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Abstract: 

MICROWAVE HOLOGRAPHY OF 

LARGE REFLECTOR ANTENNAS 

Geoffrey C. James 

Department of Physics, University of Tasmania, 
G.P.O. Box 252C, Hobart 7001, Australia. 

This thesis describes experiments in Microwave Holography using the 26 m 
radio telescope at the Mount Pleasant Observatory, and the development 
of data processing methods to overcome a major limitation of traditional 
holographic measurements. 

Microwave Holography is a fast and effective technique for measuring the 
surface profile of reflector antennas. It requires measurement of the amplitude 
and phase of the antenna's far field radiation pattern. The Fourier transform 
relationship of the far field pattern to the aperture current function is used 
to estimate the aperture phase profile, which can be related directly to the 
surface profile. Using an unmodulated 12.7 GHz carrier signal transmitted 
by the AUSSAT-1 geostationary satellite, the 26 m diameter surface was 
measured to an accuracy of ±53 pm with a resolution of 0.6 m. Using a 
beacon signal, weaker by 20 dB, gave a comparable accuracy of ±64 pm. 
Each map took about 4 hours to record. 

In practice only a small part of the complete radiation pattern can be 
measured, so information about high spatial frequencies in the aperture is 
lost. This causes detailed structure in the surface error map to be smoothed 
out. Most large reflectors are constructed with panels, and misaligned panels 
give discontinuities in surface error which cannot be resolved. This can lead 
to incorrect assessment of panel positions. 

Significant improvement can be obtained by recognizing at the outset that 
the reflector surface is not smooth and continuous, but a collection of individ-
ual rigid panels. The Method of Successive Projections is an algorithm, with 
a simple geometrical interpretation, which allows information about the panel 
boundaries to be readily incorporated into the data reduction process. The 
algorithm is straight-forward to apply and is very flexible: aperture blockage 
effects do not disturb its operation, and panel distortions can be included 
in the analysis with minimal extra effort. Good results may be achieved 
while minimizing measurement time. This is an important consideration for 
high-performance antennas with a busy operating programme. 
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Introduction 

In 1937 Grote Reber built the first parabolic mirror designed for radio fre-
quencies in Illinois, USA. He now lives 60 km from the Mount Pleasant Radio 
Astronomy Observatory in Tasmania. This thesis describes experiments in 
Microwave Holography at Mount Pleasant, and the development of data pro-
cessing methods to overcome a major limitation of traditional holographic 
measurements. 

Parabolic reflector antennas are almost universally used when a narrow 
directed beam is required for radio astronomy or microwave communication. 
The rising importance of millimetre-wave astronomy and space communica-
tion has placed increasing demands on the performance of these antennas, 
which is often limited by their reflector surface accuracy. Microwave Holog-
raphy is a fast and effective technique for measuring the surface profile of 
reflector antennas. It requires measurement of the amplitude and phase of 
the antenna's far field radiation pattern. The Fourier transform relationship 
between the aperture current distribution and the radiation pattern can be 
used to estimate the complex aperture currents. Geometrical optics relates 
the phase of the aperture currents to deviations of the surface from a true 
paraboloid. Adjustment of the surface on the basis of holographic measure-
ments can give significant improvements in antenna performance. 

A limitation of Microwave Holography is that in practice only a small 
part of the complete radiation pattern can be measured. This is because 
measurement time must be minimized to avoid disrupting normal use of the 
antenna; there are also practical difficulties involved in measuring the very 
low-level sidelobes that occur far from the main beam of a large antenna. 
By measuring only in a region about the main beam, far field information 
corresponding to high spatial frequencies in the aperture is lost. Any detailed 
structure in the surface error map is smoothed out. Most large reflectors 
are constructed of panels, and misaligned panels give rise to discontinuities 
in surface error with high spatial frequencies. Low-resolution holographic 
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measurements can lead to incorrect assessment of panel positions in such 
cases. 

Significant improvement can be obtained by recognizing at the outset that 
the reflector surface is not smooth and continuous, but a collection of individ-
ual rigid panels. The Method of Successive Projections is an algorithm, with 
a simple geometrical interpretation, which allows information about the panel 
boundaries to be readily incorporated into the data reduction process. The 
algorithm is straight-forward to apply and is very flexible: aperture blockage 
effects do not disturb its operation, and panel distortions can be included 
in the analysis with minimal extra effort. Good results may be achieved 
while minimizing measurement time. This is an important consideration for 
high-performance antennas with a busy operating programme. 

The place of this thesis in relation to other work on reflector measure-
ments is shown in chapter 1, which is a review of surface errors, their mea-
surement, and their correction. Chapter 2 provides background material for 
the rest of the thesis, with discussions of antenna motion and panel defor-
mation that contain significant new work. The remaining chapters contain 
primarily original work. Chapter 3 describes the holographic measurements 
at Mount Pleasant, which made use of the AUSSAT geostationary satellites. 
They were unusual in not requiring a saturated carrier for accurate results. 
Chapter 4 summarizes the systematic errors that can occur and describes a 
new way of analysing the random errors. Chapter 5 shows how Successive 
Projections can be used to fit panel positions to low-resolution holographic 
measurements, and chapter 6 investigates the algorithm's performance and 
other aspects of the panel-fitting problem. 

The main findings of this thesis are given in the Conclusion. Any enquiries 
about equipment constructed for the holographic measurements or software 
written to process the data and apply the new algorithm should be directed 
to: 

The Physics Department, 
University of Tasmania, 
G.P.O. Box 252C, 
Hobart TAS 7001, 
AUSTRALIA. 



Chapter 1 

Reflector Antenna Surfaces 

1.1 Surface Tolerance Theory 

Reflector antennas have a paraboloidal shape because this geometry reflects 
rays arriving parallel to the axis to a single focal point. Moreover, the ray 
length from a planar wavefront to the focus is a constant for all reflection 
points, as illustrated in figure 1.1. This means the radiation adds coherently 
at the focus. Equivalently, if radiation is emitted by a feed at the focus it will 
reflect to give a uniform phase in any aperture plane. The far field diffraction 
pattern from such an aperture has a narrow main beam and beyond this 
many sidelobes; an example can be seen in section 3.3.4. A good antenna 
concentrates as much energy as possible into the main beam, giving a high 
gain, and reduces sidelobe levels to below predetermined limits. 

A small deformity of the reflector surface will change the ray lengths 
and so change the phase of the aperture field above the deformity. This 
is discussed in detail in section 2.1.2. Uniformity of phase is lost, and the 
effects of this on the antenna's gain and sidelobe levels are significant. In the 
manufacture of antennas, tolerances must be found for the surface accuracy 
if performance specifications are to be met. 

1.1.1 Statistical Tolerance Theories 

The first practically useful analysis of surface errors was a statistical one by 
Ruze [74]. Knowing the integral expression for the power pattern due to 
a given aperture field, he considered an aperture with phase errors whose 
statistics were known and derived the average power pattern for an ensemble 
of such apertures. The main features of his model for phase errors were: 
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Figure 1.1: A cut in the x-z plane of a paraboloid of revolution with focal 

length F. The cut is described by z = x2/4F — F. All the dashed ray paths 

to the aperture plane (z = 0) are the same length. 

1.The aperture is subdivided into a large number of cylindrical 'hatboxes' 

or Gaussian 'hats' of phase distortion. 

2.The hats' heights are small, and follow a Gaussian distribution with a 

uniform variance over the whole aperture. 

3.The correlation distance of the errors, or the width of the hats or hat-

boxes, is very small compared to the antenna's diameter. 

In the general case it is best to estimate the phase error variance with an 

illumination weighting, although for uniform variance it makes no difference. 

If the aperture field is given by the complex function a(x, y) whose phase 

is 0(x, y), with the average phase being zero, the variance is estimated by 

ff
aP 
la(x, y)IO2(x, y)dx dy 82 =  

flap  la(x, y)Idx dy 

Ruze showed that the axial gain is reduced according to 

D 	 37 
G = G0  e = ( ) 2

—
A 

e- (1.2) 

where 77 is the aperture efficiency, D is the antenna diameter, and A is the 

wavelength. This equation has been used by antenna engineers ever since. As 

a benchmark, rms surface errors of e = A/15 give a 3 dB reduction in gain; a 

surface should be designed to exceed this accuracy at its maximum working 

frequency. Every antenna has a maximum gain at some wavelength Arri.x, 

beyond which surface errors cause the gain to decrease through their greater 
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effect on the aperture phase. For a shallow reflector the rms surface error e 

produces a phase error variance 

( 4 7rE) 2  

\ A 

and the maximum gain occurs when 

A = )"max = 47e. 	 (1.3) 

This can be checked with gains measured by radio observations, and agree-

ment with measured rms surface errors is usually good. 

Ruze also identified a broad, scattered field which is added to the radiation 

pattern. As the correlation distance of the errors decreases, the scattered field 

is broadened, so that rough surfaces scatter the energy more diffusely. This 

is to be expected. However, Ruze's restriction to small correlation distances 

causes average sidelobe levels to be overestimated in many realistic situations. 

Vu [87] augments the original theory by analytically calculating the aperture 

correlation function for a tapered illumination. This allows a study of errors 

with large correlation distances. For example, Vu found that a correlation 

distance of D/24 gives average sidelobe levels 3 dB below those predicted by 

Ruze. Gain is also less affected when surface errors are very broad in scale. 

The uniform variance restriction of Ruze's theory was partly lifted by 

Rahmat-Samii [62], who used an aperture divided into annular regions with 

different phase error variances. For some construction methods this would 

be more realistic than a uniform variance. Rahmat-Samii gave a closed ex-

pression for the average power pattern, while commenting that an average 

sidelobe level is not as useful a quantity as the probability of a sidelobe 

occurring within a specified range. Such information would help to decide 

manufacturing tolerances.. The problem was tackled by Ling, et al. [41]. 

An entirely different statistical approach is due to Tripp [83]. Instead 

of a multiplicative phase error, he considered an additive perturbation of 

the aperture field which could occur at several random positions. Assuming 

that the scattering properties of the defect were known, he found a vector 

expression for the mean power pattern of an aperture randomly distributed 

with defects. This is a suitable model for an antenna subjected to a harsh 

environment for some time, where it will accumulate spot defects. 
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1.1.2 Origins of Surface Deformations 

Whether or not a statistical approach to surface errors is best depends on 
what is known of the errors. For example, thermal distortion of a reflector 
support structure produces slowly changing errors with a large correlation 
distance. The effects of errors of this kind may be estimated statistically to 
help design a suitable structure. Once the reflector is built it may be possible 
to predict or measure thermal distortion, and then either to compensate for 
the gain variations or to correct the surface with actuators — 'active surfaces' 
are discussed in section 1.4. 

A classification of errors by their correlation distance across the aperture 
is useful. 

• Short correlation distance: 

– errors inherent in the surface construction such as ribs beneath a 
mesh surface. 

– panel setting errors for a reflector made of rigid panels. 

– profile errors in the panels themselves. 

– rapidly changing variations induced by the antenna drive system. 

– any spot deformities. 

• Long correlation distance (flexure of the structure): 

– thermal distortion with ambient temperature or sunlight. 

– gravitational distortion as the antenna is tilted. 

– response to wind stresses. 

• Errors which imply a different best-fit paraboloid. A linear aper-
ture phase variation is removed simply by redefining the axis of the 
paraboloid. A quadratic variation, to first order, requires a refocusing 
by moving the feed axially. These are not errors of the surface at all. 

At any time the total distortion of a reflector will contain many of these 
effects. 

Thermal, gravitational, and wind distortion are likely to have very long 
correlation distances. Thus the near-in sidelobes are most affected, and a sta-
tistical error analysis is unsuitable for predicting the astigmatism, coma, and 
other features that are likely to occur. Rahmat-Samii [64] suggests methods 
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of interpolating known distortions and efficiently calculating the resulting far 
field pattern. Alternatively, Pontoppidan [58] shows how surface distortions 
with particular symmetries can be related directly to specific changes in the 
first few sidelobes of the pattern. He uses Zernike polynomials to represent 
a general distortion, where low-order modes correspond to long correlation 
distances. Such an analysis is useful because the reflector's backing struc-
ture determines which symmetries of distortion will occur, and action can be 
taken in the design stage to minimize the most serious. 

The best example of a design to cater for surface distortions is the Ef-
felsberg 100 m radio telescope, which deforms homologously under gravity 
as it is tilted. This means that while distortions of up to 6 cm occur at the 
edge of the reflector, they are such that a new paraboloid is made at every 
elevation. The inner 65 m of the reflector can be used at wavelengths as short 
as 1 cm. Careful design like this means that thermal and wind deformations, 
not gravity, limit the performance of well-designed modern antennas [69, 
sect. 5.6]. 

An existing antenna, then, has fixed and changing errors in its surface. 
Knowledge of these errors could be used to improve the manufacturing pro-
cess if the antenna is one of a series, or if not it could be used to improve 
the antenna itself. It is very desirable to measure the surface errors of an 
antenna. 

1.2 The Development of Microwave Holog-
raphy 

1.2.1 Before and After Scott and Ryle 

It has long been known that there is a Fourier transform relationship between 
the aperture currents and the far field pattern of an antenna. The idea of 
finding imperfections in a radiating current distribution by measuring its 
complex far field pattern was first put into practice by Napier and Bates in 
1973 [52]. They used acoustic antennas operating at a frequency of 34.5 kHz, 
and measured phase indirectly by recording a hologram: the sum of the test 
antenna's radiation with the radiation from a fixed reference antenna. In 
1976, Bennett, et al. [6] used similar principles to perform microwave mea-
surements of two parabolic reflector antennas, 3.0 m and 3.7 m in diameter. 
The test and reference antennas received radiation from a near-field source, 
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and holograms were formed by combining these signals. The derived aperture 
phase distribution was converted to a surface error profile. 

The following year, Scott and Ryle [76] showed how the complex receiv-
ing pattern of a radio telescope could be measured directly using a phase-
switching receiver. Four 13 m antennas were measured using radiation at 
15.4 GHz from a celestial source. Each test antenna was steered in a 17 x 17 
grid of points about the on-source position while a reference antenna re-
mained on-source, and the product of the resulting signals was formed by 
the receiver. The complex aperture distribution was found by a Fourier 
transform of these data, giving a grid of surface profile errors accurate to 
±0.1 mm. The measurement scheme is compared to the holographic tech-
nique of Napier and Bates in figure 1.2. The fundamental difference is that 
the radiation pattern's phase is determined directly by detecting a product 
instead of indirectly by detecting a sum. Although no hologram is formed, 
the Scott and Ryle method of reflector profile measurement has been called 
Microwave Holography. 

Details of the implementation of Microwave Holography are left to the 
next two chapters. It has become a well-established • method for surface 
metrology, and table 1.1 summarizes a variety of experiments performed over 
the past decade. A range of antenna sizes and frequencies can be seen. The 
time required for the measurements varied, but one night's observing was 
always sufficient and a few hours was typical: this is much faster than most 
of the alternative surface measurement methods described below. 

The accuracies a in the table are the rms uncertainties in surface error for 
a single 'pixel' or resolution element. This was not given explicitly in some 
of the papers. In some it was deduced from the repeatability of independent 
surface maps, in which case it may reflect genuine changes in the surface 
shape rather than the intrinsic accuracy of the measurements. Despite this, 
the achieved accuracies are always in the range 0.001A < a < 0.01). Thus 
the accuracy can be adapted to requirements by changing the frequency, 
provided that 

• it is still possible to measure the far field phase, and 

• the range of surface errors is not enough to cause 27r ambiguities in 
aperture phase. 

When accuracy is limited by additive receiver noise giving an on-source 
signal-to-noise ratio R., Scott and Ryle demonstrated that a map of dimen- 
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Far field 
distance Detector I 

Reference (a) Napier and Bates, 1973. 

Far field 
<:::..m*.mmwy.mumummeozompkot,  

distance 

Reference 
(b) Scott and Ryle, 1977. 

Test antenna 

Test antenna 

Figure 1.2: Two methods of recording the complex far field pattern of an 
antenna: (a) formation of a hologram by summing radiation from the test 
antenna with a reference wave, and (b) measuring phase and magnitude by 
multiplying signals received by test and reference antennas for an incoming 
plane wave. 
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Ref. Year Diam. Source Grid a A/cr 
[76] 1977 13 m C 15.4 GHz 17 x 17 0.1 mm 195 
[21] 1981 25 m S 11.5 GHz 101 x 101 0.07 mm 369 
[15] 1981 30 m S 3.84 GHz 32 x 32 0.5 mm ? 156 
[67] 1983 64 m C 2.29 GHz 11 x 11 0.5 mm ? 262 
[46] 1983 4.9 m R 86.1 GHz 83 x 83 4 pm 870 
[20] 1986 100 m S 11.8 GHz 195 x 195 0.12 mm 212 
[33] 1987 18 m S 4.00 GHz 64 x 64 0.18 mm 416 
[31] 1988 45 m S 19.5 GHz 128 x 128 53 pm 290 
[51] 1988 30 m C 22.2 GHz 32 x 32 18 pm 764 
[36] 1989 64 m S 12.4 GHz 97 x 97 0.2 mm 121 
* 1991 26 m S 12.7 GHz 53 x 53 53 pm 445 

Table 1.1: A comparison of several Microwave Holography experiments from 
Scott and Ryle onwards (* is this project). The year is that of publication. 
The type of source used is indicated by a letter: C for a celestial source, S for 
a satellite-borne transmitter, and R for a ground range approximately 2D 2 /A 
in length. 
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sions N x N will have 
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It is easier to achieve a high signal-to-noise ratio with a satellite source, and 
for this reason the maps of table 1.1 were more restricted in size when the 
source was celestial. 

1.2.2 Phase Retrieval Holography 

Millimetre-wave reflector antennas are playing an increasing role in radio 
astronomy, and they require very high surface accuracies. To be useful, 
Microwave Holography needs to give a measurement uncertainty smaller than 
the expected magnitude of surface profile errors. Frequencies of several tens 
of GHz or higher are required, and direct phase measurements are difficult. 

The practicality of deducing the complex aperture current distribution 
from only the magnitude of the far field pattern was investigated by Mor-
ris [49]. He suggested using the Missel algorithm to recover the aperture 
phase from measurements of the in-focus and out-of-focus far field inten-
sity. Subsequent tests at the TRAM 30 m diameter radio telescope at Pico 
Veleta [50] showed that the technique was effective, with the need for com-
plicated receiving equipment obviated by sophisticated data processing. A 
disadvantage is that a much greater signal-to-noise ratio is required than for 
traditional holography. More recently, phase recovery from a single, out-of-
focus intensity map has been investigated and validated [43]. Phase retrieval 
is an active area of research. 

The measurements described in chapter 3 of this thesis were traditional, 
full-phase measurements. They were aimed at developing a simple but effec-
tive system which could be moved easily to other antennas. The algorithm for 
panel fitting in chapter 5 is very new but is related to the Missel algorithm, 
and others commonly used for phase retrieval. This connection is discussed 
as background to the Method of Successive Projections in section 5.1.3, and 
the solvability of the phase retrieval problem is discussed in section 6.2.3. 

1.2.3 Related Techniques 

There are some variations of the Microwave Holography method that can 
be used in special circumstances. When the three-dimensional structure of 
a reflector is important, Cook, et al. [14] show how particular planar cuts 
through the current distribution can be recovered. This is by consideration 
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of the three-dimensional Fourier transform of the current distribution, and 
the theory is described in section 2.3.2 where it becomes relevant for under-
standing the effects of antenna motion. 

The focal-plane field distribution can also be related to the aperture cur-
rents by a Fourier transform [85]. This has been used to measure reflector 
deformities of the RATAN-600 radio telescope in the USSR [57]. The special 
equipment needed to probe focal-plane fields usually makes this technique 
more difficult than far field measurements. Another alternative is to deduce 
the aperture phase directly from near-field pattern measurements. Parini, 
et al. [54] determined the profile of a 1.2 m reflector by measuring only the 
near field phase. This was done by using 35 GHz electomagnetic waves and 
again using 40 kHz ultrasound. The size of the chamber that would be re-
quired makes near-field methods unsuitable for large reflectors. 

A recent innovation is by Serabyn, et al. [77]. In the regime of submil-
limetre waves methods usually applied to optical systems can be copied. By 
using mirrors and a Mylar beam splitter, simultaneous on-axis and off-axis 
beams were produced for a 10.4 m diameter telescope operating in a band 
about 290 GHz. The mirrors were moveable, so the single detector received 
signals from the reference, on-source beam and the steerable, off-axis beam. 
This formed an interferometer which, in effect, examined the telescope's fo-
cal plane field. Serabyn, et al. measured the surface profile to an accuracy 
of ±9 pm using this equipment and planetary radiation. The second beam 
replaced the second antenna usually required for interferometric measure-
ments, and only one receiver was required, so the technique has a number of 
advantages. 

1.3 Other Methods of Surface Measurement 

Microwave Holography has been a viable technique for only one quarter of 
the time that large, parabolic reflectors have been built. There are several 
older methods for surface measurement which are still important, particularly 
during the construction of a reflector or immediately after its commissioning. 
They can be superior in some respects, such as the measurement of shadowed 
regions of the surface. Typically a large reflector will be adjusted to whatever 
tolerance traditional methods permit, and a holographic survey will then be 
performed, ideally at the shortest wavelength for which the remaining surface 
errors are determined unambiguously. 
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As mentioned in section 1.1.1, gain measurements can be used to give the 
rms surface error, but an actual map of the surface is needed if corrections 
are to be made. Template methods were the first to be used, but they 
are restricted to small antennas. By far the most common method for large 
reflectors has been triangulation or angle-range measurements to targets fixed 
on the surface. There are many variations on this theme. Immediately, there 
is an important difference with holographic surveys: errors indicated in a 
holographic map are averages over a region of the surface, whereas a target 
always indicates the position of a single point. If this point is over a panel 
adjustment screw this may be what is wanted; on the other hand, an average 
over the region between measured points is often a better measure of the 
effective surface error. 

A 'theodolite-tape' measurement of the Effelsberg 100 m antenna is de-
scribed by Greve [23]. Targets were positioned with a steel tape and observed 
by a theodolite at the vertex. The final survey gave the position of 6000 tar-
gets with a vertical accuracy of a 0.5 mm, although a varied with radius. 
The survey quality can be indicated by the ratio Diu, so about 200 000 
was achieved. This can be compared to the later holographic map of the 
same antenna [20] which gave D 1 o- 830 000. Another theodolite-tape sur-
vey was performed by Kesteven et al. [35], where the accuracy achieved was 
a 0.11 mm for a 22 m antenna of the Australia Telescope. This again gives 
D a 200 000, which is a typical figure for a high-quality survey of this type. 
Both surveys had to be performed in the zenith position, for practical reasons 
and for the observers' comfort! 

The method was developed further by Greve [24] in a measurement of the 
IRAM 30 m millimetre-wave radio telescope at Pico Veleta. The tape was 
supported by an arm and read using a transducer, after which a temperature 
correction was made. The theodolite was kept at a fixed angle for each ring 
of measurements, and a laser beam was focused through it onto target with 
a spherical surface to contact the reflector. Inside the target a position diode 
measured the offset of the laser beam, so human error could not enter the 
reading of data. The resulting accuracy was a 0.07 mm or D I a 430 000. 
This was equalled by a holographic measurement with phase retrieval [50], 
and surpassed by a measurement with full phase [51] which gave D I a 
1 700 000. Remember that a direct comparison like this does not take into 
account that the holographic map was on a square grid with 486 points lying 
in the aperture, while the Greve survey had 600 points arranged in 11 rings 
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Antenna Diameter Traditional Dla Holographic Dla 
SRC Chilbolton 25 m 70 000 350 000 
IRAM Pico Veleta 30 m 430 000 1 700 000 
MPIfRA Effelsberg 100 m 200 000 830 000 

Table 1.2: The 'quality' Dla of holographic and traditional surface measure-
ments of three antennas for which both are available. References are in the 
text. 

on the aperture. 
It is worthwhile to mention an earlier experiment by Slater [80] at the 

Chilbolton 25 m antenna for two reasons. Firstly, a specially constructed 
instrument (`Parabscan') measured the angles to targets from two points 
on the reflector axis, so that no range measurements were required. The 
survey of 512 targets had an accuracy a 0.36 mm or D/cr ,za. 70000. 
Secondly, a laser ranging system was used afterwards to measure changes in 
the reflector's shape with elevation. This had a similar order of accuracy 
for a smaller number of points, and was much faster because differential 
measurements are always simpler than absolute ones. It is interesting that 
now, 20 years later, similar systems are being developed for application to 
active surfaces (below). Once again, a holographic measurement of the same 
antenna is available [21]: it was earlier than the others mentioned, and gave 
D/cr 350 000. Table 1.2 summarizes the qualities of the holographic and 
traditional surveys of the three antennas measured in both ways. In these 
examples the holographic surveys are 4-5 times more accurate. 

Accounts of theodolite-tape and similar surface measurements highlight 
several systematic effects which limit the accuracy achieved. Tape readings 
are affected by temperature changes, curves in the path, and positioning 
of the zero mark. Theodolite readings are affected by axis alignment, and 
several reference points must be measured repeatedly during the survey so 
that different rings or quadrants of data can be correctly combined. Often 
the greatest difficulty is the period of time during which consistent measure-
ments must be made. The Effelsberg theodolite survey took 10 days, the 
Pico Veleta 6-10 nights, and the Chilbolton 26 nights for a team of 10 ob-
servers. Operator fatigue becomes a significant factor in these circumstances, 
as well as genuine changes in the surface shape due to environmental con- 
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ditions. Only the Australia Telescope measurements were performed in a 
period comparable to a typical holographic survey: about 4 hours for a 22 m 
antenna. This was possible because data logging was automated and the 
surface was already quite well set. 

Completely different approaches to surface measurement are possible. An 
unconventional method is due to Payne, et al. [56]. A trolley with a 50 cm 
wheelbase was pulled along radial lines from the vertex: it had a depth sensor 
in the centre which allowed the curvature of the surface to be measured 
as a function of distance along the surface. By integration the slope and 
height functions could be found. The NRAO 11 m antenna at Kitt Peak was 
measured to an accuracy of a c..e 0.09 mm at the edge, or D I a tla 120 000. For 
larger antennas the accumulation of errors would be greater, and instead of 
a connected surface the trolley would have to traverse panel edges. 

Photogrammetry is a method which can be applied to antennas of any 
size. Photographs are taken from several well-separated viewing positions 
after the placement of targets on the surface and other parts of the struc-
ture. By measuring from the photographs a true three-dimensional map is 
produced, with a high redundancy of information giving great precision. The 
antenna can be at any elevation without penalty, which is certainly not true 
of theodolite-type surveys. Fraser [17] describes photogrammetrical mea-
surements of the DSS-15 34 m Cassegrain antenna near Goldstone. Both 
the main reflector and subreflector were measured using 9 and 6 camera sta-
tions respectively, and elevations of 6°, 45°, and 90 0  were used. For the main 
reflector an accuracy of a 0.17 mm was achieved giving D I a 200 000, 
which is comparable to a good theodolite survey. The main disadvantage 
was the time necessary to digitize and measure the photographs to ±0.4 pm: 
18 hours, while the photographing time was only 6 hours. 

This must be weighed against the value of things which only photogram-
metry can do, particularly for Cassegrain antennas. Firstly, the subreflector 
can be independently measured to great precision. Secondly, by making sure 
that targets fixed beyond the edge of the subreflector are included in all pho-
tographs, the two reflectors can be described in a common reference frame. 
Other structural features, such as the ground and mount, can also be in-
cluded. These data could be used to great benefit, so it is important to 
decide exactly what type of information is needed when choosing a survey 
method. If radio performance is the primary concern, Microwave Holography 
remains the most rapid and most precise of currently available methods. 
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1.4 Active Surfaces 

The possibility of automatically adjusting the surface of a reflector is cur-
rently receiving serious attention. One application is being investigated by 
Clarricoats [11], who tested a 0.85 m mesh surface controlled by 52 actua-
tors. This would be used on satellites for shaping the antenna beam to a 
desired coverage on Earth. For large reflectors an 'active surface' would have 
a different purpose: to compensate for deformations as they occur, allowing 
shorter wavelengths to be used. 

This introduces a new set of surface measurement problems. Not all 
kinds of deformation can be predicted, so they must be measured accurately 
and quickly enough for effective compensation. The time scale may be faster 
than minutes, for example thermal reactions to the sun going behind a cloud. 
Fortunately, the measurements need only be differential provided that they 
are calibrated to a known surface shape determined by holography or other 
means. Although automatic adjustments were not considered, the laser rang-
ing system mentioned above [80] followed this scheme. A microwave ranging 
system was tested by Findlay and Payne [16] at a frequency of 11.8 GHz, 
but, monitoring only four distances, it was intended for diagnosis rather 
than correction. These methods were accurate to approximately 0.4 mm and 
0.15 mm. 

Two large radio telescopes designed to have active surfaces are currently 
under construction: a 70 m antenna at Sufa, USSR and a 100 m offset 
antenna at Green Bank, USA. For the former, Shulga and Shamanin [78] 
described a microwave ranging system for operation at about 40 GHz; a single 
transponder has been used to determine path lengths to within ±30 pm. 
A measurement time of some seconds and a surface setting time of some 
minutes are proposed. The Sufa antenna will be a Cassegrain design and the 
subreflector may be included in the microwave paths. However, problems 
with multiple reflections and atmospheric scintillations are anticipated. An 
important constraint is that the ranging system must not interfere with the 
radio astronomy receivers. 

More information is available on the Green Bank antenna [55], which will 
be the largest fully steerable antenna in the World and will also be unique 
for its offset design. Completion is planned for 1995. It will have 1928 panels 
adjustable by 2255 actuators: because panel corners can be set accurately 
relative to each other, only one actuator is provided at each meeting of four 
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corners. The goal is compensation for all gravitational and thermal deforma-
tions and some vibrational modes. This should allow operation at frequencies 
above 40 GHz. 

A laser ranging system is to be used; a prototype is accurate to ±50 Am. 
Several lasers modulated at 1 GHz or similar will be mounted on the feed 
support arm, providing about 100 range measurements every second. These 
will be used to update a complex model of the structure once every second 
or faster, and surface corrections will be based on this model. Targets on the 
ground, the subreflector, and the feeds will be included in the measurements, 
allowing absolute pointing calculations to be made. The accuracy of surface 
corrections and the lack of aperture blockage may show other effects to be 
important to antenna performance, such as the size of gaps between panels. 
Microwave Holography will have a role: to provide an external reference 
standard for the laser measurements. 

This section concludes with a measurement system for an active optical 
surface, such as could be implemented in the near term to compensate for 
atmospheric distortion in astronomical telescopes. It is interesting because 
it combines several principles whose application to radio reflectors has been 
discussed above. Sandler, et al. [75] show how in-focus and out-of-focus 
images of a reference star can be used to find the phase distortion across the 
telescope's aperture. An optical image is in fact the far field intensity pattern 
corresponding to the aperture phase function, so the recovery of phase from 
this pair of images is exactly analogous to the phase retrieval method of 
Morris [49]. The images are recorded with a single CCD camera, and a path 
length difference achieved with mirrors causes the defocus. Phase retrieval is 
performed by a parallel computational architecture called a 'neural network', 
modelled on the action of neurons in the human brain. The result is a set of 
low-order Zernike coefficients (c.f. [58]) describing the aperture phase, upon 
which surface corrections would be based. It is becoming more common for 
work in the optical and radio fields to be closely related; another example by 
Serabyn, et al. [77] was mentioned earlier. 
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Chapter 2 

Microwave Holography 

Fundamentals 

2.1 The Theoretical Basis 

The "Fourier transform relationship between the aperture currents and the 

far field pattern" hides a number of subtleties and approximations in the case 

of a parabolic reflector antenna. It is well worth while to look at the origin 

of the expression and its application to Microwave Holography. 

2.1.1 The Radiation Integral 

Source currents which exist on the surface of a reflector antenna radiate 

into an infinite, homogeneous medium according to Maxwell's equations. 

Throughout this thesis the time dependence of the resulting harmonic fields 

is exp(— jwt). The solutions for E and H, the electric and magnetic field 

intensities, can be written in terms of vector potentials A and F: 

E = 	 jwitA — -.--
1  
7:7(V • A) 	 (2.1) 

.7We 

1 
H = -I- V x A + jcoF — =—V(V • F). 	 (2.2) 

IWIL  

Here IL and are constitutive parameters of the medium. In terms of these 

vector potentials, Maxwell's equations become inhomogeneous Helmholtz 

equations: 

VA+ k2A = —J 
	

(2.3) 

V2F k2F = — M, 	 (2.4) 
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where J and M are electric and magnetic source currents and k2  = w20. 

These may be solved using a Green's function formulation. The coordi-

nate system used is shown in figure 2.1. In terms of the Green's function 

G 	
exp(-Fjkir  — rip 

(r,r1  ) = 
4rir — ril 

the solutions are 

A(r) = fv,J(e) G(r, r') c11/' 
	

(2.5) 

F(r) = fv,M(e) G(r, r') d171. 	 (2.6) 

Substituting these into the equations 2.1 and 2.2, and evaluating the deriva-

tives of G(r, r'), it follows that 

E(r) = +jkiv,  [M(11) x ft + \If (J(e) — (J(e) 11)ft.)] G(r, r') 
H(r) = 	 k(e) x ft - 	 (M(e) — (M(e) • kii.)1 G(r, r') 

Terms of order 11R2  and smaller have been neglected. These expressions, 

giving radiated fields in terms of the source current distributions, are often 

referred to as the Kirchhoff-Huygens Diffraction Integrals. 

Some simplifications can be made for the radiation pattern in the far 

field of a perfectly conducting reflector. Firstly, M = 0 since there can be no 

magnetic currents. Secondly, the far zone approximation is valid, whereby 

R r 	 for amplitude terms, 

r — r' cos 4' for phase terms. 

These give 

ei-Jkr  
E(r) 	

+jk 	

F- 
[j(ri) _ (j(e) 	 e—jkricoq dvt 	 (2.7)  

H(r) 	 x E(r). 	 (2.8) 

Thus E and H are perpendicular to each other and to the direction of prop-

agation in the far zone. 

The use of these diffraction integrals for antenna analysis commenced 

with the radio scientists of the Second World War, whose work was collected 

by Silver [79]. They are introduced or derived in any textbook on antenna 

theory, for example [13, sect. 2.5, 3.6] or [3, sect. 3.2-6]. The summary above 

is based on the concise explanation of James [32, sect. 2.1]. 
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Figure 2.1: The coordinates r' for the integration of source currents in a 
volume V'. The field is computed at a point r, or R = r — r' with respect to 
a source point. 

The Aperture Integral Method 

One way to express the field integral 2.7 in a tractable form is to transfer it 
to a planar surface by the principle of images. This is described neatly by 
Wood [84, p. 15]. Consider a thin conducting screen in the plane z = 0 where 
all sources are in the region z <0, as shown in figure 2.2. Into the forward 
half-space z > 0 the electric current 

Jap  = 2ñ x H(x, y, 0) 

radiates a field E and H that is equivalent to the field that would exist with 
no screen. If the sources are generated by a reflector antenna, the imaginary 
screen is called the aperture plane of the antenna, and the currents are the 
aperture currents. 

Geometrical Optics can be used to find the field radiated by the feed and 
reflected to the aperture plane. This involves the local plane wave reflection 
(LPWR) approximation that the incident radiation reflects as if it had met an 
infinite plane conductor; any currents on the rear of the reflector are ignored. 
Given this field, the aperture currents can be evaluated and equation 2.7 
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becomes 

ei-jkr 
E(r) +jk — VE[J (e) — (Jap(e) 	 e-jkri cc's dA'. 	 (2.9) 

47r 	 aP  

However, the geometry of figure 2.1 gives 

1 u = sin 0 cos 0 
r' cos e = ux' + vy' + z' cos 0 where 

with z' = 0 in the aperture plane. The vector operations can be taken outside 

the integral, giving 

E(r) = T(r) — (T(r) Of. 	 (2.10) 

where 
r 

T(r) -1-jtc 
e-Fik 
 f — \i- 11Jap(e)e-j21r(uri+v"A  dA'. 	 (2.11) 

471T A' E 

This is a Fourier transform. It is of a standard form if x' and y' are measured 

in wavelength units, eliminating the factor 1/A. These aperture variables 

transform to 'far field domain' variables u and v, the direction cosines of the 

radiation vector r to the x and y axes. The coordinate systems are shown in 

figure 2.2. 

The Surface Integral Method 

The image principle can also be applied to the reflector surface itself, giving 

a current 

JPO = 2i1 X Him 

where ñ is the surface normal and Hinc  is the incident field from the feed. 

This is the Physical Optics (PO) approximation, which again assumes that 

each element of the surface behaves as an infinite plane conductor. The 

integral 2.7 can be applied directly to these currents. The LPWR and PO 

assumptions lead in general to slightly different radiated fields [84, p. 18]. 

