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PREFACE 

The primary objective of the work presented 

in this thesis has been to obtain an understanding of the 

buckling mechanism in thin cylindrical shells when loaded 

in axial compression. It was hoped that this understanding 

could then be applied in developing a quantitative model to 

describe the behaviour. This could in turn lead to more 

satisfactory design conditions by linking the collapse load 

of a cylinder with defect size. The investigation grew out 

of an enquiry from industry concerning the buckling behaviour 

of the central column support for process thickeners. These 

columns were relatively thick walled shells subjected to 

combined axial compression, torsion and external pressure. 

These particular structures would yield before the 



deformations would be large enough for buckling to be a 

consideration. However, the nature of the buckling process 

must be understood to determine when it is important. 

In Chapter One the general nature of the 

known experimental buckling behaviour is described. The 

discussion is not limited to axial compression but includes 

torsion and hoop compression as well as combinations of all 

three. Experimental results are included that show the 

interaction between these modes and indicate possible 

weaknesses in existing design data. 

Chapter Two is probably the most important 

chapter of the thesis and forms the basis on which the 

remainder is built. In this chapter a new theory is presented 

to describe the buckling behaviour of cylinders. For this 

theory the cylinder (both in the pre-buckled and post-buckled 

state) is replaced by an equivalent space frame with the 

members tracing the folds in the Yoshimura pattern. The 

buckling problem is then reduced to a buckling analysis of 

the substituted space frame. The results from this analysis 

agree remarkably well with published information on 

post-buckling behaviour. 

In Chapter Three an examination of the 

Donnell equations is made. These equations were meant to 

describe the buckling and post-buckling behaviour of cylinders. 

It is shown that perhaps Donnell's membrane equations may be 



inadequate. It appears that second derivatives of out of 

plane displacements (curvatures) may need to be included 

as additional terms. 

A finite difference solution of the partial 

differential eauations is conducted in Chapter Four. This 

analysis has shown that inclusion of the curvature terms 

could account for a 15% change in calculated values even in 

the pre-buckling range for which the calculation was stable. 

Some refinements to the space frame theory 

are considered in Chapter Five. It is shown-that considering 

the member as initially curved leads to more confusion than 

any possible advantage it could have. However, the analysis 

allowing for the curved member is included since it is 

probably the most obvious condition where improvement 

would be expected. It is hoped that others will, profit 

by the experience and not follow the same reasoning. It 

is also shown that the aspect ratio of the lobes in the 

buckled cylinder varies with the radius to thickness ratio. 

When this variation is taken into account the agreement 

is not unreasonable between predicted buckling loads and 

published experimental results for cylinders. 

Chapter Six describes a new experimental 

technique that was developed specifically to measure the 

radial deformations and Imperfections of cylinders. It is 

based on the Ligtenberg-moire method. 



In Chapter Seven the experimental method is 

used to determine the size of some defects in experimental 

cylinders which appear to control the collapse. Allowing 

for these defects in the theory as developed in chapter five 

there is remarkable agreement between predicted and measured 

buckling loads. 
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CHAPTER 1  

INTRODUCTION  -- BUCKLING IN THIN WALLED CYLINDERS 

The work that is described in this thesis 

originated in an enquiry from industry about the design 

of cylindrical shells particularly with regard to buckling. 

The particular cylinder involved was relatively thick walled 

and would yield before the deformations had grown sufficiently 

for buckling to be a problem. However, when investigating 

the buckling situation the work described in this thesis 

evolved. 

A classical buckling load can be obtained 

for thin walled cylinders loaded in axial compression as 

explained in Timoshenko and Gere-(ref.1--pages 457-458). 

2. 



3. 

This classical analysis assumes axisymmetric failure in a 
or ,e'etafriga/a, pfive /0.07.Yer., 

ripple patternAand is expressedas:- 

dea
c 	

E,T  

R13(1-v2 )}*  

It is well known that the "ripple" pattern 

illustrated in figure 1.1 occurs only in relatively thick 

walled shells where yielding has first occured. If the 

cylinder collapses 'elastically then the buckle pattern is 

a series of diamonds as shown in figure 1.2. ,  Even more 

important is the fact that the nominal stress at collapse 

is considerably below that value given by equation 1.1. 

This discrepancy has led to a great deal of research both 

experimentally and theoretically. The experimental work 

is largely summarised in a paper by Harris et.al .(ref.2). 

That paper statistically analyses the available experimental 

data to establish 90$ confidence limits for design purposes. 

On the theoretical side, a major contribution was made by 

Von Karman and Tsien in 1941 (ref.3), based on eouations 

published by Donnell in 1934(ref.4). They considered the 

post buckling behaviour of the cylinder and allowed for 

large deflections by taking second order geometry terms 

into account. In their work the graph shown in figure 1.3 

was derived, here reproduced from FlUgge (ref.5). Many 

researchers refined the calculations of Von Kaman and 

Tsien and with the advent of digital computers the solution 

technioue could be extended. Yoshimura (ref.6) showed the 

diamond pattern obtained in buckling to be a folded, 

developable surface and eventually Hoff ,Madsen and Tiayers 

(ref.7) concluded that the whole Donnell-Von Karman and 

1.1 
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FIGURE 	1.1 
INELASTIC AXIAL RIPPLE BUCKLING 

No. 2011 ALUMINIUM CYLINDER R=12.7mm. T=0.5mm. 

FIGURE 	1.2 
ELASTIC DIAMOND PATTERN—AXIAL COMPRESSION 

MELANEX CYLINDER R=44-5mm. T-.7.0.1mm.  



NOMINAL AXIAL STRAIN 

FIGURE 	1.3 
THEORETICAL BEHAVIOUR OF AXIALLY 

COMPRESSED CYLINDER  

5. 
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Tsien approach was inappropriate. Using an'infinite series 

solution they came to some rather startling conclusions 

which are reproduced here,as follows. 

"In the limit as the number of terms in the 

series expansion) tends to infinity, the exact Yoshimura 

pattern is approached on the basis of an extrapolation 

of the results obtained with the aid of a digital 

computer. In this limiting case N(the number of 

circumferential lobes) approaches infinity, the amplitude 

of the displacements tends to zero, the Von Karman-

Donnell equations are rigorously valid, the T/R ratio 

approaches zero, and the value of the average axial 

stress capable of maintaining equilibrium in the 

postbuekling state is zero." 

Clearly a solution which leads to conclusions 

of this nature can not possibly describe the real 

situation. Anyone who has ever folded a sheet of paper 

into a Yoshimura pattern is well aware that the structure 

so formed has considerable strength. The theory developed 

in the next chapter is an attempt to overcome the 

difficulties mentioned above. It does appear to supply a 

reasonable explanation of the buckling behaviour of thin 

walled cylinders in axial compression. 

Before proceeding with that discussion some 

explanation of the general buckling behaviour of thin walled 

cylinders is necessary. Von Karman and Tsien in producing 



7. 
the graph shown in figure 1.3 proposed that an imperfect 

cylinder would follow the path shown by either curve A or 

curve B. Curve A represents a cylinder with a small defect 

while curve 7 represents a cylinder with rather large 

defects. In both cases the collapse load is considerably 

reduced from the theoretical value (the classical load). 

Thus defects in shape have a considerable influence on the 

collapse load of axially compressed thin walled cylinders. 

Buckling due to bending is very similar in 

nature to axial compression so that the same type of 

argument would apply. For failure due to torsion the 

reduction in critical stress (due to imperfections) from 

the classical value is not as severe but is still 

substantial. Collapse from external pressure loading is 

even less ausceptable to imperfections. Figures 1.4 and 

1.5 show the type of buckle pattern obtained in torsion 

loading and from external pressure. 

For the reader interested in further reading 

on the stability of shells two excellent review articles 

are available (refs. 8 and 9). 

In the buckling process, the diamond pattern 

is often seen to grow out of some imperfection. One or two 

diamond may aPpear together and then others form adjacent 

to these. Sometimes the first wrinkle may occur at the 

end support and move towards the centre of the shell. 

Often, it is possible to move the buckle pattern around 



B. 

FIGURE 	1.4  
MELANEX CYLINDER IN TORSION 

FIGURE 	1-5  
MELANEX CYLINDER EXTERNAL PRESSURE 



on the shell. Figure 1.6 shows the growth of the buckle 

pattern with increasing axial strain on a conical shell 

made of 0.1mm. thick melanex. The shell was 76mm. long, 

45mm. dia. at the all end and 106mm. dia. at the large 

end. The behaviour of conical shells is very similar to 

cylindrical shells in axial compression. In figure 1.6A 

an imperfection can be seen that serves as a nucleation 

Point for the diamond pattern. In subsequent photographs 

the diamond pattern is seen to spread from this point and 

intensify as the axial displacement is increased. 

Even though the large discrepancy is known 

to exist between theory and practice, cylindrical shells 

are used as structures, partiaularly in the aerospace 

industry. Thus design formulae must be available. One 

source of these formulae is Roark(ref. 10) but these 

formulae need to be treated with caution because of the 

age of the reference. Another, more modern source is 

Baker, Kovalevsky and Rish (ref. 11) which is based on 

the NASA "Shell Analysis Manual"(ref. 12). A summary of 

these design formulae is given in table 1.1. This last 

reference is essentially for use in the aerospace 

industries where shell structures would normally be more 

perfectly made than the fabricated one from which this 

investigation started. Thus the size of the imperfections 

here may make the design formulae useless. To test this 

hypothesis a melanex cylinder was made and tested. The 

manufacture of the cylinder was deliberately crude so 

that imperfections would be large. The cylinder was 

9 . 



10. 
TABLE 1.1  

. DESIGN FORMULAE FOR CALCULATIOF OF CRITICAL STRESSES 

Mode Source Formula Comments 

Axial 
Compression 

Roark = 	
E.T Classical formula-

"actual" value 	0.4 
to 0.6 of calculated 
value. 

Cr cr 
2)R 

Baker 
Kovalevskya- 
&Rish 

r.E.T tread from graph. 
allows for 
imperfections. cr= 

R /3757723  
Axial 

Compression 
Internally 
Pressurised 

Baker 
Kovalevsky 
&Rish. 

( 	r cr 	+ 
'as above. 

ACc  read from graph. cr= s 	, 
"1.3(1-1/ 2 ) 

liC e ) ER.T  

Torsion Roark ET 2/ 
rer=--7

(

y) 0.6 + 
1-V 	- 

d7.80.0.S9N41) iic,vbe rg.  

"Actual" value 	0.6 
to 0.75 of 
calculated value. 

Big:Ievsky 
&Rish. 

E.T 
Irer=C8-71. 8R Z4  
Z= L21---7 

C 	read from graph. s 

* 
ITT 	-V 

Torsion 
Internally 
Pressurised 

Baker 
Kovalevsky 
&Rish 

E.T 
ICr =c s---7r + R.Z4  

E.T AC 

ACs read from graph. 

s R 

External 
Pressure 

Roark = or 	 0.801- Cr 

1T2 N i %-- 1 4- 

(1-)2 ) 3  R2  

Baker 
Kovalevsky 
&Rish. 

K 	..2 .E  
,e _ 13 .4 	(TI2 Kp  read from graph. 
'cr 12 0...v2)'1,' 
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FIGURE 	1-6  
CONICAL SHELL IN AXIAL COMPRESSION 

UNDEFORMED SHELL 
SMALL AXIAL DISPLACEMENT 
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FIGURE 	1.6 C and D 
INCREASING AXIAL DEFORMATION 



1 3. 

FIGURE 1-6 E and F 
LARGE AXIAL DEFORMATION 
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127mm. long, 89mm. dia. and had a wall thickness of 0.1mm. 

A longitudinal seam was made by butting the two ends of 

the melanex together and lapping the joint with cellulose 

adhesive tape. The ends of the cylinder were bonded to 

brass reinforcing rings with contact cement. This cylinder 

collapsed elastically so that repeated tests were possible 

on the one cylinder. A simple loading rig was made 

(figure 1.7) such that the cylinder could be tested with 

combinations of axial load, torsion and internal vacuum 

since the magnitude Of the external pressure needed to 

collapse the cylinder was very small. The apparatus 

could also be internally pressurised to test the stiffening 

effect that internal pressure has on the .stability of the 

cylinder in axial compression and torsion. :Because of,the 

nature of the Apparatus the weight of the crosshead was 

always present as an axial load. Thus for torsion loading 

and hoop compression the measured values would be slightly 

lower than the actual critical loads. 

The measured nominal stresses at collapse 

are given in table 1.2 and compared with the values obtained 

from an application of the design formulae. In applying 

the design formulae values of Young's modulus and Poisson's 

ratio were required. Because of the nature of the test 

material a great deal of difficulty was experienced in 

measuring these quantities. Young's modulus was eventually 

measured at 5.6GPa. but this value could not be guaranteed 

to better than about 5%. Poisson's ratio measurements 

were hopeless so that a value of 0.35 was guessed. This 

value has only a small effect on the calculations so that 

large errors in its value can be accommodated with small 



Test 
Cylinder 

Sleeve 

Grease 
Seals 

1-1 mm Limit of travel 2 
of crosshead 

Crosshead 

Vacuum 
Connection 

Torsion 
Loading 

1 5. 

Axial Load 

FIGURE 1.7 
LOADING JIG FOR TESTING 
BUCKLING OF CYLINDERS 
IN COMBINED LOADING 



16. 
variation in the calculated value of buckling stress. The 

value of 0.35 was assumed on the basis that both persDex 

and araldite have values around this figure. 

A glance at table 1.2 will show that, as 

anticipated, the design formulae for axial compression 

gave values that are too large for this particular cylinder. 

Thus it could be assumed that the imperfections in shape 

are much larger in this relatively crudely made cylinder 

than the design formulae allow. In the case of torsion 

loading the design formulae could be considered as just 

adequate. Imperfections do not have as large an effect in 

torsion as with axial compression which could account for 

this improvement. With hoop compression, the design 

formulae appear quite safe. In this case imperfections 

have the least effect on stability. By internally 

pressurising, the stiffening of the cylinder for both 

axial compression and torsion greatly exceeded the design 

figures. The photograph shown in figure 1.2 is this 

cylinder under axial compression. The diamond pattern 

is well establiShed with the axis of the diamond at 

right angles to the more negative principal stress 

direction. In torsion loading a similar faceted pattern 

was obtained (figure 1.4) with the axis of the pattern 

again at right angles to the more negative principal 

stress direction. With internal vacuum (or external 

pressure) the more negative principal stress had rotated 

a further 45 0 and the axis of the buckle pattern was 

parallel to the axis of the cylinder (figure 1.5). 
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Figure 1.8 illustrates the buckling modes 

for various combinations of loading and in each of these 

photographs the principal stress directions are marked to 

illustrate the orientation of the buckle pattern. A summary 

of the measured nominal stresses at collapse for this 

cylinder in all the test conditions is given in table 1.3. 

These values are plotted in figures 1.9 and 1.10 to 

illustrate the interaction between the various buckling 

modes. In figure 1.9 the interaction between torsion 

and axial compression is illustrated while in figure 1.10, 

torsion is used as the parameter of the graph of the 

interaction between axial compression and hoop compression, 

i.e. figure 1.9 appears as the Y axis in figure 1.10. 

Baker, Kovalevsky and Rish ref. 11) give a 

general relation between buckling modes as, 

=1 	 1.2 

Where A,B and C are the ratios of the 

nominal stress at collapse in the combined case for a 

particular mode,to the nominal stress at collapse if the 

cylinder was to buckle in that mode only. They then go 

on to establish values for the indices in two combinations, 

ea 	7- 2 

dF"570. 	(Ti; )  =1 	  1.3 

and 
Oh 

Crac Crh c 

=1 	 1.4 
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o-0 ---- -0.86MPa. 0h-=0 	T= 0.39MPa. 

1 9. 

cra =-0.68MPa. all=-0-148MPa. 7=0-19MPa. 
FIGURE 	1.8 

MELANEX CYLINDER COMBINED LOADING 



cr0=-0•68MPa. 0)-1 7::- 0-044 MPa.  7-=0•78MPa. 

20. 

o-a 7---0-68MPa. a'h=-0 -201 MPo. T=0 
FIGURE 	1.8  

MEL ANEX CYLINDER COMBINED LOADING 



cr0 =-0-05MPa. crh= -0.113 MPa. 7'=0.88MPa. 

a--0 r--1.17MPa. 0--h =+0-179MPa. T=1•17MPa. 
FIGURE 1.8 

MELANEX CYLINDER COMBINED LOADING 



TABLE 1.3 
	 22. 

Eiciria STRESSES AT COLLAPSE FOR CYLIEDER EO.I 

cra  crh 
• 

7" A1  A2 A
3 

A
4 

TIPa MPa rPa 

-1.16 0 0 1.00 1.00 1.00 1.00 
-0.88 0 0.19 0.79 0.84 0.79 0.84 
-0.86 0 0.39 0.89 0.99 0.89 0.99 
-0.75 0 0.58 0.98 1.10 0.98 1.10 
-0.44 0 0.78 0.99 1.09 0.99 1.09 
-0.05 0 0.98 1.00 1.00 1.00 1.00 
-0.05 -0.231 0 1.00 1.00 1.00 1.00 
-0.96 -0.144 0 1.04 1.04 1.16 1.16 

-0.68 -0.148 0.19 0.90 0.95 1.01 1.06 

-0.68 -0.144 0.39 1.01 1.11 1.11 1.20 

-0.68 -0.096 0.58 1.05 1.17 1.13 1.24 

-0.68 -0.044 0.78 1.22 1.33 1.25 1.35 
-0.68 -0.201 0 1.05 1.05 1.17 1.17 

-0.40 -0.201 0 0.94 0.94 1.01 1.01 

-0.40 -0.192 0.19 0.94 0.99 1.01 1.06 

-0.40 -0.166 0.39 0.95 1.05 1.02 1.11 

-0.40 -0.153 0.58 1.08 1.20 1.15 1.26 

-0.40 -0.105 0.78 1.18 1.28 1.23 1.33 
-0.05 -0.231 0.19 1.04 1.09 1.04 1.09 

-0.05 -0.205 0.39 1.04 1.14 1.05 1.14 

-0.05 -0.179 0.58 1.11 1.23 1.12 1.23 

-0.05 -0.135 0.78 1.19 1.30 1.20 1.30 

-0.05 -0.113 0.88 1.27 1.34 1.27 1.34 

-1.95 +0.179 0 

-1.74 +0.179 0.39 

-1.67 +0.179 0.78 

-1.17 +0.179 1.17 

-0.82 +0.179 1.56 

-0.12 +0.179 1.76 



x unpressurised 
o 0.4 k Pa Internal 

Pressure 

21. 

NOMINAL SHEAR STRESS AT FAILURE (MPa) 
0•5 	 1.0 	 1•5 

FIGURE 	1-9 
BUCKLING STRESS STATE DIAGRAM FOR AXIAL 
COMPRESSION - TORSION INTERACTION IN FIRST 

MELANEX CYLINDER  
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CIRCLES {( 	)2+ (p)a)1 +( -215  = 1 
ac 	hc 

xr=0 
OD= 0.19 MPa 

r 0.39 MPa 
a = O. 58 MPa 

T. 0-78MPG 

NOMINAL HOOP STRESS AT COLLAPSE (MPG) 
-0-2 	 -0-1 

FIGURE 110  
BUCKLING STRESS STATE DIAGRAM  

INTERACTION OF BUCKLING MODES- CYLINDER No 1  

24. 
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Equation 1.3 is plotted as the curved line 

in figure 1.9 for both the unpressurised and the pressurised 

conditions. Immediately, it is apparent that some of the 

test points were well inside this curve. Thus it was 

considered that perhaps the formula 1.3 may not be completely 

safe. In figure 1.10 the combination of equations 1.3 and 

1.4 given below was plotted as the series of straight 

lines. 

	

Cra 	10 .2 	crh  
= 1 

( 7.7.7) 

	

drac 	"re 

Here it can be seen that the only test 

points to fail this condition are those on the Y axis, 

i.e. those that had already failed the condition given 

by equation 1.3. Thus it was apparent that for this 
5 

cylinder at least, equation 1.* was very conservative. 

In plotting this and all other curves ea
c was taken as 

the value measured in axial compression alone. elle  and 

7' 

 

were based on the values measured with internal vacuum 

combined with the weight of the crosshead only and the 

combination of crosshead weight and torsion loading. 

So as to more nearly represent the actual 

combined loading conditions the following relations were 

considered. 

	

Gra  2 	as 2 	le  2 
1() 	(—) + (---) =Al 	 1.6 

	

c 	hc 	7C 

	

2 	tic 21* 	le  
+ 

	

he 	

+ (7.7) 	= A2 	 
fc 	

1.7 

1.5 
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f 
cra  1•5 	cell  1.10.667 

+ 
uac 	

de 
-c 

= A3 --- 1.8 

oh  1.5 

	

 
+ 

eh 	f 1.5'0.667 	7,  1.5 
(—)  

wa 	eh 	
+ 	= A4 --- 1.9 

rc 

. In these equations the quantities A1,A2 1 A3 

and A4 represent the goodness of fit of the relation to 

the actual loading condition. If the relation was to 

truly represent the buckling state in the combined mode 

then the value of the constant would be unity. Because 

of the dOubt observed in the square law relation for torsion 

axial compression interaction it was necessary to consider 

a relation with a lower index. Similarly, the linear 

relation for axial compression.- hoop compression 

interaction was observed to be very conservative. Thus , 

higher power relations were considered necessary. These 

considerations account for the four equations given above. 

Equation 1.7 is plotted as a series of circles in figure 

1.10 for A2 equal to unity. Clearly this relation is not 

an unrealistic relation for the combined loading conditions. 

In table 1.3 the values of A1 l A2,A3 and A4 are given for 

each of the collapse conditions measured. 

Because of the apoarent discrepancy between • 

measured conditions and published information several 

more cylinders were made and tested in the combined load 

state. Details of these cylinders and the collapse loads 

in the independent buckling modes are listed in tabl 1.2. 



For all the remaining cylinders an attempt was made at 
2 7. 

manufacturing more nearly perfect cylinders than the first 

cylinder tested. In the case of cylinders nos. 2 to 9 

the seam was made again as a butt joint with cellulose 

adhesive tape overlapping the ends. rowsver the material 

was first wrapped around a mandrel to keep the edges flat 

and straight and avoid obvious wrinkles along the seam. For 

cylinders nos. 10 to 15 another important improvement was 

made in that instead of a butt joint a small overlap of 

cylinder material was provided and covered with cellulose 

adhesive tape. Because of the method of fixing the 

cylinder to the brass end support rings it was found to be 

impossible to provide a satisfactory glued longitudinal 

seam. Three materials were used although it is understood 

that mylar and melanex are different trade names for 

effectively the same product. Because melanex was considered 

to be a less than ideal test material (low Young's modulus 

and low creep resistance) some cylinders were also made 

from brass shim. These brass cylinders were found to be 

even less satisfactory in practice though useful results 

were obtained from them. The shim as supplied had a large 

number of wrinkles forming rather severe imperfections. 

With the first collapse of these cylinders -  some permanent 

damage was observed which appeared to increase the size of 

the imperfections and reduce the buckling load when the 

cylinder Was retested. However after several applications 

of load, the load carrying capacity stabilised and it is 

this stabilised figure that is given in table 1.2. These 
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cylinders were loaded first in axial compression and then 

in torsion. The same type of phenomenon was observed in 

torsion but subsequent loading in axial compression appeared 

to be unaffected. A similar effect was also detected with 

hoop compression. Thus it would seem that the permanent 

damage sustained by the cylinder served to increase the 

size of the initial imperfections but the imperfections 

controlling each buckling mode appeared to be independent. 

Cylinder no. 4 (the thick brass cylinder 

and cylinder no. 10 (the mylar cylinder,i.e. thickest 

plastic) were both so severely damaged after the first 

loading that no further testing was possible. 

An interesting phenomenon was observed 

with the melanex cylinders. Sometimes the results appeared 

to be a little suspect, as though the cylinder had suffered 

a small amount of permanent damage. In such cases the 

tests could be repeated after a short interval because 

the melanex was able to recover its initial shape. 

From table 1.2 it can be seen that it would 

be wise not to use the formulae from Roark for design in 

axial compression or torsion. Both Roark and Baker, 

Kovalevsky and Wish appear to be satisfactory in hoop 

compression. In torsion the design criterion ofBaker, 

Kovalevsky and Rish appears to be satisfactory although 

two cylinders failed at loads less than the design figure. 
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These were the brass cylinders which had already undergone 

some permanent damage so it is not surprising that they 

failed at a lower figure. In axial compression the Raker, 

Kovalevsky and Rish design condition was not always met. 

It is interesting to note, however, that for the later 

cylinders where the manufacturing technique had improved 

their criterion was satisfied. This indicates the importance 

of the magnitude of the imperfections. 

The results of the collapse tests on these 

cylinders are summarised in tables Al to Al2 (Appendix A). 

Figures Al l A2 and A3 show the axial compression-torsion 

interaction for the three basically different length to 
/'' the eyi 	inves744a 7‘8,1 

radius ratios. From these graphs it can be seen that 4  

length has virtually no effect on the collapse condition. 

Also some doubt must exist about the square law relation. 

The power index of 1.5 appears to be a more satisfactory 

relation though it seems that different cylinders could 

possibly follow different rules. An explanation for this 

may be in the measurement of the pure axial compression 

load and pure torsion load. However, these loads and the 

hoop compression load were checked many times throughout 

the duration of the test on each cylinder so that they 

would be well established. This procedure ensured that 

these values were established in the worst case to within 

5%. However, combined load measurements in some cases 

may have been in error by up to about 10% of the 

independent critical load. 
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The combined axial compression, torsion 

and hoop compression buckling conditions are presented 

for these cylinders as figures A4 to A14. As well as 

cylinders nos. 4 and 10 which were permanently damaged 

on first loading, there is no combined loading graph for 

cylinder no.11. This was because cylinder no.11 also 

suffered some severe damage before hoop compression tests 

could be conducted. Cylinder no. 6 also suffered some 

permanent damage early in the testing cycle thus severely 

limiting its usefulness. In all these graphs circles 

are drawn representing the square relationship between 

hoop compression and axial compression. In some of them 

the relation for a power law with index of 1.5 is also 

plotted. 

Some interesting observations can be made 

from these graphs. 

The linear relation between the two compression 

modes as recommended by Baker,Kovalevsky and Rich is 

obviously very conservative and design savings can be 

achieved over their criterion when combined loading is 

present. 

The square-square relation (eouatiOns 1.6 and 1.3) 

appeared to be satisfactory for some cylinders but not for 

others where the index of 1.5 was more satisfactory. This 

change appeared to be concerned with the cylinder behaviour 

as a whole and not just with a scatter of results. It is 

possible that the quality of the seam may have had something 

to do with this change. The situation also appeared to 

occur to a lesser extent with axial compression, torsion 

interaction (see figure A3 in particular). 
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3. rylinder no.15 was perhaps the best manufactured 

cylinder and by this time the testing procedure was also 

well established so that goOd reliable results were obtained. 

It is interesting to note that in figure A14 the test 

points appear to follow a distinct pattern which is 

slightly conservative when compared to a souare—souare 

relation. In fact it is possible to infer from figure A14 

that two separate conditions could exist providing two 

intersecting curves. These conditions correspond to 

basically an axial compression failure with the collapse 

load modifiOd by the hoop compression and vice versa. 

At about the point that these two conditions would intersect 

on the graph a physical change in the buckling mode was 

detected during the test. Raving observed this phenomenon 

with cylinder no.15 a review of the remaining graphs 

showed that a similar trend may have occurred earlier 

(see in particular graphs A6 rA7,A1l and Al2 ). No 

attempt has been made to statistically analyse these test 

results. Such an analysis would be meaningless because 

of the basic change in the nature of the interaction 

conditions between cylinders. 

