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-PREFAGCE -

The work described in this thesis has been
carried out in the Civil Engineering Department of the
University of Tasmania during the period July, 1956 to
February, 1960. The research has been directed at obtalnlng
some fundamental understanding of problems of instability of
structures rather than the production of empirical information
necessary for design purposes, though it is believed that the
groundwork has been laid for the determination of wvaluable
empirical data on certain types of problems. The treatment
is restricted in the main to elastic buckling of non-redundant
frames, though the problems met with in inelastic behaviour or
with redundant fremes are mentioned, and have been kept in
mind throughout,

Chapter One begins with a detailed analysis of
an unstable mechanism. This study forms an interesting
introduction to problems of instability of structures without
introducing the complication of the elastic beam equation.
Various methods of analysis of structures have their counterpart,
by analogy, in the treatment of the behaviour of this mechanism,
and the treatment is rather detailed. The remainder of the
chapter is devoted to standard methods of calculation of
elastic critical loads. Because of the apparent confusion
in some recent papers as to the meaning of various criticel
loads as determined by the moment distribution convergence
criterion and other methods, the treatment is again rather full,
and contains some very simple examples. More difficult.problems
are worked as illustrations and also because their results are
used later. .

Chapter Two is concerned with pin-ended struts
and gives an- introduction to the use of the Southwell Plot and
the information' that can be obtained from it. The Southwell
Plot on deflections is first discussed. Particular emphasis
is then laid on the power of the Southwell Plot on strain
measurements. It is believed that the strain plot may have
been used to ensure centrality of loading of a column for
testing, but otherwise the treatment is new. It is intended
that the discussion of single columns should furnish a basis
for the arguments developed in Chapter Three.

In Chapter Three the Southwell Plot on strains
is applied to a number of simple model frames and model.or
full-size structures. A design method for certain types of
structures liable to instability is advanced, based on the

equation of the Southwell Plot on measured straing., This

work is new. The Southwell Plot on deflections has been

used previously to confirm calculated values of critical

loads of structures, but the equation of any Southwell Plot,
and in particular the plot on strains, can be used to take
account of imperfections and to relate the performance of the
actual structure to the critical load of the perfect structure.

The 1nvest1gatlon has followed the method of
first establishing criteria analytically in the case of a
number of simple frames, followed by experimental verification,

More complicated frames were then treated.

Chapter Four draws attention to the buckling of
bolted angle struts as the research project was initiated with
this in view. While carrying out preliminary research on the

‘behaviour of angle-section members under simple loading systems,

a particularly interesting phenomenon, the bending effect of
pure torque, was discovered. The effect has apparently not
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been previously noticed. The behaviour is reported here,

as there is probably a considerable effect on the torsion ,
buckling of angle-section and similar members. (The 4 r
general analysis of the bending and shortening effect of
pure torque has since been carried out, but is not included
in this thesis. See Aust. J. Appl. Science, Vol. 11, No. 3
(1960)) The remainder of the chapter contains the results - 4
of studies on model structures containing bolted angle

members. ‘A method of attack on' the problem of obtaining -

design data is suggested.

It is thought that complementary energy methods .
will furnish the main means of tackling the problems of
redundant frames. In view of the importance of energy
methods in structural analysis, Chapter Five contains a
brief outline of their application. The treatment is
rather short and may be considered as a simple introduction
to the problems of redundant frames. A pin-jointed redundant
frame is solved by complementary energy, the crookedness of
members being taken into account. However, any analysis of
the behaviour of even the simplest rigid-jointed redundant
frames is a problem of considerable complexity, and the
- determination of its strength is still more difficult.
Nevertheless, it is the author's opinion that energy methods
of analysis backed by the empirical information obtainable
from Southwell Plots on strains will ultimately give a
solution. '

Experimental work connected with this investigation
has involved the testing of over twenty full-size girders and
trusses, a model lattice girder, model Warren trusses, eleven
triangulated model frames containing bolted angle members, and

numerous triangular frames and single members. Since considerable
information could often be obtained without causing permanent
deformation, many of the frames or members tested were used

over and over again.

The method followed in this research has been
firstly to study simple problems such as single members or
triangular frames, techniques and ideas being worked out
analytically and experimentally on these problems as far as
possible. Information gained in this way was then extended,

often by analogy, to more difficult problems, then supported

by experimental means and, where possible, analytically. The

advantage of the prior study of simple problems for the

clarification of ideas, the evaluation of the accuracy of

any method, and for perfection of technique, is not always ‘§
realised.

It is the intention of this thesis to propose the
use of the Southwell Plot on strains or related plots as a
basis for the determination of design formulae in problems of
instability. It is considered that sufficient indication of
the value of the method is given here to warrant the undertaking
of research and testing on a large scale in order to determine
the necessary empirical data for all types of structures., >
Attention should first be directed at non-redundant triangulated
framed structures, but the author is convinced that, with the
support of energy methods, it will eventually be possible to
tackle other structures including redundant frames. .
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CHAPTER 1.

THEORY OF BUG’KLI:';NG.

THE BUCKLING OF A SIMPLE MECHANISM, ELEMENTS OF STRUCTURES,

AND P TRIANGULATED FRAMES

1. Introduction '

In this chapter, the notion of unstable equilibrium of a

 structure "is introduced by an analysis of the behaviour of a simple rod and

spring mechanism. In this simple way, without the necessity of handling
the equations of bending of a beam, the idea of a critical load at which
the structure is in neutral equilibrium against static digturbancesis
presented. By this means it is possible to examine buckling divorced
from the complication of the beam equation. The various energy and zero

-stiffness .principles are worked out on this model, and also the related
behaviour of the slightly imperfect structure.

' ‘The classical methods of calculation of buckling loads of
single members and structures are then given, energy prihcipled being very
briefly reviewed. Various recent methods of handling the relevant equations
for framed structures are illustrated with worked examples, the common
mathematical foundation for all the methods being kept in mind throughout.

' The wey in which the behaviour -of the practical structure
under load may depart from the simple neutral equilibrium theory ie briefly
outlined.

The general notation used is as follows: .

Compressive force.
. Tensile force.
Bending moment. of
~ Rotation of end member.

e Length of a member.

- Energy.

W Forces, loads.
Displacement, deflection.
Young's modulus.

Flexural rigldity.’

e HcH oY
- - .

ol )
—

Other_eymbolevare-expleinei”in the,text. _

The simple mechanism treated here is taken from an
article by N. J. Hoff, "Dynamic Criteria of Buckling“ - Research,
Engineering Structures. Supplement, (1949) p. 121 (Butterworth) in which
the dynamic buckling is analysed,. various types of demping being discussed.
In this thesis, however, the mechanism is used to illustrate the principle
of unstable equilibrium end methods of calculation of critical loads which
ere later used in relation to. the buckling of structures. The analysis of
the undampened vibration is. taken from Hoff's paper, but the remainder ie
the work of the author. . , s

f\



'Gonsider the rigid bar AB, pinned at A and acted on by &

force P, as shown in Fig. 1. The end B of the bar is restrained against .

lateral movement in either direction by a weightless linear spring of
stiffness K. It is evident that if the load P acts truly along the line
- AB the bar is in equilibrium for any magnitude of the load P. It is
interesting to investigate the stability of the equilibrium.

e . Suppose the end B of the bar is displaced laterally by a
small smount u, corresponding to an anticlockwise rotation ¢ about A,
(Fig. 2), and the bar is brought to rest in this position. Then the

- force in the spring is given by.

S = Ku =KL ¢

and the enticlockwise moment about the pin A of the forces acting on
the bar, excluding the disturbing force, is :

Pu-Ku L, ' ) ) "0_0. . (1)

if the moment of the weight of the bar is neglected. We notice that
if P is less than KL, this moment is negative, and the bar tends to
move in the clockwise direction. That is, on being released from its
displaced position, the bar accelerates towards the central position,
which is a position of stable equilibrium so far as small static
disturbences are concerned.

However, if P equals KL, the resultant moment vanishsa,
and the bar is in neutral static equilibrium.

If P exceeds the value KL, the bar accelerates in a
direction giving increased displacements, and the original position is
one of unstable static equilibrium.

56 It can be seen that the stability of therequilibrium
position depends on the relation between the magnitude of the acting
force P and the stiffness of the restraining spring. If we consider
the behaviour of the system as P is increased from zero, small static
disturbances of the type described being given from time to time, then
for velues of P less than KL the effect of a disturbance is to set up
‘a small oscillation about the equilibrium position. If P equals KL,
vhen the bar is displaced it does not return. A very slight increase
in load is then sufficient to cause large deflections after a slight
disturbance. It is interesting to note that the argument, and in
particular the value of the critical load at which instability occurs,
is independent of the magnitude of the displacement provided the
displacement is small, since the condition for instability is



L "'Pu-KuLI > 0. .. (2)
which yields | o
P > KL, whatever the magnitude of u.
6. The effect of a dynamic disturbance can also be investigated.
If the mass moment of inertia of the bar about the hinge A is I, and at

some instant the bar is in the position shown in Fig. 2, then the
equation of motion is

I ap/at? KL2¢ - g =0

This gives

¢ /at? + FLEL ~P)/1 = 0 e (3)
Putting -

l(KL - P)L/T{ = k2, the solution of this equation is

95: ‘A sin (kt + B) provided KLy P, Case 1. )
or dp/dt = constant if KL =P, Case 2. ) .o (4)
or $ = A sinh (kt + B) if KL< P, Case 3. 3

A and B being arbitrary constants.
As a boundary condition, put
_d¢/dt = v/L when t = o and ¢=p.
That is, consider the hotibn when the end B of the bar is given an

initial velocity v at the equilibrium position. Equations (4) then
reduce to ' :

$= (v/kL) sin kt  if P<KIL, Case 1. g
or ¢=' vt/L - _if P = KL, Case 2. ; .o (5)
or $= v/d sinhkt if P>KL, Case 3. )

If P is less than KL, Case 1 gives the equation of a vibration about,
the equilibrium position of amplitude @ = v/kL and frequency k/27 .
If P equals KL, ¢ assumes values which increase steadily with time.
If P is greater than KL, the acceleration away from the position of
equilibrium is very rapid. The study of a dynamic disturbance leads
to results which agree physically with the conclusions drawn from the
analysis of a static disturbance. It should be remembered that the
argument is restricted to small displacements.

7e In practice, many structures, structural elements, or parts
of machinery show behaviour of this sort. Any structure fails by
instability if and how most easily it can. A designer is concerned
with avoiding unstable equilibrium, so that the equilibrium of a
structure is not upset by disturbances of a magnitude which it is
likely to encounter. The practical implications of instability will
be discussed later, but certain principles can be introduced by the
study of the simple rod and spring system under discussion.



8. Consider the energy éhahgéé ih?biﬁga'ih'éhsmail dyﬁémié o
displacement of the bar from its equilibrium position, as shown in
Fig. 2. At eny instant, they may be listed as follows the equlllbrium

- position being con31dered as a datum.

'U1'= the work dene by the load P e
=PL (1 - cos¢) = 2PL sin2( ¢/2) = PL"V¢2‘/2 for small ¢ .

U, = the energy stored in the spring’

4 KL® ¢2,

U; = the energy introduced into ‘the system from outside, in
order to cause the disturbance, called the perturbatlon
energy.

U, = the kinetic energy of the rod
2
% I(d g/at)

The  spring is cdnsidered weightless. Then, we have

U1 + U3 = 02 + U4 B
assumlng conservation of energy. It can be seen that when P = KL,
Uy =Use The effect of a perturbation, of energy U3, may now.be

. summarised.

(1) When P<KL, U; <U,, and hence Uy > 0 7 Part of the
perturbation energy is requlred to deform the spring, and the
remainder is converted into kinetic energy.

(2) When P = KL, U4 = U,, and hence Uz = U,. The erturbation
» “1 2 37 5% p
energy is converted into kinetic energy.

(3) When P > KL, Uy > U,, and hence U < U More kinetic
energy is available than provided by the dlsturbénce, as the work
available from the load P exceeds the work required to deform the
spring. Hence a vanishingly small perturbation energy is sufficient:
to upset the equilibrium. The system is dynamically unstable.

“ R .

The argument is simplified by putting Uz = 0, when the
criterion for neutral or unstable equilibrium under static displacements
becomes :

U, >0, | | . . (6)
This principle is very powerful in the determination of the critical o
loads of structures.

9, It has been shown (Equations (5), Case 1) that, on displacement .

and release, the rod executes harmonic v1brat10ns about 1ts equilibrium
position if P is less than KL. We have

@ = (v/kl) sin kt.

Assume for the moment that the frequency of vibration (and hence k) is
unknown, though the motion is known. to be harmoniec. Put .

¢=' A sineo t.

Then d¢/dt = Awcos W t,

-~

(0
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The kinetic energy at #=o0 is
2 ' '
1(d g/at)%/2 = Ia% /2.

When ;6 reaches its maximum value ’ ¢ = A, the kinetic energy is zero.

-Conservation of energy then gives that the kinetic energy at #g= 0
- plus the energy given up by the load in the motion out to ¢ = A equals

the energy stored in the spring at ¢ = A. Hence

IA2¢D2/2 +I"'PL(1-‘-, °°5-¢max) .= KL? fzmu /2.

2,2

2 o o= kA®

Therefore 1A% W
and w? = (K - P) L/I,

and the result is independent of the amplitude A of the vibration,
provided A is small. The value of «2 is in agreement with the value

of k obtained from equation (3). Use of the energy principle furnishes
an easy means of obtaining the frequency of harmonic vibrations of -a
stable system about its equilibrium position. It should be noticed that
as P approaches the value KL, « tends to zero, and the frequency of -the
vibration tends to zero. : '

10. Consider the stiffness of the rod and spring system against a
disturbing force F applied at B in the direction normal to P. (Fig. 3.

. 900

LTTTHTIrY

Then for equilibrium, we have
 Pu-Ki + FL =0,

The stiffness of the system against the force F is F/u and equels

(KL - P)/L. It is positive for P KL and becomes zero for P = KL

and negative for P>KL, If P is considered es increasing from zero,
small disturbing forces being applied from time to time, then as P
approaches the velue KL, F/u tends to zero, and a venishingly small
disturbing force causes large displacements. This principle is of

use in determining the loads at which instebility ocours in structures.

. It should also be noted that for & given value of P, F/u is
congtant ,2and the work done by the disturbing force is Fu/2 and equals
(KL - P)u*/2L, which is positive so long as KL > P.

~T1t can also be seen thet as P approaches the value KL large

~“férees 8 = Ku are called into play in the spring to resist the' acticn

of the disturbing force F, .
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11, The practical implications of the 1iabllity of certaln .

structures to instability are very wide. The rod and spring mechanism

has served to illustrate certain concepts, but, in practice, many more
complications are introduced. Problems which are relevant to the

study of the rod and spring system, each of which has its counterpart

in the study of the instability of structures, are the effect of a €
non-linear spring, the effect of damping or friction, the effect of

 large displacements, or the effect of a change in the load P as the

system displaces. It may occur that P is not constant, but a function -

of the distance through which it acts, or a function of the rate of _ @
displacement. The relation between P and' u may be affected by the. =~ I
inertia of the bar and of the loading apparatus, as this will affect

the speed with which the load can "follow" the movement of the bar.

The qualitative effects of such variations from the simple problem

discussed may sometimes be evident, but the quantitive effects are

also important in practlce.

12, One modlflcation of the simple system will be discussed

here, Consider the effect of the rod being initially out of line

" with the direction of P. This may be considered as an imperfection

in manufacture, resulting from the spring being made up of incorrect
length by an amount u,. That is, when P is zero, u has the value u,.
Then, for equilibrium under loed P, we have

Pu - K(u.- ug)L =0 |
therefore u = KuoL/(KL - P) uo/(1 - P/KL) - e ee (D

The previous condition of steble equllibrium in the central position - 4
u=0up toa crltical value of P equal to KL with a change to unstable
" equilibrium once ' this load is exceeded now no longer exists. Instead,
displacements occur as soon as P is given a value, and the initial
displacement uy is magnified in the ratio 1/(1 - P/Per) where Per = KL,
the critical load to cause 1nstab111ty where no 1mperfectlons exlst.

«

The graph of u/u, against P/Per is shown in Fig. 4 #. + v ol
M N |
i-o —— oi

E%%f. ;/ | S AéfijT////

R

&
0 e
: Uling Measured digplazernent
o P e W
Fig, 4 -~ | S Fig, 5 -

It is interesting to note that the behaviour under load is e
function of the imperfection U, and the critical load when no
imperfections are present. In the limiting case when ugy tends to
‘zero, the graph of u against P/Per follows the path O M N, but for .

. larger values of u,, the knee in the curve becomes less pronounced.
Equation (7) is the equation of the- curve. This reduces to

(w-nu )/P =(u=-u )/?cr + u /Pcr.

- Thus if the: displacement on loading,u - u,, is measured, and (w=u,)/P
" is plotted against u -lUqy the grapﬂ is a straight line of slope 1/Per.
and intercept on the (u = u,)/P axls of u /Pcr. (See- figure 5).
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This plot forms a convenient means of relating the measured

"~ behaviour of an imperfect system to the magnitude of its imperfections

and the critical load of the perfect  system.

13. ~ Under load, the behaviour of structures liable to instability
is usually similar to that of the rod and spring model possessing
imperfections, (Fig. 4), rather than the case where no imperfections are
present, The latter behaviour is a limiting case of the former, and
difficult to obtain in practice. Both types of behaviour are often .
referred to as buckling. There is a close relation between the two.

~ In practice,-buckling usually means the occurrence of large deformations

with a small change in load (and there is often no true instability.)
This occurs on the upper parts of the curves in Fig. 4. We are often
interested in the load carrying capacity of structures, and where :
buckling occurs such problems can be tackled by a study of the behaviour
of idealized structures, followed by ana1y51s and empirical correlation
of the effects of imperfections.

140 The equlllbrlum of a compressed elastic bar of uniform flexural
Iigidity:

Consider the single pin-ended column AB of 1éngth AZ
acted on by a central axial force P. (Fig. 6)

Fig. 6 - R

The bar is in equilibrium, provided yield of the material does not
‘occur, for any magnitude of the force P. The stability of the

equilibrium will now be considered., Suppose the bar is displaced by
some means from its equilibrium position to the position given by

~y(x) and brought to rest there.. (Fig. 7). Then at point (x,y) on the

displaced bar, the bending moment 1s
7/
M

P(a - y)
EI a%y/ax*

(where EI is the flexural rigidity of the bar), if the bar is in
equilibrium in its displaced pos1t10n.

Therefore d.y/'dx2 + k y = Pa/EI

2/ P/EI

Therefore y = a + A sin kx + B cos kx,

where “k

A and B being arbitrary constants.



If the displaced curve is symmetrical about the line x = o,
the boundary conditions »

X=0,y = o0, dy/dx = o give ‘the solution

y = a(l - cos kx) o .. (8)

Substituting the condition that y = a when x = '692 yields.the equétion
a=a-acos ké?/? '

This equation, which holds provided a is small, (otherwise the moment

curvature relation is in error), is independent of the magnitude of a.

It gives

xl/2= /2, 372, 5T/2, ....
or p =21 /4%, omiE1/d?, 25 nE1/ 4%, ...

N

If the displaced form is_assumed to be antisymmetrical about o, (when
X=0, y=o0 and d2y/a = o and hence a = o), we obtain

Yy = A sin kx .o ee (9)

Substituting the condition that y = o when x = f?/é yields
| /2 =T, 27, 37, ...
or , P=4772EI/Z2, 1671'2EI/Z2, ceco

and the solution is independent of the value of A. We have therefore,
for equilibrium of the bar in the displaced state,

P = n7 2E1/€ % e .. (10)

where n=1,2, 3, cooo -

The bar is in equilibrium in the corresponding bent form as well as

in the straight form when any of these loads are acting, and the
magnitude of the displacement is unimportant, provided it is small.

The shape of the displacement curve is determined by equation (8) or
equation (9), whichever is relevant, and depends on the value of n.

The bar is thus in neutral equilibrium when any load given by

equation (10) acts on it, so far as static disturbances into the

given shape are concerned. In fact, the moment curvature relationship
used in this derivation is inexact, as the expression for the curvature
is only approximate. There is no point of neutral equilibrium, but it
can be shown that, once displaced, the deflection of the bar increases
very rapidly foE values of P greater than the lowest of equation (10),
 that is W<E1/¢ This complete behaviour is discussed in the theory
of the elastica (see R. V. Southwell "Theory of Elasticity" 0.U.P. 1941,
pp. 429 - 438) but the approximate treatment given here serves as a
simple mathematical model of the behaviour of an idealized column, and .
the behaviour of an actual column can be referred to it.

-r
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15.. Critical loads and characteristic modes of distortion of a

~golumn of uniform flexural rigidity: o

(See R. V. Southwell "Theory of Elasticity p. L24) .

Consider the initially straight pin-ended strut shown

in Fig. 8.

L4 N

- T s
p p

The strut is assumed to be displaced into some curve y(x). For
equilibrium in this position, as well as in the initial straight
configuration, the bending moment curvature relation yields

EI d%/dx® + Py =0 .. oo (11)
This is satisfied by y = A, sin nwx/f , which gives, on substitution,

B, =n° T %1/¢? . .. (12)
P, is the n® critical load at which neutral static equilibrium
exists, and the associated mode of distortion is y = A, sin nTTXJZ?,
where_the value of A, is unrestricted. This value of y defines
the n"" characteristic mode of distortion. The smallest value of

P, is Py = WREI/£%, when the strut assumes the form y = Aq sin Tx/L.

This value of P is called the first Euler load of the strut. At
values of Pn higher than P1, the strut is in neutral equilibrium

when displaced into its corresponding mode, but it is in unstable

“equilibrium when displaced into any other shape. Hence to achieve

=

velues of P higher than Pq, restraint of some form is necessary.

gw dﬂ%b !'t’l/l//\f”ﬁ/ry!/{zg '
16. IThe uniform strut from the standpoint of energy.
As in the case of the rod and spring mechanism

previously discussed, energy methods cen be used to determine
the critical loads of the uniform strut.

We have, (equation 11),
EI a%y/dx~ + Py = O.

Multiigy eachﬂéfdgipf the equation by %-dzy/axg, and integrate from
o to £ . C e

0

[=
°

4 Pfo(dy/dx)2 dx - -ﬁ- P [y dy/dxjf

on integrating by parts. So long as either y or dy/dx vanish at
o and £ , we have :

L 2 L -
| %:fo EI(a%y/ax%) dx = % Pfo (ay/a0® ax .. (13)

The term on the left is recognizable as the strain energy of
bending, and that on the right as the work done by the load when
the bar assumes the bent position y(x). - -

L

o )
1@y /a®)® ax = 4 P_£ v (d%y/a) dx.

l\)b—-

Hence

L
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v |
. [ Er(y/0)? ax
[ ¥ay/a0? ax

Hence

. e (14)

where y represents the characteristic mode of distortion. In practice, ' ¢
closely approximate values of P can be found by assuming values of y '
which fit the given boundary conditions, and the energy method becomes
a powerful means of obtaining approximate values of the critical load.
The above is known as Rayleigh's method.

v
If equation (11) is multiplied through by(y/EL)dx and
integrated we obtain '
L 5 5 t,
LymyﬁxMx=J’gydﬂm
Y/
2 2
—.{ d~y/d d
therefore P = ?f y(&y/ax) ax , :
§ y*ax/s1 T e .. (15)
This equation can be given a complementary energy interpretation.
It is derived by Westergaard using the methods of complementary
energy, and he shows that it is also valuable in determining approximate
critical loads using assumed forms for y(x).
Since d2y/ax2 = -Py/EI, equation (13) can be rewritten as
| L y) |
3 L5r (pyfn)2 ax = % Pfo (ay/dn)? ax .
PP
or P= A (dy/dx) dx (16)
[EyFax/a1 3
)

For approximate calculations this is better to handle than equation (14);
Equation (16) can be reduced to equation_(1j? on integration by parts,
provided either y or dy/dx vanish at o and £.

When using such approximate methods for the evaluation of
critical loads, it is best to consider those having relevance in terms
of strain or complementary energy as particular cases of a family of
methods which can be obtained by manipulation of equation (11).

For a treatment of Rayleigh's principle, see R. V. Southwell
"Theory of Elasticity" pp. 442 - 455. In Southwell's book Rayleigh's
method of calculation of critical loads or vibration frequencies is
presented without prior reference to the principle of conservation of
energy. The mathematics of the member behaviour is carried out first,
and then given an energy interpretation provided certain boundary
conditions hold; and these conditions fit the energy picture. The
method is due to Lord Rayleigh (Theory of Sound Vol. I) and is
clearly presented in Temple G. and Bickley W.G. "Rayleigh's Principle"
0.U.P. (1933). Here again the principle of conservation of energy is
not used. In the case of a harmonic vibration it is shown that the
average kinetic energy equals the average potential energy, whereas
conservation of energy equates the corresponding maximum values.
The final equations are, of course, the same. The energy discussion
in Art. 8 is drawn from this book.
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_ The complementary energy approximate method of
calculation of critical loads given above, is drawm from
H. M. Westergaard "On the Method of Complementary Energy",
Proc. A.S.C.E. Vol. 67, No. 2, p.199, Feb. 1941. The same
equation is derived by Westergaard using complementary energy
conceptions, but in this thesis it is derived mathematically
from the column equation, and can be given Westergaard's

. complementary energy interpretation if desired. It should bém

noted that equation (16) is reducible to equation (15) only if
the given boundary conditions hold. These are not mentioned in
Westergaard's paper, and this omission may cause confusion. In

. certain cases Westergaard has shown that equation (15) gives a

%loier approximation to the critical load than equations (16) or
14) .

Other useful approximate methods are given in -
S. Timoshenko "Theory of Elastic Stability" (1935) McGraw Hill
p.81, but Rayleigh's method has been widely used: an interesting
example is the calculation of the critical load of an unbraced
arch rib when buckling out of its plane occurs: "The Lateral
Buckling of Tied Arches", W. G. Godden, Proc. I.C.E., Aug. 1954,
Vol. 3, No. 2, p. 496. The power of Rayleigh's method is also
illustrated in a discussion by the author on a paper by o
R. Frisch Fay "The Buckling of Struts of Varying Cross-Sections"
Journal I.E. Aust. Vol. 31 No. 3 Mar. 1959 p. 8. In the original
paper Bessel functions are used to solve the problems, but the
author has shown that the approximate solution obtained very _
simply by Rayleigh's method is very close. This gives a guide to
the accuracy of Rayleigh's method where no standard solution is
available for comparison. See M. Gregory, discussion on the above
paper, Journal I.E. Aust. Vol. 32, No. 9, Sept. 1959, p.231.

17. The vibrations of a compressed bar:

Assume the bar is of mass/ﬁ’ per unit length and
vibrates in the form

7 = a sin(Tx/¥Z) sin wt. (See Fig. 9)' ~ "

Then, applying the same method as was used in the case of the rod
and spring mechanism, the value of ¢O can be calculated. The total
kinetic energy when 'y = o is

%J/de w? 8% sin® (M x/4)
(o]
= }w? /9‘é7a2.
When y reaches its extremum, the energy given up by the load is
£ 2
P [ #3y/ox)" ax
() :
= P1T232/4£,
and the strain energy of bending is

L
("E1 0%/9x)° ax
X |

o

EI T 432/4 £3
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From conservation of energy,
pria2/sdr o p L oY= m1 /443

and therefore 6\)2 =T 2PH -|-Q/P)//°‘é:2 ‘ o | ;I.v', e (7).

where Q = T ZEI/ /=, 2 the first Euler load of the strut. It is
1nterest1ng to note that the result is independent of the amplitude
of vibration a, though the analysis is restricted to small values of
a. The value of ¢Jis real for P less than Q, and becomes zero when
P is equal to Qs The results of the analysis of the static
disturbance of the strut and of the vibration analysis are
physically consistent.

The above discussion is drawn in principle from
Temple and Bickley's "Rayleigh's Principle", but the equations
are derived here using the principle of conservation of energy.

18.  The behaviour of an initially croocked uniform elastic strut:
(See R. V. Southwell "On the Analysis of Experimental . o
Observations in Problems of Elastic Stablllty Proc. Roy.
Soc. London,Series A Vol. 135 p. 601 and R. V. Southwell -

"Theory of ﬁlastlclty“p. 428.)

~ Suppose AB is an axially loaded pin-ended strut
of length 2 having initial crookedness given by yo(x)

(See Fig, 10)._

P, x - P

If the centre line of the strut. under load P is given by y(x) y the
bendlng moment at x is .

.

and we have Py = -EI a2 (y-7,) /d:; = _EI d% /dx* + EI 4%y /dx
therefore 4 y/dx2 + (P/Ei)y d yo/dx2 .o . (18)
The form of y(x) is thus dependent. on the form of yo(x) o
‘Put, Vo = 2_1 2, sin nﬂx/£

sum1 15 Yo to have any form between A and B and provided Y, and
y /d bSth vanish at x = o, .

Equatien (18) is satisfied by
. -

y = ? bn sin nTx/4

E 4

and substitution gives

ZT [ n? 21;5/82 + ¥ ]s:m W x/é

= % 2Tl'2a,n/£2 sin nWx/€ ,



where k = 1) P/EI ~

This applies for all x.

Therefore (bp - &) n?fr 2/ £2 = k'?'bn
and by = a /(1 - k2 /mPrR) .. (19)
Now _ ﬂzEI/£2 = Q, the first Euler load of the strut

and therefore bn/an = (1 - P/n?Q) -1 , giving the ratio in which the
the initial shape o - |

a, sin n¥ x/£  is magnified by the end thrust. Now as
P approaches Q,’ b1/a1 = (1 - PAQ) - . .. e (20)
and aq is -greatly meignified, since

o v

Pl.i.mQ (1 - P/Q) -1 .
(1 -D =43, whenP=0,
b3/3-3 =(1 - 1/9)“1 = 9/8 when P =Q .

Also bz/g_z

The central deflection of the strut is

) = - + - .+ o0
b = by b3 b5 b,7

,ahdv as P- approaches Q, the terms after by can be neglected.
Hence b = 51 = a1/(1 - PAQ)
provided'equation (18) is applicable, that is the curvature is small

and yield does not occur. The behaviour is thus similar to that of

the initially out.of line rod-and spring mechanism., Deflection of
the strut occurs as soon as P has a value, and becomes very large as

P approaches first critical load Q -‘-'szEI/Z .

19. ' The measured central deflection is
& = b - (the central value of y,)
'L= b - a1 R
= 3-1/(;1 - P/Q) -2
_This reduces to o
| S/r=86R +a /4 . e (21)

Now & /Q'ié’constant for a given strut, so the graph §/P against

§is a straight line of slope 1/Q and intercept on the S/P axis of
a1/Q. (Fig. 11) ' .
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P/Q | 8/pv. N | | !

0 . - | -
Ja,L__g__> b Fig. 11.

The behaviour of the initially crooked strut is thus a function of 1ts
initial crookedness and of the critical load of the perfectly straight
member. The linear plot, (equation.21 and Fig. 11) is a valuable means
of empirically relating the behaviour of the member possessing practical
imperfections to that of the perfect member, and is due to Southwell.

* The plot is often called the Southwell Plot. on deflections. It was
introduced in the first place as a means of inferring the first Euler
load of a strut from measurements of deflections taken durlng loading,
but the implications are much more far reaching.

20, The behaviour oifé column subject to compression P and bending
moments at its ends:

Columns in structures are never pinned at their ends, but A
fixed in some way to other members of the structure. Often the-joints
are quite rigid. Rotation of the end of a column is therefore
restrained by the other members framing into the joint, and any
rotation c21ls into play end moments. To discuss the buckling of v
frames consisting of an assemblage of members, it is convenient to '
analyse first the behaviour of a single column- subject to end
moments .

21. Consider the initially straight bar AB acted on by an
axial load P and end moments Mj and Mp, anticlockwise moments and
slopes being considered p031t1ve, (Fig. 12).

Ma ' (MA"'MB)/ /

p B

/

IRUAY (2

A
L

Fig, 12
. At the peint x, the bending moment is
M=My - (M +Mp)x/€  + Py = -EI d%y/a?,

which gives the differential equation

) ,
. d y/dzx + Py/EL = M, (1 - /4 ) /P + Mg x/B1 £
Puttlng P/EI ='k“, the solution can be written
' ~yE A s1n kx + B ¢os kx - MA(1 - x/Z )/BI + MB x/PE

Substltutlng the boundary condltl ns :
X=0,y=o08nd x= sy ¥ = 0,

we have B = MA/P and A = —(MA/P)cot x4 -(ﬂB/P) cosec k&
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Now . dy/dx = Ak cos kx - Bk sin kx + (My + Mg) /P&,
Putting  x = o, the slope at A is given by

1§ =w, 573 - uy £/
where A= (6/i €2kl cosec t¥-1))
and RB= APLA0 - xloot xd) 3 v e
and kK =\p/EI.