However, if the aperture plane 'caps' the reflector, meeting its entire edge, 

the fields calculated by both methods are practically the same [88]. For offset 

geometries this cannot be the case, and PO followed by a surface integration 

should be used. 

For a reflector surface integration the term z' cos 0 remains, so the inte-

gral 2.9 does not reduce to a Fourier transform. Rahmat-Samii and Galindo-

Israel [66] show that evaluating this integral in aperture plane coordinates 

produces an infinite series of Fourier transforms. The first term is 2.11 with 

V = sin 0 sin 0 
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Figure 2.2: The aperture and far field coordinate systems, with origin placed 
at the focus. Primes are used when specifying a point in the aperture or on 
the surface. 
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Jai, replaced by a modified Jpo, the modification being simply a projection 

of the surface currents onto the flat aperture with a phase shift matching the 

separation z'. Although the modified Jpo is treated like an aperture current 

it represents a different approximation, and the method remains a 'surface 

integration'. 

Further terms of the series can be used if the first does not give an ade-

quate approximation. The papers [48] and [66] show how the series expression 

is useful for offset geometries. It can also be used in cases where the depth 

of a reflector causes the second term to be significant. If the correct radiated 

field can be computed by the Fourier transform of a particular function Ji(r), 

a simple iterative process converges rapidly to J2(r), which gives the correct 

field after computing two terms of the series of Fourier transforms. Then 

J2(r) is a better estimate of the true aperture current function. 

2.1.2 Application to Microwave Holography 

By the principle of Reciprocity, discussed in [3, sect. 3.8] or [13, sect. 4.2], 

the roles of a transmitting and a receiving antenna can be exchanged and 

the voltages at their terminals will not be altered. The radiating and trans-

mitting patterns of a test antenna, which can only be measured by using a 

second antenna, are thus always the same. This is why Microwave Holog-

raphy determines the radiation pattern, even though it is done in receiving 

mode to allow a phase reference antenna to observe the same incident plane 

wave. 

The amplitude and phase measurements are relative, so the spherical 

wave term exp(-F jkr)/47rr in equation 2.11 is irrelevant. Assume for the 

present that the function T(r) is known from the measured radiation pattern. 

Then an inverse Fourier transform can be used to obtain either the aperture 

current Jap(e) or the projection of Jp0(e) to the aperture depending upon 

the approximation used; these have identical phases. The aperture phase 

will be uniform for a perfect paraboloidal reflector fed from its focal point. 

Departures from uniformity can be related to errors in the reflector profile 

using the geometrical optics construction shown in figure 2.3, which is based 

on [63]. From the enlarged view, 

—
sr 
= cosi and 	 = cos 2n. 

br 
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Figure 2.3: The effect of a small normal surface error e on the ray path from 

the feed to the aperture plane. 

The total path length change for the ray is thus 

c 	 e cos 277 
br + (5 x = — + 	 =2ecos77. 

cos 77 	 cos 77 

This causes a change in aperture phase 0 obtained by multiplying by 47r/A. 

The cosine of 77 can be found as a function of the distance from the aperture 

centre and the focal length F, and this equation results: 

+ x'2  + y'2 • 
(2.12) 

47r V 	 4F2  

This allows normal surface errors c to be estimated from the recovered 

aperture phase, assuming they are small enough for the ray method to be 

accurate. The axial surface errors are the components of c parallel to the 

reflector's axis, obtained by leaving out the square root factor. These serve 

as a direct measure of phase in units which are independent of frequency, 

which is often useful. Care must be taken with the sign of errors: because 

the time convention here is exp(—jcot) the rules are 

•A negative phase error means the surface is too high; 

•A positive phase error means the surface is too low. 
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Things which are Ignored 

Only one output from the antenna is used for holography, hence only one 
polarization. Thus not all components of the vector T(r) are measured. 
Equation 2.10 simply states that the radiated field E(r) is the tangential 
component of T(r). This relationship is expressed in Cartesian coordinates 
by Ludwig [42], and for all three of his definitions of cross-polarization the 
following holds close to the main beam: 

Eref SY. Ty  and Ecr., Tx . 

The Cartesian components of T transform independently to the components 
of Jap , so for example a signal with purely reference polarization gives only 
Jy  aperture currents. Unless it is a Huygens source, however, a purely y-
polarized feed produces some ./r  currents due to the curvature of the reflec-
tor [3, pp. 617-9]. Thus, even for uniform illumination, Jy  is graded across 
the aperture and would appear so in holography results. 

In general, a satellite source will have an arbitrary but hopefully con-
stant polarization with respect to the aperture coordinates, and the feed will 
be matched as well as it can be. Similar gradings will occur in the recov-
ered aperture currents, but as long as a unique phase centre is presented by 
the feed all components of the currents have the same phase. Since this is 
all that matters for surface diagnosis, polarization effects are ignored in the 
experiments to be described. Feed support struts cause cross-polarization 
due to scattering, but also aperture blockage which has more serious conse-
quences for holography — see section 4.1.1. Feed phase characteristics and 
polarization of celestial sources are mentioned in section 4.1.2. 

Another effect which is ignored in this thesis is diffraction at the edge of 
the reflector. The surface integral truncates the Physical Optics currents in a 
non-physical way, and in reality currents are induced along the edge which al-
ter the radiated far field in the side-lobe regions; they may dominate the field 
there. Bach [2] reviews scattering mechanisms neatly. Diffraction by curved 
edges can be treated effectively by the Geometrical Theory of Diffraction [32, 
sect. 6.6], and it would be interesting to investigate its importance in field re-
gions where holographic measurements take place. After all, if some side-lobe 
field values are caused by edge currents rather than surface currents then to 
use the Fourier transform relationship is to interpret these values wrongly, 
and this is detrimental to the surface error map. 
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2.1.3 Dual Reflectors 

Front-fed reflectors are paraboloidal so that a simple feed design gives a 
uniform phase in the aperture. This is not enough to ensure high antenna 
efficiency: a combination of near-uniform aperture illumination and low feed 
spillover is required. A different illumination profile is required if it is im-
portant to reduce side-lobe levels near the main beam. These aims can be 
achieved by careful feed design, a task which is made difficult by other con-
straints such as low cross-polarization. 

The use of a dual reflector design, usually of the Cassegrain type, allows 
feed specifications to be relaxed. Even a standard Cassegrain geometry gives 
a higher efficiency because a more uniform illumination of the main reflector 
is permitted with lower spillover. Spillover is directed at the sky instead of 
the 'hot' ground. In addition, bulky receivers can be placed nearer to the 
feed than would be possible for a prime focus antenna. 

By shaping the subreflector an ideal illumination profile may be ap-
proached. High efficiency, satisfactory side-lobe levels, and low feed VSWR 
may be achieved by adjusting reflector shapes instead of relying entirely on 
the feed characteristics. Originally, geometrical optics methods were used to 
find the subreflector shape which distributed feed power in the desired way, 
and then to find adjustments to the main reflector to compensate the result-
ing phase distortion. Better results can be obtained by taking into account 
diffraction at the subreflector, particularly when it is not large in terms of the 
wavelength. Illumination is still optimized by shaping the subreflector, but it 
is found that good performance can often be achieved without changing the 
main reflector: axial movement of the subreflector gives the necessary degree 
of freedom. A thorough review of dual reflector optimization methods may 
be found in [12]. 

Microwave Holography is not inhibited by the presence of a subreflector. 
The 'equivalent paraboloid', shown in figure 2.4, simply emphasizes that in 
the ideal case this is yet another aperture with uniform phase. The important 
change is in the interpretation of the data, since phase distortions represented 
in a holographic aperture map may be due to errors in the subreflector as well 
as the main reflector. Mayer, et al. [45] have used this idea to their advantage, 
designing from holographic measurements a new secondary reflector which 
compensates for errors in the main reflector. It was easier to fabricate the 
small reflector than to alter the large one. 

Cassegrain antennas have some disadvantages: the main one for holo- 
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Equivalent I 
paraboloid 

Figure 2.4: The equivalent prime-focus paraboloid for a Cassegrain antenna. 
Notice its long focal length. 

graphic measurements is diffraction by the edge of the subreflector. Shaping 
allows the subreflector illumination to be more tapered, minimizing such 
diffraction, but effects have been noticed in holographic aperture maps all 
the same. Discussion of these effects is deferred until section 4.1.1. 

2.2 Sampling and Truncation 

The Fourier transform relationship between the aperture current function and 
the far field radiation pattern has been established. Holographic measure-
ments are made in only a small solid angle in front of the antenna, otherwise 
the assumptions behind this relationship do not hold. In addition, the data 
do not form a continuous function but a discrete one at finite intervals of 
u and v. In this section the implications on the derived aperture current 
function are investigated. 

For clarity, the arguments will be shown first for a one-dimensional aper-
ture, and extended afterwards to two dimensions. Be aware that they are not 
mathematically rigorous because the existence of some infinite series is not 
proved. The notation introduced here will be used again in later chapters. 
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2.2.1 A One-Dimensional Aperture 

Denote the aperture function by a(x) and the resulting far field pattern by 

A(u), where u = sin 0 measures the angle of the field point to the reflector 

axis. If all distances are expressed in wavelengths, these functions are related 

by a Fourier transform: 

A(u) = 
+CO 

L a(x)e-i2lrux dx 
oo 

+00  

a(x) = 	 A(u)e+i27ru s du. 

(2.13) 

In order to give the second integral infinite limits, A(u) must be defined to be 

zero beyond the interval [-1, +11, which represents directions in the forward 

hemisphere. 

Let the sampling interval in u be 5„, and define the discrete function 

A(m) by 

A(m) = A(mS,z) for all integral m. 	 (2.14) 

Approximating the Fourier integral for a(x) with a sum gives the Fourier 

series pair 
m.+0. 

a(x) = E Ap(m)e+;27rsum.b.  
m=- 00 

+Yru:
6A(m) = 	 f ap(x)e-j2r5u'n3  dx, 

so the integral expressions for A(m) and A(m8) can be equated, after 

(2.15) 

Roberts and Mullis [68, p. 114]: 
4.  1 
Yr; 

1 
aP  (x)e-i2r6umx dx 

— F67; 

=  f
+CO 

a(x)e-227r8umx 

k=4-00 k+ 1  

= E ./:: 7a(s)e-j2'su mr dx 
k=-00 37-737 
k=+co f+Ar  

= 	a(x + 
t)e—i2r6umxe—j2irmk dx 

k=--co —177 

1+54,7,  [k=4-co 
= 	 E a(x + p) e-l2rsu" dx. 1 

--Trt-, 

This is true for all 172, so the integrands must be equivalent, giving 

k=4-co 
a(x) = E a(x 

k=-co 

= III (Sex) * a(x). (2.16) 
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III (t) is the sampling and replicating function of Bracewell [8], expressed 

using the impulse function by III (t) = Et._=41°E(t — k). 

The effect of having a finite sampling interval is to replicate the aperture 

function at intervals in x of 1/6u. For this reason 45„ is chosen so that 

= ---, with 0 < K < 1 
	

(2.17) 

where D is the diameter of the antenna in wavelengths. Each replication of 

a(x) is then separated from its neighbours because the aperture current a(x) 

is zero outside the interval 

r D 	 r 1 	 11 

• 

Within these intervals the functions a(x) and a(x) are equal, so sampling 

has not affected the quality of the recovered aperture current. 

The sampled field A(m) is truncated to A(m) by measuring only Nu  

samples, whence 

1 if It' < 
A(m) = A(m)II (A where H (t) = 	 • 0 otherwise 

(2.18) 

The range of u covered by non-zero A(m) is Wu  = Nubu. Let Nu  = 2Lu  + 1 
so that there are Lu  far field points on either side of the main beam. By the 

convolution theorem for Fourier series, 

71=-1-00 

4X) = E A(m)e+j21t64-8u  
m= —ox) 

cu  + 26u 
= 0 	 ap(4b(x — x') dx' 

—117, 

where 

m oo 

b(x) = EII (RL)e4j21115.111r  
m=—co 
m=+Lu 	 m=i-Lu 
E cos(2rsumx)+; E sin(271-Sumx) 

 

 

m=—Lu  

Sila(IrWuX) 

sin(7 Sus) • 
(2.19) 

This result is derived in appendix A; note that the sum of sine terms is zero. 

Inserting equation 2.16 and observing that b(x) is periodic with period 1/8u, 
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it follows that 

I
- 

 

	

a(X) = 8J 	a(x + -4-)b(x — x') dx' 1 
 riz k=-oo 

E
o  

= 6. 	
u ,.. 

a(x
,
)b(x — x' + t-.) dx' ik 1 

k=-00 3;-2-3-,-, 
+00 

= &/ a(x')b(s — x') dx' 

a(x) (x) * Su  . 
 

(2.20) 
sin(ir 8„x) • 

Thus the aperture current estimated from holographic data is the convolution 

of the true aperture current with 8„b(x). A similar result was derived in [68, 

sect. 4.8]. The effects of this need some discussion. 

2.2.2 The Recovered Aperture Current 

The convolving function &b(x) is most easily visualized when written 

	

b 	
= sin(ir N„8„x) 

Su(x) 	Su  . 
sir@ bux) 

It is graphed against 8„x in figure 2.5 for Nu  = 21. The curve is familiar 

as the amplitude response of a diffraction grating with Nu  thin grooves. 

As Nu  becomes large, the primary maxima get higher and the subsidiary 

maxima decrease more rapidly with Su  x: the function approaches III (6ux) 

as expected. 

The convolution for a particular offset is shown diagrammatically in fig-

ure 2.6. The primary maxima are responsible for replicating the aperture 

function at intervals of 1/6u. The presence of subsidiary maxima means that 

each a(x) includes a contribution from a(x) across the whole aperture: a(x) 

is not zero beyond the physical aperture. This is termed aliasing , and it 

would be unacceptably damaging if 1/6u  <D, causing the recovered current 

near the edge of the aperture to have an equal contribution from the opposite 

edge. Equation 2.17 ensures that this is not the case. 

It is possible to control aliasing by varying K and N. Here are some 

possibilities: 

• Decreasing lc with constant Nu  stretches the convolving function. This 

lessens aliasing by giving a greater distance between primary maxima, 

but also gives poorer resolution in the recovered aperture. 
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Figure 2.5: The convolving function sin(rWux)/ sin(rbus) graphed against 

8.x for Nu  =21. 

•Decreasing K with constant Wu  lessens aliasing noticeably when the 

offset x approaches the edge of the aperture. The primary maxima 

are further apart, and the envelope of the subsidiary maxima reaches 

a lower level between them. The convolving function is only slightly 

changed near the primary maxima, since with respect to the peak value 

it is nearly independent of K: 

b(x) =  sinew Wux) 	 sin(rWux) for  sux  < 1.  

b(0) N sin(r8„x) 	 irWux 

•Increasing Nu  with constant K has been considered above. The con-

volving function approaches III (45„x), so each aperture point is less 

dependent on the rest of the aperture. 

The resolution obtained in the aperture is determined by the width of the 

primary maxima. As in the field of optics, the resolution limit is specified 

by the peak-to-first-minimum distance of the intensity pattern, which is the 

peak-to-first-zero distance of the convolving function: 

1 	 1 

r 	 /1105. 
(2.21) 

This is the Nyquist sampling interval determined by truncation of the far 

field pattern, and with it all spatial frequencies in the 'bandwidth' W. can 

be represented. It is sufficient to evaluate the current a(x) only for x = p8x, 

where p is an integer in the range —L.,...,-FLu. Then the Fourier series 
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Figure 2.6: An example aperture function (amplitude only shown) and con-
volving function which when multiplied pointwise produce a(x) at a partic-
ular offset x. 

expression for a(x) takes the form of an inverse discrete Fourier transform: 

a(Po) = E A(m)ei-j2-60-5-7 su  
m.-00 
m=-FL 
E A(m)e-i-jkir mP su  

m=_Lu 

buNua.FT(p)• (2.22) 

An inverse DFT is assumed to have a positive kernel exponent and include a 
scaling by 1/Nu . The efficient FFT algorithm is available for its computation. 

As an aside, imagine that the operations on the far field pattern had been 
performed in the opposite order, that is, the far field had been truncated first 
and then sampled. Let the truncated data be A t (u) = A(u)II(u/Wu ) and 
the convolution theorem for Fourier transforms gives 

a t (x) = 

 
+00 

A t (u)e+22' du 

= a(x) * sinc (Wax) 

a(x) * bu
sin(r Wax) 

8ux 

The sampled data ;1(m) = A t (m8) for integral m, and as before the aperture 
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current is estimated by a Fourier series: 

m=+00 
a(x) = E  A(m),-Fpiroum. ou  

= III (bux) * at(x) 

= a(x) * III (&x) * 6u
sin(rWux) 

(2.23) 
7r6ux 	 • 

It can be shown (see appendix A) that the replication of the sinc function 

is the grating function b(x) defined by equation 2.19, so this convolution is 

indeed the same as equation 2.20. 

2.2.3 To Two Dimensions 

These results can be generalized easily for the two-dimensional aperture 

shown in figure 2.2. Begin with the continuous far field function A(u, v) 

and aperture function a(x, y), where 

u = sin 9 cos 0 = direction cosine to x-axis 

v = sin 0 sin 0 = direction cosine in y-axis 

and x and y are measured in wavelengths. Then 

A(u, v) = +.1+. a(x, y)e-i'('+'11) du dv 

(2.25) 

a(x,y) = 	 A(u, v)e+i27(uz+n) du dv. 

Let the sampled far field be Ap(m, n) = A(m6U,n8,) for integral m and n, 

and estimate the aperture current with 

ap(X, y) 	 E E Ap(m, n)e+i2746umr+6.nY) 6.6v  
moo n=—oo 

k=+oo 1=-Foo 

to-) 
k=—oo 1=—co 

III (&x, buy) * a(x, y). 

Truncate Ap(m, n) to Nu  samples in u and Nu  samples in v, defining 

A (m , n) = Ap(m,n)II (m/Nu,n/Nu). The corresponding aperture current 
estimate a(x, y) forms a Fourier series pair with 6u6„A(m,n) as follows: 

m=-Foon=-Foo 
)e-Fj27r(bumx+6vnY) 	 sv  a(x , y) = E E A(m, n 

m=—co n=—oo 

6u8„ A(m, n) = Subv 1 +'.±7g7-  
a(x)e-izioum.+5,,ny) dx dy. 

1 -5-gr. 1 -NT 

(2.24) 

I-00 -00 

(2.26) 
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First Dimension Second Dimension 

u = 77162, = micl Dr  

x --= 0, = PIWu 

Wu = Nubu 
Nr  = 2Lr  + 1 
NuSub, = 1 

v = n45„ = nrc/Dy  

Y = 46Y = q1147. 
lvv = Aro5v 
Nr  = 2Lr  + 1 
Nr8r4 = 1 

Table 2.1: Sampling relationships for one and two dimensions. The aper-

ture has dimensions Dr  in x and Dy  in y. All distances are measured in 

wavelengths. 

The same working as before gives 

sin(rWux) sin(rWvY)1 a(x,y) = a(x,y) * Su . sin(r6ux) 	 sin(r6„y) 

to match equation 2.20. The comments made about aliasing apply equally 

well in the two-dimensional case. 

It is sufficient to evaluate the aperture current estimate a(x,y) at discrete 

x and y, which turns the Fourier series into an inverse DFT: 

	

a(psz,q8y) = susvNuNoDFT(p,q) 
	

(2.28) 

where 

	

p = —Lr,. ,-FLu and q = 	 • • ,+Lv• 

The sampling relationships are summarized in table 2.1. It is worth repeating 

the relation between the span of far field measurements and the resolution 

of the recovered aperture current function: 

1 	 1 
= 	 and by = 

Wv • 

It seems that the only way to improve the aperture resolution is to take a 

greater number of far field measurements. In chapter 5 another method will 

be introduced. 

A useful equation is derived from Parseval's relation for Fourier series. 

The average power in the aperture is given by 

fsusv1+471+4; 	
01
2 
dx dy = ,n=-1-oo n=4-co 

E E Isufivii(m,n)l
2 

1 	 1 
2W, 57; 	 m=—oo n=—co 
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which can be written 

= 526211A112. 	 (2.29) 

The symbol II -112  has two meanings in this equation, but it is not ambiguous. 

When applied to a periodic function it refers to the average integral over one 

period of the squared absolute value. When applied to a discrete function it 

refers to the sum of the squared absolute value over the entire range. 

2.3 The Antenna Geometry 

2.3.1 The Mount and (u, v) Coordinates 

Now that the theoretical basis of holographic measurement is understood, 

it is time to look at some properties of real antennas. This thesis is about 

large, steerable reflectors, and in particular the Mount Pleasant 26 m radio 

telescope where the measurements were performed. This antenna, illustrated 

in figure 2.7, is unusual because it has an XYEW mount. The reflector is tilted 

to the East or West about the 'Y-axis'. The inclination of this upper axis 

to the North or South is determined by tilting about the 'X-axis' which runs 

East-West (hence the designation of the mount). A similar scheme is the 

XYNS mount, which has the lower axis running North-South instead. 

Most modern antennas have an 'azimuth/elevation' mount, here desig-

nated AZEL, where the dish tilts up or down on an elevation axis which itself 

is rotated about a vertical azimuth axis. This mount is the simplest to build, 

and has the advantage that its axes correspond to conventional polar horizon 

coordinates. The geometry of an antenna has an important bearing on the 

way holographic data are collected, so it is impossible to omit a discussion 

of the AZEL mount. In fact, all three mounts mentioned have features in 

common, and they can be treated by the same analysis. 

Adopt a rectangular horizon coordinate system that is right-handed and 

has the x-axis pointing to the East. In this system the axis angles for each 

mount are shown in figure 2.8. When the axis angles are zero the antenna 

Figure 2.7: Overleaf shows the 26 m radio telescope at the Mount Pleasant 

Observatory, and the 2.1 m reference antenna. When the former photograph 

was taken the reference antenna was mounted on top of the feed cabin; later 

it was mounted at the north-eastern foot of the radio telescope so that the 

source remained in its main beam during large holographic maps. 
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points up for XY mounts or due North for the AZEL mount. In other positions 
these equations are found for the unit pointing vector a = (x, y, z) for the 
antenna: 

x = sin Y 
y = cos Y sin X 
z = cos Y cos X 

x = cos Y sin X 
y = sin Y 
z = cos Y cos X 

x = cos E sin A 
y = cos E cos A 
z = sin E 

XYEW (2.30) 

XYNS (2.31) 

AZEL (2.32) 

The similarity of these equations is clear. It arises because each mount con-
sists of two perpendicular axes, with a separation which is usually zero in 
the AZEL case. If either XY mount is tipped over so its X-axis points into 
the ground, it becomes an AZEL mount. An equatorial mount also has this 
property, although it will not be considered here: the use of computers for 
rapid coordinate conversions has removed the main reason for adopting this 
mount, and few are built nowadays. 

The far field position (u, v, w) is referred to a coordinate system fixed to 
the aperture, while the position of a source, whether celestial or man-made, 
is expressed in horizon coordinates for antenna pointing. If the antenna is 
pointed to the vicinity of a source at horizon position (x, y, z), this vector 
must be expressed in aperture coordinates to find the corresponding far field 
position. Conversely, to measure the received field at a far field position 
(u, v, w) antenna axis angles must be found such that this vector converts to 
the source position (x, y, z) in horizon coordinates. 

Provided that the source can be assumed infinitely removed, the transfor-
mation is a three-dimensional rotation of the coordinate system. The aper-
ture frame used in section 2.1 will be oriented so that it matches the horizon 
frame when the antenna points upwards, with the x-axis running East; the 
two frames are illustrated in figure 2.9. As the antenna tilts the aperture 
origin moves, but the amount is negligible compared to the 37850 km range 
of AUSSAT-1. Three-dimensional rotations can be composed of rotations 
about the coordinate axes using the Euler angle method. By re-labelling the 
axes when necessary, the transformation for any mount can be expressed in 
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"XYNS" N 

"AZEL" 

E 

Figure 2.8: The positive sense of the axis angles of three types of antenna 
mount. 
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x (E) 

Figure 2.9: The horizon and aperture frames, related by a three-dimensional 

rotation and a translation. 

a standard form. This connects the mount geometries in a nice way, and is 

very helpful when designing software. 

The Goldstein convention [22, sect. 4.4] for Euler angles will be followed 

here. The original, horizon coordinate system is rotated anticlockwise about 

the z-axis by an angle 0. This new system is rotated anticlockwise about its 

x-axis by an angle 0. Finally, the second new system is rotated anticlockwise 

about its z-axis by an angle tk to give the transformed, aperture coordinate 

system. Any three-dimensional rotation can be represented by unique Euler 

angles 0, 0, and 0, and in matrix notation the aperture vector pointing to a 

source with horizon coordinates (x, y, z) can be written 

cos tk sin .0 	0 1 0 0 

— sin V) cos V) 	0 0 cos0 sin 

0 0 	 1 0 — sin e cos 0 

	

cos t sin 0 0 	 x 

	

— sin 0 cos 0 0 	 y . 

0 	 0 	 1 

(2.33) 

There is no need to write the product matrix in full; it will be denoted by 
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P(0, 9, 0). If the aperture system is indicated by a prime, then 

r' = P(0, 0, 0) • r. 	 (2.34) 

If the horizon source vector r is a unit vector, so is r' and its first two 

components (u, v) are the Fourier transform variables for the far field domain. 

The Euler angles defined above do not always correspond to rotations 

about the antenna's axes; this can be achieved by re-labelling the coordinate 

axes. No change is necessary for the AZEL mount, but for the XY mounts the 

horizon vector must be 'rolled up' one position: 

y 
	 roll up 	

Z 
	
=T r 
	

(2.35) 

where the I prefix indicates a vector rolled up by one row. This is a rotation 

of the frame by 120° about the vector (1, 1,1), and it can be transformed to 

a similarly rotated aperture frame, giving r' instead of r'. Now the Euler 

angles for the transformation can be given in terms of the antenna's axes' 

angles for the XYEW mount: 

and the XYNS mount: 

and the AZEL mount: 

= P(—X, 	 r 

Tr' = P(-Y,X,0)• ir 

r' = P( —A, E — 7r/2, 0) • r. 

(2.36) 

(2.37) 

(2.38) 

By reversing the 'roll' it is easy to obtain (u, v, w) from I r'. 

The far field position can be found from the source and antenna positions 

using these equations. In order to take observations, however, the antenna 

must be steered to give a predetermined far field position, requiring the 

equations to be solved for X and Y or A and E. Because the third Euler 

angle 0 is zero for all the mounts, only 0 and 0 need be found from the two 
rotationally related vectors r and r'. Appendix B shows how this can be 

done. 

How necessary are these computations? After all, the aperture frame 

is oriented so that turning on one axis or the other corresponds closely to 

changing u or v. The far field maps are small in extent, so a square grid 
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Figure 2.10: A square grid in (u, v) as it appears in (X, Y) for a XYEW mount. 

Positions are shown relative to the grid centre, which is 100  from the eastern 

pole. The grid size is 53 x 53 points and the intervals (5x  = 45y  = 0.00075. 

in (X, Y) or (A, E) might be close enough to a square grid in (u, v). This 

depends on the proximity of the mount's pole, where the antenna's direction 

is independent of the angle of its lower axis. The XYEW mount has poles on 

the horizon due East and due West, so turning the X-axis has no effect when 

pointing in these directions. The XYNS mount has poles to the North and 

South, and the AZEL mount has a pole at the zenith. (This is why the Mount 

Pleasant antenna has an XY mount: it was originally designed for tracking 

satellites, where a pole at the zenith is a serious liability.) Close to a pole, 

antenna motion maps onto the sky in a very non-linear fashion. Figure 2.10 

shows lines of constant u and v as they appear when converted to X and Y 

angles for an XYEW antenna. The original grid was square, but any attempt 

to fit a square (X, Y) grid will result in serious errors. This is an extreme 

case only 100  from the eastern pole, but the effect is significant even when 

observing AUSSAT-1, 76° from the pole. 

The problem of obtaining a square (u, v) grid for holographic measure-

ments has been addressed by Rahmat-Samii [65] for an AZEL mount. The 

method described above can be applied to any mount consisting of two per- 
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pendicular axes with no extra effort. In combination with the equations for 

translation of the origin in the next section, the rotation matrix formula-

tion allows a complete transformation from ground-based to antenna-based 

coordinates. 

2.3.2 Antenna Motion and the Phase Reference 

If the phase reference antenna is placed on the ground, care must be taken 

to refer the far field phase to an origin fixed to the main antenna. The origin 

is best placed somewhere on the reflector's axis to maintain symmetry; its 

position along the axis has a significance which will be discussed soon. Up 

to now the far field phase has not been defined precisely. It is the phase of 

the antenna's radiation with respect to a spherical wave emanating from the 

origin. In terms of reception of incoming planar wavefronts, it is the phase 

of the antenna's output voltage with respect to the phase of the wavefront 

seen at the origin. 

Figure 2.11 is a diagram of a general antenna mount with a 'lower' (X 

or azimuth) axis and an 'upper' (Y or elevation) axis. Let the perpendicular 

separation of the axes be d. Choose an origin a distance 1 along the reflector 

axis from its intersection with the mount's upper axis. It is assumed that 

these two do cross, and at the point closest to the lower axis; this is nearly 

always the case, and the simplification is not a fundamental one. The im-

portant points in the diagram are the centre of the lower axis V, the centre 

of the upper axis W, the aperture frame origin 0, and the location R of the 

phase reference antenna. V is stationary and is known as the ̀VLBI' point 

of the antenna. Finally, denote the unit vector along the reflector axis by a, 

and the unit vector towards the source by i. 

The phase error due to the separation of R from 0 is of course the path 

difference R •§ shown in the diagram, or in radians 

Ot = -Fk R • i 	 (2.39) 

where k = 2r/A and R is the vector from 0 to R. This phase will have a 

component due to motion of the source and a component due to motion of 

the antenna as it covers the (u, v) grid. It is useful to separate these because 

on-source calibration measurements can show the source motion component 

independently. This is discussed in section 3.2.1. 

The position of R must be specified somehow, so it is assumed that Rv 
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Figure 2.11: A general antenna mount with two orthogonal rotation axes 
whose closest points V and W are separated by d. The aperture frame origin 
0 is a distance 1 along the reflector axis from W, and the phase reference 
antenna is located at R. Unit vectors in the source and axis directions are i 
and a. 

40 



is known, the vector from V to R. Then 

R= 	 — lit. 	 (2.40) 

Here a is the unit vector from V to W, which is easily shown to be 

( 0 ) 

XYEW 	

sinX 

XYNS 	

sin A ) 
a 	

AZEL 

	

= sin X 	 0 	 = ( cos A 

	

cos X 	 cos X 	 0 

(2.41) 

The components of a are given in equations 2.30, 2.31, and 2.32. Thus 

Ot = 	 (R v —da — I a) 	 (2.42) 

can be computed. The phase 0, due to source motion can be isolated from 

the phase Oa  due to antenna motion by using the on-source position as a 
reference, where a =ao and a = i. Thus 

Os = 	 (Rv —dao  —I a) 	 (2.43) 

giving 

= — = kd (a o  — a)  . g + kl( — a) 
Or 

cba  = 0„11.0  kl(1 — cos 0). 	 (2.44) 

The far field phase w.r.t. 0 is related to the measured phase by 

Otrue =Omeasured Ot= Omeasured — Os — irka• 	 (2.45) 

The linear dependence of (ko  on the origin position 1 is not a surprise, and it 
has no effect on the aperture currents obtained by Fourier transform. How-

ever, the —kl cos 0 term modifies the far field phase in a way which does 

slightly affect the recovered currents, and it is not obvious why moving the 

'aperture plane' containing the origin should make a difference. The total 

, phase modification due to I is approximately quadratic in 0, since 

k102  
kl(1 — cos 0)

2
for small 0. 

It was originally identified in this context by Bennett, et al. [6]. 

The significance of this is that the extent of the map in the far field 

domain is giving some resolution in the z direction, normal to the aperture. 
In fact, the reflector surface of the antenna is a three-dimensional current 
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distribution that has a three-dimensional Fourier transform. The far field at 
a particular frequency is a cut through this domain that is the surface of a 
sphere, radius k, centred at the origin (the 'Ewald' sphere, a term borrowed 
from crystallography). Usually, holographic measurements occupy only a 
small region of this surface around the main-beam direction. The ability 
of wide-angle measurements to 'see around' the source distribution is made 
manifest by improved z resolution. 

It can be demonstrated that the far field vector potential is the weighted 
sum of the two-dimensional Fourier transforms of each constant-z slice of 
the current distribution, and the weighting function is a phase term that 
is constant for z = 0: the aperture plane transform is not distorted. The 
equation can be abbreviated like this: 

ei-jkr 
far field —1(2-D F.T. of slice at Z)e-3k"°89  dz 471-r 

where the integral covers the extent of the source currents. Thus the phase 
term —kl cos 9 produced by axial shifts of the origin has a clear physical 
significance: it is to edit the far field measurements so that the aperture plane 
z = 0 is the most faithfully recovered slice of the source current distribution. 

This argument is made clearer by considering the two-dimensional inverse 
Fourier transform of the equation above: 

0-jkr 

I.F.T. of far field f.Y. — (source slice at z) * Cz (x,y)dz. 4r r z 

Each slice of the source currents is convolved with a function Cz (x, y) before it 
is added to the others, forming what has until now been called the 'recovered 
aperture field'. Co(x,y) for z = 0 is a sinc function representing the horizontal 
aperture resolution bx  and by  from section 2.2. The aperture plane itself is 
convolved with Co (x,y), while other planes are convolved with a broadened 
function that smears their features. The smoothing effect of this function 
increased rapidly with lz I when the far field domain covers a large part of 
the Ewald sphere, leaving the aperture plane less and less perturbed. 

The reader is referred to the paper by Cook, et al. [14], which describes 
these ideas in more detail and reports wide-angle antenna measurements that 
allowed surface features to be detected beneath feed support legs. 

Scott and Ryle [76] explain the same phenomenon by saying that the 
aperture plane phase faithfully represents the surface errors provided that 
the distance of the surface from the plane is small compared to the Fresnel 
distance appropriate to the scale size of the errors. The radiation from a 

42 



very small surface feature will begin to evolve towards its far field pattern 
before reaching the aperture plane, so such a feature will be ill-determined 
by holograhic data. In section 4.1.2 it is shown that, for the experiments 
at Mount Pleasant, the uncertainties in a surface error map due to these 
propagation effects are smaller than the random errors in the map. 

2.4 Panel Position Estimation 

Most large reflector antennas do not have a continuous surface, but one 
made from panels that have been constructed as segments of the underlying 
paraboloid. The end result of Microwave Holography is an aperture phase 
function estimated on a grid of aperture points, from which corrections must 
be made to the panel positions if it is desired to improve the surface profile. 
It is very awkward to make corrections based on a contour map of surface 
errors deduced from the aperture phases, or any other direct form of display. 
Panel positions must be estimated somehow from the sparse aperture phase 
function, and then the heights of corners and other adjustment points must 
be calculated. 

The first assumption necessary to do this is that the profile errors in each 
panel are smaller than the errors due to poor panel setting. Clearly, if this is 
not the case there is little use in adjusting the panels' positions. There are 
usually many panels on a reflector: figure 2.12 shows the panel layout for the 
Mount Pleasant 26 m antenna, which has 252 individual panels, although 
several are shadowed by the feed support structure as indicated by the grey 
area. When the panels are so much smaller than the reflector they can be 
engineered accurately. 

The other assumption is that panel positions can be fitted to aperture 
phase instead of the errors normal to the surface. This is easier because the 
curved profile of a panel produces a flat aperture phase profile if it is the 
correct shape. Tilts and distortions of the panel are assumed to produce 
corresponding deviations of phase in the aperture region directly above the 
panel. This would be true were it not for the propagation effects discussed in 
the last section. Panel edges will not generally match and are separated by 
a gap, causing a very small-scale feature in the source current distribution 
which will become confused while propagating to the chosen aperture plane. 
However, the effect will be negligible over most of a panel's area and can be 
ignored in practice (section 4.1.2). 
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Figure 2.12: Panel layout for the Mount Pleasant 26 m antenna. Shadowing 
by the feed cabin and support legs is shown in grey. 
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Much more important is the limited spatial resolution of a map, ox  and 89. 
The estimated aperture phase at any point is not the true phase at that 

point but an average of all phases in the neighbourhood, determined by the 

convolving function in section 2.2.2. Points on either side of a panel edge are 

significantly affected by the neighbouring panel: a point right on the edge 

represents neither panel meaningfully. With time and sensitivity constraints, 

a holography map will often have quite a small number of points lying on 

each panel [7]: they may all be within one resolution cell of the edge. In this 

chapter panel fitting proceeds regardless: the problem is addressed fully in 

chapter 5. 

2.4.1 Fitting Rigid Panels by Least Squares 

The aperture phase above a rigid panel follows a plane, and it is convenient 

to express the equation to the plane in the panel-based coordinate system 

shown in figure 2.13. To convert an aperture point (x, y) to panel coordinates 
(x9, yp) requires a rotation and a translation: 

Or 

xp  ro 	 ( cos 00  sin 00  ) 

yp 	 -sin  00  cos 00  
(2.46) 

sp  = r cos(0 — 00) — ro  

Yp = r sin(0 — 00). 

