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PREFACE

The primary objective of the work presented
in this thesis has been to obtain an understanding of the
buckling mechanism in thin cylindrical shells when loaded
in axial compression. It Was’hoped that this understanding
éould then be applied in developing a quantitative model to
describe the behaviour. This could in turn lead to more
satisfactory design conditions by linking the collapse load
of a cylinder with defect size. The investigation grew out
of an enquiry from industry concerning the buckling behaviour
of the central column support for process thickeners. These
columns were relatively thick walled shélls subjected to
combined axial compression, torsion and external pressure,

These particular structures would yield before the



deformations would be large enough for buckling to be a
consideration. However, the nature of the buckling process

must be understood to determine when it is important.

In Chapter One the general nature of the
known experimental buckling behaviour is described. The
discussion is not limited to axial compression but includes
torsion and hoop compréssion as well as combinations of all
three. .Expgrimental results are included that show the
interaction between these modes and indicate possible

weaknesses in existing design data.

Chapter Two is probably the most important
ehapter of the thesis and forms the basis on which the
remainder is built. In this chapter a new theory is presented
to describe the buckling behaviour of cylinders. For this
theory the cylinder (both in the pre-buckled and post-buckled
state) is replaced by an equivalent space frame with the
members tracing the folds in the Yoshimura pattern. The
buckling problem is then reduced to a buckling analysis of
the substituted space frame. The results from this analysis
agree remarkably well with published information on

post-buckling behaviour.

In Chapter Three an examination of the
Donnell equations is made. These egquations were meant to
describe the buckling and post-buckling behaviour of cylinders.

It is shown that perhaps Donnell's membrane eouations may be



inadequate. It appears that second derivatives of out of
plane displacements (curvatures) may need to be included

as additional terms.

A finite difference solution of the partial
differential ecuations is conducted in Chapter Four. This
analysis has shown that inclusion of the curvature terms
could account for a 15% change in calculated values even in

the pre-buckling range for which the calculation was stable.

Some refinements to the space frame theory
are considered in Chapter Five., It is shown that considering
the member as initially curved leads to more confusion than
any possible advantége.it could have, However, the analysis
allowing for the curved member is included since it is
probably the most obvious condition where improvement
would be expected. It is hoped that others wililprofit
by the experience and not follow the same reasoning. It
is ' also shown that the aspect ratio of the lobes in the
buckled cylinder varies with.the radius to thickness ratio.
When this fariation is taken into account the agreement
is not unreasonable between predicted buckling loads and

published experimental results for cylinders.

Chapter Six describes a new experimental
technique that was developed specifically to measure the
radial deformations and imperfections of cylinders. It is

based on the Ligtenberg—moiré method.



In Chapter Seven the experimental method is
used to determine the size of some defects in experimental
cylindefs which appear to control the collapse. Allowing
for these defects in the theory as developed in chapter five
there is remarkable agreement between predicted and measured

buckling loads,
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CHAPTER 1

INTRODUCTION —- BUCKLING IN THIN WALLED CYLINDERS

The work that is described in this thesis
originated in an¢ enquiry from industry about the design
of cylindrical shells particularly with regard to buckling.
The particular cylinder involved was relatively thick walled
and would yield before the deformations had grown sufficiently
for buckling to be a problem. However, when investigating
the buckling situation the work described in this thesis

evolved.,

A classical buckling load can be obtained
for thin walled cylinders loaded in axial compression as

explained in Timoshenko and Gere-(ref.l--pages 457-458).



3.

This classical analysis assumes axisymmetric failure in a
or Véctanguley wave patrérn
ripple pattern,and is expressedq as:-

| o, - E.T
a, R{3(1—v2)}%: 1.1

It is well known that the "ripple" pattern

illustrated in figure 1.1 occurs only in relatively thick
walled shells where yielding has first occured. If the
cylinder collapses’elastically then the buckle pattern is

a series of diamonds as shown in figure 1.2., Even more
important is the fact that the nominal stress at collapse
is considerably below that value given'by egquation 1.1.
This discrepancy has led to a great deal of research both
experimentally and theoretically. 'The experimental work

is largely summarised in a paper by Harris et.al.(ref.2).
That paper statistically analyses the available experimental
data to establish 90% confidence limits for design purposes.
On the theoretical side, a major contribution was made by
Von Karmen and Tsien in 1941 (ref.3), based on eauations
published by Donnell in 1934(ref.4). They considered the
post buckling behaviour of the cylinder and allowed for
large deflections by taking second order geometry terms
into account. 1In their work the graph shown in figure 1.3
was derived, here reproduced from Fligge (ref.5). Many
researchers refined the calculations of Von Karman and
Tsien and with the advent of digital computers the solution
technique could be extended. Yoshimura (ref.6) showed the
diamond patfern obtained in buckling to be a folded,
developable surface and eventually Hoff,lMadsen and Mayers

(ref.7) concluded that the whole Donnell-Von Karman and



FIGURE 11
INELASTIC AXIAL RIPPLE BUCKLING
No. 2011 ALUMINIUM CYLINDER R=12:/mm. T=05mm.

FIGURE {

ELASTIC DIAMOND PATTERN — AXIAL COMPRESSION
MELANEX CYLINDER R=44-5mm. T=0-1mm.




NOMINAL AXIAL STRESS

\B

NOMINAL AXIAL STRAIN

FIGURE 1-3
THEORETICAL BEHAVIOUR OF AXIALLY
- COMPRESSED CYLINDER
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Tsien approach was inappropriate. Using an infinite series
solution they came to some rather startling conclusions
which are reproduced here,as follows.

"In the limit as (the number of terms in the
series expansion) tends to infinity, the exact Yoshimura
vattern is approached on thé basis of an extrapolation
of the results obtained with the aid of a digital
computer. In this limiting case N(the number of
circuﬁferential lobes) apporoaches infinity, the amplitude
of the displacements tends to zero, the Von Karman-
Donnell équations are rigorously valid, the T/R ratio
approaches zero, and the value of the average axial
stress capable of maintaining equilibrium in the

postbuckling state is zero."

Clearly a solution which leadé to conclusions
of this nature can not possibly/égscribe the real
situation. Anyone who has ever folded a sheet of paper
into a Yoshimura pattern is well aware that the structure
so formed has considerable strength. The theory developed
in the next chapter is an attempt to overcome the
difficulties mentioned above. It does appear to supply a
reasonable explanation of the buckling behaviour of thin

walled cylinders in axial compression,

Before proceeding with that discussion some
explanation of the general buckling behaviour of thin walled

cylinders is necessary. Von Karman and Tsien in producing



T.
the graph shown in figure 1.3 proposed that an imverfect

cvlinder would follow the path shown by either curve A or
curve B, Curve A represents a cylinder with a small defect
while cur#e I revresents a cylinder with rather large
defects. In both cases the collapse load is considerably
reduced from the theoretical value (the classical load).
Thus defects in shape have a considerable influence on the

collapse load of axially comvressed thin walled cylinders.

Buckling due to bending is very similar in
nature to axial compression so that the same type of
argument would apply. For failure due to torsion the
réduction in critical stress (due to imperfections) from
the classicai value is nct as severe but is still
substantial., Collapse from external pressure loading is
even less susceptable to imperfections. Figures 1.4 andv
1.5 show the type of buckle vattern obtained in torsion

loading and from external pressure.

For the reader interested in further reading
on the stability of shells two excellent review articles

are available (refs. 8 and 9).

In the buckling process, the diamohd pattern
is often seen to:grow out of some imperfection. One or two
diamond may avpear together and then others form adjacent
to these. Sometimes the first wrinkle may occur at the
end support and move towards the centre of the shell.

Often, it is vpossible to move the buckle pattern around



FIGURE 14
MELANEX CYLINDER—IN TORSION

CINURE - 1°9

MELANE X CYLINDER—EXTERNAL PRESSURE




on the shell, PFigure 1.6 shows the growth of the buckle
pattern with increasing axial strain on a conical shell
made of O.lmm. thick melanex. The shell was 76mm. long,
45mm, dia. at the small end and 106mm. diz. at the large
end. The behaviour of conical shells is very similar to
cylinarical shells in axial compression. In figure 1.6A
an imperfection can be seen that serves as a nucleation
point for the diamond pattern. In subsequent photographs
the diamond pattern is seen to spread from this point and

intensify as the axial displacement is increased.

Even though the large discrepancy is known
to exist between theory and practice, leindrical shells
are used as structures, particularly in the aerogpace
industry. “Thus design formulae must be available. One’
source of these formulae is Roark(ref. 10) but these
formulae need to be treated with caution because of the.
age of the reference. Another, more modern source is
Baker, Kovalevsky and Rish (ref. 11) which is based on
the NASA "Shell Analysis Manual"(ref. 12). A summary of
these design formulae is given in table 1.1. This last
reference is essentially for use in the aerospace
industries where shell structures woq;d nprmally be more

vperfectly made than the fabricated one from which this

investigation started. Thus the size of the imperfections

here may make the design formulae useless. To test this
hypothesis a melanex cylinder was made and tested. The
manufacture of the cylinder was deliberately crude so

- that imperfections would be large.‘ The cylinder was

9.



TABLE 1.1

10.

DESIGN FORMULAE FOR CALCULATIOE OF CRITICAL STRESSES

Mode

Source Formula Comments
Axial Roark ogr= BT Classical formula-
Compression 6 2 "actual" value 0,4
(1-v7)R to 0.6 of calculated
value.
Baker ¥.E.T ¥ read from graph.
Kox_ralevsky o —_— gllows for
&ngh R /3(1_1,2) imperfections,.
“Axial Baker Y ¥as above.
Gompression [Kovalevsky] (cr=( = — + LAC read from graph.
Internally |&Rish. /3(1_1]5)
Pressurised
BE.T
Ac )=
Torsion Roark 7’cr=—-——-(L) (4.6 4+ |"Actual" value 0.6
1-Y Lto 0.75 of
/7 8*0-53H§) HeJrv 7z|calculated value.
Baker cr=cs E.T Cs read from graph.
Kovalevsky R. 2% :
&Rish. I.2 >
= ﬁ -]
Torsion Baker 7= s——E—'-E + HACS read from graph,
Internally |Kovalevsky R.2* ‘
Pressurised |&Rish E.T
| 4%w
External Roark 0’ -O 807 (
Pressure
1 ﬁ)l
(1-v°)3 »?
2.E
|Baker ol (Ly2 KP read from graph.
Kovalevsky] “cr 12(1 V2) L

&Rish,




FIGURE  1-6
CONICAL SHELL IN AXIAL COMPRESSION

A. UNDEFORMED SHELL
B. SMALL AXIAL DISPLACEMENT




FIGURE 16 CandD
INCREASING AXIAL DEFORMATION




FIGURE 16 E andF

LARGE AXIAL DEFORMATION
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127rm. long, 89mm. dia. and had a wall thickness of O.lmm.

A longitudinal seam was made by butting the two ends of

the melanex together and lapping the joint with cellulose
adhesive tape. The ends of the cylinder were bonded to
brass reinforcing rings with contact cement. This cylinder
collapsed elastically so that repeated tests were possible
on the one cylinder. A simple loading rig was made “
(figure 1.7) such that the cylinder could be tested with
qombinations of axial load, torsion and internal vacuun
since the magnitude of the external pressure needed to
collapse the cylinder was very small. The apparatus

could also be internally pressurised to test the stiffening
effect that internal pressure has on the .stability of the
cylinder in axial compression and torsion. .Because of the
nature of the_apparatus the weight of the crosshead was
always present as an axial load. Thus for torsion loading
and hoop cdmpression the measured values would be slightly

lower than the actual critical loads.

The measured nominal stresses at collapse
are given in table 1.2 and comparec¢ with the values obtained
from an application of the design formulae. In applying
the design formulae values of Young's modulus and Poisson's
ratio were required. Because of the nature of the test
material a great deal of difficulty was experienced in
measuring these ouantities. Young's modﬁlus was eventually
measured at 5.6GPa. but this value could ndt be guaranteed
to better than about 5%. Poisson's ratio measurements
were hopeless so that a value of 0.35 was guessed. This -
value has only a small effect on the calculations so that

large errors in its value can be accommodated with small
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variation in the calculated value of buckling stress. The

value of 0.35 was assumed on the basis that both perspex

and araldite have values around this figure,

A glance at table 1.2 will show that, as
anticipated, the design formulae for axial compression
gave values that are too large for this particular cylinder.
Thus it could be assumed that the imperfections in shape
are much larger in this relatively crudely made chinder
than the design formulae allow. In the cése.of torsion
loading the design formulae could be considered as just
adequate. Imperfections do not have as large an effect in-
torsion as with axial compression which éduld account for
- this improvement. With hoop compression, the design
formulae appear aquite safe. In this case imperfections
have the least effect on stability. By internally
pressurising, the stiffening of the cylinder for both
axial compression and torsion greatly exceeded the design
figures. The photograph shown in figure 1.2 is this
cylinder'under axial compression. The diamond pattern
is well established with the axis of the diamond at
right angles to the more negative principal stress
direction. In torsion loading a similar faceted pattern
was obtained (figure 1.4) with the axis of the pattern
again 2t right angles to the more negative principal
stress direction. With internal vacuum (or external
vressure) the more negative principsl stress had rotated
a further 450 and the axis of the buckle pattern was

parallel to the axis of the cylinder (figure 1.5).



17.
Figure 1.8 illustrates the buckling modes

for various combinations of loading and in each of these
vhotographs the principal stress directions are marked to
illustrate the orientation of the buckle pattern. A summaxry
of the measured nominal stresses at collapse for this
cylinder in all the test conditions is given in table 1. 3.
Theée values are plotted in figures 1.9 and 1.20 to
illustrate the interaction between the various buckling
modes., In figure 1.9 the interaction between torsion -

and axial comvression is illustrated while in figure 1.10,
torsion is used as the parameter of the graph of the
interaction between axial compression and hoop compression,

i.e. figure 1.9 appears as the Y axis in figure 1.10.

Baker, Kovalevsky and Rish (ref. 11) give a
/ _
general relation between buckling mgzg§ as,

A+ B o+ % =1 - - 1.2

Where A,B and C are the ratios of the
nominal stress at collapse in the combined case for a
particular mode,to the nominal stress at collapse if the
cylinder was to buckle in that mode only. They then go

on to establish values for the indices in two combinations,

T 7\ B}
6Er-+ (-;z) e 1.3
a;
and gé’._ + _ll._ = 1 - 1.4
0z Oh



TABLT 1.2

DEPAILS OF CYLINDERS TH5YED IN CCUEINED LOADIEG e
- STRWES23 AT COLLATHE |
" AKIAL COMPRESSION - TORSICK TATERCAL TIRSLTRN
CYLINDER |TTATRRAIL | = v R P T {r/? |1/R CARK | 2AV33 [ 1iEASURED || ROARY | RAKER | FIWASURSD || ROARK | DAK®R 1731 T°RED
GPa | mm. | mm, | mm. “Pa 1"Pa 1iPa tPa | 1TPa HPa 1¥a ra 'Fa
1 MULAKEL | 5.6 | 0.35% 44.5 | 0.1 127 | 445 ] 2.85 ||| 3.10} 2.62 1.16 0.82| 0.91 0.98 0.19 | 0.16 0.23
IFWERNALLY PRUSSURISE ———— | 1.53*%} 1,95 ~—— | 1,01%*| 1,76
2 FULAREK } 5.6 | 0,354 44.5 | 0.1 127 445 2.85 il 3.10 | 2.62 1.39 0.862] 0.91 1.34 0.19 | 0.1 0.21
3 PRASS 106 | 0.32 | 44.5 | 02025 [ 125 [ 1780 | 2.81 ||| 16.7 [ 5.82 4.77 2.69 | 2.45 2.38 0.43 | 0.39 1.13
4 ERASS 106 { 0.32 | 44.5 | 0.075 | 125 | 593 | 2.81 ||| 43.6 | 31.6 | 9.24 ———
5 BRASS 106 [ 0.32 | 44.5 1 0.025 | 125 | 1780 | 2.81 ||l 16.7 | 5.81 4.20 2.69 | 2.45 1.77 0.43 | 0.39 1.22
6 I'SLAREX 5.6 | 0.35% 23.4 |]0.05 {133} 466 |5.681l 2.95 | 2.43 2.56 0.90 { 0.60 0.75 0.078) 0.07¢] 06.18
7 MELANEX 5.6 | 0.35% 23.4 1 0.05 [ 133 468 |5.6& {}| 2.95 | 2.43 1.63 0.90| 0.60| 0,69 0.076] 0.074) C.1&
8 IFELAREX | 5.6 | 0.35% 44.5 | 0.05 [125| 890 |2.81 1.55 | 0.93 1.07 0.58 | 0.36 0.38 0.055{ 0.063] 0.21
9 IELAKEX |5.6 | 0.35% 44.5 [0.05 |125 | 89 [2.81 ] 1.55 | 0.93 1.10 0.58 | 0.36 0.46 0,055| 0.563] 0©.20
10 ITYLAR 5.6 1 0.35% 44,5 10.15 125 297 }2.81 4,65 | 4.65 2.93 ——— | ——— ————
11 FMELANEX | 5.6 | 0.35% 44.5 | 0.05 54 { 890 |1.21 1.55 | 0.93 1.33 0.90 { 0.54 } 0.51 —— | ———- —_—
12 HELAWEX | 5.6 | 0.35% 44.5 | 0.05 54 | 890 | 1.21 1.55 | 0.93 1.09 0.90 | 0.54 0.68 0.13 | 0.1z 0.27
13 MELAREX | 5.6 | 0.35% 44.5 | 0.05 54 | 89 |1.21 1.55 | 0.93 1,19 0.90 | 0.54 0.68 0.13 | 0.2¢ 0.26
14 IELANEL | 5.6 | 0.35% 44.5 | 0.1 5 445 | 1.21 3.10 | 2.62 3.17 2.17} 1.39 1.80 0.44 | 0,49 0.60
15 MELANEX {5.6 | 0.35% 23.4 [0.05 | 133 | 4685.68 2.95 | 2.43 2.59 0.90 | 0.60 0.96 0.076{ 0.074} 0.15

* Value guessed as being similar to Persmex and Araldite
because of the difficulty in reasurement and relative

unimportance in calculation.

All other values measured,

** Tfeasured critical stresses used as the basis for these
calculations,




A. 04=-0-86MPa, o,=0  7=0-39MPa.

B. 0q=-0-68MPa. a,=-0148MPa. T=0-19MPa.
FIGURE _ 1-8
MELANEX CYLINDER—COMBINED LOADING




D.oy=-0-68MPa. ot,=-0-201MPa. T=0
FIGURE _ 1-8

MELANEX CYLINDER—COMBINED LOADING




E O'Q;'-O'OSMPQ. dh: -0113MPa. T:O‘88MPO

F.oy=-M7MPa.  o},=+0-79MPa. T=1-17MPa.
FIGURE _ 1-8
MELANEX CYLINDER—COMBINED LOADING




TABRLE 1.3

FOUTT AL STRESSES AT COLLAP3E FOR CYLINDER KO.1

22.

O Oy T A A, Ay A,
MPa 1Pa MPa
-1.16 0 0 1.00 1.00 1.00 1.00
-0.88 0 1 0.19 0.79| 0.84 0.79 0. 84
-0.86 0 0.39 0.89°] 0.99 0.89 0.99
-0.75 0 - 0,58 0.98 | 1.10 0.98 | 1.10
-0.44 0 0.78 0.99 {1.09 | 0.99|1.09
~0.05 0 0.98 |1.00 1.00 - |1.00 1.00
-0.05 | -0.231| o 1.00 1.00  |1.00 = |1.00
-0.96 | -0.144| o 1.04 1.04 1.16 ., |1.16
-0.68 | -0.148| 0.19 0.90 | 0.95|1.01 |1.06
-0.68 -0.144 0.39 |[1.01 1,11 |1.11 '1.20
-0.68 | -0.096| 0.58 |1.05 1.17 - |1.13 1.24
-0.68 | -0.044| 0.78 |1.22 1.33  |1.25 1.35
-0.68 | -0.201| o 1.05 1.05 1.17 1.17
-0.,40 | -0.2001] o 0.94 0.94 |1.01 1.01
-0.40 | -0.192 | = 0.19 0.94 0.99 |1.01 1.06
-0.40 | -0.166 | 0.39 0.95 | 1.05 1.02 1.11
-0.40 | -0.153| 0.58 [1.08 1.20 1.15 1.26
-0.40 -0.105 0.78 [1.18 1.28 1.23 1.33
-0.05 | -0.231| 0.19 1.04 1.09  [1.04 1.09
-0.05 | -0.205| 0.39 |1.04 1.14 1.05 |1.14
-0.05 | -0.179| o0.58 |1.11 1.23 1.12 . |1.23
-0.05 | -0.135| o0.78 |1.19 1.30 1.20 1.30
-0.05 | -0.113| o0.88 |1.27 1.34 1.27 1.34
-1.95 -] +0.179 o)
-1.74 | +0.179| 0.39 |emmmmoe | e
-1.67 | +0.179| 0.78
-1.17 | +0.179| 1.17
-0.82 | +0.179| 1.56
-0.12 | +0.179| 1.76 -
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FIGURE 1-9

BUCKLING STRESS STATE DIAGRAM FOR AXIAL
COMPRESSION — TORSION INTERACTION IN_FIRST

MELANEX CYLINDER
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NOMINAL HOOP STRESS AT COLLAPSE (MPa) |
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FIGURE 1410

BUCKLING STRESS STATE DIAGRAM
INTERACTION OF BUCKLING MODES-CYLINDER No 1




25.
Equation 1.3 is plotted as the curved line

in figure 1.9 for both the unpressurised and the pressurised
conditions. Immediately, it is apparent that some of the
test »oints were well inside this curve. Thus it was
considered that perhaps the formula 1.3 may not be completely
safe. 1In figﬁre 1.10 the combination of equations 1.3 and
1.4 given below was plotted as the series of straight

lines.,

-1
(_—) + ——= l - 105
a%b 7c %h

Here it can be seen that the only test
points to fail this condition are those on the Y axis,
i.e. those that had already failed the condition given
by equation 1;3. Thus it was apparent that for this
cylinder at least, equation l.% was very consefvative.

In plotting this and all other curves O'ac was taken as
the value Measured in axial compression alone. a’hc and
72 were-based on the values measured with internal vacuum

combined with the weight of the crosshead only and the

combination of crosshead weight and torsion loading.

50 as to more nearly represent the actual

combined loading conditions the following relations were

considered. 4
Ta_° } Ty = Al e 1.6
{(o,a . ) ( ) - m
1.5
{(%—) )} + (f- SV J— 1.7
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1.5 1.510.667 5, 2
{(o_‘g_ + Th ) } ( L. = A3 --~ 1.8

a a M =
20 h, 7e
{ oy Ex + (5 ' 9

In these equations the quantities Al1,A2,A3
and A4 revresent the goodness of fit of the relation to
the actual loading condition. If the relation was to
truly represent the buckling state in the combined mode
then the value of the constant would be unity. Because
of the doubt observed in the square law relation for torsion
axial compression interaction it was necessary to consider
a relation with a lower index. Similarly, the linear
relation for axial compression- hoop compression
interaction was observed to be very conservative, Thus
higher powef relations were considered necessary. These
considerations account for the four equations given above,
Bauation 1.7 is plotted as a series of circles in figure
1.10 for A2 ecual to unity. Clearly this relation is not
an unrealistic relation for the combined loading conditions.
In table 1.3 the values of A1,A2,A3 and A4 are given for

each of the collapse conditions measured.

Becéuse of the apparent discrepancy between -
measured conditions and published information several
more cylinders were made and tested_in the combined load
state. Details of these cylinders and the collapse loads

in the independent buckling modes are listed in table 1.2.
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For all the remaining cylinders an attempt was made at

manufacturing more nearly perfect cylinders than .the first
cylinder tested. In the case of cylinders nos. 2 to 9
the seam was made again as a butt joint with cellulose
adhesive tape overlapping the endsf Howeﬁer the material
was first wfapped around a mandrel to keep the edges flat ’
and étraight and avoid obvious wrinkles along the seam. TFor
cylinders nos. 10 to 15 another important-improvement was
made in that instead of a butt joint a small overlap of
cylinder mzterial was provided and covered with cellulose
adhesive tape. Because of the method of fixing the
cylinder to the brass end support rings it was found to be
impossible to provide a satisfactory glued longitudinal
seam. Three materials were used although 1t is understood
that mylar and melanex are different trade names for
effectively the same product. Because melanex was considered
to be a less than ideal test material (low Young's modulus
and low creep resistance) some cylinders were also made
from brass shim. These brass cylinders were found to be
even less satisfactory in practice though useful results
were obtained from them. The shim as supplied had a large
number of wrinkles forming rather severe imperfections.
With the first collapse of these cylinders some permanent
damage was observed which appeared to increase the size of
the imperfections and reduce the buckling ldad when the
cylinder was retested. However after several applications
of load, the load carrying capacity stabilised and it is

this stabilised figure that is given in table 1.2. These
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cylinders were loaded first in axial compression and then

in torsion. The same type of phenomenon was observed in
torsion but subsequent loading in axial compression appeared
to be unaffected. A similar effect was also detected with
hoop compression. Thus it would seem that the permanent
damage sustained by the cylinder served to increase the

size of thé initial imperfections but the imperfections

controlling each buckling mode appeared to be independent.

Cylinder no. 4 (the thick brass cylinder)
and cylinder no, 10 (the mylar cylinder,i.e. thickest
plastic) were both so severely daemaged after the first

‘loading that no further testing was possible.

An interesting phenomenon was observed
with the melanex cylinders. Sometimes the results appeared
to be a little suspect, as though the cylinder had suffered
a small amount of permanent damage. In such cases the
tests could be repeated after a short interval becauée

the melanex was able to recover its initial shape.

_ From table 1.2 it can be séen.that it would
be wise not to use the formulae from‘Roark for design in
axial compression or torsion. Béth Roark'and Baker,
Kovalevsky and Rish appear to be satisfactory in hoop
compression. In torsion the design criterion of Baker,
Kovalevsky and Rish appears to 5e satisfactory although

two cylinders failed at loads less than the design figure.
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. These were the brass cylinders which had already undergone

some permanent damage so it is not surprising that they
failed at a lower figure. In axial compression the RBaker,
Kovalevsky and Rish design condition was not always met.,

It is interesting to note, however, that for the later
cylinders where the manufacturing technioue had improved
their criterioh was satisfied, This indicaﬁes the importance

of the magnitude of the imperfections.

The results of thé collapse tests on these
cylinders aré summarised in tables Al to Aléf(AppendiX A).
Pigures Al,A2 and A3 show the axial comrression;fofsfén
interaction for the three basically different length to

for the ¢glinders investigated

radius ratios. From these graphs it can be seen that,
length has virtually no effect on the collapse condition.
Also some doubt must exist about the square law relation.
The power index of 1.5 appears to be a more satisfactory
relation though it seems that different cylinders could
possibly follow different rules., An explanation for this
may be in thé'measurement of the pure axial compression
load and pure torsion load. However, these‘loads.and the
hoop compression load were checked many times throughout
the duration of the test on each cyiinder so that they
would be well established. This procedure ensured that
these values were established in the worst case to within
5%. Howefer, combined load measurements in some cases
may have been in error by up to about 10% of the

independent critical load.
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The combined axial compression, torsion

and hoop compression buckling conditions are presented
for these cylinders as figures A4 to Al4. As well as
cylinders nos. 4 and 10 which were permanently damaged

on first loading, there is no combined loading graph for
cylinder no.ll. This was because cylindef no.ll also
suffered some severe damage before hoop compression tests
could be conducted. Cylinder no. 6 also suffered some
permanent damage early in the testing cycle thus severely
limiting its usefulness. In all these graphs circles

are drawn revpresenting the square relationship between
hoop compression and axial compression. FIn some of them
the relation for a.péwer law with index of 1.5 is also |

wlotted.

Some interesting observatioﬁs can be made
from these graphs.

1. The linear relation between the two compréssioh
modes as recommended by Baker,Kovalevsky and Rish is
obviously very conservative and design savings can be
achieved over their criterion when combined losding is
vresent, 5

2. The square-square relation,(equatiOns 1.6 and lﬂ7)
appeared to be satisfactory for some cylinders but not for
others where the index of 1.5 was more satisfactory. This
change apbeared to be concerned with the cylinder behaviour
as a whole and not just with a scatter of results. It is
possible that the ouality of the seam may have had something
to do with this change. The situation also appeared to

oecur to a lesser extent with axial compression, torsion

interaction (see figure A¥ in particular).
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3. Zylinder no.l5 was perhaps the best manufactured

cylinder and by this time the testing procedure was also
well established so that good reliable results were obtained.
It is interesting to note that in figure Al4 the test

points appear to follow a distinct péttern which is

slightly conservétive when compared to a souare-sauare
relation, In fact it is possible to infer from figure Al4
that two separate conditions could exist proViding two
intersecting curves. These conditions éérrespond to
basically an axial compression failure with the collapse
load modlflad by the hoop compression and vice versa.

At about the point that these two conditions would intersect
on the graph a physical change in the buckling mode was
detected during the test. Having observed this phenomenon
'with.cylinder no.1l5 a review of the remaining graphs

showed that a similar trend may have occurred earlier

(see in particular graphs A6,A7,Al1l and Al2 Yo No

.attempt hans been made to statistically anaiyse these test
results. DSuch an analysis would be meaningless because

of the basic change in the nature of the interaction

conditions between cylinders.

These tests on cylinder collapse in coﬁbined
loading serve to illustrate the difficulties associated
with this topic. A great deal of the scatter is associated
with shape imperfections in the cylinders. It was also
vointed out earlier in the chapter that the Von Xarman and

Tsien approach was inappropriate. 1In the ensuing chapters:
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theory is developed in an attempt to satisfactorily describe

the collapse of cylinders in axial compression and to

correlate this theory with laboratory measurements. The
investigation here is limited to axial compression only.
Combined loading conditions must be considered as scope

for further expansion of the work.
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KOTATIOKN~=CHAPTER 1

E Young's modulus,

L Cylinder length.

R Cylinder radius.,

T Wall thickness.

v Foisson's ratio,

o, Nominal axial stress at collapse in combined mode,

ai Rominal hoop stress at collapse in combined mode,

vd Nominal shear stress at collapse in combined mode.

a; Nominal, axial stress at collapse when_loaded solely
© in axial compression,

ai Fominal hoop stress at collapse when loaded solely
© in hoop compression.

7;' Nominal shear stress at coilapse.whgn’loaded solely

in torsion.
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CHAPTTR 2

A NEW THEORY FOR THE BUCKLING OF THIN CYLINDERS IN
' | AXIAL COMPRESSION

| In the preceding discussion it was pointed
out that the usual Von Karman and Tsien approach to the
solution.of the buckling problem was found b& Hoff ,Madsen
and liayers to be inappropriate. For many years a large
number of researchers have endeavoured to find a
‘satisfactory description of the coliapse behaviour of
cylinders in this mode but all efforts have been in vain.
. Bsslinger and Geier (ref. 13) sum up the'sifuation when
they state.

"The history of the investigations on the
postbuckling behaviour of thin walled cylindrical shells

- under axial load can be compared to that’of the days of
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Gold Rush in %ild West, with seekers of El Doredo

finding some small prize amidst much disappointment

but with unshakable hope,"

In spite of this background a new theory is
advanced in this chapter for the buckling of .cylinders in
axial compression. This theory appears to offer a |
satisfactory explanation of a great deal of the buckling
(and postbuckling) behaviour of thin Walled'cylindrical

shells loaded in axial compression. It was developed

primarily from a bgnsidefétiéh of the geometry of fhe-
Yoshimura buckle pattern and échieved through the manufacture
of a number of models folded from sheets of paper. The
development of this theory is an excellent example of the

importance of models in an engineering investigation.

‘When a sheet of paper is folded into the
shape of a Yoshimura pattern the model obtained is very
definitely a strucﬁure capable of sustaining a substantial
axial load. This observation is contrary to the conclusions
reached by Hoff, Madsen and Mayers. One explanation for
the discrepancy that has (in the past) been proposed is
that the folds in the Yoshimura pattern have a certain
bending rigidity and it is this action that supports the
load., Certainly the bending action, by itself, cannot
support the load since if a piece of paper is folded into
a Yoshimura pattern with two lobes around the circumference
the model shown in figure 2.1 is obtained. This mbdel can

easily be interpreted as a series of tetrahedra joined by



FIGURE 2-1

YOSHIMURA PATTERN WITH N=2

o A
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hinges.. The hinges have almost no strength in bending
but the tetrahedra themselves are reasonably robust
structures. Thus shell bending does not explain the load

carrying capacity in the postbuckled shape.

In a cylinder buckled into a true Yoshimura
rattern and carrying some axial load each of the flat
facets will have some stress distribution. If we consider
any two adjacént facets then any stress in one facet |
perpendicular.to the common fold will be matched by a simiIar
stress in the adjacent facet. Thus a net radial force |
would exist along the fold and this}force'cbuld only be
supported if the two facets were“cohsidered collectively
as an extremely wide flanged beam in bending. Cléarly,
the structure could not support a substantiallload in this
manner so0 we can conclude that the stress in the facets

perpendicular to the folds is negligible.,

Obviously, if there is very small stress
in the facets perpendicular to the‘folds then the load
must be carried by stresses parallel to the'folds. Some
distance away from the fold these stresses would be relieved
due to the flexibility of the shell. Thus the load is
carried principally along the folds and the structure can
be considered as a space frame with slender members located
along these folds (figure 2.2). The members would be wide
flanged angles effectively pin-jointed with the load
applied through the corner of the angle. It has already
been demonstrated that the folds have very‘small strength
in bending (figure 2.1) so the assumption of pin ends is

reasonable,



FIGURE 2-2

SPACE FRAME MODEL

39.
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The geometry of the space frame is illustrated
in figure 2.3 and from this geometry the following relations

can be derived.

Axial length of
facet (DE)

(1-cos(g/2
Lz{. (z555) TTI%%ST%é‘}} -- 2.2

Axial deflection

ff=

( ) (1-cos(g4/2)
2. L2 (l+cos(g/2)

(unloaded) 12 - LZ{i -

- - 2.3
The angle (©) between adjacent facets along the diagonal

2.0 [gRalf(2) {1+ o}

———————— . 2.4

can be shown to0 be

L}

From a consideration of axial equilibrium we can calculate

the force in the diagonal members.

_ : : ' 2 i
Pl = QPFI 2 12 2.5
l (S 2 (1-cos(4/2)
- L2 (1+COS(¢/2)

And from radlal equlllbrlum at a node we obtaln.

-P.
P - 1 — —2.6

2 NG
(1+cos(ﬁ/2)){}i§) + %}

Thus for a given axial load on the cylinder

(P) the load in the diagonal member (Pl) is of the same

sign (both compressive in a buckling situation) while the



FIGURE 23

SPACE FRAME REPRESENTATION OF
- YOSHIMURA PATTERN '

- 41,



42,
lo2d in the tangential member. is ovpoosite in sign. Since

the space frame has compression members these may in Hturn
collapse through buckling. Suppose AC (figure 2.3) is to
collapse through buckling then all the other members
remain somewhat in their original positions but AC vanishes
and in its place there is a new member FB, AThe angle
between the facets HAR and ABC becomes 180° so that this
member also vanishes and we are left with another form of
Yoshimura pattern with larger facets ( a second buckling
mode ). The members HF and HB are compressive members snd
both can be shown to support the same 1oad and both have
the same angle between the facets. The tenéile member is
“F. Pigure 2.4 shows a series of paper models. On the
left is the conventional Yoshimura pattern with I=16.

‘"he second model is the corresponding second buckling
mode assuming the entire cylinder collapses into this
shape. Obviously the compression memberé in this seéond
vmode can buckle but since both carry the same load the
long member will collapse first. The resulting buckled
shape is similar to the first form but with half as many
facets. The procedure can be repeated until complete
collapse has been achieved. In this case N=2 which is

flat because L1=2.12.

' Two significant changes in geometry occur

in the formation of this second mode. Firstly, the cross
section of the pattern is no longer a regular polygon. In
collapsing member AC (figure.Z;jﬁ, A and C both move closer

to the axis of the cylinder and points F andB move outwards.
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FIGURE 2-4

PAPER MODELS OF PROGRESSIVE COLLAPSE N=16 TO N=2
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Secondly, there is a rotation of one end of the cylinder

relative to the other. In the case of the second and
sixth models in figure 2.4, this rotation is clockwise

when viewed from on top.

In general, the second mode described here
is not observed when testing cylinders'in axial compression.
However some evidence of its forming does exist. TWsslinger
anh Geier (ref. 13) report that in testing very short
cylinders with the ends free to rotate a pattern was
obtained of this form (their Kreutzberg pattern). In
heavily deforming cylinders it is common to see the diagonai
tension member between two facets. 1In figure 2.5 two sﬁch
diagonals are evident in a shell made from melanex.
Clearly, the shell has been restrained froﬁ overall rotation
so that a clockwise rotation in one section of the shell
rmust be bélanced by a corresponding anticlockwise rotation
in another. To test this brinciple further, several
models of thé Yoshiﬁura pattern were made from melanex
and dead weight loaded. Typical of the results obtained
is the buckle pattern shown in figure 2.6. lere, both
the second buckling mode and the next stendard Yoshimura
pattern have formed on one side of the structure. This
has led to a tilting of the free end. Thus it would seem
thet cylinders which are not restrained o move axially

must fall over sideways once buckling has commenced.
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FIGURE 2-5

BUCKLED MELANEX CYLINDER
WITH DIAGONALLY ORIENTED FACETS
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FIGURE 2-6

COLLAPSED MELANEX MODEL
OF YOSHIMURA PATTERN
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So far this discussion has centered about

the collanse of structures which are true Yoshimurae vatterns.
It is possible to consider a cylinder as a Yoshimura vattern
with a2 very large number of facets and a corresponding

large number of links in the space frame, each with a

very short length. The collapse of these links could
contiﬁue until we have the pattern that is so readily
recognised. Unfortunately, boundary conditiqns on the

- cylinder do not permit such an idealised picfure. The

ends of the cylinder are usually restrained to be
approximately circular and some transition is necessary
between the Yoshimura pattern that may develop in the

cerntre and the circular ends. Two possibilities for this
transition are shown in figure 2.7, both of which can be

seen in practical situations.

On the left of_figufe 2.7 is shown a paper
model which has been folded so that there are four lobes
in the buckled pattern at the centre of the tube, with a
transition to eight, sixteen and thirty-two. This type of
pattern is often seen in cylinders that have been
substantially compressed after buckling has been first

observed.,

The model on the right of figure 2.7
illustrates a condition thet occurs with somewhat less
compression though still sﬁbstantially more than is required
to huckle the cylinder. Yhe transition here is directly

from N=4 to F=32, It can be seen that there is a



FIGURE 2-7

TRANSITION FROM N=4 TO N=32

.87
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flattening of the small facets near the end of the large

facets. Thus the small facets would be more susceptable
to collapse in this area. Also, in this free form model,
the ends are not flat., It is actually sitting on four
points equally spaced between the apexes of the larger
lobes, The corresponding increase in load in these areas
would promote collapse of the small facets between the
larger ones. Thus it is possible to infér that once the
- buckle pétterﬁ has been formed it can grow to cover the

entiré cylinder.