The treatment given here is similar to that given in
Niles and Newell "Airplane Structures" Vol. 2 (Wiley) but is
believed to be simpler. In this book the o and /32 functions
are derived in connection with the three moment equation for two
adjacent struts. Equation (22) is simpler.

22. Bending of a bar subject to tension T and bending moments -
applied at its ends.

In this case we have

EI 9A=MAfﬁ1/3 _MBfoQ/é .o .

wherg o (6/k.]‘2 2 2) 1 - k;»gcosech k1—é )

1
and ﬁ51
and k, =1’T/EI .

The functions « and for axial compression and =« and for
P

(32 €3 (kyleoth 1 1)

1 1
axial tension are tabulated on pages 72 and 107 of Niles and Newell
"Airplane Structures" Vol. I1, 3rd ed., 1948, (Wiley). .

23, The behaviour of a column fixed at one end.

Consider the column AB which is fixed at A and pinned
at B (Fig. 13).

M .
. /5 < P .
R prg. 1

Suppose a bending moment Mﬁ is applied at B. This causes a

deflection of the column as shown in the figure, and a bending
moment M, at A arises. Then we have

E1 0, = MAjﬁ/B ¥MB £L /{a,

Cand EI O = MBI,’F/3 -y Lo fe.

(22)

(23)

(24)

(25)
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Now since GA = o, we have
M, = (L/23) M.

o thereore Mo/ By = 4 BEI/L(LA2 - ?)

re Mp/fp =4 A ) | e e (26)
MB/ﬁB represents the stiffness of the énd B against an applied moment.
The graph of Mp/@p egainst k € is shown in Fig. 14. It is positive
for values of Eé up to 4.495, becoming zero at this value, which
corresponds to

= ¥%EI = 20.2 E1/¢°%.

When Mg/ @, becomes zero, a vanishingly small applied moment causes a
large rotation, and this gives the buckling load of the member.

| [\/\5/95

Fig. 14
} } : ! ,k@ |
. a2 3 4 )
IR The procedure can be given an energy interpretation.

The work done by the applied moment is % Mp 6 p since My and GB

are linearly related for any given values of P (Equation 26).

The strut has not become unstable provided positive energy is required
to deform it. The condition for stability is thus % Mg g is positive.
At neutral equilibrium % Mp GB is zero, and the expression becomes
negative when the equilibrium is unstable. These criteria are
consistent with those for stiffness given above, as they reduce to
Mp/6p positive zero or negative.

A25. The buckling of a simple frame.

Consider the simple plane frame shown in Fig. 15. The

joint B is assumed to be rigid and the members have the same length
and flexural rigidity.
P

N 5
§§Q BA
Vs |
A B D
\e GBD | . Fig. 1
Oge /
v ¢

P

To find the load P to cause buckling in the plane of the frame, a
distorted form such as that shown is assumed. To cause the
distortion, a small moment M, is applied at the joint B. Clockwise
moments and rotations are considered positive. The rotation at B
is then given by : -



e = EI QBD
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16, =E18,, =M, B/3
=ElVUpp = Mpp Z/B
= EI 0BC = Mpg jﬁ /3 .
Also Mgy *+ Mpp * Mpg = Mo where Mpp i the moment that

arises at B in the membér BA, etc. .
Therefore (3EI/€) I:GBA/P + 6 BD. * 6BC/P] = MQ
whicihéi.v&e MJ/EI@B = 3(2/3 +

The stiffness is therefore zero when ﬁ =--2, and this occurs at
k =3.5o0r P =12,3 EI/£%.

26, Principles useful in the calculation of the buckling
loads of more complicated frames can be illustrated by reference
to the frame shown in Fig. 16.

Pl
A'cg
N .
R . ED Fig, 16
= L
¢l
P'r

The members are of equal length and flexural rlgldlty and the end

D is fixed.
Mgy éﬁ /3 ’

uzp /3 - vips L,

[
1}

We have E10p = £1 O,

£1dp = Mgg 23 /3

Also . EI 9DB= MDB Z/B - MBD//6 = 0 .‘.‘ o'o’ (28)

a«nd ] MﬁA + MBD + MBC = MO oo oo (29)

if an external moment My is applied at the joint B. Clockwise
moments and rotations are considered positive.

Equation (28) gives
Mpg =% Mpp.
Hence equations (27) and (29) give

(3EI /Z) (/p +4/3 1/B) =N,
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The stiffness of the joint is zero when MO/C9B =0,
or 3 = -3/2. This is the buckling condition, and yields
Xk = 3.6, or P =13.0 EI/Z 2

27. Alternatively, we may treat the behaviour as an
eigenvalue problem. We have, putting M0 equal to zero,

Mpy *+ Mgp * Mg =0
Mgy _ Mg = O

PMgy - 3Mgp/i= 0.

These three equations, being linear and homogeneous in the three
unknowns MBA’ Mpp and Mpg, have in general only the zero

solutions Mgy, =Mpp =Mpg = O (in which case all the end

rotations are zero and the structure has not altered shape),

unless the determinant of the coefficients is zero. In this case

the equations are not independent and there is insufficient
information to solve for the unknowns, which are therefore undefined.

Putting 1 1 1

1 0 -1 = 0
R 0

we obtain (3= -6/4

which is the same condition as given above., The interpretation is
that when the moments are undefined, then the linearly related end
slopes are undefined and the system has .buckled.

For a discussion of eigenvalue problems see Biezeno
and Grammel "Engineering Dynamics" Vol. 1 (Blackie) p. 183, also

Courant and Hilbert "Methods of Mathematical Physies" Vol. 1
(Interscience Publishers). ' .

) ‘
28. It will also be shown that at the buckling load the
ratio of some internal bending moment to an externally applied
disturbing moment M, becomes infinite.
We have Mgy + Mpgp * Mgz = Moo
Mpy - Mpg =0.

(B Mg, - Mgp/4 =0,

These give . 2z, * Mpp =M,

Therefore (6/4Pp + 1) Mgp =M
. . -1

and Mp/M, = (6/4(> + 1)

The ratio becomes infinite when

o7,

3 = -3/2, vhich is the same condition as
previously. '
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. 29. We have therefore three conditions or methods
for obtaining the buckling load of the frame in the mode
considered. They are

(1) the stiffness of a joint to an applied
disturbing moment becomes zero ( or the energy required to rotate
the joint becomes zero.)

(ii) the determinant of the coefficients in the
eéquations in the bending moments is zero. (Similar equations in
the deformations of the system, e.g. the end slopes of the members,
can be handled in the same way. :

(iii) an applied disturbing moment causes an
infinite internal moment in some member of the frame.

It is to be noted that the methods are
mathematlcally equivalent once the desired buckling mode has been
decided on. Various techniques are available for solving the
equations, which become numerous and lengthy where a frame contains
more than a few members even if these all lie in one plane. These
techniques will be illustrated by referring to the buckling of a
triangular frame.

30. The Buckling of an Equilateral Trian Frame in its Plane.

One of the simplest frames is a triangle, and
the buckling of an equilateral triangular frame having initially
straight equal members will be considered. It is assumed that the
frame is made up without any internal stresses being set up.
Buckling in the plane of the frame without tension of the members
can be ensured by placing the minor axis. of inertia of the cross-
section of the members so that it lies in the direction perpendicular
to the plane of the frame,

Suppose the frame ABC is loaded in its plane as

in Fig. 17, the applied forces passing through the intersections of
* the central axes of the members, so that no external moments are

applied to the joints.
A
<2 F) h«AB
Ore
Rl

Fig, 17 Flg. 18 Fig. 19

Then the axial forces in the members AB AC and BC can be written as
P, P and -3P, (Fig. 18) where P= W/ ﬂ_ and compression is considered
p031t1ve.

4

TVOCZ 'T\uza

Suppose the equilibrium of the structure is now disturbed
in some way, giving rise to moments and slopes at the ends of the
members as indicated in Fig. 19. Anticlockwise moments and slopes
are considered positive.
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Then we have E10,; = w5 €B/3 - My, £ /6
EI10p, = MBAZF/3 - My £ /6

EI Opg = Mpo£B/3 - Mgp €4 /6

B10gp = Mgl /3 - Mpg &L/

BTG, = ¥y £B/3 - Mg 4 /6

and | EI B4 = Myg 2/3 - Mg, 24 /6
where o and 3 refer to members of length € having axial compressive

load P, and d ' and (B! refer to a member of length £ having axial
tension P/2. For continuity at the corners,

0 O €BA=‘9BG’ and QCB =0y -

AB _ “AGC?

Also, since there are no external moments at the joints

ee  e. (30)

e Nt N e e N e s e o it

Myp *+ Myo =0, Mgy * Myg =0, Mgp + Mgy = 0.
Hence, putting Mppg = My = - Mpq
Mpg =Mp = - Mgy
Mgp = Mg = - MeB»
we have - ZPPMA v My +d My =0
dm, + 2(‘3+F'l) T CUMC - 0
dMA +d-'MB + 2(@ + f?>') Mg =0
At the buckling load, My, Mg, and Mg are undefined.
| L3 ol oA
1 1
Therefore o 2((5 * (5 ) o | = 0.

This determinant, on expanding and factorising, gives
. , i .
(2(5 + 2(3 - df)[z@;(zﬁ, + 2(5' + OU) _dz}z 0
oo oo (31)

There are two modes of buckling. The symmetrical mode, (Fig. 20a) is
obtained by putting the second factor equal to zero, and gives

1l =50 or P=25E1/{3.

The unsymmetrical mode, (Fig. 20b), which occurs at a lower load is
obtained by putting the first factor equal to zero, and gives

k= 4.0 or P = 16 E1/42.

(It should be remembered that if k = /P/EI, then 1)P/2EI equals k/ V2.
o and (3 are thus functions of k€ , for axial compression while

&' and (5" are functions of k& /JZ for axial tension).
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Fig. 20
(a) (v)

In the above analysis for the triangular frame, all the equations
have been written down. From considerations of symmetry or
antisymmetry, this is in this case (and usually) unnecessary.

The full treatment is given here because in certain cases,
notably when dealing with problems of buckling out of the plane,
the simplifications available from symmetry considerations are
often rather difficult to handle.

31. It is interesting to note that the solution for the
unsymmetrical mode of buckling can be obtained by applying a small
external moment at one of the joints. Consider the triangle ABC
loaded as in Fig. 21. A small moment M, is applied to the joint &
so as to bend the frame into the shape shown.

Tw/z Tw/z Fig. 21

Suppose the moments set up at the ends of the members are Mpg: etc.,

and the corresponding end slopes ‘9AB’ etc. Then equations (30)
still hold. However, in this case

=M.

Myp + My o
Mgp + Mgg =0

and Mg * Mgy =0

Also, from the antisymmetry of the distorted shape,

OBA= eBC = 6CB = 6cA’ and BAB =BAC'
Inspection of equations (30)- then gives

Mgy = Mgy = -Mgg = - Mgp

a-nd MAB - MAC =4 '%’ Moa - oo ' oo‘ (32)

' GBA =0 pc and the second and fourth equations of (30) then give

- 5l 1
Mpaj, = (4/2)/(2p+ 2p - d) e .o (33)
The frame buckles when a small applied moment M, produces an internal

moment which tends to infinity, or MBA/M tends to 1nf1n1ty. Hence,
at the buckling load,

2B + 2B - A =0
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which is the same condition as we obtained previously.

The solution is unaltered by putting M equal to
zero in the equatlons (32).

This gives Mpgp = My =0

We then have, from

eA-.;ﬂBC ’

Mgy R+ 2p' - dh) =0
If 23 + 2(5"-0\' =0,

Mpp is undefined, and a vanishingly small dlsturbance has
resulted in buckllng.

32. The unsymmetrical buckling mode can also be
solved by using the moment distribution convergence criterion.
This method is valuable in determining the critical loadsof more
complicated frames. The solution of this problem is carried out
here as an illustration. The method is merely the solution of
equation (33) by moment distribution. So long as the process
converges, Mpp is finite. At or above the buckling load,

MBA is infinlge and the process of moment distribution
dlverges.

For a discussion of the moment distribution
convergence criterion, see N. J. Hoff "The Analysis of Structures"
(Wiley) ppe 294 - 318. The unified treatment given in this thesis
of the calculation of critical loads by all methods is, however,

believed to be original.

33. Consider first the frame ABC with no external
forces acting, so that the axial forces in the members are zero.
A small moment of 100 units is applied at A. In this case,. all
carry over and distribution factors are equal to 0.5 and the
moment distribution is as follows .

A applied moment

M= 100 AB|AC
50|50
© : selie
. BA[RC HF 8 |ca
s =L ===
-l2|-12 Soise
Y
t3+3
+3) + |
z2l-2 S —
el -17 =E2 T

Fig, 22.

~¥a
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The final benaing moment diagram is

Fig. 23

This can be checked,.since
E1 Gy, =¥y €3 -vy E/6
= E1 Bp, = My, £/ -M'B_‘é/é .

C
But Mgy + Mps = 0 and Mpg = Mgp
Therefore Mgy = MAB/B
If Myp = 50, Mg, = 16.7.

Where there is an axial force in a member, the carry:

over and distribution factors must be adjusted accordingly.
Consider a bar AB subject to axial force P and bending moments
M, and Mg. B ' :
Then 6, =4, 4B/3EL - vy Lol /a1
and 6 = g 4p/m1 - M, 4 JeE1.
If rotation is not allowed at B, (93 =0
and Mg = Myk/2p

For an applied moment My at A, the carry over to B s if rotation is
not allowed there, is « A/Zﬁ o The rotation at A is given by

EI 0 =y, ;€/$/3 - My 0(2/12F
=, (/9 -o%/1p)
2 2
=¥y (/) Wp" -d)/3p -
Consider a number of members 1, 2, 3, etc., meeting at
a joint, (Fig. 24), their far ends,\"frevented from rotating. Suppose

a moment M applied to the joint causes rotation @ . If the moments
induced in the individual members are M_, etc., then

My =Gs1,/47) 3B, 0) /Uy At
But M 'ZM1=1.E92(I/2)£3(5/(4[!§2 -otz)J
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Fige 24
_ M
Therefore 9 T ES (1/¢) 3f$/(4(52_ o('%)
and oy _ (11/21)[3@1/(45'12 f°(12)

S (1/8) B /uF 43

These stiffnesses and cérry-over factors are tabulated on pages 122
and 125 of Niles and Newell "Airplane Structures", Vol. ii, for both
axial compression and axial tension.

The moment distribution for the triangle loaded as
in Fig. 25 can now be proceeded with.

¢w
A |
0-385 /\0-385
’ /
" o/ c 0385 0285 0-26
W by W/ 223 |-223 074
(a) (b) (e)
| | Fig, 25
N = et is P = (3.8)%1/0°
Put. (k) = 3.8; that is P = (3.8)"E1/
Then the K and (3 functions, and the carry over stiffness factors

are as in the table:

Member | Thtust | k& A e d/23 AR
. AB P 3.'é -2.9961 | -0.8128 [1.843 | 0.3850
AC 3 3.8 |-2.9961 |-0.8128 |1.843 | 0.3850
BC -p/2 2.7 | 0.533° | 0.716 |0.3685 | 1.223

Stlffness and dlstrlbutlon factors are shown in Flgs. 25b and 250.
The dlstrlbutlon of an external moment of 100 units applied at
_ joint A is carried out in Fig. 26.

shown, as the distribution is symmetrical.
resulting bending moment diagram.

Only half the calculation is
Fig. 27 shows the
Comparison with Fig. 23 shows

that large bending moments are induced in the frame as the buckling

load is approached.
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The accuracy of the dlstrlbutlon may be checked by substitution

in equation (33).

We have

In this case

therefore

MBA/Mo = (4/2)/(2ﬁ + 2F>l -
= 2.21 for k2 = 3.8
M, = 100

MBA= 221.

This agrees with Fig. 26.

In this case, the dlstrlbutlon has converged, and the buckling
condition is therefore (k ) 7 3.8. However, induced moments
are large, and the buckling load is being approached.

Put

(kd)y5 = 4.0

Then the carry-over and stiffness factors for the members are:

Member x4 o(/2f$ _—3-&—
. A 2 - 0(2
AB 4.0 2,56 0.293
AC 4.0 2.56 0.293
BC - 281 0.362 1.238
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Fig. 28 shows the distribution of an external: moment of 100 units

applied at joint A. AB“! g\c
5 S0
;10
, 0]
RA |BC -4
Tiss 1
-271|-\0l BN
1M |—-42
=-221-107
+190(-45

Fig, 28

This distribution is diverging, so the buckling loéd has been reached
(or passed) at k€ = 4.0:

The two solutions to equation (31) for the two
buckling modes were checked by experiments with a model made of .
flexible strip, and resulted in good agreement. It is also possible
to calculate the higher critical load for the symmetrical buckling
mode by the determinant method as in Art. 30 or by imposing the
requlred distortion pattern as in Art. 37.

The application of suitable dlsturblng moments
consisting of equal moments of opposite sign at B and C, also
permits solution by the moment distribution convergence method.
However, it appears that in the case of more complicated frames,
unless some sort of symmetry or anti-symmetry can be preserved,
considerzble care is required in the calculation by the moment
distribution method of higher critical -loads for buckling modes
other than the fundamental. Even if a suitable disturbance is
given, slight errors in distribution might well cause divergence
at the first critical load.

It should be noted that the calculation of higher
critical loads is not always merely an academic problem. The
pattern of imperfections throughout a structure may be such that
at failure it deflects in a mode which does not correspond te the
fundamental mode of the corresponding perfect structure.

1

34 When the moment distribution method is used to find
the first critical load for more complicated frames, it often
becomes difficult to ascertain whether the process is converging
or diverging. The zero stiffness method proposed by H.G. Allen
overcomes this difficulty in certain cases. Allen has contributed
two valuable papers on the calculation of critical loads using the
zero stiffness conception:. "The Estimation of the Critical Load
of a braced Framework" Proc. Roy. Soc. London Series A Vol. 231

(1955) p. 25, and "The Estimation of the Critical Loads of Certain
Frameworks" The Struct. Engnr. Vol. 35, No. 4, April, 1957, p. 135.
In his first paper Allen uses the conception of positive energy
being required to displace a stable structure. In the second paper
the emphasis is placed on stiffness, and it is also shown that his
procedure of successive reduction of triangular frames to single
members of equivalent stiffness is mathematically equivalent to
reducing the determlnant.

The principle of zero stiffness of a 301nt to an
applled moment at the buckling load has been explained. Professor
Allen's technique of solving the equations will be applied to the
triangular frame.
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Firstly, comsider the strut 4B, (Fig. 29),

P ‘\MAB MBA/ P
A , B

Fig, 29
Then, using the previous notation, we have ,
EI 6AB MABﬂﬁ/B - Mg, £ [6 (See equation 22)
and EI g, Mgy 4B/3 - My £% /6,

A and {2 being defined by equations (23).

These equations may be rewritten in the form
g = P8, + ROy,
Mgy = P4 @8y + RO

where o and ﬁ are now defined by

of = = [ k4 +cAot-é-k4£J

2kl |2 —kZ cot & k2

e e (30)

(35)

Nt s S sl s’ .

) _
ﬁ 5_11:2 [2 - ﬂkcot + kd - cot # kej
1)37}7:1.

Values of « and (3 are tabulated against P/Q in "The Analys:.s of
Engineering Structures" by Pippard and Baker, (1943). The
notation used here is that of these authors, and care should be
taken that equations (22) and (34) are not confused.

Equations (34) can be rewritten

" n_=u.0_ +v_6.

where k

38 "% Vs * Yas “ma g .
. ‘o .o 3
My =gy Opy * T eABg
where UAB = UBA = Pfd ) _
| ) v e (37)
Vg =V =° lﬁ g |

Consider the triangle ABC loaded in its plane (Fig. 30),

where the members are subjected to axial loads.
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Now suppose disturbing moments M, and Mg are applied at the joints
A and B, We then have

M, =M + MAC“

A T MaB
My =G, + Mg
Moa * Mop = O:
Now Myp =Ug O, * Vap s

+

Mo =Uac  ac Vac eca

and | é; i: éic =é33'

AB

Similar equations apply at the other joints.
Elimination of 00 throughout gives

My =U'yp 0, * v,:0s )
) X} X3 (38)
and Mg = U'py Oy +'V'BA@A Y |
_ . 2 )
where Uap =Yg * e~ Ve’ (Vg * Uop) )
2 )
U, =05 * Uge = Tao/(Ugy + Ugp) ). (39)
)
and V5 = V5 = Vg~ Vao Yon/Uoa * Ucp)

RN

The modified slope deflection equations (38) give the relationships
between the moments M, and Mp applied to the triangle ABC and the
rotations of the joints, ‘9A and 6B' The triangle ABC can therefore
be replaced by a hypothetical member A'B' of equal stiffness with
‘respect to disturbing moments. Neutral equilibrium exists when

M,/ &, is zero for zero Mp. The condition for stability is that

Mﬁ /HA is positive. From equations (38), if Mp is zero, we have

My/Op = (U5 U'pf - V'yp V'ma) 'y
The criterion for stability is therefore

Utyp U'pp ~V'aB V'pa ” © B .o (40)

-

35, If the triangle ABC is loaded as shown in Fig. 31a,
the values of U and V are as in the table, if P/Q for the struts
AB and AC has the velue 1.5.

F_=15
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Member | Type Q {? P/Q o E U=pld| v=p{p
AB strut | 1 | 10 | 1.5 | 098 | 9% 1.47 | 2.91
AC strut | 1 10 | 1.5 .098 19 1.47 | 2.91
BC tie 1 10 | 0.75 | .665 <244, 4299 | 1.83

The values of U and V for each member are shown in Fig. 31b, U values being
written near the ends of the members and V values near the centres. The
triangle ABC may now be replaced by a member A'B' of equal stiffness so
far as disturbing moments are concerned. We have, using equations (39),

U = 14T 14T - RINZ/(1A4T % 4.99) = 1.62
Ulgy = 1647 + 4.99 = (1.83)%/(1.47 + 4.99) = 5.9
Vigg = Vigy = 291 = (2.91 + 1.83) /(1047 + 4.99) = 2.09

The expression of the left of equation (40) has the value
(1.62 % 5.9) - (2.09)% = .25,

This expression may be called the stability criterion. In this case it

is positive, and the frame is stable.

‘When P/Q has the value 1.6, the calculation is as follows

Member pla | o 3 U v

AB 1.6 078 189 1.24 3.02
AC 1.6 ,078 .189 1.24 3,02
BC 0.8 628 .227 5,00 1.82

1.02

Uy = 1.2 + 1.2 - (3.02)%/(1.24 + 5.00)
Ulgy, =1.24 *+ 5.00 = (1.82)%/(1.2, + 5.00)

5.71
V‘BA = 3,02 - (3,02 x 1.82)/(1.24 * 5.00) =214

VB

Stability criterion = (1.02 x 5.71) = (2.14)° = 0.2,. This is positive
and the frame is stable.

For P/Q = 1.7, we have

Member P/Q 4 : [5 U v
AB = AC To7 0058 o184 0,99 3013
BC 0.85 <599 213 5,09 1.81
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Ulyp = 0.99 + 0.9 - (3.13)%/(0.99 + 5.09) = 0.37

Ulgy = 0,00 + 5.09 - (1.81)2/(0.99 + 5.09)' = 5.54

Vg =V'g .3.13 - (3.13 1.81)/(0.99 + 5,09) = 2.40
Stability criterion

= (0.37 x 5.54) - (2.40)2 = - 3.7. This is negative

and the critical load has'beén exceeded.

A graph of the stablllty criterion against P/Q is shown in
Figs. 32 I becomes: zemaié P/Q = 1,61 which corresponds to k€= NOEINS]
= 3.99,0or P =16 EI/4 This is in good agreement with the value
obtained in Art. 30 as the solution.of equation (31) which .
corresponds to the lowest critical load for the gravest buckling .
mode.

C
S
|-
Y]
=
[
QO
Z
0
2
\.:() Z—l’ Figo 22
36. Successive replacement of trianguler frames by members of

equal stiffness furnishes a method for the determination of the
critical loads of plane triangulated rigid-jointed frames whlch
are not redundant if the joints are considered pinned.

The value of Allen's method is that there is no

question of having to determine the convergence or otherwise of

a distribution process. The buckling load is given by the
stability criterion becoming zero. Interpolation and the plotting
of a curve of the stability criterion against load aids the
calculation, whereas no such aid is available when using ‘the
moment distribution convergence criterion. The method as given

is limited to plane triangulated non-redundent frames. It is of
course extendable in principle to redundant frames (if the forces
in the members can be estimated by some means), and to space
frames, but the equations then become very difficult.

37. In the discussicn of the buckling of the triangular
freme, the mathematical equivalence of the classicel methods of

analysing the frame and the various special techniques for handling
the equations, such as Allen's stability criterion or zero-stiffness
method, or the moment distribution convergence criterion, can be
clearly seen. The methods all depend on the properties of linear
equations where the coefficients are functions of the applied loading.

Where there exists more than one buckling mode having
different critical loads, the determinant method gives all the
solutions. Other methods such as the application of a single
disturbing moment (this’ 1ncludes Allen's method and the moment
distribution convergence crlterlon) will in general give the
lowest critical load associated with the gravest buckling mode
though the author has found that this may not always be the case
if a joint which does not rotate in the gravest buckling mode of
deformation is chosen for the application of the disturbing moment.
Some care is therefore necessary in the application of these methods.
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38. It is worth mentioning that when considering any
structure, we are concerned with the stability or instability of the
structure as a whole. Though compression members or elements must be
present for buckling to occur, the critical load and the associated
mode are dependent on the properties of the whole of the frame and
its loading. This is still the case for practicel frames under load.

39. Ihe buckling of a Warren truss in its plane.
As an example of the application df various
methods of calculation of eritical loads of plane triangulated

frames, the buckling of a Warren truss will be considered. The
classical method will flrst be used to determlne the buckling mode.

A7\\

-P/Z = D ~—— /TC

Q@ @\e

/

\

W Fig' . 33

The truss, when loaded as in Fig. 33, may buckle in various modes,
but the critical load for the symmetrical mode shown will be
calculated. The forces in the members are given in the figure, and
all members have equal length and flexural rigidity. On applying a
distortion of this form; we have

6, = -Op 81«:: 'ec’ §D=

Then Z 0., =My Bupf/mEr -y oy L/

=M, ﬁBAZ/BEI - MABdAéﬁ/éEI :

and

> .
lue]
|

Hence MBA = —MAB

The other equations of symmetry are easily written down; We then

~have, denoting the members by the numerals in the figure,

6EI QAB/'Z =My (B, + &Y

(

)
a1 Oy 8 =Myp' 2y My oL, § . 40)
6ET <9AE/Z=MAE-2ﬁ3 ' 0('3 g _
Also from Ben =0 gps
Mgy 2B3 - Mg A 3 =Mgp * 2p4 - Mpg of ;- (41)

and from ﬁDE =ﬂDA = 0,

Mpg 2, ~Mgp K, = O =My, - 2fy, - M, °(2
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Hence MDE/MED ( °(_/ 2B ) 4 ;

ce e (42)

The subsecript numerals apply to the members marked in Flg. 33.
. For no applied moments at the joints,

My YNt My = 0) B
) a0 o0 (43)
Mgy *+ Mgp = 0)
and Mpp *+Mpy *Mpp *Mp = 0.

The latter equation is satisfied by the equations of symmet
Substitution of equations (42) in the second equation of (4r§
and in equation (41) results in five equations in the five.

unknowns MAB MAD’ MAE’ Moy s MED Setting the determinant

equal to zero for the buckllng condition glves

(2B, + ). _(A&——Ei‘) 0 0 e
(2B * o ;I) 0 (-2/63) (fc(a) 0
- 2
0 | 0 (-d))  (+2B,) -(4==y
- 3 F% 23 4
1 S 1 0 0
0 - 0 0 1 1

Because of the simplicity of its last two rows, this determinant
is easily reduced to one of the third degree which on expansion
and graphical solution gives

kz) = 4.68 or P =22 EI/L.

It is seen that there will be ‘considerable dlfflculty in solving
by this method fremes of higher complex1ty than this.

40, *  The solution of this simple frame by the moment
distribution convergence criteridn is somewhat lengthy. The
slow convergence or divergence of the process at loads near
the critical load tends to make the determination of critical

loads by this method rather tedious. The reason for this is
evident, and has been clearly stated in a recent paper by Bolton:
"Basically this difficulty arises because the testing distortion
- used is not the critical mode, but merely the rotation of one
joint. If the critical mode were to be used as the testing
distortion, one cycle would be sufficient to decide whether the
calculations were converging or not." The reason for this is
that it takes many distributions for the effect of a single
disturbance at a single joint to be felt throughout the whole
frame, and many more for the carry-over to reflect back to the
originally disturbed joint. In many cases, even after several
of these rather lengthy cycles, it is difficult to determine
whether the process is converging or diverging.

4. Several methods have been advanced with a view to
reducing the length of the calculation involved. A method due

to the author is to apply disturbing moments at several joints
rather than at one joint, particularly if the disturbances can

be given the correct sign, which is often the case if the desired
buckling mode can be pictured. If any disturbance is given an
incorrect sign, the effect is then to hinder the quicker convergence
or divergence being aimed ate.

-
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For the truss loaded as in Fig. 33, we have, if
x , (ke) for the member AE equals /.8:
Member - Load k 2 Carry-over S tifi?ess
factor 3 / (la-ﬁ
oA /25
AE = BC P 4.8 ~4,.093 - =0.257
AB P/2 34 1.206 0.537
AD = BD 0 0 0.500 1.000
ED = IC -P/2 =34 10,321 1.338

For disturbing moments as shown in Fig. 34, the distribution
is carried out in Fig. 35.

3
(+100) (100) Fige 34«
AE|AD| AB BAIBDIBC
-20|+78]+42 ~42 |-18]+20
-98| o]-5i 511 0|8
-ig HI;{ +63 L3 l-ilsde
=32 Hi2y *'Zi m
-123] o[-3%
=31|H2] | +65
, 23] of-19
LIS €7
-1 of-l0s
A, 042 B
-020 078
. oo 021 02}
- o 124 0-29_0+29
(~100) 2 C (r100)
EA |IED DE | DA DR DL DR
24 |-124 o[ 0 5[0 +124[ =24
<z 0 =30k355 “I5[¢40 o=z
20 |-102 0| _© _ot o ti02d -20
123] o© ~33[+58
30[-153 o] ©
T3 0 =IY+t0
3 -163 )
12 0 52 +60
321~158
1% ~5l|+75
Fige 35

It is evident from 1nspect:.on that the process is diverging. It is
worthwhile keeping a running table of the moments distributed at
each stage if block distribution is used. They are:-

‘\
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Distribution Moments distributed at Half

No. A B C D E Numerical

' : sum of

moments

1 +100 | =100 { +100 0 | ~100 200

2 +149 1 <149 + 82 0 |- 82 231

3 +159 | =159 | +123 0 | -123 282

A +156 | =156 | +131 0 | -131 288

5 +206 | =206 | +127 | 0O | -127 333

6 +236 | -236| +168| 0 | -168 404,

The variation of the numerical sum of the moments distributed at
each stage appears to be a guide to the determination fo whether
the process is converging or diverging.

. Experiments made by the author with a carefully
made flexible model indicate that the buckling mode solved here
is the fundamental mode possessing the lowest critical load.
Divergence of the distribution here for (k ¢),n = 4.8 is in
agreement with the fact that the eritical load"is given by
(kfﬁAE = 4.68. (Art. 39). It can be shown that if a moment is’
applied at D, or if the signs of any of the other disturbing
moments are changed, then the divergence is slower and it is more
difficult to decide whether the distribution is in fact diverging.
More distributions are required in order to be sure, Also, if any
of the disturbing moments have incorrect signs, the keeping of
running totals of the moments distributed at each stage (whether
summed algebraically or numerically) appears to convey very little
information. '

In conclusion it may be stated that when using the
moment distribution convergence criterion it is best to apply only
one disturbing moment unless the buckling mode can be at least
partly pictured. If this is so other disturbing méments can be
added, but any given the wrong sign will hinder the rate of
convergence or divergence.

The above discussion will be found to be in
disagreement with a paper by A. Bolton "A Convergence Technique
for Determining the Elastic Critical Loads of Rigidly Jointed
Trusses" The Struct. Engnr. Vol. 37 No. 8 Aug. 1959 p. 233. In
this paper, Bolton has worked some problems in which disturbing
moments are applied at several joints of a frame., These moments
are given any sign (the buckling mode is not pictured), and a guide
to the determination of whether the moment distribution is converging
or diverging appears to be available by attention to the algebraic
sum of the moments distributed in each cycle. - However, the method
does not appear to be generally valid.