Here (r, 0) is the polar form of (x, y), and (ro, 00) is the geometrical centre of 

the trapezoidal panel. The equation to describe a plane is 

h/2 + a w/2

+ 	
(2.48) 

so that # represents a panel tilt towards or away from the centre of the 

reflector, while a represents a tilt at right-angles to this. The coordinates are 

normalized by the panel's height and average width, so the radian difference 

across the panel is # or a. 

The algorithm in appendix C for fitting a least-squares plane can be used 

to estimate the parameters #, a, and € from a set of aperture phases Oi  

at known points in the panel. The uncertainty of these estimates is not 

important. Of more practical significance is the uncertainty of subsequent 

estimates of the phase at panel corners, that is, the standard error ac  in the 

estimate 0, obtained by equation 2.48 for (xe, ye) at a panel corner or another 

(2.47) 
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Figure 2.13: The panel-based coordinate system (x p , yp) and its relation to 
the aperture coordinate system (x, y). 

adjustment point. These figures, converted to normal surface errors, are the 
data used to adjust the panels. 

This is a textbook example of multivariate linear regression, for example 
see Guttman, et al. [26]. In the notation of appendix C, the following quantity 
must be computed: 

A = S.. 

2Su. 
— 

where A = Su.S.. — St2  is the matrix determinant. Then, if the standard 
errors of the data Oi are all equal to a, the standard error of 0, is given by 

Cc  = crV71. 

The errors in Oi  vary over the reflector, but each panel covers a small area 
so they are approximately constant over a panel. 

It is interesting to consider a simple, rectangular panel over which the 
phase is sampled on a regular grid as shown in figure 2.14. The n 2  points are 
at integral spacings, and the lower left point is (1,1). The lower left panel 
corner is shown as (1/2, 1/2), but depending on the registration of the grid 

0 
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Figure 2.14: A rectangular panel sampled on a regular grid of n by n points 

at integral spacings. 

n n211(0,0) n2A(l/2,1/2) n2A(1,1) 

C
■11 
C'
D  
"
et'  
u
*,
 
C
O 
 
t
-
-  
0
0  

19.0 9.00 3.00 

13.0 7.75 4.00 

11.0 7.40 4.60 

10.0 7.25 5.00 

9.40 7.17 5.29 

9.00 7.13 5.50 

8.71 7.10 5.67 

Table 2.2: Values of n2  A for several n and three positions of the panel's lower 

left corner. 
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with the panel it could as well be (0,0) or (1,1). Does this make a large 

difference to the uncertainty o? The quantity A for the three cases can be 

shown to be 

= 

1 (1 .4_ 6  n + hi) 

_1 (1  +  6n2  ) 
n2 	 n2   — 1) 

77 (1 + 6 n — 1 
1 	

n 	+ 1) 

and in table 2.2 n2A is given for several n. It can be seen that 

	

a 	 a 

	

a, = nA/71— 	 Ntl — as n 

	

n 	 n 
 (2.49) 

A similar law with n = 	 can be expected to hold for trapezoidal 

panels with a less regular distribution of Pp  samples. This is not the same 

as the intuitive result that when 3 independent parameters are estimated 

from Pp  samples then a,c cr V Pp  — 3. When 4 corners are allowed to vary 

independently, a reasonable estimate of a, is 1,0 times the result for 3 

corners, although this is not justified here. Certainly, it is expected that 

o oc / Virp  for large Pp. 

2.4.2 Panel Deformations 

Many modern large antennas, particularly for radio astronomy, are expected 

to operate at millimetre wavelengths. Panel position estimates which assume 

undistorted panels are often inadequate at this level of precision. At the very 

least, a formulation which allows the four corners of a trapezoidal panel to 

move independently is desirable. To do this, some assumptions are needed 

about the way a panel distorts. 

Von Hoerner [86] performed an investigation of three common panel con-

structions, and showed that a simple model for panel distortions was adequate 

for all. The rms deviation from the model was less than two percent of the 

corner movement causing the twist. His relationship for the change in panel 

profile z(xp, yp) due to a twist was 

z(xp, yp) cc xpyp  

using a panel-based rectangular coordinate system where the origin is sta- 

tionary. He developed this into an equation for the panel profile after a 

A0,0) 

A0/2,1/2) = 

A(1,1) = 
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general twist, tilt and vertical lift, and gave a least-squares fitting procedure 

for the equation parameters given measurements of the panel height. 

A limitation of the method he described is that it assumes a grid of sample 

points symmetrical about the yp  axis, which for Microwave Holography data 

on a rectangular aperture grid will almost never be true. Here, a different 

equation is given which can be fitted to data on a general grid. In addition, 

the four free parameters of the equation are directly related to the phase 

errors at the four panel corners. The derivation begins with the corner errors, 

and proceeds by making physical assumptions about the distortions that are 

consistent with von Hoerner's. 

A diagram of a single trapezoidal panel is shown in figure 2.15. Let it 

have height h and widths a and b, and let w = (a + b)/2 and d = (b — a)I2, 

the average width and half width difference. The corners are numbered, and 

the aperture phase at each corner is defined as follows: 

(xb, yi) = (+h/2, 

(xi„ y2) = (+h/2, 
(xa, y3) = (—h/2, 

(x0, Y4) = (—h/2, 

—b/2) 

+b/2)  

—a/2) 

+a/2). 

0(47  Y1) = 01 
 at corner 1: 

0(Xb, Y2) = 02 at corner 2 : 

(1)(X a  Y3) = 03 
 at corner 3: 

0(X al Y4) = 04 at corner 4: 

The phase 0(xp, yp) is desired at any point in the panel. Define (xa, !la)  and 

(xi„ yb) to be the points where the radial line from the reflector centre through 

(xp, yp) meets the trapezium. This means for a b 

	

Yb —Ya Ya 	 Yb = = — 
b — a 	 a 

and so 

Ya Yb = (Yb Ya). 

Interpolating between these intercepts by similar triangles, 

Yb Yp  = Yp Yo  

Xb — Xp Xp X a  

which rearranges using equation 2.51 to give 

xv, 	 1 	 w 
YP = 	 Ya) —Oa 	 = 	 + --) (yb — Ya)• 

2 	 h 2d 

(2.50) 

(2.51) 

(2.52) 

Assume that the phase 0 remains linear along lines of constant xp  when 

the panel is twisted. Thus the panel is rigid along lines parallel to sides a 
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02 = 0(4,372) 
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(1)4 = 4)(x.,y4) 

(xa,ya) 

• — — — _ 	--  
(x y ) P' P 

(xb,Yb) 

Op 
x 

= 4)(xa,513) 

01 = 40b,h) 

Figure 2.15: A trapezoidal panel and the construction used to find the aper-

ture phase function when corners 1-4 have arbitrary heights. 

and b. The phases at the radial intercepts can be found by similar triangles 

above these sides: 
04 — Oa Oa — 03  

Y4 Ya 	 Ya Y3 
and 

02 — 06 06 01  

Y2 Y6 	 Y6 — yi 
These simplify to the pair of equations 

Oa = .Y2-a  

Yb 1 
0b =  

and so, using equation 2.50, 

Yb Ya 	 1 
06 — 0a =  2d 

Yb Ya  
Oa + 0b =  2d 

At this stage the distortion parameters are defined: 

4f = — 01 + 02 + 03 — 04 (2.53) 

= + 02 — 03 — 04 (2.54) 

= — 01 + 02 — 03 + 04 (2.55) 

41 = +01+02+03+04. (2.56) 
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It is intuitive that these parameters will be sensitive to a twist, radial tilt, 

tangential tilt, and vertical lift respectively. The symbols are chosen to agree 

with von Hoerner's usage. Thus, 

06 — Oa = — (Yb ya) 2/3 

+ b = -

d 

(Yb — Y.) + 21. 

Now assume that q is linear along radial lines such as that through 

(xp, yp). This restricts the panel shape enough to define the equation for 

at any point. Using similar triangles above the radial line, 

Xb — X p X, X 0  

which gives 

= 

x2 p  [:t 	 + _ m — ( y b   _ ya),_ 
—(yb — Y) 2  ofii 

1 i  
h d 	 2 d 
xp 	 yp 	 Sp + 	

+ 

Yp 
(2.57) 

142 wI2 + xpd1h+#  hI2 	 wI2 + xpd1h 

after substituting for (yb  — yo) using equation 2.52. This should be compared 

with equation 2.48. For a rectangular panel, d = 0 and it is an obvious 

generalization including von Hoerner's cross-term :1- x py p  suitably normalized. 

For a non-rectangular panel, the coordinate yp  is modified to depend slightly 

on xp  (dlh is small). A least-squares fitting procedure is given in appendix C 

which estimates -7- , , , and t for data on an arbitrary set of coordinates. 

There is an advantage of von Hoerner's equation over 2.57: his distortion 

parameters are ̀decoupled', while here & contains a twist and 13 contains a 

vertical shift whenever a b. For example, set 01  = 03 = —6 and 02 = 

04 = +6, giving ii = .5 by equation 2.55 and all other parameters zero. If 

a b these sides clearly have different slopes and so the panel has a twist. A 

similar interaction of 13 and is not of concern, but it may be that twisting is 

to be suppressed in some situations, which cannot be done by simply setting 

= 0 and using the same equation. 

A common-sense modification to equations 2.53 and 2.55 is to define 

4r 01 
— 
Y1 

01 

Y1 

02 
— 
1/2 

02 

Y2 

03 
— 
Y3 

03 

Y3 

04 
— — 
1/4 

04 

Y4 

(2.58) 

(2.59) 

w/2 

4a 

w/2 
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7t.  = T + —a 
w 

d 1 

1 
ab d , 
- T = f" 
w2 	 W 

ab 	 d 
---2-w  a = a — —f- 

w 

Or 
d 

ii = a -I- - T 
W 

(2.60) 

Then there is truly no twist when r = 0. It can be shown that 

Thus T and a can be calculated easily once a least-squares fit has provided 

f and Et. Moreover, substitution into equation 2.57 shows that the equation 

for undeformed panels 2.48 is recovered exactly when T = 0; in fact 

xp  + hc/I2w yp + 0  xp +a  YP + t.  
h/2 + x, 1w  w12 h/2 w/2 

The formulation for twisted panels is completely consistent with the simpler 

case, it has ̀decoupled' twist and tilt parameters, and all its parameters are 

logically related to the corner phase errors. 

(2.61) 
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Chapter 3 

Holography Experiments at 
Mount Pleasant 

Several holographic surveys of the Mount Pleasant 26 m antenna were made 
during the course of this research. This chapter describes the last and most 
accurate survey, undertaken in April 1991 using both carrier and beacon 
signals from the AUSSAT-1 satellite. An illumination-weighted accuracy 
of ±53 pm of normal surface error was obtained with the carrier signal. 
Data taking and reduction procedures had developed sufficiently by this stage 
to form a model for future experiments. The results were used to adjust 
the position of most reflector panels, and detailed information on large-scale 
structural deformations was obtained. 

3.1 Experimental Equipment 

3.1.1 Design Philosophy 

The holographic measurement system used at Mount Pleasant was developed 
with portability in mind. At the time of writing a compact unit based on 
this experience is under construction. A major factor in the design has been 
the availability of monochromatic signals from the AUSSAT satellites; there 
are three satellites currently in geostationary Earth orbit. 

The down-link band is 12.25-75 GHz, the 'Ku-band', whose wavelength 
of about 24 mm is suitable for unambiguous holographic measurements of 
reflectors intended for cm wavelengths. The advantages of using these signals 
are the potential for very high signal-to-noise ratios as the bandwidth is 
narrowed, the low expense of front-end units designed specifically for the 'Ku- 
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band', and the feasibility of direct phase measurements at these frequencies. 
A significant disadvantage is that the antenna can only be measured at the 
azimuth and elevation of the satellite. It is not possible to study deformations 
of the surface due to the changing effects of gravity at different antenna 
attitudes. 

The alternative is to use cosmic point sources of high intensity. These can 
be either thermal sources observed at a frequency where they are unresolved 
by the antenna, or strong maser sources which are discovered from time to 
time [5, 51]. If several are available the antenna can be measured in a variety 
of positions, although each position will be an average because a map takes 
several hours to record. This would give an indication of the magnitude and 
nature of gravitational deformations. Unfortunately, a radio system with a 
wide bandwidth is needed to achieve sufficient signal-to-noise with a cosmic 
source, whereas a narrow bandwidth is desirable for monochromatic satellite-
borne sources. 

It was decided that the simplicity of a narrow-band system, and the avail-
ability and portability of front-end units, outweighed the restriction on source 
positions. In addition, any number of commercial antennas are available for 
collecting Ku-band down-link signals, ideal for a phase reference antenna. A 
2.1 m diameter Andrew model was purchased. 

3.1.2 Front-End and Portability 

Originally, the same model low-noise block down-converter (LNB) was used 
for both antennas: a MASPRO LNB-SCAU-500 with a noise temperature of 
180 K. Later, after an unfortunate accident involving the Sun, the 26 m an-
tenna was fitted with a MASPRO LNC-SCF-778 having a noise temperature 
of 130 K. These commercial units had built-in local oscillators of frequency 
11.30 GHz which were free-running, and could not be locked to a time stan-
dard for phase stability. The units were adapted by allowing for an external 
1.o. signal to be fed to the mixer. Close to each LNB was placed a MITEQ 
phase-locked oscillator which could be tuned over the range 11.00-50 GHz. 
It was used only in the range 11.29-39 GHz, never far from the design fre-
quency of the mixer, and no significant changes in signal level were noticed 
as the oscillator was adjusted. The ability to change this frequency allowed 
more flexibility in later intermediate-frequency (i.f.) stages. 

The combined LNB and oscillator weighs just a few kilograms, including 
a feed horn. It should not be difficult to mount this in any antenna which 
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has the facility to change feeds; in some cases an existing feed horn may 
be preferred. The other hardware which must be improvised at each new 
site is a solid mount for the 2 m reference antenna: once it is pointing at the 
satellite it does not need to be moved again. At Mount Pleasant the mounting 
bracket rotated about the top of a 3" diameter vertical pipe, welded to the 
foot of the main antenna. Providing a similar pipe should not be a problem 
elsewhere. 

The portable i.f. and sampling system, when construction is complete, will 
operate independently at any site except for two things. Firstly, a frequency 
reference is needed for locking all the local oscillators in the system so that 
signal phase is preserved. Secondly, there must be a means of scanning the 
antenna in either axis with accurately known limits and rates, or else with an 
accurate record of the positions passed as a function of time. This facility will 
generally be available for large antennas, but an interface with the control 
system may require some special software. 

3.1.3 Using AUSSAT Satellites for Holography 

There are three satellites in geostationary orbit at the following longitudes: 

AUSSAT-1 160°E 
AUSSAT-2 156°E 
AUSSAT-3 164°E. 

Each satellite has several 'beams' for illuminating different parts of Aus-
tralia and the South-West Pacific. To each beam several transponders can 
be connected: there are eleven 12 W transponders for the lower part of the 
Ku-band, and four 30 W transponders for the high frequency channels. The 
beam appropriate for Tasmania is the 'SE' beam, which has a vertical po-
larization of the E-vector. The 12 W and 30 W transponders provide about 
42 dBW and 46 dBW equivalent isotropic radiated power at Hobart. 

Phase measurements could not be made with a modulated down-link sig-
nal, so AUSSAT Pty. Ltd. supported this research by providing a full-strength 
carrier with no modulation on several occasions. The 30 W 12725 MHz 
transponder on AUSSAT-1 was used. This enabled very high-quality surface 
maps to be made before the surface was adjusted. 

In addition to the down-link channels there are some unmodulated bea-
cons, 20 dB less powerful, used for other purposes. Each satellite has a pair 
of beacons at frequencies between 12748 MHz and 12750 MHz. At both 
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12373 MHz and 12565 MHz AUSSAT-1 has two beacons separated by about 
100 kHz. The strongest is at the lower frequency, and this beacon was used 
several times for holography measurements, giving maps whose quality com-
pared well with the carrier maps. 

AUSSAT-1 appears from Hobart at an azimuth of 18.15 ± 0.04° and an 
elevation of 39.01 ± 0.02°, with a range of 37850 ± 10 km. The periodic 
variation in position is due to an imperfect orbit. It must be taken into 
account because the 26 m antenna's beamwidth at this frequency is 0.05°. 
The Ground Station staff were able to send position predictions covering each 
period of observation: these were used by the observing software at Mount 
Pleasant. Predictions spaced at hourly intervals could be interpolated to an 
accuracy of ±0.001°, which is of the same order as the antenna's pointing 
accuracy. 

3.1.4 Down-Conversion, Amplification, and Filtering 

The i.f. system used at Mount Pleasant had three stages of down-conversion 
to a final frequency of 10.7 MHz. It is shown in figure 3.1. The frequencies 
indicated are for the 12725 MHz carrier. The upper sideband was used at 
each conversion, so the 10.7 MHz phase had the same sense as the original 
phase. 

It was essential to use phase-locked local oscillators throughout for two 
reasons. Firstly, the signal frequency had to be stable within the 30 kHz 
pass-band, which was ensured by locking to an accurate frequency standard. 
Secondly, the phase relationship between the signals in channels A and R had 
to be preserved. This meant locking the two front-end MITEQ oscillators to 
the same reference signal, provided by a frequency synthesizer itself locked 
to the frequency standard. The oscillators' phase loops multiplied by 108, so 
the reference signal of 105.5 MHz had to be carried to the two front-end units 
with a high degree of phase stability. It was found that sufficient stability 
was obtained without a feed-back system. 

Different gains were required for the carrier signals and the weaker beacon 
signals. Only the latter required 20 dB amplifiers to follow the 410 MHz 
band-pass filters. The variable 1 dB step attenuators were used to adjust 
the final output levels to roughly 1 volt maximum, avoiding sampler overflow 
while giving ample dynamic range. 

At 10.7 MHz the i.f. signals were filtered to a bandwidth of 30 kHz. 
These 0.28% band-pass filters were cheap, commercial units made for f.m. 
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Figure 3.1: The front-end and frequency-conversion system used for holo-
graphic measurements at Mount Pleasant. Frequencies are indicated for a 
carrier signal at 12725 MHz, although the 20 dB amplifiers were necessary 
only for the weaker beacon signal. 
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Figure 3.2: The filtering and detecting system: (a) one channel of the 

10.7 MHz board, and (b) the polarimeter and sampling arrangements. 

radio. Figure 3.2(a) shows one channel of the board incorporating the filters. 

The pass-band attenuation of about 10 dB was mimicked by attenuators so 

that the signals could be switched past the filters with no change in out-

put level. This was convenient for locating the beacons and checking that 

there was no interference nearby. In addition, an extra 15 dB of attenua-

tion could be switched by computer into the 26 m channel when close to the 

on-source position. This enabled a much greater gain to be used without 

causing saturation and sampler overflow, giving increased sensitivity in the 

far-out sidelobe regions of the antenna pattern. 

3.1.5 Measurement of Phase 

The method of phase measurement is the core of the signal processing system, 

after such efforts have been made to ensure that phase is preserved through 

the i.f. stages. A differential phase must be measured between the A and 

R signals. As the system was developed attempts were made to measure 

the phase directly, so that it could be displayed and recorded in degrees 

as data were taken. These methods were not sensitive enough, and simple 
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phase shift and multiplication was more effective, producing sine and cosine 
outputs from which the phase was deduced later. Here is a description of 
each method. 

A Vector Voltmeter 

The Hewlett-Packard 8405A Vector Voltmeter displays the relative phase 
of a signal with respect to any reference that it can lock onto. A voltage 
proportional to the phase is available. Unfortunately it was not possible to 
lock onto the weak beacons received by the reference antenna: at this early 
stage the i.f. system had much less gain than the design above. In any case, 
it was intended eventually to build a compact unit which did not rely on a 
bulky piece of equipment. 

A Rectangular Phase Detector 

A phase detector circuit based on a design from the Hewlett-Packard 8754A 
Network Analyzer was built. It worked by amplifying and limiting two 1 MHz 
i.f. signals, producing square waves of the same phase. The rising and falling 
edges of these waves triggered digital circuitry which produced a new wave-
form, having a mark/space ratio proportional to the phase lag or lead of one 
square wave behind or ahead of the other. The area under this waveform was 
averaged to give a voltage proportional to the phase difference. This circuit 
gave an adequate phase measurement for several sidelobes beyond the main 
beam, but again it was not sensitive enough for a map of any useful size. 

A Polarimeter 

It is a common technique to multiply two signals in phase and quadrature, 
then apply a low-pass filter, to obtain outputs proportional to the cosine and 
sine of the signals' phase difference. This is how the U and V outputs of 
a Stokes polarimeter are produced for polarization measurements in radio 
astronomy. Indeed, after some tests to prove the feasibility of the method, 
an existing Stokes polarimeter was modified to accept the holography i.f. 
signals, as seen in figure 3.2(b). As a bonus, the Ix  and 4 outputs gave the 
total power in the main and reference channels. ./x  was not used to measure 
the far field power, however, because it was proportional to the square of the 
26 m antenna output amplitude, while the observable A obtained from U 
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Figure 3.3: The Stokes polarimeter used for phase determination. 

and V was directly propotional to the amplitude — see equation 3.1 below. 

Thus A is much more sensitive to low-level sidelobe structure than I. 

Figure 3.3 is a diagram of the polarimeter. Phase shifts were implemented 

with simple RC filters, perfectly adequate for this narrow-band application. 

Conventional quadrature multiplication would have required a 90° phase shift 

achieved by using the filter in its stop-band. To avoid the consequent large 

attenuation, the phase difference was achieved with matching low-pass and 

high-pass filters operating close to their common turnover frequecy. With 

exact component values there would be a 45° phase lag in the low-pass case 

and a 45° phase advance in the high-pass case. Because the components' 

values were only approximately correct, the total phase difference was less 

than 90°; this was taken into account in the calibrations described below. The 

circuit was designed as part of a 50 C2 system, and the attenuation expected 

for each filter was 5 dB. 

The four outputs .1„ U, V, and 4 were sampled by integration using 
voltage-frequency converters. Prior to this they were smoothed with a time 

constant somewhat larger than the sampling interval of 25 ms. Many suc-

cessive samples were averaged at each point of the grid, giving effective inte-

gration times of up to 2.5 s. 

Calibrating the Polarimeter 

To quantify the operation of the polarimeter, consider the model for the 

cross-products shown in figure 3.4. Phase shifts of —a and -FP are applied 

to the reference signal r(t), after which the products are formed with a(t). 
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Figure 3.4: A model for the cross-product part of the polarimeter. 

The voltages U and V result after smoothing to remove all high frequency 

components of the products. 

With a monochromatic source and suitable filtering of unwanted noise, the 

input waveforms can be assumed to be sinusoidal with a phase difference 0: 

a(t) = A cos(wt 0) 

r(t) = R cos(wt). 

If the combined effect of each multiplier and preceeding filter is to give a gain 

Cc, in one case and G0 in the other, the smoothed outputs are 

U = 	 cr  AR cos(0 + a) 

V = 	 o AR cos(0 — )3). 

It is as useful to measure 0 — /3 as 0, since it is the relative phase at different 

grid points that is important. A short manipulation gives 

V cos(a /3) — U(Gp/G„)  
1-G AR sin(0 — ,8) = 

sin(a ,8) 

which requires for its computation only that the gain ratio Go/Gc, and the 

total phase shift a + /3 are known. The 'observable' A obtained at each grid 
point has this for its imaginary part and V for its real part, giving 

	

= 1GoARexp j(0 — /3). 	 (3.1) 

The gain ratio and phase shift were measured using this property: if a(t) 

and r(t) are two synthesized waves of very similar frequency, their relative 
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phase will change at a constant rate. Then the outputs U and V will vary 
sinusoidally in time, with a phase difference a + /3. Under these conditions 
U and V were recorded at precise time intervals for several cycles. Sinu-

soids were fitted to these data using the least-squares method described in 

appendix C, and the gain ratio and phase shift were deduced from the ampli-

tude and phase of the fits. The 10.7 MHz board was included in the setup, 

so the value of the A channel attenuator could be measured by switching 

it in and observing the change in amplitude. The values obtained for these 

parameters were: 

a+13 	 = 75.9 ± 0.9° 

GidGc, 

sw. att. 

= 

= 

0.821 

15.29 

± 0.012 

± 0.13 dB. 

3.2 Data Collection and Reduction 

When the antenna is steered about the source the quantity A varies ac-
cording to the far field pattern, and if there were no other variations the 

normalized antenna pattern would be A(u , v) I A(0, 0). This section discusses 
some systematic effects which occur during data taking, and the way they 

are compensated in the data reduction. 

3.2.1 Data Collection 

Microwave Holography data should ideally be collected at a rectangular grid 

of source positions (u, v) with respect to the antenna aperture, as discussed 

in detail in section 2.3. The practicality of doing this depends upon the dy-

namical properties of the antenna steering system. Many systems for radio 

telescope antennas have a high damping constant to avoid unwanted oscil-

lations about the source position, which means that motion between two 

nearby sources is very slow. A large map takes far too long to collect in these 

circumstances. 

Instead, a map can be built from many parallel scans in one axis direction 

or the other, with samples taken 'on the fly'. To minimize sample position 

errors it is best to scan using the axis attached to the reflector rather than 

the fixed axis: that is, Y for an XY mount or elevation for an AZEL mount. 

Referring to figure 2.10 it is seen that these scans are straight lines in (u, v) 

because motion is towards or away from a pole, while scans in the other direc- 
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tion would be curved. Samples taken while moving are smeared over a region 

surrounding the nominal sample position, but this has a completely recover-

able effect on the aperture currents. If integration occurs over a fraction f 

of the sample interval, the measured quantity is not A(u) but 

1 .r, 	 u 
(u) = A(u) * f —i( (--) , 

 45u 

using a one-dimensional notation. In the transform domain, this replaces 

a(x) by 

421(x) = a(x)
sin(7  Pux) 

(3.2) 
f 45ux 

The phase is unchanged, and the amplitude can be corrected by dividing by 

this sinc function along the direction of scanning. 

Interrupt-controlled software is needed to take samples at the correct 

times, and there are two possible sources for interrupt signals. Either the 

antenna is driven at an accurate rate and samples are triggered at uniform 

intervals of time, or else the antenna control system produces a triggering 

signal when the antenna passes preset angular positions. The first system is 

preferable for these reasons: 

1.When the control system allows, the antenna can be scanned on both 

axes simultaneously with the same time interrupts, allowing straight 

paths in (u, v) to be followed more closely near a pole; 

2.The control system will have a finite cycle time in its servo loop which 

limits the accuracy of the interrupts it produces. 

In this case it is important that the antenna is steered accurately. A wise 

measure would be to read its position on every sample interrupt. It was to 

avoid this complication that control system interrupts were used at Mount 

Pleasant, where the 0.1 s cycle time is adequate. 

From the considerations in chapter 6 a map size of 53 x 53 samples was 

chosen for the 26 m antenna measurements. The sampling interval was 

Su = = 0.00075 or 0.043°, resulting in aperture resolutions of 0.593 m 

at 12725 MHz and 0.610 m at 12373 MHz — just over 5 sample points per 

panel on average. With integration times of up to 2.5 s at a scanning rate 

of 0.75° per minute, smearing was by as much as 73%. The desired (u, v) 

end-points of each scan were converted to (X1, Y1) and (X2, 1'2) as discussed 

in section 2.3.1, and the scan was performed in Y from Y1  to Y2 while hold-

ing X constant at (X1  + X2)/2. The maximum deviation of the (u, v) points 
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Figure 3.5: The antenna scanning pattern, including on-source and off-source 

calibration points. Sampling occurs along the solid arrows. 

traversed in this way from a rectangular grid was 6.8 x 10-6  or 0.9% of 

the sample interval. This is not significant: the resolution of the antenna's 

pointing system is 2.9" or 1.9% of the sample interval. 

Variations in instrumental gain and phase and satellite signal strength can 

appear as false features in the map unless they are measured and removed. 

To monitor them an on-source calibration sample was taken before every 

scan, as well as a sample some degrees off-source to monitor the zero levels. 

The scanning pattern including calibration points is shown in figure 3.5. The 

satellite position was recomputed prior to the on-source samples using the 

data provided by AUSSAT; this ensured that the satellite was centred in the 

main beam and that the scan end-point calculations were up to date. To 

aid in interpolating the satellite position and calibration signal applicable to 

each sample point, the following times were recorded: 

Jsat = Julian Date of satellite position prediction (3.3) 

Jcal = Julian Date of on-source calibration point (3.4) 

JSCTI = Julian Date of first sample in the scan. (3.5) 

Julian Date was the most convenient form to keep the time in: it is continuous 

across changes in minute, hour, day, month, and year. 

All of this information relating to each scan — the calibration samples, 

the satellite position, the times, the scan end-points — was stored in a small 

header in front of the scan data. This was separate to the header which 
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Figure 3.6: Signal power estimated from on-source IAI (solid) and ./x  

(dashed). 

contained characteristics of the whole map, such as antenna name, frequency, 

interrupt method, and the number and length of scans. Although the format 

of the headers will always be arbitrary, the information they must contain is 

common to all experiments. For this reason the header format used at Mount 

Pleasant is given in appendix D. It is suitable for describing data taken with 

control system or time interrupts. 

Before proceeding with any data analysis, the calibration samples were 

checked for noisy or discontinuous behaviour. One useful test was a graph 

of the 26 m power ../x  and the magnitude of A derived from U and V for the 

on-source samples. Because Ix  oc A' and by equation 3.1 IAI cc AR, both 

are proportional to the signal power that determines amplitudes A and R. 

If they differed a change of gain of the 26 m receiver relative to the 2 m was 

indicated. As figure 3.6 shows for a typical experiment, no significant change 

occurred. 

It is also interesting to graph the phase of A. A variation in the on-

source phase is expected because the main and reference antennas form a 

two element interferometer which can resolve motion of the satellite. This 

phase term is given by equation 2.43 where the predicted satellite position 

is i. The actual and expected phase variations are shown in figure 3.7 for 

two separate experiments. In the upper graph the trend is predicted quite 

well; in the lower graph there are large deviations which indicate another 

systematic effect. This is likely to be due to the lengthy cables which are 

required to reach the antennas' foci from the control room: about 80 m for 
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Figure 3.7: On-source calibration phase (solid) and predicted interferometer 

phase due to satellite motion (dashed) for two experiments. 

the 26 m antenna. Changes in their temperature and position will affect their 

electrical length. By interpolating the on-source phase between calibration 

samples these variations can be compensated at each sample position, leaving 

a residual phase error of less than ±10°. 

3.2.2 Data Reduction 

The raw data for aNxN map consists of the following information: 

N scans having 

N data samples U and V 

+antenna positions at each end 

-I- satellite positions at each end 

+calibration samples at each end 

+times when each quantity is correct. 

 

The data reduction procedure to produce a map of aperture currents is best 

described in point form. The description assumes that an XY antenna has 
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been measured with a satellite source but the methods are universal. 

1. Use a linear interpolation between the scan end-points to find the an-
tenna position (X, Y) for each sample. 

2. Similarly, interpolate using ./sat  and ../scii  to find the corresponding satel-
lite position ê. 

3. Compute (u, v) for each sample using equation 2.36 with r = 

4. Compute A from U and V using equation 3.1 (remember from sec-
tion 3.1.5 that A is more sensitive than ir  to low-level structure). 

5. Interpolate linearly using Jad and Jscii  to estimate the on-source signal 
at the time of each sample, and deduce Ao  at the grid centre. 

6. Compensate for on-source amplitude and phase variations (which in-
corporate satellite motion) by finding 

A(u, v) = A/A0. 

7. Find the phase correction for antenna motion O a  using equation 2.44, 
and correct 

A(u, v) —+ A(u, v) exp(— j Oa ). 

8. Compile the scans into a full map, interpreting them as rows or columns 
according to the scanning coordinate and reversing them if necessary. 
Compile the (u, v) positions similarly. 

9. Perform a least squares fit for the origin and sampling intervals of 
closest rectangular (u, v) grid. No re-gridding is necessary if the error 
is smaller than the likely pointing errors. 

10. Perform a two-dimensional fast Fourier transform with a positive ker-
nel exponent to signify an exp(—jwt) time convention. The aperture 
sampling intervals are obtained from the fitted (u, v) sampling intervals 
by table 2.1. The map is now a(x,y). 

11. Minimize phase wrapping as much as possible by adding a constant 
offset to the aperture phase arg a(x,y). 

12. Fit a least squares plane to the aperture phase over unshadowed points 
(s, y), and subtract it. 
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13. Correct the amplitude for sample smearing by applying equation 3.2 in 
the direction corresponding to scanning. 

Steps 11 and 12 require some explanation. Phase 'wrapping' occurs when 
the range of phases in the map exceeds 27r. Reducing phases to the same 
period then causes sharp jumps between —7r and -Fr. The number of dis-
continuities between neighbouring points can be minimized by shifting the 
phase of the whole map — a uniform phase shift does not affect the focusing 
properties of the reflector. If wrapping still occurs in an unshadowed part 
of the aperture, the surface errors range over more than half a wavelength 
and the experiment should be repeated at a lower frequency. In shadowed re-
gions, diffraction can cause steep phase gradients and some wrapping is often 
unavoidable. To the unshadowed points, however, a least squares plane can 
be fitted whose gradient corresponds to a constant pointing error in the (u, v) 
domain; that is, the (u, v) grid centre did not agree with the on-source posi-
tion. By subtracting the plane in step 12 the effect of this error is removed 
from the map. 

Changing the position of the feed also causes characteristic variations 
in aperture phase. Neglecting pointing errors, the phase map represents 
deviations of the surface from the paraboloid determined by the position of, 
the feed during the measurements. If the phase is zero uniformly across the 
aperture, the surface conforms to the unique paraboloid that has its focus 
at this position. If it is not, adjustments to the surface based on the phase 
will force conformity. On the other hand, lateral and axial motion of the 
feed may be used to change the target paraboloid and reduce the number of 
surface adjustments required. In this case the three feed position parameters 
should be included in the least squares fit for the three plane parameters, 
giving six parameters in all. The result defines a 'best fit' paraboloid for the 
existing surface: it is no coincidence that a general paraboloid has six free 
parameters. 

Godwin, et al. [19] have discussed optimisation of the feed position in 
this way. Often the feed mounting does not allow three degrees of freedom 
of movement, in which case the least squares fit should take advantage of 
whatever freedom exists, the remainder of the phase errors being removed by 
surface adjustments. This was done, for example, for the Effelsberg 100 m 
antenna survey [20] where there was only one direction for lateral feed ad-
justment. A Cassegrain or Gregorian antenna has a subreflector with its own 
positioning errors, and if the phase errors characteristic of these are known 
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Name Date Time (AEST) MHz Integ. Smear 
MB 25/4 0810-0840 12725 0.5 s 36.4% 
C2 26/4 0020-0405 12725 1.0 s 29.1% 
C3 26/4 0423-0811 12725 2.5 s 72.7% 
B1 1/5 0011-0416 12373 2.5 s 72.7% 
B2 1/5 0421-0828 12373 2.5 s 72.7% 
C4 2/5 0004-0447 12725 2.5 s 72.7% 
C5 2/5 0453-0848 12725 2.5 s 77.6% 

Table 3.1: A summary of the holographic maps of the 26 m antenna. Names 
are given for easy reference. The size of all maps was 53 x 53 except for the 
first of 15 x 15, and sampling was 8. = t, = 0.00075. This gave K = 0.825 at 
12725 MHz (carrier) and lc = 0.802 at 12373 MHz (beacon). 

more parameters can be introduced to the fit. Otherwise, subreflector de-
formations and position errors will be embodied in corrections to the main 
reflector. 

Another issue which can be important for high-precision surfaces is the 
shape of the panels themselves. Panels are fabricated to agree with a par-
ticular paraboloid, and systematic aperture phase errors are caused if the 
panels are adjusted to form a paraboloid with a different focal length. The 
result is a 'scalloping' of the phase map [27]. 

3.3 Results and Surface Adjustment 

3.3.1 Surface Error Maps 

The characteristics of the maps taken in April and May 1991 are summarized 
in table 3.1. As the times indicate, most of the data were collected in the 
small hours of the morning when the temperature of the structure was most 
stable; these times coincided with the availability of carrier signals from 
AUSSAT. The Autumn weather was kind, and most nights were cold and 
very still. Only the final morning was unsettled, with gusty 50 kph winds 
causing such large pointing inaccuracies that the map C4 is useless and the 
C5 map is unreliable. 