The discussion to this poiht has been
concerned with Yoshimura patterns spread ofer fhe entire
cylinder and the simultaneous collapse of a number of
column members in the resulting space frame.  Obviously,
the loading on the cylinder would not be combletely uniform
and one member would collapse before the remainder. Should
this collapse be inelastic then the dimple so formed would
remain fixed in position and the remaining compression
members would progressively collapse away from that
location. Thué the buckle pattern coﬁld be seen to grow
from an initial dimple. In the case of an elastic collapse
of the compression member the dimple pattern can move
around on the-cylinder and take up a position of lower
energy before any more diagonals collapse. Apparently
this lower energy position would be with all dimples of
ecual size and with the dimples moving away from the fixed

boundary (i.e. the ends).
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For this reason a cylinder with a buckle

pattern of, say 16 lobes would not collapse directly to a
pattern of 8 lobes but would collapse progressively through
15,14,13 etc. Also, a buckle pattern with N lobes in it
would in general require less effért to collapse the
diagonal compression member than to extend the buckle
pattern over the rest of the surface. Thus once a column
nember has been elastically collapsed a buckle pattern
generally forms in the centre of the cylinder which hes a
.length such that there is only one diagonal compression
mgmber. This type of pattern is illustrated by the very
familiar model shown on the left of figure 2.8 (paper
model) and in figure 2.9 (melanex cylinder with N=12),.
Esslinger and Geier term this type of buékle pattern a

two tier pattern. In fact it has a length corresponding

to just one compression member (and two tension members).
Since we are concerned with the collapse of the com?ression
member it would seem to be preferable to call this a one
tier pattern. Their interpretation of a one tier pattern
is actually a »attern where the buckling interferes with
the fixed boundary, i.e. it is & pattern controlled by

the boundary (see figure 2.10).

If the collapse of the diagonal compression
member is considered in this model then the situation shown
on the right of figure 2.8 can be envisaged. Here a
diagonal tension member has been formed and the comoression

members avpear to have vanished. Thus the corners joined



FIGURE 2-8

PAPER M
ODELS OF USUAL FORM OF COLLAPSE IN CYLINDERS
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FIGURE 2-9

BUCKLED MELANEX CYLINDER

A4



FIGURE 210

ESSLINGER AND GEIER'S ONE TIER PATTERN

*€s
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by the tension member would be quickly brought together.
If fhe collapse is elastic then the height difference
would be evened out and a similar pattern formed with one
less lobe. However, should the cylinder be relatively
short then on bringing the two corners together, the
buckle pattern would interfere with the end boundéry and
be somewhat:inelastic. The result would be that the
pattern would spiral around the cylinder§ this situation
is also often seen in shortish cylinders. TFigures
2.11 and 2.12 show buckle patterns from advanced stages
of collapse. In figure 2.11 (N=6) an extra facet has
formed adjacent to the main buckle pattern which is the
first stage of spreading'of the pattern, In figure 2,12
(a very advancea stage of collapse) the buckle pattern is
spiralling around the cylinder. There are also smaller
facets present at the ends which are approximately half .

the size of the facets in the main body of the pattern.

Obviously, in considering true Yoshimura
patterns and these paper models, the buckled shape is a
stable configuration and one has to consider load reversal
rather than unloading. The major difference between real
cylinders and the modelé in this cace is probably due to

the small amount of bending rigidity at the cormers.

In compressing a Yoshimura pattern it has
been demonstrated that there are diagonal compression

nembers and tangential tension members. In reversing the



FIGURE 211

PROGRESSIVE BUCKLING IN
MELANEX CYLINDER




FIGURE 2-12

HEAVILY DEFORMED MELANEX CYLINDER

099
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load the diagonals become tension members and the tangential

mémbers are in compression. Thus the tangential member
can collapse as a column in buckling and the situation
shown in figure 2.13 can arise (here shown as a wmure
Yoshimura pattern). The secuence of models in this
photograph are N=8, second buckling mode, N=4 and a model
representing the collapse of the tangential members. This
last model has been folded to form a regular octagonal
prism»(for clarity) but obviously, it would in fact revert
directly to a cylinder. In an actual cylinder the 5ending
rigidity of the shell could forcé an intermediate pattern

into the shell with a higher number of lobes.

Now that the buckling behaviour of an
axiaily compressed cylinder hés been explained qualitatively
by reference to a space frame it remains to ouantitatively
estimate the buckling loads of the gpace frame and hence
the cylinder. Howevér; the collapse of a diagonal member
is not that of a simple Buler column. Y%hen the member AC
(in figure 2.14) starts to buckle then the diagonal
member PB begins to form. Although FB eventually becomes
é tension mémber when the second mode is achieved, at the
start of transverse deformation in AC there is a compressive
force in PN. Thus it seems that a reasonable model for
the collapse of the quhimura buckle pattern is to
consider the column members as pin jointed angles loaded
through the corner of the angle and with a central4spring
restraining the deformation. This model ensufeé that the

deformation of AC is always inwards.



FIGURE 2-13

LOAD REVERSAL ON YOSHIMURA PATTERN
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— DEFORMED
¢ POSITION OF AC

| FIGURE 2-14
MODEL FOR COLLAPSE OF COMPRESSION MEMBER
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Some justification for including the member

FIi as a spring can be oualitatively obtained by building
two idéntical paper Yoshimura models. 1In one some of the
facets can be removed leaving a strip along each of the
folds only. In the second model the member FN can slso
be left. Observation shows that the second model will
support a substantially greater load fhan the first and

sometimes the additional members will buckle.

During collapse of the member AC both points
A and,C'mofe radially inwards while points F and B move
outwards.' In fact there appeafs tb be very little of this.
movemeﬁt before the collapse load has been reached so'that'
for the‘purposé of.invesfigating the collapse of AC, the
relativé movement of the corners can be ignored. lHowever,
“when an axial load is supported by the cylinder without
buckling, the column members AF,AC and BC shdrtgn-and
‘the tension members AR and C stretch. This change in

geometry has been taken into account in the following theory.

From figure 2.14 the following geometrical

relations are obtained.

- | | ) 3 o
u ={AF2 _ AB . 2.7

5(Tre0s872Y 7

. am
S E1Y-7£2)) - 2.8
OF | _ AB.cos(g/4 — 5.9

2.81in 2
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A
ol = fos? + (omam)? - 2.0;:\.(01\7-11?1\7).c:os(;,%i"'f)}2

= {0a% + oF? - 2,017
1
- 2,04, (Cr-MX). cos(.l:i’é)},~

1
= 3{ar? + 2.47° - B.ARIM.sin(4/8)}F --- 2.10
| 2 . 3.11,2)F | .
PE =%{L2 + (=5=) } -- — 2.11
| (unloaded condition)
"thus the strain in F7 is
0 2 oL 1 o
€ _ [AFS + 2,47 - 8.éB.TM.81n(é/4)}__ 1 —— 2.12
122 + (35

Consequently, the restraining force on the centre of the -

column is.

S 2 2 s N VB
. . (ir2 + 2.AR° - 8.AB.1N.sin(g/4)

P3 = 2.Eo '\’Y’QTO \ 2 3 Ll 2

L2 + (—5——)
- ] ------------------ 2.13

Also
| P = (1 ) K —mmmmmm e 2,14

AT = Ll.‘(l_ + 2—.%—3‘.—‘«\1) e 2,15

and since
' -P

P, = 1 —— -(2.6)
(1+cos<¢/2>){(ri-) + }
then
Py
AB =L, 1~ - 2,16

1 2 _ 3
2TE‘.V(l+cos(t‘/2)){(-i-i-) + %}



Substituting in the above, we have;- 62.

-8.Ll.n'm.*-:.w T. sin(;f/4)
P =
3 {T 2
| Ly
nfe n——mm—’
1 +Cc0Ss
> L 5 2.17
1
'{I? + (=) }

The angle n between  the restraining force and the column

is: given by..

2
s3I

-1

cosp . = g 4 : 2.18
. 3’le
K L 2 ( )

Having determined the transverse restraining force

we can isolate the member AC and treat it 'as a buckling
pin ended column as illustrated in figure 2.15. At any
point "X" in the column the moment is given by.A
| M = Pl(Y+§w.cos(O/2))- P3.sinq.cos(0/2).(K/2-X)
a°y

= E.I. ——————— 2.19
ax? |

and I

_ T.W3.c082(9/2)
- &)

Thus Y

Cl.sin(J.X) + Cz.cos(J.X) - #W.cos(9/2)
. P o .

+ §;sinq.cos(0/2).(K/2-X) —————— 2.20
1 ' : .

Py

E.I

where J2 )

The constants of integration ¢, and 02 are found
from the boundary conditions which are zero slope at the

centre (X=0) and zero deflection at the end (X=K/2).
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: P3.sinq.cos(0/2) 64.
Thus C, - = — —_— 2.21

1 Pl.J /
P,.siny.cos(8/2).sin(J.K/2)
: 4W,cos(9/2) - 3 v ?&
— 1°
and  C, = cos(T.K/3)
- 2.22
at the centre, :
Y = MN
: P3.K -
=C, = 4W.cos(8/2) + §T§zsinq.cos(0/2) -—— 2.23

Substituting for Cgand P3 we obtain, -
8. L, .E.W.T. sin(4/4). 31nn'cos(0/2)

MK |1+ (K/2-tan(J.K/2)/J)
. 5 3.L1
P1 L2 + ( 5 3 -
2L
sinQ.cos(O/2){K2- %75 WEK tan (£5)
) - 3.5, 2 2t T )
{L22'+(21)} ,
+ %W.COS(Q/2) ESET%T§7§T' - i} ----- 2.24>

Now, as the critical load of the column is approéched
the central deflection grows very large and we have in

the limit that,

8 L,.Z.W.T. 31n(ﬁ/4) s1nq cos(9/2) -

2
2
e -

=0 - 2.25

K/2-tan(J K/2)/J)

Solution of equation 2,25 leads to an evaluation of
the compressive load carried by a diagonai member in the
Yoshimura pattern at the point of collapse. The total

load supvorted by the structure is readily found since,
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) 13
1 1- (g/2)

P : = 2.N.P 2.26

1
1
|1+ ()

The solution is rultivalued. PFigure 2.16
is a wlot of the value of this function for changing load
(P or P). It can be seen that there is a root for no
axial load. ‘this root corresponds to a rigid body translation
of the éolumn member. The next root is the solution
d:sired while hisher roots relate to higher buckling
modes (of the column only). Thus to solve equation 2.25
by a trial and error method it is necessary to guesélan
ivritial value which is high enough to prevent the solution
converging on zero. It must also be low enough that the
sclution will not converge to a higher mOde, The general
shaoe of thié curve also highlights another problem with
the solution. If, for example, we were to assume a
diagonal mémber load of 7 Newtons‘for this cylinder and
apoly the Kewton—Raphson convergence cfiterion then the
s0lution would follow the dotted line shown. The next

ruess would be about 15% Newtons and the solution would

o

converge Lo some higher buckling mode. Té bvercome this
orobtlenn it is necessary to apply a convergence factor

(1z=2s then unity) to the llewton-Raphson tééhnique to

ensure convergence to the correct value._ Thies solution
was veriormed on a Digital PDPE computer using the language
#00AL, A listing of the programme together with typical
ontput is given in Appendix C, As well as giving the

vucktling load the printout includes the important ceomatrical
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proverties of the first buckling mode(normal Yoshiwra
vattern) =n’ the second i0de (vattern with inclined

tension menters).

The expression for calculating the critical

load car be non-dimensionalised by using the following ratios,

P
= =L
r E.L,2 2.21
I‘ .
A = 2 e 2.28
1
w R 2.29
iy
and 7 = == N — 2,30
. Lo , 3

Hence,

&l+(—x-) ) }fH l6.m.1’ .sin f{/,;) _£+(3§Lx)}
. 2,tan{—.{15‘-(74“5 —s )'g}. .,
- 5 p sin“(4/4) = 0 e 5. 31

-
{74a9sin2(ﬁ/4).(i+(%x))

In developing the theory to this point the
author had become aware that a cylinder would have several
buckling loads of differing values. Thus a load aeflection
curve would not have one peak ( as Von Xarman and Tsien
proposed )'but have several corresponding to the collapse
of each mode. Within a couple of weeks of the author's
realisation of this point Esslinger ard Geir's book (ref.l3)

anpeared on the shelves of the University of Tasmania
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library. On page 105 of this book is a gravh reproduced

here as figure 2.17 which shows these multiple neaks
obtained exerimentally, This is the only reference that
tlie author has found to show this »roperty. All others
have indicated 2 curve of the Von Varman and Tsien type.
It appears to be a serious shortcoming in the published

data which has at last been rectified.

It was decided to use the data from figure
2.17 to test the validity of the present théory. The only
missing information was an estimate of the aspect ratio of
the facets.. 7o obtain this ratio several cylinders were
marufactured from melanex with various combinations of
rodivs, thickness and length., It was found that with
these cylinders the aspect ratio (L2/Ll)lwdr about 0.7
except where the »naitiern was seen to interfere with The
end of the cylinder. The other unitmown variable in the
equation wns the width of the flange of fhe angle member (wW).
This Width was manipulated until for F=15 (the first
post-buckling condition) the calculated collapse load
coincided with the vpublished data. A width of 21 times
the thickness was found to be necessary. This width was
then used to calculate the subsequent collapse loads and
these loals are presented in table 2.1 together with the
valives read fron the published curve for comparison. The

azreemant anveazrs to e excellent in this range.
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TABLE 2.1

COMPARISON OF CALCULATED AND MEASURED POST-BUCKLING CRITICAL LOADS

R = 100mm. T = 0.19mm. W/T =21

r .

Number Critical Loads

of
Calculated Measured
Lobes . (Esslinger and Geier)
N N

15 278 275

14 254 260

13 236 ' 235

12 218 215

11 : 200 200

10 181 185
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The variation in critical losd with number

of lobes is nlotted as fisure 2.18 for an evtended range

~ of values of 'y The interesting point about this graph

is thot there is a maxirmum with 38 facets of 518F. =sslinger
and Geler's cylinder buckled at a load of approximately

520F. It is elso interesting to vote that by using high
speed photography Almroth,Holmes and Brush (ref.l4)

Oobserved an initial buckle pattern with facets about half

the size of the final pattern. Perhaps these smaller

dimples corfespond to the peak of the curve in figure

2.18 which corresponds to just over twice the number of

~lobes finally obtained.

When a short cylinder is loaded in axial
compression, then it is impossible to mzintain the same
aspect ratio as in a freely formed pa‘tern. Fifstly the
buckles start to interfere with the ends and it is founa'
that the pattern spirals around the cylinder. It tends
to break down completely over a considerable sectior until
a different kind of pattern evolves - Esslinger and Geir's
one tier pattern. This type of pattern can not be properly
reoresented by the sinmple space frame model presented
here. However, if the length of the facet (L2) is limited
to half the length of the cylinder and the preceding theory
us2d to »redict buckling loads, then an indication of the
hehaviour of the cylinder. is obtained. The two
zdditional curves on the left of figure 2.18 are based on

this approximation. It will be seen that the intersection
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of this curve for a 100mm. long cylinder with the principal

buckling curve for the cylinder occurs at about the nmosition
that “he tuckling nattern becomes irregular. Fufther
conpression teyond this point appears to create a combinration
of bucklihg modes, one of which is approxirated by the

short cylinder branch and the other by the asvect ratio

of 0.7. ‘hen all the compression members with this higher
aspect ratio are buckled e are left with the regular

buczle pattern that Esslinger and Geier céll the one tier

vattern.

Seeing that the collapse loads for Esslinger
and Geler's cylinder have been satisfactorily calculated
rty this method it remains to estimate the corresponding
deflections and complete a load deformation graph.
Unfortunately; the calculction of deflection is not as
satisfactory hecause the geonetry is not that of a simple
Yoshirmura paftern. Apperently the bending rigidity of the
shell restricts the pattern from forming completely with
the result that the actual shell is a little longer than

would be predicted by the simple Yoshimura geometry.

Tven with this known linitation a reasonable
lozd cefornation graph can be drawn (figure 2.19) purely
Ly considering the simnle Voshimura geometry. For this
calculation the buckle pattern was aproximated by a
Yoshirmmra wattern with a length such that there was one
diesonal menbver only. This pattern was considered to be

cormected to the ends by u regular cylinder covevirg tne
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remeinder of the length., Using this model meant that at

Q)

ach node there were t.0 tangential members and two diagonal

o
Q
&
Q
a0

ion ~embars instead of the four in the complete
pastern. Thug the Torce in the tangerntial member was half
that zreviously calculated. 'the axisl deflaction was

estinmated from the following expression.

=L - H- (T - P :
5 =Ll-H-(1-12)Q+ 5gm7g - 2.32

<

(P regative in compression)

This expression is linear and is revresented
in figure 2.19 by a straight line for each mode shape. The
nomenclature ( 2,15 for example) is that adopted by
tsslinger and Geier. It refers to a mode shave that has
a Yoshimura vattern length corresponding.to>one diagonel
nember (2 tangential nenbers) and 15 lobes around the
ciréumference. Calculzted deflections at coilagse are

within avout 159 of the measured values.

One would expect that in loading the
cylinder in 2 rigid testing machine a load deformstion
curve would reach a neak and imaediately drop without
increzsing the axial defofnation. Thus in considering
the collapse according to figure 2.19 it would appear
that the collanse would nrogress thrbugh cvery 1mode shawve
after the peaE has been reached. The concept of a rigid
machine arplies only to the cylinder as a whole. We have
heen discussing the collapse as a local nhenomenon and

in fact bthe buckling compression menber must  see the



renainder of the cylinder as a somewhat flsxible machine.
Thus the combination of cylinder and machine stifinesses
would »roduce a load release characteristic of the form
reoresented by the dotted line in figure 2.19. In this
cylinder it was ¥nown that the first post-buckling mode
ha’ 1% lobes, Allowing for the fact that the deflections
are over—estinmated as explained earlier, it is'reasonable

to exnect a pattern of about 15 lobes from this diagram.

The dotted line indicates the combined machine and cylinder

characteristic necessary to achieve 15 lobes in the buckled

shape according to this load deformation diagran.

Changing the length of the cylinder has no
effect on the critical loads since these are.only dependent
on the local nuckling of the‘diagonal strut at the centre
of the cylinder. However, increasing the Qverall length
of the cylinder increases the length of the section thét is
not colla:sing. This portion is still deforming so that
the buckle pattern has a smaller overall relative effect
on the déformation. Pigure 2.20 is a load deformation
diagram for_a cylinder of similar proportions to that
used in deriving figure 2.19 except that the length has
been cuadrunled to 400 mm. By assuming the same cylihder—
machine stiffness as in the previous case ( thé dotted
lirs ) a post-buckled shape with 10 lobes would be
anticipated. However the extra length of the cylincer
would mean that the combined machiné—cylinder stiffness

wonld probakly be considerably less than previously

76.

encountered and an even smaller number of lobes couli. ccceur,.
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wven with this very simple model excellent

asreenent with the nublished data hus been obtained. By a
consideration of the variations in cylinder geometry {Irom

the Yoshimura pattern refinements should be able to be made

-To the theory to improve its validity. Some of the

additional properties that could be included are;-—

1. The edges of the Yoshimurs vattern are not
angulazr but are bent to a fairly sharp radius. The radius

of curvature varying with position.

2 Becaﬁgé tﬂe radiﬁé of cﬁf%é%ﬁre véries along
the length of the compression member this member is not
initially straight. These two considerations are discuséed
in chapter 5. In that chapter it is showﬁ that the addition
of these two properties does not assist the analysis. In

fact, their inclusion necessitates so many additional -

‘assumptions that the analysis becomes useless;

3. | Thé.méchanism used in the caiéulations
assumed that all the corners remained in the same relative
vosition during the collapse. In fact the corners at the
end of the collapsing diagonal move inwards and the adjacent
corners outwards. This movement i1s also reflected in the’

corners further away but to a lesser extent.

4. In collapsing one member the load carried
by that member is reduced. This results in an increase
in load in the adjacent members with a consequent shortening

and an overall effect of bending the cylinder.
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If a cylinder is not perfect but hes a
¢efect of finite magnitude then loading will not be along

the dotted line shown in figures 2.19 and 2.20, It will

follow one of the-f&ilwlines correspohding tb'the size of
the defect.e.g. should the defect cover one twelfth of the
circumference then the line marked 2,12 would be followed
until the collapse load for 12 lobes is obtqined. TFor
small defects (less than 1/38 of the circumference for
Esslinger and Geier's cylinder) the cylinder appears to

behave as though it were perfect.



NOTATION --~ CHAPTER 2 - 80.

o

> = ©

Young's Modulus.

Axial length of half facet, i.e. collapsed length
corresponding to L2.

Moment of inertia of column member.

Length of diagonal compression member.

Length of cylinder.

Length of facet in circumferential direction.

Half developed axial length of facet.

Moment. » |

Number of circumferential facets.

Axial load on cylinder.

Axial load in diagonal member. Tension positive

Axial load in tangential member.

Load in member being formed.

" Shell thickness.

Effective width of flange on angle member.

Strain in member being formed.

Axial-deflection of cylinder.

Anglé between collaﬁsing diagonal member and membér
being formed. .

Angle subtended at axis of cylinder by each facet.

Angle retween adjacent facets along the diagonal member.
P - .
1

L

5
E.L,
L,

=

Non-dimensional auantities.

Hra = E
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COHAPTER 3

AN TXAUTINAPICK CF THE CONVSNTIONAL SOLUTICH METHOD FOR TIE

AXTAL BUCKLING PROELIM.

It has already been indicated that Hoff,
Tndsen and Ilayers (ref.v7) found the usual‘Von‘Kafmanland‘
Psien approach (ref.3) to be inappropriate. Before
sroceding further with the current theory it is worthwhile
to contemplate this much tried and apparently inadequate

theory.

Por the shell element shown in figure 3.1,

Nornell's equations can be expressed in the following form.



Mx

/ :

Mx-i-é%x dx

Mg + %¢dy _ Mxg + algxl¢dx

FIGURE _3-1
ELEMENT OF CYLINDER
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o1 OF 4
ax~ + as = O - - T e e e e 3.1
E Y
xg ] _
3x T 3s =0 - - 3.2
2 2 2
P Y cit ST QI K 2
and 2+ 2 X 4 ﬂ‘+—é+N-.-a—‘1+2.N3“'
b:x2 AXQS ésg R iaXQ | xf3xd 8
N égw
+ F e Bt 3.3
_ dasg |
elso ' RE = 8 e 3.4

Of these ecuations, 3.1 and 3.2 revresent
éﬂuations of axial ecuilibrium and tangential equilibriunm.
wquation 3.3 is a combination of the'moment equilibriun
equation and radial equilibrium. In their paper Vor Karman |
and Tsien refer to the first two df these equations as
being "generally accented"., This author finds it difficult
to azccept these eauations as they stand. EBquations 3.1
ard 3.2 are in fact the flat plate conditions. .They would
apply to cylindrical shells provided the radii of

curvature of the shell were large relative to the thickness.

Unfortunately in the post-buckled shape of the she;i,to

which Donnell's equations are meant to apply, the cylindér
is heavily deformed and the radii of curvature quite small,
This author believes the misalignment of forces should be‘
taken into account in considering the membrané equilibrium

conditions of the element.



The solution of anyv strencth of nntericls
pfoblem recuires the establishment of three separate sets
of ecuations namely, force ecuations,‘geometrical or
conpatibility equations and material proverties (e.g.
Hooke's 1aw)._ In shell 5heory it is conventional to solve
these ecuations by what can be considered as 2 deformation
method. TZouatioms 3.1, 3.2 and 3.3 are three equations of
equilibriun, i.e. they are three simultaneous ecuations in
forces. The compatibility equations and material properti
are usually combined togsether to form whot are comaonly -

called stress resultvants.

In Donnell's theory the stress resultants
are givenr by the following expressions (in the sign

convention of figure 3.1)
j)

Ny = D%’%‘% * E%‘?(aw)z - ¥ *v{'ba‘%
3]
by - D[%% " %(gﬂ)g +1){%f§% * 2;2(§%) ———=
-2]]
Y = Fyx D(%—”) B;—% * 531 * %%37‘3]
.
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2. 2 ]
. __%:l.b\f+v) vy
# 23R ox?
" - _K(bgw v.&twy | 3.6
X 3X2 R2 a¢2 *
2
K(1-v). d“w
i = =
» g, = K2 |
‘fhere D is the extensional rigidity and X is the
flexural rigidity. |
BT
D = 5 mmmm—m————ee ———————— e 3.7
1-v
a3
% S 3.8
12(1-v°)

In obtaining these stress resultants Donnell has
igrnored higher order terms in curvature. Apparently this
1l o L
== where N is the
i

nunber of circumferential facets and could in general be

ornission produces an error of the order of

ignored.

Bgquations 3.5 take account of the effect that changes
in slope of the middle surface of the shell have on the
strains. Thus they can be used where surface slopes are
high., A uvseful comparison can be made between the Donneli
equations and the Buler collapse of a simple column. In
the case of a column it isAusual in determining the collapse
load to consider only a moment equilibrium equation which
allows fof the fact that the axial force is not aligned’v
with the column section. In the first approximation a
simple moment —curvature relation is used and thé Buler
load is obtained. A better approximation is mad=s by

considering the change in slope of the column in calculating

86.
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streins. Donnell hes partly considered the misalirnment
of the forces with the shell element in ecuatior 3.3. He
hs taken into account only the effect membrare forces have
on the radial ecuilibrium. These are obviously the most
invortant conditions to be included. Negiecting nisalignnment -
of forces completely in ecuations 3.1 and 3.2 has some
analogy to column buckling. In calculating the collapse
load of a column we consider only the axial Torce as
constant. This is the eéuivalent statementbto‘ecuation 3.1.
However, in shells, transverse shears are also present and
have components in fhe nlane of the niddle surface of the

shell.

Donnell's equafions can be further examinéd
as follows. Suppose we consider deformationé where the
cylinder has buckled into a shape containing a relatively
large number of lobes, then the surface slopes would still
ve gquite small and the terms containingrpro&ucts of slbpes
would be mnegligible. In such a case the radial deflection
"wh would also be small in comparison to the radius "R" but
surface cﬁrvatures around the buckle could he considerablé.
If we neglect the terms in products of slopes and W/R in
equations 3.5 wevare left with a pair of equations in !
and "v" only. The conclusion that can be drawn from this
statement is that the membrane conditions in such a case
are virtually independent of the radial deflections. 1In
the »receding chapter it was shown that the load in such a

buckled cylinder is essentially carried along the folds.
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Thus where buckling deformations.are encountered in a
cvlinder it is probably rot wise to ignere the internction
terms in the nembrane equations., Certainly; Donnell's
equations would »rovide results much closer to the truth
than simple small deflection theory but they do not & vpear

to go far enough for the case of post-buckling deformations.

Timoshenko and Woinowsky Krieger (ref.15)

srovide us with the expanded equilibrium conditions which are.

Axial eouilibrium.
0. B K 2 2
X d°w IV
Ry + Tﬁ* TR T Rl T Q,a(ax * m

2v p.) w)

;5—7 3.9

I
o
|
|

Tangential equilibrium.

N oN P v > 2w ) 32y
_b_§+ R——ébi +R'Nx_:{%—qx(ﬁ+a—§'3x ) + N xa‘_;Z ax)
2

Radial ecuilibrium.
92 dQ 2 .

p . (VY . d°w v 1.
B * 7% * NogBx * 5338 * Rl * gl + R'58

3%
24°

2 .
Do g (T 250 + R =0 3.1

mh“
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Tloment equilibrium about "X" axis.

1" 2 2
,,5 JO' 9%V ) d
TRy Sl tw Ak A 3 R

=0 3.12

llonment equilibrium about "Y" exis.

\T
‘.

d1 oM, 2 52
X v v 3 ;
S TyE ¢ R hy? I

=0 —e 3.13
Toment equilibrium about "2" axis.
ézw 1.9v . 1.9°w
T — " s
i ( a—é-g) X + Mﬁgx(l 5 XZ 5 }52)
-1 i , - N = 0 e
,5(5— m) + R(I‘ng N x) 0 3.14

If we look closely at these equations we
see that they contain many terms in the defiﬁatives of "y"
and "w"., In practice '"in plane" deflections are much
smaller than "out of plane" deflectiéns and we carn neglect
2ll the derivatives of "v" in equations 3.9 td 3.1'4.' Thus,

theze equilibrium equations can be rewritten as fdllows.

ON, OF 2 5
Rﬁ*a-é-—ﬁ-%%‘%- QgBst + TR = 0 e 3.15
ON AN > : 5

g, o X dw . OW 1.0% .

aB+uax —QXW—I\Y‘X&X—Q}‘(]—-‘-RA}‘Z) =0 3.16

2Q, 9Q 2 2
Bx T3 }é *+ By by z R'ngxg + 1401 %{-gzg)

%y



b M
R'Sgé - + Mﬁx%x-w + R°Qﬁ =0 - 3.18
I 311
X o X . OW _
>F TRy tMx R =0 oo 3.19
y d°w bzw- 1.9%w d 2w
and Mxm + R.Mx@ + M;efx(l + -ﬁ 57-) — m
+ RN ¢ - W) I e — 3.20
Fow, from eguation 3.18.
O AN I
_ _ x4 ;.X,g £x.dw
g =~ 3% 'R “%‘a“i """"""" 3.21
2 2., ] .
o éfzg _ dM, . l-b My l.b]‘».x IR l.AL- v dw
' d X 9 R bp'z R2 o 38 R —%‘a X
1 .3w.3R 1. &°w
+ M;éx_(;f 3x 38 _ R W) —————————— 3.22
And from equation 3.19.
M dM. H
_ 1.9 4x X oW ,
Q “ﬁj%‘*“‘i*'ﬁégi‘ ------------- 3.23
2 , 2,
s 3_335 ) _1__.a My _ _1__.31/[ x.OR +3 M, . l?:éé_v_v
a.x ~ R dXd R2 ag X ax2 R 90X X
1.0°w _ 1 .QwedRy __ 3,08
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Substituting ir equation 2.15. (axial ecuilibriunm).

+ ﬁé;_v}_{{) + Np%—:{v

or R

M 2 OM, 2 54 2
. .xé.b w %._A_é.a W +ﬂ.éw.3 w — 3.25

Substituting in equation 3.16. (tangential equilibrium),

N aN 2 oM M :
35 Ry - aaxag('ﬁ 5% ‘éaw) - T8%

| 2 QM p. Y i o
- (1 + i-f_gg (= =28 ;"T%_L.bﬂ)é 0

L
=}
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!

{

]

1

1

1

1

1

{

]

1

1

1

i

|

|

]

l

1
w
L]
N
N

It can be seen that equations 3.25 and 3.26
are very similar to equationsg 3.1 and 3.2 but each contain
many additional terms. These extra terms are small when

deflections are small but some, if not all, should »robably



be included once buckling has commenced. The radizal

ecuilibrium equation can be treated in a similar manner.

2 2 :
R(l.a Mg _ _1__.aM x.d R 7, + lb_r_léb_v! + lgé.égw
'R Jx R2 dX 3x2 R IXIX R 3—}?

R df° e X
hisl 2 M 2
. Bx.9 .AR d )
- ﬁé- axa—; + R2 a;’Cv -a-z + N F;% + R.Nxﬁ
. 1 a w 3 '
+ l:ﬁ(l + Ra¢2) + N¢XW + g.R =‘ 0
-
. azw azw - 1.3°%w 32y d My
or N + RN &= 4+ N (1 + %) + N R
Xg0xd B X 32 I | R 6;62 £x3x38 * | axﬁ
25r
+ I\‘[ (a v — _]_-_oé_V_{oaR) +a]\‘] oé_V_V — l_oalu[ oaR + !:oa I‘ll
< RIX 8x dXJdx 2 38 3B R 342
d 5 . 2 3 |
_ x4 #x,1.dw.dR _ d°w £x
5538 * R \Rax 88 ~ax%dp*t 5% P
oIl
35 FEEE ) AR = 0 3.27

‘Again, equation 3.27 is very similar to
Donnell's ecuation (3.3) but has mary additional terms.
3ome of these terms could be important when surface
curvatures are large. It is interesting to note that
Donnell has used terms in the products of surface slopes

in his stress resultants and yet there are terms in the

92.
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product of slope arnd rate of change of momert in the abtove
equation which afe not included. These terms could be
expected to be significént. In the membrane
equations (3.25 and 3.26) there are also terms of slove
with force or moment and .these would also be expected

to be important.

Flugge (ref.5,p.463) makes the statement
that shape imperfections car be accommodated by replacaing
"w' with ﬁw + B" in the ecuilibrium equations, where "B" is
the radial difference between a true cylinder and the -

actual undeformed cylinder.

Thus, if Rl is the radius of the true cylinder,

R = Rl - R
dR  _ _ 3B
24 .~ ~ag
and é.B. = - a_}.:i
cLis ax —_— ax
And if 2B&KR then R 2 Ry and equations 3.25,3.26

and 3.27 can be rewritten as.

Axial equilibrium,

6N b3
“#x 2w Qg aw 3% AB
3X+ Y +N¢( 1"5( ax)( 35
il a 2 32
y 32 x9w B
* 7 Gog * axaﬁ)( ) axax T2 2

1Oy, §2 25 OMy  §2
d°w . 9°B Bx  Qw a B __g 2y
SRRy o Ay st R R Sl B

3°¢ 8
W) = 0 - - - T 3 .2




Tangential equilibrium.
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éa;'g * R;i - T 3% + 59 - 'Rﬁ(a" )(aiags a?:%)

4 i%(a—i + 2014 %5'-2-;—”2" + %‘2?23 aan: z%?ﬂ sa—gz

TR R i L

+ a;—;;-é(l + %g—;ﬂ + %’%}B) = 0 e 3.2§

tadial equilibrium,

fy (52 + aaxixs) + RN (é;‘g %) + WYL + %-gi‘g .

%‘3}'2‘) * Vgx (a?ca:é aaxig) * Raz}j?c * ?Yxﬁ(’lﬁ°'a'§cz;§'§ ¥

=L 4330 + LY

. fgg o B A HH - FHD
gir-:a 1.2 '% S S S — 3.30

Flligge (p.214) also gives wider -

expressions

for the stress resultants as follows.
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smaller than D

the one relation.

au) K w

Py R2R

. K 32
TR dx?

_‘_C__o (1"”) lo u
+ 2 2 (% 375

4

ou Y - YW

D(1-v)(1 a_;}

K(1-v) (gl '

)+
2R?

D(1-V) (}_. au
]

Rog ™ 3
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-—- 3.31

3.32

For most practical purposcs E? is much

R
and

car: e rewritten as,

can be neglected where both appear in

Thus the first four stress resultants
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v _ 1.9v w du

M — V.V V. W

Ny SRS R VR 0 B (p— 3.33
_ D(1-¥) 1. v

N =T = T (g 33 * 5%

Flugze ignores additional terms in the
exapressions for moments which are even less significant.
The third reference is the ever faithful book by Timoshenko
and ‘Voinowsky ¥Yrieger (ref.1l5). Their membrane stresses
are those given by eouation 3.33 while the moments are

slightly different, namely,

%%  w.ov . W 2w
M = - K(Y 4 ROV Y..ow,
x LAY
‘ _ 1 .9v l_.ézw 2°w
My = K(R2 57 Z 22 z)axz) ————— 3.34
., -, - EQ) ov | 3°%w
Mg =My = =1 Gx * g

The difference between these ecuations
=nd¢ the Flﬁgge equations is only small. The éhange occurs
by considering the fact that the cross-sectional area on
wvhich the stresses act is not rectqn”ular but is w1aer on
the outside than on the inside. Thus, for the remainder of
this discussion the Plugge stress resultants will be
ignored; The additional terms used in the Timoshenko

monent resultants which do not appear in the Donnell



resultants ere all derivatives of

These are small in comparison to

nwlene disvlacements and will also be ignored for this

discussion. Thus Timoshenko and

resultants reduce to the gsame as

97.
in plane displacenents,
Gerivatives of out of
Woinowsky Krieger's monent

fhose used by Donnell. The

inclusion of the slope terms in Donnell's membrane forces

7

is necessary for post-buckling deformations so that this

discussion will also consider the combination of Donmell's

resultants and Timoshenko's equilibrium conditions.

the following combinations arise.

1.

Thus

The Donnell equilibrium equations (3.1,3.2 and 3.3)

with his resultants (3.5 and 3.6).

2. The modified Timoshenko and
equilibrium equations (3.28, 3.29

‘resultants (3,33 and 3.6).

-~

3 The modified Timoshenko and
equilibrium equations (3.28, 3.29

resultants (3.5 and 3.6).

From équations 3.5

Woinowsky Krieger

and 3.30) with their

Woinowsky Krieger

and 3.30) with Donnell's

we can obtain the following

derivatives.
Ol = 32ﬁ OV, 97w 4y (L- 32V4+'. 1 .9w. v]
X TP ka2 TP R axeR R~257fa“7xa
| 1.dw
1]

3’\3 EX . _ ain D(l—v) (;I._. aQu a2v |
Y 3 4 27 R g2 T Oxdf —— 3.35

. 1.9 d %w. dw 1.9w. Agw)

R %3 Zb‘z Rax M2




a}’?éx _ bNXé D(l—v)(l d%u a?'v
o X O X 2 R axéfé ax2
+ 1 6_%_1 Xk dw. d°w

I7 2 2
1.0°v . 1 Qw.dw  L1.Qw
S IRE 525 5o Lt -

SRy )
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The alternative derivatives using equations 3.33 are.

S O

QX - ax R 9xof R ox

a}é _ ol D(1-v) (1 % + agv)
o -9 = 2 R 852 QX3P
aNz_ﬁx _ angS_ _ D(l—l))(l d°u )
J X T X - 2 R axaﬁ ax
ON : 2 2

4 _ n(l.-9°v _ l.dw Q°u
37 = D(7 Y2 % o8 t¥3x8

—d

Also, from ecquations’ 3.6 the following derivatives of the

noments are required.

IH 3 3
X - _x(ey , Y.2w
a X (ax3 + 2 aXaJdQ)
om 3y 3
S T ) AN
o R 4 x4
?}g T S - 2 33w c)3w)
x 2 3xof? L ox’
| 33"f§x _ _KQ-9). P
o | R dxdf°
Ol 4 _E(1-D). dw
ox R axzaﬁf




And. :
e
P M, _ —K(a—4-‘-"! LY. 4., 2ty
3 x° x4 2 Ox 23ﬂ52
2
Oy _ _ K(1-0). d'w -
29X d - R aX26¢2 ———————————— .
20
o<t _ (l b 34 |
8’52' JD' 6){23;52

Now, returning to Donnell's equations we
can substitute for the stress resultants and allow for

initial imperfections as follows.