These tests on cylinder - collapse in combined 

loading serve to illustrate the difficulties associated 

with this topic. A great deal of the scatter is associated 

with shape imperfections in the cylinders. It.Was also 

pointed out earlier in the chapter that the Von Kaman and 

Tsien approach was inappropriate. In the ensuing chapters- 



32. 
theory is developed in an attempt to satisfactorily describe 

the collapse of cylinders in axial compression and to 

correlate this theory with laboratory measurements. The 

investigation here is limited to axial compression only. 

Combined loading conditions must be considered as scope 

for further expansion of the work. 



33. 
NOTATION—CHAPTER 1  

Young's modulus. 

Cylinder length. 

Cylinder radius. 

Wall thickness. 

Poisson's ratio. 

(ra 

	

	Nominal axial stress at collapse in combined mode. 

Nominal hoop stress at collapse in combined mode. 

le 

	

	Nominal shear stress at collapse in combined mode. 

Nominal, axial stress at collapse when loaded solely 
C 

in axial compression. 

hc 
Nominal hoop stress at collapse when loaded solely ce 

in hoop compression. 

Nominal shear stress at collapse when loaded solely 

in torsion. 



CHARTER 2 

 

HW  THEORY 
C. 	 



CHAPTER 2  

A - PEW THEORY FOR THE BUCKLING OF THIT CYLINDERS IT  

AXIAL CONPRESSION 

In the preceding discussion it was pointed 

out that the usual Von Karman and Tsien approach to the 

solution.of the buckling problem was found by Hoff,Madsen 

and Mayers to be inappropriate. For many years a large 

number of researchers have endeavoured to find a 

satisfactory description of the collapse behaviour of 

cylinders in this mode but all efforts have been in vain. 

.Esslinger and Geier (ref. 13) sum up the situation when 

they state. 

"The history of the investigations on the 

postbuckling behaviour of thin walled cylindrical shells 

under axial load can be compared to that of the days of 

35. 
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Gold Rush in Wild West, with seekers of El Dorado 

finding some small prize amidst much disappointment 

but with unshakable hope." 

In spite of this background a new theory is 

advanced in this chapter for the buckling of cylinders in 

axial compression. This theory appears to offer a 

Satisfactory explanation of a great deal of the buckling 

(and postbuckling) behaviour of thin walled cylindrical 

shells loaded in axial compression. It was developed 

primarily from a consideration of the geometry of the 

Yoshimura buckle pattern and achieved through the manufacture 

of a number of models folded from sheets of paper. The 

development'of this theory is an excellent example of the 

importance of models in an engineering investigation. 

When a sheet of paper is folded into the 

shape of a Yoshimura pattern the model obtained is very 

definitely a structure capable of sustaining a substantial 

axial load. This observation is contrary to the conclusions 

reached by Hoff, Madsen and Mayers. One explanation for 

the discrepancy that has (in the Past) been proposed is 

that the folds in the Yoshimura pattern have a certain 

bending rigidity and it is this action that supports the 

load. Certainly the bending action, by itself, cannot 

support the load since if a piece of paper is folded into 

a Yoshimura pattern with two lobes around the circumference 

the model shown in figure 2.1 is obtained. This model can 

easily be interpreted as a series of tetrahedra joined by 
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FI G U RE  2- 1 
Y O SHI MURA PAT T E RN  W I T H 
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hinges. The hinges have almost no strength in bending 

but the tetrahedra themselves are reasonably robust 

structures. Thus shell bending does not explain the load 

carrying capacity in the postbuckled shape. 

In a cylinder buckled into a true Yoshimura 

pattern and carrying some axial load each of the flat 

facets will have some stress distribution. If we consider 

any two adjacent facets then any stress in one facet 

perpendicular to the common fold will be matched by a similar 

stress in the adjacent facet. Thus a net radial force 

would exist along the fold and this force could only be 

supported if the two facets were considered collectively 

as an extremely wide flanged beam in bending. Clearly, 

the structure could not support a substantial load in this 

manner so we can conclude that the stress in the facets 

perpendicular to the folds is negligible. 

Obviously, if there is very small stress 

in the facets perpendicular to the folds then the load 

must be carried by stresses parallel to the folds. Some 

distance away from the fold these stresses would be relieved 

due to the flexibility of the shell. Thus the load is 

carried principally along the folds and the structure can 

be considered as a space frame with slender members located 

along these folds (figure 2.2). The members would be wide 

flanged angles effectively pin-jointed with the load 

applied through the corner of the angle. -  It has already 

been demonstrated that the folds have very small strength 

in bending (figure 2.1) so the assumption of pin ends is 

reasonable. 



FIGURE 2.2 
SPACE FRAME MODEL 

39. 
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The geometry of the space frame is illustrated 

in figure 2.3 and from this geometry the following relations 

can be derived. 

fiS 
211 

 

2.1 

  

Axial length of 

facet (DE) 

Axial deflection 

(unloaded) 

Li 2 (1-cOs(A/2)r  = 	 -- 2.2 e.L2 (l+cos(A/2) 

L2 Li 2  (l-cos(S/2)r  = 	- L211 - (77E7) (l+cos(0/2)) 

   

2.3 

   

The angle (Q) between adjacent facets along the diagonal 

can be shown to be 

= 2.cos-1 Isin(R2) 
	

Li N 
.COSt0/4)  7717' 
  2.4 

From a consideration of axial equilibrium we can calculate 

the force in the diagonal members. 

Li N
2 

P 	1 4'  (77E2  f = 2.11 	Ll  1 2  (l-cos( 2)  1 ( 2.12' (1+cos(0/2) 

And from radial equilibrium at a node we obtain. 

- 
P2 	

_ 	P1  
2.6 2 1  Lo  

(l+cos(4/2)) (e) + i 
tl 

Thus for a given axial load on the cylinder 

(P) the load in the diagonal member (P1) is of the same 

sign (both compressive in a buckling situation) while the 

P1 



FIGURE 2.3 
SPACE FRAME REPRESENTATION OF 

YOSHIMURA PATTERN 

41. 
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load in the tangential member. is opposite in sign. Since 

the space frame has compression members these may in turn 

collapse through buckling. Suppose AC (figure 2.3) is to 

collapse through buckling then all the other members 

remain somewhat in their original -positions but AC vanishes 

and in its place there is a new member FE. The angle 

between the facets HAD and ABC becomes 180 0  so that this 

member also vanishes and we are left with another form of 

Yoshimura pnttern with larger facets ( a second buckling 

mode ). The members HF and HB are compressive members and 

both can be shown to support the same load and both have 

the same angle between the facets. The tensile member is 

F. Figure 2.4 shows a series of paper models. On the 

left is the conventional Yoshimura pattern with K=16. 

The second model is the corresponding second buckling 

mode assuming the entire cylinder collapses into this 

shape. Obviously the compression members in this second 

mode can buckle but since both carry the same load the 

long member will collapse first. The resulting buckled 

shape is similar to the first form but with half as many 

facets. The procedure can be repeated until complete 

collapse has been achieved. In this case N=2 which is 

flat because L1=2.L2. 

Two significant changes in geometry occur 

in the formation of this second mode. Firstly, the cross 

section of the pattern is no longer a regular polygon. In 

collapsing member AC (figure. 2.3),  A and C both move closer 

to the axis of the cylinder and points F andR move outward. 
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Secondly, there is a rotation of one end of the cylinder 

relative to the other. In the case of the second and 

sixth models in figure 2.4, this rotation is clockwise 

when viewed from on top. 

In general, the second mode described here 

is not observed when testing cylinders in axial compression. 

Ifowever some evidence of its forming does exist. 7,sslinger 

and Geier (ref. 13) report that in testing very short 

cylinders with the ends free to rotate a pattern was 

obtained of this forth (their Kreutzberg pattern). In 

heavily deforming cylinders it is common to see the diagonal 

tension member between two facets. In figure 2.5 two such 

diagonals are evident in a shell made from melanex. 

Clearly, the shell has been restrained from overall rotation 

so that a clockwise rotation in one section of the shell 

must be balanced by a corresponding anticlockwise rotation 

in another. To test this principle further, several 

models of the YoshimUra pattern were made from melanex 

and dead weight loaed. Typical of the results obtained 

is the buckle pattern shown in figure 2.6. Here, both 

the second buckling mode and the next standard Yoshimura 

pattern have formed on one side of the structure. This 

has led to a tilting of the free end. Thus it would seem 

that cylinders which are not restrained to move axially 

must fall over sideways once buckling has commenced. 



FIGURE 2.5 

BUCKLED MELANEX CYLINDER 
WITH DIAGONALLY ORIENTED FACETS 

45. 
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FIGURE 2 - 6 

COLLAPSED MELANEX MODEL 
OF YOSHIMURA PATTERN  
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So fax this discussion has centered about 

the collapse of structures which are true Yoshimura patterns. 

It is possible to consider a cylinder as a Yoshimura Pattern 

with a very large number of facets and a corresponding 

large number of links in the space frame, each with a 

very short length. The collapse of these links could 

continue until we have the pattern that is so readily 

recognised. Unfortunately, boundary conditions on the 

cylinder do not permit such an idealised picture. The 

ends of the cylinder are usually restrained to be 

approximately circular and some transition is necessary 

between the Yoshimura pattern that may develop in the 

centre and the circular ends. Two posfAbilities for this 

transition are shown in figure 2.7, both of which can be 

seen in Practical situations. 

On the left of figure 2.7 is shown a paper 

model which has been folded so that there are four lobes 

in the buckled pattern at the centre of the tube, with a 

transition to eight, sixteen and thirty-two. This type of 

pattern is often seen in cylinders that have been 

substantially compressed after buckling has been first 

observed. 

The model on the right of figure 2.7 

illustrates a condition that occurs with somewhat less 

compression though still substantially more than is required 

to buckle the cylinder. Yhe transition here is directly 

from F=4 to 1=32. It can be seen that there is a 
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flattening of the small facets near the end of the large 

facets. Thus the small facets would be more uusceptable 

to collapse in this area. Also, in this free form model, 

the ends are not flat. It is actually sitting on four 

points equally spaced between the apexes of the larger 

lobes -. The corresponding increase in load in these areas 

would promote collapse of the small facets between the 

larger ones. Thus it is possible to infer that once the 

buckle Pattern has been formed it can grow to cover the 

entire cylinder. 

The discussion to this point has been 

concerned with Yoshimura patterns spread over the entire 

cylinder and the simultaneous collapse of a number of 

column members in the resulting space frame. Obviously, 

the loading on the cylinder would not be completely uniform 

and one member would collapse before the remainder. Should 

this collapse be inelastic then the dimple so formed would 

remain fixed in position and the remaining compression 

members would progressively collapse away from that 

location. Thus the buckle pattern could be seen to grow 

from an initial dimple. In the case of an elastic collapse 

of the compression member the dimple pattern can move 

around on the cylinder and take up a position of lower 

energy before any more diagonals collapse. Apparently 

this lower energy position would be with all dimples of 

equal size and with the dimples moving away from the fixed 

boundary (i.e. the ends). 



50. 
For this reason a cylinder with a buckle 

pattern of, say 16 lobes would not collapse directly to a 

Pattern of 8 lobes but would collapse progressively through 

15,14,13 etc. AlsO, a buckle pattern with N lobes in it 

would in general require less effort to collapse the 

diagonal compression member than to extend the buckle 

Pattern over the rest of the surface. Thus once a column 

member has been elastically collapsed a buckle pattern 

generally forms in the centre of the cylinder which has a 

length such that there is only one diagonal compression 

member. This type of pattern is illustrated by the very 

familiar model shown on the left of figure 2.8 (paper 

model) and in figure 2.9 (melanex cylinder with N=12). 

Esslinger and Geier term this type of buckle pattern a 

two tier pattern. In fact it has a length corresponding 

to just one compression member (and two tension members). 

Since we are concerned with the collapse of the compression 

member it would seem to be preferable to call this a one 

tier pattern. Their interpretation of a one tier pattern 

is actually a pattern where the buckling interferes with 

the fixed boundary, i.e. it is a pattern controlled by 

the boundary (see figure 2.10). 

If the collapse of the diagonal compression 

member is considered in this model then the situation shown 

on the right of figure 2.8 can be envisaged. Here a 

diagonal tension member has been formed and the compression 

members appear to have vanished. Thus the corncrs joined 
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54. 
by the tension member would be quickly brought together. 

If the collapse is elastic then the height difference 

would be evened out and a similar pattern formed with. one 

less lobe. However, should the cylinder be relatively 

short then on bringing the two corners together, the 

buckle pattern would interfere with the end boundary and 

be somewhat inelastic. The result would be that the 

pattern Would spiral around the cylinder; this situation 

is also often seen in shortish cylinders. Figures. 

2.11 and 2.12 show buCkle patterns from advanced stages 

of collapse. In figure 2.11 (N=6) an extra facet has 

formed adjacent to the main buckle pattern which is the 

first stage of spreading of the pattern. In figure 2.12 

(a very advanced stage of collapse) the buckle pattern is 

spiralling around the cylinder. There are also smaller 

facets present at the ends which are approximately half 

the size of the facets in the main body of the pattern. 

Obviously, in considering true Yoshimura 

patterns and these paper models, the buckled shape is a 

stable configuration and one has to consider load reversal 

rather than unloading. The major difference between real 

cylinders and the models in this case is probably due to 

the small amount of bending rigidity at the corners. 

In compressing a Yoshimura pattern it has 

been demonstrated that there are diagonal compression 

members andtangential tension members. In reversing the 
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FIGURE 2.11  

PROGRESSIVE BUCKLING IN  
MELANEX CYLINDER 
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57. 
load the diagonals become tension members and the tangential 

members are in compression. Thus the tangential member 

can collapse as a column in buckling and the situation 

shown in figure 2.13 can arise (here shown as a Imre 

Yoshimura pattern). The sequence of models in this 

photograph are T=8, second buckling mode, N=4 and a model 

representing the collapse of the tangential members. This 

last model has been folded to form a regular octagonal 

prism (for clarity) but obviously, it would in fact revert 

directly to a cylinder. In an actual cylinder the bending 

rigidity of the shell could force an intermediate pattern 

into the shell with a higher number of lobes. 

Now that the buckling behaviour of an 

axially compressed cylinder has been explained qualitatively 

by reference to a space frame it remains to quantitatively 

estimate the buckling loads of the space frame and hence 

the cylinder. However, the collapse of a diagonal member 

is not that of a simple Euler column. When the member AC 

(in figure 2.14) starts to buckle then the diagonal 

member FE begins to form. Although FB eventually becomes 

a tension member when the second mode is achieved, at the 

start of transverse deformation in AC there is a compressive 

force in FN. Thus it seems that a reasonable model for 

the collapse of the Yoshimura buckle pattern is to 

consider the column members as pin jointed angles loaded 

through the corner of the angle and with a central spring 

restraining the deformation. This model ensures that the 

deformation of AC is always inwards. 
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DEFORMED 
POSITION OF AC 

FIGURE 2.14 
MODEL FOR COLLAPSE OF COMPRESSION MEMBER 
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Some justification for including the member 

FY as a spring can be oualitatively obtained by building 

two identical paper Yoshimura models. In one some of the 

facets can be removed leaving a strip along each of the 

folds only. In the second model the member FW can also 

be left. Observation shows that the second model will 

support a substantially greater load than the first and 

sometimes the additional members will buckle. 

During collapse of the member AC both points 

A and C move radially inwards while points F and B move 

outwards. In fact there appears to be very.little of this 

movement before the collapse load has been reached so that 

 the purpose of investigating the collapse of AC, the 

relative movement of the corners can be ignored. However, 

when an axial load is supported by the cylinder without 

bucl.cling, the column members AF,AC and BC shorten and 

the tension members Al) and IC stretch. This change in 

geometry has been taken into account in the following theory. 

From figure 2.14 the following geometrical 

relations are obtained. 

= AP  
2 	AB2 

2(1+cos(A/2) 

 

2. 7 

 

AB  OA 	2.sin06/2) 

ON 	_ 10.cosky4) 	 2.9 2.sin( 2) 

2.8 



„  

II

AF2 + 2.An2 - 8.Al2.11-  - .sin(P4)  -_ 
2 

L2 2 4. ( 31,1) 
1 -- 2.12 

P 2 	 , 
(1+cos(4/2))f4) + 4  

1 

-P1  (2.6) 

= f0A -  + (or-TT) 2  - 2.0A.(0Y-17).cos() 4 
T = {0A2  + a2  - 2.011.17 

- 2.0A.(0T::-Mr).cos( 4 

N 1- = ifAF2 + 2.AD2 - 8.AB.Tql.sinG4 O/42  

61. 

2.10 

= 'AIL2 
	( 31,1 )

71. 	
 2.11 

(unloaded condition) 

Thus the strain in 77 is 

Consequently, the restraining force on the centre of the 

column is. 
+ 2.AB2  - 8.AB.ITN.sin(ig/4) - 

P3 = 2 .E. W. T. 
L2

2 I.  ( 31,1) 2  

	

- 1   2.13 

Also 

AP 	= (1 + 	P1 	).K 	 2.14 
2.T.E.W 

AT 	= L1.(1 + P2 	) 	  2.15 
2.T.E.W 

and since 

then 

AB 	=L1  - 2.1.6 



Substituting in the above, we have; - 
	62. 

-8 .L1'MN..W.T.sin(04) P3 	
_ 

I
1  
. 2 ) 2 

{1,2  + (.4=) I 

1 2 	2 ' L1
3 

	

PI 	iC (l+cos05/2))136 	 + 	 2.17 
2 	31, .1 2 

 

IL2  + (-2 -±) i 

The angle 1 between the restraining form and the column 

is given by. 

 

2 	3. L1
2 

4 

  

2.18 

    

Kil 2 3.L1 
2 (7--)  

  

Having determined the transverse restraining force 

we can isolate the member AC and treat it as a buckling 

pin ended column as illustrated in figure 2.15. At any 

point "X" in the column the moment is given by. 

= P1 (Y4W.cos(0/2))- P 3 .sin1.cos(9/2).(K/2-X) 

= E.I. 44   2.19 
T.O.cos2 (0/2)  and 	I 6 

Thus Y 	= 	+ C2 .cos(J.X) - 0.cos(9/2) 

+ .-7.-8in,i.cos(0/2).(K/2-X) 	 2.20 
rl 

'1 where J2 =_ 

The constants of integration Ci  and C2  are found 

from the boundary conditions which are zero slope at the 

centre (X=0) and zero deflection at the end (X=K/2). 

E. I 



P3  sin/ 

63. 

  

P3  sin I cos 2 

130n1 

FIGURE 2.15 
LOADING SYSTEM ON COLUMN MEMBER 



P
3
. sinl. cos (A/2) 	 64. 

Thus 	P1' J  
 2.21 

p3 .siny.cos(A/2).sin(J.K/2) 
iw.cos(9/2) 	P1. 	J and 	C2 	cos(J.K/2) 

nt the centre, 

=MN 
Pl .K 

= 02  - 0.cos(0/2) + r  w,aw-sinl.cos(A/2) --- 2.23 e•, 

Substituting for C2and P3  we obtain, 

[ 8.1,1.E.W.T.sin(04).sinIpcos(0/2) 
MN 11 	'  

+ ( 
31,

1)
2 	

(K/2 -tan(J.K/2)/J) 
..1 

P1 {L22 	--2 r 

+ 
3.1,1 2 

	

IL22 	- -2- - - 

Of. cos (A/2){ 	1  

	

• 	cos(J.K/2) 

Now, as the critical load of the column is approached 

the central deflection grows very large and we have in 

the limit that, 

8. L1 ' 

E. W. T. sin 04/4) . sinl. cos (0/2) 
1 +  

3.L1  P IL22 + 

= 0   2.25 

Solution of equation 2.25 leads to an evaluation of 

the compressive load carried by a diagonal member in the 

Yoshimura pattern at the point of collapse. The total 

load sup-ported by the structure is readily famnd since, 

2.22 

21, 3  
sinl.cos(G/2)K2- +cos 	tan(*) 

 

2.24 

 



{

1-(2L12 ) 2 R:=1  
= 2.N.P1 	2 I,

1)  1 + ( 7717  

2.26 

65. 

The solution is multivalued. Figure 2.16 

is a -plot of the value of this function for changing load 

(Pi or P). It can be seen that there is a root for no 

- axial load. This root corresponds to a rigid body translation 

of the colizAn member. The next root is the solution 

dsired while hit - her roots relate to higher buckling 

modes (of the column only). Thus to solve equation 2.25 

by a trial and error method it is necessary to guess an 

initial value which - is high enough to prevent the solution 

converging on zero. It must also be low enough that the 

sclution will not converge to a higher mode. The general 

shape of this curve also highlights another problem with 

tle solution. If, for example, we were to assume a 

diagonal member load of 7 Newtons for this cylinder and 

apply the Yewton-Raphson convergence criterion then the 

:olution would follow the .dotted line shown. The next 

guess would be about 151 Newtons and the solution would 

converge to some higher buckling mode. To overcome this 

problem it is necessary to apply a convergence factor 

(lass than unity) to the Newton-Raphson technique to 

ensure convergence to the correct value. This solution. 

was -performed on a Digital PDP8 computer using the language 

FOCAI. A listing of the programme together with typical 

output is given in Appendix G. As well as giving the 

Vackling -load the printout includes the important .7"eoerical 
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6 7. 
properties of the first buckling mode(normal Yoshi]lura 

Pattern) an:i . the second node '(pattern with -  inclined 

tension members). 

The expression for calculating the critical 

load Can be non-dir-lensionalised by using the following ratios, 

    

2.27 

2.28 

2.29 

2.30 

 

22  

2 

  

  

Li  

_ w 
Y 

  

and 

Kence, 

   

    

41+qx.) 2 ) T3.4.  16.4).12 .si 2 (S/ ) n 	4  
A? 	

• 

2.tanf4 612  
74103  s in2 )1 

f74ar3 si::(e4) . 	(i+A 

In developing the theory to this point the 

author had become aware that a cylinder would have several 

buckling loads of differing values. Thus a load deflection 

curve would not have one peak ( as Von Karman and Tsien 

proposed ) but have several corresponding to the collapse 

of each mode. Within a couple of weeks of the author's 

realisation of this point Esslinger and Geir's book (ref.13) 

appeared on the shelves of the University of Tasmania 

=0 	 2.31 



68. 
library. On page 105 of this book is a gra -)h re3)roftuced 

here as figure 2.17 which shows these multiple Teaks 

obtained ex)erimentally. This is the only reference that 

the author has found to show this -0roperty. All others 

have indicated a curve of the Von 7:arman and Tsien type. 

It aTnears to be a serious shortcoming in the published 

data which has at last been rectified. 

It was decided to use the data from figure 

2.17 to test the validity of the present theory. The only 

missing information was an estimate of the aspect ratio of 

the facets. To obtain thin; ratio several cylinders were 

manufactured from mslanex with various combinations of 

radius, thickness and length. It was found that with 

these cylinders the aspect ratio (2/L1 ) wa about 0.7 

except where the iia.ern was seen to interfere with the 

• end of the cylinder. The other unknown variable in the 

equation was the width of the flange of the angle member (W). 

This width was manipulated until for Y=15 (the first 

post—buckling condition) the calculated collapse load 

coincided .Ath the published data. A width of 21 times 

the thickness was found to be necessary. This width was 

then used to calculate the subsequent collapse loads and 

these loaC,s are presented in table 2.1 together with the 

valves read from the published curve for comparison. The 

agreement appears to ')e excellent in this range. 
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TABLT3 2 . 1 

COMPARISON  OF  CALCULATED AND MEASURED POST-BUCKLING CRITICAL LOADS 

R = 100mm. 	T = 0.19mm. 	W/T = 21 

Number 
of 

Critical 	Loads 

Lobes Calculated Measured 
(Esslinger and Geier) 

N 

15 278 275 

111 254 260 

13 236 235 

12 218 215 

11 200 200 

10 181 185 

70. 



71. 
The variation in critical load with number 

of lobes is plotted as figure 2.18 for an extended range 

of values of IT. The interesting point about this graph 

is that there is a maximum with 38 facets of 518r. -53sslinger 

and Geier's cylinder buckled at a load of approximately 

520Y. It is also interesting to note that by using high 

speed photography Almroth,Holmes and Brush (ref .14) 

observed an initial buckle pattern with facets about half 

the size of the final pattern. Perhaps these smaller 

dimples correspond to the peak of the curve in figure 

2.18 which corresponds to just over twice the number of 

lobes finally obtained. 

Tlen a short cylinder is loaded in axial 

compression, then it is impossible to maintain the same 

aspect ratio as in a freely formed pa%tern. Firstly the 

buckles start to interfere with the ends and it is found' 

that the pattern spirals around the cylinder. It tends 

to break down completely over a considerable section until 

a different kind of Pattern evolves - Esslinger and Geir's 

one tier pattern. This type of pattern can not be properly 

represented by the simple space frame model presented 

here. However, if the length of the facet (L 2 ) is limited 

to half the length of the cylinder and the preceding theory 

used to predict buckling loads, then an indication of the 

behaviour of the cylinder, is obtained. The two 

additional curves on the left of figure 2.18 are based on 

this approximation. It will be seen that the intersection 
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of this curve for a 100mm. long cylinder with theprincipal 

buckling curve for the cylinder occurs at about the Position 

that the buckling pattern becomes irregular. Further 

co)ression beyond this point appears to create a combination 

of buckling modes, one of which is approxiated by the 

short cylinder branch and the other by the aspect ratio 

of 0.7. ,Then all the compression members with this higher 

aspect ratio are buckled e are left with the regular 

buckle pattern that Esslinger and Geier call the one tier 

pattern. 

Seeing that the collapse loads for Esslinger 

and Geier's cylinder have been satisfactorily calculated 

by this method it remains to estimate the corresponding 

deflections and complete a load deformation graPh-

Urfortunately, the calculation of deflection is not as 

..,iatiPfactory because the geometry is not that of a simple 

Yoshirdura pattern. Apparently the bending rigidity of the 

shell restricts the pattern from forming completely with 

the result that the actual shell is a little longer than 

would be predicted by the simple Yoshimurd geometry. 

Even with this known limitation a reasonable 

load deformation graph can be drawn (figure 2.19) purely 

by considering the simple Yoshimura geometry. For this 

calculation the hackle pattern was aproximated by a 

Yoshinura pattern with a length such that there was one 

diagonal - ember only. This pattern was considered to be 

connected to the ends by a regular cylinder cove -cirg te 
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75. 
remainder of the length. Using this model meant that at 

each node there were -t;:o tangential members and two diagonal 

conjfession 	tibers instead of the four in the complete 

pattern. Thus the force in the tangential member was half 

that -::reviously calculcited. The axial deflection was 

estimated from the following expression. 

- H 	(L - L2)(1 + 	P  ) 	 2.32 2 R.T.E 

(P negative in compression) 

This expression is linear and is represented 

in figure 2.19 by a straight line for each =de shape. The 

nomenclature ( 2,15 for example) is that adopted by 

1]sslin,ger and Geier. It refers to a mode shape that has 

a Yoshimura Pattern length corresponding to one diagonal 

member (2 tangential members) and 1'3 lobes around the 

circumference. Calculated deflections at collapse are 

within about 15 of the measured values. 

One would expect that in loading the 

cylinder in a rigid testing machine a load deformation 

curve would reach a Dea'_c and irmaediately drop without 

increasing the axial deformation. Thus in considering 

the collapse according to figure 2.19 it would appear 

that the collapse would Progress through every mode shape 

after the Peak has been reached. The concept of a rigid 

machine applies only to the cylinder as a whole. We have 

been discussing the collapse as a local phenomenon and 

in fact the buckling compression" member must-  see the 



76. 
remainder of the cylinder as a somewhat flexible machine. 

Thus the combination of cylinder and machine stiffnesses 

would produce a load release characteristic of the form 

represented by the dotted line in figure 2.19. In this 

cylinder it was known that the first post-buckling mode 

ha 15 lobes. Allowing for the fact that the deflections 

are aver-estimated as explained earlier, it is reasonable 

to expect a pattern of about 15 lobes from this diagram. 

The dotted line indicates the combined machine and cylinder 

characteristic necessary to achieve 15 lobes in the buckled 

shape according to this load deformation diagram. 