On 29 and 30 April the reflector panels were adjusted according to the 
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results of maps C2 and C3. There was thus one morning before the ad-
justments during which two contiguous, high-quality maps were taken, and 
another such morning after the adjustments. It was to allow this that the scan 
speed was chosen to keep the time required for the maps at about 4 hours. 
Having a 'mate' for each map taken under almost identical conditions was 
very helpful for separating errors intrinsic to the holographic technique from 
day-to-day changes in the reflector. Once good repeatability was established 
for these pairs, they were averaged vectorially to improve the signal-to-noise 
by a factor V-2-. The vector average of maps C2 and C3, denoted by AV1, is 
shown as a contour plot of normal surface errors in figure 3.8. The average 
of maps B1 and B2, denoted by AV2, is shown in figure 3.9. The contour 
interval for each is 0.5 mm: on this scale most of the features to be seen are 
not artifacts of noise but genuine. 

The aperture current amplitude depends upon the illumination pattern of 
the feed and the shadow of the feed support structure. Figures 3.10 and 3.11 
show the illumination functions according to AV1 and AV2. The edge taper is 
approximately 12 dB and there is shadowing of both the incoming plane wave 
and the reflected spherical wave. Several other sharp dips in the illumination 
are caused by particularly poor panels: for example, the access hatch lid 
is on the southern edge of the western leg. Steep and irregular contours of 
aperture phase can usually be identified with a poor panel or group of panels. 
When light strikes at a low angle the bumpy surface of these panels can be 
seen with the eye. 

3.3.2 Consistency and Surface RMS 

Root mean square (rms) phase errors and differences are commonly used 
to compare and examine aperture phase estimates; beforehand it is wise to 
think carefully about the weighting to use. If a(x, y) is the aperture current 
and 0(x, y) is its phase, then equation 4.20 gives that cr,g x ,y) oc 1/1a(x, y)I. 
It is appropriate to weight the least squares fit by 11 a- 4, 2  a la(x, y)1 2  when 
estimating panel positions: see appendix C. The same weight is useful when 
comparing two independent estimates of 0(x, y) for the following reason. The 
discrepancy at each aperture point is A = 0 1  — 02, but a- is not constant 
over the aperture because of an illumination dependence act, = Mal. This 
is discussed in section 4.2.4, where k = rms leM. Now al*, = iaicro = k 
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Figure 3.8: Map AV1, the vector average of maps C2 and C3, as a contour 

plot with contour interval 0.5 mm. Negative contours are thinner. The scales 

are in metres. 
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Figure 3.9: Map AV2, the vector average of maps B1 and B2, as a contour 

plot with contour interval 0.5 mm. Negative contours are thinner. The scales 

are in metres. 
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Figure 3.10: The aperture illumination according to AV1 in 1.5 dB contours. 

The scales are in metres. 
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Figure 3.11: The aperture illumination according to AV2 in 1.5 dB contours. 

The scales are in metres. 
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which is constant over the aperture, as is 

crialA = crla101-1a102= 	 clap = 	 k. 

This can be estimated from two maps of n aperture phase estimates: 

A./k = 	 C—Elal2(4)i — 4)2)2. 
n ap  

Thus an 1a12  weighting is necessary to find the constant of proportionality. 

The formation of an rms phase discrepancy. with this weight gives a direct 

indication of the data quality; the unweighted rms is also useful to highlight 

the effect of the aperture taper. 

It is entirely different to compare an estimated function 0(x, y) with zero, 

that is to find the rms phase error over the aperture. The purpose of such a 

statistic is to show the extent of deviation of the surface from a paraboloid, 

and to indicate the effect on the antenna's performance. The tolerance theory 

discussed in section 1.1.1 shows that both the gain and sidelobe levels depend 

on 

= ffaP la(x y) 102(x y)dx dy 52  
ffapja(x, y)I dx dy 

Antenna gain and sensitivity calibrations using astronomical sources will esti-

mate this statistic. Thus, if a single statistic is desired to embody a complete 

surface measurement it is best to weight the aperture phases by jai. To 

summarize for the discrete case, when comparing independent data the rms 

phase difference is 

rms = 
\I Eai, lair (0ii — 021)2  

, 
Eap 1a112  

(3.6) 

but when studying a single aperture function the rms phase error is 

\I \hi = Eap laik6i2  

Eap lad . 
(3.7) 

Prior to their averaging contiguous maps were compared by forming the 

rms phase difference, masking points which were shadowed by the feed struc-

ture. The comparisons are shown in table 3.2 for each ring of panels. Ring 1 

is the vertex region and is not shown, and ring 2, while included, is mostly 

shadowed and does not typify the accuracy of the phases. The other rings 

show the expected increase in phase error with radius. The overall rms phase 
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Ring Outer Radius Panels C2 and C3 B1 and B2 

, 

0
0

 
C•1

 V
D

 .:14  
LCD

 C
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  C
-
 
0

0
 1 

CNI  

2.92 m 12 2.37° 2.86° 
5.43 m 24 1.17° 1.700  
747m 24 1.58° 2.14° 
887m 48 1.69° 2.03° 

10.24 m 48 1.900  2.14° 
11.58 m 48 2.29° 2.45° 
12.95 m 48 3.07° 3.51° 
12.95 m 252 1.82° 2.20° 

Table 3.2: Ring-by-ring rms phase differences in degrees between contiguous 
maps. 

difference of two maps expected to be identical gives the 'repeatability' of the 
measurements. Thus, C2 and C3 agree to ±1.82° while B1 and B2 agree to 
±2.20°, or if no amplitude weighting is used ±2.36° and ±3.01°. 

These numbers are frequency-dependent, but can be converted to ax-
ially resolved surface repeatability by multiplying by )/4r. Alternatively 
the phase maps can be converted to normally resolved surface errors by 
equation 2.12 and then compared, which gives a more practical measure. 
It is found that C2 and C3 agree to ±0.075 mm and B1 and B2 agree to 
±0.091 mm. Remember too that these are difference statistics, and the un-
certainties in each map, if equal, would be a factor smaller again. This 
gives ±0.053 mm and ±0.064 mm, or as a fraction of the wavelength 0.22% 
and 0.26%, an excellent result. 

Both the phase and surface error results show that the carrier maps are 
more precise. The difference is not great, yet the signal power is 20 dB greater 
for the carrier than for the beacon. If precision was determined primarily by 
receiver noise a much greater difference would have occurred. This indicates 
that other sources of error must have been limiting the precision. Chapter 4 
discusses this in detail. 

Now that the reliability of the maps has been tested, the rms phase error 
representing the quality of the surface can be found by equation 3.7. The av-
erage maps AV1 and AV2 are used for this purpose, and the improvement due 
the surface adjustment can be measured by comparing them. Table 3.3 shows 
the rms deviation from the ideal paraboloid in phase and normal surface er- 
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RMS of: Weighted? AV1 AV2 Improvement 
phase yes 20.70  17.8° 14.0% 
error yes 0.735 mm 0.689 mm 6.3% 
phase no 21.00  19.6° 6.7% 
error no 0.740 mm 0.718 mm 3.0% 

Table 3.3: Root mean square deviation of aperture phase and normal surface 
error from the ideal paraboloid for maps AV1 and AV2. 

ror, with and without amplitude weighting. The improvement is smaller 
without amplitude weighting, indicating that the adjustments were more ef-
fective for the inner part of the reflector. The improvement is also smaller for 
normally resolved errors, indicating the same thing: normal errors increase 
with radius with respect to axial errors, accentuating defects of the outer 
part of the reflector. 

For the reasons given above, the amplitude-weighted phase error is the 
best measure of reflector performance, so an improvement of 14.0% appears 
to have been achieved. According to the Ruze equation 1.2, the reduction in 
gain at Ku-band has changed from —0.57 dB to —0.42 dB, and the frequency 
at which the gain peaks is about 40 GHz. 

3.3.3 The Surface Adjustments 

This section looks at the surface adjustments in detail, and compares them 
with the change in the surface profile measured by holography. Reflector 
panel adjustments were made on the basis of the average map AV1. The 
Successive Projections method, described in chapter 5, was applied for 10 
iterations on an expanded grid of 241 x241 points. This improved the effective 
aperture resolution, allowing panel positions to be estimated that were much 
less affected by neighbouring panels. From the tilts and vertical shift of 
each panel, four corner adjustments were found which would make the panel 
conform to the best-fit paraboloid. This was under the assumption that the 
panel was itself undistorted: at this stage Successive Projections had not 
been thoroughly tested with a panel twist parameter. 

There are 252 panels making up the reflector surface: see figure 2.12. All 
panels which 
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• were not affected by aperture blockage, and 

• required more than 0.5 mm adjustment at at least one corner 

were adjusted at all corners, a total of 191 panels. The panels in the outer four 
rings (numbers 5-8) do indeed have an adjustment screw at each corner with 
a 28 t.p.i. thread. The recommended corner adjustments were converted to 
screw turns and applied to the nearest quarter-turn or 0.23 mm. The panels 
in rings 2-4 have adjustment screws on some edges, and these were turned 
according to a mental interpolation between the corners. 

A significant number of panels could not be adjusted properly because 
of a mechanical constraint. Either a screw was at the limit of its travel 
or occasionally a panel came hard against its mounting brackets. These 
problems arose because the panel mounts were not fixed accurately onto 
the girders of the backing structure. The mounts can be moved to allow 
the panels sufficient travel, but not by a precise distance and not without 
removing the panel in many cases. With limited time available it was decided 
to leave the problem until some future date, after which another holographic 
survey can be done. In total, 53 panels were affected. 

The adjustments actually applied to the panels were recorded while on 
the surface. Panels positions can be derived from the map AV2 exactly as 
from AV1, and the difference between the corner positions so derived can be 
compared directly with the corner adjustments. This is an end-to-end test 
of the measurement and adjustment cycle. The most effective way to display 
the comparison is by a correlation plot of measured adjustment against actual 
adjustment. Each corner of each panel produces a single point on this plot, 
which is shown in figure 3.12. Since holography results are not reliable for 
panels affected by shadowing, these panels are excluded from the plot; to 
avoid clutter at the centre, so are panels which weren't adjusted at all. 

There is a clear positive correlation with unit slope: the panels were 
moved in the correct direction. Unexpectedly, however, there is a scatter of 
roughly ±1 mm about the line 'y = x'. The repeatability of maps indicates 
a precision an order of magnitude better than this for individual aperture 
phases, and with an average of 5 points per panel a similar precision, perhaps 
slightly worse, is expected for the phase at panel corners. How can this be? 

Performing the Successive Projections iterations with panel twists enabled 
did not change the plot significantly. The discrepancy is unlikely to be due 
to panel distortion. The difference in source frequencies for AV1 and AV2 is 
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Figure 3.12: A correlation plot of measured changes in panel corner heights 

against actual adjustments applied. Each point represents a single corner 

of a panel. Panels affected by shadowing and panels not adjusted are not 

included. The line 'y = x' is shown. 
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relatively small and should not cause a large random error. It is unfortunate 
that maps C4 and, to a lesser extent, C5 were disturbed by wind, preventing 
a reliable test of the effect of frequency. There were no other differences in 
measurement methods which would affect the comparisons without also af-
fecting the repeatability of contiguous maps. The remaining likely possibility 
is that between 26 April and 1 May there were changes to the surface profile 
in addition to the panel adjustments. Step 12 of the data reduction process 
in the previous section guarantees that such changes would not give a surplus 
of points above or below the y = x line, consistently with figure 3.12. 

This is not so for the correlation over a part of the aperture. The aper-
ture was divided into 12 segments: 8 octants of the annulus of the outer 
rings 5-8 and 4 quadrants of the annulus of rings 3-4. In each of these a 
separate correlation plot of measured change against actual adjustment was 
performed. They appear in figures 3.13, 3.14, and 3.15. The y = x line is 
shown in all plots: in most the points tend to lie above or below the line. In 
these segments this represents a systematic raising or lowering of the surface 
not accounted for by the adjustments. The average shifts are given on a 
diagram of the reflector in figure 3.16, showing how systematic the effect is. 
The surface changed shape in an astigmatic way, opposite in sign on opposite 
sides of the dish, with an overall lowering of the inner region. 

Underneath the surface backing structure is a square of girders which is 
attached to the Y-wheel. The orientation of the square, which is shown, may 
explain the symmetry of the change in shape. It has three probable causes: 

1. Mechanical hysteresis after moving the antenna and returning to 39 0  
elevation for AUSSAT-1; 

2.. Hysteresis after the structure experienced several days of temperature 
change; 

3. An actual difference in temperature on the two mornings of measure-
ment. 

It is not possible to separate these factors without further measurements. 
Nevertheless, it is very useful to know that changes in the surface profile of 
roughly 0.5 mm amplitude can be expected. For example, further surface 
adjustments will be of limited value unless the structure can be stiffened. 
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Figure 3.13: Correlation plots of measured change against surface adjustment 

for the 4 northern octants of rings 5-8, each containing 20 panels. The scales 

are in mm. 
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for the 4 southern octants of rings 5-8, each containing 20 panels. The scales 
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Figure 3.15: Correlation plots of measured change against surface adjustment 

for the 4 quadrants of rings 3-4, each containing 10 panels. The scales are 

in mm. 
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North 

Figure 3.16: The average discrepancy between measured changes in the sur-
face and changes made by adjusting panels. The view is down on the antenna 
in the zenith position, with North at the top of the page. Thick grey lines 
mark the square of girders supporting the reflector. The units are mm. 
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3.3.4 Antenna Properties Deduced 

An advantage of the holographic method is that it provides information about 

the antenna's aperture illumination and far field radiation pattern in addition 

to the surface profile. Of course, this information is of limited practical use 

because it is specific to the feed and frequency used for the measurements. 

The far field pattern can be estimated at any frequency, if an aperture illumi-

nation function is provided, by scaling the measured aperture phase function 

appropriately and performing a Fourier transform. 

The aperture illumination function for the Ku-band feed has already been 

shown. Far field cuts in the u and v directions are shown in figure 3.17 

for AV1 and AV2. The highest sidelobe is respectively 16 dB and 13 dB 

below the main beam. The main beam and inner sidelobes are graphically 

illustrated in two dimensions in figures 3.18 and 3.19. All far field data has 

been interpolated for display by 'padding' with zeros in the aperture domain, 

which increases the far field resolution without adding any higher-frequency 

information. The small map MB, which was collected on a dense grid and 

could be graphed without interpolation, matched well with AV1. Thus the 

interpolation method provides a faithful representation of the pattern. 

The far field has a four-fold symmetry due to the quadrupod feed support 

structure. A marked asymmetry in AV1 has been improved in AV2: this 

could be due to the surface adjustments, but the different source frequencies 

of the maps and the changing astigmatism both may have contributed. The 

same far field region for the single map C5, less affected by windy conditions 

than C4, was very similar to AV2. This indicates that the small change in 

frequency was not an important factor. 

Several standard antenna properties are related to integrals of the nor-

malized antenna power pattern P(0, 0), where the maximum Pn  is unity. 

These are discussed in any text on antennas or radio astronomy, for example 

see Kraus [37, chap. 2] or Rohlfs [69, sect. 4.5]. P„(0 , 0) is directly obtain-

able from holographic measurements over a limited range of angles 0 from 

the main beam, and so the integrals can be estimated. For example, the 

beam solid angle: 

siA = g Pn(0 , 0) dil 
4/r 

and the main beam solid angle: 

= m 	
P (9,0) d 

main beam 
. a  
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Figure 3.17: Far field cuts across the centre of the map AV1 (above) and 

AV2 (below). The vertical scales are in dB of power, the horizontal in units 

of A/D ce. 0.0530 . 
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Figure 3.18: The main beam and inner sidelobes from map AV1. The contour 

interval is 3 dB. The dotted line is an arbitrary boundary for the 'main beam' 

used for estimating S2m• The scales are in units of A/D •-.' 0.053°. 
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Figure 3.19: The main beam and inner sidelobes from map AV2. The contour 

interval is 3 dB. The dotted line is an arbitrary boundary for the 'main beam' 

used for estimating nm. The scales are in units of A/D ..:-_' 0.053°. 
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Quantity Map AV1 Map AV2 Map C5 P  '''  g 

69.8 dB 
424 m2  
0.755 
0.804 

68.7 dB 
345 m2  
0.761 
0.654 

69.5 dB 
389 m2  
0.757 
0.738 

Table 3.4: Upper limits for some antenna properties deduced from the inte-
grals ftA and fim for the maps indicated. 

These are both in steradian measure. Clearly flA will be underestimated, 
perhaps severely, when all but 0.00158 sr of the pattern is assumed zero for 
the map size used here. Also, the value of Om will depend on a somewhat 
arbitrary boundary to the main beam being chosen. 

Upper limits for the directivity D, the effective aperture Ae , the beam 
efficiency Tim , and the aperture efficiency 77A can be found using these rela-
tions: 

nm 

Ae  

nA 

  

Ag  is the geometrical area of the antenna's aperture. In table 3.4 these 
quantities are shown as estimated from the maps AV1, AV2, and C5. Their 
variability prevents a statement about the effect of the adjustments or the 
astigmatism, but supplemented by other antenna calibrations these data may 
be useful. Note the usage here is that of Rohlfs: A, is the A,,, of Kraus, who 
then defines an effective aperture which takes account of the electrical losses 
in the antenna. 
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Chapter 4 

Sources of Error 

The Fourier transform of the measured radiation pattern can never represent 
the reflector surface profile exactly. Some discrepancies are caused by pro-
cesses which can potentially be measured and their effects corrected, though 
this is not always done. These are systematic errors, and the major ones are 
discussed in section 4.1. Other discrepancies are caused by random processes 
which differ unpredictably for each map. These random errors are discussed 
in section 4.2, where a model by which they can be categorized is proposed 
and the magnitude of the effect of each category on the recovered aperture is 
calculated. In section 4.3 this model is shown to describe adequately random 
errors in the Mount Pleasant holography experiments. 

4.1 Systematic Errors 

The most obvious disruption to the aperture maps in the previous chapter 
was the shadow of the feed cabin and its support struts. Aperture blockage 
will be discussed first, followed by several other effects. The paper by Morris, 
et al. [51] will be cited several times: it has an especially thorough error 
analysis for holography with a cosmic source. 

4.1.1 Aperture Blockage 

Any reflector not of an offset design is inevitably blocked to some extent by a 
feed or subreflector and its support structure. To account fully for the effects 
of blockages on an antenna's electrical properties, mutual coupling, multiple 
scattering, and multiple shadowing all need to be considered. Typical of 
comments in the literature [73] is that this "is an electromagnetic problem 
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which defies exact solution within the foreseeable generation of computer 
technology." A major object of further work in Microwave Holography must 
be to quantify the main effects of aperture blockage on the measurements, 
and then to compensate for them. 

In this thesis blockage has been accounted for by assuming simply that 
there is no radiation from regions of the reflector which are in the geometrical 
shadow of the feed or support struts. This is called the null field hypothesis. It 
is a reasonable approach when the blocking elements are several wavelengths 
across. It means that all information about shadowed reflector panels is lost, 
and partly shadowed panels may not be reliably determined. However, fully 
illuminated panels, for which correct setting is more important, are only 
minimally affected if at all because blockage effects are localized about the 
geometrical shadow. The use of the null field hypothesis and the localization 
of blockage effects will be discussed now. 

Consider the next stage of sophistication, the induced field ratio hypothe-
sis. In the terminology of radiation rather than reception, this assumes that 
currents are induced on a conducting strut by rays emerging from its shadow 
on the reflector surface, as if the strut was infinitely long and the rays repre-
sented free-space plane waves. Rusch, et al. [71, 70] have considered radiation 
from such currents, defining the Induced Field Ratio (IFR) of this field to 
the hypothetical field from the geometrical shadow alone. Thus IFR = 0 if 
the blockage has no effect at all, and IFR = —1 corresponds to the null field 
hypothesis. In [72] the radiation is shown to occur in cones about each strut 
which in the far field give large circles intersecting at the main beam. In the 
small region where holographic measurements are made the arcs appear as 
straight lines, and the Mount Pleasant data shows ridges of increased field 
intensity along the u and v axes in accordance with this, as can be seen in 
figure 4.1. 

The support struts above the 26 m reflector are composed of three parallel, 
cylindrical girders several inches in diameter with numerous smaller poles 
between forming a triangular lattice. This is similar to many other large 
antennas. With a wavelength Ac-..2 24 mm almost every pole is wider than 
2A, and most are much wider. The graphs in [71] and [70] show that in these 
circumstances the IFR will be quite close to —1 for the components of the 
strut. Certainly, if the entire strut is treated approximately as a single girder 
the null field hypothesis will hold with good accuracy. Tests show that the 
null field hypothesis also predicts ridges of far field intensity along the u and 
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Figure 4.1: The entire measured far field intensity map AV2, shown in con-
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v axes in the region of interest for holography. All this suggests that strut 
currents caused by reflected rays may not be important. 

The analysis of [72] ignored a second type of shadowing: the rays from 
the feed which meet the struts before reaching the reflector surface. The two 
types of shadowing can be identified in the maps 3.10 and 3.11 of the illumi-
nation of the 26 m reflector: the four struts meet the reflector at about 8 m 
from the centre, and at these points the strut shadows begin to diverge from 
a rectangular shape. In the terminology of radiation again, the spherical 
wave from the feed is diffracted by the struts to induce currents in the tri-
angular shadow region out to the edge of the reflector. Radiation from these 
currents was ignored because in many far field regions currents due to the 
reflected plane wave are dominant. A full treatment would use geometrical 
optics methods [32, chap. 6] to investigate the field incident on the reflector, 
or perhaps a simple model such as [73, appendix] would be useful. 

It may not be unreasonable, then, to use the null field hypothesis to pre-, 
dict the radiation from a blocked aperture, at least in the main beam region. 
Conversely, the aperture currents recovered by Microwave Holography from 
blocked aperture radiation may exhibit something like a null field in the ge-
ometrical shadow. The 26 m aperture illumination maps do show a sharp 
drop in the rectangular, plane wave shadows, subject to the 0.6 m aperture 
resolution. This is particularly true of the northern and southern struts, 
which carry large bundles of cables to the focus: notice how much deeper 
the shadows are beneath these. On the other hand, the triangular, spherical 
wave shadows of the eastern and western struts do contain some structure. 
It is not always sufficient to treat the strut as a simple, opaque girder. 

To see whether diffraction patterns are likely to be detrimental to aper-
ture phase recovery well outside the geometrical shadow, consider a simple 
case. When the antenna receives a plane wave, the diffraction pattern on 
the reflector caused by a strut will be much the same as that of any body 
with the same shape. This is because the loss of part of the wavefront is 
the most important occurence, and the presence or lack of radiating currents 
does not change the pattern significantly in the region of the shadow. Mod-
elling a strut by an infinitely long conducting strip of the same width, the 
diffraction pattern can be found by assuming each edge behaves like the edge 
of an infinite plane: the struts are 0.73 m wide or 31A at 12725 MHz, so 
the approximation is good. Equations for the field from each edge are given 

•in [32, pp. 117-8], and figures 4.2(a) and 4.3(a) show the resulting patterns 
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when the strut is 2 m and 9 m above the reflector surface. The focal length 
is 10.97 m so this is a realistic range of heights. 

The recovered currents would not look like this. They must first be con-
volved with the smoothing function corresponding to the aperture resolution, 
Sz  = 0.59 m for the carrier maps in chapter 3. The results, after apply-
ing the convolution by discrete Fourier transform, are shown in figure 4.2(b) 
and 4.3(b). The amplitude has a wave extending well beyond the shadow, but 
at both heights the phase variation has mostly disappeared by the shadow's 
edge. If this behaviour is typical, holographic surface maps will not be dras-
tically affected by aperture blockage except in and very near the geometrical 
shadow. A proper understanding of blockage effects would nevertheless be 
very welcome. 

Subreflector Diffraction 

One blocking body which may be amenable to analytical study is the sub-
reflector of a dual reflector antenna. Its shape is well defined, although 
allowance would have to be made for adjustment of its position. Because 
the subreflector does not produce a well-defined beam, it is more efficiently 
analyzed using the Geometrical Theory of Diffraction [39] than by labori-
ous Physical Optics integrals. A complication is that subreflectors are often 
shaped to differ from the standard Cassegrain design, as discussed in sec-
tion 2.1, and they may have a 'skirt'. This can mean that the geometrical 
shadow of the subreflector made by the feed wave lies inside the edge of the 
main reflector. It has been found [30, 34] that the dominant feature of subre-
flector diffraction is a set of ring-shaped ripples in amplitude and phase near 
the edge of the aperture. 

Attempts up to now to compensate for these features have been uncon-
vincing. Instead, Ishiguro, et al. [29, 30, 31] did further holography using a 
feed at the prime focus. They showed, by the use of absorbers, that other 
important scatterers were structural members around the feed horn and the 
circular vertex plate (which was raised above the reflector surface). Another 
approach was taken by Kesteven [34]. The antenna was taken to be ideal at 
its commissioning following a theodolite survey, and holographic 'reference' 
maps were made which included the effects of subreflector and strut diffrac-
tion. Following adjustments to the surface at a later date another holographic 
map was made, and when the maps were subtracted the diffraction effects 
cancelled quite well, leaving residual surface errors. When diffraction effects 

94 



1.0 

0.5 

0.0 

100 

0 

-100 

-1.5 
	

-1.0 
	

-0.5 
	

0.0 
	

0.5 	 1.0 
	

1.5 

Distance from strip centre (m) 

100 

0 

-100 

-1.5 
	

- 1.0 
	

-0.5 
	

0.0 
	

0.5 	 1.0 
	

1.5 

Distance from strip centre (m) 

Figure 4.2: The diffraction pattern (a) of a plane wave 2 m beyond its normal 

incidence onto an infinitely long, conducting strip of width 0.73 m. The 

wavelength is 23.6 mm. In (b) the pattern has been convolved with the 

smoothing function corresponding to an aperture resolution Sz  = 0.59 m. 

The solid line is the amplitude relative to the incident wave (left-hand scale); 

the dashed line is the phase (right-hand scale in degrees). 
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Figure 4.3: The diffraction pattern (a) of a plane wave 9 m beyond its normal 

incidence onto an infinitely long, conducting strip of width 0.73 m. The 
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are so repeatable they may be characterized by direct measurement rather 
that computation. 

4.1.2 Other Systematic Errors 

Radiation Pattern Approximations 

Two other electromagnetic processes occuring in a reflector antenna are 
diffraction by currents at its edge and propagation from the surface of a 
deep paraboloid to the aperture plane. As discussed in section 2.1, these 
do not enter the simple Fourier transform relationship used for holography, 
although a correction for the latter was suggested. They were ignored in the 
analysis of the Mount Pleasant data. 

The Reconstruction Plane 

Related to the depth of the reflector is the ambiguity in defining a single 
'aperture plane' for the recovered currents. It was shown in section 2.3.2 
that surface features above and below the chosen aperture plane are confused 
by a convolution before being represented in that plane. This is because 
detailed features on the wavefront are lost while propagating to the plane. 
The recovery plane used in the Mount Pleasant analysis was halfway between 
the levels of the reflector vertex and rim, or 5.55 m from the point W. 

To estimate the error introduced by using only one plane, the analysis 
was repeated for a plane through the vertex and again for a plane through 
the rim, 3.82 m higher. The weighted rms aperture phase difference between 
the resulting maps was formed, giving for the four high-quality maps: 

Weighted rms A 
0.833° 
0.826° 
0.841° 
0.833° 

The average rms difference of 0.83° should be compared with the repeatability 
data in table 3.2, for which a single recovery plane was used. Although a 
significant effect, propagation errors are not dominant. 

Map 
C2 
C3 
B1 
B2 
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The Feed Phase Response 

Just as the feed illumination pattern dominated the aperture current am-
plitude maps, the feed phase pattern must be present in the aperture phase 
maps. It is unlikely that any feed presents a unique phase centre over the 
entire angle of illumination. Seen from the feed, the edge of the 26 m reflector 
is wide at 61° from the axis, and it is possible that a phase variation over the 
outer parts of the reflector caused a larger surface measurement error than 
the random errors shown in table 3.2. Some workers [51, 30] have measured 
the feed pattern in a separate experiment prior to holographic measurements, 
but this was not done at Mount Pleasant. 

Polarization of the Source 

Polarization has been mentioned in section 2.1, and usually it does not affect 
holographic measurements. For celestial sources, however, it can be im-
portant because the orientation of any source polarization will change with 
respect to the antenna during the course of observations. The result is a spu-
rious astigmatism which can be minimized by repeating the measurements 
with the feed rotated by 90°, as described in [51]. 

Pointing Errors, Satellite Motion, and Calibrations 

A constant pointing offset is not detrimental the the surface map, it simply 
causes a linear phase gradient which is removed in processing (section 3.2.2). 
Systematic errors from the ideal sampling grid have been mentioned already 
in section 2.3.1, and they can be minimized by judicious antenna scanning. 
Random pointing errors caused by wind and the drive system are studied in 
the next section. 

Satellite motion can be accurately compensated using position predictions 
as well as on-source calibration measurements: see sections 2.3.2 and 3.2.1. 
The same measurements also give information about changes in signal path 
length, which may occur in the cabling due to temperature chages and ca-
ble motion. In addition, they compensate for slow changes in the signal 
level. The taking of on-source calibration samples is the single most effective 
technique for removing systematic errors. 
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Gravitational Deformations 

Any large antenna is a massive structure, and the surface and feed support 
will change in shape under gravity as the antenna moves to different atti-
tudes. Modern antennas are designed according to principles of homology, 
so that the shape remains a paraboloid with a varying focal length and axis 
orientation. The Mount Pleasant antenna was not designed this way, and its 
deformations are especially difficult to study because it has an XY mount. 
Any part of the reflector's edge may be closest to the ground so deformations 
depend on both axis angles, unlike an AZEL mount where they should be 
independent of azimuth. 

This is not a problem of inaccuracies in a single holographic map, but a 
problem of interpretation of the map in the light of some theory of deforma-
tion. Maps for several antenna attitudes are necessary for a proper study. 
Because the deformations will be on large spatial scales they may be rep-
resented by low-resolution holographic maps, so a set of small maps would 
be sufficient and measurement time need not be excessive. Cain curve mea-
surements also may give insight into deformations if they have a symmetry 
matching that of the antenna's mount. 

There may, however, be small changes in the shape of the surface and feed 
support during the taking of a single map. These may result in changes in 
the focal length, for which the existing phase drift compensation will perform 
some remedy [51]. 

Cross-Coupling in the I.F. System 

If the identical i.f. systems for the main and reference antennas are not per-
fectly isolated, a spurious output will occur in each channel proportional to 
the power in the other channel. In fact, it is suspected that this appeared 
as the dominant 'random' error in the Mount Pleasant measurements, even 
though it is not strictly random in origin. A discussion is deferred until 
section 4.3.2. 

4.2 Random Errors 

4.2.1 Origins and Categories 

Random error or 'noise' cannot be predicted no matter how much is known 
about the system. It must be treated statistically. The dominant source of 
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Figure 4.4: A disturbed wavefront resulting from a medium with irregular 

refractive properties, and the corresponding rays which converge or diverge 

(after figure 13.15 of Thompson, et al.). 

noise in radio astronomy is the receiver, which produces a spurious output 

with a constant power per unit bandwidth. It is equivalent to the noise power 

available from a resistor kept at the 'noise temperature' of the receiver TR, 

and great efforts are made to cool receivers and so minimize this power. For 

Microwave Holography using celestial sources receiver noise can limit the 

dynamic range of the measurements. A satellite, as will be seen, gives such 

a high antenna temperature that receiver noise can be less important than 

other sources of error. 

Propagation through the neutral and ionized atmosphere affects the in-

coming signal in several ways. The refractivity of water vapour is much 

greater in the radio region than in the optical region, causing absorption and 

propagation delay. Variations in water vapour density rather than in temper-

ature are the dominant cause of phase fluctuations across an initially plane 

wavefront. The rays corresponding to a disturbed wavefront will converge or 

diverge as illustrated in figure 4.4, and amplitude scintillation will result in 

addition to that caused by changes in absorption. Continuing the ray model, 

the angle of arrival will also fluctuate as the ray path varies. In the ionosphere 

the electron density causes absorption and refraction, although most of the 

associated effects scale with frequency as l/-2  and are small above several 

GHz or so. Propagation effects in the atmosphere are discussed extensively 

by Thompson, et al. [82, chap. 13] in the context of VLBI. 

For a small baseline interferometer the rms phase difference due to the 
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neutral atmosphere increases with separation to a maximum at a distance of 

a few kilometers. Scale sizes in ionization irregularities are predominantly a 

few kilometers or less. Baselines used for holography are very small on these 

scales, so the signal at each antenna passes through almost identical pieces 

of atmosphere, and phase fluctuations are expected to be small. Angle-of-

arrival variations may be more important; however, at 22 GHz they were 

estimated by Morris, et al. [51] to be of the order of 1" rms, which is less 

than the 2.9" pointing resolution of the 26 m antenna. 

In order to quantify their effect on the recovered aperture currents, it is 

helpful to categorize these and other random errors according to their effect 

on the measured complex far field. The main distinction is between additive 

and multiplicative errors. Additive errors have the same expected magnitude 

at all points of the far field map. A multiplicative error such as a change in 

signal power has a smaller absolute magnitude when it occurs in a sidelobe, 

because the antenna output changes less than it would if the signal were 

received in the main beam. Thus an additive error should be much more 

detrimental to the aperture recovery than a multiplicative error which has 

the same expected magnitude when on-source. 

Denote the true far field pattern by A(u, v), and let a particular measured 

field be A' (u , v) on a discrete grid of (u, v) points. Random errors will produce 

a different A' (u, v) for every measurement. Four categories of error will be 

modelled as follows: 

1.Additive errors. Sources are the receiver noise temperature and the 

quantization noise. At Mount Pleasant, at least 40 polarimeter U and 

V samples were averaged at each grid point, while the on-source level 

jA(0, 0)1 was about 4000 counts. Thus the quantization noise was an 

insignificant 104 dB down or less. Receiver noise adds an independent 

error to each component of A(u, v), so denote the error by e = e -Fjej 
and 

A' (u, v) = A(u, v) e. 	 (4.1) 

2.Amplitude errors. The satellite transponder's output power can be 

maintained by AUSSAT at a very steady level, so any substantial fluc-

tuations in jA(u, v)1 above the receiver noise can be attributed to at-

mospheric scintillation. They are multiplicative in nature, so let p be 

a small real number and 

A' (u , v) = A(u, v) pA(u, v). 	 (4.2) 
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Figure 4.5: Representations in the complex plane of (a) a complex additive 

error, (b) an amplitude error, and (c) a phase error. A' is the measured value 

of the true far field A at some point. 

3.Phase errors. Those due to the atmosphere are expected to be small, 

but there may also be non-systematic changes in the signal path length 

following the antennas (particularly in cables). A phase error is always 

multiplicative, and if its magnitude 4.  is small 

	

Ai(u, v) = A(u, v)ele A(u, v) j Vi(u, v). 	 (4.3) 

4.Pointing errors. The servo error of the drive system is one source, 

and under windy conditions this can be large. The angle-of-arrival 

fluctuations described above are also, in effect, pointing errors. If the 

error is in the u direction and v in the v direction a first order Taylor 

approximation can be used to give 

A 
A' (u, v) = A(u p, v v) A(u, v) 

aA 
+i'— 	 (4.4) 

ay 
(u,v) 	 (u,v) 

 

Representations in the complex plane of error types 1-3 appear in figure 4.5. 

In this model the quantities er, ei, p, it, and v all have zero-mean 

Gaussian statistics. The errors are statistically independent from point to 

point and from map to map. This may not be a realistic assumption in 

some cases; for example, the pointing servo error would be highly correlated 

between successive grid points. Nevertheless, the assumption makes finding 

the level of error in the aperture domain a tractable problem, and the results 

are useful for comparative studies as long as some caution is used. In the rest 
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of this section, the effect of each category of error on the recovered aperture 

phase is deduced, and the results are tested by a numerical simulation. This 

is far better than using a simulation to derive empirical formulae. Ultimately, 

in section 4.3, the data will tell whether this method is useful. 

4.2.2 Propagation of Errors to the Aperture 

Errors propagate to the estimated aperture current function through the 

discrete Fourier transform. When the errors are additive as in equation 4.1 

it is usual to use noise power considerations to estimate aperture errors. For 

other types of error, however, this is not possible and a different analysis 

must be used. 

Using the notation of section 2.2, consider a set of far field measure-

ments at discrete points u = m6u  and v = n8„. The index ranges are 

in = —Lu,...,-FL„ and n = —L„,...,-FL„, and the sampled and truncated 

far field map A(m, n) is zero beyond this range. For a particular experiment, 

let the measured map differ from the true field by t(m, n), giving a change 

of e(x, y) in the recovered aperture currents a(x,y): 

Ai(m,n) = A(m,n) t(m,n) 

a' (x , y) = a(x , y) e(x, y). 

By the Fourier series expression for a(s, y) in equation 2.26, 

m=-Foo n=+co 
e-I-j2r(bumx-1-6vnY) su  sv. e(x, y) = E E E(m,n) 

m=—oo n=—oo 

The autocorrelation theorem for Fourier series gives 

Mi=4-co ni=4-co 
le(x, y) 12 = 8u  28v2 E 	 E c{t}( m,,n,),+,2,(sum,x+6vn,y)  

n'=—oo 

where 
m=-1-oo n=+co 

C{E}(in', n') = E E (m, n)E(m 	 ,n n'). 	 (4.6) 
m=—oo n=—co 

This is the autocorrelation function of the error at offset (m', n'). 

