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ABSTRACT 

A theoretical model developed by Stone describing a two level trophic system 
in the Ocean is analysed, for the case in which there is unlimited supply of 
nutrients. It is shown that spontaneous oscillations in population numbers are 
possible, but they do not arise from a Hopf bifurcation. Seasonal forcing of the 
model is also investigated, and it is shown that resonances can occur, in addition 
to highly nonlinear behaviour including high period oscillations, quasi-
periodicity and chaos. 

The model is then extended to include the case in which nutrient concentrations 
are allowed to vary. In this model seasonal forcing is not considered. 
Nevertheless a Hopf bifurcation is found for a critical value of the bifurcation 
parameter which is chosen as the non-dimensional reproductive rate of bacteria. 
The Hopf bifurcation gives rise to oscillatory solutions appearing as limit 
cycles. The stability of the limit cycles found is determined using Floquet 
theory, where it is observed that the periodic solutions arise from the Hopf 
bifurcation as stable orbits. As the bifurcation parameter is varied the branch of 
oscillatory solutions loses stability. This is due to a fold bifurcation, giving rise 
to regions in the parameter space where two different oscillatory solutions are 
possible for the same parameter values. 
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CHAPTER 1 

Introduction 

There would not be a field of science, from anthropology to zoology that does not use 
mathematical modelling techniques as an aid to research. In many cases the overall aim 
of the research is to produce a model that simulates a physical system, such as a 
meteorological model to predict the weather. This trend has arisen out of the computing 
revolution, owing largely to the fact that although we have always been able to make 
complex models, we can now solve them, albeit numerically. It is true that numerical 
techniques have been around for a long time but the possibility of using them to solve 
complex systems of differential equations would be time consuming even for an 
accomplished mathematician. With readily available mathematical software run on 
reasonably inexpensive computers researchers with only a basic knowledge of 
numerical analysis can nevertheless test their models. 

The aim of mathematical modelling is to create a mathematical representation of a 
physical system, based on information provided by science about the system. As 
developers of a model we have two important aims. We need to show that the model is 
accurate, in that it resembles the actual situation in terms of its outputs. We also wish to 
know that our model is the simplest possible. By this we mean that the model could not 
be simplified further without changing the qualitative behaviour of any solutions for the 
system. It should be noted that when we test a model, our goal is to determine the 
qualitative behaviour of the solutions it provides. We cannot solve a complex system of 
equations for all cases. Instead we want to be able to make long term forecasts about the 
behaviour of the system they represent. In general then, we look for the types of 
solutions that are of use in practical applications. Another important consideration is to 
test the system of equations in a variety of situations that will give information about 
how the qualitative behaviour of the solutions depends on any parameters involved in 
the equations. In this way we can build upon the model to increase its complexity by 
introducing new terms or changing the form of existing terms. In the case of dynamical 
systems we usually generate a system of differential equations. The analysis of such a 
system of equations is independent of the specific application from which the equations 
were derived. How we do this is the domain of Dynamical Systems Theory. This is a, 
rich body of knowledge, and may be found in texts such as Guckenheimer and Holmes 
(1983) 

A dynamical system is generally defined as a rule that defines a subject's position in 
ambient space over time. Any continuous time model generated from this type of 
system will be in the form of a set of differential equations. We can then employ 
Dynamical Systems Theory, which builds on the well understood Linear Theory, to help 
us determine the qualitative behaviour of the solutions to this type of model. It should 
be noted here that by qualitative behaviour we mean looking at the form of the solutions 
in a parameter space. If we think of a system as an input-output mechanism then it is 
clear that it is not practical to look at the solutions for the possible range of all inputs. 
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Instead, we satisfy ourselves by examining inputs of practical importance. We are 
particularly interested in whether or not a solution will go to a steady-state over time or 
perhaps become chaotic in a certain region. We may also concern ourselves with 
oscillatory solutions which deal with finding systems where the dependent variables 
naturally oscillate over time. Another concern is bifurcation analysis which deals with 
how the qualitative behaviour of a solution changes abruptly when a parameter value is 
changed only slightly. Another important consideration is stability analysis. Here we 
investigate to see whether the solutions are stable or unstable with respect to small 
changes. Dynamical Systems theory has formulated many important results regarding 
the stability of solutions as well as generating many techniques with which to analyse a 
system. It has also given us a way of understanding the use of parameters to observe 
changes in equations which is of course of great practical benefit. 

We now describe a dynamical systems theory approach to a general problem. 
If we start with a system governed by the equations 

dxi  
= 	(x) , i =1,...,n , x E 91n  , 

generally we cannot solve this system algebraically. Instead we look for qualitative 
properties of a solution. This gives an overall picture of the behaviour of the system 
over time. 

As previously mentioned, a primary consideration in dynamical systems theory is the 
existence of steady-state solutions. We are interested in whether the system has 
solutions which are independent of time. This is determined by finding solutions to the 
equation 

f (x) = 0 , i = 	n . 	 (1.2) 

— 

The solution x does not change over time. Solving the system (1.2) for x will give 
possible steady-states in terms of the parameters. Another consideration then is whether 
the steady-states are locally stable. This is equivalent to asking whether, for some steady 
state solution x*  , a nearby solution x(t) with x(0) = x *  - s converges to x*  as 
t increases. The common approach to determining stability of an equilibrium point is to 
linearize the general system about the point by introducing a small perturbation of the 
form 

x i  = x 0  + 	+0(6 2 ) . 	 (1.3) 

Here 6' represents the magnitude of the perturbation from the steady-state. This gives 
rise to the linearized system of equations, 

dx =Ax 
dt 

dt 

(1.4) 
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for the perturbed quantities. 	The matrix A in equation (1.4) contains the 
derivatives af, I ax 	=1,..., n, evaluated at the equilibrium point. Typically in a 
dynamical system drawn from a physical model, the parameters will have known values 
and so we can evaluate A, and thus find the eigenvalues which in turn determine the 
stability of the steady-state. 

We will now look at this situation for the two dimensional case. In two dimensions it is 
possible to observe the evolution, in time, of the solutions in the phase-plane. If we 
consider the general equations of the form, 

	

dx I dt = f(x,y), dy I dt = g(x,y) 	 (1.5) 

there is a unique curve through any point (x 0 , yc,- ) except for the singular points (x„ y3 ) 
where Axs , y s  )= g(xs y s )= 0 . We can make a transformation so that (1.5) has a 

singular point at the origin (0,0). If the equations f and g are analytic at the origin then 
we can expand them in a Taylor series expansion retaining only the linear terms, which 
leaves us with 

	

dxIdt=ax+by, dyldt=cx+dy. 	 (1.6) 

This is the two-dimensional equivalent of equation (1.4), with 

fx 

gx g y 

The eigenvalues 2, 22  of this (Jacobian) matrix are found by evaluating the 
characteristic polynomial and as such are solutions to the equation 

Det IA — A/1 = Det 
(a— A) 	b 

C 	(d — A) 
=0. 	(1.8) 

   

Solutions of (1.6) are of the form 

( x
) = c l v l e + c 2 V 2

e 2,1 	 (1.9) 

A= 
a b 
c d 

 

   

(1.7) 

Where c 1 , c2  are arbitrary constants and v i  , v 2  are the eigenvectors of A, corresponding 
to 2i  , 22  respectively. 
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The solutions have different behaviours depending on the qualitative values of the 
eigenvalues. The six common forms can be viewed in the phase-plane for (x, y). They 
are displayed in Figure 1. 

(a) 	 (b) 

(c) 	 (d) 

x. 

(e) 
	

(f) 

Figure 1.1 six typical basic linear singularities. The direction of the arrow shows whether the solution 
branch is moving towards or away from the singularity at (0,0). (a): node: can be stable or unstable. (b) 
saddle point: which is always unstable.(c) Node (type II): these can be stable or unstable. (d) star: can be 
stable or unstable (e) spiral: can be stable or unstable. (f) centre: neutrally stable 
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If 	,22  are real and distinct, then if they have the same sign we have Fig 1.1(a) a node 
which will be stable if the sign of the eigenvalues is negative, otherwise the node will be 
unstable. If they have different signs then we have a saddle point as shown in Fig 1.1(b). 
If 2= 22  then in general the solution will contain terms like te At  and as there is only 
one eigenvector along which the solutions tend to (0,0), this critical point can be either 
stable or unstable depending on the sign of 2. This degenerate situation is shown in Fig 
1.1 (c). If there is no term like te A2 , as shown in Fig 1.1(d), we have a node (type 2 ) 
which once again may be stable or unstable dependent on the sign of 2 . If A1  , 22  are 
complex and they have the form a±i/313# 0, then we have a stable focus if a< 0 as 
shown in Fig 1.1(e). If a> 0 the focus will be unstable. If a = 0 then we have a 
centre. Centres are neutrally stable, in the sense that any perturbation from the orbit 
doesn't return to it, but instead forms a separate orbit about the critical point. This is 
shown in Fig 1.1(f). 

Thus the form of the solution depends on the parameters a, b, c and d in equation (1.7). 
If we have a situation where a focus solution cannot leave a bounded set nor can it reach 
its critical point, then we must have a limit cycle in the phase plane by the Poincare-
Bendixson theorem (Murray 1989). Limit cycles are representative of self-sustained 
oscillatory behaviour in the solutions. They may arise through bifurcation at a parameter 
value at which the linearised solution would find a centre. A bifurcation refers to the 
case where the number of steady states in a system changes or there is a change in 
stability of an existing steady state, as a parameter is changed. A bifurcation generally 
occurs when the real part of an eigenvalues at an equilibrium point passes through zero 
as a parameter is varied, therefore changing the stability of the point. If a pair of 
eigenvalues becomes purely imaginary at this point we have a Hopf bifurcation. 

Scientists are interested in oscillatory nature of solutions because they are a feature of 
biological systems, as shown by Shertzer et al (2002). Studies show that in a two-
dimensional predator prey system over time predator numbers may increase and as such 
prey numbers decrease. As prey numbers decrease so may predator numbers. This gives 
prey an opportunity to recover and so their numbers increase again, followed by an 
increase in the numbers of predators, and so on. This is an example of an oscillatory 
solution and we have already outlined how a dynamical systems approach can be used 
to predict conditions under which oscillatory solutions may form. In addition, we can 
predict whether the solution is stable or not. Commonly we use the Hopf bifurcation to 
predict the existence of limit cycles. Generally, we will vary one parameter and try to 
locate a critical value at which a Hopf bifurcation occurs. For example, in the previous 
phase plane analysis we know that the eigenvalues are given by (1.8) as, 

A1 ,22  = —21  ((a + d)±.\Aa + d) 2  —4(ad —bc)) . 	 (1.10) 

A necessary, but not sufficient condition, for equation (1.10) to give a Hopf point would 
be the following 

a = -d and a 2  + bc < 0 . 	 (1.11) 
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Thus the eigenvalues become 21 ,2, = 	a 2  — bc , so that at the possible Hopf 
bifurcation point (1.11), a limit cycle may be born with oscillatory frequency 

27TIV—a 2 —bc. In a practical situation, we might therefore vary the parameter a and 
observe the solutions as we pass through the Hopf point (1.11), keeping the other 
parameters constant. 

Limit cycles are periodic solutions with non zero amplitude. Nearby solutions are 
bounded by these structures in that they either converge to them or diverge from them. 
We can determine whether the limit cycles are stable or not using Floquet theory, which 
deals with periodic solutions and provides methods to test if a linear approximation to a 
limit cycle converges to the limit cycle. Floquet theory can also be used to show if there 
is period doubling in the solution, which can be a route to chaos. Shertzer et al (2002) 
have found limit cycle behaviour in a laboratory using just two species. We therefore 
know these structures exist in nature. However, they may be obscured in a far more 
complex ecosystem. Nonetheless, they will still have an effect on the overall dynamics 
of the larger system. We look more closely at the theory behind limit cycle stability in 
chapter 3 of this thesis. 