Changing the length of the cylinder has nO 

effect on the critical loads since these are only dependent 

on the local buckling of the diagonal strut at the centre 

of the cylinder. However, increasing the overall length 

of the cylinder increases the length of the section that is 

not collasing. This portion is still deforming so that 

the buckle pattern has a smaller overall relative effect 

on the deformation. Figure 2.20 is a load deformation 

diagram for a cylinder of similar proportions to that 

used it deriving figure 2.19 except that the length has 

been ouadrunled to 400 mm. By assuming the same cylinder-

machine stiffness as in the previous case ( the dotted 

line ) a post-buckled shape with 10 lobes would be 

anticipated. However the extra length of the cylinder 

would mean that the combined machine-c7;lihder stiffness 

would probably be considerably less than previously 

encountered and an even smaller number of lobes coulL occur. 
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78. 
3ven with this very simple model excellent 

a•reament with the ITublished data has been obtained. By a 

consideration of the variations in cylinder geometry from 

the Yoshimura pattern refinements should be able to be made 

to the theory to improve its validity. Some of the 

additional properties that could be included are;- 

The edges of the Yoshimura pattern are not 

angular but are bent to a fairly sharp radius. The radius 

of curvature varying with position. 

- 
Because the radius of curvature varies along 

the length of the compression member this member is not 

initially straight. These two considerations are discussed 

in chapter 5. In that chapter it is shown that the addition 

of these two properties does not assist the analysis. In 

fact, their inclusion necessitates so many additional 

assumptions that the analysis becomes useless. 

•_-_-_•- • - ■ 

The mechanism used in the calculations 

assumed that all the corners remained in the same relative 

position during the collapse. In fact the corners at the 

end of the collapsing diagonal move inwards and the adjacent 

corners outwards. This movement is also reflected in the 

corners further away but to a lesser extent. 

In collapsing one member the load carried 

by that member is reduced. This results in an increase 

in load in the adjacent members with a consequent shortening 

and an overall effect of bending the cylinder. 



If a cylinder is not perfect but has a 

defect of finite magnitude then loading will not he along 

the dotted line shown in figures 2.19 and 2.20. It will 
_ 

follow one of the full lines corresponding to the size of 

the defect.e.g. should the defect cover one twelfth of the 

circumference then the line marked 2,12 would be followed 

until the collapse load for 12 lobes is obtained. For 

small defects (less than 1/38 of the circumference for 

Esslinger and Geier's cylinder) the cylinder appears to 

behave as though it were perfect. 

79. 



NOTATION --- CHAPTER 2 	 80. 

Young's Modulus. 

Axial length of half facet, i.e. collapsed length 

corresponding to L 2 . 

Moment of inertia of column member. 

Length of diagonal compression member. 

Length of cylinder. 

Length of facet in circumferential direction. 1 

L2 	Half developed axial length of facet. 

Moment. 

Number of circumferential facets. 

Axial load on cylinder. 

Axial load in diagonal member. 1 	 Tension positive. 
P2 	Axial load in tangential member. 

P
3  

Load in member being formed. 

Shell thickness. 

Effective width of flange on angle member. 

Strain in member being formed. 

6  Axial deflection of cylinder. 

Angle between collapsing diagonal member and member 

being formed. 

Angle subtended at axis of cylinder by each facet. 

Angle 1,etween adjacent facets along the diagonal member. 

1  
/i 	E.L2 2 

A 	L2 r- 1 	Non-dimensional auantities. 

"ff 

,r 	
L2 



CHAPTER 3 

CONVENTIONAL 
	2 

SOLUTION 



M1 

!LIT TiliR 3  

AN 71XAMITATI ON OF THE C MP:TT IONAL SOLUT I E METHOD FOR THE .  

AXIAL BUCKLING PR °Brat .  

It has already been indicated that Hoff, 

77adsen and Mayers (ref. .7) found the usual Von, Karman and 

Tsien approach (ref.3) to be inappropriate. Before 

")roceding further with the current theory it is worthwhile 

to contemplate this much tried and apparently inadequate 

theory. 

82. 

For the shell element shown in figure 3.1, 

Dornell's equations can be expressed in the following form. 



Nx 
Nx0 

Nox 

N0 

a_t_10 NO + ay  y 
NpSx+I-Iyig-x  dy 

0.0 Pdy 

Qx+ 	dx Tx- 
Nx0+ sliVdx 

83. 
Qx 

FIGURE 	3.1  
ELEMENT OF CYLINDER  
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3.4 

 

Of these equations, 3.1 and 3.2 represent 

efluations of axial eciuilibrium and tangential equilibrium.. 

Equation 3.3 is a combination of the moment equilibrium 

equation and radial equilibrium. In their paper Von Kaman 

and Tsien refer to the first two Of these equations as 

being "generally accePted". This author finds it difficult 

to accept these equations as they stand.. Equations 3.1 

and 3.2 are in fact the flat plate conditions. They would 

apply to cylindrical shells provided the radii of 

curvature of the shell were large relative to the thickness. 

Unfortunately in the post-buckled shape of the shell,to 

which Donnell's equations are meant to apply, the cylinder 

is heavily deformed and the radii of curvature quite small. 

This author believes the misalignment of forces should be 

taken into account in considering the membrane equilibrium 

conditions of the element. 
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The solution of any strenr;th of nntorials 

-i)roblen requires the establishment of three separate sets 
of equations namely, force equations, geometrical or 

ccnpatibility equations and material properties (e.g. 

Hooke's law). In shell theory it is conventional to solve 

these euuations by what can be considered as a deformation 

method. '2]quations 3.1, 3.2 and 3.3 are three equations of 

equilibrium, i.e. they are three simultaneous ecruations in 

forces. The compatibility equations and material properties 

are usually combined together to form what are comftonly 

called stress resultants. 

In Donnell's theory the stress resultants 

are given by the following expressions (in the sign 

convention of figure 3.1) 

2 
= DE-k-iaa  + -*2-2  (15) — 	v{Vc  

2 	)_,aw, 2 1 
2ax j 

Nx 
= 	4.  1( aW 2  

,)x 	2 ‘ax'  
1.av 	1 ( aw) 2 

-(57  2R2  Y7  ---- 3.5 

r  _ D(1—V1i.eu  3v , 
x/ 	fox 	2  R "a7 ax 	a x Y7 



Trtl . 2  = -AA—aw  2 	3ce R2  )17S 

3 2W  -0 .e.2W. 
= —K(---  +  

3X 
2 	R e: 

K(1-V).. 2  w 
= -M/x = R 

.1m11, 

There D is the extensional rigidity and K is the 

flexural rigidity. 

E.T  

1_v 2 

E.T 3  

12(1-D2 ) 

In obtaining these stress resultants Donnell has 

ignored high r order terms in curvature. Apparently this 

omission produces an error of the order of —1 where K is the 
r2 

number of circumferential facets and could in general be 

ignored. 

Equations 3.5 take account of the effect that changes 

in slope of the middle surface of the shell have on the 

strains.. Thus they can be used .where surface slopes are 

high. A useful comparison can be made between the Donnell 

equations and the aller collapse of a simple column. In 

the case of a column it is usual in determining the collapse 

lopd to consider only a moment equilibrium equation which 

allows for the fact that the axial force is not aligned 

with the column section. In the first approximation a 

simple moment -curvature relation is used and the Euler 

load is obtained. A better approximation is mad by 

considering the change in slope of the column in calculating 

86. 

3.6 

3.7 

3.8 
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strains. Donnell has partly considered the lisali7nent 

of the forces with the shell element in equation 3.3. He 

has taken into account only the effect membrane forces have 

on the radial equilibrium. These are obviously the most 

important conditions to be included. Peglecting misalignment 

of forces completely in equations 3.1 and 3.2 has some 

analogy to column buckling. In calculating the collapse 

load of a column we consider only the axial 'I7orce as 

constant. This is the equivalent statement to equation 3.1. 

However, in shells transverse shears are also present and 

have components in the plane of the middle surface of the 

shell. 

Donnell's equations can be further examined 

as follows. Suppose we consider deformations where the 

cylinder has buckled into a shape containing a relatively 

large number .  of lobes, then the surface slopes would still 

be quite small and the terms containing products Of slopes 

would be negligible. In such a case the radial deflection 

"w" would also be small in comparison to the radius "R" but 

surface curvatures around the buckle could be considerable. 

If we neglect the terms in products of slopes and w/R in 

equations 3.5 we are left with a pair of equations in "u" 

and "v" only. The conclusion that can be drawn from this 

statement is that the membrane conditions in such a case 

are virtually independent of the radial deflections. In 

the preceding chapter it was shown that the load in such a 

buckled cylinder is essentially carried along the folds. 
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Thus where buckling defornatiors are encountered in a 

clinder it is probably not wise to ignore the interaction 

terms in the nembrane equations. Certainly, Donnell's 

equations would provide results much closer to tbe truth 

than simple small deflection theory but they do not al -J'ear 

to go far enough for the case of post-buckling deformations. 

Timoshenko and Woinowsky Krieger (ref.15) 

2rovide us with the expanded equilibrium conditions which are. 

Axial equilibrium. 

Irx 	 R 

	

+ NiS3( 	l'.n a w 	.N a  v 	f ir 	6 2 1,v 2 	2 

a A 	" ''43cax2 	xigi-37 Q  /Pax + xbA )  

(

2v awN  
- - 

ic, 
Pa)--F7a  5-7( 

Tangential equilibrium. 

a4N i 	aN . 
,fs  + R 	x6̀5  + R N 62v  - 	

v_IT  ± 	
+ 

21,1r)  

24 	?ix 	' xax2 	x gx axbp  Npx (axavp a;) 

fn  1.6V  1 6 2W 

	

R a p R 2) =0 	 3.10 
• ale 

Radial equilibrium. 

fair 	a 2 v/N  1.av RT-37 + a  + Nxfs 	+ x ale  +  x-a0-7  its  a7  

2 1.a2w 	(av 	a w)R - 0 	 rSx 	-S7S7  - R a gs2 

3.9 
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Moment eouilibrium about "X" axis. 

211T. 	c)2 R.Q. 

 

v  igx  	xaitf a x a x 	a 	 - M 
3 )x2  

= 0 
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1:oment equilibrium about "Y . " axis. 

%2 
0 v m e2v aw\ 	n 	 + RT7  + R.M xqj —pEz-s7 axi 

=0 
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Moment equilibrium about "Z" axis. 

a v 	 2 	 Aaw ay. 	1.4) 2vvN M 	
a

ATi .a 	 - L + - 'xitST-c2 

/3v 	w)  + R(Nxls 	Nigx 
_ 	

)xafts ) = 0 

 

3.14 

 

If we look closely at these equations we 

see that they contain many terms in the derivatives of "v" 

and "w". In practice "in plane" deflections are much 

smaller than "out of plane" deflections and we can neglect 

all the derivatives of "v" in equations 3.9 to 3.14. Thus, 

these equilibrium equations can be rewritten as follows. 

aN 	3N isx 	e2„, 	?) 2 
R 4-37-c  + a  15 	R. Q 	" 	Q  	r 	- 0 

	

x.)x2 	AfaxaftS 
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N 2  
R 	Q 	2" r- a x 	xaxaits 	1,exax - Qig (1 + 	 ) = 0 -- 3.16• 

a Qx 6Q 	2w 	2„ 	 2 vix R— + 	yx jtcci-xev  + R.17 	+ 1:4  ( 1 + —75 a x a 	 xex 	" fp_ 

2 w  
Illaaxa/ 	 - 0 	 3.17 
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+ R(Nxx — N/x) 	

• 
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Now, from eauation 3.18. 

'12._Zcll 	1. 	'  = — R 2195 	R ax 

2MX)!C  1YYJO, 1?"1/x.aw 
= Sxè6R 	2 	2 3,6 737. R aftS 57 ?■ /15 	R 

,N  (1 .aw.•NR 	1.  4) 2 wN  	  
"Afx v-7R 	s-7 R axe/ 1  

And from equation 3.19. 

and. 

3.21 

3.22 

Qx 
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Qx and a x R ax

1211 
T fifx 	 dw x 	1.  p.  11.19155 	1.1 

= 
1.

a0 	R2 a ax 3 x2 	R ax ax 

ivr  (La 2w 1 .aw.aRN 	  
ax2 R2 ax ETC 3.24 



Substituting in equation 3.15. (axial equilibrium). 

'er . )c 	li!Ssx 	nd)2w(1. 
RiT7  a 	a x2 R 

2 	J mi a w t  _2_cE 
-F 

1. p 	Ex.ow )  _ 0  a x 	R a 	__
R 

61Tx "j/x 	1\111Sx.e 2w 	x1)2 w IT  Yw.ew r  SV7 or 	RTR  + 	.,,, 	. 
i)  iti  
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' a-x axax 	R a A -)-(Z7 ' R 	Nric bxaffi ,  - 0 --- 3.25 

Substituting in equation 3.16. (tangential equilibrium 

Ni,s 	a Nx 	e 2w 1.am  

a is R x' axa/s (u a 	;is 	--s—x-  irs7) N,sxak- 

- (1 + 	 ,amxits, 	 1.1,5x..?„  n  
R als2 	 Tzefi5 	R 	al)C 

N)c,S  1. 11/1_x.e?w 	e 2w 	1.16w.a12w or a its — x 	Ft
•  

a 	sxzves 	x axa9s R aX FC-57 

ay , 
+ 

 ow 	__LIE 	1. 2w 	p(i 	J-.0 INN x  2/ 	R 	II /2 1  OP 

, X2 
PX "..2E(1

e 	= 0 	 3.26 R 	R a  

It can be seen that equations 3.25 and 3.26 

are very similar to equations 3.1 and 3.2 but each contain 

many additional terms. These extra terms are small when 

deflections are small but some, if not all, should probably 
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be included once buckling has commenced. The radial 

equilibrium equation can be treated in a similar manner. 

2  1 i2I‘I‘x 	
a 

1 .)MSx..) R 	,) Llx 	1.$) /5.4)w 	11.A.•) 2w R( • 	+ 	+ - • — + R ax "3 R2 	2 R a x ax R Tx7 d x 
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2 s) 111 "xig 
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T 4 02w 	04) Njexilaviv,  11- 

M
y; or 	Nx  (;) W  R.I\xcv  + N (1  

aits 
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1 - ° 	7/x(1.aw.eR a 2W )4.  a 1-Xx 

ax a's 	H Rx3 	a7c7a7 axa 

1.  
a 
fix(aR 	q.R = R 	‘ox ax' 0    3.27 

Again, equation 3.27 is very similar to 

Donnell's eollation (3.3) but has many additional terms. 

Some of these terms could be important when surface 

curvatures are large. It is interesting to note that 

Donnell has used terms in the products of surface slopes 

in his stress resultants and yet there are terms in the 
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product of slope and rate of change of moment in the above 

equation which are not included. These terms could be 

expected to be significant. In the membrane 

equations (3.25 and 3.26) there are also terms of slope 

with force or moment and these would also be expected 

to be important. 

FlUgge (ref.5,p.463) makes the statement 

that shape imperfections can be accommodated by replacing 

"w" with "w + B" in the equilibrium equations, where "B" is 

the radial difference between a true cylinder and the 

actual undeformed cylinder. 

Thus, if R,is the radius of the true cylinder,. 

and 

= R1  - B 

aR 
— 
_ aB 

ex — ax 
And.if 734KR then R R1  and equations 3.25,3.26 •  

and 3.27 can be rewritten as. 

Axial equilibrium. 
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Tangential equilibrium. 
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Radial equilibrium. 
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FlUgge (p.214) also gives wider 

expressions for the stress resultants as follows: 
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K -   For most practical purposes 	is. much 

smaller than D an can be neglected where both appear in 

the one relation. Thus the first four stress resultants 

car be rewritten as, 
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= D (21 .av 	+v aai N  

`I/ 	— 

Nx 	
= Doh V-av V.wN 

3.3:3 

•••■ 

D(1-2))/1.au 	Jv 
X 

= 	- 	k 	 ) 2 	R ap • ax - 

FlUgge ignores additional terms in the 

ex-oressions for moments which are Even less significant. 

The third reference is the Ever faithful book by Timoshenko 

and 1oinowsky Krieger (ref.15). Their membrane stresses 

are those given by eouation 3.33 while themaments.are 
slightly different, namely, 

= 	-. 
av 1 .a 2w 

Kk12. T7 R2 02 ax2  

K(1-JV)/av
2

livN  = ..11g 	
R 	+ ax axaXI  

Taa 2w v 
= — sax2  R2  "57  

U .a 2n  
R2  ae 

3.34 

The difference between these eouations 

c!.nd the FlUgge equations is only small. The change occurs 

by considering the fact that the cross-sectional area on 

which the stresses act is not rectangular but is wider on 

the outside than on the inside. Thus, for the remainder of 

this discussion the FlUgge stress resultants will be 

ignored. The additional terms used in the Timoshenko 

moment resultants which do not appear in the Donnell 
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resultants are all derivatives of in plane displacements, 

These are small in comparison to derivatives of out of 

plane displacements and will also be ignored for this 

discussion. Thus Timoshenko and Woinowsky Krieger's moment 

resultants reduce to the same as those used by Donnell. The 

inclusion of the slope terms in Donnell's membrane forces 

is necessary for post-buckling deformations so that this 

discussion will also consider the combination of .Donnell's .  

resultants and Timoshenko's equilibrium conditions. Thus 

the following combinations arise. 

The Donnell equilibrium equations (3.1,3.2 and 3.3) 

with his resultants (3.5 and 3.6). 

The modified Timoshenko and Woincwsky Krieger 

equilibrium equations (3.28, 3.29 and 3.30) with their 

-resultants (3.33 and 3.6). 

The modified Timoshenko and Woinowsky Krieger 

equilibrium equations (3.28, 3.29 and 3.30) with Donnell's 

resultants (3.5 and 3.6). 

From equations 3.5 we can obtain the following . 

derivatives. 
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The alternative derivatives using equations 3.33 are. 
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,2 
= D(- 1.a 2v 1.aw v  o u)  R 2  a/  

Also from eou.ations• 3.6 the following derivatives of the 

moments are required. 
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And. 

WM, 

Now, returning to Donnell's equations we 

can substitute for the stress resultants and allow for 

initial imperfections as follows. 
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Equations 3.39,3.40 and 3.41 are Donnell's 

equations reduced to three simultaneous partial differential 

equations in deflections. Solution of these equations will 

give the deformations according to his theory. The modified 

Timoshenko equations can be treated in a similar manner. 

From equf:-..tion 3.28. 
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1. em e2v, e2 B 	1  sami ,  a  2 w  
15 a, )xc (  x2 + sx2 ) 	7,771—.)  72j, k a)--E-a) 	a)c---;37)  

- 	.amisx,a2w  a2 B 	1 .amx/ f  a 2w 	a 2B,  
R. D a 15 `ax2 a x2 	R.D a x axaø 

 

v. ?ow 	(1+V)  . a 2v 
R x 	2R 57-47 

 

3.43 

 

From equation 3.29. 

2 	2 D( 1. e 	
' 

2v 	1.ew 	a 2uN + D.  (1-2v) 	aexau 4:xv2)  

	

`R a"r2 	7S7 (1.3)-7.57' 

= 	(e w 	20 13, 
Px x cri) + a 2w 	2 B\  

ex exeig aXa l  
elir 	,2 "x I op w 	a2 B  

R ax ax/k- 	 +-11 ajo2 	:)=-7s  + a x 	 + ey-70) 47 . 

eM 1.e2 w 1. 2 B 4.  1.  Sx (   a 2w  + a 2 B)  
/5 	R 	R a ig2 	R a a xzys 577a 

am u xs  	 1. 2 3) 
a x 	R --7 R --7 4/  a/ 
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1 . iv + (1-1))  . a2v 	Niffac a w a B 	rfis a w  
e. R2 
	2 R.D (ax + ex) 	D.R2 (ax aje 	ex2  

aB a 2w 	a2 B 
a x )(5771#7 .TRP) 

liftSx1 	aw a -1-4 
5t0(1  

1.e 2w 
+- 7  T7  

.2 1. o 
W 57 )  

+ 
D.R2(e x  

1.6.mx (  a 2w 	,) 2P 1 	1  .amiS 	1.a2w 	1. a2 B 

	

R. D a xvaxais axaits• 	D.R2  a ig(1 	+ '71 .;757)  

2 m, 	aM 1 	 ( 0 w 	a 	 • . 	11 —75 + 	-I- D. R2  
loa 2 W 	2. : a 

	

a /5  a3-757 	— 11.D a x 

1 .a),v 	(i+v).  a 2u 
R2 5-7 	2R a )-7-47 
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And from equation 3.30. 

+ V .  etc 	) vv 	c•  Tr 	IL 	A4w  
ax4 	R  ax2als2 	R R2 ale 	a x244142 ) 

2K (1-v)  .  e4w 	_ 	(.
2
w + °1213) - R.N (2-21  + ") a x2c) fg2 	.xx )--c—cg .)xals 	x ax2 ax2 

2 1.e2 W 	1 . )3 a % 	a 2y 	a 2 B N  Nip 1 + - — + - —) - N 	+ R afts2 	R afis2 	jex axe/ axa,gi 	ex c)x 

1,aB. 2  ii) 2w 	a?B 	(Ydx  a, e- e.:41 

 

.  dB 
11 ax ) 	ex2 ax  2 )  - a x (ax 	x' R2 a R. + 

M 	\ 2 	 e17 px  (  d 	 # 2 B  + 1 .a7B.a ,,v 	 1.  ,ex (aw  
R ‘exel5 	3c-af1 	1-S7 ex 	R -S7 ax' 7-  R a 	`,57 

a P ) - q.R ax 
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e4w 1 . ew 	.  e4w 	N 	2 	27  

• 	 _ 	W 	0  i.e. - + 	+ 2
‘ 

0
aa1151 ax 4 	„i4 els4 	R2 	R.K aXX 	x .)x2ai42 

x a2 	e2 Ti + 	+ 	(1 K 3c 2 	ex2 	R.K 
1. a2w 	1. a2 1,1 	IC?4 	a 2 

_ 	 1 	x( 	w Ti 4)152 	R 	R.K'exa 

2 B 	mi  
-sR57) +  	4. 1 el3 2  

	

ax ex R ex  + 	
(crx 

e 	e 	.211, . aB 71,6c  e 2 w 	a 2 B 1 	1( v 	__1  B 	1  

K.R sx6IS R.K a x‘ax 	K.R3  a 

	

eT,T 	NT1 2...4F.E 	1.aBsaB  1  .  fgx(ew 	2==) 
K.R2 a s ax 	ax 5-7 ax R (57 ex )  3.45 

In the third case where a combination of the 

Timoshenko and 1oinowsity Y'rieger equilibrium ecuations are 

used with the Donnell resultants, similar equations arise. 

In fact, the radial equilibrium equation appears the same 

as equation 3.45. The only difference between the two 

equations is in the magnitude of the resultants. For the 

axial equilibrium and tangential equilibrium conditions 

small changes occurInamely. 
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(1-0.2u 
	1T)o a 	aP 	11, 	2 

ex2 	2R2  aje2 	= 	w 	 ( R.Dcy-,-e 5t-d 	P 	 (LE + a 2 B)  aw 
R.D a x2 	" 	' 

al\T 	2 	 2 1 	a w 	a 2 B\  + 1 
` R.D --,FVax2 D.R2  T.S‘axel3  

err 	2 1 (1+0)..e 2v 	aw.a2w ( 	w 	 a + — R.D a x ‘a-R-a7 ax 
2
ap

13. 	.w 
R ax 	2R 3NTS7 e x  ex2 

(1-4).aw. a 2 w 	(l-V).ew.a2w 
2R2 	2R2  ax alts2  
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Tangent ial 

.a 2v 	(1-v).a2v 	= 	el-3, 	ITYaw 
a • als2 	2 	ex2 	R.D`ax ax' 	D.R2 ex  

2 

	

 (  6 2 w 	a II\ 	(Ow a•B N 	+ 1.. a2w + + o xa,c axap 	
" 

D.R

2 `ax ax' 	R 	R a 152 

1 	1.!B 1 

	

,2 	e 2 B 	1 .1MIC,(1  . x( 	w,  
- 0() 	D.Rff 	• w  a pi 	• 	+ R.  als2 	R 

	

R.D a  x‘ax-y5 	ax-r-  

arff 	 al,T 1 .  -0x(  a 2  w +  a 2 13) 	1 2 w 	i.a2 )13. 

	

a 0 	axafg' 	R.D a x -D.R2 	 R 	2 	R aj,52 

.aw 	(i+v).  a2u 	(14-v).aw.  a 2w 	(1- 2))...h.?•2w 
—2- -67 	211 a)----F-g 	2 11 ax axo 

1 . a w . 
R3  i; 

3.47 
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The three ,7r0ups of equetions 3.39 witi-) 3.40 

and 3.41; 3.43 Iiith 3.44 and 3.45 and 3.46 with 3,47 :.nd 

3.45 each are three simultaneous co:Rations in be three 

dis ,.)lacenent components. Solution of each set of eollations 

constitutes a boundary value problem and 7)rovides the three 

colaponents of deflections at all points over the entire 

middle surface of the shell. It will be seen that 

corres-)onding eollations in each of the groups have been 

arranged such that the same expression appears on the left 

hand side. In the case of the axial equilibrium equation 

it is an expression in axial deflection (u). The 

tangential eouilibrium ecuation contains terms in 

tangential deflection (v) and the radial equilibrium 

equation has terms in radial deflection (w). Thus each of 

the three sets of equations can be written in a -simplified 

form as follows, 

e2u _F  (1-v)  . 62u 
ax2 	2R2 a/2 

(1—V).  a2v 
2 ax2 R2 asps2 

a4w 4.  2 .  a4w 	1 .. w 34  
ax4 	R2 z.x2 	

4
02 	R4- -  04 

R.TI.S.(1) 	 3.48 

R.H.S.(2) 	 3.49 

R.H.S.(3) 	 3.50  

Solution of the three equations can be 

either approximate, by assuming a deflected shape or more 

accurately by simultaneous solution. Although the approximate 

method is far quicker the second method was. chosen for this 

calparative study of the three theories. It was anticipated 

that by choosing a deflected shape real differences between 

the theoretical relations may have been masked. Details of 

the solution are presented in the next chapter (Chapter 4). 
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Tagnitude of imperfections. 

-J;xtensionoa riidity. 

Young's nodulus. 

Flexural rigidity. 

Homents per unit length. 

D =  7 * °  
(1-V2 ) 

'T T 3  K  = 	• 0  

12(1-W) 

x 
Nig  Kembrane forces per unit length. 

NxIs 

Qx Shear forces per unit length. 
Q,5 

Radial pressure. 

Cylinder radius. 

Wall thickness. 

Deflection in the axial (x) direction. 

Deflection in the tangential (4 or s) direction. 

Deflection in the radial (z) direction. 

V  Poisson's ratio. 
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CHAPTER 4  

FINITE DIFFERENCE SOLUTION OF THE PARTIAL DIFFEREFTIAL 

EQUATIONS.  

It was shown in he previous chapter that 

for each of the three theories discussed the partial 

differential equations could be expressed briefly in the 

same sinnle form (equations 3.48,3.49 and 3.50). The 

three equations re-Dresent conditions of axial equilibrium, 

tangential equilibrium and radial equilibrium. The axial 

equilibrium equation has been expressed in terms of axial 

deflections, tangential equilibrium in terms of tangential 

displacements and for the radial equilibrium equation, 

radial deflections have been considered. The equations 

have been arranged in this manner because thee :elections 

predominate in their respective eauations. 
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No explicit form of solution is available 

for any of the three sets of equations. Thus to obtain a 

solution it is necessary to resort to some approximate 

technique. Von Karman and Tsien, in their solution of 

Donnell's equations used a guessed shape approximating 

the diamond buckled pattern as a starting point. They 

then minimised energy to obtain values of certain 

w_ramsters. This procedure is the one that has generally 

been followed by subsequent researchers. However, in the 

type of investigation carried out here such a procedure 

may not show the differences between the three 

theories. It was considered that in this case an alternative 

-orocedure would be more suitable, namely direct approximation. 

of the equations. Two techniques are available for this 

approximation—finite differences and finite elements. 