Each experiment will have a different error function t(m,n). Consider 

the expected value of the aperture current error over all members of a large 

ensemble of experiments. Following, for example, MacDonald [44] each aper-

ture point (x, y) has: 

m'=-E00 n1=-1-co 

(le(X) Y)12
) = 8282 E 	E (c{t}(mi, 7.11)) e+3.2.7(6"infr+6'n'10  • 

mi=—co n'=—oo 

(4.5) 
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Now the assumption that errors at different far field points are independent 

implies that the autocorrelation has expectation value zero for all but zero 

offsets: 

(C{E}(m1, n')) = 0 except when m' = n' = 0. 

This applies even when the error involves A(u, v) in equations 4.2 to 4.4. The 

sum reduces to a single term, and 

( I e(x 012) = S262  b (C{E}(0,0)) 

or, taking the square root, 

rms lel =  

The (x, y) dependence has been dropped: aperture current errors are constant 

across the aperture if the far field errors are uncorrelated between different 

points. 

Additive and Multiplicative Errors 

By equation 4.1 additive complex errors have the form E(m, n) = c, so using 

equation 4.6 

(C{E}(0, 0)) = (mmt: nnti:1612) = NuNv (1612) 

SO 

.rms lel = buSvi NuN, rms lel. 	 (4.7) 

Amplitude errors have the form t(m,n) = pA(m,n), and now the sum 

becomes the norm of A: 

(C{E}(0, 0)) = (mm -_,:c:nnflpA(m,n)12) 

m_ (p2)mic°  n=t7 IA (m, n)12 

= (p2)  

Taking the square root and using equation 2.29, 

rms lel = Hall rms p. 	 (4.8) 

Phase errors, with "E(m, n) jeA(m, n), can be treated in exactly the same 

way, giving 

rms lel,..•2 Hap rms 
	

(4.9) 
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aAl ÔÀ 
P 	 V  au I(m,n) 	 TT'(m,n) 

a-  71 2 FA" 2  
aU 	

tv2 
aV 

n=+co 

m=-co n=-oo 

2 

(.12) 

Pointing Errors 

Pointing errors require a bit more work. By equation 4.4, 

OA 	 OA 
.t(m, n) 	 H 	v 

(IV(n,n)   

where the tilde over the derivative functions indicates their evaluation at 

discrete points. Thus 

(C{E}(0, 0)) 
	 athA,  v  :11(0,0)) 

(4.10) 

Here the cross terms have been eliminated using the independence of IL and 

which means (p* v) = (v*) = 0. 

The Fourier transform relationship between a(x,y) and A(u, v), equa-
tion 2.25, will now be exploited. By the Derivative Theorem, 

aA aA re 0 lop 

v 	

[ — 
j2rxa(x,y)]e —i27(6. mx+6„ny)  dx dy, 

(m6.,n6) 	 —°°  
au 

 

but a(x,y) = 0 beyond the aperture, so write 

	

aA 	 +1 + 1 

	

6.u8v — 	 = Subvf uy n 7' - 

	

au 	 , 	 , [-127rxa(x 
(m,n) 	

, Ole-i2r(Sumx+6) dx dy. 

The right hand side is a Fourier series integral, and the Parseval relation 

gives 

Similarly, 

Su28v2  

S 2  VU  ,5 2  . 

- -a- - 2 

2 

= 4r2lIsa112. 

= 

aU 

-5-A- 

aV 
Substituting these expressions into equation 4.10 gives the final result: 

rmslel 	 27r  VIIxall2rms2P 	 IlYall2rms2v. 
	

(4.11) 

As for additive and multiplicative errors, the rms aperture current error due 

to pointing errors is expressed in terms of integrals of the aperture current. 

Note that in this case the integrals Pall and Ilyall will be strongly dependent 

on the aperture illumination function, decreasing rapidly as the edge taper 

increases. 
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IAI 	 1 	 1 
R.„ = 	  Ra  = 	 itp = 

rms C MIS p rms 1E1 
(4.13) 

4.2.3 The Signal-to-Noise Ratio 

The level of random errors or noise is usually specified by the signal-to-noise 

ratio in the on-source position, denoted by 7Z. If there are several types 

of noise present their effects on the recovered aperture differ, so more than 

one signal-to-noise ratio must be specified. First, a strict definition of it is 

needed. Let the instantaneous error E add to the on-source response without 

noise A to produce a measured response A'. The signal-to-noise ratio will be 

defined by 
lAl  

R= 
rms1E1 

IAI 

rms IA' — 
(4.12) 

For additive and multiplicative random errors R can be derived from the rms 

values of quantities lel, p, and C. Consider equations 4.1 to 4.3: 

1.Additive errors: E = 	 rmsE = rms lel. 

2.Amplitude errors: E = pA = rms E = 'Alms p. 

3.Phase errors: E jA = rmsE 

The it due to each error in isolation, denoted by R„, '1Z0, and Rp respectively, 

is thus 

In general all these errors will be present to a degree. The total error is 

given by 

E e F pA jCA 

from which it can be shown that 

1 	 1 	 1 	 1 
—77Zt  = 	 —7Za2  Rp2.  

This overall signal-to-noise ratio is not a very useful quantity because it 

cannot be related to the aperture current errors. A more sensible definition 

for Rst  is the additive it which would be required to account for all aperture 

errors rms lel if R. = Rp  = fu = ft, = 0. This will be followed up in 

section 4.3.3. 

Before repeating the equations for rms lel in terms of these ratios, it is 

convenient to express pointing errors in a relative fashion too. Define the 

fractional pointing errors 

TMs/1 	 MB V 
fu  = - and fv  = 	  

ou 6,, 	• 
(4.15) 

(4.14) 
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Now the equations in section 4.2.3 can be written as follows: 

	

Additive : 	 rms lel 
	 45,05,,VNtiNt,  IA(0,0)1 	 (4.16) 

	

Amplitude : 	 rms lel _ Ilall 
	

(4.17) 

	

Phase : 	 rms lel 
— 

Ilall 
	

(4.18) 

	

Pointing : 	 rms lel 
	

271Aisaii28u2  fu2 	 IlYa11245v2 
	

(4.19) 

4.2.4 Aperture Phase Errors 

For practical purposes, the uncertainty in aperture phase is of interest. This 

is determined at each aperture point by the phase between a and a', which 
will vary with the magnitude and phase of the complex error as shown 

in figure 4.6. If the error were always perpendicular to a the rms deviation 
of aperture phase would clearly be crgs = rms I al/lal, using a small angle 
approximation. If instead the phase arg ë is distributed uniformly in [—r, -Fr] 

this is reduced by a factor and so 

rms  lel 

crcb 	 N/ lal 
(4.20) 

In section 4.3 it is shown that a uniform phase distribution for e can be as-
sumed. Thus equations 4.16 to 4.19 can be used directly to find uncertainties 

in recovered aperture phase and hence in surface error. Section 2.4 shows 

how cro  affects the estimation of panel positions. While rms e is constant over 
the aperture for random far field errors, act, increases towards the aperture 

edge for a tapered illumination. This effect can be seen in table 3.2. 

It will be helpful to find the average phase uncertainty over a region of 

the aperture. For example, this can be compared to the rms phase differ-

ence between independent maps in section 3.3.2. How should the current 

amplitude la(x , y )1 be averaged to form the denominator of equation 4.20? 

A suitable method comes from equation 3.6 for the rms phase difference and 

the argument preceeding it. For continuous functions this time, the equation 

can be written 

r ms = 
fla
p 
la(X, )126.2(x, y) dx dy 	 flap  dx dy 

fl, la(x 012  dx dY 	 614' NI ff, la(x, 012  dx dy 
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Figure 4.6: The uncertainty in aperture phase acb is determined by the mag-

nitude and direction of the complex error Z. 

where criaia  = A/Dc with act, = 	 But by equation 4.20 k = rms lelAa 
and the final factor above is lirms Pal. Thus 

rms lel 
rmsL = 	  

rms 'al 

can be compared directly with the results of section 3.3.2. To represent the 

uncertainty in aperture phase rather than phase difference, define 

rms lel 

act' 	 rms jai' 

This is the appropriate analogue of equation 4.20. The average can be taken 

over all or part of the aperture as desired. 

The Uniform Illumination Case 

To illustrate the way in which the equations for rms lel and als can be used, 

consider a circular aperture of radius r, uniformly illuminated with current a: 

a(x,y)= a ej̀I'(''Y)  for x2  + y2  < 

Assume that a(x,y) a(x,y) (ignore the convolution) and that the phase 

profile 0(x, y) is always close to zero. Then the on-source field and the 

(4.21) 
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aperture norms are 

A(0, 0)flap  a dx dy 	 = rr2a 

11(1112  = 8.45v ff, p a2  dx dy 	 = bus1ri2a2 

11xall2 	 by& ffar,x2a2  dx dy = lby57rr4a2  

11Y a 112.z.s_ by& ffsp  y2a2  dx dy = ibuborr4a2. 

For a circular aperture by  = by  = K/2r. Making this substitution and using 

equations 4.16 through 4.20, the phase uncertainty due to each error type is 

	

Additive : 	 cro  = 	 (4.22)  
R. 

N/Tr K 

	

Amplitude : 	 o= 	  

K 

	

Phase : 	 cro  = 	 (4.24) 
2 N7-R.p  

7r 	 2  f 
Pointing : 

64)  = 	 4 	 • 	
(4.25) 

Pointing errors have been assumed to be equal in u and v. 

The first equation is the classical Scott and Ryle result [76]. It shows 

that the pointwise phase uncertainty increases for larger map sizes. This 

is because wide-angle far field measurements, while giving a higher density 

of points in the aperture, are increasingly dominated by the constant level 

of additive noise. On the other hand, multiplicative random errors have an 

effect which is independent of the map size. The same is true for pointing 

errors, but remember that act, will be much smaller for a realistic, tapered 

illumination because of the nature of Jixahl  and Ilya II. Further on, in table 4.2, 

these uniform illumination estimates are compared with a full evaluation of 

the integrals for the 26 m antenna. 

4.2.5 Numerical Evaluation and Simulation 

Using a Discrete Fourier Transform 

The aperture current estimate a(x,y) is evaluated at discrete points x = pbx  

and y = qby  using an inverse discrete Fourier transform, forming a,),(p,q). 

For an error analysis it is necessary to have equations for rms IeDFTI.  By 

7r K2  VAT,  AL 
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equation 2.28, where the inverse DFT includes a normalization by 1/NUN,,, 

a(x, y) = 6tANuNv aDFT(P, q) 

Clearly 

rms I e(x, y)I = bubvNuN. rms I eDFT(P, q)I. 

The norm of a can be estimated by approximating the integral by sums over 
discrete x and y: 

1 
6.054-1-5- 7.1-1-  1 	 r67  la (x, y)I2  dx dy _ 

1-47, 	 r47, 
p=+Lu  

r'd Subv E E Igo., 0012  8, 
p=-Lu q=-L. 

p=-FLu q=i-Lu  

Su38v3  Nu2  1\4245A E E aDFT(p7 01 2  
p=-L q=-L. 

= au  2  82 NuNvilaprrir 

The terms were simplified using NuSub. = Nv6051, = 1. To proceed fur-

ther an assumption is required: that for the purposes of noise calculation 

a(x, y)c.s_d a(x, y), ignoring the convolution discussed in section 2.2.2. Unless 

the recovered currents themselves are badly corrupted, this has a negligible 

effect on the estimated error. Then 

paDFT,.2  

	

Xall2 	 II Xall2 	 5u25v2  NuN.S.211 

	

baII 2 	 v2  NuNo5y211qaDFT112' P=j  110112  

Substitution into equations 4.16 to 4.19 yields 

1 	 IA(0, 0)1  

	

Additive : 	 MIS leDFTi#..# /
NuNv R--- v 	 . 	

(4.26) 

Amplitude : rmsleprri —' ovt_AilaDFTIRL a  (4.27) 

	

Phase : 	 rms IeDFTI ''-' 	
iiaDFT  II  

— ViVu  Nu  7Z37
(4.28)  

	

Pointing : 	 rms I eDFT I r.,  27r,/baDFT 
 112  fu2 	 IlqaDFT112./v2  

V Paru3Nt, 	
+ 

Nu  NI)  3 . (4.29) 

The expressions for aperture phase uncertainty translate directly to the dis-

crete case: 
rms I eDFT I  

Cr(1)  — 	 laDFTI 
(4.30) 

110 



and 

where 

0.0 	 rmsIeDFTI  

D  

viins I

aDFTI  

(4.31) 

rms laDFTI = 	 P  
Ea laDFT(P, 012  

Eap 1  

4.2.6 Testing by Simulation 

The usefulness of equations 4.26 to 4.29 depends on the applicability of the 

noise models and the practicality of isolating each signal-to-noise ratio. Their 

correctness can be tested by numerical simulation. 

Given a simulated complex far field on a grid of map points, it is simple 

to use computer-generated random numbers to add errors of the additive, 

amplitude, and phase types. To include a pointing error it is necessary 

to sample the simulated field at a much closer spacing than the Nyquist 

interval A/D. This can be done by Fourier interpolation. Far field samples 

at points adjacent to the correct sample positions are chosen to represent 

pointing errors in discrete steps, the direction and number of steps being 

selected randomly. This scheme leads to a program with the following outline: 

1.Produce an aperture function in an array of complex numbers. 

2.Enlarge the array with zeros to many times its size. 

3.Compute the far field pattern by a forward DFT: the 'padded' array 

will cause samples to be interpolated for pointing error simulation. 

4.Generate a set of random Gaussian deviates, and use these to add a 

chosen type of error to the far field pattern. 

5.Compute the 'recovered' aperture function by an inverse DFT, and 

compare this with the original function. 

6.Repeat the last two steps many times to accumulate the rms error at 

each aperture point. 

7.Display the error statistics and compare with those predicted by the 

appropriate equation. 

For simpler programming and display, the simulation can be performed in 

one dimension. Equations for rms I eDFT I are obtained by setting N„ = 1 in 
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Figure 4.7: A simulated one-dimensional aperture current function. The 

illumination taper is —12 dB and the weighted rms phase is 18.9°. The 

horizontal scale is in metres. 

the two dimensional equations. This is just as effective a test as a full 2D 

simulation. 

The numerical experiment had these parameters, chosen to match the 

carrier maps described in chapter 3: 

wavelength: A = 23.6 mm 

diameter: 	 Ds  = 25.9 m 

sampling: 	 &= 7.50 x 10 giving ic = 0.825 
data size: 	 Nu  = 53 giving bz  = 0.593 m. 

An aperture current function was produced with an arbitrary phase profile in 

the form of 15 linear segments to represent panels. The aperture illumination 

was a 'parabola on a box' of the form 

ra(x)I = 1 — c (-
2x )2 
" where c =1-1077. 

Ds  
(4.32) 

The edge taper T was set to —12 dB, and the weighted rms phase was 18.9°. 

The amplitude and phase profiles are shown in figure 4.7. 
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Each category of noise was investigated separately, with equal signal-to-
noise ratios R.„ = a R-p = 100 and fu  = 0.048 for pointing errors (h = 0 
of course). Steps 4 and 5 were repeated 1000 times to accumulate statistics 
on eDFT (p) at each aperture point x = Or . Figure 4.8 shows the result-
ing aperture phase uncertainty cro  as a function of fractional radius 2x/D. 
The predicted uncertainty is graphed, and matches the simulation well. To 
demonstrate the validity of equation 4.30 for aci„ the rms phase of eDFT (p) is 
shown in figure 4.9. If arg eDrr (p) does indeed follow a uniform distribution 
in [--71-,+r] its rms would be ir/0 or 104°. This level is graphed, and again 
the agreement is good. 

It is important that the predictions are reliable for any experiment. The 
wavelength, diameter, and sampling parameters were changed one-by-one 
and the simulation repeated, and the predictions remained of a similar qual-
ity. Equations 4.16 to 4.19, and their discrete analogues 4.26 to 4.29, are 
thus reliable predictors for random errors in Microwave Holography or any 
experiment where a function is estimated by measurements of its Fourier 
transform. 

4.3 Measuring the Random Errors 

In this section it is shown how the signal-to-noise ratios and pointing errors 
of the previous section were estimated by monitoring the on-source signal. 
An assumption required is that the random errors in .4.1 (u, v) do not depend 
on the antenna's position except as indicated by the defining equations of 
the error categories, 4.1 to 4.4. That is, all effects of scanning the antenna 
must be accounted for as systematic errors. This is not entirely possible: 
for example, pointing errors while driving at a constant rate are difficult 
to measure, and cable motion may be important to the phase. In the end, 
however, comparisons with the repeatability of the Mount Pleasant maps 
justify this approach by showing that the important errors are adequately 
predicted. 

The on-source signal was monitored by sampling it for unbroken periods 
of several minutes. Holography samples were spaced unevenly in time: they 
were almost contiguous while scanning but between scans were long gaps. It 
is assumed that in either case the random processes behind the quantities 
e t , ei , p, 4, p, and v produced no correlation: that is, their spectra were 
'white'. Thus the on-source data had to be examined for drifts and correlated 

113 



0.0 I 	 0 
- 1.0 -0.5 0.0 	 0.5 	 1.0 	 -1.0 -0.5 0.0 	 0.5 	 1.0 

1.0 - 

0.2 
(c) 

     

6 1.0 - 

  

4 

2 

 

0.2 - 

  

   

  

(b) 

  

     

0 i  	 0.0 	  
- 1.0 -0.5 0.0 	 0.5 	 1.0 	 -1.0 -0.5 0.0 	 0.5 	 1.0 

Figure 4.8: A numerical investigation of the effects of four categories of 

random error: (a) additive, (b) amplitude, (c) phase, and (d) pointing. The 

aperture phase uncertainty is graphed in degrees as a function of fractional 

radius 2x/D. The predicted uncertainty is graphed for comparison. 
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Figure 4.9: The rms phase of the error phasor ei,,,T(p) for the numerical sim-

ulations in the previous figure, graphed in degrees as a function of fractional 

radius 2s1 Dr. The level of 104° expected for a uniform phase distribution is 

graphed for comparison. 
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variations, and these explained and removed before estimating noise levels. 

4.3.1 The Data and Pointing Errors 

Several data runs were taken, each of 1024 samples at 1 s intervals, or 17 min 
in length. Since scans making up a map began roughly 4.5 min apart, the 
runs included frequencies low enough to be well-resolved by the inter-scan 
calibration points. Most maps had a 2.5 s integration time for each grid 
position, so the runs included all frequencies that weren't smoothed out by 
this time constant. Each of the 1024 samples had an integration time of 
0.75 s: this would have governed the envelope of the noise power spectrum. 
However, it was not a critical parameter because, as will be seen, fluctuation 
levels were not principally determined by the integration time. 

Three runs were recorded while observing the 12725 MHz carrier: one 
directly on-source, one slightly off at 2 dB down from the beam maximum, 
and one 30  off-source. This is the position used for zero level calibrations 
between scans. The intention was that the steep slope at the sides of the 
main beam would make the output at 2 dB down very sensitive to pointing 
errors, giving an estimate of their magnitude. Multiplicative errors would be 
most important in the on-source data, while the off-source data, consisting 
only of the additive errors remaining when A(u, v) 0, would measure the 
receiver noise. A similar set of three runs was recorded for the 12373 MHz 
beacon, but only the carrier data will be displayed here. 

Figure 4.10 shows the cosine and sine outputs (Re A and Im A) calculated 
from U and V as a function of time for the on-source run. The corresponding 
amplitude and phase are also shown. The cosine and sine are dominated by 
a slow phase drift, but the amplitude has a clear periodic feature of roughly 
220 s period. This was mirrored exactly by the Ix  (26 m power) output. 
The rms deviation of the amplitude is 80 counts on an average level of 4390 
counts, or 1.8%. 

The 2 dB down run is shown in the same way in figure 4.11. It shows a 
much stronger periodicity in amplitude: the rms is 219 counts on an average 
of 3473 counts, or 6.3%. This suggests that the cause is a cyclic pointing 
error in both runs, which is reasonable behaviour for a servo-controlled drive 
system. A considerable range of periods would occur, so the the shorter 175 s 
period in the second run is not surprising. Nearly the entire amplitude rms 
is due to the cycle, so, in conjunction with the slope of the beam at the point 
where data were taken, it gives the pointing error. The slope was estimated 
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Figure 4.10: Cosine output, sine output, amplitude, and phase as a function 

of time for the 1024 s on-source data run at 12725 MHz. Units for the vertical 

axes are counts and degrees. 
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Figure 4.11: Cosine output, sine output, amplitude, and phase as a function 

of time for the data run taken 2 dB down from the peak of the main beam 

at 12725 MHz. Units for the vertical axes are counts and degrees. 
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at 12725 MHz and 12373 MHz from the beam maps in figures 3.18 and 3.19. 

Summarizing the results at these frequencies: 

12725 MHz 	 12373 MHz 

Amplitude variation 

Slope of beam 

Pointing error 

—2.05 ± 0.55 dB 	 —2.02 ± 0.45 dB 

0.0055 ± 0.0005°/dB 0.0064 ± 0.0006°/dB 

±0.00300 	 ±0.0029° 

The pointing error was similar for both 2 dB down runs. If it is assumed 

that the same pointing error will exist at right-angles to the gradient, then 

rms = rms v 5.1 x 10-5= f„ = f„ 0.069. 

These can be used to predict aperture domain errors with two fairly strong 

suppositions: that the servo system introduces similar errors when the an-

tenna is in motion, and that the correlation of pointing errors at successive 

grid points can be ignored. Clearly the results should be treated with cau-

tion, but at least they provide a handle on the magnitude of the effect. They 

will be given later. 

The problem now remains of separating the pointing error effect from 

the on-source amplitude variations. A clue is had to the nature of the low 

frequency drift or 'signal' as distinct from the 'noise' by plotting the power 

spectral density (PSD) on a logarithmic power scale. The result is shown sep-

arately for the amplitude and phase of the on-source data in figure 4.12. It is 

legitimate to consider these independently because fluctuations in amplitude 

and phase are supposed to arise from different atmospheric and instrumen-

tal causes. It can be seen that at very low frequencies the almost-linear 

noise spectra disappear beneath a sharply rising feature. This is assumed 

to contain pointing errors and other drifts which are resolved by inter-scan 

calibration points. In order to find the noise rms in each spectrum, a filter 

must be designed to remove this feature. 

'Wiener' filtering is a suitable technique when approximate models are 

available for the signal and noise components of a spectrum [61, sect. 12.6]. 

If IS(f)I2  is the signal PSD and IN(f)I2  is the noise PSD, the Wiener filter 

is given by 

IS(f)I2  
(1)(f) = 

IS(n12  iN(i)12.  

This can be multiplied by the spectrum to isolate the signal. It does not 

require accurate representations of the noise and signal spectra. It simply 

provides a sensible interpolation between the extreme cases 41)(f) = 0 when 
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Figure 4.12: Power spectral density of the on-source amplitude and phase 

data. The frequency resolution is 0.98 mHz, determined by the data length 

of 1024 s. The 'signal -I- noise' and 'noise' models are shown as dotted lines. 
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noise dominates and (I)(f) = 1 when the signal dominates: one which mini-
mizes the rms difference of the filter output from the uncorrupted signal. A 

conservative cut-off frequency helps to prevent noise being mistaken as signal, 

which would cause the noise rms to be under-estimated. From figure 4.12 

a cut-off of 19.5 mHz (20 bins) was decided upon, and an hyperbola fitted 

to the signal spectrum to meet the linear noise spectrum at this frequency. 

These models are shown on the plots. The robustness of the technique was 

tested by increasing the cut-off frequency to 29.3 mHz (30 bins). At most, 

this decreased the noise rms by 25%, usually much less; this is an acceptable 

level of accuracy for a comparative study. On the other hand, a cut-off of 

9.8 mHz (10 bins) failed to remove the periodic pointing drifts. 

Figure 4.13 shows the remaining 'drift' components after applying this 

filter to the amplitude and phase spectra. Subtracting these from the orig-

inal data gives the 'noise' components which are also shown. Separate rms 

deviations a can be found for each graph. The noise components are free 

from pointing effects, and an  is probably dominated by amplitude and phase 

multiplicative errors. Before this is assumed the off-source data must be 

examined for the level of additive noise. 

4.3.2 Additive and Multiplicative Errors 

Slow drifts should be removed from the off-source data as well, because zero 

levels are checked before each scan of a holography map. Two cut-off frequen-

cies were tried, one on either side of that used for the on-source data, and the 

rms noise deviations compared to see if there was a substantial change. It is 

appropriate to treat the cosine and sine outputs separately for additive noise, 

since the U and V outputs should be independent for a complex correlator 
subjected to thermal noise [82, p. 161]. The rms deviations in count units 

for the off-source runs were: 

Cut-off 9.8 mHz Cut-off 29.3 mHz 

Cosine, 12725 MHz 4.30 4.00 

Sine, 12725 MHz 3.50 3.29 

Cosine, 12373 MHz 4.44 3.76 

Sine, 12373 MHz 4.25 3.89 

These values are reasonably steady, so a consensus of 4.0 counts was chosen: 

a,. = rmse 	 4.0 

cri  = rms ei 4.0 
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Figure 4.13: Amplitude drift and noise, then phase drift and noise for the 

12725 MHz on-source data run obtained by Wiener filtering the PSD with 

a cut-off frequency of 19.5 mHz. Units for the vertical axes are counts and 

degrees. 
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where e = Er+ jE1 is the complex error (equation 4.1). Figure 4.14 shows the 
drift and noise components at 12725 MHz for the sharper filter. 

A question arises: with both carrier and beacon signals amplified to give 

similar output levels, why was the receiver noise not much greater in propor-

tion for the weaker beacon signal? Another strange thing is that the cosine 

and sine outputs can be seen to have a very high, negative correlation. This 

is not the correct behaviour for receiver noise. In fact, the receiver noise is 

expected to be at a lower level by the following argument: even the beacon 

signal would give an antenna temperature TA much greater than the system 

temperature Ts. The minimum detectable signal for a correlator with 30 kHz 

pre-detection bandwidth followed by a 0.75 s integration is 

V-2-  Ts 
ATA = 	 = 0.0094 Ts < 0.0094 TA. 

V30 x 103  x 0.75 

Now TA cx 3415 counts for the on-source beacon signal, giving a noise level 

of ATA < 32 counts. Thus it is likely that the receiver noise was well below 

the 4.0 count level obtained above. 

The correlation of the outputs suggests that cross-coupling in the i.f. chain 

might be the cause of the signal: even when off-source the reference channel 

remains at full strength. The isolation of the 10.7 MHz board in figure 3.2(a) 

was measured by applying a signal to one input and observing the ratio of 

the direct output to the output of the other channel. It was found that: 

Isolation A 	 R: 55 dB 

Isolation R 	 A: 47 dB. 

All on-source and off-source data runs were recorded with the 15 dB A atten-

uator switched in; measurement gave the gain difference of the two channels 

as 13.5 dB in this case. To give similar on-source outputs the R signal was 

thus 13.5 dB down from the A signal, and the level of cross-power in the A 

channel was 60.5 dB down. For on-source levels of roughly 4000 counts this 

corresponds to 3.8 counts, which is close to the observed off-source rms and 

would be the same for carrier and beacon measurements. 

There are difficulties with interpreting a cross-coupling effect as a random 

error. A simple model for non-reactive cross-coupling has 

a(t) = A cos(wt 0) XRR cos(c)t) 

r(t) = Rcos(wt) + X AA cos(wt + 0) 

for the signals reaching the polarimeter, instead of the simpler equations in 

section 3.1.5. Here XA = —55 dB and XR = —47 dB. Neglecting terms of 
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Figure 4.14: Cosine drift and noise, then sine drift and noise for the• 

12725 MHz off-source data run obtained by Wiener filtering the PSD with a 
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order XAXR and setting as, = Gp = 1, the smoothed polarimeter outputs 
are 

U'= U + .IXRR2  cos a -I- XAA2  cos a 
V'= V +XRR2  cos )3 + XA A2  cos /3 

where U and V are the original outputs. In the sidelobe regions A2  gets small 
rapidly and a constant vector offset of magnitude XRR2  is left, which by 

the argument above is about 3.8 counts. Figure 4.14 displays fluctuations of 

this magnitude, not a constant offset. Some more investigation is required, 

although the correlation of the outputs remains a strong argument in favour 

of cross-coupling as the major contributor. 

Now the additive noise can be separated from the on-source amplitude 

and phase noise. Let the on-source response be A' with phase 4/. The effect 

of rmse = rms ei = a on IA'l and 0' can be shown, in the strong signal 

case [82, pp. 259-62], to be 

alAil '2d- a 	 where a '2-d 4.0 and 	 4390. 

The 12725 MHz data is used as a example. This additive component can be 

subtracted quadratically from the rms values indicated in figure 4.10. Thus 

the multiplicative amplitude error was 

r=s V16.02  — 4.02  = 15.5 counts 

and the multiplicative phase error was 

	

co, ce V0.602 	
( 1 8 0 X 4.  O)2 = 0.60°. 

To find the signal-to-noise ratios defined in section 4.2.3, note that let 

follows a Rayleigh distribution for which 

	

rms let = 	 = 

Incidentally, this is different to 

= V(1612) — (102  = 	 — 712  C r  • 

Thus, by equation 4.13, 

iAl 	 4390  
Rn = = 776. 

rms lel —  

erre :Y. a/INI 
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Quantity Carrier Beacon 

ii 

4.; 

776 604 

283 148 

96 62 

0.069 0.069 

Table 4.1: Signal-to-noise ratios and fractional pointing errors estimated from 

on-source and off-source data runs, for both the carrier signal and the beacon 

signal. All quantities are dimensionless. 

Given A' = A + pA and cb' = + e corresponding to equations 4.2 and 4.3, 

the amplitude and phase rms deviations can be evaluated: 

	

alAil = IAIA'12) 	(IA11)2  = IAIrmsP 
= V(0/2) _= rms e. 

Thus, again by equation 4.13, 

1 	 4390 
= —rms p 5.5 

=283 

1 	 180 
R.p  = 	  

rms 	7r x 0.60 =96. 

Similar calculations can be done for the 12373 MHz data. A summary of the 

results is in table 4.1. 

4.3.3 Estimated and Actual Aperture Errors 

The estimates of R. - n Ra 14 ftl7 and f„ can be inserted straight-away into 

equations 4.26 to 4.29, and the average aperture phase uncertainty can be 

found with equation 4.31. Using equations 4.22 to 4.25 the phase uncertain-

ties assuming a uniform illumination can also be found, and it is interesting 

to compare these. Table 4.2 shows the phase uncertainty according to both 

methods for each error category and for each signal source. The additive 

noise dominates all other sources, if the random error model is correct, even 

though its signal-to-noise ratio is very much the greatest. As expected, the 

effect of pointing errors is over-estimated by a uniform illumination analysis. 

Notice that the effect of additive noise is also over-estimated in this case: the 

Scott and Ryle equation neglects the taper both in finding rms leDFTI and in 
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ar7 from: Carrier Map AV1 Beacon Map AV2 
Additive 1.27° (1.48°) 1.400  (1.800 ) 
Amplitude 0.10° (0.10°) 0.19° (0.19°) 
Phase 0.30° (0.31°) 0.45° (0.46°) 
Pointing 0.07° (3.72°) 0.07° (3.52°) 
Total 1.31° 1.48° 

Table 4.2: The average aperture phase uncertainty arising from each category 
of error according to the models developed in this chapter. The necessary 
aperture integrals were computed for maps AV1 and AV2, and the corre-
sponding error parameters were taken from the previous table. In brackets 
are the aperture phase uncertainties predicted by the uniform illumination 
equations. 

weighting a appropriately, and the omissions do not cancel out. The effect 
of multiplicative errors, on the other hand, is well predicted by the uniform 
illumination equations. 

The total phase uncertainty is the square root of the sum of the square of 
each contributing uncertainty. The 'total' signal-to-noise ratio may be found 
from this as suggested in section 4.2.3: RI  is the additive snr that would be 
sufficient to account for the total aperture error. It is 752 or 57.5 dB for the 
carrier map and 570 or 55.1 dB for the beacon map. 

The phase uncertainty in each ring of panels can also be found, as it 
was in section 3.3.2 from the repeatability of contiguous maps. These can be 
compared directly after dividing the repeatability figures by because they 
arise from a difference of phases. In table 4.3 this comparison is done for maps 
AV1 and AV2 (compare with table 3.2). It is very convincing, but remember 
that this confirms only the additive noise predictions, since they dominated 
all others. Ring number 2 was affected by shadowing. For other rings the 
variation of zeT, with radius is well modelled by equation 4.31, particularly for 
the carrier data. This has the important consequence that the repeatability 
of contiguous maps appears to have been limited by random errors, not by 
systematic effects. The beacon data shows more deviation from the model, 
with predictions a little low in rings 3-5 and a little high in rings 6-8. In the 
light of the arguments leading to figure 3.16 a slight distortion of the entire 
reflector might be responsible for this. 
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Ring 

Number 

Carrier Map AV1 

-67, 	 rmsA/V2-  

Beacon Map AV2 

'57 	 rms A/V2-  

C
4  
0
0
  
•
3
1  
L
C,
  
CD 
 
r
•
-•  
0
0
  

1.12° 1.68° 1.28° 2.02° 

0.96° 0.83° 1.06° 1.20° 

1.04° 1.12° 1.15° 1.51° 

1.25° 1.20° 1.40° 1.44° 

1.46° 1.34° 1.69° 1.51° 

1.67° 1.62° 1.98° 1.73° 

2.21° 2.17° 2.72° 2.48° 

2-8 1.31° 1.29° 1.48° 1.56° 

Table 4.3: The predicted aperture phase uncertainty UT, in each ring is com- 

pared with the phase repeatability rms A for contiguous maps in section 3.3.2. 

The approach to random errors shown in this chapter has correctly pre-

dicted their effects in the aperture domain. The on-source and off-source 

signals were examined and multiplicative random errors, while dominating 

the on-source fluctuations, were confirmed to have little effect in comparison 

to the constant additive error level. Rather than receiver noise, it is sus-

pected that cross-coupling in the i.f. system is responsible for the additive 

noise. The mechanism by which this occurs needs more investigation, but 

in the meantime it would be interesting to re-design the circuit board before 

further holographic measurements are made. If this is presently the limita-

tion on achievable map accuracy then the lack of substantial improvement 

by use of a strong carrier signal is explained. 
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Chapter 5 

Panel Fitting by Successive 

Projections 

The remainder of this thesis is devoted to the problem of panel fitting from 

sparsely sampled Microwave Holography data. This chapter develops an al-

gorithm based upon the Method of Successive Projections (SP) onto convex 

sets. In section 5.1 the problem is outlined and a history of other SP appli-

cations is given. Section 5.2 discusses the 'mechanics' of the algorithm, and 

section 5.3 shows how it was applied to the Mount Pleasant data. 

5.1 The Method of Successive Projections 

5.1.1 The Resolution Problem 

A limitation of Microwave Holography is that in practice only a small part of 

the complete radiation pattern can be measured. It was seen in section 2.2.2 

that as a result the recovered aperture current function is convolved with a 

function of resolution width (Si, by) in wavelengths where 

1 	 1 
= — and b = . 

x 	 Y  Wv 

The spatial frequencies represented by the far field samples are limited to 

a 'bandwidth' of (W„, WO about the zero frequency, main beam position. 

Thus any aperture features with high spatial frequencies are not recovered. 

Physically, this means that such features scatter power to far field regions 

which are not measured. 

Practical holographic measurements of large reflector antennas are aimed 

at adjusting surface panels. The difficulty created by limited spatial resolu- 
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(d) 

(c) 

-30 - 

+20- 

Figure 5.1: A one-dimensional simulation showing the effect of truncation 
of the far field, plotted on a linear amplitude scale in (a) and (c). The 
corresponding recovered aperture phase functions are plotted in degrees in 
(b) and (d). Far field phase and aperture amplitude are not shown. 

tion was alluded to in section 2.4, although panel fitting proceeded anyway. 
Aperture samples which are within a resolution cell of a panel edge are sig-
nificantly affected by the neighbouring panel. Many holographic maps have 
very few points per panel — the number of points per panel Pp  is an average 
quantity since panels have different shapes and orientations to the sample 
grid — so the problem is serious. A one-dimensional illustration of this is 
shown in figure 5.1. An aperture with 6 'panels' was simulated by 6 segments 
of linear phase, uniformly illuminated. Sampling out to the third sidelobe 
shown in (a) gave the recovered aperture phase in (b), against which is plot-
ted the original phase. Estimated panel positions will be very poor. In (c) 
twice the extent of far field has been sampled, and the recovered aperture 
phase (d) follows the original more closely. 