D(82u dw. Fw . o + Ve 7 V.dw
dx°  ox )x2 R PP R2 o8 IxdF ~ R X

-+

D(1-2) 1. 2%, 32y

d%u (1-v) Xu  _ _aw.d%w _ (1+1). 9°

i.e Y+ Y.
°T ax 2 a¢2 - ax bX2 2R axaﬂ R 9x
(l+v) ow. d%w _ (1-).dw. 8w 3.39
op? 9B IMB  ,p2 yy 3f -
D(1-0),1. 2%u . 3%v . 1.8°w.9w . 1.dw. d°w
(5 3938 * +3a—§a7+§xma)
D,1.9%v . 1 .0w.d%w  1.dw 2°u . _dw. d%wy _
RE$F+ 2 Sy SF o8 tVsms VS aen) = O
i 1.8y (2).0% | _ (1+w). 9% _ (1+9) .. 3%y
R2 Mz 2 %2 2R 9x98 2R X Ixdp

1 .90w _ (1-2).dw.w _ 1 .dw.d

T 'R m*%'_WSZ*%—“"—):O
2 agc 9% ox x O |

ow.0™w ____ 3,40
o2 Y 2R 24 32 R3 of aplz :
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s R
WS%%Z?‘) =¥+N(§§g aig)
+i;<é<§£z m —é(g};,’ a}52)

~lg
!

Eguations 3.39,3.40 and 3.41 are Donnell's
eouations reduced to three simultaneous parﬁial.different
equations in deflections. Solution of'theSe equations wi
give the deformations according to his theory. The modif

Timoshenko equations can be treated in a similar manner.

From equstion 3.28.

3% . % ) D(l—-v) 1.0%u
D(é—}:% + -I!% -m% 2 sﬂ) (R 3}62 axa}g)

3w . 3By . "4.3%w . 3%B\ dw . OBy x, d°%w
ﬁé( L R - DD D 'gg—(m

X ox

+

| M, 2
‘“&s’"aw 5 srs B> * ﬁ‘ra%

D3 2 . 2 2
1.9 4%, w & é b W B
R o I3 (ax bX ) R ( Xo, )

+

100,
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. Su ., (1-0).% _ _Fg aw 3w Ty 82
o€ =2 om a2 :Tz{éb'(rx *3 Ot ﬁgﬁ(é?g +
) aw By _ jfx d%w ow . dR

3% )( bx (axa;& abe)( 5—35) +
M. 2 2 oM 2
1.9'x,9°w . d°B 1 W d°D
D X(ax2 + axz) "2 O (axa;zs 308 *
) 1 .3M}§X(32W + 3213) B AMX}f( -] ) +
R.D 99 5X2 ax2 B D ax axa;S ax Z
V.dw (1+). azv S
D Sy T TAD T\ 22 e - - 3043

1.3%y 1.dw d “u (1-v) ,1. 62 b v
D(ﬁg"ﬁé'z*”axa)*TR (R3x6;6 X)
b 2
(AW ., OB v 3 W B
E’;dx(é_i + a—x) + ﬁé(ax Sva §xbfo') -
Mgz d AR 1.9% 1. 23 ol d°%w 5°3
_%}E(SE + ax)( R 5;? * R 3;52) (Sxaﬁ axa7o') +

d1l 2 oM 52y 24
1. 1.9 1. 1. OB
'ﬁ'a“%(l"ﬁj*ﬁg;‘)* 5‘:?3‘;3’ 5'7
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R N A ) 0 L S P TS T N
tele 32 3;62 2 32 I’i%(é" 3% ¢t D_RQH% +
asaz Axafé ‘é‘x—ax*s‘ - v-l-v-
g of
__1___.__:__( b ) + aH (l l.azw 1.323
5 Sy + 2 ~2"3 PR, YR P
Mgy 2% By _ }95(1 1.9% .1_-&) +
D. R2 QP OxXap axa)d R D aX R 6}52 R aﬁ2
1 .dw (1§v): d°y
RO TR Sx3 < TTTTTTTTTTTTTTTmmTTmS 3.44
And from equation 3.30.
_ R.K(aﬁrw 7) 3 W _K _1__.34w . v _
3}:4 R® 3}'23}52 R pe 3,64 b.xf’-’a,d?

2K(1-¥). &'w _ 5 i R N, (32‘ )
R aXZaﬂ‘Z Xﬁ L p2) B m X 6X2 aX

1.9° 133 % 2R 1.9w.dR
11¢(1+——;—"2!+RM2 l\aﬁx(—me +a—'é75>ac ‘)—r\¢¢(§5¥3§+

1,952 3% B, Oy 38, 1 .94 53
7(5%) +;Lxg+ 6x2) ax(g_z T 8% _?75'576”'
M 2 2 M

d°w B . 1.938.9 1.938.9B 1. P
S+ 38 T RS YD + ¥R
OR
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Qfﬂ l.___- 34‘” 2 . a4w NX a 2v‘.-_r a 2"2
e It ! BN S;— ' R2 dx2d4° ﬁ?g(ax§z * 5§33) ¥

2 o R.K Y 3;5.4 R.K W +
%8y . Mg 1.3w.33 L 1,082 . 3w . 3°n
3% 2 * xR S5xsr FRGR ¢ 322 + b_xi) +
_l_ﬂ(éz +9By .1 -?_Mé-AB Vgx % . %8
REJxox " 0x’ " L 3 3B ;g2 o0 T Ixp *
1.9R., 1.9B.dB LT R |
ﬁﬂ§+ﬁé—}3—_}z)— ana[(s—;-: 2ax)+%—--3.45

In the third case where a combination of the
Pimoshenko aznd Yoinows%y Vrieger equilibrium ecuations are
used with the Donnell resultants, similar equations arise,
In fact, the radial equilibrium equation appears the same
s équation 3.45. The only difference bétween the two
equations is in the magnitude cf the resultants. TFor the
axial equilibrium and tangential ecuilibrium conditions

small changes occur,namnely.
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d°u L -y, Fu N M 2 °p |
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3xo8 * 338 dX 2R 9xop S

1T

1.9% , (1-9).2% Ngxdw , 2y | U _Qu
. X 29X

2 3F 2 352 R.D x IR
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The three groups of equatioﬁs 3.39 with 3,40
and 3,.41; 3.43 with 3.44 ard 3,45 ard 3.46 with 3.47 =ord
3.45 each are three sinultaneous ccuations in the three
disnlocenent components.  Solution of each set of eounti5ts
constitutes a btourdary value vroblem and »rovides the three
coanonents of deflections &t all points over the entire
middle surface of the shell. It will be seen that
corresmonding ecuations in each of thé groupns have been
arranged such that the same exvrescion appears on the left
hand side. Ir the case of the axizl equilibrium ecuation
it is an expression in axial deflection (u). The
tangential esuilibrium ecuation contaiﬂs terns in
tangential deflection (v) and the radial equilibrium
ecuation has terms in radisl deflection (w). Thus each of
the three sets of equations can be‘writtgn in a simplified

forn as follows,

d2u . (1-»).a2u

= RoILS. (1) —mme 3.48
3x° oR? a¢2
2 2

L-2y , UG-b).d% = R.H.S.(2) ——mmemem 3.49
RS 94 ox '

4 4, 4
MU 25_3'21"'2‘ + -1-1:—3-% = R.H.S.(3) —mmmeeem 3.50
axt T Rr® % »Y o

Solution of the three ecuations can ve
either anproximate, by assuming a deflected shape or more
acéufately by simulténeous solution. Although_the approximate
nethod is far guicker the second method was chosen for this
conparative study:of the three theories. It was anticipated
that by choosing a deflected shape real differences between
the theoretical relations may have been masked. Details of

the solution are presented in the next chapter (Chapter 4).



NOTATION —~— CHAPTER 3 106.

2 ilagnituce of imweorfactions.

D Ixteunsional rigcidity. D= —Eﬁ%?-
A ' (1-v7)
5 Younrg's modulus.,

2 m3
K Flexural risidity. e =l
A 12(1-v%)

1
M
Hﬁ r Tomerts per unit length.
}xﬁ

T )

Iﬁ r lemtrane forces per unit length.

N |

x4

Q

x Shear iorces per unit length.

R

o] Radial jpressure.

R Cylinder radius.

T Wall thickness.
u Deflection in the axial (x) direction.
v Deflection in the tangential (4 or s) direcction.
w Deflection in the radiasl (z) direction.

Y Poisson's ratio,
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CHAPTER 4

FINITE DIFFERENCE SOLUTICK OF PTHE PARTIAL DIFFEREFTIAL

EQUATICKS,

It was showvm in she previcus chapter that
for each of the three theories discussed the partizl
differential eguations could be expressed'briefly in the
same simple form (ecuations 3.48,3.49 and 3.50). The
three equations renresent conditions of axial équilibrium,
tangential equilibrium and radial ecuilibrium. The axial
eouilibrium ecuation has been cxpressed in terms of axial
deflections, tangential equilibrium in terms of tangential
displacenmnents ard for the radial equilibrium equation,
rzdial deflections have bzen considered. The eqguations
have been arranged in this manner bhecause these Zellections

sredominate in their resnective ecuations.

108.



o ex»licit form of solution is available
for any of the three sets of equations. ''hmuis to obtain a
solution it is necessery to resort to some approximate
technigue. Von Karman and Tsien, in their solution of
Donnell's equations used a guessed shape approximating
the diamond buckled pattern as a starfing voint. They
then minimised energy to obtain values of certain
vaeraneters., This procedure is the one that has generally
been followed by subsequent researchers. However, in the
tvpe of investigation carried out here such a »rocedure

may not show the differences between the three

109,

theories. It was considered that in this case an altermative

Drocedure would be more suitable, namely direct approximation .

of the equations. Two techniques are available for this
approximation—finite differences and finité elements.

The two techniqugs are essentially variations on a theme,
the choice of one or the other depending on the bouﬁdaries
and the ease of manirulation. In this case»the choice was
made for finite differences with the form of relaxation
technique %nown as successive approximation. In this
technique guesses are made as to the deflection values. at
a number of points within'the boundary. From fhese guesses
the equations are solved at each point to obtain better
estimates and these used in turn to obtain better guesses’
still until the deflection wvalues converge onto those

that satisfy the differential equations. There are three
geflections at each point and we have three partial

differential equations. Thus for each point on the niddle
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surface of the shell we solve for the three values in

turn using equation 3.48 to obiain better estimates of
axial deflection, 3.49 for tangential deflections and 3.50
for radial deflections. This procedure is very slow snd
would not normally be used in solving the ecuations for
desisn purposes. Rather, it is a research tool useful

for gaining an understanding of the behaviour of the

cylinder.

Originally the solution was tried in Algol
on a 3urroughs B6T700 computer but difficulties with the
avallability of the machine for such a long running

program prevented the work being completed on this
-machine. Instead a Digital PDP 11 was availableAwith
floppy disk storage and 16K word memory. Programs

were written for this machine in Fortran and the computer

was left to run unattended o%efnighf. The speed of solution
on this machine was about one tenth of the speed on the
Burroughs and to obtain one solution it was necessary to
operate the machine for several nights. Thus it was.
essential to organise the program so that it could be
interrupted at any time without losing the benefit of

thé previous work. The solution was therefore subdivided
into several parts. Por each part a separate program was
written and listings of these programs are given in
Appendix D, The organisation and sequence of use of the
programs is illustrated in figure: 4.1. Essentially

the main finite difference procedure was conducted in one
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Open files anrd establish initial
suesses for deflections

Disk,
Storage of data
3 ) _
Modify axial strain and
deflection values
i e
Solution of Timoshenko ecuations —
with Donnell resultants
Solution of Timoshenko ecuations .

with Timoshenko resultants

\

Solution of
Donnell's equations

Y

Print values of deflections

!

Calculate and »rint
mlenbrane stresses

FIGURE 4,1

COIMPUTER ORGARISATICK



112,
program with a separate program for each theory. Thus when
the solutibn was obtained for one theory these values could
be used asg initial guesses for the other theories., All
other programs acted as service programs to theée three.

The service programs included the following.

1. A program to open the necessary files on disk and

establish initial vaiues.

2. A program to print out values of deflections.
3. A program to calculate and print membrane stresses.,
4, A program to modify the value of the axial strain and

deflection values proportional to the change in strain.

No cyiiﬁdef caﬂ“be made which is completely
circular. Instead there would be small defects in shape.
These imperfections control the buckling behaviour of the
cylinder énd so should be considered in any»investigation.
From the observations made in chapters 1 and 2 it seems
likely that diamond shaped defects would have moét effect
on the buckling of a cylinder. Thus it was considered that
a shape defect of approximately that form should be
considered. A simple way in which a defect of approximately
this shane can be considered is illustrated'in figure 4.2.
sssentially, it comprises a plane intersecfing a cylinder.
Thus we have two planes of symmetry and we need only work

on one guarter of the defect. We also need to investigate



FIELD

OF  CALCULATION

Xw \ O\ | //,,,,,//
i

- —

NOILVINITV) 40 13l

FIC URE 4

- CYLINDER WITH

EFECT




114.
the section of the cylinder adjacent to the imperfegtion.

Thus the solution was conducted over the @ortion of the
cvlinder bounrnded by lines twice the width of fhe defect

and twice the length. It was assumed that the defect

would have minimal effect outside this area. A grid of
noints was used 23X23 which was the limit that could bve
manipulated in the memory of the PDP 11l. A Jarger grid could
be accommodated by(accessing a row of'points at a time but
this process slowed down the solution to such an extent

that it became impractical.

The central difference technique was adopted
because it offered the greatest accuracy of éolution. Thus,
for the grid of points illustrated in figure 4.2 we can write
the following relations fof the derivatives of the radial

deflection "w",

%;'_g = é—(%-ﬂ(xv(i,j+l)—w(iyj‘l))

2. n
':'% = (sl)z(w(i,-a'+1)—2w(i,:i)+w(i’3-1))

X X
53% B —?%;;i(w(i,j+2)—2w(i,3*1)+2W(i'j"l);w(i’j"2)) —=4.1
x 2(dx '

4 s
g_% = 051)4(w(i,j+2)—4W(i’j+1)+6w(i’j)‘4w(i’j—l)

X ' '

x +w(i, j-2))
dw _ 1 . oy . .
Y4 = m(w(1+1,3) w(i-1,3))
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2
ngg i (6;5)2(\"(1*1’J')'f’“'(i,j)+\v(i—i,j))

33\'1 1 ] . . ) . . . -
S;j = 205%)3(W(1+2,J)—2W(1+l,3)+2w(1—1,3)—w(1—2,3))
24y 1 . . , ) o ) '
S;Z ) (6¢)4(w(1+2,J)—4W(1+l,3)+6w(1,3)-4w(1_1,3)

+w(i-2,3))

S5 :m(w(i+l,j+l)-w(i+l;j—l)-rw(i-l,j+l)
+w(i-1,j-1)) -

3, = :
32W - 12 (w(it+d, j+1)-2w(i+1,j)+w(i+1,j-1)
dx“94 2(Ex)°(&8) :
. —w(i-1, j+1)+2w(i-1, j)+w(i-1,j-1))
ow_ _ 1 2(w(i+1,;j+1)-2w(i,j+1)+w(i--l,j+l)

Ixd°  2(8x) (6F) » |
. ~w(i+l, j=-1)+2w(i, j=1)+w(i-1, j-1))

-
arae.

dhw - 1 (w(i+1,j+1)-2w(i+1,])+w(i+1,j-1)
3338 (8x)°(54)°

~2w(i, j+1)+4w(i, j)=-2w(i, j-1)

+w(i-1, j41)-w(i=1,j)+w(i-1,j-1))

In a similar manner we can also write the
derivatives weé require of u,v and B. Thus the three .
partial differential ecuations (3.48,3.49, and 3.50)

were rewritten in fiﬁite diffefénce formiaéufbllows.

_zuli, ) (A-2).ulhd) o opoas, (1) —Es(uld, §+1)

(6x)° RS (&6)° (5x)°
+ u(i,j=1)) —';§%%§%35(u(i+1,j)+u(i—1,j))
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—.EXEZ;fg ~ (1z:1¥§i53) = R.ILS.(2) —-;§z§;;§(v(i+l,j)
w(i-1,)) - %g—g(v(i,m)w(i,jq)) ------ 4.3
and.
f?i;ij) + igé;;?%(gﬂ)2_+ ;Xé;;?i = RS, (3)
- (Si)4(\'J(i,lj+2)—4w(i,j+1)~4w(_i,j-l)+W(i,j—2))
- Ré(ékfz(sﬁ)z(w(i+1,j+1)52w(i+1,3)+w(i+1,j-l)

-2w(i, j+1)-2w(i, j-1)+w(i-1, j+1)=-2w(i-1, j)+w(i-1, j-1))

- Ez?igyz(w(i+2,j)—4w(i+l,j)—4w(i—l,j)+w(i—2;j))

N —— 4.4

Froom these ecuations it can be seen that if
e have apnroximats values of the deflection comononents
u,v, and w at all vwoinrts on the nmiddle surféce of the
rhell then better aprroxinations can be obtained by solving
equations 4.2,4.3 ard 4.4 for that point. The deflections
at that point are then obtained in térms of the deflections
at adjacent points. This mrocedure is not always
numerically stable so that a convergenée factor was usea
on each of the calculations. Thus the "better approximation"
at the point in cuestion was not set at the newly calcﬁlated
value but was made equal to the o0ld value together with a

owrovortion of the difference between 0ld and new,
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calculation was carried out was bounded by two longitudinel

boundaries and two circumferential houndaries, On “hese

boundaries the following conditions applied.

At

At the

At

x =0, ]
u(i!B)

2

oX

= 3 i.e. central circumferential boundary

=0

= constant s ou(i,2) = —u(i,s)

also there is symmetry for w and v

v(i,?2)
w(i,2)
'W(iyl)

= V(i;4)
w(i,4)
w(i,5)

1l

remote circumferential boundary, j =25

u(i,25)
V(i,?5)
W(i,25)

=0, i

V(3yj)

3%

= 2.€ .(defect half length)
= 0
= w(i,26) = U.f;.R

= 3 i.e. central axial boundary
=0

= gonstant s v(2,3) = ~v(4,3)

also there is symmetry for w and u

u(2’j)‘
w(2,3)
W(lyj)

u(4’j)
W(4,J)
W(S’j)

I
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and along the remote longitudinal boundary, i=25 :

u(25,3) = €, .(j-3).6x
v(25,3j) = O
w(25,j)

w(26,j) = P.é%.R

The shape of the defect was accounted for by
calculating the radial difference between the true cylinder
and the intersecting plane and allowing for the fact that

this dimension can not be negative.
‘ 1
z

2 # . 2
(®- )+ AR )
cos((i-3).84)

i.e. B =R - 4.5
The solution was obtained by firstly selecting a

value for nominal axial strain and from that value czlculating

the deflection components. This procedurerwas adopted

because the solution was known to be multi?alued in load

but it may have been.single valued in axiai‘defiection,

particularly if the defect was large (see figure 1.3).

A multivalued solution would almost certainly lead to

numerical instability whereas the solution may be stable

with a single valued solution. The aim of this investigation

was to determine, if possible, the load deformation relations

over the peak load for a rather large defect. The comparison

betweenﬁresults would then indicate if the additional terms

in the equations were necessary. For this reason the chief

comparison was between Donnell's equations and the modified

Timoshenko and Woinowsky-Krieger equations with the

resultants containing the slope product terms. The

solution without the_élope terms was included for comparison

in the pre-buckled range.
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The variables chosen for the investigation

were;-—
Cylinder radius = 0.1 m,
Wall thickness = 019 m.m.
Poisson's ratio = 0.35
Imperfection width = 0,04 m.
Aspect ratio = 0.7

The calculated results for this cylinder with.
a defect afe summarised in figures Bi to B35. In figures
Bl to B21 the comparison is made in the form of contour
maps of the various calculated quantities over the surface
between the boundaries selected.  Figures B22 to B24 show
the stress trajectories and figures B26 to B35 comﬁarative
cross sections through the contours. In figure B25 the
comparison is made of the load—deformaﬁion relations for.
the three conditions., All othef»curves are plotted for the
maximum deformation condition calculated which was for é
nominal axial strain of 300.¢€, Although there is no
indicatioﬁ in figure B25 that the maximum load had been
reached or even approached, all attempts to calculate
deformations at nominal axial strains greater thén 3004 €
met with disaster. In every case the solution was

numerically unstable.

In examining all the contour maps it is
immediately apparent that a section of cylinder of twice
the dimension of the defect is not sufficient to permit

the calculation to be satisfactorily completed withir the
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boundary. There are shear stresses along the external

boundaries.  Thus the calculafions do not actually relate
to the defqrmations of a cylinder. They do, howevér,
provide theoretical deflection values for a cylindrical
panel twice the width of the defect and twice the length

/%_/Z{)‘an CxflapS.on .

The relations should hold

equally as well for this case as for a complete cylinder.
Thus it is justifiable to consider the conclusions from

this examination as applying to a complete cylinder.

As anticipated, the solutions to all three
theoreticallrelations are similar in nature. This is
evidenced by the fact that the contour maps of any variable
appear to be similar in each case and the sections through
the contours are of the same form. . There was, however,a
substantial difference between the magnitudes of the
deformations calculated. Generally, this difference was
greatest between the solution to annell's equations aﬁd
the solution to the modified Timoshenko.and Woinowsky-
Krieger equations using Donnell's resultants. The solution
to the Timoshenko and Woinowsky-Krieger equations with the
shortened form of reéultants usually lay between the other
two but surprisingly closer to the Donnéll solution., In
the case of radial deflections the maximum variation
between the theories was of the order of 15 - 20% of the
maximum deflection. This was considerably more than was
anticipated considering that the solution was only for
pre-buckling deformations. It showed the importance of the

additional terms. = .- - e
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The load-deformation relations (fig. B25)

are drawn as the difference between a condition based
solely on Yourg's modulus with an axial load and the
calculated conditions. If the condition illustrated by "B"
in figure 1.3 was to be achieved then the curves in figure
B25 would have ever increasing slope until the collapse
load had been reached. In fact, Donnell's solution is a
straight line which could be reasonably accepted as an
alternative to the increasing slope. Both of the other
two lines show a section of increasing slope followed by a
section with decreasing slope. This lattef section
corresponds to a stiffening of the shell., It is well

known that flat plates exhibit such a stiffening effect
| in buckling. Thus it seems likely that the behaviour in
this region can be attributed to the stiffening of the facet.
An excellent account of this stiffening effect was given
by Kremmer (ref.40) for flat plates in shear. The stiffening
is not present in Donnell's solution which would indicate
that perhaps his equations do not allow the load to flow
afound the cornefs of the Yoshimura pattern adequately. In
order to achieve this flow it appears necessary to include
the terms in surface curvature which are_pfesent in the

other relations discussed here.

Another interesting point to be aeduced from
all the contour plots and stress trajectories is that there
is definitely a flow of stress as anticipated in the space
frame theory. However, with the lack of symmetry along the

edge of the defect this stress concentration is not
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direpted along the sharv edge of the defect. Instead the

panel behaves as though the defect were effectively about
1% times its actual size. Thus in anticipating the results
of any experimental investigation a defect of measurable
size may make the cylinder collapse as though it had a |
Yoshimura pattern in it of somewhat larger dimensgions.

Once the buckle pattern has been established, however, the
symnmetry bf the pattern would ensure that the load

concentration would be along the diagonals.,

It was stated earlier that the reason for
considering the modified Timoshenko and Woinowsky-Krieger
equations was the effég£-ofxgﬁé&éufféturé”tefﬁﬁ;. In fact
these equations contain several other terms as well. Thus
it was decided that a further computation would be made
with only fhe curvature terms added to Donnell's equations.
The results were extremely encouraging in that there was
no discernable difference between this solution and the
solution of the previously modified Timoshenko and
Woinowsky-Krieger equations. Thus it seems that in shell
buckling analysis the following set of equations should

replace Donnell's equations as the governing equations.

ON ON oM 2 2
x , 1L.94x  1.9%4x.¥w _ bzw 1. ggé.b w
5 E R34 922 axzx TR 34 g

S

dxdf

-a_Mé. 32W , =0 ‘ 4.6
R° 34
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1.2, Mxg 1 Mgx 3% _ 13507 1 Ay 22

346 3x  R° 4 IxdF R 2xmdxY RS o4 d4°
Py

1__' X, 'ﬁ. . = '

R2 _é)x ),52 | 0] _ 4.7

And'

This last equation is exactly the same as
that suggested by Donnell. It is only the in plane

equilibrium conditions: that have been altéred.

Since a finite difference procedure has been
used for the calculation some doubt must exist about the
validity of the representation of the derivatives in finite
difference form. This would be particularly true neaf the
edge of the defect. Two types of error are normally
encountered, namely increment errors and roundoff errors.

In this case roundoff errors (the accuracy of the machine)
,appéarAto acéount %6&_errors'in'the'SOIution ofuthéiéfaér'b“
of one part iﬂfl;OOQ.i Increment errors were not so
easily treated. In general the derivatives were power
series fits to the shape. At the edge of the defect this

could only be considered as a rough approximation to the

value at the point. In fact the finite difference procedure
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had the effect of rounding the interface between cylinder'

and defect. Thus increment changes would have a significant
effect on the result. The usual method of checking fbr
increment errors is to compare the computed results with
the desired increment with the results obtained when the
increment is reduced to say, half the size, then a quarter
of the size etc. This should give a conVerging-solution
and an indication of the error involved. Uhfortunately,
this procedure was quite impossible here because the '
increment chosen was the smallest that would allow a
solution in the computer used. Any smaller increment
would require more storage than was available. The grid
used for the computation was 23 X 23, To obtain some idea
of increment errors the grid was reduced to 19 X 19 for
one computation. Unfortunately, this move tended to
promote numerical instability but a solution was obtained;
As could be expected, increasing the increment length had
the effect of averaging the calculations. By éhfbrcing

a change in increment length of 18 % there was a changé

in calculated values of about 3 % of the range of
oscillation in each variable., The form of the plot was
identical in each case but the amplidude of the variation
was reduced. Thus increment lehgth can not be considered
as the reason for the variation between the theories. |
However, the actual values of deflections and stresses at
~any point must bé somewhat different from those presented
in figures Bl to 335.‘ It seems likely that the range

of variation in the calculated valueé would be at least

10 % greater than those calculated. 1In fact.the variation
would probably be greater when the curvature terms were
included since they wouid be very susceptible to averaging

effects.



NOTATION -—— CHAPTER 4 | o125,

A Width of defect.
B Amplitude of defect.
MX 9
M ;5x _
r Moments per unit length.
M _
xg
M J
4
Nk 9
N 6x
} Membrane forces per unit length.
NX ﬁ '
R Cylinder radius.
u Deflection in the axial (x) direction.
v Deflection in the tangential (4) direction.

w: Deflection in the radial (2z) direction.
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CHAP'ER &5

EXTENSIONS TO THE SPACE FRAME MODEL FOR THE COLLAPSE OF

CYLINDERS LOADED IN AXTAL COMPRESSION

In the concluding section of chapter 2 it
was stated that a possible improvement could be made to
the model for collapse by not considering the folds in a
Yoshimura pattern as straight sharp bends. - I'rom observation
of cylinders collapsed in axial compression it was realised
that the shane of the fold was essentially the shape that
would be obtained by bending a rhomboidal sheetvacrosé the
short diagonal into two triangles with all four edges held
straight. Thus the model shown in figure 5.1A and 5.1B was

proposed for the analysis. The reason for the rectangular’



FIGURE 5-1A

MODEL FOR SHAPE OF SHELL ALONG FOLD LINE
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shave instesld of triarngular :7as for ease of calculation. It
would also represent a condition where the width of the
facet rnerpendicular to the i0ld was infinite. ™hus *he

etective width of the bend could be easily determined.

The analysis of the bend could be achieved
either exverimentally or theoretically (or bbth). In fact
both methods were tried but the theoretical analysisAwaé
found to be inadequate. This theoretiéal analysis was
similar in nature to the finite difference érocedure used
in chapter 4. There were two axes of symmetry in the model
so that only one quadrant was necessary for the analeis.
The ¥ long by N wide grid »oint layout.for the finiteA

difference vrocedure is illustrated in figﬁre 5.18.

As a first approximation and for the condifion
where the angie between the facets approaches 180° then
membrane stresses and surface slopes would be negligible.
Therefore, in the first instance the out of plane
deformations can be reaspnably avproximated by the bi-
harmonic equation. In the abscence of transverse pressure

this equation can be written as.

4 4
A, 5 d'w = 0

oyt dxCdy?

- 4+

)

343} e 5.1
X :

The in plane displacements (u and v) could
be considered as zere and the required boundary conditions

were as follows.



Along the fold line and at the mid point

of the fold there was symmetry.

Thus,.
w(i,1) = w(i,5)
w(i,2) = w(i,q)
w(E+3,3) = w(N+1,j)

and w(N+4,3) w(N,j)

Along the grid lines i=1, i=2, j=N+3

and j=F+4 the value of the out of vplane deflection was that

given by the irnitial guess.

w(i,3) = (j-3).£y.cos(%)

The programmes used for this calculation
aré listed in Appendix E together with typical output.
Although these v»rogrammes calculated a shave of fold that
was of the correct general form they_were completely
useless in that the calculated central deflection was
avoroximately thfee times the actuai neasured value,
Beéause of this.discrepancy it was thought that membrane
conditions may have played a more significant role and
should have been included. Thus the programmes were
rewritten to include membrane stresses. The listing of
these revised programmes together with typical output is
fiven in Appendix F . The additional boﬁndary conditions

needed wvere as follows. .

Symmetry for u along i=N+2 and for v along

ice.  u(F+3,j) ~u(1+1, j)

v(i,?2) -v(i,a)

131.
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Zero shear strain along the axeé of symmetry.
ioeo u(i,2) = u(i,4)

v(E+3,3) v(N+1,j)

And along the exterﬁal boundaries there was

no in plane displaceﬁent.

iee. u(3,3) =v(3,j) = u(i,j+2) = v(i,j+2) = 0

| o In settlng up théé;—programmes 1t was dec1ded o
to use the equivalent to the Donnell equations (3.1,3.2 and
3.3) as the governiné equations, For flat plates any term‘
~with a reciprocal of the radius vaniéhes and since we know
that surface slopes are ﬁot large the terms in the product
of surface slopes can also be ignored. Thus Donnell's
équations for a flat plate reduce to the'well lmown

Von Karman equations which (with small surface slopes)

can be written as,

°u . (1-v). Fu | (1+v). 3%

3}{2 2 ayz 2 bxay = O ————————— 502
3%v (1—v) v L 3+, 3% o . s
by2 2 bxz 2 IXdY .
4. 4 4

wa My dy. o Bl
dx ay 3% AY T bx

2

2.3 :
12.3°w,dVv ou 1204 9 (U a W
+ == —ayz(a—y +‘U—3x) + —T2(l V) (a' 5—-)—;;3—-

]

5.4
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Clearly equations 5.2 and 5.3 are the

nembrane conditions and are indevendent of the out of plane
displacenent "w"., If these equations are used in the
finite difference procedure then the result is to find
that the initial guesses of zero for the in-plane displacements
remain unaltered and thus the membrane stresses: are zero.
The solution thus reverts to the solution of the simpie
bi-harmonic equation. This solution further helps to
highlight the weakness in the Donnell.equations; Perhaps
a nore satisfactory set of equations can be obtainéd by
considering equations 3.25,3.26 and 3.27 , the
Timoshenko and Woinowsky Krieger equations. If all terms
in the reciprocal of R are eliminated in these equations

then the following set are obtained.

oM, N ‘)Nyx . oM, _ él-ll 32w - (amyx.. +-aMx d°w
dX VY 9% 9y oxy Y  dXY,2
d3r. dm.. AL an 52 AT JIL 42
v %%y Oyx x w _ (Oxy | 97y0cw
sy 3% - 5F tT3¥smy - (3% tIver
= 0 - 5.6
end oy O My b2y, 20w, g P, oy
- d x° AXAY 3 4° Xax T3y2 XyAXdY



These three ecuations were the three ﬁsed
in the numerical solution. ©Their combined effect was to
reduce the value of the out of plane deflection at the
centre by abouf 1 % when the angle between the facets
Wo.S 173.90. This was insignificant when compared to the
fretor of aoproxinately three between these calculatec

values and the experimental results.

Aoparently, the large difference between

calculation and measurement could be attributed to the

134,

severity of the singular point at the end of the fold line.:

To investigate the effect this sharpvpoint had on the
calculation the increment length was halved. The result
was that the central deflection was reduced by some 5 %.
This, at leaét, wags a step in the right directibn but only
a start. Associated with this improvement was an=inérea$e.
in solution time from about 10 hours to about 120 hours.
Clearly, a considerable improvement could still be obtained
by taking a much smaller increment near the singularity

and varying the increment size. However, to géin é
sufficient improvement iﬁ the solution the increment would
anparently have to be so small that roﬁnd off errors would
»redoninate., Therefore this theoretical proéedure was

avandoned in favour of a purely experimental approach.

The experimental analysis was based on
the Ligtenberg moiré technique (ref.16). In this method

a set of parallel grid lines are reflected off the test
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model which must ha%e a reflective surface and a photographic
image made of the lines. The model is then deformed and a
double exposure made. Moiré patterns on this photograph
represent contours of constant change in surface slope. To
obtain curvatures Ligtenberg and others have plotted curves
of slope against position and differentiated this curve-or
mechanically shifted the image to obtain secondary moiré
fringes., In fact, it is important to realise that absolute
curvatures can be obtained directly from a single exposure
photograph without having to resort to the rather inaccurate
technique of graphical dlfferentlatlon or the severe
averaging effect of mechanically shifting the image. This
technique is not new. It is essentially adapting the 6riginal
idea from which Ligtenberg developed his method. It does not,

however, appear to be described in the literature.

If a Ligtenberg screen with a line spacing
of "f" is placed at a distance "Q" ffom the model and the
surface is tilted an anglé "< in a direction perpendicular:

" to the lines, then it can be easily shown that,

_n.f ' '
“—-2T 5.8

Here "n" is the fringe order of the reflected
pattern. If the complete surface is tilted by "ot" then the
grid pattern will appear unaltered in the reflection
except for a translation. The lines will still appear on
the model at a spacing of % . Now, when the surface of the‘
model is bent, there will be a change in line spacing since
there is a change in slape between adjacent points., If "fl"
is the line spacing on the modei after it has been curved

then the following relation is valid.
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Curvature normal to the grid lines

= 2L - J—

Thus if one photograph is taken of the
reflected grid lines it is possible to obtain values of
slope normal to the lines by observing gridAline movenment
(provided a datum is known) as well as curvatures by
observing grid line spacing. The accuracy of the measurement'
is limited to the accuracy of measurement of thé line
snacing. This measurement technique was the one used in
the exverimental analysis. In fact using the conventional
moiré’technique in this instance was found to be misleading

and quite inaccurate.

The model shown in figure 5.1A was nade
from a rectangular piece of melanex bonded to a perspex
frane with cuts in the frame at the midpoints‘of the sides.
The nodel was bent at these cuts forming the fold line of
the member and photographs were taken of the grid lines
reflected off the surface. The "cats eyes" picfure
(figure 5.2) is typical of the @attern obtained when the
grid lines were perpendicular to the fold While figure 5.3
shows thé type of imagé obtained with grid lines parallel

to the bend.

Obviously the slope along the member at the
mid point was zero. Therefore, by observing the

shift of the lines in figure 5.2 relative tO'thig mid
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EIGURE 9%

REFLECTED GRID LINE PATTERN WITH LINES
PERPENDICULAR TO FOLD

K=150m.m.
T=01m.m.
8=1739°
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FIGURE 53

REFLECTED GRID LINE PATTERN WITH LINES
PARALLEL TO FOLD
K =150m.m.
T =01 mm.
6 =1739°




point a curve of slope in the axial directién against
position was plotted. Integration of this curve

gave the deflection along the fold line as a function of
nosition. ¥rom figure 5.3 the transverse curvature was
neasured for various positions. An interesting feature
of figure 5.3 is that there is a reasonably well defined
area where the curvature is significant. Outside this
area the surface is essentially flat while within,the
transverse curvature is almost constant for any given
pobition-along the fold. This area usually was about
half as wide as the fold was long. Thus the proposed
nodel would apnply to diagonal compression member of the
Yoshimura pattern'provided the facet width perpendicular
to the fold was greatef than a quartef of the length of
the fold. This stipulation would require a very short

and sharp facet and would not normally be a limitation.

A summary of central deflection values is
given in figure 5.4 for three different test specimens
with varying angles between the facets. The three lines
dravm are lincar regression lines providing a line of
best fit to the test résults. The regression line for
specimen no.l was almost identical to the regression‘line
for all points. Prom this graph it was vefy apparenf
that thinner members had, in general, a lesser central
deflection than thick ones fhough the difference was
small and only imvortant at large changes in angle. This

nNhenomenon could be attributed directly to membrane

139.
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conditions. “When the aﬁgle between the facets was 174°

the difference was negligible ﬁhich is the result obtained
ir the finite difference analysis. The range of conditions
represented in figure 5.4 correspond to those that would
exist in a buckled cylinder with a range of radius to
thickness ratios of a few hundred to several thousand with
a minimum of ten facets. Thus the results cover nost of

the range of interest.

In figure 5.5 the deflection on the member
exis is plotted as a function of position., It was found
that a least squares fit bf a power curve with an index of
2.44 gave pérhaps the best fit to the range of experimental
results. It was hoped when the decision was made to
'investigate the shape of the fold that from the analysis
the moment reguired to bend the sheet could be found.

This moment in turn may have ultimately led to the
establishment of the aspect rétio. However, with the
sharp bend at the end of the member the moment at that
point would be infinite and thus the calculated moment

for bending the sheet :/ould also be infinite. One
possibie way around the problem'would be.to use this model
for the fold centre section and combine it with another
shape at the end. Unfortunately, the vproblem cannét be
simplified to that extent. 1In a buckled'cylihder the size

of this end section varies with loagd.



DEFLECTION
CENTRAL DEFLECTION

01

02-

0-3-

o
‘T

Q
T

Q
I

0-84

0-94

Q
ik

1-0

142,

Range of Experimental
Results

01 02 03 04 05
DISTANCE FROM CENTRE
MEMBER LENGTH

FIGURE 55

LEAST SQUARES POWER CURVE FIT TO
EXPERIMENTAL RESULTS




143.
Tor figure 5.6,at three points along the

member lines were drawn with constant curvafure to intersect
the axis at the value of deflection at the point. The
curvatures vsed in the plot were the values measured from
photographs similar to figure 5.3. Included in figure 5.6
is a line representing the s;ope of the facet. Clearly, if
the fold was sharp then this line would also represent the
Tacet. The curves in figure 5.6 became almost tangential
to this line. In the actual bend the curved lines do,in
Tact, defléct further than this straight line but then
converge on the line. This was 1ogiCalISince the measured -
curvature was the maximum bﬁt it reduced only slightly
within the fold area.. Thus a reasonable approximation to
fold shape is that illustrated in figure 5.7. Likewise

it is reasonable to assume that the member has resistance
to bendirg only within the curved section. Therefore a
finite area exists that can be considered és the member.

This area is well illustrated in figure 5.18B.

The following maﬁhematical relations describe

the comnression member deduced from the above argument.

W 2.44 ,

1 _ 2X _
W =1- (g -- 5.10

0
w, |
X = =0,0101.8 + 0.,033) ~memmmmm————m 5.11

( & in radians )
w | e 2.44 |
s = {1~—‘(%5 }( 0.0331 - 0.0101.6 ) —= 5.12
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or

.9
Yl.31n§

(1;sin%)

The width of the menmber is given by

Ard the

6

it

. 2,44 .
{1-(2§£ (0.0331 - 0.0101.0)—S109
2(l—sin§)

———————— ] - 5'14
position of the neutral axis is given by.
20032
:/o(l— -’—r—_—g) ————— —— === 5.15
___’03T(_g__ g + s;n@ _ 2:’23089) e 5.16

The collapse of the diagonal member was

calculated in the same way as in chapter 2. For

this purnose it was assumed that the member being formed

during the collapse was straight and parallel with a half

width of "™y".