T 42 A further method of simplifying the moment distribution
is to carry out the process for only part of the frame. The member
with the lowest stiffness is chosen, a disturbing mement is applied

at one end, and the moment distribution is carried out considering
joints some distance away as either (i) fixed or (ii) pinned. The
convergence divergence criterion is used to find the critical load

in either case, and the critical load solutions to (1) and (ii)

appear in some cases to sandwich the critical load of the structure

as a whole. Though there is some supporting experimental evidence in
these cases, it is by no means evident that the principle is generally
valid.
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(See A. Bolton "A Quick Approximation to the Critical
Loads of Rigidly Jointed Trusses®™ The Struct. Engnr. Vol. 33 p.
9, Mar. 1955. The method was used by N. W. Murray, in "A Method
of Determining an Approximate Value of the Critical Loads at which
Lateral Buckling Occurs in a Rigidly Jointed Truss" Proc. I.C.E.
June 1957 p. 387, with good experimental agreement).

43. It may be mentioned that some difficulty was encountered
by the author in applying Professor Allen's method (Art. 34) to the
Warren truss loaded as in Fig. 33. This truss contains unloaded
members, but it can be shown that though the parameters ol and o
(equations 34 and 35 become infinite when P is zero, the parameters .
U and V (equations 36) take the finite values EI and 4EI respectively.
The application of the method to this problem seems to hingea great
deal on the accuracy with which U and V can be written down for all
the members, and it was not found possible to achieve agreement

with the foregoing calculations.

44. The buckling of space frames, or of plane structures out of
) hei e:

In principle, space frames can be handled by any of the
methods previously discussed. It is necessary to write down the three
components of the rotations of the ends of a member in terms of its
torsional and flexural rigidities about each axis and the bending and
twisting moments in the member. The equations of continuity and
equilibrium of each joint then provide sufficient information to
solve for the buckling load. The equations become, of course, very
difficult to handle. As examples, Murray has applied the approximate
technique given in Art. 42 to calculate the critical load at which a
lattice girder buckles laterally when laterally restrained at the
panel points. The author has also solved by the classical method
the buckling of a plane triangular frame out of its plane, and this
will be given later. Certain problems of buckling in space such as
lateral buckling of beams are also amenable to solution by energy
methods such as Rayleigh's principle.

45. Ihe buckling of redundant frames.

Where the forces in a frame cannot be obtained simply
from statics, the joints being considered pinned, strain or
complementary energy methods are available for their estimation.
Any of the foregoing techniques, except Professor Allen's method
unless it is modified, are then applicable for the calculation of
critical loads.

46. The load carrying capacity of practical frames.

Attention has up to this point been devoted mainly
to the calculation of critical loads of elastic structures. The
critical load for a given mode of deformation has been defined
as the load at which the structure is in neutral equilibrium with
respect to static displacements in that mode. The critical load
is a property of the structure if it is initially perfeet - that
is, the members are initially straight, loads are centrally applied,
and no eccentricities at joints are present. The structure is also
assumed to remain elastic during the specified displacement.
Flexible structures of sufficiently high yield strength, when
carefully made and loaded, do reach approximately this load in
practice, and then assume large deformations. But for most practical
structures the critical load remains a mathematical property of the
structure. The effects of crookedness of members, imperfections
of ‘alignment of members and loads at joints, and the limited
deformations which are available before yielding of the material
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oceurs, cause the load carrying capacity to depart considerably
from the critical load. All the.imperfections listed, and
particularly their pattern throughout the whole structure,

may also influence the buckling mode at failure. In practice,
the problem is usually to determine, not one of the critical
loads of a structure, but its load carrying cepacity. This is
defined in some way tc suit the purpose of the structure, such
as the maximum load the structure can carry, or the load at
which there occur deformations which cannot be tolerated.

Once the load carrying capacity of the structure is known, safe
or worklng loads can be estimated. : : :

47 .. ~Some discussion as to the relation between the
practical behaviour of a structure under load, its critiecal

‘load, and-its imperfections, has already been given for the

case of & rod and spring mechanism and a pin-ended column.
This approach will later be further elaborated.

48. The failure or even déformation of a structure
(by instability or otherwise) is of course a dynamic problem.

- The loads placed on a structure are often moving. Even if the

loads are stationary with respect to the structure, they act
through distances as the structure deforms. In general, & load

is therefore a function of its displacement and often its rate

of displacement or, more simply, a function of distance and time.
The rate at which a load can act, and the rate at which a strut
can move or unload, the latter belng affected by the inertia of
the strut, obv1ously‘partly govern the failure of a structure,
The dynamics of the whole system is very involved. In this
thesis, only static.problems will be considered, though, of
course, the dynamic aspect must affect any experimental work. -
Any work discussed is given for slowly applied loads, where
dynamic effects have been minimized to some extent, though in
certain cases failure is quite rapid where a structure approaches
close to its critical load and then fails quickly.

Though the correspondence between the neutral
equilibrium of a system with respect to static disturbances and
the vibrations of the system has been shown to some extent
(Arts. 6 and 17), ‘this is done only as a very preliminary move
towards the analysis of dynamic effects, and has very little
bearing on the practical problems of dynamic buckling under load.

For a discussion of the dynamic aspects of
buckling, see N. J. Hoff "Dynamic Criteria of Stability" Research

.Engineering Structures Supplement (1949) p. 121 and N. J. Hoff

"The Dynamics of the Buckling of Elastic Columns" Jnl. of App.
Mechanics, Trans. A.S.M.E.y, Vd, 18 No. 1 March 1951. The
latter article considers the dynamics: of the buckling of a single
column in a testing machine where the head of the machine is
driven downwards at a constant rate. The inertia of the column
is taken into account in the buckllng action. This appears to be
one of the few published articles where the dynamic effects are.

‘carefully investigated. See,also N. J. ‘Hoff "Buckling and

Stability" Journal Roy. Aero. Soc. Jan. 1954, J.F. Davidson -
"Buckling of Struts under Dynamic Loading", Journal of Mechanics
and Physics of Solids” Vol. 2, 1953, and J.F, Davidson "The
Dynamic Lateral Instability of Beams", Proc. Royal.Soc. London, .

Vol. 226, Series A, p.111, 1954,

49. Inelastic buckling. . ‘ : :

The term inelasfic buckling covers two important
aspects of buckling theory. The first is the calculation of
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critical loads of "initially perfect" compressed bars

(and loaded structures) consisting of inelastic material.

The main problem is that on displacing (by bending) a bar

of such material which is under axial load, the stress strain
relation on one side may be different from that on the other
side depending on whether or not the strains begin to reverse
on one side., It is now fairly well esteblished that the
Shanley tangent modulus relation gives a lower limit to the
critical load in a test where the axial load is continuously
increasing and strains at no stage reverse in any part of the
material., The Karman reduced modulus relation may apply where
the axial load remains constant during deformation.

50. It should not be thought, however, that the mere
substitution of the tangent modulus instead of Young's
modulus in all formulae for critical loads furnishes a
solution to all inelastic buckling problems. The solution
is still a critical load, a property of the perfect structure.
Departure from linear elasticity in the stress strain
relationship has also an important bearing on the behaviour
of practical structures. A structure may deform elastically
under load until the yield strain is reached at some point.
The material then strains plastically, and plastic buckling
may occur very quickly or teke some time to develop. This
effect will be considered later.

For treatment of inelastic buckling, see

F. Bleich "Buckling Strength of Metal Structures" pp.'8 - 21
(1952) McGraw Hill,

N. J. Hoff "The Analysis of Structures" pp. 318 - 328,

L. H. Larsson "Inelastic Column Buckling" Journal Aero Sciences
Sept. 1956 p. 867,

S. Timoshenko "Theory of Elastic Stability" p.‘54 and p. 156.

51. In this chapter, the overall stability of members
and structures has been considered. An important subsidiary
effect is that of local instability of portions of members,
especially where thin sections are involved. This effect will
also be considered later.
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CHAPTER II

THE LOAD CARRYING CAPICITY

OF PIN-ENDED STRUTS.

51, Introduction

This chapter discusses the behaviour of pin~-ended
colums in testing machines. The linear deflection plet used by
Southwell is developed for a single pin-ended column, and it is
shown how the Euler load can be determined from deflection readings
taken during loading, and the effect of initial imperfections
estimated. As loading progresses, the initial deformation is
magnified in the ratio 1/(1 - P/Q) where P is the load on the
column and Q its Euler load. The method is extended to take
account of eccentric loading.

The Southwell Plot on strains, as developed in
this thesis, is however, much more powerful. Strains are usually
easily measured. Substitution of the yield strain (or some proof
strain) in the equation of the linear strain plot is presented as
. a method of obtaining the collapse load of a column. Experimental

- work is included as an indication of the validity and also the
limitations of the method.

The whole of the work should be regarded as
introductory. The behaviour of struts built into structures or .
structures liable to instability will be studied in Chapter Three.

52. The interpretation of column tests in testing machines.

Though no column is initially straight
homogeneous or perfectly elastic, the Euler buckling load
remains a useful result. The conditions of testing a column in
a machine may approximate fairly closely to those assumed when
calculating the Euler-load if we attempt to load the column as
nearly concentrically as possible and minimize friction. Suppose
we have an initially straight strut whose Euler load is Q

centrally loaded with an axial load P. Then if P is less than

Qy the straight form is stable, and the bent form is not. But if

P equals Q, a state of neutral equilibrium exists. Suppose however
the strut is initially bowed, having an initial crookedness 5%
when P = O, Then if the central deflection -§ is measured as
the applied load is increased, the load deflection curve is of the
form shown in Fig. 36. : '
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If é;o = 0 and the material does not yield, the load deflection
curve fllows the path OAB. But if S, has a value, then the plot
obtained is that of the curve in Fig. 36. If ©, is small, under
good testing conditions we may obtain a curve such as curve (a),
Fig, 37. For increasing values of &, curves such as (b), (c),

(d)' are obtained. If yield occurs due to high bending stresses,

the curves can show maxima, as indicated by the dotted lines of

Fig. 37. These are the experimental crippling loads. Thus the
loads measured experimentally even for a pin-ended centrally

loaded member, may not reach anywhere near the Euler load Q,
depending on the value of & . Long struts loaded as concentrically
as possible may give the crippling load P max. approximately equal
to Q since considerable deflection is necessary to cause the column
to yield. The smaller the value of &, the closer do the curves
approach the limiting path OAB, and tBe more pronounced is the knee
in the curve. The curves also have a flatter peak. For simple
struts up to the yield the curves approximate to rectangular
hyperbolas. Friction at the ends of the column tested has the

effect of raising the measured crippling load.

In loading a long column in a testing machine,
the buckling load is often taken as the load at which the column
seems to flick sideways, or exhibtit sudden deflection. This will
generally correspond to some point K beyond the knee of the curve
in Fig. 38 and the "buckling" load reported will be P1.

Q
R_K

Loap P

DEFLECTION D
: Fig., 38.

Or the buckling load for long struts where no sudden deflection
occurs may be taken as the load for which there are two positions
of stability, one each side of the central position, as in Fig. 39,

IR
R R
R L L
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§ a
| _ | i
| &W 5 : R R

DEFLECT!ON 1
There are fwo positions of stabilit Fig. 39.
| provded RS R and Bh< B,
This load will be .dependent on the testing machine used, and in
particular on the stiffness of the head of the machine, which
depends on the method used in the machine to measure the load.
With a flexible load-measuring system it may be necessary to
load to large deflections well beyond the knee in the curve of

5 against P before two stable positions can be obtained. Loads
obtained in testing machines may be almost as much a function of
the machine and technique used as of the column tested even under
conditions as close as possible to pin-ended. The term buckling
has no meaning for an initially crooked. or eccentrically loaded calummn.
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But the smaller the eccentricity of initial curvature, the
sharper is the knee in the load deflection curve, the
instability of the column is more marked, and the measured
critical load approaches the Euler value,

53, The estimation of the critical load from a load test

on CO. °

In his paper, "On the Experimental Analysis
of Observations in Problems of Elastic Stability", (Proce.
Royal Society, London, 1354, p.601), Southwell gives a method
of estimating the Euler load of the corresponding perfect
column, even though there is initial crookedness present in
the column tested. This has been given in Art. 18, If
deflections are measured normal to the minor axis of the
section during a column loading test, this gives a method
of analysing the experimental results, and ascertaining if
they agree with the calculated Euler load. '

54e Extension of Southwell's method to egcentric loading.

The above treatment due to Southwell has been
extended by the author to the case of a pin-ended column

having small eccentricity of loading as well as initial
crookedness.

P
o
L

Suppose AB (Fig. 40) is a colum of initial form
(X) = Z a, sin n‘n'x/z

loaded w1th an axial load P at eccentricity e. Under load
it takes up the shape y(x). Then the bending moment at x is

M_=P(y + ) = -EI &*(y - y,)/ax’.
and therefore dzy/ﬂx? + PyfRI = dzyo/axg - Pe/EI.
| = -5 @1/ L% ey sin nvx/l - Pe/ET .. (44)
where k= J??Ef,
Again the form of y is dependent on the initial shapé/yo and
also on the eccentricity of loading. Try a solutxon of the

form ZE
y =4 sin kx + B cos kx - e + b, sn1nux/£

' oo (45)
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Then - dzy/dx2 = sz s%n kx - kKB cos kx
/ ‘ : 5 .
-Z(n m /‘g 2) bn sin nTrX/OQ 2
Substitution in equation (44) gives
by = &/ -'P/nQ) where Q =n%E1/42
A.t and B may be obtained from the boundary conditions

y=oatx=o,2.

This gives = B ='e and A = e(1 - cos k»e)/ sin k»e.
On substitution in equation (45) s putting x = X+ @ /2,

we obtain - y = e[_sec (kf/z) cos kX - 1] : o
+ 5 [a/(0 - PA%)] stnaTw L e G6)
At the centre, x = U, X = o, and S
T=e(secklfz 1) +Z 7 PZ g sin a2 (47

The measured central deflection is 0

$=7y -7, -
e(sec k£/2 = 1) +Zan?1—':'1;/‘;26 —1))' sinnT/2.

As P approaches Q@ the n =1 terms dominate, and using the
approximation for the secant

see kb2 = sec@T/Z)Jf?/a = (1+ PAQ)/(1 - PA)
we have 5= B/Q) (ay + 5e/4)/(1 - PAQ),
and therefore &/P= 5/Q + (aq + 5¢/4) /Q e oo (48)

The graph of Y /P against S is again a straight line of slope
1/Q and intercept on the &/P axis of (ay * 5/4 €) e

55. This expression holds for eccentricities which are
of the same order as the initial crockedness. At large
eccentricities the error.in the approximation for the secant
must be investigated. Then neglecting y 0/e s that is, supposing
a /e is small, we have .

y = e sec (k 2/2) cos kX - e.

If we put Y=y+e, then

T =e sec (k[/2) cos kX.

The strut is bent in a cosine curve (see Fig‘.. 1) of which the
half wave length L may be obtained by putting

Y =0 at X =L/2.

This gives cos kL/2 = o.

-
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therefore kL/2 = JP/EI L/2 =T /2.

therefore L = TJEI/P . ) vs we (49)
This length L varies with the load. As P increases L is reduced,
as shown in Fig. 42. ' ’
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MTh'e measured central deflection is
S=e [sec (T/2) PR - 1} :

Values of ($/e)- (Q/P) are plotted against S/e in Fig. 43.
The graph proves to be very close to a straight line of slope
45°, whose equation is

$Q/eP = 1,2 + 5/e.

This reduces to

S/ = 5/ + 1,20/

Thus the plot of S/P against s again gives a straight line of
slope 1/Q, if e is constant. Eccentric loading has had no effect
on the linearity of the plot. Southwell's original article
suggests that in the case of eccentric loading the slope of .
the plot will be a measure of the critical load of the equivalent
concentrically loaded column L (equation 49)s As this varies .
continually, a straight line plot is not éxpected. This argument
isy however, incorrects
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56. The Southwell Plot on Measured Strains

, It is often more convenient to measure strains
instead of the deflection of the column during loading. In
his paper "On the Analysis of Experimental Observations in
Problems of Elastic Stability"; Southwell restricted the
analysis to deflections, but, from the title, the generality
can be inferred. Now the obvious deformation parameter to
measure for columns is gtrain, but this has apparently not
previously been done, though Rayleigh has stated that the
assumption that any distorted configuration in any eigenvalue
problem can be expressed as a synthesis of normal modes
exaggerated by the loading is defensible from a physical
stendpoint for any elastic system, though it may require
much elaborate analysis to justify it from the standpoint of
a mathematician. However, it is hardly sufficient to extend
Southwell's method to the analysis of strain measurements
merely by analogy, and some analytical basis is required.

In this chapter the strain plot for a single column is

examined both analytically and experimentally. In chapter

three an analysis and the consequent justification of the

method where strain is the deformation measured is given for some

simple structures.

For the 1n1tially crooked column under
eccentric load, equation (47) gives the deflectlon. The central
bending mament is then

M=P(y+e)
= Pe sec (k4/2) + pZan/h P /n? Q) sinnT/2.

If v is the co~ordinate of a point in thezcross-section, measured
normal to the axis of bending, and I = Ar“ is the moment of
inertia of the section about this axis, then at this point the
compressive stress is given by

= P/A + Mv/I (p/8) (1 + Mv/Pr )

and the corresponding strain is, if the n =1 terms dominate,
E £=__E 1+'e_-""se°.]££_+a’1v 1
= E EA CpR 2 TPl .

'%‘}‘m + } eo (50)

y ol
‘Thls reduces to EA 1 - P/Q_. 1 - PAQ

which gives £ = £ + 3 (o4 aq + P +1-PA .,
_ P9 I (e e/4Q) T

The plot of £/P against & rises above a straight line of slobe
1/Q_by an amount equal to

B2 . B .

i Rl ‘

When strains are measured on the compression side, these terms
tend to cancel. In many cases, especially for small e, they
can be neglected,



Measurement of deflection of rectangular section
steel column. Load measured with a proving C.

Measurements of longitudinal strains in an aluminium
angle-section column.



PLATE 2

Small calibrated load measuring devices.

Measurement of strains in rectangular section steel column.



PLATE 3

Measurement of longitudinal strains in angle-section
members loaded as columns. The shortening of the
member is being measured simultaneously.

Local buckling of angle-section strut.
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However, equation (50) can be reduced to the form

£ _e- L ' .
. ;@—A = S/E—A * %1- (e + 2y + Pe/iQ) o0 (51)

The significance of the terms may be noted:

€ is the total measured longitudinal strain.

P/EA is the longitudinal strain if no buckling
occurs, and is independent of any instability effects.

(€ - P/EA) is a measure of instability effects.t_

The Southwell Plot on (& - P/EA) as given by equation (60)

is very close to a straight line. Since (&~ P/EA) is a ,
measure of the bending, this is the part of the strain that
one would expect to run away as the Euler load is approached.

57. Experimental work. The Southwell Plot on Deflections.

A rectangular section steel member measuring 0.501"
x 0,132% x 11.,6" long was loaded as a begm and its flexural
rigidity determined as EI = 2530 1lb. in. The member was
then loaded as a column as concentrically as possible :
between 3" dia. balls set in countersunk holes in its ends.
During loading, deflections S perpendicular to the minor
axis were measured at the centre of the column. They are
shown plotted in Fige. 44. The curve appears to be approximately

a rectangular hyperbola.

The corresponding Southwell Plot of §/P against § is

shown in Eig. 45. It is linear, and its equation is

S/P = 5/1 83 + (0.15 X 10-3) _'oo. oo ) (52)
This may be compared with equation (48) derived in 'Art.f‘féle o
which is §/P = 6/Q +(a, + 5¢/4)/Q o oo (48)

The calculated EtJler load of the strut is
Q = T%E1/4% =188 1b,

The value given by the Southwell Plot is 183 1lb. which is
in good agreement. The initial crookedness of the strut
measured by using feeler gauges and a straight edge was
about 0.018 in, The above equations give

a, * 5e/4 =188 x 0. 15 x 107 = 0,027 in.
This indicatefé reasonable agreement as there might well have
been eccentricity of loading of the order of the 0,006 in.
required to give perfect agreement. o

58, Experimental Work, The Southwell Plot on Strains.
An aluminium angle section member measuring )
0059 in. x 0.059 in. x 0.036 ino and 3205 in. 10ng wéas fitted
with brass end pieces in which were cut grooves parallel to
the minor axis at various eccentricities. It was loaded as
a columm in a frame using a screw jack and calibrated load’

‘gauge, consisting of a diel gauge in a frame. (See Fig. 46:)'



- 46 -

Strains at the corners of the angle at its mid-height were
measured with light Huggenbarger mechanical strain-gauges
during loading. The Youngs' modulus of the material was
first measured, and found to be 9,000,000 p.s.i.. For the
stress-strain curve see Flg. 150, The propertiés of the
member were: ‘

Cross-sectional area = 0.038 sq. in. L - -

Moment of inertia about minor axis I = 5644 x10 in,

Flexural rigidity EI 5100 1b, 1n.2

This value was in good agreement with the value obtained
when a similar member was loaded as a beam.

The calculated Euler load for buckling about the
minor axis of inertia is then . .

q=72%E/L? =480,

The graphs of measured strahiéagalnst load P for eccentricities
of 0, 0.3 in. and 0.4 in. are shown in Figs. 47 and 48, They are
of the same form as those for deflectlon against load ‘previously
discussed. For zero eccentrlclty they exhibit fairly sharp
knees as the calculated Euler load is approached. The Euler
load is not reached and could not be 1nferred from the loading
test directly. With pronounced eccentricity of the load, no
sharp knee occurs but the curves have a gradual sweepe. Large
strains are attained at loads much less than the Euler load.
Figures 49 and 50 show the Southwell Plots for these strain -
measurements. With zero eccentricity, the slo?es of the grap?s
which prove to be straight lines are 1/44 1b.™" and” 1/%6 1b.
These agree well with the calculated Euler load of 48 1b.
With eccentricity present, there is a little deviation from

the straight line, and the graphs are steeper, as predicted,
with inverse slopes of 38 1b, or less, Another angle was
taken and loaded in a similar way using a proving C to measure
the load, as in Fig. 51, Typical graphs of & against P, and
& /P against & are shown in Figs. 52 and 53. They are of the
same form as before. The critical loads, or inverse slopes of
the €&/P against & graphs are however less than before and
there is a discrepancy between the inverse slopes of the e = o
graphs and the Euler load. It is thought that this is due to
the rotation of the top of the proving C as it deflects.

Because of this rotation the effective length of the column

is more than its actual length, When a symmetrical load gauge

was used as previously, allowing no rotation, there was no
discrepancy. .

These graphs are included here chiefly in order to
show the way in which the curves in Fig. 52 can all be turned
into the straight lines of Fig. 53. As a check on the
experimental work, equation (50) can be taken and used to
predict the strains. We have

=P/ v g - e [a1 + (1 P/AQ)eJ

The measured value of the initial crookedness of the column
used was less than 0.001 in., so can be neglected. Values
of the strain € can be calculated using the following values:
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T o -5
Q = 48 lbo, v = 0.224 ino, I=5604 x“1o j_rnl’"_“.
-2

E =9 x10° 1b. in , - A=0.038in", " & =0, e=0:31n.,

P =0 to 25 1b. Calculated and observed strains are plotted
in Fig. 54. The agreement is marked, the measured strains at
higher loads being rather more than—those calculated. :The
difference is sufficient to alter the slope of the Southwell
Plot of ¢/P against £ from 1/48 1b~' (Euler load = 48 1b.)
to 1/38.5 1b.=1. See Fig. 55. The explanation probably lies
in the fact that at the higher loads the aluminium is stressed
up to 9000 1b./sq. in. and its Young's modulus at this stress
is less than that assumed.

-

59. Eurther experimental work on the Southwell Plot on Strains.

The preceding work has shown the linearity of the
Southwell Plot on strains. The following experimental work
-indicates the order of accuracy of information obtained from
the plot. A method of estimating the load carrying capacity of
a strut is then presented.

The member used in the work described in Art. 57
was loaded again as a strut and longitudinal strains & at its
mid height were measured. The strain load plots are shown in
Fig. 56. Graph 1 shows the measurements taken on the convex
side of the member where the strains were tensile, and graph 2
those of the concave side where the strains were compressive.

On the same graph, the line & = P/EA is plotted. This_is the
calculated axial strain if no buckling occurs. Graphs 1 and 2
are symmetrical about this line. Values of (& - P/EA) - See

Fig. 57 shows the corresponding Southwell Plot on strains.
( & - P/EA)/P is plotted against ( & - P/EA). It proves
to be a straight line whose equation is .

(& -P/EA) /P = (£-P/BA) /185 + (0.7 x 10'6) (53)'

This may be compared with equation (51) which is

(€ -P/BAY/P = (€ -P/EA)/Q + v/EI(e + o, + Pe/AQ '( )
ve (5

From Art. 57 we have Q = 188 1b. so the value of 185 1lb. obtained
from equation (53) is in good agreement. Also, since

(e + aq *+ Pe/ZQ) is approximately equal to (a1 + Se/L) as P
approaches @, we have

@, + 5e/4)

if EI = 2530 1b. in2 and v = 0.066 in. This is in exact agreement
with the value obtained in Art. 57 from the deflection plot on
the same member.

(BL/v) (0.7 x 10~0) = 0.027 in.

In Figs. 58 and 59 are shown the measured strains
and the Southwell Plot on strains for a rectangular section steel
member 0.738 ig., x 0.132 in. x 15.1 in. long, for which
EA = 26,4 x 10°1b., and EI = 3820 1b. in“, and hence the
Euler load is Q = 166 1b. The measured initial central
crookedness was 0,020 in. '
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The equetion of the Southwell Plot on strains is

(& -P/EA)// = (£-P/EL/ATO + (0.3,x~1o'6).

Hence Q = 170 1b., and (a; * 5e/4) = 3820 x 0.3 x 10‘?/‘066’ 0.018 in.
These are in reasonable agreement with the values given above.

60. An aluminium angle-section member was then teken. It
had the following properties: 1leg w1dth b = 0.575 in.,

leg thickness t = 0.036 in., 1eng3h 16 2 in.,
cross-sectjonal area A = 0.040 in
E=9 x 100 1b. in."? up to a strain 3f 0. 0013, hence
EA = 3.6 x 10° 1b., EI = 4640 1b. in*, and the Euler load

Q = 160 1b. The member was fitted with brass end pieces and
loaded as a column between § in. dia. balls. Strains wvere
measured on each of the corners of the member at its mld—helght
as indicated in Fig. 60, where the graphs of load against strain
are also shown. Strains were measured beyond the stage where
maximum load was reached, and until considerable plastic
straining of the material had occurred. The elastic range of
strains is shown in Fig. 60, Within the elastic range, the
average strain is also plotted. All the points lie very close
to the line € = P/EA, This gives an indication of the accuracy
of the strain measurements. Graphs of |[& - P/EA! /P sgainst
|& - P/EA| are also shown in Fig. 60 for each of the three sets

of strain measurements. They prove to be parallel stra%ght lines
which lie very close together and have slope 1/147 1b.~'. This is

in falrly close agreement with the calculated Euler load of 160 1b,
and is probably more accurate as the value of EI was obtained by
calculation from the measurement of the section, not from stiffness
measurements.

61, Some angle section members were bent from mild-steel sheet.
The tensile stress strain curve for this material is shown in

Fig. 61. The material is lastic ug to a strain of 0.001 and the
Young's modulus is 30 x 10 1b. in™, Beyond the yield strain and
up to a strain of 0.003 the,stress,may be taken as having the
constant value of 28,500 1b, per sq. in. The angle section members
had the dimensions: leg width 0.595 in., leg thickness 0.037 in.,
*-length 16.2 in. The angle had somewhat rounded corners and the
stiffness could not be calculated easily. The flexural rigidity
was therefore measured in a test as aQSimple beam (see Fig. 62) and
had the value EI = 1,24 x 1 1b. in.”. The members were loaded as
struts between § in. dia. hard brass rods placed in grooves in their
ends so as to induce simple buckling about their minor axes.

' Measured strains are plotted in Fig. 63. Readings were
taken ‘well beyond maximum load until the load had fallen off to
a small value. Local buckling finally occurred when the compressive
stresses in the outstanding leg of the member were high enough to
cause it to fail in this manner. The elastic range of strains is
"indicated. The Southwell Plot on strains in the elast1$ range is
shown in Fig. 64. It is linear, and of slope 1/470 1b~" whereas
the calculated Euler load is Q = TW2EI/£2 = 467 1b, The plot is
however less definite than-previously, as the direct strain P/EA
is of a magnitude comparable with the "buckling" strain ( & - P/EA)

v
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62. A similar member was loaded as a strut, its
central deflections being measured. The plot of load
against deflection is shown in Fig. 65, and the corresponding
Southwell Plot on deflections in the elastic rang$ is shown
in Fig. 66. The slope of the plot’is (1/440) 1b™' whereas
the Euler load of the strut is 467 1b.

It is interesting to investigate analytically the
behaviour of this member in the plastic range. Assuming all
the material of the member on the cross-section at its mid
height has yielded,a stress diagram such as shown in Fig. 67
can be drawn. Then the load on the column is
) P=2(g-h)t f,=2at £, with (g-h) =a
where f_ 1s the yield stress of the material, in this case
28500 18, per sq. in. The bending moment is

_ b -a b +a - 2 2yt
M-’2o—""otfo - b- -'-——f.
2 v 272 ( a)zv‘zy

Putting a/b = k, we have
P=2btf_ k
b2ty (1 -Kk)/2V/2 =P.§.

Therefore 9=M/P = b(1 - kK2)/4V2 k

and M

If 2bt fy = Py, we have
P/P =k ‘ ) |
y 2 ) LX ] oo (54)
and o/ = (1 -x)/h V2 X, )

The relation between P/P_ and S/b given by equations (54) is
plotted in Fig. 68, It Is labelled "Fully Developed Plastic
Action". The deflections measured previously and shown in
Fig. 65 are now plotted non-dimensionally in Fig. 68. For the
member concerned, we have P_ =2 b t £, = 1160 1b, and hence
Q/P_ = 440/1160 = 0,38, This is indicated in Fig. 68. If the
mateérial remained perfectly elastic, we would expect the
deflection readings to become asymptotic to this line. The
deflection readings can be extrapolated on this basis, using
the equation of the Southwell Plot from Fig. 66, which is

O/F = O/u0 + (0,35 x 107%)

This has also been carried out in Fig. 68. It can be seen that
the actual deflection readings beyond the point where yield

occurs lie below the line given by fully developed plastic action,
but tend towards this line as the deflections increase, This is
due to the fact that the material near the central axis of the
member has not yetyielded, and hence equation (54) results from

a considerable overestimate of P but a less serious overestimate

of M. When local buckling occurs, the load to cause a certain
deflection drops off again, as is to be expected,

The stage at which yielding first occurs is indicated
in Fig. 68, It is estimated by analogy from Fig. 63, as strains
were not measured. It is seen that the ratio of maximum load
attained to load tocause first yield is very little greater than
unity. The reserve of strength beyond first yield is not
considerable, and is of the order of only a few per cent.
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63. The load carrying capacity of a pin-ended strut

Though it might appear reasonable to relate the
load carrying capacity of the strut to an analysis of its _
fully developed plastic action, it appears that the plastic
analysis can be avoided, and its failure defined in terms of
elastic behaviour only. All that is necessary is to
substitute the condition

& = strain to cause yielding = fy/E

in the equation of the Southwell Plot on strains, and to solve
for the load to cause first yield. This is close to the failure
load and for practical purposes the reserve of strength beyond
first yield can be treated as asdlight additional factor of
Safet'YO

We have, as the equation of the Southwell Plot
on strains obtained experimentally,

( €-Pp/EA)/P = (- P/EA)/Q, +C, e e (55)

where Q1 is the reciprocal of the slope of the plot, equal to the
Euler load Q of the column, and C; the intercept of the plot on

]
the (& - P/BA) /P axis, Equation (53), obtained from fig. 57 is
typical. Equation (55) reduces to

EE -P/A _ EE -P/A |
P/A - Q/A + EAC,
Putting E€ =f, and EA € = 1

we have f=p/Aa {1+ 71 ) : . oo (56)
' 1 - PA

When £ equals the yield strain, then f equals the yield stress fy.
Hence, putting f = fy, it is possible to solve for the load P to
cause first yield, and this is close enough for practical purposes

to the load carrying capacity of the strut. -

Equation (56) is familiar as it is similar to the
equation used in the derivation of the Perry Robertson formula for
pin-ended struts. Consider a pin-ended strut having initial
crookedness given by a; and concentrically loaded. Then the
central deflection, from equation (47), is

y = 21/(1 - PAQ)
and the maximum stress is, from equation (50)
fmax =(P/A) [1 + a1v/f2(1 - P/Q)]. e oe (57

The Perry Robertson formula is obtained by putting

a1v/f2 =,

and giving M the "empirical® value 0.00315/% necessary to make the
failure loads of struts in certain tests equal to the value for P
calculated from equation (57) when fp,yx Wwas put equal to the yield
stress.. To summarize, the formula attempts to predict the load
carrying capacity of a practical pin-ended strut in the following
manner. Due to lack of knowledge of the behaviour of the strut

in the plastic range, the safe assumption was made that the collapse
load equals the load to cause first yield. The load to cause first
yield of an initially crooked column was calculated (Equation 57).