A typical panel layout for a real, two-dimensional aperture is that of the 
Mount Pleasant 26 m antenna. As can be seen in figure 2.12 the panels are 
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trapezoidal and have edges lying on radial lines and polygonal lines about 
the reflector's centre. Discontinuities and gaps along these lines constitute 
aperture features of high (spatial) frequency, and the aperture maps in chap-
ter 3 contain only slight indications that these features exist. This is under-
standable, because a resolution cell is about 0.6 x 0.6 m while typical panel 
dimensions are 1.0-1.5 m. Yet it is known precisely where the panel edges 
lie, so there should be no need to recover their locations from the data. Can 
this knowledge possibly be incorporated into the data analysis to improve 
the estimated panel tilts and offsets? 

It can indeed, though first the edge locations must be described in a pre-
cise mathematical way. This is done by saying they are boundaries of regions 
of linearly varying aperture phase. As discussed in section 2.4, profile errors 
in individual panels must be small beside panel setting errors if panel corner 
adjustments are to have any benefit. It is assumed now that the panels are 
undistorted, so the aperture phase will follow a plane given by equation 2.48 
above each panel. The range of possible aperture current functions is then 
restricted to a set of those fulfilling this criterion. Simultaneously, the func-
tions are restricted by holographic measurements to a set consistent with the 
measured far field pattern. The intersection of these sets, if it exists, contains 
functions that agree with all existing knowledge of the aperture: both the 
far field measurements and the locations of panel edges. 

It is most convenient to describe the second set in the far field domain. 
Precisely, define the sets as follows: 

The set S1  contains all radiation patterns that agree with the 
measured pattern, to within a constant factor. Beyond the region 
of measurement there is no restriction on the pattern. 

The set S2 contains all aperture current functions with linearly 
varying phase above each panel and zero magnitude past the re-
flector edge. 

It is possible to speak of the intersection of these sets despite their being 
defined in opposite Fourier domains, because there is a one-to-one corre-
spondence between elements in each domain. The Fourier transform also 
preserves distance: it is an isomorphic linear operator. The domains are thus 
indistinguishable except for the physical meaning of their elements. Another 
interpretation is to imagine transforming every element of S 1  to the aperture 
domain. Then the sets can be compared directly as when they were first 

131 



introduced. Of course this is impossible because both sets contain an infinite 
number of elements, so it is better simply to transform a particular function 
to the appropriate domain when it needs to be checked against one or other 
of the sets. 

These arguments will be formalized later. The important result is that 
the problem of panel fitting has been reduced to the problem of finding the 
intersection of two sets in the 'space' of aperture current functions. There are 
a number of techniques available for finding the intersection of sets. Here the 
Method of Successive Projections will be examined. It is a technique which 
is conceptually simple and has been applied successfully to other problems of 
electromagnetics. It lies behind several popular algorithms for phase retrieval 
and image enhancement. 

5.1.2 Successive Projections 

Consider the two sets in the two-dimensional plane illustrated in figure 5.2(a): 
each set is the interior and edge of a closed boundary curve. Beginning at 
any point in the plane, the sets' intersection can be approached by dropping 
a perpendicular onto each set alternately as illustrated. If the sets do not 
intersect, as shown in 5.2(b), the same process will approach their nearest 
points. The sequence of points obtained in either case is guaranteed to con-
verge provided that the sets are convex, that is, any point lying between 
two elements of a set is also an element. The same method can be used 
for any number of convex sets, and figure 5.2(c) shows an example of three 
intersecting sets and a sequence of perpendiculars. 

The point at which a perpendicular from an exterior point meets the 
set boundary is called the projection onto the set; the projection from an 
interior point is the point itself. Clearly the projection is the element of the 
set nearest to the original point. More formally, consider a closed set S, a 
closed set being one that contains all its limit points. Given a norm JI II, the 
projection y from a point x onto the set S satisfies 

y E S and IIY — x11 = mm 1W x11- yiEs 

If the set is convex this point is unique for each x, otherwise there 
be several or even infinitely many projections. For example, the set 
Ilx — xc li > 1} has infinitely many projections from the point xc , as shown in 
figure 5.3. 

(5. 1) 

may 
Ix I 
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Figure 5.2: Dropping perpendiculars onto convex sets in the two-dimensional 
plane: (a) two intersecting sets, (b) two disjoint sets, and (c) three intersect-
ing sets. 
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Figure 5.3: An example of a set with infinitely many projections from a 
particular point xc. 

The schemes shown in figure 5.2 can thus be called Methods of Successive 
Projections for finding a common point of convex sets (or the nearest point 
of two disjoint sets). A group of Russian mathematicians [25] described 
the method rigourously in 1967 for convex sets in a general Hilbert space, 
and showed that it could be applied to practical problems. They considered 
schemes for ordering the projections onto more than two sets: cyclic ordering, 
choosing the remotest set each time, or approximately choosing the remotest 
set. Their main contribution was to demonstrate strong convergence of the 
sequence of projections for infinite-dimensional Hilbert spaces, provided that 
one of several alternative conditions on the sets was satisfied. This means 
the sequence is convergent in the norm: if the starting point is x o  and the 
nth projection is xn , then there is a limit point x for which 

lim II xn — x11 = 0. 72—■oo 
(5.2) 

Strong convergence is always guaranteed for closed, convex sets in a finite 
dimensional Hilbert space. 

Under the right conditions, convergence is geometric for intersecting con-
vex sets. This can be shown easily for the situation in figure 5.2(a), as 
demonstrated by figure 5.4 which magnifies the region of intersection. It is 
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Figure 5.4: The region of intersection of two convex sets in the two-
dimensional plane. Two projection points xn  and xn+i  are shown, and their 
distances from the limit point x are cl„ and 4+1 . Because the set boundaries 
are almost straight on this scale, 4+1 /d„ cos or 4+1  dn  cos 0. Thus 
convergence is geometric. 

also true, in the two-dimensional plane at least, for the disjoint convex sets 
in 5.2(b): the distance of the projection x„ from the closest point of approach 
on the same set decreases geometrically. This is demonstrated in figure 5.5. 
Observe that in the intersecting case the length of projections 11x7,+1  
also decreases geometrically. This is a useful quantity for monitoring the 
convergence in an experiment, where naturally the limit point is not known. 

The technique as discussed so far can already be applied to useful prob-
lems. A Successive Projections formulation was used by Abo-Taleb and 
Fahmy [1] in the design of FIR digital filters. They used a large number 
of sets, each set representing the constraint on the amplitude response at a 
particular frequency. A filter can be specified by a vector of real coefficients 
x = (Si,. , xN) by expressing the frequency response H(f) as a combination 
of 'basis' functions 

j=N 

H(f) = x• 4'(f) =  
J=1 

(5.3) 

Abo-Taleb and Fahmy dealt with two-dimensional filters, so the notation is 
simplified here. Let the desired amplitude response G(f) be specified at a 
set of frequencies , fm, and allow a tolerance ±E at each frequency. 
Then a suitable filter is one for which IG(fi) — H(fi)I < E at each ft,  or in 
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Figure 5.5: Two disjoint sets with local radii of curvature r1  and r2  at the 

points of closest approach, which are separated by a distance s. Other sym-

bols are as in the previous figure, except tki is now the angle to projection xi. 

Let D = r1  + s r2  and the sine rule gives r1/ sin t1'n+1  = DI sin(On  On+1). 
After a small angle approximation, Din 1 + On/?'n÷1, but dn  riti,„ and 

so dn+1 	 dnr2/(r2  + s). Similarly 4+2 dn_Firi/(ri  + s), so 

convergence is geometric with an alternating factor. 

other words x E Qi for each i, where 

Qi = Ix I  IG(fi) — x • 40(fill _< El. 	 (5.4) 

The problem has become that of locating a vector in the intersection of M 

sets Qi  which exist in the space of real N-vectors. In this way it is very 

similar to the pictorial examples in figure 5.2, which have N = 2. It is shown 

in [1] that the sets are closed and convex, and that projections onto them 

can be calculated easily. 

5.1.3 Non-Convex Sets 

Many existing signal processing algorithms make use of Successive Projec-

tions methodology, although their originators did not couch them in these 

terms. A classic example is the Gerchberg-Saxton algorithm for phase re-

trieval [18]. This estimates the phase of a function whose amplitude only is 

known in both Fourier domains, using an iterative scheme: 

1.Begin with a random phase function. 

2.Impose the known 'time' domain amplitude onto the phase. 
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3.Apply a Fourier transform. 

4.Impose the known 'frequency' domain amplitude onto the phase. 

5.Apply an inverse Fourier transform. 

6.Repeat from item 2 until the phase is stable. 

Consider the following subset of the space of complex functions: 

S. = {f(x) I If (x)I matches a known amplitude function). 	 (5.5) 

Items 2 and 4 are simply projections onto two sets of this kind, because 

no matter what 'distance' measure is used the nearest element of S. to a 

function will match the specified amplitude and have unchanged phase. Thus 

the Gerchberg-Saxton algorithm is a Successive Projections application with 

one set in each of two isomorphic domains, just like the sets Si  and S2 in 

section 5.1.1. If preferred, the transform and its inverse can be thought of 

as part of the frequency domain projection, but then the algorithm loses its 

pleasing symmetry. 

A closely related algorithm is due to Missel [47]. Known in this case is the 

amplitude of two images of the same object related by a focus change. The 

projection operation is the same as above, but one defocused image is related 

to its mate by a Fourier transform to the diffraction plane, a phase change 

corresponding to the defocus, and a transform back to the image plane. The 

whole is equivalent to a convolution. This algorithm has found practical use 

for phase-less antenna measurements [49]. Phase retrieval will be discussed 

further in section 6.2.3: whether or not a unique phase solution exists has an 

important bearing on the problem. 

The advantages of regarding these existing algorithms as applications 

of a general, well-founded technique are two-fold. Firstly, it gives insight 

into their operation where otherwise they seem to be based upon educated 

intuition. Secondly, it opens the way to a rigorous treatment of convergence 

and robustness, which previously have been investigated using numerical 

tests. This may be a profitable area for future research. 

There is one immediate difficulty for the phase retrieval problem: the 

set S. is not convex. This is why users of the Gerchberg-Saxton or Missel 

algorithms have had to take great care to avoid misleading behaviour. A 

major advance was made by Levi and Stark [40] when they showed that a 

kind of convergence can be ensured for two non-convex sets by optimizing 
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the relaxation parameters of the projections. There is no similar result for 

three or more sets. If P(x) is the projection of xn  onto some set, the next 

point in the sequence can be chosen to fall short of or to overshoot P(xn): 

xn+i  = xn  An(P(xn) — xn) where 0 < An  <2. 	 (5.6) 

Levi and Stark showed how to find for each projection the range of relaxation 

parameters An  which give 'convergence' according to their criterion: the sum 

of distances to the two sets decreases monotonically. In fact, An  = 1 is 

always within this range so xn+i  = P(x) will always reduce the summed set 

distance. Other values of An  are usually chosen to accelerate convergence. 

Monotonic reduction of the summed set distance does not imply strong 

convergence to a limit point as would be the case for convex sets. This allows 

the existence of 'traps' as illustrated in figure 5.6(a), and these can halt 

convergence. Even with convex sets 'tunnels' can occur as in figure 5.6(b), 

giving extremely slow convergence. There may be ways to escape traps and 

tunnels; at least it is possible to detect them when they occur. 

Poulton [59] has applied SP to antenna power pattern synthesis using a 

formulation similar to that of Abo-Taleb and Fahmy above. The method 

had to be extended to the space of complex N-vectors to allow for the com-

plex radiation patterns of antennas. The pattern constraints in this case gave 

non-convex sets, so the application demonstrated that convergence can be ob-

tained even when there are many non-convex sets. The lesson to be learned 

is that projections are likely to converge if the problem is solvable. Ask-

ing impossible things of the method, such as phase retrieval when a unique 

solution is not guaranteed, is likely to give unreliable behaviour. 

Poulton [60] has also investigated the use of projection methods for data 

reduction in Fresnel zone antenna measurements. Yet another SP application 

in disguise is the Papoulis image enhancement algorithm [53] which can be 

applied when a function is known to have a band-limited spectrum. This 

too has been used in antenna measurements [63]. Successive Projections is 

clearly a technique with a wide range of existing and potential applications. 

There are only two prerequisites for its use: 

•The problem must be represented as the intersection of several sets; 

•Projections onto the sets must be readily calculable. 

138 



(a) 
	

(b) 

Figure 5.6: Pathologies of Successive Projections with two sets: (a) a 'trap' 

and (b) a 'tunnel' (after Levi and Stark). 
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5.2 Theory for Panel Fitting 

The application of Successive Projections to the panel fitting problem will 
now be considered in detail. One-dimensional far field patterns and aperture 
current functions will be used. This gives a less cluttered notation, and all 
the results can be generalized easily to two dimensions. 

5.2.1 The Sets and their Hilbert Space 

The Intersection 

Return to the set Si  defined in section 5.1.1: it does not constrain the far field 
pattern beyond the region of measurement. This is why there is 'room' in S i  
to accommodate or come close to a part of S2. If a pattern in Si  is represented 
by the complex function A(u), then it is fixed by the measurements (to within 
a constant factor) in the region lu I < Wu /2, but for larger u the terms can 
vary as necessary to 'square up' the corresponding aperture phase over each 
panel. The effect of applying SP to the sets is to estimate these terms in a 
way consistent with the known layout of panels in the aperture. The result 
is similar to that seen in figure 5.1, where doubling the measurement span 
gave a more faithful representation of the panels. 

Figure 5.7 shows how two sets may either overlap, or just touch, or merely 
come close at some points. Sets of functions in an abstract space are more 
difficult to imagine than ovals drawn on a page, but the significance of these 
three cases is the same. If the sets Si  and 82 have a considerable overlap 
then there are many functions which satisfy the criteria of both sets, and 
without further information one is as good as any other. It is expected that 
SP sequences, for example figure 5.2(a), starting from different points x o  
would approach different limit points on the boundary of S i  n S2 and in 
this way an idea of the extent of the intersection might be formed. A similar 
.behaviour might result when the sets just touch, because convergence is likely 
to be very slow due to the 'tunnel' effect of figure 5.6(b), giving a variety of 
endpoints after a finite number of iterations. 

In the disjoint case SP approaches the point of closest approach of the 
two sets, representing the best estimate that can be obtained with conflicting 
information. The 'intersecting' region of sets Si  and 82 may actually look 
something like figure 5.8, because it is found below that Si  is convex but 
S2 has a complicated boundary. If so, whether or not they really intersect 
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Figure 5.7: Three possibilities for the meeting of two sets. 

S 1  

Figure 5.8: A possible 'intersection' of a convex and a non-convex set. 

is immaterial. Successive Projections will approach some point near this 
region in a finite number of iterations, and this will be good enough provided 
that the region is acceptably small. This can be judged by comparison with 
the uncertainty in panel positions expected due to measurement errors, and 
ultimately with the accuracy of the panel adjusting mechanism. In section 6.1 
these issues are investigated by numerical experimentation. 

A decision has to be made on the span of the radiation pattern to attempt 
to recover. It was not mentioned in the definition of S 1  that the pattern is 
restricted to the forward hemisphere, —1 < u < +1, by the assumptions 
behind the aperture integration — see section 2.1.2. In practice it is wasteful 
to let all the unmeasured far field in this region be determined by SP. All 
that is necessary is that a sufficient span is determined beyond Wu  to give 
accurate panel fits by the least squares method in appendix C. A larger span 
would give a smaller resolution cell in the aperture and thus sharper panel 
boundaries, but the fitted panels would be the same because no new infor- 
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mation would be available to the algorithm. The presence of measurement 

errors would make this a doubly irrelevant exercise. A span W, of 4 to 5 

times Wu  was found adequate in this study, the rest of the far field pattern 

remaining undetermined. 

Which Hilbert Space? 

Consider now the function spaces in which the sets Si  and 52 exist. A 

radiation pattern spanning W4 is in the complex space L2[—W,/2, -FW4/2], 

which is a Hilbert space as required by Gubin, et al. [25]. The properties 

of Hilbert spaces are discussed in any good textbook on functional analysis, 

for example the one by Kreyszig [38]. The transform appropriate for such a 

radiation pattern is a Fourier series if a periodic extension is assumed, so the 

corresponding aperture current function is in the Hilbert space 12  of infinite 

complex sequences. This is inconvenient, because a different norm must be 

used in each domain. 

A better approach is to deal directly with the discrete far field and aper-

ture current functions which are measured and derived in Microwave Holog-

raphy experiments. This means the notation is immediately applicable to 

the data, and both domains are in the same Hilbert space. Breaking with 

section 2.2, the discrete functions will be denoted by 

Far field pattern : 
	
A = A(u) where u = mbu 

	
(5.7) 

Aperture currents : 	 a = a(x) where x = pt5„ 	 (5.8) 

The integers m and p range over the 1V:i  values — L'u, . , L'u  where Nu' Su = 

K. It is understood that the convolution of equation 2.20 has taken place, 
and that the functions are defined only at these discrete points: they are 

really complex N,-vectors. The advantages of this notation over "(Ai)" and 

"(ai)" are that the vectors' physical meanings are emphasized and a clutter of 

subscripts is avoided. The disadvantage is that for the rest of this chapter the 

reader must remember that u and x are indices, not continuous arguments. 

Thus both sets of functions exist in the unitary space cn of ordered n-
tuples of complex numbers. It is a Hilbert space, and the norms are 

iiAii = VEA(u)A*(u) and Hail = ilEa(x)a*(x). 	 (5.9) 

This is nice because minimizing the distance of an estimate from the intersec- 

tion Si  n 52 amounts to a conventional least squares optimization. A discrete 
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Fourier transform relates every vector a to a unique vector A, and Parseval's 

relation gives 

IIAII = "Klatt and so II 	 — A211 = 	 — a211- 
	 (5.10) 

This is the distance-preserving property that was mentioned earlier. 

Defining the Sets 

To make a notation which is suitable for one or two dimensions the indices 

u and x will be divided into sets. Let u E M span the range of measured far 

field values, and let u E R span the rest of the range 147. In one dimension 

M = fu I  u = mbu  for m = —Lu, . • • , +L.} 

	

R = fu I u = mi5,, for m = — 	 , —Lu  — 1, +Lu  + 1, , 

It is easy to define similar sets for a pair of indices (u, v). In the aperture 

domain, some indices x will lie outside the physical aperture: call this set X0. 

The physical aperture is divided up into Np  panels, and the set Xk contains all 

indices x lying in panel number k = 1, . , Np. Let the phase (x) = arg a(x) 

so that a(x) = la(x)lexp(j 0(x)). A panel function is a phase function for 

which 

0(x) = akx bk for x E Xk 
	

(5.11) 

where ak  and bk  are real numbers generally differing for each k. An example 

is in figure 5.1. In two dimensions the equation of a plane must be used. 

Let the far field measurements be /1„,(u) for u E M. The sets are formally 
defined as follows: 

Si  =I  {A I  A(u) = pAm(u) for u E M and real p} 	 (5.12) 

52 = fa I 0(x) is a panel function and a(x) = 0 for x E X0}. (5.13) 

The first set can easily be shown to be convex. Consider two elements A1  

and A2, and let 0 < t < 1 for some real t: 

u E M 	 + (1— t)A2(u) = 	 (1— t)p2A„,(u)  

where p3  is also a real number. Functions lying between A1  and A2 satisfy 

the criterion for membership of SI, so the set is convex. 

The second set can just as easily be shown not to be convex. A linear 

combination of two elements al  and a2  is a vector addition at each index x, as 
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Re 

Figure 5.9: The vector sum of ai(x) and a2(x), giving a resultant phase 03(x). 

illustrated in figure 5.9. The resultant angle 03(x) depends on the magnitudes 

tlai(x)I and (1 — t)Ia2(x)I, so a linear variation from one x to the next will 

not generally be preserved. Notice, however, that if the angular separation 

101(x)-02(x)I is small the angle 03(x) is less dependent on the magnitudes. It 

is this property that allows convergence to be attained. It is very difficult to 

imagine the 'shape' of the boundary of S2 because of the non-linear behaviour 

of phase under addition. For example, the mid-point of two elments of S2 

with equal amplitudes r(x) is 

. (051(x)+02(z))  
ir(x)eicki(z) 	 Ir(x)&2(x) = r(x) cos (4'1(s)-24'2  (1  el  k 	 2  2 	 2 	 • 

This is an element of S2 because of the linear phase combination, but either 

side of the mid-point this will not be the case. Perhaps figure 5.8 is a good 

representation of the boundary! 

5.2.2 Deriving the Projections 

A constraint of constant total power was added to the projections for con-

venience in monitoring the progress of the algorithm. This is equivalent to 

projecting onto Si  rl Sp  and 52 11Sp, where Sp  is the set of complex N,'-vectors 

with a predetermined power IIx112  = P. Just as in figure 5.3, Sp  is not convex 

but there exists a unique projection onto it from every complex vector ex-

cept zero: simply scale the vector by a suitable real factor. No difficulties are 
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expected, and indeed power constraint was found to make no practical differ-

ence to the convergence behaviour. The conditions which made it essential 

in [59] do not exist here. 

The Projection onto S1 

From an initial far field pattern Ao  a projection A E S1  is to be found with 
the same total power, in other words IIA — AoII is to be minimized with the 

constraint II A112  = 11Aol12. Define the power of the initial point and the power 
contained in the measurements Am  as follows: 

P = E 1A0(u)12  and Pm = E om(u)12. 	 (5.14) 
uEMUR 	 uEM 

Let A(u) = x(u) + jy(u) and similarly for Ao  and Am. The boundary con-

straint is then 

x(u) — 	= 0 and Y(u) — PYm(u) = 0 for u E M 

and the power constraint is 

E IA(u)12  - P = O. 
uEMUR 

Introduce Lagrangian multipliers 2au, 20u  for each of the former and A for 

the latter. The problem is solved by minimizing the function 

J = E IA(u) - Ao(u)I 2 
uofuR 

+ E 2au[x(u) - psn,(u)] E 2/3u  [y(u) — itym(u)] 
uof 	 uEA/ 

+ 
 A [
E IA(u)12 - 	 . 
uoluR 

Taking partial derivatives, 

= 2x(u) — 2x0(u) + 2au  + 2Ax(u) 	 (5.15) 

ay(u) 	
2y(u) — 2yo(u) + 2/3,4  + 2Ay(u) 

where the au  and gu  terms are dropped when u E R. Now for IL: 

= -E[2aux m(u) + 213liym(U)]. 
	 (5.17) 

uEM 

(5.16) 
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If these derivatives are set to zero, the first two give for u E R 

xo(u) yo(u) 
x(u). — and y(u) = 

1 + A 	 1 + A • 

Thus let p = 1/(1 + A) and the projection can be written 

A(u) 	 liAm(u)' 
pAo(u), 

u E M 

u E R • 
(5.18) 

This shows that, with suitable scaling, the projection is obtained by simply 

inserting the measurements into the region M of the present estimate of the 

far field pattern. 

For u E M equations 5.15 and 5.16 give 

au  = xo(u)— (1 + A)x(u) = xo(u) — lipx„,(u) 

fiu = yo( u) — (1 + ))y(u) = yo(u) — E-ym(u), 

and these can be substituted into equation 5.17 and the whole equated with 

zero: 

E {x0(u)x,,(u) — e-px,„,2(u) yo(u)y„,(u) — -1±y,„2(u)] = 0 
uEA/ 

Or 

Re E A0(u)A,7,-(u) = Pm. 
uEm 

Obtain another equation by substituting equation 5.18 into the power con-

straint: 

E  112 {xm2(u) ym2(u)] 
>p2 [

x02(u) yo2(u)] p 

uEM 	 uER 

Or 

p2  E lito(u)12 = P — p2Pm. 
uER 

In addition to the definitions 5.14, define: 

SR = E lA0(u)12  and Sm = Re E Ao(u)Am.(u). 	 (5.19) 
uER 	 uEM 

Then 

pSm = pPm and p2SR=P— p2Pm  
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which can be solved to give 

pm2 s 2R  + pm) 2  and p  (_p_ -15.-i5x7) 

1 	 1 
SR 	 Sm 2 	

. 	 (5.20) 
= PSm P 

These are the parameters necessary to calculate the projection 5.18. 

It is also useful to know the distance from the point Ao  to its projection A, 

which is the distance from Ao  to Si. Thus, 

11A - A0112  = E 1A0(u) - pAm(u)12 + E 00(u) - pA0(u)12  
uEm 	 • 	 uER 

= (p - sR) - 2pSm + p2Pm + (1- p)2SR. 

From the identities above 5.20 can be proved the further identity 

pSm + pSR = -7 

which allows this expression to be reduced to the attractive result 

11A A0112 = 2P 1 - 	 . 	 (5.21) 

The Projection onto 82 

Analogously to the projection onto SI, a point a E S2 is to be found as 

close as possible to an initial aperture current function a0. Thus 11a - aoll is 

to be minimized with the constraint 11a112  = 11a011 2  . Polar representation of 

complex numbers is better here, so let a(x) = r(x) exp( j 0(x)) and ao(x) = 

ro(x)exp(j00(x)). The situation at each index x is illustrated in figure 5.10, 
so by the cosine rule 

11a - a0112  = Ed2(x) _ 
E  [r2(x) ro2(x‘ _ ) 2r(x)ro(x) cos(0(x) - 00(x))1 . 

The definition of 82 allows the boundary constraint to be incorporated di-

rectly into the function 

Np  

J = E E [r2  (x) r02  (x) - 2r (x)ro(x) cos(akx bk - 00(x))1 
k=1 xEXk 

+ 
 A [

Np 

E E 'cow - . 

k=1 xEXk 
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Figure 5.10: At each aperture position x the original phasor ao(x) is changed 

to a phasor of the projected aperture a(x). The distance between them is 

d(x) = la(s) — ao(x)I as shown. 

A power constraint is included as before, and because r(x) = 0 for x E X0  

there is no need to include these indices in J. Taking partial derivatives, 

= 2r(x) — 2r0(x) cos(akx bk — 00(x)) 2)r(x) unless x E Xo 

E2xr(x)ro(x) sin(akx bk — 00(x)) for k = 1, . . . , Np 
XEXk 

E2r(x)ro(x) sin(akx bk  — 00(x)) for k = 1, . . . , Np. 
rock 

The first derivative, equated to zero, gives 

1 
r(x) = 	 ro(x) cos(0(x) — (5.22) 

This is the expected result: in figure 5.10 the length d(x) is at first perpen- 

dicular to the phasor a(x), and then the entire vector a is scaled by 1/(1 -I- A) 

to restore the correct power. Substituting this into the other derivatives, also 

equated to zero, gives for k = 1, . . . , NI, 

E xr02  (x) sin 2(a kx bk — 00(x)) = 0 (5.23)  
.Ex k  

E ro2(x) sin 2(a kx bk — 00(x)) = 0. (5.24) 
xExk  
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The identity 2 sin 0 cos 0 = sin 20 was used. This author has not been able to 

solve this set of 2Np  equations for ak and bk, but neither has it been necessary. 

If convergence is being achieved the change in phase 14(x) — 00(x)I should 

be small at each x, and the small angle approximation can be used to obtain 

these equations: 

ak  E r02(x)x2  bk E r02(x)x = E ro2(x)40(x) 	 (5.25) 
sExk 	 sExk 	 zyck 

ak  E r02(x)x bk E r02(x) = E r02(x)00(x). 	 (5.26) 
sExk 	 sock 	 sExk  

In this form they are recognizable as the normal equations for a least squares, 

straight line fit to the ordered pairs (x, 00(x)), with a weight of r02(x) at each 

point. A separate fit is performed over each panel. If the projection were to 

be devised intuitively an identical method would probably be chosen; it is 

good to know that it can be justified. 

When the phase difference between the initial point and the best-fit panels 

is large these equations are not strictly true. In practice the phases stabilized 

rapidly in the first couple of iterations except sometimes in the shadow region 

of aperture blockages. Because 52 does not describe a blocked aperture the 

shadowed aperture points were not included in the projection calculations. 

Even so, something must be done with the shadowed points once the fits 

have been performed. The scheme shown in figure 5.11 was adopted: as long 

as I0(x) — 00(x)I < 7112 equation 5.22 was taken as correct, but for obtuse 

angles r(x) was forced to zero. It would not make physical sense for a(x) to 

have a phase opposite to the fitted 0(x) = aks + bk. 

5.2.3 The Algorithm, and a 1D Example 

The Successive Projections algorithm for panel fitting is shown in figure 5.12. 

Each iteration consists of a Fourier transform to the far field domain, a 

projection onto Si, an inverse Fourier transform to the aperture domain, 

and a projection onto 52. This loop can be entered at different points. The 

starting point can be the measured far field pattern, augmented to a cover 

a wider angle from the main beam by surrounding the data with arbitrary 

field values. The effect of the iterations is to estimate the field at these extra 

positions consistently with the panel information provided. Alternatively, the 

starting point can be an aperture current function with arbitrary amplitude 

and phase profiles, finely sampled so that the corresponding far field pattern 
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Figure 5.11: At each aperture point, the complex current is projected to its 
component along the fitted phase 00  as shown for a and b here. lithe phase 
change is obtuse, as for c, this operation is not sensible, and the current is 
set to zero. 
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Far Field Pattern 

Element of S2 Aperture Currents 

Fourier Transform 	 Inverse F.T. 

Element of S1  

Figure 5.12: The Successive Projections algorithm: one 'iteration' is one cycle 

through this loop, requiring two Fourier transforms and two projections. 

covers a wide angle W, = 1/5x'. A frequently used starting point is the 

measured far field pattern augmented with zeros to a wider angular coverage. 

In the aperture domain this gives a smooth interpolation of the aperture 

function returned by traditional processing, where only an inverse Fourier 

transform is used. 

As mentioned above, a span W of 4 to 5 times the original Wu  is usually 

quite adequate. What happens in the two domains is pictured in figure 5.13 

for W The extra far field samples create aperture samples lying 

between the original 'tall arrows'. The increased number of points in each 

panel results in a better estimated profile. 

The effectiveness of the method is demonstrated by a one-dimensional ex-

ample. The aperture simulated for figure 5.1 is reproduced in figure 5.14(a), 

overlaid by the inverse Fourier transform of N. = 15 far field samples. Sam-

pling parameters were such that an average of Pp  = 2.0 aperture samples lay 

on each panel. In figure 5.14(b) the far field samples have been augmented 

with zeros until N, = 71, and SP applied for just 3 iterations. The correct 

panel positions have been almost entirely reclaimed. 
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Aperture 

4t40441.4444t4040+4t4,4t44t44144 

Measured samples: t 	 Recovered samples: * 

Figure 5.13: A picture showing the significance of the additional far field 

samples recovered using Successive Projectons. 
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Figure 5.14: A simulated one-dimensional aperture current function (a), and 

the result of 3 Successive Projections iterations (b). 
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Figure 5.15: From some point Ao  the projection onto Si  is A. With mea-

surement errors the projection onto Si  is A'. The distance of A' from the 

correct set Si  is the distance to its projection onto Si, labelled A". 

5.2.4 The Effect of Measurement Errors 

If due to measurement errors the correct far field pattern Am(u) is replaced 

by a slightly different A(u), then an incorrect set SI is used for Successive 

Projections in place of Si. The effect on projections is shown in figure 5.15. 

Since there is no reason to prefer A over A", the distance 1IA' — is a 

measure of the error in the projection caused by the measurement errors. It 

is the separation of the boundaries of Si  and S. This distance will now be 

found. 

Let the projections be 

{pi A'(u), u E M 	 p" Am(u), u E M 
A'(u) = 	 and All(u) = 

p(u), u ER p'Ao(u), u E R 

By equation 5.21 the squared distance from the first projection to the second 

is 

A"ii2  := 2P (1  — li9,7) • 

If real and imaginary components are written as in section 5.2.2, and if the 

errors are given by 

A(u) — Am(U) = E(u) = p(u) j q(u) 

then these sums can be found: 

SIR 
_ E  [x02(u)  !1o2(u)I, 

 

uER 

Cal 
	

E [xn(u) + V2(u)1 
uER 
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• E [(p'xo(u))2  + (p'yo(u))2] 
uER 

• pr2  S R  

• P — Pi'vf  by previous identities, 

Sik = E [xi(u)x„,(u)+ yi(u)y,,(u)] 
uEm 

• E [iiisim(u)x,„(u)+ Aiv(u)y„,(u)] 
uEm 

• iii(Pm + SE), where 

SE = E [p(u)x„,(u)+ q(u)y„,(u)]. 
uEM 

Equation 5.20 can be used to find p". Firstly, without loss of generality, 

assume that the power in the measurements is the same with and without 

errors: Pk, = Pm. This can always be arranged by scaling Am  or A. Then 

Sgict S j(f 2  
+ 

P 	te2(Pm SE)2  
P 	 PPM 

+ 
 (

2SE +  SE2  
P PPm 

If the errors are small compared to the measurements, SE < P and the 

second term can be ignored beside the first. The number te is the scaling 

applied to the measurements when projecting onto SI, and as long as Pm  is 
similar to P it will be close to unity. Otherwise, an unrealistic portion of 

the total power is going to the recovered, distant sidelobes. Using \ 1/7—F x 

1 + x/2 gives 

	

1 	 tir2  SE 

	

711 	 + P 
and so 

— A" 1h2  = 2P (1 — 	 —2112SE. 

It only remains to prove that this is positive. The constraint Pi'vf  = Pm 
is enough to determine the sum SE. In appendix E it is shown that 2SE = 
—11E112, so if 1 the distance from any projection onto SI to the correct 
set S1  is 

HA' — A"11 11E11 = E 	 — Am(u)12. 
uEm 

(5.27) 

1 

p"2  
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Figure 5.16: A representation of the statement, "noise power is conserved 
under Successive Projections." The projections onto SI, which has been 
affected by errors E(u), are never farther than 11E11 from the boundary of the 
error-free SI . 

Thus SP iterations will never wander farther than 11E11 from S i , as illustrated 
simplistically in figure 5.16. By analogy with the traditional Fourier trans-
form estimation of aperture currents, it can be said that the noise power is 
conserved under Successive Projections. 

5.3 Application to Mount Pleasant Data 

5.3.1 Parameters and Results 

The success of one-dimensional simulations, and the encouraging results of 
the tests in section 6.1, indicated that SP might be applied to experimental 
data with confidence. Both the carrier signal and the beacon signal maps 
of the 26 m antenna were processed in this way before estimating the panel 
corner adjustments described in section 3.3. Before displaying the results 
some details will be given. 

The measured far field maps were on a grid of 53 x 53 samples at intervals 
45.0 = = 0.00075. This grid was extended to 241 x 241 samples for SP, this 
number being chosen mainly for consistency with earlier two-dimensional 
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tests. Thus the far field span was increased by a factor 

147:, 

-  

In the aperture domain this gave a corresponding decrease in the sampling 

interval, and hence an increase in the average number of points per panel. 

The parameters at each frequency were: 

12725 MHz 

Old 	 New 

12373 MHz 

Old 	 New 

Map Width on Sky 2.3° 10.4° 2.3° 10.4° 

Aperture Sz  0.593 m 0.130 m 0.610 m 0.134 m 

Points per Panel 5.35 110.9 5.10 104.7 

The large number of points lying on an average panel ensured that smoothing 

near panel edges had a minimal effect on fitted panel positions. Blockage 

shadowing was taken into account in these figures. Even the smallest, partly 

obscured panels contained over 40 points in the augmented maps. 

Those aperture points in the geometrical shadow of the feed housing or 

its support legs were ignored when projecting onto S2. The steep phase 

gradients caused by diffraction then had little effect: see figures 4.2 and 4.3. 

Phases which differed greatly from the fitted planes resulted in a small or zero 

projected amplitude at that point, as shown in figure 5.11. This meant that 

shadowed regions were effectively zeroed prior to a Fourier transform to the 

far field domain, in accordance with the null field hypothesis of section 4.1.1. 

Ten SP iterations had a dramatic effect on the aperture maps. The start-

ing point was the interpolated aperture obtained by extending the far field 

with zeros. In figure 5.17 one quadrant of the interpolated 12725 MHz surface 

error map has been enlarged and plotted with a fine 0.2 mm contour interval. 

In figure 5.18 the same quadrant is shown after the iterations. Panel structure 

which did not appear in the original maps has been restored convincingly. 

There are some panels, apart from those near shadow regions, which contain 

distinct 'hills' or 'valleys', two in particular in the fifth ring from the edge. 

Inspection of the surface confirms that these panels are misshapen. 

In section 3.3.3 a systematic change in the surface shape apart from the 

panel adjustments was discovered. This prevented an end-to-end test of 

Successive Projections, because it was not possible to compare directly the 

'before' and 'after' positions of an individual panel. Section 6.1 provides 

alternative convincing evidence that the algorithm recovers panel positions 

reliably. 
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Figure 5.17: One quadrant of the 12725 MHz surface error map before any 

SP iterations are applied. The contour interval is 0.2 mm, and the scales are 

in metres. 
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Figure 5.18: One quadrant of the 12725 MHz surface error map after 10 SP 

iterations have been applied. The contour interval is 0.2 mm, and the scales 

are in metres. 
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Arc length 

Xn+2 

Projection distance 
Xn+1 

Figure 5.19: Projection lengths and arc lengths for two sets in the plane. 