Thus the collapse. conditions were formuleted
4

in the same manner as in chapter 2 and figure 2.14 applied

equally for this case.

OA

Now, as previously,

_‘{AFQ _ AB° | — 5.17
- 2(1+cos(p/2)) o

B AB e .
=~ 2sin(g/2 T 5.18



AR. cos(4/2)
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b = Sein(g/2) ~ ~ TTTTTTTTTTTTTmommmme 5.19
I = %—{AFz + 2.ATS  — 8.A3.3fr:.sin(;5/4)}§ —="5.20
3.1, 27 %
and  TE - 1{1.2 + (——l-) - e 5,21

For the purpose of this analysis the deflection

"I" was considered as zero with no axial load. Thus the

strain in FM was, -

' el
P _[AF° + 2.4%° - 8.AB.MN.sin(g/4))% _
"+ (=)

————————————— 5.22

And the resulting force exérted on the

centre of the column was.
| AF° + 2.AB° — 8 AB 1N.sin(g/4) s
P3 = 2,E.W.T = By, -1
. 2 . 301!1 -
L," + (—5——)

5.23

It was also assumed that the tension member

was straight and »narallel with a half width of '"W".

Thus  AB = Ll(l + 54%?§TW» —————————————— —- 5.24
2.,P..L
and Ié = - K} 1 ——— —— 5425
P1.I3

AB = 11(1 - TRV K ) mmmmmmTmommII 5.26
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The length of the loaded combression nenmbter

was not so sinply established since the member was not of
uniform width but anproached zero at the end. If one
tries to comnute the axial deflection of +this member from
an integration of strains then the calculated deflection
would be infinite. because of the singularity. Thus one
has to apyroximate the situation further by calculating

an average area of member.

Area of member =p.O.T

. © o
QWOQGQToSln '2‘ 2.x 2.4-4-
= 5 1- &)
(1 - sin-é-)
X/2 B
Average area = %I (area of member)dX
.. 0
0.709.0.T.W°.Sln-2-
= ] g . '-—"'. ——————— 5027
(1 - s:Ln-2-)
P, (1 - sin-g-)
Thus AF =X +

Sow . oin®
0.709.0.T. Bew,.sins

Substituting in equation 5.23, we have,

2.‘82W.I_’1(1-sing)K2_ 4.7,.1,°>

&) X

— - 8.11.M:?.E. .T.s_iné
O.Wo.51n§

7
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Again, the angle that this “orce mekes with
the buckling member is given bv,
2 3.1q
12 - (0
cos = . - _— .
( 3.1, 0+ 30

K{122 + () }E

Wle can also isolate the menber as in Chapter 2

and determine the moment (see figure 2.14)

M

PJﬂY + 2) —~P3.sin7.cos(%)(%.- x)‘

2
I.d Y

- E.I. - 5,31
dx2

Since the moment of inertia "I" in this case
was dependent on position "x" this equation was non-linear.
A further approximaﬁion can be made by assuming the deflection
of the coiuMn as a tfigonometric function. }The boundary
conditions wére zero deflection at the end (x = K/é) and
zerovslope at the centre (x = 0). Thus thé_deflectibn can

he representéd by the following,

Y = 1N.cos (2%‘-) e e 5.32
a2y L (%)

Y = - > CcCOS X
ax K

Substltutlng in equat .on 5.31, we have,
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wl.81n(9/2) 3
-B( 1- 81n(9/2))

0. (/2 - 0/2 + sig@ 2(l:cos0)) P’H\Kieﬂos(fx)

Wy . sin(8/2)

2 Q/2 :
T—sin(e/2) 1 - 2oalg/a)y)

w- 0

= ¥ 7.X
= Pl(_JI\T.‘cos( % ) +

2,82,W.P (l—s:.n(O/2)K 4.1’1.1,13 |

- siny.cos(6/2) (5 - x) 9. w,ésmxg/i) . T TX
I, + ()
8.1, JN.E.W. T. 8in{4/4)
- 5 3.5, 2 ——em———m== 5.33
I, + (7>

At the centre of the column Wy =W and x=0

Thus,
3
~w, P e, o+ 5in(6/2) sin® 2(1"’0009)
K2 (1 1- 51n10/7) (972 - 0/2 + 2 - w- 0 )
o Woe sin(8/2) 2.cos(9/2)
=B [‘m * ToemteeT - Swoo )
_ K. . (02)282W(1—1(O/2)K .3
' SIS’I ;oi A { o, W mn?@?Z) }]
2(L, +(-5 Ly )
. K.siny. cos(0/2) 8. Ll.MN E.w T, 31n(;6/4)
20 3.Ip 2
21, + (53))
L .sin(e/2) '
W _.sin 2 o o
. 2.cos(8/2) ginyg. cos(9/2) { 3
EIE&N * i-sin(O/?) - “F-o ) - 2 3.5y 2 2.y
. 2 2
. 1.41.W.K3(1-sin(9/2))}] |
O.wo.sin(0/2) v

2 w 81n(9/ ) 3 sin@ _ 2(1+cose) |
=-H\[ K2ﬂ(151n(9/?)) @72 - 0/2 + jJZ‘I i‘gg)
4.K.siny. cos(6/2).L; .E.W.T. sin(ﬂ/Z)] _____ 5.34
2 3.1:1 2

2 * (3

+
L
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Bgquation 5.34 is of the form,
P, (MF+C)= —MN.D

Therefore, if P, is plotted against MN, the

1

curve is asynototic to Pl = -D., We can thus consider the

value of -D as the critical load for the column.

2. 0. g2 wo.sin(0/2) 3

i.e. Plc-r = - J.Ké ( l—sin(0f27) (1/2 - 0/2 + Sgng
_ 2(1+cos@)) _ 4ngSinzchS(Q/2).Il.E.W.T.sin(ﬁyl) _5.35
r-9° 2 3.y 2 )
L, + ( 5 )

Apparently, the foregoing derivation has too
many approximations to make it useful. If we use tﬁe previous
cylinder of mylar (E=5.5GPa) with a radius of 0.1l m, and.
thickness 0.19 mm. buckled into a pattern with 15 lobes and
aspect ratio of 0.7 then en effective width of menber .of
only 3.4 timeslthe thickness is necessafy to provide a
buckling load of 272 N. The last term in equation 5.35
nredominates and this term originates from the effect that
the radial deflection of the buckling member has on the
rastraining force in the member being formed. It was in
associaticn with the éstablishment of this condition that
verhaps the most serious approximations weré made., Thus it
seens that the so called refinement to the theory, allowing
for the curved nature of the members was not a refinement
at all but contributed greater inaccuracies. Yor this reason
the rounded nature of the space frame members'was not considered

ery further.
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Up to this point the space frame analysis
has centered about one condition of shell wall flexibility,
i.e. one value of the ratio of radius to thickness. It
would obviously be desirable to have the theory predict
the collapse 1oads for cylinders of all proportions.
However, before this complete picture can be obtained it
is necessary to know how the aspect ratio varies with the
radius to thickness ratio. The aspect ratio is very critical
in determining the effective width of the space frame
members. In Chapter 2 an approximate value of 0.7 was
measured for the aspect ratio. While this value did provide
a great deal of useful information about buckling loads it
was later found to be inaccurate. The aspect ratio was also
found to vary with the radius to thickness ratio and

possibly with the number of facets in the buckled shape.

In attempting to calculate the aspect ratio
it was realised that the simplest space frame model described
in Chapter 2 was insufficient to fully describe the load
carrying action of the buckled cylinder; In that chapter
a true space frame was envisaged with compression members
that could buckle and tension members. In fact there is
no reason for the tension load to be concentrated near the
fold. Instead, it could just as well be distributed through
the triangular facet. By changing the tension load |
carrying mechanism to a uniform tension insteéd of an

angle tension member there is no change to the calculation
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of the collapse load. There is,however, a small change in
the axial deflection calculated at collapse. The main
advantage in treating the tension field in this way is that
it enables a calculation to be made of the aspect ratio
which appears satisfactory at least over part of the range

of buckled cylinders.

If we consider each facet to have a uniform
tangential stress (0°) then by considering radial equilibrium

as before we find fhat.

- P.Ll.cos(ﬂ/Z)
o = ; H
N (/214 L12(I—cos(ﬁ/2))
«N, o 4+Cco -
2 °°8 4.L22(1+cos(¢/2))
5.36
Thus,
P .K+4.W.T.L 2. 0"-8.L; .E. W. T. NN, sin(£/4)
P
3 > 3L %
Ly + (_21')
— —— 5.37
and,
8.L,.E.W. T, s1n(;5/4)31n2 cos(o/z){K/z - tan(J K/2)_}
MN {1+

2

_ (P, K2 +4WTT, %) siml.cos(o/z){ic/z - ten(J.K/2)}
2 3L 2}

+ %‘W..COS(O/Q){W‘ - l} —— 5, 38
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At the critical load,

8L, EWT.sin(4/4).siny. cos(o/z){K/z -ta:n(J.K/2)}

0 = 1+ —5
2 3L,
Pl L2 + (T) ’

This equation for the load carrying capacity
is exactly the same as equation 2.25., When a cylinder
is buckled any further deformation will hawve a certain
strain energy associated with the deformation. This strain

energy has three components.

Strain energy in the end cyllndrlcal sections

P (L - 1L,)
TR S 5.40
Strain energy in 2N diagonal members.
. 1.5
PP L, A% + %) .
= 2 1l-cos(p/2 5.41

And the strain energy due to the temnsion field in 2N

triangular facets

_ P2a0s®(4/2)

32.N.T.E. A(1+cos(£/2))2{A2 #1232(1—(%}?}

Thus, total strain energy 1.5 .
’ p2[-Iy I (A% +%
U = e + -
oTE |27 R 2 (1-cos(
‘ 4WN£A ~ Z(T+cos
4 cos 2(8/2)
16. N’l(l+cos(ﬁ72))2f12 7 l:gg: g }

5.43



155.
We can then find an estimate of the aspect

ratio by letting 3 QU

3L1/\().2 .

T /g ey
AL (A% + 1) o

"l - et T

_ s0s?(4/2)

8(1+cos(¢/2))2{,12 4(11232(% %% 5

_ cos2(4/2)
1612(1+cos(¢/2))?{,\? (1-=cos( gn}

4(1l+cos

5.44

To solve equation 5.44 it was necessary to
havé an estimate of "W" which was in turn set by the load
carrying capacity of the cylinder. To establish this
variable the 15 lobe failure of Essglinger and Geier's
cylinder‘was again used. The result was that an effective
width of flange 24.5 times the material thickness was
necessary and the aspect ratio was estimated to be 0.918.

Both of these values appear to be reasonable.

To test the condition further several cylinders
were made and buckled. The construction of the cylinders
was the same as previously described. 56 measurements
were made by photographing the cylinder and.meésuring
the aspect ratio and number of facets from the photograph.
The measured values are listed in téble 5.1 and plotted

in figure 5.8. The number of facets was not necessarily



TABLE 5.1

IMEASURED ASPECT RATICS OF BUCKLED CYLINDERS
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R 0 L R/T L/R A N
mm, mm, mm,

70.0 | 0.05 260 1400 3.71 0.73 8.7
" " " " " 0.70 | 7.2
" " 132 " 1.89 0.75 | 10.2
" n " " " 0.70 | 11.8
" " " " " 0.75 |11.1
" " " " " 0.74 9.9
" " 90 " 1.29 0.70 |11.1
" n " n n £ 0.74 | 14.0.
" " " " " 0.73 |13.8

44,5 " 127 890 2.85 0.76 9.5
" " 51 " 1.14 0.77 |[12.4
" " " " " 0.77 | 12.5
" " 147 n 3.30 0.78 8.7
" " " " " 0.76 8.5
1" " " " " 0.75 7.9
" " " " " 0.76 Te3
" " 99 " 2.22 0.82 |10.3
" " " " " 0.80 |10.1
" " " " " 0,76 9.8
" " 72 " 1.62 0.83 |11.4
" n 52 n 1.17. | 0.77 |14.1
" " " " " 0.76 13.6
" " 80 " 1.80 0.80 8.7

70.0 | 0.1 246 700 | 3.51 | 0.79 | 7.5
. " i " " 0.81 | 7.6
" " " n " 0.77 | 8.0
" " 186 " 2.66 0.77 8.8
" " " " " 0.78 | 8.4
" " 136 " 1.94 0.81 | 10.0
" " " " " ‘ 0.78 8.9




TARLE 5.1 COKNT,

ITEASURED ASPECT RATICS OF BUCKLYD CYLINDTRS

R 7 L R/T L/R A N
mm, mm, mm,

23.4 | 0.05 | 133 468 5.68 | 0.89 7.8
n n 80 " 3.42 | 0.85 7.1
" " 100 " 4.27 | 0.89 7.0
" " n " " 0.86 6.6
" " " " " 0.92 7.2
" " 61 " 2,61 | 0.86 8.4
" " " ! " 0.85 8.4
" n ! " n 0.89 8.1

44.5 | 0.1 143 445 3.21 | 0.89 7.5
" " " ! u 0.90 7.7
" " 101 " 2.27 | 0.92 9.2
" " " n " 0.87 9.0
" " 80 n 1.80 | 0.89 | 11.7

23.4 " 159 234 6.79 | 0.98 53
" " " " " 0.91 4.9
" " 92 " 3.93 | 0.95 6.7
" " " " " © 0.96 6.8
! " 65 " 2,78 | 0.94 7.8
" n " " n 0.95 7.9
" " " " " 0.91 7.6
" " 44 n 1.88 | 0.92 9.4

15.0 " 107 150 7.13 | 0.97 4.6
" " " o " 1.05 5.2
" " " " " 0.96 5.2
" " " ! " 1.02 4.9
" " 74 " 4.93 0.92 | 5.1

157.
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a whole number since the loading was not completely uniform
uniform
and the seam in the cylinder prevented a true axisygmmebdeic
pattern. This technique for measuring the aspeet ratio can
only be considered approximate and the repeatability of

measurements was limited to about 1.0.03.

Also plotted on figure 5.8 are curves
representing the values calculated from equation 5.44. In
the range covered by the graph there is much cause to
celebrate the fit of the theory to experimental evidence.
However, for larger values of N the calculated aspect ratio
became very large with a consequent reduction in the load
carrying capacity and thus equation 5.44 became unsatlsfactory
for calculating the aspect ratio. Thus the theoretically
derived result was ignored for the remainder of the

investigation.

Although the theory suggests a substantial .
change in aspect ratio with changing number of facets‘
the measurements tend to show that any change in this
direction was small and well within the scatter of
results. Thus for figure 5.9 the range of values of A
together with the mean is plotted as a function of R/T.
A linear regression line has been fitted to these results

which provided the following relatioen.

A = -0.121.1n(R/T) + 1.606 . =————————— 5.45
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A linear regression was chosen since any
more elaborate a cﬁrve would be unreasonable with such a
wide scatter of results. Equation 5.45 ﬁas then used
as the condition governing the aspect ratio in all the

subsequent work,

Now, incorporating equation 5.45 into the
theory to account for shell wall flexibility and matching
the 15 lobe failure in Esslinger and Geier's cylinder,
an effective width of 23.5 times the thickness was obtained.
Using this value with equation 5,45 a graph was drawn
relating collapée load for a certain number of lobes
with the radius to thickness ratio (figure 5.10). In this
chart the ordinate is given as the proportion that fhe

calculated.collapse load is of the classical critical load.

Hart-Smith (ref. 19) gives a summary of
published experimental buckling loads in a similar form of
chart. In interpreting those results it is possible to
infer that most iie within a fairly well defined band
while only a small number are outside forming a much wider
band, These two bands have been included in figure 5.10.,
The lower bound of the well defined band coincides with the
design curve published by Baker, Kovalevseky and Rish (ref.ll
Pp.230). It seems}that tuckling strengths below this curve
can usuallylbe ignored. These cylinders would be those with
large defects. The two higher bounds are not so easily

treated but it is well known that hobp tension in a



P (311-1v%)}2

2MET?

1-0

Most experimental - --
- ~results lie between = -
a8 L | these lines N ~~ <N=40 |
08 \ N\\ /—Experimentcl
\ \ Evidence
Design Curve " (Upper bound)
0 (Baker Kovalevsky
6
and Rish) \
~
' OL -
~..
Experimentcl—/\
. 0'.2 B Evidence
{Lower bound)
0 J 1 1 |
10 40 100 R/T 400 1000
FIGURE 5-10

PREDICTED COLLAPSE LOADS




163.
cylinder will increase its axial buckling strength. One

can not help but wonder if some of these experimental points
may have been acéidently assisted by this cause, perhaps |
through air entrained in the cylinder or a hoop strain

applied through the end boundary.

Whether these higher buckling strengths are
included or not there appears to be a reasonable agreemeﬁt
between the experimental evidence and the collapse loads
calculated for the substituted space frame. However, this
graph should be treated with caution because it has been
derived solely from one point on one experimentally

obtained curve.

At low values of R/T it is knoéwn that a
cylinder will buckle in the classical mode into ripples.
Thus the curves representing the Yoshimura mode should
exceed unity in this region. The drop in the design curve
is due solely to yielding. It is interesting to note that
a mild steel cylinder with R/T = 10 will commence yielding
on the surface at a load of only 7 % of the classical

buckling load.

There is next a transition region where
yielding still occurs and the mathematical model ﬁsed here
is inappropriate ( in the region of R/T = 100). A further
transition region occurs where yielding may or may not
occur. In this section a well made cylinder may buckle

into the axisymmetric pattern since its defects may only
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cover a small seé¢tion of the surface. The line representing

the corresponding space frame would pass through the top of
the chart at a point to the right of the ﬁarticular R/T
value. However, if the cylinder is poorly made then the
curve representing the equivalent space frame passes to the

left and the cylindér will buckle into the Yoshimura pattern.

In the last region, for high R/T values, the
cylinder will buckle into the Yoshimura pattern. In this
section none of the space frame curves passes through the
line representing the classical mode. It is in this region
that the greatest departure between prediction and experiment
has occurred but then both have the same trend. The
calculated values are in general somewhat lower for high
values of R/T than the experimental evidence suggests. This
situation could be improved considerably if the slope of the
regression line in figure 5.9 were to be increased. Increasing
the slope has the effect of increasing the collapse loads of
the space frame for high R/T and moving the points of
intersection of the curves with the top of the chart towards
the left. Both of these corrections would appear to be
desirable to make the chart more nearly reflect the practical
gituation. A close scrutiny of figure 5.9 would suggest that
such a change may not be unreasonable particularly when it is
realised that measurements of aspect ratioc at low R/T‘were'

less reliable.

In the region of large R/T the number of facets
at which the maximum load occurs increases with increasing

R/T. Consequently, it would be expected that as the wall
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thickness is reduced a iarger number of facets would occur
in the buckled shell. This is also a phenomenon observed

in cylindrical shells.
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K

Young's modulus.

Axial length of half facet,i.e. collansed length
corresponding to L2

Moment of inertia of column member..

Length of diagonal Compression member.

Undeformed length of cylinder.

Length of facet in the circumferential direction

Half developed axial length of facet.
Moments per unit length.

Number of circumferential facets.
Mémbrane forces per unit length.

Axial load on cylinder. 7

Axial load in diagonal member.
;Tension positive
Axial load in tangential member.

Axial load in member being formed.
Distance Ligtenberg screen is placed away from the
deformed model.

Cylinder radius.

Wall thickness.

Deflection in a direction parallel to the axis of the
compression menber (x direction).
Deflection in a direction normal to the axis of the

compression member (y direction).
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Rwedial deflection.
Central deflection of unloaded commression menber.
Unloaded deflection of any v»oint on compression member.
Effective width of flange of remaining members.
Transverse deflecticn of loaded compréssion menmber.
Half width of curved compression menber.
rosition of neutral axis of curved compression member,
Axial deflection of loaded space frame structure.
Strain in tangential menmber,
Strain in diagonal member,
Angle hetween collapsing diagonal member and member
being formed. |
Angle between adjacent facets along a diagonal menber.
L

Aspect ratio (ig).

' 1
Poisson's ratio.
Radius of curvature of cross Section of compression

member. |

Angle subtendec at axis of cylinder by each facet.

Ratio-effective width of flange to thickness(W/T).
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CEAPTSR 6

AT EXPURIMWITAL TECHRIQUE FOR MEASURIFG RADIAL DEFORITATIONS

A systen was devised to measure radial
deformations of the cylindrical shell based on the
Ligtenberg moiré method (ref. 16). In the original
Ligtenberg method a grid of equispaced lines was reflected
off a model with a flat surface and photographed. The model
vizs then deformed and a double exposure made of the grid
lines. A moiré interference pattern was obtained between
the grid lines photographed in the two load.conditions and
the fringes represented contours of constant slope
perpendicular to the direction of the linés. Since two

slopes are needed to define the condition at any point,
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two double expnosure photographs were needed. The grid

lines for the second photograph were required t0 Ye rotated

relative to their position for the first photogranh.

An adaptation of the lLigtenberg method has
been satisfactorily applied to the measurement of slope
changes oﬁ the'outside of cylindrical shell sections (ref.l17).
However, to determine the deflections of a'complete cylinder
it would be desirable to have one photogravh describe the |
entire surface. One way in which all of the surface of
the cylinder can be viewed at once is to use the internal
surface. Thus, to utilise the Ligtenberg principle it is‘
necessary to reflect a grid pattern off the inside of +the
cylinder »nd interfere the reflected pattern obtained in
the undeformed state with that obtained after_loading.
3y using the inside surface for measurement the outside

is also left free for loading (e.g. pressure).

Pigure 6.1 shows the system that was used
to achieve this purpose. A cylindrical grid was reflected
off the inside surface of the test cylinder and reflected
again on the insidz surface of a conically shaped mirror.
Crizinally the grid pattern was ther viewed by a special
holoesymmetrical camera (see ref. 18) that accepts only
collimabted light. Thus only light rays emerging parallel
to the axis of the mirror were used in establishing the

fringe pattern. This camera was subsecuently found to be
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unsatisfactory because of insufficient depth of foens, It

was replaceé by an optic system coﬁprising a large dianeter
very long focal length lens (2.27m. focal length and 130mn.m.
dia.). At the focal point of the lens the aperturé of a
camera was located, thus permitting only the collimated
nortion of the emerging rays to be photographed., This
revised sysitem had the ninor disadvantage in that the

image was no longer full size., Instead it was reduced
considerably making resolution of the grid lines somewhat
nore difficult. The photographs made from this arrangement
were flat and circular in nature. Grid lines oriented as
in figure 6.1 (circumferential) were changed to concentric
circles and longitudinal lines became radial lines. Thué
the cylindrical co-ordinates of the'fest piece were

transformed to polar co-ordinates by the optic system.

In the first instance the iiluminated grid
wes a piéce of a photographic negative wrapped around a
miniature fluorescent tube. The test cylinder was an
aluminium drink can (seamless) and the mirror was machined
from a piece of aluninium alloy No. 201l. .The test specimen
was prevared by bonding the aluminium can into reinforcing
rings with epoxy (Araldite AY103 with hardener HY951). The
ends of the can were then removed and the inside poliéhed

to produce a reflective surface.

For reasons discussed later the grid was
_superseded while the aluminium can was changed for a

fabriéated melanex cylinder which would buckie elastically.
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Figure 6.2 illustrates the geometry of the
It is aprarent from this diagram that for

and cone angle (8) the following relations

(R2 - Rl)cotzo

X2 + Xl

Xy

R,co0t286 - 5

2

The cylinder length Xl is limited because

of interference of the reflected ray with the illuminated

grid.

lmax .

The maximum value is.

2(R2 - Rl)cot29

2X2

The radius of the conicel nirror at the

small end has a minimum value;namely.

R
5min.
R3 - R5
also., SR
5 4
R34R5
and
X5 - X4
i.e. R3

X
1
§—tan20

tan®

— 0 tan2Q

X

Elsin20

: 2
= 2R5cos e
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R_co0s20 X, cos20 R
and L5 = 2 ~ 2 - 2
‘ tanr@ 2 tan20
X =‘X5 + Xl(l + cosZO)(
R4 = R, + X,sin28

3 1

Circumferential grid lineé spaced f2 apart
will appear as concentric circles in the déveloped |
vhotograph spaced fzsin29 apart. Longitudinal grid lines
with a line spacing of fl will appear as radial lines on

the photograph with a spacing of,

: R
f = = f
Rl 1

Here f is the line spacing at radius R in

the photograph., The minimum line svpacing ‘is.

When the cylinder deforms so that there is
a change in slope in the tangential direction then the

condition shown in figure €.3 is established and,

p nfl
B
(4B)% = B,® + (R, +7)% - 2R (R, +7y )cosp
By AB

)

3

ol
t

sin2$1 = 8ing
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~ nfy
Rls:Ln(-R—l—)

\ nf. 1%
{312 + (R2<+2 )2 - 2R1(R2‘+7 )cos(ﬁzl)}

i.e. sin26i =

For the »narticular parameters adopted (R1= 8rm,

R,= 33rm. ) then.

. (nfl)
sin —-8—'
Sl = %Sin—l

_ ’ nf, 3
{1153 + 66% - 16(33 + 7)003(—-8—)}

_— R E— 6.1

Generally the finite deformation (%) is small
and can be neglected in equation 6.1. PFigure 6.4 is a plot
of this relation for small » together with the tangent at

the origin which is given by.

[}

51 O.O2nf1 Rad.

1.146nfl Deg.

‘Phe relation is non-linear though the
daviation from linearity is limited to about 2% with a 2°

change in slope.

Pigure 6.5 illustrates the condition that
applies in measuring the change in slope in the axial
direction. Unfortunately, changes in slope in the

tangential direction also affect this measurement.
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Sefore deformation the »oint "A" of the
srid is seer in the reflection from the cvlinder surface
at "O". If there is a slone change in the axial direction
thaen the voirt "2" will be seen at "0"., " A change in slove
in the tangential direction will mean that the ray emerging
from the grid will not come from a point on the same
generator as "A" but will originate from a pbint to the

side i.ec., "C",

150w,

R [R)2 + (R, +2)% - 2Ry (R, + )cosﬁ}%
1t 2 T2 1'% 2
sin28i B singd ‘
R,ZA sin’g 5 o ,
D s (32'*?) - 2R1(R2-+Q)cosd
sin 251
R, 5
i.e. - 22L cos2;5 - 2R1(R2 + % )cosgd + ng + (R2' +¢z)2
sin”28, v
R,°
- =0
2
sin 251
2 2 3
2R, (Ry+7) £44R, % (Ry+7) P- ——E;—l—— R 2+ (Ry47) *- —i%——
1 sin 281 sin 251
cosg = 5 e
2R1
.2
Sin 251
The positive sign gives the required root,ltherefore.
. L,
(R,+%)sin“2§ R
cos;d = 2 ’l 1 + (l-sin22S )(1" ( 2+’Z)Sin228 )}%
: Rl 1 ‘Rl 1
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z = Ry (1 - cosg)
I‘TOW.
R,— R, + 2 + 7
tan2(@ + §.) =21
2 R- R
| 2 1 e 2
tan?20 2 tan20
or,
Ry (1-cosg) + nf,tan2@ + 2%
tan2$é. =
Tamss —— nf2 + tan20(R2— Rlcosﬁ +% )

And for the particular design parameters

adopted in the absence of large deformatiohs this reduces to.

cosd = 4.125sin%26, + {(1 -sin®28)) (1-17.02sin25) }*
and
’ 1. -1 8(1-cosd) + 0.404nf,, o
Ly = 5%en ) FT.BEmT, ¥ 0.404(33-00055) 6.2

Bquation 6.2 is plotted as figure 6.6 and
it can be seen that it is distinctly non-linear. Therefore,
‘although a linearisation could be adopted when meésuring‘
slope changeé in the tangential direction, it would bve
clearly inddvisabie when determining slopes in the axial

direction.

In using the Ligtenberg—moiré'method it is
common to obtain interference patterns for two grids at
right angles and another pattern with the grid lines at

some intermediate angle. It has already heen shown that
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slovpe changes in the tangential direction can te measured
independently with axial grid lines but circumferential
lines do not measure only the slope change ih the axial
direction. Interpreting fringe patterns ottzined from a
spiral grid would be even more difficult so that the use
of this type of grid is not considered to be a worthwhile

proposition..

In setting up the apparatus it was found
that a reference specimen was necessary. For this purpose
a cylinder was machined from brass to the same internal
dimensions as the drink cans and internally polished.
Alignment of grid, cylinder, mirror and camera was achieved
when the images of all elements were concentric and the
grid lines were either concentric cifcles or straight
radial lines. Concentricity could be checked more
accurately by observing the image in the camera than

by measuring the relative positiohs of the 6ptic elements.

To check the accuracy of the system a known
tilt was appiied to the cylinder and a mdiré'pattern
obtained from a double exposure photograph taken of the
grid lines at the two extreme positions. PFigures 6.7 and

6.8 are the moire patterns obtained.

Pigure 6.7 was taken with the niniature

fluorescent tube as the light source and it illustrates
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FIGURE 67

MOIRE PATTERN FROM BRASS CYLINDER
WITH TILTED AXIS—AXIAL GRID LINES
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FIGURE 6-8

MOIRE PATTERN FROM BRASS CYLINDER
WITH TILTED AXIS—TANGENTIAL GRID LINES
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the shortcomings of this device. It will be seen that the

inage is very indistinct arournd the extremity. This is
because the fluorescent tube tends to become dull at the
end. The optical requirement of the system in this region
is increased brightness. The lead wires required with the
tute show on the image and blank out part of the grid (dark
lires at top and bottom). The disadvantages of bornding a
grid to the tube can also be seern in the shotograph. The
white lines at the top of the image are due to the join

in the erid. TUneven patches of glﬁe were also difficult

to avoid., These showed as circular streaks in the
photogranh and tended to make the moiré'pattern less distinct.

These are mogst visible at the tottom of the photograph.

For figure 6.8 the fluorescent tube was
renlaced with a perspex bar with machined grooves
progressively deeper towards the free end. Approximately
collimatea light was shone on the fixed end so that the
grooves scattered the light forming bright bands and the
intermediate sections were effectively internally
reflective., The result was a considerably improved image.
‘Phe unevenness of illumination was because the collimated

light was not exactly parallel to the axis of the grid.

In figure 6.9 the fringes obtained from the
two photographs (figures 6.7 and 6.8) are compared with
fringes predicted from equations 1 and 2. TWxcellent
acreement has been achieved. An insignificant discrepancy
exists and ap@ears to be due to impropér_alignment of all

the ontic elements at the time this test was made.
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>
ANCERTIAT BRI LN
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The machined perspex bar is illustrated on _
the left hand side of figure 6.10. Also shown in figure 6.10
is the grid that replaced the fluorescent tube with axial
grid lines. Both of the grids were made in a similar
manner except that instead of turning grooves in the bar
the grooves were made in a milliﬁg machine using a dividing
head and the corner of a cutter. The patterns obtained
with these two grids of the inside of the brass reference
cylinder after final alignment of the optic elements are
shown in figure 6.11. The variation in thickness of the
radial grid lines occurs because the dividing head was

running slightly out of true when the grid was manufactured.‘
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FIGURE 6-10
PERSPEX GRIDS
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FIGURE 6-11
GRID PATTERNS FROM BRASS REFERENCE
CYLINDER
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EOTATION
fl Pitch of Jines on grid in tangential dircctionm.
fp Fitch of lines on grid ir axial direction.
n Fringe order.
Rl Radius of illuminated grid.
R2 Internal radius of cylinder.
R3 Internal radius of interference »nattern.
R4 External radius of interference pattern.
R5 Radius of conical mirror at small end.
Xl Length of cylinder.
X2 Axizl length between point of reflection of a light
ray on the cylinder and its intersection
with the illuminated grid.
X3 Axial distance between end of cylinder nearest the
- mirrér and the origin of the longest 1light ray.
X4 Separation of mirror and cylinder.
X5 Separation, end of cylinder to point of reflection
on mirror of inner edge of.interference pattern.
X6 Separation, end of cylinder to point of reflection
on nirrof of outer edge of interference »attern.
gl Slope change in cylinder in tangential direction
during deformation.
52 Slope change in cylinder in axial direction during
deformation.,
e Cone dngle of mirror.
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CHAPTER 7

EXPERIMENTAL EVIDENCE TO SUPPORT THE SPACE FRAME THEORY.

The experimental technique explained in the
previous chapter was de&eloped with the Ligtenberg moiré
technique iﬁ mind. However, it was guickly discovered
that the alternative technique of obtaining line movement
was a far superior method in this case. The earlier work
in this thesis had shown that in considering the buckling
of cylindrical shells it would be desirable to detect a
defect and observe how that defect changed with load.
Thus, some prediction of the buckling load could be made
with the'knowledge of the defect behaviour. Arbocz and
Babcock (ref.21) have previously tried meaéuring defects.
Their technique was to use a scanning capacitance transducer

to measure the air gap between the test cylinder and a
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generated cylindrical reference surface. They then fitted
a Fourier series to the contour map obtained and observed
the growth of the Fourier co-efficients with load.. Such

a technigque is rather cumbersome and the fourier series
represents the global condition. Since buckling appears

to rely on local defects it would be desirable if the
measuring system could measure local effects. Perhaps the
real shortcoming in their work was that the imaging process
they used could have masked the important deformation

growth,

The current system appears to offer some
advantages over their method. Since we are observing the
line shift, a defect will show as a short deviation in the
line, either from a circle or a straight radial line.

Such a deviation is relatively easy to see and the local
size of the defect can be readily measured. Although it
is possible to measure slope and hence deflection by
observing line movement it appears that for cylinder
buckling éuch measurements are unnecessary. Lt seems

that the width of the defect in particular and perhaps

the length are important and these can be measured directly
from the photograph with a minimuﬁ of effort.. Perhaps

the greatest difficulty is in selecting which‘of the
defects present is the one controlling the collapse. This
can be found by comparing two photographs, at different
loads and finding where the lines have changed position.

The. greatest shortcoming of the technique is that for a
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particular conical mirror only a very narrow range of
cylinder diameters is possible. In this case the cylinder

diameter was limited to values around 66 mm.

To deform the cylinder a special loading
frame was made. The loading arrangement in this frame is
shown in figure 7.1. Axial compression was applied to a
crosshead attachgd to the free end of the cylinder by two
stainless steel wire cables and the load in these cableé
was equalised by a pivoting support bar. Torsion could
be introduced by adding another pair of balanced load
cables while some bending could be added by shifting the
pivot point position on the equalising bar. In hindsight
this 1astbprovision was probably unwise since it meant
that the loading crosshead had to be freely floating.

In chapter 2 it was shown that a buckling cylinder would
fall over unless it was restrained. Not only did they fall
over but it was imposgible to straighten them up under
load. Thus, the post-buckling investigations were very
limited. Parallel moving plattens would have been more
satisfactory'for this purpose. The test apparatus arranged
for axial compression measurements is shown in figure 7.2.
As well as measuring the axial load with a strain gauged w
proving ring and a Bruel and Xjaer bridge (type 1526), the
axial displacement was measured by summing the output of
two Hewlett Packard differential current displacement
transdﬁcers. The transducers were located on either side

of the crosshead. A load-deformation graph was then
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Pivot support

e

Load equalising

/ bGr
Proof ring
< (Axial load)
ST
| Proof ring
PR

(Torsional load)

Loading
cables

_— Test cylinder

(Fixed at upper
end free at
crosshead)

R Looding crosshead

FIGURE 7-1
LOADING ARRANGEMENT
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LOAD EQUALISING BAR

— LOADING CABLES

PROOF RING (AXIAL LOAD)

PROOF RING (TORSION—
DISENGAGED)

LIGHT SOURCE
g-aSI NP O 5 ) F

— ILLUMINATED GRID
HOUSING

— TEST CYLINDER
——— CROSSHEAD

——CONICAL MIRROR

2:27m FOCAL LENGTH
LENS

TEST CYLINDER MADE
FROM ALLUMINIUM CAN

- \
MIRROR BRASS REFERENCE CYLINDER

FIGURE 7-2
TEST APPARATUS ASSEMBLED FOR AXIAL
COMPRESSION TESTS
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drawn on a Hewlett Packard X-Y plotter (type 7004B). Thus

it was possible to produce a load-deformation cycle and
take photographs of the deformation at several known points
around the cycle permitting observation of deformation

growth with load.

Since melanex had already been shown to be
reloadable it was decided that the test cylinders should
be made of this material. Thus a load-deformation graph
could be obtained and then the load applied to any desired
value which could be determined from an inspection of the
form of the gfaph before taking photographs. The testing
procedure was therefore to obtain the load-deformation
graph, recycle and take photographs with one grid at the
important points and then cycle again with the other
grid., Thus there could be minor differences in;the
deformation pattern between a'phofograph taken with one
grid and that taken with the other but.in each case

similar conditions of load and deformation were present.

Sometimes one grid showed information
that the other did not and vice versa but in a gréat
number of cases (particularly after collapse) they
showed the same information and thus provided a check on the
measuremenis. In general, photographs takeh with the
tangential grid lines (concentric circles) tended to show |
more information than those with axial grid lines (radial

lines). The reason for this was not just due to line
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orientation. The cone angle of the mirror was only 11°
and this made the first grid very sensitive. Also, there
were insufficient axial lines on the alternative grid.
Because of the shallow cone angle there was a strong
tendency for the defects and buckles to cast shadows. It
seems that a cone angle of the order of 20° would have
been superior but this would have imposed a further

restrictiorn on cylinder length.

Because only two thicknesses of melanex
were available and the cylinder radius was limited to
effectively one value only four cylinders were tested,
two of eéch thickness.' The details of these cylinders
are given in table 7.1.. Although only limited variability
was available in the cylinders the information found from
these tests-shows a great deal of the behaviour of buckling
cylinders and reinforces the theoretical discﬁssions of

earlier chapters.

The load-deformation chart from cylinder
no.l is shown in figure 7.3. In thié chart there are
two continuous lines indicating two consecutive loading
cycles. The repeatability of loading was obviously very
good, In fact over all the load cycles taken the greatest
variation in collapse loads for any particular load -
condition was about 9% amd usually within about 3%.
Obviously, after collapse the X-Y plotter recorded the line

shown as "plotter characteristic" but this was only the



DETAILS OF CYLINDERS TESTED

TABLE 7.1

Cylinder |. R T L R/T | L/R
Number 1| 33 0.1 67 330 2.03
| vumver 2| 33 |o0.05]|69 | 660 |2.09
Number 3| 33 | 0.1 |42 | 330 |1.27
Number 4| 33 | 0.05] 40 660 | 1.21

200,
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dyramic characteristic of the device. The true

characteristic of the loading system is represented by the

straight line.

The photographs presented in figure 7.4 are
those that were taken at the various positions indicated
on the plot. After collapse (position D) the facets of
the Yoshimura pattern cover most of the circumference
but there is considerable asymmetry, indicating bending
of the shell. The photographs at D also show that small
facets have formed at both ends of the cylinder of the
type described in ¢hap£er 2 (left hand side of figure 2.7).
The size of each facet was determined by measuring the
angle that the facet subtended at the centre of the |
cylinder. These values are listed in table 7.2 and it is
apparent that the facets become larger near the centre of
the buckléd section., However, two circles can be drawn
on the photographs which link the ends of all the facets.
Thus the axiél length of the buckle pattern was constant
regardless of the pattern width and aspect ratic measurements
were useless on bent cylinders. This phenomenon was
repeated on all cylinders indicatihg the need for parallel
platens in the test rig. In all the test results presented
the angles are measuréd in a clockwise direction on the

photograph.

