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-PREFACE- 

Ths work described in this thesis has been 
carried out in the Civil Engineering Department of the 
University of Tasmania during the period July, 1956 to 
February, 1960. The research has been directed at obtaining 
some fundamental understanding of problems of instability of 
structures rather than the production of empirical information 
necessary for design purposes, though it is believed that the 
groundwork has been laid for the determination of valuable 
empirical data on certain types of problems. The treatment 
is restricted in the main to elastic buckling of non-redundant 
frames, •though the problems met with in inelastic behaviour or 
with redundant frames are mentioned, and have been kept in 
mind throughout. 

Chapter One begins with a detailed analysis of 
an unstable mechanism. This study forms an interesting 
introduction to problems of instability of structures without 
introducing the complication of the elastic beam equation. 
Various methods of analysis of structures have their counterpart, 
by analogy, in the treatment of the behaviour of this mechanism, 
and the treatment is rather detailed. The remainder of the 
chapter is devoted to standard methods of calculation of 
elastic critical loads. Because of the apparent confusion 
in some recent papers as to the meaning of various critical 
loads as determined by the moment distribution convergence 
criterion and other methods, the treatment is again rather full, 
and contains some very simple examples. More difficult problems 
are worked as illustrations and also because their results are 
used later. 

Chapter Two is concerned with pin-ended struts 
and gives an introduction to the use of the Southwell Plot and 
the information that can be obtained from it. The Southwell 
Plot on deflections is first discussed. Particular emphasis 
is then laid on the power of the Southwell Plot on strain 
measurements. It is believed that the strain plot may have 
been used to ensure centrality of loading of a column for 
testing, but otherwise the treatment is new. It is intended 
that the discussion of single columns should furnish a basis 
for the arguments developed in Chapter Three, 

In Chapter Three the Southwell Plot on strains 
is applied to a number of simple model frames and model or 
full-size structures. A design method for certain types of 
structures liable to instability is advanced, based on the 
equation of the Southwell Plot on measured strains. This 
work is new. The Southwell Plot on deflections has been 
used previously to confirm calculated values of critical 
loads of structures, but the equation of any Southwell Plot, 
and in particular the plot on strains, can be used to take 
account of imperfections and to relate the performance of the 
actual structure to the critical load of the perfect structure. 

The investigation has followed the method of 
first establishing criteria analytically in the case of a 
number of simple frames, followed by experimental verification. 
More complicated frames were then treated. 

Chapter Four  draws attention to the buckling of 
bolted angle struts as the research project was initiated with 
this in view. While carrying out preliminary research on the 
behaviour of angle-section members under simple loading systems, 
a particularly interesting phenomenon, the bending effect of 
pure torque, was discovered. The effect has apparently not 



been previously noticed. The behaviour is reported here, 
as there is probably a considerable effect on the torsion 
buckling of angle-section and similar members. (The 
general analysis of the bending and shortening effect of 
pure torque has since been carried out, but is not included 
in this thesis. See Aust. J. Appl. Science, Vol. 11, No. 3 
(1960.) The remainder of the chapter contains the results 
of studies on model structures containing bolted angle 
members. A method of attack on the problem of obtaining 
design data is suggested. 

It is thought that complementary energy methods 
will furnish the main means of tackling the problems of 
redundant frames. In view of the importance of energy 
methods in structural analysis, Chapter Five  contains a 
brief outline of their application. The treatment is 
rather short and may be considered as a simple introduction 
to the problems of redundant frames. A pin-jointed redundant 
frame is solved by complementary energy, the crookedness of 
members being taken into account. However, any analysis of 
the behaviour of even the simplest rigid-jointed redundant 
frames is a problem of considerable complexity, and the 
determination of its strength is still more difficult. 
Nevertheless, it is the author's opinion that energy methods 
of analysis backed by the empirical information obtainable 
from Southwell Plots on strains will ultimately give a 
solution. 

Experimental work connected with this investigation 
has involved the testing of over twenty full-size girders and 
trusses, a model lattice girder, model Warren trusses, eleven 
triangulated model frames containing bolted angle members )  and 
numerous triangular frames and single members. Since considerable 
information could often be obtained without causing permanent 
deformation, many of the frames or members tested were used 
over and over again. 

The method followed in this research has been 
firstly to study simple problems such as single members or 
triangular frames, techniques and ideas being worked out 
analytically and experimentally on these problems as far as 
possible. Information gained in this way was then extended, 
often by analogy, to more difficult problems, then supported 
by experimental means and, where possible, analytically. The 
advantage of the prior study of simple problems for the 
clarification of ideas, the evaluation of the accuracy of 
any method, and for perfection of technique, is not always 
realised. 

It is the intention of this thesis to propose the 
use of the Southwell Plot on strains or related plots as a 
basis for the determination of design formulae in problems of 
instability. It is considered that sufficient indication of 
the value of the method is given here to warrant the undertaking 
of research and testing on a large scale in order to determine 
the necessary empirical data for all types of structures. 
Attention should first be directed at non-redundant triangulated 
framed structures, but the author is convinced that, with the 
support of energy methods, it will eventually be possible to 
tackle other structures including redundant frames. 
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CHAPTER 1. 

THEORY OF BUCKLES G. 

THE BUCKLING OF A SIMPLE MECHANISM, ELEMENTS OF STRUCTURES, 

AND PLANE TRIANGULATED FRAMES. 

1. Introduction 

In this chapter, the notion of unstable equilibrium of a 
structure'is introduced by an analysis of the behaviour of a simple rod and 
spring mechanism. In this simple way, without the necessity of handling 
the equations of bending of a beam, the idea of a critical load at which 
the structure is in neutral equilibrium against static digturbancesis 
presented. By this means it is possible to examine buckling divorced 
from the complication of the beam equation. The various energy and zero 
stiffness .principles are worked out on this model, and also the related 
behaviour of the slightly imperfect structure. 

• 'The classical methods of calculation of buckling loads of 
single members and structures are then given, energy pri,hciplee being very 
briefly reviewed. Various recent methods of handling the relevant equations 
for framed structures are illustrated with worked examples, the common 
mathematical foundation for all the methods being kept in mind throughout. 

The way in which the behaviour of the practical structure 
under load may depart from the simple neutral equilibrium theory is briefly 
outlined. 

2. Notation. ,  

The general notation used is as follows: 

Compressive force. 
T. 	. Tensile force. 

Bending moment. of e. 	Rotation of. end 
L o t Length of a member. 
U • 	Energy. 
'F, W FordeS, loads. 

Displacement, deflection. 
Young*modulus.. 

El 	FleXural rigidity. 

Other.symbols are•explained_in . the.teprt. 

nifulguitlarigiulLAsagapuitimuLtaiLkati_elastically restrained at  
one end. 

•,The.simple mechanism treated here is taken from an 
article. by.N..J.. Hoff, "Dynamic Criteria of Buckling". - Research, 
Engineering Structures.$upplement, .(1949) p. 121 (ButterwOrth) in which 
the, dynamic buckling is analysed,..Various.types of damping being' discussed. 
In this thesisp -however, the meChanism is used to illustrate the principle 
of Unstable. equilibrium and 'methods of calculation of :critical loads which 
are. later used in relation tO.the buckling of structures. The analysis of 
the undampened vibration ii:_taken fibm Hoff's paper, but the remainder is 
the work of the author. • • 

' 4Ir 



Fig. 1  Fi 

Consider the rigid bar AB, pinned at A and acted on by a 
force P I  as shown in Fig. 1. The end B of the bar is restrained against 
lateral movement in either direction by a weightless linear spring of 
stiffness K. It is evident that if the load P acts truly along the line 
AB the bar is in equilibrium for any magnitude of the load P. It is 
interesting to investigate the stability of the equilibrium. 

4.• 	 Suppose the end B of the bar is displaced laterally by a 
small amount u, corresponding to an anticlockwise rotation Ofabout A, 
(Fig. 2), and the bar is brought to rest in. this position. Then the 
force in the spring is given by 

S = Ku = XL 

and the anticlockwise moment about the pin A of the forces acting on 
the bar, excluding the disturbing force, is 

Pu - Ku L, 	 (1) 

if the moment of the weight of the bar is neglected. He notice that' 
if P is less than KL, this moment is negative, and the bar tends to 
move in the clockwise direction. That .is, on being released from its . 
displaced position, the bar accelerates towards the central position, 
which is a position of stable equilibrium so far as small static 
disturbances are concerned. 

However, if P equals XL, the resultant moment vanishes,. 
and the bar is in neutral static equilibrium. 

If P exceeds the value KL, the bar accelerates in a 
direction giving increased displacements, and the 'original position is 
one of unstable static equilibrium. 

5. 	It can be seen that the stability of the. 'equilibrium 
position depends on the relation between the magnitude of the acting 
force P and the stiffness: of the restraining spring. If-we consider 
the behaviour of the system as P is increased from zero, small static 
disturbances of the type described being given from time to time, then 
for values of P less than 4L the effect of a disturbance is.-to set tip 
a small oscillation about the equilibrium position. If P equals XL, 
when'the bar is displaced it does not return. A very slight increase 
In load is then sufficient to cause large deflections. after a slight 
disturbance.' It is interesting to note that the argument, and in 
particular the value of the critical load at which instability occurs, 
is independent of the magnitude of the displacement provided the 
displacement is small, since the condition for instability is- 

V 



I Pu - KuL > 0 	•• 	• • 	(2) 

which yields 

P > KL, whatever the magnitude of u. 

6. The effect of a dynamic disturbance can also be investigated. 
If the mass moment of inertia of the bar about the hinge A is I, and at 
some instant the bar is in the position shown in Fig. 2, then the 
equation of motion is 

I d2 y6/dt2  + KL256 - PL 	= 
This gives 

d
2
0. /dt,

2 
+ 	L (KL 	= 0 	0 0 	 (3) 

Putting 

1 (KL - P)L/I( = k2 , 	the solution of this equation is 

= •A sin (kt + B) provided KL;PP, 	Case 1. ) 

or 	d 0/dt = constant 	if KL =P 1  Case 2. ) 	(4) 

or 	0 = A sinh (kt + B) 	if KL<P, Case 3. ) 

A and B being arbitrary constants. 

As a boundary condition, put 

d0/dt = v/i, when t = o and ci3 = 

That is, consider the motion when the end B of the bar is given an 
initial, velocity v at the equilibrium position. Equations (4) then 
reduce to 

 

. 5=.. (vAL) sin kt 	if P < KL, 	Case 1. ) 
) 

or 	= vt/L 	. if P = KL, 	Case 2. ) .. 	(5) 
) 

Or 	0 = v/kL sinh kt 	if P>. KL, 	Case 3• ) 

If P is less than KL, Case 1 gives the equation of a vibration about. 
the equilibrium position of amplitude 0 = v/kL and frequency k/211 . 
If P equals KL, 0 assumes values Which increase steadily with time. 
If P is greater than KL, the acceleration away from the position of 
equilibrium is very rapid. The study of a dynamic disturbance leads 
to results which agree physically with the conclusions drawn from the 
analysis of a static disturbance. It should be remembered that the 
argument is restricted to small displacements. 

7. In practice, many structures, structural elements, or parts 
of machinery show behaviour of this sort. Any Structure fails by 
instability if and how most easily it can. A designer is concerned 
with avoiding unstable equilibrium, so that the equilibrium of a 
structure is not upset by disturbances of a magnitude which it is 
likely to encounter. The practical implications of instability will 
be discussed later, but certain principles can be introduced by the 
study of the simple rod and spring system under discussion. 
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8. 	Consider the energy changes involved in a small dynamic 
displacement of the bar from its equilibrium position, as shown in 
Fig. 2. At any instant, they may be listed as follows the equilibrium 
position being considered as a datum. 

U1 '= the work done by the load P 

= PL ( 1 - cos 0) = 2PL sin2 ( 0/2) = PI; 4t2/2 for small 	, 

= the energy stored in the spring 

= KL2  62  2 	r  

-  u3  the energy introduced into the system from outside, in 
order to cause the disturbance, called the perturbation 
energy. 

U4  = the kinetic energy of the rod 

= I(dy6/dt) 2  

The spring is considered weightless. Then, we have 

U1 + U3 - = U2 
 +J

4 

assuming conservation of energy. It can be seen that when P = KL, 
U1 = U. The effect of a perturbation, of energy U3 , may now be 
summarised. 

(1) When P<KL, U1  <U21  and hence U l > 17,. Part of the 
perturbation energy is required to deform tge saing, and the 
remainder is converted into kinetic energy. 

(2) When P = KL, U1  = U2 , and hence U3 = U4 . The perturbation 
energy is converted into kinetic energy. 

(3) When P > KL, U1 > U2 , and hence U3  <U,. More kinetic 
energy is available than provided by the disturbance, as the work 
available from the load P exceeds the work required to deform the 
spring. Hence a vanishingly small perturbation energy is sufficient 
to upset the equilibrium. 	The system is dynamically unstable. 

• 

The argument is simplified by putting U3  = 0, when the 
criterion for neutral or unstable equilibrium under. static displacements .  
becomes 

U1 7  u2  • • 	_ (6) 

	

_ 	. 
This principle is very powerful in the determination of the critical 
loads of structures. 

9. 	It has been shown (Equations (5), Case 1) that, on displacement 
and release, the rod executes harmonic vibrations about its equilibrium 
position if P is less than KL. We have 

= (v/kL) sin kt. 

Assume for the moment that the frequency of vibration (and hence k) is 
unknown, though the motion is known to be harmonic. Put 

95 = A sink) t. 

Then 	q/at = AcOcos 



The kinetic energy at 0 = o is 

I(d0/dt) 2/2 = IA2 44)2/2. 

When 0 reaches its maximum value, #= A, the kinetic energy,  is zero. 
Conservation of energy then gives that the kinetic energy at 0= 0 

. plus the energy given up by the load in the motion out to 0= A equals 
the energy stored in the spring at 0= A. Hence c-f 

IA2 64)/2 	cos.Atax) .- 

2  
Therefore IL2 02 PLA = 2 A2 

and 	44) 2  = (XL - P) LAI 

KL2 2niax  2 . 

and the result is independent of the amplitude A of the vibration, 
provided A is small. The value of 4A) is in agreement with the value 
of k obtained from equation (3). Use of the energy principle furnishes 
an easy .  means of obtaining the frequency of harmonic vibrations of -a 
stable system about its equilibrium position. It should be noticed that 
as P approaches the value KI4 m) tends to zero, and the frequency of 'the 
vibration tends to zero. 

10. 	Consider the stiffness of the rod and spring system against a 
disturbing force F applied at B in the direction normal to P. (Fig. 3). 

 

J3on 

  

Then for ,equilibrium, we have 

Pu - KuL + FL =0. 

The stiffness of the system against the force F is F/U and equals 
(KL - P)/L. It is' positive for P<KL and becomes zero for P = KL 
and negative for P>KL: If P is considered as increasing from zero, 
small disturbing forces being applied from time to time, then as P 
approaches the value XL, F/U tends to zero, and a vanishingly small 
disturbing force causes large displacements. This principle is of 
use in determining the loads at which instability occurs in structures. 

. It should also be noted that for a given value of P, F/U is 
constant,,and the work done by the disturbing force is Fu/2 and equals 
(KL - P)e/2L, which is positive so long at KO. P. 

It can also be seen that as P approaches the value KL large 
'forceisrS = -Ku are calledinto play in the spring to resist the' action 
of the disturbing force F. 
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11. The practical implications of the liability of certain 
structures to instability are very wide. The rod and spring mechanism 
has served to illustrate certain concepts, but, in practice, many more 
complications are introduced. Problems which are relevant to the 
study of the rod and spring system, each of which has its counterpart 
in the study of the instability of structures, are the effect of a 
non-linear spring, the effect of damping or friction, the effect of 
large displacements,' or the effect of a change in the load P as the 
system displaces'. 'It may occur that P is not constant, but a function 
of the distance through which it acts, or a function of the rate Of 
displacement. The relation between P and'u may be affected by-the. 
inertia of the bar and Of the loading apparatus, as this' will affect 
the speed with which the load can "follow" the movement of the bar. 
The qualitative effects of such variations from the simple problem 
discussed may sometimes be evident, but the quantitive effects are 
also important in practice: 

12. One modification of the simple system will be discussed 
here. Consider the effect of the rod being initially out of line 
with the direction of P. This may be considered as an imperfection 
in manufacture, resulting from the spring being made up of incorrect 
length by an amount to . That is, when P is zero, u had the value t o . 
Then, for equilibrium under load P, we have 

Fu - K(u_- uo)L =0 

therefore u = KuoL/(KL - P) = u0/(1 - PAL) 	(7) 

The previous condition of stable equilibrium in the central position 
u = 0 up to a critical value of P equal to KL with a change to unstable 
equilibrium once this load is exceeded now no longer exists. Instead, 
displacements occur as soon as P is given a value, and the initial 
displacement ao  is magnified in the ratio 1A1 - P/Pcr) where Per = KL, 
the critical load to cause instability where no imperfections exist. 
The graph of u/to  against P/Pcr is shown in Fig. 4 
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Fig. 4 
	

Fig. 5 

It is interesting to note that the behaviour under load is a 
function of the imperfection 120  and the critical load when no 
imperfections are present. In the limiting case when ti c, tends to 
zero, the graph of u against P/Por follows the path 0 M N, but for, 

, larger values of u s:) , the knee in the curve becomes less pronounced. 
Equation (7) is the equation of the' curve This reduces to 

(u - uo  = Oa — uo  Oor + u0/cr. 

Thus if thedisplacement on loading ,u - 12 0 -is measured, and (u - un)/P 
Is plotted 'against u .1.10 , the graph is a straight line of slope 1/Per. 
and intercept on the (u - u0)/ axis of u0/Por. (See' figure5). 

4.̀  



This plot forms a convenient means of relating the measured 
behaviour of an imperfect system to the magnitude of its imperfections 
and the critical load of the perfect system. 

13. Under load, the behaviour of structures liable to instability 
is usually similar to that of the rod and spring model possessing 
imperfections, (Fig. 4), rather than the case where no imperfections are 
present. The latter behaviour is a limiting case of the former, and 
difficult to obtain in practice. Both types of behaviour are often 
referred to as buckling. There is a close relation between the two. 
In practice, buckling usually means the occurrence of large deformations 
with a smAll change in load (and there is often no true instability.) 
This occurs on the upper parts of the curves in Fig. 4. We are often 
interested in the load carrying capacity of structures, and where 
buckling occurs such problems can be tackled by a study of the behaviour 
of idealized structures, followed by analysis and empirical correlation 
of the effects of imperfections. 

14. The equilibrium of a compressed elastic bar of uniform flexural 
rigidity: 

Consider the single pin-ended column AB of length ,e 
acted on by a central axial force P. (Fig. 6) 

P 	 
A _- 

Fig._6 	Fig. 7 

The bar is in equilibrium, provided yield of the material does not 
occur, for any magnitude of the force P. The stability of the 
equilibrium will now be considered. Suppose the bar is displaced by 
some means from its equilibrium position to the position given by 
y(x) and brought to rest there. (Fig. 7). Then at point (x,y) on the 
displaced bar, the bending moment is 

M = P(a y) 

= El d2y/ax2  

(where El is the flexural rigidity of the bar), if the bar is in 
equilibrium in its displaced position. 

Therefore d2y/dx2  + k2y = PA/BI 

where 	k = 152Ei 

Therefore y = a + A sin kx + B cos kx, 

A and B being arbitrary constants. 
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If the displaced curve is symmetrical about the line x = o, 
the boundary conditions 

x = o, y = o, dy/dx = o 	give the solution 

y = a(1 - cos kx) 	 • • 

Substituting the condition that y = a when x = 42 yields the equation 

a = a - a cos ki/2 

This equation, which holds provided a is small, (otherwise the moment 
curvature relation is in error), is independent of the magnitude of a. 
It gives 

ki/2 = 77/2, 317/2, 517/2, • 

or 	P = 2E1/ 44. 2 , 	917 2E1/ 4? 2 , 	25 172E1/4e2 , 

If the displaced form is assumed to be antisymmetrical about o, (when 
x = o, y = o and d2y/dx2  = o and hence a = o), we obtain 

y = A sin kx 

Substituting the condition that y = o when x = 8/2 yields 

ki/2 =.7i, 217, 317, .... 

or 	P = 41T 2EI/E 2, 161T 2EI/1 2 , 

and the solution is independent of the value of A. We have therefore, 
for equilibrium of the bar in the displaced state, 

P = n2)7 2EI/e 2 	 .. (10) 

where 	n = 1, 2, 3, 	- 

The bar is in equilibrium in the corresponding bent form as well as 
in the straight form when any of these loads are acting, and the 
magnitude of the displacement is unimportant, provided it is small. 

. The shape of the displacement curve is determined by equation (8) or 
equation (9), whichever is relevant, and depends on the value of n. 
The bar is thus in neutral equilibrium when any load given by 
equation (10) acts on it, so far as static disturbances into the • 
given shape are concerned. In fact, the moment curvature relationship 
used in this derivation is inexact, as the exprebeion for the curvature 
is only approximate. There is no point of neutral equilibrium, but it 
can be shown that, once displaced, the deflection of the bar increases 
very rapipily fog values of P greater than the lowest of equation (10), 
that is11 4EI/E 4 . This complete behaviour is discussed in the theo/ 
of the. elastica (See R. V. Southwell "Theory of Elasticity" O.U.P. 1941, 
pp. 429 - 438) but the approximate treatment given here serves as a 
simple mathematical model of the behaviour of an idealized column, and 
the behaviour of an actual column can be referred to it. 
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15. Critical loads and characteristic modes of distortion of a 
column of uniform flexural rigidity: 
(See R. V. Southwell nTheory of Elasticity p. 424). 

Consider the initially straight pin-ended strut shown 
in Fig. 8. 

Ae  

p 	FiZe 8 

The strut is assumed to be displaced into some curve y(x). For 
equilibrium in this position, as well as in the initial straight 
configuration, the bending moment curvature relation yields 

El d2  y/dx2  + Py = 0 	• • 	 (i1) 

This is satisfied by y = An  in nirx/i, which gives, on substitution, 

P = n2  II- 2EI/E 2 	 .. 	(12) 

Pn. is the n
th critical load at which neutral static equilibrium 

exists, and the associated mode of distortion is y = A n  sin niTxa l  
where the value of An  is unrestricted. This value of y defines 
the nth  characteriqic mode of distortion. The smallest value of 
pn is p1 11-2EI/e 4 , when the strut assumes the form y = Al sin Trxa. 
This value of P is called the first Euler load of the strut. At 
values of Pn higher than P11 

 the strut is in neutral equilibrium 

when displaced into its corresponding mode, but it is in unstable 
. equilibrium when displaced into any other shape. Hence to achieve 
values of P higher than P1 1  restraint o1 some form is necessary. 

16. The uniform strut from the standpoint of energy. 

As in the case of the rod and spring mechanism 
previously discussed, energy methods can be used to determine 
the critical loads of the uniform strut. 

We have, (equation 11), 

El d
2y/dx

2 4' Py = 0. 

i 
Hence 	2 	/6[2 ) 2  dx = .4 P .r y (d2y/dx2) dx. 

o 1 	o 
i 

= i Pl(dy/dx) 2  dx - i P ET dy/dxj 
o 	 o 

on integrating by parts. So long as either y or dy/dx vanish at 
o and t , we have A  

i  rt 	, 2 	f 
-A-Jo Ei(d2y/dx4) dx = i P i

o 
(dy/dx) 

2 
dx .. 	(13) 

The term on the left is recognizable as the strain energy of 
bending, and that on the right as the work done by the load when 
the bar assumes the bent position y(x).- 

Multiply each side ; of the equation by d2y/dx2 1  and integrate from 
o to 



Hence 
J iEI(d2y/dx2) 2  dx 

P  = N(dy/dx) 2  dx 

-10- 

where y represents the characteristic mode of distortion. In practice, 
closely approximate values of P can be found by assuming values of y 
which fit the given boundary conditions, and the energy method becomes 
a powerful means of obtaining approximate values of the critical load. 
The above is known as Rayleigh's . method. 

If equation (11) is multiplied through by(y/EI)dx and 
integrated we obtain 

ti 
J Y(d2  yx x - - -P 	Yx /d 2)d 	2d /EI 0   

ri 
-J y(d2y/dx2) dx 

therefore P =  0  
.1 y2  dx/ 	 0 0 

	 (15) 

This equation can be given a complementary energy interpretation. 
It is derived by Westergaard using the methods of complementary 
energy, and he shows that it is also valuable in determining approximate 
critical loads using assumed forms for y(x). 

Since 	d2y/dx:2  = -Py/EI, equation (13) can be rewritten as 

El (Py/EI) 2  dx = P (dy/dx) 2  dx 

r. 
or 	P = (dy/dx) 2  dx 

f°173r2dx/Ei 

For approximate calculations this is better to handle than equation (14). 
Equation (16) can be reduced to equation (15) on integration by parts, 
provided either y or dy/dx vanish at o and 

When using such approximate methods for the evaluation of 
critical loads, it is best to consider those having relevance in terms 
of strain or complementary energy as particular cases of a family of 
methods which can be obtained by manipulation of equation (11). 

For a treatment of Rayleigh's principle, see R. V. Southwell 
"Theory of Elasticity" pp. 442 - 455. In Southwell's book Rayleigh's 
method of calculation of critical loads or vibration frequencies is 
presented without prior reference to the principle of conservation of 
energy. The mathematics of the member behaviour is carried out first, 
and then given an energy interpretation provided certain boundary 
conditions hold; and these conditions fit the energy picture. The 
method is due to Lord Rayleigh (Theory of Sound Vol. I) and is 
clearly presented in Temple G. and Bickley W.G. "Rayleigh's Principle" 
0.11 P. (1933). Here again the principle of conservation of energy is 
not used. In the case of a harmonic vibration it is shown that the 
average kinetic energy equals the average potential energy, whereas 
conservation of energy equates the corresponding maximum values. 
The final equations are, of course, the same. The energy discussion 
in Art. 8 is drawn from this book. 

• • 	. • 	( 1 6) 

A 



The complementary energy approximate method of 
calculation of critical loads given above, is drawn from 
H. M. Westergaard "On the Method of Complementary Energy", 
Proc. A.S.C.E. Vol. 67, No. 2, p.199 1  Feb. 1941. The same 
equation is derived by Westergaard using complementary energy 
conceptions, but in this thesis it is derived mathematically 
from the column equation, and can be given Westergaard's 
complementary energy interpretation if desired. It should be 
noted that equation (16) is reducible to equation (15) only if 
the given boundary conditions hold. These are not mentioned in 
Westergaard's paper, and this omission may cause confusion. In 
certain cases Westergaard has shown that equation (15) gives a 
closer approximation to the critical load than equations (16) or 
(14). 

Other useful approximate methods are given in 
S. Timoshenko "Theory of Elastic Stability" (1935) McGraw Hill 
p.81 1  but Rayleigh's method has been widely used: an interesting 
example is the calculation of the critical load of an unbraced 
arch rib when buckling out of its plane occurs: "The Lateral 
Buckling of Tied Arches", W. G. Godden, Proc. I.C.E., Aug. 1954, 
Vol. 3 1  No. 2, p. 496. The power of Rayleigh's method is also 
illustrated in a discussion by the author on a paper by 
R. Frisch Fay "The Buckling of Struts of Varying Cross-Sections" 
Journal I.E. Aust. Vol. 31 No. 3 Mar. 1959 p. 81. In the original 
paper Bessel functions are used to solve the problems, but the 
author has shown that the approximate solution obtained very 
simply by Rayleigh's method is very close. This gives a guide to 
the accuracy of Rayleighls method where no standard solution is 
available for comparison. See M. Gregory, discussion on the above 
paper, Journal I.E. Aust. Vol. 32 1  No. 9, Sept. 1959, p.231. 

17. The vibrations of a compressed bar: 

Assume the bar is of massf per unit length and 
vibrates in the form 

y = a sin(firx/4?) sin cot;' (See Fig,: 9) 

 

Fin. 9 

 

Then, applying the same method as was used in the case of the rod 
and spring mechanism, the value of ot.) can be calculated. The total 
kinetic energy when 'y = o is 

/2  dx a) 2  a2  sin2  (Tr 20! ) 
0 

= *002 ria2 .  

When y reaches its extremum, the energy given up by the load is 

P f 	y/ax) 2  dx 

= P 1T 2a2  P  / 4 ‘o ) 

and the strain energy of bending is 

f EI
2
y/ a x

2
)
2 
dx 

= El *11. 4a2/4 t3  



Fig. 10 

OC 

If the centre line of the strut under load P is given by y(x), the 
bending,moment at x is 

- 12 - 

From conservation of energy, 

2 2, 	2 	2 / 	ir4 2/ t3 P Tr a /4 + 64) 	a /4=. El a 4 

2 	2 , 	\ and therefore 64) = PO ±Q/pur- 

wfiere Q = 77' 2:EI/i 2 , the first Euler load of the strut. It is 
interesting to note that the result is independent of the amplitude_ 
Of Vibration a, though the analysis is restricted to small values of 
a. The value of A) is real for P less than Q ., and becomes zero when 
P is equal  to Q. The results of the analysis of the static 
disturbance of the strut and of the vibration analysis are 
physically consistent. 

The above discussion is drawn in principle from 
Temple and Bickley's "Rayleigh's Principle", but the equations 
are derived here using the principle of conservation of energy. 

18. The behaviour of an initially crooked uniform elastic strut: 
(See R. V. Southwell "On the Analysis of Experimental 
Observations in Problems of Elastic Stability". Proc. Roy. 
Soc. London Series A Vol. 135 p. 601 and R. V. Southwell 
"Theory ofIlasticityup. 428.) 

• 	Suppose AB is an axially loaded pin-ended strut 
of length 	having initial crookedness given by y o (x). 

(See Fig. 10). 

M = Py: 

and we have 
	Py = -El d2 (y-Y0)/dx = -El d2y /dx 	El d2y0/dx2 . 

therefore 
	d2y/ax2 	omK4 1 	d2y0/dx2 	.. (18) 

The form of y(x) is thus dependent on the form of y o (x). 
zoo 

=1i an  sin n IT 

agsuming yo  to have any form between A and B and provided y o  and 
eyo/dx4  both vanish at x = o, £. 

Equation (1 8) is satisfied by 

y = 	b sin nil x/i 
1 	n 

and substitution gives 

[ 2 - n 	in2 
1 	 nit 	k2b ] sin nil' xie 

5  - n21r an/e sin niix/4? 
1 

'Put 

.. 	(17) 
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where k = 15,7EF 
This applies for all x. 

Therefore 

Now 

(bn  _ an) n2 T;  2/e 2 = k2bn  

bn  = an/(i _ kq2/n2 Tr  2)  

Tr 2EI/e = Q, the first Euler load of the strut 

.. (19) 

and therefore bn/an  = (1 - P/n2Q) -1 , giving the ratio in which the 

the initial shape 

an  sin nicx/e is magnified by the end thrust. Now as 

P approaches C4 -  b1 /a.1  = (1 - 	 .0 	 .. (20) 

and a1  is greatly magnified, since 

lim (1 _ pA) -l = 00.  P = Q 
1\ -1 Also 	b2/a2  = (1 - ) 47 	= 4/3 9  when P = 

b3/a3 = (1 - 1/9) -1  = 9/8 when P = Q . 

The central deflection of the strut is 

b = bl - b3 + b 5 - b7 + 

and as P approaches Q, the terms after b1 can be neglected. 

Hence 	b = b1 = a1 /(1 - P/4) 

provided equation (18) is applicable, that is the curvature is small 
and yield does not occur. The behaviour is thus similar to that of 
the initially out.of line rod and spring mechanism. Deflection of 
the strut occurs as soon as P has a value, and becomes very large as 

P approaches first critical load Q =Tr 2E142  

19. 	The measured central deflection is 

= b - (the central value of Yo) 

a1 

= 	_ pA) - al  

This reduces to 
= 	+ 	•• 	.. 	(21) 

Now &A1 
 is constant for a given strut )  so the graph 6/F against 

is a straight line of slope 1A and intercept on the 8/1 )  axis of 
a1 /4. (Fig. 11) 

v 
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P/Q 
S/p  

 

0 

 

Fig. 11. 

The behaviour of the initially crooked strut is thus a function of its 
initial crookedness and of the critical load of the perfectly straight 
member. The linear plot, (equation,21 and Fig. 11) is a valuable means 
of empirically relating the behaviour of the member possessing practical 
imperfections to that of the perfect member, and is due to Southwell. 
The plot is often called the Southwell Plot on deflections. It was 
introduced in the first place as a means of inferring the first Euler 
load of a strut from measurements of deflections taken during loading, 
but the implications are much more far reaching. 

20. The behaviour of .a column subject to compression P and bending 
moments at its ends: 

Columns in structures are never pinned at their ends, but 
fixed in some way to other members of the structure. Often the .joints 
are quite rigid. Rotation of the end of a column is therefoi-e 
restrained by the other members framing into the joint, and any _ 
rotation c.D111.s into play end moments. To discuss the buckling of 
frames consisting of an assemblage of members, it is convenient to 
analyse first the behaviour of a single column subject to end 
moments. 

21. Consider the initially straight bar AB acted on by an 
axial load P and end moments MA and MB, anticlockwise moments and 
slopes being considered positive. (Fig. 12). 

Fig. 12 

At the point x, the bending moment is 

M = MA - (MA 4' MB) X/.€ + Py = -El d2y/dx2 , 

which gives the differential equation 

d2y/dx2 	PY/EI = 41A (1 - x/e)/P + MB  x/EI)? 
Putting P/EI = k2 , the solulion can be written 

-y. =- A sin"Q kx + B abb'kx - MA(1 - 0:)/I+ MB  x/PAe 
Substituting the boundary conditions 

x = 	y = o and x =,e 1  y = o l  

we have 	B = MA/P and A = -(MA/P)cot 02,-(14B/P) cosec k,e 

A 
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Now 	dy/dx = Ak cos kx - Bk sin kx + (MA -1-  MB)/Pi. 

Putting 	x = o, the slope at A is given by 

EIq = ,,,,Ae(3/3 _ mB ic0,6 	.. 	• • 	(22) 

where 	04 = (6/k2 2) (la cosec 14- 1) )) 

and 	= (3/k2 ,e 2) (1 - kicot 14) ) 	•• 	(23) 

and 	k = FTE1 . 

The treatment given here is similar to that given in 
Niles and Newell "Airplane Structures" Vol. 2 (Wiley) but is 
believed to be simpler. In this book the oe and (3 functions 
are derived in connection with the three moment equation for two 
adjacent struts. Equation (22) is simpler. 

22. Bending of a bar subject to tension T and bending moments 
applied at its ends. 

In this case we have 

El OA  = MAI(V3 - N 4eocA  • .  ..  (24) 

where 	owe = (6/4 ,e ?) (1 _ kl icosech k -4? ) ) 
1 	 1 	) 

) 	°. 	.. 	(25) 

	

(., = (3/14 4? 2) (ki6oth klAe - 1 ) 	) 

and 	k
1 
=417E . 