Oscillatory solutions are, of course, not necessarily periodic. In non-periodic solutions 
we look for such qualitative behaviour as quasi periodicity and chaos. Quasi-periodicity 
occurs when a solution appears to form non-repeating patterns, although it turns out that 
the solution is actually made up of two different frequencies with a ratio that is an 
irrational number. The Ruelle-Takens-Newhouse theorem predicts that Quasi-
periodicity can be a route to chaos (see the discussion in Thompson and Stewart 1989, 
page 196). This can occur if the quasi-periodic solution itself undergoes a (secondary) 
Hopf bifurcation to produce a third frequency component that is an irrational multiple of 
the previous two. Once the third frequency appears in the solution, then the solution is 
structurally unstable and will become chaotic. Once again, this behaviour is not just a 
theoretical construct, as Jansen (2001) found quasi-periodicity within a two dimensional 
predator-prey system which was dependant on migration rates of the predator. 

In this thesis we are investigating a model taken from a paper by Lewi Stone (1990) 
describing a five dimensional food web. The paper deals with predator-prey 
interactions, which have been of great interest both to practical and theoretical 
biologists over a long period of time. In particular, naturally occurring oscillations of 
populations in time have been studied in a variety of practical situations (Murray 1989). 
Famous models, such as the Lotka-Volterra system, have been developed to explain 
theoretically the source of these oscillations in fish populations, and such behaviour is 
also exhibited in Phytoplankton (Edwards et al 1999). Oscillations may be possible in 
the unforced case dependant on parameter values. Huppert et al (2004) found for 
example that the rate of Zooplankton growth has an effect on Phytoplankton blooms. 
Seasonally related phenomena (Truscott et al 1994) have been observed in 
Phytoplankton, which suggests that seasonal forcing of populations may also be of 
importance in modelling. In fact, Edwards (2001) found that "seasonal forcing of some 
of the parameters may be taking the system from a region of parameter space where the 
unforced system would be attracted to a stable steady state, into a region during the 
summer months where the unforced system would exhibit stable oscillatory behavior". 



7 

Stone (1990) studied a two level trophic web found in the Southern Oceans. In 
particular he sought to explain the paradoxical nature of the interaction between 
Phytoplankton and Bacteria that form part of the system. Both species compete for the 
same limiting inorganic nutrients. When these nutrients are scarce, the Phytoplankton 
release Extracellular Organic Carbon (EOC) which is used by the Bacteria. In essence, 
the Phytoplankton directly promotes the survival of a competitor. This is intuitively at 
odds with the nature of competition. To explain this phenomenon, Stone (1990) refers to 
the idea that ecologists commonly use a reductionist approach to view interactions. 
Behaviour is deduced from the interactions between organisms in isolation rather than 
as one of many interactions in a wider community. For example, if Phytoplankton are 
disadvantaged by the presence of Bacteria which in turn are predated by Protozoa, then 
it is conceivable that Phytoplankton, by stimulating the growth of Bacteria may be also 
stimulating the growth of the Protozoa which graze on them. This may prove 
advantageous to the Phytoplankton. In fact this may be a case of the Paradox of 
Enrichment (Kirk 1998) whereby adding more prey results in population cycles that 
increase in amplitude. Gross et al (2004) showed that the dynamics of a general predator 
prey system can be either stabilized or destabilized by enriching the prey, dependant on 
the form of the interaction function used. 

Much research has been performed on the stability of populations in biological models, 
focussing on how populations are drawn to attractors such as limit cycles or steady-
states, or if and when extinction occurs. Shertzer et al (2002) found that a simple 
mechanistic model of a four species predator-prey interaction agreed with data collected 
in a chemostat experiment. The model predicted limit cycle, steady-states and extinction 
behaviour present in the chemostat, although the results differed on the prediction of 
period and phase. The model was improved to include the ability of prey to evolve 
defence mechanisms, and was found to be accurate in all respects. Hutchison (1961) 
theorised that Plankton communities cannot come to equilibrium but continue to 
develop to oscillatory solutions or chaos owing to all the external effects they are 
subject to as their environment changes. Scheffer et al (2003) found that "various 
competition and predation models suggest that even in homogeneous and constant 
environments plankton will never settle to equilibrium." This was also found in 
experimentation and that chaos quite often resulted in low dimensional systems. This 
has the outcome of making long term predictions about such systems impossible. 
However, Verschoor et al (2004) subsequently "showed experimentally that bi-and tri-
trophic food chains with induced defences approached a stable equilibrium without any 
oscillatory tendency, while those without defences in the algae showed high-amplitude 
population". Van der Stap et al (2008), showed for tri-trophic model that population 
stability of phytoplankton occurred in a tri-trophic model when the phytoplankton had a 
defence mechanism which affected the uptake interaction of the Zooplankton. We can 
conclude from these studies that the differences regarding population stability are a 
result of the conditions under which these results were obtained. By this we mean that if 
the number of species present and environmental variables differs from experiment to 
experiment, then so do the results. 

Other dynamical structures such as quasi-periodicity have also been found in higher 
dimension food webs similar to the one being examined here. Ruan et al (2001) 
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examined a three dimensional model involving Zooplankton, Phytoplankton and 
nutrients in limited supply. Modelling nutrients with both instantaneous and delayed 
recycling they found that the equilibrium point loses stability when a critical value is 
reached in nutrient levels and passes via a Hopf-bifurcation into a limit cycle. On the 
other hand, Wang et al (2005) found in a three dimensional food web with non-linear 
nutrient dependence there was limit cycle behaviour, quasi-periodicity and chaos. 

In this thesis we will use the ideas discussed but in greater detail to examine the model 
described by Stone (1990). This model describes a five dimensional food web. We will 
begin by formulating a simple model involving just the straightforward Lotka-Volterra 
interaction. This way we can get an idea of the dynamics of the simplified system. In 
this first formulation of the model we will look at the system under the assumption that 
nutrients are in plentiful supply. We will analyse the model using dynamical systems 
theory to look for both steady state and oscillatory solutions. We will then seek to 
determine whether oscillatory solutions can arise as the result of a Hopf bifurcation. 

In the next phase of analysing the system under the assumption that nutrients are in 
plentiful supply we will look at periodic forcing. This corresponds to looking at diurnal 
effects on the system. This is achieved by changing the form of the interaction function 
for one of the species. In this case we look for resonance in the linearised system. This 
may be seen as analogous to phenomena such as algal blooms in nature. 

In the third chapter we allow nutrient concentration to vary and thus increase the 
complexity of the model. Once again using dynamical systems theory we will analyse 
the model. In this case we are looking for behaviour such as steady-states and 
oscillatory solutions. We are looking for the presence of a Hopf bifurcation or in fact 
any bifurcation point that alters the dynamics of the system. We found limit cycles and, 
using Floquet theory, we determined that their stability changed as we moved along a 
solution branch. We found no evidence of period doubling in the solutions. 

In the last chapter we provide an overall summary of the work undertaken in this thesis, 
along with some indications of possible future research. 
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CHAPTER 2 

Simple Model Including Forcing Term 

In this chapter, we present a detailed analysis of Stones' (1990) model of phytoplankton 
and bacteria interaction, with a two level trophic web in which protozoa and 
zooplankton are also included. Ideas from the theory of dynamical systems (see Murray 
1989, Edelstein-Keshet 1988 for more discussion) are used here to investigate the 
stability of steady-state populations and the possibility of self sustained oscillations. As 
was mentioned in the introductory chapter, we do not consider the nutrient term (in 
Figure 2.1.) in our first analysis of the system. This can be considered equivalent to 
assuming the nutrients to be in ample supply and therefore any loss, or gain, to nutrient 
mass does not affect the system in any way. In this way we can remove the nutrients 
term from the equations governing the system. This will give us important information 
about the behaviour of the system under this condition, since although Stone (1990) 
sought to understand the behaviour of the model when nutrients were limited, to 
understand the system fully and see the overall effects of nutrients, it is important to 
understand this simplified system. 

In addition to looking at the system without the nutrient term, we also allow the growth 
rate of bacteria to vary sinusoidally, as a model for seasonal (or diurnal) fluctuations. 
This can have the effect of making the solutions oscillatory with the same period as the 
forcing frequency, or if the solutions are already oscillatory then the combination with 
the forcing frequency may present itself in the form of resonant peaks in the solutions. 
As it stands the model is non-linear, and so we find a complicated resonance pattern in 
the results, and suggest even the possible presence of quasi-periodicity and chaos for 
certain parameter values. 

The model is presented in Section 2.1 and for convenience scaled (non-dimensional) 
populations and rates are introduced. In Section 2.2 we provide an analysis of the 
model. Section 2.3 presents a linearized analysis of the seasonally-forced model in 
which we assume small amplitude for the forcing term. Two (primary) resonance peaks 
are shown to be present. Numerical results are then found, in section 2.4, for the non-
linear model. Multiple resonance peaks and even possible quasi-periodic and chaotic 
behaviours are found. This chapter concludes with a discussion in Section 2.5. 
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2. 1 The Mathematical Model 

We consider the two-level trophic system illustrated in Figure 2.1, taken from the model 
proposed by Stone (1990). There are five interacting compartments, namely Bacteria 
(B), Phytoplankton (P), Zooplankton (Z), Protozoa (R) and Nutrients (N) and these are 
indicated in the diagram. 

Fig. 2.1 Stone's Compartmental model showing interaction between components. The direction of the 
arrows indicates a direct positive influence by one component on another. Here R,B,N,P,Z represent 
protozoa, bacteria, nutrients, phytoplankton , zooplankton respectively. The effect of nutrients N is 
ignored in the present study. 

The arrows show positive interaction between components in the model, where for 
example R benefits from the presence of B but B is negatively affected by the presence 
of R. Fig 2.1 contains two predator prey systems, one for the bacteria and protozoa and 
one for the phytoplankton and zooplankton. In simplest terms population mechanics is 
governed by the idea that a species numbers changes according to the following rule, 

Rate of Change of a Population = Reproduction Rate — Mortality Rate + Migration. 

In this thesis, migration is not considered; instead we consider the system closed. We 
represent the predator prey relationship in the form of a Lotka-Volterra model, which in 
the general two dimensional case can be given by 

dP2  = Pi (a — bP2 ) 
dt 	 dt 

Here PI  is the population of prey and P2  is the population of predator, and a, b, c and d 
are positive constants. The reproductive rate of the prey, given by the term aF;, is 
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proportional to the number of prey present. This encapsulates the idea that the prey 
population will naturally increase by a percentage of its current population. Furthermore 
this type of model assumes that without predators, P, = 0, the prey growth, 
dP, I dt = all, is exponential. Predator reproduction, given by the term cP,P, , is 
proportional to the predation rate, which is modelled by this interaction term that 
represents the probability of predator and prey being in the same location at the same 
time. Clearly, in the absence of prey, P, = 0, the predator population, dP, I dt = —dP, , 
dies off. Similarly the mortality rate of the prey, — b F1 P2 , is likewise proportional to 
their predation rate. The mortality rate of the predator, — dP, , is proportional only to the 
number of predators present, so we expect a percentage of the predators will die off 
within a given interval of time. 

As previously mentioned we will not be considering migration in this thesis. Stone 
likewise did not consider this in his paper and the effect is therefore not present in the 
model detailed in Fig 2.1. Although migration is a factor worth considering there are 
many different levels of complexity or alternate methods used to model population 
dynamics (see Murray (1989) for further discussion). We can for example, represent 
birth rate as a delay term where gestation period and reproductive maturity of an 
individual are taken into account. A delay term may determine the current growth rate 
of a species by examining the growth rates of the species at earlier times with respect to 
the then populations. The real point to be considered here is that although there are more 
or less realistic models available, models at all levels of complexity will furnish 
important results about the dynamics of a system. 

