w(a,).
For ,Ré-(/i) > S , take as the contour C the circle with

centre p +2  and radius A LP(O‘ } + R , given by the

equation
ho-—A+’>\l =X \V(G}) + R .

For Rel4) =& , take the contour C to be the line

Re(A) = § .  On the circle, we have the inequality
lp-aed] = X w(a) +R > 2 wle)2 A [wls)].

On the line, we have

‘P 442 = Re(p) -§+2 >N VEAERIIOE

It follows that the inequality “) - A 4—)! > | ’3“
is satisfied on the whole contour C , and by Rouché's theo-
rem it follows that the equation P - A+ = W(a) =0
has one root inside the contour C , and as R is arbitrary,
there is only one root to the right of the line Re(A) =& .
As S can be as near to o, as we like, we finally conclude
that the equation has only one root in RQ(A\ > S, -
Now, if Y (A) is analytic at the origin, then so is
W (A) . It follows that there exists « < © such that
q)(o(> is finite. Also the conditbion X' (0\ > O is

equivalent to - A k\/'(o) < | . We now show that there
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exists o¢ < © such that o < '/\[ [ — \.y(ok\] . In
fact
'}\[q) (oé\-']‘: )&(:?"‘f()o\ G(xjé 'Xg(f o) x Q:d):iﬂ( x):)\(w:)[—\y'(o(\]

<ee (3.11)
Now, as W(A) , and therefore q/'_(/&) ., are analytic

in the neighbourhood of the origin, and - X \[J'(o) < |
we can choose |o¢| small enough to have “AIvwiley< b,

and it follows from (3.11) that

>\[L\/(oﬁ)-—l}<—-{)

e y(e) == -2 [1- W) <o,

Corollary 1: Under the conditions of theorem 3.5, there

exist two negabtive numbers e and (—’* such that the equat-

ion P'—'X(A) has one root in /Re(z&‘} > L for all (_)

such that '\Qq(\o) >p . |

Proof': It is sufficient to take o¢ as in theorem 3,5,

and (3 = ¥ (L) .

Gorollary 2: Under the conditions of theorem 2.4, the La-

grange expansion (3.20) will hold for all P such that
T?e((:) > @ , 2nd all functions {l(/’) analytic in

the region WRe(4) > > , where 3 is as in Corollary 1.

We shall now obtain certain properties of 8((’) and
W[G(P)} which will prove useful in the sequel.
Theorgm 3,6¢ If 6/(6;\ is finite, then,in the region

'RQ(Y)) > X(CT,A , the following properties hold :
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() Jw(o) = W?%) ,
(b) \S—P\é)[w v(%)] , e B ~p Awhen \Fl‘-—> o<
(Y Re(8) 2 Relp) +X =% w(a,).

If, in addition, Re G'c,\ <O and ¥ (0}) is finite, then
(d) [l - “V(e)] /'8 is uniformly bounded. '

@ [1+x wie|z 1-|-

Proof: We have, as Re(o S,

@) = | (o™ dex| < (Tmrdel) - (),

[}

and if L(J'/0'> is finite,

o) = | [&0" o Bl)f<(€

(-} ’ (]

"*at(s) = ¢'le,). (2.2)

ro%

Also @  satisfies the equation
~pt 6-%{‘1—3»(9)]:0. (3.13)
It follows that |O- P{ :}[l - \V(e)] , and
jo-¢l =2 [i-wial e X+ wo] 22 ewisl].

Also, it follows from -p ¥ -2+ \V(e\ = O that

- Rel(p) + Re(0) -2 + X Re[w(o)=
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Therefore

Re(8) = Re(p) +2 = Re[w(o)],
> Re(p) +X - X (e

2 Relg) v - » (o)

Finally, it follows from (7.13) thet if Re (g,) < O, then if
=0, P: O , i.e. the value of © corresponding to
p=0 is 6=0 . Butit follows from the implicit

function theorem that @(F) is an analytic function of (o

in ”P\e(‘a) > G, . We deduce that, as p tends to zero,

€ tends to zero, and

Qon ' - :(e) - - Ly"(o).
p->o

Also, as © % © for _-r_ O because of the uniqueness of
the solution of (%,13), it follaws that [i- w(e)] /€  is
finite in Re(p) > y (c,). But as |- w(®) is uniformly
vounded and © ~ p , it follows that [1 - (6)] [ & is
uniformly bounded.

Finally, it follows from (Z.12) that
e X wi(edls 1 - i—»} (8] % 1- |- \\J'(‘Qﬂk' ~

Corollary: If l“/\‘{"(¢o)‘< | , it follows that
\\ 2 \y'(S), s k> o . This will be the case if

o. = o , where o 1is as chosen in theorem 3.5.
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5. Some exambles;

(a) A simple type of input which leads to a quadratic
characteristic equation is a Compound Poisson input where the
density of the arrival process is A and the distribution
function of the jumps is B(x) = - € %™, We then have

(see Chapter 2, section 6)

L‘)(ﬁ): g ,Q»/—\K/UL Q_ﬁxdx = /A/{:A

(4]
The characteristic equation of this process is

-P-}—/.S—')1"’.A/f—:0.

Mt A

This reduces to

/éj'——‘A ( A - g+ F;> —pp = 0

The equation has two roots :

425 Onpep) £ 5\ pr2Goes) p )t

For real positive P there is obviously only one positive

root

0 =5 Dopmvp) e g f e 200 p O

=,L?<1‘/A+F)+:71—J,(F +’)+/*A>2—4)/* 5, (3.14)

which can be continued analytically to the whole plene, the

2 , 2
two points -~ (fﬁigHO:> and-kd-_-J;;> being branch

points.

When p - o , we note that if )</u , 8 = 0.



However, if A > p+ , © — (=)
(b) Let us now consider the Gamma process. In this

case, the characteristic equation is

~P+A - ?cg (H— f'zs):o (2.15)

The equation is transcendental, and € cannot be
expressed in closed form as a function of p .
Let us, however, note in passing that in order for
D) (t,,s> to have an argument lying between -  and +T,
the imaginary part of Qo% (\-\- €A> must be between -  and
+ T , i.e, the logarithm must take its principal value.
It follows that, if @ is the imaginary part of P then
| © must be in the strip B-T< In—(6)< (é +7T .,
(e) In the case of the Inverse Gaussian input, the

characteristic equstion is -

-P+4— .%(/.‘2510"2/3 +f‘2 - f) = O (7.15)
o< W -

This can be rewritten, after squaring, as

3 2 4
2 lgz [) ) PZ F
A’ZA(F—}‘1+;;)+(&_E_/O)-;—4_:O-

Here again, we obtain a quadratic equation, whose roots are

2 4 2 9 3
A= p - %(’-f)‘ﬁ/%(’*f’) +~;§ P

o o
Restricting our attention to real values of p , we notice
that the two roots will have opposite signs if
2 4
2
e
(£ -p) - £ <o,

ol o 4
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: 2
2 2 e ;
i.e. if - — < O
P —= F
9 EZ .
But this will be true if O« P< — - However, as
a?

Q(P) must necessarily be positive for all positive values of
it follows tha o can be only the largest o e
P t foll that & i b ly the 1 t of th

two roots, namely,

2 —
9(@:F-C%(/_lo)+/a_€_:(/~g)2+_§,§ ) (3.17)

Moreover, in order to eliminate the spurious roots introduced

by squaring, we must impose the condition

Ez
—ptA +—-__O_2 >0,
: 2
£
. A = —_
1.€. = P o2

This condition is obviously satisfied for B(P> as given by

equation (3.14). For the other root, we must have
T 2
e e+ 2, 2p3 _f
F"g}(‘-‘f) jg—;_“‘f) +—0’_;;'° z P~ 520
/P«;( )2 2 p3 - €3
i.e. = (1~ + = < =
J=t-e — P el

so that we must have

b < p(1-22)
20%

for the second root to satisfy the original equation (3.16).
We thus see that, for real values of p larger than
p(/—flf) /2 oZ , equation (3.16) has only one root,

given by (3.17). Equation (3.17) can then be used to continue
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[ ]
o)

6(p) enalytically to the whole plane, except for the
branch point 2
P - el-e)”
9252
Letting p —» O , we find, as expected, that, if p</
wen 6(p) s o -

If, however, f > |, we flnd that

&/MQ/DJ“‘—"([J I)>O-
P-»O
6.  The inversion of (P, 2) when the input has a density

function.
Theorem 3,7: If E(t) has a density function b (t/ x), and
satisfies the conditions laid down in section 3, and if

~
_(e pw g %(U./u.-’5>0(u_ is of bounded variation as a funct-
(F .

¥

ion of 3 in some neighbourhood of g , then ’&'(3) has

a density function, 5(f/ ), which is given for almost all

t by the formula

¥ \ o

T R(t,t-73) it t=23,
g(t,x) =

C otherwise.
Proof': We have

oo

= —ot (At
g e ? eq(t x)dx = € (4 for Re(4) >0

where Re[d (A\] > O . We deduce that
o0 oo _ ‘t _
S e F 4 % (t )() C{’l (J"t = \ g 9RE(P) 70(3018)
! p +o(4)
© o

Let us for the moment restrict 4  and F to real pos-

itive values, and let us change variables in (3.18) by replacing
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by t—g . We find that
;oo ot ~(pra)t+43 .
I f e R(t, t-g)dg dt.
proc(4) 4
Write now fp for p+ A4 ., We obtain

oo t
‘ _ (ewt{ g e’ %t t-1)ds g At

b rls) )

- 00

- 0O

Differentiate both sides with respect to A . We have

- o'(A) ( 'V’t £ - O}
[F’\—A«x(/&\)z-) E }%(tt 5 3} (f29)

where tae double integral converges absolutely.

Integrate both sides of (3.19) with respect to p from p

to infinity. We obtain

0 t N |
o=l (o] (" B (e eg)dglat. (0

p—A +a{A) U_w
Let us put
] %Q(t,t—gB for % <t
3 (t3)=
o] otherwise.

Then we can write (3.20) as

= :gz-r’ S ”'é% '3\ 0(3 At .

p —4+=(2s)

(=] -0

As the double integral converges absolutely, we can use

Fubini's theorem to interchange the integrels, thus obtaining

() r a3 70 (e Pt oF(t 2) At dor .
_p-'s+o‘(A) LSC 3t /%\ % b



DIAGR/M

on other side of page.



: /

<
o
S

//

(1-p )0,
P =)
Figure 3.2

To face p. 80

oopl =)




80, 3.6

As the integral converges for all positive values of P >
and all values of A such that QQ(A) > O , the last
equation holds for all .4 such that Re(4) > o ,

We shall now show that
c+ LR o -4 N2
I _{_\_:j‘_(ﬁle Sds e ,3 70  (7.21)

R—>oo 274 b-A+a(4)
C-4R

if c,< </‘*F /'(|_/«A“J » where &_ and M- are as
defined in theorem 3.3, IO > (l—/A) SN /(I - _‘2,/«») , and ©
is the unigue root of p - A4 t+o(A)=0 in /Re(A) > o, .
To prove this result we first show that

g [io ()] e—A} A= Q_—83

=4 toi(A)

| >Q
2T A ’ ; 2

where C is a contour made up of the line Re (A> =< and
the right-hand half of the circle |A-p| = R for large
)R . (see figure %.,2), It follows from theorem 3.3 that
p -4 +o((/5> has only one zero inside C , namely
(&) (/’) , and the residue of the integrand is precisely
—Q-e} . It remains to show thal the contribution of the
half circle to the integral tends to zero when R —_ DO,
But this follows immediately from the fact that in Re(4) >,
]\ - 04'(/3>] < ' + o’\‘(0> , and is therefore bounded, and
iP—A+oI(A)f>}/5‘—F——/A(/SI > il - p , so that
the integrand is @(*/R) wniformly in Rels) > o, .
Having established formula (3.2%) we now use the standard
inversion theorem for the bilateral Laplace Transform, (see

for instance Widder [’74] p. 241} to obtain the result that
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for all sufficiently large positive p -.
Finally, it follows from the uniqueness theorem for
Laplace transforms (see for instance Doetsch [14] p. 74,

Satz 4) that

* : /4
g (‘t‘/}) = %Lt/:}) for almost all T .

This completes the proof of the theorem.

7, The inversion of (P, 3—) in the case of a Compound

Poisson input.

In the case of a Componnd Poisson input, \<(t/x) admits

the expansion (see Chapter 2, section 5)

- 9 . '
kit x)=U v+t W (o) + Bk, (ox)+..|, (3.22)
/ L e\ 21 2o ‘

where the are given by

~ 0
.S e
x) = (- ) A J(" [~ 5 X
Koo (62 =1) 27 2 V(%) e, L)
It follows that
\\\<MO(O,A)\£ '>\M\—“ ﬂa) :(2')\) 5
-0
so that
’ N ~ gt
\A_J—~ (o )| & 24(22‘};)5 € fov all £20.3,23)
AToe M "0 ol

Thus the partial sums of expansion (3.22) are uniformly dom-
22t

inated by € .

Theorem 3,8 1f Z{t) 1is a Compound Poisson input, the

distribution function) G(t,’3’> , of 3(53 is given by the
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formula

)fn K(tt} S}{_E!K (uu%) K(uu. 3)} t?}
I N 2"

Lo otherwise,
Proof: Taking the Laplace-Stieltjes transform of( 3,22)term

by term, and equating the coefficients of the powers of &
we find, as in section 3 of chapter 2

F Swe- =

(formula 2.8), that
~ )
KMO (u/ 3t
0

()l = (=1) [M(p)] ’ , = 012
From this we deduce, using

he usual rules for change of
variable in Laplace transforms
F 5 et
'PJ 7 | +- -
[alp) = 07p § 7T (o tg) e dt
(o]
and, denoting the Lapleace-Shiel

ieltjen transform of § (1’:)
. [?(t)] , we can write
4T 3

f—‘

by
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We now use the inequalities

N e 25t
\‘M=O % K'wo (.Olt—g)j: S "_‘E e U(t“’}))
5™ (- 1) ‘o Py
M=0(M~\l [u; KMG(OI“’})U(“'})&‘}) = _\t" e U(_t-v)
()

which follow easily from (3.23). It follows that the sums

involved in the inequalities are uniformly dominated by
2%t

L

t
ent Laplace-Stieltjes transform for all o > ax 1>0.

U(t-7)  and this function in turn has a converg-
7

Using now Lebesgue's dominated convergence theorem (see
Loeve [4’7] p. 125) we can sum equation (3.2%) from o~ =1

to m = +eo= , and we obtain

= 7T ~] ) )
DL &Pm_'\“e EONE L[zl tg) -1} oley)
t
—-J(_E_ Kl (\u u—g)U(u-qy A

Finally, we use the two identities

T o p (P uleng) dt,

’t ¥
3._:% Olumg) dee = - Zg_{.) olt-3),

and we find, using the Lagrange expansion of F('p@) given in

theorem 3.3,
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. . . t
\"(p,fé\= f[% K(tj:-}) U(t-}\) —S% K\o(u,u-g) O(u-3Y) du

t

+ S_. K(w u-B) L{u-3) dM}

o W
But as the Lagrange expansion holds for all p > O (see
theorem 3.4), it follows from the uniqueness property of the
Laplace-Stieltjes transform (see Widder ['74] p. 63) that if

G (t,}) is the distribution function of .C(Z) , we have

G(t,s) - k(t,t-g)u(eg) - Sz» K (e wng) Ulung) du
-\—S‘;%'z K(u/w—}\)\\)(\*'}\ du .

This can be rewritten more simply
gt
}K(tt-}) 5 {u\( (wu- }) K(uu.})}(,(u if ta}
6(ts)= 3" (3.24)

0 otherwise

Corollary 1: For fixed % G(t/%) vanishes for t<fa’, ,
and has a jump of magnitude K(%/o) at t=} .

Proofs The first assertion is obvious and the second
follows immediately by letting € —» % from above in (3.2%),
Corollary 2: If, for fixed 3 K(t}x) has continuous der-
ivatives in both € and x at the point (¢ - }) , and

if we write

2 K (f/x) = &j(‘t,x),

dx

then at the point (t,; ), G(tlg.) has a continuous partial
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derivative in € , given by

) Glta)ealta)e & )
S‘EG(t’3)"3(t’3)" = Rt t-7)

Proof: Differentiating both sides of (3.24), we obtain

g (t,5)= a’bZ G(t;z)=- :fz Kk(t,t-3) +}£, k,o(t,f-3)+%: & (t,t-3)

_%}5 K, (t.t-7) +23,i K(tt-7)

= _’:&_;ee[t,f"}) -

Corollaries 1 and 2 enable us to visualise the general shape
of G(t’s) in the case of a compound Poisson input, when the
service time distribution B(X) has a continuous derivative,

f-(>x) . 1In that case, as discussed in Chapter 2, section
5, K(t,x) satisfies the conditions of Corollary 2 for all

t >3 . The shape of G(t,5) for fixed 3 will then

be as follows:
(a) TFor t <3 G(t,}) “vanishes .