5.3.2 Looking at the Convergence 

It is possible to get an idea of the progress of the algorithm by looking at 
the lengths of the projections. If the sets were convex a geometric rate of 
convergence would be expected, both for the distance to the limit point and 
the distance from one projection to the next, as shown in section 5.1.2. The 
latter can be calculated readily. Another quantity which may be useful is 
the separation of a projection from the previous one onto the same set; it 
is shown in figure 5.19. In the two-dimensional plane this distance would 
approximate the arc length along the set's boundary. 

Table 5.1 shows these quantities and demonstrates the good behaviour 
of SP for the average map made at 12725 MHz. Dimensions in the far field 
domain have been divided by VN.' NT,' = 241 so they can be compared with 
dimensions in the aperture domain, as dictated by equation 5.10. Because the 
starting point was the interpolated aperture, the first operation was a projec-
tion onto S2. Thus the sequence of projection distances is 33.3, 28.6, 26.3, ... 
and of arc lengths is 10.55, 7.20, 6.37, .... If not quite geometric, they cer-
tainly decrease monotonically and in a very regular way. 

It is interesting that the arc lengths begin at about 1/3 of the projection 
lengths, but decrease to about 1/7 after 10 iterations. This shows that most 
progress is made at the beginning, as expected from the one-dimensional 
example which gave a good result after only 3 iterations. It may also show 
that the projections entered a tunnel: very small arc lengths are a symptom 
of tunnel behaviour for sets in the plane like those in figure 5.6. If convergence 
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Iteration 

Number 

Projection Distance 

Onto S2 	 Onto Si 

'Arc Length' 

On 52 	 On S1 
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33.3 28.6 

26.3 25.3 10.55 7.20 

24.4 23.9 6.37 5.12 

23.3 22.9 4.98 4.35 

22.5 22.2 4.26 3.90 

21.9 21.6 3.82 3.57 

21.3 21.0 3.52 3.34 

20.8 20.6 3.28 3.14 

20.3 20.1 3.09 2.98 

19.9 19.7 2.94 2.85 

Table 5.1: Convergence of Successive Projections iterations for the carrier 

data extended to a 241 x 241 grid. The units are arbitrary but can be 

compared with the square root of the total aperture domain power, or 208.8. 

was hindered in this way, an investigation of acceleration techniques might 

be worthwhile. On the other hand, panel positions were quite stable enough 

after a small number of iterations, so acceleration was not a priority for this 

study. 

Convergence from a range of different starting points was not investigated 

using the data. This was because noise, sampling parameters, and aperture 

blockage may all have caused vagaries of the convergence path and could 

not be studied independently. It was more effective to try different starting 

points using simulated data, where at least the limit point was known in 

advance. This experiment is described in section 6.1. 

5.3.3 Efficiency and Flexibility 

The time taken for each SP iteration was considerable, and was dominated 

by the two 241 x 241 point discrete Fourier transforms. The data array is 

large, requiring 908 blocks of 512 bytes for its storage in single precision. 

CPU times for a single iteration were compared on three different Digital 

VAX computers with these results: 
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Machine Time (m:s) 

VAX 11/750 35:19 

MicroVAX 3500 4:10 

VAXstation 3100 1:31 

No effort was made to improve the efficiency of the Fourier transform, for 

example by choosing a power of two for the array size. An optimal size for 

the recovered region of the far field could be investigated. However, for this 

study all that mattered was that the size was sufficient to estimate panels 

well. On modern machines the algorithm still executes in a small fraction of 

the time required to record a map (about 4 hours), let alone to adjust the 

panels afterwards, and this is really the important issue for practical use. 

At this point it is appropriate to consider another technique for fitting 

panels to Microwave Holography data, one of a kind that has been used with 

success by other workers [28]. This is a gradient search technique in the space 

of panel parameters — tilts and vertical shifts — to minimize the difference 

between derived and measured far field patterns. The contribution to the 

total field from each panel may be calculated analytically if it is approximated 

that each panel is uniformly illuminated; this is a reasonable approximation 

for a large reflector with many panels. The tilts and shift of the panel enter 

the expression as parameters, so using the symbols from section 2.4.1 

Ak(U,V) = Fk(U, 16k, ak, ik, rk) for k =1,...,Np. 

Here rk is the illumination amplitude on the panel k. 

The total field is the sum of these contributions, and can thus be expressed 

explicitly as a function of 4Np  parameters: 

Np 

A(u, v) =EFk(u, v;  flk,ak,ek,rk). 
k=1 

(An expression like this will be discussed more fully in section 6.2.) Deriva-

tives can be calculated, and a gradient search technique such as the conjugate 

gradient method can be used to minimize the error 

J = E 	 v) - A„,(u, OF. 
meas 

The steps of this method will be much more rapid than SP projections be- 

cause no discrete Fourier transforms are necessary. However there will be 

many more steps; for the Mount Pleasant 26 m antenna 1008 steps would be 
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Iteration 

Number 

Projection Distance 

Onto 52 	 Onto S1  

'Arc Length' 

On S2 	 On S1 
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31.7 26.9 

24.4 23.4 10.61 7.20 

22.4 21.8 6.30 5.03 

21.3 20.9 4.86 4.21 

20.4 20.1 4.13 3.75 

19.8 19.5 3.67 3.41 

19.2 18.9 3.36 3.17 

18.7 18.4 3.12 2.98 

18.2 18.0 2.94 2.83 

17.8 17.6 2.80 2.70 

Table 5.2: Convergence of Successive Projections iterations for the carrier 

data, this time with twisting of panels permitted. 

only one for each unknown parameter, and typically many times this number 

would be required in a search. 

This is certainly a viable alternative method, but it lacks the flexibility 

of the SP formulation. Here is an example: alter the definition of the set S2 

so that twisted panels are permitted. The necessary equations are given in 

section 2.4.2, and appendix C gives a least squares fitting method which can 

be incorporated into the projection onto 52.  The additional computation is 

minimal, and when the altered algorithm was applied to the 26 m data no 

change in execution speed was seen. The projection lengths and arc lengths 

are given in table 5.2, and convergence is even slightly more rapid than in 

table 5.1. Perhaps this is because the new S2 represents the real surface more 

closely. 

There can be no similar extension to the gradient search method: it is 

the linear variation of phase which enables the Fourier integral of a tilted 

panel to be evaluated. Without it, the integral cannot be expressed in terms 

of simple functions. This is one way in which the flexibility of Successive 

Projections is of advantage for practical problems. 
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Chapter 6 

Behaviour of the Algorithm 

Now that the Successive Projections algorithm for panel fitting has been 
described and applied, its usefulness and reliability must be demonstrated. 
Section 6.1 makes use of numerical experiments to study convergence, firstly 
for a particular example and then for an ensemble of convergence paths to 
highlight generic features. Section 6.2 takes a different approach by study-
ing the solvability of a restricted form of the panel fitting problem that can 
be analysed rigorously. Both sections lead to the same conclusions on the 
significance of some experimental parameters, and an optimal design for Mi-
crowave Holography experiments is indicated. Section 6.3 is an excursion to 
show an interesting extension of a different Successive Projections algorithm. 

6.1 Convergence Behaviour 

6.1.1 Is It Always Monotonic? 

When applied to the Mount Pleasant data, Successive Projections converged 
with a smoothly and monotonically decreasing projection distance and 'arc 
length'. The limit point was not known, of course, so the distance of the 
projections from the limit could not be monitored. Was it true that 

lin' An — A ll = 0 and lim Ilan  — all = 0, 

as claimed for convex sets in section 5.1.2? In a simulated experiment the 
correct aperture current function is known, so the distance to it from each 
projection can be monitored. Ideally it would be the limit point of the 
sequence of projections, but in reality the limit point might be anywhere on 
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the boundary of a possibly large intersection Si  n S2. The distance to the 

original aperture is a measure of progress towards its complete recovery. 

Another advantage of a simulated experiment is that its parameters can 

be changed easily. The most important ones are the map size Nu  x Nu  and 
the sampling intervals Su  and 5u. These affect the measured data and hence 
the set SI, so the parameters control the shape of the sets' intersection. This 

is how the information content of the data has a bearing on the convergence 

of SP. An efficient experiment is one where good convergence is obtained 

with the least possible data. 

A one-dimensional aperture was simulated, and its radiation pattern cal-

culated by a discrete Fourier transform. The aperture had the same dimen-

sions as the Mount Pleasant antenna: a width of 26 m with 15 panels across. 

It was given a 12 dB illumination taper with the profile of equation 4.32. 

Like the 12725 MHz measurements, the radiation pattern was sampled at 

an interval Su  = 0.00075, so A = 23.6 mm and K = 0.825. The number of 
samples Nu  was varied, and because the one-dimensional SP iterations were 

very fast a large number, 1000, could be applied in each case. The sampled 

far field pattern was, as usual, extended with zeros to N.:, 241 to give a 

starting point. A significant parameter is Pp, the average number of points 

per panel in the aperture map obtained by a DFT of the sampled far field 

alone. This is the traditional holographic processing method. The sample 

interval in the aperture is given by Sz  = 1/Wu  = 1/NA, from which can be 
derived 

KNu 
P — 	 (6.1) 
P  N 

where Np  is the number of panels across the physical aperture. These values 

of Nu  
Nu  31 33 35 45 

Pp  1.70 1.81 1.92 2.47 

It is worthwhile to plot three quantities as a function of iteration num-

ber: the rms phase difference of the aperture estimate an  from the original 

aperture a, the distance Ilan  — all, and the length of the projection onto SI. 

The former is the most important measure for holography, while the other 

two are concerned more with the geometry of the sets. All three are plotted 

for the above values of Nu  in figures 6.1 to 6.4. These plots use logarithmic 

scales so that geometric convergence would give straight lines; the equations 

were used: 
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are 

rms A (dB) = 

fia (dB) = 

Length (dB) = 

(Erian(2)1210.(2) 0(x)12) 20 logic, 
Ezian(x)12  

— ditto for n = 0 

20 logio (  Han — a  
Ilanll 

(cdp(au)\  
20 logio  

iianii 	 • 

where dp(au) is the distance to an  from the previous projection. Thus rms A 

is compared with the original rms phase difference, and the distances are 

compared with the norm of an, or the square root of its total power. 

The change in behaviour as Pp 1  2 is dramatic. The quality of the recov-

ered phase improves until at Pp  = 1.92 the rms is 1/8 of the original phase 

error. By Pp  = 2.47 no further improvement has occured, except that the 

limit is reached a little faster. This is significant because it shows that SP is 

giving no more than it receives. Two points are needed on a one-dimensional 

'panel' to determine its tilt, so in this sense far field data which gives Pp  

significantly less than 2 does not contain complete tilt information. It would 

be worrying if such data were magically imbued with this knowledge just by 

applying SP, whose purpose is to make use of existing information on panel 

boundaries. 

The development of a minimum in the graph of Sa is surprising when the 

projection length dp(an) decreases so steadily in every case. This does not 

indicate that convergence is failing, however, because as mentioned above 

the original aperture is not necessarily the limit point of the sequence. As 

usual, it is difficult to imagine the shape of Si  n 52 but the qualitative 

change in convergence about N,. = 35 must be due to the contraction of Si  

as its membership criterion becomes more strict. That is, more functions are 

excluded from membership when the pattern is specified at a larger number 

of points. Even if the reason is unclear, the way the minimum and subsequent 

rise occurs can be seen by graphing the aperture function. Figure 6.5 shows 

the aperture amplitude and phase at the minimum in the graph for Nu  = 45, 

which is after 5 iterations, and the same after 1000 iterations. Although the 

phase is noticeably better the amplitude has developed distortions near large 

discontinuities in phase. The set 52 is very strict about phase and very loose 

about amplitude, so this is reasonable. 
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Figure 6.1: The convergence of the rms phase difference from the original 

aperture, the Hilbert space distance to the original aperture, and the length 

of the projection onto S1. They are plotted on logarithmic scales against the 

SP iteration number. The number of far field samples was Nu  = 31. 
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Figure 6.2: Convergence graphs for Nu  = 33. 
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Figure 6.3: Convergence graphs for N. = 35. 
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Figure 6.4: Convergence graphs for N. = 45. 
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Figure 6.5: The aperture amplitude and phase for N. = 45 after (a) 5 SP 

iterations and (b) 1000 SP iterations, with the original, simulated aperture 

shown in dashes. The horizontal scales are in metres. 
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A study of graphs of the aperture estimates also helps in understanding 
the behaviour of rms A. The aperture amplitude and phase after 100 itera-
tions is shown for Nu  = 33 and for Nu  = 35 in figure 6.6 (a) and (b). In (a) 
most panels have been incorrectly estimated, while in (b) nearly all panels 
have been recovered well. A graph for Nu  = 37, or Pp  = 2.03, would show 
the 4th and 5t1  also recovered well. 

6.1.2 Changing the Starting Point 

It is important that consistent results are obtained with different choices of 
the starting point of Successive Projections iterations. Changing the starting 
point is a way of probing the shape of S i  ns,, because the position of the limit 
point on the boundary is likely to change too. A wide spread of results would 
indicate that the intersection was not small enough to specify the correct 
aperture function properly. Increasing the number of far field samples is a 
way of contracting S i  and, perhaps, the intersection too. Does the number 
of points per panel have the same importance in this situation that it had in 
the section above? 

A numerical experiment was carried out using the same simulated aper-
ture as above, with 15 panels and a 12 dB illumination 'taper. There were 
slight changes: A = 24.2 mm and K = 0.801. Three values Nu  = 31, 41, 
and 61 were tried, but the extended span was N:, = 241 in each case, allow-
ing the same starting points to be used. An ensemble of 24 different aperture 
functions to use as starting points was concocted, some with uniform phase, 
some with random phase, some with illumination taper, some without, and 
some with an unusual illumination function. Two examples are illustrated in 
figure 6.7. 

Twenty SP iterations were applied beginning from each of these points, 
but always using far field data for the same simulated aper\ture. The 20 
different convergence paths resulted in an ensemble of end-points, and ideally 
all would have estimated the aperture with some success. The number of far 
field samples Nu  was changed, and computer-generated Gaussian noise was 
sometimes added to them, mimicking a series of holography 'experiments'; 
each one produced a new ensemble of end-points. The scheme is outlined in 
figure 6.8. The rms phase difference rms A was used to measure the success 
of each convergence path in an ensemble, this time using linear units. This is 
a more practical measure than the Hilbert space distance Ila n  — all because 
good phase recovery is the aim of Microwave Holography. It will be used 
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Figure 6.6: The aperture amplitude and phase after 100 SP iterations for 

(a) Nu  = 33 and (b) Nu  = 35. In the latter, nearly all panels have been 

recovered well. The horizontal scales are in metres. 
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Figure 6.7: Two of the 24 different aperture functions used as starting points 

for SP. The amplitude and phase of the original aperture is shown dashed. 

The horizontal scales are in metres. 
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Figure 6.8: A numerical test of the effect of changing the starting point 

for SP. Various holography 'experiments' were simulated by changing the 

far field sampling and noise level, and their success was guaged by seeing 

how well the ensemble of end-points clustered about the original aperture 

function. 

frequently in this chapter. 

Figure 6.9 shows the effect on ensemble convergence of N. The ensemble 

range of rms A is shown by a box from the minimum to the maximum for 

= 31, 41, and 61. Within the boxes the distribution was fairly uniform. A 

box of a different shade shows the range of rms A for the 24 starting points: 

from 19° to 46°. The main feature is that Nu  = 41 gave a much smaller 

and more consistent value than Nu  = 31, while taking 61 samples instead 

of 41 made only a slight improvement beyond this. This ties well with the 

observations above because Pp  = 1.66, 2.19, and 3.26 respectively for these 

values of Nu, indicating that Pp  2 is the important turning point. To 

illustrate the result that would be obtained in each case without the benefit 

of SP, panels were fitted to the direct Fourier transform of the N„, samples 

and the rms A of the result shown as a dot on the same diagram. It is worth 

noting that this diagram and the following ones looked much the same for 
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Figure 6.9: The effect of 20 SP iterations on an ensemble of 24 different 

starting points for a simulated one-dimensional aperture. Each box shows 

the range of resulting rms A obtained for a different N. The left-most box 

shows the range for the starting points. The dots show the rms A obtained 

without the use of Successive Projections. 

10, 20, or 100 SP iterations. 

Adding noise to the data at the 50 dB level gave a result entirely consistent 

with the results of section 4.2 for /Zu  = 50 dB. Using the uniform illumination 

equation 4.22 to estimate the expected aperture phase error, it is found that 

0.36°-0.50° for this range of N. In figure 6.10 the three boxes are 

seen to have risen by roughly this amount, illustrating the assertion made in 

section 5.2.4 that noise power is preserved by SP. 

So far the sampling interval 8u  has been kept constant such that K = 

8u-13.1A = 0.801. One reason for having K < 1 is that aliasing effects are 

reduced. Some iterative transform algorithms have performed better when 

K is reduced (see section 6.2) so it is important to see if this is true for 
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Figure 6.10: The dark boxes are as for the previous figure. The adjacent 
ones show the effect of adding Gaussian noise at the 50 dB level. 

panel fitting with SP. In order to separate such an effect from changes in Pp  
the number of samples must be increased when K is decreased, according 
to equation 6.1. Table 6.1 gives the sampling parameters used for all the 
simulated experiments discussed here. In figure 6.11 it is seen that reducing 
K to 0.606 had little effect on the convergence of the ensemble for Pp  = 1.66. 
However, reducing K to 0.670 and then to 0.538 had a noticeably bad effect 
for Pp  = 2.19! This is very interesting and suggests that it is best to sample 
at close to the Nyquist interval, as long as aliasing problems are not incurred. 
Since this means fewer samples are required for the same far field span W., 
measurement time will be reduced. 

6.1.3 A Two-Dimensional Numerical Experiment 

A Digital VAXstation 3100 computer became available after the completion 
of the one-dimensional ensemble studies. This made it feasible to do a similar 
experiment with a full two-dimensional simulated aperture, using data grids 
of the size used for the Mount Pleasant experiments. The effect of noise and 
sampling interval were not investigated again, but the choice of a suitable far 
field map size was of great interest with the April 1991 experiments about 
to begin. The opportunity was also taken to apply a 'null field' blockage to 
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1 

K N Pp 
0.801 31 1.66 
0.606 41 1.66 
0.801 41 2.19 
0.670 49 2.19 
0.538 61 2.19 
0.801 61 3.26 

Table 6.1: Sampling parameters used in the one-dimensional ensemble ex-
periments. 
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K <0.801 
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Figure 6.11: The dark boxes are as for the previous two figures, with tc = 
0.801. The others show the effect of reducing IC to 0.606 for Nu  = 31, and to 
0.670 and then 0.538 for Nu  = 41, maintaining Pp  at a constant value. 
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the aperture and test its effect on Successive Projections. 
An aperture with randomly oriented panels laid out as in figure 2.12 

was given a 12 dB illumination taper, and its far field radiation pattern 
calculated by a discrete Fourier transform both with and without zeroing of 
the shadowed parts of the aperture. Various sizes of map were sampled from 
these patterns, each defining a different set S i . Their sizes and corresponding 
numbers of aperture points per panel, for A = 24.2 mm and ic = 0.801, were 
as follows: 

x 
41 x 41 
45 x 45 
49 x 49 
53 x 53 
57 x 57 

Pp  (blocked) 
3.05 
3.60 
4.27 
5.10 
5.91 

Pp  (clear) 
3.37 
3.98 
4.75 
5.62 
6.48 

   

The aperture blockage lowered the average number of useable points per 
panel, as can be seen. Three points are required to determine the tilts and 
vertical shift of a two-dimensional panel. Because the panels have a range of 
sizes the average Pp should be considerably larger than 3 to ensure that the 
smaller panels are sufficiently covered. 

Eighteen arbitrary apertures were also simulated, similarly to the one-
dimensional ones, to be starting points for SP iterations. They had an rrns A 
from the first aperture of between 27° and 41°. With a grid extended to 
241 x 241 points, each blocked and unblocked map was processed by 10 
iterations of SP beginning at all 18 starting points. Thus a total of 1800 
iterations were required, which was quite a significant processing and data 
management task. As in the one-dimensional case, the ensembles of end-
points were compared with the original aperture using rms A. The range 
and average of rms A over the ensembles is shown in table 6.2, and the values 
for a blocked original aperture are very similar to those for a clear aperture. 
This confirms that Successive Projections is not adversely affected by a null 
field blockage when it is handled as discussed in section 5.3.1. 

The same data are shown graphically in figure 6.12, except that the clear 
aperture cases have been omitted. For comparison, the rms A resulting when 
panels are fitted without using SP is shown for each map size. This graph 
can be compared with figure 6.9. The trend to lower rms A for larger maps is 
smoother than for the one-dimensional case because the panels have such a 
variety of sizes. The ensemble average is always near the bottom of the range: 
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Far Field 

Map Size 

Blocked aperture 

Min. 	Ave. 	Max. 

Clear aperture 

Min. 	Ave. 	Max. 

41 x 41 6.0 7.1 11.4 6.0 7.6 11.6 

45 x 45 4.2 5.2 8.9 4.4 5.6 8.9 

49 x 49 3.2 4.0 6.2 3.1 4.0 6.1 

53 x 53 2.6 3.1 4.6 2.3 2.9 4.0 

57 x 57 2.2 2.6 3.8 1.8 2.2 2.9 

Table 6.2: The range and average of rms over each ensemble of SP end-

points for the two-dimensional experiment. The units are degrees of aperture 

phase. 

some more erratic starting points tended to give an unusually high rms L. 

The benefit of using SP is clear. Reading across the graph, for example, a 

45 x 45 map usuall gave a more accurate aperture phase estimate than did 

traditional analysis applied to a 57 x 57 grid. This is a 38% reduction in 

the number of far field samples, which would lead to an equivalent saving in 

observing time. 

On the basis of this graph a map size of 53 x 53 was chosen for the 

April 1991 experiments. It was a safe compromise between measurement time 

and quality of recovered panel positions, although smaller maps would have 

been almost as effective. The observations in this section imply an optimal 

design for future Microwave Holography experiments. It is not advantageous 

to sample more closely than the Nyquist interval (x = 1) except as required 

to eliminate aliasing errors, and furthermore Successive Projections permits 

a smaller extent of the radiation pattern to be measured to achieve a given 

accuracy of aperture recovery. This means the available observing time is 

better used by taking several holographic maps of minimum size instead of 

fewer, larger maps. Among the benefits are: 

1.The effective signal-to-noise ratio, which dictates the achievable accu-

racy of estimated panel positions, increases in proportion to the number 

of maps; 

2.The experiment is more immune to environmental or instrumental fac-

tors which may disrupt a single map; 

3.Data are collected closer to the main beam, where the field is deter-
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Figure 6.12: A graph of the ensemble average and range of rms A as a function 

of map dimension N = N = Nv: the average is the cross-piece in the centre 

of each bar. The rms A when panels are fitted without SP is shown as a cross 

in a circle. 

mined more accurately by Fourier transform. 

6.2 Analytical Solution of the Linear Prob-

lem 

Empirical investigations tell something of the behaviour of the Successive 

Projections algorithm with different experimental parameters, but it would 

be better to have a more rigorous description. This section looks at the pos-

sibility of using well-known analytical techniques to solve a one-dimensional, 

linear model of a Microwave Holography experiment. This contrasts to the 

general problem which requires iterative solution, but it only applies when 

the distortions of the surface are small. 

It is hoped that results from the linear model can be extended to the gen-

eral problem. The justification is that the basis of the experiment is the same 

in both cases; only the numbers are changed. Thus, restrictions obtained on 

experimental parameters may be fundamental to the experiment, rather than 

introduced by the processing method. Several benefits arise from the linear 
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analysis. Since it is independent of the measured data, the feasibility of an 

experiment can be tested before it is performed. The results indicate which 

derived quantities are likely to be sensitive to measurement errors. The model 

can in principle be extended to a two-dimensional aperture. 

6.2 .1 Making a Linear Approximation 

The aim is to calculate the illumination, offset, and tilt of each panel of the 

antenna directly from the radiated far field. To express the far field in terms 

of properties of individual panels, look at the field radiated by each panel. 

The total far field is the sum of these. Using the subscript p to denote a 

panel number in the range 1, , Np, write equation 2.13 in the form 

Np 
+00 

A(u) = >2Ap(u) where A(u) = 	 ap  (x)e-ilrux dx. 
p=1 	 -co 

In order to calculate this Fourier transform analytically, assume that the 

illumination is constant over each panel. Let the panel be bounded by xp_1  

and xp, and let the aperture phase vary linearly between these edges from Op  

to Op' . The situation is shown in fiture 6.13. Then the following quantities 

can be defined: 

rP 	 lap(x)I for x E [xp_i,xp) 
xp  xp_i  

gP 	 2 
	  is the panel centre 

hp  = xp  — xp_1  is the panel size 

(fi'p + Op  
tp 

2 	
is due to a panel offset 

Op' — Op  
2 	

is due to a panel tilt. 

The aperture current for each panel can now be written as 

	

a(x) = rp  II 	 exp j (24, j&  + 4) . 
hp  

The Fourier transform of 11(x) is sinc (u). Using the similarity and shift 

theorems, the transform of the magnitude of ap(x) can be found easily. The 

phase gradient represented by gp  becomes a shift in the far field domain: as 

the panel is tilted its field follows. The phase offset 4 remains unchanged 
under Fourier transform. These facts give 

A(
A e; 2 7r u) = rpe+i4  hpsinc (hpu — 12z) . (6.3) 

16p 

(6.2) 
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Figure 6.13: The panel geometry of a one-dimensional aperture. 

To obtain an equation linear in 4, assume that it is small enough to write 
e+.ilp = cos tp 	 sin ip 1  + j 4 • 

Also assume that i3p  is small enough to allow the sinc function to be approx-

imated by its first order Taylor expansion about hpu, giving 

	

hpsinc (hpu — 	 hpsinc (hpu) + 	 [sinc (hpu) — cos(rhpu)] . 	 (6.4) 
u 

In the special case of u = 0 this expression must be set simply to hp; a 

quadratic term would be needed to improve on this. 

Equation 6.3 can now be multiplied out and the real and imaginary parts 

separated. A final assumption, that the cross-term tpflp  can be neglected, 

gives the following expressions for the field due to a single panel: 

	

Re Ap(u) 	 hpsinc (hpu) cos(2rugp) • rp  

hpsinc (hpu) sin(2rugp) • rptp  

[sinc (hpu) — cos(rhpu)] cos(2rugp) • rpf3p 	 (6.5) 

Im Ap(u) esd —hpsinc (hpu) sin(2rugp) • rp  

hpsinc (hpu) cos(2rugp) • rptp  

	

[sinc (hpu) — cos(rhpu)] sin(2rugp) • rpigp. 	 (6.6) 

These equations are linear in the quantities (rp,rptp, rpf3p), which have be-

come the unknowns to be calculated for each p. The components of the total 

far field are linear in all of the 3Np  unknowns: 

Np 	 Np 

Re A(u) ERe Ap(u) and Im A(u) EIm Ap(u). 
p=1 	 p=1 

Experimental measurements give Re A(u) and Im A(u) for Nu  values u = 

ul, 	 , uNu, resulting in an over-determined set of equations whose solution 
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is a general linear least-squares problem. A design matrix can be constructed 

by placing the unknowns and the data into vectors. For brevity, denote the 

six coefficients in equations 6.5 and 6.6 by a(u), bp(u),... , f(u). Then the 
problem is summarized by this matrix equation: 

ai(ui) bi(ui) ci(ui) az(ui) 
di(ui) e1(u1) Mui) dz(ui) 
(u2) 	 (u2) 	 (u2) a2(u2) 
(u2) 	 (u2) 	 (u2) d2(u2) 
ai(u3) bi(u3) ci(u3) a2(u3) 

/ Re A(121) 

Im A(ui) 

rith 	 Re A(u2) 

r2 	 Im A(u2) 

rze2 	 Re A(u3) 

/ 	 \ 	 • 	 / 

 

 

This can be written symbolically as 

A 

(6.7) 

2N x 3Np  3 Np  x 1 	 2N x 1 

where clearly 2N > 3Np  for an over-determined problem. 

The constraints imposed by these assumptions would appear to be quite 

rigid, but a visual check shows that the approximation is good for a rea-

sonable range of values. An aperture with 6 randomly displaced panels was 

simulated, the maximum 4 being 0.48 rad and the maximum i6p  0.21 rad. 

Its far field was estimated in three ways: 

(a)summing of the panel fields given by equation 6.3, with the illumination 

on each panel replaced by its average amplitude; 

(b)multiplying the design matrix by the parameter vector shown in equa-

tion 6.7; 

(c)performing a discrete Fourier transform of the currents evaluated on a 

closely sampled set of aperture points. 

The results are illustrated in figure 6.14: the 'diameter' was 26 m, the wave-

length 24.2 mm, and the edge taper —12 dB. Over the first few sidelobes, at 

least, the field is reproduced quite well by the linear model. Most of the phase 

discrepancy is due to the averaging of each panel's illumination, as expected 

for only 6 panels. The matrix problem was solved using Fourier transform 

result for a right-hand vector, giving panel parameters rp, 4, and Pp  within 
a few percent of their correct values. 

184 



2 4 6 

800 \ 

600 

400 

200 

0 	  

-6 	 -4 

100 

0 

-100 

-2 

(a) 
	

Computation of Panel Fields 

100 

0 

-100 

-6 	 -4 	 -2 	 0 
	

2 
	

4 
	

6 

(b) 
	

Linear Approximation 

(c) 
	

Fourier Transform 

100 

0 

-100 

Figure 6.14: Three ways of computing the field of an aperture with 6 panels 

and a —12 dB taper; (a), (b), and (c) are described in the text. The amplitude 

(solid line, left-hand scale) and the phase (dashed line, right-hand scale in 

degrees) are shown. The horizontal scales are in units of A/D •--• 0.053°. 
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This shows that the computations were correct. Remember, however, 

that it is unimportant whether or not the linear model fails for most realis-

tic situations. The question is whether the experimental design allows the 
problem to be solved at all. 

6.2.2 Behaviour of the Design Matrix 

In the words of Press, et al. [61, sect. 2.9], Singular Value Decomposition 

(SVD) is the method of choice for solving linear least squares problems. 

From the present point of view, the great advantage of SVD is its ability to 

diagnose where problems will arise when the design matrix is ill-conditioned 

in some way. It gives a detailed account of the effect on the solution in these 

cases. It cannot fail: the decomposition can always be done, no matter how 

singular the matrix. 

Using SVD, any matrix A, having at least as many rows as columns, can 

be expressed as a product of three matrices: 

A = U • W • VT. 	 (6.8) 

Here U is a column-orthonormal matrix with the same shape as the original 

matrix, W is a diagonal matrix, and V is a square orthonormal matrix. Both 

of the latter have the same number of columns as A, so there is one diagonal 

element wi for each unknown in the equations. These are the singular values 

of the matrix. Because the inverse of A is constructed by the product 

A-1  = V • diag (1/we) • UT, 

the solution will run into difficulties if some of the wi are zero or very small 

compared to the others. Each small wi represents a degree of freedom in the 

unknown vector which will not be recovered properly. 

The possibility of finding a solution to the linear panel fitting problem is of 

more interest than the solution itself. The singular values of the design matrix 

show whether the problem can be solved, and how robust the solution is likely 

to be to measurement errors. Observing the singular values as experimental 

parameters are changed gives insight into the information content of data 

that would result from these experiments. If the design matrix behaves badly, 

there is something wrong with the experiment which is independent of the 

data collected. 

The parameters of interest are the sampling factor ic and the number of 

samples N. Related to these is the average number of independent sample 
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points on each panel in the aperture domain, given by equation 6.1. The 

problem is specified completely by the sampling parameters, which determine 

a set of ui values, and the panel layout, which provides the remaining terms 

of equations 6.5 and 6.6. A design matrix can then be formed. 

A panel layout with 6 equally-sized panels, h1  = 	 = 	 = h6, was 

investigated using SVD. There were 18 unknowns, or columns of matrix A. 

In figure 6.15 the 18 singular values of A are plotted on a logarithmic scale 

for several, different values of K. In (a) Nu  = 9, and there are just as many 

equations as unknowns, 2N = 3Np. Clearly this is not enough: for all K 

there are three exceedingly small singular values, so the equations are not 

independent even for Nyquist sampling. This may be because the coefficients 

in equations 6.5 and 6.6 have so many related terms. In (b) Nu  = 15, 
and it can be seen that for K around or just below unity the wi are all 

similar, indicating a robust solution, while elsewhere there can be a range 

over several orders of magnitude. This is expected from Fourier sampling 

theory: K = 1 gives Nyquist sampling. If it is increased the edges of the 

aperture are dominated by aliasing, while if it is reduced the samples will 

lose their independence, causing degenerate equations. Note that Pp  = 2 for 

K = 0.8, and it is below this value that trouble occurs. 

The columns of the matrix V corresponding to singular values of zero 

form an orthonormal basis for the null space of A. These are the linear com-

binations of unknowns to which the data will be completely insensitive. Less 

extremely, columns of V corresponding to unusually small singular values 

are combinations that will be ill-determined by the data. It is instructive to 

look at columns for some of the singular values in figure 6.15(b). Table 6.3 

shows the columns for the smallest wi in several experiments; recall the or-

der of terms in vector x of equation 6.7. Firstly, N = 15, lc = 0.5 gives 
a linear combination of primarily rpf3p  terms, showing that panel tilts are 

the most difficult quantities to recover when the going gets tough. Secondly, 

N = 15, K = 1.55 gives a mixture of rpep  and IA terms, but notice that they 
are concentrated at the outer panels. Undersampling causes precisely these 

quantities to be contaminated by aliasing with the neighbouring image. 

A different way of displaying the design matrix behaviour is to fix the 

average number of points per panel, Pp, which is expected to have a large 

bearing on the success of tilt recovery. Figure 6.16 gives singular value plots 

for (a) Pp  = 1.5 and (b) Pp  = 2. The extremely low values for large K are due 
to the small number of equations: the top line in each diagram corresponds 
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Figure 6.15: Singular values of the design matrix A for a several hypothetical 

one-dimensional Microwave Holography experiments on a 6-panel reflector. 

Each horizontal line represents a different experiment, and holds 18 singular 

values on a logarithmic scale. The sampling ratio K is varied while N. = 9 
for (a) and 15 for (b). 
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Unknown 
N . 15 
K = 0.5 

N = 15 
K = 1.55 

Pp = 1.5 
K = 0.692 

N = 31 
K = 0.8 

ri. 0.000 0.000 0.000 

rai 0.021 -0.305 - 	-0.032 -0.408 

rifli  0.049 -0.352 -0.101 0.000 

r2 0.000 0.000 0.000 

r2t2 0.060 -0.398 -0.049 -0.408 

r2/32 0.300 0.353 -0.360 0.000 

r3  0.000 0.000 . 	 0.000 

r3/3  0.039 0.001 -0.024 -0.408 

7.3/33  0.634 -0.001 -0.597 0.000 

ra 0.000 0.000 0.000 

r4t4  -0.039 • -0.001 0.024 -0.408 

r4■34 0.634 -0.001 -0.597 0.000 

r5  0.000 0.000 0.000 

r54 -0.060 0.398 0.049 -0.408 

r5/35  0.300 0.353 -0.360 0.000 

7-6 0.000 0.000 0.000 

r6€6 -0.021 0.305 0.032 -0.408 

0 6  0.049 -0.352 -0.101 0.000 

Table 6.3: Columns of matrix V corresponding to the smallest singular value 

of the design matrix of selected experiments. 

to N = 9. In other regions the wi are very well behaved for Pp  = 2 but trickle 
downwards for Pp  = 1.5. The third column in table 6.3 is for the lowest wi  

when Pp  = 1.5, K = 0.692. It is another combination of rpfip  terms, and since 

rp  is always very well recovered it is knowledge of panel tilts which will suffer. 

For Pp  = 2 there is no evidence that decreasing K is beneficial, which agrees 
with the findings of section 6.1. 

The SVD analysis agrees with intuition and experimental experience, but 

does it show what conditions must be fulfilled by an experiment? This is a 
strong statement; it means that other techniques for determining aperture 

quantities from measured data, such as Successive Projections, will be subject 

to the same restrictions. If so, SVD can be used as a tool to select optimal 

parameters for the experiment. To make this approach more convincing it is 
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worthwhile to consider a different problem. 

6.2.3 The Phase Retrieval Problem 

Phase retrieval holography is a successful surface measurement technique 

which is particularly useful at high frequencies when direct phase recording 

is difficult. Typically, two amplitude maps of the radiation pattern, one or 

both with a defocus applied, are processed using an iterative Fourier trans-

form algorithm as discussed in section 5.1.3. It has recently been shown by 

McCormack, et al. [43] that the complex aperture current function can be 

recovered with some success from a single map of the power pattern of the 

antenna. If the power can be expressed linearly in terms of the aperture 

quantities (rp, 4, Pp), then SVD can be applied to this problem as well. 
Taking the earlier equations 6.5 and 6.6 as a starting point, rewrite them 

with the abbreviated coefficients used for the design matrix: 

	

Re Ap(u) 	 ap(u)rp  + bp(u)rptp  + c.p(u)rpflp  

	

Im Ap(u) 	 dp(u)rp  + ep(u)rptp  + fp(u)rpflp. 