The two techniciu9s are essentially variations on a theme, 

the choice of one or the other depending on the boundaries 

and the ease of manipulation. In this case the choice was 

made for finite differences with the form of relaxation 

technique known as successive approximation. In this 

technique guesses are made as to the deflection values at 

a number of points within the boundary. From these guesses 

the equations are solved at each point to obtain better 

estimates and these used in turn to obtain better guesses' 

still until the deflection values converge onto those 

that satisfy the differential equations. There are three 

deflections at each point and we have three partial 

differential equations. Thus for each point on the middle 
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surface of the shell we solve for the three values in 

turn using equation 3.48 to obtain better estimates of 

axial deflection i 3.49 for tangential deflections and 3.50 

for radial deflections. This Procedure is very slow and 

would not normally be used in solving the eouations for 

design purposes. Rather, it is a research tool useful 

for gaining an understanding of the behaviour of the 

cylinder. 

Originally the solution was tried in Algol 

on a Burroughs B6700 computer but difficulties with the 

availability of the machine for such a long running 

program prevented the work being completed on this 

machine. Instead a Digital PDP 11 was available with 

floppy disk storage and 16K word memory. Programs 

were written for this machine ,  in Fortran and the computer 

was left to run unattended overnight. The speed of solution 

on this machine was about one tenth of the speed an the 

Burroughs and to obtain one solution it was necessary to 

operate the machine for several nights. Thus it was 

essential to organise the program so that it could be 

interrupted at any time without losing the benefit of 

the previous work. The solution was therefore subdivided 

into several parts. For each part a separate program was 

written and listings of these programs are given in 

Appendix D. The organisation and sequence of use of the 

programs is illustrated in figure - 4.1. Essentially 

the main finite difference procedure was conducted in one 



I Open files and establish initial guesses for deflections  

Disc. 
Storage of data 

Modify axial strain an 
deflection values 

Solution of Timoshenko eouations 
with Donnell resultants 

Solution of Timoshenko collations 
with Timoshenko resultants 

Solution of 
Donnell 's equations 

Print values of deflections 

Palculate and print 
Hambrane stresses  

FIGURE 4.1  

COMPUTER ORGANISATION 
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program with a separate program for each theory. Thus when 

the solution was obtained for one theory these values could 

be used as initial guesses for the other theories. All 

other programs acted as service programs to these three. 

The service programs included the following. 

A program to open the necessary files on disk and 

establish initial values. 

A program to print out values of deflections. 

A program to calculate and print membrane stresses. 

A program to modify the value of the axial strain and 

deflection values proportional to the change in strain. 

No cylinder can be made which is completely 

circular. Instead there would be small defects in shape. 

These imperfections control the buckling behaviour of the. 

cylinder and so should be considered in any .investigation. 

From the observations made in chapters 1 and 2 it seems 

likely that diamond shaped defects would have most effect 

on the buckling of a cylinder. Thus it was considered that 

a shape defeat of approximately that form should be 

considered. A simple way in which a defect of approximately 

this shal)e can be considered is illustrated in figure 4.2. 

ssentia1ly, it comprises a plane interseCting a cylinder. 

Thus we have two planes of symmetry and we need only work 

on one quarter of the defect. We also need to investigate 
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the section of the cylinder adjacent to the imperfection. 

Thus the solution was conducted over the 1)ortion of the 

cylinder bounded by lines twice the width of the defect 

mid twice the length. It was assumed that the defect 

would have minimal effect outside this area. A grid of 

points was used 23X23 which was the limit that could be 

manipulated in the memory of theyDP 11.. A larger grid could 

be accommodated by + accessing a row of'points at a time but 

this process slowed down the solution to such an extent 

that it became impractical. 

The central difference technique was adopted 

because it offered the greatest accuracy of solution. Thus,' 

for the grid of points illustrated in figure 4.2 we can write 

the following relations for the derivatives of the radial 

deflection "w". 

"MI 

ax 	- 2 4x) (w ( i,j+1)-w(i l i-1)) 

6 -w 	1  f 

ex2 	(sx) 2kwki , j+1)-2w ( i , j )+w ( i , j-1))  

1  

ax 3 	2 (Sx) 3  

1  
= (6x)4 (w(i,3+2)-4w(i,j+1 )+6w(ifj)-4w(i,j-1) 3c4 

+w(i, j-2) ) 

--4.1 
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1  = 
( Is)2

Hi+1,j)-nw(i,j)+w(i-_ j)) 

a  - 
2(54)3

mi+2,j)-2w(i+1,j)+2w(i-1,j)-w(i-2,j)) 

(w(i+2,j) -4w(i+1,j)+6w(i 1 j)74w(i-1,j) 

+w(i-2 , j ) ) 

2 

 

a w  1  , 44, x)(0) ,w(i+1,j1-1)—wcii-1,j-1),w(i-1,j4-1) 

4-w(i-1,J-1)) 

 

a 3w  1  (w(i+1,j+1)-2w(i+1 1 j)+w(i+1,j-1) 
ax2,)jg 	2 (icx) 2  (eS) 

-w(i-1,j+1)+2w(i-1,j)+w(i-1,j- )) 

3 

	

o W 	
1 	n (w(i+1,j+1)-2w(i,j+1)+w(i-1,j+1) 

	

aAftS 	2 (6x) (6,e) 
-w(i+1,j-1)+2w(i,j-1)+w(i-1,j-1)) 

1 
()4 

and. 

a4w  

a x2695 

1 
(6.30 2 (6A2 

-2w(i,j+1)+4w(i,j)-2w(i,j-1) 

+w(i-1,j+1)-w(i-1,j)+w(i-1,j-1)) 

(w(i+1, j+1)-2w (i+1,j)+w(i+1,j-1) 

In a similar manner we can also write the 

derivatives w0 require of u t v and B. Thus the three 

partial differential equations (3.48,3.49, and 3.50) 

were rewritten in finite difference form as follows. 

2u(i,j) 	(1-2)).u(i,j) -= R.H.S.(1) 	1  (u(i,j+1) 
(6x)2 	

R2 
(6)

2 	(cfx) 2  

+ u(i,j-1)) 	
(1-V) 	(u(i+1,j)+u(i-1,j)) 

2R2 (0) 2  

4.2 
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2V(ifj) 	(1-0V(i9j)  - R.H.S.(2) 	n 	1  ,(v(i+1 1 j) 
R2 (gje) 2  (gx) 2 

116  (gf/S)` 

tv(i-1,j)) 	(1-V)  (v(i,j+1)+v(i,j 1)) 	 
2(SX) 2  

4.3 

and. 

6w(i j)  8w(i,j)  411.4 = R.1.S.(3) 
(Sx)  R2(sx)2(gx.2 ) 

1  (cx)4 kw(i,j+2)-4w(i,j+1)-4w(i,j-1)+w(i,j-2)) 

2 	(w(i+1,j+1)-2w(i+1,j)tw(i+1,j-1) 

-2w(10+1)-2w(i,j-1)+w(i- 1 1 j+1)-2w(i-1,j )+w(i-1,j-1)) 

1  
R4 (6X) 4  

4.4 

FI:om these equations it can be seen that if 

e have ap -oroximate values of the deflection con -oonents 

u,v, and w at all ,;)oints on the middle surface of the 

thell then better avroximations can be obtained by solving 

equations 4.2,4.3 and 4.4 for that point. The deflections 

at that point are then obtained in terms of the deflections 

at adjacent points. This procedure is not always 

numerically stable so that a convergence factor was used 

on each of the calculations. Thus the "better a-pproximattori" 

at the point in question was not set at the newly calculated 

value but was made enual to the old value together with a 

-1)roDortion of the difference between old and new. 

R2(Sk)2(SX)2 



117. 

The section of the cylinder over which the 

calculation was carried out was bounded by two longitudinal 

boundaries and two circumferential boundaries. On these 

boundaries the following conditions applied. 

At 	x = 0, j = 	i.e. central circumferential boundary 

u(i,3) = 0 

au 
a x = constant u(i,2) = —u(1,4) 

also there is symmetry for w and v 

i.e. 	v(i,2) = v(i,4) 

w(i,2) = w(i,4) 

w(i,l) = w(i,5) 

At the remote circumferential boundary, j = 25 

u(i,25) = 2 .f. (defect half length) 

v(i,25) = 0 

w(i 25) = W(i,26) = V.Ex .R 

At 	= 0, i = 3 i.e. central axial boundary 

v( 3,i ) = 0 

= donstant 	v(2,j) = —v(41j) 

also there is symmetry for w and u 

i.e. 	u(2,j) = u(4,j) 

w(2,j) = w(4,j) 

w(1,j) = w(5,j) 
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and along the remote longitudinal boundary, i=25 

u(25,j) =  

v(25,j) = 0 

w(25,j) = w(26,j) =V.6x.R 

The shape of the defect was accounted for by 

calculating the radial difference between the true cylinder 

and the intersecting plane and allowing for the fact that 

this dimension can not be negative. 
2 * 	2 i 

	

(112_ A...) 	1:1-1(1%.(R2... _LA 

	

4 ' 	11'' 	4 '  i.e. 	B 	=R- 	 - 4.5 
oos((1-3).PS) 

The solution was obtained by firstly selecting a 

value for nominal axial strain and from that value calculating 

the deflection components. This procedure was adopted 

because the solution was known to be multivalued in load 

but it may have been single valued in axial deflection, 

particularly if the defect was large (see figure 1.3). 

A multivalued solution would almost certainly lead to 

numerical instability whereas the solution may be stable 

with a single valued solution. The aim of this investigation 

was to determine, if possible, he load deformation relations • 

over the peak load for a rather large defect. The comparison 

between results would then indicate if the additional terms 

in the equations were necessary. For this reason the chief 

comparison was between Donnell's equations and the modified 

Timoshenko and Woinowsky-Krieger equations with the 

resultants containing the slope product terms. The 

solution without the slope terms was included for comparison 

in the pre-buckled range. 
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The variables chosen for the investigation 

were; - 

Cylinder radius = 0.1 m. 

Wall thickness 04019 

Poisson's ratio = 0.35 

Imperfection width .= 0.04 m. 

Aspect ratio = 0.7 

The calculated results for this cylinder with 

a defect are summarised in figures B1 to B35. In figures 

Bl to B21 the comparison is made in the form of contour 

maps of the various calculated quantities over the surface 

between the boundaries selected. Figures B22 to B24 show 

the stress trajectories and figures B26 to B35 comparative 

cross sections through the contours. In figure B25 the 

comparison is made of the load-deformation relations for 

the three conditions. All other curves are plotted for the 

maximum deformation condition calculated which was for a 

nominal axial strain of Noime. Although there is no 

indication in figure B25 that the maximum load had been 

reached or even approached, all attempts to calculate 

deformations at nominal axial strains greater than 300,4E 

met with disaster. In every case the solution was 

numerically unstable. 

In examining all the contour maps it is 

immediately apparent that a section of cylinder of twice 

the dimension of the defect is not sufficient to permit 

the calculation to be satisfactorily completed within the 
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boundary. There are shear stresses along the external 

boundaries. Thus the calculations do not actually relate 

to the deformations of a cylinder. They do, however, 

provide theoretical deflection values for a cylindrical 

panel twice the width of the defect and twice the length 
ekeles eaes/rer ;feep' 7' 	e-e/400, 

with btAtt=lm=.1e4gle=t-reams. The relations should hold 

equally as well for this case as for a complete cylinder. 

Thus it is justifiable to consider the conclusions from 

this examination as applying to a complete cylinder. 

As anticipated, the solutions to all three 

theoretical relations are similar in nature. This is 

evidenced by the fact that the contour maps of any variable 

appear to be similar in each case and the sections through 

the contours are of the same form. .There was, howsver,a 

substantial difference between the magnitudes of the 

deformations calculated. Generally, this difference was 

greatest between the solution to Donnell's equations and 

the solution to the modified Timoshenko and Woinowsky-

Krieger equations using Donnell's resultants. The solution 

to the Timoshenko and Woinowsky-Krieger equations with the 

shortened form of resultants usually lay between the other 

two but surprisingly closer to the Donnell solution. In 

the case of radial deflections the maximum variation 

between the theories was of the order of 15 - 20% of the 

maximum deflection. This was considerably more than was 

anticipated considering that the solution was only for 

pre-buckling deformations. It showed the importance of the 

additional terms. 



121. 
The load-deformation relations (fig. B25) 

are drawn as the difference between a condition based 

solely on Young's modulus with an axial load and the 

calculated conditions. If the condition illustrated by "B" 

in figure 1.3 was to be achieved then the curves in figure 

B25 would have ever increasing slope until the collapse 

load had been reached. In fact, Donnell's solution is a 

straight line which could be reasonably accepted as an 

alternative to the increasing slope. Both of the other 

two lines show a section of increasing slope followed by a 

section with decreasing slope. This latter section 

corresponds to a stiffening of the shell. It is well 

known that flat plates exhibit such a Stiffening effect 

in buckling. Thus it seems likely that the behaviour in 

this region can be attributed to the stiffening of the facet. 

An excellent account of this stiffening effect was given 

by Kremmer (ref.20) for flat plates in shear. The stiffening 

is not present in Donnell's solution which would indicate 

that perhaps his equations do not allow the load to flow 

around the corners of the Yoshimura pattern adequately. In 

order to achieve this flow it appears necessary to include 

the terms in surface curvature which are present in the 

other relations discussed here. 

Another interesting point to be deduced from 

all the contour plots and stress trajectories is that there 

is definitely a flow of stress as anticipated in the space 

frame theory. However, with the lack of symmetry along the 

edge of the defect this stress concentration is not 
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directed along the sharp edge of the defect. Instead the 

panel behaves as though the defect were effectively about 

times its actual size. Thus in anticipating the results 

of any experimental investigation a defect of measurable 

size may make the cylinder collapse as though it had a 

Yoshimura pattern in it of somewhat larger dimensions. 

Once the buckle pattern has been established, however, the 

symmetry of the pattern would ensure that the load 

concentration would be along the diagonals. 

It was stated earlier that the reason for 

considering the modified Timoshenko and Woinowsky-Krieger 

equations was the effect of the curvature terms. In fact 

these equations contain several other terms as well. Thus 

it was decided that a further computation would be made 

with only the curvature terms added to Donnell's equations. 

The results were extremely encouraging in that there was 

no discernable difference between this solution and the 

solution of the previously modified Timoshenko and 

Woinowsky-Krieger equations. Thus it seems that in shell 

buckling analysis the following set of equations should 

replace Donnell's equations as the governing equations. 

6 Nx, i.aNis_x_i.bmisx.h2w_mx.a2w., 	bm 1 . 	 a w - 2 

rt 	Ft a ft,s  4x2 	x  ax2 	a  /5  exo  

2 — 1  

R2 a's Ixass 
=0 	  4.6 



I\Tyzig 	 2w 2)Mx. 2w 	.421./.4)2w  

ax axais R bxk lx/S R3  a6 ats2  
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+ .1mxis.Vw 	=0 	  4.7 x 

And 

‘2 	0  12.m  i x 
	4x 	.6°11f.i. 	N  ew,.„  2).1%:A.  2w  

x? R A's R2  a 	R 	 R axeftS• 

!.A.12w  

R2  ae =0 	  4. 8 

This last equation is exactly the same as 

that suggested by Donnell. It is only the in plane 

equilibrium conditions: that have been altered. 

Since a finite difference procedure has been 

used for the calculation some doubt must exist about the 

validity of the representation of the derivatives in finite 

difference form. This would be particularly true near the 

edge of the defect. Two types of error are normally 

encountered, namely increment errors and raundoff errors. 

In this case roundoff errors (the accuracy of the machine) 
- _ 

appear to account for errors in the solution of the order 

of one part in 1,000. Increment errors were not so _ 

easily treated. In general the derivatives were power 

series fits to the shape. At the edge of the defect this 

could only be considered as a rough approximation to the 

value at the point. In fact the finite difference procedure 
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had the effect of rounding the interface between cylinder 

and defect. Thus increment changes would have a significant 

effect on the result. The usual method of checking for 

increment errors is to compare the computed results with 

the desired increment with the results obtained when the 

increment is reduced to say, half the size, then a quarter 

of the size etc. This should give a converging solution 

and an indication of the error involved. Unfortunately, 

this procedure was quite impossible here because the 

increment chosen was the smallest that would allow a 

solution in the computer used. Any smiler increment 

would require more storage than was available. The grid 

used for the computation was 23 X 23. To obtain some idea 

of increment errors the grid was reduced to 19 X 19 for 

one computation. Unfortunately, this move tended to 

promote numerical instability but a solution was obtained. 

As could be expected, increasing the increment length had 

the effect of averaging the calculations. By enforcing 

a change in increment length of 18 % there was a change 

in calculated values of about 3 % of the range of 

oscillation in each variable. The form of the plot was 

identical in each case but the amplidude of the variation 

was reduced. Thus increment length can not be considered 

as the reason for the variation between the theories. 

However, the actual values of deflections and stresses at 

any point must be somewhat different from those presented 

in figures BI to 335. It seems likely that the range 

of variation in the calculated values would be at least 

10 % greater than those calculated. In fact the variation 

would probably be greater when the curvature terms were 

included since they would be very susceptible to averaging 

effects. 



NOTATION --- CHAPTER 4 	 -125. 

A 	Width of defect. 

Amplitude of defect. 

Mx 

14/Sx 	1 Moments per unit length. 
x$ 

M i  

Nx  

Nsx  
1 Membrane forces per unit length. 

11xIg 
Ns  

Cylinder radius. 

Deflection in the axial (x) direction. 

Deflection in the tangential (e) direction. 

wr 	Deflection in the radial (z) direction. 
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CHAPTER 5  

EXTENSIONS TO THE SPACE FRAME MODEL FOR THE COLLAPSE OF 

CYLINDERS LOADED IN AXIAL COMPRESSION 

In the concluding sectionof chapter 2 it 

WS stated that a possible improvement could be made to 

the model for collapse by not considering the folds in a 

Yoshimura pattern as straight sharp bends.: From observation 

of cylinders collapsed in axial compression it was realised 

that the shape of the fold was essentially the shape that 

would be obtained by bending a rhomboidal sheet across the 

short diagonal into two triangles.with all four edges held 

straight. Thus the model shown in figure 5.1A and 5.1B was 

proposed for the analysis. The reason for the rectangular' 
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shai)e instead of triangular vas for ease of calculation. It 

would also represent a condition where the width of the 

facet 1)erpendicular to the fold war.1 infinite. Thu:1 the 

effective width of the bend could be easily determined. 

The analysis of the bend could be achieved 

either experimentally or theoretically (or both). In fact 

both methods were tried but the theoretical analysis was 

found to be inadequate. This theoretical analysis was 

similar in nature to the finite difference Procedure used 

in chapter 4. There were two axes of symmetry in the model 

so that only one quadrant was necessary for the analysis. 

The Ti long by N wide grid point layout for the finite 

difference procedure is illustrated in figure 5.1B. 

As a first approximation and for the condition 

where the angle between the facets approaches 180 0  then 

membrane stresses and surface slopes would be negligible.. 

Therefore, in the first instance the out of plane 

deformations can be reasonably approximated by the bi-

harmonic equation. In the abscence of transverse pressure 

this equation can be written as. 

e4w a4w  

ex 4. ay4 2ex2ay2   5. 1 

The in plane displacements .(u and v) could 

be considered as zero and the required boundary conditions 

were as follows. 
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Along the fold line and at the mid point 

of the fold there was symmetry. 

Thus. 
w(i,l) 	= w(i,5) 

w(i,2) 	= w(i,4) 

w(r+3,j) 	= w(N+1,j) 

and 	w(N+4,j) 	= w(N,j) 

Along the grid lines 1=1, 1=2, j=r+3 

and j=1T+4 the value of the out of plane deflection was that 

given by the initial guess. 

= (j_3).Sy.COSOP 

The programmes used for this calculation 

are listed in Appendix E together with typical output. 

Although these programmes calculated a shape of fold that 

was of the correct general form they were completely 

useless in that the calculated central deflection was 

approximately three times the actual measured value. 

Because of this discrepancy it was thought that membrane 

conditions may have played a more significant role and 

should have been included. Thus the programmes were 

rewritten to include membrane stresses. The listing of 

these revised programmes together with typical output is 

riven in Appendix F . The additional boundary conditions. 

needed were as follows. . 

Symmetry for u along i=r+2 and for v along 

=3. 
i.e. 	u(N+3,j) 	= -u(r+1,j) 

v(i,2) 	= -v(i,4) 
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Zero shear strain along the axes of symmetry. 

i .e. 	u(i,2) 	= u(i,4) 

v(Y+3,j) 	=  

And along the external boundaries there was 

no in plane displacement. 

:i.e. 	u(3,j) = v(3,j) = u(i,j+2) = v(i,j+2) = 0 

In setting up these programmes it was decided 

to use the equivalent to the Donnell equations (3.1,3.2 and 

3.3) as the governing equations. For flat plates any term 

with a reciprocal of the radius vanishes and since we know 

that surface slopes are not large the terms in the product 

of surface slopes can also be ignored. Thus Donnell's 

equations for a flat plate reduce to the well known 

Von Karman equations which (with small surface slopes) 

can be written as, 

32u 4.  (1- v).  (1+0.  a 2v 0 	 5.2 
ax2 	2 ay2 	2 axay 

12_  (,_v) .a2v  u v 

▪ 

u.
2  

?)3c2 
	

(1+
2
V). a 2u   5 

	

axaY 	.3  

and 
4 	• a 4w 

▪ 

2e1E, 2  W 	
2 12..a w(au 	ev )  

	

ax4 ay4 	x2ay2 	T2 ax2 ax V by' 

12. 21Ar t v _L „au N 	12 (1  ,
)(
au 	6v)  a?w 

2 	2'ay -r 4# 11X 1 -r  T2` -`-"Y‘oy 	axay T ay 

5.4 
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Clearly equations 5.2 and 5.3 are the 

membrane conditions and are independent of the out of plane 

displacement "w". If. these equations are used in the 

finite difference procedure then the result is to find 

that the initial guesses of zero for the in-plane displacements 

remain unaltered and thus the membrane stresses are zero. 

The solution thus reverts to the solution of the simple 

bi-harmonic equation. This solution further helps to 

highlight the weakness in the Donnell equations. Perhaps 

a more satisfactory set of equations can be obtained by 

considering equations 3.25,3.26 and 3.27 , the 

Timoshenko and Woinowsky Krieger equations. If all terms 

in the reciprocal of R are eliminated in these equations 

then the following set are obtained. 

am 	 ,)1T. 	am s2 x 	 ( LIc 	_a\ 	liV   + X \ NV 

y 	v  20 X 	63 r 12sxby 	` a y 	a x'a x2 

= 0 	  5.5 

IT è1 	2 	alft 	s2 
X 	W  + 	 c; 

y a x 	‘a y 	a xfaxay 	a x  
= 0 

 

5.6 

 

and a2
Mx  	3,2 	a2 	2 w  

	

+2 -a2L1Yx 	 w 	
11, 

N ‘) x2 	c)xy 	a y2 	x 	+ 	+a x2 	ya y2 	xyaxay 

5.7 
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These three emations were the three uoed 

in the numerical solution. Their combined effect was to 

reduce the value of the out of plane deflection at the 

centre by about 1 % when the angle between the facets 

was 173.9 ° . This was insignificant when compared to the 

factor of approximately three between these calculated 

values and the experimental results. 

Apparently, the large difference between 

calculation and measurement could be attributed to the 

severity of the singular point at the end of the fold line.' 

To investigate the effect this sharp point had on the 

calculation the increment length was halved.- The result 

was that the central deflection was reduced by some 5 °A. 

This, at least, was a step in the right direction hut Only 

a start. Associated with this improvement was an increase 

in solution time from about 10 hours to about 120 hours. 

Clearly, a considerable improvement could still be obtained 

by taking a much smaller increment near the singularity 

and varying the increment size. However, to -gain a 

sufficient improvement in the solution the increment would 

apparently have to be so small that round off errors would 

predominate. Therefore this theoretical procedure was 

abandoned in favour .  of a purely experimental approach. 

The experimental analysis was based on 

the Ligtenberg moire'technique (ref.16). In this method 

a set of parallel grid lines are reflected off the test 
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model which must have a reflective surface and a photographic 

image made of the lines. The model is then deformed and a 

double exposure made. Moirtpatterns on this photograph 

represent contours.' of constant change in surface slope. To 

obtain curvatures Ligtenberg and others have plotted curves 

of slope against position and differentiated this curve or 

mechanically shifted the image to obtain secondary moire 

fringes. In fact, it is important to realise that absolute 

curvatures can be obtained directly from a single exposure 

photograph without having to resort to the rather inaccurate 

technique of graphical differentiation or the severe 

averaging effect of mechanically shifting the image. This 

technique is not new. It is essentially adapting the original 

idea from which Ligtenberg developed his method. It does not, 

however, appear to be described in the literature. 

If a Ligtenberg screen with a line spacing 

of "f" is placed at a distance "Q" ftam the model and the 

surface is tilted an angle NK"' in a direction perpendicular' 

to the lines, then it can be easily shown that, 

n.f 
04 = 2Q 

Here "n" is the fringe order of the reflected 

pattern. If the complete surface is tilted by "a" then the 

grid pattern will appear unaltered in the reflection 

except for a translation. The lines will still appear on 

the model at a spacing of 7  . Now, when the surface of the 

model is bent, there will be a change in line spacing since 

there is a change in slope between adjacent points. If "f l " 

is the line spacing on the model after it has been curved 

then the following relation is valid. 

5. 8 
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Curvature normal to the grid lines 

1, f 
= (1(717— 	1). ---- 5.9 

1 

Thus if one photograph is taken of the 

reflected grid lines it is possible to obtain values of 

slope normal to the lines by observing grid line movement 

(Provided a datum is known) as well as curvatures by 

observing grid line spacing. The accuracy of the measurement 

is limited to the accuracy of measurement of the line 

spacing. This measurement technique was the one used in 

the experimental analysis. In fact using the conventional 

moire technique in this instance was found to be misleading 

and quite inaccurate 

The model shown in figure 5.1A was made 

from a rectangular piece of melanex bonded to a perspex 

frame with cuts in the frame at the midpoints of the sides. 

The model was bent at these cuts forming the fold line of 

the member and photographs were taken of the grid lines 

reflected off the surface. The "cats eyes" picture 

(figure 5.2) is typical of the pattern obtained when the 

grid lines were perpendicular to the fold while figure 5.3 

shows the type of image obtained with grid lines parallel 

to the bend. 

Obviously the slope along the member at the 

mid point was zero. Therefore, by observing the 

shift of the lines in figure 5.2 relative to this mid 



:-..-0- 	  

, 

FIGURE 5.2 
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REFLECTED GRID LINE PATTERN WITH LINES  
PERPENDICULAR TO FOLD 

K= 150m.m. 
T= 0.1 m.m. 

e= 173.9° 
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FIGURE 5.3 

REFLECTED GRID LINE PATTERN WITH LINES 
PARALLEL TO FOLD 

K = 15 0 m.m. 

T = 0.1 m.m. 

0 = 173.9° 
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point a curve of slope in the axial direction against 

position was plotted. Integration of this curve 

gave the deflection along the fold line as a function of 

position. -:?rom figure 5.3 the transverse curvature was 

measured for various positions. An interesting feature 

of figure 5.3 is that there is a reasonably well defined 

area where the curvature is significant. Outside this 

area the surface is essentially flat while within,the 

transverse curvature is almost constant for any given 

i)osition• along the fold. This area usually was about 

half as wide as the fold was long. Thus the proposed 

model would apply to diagonal compression member of the 

Yoshimura pattern provided the facet width perpendicular 

to the fold was greater than a quarter of the length of 

the fold. This stipulation would require a very short 

and sharp facet and would not normally be a limitation. 