-2
(b) At tf-} there is a jump of magnitude K(3,0>= e 5.

(¢) For t >o s G(,‘lf, 3) is a differentiable curve whose-

derivative is given by

o __‘\t ~
' 0, /; 2\ & o [t _
3,(,t/3)=%£(t,t—d)—%§_e 1') ¢ (¢t g)
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In particular
.%;A'N" 3("&/%3 = %(%’O) = O)
Vo
so that the tangent to G(t,}) at €= 3 is horizontal.

Moreover, it follows from the results of section 2 that
' K

. ‘ ' _ -8 3

Qann G(t/}): pi?(_})(-ﬁm}: e )

where O 'is the largest real root of <(6) = 6.
The general shape of CJ( t, }\ in this case is shown in figure

(?.3). Finally, we note that we can write in this case

G(Q}):{

where ?(t}'z) :_{}; @(t, t-’&} .

t L
klg,0) + 33‘3(%’3)0“* For 23, (%,25)

o othierwise

We then have

r‘( P,%): S:—Pt thG(,t,}‘) = Q—PtKQ’, o) +g Q_Ptcg (t/z} dt.
o 3 ,

8. The case of a discrete input

Let us now assume that the input g(t) takes only
integral values. It is then clear that emptiness can occur
only at times ? + A, where = O L2, . .

We shall write, as in Chapter 2, gection 7,

i8] g(f)zm§ = p_ (t],
and we shall introduce the notation
P g e gels)-
We shall assume that the P... (t> have continuous derivatives.

We then have
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{x]

'\(('t, x) = pZ‘ Fea('&)
wro
(e-3)

_G'(t,g5 = Z G (%),

Equation (3 24) now takes the form
Bt [Lh;] (_“‘}1

20 Rt (AP e e

Write m ~f for m~. and subtract. We find

7 ) ’rZ [-”ﬁ(?*‘“) - f&(ﬁ*‘“-"]
~ ob#n.\ 3 -
}«-« Qu- }1 [w-3]

-)(_,_[ Z, pp( ) - Z &(w)}dﬂ..

g

It is easily checked that the last two terms of the right-hand-
side of this equation cancel out, for the last term can be

written 3t

"32" S ; [ Pele ] }Zo[%%:]“fé%%)}

(AT g

and so we are left with

Y e (}37 =

MB. (.25)

9, Some expressions for the time of first emptiness

We shall now use the resuits of the preceding section to
obtain the distribution function of the time of first emptiness
for specific kinds of input,

(2) Consider a simple Poisson input. In this case
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p )= & " Dl

e,

So we have

}(Sﬁ"v\) ~
o e Alg+~) .
Plegmp-g.y- 15 D L e
and, in particular
-A
Plel)=g} = ’, (%.28)

as shown before in the general case. This will also hold for

(b). Equation (3.27) is, as expected, the Borel-Tanner distribution.
(b) In the case of the queue MM/ 1 (see section 5 of

Chapter 2 and section 6 of this chapter), (;(t;%) has a

continuous derivative in T for 211 € > S and we have

_(}+ Yt
s /s I'(z )/at(t-g)> (2,29)

foy t 3} .

(¢) In the case of the queue M/G/1, when the service

M
\ L Jc(+)

time distribution E3(7L> has a density function &( x) s W

have

I Py
3(@3\—'—261 >‘t(- (1),

th

where 6;‘(1) is'the n™" convolution of 6—(1) with itself,

(d) In the case of the Gamma input
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| - _ Y TPt 3. (e
33 = < T e (———*}) o, E2g (50

In that case

Lns ) = o.
g 309)=°

(e) In the case of the inverse Gaussian input

[ [3%

2 o
eﬁ‘og_ f{("ﬁ)t'é ] ) t;})('s.u.)
201(1&-3)

) = ()

and here also we can check that f"{; & (t,g) = O.
In cases (b) and (e) we have explicit expressions for
S(lo) , and so we can check the correctness of expressions
(3.29) and (73.731).

However in cases (a), (c¢) and (d), the characteristic
equation of the process has no explicit solution, so that
equations (3.27) and (?.%0) can be established only as special
cases of general theorems, :

If we now congider the asymptotic behaviour of 3“;,3)
as t —» oe for the various distributions considered, we
obtain the foliowing results:

(a) for the simf)le Poisson input, using Sterling's form-

ula, we find that
—()\ -1 - eoz))m - 7‘}.""%

I~(3) ™ J2ma? - ’
so that CVM (3) ~ _:4_.:__._; when_v E[E(tﬂ/t = | ,
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i.e., wvhen X = )} . UWe note that, in this case

Q&M ﬁ,m(}\) = O in all cases,

~—> 00
as A.~-1-log N 1is never negative, and vanishes only for
A=
(b)  For the queue M/M/1

g4(t,5) ~ w> enp( 3t - fE3)" ]

\}4'Tr t3

which reduces to

3(t3) ~ Z_0Op) b elxek=

Jat3

¢) For the Gamma input, using again Sterling's form-
( put, g ag g

ula, we find
z 3
~ (- t-3(LE)-(25): (8 L)
2( 3> awtsem [<T+&Jf) ‘3( ¢ (2 5 (_-3—_'2 :
Let us now note that
>0 when p+ !

L:__E_ +&x 2.

4 36{2‘0 when f:"
Then, for p #+ | we can write

alty) ~ = e”‘*”“‘?i ret)t 35

while for £ = [ the formula: reduces to
IR 3 2
(t £1 | ,(}_,)\,,(_Z,,}_);_.._
75 N 1 2 %) T 3 2 ) t2

with the exponential term approaching one as £ —s oo s SO

that the formula can be written equivalently

%(t/33 ~ e .
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(d) For the Inverse Gaussian input, we find

3 _ 2
3 (t5) ~ FLW[_ eli t’){—‘J )

} .
G"\[‘Qn’t-s ..?0-2

which reduces to

?(tlg) —~ 3 ":or E:l -
' s\emt?

io, The unigueness of the solution of Kendall's integral equat-

ion,

As mentioned in the introduction, the formula
P -
%‘(t,gl = —'E'—%(t/t 2)

was first given by Kendall [39] . But, as pointed out by
Lloyd [45], Kendall only showed that 3(t;}) satisfied the

integral equation 4
i
3ltg) = [ gt 9) K34 (7 72)

f'e) .-

which follows immediately from equation (7?.1) by using the
theorem of total probability.
This equation, however, has a general solution depending

on an arbitrary function. In fact, we have the following

theorem: _ N
Theorem 3.9: The integral equetion (%.732) has the general
solution t-}
%(ﬁgx :g-&(t}t—3~x)dT%x) (3,.33)
o

where ;D()() is an arbitrary function of bounded variation,

The particular solution
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% ?e(t/t—z_:\) ir te1 L

(2,24)

8("3,%): h

L otherwise J

®]

is obbained by taking P(x) = Ulx) - % _(o,%), vhere
U(%) is Heaviside's unit funébion and
Ko=) = & K(t,bc-)\t:o
Proof:  Put w=t-z andwrite q(t,g)= R(t, t-1).
Equation (%.732) becomes
Q(%er/w‘):gz(wlur-;})ee(},j)ob} . (7.35)

(4]

We shall solve the more general eqﬁation
x
Q(}+w’, x)=g&(u,x-g)k(3,3)d»3 (%.76)
(8]

which reduces to (3.%5) by putting x=wr .
Teke the Laplace Transform of (?.76) and put
o]
* - A
e\_ (u,A) = S e x&(u, x) Ax
o

Let us also recall that

oo .
(o2 & t,x)o(x-:— Q-d“\t .
o
Equation (2.36) then becomes
—l(4) g

2\*(3 +w, A> = e\*(w; AB e (%.37)

Putting u.r. =0 , We £ind

0750 = £ (0 0e "
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* 7/
We now note that 4 (o, x!) can be taken as an arbitrary
function of 4 , W ({A) , which is the Laplace-Stieltjes

transform of some function P(x) , 1l.e.

w(4) = g"z—“ AP().

O

We see that in fact the solution
-x{4)t

e\\x(t//i)= ‘*{J(A) e . (2,78)

does satisfy equation (3.37).

Inverting (%,38) we find

p(t x) = j x%(t,x-y) APly),

O -

or, reverting to. %(t/§> .
%(t/}>: e‘(t/t‘g>=§ %'a(t/t—g—})olp(}).

We can check directly that this solution satisfieg (.33).

In fact, replacing in the right-hand side of (?.3%), we find

t—} t} t- 3 Y
[ 40E-3,9) %G5 45 - S%(m) alemg, by -y dPLa) dy,

o O -
- %

ch}P(w_) S ‘pk(t 3,‘t } - - 9)&(5 H)CLa

A

t

S -}(t/t—é_'x) AP{;) = %(t/é) )

it

as required. We have used in the proof the equation

t—‘—x
et t-3-x) = Kleog togoany) Rlg9) 4y,

which is a consequence of 'bhe property of the process E(t)
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having independent increments,
It remains to obtain the form of ’P(X) which will yield
Kendall's formula (3.34).

We must solve the equation

(it ey =) dPlx) = B R Eg),

We first change variables, putting t—} = (L . We obtain

(LL ' G _ w "
[ &(t, u-x) dT(x) = ltw) - % kity).

o-
Put P(x) = U(X.) - Q(K) , where U(k) is Heaviside's
unit function. The equation reduces to
w .
g ‘?Q(t/u.-x) OLQ(X) = 7 ‘&(t}u),
O-

Take Laplace transforms with respect to w. . This yields

.
L —alA) &
o= - _t_ 5_;&
— t
- O('(A> c (A\

i.e. the Laplace-Stieltjes transform of & (x) is o'(4) .

Finally, differentiating the relation

sBE g“’ej“ P Lt %) do,

(o



11

95, ‘ 3.10

first with respect to € and then with respect to 4 , and
putting t=0 , we find
o
) ee —Ax —AX
o' (4) = f o %lo(t,x)dxj =\&*d K (o),
o t=o 4,
so that we can take Q()L) to be K\o (_0) 7() .

Our final result is therefore

P(x) = U(X) - K \o (O/ 71).

This completes the proof of the theorem.

The distribution of the busy period:

In the queueing interpretation of our storage model, the
notion of length of busy period is important. This random
variable will be denoted by <§: and is defined as follows:
Suppose that at an instant T when the store is empty there is
an instantaneous input of magnitude >< . It follows that the
stqre will not be empty for = length of time of at least xX .
Let ‘tl be the first point of time when the store is sgain empty.

N
Then N is defined by

f

-t

is the length of time that the server

N
N =

>y o

In queueing terminology,
remains continuously busy, between two idle periods.

Let us note, however, that the notion of busy period is not
a well defined one in the case of inputs where the sample funct-
ions are not a.s. step functions,

We shall first calculate the Laplace-Stieltjes trensform of

A
the distribution of "\ . Let the distribution function of =
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Jump X in the input be B(X> . Then, using the theorem

A .
of total probability, we obtain, using the fact that A= 75(})
if X = 3
”~~\
. —pA
ot [e P ]—

E{_e‘*3 | X:ﬂ & 8(s)

ocE {Q_CP C(’],\} d%tg}

|
e
r

tt

-elp)
e SF%&B(ZS

=Y [QQP)] ,

where KV(A) is the Laplace-Stieltjes transform of B( x) .
Tet us now assume that 6(1_) has a continuous
derivative 6-(x) . Then G(t,fé) has the form given at the

end of section 7. Uslng again the theorem of total probabil-

ity, we find

. B , A Mvﬂ;-l w
(Mg e[ ZeT [ & (ug)blgydg dee

m ozt ! J

::S f e_/.’)"" (’)u»-) 6— (u) du_ (q;zg)
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Here we have used the identity
t ,
(o & (1) 6(;)ckqy = E&ne (E)
[ AL VAR VRl T
o !

This can be most easily proved by taking Laplace transforms, for

we have

VZ_ ttj; & (e-5) (g dg = gm })a gm‘ "6 (W)dw
- [- 'f? wio)| [ o]
_ . r*j F}MH
_ _ﬂ{ @j*’tt e,wlu») dt.

From equation (3.39) we can conclude that A has in the case
considered an absolutely continuous distribution whose density
function, which we shall denote by é’(f) , is given by
- /\t (’}\t)m
¢(+) = Z 6, (t).
(nx+!)'

As an example, let us calculate 2(+) in the case of the queue

M/M/1. The Laplace transform of £ (t) will ve given by

f oL ole)dt - W[G(P T —
A prz (PPt et -4
20

i

F7-+7k+/“~ +-JfF,+')+yu)"— 4-)/A~
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Inverting the Laplace transform, by using Erdelyi [19] p. 237,

formula No.. 49, we find

e(t)= e“(’"“‘»)t\/z L (24 t)
’ 2 =
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CHAPTER 4

* THE DISTRIBUTION OF THE CONTRNT

1. The fundamental equation for the Laplace transform.of

the content distribution.

In thisg éhapter__,_ we shall at fifst deal with a Iélightly
more general model than the one discussed in the preceding
chapter. We shall aésume thet the input § (¢) isa non—
homogeneous additive process of the type discussed in section

12 of Chapter 2, and we shall write

E[ e—ALE(t\~ E(uﬂj - © (-&.-L,‘t : 45' (4.1)

We now note that

E[ef” [M‘vw}: . [Q—A\:?(t)-t —EMM]J ) e:s(t-u) @<th ;A)-

e

\ o4 (E -w)
In the homogeneous case, when ®<“,t,'/5)= e , we

shall just write @('(:/ /5) for ®(c t ; /3> , and
we shall then have |

Olut; 1) = @(t-u, 4).

We shall assume, as in Chapter 3, that the initial content of

the store is } , and we shall introduce the notations
\/\/(t/ x) = /Pig(t) < x% ,

+0o
(e = €[ = A wlem) | Rel) 2o,

- DO
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2
—~
R

x..
.

i1

QQ(P) > 9,

b

: S ,“Pt wlt x)o(‘t

o

l
Q)
*
T
RY
>
"

| f:—Pt_Q. (t,4) dt

"0

Relp) >0

)

We note that the trahsforms with respect to % are Laplace-
Stieltjes, while the transforms with respect to ‘t’ are
ordinary Laplace transforms. The intégrals necessarily all
converge in the regions given because the tbtal variation of
W (t/ 7(.) in -3 is unity, and we have \V\/ (t, x)\s \
| L2 (¢, )| <.
' We also note that since 3(t)} > o , we must have

\N(t,:c):o for x < o although \N(;tj x) may have a 3ump
for x =0 , of magnitude W(‘t, o) , so that
TDE $(t) :o% - w(t/o).
The fundamental equation satisfied by S ( t/‘A> is

readily obtained by using formula (1.in) of Chapter 1, namely

o s(t): ejAg —Av(ﬂ ) J(

(o]

t (£) - vl
e_ALv v L?(U-\ dy (u) 1,2)

We first note that for the process \)(f> , we must have;,

for almost all sample functions
y (£) =t :

This follows from the fact that ¥ (ﬂ =0 for almost all
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€ , (see Theorem 2.5), so that the Stieltjes measure deter-
mined by ¥ (’t) is singuler with respect to the measure
determined by (f) = €, which is of course the usual
Lebesgue measure. Secondly, we note that the random variables

e " [v(ﬂ— v(-)] U [-— 3(&)} are independ-

3

ent, in view of the additivity of the process v(t).

Finally, we note that

E{u[—?(ﬁ]% = P{s=e}=wlt,o),

for UL*?(-&\] takes value 1 when E(t)::o with
probability W(‘t,O) and value 0 otherwise.
Taking now expectetions on both sides of (4.2), we obtain

t .
- t (t-w
2le)=e T olot ) -ale” T@latiwld) de . (49

[o]

This is the fundamental equation for 2 (t,4) . From it

we deduce immediately

t
Elr_3( )}: - fzﬂ(f/)s)\ = /é_t*'f(t) + W(LL/O)OLU./

[o}

where f (f) = E [E(f)] .
Let us note that, if @.(u,t; A)  is of the form

o —xD[A®) - AlW]
®(u./tl/5> = e ’ [

then S?_ (t/ A) is given by -

t : -'
] _ ( ) a A @) -Ad)
Ay +at d(A)_A.\t)’ASQA(t ) -t} \N(u/o) Ao

ﬂ(t,)) =e

[o]
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and, in particular, if the input process is stationary, i.e.

if ./\_(t) =\t , we have

‘. )
a2 ) A- d(A)]t A4 - ot ]CE-w)
Rt A)=2 L Ag e w(w, o) dur.
fo)
2. The inVersion of the fundamental formula

Let us write

Pl o e xb= wlu,t; =),

Then

Pl ole - w()ex) = LR Tl ¢ xatoul
= K(u’t/ ’x{—t—wx .