In this chapter we consider the case in which the nutrient concentration N is 
inexhaustible, and therefore not subject to change. With this in mind we now look to 
construct the governing equations for Stone's (1990) system. Following the same 
approach as outlined in the classical Lotka-Volterra system, the interaction in Figure 2.1 
gives rise to the system of four ordinary differential equations 

dB/dt = r b B - r, RB + r PB 

dP/dt =r p P 	PZ - r, BP 
(2.1) 

dZ/dt = r PZ - d Z 

dR/dt = r RB - d R 

for the time-dependant behaviour of the populations of the four species. In Stone's 
(1990) original model, the interaction between bacteria and phytoplankton was 
described as an example of commensalism, in which B benefited from P, but without 
cost to phytoplankton P. Here, however, we have assumed a simpler situation that 
interactions between any two compartments illustrated in Figure 2.1 result in a gain to 
one and a loss to the other. In a biological setting this would assume the relationship to 
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be more akin to parasitism than commensalism, which is modelled by a negative 
interaction term in the rate of change equation for the host and a positive term in the 
equation for the parasite. We can see from these equations that in the absence of a 
nutrients term, the four equations (2.1) look like two predator-prey systems connected 
by what looks like a predator birth rate term in the rate of change equation for bacteria 
and a prey mortality rate term in the rate of change of phytoplankton equation. In this 
system (2.1), the symbol r b  denotes the growth rate of bacteria, and r p  is the 

reproduction rate for phytoplankton. The three quantities r r , r i  and r, are the (second 
order) interaction rates between protozoa and bacteria, bacteria and phytoplankton and 
zooplankton and phytoplankton respectively. The remaining terms d, and d r  are the 
mortality rates of zooplankton and protozoa. All these quantities are positive. 

In the present investigation, we undertake an analysis of the dynamical behaviour of the 
system (2.1) in the unforced case in which all the parameters are constants. Of particular 
interest are conditions necessary for a solution to exhibit oscillatory behaviour. If 
possible, we also wish to identify those situations in which a limit cycle may be born by 
means of a Hopf Bifurcation, which occur when a non-linear self-sustained oscillation 
appears directly from a steady-state population as a parameter is varied (Murray 1989). 

We are also interested in the effect of subjecting the system (2.1) to external periodic 
forcing, arising physically from seasonal or daily variations in the environment. This is 
achieved mathematically by representing the reproduction rate for bacteria rb  in the 
form 

r b  = r bo  + r bl  cos( co t). 	 (2.2) 

Here, rbo  is the average breeding rate and r bi  is the forcing amplitude. The constant co 
is the frequency of the seasonal forcing, and has units day -` . As indicated by Edwards 
and Brindley (1999), this term indicates that bacteria are more likely to reproduce in 
daylight. 

The original system of equations (2.1) is now re-cast in terms of dimensionless 
variables. This is done in order to simplify the model, particularly as it results in fewer 
dimensionless groupings of parameters, rather than isolated model parameters that must 
be varied individually in order to analyse the model fully. To non-dimensionalise the 
equations we consider the bacteria population in the form, 

B=BB 	 (2.3) 

where /3 is a dimensionless quantity and the B, represents a scale that will be chosen 
later. Scalings similar to (2.3) are likewise made to the other variables P, R, and Z in 
equations (2.1). Time is also scaled in the same way. We substitute this form into 
equations (2.1) so that the first equation looks like, 

=rb B„.13—rr R,Bs it13+0„.13,f31-) . 	 (2.4) 
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We made use of the chain rule here dB I dt = B s  (di3 I di).(di I dt) and also the fact that 

It =lit,. Once we have divided both sides of (2.4) by Bs  It this equation becomes 

	

dB/ dl = rb t s h —rr R s t s k + r Ps t s hl; 	 (2.5) 

The above equation has three dimensionless parameter grouping, rb t, , rr Rs ts  and 

r Ps t, 
Once we have determined all these groupings by applying this same procedure to the 
remaining three equations in (2.1), we can choose suitable scales to reduce the number 
of parameters. The full set of parameter groupings are given by 

rbt , 	rr R s t s  , rPs t s  
rp t „ 	rz zs ts  , 	ri B s ts  

rz Ps t s , t s d, 	 (2.6) 

rr Bs ts , t s d r  

We now use look to make choices for some of the dimensional quantities so as to reduce 
the number of parameter grouping in (2.6) by reducing their values to unity. The time 
scale was chosen as t, =11 rp  which is a time scale linked roughly to the lifecycle of the 
phytoplankton. We also assume that all populations are roughly the same order of 
magnitude so that B, = Ps  = Z s  = R, and that all four populations (B, P, Z, R) are 

scaled with respect to the quantity rp  I r. which is a naturally occurring measure of 
population coming from equations (2.1). In these non-dimensional variables, equations 
(2.1) become 

dB/dt = fi B - RB + i7PB 

dP/dt = P- a PZ - 77PB 
(2.7) 

dZ/dt = a PZ - 6Z 

dR/dt = RB - y R. 

There are now only four dimensionless parameter groupings in the system (2.7). 
These are 

	

a =r,/r r , y =d r /r p  ,5 =d,/r p  , q=r i /r r . 	 (2.8) 
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The first of these parameters, a, represents the reproduction rate of phytoplankton. The 
second, y, corresponds to the mortality rate of the protozoa. The third parameter, 5, is 
the mortality rate of the zooplankton and the fourth quantity, 77 , is the relative rate of 
interaction between the Bacteria and Phytoplankton. All four parameters are constants, 
and in addition there is a time-dependant reproduction rate for bacteria 

= fic, + fil cosS21-  , 	 (2.9) 

from equation (2.2). This relation (2.9) introduces three additional non-dimensional 
parameters 

flo rb o I rp 	= rb, I rp , Q= 01 rp  • 	 (2.10) 

The first of these is the steady-state reproduction rate for bacteria. The second 
parameter /31  is the seasonal forcing amplitude for that reproduction rate, and the final 
parameter C2 is its forcing frequency relative to the time scale for natural bacterial 
growth. Thus the model is fully described by the set of seven constants in equations 
(2.8) and (2.10). 

2.2. Analysis of the Model 

This section begins by considering the dynamics of the system (2.7) without seasonal 
forcing, so that A = 0. 

2.2.1 Steady-state Populations without seasonal forcing 

Steady states are solutions (B, P, Z, R) which satisfy 

dB/dt = dP/dt = dZ/dt = dR/dt = 0. • 

There are five separate equilibria for the non-dimensional model system (2.7). These 
may be determined to be 

(Beq, Peq, Zeq, Req) = (0, 0, 0, 0) 
(Beq, Peq, Zeq, Req) = (1/77, - fi/r7, 0, 0) 
(Beq, Peq, Zeq, Req) = ( y , 0, 0, 	) 
(Beq, Peq, Zeq, Req) = (0, 81a,11a, 0), 
(Beq, Peq, Zeq, Req) = ( y, 8/a,(1 - 5 y)/a, fi+7781a). (2.11) 

The first steady state in equation (2.11) represents the case where all four species 
become extinct. In the second steady state, two of the species survive and the population 
of one of these is negative and thus not physically meaningful. For the third and fourth 
steady states, two of the species survive and two again become extinct. The surviving 
species in these two states form an independent predator prey coupling, each involving 
two species only, and correspond closely to the famous Lotka-Volterra system in 
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Murray (1989). The fifth and final steady state in (2.11) is potentially of most interest 
here, as it represents the situation when all four species survive. 

2.2.2 Stability of Steady-states 

When the time-independent populations are close to any of the five steady states in 
equations (2.11), the small-amplitude behaviour may be determined by linearization, in 
the form 

B(t) = Beq + e B , + 0( E 2 ), 
P(t) = Peq + e P 1  + 0( e 2 ) 

	
(2.12) 

Z(t) = Zeq + E Z 1  + 0( E 2 ) 
R(t) = Req + e R I  + 0( E 2 ). 

The constant e is supposed to be small, and represents a measure of how close the 
system is to one of its steady states (2.11). The linearized system near an equilibrium 
point is determined by substituting these forms (2.12) into the governing equations 
(2.7). We will show this for the first equation in (2.7) which becomes, 

dB „ I dt + edB, I dt = fl(B „ + eB 1 ) — (R „B ea  + e(Rea B i  + B „R 1 )) 

+ ri(13 „P„ + e(P„B, + M)) + 0(e 2 ) . 

We know that dB, I dt = 0 and that fiB „ — B„R„ + riB,13„ = 0 so we can remove 
these terms from the above equation. Retaining terms up to order e, the linear 
approximation for bacteria is given by 

dB, I dt = )3B 1  — (Req B 1 + B „R i )+ ti(B„Fl+ MO 

If we do this for all the other equations in (2.7) this results in the linear matrix system 

B 1  J11  liBeq 0 
_ 

— Beq 
- 

B 1  

d/dt P1 
= 

— Veq J22  — aPeq 0 P1  
(2.13) 

Z, 

R I  

0 

_ Re q 
0/Zeq 

0 
— abreq 

0 
0 

J 44  
Z i  

_R 1  _ 

where, for convenience, we have defined intermediate quantities 

' 1  it = PO Reg ± Veq 
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J22 = 	Z eq  rlBeg  
144 = Beg  

We substitute, in turn, each equilibrium point into (2.13) to determine the eigenvalues of 
the constant 4X4 constant (Jacobian) matrix for that steady-state. In each case, the four 
eigenvalues so obtained determine the behaviour of the linearized system near the 
corresponding equilibrium point. 

From this analysis it may be determined that the first point (0, 0, 0, 0) in (2.11) is a 
saddle, with eigenvalues given P0 ,1,-5, y. Similarly, the second point (1/77, -,30 177, 0, 0) 
is also a saddle, and its eigenvalues are 1/77— y,—a130 177-8,±A. The third point ( y , 0, 

0, fl u  ) in (2.11) has eigenvalues given by 1— riy,-5,±iVflo y , and the point (0, 81a, 

11a, 0) has eigenvalues given by flo +rigla,-y ,±i,175. Both these points are 
essentially saddles, in the sense that they combine stable behaviour (negative 
eigenvalues) with unstable (positive eigenvalues). However, they both possess a pair of 
purely imaginary eigenvalues, and this gives them an oscillatory behaviour in some 
plane passing through the equilibrium point in the phase space. In this regard these two 
equilibria could give similar oscillatory behaviour to the famous Lotka-Volterra system, 
in which a non-linear centre occurs (Murray 1989). 

The steady-state of most practical interest is the fifth point ( y , 5/a , (1 - 8 y)1 a, 
S 1 a) in the system (2.11), at which none of the populations disappear. The 

eigenvalues 2 for this case can be found from the equation 

det 

177 	0 — 
- 	-6* 0 

1-77y — 2 0 
0 	0 — 2 

=0 

This may be expanded to give the quartic equation 

2 4 + 	T22 + 
(2.14) 

In which it is con venient to define the quantities 

T = y(fi-E115/a)+ 6(1 - 77y)+ 112  y6Ia 	 (2.15) 
D = 76(1-777)(fi+178 I a). 

The quartic equation (2.14) for the eigenvalues 2 has the solution 
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2 = — T ±VT 2  —4D (2.16) 

 

 

2 

 

There are four eigenvalues 2 as solutions to (2.16). If any two of them form a complex 
conjugate pair that crosses the imaginary axis as a parameter is varied, a Hopf 
bifurcation is generated (see Guckenheimer and Holmes 1983, page 151). Thus a 
necessary condition for limit-cycle generation in this way is that the real part of a 
complex conjugate pair changes sign. It is convenient to introduce the notation 

X= fi+rigla, 	Y=1-77y, 	S=q 2 y5la 	 (2.17) 

in terms of which the quantities in equation (2.15) take the simpler forms 

T= yX+8Y+S ,D= OXY 	 (2.18) 

We observe that D > 0 in equation (2.18), since the parameter values given in Stone's 
(1990) paper show that 1— riy > 0. For a Hopf bifurcation to occur, the real part of 2 in 
equation (2.16) must change sign, and therefore firstly it must vanish at a particular 
parameter value (the Hopf bifurcation value), for non-zero imaginary part. A necessary 
condition for this to occur is therefore that 

T > 0 and T 2  — 4D > 0 . 	 (2.19) 

However, it follows from equations (2.17) and (2.19) that 

T 2  — 4D = y2 X 2 +2yX(S-6Y)+(S+6Y) 2 	(2.20) 

The right-hand side of equation (2.20) is an irreducibly positive quadratic in X, for all Y 
>0. Thus the inequalities in (2.19) are satisfied for all Y> 0, so that the real part of Ain 
equation (2.16) cannot change sign, but is always zero. This shows that there cannot be 
a Hopf bifurcation in the system (2.7) for qy < 1, which is the case of practical interest 
as indicated by Stone (1990). 