A summary of central deflection values is 

given in figure 5.4 for three different test specimens 

with varying angles between the facets. The three lines 

drawn are linear regression lines providing a line of 

best fit to the test results. The regression line for 

specimen no.1 was almost identical to the regression line. 

for all points. From this graph it was very apparent 

that thinner members had, in general, a lesser central 

deflection than thick ones though the difference was 

small and only important at large changes in angle. This 

phenomenon could be attributed directly to membrane 
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conditions. When the angle between the facets was 174 0  

the difference was negligible - 7hich is the result obtained 

in the finite difference analysis. The range of conditions 

represented in figure 5.4 correspond to those that would 

exist in a buckled cylinder with a range of radius to 

thickness ratios of a few hundred to several thousand with 

a minimum of ten facets. Thus the results cover most of 

the range of interest. 

In figure 5.5 the deflection on the member 

axis is plotted as a function of position.. It was found 

that a least squares fit of a power curve with an index of 

2.44 gave perhaps the best fit to the range of experimental 

results. It was hoped when the decision was made to 

investigate the shape of the fold that from the analysis 

the moment recruired to bend the sheet could be found. 

This moment in turn may have ultimately led to the 

establishment of the aspect ratio. However, with the 

sharp bend at the end of the member the moment at that 

point would be infinite and thus the calculated moment 

for bending the sheet would also be infinite. One 

Possible way around the problem would be to use this model 

for the fold centre section and combine it with another 

shape at the end. Unfortunately, the problem cannOt be 

simplified to that extent. In a buckled cylinder the size 

of this end section varies with load. 
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0.1- 

02- 

0.3- 

0 

Range of Experimental 
Results 

0-8- 

(2 X )244  

0.9- 

1.0 
01 	02 	0.3 

DISTANCE FROM CENTRE 
MEMBER LENGTH 

0 04 0.5 

FIGURE 5.5 
LEAST SQUARES POWER CURVE FIT TO 

EXPERIMENTAL RESULTS  
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For figure 5.6,at three points along the 

member lines were drawn with constant curvature to .intersect 

the axis at the value of deflection at the point. The 

curvatures used in the plot were the values measured from 

photographs similar to figure 5.3. Included in figure 5.6 

is a line representing the slope of the facet. Clearly, if 

the fold was sharp then this line would also represent the 

facet. The curves in figure 5.6 became almost tangential 

to this line. In the actual bend the curved lines rdo v in 

fact, deflect further than this straight line but then 

converge on the line. This was logical since the measured 

curvature was the maximum but it reduced only slightly 

within the fold area. Thus a reasonable approximation to 

fold shape is that illustrated in figure 5.7. Likewise 

it is reasonable to assume that the member has resistance 

to bending only within the curved section. Therefore a 

finite area exists that can be considered as the member. 

This area is well illustrated in figure 5.1B. 

The following mathematical relations describe 

the compression member deduced from the above argument. 

1  1 	(2x) 2.44 

vo  

 

5.10 

 

-0.0101.0 + 0.0331   5.11 

( G in radians ) 

n  2.441 
(15-c2-c ) ( 0.0331 - 0.0101.G )  5.12 
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Angle between facets = 165-0 0  

Thickness = 0.05 mm 

Members length 150 mm 

x= 40 mm 

5 	 10 
DISTANCE FROM FOLD (mm) 

FIGURE 5.6 
APPROXIMATION TO TRANSVERSE SHAPE  
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FIGURE 5.7 
FOLD SHAPE 
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. G w1 .sin- 2  
. G 

2 

The width of the member is given by 

5.1 3 

 

1 	2  „. 2.41 	sinQ  or 	= fl-(-e 	(0.0331 - 0.0101.0. 
2( -1.-si4) 

5. 14 

And the position of the neutral axis is given by. - 

2cosn 
=, (1 	ti) )  

IT - 

 

5.15 

 

also 	I /0 
 3! 

T(7  - + 	2+2cos0  = 3 or 	(4 	•  
- 44 ) 	 5.16 

The collapse of the diagonal member was 

calculated in the same way as in chapter 2. For 

this purpose it was assumed that the member being formed 

during the collapse was straight and parallel with a half 

width of V". Thus the collapse conditions were formulated 
4 

in the same manner as in chapter 2 and figure 2.1# applied 

equally for this case. 

Now, as previously, 
1 1  AB2 = p3 - 2(1-1-cos(16/2)) 

 

5.17 

 

OA AB 

  

5.18 
2sin(0/2) 
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ON 	_ AB.cosr)    5.19 2sin(A 2 

FE 	- 
_ ltoiF2 	2.A712 _ 
7 	8.11-5.1TN.sin(S/4) 	. 5.20 

and 	FT 	
71[142 2 + ( 37.11) 2 -1. 	

5.21 

For the purpose of this analysis the deflection 

"HT" was considered as zero with no axial load. Thus the 

strain in FM was, 

{AF2  + 2.AB2  - 8.A13.MT.sin(P4) 	_ 
2 3.1,1% 2 

L2 + 

5.22 

And the resulting force exerted on the 

centre of the column was. 

F 	= 'AF2  + 2.AB2 - 8.AB.7.sinOW4T  _ 

T 2 3.L1 % - 

"J2 -7-- I 

5.23 

It was also assumed that the tension member 

was straight and parallel with a half - width of V". 

Thus AB 	= 12 (1 +     5.24 

2.P1' L1 
and 	P2 

 

5.25 

 

AB 
1.0. 	Pi.L1 1   

T. E.W .K 

 

5.26 
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The length of the loaded combression member 

was not so simply established since the member was not of 

uniform width but approached zero at the end. If one 

tries to compute the axial deflection of this member from 

an integration of strains then the calculated deflection 

would be infinite, because of the singularity. Thus one 

has to approximate the situation further by calculating 

an average area of member. 

Area of member =p.O.T 

.wQ.T.sin - 	2.44 

(1  
1 o' 	(2.X 

2 

Average area 

K/2 

- 

_ 2' (area of member)dX 
71o. 

0.709.Q.T.w0  .sin- 2  
(1 - sin;) 

 

5.27 

 

Thus AF 
P (1 - sin-) 
1 	2 	 = K + 
0.709.G.T.E.w .sin!a o 	2 

 

5.28 

 

Substituting in equation 5.23, we have, 

2.82vi.P1 (1-si4)K2  4.1)1 . 
8.11 	sinZ • 4 

3.11 2 	( 	1 
L2  +  2 

5.29 
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Again, the angle that tie rorce mak7 ,3s with 

the buckling member is given by, 
3.1, 2 

L 
cos, 	 2  	 5.30 

KfI2
2 2  + (  3.L1) 22  

We can also isolate the member as in Chapter 2 

and determine the moment (see figure 2.14) 

= P
1
(Y + z) - P

3 	cos(2.2 )(; x)  

 

5.31 

 

• Since the moment of inertia "I" in this case 

was dependent on position "x" this equation was non-linear. 

A further approximation can be made by assuming the deflection 

of the column as a trigonometric function. The boundary 

conditions were zero deflection at the end (x = K/2) and 

zero slope at the centre (x = 0). Thus the deflection can 

be rePresented by the following, 

= MY.cos(IiI) 

 

5.32 

 

MIT.02 cos(glE) d = - 
K2 

Substituting in equation 5.31, we have, 



w, sin(G/2) 3  E( 	 1-sin(G/2') ) . T. (fr/2 - g/2 	sin0 
2 
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2 (l+cos0)  P.IN./12  cos k--- )  
K2 	K 

w-, . sin(0/2) t 1 	2. cos(G/2)N  N = P (01. cos (1-112-c) + 	' 1 	K 	1-sin (G/2) ` 	ir- 0 ' 1  

2'. 82 . W. Pi  (1-sin (9/2)K2  4.131 . 

- sin?. cos (0/2) ( 14 - x) 	8 . wa  . sin (0/2) 	 K  
2 	3. L, 2 

L2  + (-7-al) 

8.1,1' 	E • W. T. sizi(fS/ 
2 	3.1, 

+ 2 1
) 2 L2  

  

5.33 

  

   

At the centre of the column w1=w0 and x=0 

Thus, 
T.12.1T2 wo . sin ( 0/2 ) 3 	0/2  + sine 	2 (1+ 

- 
cosG)  

1- sin(0/2) 	 ) (172  ( 2 	
) 

K  

sin(G/2) 
= P [If + 	 (1  2. cos(G/2)N 

1 ' 	1- sin(0/2 ) 	- 

_ K. sinv. cos (0/2)  
2 3. L 2 

2(L2 	) 
K. sink. cos(A/2) 

2' 	3. 11 2 
2(L2  + 	) 

{ 2. 82.W. (1-sin(/2) .K2  
0.w0 sin(G/2) 

. 8. L1  .11N. E. VI. T. sin (115/4) 

4 .L 3  K  1  1.1 

Or, 
w o . sin(G/2) 	2. cos (0/2 ) 	sink. cos (0/2 )  f 2.141  P1 	+ 1- sin(G/2) (1- 	- 	 2 	3. 11 2  

L2 + ( 	) 2 
+ 1. 41.W .K 3  (1- sin(Q/2) )fl  

0.w0 . sin(0/2) 
, E. T./2 wo . sin(0/2) 3  

= - II
'[ 

K2 	 ( 	1-sin(0/2) ) (172  - 0/2 4- silf 
2 (14-cos8)N 

- 

1 4.K. sini. cos (G/2) . Li . E. W. T. sin(,c/2) 5.34 

12 + 2 
2 	3.1,2 
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Equation 5.34 is of the form, 

P1 (MN+C)=. -MILD 

Therefore, if r
1 

is plotted against MN, the 

curve is asymwtotic to P
1 
= -D. We can thus consider the 

value of -D as the critical load for the column. 

3 
7 m  42 w_u .sin(G/2) i.e. 	

' Cr
P 
	

= 	-Jo1f1P,  

2 	1-sin(0/2)
) (0/2  0/2 4.  sinG 

2 

2 (l+cos() 
 )

4.K. sinl. cos (9/2) 	E. W. T . sin (04) 	5.35 
- 0 	2 	3.L1 2 

L2  + 

Apparently, the foregoing derivation has too 

many approximations to make it useful. If we use the previous 

cylinder of mylar (E=5.5GPa) with a radius of 0.1 m. and 

thickness 0.19 mm. buckled into a pattern with 15 lobes and 

aspect ratio of 0.7 then an effective width of member of 

only 3.4 times the thickness is necessary to provide a' 

buckling load of 272 N. The last term in equation 5.35 

predominates and this term originates from the effect that 

the radial deflection of the buckling member has on the 

restraining force in the member being formed. It was in 

association with the establishment of this condition that 

perhaps the most serious approximations were made. Thus it 

seems that the so called refinement to the theory, allowing 

for the curved nature of the members was not a refinement 

at all but contributed greater inaccuracies. 1,_?or this reason 

the rounded nature of the space frame members was not considered 

any farther.. 
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Up to this point the space frame analysis 

has centered about one condition of shell wall flexibility, 

i.e. one value of the ratio of radius to thickness. It 

would obviously be desirable to have the theory predict 

the collapse loads for cylinders of all proportions. 

However, before this complete picture can be obtained it 

is necessary to know how the aspect ratio varies with the 

radius to thickness ratio. The aspect ratio is very critical 

in determining the effective width of the space frame 

members. In Chapter 2 an approximate value of 0.7 was 

measured for the aspect ratio. While this value did provide 

a great deal of useful information about buckling loads it 

was later found to be inaccurate. The aspect ratio was also 

found to vary with the radius to thickness ratio and 

possibly with the number of facets in the buckled shape. 

In attempting to calculate the aspect ratio 

it was realised that the simplest space frame model described 

in Chapter 2 was insufficient to fully describe the load 

carrying action of the buckled cylinder. In that chapter 

a true space frame was envisaged with compression members 

that could buckle and tension members. In fact there is 

no reason for the tension load to be concentrated near the 

fold. Instead, it could just as well be distributed through 

the triangular facet. By changing the tension load 

carrying mechanism to a uniform tension instead of an 

angle tension member there is no change to the calculation 
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of the collapse load. There is,however, a small change in 

the axial deflection calculated at collapse. The main 

advantage in treating the tension field in this way is that 

it enables a calculation to be made of the aspect ratio 

which appears satisfactory at least over part of the range 

of buckled cylinders. 

If we consider each facet to have a uniform 

tangential stress (Er) then by considering radial equilibrium 

as before we find that. 

- P.L1*  cos(e2) Cr 	_ 
2 

L12 (Iaos(4/2))
1 

 
4 ..N.L22 .T(l+cos(4/2)) 1 - 4.L22 (1+cos(e2)) 

5.36 

Thus, 

P1° K+4.W.T.I)1  2 .01r-8.I)1 ' E.W.T.MN.sin(e4) 

2311 2  
L2 + (7-) 

5.37 

and, 

  

8.11. .E.w.T.sin(e4)sint.cos0/2*/2 - tan(J.K/21,  
Mi+ 	  

 

r 
11

2 	3L1 2} 
P1 12 "--2—)  

(131 .K2+471Talsinl.cos(A/24.kfl - tan(J.K/2)} 

	

2 	3L ( 1) 2 1 
P1 '[112 	• 2 • 

1 	- 11 ---- 5.38 + /2).(cos (J X/2 ) 

 

  



0 = 
( 2 	 2 

P1 i L2 	(-2-13L  ) 

811EWT s in (P4) sint. cos(0/2){1C/2 -t an J ic,2a 

p2 . T (IZ 	) 1.5 

8.T.E.W.NfA2  
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At the critical load, 

5.39 

This equation for the load carrying capacity 

is exactly the same as equation 2.25. When a cylinder 

is buckled any further deformation will have a certain 

strain energy associated with the deformation. This strain 

energy has three components. 

Strain energy in the end cylindrical sections 

P2 (L - L2 ) 

 

5.40 

  

Strain energy in 2N diagonal members. 

And the strain energy due to the tension field in 2N 

triangular facets 

p2 a0s2(6/2). 

	

l2 	(1-cos ( 5/2))1  32.N.T.E.A(1+cos(P2)) f 	4(1+cos(6/2))J 

5.42 

Thus, total strain energy, fa2 	1.5 
p211. -132 	Li (dk + 	) 

= 2TE fri 4WNiA2  - 4(14C0s(5/2))1 

cos
2
(02)  

16.N.A(l+cos(/2)) 2{A2  — --/(3- 0W4 +cos 	I 

5.43 
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We can then find an estimate of the aspect 

4II ratio by letting 	- 0 

31,1#1,(12 	* ) 
i.e. 	0 	= -1 + 4Wie 

222j1121_____   
8(1+cos($/2) )2{22 	(1-co S ($/2) )12  

4(14-cosW2)) 

cos2 ($/2) 
16 A2(Ifeos(ts/2)) 2112 	(1-cos(/2))1 

4(1+cos(6/2))1 

5.44 

To solve equation 5.44 it was necessary to 

have an estimate of "W" which was in turn set by the load 

carrying capacity of the cylinder. To establish this•

variable the 15 lobe failure of Esslinger and Geier's 

cylinder was again used. The result was that an effective 

width of flange 24.5 times the material thickness was 

necessary and the aspect ratio was estimated to be 0.918. 

Both of these values appear to be reasonable. 

To test the condition further several cylinders 

were made and buckled. The construction of the cylinders 

was the same as previously described. 56 measurements 

were made by photographing the cylinder and measuring 

the aspect ratio' and number of facets from the photograph. 

The measured values are listed in table 5.1 and plotted 

in figure 5.8. The number of facets was not necessarily 
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113ASURED ASPECT RATIOS OF BUCKLED CYLINDERS 
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ma. mm. mm. 
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171ASURED ASPECT RATIOS OF BUCKLM CYLITTT18 

R T L R/T L/R A N 

mm. mm. mm. 
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a whole number since the loading was not completely uniform 

an IVO EA* 

and the seam in the cylinder prevented a true almtialignmeathae-

pattern. This technique for measuring the aspect ratio can 

only be considered approximate and the repeatability of 

measurements was limited to about + 0.03. 

Also plotted on figure 5.8 are curves 

representing the values calculated from equation 5.44. In 

the range covered by the graph there is much cause to 

celebrate the fit of the theory to experimental evidence. 

However, for larger values of N the calculated aspect ratio 

became very large with a consequent reduction in the load 

carrying capacity and thus equation 5.44 became unsatisfactory 

for calculating the aspect ratio. Thus the theoretically 

derived result was ignored for the remainder of the 

investigation. 

Although the theory suggests a substantial 

change in aspect ratio with changing number of facets 

the measurements tend to show that any change in this 

direction was mall and well within the scatter of 

results. Thus for figure 5.9 the range of values of 

together with the mean is plotted as a function of R/T. 

A linear regression line has been fitted to these results 

which provided the following relation. 

)L = —0.121.1n(R/T) + 1.606   5.45 
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A linear regression was chosen since any 

more elaborate a curve would be unreasonable with such a 

wide scatter of results. Equation 5.45 was then used 

as the condition governing the aspect ratio in all the 

subsequent work. 

Now, incorporating equation 5.45 into the 

theory to account for shell wall flexibility and matching 

the 15 lobe failure in Esslinger and Geier's cylinder, 

an effective width of 23.5 times the thickness was obtained. 

Using this value with equation 5.45 a graph was drawn 

relating collapse load for a certain number of lobes 

with the radius to thickness ratio (figure 5.10). In this 

chart the ordinate is given as the proportion that the 

calculated collapse load is of the classical critical load. 

Hart-Smith (ref. 19) gives a summary of 

published experimental buckling loads in a similar form of 

chart. In interpreting those results it is possible to 

infer that most lie within a fairly well defined band 

while only a small number are outside forming a much wider 

band. These two bands have been included in figure 5.10. 

The lower bound of the well defined band coincides with the 

design curve published by Baker, Kovalevsky and Rish (ref.11 

pp.230). It seems that buckling strengths below this curve 

can usually be ignored. These cylinders would be those with 

large defects. The two higher bounds are not so easily 

treated but it is well known that hoop tension in a 
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cylinder will increase its axial buckling strength. One 

can not help but wonder if some of these experimental points 

may have been accidently assisted by this cause, perhaps 

through air entrained in the cylinder or a hoop strain 

applied through the end boundary. 

Whether these higher buckling strengths are 

included or not there appears to be a reasonable agreement 

between the experimental evidence and the collapse loads 

calculated for the substituted space frame. However, this 

graph should be treated with caution because it has been 

derived solely from one point on one experimentally 

obtained curve. 

At low values of R/T it is known that a 

cylinder will buckle in the classical mode into ripples. 

Thus the curves representing the Yoshimura mode should 

exceed unity in this region. The drop in the design curve 

is due solely to yielding. It is interesting to note that 

a mild steel cylinder with R/T = 10 will commence yielding 

on the surface at a load of only 7 of the classical 

buckling load. 

There is next a transition region where 

yielding still occurs and the mathematical model used here 

is inappropriate ( in the region of R/T = 100). A further 

transition region occurs where yielding may or may not 

occur. In this section a well made cylinder may buckle 

into the axisymmetric pattern since its defects may only 
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cover a small seetion of the surface. The line representing 

the corresponding space frame would pass through the top of 

the chart at a point to the right of the particular R/T 

value. However, if the cylinder is poorly made then the 

curve representing the equivalent space frame passes to the 

left and the cylinder will buckle into the Yoshimura pattern. 

In the last region, for high R/T values, the 

cylinder will buckle into the Yoshimura pattern. In this 

section none of the space frame curves passes through the 

line representing the classical mode. It is in this region 

that the greatest departure between prediction and experiment 

has occurred but then both have the same trend. The 

calculated values are in general somewhat lower for high 

values of R/T than the experimental evidence suggests. This 

situation could be improved considerably if the slope of the 

regression line in figure 5.9 were to be increased. Increasing 

the slope has the effect of increasing the collapse loads of 

the space frame for high R/T and moving the points of 

intersection of the curves with the top of the chart towards 

the left. Both of these corrections would appear to be 

desirable to make the chart more nearly reflect the practical 

situation. A close scrutiny of figure 5.9 would suggest that 

such a change may not be unreasonable particularly when it is 

realised that measurements of aspect ratio at low R/T were 

less reliable. 

In the region of large R/T the number of facets 

at which the maximum load occurs increases with increasing 

R/T. Consequently, it would be expected that as the wall 
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thickness is reduced a larger number of facets would occur 

in the buckled shell. This is also a phenomenon observed 

in cylindrical shells. 
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Young's modulus. 

1-T 	Axial length of half facet l i.e. collapsed length 

corresponding to L2  

Moment of inertia of column member.. 

Length of diagonal Compression member. 

Undeformed length of cylinder. 

L1 	Length of facet in the circumferential direction 

L2 	Half developed axial length of facet. 

IT —x 

y 

 

xy 

1 

- x 

Number 

Moments per unit length. 

of circuMferential facets. 

N
Y 

Membrane forces per unit length. 

TT xy 

Axial load On cylinder. 

P1 Axial load in diagonal member. 
}Tension positive 

P Axial.load in tangential member. 

P
3 

Axial load in member being formed. 

Distance Ligtenberg screen is placed away from the 

deformed model. 

Cylinder radius. 

Wall thickness. 

Deflection in a direction parallel to the axis of the 

compression. member (x direction). 

Deflection in a direction normal to the axis of the 

Compression member (y direction). 
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deflection. 

wo 	Central deflection of unloaded compression member. 

Unloaded deflection of any point on compression member. 1 
VI 	Effective width of flange of remaining members. 

Transverse deflection of loaded compression member. 

Half width of curved com -pression member. 1 

l'osition of neutral axis of curved .compression member. 

Axial deflection of loaded space frame structure. 

Strain in tangential member. 

e 	Strain in diagonal member. 

Angle between collapsing diagonal member and member 

being formed. 

Angle between adjacent facets along a diagonal member. 
L2 A 	Aspect ratio (--). 

V 	Poisson's ratio. 

12 	Radius of curvature of cross Section of compression 

member. 

Angle subtended at axis of cylinder by each facet. 

00 	Ratio-effective width of flange to thickness(W/T). 
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CHAPTER 6  

lasCPERIIIII;;ITTAL TECHNIQUE FOR ITEASURIFG RADIAL D.'7013:EATIONS 

A system was devised to measure radial 

deformations of the cylindrical shell based on the 

Ligtenberg.moir‘method (ref. 16). In the original 

Ligtenberg method a grid of equispaced lines was reflected 

off a model with a flat surface and photographed. The model 

was then deformed and a double exposure made of the grid 

lines. A moire'interference pattern was obtained between 

the grid lines Photographed in the two load conditions and 

the fringes represented contours of constant slope 

perpendicular to the direction of the lines. Since two 

slopes are needed to define the condition at any point, 



170. 

two double ex ,Dosure photographs were needed. The grid 

lines for the second photograph were required to be rotated 

relative to their position for the first photograPh. 

An adaptation of the Ligtenberg method has 

been satisfactorily applied to the measurement of slope 

changes on the outside of cylindrical shell sections (ref.17). 

However, to determine the deflections of a complete cylinder .  

it would be desirable to have one photograph describe the 

entire surface. One way in which all of the surface of 

the cylinder can be viewed at once is to use the internal 

surface. Thus, to utilise the Ligtenberg principle it is 

necessary to reflect a grid Pattern off the inside of the 

cylinder •,nd interfere the reflected pattern obtained in 

the undeformed state with that obtained after loading. 

73y using the inside surface for measurement the outside 

is also left free for loading (e.g. pressure). 

Figure 6.1 shows the system that was used 

to achieve this uurpose. A cylindrical grid was reflected 

off the inside surface of the test cylinder and reflected 

again on the inside surface of a conically shaped mirror. 

Orip7inally the grid Pattern was then viewed by a special 

holasymmetrical camera (see ref. 18) that accepts only 

collimated light. Thus only light rays emerging parallel 

to the axis of the mirror were used in establishing the 

fringe pattern. This camera was subsequently found to be 
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unsatisfactory because of insufficient depth of focus. It 

was replaced by an optic system comprising a large diameter 

very long focal length. lens (2.27m. focal length and 130m.m. 

dia.). At the focal point of the lens the aperture of a 

camera was located, thus permitting only the collimated 

portion of the emerging rays to be photographed. This 

revised system had the minor disadvantage in that the 

image was no longer full size. Instead it was reduced 

considerably making resolution of the grid lines somewhat 

more difficult. The photographs made from this arrangement 

were flat and circular in nature. Grid lines oriented as 

in figure 6.1 (circumferential) were changed to concentric 

circles and longitudinal lines became radial lines. Thus 

the cylindrical co-ordinates of the test piece were 

transformed to polar co-ordinates by the optic system. 

In the first instance the illuminated grid 

was a piece of a photographic negative wrapped around a 

miniature fluorescent tube. The test cylinder was an 

aluminium drink can (seamless) and the mirror was machined 

from a piece of aluminium alloy No. 2011. The test specimen 

was prepared by bonding the aluminium can into reinforcing 

rings with epoxy (Araldits AY103 with hardener HY951). The 

ends of the can were then removed and the inside polished 

to produce a reflective surface. 

For reasons discussed later the grid was 

:
superseded while the aluminium can was changed for a 

fabricated melanex cylinder which would buckle elastically. 
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Figure 6.2 illustrates the geometry of the 

optical system. It is apparent from this diagram that for 

a given radius and cone angle (G) the following relations 

hold. 

X2 	= (R2  - R1)cot2G 

L
3 	

= X2 + X1 
X, 

X
4 	

= R2 cot2G - 7- 

The cylinder length X1  is limited because 

of interference of the reflected ray with the illuminated 

grid. The maximum value is. 

= 2(R2 - R1)cot2Q 1 max. 

= 2X2 

The radius of the conical mirror at the 

small end has a minimum value namely. 

X1 = --tan20 2 'min. 

R3 —  R5  — an also X
5 

- X4 

and 

R35 • min tan28 X5 - X4 

X1 
i.e. 	R3 	= 2R5

cos2 - --sin2A 2 
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and 	X5 
licos2G X1cos2G 	R2  
tang 	2 	tan2A 

X6 	X1(1 + cos20 

R
4 
	= R3 + X1sin2Q 

Circumferential grid lines spaced f2  apart 

will appear as concentric circles in the developed 

photograph spaced f 2 sin20 apart. Longitudinal grid lines 

with a line spacing of fl  will appear as radial lines on 

the photograph with a spacing of, 

Here f is the line spacing at radius R in 

the photograph. The minimum line spacing is. 

fmin 

When the cylinder deforms so that there is 

a change in slope in the tangential direction then the 

condition shown in figure 6.3 is established and, 

nf1 
R1  

 

( AB)2 	= R12 	.(R
2 + y ) cosIS 

and 
R1 	_ AB 

sin251 	Taii7 
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FIGURE 6-3 

EFFECT OF CHANGE OF SLOPE IN TANGENTIAL DIRECTION 
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i.e. sin2S - 

nf 
R1

1  sin( ---) - 	R - 1 
f, 2 	.2' 	nfl 
tal 	kx2  +/ ) - 2R1 (R2 	)cos(---) R1  

For the particular parameters adopted (R 1= 8mm. 

R2- 33mm.) then. 

nf 
8sin(-5.1.) 

Si 	- 2sin 	 

1153 + 6621 - 16(33 +t)cos -u-) 

6.1 

Generally the finite deformation (it) is small 

and can be neglected in equation 6.1. Figure 6.4 is a plot 

of this relation for small 7 together with the tangent at 

the origin which is given by. 

= 0.02nf Rad 1 	• 

= 1.146nf1  Deg. 

The relation is non-linear though the 

d ,3viation from linearity is limited to about 2% with a 2 °  

change in slope. 