We also find, on integrating by parts, that

+<>° + 00 b
52({: /&> /55 \N(‘t x)clx-' lg E—Ax§ SW(t'?B&j} dx ,
o Zoo N
and (o) o +o0
e ot y=aet® (€ (ot
- Aj e.'A(“Mé—t) Kot x)dx
oo

—..:/S'g —Ax \<'(O+-' x+t—35 o %

_xgj g T< (ot; 3+t—»é)oha}dx

-0
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Finally,
Alt-u) A(t-w) *Do___ ' '
e ®@(wt;)=se S 27 Kt ) dx
oo
1o .
=4[ Kt aat o) da
Replacing in equation (4.3), we find
e x 2 +o0 13
A"S e'“{ Sw(t&) Ay go(x = A 54“% ( K(o,t./-wt-}) d}} dx
-0 oo Yoo J

2 t, +oo Toe :
- A S { SQ‘A"K(U,,‘(:) 1+t-w)clx_}W(u,o)de’Rc(A))O.

[+

If we restrict A to the positive real axis, the integrand
of the double integral is positive so that, by Fubini's theorem,
we can interchange the order of integration. Finally, using the
uniqueness theorem for the bilateral Laplace transform (see

widder [ 74] p. 24%), we conclude that, for almost all %

% x t
j\N(t/;)qu = SK(O/t;\aJ&-t-Z_) o\} —g \((u/t}-x+t-w)\l\/(u/o)du_,

But as each term of the equality is non-decreasing and contin-
wous to the right, the equality holds for all x .
Finally, using the right-continuity of W (t} %) and
K(O,t ; x+ - 3) in ¢ , we obtain
.t
w (t/ ‘X-):: K (0/"{:)‘ ’X+t-}> —<2—:;:> E; K( “, t/ x+t-’“‘\ W(\.L’ o)d“’
° . (4.4)
D t S .
where (S-) denotes a right-hand partial derivative with
x

respect to x .
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This 1s the general form of the formula for W ('t,x) .
We shall now obtain various other forms of the formula by
imposing restrictions on K (u,'t/' =) .
Firstly, suppose that K(“,t; z) can be written in
the form x
Kt x) = wlo,t.e)ulx) +‘S ea(u,t;;) U(?)d; :

- »
We then have

x x t
S\Nu,lsa) d,} = g K(O/‘tl'a-ft—;x O\«J - g \((u.,t;o) U(X+t~u)W(u./o) dun
( g R(w,t; t&{—t—u) U(:},i—t‘ u,> a(,.,.gw(u./o) dw

S0 that)for x = 0
x x

gw(tlé)o\} = g Klot;y+t-g)dy - Si{(ultjo)\f\i(%o)o{u
,J(x“t&(u’ l3+t ~w) Uly+tow o w (uo}du} dy

and finally
t :
wlt x) = K(ot; x+T—3> [ &ut; xet-)wlu,o) du . (4.5)

0

Secondly, we shall write the last tern of (4.3) in the form

~m -\ At‘t'\")
Ag A(t )®( t. A)W(uo)alu_&/mzw @(UT.AWV o)(u“rud
“PO® <=0
[~
where 0= < U< < tAM:t is a suitable dissection of

. {
the interval (O/t), and W.<&V, < W yU. &V, €U
_ A 4 A LS A >

+1 - 44_“
But, by the mean value theorem, we can choose J,. so that

L= AV “AU, ~AW.
A(LL. -u)e_ “=e - e !
Lt <
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It follows that we have
t . -t _ t'u: . )
Alt- u.\ ) . i — . /\U: \&‘:‘) , A( <t
Ao @lutiWleeld = o 2 W(‘{'"")["‘ Bt -¢ okt

Using now the relations

A({:-“«'} { ‘+°fAX'-' [
2 &(v t 'A)-—-/Sj e T K(u. t:xst mu,) dx
) / ) 2 < P)
_w b
Me-ui) o tos ,
e @('\r{‘ lt/')b = A‘( e * K (’U{)t/‘ x +t— LLG') d x ,
. -0
we find that
t + o
Alt-w , -
Age )®(u,t,-/s)w(u,o) duw :Ag e Axob(,
o } -0

5 &‘/VW Z W (U:t,o) [K(‘\y’: )t/ 1+t-ux> - K(’U‘i 't/' X+t-‘-i.*§})

m=—00 zo

provided the interchange of the integration sign and the limit
can be justified. This will be so if, for instance, the sum
is uniformly bounded for all 2 ,

We shall write, for short

-
&}m ZJW'(\;-LIJ [\((U‘i/f; 7<+"C~UL‘.§ - K(vi’t}'x+t—uA,+')]

M2 R 4L 0

t
- X' W (u/o\ d,LK(u/‘t'/' z+t'—u) . (1.8)

o

We can then deduce from (4.3) the formula

W) = Kl tmat-g) - fwleodd klu b aets). (1)

o

We should, however, bear in mind that the integral does not

heve its usual meaning, but must be interpreted according to
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formula (4.6), the dash on the o expressing the fact that
the variation of K(u,‘t J x+t-uw) in w is only in
the last argument.  The path along which the Approximating
sum is taken 1s shown in figure (4.1).

Formulee (4.6), (4.7) can also be written, writing t—-t.g

for w , in the form

W('t/x) K(Dt x+t-3) (\N(t uo %(t-ut 7t+u.)d <4.8)

o
t

W(t/)L) = K(O,t,' X-HL.'—Z) - g\/\/(‘t.-u./o}(iLK(t—ult)' x+u) . (-'-1.9)

o]
Formula (4.,9) is useful, in particular, when E(‘t) can take
only integral values. Let us write in this case, generalising

the notation of Chapter 3, section 8,
{1

K(u,t,‘:x): Z (0 (w, t) .

T~ evaluate the integral, we write
t

[witoue) dy wlt-u t xsu)

c

_.QW,AZ, w(t- V. o)l (-’U t xtuw ) - K(t ‘U;lt)1+“1-i’~

M- L0 <+t

He now note that in this case K (u“ t ; 7:) increases only at
integrsl values of x , irrespective of the.values of w and
So we have “ |
5 w(t-uw, o) (Lu\((t-v;,t/'X+u)
° xyt] -6
= T wt-Bdmendp (£Bdomex, ),

'l+~\
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and fhe.approximating sums are clearly uniformly bounded in
this case.

Replacing in (4.7), we find

[x+t %) (x+t)- 0
W@x)[df(wt Z:w -@]m+x@F(t{ﬂ.“+xQ (4.10)

This can also be written writing m for [x] +~

[x +t—;] t"""t:}
Wﬁ%ﬁz:F(o@-Eﬂ w&t—m+xcﬂp(t,w+x t).  (4.11)

M:_o ~ ‘U’-)f'
To conclude this section, we note that in the stationary case
formulae(4.8) and-(é;ii) become
+

W(tx K(t x+t- SB—E;Q&fu#ﬂ%bbx+u)du) (2.8)"
[x+t-3] (it} ° '
wilt ) = Z P (t) - W(t-n«H/O) Fm(m— =), (4,1)'

=04+

L..‘

2o The calculation of. Vu(tqo) in the stationary case.

In the stationary case, i.e. when @(u,t/'/ﬂ) = ®(t—u, A),
the integral in equation (4.3) becomes a convolution integral.
In that case, if we take the Laplace transform of both sides

with respect to t s, we find

_Qx(\O, 2= e_A}C@*(P_A; A) —/sﬂ®¥(g_-,a,.»s) W‘x(pl o) ,  (4.12)

where

oo

: t -(At
GNQAAt:}eP e dt o ! ,
. o (4)
[+]
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(c.f. equation (3.18)), the equation holding for RQ(P) >0,
Re(r)> o .
Replacing in (4.12), we obtain
w A X,
" e~ — AW (po
_Q (P’ A)~: _ P )

4,13)
F —A +0L(A\) (

We now note that in the given region \_Q.#(P,A)k £\ , and
A X '
for every fixed [ —Q_ (»P,A) "is an analytic function of
A .
Let now P, and g be as in theorem 3,3, and let us
restrict p to real values such that p > P, . Then, in
Re(s) > o, , the equation p -4 + «{4)= © has
exactly one root e(p) (Theorem %.3). It follows that,
for p > p_ , the numerator of (4.,17) must vanish for

"o
A= e(p) , S0 that we must have

36(9)

w (g0 = - (4.14)
¥ (P\

. We can then celculate W(‘t 0> by inverting (+4.14). Let us

-G(Pjé
note that (4.14) can be written, putting as before ((p, ’53» R

*
W (p,0) = | o +% A,} g“r;}) Ay (4.15)
But we have shown in chapter & (theorem 3.1) that

o<.
_pt
r\(P%B g PdG(té\" 3 Glt,q) 4t
o - o
where the lower limit of integration can be trken as zero, as

G(t/ }) - 0o for £ < 3. Also,we have
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o oo t
W X(Plo) = ge—Pt W(t/o)dt:?g Q—Ptzg \N(_u/o) Au} dt)

K (8]
° Q

so that (4.15) becomes

* $ 00

. oo + t °‘_’ ,
FS e" (iSw(%/o)d% dt = FSQ pt{ nG(‘t’v) o_[3§ dt,  (4.16)

[~ 3] 0

the interchenge of the integrals being again justified by the

use of Fubini's theorem. Thus, we must have

toe

. .
( W(bkld) duw = gG(tI?) 0{3 = EG(t/Z\A\a , (4.17)

° 3 5
as G(JC,Z>=O for 3>t,

It follows from the well-known differentiation properties

of the Lebesgue integral, that, for almost alll, we have

t

W (‘#,o) = _‘3_ G(t/«?’\ Oho‘ . (4,18)

ot

T

This is the general formula for W (t/o\ .

Let us now, as in section 2, put some restrictions on
the form of C;(t73 ) and obtain various other forms of the
formula,

Firstly, let us assume that G(t )% ) is of the form

given in equation (3.25), namely

K(Slo)fg?(ulg)Au for tZ})
G(t/:s’)J- s

L 8] otherwise .
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Then, as shox:,fn in Chapter ~"<, Section 7, Wwe have
+M‘ t
c(p 3)=e" %K(g S e " gt g)dt,
3.

and equatlon (4 15) becomes

m,‘ w(to)ou—— "?’k(, *: (t, )oLt d
i u #° *53 7597

:S P l0) )ult-s) dt+8wg:"’%(tlj\u(. ) dtdy,
3 o .
:S -P {K(to yult- 3\+S; ,3)u(t~3)o{ﬂ o&)
3 .

[»}

so that, for almost all T again

W (t, o) = K(t o) vt -3\ + Sz 9 (t,;t.) UUZ"}) dt

This can be written
t

K(":Io\ +—St‘3 (t;‘}) d,\a for tZ} \
w(t,0) = é ’ (4.9)
o for t<_3 :

Thus, for fixed ’é R V\’(t, 0) coincides, for almost all €
with a function which vanishes for . T < 3 , and has a jump
of height K (t/o) at t= }

BEquation (4.9) can be written, for t>’§,
J(f/o) = K(t o} +

K(’c0+

i
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t- -3
= (o) «»S Rt y)dy - = g g klty)dy,
i.e. _ ’ t-17 )
K (_.‘t/t_‘}x - ‘(t_ S fq(t/y) olg for t7/}
W(f/o):; e . (4.10)
8 fort<§_

Further, integrating by parts, we obtain,for t> 3,
t-1 t-3

wite)= e, eg) - ]y klegl] e [ ley)dy
N | ty
- 2 <ltt-g) + DEJ <Lt y) dy -
Thus 3 bt-z :
< k(t‘t-é) +£S K(tlajdé for t:;g )
w(t/‘ﬂ: ° '
o for t<_3.

We can obtain a more precise definition of W (t/o) if
we assume that §(Jc\, has a density function, &(‘t,x) s
which is a continuous function of both T and 2 . In that
case, the conditions of theorem 3.7 will be obviously satisfied,

and we shall have

%('tlfé.) = % '@(tlt‘g)uit"3>

for almost all £ ,
Let now W, (t,0) be defined by W, (t,o)=’\°{3(t3=o\5:o}:

By enumeration of the paths, we obtain the relation '

t-}'
wilte) = [ glt-w g)welwe)du, (4.11)

[«
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where j(t/ ’é\) is continuous for almost all T

The continuity of WU-OB follows immediately from the
form of (4.311).

It then follows that for all €. , W (‘t/o\ is given
by c

S ?(‘t/g\&«} for t?’é
wlte)=] 9

o for t<§ .

We now turn to the csse where & (‘L) takes only integral
values. Then 'C(’é) takes only integral values, and, as

shown in Chapter 3, section 8, equation (3.26)
PLel) =gt )= 9.03)=

In that case, we have

(g m).
%w e (3

We then have
t t"l

¢ t
[ clogdy- S%(z\ gy g ey
8 § 3 3
It follows that, for almost all T, ’

t
witel= 26y dy= g, () rglt-dr v q,

2
]

This can be written
(‘l:—?}

w (o) =§ G (£-~) (4.12)

(e-1)
ie.  w (to)= i Tt~ p_(t). (4.13)
~ =0 t ~
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_ To conclude this section, let us note that sections 2
and 3 provide a complete solution, at least in theory, for the
problem of the determination of WV (t,x) in the stationary
case, in terms of ¥ ('(:, x) , whenever G(t, ? ) can be
calculated, i.e. as shown in Chapter 3, whenever S(t) is a
Compound Poisson process, and whenever g(‘&) has a density
function satisfying the cénditions of theorem 3.7. Then, by
combining equations (4.4) and (4.18), we can obtain \N(t,x).

Y

G, The asymptotic behaviour of the conftent in the stationary

case

In section 3 of Chapter 3, we have considered the behaviour
of _C(ﬁ) as T tends to oo . In this section, we shall
use the results obtained there to investigate the asymptotic
behaviour of the distribu’o'ion of 3(t) as t tends to
infinity. We first prove
Theorem 4.1 : Let E[E(t!:) :ft and Ve [E(t)}:crzt , Where
crl< =0, Then

(a) if p < b, W(t, x) tends to a stationary
- distribution which is independent of <z  as Tz .

(b) If, on the other hand, £ > | , we have, for

every %
. \
t— oo
Proofs We shall use the representation

3() = p () + man g, v ()],

which was obtained in Chapter 1 (formula 1.9). This can be
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written

2 (4) = max [3 oty v(t)+ \)*(Jc)]_)

so that

W)= P{3(e) ex}=Phom(t) e x ; vle) o) < x}.

Let us first consider case (a).

It then follows from Chebyshev's inequality that

?{v({\ ——(f—l)t‘>/€} < ‘;f.

Take € > 3/(|..€) and put & =(\-p) t—g +x , It follows
that

2
~ t
?}’é-&v(t\Zx% < l:,é_i+(e~|)t]2»)

and letting € tend to infinity, we find that

@_}\,\,\ /\.)gré-i—\)(‘t\)axizo,

t oo

This implies

U /\33%+v(t}< X§'= l (4.14)

t—>oe

Consider now the distribution of 1y (t) + y)y;(fd . Let

us first note that we have

(t)e v ()= o) ind  w(w)

- sup [v0e)- ().

But as \)(tW is a stationary process, the distribution of



i1s, 4.4
SuP[P ~\4uJJ is the same as that of St vl
o<u<t ciuct

We conclude that

&,w \ESWP (v(ﬂ v(u1< x%— (i S via) <z (4.15)

t— > wet o Suc

' This is possibly not a proper distribution function,

Let now
{tu) 3+v(t341§)
% )S+v(+)>x§
il-u; v(f\+v*(t)_¢.x§.
Then

Pio, ] :ﬂ%trmt} +P{B, N Al

so that

&wwtt x)-?::PSA ne %:ﬁ\:@ge&- &w?gg nAal.

But

o< b PiB, N AT L] < t&m?m | - ﬁmﬂqw(t) =0,
toe — o0 '~)¢q

It follows that

e/;\,.,‘W(_flx)» va \i %:’ ’\)%S*Y) v(u)éx%. (4.18)

t-)m _)°° . osk(“

This completes the proof of c¢ase (a).