\
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It contained the parameter aq, and an empirical value was
set for a4, intended to include the effects of all
imperfections besides initial crookedness such as the
*effect of small unavoidable eccentricity of loading.
This was done by comparison with a certain set of tests
on columns. Equation (56), of course, forms a similar
but better basis for obtaining the load carrying capacity
of a pin-ended strut, as empirical values of 7, are
obtained directly from the Southwell Plot on slrains.

It is intended here only to emphasize the similarity
between Equation (56) and the Perry Robertson formula.
It is sufficient to state that the solution of the equation
(56) , when considered as a design formula, is familiar to
engineers so long as empirical values of'71, expressed in
some suitable form, are available,

The load carrying capacity of struts as built

into structures is the problem required to be solved in
practice, and this will be discussed in chapter three,

~=~=000--==



BIBLIOGRAPHY and NOTES for CHAPTER TWO - ®

The numerals refer to the articles in the text.

53. In 1938, E. E. Lundquist published a paper entitled
"Generalized Analysis of Experimental Observations in Problems
.of Elastic Stability". N.A.C.A. Tech. Note No. 658 (1938).

In this generalization, it was shown that if deflections of

a pin-ended column are measured beginning at some load

P =Py, thus avoiding the use of deflection readings taken at
low load in case they are inaccurate, then a linear plot is
still obtained. To obtain the Euler load, P1 is added again
to the reciprocal of the slope of the linear plot. This
- generalisation is fairly obvious from the fact that the

plot is merely a method of finding the asymptote of a
rectangular hyperbola. The origin of co-ordinates is
immaterial. For this reason the lengthy mathematics presented
by Lundquist is considered rather unnecessary and not really
an extension or generalization of Southwell's earlier article.

54 & 55. In his original article Southwell restricted the
method to columns having small eccentricity of loading.
This restriction is, however, unnecessary.

The accuracy of the given approximation for the
secant may not be generally realized, It holds quite well
up to P/Q =1, and is within 1% up to P/Q = 0.8.

62. Though the linear plot on strains gives a simple
method of predicting the load at which a column first yields,
the behaviour of the column once yield occurs can be studied
in a simple manner from the deflection aspecte The method
given here is suggested by analogy from a paper by N.W. Murray
"The determination of the collapse loads of rigidly jointed
frameworks in which the axial forces are large", Proc. I.C.E.

London Vol. 5 No. 1 April 1956 p.213. It should be noted
that, because the assumption of fully plastic action is not
fulfilled until very large deflections occur, the "fully
developed plastic action" line in Fig. 68 has less relevance
. at the collapse load than might at first be imagined. It
does however give an incréasingly accurate idea of the
subsequent behaviour of a ductile column as large deflections
are attained, and this is often important with regard to the
-energy absorbed by a structure during failure.

63. For the origin of the Perry Robertson formula, see
"First Report of the Steel Structures Research Committee"
HoM.S.0. (1931), p.211, p.R24 and p.228. The justification
‘for the yield stress of 18 tons/sq. in., the crookedness
eccentricity function 77 = 0.003 é?%, and the load factor of
2.36 are very hard to find in this report. J. F. Baker's
comments in this report, and also in "The Steel Skeleton"
Vol. 1, (1954) are interesting. The general opinion seems
to be that there is little reserve of strength in a pin-ended
strut once yield of some portion occurs. This is borne out
by the limited number of experiments carried out by the
author, some of which are described in this thesis,
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The problem of reserve of strength of a strut beyond the
point of first yield is discussed in Bleich "Buckling
strength of Metal Structures® (1952) McGraw Hill

pe 27 - 54 Merchant also attempts to take into account
this reserve of strength in "The Buckling of Pin-ended

Struts under Axial Load". The Struct. Engnr. Sept. 1949
Vol. 27 Pe 3630 )
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CHAPTER III.

THE USE OF THE SOUTHWELL PLOT ON STRAT

IO ESTIVATE THE LOAD GARRYING GAPAGTTY OF STRUCTURES

LIABLE 70 INSTABILITY

64. Igt;oduq@iog.

A structure may be considered to be in a state
of stable equilibrium, from the practical point of view, when
slight changes in loading do not produce disproportionate
distortions of the system. When discussing buckling problems
we are concerned with avoiding potentiel unstable equilibrium.
In the long run, this is controlled by the complex stress
strain relationships of the material, the deformation of
every part of the structure, and the action of every part
on every other part.

Every elastic system under certain loading
conditions may pass into an unstable state of equilibrium.
But only when considerable elastic deformation can occur

-before the plastic region is reached will structural members
become unstable in the elastic range. This is the case only
when one or two dimensions of a member are small campared
with the other dimension or dimensions. Slender columms or
thin plates are examples. But, above the elastic limit,
Young's modulus rapidly decreases, so many systems can
become unstable. Every structure fails by instability if
and how most easily it can. '

65, This thesis is concerned mainly with the

field of framework stability. Broadly speaking, there are
two types of instability. This is shown diagrammatically

in Fig. 69.

W W

VVCT ey l WZ 5\ A

Y=point at which
f irsﬁoyield 0CCurs .

D  Dmue
(a) | (b)

In this figure, a load determining parameter W is plotted
against a deformation parameter D, It is understood that
D participates in the buckling mode on which our interest
is centred and this is usually the mode in which failure
of the structure occurs. Then in Fig. 69 (a) we have

=0 for W < Wer. At the value W = Wer, there is a
bifurcation of the load deformation diagram, which may
continue to follow the path D = 0 to greater locads, or at
constant or decreasing load D may assume large values.
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This type of behaviour may describe a structure made of
material having a linearly elastic stress-strain diagram..
In this case Wer. is the elastic critical load. Methods

of caleculation of Wer, in certain cases have been given

in Chapter One:. The diagram may also describe a structure
containing materisl having a non-linear stress strain
diagram. In certain simple cases the substitution of

the tangent modulus for the Young's modulus of the material
in the elastic critical load formula will give a reasonable
value for Wcr.

The type of behaviour shown in Fig. 69 (b) is,
however more usual. The load deformation graph shows no

'blfurcatlon, and there is strlctly speaking no instability.

There is, however, a stage in the loading at which a
slight increase in load produces a large increase in
deformation, and this, for practical purposes, can be
considered as a type of 1nstab111ty. The stage at which
1nstab111ty occurs and the margin by which it should be
avoided in practice is a matter of practical definition.
This will depend on the purpose for which the structure is
designed and, in particular, the allowable deformations.

If in Fig. 69 (b) we consider W increasing
from zero, then at the value W = W, the deformations begin
to increase quite rapidly. As loaalng progresses W reaches
its maximum value W, at the point B, If the structure is
loaded with dead we%ghts, W can not reduce, the diagram
then follows the path BA, and the structure collapses.,

If the structure is being loaded by a straining device;

it is possible to draw the remainder of the diagram where

W reduces and D continues to increase along the path BC.

The maximum load carrying capacity of the structure is LY
and this equals the collapse load under conditions where

the structure does not unload as it deforms. In practice
we may be interested in the value W., or alternatively in
the value of W for some value of D geflned in some other way,
such as a limiting strain or a limiting deflection.

In the case of a structure made of approximately
linearly elastic material, suppose Y in Fig. 69 (b) denotes
the point at which material at some point in the structure
first yields, the corresponding load being W,. Then it is
possible in certain cases to obtain the valug of W, by an
elastic analysis, and subsequently to empirically %elate
W to W_. The purpose of this chapter is to indicate a
nBthod 3f carrying out the first step in this procedure.

The relation between the types of behaviour

shown in Figs. 69 (a) and (b) has been discussed in
Chapter One for the rod and spring mechanism and the pin-
ended colum. For these examples, the load deformation
relation (b) within theelastic range has been shown to be
a function of the elastic critical load Her. and the
initial imperfections of the system.

66. - Methods exist for determining the critical

loadings for mathematically perfect structures for simple
buckling modes. The critical load is analogous to the

Euler load of an initially perfect pin-ended strut.

However all structures have imperfections such as crooked
members or eccentric joints. The behaviour of an actual _
structure possessing imperfections:is a more difficult problem.
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Some method of relating the behaviour of the practical
structure to the critical loading for the perfect
structure is required., Without some method of
obtaining the effect of imperfections the designer

is in the same position as one who would design a
pin-ended column having at his command only the

Euler formula for the perfect member.

The equation of the Southwell Plot on strains
furnishes a method of estimating W4, the load to cause
first yield, for a practical structure. (See fig. 69(b)).
For certain structures, namely those possessing fairly
flexible members, W, may be close to the collapse load
W,, and it may not e worthwhile relating W3 to Wy.

Tﬁe analysis of the structure in the plastic range is
then entirely avoided. If the reserve of strength in
the plastic range, W; to W,, is considerable, then a
plastic analysis, or empirical correlation of W5 to Wy,
is required, THis effect becomes important for Structures
made of ductile material where the members involved are
somewhat stiff.

67. The approach as outlined above will be elaborated
in the succeeding pages. It overcomes to some extent two
main objections to the use of elastic theory and the yield
criterion in problems of instability. It is not stated
that the carrying capacity of a structure is reached if

in one of the members the maximum stress becomes equal

to the yield stress. The solution of the stability
problem does not require an exact stress analysis of

the structure. What is stated is that it is possible

to determine in certain cases the load to cause first
yield at certain locations where first yield precédes
collapse by buckling. Attention is paid to the strains
which participate in the buckling mode. The reserve of

strength in the plastic range is not neglected. It must
be taken into account if the ratio of collapse load to
load to cause first yield is considerable.

It is also sometimes stated that the yield-
criterion fails completely when the deflected equilibrium
form to which the stress analysis is applied suddenly
changes to a completely different configuration, as for
example, in the lateral buckling of a beam. It will be

shown that this type of problem is no exéeption. In
fact the lateral buckling of a beam can be deseribed
by Fig. 69. It is, however, essential that the
deformation D be a participant in the buckling mode
that precedes failure. -

68, The limitations of the method are:

(a) It is restricted to elastic theory. The
reserve of strength in the plastic state must be taken
care of by some other means, or, at least by a
modification. Also, in practice, local buckling
problems are not usually amenable to solution by
this method.
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(b) Where structures are statically indeterminate in
certain ways, the buckling modes are not easily defined, and
no parameter D may_give a clear definition of failure.

(¢) In mgny cases the whole behaviour of a structure
is important, including the load deformation characteristic
beyond maximum load.

It should also be noted that certain initial
crookedness and imperfection patterns throughout a structure
may cause it to buckle and fail in a configuration which
does not correspond to the gravest buckling mode of the
perfect structure. This does not affect the main argument
presented, but this occurrence must not be neglected in
practice, -

69. Apart from refinements in methods of calculation

of critical loads, a great deal of the work done on the
instability of structures has followed the purely experimental
approach. This may be necessary as an expedient in order to
obtain certain information quickly. However, in the long rum,
because of the great number and wide range of the variables
which characterize each individual problem, success can be
hoped for only if close co-operation is achieved between
theoretical and experimental research. That is, empirical
methods must be soundly based theoretically., A summary of
some of the work of various investigators follows.

In studying problems of elastic stability, the
Southwell Plot on deflections has been found a valuable

‘experimental tool. The linear deflection plot used by

Southwell was developed for a single pin-ended column,

and showed how the Euler load could be determined from
deflection readings taken during loading. The plot also
shows the effects of initial imperfections and furnishes a
means of determining the magnitude of these effects. As
loading progresses, the initial deformation of the column

is magnified in the ratio 1/(1 - P/Q) where P is the applied
load and Q the Euler load. The method is easily extendable
to take account ‘of eccentric loading.

In studying frames, W. Merchant has suggested that
it be assumed that initial deflections are magnified in the
ratio 1/(1 - WAlcr), where W is the applied loading, and Wer
the criticel load for the initially perfect frame. The
following analogy is drawn. For the case of a pin-ended
strut we can write

bf =t (bg , Py:"b)

where b, = the failure stress (the failure load divided by

the area of the colum), be = the Euler stress, Py = the
yield stress of the material, and 7 = an imperfections
function. f indicates a functional relation. Then in
the case of a framed structure, it should be possible to
write

._Pf =f (Pc, Py: ’Z )

where Pp = the failure load, P, = the critical load,
P = the collapse load if no instability occurs, and

7 = an imperfections function. The analogy is vaguely

- drawn, but the suggestion of applying the Southwell Plot

on deflections to structures is a valuable one.
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N. W. Murray has applied this suggestion and obtained
good agreement between the reciprocal of the slope of the
deflection plot and the calculated critical load in the case
of the lateral buckling of a rigidly jointed truss held at
the panel points. Murray and Nutt have also applied the
method in reverse to braced frames in order to predict the
deflections in the elastic range from crookedness and
eccentricity measurements taken in the unloaded state. The
Southwell Plot on the measurements taken during loading does
not however appear from their published work to have been
carried out by these investigators in these experiments.

In an interesting paper, W. G. Godden has described
experiments on the lateral buckling of tied arches.
Deflection measurements were analysed by using the Southwell
Plot, and gave good agreement with the calculated critical
load. This paper has been recently followed by an article
by Chin Fung Kee in which the significance of the intercept
of the plot hds been noticed. This point seems to have eluded
investigators up to the appearance of Mr. Kee's paper, in
which he uses information obtained from the intercept of the
plot in order to calculate the maximum stress in the arch
rib.

70, Several important points emerge from this discussion.
Firstly it appears that the application of Southwell's
deflection plot to structures has not yet received analytical
Justification. Secondly, attention has been concentrated
mainly on the slope of the plot and the agreement with
calculated critical loads; important information available
from the intercept of the plot with regard to the effect of
imperfections has been largely neglected. Thirdly, most of
the work reported would have been facilitated or at least
broadened by measurement of strains.

The Southyell Plot on Measured Stralns applled to ngb;em

of Instabllltv of Framed Structures.""

Strains are usually easily measured, and stress can be
directly inferred, hence the determination of a yield criterion
is facilitated by the use of the strain plot. It has been
shown previously that the Southwell Plot on longitudinal strains
in a pin-ended strut is linear. The method may be extended to
structures on the basis of a physical argument, but it is
desirable to have some mathematical justification if this

is possibles

The simplest frame is a triangle, and the Southwell
Plot on strains at certain points in the members of a triangle
will be examined both mathematically and experimentally. This
preliminary justification of the use of the plot to obtain the
critical load of a frame and the effect of imperfections on
the load carrying capacity opens up the possibility of
bridging the gap between the buckling of an initially perfect
frame and the deformation and load carrying capacity of a '
practical frame.

72. Ihe Bucgllgg of an Equilateral Triangular Frame in
its P1 N e ST
The first buckling mode of a simple frame made up of three
equal members rigidly connected at their ends to form a
triangle has been treated in Art. 30.
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By analogy with single column theory, the initially
perfect frame, made up of initially straight members,
was considered, and its buckling load determined
mathematically. The behaviour of a similar frame

made of initially crooked members will now be treated.
It will be shown that Southwell Plots on strains which
occur due to the buckling are linear, and can be used
to determine the critical load of the initially perfect
frame. Load tests on an experimental frame have
resulted in good agreement. This analysis and its
experimental verification forms a preliminary
justification of the use of the Southwell Plot on
strains to determine both the critical load of a
structure and the effect of practical imperfections

~on the failure load,

73. The Behaviour of a Irignglar Erame_whqse Membgrs

are Initfelly Crocked: -

To discuss this problem it is convenient to first
consider the behaviour of:

(a) An initially crooked compression member

(v) An initially crooked tension member

(c) &An initially crooked compression member subject
to bending moments applied at its ends,

(a) ;”'M' itially crocked compression member.

Consider the initially crooked member AB shown in
Fig. 70 having the unloaded shape -

o0
Vo = Z‘ 8, sin nmx/4.

The limits of summation throughout.are 1 to ©0, and {?is
the length of the member.

Then dy,/dx = Z (nw/ﬁ)an cos nWx/ 4

- 4 l
==

and the initial slope at x = o0 is given by
7 | ,
=2 @v/ley
The bending moment at x, under axial load P, is
= = 2
M, = Py = EI &%y - y,) /&

Therefore

dzy/dx2 + Py/EI = d?‘yo/dx'2 = 2 -(nz’ﬁ'z/»zz)an sin n Tl’x/f.

As the solution, put
y=2 by sin nT x/4
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. 2
Then, 252 b/ h% + B b /EL = n°T “a /¥
. . _ én a
which gives b, = = n
n 1 - Pz“/n 1< EI ‘1 - P/a”Q

where Q= ‘ITZEI/Z2 .

Each component aB of the initial shapezls "exaggerated"
by the axial load in the ratio 1(1-P/n Q).

Also we bave dy/dx = & (nﬁ/z)bn cos nTTX/Z.
At x = o, the slope is :

0,== /Ly, = =w /D)ay/(1 - /)
In the case of initial ‘shape one half wave, we have

Org = Tar/l ena G = (/101 -2/0) .. (59

(v) fn initially crocked tension member. (See Fig. 71)

e y
oy {‘ |
1;—@% I T
A B

Ty = -EI (d2y/dx2 - d2y O/dxz)
(aw/2)a /(1 + T/%Q)

In the case of the initial shape

In this case My

and we dotain bn

Yo = & sin 2mx/l
we have er =2 Uag// and ‘9A = (2 "’f/z)atg/(1 + T/4Q) -(59)

(c) itially crooked compression member sub ect to 0e: d1n
moments agglled at its ‘ends. (See Fig. 72y

Il f .

I ~1

Via Me

PIA = _ Y, B P

Suppose the unloaded shape is
= é an sin nﬂ’x/«é;
Then My =By M - 0« n) x/€
= (By/af + &y fadf
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Therefore d?‘y/dx2 + Py/EI
= dzyo/dxz -M/ET + (M, + Mg) x/EI£

‘Put ¥ = 4 sin kx + B cos kx+i b, sin nTx/4
| ROV N2 2D B 1P, Y A

This satisfies the differential equation and the boundary
conditions at x = 0 and x = £ , if

b, = an/ (1 - P/n?Q)
B =M/P
and & =~ (M/P) cot kL - (Mp/P) cosec k£

The solution is of course merely the sum of previously obtained
solutions, as the differential equations are linear.

At the centre of the bar we have x = 'e/Z and the
central deflection is ' :

v = A sin k£ /2 + B cos kf/z +Z b, sin n/2
- My/2p + Mp/2P
which reduces to
y=(M -Mp)(seck 2/2 - 1) /2P
+ 2 [an/ﬁ -,P/an)J sinn™/2 . . (60)

For an eccentrically loaded column (see Fig. 73)
we can put

MA = Pey, Mg = -Pep, and ‘the central deflection
is then : ' ‘

y= (eA/Z + eB/2_) (sec k//z - 1),
+ Z [an/(1 - P/an)J sin nW/2 'oo‘ (61)

For the particular case of one end of the column pinned, we can-

put My =0, If the initial shape is a simple half sine wave,

then the deflection is
y= (MA/2P) (sec kl/2 - 1) + a1/(1 - P/Q)oo (62)

These results will be used in the following analysis.
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e Consider an equilateral triangular frame whose
initial shape is as shown in Fig. 74. This crookedness
pattern is of the same form as the deflections for the
gravest buckling mode., It is assumed that there are no
initial stresses, and that the initisl crookedness of the
members is of simple form given by

y =a, sin mx/4 for AB and AC,

and y = a, sin 2% x/¥ for BC,

where a4 /2 and &2/2 are small.

A
o/ N

4 g, T4.

The initial angles that the ends of the members make with
the straight lines joining their intersections are then

(- ’u*a1/2) for BA and CA,
(+ w a1_/€_) for AB and AG,
and (- 2Tra2/€)' for BG and CB.

v

Anticlockwise rotations and moments are considered positive.

By putting 23; = ap; all the included corner angles
can be made equal to &0% .

Under load (see Fig. 75), if angles ﬁABletc. are

measured anticlockwise from straight lines AB ete., we have,
using equations (58) and (59)

EI QAB = MA_B 28/ -uy Lt 16 + 7 E1a, /& (1- BQ) g

| . )
end 51 0y =My, Lai/3 -wg L1 /6 - 2WETay/ L (1 + P/E}Q)g
etce s (63)

where Q= 1T2EI/22-, and the functions  , [3 ,J:F are
defined in Arts. 21 and 22,

Now for equilibrium and continuity at the joints

Map * Mpo =0

Mgy * Mpg
) -
Moy *Mgp=0

BC’ CA - CB

0

and QAB = <9AC, QBA
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Also from the antisymmetry of the frame,

o -

BA - CAT .
Inspection of equations (63) then gives

Mpy = Mop» Myp = Mygs and Mgy = Mpe

Hence Mg = Mg = 0.

Substituting in the expressions for é%A and 69BC(GQuatiOns 63)
we have

w, £8/3 - 7 E1ay /4 (1 - P/Q)
=M, £(B1/3 - 4'/6) - 2TEIay/€ (1 + B/8) .
Since ‘aﬂ\¥‘2aé, this reduces to
Moy £°/7 51ay = 278/1Q01 - B/Q)(1 + B/B0) (28 281 ~a?)
| | . (64)
It is seen that MBA tends to infinity when |

(26 +2@' - &) =0, i.e. when k£ = 4.0, This is
the buckling condition when the members are initially straight.
It might be expected, from the fact that the term (1 - P/Q)
appears in the denominator on the right of equation (64) 5 that
Mp, also becomes infinite at P/Q =1, but this is not so.

It is evident that the buckling load must be higher than the
Euler load of the pin-ended strut, and it can be shown that

Lim

2
P=Q M ! /TEI = 5.0
x4 : BA é1

w

. 2 NR
In these expregsions, Q=1 EI/Z , P= kZEI, and hence
P/Q = (x4 /7 )*. M_ can thus be obtained as a function of
k& , using equatioft® (64). Fig. 76 shows the resulting
plot of ‘

X =My, 0%/ T Els, against k £ = VE/EL. L.

Fig. 77 shows a type of Southwell Plot on My,, where X/(kg)2
is-.plotted against X. It proves to be a straight line of
slope 1/16, and intercept on the X/(k£)? axis of 0.19, whose
equation is , , ° ' :
/wd) = 116+ o.19.

This reduces to
Mgy =0.19 T & P/(1 - P/Pcr).

is thus a function of the load P, the crookedness parameter
, and the critical load of the frame, since P,. is given by
k¢ = ¥T6 = 4.0, That is P__ = 16EI/4?, the buckling load -
of the triangle having initiaffy straight members. Thus the
Southwell Plot on Mp, is a straight line. The reciprocal of
the slope of the plot gives the buckling load for the initially

perfect frame.



It is interesting to investigate the behaviour of the
angle O, as the load increases. It will be shown that the way
in whic '6%A runs away as the critical load is approached is
. similar to the more well-known behaviour of deflections. The
‘analysis is introduced here to strengthen the argument that
the Southwell Plot can be applied to any distortion parameter
which participates in the buckling mode concerned. We have,
from the equatlons (63), since Myg = O,

6, = Moy B /31 - '7a,,/Z (1 - PAQ)
=(7a/f) [_FX/B -1/(1 - P/Q)J .‘

The initial value of 5 is (- T /2) Therefore the
rotation from the 1n1t1aﬁ pos1tlon 1s - '

Oips = Ogy + T/l

Fig. 78 shows the plot of the rotation under load O

)
divided by the initial angle (- 7 8, /0 ), against kd . BA

It is interesting to plot the variation of 1} with
G'BA' This is carried out in Fig. 79, where _

Mg, £ /61 @'y, 18 Plotted against kf. We notice that the

stiffness of the joint B, as far as the restraint it affords
to the member BA is concerned, falls steadlly to the value
given by

w, gL, = 6. e (69)

As the axiél force in AB increases, the stiffness of the
joint reduces.

Consider the member AB in "the frame ABC having

initially straight members. Suppose MAB =0 as in the
case of unsymmetrical buckling. ‘

Put My = - p EI O/t

where is a variable factor relating the restraining moment
to the rotation. Then we have -

= MBA fﬁ/; - My Ld/6
= - F‘EIF) QBA/B since Myp = 0.

1
A

Tperefore -
S = =3B,

At the buckling load we have k€ = 4.0, /3 = -0.46, and hence
o = 6.5, thus confirming the value found from the plot in
Fig. 79.

Fig. 80 shows the Southwell Plot on the rotation at B.
The graph is a straight line whose equation is

Oupa/- 1o /l) = Quma/CTag/L) 4 o0,
®4)* 16
the slope of the plot being 1/16 and the intercept 0.025.
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As in the case of My, , the Southwell Plot is a stréight line '
BA
of slope 1/16.

A parameter which is related to the first
buckling mode, and which is conveniently measured, is the
strain at the centre of one of the compression members.
If the bending moment at the centre of AB is M_, then the
strain measured there is D

é'z;P/EA L M, v/1

where A is the cross-sectional area of the member, and v
is the co-ordinate of the point where strain is measured.
The term P/EA is linear with P, and independent of the
buckling. Mp depends on the buckling alone, and runms
away as the critical load is approached. Therefore,
when strains are measured, the Southwell Plot should be
carried out on ( & - P/EA) which equals M, v/I. It is
thus sufficient to-investigate the behaviour of M as

k increases. Consider the member AB. It has been

shown that Mg =0, ‘

therefore  Mp = Pyp - Mg, /2

where yp is the deflection at D.. (See Fig. 81.)
Now yp = a.,’/(‘l - P/Q) - MBA (sec k£/2 - 1) /2P from equation &),

We thué obtain
MDez/ﬁ EI ay = (X/2) sec kd /2 - (k{)z/w (1 < PAQ).

This equation is plotted in Fig. 82, and the corresponding
Southwell Plot in Fig. 83. A straight line of slope 1/16
is obtained. :

This analysis shows that the Southwell Plot on

¥n is linear, Hence if strains are measured at D, the Southwell
Plot on (& - P/EA) is linear and the reciprocal of the slope of

‘the plot is the critical load of the frame. In the analysis

presented, the standard classical approach has been given in
full.in order to show how the behaviour of the initially
imperfect frame deviates from that of the perfect frame, and
the method by which the two can be related using the Southwell
Plot on strains.

75. Experimental Work on the Buckling of en Rquilater

»

An equilateral triangular frame ABC was made up
of § in. x § in. x 0.036 in. alumipium angle section members
(£ =31.75 in., EI = 5080 1b. in.<) bolted to brass end
pieces so that the major axes of the members lay in the
plane of the frame. The frame was loaded as in Fig. 84. N
The expected buckling condition is

- 2
Pop =16E1/4% = g0 1n.
The frame was loaded as in Fig. 8, and strains were measured
on the corners of the angle members at the centres of members
AB and AC using Huggenberger mechanical strain gauges.
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In Fig. 85 the measured strains are plotted against load
in the compression member, and graphs of strain/load
against strain are shown in Fig. 86. The Southwell

Plot on strains gives straight lines for both members,
and the reciprocals of the slopes are 79 lb. in each case.
This is in good agreement with the calculated critical
load, but would not have been obtained from the loading
test alone, as the maximum load reached was 72:3 1lb. The
frame was set up again as in Fig. 87, the load being
applied with a slight eccentricity e at the apex. The
strain against load plots and the strain/load against
strain plots for two values of e are also shown in

Figs. 85 and 86, Due to the eccentric loading, the
strains increase more rapidly than for e zero, but

Fig. 86 still shows straight lines, which have an inverse
slope of 80 1b, in each case. This critical load could
not have been inferred from loading tests. Very large
deflections were obtained at much smaller loads than
when e was gzero. .

: Of course, the initial crookedness pattern in
the experimental frame was not of the simple form assumed
in the mathematical analysis. The experimental measurement
has however justified the use of the linear strain plot
in determining the critical load for the gravest buckling
mode. o

. Another triangular frame was made up from,0.500%"
x 0.1325" steel strip ( £ = 15.1", EI = 2530 1b,in. )e
The expected buckling condition is P = 16BI/€ < = 176 1b.
or Wgp = 305 1b. (See Fig. 8.) Graphs of strain against
load and the corresponding Southwell Plots on strain are
shown in Figs. 88 and 89, and labelled "first loading".

The equation of the Southwell Plot is

-iﬁfﬁi = iﬁﬁfﬁ + (0,08 x 10°°)

The critical load of 304 1b. obtained from the plot is in
good agreement with the calculated critical load of 305 1b.

The frame was then bent by hand and given the
artificidl initial crookedness pattern shown in Fig. 90.
The resulting strain and Southwell Plots are also shown
in Figs. 88 and 89. l

T Sy A T

Fig, 90
The equation of the Southwell Plot is now

LR L LB 02100 (60
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The intercept is larger than before, as is to be expected from the
increased crookedness. Also the critical load obtained from the
plot is lower. This tendency has been noted before in the case

of single members where crookedness or eccentricity of loading
was large. Because the deflections increase quickly with load,
the method of obtaining the asymptote is less accurate. Yield

of the material probably has an effect also, tending to lower

the critical load.

. It is interesting to compare the calculated strains
with those measured. The equation of the calculated Southwell
Plot (Fig. 83) is IR

Mp {2/ ELa; =ML/ EIa1

- 0.20 oo - (67)
(kL)*= 16 ,
where My = (& - P/EA) EI/v end (k£)% = PP?/EI.
D - v and (k&) = P¥“/EI,
Comparison of equations (66) and (67) gives the value a, equals

approximately 0,06 in. This is rather lower than the croockedness
used, (Fig. 90) , but is of the correct order. It is quite possible
for a suitable 1n1t1al stress pattern in the frame, due for example
to one member being too long, to offset the initial croockedness and -
to make the intercept of the plot lower than the value calculated in
much the same way as suitable eccentricity of loading of a pin-ended
column can offset its initial crookedness.

76, It is to be noted that a simple initial crockedness
pattern such that buckling of the compression members of the frame
in single curvature results, has been chosen for the argument
given in this paper. Tests made by the author on models and some
full-size structures indicate that although a higher mode (double
or trlple curvature) often governs the initial deformations,
unwrapping usually occurs fairly early, and single curvature
becomes the gravest mode. The mode of buckling which governs
failure of a 'structure is of course dependent on the slenderness
of the members, their initial crookedness, joint eccentricities,
and the yield stress of the members. If the form of the frame is
such that a higher mode than single curvature exerts the main

influence at failure, then the strain gauge can be sultably located
to pick up this mode,

The above analysis and its experimental verification
forms a prellmlnary justification of the use of the Southwell Plot
on strains in problems of buckling of plane frames in their plane,
without torsion of the members. In practice, however, many frames
fail by combined torsional flexural buckling, and it is felt that
some mathematical analysis of such a problem must be carried .out
before the method can bé valldly extended to such structures. The
analysis of such a problem is carried out in Art. 78,

77. The Buckling of a wgrren Truss in its Plane.

A Warren Truss was made from steel strip measuring
0.370 in. x 0,1265 in. The flexural r%gidity of a sample of the
strip was measured EI = 1770 1b, in. The truss had equal
members of length € = 10,08 in. welded together so that their
minor axes pointed in the direction normal to the plane of the
frame. Buckling in the plane of the frame without torsion of
the members was thus ensured. The frame was loaded through ) 1n.
diameter balls as shown in Fig. 91, -
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The numerals indicate
+he locations of the
strain qauges.

Fige. 91

Strains were measured in the members 44 B, and A2 B2 at the
locations shown. They are plotted agains% the 16ad 2W in
Figse 92 and 93, and the corresponding Southwell Plots are
shown in Fige. 94. The points on the Southwell Plot lie very
close to a single straight line of slope 1/620 1b.~', The
calculated critical load is given by

Per. = (4,68)2EI/-22 = 382 1b. (see Art. 41)
or er, = 660 1b,

There is a larger dicrepancy than usual here, amounting to
8%, between the calculated critical load and the value
obtained from the Southwell Plot.

78, Ihe Buckling of & Triangular Frame out of its Plane.