Although the system has no Hopf Bifurcation it is clear from (2.19) and (2.16) that the 
eigenvalues for this steady-state are 

+ V 2  A= +i,T 	T-4D 	 (2.21) 
1, 	2 

This means that the linearized system predicts a neutrally stable centre at this 
equilibrium, surrounded by concentric periodic orbits (see Medio and Lines 2001, page 
40). This is, however, not necessarily an indication of the behaviour of the 
corresponding non-linear system (2.7), since the Hartman linearization theorem fails at 
a centre (see, Guckenheimer and Holmes, page 13), and additional information is 
needed in order to establish the behaviour of the non-linear system near the equilibrium. 
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Accordingly, we have examined the full system (2.7) numerically and have indeed 
observed non-linear centre behaviour in the unforced system. 

2.3. External Forcing 

Due to seasonal and diurnal influences, it is now assumed that the growth rate fi for 
bacteria is not a constant, but varies with time as detailed in equation (2.9). We now 
consider that the seasonal forcing amplitude in (2.9) is a small parameter, and 
linearize about the fifth steady-state point in equation (2.11) using perturbation 
expansions of the form 

B(t) = Beq + fi1 B 1  + 0( 2  ) 
P(t) = Peq + AP, + 0( 2  ) 

	
(2.22) 

Z(t) = Zeq + fi1  Z 1  + 0( fi, 2  ) 
R(t) = Req + fi1 R 1  +O( 2  ). 

When equations (2.22) are substituted into the governing system (2.7) and (2.9), for the 
fifth equilibrium in (2.11), and the terms are retained to the first order in fi1 ,  there 
results the linear system of forced equations 

dB , /dt = y cos SZt — y17 + 
g d P /dt = — 8Z 1  --a  B, 

dZ i /dt= YP, 
dR i /dt= X/31 . 

in which the two constants X and Y are as defined in equation (2.17). 

It is known that periodic solutions to (2.23) are of the form 

(t) = a, cos Qt + b, sin Qt 
(t) = a 2  cos Qt + b 2  sin Qt 
(t) = a 3  cos Qt + b 3  sin Qt 

R1  (t) = a 4  cos Qt + b4  sin Qt. 

(2.23) 

(2.24) 

After some algebra, the amplitude constants in equations (2.24) may be shown to be 
given by the relations 

a 1  = 0 	b1  = —(52L) I (MX) 
a2  = C2 27701 M b 2 =0 
	

(2.25) 
a 3 = 0 	 b3  = SZY7701M 
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a4 = LIM 
	

b4  = 0 

in which the quantities 

L= —ayX (S -2 2  — SY) 
M = a52 4  + g2 2  (— ayX — ciSY — ri2 y5) + ygaXY 	 (2.26) 

have been defined for convenience. This linearized solution (2.24) breaks down 
whenever the amplitude constants in equations (2.25) fail to be defined. This is the point 
of primary resonance in the forced system. It occurs when M = 0 leading at once to the 
quartic equation 

52 4  — TS2 2  + y6XY = 0 	 (2.27) 

for the frequency Q. The quantities T, X and Y are as defined in equations (2.15) and 
(2.17). 

It follows from equation (2.27) that resonance will occur at the frequencies 

11 	/ 	 Q = 

	

	± -v T2 —4D1. 
2 

(2.28) 

Of particular interest here is the relationship between the resonant frequencies given by 

(2.28) and the eigenvalues A. in equation (2.21). This relationship is Q = 	/12  . This 
shows that resonance occurs precisely when the forcing frequency matches the natural 
occurring (centre) oscillations near the equilibrium point. 

For the trophic web system discussed by Stone (1990), we now evaluate the resonant 
frequencies (2.24) explicitly. From the parameter values given by Stone (1990), it is 
possible to estimate the dimensionless constants of the present investigation to have 
values a = 0.4, fio  = 1.2,y = 1.2,5 = 0.4 and i = 0.2. It follows from equation (2.15) 
that T = 2.0320 and D = 0.5107. These parameter values will be assumed throughout 
this chapter. Equation (2.28) therefore shows that there are two frequencies Q =0.5421 
and Q=1.3184 at which primary resonance can occur. In dimensional variables, these 
are equivalent to periods of about 15 hours and 7 hours respectively, so that these two 
primary resonances are occurring roughly at diurnal forcing frequencies. 



20 

10 

' 9 

8 

7 

6 

AR(Q) 5  

4 

3 

2 

1 

0
o 0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4 

Fig 2.2 The resonance curve showing amplitude against frequency for the linearised solution R I  

Figure 2.2 depicts the change in amplitude IL/MI of the solution R I  (t) of the linear 
system (2.23) as forcing frequency S2 varies. The diagram shows the two points of 
primary resonance as S2=0.5421 and Q=1.3184, where the amplitude of the linearized 
solution becomes infinite. Of course, linearization itself is only valid for small 
amplitudes, and so the linearized solution breaks down near resonance, and non-linear 
effects dominate. The amplitude in Figure 2.2 falls to zero at the forcing frequency 

= .(5/Y = 0.5514 , where L=0 in equation (2.26). 

2.4. Numerical results 

This section presents the results of numerical solutions to the fully non-linear system of 
equations (2.3) with the seasonal forcing term (2.9). The differential equations were 
integrated in time using the package MATLAB. 

Figures 2.3-2.5 show a sequence of results of the amplitude of the solution R(t) against 
the forcing frequency Q, for three different forcing amplitudes fl.  The period of 
oscillation in the case of seasonal forcing is 1=2 g IQ Q . 
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Fig 2.3. The amplitude of the non linear solution R(t) against the forcing frequency 52 for small forcing 
amplitude /81  = 0.005. 
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Fig 2.4. Amplitude of R(t) against forcing frequency 52 for moderate forcing amplitude A = 0.2. 
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Fig 2.5. Amplitude of the non linear solution R(t) against the forcing frequency C2 for large forcing 
amplitude 	=0.6 

The results in figures 2.3 - 2.5 were generated by the following method. A differential 
equation integration routine from the package MATLAB was used to find the solution 
to the system of equations (2.3), subject to the seasonal forcing term (2.9). The initial 
point was taken to be ( y , (5 /a , (1- y)I a , X) and the dimensionless constants a, 
and so on, were given the values described previously. The numerical solution was 
integrated forward in time for a large number of forcing periods, typically of the order 
of 800T, until transients had died away. The solution R(t) was then recorded for a 
further 15 forcing periods, and the maximum amplitude for each of these successive 
periods was plotted as a point on the graph. This process was repeated at each forcing 
frequency Q. This permits the effects of resonance and non-linearity to be examined, 
since a single point on the diagram at a particular frequency corresponds to a period-one 
solution at that frequency. Two points represents a period double solution, and so on. A 
continuum of points at a fixed frequency either represents quasi-periodicity or chaos. 
Figures 2.3 — 2.5 effectively give Poincare cross-sections at each frequency (see 
Guckenheimer and Holmes, page 22), and so can be regarded as bifurcation plots. 

In Fig 2.3 a small forcing amplitude fi l  =0.005 was used. Two primary resonance peaks 
were observed and are visible in the diagram, at frequencies very close to the linearized 
resonances 52=0.5421 and Q, =1.3184. For this small forcing amplitude, the non-linear 
results in Figure 2.3 closely resemble the linearized solution Figure 2.2, as is expected. 
This confirms the reliability of the current approach. 

The forcing amplitude has been increased to the moderate value fl = 0.2 to produce the 
results in Figure 2.4. It is evident that the agreement with the linearized solution is 
beginning to break down at this forcing amplitude. There is no longer a uniform rise to a 
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peak at resonance, and instead the peak has broadened significantly. An additional sub-
harmonic resonance peak is also visible at a frequency of about g-2 2.5 and is evidence 
of the increasing role of non-linearity in this solution. 

Figure 2.5 shows further increases in the effects of non-linearity. This graph was 
obtained with large forcing amplitude, 161 .0.6. The primary resonance peak has now 
been replaced with a broad band of large amplitude forced responses, apparently 
containing primary and sub-harmonic resonances along with chaotic responses. A 
secondary large amplitude peak is visible about s-2 2.5. 

In the next sequence of three diagrams, the forcing amplitude S2 is held constant, and 
the linearized and non-linear solutions for R(t) are compared for different values of 
forcing amplitude. The results are presented in Figures 2.6-2.8 

Fig 2.6. Graph of the linear (dashed line) compared with the non-linear solution R(t) with fl  =0.005 and 
Q=1.362 
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Fig 2.8. Graph of the linear (dashed line) compared with the non-linear solution for R(t) with A =0.02 
and n =1.362 

The linearized solution in Figures 2.6-2.8 has been calculated from the result for R(t) 
given in the equation (2.24), and is sketched with dashed lines in these diagrams. The 
non-linear solutions were computed using MATLAB to integrate (2.3) forward in time 
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for 100 periods (100r ), to remove transients due to initial conditions, and then a further 
10 periods were computed an presented as solid lines in these graphs. (The same initial 
conditions were assumed as for the bifurcation diagrams in Figures 2.3-2.5). The 
forcing frequency f2 = 1.362 has been chosen to be close to the upper primary 
resonance in the linearized solution. 

The results in Figure 2.6 show that the non-linear solution is in reasonably close 
agreement with the non-linear profile shown, as is broadly to be expected for this small 
forcing amplitude fl1  = 0.005. This confirms the reliability of the integration routine. 
Nevertheless, even at this small forcing amplitude, there is evidence of some non-linear 
effects. In particular the amplitude of the non-linear solution is not quite constant, 
suggesting the influence of a high period perturbation, and the period itself is slightly 
different from that of the purely linearized result. 

These effects are more strongly evident in Figure 2.7. The amplitude of the non-linear 
solution decreases for the ten forcing periods shown in the diagram, but increases again 
at a later times, giving clear evidence for the existence of a high period orbit. This 
appears to be associated with quasi-periodic behaviour, as the solution is dominated by 
several different frequency components that are not rational multiples of one another. 
This is discussed again later. 

The final solution shown in Figure 2.8 gives further evidence of the high period 
behaviour of the non-linear signal. It is interesting to observe that, for this case, the non-
linear solution has very much smaller amplitude than its linearized counterpart. Of 
course, the linearized solution in Figure 2.8 cannot be expected to retain any validity for 
this largest forcing amplitude A = 0.2 , in particular since the solution in equation (2.18) 
predicts that the response amplitude simply increases linearly with forcing amplitude 8. 
This would eventually generate negative values for the solution R(t) itself, and in fact 
the result in Figure 2.8 is the largest value of forcing amplitude for which the 
linearized solution remains positive for all time. 

In Figures 2.9 and 2.10, the non-linear solution is examined further, for forcing 
amplitudes A larger than those shown in Figures 2.6-2.8. In these next two diagrams, 
comparison with the linearized solution is no longer possible, as discussed above. 
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Fig 2.9. Graph of the non-linear solution R(t) against time for A =0.05 and Q =1.362 
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Fig 2.10. Graph of the non-linear solution R(t) against time for A =0.2 and Q =1.362 

The forcing amplitude in Figure 2.9 has been increased to fi = 0.05 and 30 periods 
(30 ) have now been shown, to give a clear indication of the behaviour of the solution 
R(t). It is evident that the response curve has indeed become quasi-periodic, with two 
dominant frequencies. Careful examination of the signal strongly suggests that the 
solution is not periodic (this is illustrated in Figure 2.11). Quasi-periodicity is known to 
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be a possible route to chaos, as shown in the theorem of RueIle, Takens and Newhouse 
(see the discussion in Thompson and Stewart 1989, page 196). In a recent examination 
of high-dimensional Lotka-Volterra systems, Sprott et al (2006) likewise found that 
such systems exhibited quasi-periodic behaviour en route to chaos. 