Summing over p to produce the total field maintains linearity, but squaring 

the sum to find the power does not. To make any progress the additional 

assumption of uniform illumination is needed, so set rp  = 1 for all p. Further 

cross terms £p/3q  must be neglected in addition to those for p = q neglected 

previously, but as before the analysis is useful despite the constraint placed 

on panel displacements. Dropping the u dependence for clarity, 

	

Np 	 2 

Re2A = ERe Ap) 
p=1 

Np 	 Np 

E (ap + bpep + cop) E (aq  + bqfq  cqflq) 
p=1 	 q=1 

Np  Np  

EE (apaq  + apbgiq  apco3q  bplpaq  Opaq) 
p=1 q=1 

Np  Np 

E E (apaq  + 2agbp4 + 2aqcp/3p) • 
p=1 q=1 

Similarly for the imaginary part, so that after rearrangement 

Np 	 N Np 

Re2A — E apaq 	 2> 4 • bpEag  + flp  cp aq  

	

p,q=1 	 P=1 	 q=1 	 q=1 
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Np 	 Np  [ 	 Np 	 Np  
IM2  A — 	 dpc/q 	 2E 4 epEdg  + flp • 4E41 . 

	

p,9=1 	 p=i 	 9=1 	 q=1 

Adding these, 

Np 

1Al2— E (apaq  + dpdq) 
p,q=1 

)1 
(6.9) 

The quantity on the right hand side is a linear function of 4 and f3p, 

and all coefficients can be calculated from the previous design matrix A. 

Numerical tests show that equation 6.9 gives the same result for IA(u)12  as 

the matrix multiplication 6.7, as long as 4 and flp  are sufficiently small — 
they must be much smaller than the previous model required. 

The solvability of the problem is determined solely by the coefficients of 

4 and i37,, which form a second design matrix. This is much smaller than A, 

having 2N7, columns or unknowns, and Nu  rows because each far field sample 

now consists of a single quantity IA(u)12. A singular value decomposition 

of this matrix, using the same example aperture as before, shows that it is 

extraordinarily ill-conditioned. Singular values are plotted with Pp  = 3.5 and 

various ic in figure 6.17(a). Despite the large Pp, exactly half of the singular 

values are vanishingly small in most cases (K = 1 is unusual), so it seems 

that half the information has been lost. This situation can be compared 

with discarding the imaginary part of each complex data point, in other 

words removing every second row of A. If this is done, the singular values of 

the reduced matrix behave in just the same way. 

One thing has been forgotten, however. All phase retrieval experiments 

make use of measurements taken either with a Fresnel zone source or with 

an axial defocus applied to the antenna. In the first case a spherical wave-

front will meet the aperture instead of a planar one, while in the second case 

only a curved wavefront will arrive coherently at the focus. Either way the 

result is approximated by a quadratic phase variation across the aperture. 

McCormack, et al. found that this variation was necessary to remove the 

'twin-image' ambiguity of the aperture function, which otherwise causes re-

trieval algorithms to confuse a function with its conjugate reflection. Another 

justification is that the dynamic range needed to record the map is reduced, 

giving less stringent noise requirements. Indeed, the very low singular values 

2E[ 
 Np

p=1 

ep 
Np  

(bpEaq  
q=1 

Np 

epEdq) 
q=1 

N,, 

CpEag  
q=1 

N,, 
fpEdg  
q=1 
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3.5 and various K. In (b) there is a quadratic phase term in the aperture 
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really indicate the extreme sensitivity to noise of the corresponding combi-

nations of panel parameters. 

A quadratic term can be incorporated into the analysis above by modi-

fying equation 6.2 as follows: 

a9(x) 	 ap(x)e1z2. 

Analogously to the approximation that the illumination is constant over each 

panel, the same must be assumed for the quadratic phase term if an analytic 

solution is to be found. The new equations for the field due to a single panel 

are 

Re A(u) 

- 

hpsinc (hpu) cos('ygp2  — 27rugp) • rp  

▪ —hpsinc (hpu) sin(7gp2  — 2/rug) • TA, 

iru [sinc (hpu) — cos(whpu)] cos(ygp2  — 27rugp) • rpflp  

Im A(u) 

- 

hpsinc (hpu) sin(7gp2  — 27rugp) rp  

▪ hpsinc (hpu) cos(7gp2  — 27rugp) • rptp  

[sinc (h u) — cos(rhpu)] sin(-ygp2  — 27rugp) • rp,8p. 

When these changes are made to the coefficients of A, they automatically 

carry to the phase retrieval matrix because one is derived from the other. 

With a quadratic phase term 7 chosen to give a 1800  change at the edge of 

the dish, SVD analysis of the phase retrieval matrix gave the singular values 

plotted in figure 6.17(b). Except for 7 this plot was otherwise generated just 

as (a), but it has only one tiny singular value for each experiment. Again, 

•= 1 is unusual. The corresponding column of V was always as shown in 

the final column of table 6.3. It represents a uniform phase shift across the 

aperture that is unknowable: of course this is of no concern at all, and the 

problem can be effectively solved. 

This result should be compared with the findings of other workers in phase 

retrieval. Taylor [81] reviews the theory behind one-dimensional problems of 

the kind modelled here. He concludes that the existence of a unique solution 

for the phase is not assured, and some prior knowledge of the situation must 

be provided. He summarized a variety of phase retrieval algorithms, which 

were successful or not depending on the particular function and initial esti-

mate used. In the present case a uniform illumination had to be assumed 

to make the problem tractable, and the aperture function was known to be 

localized to the physical aperture. These facts constituted prior knowledge 

of the solution, and were probably responsible for the success of the analysis. 
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Of course the real experiment being modelled has two dimensions, not 
one, and this is a fundamental change. Bates [4] concludes that there is an 
effectively unique solution to the two-dimensional phase retrieval problem 
when the image is 'localized' in the sense which he defines. It is unique apart 
from three 'trivial characteristics' of the image, here the aperture function: a 
uniform phase shift, an origin shift, or a conjugate reflection. As mentioned 
already, McCormack, et al. [43, sect. 5] did consider conjugate reflection im-
portant and showed that a quadratic phase shift helped to avoid the ambigu-
ity. They, too, concluded that the two-dimensional problem could be solved 
except for contrived, non-physical cases while the one-dimensional problem, 
in general, could not. Both authors made use of the theoretical work of 
Bruck and Sodin [10], who showed that the prime-ness of multi-dimensional 
polynomials lies behind this difference. 

Even with this assurance of solvability the necessity of using every bit of 
a priori information is continually stressed, particularly when the data are 
contaminated by measurement noise. McCormack, et al. use an 'aperture 
domain management' scheme which incorporates an estimate of the aper-
ture illumination function that can co-exist with noise outside the aperture 
support. Another way of providing additional information is to reduce the 
data sampling interval to less than the Nyquist interval, that is K < 1. Bates 
explains that this information is not redundant because the square of the am-
plitude is the Fourier transform of the auto-correlation of the image, which 
has twice the extent of the image itself and so requires K = 0.5 for its ad-
equate representation. Supporting this, users of many iterative transform 
algorithms for phase retrieval have found that reducing the sampling inter-
val can improve performance greatly. Thus it may be significant that the 
singular values in figure 6.17(b) are noticeably closer together for low is, yet 
misbehave for K = 1. No such effect occurs in figure 6.16(b), agreeing with 
the finding in section 6.1 that reducing K is of no advantage for the full-phase 
Successive Projections algorithm. 

Analyses of restrictive, linear models of a standard holography experi-
ment and a phase-less experiment have shown behaviour with great physical 
significance. The restrictions have not changed the possibility or otherwise 
of obtaining a good result with a given set of experimental parameters. The 
models are thus useful for studying properties of experiments more rigorously 
than is possible by empirical methods. 
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6.3 An Alternative Formulation 

The speed of the Successive Projections algorithm for panel fitting, as it has 

been described so far, is limited by the two large discrete Fourier transforms 

which are performed in every iteration. In the previous section, equation 6.3 

gave the one-dimensional far field radiation from a single panel in an explicit 

form. The radiation from an aperture composed of such panels can be com-

puted rapidly from the panel parameters — illumination, tilt, and vertical 

shift — without using a DFT. 

This opens the possibility of a new SP formulation of the panel fitting 

problem, similar to that used by Poulton [59] for antenna power pattern 

synthesis. Each measured far field value Arn(ui) determines a set of panel 

parameters that give a far field agreeing at this point. It will be seen that 

equation 6.3, with a Taylor approximation, is of a form that allows the pro-

jection onto this set to be calculated. There is one set for each ui, giving 

an algorithm with many sets, hence many projections in each iteration. Of 

interest is 

•the effectiveness of this algorithm, 

•its speed compared to 'old' SP, and 

•its extension to two dimensions. 

These are investigated in the following sections. 

6.3.1 One Dimension 

An essential part of Poulton's method was to form an expression which was 

linear for a set of complex unknowns. This can be done for the field due to 

a set of panels 
Np 

A(u) = >Ap(u) 
p=1 

if the first order Taylor expansion 6.4 is used in equation 6.3. The result is 

A(u) r e+j1PC
j2rugp hpsinc (hpu — Lir) 

 

 

,Fiepe—j2rugp 
rPe  

7U 
h sinc (hpu) -132-(sinc (hpu) — cos(7 hpu)) 

 

 

apFp(u) bpG p(u), 	 (6.10) 
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where 

a = r e+ilP 

bp  = rpi3„e+itP 

F(u) = hpsinc (hpu)e-12"gP 

G p(u) = —
1 
[sinc (hpu) — cos(rhpu)] e-i27rugP 

771 

This is equivalent to equations 6.5 and 6.6 except that no small angle ap-

proximation has been made for 4. If the complex numbers ap  and bp can be 
found (the same symbols have a different meaning in section 6.2) then the 

panel parameters rp, 4, and 13p  can be derived from them. 
The entire field is 

Np  

A(u) = E [apFp(u) bpGp(u)] 
p=1 

which will be written as 

2Np  

A(u) = Ex3 (u) = x • 4.(u). 
J.1 

These vectors are simply concatenations, 

(6.11) 

(6.12) 

= (al, bi, a2, 132, 	 ,aNp, bNp) 

41)(u) = (Fi(u), 	 GNp(u)), 

to put the expression into a standard form. Compare with equation 5.3 where 

x and 4,  ( f) are real vectors. The problem of panel fitting to Microwave 

Holography data Am(ui) for i = 1, , Nu  can now be stated as follows: find 

a vector x such that 

IA„,(ui) — x • (ui)1 E for each i = I, 	 , Nu 

where E is the permitted tolerance about a measured field value. Such a vec-

tor can be found by the Method of Successive Projections if these constraints 

are made to define sets: 

Qt = fx I lAm(ui) — x 	 (u)I E}. 	 (6.13) 

The intersection of all Nu  sets will contain suitable vectors x, plus a host 

of others which do not represent apertures. This is because ap  and bp  defined 

above have equal phase 4, so x must consist of pairs of elements with equal 
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phase. Once again, the flexibility of SP allows a simple solution: define one 

more set 

R = {x I arg xj_i  = arg xi for even j} 	 (6.14) 

and project onto R in addition to the Q. The projections from any xo  onto 

Qi  and R can be derived using differential techniques; the derivations will 

not be repeated here. A single equation gives the projection onto Qt: 

\ 4,  • xo — Ap, 
 	 . 

0 • xo Anti ) 	 11" 
(6.15) 

The arguments ui have been left out for clarity. The projection onto R is 

best described in steps to be applied to each pair of elements a; and b; of x: 

1.Calculate C = Re2a; — Im2ap' Re2bp' — Im2bp' ; 

2.Calculate S = 2Re a; Im a; 2Re b;Imb;; 

3.Find the projection phase from 20 = arctan(S/C); 

4.The projected elements are the components of a; and bp' in this direc-

tion, 

ap  = Re (a' e- ) el-j(/' and bp  -- Re (b ,e) 

Encouraging results were obtained when these equations were imple-

mented for the simulated one-dimensional aperture used in previous sections. 

Firstly, decisions had to be made on two aspects of the algorithm: the order 

of projections onto the large number of sets, and the tolerances E to allow 

about each measurement A,. A lengthy study could be made, but a simple 

course was to watch the convergence of the rms aperture phase difference 

for a variety of example experiments. A tolerance E = 0 usually gave the 

best performance and was adopted, although further tests of the effects of 

measurement noise are needed. Three schemes for ordering the projections 

were tried: 

•project onto Qi  in alternation with R for increasing ui; 

•project onto all Qi  for increasing ui followed by a single projection 

onto R; 

•project onto Qt for the on-source sample ui  = 0, then the two Qt 
one sample interval away, and so on outwards, followed by a single 

projection onto R. 
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Iteration 
New SP 
rms A 

Old SP 
rms A 

CD  
1-1  

C
q
  
V
D
  

er  
U
D
 U
D
 
C

.-
 
O
D
 0
)
 
2
 

19.63° 19.63° 
3.70° 5.99° 
1.100  2.51° 
1.23° 1.60° 
1.23° 1.31° 
1.24° 1.20° 
1.24° 1.14° 
1.24° 1.11° 
1.24° 1.08° 
1.24° 1.07° 
1.24° 1.05° 

Table 6.4: Convergence of the new, many-set SP method beginning at a 
uniformly illuminated, zero phase aperture. The rms phase difference from 
the phase of an original, one-dimensional aperture with 15 panels is shown. 
Convergence of the old, two-set SP method is shown for comparison. 

Each pass through all the sets constituted one iteration, or repeating unit, 
of the algorithm. The first scheme did not perform as well as the other two, 
but these were quite similar: sometimes one was better, sometimes the other. 
The third one was adopted because of its greater symmetry. 

The 15 panel aperture simulated for section 6.1 was used again to test 
the new algorithm. It was 26 m across, with A = 23.6 mm and K = 0.825. 
It had a 12 dB edge taper, so the approximation of a uniform illumination 
on each panel could be tested. Convergence was observed in the usual way, 
by the decrease of rms A, and a starting vector x0  was chosen to represent 
a uniformly illuminated, zero phase aperture. Table 6.4 shows rms A for 10 
iterations of the new SP method together with 10 iterations of the old, two-
set SP method, for which the same data and starting point were used. The 
number of far field samples taken was Nu  = 41. 

A noticeably better result was obtained with the old method, yet it is in-
teresting that the new method converged rapidly to a steady state. Although 
not shown, the projection lengths were also constant beyond the sixth itera-
tion. More surprising is that the same steady state arose for any randomly 
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Nu  Pp  rms A 
31 1.71 — 
33 1.82 — 
35 1.93 * 
37 2.04 0.81° 
39 2.14 1.25° 
41 2.25 1.24° 
43 2.36 0.97° 
45 2.47 0.93° 
47 2.58 1.00° 
49 2.69 1.05° 
51 2.80 1.12° 
61 3.35 1.05° 

Table 6.5: The steady states obtained with the new SP formulation for sev-
eral N. For Nu  = 35 (*) a variety of end-points were obtained as the 
starting vector was changed, with rmsL in the range 1°-4°. For smaller Nu  
no sensible limits were obtained. 

chosen starting vector. A possible explanation is that the sets did not inter-
sect and a repeating limit cycle was reached, the same sequence of projections 
recurring for each iteration. The minimum just before reaching the steady 
state, here at iteration 2, was also typical behaviour. 

The steady states obtained for different spans of far field data were com-
pared by testing an ensemble of random starting vectors for several N u . As 
can be seen in table 6.5, a common steady state occurred for the whole ensem-
ble only when Pp  > 2, confirming again the importance of this parameter. 
The limit of rms L behaved in an irregular way as Nu  was increased, and 
there seems to be no benefit in taking a very large set of measurements. This 
also agrees with previous experience. To show that useful recovered aper-
tures were obtained, the tenth iterated vector for Nu  = 41 was converted 
to panel parameters rp , 4, and 16p  and graphed in figure 6.18. The stepped 
illumination function follows the original as well as can be expected, and the 
panel tilts are well recovered except in regions of low illumination. 
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Figure 6.18: The recovered aperture function after 10 iterations of the new 

SP method. The number of far field samples was N. = 41. 

6.3.2 Two Dimensions 

The one-dimensional tests above are encouraging. Most importantly, the 

algorithm was extremely fast because the vectors (1)(u1) in equation 6.15 

could be evaluated once and used for every iteration thereafter. Can this 

formulation be extended successfully to a two-dimensional aperture with a 

realistic layout of panels? As will be seen shortly, there were difficulties which 

prevented effective use of the method in its present form. 

A linear expression for the total field A(u, v) is obtained in the same way 

as before: by summing explicit expressions for the fields of Np  panels. The 

field of a trapezoidal panel with constant illumination rp, vertical shift 4, and 
tilt parameters ap  and #p  can be calculated using standard Fourier transform 

operations. The result will be given without derivation here, using the panel 

geometry given in section 2.4.2. For a general panel centred at azimuth 00  

and radius ro  some rotational transformations are needed, so define 

( u' ) . ( cos 00  sin Oa  ) . ( u ) 

v 	 — sin 00  cos 00 	 v 
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Then the field of the panel is 

A (u5  v) P 	 P 
= r ee-Arteroi  (ut _ 

r
2E_ vi _ 
hp 	 ) 

The integral /(u, v) is the field of the panel if it were at the origin: 

jh sin(rPhp)  _.„ 	 sin(r  Q hp) e+i,„wp  

2rv 	 rPhp  e  2 vwP 	 7r Qhp 

where 
vd 	 vd 

P=u+ 
h
P  andQ=u- 

h
P
• 

• 

(6.16) 

(6.17) 

When the panel is rectangular, dp = o and /(u, v) reduces to the expected 
double sinc function, 

sin(ruhp) 	 sin(rvwp) 
/(u, v) = hp 	 w 	  P 	 . 

ruhp 	 rvwp  

A first order Taylor expansion allows equation 6.16 to be linearized: 

Ap(u, v) = rpe+ilPe-32ruir0 /(til, VI) - 13P 	 - 
rhp  

ap 
Iv(u

„
v
,
)
] 

irWP 
(6.18) 

where I. and I. are partial derivatives of I which will not be reproduced 

here. 

This is the analogue of equation 6.10. Define complex numbers ap, bp, 

and cp  to contain all the unknown panel parameters: 

ap  = rpe+34 bp  = flpap  cp  = apap. 

Then functions can be defined in an obvious way to give 

Ap(u, v) = apFp(u, v) bpGp(u, v) cpHp(u, v) 

which makes the parallel between the one- and two-dimensional cases very 

clear. The formulation of the panel fitting problem proceeds in an identical 

fashion from this point, except that the vectors x and ■P(u, v) are concate-

nations of triplets of terms instead of pairs: 

= 	 C2, • • •) 

4°(u, v) = (Fi(U, 21), Gi(12, v), Hi(tt, 27), ...). 

The same sets Qt  are used, and the projections onto them are still found by 

equation 6.15. R is now the set of vectors made of equi-phase triplets, and 

the projection onto it is done by a simple extension of the previous method. 
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It is interesting that the problems turn out to be the same. Unfortunately, 
the first order Taylor expansion does not adequately represent the far field 
pattern of a two-dimensional panel. The field computed by equation 6.18 for 
a single panel of the Mount Pleasant 26 m antenna is shown in figure 6.19. 
It is plotted over the far field region that• would be covered by a 53 x 53 
holographic map with tc = 0.825. The sum of such fields for all 252 panels 
should reproduce the field of the whole antenna. In (a) the panel is not tilted, 
while in (b) tilts amounting to aperture phase gradients of 45 0  radially and 
laterally have been applied. That is, # = a = 45 0 . Considerable distor-
tion has occurred, so attempting to determine these tilts from holographic 
measurements would give unreliable results if linearity was assumed. 

There is another, practical difficulty. Each Cu, v) has 3Np  complex ele-
ments, and there are Nu  Art, separate field points (ui, vi) for which this vector 
must be pre-calculated and stored. This constitutes a matrix of 3N pNuNt, 
elements, or 2.12 x 106  for the current example. The working space required 
by the algorithm is thus 33K blocks of 512 bytes, and the access time for 
such a large stored object will be considerable on most computers, not to 
mention the inconvenience of storing it. The computational time for NuNt, 
projections is also significant: if the norms 40  • 4,  are pre-calculated rs,  6Np  
complex multiplications occur in each projection, or 6NpNu Ni, in each 
iteration. This is still a smaller operation than the two N.:, x N.:, Fourier 
transforms required for an iteration of the old kind, so a speed advantage 
remains a possibility. 

These problems — the poor Taylor approximation and the size of the 
workspace — make the new SP algorithm unwieldy in its present form. It 
is an interesting extension of previous work, however, and further research 
may show that a many-set formulation can be practical. 
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Figure 6.19: The field from a single panel of the 26 m antenna, computed 

for uniform illumination using a first order Taylor expansion of the explicit 

equation. Above, the panel is not tilted, while below there are tilts /3 = a = 

450. The scale units are AID, which is somewhat less than the beamwidth 

of the whole antenna. 
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Conclusion 

There have been two aspects to this project. Chapters 2 to 4 describe 
Microwave Holography experiments at the Mount Pleasant 26 m antenna. 
Chapters 5 and 6 describe the Successive Projections algorithm for panel fit-
ting, which overcomes a major short-coming of traditional holographic mea-
surements: limited aperture resolution. 

As well as being essential for the Mount Pleasant experiments, the thor-
ough treatment of antenna mounts and panel distortions in chapter 2 is 
useful for experiments with any antenna. The phase corrections necessary 
to compensate for antenna motion highlight the physical significance of the 
'aperture plane'. The panel distortion model can be applied with a general 
grid of sample points, and consists of a conventional description of panel tilts 
summed with an independent 'twist' term. 

Simple and effective hardware has been developed for holographic mea-
surements using a signal from the AUSSAT-1 satellite. The front-end receiver 
and 2 m reference antenna are portable for measurements at other sites. Both 
carrier and beacon signals were used in the Ku-band, 12.25-75 GHz, and 
accuracies of ±53 pm and ±64 pm respectively were obtained for the esti-
mated normal surface error at each aperture point. Panel adjustments based 
on these data resulted in an improved surface rms for the Mount Pleasant 
antenna, and the symmetry and size of systematic surface distortions were 
identified. 

Systematic and random errors in Microwave Holography are discussed 
in chapter 4, and for random errors a model is proposed where additive, 
amplitude only, phase only, and pointing errors are treated separately. The 
effect of each category on the recovered aperture currents is derived, and 
the signal-to-noise ratios in the model can be estimated from the on-source 
signal. The model agrees very well with the repeatability of the holographic 
aperture maps. It seems likely that cross-coupling in the i.f. system was the 
dominant source of error. 
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Chapter 5 introduces the Method of Successive Projections, an iterative 
algorithm which is seen to describe the operation of several existing optimiza-
tion algorithms. It can be applied to any problem that can be represented as 
the location of the intersection of several sets, provided that the projections 
onto the sets are readily calculable. Its application to the problem of fitting 
panel tilts and offsets to Microwave Holography data is considered in detail, 
and good convergence was obtained for the Mount Pleasant data. The pro-
cessing time on a modern computer is a fraction of the 4 hours required to 
record the maps, and the results are expressed in a practically useful way as 
the adjustments needed at each panel corner. 

The new algorithm is examined in chapter 6, first by studying the reg-
ularity of convergence with simulated data, then by finding generic features 
in an ensemble of convergence paths. Optimal experimental parameters are 
suggested that allow high-quality panel fitting to the smallest possible sets 
of data. Sampling of the far field should be as close to the Nyquist interval 
as aliasing allows, and the maps are sufficiently large if they give at least 
3 aperture points on every panel. Several small maps make better use of 
the available observing time than a few large maps, as long as the Succes-
sive Projections algorithm is used to find panel positions. Otherwise, limited 
aperture resolution prevents accurate panel fitting. 

This claim is supported by a rigorous analysis of the linear problem that 
arises when panel tilts and offsets are small. This analysis can be extended 
to include phase-less measurements, giving behaviour agreeing with the ex-
perience of other workers and thus confirming the validity of the linear ap-
proximation. Another Successive Projections formulation of the panel fitting 
problem has many sets instead of just two. It is too unwieldy in its current 
form, but refinements may be possible to make it practical. 

There are several other areas where further research would be profitable. 
The panel fitting algorithm might be improved by the use of convergence 
acceleration techniques. The accuracy with which panel twists and higher-
order distortions are recovered needs investigation. An end-to-end test of 
the algorithm would be possible by adjusting panels on a rigid reflector, 
where panel setting errors truly dominate other systematic distortions. Then 
'before' and 'after' panel positions could be compared as in chapter 3. A 
mm-wave antenna would be a suitable 'workshop' for this test, and the panel-
fitting tool which Successive Projections provides will be most useful for these 
extremely accurate structures. 
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A more sophisticated way of incorporating aperture blockage effects may 
be possible. The effects of subreflector blockage and diffraction have never 
been thoroughly treated. These are the major problems remaining for Mi-
crowave Holography, and it is possible that Successive Projections will find 
application including prior knowledge of diffraction effects into the analysis. 
The Method of Successive Projections itself is useful in a much wider context, 
as can be judged from the range of applications mentioned. It may allow a 
rigorous treatment of many existing signal processing algorithms which cur-
rently are used but not well understood. 
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Appendices 

A The Convolving Function 

In section 2.2.1 it is necessary to sum a finite cosine series: 

m=+L 

E cos my where y = 27.8„s. 
m=—L 

This can be done by starting with the standard result 

n-1 sin '2. cos '112. 
2 	 2  E cos my = 	 , 
sin k m=0 	 2 

which can be proved by summing a geometrical series with first term 1 and 

ratio &Ili. Now, putting n — 1 = L, 

m=L 	 sin Lif-)E cos I'l 
2 	 2  E cos My = 	 . 
sin k m=0 	 2 

Thus 

m=L 

Ecos my = 2 E cos my — 1 
m=—L 	 m=0 

2 sin (L4-1)2  cos a -sin E 
2 	 2 	 2 

sin 11 

2 sin a cos k cos a + 2 cos a/ sin k cos LI —sin E 2 	 2 	 2 	 2 	 2 	 2 	 2 

sin 

[2 sin -Lik cos L'22] cos + [2 cos2  L'1L — 11 sin k 
2 	 2  

sin 121  

sin?k.' cos E + cos -2/1  sin k 2 	 2 	 2 	 2 

sin 

sin (-2R' + 11) 
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where N = 2L 1, and this result is used in section 2.2.1. 

Given this result, the replication of the sinc function can be shown to 

equal the same function provided that this Fourier series is accepted: 

k=-1-co 	 k=L 
E Nsinc N(0 k) = 1 + 2E cos(27rk0). 
k=-co 	 k=1 

This result is quoted without proof in [9, p. 86]. Written another way, 

k=L 
III (0) * Nsinc (N 0) = 2E cos(271-1c0) — 1 

k=0 

sin(7r N 0) 

sin(7r 0) • 

B Euler Angles ck and 0 

In section 2.3 it is necessary to deduce the Euler angles 0 and 0 of the rotation 

matrix P(0, 0, 0), given vectors r in the original frame and r' in the rotated 

frame. The transformation with tk = 0 may be written in full as 

	

xl  = 	 x cos 0 	 ysin0 

	

= 	 x sin 0 cos 0 	 y cos 0 cos 0 	 z sin 0 

	

ZI  = 	 x sin 0 sin 0 — y cos 0 sin 0 	 z cos 0. 

Making the substitution 

x = a cos a 

y = a sina 

gives the equations 

1 a = \42  -I- y2  and tan a = y/x 
xl  = 	 a cos(a — 0) 

= 	 a sin(a — 0) cos 0 	 z sin 

= — a sin(a — 0) sin 0 	 z cos 0. 

The second and third equations are a two-dimensional rotation by angle 0 

which may be inverted to give 

a sin(a — 0) = y' cos 0 — z' sin 0 

z = y' sin 0 — z' cos 0. 

A second substitution 

y' = b cos 
b = yr2  e2  and tan )3 = 

z'= b sin f3 
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gives 

a sin(a — 0) = bcos(3 + 0) 

z = bsin(fl + 0). 

From these equations it is simple to show that 

lb cos(fi + 0)1 = t and la sin(a — 0)1 = t 

where, because Irl = lel for vectors related by a rotation, 

t = Va2 x12 = 	 = Irl2 sI2 z2 

Thus the angles 0 and 0 can be found from these relations: 

sin(a — 0) = 

cos(a 	 0) = 

sin(/3 + 0) = 
cosU 3 + 0) = 

±tla 

x' la 

zlb 

±t I b 

where either both upper or both lower signs must be chosen. When t is 

imaginary, that is 11-12 _ _ z2 <0, there are no solutions. This behaviour 

is understood by considering the locus of solutions (0, 0, V)) when all three 

Euler angles are allowed to vary. The locus is traced out as the rotated frame 

is turned around the vector r'. It will cut the tk = 0 plane either twice or 

not at all, with two degenerate solutions when t = 0. The other special cases 

to consider are a = 0 and b = 0, for which it is easy to show that qf and 0 

respectively are undetermined. The other angle is found as follows: 

a=0 = x=y= 0 

b = 0 = yi=zi=0 I
I

sin 0 = y'/z 

cos 0 = z'/z 

sin 0 = y/x1  

cos 0 = x/x' . 

These computations make a simple computer algorithm. 

C Fitting by Least Squares 

Following are outlines of least squares fitting methods referred to but not 

described in the text. In section 3.2 a plane is fitted to the recovered aperture 

phase function and subtracted so that a phase ramp caused by a pointing 

offset does not affect the result. In section 3.1 the polarimeter is calibrated 
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by fitting a sinusoid to the variation of the U and V outputs with time. In 

section 2.4 deformations of a reflector panel are modelled by four parameters 

which must be fitted from the aperture phase information, either as a separate 

operation or later as part of the Successive Projections algorithm. 

It is not necessary to estimate the errors of the fitted parameters in these 

applications, because the repeatability of independent experiments is always 

used as an indication of the level of error from all sources. Only the equations 

for the parameter estimates themselves are given below. 

C.1 Fitting a Plane 

Given a set of points (xi, yi) in the two-dimensional plane, a function 

= ax + by + c 

is to be fitted to measurements cki  at each point, minimizing the chi-square 

merit function 

x2  = EtVj (01 - axi  — byi  — c)2  

Here i ranges over the data, and ?Di is the weight for each point which is 

often chosen to be 1/cri2  where cri  is the uncertainty associated with q.4.  It 

is assumed that the errors in the (ki  are much greater than the errors in xi  

Or yi. 

This algorithm is an extension of the usual method for fitting data to a 

straight line, for example see Press, et al. [61, sect. 14.2]. Form the sums 

1 	 1 	 1 
S -= >W  S = 	 WIXI Sy = EWIY = —Ewi0i  

S . S • 

and define 

ui  = — Sz  and vi = yi — Sy. 

Then form the sums 

= 	 Slut; = EWittiVi syv = EWiViVi 

Su(1) = EtVitijOi 	 = EWiViOi• 

The coefficients of x and y are found by solving the matrix equation 

ssuu:  ssuv:  su4, 

suo  7 

and finally c is found by the equation 

c = S — aSz  — bSy. 
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C.2 Fitting a Sinusoid 

Now a general sinusoid 

	

= 0:10 sin(wt 	 + d'o 

must be fitted to measurements 0i for ordinates ti. Recast the problem by 

defining 

x = sin wt and y = cos cot 

and let 
a = (I) cos 45 

b = (I) sin S = 	 =(A/77---1- b2  and tan 6 = bla. 

C = 4)0  

Then 

= ax + by + c 

which is the equation for a plane, and the previous algorithm can be applied 

without change. 

C.3 Fitting a Twisted Panel 

The equation that models a twisted panel is 

and for a least squares fit the function to be minimized is 

X2  = Etni (Sbi — TxiYi — i3xi — aYi - 

The independent variables x and y are related to xp  and yp  of section 2.4 by 

xp 	 Yp  = 	 and y = 
h/2 	 w/2 — xpdlh 

where h, w, and d are constants of the panel. When twisting of the panel is 

suppressed, T = 0 and the plane fitting method above can be used to find 

the other parameters. 

When all four parameters must be determined, form the sums S, Ss, Sr,, 
suu, Sus, Sys, Suo, and Sink exactly as for the planar fit. In addition, form 

the sums 
• Sim, = Ewiuiviui Suss = E Wi UiViVi 

Sum()  = Ewjujvjcb Suuvv = 
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Then calculate the following elements, whose names indicate that they are 

part of a 3-D matrix equation: 

an 

▪ 

SuUVV SUVu Sy -4-  Suvv Sz Suv2  S 

an 

▪ 

Suvu SUU Sy 4-  SUL SX 

a31 
	

Suvv Suv Sy + SVVSX 

V1 = SUVO SUVS0 • 

Find the tilt parameters f3 and a by solving the matrix equation 

(

anSuu  — a21Suvu 

an Suv  — a31Suvu 

anSuo  — anSuv. 
aliSvv  — a31.9. 

anSuo — anvi 
an  — amyl  

The twist parameter T and the constant offset are given by 

v1  — 	 —  #Suvu aSuv. 
T = 

= 

D Header Information for Scans 

Here is the header used at Mount Pleasant to record information about each 

scan (see section 3.2). The language is FORTRAN, and declarations are 

in the order of storage. A single sample consisted of a real value from 

each polarimeter channel. This defined a 'record' size of 16 bytes, and it 

was convenient to maintain this division for the header: each line declares 

16 bytes. 

double precision jdcal, jdscn 	 ! for previous scan 

double precision jdsat, scanno 	 ! for this scan 

double precision sleft, sright 	 ! source position 

double precision xstart, ystart 	 ! scan start position 

double precision xstop, ystop 	 ! scan stop position 

double precision xrate, yrate 	 ! antenna axis rates 

double precision xmark, ymark 	 ! interrupt spacing 

real 	 cal_offsource(4) ! Ix, U, V, and Iy 

real 	 cal_onsource(4) 	 ! Ix, U, V, and Iy 

A celestial source position would not be specified in azimuth and eleva-

tion, so the notation (sleft,sright) allows for any coordinate system. An-

tenna positions may refer to an XY mount or an AZEL mount. The method of 
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obtaining times prevented jdcal and jdscn from being available until after 

the scan, so they were stored in the following header. The final calibration 

samples occupied a separate header which followed the last scan, and jdcal 

for the last scan was appended to this. 

The quantities which should appear in the map header are shown below. 

Others can be included, but these are essential. Some explanation: if a 

prediction_file is not available, or if the source is celestial, a fixed position 

can be given. In either case the coordinate system used is indicated by 

source_coord, and a constant offset of (left_off set, right_off set) can 

be applied. If sample interrupts are triggered at constant intervals in time, 

sample_gap_time is this interval. Otherwise, control system interrupts are 

used, and one of xmark and ymark above is the constant angular interval 

between sample interrupts. Clearly, only one axis can give interrupts even if 

both are in motion, so one of xmark and ymark should be set to zero. The 

number of central grid points having the A channel attenuator switched in 

is indicated by attenuate_extent. 

character*50 

character*50 

character*50 

double precision 

character*50 

double precision 

double precision 

integer 

double precision 

double precision 

integer 

double precision 

double precision 

integer 

integer 

integer 

dataset_name 

antenna_name 

source_name 

frequency 

prediction_file ! from AUSSAT data 

source_left 	 ! if no predictions 

source_right 	 ! if no predictions 

source_coord 

left_offset 

right_offset 

interrupt_mode 	 ! time or system 

integration_time 

sample_gap_time 

number_scans 

length_scans 

attenuate_extent ! from map centre 
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E Proof that 2SE = —11E112  

In section 5.2.4 the constraint Pitif  = Pm was said to be enough to determine 

the sum SE. This will now be proved. Using the notation of that section, 

SE = E [p(u)x„,(u)-E q(u)y„,(u)] 
uEM 

E [(x 	xm)x,„ (y,„' — ym)ym] dropping the index 
uem 

E — x,„2+ y„, — y,„2] 
u€M 

E kmf  xm  —sm2  + ymym  — yi„.,21 because ./1,1  = Pm 
uEM 

E [(xm — 	 + (yin — Vm)Y:.]• 
uEM 

Add the second and the last lines of this equality: 

2sE  = E [(xim  — xm)xm + (ym' — yn)yml 
uEm 

+ E [(xm — 	 + (ym — y:.)y:.] 
uEM 

= E [(x:. — xm)(xm — xim)+ (y:. — ym)(ym — y:„)] 
uEM 

= _E [p2(u) q2(u)] 
uEm 

= —IIE112• 

This is the desired result. 
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