The functions oe =di.; for axial compression and -e and fi for 
1 	1 

axial tension are tabulated on pages 72 and 107 of Niles and Newell 
"Airplane Structures" Vol. II, 3rd ed., 1948, (Wiley). 

23. The behaviour of a column fixed at one end. 

Consider the column AB which is fixed at A and pinned 
at B (Fig. 13)0 

and 

Fig. 13 

Suppose a bending moment MB  is applied at B. This causes a 
deflection of the column as shown in the figure, and a bending 
moment MA at A. arises. Then we have 

El 0A  = M .A 1 /3 MB  4?0( /6, 

and 	EI OB  = MB  i(3 ./3 - 	id /6. 

V 



A 
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Now since 	= o, we have 

MA = (G.e/2 ( ) MB .  

and thevare MB/ 61/3 	4 (3 Eii,e (4/5 2 .... e4  2) 

mo9 B  represents the stiffness of the end B against 
The graph of MA/d9 B  against ke is shown in Fig. 14. 
for values of ke up to 4.495, becoming zero at this 
corresponds to 

P = k2EI = 20.2 EI/e. 

0 0 	 .. 	 ( 26) 

an applied moment. 
It is positive 

value, which 

When MB/aR  becomes zero, a vanishingly small applied moment causes a 
large rotaIion, and this gives the buckling load of the member. 

NAB/efs 
Fig. 14 

24. The procedure can be given an energy interpretation. 
The work done by the applied moment is MOB since M B  andaB 

are linearly related for any given values of P (Equation 26). 
The strut has not become unstable provided positive energy is required 
to deform it. The condition for stability is thus 'v.  MOB  is positive. 
At neutral equilibrium - MBOB is zero, and the expression becomes 
negative when the equilibrium is unstable. These criteria are 
consistent with those for stiffness given above, as they reduce to 
MBA positive zero or negative. 

25. The buckling of a simple frame. 

Consider the simple plane frame shown in Fig. 15. The 
joint B is assumed to be rigid and the members have the same length 
and flexural rigidity. 

P)  

P)  
To find the load P to cause buckling in the plane of the frame, a 
distorted form such as that shown is assumed. To cause the 
distortion, a small moment Mo  is applied at the joint B. Clockwise 
moments and rotations are considered positive. The rotation at B 
is then given by 
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9 

•EIOB  = EIi9BA  = MBA 40/3 

• = EI 	= MBD e/3  
= EI OBc = MBC 1(4  /3 

Also 	MBA 	MBD. MBC = Mo , 	,where MBA is the moment that 

arises at B in the member BA, etc. 

Therefore . (3EI/i) PBA43  6) Bp 	6 BC/(51 - 

whidlgives 14044 = 3(2/(5 + 1). 

The stiffness is therefore zero when (3= -2, and this occurs at 
k = 3.5 or P = 12.3 EI/-e2 . 

26. 	Principles useful in the calculation of the buckling 
loads of more complicated frames can be illustrated by reference 
to the frame shown in Fig. 16. 

Fig. 16 

ik‘  

P 
The members are of equal length and flexural rigidity and the end 
D is fixed. 

We have 	EI0B=EIOBA = MBA 'P/3 , 
= EI °BD = MBD "873  - MDB 

=EIOBc=Mgcle/3 

Also 	El ODB= MDB E13  - MB 1/6 = 0 
	 .. (28) 

and 	MpA 	MBD 	MBC = Mo 	• • 	.. (29) 

if an external moment Mo  is applied at the joint B. Clockwise 
moments and rotations are considered positive. 

Equation (28) gives 

MDB = MBD• 

Hence equations (27) and (29) give 

(3E/le)( 1 /13 	4/3 	1/p) = Mo . 
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The stiffness of the joint is zero when mo/e9B  = 0, 
or 	= -3/2. This is the buckling condition, and yields 

k = 3.6, or P = 13.0 El/I 2. 

27. 	Alternatively, we may treat the behaviour as an 
eigenvalue problem. We have, putting Mo  equal to zero, 

MBA 	MBD 	MBC = ° 

	

BA - -BC 	0 

MBA - 3MBD/4= 0  

These three equations, being linear and homogeneous in the three 
unknowns MBA , MBD  and NBC,  have in general only the zero 

solutions MBA= MBD = MBC 	as = 0 (in which case all the end 

rotations are zero and the structure has not altered shape), 
unless the determinant of the coefficients is zero. In this case 
the equations are not independent and there is insufficient 
information to solve for the unknowns, which are therefore undefined. 

Putting 1 	1 	1 

1 	0 	—1 

0 

we obtain 	p= -6/4 
which is the same condition as given above. The interpretation is 
that when the moments are undefined, then the linearly related end 
slopes are undefined and the system has buckled. 

For a discussion of eigenvalue problems see Biezeno 
and Grammel "Engineering Dynamics" Vol. 1 (Blackie) p. 183, also 
Courant and Hilbert "Methods of Mathematical Physics" Vol. 1 
(Interscience Publishers). 

28. 	It will also be shown that at the buckling load the 
ratio of some internal bending moment to an externally applied 
disturbing moment Mo  becomes infinite. 

We have MBA 	MHD 	NBC = Mo. 

• 	MBA - MBC 

PmBA — 3MBD/4  
These give 	2MBA MBD = Mo 

=0 . 

= 0 . 

Therefore 	(6/4  I) MBD 	= 
-1 

and 	MBD4qo '='(6/4( 	1) 

The ratio becomes infinite when 

= -3/2, 	which is the same condition as 

4 

previously. 
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29. 	We have therefore three conditions or methods 
for obtaining the buckling load of the frame in the mode 
considered. They are 

(i) the stiffness of a joint to an applied 
disturbing moment becomes zero ( or the energy required to rotate 
the joint becomes zero.) 

(ii) the determinant of the coefficients in the 
equations in the bending moments is zero. (Similar equations in 
the deformations of the system, e.g. the end slopes of the members, 
can be handled in the same way.) 

(iii) an applied disturbing moment causes an 
infinite interRal moment in some member of the frame. 

It is to be noted that the methods are 
mathematically equivalent once the desired buckling mode has been 
decided on. Various techniques are available for solving the 
equations, which become numerous and lengthy where a frame contains 
more than a few members even if these all lie in one plane. These 
techniques will be illustrated by referring to the buckling of a 
triangular frame. 

30. The Buckling of an Equilateral Triangular Frame in its Plane. 

One of the simplest frames is a triangle, and 
the buckling of an equilateral triangular frame having initially 
straight equal members will be considered. It is assumed that the 
frame is made up without any internal stresses being set up. 
Buckling in the plane of the frame without tension of the members 
can be ensured by placing the minor axis. of inertia of the cross- 
section of the members so that it lies in the direction perpendicular 
to the plane of the frame. 

Suppose the frame ABC is loaded in its plane as 
in Fig. 17, the applied forces passing through the intersections of 
the central axes of the members, so that no external moments are 
applied to the joints. 

Fige 17  Fig. 18 Fig. 19 

Then the axial forces in the members AB, AC and BC can be written as 
P, P and 	(Fig. 18) where P = W/ -if5 and compression is considered 
positive. 

Suppose the equilibrium of the structure is now disturbed 
in some way, giving rise to moments and slopes at the ends of the 
members as indicated in Fig. 19. Anticlockwise moments and slopes 
are considered positive. 



Then we have 

and 
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)) MeAb _ = MAB 3 	/6 

El OBA  = NBA /fi/3 2°(  /6  )) 
El OBc  = MBc  4/3 _ McB  -E.( /6 )) 

EI cB = NCB/P - NBC "1/6  ) 
EIOCA  = McAifi/3 MAC 4( )) 

EI eAc  MAC 4/3  MCA "e°(  /6  ) 

• • 	.. (30) 

where eeand P.  refer t9 members of length ihaving axial compressive 
load P I  andc4i and r:3 1  refer to a member of length I. having axial 
tension P/2. For continuity at the corners, ° AB = q110' °BA = 8B0P and ° GB =6I CA ° 
Also, since there are no external moments at the joints 

 

NAB + NAC = 0, MBA mBC = 	MCB + MCA = °. 

mAB = Ni = NAL 

NBC = MB = MBA 

MCA = = - mul 
q mit  + ot mB  +01, mc =0 

+ 2((3 +(1 .1 ) mB 	Got =0 

4,14A  +comB 	r&I ) 	= 0  

At the buckling load, MA, MB, and Mc are undefined. 

e4 	c4 

2 (6  + 	) 	I  

2(( + (13') 

This determinant, on expanding and factorising, gives 

(213 + 2(3 1  - 04') [2( (2( + 2( + o( 1 ) -ce] = o  

(3,) 

There are two modes of buckling. The symmetrical mode, (Fig. 20a) is 
obtained by putting the second factor equal to zero, and gives 

ki =5.0 or P = 25 EIg 2 . 

The unsymmetrical mode, (Fig. 20b), which occurs at a lower load is 
obtained by putting the first factor equal to zero, and gives 

= 4.0 or P = 16 EIM9. 2 . 

at should be remembered that if k = 15)7E, then113/TEI equals k/i/I. 
0.4! and (3 are thus functions of kiP „ for axial compression while 

di,' and rsi are functions of ki/a for axial tension). 

Hence, putting 

we have 

Therefore = 0 . 

0 • 	• • 
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Fig. 20 

In the above analysis for the triangular frame, all the equations 
have been written down. From considerations of symmetry or 
antisymmetry, this is in this case (and usually) unnecessary. 
The full treatment is given here because in certain cases, 
notably when dealing with problems of buckling out of the plane, 
the simplifications available from symmetry considerations are 
often rather difficult to handle. 

31. 	It is interesting to note that the solution for the 
unsymmetrical mode of buckling can be obtained by applying a small 
external moment at one of the joints. Consider the triangle ABC 
loaded as in Fig. 21. A small moment M o  is applied to the joint A 
so as to bend the frame into the shape shown. 

If\14  

tW/2 	W/2 
etc., Suppose the moments set up at the ends of the members are NAB, 

and the corresponding end slopes (9a, etc. Then equations (30) 
still hold. However, in this case 

NAB + MAC  =M0.  

MBA 	NBC =0. 

and 
	

MOB + MCA = 0.  

Fig. 21 

Also, from the antisymmetry of the distorted shape, 

eBA = 8B0 = ° CB 	61 CA/ and eAB 	e  AC 

Inspection of equations (30). then gives 

MBA = MCA = _ NBC = MOB 

and 	PIAB = 1110 = 
 • • 	•. (32) 

eBA = a BC and the second and fourth equations of (30) then give 

MDA/M0  = (c( /2)/( 2 f5  - 0( 1 ) 	.. 	(33) 

The frame buckles when a small applied moment M o  produces an internal 
moment which tends to infinity, or MBA/4Q  tends to infinity. Hence, 
at the buckling load, 

2 	+ 	=0 



applted moment 
M = 100 	AB AC 

EA SC 
25 -O 50 

- (4. 
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which is the same condition as we obtained previously. 

The solution is unaltered by putting Mo  equal to 
zero in the equations (32). 

This gives 	MAB = MAC = ° 

We then have, from 

0 0 BA = BC 1  

MBA (2 (3+ 2r 1  - 0( 1 ) =0, 

If 	2r; + 2(5 1  - 	= 0, 

MBA is undefined, and a vanishingly small disturbance has 
resulted in buckling. 

32. The unsymmetrical buckling mode can also be 
solved by using the moment distribution convergence criterion. 
This method is valuable in determining the critical loads of more 
complicated frames. The solution of this problem is carried out 
here as an illustration. The method is merely the solution of 
equation (33) by moment distribution. So long as the process 
converges, MBA/M, is finite. At or above the buckling load, 
MLiA/M0  is infinite and the Process of moment distribution 
diverges. 

For a discussion of the moment distribution 
convergence criterion, see N. J. Hoff "The Analysis of Structures" 
(Wiley) pp. 294 - 318. The unified treatment given in this thesis 
of the calculation of critical loads by all methods is, however, 
believed to be original. 

33. Consider first the frame ABC with no external 
forces acting, so that the axial forces in the members are zero. 
A small moment of 100 units is applied at A. In this case, all 
carry over and distribution factors are equal to 0.5 and the 
moment distribution is as follows . 

+3 +- 

Fig. 22. 

Ct3 CA 



The final bending moment diagram is 
$0, 
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Fig. 23 

This can be checked, since 

El 8 BA = MBA 2/3  - NAB /61  

= EII9Bc = MBC -E/6 . -4g/3 MCB 

But MBA NBC = 0 and MK = MOB 

Therefore 	M =MAB /3 BA  

If 	NAB = 502  MBA =  

Where there is an axial force in a member, the carry 
over and distribution factors must be adjusted accordingly. 
Consider a bar AB subject to axial force P and bending moments 
MA and MB . 

Then 	êA = MA M6/3EI - MB -goe/6EI 

and 	6113  = NB  ip/3EI _ NA /6E1. 

If rotation is not allowed at B y  OB  = 0 

and 
	

MB = MAo4/2(3 

For an applied moment MA at A, the carry over to B, if rotation is 
not allowed there, is oirMk/2(3. The rotation at A is given by 

El OA =MIL iV3  - MA 0( 2/12(3 

= MA (E/3) (-0( 2/4  ) 

= NA (64) (4P 2  -0( 2)/3(3 . 

Consider a number 5 members 1, 2, 3, etc., meeting at 
a joint, (Fig. 24), their far endsaevented from rotating. Suppose 
a moment M applied to the joint causes rotation 0. If the moments 
induced in the individual members are M etc., then 

2 	2 
=(4EI1/11)(3-1  )/(4(31 -0(1 

But 
	

M = 2M1  = 4E0E. 	1..3v(4 2 	2 
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Fig. 24 

Therefore 

and 

o - a 2" (IM) 3/(40.0( 2) 

= M (Iitei)[3(;1/(4 2.1  -0( 12 ) 

(1/e) 3p /(11132  -(42) 

These stiffnesses and carry-over factors are tabulated on pages 122 
and 125 of Niles and Newell "Airplane Structures", Vol. ii, for both 
axial compression and axial tension. 

The moment distribution for the triangle loaded as 
in Fig. 25 can now be proceeded with. 

0.365 0.386 	 0-S Ao5 

Fia. 25 

Put 
	

(ci) .0  = 3.8; that is P = (3.8) 2EI/i 2  

Then the G and (3 functions, and the carry over stiffness factors 
are as in the table: 

Member Thrust k -e a( 01/2/3 5r3,k2  4  • 

AB P 3.8 -2.9961 -0.8128 1.843 0.3850 

AC P 3.8 -2.9961 -0.8128 1.843 0.3850 

BC —P/2 2.7 0.533 0.716 0.3685 1.223 

Stiffness and distribution factors are shown in Figs. 25b and 25c. 
The distribution of an external moment of 100 units applied at 
joint A is carried out in Fig. 26. Only half the calculation is 
shown, as the distribution is symmetrical. Fig. 27 shows the 
resulting bending moment diagram. Comparison with Fig. 23 showS 
that large bending moments are induced in the frame as the buckling 
load is approached. 

,ak 
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The accuracy of the distribution may be checked by substitution 
in equation (33). 	• 

We have mBilmo = (d/2)/(2p 	- ct ) 

= 2.21 for a = 3.8 

In this case 	Mo = 100 

therefore 	MBA= 221. This agrees with Fig. 26. 

In this case, the distribution has converged, and the buckling 
condition is therefore(02)AB ,>3.8. However, induced moments 
are large, and the buckling load is being approached. 

Put 	( k/)AB = 4.0  

Then the carry-over and stiffness factors for the members are: 

Member a .1/2 313 
2' 	,. 2 11.(1 	- a 

AB 4.0  2.56  • 0.293 

Ac 4.9 2.56 0.293 

BC -  2.81 0.362 1.238 

■," 
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Fig. 28 shows the distribution of an external moment of 100 units 

Fig, 28 

This distribution is diverging, so the buckling load has been reached 
(or passed) at k.e = 4.0. 

The two solutions to equation (31) for the two 
buckling modes were checked by experiments with a model made of 
flexible strip, and resulted in good agreement. It is also possible 
to calculate the higher critical load for the symmetrical buckling 
mode by the determinant method as in Art. 30 or by imposing the 
required distortion pattern as in Art. 31" . 

The application of suitable disturbing moments 
consisting of equal moments of opposite sign at B and C I  also 
permits solution by the moment distribution convergence method. 
However, it appears that in the case of more complicated frames, 
unless some sort of symmetry or anti-symmetry can be preserved, 
considerble care is required in the calculation by the moment 
distribution method of higher critical loads for buckling modes 
other than the fundamental. Even if a suitable disturbance is 
given, slight errors in distribution might well cause divergence 
at the first critical load. 

It should be noted that the calculation of higher 
critical loads is not always merely an academic problem. The 
pattern of imperfections throughout a structure may be such that 
at failure it deflects in a mode which does not correspond to the 
fundamental mode of the corresponding perfect structure. 

34. 	When the moment distribution method is used to find 
the first critical load for more complicated frames, it often 
becomes difficult to ascertain whether the process is converging 
or diverging. The zero stiffness method proposed by H.G. Allen 
overcomes this difficulty in certain cases. Allen has contributed 
two valuable papers on the calculation of critical loads using the 
zero stiffness conception: "The Estimation of the Critical Load 
of a braced Framework" Proc. Roy. Soc. London Series A Vol. 231 
(1955) p. 25, and "The Estimation of the Critical Loads of Certain 
Frameworks" The Struct. Engnr. Vol. 35, No. 4, April, 1957, p. 135. 
In his first paper Allen uses the conception of positive energy 
being required to displace a stable structure. In the second paper 
the emphasis is placed on stiffness, and it is also shown that his 
procedure of successive reduction of triangular frames to single 
members of equivalent stiffness is mathematically equivalent to 
reducing the determinant. 

The principle of zero stiffness of a joint to an 
applied moment at the buckling load has been explained. Professor 
Allen's technique of solving the equations will be applied to the 
triangular frame. 
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Firstly, consider the strut AB, (Fig. 29), 

p DMAE, MBAC p 

Fig. 29 

Then, using the previous notation, we have 

El eAB = MABIP/3  - MBA  4 0(/6 (See equation 22) 

and 	El 61T1 A 
DA = MBA 1/3/3 MAD '62(  /6,  

o( and ig being defined by equations (23). 

These equations may be rewritten in the form 

MAD = Pi °AB 	eBA) ) 
) 

mBA = 	geiBA 	rAkB) .. (34) 

A 

where d and (3 are now defined by 

1 k  
= 2ke [2 —  ke cot 

r 	ki  
= 2kt L2 - kt cot k kt 

k = PAL where 

+ cot 	) 

) 	(35) 	. 
— cot k 

Values of ./ and (3  are tabulated against P/Q in "The Analysis of 
Engineering Structures" by Pippard and Baker, (1943). The 
notation used here is that of these authors, and care should be 
taken that equations (22) and (34) are not confused. 
Equations (34) can be rewritten 

MAD 	e .v AB 	AB AB 	AB BA ) 
/-) 	) 

M = U 	+ V r) BA BA e BA 	BA AB ( 
.. (36) 

where AB = UBA  = P )2 0( 
V =  AB VBA = P /erg 

) 

)

) • • (37) 

Consider the triangle ABC loaded in its plant (Fig. 30) 0  
where the members are subjected to axial loads. 

Fig. 30. 



- 	V2.* 	+ U 	) 
AC 	CA 	CB 

- 	AC  42 AUCA 	+ UCB  ) 

) 

) 

) 

) 

). (39) 
) 

where Ul 	= U. 	+U. 
AB 	AC 

= UBA  + UBC  BA 

I..7 	1. 4.7 P/Q- 

I•4-7 	1.47 

4.")*) 
Fig. 31  

(b) (a) 

a 
Vs1/2  

-.28- 

Now suppose disturbing moments MA  and MB are applied at the joints 
A and B. We then have 

MA = MAB 	MAC. 

MB = MBA 	MBC °  

MCA NCB = 0 7 

Now 
	NAB = UAB e AB • + VAB 9 13A 

MAC = UAC 	AC + vAC 9 CA 

and 
	

9AB = 61AC = t9A •  

Similar equations apply at the other joints. 
Elimination of Oc  throughout gives 

MA = 111 ABA + V'ABO B ) 

and 	MB = UI BA B 	VI BA A ) ) 
e (38) 

and 	V' AB  = V' BA  = VAB  - VAC VCB AUCA 	UCB)  

The modified slope deflection equations (38) give the relationships 
between the moments MA  and MB applied to the triangle ABC and the 
rotations of the joints, OA  and eB . The triangle ABC can therefore 
be replaced by a hypothetical member A'B' of equal stiffness with 
respect to disturbing moments. Neutral equilibrium exists when 
MA/r 0A  is zero for zero MB . The condition for stability is that 
MITA-is positive. From equations (38), if MB  is zero, we have 

MAP9A = (UI AB 	VI AB V I BA)/11 I BA 

The criterion for stability is therefore 

UIAB IP BA VtAB VIBA 	° 
	

(40) 

35. 	 If the triangle ABC is loaded as shown in Fig. 31a, 
the values of U and V are as in the table, if PA for the struts 
AB and AC has the value 1.5. 
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Member 	Al. ie pA 0( (3  U=Pid 11%..-Pir3 

AB  strut 	1 10 1.5 .098 .194 1.47 2.91 

AC 	strut 	1 10 1.5 .098 .194 1.47 2.91 

BC 	tie 	1 10 0.75 .665 .244 4.99 1.83 

The values of U and V for each member are shown in Fig. 31b, U values being 
written near the ends of the members and V values near the centres. The 
triangle ABC may now be replaced by a member A'B' of equal  stiffness so 
far as disturbing moments are concerned. We have, using equations (39), 

U'
AB = 1.47 

utBA = 1.47 

VIAB = VI BA 
= 2.91 - (2.91 + 1.83)&1.47 4.  4.99) = 2.09 

The expression of the left of equation (40) has the value 

(1.62 x 5.94) - (2.09) 2  = 4.25. 

This expression may be called the stability criterion. In this case it 
is positive, and the frame is stable. 

When P/Q has the value 1.6, the calculation is as follows 

Member PA (3 U V 

AB 1.6 .078 .189 1.24 3.02 

AC 1.6 .078 .189 1.24 3.02 

BC 0.8 .628 .227 5.00 1.82 

/, 
- (3.02)

2 
 A1.24 + 5.00) = 1.02 

- (1.82) 2/(1.24 4. 5.00) = 5.71 

VIAB = VI BA 
= 3.02 - (3.02. x 1.82)7(1.24 	5.00) = 2 , 14 

Stability criterion = (1.02 x 5.71) - (2.14) 2  = 0.24. This is positive 
and the frame is stable. 

For PA = . 1.7 1  we have 

Member PA 0( U v 

AB = AC 

BC 

167 

0.85 

.058 

.599 

.184 

.213 

0099 

5.09 

3.13 

1.81 

+ 1.47 - (2.91) 2/(1.47 + 4.99) = 1.62 

+ 4.99 - (1.83) 2/(1.47 + 4.99) = 5.94 

UlAB 

UI 
BA 

= 

= 

1.24 

1.24 

+ 1.24 

-I.  5.00 



Ul 
B = 0.99 + 0.99 - 0.13) 

/ 

Ul BA = 0.00 + 5.09 - (1.81) 

V'
AB = V' BA  3.13 - (3.13 

Stability criterion 

= (0.37 	x 	5.54) - (2.40) 2  

./ 2 
 /(0.99 + 5.09) 

2
/(0.99 	5.09) 	= 	5.54 

1.81)/(0.99 + 5.09) 	= 	2.40 

= 	0.37 

= - 3.7. This is negative 

1'6 
I.  7  P/Q 
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and the critical load has been exceeded. 

A graph of the stability criterion against P/Q is shown in 
Fig. 32. Lbecanes zero ats 	= 1.61 which corresponds to ke = 	.61 
= 3.99,or P = 16 EI/I'. This is in good agreement with the value 
obtained in Art. 30 as the solution of equation (31) which 
corresponds to the lowest critical load for the gravest buckling 
mode. 

Fig. 32 

36. Successive replacement of triangular frames by members of 
equal stiffness furnishes a method for the determination of the 	. 
critical loads of plane triangulated rigid-jointed frames which 
are not redundant if the joints are considered pinned. 

The value of Allen's method is that there is no 
question of having to determine the convergence or otherwise of 
a distribution process. The buckling load is given by the 
stability criterion becoming zero. Interpolation and the plotting 
of a curve of the stability criterion against load aids the 
calculation, whereas no such aid is available when using the 
moment distribution convergence criterion. The method as given 
is limited to plane triangulated non-redundant frames. It is of 
course extendable in principle to redundant frames (if the forces 
in the members can be estimated by some means), and to space 
frames, but the equations then become very difficult. 

37. In the discussion of the buckling of the triangular 

frame, the mathematical equivalence of the classical methods of 
analysing the frame and the various special techniques for handling 
the equations, such as Allen's stability criterion or zero-stiffness 
method, or the moment distribution convergence criterion, can be 
clearly seen. The methods all depend on the properties of linear 
equations where the coefficients are functions of the applied loading. 

Where there exists more than one buckling mode having 
different critical loads, the determinant method gives all the 
solutions. Other methods such as the application of a single 
disturbing moment (this includes Allen's method and the moment 
distribution convergence criterion) will in general give the 
lowest critical load associated with the gravest buckling mode 
though the author has found that this may not always be the case 
if a joint which does not rotate in the gravest buckling mode of 
deformation is chosen for the application of the disturbing moment. 
Some care is therefore necessary in the application of these methods. 
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38. It is worth mentioning that when considering any 
structure, we are concerned with the stability or instability of the 
structure as a whole. Though compression members or elements must be 
present for buckling to occur, the critical load and the associated 
mode are dependent on the properties of the whole of the frame and 
its loading. This is still the case for practical frames under load. 

39. The buckling of a Warren truss in its plane. 

As an example of the application of various 
methods of calculation of critical loads of plane triangulated 
frames, the buckling of a Warren truss will be considered. The 
classical method will first be used to determine the buckling mode. 

LW 
A 

—(31,, 
Q 

	 C 

W I 	tV\I 	Fig. 33 

The truss, when loaded as in Fig. 33, may buckle in various modes, 
but the critical load for the symmetrical mode shown will be 
calculated. The forces in the members are given in the figure, and 
all members have equal length and flexural rigidity. On applying a 
distortion of this form, we have 

9 	_e
B 1  °E 	

OD = 0 . A  

Then 	OA = B = MAB 
(3  ABPi3EI - MBA ti  AB 4E' 

and 	8 B  0 BA = M
BA 

(3 
BA 

ii3EI - M 04 4?-/6E AB AB 	I . 

Hence 	MBA = " KAB 

The other equations of symmetry are easily written down. We then 
have, denoting the members by the numerals in the figure, 

6E1 	= 14,11B  ( 2 1.1 	°4 1 )  

6E1 9Ad)/1  = Mm). 2 /81 - MDA 	2 ), 

6EI eAEd = MAE 2 3  -M 	) 3 ) 

Also from 	6) EA = 6 ED' 

MEA' 	- MAE c4  3 = MED ' 46:4 MDE 44" 

and from 	DE r.  ODA 	0, 

MDE  26.  - 1\4ED  0( 4  :0-• = m . 2p m 	oe 
D 	2 	AD 	2 

(40) 

(41 ) 
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Hence MDE/ME'D  = 4/2p ) 4 	) 

and MDA/MAD 	(°1 /2 (3  )2 	) 
(42)  

The subscript numerals apply to the members marked in Fig. 33. 
For no applied moments at the joints, 

M
AB 

+M 
AD 
 + M 	

0 
AE 

= 	) 
(43) 

MEA 	MED 	= 0 ) 

and 	MDE 	NBA 4. MDB 	MDC 	
= 0. 

The latter equation is satisfied by the equations of symmet 
Substitution of equations (42) in the second equation of (40 
and in equation (41) results in five equations in the five 
unknownsM' MAD , 	

MEA r.,yMinD • Setting the determinant 
AB  

equal to zero for the buckling condition gives 

(2 i + 	) 	(412> 	ok 
2

) 	0 	0 
2 

1  

(243 1  + 	1 ) 	0 

(- ,(3) 	(+ 2) -(4p2 -(42) 
4 

1 
	

1 
	

1 	0 	0 

0 

Because of the simplicity of its last two rows, this determinant 
is easily reduced to one of the third degree which on expansion 
and graphical solution gives 

(14 ) 	= 4.68 or P = 22 EI/t 2 . 
AE 

It is seen that there will be considerable difficulty in solving 
by this method frames of higher complexity than this. 

40. The solution of this simple frame by the moment 
distribution convergence criterion is somewhat lengthy. The 
slow convergence or divergence of the process at loads near 
the critical load tends to make the determination of critical 
loads by this method rather tedious. The reason for this is 
evident, and has been clearly stated in a recent paper by Bolton: 
"Basically this difficulty arises because the testing distortion 
used is not the critical mode, but merely the rotation of one 
joint. If the critical mode were to be used as the testing 
distortion, one cycle would be sufficient to decide whether the 
calculations were converging or not." The reason for this is 
that it takes many distributions for the effect of a single 
disturbance at a single joint to be felt throughout the whole 
frame, and many more for the carry-over to reflect back to the 
originally disturbed joint. In many cases, even after several 
of these rather lengthy cycles, it is difficult to determine 
whether the process is converging or diverging. 

41. Several methods have been advanced with a view to 
reducing the length of the calculation involved. A method due 
to the author is to apply disturbing moments at several joints 
rather than at one joint, particularly if the disturbances can 
be given the correct sign, which is often the case if the desired 
buckling mode can be pictured. If any disturbance is given an 
incorrect sign, the effect is then to hinder the quicker convergence 
or divergence being aimed at. 
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For the truss loaded as in Fig. 33, we have, if 
(ki) for the member AE equals 4.8: 

Member •Load la Carry-over 
factor 
d/2(3 

Stiffness _ 
3j/(4f3'-0( 4) 

AE = BC P 4.8 -4.093 -0.257 

AB P/2 3.4 1.206 0.537 

AD = BD 0 0 0.500 1.000 

ED = DC -P/2 —3.4 0.321 1.338 

For disturbing moments as shown in Fig. 34, the distribution 
is carried out in Fig. 350 

It is evident from inspection that the process is diverging. It is 
worthwhile keeping a running table of the moments distributed at 
each stage if block distribution is used. They are:- 
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Distribution 
No. A 

Moments distributed at Half 
Numerical 
sum of 
moments 

1 •+100 -100 +100 -100 200 

2 +149 -149 + 82 - 82 231 

3 +159 -159 +123 0 -123 282 

4 +156 -156 +131 0 -131 288 

5 +206 -206 +127 0 -127 333 

6 +236 -236 +168 0 -168 404 

The variation of the numerical sum of the moments distributed at 
each stage appears to be a guide to the determination fo whether 
the process is converging or diverging. 

Experiments made by the author with a carefully 
made flexible model indicate that the buckling mode solved here 
is the fundamental mode possessing the lowest critical load. 
Divergence of the distribution here for (ki) Av  = 4.8 is in 
agreement with the fact that the critical loaris given by 
00AE = 4.68. (Art. 39). It can be shown that if a moment is 
applied at D I  or if the signs of any of the other disturbing 
moments are changed, then the divergence is slower and it is more 
difficult to decide whether the distribution is in fact diverging. 
More distributions are required in order to be sure. Also, if any 
of the disturbing moments have incorrect signs, the keeping of 
running totals of the moments distributed at each stage (whether 
summed algebraically or numerically) appears to convey very little 
information. 

In conclusion it may be stated that when using the 
moment distribution convergence criterion it is best to apply only 
one disturbing moment unless the buckling mode can be at least 
partly pictured. If this is so other disturbing mOments can be 
added, but any given the wrong sign will hinder the rate of 
convergence or divergence. 

The above discussion will be found to be in 
disagreement with a paper by A. Bolton "A Convergence Technique 
for Determining the Elastic Critical Loads of Rigidly Jointed 
Trusses" The Struct. Engnr. Vol. 37 No. 8 Aug. 1959 p. 233. In 
this paper, Bolton has worked some problems in which disturbing 
moments are applied at several joints of a frame. These moments 
are given any sign (the buckling mode is not pictured), and a guide 
to the determination of whether the moment distribution is converging 
or diverging appears to be available by attention to the algebraic 
sum of the moments distributed in each cycle. However, the method 
does not appear to be generally valid. 

° 42. 	A further method of simplifying the moment distribution 
is to carry out the process for only part of the frame. The member 
with the lowest stiffness is chosen, a disturbing moment is applied 
at one end, and the moment distribution is carried out considering 
joints some distance away as either (i) fixed or (ii) pinned. The 
convergence divergence criterion is used to find the critical load 
in either case, and the critical load solutions to (i) and (ii) 
appear in some cases to sandwich the critical load of the structure 
as a whole. Though there is some supporting experimental evidence in 
these cases, it is by no means evident that the principle is generally 
valid. 
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(See A. Bolton "A Quick Approximation to the Critical 
Loads of Rigidly Jointed Trusses" The Struct. Engnr. Vol. 33 p. 
9, Mar. 1955. The method was used by N. W. Murray, in "A Method 
of Determining an Approximate Value of the Critical Loads at which 
Lateral Buckling Occurs in a Rigidly Jointed Truss" Proc. I.C.E. 
June 1957 p. 387, with good experimental agreement). 

43. It may be mentioned that some difficulty was encountered 
by the author in applying Professor Allen's method (Art. 34) to the 
Warren truss loaded as in Fig. 33. This truss contains unloaded 
members, but it can be shown that though the parameters 0( and r3 
(equations 34 and 35 become infinite when P is zero, the parameters 
U and V (equations 36) take the finite values El and iEI respectively. 
The application of the method to this problem seems to hingea great 
deal on the accuracy with which U and V can be written down for all 
the members, and it was not found possible to achieve agreement 
with the foregoing calculations. 

44. The buckling of space frames, or of plane structures out of 
their plane: 

In principle, space frames can be handlea by any of the 
methods previously discussed. It is necessary to write down the three 
components of the rotations of the ends of a member in terms of its 
torsional and flexural rigidities about each axis and the bending and 
twisting moments in the member. The equations of continuity and 
equilibrium of each joint then provide sufficient information to 
solve for the buckling load. The equations become, of course, very 
difficult to handle. As examples, Murray has applied the approximate 
technique given in Art. 42 to calculate the critical load at which a 
lattice girder buckles laterally when laterally restrained at the 
panel points. The author has also solved by the classical method 
the buckling of a plane triangular frame out of its plane, and this 
will be given later. Certain problems of buckling in space such as 
lateral buckling of beams are also amenable to solution by energy 
methods such as Rayleigh's principle. 