Figure 6.5 illustrates the condition that 

applies in measuring the change in slope in the axial 

direction. Unfortunately, changes in slope in the 

tangential direction also affect this measurement. 
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cos4 - 	2 2R1  

2R1 (R2+t)± 4R1  kR2+v 2/ 	a 

sin226 
- (R12+(R2+11.2 	.... 	) 

sin261 

R
12  	i 4R:1

2 
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-3efore defornation the point "A" of t .:le 

grid is seen in the reflection fro:a tlie cylinder surface 

at "0". If there is a slope change in the axial direction 

then the point "2," will be seen at "0". A change in slope 

in the tangential direction will mean that the ray emerging 

fron the grid will not come from a point on the same 

generator as "A" but will originate from a point to the 

side i.e. "C". 

Fow . 

R
1 	

fR,2  
— 	

(R2 +la)  _ 2R1 (R2  + ) cosi+ 
-1-  

	

sin2S1  sin/5 

2 	2 R 	sin p -0  2  

sin2 	
(R2 +1 .2 _ ) 	2R1 (R2 + )cositl S1 2 ° 1  

.4_ 
 

i.e. 
R1

2 
2 J  cos p - 2R1 (R2 +t)cositS + 	

2  + kR2  
sin2261  

R1
2 

2 sin 261  
=0 

sin2 261 

The positive sign gives the required root, therefore. 

(R2+t)sin2 261 ' 	R0+1 	2  
cosig 	

" 
- 	R 	+ f(1-sin2261)(1- ()sin 261.  

1 	 .1 



R2-•R1 + Z + 
tan2(0 + 52) - R2- R, 

tan20 	nf2 tan20 

R1 (1-cos) + nf2tan20 + 2' 

tan2G 	 nf2 + tan2G(R2- R1cos/ + 1? ) 
tan262  R2- Ri- 

181. 

= R (1 - cos) 

/Tow. 

or, 

And for the particular design parameters 

adopted in the absence of large deformations this reduces to. 

cos/ 	= 4.125sin2261  + 4(1 -sin226
1)(1-17.02sin2 261 ).P 

and, 

62 	- 
1 -1.(8(1-cos4+ 0.404nf2 	4  ----6.2 - — tan 2 	61.88-nf + 0.404(33-8c0s 

Equation 6.2 is plotted as figure 6.6 and 

it can be seen that it is distinctly non-linear. Therefore, 

although a linearisation could be adopted when measuring 

slope changes in the tangential direction, it would be 

clearly inadvisable when determining slopes in the axial 

direction. 

In using the Ligtenberg-moir‘method it is 

common to obtain interference patterns for two grids at 

right angles and another Dattern with the grid lines at 

some intermediate angle. It has already been shown that 
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slope changes in the tangential direction can be measured 

independently with axial grid lines but circumferential 

lines do not measure only the slope change in the axial 

direction. Interpreting fringe patterns obtained from a 

spiral grid would be even more difficult so that the use 

of this type of grid is not considered to be a worthwhile 

proposition.. 

In setting up the apparatus it was found 

that a reference specimen was necessary. For this purpose 

a cylinder was machined from brass to the same internal 

dimensions as the drink cans and internally polished. 

Alignment of grid, cylinder, mirror and camera was achieved 

when the images of all elements were concentric and the 

grid lines were either concentric circles or straight 

radial lines. Concentricity could be checked more 

accurately by observing the image in the camera than 

by. measuring the relative positions of the optic elements. 

To check the accuracy of the system a known 

tilt was applied to the cylinder and a moiripattern 

obtained from a double exposure photograph taken of the 

grid lines at the two extreme_positions. Figures 6.7 and 

6.8 are the moire patterns obtained. 

Figure 6.7 was taken with the. miniature 

fluorescent tube as the light source and it illustrates 
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FIGURE 6.7 

MOIRE PATTERN FROM BRASS CYLINDER  
WITH TILTED AXIS-AXIAL GRID LINES  
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FIGURE 6.8 

M01Rg PATTERN FROM BRASS CYLINDER 
WITH TILTED AXIS-TANGENTIAL GRID LINES 
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the shortcomings of this device. It will be seen that the 

image is very indistinct around the extremity. This is 

be3ause the fluorescent tube tends to become dull at the 

end. The optical requirement of the system in this region 

is increased brightness. The lead wires required with the 

tube show on the image and blank out part of the grid (dark 

lines at top and bottom). The disadvantages of bonding a 

grid to the tube can also be seen in the !hotograph. The 

white lines at the top of the image are due to the join 

in the grid. Uneven patches of glue were also difficult 

to avoid. These showed as circular streaks in the 

Photograph and tended to make the moire - pattern less distinct. 

These are most visible at the bottom of the photograph. 

For figure 6.8 the fluorescent tube was 

replaced with a perspex bar with machined grooves 

progressively deeper towards the free end. Approximately 

collimated light ivas shone on the fixed end so that the 

grooves scattered the light forming bright bands and the 

intermediate sections were effectively internally 

reflective. The result was a considerably improved image. 

The unevenness of illumination was because the collimated 

light was not exactly parallel to the axis of the grid. 

In figure 6.9 the fringes obtained•from the 

two photographs (figures 6.7 and 6.8) are compared with 

fringes predicted from equations 1 and 2. Excellent 

agreement has been achieved. An insignificant discrepancy 

exists and appears to be due to improper .  alignment of all 

the optic elements at the time this test was made. 
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FIGURE 6.9 
COMPARISON OF FRINGES OBTAINED OPTICALLY 

WITH PREDICTED FRIN GES 
FULL LINES - THEORETICAL FRINGES 
DOTTED LINES - OBSERVED FRINGES 
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The machined perspex bar is illustrated on 

the left hand side of figure 6.10. Also shown in figure 6.10 

is the grid that replaced the fluorescent tube with axial 

grid lines. Both of the grids were made in a similar 

manner except that instead of turning grooves in the bar 

the grooves were made in a milling machine using a dividing 

head and the corner of a cutter. The patterns obtained 

with these two grids of the inside of the brass reference 

cylinder after final alignment of the optic elements are 

shown in figure 6.11. The variation in thickness of the 

radial grid lines occurs because the dividing head was 

running slightly out of true when the grid was manufactured. 
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FIGURE 6.10 
PERSPEX GRIDS 
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FIGURE 6•11 
GRID PATTERNS FROM BRASS REFERENCE 

CYLINDER 
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EOTATIOY 

f1  Pitch of lines on grid in tang,ential direction. 

f,• Fitch of lines on grid in axial direction. 

Fringe order. 

R1  Radius of illuminated grid. 

• 112 	Internal radius of cylinder. 

R3  
Internal radius of interference pattern. 

R
4  

External radius of interference pattern. 

115 	Radius of conical mirror at small end. 

X 	Length of cylinder. - 1 

X0 	Axial length between point of reflection of a light 

ray on the cylinder and its intersection 

with the illuminated grid. 

Axial distance between end of cylinder nearest the 

- mirrOr arid'the origin of the longest light ray. 

Separation of mirror and cylinder. 
4 

X 5 	SeparatiOn, end of cylinder to point of reflection 

on mirror of inner edge of interference pattern. 

X6  
Separation, end of cylinder to point of reflection 

on mirrof of outer edge of interference pattern. 

gl 	
Slope change in cylinder in tangential direction 

during deformation. 

Slope change in cylinder in axial direction during 

deformation. 

Cone angle of mirror. 
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CHAPTER 7  

EXPERIMENTAL EVIDENCE TO SUPPORT THE SPACE FRAME THEORY.  

The experimental technique explained in the 

previous chapter was developed with the Ligtenberg moire' 

technique in mind. However, it was quickly discovered 

that the alternative technique of obtaining line movement 

was a far superior method in this case. The earlier work 

in this thesis had shown that in considering the buckling 

of cylindrical shells it would be desirable to detect a 

defect and observe how that defect changed with load. 

Thus, some prediction of the buckling load could be made 

with the knowledge of the defect behaviour. Arbocz and 

Babcock (ref.21) have previously tried measuring defects. 

Their technique was to use a scanning capacitance transducer 

to measure the air gap between the test cylinder and a 
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generated cylindrical reference surface. They then fitted 

a Fourier series to the contour map obtained and observed 

the growth of the Fourier co-efficients with load. Such 

a technique is rather cumbersome and the fourier series 

represents the global condition. Since buckling appears 

to rely on local defects it would be desirable if the 

measuring system could measure local effects. Perhaps the 

real shortcoming in their work was that the imaging process 

they used could have masked the important deformation 

growth. 

The current system appears to offer some 

advantages over their method. Since we are observing the 

line shift, a defect will show as a short deviation in the 

line, either from a circle or a straight radial line. 

Such a deviation is relatively easy to see and the local 

size of the defect can be readily measured. Although it 

is possible to measure slope and hence deflection by 

observing line movement it appears that for cylinder 

buckling such measurements are unnecessary. It seems 

that the width of the defect in particular and perhaps 

the length are important and these can be measured directly 

from the photograph with a minimum of effort. Perhaps 

the greatest difficulty is in selecting which of the 

defects present is the one controlling the collapse. This 

can be found by comparing two photographs at different 

loads and finding where the lines have changed position. 

The greatest shortcoming of the technique is that for a 
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particular conical mirror only a very narrow range of 

cylinder diameters is possible. In this case the cylinder 

diameter was limited to values around 66 mm. 

To deform the cylinder a special loading 

frame was made. The loading arrangement in this frame is 

shown in figure 7.1. Axial compression was applied to a 

crosshead attached to the free end of the cylinder by two 

stainless steel wire cables and the load in these cables 

was equalised by a pivoting support bar. Torsion could 

be introduced by adding another pair of balanced load 

cables while some bending could be added by shifting the 

pivot point position on the equalising bar. In hindsight 

this last provision was probably unwise since it meant 

that the loading crosshead had to be freely floating. 

In chapter 2 it was shown that a buckling cylinder would 

fall over unless it was restrained. Not only did they fall 

over but it was impossible to straighten them up under 

load. Thus, the post-buckling investigations were. very 

limited. Parallel moving plattens would have been more 

satisfactory for this purpose. The test apparatus arranged 

for axial compression measurements is shown in figure 7.2. 

As well as measuring the axial load with a strain gauged 

proving ring and a Bruel and Kjaer bridge (type 1526), the 

axial displacement was measured by summing the output of 

two Hewlett Packard differential current displacement 

transducers. The transducers were located on either side 

of the crosshead. A load-deformation graph was then 
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Pivot support 

Load equalising 
bar 

Proof ring 
(Axial load ) 

Proof ring 
(Torsional load) 

Load ing 
cables 

Test cylinder 

( Fixed at upper 
end free at 
crosshead ) 

Load ing crosshead 

FIGURE 7.1 
LOADING ARRANGEMENT 
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	 LOAD EQUALISING BAR 

	- LOADING CABLES 

- PROOF RING (AXIAL LOAD) 

PROOF RING (TORSION - 
DISENGAGED) 

LIGHT SOURCE 
D.C.D.T. 
ILLUMINATED GRID 

HOUSING 

- TEST CYLINDER 
CROSSHEAD 

CONICAL MIRROR 

227m FOCAL LENGTH 
LENS 

TEST CYLINDER MADE 
FROM ALLUMINIUM CAN 

MIRROR 
	

BRASS REFERENCE CYLINDER 

FIGURE 7-2 

TEST APPARATUS ASSEMBLED FOR AXIAL 

COMPRESSION TESTS 
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drawn on a Hewlett Packard X-Y plotter (type 7004B). Thus 

it was possible to produce a load-deformation cycle and 

take photographs of the deformation at several known points 

around the cycle permitting observation of deformation 

growth with load. 

Since melanex had already been shown to be 

reloadable it was decided that the test cylinders should 

be made of this material. Thus a load-deformation graph 

could be obtained and then the load applied to any desired 

value which could be determined from an inspection of the 

form of the graph before taking photographs. The testing 

procedure was therefore to obtain the load-deformation 

graph, recycle and take photographs with one grid at the 

important points and then cycle again with the other 

grid. Thus there could be minor differences in the 

deformation pattern between a photograph taken with one 

grid and that taken with the other but in each case 

. similar conditions of load and deformation were present. 

Sometimes one grid showed information 

that the other did not and vice versa but in a great 

number of cases (particularly after collapse) they 

showed the same information and thus provided a check on the 

measurements. In general, photographs taken with the 

tangential grid lines (concentric circles) tended to show 

more information than those with axial grid lines (radial 

lines). The reason for this was not just due to line 
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orientation. The cone angle of the mirror was only 11 0  

and this made the first grid very sensitive. Also, there 

were insufficient axial lines on the alternative grid. 

Because of the shallow cone angle there was a strong 

tendency for the defects and buckles to cast shadows. It 

seems that a cone angle of the order of 20 0  would have 

been superior but this would have imposed a further 

restriction on cylinder length. 

Because only two thicknesses of melanex 

were available and the cylinder radius was limited to 

effectively one value only four cylinders were tested, 

two of each thickness. The details of these cylinders 

are given in table 7.1. Although only limited variability 

was available in the cylinders the information found from 

these tests shows a great deal of the behaviour of buckling 

cylinders and reinforces the theoretical discussions of 

earlier chapters. 

The load-deformation chart from cylinder 

no.1 is shown in figure 7.3. In this chart there are 

two continuous lines indicating two consecutive loading 

cycles. The repeatability of loading was obviously very 

good. In fact over all the load cycles taken the greatest 

variation in collapse loads for any particular load' 

condition was about 9% and usually within about 3%. 

Obviously, after collapse the M-Y plotter recorded the line 

shown as "plotter characteristic" but this was only the 
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TABLE 7.1 

DETAILS OF CYLINDERS TESTED 

Cylinder R T 1 RIP L/R 

mm. mm. mm. 

Number 1 33 0.1 67 330 2.03 

Number 2 33 0.05 69 660 2.09 

Number 3 33 0.1 42 330 1.27 

Number 4 33 0.05 40 660 1.21 
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dynamic characteristic of the device. The true 

characteristic of the loading system is represented by the 

straight line. 

The photographs presented in figure 7.4 are 

those that were taken at the various positions indicated 

on the plot. After collapse (position D) the facets of 

the Yoshimura pattern cover most of the cirammference 

but there is considerable asymmetry, indicating bending 

of the shell. The photographs at D also show that small 

facets have formed at both ends of the cylinder of the 

type described in chapter 2 (left hand side of figure 2.7). 

The size of each facet was determined by measuring the 

angle that the facet subtended at the centre of the 

cylinder. These values are listed in table 7.2 and it is 

apparent that the facets become larger near the centre of 

the buckled section. However, two circles can be drawn 

on the photographs which link the ends of all the facets. 

Thus the axial length of the buckle pattern was constant 

regardless of the pattern width and aspect ratio' measurements 

were useless on bent cylinders. This phenomenon was 

repeated on all cylinders indicating the need for parallel 

platens in the test rig. In all the test results presented 

the angles are measured in a clockwise direction on the 

photograph. 

On reducing the axial deformation there 

was an increase in the load as the facets became smaller 

(condition E) until there was a sudden snap through where 
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A 

B 

FIGURE 7-4 
GRID PATTERNS FROM CYLINDER No 1 
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FIGURE 7.4 CONT 
GRID PATTERNS FROM CYLINDER  No  1 
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FIGURE 7.4 CONT 

GRID PATTERNS FROM CYLINDER No 1 



G 
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FIGURE 7.4 CONT 
GRID PATTERNS FROM CYLINDER  No  1 
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ANGLE SUBTENDED BY DEFECT OR FACET AT CENTRE OF CYLINDER 

CYLINDER No.1  

Defects before collapse;- 

Location 
of Photo. 

A B C 

Grid Line 
Direction 

Tgtl. Radl. Tgtl. Radl. Tgtl. Radl. 

Angle at 
Seam. 

Angle at 
Glue Line 

28 

35 

32-34 

__ 

29 

35 

33 

__ 

28 

38 
. 

33 

-- 

Facets after collapse;- 

'

Location 
of Photo. 

D E 

Grid Line 
Direction 

Tangential Radial Tangential Radial 

Fixed 
End 

Free 
End 

Fixed 
End 

Free 
End 

Fixed 
End 

Free 
End 

Fixed 
End 

Free 
End 

Angle 
48*1 

54-i 

59i 

60 

50+ 

• 

I 35i 

5071-  

59 

60+ 

54-A-  

42 

39 

58-i-  

62* 

54 J 
39 

i  47 

I  54* 

64i 

57i 

48* 

5l'  
38i 

42-1

47 

47 

35+ 1 

I 

42I  

I 	38 

46i 

44 -i 

45i 

39i 

J  

39i 

45i 

43* 

44* 

I  38i 

4li 

45.. 

46i 

41i 

33 
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TABLE 7.2 CONT.  

ANGLE SUBTENDED BY DEFECT OR FACET AT CENTRE OF CYLINDER 

CYLINDER No.1  

Location 
of Photo. 

F G 

Grid Line 
Direction 

Tangential 	Radial Tangential Radial 

Fixed 
End 

Free 
End 

Fixed 
End 

Free 
End 

Fixed 
End 

Free 
End 

Fixed 
End 

Free 
End 

Angle 
38 

36 

33-i 

p 

38* 

39 

34 

41i 

42 
I 

40 

35 

41* 

42 

40i 

37i 

37*1 
I 

36 
I 

32 

37* 

38i-  

34 

38 
I 

32i 

37 

36 

30-1 

N.B. All angles measured in degrees. 
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many facets disappeared with a marked decrease in load 

(conditions F and G). When all the facets had vanished 

the cylinder behaviour was along the same path as for 

increasing load. 

. This increasing load path was particularly 

interesting for cylinder no.1 in that it was in two sections 

each of essentially constant stiffness. The slope of the 

line for the second section was considerably greater than 

for the first. The reason for this change was that 

predominately two mechanisms were present in the collapse. 

In the lower load section the deformation appeared to be 

controlled by the seam while in the upper section it was 

controlled by the defect marked in figure 7.4. The defect 

was adjacent to the end of the test section of the cylinder 

i.e. the line where the cylinder was bonded to the end 

stiffening rings. Photographs A and B show that the seam 

defect changes substantially in this region but only slightly 

between B and C. There is considerable growth of the other 

defect over the entire loading portion. The size of the 

seam defect was measured at two quite different values 

for the two grid orientations. The reason for this difference 

was probably that the defect was not distinct enough with 

the axial grid lines. Thus the values read from the 

photographs with circumferential grid lines were more 

reliable in this case. The controlling defect appeared 

to grow in width between B and C while the seam defect 

remained constant in width. 
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Further evidence in support of the speculation 

that two distinct defects controlled the collapse is presented 

in figures 7.5 and 7.6. For figure 7.5 the cylinder was 

into the test rig so that slight changes in loading geometry 

occurred. The overall result was that there was a small 

increase in the collapse load of the cylinder. The variation 

between collapse loads for the two cycles shown of lON (9%) 

was the maximum encountered for any of the cylinders but 

even this variation must be considered as adequate for 

buckling cylinders. More importantly, at the junction 

between the two sections of the loading sections of the 

curve there was a small dip. This dip was associated with 

the formation of the small buckle illustrated in figure 7.6 

which was located on the seam at the position of the 

previously observed defect. Thus the stiffness of the 

cylinder in the lower load portion of the curve: can be 

attributed to this defect. 

Immediately after the small buckle appeared 

there was a marked stiffening of the cylinder for a short 

time and then a decrease in stiffness once the original 

load curve of figure 7.3 had been reached. At that point 

the small buckle disappeared again and the loading was no 

longer under the control of the defect at the seem. 

Incidentally, the stiffness in the higher load section 

was essentially that provided by considering a perfect 

cylinder and material properties only. In chapter 4 

computational evidence was shown for just such a stiffening 
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FIGURE 7-6 
DIMPLE FORMED WITH INCREASING LOAD 
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using the modified Timoshenko and Woinowsky-Krieger equations. 

This experimental result provides further support for the 

need to include the curvature terms in the membrane 

equations. 

The collapse load in this cylinder was 

measured at 101.4N (figure 7.3). Now, in referring to 

the design chart based on the space frame theory (figure 5.10), 

a corresponding space frame with 9 lobes would buckle at 

this load. It is extremely encouraging to observe that 

the angle the defect at the seam made at the centre just 

before collapse was measured at 38 °  or -9-15 of the 

circumference. The accuracy of interpretation of the 

photograph could make this measurement vary between about 

36 0  and 40 0. Thus if one accepts the space ftame theory as 

a reasonable explanation of the buckling behaviour of 

cylinders then it can be said that the defect at the glue 

line is the one that initiated the collapse of this cylinder. 

In installing cylinder no.2 into the test 

apparatus it was severely damaged so that quite a lot of 

permanent damage was sustained. Normally, in A testing 

programme such a test specimen would be thrown away and 

ignored. However, in this case it provided an excellent 

opportunity to use the experimental technique to illustrate 

the manner in which the buckles can grow out of large 

initial defects. Only one load-deformation curve is 

plotted in figure 7.7. The reason for providing only one 
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curve is for clarity. In fact, there was very little 

difference again between all the load cycles taken. 

In this cylinder the photographs (figure 7.8) showed that 

there were several defects of substantial size which 

contributed to the collapse mechanism. The size of each of 

these defects is listed in table 7.3 to illustrate their 

growth as well as measurements of the angles of facets 

once the buckle pattern had become established. 

Between A and B defect no.1 appeared to 

control the collapse of the cylinder. In this region this 

particular defect had almost doubled in size while the 

others had grown to a much lesser extent. This was in line 

with the behaviour described in chapter 2 where facets held 

in one position would snap through to form facets twice the 

size. Between B and C the defect on the seam has collapsed 

and in doing so has dragged defect no.3 around the 

circumference to join it. However, seeing that defect no.3 

was effectively anchored at one end due to the initial 

deformation it has become a much larger facet at C. Between 

C and D defect no.2 has been pulled around anticlockwise on 

the photograph to relieve the excessive tension that must 

have been built up in defect no.3. However the collapse 

in this region was really due to defect no.4. It was 

difficult to suggest which defect in the earlier photographs 

had contributed to the formation of this defect. It could 

have been any one of several. Between defect no.4 and 

defect no.2 there was a maze of small uninterpretable 

defects, one of which was probably the remains of defect no.l. 
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FIGURE 7.8 
GRID PATTERNS FROM  

CYLINDER No 2  
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FIGURE 7-8 CONT 
GRID PATTERNS FROM CYLINDER No 2 
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TABLE 7.3 

ANGLE SUBTENDED BY DEFECT OR FACET AT CENTRE OF CYLIMR 

CYLINDER No.2  

Defects before collapse;- 

Location 
of Photo. 

A B C D 

Defect No.1 - 	17 32i 41 -- 
Defect No.2 16 24* 39i 39i 
Defect No.3 18 24i 42 37 
Defect No.4 -- -- -- 32i 

Facets after collapse;- 

Location 
of Photo. 

E F G H 

Fixed 
End 

Free 
End 

FixedFree 
End End 

FixedFree 
End End 

FixedFree 
End End 

Angle 13 
28 1  

35 
35i 

27i 
351, 

381 
39N 

34 
39 

I 

1 

1 	19 
1  
1 
1 

1 

1 

297T 

35 

' 38i 

37* 

34i 

132 

26 

36 

39 

401 

39 

29* 

42 

491 

43 

44 

42i 

29 1 

I38 

25* 
i 

38i 

46 

52 

37i 

371 

I  

27* 

35* 

42 

40i 

38 

3.4 

32 

133 

33.  
40 

46i 

39i 

35 

N.B. All angles measured in degrees. 
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At D there were, therefore two separate 

collapsing sections of the cylinder and this was reflected 

in the photograph at E. Here, the two sections were joined 

together with facets to form a buckle pattern that was 

approaching the regular form. Linking the two sections was 

a small defect which appeared to form an additional tier on 

the buckle pattern. Also, adjacent to the position of 

defect no.2 there was an additional smaller dimple wedged 

in between the two main rows of dimples. This was really 

the remains of the unintelligible section of the photograph 

at D and soon vanished. 

A regular buckle pattern was not reached 

until condition F was achieved. However, even at this 

point the facets did not show the same regularity in 

increasing and decreasing size around the photograph that 

occurred with cylinder no.l. At position G, the additional 

collapse was due to extra facets forming in the buckle 

pattern as well as the introduction of small facets wedged 

into the end of the pattern adjacent to the ends of the 

cylinder. The unloading behaviour was similar to that of 

cylinder no.l. 

A different type of behaviour was observed 

with cylinder no.3 (figures 7.9 and .7.10 with table 7.4). 

In this cylinder the collapse was controlled by a defect on 

the seam of the cylinder but it did not form into the 

regular Yoshimura pattern. Instead it buckled into the 

shape Esslinger and Geier called the "one tier" pattern 

(see figure 2.10). Here it appeared that the seam was 
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FIGURE 7.10 
GRID PATTERNS FROM CYLINDER No 3 
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FIGURE 7.10 CONT 
GRID PATTERNS FROM CYLINDER No 3  
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TABLE 7.4 

ANGLE SUBTENDED BY DEFECT OR FACET AT CENTRE OF CYLINDER 

CYLINDER No.3  

Defect before collapse;- 

Location 
of Photo. 

A B 

Grid Line 
Direction 

Tgtl. Radl. Tgtl. Radi. 

Angle 16 -- 22 -- 

Facets after collapse;- 

Location 
of Photo. 

C D 

Grid Line 
Direction 

Tgtl. Radl, Tgtl. Radl. 

Angle 31i 
45 
48i 
45 
35i 

32i 
44i 
51 
44i 
36 

33t 
3.8 
33 

34i 
40 
32 

N.B. All angles measured in degrees. 



224. 
behaving as a column almost independently of the remainder 

of the cylinder and once the seam had collapsed sufficiently 

it then promoted the collapse of the adjacent portion of the 

cylinder. This defect growth can be clearly seen in the 

photographs taken at A and B. The photographs taken at C 

and D show the regular "one tier" pattern at the centre 

of the cylinder and symmetry about the defect at the seam. 

This symmetry was not present in cylinder no.l. The reason 

for its absence in that case was that the seam effectively 

stopped the buckle progressing around the cylinder. Thus 

in cylinder no.1 the buckle pattern started at the seam. 

These few results show the importance of the seam in the 

buckling characteristics. Although useful results have 

been obtained at this point it is imperative that for 

future tests seamless cylinders are manufactured. Practical 

cylindrical shells would no doubt have seams and also very 

likely have stiffeners. Although the ultimate aim must be 

to understand the behaviour with both constraints, it is 

useless to contemplate such behaviour without first having 

a knowledge of basic cylinder behaviour through seamless, 

well made cylinders. 

The behaviour of cylinder no.4 (figures 7.11 

and 7.12 with table 7.5) was very similar in nature to 

cylinder no.l. There were again two sections of the loading 

curve,probably corresponding to the behaviour of the seam 

defect and the controlling defect marked. However, there 

was no appreciable difference in the size of the defect near 

the seam measured from the photographs taken at A and B but 
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226. 

\.CONTROLLING DEFECT 

FIGURE 7.12 
GRID PATTERNS FROM CYLINDER No 4 
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C 

FIGURE 7.12 CONT 
GRID PATTERNS FROM CYLINDER No 4 



TABLE 7.5 	228. 

ANGLE SUBTENDED BY DEFECT OR FACET AT CENTRE OF CYLINDER 

CYLINDER No.4 

Defects before collapse;- 

Location 
of Photo. 

, 

Grid Line 
Direction 

Tgtl. Radl. Tgtl. Radl. 

Angle at 
Seam. 

Angle at 
Defect. 

18* 

13 

-- 

-- 

19* 

14* -- 

'Facets after collapse;- 

Location 
of Photo. 