Let us now turn to case (b). We can then write

* 2
’33 -qt—v(’c ;a%sg. (4,17)
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Put ¢ = ?L\(eﬂ)t 2. Then (4.17) becomes

Pi(p-1t —vitl 2 (2>t+3§ [(e_;)i+3]i'
2
(€ t§ 52t

[(f t 1—3]

Take € large enough to have (p-1)t/2 > x , where =

This can be written

E \)('l:) +'é

is an arbitrarily large number. Then
. 2+
/ng(-tH}éX%é T

[(Fers]r
Cie ?%v('ﬁ)‘r} sxg__:o

- o0

so that

It follows that

¢ b witn) < L Plvlt) g ex)=o.

This completes the proof of case (b).

Corollary: (a) If p <. &Vw ke (t 4) exists and is
€t —= oo

the Laplace-Stieltjes transform of a (possibly defective) prob-

ability distribution.
(®) If p > 1, &,\M —Q(JCA) =Ofor all A
—JOO
such that T<e (A) >0
Proof': Part (a) follows immedistely from a theorem of
Gnedenko and Kolmogorov L’%i) p. 33, while part (b) follows

immediately from case (b) of theorem (4,1).
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We are now in a position to obtain a formula for the Laplace
transform of the asymptotic distribution of < (+) in the case
where £ < | . This is the generalised form of the celebrated
Pollacze k- Khintchine formula.

Theorem 4.2: The Laplace transform of the asymptotic distrib-
ution of ¢ (-&) , when p < {, is given by

2 (a) = G R0t AG-p)

A~ (A) .
‘Proof: To obtain _—Q— (4) , we shall use the well-known Abelian
theorem for Laplace transforms (c.f. Doetsch[i‘l] , p. 458) which
states that it G F () oxists and ir £(j5) is the

{1

Laplace transform of F(f) , then
b F(t) = L pF(p).
> p—=°
Now the Laplace transform of _Q(f, /3) with respect to € 1is
given by formuli(lz.ité) as i W*( 0\ .
27 p 4= £ P
P~ o ()

It follows that

-A %
A= o £ -apW 00

p—o P—,M-..o((/:)
- A 9—‘;‘3 pwW (P?°\ (4.18)
A= ot(A)

. X
It remains to calculate Loon P w (Plo) . But, from section

p-eo
3, we know that

. -8(p)3
W)=

s(p) ’
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and from the results of section 3 of Chapter 3, we know that in

this case ‘&/vw 9(#) =0 , It follows that

P-ao
e(,\M ?_(_ﬁ) 6(0) = __l____ .
p—o F “Lo
Thus we have | ‘S(P)g
&\M F\/\/ ({oo)—-_e&_’w__eh__ =—'“f'
pe b [6(p)/p)

P—-BO

Replacing in (4.18), we finally obtain
G(a) = 2l-e)

4—o(4)
Corollary 1: When p < | , the asymptotic distribution of
3 (t) is not defective,
Proof's Let W (x) be the asymptotic distribution of 3 (t)

Then it suffices to prove that

j o(w(x,_. O “Ax Wn(x]:d%ﬁ(/s):

But
&V‘«E(/j):‘-e@\/\«\ - |‘-€) ::.____._..-—’-.P —__—,-
A=>0 A-> 0 | - o_(g,d l—o('(())
Corollary 2: w (o) = (- ¢ -

Proof: Here we shall use the Abelian theorem for Laplace
transforms (c.f. Doetsch [14) p. 475) which states that if

Qi F(x) exists, and if (3(/:) is the Laplace transform of

X0+

F(x) , then % Flx) = &M 4 £(4) . The application of

a0+ A SDoa

the theorem is valid here, as w (o) = 6-«» w (X , by

X=20+

the right-continuity of distribution functions. Using the
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formula

— too® .
(A = Af e T W () dx
(o]
we conclude that

W) e bon 1€,

A= pom -

{(2)
A

as |« (A\\ is bounded for Re(a} > o .

It remains to consider the case € =1 . In that case we have

the following result

Theorem 4.3: If ¢ =1, then, as when p > 1,
Qu'w\ W(t,x) = O for every =x.
£ oe

Proof: We obviously have
wit x) e Pivit) +v ¥\ X} )
so that, for all values of ¢ ,

B Wit ) € o Pl 0l €2)= B s pp w(Wsa] (a29)

t—> t—o0 0tu oo

Let us put
3 (t) = vle) +u¥(+).

30 (+) is the content of the store when 3‘: o .,
Using the same argument as in theorem 4.1,' we see that
the distribution of 3 (%) tends to & limit W, (%) , whose
Laplace transform __{Z(A\ will be given by

2. = Lnn - aw™pd]

pt po— A +al{a)
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When p =1 , we have still, os shown in Chapter 3, Section 3,

lipm S(P) = O , so that here agnin

P-—sé ‘ x .
’&/vv» \o W (Plo\ = |~ g -
p=e '

But, as ¢ =1 , we have
_Qo (4) = o for all A .

It follows from the unicity of the Laplace-Stieltjes transform

that

_\/_\/‘b(-x) = O,

Finally, we conclude, from (4.19) that for any 3 s if p=1,

b W(t, x) =0
.t->o° .

for 211 ¢ .

This completes the proof of the theorem.

We con now summarize the asymptotic behaviour of I(t) as €
tends to infinity in the case of a stationary input in the follow-
ing way:

(a) I p< i, W(‘C,x) tends (weakly) to a limit
distribution W (%) |, which is independent of 3, and

whose Laplace-Stieltjes transform is given by

ﬁ (4) = /s(l-f) )

(b) If p=21 , \N(t/x) tends to zero for all x .,

However, if p =1 , the first passage time ?(3) is a
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proper random variable, so that the store becomes empty with

probability one in finite time, although the mean value of

z(3) is infinite.. If p.>1, z2(5)

variable, and there is a probability of

store not becoming empty, where ©
o((e\: 6

Note:

obtain the moments of ‘the limiting distribution W (),

we shall only give the formula for the mean of gx}()c) .

use the fact that

is a defective random
. 6*"

- 3%

| —- & of the

is the positive root of

From the Pollaczek -Khintchine formula, we can easily

Here

We

2
o (A} = £ A - %—A21- @(Ag))
so that
| _ = (4) o Ol4%).
Now
ﬁ(/i):: ____’_:.g_——— ,
(— B(4)
so that

') = - Uelele)

[i - ple)]?
__ (G-ep)e®
- 2 (17[5)2

It follows that

| oo

g x AW(X) = —Q'(o) =

(&

0_2

.

~ 2(i-p)
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5. The inversion of the Pollaczek -Khintchine formula.

Let us assume that f:ijAW(x) converges for some negative
value of A . This wil-loobe so if _?2 (,A) is analytic
at the origin, by Theorem 5b of Widder [74} p. 58. Equivalently
p(A)= g:f’“ M(x) dx must be analytic at the origin. In
the case of the Compound Poisson process, it suffices to assume
that L‘/(A) is analytic at the origin. We then note that if
o"(O\: p < | , there is a real < > © , such that for
-c £ A <0, we have <(p) > A , and the above integral

converges., It follows that, for A4 in the given range,

NWESY

@L\»— S e——AZ dw (JLB = O
x> o 7
P
so that R
Q\Axﬁx,ﬁ(x\qj 2 L g e awi() =0,
N —> o X =200
b

Thus |- W0 (%) is o (€ %) as x—>oo . Similarly, using
the analyticity of @ (t,4) =  ex ¢ [ - Q(AB t] for
Re(A) > - , we find that 1= K (t,x) ig o (&%) as

x —> oo,

Integrating by parts we find

+60 oo toe
_‘..ﬁe;“dw(x) = -.;_ C’:AX t-V\\/(x\} - ( e-Ax[l—W(xﬂ o 5t
A . J_w
-_—_S‘Q_-Ax [.-T,J(x‘)} dx. (4.19)

Integrating again by parts, we find
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+o<1

-S+Q°-°AXD_W(X)de e SF W (x)] d/x] %AJ' l([t—w(a]dﬂ d x
] Agwux[g [,_w(ajdﬂ A,
o e -(c+4]x
as J[l W(a}oL}<e g‘ dx::_,.:—)

x

which tends to zero as x tends to infinity Thus

(T mx»:,sg* [go SCUEMER

- o0
—

On the other hand, in a similar way to (4.19),

- € - - p) (e o Al e

A=-ot( A)

H

J
° OO
= (- f)g §A§ D KLt t+x)}o&x§ .
° L -o% ’
Interchanging the order of integration, we find

-e _ (l’f\Ay:—_“{gE_ K(t/tﬂc)] oLt} dx ..

8- (A)

[}
Writing now the Pollazcek-Khintchine formula in the form

oo

( g Ax&w(x) “..._E___ 5

A A—ct(4)

oo

We obtain, using the above results and the uniqueness theorem for

Laplace transforms,
oQ

KT'"W(BH‘*”A = (\-C]g (1= «(t, tx)] 4t (4.20)

Applying right-hand differentiation to both sides, we obtain

_[\—W(x\] = (\—ﬁ)(%}fgw[\- w(t,t+x)] dt
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so that finally

w(x) =+ (1 ~€)(%Y§°E|_ Ktt, tex) {db. (4.21)

In this form, the formula can be easily seen to be the limiting
form of equation (4.4) as € tends to infinity. However, it
does not seem possible to obtain it directly from (4.4) without
using the argument of section 5.
Following a procedure similar to that of section 5, we can
also obtain two special forms of equation (4.21),
Hhoen K(jc,x) is of the form
x
K (%) = ¥ (£,0) +§ flty)dy,
[~
equation (4.21) becomes
N o
wix)= 1- (1 -@)S k(t, t4x)dt (4.22)
(o]

On the other hand, when E'(t) is discrete, we obtain
[ o]

W(x) =t =(i-p) Z%] Fm(m-x) . (4,23)

Finally we can obtain the result corresponding to equation (4.7)

as follows: We use again the identity

eAt‘-h _.-eAt{ - A QAt‘(t _.t,})

4y <
- o, .
where t1\ <t < t. . We then have
" PN <+

4o

- {xfay -2t
—Ag [u\N(xB&x__\—€>AS [ty -s) dt

-0

2 t -e-l(A\t
(\ >A &/m Z Q_A (*tm’h - t«-) )

m—aoO,L o
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st - a(A)ti- At‘--—o((A)t".
[e -e ]

=(1-p) dan i

o d~ =l L:O

A+(

- Age'“(\—e) ‘ MZ

O Xl 4.:0

[K(t t +—x) - K(t,'_-, t;.—x)lix.

We deduce that

W(x) = \ - (\—ﬁ)g (LL K(t/t+?¢)) (4,24)
o
where the integral is to be interpreted as
S dy W (t,t+e) = b 2 L {K(t t +x) - K({.,t‘.w)}.

(=]

Another inversion formula can be obtained as follows:

Let us write

D) - (' E)A Z (i-¢) ‘[x(ﬂ}ﬂ_\ (2.25)

A —ol(4) pA
Now
(8 _ ("Z:“[M ﬂ}u
pA ’
and
j“"m(x) d = o 2B _ LI
) e tso @4 f

Thus FA(xJ/ f is the density function of a non-negative

random variable Le , the Laplace-Stieltjes transform of whose

distribution is «(4)/¢ A . It follows that [04(A)/3A]M

is the Laplace-Stieltjes transform of the distribution of the

sum of A 1ndependent random variables, each distributed like
Lf . | Formula (4.25) can then be interpreted as follows:

The limiting distribution VV ( 7L) is the distribution of

the sum of a random number N of independent, identically
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distributed random variables LP , with density function
M(x)/p , where N has a geometric distribution of

param'eter g » i.e.
/P-E N :m} = (l~@)€’k_

6. The asimptotic behaviour of _\/\7(1)

—_—

Let S be the random variable corresponding to \/—V(-x.) .

The Pollaczek ~Khintchine formula can be written

E [Q—AfJ _ Ali-p)

A—ot A)

It follows that
- 2

- ('-E\l} (l-— )
Ele™ 1__ ali-e : (4.25)
[ J A(1-p) = [4l1-2)]

Let us again use the result, quoted in section 3 of Chapter 3,

4
«(4) = p 4 ﬂ.%ﬁl o(47),

as A tends to zero.

Formula (4.25) row becomes

_ 2
E[e_,s(i-e)S'J: ' /.s(l—zf) —
Al-g) - eli-p) 4 + Z5(1-p)%6" + o[l-¢)%47]

so that, letting E - | , we find

- o0 _ 2=z
b F‘[e%(’.f);]-‘—__!'___—g e-Ax_% o Py dx .
P_%i : | + %2/5 - c'a‘
[

We now use again the Lemma& which was proved in section 3 of

Chapter 3, and conclude that the distribution of the random

variable (l-f) Y tends, as g tends to one to a limit
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. distribution. Thus we have
Theorem 4.4: The distribution of the random variable
tends, as 4 tends to one, to an absolutely contimious

- --—é 2
limit distribution whose density function is 2e “ /0” .

We shall now obtain an asymptotic result relating to the
behaviour of W()&) for large == which holds for all p< { .

We shall assume that W (%) can be written in the form

(l—f) +—f TE—(a)o((y .

fe* aw(x) =(-¢) +)( T (W) dx

It follows that

g”-“-<gh:(_'_e_\i_(.-g>=<\ o) —=lal
A =t (A) A= w4y’

]
We now note that the equation A - d(A):O has no roots in
'Re(/s) > O . The root with largest real part is zero.

However we have

oL(A\ _ “'LO) _ e
smo A-at(8) T \-ot'(e)  t-p 7

so that o(4)/[4 -(4)) is analytic in Re(4).> © , and

is regular at 4 =0 , To obtain the asymptotic behaviour of
irr(x) » we shall make use of a theorem of Doetsch l‘_14] p. 488,

which reads as follows:

Let §(4) be analytic in the strip o < RQ(A\ £ < except
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at the point A, = T, + «"w, , where the function £(4) nes
an isolated singularity. Let the principal part of the Laurent

expansion of £(») avout Ay be

a, Q¢
I
A—-4ss (A -4.)

A

Let £{ o ++w) — O uniformly with respect to o in the
strip when w —» X oo . Let the integral
boe L w .
S e -G(GQ-(-«w\d,w
-0

be uniformly convergent for x = K > © . Then the

integral .
Cteo00
J~.S e f(a) du = £ ()
2
' C-Aoo

is uniformly convergent for 2 > X , and we have the

asymptotic formula

. EAV R

as X —» +o0°

We can make use of this theorem as follows:
First we note that if Uo-(x) is continuous at - and of

bounded variation in some neighbourhood of 2« , then

Ct 400
w(x)=?v.5 e (1-p) =) ds  for ez 0.
A-ot{A)

C-Aoo

If we now assume that the equsation A4 - A(;ﬂ = O has, in the
half plane TRe (A) > —o , only the simple root - &_ < o

apart from the obvious rocot 4 = o , and if (\—e)d(AS/[:A* *(A\]
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satisfies the conditions laid down in the theorem quoted above,

we shall have the asymptotic relation

w'()(_) = &, e Te ™ + o (€¢¢‘X>

where (., 1is the residue of (1-¢) ot(A)/ [ A-«(A)] at

-G, . But this residue 1s obviously equal to

(-e)—=
| = o («G')
so that finally, remembering that &4 (* G}b) = - G, , we have the

formuia
~o, K '
T(x) ~ (1-p) T & | (4.26)
- (-

It remains to make plausible the assumption that 4 - () has,

apart from zero, a negative root in some interval to the left of
the origin.

We first note that, as <\, the slope of «(A) at the

origin is less than one. Also o((4) is of the form
A%
o<(f>)=/sj e M) dox,
[>)

so that it is plausible that for some negative value of A

say — O, , d(A) will tend to — ©© .  Then there must be

a root of A — aLLA):O in the interval (_-—0", O) , 38

/

shown in figure (4.1).
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CHAPTER 5

SGE EXAMNPIES

1. The cpntent dist_ribution for various initial contents.
Let us denote by Wﬁ(t’x) the distribution of the
content § (t) ab time t when the initial content

is % R i‘??_
W, (t2) = PRs(e) € x| 3(e) =57 . (5.1)

We shall only consider the case of a stationary input.