For the result in Figure 2.10, the forcing amplitude has increased further to = 0.2. 
The solution for R(t) now displays intervals of relaxation periods between large peaks, 
all of dissimilar amplitudes and occurring apparently at random intervals. This 
stochastic behaviour of the solution (in a deterministic system), coupled with its 
extreme sensitivity to initial conditions, suggests strongly that chaotic motion has been 
generated for this forcing amplitude at this frequency. 

Further support for the contention that Figures 2.9 and 2.10 are exhibiting quasi-
periodic and chaotic behaviours, respectively, can be obtained by considering the 
solution orbits in the phase space. As the system (2.7) is actually four dimensional, it is 
not possible to display the full space, but meaningful results can nevertheless be 
obtained by considering a two-dimensional projection onto the plane. This is done in 
Figures 2.11 and 2.12 for the two solutions displayed in Figures 2.9 and 2.10, using 
orbits in a plane consisting of the two variables R(t) and B(t). Physically, these represent 
the populations of the protozoa and the bacteria, and 30 periods are shown. 
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solutions B(t) against R(t) for forcing amplitude A=0.05 and Fig 2.11. Graph of the non-linear 
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B(t) 
Fig 2.12. Graph of the non-linear solutions B(t) against R(t) for forcing amplitude A=0.2 and 

52 =1.362 

Figure 2.11 shows a region in the (R, B) plane in which the solution trajectories 
evidently fill a ring-shaped portion of the plane. This is strongly suggestive of quasi-
periodicity, and corresponds to a projection of a high dimensional torus onto the (R, B) 
plane. Further evidence for this conjecture has been obtained by perturbing these orbits 
and observing that the solution returns to them, so that they are genuine attractors. The 
results in Figure 2.12 for the larger forcing amplitude )3 = 0.2 , however, are more 
strongly suggestive of chaos. There is clearly no longer a torus structure, but instead the 
solution trajectories appear to move randomly within some bounded region in the space. 

Finally in this results section we look at one example in the non-forced case, shown 
below in Figure 2.13. 
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Fig 2.13. Graph of the non-linear solutions R(t) against t for non-forced case. The solution was found at 
a small perturbation from the fifth equilibrium point in (2.11) 

In Figure 2.13 we show a solution to the non-forced case at a small perturbation from 
the fully populated steady-state in (2.11). As we can see from this picture, non-linear 
centre behaviour seems to be occurring (with a combination of frequencies). This was 
predicted by the linear approximation (2.16) of the system near this point; however, as 
previously stated, this does not necessarily mean that centre behaviour must occur in the 
non-linear case, since the Hartmann theorem no longer holds. Nevertheless, Figure 
(2.13) does indeed indicate that centre behaviour appears to be happening in the non-
linear case also. To determine whether the solution shown in Fig 2.13 is periodic or 
quasi-periodic, it was drawn in the R-B phase plane. This gave a closed loop and so we 
conclude that within numerical error, the solution is indeed likely to be periodic. 

2.5. Discussion 

This section presented a detailed mathematical investigation of the structure of the 
solutions to two-level trophic food web model proposed by Stone (1990). Although we 
have simplified the model by assuming that nutrient is in vast over supply, the system is 
nevertheless non-linear, due to the interactions between the competing species. As a 
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result, the unforced system predicts five steady-states. Of these equilibria, only one 
gives long term survival of all four species. There is another equilibrium point at the 
origin of the phase space, corresponding to total extinction. Four of the equilibrium 
points are unstable, and the one for which all populations survive is a centre. 

Seasonal or daily forcing has also been studied for this model, based on a sinusoidal 
variation in the breeding rate for bacteria. At small forcing amplitude there was 
reasonable agreement between the linear and non-linear solutions, as expected. The 
linearized solution provides considerable insight into a number of aspects of the global 
behaviour, including the identification of two forcing frequencies at which primary 
resonance occurs. Agreement between the numerical results and the linearized solution 
for small amplitudes therefore serves as a valuable check on the reliability of the non-
linear solution. 

For the parameter values used here, taken from the paper by Stone (1990), primary 
resonance has been found to occur at Q 1, which corresponds to a forcing frequency 
co of the order of 1 day -` . These results are therefore appropriate to daily forcing, 
consistent with the work of Edwards et al (1999). 

As the forcing amplitude is increased, the agreement with linearized theory breaks 
down, as is to be expected. The non-linear results exhibit rich diversity of complex 
behaviour, including high-period orbits, sub-harmonic resonances, quasi-periodicity and 
chaos. The results strongly suggest that, as amplitude is increased for a fixed forcing 
frequency, quasi-periodicity may lead to chaos via a Ruelle-Takens-Newhouse 
bifurcation. 

It is appropriate to ask whether, in a real biological system, the forcing amplitudes could 
ever become sufficiently large for the more exotic non-linear effects predicted here to 
be observed in practice. From Stones' paper (1990), the unforced breeding rate, in 
dimensionless variables, has the value fl o  = 1.2, and the relative perturbation to this due 

to forcing is simply AI ,60 , from equation (2.5). The quasi-periodic solutions illustrated 
in Figures 2.9 and 2.11 were obtained with forcing amplitude fl ,= 0.05, and this 
represents only a 4% variation to the unforced reproduction rate. Event the chaotic 
results of Figures 10 and 12, with fl = 0.2, represent only a 17% variation, and we 
therefore conclude that highly non-linear behaviour, including chaos, is a likely feature 
of such trophic web systems. 

It has been assumed here that the nutrients N are in unlimited supply. When this is no 
longer true, even more rich dynamic behaviour may be possible. In particular, the four-
dimensional system studied here is essentially degenerate, in the sense that the unforced 
equations give rise to equilibrium points that are centres. When variation in nutrient 
concentrations are also allowed, it is possible that these points may allow Hopf 
bifurcations to be present., so raising the additional complexity of limit cycles and their 
forced equivalents in the seasonally varying case. An investigation of the effects of 
varying nutrient concentration is the subject of the next chapter. 



CHAPTER 3 

Nutrient Uptake Model 

In the last chapter we examined the model proposed by Stone (1990), in the case where 
the nutrients N were in unlimited supply. We now consider the situation in which 
nutrient supply is limited. The original question posed by Stone (1990) aimed at 
investigating the behaviour of the system when the nutrient supply is low. We 
mentioned in the first chapter how Stone (1990) aimed to show that the paradoxical 
behaviour of the Phytoplankton (stimulating the growth of its competitor) was due to 
indirect effects. This was assumed to be equivalent to feedback within the system. 
Feedback, in a biological model, refers to the situation where the product of one 
interaction effects other interactions (see Murray (1989) for further discussion). On the 
basis of this assumption we excluded the nutrient term as, although it added to the 
complexity of the system, it does not qualitatively add to the notion of feedback control 
mechanics. However, adding a nutrient term and making the interaction functions 
dependant on nutrient concentrations does change the dynamics of the problem (by 
adding an extra feedback mechanism). In order to investigate the model more fully we 
now consider including a nutrients term in the model. 

There has been much work done on the effect of interaction functions in dynamical 
systems. It has been shown by Gross et al (2004) that Holling II, or Michaelis-Menten, 
type interaction functions can either destabilize or stabilize steady-states, dependent on 
the form of the interaction function used. A change in stability is achieved by enriching 
one of the populations. This was found to be an underlying idea in the "paradox of 
enrichment" (Edwards et al 1999). We will be using a Michaelis-Menten term for the 
growth rates, which are now nutrient dependant. This will be discussed in more detail 
further on, and a more comprehensive discussion of this idea is given by Murray (1989). 

We will introduce a fifth equation into the set of governing equations derived in the last 
chapter. This will account for the rate of change of nutrient concentrations in the system 
and will be linked to the species populations. The growth rates of the phytoplankton and 
bacteria will also now depend on the nutrient supply, as mentioned, and therefore their 
reproduction rates will be represented by a nutrient dependent term. 

The equilibrium points for the nutrient-independent model had at least two purely 
imaginary eigenvalues. In the forced system, quasi—periodicity was suggested to be 
present, on the basis of the numerical results. We did not, however, find any Hopf 
bifurcations in the unforced case. In this chapter we will investigate the possibility that 
the introduction of variable nutrient concentration in the unforced system will generate 
instability •in the steady-state, causing self-sustained oscillations to occur in the 
solutions, which will result in limit cycles being formed (possibly as the result of a Hopf 
bifurcation). 
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In this chapter we therefore expand upon the work done in the previous chapter on 
Stone's (1990) model. Once again, ideas from the theory of dynamical systems (see 
Murray 1989, Edelstein-Keshet 1988 for more discussion) are used here to investigate 
the stability of steady-state populations and the possibility of self sustained oscillations. 
The model is non-linear and with the introduction of a nutrient term and nutrient 
dependent interaction functions we find a Hopf bifurcation present. This leads to self 
sustained oscillations. We examine the stability of the limit cycles using Floquet theory. 

The model is presented in Section 3.1 and for convenience scaled (non-dimensional) 
populations and rates are introduced as in the previous chapter. In Section 3.2 we 
provide an analysis of the model including finding a Hopf bifurcation. For an arbitrary 
value of the Nutrient concentration, we find a solution branch of limit cycles and test the 
stability of the branch. We end this chapter with a discussion of the results. 

3.1. The Mathematical Model 

The trophic web considered now is that illustrated the previous chapter in Fig 2.1, from 
Stones' original paper, where once again, the direction of the interaction is given by the 
arrows. 

From our initial assumption in the previous chapter, that the nutrients were in unlimited 
supply, the system of equations described by Fig 2.1 is given below. This is the• 
situation already described in chapter 2. 

dB/dt = r b B - r,RB + r i  PB 

dP/dt=r p P-r,PZ-r,BP 
(3.1) 

dZ/dt=r,PZ-d,Z 

dR/dt = r RB - d , R. 

We now assume that the reproductive rates of the Bacteria and Phytoplankton, r b  and r p 

respectively, depend on the nutrient concentration N. We are using a Michaelis-Menten 
uptake term for nutrients by bacteria, so that the reproductive rate for bacteria is 
governed by the equation 

Ich N 
rb (N)= 	 

ab b N 
(3.2) 

This term reflects the saturation effects seen in the nutrient uptake process, whereby an 
infinite supply of nutrients will not result in the unlimited growth of bacteria in the 
presence of predators. The terms ab ,bb ,kb , are constants that determine the rate of 
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uptake of the nutrients. In their paper Gross et al (2004) showed a situation where, for 
Holling H type interaction functions like (3.2), enrichment (increase in a population) 
destabilized the steady-state solutions of a general food chain similar to the one being 
considered. 

In the previous chapter we assumed that N did not change and therefore had some fixed 
value No  say. Using (3.2) we get the initial value for the reproductive rate as used in the 
last chapter as being, 

kb  N0r = b0 

We can incorporate (3.3) into the nutrient dependent reproductive rates by dividing 
through by this term, as seen below. 

rb (N)  =  kb N  1(ab +bb N) 
rbo  kb No l(ab +bb N 0 ) 

We can now express the nutrient dependent reproductive rates rb (N), rp (N) in the 

equivalent form 

rb(N)rbo(N I N 0) 	r (N) 	
r 0  I N p 	0  = 

1+cb (NIN0 -1)
, 
 P 	

= 
1+ C p (N I No  — 1) 

(3.5) 

In this sense we have said that if N =No , and remains fixed we would have the same 
system as represented by (3.1). Equations (3.5) therefore generalize the system, 
discussed in chapter 2, to the case where nutrient concentration may now vary. 