On reducing the axial deformation there
was an increase in the load as the facets became smaller

(condition E) until there was a sudden snap through where
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FIGURE 7-4
GRID PATTERNS FROM CYLINDER No 1




FIGURE 7-4 CONT

GRID PATTERNS FROM CYLINDER No 1
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FIGURE 7-4 CONT
GRID PATTERNS FROM CYLINDER No1
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FIGURE 7-4 CONT
GRID PATTERNS FROM CYLINDER No 1
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ANGLE SUBTENDED BY DEFECT OR FACET AT CENTRE OF CYLINDER

CYLINDER No.l

Defects before collapse;-

Location A B C
of Photo.

Grid Line | Tgtl. | Radl. | Tgtl. Radl. Tgtl. | Radl.
Direction

Angle at | 28 323 29 33 28 33
Sean, _

Angle at 35 o 35 - 38 -
Glue Line : :

FPacets after collapse;-

Location D ] ' B
--0f Photo,

Grid Line | Tangential Radial Tangential Radial
Direction

FixedIFree Pixed] Free | Fixed| Free | Fixed] Free

End End End End End End End Bnd
Angle | 358 39 | EY: EY:
48% 47 38% 39%
Z1 503 523 | | 413
54% | | sa3| a2zl 45% |
59 58% ’ |'46% 45%
59% | | 64| 47 43% |
60% | 62% ' 443 46%
60 | | 572 | 47 443 |
5441 54 45% 41%
50% | | 488 | a2z| 7| 38 |
42 | 39 398 71 33
| | | |




TABLE 7.2 CONT,

208.

ARNGLE SUBTENDED BY DEFECT OR FACET AT CENTRE OF CYLINDER

CYLINDER No.1l

Location F
of Photo.
Grid Line | Tangential Radial Tangential Radial
Direction
Fixed] Pree | Fixed| Free | Fixed| Free | Fixed] Free
End End End End End End End End
angle | se | 413 | 373 I 3
38 | 41% | 37% | 38 |
I 39 l 42 ' 303 | 36
36 42 36 32% .
| 34 | 40% | 34 | 302
33% 40 32
I | 372 | l
] 35 | | |

N.B. All angles measured

in degrees.



many facets disappeared with a marked decrease in load
(conditions F and G). When all the facets had vanished
the cylinder behaviour was along the same path as for

increasing load.

This increasing load path was particularly
interesting for cylinder no.l in that it was in two sections
each of essentially constant stiffness. The slope of the
line for the second section was considerably greater than
for the first. The reason for this change was that
predominafely two mechanisms were present in the collapse,
In the lower load section the deformation appeared to be
controlled by the seam while in the upper Seétion it was
controlled by the defect marked in figure 7.4. The defect
was adjacent to the end of the test section of the cylinder
i.e. the line where the cylinder was bonded to the end
stiffening rings. Photographs A and B show that the seam
defect changes substantially in this region but only slightly
between B and C. There is considerable growth of the other
defect over the entire 1oading portion. The size of the
seam defect was measured at two quite different values
for the two grid orientations. The reason for ﬁhis difference
was probably that the defect was not disﬁinct enough with
the axial grid lines. Thus the values read from the
photographs with circumferential grid lines were more
reliable in this case. The controlling defect appeared
to grow in width between B and C while the seam defect

remained constant in width.
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Further evidence in support of the speculation

that two distinct defects controlled the collapse is presented
in figures 7.5 and 7.6. PFor figure 7.5 the cylinder was

into the test rig so that slight changes in loading geometry
occurred. The overall result was that there was a small ‘
increase in the collapse load of the cylinder. The variation
between collapse loads for the two cycles shown of 10N (9%)
was the maximum encountered for any of the cylinders but

even this variation must be considered as adequate for
buckling cylinders. More importantly, at the junctidn
between the two sections of the loading sections of the

curve there was a small dip, This dip was associated with
the formation of the small buckle illustrated in figure 7.6
which was located on the seam at the position of the
previously observed defect. Thus the stiffness of thé
cylinder in the lower load portion of the curve can be

attributed to this defect.

Immediateiy after the small buckle appeared
there was a marked stiffening of the cylinder for a short
time and then a decrease in stiffness once the original
load curve of figure 7.3 had been reached. At that point
the small buckle disappeared again and the loading was no
longer under the control of the defect at the seam.
Incidentally, the stiffness in the higher load section
was essentially that provided by considering a perfect
cylinder and material properties only. In chapter 4

computational evidence was shown for just such a stiffening
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FIGURE 7-6
DIMPLE FORMED WITH INCREASING LOAD
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using the modified Timoshenko and Woinowsky-Krieger equations. ‘
This experimental result provides further support for thé
need to include the curvature terms in the membrane

equations.

The collapse load in this cylinder was
measured at 101.4N (figure 7.3). Now, in referring fo
the design chart based on the space frame theory (figure 5.10),
a corresponding space frame with 9 lobes would buckle at
this load. It is extremely encouraging to observe that
the angie the defect at the séam made at the centre just
before collapse was meaéured at 38° or §%§ of the
circumference. The accuracy of interpretation of the
photograph could make this measurement vary between about
360 and 40°. Thus if one accepts the space ffame theory as
a reasonable explanation of the buckling behaviour of
cylinders then it can be said that the defect‘at the glue

line is the one that initiated the collapse of this cylinder.

In installing cylinder no.2 into the test
apparatué it was severely damaged so that quite a lot of
permanent damage was sustained. Normally, in a testing
programme such a test specimen would be thrown away and
ignored. However, in this case it provided an excellent
opportunity to use the experimental technique to illustrate
the manner in which the buckles can grow out of large
initial defects. Only one load—deformation curve is

plotted in figufe 7.7. The reason for providing only one
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curve is for clarity. In fact, there was very littlé
difference again between all the load cycles taken.,

In this cylinder the photographs (figure 7.8) showed that
there were several defects of substantial size which
contributed to the collapse mechanism. The size of each of
these defects is listed in table 7.3 to illustrate their
growth as well as measurements of the angles of facets

once the buckle pattern had become established.

Between A and B defect no.l appeared to
control the collapse of the cylinder. In this region this
particular defect had almost doubled in size while the
others had grown to a much lesser extent. vThis was in line
with the behaviour described in chapter 2 where facets held
in one position would snap through to form facets twice the
size. Between B and C the defect on the seam has collapsed
and in doing so has dragged defect no.3 around the
circumference to join it. However, seeing that defect no.3
was effectively anchored at one end due to the initial
deformation it has become a much larger facet at C. Between
C and D defect no.2 has been pulled around anticlockwise on
the photograpﬁ to relieve the excessive tension that must
have been built up in defect no.3. However the collapse
in this regibn was really due to defect no.4. It was
difficult to suggest which defect in the earlier photographs
had contributed to the formation of this defect. It could
have been any one of several. Between defect no.4 and
defectbno;Q there was a maze of small unihterpretable

defects, one of which was probably the remains of defect no.l.
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No 3 A No2 —No1

‘ D No &4

FIGURE 7-8
GRID PATTERNS FROM
CYLINDER No 2
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FIGURE 7-8 CONT
GRID PATTERNS FROM CYLINDER No 2
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TABLE 7.3

ANGLE SUBTENDED BY DEFECT OR FACST AT CENTRE OF CYLINDWR

CYLINDER No,?2

Defects before collapse;-

Location A B | ¢ D

of Photo. :

Defect No.l | 17 2 | &1 -

Defect No.2 | 16 24% 39% 393
Defect Ko.3| 18 24% 42 37

Defect No.4 | -- - — 32%

Facets after collapse;-

Location BE P G’ H
of FPhoto. ' )
[Fixed Pree FixedFree [Fixedfree [FixedFree
End End End [End [End nd [End d
] |
Angle 13 | : 26 |25§ 27% ',
08 293 29% | | 33
| ) 19 | 32 38% | 35% |
| 35 35 42 | 33%
354 | 36 |38 |2 |
27 | 38%| 49 40
| 352 39 | 46 | 40 |
382 I 374 43 T 463
| 39 40% |52 |38 |
34 34% 44 39%
| 39 39 | 373 | 38% |
424 ' 35
| | IEVEN EVR I
L | 29 | I

N.B. All angles measured in degrees.
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At D there were, therefore two separate
collapsing secticns of the cylinder and this was reflected
in the photograph at E. Here, the two sections were joined
. together with facets to form a buckle pattern that was
approaching the regular form. Linking the two sections was
a small defect which appeared to form an additional tier om
the buckle pattern. Also, adjacent to the position of
defect no.2 there was an additional smaller dimple wedged
in between the two main rows of dimples. This was really
the remains of the unintelligible section of the photograph

at D and soon vanished.

A regular buckle pattern was not reached
until condition F was achieved. However, even at this
point the facets did not show the same regularity in
increasingvandAdeéreasing size around the photograph that
occurred with cylinder no.l. - At position G, the additional
collapse was due to extra facets fbrming in'fhe buckle
patterﬁ as well as the introduction of small facets wedged
into the end of the pattern adjacent to the ends of the
cylinder. The unloading behaviour was similar to that of

cylinder no.l.

A different type of behaviour was observed
with cylinder no.3 (figures 7.9 and.7.10 with table 7.4).
In this cylinder the collapse was controlled by a defect on
the seam of the cylinder but it did not form into the
regular Yoshimura pattern. Instead it buckled into the
shape Essiinéér and Geier called the "one tier" pattern

(see figure 2.10), Here it appeared that the seam was
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FIGURE 7-10
GRID PATTERNS FROM CYLINDER No 3
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FIGURE 7-10 CONT
GRID PATTERNS FROM CYLINDER No 3




TABLE 7.4
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ANGLE SUBTENDED BY DEFECT OR FACET AT CENTRE OF CYLINDER

CYLINDER No.3

Defect before collapse;-

Location

of Photo.

Grid Line | Tgtl. | Radl, | Tgtl. | Radl.

Direction '

Angle 16 - 22 -

Facets after collapse;-

Location

of Photo.

Grid Line | Tgtl. | Radl. | Tgtl. | Radl.

Direction '

Angle 31% 325 33% 34%
45 44% 383 40
48% 51 33 32
45 44%
35% 36

N.B. All angles measured in degrees.
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behaving as a column almost independently of the remainder ’

of the cylinder and once the seam had collapsed sufficiently
it then promoted the collapse of the adjacent portion of the‘f
cylinder. This defect growth can be clearly seen in the
photographs taken at A and B. Thé photographs taken at C
~and D show the regular "one tier" pattern at the centre

of the cylinder and symmetry about the defect at the seam.
This symmetry waé not present in cylinder nb.l. The réason
for its absence in that case was that the seam.effeqtively
stopped the'buckle progressing around the'cylinder. Thus

in cylinder no.l the buckle pattern started at the seam,
These few results show the importance of the seam in the
buckling characteristics. Although useful results have

been obtained at this point it is imperative that vfor'
future tests seamless cylinders are manufactured. Practical
cylindrical shells would no doubt have seams and also very |
likely have stiffeners. Although the ultimate aim must be
.to understand the behaviour with both constraints, it is
useless to contemplate such behaviour without first having

a knowledge of basic cylinder behaviour through seamless,

well made cylinders.

The behaviour of cylinder no.4 (figures 7.111
and 7.12 with table 7.5) was very similar ih nature to
cylinder no.l. There were again two sectioné of the loading
curve,prbbably corresponding to the oehaviour of the seam

defect and the controlling defect marked. However, there
| was no appreciable difference in the gize of the defect near

' the seam measured from the photographs taken at A and B but:
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\CONTROLLING DEFECT

FIGURE 7-12
GRID PATTERNS FROM CYLINDER No4
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FIGURE 7-12 CONT
GRID PATTERNS FROM CYLINDER No 4
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ANGLE SUBTEEDED BY DEFECT OR FACET AT CENTRE OF CYLINDER
CYLINDER No.4 ‘ |

Defects before collapse;-

| Location | A B
’of Photo. | ’ '
Grid Line | Tgtl. | Radl. | Tgtl. | Radl.
Direction
Angle at 18% - 193 -
Sean, ,
Angle at 13 - 14% ———
Defect. L

Pacets after collapse;-

Location G ’ D
of Photo,
Grid Line | Tangential Radial Tangential Radial
Direction ' A
Fixed]| Free | Fixed| Pree | Fixed| Free | Fixed| Free
End |End |End |{End |End |End |End | End
Angle l 28 | 23% | 'A25 | 13%
~ 314 | | 298| 2321 ~ | a7
30% | 30 | 27 22%
324 | 3u% | 28 | 25% |
| 34 332 | | 273 25
34 | 33%| 282 26x | "
| 34353 | | 29% | 25t
36 ‘ | 343 | 30% 26%
| 35¢ | 35% | | 272 | 273
35 , | 363 | 28% | 273
| 303 | 362 | . 29% , | 26%
33 | 34 | 27 | 23%
32 | 33% _ - 27% ,| 21%
29 | | 312 | 26% | |1 22
| 272 |28 | 20% |
24t | 126 ]2 | |

N.B. All angles measured in degrees.
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the other defect had changed appreciably. Just before

collapse this defect subtended an angle at the centre of
the cylinder of 14%o or E%TI of the circumference. Using
the information.of the design chart (figure 5.10) the
collapse load of 18,8N would indicate that the cylinder had
collapsed due to a Yoshimura pattern with 23 lobes. This

further reinforces the validity of the space frame approach

to the buckling problem,

At collapse this cylinder again seemed to
be controlled to some extent by the seam. The buckle
pattern at C stops at the seam., On unloading this particular
cylinder there were several small jumps to D which involved
mostly the small end facets snapping out of the cylinder.
After D there was a substantial snap through where all the
remaining facets suddenly disappeared and the cylinder
took up a condition on thé loading line at a substantially

greater load.



CHAPTER 8

| CONCLUSIONS
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CHAPTER 8

CONCLUSIONS

-Any new theory like the one presented in
this thesis requires a great deal of work being performed
on it before it can be accepted in its.entirety. The
magnitude of such work is beyond the scope of one Doctoral
thesis. The results presented here, however, show a
remarkable agreement with known behaviour. Perhaps the
most important way in which the verificationlcan be achieved
is through experimental observation. In this regafd the
technique described in chapter 6 and used in chapter 7
has meny advantages. Before such‘experiments can be
conducted it is imperative that the loading device have
parallelly moving plattens and that thg cylinders are

seamless. This author is aware that two techniques are
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available for making seamless cylinders but is unfamiliar
with the constructional details. Arbocz and Babecock (ref.2l)
used electroformed cylinders while Tennyson (ref.22) spun
cast epoxy. It is this author's intention in-the near
future to develop a facility to make seamless cylinders.
The combination of seamless cylinders and the modifications
for parallel platens represents quite a substantial project

in its own right.

Another sﬁbstantial projéct that should be
investigated is the establishment of the aspect ratio of
the buckle patterA. -Estimating the aspect ratio appears to
need a better understanding of the effective width of the
members, If seems unlikely that the effective width will-
remain constant for all buckle patterns on a particular
cylinder. Although no definite procedure can be suggested
for finding these values it seems likely that the approach
will be through determining the stress distribution in an

isosceles triangular plate loaded in tension along the two

equal length sides and with compression at right angles.

Yet another project that could be‘suggested
from this work is that a vonKarman and TsienAtype analysis
could be conducted with the revised equations developed in_
chapter 4. Such an analysis may overcome the zero load
problem encountered by Hoff,Madsen and Mayers. However,

this author thinks that, while such an analysis may overcome
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an existing problem, it seems doubtful that the outcome

would be of much practical importance.

The real value in establishing the aspect
ratio and effectiye Width more adequately is that the theory
could then be expanded to embrace axial compression loading
combined with some hoop compression (or tension) and/or
torsion. Hoop compression has the effect of lengthening
the facets and apparently it is this change in facet length '
that reduces the }oad carrying capacity. Similarly, internal
Pressure appears to increase the lbad carrying capacity
substantially by making the facets shorter. AAdding torsion
to the axial compression has the effect of distorting the
facets (figures 8.1 and 8.2). The base of the facet seems
to take on an inclination corresponding to the maximum
principal stress direction while the width and height
remain unaltered. The ratio A/B from figure 8.1 is 0,87
which is within the range of values obtained for the

similar cylinder in axial compression (R/T=445) in figure 5.9.
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FIGURE 8-1

EFFECT OF TORSION ON AXIAL
COMPRE SSION _FAILURE
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FIGURE 8-2
PAPER MODELS OF AXIAL COMPRESSION -

TORSION COLLAPSE
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APPENDIX A

RESULTS OF COMBINED LOAD BUCKLING TESTS.




TABLE Al 243.
NOMINAL STRE3SES AT COLLAPSE FOR CYLINDER NO,2

o/ gy, 7 Aq A, Ay A,
"Pa 1TPa MPa

~1.89 0 0 1.00 1.00 1.00 1.00
-0,05 0 1.34 |1.00 1.00 1.00 1.00
-1.75 0 0.16 0.94 0.97 0.94 0.97
~1.66 0 0.32 0.93 |1.00 0.93 }1.00
-1.59 0 0.47 0.96 |1.05 0.96 | 1.05
-1.19 0 0.63 0.84 0.95 0.84 | 0.95
-1.16 0 0.79 0.95 |1.07 0.95 |1.07
-0.89 0 0.95 0.96 |1.07 0.96 |1.07
0. 46 0 1.10 0.90 0.99 0.90 0.99
-0.18 0 1.26 0.95 |1.01 0.95 |1.01
~0.05 | -0.314| o© 1.00 1.00 1.00 1.00
-1.35 | -0.270| o 1.12 1.12 1.25 1.25
-1.35 -0.,262 | 0.16 |1.11 1.14 1.24 1.27
~1.35 | -0.240| 0.32 |1.20 1.16 1.23 1.29
-1.35 | -0.196 | 0.47 |1.07 1.16 1.18 1.27
-1.35 | -0.131 ) o0.63 |1.04 ° [1.15 1.13 1.23
-1.00 | -0.283| o 1.05 1.05  |1.15 1.15
-1.00 | -0.262 | 0.16 |1.00 1.03 1.11 1.14
-1.00 | -0.262 | o0.32 |1.04 1.10 1.15 1.21
-1.00 | -0.218| 0.47 0.99 |1.08 1,09 |1.18
-1.00 | -0.174| 0.63 0.98 |1.09. 1.08 1.18
~1.00 | -0.131| o0.79 }|1.01 1.13 1.09 |1.20

- -1.00 | -0.022| 0.95 |1.02 1.13 1.02 1.13
-0.65 | -0.283| © 0.96 0.96 | 1.04 1.04
~0.65 | -0.262 | 0.16 0.92 | 0.94 0.99 | 1.02
~0.65. | -0.262| 0.32 0.96 [1.02 1.03 1.09
~0.65 | -0.231| 0.47 0.93 {1.02 1.00 1.09
~0.65 | -0.205| 0.63 0.95 | 1.06 1.03 1.13
-0.65 | -0.174| 0.79 0.99 | 1.10 1.06 1.17
~0.65 | -0.087| 0.95 0.93 | 1.04 0.97 | 1.08
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NOMINAL STRESSES AT COLLAPSE FOR CYLINDER KO.2
ga Oh T Ay A Ay A
MPa MPa, MPa
-0.30 -0, 310 0 1.00 1,00 1.03 1.03
-0.30 | -0.305| 0.16 |1.00 1.03 1.02 1.05
-0.30 -0.283| 0.32 0.97 | 1.03 1.00 1.06
-0.30 | -0.279| o0.47 |[1.02 1.11 1.05 1.14
-0.30 | -0.231| 0.63 0.97 | 1.07 1,00 1.10
-0.30 | -0.201| 0.79 |1.00 1.11 1.02 1.13
-0.30 | -0.148| 0.95 0.99 | 1.09 1.00 1.11
-0,05 | -0.314| 0.16 |1.01 1.04 1.01 1.04
~0.05 | -0.310| 0.32 |1.04 1.10 1.04 1.10
-0.05 | -0.305| 0.47 |1.09 1.18 1.09 1.18
-0.05 | -0.275| 0.63 ]1.09 1.20 1.09 1.20
-0.05 | -0.2128| 0.79 |1.03 1.15 1.03 1.15
-0.05 | -0.162| 0.95 |1.00 1.11 1.00 1.11
-0.05 | -0.087| 1.10 0.93 |1.02 0.94 | 1.02
-1.46 | -0.227| o 1.06 1.06 1.19 1.19
-1.46 | -0.209| 0.16 |1.03 1.06 1.15 1.18
-1.46 | -0.161}| 0.32 0.98 | 1.04 1.08 1.14
-1.46 | -0.087| 0.47 0.94 | 1.03 0.99 | 1.08
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TAELE

NOMINAL STRESSES AT COLLAFSE FOR CYLINDER KO.3
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. Oa Th T Ay A, Ay A,
ITPa MPa IPa

=4.77 0 0 1.00 1.00 1.00 1.00
-0.21 0 2.38 |1.00 1.00 1.00  |1.00
~4.35 0 0.38 0.94 0.98| 0.94 0.98
-3.58 0 0.76 0.85 0.93 0.85 0.93
-3.16 0 1.14 0.88 0.99 0.68 0.99
-2.25 0 1.52 0.86 0.98 0.86 0.98
-1.47 0 1.90 0.92 |1.02 0.92 |1.02
-0.63 0 2.28 |1.01 1.07 1.01 1.07
~0.21 -1.132 0 1.00 1.00 1,00 1.00
-0.49 -1.115 0 0.99 0.99 | 1.01 1.01
-0.77 -1.097 0 0.98 0.98 | 1.01 1.01
-1.05 ~1.045 0 0.95 0.95 0.99 0.99
-1.33 -1.028 0 0.95 0.95 | 1.01 1.01
-1.61 -1.028 0 0.97 0.97 | 1.04 1.04
-1.89 -0.923 0 0.91 0.91 0.99 0.99
-2.18 -0.889 0 0.91 0.91 | 1.00 1.00
-2.46 -0.906 0 0.95 0.95 |1.06 1.06
-2.74 -0.871 0 0.96 0.96 | 1.07 1.07
-3.02 -0.767 0 0.93 0.93 | 1.04 1.04
-3.30 | -0.679] O 0.92 0.92 |1.03 1.03
-3.58 -0.627 0 0.93 0.93 | 1.04 1.04
-3.86 -0.610 0 0.97 0.97 | 1.08 1.08
-4.14 -0.523 0 0.98 0.98 | 1.08 1.08
-4.24 -0.331 0 0.97 0.97 | 1.00 1.00
-4.56 ~0.279 0 0.99 0.99 |1.04 1.04
-0.21 | -1.063| 0.38 0.96 | 1.00 0.97 | 1.01
-0.77 ~0.993 0.38 0.92 0.96 0.94 0.98
~1.33 -0.906 | 0.38 0.87 0.91 0.93 0.97
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NCIIIFAL STRESSES AT COLLAPSE FOR CYLINDER NO.3
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Ta

Th

7 Ay A, Ay A,
MPa MPa MPa ,
-1.89 -0.889 0.38 0.90 0.94 0.98 | 1.02
-2.46 -0.732 0.38 0.85 0.89 0.95 0.99
-3.02 -0.679 0.38 0.87 0.91 |1.00 1.04
-3,86 -0.279 0.38 0.87 0.91 ,0.92 0.96
-4.00 | -0.209| o0.38 0.88 0.92 0.92 0.96
-0.21 -0.993 0.76 0.98 | 1.06 0,98 | 1.06
-0.77 -0.976 0.76 0.97 | 1.06 1.00 1.08
-1.05 -0.784 0.76 0.82 0.91 0.87 0.95
-1.33 -0.714 0.76 0.79 0.87 0.84 0.92
-1.61 -0.697 0.76 0.80 0.88 0.87 0.95
-1.89 -0.645 0.76 0.79 0.87 0.87| 0.95
-2.18 -0.575 0.76 0.78 0.86 0.86 0.94
-2.46 | -0.540 | 0.76 0.80 0.88 0.88 0.96
-2.74 -0.436 0.76 0.79 0.87 0.86 0.94
-3.02 -0.383 0.76 0.82 0.90 0.88 0.96
-3.30 -0.209 0.76 0.81 0.90 0.85 0.93
-3.44 -0.070 0.76 0.82 0.90 0.83 0.91
-0.21 -0.749 1.14 0.88 0.99 0.88 0.99
-0.49 -0.679 1.14 0.83 0.94 0.84 0.95
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NOMINAL STRESSES AT COLLAPSE FOR CYLINDER NO.5

Ta Oh T Ay A, As A,
MPa MPa MPa
-4,20 0 0 1.00 1.00 1.00 1.00
~0.21 0 1.77 |1.00 1.00 1.00 1,00
-3.44 0 0.59 0.92 |1.01 0.92 |1.01
-3.23 0 0.74 0.93 | 1.04 0.93 |1.04
~2.60 0 0.89 0.86 0.98 0.86 0.98
-2.18 0 1.03 0.84 0.96 0.84 0.96
-1.75 0 1.18 0.84 0.96 0.84 0.96
-1.61 0 1.33 0.92 |1.03 0.92 |1.03
-1.05 0 1.48 0.91 |1.01 0.91 | 1.01
-0.49 0 1.63 0.92 0.96 0.92 | 0.9
-0.21 -1.22 0 1.00  |1.00 1.00 1.00
-0.49 | -1.19 o) 0.98 0.98 | 1.00 1.00
-1.05 -1.11 0 0.94 0.94 | 1.00 1.00
-1.61 -1.09 0 0.97 0.97 | 1.05 1.05
-2.18 -1.07 o) 1.02 1.02 1.13 1.13
-2.74 -1.01 0 1.05 1.05 1.18 1.18
-3.30 -0.85 0 1.05 1.05 1.18 1.18
-3.58 -0.72 0 1.04 1.04 1.15 1.15
~3.86 -0.65 0 1.06 1.06 1.17 1.17
-4.14 -0.58 0 1.09 1.09 1.20 1.20
-0.21 -1.05 0.59 0.97 {1.05 0.97 | 1.05
~0.49 -1.03 0.59 0.96 | 1.04 0.98 | 1.06
~-1.05 -0.92 0.59 0.90 0.99 0.95 | 1.03
-1.61 -0.87 0.59 0.91 | 1.00 0.99 { 1.07
-2.18 -0.71 0.59 0.88 0.97 0.98 | 1.06
~2.46 -0.63 0.59 0.89 0.97 0.98 | 1.06
“2.74 -0.56 0.59 0.90 0.99 0.99 | 1.07
~3.02 -0.47 0.59 0.92 |1.01 1,00 1.08
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TABLE A3 CONT.
FOMINAL STRESSES AT COLLATSE “OR CYLINDER XO.5

Ta Th 7 Ay A, Ay A
1'Pa ITPa 1Pa
~3.16 -0.44 - 0.59 0.94 | 1.03 1.01 1.09
-3.30 ~0.35 0.59 0.94 {1.03 1,00 1.08
-3.44 -0.17 0.59 0.94 |1.02 0.96 | 1.04
-0.21 ~0.84 0.89 0.93 |1.05 0.93]1.05
-0.49 -0.80 0.89 0.91 | 1.02 0.92 | 1.03
-0.77 ~0.75 0. 89 0.88 | 1.00 0.90 | 1.02
-1.05 -0.71 0. 89 0.87 0.99 0.91 | 1.03
-1.33 -0.70 0.89 0.89 | 1.01 0.94 | 1.06
-1.61 -0.65 0.89 0.90 | 1.01 0.95 | 1.07
-1.89 -0.61 0.89 0.91 | 1.03 0.97 {1.09
-2.18 -0.49 0.89 0.90 | 1.01 0.95 | 1.07
-2.32 -0.42 0.89 0.89 | 1.01 0.94 | 1.06
-2.46 ~0.35 0.89 0.89 | 1.01 0.93 |1.05
-2.60 -0.17 0.89 0.87 0.99 0.88 | 1.00
-0.21 -0.66 1.18 0.96 | 1.09 0.96 | 1.09
~0.49 -0.66 1.18 0.97 | 1.10 0.97 | 1.10
-0.717 -0.63 1.18 0.97 | 1.09 0.98 | 1.10
-1.05 -0.52 1.18 0.91 | 1.04 0.94 | 1.06
-1.33 -0.47 1.18 0.92 | 1.04 0.96 | 1.08
-1.47 -0.44 1.18 0.92]1.05 0.96 | 1.08
-1.61 ~0.30 1.18 0.88 ] 1.00 0.90 | 1.02
-1.75 -0.21 1.18 0.87 ] 1.00 1.01

0.89




TABLY A4

249,

KOMINAL STRESSES AT COLLAPSE FOR CYLINDER NO.6

Ve 2} Th ’T Al A2 A 3 A 4

ITPa MPa, MPa

-2.56 0 0 1.00 1.00 '1.00 1.00
-0.09 0 0.749 | 1.00 1.00 1,00 '1.00
-2.49 0 0.208 | 1.05 1.12 1.05 |1.12
—2.43 0 0.291 [ 1.10  |1.19 .10  |1.19
~2.09 0 0.416 | 1.12 1.21 1.12 1.21 .
-1.69 0 0.499 | 1.10 1.19 |1.10  }1.19
~1.09 0 0.624 | 1.12 1.17 1.12 1.17
~0.49 0 0.707 | 1.08 1.09 _ |1.08 1.09
~0.09 | -0.179 0 1.00 1.00 | 1.00 1.00
-0.36 | -0.179| o 1.01 1.01 1.03 1.03
-0.63 | -0.174] o 1.00 1.00 1.05 1.05
-0.89 | -0.170] O 1.01 1.01 1.08 1.08
-1.16 | -0.161 0 1.01 1.01 1.10 1.10
~-1.43 | -0.138] o 0. 95 0.95 | 1.06 1.06
-1.69 | -0.133| o 0.99 0.99 | 1.11 1.11
-1.96 -0.124 | O 1.03 11.03 1.16 1.16
-2.23 | -0.087 0 1.00 1.00 1.10 1.10
-2.36 | -0.023| o© 0.93 0.93 0.95 0.95
-0.09 | -0.156 | 0.416|1.18 1.28 1.18 1.28
-0.36 | -0.142 0.416 | 1.11 1.21 1,13 . }1.23

CYLINDER DAMAGED




TABLE A5 250,
FOITINAL STRESSES AT COLLAPSE FOR CYLITEﬁER 50.7

Ta Th 7 A Ay A3 Ay

1"Pa MPa MPa
-1.63 0 0 1.00 1.00 1.00 1.00
-0.09 0 0.687 | 1.00 1.00 1.00 1.00
-1.63 0 0.172 | 1.06 1.12 1.06 1.12
-1.49 0 0.240 | 1.03 1.11 1.03 1,11
-1.29 0 0.344 |[1.03 1.13 1.03 1.13
-1.16 0 0.412 | 1.05 11.15 1.05 1.15
-0.96 0 0.515 |1.12 1.20 1.12 1.20
-0.76 0 0.584 [1.15 1.21  |1.15 1.21
-0.09 -0.179 0 1.00 1.00 1.00 1.00
-0.36 ~0.174 0 1.00 1.00 1.04 1.04
-0.63 -0.165 0 1.00 1.00 1.08 1.08
-0.89 | -0.133 0 0.92 0.92 |1.03 1.03
-1.16 -0.115 0 0.96 0.96 |1.08 1.08
-1.43 -0.037 0 0.90 0.90 0.94 0.94
-1.2 -0.092 0 0.94 0.94 }1.05 1.05
-1.56 -0.,023 0 0.97 0.97 0.99 0.99
-0.09 -0.151 0.344 |1.08 1.18 1.09 1.19
-0.36 | -0.142 0.344 |1.06 1.16 1.10 1.20
-0.63 -0.128 0.344 |1.05 1.15 1.13 1.23
-0.89 | -0.092| 0.344 0.99 |1.08 1,08 1.18
-1.16 -0.041 0.344 0.98 |1.08 1.03 1.13
-0.09 -0.124 0.515 | 1.22 1.31 1.24 1.32
-0. 36 -0.101 0.515 | 1.14 1.22 1.19 1.27
-0.63 -0.073 0.515 | 1.09 1.17 1,16 1.24
-0.76 -0.050 0.515 | 1.07 1.16 1.13 1.21
-0.49 ~0.092 0.515 | 1.13 1.21 - 1.19 1.27




TABLE A5 CONT.

251,
NOIINAL STRESSES AT COLLAPSE FOR CYLINDER NO.7T
a;

Ta h T Ay A, Ay A,
1Peg, MPa MPa
-0.09 | -0.165| o0.172 0.98 | 1.04 0.99 ] 1.05
-0.63 -0.128 0.172 0.87 0.93 0.95 | 1.01
-0.89 -0.115 0.172 0.90 0.96 | 1.00 1.06
~1.16 -0.060 0.172 0.85 0.90 0.92 0.98
-1.43 -0.046 0.172 0.97[1.03  [1.03 1.09




TABLE A6 252. .
NOMINAL STRESSES AT COLLAPSE FOR CYLINDER KO.&
O dn vl A Ay Ay A,
L Pa ¥Pa MPa,
-1.07 0 0 1.00 1.00 1.00 1.00
-0.12 0 - 0.378 | 1.00 1.00 1,00 1.00
-0.96 0 0.090 0.95 | 1.00 0.95 | 1.00
~0.96 0 0.126 | 1.00 1.07 1.00 1.07
-0.86 0 0.180 | 1.01 1.10 - |1.01 1.10
-0.75 0 0.216 0.99 | 1.08 0.99 | 1.08
-0.61 0 0.270 | 1.02 1.11 1.02 1.11
~0.51 0 0.307 | 1.06 1.13 1.06 1.13
-0.12 -0.218 0 1.00 1.00 1.00 1.00
-0.26 -0.209 0 0.99 0.99 | 1.04 1.04
-0.40 -0.192 0 0.96 0.96 |1.04 1.04
-0.54 -0.183 0 0.98 0.98 | 1.08 1.08
-0.68 -0.140 o) 0.90 0.90 |1.01 1.01
-0.82 -0.131 0 0.97 0.97 |1.09 1.09
-0.89 -0.070 0 0.89 0.89 0.96 0.96
-0.12 -0.209 0.090 | 1.02 1.07 1.04 1.09
-0.26 -0.174 0.090 0.88 0.94 0.94 | 0.99
-0.40 -0.166 0,090 0.90 0.95 0.98 |1.03
~0.54 -0.157 0.090 0.93 0.98 {1.03 1.08
-0.68 ~0.122 0.090 0.90 0.95 | 1.00 1.05
-0.75 -0.105 0.090 0.90 0.95 | 1.00 1.05
-0.82 -0.070 0.090 0.88 0.93 0.95 | 1.00
-0.12 -0.166 0.180 0.97 | 1.06 0.99 | 1.08
-0.26 -0.148 0.180 0.92 | 1.01 0.97 [ 1.06
-0.40 -0.131 0.180 0.91 | 1.00 0.99 | 1.08
-0.54 -0.113] 0.180 0.93 | 1.02 1.01 1.10
-0.68 | -0.078 0.180 0.93 ] 1.02 1.01 1.10




TABLE A6 CONT. 253,
NOMIFAL STRESSES AT COLLAPSE FOR CYLINDER NO. 8
T 0h v Ay A, Ay A
¥Pa Pa MPa

~0.12 | -0.148"] o0.270 |1.14 1.22 1.17 1.25
-0.26 | -0.140] 0.270|1.14 1.22 - |1.19 |1.27
-0.40 | -0.105] o0.270 | 1.07 1.15 1.14 1.22
~0.54 | -0.078| o0.270]1.08 1.16 1.15 1.23
-0.12 | -0.183| o0.126 0.95 | 1.02 0.97 | 1.04
-0.26 | -0.174| 0.126 0.94 |1.01 0.99 | 1.06
-0.40 | -0.148| o0.126 0.88 0.95 0.95 | 1,02
-0.54 | -0.131| o0.126 0.89 0.96| 0.98|1.05
~0.68 | -0.105] 0.126 0.90 0.97 0.99 | 1.06
-0.75 | -0.078| o0.126 0.89 0.96 0.96 | 1.03
~0.12 | -0.157| o0.216|1.02 1.11 |1.04 1.13
~0.26 | -0.140| o0.216 0.98 | 1.07 1.03 1.12
~0.40 | -0.131] o0.216 |1.00 1.09 1.08 1.17
-0.54 | -0.087| o0.216 0.94 | 1.03 1.01 1.10
~0.61 | -0.078| 0.216 0.97 | 1.06 1.04 1.13




TABLE A7 254,
NOMIKAL STRESSES AT COLLAPSE FOR CYLINDER NO.9
Ta 9h T Ay A, Ay A,

MPa MPa MPa

-1.10 0 0 1.00  |1.00 1.00 1.00
-0.96 0 0.075 0.90 0.93 0.90 0.93
-0.96 0 0.105 0.92 0.97 0.92 0.97
-0.96 0 0.150 0.97 | 1.04 0.97 |1.04
-0.93 0 0.180 0.98 | 1.06 0.98 | 1.06
-0.79 0 0.224 0.93 | 1.02 0.93 [1.02
~0.75 0 0.254 0.95 | 1.04 0.95 | 1.04
-0.61 0 0.299 0.92 |1.02 0.92 [1.02
-0.12 0 0.464 |1.00 1.00 1.00 1.00
-0.40 0 0.374 0.94 | 1.01 0.94 [ 1.01
-0.44 0 0.329 0.85 0.93 0.85 0.93
-0.12 -0.201 0 1.00 1.00 1.00 - 1.00
-0.26 -0.192 0 0.98 0.98 | 1.03 1.03
-0.40 -0.183 0 0.98 0.98 | 1.06 1.06
~-0.54 -0.157 0 0.92 0.92 | 1.02 1.02
-0.68 ~-0.122 0 0.87 0.87 0.97 0.97
-0.82 -0.105 0 0.91 0.91 | 1.01 1.01
-0.89 -0.087 0 0.92 0.92 | 1.01 1.01
-0.96 -0.070 0 0.94 0.94 | 1.01 1.01
-0.12 -0.192 0.150 | 1.06 1.13 1.07 1.14
-0.26 -0.174 0.150 0.99 | 1.06 1.04 1.11
-0.40 ~0.166 0.150 | 1.00 1.07 1.07 1.14
~0.54 -0.148 0.150 0.98 |1.05 1.08 1.15
-0.68 -0.140 0.150 | 1.03 1.10 . 1.14 1.21
-0.82 -0.096 0.150 0.98 | 1.05 1.08 1.15
-0.89 -0.078 0.150 0.99 | 1.06 1.07 1.14




TABLE A7 COET, 255,
NOMINAL STRESSES AT COLLAPSE_FOR CYLIND®R NO.9
Ta Th 7 Ay A A A
MPa WPa MPa
-0.12 -0.166 0.224 11.04 1.13 1.06 1.15
-0.26 -0.157 0.224 | 1.03 1.12 1.07 1.16
-0.40 -0.131 0.224 0.96 | 1.05 1.03 1.12
-0.61 -0.096 0.224 0.94 11.03 1,03 1.12
-0.12 -0.148 0.299 | 1.12 1.21 1.14 1.23
-0.26 -0.131 0.299 | 1.06 1.15 1.11 1.20
-0.40 -0.113 0.299 ] 1.04 1.13 1.11 1.20




TABLE AS. 256.
I\'OI&'fII‘TAL STRESSES AT COILAPSE FOR CYLIEDER LO.11

Oa a-‘h 7T Al Ag A3 A4
MPa MPa MPa
-1.33 0 0 1.00 1.00" 1.00 1.00
-0.18 0 0.474 | 1.00 1.00 1.00 1.00
-1.23 0 0.068 0.94 0.97 0.94 0.97
-1.09 0 0.135 0.89 0.95 0.89 0.95
-0.95 0 0.203 0.87 0.96 0.87 0.96
-0.81 0 0.237 0.82 0.91 0.82 0.91
-0.70 0 0.305 0.88 0.97 0.88 0.97
-0.60 0 0.339 0.89 0.97 0.89 0.97
-0.49 0 0.406 | 1.00 1.0 | 1.00 1.05

CYLINDER DAMAGED




257,

1.08

TARLE A9
FOIINAL STRESSES AT COLLAPSE FOR CYLINDER NO.12

T2 On T A A, Aq A,
Pa MPa, P

- -1.09 0 0 1.00 1.00 1.00 1.00
-0.18 0 0.684 | 1.00 1,00 1.00 1.00
~1.,02 0 0.098 0.95 0.98 0.95 0.98
~0.95 0 0.195 0.94 | 1.00 0.94 | 1.00
-0.84 0 0.293 0.92 | 1.00 0.92 | 1.00
~0.81 0 0.391 | 1.02 1.10 1.02 1.10

~0.67 0 0.488 | 1.04 1.12 1.04 1.12
~0.32 0 0.586 0.91 0.96 0.91 0.96
-0.18 | -0.270| o 1.00 1.00 1.00 1.00 |
-0.32 | -0.270| o© 1.04 1.04 1.10 1.10
~0.46 | -0.244| o 1.00 1.00 1.09 1.09
~0.60 | -0.227| o© 1.00 1.00 1.12 1.12
~0.74 | -0.209| o 1.03 1.03 1.15 1.15
~0.88 | -0.183] o 1.05 1.05 1.18 1.18
-0.95 | -0.157| o 1.05 1.05 1.16 1.16
-1.02 | -0.096| o 1.00 1,00 1.08 1.08
~0.18 | -0.270 | 0.098 [1.03 1.06 1.06 1.09
-0.32 | -0.262 | 0.098|1.03 1.06 1.09 1.12
-0.46 | -0.244 | 0.098 |1.01 1.04 1.10 1.13
~0.60 | -0.227 | 0.098|1.02 |1.05 1,13 1.16
-0.74 -0.209 | 0.098 |1.05 1.08 1.17 1.20
~0.88 | -0.174 | 0.098]1.05 1.08 1.17 1.20
-0.95 | -0.044 | 0.098 0.90 0.93 0.93 0.96
-0.18 | -0.262 | 0.195]1.05 1.11 1,08 1.14
~0.32 | -0.235| 0.195 0.99 |1.05 |1.05 1.11
~0.46 | -0.209| 0.195 0.95 | 1.01 1.04 1.10
~0.60 | -0.209| 0.195]1.02 1.13 1.19




TABLE A9 COKT,

NOMIFAL STRESSES AT COLLAPSE FOR CYLINDER KO.12

258.