The simple flexural buckling of a triangular
frame in its plane has been solved analytically and the
Southwell Plot on longitudinal strains shown to be linear.
The slope of the plot is related to the critical load of
the frame, and the intercept is related to the initial
imperfections, Tests resulted in good numerical agreement.
However, many structures fail by instability where buckling
of members in torsion and flexure is involved. The buckling
of the members of a plane frame out of the plane of the
frame is an example, It is assumed that in such cases
inspection or a preliminary loading reveals the places where
strain gauges should be put in order to measure strains
which are governed by the gravest buckling mode, whether
or not the gravest mode or the correct locations of the
gauges are evident from theory. The question then arises:
does the Southwell Plot on strains give the critical load
for the mode concerned? Some analytical justification is
required before the method can be used for such problems.

It has previously been stated that a structure
fails by instability in the way in which it deforms most
easily. If buckling occurs, a given structure subjected
to a certain loading condition fails in a given mode
dependent on the form of the structure, the stiffnesses
of its members, and its initial imperfections (such as
initial curvature of members or eccentricities at joints).
This buckling mode possesses a critical load, or the
theoretical load at which the initially perfect structure
buckles into that mode (when restrained, if necessary, to
prevent the occurrence of lower modes if these exist.)
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Tests on several structures in which torsional-flexural
buckling of members occurred have resulted in linear
Southwell Plots on strain., These are reported in
Chapter Four. It was evident by inspection or from

a preliminary loading where to locate the strain gauges
in order to pick up the gravest mode. Most of the
structures were of a form which made calculation of
the critical load for the buckling mode which occurred
far too difficult for the operation to be carried out
in order to check that the linear strain plot did in
fact give this critical load.

However, it has been found possible to solve
for the critical load of a plane triangular frame when
it buckles out of the plane of the frame in either of
two distinct modes. Torsion and flexure of all the
members is involved, and the relative torsional and
bending stiffnesses of the members markedly influences
the critical load. Tests made by the author on small
frames resulted in linear Southwell Plots on strains,
and good numerical agreement with the calculated critical
load was obtained. This experimental verification of the
validity of the results of the Southwell Plot on
longitudinal strains in the case of a simple frame is
presented here, and forms a preliminary justification
for the use of the method in more difficult problems of
buckling of framed structures,

The experimental work emphasizes the fact that
the pattern of initial imperfections may be a determining
factor in the final buckling mode of a frame.

Notation:

external load on frame
compressive force in member
joint rotation

slope at the end of a member
twist at the end of a member
bending moment

torque

flexural rigidity

torsional rigidity

Young's modulus

Shear modulus

length of member

= VP7Y1

o O
Ll el oo B Ve < ggﬁ"dﬂ

Other symbols are defined in the text,

Consider the triangular frame ABC (Fig. 95) made
of initially straight uniform members of length & , loaded
as shown. The minor axis of inertia of the members lies in
the plane of the frame so that buckling in the plane of the
fraeme does not occur,

Two distinet buckling modes designated Mode A and

Mode B will be considered. Mode A occurs when the centres of
AB and AC deflect in opposite senses relative to the plane
ABC, Mode B occurs when the centres of AB and AC both deflect
behind (or in front of) the plane ABC, It is evident that
buckling in either of the forms described causes bending
moments and torsion in the members of the frame, When
considering any given mode, buckling in any other mode must,
if necessary, be restrained, :
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Under load, the axial forces in the members are
as shown in Fig. 96. Compression is considered positive.

Now 2P cos 30° =W, hence W = 1.73 P,

, Assume that in the buckled condition the
rotations of the joints A, B and C are given by the
angles £,,, #op> €bc., as shown in Fig. 97. These

rotations are treated as vectors, and the right-hand
screw rule is used. As buckling in the plane of the
frame is not being considered, nc joint rotation vectors
normal to the plane of the frame are introduced. Fig. 98
shows the slopes Oand twists < at the ends of the
individual members due to the joint rotations, and Fig. 99
shows the resulting bending moments and torques at the
ends of the members. Moments, slopes, torques, and
twists are also treated as vectors.

' The end slopes & and end twists <2 can be
found terms of the joint rotations ¢ as follows:

“io TEBPy 1Py

'QAB -%¢1A * %/3_¢2.A
w =EBP, -1,

OAC “’%’¢1A - %'/3_¢2A

il

e

w

Ve St st Soist” Sngs? Nrsat” St “var?” i’

wBC % ﬁ¢1B * %¢2B

)
)
eBC =—%¢1B ¥ %‘/3_975233
“m = PPl - 19y § | -
O = Fhp - T0hy )
wc;. =%'/3_5b1c - 'H’zc g
VQCA =d%-¢1c * %’[3-¢203
) o0
w = ok
CB 2 ‘f3¢1c -% ¢2c g
QCB =-%¢1C - %ﬁfézc %

From equations (€8 we obtain

wAB +COAG= -J-B(OAB + 6AC) .o

and B(“p = @ye) = O - Oy

(68)

(69)

(70)

(m)

(72)
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Similar expressior‘ls can be obtained at B and C by use of
cyclical symmetry,

For equilibrium at joint A, we have
4 /3 (TAB + TAC) -3 (MAB * MAC)

and ‘ %’ /5 (MAB - AG) + '%‘ (TAB - TAC) = 0 .‘.‘

i

0

Similar equations can be written down at B and C.

The equations relating the end moments and slopes
for the member AB are

Op TP ¥, - w, Ldl6y,
and by = 4B/3 - M Lelfoy

where ¥, is the flexural rigidity of the member and < and®
are functions tabulated in Niles and Newell "Airplane
Structures"; p. 72. Similarly for the member BC,

9BC =MBC€[3!/3 X1 _MCBzc(l/éA/‘l
and By =Mplpt/sy, -m La/ey,

where d' and [3' are functions tabulated in Niles and
Newell ®Airplane Structures" p. 107. Putting P/ ¥q =k
o and are functions of k€, and J! and [3' are
functions of (=k£Z/V?2)

Also put
b3y =1, Lpfsy = T
1#/63«1 = X, Ldr/6y, =@
and 2/ Y, = Z, where Xz is the torsional rigidity
of the member. '
Then 0 = Myp ¥ = Mg X, oo .o
Ogy =M, T - M5 X. |
Also 5AC = MAC Y - MCA X oo .
Gy =Mgu ¥ =My X .
and 9Bé =M T - M X! Cee e
Ocp =Mop 7' = Mpo X' oo e

The equations relating torque and twist in the members are
Typ =Tpy = §2(%yp + “p)/4

Thereforew w , ..
+ =
s T T 4Tyg=2Tp oo .o

(73)
(74)

(75)
(76)
(77)

(78)

(79)
(80)

(81)
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w w = = .,ﬂ
ot Pea STy =20y |
w w = = N
and Bc* “op =2 Tp T2 g .

(e2)

e (83)

Buckling modes A and B will now be considered separately'.‘

Buckling Mode A.

This mode occurs when the centres of AB and AC

deflect in opposite senses relative to the plane ABC.

The buckled shape is antisymmetrical about the bisector

of the angle at A

Hen‘;’e Pan =0 ¥y =_¢1c’ 10 = P
Equations (68 then give

“p = Wyer = G = O
Hence equation (71) reduces to

w o= -/3546, ., | oo

AB AB
Now equations (84), (69) and (70) give

= = = Q) =
w [2) 6 2] w s end ‘9BC

BA CA> "BA CA’ BC C
Hence, from equations (75) to (83)

Mg =Moo Mpy =My My

Therefore equation (73) reduces to

‘ETAB - MAB = 0 olo\

Writing down the equations at B smllar to equations

(7R) at Ay we have

“oa * % T T ﬁ_(eBA + Ohp)es
and Bl - 4 = - O o
Since BG = 9CB’ equations (79) ai.ld (SQ) reduce
b - e (X' - XY | .
and since )
ch = wCB eq@tlon (?3) reduces to
295 = % Tho

For equilibrium at B, equations (73) and (74) become

(V3/2) (g +T5) - (Mg +Mgy)/2=0

e (84)

= Myps and Typ = Tyg.

. (85)
9 .
CB*

. (86)

(M) and

. (87)

. (88)

to

.o (89)

oo (90)

oo (91)
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amd: (V320 -My) + (T, -T)/2 =0 NN C)

Equations (75), (76), (81) and (85) to (92) may now be considered
as eleven equations in the eleven unknowns M,p, 6,p, T,p, “4ps

Mpps O@ppr “pps Mao? O pgr Tpg andedg. These paremeters
define the buckled condition of the frame, and are shown in Fig. 100.
The buckling load can be obtained by setting the determinant of the
coefficients in the eleven equations equal to zero, but it is more
convenient to reduce the eleven equatlons to two equations in MAB

Multiplying equatlon (87) vy f and addlng -equation
(88), we have

wBA =,—(2<9BC + 6BA)/ /3 .. ,(93)

By subtracting, we have

chzn(-eBc v 26p)/V3 e (94)

Equation (90) gives

2“1%0 =& TBC'

Also equations (89) and (76) give expressions for 5 and & BA® Hence
equation (94) gives

2My, (Y' =X') +4My, Y -4MgX+ /32T =0.(95)
Equations (81), (85), (93) and (86) give
-3 QA.B - 2680 - (9BA =ZM_.

Substitution from equations (75), (89) and (76) gives

(BT - X+ 2) My + (T = 33) My, +2(T" - x1) M =0, (96)

Noting that ,
Tag = Tpa = AB/'B from equations (86), equation (91) becomes
Mgy * Mgo = Myp *+ V3 Tpgo ‘ e (97

and equation (92) becomes
My -3y =y ¢ 3 B:3
Subtraction gives
Mgy =2 Mgy +Mpp =0 e (99)
Equations (95) and (97) give |
(2¥' - 2!+ Z) My, - (4 +Z)M ¢ (4Y + Z)MgA =0 (%9)
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Substituting My, = Mgy + Mo from equation (98) in equations
(96) and (99) we obtain two equations in M,, and My,.

(X =X 3T - X+ )M+ (T - X+ Y - KMy,

(T' = X' = 4Y - 32) My + (T' - X'+ 47 + 3z/2)MBA

0

]

O L4

Putting the determinant of the coefficients equal to
zero for the buckling load, factorizing, and substituting for
X, Y and 2, gives

(o + 2p)d" - 2p) + 2(d+ 28) (o -2p)
+ (681/8,) (A =23 +d -63)/2
- (63’1/3’2)2/4‘ =0 . o (100)

Substitution of o 3,d', and @' as functions of kA gives the
buckling load. (o” and (2 refer to axial compression given by
k, while (@' and ol ' refer to axial tension given by %k/ /2) .)

‘ In the case of mild steel membérs of rectangular3section
of width b and thickness t, ¥4 = E bt3/12 and ¥, = G bt°/3.
Therefore ‘

6 ¥,/ ¥, = 3.75 if E/G = 30/12.

Substitution of this value in equation (100) and graphical
solution yields

k£ = 405 . X X) (1008.)

. In the case of members of gqual angle-section of %e
width b and thickness t, ¥4 =E b t/12 and Xz = 2G bt /g.

A particulgr aluminium angle section has the values

b = 0.55 in., t = 0.036 in., E = 9,000,000 1b./sq. in,
and G = 3,300,000 1b./sq. in.,
giving )
6 Y 1/ 3’2 = 440, Substitution of this value in

equation (100) and graphical solution yields
kd =3.16 ' .. . (100b)

Bu Mode B

This mode occurs when the centres of AB and AC deflect
in the same sense relative to the plane ABC. The buckled shape
is symmetrical about the bisector of the angle at A.

Bnce  f, =0, fip = Hipo @ foy = P - (101)
Equations (68) then give _

= _ = = - Bw .o 102

Q_AB ¢9AC /3 W, 3, (102)

and equations (69) and (70) give

= - = - W = dg =_€
wBA “on’ <9131; QCA’ BC cs’ ¢ "Be CB -
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Hence, from equations (75) to (83)

Mgy = = Mgy, and Mpg = - Mgp-
Equation (74) then becomes
3Mp + Typ=0. .« ee  (103)
-Since Mpg = - My, equation (79) becomes ‘
= ] 1 ’ ‘
6’BC My (T + X) oo (104)
For equilibrium at B, equations (73) and (74) become
3 /3 Tpy - 30g * Mgy) = 0 «o  (105)
and . 'é' B(MBC - MBA) - -é- TBA = 0 o (106)

' Equations (97) and (98) still hold for this mode,
and hence equations (75), (76), (81), (87), (88) and (102) to
(107) may be considered a3 ten equations in the ten unknowns
Maps> Oaps TaBs WiBs Mas OBA,“Bas MBG, Opgs  ang®ae
since Tgg = O. These equations can be reduced to two equations
in Mg and Mg as before.

Equations (93) and (94) still hold, and substituting
in equation (81) for w,_. from equation (102), Wo, from

equation (93), and T, from equation (103) , we have
O/ V3 - @0, +6,)/5=-Fzy

Equations (75), (76) and (104) when used in conjunction with
this equation give

0o - (107)
Substitution of Typ = - /3 Myp from equation (103) in
equations (105) and (106) gives
3Myg *Mgy * Mgy = O .. (108)
and Myp - Mpy * Mgz = O
Hence - Mpg = -2 MAB‘

Substitution in (107) and (108) gives
(Y + X+ 32+ 41"+ X)) Myp = (X + ) Mp, =0
and Mpg *+ Mgy = O
At 'the buckling load,
Y+ X+ 32 +4Y" +4X' = (X + 1) .
Therefore Y + X + 2Y' + 2X' + 32/2 =0 .

Hence (2(’: +d ) + ,2(2ﬁ' + 1) + (3/2)(6 31/K2)= 0. (109)
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( B and & refer to axial compression given by k, while @' and
' refer to axial tension given by kAEZ) :

For a mild steel rectangular section member,
6 31/'X2 = 3,75, and graphical solution yields

k&= 3.8 .. (1092)

For the angle section member previously discussed, 63’1/8’ = 440,
and graphical solution yields 2

xZ=3.15 : .o ee  (109b).

79. i tal W the Buckli of a Triangular Frame

out of its Plane:

Triangular frames made of members of rectangular or
angle section have been tested by the author, and Southwell
Plots on measured longitudinal strains drawne The type of
member and the buckling mode are indicated as headings in the
following discussion. !

Mode B.Rectangular strip member

A triangular frame ABC was made up from 0.503 in.
x 0,132 in. steel rectangular section material, For these
members, cross-sectional area A = 0.,0665 sq. in., »
E = 27,000,000 1b./sq. in., and ¥, = 2,530 1b. in. .
(By calculation, chedudxhvmaunremelt of deflections when .
loaded as a simple beam, resulting in very good agreement).
The minor ax®s of inertia of the members lay in the plane
ABC., The frame was loaded as in Fig. 102, The initial
crookedness of the members was very small. During loading,
longitudinal strains were measured at the centres of the
members AB and AC using Huggenberger mechanical strain
gauges. In Fig. 103 the measured strains are plotted
against the applied load We The locations of the strain
gauges are indicated. The strains on the front of AB and
the front of AC are both tensile, and using the previous
notation, the buckling is in Mode B, IFig. 104 shows the
Southwell Plots on strains ( & - P/EA) Al being plotted
against ( & - P/EA), where the symbols have the following
meanings

applied load at the apex of the triangle
axial load in members AB and AC)= W/A.73
measured strain

Young's modulus

cross-sectional area of member.

EMho=
[T L I { I 1

Hence P/EA = axial strain if no buckling occurs. The
Southwell Plots are parallel straight lines passing quite
near the origin and the reciprocal of the slope of the
plots is W, = 253 1b.

The members AB and AC were then bent about their
minor ax®s by hand, to give initial crookedness for each
in the same sense relative to the plane ABC. The frame
was loaded again, and strains measured in a similar way
to that described above. Fig. 105 shows the measured
strains, which increase rather more rapidly with load
than in Fig. 103 due to the greater initial crookedness
of the members. Fig. 106 shows the corresponding Southwell
Plots. Parallel straight lines are again obtained, and the
reciprocal of the slope is W, = 260 1b,
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In this case the linear plots have a large positive
intercept than previously. This is ‘due to the increased
initial crockedness.

The theoretical buckling condition as given by
equation (109a) is '

APcr = k2 k(i
(3.48)2 ¥ /47

where ¥4 is the flexural rigidity of the member about
its minor axis. In this case

X.] = 2,530 1b. inaz aI).d ’2 = 1500 irlo

Therefore

P,. = 146 1b.

and W, = V3P, =2521b.

The experimental values of 253 1b. and 260 1b. are in
good agreement with the value of 252 1b. obtained
analytically.

Mode A, Rectangular Strip Members

The members AB and AC were then bent by hand
about their minor axes to give initial crookedness
in opposite senses relative to the plane ABC, in
order to induce buckling in Mode A, Strain measurements
were taken during loading, and are shown in Fig. 107
(designated "first loading"). The Southwell Plots
are shown in Fig. 108,

The initial crookedness values were again
successively increased in two increments and the
frame reloaded each time. The measured strains are
also shown in Fig. 107 (designated second and third
loading) and the corresponding Southwell Plots on
strains are given in Fig, 108. The Southwell Plots
are approximatel¥ parallel straight lines of average
slope 1/395 1b.,~'. The theoretical buckling condition
as given by equation (100a) is

\(4.5)2 X1/€2 = 228 1b,
39, 1b. '

Pcrﬁ

and W .
cr
The veal ue obtained from the Southwell Plot on strains
is again in good agreement with the theoretical

value of the critical load.

It has therefore been possible to induce buckling
in two different modes having critical loads differing
by about 50% by altering the initial crookedness of
the members of the frame, but when buckling occurs in
either mode, the Southwell Plot has given a close
estimate of the critical load.



Mode A,- Angle-section members

A triangular frame ABC was made up from aluminium
angle-section members having the minor axis of the . »
section in the plane of the frame. (See Fig. 109). '
The members had the following properties: cross~ . . :
sectional area A = 0.0402 sq. in., E = 9,000,000 1b./sq. in.,
mid-line breadth of leg b =_0.557 in., and flexural
rigidity ¥9 = 4,640 1b, in.? (checked by measurement
of deflections when loaded as a simple beam.)

The frame was loaded as in Fig. 109, longitudinal
strains béing measured at the centres of AB and AC at
various points around the cross-section. For member
length = 16,75 in., measured strains are plotted
in Fig. 110. The accuracy of the strain measurements
is worth noting. This is demonstrated in Fig. 110 where
the measured strains around the cross-section at the centre
of AC are plotted. The average strain is also plotted, and
though the calculation of the average strain involves only
the small differences between the actual strains measured,
close agreement is achieved with the calculated value
& = P/EA. The corresponding Southwell Plots are shown N
in Fige. 111., They are parallel straight lines of slope
(1/280) 1b.~! The theoretical buckling condition as
given by equation (100b) is

P = (3102 ¥ /8% = (3,167 x 4610/(16.75)= 165 1.
or W = 3 P_. =286 1b. |
The agreement is very close.

The experiment was repeated using member length
[ = 32,7 in. Measured strains are plotted in Fig. 112,
the average strain over the cross-section of AC again
agreeing well with the calculated value & = P/EA.
The Southwell Plots are shown in Fig., 113. Every point
calculated from each of the four sets of strain me.;urements
lies on a single straight line of slope (1/72) 1b.™'.

The croockedness of the members AB and AC was increased
by bending in opposite senses, and the frame reloaded.
Measured strains are plotted in Fig. 114 and the corresponding
Southwell Plots in Fig. 115. Parallel straight lines of slope
(1/72) 1b.~! are obtained. '

- The calculated critical load is
Wop = VB Pop = 3 x (3.16)° x 4640/(32.7)% = 75 1bs.

fode B, Anpgle ti members.

The members AB and AC of a triangular frame having
member length € = 16.75 in. were bent in the same sense, X
and the frame loaded as before. The measured longitudinal
strains are plotted in Fig. 116 and the So¥thwe11 Plots in
Fig. 117. The plots have slope 1/290 1b.”', while the
theoretical buckling load is

W= V3 x (3.15)2 x 4640/(16.,"'75)2 = 28, 1b. (See
equation 1094) s



PLATE 4

Measurement of flexural
rigidity of rectangular
strip material.

One of the buckling modes.

Measurement of strains in a triangular frame made of
rectangular strip material buckling out of its plane.



PLATE 5

Method of loading frame made of rectangular strip.

Frame made from angle - section
members buckling out of its plane.

Test on a triangular frame made of
flexible strip, buckling in its plane.
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Using members of length 32.7 in., the strain against
load graphs and Southwell plots are given in Figs. 118,
and 119. Parallel linear Southwell Plots of slope
(1/72) 1b,~' are obtained. The theoretical buckling
load is

W = 4B x (3,157 x 4640/(32.7)% = 74.5 1b.

In the case of angle-section members, the critical
loads for the two different modes are  themselves not very
different. This is due to the low torsional rigidity of
the members. However, when buckling occurs in either mode,
the Southwell Plot on longitudinal strains gives a close
approximation to the theoretical buckling load.

The Application of the Strain Plot to Torsional

Flexural Buckling Problems

It is seen that though the relative torsional and
bending stiffnesses of the members markedly influences
the critical load of the triangular frame when buckling
out of the plane of the frame occurs (see equations 100
and 109) , the Southwell Plots on longitudinal strains are
linear, and give a good approximation to the critical load
of the frame. Hence, though this method has so far been
mathematically justified only for flexural buckling, it
appears from the foregoing experimental results that its use
can be extended to problems of buckling in torsion and
flexure. The method, and in particular the equation of
the linear Southwell Plot, can thus be used with some
confidence for such problems, as it appears to have
reasonable justification.

It may be mentioned that the buckling mode of the
frame used is dependent to a large extent on the initial
imperfections of the frame. The effect of the magnitude
and the sense of the initial crookedness of the members
has been shown. In the case of the frame made of
rectangular strip material, it was found that for
small initial crookedness values of opposite sense in

AB and AC, deformations in the enti-symmetrical mode A

occurred at early stages of the loading. As loading
progressed, however, the strains in one member reversed,
and the symmetrical mode B became the governing mode.
Typical strain plots are shown in Figs. 120 and 121, In
this case, of course, linear Southwell Plots are not
obtained, though if strain measurements were continued
until large deformations in Mode B occurred, it might be
expected that the latter part of the Southwell Plot would
be linear, provided the material remained elastic. It
appears therefore that, as is to be expected, the
Southwell Plot on strains is linear only if buckling in

one given mode governs the strain measurements taken.
The Southwell Plot on deflections is of course similarly

limited.

When testing structures, the author has usually
found, however, that when the buckling of some members
participates first in one mode and then in another mode,
resulting in a non-linear Southwell Plot, some other
member of the structure buckles throughout in one mode
and thus determines failure, The Southwell Plot for
this member is usually approximastely linear, and its
equation can be used to define the failure load.
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80. The Lateral Buckling of a Model Lattice Girder.

Tests have been carried out on a model lattice
girder. The equation of the Southwell Plot on longitudinal
strains in the compression chord is similar in form to the
usual column formula. Further tests on model and full
size structures should establish the negessary empirical
information for this- equation to be useful in design.

Good agreement was reached between the critical load
obtained from the Southwell Plot and the value calculated
using the theory of & beam with a continuous web.

Notation.

£ strain
M  bending moment
IXx and IYY major and minor moments of inertia of the
girder (see Fig. 122)
v co-ordinate measured from XX of a point
where strains are measured (see Fig. 122)

erimental work

A model lattice girder made of § in. dia. brass
rod with silver-soldered joints, and having the dimensions
shown in Fig. 122 was set up and loaded in its plane as in
Fig. 123 in order to set up a uniform bending moment in
its central portion. Loads were measured with a proving
"C", The top and bottom chords were supported laterally
at points 7.5 in. apart. (Fig. 124) The elastic
properties of the brass were:

Young's Mpdulus E = 15.3 x 106 PeSeis
(from tensionétest)

Shear Modulus G = 5)92 x 10 poSoio
(from torsion test)

Iield StreSS . fYP = 45’000 poSoio
in” tension.

During the test, longitudinal strains were
measured on the sides of the compression chord in two
places, as shown in Figs. 122 and 124, using Huggenberger
mechanical strain gauges. Graphs of strain £ , against
moment M, are shown in Fig. 125. On this graph, the
line & = Mv/IXXE is drawn. This represents the strain
which would occur due to the action of the bending .
~ moment aloney, if no lateral deformation took places
Graphs of ( & - Mv/IxyE) M against ( & - Mv/IgzE) are
plotted in Fig. 126, This is a type of Southwell Plot,
and ( & - Mv/IyyE) represents the strain due to the
lateral deformation, since £ is the total strain
measured., It should be noted that ( £ - Mv/I) is
analagous to the value ( & - P/EA) for a single

column. It is the part of the strain that depends

on bending effeets, and is therefore expected to run
away as buckling develops. These plots are found to be
.parallel straight lines, whose equations can be written
in the form

(e-MW/BLg) _ (e-W/BIgy) | o .o (110) .
M M 2

cr



PLATE 6

Test set-up for lateral buckling of a
model lattice girder made from & inch
dia. brass rod.
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where M__ is the reciprocal of the slope of the graph, and

C, its Intercept on the strain/moment axis. In this case,
Mgy = 215 in, 1b. M__ represents the critical moment which

would cause elastic ﬁﬁckling of the structure possessing
no initial imperfectionse.

The torsional rigidity of the girder was also
measured under pinned-end conditions and the torque-twist
curve is shown in Fig. 127. At the angles of twist :
involved, the curve is linear, and the torsional rigidity
is ¢ = 705 in. 1b. per radian per in. The torsional
rigidity can also be calculated as the sum of the torsional
rigidities of the two chords and that of the lattice,
assuming the joints between the chords and the lattice
are rigide The lattice members are both bent and twisted
by the torsion of the girder. Using the measured elastic
properties of the brass, this calculation gave the value
C = 750, which is 6% greater than that measured. It is
thought that the difference may be due to the softness of
the solder at the joints of the lattice, or to the fact that
the centre lines of the lattice members do not intersect at
a point. Strains were measured in the lattice members
during twisting, and were found to be 5% less than those
calculated.

The lateral buckling of beams is discussed by
S. Timoshenko in ®"Theory of Elastic Stability® (1936),

McGraw Hill, p. 239. The theoretical lateral buckling
moment of the girder treated as a beam with continuous

web is
(m /&) VEI G
(™ /7.5) /398 x 705

222 in. 1b.

Mtn

where 4 is the length of the half-wave of the buckled shape.
In calculating Myy the actual measured value of C° has been
used, Thus My, is the theoretical lateral buckling moment
of a girder having the torsional rigidity measured.

This is in very close agreement with the value
obtained from the Southwell Plot on strains. The agreement
is to be expected, but it gives confidence in the use of the
method, which, it must be remembered, has as yet incomplete
analytical justification and is defensible only from a
general physical standpoint.

The model was set up again with lateral supports
spaced 3.75 in. apart (Fig. 128). Strains were measured
and plotted as before. (Figs. 129 and 130). The graphs
are similar to those obtained in the first test. The value
of M.. the reciprocal of the slope of the Southwell Plot, is
now 432 in. 1b. The calculated value is |

My, = (T /3.75)4/398 x 705

444 in. 1be

This is again in close agreement with the value obtained
from the Southwell Plot.
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The equation of the Southwell Plot on strains can A
be used as a design formula. Equation (110) reduces to

(tv/Tyy) |1+ §/01 = M/Mcr)J e (117
C EIyy/ve

Given the value of the yield stress fyp, we can put E& = fyp,
and solve for M. This gives the moment which will cause the
compression chord to yield as it buckles laterelly. The
application of a load factor enables the safe working moment
to be calculated. It is necessary to know M., and @. Both
are obtainable from the Southwell Plot, though in certain
cases My, can be calculated as above, provided the torsional
‘rigidity of the lattice is lmown. @ is a crockedness-
eccentricity function, and the carrying out of the Southwell
Plot on many types of structures should establish empirical
information. Equation (111) has the same form as the usual
column formula, and its solution is familiar to engineers.

L}

Ee

where ¢ .

81. The Lateral Buckling of 30 ft, and 28 ﬁ span
Lightweight Roof Trusses. )

‘Development of lightweight trusses has been
carried out by the author at the University of Tasmenia .
for Messrs. Charles Davis.Ltd., Eligabeth Street, Hobart.
The details of the trusses are as follows (see Figs 131):

%;ggggg - Continuous, roll-formed from mild steel strip .
patent held by Chas. Davis Ltd.) Up to the present

time, 8" wide by 14 gauge mild steel strip having a

yield point of 35,000 1b./sq. in. has been used.

Lattice membergs - The web members consist of continuous
tubing which is bent to the required zig-zag, flattened,
fed endways into the flanges, and spot-welded. Up to
the present time, 3" dia. or 1" dia. electric resistance
welded semi-bright steel tubing having a yield and
ultimate strength of 69,000 1b./sq. in. has been used,
though in the early stage of the development of these
trusses, 1t in. x 3/16 in. mild steel flat was used.

With the use of lightweight structures and high
working stresses, there arise buckling problems not usually
met in standard practice. Failure at low loads can occur
if such structures are used indiscriminately without the
provision of proper restraint to compression members. The
development of these trusses has afforded an excellent
opportunity for research on buckling problems,

- About twenty full-size girders and trusses have
‘been tested. In many cases a great deal of information
was available in the elastic range without causing
permanent deformation, and the same truss was tested many
times under different loading conditions. The results
reported in this thesis are representative only.

Short trusses have been loaded so that they.
failed by buckling of web compression members rather than
by yielding or buckling of the flanges., These experiments
are reported in Art. 82, Other trusses have been tested
full-size by loading at about the quarter points by +
jacking against a rolled steel joist fixed to the concrete
floor. (Fig. 132). Various spacings and types of lateral
restraint to the compression flange have been used, and
some of the work is reported here. All testing set-ups



PLATE %

LIGHTWEIGHT TRUSSES

Portion of a typical 30 ft. span roof truss.
Plates have been welded to the compression
chord and wooden blocks attached. Under
test, the compression chord was restrained
by preventing later movement of these
simulated purlins.

a';.‘b adek:

=

é.‘n

Set up for testing 28 ft. span truss.
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have been designed not only to give the failure load of
trusses, but also to furnish information on their
behaviour under lcad, with a view to obtaining as

far as possible a fundamental understanding of the
buckling effects. In particular, strains in critical
members have been measured and Southwell Plots drawn.
The work described in Art. 80 was in fact a preliminary
investigation before carrying out research on the
lateral buckling of the full size trusses.

A truss similar to that shown in Fig. 131
was 30 ft. long and 16" deep overall. The flanges
- were rolled from 8" x 14 gge. mild steel strip, and
the web members were %" dia. steel tubing. The
torsional rigidity of the truss w%s measured and
found to be C = 1,800,000 1b., in. The lateral 2
bending rigidity was found to be B, = EIL,, = 19,500,000 1b. in.
The truss was loaded as in Fig. 13}, the compression and
tension flanges being laterally supported at points 13' - 3%
apart. Midway between the supports, strains were measured
‘on each side of the compression flange in order to pick
up the lateral buckling effects. Strains are plotted
against load in Fig. 134 and the corresponding Southwell
Plots in Fig. 135. The slopes of the plots give W, = 1040 1b.
or M _ = 115,000 in. 1b, for the critical bending moment. The
truss was not under wniform bending moment (see Fig. 133) but
the departure from uniformity is not great. If the bending
moment were uniform and the truss had a continuous web, the
theoretical critical moment is

M, = WVBG/£ =117,000 in. 1b.
The value obtained from the Southwell Plot is in good
agreement, showing that when buckling occurs between nodes
about thirteen feet apart the critical load is controlled by
the torsional and flexural stiffnesses in the same way as a
beam with a continuous web. ©

The same truss was then set up and loaded as in

Fig. 136 with lateral supports 6' - 4" apart. Strain and

Southwell Plots are shown in Figs. 137 and 138. It should
be noted that the strains denoted by 1 and 2 are almost
entirely axial, following the line £ = Mv/EI, whereas the
other sets show large buckling strains. This can be
attributed to the initial crookedness pattern in the
compression flange. It is not until a fairly late stage
"in the loading that the strains at the point 1, 2. are
forced to reverse by the developing buckle in the remainder
of the flange. The flange then begins to deform in a wave
having nodes at the points of restraint. However, until
this time the point 1, 2 is itself a node. The slope of
the plot gives Wc = 2,130 1b. or M., = 290,000 in. 1b.
The calculated vaiue is

M, = /7’,/510/2 = 245,000 in. 1b.

The fact that the measured critical moment is higher than
the calculated value can be attributed to the fact that
the buckling mode is not the simple sine wave form assumed,
but one possessing a higher critical load.