45. The buckling of redundant frames. 

Where the forces in a frame cannot be obtained simply 
from statics, the joints being considered pinned, strain or 
complementary energy methods are available for their estimation. 
Any of the foregoing techniques, except Professor Allen's method 
unless it is modified, are then applicable for the calculation of 
critical loads. 

46. The load carrying capacity of practical framea. 

Attention has up to this point been devoted mainly 
to the calculation of critical loads of elastic structures. The 
critical load for a given mode of deformation has been defined 
as the load at which the structure is in neutral equilibrium with 
respect to static displacements in that mode. The critical load 
is a property of the structure if it is initially perfect - that 
is, the members are initially straight, loads are centrally applied, 
and no eccentricities at joints are present. The structure is also 
assumed to remain elastic during the specified displacement. 
Flexible structures of sufficiently high yield strength, when 
carefully made and loaded, do reach approximately this load in 
practice, and then assume large deformations. But for most practical 
structures the critical load remains a mathematical property of the 
structure. The effects of crookedness of members, imperfections 
of alignment of members and loads at joints, and the limited 
deformations which are available before yielding of the material 
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occurs, cause the load carrying capacity to depart considerably 
from the critical load. All the.imperfections listed, and 
particularly their pattern throughout the whole structure, 
may also influence the buckling mode at failure. In practice, 
the problem is usually to determine, not one of the critical 
loads of a structure, but its load carrying capacity. This is 
defined in some way to suit the purpose of the structure, such 
as the maximum load the structure can carry, or the load at 
which there occur deformations which cannot be tolerated. 
Once the load carrying capacity of the structure is known, safe 
or working loads can be estimated. 

47.. 	Some discussion as to the relation between.the 
practical behaviour of a structure under load, its critical 
load, and its imperfections, has already been given for the 
case of a rod and spring mechanism and a pin-ended column. 
This approach will later be further elaborated. 

48. The failure or even deformation of a structure 
(by instability or otherwise) is of course a dynamic problem. 

-The loads placed on a structure are often moving. Even if the 
leads are stationary with respect to the. structure, they act 
through distances as the structure deforms. In general, a load 
is therefore a function of' its displacement and often its rate 
of displacement or, more simply, a function of distance and time. 
The rate at which a load can act, and the rate at which a strut 
can move or unload, the latter being affected by the inertia of 
the strut, obviously partly govern the failure of a structure. 
The dynamics of the whole system is very involved. In this 
thesis, only staticproblems will be considered, though, of 
course, the dynamic aspect must affect any experimental work. 
Any work discussed is given for slowly applied loads, where 
dynamic effects have been minimized to some extent, though in 
certain cases failure is quite rapid where a structure approaches 
close to its critical load and then fails quickly. 

Though the correspondence between the neutral 
equilibrium of a system with respect to static disturbances and 
the vibrations of the system has been shown to some extent 
(Arts. 6 and 17), this is done only as a very preliminary move 
towards the analysis of dynamic effects, and has very little 
bearing on the practical problems of dynamic buckling under load. 

For a discussion of the dynamic aspects of 
buckling, see N. J. Hoff "Dynamic Criteria of Stability" Research 
.Engineering Structures Supplement (1949) p. 121 and N. J. Hoff 
"The Dynamics of the Buckling of Elastic Columns" Jnl. of App. 
Mechanics, Trans. A.S.M.E.„ Vol. 18 No. 1 March 1951. The 
latter article considers the dynamics ,  of the buckling of a single 
column in a testing machine .where the head of the machine is 
driven downwards at a constant rate. The inertia of the column 
is taken into account in the buckling, action. This appears to be 
one of the few published articles where the dynamic' effects are 
carefully investigated. See',also N. J. Hoff "Buckling and 
Stability" Journal Roy. Aero. Sec. Jan. 1954, J.F. Davidson • 
"Buckling of Struts under Dynamic Loading", Journal of Mechanics 
and Physics of Solids': Vol. 2, 1953, and J.F. Davidson "The 
Dynamic Lateral Instability of Beams", Proc. Royal.Soc. Londoni 
Vol. 226, Series A, p.111, 1954. 

49. Inelastic buckling. 

The term inelastic buckling covers two important 
aspects of buckling theory. The first is the calculation of 
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critical loads of "initially perfect" compressed bars 
(and loaded structures) consisting of inelastic material. 
The main problem is that on displacing (by bending) a bar 
of such material which is under axial load, the stress strain 
relation on one side may be different from that on the other 
side depending on whether or not the strains begin to reverse 
on One side. It is now fairly well established that the 
Shanley tangent modulus relation gives a lower limit to the 
critical load in a test where the axial load is continuously 
increasing and strains at no stage reverse in any part of the 
material. The Karman reduced modulus relation may apply where 
the axial load remains constant during deformation. 

50. It should not be thought, however, that the mere 
substitution of the tangent modulus instead of Young's 
modulus in all formulae for critical loads furnishes a 
solution to all inelastic buckling problems. The solution 
is still a critical load, a property of the perfect structure. 
Departure from linear elasticity in the stress strain 
relationship has also an important bearing on the behaviour 
of practical structures. A structure may deform elastically 
under load until the yield strain is reached at some point. 
The material then strains plastically, and plastic buckling 
may Occur very quickly or take some time to develop. This 
effect will be considered later. 

For treatment of inelastic buckling, see 

F. Bleich "Buckling Strength of Metal Structures" pp. 8 - 21 
(1952) McGraw Hill, 

N. J. Hoff "The Analysis of Structures" pp. 318 - 328, 

L. H. Larsson "Inelastic Column Buckling" Journal Aero Sciences 
Sept. 1956 p. 867, 

S. Timoshenko "Theory of Elastic Stability" p. 54 and p. 156. 

51. In this chapter, the overall stability of members 
and structures has been considered. An important subsidiary 
effect is that of local instability of portions of members, 
especially where thin sections are involved. This effect will 
also be considered later. 
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CHAPTER II 

THE LOAD CARRYING OAPICITY 

OF PIN-ENDED STRUTS. 

51. Introduction 

This chapter discusses the behaviour of pin-ended 
columns in testing machines. The linear deflection plot used by 
Southwell is developed for a single pin-ended column, and it is 
shown how the Euler load can be determined from deflection readings 
taken during loading, and the effect of initial imperfections 
estimated. As loading progresses, the initial deformation is 
magnified in the ratio 1/(1 - PA) where P is the load on the 
column and Q its Euler load. The method is extended to take 
account of eccentric loading. 

The Southwell Plot on strains, as developed in 
this thesis, is however, much more powerful. Strains are usually 
easily measured. Substitution of the yield strain (or some proof 
strain) in the equation of the linear strain plot is presented as 
a method of obtaining the collapse load of a column. Experimental 
work is included as an indication of the validity and also the 
limitations of the method. 

The whole of the work should be regarded as 
introductory. The behaviour of struts built into structures or . 
structures liable to instability will be studied in Chapter Three. 

52. The internretation of column tests in testing machines. 

Though no column is initially straight 
homogeneous or perfectly elastic, the Euler buckling load 
remains a useful result. The conditions of testing a column in 
a machine may approximate fairly closely to those assumed when 
calculating the Euler - load if we attempt to load the column as 
nearly concentrically as possible and minimize friction. Suppose 
we have an initially straight strut whose Euler load is Q 
centrally loaded with an axial load P. Then if P is less than 
(4 the straight form is stable, and the bent form is not. But if 
P equals Q, a state of neutral equilibrium exists. Suppose however 
the strut is initially bowed, having an initial crookedness S. 
when P = O. Then if the central deflection g is measured as 

. the applied load is increased, the load deflection curve is of the 
form shown in Fig. 36. 
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If 8 0  = 0 and the material does not yield, the load deflection 
curve Rilows the path OAB. But if S o  has a value, then the plot 
obtained is that of the curve in Fig. 36. If S o  is small, under 
good testing conditions we may obtain a curve such as curve (a), 
Fig0 37. For increasing values of So , curves such as (b), (c), 
(d)' are obtained. If yield occurs due to high bending stresses, 
the curves can show maxima, as indicated by the dotted lines of 
Fig. 37. These are the experimental crippling loads. Thus the 
loads measured experimentally even for a pin-ended centrally 
loaded member, May not reach anywhere near the Euler load Q, 
depending on the value of So . Long struts loaded as concentrically 
as possible may give the crippling load P max. approximately equal 
to Q since considerable deflection is necessary to cause the column 
to yield. The smaller the value of 	the closer do the curves 
approach the limiting path OAB I  and te more pronounced is the knee 
in the curve. The curves also have a flatter peak. For simple 
struts up to the yield the curves approximate to rectangular 
hyperbolas. Friction at the ends of the column tested has the 
effect of raising the measured crippling load. 

In loading a long column in a testing machine, 
the buckling load is often taken as the load at which the column 
seems to flick sideways, or exhibit sudden deflection. This will 
generally correspond to some point K beyond the knee of the curve 
in Fig. 38 and the "buckling" load reported will be P l . 

DEFLECT1 ot.1 
Fig. 38 . 

Or the buckling load for long struts where no sudden deflection 
occurs may be taken as the load for which there are two positions 
of stability, one each side of the central position, as in Fig. 39, 

There one 4WO p01.6.1410nS of s+obiliim 	Fig. 39. 
proMed Pa < F co.,ct 	 . 

This load will be dependent on the testing machine used, and in 
particular on the stiffness of the head of the machine, which 
depends on the method used in the machine to measure the load. 
With a flexible load-measuring system it may be necessary to 
load to large deflections well beyond the knee in the curve of 
6 against P before two stable positions can be obtained. Loads 

obtained in testing machines may be almost as much a function of 
the machine and technique used as of the column tested even under 
conditions as close as possible to pin-ended. The term buckling 
has no meaning for an initially crooked or eccentrically loaded cobnml 
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A 

But the smaller the eccentricity o4L initial curvature, the 
sharper is the knee in the load deflection curve, the 
instability of the column is more marked, and the measured 
critical load approaches the Euler value. 

53. The estimation of the critical load from a load test 
on a column. 

In his paper, '"On the Experimental Analysis 
of Observations in Problems of Elastic Stability", (Proc. 
Royal Society, London, 135A, p.601), Southwell gives a method 
of estimating the Euler load of the corresponding perfect 
column, even though there is initial crookedness present in 
the column tested. This has been given in Art. 18. If 
deflections are measured normal to the minor axis of the 
section during a column loading test, this gives a method 
of analysing the experimental results, and ascertaining if 
they agree with the calculated Euler load. 

54. Extension of Southwell's method to eccentric loading. 

The above treatment due to Southwell has been 
extended by the author to the case of a pin-ended column 
having small eccentricity of loading as well as initial 
crookedness. 

4 

Fig. 40. 

Suppose AB (Fig. 40) is a column of initial form 

70(x) = Z an. sin 
n=1 

loaded with an axial load P at eccentricity e. Under load 
it takes up the shape y(x). Then the bending moment at x is 

M = P(y + 	= -El d2 (y - y0)/dx2 . 

and therefore d%/di + Py/tI = d2yo/dx - Pe/EI ,  
= z (n2 IT  2/  h 2, ) a n  

sin nlixA - Pe/EI •• (44) 

where 	k = 57E. 

Again the form of y is dependent on the initial shape y o  and 
also on the eccentricity of loading. Try a solution of the 
form 	 eo 

y = A sin kx + B cos kx - e + 2: b sinnira 
1 	n 

0. 	(45) 



0 

1 
-1 )  sin niF/2 

Q ) 
+ an  

Then 	d
2
y/dx

2 
= -k

2
A sin kx - k2B cos kx 	- 
- 2 2 n . 2 	• bn  sin  

Substitution in equation (44) gives 

bn  = a1 /(1 - P/n2Q) where Q =1N2Eibe:1 

A and B may be obtained from the boundary conditions 

y = o at x = o, . 

This gives 	B = e and A = e(1 - cos ki)/ sin k 

On substitution in equation (45), putting x = X + 

we obtain 	y = e [sec (k2/2) cos kX 1j , 

+ 	[an/(i - P/n2Q)] sin .  niix/e 	(46)• 

At the centre, x = R/2, X. = o l  and 
an 

Y = e(sec 14/2 -1) + 2  - P/n4Q sin n Tr /2. (47) 
The measured central deflection is 

Y - yo  

= e(sec ki/2 1 

As P approaches Q the n = 1 terms dominate, and using the 
approximation for the secant 

..sec ki/2 sec (1r/2)la (1 + PAQ)/(1- • P/Q) 

we have 	= 1)/Q) (ai + 5e/4)/(1 - 

and therefore g/P = 	+ (al  + 5e/4)/Q 	•• (48) 

The graph of S/P against S is again a straight line of slope 
1/4 and intercept on the LIP axis of (al  + 5/4 e). 

55. 	This expression holds for eccentricities which are 
of the same order as the initial crookedness. At large 
eccentricities the error.in  the approximation for the secant 
must be investigated. Then neglecting yo/e, that is, supposing 
an/e is small, we have 

y = e sec OciA0 cos kX - e. 

If We put 	Y = y + e l  then 

Y = e sec Oc4/20 cos kX. 

The strut is bent in a cosine curve (see Fig. 41) of which the 
half wave length L may be obtained by putting 

Y = o at X = L/2. 

This gives 	cos kL/2 = o. 
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therefore 	kL/2 = triT/Ei L/2 Fir/2. 

therefore 	L = TAIT. 
This length L varies with the load. As P increases , L is reduced, 
as shown in Fig. 42. 	

e sec -A-k 

agada, 

The measured central deflection is 

e [sec (Tr/2) 157.74-  - 11 
Values of (S/e)*(QA) are plotted against EA in Fig. 43. 
The graph proves to be very close to a straight line of slope 
450, whose equation is 

SQ/eP = 1.2 + S/e. 

This reduces to 

= 	+ 1.2e/0Q. 

Thus the plot of VP against g again gives a straight line of 
slope 1A, if e is constant. Eccentric loading has had no effect 
on the linearity of the plot. Southwell's original article 
suggests that in the case of eccentric loading the slope of 
the plot will be a measure of the critical load of the equivalent 
concentrically loaded column L (equation 49). As this varies 
continually, a straight line plot is not expected. This argument 

however f incorrect 

S/e 	 Fla. 43. 
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56. The Southwell Plot on Measured St ains 

It is often more convenient to measure strains 
instead of the deflection of the column during loading. In 
his paper "On the Analysis of Experimental Observations in 
Problems of Elastic Stability", Southwell restricted the 
analysis to deflections, but, from the title, the generality 
can be inferred. Now the obvious deformation parameter to 
measure for columns is strain,  but this has apparently not 
previously been done, though Rayleigh has stated that the 
assumption that any distorted configuration in any eigenvalue 
problem can be expressed as a synthesis of normal modes 
exaggerated by the loading is defensible from a physical 
standpoint for any elastic system, though it may require 
much elaborate analysis to justify it from the standpoint of 
a mathematician. However, it is hardly sufficient to extend 
Southwell's method to the analysis of strain measurements 
merely by analogy, and some analytical basis is required. 
In this chapter the strain plot for a single column is 
examined both analytically and experimentally. In chapter 
three an analysis and the consequent justification of the 
method where strain is the deformation measured is given for some 
simple structures. 

For the initially crooked column under 
eccentric load, equation (47) gives the deflection. The central 
bending moment is then 

M = ,P(y + e) 
.0 

= Pe sec (0/2) + Pan/(1-P/n2Q) sin n 1702. 

If v is the co-ordinate of a point in the cross -section, measured 
normal to the axis of bending, and I = Ar' is the moment of 
inertia of the section about this axis, then at this point the 
compressive stress is given by 

f = P/A + Mv/I = (P/A),(1 liv/Pr2) 

and the corresponding strain is, if the n =1 terms dominate, 

= 	see  ki 	alv 	1 
c= - E EA 	r2 	2 7,2 • T-27F7d 

= 	1  [ This reduces to E 7 E 	i 1  +  PAS  P-1 	2".g: A  • 	,2 e 
-- r 	1 PA  

-21_7] .. (50) 
1 - P/Q 

which gives 	4 = E + y_ ( e  + el  + Pe/4Q) 4' 1 -E11/4  
P 	EI 

The plot of 	against dr rises above a straight line of slope 
1/Q by an amount equal to 

4E1' 	QEA 

When strains are measured on the compression side, these terms 
tend to cancel. In many cases, especially for small e l  they 
can be neglected, 



PLAT E. 

• 

• 

Measurement of deflection of rectangular section 
steel column. Load measured with a  proving C. 

Measurements of longitudinal strains in an aluminium 
angle-section column. 

• 

• 



PLATE 2 

Small calibrated load measuring devices. 

• 

Huggenberger mechanical strain gauge. 

 

 

A 

Measurement of strains in rectangular section steel column. 



PLATE 3 

. 

• 
Measurement of longitudinal strains in angle - section 
members loaded as columns. The shortening of the 
member is being measured simultaneously. 

Local buckling of angle-section strut. 

A 

A 



—45 — 

However, equation (50) can be reduced to the form 

PAA - 	 PAA + L (e + al  + Pe/40 	(51) P 	El 

The significance of the terms may be noted:_ .  

E is the total measured longitudinal strain._ 
P/EA is the longitudinal strain if no buckling - 

occurs, and is independent of any instability effects., 

- P/EA) is a measure of instability effects._ 

The Southwell Plot on (E- P/EA) as given by equation,(60) 
is very close to a straight line. ..Since (6- P/EA) is a 
measure of the bending, this is the part of the strain that 
one would expect to run away as the Euler load.is  approached. 

57. Experimental work. The Southwell Plot on Deflections. 

A rectangular section steel member measuring 0.501" - 
x 0.132R x11.6° long was loaded as a be2m and its flexural 
rigidity determined as El = 2530 lb. in. 	The member was 
then loaded as a column as concentrically as possible 
between ie dia. balls set in countersunk holes in its ends. 
During loading, deflections 5 perpendicular to the minor 
axis were measured at the centre of the column. They are 
shown plotted in Fig. 44. The curve appears to be approximately 
a rectangular hyperbola. 

The corresponding Southwell Plot of S/P.  against Sis 
shown in Fig. 45. It is linear, and its equation 14 

5/R =. 5/1 83 + (001 5 x 1073 ) • • 

a. 

This may be compared with equation (48) derived in Art. 54 
which is 0 = 6/4 +(8.1  4  5e/4)/4 	•e o* (48) 

The calculated Euler load of the strut is 

Q = 11 2EIa 2  = 188 lb. 

The value given by the Southwell Plot is 183 lb. which is 
in good agreement. The initial crookedness of the strut 
measured by using feeler gauges and a straight edge was 
about 0.018 in. The above equations give 

al  + 5e/4 = 188 x 0. 15 x 10-3  = 0.027 in. 

This indicatas reasonable agreement as there might well have 
been eccentricity of loading of the order of the 0.006 in. 
required to give perfect agreement. 

58. ExperimentakWork. The Southwell Plot an StrainS. 

An aluminium angle section member measuring 
0.59 in. x 0.59 in. x 0.036 in. and 32.5 in. long was fitted 
with brass end pieces in which were cut grooves parallel to 
the minor axis at various eccentricities. It was loaded as 
a column in a frame using a screw jack and calibrated load 
gauge, consisting of a dial gauge in a frame, (See Fig, 46) 
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Strains at the corners of the angle at its mid-height were 
measured with light Huggenberger mechanical strain-gauges 
during loading. The Youngs' modulus of the material was 
first measured, and found to be 9,000,000 p.s.i. For the 
stress-strain curve see Fig. 150. The properties of the 
member were: 

Cross-sectional area = 0.038 sq. in. 
-5 4 

Moment of inertia about minor axis I = 56.4 x10 in. 
• 

Flexural rigidity El = 5100 lb. in.. 
2 

This value was in good agreement with the value obtained 
when a similar member was loaded as abeam. . 

The calculated Euler load for buckling about the 
minor axis of inertia is then 

02 

	

= 2EI/A. 	=.44 lb', 

The graphs of measured strain6against load P - for eccentricities 
of 0, 0.3 in. and 0.4 in, are shown in Figs. 47 and 48. They are 
of the same form as those for deflection against load previously 
discussed. For zero eccentricity they exhibit fairly sharp , 
knees as the calculated Euler load is_approached. The Euler 
load is not reached and could not be inferred from the loading 
test directly. With pronounced eccentricity of the load, no 
sharp knee occurs but the curves have a gradual sweep. _Large 
strains are attained at loads much less than the Euler load., 
Figures 49 and 50 show the Southwell Plots for these strain .  
measurements. With zero eccentricity, the slopes of the grapes , 
which prove to be straight lines are 1/44 lb. - ' and - 1/46 lb. - ' 
These agree well with the calculated Euler load of 48 lb. 
With eccentricity present, there is a little deviation from 
the straight line, and the graphs are steeper, as predicted, 
with inverse slopes of 38 lb. or less. Another angle was 
taken and loaded in a similar way using a proving C to measure 
the load, as in Fig. 51. Typical graphs of Eagainst P I  and 
6/P against are shown in Figs. 52 and 53. They are of the 
same form as before. The critical loads, or inverse slopes of 
the 0 against 6 graphs are however less than before and 
there is a discrepancy between the inverse slopes of the e = o 
graphs and the Euler load. It is thought that this is due to 
the rotation of the top of the proving C as it deflects. 
Because of this rotation the effective length of the column 
is more than its actual length , o  When a symmetrical load gauge 
was used as previously, allowing no rotation, there was no 
discrepancy. 

These gfaphs are included here chiefly in order to 
show the way in which the curves in Fig. 52 can all be turned 
into the straight lines of Fig. 53. As a check on the 
experimental work, equation (50) can be taken and used to 
predict the strains. We have 

EI 	 

	

 
. 	(-! + (1 + P/4Q)6.1 6 P 	Ts. 

° 	
1 

- I -- - P/Q 
The measured value of the initial crookedness of the column 
Used was less than 0.001 in., so al  can be neglected. Values 
of the strain Ecan be- calculated using the following values: 
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= 48 lb., v = 0.224 in., 	I = 56.4 x 10
-54 

2 
E = 9 x 10

6 
lb. in

-2
, A = 0.038 in 	al = o ' 	e = 0.3 in., 

P = o to 25 lb. 	Calculated and observed strains are plotted 
in Fig. 54. The agreement is marked, the measured strains at 
higher loads being rather more than-those calculated. The 
difference is sufficient to alter t4. slope of the Southwell 
Plot of e/P against 4' from 1/48 lb -I  (Euler load = 48 lb.) 
to 1/38.5 lb.. See Fig. 55. The explanation probably lies 
in the fact that at the higher loads the aluminium is stressed 
up to 9000 lb./sq. in. and its Young's modulus at this stress 
is less than that assumed. 

59. Further experimental work on the Southwell Plot on Strains. 

The preceding work has shown the linearity of the 
Southwell Plot on strains. The following experimental _work •  
indicates the order of accuracy of information obtained from 
the plot. A method of estimating the load carrying capacity of 
a strut is then presented. 

The member used in the work described in Art. 57 
was loaded again as a strut and longitudinal strains 6 at its 
mid height were measured. The strain load plots are shown in 
Fig. 56. Graph 1 shows the measurements taken on the convex 
side of the member where the strains were tensile, and graph 2 
those of the concave side where the strains were compressive. 
On the same graph, the line 6 = P/EA is plotted. This_is the 
calculated axial strain if no buckling occurs. Graphs l_and 2 
are symmetrical about this line. Values of (6- P/EA) - See 
equation 51, Art. 56 - are easily obtained from this graph. 
Fig. 57 shows the corresponding Southwell Plot on strains. 
( 6 - P/EA)/P is plotted against ( 6 - P/hA). It proves 
to be a straight line whose equation is 

-P/EA)/P = (6-P/kA)/185 + (0.7 x 10-6) .. (53) 

This may be compared with equation (51) which is 

(6 -P/hA)/P = (6 -P/hA)/Q + v/EI(e + al  + Pe/4Q 
.. 	(51) 

From Art. 57 we have Q = 188 lb. so the value of 185 lb. obtained 

from equation (53) is in good agreement. Also, since 
(e + al  + Pe/4Q) is approximately equal to (al + 5e/4) as P 
approaches Q, we have 

+ 5e/4) = (EI/v) (0.7 x 10-6) = 0.027 in. 

if El = 2530 lb. in
2 

and v = 0.066 in. This is in exact agreement 
with the value obtained in Art. 57 from the deflection plot on 
the same member. 

In Figs. 58 and 59 are shown the measured strains 
and the Southwell Plot on strains for a rectangular section steel 
member 0.738 i. x 0.132 in. x 15.1 in. kong, for which 
EA = 26.4 x 10 71b., and El = 3820 lb. in', and hence the 
Euler load is Q = 166 lb. The measured initial central 
crookedness was 0.020 in. 

IIP 
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The equation of the Southwell Plot on strains is 

( 6 - PAA)/P = 	- PI)/i70 + (0.3X106)  . 

Hence Q = 170 lb., and (al  + 5e/4) =3820 x 0.3 x 10-6/.066= 0.018 in. 
These are in reasonable agreement with the values given above. 

60. An aluminium angle-section member was then taken. It 
had the following properties: leg width b = 0.575 in., 
leg thickness t = 0.036 in., lengAh 4? = 16.2 in., 
cross-sectional area,A = 0.040 in ,Young's modulus in tension 
E = 9 x 100  lb. in. -4  up to a strain Rf 0.0013; hence 
EA = 3.6 x 10 5  lb., El = 4640 lb. in, and the Euler load 
Q = 160 lb. The member was fitted with brass end pieces_and 
loaded as a column between * in. dia. balls. Strains were 
measured on each of the corners of the member at its mid-height 
as indicated in Fig. 60, where the graphs of load against strain 
are also shown. Strains were measured beyond the stage where 
maximum load was reached, and until considerable plastic 
straining of the material had occurred. The elastic range of 
strains is shown in Fig. 60. Within the elastic range, the 
average strain is also plotted. All the points lie very close 
to the line = P/EA. This gives an indication of the accuracy 
of the strain measurements. Graphs of 16- P/EAI /P against 

16 - P/EA1 are also shown in Fig. 60 for each of the three sets 
of strain measurements. They prove to be parallel straight lines 
which lie very close together and have slope 1/147 lb. - . This is 
in fairly close agreement with the calculated Euler load of 160 lb. 
and is probably more accurate as the value of El was obtained by 
calculation from the measurement of the section, not from stiffness 
measurements. 

61. Some angle section members were bent from mild-steel sheet. 
The tensile stress strain curve for this material is shown in 
Fig. 61. The material is gastic uR to a strain of 0.001 and the 
Young's modulus is 30 x 10 lb. in -4 . Beyond the yield strain and 
up to a strain of 0.003 the.stress may be taken as having the 
constant value of 28,500 lb. per sq. in. The angle section members 
had the dimensions: leg width 0.595 in., leg thickness 0.037 in., 
length 16.2 in. The angle had somewhat rounded corners and the 
stiffness could not be calculated easily. The flexural rigidity 
was therefore measured in a test as a

2  simple beam (see Fig. 62) and had the value El = 1.24 x 104  lb. in. • The members were loaded as 
struts between * in. dia. hard brass rods placed in grooves in their 
ends so as to induce simple buckling about their minor axes. 

Measured strains are plotted in Fig. 63. Readings were 
taken well beyond maximum load until the load had fallen off to 
a small value. Local buckling finally occurred when the compressive 
stresses in the outstanding leg of the member were high enough to 
cause it to fail in this manner. The elastic range of strains is 
indicated. The Southwell Plot on strains in the elastic range is 
shown in Fig. 64. It is linear, and of slope 1/470 lb -I  whereas 
the calculated Euler load is Q = 1r 2EI/V = 467 lb. The plot is 
however less definite than previously, as the direct strain P/EA 
is of a magnitude comparable with the "buckling" strain ( 6 - PAA) 

• 
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62. 	A similar member was loaded as a strut, its 
central deflections being measured. The plot of load 
against deflection is shown in Fig. 65, and the corresponding 
Southwell Plot on deflections in the elastic rang2 is shown 
in Fig. 66. The slope of the plot'is (1/440) lb - I whereas 
the Euler load of the strut is 467 lb. 

It is interesting to investigate analytically the 
behaviour of this member in the plastic range. Assuming all 
the material of the member on the cross-section at its mid 
height has yielded,a stress diagram such as shown in Fig. 67 
can be drawn. Then the load on the column is 

P = 2 (g - h) t fy  = 2 a t fy  with (g - h) =a 

where f, is the yield stress of the material, in this case 
28500 lt, per sq. in. The bending moment is 

b + a . 	a  002 	2) t f  
2 	Y 2 	2 t/.2 Y .  

Putting 	a/b = k 9 we have 

P=2 btf k 

and 	M = b2  t f (1 - k2)/2 r2 = 

Therefore S= M/P = b(1 - k2)/4 12 k 

If 2btf7 =PYY  we have 

P/P = k 
.. (54) 

A) and 	S = (1 - k2)/4 
The relation between P/P and 64? given by equations (54) is 
plotted in Fig. 68. It Ts labellcd "Fully Developed Plastic 
Action. The deflections measured previously and shown in 
Fig. 65 are now plotted non-dimensionally in Fig. 68. For the 

member concerned, we have P = 2 b t fy  = 1160 lb. and hence 
Q/Pv  = 440160 = 0.38. This is indicated in Fig. 68. If the 
mattrial remained perfectly elastic, we would expect the 
deflection readings to become asymptotic to this line. The 
deflection readings can be extrapolated on this basis, using 
the equation of the Southwell Plot from Fig. 66, which is 

6/P = 6/440 	(0035 x10-4) 

This has also been carried out in Fig. 680 It can be seen that 
the actual deflection readings beyond the point where yield 
occurs lie below the line given by fully developed plastic action, 
but tend towards this line as the deflections increase. This is 
due to the fact that the material near the central axis of the 
member has not yetyielded, and hence equation (54) results from 
a considerable overestimate of P but a less serious overestimate 
of M. When local buckling occurs, the load to cause a certain 
deflection drops off again, as is to be expected. 

The stage at which yielding first occurs is indicated 
in Fig. 68. It is estimated by analogy from Fig. 63, as strains 
were not measured. It is seen that the ratio of maximum load 
attained to load to cause first yield is very little greater than 
unity. The reserve of strength beyond first yield is not 
considerable, and is of the order of only a few per cent. 
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63. The load carrying capacity of a pin-ended strut 

Though it might appear reasonable to relate the 
load carrying capacity of the strut to an analysis of its , 
fully developed plastic action, it appears that the plastic 
analysis can be avoided, and its failure defined in terms of 
elastic behaviour only. All that is necessary is to 
substitute the condition 

6 = strain to cause yielding = fyit 

in the equation of the Southwell Plot on strains, and to solve 
for the load to cause first yield. This is close to the failure 
load and for practical purposes the reserve of strength beyond 
first yield can be treated as adight additional factor of 
safety. 

We have, as the equation of the Southwell Plot 
on strains obtained experimentally, 

E P AA) = CE- P /EA) Ali + C1 	 .. (55) 

where Q1 is the reciprocal of the slope of the plot, equal to the 
Euler load Q of the column, and C 1  the intercept of the plot on 

the ( - P/EA)/P axis. Equation (53), obtained from fig. 5718 
typical. Equation (55) reduces to 

EE - P/A  _ E - P/A 	EA c  
P/A 	(1/A 	1 

Putting 	Ee = f, and EA 01  = 

we have 	f = P/A ( 1 + 12 1 	) •• .. (56) 
1 -P/Q 

  

When 6 equals the yield strain, then f equals the yield stress f.„. 
Hence, putting f = fy, it is possible to solve for the load P to' 
cause first yield, and this is close enough for practical purposes 
to the load carrying capacity of the strut, 

Equation (56) is familiar as it is similar to the 
equation used in the derivation of the Perry Robertson formula for 
pin-ended struts. Consider a pin-ended strut having initial 
crookedness given by al and concentrically loaded. Then the 
central deflection, from equation (42), is 

y = al/(1 - P/4) 

and the maximum stress is, from equation (50) 

fmax =(P/A) 	a1 v/r2(1 	PA1)]'  

The Perry Robertson formula is 'obtained by putting 

al v/r2  = 

and giving 17, the nempirical" value 0.0031/r necessary to make the 
failure loads of struts in certain tests equal to the value for P 
calculated from equation (57) when fmax was put equal to the yield 
stress. To summarize, the formula attempts to predict the load 
carrying capacity of a practical pin-ended strut in the following 
manner. Due to lack of knowledge of the behaviour of the strut 
in the plastic range, the safe assumption was made that the collapse 
load equals the load to cause first yield. The load to cause first 
yield of an initially crooked column was nalnulated (Equation_57). 

A 
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It contained the parameter al, and an empirical value was 
set for al, intended to include the effects of all 
imperfections besides initial crookedness such as the 
*effect of small unavoidable eccentricity of loading. 
This was done by comparison with a certain set of tests 
on columns. Equation (56), of course, forms a similar 
but better basis for obtaining the load carrying capacity 
of a pin-ended strut, as empirical values of'7 1  are 
obtained directly from the Southwell Plot on strains. 

It is intended here only to emphasize the similarity 
between Equation (56) and the Perry Robertson formula. 
It is sufficient to state that the solution of the equation 
(56), when considered as a design formula, is familiar to 
engineers so long as empirical values °fl i p expressed in 
some suitable form, are available. 

The load carrying capacity of struts as built 
into structures is the problem required to be solved in 
practice, and this will be discussed in chapter three. 

----o0o---- 

A 
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BIBLIOGRAPHY qrld_NOTES for CHAPTER TWO 

The numerals refer to the articles in the text. 

53. 	In 1938, E. E. Lundquist published a paper entitled 
"Generalized Analysis of Experimental Observations in Problems 
of Elastic Stability". N.A.C.A. Tech. Note No. 658 (1938). 
In this generalization, it was shown that if deflections of 
a pin-ended column are measured beginning at some load 
P = P11 thus avoiding the use of deflection readings taken at 
low load in case they are inaccurate, then a linear plot is 
still obtained. To obtain the Euler load, P 1  is added again 
to the reciprocal of the slope of the linear plot. This 
generalisation is fairly obvious from the fact that the 
plot is merely a method of finding the asymptote of a 

rectangular hyperbola. The origin of co-ordinates is 
immaterial. For this reason the lengthy mathematics presented 
by Lundquist is considered rather unnecessary and not really 
an extension or generalization of Southwell's earlier article. 

54 & 55. In his original article Southwell restricted the 
method to columns having small eccentricity of loading. 
This restriction is, however, unnecessary. 

The accuracy of the given approximation for the 
secant may not be generally realized. It holds quite well 
up to P/4 = 1, and is within 1% up to PA = 0.8. 