In chapter 2 we showed the reproductive rates with a forcing term. For completeness, 
we show these again here, although the effects of forcing in this more complicated 
system will not be considered. With forcing these rates become 

r,(N) =
[rb0 + rbl cos CON  / N

0) 	(N)= [ 
 r +r cos SON / N0 ) 

r 
- 	1 + cb  (N / No  —1) 	

,
P 	1+C p (NIN0 - 1) 

In equation (3.5) N is the concentration of nutrient. We assume now that the total mass 
of the system, including all the organisms, is constant, in which case we have 

N+m B il+m p P+niz Z+mn R=No . 	 (3.6) 

Here, m i  is the mass of nutrient in each individual in B,P,R and Z. Since B, P, Z and R 
represent the population per volume, a term such as mB B represents the mass of 
nutrient per organism multiplied by the number per volume, which gives us a 

al) +bb NO 
(3.3) 

(3.4) 
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concentration (since number is dimensionless). The rate of change of mass of nutrient 
in the whole system is equal to zero, and thus equation (3.6) leads at once to 

dN 	dB 	dP 	dZ 	dR n  
dt + rtiB  dt + m P  dT + mz  dt + m  R  dt 

We substitute equations (3.1) into (3.7) to give 

—dN + m B  (rb B – rr RB + ri  BP) + m p  (r p  P – rz PZ – ri  BP) 
dt 

+ mz (r,PZ – d z Z) + mR (rr RB – d r R) = 0. 	(3.8) 

For simplicity, we now make the approximation that m B  = m p  = mz  = mB  = m , that is, 
that all the organisms contain roughly the same mass of nutrients. As a result, equation 
(3.8) assumes the form 

1 
—
dN — 	+ (rb B + r – (d r R + d = 0 . 

m dt 
(3.9) 

The model, without forcing, with nutrients included is fully described by the following 
set of equations; 

dB/dt = r b B - r,.RB +r,PB 

dP/dt=r p P-r,PZ-r BP 

dZ/dt = r z PZ - d z Z 	 (3.10) 

dR/dt = r,RB - d r R 

1 dN -- = –rb B – rp P + d r R + d z Z 
m dt 

in which the rates are now given by equations (3.5). 

Using the same method shown in Chapter 2, we re-cast (3.10) in terms of dimensionless 
variables. In this case, the four populations (B, P, Z, R) are scaled with respect to the 
quantity rp0  / rr ,  , which is a naturally occurring measure of population as stated in the 

last chapter. The nutrient concentration N, is scaled with respect to the quantity N0 , 
which is arbitrary and so this choice has no implications for the dynamics of the system. 
Once again, time t is made dimensionless using the quantityl/ ro , which is a time scale 
linked roughly to the life-cycle of the phytoplankton, as already stated in Chapter 2. In 
these non-dimensional variables, equations (3.10) become 

(3.7) 
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dB , fi 	N  + 
dt 	[1+ c b  (N –1)]13 RBOP  

dP 	N 
—dt [1 + c p  (N –1)1P aPZ  – 11BP  
dZ — = cePZ – 8Z 
dt 

dR 
—dt =RB YR  
dN 

= ji[ 	N 	
P+yR+8Z1 

dt 	+ c b  (N – 	1)] [1 	+ c pN( N – 
(3.11) 

mP  
The constant ie = 

	

	is such that 0 < 1u <1 , a result that can be deduced from (3.6). 
No  

The parameters a, 8,y,8,77 are the same as in Chapter 2. 

3.2 Analysis of the Model 

3.2.1 Steady-state populations 

We now look for the steady state solutions (B, P, Z, R, N) which satisfy 

dB/dt = dP/dt = dZ/dt = dR/dt =dN/dt= 0. 

We choose N = N0 , where now No  represents some arbitrary dimensionless initial 
concentration of nutrient. This yields the four equilibrium points 

(0,0,0,0, N o ) , (y,0,0, fiK, N 0 ), (0, 	a,K 1 1 a,O,N 0 ), 
(y,8 I 	I a, fiK +778 I a,N0 ) 	, 	 (3.12) 

No  
where K= 	No 	

„ K 1  = 	  
1+ C 0  (N0  –1) 	1 + c po  (N0  – 1) • 

(3.13) 

In (3.13) cbo  , c po  are the nutrient uptake rates for the bacteria and phytoplankton 
respectively. The first steady state in (3.12) represents the case where only the nutrients 
remain, and all the species die out. The second and third steady states are where two 
species, a predator and prey coupling, survive. The fourth steady-state, which is of most 
interest to our analysis, is where all the species survive. We will now look to ascertain 
the stability of these states. It should be mentioned that two more steady-states were 
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found; however they contained negative values for some of the populations and as such 
were unrealisable in an actual situation. 

3.2.2 Stability of the Steady-states 

Following the same method used in chapter 2 the linear approximations, shown in 
(3.14), to the solutions close to steady-states are used. 

BO= Beg  + 6B I + 0(e 2 ) 

PO= Pea  + 6131 +0(62) 

Z(t)= Z ea  + + 0(6 2 ) 

R(t)= Reg  + ER, +0(62) 

N(t)= Neq  + \ I +0(62) 

(3.14) 

As already stated in the previous chapter, the constant E represents how close the system 
is to one of its steady states. We determine the linearized system near an equilibrium 
point by substituting (3.14) into the governing equations (3.11) and retaining terms at 
the first order in c. 

When equations (3.14) are substituted into the first equation in the system (3.11), the 
term dB/dt is represented as 

N ea B ea  + e[N 1 13 ea  + B I N eg iN  
—d  [B + eB j= fi 	  
art eq 	 1+ c bo [I■1 ea  + eN –1] 

–(Rea B ea  + elBeg BI  + Bo ld+ TAB ea Pea  + e[B i Pea  + 	 (3.15) 

In order to proceed, it is necessary to make use of the geometric series 

1 	-- 1 -- 	27. 2  -- 	for IZI <1 . 	 (3.16) 

The first term on the right-hand side of equation (3.15) is written as 

1+ z 

fi[1■I eg B ea  + e (N 1 B ea  + B I N ea )] 1 

   

1 

 

( 1 + cbo  (Nea  –1)) 

  

1+e 
7 

CGON 1  
\ 1 + cho(N eq  –1) 

 

      

(3.17) 

We then make use of (3.16) to re-write (3.17) in the form 



_o [NeqBeg 

(cbo N eq B eq N 
+ eV V 1 B eq  + BI N eq )+ 0(e 2 )]. 

1+ cbo (N eq  —1) 
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Equation (3.18) is now used in equation (3.15), along with the steady-state identity 

	

dB eg 	 eg  N 
	 = # 	

B 	
j+ Reg B eg  + 7113 eg Peg  = 0. 

	

dt 	1+ C bo (N eg  —1) 

Retaining terms to the first order in e then gives the linearized form of the first 
equation in the system (3.11). When the similar procedure is applied to each such 
equation, we obtain the linearized equivalent of the entire system of equations (3.11) in 
the form, 

( 	 ■ 
dB i 	— 

= 	
cbo N eg Beg N 1 	N i Beg  + B I N eg  

dt 	\. 
fi I 	 m 

1+ cGO (N eq —1))-
9 + 
 1+ C bo (Neq  — i) 1  

I 	 \ 
dil _ — C p oN eq  Peg  N, + N i Peg  + F;N eg  
dt 	(1-F c po (N eg  —1))2  1+ c po (N eg  —i) 1  

dZ  1 	1 
= aW, Z„ + Peq Z 1 )— (5 Z i  

dt 

R I B eg  — B i Reg  + il(B I Peg  + Pi Beg ) 

a(13,Zeq  + Peg  )— 101 19eq  + Beg  ) 

dRI =,(RIBegi-RegA)--7R1 
dt 

(3.19) 

dAT, 
=,u(-18 dt 

— CbO N et/ Beq  N 1  
\. (1+ cGO (AT — 1.))2 

N 1 Beq + B I N eq  
1+ C bo (N eg  —1) , 

— c poN eg  Peg  N 1  

po (Nep —02 

Nyeq  + PI Neq  
+ 1+ cpo  (Neq  —1) )  

Gathering the terms with respect to each population, we can produce the following 
linear matrix system which we use to find the characteristic equation of this system at 
each equilibrium point. 
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d I dt 

B 

Z 

_N _ 

J 11  
— /Reg 

0 

R eg  

_ -pa 

Om  

J 22 

aZ  eq  
0 

- ,uK 1  

0 

— a-P. 	eq 

aPeq  — 8 
0 

,u5 

— Beg  
0 

0 
B eg  — r 

117 

J 15  
J 25  
0 
o 

J55  _ 

B 
Pt  

Z 

_ 	_ 

(3.20) 

Here, 
J = fiK — R eq  r1Peg  

	

Cb0 Neq Beg 	Beq  
Cbo  (Neg  0)2 + 1 + cbo (Alm — 1) j 

J 22  = K — eg  — riB eq 
— c po  1\1 eq  Peg 	Peg  

	

125 = ( 	
C po  (Neq _1))2 1 + C po (Neg  — 1) 

J55 — 1(J15 	,5) 

are defined for convenience. 

(3.21) 

We are only interested here in the steady-state where all the populations survive. We 
substitute this equilibrium point (y, S 1 a,K 1 — 77y/ a, /3K +775 I a,N0 ), into (3.20) to 
produce the Jacobian matrix 

yri 	0 
—5 	0 — 

a 
0 	E32 	0 

E41 	0 	0 
— ,u18K — ,uK ,t 

—7 E15 

0 E25  

0 	0 
0 	0 

py E55  

(3.22) 

   

In this expression (3.22), it has proved convenient to define the intermediate quantities 

A/4- cbo  
E15  = 	  

(1 Cbo 	— 1)) 2  

(5(1 C po  
E25  = 

a(1 + c po (N 0  — 1))2  

E32  = K 1  — riy 
E41  = fiK + 77.5 I a 
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E55  = 	E25 ) . 

The eigenvalues 2 for the linearized system (3.20), with coefficient matrix (3.22), are 
found from the characteristic equation 

—115 +
Q424  +Q3 23  +Q222  +Q12 = 0  , 	 (3.23) 

in which it is convenient to define 

Q 1 = —E32 E41 y5 + E25  E4i ,uy 2 77 — ,uyK,E23  E41  E15  E32  116  271  E15  E32 ,ufl6K 
n  2 isv  

P(577  Q2  = E 1  E55 y + E15  E41 uy + E32  E55  g E25  E32 ,Ug E55 	 E25 ,ufiqyK+ E 5 	K, 
a 

ri  2 sv  
Q3  = —E4  y — E32 	E25 ,UK I 	I  E15 ,4K 

a 
Q4 E55 • 	 (3.24) 

In order for there to be a Hopf Bifurcation present we need there to be at least one pair 
of complex conjugate eigenvalues whose real part vanishes. For this to happen equation 
(3.23) must be in the form 

+ ip)(2 — 	 + b222  + kit) =0 
	

(3.25) 

We now expand (3.25) into the form 

— 25  + b224  +(b, 
— p 2  )23  ± p 2b222  + p 2  42=0 

	
(3.26) 

We perform a comparison between the corresponding coefficients of powers of 2 given 
in (3.23) and (3.26) so that 

b2  = Q4  ,b 1  — p 2 Q 3  , p 2 b2 _ Q2  , p  2b i  Q 1 	 (3.27) 

We solve these sets of criteria to find p and the coefficients b0 ,b1 ,b2 in terms of the 
quantities in equations (3.24). This enables us to find the following conditions necessary 
for a Hopf bifurcation to be present in the system (3.11); 

(i) 	> 0, 

Q1Q4 2  Q3Q2Q4 Q2 2  = 0, 

(iii) Q3 2  + 4Q, > 0 , 
(iv) Q 1  < . 	 (3.28) 
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The inequalities (i),(iii) and (iv) are a consequence of the need to ensure that the 
quantity p 2  in equation (3.27) remains positive, to satisfy the necessary conditions for 
the Hopf bifurcation. The condition (ii) results from solving eqns (3.27) for the 
quantities Q1,.., Q4.  We solved the above conditions numerically to find a set of 
parameter values consistent with a Hopf bifurcation. We found that by varying the 
values of the parameters /3 and 77 from those derived in Stone's original paper 
(a, y, 5 were kept the same as shown in Chapter 2) we were able to find a set of 
parameter values for which a Hopf bifurcation is possible in the system. The parameters 
fi and 77 were kept within the realms of physioal probability; they were in fact less than 
the values determined from the rate constants used in Stone's (1990) paper. The Hopf 
curve is pictured below (Fig 3.1) and it shows the location in the (N0 - 13) parameter-
space of the locations in which conditions (3.28) are satisfied, and therefore gives the 
parameter values at which non-linear oscillatory limit cycles might be expected to be 
born. 
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Fig. 3.1 The Hopf curve: The curve shows the location in ( N0  , fi ) space at which oscillatory solutions 
are born. The smooth line shows the supercritical hopf points and the dashed lines shows the subcritical 
hopf points. Here a= 0.4, y =1.2,8 = 0.4,r/ = 0.01, c bo  = 0.1, cpo  = 0.1, = 0.1 

2 

Self sustained oscillations born from a Hopf bifurcation occur for values of fi on or 
inside the curve. The Hopf bifurcation first appears at No  =1.092 . Each successive 
value of No  has two Hopf points, a supercritical (continuous line) and subcritical 
(dashed line) Hopf point. The supercritical Hopf points give rise to stable limit cycles 
(as determined in sec 3.3) and the subcritical point give unstable limit cycles. The 
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supercritical and subcritical branches converge again at No  =10.82 , after which the 
Hopf criteria (3.28) are no longer satisfied for the current parameter values. 