In order to check this, an initial crookedness
pattern as shown in Fig. 139 was artificially introduced
into the compression flange. The resulting strain readings
and Southwell Plots are given in Figs. 140 and 141, .
From Fig. 141 we have W,. = 1,800 1b. and hence M., = 293000in. 1b,
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The accuracy of calculatlon here is not good bu+ thls
value is in good agreemen+ with the calculated value
of 245,000 in. 1b. given asbove. It is clear, however,
that the artificial crookedness pattern imposed on the
truss has induced early buckling in the fundemental
mode and lowered the critical load.

The same truss was then given the artificial
crookedness pattern shown in Fig. 142, set up, and
loaded, with lateral supports only 3' - 6" apart.
Strain and Southwell Plots are shown in Figs. 143 and
144. From Flg. 144 we have W or = 2,500 and hence

= 330,000 in. 1b. The theoretlcal elastic
buckling load for a member with a continuous web is |

M = 'ﬁﬁs?c/[ = 442,000 in. 1b.
The value obtained from the Southwell Plot is a good

deal lower than this. Several reasons may be advanced.
Firstly, measurements were not taken to very high strains,
the maximum load reached being not a very high proportion
of W,.. Hence the Southwell Plot does not furnish an
accurate estimate of W Secondly, some yield occurred,
and this lowers W re gﬁlrdly, it is likely that the
theory of a beam with a continuous web is breaking down

at such close spacings of the lateral supports, particularly
in view of the inherent local instability of the open type
of flange section,

" The foregoing experiments were devoted to the
elastic buckling of the lightweight truss, with a view to
determining the load carrying capacity of the truss for
various spacings of lateral restraints. It has been
established that the theory of lateral buckling of a )
beam with a continuous web is adequate down to quite low
support spa01ngs, and the Southwell Plots on strains which
participate in the buciling mode have also been shown to
be linear. If the occurrence of yielding at these locations
is accepted as a sufficient definition of failure, then the
method of substituting the yield strain in the equation of
the Southwell Plot on strains enables the failure load to
be calculated. This has been given in Art. 80. In fact
the reserve of strength of these trusses in the plastic
range is quite low, The susceptibility of the flange
section to local buckling causes quick failure once yielding
of any magnitude occurs. Of course; many tests are required
before the empirical information necessary for engineering
design can be furnished.

The use of the equation of the Southwell Plot as
a design formula is also limited to cases where considerable
elastic buckling effects occur before failure. By reference
to equation (110) it can be seen that if (& - Mv/EI) is
small up to the stage when & reaches the yield strain, then
the Southwell Plot is not well defined. For structures
which have very smell initial croockedness or imperfections, .
this may well be the case. This behaviour will be illustrated
by tests on a 28 ft. span lightweight truss.

The truss was loaded as shown in Fig. 132, the
compression flange being laterally restrained at each panel
point. The compression flange was initially straight and
remained straight during loading until the strains approached
the yield strain. On further loading, slight deflections were
immediately followed by local buckling of the compression flange,
and failure. Sets of strain readings, taken on the tension
flange and on the bottom and sides of the compression flange
are shown in Fig. 145. It can be seen that the strains closely
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Simulated purlin used to restrain compression
chord in some tests.

Developing plastic buckling of
compression chord of truss. Note

the waving of the lower chord
between each restraining purlin.

Local buckling of flattened ends of tubular web members.
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follow the line € = Mv/EI until failure is approached. Up until
& approaches the yield strain, buckling effects as given by
(& - Mv/EI) remain quite small, The difference in behaviour
between Fig. 145 and Fig. 143 is of course due to the difference
in the initial crookedness pattern of the compression flange.

In Fig. 143 an artificial unfavourabbe crookedness pattern was
impressed on the flange.

It appears then that the use of the Southwell
Plot on strains is essentially a technique for tackling
elastic buckling problems. Buckling effects in the elastic
range must be considerable before the application of the
method is useful. This will also be illustrated by the
study of the buckling of the web members of the lightweight
trusses. '

82. The Buckling of the Web Members of the Lightweight Trusses:

In the early stages of development of the lightweight
trusses, the web members were continuous 1% in. x 3/16 in. mild
steel flat bent about the major axis and spot-welded to the
patented roll-formed steel section flanges. Five trusses of
this type were tested. The trusses were loaded as in Fig. 146
so that failure occurred by buckling of the web compression
members, rather than by yielding or buckling of the flanges,
or weld failure. Since the minor axes of the web members lay
in the plane of the truss, they buckled out of that plane.
During the progress of the test, strains were measured using
Huggenberger mechanical strain gauges on opposite flats at the
centres of the web members. Typical plots of strain &£ against
load P are showm in Fig. 147. The steel used in the web
members had a yield poin§ of 45,000 1b,./sq. in., corresponding
to a strain of 1.5 x 10™7. It is seen from the graphs that
the reserve of strength beyond the yield is only about 6%.

In Fig. 147 the strain P/EA (where P = W/cos @,
and A is the area of the member) is also plotted. The measured
strains on opposite sides of the member are symmetrical about
this line. Similar results were obtained from many strain
plots. In Fig. 148 values of (& - P/EA)/P, the strain due to
buckling effects divided by the load in the member, are plotted
against (E-P/EA). In every case where failure occurred by
buckling, (and this was always in single curvature, the
fundamental mode), this plot gave a straight line. Fig. 148
is typical of many such plots. The equations of these straight
lines are of the form

_L:%ZE_A _=é-_61’& + 0y e (112)
cY

where Q.. is the reciprocal of the slope of the plot, and Cy
- the intercept. Q., can be regarded as the critical load
\corresponding to ¥ge Euler load of some reduced length,

and Cq as a crookedness-eccentricity parameter.

Values of ch and C; are given in the following
table, .
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Girder| Test} Euler load Experimental Effective Length
No. No.,| of struts values :
(Calculated '
on full, Qep Cqy x1 / Total Length
length) 15. 1b.~ =Q/Q .
Q 1b. cr
1 1 925 2300 1.0 0.63 .
2 3000 1.85 0.55
3 3200 2.5 0.54
3000 1.0 0.55
3000 0.5 0.55
4 3600 0.6 0.60
2900 1.0 0.57
2 1 1360 4100 0.8 0.55
3800 0.15 0.60
’ 4300 0.5 0.57
13600 0.15 0.61
3 1 1420 4000 1.7 0.60
4000 1.1 0.60
4 1 510 1350 1.0 0.62
1350 1.0 0.62
5 1 670 1820 1.3 0.61
1820 1.9 0.61

Equation (112) represents the behaviour of these
struts in an actual structure. Minimum values of Q,. and
maximum values of C, obtained in such a way, represent (when
properly substantiated by a sufficient number of tests)
valuable empirical information for the design of similar
compression members. To define failure, it is safe to put
£ equal to the yield strain. There is, of course, some
reserve of strength beyond the yield, and for shorter struts
it may pay to find a better failure criterion.

Thus for design purposes, we put Qqp equal to
its minimum likely value, C4 equal to its maximum likely value,
and & equal to £ /E where I is the yield stress. Equation (112)
can then be solveg for the_fgilure load P. Use of a suitable load
factor gives the working load.

In fact, this method of design is very similar to
the Perry Robertson formula (see equation 57, Article 64), except
that the relevant empirical factors have been obtained from
tests on actual structures and not merely assumed with little
rational justification. Putting EE equal to fy, equation (112)
reduces to

f. - P/A = f_ -P/A
J y +  EAC, e (113)

P/A /.
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where P is the applied load to cause failure, Q. is the
"ecritical load obtained from the Southwell Plot on strains,
E is Young's modulus, A is the area of the member, f_is
the yield stress, and C, is an imperfections parametZ}
obtained from the Southwell Plot. The Perry Robertson
formula is obtained by solving

'fy'=P/A‘:1""YlQ1/(Q1 -P)} |
wvhere f  is the yield stress, 7 = 0.003 ‘e/}, a crookedness

functiog, and Q; is the Euler load of an assumed effective
length. This formula reduces to

f_ - P/A = £y - P/A . 12
P/A Q, /A

which has exactly the same form as equation (113) obtained
from the Southwell Plot, In applying the code formula to
continuous or restrained columns, Q4 is the Euler load of
. an arbitarily assumed effective length, and is a
crookedness parameter for pin-ended columns. In applying
the results of the Southwell Plot, both C, and Q p are
obtained from actual tests on similar columns. for any
particular member, equation (113) can be solved in exactly
the same way as the code formula. A sufficient number of
tests would give C, as a function of e/r, for example.

It is therefore po;sible by means of the Southwell Plot

on strains to assess the effects of initial crookedness
eccentricity of loading and restraint at the ends of
columns built into structures, and thus obtain design
formuiae which are related to the performance of struts

in actual structures. It is unnecessary to rely on vague
and tenuous extensions to pin-ended column theory.

Not every strut in every truss tested buckled
in single curvature. The mode of deformation of any
structure is a complex function of the whole initial
crookedness and loading pattern. Fig. 149 shows typical
sets of strain readings for one truss. Some members
deformed in single curvature right from the start. In
other members the initial deformation was forced to
reverse by strongly developing deformations in adjacent
members. However, in all trusses tested there were
. always some members which buckled largely in single
curvature giving linear Southwell Plots on strains
measured at their centres. The plots for these members
can be used to define failure of the whole frame.

83, The Southwell Plot on Strains applied to the Buckling
of Structureg.,

Methods exist for determining critical loadings
for the mathematically perfect structure for simple
buckling modes. The critical loading is analogous to
the calculated Euler load of an initially perfect pin-
ended strut. However, all structures have imperfections,
such as crooked members or eccentric joints, and some
method of relating the behaviour of the practical
structure to the critical loading for the perfect
structure is required. What is needed is something
analogous to the Perry formula, which, by the use of a
crookedness-eccentricity factor, takes care of the
practical imperfections of the pin-ended Euler strut.



In his 1932 article when advancing the linear
deflection plot, Southwell emphasized the generality of
his method, though he did not specifically mention strains.
Experimenters have used the generality in the direction of -
more difficult structures, but have not generally used
other measures of the distorted configuration than
deflections to define the buckling mode. Rayleigh has .
stated, that the assumption that any distorted configuration
in any eigenvalue problem can be expresses as a synthesis
of normal modes "exaggerated" by the loading is defensible
from a :physical standpoint for any elastic system, though
it may require much elaborate analysis to justify it from
the standpoint of a mathematician,

It has previously been shown mathematically in
this thesis that, with certain restrictions, if & is the
strain measured at the centre of a pin-ended column under
load P, then the graph of &/P against & is a straight
line of slope 1/Q, where Q is the Euler load. Good
experimental agreement was obtained.

Experimental work carried out on more difficult
problems such as trisngular frames, web members of lattice
girders, bolted angle members in frames, and the compression
chord of a lattice girder as it buckles laterally has also
resulted in linear Southwell Plots on strains. The
mathematical analysis of a triangular frame having a
simple crookedness pattern has been carried out and it 2
has been shown that strain at the centres of the compression
members (and also other distorted configurations such as
the rotation of the corners) all give linear plots. The
method therefore appears to be fundamentally sound.

The value of the linear plot on strains is that
it gives an equation of the form

(€-€9)/A = (€ - 61)/A

+ Gy o (114)

cr

where & = the total measured strain
5_1 = the calculated strain if no buckling occurs
A = some action, whether force or bending moment.
A., = the reciprocal of the slope of the plot, and

equals the critical action causing elastic
buckling for the mode which governs the strain
measurements takens This is determined by the
location of the strain gauge.  In meny cases it
is obvious where to locate the gauge to measure
the gravest mode. Otherwise the gravest mode
must be found by trial and error.

C1 = the intercept of the plot on the strain/load axis.

Equations (110) and (112) are particular examples of equation (114).
Equation (114) reduces to .

£ = £, +4ac, /00 - A/Acr)

Now & , is usually of the form E =kA (e.go & =P/EA for a

strut whose axial load P is known, or €, = Mv/EI for the
compressive strain in a structure subject to a bending moment M.)

This gives & =kA + AC,/(1 - A/Acy)
=&, [1+ 4/0 -A/Acr)J e (115
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where ¢ = C1/k.

A _ is the reciprocal of the slope of the Southwell
Plot on straifi§ and Cq its intercept. Given sufficient
experimental work to obtain Acr and C4 for meny types of
structures, equation (115) can be used as a design formula
by putting & equal to the yield strain. The solution of
equation (115) is familiar to engineers, being similar to
the Perry formula.

84. Limitations of the Strain Plot.

The use of the plot is limited to elastic theory.
By defining failure of a strut as the attainment of the yield
stress in some part, reserve of strength in the plastic range
is neglected. For short struts, this may be important. In
this event, the result of the plot is still useful in
determining when first yield occurs.

A great deal of experimental work is required to
determine, systematize, and tabulate the variation of ﬂ' and
A _ for many types of structures. A__ can be calculated in
s&he cases, but usually it will be necessary to determine
both § and &, from measurements on actual structures.

The gravest buckling mode must also be determined
in order that strain gauges are suitably located and this may
not always.be obvious, especially in cases of combined
torsional flexural buckling. In general it may be stated -
that the measured strains must participate in the buckling
mode that governs and immediately precedes failure. It has
been shown that at low loads a structure may deform in one
mode but at higher loads a change to a different mode may
take place. For no portion of the structure is the Southwell
Plot then inherently linear. However, when this behaviour
occurs, the author has found that if strains are measured
at the correct locations on members which govern the final
deformation pattern, then approximately linear plots are
obtained.

If the buckling effects ( & - &) of Equation (114)
are small compared with the nan-buckling effects £, up until
yield occurs, then the equation of the plot is inacdurate.
However, if this occurs, a method of design is usually available
by putting the linear part of the strain, namely &,, equal to
some limiting strain equal to or slightly less than the yield
strain. In such a case, the measurement of strains at suitable
locations gives the required information on the magnitude of

buckling effects.

~ Particular care in the application of the method
is required where local buckling is liable to occur.
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CHAPTER IV.

BOLTED ANGLE STRUTS

(With particular reference to the design of transmission towers)

85, Part of thig thesis is concerned with the buckling
of structures containing bolted angle-section members, and the
strength of bolted angle struts. Such members are used in many
structures due to their ease of erection with comparatively
unskilled labour: an important example is the electricity
transmission tower which is often designed entirely of angle-
section members,; with heavy main legs and lighter cross-bracing.
Conriections are made by drilling-holes on the centre line of the
leg of the angle, and single or double bolting. At present, the
design of bolted angle members is very empirical and presumably
over-conservative. This is the case partly because so many
highly variable factors, such as the variebility of the end
connection, are involved.

86, The usual mode of failure of a bolted angle strut
in a structure is for the central part to buckle about its
minor axis of inertia. If each end of the members is held by
one leg, the strut twists near its ends. This twisting may
be accommodated by the opening out of the angle, yield or large
movement: in the connection, local buckling of the outstanding
leg of the angle near the connection, or merely twisting of the
member. There may also be local buckling of the member near its
centre. Mild steel struts of slenderness ratio (the ratio of
length to the smallest radius of gyration, £/r) less than 180
have passed well into the plastic region at failure. For &/r
between 180 and 250, failure may be elasto-plastic or entirely
elastic. : '

'In must non-redundant structures, if the loads are
known, axial forces can be determined with sufficient accuracy
by considering the members pin-ended. There is never enough
- distortion of the geometry of the structure for the actual forces
to depart far from the pin-ended values, even if the members are
rigidly connected. The load-carrying capacity of the strut is,
however, entirely dependent on the restraint at its ends.

87, Existing Design Methods for Bolted Aggie Strutg;

The British Standard for the Use of Structural Steel
in Building, B.S. 44921948, lists permissible working stresses
for discontinuous angle struts with double-bolted, welded, or
single-bolted connections. In this code, the design of all
columns is based on the Perry formula as recommended by
Robertson in the First Report of the Steel Structures Research
Committee, 1931. The derivation of this formula is discussed
in Arts. 64 and 82. Difficulty arises in the application of
the Perry formula to the design of columns in structures.
Practical columns are not pin-ended but continuous, or restrained
at their ends by other members. In "The First Report of the
Steel Structures Research Committee", 1931, Robertson says:

"The central problem in strut work can be stated as the determination

of the strength of a free-ended eccentrically loaded bent strut. The
strength of any strut in a given structure then depends on the length
of a free-ended strut equivalent to it, and it is also assumed that
the determination of this free length is a problem of stress
analysis." He considers that the solution of cases of continuity,



restraint, or fixity of the ends merely lies in estimating
the probable free length. Criticising this approach,

J. Fo Baker (The Steel Skeleton Vol. 1., p. 15) says:

"In putting forward this formula it was aessumed that the
main problem had been solved. The strength of a strut in
any given structure then depended only on the.length of a
free-ended strut equivalent to it, the determination of the
free length then being merely a problem of stress analysis.
No guidance to the solution of this very difficult problem
was offered to the designer.”

However, most civil engineering codes list
values of the ratio of effective length to actual length
to be used in design, for varying conditions of end restraint
and also values of eccentricities to be used., But the
provisions are vague, not supported by measurement, and
a great deal is left to the discretion of the designer,
though the work of J. F. Baker and others has given partial
solutions for the case of structural steel building fremes,
In this chapter it will be shown that the necessary information
for insertion in a Perry type formula for the strength of
bolted angle struts can be obtained from the Southwell Plot
on strains. It is not necessary to rely on vague extensions
of pin-ended column theory. However, the designer of bolted
angle struts must distinguish between the failure of the
structure as a whole when the joints are rigid, and the
separate failure of a strut if the end connection is loose
enough for the member to be almost pin-ended. It must also
be remembered that some modes of failure such as local
buckling may produce more disastrous effects than others,
and it is necessary to apply variable factors of safety.

8g. Loading tests carried out by Mackey on latlice
girders at the University of Leeds (British Constructional
Steelwork Association, Publication No. 7, "Report on
Experimental Investigation into the Behaviour of Angle
Purlins, Ties and Struts" (1953) p. 19) have shown that

the B.S. 449 code gives a safe design method in all cases
tested, but is over-conservative. Complete girders were
tested because the buckling of a compression member is
dependent on its end conditions and the restraint afforded
by adjacent members, and strain measurements were taken on
the truss members during loading. In the tests, actual
load factors of 2.4, 2.7 and 3.0 were obtained for the
critical compression members, ie. those which failed first.
The load factors for other members were, of course, even
higher, and it was suggested that the effective length

of angle struts can be taken as considerably less than the
value of 0.8 times the actual length, as laid down by the
code. Incorporating the eccentricity of loading assumed
in B.S.449 (i.e. adding the assumed eccentricity to the
crookedness term) in the Perry formula, some agreement

was established with. experimental measurements. In fact,

a similar procedure was advocated for design purposes by
Robertson in the First Report of the Steel Structures
Research Committee, p. 228, in which he puts forward the
Perry formula for centrally loaded columns, but for columns
having a definite eccentricity, he proposes that the relevant
term be added.
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Measurement of strains in a triangular frame
made of bolted angle-section members, buckling
in its plane.

Failure of angle-section member loaded as a simple
beam. For these members, b/t =15. Top member
was loaded with outstanding legs in compression, and
local buckling occurred. Bottom member was loaded
with corner of angle in compression.
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&9. The third method of design is almost purely
empirical, using tables of allowable stresses against the

{?/f ratio, with little or no theoretical justification

(e.g. the Johnston parabola formula, with coefficients
adjusted to fit tests on single columns, and some assumed
ratio between effective and actual length). This procedure
is justifiable providing it is safe;, and not toco conservative.

In the case of an electricity transmission
tower, we have a structure which can be tested full-scale
under simulated service conditions, and, because of the
number of structures involved, this is often done. It is
a pity that, apparently because of the large number of
members involved, strains or even deflections are very
seldom measured. Tests are usually designed to establish
the safety of the structure under perhaps 10% overload for
a number of loading arrangements, and to determine its
overall load factor for one loading arrangement, but apart
from giving such qualitative information as the number and
position of the members which fail, $ests as conducted provide
little information which can be used in future design.

90. Because a full-size test can be carried out,
"the transmission tower is probably one of the most economical
structures designed. Most designers work on permissible
axial stresses much higher than the standard civil-engineering
codes allow., However, it is felt that there is still room
for valuable economy. It is a step in the dark to proceed
further along an already dim path even by judicious pruning

~ of the empirical factors involved. The possibility of
economy certainly existsg to achieve it safely a better
fundamental understanding of the structure is required, and
this can be obbained only by detailed measurements on actual
structures, conclusions being supported analytically, where
possible. Research by tests on models and actual structures,
and concerning both the elastic and plastic reglons, should
be fruitful.

91. Preliminary experimental work on angle-section members:

Prior to testing model trusses containing bolted
angle members, single members have been subjected to simple
loading systems with a view to obtaining an understanding of
their elastic and plastic properties. An angle-section
member is an example of a thin-walled open section member,
and as such, is liable to various instability effects such
as torsional buckling or local buckling. Single members have
been subjected to bending, twisting; or axial thrust. Some
of the work has been reported in Chapter Two, Articles 58-62,
and the remainder is given here.

92. The behaviour of angle-section members in simple bending

Angle section members measuring 0.590 in., x
0.590 in. x 0.036 in. were bent from 20 gauge shest
aluminiume, The stress-stirain curve-for the material
is shown in Fig. 150, When loaded as simple beams,
deflection measurements gave values for the flexural
rigidity BI very close to those calculated from the value
of Young's modulus and the section dimensions. The members
were bent about their minor axes in both senses; and in the
elastic range there appeared to be no opening out of the
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angle and consequent reduction in stiffness. Fig. 151 shows
typical results. Similar experiments were carried out with
1 in, x 1 in. x § in. mild steel angle section members.

The stress strain curve is shown in Fig. 152, and typical
deflection measurements in Fig. 153,

However, when the experiments were carried
into the plastic range, considerable difference in
behaviour was observed when the corner of the angle
was in compression from when the outstanding legs were
in compression. See Fig. 154. These tests were carried
out for varying values of b/t where b = width of leg
and t = thickness. Up to the value b/t = 16, the maximum
mament carried was independent of the sense of the bending.
Above b/t = 16, local buckling of the outstanding legs, if
these were in compression, considerably reduced the bending
strength, Where the corner of the angle was in compression
and local buckling did not occur till large deflections were
reached, the observed maximum moment was in good agreement
with the calculated fully plastic moment using a uniform
stress of 14,500 1b./sq. in (See Fig. 150). Increase in
the length of the member subjected to the maximum moment
also resulted in areduction in strength where local
buckling occurred. '

Figs. 155 and 156 show load deflection
curves for 0.59 in. x 0,59 in. x 0.036 in. aluminium
angle-section members bent in opposite senses. The sudden
drop in load and the lack of power to absorb energy when ‘.
buckling occurs is apparent,

It appears from the above that the usually
accepted figure of b/t <16 (B.S.449:1948) is sufficient
to minimize local buckling effects, and to ensure that
local buckling does not precede yielding under conditions
of simple bending.

93. The behaviour of angle-section members under pgge'toggu :

Bolted angle struts are observed to twist
markedly at failure and some understanding of the behaviour
of a member in torsion is required. During a preliminary
investigation a peculiar bending under the action of a pure
torque was observed, This effect, while similar in origin
to the non-linear shortening effect examined by Weber, hes
apparently not been previously noticed. (For discussions
of the shortening effect of pure torsion see S. Timoshenko
"Strength of Materials" p.87; Cullimore, M.S.G. (1949)
Research, Engineering Structures Supplement, p.153;
Cullimore, M.S.G. & Pugsley A.G. (1952) A.D.A. Research
Report No. 9; and Weber, C. (1921) Forschungsarbeiten No. 249.)
Other possible sources of the bending might be the yielding
of a small portion near the root of the angle, or the effect
of buckling under pure torque. These are later discussed
but rejected. A satisfactory explanation can be found by
considering elastic effects only. The theory of non-linear
shortening due to the simplest stress system which will
satisfy statics is developed in this article, and it is
shown that all structural sections with a certain lack of
symmetry are subject to this behaviour., The magnitude of 4
the bending under pure torsion is calculated for an angle
section. Some experimental measurements subsequently
carried out on a brass member to determine the validity
of the analysis are reported, and good agreement is obtained.



Note the developing local
buckle at the corner of
the angle for large b/t.

Failure of pairs of angle-section members with varying b/t
loaded as beams. The direction of bending was opposite
for each member of each pair.
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The analysis and its experimental verification indicate

that Weber's theory can be extended satisfactorily to
thin-walled members, provided that the extension is
properly done and the bending of certain unsymmetrical
sections is taken into account.

The secondary effect of this phenomenon on
the buckling of angle struts is discussed later.

Notation: -

S
3]

ctoe ) EMh R § @

length of bar

angle of twist

angle of twist per unit length
(specific twist)

longitudinal stress

longitudinal strain

modulus of elasticity

torque

radius of a circular bar

leg width of an angle-section member

thickness of an angle-section member.

Preliminary Experimental Work

A cantilever of angle section was twisted and
bent by loading it at its free end as in Fig. 157 and
the shear centre determined experimentally.. (Fig. 158).
The small discrepancy between the observed position of
the shear centre C' and the theoretical position C was
attributed to the slight initial crookedness of the
member. (See Fig. 159),

A pure torque was then applied at the free end
of the cantilever, and horizontal and vertical deflections
and twist observed. By Maxwell's reciprocal theorem, if
the behaviour of the member is linear, the centre of
twist is expected to coincide with the shear centre C
at the end of the cantilever. The point C was, however,
observed to move, and its deflection is plotted in
Fig. 160.

Measurements were taken on two members. The
direction of the deflection was different for twists
of opposite hand. In order to show this graphically,
the directions perpendicular to the minor axes of inertia
of the angle at the fixed and free ends of the cantilever

have been plotted in Fig, 160 at various stages of
twisting. The translational movement at every stage of
the twisting, whether the twisting is clockwise or anti-
clockwise, lies on a path whose direction is somewhere
between the normals to the minor axes of the section at
its fixed and free ends. The section seems to be bending
about its minor axis. These deflections are largely
recovered on removing the torque, so the effect is
elastic.

°
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The Shortening Effect of a Member under Pure Torque

Weber has shown that when a bar of solid circular or
rectangular section is subjected to pure torque, the longitudinal
strain system which arises causes the bar to shorten. The
argument has been recapitulated by Cullimore. When a prismatic
bar is twisted by couples, the usual assumption is that the
generators remain straight, and although the cross-sections
are distorted by warping, they remain parallel in the sense
that corresponding elements remain the same distance apart.
Strictly, however, the generators become helices. If the axis
of the centre of twist of the bar remains the same length, the
lengths of all the generators of the bar become greater. A
tensile stress sultably varylng over the cross-section must be
applied, and the whole bar is in tension. Alternatively, if there
is no external tension the bar must shorten. The argument may be
summerized as follows: the stress distribution due to the assumed
strain distribution must satisfy the boundary ccnditions of the
problem as given by the equations of statics; wunder pure torque
of a symmetrical section, the central axis must shorten. Under
pure torque, warping is the same for all cross-sections, and the
shortening effect is superimposed on the warping.

In this article, it will be shown that the "shortening" is
uniform over the cross-section of the bar only if the section is
symmetrical or anti-symmetrical about the shear centre, and that
pure torsion of other sections is accompanied by bending. Before
proceeding to the analysis of the torsion of unsymmetrical sectionms,
the shortening effect when a solid circular bar is twisted will
first be discussed.

ongitudi Strains in a Solid Circular Elastic Bar
under Pure Torque

Consider a bar of length £ and diameter 2a, twisted by
pure couples through an angle 8. Tension is considered positive.
At radius r, the new length of an axial fibre (which was

originally straight but becomes helical as the bar is twisted is

V&

assuming the central axis of the bar remains stra.xght and at lengthz
The elongation of the fibre is therefore

v 42 4 6% - 2 or approximately
rcec/28 The resulting tensile strain
is E = 1'292/2'62 and the tensile stress
is f = Bé = Er292/2 22 which is positive for all r.
This stress system does not satisfy statics as no normal force is

applied. The simplest condition which satisfies statics is an
additional uniform tensile strain, 51 .

Hence & 1:262/222 + &4
end £ =Ere%20% + Eg,

For no normal force 5 f dA = O where dA is an element of the area
of the bar.
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a o .
Therefore (2 Tr dr E (1:292/2['2 + 51) =0.

(o]
This gives & 1 = -a262/4£?

Putting r = a, the longitudinal gtrain at the

228?202+ 61- = a2(6/8)~2/4

At r =0, the strain is

circumfarence .is E

—a?(8/4)?%/4. That is, the centrel axis
of the bar shortens. ' o

There is, of course, no warping ‘of the
cross-sectlons of a circular bar under pure torsion. In
the case of symmetrical sections where warping does occur,
a strain distribution similar to that discussed above is
superimposed on the warping.

The stress system f, above, does not
act in the direction of the axis of the bar, but in the
direction of the longitudinal fibres, which lie on a
helical path inclined to the axis of the bar at a small
angle. The turque component of this system can be calculated,
and results in a departure from linear of the torque—tmst
diagram according to the relation

T =ay (6/€) + 1, (6/£)°

where A1 and A, are constants. The second term has the _
same appearance as Timoshenko's correction for the case of
~ the twisting of a bar when cross-sections are not free to
warp or if the torque varies along a bar, and should not
be confused with this.

Longitudinal Strains in an Angle Section under Pure Torsion

Consider an angle section of length Z
leg width b, and thickness t. (Fig. 161). Assume t/b is
small, and the material is elastic. Tension is con31dered
positive.

Under conditions of pure torsion, to a
first approximation, no warping of the mid-line of the
cross-section occurs, as buth legs diverge from the shear
centre C, assuming that the bar twists about C. Then the
tensile strain at a point given by r due to the difference
in length between the helix and the original straight
length is, as before,

E= r292/2£2. This is everywhere

positive, and does not satisfy statics, as no normal
tension is applied. Therefore put

& =17¢%/20% + £ e (118)

where &, is an assumed additional strain necessary to
satisfy statics. We can assume &€ 4 to be uniform over

the cross-section of the bar only if the straim distribution
& then satisfies the conditions of zero normal force and zero
applied bending moment. It will be shown that & camnnot be
uniform for an unsymmetrical section such as an angle.
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Assume £, =g *+hr e (119) .

where g and h are constants. This is the simplest
expression for £1 which will satisfy statics.
Therefore =E& =E (r26%/242% + g+ nr) . (120)
For zero normal force

-ff dA =
and therefore 2fftdr=o
vhich gives G + hb/2 = b (8/4)%/6. e (121)

For zero bending moment, taking moments about an axis through
C perpendicular to the bisector of the angle, we have

2‘( £ ¢ dr r/Jz =0
vhich gives g2 + hb/3 = -b° (8/L)%/8 .. (122)
Equations (121) and (122) can be solved for g and h.

41 (0/4)? ’

They give h =
2
and g = b° ©/8) N2 .
The required strain distribution is then , ‘&

&= (/) [ /2 + b2 -br/2J. (123)

At the point C, r =0

and € =b° (8/4)%/12.
At A and B r=>b
2 2 .
and £ =b (e/é) /12. That is, the corner and

the edges of the legs are in tension. At the centre of the
leg " r =b/2,

2
and = 2°(0/8)°/2%4. Putting £=0in

Equation (123), zero strain occurs at r = 0.21 b and 0.79 b.
The strain distribution over the section is as shown in
Flgo 1620

It can be seen that the non-uniform strain
distribution causes the bar to bend2 We have £, = g *+ hr,
(Equation 119), where h = -b (8/£)</2. The term hr in
& 4 causes the bar to bend about its minor axis uu, (Fig. 163),
so that it is concave towards the edges of the legs, 4 and B,

The curvature is 0 é 2
b~ (e/€)</2
=d¢/dé= 8/ 72

=v (/4 )2/ J2 (124)
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Cullimore (see page Ok for reference) establishes
equation (118), but following Weber's analysis for

“a rectangular or circular section, he assumes £, is

uniform over the cross-section in every case, thus
unfortunately making the elementary mistake of
neglecting to satisfy statics in the case of an angle-
section. The longitudinal stress distribution based on
his derivation is as shown in Fig. 164, and does not _
satisfy statics, as an external bending moment must be
applied to give this distribution. More unfortunately
still, the error was not noticed in the course of the
discussion. The assumption £, = constant is satisfactory
for symmetrical sections, or 'for a section which is
anti-gymmetric about the centre of twist such as a Z -
section but not for other unsymmetrical sections.

The foregoing treatment of the bending
effect of pure torque is due to the author, and is
believed to be original. The analysis has been extended
to any thin walled member of open cross-section.

(See Appendix A, No. 15).