CI 

Grid Line 
' Direction 

Tangential 

- 

Radial Tangential Radial 

Fixed 
End 

Free 
End 

Fixed 
End 

Free 
End 

Fixed 
End 

Free 
End 

Fixed 
End 

Free 
End 

Angle 1 
31f I 

' 
32*1 

1 
34 	I 

36 	
I 

1 
35 

I 
33I 

29 	I 
i 

20 1  
I 

28 

30* 

34 

34+ 

35* 

34 

32 

27* 

23i-! 
I 

30 	1 
1  

33i 	1 

35* 	I 

35i 	I 
1 

34* 	' 
1 

33* 
I 

28 
I 
I 

29i 

31* 

33i 
3  

34w  
36-1 

34 

 31f 

 26 

23* 

28f 

28* 

3°.-  
28* 

27+ I 

26* I 

23 	I 

I , 	25 
I 
1 	27 
I 
I 	27i . 
I 	29-* 

1 	2Ti 
I 
' 	29* 

27* 

20f 

17 

25* 

26f 

26+ 
I 

27-1 
j 

231 
I 

21 

13+ 

22* 

25 

25 * 

27* 

26* 

21* 

N.B. All angles measured in degrees. 
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the other defect had changed appreciably. Just before 

collapse this defect subtended an angle at the centre of 

the cylinder of 14° 	
24.4-1° or 	1  of the circumference. Using 

the information of the design chart (figure 5.10) the 

collapse load of 18.8N would indicate that the cylinder had 

collapsed due to a Yoshimura pattern with 23 lobes. This 

further reinforces the validity of the space frame approach 

to the buckling problem. 

At collapse this cylinder again seemed to 

be controlled to some extent by the seam. The buckle 

pattern at C stops at the seam. On unloading this particular 

cylinder there were several small jumps to D which involved 

mostly the small end facets snapping out of the cylinder. 

After D there was a substantial snap through where all the 

remaining facets suddenly disappeared and the cylinder 

took up a condition on the loading line at a substantially 

greater load. 
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CONCLUSIONS 
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CHAPTER 8 

CONCLUSIONS 

Any new theory like the one presented in 

this thesis requires a great deal of work losing performed 

on it before it can be accepted in its entirety. The 

magnitude of such work is beyond the scope of one Doctoral 

thesis. The results presented here, however, show a 

remarkable agreement. with known behaviour. Perhaps the 

most important way in which the verification can be achieved 

is through experimental observation. In this regard the 

technique described in chapter 6 and used in chapter 7 

has many advantages. Before such experiments can be 

conducted it is Imperative that the loading device have 

parallelly moving plattens and that the cylinders are 

seamless. This author is aware that two techniques are 
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available for making seamless cylinders butis unfamiliar 

with the constructional details. Arbocz and Babcock (ref.21) 

used electroformed cylinders while Tennyson (ref.22) spun 

cast epoxy. It is this author's intention in the near 

future to develop a facility to make seamless cylinders. 

The combination of seamless cylinders and the modifications 

for parallel platens represents quite a substantial project 

in its own right. 

Another substantial project that should be 

investigated is the establishment of the aspect ratio of 

the buckle pattern. Estimating the aspect ratio appears to 

need a better understanding of the effective width of the 

members. It seems unlikely that the effective width will 

remain constant for all buckle patterns on a particular 

cylinder. Although no definite procedure can be suggested 

for finding these values it seems likely that the approach 

will be through determining the stress distribution in an 

isosceles triangular plate loaded in tension along the two 

equal length sides and with compression at right angles. 

Yet another project that could be suggested 

from this work is that a vonKarman and Tsien type analysis 

could be conducted with the revised equations developed in 

chapter 4. Such an analysis may overcome the zero load 

problem encountered by Hoff ,Madsen and Mayers. However, 

this author thinks that, while such an analysis may overcome 
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an existing problem, it seems doubtful that the outcome 

would be of much practical Importance. 

The real value in establishing the aspect 

ratio and effective width more adequately is that the theory tz 

could then be expanded to embrace axial compression loading 

combined with some hoop compression (or tension) and/or 

torsion. Hoop compression has the effect of lengthening 

the facets and apparently it is this change in facet length 

that reduces the load carrying capacity. Similarly, internal 

pressure appears to increase the load carrying capacity 

substantially by making the facets shorter. Adding torsion 

to the axial compression has the effect of distorting the 

facets (figures 8.1 and 8.2). The base of the facet seems 

to take on an inclination corresponding to the maximum 

principal stress direction while the width and height 

remain unaltered. The ratio A/B from figure 8.1 is 0.87 

which is within the range of values obtained for the 

similar cylinder in axial compression (R/T=445) in figure 5.9. 
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FIGURE 8•  
EFFECT OF TORSION ON AXIAL 

COMPRESSION FAILURE 



235. 

FIGURE 8.2  
PAPER MODELS OF AXIAL COMPRESSION- 

TORSION COLLAPSE 
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APPENDIX A 

RESULTS OF COMBINED LOAD BUCKLING TESTS.  



TABLE Al 
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NOMINAL STRESS - AT COLLAPSE FOR CYLINDER NO.2  

cril 7. 
A1  A

3 
A
4 

ITa 11Pa MIDa 

-1.89 0 0 1.00 1.00 1.00 1.00 

-0.05 0 1.34 1.00 1.00 1.00 1.00 

-1.75 0 0.16 0.94 0.97 0.94 0.97 

-1.66 0 0.32 0.93 1.00 0.93 1.00 

-1.59 0 0.47 0.96 1.05 0.96 1.05 

-1.19 0 0.63 0.84 0.95 0.84 0.95 

-1.16 0 0.79 0.95 1.07 0.95 1.07 

-0.89 0 0.95 0.96 1.07 0.96 1.07 

-0.46 0 1.10 0.90 0.99 0.90 0.99 

-0.18 0 1.26 0.95 1.01 0.95 1.01 

-0.05 -0.314 0 1.00 1.00 1.00 1.00 

-1.35 -0.270 0 1.12 1.12 1.25 1.25 

-1.35 -0.262 0.16 1.11 1.14 1.24 1.27 

-1.35 -0.240 0.32 1.10 1.16 1.23 1.29 

-1.35 -0.196 0.47 1.07 1.16 1.18 1.27 

-1.35 -0.131 0.63 1.04 1.15 1.13 1.23 

-1.00 -0.283 0 1.05 1.05 1.15 1.15 

-1.00 -0.262 0.16 1.00 1.03 1.11 1.14 

-1.00 -0.262 0.32 1.04 1.10 1.15 1.21 

-1.00 -0.218 0.47 0.99 1.08 1.09 1.18 

-1.00 -0.174 0.63 0.98 1.09 1.08 1.18 

-1.00 -0.131 0.79 1.01 1.13 1.09 1.20 

-1.00 -0.022 0.95 1.02 1.13 1.02 1.13 

-0.65 -0.283 0 0.96 0.96 1.04 1.04 

-0.65 -0.262 0.16 0.92 0.94 0.99 1.02 

-0.65 -0.262 0.32 0.96 1.02 1.03 1.09 

-0.65 -0.231 0.47 0.93 1.02 1.00 1.09 

-0.65 -0.205 0.63 0.95 1.06 1.03 1.13 

-0.65 -0.174 0.79 0.99 1.10 1.06 1.17 

-0.65 -0.087 0.95 0.93 1.04 0.97 1.08 



TABLE Al CONT. 
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NOMINAL STRESSES AT COLLAPE FOR CYLINDER N0.2 

071 (rh 

. 
7 A1  A

2 
, 

A
3 

A
4 

MPa MPa IVIPa 

-0.30 -0.310 0 1.00 1.00 1.03 1.03 

-0.30 -0.305 0.16 1.00 1.03 1.02 1.05 

-0.30 -0.283 0.32 0.97 1.03 1.00 1.06 

-0.30 -0.279 0.47 1.02 1.11 1.05 1.14 

-0.30 -0.231 0.63 0.97 1.07 1.00 1.10 

-0.30 -0.201 0.79 1.00 1.11 1.02 1.13 

-0.30 -0.148 0.95 0.99 1.09 1.00 1.11 

-0.05 -0.314 0.16 1.01 1.04 1.01 1.04 

-0.05 -0.310 0.32 1.04 1.10 1.04 1.10 

-0.05 -0.305 0.47 1.09 1.18 1.09 1.18 

-0.05 -0.275 0.63 1.09 1.20 1.09 1.20 

-0.05 -0.218 0.79 1.03 1.15 1.03 1.15 

-0.05 -0.161 0.95 1.00 1.11 1.00 1.11 

-0.05 -0.087 1.10 0.93 1.02 0.94 1.02 

-1.46 -0.227 0 1.06 1.06 1.19 1.19 

-1.46 -0.209 0.16 1.03 1.06 1.15 1.18 

-1.46 -0.161 0.32 0.98 1.04 1.08 1.14 

-1.46 -0.087 0.47 0.94 1.03 0.99 1.08 



TABLE AZ 
 

245. 

NOMINAL STRESSES AT COLLAPSE FOR CYLINDER NO.3  

cri, 7 A1  A
2 A

3 
A
4 

MPa MPa MPa 

-4.77 0 0 1.00 1.00 1.00 1.00 

-0.21 0 2.38 1.00 1.00 1.00 1.00 

-4.35 0 0.38 0.94 0.98 0.94 0.98 

-3.58 0 0.76 0.85 0.93 0.85 0.93 

-3.16 0 1.14 0.88 0.99 0.88 0.99 

-2.25 0 1.52 0.86 0.98 0.86 0.98 

-1.47 0 1.90 0.92 1.02 0.92 1.02 

-0.63 0 2.28 1.01 1.07 1.01 1.07 

-0.21 -1.132 0 1.00 1.00 1.00 1.00 

-0.49 -1.115 0 0.99 0.99 1.01 1.01 

-0.77 -1.097 0 0.98 0.98 1.01 1.01 

-1.05 -1.045 0 0.95 0.95 0.99 0.99 

-1.33 -1.028 0 0.95 0.95 1.01 1.01 

-1.61 -1.028 0 0.97 0.97 1.04 1.04 

-1.89 -0.923 0 0.91 0.91 0.99 0.99 

-2.18 -0.889 0 0.91 0.91 1.00 1.00 

-2.46 -0.906 0 0.95 0.95 1.06 1.06 

-2.74 -0.871 0 0.96 0.96 1.07 1.07 

-3.02 -0.767 0 0.93 0.93 1.04 1.04 

-3.30 -0.679 0 0.92 0.92 1.03 1.03 

-3.58 -0.627 0 0.93 0.93 1.04 1.04 

-3.86 -0.610 0 0.97 0.97 1.08 1.08 

-4.14 -0.523 0 0.98 0.98 1.08 1.08 

-4.24 -0.331 0 0.97 0.97 1.00 1.00 

-4.56 -0.279 0 0.99 0.99 1.04 1.04 

-0.21 -1.063 0.38 0.96 1.00 0.97 1.01 

-0.77 -0.993 0.38 0.92 0.96 0.94 0.98 

-1.33 -0.906 0.38 0.87 0.91 0.93 0.97 
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NOMINAL STRESSES AT COLLAPSE FOR CYLINDER W0.3 

O'a arki 7 A1  A2 A
4 

MPa 
, 

MPa MPa 
. 

-1.89 -0.889 0.38 0.90 0.94 0.98 
. 

1.02 

-2.46 -0.732 0.38 0.85 0.89 0.95 0.99 

-3.02 -0.679 0.38 0.87 0.91 1.00 1.04 

-3.86 -0.279 0.38 0.87 0.91 ,0.92 0.96 

-4.00 -0.209 0.38 0.88 0.92 0.92 0.96 

-0.21 -0.993 0.76 0.98 1.06 0.98 1.06 

-0.77 -0.976 0.76 0.97 1.06 1.00 1.08 

-1.05 -0.784 0.76 0.82 0.91 0.87 0.95 

-1.33 -0.714 0.76 0.79 0.87 0.84 0.92 

-1.61 -0.697 0.76 0.80 0.88 0.87 0.95 

-1.89 -0.645 0.76 0.79 0.87 0.87 0.95 

-2.18 -0.575 0.76 0.78 0.86 0.86 0.94 

-2.46 -0.540 0.76 0.80 0.88 0.88 0.96 

-2.74 -0.436 0.76 0.79 0.87 0.86 0.94 

-3.02 -0.383 0.76 0.82 0.90 0.88 0.96 

-3.30 -0.209 0.76 0.81 0.90 0.85 0.93 

-3.44 -0.070 0.76 0.82 0.90 0.83 0.91 

-0.21 -0.749 1.14 0.88 0.99 0.88 0.99 

-0.49 -0.679 1.14 0.83 0.94 0.84 0.95 



TABLE A3 
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NOMINAL STRESSES AT COLLAPSE FOR CYLINDER N0.5  

Cra 

- 

Oh 

. 
T 

. 

A1 A2 A
3 

.  . 

, 

A
4 

EIPa MPa MPa 

-4.20 0 0 1.00 1.00 1.00 1.00 

-0.21 0 1.77 1.00 1.00 1.00 1.00 

-3.44 0 0.59 0.92 1.01 0.92 1.01 

-3.23 0 0.74 0.93 1.04 0.93 1.04 

-2.60 0 0.89 0.86 0.98 0.86 0.98 

-2.18 0 1.03 0.84 0.96 0.84 0.96 

-1.75 0 1.18 0.84 0.96 0.84 0.96 

-1.61 0 1.33 0.92 1.03 0.92 1.03 

-1.05 0 1.48 0.91 1.01 0.91 1.01 

-0.49 0 1.63 0.92 0.96 0.92 0.96 

-0.21 -1.22 0 1.00 1.00 1.00 1.00 

-0.49 -1.19 0 0.98 0.98 1.00 1.00 

-1.05 -1.11 0 0.94 0.94 1.00 1.00 

-1.61 -1.09 0 0.97 0.97 1.05 1.05 

-2.18 -1.07 0 1.02 1.02 1.13 1.13 

-2.74 -1.01 0 1.05 1.05 1.18 1.18 

-3.30 -0.85 0 1.05 1.05 1.18 1.18 

-3.58 -0.72 0 1.04 1.04 1.15 1.15 

-3.86 -0.65 0 1.06 1.06 1.17 1.17 

-4.14 -0.58 0 1.09 1.09 1.20 1.20 

-0.21 -1.05 0.59 0.97 1.05 0.97 1.05 

-0.49 -1.03 0.59 0.96 1.04 0.98 1.06 

-1.05 -0.92 0.59 0.90 0.99 0.95 1.03 

-1.61 -0.87 0.59 0.91 1.00 0.99 1.07 

-2.18 -0.71 0.59 0.88 0.97 0.98 1.06 

-2.46 -0.63 0.59 0.89 0.97 0.98 1.06 

-2.74 -0.56 0.59 0.90 0.99 0.99 1.07 

-3.02 -0.47 0.59 0.92 1.01 1.00 1.08 



TABLE A3 CONT. 
	248. 

YOYINAL STRE SSES AT COLLArSE q)Ft CYLINDER N0.5  

cr. Gni 7° A1  A
2 

A
3 

A
4 

FLPa MPa MPa 

-3.16 -0.44 0.59 0.94 1.03 1.01 1.09 

-3.30 -0.35 0.59 0.94 1.03 1.00 1.08 

-3.44 -0.17 0.59 0.94 1.02 0.96 1.04 

-0.21 -0.84 0.89 0.93 1.05 0.93 1.05 

-0.49 -0.F0 0.89 0.91 1.02 0.92 1.03 

-0.77 -0.75 0.89 0.88 1.00 0.90 1.02 

-1.05 -0.71 0.89 0.87 0.99 0.91 1.03 

-1.33 -0.70 0.89 0.89 1.01 0.94 1.06 

-1.61 -0.65 0.89 0.90 1.01 0.95 1.07 

-1.89 -0.61 0.89 0.91 1.03 0.97 1.09 

-2.18 -0.49 0.89 0.90 1.01 0.95 1.07 

-2.32 -0.42 0.89 0.89 1.01 0.94 1.06 

-2.46 -0.35 0.89 0.89 1.01 0.93 1.05 

-2.60 -0.17 0.89 0.87 0.99 0.88 1.00 

-0.21 -0.66 1.18 0.96 1.09 0.96 1.09 

-0.49 -0.66 1.18 0.97 1.10 0.97 1.10 

-0.77 -0.63 1.18 0.97 1.09 0.98 1.10 

-1.05 -0.52 1.18 0.91 1.04 0.94 1.06 

-1.33 -0.47 1.18 0.92 1.04 0.96 1.08 

•  -1.47 -0.44 1.18 0.92 1.05  • 0.96 1.08 

-1.61 -0.30  • 1.18 0.88 1.00 0.90 1.02 

-1.75 -0.21 1.18 0.87 1.00 0.89 1.01 



TABLE A4. 	 249. 

NOMINAL STRESSES AT COLLAPSE FOR CYLINDER F0.6  

Gra all ,r A
1 

A
2 

A
3 

A
4 

11Pa MPa Mla 

-2.56 0 0 1.00 1.00 1.00 1.00 

-0.09 0 0.749 1.00 1.00 1.00 1.00 

-2.49 0 0.208 1.05 1.12 1.05 1.12 

-2.43 0 0.291 1.10 1.19 1.10 1.19 

-2.09 0 0.416 1.12 1.21 1.12 1.21 

-1.69 0 0.499 1.10 1.19 1.10 1.19 

-1.09 0 0.624 1.12 1.17 1.12 1.17 

-0.49 0 0.707 1.08 1.09 1.08 1.09 

-0.09 -0.179 0 1.00 1.00 1.00 1.00 

-0.36 -0.179 0 1.01 1.01 1.03 1.03 

-0.63 -0.174 0 1.00 1.00 1.05 1.05 

-0.89 -0.170 0 1.01 1.01 1.08 1.08 

-1.16 -0.161 0 1.01 1.01 1.10 1.10 

-1.43 -0.138 0 0.95 0.95 1.06 1.06 

-1.69 -0.133 0 0.99 0.99 1.11 1.11 

-1.96 -0.124 0 1.03 1.03 1.16 1.16 

-2.23 -0.087 0 1.00 1.00 1.10 1.10 

-2.36 -0.023 0 0.93 0.93 0.95 0.95 

-0.09 -0.156 0.416 1.18 1.28 1.18 1.28 

-0.36 -0.142 0.416 1.11 1.21 1.13 1.23 

CYLINDER  DAMAGED 

1 1 



TABLE A5' 

Cria 

 250. 

NOT1I1TAL STRESSES AT COLLAPSE FOR CYLINDER TO.7  

0'h A1  A
2 

A
3 

A
4 

Ylpa MPa MPa 
- 

-1.63 0 0 1.00 1.00 1.00 1.00 

-0.09 0 0.687 1.00 1.00 1.00 1.00 

-1.63 0 0.172 1.06 1.12 1.06 1.12 

-1.49 0 0.240 1.03 1.11 1.03 1.11 

-1.29 0 0.344 1.03 1.13 1.03 1.13 

-1.16 0 0.412 1.05 1.15 1.05 1.15 

-0.96 0 0.515 1.12 1.20 1.12 1.20 

-0.76 0 0.584 1.15 1.21 1.15 1.21 

-0.09 -0.179 0 1.00 1.00 1.00 1.00 

-0.36 -0.174 0 1.00 1.00 1.04 1.04 

-0.63 -0.165 0 1.00 1.00 1.08 1.08 

-0.89 -0.133 0 0.92 0.92 1.03 1.03 

-1.16 -0.115 0 0.96 0.96 1.08 1.08 

-1.43 -0.037 0 0.90 0.90 0.94 0.94 

-1.29 -0.092 0 0.94 0.94 1.05 1.05 

-1.56 -0.023 0 0.97 0.97 0.99 0.99 

-0.09 -0.151 0.344 1.08 1.18 1.09 1.19 

-0.36 -0.142 0.344 1.06 1.16 1.10 1.20 

-0.63 -0.128 0.344 1.05 1.15 1.13 1.23 

-0.89 -0.092 0.344 0.99 1.08 1.08 1.18 

-1.16 -0.041 0.344 0.98 1.08 1.03 1.13 

-0.09 -0.124 0.515 1.22 1.31 1.24 1.32 

-0.36 -0.101 0.515 1.14 1.22 1.19 1.27 

-0.63 -0.073 0.515 1.09 1.17 1.16 1.24 

-0.76 -0.050 0.515 1.07 1.16 1.13 1.21 

-0.49 -0.092 0.515 1.13 1.21 1.19 1.27 



TABLE A5 COPT. 
	

2516 

NCTIPAL STRESSES AT COLLAPSE FOR CYLINDER NO.7  

I cra eh T A1  A
2 A

3 
A
4 

rPa rPa MTa 

-0.09 -0.165 0.172 0.98 1.04 0.99 1.05 

-0.36 -0.151 0.172 0.93 0.99 0.98 1.04 

-0.63 -0.128 0.172 0.87 0.93 0.95 1.01 

-0.89 -0.115 0.172 0.90 0.96 1.00 1.06 

-1.16 -0.060 0.172 0.85 0.90 0.92 0.98 

-1.43 -0.046 0.172 0.97 1.03 1.03 1.09 



TABLE A6 252. 

  

NOMINAL STRESSES AT COLLAPSE FOR CYL1I\DER 10.8  

cr. Crh 7' Al  A
2 

4
3 

A
4 

I Pa 1-Pa MPa 

-1.07 0 0 1.00 1.00 1.00 1.00 

-0.12 0 0.378 1.00 1.00 1.00 1.00 

-0.96 0 0.090 0.95 1.00 0.95 1.00 

-0.96 0 0.126 1.00 1.07 1.00 1.07 

-0.86 0 0.180 1.01 1.10 1.01 1.10 

-0.75 0 0.216 0.99 1.08 0.99 1.08 

-0.61 0 0.270 1.02 1.11 1.02 1.11 

-0.51 0 0.307 1.06 1.13 1.06 1.13 

-0.12 -0.218 0 1.00 1.00 1.00 1.00 

-0.26 -0.209 0 0.99 0.99 1.04 1.04 

-0.40 -0.192 0 0.96 0.96 1.04 1.04 

-0.54 -0.183 0 0.98 0.98 1.08 1.08 

-0.68 -0.140 0 0.90 0.90 1.01 1.01 

-0.82 -0.131 0 0.97 0.97 1.09 1.09 

-0.89 -0.070 0 0.89 0.89 0.96 0.96 

-0.12 -0.209 0.090 1.02 1.07 1.04 1.09 

-0.26 -0.174 0.090 0.88 0.94 0.94 0.99 

-0.40 ,0.166 0.090 0.90 0.95 0.98 1.03 

-0.54 -0.157 0.090 0.93 0.98 1.03 1.08 

-0.6e -0.122 0.090 0.90 0.95 1.00 1.05 

-0.75 -0.105 0.090 0.90 0.95 1.00 1.05 

-0.82 -0.070 0.090 0.88 0.93 0.95 1.00 

-0.12 -0.166 0.180 0.97 1.06 0.99 1.08 

-0.26 -0.148 0.180 0.92 1.01 0.97 1.06 

-0.40 -0.131 0.180 0.91 1.00 0.99 1.08 

-0.54 -0.113 0.180 0.93 1.02 1.01 1.10 

-0.68 -0.078 0.180 0.93 1.02 1.01 1.10 



TABLE Ac CONT. 
	

2 53. 

NOMINAL STiESSES AT COLLAPSE FOR CYLINDER ro.8 

cra eh -7°  A
1 A

2 
, 

A
3 

A
4 

vPa T -Pa MPa 

-0.12 -0.148 0.270 1.14 1.22 1.17 1.25 

-0.26 -0.140 0.270 1.14 1.22 1.19 1.27 

-0.40 -0.105 0.270 1.07 1.15 1.14 1.22 

-0.54 -0.078 0.270 1.08 1.16 1.15 1.23 

-0.12 -0.183 0.126 0.95 1.02 0.97 1.04 

-0.26 -0.174 0.126 0.94 1.01 0.99 1.06 

-0.40 -0.148 0.126 0.88 0.95 0.95 1.02 

-0.54 -0.131 0.126 0.89 0.96 0.98 1.05 

-0.68 -0.105 0.126 0.90 0.97 0.99 1.06 

-0.75 -0.078 0.126 0.89 0.96 0.96 1.03 

-0.12 -0.157 0.216 1.02 1.11 1.04 1.13 

-0.26 -0.140 0.216 0.98 1.07 1.03 1.12 

-0.40 -0.131 0.216 1.00 1.09 1.08 1.17 

-0.54 -0.087 0.216 0.94 1.03 1.01 1.10 

-0.61 -0.078 0.216 0.97 1.06 1.04 1.13 



TABLE A7 254. 

  

NOMINAL STRESSES AT COLLAPSE FOR CYLINDER NO.9  

Cr73. °}1 T A
1 

A
2 

A
3 

MPa MPa MPa 

-1.10 0 0 1.00 1.00 '1.00 1.00 

-0.96 0 0.075 0.90 0.93 0.90 0.93 

-0.96 0 0.105 0.92 0.97 0.92 0.97 

-0.96 0 0.150 0.97 1.04 0.97 1.04 

-0.93 0 0.180 0.98 1.06 0.98 1.06 

-0.79 0 0.224 0.93 1.02 0.93 1.02 

-0.75 0 0.254 0.95 1.04 0.95 1.04 

-0.61 0 0.299 0.92 1.02 0.92 1.02 

-0.12 0 0.464 1.00 1.00 1.00 1.00 

-0.40 0 0.374 0.94 1.01 0.94 1.01 

-0.44 0 0.329 0.85 0.93 0.85 0.93 

-0.12 -0.201 0 1.00 1.00 1.00 1.00 

-0.26 -0.192 0 0.98 0.98 1.03 1.03 

-0.40 -0.183 0 0.98 0.98 1.06 1.06 

-0.54 -0.157 0 0.92 0.92 1.02 1.02 

-0.68 -0.122 0 0.87 0.87 0.97 0.97 

-0.82 -0.105 0 0.91 0.91 1.01 1.01 

-0.89 -0.087 0 0.92 0.92 1.01 1.01 

-0.96 -0.070 0 0.94 0.94 1.01 1.01 

-0.12 -0.192 0.150 1.06 1.13 1.07 1.14 

-0.26 -0.174 0.150 0.99 1.06 1.04 1.11 

-0.40 -0.166 0.150 1.00 1.07 1.07 1.14 

-0.54 -0.148 0.150 0.98 1.05 1.08 1.15 

-0.68 -0.140 0.150 1.03 1.10 1.14 1.21 

-0.82 -0.096 0.150 0.98 1.05 1.08 1.15 

-0.89 -0.078 0.150 0.99 1.06 1.07 1.14 



TABLE A7 corT. 
	

255. 

NOMINAL STRESSES AT COLLAPSE FOR CYLINDER 1O.9  

alia C141 "I°  A
l  

A
2 

A
3 

A
4 

MPa MPa MPa . 

-0.12 -0.166 0.224 1.04 1.13 1.06 1.15 

-0.26 -0.157 0.224 1.03 1.12 1.07 1.16 

-0.40 -0.131 0.224 0.96 1.05 1.03 1.12 

-0.54 -0.113 0.224 0.96 1.05 1.05 1.14 

-0.61 -0.096 0.224 0.94 1.03 1.03 1.12 

-0.68 -0.087 0.224 0.96 1.05 1.05 1.14 

-0.12 -0.148 0.299 1.12 1.21 1.14 1.23 

-0.26 -0.131 0.299 1.06 1.15 1.11 1.20 

-0.40 -0.113 0.299 1.04 1.13 1.11 1.20 

-0.54 -0.078 0.299 1.00 1.09 1.07 1.16 



TABLE A8. 
	256. 

rorirAI STRESSES AT COLLAPSE FOR CYLINDER 10.11  

cra alk lr A1  A
2 

A
3 

A
4 

MPa MPa MPa 

-1.33 

0
 
0

 
0

 
0

 
0

 
0

 
0

 
0

  
0

 
0

 

0 1.00 1.00* 1.00 1.00  . 

-0.18 0.474 1.00 1.00 1.00 1.00 

-1.23 0.068 0.94 0.97 0.94 0.97 

-1.09 0.135 0.89 0.95 0.89 0.95 

-0.95 0.203 0.87 0.96 0.87 0.96 

-0.81 0.237 0.82 0.91 0.82 0.91 

-0.77 0.271 0.86 0.95 0.86 0.95 

-0.70 0.305 0.88. 0.97 0.88 0.97 

-0.60 0.339 0.89 0.97 .  0.89 0.97 

-0.49 0.406 1.00 1.05 1.00 1.05 

CYLINDER DAMAGED 



TABLE A9 
	257. 