62. Though the linear plot on strains gives a simple 
method of predicting the load at which a column first yields, 
the behaviour of the column once yield occurs can be studied 
in a simple manner from the deflection aspect. The method 
given here is suggested by analogy from a paper by N.W. Murray 
"The determination of the collapse loads of rigidly jointed 
frameworks in which the axial forces are large" )  Proc. I.C.E. 
London Vol. 5 No. 1 April 1956 p.213. It should be noted 
that, because the assumption of fully plastic action is not 
fulfilled until very large deflections occur, the "fully 
developed plastic action" line in Fig. 68 has less relevance 
at the collapse load than might at first be imagined. It 
does however give an increasingly accurate idea of the 
subsequent behaviour of a ductile column as large deflections 
are attained, and this is often important with regard to the 
.energy absorbed by a structure during failure. 

63. For the origin of the Perry Robertson formula, see 
"First Report of the Steel Structures Research Committee" 
H.M.S.O. (1931), p.211 1  p.224 and p.228. The justification 
for the yield stress of 18 tons/sq. in., the crookedness 
eccentricity function /i = 0.003 I/T, and the load factor of 
2.36 are very hard to find in this report. J. F. Baker's 
comments in this report, and also in "The Steel Skeleton" 
Vol. 1. (1954) are interesting. The general opinion seems 
to be that there is little reserve of strength in a pin-ended 
strut once yield of some portion occurs. This is borne out 
by the limited number of experiments carried out by the 
author, some of which are described in this thesis. 
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The problem of reserve of strength of a strut beyond the 
point of first yield is discussed in Bleich "Buckling 
strength of Metal Structures" (1952) McGraw Hill 
p. 27 - 54. Merchant also attempts to take into account 
this reserve of strength in "The Buckling of Pin-ended-
Struts under Axial Load". The Struct. Engnr. Sept. 1949 
Vol. 27 p. 363. 
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CHAPTER III. 

THE USE OF THE SOUTHWELL PLOT ON STRAINS  

TO ESTIMATE THE LOAD CARRYING CAPACITY OF STRUCTURES  

LIABLE TO INSTABILITY 

644 Introduction.  

A structure may be considered to be in a state 
of stable equilibrium, from the practical point of view, when 
slight changes in loading do not produce disproportionate 
distortions of the system. When discussing buckling problems 
we are concerned with avoiding potential unstable equilibrium. 
In the long run, this is controlled by the complex stress 
strain relationships of the material, the deformation of 
every part of the structure, and the action of every part 
on every other part. 

Every elastic system under certain loading 
conditions may pass into an unstable state of equilibrium. 
But only when considerable elastic deformation can occur 
before the plastic region is reached will structural members 
become unstable in the elastic range. This is the case only 
when one or two dimensions of a member are small compared 
with the other dimension or dimensions. Slender columns or 
thin plates are examples. But, above the elastic limit, 
Young's modulus rapidly decreases, so many systems can 
become unstable. Every structure fails by instability if 
and how most easily it can. 

65. 	This thesis is concerned mainly with the 
field of framework stability. Broadly speaking, there are 
two types of instability. This is shown diagrammatically 

in Fig. 69. 

D FIR . 69. 

(a) 
	

(b ) 

In this figure, a load determining parameter W is plotted 
against a deformation parameter D. It is understood that 
D participates in the buckling mode on which our interest 
is centred and this is usually the mode in which failure 
of the structure occurs. Then in Fig. 69 (a) we have 
D = 0 for W <Wm.. At the value W = Wcr, there is a 
bifurcation of the load deformation diagram, which may 
continue to follow the path)) = 0 to greater loads, or at 
ccmstant or decreasing load'D may assume large values. 
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This type of behaviour may describe a structure made of 
material having a linearly elastic stress-strain diagram. 
In this case Wcr. is the elastic critical load. Methods 
of calculation of Wcr, in certain cases have been given 
in Chapter One. The diagram may also describe a structure 
containing material having a non-linear stress strain 
diagram. In certain simple cases the substitution of 
the tangent modulus for the Young's modulus of the material 
in the elastic critical load formula will give a reasonable 
value for Wm'. 

The type of behaviour shown in Fig. 69 (b) is, 
however more usual. The load deformation graph shows no 
bifurcation, and there is strictly speaking no instability. 
There is, however, a stage in the loading at which a 
slight increase in load produces a large increase in 
deformation, and this, for practical purposes, can be 
considered as a type of instability. The stage at which 
instability occurs and the margin by which it should be 
avoided in practice is a matter of practical definition. 
This will depend on the purpose for which the structure is 
designed and, in particular, the allowable deformations. 

If in Fig. 69 (b) we consider W increasing 
from zero, then at the value W = W, the deformations begin 
to increase quite rapidly. As loading progresses W reaches 
its maximum value W, at the point B. If the structure is 
loaded with dead weights, W cah not reduce, the diagram 
then follows the path BA, and the structure collapses. 
If the structure is being loaded by a straining device, 
it is possible to draw the remainder of the diagram where 
W reduces and D continues to increase along the path BC. 
The maximum load carrying capacity of the structure ib 142, 
and this equals the collapse load under conditions where 
the structure does not unload as it deforms. In practice 
we may be interested in the value 161 0 , or alternatively in 
the value of W for some value of D aefined in scaeother way, 
such as a limiting strain or a limiting deflection. 

In the case of a structure made of approximately 
linearly elastic material )  suppose Y in Fig. 69 (b) denotes 
the point at which material at some point in the structure 
first yields )  the corresponding load being Wqo Then it is 
possible in certain cases to obtain the value of VI I  by an 
elastic analysis, and subsequently to empirically elate 
W
2 

to W„. The purpose of this chapter is to indicate a 
method & carrying out the first step in this procedure. 

The relation between the types of behaviour 
shown in Figs. 69(a) and (b) has been discussed in 
Chapter One for the rod and spring mechanism and the pin-
ended column. For these examples, the load deformation 
relation (b) within the elastic range has been shown to be 
a function of the elastic critical loadljor. and the 
initial imperfections of the system. 

66. 	Methods exist for determining the critical 
loadings for mathematically perfect structures for simple 
buckling modes. The critical load is analogous to the 
Euler load of an initially perfect pin-ended strut. 
However all structures have imperfections such as crooked 
members or eccentric joints. The behaviour of an actuAl 
structure possessing imperfections is a more difficult problem. 
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Some method of relating the behaviour of the practical 
structure to the critical loading for the perfect 
•structure is required. Without some method of 
obtaining the effect of imperfections the designer 
is in the same position as one who would design a 
pin-ended column having at his command only the 
Euler formula for the perfect member. 

The equation of the Southwell Plot on strains 
furnishes a method of estimating Wl, the load to cause 
first yield, for a practical struclure. (See fig. 69(b)). 
For certain structures, namely those possessing fairly 
flexible members, 1#1, may be close to the collapse load 
W2, and it may not te worthwhile relating W3  to W2. 
The analysis of the structure in the plastic range is 
then entirely avoided. If the reserve of strength in 
the plastic range, W3  to W2 , is considerable, then a 
plastic analysis, or empirical correlation of W3  to W2 , 
is required. This effect becomes important for structures 
made of ductile material where the members involved are 
somewhat stiff. 

67. The approach as outlined above will be elaborated 
in the succeeding pages. It overcomes to some extent two 
main objections to the use of elastic theory and the yield 
criterion in problems of instability. It is not stated 
that the carrying capacity of a structure is reached if 
in one of the members the maximum stress becomes equal 
to the yield stress. The solution of the stability 
problem does not require an exact stress analysis of 
the structure. What is stated is that it is possible 
to determine in certain cases the load to cause first 
yield at certain locations where first yield precddes 
collapse by buckling. Attention is paid to the strains 
which participate in the buckling mode. The reserve of 
strength in the plastic range is not neglected. It must 
be taken into account if the ratio of collapse load to 
load to cause first yield is considerable. 

It is also sometimes stated that the yield 
criterion fails completely when the deflected equilibrium 
form to which the stress analysis is applied suddenly 
changes to a completely different configuration, as for 
example, in the lateral buckling of a beam. It will be 
shown that this type of problem is no exdeption. In 
fact the lateral buckling of a beam can be described 
by Fig. 69. It is, however, essential that the 
deformation D be a participant in the buckling mode 
that precedes failure. 

68. The limitations of the method are: 

(a) It is restricted to elastic theory. The 
reserve of strength in the plastic state must be taken 
care of by some other means, or, at least by a 
modification. Also, in practice, local buckling 
problems are not usually amenable to solution by 
this method. 

• 
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(b) Where structures are statically indeterminate in 
certain ways, the buckling modes are not easily defined, and 
no parameter D may give a clear definition of failure. 

(c) In many cases the whole behaviour of a structure 
is important, including the load deformation characteristic 
beyond maximum load. 

It should also be noted that certain initial 
crookedness and imperfection patterns throughout a structure 
may cause it to buckle and fail in a configuration which 
does not correspond to the gravest buckling mode of the 
perfect structure. This does not affect the main argument 
presented, but this occurrence must not be neglected in 
practice. 

69. 	Apart from refinements in methods of calculation 
of critical loads, a great deal of the work done on the 
instability of structures has followed the purely experimental 
approach. This may be necessary as an expedient in order to 
obtain certain information quickly. However, in the long run, 
because of the great number and wide range of the variables 
which characterize each individual problem, success can be 
hoped for only if close co-operation is achieved between 
theoretical and experimental research. That is, empirical 
methods must be soundly based theoretically. A summary of 
some of the work of various investigators folloWs. 

In studying problems of elastic stability, the 
Southwell Plot on deflections has been found a valuable 
experimental tool. The linear deflection plot used by 
Southwell was developed for a single pin-ended column, 
and showed how the Euler load could be determined from 
deflection readings taken during loading. The plot also 
shows the effects of initial imperfections and furnishes a 
means of determining the magnitude of these effects. As 
loading progresses", the initial deformation of the column 
is magnified in the ratio 1/(1 - P/Q) where P is the applied 
load and Q the Euler load. The Method is easily extendable 
to take iccount"of eccentric loading. 

In studying frames, W. Merchant has suggested that 
it be assumed that initial deflections are magnified in the 
ratio 1A1 - W/Wcr), where W is the applied loading, and Wcr 
the critical load for the initially perfect frame. The 
following analogy is drawn. For the case of a pin-ended 
strut we can write 

= f 	) 

where 	= the failure stress (the failure load divided by 
the area of the column), 	= the Euler stress, 	= the 
yield stress of the material, and / = an imperfections 
function. f indicates a functional relation. Then in 
the case of a framed structure, it should be possible to 
write 

Pf = f (Pc'  

where Pf, = the failure load, Pc  = the critical load, 
P = the collapse load if no instability occurs )  and 

= an imperfections function. The Naalogy is vaguely 	. 
drawn, but the suggestion of applying the Southwell Plot 
an deflections to structures is a valuable one. 
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N. W. Murray has applied this suggestion and obtained 
good agreement between the reciprocal of the slope of the 
deflection plot and the calculated critical load in the case 
of the lateral buckling of a rigidly jointed truss held at 
the panel points. Murray and Nutt have also applied the 
method in reverse to braced frames in order to predict the 
deflections in the elastic range from crookedness and 
eccentricity measurements taken in the unloaded state. The 
Southwell Plot on the measurements taken during loading does 
not however appear from their published work to have been 
carried out by these investigators in these experiments. 

In an interesting paper, W. G. Godden has described 
experiments on the lateral buckling of tied arches. 
Deflection measurements were analysed by using the Southwell 
Plot, and gave good agreement with the calculated critical 
load. This paper has been recently followed by an article 
by Chin Fung Kee in which the significance of the intercept 
of the plot has been noticed. This point seems to have eluded 
investigators up to the appearance of Mr. Kee's paper, in 
which he uses information obtained from the intercept of the 
plot in order to calculate the maximum stress in the arch 
rib. 

70. Several important points emerge from this discussion. 
Firstly it appears that the application of Southwellls 
deflection plot to structures has not yet received analytical 
justification. Secondly, attention has been concentrated 
mainly on the slope of the plot and the agreement with 
calculated critical loads; important information available 
from the intercept of the plot with regard to the effect of 
imperfections has been largely neglected. Thirdly, most of 
the work reported would have been facilitated or at least 
broadened by measurement of strains. 

71. The Southwell Plot on Measured Strains applied to Problems 
of Instability of Framed StructUr66. 	'''' 

Strains are usually easily measured, and stress can be 
directly inferred, hence the determination of a yield criterion 
is facilitated by the use of the strain plot. •It has been 
shown previously that the Southwell Plot on longitudinal strains 
in a pin-ended strut is linear. The method may be extended to 
structures on the basis of a physical argument, but it is 
desirable to have some mathematical justification if this 
is possible, 

The simplest frame is a triangle, and the Southwell 
Plot on strains at certain points in the members of a triangle 
will be examined both mathematically and experimentally. This 
preliminary justification of the use of the plot to obtain the 
critical load of a frame and the effect of imperfections on 
the load carrying capacity opens up the possibility of 
bridging the gap between the buckling of an initially perfect 
frame and the deformation and load carrying capacity of a 
practical frame. 

72. The Buckling of an Equilateral Triangular Frame in 
its Plane. 

The first buckling mode of a simple frame made up of three 
equal members rigidly connected at their ends to form a 
triangle has been treated in Art. 30. 
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By analogy with single column theory, the initially 
perfect frame, made up of initially straight members, 
was considered, and its buckling load determined 
mathematically. The behaviour of a similar frame 
made of initially crooked members will now be treated. 
It will be shown that Southwell Plots on strains which 
occur due to the buckling are linear, and can be used 
to determine the critical load of the initially perfect 
frame. Load tests on an experimental frame have 
resulted in good agreement. This analysis and its 
experimental verification forms a preliminary 
justification of the use of the Southwell Plot on 
strains to determine both the critical load of a 
structure and the effect of practical imperfections 
on the failure load. 

73. The Behaviour of a Trian ar Frame whose Members 
are Initially Crooked. 

To discuss this problem it is convenient to first 
consider the behaviour of: 

(a)An initially crooked 
(b) An initially crooked 
(c) An initially crooked 

to bending moments applied at  

compression member 
tension member 
compression member subject 
its ends. 

(a) An initially crooked compression member. 

Consider the initially crooked member AB shown in 
Fig. 70 having the unloaded shape 

00 
y = Z a- sin nirla. 1 	n 

The limits of summation throughout are 1 to 00 ;  and is 
the length of the member. 

Then dyo/dx = :E (nira)an  cos nIrx/i 

Fig. 70. 

and the initial slope at x = o is given by 

A = 	(n. 	) an  - 
.0 

The bending moment at x, under axial load P, is 

Mx  = Py = 	d2 (y yo)/dx?' 

Therefore 
d2y/6 2  + PyAI = d2yo/dx2  = 2: -(r?ir 2/V)an  sin n Trx/i. 

As the solution, put 

y = Z ba  sin nil xa 



which gives bn  = 
1 - PAF/n2 	P/n4Q 

an 

	 >I 

MA 	Me 
A 

MA+MB 	 MA* Mel 
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Then, 
n 2 	22 	ô 2 -n2Tr 2 bnic + P bn/EI = -n Tr an/ 

where 	Q = Tr 2EI/i 2  

Each component an  of the initial shape 2is "exaggerated" 
by the axial load in the ratio 1/(1-P/n Q). 

Also we have dy/dx = 	(n Ir a )bn  cos n IT x/2 4. 

At x = o, the slope is 

61  (n /)a/(1 - P 

In the case of initial shape one half wave, we have 

19A0  = 	ai  a and  = (  /8)/(i - P/Q) .. (58) 

(b) An initially crooked tension 'member. (See Fig. 71) 

Fig. 71. 

In this case Mx  = -Ty  = -EI (d
2
y/ax

2 
- d

2
yo/dx

2
) 

and we cbtain bn  = (nita )an/(1 + T/n2Q) 

In the case of the initial shape 

yo  = a2  sin 21rx/i 

we have  9A0  = 2 Tra2M and  = 11146 ) a2A1 + T/4) 	(59) 

(c) An initially crooked compression member subject to bending . _  _  .  . 
moments applied  at its ends. (See Fig. 72) 

N 
Suppose the unloaded shape is 

y = e>." an  sin n 

Then 	Mx = PY MA  - (11A  + MB) x/i 

= -El (d2y/ax2  + d2y0/dA 

Fig. _72 

n2Q) 



A 
eA 

4 

- 61 - 

Therefore 	d2y/dx2  + Py/EI 

= d
2
y0/dx - MO' + (MA + Midx/k ,e,  

• Put 	y = A sin ix + B cos kx + 	bn  sin nlix,a 

(MA/P) ( 1  - x/e ) 	14B  x/p t . 

This satisfies the differential equation and the boundary 
conditions at x = o and x = 	, if 

bn  = an/(1 - P/n2Q) 

B =14A/13  

and 	A = - (MA/P) cot ki - (MB/1°) cosec 

The solution is of course merely the sum of previously obtained 
solutions, as the differential equations are linear. 

At the centre of the bar we have x = 4/2 and the 
central deflection is 

y = A sin ii/2 + B cos kle/2 + 	sin n1r/2 

- MA/2P + MB/2P 

which reduces to 

we can put 

is then 

y = (MA - 
MB) (c k P/2 - 1)/2P 

[an/(1 	Pin2Q)] sin nit 	. 	..  (6o) 

For an eccentrically loaded column (see Fig. 73) 

MA  = PeA, MB = -PeB, and the central deflection 

y = (eA/2 + eB/2) (sec k 	-1) 

[a/(1 - Pin2Q) ] sin n i /2 	 (61) 

Fifl. 73. 
For the particular case of one end of the column pinned, we can 
put Mn  = 0. If the initial shape is a simple half sine wave, 
then The deflection is 

y = (MA/2P) (sec ki/2 -1) + a1  /(1- P/4).. 	(62) 

These results will be used in the following analysis. 



74. 	Consider an equilateral triangular frame whose 
initial shape is as shown in Fig. 74. This crookedness 
pattern is of the same form as the deflections for the 
gravest buckling mode. It is assumed that there are no 
initial stresses, and that the initial crookedness of the 
members is of simple form given by 

y = al  sin r- aca for AB and AC, 

and 	y = a2  sin 211lafor BC, 

where al  be and a2a are small. 
A 

ES 
Fig. 74. 

The initial angles that the ends of the members make with 
the straight lines joining their intersections are then 

( - Trai g) for BA and CA, 

( 	Tral a) for AB and AC, 

and 	( 2ira2a) for BC and CB. 

Anticlockwise rotations and moments are considered positive. 

By putting 2a0  = al  all the included corner angles 
can be made equal to 

Under load (see Fig. 75), if angles 0 ,10 ,etc. are 
measured anticlockwise from straight lines AB -etc., we have, 
using equations (58) and (59) 

El OAB  = ma:t  45/3 - MBA  ic116 + TrEial /41— pA) 

and 	El 013c  = NAV/3 - Mc  i00/6 - 2IrEIa2a(1 P/8Q)) 

etc. 	 00 	(63) 

where 	Q = IT 2EIg 2 , and the functions I , /3 1 .1 .4g are 
defined in Arts. 21 and 22* 

Now for equilibrium and continuity at the joints 

NAB NAG = ° 

NBA 	mBC = ° 
) 

NCA NCB = ° 

and 61 	= 6? 	=6? 	= 0.  AB 	AC' BA 	BC' 	CA 	- CB ° 

A 

4 

Fig, 75. 
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Also from the antisymmetry of the frame, 

= e 
BA 	CA.  

Inspection of equations (63) then gives 

BA = N
A, MAB  = MAC, and  

Hence MAB = MAC 	
o. 

Substituting in the expressions for OBA 
	&

BC 
(equations 63) 

we have 

mBA48/3 - ITEIal /-19( - p/Q) 

= MSC'le 	t/3 -/ c4 1 . 	- 2 TrEIa2te (1 

Since al  ,= 2a2 , this reduces to 

fi 2 
MBA t 

P/8Q) 

/r E1a1  = 27P/4Q (1 - P/9),(1 + Piai) (2 i 	2 - 

• 0 
	(64) 

It is seen that MBA  tends to infinity when 

(2(3 + 	- 	 = 0 2  i.e. when kt = 4.0. This is 
the buckling condition when the members are initially straight. 
It might be expected, from the fact that the term (1 - P/Q) 
appears in the denominator on the right of equation (64), that 
MBA  also becomes infinite at P/Q = 1, but this is not so. 
It is evident that the buckling load must be higher than the 
Euler load of the pin-ended strut, and it can be shown that 

Lim 
P =Q 
kt = iT 

0 2 
MB k; /11E19 = 5.0. 

In these expreRsions, 
P/Q = (k /77-  )'. mTh. 

using equa.tioe 
plot of 

2 , n 2 
Q = T EI/4 	p = k2EI, and hence 
can thus be obtained as a function of 
(64). Fig. 76 shows the resulting 

X = MBA  i2/ 7T EIai  against k = 	. 

9 2 Fig, 77 shows a type of Southwell Plot on MBA , where X/(k c ) 
is plotted against X. It proves to be a straight line of 
slope 1/16, and interdept on the X/(k.t) ) 2  axis of 0.19, whose 
equation is A 2  

I/(ct) = %/1 6 	0.19. 

This reduces to 

ELBA  = 0.19 Tr al  P/(1 - 

MBA  is thus a function of the load P I  the crookedness parameter 
al , and the critical load of the frame, since Pcr is given by 

= /1-6 = 4.0. That is P 	= 16EI/i 2 , the buckling load 
of the triangle having initially straight members. Thus the 
Southwell Plot on MBA  is a straight line. The reciprocal of 
the slope of the ploT gives the buckling load for the initially 
perfect frame. 
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It is interesting to investigate the behaviour of the 
angle 64 as the load increases. It will be shown that the way 
in which Om  runs away as the critical load is approached is 
similar to the more well-known behaviour of deflections. The 
analysis is introduced here to strengthen the argument that 
the Southwell Plot can be applied to any distortion parameter 
which participates in the buckling mode concerned. We have, 
from the equations (63), since NAB  = 0, 

9  
BA 

 =M 	4/3E1 _ 77, 81  /-'e _ 
A. 

= ( Tr a1 /E) px/3 - 1/(1 — P)J

• The initial value of Oln  is (- I1 s0?). Therefore the 
rotation from the initial position is 

°I BA 	g BA  + Ir 

Fig. 78 shows the plot of the rotation under load e' plA , 
divided by the initial angle (- al  /), against ki ."" 

It is interesting to plot the variation of M BA  with 
(9IBA' This is carried out in Fig. 79, where 

plotted against 	We notice that the 
NBA i/EI  (9°BA is  
stiffness of the joint B, as far as the restraint it affords 
to the member BA is concerned, falls steadily to the value 
given by 

4 

ail MBA 	ki BA 	= 6.5 • * .. (65) 

As the axial force in AB increases, the stiffness of the 
joint reduces. 

Consider the member AB in the frame ABC having 
initially straight members. Suppose NAB = 0 as in the 
case of unsymmetrical buckling. 

Put 	MBA  = -r, EI eBA/i 

where /A/ is a variable factor relating the restraining moment 
to the rotation. Then we have 

EIOBA = MBA 43/3  mAB 6(16  
= - 1,41,EIr; e BA/3 since NAB  = O. 

Therefore 
144_= 	_ 3/(S . 

 

At the buckling load we have la = 4.0, /3 = -0.46, and hence 
= 6.5, thus confirming the value found from the plot in 

Fig. 79. 

Fig. 80 shows the Southwell Plot on the rotation at B. 
The graph is a straight line whose equation is 

= 6:!,21gia71141/11_ + 0.025, 
.)  

(k.6)
2 
	16 

the slope of the plot being 1/16 and the intercept 0.025. 

4 
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As in the case of MBA' the Southwell Plot is a straight line 
of slope 1/16. 

A parameter which is related to the first 
buckling mode, and which is conveniently measured, is the 
strain at the centre of one of the compression members. 
If the bending moment at the centre of AB is MD , then the 
strain measured there is 

	

6 = 	MD  v/I 

where A is the cross-sectional area of the member, and v 
Is the co-ordinate of the point where strain is measured. 
The term PAA is linear with 13 , and independent of the 
buckling. MD  depends on the buckling alone, and runs 
away as the critical load is approached. Therefore, 
when strains are measured, the Southwell Plot should be 
carried out on (6 - PAA) which ecria]s MD  v/I. It is 
thus sufficient to -investigate the behaviour of MD  as 
k increases. Consider the member AB. It has been 
shown that NAB = 0, 

therefore 	MD  = Pyp  - MBA/2 

where yi)  is the deflection at D. (See Fig. 81.) 

Now 	yp  = a1 A1 - P/Q) - M 	k/e/2 - 1)/2P from equationWr 

We thus obtain 

	

,2 	
h  Mpt ArEI al  = (X/2) sec k/2 - (k)
2 
 /1T(1 -"PA). 

This equation is plotted in Fig. 82, and the corresponding 
Southwell Plot in Fig. 83. A straight line of slope 1/16 
is obtained. 

This analysis shows that the Southwell Plot on 
Mn  is linear. Hence if strains are measured at D, the Southwell 
Piot on (e - p/a) is linear and the reciprocal of the slope of 

• the plot is the critical load of the frame. In the analysis 
presented, the standard classical approach has been given in 
full : 111 order to show how the behaviour of the initially 
imperfect frame deviates from that of the perfect frame, and 
the method by which the two can be related using the Southwell 
Plot on strains. 

750 E'etalWorontigg_ladinofanEviater 
Triangular Frame in its Plane. 

An equilateral triangular frame ABC was made up 
of in. xi in. x 0.036 in. alumipium angle section members 
(.+6 = 31.75 in., El = 5080 lb. in.') bolted to brass end 
pieces so that the major axes of the members lay in the 
plane of the frame. The frame was loaded as in Fig. 84. 
The expected buckling condition is 

P  cr =16EIg 2  = 80 lb. 

The frame was loaded as in Fig. 84 and strains were measured 
on the corners of the angle members at the centres of members 
AB and AC using Huggenberger mechanical strain gauges. 
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In Fig. 85 the measured strains are plotted against load 
in the compression member, and graphs of strain/ioad 
against strain are shown in Fig. 36. The Southwell 
Plot on strains gives straight lines for both members, 
and the reciprocals of the slopes are 79 lb. in each case. 
This is in good agreetent with the calculated critical 
load, but would not have been obtained from the loading 
test alone, as the maximum load reached was 72.3 lb. The 
frame was set up again as in Fig. 87, the load being 
applied with a slight eccentricity e at the apex. The 
strain against load plots and the strain/load against 
strain plots for two values of e are also shown in 
Figs. 85 and 86. Due to the eccentric loading, the 
strains increase more rapidly than for e zero, but 
Fig. 36 still shows straight lines, which have an inverse 
slope of 30 lb. in each case. This critical load could 
not have been inferred from loading tests. Very large 
deflections were obtained at much smaller loads than 
when e was zero. 

Of course, the initial crookedness pattern in 
the experimental frame was not of the simple form assumed 
in the mathematical analysis. The experimental measurement 
has however justified the use of the linear strain plot 
in determining the critical load for the gravest buckling 
mode. 

Another trianilar frame was made up from20.500" 
x 0.1325" steel strip ( e = 15.1", El = 2530 lb.,in. ). 
The expected buckling condition is P = 16EI/4?' = 176 lb. 
or Wcr = 305 lb. (See Fig. 84.) GragS of strain against 
load and the corresponding Southwell Plots on strain are 
shown in Figs. 88 and 89, and labelled "first loading". 
The equation of the Southwell Plot is 

6 - PAA 	- Pia 
304 

The critical load of 304 lb. obtained from the plot is in 
good agreement with the calculated critical load of 305 lb. 

The frame was then bent by hand and given the 
artificial initial crookedness pattern shown in Fig. 90. 
The resulting strain and Southwell Plots are also shown 
in Figs. 38 and 89. 

Fig. 90 

+ (0.08 x 10-6) 

The equation of the Southwell Plot is now 

6 	P/Ei  - 6-  + (0.7 x 0-6)  . (66) 
270 A 
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The intercept is larger than before, as is to be expected from the 
increased crookedness. Also the critical load obtained from the 
plot is lower. This tendency has been noted before in the case 
of single members where crookedness or eccentricity of loading 
was large. Because the deflections increase quickly with load, 
the method of obtaining the asymptote is less accurate. Yield 
of the material probably has an effect also, tending to lower 
the critical load. 

It is interesting to compare the calculated strains 
with those measured. The equation of the calculated Southwell 
Plot (Fig. 83) is 

MD  2/1T 	= MDt 2/7 EIai  
0.20 	DO 	(67) 

(kt) 2 	16 

2 where 	MD  = (6 M.) EI/V and (k4r) = P4? 2/tI. 

Comparison of equations (66) and (67) gives the value al  equals 
approximately 0.06 in. This is rather lower than the crookedness 
used, (Fig. 90), but is of the correct order. It is quite possible 
for a suitable initial stress pattern in the frame, due for example 
to one member being too long, to offset the initial crookedness and 
to make the intercept of the plot lower than the value calculated in 
much the same way as suitable eccentricity of loading of a pin-ended 
column can offset its initial crookedness. 

76. It is to be noted that a simple initial crookedness 
pattern such that buckling of the compression members of the frame 
in single curvature results, has been chosen for the argument 
given in this paper. Tests made by the author on models and some 
full-size structures indicate that although a higher mode (double 
or triple curvature) often governs the initial deformations, 
unwrapping usually occurs fairly early, and single curvature 
becomes the gravest mode. The mode of buckling which governs 
failure of a'structure is of course dependent on the slenderness 
of the members, their initial crookedness, joint eccentricities, 
and the yield stress of the members. If the form of the frame is 
such that a higher mode than single curvature exerts the main 

influence at failure, then the strain gauge can be suitably located 
to pick up this mode. 

The above analysis and its experimental verification 
forms a preliminary justification of the use of the Southwell Plot 
on strains in problems of buckling of plane frames in their plane, 
without torsion of the members. In practice, however, many frames 
fail by combined torsional flexural buckling, and it is felt that 
some mathematical analysis of such a problem must be carried out 
before the method can be validly extended to such structures. The 
analysis of such a problem is carried out in Art, 78. 

77. The Buckling of a Warren Truss in its Plane. 

A Warren Truss was made from steel strip measuring 
0.370 in. x 001265 in. The flexural rigidity of a sample of the 
strip was measuredAs El = 1770 lb. in.' The truss had equal 
members of lengthZ = 10.08 in. welded together so that their 
minor axes pointed in the direction normal to the plane of the 
frame. Buckling in the plane of the frame without torsion of 
the members was thus ensured. The, frame was loaded through -A-  in. 
diameter balls as shown in Fig. 91. 
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The nvmerols indicate 
Ioca-tions of +11e 
strain caoucles. 

Fig. 91  

Strains were measured in the members A l  Bl  and A2  B2  at the 
locations shown. They are plotted against the load 2W in 
Figs. 92 and 93, and the corresponding Southwell Plots are 
shown in Fig. 94. The points on the Southwell Plot lievery 
close to a single straight line of slope 1A20 lb. —I . The 
calculated critical load is given by 

Pcr. = (4.68) 2EI4 2  = 382 lb. (see Art. 41) 

or 	2Wcr. = 660 lb. 

There is a larger dicrepancy than usual here, amounting to 
8%, between the calculated critical load and the value 
obtained from the Southwell Plot. 

78. 1Qgi_u'riEJxnheBuinofa' smeoutof"its Plan.  
The simple flexural buckling of a triangular 

frame in its plane has been solved analytically and the 
Southwell Plot on longitudinal strains shown to be linear. 
The slope of the plot is related to the critical load of 
the frame, and the intercept is related to the initial 
imperfections. Tests resulted in good numerical agreement. 
However, many structures fail by instability where buckling 
of members in torsion and flexure is involved. The buckling 
of the members of a plane frame out of the plane of the 
frame is an example. It is assumed that in such cases 
inspection or a preliminary loading reveals the places where 
strain gauges should be put in order to measure strains 
which are governed by the gravest buckling mode, whether 
or not the gravest mode or the correct locations of the 
gauges are evident from theory. The question then arises: 
does the Southwell Plot on strains give the critical load 
for the mode concerned? Some analytical justification is 
required before the method can be used for such problems. 

It has previ6ua1y been stated that a structure 
fails by instability in the way in which it deforms most 
easily. If buckling occurs, a given structure subjected 
to a certain loading condition fails in a given mode 
dependent on the form of the structure, the stiffnesses 
of its members, and its initial imperfections (such as 
initial curvature of members or eccentricities at joints). 
This buckling mode possesses a critical load, or the 
theoretical load at which the initially perfect structure 
buckles into that mode (when restrained, if necessary, to 
prevent the occurrence of lower modes if these exist.) 



- 69 - 

Tests on several structures in which torsional-flexural 
buckling of members occurred have resulted in linear 
Southwell Plots on strain. These are reported in 
Chapter Four. It was evident by inspection or from 
a preliminary loading where to locate the strain gauges 
in order to pick up the gravest mode. Most of the 
structures were of a form which made calculation of 
the critical load for the buckling mode which occurred 
far too difficult for the operation to be carried out 
in order to check that the linear strain plot did in 
fact give this critical load. 

However, it has been found possible to solve 
for the critical load of a plane triangular frame when 
it buckles out of the plane of the frame in either of 
two distinct modes. Torsion and flexure of all the 
members is involved, and the relative torsional and 
bending stiffnesses of the members markedly influences 
the critical load. Tests made by the author on small 
frames resulted in linear Southwell Plots on strains, 
and good numerical agreement with the calculated critical 
load was obtained. This experimental verification of the 
validity of the resUts of the Southwell Plot on 
longitudinal strains in the case of a simple frame is 
presented here, and forms a preliminary justification 
for the use of the method in more difficult problems of 
buckling of framed structures. 

The experimental work emphasizes the fact that 
the pattern of initial imperfections may be a determining 
factor in the final buckling mode of a,frame. 

Notation: 
W external load on frame 
P compressive force in member 
0 joint rotation 
0 slope at the end of a member 
44)  twist at the end of a member 
M bending moment 

vT torque 
6 1 flexural rigidity 
r2 torsional rigidity 
E Youngts modulus 
G Shear modulus 
4? length of member 
k 	= 1/13/)( 1 

Other symbols are defined in the text. 

Consider the triangular frame ABC (Fig. 95) made 
of initially straight uniform members of length ep loaded 
as shown. The minor axis of inertia of the members lies in 
the plane of the frame so that buckling in the plane of the 
frame does not occur. 

Two distinct buckling modes designated Mode A and 
Mode B will be considered. Mode A occurs when the centres of 
AB and AC deflect in opposite senses relative to the plane 
ABC. Mode B occurs when the centres of AB and AC both deflect 
behind (or in front of) the plane ABC. It is evident that 
buckling in either of the forms described causes bending 
moments and torsion in the members of the frame. When 
considering any given mode, buckling in any other mode must, 
if necessary, be restrained. 
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Under load, the axial forces in the members are 
as shown in Fig. 96. Compression is considered positive. 

Now 2P cos 30 0  = W, hence W = 1.73 P. 