By enumeration of the paths, we get the relation

t
W, (£0) = S W, (t-w,0) d, Glu ). (5.2)
7 -
Thus, it is necessary to calculate only W,(t o) , as
V\/3 (t/o) can then be calculated by a quadrattn'e,if '
G (‘t,%) is known, and we know that explicit expressions
for G(t/fé\ are in fact available; as shown in
Chapter 3. -
Having calculated \/\/3 (t , o), we can easily calculate

W} (t, r\ by using the formula

\/\/(t x) = Kt x+t ~}) g\l\/(u 080\ \((th'rt )
(543)
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2. The waiting time for the aqueue M/H/1,

We shall obtein W, [t o) for the queue ¥/M/1 in this
. *
section by inverting Wo (F/o) . As was shown in Chapter 4,

-6(p)g,
W

*
N
R

c
S

i
©

(=3

and

t

olp)= 7 (Bprp) + 3 (perep)t -4 2p :

N it t—- r—-——-" —
We shall write {}\ = a 2‘/)\/« = & , "/\f/u,.c.

Then we can write

9(P>=§-[—a€r +(F+C) *f(P*—c)z— @—ij '

— é.(—-ae— + R> ,

where

R=p+c +-\/(f>+g).»2' - 6%
Using Erdelyi [19} peo 237, formula 49, we see that

the inverse Laplace transforn of R is

-t -~

e T e T (et).



Now

W, (¢ 0)= &< 20 d [%} I. /@ﬂ) (5.4)

e now use the formula

H ~ T (et)=T,_ (6t)-T_, (&t).

Then (5.4) becomes

WL (£ o) < e__cti oL (60T (68)]),

W, (t a) =€ [I +al +(l— ~>Za I , (5.5

"here IM stands for IM(e-t> . We shall write this

in the form

t o0
Wo('t/o> = Q_—C’ Z, a_ IM(G-t'))

\ Fas)
where a =1 e, za g amz(l———i>0~) ~Mmeo> |

We can now calculate ‘Wd’(t,X) , using the formula ( see
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Section 2 of Chapter 4 )

t
»W.,'Lt/ -)L)»!= -K(-t/ 7<+'t) +5W°(t - u}o) &(u,uu. x) O(u) (5.6)

o
Replacing K (t,x), w(t o) , ee'(t/'x) by their values,
we find
=+t
e

M3T (6 3,35%
(et T /e [due (5.7)

A simpler formula is that for the mean value of the waiting

W, (t x) =€ Ctae- "rle t(x;t)] s fj

oo -t -

-y -/-()( —Ca
+) ae Jec .e:(|+3‘_>
mzo © 2 e

o

3 -

N

time, We have

t
ERW]=(p-0t +[w (e, o) du
octm t '
:(-'_i“)t + e Z,CL“( Im(evu)du.
& M= O o
Finally, the Laplace-Stieltjes transforn of the limit distribution,
" when f>\</\*, is

Sy li-e)a (=M atp)
‘/J-d(A) /\L'(Af-/v,_')\)

This can be written
R4 = &—3>+<|—9->,——2"——-——
( ( ™ ’r* A4 ju=n
Inverting 2 (4) , we find
N ~ - (f*-)) X
> e
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Thus the limit distribution of the waiting time, given

that it is not zero, is of negative éxponential type.

3« The content of the dam with simple Poisson input.

This model, like the preceding one,has both a queueing
interpretation, namely the queue with Poisson arrivals and
unit service time; and a dam interpretation, namely a dam with
unit inputs which are fed in at instants of time which are
Poisson distributed, and a release of one unit per unit time.

We shall first calculate W (t, o)e We have

[t] .
W, (£0) =2, T2 o (t)
[t] Dt
= - Q_._-___M’> .e__T_ /')\t§

This can be written

_ -1
W, (o) = [z_f’\t) » 2o Oy ] )

M OM. rmzo "

or, if we write [{]= N,

w(t o) = et [ 3)2 (\ty (T\‘.QN] : (5.8)

We can now calculate \Nb(t/ x) o We find, writing [t +x} = N / |
(‘X_-] = M )

w, (£, %) = ZP (¢) - p_ (=) W, (E-mex, o)

~= MH
{ N — ?\ ~
ety Otﬁ 2 ew D(m-»)
’K"o m M M\ A,

! (N-a) !

-t K N-m-t .
{e"“ )[o—x)%}: Dt omen] (o)™ }})



135 _ 53

that is, . Mot oole
W (tx)-' o )\tzo()\t) \ )) ".>‘ MZ;H‘ %} f)\ ("?&\X) (t—-\\ L)
N. —)t
(n=% (t=n= e
Z;*»l ((N‘ ) _ (509)

Let us now calculate the mean value of the content. We have

E‘:E(t)} = (p -t + gtw(u,o\ de

t‘:u,]
(-0t of () ple) du
O(t] ¢
Sle- )t H 2 | (552) ple e
(¢l t
"(f")t 4_;“:_)‘__‘ Ste_)u-uf“o(u -m§e~)uw’“ 'Olu]
so that (t] - ”
{00t « B4y 0 - o 2

‘Miy(m,)t) - X(’“/’)M)}] ) (5410)

where ‘Z((a,x) is the incomplete Gamma function, given by

t  a-i

X(a_,x):g e t At

Finally, the éteady_state distribution is given by

W) = \—(i—EBZ P (~-x),

m={] #\
i.€e oo _:)M ) .
—[)t}+\ A~

Noting that Wx)=o for x<o , we can rewrite (5. 11) as

| i B PN -~
W (x) = (=7) Q)XL e Lol

) Al
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Le_The content of the dem with Gamma input.

In Chapter-3; we have already obtained the distribution
of the time-of first emptiness for the dam with Gamma input.

We found that - 7 ( 3) had a density function given by

3( ”5>- g("(t+t (t })

We shall now calculate W, (t/o),, using the formula (Chapter 4,

Section 3)

t
V\é(t/o) = K(t/t>— -;—&—f} %(ﬁ/ ?) 0{} .
e obtain °
y(t, 5) eyl f)
r(¢) c(t+1)

where f(t’ x) is the Incomplete Gamma function defined in

W, (t,0) = (5412)

Section 3,

Using now the recurrence formula

+ -
X(tfl,x) =t X(t/x) - x @ x)
we find t
(t ) \ " et
w, (te)=(-p) LB _ —-e (=) . (5.13)
)=( ) r(t) r{t+d) <€)
From this we deduce the formula for W, (t,x):

(t+; ( ) _‘tﬂ‘ w -t
wtd=L (eds Sr_______e":d_*a“
; (¢, %) Bf‘(t\le c(f) 3 +(-¢) e ) (e )

t .
t+x t-w
o N = E=
" ) e r{t-us) r*(u)( e ( 4 ) (5.14)

The mean value of the content is given by

W

e

t) u t .
e[z(tg=-(l-e)t+(.-g)jl%§@ -gp(i:@t_) do.  (5.15)

[+
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Finally, the limiting distribution of the content is given by

WM:\—“*)ﬁifFl%c& (5.16)
P or&)

5._The content of the dam with Inverse .(‘f?_.'l'lssian input.

As mentioned :Lnthe introduction,. fhis process was constructed
by the author so as to have the following two properties:

(1) The characteristic equation of a store with this
type of input should be a quadratic.

(2) The Laplace transform of W_(to), , should

o(p)

be invertible in closed form.
As shown in Section 5 of Chapter 3, formula (3.17),
we have
2
4 2 83
o(p) = p - £ (1-p) +/L -p)*+2 L

Let us write

2
£ (1-p)=F
32
2
5=

Then —
G(P) = F—@— +\/62+P}2
_e(p)}.
We shall first obtain 4(t,3) by imverting U(p,g)= &

using formula (1) p.245 of Erdelyi DQJ:'». We find

ta)= t-3)7 [@ e (£-g) =L 2% Tiy(e-3) (5017
glt3)= S b | €y- S () @}J(Q( )
Replacing A and & by their values and rearranging,

we obtain
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t
——
s
/-—\
‘m

F§ 2¢1£(t 3)[61: (t-z)] &lf tz}

if t<g,
thus establishing directly in this case the correctness
of Kendall's formula q (t,g) = % %(t,£"$> .
We shall now obf,ain W, (_t/o) by inverting 6———- .
We first write
\ | B p-b - e Np

S—G)IP—@W@H;@{ B p(p-2aX)

where a=(2€»+x‘)/2>=\/?/¢f§.

Then

> 2 \2
DU S S s Y o
8(p)m2a P p—2a) %2a (p -2aD) da P

This expression can now be inverted term by term, and rearranging

the results, we find, using formula (22) /p. 235 of Erdelyi

(9],
| x«/,,(t,‘*)’(ngj)sll --Z%Erc{(i‘;‘))ﬁ]} +(214_:j) eﬂdtg(k[(za;})ﬁ} )

where Ev¥f— (1) is defined by

(e
ucg(x)-ﬁL dy

Reverting to p amd & , we find

w,(t0)=(- e)gl-— t{('_;,e) /@}H 4&}@) Eebe [(we) [E{] (5.18)



139, 55
From this expression, we can see immediately that, if e<t,

Yo w, (¢ ,0)= I'=p -, but that, if p =

to oo

L~ W(to)

t — 0

There is little point in writing out the formula for
Wo(‘f:,x) for this model, as no simplifications ensue, but
we can find explicit expressions for E[§ (‘Hl and -QO('L‘/A) o

We need the two formulae

S:Q‘“ufrﬂcﬁﬁl du sz(iﬁ_ +°<( Erfe ([-ro: t) ( & Ech(ﬁ‘f—)'

g::Erfcﬁfu: du :z:l(,r_“ -+ JE e‘(sit,,(t-i.'ﬂ_t) EefeplE

which can easily be established by replacing Evfc (SfZ" by
its integral representation and interchanging integrals,

Using the formula

t
E(;(ﬂ} = (p-1t +S Wo(w 0)du

J
(&

and rearranging terms, we obtain

2
— T (1~ )ef

-{(L.i‘i)t r UZ%?(%%)J Evfe R ;f>f€}"]

Here again we see immediately that, if <ty then

b E[300)] = 2
t—>0e i(l—f) A
while if p > , tQA_M. Ef;&\] - , as expected
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from the gencral theory.

Using now tho formula

[4-a)t € faea(ai(t-uw)
—Q. (t/s) e — A S € Wo(u/os u

Q

and writing

T Y R T

wo find
At ) At
Qltn=e + A—~—-('A ) (i-e )
Yy At - -
_ Ali-e) o { 3 ([_ E,fe (‘-5L+,q>t)+_f_((_e_AtEr\ecBR)]
2 AVBELA A
NEEYa

4

e ¢ ———»(l—CV\()C‘/(C- +A )+ —;:(l'e-AtEr.cLCJZ?——(].

F] [Am

It is casy to sce thaﬁ, for sufficiently small
purely imaginary values of A Ra(A) is negative.

In fact, as

(A) = pA = ? +C9(/5),
we have
2 2
A(iw):((——e)«"w - ?-_E‘f + (9(&.03) .

Iotting now t tond to infinity in (5.20), we sco that,

for a1l A such that Re(A)<o, ir p < |

O S2,(%,3) = sCi-e)
t >0 A-ot(4)

the Pollaczck-Khintchine formula.
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Finally, we shall obtain an cxplicit formula for the
density function E—( %) of tho limiting distribution, by

invorting the Pollaczck-Khintchine formula. We note that

ﬁﬂ:ﬁf :O—e%}+~iﬂiL-]-

A -t (A) A=A}

Now o((A):)(JA+a2 ~a) )

where N and & aro as defined above. Thon

o (4) a | v (a-))

A- (A (a J&(8)-1 :[(W+C~)ll}\]'| - A+2ax-27%

- A+ (2aXx-22%) T4 +(24')\.-'>\2>
and the last expression can be readily inverted, using

2

Erdelyi [19] p. 235, formula (22), giving
_ aix -(2e2 A x
A e +’>\(Q-)) e E\’f‘ [’a—’/\‘ J;}
Vi x ‘
- (2> —’>\2) x
~ (ar-2B e

Replacing A and a by their values end rearranging terms,

we finally find

W)= (-e) + | ©y) oy,

where

e x
a

E;(sz 26(‘-€> e _e_wz 2_ _E_.z(c_—f)(l-2€).
Ion 2rx o2

2¢'(1-¢) %
e_ pey (l e Eypg ‘I—QEI f__E .
. 0‘ 2
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‘CHAPTER 6

THE INTEGRO-DIFFERENT IAL EQUATION CF TAKACS

1o Preliminary remarks.

The investigation of the store cor>1t_e.n:t'. ._dis,‘bributibn,
W(t,x) , was first performed by Takacs who _quﬁe down an
integro~differential equation for the procé_ss of the same
general type as those obtained by Feller[20] - However,
the derivation of the integro-differential equation
necessitated certain assumptions about the continuity
and differentiability of W(t, x) as a fu.ncfion of both
variablos € and > . Takdcs himself [70] p. 108,
hinted at a method for showing the continuity of W(t,x)»,»
but did not pursue the matter further. In the subsequent
literature,',the integro~differential eqmtion technique
has been used repeatedly, and the assumptions made
justified by appeal to the general theory of Markov
processes in continuous time as given e.g. by Doob
[17) po 261.

Unfortunately, the general theory cannot be applied
to the case under 'd’onsideratiori, because Doob's éondit,ion
(2.1) pe 257 is not satisfied in this case, In fact, the
processes to which the general theory applies have sanple
functions which are almost surely step functions;.-while
the process 3(t) has a slope of —1. whenever 3(#) >0,

Moreover, it is easy to show that \N(-.t/x) need not
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be a continuous function of x. for x>0, as stated by
some authors. In fact, we have seen in Chapter 5 that,
for a stationary input,

d\F N
W(t,x):‘((f:/t\‘-)u;)- <—) KW(t—u. o) Kl{wwusx) du .
) ax / /
. -]
If t< 3 5 we have w{t-w,0) =0 for all « such that

0<% w et 5 so that

wit, =) = K(ttix-g) (641)

Thus, if the input has a discrete distribution, W(t x) will
also have a discrete distribution, at least for some values
of t . Alsoy, depending on the properties of K(.t, 9\) s %)-(w
may not exist for some values of the pair (t/x) .

Tb overcome these difficulties, the simplest way
is to proceed as in Chapter 4, where an equation for the
Laplace~Stielt jes transform R(f:/A) of W(t/x) was o;bta.ined
directly from the properties of the sample functions,
However, the problem of the continuity and differentiability
of W(t/x) still remains to be solved.

In this Chapter,; we shall confine oursclves to
Compound Poisson inputs, stationary or not., We shall
obtain sufficient conditions for the continuity and
differentiability of W(t x), and we shall show that,
when these conditions are satisfied, W(t, x) does in fact

satisfy the Takdcs integro-differential equation.
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2. Corditions for tHé¢ontinuity and differentiability of Wit

We shall flrst obtain a difference equation for W(t, %),
We shall assunme that the input £( t.) is a Compound Poisson
pro;esks with density of arrivals A(t) , and jumpé X of
distribution B(‘L) v.,—. Then
Theoren 6.jv. W(f,x) satisfies, for t2 0 , x2 © P >0,

the difference equation

WU:+f;,x)—-W(‘L“/‘x*r("}:)(t)ﬂ[V(t/x)-W(f,ﬂ} + 0(&) , (602)

where
x X+
V(t, x) = L-‘P)C‘X-as dBWL't/‘}S = go\,:,(t/x—2‘> d 3(33 .

Proof: Let A, be the event of « arrivals in (t, € 4..8_))
<= O/ t/i/ P

Then _
Pla) = 1t = X&) & + o(8)

2

P(A) =2l + o(R)

il

J

(- P(a,)-Pla)= o (&)

We first consider the casc of no arrivals in (t,t”' e..) -

Then : o :

‘Pi?(ti-&)ixl F\;,%: W(t,x+e\3 , x2o0o,

since §(t+&)s x if and only if $(t) £ x+f in this case.
Consider now the case of the event A , and let

3(t) = ps 4 >, Then, using the obvious inequality

s(t)+7<~€; < 3(t+R) €« 3+ X,
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we find
PZXé 7.~~3%£?2 IS F\.)ﬂﬂr\as £ /\’z"fé x+Q-} § .

From this we deduce, using the thoorem of total

probability,
Vi) < PLstese) [ A} < vI(E, x+t).