FOrIYAL STRESSES AT COLLAPSE FOR CYLINDER NO.12  

cra crh ir A
1 

A
2 

A
3 

A
4 

MPa MPa MPa 

-1.09 

-0.18 

-1.02 

-0.95 

-0.84 

-0.81 

-0.67 

-0.32 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.684 

0.098 

0.195 

0.293 

0.391 

0.488 

0.586 

1.00 

1.00 

0.95 

0.94 

0.92 

1.02 

1.04 

0.91 

1.00 

1.00 

0.98 

1.00 

1.00 

1.10 

1.12 

0.96 

1.00 

1.00 

0.95 

0.94 

0.92 

1.02 

1.04 

0.91 

1.00 

1.00 

0.98 

1.00 

1.00 

1.10 

1.12 

0.96 

-0.18 -0.270 0 1.00 1.00 1.00 1.00 

-0.32 -0.270 0 1.04 1.04 1.10 1.10 

-0.46 -0.244 0 1.00 1.00 1.09 1.09 

-0.60 -0.227 0 1.00 1.00 1.12 1.12 

-0.74 -0.209 0 1.03 1.03 1.15 1.15 

-0.88 -0.183 0 1.05 1.05 1.18 1.18 

-0.95 -0.157 0 1.05 1.05 1.16 1.16 

-1.02 -0.096 0 1.00 1.00 1.0F 1.08 

-0.18 -0.270 0.098 1.03 1.06 1.06 1.09 

-0.32 -0.262 0.098 1.03 1.06 1.09 1.12 

-0.46 -0.244 0.098 1.01 1.04 1.10 1.13 

-0.60 -0.227 0.098 1.02 1.05 1.13 1.16 

-0.74 -0.209 0.098 1.05 1.08 1.17 1.20 

-0.88 -0.174 0.098 1.05 1.08 1.17 1.20 

-0.95 -0.044 0.098 0.90 0.93 0.93 0.96 

-0.18 -0.262 0.195 1.05 1.11 1.08 1.14 

-0.32 -0.235 0.195 0.99 1.05 1.05 1.11 

-0.46 -0.209 0.195 0.95 1.01 1.04 1.10 

-0.60 -0.209 0.195 1.02 1.08 1.13 1.19 



TABLE 1.9 CONT. 
	

258. 

NOMINAL STRESES AT COLLAPSE FOR CYLINDER NO.12  

i 
011 Olh lr Al A2. A

3 
A
4 

MP a MPa MPa 

-0.74 -0.174 0.195 1.00 1.06 1.12 1.18 

-0.81 -0.140 0.195 0.97 1.03 1.08 1.14 

-0.88 -0.035 0.195 0.89 0.94 0.91 0.97 

-0.18 -0.227 0.293 1.01 1.09 1.04 1.12 

-0.32 -0.218 0.293 1.01 1.09 1.08 1.16 

-0.46 -0.192 0.293 0.98 1.06 1.07 1.15 

-0.60 -0.174 0.293 1.00 1.08 1.10 1.18 

-0.67 -0.157 0.293 1.00 1.08 1.10 1.18 

-0.74 -0.113 0.293 0.95 1.03 1.04 1.12 

-0.18 -0.218 0.391 1.10 1.18 1.14 1:22 

-0.32 -0.201 0.391 1.07 1.16 1.14 1.22 

-0.46 -0.174 0.391 1.04 1.13 1.14 1.22 

-0.60 -0.131 0.391 1.01 1.09 1.10 1.18 

-0.67 -0.061 0.391 0.93 1.02 0.98 1.06  - 

-0.18 -0.174 0.488 1.09 1.17 1.12 1.20 

-0.32 -0.157 0.488 1.08 1.16 1.14 1.22 

-0.46 -0.131 0.488 1.07 1.15 1.14 1.22 

-0.53 -0.113 0.488 1.07 1.15 1.14 1.22 

-0.60 -0.061 0.488 1.02 1.10 1.07 1.15 



TABLE A10 
 

259. 

NOMINAL STRESSES AT COLLAPSE FOR CYLINDER NO.13 

Oa 1r A1  A
2 

_ 

A
3 

1 
A
4 

MPa MPa MPa 1 
-1.19 0 0 1.00 1.00 1.00 1.00 

-0.18 0 0.681 1.00 1.00 1.00 1.00 

-1.12 0 0.076 0.95 0.97 0.95 0.97 

-1.09 0 0.151 0.96 1.00 0.96 1.00 

-1.05 0 0.227 0.98 1.04 0.98 1.04 

-0.98 0 0.302 0.99 1.07 0.99 1.07 

-0.88 0 0.378 1.00 1.09 1.00 1.09 

-0.77 0 0.454 1.02 1.11 1.02 1.11 

-0.67 0 0.529 1.07 1.14 1.07 1.14 

-0.42 0 0.605 1.02 1.06 1.02 1.06 

-0.18 -0.262 0 1.00 1.00 1.00 1.00 

-0.32 -0.262 0 1.04 1.04 1.09 1.09 

-0.46 -0.244 0 1.01 1.01 1.09 1.09 

-0.60 -0.227 0 1.00 1.00 1.10 1.10 

-0.74 -0.218 0 1.04 1.04 1.16 1.16 

,  -0.88 
I 

-0.183 0 1.02 1.02 1.14 1.14 

-1.02 -0.131 0 0.99 0.99 1.10 1.10 

-1.09 -0.078 0 0.96 0.96 1.03 1.03 

-0.18 -0.262 0.151 1.05 1.10 1.68 1.13 

-0.32 -0.253 0.151 1.04 1.09 1.10 1.15 

-0.46 -0.235 0.151 1.01 1.06 1.10 1.15 

-0.60 -0.218 0.151 1.01 1.06 1.11 1.16 

-0.74 -0.183 0.151 0.97 1.02 1.09 1.14 

-0.88 -0.157 0.151 0.99 1.04 1.10 1.15 

-1.02 -0.113 0.151 1.00 1.05 1.09 1.14 

-0.18 -0.244 0.302 1.11 1.19 1.14 1.22 

-0.32 -0.227 0.302 1.08 1.16 1.13 1.21 

-0.46 -0.218 0.302 1.09 1.17 1.17 1.25 

-0.60 -0.192 0.302 1.06 1.14 1.16 1.24 



TABLE A10 CONT. 
	

260. 

NOMINAL STRESSES AT COLLAPSE FOR CYLINDER ro.13  

cm 011 lr A1 A2 A
3 

A
4 

MPa MPa MYa 

-0.74 -0.174 0.302 1.08 1.16 1.19 1.27 

-0.88 -0.131 0.302 1.06 1.14 1.16 1.24 

-0.95 -0.087 0.302 1.03 1.11 1.10 1.18 

-0.18 -0.218 0.454 1.22 1.31 1.24 1.33 

-0.32 -0.201 0.454 1.18 1.27 1.24 1.33 

-0.46 -0.174 0.454 1.14 1.23 1.22 1.31 

-0.60 -0.148 0.454 1.13 1.22 1.22 1.31 

-0.67 -0.113 0.454 1.08 1.17 1.16 1.25 



TABLE All 
	

261. 

NOMINAL STRESSES AT COLLAPSE FOR CYLINDER NO.14  

Crl'a A1  A2 
A
3 

A
4 

TrPa MYa TrTa 

-3.17 0 0 1.00 1.00 1.00 1.00 

-0.09 0 1.795 1.00 1.00 1.00 1.00 

-2.96 0 0.271 0.96 0.99 0.96 0.99 

-2.82 0 0.474 0.96 1.02 0.96 1.02 

-2.61 0 0.610 0.94 1.02 0.94 1.02 

-2.47 0 0.813 0.98 1.08 0.98 1.08 

-2.26 0 0.948 0.98 1.09 0.98 1.09 

-1.91 0 1.152 1.00 1.10 1.00 1.10 

-1.28 0 1.287 0.90 0.99 0.90 0.99 

-1.00 0 1.490 0.98 1.05 0.98 1.05 

-0.51 0 1.626 0.96 1.00 0.96 1,00 

-0.16 0 1.761 0.98 0.99 0.98 0.99 

-0.09 -0.602 0 1.00 1.00 1.00 1.00 

-0.33 -0.580 0 0.97 0.97 0.99 0.99 

-0.54 -0.567 0 0.96 0.96 0.99 0.99 

-0.71 -0.558 0 0.95 0.95 1.00 1.00 

-0.90 -0.541 0 0.94 0.94 1.00 1.00 

-1.09 -0.536 0 0.96 0.96 1.03 1.03 

-1.27 -0.510 0 0.94 0.94 1.02 1.02 

-1.46 -0.462 0 0.90 0.90 0.99 0.99 

-1.63 -0.458 0 0.92 0.92 1.02 1.02 

-1.82 -0.423 0 0.91 0.91 1.02 1.02 

-2.00 -0.401 0 0.92 0.92 1.03 1.03 

-2.19 -0.401 0 0.96 0.96 1.08 1.08 

-2.37 -0.314 0 0.91 0.91 1.02 1.02 

-2.56 -0.279 0 0.93 0.93 1.03 1.03 

-2.73 -0.214 0 0.93 0.93 1.01 1.01 

-2.92 -0.140 0 0.95 0.95 1.00 1.00 

-3.10 -0.026 0 0.98 0.98 0.98 0.98 

- 



TABLE All CONT. 
	

262. 

NOVINAL STRESSES AT COLLAPSE FOR CYLINDER I50.14  

cria eh lr A
1 

_ 

A2 A
3 

A
4 

MPa MPa MPa 

-0.09 -0.593 0.474 1.05 1.12 1.05 1.12 

-0.33 -0.576 0.474 1.02 1.09 1.04 1.11 

-0.51 -0.520 0.474 0.94 1.01 0.97 1.04 

-0.68 -0.506 0.474 0.93 1.00 0.97 1.04 

-0.86 -0.480 0.474 0.90 0.97 0.96 1.03 

-1.04 -0.467 0.474 0.90 0.97 0.97 1.04 

-1.21 -0.436 0.474 0.88 0.95 0.96 1.03 

-1.39 -0.410 0.474 0.87 0.94 0.96 1.03 

-1.56 -0.406 0.474 0.90 0.97 0.99 1.06 

-1.74 -0.375 0.474 0.89 0.96 0.99 1.06 

-1.91 -0.336 0.474 0.88 0.95 0.98 1.05 

-2.09 -0.288 0.474 0.88 0.95 0.97 1.04 

-2.26 -0.253 0.474 0.89 0.96 0.98 1.05 

-2.44 -0.227 0.474 0.92 0.99 1.00 1.07 

-2.61 -0.122 0.474 0.91 0.98 0.95 1.02 

-0.09 -0.523 0.813 1.07 1.16 1.08 1.17 

-0.33 -0.506 0.813 1.05 1.14 1.07 1.16 

-0.51 -0.484 0.813 1.03 1.12 1.06 1.15 

-0.68 -0.475 0.813 1.02 1.11 1.07 1.16 

-0.86 -0.432 0.813 0.97 1.06 1.03 1.12 

-1.04 -0.392 0.813 0.94 1.03 1.00 1.09 

-1.21 -0.336 0.813 0.88 0.97 0.96 1.05 

-1.39 -0.301 0.813 0.87 0.96 0.95 1.04 

-1.56 -0.266 0.813 0.87 0.96 0.95 1.04 

-1.74 -0.222 0.813 0.87 0.96 0.94 1.03 

-1.91 -0.183 0.813 0.88 0.97 0.95 1.04 

-2.09 -0.144 0.813 0.91 1.00 0.96 1.05 

-2.26 -0.092 0.813 0.94 1.03 0.97 1.06 

-2.33 -0.074 0.813 0.95 1.04 0.97 1.06 



TABLE All CONT. 
	

2 63. 

1107INAL STRESSES AT COLLAPSE FOR CYLINDER P0.14  

crh 1. 
A
2 

A
3 

A
4 

EPa HPa MPa 

-0.09 -0.292 1.490 1.16 1.22 1.16 1.22 

-0.33 -0.262 1.490 1.12 1.18 1.14 1.20 

-0.51 -0.222 1.490 1.08 1.14 1.11 1.17 

-0.68 -0.205 1.490 1.08 1.14 1.12 1.18 

-0.75 -0.174 1.490 1.05 1.11 1.09 1.15 

-0.86 -0.174 1.490 1.07 1.13 1.12 1.18 

-0.93 -0.057 1.490 0.98 1.04 1.00 1.06 



TABLE Al2 264. 

  

NOMINAL STRESSES AT COLLAPSE FOR CYLINDER NO.15  

elk 7' A1  A
2 A

3 
A
4 

1,1Pa MPa MPa 

-2.59 0 0 1.00 1.00 1.00 1.00 

-0.13 0 0.957 1.00 1.00 1.00 1.00 

-2.59 0 0.080 1.01 1.02 1.01 1.02 

-2.46 0 0.160 0.98 1.01 0.98 1.01 

-2.19 0 0.239 0.90 0.96 0.90 0.96 

-2.06 0 0.319 0.90 0.98 0.90 0.98 

-1.86 0 0.399 0.88 0.97 0.88 0.97 

-1.79 0 0.479 0.93 1.03 0.93 1.03 

-1.53 0 0.558 0.91 1.01 0.91 1.01 

-1.39 0 0.638 0.96 1.05 0:96 1.05 

-1.13 0 0.718 0.97 1.05 0.97 1.05 

-1.06 0 0.798 1.07 1.13 1.07 1.13 

-0.53 0 0.877 1.00 1.04 1.00 1.04 

-0.13 -0.147 0 1.00 1.00 1.00 1.00 

-0.39 -0.147 0 1.01 1.01 1.04 1.04 

-0.66 -0.142 0 1.00 1.00 1.05 1.05 

-0.93 -0.138 0 1.01 1.01 1.08 1.08 

-1.19 -0.133 0 1.01 1.01 1.11 1.11 

-1.46 -0.119 0 0.99 0.99 1.10 1.10 

-1.73 -0.115 0 1.03 1.03 1.15  . 1.15 

-1.99 -0.110 0 1.07 1.07 1.20 1.20 

-2.26 -0.092 0 1.07 1.07 1.20 1.20 

-2.39 -0.073 0 1.05 1.05 1.15 1.15 

-2.46 -0.046 0 1.00 1.00 1.07 1.07 

-0.13 -0.142 0.160 0.99 1.03 1.00 1.04 

-0.39 -0.133 0.160 0.94 0.98 0.97 1.01 

-0.66 -0.133 0.160 0.96 1.00 1.02 1.06 

-0.93 -0.128 0.160 0.97 1.01 1.04 1.08 

-1.19 -0.124 0.160 0.99 1.03 1.08 1.12 
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NOMINAL STRESSES AT COLLAPSE FOR CYLINDER NO.15  

Ora 01 T A1  A2 A
3 

A
4 

MPa MPa MPa 

-1.46 -0.119 0.160 1.01 1.05 1.12 1.16 

-1.73 -0.105 0.160 1.00 1.04 1.12 1.16 

-1.99 -0.101 0.160 1.06 1.10 1.18 1.22 

-2.26 -0.078 0.160 1.05 1.09 1.16 1.20 

-2.39 -0.055 0.160 1.02 1.06 1.10 1.14 

-0.13 -0.128 0.319 0.98 1.06 0.98 1.06 

-0.39 -0.124 0.319 0.96 1.04 0.99 1.07 

-0.66 -0.110 0.319 0.89 0.97 0.95 1.03 

-0.93 -0.105 0.319 0.90 0.98 0.98 1.06 

-1.19 -0.096 0.319 0.90 0.98 0.99 1.07 

-1.46 -0.083 0.319 0.90 0.98 1.00 1.08 

-1.73 -0.073 0.319 0.94 1.02 1.03 1.11 

-1.86 -0.060 0.319 0.93 1.01 1.01 1.09 

-1.93 -0.037 0.319 0.89 0.97 0.94 1.02 

-1.99 -0.009 0.319 0.87 0.95 0.88 0.96 

-0.13 -0.119 0.479 1.05 1.15 1.05 1.15 

-0.39 -0.115 0.479 1.03 1.13 1.06 1.16 

-0.66 -0.105 0.479 0.99 1.09 1.05 1.15 

-0.93 -0.096 0.479 0.98 1.08 1.06 1.16 

-1.19 -0.092 0.479 1.01 1.11 1.10 1.20 

-1.46 -0.078 0.479 1.01 1.11 1.11 1.21 

-1.59 -0.064 0.479 0.99 1.09 1.08 1.18 

-1.66 -0.050 0.479 0.96 1.06 1.03 1.13 

-1.73 -0.041 0.479 0.96 1.06 1.02 1.12 
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FIGURE A2  
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a 

x T = 0 
0-r= 0- 38MPa 
6 7 = 0- 76MPa 

r= 1 -14 MPa 

NOMINAL HOOP STRESS AT COLLAPSE (MPa) 
-0-5 

1.5 	d 
(TC1 )*( 6".. 1 ) =1 

ac 	H c  

ts 2 	 rs's CIRCLES 1.( 	
h  

ac 	"c 

-SO 

270. 
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BUCKLING STRESS STATE DIAGRAM 
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FIGURE A6 
BUCKLING STRESS STATE DIAGRAM  

INTERACTION OF BUCKLING MODES-CYLINDER No 5 
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FIGURE A7 
BUCKLING STRESS STATE DIAGRAM  

INTERACTION OF BUCKLING MODES-CYLINDER No 6  
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BUCKLING STRESS STATE DIAGRAM 

INTERACTION OF BUCKLING MODES -  CYLINDER No 8 
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FIGURE A10  
BUCKLING STRESS STATE DIAGRAM  

INTERACTION OF BUCKLING MODES-CYLINDER No9 
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FIGURE All  
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FIGURE A13 
BUCKLING STRESS STATE DIAGRAM 

INTERACTION OF BUCKLING MODES - CYLINDER No 14 
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FIGURE A14  
BUCKLING STRESS STATE DIAGRAM 

INTERACTION OF BUCKLING MODES-CYLINDER No15 
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APPENDIX B 

RESULTS OF FINITE DIFFERENCE SOLUTION OF THE PARTIAL 

DIFFERENTIAL EQUATIONS. 
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CONTOURS OF CONSTANT TANGENTIAL DISPLACEMENT 

SOLUTION OF DONNELL'S EQUATIONS 
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CONTOURS OF CONSTANT TANGENTIAL DISPLACEMENT 
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FIGURE B6 
CONTOURS OF CONSTANT TANGENTIAL DISPLACEMENT 

TIMOSHENKO'S EQUATIONS- RESULTANTS WITHOUT PRODUCTS OF SLOPES 
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FIGURE B23 
STRESS TRAJECTORIES 
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APPENDIX  - D 

PROGRAM LISTING AND  TYPICAL OUTPUT OF PROGRAMMES USED IN  

THE FINITE DIFFERENCE SOLUTION OF THE DEFLECTIONS IN A 

CYLINDRICAL SHELL WITH A GEOMETRICAL DEFECT  
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TYPICAL OUTPUT TO ALL THREE succEssIvE APPROXIFATIOY  
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PROGRAM LISTING AND TYPICAL OUTPUT OF PROGRAMS USED IN  
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353. 
DEFLECTIONS IN METRES 

0 
I= 0 W= 0.0000E+00 I= 1 W= 0.1193E+00 I= 2. W= 0.2458E+00 
I= 3 W= 0.3585E+00 I= 4 W= 0.4584E+00 1= 5 W= 0.5471E+00 
I= 6 w= 0.6253E+00 I= 7 W= 0.6936E+00 1= 8 W= 0.7522E+00 
I= 9 W= 0.8018E+00 I= 10 W= 0.8427E+00 I= 11 W= 0.8753E+00 
I= 12 W= 0.9002E+00 I= 13 W= 0.9176E+00 I= 14 W= 0.9280E+00 
I= 15 W= 0.9314E+00 1= 

J= 1 
I= 0 W= 0.2181E+00 I= 1 W= 0.2453E+00 I= 2 W= 0.3193E+00 
I= 3 W= 0.4073E+00 I= 4 W= 0.4948E+00 I= 5 W= 0.5764E+00 
T= 6 W= 0.6501E+00 :r= 7 W= 0.7153E+00 I= .  8 W= 0.7718E+00 
I= 9 W= 0.8197E+00 I= 10 W= 0.8593E+00 11 W= 0.8910E+00 

12 W= 0.9152E+00 I= 13 W= 0.9323E+00 1= 14 W= 0.9423E+00 
I= 15 W= 0.9457E+00  • 1= 

J= 
I= 0 W= 0.4362E+00 I= 1 W= 0.4389E+00 I= 2 W= 0.4732E+00 
I= 3 W= 0.5287E+00 I= 4 W= 0.5933E+00 I= 5 W= 0.6591E+00 

6 W= 0.7217E+00 I= 
 

• W= 0. '77£381E +00 I= 8 W= 0.8292E+00 
I= W= 0.8726E+00 I= 10 W= 0.90871E+00 I= 11 W= 0.9378E+00 
I= 12 W= 0.9601E+00 I= 13 W= 049757E+00 1= 14:W= 0.9850E+00. 

15 W= 0.9881E+00 I= 

J= 3 
I= 0 W= 0.6543E+00 I= 1 W= 0.6500E+00 I= 2 W= 0.6637E+00 
I= 3 W= 0.6945E+00 I= 4 W= 0.7370E+00 I= 5 W= 0.7849E+00. 
I= 6 W= 0.8335E+00 I= 7 W= 0.8796E+00 I= 8 W= 0.9215E+00 
T= 9 W= 0.9582E+00 I= 10 W= 0.9891E+00 1= 11 W= 0.1014E+01 
I= 12 W= 0.1033E+01 1= 13 W= 0.1047E+01 1= 14 W= 0.1055E+01 
I= 15 W= 0.1058E+01 I= 

J= 4 
I= 0 W= 0.8724E+00 I= 1 W= 0.8678E+00 I= 2 W= 0.8704E+00 
I= 3 41= 0.8852E+00 I= 4 W= 0.9107E+00 I= 5 W= 0.9427E+00 
I= 6 W= 0.9775E+00 I= • W= 0.1012E+01 I= 8 W= 0.1044E+01 
I= 9 W= 0.1073E+01 1= 10 W= 0.1098E+01 1= 11 W= 0.1118E+01 
I= 12 W= 0.1134E+01 I= 13 W= 0.1145E+01 1= 14 W= 0.1151E+01 
I= 15 W= 0.1154E+01 1= 

J= 5 
I= 0 W= 0.1090E+01 I= 1 W= 0.1086E+01 I= 2 W= 0.1084E+01 
I= 3 W= 0.1090E+01 I= 4 W= 0.1104E+01 I= 5 W= 0.1123E+01 
f= 6 W= 0.1146E+01 I= • W= 0.1170E+01 1= W= 0.1193E+01 
I= 9 W= 0.1214E+01 I= 10 W= 0.1232E+01 1= 11 W= 0.1247E+01 
I= 12 W= 0.1259E+01 1= 13 W= 0.1267E+01 I= 14 W= 0.1272E+01 
I= 15 W= 0.1274E+01 1= 

J= 6 
I= 0 W= 0.1309E+01 I= 1 W= 0.1305E+01 1= 2 W= 0.1302E+01 
I= 3 W= 0.1303E+01 I= 4 W= 0.1310E+01 I= 5 W= 0.1320E+0 
I= 
I= 

6 W= 
W= 

0.1334E401 
0.1377E+01 

I= 
I= 

7 
10 

W= 
W= 

0.1349E+01 
0.1389E+01 

I= 
1= 

8 
11 

W= 
W= 

0.1363E+01 
0.1399E+01 

I= 12 W= 0.1407E+01 I= 13 W= 041412E+01 1= 14 W= 0.1415E+01 
I= 15 W= 0.1416E+01 I= 

J= 7 
I= 0 W= 0,1527E+01 1= 1 W= 0.1525E+01 1= 2 W= 0.1522E+01 



354. 

APPENDIX  F 

PROGRAM LISTING AND TYPICAL OUTPUT OF PROGRAMS  USED IN 

CALCULATING THE FOLD SHAPE ALLOWING FOR MEMBRANE STRESSES 
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I 	J 	U(I,J) 	V(I,J) 	W(I,J) 

M . 
	 m . 	 H. 

0 0 0.0000Ff00 0.0000E+00 0.0000E+00 
1 0 0.5724E-10 0.0000E+00 0.1790E-03 

0-0.1309E-10 0.0000E+00 0.3428E-03 
3 0-0.1182E-09 0.0000E+00 0.4831E-03 
4 0-0.2232E-09 0.0000E+00 0.6051E-03 

0-0.3165E-09 0.0000Ef00 0.7119E-03 
6 0-0.3912E-09 0.0000E+00 0.8053E-03 
7 0-0.4424E-09 0.0000E+00 0.8860E-03 
8 0-0.4672E-09 0.0000E+00 0.9549E-03 
9 0-0.4644E-09 0.0000E+00 0.1013E-02 
10 0-0.4348E-09 0.0000E+00 0.1060E-02 
11 0-0.3804F-09 0.0000E+00 0.1098E-02 
12 0-0.3050E-09 0.0000E+00 0.1126E-02 
13 0-0.2129E-09 0.0000E+00 0.1146E-02 
14 0-0.1094E-09 0.0000E+00 0.1158E-02 
15 0 0.0000E+00 0.0000E+00 0.1162E-02 

0 1 0.0000E•00 0.0000E+00 0.2660E-03 
1 1 -0.8762E•10 0.3630E•09 0.3244E-03 
2 1 -0.1631E-09 0.5723E-09 0,4265E•03 
3 1 -0.2552E-09 0.7122E-09 0.5386E-03 
4 1 -0.3473E-09 0.8223E-09 0.6466E-03 

1 -0.4279E-09 0.9106E-09 0.7455E-03 
6 1 -0.4897E-09 0.9787E•09 0.8339E-03 
7 1 -0.5280E-09 0.1029E-08 0.9112E-03 
8 1 -0.5401E-09 0.1064E-08 0.9776E-03 
9 1 -0.5251E-09 0.1087E-08 0.1034E-02 
10 1 -0.4839E-09 0.1100E-08 0.1079E-02 
11 1 -0.4188E•09 0.1108E-08 0.1116E-02 
12 1 -0.3331E-09 0.1111E-08 0.1144E-02 
13 1 -0.2313E-09 0.1113E-08 0.1163E-02 
14 1 -0.1185E-09 0,1113E-08 0.1175E-02 
15 1 0.0000E+00 0.1113E-08 0.1179E-02 

0 2 0.0000E•00 0.0000E+00 0.5321E-03 
1 2-0.1602E-09 0.3166E:09 0.5506E•03 
2 2-0.3090E-09 0.6327E-09 0.6039E-03 
3 2-0.4419E-09 0.9141E-09-0.6782E-03 
4 2-0.5506E•09 0.1146EAgt 0.7600E-03 

2-0.6309E•09 0.1350E-08 0.8410E•03 
6 2-0.6814E-09 0.1501E-08 0.9166E-03 
7 2-0.7019E-09 0.1614E-08 0.9847E-03 
8 2-0.6927E-09 0.1696E-08 0.1044E-02 
9 2-0.6549E-09 0.1753E-08 0.1095E-02 
10 2-0.5905E-09 0.1790E-08 0.1137E-02 
11 2-0.5027E-09 0.1813E-08 0.1171E•02 
12 2-0.3950E-09 0.1827E-08 0.1196E-02 
13 2•0.2721E-09 0.1835E-08 0.1214E-02 
14 2-0.1387E-09 0.1838E-08 0.1225E-02 
15 2 0.0000E+00 0.1839E-08 0.1228E-02 

0 3 0 , 0000E+00 0.0000E+00 0.7981E-03 
1 3-0.2348E-09 0.3018E-09 0.8018E-03 

3-0.4479E-09 0.6470E-09 0.8267E-03 
3 3-0.6255E-09 0.9896E-09 0.8709E-03 
4 3-0.7592E-09 0.1300E-08 0.9268E•03 
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