Assume that in the buckled condition the 
rotations of the joints A, B and C are given by the 
angles '1A2 ;210, , etc., as shown in Fig. 97. These 

rotations are treated as vectors, and the right-hand 
screw rule is used. As buckling in the plane of the 
frame is not being considered, no joint rotation vectors 
normal to the plane of the frame are introduced. Fig. 98 
shows the slopes Sand twists 443  at the ends of the 
individual members due to the joint rotations, and Fig. 99 
shows the resulting bending moments and torques at the 
ends of ,  the members. Moments, slopes, torques, and 
twists are also treated as vectors. 

The end slopes &and end twists co can be 
found terms of the joint rotations 95_82 follows: 

4) 	= 15)61A 	*2A )) AB 

= 40  + 	j AB 	1A 	2A 
) 

60 AC = ir5 	— I A 	2A 

AC 
= 	0'1A - 	) 2A ) 

-4 

A 

(68) 00 

•• 

BC =i- (50 -1B 
0 
BC = 	931 B 

°BA = * 1B  

BA = -401B - 

(69) 

(4) 	= 	krb20 ) CA 	1C 
) 

CA =•1C 	 0 ) 
2C ) 

) w = -4 t/3 	-" 

	) CB 	IC 	20 ) 
(9 --1- sole — 	0 	) CB 	2C ) 

•• (70) 

•• (71) 

• • (72) 

From equations 	we obtain 

61) 	+C) 	.r3 0 	+e 
AC

)  AB 	AC 	AB 

and 
	

4)AC )  = G
AB - 0 AC 



61.1lAgrja I. 

Fig. 94. 

0 

Fig. 92. 
Fig. 93. 
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Similar expressions can be obtaineu at B and C by use of 
cyclical symmetry. 

For equilibrium at joint A, we have 

/5  (TAB 	TAO ) 	(NAB 	MAC) = o 

and* 	(NAB - Nilo) + (TAB  - TAG ) = 0 15   
Similar equations can be written down at B and C. 

The equations relating the end moments and slopes 
for the member AB are 

(9AB MAB'fi 	- NBA c1/6 (Y1 

and 	9BA = macge/3 	NAB 

where Yi  is the flexural rigidity of the member and d and(6 
are functions tabulated in Niles and Newell "Airplane 
Structures", p. 72. Similarly for the member BC, 

6)BC = MBC e f;1/3 Y.1 	MCB 	efi 

ecB mcB t 151 /3 	- NBC 	 16  

where al and /31  are functions tabulated in Niles and 
Newell '''Airplane Structures" p. 107. Putting PPr 1  = k', 
of and (3 are functions of k e , and 4 1  and fat are 
functions of (-k.E/ 

Also put 

= Ys. 

/ 4 /6 1  = X, idt/6Y 1  = XI 

and 	i/y2  = z where r2  is the torsional rigidity 
of the member. 

and 

Then 	eAB = NAB Y NBA X ' 

°BA = NBA - NAB X ° 

Also 	a 	m Y - 
AC 	AC 	M uAX  

9CA = MCA Y  Nic x  

• 0 
	 O 	( 75 ) 

• 0 	• 	(76) 

	

00 	.• (77) 

	

• 	.. (78) 

and 0
BC 

=M  
BC 

Yi -M X' 
CB 

eCB = MCB Y1  - NBC XI  

• • 	0 0 (79) 

(80)  

The equations relating torque and twist in the members are 

TAB = TBA = 	'2 (4().AB 	41)BA ) /-e 

Therefore 
(A) + 	= ZT=ZTBA AB BA 	AB  0 - .• (81 ) 
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+ GO  
AC 	

CA= z T
AC 
= TcA  • 00 

and 	tuBC + 60 CB 
= Z T

BC 
= Z T

CB 
	• • 	.. (83) 

Buckling modes A and B will now be considered separately. 

Buckling Mode A. 

This mode occurs when the centres of AB and AL 
deflect in opposite senses relative to the plane ABC. 
The buckled shape is antisymmetrical about the bisector 
of the angle at A 

Hencepra  = 0 2 	°113  = °le and 912B = -02C 	.. (84) 

Equations (64 then give 

= W
- 
 and 9 = 

AB 	AC 	AB 	AC .  

Hence equation 71) .  reduces to 

60 = - /5 6' .. (85) AB 	AB ' 

Now equations (84), (69) and (70) give 

6°  =toe =19 	to 	0 -=e 	and 	=e9 
BA 	CA' BA 	CA' Bo 	CB' 	°BC 	CB* 

Hence, from equations (75) to (83) 

NAB = MAC , MBA = NOA.' NBC = N
B , and TAB = TAC. 

Therefore equation (73) reduces to

•15-TAB - NAB = 	0. 	(86) 

Writing down the equations at B similar to equations (71) and 
(72) at A )  we have 

A) 	+ ) 

	
= - 	(Oak

BC
)
" 	(87) BA 

and 	15( CO _ GO) = 0 	_ 8 

	

.. 	.. 	(88) BA 	BC 	BA 	BC 

Since 0 
BC 

= 6CB equations (79) and (80) reduce to ' 

9 	= M (It - xl) 
BC 	BC ' 

and since 
= 60 CB equation (83) reduces to 

BC  

2) =ZT 	 4.. 	(90) BC 	BC 

0 • 
	

(89) 

4 

For equilibrium at B s  equations (73) and (74) become 

( 15/2)(TBC 	TBA) 	(NBCMBA)/2 = 0 .. 	(91) 
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and 	( 13/2)  MB 	MU) 	(lBC TBA) /2  = ° 

60 	 p.a.reme(tr 92e)  s 

Equations (75), (70 y (81) and (85) to (92) may now be considered 
, 	) as eleven equations in the eleven unknowns M 	T AB 	AB 	AB ,  

MBA, e BA ' 	BA ' NBC B C 	TBC and &Ow • 	These 
	AB/ 

define the buckled condition of the frame, and are shown in Fig. 100. 
The buckling load can be obtained by setting the determinant of the 
coefficients in the eleven equations equal to zero, but it is more 
convenient to reduce the eleven equations to two equations in M AB  
and MAC. 

Multiplying equation (87) by ti)--  and adding equation 
(88), we have 

BA 
= 

, 
-(2 

BC 
 + O

BA
)/ //-3 

By subtracting, we have 

BC 6")}3C 
= ( 6 	+ 2 6 BA)/'r3 

Equation (90) gives 

2eA) = S T . 
BC 	BC 

.. 	(94) 

Also equations (89) and (76) give expressions for &BC an d  BA° Hence 
equation (94) gives 

2 MBC  (Y 1  - xl) + 4 MBA  Y - 4 MAB X + /3 z Ttic = 0.(95) 

Equations (81), (85), (93) and (86) give 

—3 -.2 8 
 6)AB  	 BC 	9 	Z M  BA 	AB •  

Substitution from equations (75) (89) and (76) gives 

(3Y - X + z) MAB  + (y - 32C) MBA + 2(Y' - 2C0 MBc  = 0. 	(96) 

Noting that 

TAB = TBA =14AB / 	from equations (86), equation (91) becomes 

MBA NBC = MAB 	tr3- TBC' 
	 • • 

	(97) 

and equation (92) becomes 

3MBA 3MBC = MAB 	115 TBC* 

Subtraction gives 

MBA  .2 MB°  + MAB  =0 	 .. 	(98) 

Equations (95) and (97) give 

(2Y' - 2.X 1  + z) NBC  - (4X 4' Z)MAB  + (4Y + MBA 0 	(99) 
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Substituting 2MBC = MBA  + N 	equation (98) in equations 

(96) and (99) we obtain two equations in NAB  and MBA . 

(Y' - X + 3Y - X + Z)MAB  (Y °  - X' Y - 3X)MBA  = 0  

(7 ' - X °  - 4Y - -Az) Ma (Y' - X t +4I + 3Z/2)MBA  = 0 . 

Putting the determinant of the coefficients equal to 
zero for the buckling load, factorizing, and substituting for 
X, Y and Z, gives 

( d + 	- 2 0 + 2,( + 2 ( ..t-2 f ) 

+ (6 eV 2r ( 	+ 4 - 6(3) /2 

- (6 e 1 / 2) 2/4 = 0 	•• 	(100) 

Substitution of oyt 4 2 , and (3' as functions of k L gives the 
buckling load. (o and (; refer to axial compression given by 
k, while 11' and e4 ' refer to axial tension given by (k/ r2).) 

In the case of mild steel members of rectangular section 
of width b and thickness t, 	= E bt3/12 and 6'2  = G bt-1/3. 
Therefore 

6 ."1 / `6/2  = 3.75 if EA = 30/12. 

Substitution of this value in equation (100) and graphical 
solution yields 

kt = 4.5 
 •• 	(100a) 

In the case of members of 9kqua1 angle-section of e,rg 
width b and thickness t, y i  = E b,t/12 and 4 = 2G bt,/3. 

A particulgr aluminium angle section has the values 

b = 0055 in., t = 0.036 in., E = 9,000,000 lb./sq. in, 
and G = 3,300,000 lb./Sq. in., 
giving 

6 '/ 
 = 440. Substitution of this value in 

equation (10 10) and graphical solution yields 

kL = 3.16 	0. 	(100b) 

Buckling Mode B 

This mode occurs when the centres of AB and AC deflect 
in the same sense relative to the plane ABC. The buckled shape 
is symmetrical about the bisector of the angle at A. 

Hence 	1A = 0, y
113 

= -0
1C 

and 	= 
2B 	/12C 	

(101) 

Equations (68) then give 
= 	= 1/56o = AB 	15 u) 

AB 	AC 	AC 
• • ( 1 .  02 ) 

and equations (69) and (70) give 

60 = - 40 2  9 = _ 6? CO =-W 1  and 61  = -0 
BA 	CA 	BA 	CA' BC 	CB 	BC 	CB. 

,• 
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Hence, from equations (75) to (83) 

TAB = TAG = TBA = -TOP TBC = 0 ' NAB = MAC' 

MBA = MCA' and MBc  = McB . 

Equation (74) then becomes 

V5 mAB 	TAB = • 

Since NBC = NCB, equation (79) becomes 

49BC = NBC (11 	X I ) 

For equilibrium at B s  equations (73) and (74) become 

5  TBA i(MBO MBA)  = ° 	•. 	(105) 

i(mBc - MBA)  - i TBA = 	 (106)  

Equations (97) and (98) still hold for this mode, 
and hence equations (75), (76), (81), (87), (88) and (102) to 
(107) may be considered as ten equations in the ten unknowns 
MAB ,  GAB' TAB , 40 AB , MBA ,  GBA,WBA , NBC/ 	and BC 
since TBc = 0. These equations can be reduced to two equations 
in MAD and MAC as before.  

Equations (93) and (94) still hold, and substituting 
in equation (81) for co  from equation (102), 

44-)BA from  
equation (93), and TAB  from equation (103), we have 

/ 1r5 - (2 OBC 	O a )/ i = - kr5 z NAB  AB 

2°BC + Z MAB  = 0, Therefore 	eIAB - 19  BA 

Equations (75), (76) and (104) when used in conjunction with 
this equation give 

(Y X 3Z)MAB (x  Y)MBA 2(1I 1°) MBC = 

	

.'. 	(107) 

Substitution of T 	- ij NAB  from equation (103) in 
equations (105) and (106) gives 

3  MAB 	MBA MBC = 

and 	MAD - MBA MBC = 

Hence 	MEG = 2 M. 

Substitution in (107) and (108) gives 

(Y + X + 3Z + 4 Yi + 4XI) MAB  - 

and 	MAB MBA = 0 ° 

At the buckling load, 

Y + X + 3Z +4' +4XI = -(X + Y) 

Therefore Y + X + 21I + 2XI + 3Z/2 = 0 . 

Hence 	(21% +0t) + 2(2 	I) + (3/2)(6 e 1 /)s 2)--- 0. (109) 

. 	(103) 

(104) 

and 
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( f3 and ok refer to axial compression given by k, while's' and 
c(l refer to axial tension given by kA.) 

For a mild steel rectangular section member, 
6  e 1fr2 = 3.75, and graphical solution yields 

	

ke= 3.48 	•• 	•. 	(109a) 

For the angle section member previously discussed, 62r i /r 2  = 440, 
and graphical solution yields 

	

= 3.15 	 0910).. 

79. Experimental Work,on the Buckling of a Triangular Frame  
out of its Plane: 

Triangular frames made of members of rectangular or 
angle section have been tested by the author, and Southwell 
Plots on measured longitudinal strains drawn. The type of 
member and the buckling mode are indicated as headings in the 
following discussion. 

Mode B.Rectangular strip member 

A triangular frame ABC was made up from 0.503 in. 
x 0.132 in. steel rectangular section material. For these 
members, cross-sectional area A = 0.0665 sq. in., 2  
E = 27,000,000 lb./sq. in., and r i  = 2,530 lb. in. . 
(by calculation, checked bymeasaremeAt of deflections when 
loaded as a simple beam, resulting in very good agreement). 
The minor axes of inertia of the members lay in the plane 
ABC. The frame was loaded as in Fig. 102. The initial 
crookedness of the members was very small. During loading, 
longitudinal strains were measured at the centres of the 
members AB and AC using Huggenberger mechanical strain 
gauges. In Fig. 103 the measured strains are plotted 
against the applied load W. The locations of the strain 
gauges are indicated. The strains on the front of AB and 
the front of AC are both tensile, and using the previous 
notation, the buckling is in Mode B. Fig. 104 shows the 
Southwell Plots on strains ( - P/EA)/W being plotted 
against ( 8 - P/tA), where the symbols have the following 
meaning: 

W = applied load at the apex of the triangle 
P = axial load in members AB and AC, = 0.73 
6 = measured strain 
E = Young's modulus 
A = cross-sectional area of member. 

	

Hence P 	= axial 	strain if no buckling occurs. The 
Southwell Plots are parallel straight lines passing quite 
near the origin and the reciprocal of the slope of the 
plots is Vcr = 253 lb. 

The members AB and AC were then bent about their 
minor as by hand, to give initial crookedness for each 
in the same sense relative to the plane ABC. The frame 
was loaded again, and strains measured in a similar way 
to that described above. Fig. 105 shows the measured 
strains, which increase rather more rapidly with load 
than in Fig. 103 due to the greater initial crookedness 
of the members. Fig. 106 shows the corresponding Southwell 
Plots. Parallel straight lines are again obtained, and the 
reciprocal of the slope is Wm, = 260 lb. 
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In this case the linear plots have a large positive 
intercept than previously. This is due to the increased 
initial crookedness. 

The theoretical buckling condition as given by 
equation (109a) is 

Pcr = k2  

= (3.48)2 e i i,e2 

where ?) is the flexural rigidity of the member about 
its minor axis. In this case 

= 2,530 lb. in. 2  and 	= 15.0 in. 

Therefore 

P  cr = 146 lb. 

and Wcr  = V5 P 	= 252 lb. cr 

The experimental values of 253 lb. and 260 lb. are in 
good agreement with the value of 252 lb. obtained 
analytically. 

Mode A. Rectangular Strip Members 

The members AB and AC were then bent by hand 
about their minor axes to give initial crookedness 
in opposite senses relative to the plane ABC, in 
order to induce buckling in Mode A. Strain measurements 
were taken during loading, and are shown in Fig. 107 
(designated "first loading"). The Southwell Plots 
are shown in Fig. 108. 

The initial crookedness values were again 
successively increased in two increments and the 
frame reloaded each time. The measured strains are 
also shown in Fig. 107 (designated second and third 
loading) and the corresponding Southwell Plots on 
strains are given in Fig. 108. The Southwell Plots 
are approximately parallel straight lines of average 
slope 1/395 lb. -I . The theoretical buckling condition 
as given by equation (100a) is 

2 ‘,,n2 
= 228 lb. p  = (4.5)

1
/{, 

cr 

and W 	= 394 1b. 
Cr 

The value obtained from the Southwell Plot on strains 
is again in good agreement with the theoretical 
value of the critical load. 

It has therefore been possible to induce buckling 
in two different modes having critical loads differing 
by about 50% by altering the initial crookedness of 
the members of the frame, but when buckling occurs in 
either mode, the Southwell Plot has given a close 
estimate of the critical load. 

• 
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Mode A. Angle-section members 

A triangular frame ABC was made up from aluminium 
angle-section members having the minor axis of the 
section in the plane of the frame. (See Fig. 109). 
The members had the following properties: cross- 
sectional area A = 0.0402 sq. in., E = 9,000,000 lb./sq. in., 
mid-line breadth of leg b =,0.557 in., and flexural 
rigidity 	= 4,640 lb. in.' (checked by measurement 
of deflections when loaded as a simple beam.) 

The frame was loaded as in Fig. 109, longitudinal 
strains being measured at the centres of AB and AC at 
various ppints around the cross-section. For member 
length e= 16.75 in., measured strains are plotted 
in Fig. 110. The accuracy of the strain measurements 
is worth noting. This is demonstrated in Fig. 110 where 
the measured strains around the cross-section at the centre 
of AC are plotted. The average strain is also plotted, and 
though the calculation of the average strain involves only 
the small differences between the actual strains measured, 
close agreement is achieved with the calculated value 
e = FAA. The corresponding Southwell Plots are shown 
in Fig. 111., They are parallel straight lines of slope 
(1/280) lb. -I  The theoretical buckling condition as 
given by equation (100b) is 

2v /02 	
2 165 lb. = P = (3.16) 0 1 / 	= (3.16)

2 
x 4640/(16.75) cr 

or 	W = 15 P = cr 286 lb. cr  

The agreement is very close. 

The experiment was repeated using member length 
= 32.7 in. Measured strains are plotted in Fig. 112, 

the average strain over the cross-section of AC again 
agreeing well with the calculated value e = P/EA. 
The Southwell Plots are shown in Fig. 113. Every point 
calculated from each of the four sets of strain meaprements 
lies on a single straight line of slope (1"72) lb. -I . 

The crookedness of the members AB and AC was increased 
by bending in opposite senses, and the frame reloaded. 
Measured strains are plotted in Fig. 114 and the corresponding 
Southwell Plots in Fig. 115. Parallel straight lines of slope 
(1/72) lb.' are obtained. 

The calculated critical load is 

Wcr  = 3 For = 1/5 X (3.16) 2  x 4640/(32.7) 2  = 75 lbs. 

Mode B. Angle-astionmembers. 

The members AB and AC of a triangular frame having 
member length e= 16.75 in. were bent in the same sense, 
and the frame loaded as before. The measured longitudinal 
strains are plotted in Fig. 116 and the SollIthwil Plots in 
Fig. 117. The plots have slope 1/290 lb. -I , while the 
theoretical buckling load is 

= Nr5 X (3.15)
2 

x 46401(16;75)
2 
= 284 lb. (See 

equation 109i). 



PLATE 4 

Measurement of flexural 
rigidity of rectangular 
strip material. 

il 

A 

 

One of the buckling modes. 

 

# 

Measurement of strains in a triangular frame made of 
rectangular strip material buckling out of its plane. 



Test on a triangular frame made of 
flexible strip, buckling in its plane. 
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PLATE 5 

a 

Method of loading frame made of rectangular strip. 

a 

 

Frame made from angle - section 
members buckling out of its plane. 
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Using members of length 32.7 in., the strain against 
load graphs and Southwell plots are given in Figs. 118, 
and 119. Parallel linear Southwell Plots of slope 
(1/72) lb. -I  are obtained. The theoretical buckling 
load is 

WCr = 	X (3,15) 2  X 4640/(3207) 2  = 74.5 lb. 

In the case of angle-section members, the critical 
loads for the two different modes areS themselves not very 
different. This is due to the low torsional rigidity of 
the members. However, when buckling occurs in either mode, 
the Southwell Plot on longitudinal strains gives a close 
approximation to the theoretical buckling load. 

The Abplication of the Strain Plot to Torsional 
Flexural Buckling Problems  

It is seen that though the relative torsional and 
bending stiffnesses of the members markedly influences 
the critical load of the triangular frame when buckling 
out of the plane of the frame occurs (see equations 100 
and 109), the Southwell Plots on longitudinal strains are 
linear, and give a good approximation to the critical load 
of the frame. Hence, though this method has so far been 
mathematically justified only for flexural buckling, it 
appears from the foregoing experimental results that its use 
can be extended to problems of buckling in torsion and 
flexure. The method, and in particular the equation of 
the linear Southwell Plot, can thus be used with some 
confidence for such problems, as it appears to have 
reasonable justification. 

It may be mentioned that the buckling mode of the 
frame used is dependent to a large extent on the initial 
imperfections of the frame. The effect of the magnitude 
and the sense of the initial crookedness of the members 
has been shown. In the case of the frame made of 
rectangular strip material, it was found that for 
small initial crookedness values of opposite sense in 

AB and AO, deformations in the anti-symmetrical mode A 
occurred at early stages of the loading. As loading 
progressed, however, the strains in one member reversed, 
and the symmetrical mode B became the governing mode. 
Typical strain plots are shown in Figs. 120 and 121. In 
this case, of course, linear Southwell Plots are not 
obtained, though if strain measurements were continued 
until large deformations in Mode B occurred, it might be 
expected that the latter part of the Southwell Plot would 
be linear, provided the material remained elastic. It 
appears therefore that, as is to be expected, the 
Southwell Plot on strains is linear only if buckling in 
one given mode governs the strain measurements taken. 
The Southwell Plot on deflections is of course similarly 
limited. 

When testing structures, the author has usually 
found, however, that when the buckling of some members 
participates first in one mode and t4en in another mode, 
resulting in a non-linear Southwell Plot, some other 
member of the structure buckles throughout in one mode 
and thus determines failure. The Southwell Plot for 
this member is usually approximately linear, and its 
equation can be used to define the failure load. 



80. The Lateral Buckling of a Model Lattice Girder. 

Tests have been carried out on a model lattice 
girder. The equation of the Southwell Plot on longitudinal 
strains in the compression chord is similar in form to the 
usual column formula. Further tests on model and full 
size structures should establish the necessary empirical 
information for this equation to be useful in design. 
Good agreement was reached between the critical load 
obtained from the Southwell Plot and the value calculated 
using the theory of 6. beam with a continuous web. 

Notation. 

6 strain 
14 bending moment 

Ixx  and I  and minor moments of inertia of the 
girder (see Fig. 122) 

V co-ordinate measured from XX of a point 
where strains are measured (see Fig. 122) 

4perimental worX 	• 
A model lattice girder made of -6- in. dia. brass 

rod with silver-soldered joints, and having the dimensions 
shown in Fig. 122 was set up and loaded in its plane as in 
Fig. 123 in order to set up a uniform bending moment in 
its central portion. Loads were measured with a proving 
"C". The top and bottom chords were supported laterally 
at points 7.5 in. apart. (Fig. 124) The elastic 
properties of the brass were: 

Young's go:lulus E = 15.3 x 10
6 

p.s.i. 
(from tension test) 

Shear Modulus 	G = 5.92 x 106 p.s.i. 
(from torsion test) 

Yield Stress 	fyp = 45,000 poSeio 

in tension. 

During the test, longituainal strains were 
measured on the sides of the compression chord in two 
places., as shown in Figs. 122 and 124, using Huggenberger 
mechanical strain gauges. Graphs of strain 6 p against 
moment M s, are shown in Fig. 125. On this graph, the 
line e = mviluE is drawn. This represents the strain 
which would occur due to the action of the bending 
moment alone, if no lateral deformation took place. 
Graphs of ( 6 - Mv/IxxE)/k against ( e - M71IxxE) are 
plotted in Fig. 126. This is a type of Southwell Plot, 
and ( 6 - Mv/iyyE) represents the strain due to the 
lateral deformMon„ since 	is the total strain 
measured. It should be noted that ( 6 - Mv/I) is 
analagous to the value (E - FAA) for a single 
column. It is the part of the strain that depends 
on bending effects, and is therefore expected to run 
away as buckling develops. These plots are found to be 
parallel straight lines, whose equations can be written 
in the form 

( e _ mv/Eixx) = (e-  mmixx) 	c2 
cr 
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Test set-up for lateral buckling of a 
model lattice girder made from i inch 
dia. brass rod. 

• 



Y  0Qt•  

X 12 X FAVATAVAWAvAvivAvAtAvAg 
locotion elf; 
stro•n gOv9os 

all •nen,loon 
01811i0.0 brass 

.0. I. .0.• 	 • 

	

wl 	• 

111. 1t VaTqa 

VAVAVAWATAPAUTAWAVV 
• 

la le • a I Svppor 
spoetng Shown. 

A and ES ino.cate location or si.ra in 90....:3•• 

r A re  

SECTION PROPE EtTI 

L. • 0,S 	..• 
	

El.. • 8., . .0. 16 

1„ . % set lb. in.. 

Fig. 122. Fig. 123. 

••. 	..... 	• 

..lat•••al 	
A 1 	f  

supperts 

Aand 13 indicate loco* ion or strcOn gov.rs 

Fig. 124. 

t't] 

Fig. 125. 
Fig. 126. 

Fig. 128. 

Fig. 127. 

STRAIN 	E• 

Fig. 129. Fig. 130. 



where Mer  is the reciprocal of the slope of the graph, and 
C its intercept on the strain/Moment axis. In this case, 
Mr = 215 in. lb. M, represents the critical moment which 
would cause elastic gickling of the structure possessing 
no initial imperfections. 

The torsional rigidity of the girder was also 
measured under pinned-end conditions and the torque-twist 
curve is shown in Fig. 127. At the angles of twist 
involved, the curve is linear, and the torsional rigidity 
is C = 705 in. lb. per radian per in. The torsional 
rigidity can also be calculated as the sum of the torsional 
rigidities of the two chords and that of the lattice, 
assuming the joints between the chords and the lattice 
are rigid. The lattice members are both bent and twisted 
by the torsion of the girder. Using the measured elastic 
properties of the brass, this calculation gave the value 
C = 750, which is 6% greater than that measured. It is 
thought that the difference may be due to the softness of 
the solder at the joints of the lattice, or to the fact that 
the centre lines of the lattice members do not intersect at 
a point. Strains were measured in the lattice members 
during twisting, and were found to be 5% less than those 
calculated. 

fr 

The lateral buckling of beams is discussed by 
S. Timoshenko in °Theory of Elastic Stability' (1936), 
McGraw Hill, p. 239. The theoretical lateral buckling 
moment of the girder treated as a beam with continuous 
web is 

Mth  = (1r /-8) 

= 	/7. 5) 1/398 x 705 

= 222 in. lb. 

where 4 is the length of the half-wave of the buckled shape. 
In calculating 14th  the actual measured value of C: has been 
used. Thus Mth is the theoretical lateral buckling moment 
of a girder having the torsional rigidity measured. 

This is in very close agreement with the value 
obtained from the Southwell Plot on strains. The agreement 
is to be expected, but it gives confidence in the use of the 
method, which, it must be remembered, has as yet incomplete 
analytical justification and is defensible only from a 
general physical standpoint. 

The model' was set up again with lateral supports 
spaced 3.75 in. apart (Fig. 128). Strains were measured 
and plotted as before. (Figs. 129 and 130). The graphs 
are similar to those obtained in the first test. The value 
of M,, the reciprocal of the slope of the Southwell Plot, is 
now 432 in. lb. The calculated value is 

Mth = (W/3.75) V398 x 705 

= /444 in. lb. 

This is again in close agreement with the value obtained 
-t- 	from the Southwell Plot. 
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The equation of the Southwell Plot on strains can 
be used as a design formula. Equation (110) reduces to 

BE = (Mv/Ixx ) 	 - PI/Merd 	• • 	(111) 

where 	= C2EIxx/v. 

Given the value of the yield stress fvp, we can put Be= fyp p  
and solve for M. This gives the moment which will cause the 
compression chord to yield as it buckles laterally. The 
application of a load factor enables the safe working moment 
to be calculated. It is necessary to know M cr  and pc Both 
are Obtainable from the Sonthwell Plot, though in certain 
cases Mar  can be calculated as above, provided the torsional 
rigidity of the lattice is known. 0 is a crookedness-
eccentricity function, and the carrying out of the Southwell 
Plot an many types of structures should establish empirical 
information. Equation (111) has the same form as the usual 
column formula, and its solution is familiar to engineers. 

81. The Lateral Buckling of 30 ft. and 28 ft. snan 
Lightweight Roof Trusses. 

Development of lightweight trusses has been 
carried out by the author at the University of Tasmania 
for Messrs. Charles Davis,Ltd., Elizabeth Street, Hobart. 
The details of the trusses are as follows (see Fig. 131): 

1 e - Continuous, roll-formed from mild steel strip 
patent held by Chas. Davis Ltd.) Up to the present 
time, 8" wide by 14 gauge mild steel strip having a 
yield point of 35,000 lb./Sq. in. has been used. 

Lattice members  - The web members consist of continuous 
tubing which is bent to the required zig-zag, flattened, 
Led endways into the flanges, and spot-welded. Up to 
the present time, i" din. or 1" dia. electric resistance 
welded semi-bright steel tubing having a yield and 
ultimate strength of 69,000 lb./Sq. in, has been used, 
though in the early stage of the development of these 
trusses, If in. x 3/16 in. mild steel flat was used. 

With the use of lightweight structures and high 
working stresses, there arise buckling problems not usually 
met in standard practice. Failure at low loads can occur 
if such structures are used indiscriminately without the 
provision of proper restraint to compression members. The 
development of these trusses has afforded an excellent 
opportunity for research on buckling problems. 

About twenty full-size girders and trusses have 
been tested. In many cases a great deal of information 
was available in the elastic range without causing 
permanent deformation, and the same truss was tested many 
times under different loading conditions. The results 
reported in this thesis are representative only. 

Short trusses have been loaded so that they 
failed by buckling of web compression members rather than 
by yielding or buckling of the flanges. These experiments 
are reported in Art. 82. Other trusses have been tested 
full-size by loading at about the quarter points by 
jacking against a rolled steel joist fixed to the concrete 
floor. (Fig. 132). Various spacings and types of lateral 
restraint to the compression flange have been used, and 
some of the work is reported here. All testing set-ups 

S. 



PLATE 7 

LIGHTWEIGHT TRUSSES 

Portion of a typical 30 ft. span roof truss. 
Plates have been welded to the compression 
chord and wooden blocks attached. Under 
test, the compression chord was restrained 
by preventing later movement of these 
simulated purlins. 

Set up for testing 28 ft. span truss. 



n  

•ssnal jo paoqo uoTssaadmoo uT appnq padoiaAaP-TPM 	 • 

• 

•saivem Tag opni. TIT ssna; 

uuds 	0£ Jo  ,IIT -pionci feaa4Er1 

 

4 

•saacituam-qam ijnqn 
snonuTwoo puu sau-eij pauzaoj_Troa atll jo suElap 
,u-rtnotis sassnal 1.1.0 -famp.MTT jo suop-tod AvAkE plo 

8 a ,L V rl d 



waded N. CI. r,Pd. 	 "na-farndi Cla 

Tlve. 	 iaing 
bat.si 

28n. SPAN TRUSS : 	iso lb 

DISOCoP/ LOADING 130 	...c 

Fig. 131. 

leca.,o, 	opi. 

h.o.,■•• 
	

.X.
F.aka ed9.. 

• 	 Fig. 132. 

	

batan ther.d. 	sh..k I" 

	

naudda idkoNa. 44.1 had.•;..1. 	ana. ?apts. 

am. 

Fig. 139. 

Fig. 134. 



	

'Anal 	• 
••1 

; 

n 	I 	' 

Ben_st_bottam_slas1 	shop.. 

limoweals Ind kat. 4h. Iscolions of stroio 'mos. 

I 	 
gawelin5  Maroon+ Diogro,. 

Fig. 136. 

Fig. 137. 

.1 

 

Fig. 139. 

 

,01.04We 

Fig. 138. 

Fig. 140. 
	 Fig. 141. 



- 

have been designed not only to give the failure load of 
trusses, but also to furnish information on their 
behaviour under load, with a view to obtaining as 
far as possible a fundamental understanding of the 
buckling effects. In particular, strains in critical 
members have been measured and Southwell Plots drawn. 
The work described in Art. 80 was in fact a preliminary 
investigation before carrying out research on the 
lateral buckling of the full size trusses. 

A truss similar to that shown in Fig. 131 
was 30 ft. long and 16" deep overall. The flanges 
were rolled from 8" x 14 gge. mild steel strip, and 
the web members were i" dia. steel tubing. The 
torsional rigidity of the truss wRs measured and 
found to be C = 1,800,000 lb. in. 4  The lateral 	2 
bending rigidity was found to be Bl  = EIxx  = 19,500,000 lb. in. 
The truss was loaded as in Fig. 133, the compression and 
tension flanges being laterally supported at points 13 1  _ 3" 
apart. Midway between the supports, strains were measured 
on each side of the compression flange in order to pick 
up the lateral buckling effects. Strains are plotted 
against load in Fig. 134 and the corresponding Southmell 
Plots in Fig. 135. The slopes of the plots give W e/. = 1040 lb. 
or Mcr 

= 115,000 in. lb. for the critical bending moment. The 
truss was not under uniform bending moment ,(see Fig. 133) but 
the departure from uniformity is not great. If the bending 
moment were uniform and the tt.uss had a continuous web, the 
theoretical critical moment is 

Mcr = ITIFIZbe = 117,000 in. lb. 

The value obtained from the Southwell Plot is in good 
agreement, showing that when buckling occurs between nodes 
about thirteen feet apart the critical load is controlled by 
the torsional and flexural stiffnesses in the same way as a 
beam with a continuous web. 

The same truss was then set up and loaded as in 
Fig. 136 with lateral supports 6' - 4" apart. Strain and 
Southwell Plots are shown in Figs. 137 and 138. It should 
be noted that the strains denoted by 1 and 2 are almost 
entirely axial, following the line e= Mv/EI, whereas the 
other sets show large buckling strains. This can be 
attributed to the initial crookedness pattern in the 
compression flange. It is not until aSairly late stage 
in the loading that the strains at the point 1, 2, are 
forced to reverse by the developing buckle in the remainder 
of the flange. The flange then begins to deform in a wave 
having nodes at the points of restraint. However, until 
this time the point 1, 2 is itself a node. The slope of 
the plot gives We, = 2,130 lb. or Nor  = 290,000 in. lb. 
The calculated value is 

11  = rincObe = 245,000 in. lb. cr 

The fact that the measured critical moment is higher than 
the calculated value can be attributed to the fact that 
the buckling mode is not the simple sine wave form assumed, 
but one possessing a higher critical load. 

In order to check this, an initial crookedness 
pattern as shown in Fig. 139 was artificially introduced 
into the compression flange. The resulting strain readings 
and Southwell Plots are given in Figs. 140 and 141. 
From Fig. 141 we have Wer  = 1,800 lb. and hence Mei, = 254000in. lb . 



The accuracy of calculation here is not good, but this 
value is in good agreement with the calculated value 
of 245,000 in. lb. given above. It is clear, however, 
that the artificial crookedness pattern imposed on the 
truss has induced early buckling in the fundamental 
mode and lowered the critical load. 