0. oh T Ay Ay Ay Ay
MPs, MPa MPa
-0.74 -0.174 0.195 | 1.00 1.06 1.12 1.18
-0.81 | -0.120] o0.195 0.97 | 1.03 1.08 1.14
~0.88 -0.035 0.195 0.89 0.94 0.91 0.97
-0.18 | -0.227 0.293 | 1.01 1.09 1.04 |1.12
-0.32 -0.218 0.293| 1.01 1.09 1.08 |1.16
-0.46 -0.192 0.293 0.98 | 1.06 1.07 1.15
-0.60 -0.174 0.293 | 1.00 1.08 . |1.10 1.18
-0.67 ~0.157 0.293 | 1.00 1.08 1.10 1.18
-0.74 -0.113 0.293 0.95 | 1.03 1.04 1.12
-0.18 -0.218 0.391 | 1.10 1.18 1.14 1:22
~0.32 ~0.201 0.391 | 1.07 1.16 1.14 1.22
~0.46 -0.174 0.391 | 1.04 1.13 1.14 1.22
-0.60 | -0.131} 0.391}1.01 1.09 1.10 11.18
~0.67 ~0.061 0.391 0.93 | 1.02 0.98 | 1.06
-0,18 -0.174 0.488}1.09 |1.17 1.12 1.20
-0.32 -0.157 0.488 ] 1.08 1.16 1.14 1.22
~0.46 -0.131 0.488 ] 1.07 1.15 1.14 1.22
-0.53 ~0.113 0.488]1.07 1.15 1.14 1.22
-0.60 -0.061 0.488 ] 1.02 1.07 1.15

1.10




NOMINAT, STRESSES AT COILAPSE FOR CYLINDER NO.13

TABLE AlO

259.

Ja - o’h T A 1 A2 A3 A4
MPa MPa, MPa,
-1.19 0 0 1.00 |1.00 1.00 1.00
~0.18 0 0.681 | 1.00 1.00 1.00 1.00
-1.12 0 0.076 0.95 0.97 0.95 0.97
-1.09 0 0.151 0.96 | 1.00 0.96 | 1.00
~1.05 0 0.227 0.98 | 1.04 0.98 | 1.04
~0.98 0 0.302 0.99 | 1.07 0.99 | 1.07
-0.88 0 0.378 | 1.00 1.09 1,00 1.09
~0.77 0 0.454 |1.02 1.11 1,02 1.11
~0.67 0 0.529 | 1.07 1.14 1,07 1.14
-0.42 0 0.605 | 1.02 1.06 1.02 1.06
-0.18 | -0.262 | o 1.00 1.00 1.00 1.00
-0.32 | -0.262 | o 1.04 1.04 1.09 1.09
~0.46 | —o.2aa | o 1.01 1.01 1.09 1.09
-0.60 | -0.227| o© 1.00  |21.00 1.10 1.10
-0.74 | -0.218| o 1.04 1.04 1.16 1.16
-0.88 | -0.183| o 1.02 1.02 1.14 1.14
-1.02 | -0.131| o 0.99 0.99 |1.10 1.10
-1,09 | -0.078] o 0.96 0.96 |1.03 1.03
-0.18 | -0.262 0.151 |1.05 1.10 1.08 1.13
-0.32 | -0.253 | o0.151 |1.04 1.09 1.10 1.15
-0.46 | -0.235 | o0.151 |1.01 1.06 1.10 1.15
-0.60 -0.218 0.151 {1.01 1.06 1.11 1.16
-0.74 | -0.183| 0.151 0.97 | 1.02 1.09 1.14
-0.88 | -0.157 | o0.151 0.99 | 1.04 1.10 1.15
-1.,02 | -0.113| o0.151 |1.00 1.05 1.09 1.14
-0.18 | -0.244 | 0.302 |1.11 1.19 1.14 1.22
~0.32 | -0.227| o0.302 [1.08 1.16 1.13 1.21
-0.46 | -0.218| 0.302 }1.09 1,17 1.17 1.25
-0.60 | -0.192| 0.302 |1.06 1.14 1.16 1.24




TABLE _A1Q0 CONT, 260,
NOMINAL STRESSES AT COLLAPSE FOR CYLINDER NO.13

O%a Oh 7 A A A A
MPa MPa, MPa,

-0.74 -0.174 0.302 | 1.08 1.16 1.19 1.27

-0.88 -0.131 0.302 | 1.06 1.14 1.16 1.24

-0.18 -0,218 0.454 | 1.22 1.31 1.24 1.33

-0.,32 -0,201 0.454 | 1.18 1.27 1.24 1.33

-0.46 -0.174 0.454 | 1.14 1.23 1.22 1.31

-0.67 0.454 [ 1.08 1.17 1.16 1.25




TABLE All 261,
NOKINAL STRESSES AT COLLAPSE FOR CYLINDER NO.14
Oa Oh T Ay A, Ay A,

"Pa IPa MPa

-3,17 0 0 1.00 1.00 1.00 1.00
-0.09 0 1.795 | 1.00 1.00 1.00 1.00
-2.96 0 0.271 0.96 0.99 0.96 0.99
-2.82 0 0.474 0.96 | 1.02 0.96 | 1.02
-2.61 0 0.610 0.94 | 1.02 0.94 {1.02
-2.47 0 0.813 0.98 | 1.08 0.96 |1.08
-2.26 0 0.948 0.98 |1.09 0.98 [ 1.09
-1.91 0 1.152 | 1.00 1.10 1.00 1.10
-1.28 0 1.287 0.90 0.99 0.90 0.99
-1.00 0 1.490 0.98 |1.05 0.98 11.05
-0.51 0 1.626 0.96 |1.00 0.96 } 1,00
-0.16 |- 0 1.761 0.98 0.99 0.98 0.99
-0.09 -0.602 0 1.00 1.00 1.00 1.00
~0,33 -0.580 0 0.97 0.97 0.99 0.99
-0.54 -0.567 0 0.96 0.96 0.99 0.99
-0.71 -0.558 0 0.95 0.95 | 1.00 1.00
-0.90 -0.541 0 0.94 0.94 }1.00 1.00
-1.09 -0.536 0 0.96 0.96 |1.03 1.03
-1.27 -0.510 0 0.94 0.94 |1.02 1.02
-1.46 -0.462 0 0.90 0.90 0.99 0.99
-1.63 -0.458 | . 0 0.92 0.92 [1.02 1.02
-1.82 -0.423 0 0.91 0.91 | 1.02 1.02
-2.00. -0,401 0 0.92 0.92 |1.03 1.03
-2.19 -0.401 0 0.96 0.96 |1.08 1.08
-2.37 -0.314 0 0.91 0.91 | 1.02 1.02
-2.56 -0.279 0 0.93 0.93 | 1.03 1.03
-2.73 -0.214 0 0.93 0.93 | 1.01 1.01
-2.92 -0.140 0 0.95 0.95 | 1.00 1.00
-3.10 -0.026 0 0.98 0.98 0.98 0.98




TABLE ATl CONT. 262,
KOMINAL STRESSES AT COLLAPSE FOR CYLINDER rXO.14
Oz Oh T Ay A, Ay A
MPa, MPa MPa
-0.09 | -0.593| 0.474|1.05 1.12 | 1.05 1.12
~0.33 | -0.576 | 0.474|1.02 1.09 1.04 1.11
-0.51 | -0.520| 0.474 0.94 | 1.01 0.97 | 1.04
-0.68 -0.506 -} 0.474 0.93]12.00 | 0.97]1.04
-0.86 | -0.480| 0.474 0.90-| 0.97 0.96 {1.03
-1.04 | -0.467| 0.474 0.90 0.97 0.97 | 1.04
-1.21 | -0.436| 0.474 0.88 0.95 0.96 | 1.03
~1.39 | -0.410| 0.474 0.87 0.94 0.96 |1.03
-1.56 | -0.406 | 0.474 0.90 0.97 0.99 |1.06
~1.74 | -0.375| 0.474 0.89 0.96 0.99 | 1.06
-1.91 | -0.336| 0.474 0.88 0.95 0.98 | 1.05
-2.09 | -0.288| 0.474 0.88 0.95 0.97 | 1.04
-2.26 | -0.253| o0.474 0.89 0.96 0.98 | 1.05
~2.44 | -0.227| o0.474 0.92 0.99 | 1.00 1.07
-2.61 | -0.122 | 0.474 0.91| 0.98 0.95 |1.02
-0.09 | -0.523 | o.813]1.07 |1.16 1.08 1.17
-0.33 | -0.506 | 0.813|1.05 1.14 1.07 1.16
-0,.51 -0.484 0.813]1.03 1l.12 1.06 1.15
-0.68 | -0.475 | 0.813 |1.02 1.11 1.07 1.16
~0.86 | -0.432 | o0.813 0.97 | 1.06 1.03 1.12
-1.04 | -0.392 | 0.813 0.94 | 1.03 1.00 1.09
-1.21 | -0.336 | 0.813 0.88 0.97 0.96 |1.05
~1.39 | -0.301 | o0.813 0.87 0.96 0.95 | 1.04
~1.56 | -0.266 | 0.813 0.87 0.96 0.95 | 1.04
-1.74 | -0.222 | 0.813 0.87 0.96 0.94 [ 1.03
-1.91 | -0.183 | 0.813 0.88 0.97 0.95 | 1.04
-2.09 | -0.144 | o0.813 0.91 | 1.00 0.96 | 1.05
-2.26 | -0.092 | o0.813 0.94 | 1.03 0.97 | 1.06
-2.33 | -0.074| o0.813 1.04 0.97 | 1.06

0.95




TABLS All CONT, 263,
NOMINAIL STRESSES AT COLLAPSE FOR CYLINDER NO.14

Oa ay 7T Ay A A A
MPa 1TPa, IPa

-0.09 -0.292 1.490 | 1.16 1.22 1.16 1.22

-0.33 | -0.262 1.490 { 1,12 1,18 1.14 1.20

-0.51 -0,222 1.490 | 1.08 1.14 1.11 1.17

-0.75 ~-0.174 1.490 | 1.05 1.11 1.09 1.15

1.04

1.00




TABLE Al2

NOMINAL STRESSES AT COLLAPSE FOR CYLINDER XO.15

264.

0% Oh T Ay Ay Ay A,

Pa -MPa MPa
-2.59 0 0 1.00 1.00 1.00 1.00
-0.13 0 0.957 | 1.00 1.00 1.00 1.00
-2.59 0 0.080 | 1.01 1.02 1.01 1.02
-2.46 0 0.160 0.98|1.01 0.98]1.01
-2.19 0 0.239 0.90 0.96 0.90 0.96
-2.06 0 0.319 0.90 0.98 0.90 0.98
-1.86 0 0.399 0.88 0.97 0.88 0.97
-1.79 0 0.479 0.93 |1.03 0.93|1.03
-1.53 0 0.558 0.91 |1.01 0.91]1.01
-1.39 0 0.638 0.96 | 1.05 0.96 | 1.05
-1.13 0 0.718 0.97 | 1.05 0.97 | 1.05
-1.06 0 0.798 | 1.07 1.13 1.07 1.13
-0.53 0 0.877 | 1.00 1.04 1.00 |1.04
-0.13 ~0.147 0 1,00 1.00 | 1.00 1.00
-0.39 -0,147 0 1.01 1.01 1.04 1.04
-0.66 -0.142 0 1.00 1.00 1.05 1.05
-0.93 | -0.138 0 1.01 1.01 1.08 1.08
-1.19 -0.133 0 1.01 1.01 1,11 1.11
-1.46 -0.119 0 0.99 0.99 | 1.10 1.10
-1.73 | -0.115 0 1.03 1.03 1.15 - |1.15
-1.99 -0.110 0 1.07 1.07 1.20 1.20
-2.26 -0.092 0 1.07 1.07 1.20 1.20
-2.39 -0.073 0 1.05 1.05 1.15 1.15
-2.46 -0.046 0 1.00 - 1.00 1.07 1.07
~0.13 -0.142 0.160 0.99 | 1.03 1.00 1.04
-0.39 -0.133 0.160 0.94 0.98 0.97 {1.01
-0.66 -0.133 0.160 0.96 | 1.00 1.02 1.06
-0.93 -0.128 0.160 0.97 | 1.01 1.04 1.08
-1.19 -0.124 0.160 0.99]1.03 1.08 1.12
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NOMINAL STRESSES AT COLLAPSE FOR CYLINDER NO.15

265.

T Th T A A, Ay A,
MPa, MPa MPa
-1.46 | -0.119 0.160 | 1.01 1.05 1.12 1.16
-1.73 -0.105 0.160 | 1.00 1.04 1,12 | 1.16
-1.99 -0.101 0.160 | 1.06 1.10 1.18 1.22
-2.26 -0.078 0.160 | 1.05 1.09 1.16 1.20
-2.39 -0.055 0.160 | 1.02 1.06 1.10 1.14
-0.13 | -0.128 0.319 0.98 | 1.06 0.98 | 1.06
-0.39 | -0.124| 0.319 0.96 | 1.04 0.99 | 1.07 .
~0.66 -0.110 0.319 0.89 0.97 0.95 | 1.03
-0.93 -0.105 0.319 0.90 0.98 0.98 | 1.06
-1.19 | -0.096 0.319 0.90 0.98 0.99 | 1.07
~1.46 -0.083 0.319 0.90 0.98 | 1.00 1.08
-1.73 -0.073 0.319 0.94 |1.02 1,03 1.11
-1.86 -0.060 0.319 0.93 |1.01 1,01 1.09
-1.93 | -0.037| 0.319 0.89 0.97| 0.94|1.02
-1.99 -0.009 0.319 0.87]  0.95 0.88 0.96
-0.13 -0.119 0.479 | 1.05 1.15 1.05 1.15
-0.39 -0.115 0.479 | 1.03 1.13 1,06 1.16
-0.66 -0.105 0.479 0,99 |1.09 1.05 1.15
-0.93 -0.096 0.479 0.98 |1.08 1.06 1.16
-1.19 -0.092 0.479 | 1.01 1.11 1.10 1.20
- =1.46 | -0.,078 0.479 | 1.01 1.11 1.11 1.21
-1.59 -0.064 0.479 0.99 | 1.09 1.08 1.18
-1.66 -0.050 0.479 0.96 |1.06 1.03 1.13
-1.73 -0.041 0.479 0.96 |1.06 1.02 1.12
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APPENDIX B

RESULTS OF FINITE DIFFERENCE SOLUTION OF THE PARTIAL

DIFFERENTIAL EQUATIONS.
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CONTOURS OF CONSTANT TANGENTIAL STRESS
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CONTOURS OF CONSTANT PRINCIPAL STRESS

SOLUTION OF DONNELL'S EQUATIONS
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COMPARISON OF CALCULATED TANGENTIAL

DEFLECTIONS

Note : The third solution at the end of the defect

coincides with the Donnell Solution
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COMPARISON OF CALCULATED TANGENTIAL
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APPENDIX C

PROGRAM LISTING FOR BUCKLING ANALYSIS OF CYLINDER AS A
SPACT FRAME

AND

TYPICAL OUTPUT




ni.10
01,20
N1.25
01,27
01,28
01,30

1D 1D
jub ek
fs]
D

0N2.10
02,20
02,30
02,40
02,50
02,40
N2.70
N2 .80
02,90
Nna,20
04,30
na,an
D4 .50
04,60
N4,70
na.74
04,80

o D10 10 1010

N AN AN IND DD~

AN NN 0D

1+ *CYLINDER RIUCKL ING-GPACE FRAME ANALYQTG® . 1
HALFE DEUELORET LEMGTH

"WIDTH OF FACET=",11."M.

"EFFECTIUE
'N“MWPR OF FACETG=" M. "
=E¥1079
K=FGOT (L% 241 1% 1/74)

FH=4

WINDTH OF FI ANGE="®

20125202 /N

wlbe M,

THICKNEQG=®

OF FACET=":12,

PTo "M, 95T

YOUNGZQ MDD S=Y o B e "GRAST 1)

He=l 2¥FQOT (1L 1%L 1% (1 -FOOQ(RH/2YY 701 FCOQCRM /2NN /L D71 D740

Qu (] D-HI¥INN/L D
TETRGT RLUCKI TN MODE® .||
Y Q. 0A"AY TN

CT=FQIN(PH/2YFEOT (14 1%L 1 /1 2/ 2/4) 72 /F00NG (M40

LENGTH NF

HALF FACET=®,H. "M,

wCF o b

CONUEROIMOE

A=FATN(FEQT (1 ~-CT¥CT)Y /0T

S=4¥120/X. 14150027

Y 7.04:"ANGLE RETHMEEN FACETG=® 2%C, "NEEY |
S=1-l 1IN 1% (1-FCOQIEH/2YY Z(14ENOGIBM/DYY 2471 D /1D
Q= (14 1%L 17471271 2V /8

AC=FQATIQ)Y /2 /N

Y 7.04:"FORCE TN DNTAGONAL MEMRER/AYTAL L OATI=® oAl |
CF=—2%AC/FQOT(L2%L 2711 7L 140, 25

% 7.04:"FORCE IN TANGENTTIAL MEMRBER/AYTIAL | 0AN=®
RE=FH/2:C CALCULATION OF RETA RY NEWTON RAFHGON
AR=2¥FQIN(RE /2 Y F QTN BH-RE Y
GI1=FCOQ(RE /2 Y4FCNG ( PH-RE )
(FARGI(GBRY-D . ONOONNIYIN . AT 08 AN A AN CHERK AR
BE=RE-0,7¥GR/G1:C CONUERGENCE FACTOR

4.0

|+ "SECOND BUCKLING MODE® . | |

Y 7.08:"BETA=" BEX100/X, 1415027, "NEG, * . )

LI

QHORTENTIMNG=® p QW B Y o |

L

‘LIt



A0

N NIIWN

D DD
) 3 385
B
1D D D
tro JE

-

<

-

'~

o

13121210 1D
~J

B i B 1
S555 5
418918 O

~N
5

“ e e o>

-

e e e v w oo wm

QOGO MdPE DD =D

.

0
MN™ARDSADNDNIIDMAD DA DI

0

-8

~

13410 =4 4 4 NININ  S4I=: DN NN N ININ N -

foh jub b fab jek jod fek fek job jub job fak ek fob jeb b job jeb jub jab
DO DD DD D DD DD D DD D DD DD

‘8

“

Y A .04, "RATNTLC NF CORNERG NF FARETQ=" . M, 9,1
HzEQAT L 2% 240 1% 1 /4-A¥R¥R*FQTNRE 72y 2

Q= (L 2-HY¥10N /LD

Y OR.04"AXTAL LENGTH OF HALF FACET=®2%M. "M, GHORTENMTNG=" G 27|
L=FQIN(RE/2Y"A-FRIN(PH~RE /Y72 4

-

Af= W*FGTN(ﬁrlﬁ\”ﬁwﬁknT(lﬁleLO*t1w|1/4)/N/H/L
AC=2%FQIN(RE/2)T2¥F QTN ( 2¥EH-RE Y /FSTN( 2UFH-2¥RE ) -FQITMPH-EE/2) 702
AC=ACYRK/N/HZL 700 SEFQTINCRE Y ZFQTNO2¥FH-D¥RED )

Y 7. 04 "FORCE TN OOMBRECGTON MEMRERG/AYIAL L0AN=" A0 |

NA
x DA "FORCE TN TENQTION MEMRER/AYTIAL L 0OAT=Y oSG 111

d -

WGLES RETUHEEN FACETG TN QECOND RUCKITNG MODE
=1 DR D/ AW A Z7QLA%] W] DIRBKRKFGINCRE /2Y72 /11 /L 1 4R¥RYFQTN(RE /)72

-
QZLDURYECNQ I RE 7DV ¥ Dwk /1 1)
7.

o NN D

FATN(FQNT (1 -Q¥%QY /79)
NAL*ANGLE RETHEEN FACETG=" B¥XA0/X, 1415027, "NER", |

-n '
i

xj '\_

"COLLARSE 0 TAGONAL MEMBER ————
RzFQAT (L 1%L 1 /2 /(FQIN(PH-RE /2" 2-FQINIRE /2)Y721)
1=5.050 CA

ALCHLATTION NE COLLAPGE LOATT RY NELTON RAFHGON
*5/q1u”7/T/rc1M(nuln\"n/(1L(l1/ﬂ/iﬂw"ﬂ\\

i~ 1=

n
7 %

(1 AW ARE RN TREQTN(EH /A 2% (K=2%FQTNC XK /2 / 1/FCOGQ( IWK /2 Y)
FQQT( (1 2%l ")-&"’ '7'='*l 1wt 1 YT YWNER L R
*'1*L1*E$H*T*FSIN(PH/4)*(h/?/FCOS(J*N/Q)"Q—FSIN(J*K!Q)/J/FPQ,"*k/”“/”
RAD¥EQOT ( (1 2% 247, 25wl 1% 1))
L = I A T ':-*I:'F' /m.-‘r‘ PnNUFﬁf‘ENCE I"'Af"TQF'
(FARG(REY =0, 00000000110, 40,10, 20,10, 20
Y 7. 0A4x"CRITICAL LOAT =% .F1 /480" N, |
AF=K¥ (1~F1/2/E/4/T)
AR=L 1% (14BN 1 /K /E//T)Y
NE=FGAT(AF¥AF~ARYAR/D2/(1AECNS(RH /DY)
"AYTAlL MEFLECTION OF GRACE FRAME® . |
COMPLETE YNGHTMURA FATTERN—~DEFI /N=®% O, 07 HwTIE s "M, —ome— "
A 081 2-NEYKION/L 2.0 Y OF ORIGINAL LENGTH® o)
Azl 1% (14PI¥L I /K /E /W /T /7280 10:95

ALTUAL RUCKLE PATTERN——— e DEFL /N=Y ¥ @, 073 H-NE s "M, e ®
10.95:T 150 4,74 '

i
jm
-
-
T
jot

.+ 2

i-b ﬂl'h % I
l(-

it

7
R e l;"! in i
T3 = 1) = 1)

T3 13
bl
il

s
H

*gTt



YLINDER RUICKLING-SRACE FRAME ONALYGTS

12

WIDTH OF FACET=, 0419070 M HALF NEUELOPED LEJGDE S0 EACET= AQOF2LE M,
EFFECTIVE MIDTH OF FLANGE=. 00Z00 M. X
NUMEER OF FACETS=1%  YOUNG'S MOTLLLG=S & cpa

aYIal L
ANGLE R
FORCE T
FORCE T

GTH OF HALF Falkl= (NRO2TOM, QHORTENTMG:= 0. 2207

GONAL MEMRBER ———-— CETITIOA  LOAD = 27 197 M

T.
AYIAI NEFLECTION OF CRACE FRAME

HIMLIRA FATTERN-~DEFL /N= 0.
LE PATTERN====m== DEFL/N= 0.0

1D .13
i

Z =
ks
Z'
U
ﬂ!
2
R1
n
D>
i)
in
-
if)
i
>
s

0~
TWEE N F-"AI"F-'TQ-— 1'3"7 Q""’(\Tll:"f‘

>

Z

2.

n

o 1=
mim e

FORCE TN bnﬁpnreqvnn Mrmncn Q/aYTAL L0OADm 00462014
FORCE IN TENSION MEMRER /AYTAL L0AD=~0, 040444
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APPENDIX - D

PROGRAM LISTING AND TYPICAL OUTPUT OF PROGRAMMES USED IN

THE FINITE DIFFERENCE SOLUTION OF THE DEFLECTIONS IN A

CYLINDRICAL SHELL WITH A GEOMETRICAL DEFECT



Q001

DOOR
QOO3
0004
QOOE
O00&
0007
Q008
3009
0010
Q011
Q012
Q013
Q014
Q0L
Q0Llé

adL7 -

a018
Q019

0020

L0021
0022
Q023
QOGR4

14

VEFORMATIONS TN & CYLINDRICAL SHELL - WITH INITIAL TMPERFEDTTONS
FART ONE=——0FEN FILES AND Cal CULaTE TNlTlﬁL GUESSES

DIMENSTON (289263 e VL2602 sl (° 2hevRAI (R4,

READ CONSTANTS

WRITE(Zy1)

FORMAT (25HGCYL INTER hPHIU%\NITkl‘J

REA( S 23R

e FORMATFE . 3)

WRITE(755)

FORMAT CL7H$FOTISEONS RATIO=)
READ(E 2)ANL

WRITE(794)

FORMAT (2IHSFACET WINTH(METRES ) =

FORMAT (F8.75)
WRITEC(7 28

I(\Mﬁ?(“/”ﬂbhflt HALF LENSTHCHE TRES

REAT S PO

unurr</o|;> |
FORMAT(22HSWALL THICKNESS (Maide yum)
READ(S 20T

T=T/1000,

WRITE(7:13) ) - 4
FORMAT (27H$AXTAL STRAIN(MICROSTRATN) =)
REAL 5y 14)STR | -
FORMATC(F8.2)

STR=GTR/ 10 . ke

ASIA HO SHUIIA HEALO UV

T

G50 HILIVEDO

0D TVIIINI dIVINOTVD Og

s
[us

SNOILOETILEA OF SHSS

‘T3t



0031
0032
0033

Q034
Q035
0034
Q037
0038
Q03
0O40
0041
G042

0043
0044
0045
0046
Q047
048
Q049

CALL ASSTEGN (Ly "DXOIDATAL )

DEFINE FILE 1 (1s1ésUe1Z)

CALCULATE DERIVED CONSTANTS AND STORE ON DISK
FHEATAN (A2 o ZBART CRKR~AKAS R, ))

HE [] 3 I|. 324
gy 200 v 2é

Uy ) s STRK =33 KX
VT v dd=0,0
WOy ) m—ANUKSTRER
IF  (J=2)3005 400,500
300 Kt
30 TO 600
400 K=4
GO TO 600
500 K. o
SO0 BCLy ) =R- CBART CRKR=AKA/ 4 ¢ 34 (I3 ) K (R-SART CRKF-AKA /4,3 /11 ) /608 ¢ ¢
LT3 KDE)
IF (B(Ts.J)) 70052005200
700 E(IsJ)=0,0
200 CONTINUE
CALL ASSIGN (2y/IX0:DATAZ’)
DEFINE FILE 2 (1554085U512) o
WRITE (2710 CCCUCT s sV CTs ) s WCT o) s BCT5 ) ) s T=1526) 5 Sl 9 26)
END) -

*ect



CYLINDER RAOGTUS (METRES )=, 1
PUI&SON’& RAT T 35

FaCET WINTHMETRES Y=, 04

FACET HALF LENGTH(METRES )=, 028
WALL THICKNESS (M Me)=,19

AXIAL BTRATNOMICROSTRATN) =50,

qH0ud DAINEJIO O TAILNO TVDIdAL

e

L %3

W

L

*tct



0001
Q002
0003

Q004
0005
DQ0&

Q007
0ooeg

QOO%
Q010

0011
0012
0013
Q014
0015
0016
0017
0018
Q01L?

0020

DEFORMATION OF A& OYLINDRICAL SHELL WITH AN INITIAL IMPERFECTION
FART TWOQ==--SUCCESSTVE AFFROXTIMATION FROCEDURE ’ ‘
SOLUTION OF DONNELL S EQUATIONS
DIMENSTON UC246+286) v V(263 28) vy WIREv26) s BUR26928)
CALL ASSTEN (L "DXOINATAL )
DEFINE FILE 1 (LelébethyIZ)
REAL CONSTANTS AND OUTFUT VALUES
REAX CL71YRyANUy Ay Ty STR e [IXy I
WRITE(Zy L)Ry TXLOOO,
1OFORMATCL7H CYLINDER RADIUS=yF& 39 25H METREG-—-WALL THICKNESS=yF b3
LeGH MoM)
WIRTTE C? 9 2YANU STRAKLO . H0KS
2 FORMAT CL7H FOTISSON'S RATIO=sF&, 3y 1AH-~~AXTAL STRAIN=yF8.2y12H MICR
108TRATIN)
WRITE(Z 30000/
3 FORMAT(20H IMPERFECTION WIDTH=eF&,522H METRES--~HALF LENGTH=,F8.35
1y 23H METRES=---ASFECT RATIO=sF3.3) :
IT1=0
LTTNG=0
WRITE(796é)
& FORMAT(39HSU Ve AND W RELAXATION CONSTANTS AREI- )
READCE 23010203
7 FORMATC(IF4.2)
WRITE(?y8)
8 FORMAT (ZOHSMAXIMUM NUMEBER OF ITERATIONS=)
REAL(Sy 9 IMAX o
9 FORMATC(LS)

SNOILVADE S, TITANNOT DNISA

Ly IVd20ud

L

(]
&

NOILVWIXOUdAV HAISSHDONS dind HI dHESI

JH0aAD08d

*yat



D21
Q022
Q023

0024
000
Q024
0027

Q028

Qoae
Q030
Q00X
Q032
Q033
0034
Q035
Q036
Q037
Q038
0039
Q040
Q041
Q042
0043

C

1600

CALL ASBIGN (2 0XO0t0AaTHZ )

DEFINE FILE 2 (1s5408.:Uy12)

READ (21 COUCT e D s W CT o ) s W Tu ) v BT o d)) o g luﬁé)ylmlyﬂé)
START ITERATION FOR WHOLE SHELL
UMAX=0,0

UMAX=0.0

WMAX=0.0

00 100 J=3,24

START ITERATION FOR ROW

e 300 1 24

DWXe QWO e b LYWy =100 72, /70X

LU CUCT y L 3= e =000 720 /1K

OUXa= (T I =0T -1y 0 /3, A X
DWF=CWOTH Ly JY W1 s YD) /20 /T

LLiF= CUCTH L s D =UCT-1 s 03 ) /72, /7000

OUF= U+ e DYV T-1s ) ) /2, /7008
DR2WX2= (W T e JH1)~2 *w(iyJ)+w(IyJ~1))/HXfHX
HJBX'J(B(Ty|§l)-g.*B(Tv1)fB(T9l“l))fﬁX/ﬂX

DRWF2:= WLy D =20 kWCT o YW T 1 6.0 ) AT /TP
DR2BF2=C(ROT+Ly D=2 XB T HDHRCI-15.0) 70F /705

D2WXF s (W(l§l9J*l)"N(l{Ivl~l) WL JHLYHW T =L e J~1) ) /4. 70X/ 10
D2UXF=CUCTHL s JHLY=UCTH Ly L= 1) U T~ Ly JEIHUCT~1 0 =10 /4, /10X /T
U2UXF= (VT s JbL ) - U(T+1y1~[) SVCT=1 s JJEL AV T =1 =13 ) /4, /TIX/TIF
UR2BXF= (BOCTHL s JH D) =B OIS )BT~ o JALYFBCT =Ly J=1)) /4, /TiX/1F
UNE W= (- DWXKI2WX 2~ (Lo +ANU Y KDR2UXFE /2, /R (Lo +ANUDY XDWFRDR2WXE /2 . /R /F+ANU
LRDWX /R~ CL o ~ANUY RDWXKD2WF2/2 0 ZR/ZR=CUCT s JHLIFUCT o =00 ) /DX /10X~ (L o ~ANU

AINCUCTHL s JI LT le))’nP/ﬁP FE SRR -2 /NX/0X =Ly =ANUDY /1P /D /R

“Gz€



0044

2045
Q044
0047

0048

Q049

DOH0
Q051
005&
Q053
Q054
QOGS
Q056
QQH7
Q58
QUGY
GO60

0061

0062
0043
0044

400G

300
&00

200
8:3Q

200

MNEW:= (- O o FANUDRTZUKP 2 0 AR CL o+ ANUD ROWXRTRWXE /2 L AR T AR CL o AL
LOPRDWF RO 2WE /2 AR DWF AN 2WE SRR AR (VT Ly YAV Ty Y Y AT AT AR AR (L
A=ANUY R ULy JH LAV Ly =00 ) 720 70X /00X / (G200 TR/ XF R/ R CL = ANUD /DX /1K)
ANF=12 K OV /RFDWFS KRR /2 0 ZRZR-W T o J) ZRAANUK (DUXAOWX K2 /7200 /T/T
ANX= 12 X COUXHTWXRK D2 o +ANUK (IVP /R DWFRRD /20 /RZR~WCT s LY /ZRII/T/T
ANXF =6 o X CL o ~ANUD X COURF /RHIVXH WK DWER /R /T /T

WNEW:= CANF /ZREANXKDZ2WX2FANXKD2BX 242 s KANXFRIZWXF /R4 2 o KANXFAD2EXF /R4

TANFRIZWF2/R/RPANFRIZEF2/RAR-CWT s A2 =4 VKW y 1) =4 kW T v J- 1)+ WLy

RS2 /NXKKA -2 KW CLHLy JHLD) =2 R W Ty JHID AW T~ JH L) =2 0 kWL 9 ) -2 0 %W
FT=Lo DDAWCTHLy J-1 ) =2 0 XkW (T o S 1) WL =1y J= L)) A IX/ DX/ TP/ VP /R/R-CW TRy !
A=A XW T Ly D)4 KW T Ly DY FW T2 Y 3 ADFRORA /R4 7 (A /TINOR448 . /IIX/T
SXANPFANP/ARARSS /TS ARk 45 -

TECABE CUCT w00 - UINER Y ~LIMAXOD E00 500 v 400

CHECK FOR MAXTMUM CHANGES

UM X RE U T » L UNEW)

Rl -2

Lo )2

IFCARS VT y J) ~UNEW) ~UMAX) 700y 7005 600

UMAX=ARS (VT J) ~UNEW)
K2=T-2
NS e
TFCARBECWOT v J3-WNEW ~WMAXI P00 9005800
WMAX=ARE (WL e I ~WINEW)

UCTy D) =UCT s DHCLTRCUNEW~UCT o))
MOQIFY DEFLECTION VALUES

V(Ts =0Ty DIHC2RUNEW-VT v J))
WCLe J)=W Ty D HCIRCUNEW-WT s )
IF(J-3)300510005300 :
UCT e ) =00

.*92t



GOaE

0067
D06
D06y
0070
D071
007

OO
D074
D07
0076
Stov
GO7E
007%
OOEO
0081

- 0082

0083

0084
Q08E

OOB&
0087
0088
0089
0090

G

SO0 CONTINUE
CORRECT BOUNDARY VALUES ON AXIAL BOUNDASRIES
U2 D=4y D) ‘
V(2y J)=-Ua, )
WCLe do=W (G )
W2y =W 4y )
UiZv J3=0,0
CONTINUE
CORRECT BOUNDARY VALUES ON CIRCUMFERENTTAL ROUNGARY
OO 1300 T=1s248 .
UCT o 23l s4)
VT e 23=UT 4
WL 20T vd)
WO e L =W d
11a6 ldNT!NlE

1LOG

ey
vard

IF ([Tl”lO)l/OQvJOOrI/OO
200 NhFTF(/yJ)lINSyUMhX9hlelvUMthhhyLHyUMAth3yl3
G FORMAT(3H INsI4sL1H ITNS,UMAX=3sEL10.3s3H ATsI3sIHy s T2y AHYyUMAX =10,

l“v{” (\valeva[i‘v(‘)HleJMﬁX yE10.3v3H ATy I35 iHs v I2)
TTde
l:Jthr 271V CCCUCT v ) s '\Isu.l)91«'(]:9‘.])z:If\'('st...i)fi‘s'}fiiﬂ.'l.vl-'.?/:.v)w..l“ﬂfl.v.'-ﬁf-f:.)
CHECR FOR CONVERGENGE
1700 ITFCUMAX-0,0000000000001 3120051400+ 1400
1200 TF(UMAX~0.,00000000000G1) 1300514005 1400
1300 IF (WMAX-~ O.OOOOOOOOOOOO[)Lﬁ009l400yl400
1400 TF (TTNG- MﬁX) 146005 1500 1500
LSOO END