This can be written, using the right continuity of \/(t,x)

in .2

?{k(f+&)éxl(—1‘§ = V() +O(8).
Finally, using again the theorem of total probability,

we find

W(t-t'e.'/ x)= {\-’%(f)e\} W(t/ x+0) + A ()R V(.Jc,x) + o ( 6\3 )
Rearrenging, we obtain (6.2) . This completes the proof

of the theorern,

Writing now t- e; for t and 2~ g for x , we

obtain

w(t-L ) -W(t/‘x- 2)= -\ (t- Q) Rfv(t-n-0)-wle-L, x-e)] +o(0). (643)
This formula is valid for >0, x2 & , £tz B,

Lemma 6.1 ¢
wltto, x) = w (t,x) | (644)

\N(t—o, x)::W»(tlu—O) ) (645)
Proof: Let £ tend to zero in formulas (6.2) and (6.3),

and use the right continuity of W('C,x) in X .
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Lomma 6.2 : W{E,x) is Riemann:integrable in t .
Proof: It follows from lemma 651 that all the discontinuities
of \N(t/x) as a function of € are ordinary, and this
implies Riemann integrability (see Hobson {36] p. 439 ).
Lemina 6.3 :\N(‘f:—u./ x+w) is a continuous function of w

for x20 , =20 —x £uwue T .

b4
Proof: In formula (6.2), replace ¢ by T-«w and Xx by

x +w - & | ye obtain

WY (t-w +—€\) X 4w - ﬁ)—W(t’-wl x+u._)

—_:')(6-\.._\ &[V(t-u, xfw-(i) —\N(t-ul X+u'e\\] + o( a))
for -x+h < wet.
Similarly, writing t-u-Q for £ amd 2+uw for

in (6.2), we obtain

W (‘E—u.—&/ x+u+e\) —\N(l: -, x+u)

= 2 (t-d) E.[V(i\w -, 7<+u.> - w(_t—u,-ﬁl ><+u):\ + o( a)
for -x £ wet-€ .
The result follows by_letting E\_ tend to zero.
Lenna 6.4 :\/(t;-u/ x+w) is a continuous function of (L .
Proof: This follows from the comtimiity of W (F-u, % t«)
in « by using the formula
x +
Vv (t, x) = g W(t/ x-g) d 6(‘3)

S |
We note that this can be written
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+00

v (t,x) =§ Wt, x-g) d Bly),

-

as W(t,x-g)N?for y > x and 6(3):0 for ¢ <©

We then have
V(t-u__e\’x“,,‘e)—_-sW(f—u;-e’x'-(-bki-e\-;) dB(gv)- (6.6)

Using now lebesgue's Dominated Convergence theoren,
(see Loeve [4’7] Po 125 ) we obtain the result.
Lerma 6.5 ¢ VVH:, x) satisfies the equation

W(t/ x) = Q_A(t)[u (1—3 +t)

/

€ 4 (t-w) '
+f>(t-u5 e V(- xru) otu] (6.7)

8}

where -/‘-(f)=£§(u)o(u, U{x) is the Hoaviside unit
function, and 3 is the initial content of ths store.
Proof: We note that the event 3(t)< X can occur in two
exhaustive and mutually exclusive ways:
(a) There is no arrival in (Olt) and B—té x .
The probability of this event is o~ A) U (- 3+t) .
(b) The lest arrivel occurs at t—w and

$(t-w)+ X' ~w £ x . The probability of this event is

€ - A(t) s A=)
X v(t-w, x+w)n(t-u) @ dun .

4dding these two probabilities, we obtain the posulte.

Corollary: W(t,xi vonishes for x+t <3 and has a
-A(t)

discontinuity of height € as a function of either

% or t at oach point of the lime x+% =13
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We are now in a position to discuss the continuity and
differentiability of W (¢, x) .

Theorem 6.2. If B(x) is absolutely continuous, then

Wt x) is a continuous function of both ¢ amd x in
the region > +T > g .
Proof: We first notice that if B{(x) is absolutely
continuous, V(‘t‘/v x)  is continuous in «x for all ¢ and
X% o This follows from standard properties of the convolution
operation (see Lukacs [49] Pe 45 )
Let now +

(t-w
I(t/‘x) = g\/(‘t—wl X:{»u)%(t-w) Q_JL{ )O(,u;,

o

Then, for x+t 23 P

~AE) ,
witx) = e [ e Tl (6.8)

t A(t-u)
and I(@)«Q):Sv(t—u)x+u+&>)(t—u)é |

[}

The integrand obviously satisfics the conditions of

doe

Lebesgue's Dominated Convergence theorem, and we conclude
that &; I (f,x )= I(t, x), 1 (t, x) is therefore
continuous in X o The conmbinuity of W(t,x) in x
follows from (6.8), and its continuity in t from

Lemna 6.1

— " 7.

Theorem 6.3. If G(x) has a'bounded derivative for all «,
then W(t, x) has a bounded derivative in both € and x

for t+x 2 7, and satisfies the integro-differential



1496 6.2

equation
A\N(f ) dwilt, x)

Proof: 4pplying Lebesgue's Dominated Convergence theoren

successively to

490
t x+l)- x ) x+e\— - X -
V( ,* e\) V(t, :g (5( 33\— 3( _5) dQWLt—/}),

b -0Q
and
( ) - 1t K (t-w, x+utl)-V(t ) At
T {',)(-(— e\* ; % :5‘ v w, L«e‘— - —w, X )\(tﬂ_*)g O{M)

we conclude that first \/(t,x) and then I(t,x) have
bounded derivatives in x . The existence of %—%
in t+x 2 } then follows from (6.8).

Fron fortiulae (6.2) and (6.3) we now deduce, for & > o

w(t+&,2-W(t,x):w(t/x+ e‘g:w(t"‘]{_)(t\[V('t,x) -w (f/x)] + 0 (&) ,

w(t-€ x)- wit,x) V\JL‘t”l-()\)—W(t,*\ - 0 %l )ewit-0 - | U
Co) wlon, e r b Qv (t-L x-L)-wlt-e, =) + 0(e).

Ietting & | © , we finally find

Qo WlEHL ) Wit x) O wit-a, 2) ~wit, x)
e T B T €io (=0

t x
_ av;i \M(t\,[v(t,x)-w(t,x)])

the continuity of VU?/X) in t following from the application
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of lebesgue'!s Dominated Convergence theorem to
+°0
\V/ ('t *_(i,,(.\ = g\/\/(t-%e\ ) ‘x-g\ o\r\g(é\ .

- o

This completes the proof of the theoren,

6.2
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CHAPTER 7

THE CiSE UF 4 NON-STITIONARY CO:POUND POISSON INPUT

1. Introduction.

In Chapter 4, a complete solution was given to the
problen of the determination of the store content distribution
W (t/ x) in terns of the input distribution K (t/ x), when the
input is stationary. It was also shown that,; in that case,
W(t,x) tends weakly, when € - oo , to a linit distribution,

Such a complete solution is not available for the case
of a non-stationary input. In this case, the probability of
emptiness,bV(t)O) s satisfies a Volterra integral equation
of the second kind. This equation can be obtained by putting

=0 in equation (4.5) of Chapter 4. We find that
t
w(t/o):\<(o,tjt-3\—g€e(u/t;t-¢)w(ul O dw . (7.1)

°
However, this equation is not suitable for obtaining

an explicit method of solution for W(te). Instead, we shall

obtain a Volterra integral equation of the first kind directly

from equation (4.3) of Chapter 4,which we shall solve by

Laplace transforms. Because of analytic difficulties, we

shall confine ourselves to Compéuna Poisson inputs,; and

we shall put restrictions on \(t) and the jump distribution
E)(?L) o Particular attention wiil be given to the case

where the density of arrivals TX(t) is a pericdic function

of time, The main result of the investigation is that the
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probability of emptiness W/ t y 0) and the Laplace transforn
of the content distribution (L(t,A) are thon both
asymptotically periodic in T . We shall assume that

% (£) is a continuous function of T and we shall write
t

()= gx(u) do = tour 0 (8)
o

where £ (‘t\ is a periodic function of time whose nean
value is zero. It will then be shown that both W(t/o) and
_Q(‘l://&) can be expanded in a power series in wu~ , and
a nethod for calculating explicitly the asymptotic values
of the leading terms will be obtained. Various mathematical
results needed in the investigation will be proved in
Section 4.

Throughout this Chapter, we shall say that a function
f(t), t=20, is an L.‘2 function, or belongs to the
L class, if f:_ZPt!-F(f)lz At  converges for some

©

real value e, of ’o » It is well known that this implies

M_ 00_2 t 2
the absolute convergence of [e Pt-(?({:) dt S e F EC(-&)] At

© [

for all P such that ’@:(P) > P, e
We shall assume that the junmp distribution
B(x) = ’\3{ X '57_2 is absolutely continuous and

has a density function e—(_x) . Moreover, we shall assunme

that fr()c) is an l__‘? function, and we shall write

Q(4)= g . [@(x)]zdx.

Q (o) will be assumed to be finite, i.e. we shall
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assune that S[@(x)] dx < oo . We shall also assune
‘that the Lapfacev—Stieltjes transforn of B(x), K(J( A) s
is analytic in @e(A) > T, 5 where G j.s SOL8 gevgvative
number, and is (9(' /l/i\) in that region, Finally, let us
note that, when the mean value of &(t) is zero, the mean
density of arrivals is unity, so that the mean input per >
unit time will be p = - Y'(0) . Tt is intuitively clear
that in this case the content will tend to infinity when .
t —> oo  unless we assume g < [ . This is the
assunption that we shall make throughout this chapter.
if w=o0 , then A&)=t, N¢)=!, and the
input process is stationary. In this case, the characteristic
equation of the process will be p - A+ 1~ s\)(/&) =0a,
Wo shall write y(4)= A—1 +(4), so that tho charac-
teristic equation will be p - X(A) = O , is we have
assumed tﬁat \{J(A] is analytic at the origin, and that
p < |, it follows from Theoren 3.5 of Chapter 3 that
there exists a real nunber « < 0 such that X(o‘) <O,
and moreover that X(A) - P has only one zero, G(P) 5
in \e-(A)>°< for any P such that 'Re(P> > K(d) o

. We shé.ll rmake an extensive use of this result in the sequel.

2._Renarks on the Poisson process with periodic parameter.

In many practical storage problems, it is expected that
the probability of arrivals will vary periodically, For

exaiple, in the queueing realisation of the storage model,
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eegs in restaurants or at service stations, arrivals are
more'probable at rush hours than at slack periods; and
rush hours are repeated day after day. In the dam realisation,
it is expected that ths rate of flow of the water into the |
da will vary periodically,

& theoretical model for Poisson arrivals with periodic
density of arrivals can be constructed as follows:

Suppose that arrivals come from a large number N orf
independent sources, each having a Poisson output with
parameter XA . The arrivals will be of Poisson type with
paraneter W N, If we assume that the mumber of sources is
a fuﬁction'of time; Pl(t) s the resulting arrival process
will be a non-stationary Poisson process with pafameter

w (1) . Finally, if we assume that the number of sources
varies periodically, we obtain a Poisson process with
periodic parameter. Such a process has been used as a
nodel, for instance by Bliss [7] pe 25 to represent
births in a hospital. In this Chapter, only functions
)\(t) which can be cxpanded into a Fourier series with a
finite number of terns are considered, as this sinplifies
" the treatment considerably. This imposes only a mild
regtriction on the practical applicability of the model,
while excluding discontinuous functions'k(t) s which seemn

to fall outside the scope of the approach of this Chapter.
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3o un outline of the approach. We shall start with the

equation
t
A1 +at © At
_Q(t,/;)ze zu@(o)'tj-,s)wsgejs @(ul‘t;A>W(ulo)du ) (7.2)

which was proved in Section 1 of Chapter 4.
8 shown in Chapter 2, Section 12 , we shall have

in the case of a Compound Poisson input

@(u,t/-/s)z %(a[~ Z./\_(Jc) —A(‘u)} {! - W(A)Q .

We shall now nake use of the fact that _Q({:/A) is an
analytic function of A in RQ(A>>0, and that in that
region \-Q(t/ A“'S | . Let us apply on both sides of equation

(7.2) the operator

It then follows from an immediate application of Cauchy's

theorem that

Hta' oo
PV, _l_g, QA4 2o
aTL A2
X =4

If we can justify the interchange of the integrals;equation
(7.2) will then reduce to the Volterra equation of the first
kind +

g R (¢, )wlw, o) du = a(t) 5 (7.3)

(&)
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where 24400

t Alt-«) »
R(f,,w)=°~\/-ﬁg€ @ (4t ;4) 9};& , X290 (7:4)

X-ai0
FAIXZ 4t 0 da
Ale) = L S 3@ (ot 4) 24 x>0, (7.5)
2y . At .
N ~a o

We note that /L(t) is not a principal value, as the integral
converges -absolutely.

EBquation (7.3) can be transformed into a Volterra
equation of the second kind by differentiation with respect
to t .

It follows immediately from equation (7.4) that

X 20
R(t,&)=Pv. - f‘ié =1.
Thus we must have
w(t, o) +J(tP(t,u)W(u,o)du :A'(t)) (7.6)
b
where
P(tw) = a% Rt ) (7.7)
nlt) = & oalt). (7.8)

At
In the two integral equations (7.3) and (7.6), we shall
put A ()=t - B (t), where w-  is a conplex number,
and we shall attempt to show that the functions (7e4)5(75)5
(7.7) and (7.8) all become analy’ti'é.fuﬁc-tions of w~ 5 and
can therefore be expanded into power series in wr o
We are thus led to consider various analyticél properties of

the above-mentior.d functions. These properties are studied in
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the next section.

To enphasise functional dependence on W~ , we

shall write.
R = _Fz(t/u,' w) P

sw),

'/L:/'Z.(t'
P: P(t/u./‘ w))

/Z,': h.’(t) W) .

Finally, let us note that R and T  moed be

defined only for 0 ¢« wst,

!
4s_Some_snalytical properties of the functions T R, 2, A,

Theoren 7.1 «

t4
e OLA
A

A-LM

£ x
éiT\‘(H-‘le. ) for all real x% Oy

‘ Heae

and all real t .
Proof: We first note that we nay assune L2 O , for if
t< 0, we can change the variable to - A , and the

- Xy
integral becones j[e(-t)'s//s] da .
Let now [7 ‘x:ié;ope' the contour which bounds the
region Rel4) < x , —iM < Lo (4) < <M, It is easily
verified that

2w i F x>0

€A
f.e__ dA =§ ’
A o W ox<o0.
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In both cases

t4
g e dajg 9w,
Ja A
that
S0 ., x t(?f-i.M) x t(}-éM) xfa ™M tA
2|T>/)S§;_A,5: ,( _e___'_._'__aha.;_sg : cl}-\—S £ _da
PA ' -0 %#«M -ao%-*M A A
e ™ X tlyeem) Loty
| [ 2| ey - | ;c__c‘*_._)a.a\
X=im -ea g™ B—LM
We conclude that
x;}rld Xt} 2 e:tx
£ dilg 2w +2 S._e_,d»é-ZW*———-— (79)
‘A ™M ™M+
K-t -~ .

Using now the elementary inequality |& L \\ < \"(H s

where is real, we see that
IV + ™
t t t %
S e?- e “iulcte &K aL} =amMt e . (7.10)
A
K-a A -t
But
Xeait
ds | _| 22 ang (Hm\\ <27 (7.11)
X d
X -

It follows from (7.10) and (7.11) that

WMt ™M -tx
\ g %t/s dal< (27 +2 Mt> e . (7.12)
WL '

Comparing now (7.9) and (7.12), we obtain

Wi ™M t)L
+ .
_%—-A(AA < I + 2 e quw( A )TT"\-MJC>
A = nt  \ ™t
X -at4 .

It is, howevereasy to see that A~ (—'——x , T X) < 2T,
' %

The theoren follows.
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Theoren ‘722 o

At ™A s x
(5 g« s e oo
- M
m R PRV £ _ w’. xT'M
e Tl " ( t-w)4 c_i_is_ clu
;.ILHA)T A!“ j@( )i)e,' A
i-«"M e x-a™M )

= (t-u-\)i

sznje(q[gae | dat

[~

- 277‘[\+-2_<&t1- qg(1LY].

Theorem 7.3 o Let y(#) = A-{1-w(d). Then, for x>0,

t=0 , M>0, v have

[yt 42« 3m (100 [ 20y 01}
M o - '\zwtkv(x ﬂ i) (7.13)
- |
ity o e
. g Tls s ;ti“;":{(n I s

But, from Parseval's identity, we see that
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It follows that

X4t

2 tlwlr el

&-AA'#WU\ d ,+(Luh 2 i
e AR 1 TR E P
X-a't -
tz ef.b-m)x 1twln) 1—00( 9'0\
£ \P x4 )
T Llo z‘ 4
:_E_Q(x)e el ) .
2=
also  yim
Sétwdb A4l ¢ 2“_§‘4_2 (- w)Az(
PRIV A
and
A (o)A - x
S Ww(a)e 0:4 < 2?[\4— 92 e w (x )}
1'«!«\

Replacing in the original inequality and integrating,
we obtain the result,

Corollary:

X’E_:;:(A)]M“ria(/&)tii’*tsz (m+.)h+t)e-t+[t;cif exp {41}

(z-1)
¥ 4w {Hf\v(x\jfw t{JU] . (7+14)

Proof: We expand [\ - ! A\]Mby the Binomial Theorem

and note that [L\)(A)]Mis the Laplace transforn of the n~th
comvolution of & (t) with itself. The result follows from
an application of Theorenm 7.3.