The Deflection of the End of a Cantilever of Angle-section
when Subjected to a Pure Torque

. o - Consider a cantilever of length L,
(Fig. 165), clamped at the end £ = 0. A pure torque
is applied at the end £ = L, and the angle of twist
there is 6. Put 8 =c L, where ¢O is the twist
per unit length or specific twist. Assume only the
small element df of the bar iS elastic as far as
the bending given by Equation 124 is concerned, and
neglect the fact that dw /d€ = 0 at the clamped end.
Then the curvature due to bending about the minor axis
<()f fgle section within the length d€ is, from equation

124 ' : .

ap/ad =v/M)?/ V2,

There is a resulting deflection at the end of the bar in
the directibn perpendicular to the minor axis of the
section at £ s of

a, = (L-£)@p/ad) al.

Resolving parallel and perpendicular to the axes of u and
vat £ = 0, the components of the deflection at the end

= L are:
du = dv, sin w‘e
= (b/v2) (8/1) (L -£) sinwlal
and dv = dve cos wé

b/ v2) (6/1)° (L -4 ) cos wd al

Integrating along the bar with respect to de ’ from 0 to L,
the components of the displacement of the end of the bar
parallel to the u and v axes at ﬁ = 0 are:

u=b(6-sin9)/1f2 ) . -
v=b (1 -cos8)/V/2 )
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The path ofthe end of the bar is shown in Fig. 166, It is
to be noted that the deflection depends only on the width of
the leg of the angle and the total angle of twist §.

Experimental Verification Using & Short Angle-gsection
Mem Bent_f Sheet B

. An angle section member 0.575 in. x 0.575 in.
x 0.,0378 in. x 7 in. long was bent from sheet brass. The
tensile stress-strain curve for the material is shown in
Fig. 167. The Young's Modulus is 13,000,000 1b./sq. in.,
and the material is elastic up to a tensile stress of
55,000 1b./sq. in., or a shear stress of about 27,000 1lb./

Sq. ino

The member was loosely held at one end, and
a pure torque applied at the other. The torque-twist
curve is shown in Fig. 168. Longitudinal strains were
measured at various points around the angle members using
light Huggenberger strain gauges, and are shown plotted
in Fig, 169. The measured strain distribution at the
maximum torque applied is shown in Fige. 15, on which the
theoretical distribution as given by Equation (123) is
also shown. The agreement is quite close. The parabolic
distribution of strain is evident, and it is quite clear
that the corners of the angle are in tension and the
centres of the legs in compression. The measured strains
are also quantitatively in close agreement with the
calculated values, :

, The member was then clamped at cne end and
a pure torque applied at the other end. The deflections,
of the end of the cantilever were measured, and are shown
plotted in Fig. 171 for increasing and decreasing torque.
It is seen that the deflections are recovered as the
torque is removed. The calculated deflections according
to Equation (125) are also plotted, and the agreement is
quite close.

Discussion of the Assumptions

In writing down Equation (118) it has been
assumed that under pure torque each element of length
of the bar twists about its axis of shear centres, and
that the warped cross-sections remain the same axial
distance apart, though the distance along each helical .
path teken up by individual longitudinal fibres variese
That is, warping has been taken as unaffected by the
presence of longitudinal stresses in the bar. That this
is not strictly true can be seen from the fact that the
longitudinal stress system sets up shear stresses which
in turn affect the warping of the cross-sections. However,
this affect seems to be small, and the experimental work
has verified the analysis based on Equation (118).

Lateral buckling under pure torque has also
been neglected. (This effect is discussed by Greenhill, A.J.
(1883) Proc. Inst. Mech. Engineers (1883) p. 182;
Timoshenko, S. (1936) Theory of Elastic Stability, p. 167;
and Biezeno and Gremmel (1956) Engineering Dynamics Vol. (ii)
pe 411 and p. 413 ‘%}ackie).) Biezeno and Grammel show that

a shaft of length between supports bucles at a twist per

unit length ¢O given by

tan wé/2 e tan/nvéVQ ) L
or by .o (126)
tanfw‘e /2 = e tan wé/2 _



PLATE 12

Preliminary experiments on twisting an aluminium
angle-section cantilever. Deflections were measured
with a travelling microscope, and longitudinal strains
with Huggenberger mechanical strain gauges.

Twisting a short brass
angle-section cantilever,
longitudinal strains being
measured.

Measurement of deflection
of end of brass angle-section
cantilever with travelling
microscope.

T

Method of measurement
of longitudinal strains.



PLATE 13

Lateral bending of angle-section member
under pure torque.
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where -20(.2 _°(_t__ . oAy, oy =y \ . (127)
Rolq = ol ofy ol _dy

o©
]

‘/(°(1 - o t)(d.?. - °(1:)‘/0(1 °(2

P

and &, and &, are the maximum and minimum flexural ~
rigidities of the shaft, and ol its torsiona; rigidity.

The brags member tested had ths computed values
e, = 7,800 1b. in.%, of, = 31,100 1b. in.* and of ¢ = 92 1b.

in.2 Substitution in Equations (127) yields e 1 .000024
and P = 0.99300. Equation (126) then reduces to:

tanwé /2 = 1.000024 tan (0.993000 w £/2) .

The first sé%utlon of this equation occurs at a very large
value of w¢€./2, (approx1mately w€f2 = 1,00 , or

w =20%W , for L =1, in., twice the length of the
cantilever used), whereas the member was twisted through
only 0.2 radians per inch. Actually the theoretical twist
at which the cantilever buckles must be rather greater than
the value calculated here, as the cantilever is rather
stiffer than a simply-supported beam of twice the length,
since the specific twist at the clamped end is zero.

Of course, as soon as the member is bent, whether
due to initial crookedness or to the bending effect of pure
torsion, the applied torque has a resolved bending moment
component. This however appears to be small, as neglecting
it has caused little error.

The bending effect of pure torque has been
calculated for a member made of material having a linearly
elastic stress-strain curve, and all measurements have been
carried out in the elastic range. The effect of yielding
at the root of the angle-section member is probably very

marked, but it has not been investigated.

Longitudinal strains of the order of 0.001 at
angles of twist of about 0.2 radians per inch were measured
in angle-section members due to the bending effect of pure
torque. Quite high longitudinal stresses are involved.
Bolted angle struts are observed to twist markedly as °
failure is approached, the magnitude of the twist being of
the same order as measured above. The bending effect of
torsion on the buckling of an angle strut is probably
considerable., In particular, measured longitudinal
strains will be affected as twisting develops.

9. .The Behaviour of Bolted Angle-section Members in Compression:

Tests on angle-section members as single pin-ended
struts have been reported in Art. 58 of Chapter Two, where the
Southitell Plot on measured strains in the elastic range was
shown to be linear, the slope of the plot giving the Euler
:load of the strut. The tests were extended into the plastic
range in Arts. 60 and 61, As these struts were bent about
thelr minor axes, twisting did not occur until very large
deflections were reached and local buckling took place.

In Art. 75 the elastic buckling of a triangular
frame made from angle-section members is reported. The major
axes of the members lay in the plane of the frame and buckling
took place in that plane. The members were again bent about
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their minor axes without twisting. The Southwell Plot on strains

again resulted in good agreement with the calculated critical load.

In Art. 79, the buckling of a triangular frame out of its

plane is discussed. In this case both bending and twisting of the
members was involved. Two buckling modes were treated, and it was
shown that the critical load is markedly dependent on the torsional

and bending stiffnesses of the members. Because of the low
torsional stiffness of angle-section members, the struts in these

frames acted almost as if pin-ended. The Southwell Plot on strains

again gave a close estimate of the critical load.

In the above tests on frames, the angle-section members
were firmly bolted by both legs to brass end pieces. A bolted
angle strut is in practice less firmly held., The end fixing
consists usually of one or two bolts in one leg only. Some
triangular frames have been made up using angle-section members
singly bolted through one leg to brass corner pieces. In all
cases the Southwell Plots on measured strains were linear, hut
gave critical loads much less than those calculated in the ‘
articles mentioned above. This is undoubtedly due to the less
rigid end fixing. Where a member is very firmly held at its
ends, the relations between end moment and end slope are
entirely dependent on the torsional and bending stiffnesses of
the member as a whole. However, where a single bolt is used as
an end fixing, the local strength of the leg of the member, the
placing of the bolt in the leg, the size of the washer, and the

tension in the bolt all assume vital importance. No matter what
the details of the fixing are, single bolting results in a
reduction in stiffness of the member, and critical loads are
therefore reduced also.

95. Tests on a Model Lattice Girder.

A model lattice girder was made to simulate several bays
of a plane frame near the base of a transmission tower, as shown
in Fig. 172, the main chords of the model being made parallel.
The bracing of the model was made up of aluminium angles bent
from 20 gauge sheet, and the legs were mild-steel rolled angles.
Aluminium was chosen as the material for the bracing members as
the low Young's Modulus gives greater strains which are easier
to measure. A comparison of the model and prototype is given
in Table 1,

Table 1, - Dimensions of Angle Members

Length | Cross |Least | Length/| Leg
tetween | Section [red of | rede of | width/

bolt gyra- | gyra- | leg
cenlres tion. tion. |thickness
A r /e b/t
Transmission tower in. |sqein | in.
Legs 5x%x5x% in. .o 72 5.86 | 0.97 80 8
' 33 x 3% x 5/16 in.ee 72 2,09 |0.63 | 100 1
Bracing 2% x 2& X 3/16 in.e. A 0.81 [0.44 | 190 12
2 X2 X% 3/16 in, e 84 0.71 }0.39 210 11
Model
Legs (i.e. main chords of
grded Lt xin s oz foag | m g
Bracing  0.58 x 0,58 x 0.036 16

ine aluminium oo 15.75 | 0.040 }0.12 130

foudl
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The model is similar to the prototype. The {?/r ratio of
the main legs is about the same for each. Since buckling
is controlled by the Young's modulus of the material, the

& /r of 130 for the aluminium bracing of the model is
equivalent, if the members were steel, to an €/r of 390,
since E for steel/E for aluminium = 30/10. The equivalent
figure for the prototype is about 200. The bracing of

the model has been deliberately lightened in order that

it may be the controlling factor. In most towers as at
present designed, the leg members fail in load tests, and
it is felt that the bracing is rather heavy. In the actual
tover, the ratio of area of leg member to area of bracing
member is 5.86/0.81 = 7.2, or 2.09/0.71 = 3.0. For the
model, if we allow for the difference in strength of the
aluminium and steel by multiplying in proportion to their
yield strengths the ratio is (0.23/0.040) x (35,000/15,000)
= 12.8. The bracing is again shown to be relatively light.

The above‘figures are intended mérely as a guide
tio the relation between the model and prototype.

. The connections in the actual tower consisted of
% in. or 4 in. diameter black bolts in the main leg

~ members, and 4+ in. diameter bolts at the intersection

points of the bracing. The model thus calls for an § in.
diameter bolt. The strength of a strut is almost completely
determined by the torsional and bending restraints at its
ends, and these are dependent on the torsional and bending
stiffnesses of adjacent members and on the connections
between them. It is important in model studies to reduce

to a minimum the variability of the connection. (This would

"also be an advantgge in actual structures.) The bolts used

in the model were § in. diameter metal threads, bolts having
a rolled thread of 40 threads per inch. These bolts have
been subjected to a great deal of work hardening during
manufacture. In a pure tension test, bolts failed at loads
of 600 to 660 1b. With a root area of 0.0064 sq. in., this
corresponds to a stress of 100,000 1b. per sq. in. Screwing
tests on these bolts gave consistent tensions of about 200 1b.
at a torque of 12 in. lb. At higher torques, the thread
strips.

h of the Bolted Connectio

-Tearing-out tests were carried out. Typical results
are given in Table II,

‘ Table II. — Tearing-out Tests on Bolted Comnections
Edge clearance
(centre of hole|Tearing-out

Type of test ' to end of loads
member)
in. 1b.

Aluminium bolted to
aluminium _ % 105, 105, 110

3/16 140, 130, 130
1 165, 170, 160

Aluminium bolted to
steel ' 4+ 210, 225
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Dry bolts and nuts were used. Greased bolts gave
higher tensions at the same torque, and therefore higher tearing-

- out loads, but the results showed higher scatter. A distance of

i‘_ino from centre of hole to end of member was adopted.

Stress-strain curves for the aluminium and steel
are shown in Fig. 173. '

First Loading Test

The model truss was set up as a lattice girder and
loaded as in Fig. 174, using dead weights. Load-deflection curves

are shown in Fig. 175. At the loads used, the curves are linear
and there is no permanent distortion, indicating complete absence
of bolt slip.

The truss was set up again as in Fig. 176, and
strains were measured on the members shown, using light Huggenberger
mechanical strain gauges. A plot of strains was taken around the
cross-section of the angle member near its centre. Load-deflection
curves are shown in Fig. 177 and the measured strains in Fig. 178,
A1l the graphs are linear, showing that the elastic limit has not
been reached.

There is considerable variation in the stress across
the section (as shown by the measured strains) , giving evidence of

high bending moments in the members. Fig. 179 is & section through

the members concerned, just above the leg angle. By integrating
the stresses across the section, the forces in the members can be
cajculated. In Table III the forces in the members (per 100 1lb.
applied load) are obtained. A comparison with the force calculated
from statics if the joints are assumed pinned, shows reasconable
agreement. In each case the measured forces are rather less, as
some of the load is taken by bending of the main leg. This is in
agreement with the usual design assumptions: the bending due to
the rigidity of the joints is never sufficient greatly to alter

the total forces in the members, but a comparison of the average

- stress and the measured stresses (Table III) shows that bending

can increase the stresses by up to 90% in the elastic range.
"Experimental load" was obtained by integrating measured streains,
taken at the positions shown in Fig. 179, over the area. The
"calculated load" was obtained from statics, assuming pinned
joints.

Table III, - Strains, Stresses and Forces in Members
o & 3 °
§ o A o o o
e ord < 0~ o 0 o ©
) ] d o . 3 o o =
Q i o X o MO g9 o
=] 0n [ 1 3] 2] [T o @ (ST
2 & s 2o 2% '8 q 3
I Q % [&)
2 3
x10° |  1b./sq. in. [1b./sg in 1b. 1b.
L1 02 |1 0.177 | 1590 compr. 1073 42.8 57
2 0.214 {1930 compr.
3 0.150 {1350 compr.
A 0.065 | 590 tension
L3 02 |1 0 0 1246 49.9 57
2 0,127 |1145 tension : ..
3 0.206 |1860 tension
4 0.220 1980 tension
L3 T4 |1 0.134 {1210 tension 1358 5443 57
2 0.120 1180 tension
3 0.138 | 1250 tension
4 0.198 | 1790 tension
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Second Loading Te

The truss was set up again as in Fig. 180 and loaded
to failure, using a screw jack and proving ring. At 320 1b,
load, the lower half of member L3 U2 began to fail by twisting
just away from the bolts, and buckling about its minor axis in
the central portion. The upper half of U1 L2 behaved in a
similar way. The members which failed showed considerable
deflection at constant load due to creep in the aluminium.
There was some spring in the loading system, and these members
were permanently deformed. It is interesting to note the
members which failed, thus determining the load capacity of
the truss. They are shown dotted in Fig. 180.

It was found previously that the forces in the
lower sections of L3 U2 and L3 U4 were the same, but the
stress distribution was considerably different, L3 U2 being
the more highly stressed. L3 U2 is. the member which is bolted
to the outside of the main angle; L3 U4 is bolted inside. In
the truss as loaded, L3 U2 and U1 L2, the two members bolted
on the outside of the main legs, buckled in compression,
whereas the corresponding equally loaded compression members
L3 U4 and L4 U5, bolted inside, did not fail and in fact
remained elastic. The load-carrying capacity of these struts
has been determined by the restraining moments and torsions
at their ends.

With the loading system used, the transverse
location of the point of application of the load on the main
leg is important. It is apparent that the bending of L3 U4 .
and L3 U2 (favourable to L3 U4 and unfavourable to L3 U2) can
be caused only by twisting of the leg angle, and this will be
influenced by the location of the load point(Fig. 181).

The Southwell Plot on Strains

Strains measured on the corners of the angles
L3 U2 and L3 U are plotted in Fig. 182, and prove to be
rectangular hyperbolae. The plot of & /P against & is
shown in Fig. 183, where & = measured strain, and P =
calculated axial force in the member, assuming the joints
pinned. These graphs are straight lines in each case. The
lines lie fairly close together and are parallel. It has
been shown that the inverse slopes &f these lines represent
a critical load for the members concerned. In the case of
L3 U2, the inverse slope is 230 1lb.; for L3 U4, it is 240 1b.
It is important to note that this eritical load is the same
for eachmember L3 U2 and L3 U4, even though one failed and
the other remained nearly elastic.

For the 0.58 x 0,58 x 0,036 in gluminium angle
members concerned,

I, = 5.6 x10% in %

Length between bolts = 15.75 in.
Euler load = T 2EI/4? = 200 1b.

The critical load for L3 U2 and L3 U4 is about 235 1lb.
This may be interpreted as meaning that they have an effective
pin-ended length of +/(200/235) = 0.9 of their actual full length,
if they are considered as buckling about their minor axes. This
is reasonable, in that the bracing angles are firmly bolted to the
leg angle at one end, but only bolted to each other at their
intersections.
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The tests carried out on this model have served
to emphasise the factors which control the load-carrying
capacity of bolted angle struts, in particular, the end
torsional and bending restraints. It is not claimed that
model tests will give results of immediate practical utility.
In fact, though it simulated the lower frames of a transmission
tower, the model was loaded as a lattice girder. Bending and
torsional restraints will also be different in the space frame.
There are however many difficulties associated with full-size
testing. One ig the question of accurate, controllable loading.
It may be possible to overcome this by building two adjacent
towers, and jacking one against the other. With a model,
certain difficulties associated with strain and deflection
measurement are reduced, but greater accuracy is needed because
of the small size, It is felt that model tests are a useful
preliminary to the testing of a larger structure.

96. Further Tests on Bolted Angle Structures:

A number of simple' frames made of bolted ahgles has
been made and tested. Strains in the members were measured,

and in each case, the Southwell Plot on strains has proved to
be a straight line. The equation of this linear plot defines
the behaviour of the strut in the elastic range, and can be
used as a criterion of the load carrying capacity.

"Five trusses (L2 to L6) were made up and tested as,
in Fig. 184. The flange members U U; and L,Lg were single A
1 x1 x4 in. M.S. angles. The web members U, Ly, Us Ls, etc.
were 0,58 x 0,58 x 0.036 in. aluminium angles. The members
were bolted together with single & in. metal threads, through
holes drilled in the centre of the angle leg; the bolts were
tightened to a predetermined torque, in an attempt to get a
constant fixing.

During loading, longitudinal strains were measured
in the web compression members at the corners of the angles
(see Fig. 185). It was found that this corner was always the
most highly stressed point in the angle under the loading
conditions adopted.

Fig. 186 shows a typical set of graphs of strain &,-
against applied load W, or the load in the struts P, Similar
graphs were obtained in each case. On these graphs, the
calculated average axial strain P/EA is also shown, where

P = the axial load in the member = W/cos 6.
E = Young's modulus = 9,000,000 1b. per sq. in. .
A = cross-sectional area of the member = 0.0403 sq. in.

Fig. 187 shows the corresponding Southwell Plots on
the strains. It was found that the graphs of ( & - P/EA) /P
against (€ - P/EA) consistently gave straight lines. Again,
the plots in Fig. 187 are typical of sets of straight lines
obtained for every compression member in every truss tested.

The equations of these lines may be written:

E-P/EA = E-PEA |,

1 e (128)
P Q1
where & = the measured maximum strain at the centre of the
member,

Qq= the inverse slope of the Southwell Plot.
C,= the intercept of the Plot on the strain/load axis.
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Equation (128) reduces to: v
| E& = P/A [1 + 7.4/ —P)]

where ’7’1 = EAC:,l o

.. (129)

A sufficient number of tests on many types of

structures should give values of Q and
met with in practice. These value

likely to be
obtained from the

Southwell Plot on strains can be used to give a design
formula similar to the Perry formula but based on actual

tests, not on arbitrarily assumed factors.
procedure advocated in Arts. 6/ and 82.

This is the
It should be

noted, however, that the variability of the effects of
single bolting of angle members will necessitate a great
deal of testing, supported by statistical analysis, before

results can be used.

The test results are summarised in Table 4.

(2) Truss L1 is reported in Article 95.
(3) "o" indicates that member was bolte

of flange member; "i", on inside.
(4) Effective length ratic. =1L/€ =

Vs .

where 8 = Euler load of member considered as

pin-ended between bolts.

Table bo
Truss Web Member Q =C 1-06 7 )
. 1 . 1¥ 1°
Iength £/r | Failure| (1p.) -1 Merb
(in.) load P (Xb. ") | EAG, enber | L/4
(1v,)
Ly |15.45 | 130 230 | 1.8 ]0.65 | L3U2(i) o
180 240 2.3 0.84 L3U4(o)x| 0.93
Ly [15.45 130 280 2.7 0.98 UoL1 (1)
200 1.2 044, U1L2(1)
174, 3.0 1.09 U4L4 (o) .
103 174 Ll 1.49 UsL5(0)x| -1.10
Ly 1545 130 140 1.1 0.40 UoL1 (i)
_ ] ” 140 0.8 0.29 U1L2(4)
124, 1.6 |0.58 U414 (o) .
100 112 1.9 0.69 U5L5(0) ﬁ 1.37
L4 10.13 . 85 320 16, 0.51 UoL1(4)
1320 0.8 0.29 U1L2(i)
320 2.5 0.91 U4L4 (o) .
160 320 2.9 1.06 UsL5(0)x | 1.22
Ly [10.13 85 220 1.0 0.36 Uol (1)
220 1.3 [0.47 U1L2(1)
220 1.7 0.61 U4L4 (o) :
155 220 2.3 0.82 UsL5(0) & 1.48
Ly [10.13 85 360 1.4 . |0.51 UoL1(1)
360 1.1 0.40 U1L2(1)
260 1.9 0.69 U414 (o) ‘
180 260 1.9 |0.69 U5L5(0) x| 1.36
NOTE: (1) x indicates member that failed

d on outside'
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It is seen that there is quite a wide variation in .
values of Qq and 7 q, even under apparently similar conditions.
It is suggested thal this may be due to the varying torsional
stiffness of the flange angles. The restraint which the
flange angle affords a web angle depends a good deal on the
location of the latter. Also, new bolts were used in some
trusses and not in others, and the fixing may have varied.

In spite of this variation, the following'important
conclusions can be drawn:

1. The behaviour of each compression member can be

defined by Q1 and 7,,. These factors may vary somewhat,
but it is important %o carry out sufficient tests to ‘
determine the maximum value of 7, and the minimum value
of Q¢ for each type of fixing in each type of structure.

20 Maximum load carrying eapacity for this material
occurs at a strain of 0,0013. The Southwell Plot is linear
up to this strain, and there is very little reserve of
strength beyond this point. For the aluminium members
concerned, equation (129) reduces to _ )

_ _(P/A)[1 +7.Q/@Q -P)] =E¢ = 12,700 1b. per
8q. in, T .

In the case of mild-steel members, the yield stress
is substituted for E& , and P becomes the load to cause
first yield. Due to the high wvalue of 719 this is for all
practical purposes the failure load for bolted angles struts,

It has been shown that the axial loads P in rigidly
jointed trusses can be calculated with sufficient accuracy
by assuming pin-joints. The above method thus furnishes a
direct design method for statically determinate braced
frameworks.

97, Co o) i ated Frameg Containing Bolt
Angle Struts:

Tests on bolted angle struts in ébme simple frames
which have resulted in linear Southwell Plots on strains
have been described in Art. 96, Further experimental work
is reported here, and a proposed method of rationalization
of the design of such members is presented. The tests
indicate that, because of the eccentric connection, the
reserve of strength of a bolted angle strut beyond the .
point at which yielding first occurs is not very great.
Further tests may make it possible to obtain the statistical
distribution of this reserve of strength as a function of the
£Z/r ratio for the strut. This means that the collapse load
can be obtained in terms of the load to cause first yield,
and a difficult elasto-plastic analy31s of the behaviour of -
the strut is avoided,

Experimental Work

In all, ten plane frames (Lﬂ to Lyy) having the form

- of six-bay lattice girders, and one space frame (S1) have
"been tested to failure. Flange members were single or

double 1" x 1" x 4" M.S. angles. (Fig. 188). The frames
were proportioned so that failure occurred by buckling of -

the lattice members rather than by yielding or buckling of
the flange angles. During loading, strains were measured

in lattice compression members., Previous experience that

the highest stress occurred at the corner of the angle rather
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than at the edge of the leg was confirmed. (Fig. 188)
Where single flange angles were used, a lattice member
bolted to the outside of the flange angle was always

the first to fail. It appears that the torsion of the
flange angle is always such as to make the end restraint
of such a member quite low, and thus to cause its early
failure. A lattice member bolted on the inside of the
flange angle seems to be less eccentrically loaded.

A typical plot of maximum strain against load is
shown in Fig. 189. It is seen that the measured strain
increases steadily and diverges quite quickly from the
calculated average strain P/EA. This is due to the
quite large eccentricity of the bolted connection.

In Table 5 details of the frames are given and
collapse loads are listed. The collapse load is larger
for smaller 4/r ratios. Also, for the same <£/r ratio,
the collapse load is larger where double flange angles
were used. This is to be expected, as the stiffer
flange offers more restraint to the lattice member as
it deflects. Besides this fact, there are no lattice
members bolted on the "outside", as with the single
flange angle. The effect of the increased end restraint
on the collapse load is markedly demonstrated by these
tests. Table 5 also lists the load to cause first
yield. This is taken at a strain of 0.0013 (or a stress

of 12,000 1b./sq. in.), which corresponds to the point
on the stress-strain curve for the aluminium at which
the strains increase very rapidly.

Table 5

Failure of Lattice Compression Members

< - e >l .
o ® A “ 90 8 A ®
31 B8a N (S |8y | w8l o5
M| E2E] 48 | 859 Ego
(&R By ) e
b
24
L1 ISFX |15.5 | 130 | 180 175
12 ISF  |15.5 | 130 | 103 103 | 1.00
L3 ISF  |15.5 | 130 | 100 95 | 1.05
L4 LSF 10.1 85 160 | 152 1.05

L5 LSF  {10.1 85 165 155 | 1.06

L6 ILSF 10.1 85 185 169 1.09
L7 LDF 15.5 130 125 115 1.08
L8 LDF 15.5 130 139 | 129 1.08
L9 LDF 1505 130 150 146 1.03 .
L10 LDF 15.5 130 143 139 1.03
51 S 15.5 130 130 128 1.01

"\”“’mm‘oo\m\"owBeyondFirst‘

Frame L1 is reported in Art. 95 and frames L2 to L6
in Art. 96.
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If the behaviour of the members can be defined in
the elastic range, the load to cause first yield can be
calculated. For the frames tested, the collapse load is
not more than 9% greater than the load to cause first yield,
and for practical purposes it may conservatively be. taken as
the first yield load. The reserve of strength in the plastic
range can then be regarded as a small extra safety margin.
Calculation of the collapse load then reduces to the problem
of determining the behaviour of the frame in the elastic range.

Fig. 190, which is typical of forty-two such
plots on bolted angle struts, shows the Southwell Plot on
strains for one of the lattice members which failed. Similar
plots were obtained for every compression member in every
frame tested. The graph is linear, and is defined by o
equation (128), which reduces to Equation (129). {See Art. 90)

This equation defines the behaviour of all
struts in all the frames tested to date. '

The behaviour of the strui'as bolted in the
structure is thus defined by two parameters, %, and Q, .

It is convenient to consider an effective lengﬁ ratio1

L/4 =+/Q/Q, instead of Q,. (Q is the Euler load of the
strut considered as pin-ended at the bolt). Fig. 191 shows
values of 7, and L/¢ obtained for forty-two compression
members in tﬂe eleven frames tested. The distribution is
somewhat random, as is to be expected. For practical design
purposes, it is required to know the maximum value of‘Z”

and the maximum value of L/ to be expected in the = |
structure concerned. That is, some envelope above and to the
right of all the plotted points is needed. Given sufficient

tests, such an envelope can be drawn. A functional relation
between 7, , L/ and r can then be written. Substitution

of this rélation in Equation (129), putting EE equal to the
yield stress, then enables solution for the value of P/h to
cause first yield. . A suitable load factor can be applied to
give working loads., In the long run, of course, permissible
stresses can be tabulated as in present codes.

98. Reserve of Strength in the Plastic Range:

For shorter stiffer struts, the reserve of
strength beyond first yield may be considerable. Tests on
other structures indicate that the collapse load may exceed
first yield load by up to 30% for centrally loaded struts,
but the reserve is much less in the case of eccentric loading.
Further tests should make it possible to systematize this
reserve as a function of /P° The results of experimental
work by Mackey are of value here. (See S. Mackey "An
Experimental Investigation of the Behaviour o Mild Steel
Compression Members in Light Lattice Frameworks", The Struct,
Engnr. Vol. 32, July, 1954 No. 7, p. 190.) Two girders and
fifteen triangular frames made of mild steel angle-section
members were tested, strains being measured at five positions
along each member, teking plots around the angles. Fige 192
shows a plot of (maximum load/load to cause first yield)
against €/r for the struts, taken from Mackey's paper.

is the length of the strut between bolts. These results
indicate that for <€/r > 140 the reserve of strength in the
plastic range is not greater than about 10%. For practical
design purposes this may be neglected. For stiffer struts
the reserve may be taken as varying linearly from 0% at ‘67& =
140 to 20% at £/r = 80,
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Some indication of the reserve of strength of I section
members in the plastic range can be obtained by studying the
figures in a paper by J. C. Nutt - "The Collapse of Triangulated
Trusses by Buckling within the Plane of the Truss"™ The Struct.
Engnr. May, 1959.

Of course the reserve of strength beyond first yield is
a function not only of .£/r but of many other factors, but the
above values appear reasonable until more extensive test results
are available,
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Slenderness ratio 2/’!‘,,\;“, Fig. 192

99. The Design of Bolted Angle Struts:

It appears possible therefore, in view of the foregoing
results, to systematise the design of bolted angle struts in
the following manner. The required empirical information is
presumed known in each case.

(1) Short Stiff Struts: (e.g. slenderness ratio 4/r less
than 140, for mild steel rolled sections.) B
The load to cause first yield can be calculated from
the equation of the Southwell Plot on strains. The collapse
load can then be estimated, the reserve of strength in the
plastic range being known from Mackey's tests or other
empirical work.

(ii) Intermediate stiffness struts (e.g; slenderness ratio £ /r
ranging from 140 upwards, for mild steel rolled sections,)

The maximum load can be obtained directly from the
equation of Southwell Plot on strains, the reserve of strength

in the plastic range being negligible.

(iii) Very Slender Struts: :

It is convenient to be able to limit the deflections
of very slender struts in practice. There is no difficulty
in doing this using the equation of the Southwell Plot on
deflections. If a pin-ended column has initial central
crockedness aq, then the central deflection under load P is
y=a,/(1 -P/Q), (See Art. 18), and the equation of the
Southwell Plot on strains is

(£ -p/EA)/P = (& -P/EA)/Q + C) vhere
a 3 EIG1/¥, (see Art. 56). The values of a4 and Q

can be obtained from the Southwell Plot on strains.
Substitution in the deflection equation enables the load P
for some limiting deflection to be calculated,
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The method can be extended to struts which are not
pin-ended. Equation (128) is the equation of the Southwell
Plot on strains. The plot furnishes values of Q, and 01.
Since a bolted angle strut buckles with large central
deflection, we may assume that the central deflection is
given by:

y = (EI6,/7)/(1 - B/Ry)

This gives
P=Q (1-EIC/vy) Ces e (130)

Empirical values of and C1 obtained from equation (128)
can be substituted in equation. (130) and the lcad P for
some limiting value of y can be calculated.

The method given abwe is dso valld for structures
other than those containing bolted angle struts. However,
it is of particular practical value for bolted angle struts
because of the relatively large values of‘z1 which obtain
for these members. Because of the eccentric connection,
bolted angle struts fail by large central deflection. There
is generally no doubt about the buckling mode, and the
required location of strain gauges to pick up the longitudinal
strains due to the buckling is obvious. Buckling effects
(E = P/EA) are large compared with non-buckling effects (P/EA).
Hence the Southwell Plot on strains can be accurately drawn
from experimental measurements, and &s a design formula, it

can be relied on.

Also, because of the eccentric connection, failure of
a bolted angle strut follows very quickly after the occurrence
of first yield. The reserve of strength in the plastic range
is considerable only for short stiff struts. This serves to
widen the range in which the design criterion is merely the
simple substitution of a limiting strain in the equation of
the Southwell Plot on strains.