°12€



0001
0002
0003

Q004

Q0035
Q006

0007
3008

300¢%
0010

0011
0012
Q013
Q014
Q015
0014
Q017
0018
Q019
0020
0021
0022
0023

0024
QO2G
0026

fen]
L2

OO0

DEFORMATION OF & CYLINDRICAL SHELL WITH AN INITIAL IMPFERFECTION
FART TWO-=~=SUCCESSTVE AFFROXIMATION FROCEDURE
SOLUTION OF TIMOSHENKO’S FQUATIONS WITH TIMOSHENKO’S STRESS
RESULTANTS ) o
ODIMENSTON UC26528)sVU(26526) sW(R26928) s R(264526)
CALL ASSIGN (1e/0X0:0ATAL')
DEFINE FILE 1§ (1sl&sUsTZ)
READ CONSTANTS AND QUTFUT VALUES
REALD (17DIRsANUzAyCe Ty STRy DXy DF
WRITE(Zy1)Rs TH1000,

L FORMATCL7H CYLINDER RADIUS=sF& .39 25H METRES-——-WALL THICKNESS=9F 6.3
LeBH MoM.)
WRITE(Z» 2YANUs STRXLO . %%

Q@ FORMATCLZH FOTISHON'S RATIO= & o Zv L Gl AXTAL STRAIN=yF&8,2¢ 12H MIDKR
LOSTRATIND
WRITEC(7s3)ACoC/ A

3 FORMAT(20H IMFERFECYION WIDTH=yF8.5s22H METRES~—~MHALF LENGTH=sF&,5
1y23H METRES~-~ASFECT RATIO=F%5,3)
IT1=0

OTTNG=0
WRITE(794)

& FORMAT (I9HSL)» UvﬁNU W hrlﬁXﬁTfUN CONSTANTS ARE - )
REATI(S s 730102003

7 FORMAT (R4 2
WRITE (78D ' _

8 FORMAT (Z0H$MAXTMUM NUMERER OF ITERATIONSG:=)
REATICS» 9 IMAX

? FORMAT(IS)
Call. ASSIGN (2y "OXOIDATAZ )
DEFINE FILE 2 (1+5%4085Us12)
READ (271) (U D) sUCT o ) sWCT o D) s BCT o)) s T=1926) v d=1924)
START ITERATION FOR WHOLE SHELL

1600 UMAX=0.0

UMAX=0.,0
WMAX=0,0

HS

SONVITINSHY SSHYLIS J0 IHOd TENIAIUO

ISONTJL DNISA

E

dHL HILIA S

NHOILVADE WATHSITINDE S.OMNE

Iy
&

JEATAD0Hd NOILVIIIX0UddVY BAISSHOONS FHL NI @USO 2. 4ivaooudd

i TAE



0027

0028

0029

0030
Q031
0032
0033
0034
0035
Q034
Q037
0038
0039
0040
0041
0042
Q043

0044

Q045
0046
0047

Q048

0049
0050
Q031
Q052
0053
VOS5 4
005

0056
0057
0058

0O 100 J=3s24

START ITERATION FOR ROW

00 300 I=3,24

DWX= (WL JHL~WCT s J~1) ) /72, /10X

DUX=(UCT s JHLD) =UCT s =10 ) /720 /DX

DBUX= (VT s I =V (T J-1)) /72, /10X

OBX=(ROTy JHL) =BTy J-103 /720 /70X

OWF=(WOT4L s DY =W T4 s 0 )22, /0

DUF=CUCTHL s JY=UCT =15 J)) /24 /11F

OVF=(UCT+HL e IV T~y ) ) /20 /105

OBEF=(RCI+1y )~ R(f"lyJ))/E./UP

URWX 2= WLy JHL) =20 kW Ty DY 4+W T S~ 1) ) /70X TIX
U?UX?“(H(IvJfl)"Jo*B(IvJ)+B(IvJ“1))/HX/HX
DRWF2=(WTHLy D=2 kW T s D W T 9 )Y /DR /DF
DRBFE=(BOT+HLe ) =2 0 XBCL s DHRCI~1 9 ) /0F /1P

LESWXF= CW O Ly S L) =W T Ly J= 1) =W T =1 s JH L) W T=1 s J=1) ) /4, /1IX/TIF
L2UXP=C(UCT4HLy JHD) ~UCTHL s =1 =UCI=L s JF L) HUCTI~1 5 1)) /40 /DX /TIF
D2UXP=(UCTHLs JH1) =U(TH L J=1)=U(TI=1s JH1)4+VCT=1sJ~1)) /4. /DX/DF
_D2BXP=C(ROTHL s JHI) =BT+ s J- 1) =BT =15 JFID+R(I-1s J~1) /4, /DX /TIF
D3WX3= (W Ty JH2) =20 KW T s I +2 KW (T o J=1) =W Ty J=2) ) /20 /IX/DX /LY
DBWF3= (WT+2e ) =2 oKW (T4 L s D42 kW L= 1 s J) =W (T~25 ) ) /D o /TP /1 /TIF
nzu%’r~(w(t+|,J;1)~~,*w(r§1,|>4w([§|y1m1) W1y JHDH20KWCT-1 9 )~ W
AT L =AY /2 0 /70X /X TIF

D3MXP?~(N(I+lyJ+l)~. XKWLy A AL =1y D) =WCTHL s =142 KW (T 9 -1 ) ~W

LCI=1sJ=12)/2,/DX/DF/TIF

ANF=DVUF/R~W( T J) /REANUXDUX
ANX=DUX+ANUX (DUF-W (T J) ) /R
ANXF= (1 ~ANUYX (DUR/ZRHDVX) /2,
AMF == (N2WF2/R/R+ANUXDR2WX2)
AMXF= (1. ~ANU) XD2WXF /R

IMXDX =~ (D3WX3+ANUXDBWXF2/R/R)
OMPOF =~ (D3WF3/R/R+ANUXDTSWX2F )
DMFOX=~ (D3WXF2/R/R+ANUXDIWX3)
DMFXDF=~ (1. ~ANU) XDIWXF2 /R
IMXFOX= (1 ~ANU ) XD3WX2F /R

*62t



Dohe

00460

0Q& 1

0062

0063
QGa4d
GOa%
Q066
QO&7
00468
006%
Q070
0071
0072
Q073
0074

Q075
0076
0077

400

G300
600

700
800

P00

L CORWXFTZEXE ) COWXAIERX) K TRT /L2 o /RARHTXDXK CORWX DA IDEX D) kTR T 215 o 41N
2PIEX CORWXFALRBXF ) KTRT /12 4 /R/RAIMEXIFK CORWX2HT2EXD Y KTRT /172 o /Fem IMXE T
SXOK CLH2WXEHIZEXF ) XTXT /124 /REANUKIWX /R CLoHANUY KDRUXE /2o /Rm (U CT 5 41 )+
AUCTy =130 Z0X/0X~ CLy~ANUYKCUCTHL y 04U CT= 10 JY ) /20 JRZRZTE ZTE Y 7 (= o 710X
S/0X CLe-ANUDY ZDF /0F 2R /R .

YNEL: CANXFR CIWXHTUEX ) Rt AMEK COWXHTRX )k CO2WXE T2 EXE ) KTKT /12 0 £F Tk
LAMXER COWXATIRK ) K CL o+ DU 2/ RATIRERD /RO KTRT 2 12 /R R4 TIMKIO0K (00 WX 4
SUZRXE ) KTHT /12 0 /RADMPURR (L AD2WF 2/ RADDEFD T KTRT 212 0 2R/ R4 TIME X T
S CIQWXEATIREXF YRTRT /120 AR/ R=DMXFTIXK (L T2WE D/ RATIDRED 2R S RTHT S 4 7
SUWE/R AR CLoAANUY RIRUKF S 20 Z R QLT DU T 0 ) 5 /R AR ST ATl (1 oot
SR CT e LAV CT e J 13 ) /2 S OXATIX G/ 2 SRR AT /T = (oL S 2T 2T S

WNE U= CANXFX (IRWXFHIREXF ) K24 o /T /T /RAANXK CIRWX2HIREX2) K12 o AT /T4 ‘
LANEX CL o ADRWER/RAIRZER /RO K120 /T /T /R AMFK TR /4 TR TIR Y,/ Fed T WX
2IERXE) /RADMFLXOK COWXHIEX ) /R4 DIME TR IRE /R /R /R OMXE R WX F T2 B X4
SUBERTWX S RATDBFKRIEX /R Y /RS Re=TMFPXTEK XA 2 0 KOEX) /R Gl CT o ) mdh o K
AWCT v 1) =8 KW Ty S 1 W Ty 20 ) Z XK CW T2 00D by W T L o)) b KU € ] oo
SLr W CL2y 0 ) ZRKKA S TIERK A2 K CWCT AL S L) 2 o KW Ty ) AW C T g o] )
OKWCLs JHL) =20 KW Oy S YW (T y JH L =2 KW T d o D3 bW Ty S ] ) ) ZTIX S TIX /T
UBSRIRY /(oo /DXKKAFS o JTIFRKA S RKKAHE o /R /R /UK /X /TF 7 TS

IF CARS (UCT 5.0) ~UNEW) ~UMAX) 5005500 5 400 '

CHECK FOR MAXIMUM CHANGES -

UMAX=ARS (LT » ) ~UNEW)D

K s 2
Lo o |
LF CABS (W Ty ) ~UNEW) ~UMAX ) 7005 700 s 600
UMAX:=ABS (VT p ) ~UNEW) ‘

K s T 32
LoRu= -2 .
FFCARS (W (L)) ~WNEW) ~WMAX) 900 900 » 200

WMAX=AKS (W Ty J) ~WNEW)

NC L8 e
13=0-2
UCT s ) =UCE s D HCLK CUNEW-U (T 9 J))
MOUIFY DEFLECTION VALUES
VCIy ) =V(T s DHC2KCUNEW-V(T 5 ) )

WCT s ) =W s ) +OIKCUNEW~WC Ty ) )

IF CJ=3)3005 10005300

£
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0078
Q079

0080

0081
0082
0083
0084
008

QOB
- Q08
Qoaa
aoRe
OO
QO
Qo2
0093
0094
D095
D09

Gog7

Qovs

0099
0100
0101
0102

0103

1000 UCLvJ)=0.0
300 CONTINUE
L CORRECT ROUNDIARY VALUES ON AXIAL ROUNDARTES

U2y D) =U(45.0) '
V(2y D) ==Y (4. ))
WCled) =W (Se.0)
W2y D=l ay. )
V(e y=0,0

1O CONTINUE

: CORRECT BOUNDARY UALUES ON CIRCUMFERENTTAL ROUNXARY

0O 1100 I=1s24
UCTe @)=l Tva)
VT o= (Ted)
WET v @)=l d)
WLy 1=/ (TeS)

L1GO CONTINUE
FTING=TTNG+1
ITL=TT1+1
ITF CITI-10) 1700520041700

200 HRITE(?pS)ITNSyUMﬁXsKiyLi9UMQX?K2yL2yHHﬁX9K39L3«

G FORMAT (XM IN?IdyilH‘ITNSQUMﬁvaEIQoKyKH AT e TZs IHe o T2 s AHsUMAY= w10,

13 M ATy B3y MM o 120 SH s Wik K=
ITi=0 : : :
WRITE (E’l)(((U(Ivd)rU(IyJ)yH(IvJ)yE(IpJ))vIHlyE&)vdwlvﬁé)

c . - CHECK FOR CONVERGENCE '

1700 IF(UMQXWO.OOOOOOOOOOOOl)120091400v1400

1200 IF (UMAX~0,0000000000001) 1300140051400

1300 IF(WMAXWO.OOOOOOOOOOQOI)15009140091400

1400 IFCITNS-MAX) 14005 15004 1500

13500 END

eEQ EeRH AT TXe ke 0T

*TEE



Q01
Q002
QOQXR

Q004
Q005
Q00

QOCY
Qoo8

DOO%
Q010

Q011
o012
Q013
Q014
Q015
0014
Go17
0018
GO19
Q020

Q021

0022
0023

0024
0025
Q026
0027

BEFORMATION OF & CYLINDRICAL SHELL WITH aN THITIAL IMPERFECTTION
FaRT TWO- SUCCESSIVE AFPROXIMATION FROCEDURE
SOLUTION OF TIMOSHENKOS FQUATIONS WITH DONNELL‘S STRESS
RESULTANTS
DIMENSTON (286928 sV (26926 s W4y 28) s BRIP4 24)
CALL ABSTIGN (1s'DXOthaTal’ )
DEFINE FILE 1 (1e1é&2Us 120
REAT CONSTANTS aMND OUTPUT UALLIES
READ CL7I0ReyANUs A e ToSTRy DXy DF
WRITE(Z e 1IRe THLQOO,
L FORMAT (L7H CYLINDER RADIUS=F &3 25H METRES——~WALL
L@ MoMo)
WRITE (7 29ONLISTRYLO .. %ké
2 FORMATC l 7H FOISS0ON'S RATIO=yFa 3y LaH-~~AXTAL STRATN=
LOSTRAING
UWRITECZ s 3)Ay0 070 ; )
3 FORMAT(20H IMFERFECTION WINTH=yF8,5y22H METRESG ML F LENGTH=¢F8,%5
Ly 23H METRES-—-a8FPECT RATIO=FS.03)
I71=0
TTNS=0 .
HRTTF(?yS)

THICKNESS=sF64.3

s F82v12H MICK

)

'_’\
—~
&
3
4
7
—
L)
i
~::
’:
-
<
~
=
2
—
=
-
b
:)
>¢
—<
Z.
I
pRd
z
"
—
g
=
—
Py
E® 9
e
=

[
thMﬁT(3I4¢M)
WRITE(?»8)
8 FORMAT (3OHEMAXIMUM NUMEER OF TTERATIONS=)
REAL(Ey 9 MAX
G FORMATC(LS)
Call AaBSIGN (257 DXOtOATAR )
CDEFINE FILE 2 (1s%408yUs T2
READ (271 COUCTs ) s V(T o) s WCLs Yo RCIs ) s Tl o240 v dm] 9 26)
C START ITERATION FOR WHOLE SHELL
1600 UMAX=0,0
UMAX=0,0
WMAX=0 .0
D 100 J=3»24

~d

,.
WL

qH SSHUTL

STLAVIINS

i1
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v T
4

HOTEETTINOE S,O0MI5RHSO..Id O-

gS

]
L

NOILVAD

[y

S TTENNOA HIIAL S

LIVES0UI

L]
et

NI aEsi

“ATSSEODNS Ty,
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2028
002w
0030
0031
Q032
QU332

DO3EB
0039
0040
0041
0042
D043
0044
O
0048
0047

0048

004%
QOS50
Q0T

0055
Q0% 4
0057
0058

G

START ITERATION FOR ROW

00 300 =324

DNXH(N(I»J+1)~U(IQJM1))/2./DX

DUX= (U e 1) =UCTy J-1) ) /2 /X

VD CRQVEQNES B ESVES P ES D 1 WAt IS 15 4

DEX= (RO e I =ROD s J-10 )72, /00X

OWF= W CTHL s D =W T DY /2 /T

DUR=CUCTHL s ) ~LICT-1y D) /A2 /7T

DVUP= M CTHL e S =V CT-1 5 D) /2 /T

OEF= (RO L s I -BOT~-1 e J) 2 /72 /7 10F

LE2WX2= (W T JAL =20 KW T s YW CT v 1) 20X/ TIX

DRBXE= (BT e JFL) =20 kBT y DRy =13 ATX/0X

EAWF2= (WL s D) =20 KWy DY HW T -1 5 1) Y 70 /101
DREF2=(BOE+Ls =20 kB Ly DYHRCI-1 v 00 ) /0P /115

DEWXF= (W CTHLy S ~WOTHL e J=d) =W T Ly JELYFW I~ L s =10 ) /40 Z1IX/ TP
DRUXF=(UCTHL s JHID) ~UCTHL s S0 =U T 1 s JH L) HUCT =L s =10 ) 740 DX/ T
DRAVXF= (VTR Ly TFLD) =V TTHL p =00 =V T =1 o L3RV T =1 p =10 ) A4 ZTIX/ TR
AIEAP = (BCLHL s JH D) =BT Ly =) = ROT- Ly JALYRR T~ 1 o J=1) ) 24, ZDX /TN
DW= (T JH2) =2 oKW T o JH L0 +2 oKW T o =) =W Ty =320 0 /2 /XTI A TIX
D3WF3= (WCTH2 e D =20 KW CTHL s D20 KW T 1 s )3 (T2 D) A2 A TF S TF /11

DKNXQP*(H(I+1yJ+1)Mﬁ.*H(I+1yJ)+U(I+19Jm1)WM(leyd+l)+2.*w(1mlvd)w

1CT~1 o J=122 /2 70X/ 0X/ 0P

W

DAWXF2= W OTH Ly JHI =2 kW Ty JHD AW T =Ly JH I =W T L p S~ 1042 KW (T v Sl ) 1 -

LCL=Lod=12) /2, /70X /T /T
ANF=DURF/R~W{ Ty ) /R+ANUXTUX
ANX=TIUXHANUK COVR W T s ) ) /R
ANXF =L =ANLD X (COUF/7RAIVEY #2.
AMF == (T2WF2/R/RHANUXD2WX2)
AMXF = CL s AN KD2WXF /R
IMXNX == (D3WX3+ANUXDIWXF2 /R/R)
IMPTF = - (O3WR3/R/ZR+HANLDKITZWX2F)
OMFOX = (N3WXF2 /R /R ANUXDEWX3)
DMPXIF == (L. ~ANU) XD3WXF2 /R
OMXFPIX= Lo ~ANUD) XU3WX2F /R

“get




a0né

DO&HO

DOA Y

Q&2

Q0&3

0064 .

Q&
QG&S
Q067
GRsa
- QO
Q070
Q071
Qo772
073
Q074

GOTFE

UNEU%(wﬁNP*(DNX+DBX)/R+GMP$(HRWXE+DQEX3)*(DHX+UEX)*T%TKIE°XR+QMXP*
1(HENXP+DQBXP)*(DHX+DBX)*T*T/i?./R/R+HMXHX$(HENX2+H2HX2)*T*T/12o+UH
QPDPX(HENXP+D2BXP)*T*T/12./R/R+DMPXUP*(HQUX2+DEBK2)*T*T/lh./RwDMXPU
AXKCDAWXFHD2RXFOIKRTRT /12 o ZR+ANUXDWX /R~ (1 o +ANUDY XDRUXF /2, /R
A-DWXKRD2WX2- CLHANU) RDWFKD2WXF /20 /R/R= (1 o ~ANU Y KIWXKDRWF2 /2y JR/R
G CUCT JHLYHUCT s S~ ) /70X /DX (Lo ~ANUD X (U CTHL s D HUCT =1 J) ) /24 ZR/ZR/ NI/
STF) /(=20 /UX/NX~ (Lo =ANU) /DF /D /R /R )

UNE W= CANXF X COWXATIRX ) ZRAAMFOR COWX4HDEX )k (D2WXFHTREXF Y KTKT /15 AR+
LAMKP R IRATTEXO) R CL oA DR2WP2/RATURBF 2RO KTRT /12 o ZR/RFTIMXIXK (D2 WXF 4+
SOQBXFIRTRT AL ZRFTMP LR A (L, HDRWF 2 /RATR2BE2/RYKTRT /120 /R /A IMEXDE
AMCL2WXFHDRBXF ) ATRT /120 /RAR-OMXPOXK (LW $D2WER /RFDPEF R /R KTRT 212 /e
AL AANUYKDWXRDZWXE /5o AR~ (L ~ANUD KOWFRTRZWR D A0, ZR-TWER D2 WE D /R R/
SDNPfRwafl,+QNU)$H2UXP/Q.ERW(U(I+1y4)+U(Iw1vJ))XRKR/ﬁPfHFwiquQNU}
ERCVCT e S IV Ty I 0D /720 ZIXK AR Y A (2 0 ZRARATE ST = L o ~ANLLY AT A TIY)

WNE W CANRF R CDR W R KEIRZA A TAT/ARAANK CD2WRKE IX2YRLE ./ TAT+
LANFR L PR 2 AR FORLESTAT AR AMP R COWY DR CHOR ORI E X AR DEWH 24
2 FLR O ARADMP IR R DRF R /R R @R COR2WX P D R K4

SUBFXOWX/REDBFXORK /R /R F-TMFEXOFK COWXH2 o RUEL ) AR (W Ty J42) =4, X
AWCT y JHL) =4 kW (T o 1Y FWCT 0 J=2) ) ZICKK A= (W T4 9 I8 o KW C T L v d) =8 o KW ¢ T
SlyJ)+w(IMEvJ))/R**A/DP**AwR.*(N(I+lyJ+1)wﬁ.*w(1+ivd)+w(l+19Jw1)w2’
EXWCT e I =2 KWLy 1 Y F W1 s L) ~2 oKW Ty SRR T o b 3 ) Z DX/ TIY A T/
?HPfR;”}!(6°/DX%*4+&./DP$*4XR$*4+8@/HfHKEX/HK/ﬁP/HP)
TFCABS (U JY~UNEW ) ~UMAX DI H00 v 5005 400
CHECK FOR MAXIMUM CHANGES
A00 UMAX=ARS (T y ) ~UNEW)
Rl -2
I B
GO0 TFARSIVOT s D) ~UNEW) ~UMAYX)Y 7005 700 » 00
SO0 UMAX=ARE(V(Te ) -UNERW)
Kadml-3
SECN B
A0 TF ARG WL v ) ~WNEW) ~WMAX) P00 900y 800
8O0 WMAX=ARS (WL s ) ~WNEW)
T o)

LR faid

900 UCTv) =T ) 01K CUNEW-LICT 513 )

MODIFY DEFLECTION VALUES
T DU e Y HCR2R CUNEW-YU (T 5.1

‘yee
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G078 LGOO0 (T s d3=0,0
QO7Y FOO CONTINUE

i CORRECT BOLNDARY VALUES
aoro U2 =04y 0
QO V{2ydys=U gy 0D
aos2 PRI ESEIN D
Q03 =N(4v\)

Or Axial, BOUNUARITES

AMOARY el LS D CTROUMFETR

(T ety

Q 0 ‘>‘ 3

v 1.3 4
My T Ak e Ui 10
ey

!"'xr ¥ I\’IV l“'l ¥ A

OO
0OVH WETTE (2742 COCUT ey i e WO o o BOL ) s Umdl v @b 0w dml v 2050

P2
Ly

CHECK FOR CORVE :
TF(UMﬁXwOoOOOOO(QOOUUUl}I

D106 T OUMA L0 . OQO0AGO00000 1Y 100y LA0G»y 1300
5501 1300 Ir\umm‘wn QOOGOGOOQGGN LY LLONy 1400y 1400
D103 TACO TF{TTNS-MAX Y1600y LEG0y 1500

D103 1HEOO FRD

QGPY 120051400, 1400
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Sl e WMAX= O, 835
Gl b e WMAK= 0,721
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Aol Oy WX
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Q001
0002
Q003

Q004
0005
0006

0007
0008

QQO9
Q01O

00l
Q012
Q13
Q014
D01
D016
0017
0018
Qo019
0020
0021
Q022

0023

0024

Q022G

C

DEFORMATIONS IN A CYLINDRICAL SHELL WITH AN INTTIAL IMPERFECTTON
FART THREE---FRINT DEFLECTION VALUES
LDIMENSTION UC26y26) sV (26526) v W(26524) yB(26926)
CALL ASSIGN (1, IXOIDATAL )
DEFINE FILE 1 (1sléyUeI2)
READ (L7 1)0RsANUyA»Cy ToSTRy X » DF
WRITE (7¢1)RyTX1000. ,
1 FORMAT (17H CYLINUER RADIUS=yFé.3s2%H METRES-~~WALL THICKNEGS=sFé .
1395H MM -
WRITE (792)ANU»STRYLO, %k
2 FORMAT (A7H FOTSSON'S RATIO=yFé .3y LéH—~AXTAL GTRATN=»FR. 2, 12H MICK
LOSTRAIN
WRITE (753)AsCy0/A
3 FORMAT (20H IMFERFEQ
Ly 23H METREG~~~ASFECT RATIO=F5,3//)
CALL  ASSIGN (25 'IXOINATAR )
DEFINE FILE 2 (1,%408,Us37)
READN (2730 COUCTr ) s VT ) s WL v )y BT ) sl » 260 Jul o 24 )
WRITE (7s4)
4 FURMAT (54HO FHT U=aXTal, U=THTL, W-RAT B
WRITE (7y7)
7 FORMAT (12H DEG, vy 4 (1M M ))
N0 100 J=3y 2% '
WREITE (795 CJ=3) %X
S FORMAT CLBHOLEFLECTIONS AT X=yE1ll.4,7H METRES)
D0 100 T=3,25
WRITE (Y s 6) (I-Z)KDPRIB0. /30 1415927y UCT o) s VLT s 1) s W (T o) s (T yo0)
6 FORMAT(SELR,4)
100 CONTINUE
EN

4 O UESil H:lIVEDOUI
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CYLINDER

RADIUS= 0.100 METRES---WALL
FOISSON’'S RATIO= Q.350---AXIAL STRAIN=
IMFERFECTION WIDTH= 0.04000 METRES—~-HALF LENGTH= 0.02800 METRES---ASFECT RATION=0.700

THICKNESS=

0.190 M.M.
300,00 MICROSTRAIN

FHY . U-aXIAL V=TGTL. W-RAD. E
REG. M. M. M. M.
DEFLECTIONS AT X= 0.0000E+00 METRES

0.0000E+00 0.0000E+00 0.0000E+00 —~0.7618E-04 0,2020E-02
0.1049E4+01 0.0000E+00 ~0,1326E~05 -0,7575E~04 0.2004E~02
0.2098E+4+01 O0.0000E+00 —~0.2633E~-05 -0.7439E~-04 0.1953E~-02
0.3146E+01  0.0000E+00 ~0.,3902E~03 -0.7195E~04 0,1872E-02
0.4193E+01  0.0000E+00 -0.5107E~05 -0.6820E~-04 0Q.17G7E-02
0.3244E401  0.0000E+00 ~0.4223E~-05 ~0.6285E~04 0,1609E-02
0+.6293E4+01  0.0000E+00 ~0.7217E~-05 ~0.5363E~04 0.1426E~-02
0.7342E+01  0.0000E+00 ~-0.8052E-05 ~0.4628E-04 0.1211E-02
0.8321E+01  0.0000E4+00 ~0.8689E-05 ~0.34635E-04 0.9603E~-03
0.9439E+01  0.0000E+00 ~0.9087E~-05 ~0,2080E-04 0.67353E-03
0.1049E4+02 0.0000E4+00 ~0,92203E-05 -0.35087E~-05 0.3536E~03
0.1154E+02 0.0000E4C0O0 -0.9006E~-03 O0.1163E~-04 0.7451E-08
0.1259E+02  0.0000E+00 —-0.8481E-05 ° 0.2902E-04 0.0000E+00
0.13463E4+02 0.0000E4+00 ~0.7625E~-05 0.4338BE~-04 0.0000E+00
0.1468E+02 0.0000E+00 ~0.,6508E~-05 0.5305E-04 0.,0000E+00
0.1373E4+02 0.0000E+00 ~0.3238E~05 0.5732E~-04 0.0000E+00
0.1678BE+02 0.0000E4+00 —-0.3935E-05 0.3611E-04 0.0000E+00
0.1783E4+02 0.0000E4+00 —~0.2714E-03 0.4980E~-04 0.0000E+00
0.1888E+02 O0.0000E+00 ~0.1672E-05 0.3929E-04 0.0000E+00 .
0.1993E+02 0.0000E+00 —-0.8756E-06 0.2588E-04 0,0000E+00
0.,2098BE+02 0.,0000E+00 -0,3526E~-06 0.1138E-04 0,0000E+00
0.2203E+02 0.0000E+00 ~0.8374E~07 ~0.1796E~0% 0.0000E+00
0.2307E+02 0.,0000E+00 0.0000E4+00 -0.1050E-04

0.0000E+00

SENTVA NOILOETILA INI¥d OL HiTIVYHOUd O INdIN0 TVOIJAL

DEFLECTIONS AT X= 0.23543E-02 METRES
0.0000E+00 ~0.,46704E-06 0.0000E+00 ~0.7783E~04 0.1837E-02
0.1049E+4+01 ~0.6683E-06 ~-0.1339E-05 -0.7737E~04 0.1820E-02
0.2098E+01 ~0,6622E~06 ~0.2659E~035 ~0.,7593E~-04 0.1771E-02

*get



QQoo1
Q002
0003
t)l)()«3

QGO7
Qoog

Q009
QGLG

Q011

GOl R
o Te
QO1E
Q01 &
QOL7

Gone
OO w

GEFORMATIONS I A& CYLINDERICAL SHELL WITH AN INITIAL IEFERFECTION
FaRT FQURNW“CﬁIFUIQTF MEMRBRANE STRESSES AND PRINT VALUES
DIMENSTON UC(28:28) 9V (26928) s W(R4v28) s R4+ 24)

CaALlL Aa8S8TEN {1y 'IXODATAL )

OEFINE FILE L (1e1&6sUsIZ)

i i )l pENU e @ U Te STRy 11X 3

Ry THRLOO0

POLAH OV ENDER RAOGTUS= 76 . B 20H METRES-——WallL THICKNESS:S P h.

kf'p'\"lt")l\'lv DTRKLO  &KXS

S FORMATCEZH FOLSSONS RATIO=sFé 3y LoH-~-AXTAL STRAIN=yFR, 20 12H MICR
LTOSTRATND
NRTTF (7333050070

3 FORMAT{20H 2
lv?ﬁ” WlTPr"

(T

]N N"HTHwyFS.HyEEH METRES==~HALF LENGTH=,FR .5
N v FEL3S0

——14——.
A

p dd v BT e iy Tl o2& o dml v 245

VUL T Al bR
WRITE (7Fyv4)
4 FORMAT (AZHOMEMBRANE STRESSES IN SHELL/YOUNG’S MORDULUS)
WRITE (7,9)
I FORMAT (5EHO FHT AXTAL TGTL ., SHEAR FRINCTFAL THTRN,
1)
WRITE (794) ‘
& FQRMAT (PR TEDG, vl’““ XEONKEY » PH iy

JI¥d @IV SIVIADTIVO 0L dHS diidvidOord

i
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D020
0021
Q022
0023
Q024
QO2I
034
GOa7
Q028
002%
0030

0031

0034

0035

0034

0037

0038
G039

) 100 J=3e24
WRITE (797) (J~3)%DOX '
7 FORMAT (L1SHOSTRESSES AT X=sELl.4y7H METRES)

00 100 I=3,24

HUF“(U(T+1v1) UG-y ) 320 /DR

DU UL e L) -1 (Tyl 1)\fﬁo/ﬁ1
UU!W&U(i+lsJ3 ST 1)S2. A
Duxm<v(I?J+1JWV\lVJW1)meo/U«

DWX= (W Ty AL~ W T e J=10 2 /20 /11X

DWF= (WL e D =W Ly DY /2 0 /70F

HXa= (DUXHDWXHGWX /2 « FANUKDVE /R~ANUXW CL s ) AR ANUKDWRERDOWFR /2 o ZR/ZRY /(L 4

1 n’\NU*r\NU)
""""" = OOV ZRADWPROWE /72 ARZR-W T v o3 AR AONLKDUCHANUKDWXORTWX A2, )/
] JU\

IR f"i"“’ ( PR LTIy
‘“!~\JX+\i),A.%' ! S YRRES A BRI
HA~\‘”+1F)/A.~HQRI((wX HF)** A4+ GXPRKD)
TH=ATAN(SXFX2 5X~-8F) %20, /3.141J9”7

WRITE (7:8)([*@)*DF*LQO /3. 141“?”7yox*1000000.y%F*lOOOOOO.vSXI*IOM

LO000 . »81X%X1000000,.582%1000000.TH
8 FORMAT (7F8.2)
100 CONTINUE
ENID

1

~ANLX

0129



CYLINDER RAUIUQ" 0.100 METRES---WALL THICKNESS= 0,190 M.M.
FOISSON’S RATIO= 0.350---AXIAL STRAIN= 300.00 MICROSTRAIN
IMPERFECTION WIDTH= 0.,04000 METRES---HALF LENGTH= 0.02800 MEIRE5~'~QSPELT RATIO= 0., 700

MEMERANE STRESSES IN SHELL/YOUNG’S MODULUS

FHI. AXTIAL TGTL. SHEAR FRINCIFAL DIRN.
DEG. X10%%x6 X10%x%xé6 XL0%%ké6 X10%x%Xé6 X10%Xé DEG .,

STRESSES AT X= 0.0000E+00 METRES
0000 "'":’B\JOA..O '_62037 0000 "‘620\37 '285020 0000
1.05 -283.92 -61.06 0.00 -61.06 -283.92 0.00
2.10 -280.18 -57.18 0.00 ~57.18 -280.18 0.00
3.15 -274,.33 ~50.90 0.00 =350.,90 -274.,33 0.00
4,20 ~266.89 ~42,49 0.00 =-42.49 -266.89 0.00
.24 -258.63 ~32.29 0.00 ~-32,29 -258,63 0.00
6.29 ~250.45 ~20.70 0.00 =-20.70 ~250.45 0.00
7.34 -243.41 ~8.19 0.00 ~-8.19 -243.41 0.00
8.3%9 -238.63 4.70 0.00 4,70 —-238.63 0.00
?.44 -237.,27 17.14 0.00 17.14 -237.27 0.00
10.49 -240.52 27.87 0.00 27.87 -240,52 0.00
11.54 -248.75 37.26 0.00 37.26 —-248.,75 0.00
12.59 ~-264.20 32.19 0.00 32.19 ~-264.20 0.00
13.63 ~-280,02 28.75 0,00 28.75 -280,02 0.00
14,68 -294.,.68 25.56 0.00 25,56 ~294.68 0.00

15.73 -306.74 22.63 0.00 22,63 -306.74 0.00
16.78 -315.25 20.24 0.00 20,24 315,25 0.00
17.83 -31%9.77 18.75 0.00 18.75 -319.77 0.00

18.88 -320.19 18.50 0.00 18.350 ~-320.,19 0.00
19.93 ~-316.73 19.72 0.00 19.72 -316.,73 0.00
20.98 ~-309.84 22.58 0.00 22,58 -309.84 0.00
22,03 -300.16 27.09 0.00 27.09 -300.16 0.00

STRESSES AT X= 0.2545E-02 METRES

0000 "‘282065 "'.“2011 0000 "'d 011 "‘28:’065 0‘00
1.05 -281.40 -50.83 ~3.16 -50.78 -281.45 0.79
2410 =277.77 =-47.03 ~be 23 -46.86 ~277.94 1,54

SESSHELS INI¥d @V &LVINDIVO Ol Hiliv¥dodd Ol LNdLi0 TVOIdAL
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0001
0002
0003
0004
0005
0006

0007
0008

0009
Q010

0011
0012
0013
0014
OOLS
001 &
0017
0018
0019

0020

0021
0022
0023
0024
0025
0026
0027

O3

1
)

A

3

100

DEFORMATIONS IN A CYLINDRICAL SHELL WITH AN INITIAL IMPERFECTION
FROGRAMME TO MODIFY AXIAL STRAIN

DIMENSTON U(R26526) sV (28926) s W(R2E528) s R(24924)

CALL ASSIGN (1y7DXOINATAL )

DEFINE FILE 1 (1elésUs12)

READI (L71IRyANUsAsCy Ty STRy DX s LR

WRITE (79 1)RsTXLOOO,

FORMAT C(17H CYLINDER RADIUS=sF&, 3y 25H METRES-——~WALL THICKNESS=,F&.,
WRITE (7v2)ANUSTRXLO . XX

FORMAT CL7H FOTISSON'S RATIO=yF& 3y 16H-~~AXTIAL STRAIN=sF8.2y12H MICK
LOSTRATND

WRITE (Ze3)ABsCy0/A

FORMAT (C20H IMPERFECTION WINTH=sF8. %y 22H METRES-—~HALF LENGTH=yF8,%
1y 23H METRES~--ASFECT RATIO=3F35,3//)

CALL ASSIGN (25 'DXOIDATAZ)

DEFINE FILE 2 (15%54085Us12)

CREAD (2710 COUCT s D) sUCTe D) s W(To D s BCIo ) ) p Il s R46) s =l v 26)

WRITE (754)

FORMAT (J1HSNEW AXIAL STRAIN(MICROSTRAIN) =)
READ (5s35) STRIL .
FORMAT (F8.2)

GTR1I=8TR1/10.%%6é

[0 100 J=1+26

00 100 I=1,26

UCTs =0Ty JIXKSTRI/STR

V(T e Jd=U(Ts JIXSTRL/STR

WLy =Wy JHIXSTRLI/STR

CONTINUE

WRITE (17 1)RsANUSASCyTySTRL X DF

WRITE (271 CCUCTy D sVTs D sW(TIs I s B(Ip ) v I=1526)5J=1926)
END : "

SNOILVIADIVD

ININOISEAS O SASSHAND TVILINT SQIAOEd O SHATVA NOIISETLAQ
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TYPICAL OUTPUT TO FROGRAMME TO MODIFY AXIAL STRAIN

CYLINDER RAQRIUS= 0,100 METRES---WALL THICKNESS= 0.190 M.M.
FOISSON’S RATIO= 0.,350---AXIAL STRAIN= 250.00 MICROSTRAIN _
IMFERFECTION WIDTH= 0.,04000 METRES—-~-HALF LENGTH= 0.02800 METRES-~-ASFECT RATIO=0.70Q

NEW AXIAL STRAIN(MICROSTRAIN)=300.,0

eve



344.

APPENDIX E

PROGRAM LISTING AND TYPICAL OUTPUT OF PROGRAMS USED IN

CALCULATING THE FOLD SHAPE BASED ON THE BI-HARMONIC EQUATION




0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
C017
0018
0019
0020
Qo021
Q022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037

3 o000

3

8

10

FROGRAMME TO CALCULATE THE SHAFE OF THE FOLD IN A YOSHIMURA BUCKLE

FATTERN FOR THIN WALLED CYLINDRICAL SHELLS

FART 1---0FEN FILES AND ESTIMAT INITIAL VALUES

DIMENSION W{(S54:54)

READ IN DATA

WRITE(7:1)

FORMAT (48H$LENGTH OF UIAGUNAL COMPRESSION MEMBER(METRES) =)
READ(Sy2)X

FORMAT(F8.,5)

WRITE(7+3)

FORMAT (4A9HS$WINTH OF FACET FERF. TO [ITAFONQL MEMBER(METRES) =)
REALNI(Ss4)Y

FORMAT(F8.5)

WRITE(7+5)

. FORMAT (32H$ANGLE BETUEFN FACETS(IEGREES) =)

REAL(S, &) AL
FORMAT (F6.2)

WRITE(757)

FORMAT (45H$ND,OF FOINTS IN HALF MEMEER LENGTH(MAX.50) =)
READ(Sy8)N

FORMAT (12)

WRITE(7y9)

FORMAT (43H$ND,OF POINTS ACROSS FACET WIDTH(MAX.100) =)
READ(S5510)M

FORMAT (I3)

CAL=(90.0-AL/2,)%3.1415927/180.0

DX=X/N/2.
Oy=Y/M"
CALL ASSIGN (1, /DX0IDATAZ’)

DEFINE FILE 1 (1+12,U512)
WRITEC(11)XsYyALYNsM>»DX,DY
CALL ASSIGN (2y/IDX0:DATA4)
DEFINE FILE 2 (1+35832yUyI2)
[0 100 I=1yN+4
W(Is1)=2,XDYXSINCAL)
W(Iy2)=DYXSIN(AL)

DO 200 J=3sM+4

DO 200 I=1sN+4

' W(IsJ)=(J-3)KDYKSINCAL)

WRITE (271)((W(Ts)rI=1sN+4)sd=1,M+4)
END

SSED TVILINI HIVIADIVD OI CESQ JIHWvYdodd
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LENGTH OF DIAGONAL COMPRESSION MEMEBER(METRES) =15
WIDTH OF FACET FERF.TO DIAGONAL MEMBER(METRES) =4 045
ANGLE BETNﬁEN FACETS(DEGREES) =173,

NO.OF FOINTS IN HALF MEMBER LENGTH(MAX.50) =15

NO.OF FOINTS ACROSS FACET WIDTH(MAX.100) =9

STOF' ..... -
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0001 -

0002
0003
0004
0005
00064

0007
0008
0009
0010

0011
0012

0013
0014
0015
0016
0017
0018
0019
0020

0021

0022

o000

FROGRAMME TO CA[CUIATF THE SHAFE OF THE FOLID IN A YOSHIMURA HUFhLF
FATTERN FOR THIN WALLED CYLINDRICAL SHELLS

FART 2 —--- SUCCESSIVE AFFROXIMATION FROCEDURE TO CALCUIATE BETTER
GUESSES

DIMENSION W(545,54)

CALL ASSIGN (15 /DX0:DATA3Z’)

DEFINE FILE 1 (15125Us12)

READ (171)XsYsALsNsMyDXs0IY

WRITE (7s1)XsY
1 FORMAT(32H LENGTH OF DIAGONAL COMF.MEMEBER=sF8.5s32H M. FACET WIDT
"1H PERF.TO MEMEER=»F8.5s3H M.)