Shertzer et al (2002) showed that predator-prey models of systems, where the prey have 
developed defences to attack, have the best fit with experimentation and that limit 
cycles are born from the terms modelling the defence mechanism. The existence in this 
model of an interaction between Bacteria and Phytoplankton acts as a de-facto defence 
mechanism, at least in the sense that it is responsible for the generation of limit cycles at 
low nutrients; this has some similarities with a more sophisticated defence model 
proposed by Shertzer (2002). Our analysis shows that self-sustained oscillations in the 
unforced system are possible. The oscillations take the form of limit cycles arising out 
of a Hopf bifurcation (periodic oscillations of species over time in a closed system) 
which will be investigated further in section 3.3. 

3.3 Numerical results 

As in chapter 2 we used MATLAB to solve the non-linear system at the parameter 
values discussed in the previous section. Once we were satisfied that apparently 
oscillatory solutions were present then, using a shooting method based on Newton's 
method, we were able to find if the resultant solutions were in fact periodic limit cycles. 
The method used will now be described briefly here. 

The stability of a limit cycle can be determined using Floquet theory. This works by 
perturbing near the limit cycle. For an n-dimensional system, there are n orthogonal 
directions in which the perturbation could occur. One of these is along the limit cycles 
itself, and so is neutrally stable; it therefore gives an eiganvalue equal to 1 in the 
monodromy matrix. The remaining n-1 eigenvalues determine stability. If the 
eigenvalues are less than 1 in absolute value then the limit cycle is stable, other wise 
unstable. For a more in depth discussion see Seydel (1994). 

We re-scaled equations (3.11) by introducing a new time variable 
2ir 

= t — 
Pt 

where P, is the period of oscillation, and is as yet unknown. We made a guess for the 
initial conditions [B(0),P(0),Z(0), R(0),N(0)] and P, . Using MATLAB we integrated 
the set of re-scaled equations to find the values [B( 27r ),P( 2z ),Z( 27r), R( 2/r ),N( 27r 
after one complete period . If the solution is truly periodic, then the initial conditions 
should match these values. We used the equilibrium point Beg = y as the initial value for 
B(0) as we know a periodic solution set will include this point. We estimated the values 
of the other variables when B(t)= y using the numerical MATLAB code, and used 
these as initial values, including a guess for the period p which was also estimated from 
the MATLAB results. 
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Newton's method was used to adjust the estimates of P(0),Z(0), R(0),N(0) and P, so 
that the residual quantities B(0)— B(2g) , P(0)— P(2g) , Z(0)— Z(2g) , R(0)— R(2g) 
and N(0)— N(27r) are made arbitrarily small. We used a damped version of Newton's 
method whereby if the norm of the vector of residuals is not reduced then the length of 
the correction step used in the method was halved. As limit cycles become more 
unstable the method finds it harder to converge to a solution. Integrating the system of 
equations backwards in time was found to be necessary for highly unstable solutions, 
since this procedure converts an unstable orbit into a stable one (in negative time). 

After we have calculated a limit cycle, we then perform a linear perturbation to the 
system (3.11) once they have been re-scaled with respect to r. The resultant coefficient 
matrix is 2ir -periodic in r and so we can use Floquet theory to ascertain the stability of 
the limit cycle. This method is described in Forbes (1991). In brief we found the 
eigenvalues of a monodromy matrix, which give a measure of how close the 
perturbation is to the limit cycle. If l2 I <1 for all i then the limit cycle is stable. If one of 
the IA, I >1 then the limit cycle is unstable. The result of our numerical analysis is now 
considered. We started with the initial set of parameter values 

ot = 0.4, fi = 0.34, y = 1.2, 8 = 	= 0.01,c po  =0.1,cbo  =0.1,N 0  = 2 . 

The locations of the Hopf points were obtained form Figure 3.1. 

From Fig,3.1 we can see that as No  increases from 1.092 the supercritical and 
subcritical branches of Hopf values diverge along the fi axis until they reach a 
minimum and maximum respectively, at about No  = 2 . These two branches then begin 
to converge again until they meet at No  = 10.82, at which point the Hopf criteria (3.28) 
fail. As previously mentioned the oscillatory solutions born from a Hopf bifurcation, 
occur for values of fi inside the the curve ( Fig 3.1), for each value of N 0 . We can now 
show the behaviour of the limit cycles born at a fixed value of N o  as we vary /3 
beyond the supercritical point and up to the sub critical value, as determined from Fig 
3.1. This is detailed below in Fig 3.2. 



43 

Fig 3.2: The amplitude of the limit cycles of B(t) formed at successive values of Beta for fixed No  = 2. 
Here a = 0.4, 7  . 1.2, = 0.4,77 = 0.01,cbo  =0.1,c po  =0.141=0.1 

Fig 3.2 is a bifurcation diagram showing the dependence of the amplitude of the limit 
cycles formed for the Bacteria on the reproduction ratefi . At /3 = 0.3375, the value 
predicted in Fig 3.1 for the super critical Hopf point at Aro  = 2, a limit cycle was found. 
We also checked this value by finding the eigenvalues of the Jacobian of the linear 
perturbation model described in (3.19), where at this value of fi there exists a purely 
complex conjugate pair of eigenvalues. The solid line in Fig 3.2 represents the stable 
portion of the non-linear oscillatory solution branch. To follow this branch accurately 
we reduced the error tolerance (MAT LAB) used for the integration solver to10 -9 . This 
was done to so as to improve numerical accuracy. 

The dashed lines in Fig 3.2 are the unstable portion of the non-linear oscillatory solution 
branch. These limit cycles were found by integrating backward in time. As was 
mentioned previously, this was necessary as the limit cycles in this region were highly 
unstable and so the perturbation analysis failed with forward integration. 

As can be seen from Fig 3.2 there is another Hopf bifurcation (sub-critical) 
at fl = 0.3675 , where once again our linear perturbation model (3.19) predicts a change 
should occur. Furthermore this value is in agreement with the value determined from 
Fig 3.1 at No  = 2 for the sub-critical Hopf point. Another feature that can be seen from 
Fig 3.2 is the fold bifurcation occurring at/J = 0.369. This is the where the limit cycles 
go from stable to unstable. The Floquet matrix for the non-linear problem indicates a 
change here, as one of the eigenvalues for the monodromy matrix exceeds unity. What 
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Fig 3.3: The unstable (dashed line) and stable (solid line) limit cycles for the solution B(t) at the same 
value of Beta=0.368. 
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Fig 3.2 does not display, but was determined during the construction of this diagram, is 
the period of each limit cycle as fi varies. We found that for the super-critical hopf 
point, fi = 0.3375 , the non-dimensional period is approximately 7.2236. This equates to 
about 14.5 days in dimensional terms. Similarly the period for the sub-critical Hopf 
point, fi = 0.3675 , the non-dimensional period was determined to be 6.7416 or 13.5 
days in dimensional terms. At the fold bifurcation the period in non-dimensional terms 
is 7.1079 or 14.2 days in dimensional terms. 

We now look at two distinct solutions to the system occurring at the same value of /3.  
This serves to highlight the dynamics of a complex system such as is being studied. 

Figure 3.3 shows that at the value /3= 0.368 there are two independent solutions to the 
system forming two distinct limit cycles, at the same values of the physical paramters. 
For Bacteria at this value the stable solution is shown with a solid line. As can be seen 
from the graph the amplitude of the stable orbit is much greater than the unstable 
counterpart, consistently with Fig 3.2. That two distinct limit cycles can be formed for 
the same parameter value shows the complexity of the system. The assertion by Gross 
(2003) that the stability of a steady state can be affected by enrichment dependent on the 
interaction function used is not only borne out by this result, but also shows that the 
statement requires careful investigation due to the effects of nonlinearity in the system. 
We examined the stability of the two limit cycle solutions produced at la = 0.368 using 
Floquet theory. The results of this analysis are illustrated in the following figures. 
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Fig 3.5 The eigenvalues of the unstable limit cycle displayed on the unit circle 

Figure 3.4 shows the five eigenvalues (red dots) of the monodromy matrix formed when 
we solve the linear perturbation to the limit cycle. These are shown against the unit 
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circle 121=1  in the complex plane, since this represents the border between stability 
and instability in Floquet theory. When one of the eigenvalues crosses the unit circle the 
solution becomes unstable. Now in Fig 3.4 we see that one of the eigenvalues is equal to 
1. It is known that, for limit cycles, one Floquet multiplier must be equal to one. 
Physically, this corresponds to the fact that a perturbation tangent to the limit cycle 
remains on it, representing a neutrally stable event (Seydel 1994). This requirement, in 
fact, represents a very sensitive test of the numerical accuracy of our method. All the 
other eigenvalues lie inside the unit circle and therefore the solution is stable. If we then 
consider Figure 3.5 we see that the eigenvalues (indicated by red dots) have one pair of 
complex conjugates with real components that are significantly greater than one. This 
therefore corresponds to an unstable limit cycle. 
The instability of this solution means that as a result of a small perturbation E the 
resultant solution will diverge from the limit cycle. In Figures 3.6 and 3.7 we can see 
this pronounced change in stability. 
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Fig 3.6. The stable limit cycle (blue) and the perturbation solutions (red) for perturbations above and 
below the limit cycle. 
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Fig 3.7 The unstable limit cycle (blue) and the perturbation solutions (red) for perturbations above and 
below the limit cycle. 

Figures 3.6 and 3.7 show a perturbation to both the stable and unstable limit cycles 
formed at /3 = 0.368. We achieved this perturbation by changing the initial conditions 
by, in the first instance, adding 0.02 to the initial values of each of the four species and 
the nutrients and finding the solutions and in the second instance, subtracting 0.02. This 
is equivalent to making a perturbation outside then inside the limit cycle. Each figure 
shows the limit cycle run for a suitable time as well as the solutions of the perturbations 
to the limit cycles. From the stable case seen in Fig 3.6 we can see that the perturbation 
solutions converge to the limit cycle (shown in red). This is as we would expect in a 
stable case. In Fig 3.7 the solutions do not converge but instead oscillate and move 
away from the limit cycle. 



3.4. Discussion 

This chapter presented an investigation of the solutions to the system proposed by Stone 
(1990) in the case where the nutrients were allowed to vary. The system predicts four 
steady-states (and two more with unphysically realizable negative values for the 
populations). Of these equilibria, only one predicts long term survival for all four 
species. It is around this equilibrium point that we centred our study. 

In the previous chapter the system, where nutrients are not allowed to vary, was 
degenerate, meaning the unforced equations gave rise to equilibrium points that are 
centres (excluding the point where all populations vanish). It was suggested that when 
nutrients are allowed to vary, that these points may become Hopf points. In the fully 
populated equilibrium point, Hopf bifurcations were found for a range of parameter 
values. Furthermore, the limit cycles found changed stability as we moved along the 
solution branch. The Floquet multipliers calculated for these solutions along this branch, 
indicated that there was no period doubling bifurcation present, typically a route to 
chaos, for the parameter values used. 