The same truss was then given the artificial 
crookedness pattern shown in Fig. 142, set up, and 
loaded, with lateral supports only 3 ,  - 6" apart. 
Strain and Southwell Plots are shown in Figs. 143 and 
144. From Fig. 144 we have W er  = 2,500 and hence 
Mcr = 330.000 in. lb. The theoretical elastic 
buckling load for a member with a continuous web is 

Mcr = 71F3-6/1 = 442,000 in; lb; . 1 

The value obtained from the Southwell Plot is a good 
deal lower than this. Several reasons may be advanced. 
Firstly, measurements were not taken to very high strains, 
the maximum load reached being not a very high proportion 
Of Ws Hence the Southwell Plot does not furnish an cr 
accurate estimate of W. Secondly, some yield occurred, 
and this lowers W. Thirdly, it is likely that the 

theory of a beam with a continuous web is breaking down 
at such close spacings of the lateral supports, particularly 
in view of the inherent local instability of the open type 
of flange section. 

The foregoing experiments were devoted to the 
elastic buckling of the lightweight truss, with a view to 
determining the load carrying capacity of the truss for 
various spacings of lateral restraints. It has been 
established that the theory of lateral buckling of a 
beam with a continuous web is adequate down to quite low 
support spacings, and the Southwell Plots on strains which 
participate in the bucning mode have also been shown to 
be linear. If the occurrence of yielding at these locations 
is accepted as a sufficient definition of failure, then the 
method of substituting the yield strain in the equation of 
the Southwell Plot on strains enables the failure load to 
be calculated. This has been given in Art. 80. In fact 
the reserve of strength of these trusses in the plastic 
range is quite low. The susceptibility of the flange 
section to local buckling causes quick failure once yielding 
of any magnitude occurs. Of course, many tests are required 
before the empirical information necessary for engineering 
design can be furnished. 

The use of the equation of the Southwell Plot as 
a design formula is also limited to cases where considerable 
elastic buckling effects occur before failure. By reference 
to equation (110) it can be seen that if (6— MvAI) is 
small up to the stage whenereaches the yield strain, then 
the Southwell Plot is not well defined. For structures 
which have very small initial crookedness or imperfections, 
this may well be the case. This behaviour will be illustrated 
by tests on a 28 ft. span lightweight truss. 

The truss was loaded as shown in Fig. 132, the 
compression flange being laterally restrained at each panel 
point. The compression flange was initially straight and 
remained straight during loading until the strains approached 
the yield strain. On further loading, slight deflections were 
immediately followed by local buckling of the compression flange, 
and failure. Sets of strain readings, taken on the tension 
flange and on the bottom and sides of the compression flange 
are shown in Fig. 145. It can be seen that the strains closely 
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PLATE 9 

Simulated purlin used to restrain compression 
chord in some tests. 

Developing plastic  buckling of 
compression chord of truss. Note 
the waving of the lower chord 
between each restraining purlin. 

Local buckling of flattened ends of tubular web members. 
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follow the line 6 = Mv/EI until failure is approached. Up until 
e approaches the yield strain, buckling effects as given by 
(6- Mv/EI) remain quite small. The difference in behaviour 
between Fig. 145 and Fig. 143 is of course due to the difference 
in the initial crookedness pattern of the compression flange. 
In Fig. 143 an artificial unfavourable crookedness pattern was 
impressed on the flange. 

It appears then that the use of the Southwell 
Plot on strains is essentially a technique for tackling 
elastic buckling problems. Buckling effects in the elastic 
range must be considerable before the application of the 
method is useful. This will also be illustrated by the 
study of the buckling of the web members of the lightweight 
trusses. 

82. The Buckling of the Web Members of the Lightweight Trusses: 

In the early stages of development of the lightweight 
trusses, the web members were continuous 1i in. x 3/16 in. mild 
steel flat bent about the major axis and spot-welded to the 
patented roll-formed steel section flanges. Five trusses of 
this type were tested. The trusses were loaded as in Fig. 146 
so that failure occurred by buckling of the web compression 
members, rather than by yielding or buckling of the flanges, 
or weld failure. Since the minor axes of the web members lay 
in the plane of the truss, they buckled out of that plane. 
During the progress of the test, strains were measured using 
Huggenberger mechanical strain gauges on opposite flats at the 
centres of the web members. Typical plots of strain eagainst 
load P are shown in Fig. 147. The steel used in the web 
members had a yield point of 45,000 lb./sq. in., corresponding 
to a strain of 1.5 x10 -, . It is seen from the graphs that 
the reserve of strength beyond the yield is only about 6%. 

In Fig. 147 the strain P/EA (where P = W/oos 8, 
and A is the area of the member) is also plotted. The measured 
strains on opposite sides of the member are symmetrical about 
this line. Similar results were obtained from many strain 
plots. In Fig. 148 values of (6- - P/EA)/P, the strain due to 
buckling effects divided by the load in the member, are plotted 
against (E- P/EA). In every case where failure occurred by 
buckling, (and this was always in single curvature, the 
fundamental mode), this plot gave a straight line. Fig. 148 
is typical of many such plots. The equations of these straight 
lines are of the form 

6 — P/EA 	6 — P/EA  + c i 	 a. (112) 
Qcr 

where Qis the reciprocal of the slope of the plot, and C 1  cr 
- the intercept. Q.  can be regarded as the critical load 
\corresponding to he Euler load of some reduced length, 
and C1  as a crookedness-eccentricity parameter. 

Values of Qcr  and C. are given in the following 
table. 
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Girder 
No. 

Test 
No. 

Euler load 
of struts 
(Calculated 

Experimental 
values 

Effective Length 
, 

Total Length 

"Cr' 

on full, 
length) 
CZ lb. 

Q r 	C1 	x 1fill 
lb. 	lb.'  

1. 

1
-  C

12  C
r\ 	

--4*  

925 2300 	1.0 0.63 . 
3000 	1.85 0.55 
3200 	2.5 0.54 
3000 	1.0 0.55 
3000 	0.5 0.55 
3600  0.6 0.60 
2900 	1.0 0.57 

2 1 1360 4100 	0.8 0.55 
3800  0.15 0.60 
4300 	0.7 0.57 
4300 	0.5 0.57 
3600 	0.15 0.61 

3 1 1420 4000 	1.7 0.60 
000  1.1 0.60 

4 1 510 1350 	1.0 0.62 
1350  1.0 0.62 

5 1 670 1820 	1.3 0.61 
1820  1.9 0.61 

Equation (112) represents the behaviour of these 
struts in an actuni structure. Minimum valuesof Q cr  and 
maximum values of C i  Obtained in such a way, represent (when 
properly substantiated by a sufficient number of tests) 
valuable empirical information for the design of similar 
compression members. To define failure, it is safe to put 
6.  equal to the yield strain. There is, of course, some 
reserve of strength beyond the yield, and for shorter struts 
it may pay to find a better failure criterion. 

Thus for design purposes, we put fier  equal to 
its minimum likely value, C. eqpni  to its mw[imum likely value, 
and 6 equal to fv/E where Pv  is the yield stress. Equation (112) 
can then be solvea for the.falure load P. Use of a suitable load 
factor gives the working load. 

In fact, this method of design is very similar to 
the Perry Robertson formula (see equation 57, Article 64), except 
that the relevant empirical factors have been obtained from 
tests on actual structures and not merely assumed with little 
rational justification. Putting Ee equal to fy , equation (112) 
reduces to 

f - PA = f - P/A 

p/A 
+ EAC1 	(113) 

• 

-* 
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where P is the applied load to cause failure, Qcr  is the 
critical load obtained from the Southwell Plot on strains, 
E is Young's modulus, A is the area of the member, fy  is 
the yield stress, and C 1  is an imperfections parametkr 
obtained from the Southwell Plot. The Perry Robertson 
formula is obtained by solving 

.f = P/A [1 1-7  Q1 /(Q1 	P)1 

where fy  is the yield stress, 	= 0.003 -4, a crookedness 
functiofi„ and Qi is the Euler load of an assumed effective 
length. This formula reduces to 

f 	P/A 	= f 	P/A _Y 	 1/ 
P/A 1 /A 

which has exactly the same form as equation (113) obtained • 
from the Southwell Plot. In applying the code formula to 
continuous or restrained columns, Q l  is the Euler load of 

> an arbitarily assumed effective length, and It is a 
crookedness parameter for pin-ended columns. In applying 
the results of the Southwell Plot, both C 1  and Q r  are 
obtained from actual tests on similar columns. for any 
particular member, equation (113) can be solved in exactly 
the same way as the code formula. A sufficient number of 
tests would give C i  as a function of 	for example. 
It is therefore posible by means of the Southwell Plot 
on strains to assess the ,effects of initial crookedness 
eccentricity of loading and restraint at the ends of 
columns built into structures ) ,anc:_thus obtain design 
foriulae which are related to the performance of struts 
in actun1 structures. It is unnecessary to rely on vague 
and tenuous extensions to pin-ended column theory. 

Not every strut in every truss tested buckled 
in single curvature. The mode of deformation of any 
structure is a complex function of the whole initial 
crookedness and loading pattern. Fig. 149 shows typical 
sets of strain readings for one truss. Some members 
deformed in single curvature right from the start. In 
other members the initial deformation was forced to 
reverse by strongly developing deformations in adjacent 
members. However, in all trusses tested there were 
always some members which buckled largely in single 
curvature giving linear Southwell Plots on strains 
measured at their centres. The plots for these members 
can be used to define failure of the whole frame. 

83. Theaouthwe3oStx.s applied to the Buckling 
of Structug2. 

Methods uist for determining critical loadings 
for the mathematically perfect structure for simple 
buckling modes. The critical loading is analogous to 
the calculated Euler load of an initially perfect pin- 
ended strut. However, all structures have imperfections, 
such as crooked members or eccentric joints, and some 
method of relating the behaviour of the practical 
structure to the critical loading for the perfect 
structure is required. What is needed is something 
analogous to the Perry formula, which, by the use of a 
crookedness-eccentricity factor, takes care of the 
practical imperfections of the pin-ended Euler strut. 
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In his 1932 article when advancing the linear 
deflection plot, Southwell emphasized the generality of 
his method, though he did not specifically mention strains. 
Experimenters have used the generality in the direction of 
more difficult structures, but have not generally used 
other measures of the distorted configuration than 
deflections to define the buckling mode. Rayleigh has 
stated, that the assumption that any distorted configuration 
in any eigenvalue problem can be expresses as a synthesis 
of normal modes "exaggerated" by the loading is defensible 
from a physical standpoint for any elastic system 2  though 
it may require much elaborate analysis to justify it from 
the standpoint of a mathematician. 

It has previously been shown mathematically in 
this thesis that, with certain restrictions, if is the 
strain measured at the centre of a pin-ended column under 
load P I  then the graph of 6/P against 6 is a straight 
line of slope 1A, where Q is the Euler load. Good 
experimental agreement was obtained. 

Experimental work carried out on more difficult 
problems such as triangular frames, web members of lattice 
girders, bolted angle members in frames, and the compression 
chord of a lattice girder as it buckles laterally has also 
resulted in lfilear Southwell Plots on strains. The 
mathematical analysis of a triangular frame having a 
simple crookedness pattern has been carried out and it 
has been shown that strain at the centres of the compression 
members (and also other distorted configurations such as 
the rotation of the corners) all give linear plots. The 
method therefore appears to be fundamentally sound. 

The value of the linear plot on strains is that 
it gives an equation of the form 

•( E EWA  = (6  - 	+ G1 
	

. • 	( 1 1 4) 
where E = the total measured strain 

E 1 = the calculated strain if no buckling occurs 
A = some action, whether force or bending moment. 
Acr  = the reciprocal of the slope of the plot, and 

equals the critical action causing elastic 
buckling for the mode which governs the strain 
measurements taken This is determined by the 
location of the strain gauge. In many cases it 
is obvious where to locate the gauge to measure 
the gravest mode. Otherwise the gravest mode 
must be found by trial and error. 

C
1 

= the intercept of the plot on the strain/load axis. 

Equations (110) and (112) are particular examples of equation (114). 
Equation (114) reduces to 

E = 	+ AC01 A/Acr) 

Now 	usually of the form é = kA (e.g. 	= PAA for a 
1 

strut whose axial load P is known, or Ei  = Mv/EI
1
for the 

compressive strain in a structure subject to a bending moment M.) 

This gives 6 = kA AC01 Ahlcr) 

= 	[1 4.  0/(1 - A/Acr)j 	(115) 
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where rif = C1 A. - 

Am. is the reciprocal of the slope of the Southwell 
Plot on strains and C1 its intercept. Given sufficient 
experimental work to obtain A cr  and Ci  for many types of 
structures )  equation (115) can be used as a design formula 
by putting cE equnl  to the yield strain. The solution of 
equation (115) is familiar to engineers, being similar to 
the Perry formula. 

84. Limitations of the Strain Plot. 

The use of the plot is limited to elastic theory. 
By defining failure of a strut as the attainment of the yield 
stress in some part, reserve of strength in the plastic range 
is neglected. For short struts, this may be important. In 
this event, the result of the plot is still useful in 
determining when first yield occurs. 

A great deal of experimental work is required to 
determine, systematize, and tabulate the variation of% and 
A for many types of structures. A cr  can be calculated in 
sgie cases, but usually it will be necessary to determine 
both yf and Acr  from measurements on actual structures. 

The gravest buckling mode must also be determined 
in order that strain gauges are suitably located and this may 
not always.be  obvious, especially in cases of combined 
torsional flexural buckling. In general it may be stated 
that the measured strains must participate in the buckling 
mode that governs and immediately precedes failure. It has 
been shown that at low loads a structure may deform in one 
mode but at higher loads a change to a different mode may 
take place. For no portion of the structure is the Southwell 
Plot then inherently linear. However, when this behaviour 
occurs, the author has found that if strains are measured 
at the correct locations on members which govern the final 
deformation pattern, then approximately linear plots are 
obtained. 

If the buckling effects ( E. - El ) of Equation ( 11 4) 
are small compared with the non-buckling effats 64  up until 
yield occurs, then the equation of the plot is inacourate. 
However, if this occurs, a method of design is usually available 
by putting the linear part of the strain, namely 6 11  equal to 
some limiting strain equal to or slightly less than the yield 
strain. In such a case, the measurement of strains at suitable 
locations gives the required information on the magnitude of 
buckling effects. 

Particular care in the application of the method 
is required where local buckling is liable to occur. 
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CHAPTER IV, 

BOLTED ANGLE STRUTS  

(With particular reference to the design of transmission towers) 

85. Part of this thesis is concerned with the buckling 
of structures containing bolted angle-section members, and the 
strength of bolted angle struts. Such members are used in many 
structures due to their ease of erection with comparatively 
unskilled labour: an important example is the electricity 
transmission tower which is often designed entirely of angle-
section members, with heavy main legs and lighter crocs-bracing. 
Connections are made by drilling-holes on the centre line of the 
leg of the angle, and single or double bolting. At present, the 
design of bolted angle members is very empirical and presumably 
aver-conservative. This is the case partly because so many 
highly variable factors, such as the variability of the end 
connection, are involved. 

86. The usuAl  mode of failure of a bolted angle strut 
in a s tructure is for the central part to buckle about its 
minor axis of inertia: If each end of the members is held -  by 
one leg, the strut twists near its ends. This twisting may 
be accommodated by the opening out of the angle, yield or large 
movementin.the connection, local buckling of the outstanding . 
leg of the angle near the connection, or merely twisting of the 
member. There may also be local buckling of the member near its 
centre. Nil A steel struts of slenderness ratio (the ratio of 
length to the smallest radius of gyration, -e/r) less than 180 
have passed Well into the plastic region at failure. For e/r 
between 180 and 250, failure may be elasto -plastic or entirely 
elastic. 

In must non-redundant structures, if the loads are 
known, axial forces can be determined with sufficient accuracy 
by considering the members pin-ended. There is never enough 
distortion of the geometry of the structure for the actual forces 
to depart far from the pin-ended values, even if the members are 
rigidly connected. The load-carrying capacity of the strut is, 
however, entirely dependent on the restraint at its ends. 

7. Me thods for 	le Struts 0 

The British Standard for the Use of Structural Steel 
in Building, B.S. 449:1948, lists permissible working stresses 
for discontinuous angle struts with double-bolted, welded, or 
single-bolted connections. In this code, the design of all 
columns is based on the Perry formula as recommended by 
Robertson in the First Report of the Steel Structures Research 
Committee, 1931. The derivation of this formula is discussed 
in Arts. 64 and 82. Difficulty arises in the application of 
the Perry formula to the design of columns in structures. 
Practical columns are not pin-ended but continuous, or restrained 
at their ends by other members. In "The First Report of the 
Steel Structures Research Committee", 1931, Robertson says: 
"The central problem in strut work can be stated as the determination 
of the strength of a free-ended eccentrically loaded bent strut. The 
strength of any strut in a given structure then depends on the length 
of a free-ended strut equivalent to it, and it is also assumed that 
the determination of this free length is a problem of stress 
analysis." He considers that the solution of cases of continuity, 

.1) 
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restraint, or fixity of the ends merely lies in estimating 
the probable free length. Criticising this approach, 
J. F. Baker (The Steel Skeleton Vol. 1., p. 15) says: 
"In putting forward this formula it was assumed that the 
main problem had been solved. The strength of a strut in 
any given structure then depended only on theolength of a 
free-ended strut equivalent to it, the determination of the 
free length then being merely a problem of stress analysis. 
No guidance to the solution of this very difficult problem 
was offered to the designer." 

However, most civil engineering codes list 
values of the ratio of effective length to actual length 
to be used in design, for varying conditions of end restraint 
and also values of eccentricities to be used. But the 
provisions are vague, not supported by measurement, and 
a great deal is left to the discretion of the designer, 
though the work of J. F. Baker and others has given partial 
solutions for the case of structural steel building frames. 
In this chapter it will be shown that the necessary information 
for insertion in a Perry type formula for the strength of 
bolted angle struts can be obtained from the Southwell Plot 
on strains. It is not necessary to rely on vague extensions 
of pin-ended column theory. However, the designer of bolted 
angle struts must distinguish between the failure of the 
structure as a whole when the joints are rigid, and the 
separate failure of a strut if the end connection is loose 
enough for the member to be almost pin-ended. It must also 
be remembered that some modes of failure such as local 
buckling may produce more disastrous effects than others, 
and it is necessary to apply variable factors of safety. 

88. 	Loading tests carried out by Mackey on lattice 
girders at the University of Leeds (British Constructional 
Steelwork Association, Publication No. 7, "Report on 
Experimental Investigation into the Behaviour of Angle 
Purlins, Ties and Struts" (1953) p. 19) have shown that 
the B.S. 449 code gives a safe design method in all cases 
tested, but is aver-conservative. Complete girders were 
tested because the buckling of a compression member is 
dependent on its end conditions and the restraint afforded 
by adjacent members, and strain measurements were taken on 
the truss members during losHing. In the tests, actual 
load factors of 2.4, 2.7 and 3.0 were obtained for the 
critical compression members, ie. those which failed first. 
The load factors for other members were, of course, even 

higher, and it was suggested that the effective length 
of angle struts can be taken as considerably less than the 
value of 0.8 times the actual length, as laid down by the 
code. Incorporating the eccentricity of loading assumed 
in B.S.449 (i.e. adding the assumed eccentricity to the 
crookedness term) in the Perry formula, some agreement 
was established with experimental measurements. In fact, 
a similar procedure was advocated for design purposes by 
Robertson in the First Report of the Steel Structures 
Research Committee, p. 228, in which he puts forward the 

. Perry formula for centrally loaded columns, but for columns 
having a definite eccentricity, he proposes that the relevant 
term be added. 

.4 
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Measurement of strains in a triangular frame 
made of bolted angle-section members, buckling 
in its plane. 

Angle section member being loaded as a simple beam. 

• • 	• 	• 	• 	• 	• 	. 	• 	• 	• 	• 	• 	• 	• 
• • 	• 	• 	• 	• 	• 	• 	• 	• 	• 	• 	• 	• 	• 

• • 	• 	to 	• 	• 	• 	• 	• 	• 	• 	• 	• 	• 	• 
• • 	• 	• 	• 	• 	41 	• 	• 	• 	• 	• 	• 	• 

..... 

• • 	• 

 

, • • 

 

. 	"10"TorP111111411111111111.:  	  
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beam. For these members, b/t = 15. Top member 
was loaded with outstanding legs in compression, and 
local buckling occurred. Bottom member was loaded 
with corner of angle in compression. 
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89. The third method of design is almost purely 
empirical, using tables of allowable stresses against the 
e/r ratio, with little or no theoretical justification 
(e.g. the Johnston parabola formula, with coefficients 
adjusted to fit tests on single columns, and some assumed 
ratio between effective and actual length). This procedure 
is justifiable providing it is safe., and not too conservative. 

In the case of an electricity transmission 
tower, we have a structure which can be tested full-scale 
under simulated service conditions, and, because of the 
number of structures involved, this is often done. It is 
a pity that, apparently because of the large number of 
members involved, strains or even deflections are very 
seldom measured. Tests are usually designed to establish 
the safety of the structure under perhaps 10% overload for 
a number of loading arrangements, and to determine its 
overall load factor for one loading arrangement, but apart 
from giving such qualitative information as the number and 
position of the members which fail, tests as conducted provide 
little information which can be used in future design. 

90. Because a full-size test can be carried out, 
the transmission tower is probably one of the most economical 
structures designed. Most designers work on permissible 
axial stresses much higher than the standard civil-engineering 
codes allow. However, it is felt that there is still room 
for valuable economy. It is a step in the dark to proceed 
further along an already dim path even by judicious pruning 
of the empirical factors involved. The possibility of 
economy certainly exists; to achieve it safely a better 
fundamental understanding of the structure is required, and 
this can be obtained only by detailed measurements on actual 
structures, conclusions being supported analytically, where 
possible. Research by tests on models and actual structures, 
and concerning both the elastic and plastic regions, should 
be fruitful. 

91. Preliminary experimental work on angle-section members: 

Prior to testing model trusses containing bolted 
angle members, single members have been subjected to simple 
loading systems with a view to obtaining an understanding of 
their elastic and plastic properties. An angle-section 
member is an example of a thin-walled open section member, 
and as such, is liable to various instability effects such 
as torsional buckling or local buckling. Single members have 
been subjected to bending, twisting, or axial thrust. Some 
of the work has been reported in Chapter Two, Articles 58-62, 
and the remainder is given here. 

92. The behaviour of an le-section members in simyle  bendingt 

Angle section members measuring 0.590 in, x 
0.590 in. x 0.036 in. were bent from 20 gauge sheet 
aluminium. The stress-strain curve for the material 
is shown in Fig. 150. When loaded as simple beams, 
deflection measurements gave values for the flexural 
rigidity El very close to those calculated from the value 
of Young's modulus and the section dimensions. The members 
were bent about their minor axes in both senses, and in the 
elastic range there appeared to be no opening out of the 
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angle and consequent reduction in stiffness. Fig. 151 shows 
typical results. Similar experiments were carried out with 
1 in. x 1 in. xi in. mild steel angle section members. 
The stress strain curve is shown in Fig. 152, and typical 
deflection measurements in Fig. 1530 

However, when the experiments were carried 
into the plastic range, considerable difference in 
behaviour was observed when the corner of the angle 
was in compression from when the outstanding legs were 
in compression. See Fig. 154. These tests were carried 
out for varying values of bit where b = width of leg 
and t = thickness. Up to the value b/t = 16, the maximum 
moment carried was independent of the sense of the bending. 
Above b/i = 16, local buckling of the outstanding legs, if 
these were in compression, considerably reduced the bending 
strength. Where the corner of the angle was in compression 
and local buckling did not occur till large deflections were 
reached, the observed maximum moment was in good agreement 
with the calculated fully plastic moment using a uniform 
stress of 14,500 lb./Sq. in (See Fig. 150). Increase in 
the length of the member subjected to the maximum moment 
also resulted in areduction in strength where local 
buckling occurred. 

Figs. 155 and 156 show load deflection 
curves for 0.59 in. x 0.59 in. x 0.036 in. aluminium 
angle-section members bent in opposite senses. The sudden 
drop in load and the lack of power to absorb energy when 
buckling occurs is apparent. 

It appears from the above that the usually 
accepted figure of bit <16 (B .5.449:1948) is sufficient 
to minimize local buckling effects, and to ensure that 
local buckling does not precede yielding under conditions 
of simple bending. 

93. The behaviour of anale-section members under pure torque: 

Bolted angle struts are observed to twist 
markedly at failure and some understanding of the behaviour 
of a member in torsion is required. During a preliminary 
investigation a peculiar bending under the action of a pure 
torque was observed. This effect, while similar in origin 
to the non-linear shortening effect examined by Weber, has 
apparently not been previously noticed. (For discussions 
of the shortening effect of pure torsion see S. Timoshenko 
"Strength of Materials" p.87; Cullimore, M.S.G. (1949) 
Research, Engineering Structures Supplement, p.153; 
Cullimore, M.S.G. & Pugsley A.G. (1952) A.D.A. Research 
Report No. 9; and Weber, C. (1921) Forschungsarbeiten No. 249.) 
Other possible sources of the bending might be the yielding 
of a small portion near the root of the angle, or the effect 
of buckling under pure torque. These are later discussed 
but rejected. A satisfactory explanation can be found by 
considering elastic effects only. The theory of non-linear 
shortening due to the simplest stress system which will 
satisfy statics is developed in this article, and it is 
shown that all structural sections with a certain lack of 
symmetry are subject to this behaviour. The magnitude of 
the bending under pure torsion is calculated for an angle 
section. Some experimental measurements subsequently 
carried out on a brass member to determine the validity 
of the analysis are reported, and good agreement is obtained. 

`-• 
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Note the developing local 
buckle at the corner of 
the angle for large b/t. 

Failure of pairs of angle-section members with varying b/t 
loaded as beams. The direction of bending was opposite 
for each member of each pair. 
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The analysis and its experimental verification indicate 
that Weber's theory can be extended satisfactorily to 
thin-walled members, provided that the extension is 
properly done and the bending of certain unsymmetrical 
sections is taken into account. 

The secondary effect of this phenomenon on 
the buckling of angle struts is discussed later. 

Notation:  , 

L 	length of bar 
8 	angle of twist 
LA) 	angle of twi%t per unit length 

(specific twist) 
longitudinal stress 

6 	longitudinal strain 
modulus of elasticity 
torque 

a 	radius of a circular bar 
leg width of an angle-section member 
thickness of an angle-section member. 

Preliminary Experimental Work 

A cantilever of angle section was twisted and 
bent by loading it at its free end as in Fig. 157 and 
the shear centre determined experimentally.. (Fig. 158). 
The small discrepancy between the observed position of 
the shear centre C' and the theoretical position C was 
attributed to the slight initial crookedness of the 
member. (See Fig. 159). 

A pure torque was then applied at the free end 
of the cantilever, and horizontal and vertical deflections 
and twist observed. By Maxwell's reciprocal theorem, if 
the behaviour of the member is linear, the centre of 
twist is expected to coincide with the shear centre C 
at the end of the cantilever. The point C was, however, 
observed to move, and its deflection is plotted in 
Fig. 160. 

Measurements were taken on two members. The 
direction of the deflection was different for twists 
of opposite hand. In order to show this graphically, 
the directions perpendicular to the minor axes of inertia 
of the angle at the fixed and Xree ends of the cantilever 

have been plotted in Fig. 160 at various stages of 
twisting. The translational movement at every stage of 
the twisting, whether the twisting is clockwise or anti-
clockwise, lies on a path whose direction is somewhere 
between the normals to the minor axes of the section at 
its fixed and free ends. The section seems to be bending 
about its minor axis. These deflections are largely 
recovered on removing the torque, so the effect is 
elastic. 
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The Shortening Effect of a Member under Pure Torque 

Weber has shown that when a bar of solid circular or 
rectangular section is subjected to pure torque, the longitudinal 
strain system which arises causes the bar to shorten. The 
argument has been recapitulated by Cullimore. When a prismatic 
bar is twisted by couples, the usual assumption is that the 
generators remain straight, and although the cross-sections 
are distorted by warping, they remain parallel in the sense 
that corresponding elements remain the same distance apart. 
Strictly, however, the generators become helices. If the axis 
of the centre of twist of the bar remains the same length, the 
lengths of all the generators of the bar become greater. A 
tensile stress suitably varying over the cross-section must be 
applied, and the whole bar is in tension. Alternatively, if there 
is no external tension the bar must shorten. The argument may be 
summarized as follows: the stress distribution due to the assumed 
strain distribution must satisfy the boundary conditions of the 
problem as given by the equations of statics; under pure torque 
of a symmetrical section, the central axis must shorten. Under 
pure torque, warping is the same for all cross-sections, and the 
shortening effect is superimposed on the warping. 

In this article, it will be shown that the "shortening" is 
uniform over the cross-section of the bar only if the section is 
symmetrical or anti-symmetrical about the shear centre, and that 
pure torsion of other sections is accompanied by bending. Before 
proceeding to the analysis of the torsion of unsymmetrical sections, 
the shortening effect when a solid circular bar is twisted will 
first be discussed. 

Longjtucliunl Strains in a Solid Circular Elastic Bar 
under Pure Torque 

Consider a bar of length -€ and diameter 2a v twisted by- 
pure couples through an angle 8. Tension is considered positive. 
At radius r )  the new length of an axial fibre (which was 
originally straight but becomes helical as the bar is twisted is 

11£2 	r282 

assuming the central axis of the bar remains straight and at lengthi. 
The elongation of the fibre is therefore 

,/,y2 r2e2 _ 	or approximately 
r2e2/2e 	The resulting tensile strain• 

is 	6 = r292/2 2 	and the tensile stress 

is 	f = E6 = Er2e2/22. 2  which is positive for all r. 
This stress system does not satisfy statics as no normal force is 
applied. The simplest condition which satisfies statics is an 
additional uniform tensile strain,

2,s2/,-, 02 Bence 6 = r /4C- 

and 	f = E r2132/2 ,t 2  + Ee l  
For no normal force lif dA = 0 where dA is an element of the area 
of the bar. 
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Therefore 	r2 r dr E (r2e2/2i 2  +5 ) = 0. 
1 

This gives 	e  0, _ay', 02 
1 	144- ' 

Putting 	r = a, the longitudinal strain at the 

circumftence is 	e - a2e2/2 2  + E = a2 (eg ) 2/4 

At 	r = 0, the strain is 

..,e2(ea) 2/4. That is, the central axis 
of the bar shortens. 

There is, of course, no warping of the 
cross-sections of a circular bar under pure torsion. In 
the case of symmetrical sections where warping does occur, 
a strain distribution similar to that discussed above is 
superimposed on the warping. 

The stress system f, above, does not 
act in the direction of the axis of the bar, but in the 
direction of the longitudinal fibres, which lie on a 
helical path inclined to the axis of the bar at a small _ 
angle. The torque component of this system can be calculated, 
and results in a departure from linear of the torque-twist 
diagram according to the relation 

T = 	(e/i) + 	(ea) 3  
where Al and A2 are constants. The second term has the 
same appearance as Timoshenko.'s correction for the case of 
the twisting of a bar when cross-sections are not free to 
warp or if the torque varies along a bar, and should not 
be confused with this. 

;40ositudinal Strains in an Angle Section under Pure Torsion 

Consider an angle section of length 4% 
leg width b, and thickness t. (Fig. 161). Assume t/b is 
small, and the material is elastic. Tension is considered 
positive. 

Under conditions of pure torsion, to a 
first approximation, no warping of the mid-line of the 
cross-section occurs, as both legs diverge from the shear 
centre C $  assuming that the bar twists about C. Then the 
tensile strain at a point given by r due to the difference 
in length between the helix and the original straight 
length is, as before, 

E = r2e2/24!2. This is everywhere 

positive, and does not satisfy statics, as no normal 
tension is applied. Therefore put 

. 6  = r2e2/2 L 2 4. 6
. 1 

where E l  is an assumed additional strain necessary to 
satisfy statics. We can assume 6 1  to be uniform over 
the cross-section of the bar only if the strain distribution 
d then satisfies the conditions of zero normal force and zero 
applied bending moment. It will be shown that 6 1  cannot be 
uniform for an unsymmetrical section such as an angle. 

0. .. 	(i 13) 
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Assume 	dF = g + hr 
1 

where g and h are constants. This is the simplest 
expression for 6 which will satisfy statics. 

1 

(1 1 9) 

Therefore 	f = E.E = E (r282/2-t 2  + g + hr) 	(120) 

For zero normal force 

irf dA = 0 

aid -then:fore 	2fft dr = 0 
0 

which gives 	G + hb/2 = 
4)2 (e/i ) 2/6.  

(121) 

For zero bending moment, taking moments about an axis through 
C perpendicular to the bisector of the angle, we have 

2f ftdr r/ tr2 =0 
0 

which gives 	g/2 + hb/3 = -b2  (8/1) 2/8 .. 	(122) 

Equations (121) and (122) can be solved for g and h. 

They give 	h = 	b (e/t ) 2  
n 2 

and 	g = b2  (e/z. ) /12. 
The required strain distribution is then 

= (e/t )2 [r2/2 r2/2 + b2/12 - br/21 	(123) 

At the point C, r = 0 

and 	E = b2  (e/t ) 2/12. 

At A and B 	r = b 

and 	6 = b2  (8/i) 2/12. That is, the corner and 

the edges of the legs are in tension. At the centre of the 
leg 	r = b/2, 

and 	E = -132 (e/e) 2/24.  Putting 6 = 0 in 

Equation (123), zero strain occurs at r = 0.21 b and 0.79 b. 
The strain distribution over the section is as shown in 
Fig. 162. 

It can be seen that the non-uniform strain 
distribution causes the bar to bend 	have el  = g hr, 
(Equation 119), where h = -b (e/i) 4/2. The term hr 
e l  causes the bar to bend about its minor wcis uu, (Fig. 1 63)/ 
so that it is concave towards the edges of the legs, A and B. 
The curvature is 

• 

2-1glie  112 2  

A 2 
= b (e/z ) / •• (124) 
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Cullimore (see page 914Lfor reference) establishes 
equation (118), but following Weber's analysis for 
a rectangular or circular section, he assumes .E  is 
uniform over the cross-section in every case, thlis 
unfortunately making the elementary mistake of 
neglecting to satisfy statics in the case of an angle-
section. The_longitudinal stress distribution based on 
his derivation is as shown in Fig. 164, and does not 
satisfy statics, as an external bending moment must be 
applied to give this distribution. More unfortunately 
still, the error was not noticed in the course of the 
discussion. The assumption Ei  = constant is satisfactory 
for symmetrical sections, or 'for a section which is 
anti-symmetric about the centre of twist such as a Z - 
section but not for other unsymmetrical sections. 