Theoren ’7.4. .

Xt;irmq (aye} &2

X-<M™M

< “’“:@‘\ “MX(*’J‘} . (7+15)
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Proof: On the line Re(A)= >, we have

Re i‘gu)t } Qei{_/s »\JLA\ k = {u—?‘\— Qc%\u\»’(ys)ﬂt

< i x - \.-t-k\)Lx)E € =y(x)t.
It follows that

e ™M
d
\ oo ulae] 222w enp bt} [ -2
K- ™ . -M
and the last integral is smaller than
400
| 2= %
;w%l“&L S x
Coroll;zrxz
Xt ™
S 77[‘ (A\]&xrix(/s\‘f} 4 T [H—W(xl] 6;{;5 bL)t§ (7.16)
XA :

Proof: This follows from Theoren 4 by expanding

as in the Corollary of Theorem 7.3 .

Theoren 7.5 . Let

| R(t,w; w)= L Py gwe:, { () - (-9
-wge«();;.“euxg].[\-W\A\)§ b xse,
R(t;w) = . Smfﬁ %Y,it,d—[t—w ().
“?-@m]% *Af‘ x>0
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Then 'P{t \ QR(t,u.; UJ} and /L'(t,w) = éJL(tJ'w-)
-t ot

exist and are analytic functions of w— and continuous

functions of t °

Proof: Put
ol :t-—t&}O

F§ ::(f:—w) — w%\ Q-LU_') - &(w)% = (t —ug) - W ci/(tl u_)
where : q,(,‘f:/\Q = G(¢) -6(u) .

Then

R(“—/w’ w) = Q_(B [_rw\(ot'(l\ = (o(/(.nt] >

where X4a00
M(d‘(s)zg_‘f&g o(A[?(SLP( )—.\ —(BK-V(A]dA
and S A
(=, 3)_2_:.’?\/ S oy ‘i’ﬁ ;;‘P.V.gkk(/s)e, .Xé:—_ l+{SB(d),
A - D0 ) K A DO

3 .
It is sufficient to show that O © /dw 3t exists.

We note however that

YR . Aitt,wja‘a 3R dgltu
T dwot =9 )a(sb +qlt )[ £ 15eF TIE ot

b3
it is therefore sufficient to show that O P /O o=,
L 2
0 R/b(S exist. 4s M(O‘,(’J) has obviously all the

required. derivatives, we nust show that the same applies

to rvw (5) . But we have
*en (») | A 0
LN B"e[w —\ - A\}_d_é e [y e 42
m&{&ig el ] 5 | |ami [t ) A
LM LM
x +l 51

Inx
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" and
b eom _
. ,7”& ) ) NS ™M ﬂqf(/l\
R __2’1 ) éu[ ev(s ~\ - o 4 1 =4 —lea
Jief 25 (€T e e 42
X-A..\“’\ A~A M
ol |
< 2Py e

2T

It follows from a standard application of uniforn
: z L 2
convergence theorems that o M«-/B A3 and bfw\/bﬁ d L
both exist and are continuous in o (3 . We conclude
2
that R/aw‘ Ot exists, and is continuous in t s W s W
& conpletely similar proof yields the result for /L(t,' W)

Corollarys: The functions

X4

R_(t)= i..‘.?.v.é"-&g[\ -LP(AB]M%PN(A)*:}%SA S x>0 (7.17)
X4 oo ~m
/zm(.t)zn_lT — S g 2w () (’dpzx(/l)t}%% , X720, (7.18)

have continuo_us derivatives \?‘M ({-) and /LL (t) , and
all four functions belong to the L2 class.
Proof: The proof of differentiability follows exactly
the same lines as those of Theorem 7.5 »

4lso the inequelities of Theoren 7.5, suitably
transformed, show that R_(t), 2. (), R;K(‘t') 5 . (t)
are doninated by functions of t  which belong to the

32
L™ class. The last part of the Corollary follows,

5, Derivation of a powsr series for W(*,0). The results

of the preceding section enable us to justify easily the

interchange of integrals performed in Section 3. Thus we
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have the following theorem, under the assumptions made
in Section 1, namely:
(’a) N (t) is a continuous function of € R
(b) the service time distribution has a density function é(»)
which fulfills the condition L[@( x!] x <o
(¢) \p(/ﬂ is analytic in Re(4)> o, where o < o ,
and is (Q(l/lAl)- in that region.

Theoren 7.6 + W(t,0) is the unique continuous solution of the

Volterra equation of the first kind
t

5 R(t,uw) wlw,e) = 2(t) , (7.3)

o

where R(t/ w) and A(t) are defined by (7.4) and (7.5)
Proof: That W(t‘/o\ satisfies (7.3) follows from the results
of Sections 3 and 4 . The uniqueness follows from the fact

that differentiation reduces (7.3) to the Volterra equation

of the second kind

t
\/\/(t/o)'k-s /\D(”'t)u) Wlw,o)du =2 (t)/ (7.6)

[>]

where P(t,u) and A'(t) are defined by (7.7) ard (7.8),
and the well-known results ( see for instance Tricomi [72]
Pe ’i2 ) on the uniquensss of the solution of the Volterra

equation of the second kind.

is foreshadowed in Section 2 s we now put
At) =t-w £(t), where ur is a paraneter: It follows

that £ (+) is a differentiable function of T , and that
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its derivative is continuous. Only values of (- such that

w bt} is real and. uws €'(¢)<t for all t  have relevance
to the storage problen; as ./L(f:) nust be real and
non-decreasing. However, we shall allow w~ to take complex
values in the process of obtalm.ng an explicit solution
for W((‘o o With the 1ntroduct10n of the paraneter wr
the functions R s v s 2! all becone, as mentioned
before; functions of the complex variable ws .
Lemna 7.1t For all complex wJ

(a)
= -

R(’c,u,- w) =§QWM [@(gu)] QML‘Pw) , - (7.19)

where ‘ , .
4 (1:} w) = & (¢) - Q..(..&)) (7.20)
Hia 0
R.(+)= 'lT P.V.-‘——“g[\— VLA\]M@xrh(A\t] QL_A_ , x>o
(b -0
/L(t t—u-) Ew"‘[ﬁ(-ﬁ] R, (f (7.21)
where X 4o '
. (&)—n—i- 2—‘—3‘-_@;() ZAMI u\)(/s} %P[ ] ‘%’i_ , x>0
~Proof: e can write
X440
R (t/w/'u.r) = ?V;::\:S g e*r[(t-u{) X(A\]g .
X -L&a

\Q‘
¥
\Y
0]

Ei;:‘\-w i@ktu)l {\-LVV}] =
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How for fixed w—, € , w ', the series comverges
uniformly on thse line Rela)= x>c, for there
li-w (M| € 2 . 1f we first consider the integral
with the limits X -«<M™M -, X< M -, we can interchange
the integration and swmation signs. The gene:ral tern of the

series will now becone

mh& ] A‘i"‘::‘gx[:‘lu% &"Y’{ () (= ]0%_ )

But it has been shown in Seétion 4 ( Corollary to

Theoren 7.3 ) that the integral is dominated by an expression
which is independent of ™ |, Moreover, if we replace the
integral in each term of the series by the corresponding
dominating expression, the resulting series is ahsolutely
conmvergent., It follows from Lebesgue's Dominated Convergence
theorem that we can let M  tend to infinity under the
sunmation sign, and part (a) of the theorem follows.

Part (b) is proved in a sinilar way, using the Corollary

to Theoren 7.4

The introduction of w nakes W(te),tho unique continuous
solution of the integral equation (7.3) s a function of w~ ,
We shall also write henceforth \N(t,o ;w') for W(t,0) |,
Lemna 7.2¢ \N(t/o; w) is an analytic function of ws— .
Proof: Fron Theoren 7.5 , it follows imuediately that

[

- T 2
S g‘_?(tlu;w)] duw dt<..0°)

(=]
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gr[h' (t; w)]zolf'< o

——

for arbitrary finite ! > O -
We shall now use the fact that the solution of the

integral equation (7.6) can be written down in the form

t
W(t/ O;w) = /L'(fj-cu-) - g H(t,‘*)‘ w)h.'(u/' w)o(u

where the resolvent kernel H(t,w/- w—\ is given by
-+ (t/c.gl- ur):jé_',o(‘ \) PMH (t’u;uf), ' (7.22)
The iterated kernels P.._ eare defined recursively by

P\ (t/g;“f) = ‘P(t/“,"‘r)

t
PM‘_\(tl u./w>: gP(t/v/-w)’PM(v'u;w>a(-u- , ™ >/\ .

is P(tl‘*jw) is an analytic function of wr , the P ...
are all analytic functions of w— . ilso, for arbitrary
M, the series for the resolvent kernel (7.22) is
majorized inside |{ur} £ M by an absolutely convergent
series whose comvergence is independent of wr .(see
Triconi [72] ps 12 ) Tt is therefore uniformly convergent

in vl &« M, and H(tlu.)' w) ig therefore itself an
analytic function of w— ; and is comtinuous in t

and W
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It follows that W(t, o;w) is an analytic function
of wr- , and is continuwous in t
Lema 7.3: WI(t,o;w)= io w F (t) , the series
converging for all (o~ uniformly in o0 £« € £ T.
Moreover, each F. () is a continuous function of t .
Proof: This follows immediately from the boundedness of
Wto;w) in 0c t €T , wl&M , and the
form of the remainder in the Taylor expansion of W(t, k3,' w),
Theoren 7.7 « The functions FMU:) can be calculated by
recurrence as the solutions of the convolution-type

integral equations

t R (a4
[ Ro(t~w) F‘;(u\)du = [&(—t\] < (t»

_gf—[éiw(@u)}kRk(ﬁ—m) \TM_@ (u\] duw . (7.23)

o
Proof: Keplace W (t/u./' w—) s W (t/ o; u.r) 9 /L(t/ w) by
their power expansions in the integral equation

t
g 'Q(t/ w; W)V\}Uflol'w)du, -::'L(t"w-)

o

and equate the coefficients. This gives us

ﬁé L7t u\}&@w-w) o) de = (RUO] 2 (e).

o

Finally, we transfer all the terms of the left-hand side

except the first to the right-hand side.
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6._Sone theorems on Laplace transforms. In Section 7 ;, we

shall proceed to solve the integral equations (7,23) by
neans of Laplace transforms. For this purpose, we »sha.ll
need some theorems on integral equations of the convolution
type and their solution by Laplace transfornse.

/11 the functions we shall use will belong to the
class Lz defined in Section 1 , ise. for any function
£(¢) SQ € ()] aLt will converge for some p > O .

Theorem-7.8 . If F(t)aL and G () is uniformly

bounded in t > o , then F(£G(H e 2,
Proof: Let (G(tn & M o Then
oﬁ~ + 2 9 oc‘ t 2
ge_“ [F(ec(t)] dt = ™ S P S CS e
[ ' [
Theorem 7.9 . If F(t) and G(&) belong to L% , then

t
Wey=F * G () :gF(t~w)G(“) A belongs to L= .

Proof: By the Schwartz inequality

2

—-2 t ) -pw 2
'H(t)‘ e“b elt-u) of G(u) clu‘

E,
gfez”IF( i dw .Ste‘i'” 16 () o

1~

M g 22076 ()| A

-dpt .2
Tt follows that € ' |H(£)]” is unifornly bounded for

sufficiently large p s 80 that the integral
) °°_'2 + ) 2
AP it

[=]
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will converge for any: C], >0 °
This complstes the probf.

Theoren 7.10 » Let K (%) 'G(t) have continuous derivatives

k'(¥) ., G'(£) , which are L_2 funétions. Let G(0) =0 and
K(o) = 0 s Then the Volterra equation of the first kind
in E(#):
t
g K(£-w) Flw) du = G(+) (7.24)

[a}

2
has a unique continuous solution which is an L function,
(=]
Moreover, its Laplace transforn F*(P) :E Q'Pt E(t)dt
o

is given by

F ¥ (p) = ¢ (e)
K*(p)
were 1 *(p) = | el dt | G*(F)sge‘PteLt) ot .

Proof: The first part follows immediately from the usual
differentiation technique of transforning a Volterra
integral equation of the first kind into an integral
equation of the second kind, and then applying a theorem
of Doetsch (15] po 143 Satz 7

The second part follows by taking Laplace transforns
on both sides of equation 7.24 ; and using the convolution

theorem of Doetsch [14] pe 123,
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7. The Lablgce.. transforms of the coefficients in the
power series for W (t, 0) . We shall now solve equations (7.23)

by means of Laplace transforns. To do this, we require the
Laplace transforms of the R_ (&) and the n (%), The
required expre”s.'sions’ are given in the following theorem.

Theoren 7.11 « Let R _ (P), /l:t (P) be the Leplace

transforms of R,K H:) PR S U:} o Then, if « 1is

as defined at the end of Section 1 , we have

Relp) = — _[L‘_“_*’_i?l]_ , Relp)> y(), (7.25)
~' g [+ ()]

/?.:(P\::._‘__ Q—Q}['"W(el '\?e(p) >X(d)/ (7.26)

~ gt [+ w'(e))

where © is the unique root in Rel4)> % of X(A>—P =0.

Proof: The uniqueness of 8 in Re(s)>«for Re(p)>y(«) has
already been discussed at the end of Section 1 .

4lsoy, it has been shown in Section 4 that the functions

HiM

I I ORI L
’XA.M
Kt ~.

;‘;S "3 [ 1 (A] w}x(ﬂf} Ci_AL , x>0,
XM

are doninated by functions of t and x which are

independent of M and are of the class Lz o It follows

from standard theorems on the inversion of the order of
X4 ™M

integration that the integrals S dA  and S at
'—kl‘\ (]
can be interchanged. .n application of Lebesgue's Dominated

Convergence theorem then justifies the interchange of the
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X400

o
integralsj ol A and j dt , provided that the
X - 4£ 00 o

integral in £ converges absolutely. We therefore have

X oo oo
R (p) ‘P‘V'{F«-Si—s da (v [ erp [t {yl)-el] ot

For the integral in & +to converge absolutely, the
coefficient of €  in the exponential nmust have a
negative real part on the line 'Rc(/ﬂ = X ., Putting

A= x(—&'} s We have

Qe[X(A)—P] = Re}}s- L+ (4) —PJ= - Relp)r -1 +S:zt(ca3t) C(t)dt,

This will be negative if °

Relp) > x -1 +| e (e yt) B (H)dt,
and a fortiori if ° |

Re(p) > x -1 +§°:a'xt ) dt = x -1+ plx) = X(x) .
If this is satisfied, we shall have
Nt o0 A
RE(p) =Py, - S G- D] _ dy.
~ ~t qQma 1_'0/3 [—P_X(A)]

To calculate this integral, we consider the integral around
the closed contour consisting of the arc of the circle
C:A1=R for Re(4) > x and the line ’RQ(A):X- .

We note that for Re(a)>o0 s |<.p(4\(5\ , and therefore

lp-y (W) =|p -4+ 1-wO>Bi-lpt- WA > (a1- ™M,

where ™M is some constant. It follows that the contribution

of the circle to the integral tends to zero when R tends
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to infinity, for

, g[.-w,(A)]MoLA TR
| CA[EP-X(A)]_ R(R-™M)

On the other hand, it follows from Theorem 3.5 of Chapter 3
that p - ¥ (A) will have only one zero in Re(a)> x>0

if Relp)> y(%), namely A =6 . It follows that

1/\/\
R* (o) = L [l—w(e)]
~(p) T
for 'Re(p)>5(’)€).

Wo now use the fact that O(p) is defined for ell p
such that Re(p) > y(«). Thus RZ (p) , which was defined
t111 now only in Re(p)>*>©, and is an analytic function
of P in that region, can be continued analytically
to the region 'F\)e(P)> E(d). This completes the proof of
(7¢25). 4 similar proof yields ( 7.26).