It should also be noted that Fig 3.1 shows the Hopf curve appearing for a small value for 
N and disappearing as N increases beyond a certain value. The limit cycles only appear 
for certain parameter values and particularly when N is relatively small. We can also see 
from Chapter 2, there are no limit cycles when N is in abundant supply. If in fact the 
interaction between P and B is thought of as a de-facto defence mechanism, then 
although we are not modelling how this interaction works as N is varied, we still can 
say that the model with this interaction in place provides stable solutions for low 
nutrient levels. 

In section 3.3 we used the values for the interaction constants stated in Stones' (1990) 
paper; the constants simulate the system in a stressed state so that phytoplankton 
releases extracellular organic carbon (EOC). Although our interpretation of the 
relationship between phytoplankton and bacteria is different to that of Stones' (1990), 
we have shown that in our case the system finds a set of stable solutions of increasing 
amplitude for all populations, which remains stable as the reproductive rate of bacteria 
increases up until the point a fold bifurcation is reached and stability is lost. We must 
consider the fact that we have changed the values for the interaction function 
between the bacteria and phytoplankton, making it considerably less than that derived 
from Stones' (1990) dimensional rate constants. Also, the range of values chosen for the 
reproductive rate of the bacteria )3 is less than that chosen by Stone (1990). These 
interaction functions are for the non-dimensional system (3.11). A change to fl is 
achieved by increasing rb  and a change in ri can be achieved by either increasing r, and 
r, at the same rate or by decreasing r; . Although we have changed these values slightly 
to find a Hopf bifurcation we would consider it reasonable to assume that they still fall 
within acceptable ranges for the biological processes they represent. Stone (1990) 
showed that for the interaction rates used in his paper there were secondary benefits to 
the phytoplankton within the system as a whole. He did not analyse the system to show 
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its dynamics at these values. However, as mentioned our model differs slightly to 
Stone's (1990). This does not change the previous comment that the work of Stone 
(1990) does not explain the dynamics of the system and so the "secondary effects" 
found do not imply that the system, which supports all the species present, is actually 
benefited at all by the benefit to the phytoplankton. Perhaps, however, it might be 
beneficial to model strict commensalism between bacteria and phytoplankton to 
examine the dynamics of the system with this relationship. 

We have chosen a Michaelis-Menten term for the nutrient uptake. There are of course 
other possibilities, although any law that limits the rate for large nutrient concentration 
might reasonably be expected to behave at least qualitatively similarly to the result s 
presented here. We have not considered migration or alternative models for the 
interaction between the bacteria and phytoplankton. Nevertheless, this study has shed 
some light on the dynamics of this system. In addition, we have assumed that the mass 
of nutrient per species is roughly constant, as indicated in equation (3.9). The dynamics 
of this system would no doubt become considerably more elaborate if this assumption 
were to be relaxed. However these are considerations for further study. 

One final note should be made on the period of the limit cycles found. These periods of 
roughly half a month may suggest that, in order to see the complicated resonance 
structure in Chapter 2, diurnal forcing would no longer be appropriate. This however 
remains a topic for further investigation. 



CHAPTER 4 

Conclusion 

The paper by Lewi Stone (1990) sought to offer an explanation for the paradoxical 
behaviour of phytoplankton. The key question was concerned with why an organism 
would apparently contribute to the survival of a competitor. A priori there could be 
many explanations. The competitor offers protection from a predator despite the 
competition aspect of their relationship. Stone's (1990) explanation that the Protozoa 
contribution to the nutrient pool is of benefit to the entire system falls under the general 
notion of secondary effects. However Stone's (1990) paper does not predict that the 
dynamics of the system show any sustainable benefit from the secondary effects he 
discusses. The purpose of this thesis and the dynamical systems approach that it uses is 
not to explain the biology of a system, but to examine a hypothesis and provide 
information about the system that is not initially obvious, and to provide qualitative 
information about the effects that changing parameters have on the system. 

We began our approach by using a simple model to simulate the system described in 
Stone's (1990) paper. Chapter 2 dealt with the situation where nutrient concentration 
was considered to be constant. This situation could be found in nature in the case that 
nutrients are in an abundant supply. The phytoplankton stimulate the bacteria when 
nutrients are low; however if the nutrient concentrations are considered constant we can 
take this out of the equation and examine the mechanics of the top two levels of the 
trophic interaction. This can provide insight into the dynamics of the system at this 
level. We can then see how these dynamics change with the introduction of more 
species or more realistic interaction terms. 

We found that in the case of no forcing, in chapter 2, a Hopf bifurcation leading to limit 
cycle behaviour is not possible. Numerical solutions found for the non-forced case did 
however appear as non-linear centres for the chosen parameter values. When forcing 
was allowed in the system then resonance peaks appeared in the solutions as well as 
quasi-periodicity and chaos. These conclusions have been supported by experimentation 
on similar systems (Shertzer et al 2002). An important point here is that we have shown 
the rich complexity available in a simple model and although the model is simple it does 
simulate many of the realistic influences found in nature such as diurnal forcing and 
competition. The limitations with our model are the same ones found in all biological 
models. These involve the questions of whether the biology has been modelled 
accurately, whether the system (3.10) is an appropriate representation of Stone's (1990) 
scheme, and whether the interactions between components in the trophic web have been 
modelled appropriately. These questions must ultimately be answered by biologists. 
Nevertheless, this thesis has shown what dynamics and behaviour can be expected, if 
the modelling is accurate. 

50 

In the third chapter we further developed the model by incorporating nutrient 
concentrations into the reproductive rates for bacteria and phytoplankton, as well as 
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introducing a fifth equation for the rate of change of nutrients. These changes had the 
effect of making the system non-degenerate. We witnessed the emergence of a 
supercritical Hopf-bifurcation. The limit cycles that emerged from the super critical 
Hopf-bifurcation were stable and increased in amplitude as fi varied up until a point 
that the stability was lost and eventually the limit cycles vanished into a sub critical 
Hopf point.. This type of situation might indicate the conditions necessary for long term 
survival of a species. In Chapter 2 we found that there were no limit cycles resulting 
from a Hopf bifurcation, in the unforced system, when nutrients are in abundance. 
However this same unforced system does permit limit cycles when nutrients are taken 
into consideration, particularly at relatively low nutrient concentrations, in which case 
the system is capable of stability when stressed by low nutrient levels. These low 
Nutrient levels should be particularly damaging to the Phytoplankton with respect to the 
way we have modelled the interaction between it and the Bacteria. It was mentioned 
previously in the thesis that this interaction could be viewed as a defacto defence 
mechanism of the system as a whole. In the future it would important to model this 
interaction rate as a defence mechanism utilised by Phytoplankton and dependent on 
Nutrients, to see the effect on the system. We did vary two of the non-dimensional 
parameters from those that would have been determined from the dimensional rates 
found in Stone's (1990) paper. The non-dimensional amplitude of the forcing in the 
reproductive rate fl  was used as the critical parameter in chapter 2 in the forced case. 
We saw in both chapters that as fi or fl  reached critical values the dynamics of the 
model changed significantly. This shows the effects that even a small change to a 
parameter can have on a system as a whole. This indicates the value and insight that can 
be derived by treating biological models from a dynamical systems point of view. 

We have made several assumptions about the models developed in chapters 2 and 3. 
When choosing scales in the non-dimensionalisation phase, we assumed the populations 
can be scaled by the same factor. Secondly we assumed in chapter 3 that the species all 
contain roughly the same mass of nutrients per volume when forming the fifth equation. 
We embraced the idea that the relationship between Phytoplankton and Bacteria is 
symmetrical, accepting that one benefits as the other loses. To what extent these 
assumptions are accurate is a question that must ultimately be resolved by biologists. 
The dynamical systems approach deals with qualitative aspects of model behaviour, and 
in the past has contributed greatly to the biological sciences using even such inaccurate 
models as the Lotka-Volterra system. Developing mathematical models of realistic 
biological systems is clearly an iterative process between mathematical and biological 
sciences. 

Further work on the model could take place in the area of modelling a commensal 
relationship between bacteria and phytoplankton to see the effect on the dynamics. 
Other considerations could be the introduction of more realistic interaction functions 
(delay terms) or introducing terms for migration. What cannot be misinterpreted is the 
effect of the non-linearity in the system and the way that the tools available in 
dynamical systems theory have been used to predict phenomena that are observable in 
the physical world. 



52 

References 

•Edelstein-Keshet (1988) Mathematical Models in Biology, Random House, NY 

Edwards AM, Brindley J (1999) Zooplankton mortality and the dynamical behaviour of 
plankton population models. Bull Math Biol 61:303-339. 

Edwards AM (2001) Adding detritus to a nutrient-phytoplankton-zooplankton model: A 
dynamical systems approach. Jour Plan Res 23: 389-413. 

Forbes LK (1991) Forced transverse oscillations in a simple spring-mass system, Siam 
Jour App Math. 51:1380-1396. 

Freund JA, Mieruch S, Scholze B (2006) Bloom dynamics in a seasonally forced 
phytoplankton-zooplankton model. Ecol Comp 3:129-139. 

Gross T, Ebenhoh W, Feudel U (2004) Enrichment and foodchain stability: The impact 
of different forms of predator-prey interaction. J Theor Biol 227:349-358 

Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems and 
Bifurcations of Vector Fields, Springer-Verlag, NY 

Huppert A, Olinky R, Stone L (2004) Bottom-Up excitable models of phytoplankton 
blooms. Bull Math Biol 66:865-878 

Hutchison GE (1961) Paradox of the plankton, Amer Nat 95:137-145 
Jansen VAA (2001) The dynamics of two diffusively coupled predator-prey 
populations. 
Theo Pop Biol 59:119-131 

Kirk KL (1998) Enrichment can stabilize population dynamics: Autotoxins and density 
dependence Ecology (USA) 79:2456-2462 

Medio L, Lines M (2001) Nonlinear dynamics a primer. University Press, Cambridge 

Murray JD (1989) Mathematical Biology. Springer-Verlag, NY 

Ruan SG (2001) Oscillations in plankton models with nutrient recycling 
Jour Theo Biol 208:15-26 



53 

Scheffer M, Rinaldi S, Huisman J, Weissing FJ (2003) Why plankton communities have 
no equilibrium; solutions to the paradox, Hydrobiologia 491: 9-18 

Seydel R (1994) Practical Bifurcation and Stability Analysis: From equilibrium to chaos 
2 '  Edition. Springer-Verlag, NY. 

Shertzer KW, Ellner SP, Fussman GF, Hairston NG (2002) Predator—prey cycles in an 
aquatic microcosm, Jour Anim Ecol 71:802-815. 
Sprott JC, Wildenberg JC, Azizi Y (2005) A simple spatiotemporal chaotic Lotka-
Volterra model. Chaos Solitons and Fractals 26: 1035-1043 

Stone L (1990) Phytoplankton-bacteria-protozoa interactions: a qualitative model 
portraying indirect effects. Mar Ecol Prog Ser 64:137-145 

Thompson JMT, Stewart BB (1989) Nonlinear Dynamics and Chaos, John Wiley and 
Sons NY 

Truscott JE, Brindley J (1994) Ocean plankton populations as excitable media, Bull 
Math Biol 56:981-998 

Van der Stap I, Vos M, Tollrian R, Mooij WM (2008) Inducible defences, competition 
and shared predation in planktonic food chains, OECO 157:697-705 

Verschoor AM, Vos M, van der Stap I (2004) Inducible defences prevent strong 
population fluctuations in bi- and tritrophic food chains, Ecol Lett 7:1143-1148 

Wang EEL, Feng IF, Shen F, Sun J (2005) Stability and bifurcation behaviours analysis 
in a non-linear harmful algal dynamical system, App Math Mech 26:729-734 
Sprott JC, Wildenberg JC, Azizi Y (2005) A simple spatiotemporal chaotic Lotka-
Volterra model. Chaos Solitons and Fractals 26: 1035-1043 