The foregoing treatment of the bending 
effect of pure torque is due to the author, and is 
believed to be original. The analysis has been extended 
to any thin walled member of open cross-section. 
(See Appendix A, No. 15). 

The Deflection of the End of a Cantilever of Angle-section 
when Subjected to a Pure Torque  

Consider a cantilever of length L, _ 
(Fig. 165), clamped at the end 4r= 0. A pure torque 
is applied at the end 4, = L, and the angle of _twist 
there is 8. Put 8 =cOL,_where pD is the twist 
per unit length or sPecific twist. Assume only the 
small element di of the bar i6 elastic as far as 
the bending given by Equation 124 is concerned, and 
neglect the fact that del) /de = 0 at the clamped end. 
Then the curvature due to bending about the minor axis 
of the section within the length d.e. is, from equation 
(124) 

dp/di =b(e/L) 2/ 

There is a resulting deflection at the end of the bar in 
the directbn perpendicular to the minor axis of the 
section at 2, of 

dvi = (L 	)(dO/d4f) 

Resolving parallel and perpendicular to the axes of u and 
v at 4? = 0 the components of the deflection at the end 
4? = L are: 

du = dv 	sin GOt 

= (b/12)(e/i)
2 

(L -1) sin wi di 

and 
	

dv = dv cos co.e 

= (b/ I/2)(8A)
2 

(L _,e ) cos tot di 

Integrating along the bar with respect to dt from 0 to L, 
the components of the displacement4 of the end of the bar 
parallel to the u and v axes at 	= 0 are: 

and 
	u = b (e - sin8) 	) 	

•• 	(125) 
v = b (1 - cost:3)/12 ) 
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The path of the end of the bar is shown in Fig. 166. It is 
to be noted that the deflection depends only on the width of 
the leg of the angle and the total angle of twist a. 

Experimental Verification Using a Short Angle-section 
Member Bent from Sheet Brass  

An angle section member 0.575 in. x 0.575 in. 
x 0.0378 in. x 7 in. long was bent from sheet brass. The 
tensile stress-strain curve for the material is shown in 
Fig. 167. The Young's Modulus is 13,000,000 lb./Sq. in., 
and the material is elastic up to a tensile stress of 
55,000 lb./sq. in., or a shear stress of about 27,000 lb./ 
sq. in. 

The member was loosely held at one end, and 
a pure torque applied at the other. The torque-twist 
curve is shown in Fig. 168. Longitudinal strains were 
measured at various points around the angle members using 
light Huggenberger strnin gauges, and are shown plotted 
in Fig. 169. The measured strain distribution at the 
maximum torque applied is shown in Fig. 15, on which the 
theoretical distribution as given by Equation (123) is 
also shown. The agreement is quite close. The parabolic 
distribution of strain is evident, and it is quite clear 
that the corners of the angle are in tension and the 
centres of the legs in compression. The measured strains 
are also quantitatively in close agreement with the 
calculated values. 

The member was then clamped at one end and 
a pure torque applied at the other end. The deflections 
of the end of the cantilever were measured, and are shown 
plotted in Fig. 171 for increasing and decreasing torque. 
It is seen that the deflections are recovered as the 
torque is removed. The calculated deflections according 
to Equation (125) are also plotted, and the agreement is 
quite close. 

Discussion of the Assumptions  

In writing down Equation (118) it has been 
assumed that under pure torque each element of length 
of the bar twists about its axis of shear centres, and 
that the warped cross-sections remain the same axial 
distance apart, though the distance along each helical . 
path taken up by individual longitudinal fibres varies. 
That is, warping has been taken as unaffected by the 
presence of longitudinal stresses in the bar. That this 
is not strictly true can be seen from the fact that the 
longitudinal stress system sets up shear stresses which 
in turn affect the warping of the cross-sections. However, 
this affect seems to be small, and the experimental work 
has verified the analysis based on Equation (118). 

Lateral buckling under pure torque has also 
been neglected. (This effect is discussed by Greenhill, A.J. 
(1883) Proc. Inst. Mech. Engineers (1883) p. 182; 
Timoshenko, S. (1936) Theory of Elastic Stability, p. 167; 
and Biezeno and Grammel (1956) Engineering Dynamics Vol. (ii) 
p. 411 and p. 413 ()ackie).) Biezeno and Grammel show that 
a shaft of length 4:between supports bucEss at a twist per 
unit length a) given by 

tan (44/2 = e tan/044/2 ) 
or by 	 (126) 

tanrwt/2 = e tan 60e/2 
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Preliminary experiments on twisting an aluminium 
angle-section cantilever. Deflections were measured 
with a travelling microscope, and longitudinal strains 
with Huggenberger mechanical strain gauges. 

S 

Twisting a short brass 
angle-section cantilever, 
longitudinal strains being 
measured. 

Measurement of deflection 
of end of brass angle - section 
cantilever with travelling 
microscope. 

I 

I 

Method of measurement 
of longitudinal strains. 
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Lateral bending of angle-section member 
under pure torque. 
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where 	e = 20/2 	t 	 °I1 	1 7  e4  t 	.. (127) 
20/i 	c"( 2 	°I 2 

e= (oe - 	t)  c4  2 - 	t)  /cLi a 2 

and 04 1  and 04 2  are the maximum and minimum flexural 
rigidities of the shaft, and ...e t  its torsional rigidity. 

The brass member tested had the computed values 

1 
 = 7 '  800 lb. in. 2 ' 0(

2 
= 31,100 lb. in.' and 0/ = 92 -lb. 2  

in. 	Substitution in Equations (127) yields e = 1.000024 
and (2  = 0.99300. Equation (126) then reduces to: 

tanew1/2 = 1.000024 t 	(0.993000 IA)-(. 

The first solution of this equatics occurs at a very large 
value of 640 4:/2, (approximately '4' /2 = 14011 , or 
c4) = 2011 , for 	= 14 in., twice the length of the 

cantilever used), whereas the member was twisted through 
only 0.2 radians per inch. Actually the theoretical twist 
at which the cantilever buckles must be rather greater than 
the value calculated here, as the cantilever is rather 
stiffer than a simply-supported beam of twice the length, 
since the specific twist at the clamped end is zero. 

_ 
Of course, as soon as the member is bent, whether 

due to initial crookedness or to the bending effect of pure 
torsion, the applied torque has a resolved bending moment 
component. This however appears to be small, as neglecting 
it has caused little error. 

The bending effect of pure torque has been 
calculated for a member made of material having a linearly 
elastic stress-strain curve, and all measurements have been 
carried out in the elastic range. The effect of yielding 
at the root of the angle-section member is probably very 
marked, but it has not been investigated. 

Longitudinal strains of the order of 0.001 at 
angles of twist of about 0.2 radians per inch were measured 
in angle-section members due to the bending effect of pure 
torque. Quite high longitudinal stresses are involved. 
Bolted angle struts are Observed to twist markedly as ' 
failure is approached, the magnitude of the twist being of 
the same order as measured above. The bending effect of 
torsion on the buckling of an angle strut is probably 
considerable. In particular, measured longitudinal 
strains will be affected as twisting develops. 

94. The Behaviour of Bolted Angle-section Members in Compression: 

Tests on angle-section members as single pin-ended 
struts have been reported in Art. 58 of Chapter Two, where the 
Soutarell Plot on measured strains in the elastic range was 
shown to be linear, the slope of the plot giving the Euler 
load of the strut. The tests were extended into the plastic 

\range in Arts. 60 and 61. As these struts were bent about 
their minor axes, twisting did not occur until very large 
deflections were reached and local buckling took place. 

In Art. 75 the elastic buckling of a triangular 
frame made from angle-section members is reported. The major 
axes of the members lay in the plane of the frame and buckling 
took place in that plane. The members were again bent about 
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their minor axes without twisting. The Southwall Plot on strains 
again resulted in good agreement with the calculated critical load. 

In Art. 79, the buckling of a triangular frame out of its 
plane is discussed. In this case both bending and twisting of the 
members was involved. Two buckling modes were treated, and it was 
shown that the critical load is markedly dependent on the torsional 
and bending stiffnesses of the members. Because of the low 
torsional stiffness of angle-section members, the struts in these 
frames acted almost as if pin-ended. The Southwall Plot on strains 
again gave a close estimate of the critical load. 

In the above tests on frames, the angle-section members 
were firmly bolted by both legs to brass end pieces. A bolted 
angle strut is in practice less firmly held. The end fixing 
consists uspany of one or two bolts in one leg only. Some 
triangular frames have been made up using angle-section members 
singly bolted through one leg to brass corner pieces. In all 
cases the Southwell Plots on measured strains were linear, but 
gave critical loads much less than those calculated in the 
articles mentioned above. This is undoubtedly due to the less 
rigid end fixing. Where a member is very firmly held at its 
ends, the relations between end moment and end slope are 
entirely dependent on the torsional and bending stiffnesses of 
the member as a whole. However, where a single bolt is used as 
an end fixing, the local strength of the leg of the member, the 
placing of the bolt in the leg, the size of the washer, and the 
tension in the bolt all assume vital importance. No matter what 
the details of the fixing are, single bolting results in a 
reduction in stiffness of the member, and critical loads are 
therefore reduced also. 

95. Tests on a Model Lattice Girder. 

A model lattice girder was made to simulate several bays 
of a plane frame near the base of a transmission tower, as shown 
in Fig. 172, the main chords of the model being made parallel. 
The bracing of the model was made up of aluminium angles bent 
from 20 gauge sheet, and the legs were mild-steel rolled angles. 
Aluminium was chosen as the material for the bracing members as 
the low Young's Modulus gives greater strains which are easier 
to measure. A comparison of the model and, prototype is given 
in Table 1. 

Table 1. - Dimensions of Angle Members 

Length 
lyAre.en 
bolt 
cenhw 

Cross 
Section 

A 

Least 
rat of 
gyra- 
tion. 

r 

Length/ 
rd. of 
gyra- 
tion. 
1/r 

Leg 
width/ 
leg 

thicimess 
IDA 

Transmission tower in. sq. in. in. 

Legs 	5x5xiin. 	.. 72 5.86 0.97 80 8 

3* x 3-i-  x 5/16 in... 72 2.09 0.68 100 11 

Bracing 	4. x 2t x 3/16 in... 
or 

84 0.81 0.44 190 12 

2 x 2 x 3/16 in. 	•. 84 0.71 0.39 210 11 

Model 

Legs 	(i.e. main chords of 
girder) 1 x 1 xiiin. 
mild steel 	•• 15 0.23 0.19 79 

Bracing 	0.58 x 0.58 x 0.036 
in. aluminium 	.. 15.75 0.040 0.12 130 16 
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The model is similar to the prototype. The 4/r ratio of 
the main legs is about the same for each. Since buckling 
is controlled by the Young's modulus of the material, the 
.e /r of 130 for the aluminium bracing of the model is 
equivalent, if the members were steel, to an 44r of 390, 
since E for steel/E for aluminium = 30/10. The equivalent 
figure for the prototype is about 200. The bracing of 
the model has been deliberately lightened in order that 
it may be the controlling factor. In most towers as at 
present designed, the leg members fail in load tests, and 
it is felt that the bracing is rather heavy. In the actual 
tower, the ratio of area of leg member to area of bracing 
member is 5.86/0.81 = 7.2, or 2.09/0.71 = 3.0. For the 
model, if we allow for the difference in strength of the 
aluminium and steel by multiplying in:Proportion to their . 
yield strengths the ratio is (0.23/0.040) x (35,000/15,000) 
= 12.8. The bracing is again shown to be relatively light. 

The above figures are intended merely as a guide 
to the relation between the model and prototype. 

The connections in the actual tower consisted of 
5 • 13' in. or in. diameter black bolts in the main leg 
members, and -1- in. diameter bolts at the intersection 
points of the bracing. The model thus calls for an -h. in. 
diameter bolt. The strength of a strut is almost completely 
determined by the torsional and bending restraints at its 
ends, and these are dependent on the torsional and bending 
stiffnesses of adjacent members and on the connections 
between them. It is important in model studies to reduce 
to a minimum the variability of the connection. (This would 
also be an advantage in actual structures.) The bolts used 
in the model were * in. diameter metal threads, bolts having 
a rolled thread of 40 threads per inch. These bolts have 
been subjected to a great deal of work hardening during 
manufacture. In a pure tension test, bolts failed at loads 
of 600 to 660 lb. With a root area of 0.0064 sq. in., this 
corresponds to a stress of 100,000 lb. per sq. in. Screwing 
tests on these bolts gave consistent tensions of about 200 lb. 
at a torque of 12 in. lb. At higher torques, the thread 

Strips. 

trength of the Bolted Connections 

Tearing-out tests were carried out. Typical results 
are given in Table II, 

Table II. - Te i -out Tests 	 Bolted Co e t o 

Type 	of 	test 

Edge clearance 
(centre of hole 
to end of 
member) 

Tearing-out 
loads 

in. lb. 
Aluminium bolted to 
aluminium 	. 1 

•B-  105, 105, 110 

3/16 140, 130, 130 

i 165, 170, 160 

Aluminium bolted to 
steel i 210, 225 



- 104 - 

Dry bolts and nuts were used. Greased bolts gave 
higher tensions at the same torque, and therefore higher tearing- 
out loads, but the results showed higher scatter. A distance of 
e• in, from centre of hole to end of member was adopted. 

Stress-strain curves for the aluminium and steel 
are shown in Fig. 173. 

First Loading Test 

The model truss was set up as a lattice girder and 
loaded as in Fig. 174, using dead weights. Load-deflection curves 
are shown in Fig. 175. At the loads used, the curves are linear 
and there is no permanent distortion, indicating complete absence 
of bolt slip. 

The truss was set up again as in Fig. 176, and 
. strains were measured on the members shown, using light Huggenberger 

mechanical strain gauges. A plot of strains was taken around the 
cross-section of the angle member near its centre. Load-deflection 
curves are shown in Fig. 177 and the measured strains in Fig. 178. 
All the graphs are linear, showing that the elastic limit has not 
been reached. 

There is considerable variation in the stress across 
the section (as shown by the measured strains), giving evidence of 
high bending moments in the members. . Fig. 179 is a section through 
the members concerned, just above the leg angle. By integrating 
the stresses across the sectionv the forces in the members .  can be 
calculated. In Table III the forces in the members (per 100 lb. 
applied load) are obtained. A comparison with the force calculated 
from statics if the joints are assumed pinned, shows reasonable 
agreement. In each case the measured forces are rather less, as 
some of the load is taken by bending of the main leg. This is in 
agreement with the usual design assumptions: the bending due to 
the rigidity of the joints is never sufficient greatly to alter 
the total forces in the members, but a comparison of the average 
stress and the measured stresses (Table III) shows that bending 
can increase the stresses by up to 90% in the elastic range. 
"Experimental load" was Obtained by integrating measured strains, 
taken at the positions shown in Fig. 179, over the area. The 
"calculated load" was obtained from statics, assuming pinned 
joints. 
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X 103  lb./sq. in. lb./* in lb. lb. 

L1 U2 0.177 1590 compr. 1073 42.8 57 

C
V  0.214 1930 compr. 

0.150 1350 compr. 
0.065 590 tension 

L3 U2 0 0 1246 49.9 57 

C\I 0.127 1145 tension . 
. 

0.206 1860 tension 
0.220 1980 tension 

L3 U4 

I
r-  C

V
  

C
r N

 -4
 

0.134 1210 tension 1358 54.3 57 
0.120 1180 tension 
0.138 1250 tension 
0.198 1790 tension 
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Second Loading Test 

The truss was set up again as in Fig. 180 and loaded 
to failure, using a screw jack and proving ring. At 320 lb. 
lead, the lower half of member L3 U2 began to fail by twisting 
just away from the bolts, and buckling about its minor axis in 
the central portion. The upper half of U1 L2 behaved in a 
similar way. The members which failed showed considerable 
deflection at constant load due to creep in the aluminium. 
There was some spring in the loading system, and these members 
were permanently deformed. It is interesting to note the 
members which failed, thus determining the load capacity of 
the truss. They are shown dotted in Fig. 180. 

It was found previously that the forces in the 
lower sections of L3 U2 and L3 U4 were the same, but the _ 
stress distribution was considerably different, L3 U2 being 
the more highly stressed. L3 U2 is the member which is bolted 
to the outside of the main angle; . L3 U4 is bolted inside. In 
the truss as loaded, L3 U2 and Dl L2, the two members bolted 
on the outside of the main legs, buckled in compression, 
whereas the corresponding equally loaded compression members 
L3 U4 and 14 U5, bolted inside, did not fail and in fact 
remained elastic. The load-carrying capacity of these struts 
has been determined by the restraining moments and torsions 
at their ends. 

With the loading system used, the transverse 
location of the point of application of the load on the main 
leg is important. It is apparent that the bending of L3 114_ 
and L3 U2 (favourable to L3 134 and unfavourable to L3 U2) can 
be caused only by twisting of the leg angle, and this will be 
influenced by the location of the load point(Fig. 181). 

The Southwell Plot on Strains 

Strains measured on the corners of the angles 
L3 132 and L3 134 are plotted in Fig. 182, and prove to be 
rectangular hyperbolae. The plot of /P_against, a is 
shown in Fig. 183, where 6 = measured strain, and P = 
calculated axial force in the member, assuming the joints 
pinned. These graphs are straight lines in each case. The 
lines lie fairly close together and are parallel. It has 
been shown that the inverse slopes Of these lines represent 
a critical load for the - members concerned. In the case of 
L3 U2, the inverse slope is 230 lb.; for L3 134, it is 240 lb. 
It is important to note that this critical load is the same 
for eachnember L3 132 and L3 134, even though one failed and 
the other remained nearly elastic. 

For the 0.58 x 0.58 x 0.036 in aluminium angle 
members concerned, 

Imm. = 5.6 x 104  in.• 

Length between bolts = 15.75 in. 

Euler load = 11' 2E1/.1E 2  = 200 lb. 

The critical load for L3 132 and L3 134 is about 235 lb. 
This may be interpreted as meaning that they have an effective 
pin-ended length of V(200/235) = 0.9 of their actual full length, 
if they are considered as buckling about their minor axes. This 
is reasonable, in that the bracing angles are firmly bolted to the 
leg angle at one end, but only bolted to each other at their 
intersections. 

4, 
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The tests carried out on this model have served 
to emphasise the factors which control the load-carrying 
capacity of bolted angle struts, in particular, the end 
torsional and bending restraints. It is not claimed that 
model tests will give results of immediate practical utility. 
In fact, though it simulated the lower frames of a transmission 
tower, the model was loaded as a lattice girder. Bending and 
torsional restraints will also be different in the space frame. 
There are however many difficulties associated with full-size 
testing. One is the question of accurate, controllable loading. 
It may be possible to overcome this by building two adjacent 
towers, and jacking one against the other. With a model, 
certain difficulties associated with strain and deflection 
measurement are reduced, but greater accuracy is needed because 
of the small size. It is felt that model tests are a useful 
preliminary to the testing of a larger structure. 

96. Further-IMIE-211-1121IPA-ling12-araIELTA: 

A number of simple frames made of bolted angles has 
been made and tested° Strains in the members were measured, 
and in each case, the Southwell Plot on strains has proved to 
be a straight line. The equation of this linear plot defines 
the behaviour of the strut in the elastic range, and can be 
used as a criterion of the load carrying capacity. 

'Five trusses (L2 to L6) were made up and tested as 
in Fig. 184. The flange members U 0U5  and L1 L6 were single 
1 xl x* in. M.S. angles. The web members U 0  Li, U5 Lc ,_etc. 
were 0.58 x 0.58 x 0.036 in. aluminium angles. The members 
were bolted together with single * in. metal - threads, through 
holes drilled in the centre of the angle leg; the bolts were 
tightened to a predetermined torque, in an attempt to get a 
constant fixing. 

During loading, longitudinal strains were measured 
in the web compression members at the corners of the angles 
(see Fig. 185). It was found that this corner was always the 
most highly stressed point in the angle under the loading 
conditions adopted. 

Fig. 186 shows a typical set of graphs of straine r  
against applied load W I  or the load in the struts P. Similar 
graphs were obtained in each case. On these graphs, the 
calculated average axial strain PAA is also shown, where 

P = the axial load in the member = W/cos e. 
E = Young's modulus = 9,000,000 lb. per sq. in. 
A = cross-sectional area of the member = 0.0403 sq. in. 

Fig. 187 shows the corresponding Southwell Plots on 
the strains. It was found that the graphs of ( - 

against (E.- PAA) consistently gave straight lines. Again, 
the plots in Fig. 187 are typical of sets of straight lines 
obtained for every compression member in every truss tested. 

The equations of these lines may be written: 

6 - P /EA 	= E - P /EA  4. c  

Q1 	
1 .. (128) 

where 	E = the measured maximum strain at the centre of the 
member. 

Q1 = the inverse slope of the Southwell Plot. 
Ci = the intercept of the Plot on the strain/load axis. 
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Equation (128) reduces to: 

E6 = P/A [2 + 	
-1 	

- 
1 

(1 29) 

= EACi . 

A sufficient number of tests on many types of 
structures should give values of Q1  and 1/ 1  likely to be 
met with in practice. These value6 obtained from the 
Southwell Plot on strains can be used to give a design 
formula similar to the Perry formula but based on actual 
tests, not on arbitrarily assumed factors. This is the 
procedure advocated in Arts. 64 and 82. It should be 
noted, however, that the variability of the effects of 
single bolting of angle members will necessitate a great 
deal of testing, supported by statistical analysis, before 
results can be used. 

The test results are summarised in Table 4. 

Table .40 

Truss Web Member 
Qi 
(lb.) 

0 
 

C i x 1 
6 

(lb.
-1 ) 

. 

II  

Member 

. 

La  length 
(in.) 

i/r Failure 
load P 
(lb.) 

L1 15.45 130 230 1.8 0.65 L3U2(i) 
180 240 2.3 0.84 L3U4(o)ic 0.93 

L2 15.45 130 280 2.7 0.98 UoL1(i) 
200 1.2 0.44 U1L2(i) 
174 3.0 1.09 U4L4(o) 

103 174 4.1 1.49 U5L5(o)x 1.10 

L3 15.45 130 140 tO
  ■.0

  O
N

  

-
 

1  

0.40 UoL1(i) 
4 140 0.29 1112W 

124 0.58 U4L4(0) 
100 112 0.69 U5L5(0) 4i 1.37 

L4 10.13 85 320 
320 

1.4 
0.8 

0.51 
0.29 

UoL1(i) 
U1L2(i) 

320 2.5 0.91 U4L4(o) 
160 320 2.9 1.06 U5L5(o)t 1.22 

10.13 85 220 1.0 0.36 UoL1(i) 
220 1.3 0.47 U1L2(1) 
220 1.7 0.61 U4L4(0) . 

155 220 2.3 0.82 U5L5(o) g 1.48 
- 

L6  10.13 85 360 1.4 0.51 U0L1(i) 
360 1.1 0.40 U1L2(i) 
260 1.9 0.69 U4L4(o) . 

180 260 1.9 0.69 U5L5(o) 1.36 

NOTE: (1)t 	indicates member that failed 
(2)Truss Li is reported in Article 95. 
(3)"0" indicates that member was bolted on outside 

of flange member; 	"in, on inside. 
(4)Effective length ratio 	= 0? 	= lATAI. 

where Q = Euler load of member considered as 
pin-ended between bolts. 

where 
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It is seen that there is quite a wide variation in 
values of Ql and '1 1 , even under apparently similar conditions. 
It is suggested that this may be due to the varying torsional 
stiffness of the flange angles. The restraint which the 
flange angle affords a web angle depends a good deal on the 
location of the latter. Also, new bolts were used in some 
trusses and not in others, and the fixing may have varied. 

In spite of this variation, the following important 
conclusions can be drawn: 

1. The behaviour of each compression member can be 
defined by Qi  and S i . These factors may vary somewhat, 
but it is important to carry out sufficient tests to 
determine the maximum value of 17, 1  and the minimum value 
of Q1 for each type of fixing in each type of structure. 

2. Maximum load carrying capacity for this material 
occurs at a strain of 0.0013. The Southwell Plot is linear 
up to this strain, and there is very little reserve of 
strength beyond this point. For the aluminium members 
concerned, equation (129) reduces to 

eq. in. (P/A) [1 + 	(41 /(Q1  - P] 	= Ee = 12,700 lb. per 

In the case of mild-steel members, the yield stress 
is substituted for Ee p and P becomes the load to cause 
first yield. Due to the high value of 7 1 , this is for all 
practical purposes the failure load for bolted angles struts. 

It has been shown that the axial loads P in rigidly 
jointed trusses can be calculated with sufficient accuracy 
by assuming pin-joints. The above method thus furnishes a 
direct design method for statically determinate braced 
frameworks. 

97. The Collapse of Triangulated Frames Containing Bolted 
Angle Struts: 

Tests on bolted angle struts in some simple frames 
which have resulted in linear Southwell Plots on strains 
have been described in Art. 96. Further experimental work 
is reported here, and a proposed method of rationalization 
of the design of such members is presented. The tests 
indicate that, because of the eccentric connection, the 
reserve of strength of a bolted angle strut beyond the . 
point at which yielding first occurs is not very great. 
Further tests may make it possible to obtain the statistical 
distribution of this reserve of strength as a function of the 

ratio for the strut. This means that the collapse load 
can be obtained in terms of the load to cause first yield, 
and a difficult elasto -plastic analysis of the behaviour of 
the strut is avoided. 

Experimental Work 

In all, ten plane frames (LI  to Li O) having the form 
of six-bay lattice girders, and one space frame (Si) have 4 
•been tested to failure. Flange members were single or 
double 1" x1" x*" M.S. angles. (Fig. 188). The frames 
were proportioned so that failure occurred by buckling of 
the lattice members rather than by yielding or buckling of 
the flange angles. During loading, strains were measured 
in lattice compression members. Previous experience that 
the highest stress occurred at the corner of the angle rather 

• 
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than at the edge of the leg was confirmed. (Fig. 188) 
Where single flange angles were used, a lattice member 
bolted to the outside of the flange angle was always 
the first to fail. It appears that the torsion of the 
flange angle is always such as to make the end restraint 
of such a member quite low, and thus to cause its early 
failure. A lattice member bolted on the inside of the 
flange angle seems to be less eccentrically loaded. 

A typical plot of maximum strain against load is 
shown in Fig. 189. It is seen that the measured strain 
increases steadily and diverges. quite quickly from the 
calculated average strain PAA. This is due to the 
quite large eccentricity of the bolted connection. 

In Table 5 details of the frames are given and 
collapse loads are listed. The collapse load is larger 
for smaller ,e/r ratios. Also, for the same -e/r ratio 
the collapse load is larger where double flange angles 
were used. This is to be expected, as the stiffer 
flange offers more restraint to the lattice member as 
it deflects. Besides this fact, there are no lattice 
members bolted on the noutsiden, as with the single 
flange angle. The effect of the increased end restraint 
on the collapse load is markedly demonstrated by these 
tests. Table 5 also lists the load to cause first 
yield. This is taken at a strain of 0.0013 (or a stress 
of 12,000 lb./sq. in.), which corresponds to the point 
on the stress-strain curve for the aluminium at which 
the strains increase very rapidly. 

Table 5 

Failure of Lattice Compression Members 

1 
r7.4 

0
8
r
2T3 

en
) 

adZI 

Cd
La
p s

e:
  

Lo
a d

 l
b.
  

Lo
ad
 a

t 
Fi
rs

t  
Yi

el
d 

lb
.  

Ig
94 1
91

T t
E
l
 

(F
ir

st
  Y

ie
l  

Lo
a d

)  

Re
s e

rv
e  

Be
y o

n d
 F

ir
s  

Yi
e l
d
 
%
  

L1 LSFX 1505 130 180 175 1.03 3 

L2 LSF 15.5 130 103 103 1.00 0 

L3 LSF 15.5 130 100 95 1.05 5 

14 LSF 10.1 85 160 152 1.05 5 

L5 LSF 10.1 85 165 155 1.06 6 

L6 LSF 10.1 85 185 169 1.09 9 

L7 LDF 15.5 130 125 115 1.08 8 

L8 LDF 15.5 130 139 1 29 1.08 8 

L9 LDF 15.5 130 150 146 1.03 3 

L10 LDF 15.5 130 143 139 1.03 3 

Si S 15.5 130 130 128 1.01 1 

Frame L1 is reported in Art. 95 and frames L2 to L6 
in Art. 96. 
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If the behaviour of the members can be defined in 
the elastic range, the load to cause first yield can be 
calculated. For the frames tested, the collapse load is 
not more than 9% greater than the load to cause first yield, 
and for practical purposes it may conservatively be taken as 
the first yield load. The reserve of strength in the plastic 
range can then be regarded as a small extra safety margin. 
Calculation of the collapse load then reduces to the problem 
of determining the behaviour of the frame in the elastic range. 

Fig. 190, which is typical of forty-two such 
plots on bolted angle struts, shows the Southwell Plot on 
strains for one of the lattice members which failed._ Similar 
plots were obtained for every compression member in every 
frame tested. The graph is linear, and is defined by 
equation (128), which reduces to Equation (129). (See Art. 96) 

This equation defines the behaviour of all 
struts in all the frames tested to date. 

The behaviour of the strut as bolted in the 
structure is thus defined by two parameters, '4 1  and C14 .. 
It is convenient to consider an effective lengt111 ratio' 

= 1/4/41  instead of Qi . (Q is the Euler load of the 
strut considered as pin-ended at the bolt). Fig. 191 shows 
values of IF, and Lie obtained for forty-two compression 
members in tie eleven frames tested. The distribution is 
somewhat random, as is to be expected. For practical design 
purposes, it is required to know the maximum value of 
and the maximum value of Lie to be expected in the 
structure concerned. That is, some envelope above and to the 
right of all the plotted points is needed. Given sufficient 
tests, such an envelope can be drawn. A functional relation 
between 7„ LtE and -E/r can then be written. Substitution 
of this relation in Equation (129)  putting Ed equal to the 
yield stress, then enables solution for the value of P/A to 
cause first yield. A suitable load factor can be applied to 
give working loads. In the long run, of course, permissible 
stresses can be tabulated as in present codes. 

98. Reserve of Strength in the Plastic Range: 

For shorter stiffer struts, the reserve of 
strength beyond first yield may be considerable. Tests on 
other structures indicate that the collapse load may exceed 
first yield load by up to 30% for centrally loaded struts, 
but the reserve is much less in the case of eccentric loading. 
Further tests should make it possible to systematize this 
reserve as a function of 4/r. The results of experimental 
work by Mackey are of value here. (See S. Mackey "An 
Experimental Investigation of the Behaviour of Mild Steel 
Compression Members in Light Lattice Frameworks". The Struct, 
Engnr. Vol. 32, July, 1954, No. 7, p. 190.) Two girders and 
fifteen triangular frames made of mild steel angle-section 
members were tested, strains being measured at five positions 
along each member, taking plots around the angles. Fig. 192 
shows a plot of (maximum load/load to cause first yield) 
against 	for the struts, taken from Mackey's paper. 
4r is the length of the strut between bolts. These results 
indicate that for .e/r > 140 the reserve of strength in the 
plastic range is not greater than about 10%. For practical 
design purposes this may be neglected. For stiffer struts 
the reserve may be taken as varying linearly from 0% at .4(r = 
140 to 20% at -e/r = 80. 
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Some indication of the reserve of strength of I section 
members in the plastic range can be obtained by studying the 
figures in a paper by J. C. Nutt - "The Collapse of Triangulated 
Trusses by Buckling within the Plane of the Truss" The Struct. 
Engnr. May, 1959. 

Of course the reserve of strength beyond first yield is 
a function not only of -e/r but of many other factors, but the 
above values appear reasonable until more extensive test results 
are available. 

	

40 	80 	120 ((DO 	200 £40 
Slenderness ro4 i o 	

Fig. 192 

99. The Design of Bolted Angle Struts: 

It appears possible therefore, in view of the foregoing 
results, to systematise the design of bolted angle struts in 
the following manner. The required empirical information is 
presumed known in each case. 

(i) Short Stiff Struts: (e.g. slenderness ratio -44r less 
than 140, for mild steel rolled sections.) 

The load to cause first yield can be calculated from 
the equation of the Southwell Plot on strains. The collapse 
load can then be estimated, the reserve of strength in the 
plastic range being known from Mackeyis tests or other 
empirical work. 

(ii)Intermediate stiffness struts (e.g. slenderness ratio Or 
ranging from 140 upwards, for mild steel rolled sections.) 

The maximum load can be obtained directly from the 

equation of Southwell Plot on strains, the reserve of strength 
in the plastic range being negligible. 

(a° Very Slender Struts: 
It is convenient to be able to limit the deflections 

of very slender struts in practice. There is no difficulty 
in doing this using the equation of the Southwell Plot on 
deflections. If a pin-ended column has initial central 
crookedness al , then the central deflection under load P is 
y = 	- PA), (See Art. 18), and the equation of the 
Southwell Plot on strains is 

( - PAA)/1' = ( 6 - PitA)A + C1  where 

	

al  = EI01 iv, 	(see Art. 56).: The values of a l  and Q 

can be obtained from the Southwell Plot on strains. 
Substitution in the deflection equation enables the load P 
for some limiting deflection to be calculated. 
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The method can be extended to struts which are not 
pin-ended. Equation (128) is the equation of the Southwell 
Plot on strains. The plot furnishes values of Ql  and 0 1 . 
Since a bolted angle strut buckles with large central ' 
deflection, we may assume that the central deflection is 
given by: 

y = (EI0 1 /V)A1 - P/41 ) 

This gives 
P = Ql  (1 - EIC i /Vy) 	0. 

Empirical values of Q1 and C obtained from equation (128) 
1 can be substituted in equation (130) and the load P for 

some limiting value of y can be calculated. 

The method given above is dsovalirlfor structures 
other than those containing bolted angle struts. However, 
it is of particular practical value for bolted angle struts 
because of the relatively large values of 7, 1  which obtain 
for these members. Because of the eccentric connection, 
bolted angle struts fail by large central deflection. There 
is generally no doubt about the buckling mode, and the 
required location of strain gauges to pick up the longitudinal 
strains due to the buckling is obvious. Buckling effects 
(6- p/EA) are large compared with non-buckling effects (P/EA). 
Hence the Southwell Plot on strains can be accurately drawn 
from experimental measurements, and as a design formula, it 
can be relied on. 

Also, because of the eccentric connection, failure of 
a bolted angle strut follows very quickly after the occurrence 
of first yield. The reserve of strength in the plastic range 
is considerable only for short stiff struts. This serves to 
widen the range in which the design criterion is merely the 
simple substitution of a limiting strain in the equation of 
the Southwell Plot on strains. 

101. 	The Southwell Plot on strains can thus be used as a 
convenient experimental technique for determining the 
conditions which bring about the collapse of structures 
liable to instability or compression members built into 
structures. The method is based on elastic theory, but 
the principal difficulties associated with elastic analysis 
are avoided. It is realised that all structures in the 
elastic range are very sensitive to imperfections, that 
yielding under working loads at highly stressed locations 
can be tolerated, and that it is impossible to carry out an 
exact elastic stress analysis of any structure. However, 
using the method given, attention is concentrated on strains 
due to the buckling mode which causes failure, and the load-
carrying capacity is related to the failure pattern. 