101, The Southwell Plot on strains can thus be used as a
convenient experimental technique for determining the

conditions which bring about the collapse of structures
liable to instability or compression members built into
structures., The method is based on elastic theory, but

the principal difficulties associated with elastic analysis
are avoided. It is realised that all structures in the
elastic range are very sensitive to imperfections, that
yielding under working loads at highly stressed locations
can be tolerated, and that it is impossible to carry out an
exact elastic stress analysis of any structure. However,
using the method given, attention is concentrated on strains
due to the buckling mode which causes failure, and the load-
carrying capacity is related to the fajlure pattern.

In practice it is found that the failure loads of
framed structures are extremely sensitive to the imperfections .
(such as initial crookedness of members, etc.) of the structure.
The simplifications used when plastic theory is applied to
bending of mild steel beams are therefore not available, and
it is unlikely that elastic analysis of struts in framed
structures will ever be entirely discarded,
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Small torque spanner
for tightening bolts
in frames used in
model experiments.

Triangular frame made from aluminium
angle-section members. :
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PLATE 15

Test on model frames containing bolted angle members.




PLATE °186

Space frame made from bolted angle members.

Detail of bolting of frame.
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Framed structures which are redundant even if the
joints are considered pin-ended - those frames in which
the forces in the members cannot be. calculated from
statics - present special problems. The method of the
Southwell Plot is still available, but it must be related
to the overall loading, rather than to the forces in
individual members, as these are difficult to determine
in even the simplest redundant frames once buckling effects
become important, and difficulty is experienced here in
systematising the empirical information required for design
purposes.

=== 000 ———-
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CHAPTER V.

REDUNDANT . STRUCTURES

102. Many framed structures are redundant in the sense .
that they are statically indeterminate even when the joints
are considered pinned. Various inter-related methods of
analysis of redundant structures are available, of which
energy methods are important examples. In this chapter,
energy methods are discussed and some simple illustrative
problems worked. Complementary energy is applied to a pin-
jointed redundant braced: frame in order to define the
behaviour of compression members as they buckle or tensicn
members as they yield. The extension to the study of rigid
jointed redundent frames is discussed. The energy principles
outlined are valid for all structures, but the argument is
restricted to general types of framed structures. To discuss
problems involving bending of beams, for example, ability to
handle general non-linear load deformation relationships is
required. :

103, Notation:
General:

Complementary energy

Strain energy

Generalized force in an element or member of
a structure. )

Generalized external load applied to a structure,
or a non-redundant reaction.

Generalized force applied across a cut in a
redundant member (internal redundancy) or. a
redundant reaction (external redundancy).

8 Generalized deformation corresponding to any
P, Wy or X.

>4 = gaQ

Note: P, W, X may be forces or moments etc., and & may
be a displacement or rotation, etc. For a definition
of a generalized force and its corresponding
displacement see Timoshenko and Young, "Theory of
Structures", McGraw Hill (1945), p.R26. In generel,
there is a certaln arbitrariness of grouping as to
vhether a given force is considered as an internal
force, an external force, or & reaction, ie. whether
the force is considered as an independent or dependent
variable.

Members of Braced Frameworks:

F Force in a member (compre331on taken p051t1ve)
Z Length of a member
A Cross-sectional area
E 5 Modulus of elasticity
I = Ar Second moment of area
a Initial crookedness o i;gut
Q First Euler load:

Other symbols are defined in the text.
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104. The Analysis of Redundant Structures:

The equilibrium state of a redundant structure is
dependent on the load-deformation relation for at least some
of the elements of which it is made., Such a structure can
be analysed by ensuring that the deformations of the elements
considered are consistent with one another, that is that
compatibility is satisfied. Three different types of
equation are thus necessary and sufficient for the analysis
of statically indeterminate structures:

(a) the equations of statics

(b) load-deformation relations for the members
of the structure

(¢) compatibility equations.

In general, the compatibility equations are the
most difficult to handle, as they often result in very
complicated expressions. Various techniques have been
devised to reduce the labour involved. For instance; the
method of moment distribution used on building type frames
involves writing down a preliminary solution which satisfies
the conditions (b) and (c§ but not (a). Corrections or
adjustments which continue to satisfy (b) and (c) are then
applied until (a) is satisfied,

However, in this chapter attention will be drawn
to the types of technique similar to that known as angle
balancing, as they appear to be the most powerful in non-
linear problems. The general procedure is to place sufficient
imaginary cuts in the structure so that it is statically
determinate if all the generalized forces X across the cuts
are known. These forces are then taken as the unknowns.

All the forces P in the structure are written down in terms

of the forces X and the external loads W. The load-deformation
relations for all the elements of the structure must be known,
and hence the generalized deformations & of the structure

can be written as functions of X and Wo For convenient
application, deformations & must be explicitly expressed

as functions of forces P. For compatibility to be satisfied,
the forces X across the cuts must be such that continuity
exists, and the cut is closed. & across a cut is zero.

To summarize, a set of internal forces satisfying the equations
of statics is chosen, the corresponding deformations are written
down using the load-deformation relations for the members of the
structure, and it is then ensured that these deformaticns are
geometrically compatible.

The iterative method of angle balancing applied to
the rigid joints of building type frames, and familiar to
engineers, is an example of the above technique. Using this
method, a first solution satisfying conditions (a) and (b)
but not (c¢) is chosen. The discrepancy in satisfying the
equations (¢) of compatibility is calculated and expressed
in terms of the dislocation at certain points. Corrections
which continue to satisfy (a) and (b) are applied until the
errors in equations (c) are negligible, and compatibility is
satisfied. The iterative technique is usually convenient only
in linear problems, as in such a case the closing of the
dislocation or cut is linearly related to the action X across
the cut.
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105;- The Energy Theorems;

The value of energy methods lies in the ¢
fact that they may afford a convenient means of writing
down the compatibility equations or the equations of
statics, (see (a) and (c), Art. 104); also a convenient
grouping of variables is obtained. .

The stra%n energy of a structure is
(4 - ’
U=ZJP 48 es  (131)
(]

where P is the load (force or moment) in some element of
the structure, and § its corresponding deformation (see
Fig. 193) and U is summed over all the elements of the
structure, It is implied that P is given or can be
expressed as a function of & , so that the integration
can be performed.

P

P l—

defined as

S

1M _ <

Fige 193.
Suppose that for some element, 5=5 19

when P = Pye Then partial differentiation of U with
respect to 81 s gives

BU/351 = P, e (132)

This equation is valid for non-linear as well as linear
structures.

The complementary energy'of a structure is
R

c=2j 6 dp.
[+

It is implied that & can be expressed as a function of P
so that the integration can be carried out. Therefore

3c/ep, =&, . (133)

This holds whether the relation between & and P is
linear or non-linear.

defined as

Across a cut; where the displacement
corresponding to any X is zero, we have

3¢/0X =0 | o (134)

As stated in Art. 104, redundant structures 3
can be analysed by making use of the equations of statics,
the load deformation relations for the members, and
‘equations of compatibility., The velue of strain energy
lies in the fact that, given a set of geometrically <
compatible deformations, the corresponding loads in
the members being obtained from the load deformation .
relations, equation (132) can be used to replace the_
equations of statics. Alternatively, when complementary
energy is used, if a set of internal forces satisfying
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statics is chosen, the corresponding deformations are
available from the load deformation relations, and
equation (133) or equation (134) can be used to ensure
compatibility of deformations. The duality of approach
discussed in Art. (104) is thus directly extendable to
the application of energy methods. This duality can

be exploited to obtain a solution in the most convenient
way. For example, it is evident that it is more
convenient to use complementary energy when & is

given explicitly as a function of P, since in this case
ve begin with a set of forces P satisfying statics and
solve for the corresponding deformations & ;  this

mode of expression is also convenient when using
equation (133). Strain energy is conveniently used
when P is given explicitly as a function of % , since

it is then necessary to solve for the loads resulting
from the initially chosen set of compatible deformations;
this mode of expression is also convenient when using
equation (132). The choice of method depends on the
way in which the relevant information is expressed, and
the information which is required. -In generel,
compatibility equations are difficult to handle; this
is the reason for the wide applicability of complementary
energy methods, since equation (133) or (134) furnishes
a means of handling the compatibility conditions.

The above treatment is valid for linear or
non-linear structures. In the case of. a linear structure,
we have

C =0, and equations (132) or (133) reduce

Across a closed cut, we have

2T/9X =0 ee  (136)

Equations (135) and (136) are widely used strain energy
equations, but it is seen that their use is an example
of the approach which has been discussed above under
complementary energy.

An interesting integrated treatment of the .
analysis of structures is given by F. Baron, "Successive
Corrections: A Pattern of Thought" in "Numericsl Methods
of Analysis in Engineering" ed. Grinter, p.122,
(Macmillan, 1949), though some of the statements
concerning energy methods now need revision. For a
treatment of strain energy, see R, V. Southwell,

MTheory of Elasticity"” 2nd ed. 0.U.P. (1941). Complementary

energy is discussed by H. M. Westergaard in the following
references: "On the method of Complementary Energy".
Proc. A.S5.C.E. Feb, 1941 3 Vol, 67,,. NOo, 2, Pe 1999 and
Trans. A.S.C.E. Vol. 107 (1942) p. 765.

The treatment of energy methods given in this
thesis is rather short. For a fuller more rigorous
treatment in which the basic theorems are worked out
and the duality of approach is emphasized, see "Energy
Methods of Solving Structures™, a thesis presented for
the degree of B.E. (Hons.) by S. Guidici, University of
Tasmania, Feb, 1960, This work was carried out partly
under the author's direction.
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106, The Devyelopment of Complementary Energy Methods:

The originator of the conception of complementary
energy was Engesser, and the method of application has since
been developed by Westergaard, Charlton, end Brown. In a
series of papers, Brown has systematically analysed the
strain and complementary energy theorems and shown their
inter-relation. In practice, complementary energy methods
are as easily handled as strain energy methods, and the
purely mathematical definition appears to be an advantage.
No physical "feel" is needed. Complementary energy opens
up a wide field which cannot be handled by strain energy

metheds. o

Undue emphasis has been placed on elastic
structures, that isy; structures from which all the strain
energy can be regained, and all the deflections reduced
to zero, by the removal of the loads. As early as 1956,
Hoff applied complementary energy to solve a redundant
truss beyond the elastic limit. However, many authors

still unnecessarily restrict themselves to 1oad—dei_‘ormati'on

relations which are the same for decreasing as for increasing

loads. This restriction is not needed so long as the load-
deformation path is known, and the complementary energy is
known at all stages of the loading of a structure.

P ¢

R—°

Figs 1940

For example, the load-deformation curve for a
member may have the form shown in Fige 194. It is
possible to arrive at the load P4 by following the path
AB, or the path ABCD, or the path ABCDEAB, resulting in
deformations &4, éz, or. 81, respectively. The

complementary energy is thus not uniquely defined in

terms of the load, but it is defined if the load-deformation
path is determined. This restriction is important, and the
restriction to elasticity may be discarded, It will also be
shown later that in order to apply the complementary energy
method, o C/d P must be defined at the point under
consideratione.

Complementary energy is treated by the followings .
N. Jo Hoffs "The Analysis of Structures" Wiley. (1956) p. 3463
T. M. Charlton: Engineering vol. 174 .(1952) p. 389; E.H. Browms
Engineering vol. 179 (1955) p. 305, p. 339, p. 4005
J.A.L. Matheson: Engineering vol. 180 (1955) p. 828; and
T.M. Charlton "Energy Principles in Applied Status " (Blackie,
1959) . Other papers having a bearing on the use of complementary
energy in structural analysis are: J.W.H. King: "Some Notes on
Plane Frames not Obeying Hooke's Law", The Engineer, Vol. 196
(1953), po 43 T.M. Charltons "Staticelly Indeterminate, Framess -
The Two Basic Approaches to Analysis." Engineering Vol. 182,
p. 822 (1956)3 Symonds and Prager "Elastic Plastic Analysis

L}
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of Structures subjected to Loads varying arbitrarily
between prescribed Limits" Jnl. Applied Mechanics
Vol. 72, pe 315, Septe., 1950; (See also discussion
by Charlton on this paper); H. L. Langhaar "The
Principle of Complementary Energy in Non-Linear
Elastic Theory", Jnl. Franklin Inst. Vol. 256 (1953)
pe 2555 T.M. Charlton "Some Notes on the Analysis of
Redundant Systems by means of the Conception of
Conservation of Energy" Jnl. Franklin Inst. Volo
250, Po 543 (1950)3 and T. M, Charlton "The Analysis
of Structures with Particular Reference to the Prediction
of Deflexions"®, N.E. Coast Inst. of Engineers and
Shipbuilders, Vol. 74s p. 163 (1957-8) .

In this chafiter, complementary energy is
used to solve for the forces in pin-jointed redundant
braced frameworks. The buckling of compression members
and the yielding of tension members will be considered,
and a number of simple examples worked,

107, The Complementary Energy of a Linear Member:

Consider the linear 16ad-deformation .

S=Pf (Fig. 195) ee e (137)

D

B

relation

-C

& 5

Fige 195.

Then at any load Py, the complementary energy is
R . -
v :f § ap = P2/ C eeee (138)
(+]
Also 0C/ o Py = P.]/k. (In the usual notation,

k = EA/JZ , where E = Young's modulus, A = area of member,
f= length of member.)

The Complement: Ene of a Yielding Tension Member:

Consider a tension member whose load-extension
relation consists of two straight lines of slope k = AE/£
in the reglon 0>F) -Fq and slope kq in the region F <-F1 N
as shown in Fig. (196) Compression is taken as positive.

P-F
FidEa S

A ,/CH&P/& = FL[EA.

X R
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Then, for O>F> -F,s we have
& =74 /AE and ¢ = ¥4 /25A
and for F < -F1 , we have

§=F/c +¥h -7 0/
and @ C = fé/zEA +‘((F1/k1 +F/k.|-F1Z/EA)dF
-F -
=F12£/2EA + 7 (/- Lfen) (F + F,)
v (F2 - Py B o
therefore dC/IF =_‘F_1 (1/k1 - Z/EA) + F/k1 .. (138)

The Com lementary Energy of a Member Hav1ng a Curved
.Load—deformation Dlagram.-----ﬂ

Consider a member for which
&= aF+ BE - -

In practice, any easily integrable function can be
fitted to the load-deformation diagram. If the behaviour
is the same in tension as in compression, it is necessary
to use an odd function.

F
Now € = .iag dF )
aF%/2 + bF‘*/z,.,

108. As a simple example of the use of complementany
‘energy, consider the rigid bar ABC supported by three
rods and loaded as shown in Fig. 197.

This problem is worked by J. A° L. Matheson in
Engineering: 187, 581, (1959). Using a series of straight
lines to represent the stress strain curve, solution is
achieved by means of the equation of virtual work. However,
in this article the problem is used to illustrate how
complementary energy can be applied.

cross -gectional A:0-28, B:1-40 , C: 0-60.
afeas (sq_l ") ?
Ll //////// L L L L LL L2 LL L L s s L Z
4' 6‘ f
- > .
: B C
A[ ' 5 .
lss fOf\& Fi ’ 1

We have two equations of staticss

F, *+ F

A + F, =35 (vertical equilibrium) .. (139)

B c

and  8F, + 4Fp -2F, =0 (moments about the point of
application of the applied N
1Qad) oo ' (140)

L B
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where Fy, Fp, and Fg are the forces in tons in the rods
A, B and C, tension being considered positive.

Suppose the stress strain curve for each of the
rods is given by e "L

E= 1,425 f + 4.76 X 10743

Then the load deformation relation is .
S= 1.125 54 + 4.76 x 107 P/ . (141)

the equation being assumed valid in both tension and
compression. ' o
: Imagine rod A cut; and a force F, applied across
the cut to close it. Then OC/ OF, = 0, from equation
(134) . Using equations (139) to (121), the complementary
energy C of the whole structure can be expressed in terms
of the force Fj in the redundant member at A and the
external load. '

8 We have ’ -
Fp = 35/3 - 57,/3, OF,/ OF, = -5/3 g;.;. 22)
Fg = 70/3 + 2F,/3, OFg/ 3 Fy = 2/3)

Hence the total complementary energy of the system
f“A gﬁs g SES
= +
c= SAdFA  OgdFp e 3Fg

[>]

is

since the complementary energy of the rigid beam is zero.

The use of equations (142), putting 9G/ O Fy
equal to zero, results in a third degree equation in
FA’ and the solution is

. . )
F, = -3.5, Fy = 17.5, Fg =21.0,

A
>

A -15, SB=15, SC=60°

These values of E; satisfy the equation of the rigid beam
which is

(SC - SB)/é = (gB “'SA)/I& o.o‘ (143)

In fact, the complementary energy method has merely furnished
a convenient method of writing down equation (143), the
equation of geometrical compatibility, which must hold when
the cut is closed.

This problem can also be solved by replacing the
curved stress-strain diagram by a series of straights.
It is then required to solve linear equations only, but it
is necessary to guess and check in order that the solution
may not lie on an extension of a straight line which is not
applicable.

109, The Complement Energy o Initi Crooked Pin-
ended Strut: ,

Consider the elagtic strut whose unloaded shape is
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= f &, sin n7 X/Q . (Fig. 198)

P P
J .

Under axial load P, the shape changes to
- = 20y | s
y= < [%/(1 - P/a%Q)|sin_nmx/l
vhere Q= TEI/{? (See Art. 18)

The deformation A cofresi)onding to P'is_
given by the shortening. Therefor°

A !%(dy/dx) dx + pL/EA - ,( %(dy /dx) dx
$ fn?o? /l0-pif0)*
+ PL/Ea - f n*n %2/43

For values of P up to the first Eﬁler load qQ,
provided a2/h1 etc. are small, the n = 1 term governs
and we obtain .

A = w3 2 4001 - 2/Q% + PZ/EA- 1‘ra1/42 (144)

It is interesting to note that similar expre551ons,
governed by n =1 and invelving the factor 1/(1 - P/Q),
are obtained for the maximum deflectlonEOf the strut
(see equation 20) and also the maximum strain (see . _
equation 50). Empirically this furnishes a method
of determining suitable values of the parameter aq for
various types of struts. Strainseare measured during
a loading test, and by comparing the equatlon ‘of the
Southwell Plot on the measured strains with equation (51),
the value of can be calculated. This has been carried
out for a particular strut in Art. 59. The method also
gives the value of P at which equatlon (144) is no longer
valid due to yielding.

A graph relating P to A is shown in Fig. 199. The
complementary energy of the strut is :

c = f: A ap

(v22/4.0) { ap/(1 - p/Q% + 2L /258 - R/l
Pl /28 + (PL/ED) [PP/0 - Q] .(148)
if the subscript of a is dropped.

.Differentiating,'we have
2c/0P =Pl/EA + (aZZ/AEI)Pk oo {146)
there A= (2 - PR)/(1 - B/Q) eo(147)

-
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Af| 36 (3 %&(i'w)t o) _ 0 22.5|22-5
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Note: The complementary energy (column 3) is tabulated here

merely to indicate the effect of initial crookedness on the

complementary energy of the members BH and CI.

differential is obtained directly.

In practice the
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The plot of A against P/Q is shown in Fig. 200. The
fact that / and hence C can be expressed explicitly
as functions of P enables complementary energy to be
conveniently applied.

110, The Solution of g Pin-Jointed Redundant Truss
uging Complementary Energy: = . , i

The braced frame shown in Fig. 201 is doubly

. internally redundant. All members are taken as having

cross—-sectional area A = 0.80 sg. in., minimum moment

of inertia I = 0,20 in.*, Young's modulus E = 30,000,000

1b./sq. in., and minimum radius of gyration r = 0.50 in.

Also the applied load W equals 30,000 1b., All members are

considered linear except the compression members BH and CI,

whose initial crookedness is taken as a = 0,25 in. (4

method of obtaining practical values of initial crookedness

has been outlined in Arte. 109. This is further elaborated

and supported by experimental evidence in Art. 111, where

the results of Southwell Plots on measured strains and

shortening of a pin-epded cglumn are compared.) For

these members, Q = W<EI/£“ = 16,700 1b, Compression

is taken as positive. i
‘Table I gives the forces and complementary

energy for the various members if the forces in the

redundant members BH and CY are taken as P, and P_. _

See columns 2 and 3 of the Table. Inﬂcolu&ns_A aﬁd B ,

5, the complementary energy of each member is differentiated

with respect to P, and Py respectively. The constant factor

EA is taken out for convenience.

From equation 136, we have
3(;/8?1 = ac/cBP‘2 = 0,
Summation of columns 4 and 5 gives the two equations,
(207,2 + 3.75 31)P1 *+12.9 P,
= 64.8W = 1944 kips : oo (148)

(207.2 + 3.75A)F, + 12,9 P, |
= 48e6W = 1458 kips oo (149)

These are non-linear equations, as the factors)w, A
involve P,, P,: (Equation 147). Solution is
facilitated by putting, provisionally, X, = A, =
the value of A at B/Q = 0, The resulting linfar
equations give

2
2y

P, = 627 kips, P2/Q = 0,38, Az = 4.2
P1‘ = 8,70 kips, _P1/Q = 0.52,A4 = 643,

Substitution of these more accurate values of A in the
original equations (148) and (149) gives

P, = 6.16 kips, P2/Q = 0.38,A5 = 4ol

8.00 kips, P,/Q = 0,48, A, = 5.6 .

2
Py
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The- corrected values of P, and P, satisty the original
equations closely enough }or practical purposes. One
adjustment to the approximate solution obtained by
putting A = 2 has been found to give a sufficiently
accurate answer in problems which have been worked.

Values of the forces in the members are
given in columns 6 and 7 of Table I,

Suppose the area of the tension member DH
is reduced to some value Ay so that it yields at a
load of F, = 4 kips. See Fig. 196. It is apparent ]
from Table 1 that this will affect the solution. It is
necessary to alter the differential of the complementary
energy. of the member DH to the value given by equation

(138). This gives .

9C/9F =¥ (1/c, - //EADH) + F/k1...
Substitting Fpg = - 5W/M12 + P,, dF/OP, =1,
F, =4, and = 60,
we have EApm a2¢/9o P,
= EApp ( 9c/dE) (IF/IR) ‘_
= (BApy/k,) (4 - 50/12) - 240 + EApy P#{g.

Equation (149) is now altered to

(147.2 + 3.75 ,\2 + EA/k1)_ B, + 129 P,
= 23,60 + (EA/k;) (SW/12 - 4) + 240 A/A . +. (150)

Equation (148) is unaltered. Putting W = 30,0001b.,
P, can be obtained for any value of k,. In particular for
tfe purely plastic case (k, = 0), equation (150) can be
multiplied throughout by k1,and ky then allowed to tend to
zero. This gives

P, = 5W/12 - 4 = 8.5 kips
Fpg= -5W/12 + P, = ~4.0 kips.

This is the value to be expected, as for k, = 0, F o is limited
. . 1 DH
to 4 kips tension.

Care must be exercised in dealing with tension
members which yield plastically. Too early substitution of
= 0 leads to 9C/JdF becoming undefined, and no solution
is possible.

Throughout the analysis, the joints in the frame
have been assumed pinned. Tests show that this assumption

"allows a reasonably close estimate of the forces when the

joints are rigid. The use of the complementary energy of
the pin-ended strut is considered to give a conservative

estimate of the contribution of the redundant compression
members to the strength of the frame, because end-fixing

has been neglected.
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111. Experimental Work on Column Shortening:

Some experlmental work has been carried out to ¢
determlne the validity of equation (144) and alsd to
investigate the behaviour of a column in the plastic range
beyond the stage where maximum load is reached.

In the elastic range we have the measured ¢
shortening of a pln-ended column glven by

N= a 2/ L1 - P/Q)2 + PZ?EA (See equatlon 144)
where a is the initial central crookedness.

This reduces to _ o
. 1/9_; PZ/EA = (P/Q)]/A-_. PZ/EA + 7Ta/21/:2 ..(151)

This is the equation of a type of Southwell Plot on the
portion of the shortening due to buckling effects,

namely (A - PZ/RA).

A rectangular section sted member was loaded as a
column between balls. This was the same member for which
deflection readings are given in Art. 57, and sirain readings
in Art. 59. Load is plotted against shortening in Fig. 202
and the Southwell Plot in Fig. 203. The Southwell Plot is ¢
linear, and of slope 1/190 1b. =1 which agrees well with the
Euler load of 188 1b., This demonstrates the validity of
equations (144) and (151). Similar experiments were carried
out on &" x " steel members, good agreement being obtained

as before.
+,,,——+~————+
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The shortening of the steel angle-section
member discussed in Arte. 61 was also measured. The results
are plotted in Figs. 204 and 205, The slope of the
Southwell Plot is 1/470 lb.“'1 which compares well with the
Euler load of 467 1bs. In Fig. 204, the graph of P against

A is continued into the plastic range.

112, In view of the foregoing experimental work it
appears that equation (144) satisfactorily defines the
shortening of a pin-ended strut in the elastic range.
Therefore, the derived expression for the complementary
energy (equation 145) may be used with confidence to analyse
the behaviour of a pin-jointed redundant frame in the elastic
range. Tc study the strength of such a frame it is necessary
to be able to calculate the complementary energy of the members
in the elasto-plastic range, that is to obtein some practical
definition of the whole of the relation between P and A .
The difficulties involved in this progremme, even for pin-
jointed trusses, are large; but the task becomes even more

formidable for rigid-jointed frames where the members are

subjected to end moments (and, in general, torsions) as well
as axial loads,

However, the Southwell Plot on strans as
developed by the author is a powerful tool particularly when
used in conjunction with complementary energy methods. Assuming
the complementary energy of the member of an inti%lly perfect
rigid-jointed redundant plane frame is equal to P 4?/2EA, that
is that all the members are initially straight, and no bending
moments arise until buckling occurs, the load distribution
among the members of the frame can be calculated, and the
forces in individual members are linearly related to the
applied loading. This enables an estimate to be made of a
first elastic critical load, either by the method of moment
distribution, or in simple cases by writing down all the
equations of equilibrium at the joints and setting the
determinant equal to zerc. However, due to the redistribution
of the forces in the members, there may be one or more modes of
deformation into which the frame can deflect successively, and
failure may not occur until the load reaches a value greatly in
excess of the first critical losd as calculated above. For any
distribution of forces in the members of a redundant frame, there
can be calculated a corresponding critical loading on the frame.
There is therefore a critical load which may be considered as
governing at failure.

In practice, the initiel behaviour of a redundant
frame with fairly straight members is related to the first critical
load. This holds so long as the cogﬁ}ementary energy of the
members approximates to the value P<€ /2EA. For this to be true,
the deformations of the members must be predominantly axial, and
bending effects must be small, It is therefore necessary that
members should have small initial crookedness, and also that
secondary bending effects due to the geometrical distortion of
the frame should be smalle However, as distinct from the
behaviour of a non-redundant frame, this first critical load
does not necessarily set an upper limit to the load-carrying
capacity of a redundant-frame. The forces in the members
redistribute once bending effects become importent, and failure
may not occur until the load reaches a value greatly in excess of
the first critical load,

Experimental work has been carried out at the
University of Tasmania, under the author's direction, on a
rigid-jointed flexible frame of the forms shown in Fig. 206.
(The work referred to is incorporated in a thesis for the
degree of B.E. (Homs.) in the University of Tasmania by

G. Peck, Feb. 1960).
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On loading the frame, it was fournd that strains increased
rather quickly as the first critical load (as calculated above)
was approached., The member BD buckled, in the sense that it
became very flexible and could be moved about easily when a
force was applied at its centre. However, the lcad W could
still be increased, with BD continuing to deflect rapidly.
Failure as given by very large deformation of BC, did not

occur till more than double the first critical load was
obtained.

Strain measurements were made at different
points in the members of the frame and Southwell Plots drawn. 4
The latter gave twe approximately linear portions, the inverse
slope of the first linear part being equal to the first
elastic critical load as calculated above, and the inverse
slope of the second linear part indicating a critical load
somewhat higher than the failure load. It appears therefore ‘
that the members of the frame were initially straight enough,
and the deformations and secondary bending effects in the
frame small enough, for bending effects to be small up to
nearly the first critical load. This critical load thus
governs the initial behaviour. If the loads in the members
could not redistribute, this first critical load would
govern right up to failure, but as the load is increased,
deflections increase, bending. effects become important and
the loads in the members redistribute; BD continues to deflect
while its load falls off, and the load in BC increases until-
failure occurs, :

, The forces in the members BD and BC were
calculated from the measured strain readings around their
cross-sections and their variation with the applied locad W
was qualitatively in agreement with the . foregoing argument.

An analysis of the complementary energy terms for the members

of the frame was carried out in order to obtain some quantitative
measure of the complementary energy of bending, and thus to
analyse the behaviour of the frame as it approached the failure
condition. The total complementary energy of a member is the

sum of the energies of the axial load in it and of the bending
moments acting as its ends. These bending moments are unknown,
but in an attempt to take some account of them, the complementary
energy of a bent strut in a rigid-jointed frame was taken as

¢ = P24 /oEn + (224 Ji5T) E‘f/(m/pcr)j_ .. (152)

This equation is taken by analogy from equation (145)-, the value
of Per., the relevant critical load for the frame, being .
substituted for Q, the Euler load of the pin-ended strut.

The analogy has reasonable justification: it has been shown
-previously that the deflections and strains of a member in a
frame incresse or are magnified in the ratio 1/(1-P/Per), and
the corresponding assumption applied to the complementary energy
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of bending should be reasonably accurate. Values

of Per. and also of the crookedness, a, were taken
from the Southwell Plots on measured strains and
substituted in equation (152). By this means the
Southwell Plot on measured strains was used to obtain
an estimate of the complementary energy of the members
of the frame, It was therefore possible to calculate
the forces in the members with increasing W. A
reasonable quantitative substantiation of the measured
variation of the axial forces in the members was
achieved.

113. Summarys

The experimental and analytical work
so far carried out on redundant frames has been
devoted to analysis of the elastic behaviows of
flexible frames; a reasonably successful attempt
has been made to analyse the redistribution of loads
in members as loading proceeds by obtaining an estimate
of their complementary energy, this estimate being based
entirely on imformation obtained from Southwell Plots on
measured strains. It is felt that further investigation
will necessarily be limited to elastic behaviour for some
time. The author is confident that the use of energy
methods supported by empirical information obtained from
strain measurements, particularly such information as is
available from Southwell type plots, will ultimately yield
a method of analysis. However, the determination of the
strength of a practical redundant frame will certainly
involve an elasto-plastic analysis.
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The following is a list of papers published by the
author in connection with this research. Most of this
published work is embodied in this thesis.

1. "Bolted Angle Struts: A Review of Existing Design
Methods with Particular Reference to Transmission
Towers." Water Power. Jan, 1959, 25 - 27.

2. "Model Investigations on Bolted Angle Structures "
Water Power, May 1959, 178 - 182.

3. "Further Research on Bolted Angle Structures,"
Water Power, Aug. 1959, 308 - 310.
4o "The Collapse of Triangulated Frames Contalnlng
Bolted Angle Struts", Water Power. Oct. 1959,
390 - 3920
5« "The Use of Measured Strains to obtain Critical
LO&dS". CiVo EIlgngo Lcndo Volo 559 NOQ 64.28 80—820
6. "The Elastic Buckling of Columns in Structures: The
Use of the Southwell Plot on Strains to Obtain
Design Criteria." Civ. Engng. Lond. (in press).
7. 9The Buckling of Structures." Civ. Engng. Lond.
(in press).
8, "The Use of Complementary Energy in Non-linear
Redundant Braced Frames". Civ. Engng. Lond,
Ain press). -
9. "The Development of Lightweight Trusses at the
University of Tasmania." - Aust, Civ, Engng. &
~ Construction (in press).
10. "The Use of the Southwell Plot on Strains to Determine

the Failure Load of a Lattice Girder when Lateral
Buckling Occurs." Aust. J. Apple. Sci.10s 371-376.

11, "The Buckling of an Equilateral Triangular Frame in
its Plane", Aust. J. Appl. Sci. 10: 377 - 387,

12, "A Non-linear Bending Effect when Certain Unsymmetrical
Sections are Subjected to a Pure Torque®. Aust. J.

Appl. Sci, 113 3348,
13o "The Application of the Southwell Plot on Strains to
Problems of Instability of Framed Structures when

Buckling of Members in Torsion and Flexure is Involved.™

Aust. J, Appl. Sci. 113 49-64.

14e "The Use of Complementary Energy in Structural Analysis."
Civil Eng. Trans. I.E. Aust. Vol. CE2 . No. 1. Mar.1960,
9"130 )

15, "The Bending and Shortening Effect of Pure Torque"

Auste. J. Appl. Sci. Vol. 17, No. 3 (1960). (Not
incorporated in this thesis,)

The following letters or discussions of papers are also
relevants

on "The Buckllng of Struts with varying Cross=Sect10ns"
J.I.BE. Aust. 31, 93231,

on "Virtual Work and Complementary Energy Applied to Non-
linear Braced Frameworks". Engineering 188:19.
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