WRITE (752)180.0-ALX360,0/3.1415927
2 FORMAT(22H ANGLE RETWEEN FACETS=3F&.255H DNEG.)

WRITE (7+3)NsDX

3 FORMAT(36H NO.OF FOINTS IN HALF MEMBER LENGTH=sI4s21H ~- INCREMENT

1 LENGTH=sF10.7y3H M,)
WRITE (7-4)MsD1Y

4 FORMAT(33H NO.OF FOINTS ACROSS FACET UIHTH-vI4v 21H ~— INCREMENT LE-
INGTH=yF10. 7;3H M)
ITi=0
ITNG=0

WRITE (7+7) _

7 FORMAT(27H$RELAXATION CONSTANT IS:~ )
READ (5:8)C

8 FORMAT(F4,2)
WRITE (759)

9 FORMAT (3OH$MAXTIMUM NUMBFR OF ITERATIONS=)
REALD' (35510)MAX

10 FORMAT(IS)

TUNTIO0Ud NOILV.IXOdddV JAISSEOOAS FHI ¥04 QESA rMvEIoud



Q023
0024
Q025
0026
Q027
0028
002%

0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
Q044
0045

00446
0047
048
Q049
Q050

$500

300

100

200

400

200
&

700
8200

CAOLL ASSIGN (27 NX0INATA47)

ODEFINE FILE 2 (1:5832sUs12)

READ (2710 ¢C(W(Ts ) o T=1yN+8)y J=lsM+4)

WMAX=0.0

ng 200 J=3sM+2

0O 100 I=3sN+2

WNEW= (- (T2 ) =4 kW CTHL oy =4 o kW CT=1 o S HW T2y 03 /TR 4

1 (WL s AR =4 XWCT s JHL) =4 XKWL s J=1 ) +W T J-2) ) 70 NCK4
D K CWCTHL s JHFL) =2 KW CTHL s D HWCTH Ly =1 =2 KW Ty 1) =2 XKW T 1)
F4WCT=L o Jt 1) =2 kW (T =1 s D HWCT~1 s J= 1)) ZOX/OX/VDY /DY I/ (b0 /TIXKK4
446, /NYXKAHE  /UX/DX/DY /0D

TF CARS(W (T J)~WNEW)~WMAX) 10051005300
WMAX=ARS(W(T s J)-WNEW)

K[ w2

E N L

WCT o DD=WTlo JIHOK(WNEW-W{T»J))

Wl =W 3y )

WI(N+3y ) =W Nty )

WIN+4y J)=W{NsJ)

no 400 I=3sN+4

WCT»1)=WCTs3)

W(TIsy2)=W(Ls4)

ITNS=TTNS+1

ITL=1T1+1

IFCITL-50)1000+,9005 1000

WRITE (796)ITNSyWMAX Kyl ' . '

FORMAT (3H INsI4»18H ITERATIONSy WMAX=sE10.356H AT I=yI3s7H AND J=
1+13) :

IT1=0 :

WRITE (2710 (CWCT s D)o I=loN+t4) s J=1 s ME4)

1000 IF (WMAX~=0.,000000001)80057005700

IF(TITNS-MAX)S500,8005800
END -

141



LENGTH OF DIAGONAL COMF  MEMEER= 0.,135000 M. FACET WIDTH FERF.TO MEMRBER= 0.04500 M.

ANGLE BETWEEN FACETS=175.00 DEG.

NO.OF FOINTS IN HALF MEMBER LENGTH= 1% -— INCREMENT LENGTH= 0,0050000 M.
NO.OF FOINTS ACROSS FACET WINTH= @ - INCREMENT LENGTH= 0,0030000 M.
RELAXATION CONSTANT I8:- 1.0

MAXTMUM NUMEBER OF ITERATIONS=20000

IN 30 ITERATIONSs WMAX= 0.204E~08 AT I= 14 AND J=
IN 100 ITERATIONSs WMAX= 0.198E-08 AT I= 14 AND J=
IN 150 ITERATIONS: WMAX= 0,204E-08 AT I= 14 AND J=
IN 200 ITERATIONSs WMAX= 0,180E-08 AT I= 12 AND .J=
IN 260 TTERATIONS, WMAX= 0.180E~08 AT I= 15 AND J=
IN 300 ITERATIONSs WMAX= O.1795E-08 AT 14 AND J=
IN 350 ITERATIONSy WMAX= 0,175E-08 AT 13 AND )=
IN 400 ITERATIONSy WMAX= 0.163E~-08 AT 15 AND J=
IN 450 ITERATIONS» WMAX= 0.157E-08 AT 13 AND J=
IN 300 ITERATIONS: WMAX= 0.157E-08 AT 13 AND =
IN G50 ITERATIONSy WMAX= 0,151E-08 AT 15 AND J=
IN 600 ITERATIONSy WMAX= 0.146E-08 AT 13 AND )=
IN 650 ITERATIONSy WMAX= 0,151E~08 AT AE AND =
IN 700 ITERATIONSs WMAX= 0.151E-08 AT 14 AND J=
IN 750 ITERATIONSy WMAX= 0.140E-08 AT 14 AND J=
IN BOO ITERATIONSy WMAX= 0.146E-08 AT 15 AND U=
IN 830 ITERATIONSy WMAX= 0.134E-08 AT 15 AND J=
IN 900 ITERATIONSy WMAX:: 0.,128E-08 AT 14 AND =
AN 9350 ITERATIONS, WMAX= 0.134E-08 AT 14 AND U=

I I I (O I O O

I A

IN1OQO ITERATIONSs WMAX= 0.12BE-08 AT I= 13 AND J=
IN1OGO TTERATIONSy WMAX= 0.122E-08 AT I= 14 AND J=
IN1100 ITERATIONS, WMAX= 0.116E-08 AT I= 13 AND J=
IN1150 ITERATIONSs WMAX= 0.116E-08 AT I= 15 AND J=

3

14 AND J=
13 AND J=

IN1200 ITERATIONSs WMAX= 0,116E-08 AT
INLR5O ITERATIONSs WMAX= 0,105E-08 AT
STOF -~ '
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» FROGRAMME TO CALCULATE THE SHAFE OF THE FOLD IN A YOSHIMURA BUCKLE fﬁ %

C PATTERN FOR THIN WALLED CYLINORICAL SHELLS oS

» PRINT DEFLECTIONS AND CALCULATE MOMENT S b

0001 DIMENSION W(54,%54) S b

0002 CALL. ASSIGN (1s'DIXOIDATAZ) R

0003 DEFINE FILE 1 (1512yUs12) g ¢

0004 READ (174)XyYsALyNsMsDIXs DY S =

0005 WRITE (7,13XsY 5

0004 1 FORMAT(32H LENGTH OF DIAGONAL COMP o MEMBER=3F8.5,32H M. FACET WIDT o

‘ IH FERF.TO MEMBER=yF8,5s3H M, ) —

0007 WRITE (7s3)NsDX - 3

0008 3 FORMAT(36H NOLOF FOINTS IN HALF MEMRER LENGTH=5 T4y 21H —~ INCREMENT g

1 LENGTH=»F10.7v3H M.) i

0009 WRITE (754)MsDIY o

0010 4 FORMAT(33H NO.OF FOINTS ACROSS FACET WIDTH=y [4521H ~- INCREMENT LE ]

INGTH=yF10.7s3H M,) 4 ' F

0011 WRITE (752)180.0-AL%360,0/3,1415927 o

0012 2 FORMAT(22H ANGLE EETWEEN FACETS=3F4.,2,5H NEG.) =

0013 WRITE (755) <

0014 S FORMAT (17H$FOISSON’S RATIO=) 2

0015 READ (5s6)ANU =

0014 6 FORMAT (Fé.4) &

0017 CALL ASSIGN (2,/DX0:DATA4/)

0018 DEFINE FILE 2 (1+5832,U512) %
0019 READ (271 CWCT s ) r T=1 s N+4) y Ji=1 s M44) _

0020 WRITE (7511) g

0021 11 FORMAT (28HOCURVATURES ALONG FOLD (1/M)) &
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0022
0023
0024
0025
00248

0027

0029
Q030

0031
Q032

0033
0034
0035
0034
0037
0038
0039
0049

0041
0042
0043

WRITE (7512)

12 FORMAT (3H IsAXs SHTRANS . » 4X s SHAXTAL)
TOTM=0.,0
[0 200 I=3sN+1
WRITE (7;13)I~2v2.*(w(194)ww(1v3))/DY/DYv(N(I+1v3)*2.*w(Iv3)
L+WT~193) ) 70X/ 11X

13 FORMAT (I3+2E11.4)
TOTMHTOTM*(E,*(“(Iv4)mw(1y3))/UY/DY+ANU*(N(I+393)"2‘*w(Iy3)
1+WCT~153))/0X/0X)

200 CONTINUE

WRITE (7913)N92*(H(N+2y4)“N(N+2v3))/DY/DYy(N(N+393)~2.*w(N+273)
THWON+L s 3) ) /X /X
TUTM:TOTﬁw(2.*(“(294)%“(293))/HY/UY+ANU*(H(393)%2.*”(2;3)
LWL 3y 70X/ NXy /2,
TOTMmTDTMw((M(N+2v4)«w(N+293))/UY/HY+QNU*(N(N+193)WU(N+293))
1/70X/0Xy /72,
WRITE (7510) TOTMXDXX%2.

10 FORMAT (34HOAFFLIED MOMENT/FLEXURAL RIGIDITY=5E11.4)
WRITE (7514) ‘

14 FORMAT (22HODEFLECTIONS IN METRES)
O 100 J=3sM+3
WRITE (7+8)J~-3

8 FORMAT (3HOJ=»y14) .

. WRITE (759) ((I-25W(IrJ)%1000,)sI=2yN+2)

9 FORMAT(3(3H T=9I3s3H W=yE11.,4,2X))

100 CONTINUE

END

otgg



LENGTH OF DOIAGONAL COMF.MEMRER= 0,15000 M. FACET WIDTH FERF.TO MEMRER= 0.04500 M.
NO.OF FOINTS IN HALF MEMBER LENGTH= 15 —- INCREMENT LENGTH= 0.0050000 M.

NO.OF FOINTS ACROSS FACET WIDTH= 9 - INCREMENT LENGTH= 0.00350000 M.

ANGLE BETWEEN FACETS=173.00 DEG,

FOISSON’S RATIO=.35

CURVATURES ALONG FOLD <1/M)
I TRANS . AXTAL
1 0.1008E4+02 0.2886E+00
0. S5880E4+01-0. 551 1E+00
0e3202E4+01L-0.51L1L1LEFOQ
0.29086E4+01L-0,4503E4+00

0.1984E+01~0.3990E+00
0.1739E4+01-0.3824E+00
0.1563E4+01~0.34652E4+00
0,1432E4+01~0.3471E4+00
0.+1333E4+01~0.3287E400
0.12539E+01-0.3113E400.
0.1205E+01~-0.,29462E400
0.1168E+01-0.,2844E+00
0.1147E401-0.2770E+00
0+1140E+01-0.,2745E4+00

DGR, OTO N D GEE

AFFLIED MOMENT/FLEXURAL RIGIDITY=-0.86435E+00

od &AdLA0 TVOIAUL

VHL0UdL

_Ll

Yd O &

SIDILOETAEA &1
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I

I

0]
3
&b
@
12
15

O W
3 We=
= QLAES501LE400
2 Q. 8197E4+00

e

ez s

I
11

DEFLECTIONS IN METRES

= (0.0000E+00
- 0,.3585E4+00
= 0, 6253E4+00
= Q.8018E+00
= QL P002E4+00
= Q.9314E4+00

0.218LE+00
0+4073E+00

0. 2152E4+00

0,945 7E4+00

GAB7EHO00
L7E4+00

=0, B7246E+00
= Qe 2H01EH00
= 0.9881E4+00

= 0. 6S543E4+00
= 0. APATE4A00
Z O 83'
() e G

:i+()0

0.1055E+01
0.1058E+01

= QW 977EEH00

0+1073E+01

= 0.1134E401
2 0. 11G4E4+01

0.,1090E4+01

= 0, 1090E4+01
= 0 1146E4+01
= 0, 1214401
= 0. 1259401

O 1274E401

= (0, 13098401
= Q. 1303E401
= Q1334401

O0+1377E4+01

= 0.1407E401
2 0.1416E4+01

¢ 0. 1527E401

i

EETEEE

[ O H

i

oo

ii

QW LERIEHOO
Q. 4584E 400
0.4693&6E+C0
0. 8427E+00

0.9176E4+00

Q0+2453E100

= 0L, 4948E+00
= 0L, 71G3E4+00

0. BIEPIE+00

= QL 9323EF00

= QL AZBPESH0O
= QL BPAZELO0
= QL 7788E+00

0. 2087E+00
Q2757400

= QL AG08E400
= Q. 7370EA40C
: QL B7Y4E+00

0.9891E4+00

= Q.1047E401

0.8678E+00

F 0+42107E400

0.1098E4+01

= 0.1 145E4+01

0. 10846E+01

2 0.1104E401
= Q+1170E401
= QW 1232401
= 0,1267E401

= 0L, 1305E4+01

0.1310E4+01

= 04 1349E401
= 0,1382E+01
© 0.1412E4+01

o nonou

it

i
i

HI

ot bt e

HE

W= O, L01L2E+01

i

it

i 1

e

]

8
11
14

.
(=

11
14

2

A

= 11

11
14

353.

: QLW 2458E+H00

2 QL 92BOE400

= 0Q.3193E400
= 0, G764E+00

0.7718E4+00

2 0L BPLOEH0D
2 QL. P423E400

= QL 4732E4+00
= Q. HHPLEH(
= 0,83

FE 400
0.937BEFOO

2 QL. PBLHOEHOO .

#= L bAEI7EROQO
= 0, 78AREFOQ
=0, PRLGE

= Q. 10LAE+00
= 0.10335E401

+00

- 0 8704E+00

s RAQL7E+0Q

AR 6;1044n+oi
= QL1 L1I8E+O]

O0.1151E+01

= O, 1OB4E+O 1
= O, 11236401
= Q0,1 193E40

0.1247E401

s Qe LR272E401

= 0. 1302E+01
= 0.1 320E401

O+ 1363E401

= 0L, 1399E+01
= 0.1413E4+01

= Q. 1322E+01
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APPENDIX F

PROGRAM LISTING AND TYPICAL OUTPUT OF PROGRAMS USED IN

CALCULATING THE FOLD SHAPE ALLOWING FOR MEMBRANE STRESSES




STeTe N

D002
Q003
AQVGA
OOGE
QGO &

Qo077

Q008
0009
Q010
a1l

ol
Q013
0014
0015
00164
Q00L?
0018

a02R
002%
QO30
Q031
0032
0033
D034

C

FROGR:
FATTERN FOR THIN WalLED VfifNUhlfﬁL SHELLS
FAORT Le-=0FEN FTLES aND ESTIMATE INITIAL VALUES
OIMENSTON UC19v13) sV 199130 v W19 5137
READ TN DaTa
WRITE(Zv 1)

1 FOR

DS 20X

Mﬁr\kaob}
U X /R0,
Y[k,
WRITE (7¢330sY

3 FORMAT (|8H LENGTH fNFRFMFNT-vFlO;/vIJHMovFﬁLLY WILTH:=
WRITE(Z95)

GOFORMATOIZHEANGLE BETWEEN FACETS(DEGREES) =)
RESTHCS s &) B

& FORMAT(F&.2)
WRITE(?s7)

7 FORMAT (1OHSTHICKNESS (MM, ) =)
REASD {3807

8 FORMAT (F8.%5)
T=T/1000,

O WRITE (7+9) )

S FORMAT (1I7H$POISEONS RATIQO=
REAT (Se8)ANU
AL (90, 0-AL/ 2. 0%F, L4LEY27/180.0
Call, ASSTGEN (1y "IXOSTIATAS ) .
DFFTNF FTIF 1 f1?1?vaT?}

T ](\() [ :
N(lvl)m..*H* INCALD
UL d =040
V(Ts1)=0.0
UlTs23=0.0
ViTv2=0.0

100 WLy 2)=NXSIN(AL)

Mk TO CalOULATE THE GMARE OF THE FOLD TN & YOSHIMURS BUSKLE

MhT'é“UbllNhTH OF OTAGONAL COMPRESSTON MEMBER(METRES) =)

8Ty 2HM LD

Y08 T

=SSN dLiv

Wb

SLVINDTIVO O

SEIId {40 @IV SLSSuNy TVILINI

*q6E



DGR DO 200 J=3Ey 13

D036 00 200 I=1.19

QQ37 UCT v =00

Q03B V(Tedd=0,0

0039 200 WTs D= =32 RDASINCALD _

0040 WRTTE (2710 CCCUCT o) sVUCT o Dy W) 3w Eslp 19) y sl e 130
0041 ENT :

TYPICAL OUTPUT TO OPENING PROGRAMVE

LENGTH OF DIAGONAL COMFRESSTON MEMBER(METRES) =.135

LENGTH INCREMENT= 0.0050000M.sFACET WINTH:= 0.04500M.,
ANGLLE EBETWEEN FACETS(DEGREES) =173.9

THICKNESE (MM )=, 1

FOTSEON/S RATIO= .35

*96¢



D001
Q0GR
QOGE
QOGS
OO0
G004

0007
0008
000%
0010
0011
0012
0013
0014
0015
0014
0017
0018

0019

DOR0
Q021
0022
Q023
0024
G025
Q026
0027

0028,

PROGRAMME T0 COLCULATE THE SHAFE OF THE FOLD IN & YOSHIMURA BUCKLE
FATTERN FOR THIN WALLED CYLTNORICAL LLg

FART &

GUES

SNETON U913 sV (195 135 v W (190 1)
CALL ABSION Ly "IXOIDATAS )
OEFINE FILE 1 CledZste 17
READ CL70)Xs Yol s le T o ANU
WRITE (731)Xsy ‘ » :
1 FORMAT(32H LENGTH QF DEAGONAL COMF . MEMBER=yIF8, 5y 32H M, FACET WIinr
LHOFERFLTO MEMBER=F8, %o 3H M) ‘ ’
WRITE (79 2)180,0-ALX360, 0/, 1415927
2 FORMAT C22H ANGLE BETWEEN FACETS= o Fé o 2 5H DG, )
WRITE (79301
A FORMAT (L8H INCREMEMT LENGTH=F10,7e3H M)
WRITE (754)T%1000, y ANUY
4 FORMAT (11H THICKNESS= 0 F8 .5y 21HMM, ~~FRISS0ON’ & RATIO=sF8.5)
TT1=0
TTNG=0
WRITE (7.7
7 FORMAT (I9HSEU sV AND W RELAXATION CONSTANTS AREt~ )
READ (5:8)C1,02403
8 FORMAT(3F4.2)
WRITE <2v%) -
FORMAT {BOMSMAKTMUN NUMBRER OF TTERATIONSG=)
CREALD (S 1LGIMOX :
1O FORMAT CI5)
CALl ABSIGN (25 'IXOINATAL” )
HEFINE FILE 2 (1s1482,Uy17)
REAT (2’1)(((U(Iyd)vU(IvJ)yN(IyJ))vleyIQ)meleE)
00 WMAX=0,0
UMAX=0,0
UMAX=Q, 0

IX0dddV HAISSEDOAS ZHJI 804 duSi HEEVEDOYT

NOILV:iE

H00Yd

YTF

p—
H

“LGE



e
3y

QOIO
D031
QO3
0033
10 .2)
QG3E
Q034
OG37
Q038
Q039
Q040
Q041
0042

0043

0044
0045

00446
0047
0048
0049

S 0050

Q05
(062
005X
0054
005G

00 500 d=%eil

00 100 I=3y17

DUX= T+l Jy~UCT=1 0 d3 372,

OUY= (UG s JELY=UL Ty 1) 3 /2

OUX= (U CTHL s J) =V T~1s ) /2

OUY:= (VT s JHL )=V T J=10 272

CEAUX Y (L CEA L s JEL =L CE Ly J=d =T 1w
ST E S INE 3D Rt LA I 5 R0 Eo A R R G S NN
OoWR Y= CWOTHL e JH L =W+l ek Ly =W T

H2WX D= (T Ly ) =2 o W T e DIHW T~ 09 D

O2WY 2= (WL s JHE ) =2 kW T s DD HW (T e =10

LAWY B (W Ty 42) =2 KWCT 9 JHI I +H2 oKW (T o J- 1) HW T o =220 /2

OAWXS= (W CTH25 ) =2 o RWCTHLy D42 kW T Ly D) =W T2y D) /2

DSNXQYﬂ(N(I+19J+1)w2+*w(lvd+1)+w(1~1yJ+1)ww(I+1ydw1)+2.*w(IwJM1)ww
LCE=tho 10072,

H3MXY2m(w(I+1;J+1)~2.*N(I+1vJ)+N(I+19Jw1)mw(I»1vJ+1)+2.*N(I~19J)mw
LT~ d=120/72, '

UNEw:((1.+ANU)*n2UxY/3,+U(1+1,J)+u<1w1yJ)+<1.wnNU)*(ucny+1)+u<IyJ
1~1))/2.+T*T*(n2uxvx(mzwv3+m3ux2Y>+m2wxz*<n3wx3+n3wxve))/13./n/n/n
2Y/7 (3 ~ANW)

UNEW= ¢ (Lo FANUD XDR2UXY /72 o4V Ty JHL AU T 9 S 10+ (L ~ANUY KV CTHL e IV T~
Lo} /2 FTRTR CO2WXY R (IEWX3H0BWXY 2 Y F Ry DR (TR Y3H03WxX2Y) 3 /12 /17071
273, ~ANW)

ANX:=DUX+ANUXDVY

ANY=DIVY+ANUXLX

ANXY=0UY 40V X : :

WNE W= (12 0 KIK (T2WX2KANXE (Lo ~ANLD XDRWXYKANXY +D2WY2XANY ) /T/T
T CT42 D048 kW CTHL s DB KW T -1 s D =WT=2y D) =W Ty I3
2)+8.*M(I;J+1)+8.#M(Ierl)MN(IyJwQ)wQ.*U(I+19J+1)“24*w(1+1yle)onX
AWUCT-1 g JHI) =2 RWCT~1 s J=10) 720,

TFCARS CUCT v ) ~UNEW) ~LIMAX ) 400 200 » 300

ALapUCT - e 13074,
DR VR QU RPN N A D I 3
1

AU e S 2 A

St

300 UMAX=ARS (UC(T v J) ~UNEW)

400
600

N

e g3

TF (ARG (U (T ) ~UNEW Y ~UMAX I 7005 700y 600
UMAX=ARS (Y (T y.J) ~UNEW)

*gG¢t



GONG
OOE?
_/\,ll\)
D059

GO&G

D053
D064
QO&HE
OQ&HA
O0&T
QO&R
QQ&Y
Q70
0071
Qo732
Q073
Q074
Q075
Q074
QO77
0078
Q079
Q0RO

Q081

ooaR
008X
0084
008
0086
DORY

TR00

00 'iN(IuJ}~MN!M) SWMAXIFO0 P00y BOO
800 .*‘, ERG CW T e ) —WINEW

=T J DL CUNEW LT e 3y )
U‘le;wU\LyJJ§C3$€UNHU AT w0
100 WOTs Jr=W Lo JIACTKRCWUNEW~W Ty 0D
UCL7yJ)=0,0
Ul8e J)m—-UlLdy.d)
Val8y =V lay.D
WilRBy Iy (Lo 00
200 WLP» =W S
o 1000 =319
W 1 y=WOT S
UCTe2)=U{Ls4)
UTy @)=Y (T 4)
W{Le2d=mW(Ts4)

1000 V(Te3)=0.0

TF CIT1-50) 1200y 1100 1200

1100 WRITE (7:4)TTNS UMAX.hlyleUMhvaQ L2eWMAaXy KA L3R

A FORMAT (3H INeTALLH LTNS UMAX=sEL10.3e3H AT e IZ v lHy s L2 &M UMAX= 10
1e3s3H ﬁTyIEleyvIZvéHyNMﬁvaﬁlOojvSH ATy T3vdHe » T2
ITi=G
WRITE (2713 Ul D s UT e D s WDy ) o Il 19y bmd s 13D

1200 TF (UMAX-0,000000001) 1300, 1500y 1500
1300 IF (UMAX~30,000000001Y 1400y 1500« 1500 .
1400 IF (WMAX-0.,000000001)1400, 1500 1500
1500 TF (CITNS-MAXIE0Oy LAQO s 1L &G0

14600 END

*64¢



L Ad:

LENGTH OF DIAGONAL COMF MEMEER= 0,15000 M. FACET WIDTH PERF.TO MEMEER= 0.04500 M,

ANGLE RETWEEN FACETS=173.90 DG . g
INCREMENT LENGTH= 0.0030000 M, E
THICKNESS= 0,10000MM.~~FOISSON’S RATIO= O, 35000 b
UsVeAND W RELAXATION CONSTANTS ARES:~ 1.051.091.0 3
. [ e

‘ ]
MAXTIMUM NUMRER OF ITERATIONS=20000 .3
IN SO ITNS UMAX= 0.363E~12 AT 65 6sUMAXs 0, 392E~09 AT 1y OrWMAX= 0.251E-06 AT 155 © g
IN 100 ITNS UMAX= 0.338E~12 AT 65 &6yUMAX:= O0+392E~09 AT 1y OsWMAX= 0.245E-06 AT 152 O ‘
IN 150 ITNS UMAX= 0.331E~12 AT 65 bsUMAX= 0+392E~09 AT 15 OsWMAX= 0.240E-06 AT 135y © @
IN 200 ITNS UMAX= Q.345E-12 AT Gy SyUMAX= 0. 393E-09 AT 1y OsWMAX= 0.234E-06 AT 15y © 5
IN 250 ITNS UMAX= 0.332E~12 AT &y 6y UMAX= 0+393E-09 AT 1y OsWMAX= 0. 2A9E~06 AT 159 0 [6))]
IN 300 ITNS UMAX= 0.334E~12 AT 75 5.UMAX= 0 393E~09 AT 1y OsWMAX= 0.224E-06 AT 15y O

IN 350 ITNG UMAX= 0,329E~12 AT 7y %5sUMAX:= 0.394E~-09 AT 1y OsWMAX= 0.21BE~06 AT 1%y 0O
IN 400 TTNS UMAX= 0,324E-12 AT 7y 5s;UMAX= 0.394E-09 AT  1» OvUWMAX= 0,213E~06 AT 15, 0O
IN 450 ITNS UMAX= 0.318E~12 AT 75 5sUMAX= 0+394E~09 AT 15 OsUWMAX= 0.208E-06 AT 155 0
IN 500 ITNS UMAX= 0.313E-12 AT 75 5sUMAX= 0.394E~09 AT 1y OsWMAX= 0.203E~06 AT 15, 0O
IN 550 ITNS UMAX= 0.308E-12 AT 75 5sUMAX= 0.393E-09 AT 1 OsWMAX= 0,198E-06 AT 15y 0
IN 600 TTNS UMAX=. 0.302E~12 AT 75 5sUMAX:= 0.395E-09 AT 15 OsWMAX= 0 193E-06 AT 15y 0
IN 650 ITNS UMAX= 0.297E-12 AT 7, SyUMAX= 0.395E-09 AT 1y OrWMAX= 0.189E~06 AT 155 0
IN 700 ITNS UMAX= 0.291E-12 AT 7+ 5yUMAX= 0+393E~09 AT 1y OsWMAX= 0,184E~06 AT 15y 0O

OILVIIX0UILY GAISSEODIN

IN 750 ITNS UMAX= 0.286E-12 AT 7 SrUMAX= 0.393E~09 AT 1y OsWMAX= 0.179E-06 AT 15y 0
IN 800 ITNS UMAX= 0.2B81E-12 AT 75 5,UMAX= 0.396E~09 AT 15 OsWMAX= 0,175E~06 AT 15y O
IN 8350 ITNS UMAX= 0,276E-12 AT 7 SrUMAX= 0.396E~09 AT 1y QsWMAX= 0.171E~06 AT 155 0
IN 900 ITNS UMAX= 0.270E-12 AT 7, 5yUMAX= 0.396E-09 AT 15 OsWMAX= 0.167E-06 AT 15, O
IN 950 ITNS UMAX= 0,265E-12 AT 75 5

; Gy UMAX= 0,3P96E~09 AT 1y OsWMAX= 0.162E~06 AT 15y ©
INIQOO TTNG UMAX= 0,259E~12 AT 7y 5yUMAX= 0+396E~-09 AT 1y OsUWMAX= 0.159E~06 AT 15y ©

d :

INL1OGO ITNS UMAX= 0.254E-12 AT 75 5yUMAX= Q.397E~09 AT 1y 0sWMAX= 0.154E-06 AT 15, 0 g
IN1100 ITNS UMAX= 0.249E-12 AT 75 5,UMAX:= 0¢397E~-09 AT 1y OsWMAX= 0.151E~06 AT 15, © 8
INL1GO ITNS UMAX= 0.244E-12 AT 75 5,UMAX= Qe397E~09 AT 15 OsWMAX= 0.147E-06 AT 155 0 g
IN1200 ITNG UMAX= 0,239E-12 AT 75 5,UMAX= 0.397E-09 AT 1y OsWMAX= 0.143F~06 AT 15, © =

. . w

*09¢



0001
Q002
aG03
3004
D000
Q004

Q007
Q08
0Q0%
Q010

QoL

oQLR
Q013
0014
00LS
Q014
0017
0018
0019

QO30

e FROGR&MME TO SALCUHLATE THE SHAFE OF THE FOLTD N & YOSHIMURG
™ FETTERN FOR THIN WALLED CYLINURICAL SHELLS
(1 FRINT REFLECTIONSG AND CALCULATE MOMENT

OIMENSTON UC19913) V{19913 W(19913)

CALL ASSTIGN (1y/DXOINATAS’)

DEFINE FILE L (1¢125Us12)

READ (171X e Yo AL T ToANU

WRITE (710X 0Y

LOFORMAT(33H LENGTH OF DIAGOWNAL COMP . MEMBER= F&, G 32 M. FACET WIDT

HHFERFLTO MEMBER=F@ 55 3H M)
WRLITE (733D
3 FORMAT (18H INCREMENT LENGTH=F10.7+3H M.J
WRITE (7:4)TX1000.ANU :
4 FORMAT (11H THICKNESS=yF8.S»2LHMM . ~~FOLISSON'S RATIO=«FH,5)
WRITE (752)180.,0-ALX3460,0/3. 1415927
2 OFORMAT(22H ANGLE BETWEEN FADETS=Fa&. 2y OH DEG
CAaLL ASSIGN (2y "DXOIDATASL )
DEFINE FILE 2 (1,1482,U.12) '
READ (2710 CCUCT 2 D)2V L e Dy WT s Do Il 199019 13)
WRITE (7s11)
11 FORMAT (28HOCURVATURES ALONG FOLD - (1/M))
WRITE (7212)
12 FORMAT (3H Ty AXs SHTRANSG . s 4X s GHAXTALD
TOTM=0,.0

PLCKLE

lr(

OG0 (HTITA

=

I4Lo

L §

TV A

\
Ll

SEL

*T9¢



Q023
Q024

Q002G
0026

0027

0028

Q029
0030
0031
0032
Q033

0034

QO3E
0036
0037
Q038
Q039
0040

Q041

0o 200 I=3s16
WRITE (79130 T2 2 % (W(LyA)~W(Ts3IN /0 /Mo (WTHL s3I ~2.XW Ty 3D
THWCT~13)) /7070
13 FORMAT (I3.2E11.4) '
TOTM=TOTM~ (2 KW Ts A ~WT e 32 /N/DHANURKCWCTHZ e 3 -2 0%kW (T v 3)
LHWCL~1 932 /0710
200 CONTINUE
WRITE (79 13015y 2K (W17 40 ~W (L7930 /N/Dy CWCLBs 3 -2 0 kW (179 3)
14+W e300 /70/70
TOTM=TOTM= (2 X (W2 4)~W (25 3)) /N/DHANUX W (Zy B2 0 XKW e 3D
LHW L3 Y/ D/ /2
TOTM=TOTM= (W L7 4)~WL7 93 /DA THHANUK (W LAy 3D~ W L7300
LAY/ 2
WRITE (7+10) TOTMXIKZD.
10 FORMAT (FAHOAFFLIED MOMENT/FLEXURAL RIGIDITY=,E11.4)
WRITE (7¢5) '
S FORMAT (38HO T U UCTsdd V(T ) CW(TeJdd)
WRITE (7:6)
6 FORMAT (LHO» 10Xy 3(2HM . v 9X))
[ 100 J=3y12
O WRITE (7+7)
7 FORMAT (1HO)
Do 100 I=2,17
100 WRITE (7s8)I-25J=3sUCLs ) sV (Ted)sW(Tyd)
8 FORMAT (2T3,3E11L.4)
N

*29¢t



LENGTH OF DIAGONAL COMF.MEMEER= 0,15000 M., FACET WINTH FERF.TO MEMRER= 0,04500 M.
INCREMENT LENGTH= 0.0050000 M.

THICKNESS= 0. 10000MM.~~FOISSON’S RATIO= 0.35000

ANGLE RBRETWEEN FACETS=173.90 DEG.

CURVATURES ALLONG FOLD (L/M)
TRANS . AXTIAL
0+ 11864E4+02-0.46044E4+00
0.6697E401-0.9433E4+00
0.+4444E4+01-0.7310E4+00
0.3323E401~0.6042E4+00
0.2688E4+01-0.5415E4+00
0,2286E4+01-0.,5037E4+00
0.+2010E401-0.4735E+00
0.1810E4+01-0.4449E+00
0.1662E4+01-0.4166E+00
0.1550E+01-0.,3892E+00
0+1466E+01-0.3641E4+00
04 1404E401-0.3427E4+00
0.1362E4+01-0,3264E4+00
0.,1338E4+01-0.3163E+00

15 0,1330E+01-0.312BE+00

SOWVNIUD M -

PN N

AFFLIED MOMENT/FLEXURAL RIGIDITY=~0,7412E+00
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[OITOTRTIEA 0 (T84

]
&

S

*¢9t
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LﬂbNbJ!-*O‘OCD\I&Ule?'JHO

:._’:._‘:—"_",—":—&

BRI O

J Uers.o

M.

0 0.0000E+00
0O 0.5724E-10
0-0.1309E~10
0-0.1182E~-09
0-0.2232E-09
0-043165E~09
0-0.3912E~09
0-0.4424E-09
0-0.4672E~09

0~0.4644E-09.

0~-0.,4348E~09
0-0.3804E~09
0~0.3050E-09
0-0,2129E~09
0-0.,1094E~09%
0 0,0000E+00

1 0.0000E+00
1-0,.8762E~10
1-0,1631E~09
1-0.2552E~09
1-0.3473E~09
1-0.,4279E-09
1-0.,4897E-09
1=-0.3280E-09
1-0.5401E-09
1-0.5251E-09
1-0.4839E~-09
1-0.4188E-09
1-0,3331E~09
1-0.2313E-09
1-0.,1185E~09
1 0.0000E+00

2 0,0000E+00
2-0.,1602E-09
2-0,3090E~09
2-0,4419E-09
2~0.5506E~09
2=0.6309E~09
2-0.6814E~-09
2-0.7019E~-09
2-0,6927E-09
2-0.6549E~09
2=0.5905E~09
2-0.5027E-09
2=0.3950E~09
2:-0,2721E~09
2-0,1387E-09
2 0.0000E+00

3 0.0000E+00
3~0.2348E-09
3~0.4479E~09
3-0.6255E~09
3-0.7592E~09

AR ED

M.

0.00GOE+00
0.0000E+00
0.0000E+00
0.0000E+00
0+0000E+00
0+0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.,0000E+00
0.D000E+00
0.0000E+00
0+.0000E+00

0.0000E+00
0+3630E~09
0.5723E~09
0.7122E-09
0.8223E~09
0.9106E-09
0.9787E~09
0.1029E-08
0+1064E~-08
0.1087E-08
0.1100E-08
0.1108E-08
0.1111E~08
O0+1113E~08
0.1113E~-08
0.1113E-08

0+0000E+00
0.3166E~09
0. 63“7F ~Q%

091H1E~09-
¥

041154540
0.1350E-08
0.1501E-08
0.1614E~08
0.1696E~08
0.1753E-08
0.1790E~08
0.1813E-08
0.1827E-08
0.1835E-08 0
0.183BE-08
0.1839E-08

0.0000E+00
0.3018E~09
0+6470E-09
0.9896E~09

0+1300E~-08

W(Is )

M.

0+0000E+00
0.1790E-03
0.3428E~-03
0.4831E~-03
0+6051E-03
0.7119E~-03
0.8053E~-03
0.8860E~03
0.+9549E~03
0.1013E~02
0+1060E-02
0.1098E-02
O0v1126E~02

0.1 146E~02

0.1158E-02
0.1162E~02

' 2660E-03
0. 3244E~03
0.4265E~03
0. 5386E~03
0.6464E-03
0. 7455E~03
0., 8339E~03
0.9112E~03
0.9776E~03
0,1034E~02
0.1079E~02
0.1116E-02
0.1144E~02
0.1163E~02
0.1175E-02
0.1179E~02

0.5321E~03
0.5506E~-03
0.6039E~03
0.6782E~03
0+7600E~03
0.8410E-03
0.9166E~03
0.9847E-03
0+1044E-02
0,1095E~-02
0.1137E~02
0.1171E~-02
0.1196E-02

0,1214E~02
0.1225E~02
0.1228E~02

0.7981E-03
0.8018E~-03
0.8267E~03
0.8709E-03
0.9268E~03