In practice it is found that the failure loads of 
framed structures are extremely sensitive to the imperfections 
(such as initial crookedness of members, etc.) of the structure. 
The simplifications used when plastic theory is applied to 
bending of mild steel beams are therefore not available, and 
it is unlikely that elastic analysis of struts in framed 
structures will ever be entirely discarded. 

.. (130) 

4 



PLATE 14 

A transmission tower made of bolted angle members. 

Small torque spanner 
for tightening bolts 
in frames used in 
model experiments. 

Triangular frame made from aluminium 
angle - section members. 



PLATE 15 

Test on model frames containing bolted angle members. 



PLATE 16 

Space frame made from bolted angle members. 

0 

Detail of bolting of frame. 
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Framed structures which are redundant even if the 
joints are considered pin-ended - those frames in which 
the forces in the members cannot be. calculated from 
statics - present special problems. The method of the 
Southwell Plot is still available, but it must be related 
to the overall loading, rather than to the forces in 
individual members, as these are difficult to determine 
in even the simplest redundant frames once buckling effects 
become important, and difficulty is experienced here in 
systematising the empirical information required for design 
purposes. 

---- 000 ---- 

BIBLIOGRAPHY AND NOTES ON CHAPTER FOUR 

The numerals refer to the articles in the text. 

91. 	See S. Timoshenko "Theory of Bending Torsion and 
Buckling of thin-walled members of open cross-
section." Collected Papers. of Stephen P. Timoshenko, 
McGraw Hill (1953) 2  P• 559 ._ 

F. Bleich "Buckling Strength of Metal Structures", 
Chapters 3 and 9. 



CHAPTER V. 

REDUNDANT STRUCTURES 

102. Many framed structures are redundant in the sense 
that they are statically indeterminate even when the joints 
are considered pinned. Various inter-related methods of 
analysis of redundant structures are available, of which 
energy methods are important examples. In this chapter, 
energy methods are discussed and some simple illustrative 
problems worked. Complementary energy is applied to a pin- 
jointed redundant braced frame in order to define the 
behaviour of compression members as they buckle or tension 
members as they yield. The extension to the study of rigid 
jointed redundant frames is discussed. The energy principles 
outlined are valid for all structures, but the argument is 
restricted to general types of framed structures. To discuss 
problems involving bending of beams, for example, ability to 
handle general non-linear load deformation relationships is 
required. 

103. Notation: 

General: 

Complementary energy 
• Strain energy 

Generalized force in an element or member of 
a structure. 

W Generalized external load applied to a structure, 
or a non-redundant reaction. 

X 	Generalized force apaied across a cut in a 
redundant member (internal redundancy) or a 
redundant reaction (external redundancy). 

6 Generalized deformation corresponding to any 
P, 14, or X. 

&YID 	P 2  1,12 X may be forces or moments etc., and S may 
be a displacement or rotation, etc. For a definition 
of a generalized force and its corresponding 
displacement see Timoshenko and Young, "Theory of 
Structures", McGraw Hill (1945), p.226. In general, 
there is a certain arbitrariness of grouping as to 
whether a given force is considered as an internal 
force, an external force, or a reaction, ie. whether 
the force is considered as an independent or dependent 
variable. 

Members of Braced Frameworks: 

• Force in a member (compression taken positive) 
.e Length of a member 
A 	Cross-sectional area 
E Modulus of elasticity 

I = Ar
2 
Second moment of area 

a 	Initial crookedness og a sliut 
Q 	First Euler load: 17 4EIte 

Other symbols are defined in the text. 
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.104. The Analysis of Redundant Structures: 

The equilibrium state. of a redundant structure is 
dependent on the load-deformation relation for at least some 
of the elements of which it is made. Such a structure can 
be analysed by ensuring that the deformations of the elements 
considered are consistent with one another, that is that 
compatibility is satisfied. Three different types of 
equation are thus necessary and sufficient for the analysis 
of statically indeterminate structures: 

(a)the equations of statics 
(b)load-deformation relations for the members 

of the structure 
(c)compatibility equations. 

In general, the compatibility equations are the 
most difficult to handle, as they often result in very 
complicated expressions. Various techniques have been 
devised to reduce the labour involved. For instance, the 
method of moment distribution used on building type frames 
involves writing down a preliminary solution which satisfies 
the conditions (b) and (c) but not (a). Corrections or 
adjustments which continue to satisfy (b) and (c) are then 
applied until (a) is satisfied. 

. However, in this chapter attention will be drawn 
to the types of technique similar to that known as angle 
balancing, as they appear to be the most powerful in non-
linear problems. The general procedure is to place sufficient 
imaginary cuts in the structure so that it is statically 
determinate if all the generalized forces X across the cuts 
are known. These forces are then taken as the unknowns. 
All the forces P in the structure are written down in terms 
of the forces X and the external loads W. The load-deformation 
relations for all the elements of the structure must be known, 
and hence the generalized deformations S of the structure 
can be written as functions of X and W. For convenient 
application, deformations 5 must be explicitly expressed 
as functions of forces P. For compatibility to be satisfied, 
the forces X across the cuts must be such that continuity 
exists, and the cut is closed. S across a cut is zero. 
To summarize, a set of internal forces satisfying the equations 
of statics is chosen, the corresponding deformations are written 
down using the load-deformation relations for the members of the 
otructure, and it is then ensured that these deformations are 
geometrically compatible. 

The iterative method of angle balancing applied to 
the rigid joints of building type frames, and familiar to 
engineers, is an example of the above technique. Using this 
method, a first solution satisfying conditions (a) and (b) 
but not (c) is chosen. The discrepancy in satisfying the 
equations (c) of compatibility is calculated and expressed 
in terms of the dislocation at certain points. Corrections 
which continue to satisfy (a) and (b) are applied until the 
errors in equations (c) are negligible, and compatibility is 
satisfied. The iterative technique is usnslly convenient only 
in linear problems, as in such a case the closing of the 
dislocation or cut is linearly related to the action X across 
the cut. 
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105. The Energy Theorems. 

The value of energy methods lies in the 
fact that they may afford a convenient means of writing 
down the compatibility equations or the equations of 
statics, (see (a) and (c), Art. 104); also a convenient 
grouping of variables is Obtained. 

The strain energy of a structure is 

U = 2EirP dE 	.. 	(131) 

where P is the load (force or moment) in some element of 
the structure, and 6 its corresponding deformation (see 
Fig. 193) and U is summed over all the elements of the 
structure. It is implied that P is given or can be 
expressed as a function of 6 	SO that the integration 
can be performed. 

defined as 

ri)  

Fig. 1.93. 

Suppose that for some element, S = 
when P = P1' Then partial differentiation of U with 
respect to S i , gives 

	

'3U/36.1  = P1 	(132) 

This equation is valid for non-linear as well as linear 
structures. 

The complementary energy of a structure is 
defined as 	

IF? 
C =E 6 dl'. 

0 
It is implied that S can be expressed as a function of P 
so that the integration can be carried out. Therefore 

c/a P1  = el 	(133) 

This holds whether the relation between Sand P is 
linear or non-linear. 

Across a cut, where the displacement 
corresponding to any X is zero, we have 

	

a c/a x = o 	 (134) 

As stated in Art. 104, redundant structures 
can be analysed by making use of the equations of statics, 
the load deformation relations for the members, and 
)equations of compatibility. The value of strain energy 
lies in the fact that, given a set of geometrically 
compatible deformations, the corresponding loads'in 
the members being obtained from the load deformation_ 
relations, equation (132) can be used to replace the 
equations of statics. Alternatively, when complementary 
energy is used, if a set of internal forces satisfying 
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statics is chosen, the corresponding deformations are 
available from the load deformation relations, and 
equation (133) or equation (134) can be used to ensure 
compatibility of deformations. The duality of approach 
discussed in Art. (104) is thus directly extendable to 
the application of energy methods. This duality can 
be exploited to obtain a solution in the most convenient 
way. For example, it is evident that it is more 
convenient to use complementary energy when S is 
given explicitly as a function of Py since in this case 
we begin with a set of forces P satisfying statics and 
solve for the corresponding deformations 5 ; this 
mode of expression is also convenient when using 
equation (133). Strain energy is conveniently used 
when P is given explicitly as a function of S I  since 
it is then necessary to solve for the loads resulting 
from the initially chosen set of compatible deformations; 
this mode of expression is also convenient when using 
equation _(132). The choice of method depends on the 
w47 in which the relevant information is expressed, and 
the information which is required._ In general, 
compatibility equations are difficult to handle; this 
is the reason for the wide applicability of - complementary 
energy methods, since equation (133) or (134) furnishes 
a means of handling the compatibility conditions. 

The above treatment is valid for linear or 
non-linear structures. In the case of.a linear structure, 
we have 

C = U, 	and equations (132) or (133) reduce 

to 	U/P1  = 	 • • 
	(135) 

Across a closed cut, we have 

e 	x =0 	 00 

	 (136) 

Equations (135) and (136) are widely used strain energy 
equations, but it is seen that their use is an example 
of the approach which has been discussed above under 
complementary energy. 

An interesting integrated treatment of the 
analysis of structures is given by F. Baron, "Successive 
Corrections: A Pattern of Thought" in "Numerical Methods 
of Analysis in Engineering" ed. Grinter, p.122„ 
(Macmillan, 1949), though some of the statements 
concerning energy methods now need reNision._ For a 
treatment of strain energy, see R. V. Southwell, 
"Theory of Elasticity" 2nd ed. O.U.P. (1941). Complementary 
energy is discussed by H. M. Westergaard in the following 
references: "On the method of Complementary Energy". 
Proc. A.S.C.E. Feb. 1941, Vol. 674. No, 2, p. 199, and 
Trans. A.S.C.E. Vol. 107 (1942) p. 765. 

The treatment of energy methods given in this 
thesis is rather short. For a fuller more rigorous 
treatment in which the basic theorems are worked out 
and the duality of approach is emphasized, see "Energy 
Methods of Solving Structures", a thesis presented for 
the degree of B.E. (Hons.) by S. Guidici, University of 
Tasmania, Feb. 1960. This work was carried out partly 
under the author's direction. 
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106. The Development of Complementary Energy Methods: 

The originator of the conception of complementary 
energy was Engesser, and the method of application has since 
been developed by Westergaard, Charlton, and Brown. In a 
series of papers, Broun_has systematically analysed the 
strain and complementary energy theorems and shown their 
inter-relation. In practice, complementary energy methods 
are as easily handled as strain energy methods, and the . 
purely mathematical : definition appears to be an advantage. 
No physical "feel" is needed. Complementary energy opens 
up a wide field -which cannot be handled by strain energy 
methods. 

Undue emphasis has been placed on elastic 
structures, that is, structures from which all the strain 
energy can be regained, and all the deflections reduced 
to zero, by the removal of the loads. As early as 1956, 
Hoff applied complementary energy to solve a redundant 
truss beyond the elastic limit. However, many authors 
still unnecessarily restrict themselves to load—deformation 

relations which are the same for decreasing as for increasing 
loads. This restriction is not needed so long as,the load-
deformation path is known, and the complementary energy is 
known at all stages of the loading of a structure. 

Fig. 194. 

For example, the load-deformation curve for a 
member may have the form shown in Fig. 194. It is 
possible to arrive at the load P1  by following the path 
AB, or the path ABCD 2  or the path ABCDEAB„ resulting in 
deformations gip S-2 , or S- 1, respectively. The 
complementary energy is thus not uniquely defined in 
terms of the load, but it is defined if the load-deformation 
path is determined. This restriction is important, and the 
restriction to elasticity may be discarded. It will also be 
shown later that in order to apply the complementary energy 
method, c) 0/2) P must be defined at the point under 
consideration. 

Complementary energy is treated by the following: . 
N. J. Hoff: "The Analysis of Structures" Wiley. (1956) p. 346; 
T. M. Charlton: Engineering vol. 174 ,(1952) 	389; E.H. Brown: 
Engineering vol. 179 (1955) p. 305, p. 339, p. 400; 
J.A.L. Matheson: Engineering vol. 180 (1955) p. 828; and 
T.M. Charlton "Energy Principles in Applied Status " (Blackie, 
1959). Other papers having a bearing on the use of complementary 
energy in structural analysis are: J.W.H. King: "Some Notes on 
Plane Frames not Obeying Hooke's Law", The &lamer, Vol. 196 
(1953), p. 44 T.M. Charlton: "Statically Indeterminate Frames: 
The Two Basic Approaches to Analysis.". Engineering Vol. 182, 
p. 822 (1956); Symonds and Prager "Elastic Plastic Analysis 
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of Structures subjected to Loads varying arbitrarily 
between prescribed Limits" Jnl, Applied Mechanics 
Vol. 72, p. 315, Sept., 1950; (See also discussion 
by Charlton on this paper); H. L. Langhaar "The 
Principle of Complementary Energy in Non-Linear 

Elastic Theory", Jnl. Franklin Inst. Vol. 256 (1953) 
p. 255; T.M. Charlton "Some Notes on the Analysis of 
Redundant Systems by means of the Conception of 
Conservation of Energy" Jnl. Franklin Inst. Vol._ 	_ 
250, P. 543 (1950); and T. M. Charlton "The Analysis 
of Structures with Particular Reference to the Prediction 
of Deflexions". N.E. Coast Inst. of Engineers and 
Shipbuilders, Vol. 74, p. 163 ( 1 9574 ,  

In this chatter, complementary energy is 
used to solve for the forces in pin-jointed redundant 
braced frameworks. The buckling of compression members 
and the yielding of tension members will be considered, 
and a number of simple examples worked. 

107. The Complementl Energy of a Linear Member: 

Consider the linear load-deformation 
relation 

s = pAK 	(Fig. 195) 	 • 0 

	 (t37) 

Fig. 195; 

Then at any load Pi, the complementary energy is 

C = 	dP = P 6  2 / 1- 1/ " 	(138) 

Also aC/ a P1  = (In the usual notation, 

k =EA/Ae 9 where E =Youngs modulus', A = area of member, 
i= length of member.). 

The Complementary Energy of a Yielding Tension Member: 

Consider a tension member whose load-extension 
relation consists of two straight lines of slope k = Ave 
in the region 0>F> -9F1 , and slope ki  in the region F<,Fp, 
as shown in Fig. (196). Compression is taken as positive. 

Fig. 196 
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Then, for 0>F> -F1 , we have 

= FI/AE and C = F2-e/2EA 

and for F < -F
19 
 we have 

= F /ki  + F/ki  - F1 .e/EA 

and 	C = Ff€ /2EA + 	(Fi  /ki  + F/ki  - Fl/A) dF 

= F12 .e /2EA + F1  (1Ac1  E/EA) (F + F1 ) 

+ (F2  - 4/2k1 4'.  

thereCore C/c F = F1  (1/k1  - 	/EA) + F/ki 	.. (138) 

The Comolementarv EnerKv of a . Member Having a Curved 
Load-deformation Diagram  : 

Consider a member for which 

aF 	bF3  

In practice, any easily integrable function can be 
fitted to the load-deformation diagram. If the behaviour 
is the same in tension as in compression, it is necessary 
to ube"an odd function. 

Now C= 	g dF 
Jo 

= aF2/2 + bF4/4. 

108. 	As a simple example of the use of complementary 
energy, consider the rigid bar ABC supported by three 
rods and loaded as shown in Fig. 197. 

This problem is worked by J. A. L. Matheson in 
Engineering: 187, 581, (1959). Using a series of straight 
lines to represent the stress strain curve, solution is 
achieved by means of the equation of virtual work. However, 
in this article the problem is used to illustrate how 
complementary energy can be applied. 
cross-sea‘c"%1 	A10•26 15: 1•40 C; 0-60. areas <sq_, ■ 

35 tons 	Fig. 197 

We have two equations of statics: 

FA + FB + FC = 35 (vertical equilibrium) 	.. (139) 

and 	8FA + 4FB - 2FC = 0 (moments about the point of 
application of the applied 
load) 	.. (140) 
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where FA 	g and Fc are the forces in tons in the rods 
A, B an C, tension being considered positive. 

Suppose the stress strain curve for each of the 
rods is given by 

E = 1.125 f 	4.76 X 10-4f3  

Then the load deformation relation is 

S = 1.125 yi 4. 4.76 x10-5  F3/A.3  .. (141) 

the equation being assumed valid in both tension and 
compression. 

Imagine rod A cut, and a force F A  applied across 
the cut to close it. Then 3c/ 2)F, = 0, from equation 
(134). Using equations (139) to (1Z1), the complementary 
energy C of the whole structure can be expressed in terms 
of the force FA in the redundant member at A and the 
external load. 

8 	We have 

a F
B  A 
/ a F = -5/3 ) .. FB  = 35/3 - 5FA/3, 

) .. (142) 
Fc  = 70/3 + 2FA/3 9 F0/ FA  = 2/

3 ) 

Hence the total complementary energy of the system 
is 	FA  r  Fs  

C = c g dFA  + ) 66dFB  + ec dFC o A 	o 

since the complementary energy of the rigid beam is zero. 

The use of equations (142), putting aCjf  a F A 
equal to zero, results in a third degree equation in 
F and the solution is A' 

FA  = -3.5, FB  = 17.5, Fc  = 21.0, 

SA15, SB = 15, Sc  = 60. 

These values of S satisfy the equation of the rigid beam 
which is 

( S C  _ 	= (GB  - A ) /4 	.. (143) 
In fact, the complementary energy method has merely furnished 
a convenient method of writing down equation (143), the 
equation of geometrical compatibility, which must hold when 
the cut is closed. 

This problem can also be solved by replacing the 
curved stress-strain diagram by a series of straights. 
It is then required to solve linear equations only, but it 
is necessary to guess and check in order that the solution 
may not lie on an extension of a straight line which is not 
applicable. 

109. Tie Corn 
ended Strut: 

em-nt ,  Ener I itiCooked Pi 

  

Consider the elastic strut whose unloaded shape is 
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C) 

yo 	an  sin nit x/2 . (Fig. 198) 

_ 

1913 

Under axial load P, the shape changes to 

= 	[a/(l - P/n2Q)]sin_nTr?_ve 

where 	Q = 7 2EI/ 2  (See Art. 18) 

The deformation Zi corresponding to P . is 
given by the shortening. 	Therefore 

6 = fo i(dy/dx) 2  dx_ + PAeAA - fi7(dy /dx) 2dx 

. 	n22 812,2 /4 ,e (1 -P/n2Q) 2  

P 	n2Tr 2%2/44 . , 	1  

For values of P up to the first Euler load Q, 
provided a2/a1 etc. are small, the n = 1 term governs 
and we obtain 

4 	2a21  /4 	p/Q ) 2 + p /EA Tr  2  4/4 	(i 44) 

It is interesting to note that similar expressions, 
governed by n =1 and involving the factor 1A1 PA), 
are obtained for the maximum deflection of the strut 
(see equation 20) and also the maximum strain (see 
equation 50). Empirically this furnishes a method 
of determining suitable values of the parameter al for 
various types of struts. Strains.are measured during 
a loading test, and by comparing the equation of the 
Southwell Plot on the measured strains with equation (51), 
the value of al  can be calculated. This has been carried 
out for a particular strut in Art. 590 The method also 
gives the value of P at which equation (144) is no longer 
valid due to yielding. 

A graph relating P to 4 is shown in Fig. 199. The 
complementary energy of the strut is 

C = 	LS. dP 0 

P4g \  (PdPitl 	
p  /4 ) 2 4. 2 - 	/ EA Jo 	 r 	"' 1r a 22  = (1T 2a2 	 P/4 

P2i /2 EA + (a2i AEI) [P2/(1 P/Q)] 	..(145)  

if the subscript of al  is dropped. 

Differentiating, we have 

	

DC/D P= Pi/EA + (a2//4EI)PX 	..(146) 

Where X = (2 - P/Q) /(1 P/Q) 2 	 .0(147) 
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Note: 	The complementary energy (column 3) is tabulated here 
merely to indicate the effect of initial crookedness on the 
complementary energy of the members BH and CI. In practice the 
differential is Obtained directly. 
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The plot of X. against P/Q is shown in Fig. 200. The 
fact that and hence C can be expressed explicitly 
as functions of P enables complementary energy to be 
conveniently applied. 

110. The Solution of a Pin-Jointed Redundant Truss  
using Complementary Energy: 

The braced frame shown in Fig. 201 is doubly 
internally redundant. All members are taken as having 
cross-sectional area A = 0.80 sq. in., minimum moment 
of inertia I = 0.20 in.4, Young's modulus E = 30,000,000 
lb./sq. in., and minimum radius of gyration r = 0.50 in-. 
Also the applied load W equals 30,000 lb. All members are 
considered linear except the compression members BH and CI, 
whose initial crookedness is taken as a = 0.25 in. (A 
method of obtaining practical values of initial crookedness 
has been outlined in Art. 109. This is further elaborated 
and supported by experimental evidence in Art. 111, where 
the results of Southwell Plots on measured strains and 
shortening of a pin-ended c2lumn are compared.) For 
these members, Q = 11'W/ = 16,700 lb. Compression 
is taken as positive. 

Table I gives the forces and complementary 
energy for the various members if the forces in the 
redundant members BH and CY are taken as Pi _and_P,. 
See columns 2 and 3 of the Table. In_colu$ns4 ad _ 
5, the complementary energTof each member is differentiated 
with respect to P1  and P2  respectively. The constant factor 
EA is taken out for convenience. 

From equation 136, we have 

c/a 	= a c/8 P2  = 00 

Summation of columns 4 and 5 gives the two equations, 

(207,2 + 3.75 A i )Pi  + 12.9 P2  

= 64.8W = 1944 kips 	•. 	(148) 

(20702 + 3.75X2
)P

2 
+ 12.9 P

1 

= 4896W = 1458 kips 	.. 	(149) 

These are non-linear equations, as the factors A 1 , 
involve P1, P2 : (Equation 147). Solution is 
facilitated by putting, provisionally, X, = A 	= 2, 
the value of A at P/Q = 0. The resultint linar 
equations give 

P2  = 6.27 kips, P2/Q = 0.38, A2  = 4.2 

P1  = 8070 kips, Pl /Q = 0.52,A1 = 6.3. 

Substitution of these more accurate values of A in the 

. 

original equations (148) and (149) gives 

P2  = 6016 kips, P2/4 = 0.38„)(2 = 4.1 

P1  = 8.00 kips, Pl /Q = 0.48, X 1  = 5.6 
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The correctedvalues of Pi  and P2  satisfy the original 
equations closely enough for practical purposes. One 
adjustment to the approximate solution obtained by 
putting A = 2 has been found to give a sufficiently 
accurate answer in problems which have been worked. 

Values of the forces in the members are 
given in columns 6 and 7 of Table I. 

Suppose the area of the tension member DH 
is reduced to some value A nu  so that it yields at a 
load of F = 4 kips. See Fig. 196. It is apparent 
from Table 1 that this will affect the solution. It is 
necessary to alter the differential of the complementary 
energy, of the member DH to the value given by equation 
(138). This gives 

c/6 F = F1  (1/k1  41ULD11) + F/ki . 

c .  

Sastitding FDH  = 5W/12 + P2 , () F/a P2  = 1 5  

Fi = 4, and  

we have 	EADH aC/a P2 

= EA 
DH 

 ( dc/d 	F/a P. ) 
2 

5W/12) - 240 = (EADHA1)(4 	4. EADH 

Equation (149) is now altered to 

(147.2 + 3O75 .X2 	EA/k1 ) - P2  + 1209 P1  

= 23 .6W + (EA/It1 )(502 - 4) 240 A/ADH  .. (150) 

Equation (148) is unaltered. Putting W = 30,0001b., 
Po  can be obtained for any value of ki . In particular for 
tile purely plastic case (k i  = 0), equation (150) can be 
multiplied throughout by ki ,and 19 then allowed to tend to 
zero. This gives 

P
2 

= 561/12 - 4 = 8.5 kips 

FDH= 5W/12 + P
2 
 = -4.0 kips. 

This is the value to be expected, as for 141  = 0, FDH  is limited 
to 4 kips tension. 

Care must be exercised in dealing with tension 
members which yield plastically. Too early substitution of 

= 0 leads to a c/3 F becoming undefined, and no solution 
is possible. 

Throughout the analysis, the joints in the frame 
have been assumed pinned. Tests show that this assumption 
alloys a reasonably close estimate of the forces when the 
joints are rigid. The use of the complementary energy of 
the pin-ended strut is considered to give a conservative 
estimate of the contribution of the redundant compression 
members to the strength of the frame, because end-fixing 
has been neglected. 
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111. Experimental Work on Column Shortening: 

Some experimental work has been carried out to 
determine the validity of equation (144) and alsb to 
investigate the behaviour of a column in the plastic range 
beyond the stage where maximum load is reached. 

In the elastic range we have the measured 
shortening of a pin-ended column given by 

= IT 2a2/4 AP, (1 - PA) 2 4' Pi/EA (See equation 144) 

where a is the inithl central crookedness. 

This reduces to 

•1/4' - P /EA = (P/Q)1/6 .  - P /EA 4. Ira/21/1 . . (1 51) 

This is the equation of a type of Southwell Plot on the 
portion of the shortening due to buckling effects, 

namely 	( 	P i/EA) . 

A rectangular section stei member was loaded as a 
column between balls. This was the same member for which 
deflection readings are given in Art. 57, and strain readings 
in Art. 59. Load is plotted against shortening in Fig. 202 
and the . Southwell Plot in Fig. 203. The Southwell Plot is 
linear, and of slope 1/190 lb. -1  which agrees well with the 
Euler load of 188 lb. This demonstrates the validity of 
equations (144) and (151). Similar experiments were carried 
out on ir" xi" steel members, good agreement being Obtained 
as before. 
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The shortening of the steel angle-section 
member discussed in Art. 61 was also measured. The results 
are plotted in Figs. 204 and 205. The slope of the 
Southwell Plot is 1/470 lb.-I  which compares well with the 
Euler load of 467 lbs. In Fig. 204, the graph of P against 
6. is continued into the plastic range. 

112. 	In view of the foregoing experimental work it 
appears that equation (144) satisfactorily defines the 
shortening of a pin-ended strut in the elastic range. 
Therefore, the derived expression for the complementary 
energy (equation 145) may be used with confidence to analyse 
the behaviour of a min-jointed redundant frame in the elastic 
range. To study the strength of such a frame it is necessary 
to be able to calculate the complementary energy of the members 
in the elasto-plastic range, that is to obtain some practical 
definition of the whole of the relation between P and 
The difficulties involved in this programme, even for pin-
jointed trusses, are large; but the task becomes even more 
formidable for rigid-jointed frames where the members are 
subjected to end moments (and, in general, torsions) as well 
as axial loads. 

However, the Southwell Plot on strains as 
developed by the author is a powerful tool particularly when 
used in conjunction with complementary energy methods. Assuming 
the complementary energy of the member of an intially perfect 
rigid-jointed redundant plane frame is equal to P'E/2EA, that 
is that all the members are initially straight, and no bending 
moments arise until buckling occurs, the load distribution 
among the members of the frame can be calculated, and the 
forces in individual members are linearly related to the 
applied loading. This enables an estimate to be made of a 
first elastic critical load, either by the method of moment 
distribution, or in simple cases by writing down all the 
equations of equilibrium at the joints and setting the 
determinant equal to zero. However, due to the redistribution 
of the forces in the members, there may be one or more modes of 
deformation into which the frame can deflect successively, and 
failure may not occur until the load reaches a value greatly in 
excess of the first critical load as calculated above. For any 
distribution of forces in the members of a redundant frame, there 
can be calculated a corresponding critical loading on the frame. 
There is therefore a critical load which may be considered as 
governing at failure. 

In practice, the initial behaviour of a redundant 
frame with fairly straight members is related to the first critical 
load. This holds so long as the coplp;ementary energy of the 
members approximates to the value P'.e/2EA. For this to be true, 
the deformations of the members must be predominantly axial, and 
bending effects must be small. It is therefore necessary that 
members should have small initial crookedness, and also that 
secondary bending effects due to the geometrical distortion of 
the frame should be small. However, as distinct from the 
behaviour of a non-redundant frame, this first critical load 
does not necessarily set an upper limit to the load-carrying 
capacity of a redundant-frame. The forces in the members 
redistribute once bending effects become important, and failure 
may not occur until the load reaches a value greatly in excess of 
the first critical load. 

Experimental work has been carried out at the 
University of Tasmania, under the author's direction, on a 
rigid-jointed flexible frame of the forms shown in Fig. 206. 
(The work referred to is incorporated in a thesis for the 
degree of B.E. (Hons.) in the University of Tasmania by 
G. Peck, Feb. 1960). 
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On loading the frame, it was found that strains increased 
rather quickly as the first critical load (as calculated above) 
was approached. The member BD buckled, in the sense that it 
became very flexible and could be moved about easily when a 
force was applied at its centre. However, the load W could 
still be increased, with BD continuing to deflect rapidly. 
Failure as given by very large deformation of BC, did not 
occur till more than double the first critical load was 
obtained. 

Strain measurements were made at different 
points in the members of the frame and Southwell Plots drawn. 
The latter gave two approximately linear portions ;  the inverse 
slope of the first linear part being equal  to the first 
elastic critical load as calculated above, and the inverse 
slope of the second linear part indicating a critical load 
somewhat higher than the failure load. It appears therefore 
that the members of the frame were initially straight enough, 
and the deformations and secondary bending effects in the 
frame small enough, for bending effects to be small up to 
nearly the first critical load. This critical load thus 
governs the initial behaviour. If the loads in the members 
could not redistribute, this first critical load would 
govern right up to failure, but as the load is increased, 
deflections increase, bending effects become important and 
the loads in the members redistribute; BD continues to deflect 
while its load falls off, and the load in BC increases until 
failure occurs. 

The forces in the members BD and BC were 
calculated from the measured strain readings around their 
cross-sections and their variation with the applied load W 
was qualitatively in agreement with the foregoing argument. 
An analysis of the complementary energy terms for the members 
of the frame was carried out in order to obtain some quantitative 
measure of the complementary energy of bending, and thus to 
analyse the behaviour of the frame as it approached the failure 
condition. The total complementary energy of a member is the 
sum of the energies of the axial load in it and of the bending 
moments acting as its ends. These bending moments are unknown, 
but in an attempt to take some account of them, the complementary 
energy of a bent strut in a rigid-jointed frame was taken as 

C = P2-e/2EA (a2 -04EI) EP2/(1 -P/Pcr)J 	.. (152) 

This equation is taken by analogy from equation (145)., the value 
of Per., the relevant critical load for the frame, being 
substituted for Q, the Euler load of the pin-ended strut. 
The analogy has reasonable justificationg it has been shown 
previously that the deflections and strains of a member in a 
frame increase or are magnified in the ratio 1/(1-P/Pcr), and 
the corresponding assumption applied to the complementary energy 

( 



PLATE 17 

Experiment with model redundant  frame. 

Measurement of shortening of  a pin -ended  strut. 
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of bending should be reasonably accurate. Values 
of Per. and also of the crookedness, a, were taken 
from the Southwell Plots on measured strains and 
substituted in equation (152). By this means the 
Southwell Plot on measured strains was used to obtain 
an estimate of the complementary energy of the members 
of the frame. It was therefore possible to calculate 
the forces in the members with increasing W. A 
reasonable quantitative substantiation of the measured 
variation of the axial forces in the members was 
achieved. 

113. aLIMMELP 

The experimental and analytical work 
so far carried out on redundant frames has been 
devoted to analysis of the elastic behaviour of 
flexible frames; a reasonably successful attempt 
has been made to analyse the redistribution of loads 
in members as loading proceeds by obtaining an estimate 
of their complementary energy, this estimate being based 
entirely on imformation obtained from Southwell Plots on 
measured strains. It is felt that further investigation 
will necessarily be limited to elastic behaviour for some 
time. The author is confident that the use of energy 
methods supported by empirical information obtained from 
strain measurements, particularly such information as is 
available from Southwell type plots, will ultimately yield 
a method of analysis. However, the determination of the 
strength of a practical redundant frame will certainly 
involve an elasto-plastic analysis. 

o 0 0 
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APPENDIX A 

The following is a list of papers published by the 
author in connection with this research. Most of this 
published work is embodied in this thesis. 

1. "Bolted Angle Struts: A Review of Existing Design 
Methods with Particular Reference to Transmission 
Towers." Water Power. Jan. 1959, 25 - 27. 

2. "Model Investigations on Bolted Angle Structures." 
Water Power, May 1959, 178 - 182. 

3. "Further Research on Bolted Angle Structures." 
Water Power, Aug. 1959, 308 - 310. 

"The Collapse of Triangulated Frames Containing 
Bolted Angle Struts". Water Power. Oct. 1959, 
390 - 392. 

5. "The Use of Measured Strains to obtain Critical 
Loads". Civ. Engng. Lond, Vol. 55, No. 642: 80-82. 

6. "The Elastic Buckling of Columns in Structures: The 
Use of the Southwell Plot on Strains to Obtain 
Design Criteria." Civ. Engng. Lond. (in press). 

7. "The Buckling of Structures." Civ, Engng. Lond. 
(in press). 

8. "The Use of Complementary Energy in Non-linear 
Redundant Braced Frames". Civ. Engng. Lond. 
,(in press)* 

9. "The Development of Lightweight Trusses at the 

University of Tasmania." Aust. Civ. Engng. & 
/- Construction (in press). 

10. "The Use of the Southwell Plot on Strains to Determine 
the Failure Load of a Lattice Girder when Lateral 
Buckling Occurs." Aunt. J. Appl. Sci.10: 371-376. 

11. "The Buckling of an Equilateral Triangular Frame in 
its Plane". Aust. J. Apple Sci. 10: 377 - 387. 

12. "A Non-linear Bending Effect when Certain Unsymmetrical 
Sections are Subjected to a Pure Torque". Aust. J. 
Appl. Sci, 11: 33-48. 

13. "The Application of the Southwell Plot on Strains to 
Problems of Instability of Framed Structures when 
Buckling of Members in Torsion and Flexure is Involved." 
Aust. J. Appl. Sci. 11: 49-64. 

14. "The Use of Complementary Energy in Structural Analysis." 
Civil Eng. Trans. I.E. Aust, Vol. CE2. No. 1. Mar.1960, 
9-13. 

15. "The Bending and Shortening Effect of Pure Torque", 
Aust. J. Appl. Sci, Vol. 11, No. 3 (1960. (Not 
incorporated in this thesis.) 

The following letters or discussions of papers are also 
relevant: 

on "The Buckling of Struts with varying Cross-Sections". 
J.I.E. Aust. 31, 9:231. 

on "Virtual Work and Complementary Energy Applied to Non- 
linear Braced Frameworks". Engineering 188:19. 
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