Corollary: The functions

R (p) = — 2 (p)= Q—S}["*’(Gﬂ
° 8+ v'(e)) ’ 82 {1+ w'(6Y]

have one simple pole in ?c(p)>x(o(), namely at p =0 .
The functions 'Rj (P))(M >0) and IL: (P)IQ\A >1) are
analytic and uniformly bounded in the same region. Moreover,
for all m30 , R (p) is O( /ipt) ana A~ (p) is
(.9(\/ |Pl2) in the regions
Proof: The Corollary follows idmediately from the theorem

and the results of Theoren 3.6 of Chapter 3 .
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Theoren 7.12 . Suppose that &(t P (t are unifornly

bounded for all t= o , and define BLM (p) by

g Lt ~
CRL(p) = (e e At (7.27)
Then °
t ¢ ~ .. N4 1’00
[ [ewyr de= 1 (22(p-0nWda (720
° X -4 00

for sone x > o and all P such that 'RQLP) > K.
Proof: The rosult follows from a theorem of Doetsch [-14]
pe 258 , Satz 2 , because f?.m(t} is an Lz function
(soe the Corollary to Theoren 7.5 )e
Theorem 7.13 » Under the same assumptions for &(¢) as in

Theoren 7.12 ; the Laplace transform of

t
JMLt){[%z;i?(t;“)}&R&Lt-g) Foe)de ()

s Kceo )
z ¥
L2 0 (B whle-n R
A - w0 .
A S% (A d—\\_ &(G) &0'§ OLA (7.30)
X-L0a

where F:: (p) is the Laplace transforn of ¥ __ (£) )
Qﬁ(P) > % and A is sufficiently large.
Proof: Replacing Cy(‘clu.) by its value a(t)— ﬁ(u) in (7.29),

we find that.
t

sm ZZ(— ) ( )[a(t\]&”‘mLt-A[au]’”FM-&Lq dus.

=\ n=o
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We now apply repeatedly the theorem of Doetsch quoted
in the proof of Theoren 7.12 and Sata 4 of Doetsch [jAJ
Pe 123 . The result will follow, provided we can justify
the use of the theorens,

This justifisation follows ecasily from the fact that
both quoted theorems hold for l_2 functions and from the
results of Section 6 « In fact, assuning that the [
L, =), are L? functions, it follows easily
fron the fact that £(¢), &'(¢) ,Rp(¥), Ry (¢) are

L2 functions that the derivative of the right-hand
side of the n-th equation (7.23) is an ;_2 function.
is f?;(f) is also an L2 function, it follows from
Theoren 7.10 of Section 6 that [ (¥) is an L2 function,
4n induction argument then shows that all the functions
involved in the systen of equations (7.23) are
L2 functions.
Corollary: Under the assunptions of Theorem 7.12 ,
the Laplace transforns F;?(P) of the F_ (+) are given

by the recurrence formulae

X $100

Fo(p)= Q,(P)Lmifw(ﬁ 5) 7, (a) o
~ & Xt o0
%?}' ( )g &mf’ 4){ A>-ga (a-a) *_g(&)d«}m} (7.31)

for sufficiently large » , Re(p) > x .

8« The asymptotic behaviour of the F;\(f}"when Kﬁf) is period;c.

We shall now consider in detail the special case when
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ﬁv.(t) can be expanded in a Fourier series with a finite

nunber- of non-zero coefficients. We shall write

N
R (t) :Z, a, Ao (mewt v+ ).

In this case, £ (+) obviously satisfies the conditions
of Theoren 7.12 « In this case, the f—":(P) are given
for Re(p) sufficiently large by equation (7.31). We
crtinue then analytically wherever this is possible and
denote in the sequel by F:(P) the analytic functions
thus defined,

Lemma 7.4t let F,(p) , M (p) be meronorphic functions

which can be written in the forn

+N M
F(p)=) —C= E (p) =y Y=l

. )
m__NP—AMLA.) MP—LM"“‘

~m -

where the K1),““3) are analytic functions which are
unifornly bounded in 'Re(P) >0 , where ¢, <O o Then

A+L00

G(F> :21"\'—_18 F(p-0) Rlo)der ) Relp)s x> o,
r V)

exists and can be writ.te'n in the forn

NtmMm

G(P):Z rﬁM(P)

m:-(!\l+M) P — L

where the (.. (p) are analytic functions which are
unifornly bounded in Re(p)>6,. Further, if the\y, (p)are

(9(!/ | Plg) as |p|—>r oo in 'Re(p)>cr°, then so are
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the [ _(p)-.
Proof: We have

x4 <00
G ___.f & LVM(O') _
(p) 21—«1[0: p - c-kmw:] [; e da
X+ 00
_ZZ___ o~ Fome (o) do | Relp)> x>0,

.
Mmoo oma Lx ‘ng O~ o (0‘ A’W\u)

The poles of the integrand to the right of Wela) = x
are at G =p-«mw  The residue of the (nyn)th tern
is .
C-,“_ LPA«.(P "LM(...))
p - £ (M"'N\s) w

—

We notice that the integrand is (9(!'/ m") to the right
of QQ(G) =K and therefore the integral is equal to
ninus the sun of the residuss to the right of Rela)=

Put now % = v+~ and collect all terns whose

denominator is p- JBow o The result is

;CMW&-«(P"'““’\_ e (p)
-« kw T op-ifw

2

where
elp) =Ll Yy o (7:32)
We note that as all q)m(p) are unifornmly bounded
in Re(p)> 0, , it follows that all the (y(p) ave
unifornly bounded in Re(p)> g,

Finally,
N+ M

J(P)" Z C.\(.P)

s-N4m) PeaMm
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This proves the first part of the theoren. The second part
follows immediately fron equation (7.32).

Corol\l.larx: The residue of G(P) ét p=imuw is
PM(LM u..)) = 5&:, C_ee (\l)m~eq {Q\x—@)&w] .

N
Lemna 7.5: The Laplace transform of @ (&) = Z Q, Aon(mwt +¢ )
~M T

is of the forn N
Lan) C

~

MmN P-'LN““

Proof: It is easily seen that &.(t) can be written in
N .
Amwt

the forn A (t)=0 ,c & , and it follows that

LR
oo +N . +
L

Mz~

o0

S o Pt e (t) dt

it

[S]

+N

Z:_.___C.""__.. , Re(p)>o,

~mT =N F_“:ML“J

1t

&
Corollary: The Laplace transforn of [Q(t\] is of the form
+ &N

Z-___f_i%m._

mz-fn P-me

Proof: This follows by induction, using

N Cmwot r ™ Lot N4 " {mwt
(Z:c_me ){Z c e ):Z ¢ €&

s
~ME-N \M\:~M MmNt m)

We are now in a posit.ion to prove the following theorens
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N
Theoren 7e1h o 1f A(t)= Z; a,. Avn(mwt *“‘PM) ,

the functions Fz(P)) (w=¢1,...) canbe written in

the fori of the finite sun:

where the \-{JQQM are analytic functions which are wnifornly
bounded in \?e(P)>8(9t) and are (9(\ /\F\) s |p| tends

to infinity in that region,

Proofs We proceed by induction.

The first equation of the set of equations (7.31) reads
x
i) = ote)
Rlp)

Replacing JLZ(F> and T\’Z (p) by their values from

Theorem 7.11 , we obtain

-8(p)
o 6(p)3,
6(p)

This is identical with equation (4.14) of Chapter 4.

Falp)=

"

We continue V+ °(P> analytically to the half-plane
-e(p)

e %

'ReLP) > Z(o() » In that region, is uniformly
bounded. We conclude that the only pole in this region
is where G(p):o, o at p=0. 4s

Une OB (o) m =
p—=e P Www'le) V-
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this pole is simple. It is-also clear that, as (F( — oo ,
Folp) 18 O(cfip) .
Suppose now that the F—QQ (p) (?e_ o, .\, A1) R
satisfy the conditions of the theoren. We first note that

X4 00 MmN XKoo ~els)s

L (p-)n o) de =), | Cmn 11 @ L\-‘Vie(c)}]
R?S (P )’7- ) ;ﬁ“n((!’ C DTN PR [8(0'5) [H-Lp%ﬁ(d)

‘K-.coo X-400
~ N

= Cran e-a(f")%[ b - \P{G(G"‘) ]
v ™ [0 [ ' 8(sY ]

where T, = P -4Aw ; and this expression has all its

poles at the points p= Art and can be written in the

forn Z_u bat P) s Where the CS),LLP) are

\0"}\&\—&)
(9( lP() in Relp) >y («)( because of the factor

| [[8(01\]2 ) o Lpplying now Lenmas 7.4 “

and 7.5 to the second tern of the right-hand side of (7.31)
and using the results of the Corollary to Theorem 7.11
(Section 7 ), we conclude that this tern satisfies the
conditions of the theoren and is U(\{\P\i) in Re(p) >X(°A'
== @ D elelt]
has no poles in Re(p) > X(OL\ and is O(Ipl) in that

Finally, we notice that

region.
— %
We can now conclude from equations (7.31) that (- . (p)

satisfies the conditions of the theoren.

We shall now prove the key theorem of this chapter,
which gives the asynptotic behaviour of the F. (&)

as t tends to infinity.
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Theoren 7.15 ». The functions F. (t) adnit the asymptotic

expansion
& ~ K

Proof: .is the Laplace transform of £ (t) converges absolutely

for all p>0© , and as F_(t) is continuous for all t>o0,

we have
X ta0 Ao
_ t t (p)
t)= QP F = 2 P _L_V_‘«’e;:___P' .
P lt) 2m3 - (pldp Z&:‘zn;s < o - B dp
X -4L00 AL

We first show that the integral converges uniformly

in t= U >0 for any fixed x such that either x> o

or X(e()(, x < O o In fact, we have, as \‘P&M(P),\< %M
in Re(P) > X(o‘)s

X1 00 4 00
\;jeet Y. (9) de _ _‘_‘ fexcess Y (xg) 43{
Ehx-;m p-4ikw 77 ) x“;(&}-&w\.

t  too
< g: S M d? >
Yoo (\xlﬂ‘al)(\xl iy ~kwl)

o

and the latter integral converges absolutely and independently
of t . |

We shall now use the ibelian theorem for the complex
inversion integral given in Doetsch [14] pe 488, which has
already been used in restricted form in Scction 6 of
Chapter 4 . We note that the poles of F:(P) are at the

points ¥ {mw and occur in pairs. .lso all the conditions
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of the theoren are clearly satisfied. It follows that
LRwt

FM (f) ~ % C%M@

where the C% are constants. This can obviously be rewritten
[

as

lTM(t)~%(AQM e fowrt £ By sllwt) .

9. The asymptotic behaviour of the Laplace transform

of the content distribution. ' We shall now investigate

the asynmptotic behaviour of the Laplace transforn of the

content distribution, using formula (7.2), which now reads

-Q-(t,A)‘*"):i WS _(¥)
—4 St[_.—zgwmiq(t,w)}MTMLt-w)} {i w \i(w\}iu )

o

where

- et [
Sm(t):_[‘_‘_‘_"l_(fﬂ_ (& ) e 3" s

)

T W=t fi-w) e

411 the series being uniformly and absolutely convergent
for 04w «t , we can nultiply out and integrate term by

termy, obtaining

R(t,/s}'ur)::z::: _;P.f'“(tlﬂ w"“) |
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where

~ t %
QL= S 00 2 |[glee] Tl By (4

m & ng, ot n
= S (H-A0 2 (,LW?\({)} JT%(‘CM) (L) E plw)du,

&0'10 s

Thooren 716 o 48 € tends to infinity, we have

Q) T Dy _cafeot £ B s gut)

for A=~ 3 where v~ 1is a real number such that
O < |v|< § for some 570.
Proof: The Laplace transforns of SM ('E\ and T(t’\)

are given rcspectively by

S* (o) = Dol o4 &Ew‘c 5 Cmk 1 de
N 2mi LP_-O“((MM& T e{uj

_DovWY o2y Cak
- & op-yWa)-alw

The Laplace transform of _Q.M(t ,A\ is

“lpa) = S26) AZAZ,LH)’W«) gaﬁa(v-c)irﬁ (<)
K ra o0 e
i%r:g X (o-v) FM-EQ(V)AV} do.

We now use the fact that the F;(P) ) (r=1,2, ... ,)

are of the fornm
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S(p) =2, Ykap)
F-,L (P) & P -

that the R:(P) are of the form

0 (p) =2, —S=bk
~ P) (’R P—Ae{w Y
that T ( ©) has only ome pole at p =y (A) and that

S:f(P) has poles at X(A) i kw . |

Now from the representation
(A= 1= pa +Z 42 + 0O (Y
ng - “‘f 9 J
we conclude that
: z
¥(A) = Aot +g(4) =(1-p) A + S'.'Q..AL 4—0(/53),

80 that if A=« , and 5 1is sufficiently simall, we
shall have, for O < vl § , ’l?e[x()l)] < 0.

&pplying again the 4belian theorem for the complex inversion
integral given by Doetsch [14] Pe 488 , we deduce that
SM (1‘:) tends to zero exponentially as t tends to
infinity, and that the second tcrm is asymptotic'to an
expression of the form
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Corollary: The Laplace transform of the content distribution,
R(t,A,' W) , is asynptotically periodic for A= <v .
Proof: For the values of A considered, the series
;', Qm(t,A) w ™ comverges unifornly in t 20 . It
follows that

o *

Q(pa; ) .-_S P Ot 4 ) dt = Z 52 (pa)u”

[5]
This shows that .Q*(F/A/- w) ; as a function of p , has
all its poles with largest real parts on the inaginary axise.
The Corollary follows immediately by using a slight extension
of Doetsch's ( [14] Po 488 ) ibelian theorem.

100 Bxplicit expressions for the leading terms_in the case

of a simple harnonic input. Consider the special case

: * D
Q.(t) = s wl o In this casey e (P) = 2 4 .2 °
Pt
and we find, for n=0,
-1 0
P
* Q*( 3
Fo (P\ - o* »P) - e )
Qo (PS 8P
where 9P represents the unique solution in 8 of the
equation

F—-X(G): p - & +1 -‘W(B):O .

For n=1, we find, after some cancellation,
* X*«foo
%© *x
¥ p) = B (93_ L R¥(p-a) F, (A)d4
Rﬂ‘(P) 27 A

X L0
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leBe H el o0 e:64$
w
F. (P\ = (:l - \{J(OP\} it'\x‘g i ‘:;’1wa] 5 da , Re (P) >x >0,
X - OO A

where 6/, is the root of A - X(G} = 0.
Evaluating the contour integral and writing p+ Lw = C})
p-4to = /T | o find

-6

, -8
= (p) = '—wcepx[ e’ e_”’]

e

2<
"

O
O -p [ e e’s‘b}]
22

?

G. )
X
The function [, (\F’) has only one simple pole in

Relp)> y(t), at p =0, and the residuc thero is
l

— = =P

6 (& *

Similarly, & (p) has two poles, at p = Flwo,

and the residues are

@(-—.Cw\ + O _
R (+-¢)

—

Blxw) - <o (l~€) ‘ at b= W
2x

Using Doetsch'!s asymptotic theorem; we find that
E, (1) ~ (i—ep) )

F (‘t) ~ ;.[~i9(-,cw) -}—Lm} Q—.&Ut + i&(k‘m) -4 ?:th) .
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Put 8'(4’@\: x-\_&'\a’,
Then it is oasy to check that 6 (~ww)= x —ay.

Replacing in the expression for F‘ (t’) s wo find
\:l(t) ~ (l-EX[X Al o € - ('a—w) C,Mu.\t] .

The asymptotic expression for F (&) is, of course, the
liniting value of \NUZ,O) for stationary input previously
obtained in Chapter 4 o

Consider now thoe first terms of the expansion for

S2(t,4) e fim

-3 - %
Qilp=—2__ . _&
P2) p-y(a)  [p-y)]6; )
2 (e, 4 = e'“f_«-wﬂ[ S ——
P 24 n-y(4) q -y (4)
+A(9P—P>[\ ' E e-e“ﬁ B o ng }]
(P "XU}] 24 87, O
*_A(_\-\V(Aﬂi \ o %3 o o ]
24 |{4- v} 6 -y} 6a

(p-yla]L 2« —é;— On

Al o e'%”.

From this expression, we can deduce, putting as before

9(’*"*-’) = xi—«‘\a,,

Qo (A ~ Ali-¢) _ (-e)A
e~ X(A\ - A—(fh\)(A))
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which is the Pollaczok-Khintchine formula previously

obtained in-Chapter 4 , and

9,6 ~ s-o)| { 1plona) | 2l G e

LU ytewt ' e
+ wx -~ b’(‘&\—i\ (1-&.{))‘.&) A bot
X"'-&vwz - Xz‘-&wz ’

where P = W (4) Y = X'(A): A=l +w(4).
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